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Preface

The theory of modular forms is an important subject of number theory. Also it has
very important applications to other areas of number theory such as elliptic curves,
quadratic forms, etc. Its contents is vast. So any book on it must necessarily make a
rather limited selection from the fascinating array of possible topics. Our focus is on
topics which deal with the fundamental theory of modular forms of one variable with
integral and half-integral weight. Even for such a selection we have to make further
limitations on the themes discussed in this book. The leading theme of the book is
the development of the theory of Eisenstein series.

A fundamental problem is the construction of a basis of the space of modular
forms. It is well known that, for any weight � 2 and the weight 1, the orthogonal
complement of the space of cusp forms is spanned by Eisenstein series. Does this
conclusion hold for the half-integral weight < 2? The problem for weight 1/2 was
solved by J.P.Serre and H.M.Stark. Then one of the authors of this book, Dingyi
Pei, proved that the conclusion holds for weight 3/2 by constructing explicitly a
basis of the orthogonal complement of the space of cusp forms. To introduce this
result and some of its applications is our motivation for writing this book, which is a
large extension version of the book “Modular forms and ternary quadratic forms” (in
Chinese) written by Dingyi Pei.

Chapter 1 can be viewed as an introduction to the themes discussed in the book.
Starting from the problem of representing integers by quadratic forms we introduce
the concept of modular forms. In Chapter 2, we discuss the analytic continuation of
Eisenstein series with integral and half-integral weight, which prepares the construc-
tion of Eisenstein series in Chapter 7.

In Chapters 3-5, some fundamental concepts, notations and results about modu-
lar forms are introduced which are necessary for understanding later chapters. More
specifically, we introduce in Chapter 3 the modular group and its congruence sub-
groups and the Riemannian surface associated with a discrete subgroup of SL2(R).
Furthermore, the concept of cusp points for a congruence subgroup is presented. In
Chapter 4, we define modular forms with integral and half-integral weight, calculate
the dimension of the space of modular forms using the theorem of Riemann-Roch.
Chapter 5 is dedicated to define Hecke rings and discuss some of their fundamental
properties. Also in this chapter the Zeta function of a modular form with integral or
half-integral weight is described. In particular, we deduce the functional equation of
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the Zeta function of a modular form, and discuss Weil’s Theorem.

In Chapter 6, the definitions of new forms and old forms with integral and half-
integral weight are given. In particular the Atkin-Lehner’s theory and the Kohnen’s
theory, with respect to new forms for integral and half-integral weight, are discussed
at length respectively.

In Chapter 7, we construct Eisenstein series. The first objective is to construct
Eisenstein series with half-integral weight � 5/2. The second objective is the con-
struction of Eisenstein series with weight 1/2 according to Serre and Stark. Then the
method of the construction for Eisenstein series of weight 3/2 is introduced, followed
by the construction of Cohen-Eisenstein series. For completeness, the construction of
Eisenstein series with integral weight, which is due to Hecke, is also given in the last
section of the chapter.

The Shimura lifting is the main objective of Chapter 8 where we follow the way
depicted by Shintani. Weil representation is introduced first and some elementary
properties of Weil representation are discussed. Then the Shimura lifting from cusp
forms with half-integral weight to ones with integral weight is constructed. Also the
Shimura lifting for Eisenstein spaces is deduced in this chapter.

In Chapter 9, we discuss the Eichler-Selberg trace formula for the space of modular
forms with integral and half-integral weight. The simplest case of the Eichler-Selberg
trace formula on SL2(Z) is deduced in terms of Zagier’s method. Then the trace
formula on a Fuchsian group is obtained by Selberg’s method. Finally the Niwa’s and
Koknen’s trace formulae are obtained for the space of modular forms with half-integral
weight and the group Γ0(N).

In Chapter 10, some applications of modular forms and Eisenstein series to the
arithmetic of quadratic forms are described. We first present the Schulze-Pillot’s
proof of Siegel theorem. Then some results of representation of integers by ternary
quadratic forms are explained. We also give an upper bound of the minimal positive
integer represented by a positive definite even quadratic form with level 1 or 2.

Although many modern results on modular forms with half-integral weight are
contained in this book, it is written as elementarily as possible and it’s content is
self-contained. We hope it can be used as a reference book for researchers and as a
textbook for graduate students.

The authors would like to thank Ms. Yuzhuo Chen for her many helps. Also many
thanks should be given to Dr. Junwu Dong for his helpful suggestions and carefully
typesetting the draft of this book. We especially wish to thank Dr. Wolfgang Happle
Happle for carefully reading the draft of this book and correcting some errors in the
draft. The author Xueli Wang wishes to thank Prof. Dr. Gerhard Frey for stimulating
discussions and providing the environment of I.E.M in Essen University, where part
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of the draft has been done. Xueli Wang hope to give deepest gratitude for his lovely
and beautiful wife, Dr. Dongping Xu, who assumed all of the housework over the
years. Finally, the author Xueli Wang would like to dedicate this book to the 80th
birthday of his father.

Xueli Wang Dingyi Pei

Guangzhou

September, 2011
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Chapter 1

Theta Functions and Their Transformation

Formulae

In this chapter, we introduce theta functions of positive definite quadratic forms and
study their transformation properties under the action of the modular group.

Let a, b, c and n be positive integers with (a, b, c) = 1. Denote by N(a, b, c; n) the
number of integral solutions (x, y, z) ∈ Z3 of the following equation:

ax2 + by2 + cz2 = n.

Define the theta function by

θ(z) =
∞∑

n=−∞
e2πin2z, z ∈ H,

where H is the upper half of the complex plane, i.e., H = {z ∈ C|Im(z) > 0}. It is
clear that θ(z) is holomorphic on H. Put

f(z) = θ(az)θ(bz)θ(cz),

then

f(z) = 1 +
∞∑

n=1

N(a, b, c; n)e2πinz.

Hence the number N(a, b, c; n) is the n-th Fourier coefficient of the function. This
shows that we know the number N(a, b, c; n) if the Fourier coefficients of f can be
computed explicitly. It is clear that there is a close relationship between f(z) and
the θ function. We shall see later that f(z) is a modular form of weight 3/2 from the
transformation properties of θ under the action of linear fractional transformations.
After having studied some properties of modular forms, we shall resume this topic
later. Firstly, we shall consider some more general problems.

Now let t be a positive real number, put

ϕ(x) =
∞∑

n=−∞
e−πt(n+x)2 .
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The series satisfies ϕ(x + 1) = ϕ(x). Hence it has the following Fourier expansion:

ϕ(x) =
∞∑

m=−∞
cme2πimx,

where

cm =
∫ 1

0

ϕ(x)e−2πimxdx =
∫ ∞
−∞

e−πtx
2−2πimxdx = t−1/2e−πm

2/t.

Hence

ϕ(x) = t−1/2
∞∑

m=−∞
e−πm

2+2πimx. (1.1)

Taking x = 0 in equation (1.1) we get

θ̃(it) = t−1/2θ̃(−1/(it)),

where θ̃(z) = θ(z/2). Because θ̃(z) is a holomorphic function on the upper half plane,
we have that

θ̃(−1/z) = (−iz)1/2θ̃(z), ∀z ∈ H. (1.2)

For the multi-valued function z1/2, we choose arg(z1/2) such that −π/2 < arg(z1/2) �
π/2. In general, we have that (z1z2)1/2 = ±z

1/2
1 z

1/2
2 where we take “−” if one of the

following conditions is satisfied:
(1) Im(z1) < 0, Im(z2) < 0, Im(z1z2) > 0;
(2) Im(z1) < 0, Im(z2) > 0, Im(z1z2) < 0;
(3) z1 and z2 are both negative, or one of them is negative and the imaginary of

the other one is positive.
Otherwise we take “+”.
Let f(x1, · · · , xk) be an integral positive definite quadratic form in k variables.

Define the matrix

A =
(

∂2f

∂xi∂xj

)
.

Then A is a positive definite symmetric integral matrix with even entries on the
diagonal. It is clear that

f(x1, · · · , xk) =
1
2
xAxT,

where x = (x1, · · · , xk) ∈ Zk is a row vector, xT is the transposal of x. We now define
the θ function of f as

θf (z) =
∑
x∈Zk

e2πif(x)z for all z ∈ H.
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It is clear that

θf (z) =
∑
x∈Zk

eπixAxTz =
∞∑

n=0

r(f, n)e2πinz ,

where r(f, n) is the number of the solutions of f(x) = n with x ∈ Zk. θf (z) is
absolutely and uniformly convergent in any bounded domain of H, so it is holomorphic
on the whole of H.

Let N be the least positive integer such that all the entries of the matrix NA−1

are integers and the entries on the diagonal are even. This implies that detA is a
divisor of Nk. Hence the prime divisors of detA are also prime divisors of N . But it
is clear that N |2 detA. So all the odd prime divisors of N are certainly prime divisors
of detA.

If we consider A as a matrix on the ring Z2 of 2-adic integers, it can be proved
that there exists an inverse matrix S on Z2 such that

SAST =

⎛⎜⎜⎝
A1 0 · · · 0
0 A2
...

...
...

0 0 · · · Ar

⎞⎟⎟⎠ ,

where Ai is either an integer of 2Z2 or a symmetric matrix
(

2a b
b 2c

)
with a, b, c ∈ Z2.

It is clear that there is at least one Ai which is a 1 × 1 matrix if k is odd. So we
get the following

Lemma 1.1 If k is odd, then 2| detA and 4|N ; if k is even, then N | detA. If 4|k,

then detA ≡ 0 or 1 mod 4; if k ≡ 2 mod 4, then detA ≡ 0 or 3 mod 4. Hence
(−1)k/2 det A is always 1 or 0 modulo by 4 if k is even.

Let h be a vector in Zk such that hA ∈ NZk and define a function on H as follows

θ(z; h, A, N) =
∑

m≡h(N)

e
(zmAmT

2N2

)
,

where e(z) = e2πiz.

Proposition 1.1 We have the following transformation formula

θ(−1/z; h, A, N) = (det A)−1/2(−iz)k/2
∑

k modN, kA≡0(N)

e(hAkT/N2)θ(z; k, A, N).

Proof Let v be a positive real number, x = (x1, · · · , xk) ∈ Rk, and

g(x) =
∑

m∈Zk

e(iv(x + m)A(x + m)T/2).
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Then g(x) has Fourier expansion

g(x) =
∑

m∈Zk

ame(x · mT), (1.3)

where

am =
∫

· · ·
∫

0�xj<1

g(x)e(−x · mT)dx =
∫ ∞
−∞

· · ·
∫ ∞
−∞

e(ivxAxT/2 − x · mT)dx.

There exists a real orthogonal matrix S such that SAST is a diagonal matrix
diag{α1, · · · , αk} with αi > 0 (1 � i � k). We make a variable change x = yS in the
above integral and denote SmT = (u1, · · · , uk)T. Then

am =
k∏

j=1

∫ ∞
−∞

e−πvαjy2−2πiujydy

=
k∏

j=1

∫ ∞
−∞

e−πvαj

(
y+

iuj
vαj

)2− πu2
j

vαj dy

= v−k/2
k∏

j=1

α
−1/2
j e

− πu2
j

vαj

= v−k/2(detA)−1/2e−πmA−1mT/v. (1.4)

For any m ∈ Zk, let k ≡ mNA−1 (mod N). Then kA ≡ 0 (mod N) and m can
be written as (Nu + k)A/N(u ∈ Zk). Inserting (1.4) into (1.3), we get

g(x) = v−k/2(det A)−1/2
∑

k mod N,
kA≡0(N)

e(xAkT/N)

·
∑

u

e(xAuT + i(Nu + k)A(Nu + k)T/(2vN2)).

Since θ(iv; h, A, N) = g(h/N), we get by the above equality

θ(iv; h, A, N) = v−k/2(det A)−1/2
∑

k modN,
kA≡0(N)

e(hAkT/N2)θ
(
− 1

iv
; k, A, N

)
,

which shows that Proposition 1.1 holds for z = −1/iv. This implies that the propo-
sition holds because θ(z; h, A, N) is holomorphic on the whole of H.

Now we define the full modular group of order 2 as follows

SL2(Z) =
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ Z, ad − bc = 1
}

.
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Let

γ =
(

a b
c d

)
∈ SL2(Z).

We want to find the transformation formula of θ(z; h, A, N) under the transformation
z �→ γ(z) = (az + b)/(cz + d). We first assume that c > 0, then we get by Proposition
1.1 that

θ(γ(z); h, A, N)=
∑

m≡h(N)

e

(
mAmT

(
a − 1

cz + d

)
/(2cN2)

)

=
∑

g mod (cN),
g≡h(N)

e(agAgT/(2cN2))

·
∑

m≡g mod (cN)

e(−cmAmT/[2(cz + d)(cN)2])

=(det A)−1/2c−k/2(−i(cz + d))k/2

·
∑

k mod (cN),
kA≡0(N)

Φ(h, k)θ(cz; k, cA, cN), (1.5)

where
Φ(h, k) =

∑
g mod (cN),

g≡h(N)

e([agAgT + 2kAgT + dkAkT]/(2cN2))

and we also used the fact that mAmT is even for any m ∈ Zk. Since ad = bc + 1, it
follows

Φ(h, k)=
∑

g mod (cN),
g≡h(N)

e
(
a(g + dk)A(g + dk)T/(2cN2)

)
e
(
− b[2gAkT + dkAkT]/(2N2)

)

=e
(
− b[2hAkT + dkAkT]/(2N2)

)
Φ(h + dk, 0),

which implies that Φ(h, k) is only dependent on k mod N . By equality (1.5) we get

θ(γ(z); h, A, N)(detA)1/2ck/2(−i(cz + d))−k/2

=
∑

k mod (N),
kA≡0(N)

Φ(h, k)
∑

g mod (cN),
g≡k(N)

θ(cz; g, cA, cN)

=
∑

k mod (N),
kA≡0(N)

Φ(h, k)θ(z; k, A, N).
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Substituting z by −1/z, we get by Proposition 1.1

θ

(
bz − a

dz − c
; h, A, N

)
detAck/2

(
− i(d − c/z)

)−k/2(−iz)−k/2

=
∑

l mod N,
lA≡0(N)

{ ∑
k mod N,
kA≡0(N)

e(lAkT/N2)Φ(h, k)

}
θ(z; l, A, N). (1.6)

Now suppose that d ≡ 0(N). Since NA−1 is an integral matrix with even entries
on the diagonal,

kAkT/(2N) = (N−1kA · NA−1 · N−1AkT)/2

is an integer. Hence
Φ(h, k) = e(−bhAkT/N2)Φ(h, 0)

and the right hand of (1.6) becomes

Φ(h, 0)
∑

l mod N,
lA≡0(N)

{ ∑
k mod N,
kA≡0(N)

e((l − bh)AkT/N2)

}
θ(z; l, A, N).

We now compute the inner summation of the formula above. There exist modular
matrices P, Q, such that PAQ = diag{α1, · · · , αk}. Since NA−1 is an integral matrix,
then αi|N(1 � i � k). Since

kA ≡ (l − bh)A ≡ 0(N),

a direct computation shows that

∑
kmod(N),
kA≡0(N)

e((l − bh)AkT/N2) =
{

0, if 1 �≡ bh(N),
det A, if 1 ≡ bh(N).

Now substituting
(

b −a
d −c

)
by
(

a b
c d

)
, we assume that c ≡ 0(N), d < 0. Then

we have that

θ((az + b)/(cz + d); h, A, N) = (−i(c + d/z))k/2(−iz)k/2Wθ(z; ah, A, N), (1.7)

where
W = |d|−k/2

∑
gmod(|d|N),

g≡h(N)

e
(
− bgAgT/(2|d|N2)

)
.
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Since Im(−i) < 0, Im(c + d/z) > 0, then (−i(c + d/z))k/2 = (−i)k/2(c + d/z)k/2.

Similarly, since Im(−i) < 0, Im(z) > 0, we get (−iz)k/2 = (−i)k/2zk/2. Again since
Im(cz + d) = cIm(z), it follows

zk/2(c + d/z)k/2 = sgn(c)k(cz + d)k/2,

where

sgn(c) =
{

1, if c � 0,

−1, if c < 0.

Therefore
(−i(c + d/z))k/2(−iz)k/2 = (−isgn(c))k(cz + d)k/2. (1.8)

Since ad ≡ 1(N), we can express g in W as adh + Nu with u ∈ (Z/|d|Z)k. Then

W = e(abhAhT/(2N2))w(b, |d|), (1.9)

where
w(b, |d|) = |d|−k/2

∑
umod|d|

e(−buAuT/(2|d|)).

If c = 0 or b = 0, then d = −1 and hence w(b, |d|) = 1. Now suppose that bc �= 0
and d is an odd. We substitute z by z + 8m(m ∈ Z) in (1.7) such that d + 8mc < 0.
By (1.8) and (1.9) we know that

w(b, |d|) = w(b + 8ma, |d + 8mc|).

Because d and 8c are co-prime, we can find an integer m such that −d − 8mc is an
odd prime which will be denoted by p. Let β = −(b + 8ma). Then

w(b, |d|) = w(−β, p) = p−k/2
∑

umodp

e(βuAuT/(2p)).

Suppose that β ≡ 2β′(p). Since c ≡ 0(N), d and c are co-prime, then p and N

are co-prime, and hence p and detA are co-prime. There exists an integral matrix S

such that detS is prime to p and SASt is congruent to diag{q1, · · · , qk} modulo p.
By Gauss sum, we have that

w(b, |d|) = p−k/2
k∏

i=1

(
k∑

x=1

e(β′qix
2/p)

)
= εk

p

(
(β′)k detA

p

)
,

where
(

q

p

)
is the Legendre symbol

(
q

p

)
=
{

1, if q is a quadratic residue modulo p,
−1, otherwise.
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The symbol εn is defined for all odd integers:

εn =
{

1, if n ≡ 1(4),
i, if n ≡ 3(4).

It is clear that εp = ε−d = iε−1
d . Since all prime divisors of det A are divisors of

N , p ≡ −d(8N), (
detA

p

)
=
(

det A

−d

)
.

Since
(

a −β
c −p

)
∈ SL2(Z), i.e., βc − ap = 1, we get 2β′c ≡ 1(p). Hence

(
β′

p

)
=
(

2c

p

)
=
(

2c

−d

)
.

Let a be an integer, b �= 0 be an odd. We define a new quadratic residue symbol(a

b

)
satisfying the following properties:

(1)
(a

b

)
= 0 if (a, b) �= 1;

(2)
(

0
±1

)
= 1;

(3) If b > 0, then
(a

b

)
is the Jacobi symbol, i.e., if b =

∏
pr, then

(a

b

)
=∏(

a

p

)r

;

(4) If b < 0, then
(a

b

)
= sgn(a)

(
a

|b|

)
.

Hereafter, the symbol
(a

b

)
will be defined as above. Then we have

w(b, |d|) = ε−k
d (sgn(c)i)k

(
2c detA

d

)
(1.10)

and (1.10) holds for c = 0 or c �= 0.
Define a subgroup of the full modular group as follows

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0(N)
}

.

Proposition 1.2 Let γ =
(

a b

c d

)
∈ Γ0(N). If k is odd, then we have

θ(γ(z); h, A, N) = e
(
abhAhT/(2N2)

)(detA

d

)(2c

d

)k

ε−k
d (cz + d)k/2θ(z; ah, A, N),

(1.11)
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If k is even, then we have

θ
(
γ(z); h, A, N

)
= e
(
abhAhT/(2N2)

)( (−1)k/2 detA

d

)
(cz + d)k/2θ(z; ah, A, N),

(1.12)

Proof First assuming that k is odd. By Lemma 1.1, N ≡ 0(4). Hence d is odd.
For d < 0, inserting (1.8), (1.9) and (1.10) into (1.7), we can get (1.11) immediately.
For d > 0, substituting γ by −γ and noting that (−γ)(z) = γ(z), we have

θ(γ(z); h, A, N) = e(abhAhT/(2N2))
(

det A

d

)(
−2c

−d

)k

× ε−k
−d(−cz − d)k/2θ(z;−ah, A, N).

It is clear that θ(z;−ah, A, N) = θ(z; ah, A, N). If c = 0, then d = 1 and(
−2c

−d

)k

ε−k
−d(−cz − d)k/2 = i−k(−1)k/2 = 1.

If c �= 0, we have(
−2c

−d

)k

ε−k
−d(−cz − d)k/2 = (−sgn(c))k

(
−2c

d

)k

i−kε−k
d (−isgn(c))k(cz + d)k/2

= ε−k
d

(
2c

d

)k

(cz + d)k/2.

This shows that (1.12) holds also for d > 0. Now assuming that k is even. If d is
odd, we can get (1.12) by proceeding similarly as above. If d is even, then c is odd,
and N is also odd. By the result for the case d odd, we have

θ

(
az + aN + b

cz + cN + d
; h, A, N

)
= e
(abhAhT

2N2

)( (−1)k/2 detA

cN + d

)
(cz + cN + d)k/2θ(z; ah, A, N), (1.13)

where we used the fact that hAhT/(2N) is an integer. By Lemma 1.1 and Lemma
1.2 which will be proved later, we have(

(−1)k/2 detA

cN + d

)
=
(

(−1)k/2 detA

d

)
,

where d is even. So the right hand side of above is equal to
(

(−1)k/2 detA

detA + d

)
. Sub-

stituting z by z − N in (1.13) we get (1.12).
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It is clear that θf (z) = θ(z; 0, A, N). Thus we obtain the main theorem of this
chapter:

Theorem 1.1 Let γ =
(

a b

c d

)
∈ Γ0(N). If k is odd, then

θf (γ(z)) =
(

2 detA

d

)
ε−k

d

( c

d

)k

(cz + d)k/2θf (z).

If k is even, then

θf (γ(z)) =
(

(−1)k/2 detA

d

)
(cz + d)k/2θf (z).

In particular, taking k = 1, A = 2, then N = 4. For any γ =
(

a b
c d

)
∈ Γ0(4), by

Theorem 1.1, we have

θ(γ(z)) = ε−1
d

( c

d

)
(cz + d)1/2θ(z).

We define the symbol

j(γ, z) = ε−1
d

( c

d

)
(cz + d)1/2, γ ∈ Γ0(4).

If γ1, γ2 ∈ Γ0(4), by the above result, we have

θ(γ1γ2(z)) = j(γ1γ2, z)θ(z)

and
θ(γ1γ2(z)) = j(γ1, γ2(z))θ(γ2(z)) = j(γ1, γ2(z))j(γ2, z)θ(z).

Therefore
j(γ1γ2, z) = j(γ1, γ2(z))j(γ2, z). (1.14)

Lemma 1.2 Let a = ds2 �= 0 be an integer, d square-free. Let

D =
{ |d|, if d ≡ 1(4),

4|d|, if d ≡ 2, 3(4).

Then the map b �→
(a

b

)
(b is odd) defines a character modulo 4a with conductor D.

Proof If a, b are co-prime, it is clear that(a

b

)
=
(

d

b

)
.
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(1) Suppose d > 0 and d odd. If b > 0, then

(
d

b

)
=

⎧⎪⎪⎨⎪⎪⎩
(

b

d

)
, if d ≡ 1(4),(

−1
b

)(
b

d

)
, if d ≡ 3(4).

If b < 0, d ≡ 1(4), then (
d

b

)
=
(

d

|b|

)
=
(
|b|
d

)
=
(

b

d

)
.

If b < 0, d ≡ 3(4), then(
d

b

)
=
(

d

|b|

)
=
(
−1
|b|

)(
|b|
d

)
=
(
−1
b

)(
b

d

)
.

These conclusions show that the lemma holds in this case.
(2) Suppose d < 0, d is odd. If b > 0, then

(
d

b

)
=
(
−1
b

)(
|d|
b

)
=

⎧⎪⎪⎨⎪⎪⎩
(

b

|d|

)
, if d ≡ 1(4),(

−1
b

)(
b

|d|

)
, if d ≡ 3(4).

If b < 0, d ≡ 1(4), then(
d

b

)
= −

(
d

|b|

)
= −

(
|b|
|d|

)
=
(

b

|d|

)
.

If b < 0, d ≡ 3(4), then(
d

b

)
= −

(
d

|b|

)
= −

(
−1
|b|

)(
|b|
|d|

)
=
(
−1
b

)(
b

|d|

)
.

These conclusions show that the lemma holds in this case.
(3) Suppose d = 2d′, then (

d

b

)
=
(

2
b

)(
d′

b

)
.

(
2
b

)
is a character modulo 8, gathering the results in (1) and (2), we proved the

lemma.

Remark 1.1 If a ≡ 1(4), b �→
(a

b

)
is a character modulo a. In this case, b can

be an even integer.



Chapter 2

Eisenstein Series

2.1 Eisenstein Series with Half Integral Weight

In this section we always assume that k is an odd integer, N is a positive integer such
that 4|N , ω is an even character modulo N , i.e., ω(−1) = 1. We shall construct a
class of holomorphic functions which are named as Eisenstein series with the following
property

f(γ(z)) = ω(dγ)j(γ, z)kf(z), γ =
(
∗ ∗
∗ dγ

)
∈ Γ0(N).

Lemma 2.1 Let k > 2 be a positive integer, z ∈ H. Put

L = {mz + n|m, n ∈ Z}.

Then the series
Ek(z) =

∑
w∈L\{0}

w−k =
∑
m,n

′(mz + n)−k

is a holomorphic function on the upper half plane H where
∑ ′

indicates the summa-
tion over all (m, n) �= (0, 0).

Proof Let Pm be the parallelogram with vertices ±mz ± m. Denote

r = min{|w|, w ∈ P1},

for any w ∈ Pm, we have that |w| � mr. Since there are 8m points in L
⋂

Pm, then

∑
w∈L\{0}

|w|−k =
∞∑

m=1

∑
w∈Pm

|w|−k � 8
∞∑

m=1

m(mr)−k.

It is clear that the right hand side of the above is convergent for k > 2. So Ek(z) is
absolutely and uniformly convergent in any bounded domain of H. This shows that
Ek(z) is holomorphic on the whole of H.

Let

Γ∞ =

{
±
(

1 n
0 1

) ∣∣∣∣∣n ∈ Z

}
,
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which is clearly a subgroup of Γ0(N). Suppose k � 5 and define

Ek(ω, N)(z) =
∑

γ∈Γ∞\Γ0(N)

ω(dγ)j(γ, z)−k, (2.1)

where γ runs over a complete set of representatives of right cosets of Γ∞ in Γ0(N).
For γ′ ∈ Γ∞, by (1.14), we have that

ω(dγ′γ)j(γ′γ, z)−k = ω(dγ)j(γ, z)−k,

which implies that Ek(ω, N)(z) is well defined. By Lemma 2.1 it is a holomorphic
function on H. For any γ′ ∈ Γ0(N), it is easy to verify

Ek(ω, N)(γ′(z)) = ω(dγ′)j(γ′, z)kEk(ω, N)(z).

For 1 � k < 5, the series defined in (2.1) is not absolutely convergent. We now
introduce the following function

Ek(s, ω, N)(z) = ys/2
∑

γ∈Γ∞\Γ0(N)

ω(dγ)j(γ, z)−k|j(γ, z)|−2s, (2.2)

where y = Im(z) > 0, s is a complex variable and we will therefore call |j(γ, z)|−2s

Hecke convergence factor because it was first introduced by Hecke. It is clear that
for Re(s) > 2 − k/2 the series (2.2) is absolutely convergent and has the following
transformation property

Ek(s, ω, N)(γ(z)) = ω(dγ)j(γ, z)kEk(s, ω, N)(z), γ ∈ Γ0(N). (2.3)

We shall study the meromorphic continuation of Ek(s, ω, N) to the whole s-plane.
Then we get a holomorphic function on H for s = 0. By (2.3)

Ek(s, ω, N)(z + 1) = Ek(s, ω, N)(z),

i.e., Ek(s, ω, N)(z) has period 1. We shall first compute the Fourier expansion of
Ek(s, ω, N)(z) with respect to e2πiz. Then we can get the analytic continuation with
respect to s. Now we assume that k � 1. We need some lemmas.

Lemma 2.2 Let λ, y ∈ R, β ∈ C, and y > 0, Re(β) > 0. Then∫ y+i∞

y−i∞
v−βeλvdv =

{
2πiλβ−1Γ(β)−1, if λ > 0,

0, if λ � 0.

Proof We only need to prove the lemma for 0 < Re(β) < 1. Let

β = a + ib, v = |v|eiϕ = s + it, s, t ∈ R.



2.1 Eisenstein Series with Half Integral Weight 15

For λ � 0, we integrate along a path shown in Figure 2.1. Since

|v−βeλv| = e−a lg |v|+bϕ+λs → 0, |v| → ∞, s � y,

by the Cauchy Theorem for path integrals, we know that the lemma holds. For λ > 0,∫ y+i∞

y−i∞
v−βeλvdv = λβ−1

∫ λy+i∞

λy−i∞
v−βevdv,

we integrate along the path as in Figure 2.2. When v runs over the small circle with
radius r, we get

r|v−βev| = r1−a|ev| → 0, r → 0,

since 0 < a < 1. On the other hand,

|v−βev| = e−a lg |v|+bϕ+s → 0, |v| → ∞, s � λy.

Figure 2.1 Figure 2.2

Hence by the Cauchy Theorem we have∫ λy+i∞

λy−i∞
v−βevdv = −

∫ 0

−∞
v−βevdv −

∫ −∞
0

v−βevdv,

where the variable v in the first integral runs above the negative real axis and the
variable v in the second integral runs underneath the negative real axis. Therefore∫ 0

−∞
v−βevdv = e−iπβ

∫ ∞
0

x−βe−xdx = e−iπβΓ(1 − β),∫ −∞
0

v−βevdv = −eiπβ

∫ ∞
0

x−βe−xdx = −eiπβΓ(1 − β).

But
(eiπβ − e−iπβ)Γ(1 − β) = 2iΓ(1 − β) sinπβ = 2πiΓ(β)−1,

which completes the proof.
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Let y > 0, α, β ∈ C and define

W (y, α, β) = Γ(β)−1

∫ ∞
0

(1 + u)α−1uβ−1e−yudu,

which is called the Whittaker function. It is clear that the integral is convergent for
Re(β) > 0. Applying integration by parts we get

W (y, α, β) = yW (y, α, β + 1) + (1 − α)W (y, α − 1, β + 1). (2.4)

Due to the above equality W (y, α, β) can be continued analytically to C2 for (α, β).
We will also denote the continued function by W (y, α, β).

Lemma 2.3 W (y, α, 0) = 1, W (y, α,−1/2) = y1/2.

Proof Taking β = 0 in equality (2.4), we have

W (y, α, 0) = yW (y, α, 1) + (1 − α)W (y, α − 1, 1)

= y

∫ ∞
0

(1 + u)α−1e−yudu + (1 − α)
∫ ∞

0

(1 + u)α−2e−yudu

= y

∫ ∞
0

(1 + u)α−1e−yudu −
∫ ∞

0

e−yud(1 + u)α−1

= −e−yu(1 + u)α−1 |∞0 = 1.

Similarly taking β = −1/2 in (2.4), we have

W (y, 1,−1/2) = yW (y, 1, 1/2) = yΓ(1/2)−1

∫ ∞
0

u−1/2e−yudu = y1/2,

which completes the proof.

Lemma 2.4 Let y > 0, α, β ∈ C. Then

yβW (y, α, β) = y1−αW (y, 1 − β, 1 − α).

Proof Taking the Mellin transformation of Γ(β)W (y, α, β) (assume Re(s) > 0),
we see

Γ(β)
∫ ∞

0

W (y, α, β)ys−1dy =
∫ ∞

0

(u + 1)α−1uβ−1

∫ ∞
0

ys−1e−yudydu

= Γ(s)
∫ ∞

0

(u + 1)α−1uβ−s−1du.

Suppose Re(1 − α) > 0 and insert the following equality into the formula above

(u + 1)α−1 = Γ(1 − α)−1

∫ ∞
0

e−x(u+1)x−αdx,
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we get

Γ(1 − α)Γ(β)
∫ ∞

0

W (y, α, β)ys−1dy = Γ(s)Γ(β − s)Γ(1 − α − β + s).

By the inverse Mellin transformation, we see

W (y, α, β) =
1

2πi

∫ c+i∞

c−i∞

Γ(s)Γ(β − s)Γ(1 − α − β + s)
Γ(1 − α)Γ(β)

y−sds,

where c satisfies the inequalities c > 0, Re(β) > c > Re(α + β − 1). There exists such
a c if Re(β) > 0, Re(1 − α) > 0. Let S = s − β, we have

yβW (y, α, β) =
1

2πi

∫ −p+i∞

−p−i∞

Γ(−S)Γ(β + S)Γ(1 − α + S)
Γ(1 − α)Γ(β)

y−SdS,

where p satisfies 0 < p < min{Re(1 − α), Re(β)}. The right hand side of the above
equality is stable under the transformation α → 1 − β, β → 1 − α. This shows that
the lemma holds for Re(1 − α) > 0, Re(β) > 0. But W (y, α, β) is analytic on C2. So
the lemma holds for any (α, β) ∈ C2, which completes the proof.

Lemma 2.5 Suppose that Re(α) > 0, Re(β) > 0, Re(α + β) > 1, z = x + iy ∈ H,

then
+∞∑

m=−∞
(z + m)−α(z + m)−β =

+∞∑
n=−∞

tn(y, α, β)e2πinx,

where

iα−β(2π)−α−βtn(y, α, β) =

⎧⎪⎨⎪⎩
nα+β−1e−2πnyΓ(α)−1W (4πny, α, β), if n > 0,

|n|α+β−1e−2π|n|yΓ(β)−1W (4π|n|y, β, α), if n < 0,

Γ(α)−1Γ(β)−1Γ(α + β − 1)(4πy)1−α−β, if n = 0.

Proof Let

f(x) =
+∞∑

m=−∞
(x + iy + m)−α(x − iy + m)−β .

This series is absolutely convergent for Re(α + β) > 1. Since f(x + 1) = f(x), we
have

f(x) =
+∞∑

n=−∞
cne2πinx,
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where

cn =
∫ 1

0

f(x)e−2πinxdx

=
∫ +∞

−∞
(x + iy)−α(x − iy)−βe−2πinxdx

= iβ−α

∫ +∞

−∞
(y − ix)−α(y + ix)−βe−2πinxdx

= iβ−α−1e2πny

∫ y+i∞

y−i∞
v−β(2y − v)−αe−2πnvdv

= iβ−α−1e2πnyΓ(α)−1

∫ y+i∞

y−i∞
v−βe−2πnv

∫ ∞
0

e−ξ(2y−v)ξα−1dξdv

= iβ−α−1e2πnyΓ(α)−1

∫ ∞
0

ξα−1e−2yξ

{∫ y+i∞

y−i∞
v−βe(ξ−2πn)vdv

}
dξ,

where we used the fact that

(2y − v)−α = Γ(α)−1

∫ ∞
0

e−ξ(2y−v)ξα−1dξ

for Re(α) > 0.
Now let ξ = 2πp, u = max{0, n}. Since Re(β) > 0, by Lemma2.2 we have

cn = 2πiβ−αe2πnyΓ(α)−1Γ(β)−1

∫ ∞
2πu

ξα−1(ξ − 2πn)β−1e−2yξdξ

= (2π)α+βiβ−αe2πnyΓ(α)−1Γ(β)−1

∫ ∞
u

pα−1(p − n)β−1e−4πpydp.

If n > 0, then u = n, let p − n = nq. If n < 0, then u = 0, let p = −nq. Hence we
have ∫ ∞

u

pα−1(p − n)β−1e−4πpydp

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nα+β−1

∫ ∞
0

(q + 1)α−1qβ−1e−4πn(1+q)ydq, if n > 0,

|n|α+β−1

∫ ∞
0

(q + 1)β−1qα−1e−4π|n|qydq, if n < 0,∫ ∞
0

pα+β−2e−4πpydp, if n = 0

=

⎧⎪⎨⎪⎩
nα+β−1e−4πnyW (4πny, α, β), if n > 0,

|n|α+β−1W (4π|n|y, β, α), if n < 0,

(4πy)1−α−βΓ(α + β − 1), if n = 0,

which completes the proof.
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Now we can compute the Fourier expansion of Ek(s, ω, N)(z). Let

W = {(c, d)|c, d ∈ Z, gcd(c, d) = 1, N |c, c � 0, d = 1 if c = 0}.

Then we can prove that there exists a one-to-one correspondence between W and the
set of representatives of right cosets of Γ∞ in Γ0(N). Suppose Re(s) > 2 − k/2, by
Lemma 2.5 we have (substituting c by cN)

Ek(s, ω, N)(z)= ys/2

{
1 +

+∞∑
d=−∞

+∞∑
c=1

ω(d)εk
d

(cN

d

)
(cNz + d)−k/2|cNz + d|−s

}

= ys/2

{
1 +

∞∑
c=1

(cN)−k/2−s
cN∑
d=1

ω(d)εk
d

(
cN

d

)

×
∞∑

n=−∞

(
z +

d

cN
+ n

)−k/2−s/2 (
z +

d

cN
+ n

)−s/2}

= ys/2

{
1 +

∞∑
n=−∞

ak(n, s, ω, N)tn(y, (k + s)/2, s/2)e(nx)
}

, (2.5)

where

ak(n, s, ω, N) =
∞∑

c=1

(cN)−k/2−s
cN∑
d=1

ω(d)εk
d

(
cN

d

)
e

(
nd

cN

)
. (2.6)

For Re(s) > 2 − k/2, define

E′k(s, ω, N)(z) = z−k/2Ek(s, ω, N)(−1/(Nz)). (2.7)

Now assume that γ =
(

a b
c d

)
∈ Γ0(N). Then by (2.3) we can verify easily that

E′k(s, ω, N)(γ(z)) = ω(d)
(

N

d

)
j(γ, z)kE′k(s, ω, N)(z). (2.8)

Now let W ′ = {(c, d)|c, d ∈ Z, gcd(c, d) = 1, N |c, d > 0}. Then there exists a one-
to-one correspondence between W ′ and the set of representatives of cosets of Γ∞ in
Γ0(N). Then we can similarly get that

E′k(s, ω, N)(z) = ys/2N−s/2
∞∑

n=−∞
bk(n, s, ω, N)tn(y, (k + s)/2, s/2)e(nx), (2.9)

where

bk(n, s, ω, N) =
∞∑

d=1

(
−N

d

)
ω(d)εk

dd−s−k/2
d∑

m=1

(m

d

)
e
(nm

d

)
. (2.10)
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Lemma 2.6 Let ω0 be a primitive character modulo r, ω be a character modulo rs,

and ω(n) = ω0(n) for gcd(n, s) = 1. Then for any integer q we have

rs∑
n=1

ω(n)e
(nq

rs

)
=

r∑
m=1

ω0(m)e(m/r)
∑

c|(s,q)

cμ(s/c)ω0(s/c)ω0(q/c).

Proof We have that
rs∑

n=1

ω(n)e
(nq

rs

)
=

rs∑
n=1

ω0(n)
∑

d|(s,n)

μ(d)e
(nq

rs

)

=
∑
d|s

μ(d)
rs/d∑
n=1

ω0(nd)e
(

ndq

rs

)

=
∑
d|s

μ(d)ω0(d)
r∑

n=1

ω0(n)e
(

ndq

rs

) s/d∑
u=1

e

(
uq

s/d

)
.

Denote c = s/d, then the inner summation in the above formula is zero for all c � q

and is c for c|q which shows the lemma.

Now let d = ru2 be an odd positive integer with r square free. Taking ω =( ·
d

)
, ω0 =

( ·
r

)
, q = n, s = u2 in Lemma 2.6, we have

d∑
m=1

(m

d

)
e
(nm

d

)
= εrr

1/2
∑

c|(u2,n)

cμ(u2/c)
(

u2/c

r

)(
n/c

r

)
, (2.11)

where we used the fact
r∑

m=1

(m

r

)
e
(m

r

)
= εrr

1/2.

Let λ = (k − 1)/2 and n be an integer. We define a primitive character ω
(n)
k

satisfying

ω
(n)
k (d) =

(
(−1)λnN

d

)
ω(d), if (d, nN) = 1.

We also define a primitive character ω′ satisfying

ω′(d) = ω2(d), if (d, N) = 1.

Suppose that χ is a character modulo a factor of N . Define

LN (s, χ) =
∞∑

(n,N)=1

χ(n)n−s =
∏
p�N

(1 − χ(p)p−s)−1,

where p runs over all primes co-prime to N .
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Proposition 2.1 We have

LN (2s + 2λ, ω′)bk(0, s, ω, N) = LN (2s + 2λ − 1, ω′).

For n �= 0, we have

LN(2s + 2λ, ω′)bk(n, s, ω, N) = LN (s + λ, ω
(n)
k )βk(n, s, ω, N),

where
βk(n, s, ω, N) =

∑
a,b

μ(a)ω(n)
k (a)ω′(b)a−s−λb−2s−2λ+1, (2.12)

where a, b run over all positive integers such that (ab, N) = 1 and (ab)2|n.

Proof For n = 0, the inner summation of (2.10) is nonzero only for d a square.
Therefore

bk(0, s, ω, N) =
∞∑

u=1

ω(u2)u−2s−kϕ(u2)

=
∏
p�N

{ ∞∑
i=0

ω(p2i)p−(2s+k)iϕ(p2i)

}

=
∏
p�N

{
1 +

∞∑
i=1

(
1 − 1

p

)
(ω(p2)p−(2s+k−2))i

}

=
∏
p�N

1 − ω(p2)p−2s−k−1

1 − ω(p2)p−2s−k+2

= LN (2s + 2λ − 1, ω′)LN (2s + 2λ, ω′)−1.

Now assume that n = tm2 �= 0, t square free. Since N is even, the summation in
(2.10) is nonzero only for odd integer d. By (2.11) we get

bk(n, s, ω, N) =
∑
r,u

(
−N

ru2

)
εk+1

r ω(ru2)(ru2)−s−k/2r1/2

×
∑

c|(u2,n)

cμ(u2/c)
(

u2/c

r

)(
n/c

r

)
,

where r, u run over all positive integers with r square free. Denote u2 = ac, then
μ(a) �= 0 only for a square free. So we can suppose u = ab. Then

c = ab2, u2n/c2 = n/b2,

hence

bk(n, s, ω, N) =
∑
r,a,b

μ(a)r−s−λa−2s−2λb−2s−2λ+1ω(ra2b2)
(

(−1)λnN/b2

r

)
,
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where we used the fact

εk+1
r =

(
(−1)(k+1)/2

r

)
and r, a, b run over all positive integers such that (rab, N) = 1, ab2 | n and r square
free. Since ab2 | n = tm2, we see that b | m. Let m = bh, then a | th, n/b2 = th2.
Since

ω(r)
(

(−1)λNth2

r

)
=
{

0, if (r, thN) > 1,

ω
(n)
k (r), if (r, thN) = 1,

we have

bk(n, s, ω, N)=
∑
b|m

ω2(b)b−2s−2λ+1
∑
a|th

μ(a)ω2(a)a−2s−2λ

×
∑

(r,thN)=1

μ2(r)ω(n)
k (r)r−s−λ. (2.13)

It is clear that ∑
a|th

μ(a)ω2(a)a−2s−2λ =
∏

p|th,p�N

(
1 − ω′(p)p−2s−2λ

)
(2.14)

and∑
(r,thN)=1

μ2(r)ω(n)
k (r)r−s−λ =

∏
p�thN

(
1 + ω

(n)
k (p)p−s−λ

)
=
∏

p�thN

1 − ω′(p)p−2s−2λ

1 − ω
(n)
k (p)p−s−λ

=
LN(s + λ, ω

(n)
k )

LN (2s + 2λ, ω′)

∏
p|th,p�N

1 − ω
(n)
k (p)p−s−λ

1 − ω′(p)p−2s−2λ
, (2.15)

For primes p such that p | t, p � N , we have ω
(n)
k (p) = 0. Inserting (2.14) and (2.15)

into (2.13), we get

bk(n, s, ω, N) =
LN (s + λ, ω

(n)
k )

LN(2s + 2λ, ω′)

∑
b|m

ω2(b)b−2s−2λ+1
∏

p|h,p�N

(
1 − ω

(n)
k (p)p−s−λ

)

=
LN (s + λ, ω

(n)
k )

LN(2s + 2λ, ω′)

∑
a,b

μ(a)ω(n)
k (a)ω′(b)a−s−λb−2s−2λ+1,

which completes the proof.

Let n be any integer and χn a primitive character satisfying

χn(d) =
(n

d

)
for all (d, 4n) = 1.
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By Lemma 1.2, if n = ab2 with a square free, then the conductor of χn is |a| or 4|a|
according to a ≡ 1(4) or a ≡ 2, 3(4) respectively.

Proposition 2.2 We have that

ak(n, s, ω, N) = bk(n, s, ωχN , N)ck(n, s, ω, N),

where

ck(n, s, ω, N) =
∑

N |M|N∞

M∑
d=1

(
M

d

)
ω(d)εk

de

(
nd

M

)
M−s−k/2. (2.16)

And ck(n, s, ω, N) is a finite series for all n �= 0. (M |N∞ implies that every prime
factor of M is also a factor of N.)

Proof Denote cN = aM with (a, N) = 1 and N |M |N∞. Then

cN∑
d=1

ω(d)εk
d

(
cN

d

)
e

(
nd

aM

)
=

M∑
d1=1

a∑
d2=1

ω(d1a + d2M)

× εk
d1a

(
aM

d1a + d2M

)
e

(
n(d1a + d2M)

aM

)
.

For positive odds a, b, we have by Lemma 1.2 that(a

b

)
=
(

b

a

)
ε−k

b ε−k
a εk

ab,(
aM

d1a + d2M

)
=
(

M

d1a + d2M

)(
a

d1a + d2M

)
=
(

M

d1a

)(
d2M

a

)
ε−k

a ε−k
d1aεk

d1
. (2.17)

Hence by (2.6) we have

ak(n, s, ω, N) =
∞∑

a=1

(
−1
a

)
ω(a)εk

aa−s−k/2
a∑

d=1

(
d

a

)
e

(
nd

a

)

×
∑

N |M|N∞

M∑
d=1

(
M

d

)
εk

dω(d)e
(

nd

M

)
M−s−k/2

= bk(n, s, ωχN , N)ck(n, s, ω, N).

For k ≡ 1(4), we have

εk
d = εd =

1
2

(
1 +
(
−1
d

))
+

i
2

(
1 −
(
−1
d

))
.
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Hence the coefficient of M−s−k/2 in the inner summation of ck(n, s, ω, N) is

1 + i
2

M∑
d=1

(
M

d

)
ω(d)e

(
nd

M

)
+

1 − i
2

M∑
d=1

(
−M

d

)
ω(d)e

(
nd

M

)
.

We employ Lemma 2.6 to the above sums. If M is sufficiently large, then μ(s/c) =
0 for any c|(s, n)(s is determined by M). This shows that ck(n, s, ω, N) is a finite sum
for k ≡ 1(4). It can be proved similarly for the case k ≡ 3(4), which completes the
proof.

In order to discuss the analytic continuation of Ek(s, ω, N), we also need the
following two lemmas.

Lemma 2.7 Let ω be a primitive character modulo r, r �= 1, and

R(s, ω) = (r/π)(s+ν)/2Γ((s + ν)/2)L(s, ω),

where ν = 0 or 1 according to ω(−1) = 1 or −1 respectively. Then for any compact
subset J of R, there exists a constant cJ (it is independent on r and ω) such that

|R(s, ω)| � cJr|σ|/2+2, σ = Re(s) ∈ J.

Proof Put

gν(t, ω) =
∞∑

n=−∞
ω(n)nνe−πn

2t/r, for t > 0.

Using

(n2π/r)(−s+ν)/2Γ((s + ν)/2) =
∫ ∞

0

e−πn
2t/rt(s+ν)/2−1dt,

we get

R(s, ω) =
1
2

∫ ∞
0

gν(t, ω)t(s+ν)/2−1dt. (2.18)

Taking the derivative with respect to x on both sides of (1.1), we have
∞∑

n=−∞
(n + x)e−πt(n+x)2 = −it−3/2

∞∑
n=−∞

ne−πn
2/t+2πinx.

Therefore

gν(t−1, ω)=
r∑

d=1

ω(d)rν
∞∑

m=−∞
(m + d/r)νe−πr(m+d/r)2/t

=(−i)νr−1/2tν+1/2
∞∑

n=−∞
nνe−πtn

2/r
r∑

d=1

ω(d)e
(

nd

r

)

=(−i)νr−1/2tν+1/2
r∑

d=1

ω(d)e
(

d

r

) ∞∑
n=−∞

ω(n)nνe−πtn
2/r

= εν(ω)tν+1/2gν(t, ω), (2.19)
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where

εν(ω) = (−i)νr−1/2
r∑

d=1

ω(d)e(d/r),

whose absolute value equals to 1. By (2.18) and (2.19), we have

R(s, ω)=
1
2

(∫ ∞
1

gν(t, ω)t(s+ν)/2−1dt +
∫ ∞

1

gν(t−1, ω)t−(s+ν)/2−1dt

)
=

1
2

∫ ∞
1

gν(t, ω)t(s+ν)/2−1dt +
εν(ω)

2

∫ ∞
1

gν(t, ω)t(1−s+ν)/2−1dt. (2.20)

Denote the first term in the formula above by P (s, ω). Then the second term is
εν(ω)P (1 − s, ω). This shows that R(s, ω) can be analytically continued to a holo-
morphic function on the whole s-plane. And we have the following functional equation

R(1 − s, ω) = εν(ω)R(s, ω). (2.21)

For σ > 1, we have

|R(1 − s, ω)| = |R(s, ω)| � (r/π)(σ+ν)/2Γ((σ + ν)/2)ζ(σ). (2.22)

Now we only need to prove Lemma 2.7 for −1 < σ � 2 because of the functional
equation. Since

|gν(t, ω)| � 2
∞∑

n=1

ne−πnt/r = 2e−πt/r(1 − e−πt/r)−2,

hence

|P (s, ω)|�
∫ ∞

1

e−πt/r(1 − e−πt/r)−2t(σ+ν)/2−1dt

=(r/π)(σ+ν)/2

∫ ∞
π/r

e−t(1 − e−t)−2t(σ+ν)/2−1dt. (2.23)

Without loss of generality, we can assume r > π. Then we divide the interval
(π/r,∞) into (π/r, 1) and (1,∞). The integral on the interval (1,∞) is independent
on r and ω. Since t/(1 − e−t) is continuous on (0, 1), there exists a constant A such
that e−t(1 − e−t)−2 � At−2. This implies that for −1 < σ < 2 there exist constants
B, C independent on r and ω such that∫ ∞

π/r

et(1 − e−t)−2t(σ+ν)/2−1dt � A

∫ ∞
π/r

t(σ+ν)/2−3dt � B + Cr2−(σ+ν)/2. (2.24)

Inserting (2.24) into (2.23) we get

|P (s, ω)| � Dr2, −1 < σ < 2
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with a constant D. Therefore

|Re(s, ω)| � CJr2, −1 < σ < 2. (2.25)

Now (2.22) and (2.25) show our result.

In the proof of Lemma 2.7 we really showed that R(s, ω) is holomorphic on the
whole s-plane for any non-trivial character ω and got its functional equation (2.21).
For the trivial character, let

η(s) = π−s/2Γ(s/2)ζ(s), Re(s) > 1,

where ζ(s) is the Riemannian ζ-function. In a similar way we get for Re(s) > 1:

η(s) =
1
2

∫ ∞
0

( ∞∑
n=−∞

e−πn
2t − 1

)
ts/2−1dt

=
1

s(s − 1)
+

1
2

∫ ∞
1

( ∞∑
n=−∞

e−πn
2t − 1

)
ts/2−1dt

+
1
2

∫ ∞
1

( ∞∑
n=−∞

e−πn
2t − 1

)
t(1−s)/2−1dt.

This shows that ξ(s) = s(s − 1)η(s) is holomorphic on the whole s-plane and ξ(s) =
ξ(1 − s).

Lemma 2.8 Let K be a compact subset of C2, then there exist two constants A and
B such that

|yβW (y, α, β)| � Amax{y−B, 1} for all (α, β) ∈ K.

Proof In the proof of Lemma 2.4 we got

yβW (y, α, β) =
1

2πi

∫ −p+i∞

−p−i∞

Γ(−s)Γ(s + β)Γ(s + 1 − α)
Γ(−α)Γ(β)

y−sds,

where 0 < p < min{Re(β), Re(1 − α)}. Suppose Re(β) > −q, Re(1 − α) > −q, q be a
positive number. We move the integral line Re(s) = −p to Re(s) = q. Since

Γ(−s) =
Γ(−s + m + 1)

(−s)(−s + 1) · · · (−s + m)
, m � 0,

the residue of Γ(−s) at s = m is (−1)m/m!. Hence

yβW (y, α, β) =
[q]∑

m=0

Γ(m + β)Γ(m + 1 − α)
Γ(m + 1)Γ(1 − α)Γ(β)

(−y)−m

+
1

2πi

∫ q+i∞

q−i∞

Γ(−s)Γ(s + β)Γ(s + 1 − α)
Γ(1 − α)Γ(β)

y−sds.
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Since both terms of the above formula are holomorphic on C2, the above equality
holds for all (α, β) ∈ C2 and hence the lemma holds.

Theorem 2.1 Let z ∈ H, s ∈ C. Define

F ′k(s, ω, N)(z) = Γ
(

s + k

2

)
Γ
(

s + λ + λ0

2

)
LN(2s + 2λ, ω′)E′k(s, ω, N)(z),

where λ = (k − 1)/2 and λ0 = 0 or 1 according to 2 | λ or 2 � λ respectively. Then
(s +λ− 1)F ′k can be continued to a holomorphic function on the s-plane. If (k +1)/2
is even or ω′ is a non-trivial character, then F ′k can be continued to a holomorphic
function on the s-plane.

Proof By (2.9) and Proposition 2.1 we have

(−i)k/2(2π)−s−k/2(N/y)s/2F ′k(s, ω, N)(z) =
∞∑

n=−∞
A(n, y, s)e2π(inx−|n|y)|n|s+k/2−1,

(2.26)
where

A(n, y, s) = LN (s + λ, ω
(n)
k )βk(n, s, ω, N)Γ((s + λ + λ0)/2)

×
{

W (4πny, (s + k)/2, s/2), if n > 0,

Γ((s + k)/2)Γ(s/2)−1W (4π|n|y, s/2, (s + k)/2), if n < 0.

And

A(0, y, s) = Γ(s/2)−1Γ((s + λ + λ0)/2)Γ(s + k/2 − 1)

· LN (2s + 2λ − 1, ω′)(4πy)1−s−k/2.

We have

Γ((s + λ + λ0)/2)Γ(s/2)−1 = 2−c
c∏

a=1

(s + λ + λ0 − 2a),

where c = (λ + λ0)/2, and

Γ(s + k/2 − 1)LN(2s + k − 2, ω′)

= Γ(s + k/2 − 1)L(2s + k − 2, ω′)
∏
p|N

(
1 − ω′(p)p2−2s−k

)
.

This shows that A(0, y, s) is meromorphic on the s-plane. If ω′ is non-trivial, by
(2.20) we know that Γ(s+k/2−1)L(2s+k−2, ω′) is holomorphic on the s-plane. Hence
A(0, y, s) is holomorphic on the s-plane. If ω′ is trivial, then Γ(s+k/2−1)ζ(2s+k−2)
has two poles s = 1 − k/2, 1 − λ with order 1. The first pole s = 1 − k/2 can be
cancelled by the factor 1 − 22−2s−k. For odd λ, the second pole can be cancelled by
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the factor s+λ− 1. Hence (s+λ− 1)A(0, y, s) is holomorphic on the s-plane. And if
λ +1 = (k +1)/2 is even or ω′ is non-trivial, A(0, y, s) is holomorphic on the s-plane.

If n > 0, then βk(n, s, ω, N) is holomorphic on the s-plane and

| βk(n, s, ω, N) |� γ|n|δσ+ε,

where constants γ, δ, ε is independent on n. W (4πny, (s + k)/2, s/2) is also holo-
morphic on the s-plane, and for any s ∈ K ⊂ C(K compact), by Lemma 2.8 we
have

|W (4πny, (s + k)/2, s/2)| � C(4πny)−δ/2 max{(4πny)−B, 1},
where constants B, C are determined by K and independent on n. We also have

Γ((s + λ + λ0)/2)LN(s + λ, ω
(n)
k )

= Γ((s + λ + λ0)/2)L(s + λ, ω
(n)
k )

∏
p|N

(
1 − ω

(n)
k (p)p−s−λ

)
.

Since ω
(n)
k (−1) = −1 and λ0 = 1 for odd λ, ω

(n)
k (−1) = 1 and λ0 = 0 for

even λ, by Lemma 2.7 we know that Γ((s + λ + λ0)/2)L(s + λ, ω
(n)
k ) is holomorphic

on the s-plane for non-trivial ω
(n)
k . And hence A(n, y, s) is holomorphic on the s-

plane. If ω
(n)
k is trivial (then λ is even), then Γ((s + λ)/2)L(s + λ, ω

(n)
k ) has two

poles s = −λ, s = 1 − λ with order 1. The first pole can be cancelled by the factor
1− 2−s−λ. Therefore (s + λ− 1)A(n, y, s) is holomorphic on s-plane. By Lemma 2.7,
we have that

|(s + λ − 1)A(n, y, s)| � unv(yW + y−W ), s ∈ K, (2.27)

where constants u, v, W are determined by K and independent on n.
Now consider the case n < 0. For odd or even λ, ω

(n)
k (−1) = 1 or −1 respectively.

Let η = 0 or 1 according to λ odd or even. Then

A(n, y, s) = Γ ((s + λ + η)/2)L
(
s + λ, ω

(n)
k

)
×
∏
p|N

(
1 − ω

(n)
k (p)p−s−λ

)
βk(n, s, ω, N)

× W (4π|n|y, s/2, (s + k)/2) × Γ((s + k)/2)

× Γ((s + λ + η)/2)−1Γ((s + λ + λ0)/2)Γ(s/2)−1.

The product of the last four factors of the above equality is

2−c−d
d∏

b=1

(s + k − 2b)
c∏

a=1

(s + λ + λ0 − 2a),

where d = (λ − η + 1)/2. Proceeding similarly for the case n > 0, we can prove that
A(n, y, s) is holomorphic on the s-plane, and for s ∈ K we have

|A(n, y, s)| � u′nv′(yW ′
+ y−W ′

), (2.28)
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where constants u′, v′, W ′ are determined by K and independent on n.
By (2.27) and (2.28) we know that the series (2.26) multiplied by (s + λ − 1) is

absolutely and uniformly convergent in K, which completes the proof.

By Theorem 2.1, E′k(s, ω, N)(z) can be continued to a meromorphic function on
the s-plane. By (2.7), Ek(s, ω, N)(z) can be continued to a meromorphic function on
the s-plane. And the transformation formulae (2.3) and (2.8) hold for all s. We want
to calculate their values at s = 0.

Now suppose that k � 3, and ω is not a real character if k = 3. Then LN(λ,

(ωχN )(n)
k ) is finite for any n. Define functions as follows

Ek(ω, N)(z) = Ek(0, ω, N)(z),

E′k(ω, N)(z) = E′k(0, ω, N)(z).

Since Γ(0)−1 = 0, W (4πny, k/2, 0) = 1, by Proposition 2.1, Proposition 2.2, Lemma
2.5 and equality (2.5) we have

Ek(ω, N)(z)=1 +
(−2πi)k/2

Γ(k/2)

∞∑
n=1

LN

(
λ, (ωχN )(n)

k

)
LN (2λ, ω′)

×βk(n, 0, ωχN , N)ck(n, 0, ω, N)nk/2−1e(nz). (2.29)

Similarly, by (2.9) we can get

E′k(ω, N)(z)=
(−2πi)k/2

Γ(k/2)

∞∑
n=1

LN

(
λ, ω

(n)
k

)
LN (2λ, ω′)

×βk(n, 0, ω, N)nk/2−1e(nz). (2.30)

Denote n = tm2 with t a square free positive integer. By Lemma 2.7 we know∣∣∣LN

(
λ, (ωχN )(n)

k

)∣∣∣ � ρt2,

where ρ is a constant independent on n. For n �= 0, by Proposition 2.2 we know that
ck(n, 0, ω, N) is a series with finite terms. Hence

|Ek(ω, N)(z)| � 1 + ρ

∞∑
n=1

nk/2+1e−2πny � 1 + ρy−(k+5)/2, (2.31)

where ρ may be a different constant. Therefore we know that Ek(ω, N)(z) is a holo-
morphic function on H. Similarly we can prove that E′k(ω, N)(z) is also a holomorphic
function on H.
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By (2.3) and (2.8), we have

Ek(ω, N)(γ(z))=ω(dγ)j(γ, z)kEk(ω, N)(z),

E′k(ω, N)(γ(z))=ω(dγ)
(

N

dγ

)
j(γ, z)kE′k(ω, N)(z), (2.32)

where γ ∈ Γ0(N).

Proposition 2.3 Let ν be a positive integer, p an odd prime. Put

ak(2ν , n) =
2ν∑

d=1

(
2ν

d

)
εk

de(nd/2ν), ν � 2,

ak(pν , n) = ε−k
pν

pν∑
d=1

(
d

pν

)
e(nd/pν).

Then

ck(n, s, id., N) =
∏
p|N

∞∑
ν=N(p)

p−(s+k/2)νak(pν , n),

where id. is the identity character, N(p) satisfies that pN(p) ‖ N .

Proof By (2.16), we have

ck(n, s, id., N) =
∑

N |M|N∞

M∑
d=1

(
M

d

)
εk

de(nd/M)M−s−k/2.

Put M = 2eM1, e � 2, with M1 odd. Then

M∑
d=1

(
M

d

)
εk

de(nd/M)

=
M1∑

d1=1

2e∑
d2=1

(
2eM1

2ed1 + M1d2

)
εk

M1d2
e(n(2ed1 + M1d2)/(2eM1))

=
2e∑

d2=1

(
2e

M1d2

)
εk

M1d2
e(nd2/2e)

M1∑
d1=1

(
2ed1

M1

)
εk

d2
ε−k

M1
ε−k

M1d2
e(nd1/M1)

= ak(2e, n)ε−k
M1

M1∑
d1=1

(
d1

M1

)
e(nd1/M1),

where we used (2.17). Furthermore put M1 = M2M3 with M2 and M3 co-prime.
Then
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ε−k
M1

M1∑
d1=1

(
d1

M1

)
e(nd1/M1)

= ε−k
M1

M2∑
d2=1

M3∑
d3=1

(
d2M3

M2

)(
d3M2

M3

)
e (n(d2M3 + d3M2)/(M2M3))

= ε−k
M2

M2∑
d2=1

(
d2

M2

)
e(nd2/M2)ε

−k
M3

M3∑
d3=1

(
d3

M3

)
e(nd3)/M3),

from which we can prove the proposition.

Lemma 2.9 Let ν � 2 be a positive integer. Then

ak(2ν , n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ν−3/2eπi(l/2+(−1)λ/4), if n = 2ν−2l, 2|l, 2|ν,

2ν−3/2eπi(l/2−(−1)λ/4), if n = 2ν−2l, 2 � l, 2|ν,

2ν−1δ((u − (−1)λ)/4)eπiu/4, if n = 2ν−3u, 2 � u, 2 � ν,

0, otherwise,

where δ(x) = 1 or 0 according to x an integer or not respectively.

Proof If ν is even, then

ak(2ν , n) = (e(n/2ν) + ike(3n/2ν))
2ν−2−1∑

d=0

e(nd/2ν−2).

If 2ν−2 � n, the above summation is zero. If 2ν−2|n, the above summation is 2ν−2.
Suppose that n = 2ν−2l, then

e(n/2ν) + ike(3n/2ν) = e(l/4)(1 + ikeπil) =

⎧⎨⎩
√

2eπi(l/2+(−1)λ/4), if 2|l,
√

2eπi(l/2−(−1)λ/4), if 2 � l.

If ν is odd, then ν � 3 and

ak(2ν , n) =
(
e(n/2ν) − ike(3n/2ν) − e(5n/2ν) + ike(7n/2ν)

) 2ν−3−1∑
d=0

e(nd/2ν−3).

If 2ν−3 � n, the above summation is zero. If 2ν−3 | n, the above summation is 2ν−3.
Suppose that n = 2ν−3u. If 2 | u, then

e(u/8) = e(5u/8), e(3u/8) = e(7u/8),

which implies that the first factor of ak(2ν , n) is zero. If 2 � u, the factor is

2(e(u/8)− ike(3u/8)) = 2e(u/8)(1− ik+u) =
{

0, if k + u ≡ 0(4),
4e(u/8), if k + u ≡ 2(4).

But δ((u + k + 2)/4) = δ((u − (−1)λ)/4) which implies the lemma.
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Lemma 2.10 Let ν be a positive integer, p an odd prime. Then

ak(pν , n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pν−1/2

(
(−1)λnp1−ν

p

)
, if pν−1 | n, pν � n, 2 � ν,

−pν−1, if pν−1 | n, pν � n, 2 | ν,

ϕ(pν), otherwise .

Proof We know that

ak(pν , n) = ε−k
pν

p−1∑
a=1

pν−1∑
b=1

(
a + pb

pν

)
e((na + nbp)/pν)

= ε−k
pν

p−1∑
a=1

(
a

pν

)
e(na/pν)

pν−1∑
b=1

e(nb/pν−1).

If pν−1 � n, the inner summation of the above formula is zero. If pν−1 | n, it is pν−1.
Now suppose that pν−1 | n. If ν is odd, then

ak(pν , n) = ε−k
p pν−1

p−1∑
a=1

(
a

p

)
e(anp1−ν/p) =

⎧⎨⎩
0, if pν | n,

pν−1/2ε1−k
p

(
np1−ν

p

)
, if pν � n.

But ε1−k
p =

(
(−1)λ

p

)
which shows the case for odd ν. If ν is even, then

ak(pν , n) = pν−1

p−1∑
a=1

e(anp1−ν/p) =
{−pν−1, if pν � n,

pν−1(p − 1), if pν | n,

which completes the proof.

Now define

Ak(2, n) =
∞∑

ν=2

2−νk/2ak(2ν , n),

A′k(2, n) =
∞∑

ν=3

2−νk/2ak(2ν , n),

Ak(p, n) =
∞∑

ν=1

p−νk/2ak(pν , n).

Let D be a square free positive odd integer. By Proposition 2.3, we have

ck(n, 0, id., 4D) = Ak(2, n)
∏
p|D

Ak(p, n),

ck(n, 0, id., 8D) = A′k(2, n)
∏
p|D

Ak(p, n).
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Put

λk(n, 4D) =
L4D(λ, χ(−1)λn)

L4D(2λ, id.)
βk(n, 0, χD, 4D).

If k > 3, by (2.29) and (2.30) we have

Ek(id., 4D)(z) = 1 +
(−2πi)k/2

Γ(k/2)

∞∑
n=1

λk(n, 4D)
∏
p|2D

Ak(p, n)nk/2−1e(nz), (2.33)

E′k(χD, 4D)(z) =
(−2πi)k/2

Γ(k/2)

∞∑
n=1

λk(n, 4D)nk/2−1e(nz). (2.34)

Lemma 2.11 Let ν2(n) be the integer such that 2ν2(n) ‖ n, then

Ak(2, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−k(1 + (−1)λi)
{1− 2(2−k)(ν2(n)−1)/2

1− 22−k
− 2(2−k)(ν2(n)−1)/2

}
,

if 2 � ν2(n),

2−k(1 + (−1)λi)
{1− 2(2−k)ν2(n)/2

1− 22−k
− 2(2−k)ν2(n)/2

}
,

if 2 | ν2(n), (−1)λn/2ν2(n) ≡ −1(4),

2−k(1 + (−1)λi)
{1− 2(2−k)(ν2(n)−1)/2

1− 22−k
+ 2(2−k)ν2(n)/2

(
1 + 2(3−k)/2

( (−1)λn/2ν2(n)

2

))}
,

if 2 | ν2(n), (−1)λn/2ν2(n) ≡ 1(4)

and

A′k(2, n) =
{

0, if (−1)λn ≡ 2, 3(4),
Ak(2, n) − 2−k(1 + (−1)λi), if (−1)λn ≡ 0, 1(4).

Proof In order to simplify the notation, we denote ν2(n) by h. Suppose 2 � h, by
Lemma2.9, we have

Ak(2, n) =
(h+1)/2∑

s=1

2(2−k)s−3/2eπi(n/22s−1+(−1)λ/4)

= 4−1(1 + (−1)λi)
{ (h−1)/2∑

s=1

2(2−k)s − 2(2−k)(h+1)/2

}
= 2−k(1 + (−1)λi)

{
1 − 2(2−k)(h−1)/2

1 − 22−k
− 2(2−k)(h−1)/2

}
.
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Suppose that 2 | h, n = 2hu. Then

Ak(2, n) =
h/2∑
s=1

2(2−k)/2−3/2eπi(n/22s−1+(−1)λ/4)

+ 2−k+(2−k)h/2+1/2eπi(u/2−(−1)λ/4)

+ 2(2−k)h/2−3k/2+1/2δ
(
(u − (−1)λ)/4

)
eπiu/4

= 2−k(1 + (−1)λi)
1 − 2(2−k)h/2

1 − 22−k

+ 2−k+(2−k)h/2+1/2eπi(u/2−(−1)λ/4)

+ 2(2−k)h/2−3k/2+1/2δ
(
(u − (−1)λ)/4

)
eπiu/4.

Now we can prove the results for Ak(2, n) in the lemma by a direct computation. By
Lemma 2.9, if (−1)λn ≡ 2, 3(4), then ak(2ν , n) = 0 for any ν � 3. If (−1)λn ≡ 0, 1(4),
then ak(22, n) = 1+(−1)λi. This implies the results for A′k(2, n) which completes the
proof.

By (2.29) and Lemma 2.11, we have

Ek(id.,8D)(z)=1 +
(−2πi)k/2

Γ(k/2)

∑
n�1,(−1)λn≡0,1(4)

λk(n, 4D)(Ak(2, n)

−2−k(1 + (−1)λi))
∏
p|2D

Ak(p, n)nk/2−1e(nz). (2.35)

Lemma 2.12 Let p be an odd prime, pνp(n) ‖ n. Then

Ak(p, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(p − 1)(1 − p(2−k)(νp(n)−1)/2)
p(pk−2 − 1)

− p(2−k)(νp(n)+1)/2−1,

if 2 � νp(n),

(p − 1)(1 − p(2−k)νp(n)/2)
p(pk−2 − 1)

−
(

(−1)λn/pνp(n)

p

)
p(2−k)(νp(n)+1)/2−1/2,

if 2 | νp(n).

Proof Denote νp(n) by h. If 2 � h, by Lemma 2.10 we have

Ak(p, n) =
(h−1)/2∑

s=1

p−ksϕ(p2s) − p−k(h+1)/2+h

=
(p − 1)(1 − p(2−k)(h−1)/2)

p(pk−2 − 1)
− p(2−k)(h+1)/2−1.
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If 2 | h, then

Ak(p, n) =
h/2∑
s=1

p−ksϕ(p2s) +
(

(−1)λn/ph

p

)
p−k(h+1)/2+h+1/2

=
(p − 1)(1 − p(2−k)(h−1)/2)

p(pk−2 − 1)
−
(

(−1)λn/ph

p

)
p(2−k)(h+1)/2−1/2,

which completes the proof.

Now we consider the values of E3(s, id.,4D)(z) and E′3(s, id.,4D)(z) at s = 0,
where D is a square free positive odd integer. Suppose that n = tm2 with t square

free. Then it is easy to see that (χ4D)(n)
3 =

(
−t

·

)
. If n is negative and −n is not

a perfect square, then the term e(nx) disappears in the expansions of E3(0, id.,4D)

and E′3(0, id., 4D) since tn(y, 3/2, 0) = 0 and L4D

(
1,

(
−n

·

))
is a finite number. If

n = −m2 is a negative perfect square, then (χ4D)(n)
3 is the trivial character. Since

ζ(1 + s)Γ−1(s/2) = (s/2)ζ(1 + s)Γ−1(1 + s/2) → 2−1, s → 0,

the term e(−m2x) appears in the expansions of E3(0, id.,4D) and E′3(0, id.,4D).
By Proposition 2.3, Lemma 2.11 and Lemma 2.12 we have

c3(−m2, 0, id.,4D) = A3(2,−m2)
∏
p|D

A3(p,−m2) = (4D)−1(1 − i).

By (2.5), (2.9) and Proposition 2.2 we have

E3(0, id.,4D)(z) − (4D)−1(1 − i)E′3(0, id.,4D)(z)

=1 − 4π(1 + i)
∞∑

n=1

λ3(n, 4D)
(∏

p|D
A3(p, n) − (4D)−1(1 − i)

)
n1/2e(nz), (2.36)

which will be denoted by f1(id., 4D)(z).
For l | D, we get similarly that

E3(0, χl, 4D)(z) − (4D)−1(1 − i)l1/2E′3(0, χD/l, 4D)(z)

=1 − 4π(1 + i)l1/2
∞∑

n=1

λ3(ln, 4D)
(∏

p|D
A3(p, ln) − (4D)−1(1 − i)

)
n1/2e(nz), (2.37)

which will be denoted by f1(χl, 4D). Likewise we have

c3(−m2, 0, id.,8D) = A′3(2,−m2)
∏
p|D

A3(p,−m2) = (8D)−1(1 − i).
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For l | 2D, we have that

E3(0, χl, 8D)(z) − (8D)−1(1 − i)l1/2E′3(0, χ2D/l, 8D)(z)

=1 − 4π(1 + i)l1/2
∞∑

n=1

λ3(ln, 8D)

×
(

A′3(2, ln)
∏
p|D

A3(p, ln) − (8D)−1(1 − i)
)

n1/2e(nz), (2.38)

which will be denoted by f1(χl, 8D).
We consider furthermore the values of E3(s, ω, N) and E′3(s, ω, N) at s = −1. Put

f2(ω, N)(z) = −E3(s, ω, N)LN (2s + 2, ω′)
2π(1 + i)LN (2s + 1, ω′)

∣∣∣∣
s=−1

, (2.39)

f∗2 (ω, N)(z) = −E′3(s, ωχN , N)LN(2s + 2, ω′)
2π(1 + i)N1/2LN (2s + 1, ω′)

∣∣∣∣
s=−1

. (2.40)

If ω is a non-trivial even character, then L(0, ω) = 0 (see Lemma 2.7). Hence

LN(1 + s, ω) |s=−1= L(1 + s, ω)
∏
p|N

(
1 − ω(p)

p1+s

)∣∣∣∣
s=−1

= 0.

If ω is trivial, then the product in the above equality is zero. Therefore terms e(nz)
with n < 0 disappear in the expansion of f2(ω, N). If n > 0, by Lemmas 2.3, 2.4 and
2.5 we have

tn(y, 1,−1/2) = (2π)1/2i−3/2e−2πnyn−1/2W (4πny, 1,−1/2)

= −2π(1 + i)y1/2e−2πny

and
t0(y, 1,−1/2) = −2π(1 + i)y1/2.

So we have

f2(ω, N)(z)= c3(0,−1, ω, N) +
∞∑

n=1

LN(0, (ωχN )(n)
3 )

LN (−1, ω′)

×β3(n,−1, ωχN , N)c3(n,−1, ω, N)e(nz), (2.41)

where c3(0,−1, ω, N) is the value at s = −1 of the analytic continuation of the series
(2.16) with respect to s.

Similarly we get

f∗2 (ω, N)(z) = 1 +
∞∑

n=1

LN(0, (ωχN )(n)
3 )

LN (−1, ω′)
× β3(n,−1, ωχN , N)e(nz). (2.42)
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For the sake of our applications, we rewrite the A3(p, n) in Lemma 2.11, 2.12 as
follows

A3(2, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4−1(1 − i)(1 − 3 · 2−(1+ν2(n))/2), if 2 � ν2(n),
4−1(1 − i)(1 − 3 · 2−(1+ν2(n)/2)), if 2 | ν2(n), n/2ν2(n) ≡ 1(4),
4−1(1 − i)(1 − 2−ν2(n)/2), if 2 | ν2(n), n/2ν2(n) ≡ 3(4),
4−1(1 − i), if 2 | ν2(n), n/2ν2(n) ≡ 7(8).

(2.43)
If p �= 2, then

A3(p, n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p−1 − (1 + p)p−(3+νp(n))/2, if 2 � νp(n),

p−1 − 2p−1−νp(n)/2, if 2 | νp(n),
(
−n/pνp(n)

p

)
= −1,

p−1, if 2 | νp(n),
(
−n/pνp(n)

p

)
= 1.

(2.44)
Finally we have

Lemma 2.13 Let m be a positive factor of D, then

f∗2 (id.,4m)(z)=1 − 4π(1 + i)
∞∑

n=1

λ3(n, 4D)(A3(2, n) − 4−1(1 − i))

×
∏
p|m

(
A3(p, n) − p−1

) ∏
p|D/m

(1 + A3(p, n))n1/2e(nz) (2.45)

and

−2−1(1 + i)μ(m)f2(id.,8m)(z)

=1 − 4π(1 + i)
∞∑

n≡0,3(4)

λ3(n, 4D)
(
A3(2, n) − 4−1(1 − i)

)
×
∏
p|m

(
A3(p, n) − p−1

) ∏
p|D/m

(1 + A3(p, n))n1/2e(nz). (2.46)

We omit the proof.

2.2 Eisenstein Series with Integral Weight

In this section we always assume that N and k are positive integers. Let ω be a
character modulo N with ω(−1) = (−1)k. Put

Γ∞ =
{
±
(

1 m
0 1

) ∣∣m ∈ Z

}
and

W =
{(

∗ ∗
mN n

)
∈ SL2(Z)

∣∣m � 0 and n = 1 if m = 0
}

.
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It is easy to check that W is a complete set of representatives of Γ∞ \ Γ0(N). For

γ =
(

a b
c d

)
, set J(γ, z) = cz + d. Define

Ek(z, s, ω, N) = ys
∑

γ∈Γ∞\Γ0(N)

ω(dγ)J(γ, z)−k|J(γ, z)|−2s

=
ys

2

∑
(m,n)=1

ω(n)(mNz + n)−k|mNz + n|−2s,

where s is a complex variable, m, n run over the set of all co-prime pairs of integers
(pairs of positive and negative integers). It is clear that for Re(s) > 2 − k the above
series is absolutely convergent, so a holomorphic function with respect to the variable
s. It is easy to verify that for any γ ∈ Γ0(N)

Ek(γ(z), s, ω, N) = ω(dγ)J(γ, z)kEk(z, s, ω, N). (2.47)

Using Lemma 2.5 we have

Ek(z, s, ω, N)=
ys

2
L−1

N (k + 2s, ω)
∑
m,n

′
ω(n)(mNz + n)−k|mNz + n|−2s

=ys + ysN−k−2sL−1
N (k + 2s, ω)

∞∑
m=1

N∑
a=1

ω(a)

×
∞∑

j=−∞
(mz + aN−1 + j)−k−s(mz + aN−1 + j)−s

=ys + i−k(2πN−1)k+2sysL−1
N (k + 2s, ω)

×
∞∑

n=−∞

∞∑
m=1

tn(my, k + s, s)
N∑

a=1

ω(a)e(nmx + anN−1), (2.48)

where
∑ ′ means summation over all (m, n) �= (0, 0). Similar to the case of half

integral weight, Ek(z, s, ω, N) can be continued to a meromorphic function on the
whole s-plane and (2.47) holds also for the continued function. For k �= 2 or k =
2, ω �= id. we define

Ek(z, ω, N) = Ek(z, 0, ω, N).

Since Γ (s)−1 → 0(s → 0) and W (y, α, 0) = 1, the terms corresponding to n < 0 of
the expansion (2.48) of Ek(z, 0, ω, N) will disappear. Therefore

Ek(z, ω, N) = 1 +
(−2πi)k

Nk(k − 1)!LN(k, ω)

∞∑
n=1

{∑
d|n

dk−1
N∑

a=1

ω(a)e(ad/N)
}

e(nz).

(2.49)
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For k = 2 and ω = id., we see that

E2(z, 0, id.,N)=1 − πϕ(N)
2yN2LN (2, id.)

− 4π2

N2LN(2, id.)

×
∞∑

n=1

{∑
d|n

N∑
(a,N)=1,a=1

e(ad/N)
}

e(nz). (2.50)

Let f be a function on the upper half plane H, σ =
(

a b
c d

)
∈ GL+

2 (R) and k a

positive integer. Define

f |[σ]k = det(σ)k/2J(σ, z)−kf(σ(z)),

where J(σ, z) = cz + d, σ(z) =
az + b

cz + d
.

Let Q be a positive integer with Q|N and (Q, N/Q) = 1, put

W (Q) =
(

Qj l
−N Q

)
∈ GL+

2 (Z)

with jQ + lN/Q = 1. It is clear that W (Q)Γ0(N)W (Q)−1 = Γ0(N). We want to
compute the Fourier expansion of Ek(z, ω, N)|[W (Q)]k. We first have that

LN(k + 2s, ω)Ek(z, s, ω, N)|[W (Q)]

=
Q−k/2−2sys

2

∑
m,n

′ω(n)((mjQ − n)NQ−1z + lmNQ−1 + n)−k

×|(mjQ − n)NQ−1z + lmNQ−1 + n|−2s

=
Q−k/2−2sys

2

∑
m,n

′ω1(−m)ω2(n)(mNQ−1z + n)−k|mNQ−1z + n|−2s

=N−k−2sQk/2ys
∞∑

m=1

ω1(−m)
N/Q∑
a=1

ω2(a)

×
∞∑

u=−∞
(mz + aQN−1 + u)−k−s(mz + aQN−1 + u)−s

=ik(2πN−1)k+2sQk/2ys
∞∑

n=−∞

∞∑
m=1

ω1(−m)

×tn(my, k + s, s)
N/Q∑
a=1

ω2(a)e(anQN−1 + nmx), (2.51)

where ω1, ω2 are characters modulo Q and N/Q respectively with ω = ω1ω2.
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Therefore we get for k � 3 or k = 2, ω �= id. that

Ek(z, ω, N)|[W (Q)]=Ek(z, 0, ω, N)|[W (Q)]

=
(−2πi)kQk/2

Nk(k − 1)!LN (k, ω)

∞∑
n=1

{∑
d|n

ω1(−n/d)dk−1

×
N/Q∑
a=1

ω2(a)e(adQ/N)
}

e(nz). (2.52)

For k = 1, ω2 �= id., we have that

E1(z, ω, N)|[W (Q)]

=E(z, 0, ω, N)|[W (Q)]

=
−2πi

√
Q

NLN(1, ω)

∞∑
n=1

{∑
d|n

ω1(−n/d)
N/Q∑
a=1

ω2(a)e(adQ/N)
}

e(nz). (2.53)

If k = 1, ω2 = id., then the term corresponding to n = 0 appears, we have that

E1(z, ω, N)|[W (Q)]=E1(z, 0, ω, N)|[W (Q)]

=
πiLQ(0, ω)√
QLN(1, ω)

∏
p|N/Q

(
1 − 1

p

)
− 2πi

√
Q

NLN(1, ω)

×
∞∑

n=1

{∑
d|n

ω(−n/d)
N/Q∑

(a,N/Q)=1,a=1

e(adQ/N)
}

e(nz). (2.54)

Finally, we see that for k = 2, ω = id.

E2(z, 0, ω, N)|[W (Q)]

=− πϕ(N)
2yN2LN (2, id.)

− 4π2Q

N2LN(2, id.)

×
∞∑

n=1

{ ∑
d|n,(n/d,Q)=1

N/Q∑
(a,N/Q)=1,a=1

e(adQ/N)
}

e(nz). (2.55)

Assume that ω is a primitive character modulo N and Q meets the conditions
given before. Put

bk(n) =
∑
d|n

ω1(−n/d)dk−1

N/Q∑
a=1

ω2(a)e(adQ/N),

where ω1, ω2 are characters modulo Q and N/Q respectively satisfying ω1ω2 = ω. It
is clear that ω2 is a primitive character modulo N/Q. Since the inner summation of
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the above formula is zero for any (d, N/Q) > 1, we see that

bk(n) =
N/Q∑
a=1

ω2(a)e(aQ/N)
∑
d|n

ω1(−n/d)ω2(d)dk−1.

Let p be a prime. If p � N and p � n, then it is clear that

bk(pn) = (ω1(p) + ω2(p)pk−1)bk(n),

if p � N and p|n, write n = pln1, with p � n1. Then we have that

bk(pn) = ω1(p)bk(n) + ω2(p)pk−1

N/Q∑
a=1

ω2(a)e(aQ/N)
∑
d|n1

ω1(−n1/d)ω2(pld)(pld)k−1

= ω1(p)bk(n) + ω2(p)pk−1(bk(n) − ω1(p)bk(n/p))

= (ω1(p) + ω2(p)pk−1)bk(n) − ω(p)pk−1bk(n/p),

if p|Q, then it is easy to see that

bk(pn) = ω2(p)pk−1bk(n);

if p|N/Q, then
bk(pn) = ω1(p)bk(n).

Collecting the above discussions we obtain

(ω1(p) + ω2(p)pk−1)bk(n) = bk(pn) + ω(p)pk−1bk(n/p),

where we put that bk(n/p) = 0 for any p � n. Therefore we see that

∞∑
n=1

bk(n)n−s = bk(1)
∏
p|Q

(
1 − ω2(p)pk−1−s

)−1 ∏
p|N/Q

(
1 − ω1(p)p−s

)−1

×
∏
p�N

(
1 − (ω1(p) + ω2(p)pk−1)p−s + ω(p)pk−1−2s

)−1

= bk(1)
∏
p�Q

(
1 − ω1(p)p−s

)−1 ∏
p�N/Q

(
1 − ω2(p)pk−1−s

)−1

= bk(1)L(s, ω1)L(s − k + 1, ω2).

For k �= 2 or k = 2, ω �= id. (i.e. N > 1), set

Ek(z, ω1, ω2) =
Nk(k − 1)!LN(k, ω1ω2)

(−2πi)kQk/2ω1(−1)
N/Q∑
a=1

ω2(a)e(aQ/N)

Ek(z, ω1ω2, N)|[W (Q)].
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It is easy to check that

Ek(z, ω1, ω2) = (bk(1))−1
∞∑

n=1

bk(n)e(nz)

and hence

L(s, Ek(z, ω1, ω2)) = L(s, ω1)L(s − k + 1, ω2), (2.56)

where for f(z) =
∞∑

n=0

a(n)e(nz) we define L(s, f) =
∞∑

n=1

a(n)n−s and L(s, f) is called

the zeta function of f .

Let t be a square free positive integer with t|N . Define

gt(z) =
∑
Q|t

μ(Q)E2(z, 0, id.,t)|[W (t/Q)].

By (2.50) and (2.55), we see that

gt(z) = μ(t) − 4π2

tLt(2, id.)

∑
Q|t

μ(Q)
Q

∞∑
n=1

⎧⎨⎩ ∑
d|n,(t/Q,n/d)=1

d

Q∑
a=1,(a,Q)=1

e(ad/Q)

⎫⎬⎭ e(nz).

Write n = n′
∏
p|t

pνp(n) with (n′, t) = 1 and put Q∗ =
∏
p|Q

pνp(n). Then

∑
Q|t

μ(Q)
Q

∑
d|n,(t/Q,n/d)=1

d

Q∑
a=1,(a,Q)=1

e(ad/Q)

=
∑
Q|t

μ(Q)
Q

∏
p|t/Q

pνp(n)
∑
d|Q∗

d
∑
d′|n′

d′
Q∑

a=1,(a,Q)=1

e(ad/Q)

=
∑
d′|n′

d′
∑
Q|t

μ(Q)
Q

∏
p|t/Q

pνp(n)
∏
p|Q

∑
d|pνp(n)

d

p∑
(a,p)=1,a=1

e(ad/p)

=
∑
d′|n′

d′
∏
p|t

⎛⎝pνp(n) − p−1

⎛⎝−1 + (p − 1)
νp(n)∑
i=1

pi

⎞⎠⎞⎠
=
∑
d′|n′

d′
∏
p|t

(1 + p−1).
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Put

g∗t (z)=
(

−4π2

tLt(2, id.)

∏
p|t

(1 + p−1)
)−1

gt(z)

=−

∏
p|t

(1 + p−1)

24
+

∞∑
n=1

( ∑
d|n,(d,t)=1

d

)
e(nz). (2.57)

It is easy to see that
L(s, g∗t ) = ζ(s)L(s − 1, 1t), (2.58)

where 1t is the trivial character modulo t.



Chapter 3

The Modular Group and Its Subgroups

Let

SL2(R) =
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ R, ad − bc = 1
}

.

For any σ =
(

a b
c d

)
∈ SL2(R), define a transformation on the whole complex plane

as follows
σ(z) =

az + b

cz + d
.

It is easy to prove

Im(σ(z)) =
Im(z)

|cz + d|2 .

So σ induces a transformation on the upper-half plane H. Since ±σ induce the same
transformation on H, we get a transformation group SL2(R)/ ± I of H.

The fixed points of the transformation z → σ(z) are roots of the equation

cz2 + (d − a)z − b = 0.

If c �= 0, then it has two roots (a−d±
√

(a + d)2 − 4)/(2c). If c = 0, then σ(∞) = ∞.
And multiplied by a, the above equation becomes

(1 − a2)z − ab = 0.

So if c = 0, a2 = 1, the transformation has a unique fixed point ∞; if c = 0, a2 �= 1,
then the transformation has two fixed points ∞ and ab/(1 − a2).

Definition 3.1 Let σ ∈ SL2(R), σ �= ±I. If the transformation z → σ(z) has
one fixed point in H, then σ is called an elliptic element; if the transformation z →
σ(z) has a unique fixed point in R

⋃
{∞}, then σ is called a parabolic element; if the

transformation z → σ(z) has two fixed points in R
⋃
{∞}, then σ is called a hyperbolic

element.

Put tr(σ) = a + d. Then by the above discussions we get

Proposition 3.1 Let σ ∈ SL2(R), σ �= ±I. Then σ is an elliptic(or parabolic,
hyperbolic respectively) element if and only if |tr(σ)| < 2 (or = 2, > 2 respectively).
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Form this proposition we know that if σ is an elliptic (or parabolic, hyperbolic
respectively) element, then so is τστ−1 for any τ ∈ SL2(R).

Let σ =
(

a b
c d

)
∈ SL2(R). If σ(i) = i, then a = d, c = −b, hence a2 + b2 = 1. So

{σ ∈ SL2(R) | σ(i) = i} =
{(

cos θ sin θ
− sin θ cos θ

)∣∣∣∣0 � θ < 2π
}

.

We denote this group by SO(2). Let z = x + iy ∈ H. Then

τ =
((

y1/2 xy1/2

0 y−1/2

))
∈ SL2(R)

and τ(i) = z. So

{σ ∈ SL2(R) | σ(z) = z} = τ · SO(2) · τ−1.

Let s ∈ R
⋃
{∞} and

F (s) = {σ ∈ SL2(R) | σ(s) = s},
P (s) = {σ ∈ F (s) | σ is parabolic or ± I}.

It is easy to see that

F (∞) =
{(

a b
0 a−1

) ∣∣∣∣a, b ∈ R, a �= 0
}

,

P (∞) =
{
±
(

1 h
0 1

) ∣∣∣∣h ∈ R

}
.

For any s ∈ R, put

τ =
(

0 −1
1 −s

)
∈ SL2(R).

Since τ(s) = ∞,
F (s) = τ−1F (∞)τ, P (s) = τ−1P (∞)τ.

The topology of R induces a topology of SL2(R). Suppose that Γ is a discrete
subgroup of SL2(R), z is a point in H. If there is an elliptic element σ ∈ Γ such that
σ(z) = z, then z is called an elliptic point of Γ . Suppose that s ∈ R

⋃
{∞}. If there

is a parabolic element σ ∈ Γ such that σ(s) = s, then s is called a cusp point of Γ .
If ω is an elliptic (or a cusp respectively) point of Γ , then γ(ω) is also an elliptic (or
a cusp respectively) point of Γ for any γ ∈ Γ .

The modular group SL2(Z) is an important discrete subgroup of SL2(R). Let N

be a positive integer, put

Γ (N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣a ≡ d ≡ 1, b ≡ c ≡ 0(N)
}

,
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which is also a discrete subgroup of SL2(R).
If Γ is a subgroup of the modular group, and there exists a positive integer N

such that Γ (N) ⊂ Γ , then Γ is called a congruence subgroup of the modular group.
Hereafter congruence subgroups Γ0(N) and Γ (N) will be our main research objects.

Proposition 3.2 Suppose that Γ is a discrete subgroup of SL2(R), s a cusp point
of Γ and z an elliptic point of Γ , then

(1) Γz := {σ ∈ Γ | σ(z) = z} is a finite cyclic group (in this case, we call
[Γz : Γ

⋂
{±I}] the order of the elliptic point z);

(2) Γs/Γ
⋂
{±I} (where Γs := {σ ∈ Γ | σ(s) = s}) is isomorphic to Z, and any

element of Γs is ±I or parabolic.

Proof These are two well-known facts, therefore we omit the proof.

Definition 3.2 Let w1, w2 ∈ H
⋃

R
⋃
{∞}. If there exists a τ ∈ Γ such that

τ(w1) = w2, then w1 and w2 are called Γ-equivalent.

Now we discuss the cusp points and elliptic points of the modular group.

It is clear that ∞ is a fixed point of
(

1 1
0 1

)
. So ∞ is a cusp point of the modular

group. Let s ∈ R be a cusp point of the modular group. Then there exists a parabolic

matrix σ =
(

a b
c d

)
such that s is its unique fixed point. Since s �= ∞, then c �= 0.

So s is the unique solution of the following equation

cx2 + (d − a)x − b = 0,

which implies that s is rational. Conversely if p/q is any rational number such that p, q

are co-prime, then there exist integers u, t satisfying pt− uq = 1, i.e., σ =
(

p u
q t

)
∈

SL2(Z). Since σ(∞) = p/q and ∞ is a cusp point of the modular group, so is p/q.
From above we know that Q

⋃
{∞} are all cusp points of the modular group and all

are equivalent to ∞.
Suppose that σ is an elliptic element of the modular group. By Proposition 3.1

we have that tr(σ) = 0 or 1 since σ is an integral matrix. Then the characteristic
polynomial of σ is x2 + 1 or x2 ± x + 1. Hence σ2 = −I or σ3 = ±I. But if σ3 = −I,
then (−σ)3 = I. So we only need to consider the cases σ2 = −I and σ3 = I.

Let σ2 = −I. Put Z[σ] = {a + bσ | a, b ∈ Z}. Then Z[σ] is isomorphic to Z[i]. So
it is an Euclidean ring. For any τ ∈ Z[σ], we can define a transformation on Z2 as
follows: (

x
y

)
�→ τ

(
x
y

)
,

(
x
y

)
∈ Z2.
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So Z2 is a Z[σ]-module. If for any non-zero element
(

x
y

)
∈ Z2, there exists τ = a+bσ

such that τ

(
x
y

)
= 0, then

0 = (a − bσ)(a + bσ)
(

x
y

)
= (a2 + b2)

(
x
y

)
.

This shows that a = b = 0, i.e., τ = 0. By the fundamental theorem for finitely
generated modules over Euclidean rings, there exists a u ∈ Z2 such that

Z2 = Z[σ]u = Zu + Zσu.

Put v = σu, then σv = −u. So

σ(u, v) = (u, v)
(

0 −1
1 0

)
,

where (u, v) represents the matrix with columns u, v. Since u, v consist of a basis of
Z2, det(u, v) = ±1. If det(u, v) = 1, then (u, v) ∈ SL2(Z) and

σ = (u, v)
(

0 −1
1 0

)
(u, v)−1,

If det(u, v) = −1, then (v, u) ∈ SL2(Z) and

σ = (v, u)
(

0 1
−1 0

)
(v, u)−1.

This shows that σ is conjugate to
(

0 −1
1 0

)
or
(

0 1
−1 0

)
. But i is the fixed point in

H of these two elements. So the fixed point of σ is equivalent to i which is an elliptic
point with order 2.

Now let σ3 = I. Then Z[σ] is also an Euclidean ring and Z2 is a Z[σ]-module. If for

any non-zero element
(

x
y

)
∈ Z2, then there exists τ = a + bσ such that τ

(
x
y

)
= 0,

then

0 = (a − b − bσ)(a + bσ)
(

x
y

)
= (a2 − ab + b2)

(
x
y

)
.

This shows that a2 − ab + b2 = 0, so a = b = 0, i.e., τ = 0. By the fundamental
theorem for finitely generated modules over Euclidean rings, there exists a u ∈ Z2

such that

Z2 = Z[σ]u = Zu + Zσu.
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Put v = σu, then σv = −σu − u = −v − u,

σ(u, v) = (u, v)
(

0 −1
1 −1

)
,

where (u, v) represents the matrix with columns u, v. Since u, v consist of a basis of
Z2, det(u, v) = ±1. If det(u, v) = 1, then (u, v) ∈ SL2(Z) and

σ = (u, v)
(

0 −1
1 −1

)
(u, v)−1.

If det(u, v) = −1, then (v, u) ∈ SL2(Z) and

σ = (v, u)
(
−1 1
−1 0

)
(v, u)−1.

So σ is conjugate to

τ =
(

0 −1
1 −1

)
or τ2 =

(
−1 1
−1 0

)
.

The fixed point in H of τ is the root ρ = e2πi/3 of z2 − z + 1 = 0. Hence the fixed
point in H of σ is an elliptic point with order three and equivalent to ρ. Therefore we
have the following

Theorem 3.1 Q
⋃
{∞} are all cusp points of the modular group. Every cusp point is

equivalent to ∞. Any elliptic point of the modular group has order 2 or 3. All elliptic
points with order 2 (or with order 3 respectively) are equivalent to i (orρ respectively).

Now we want to discuss the cusp and elliptic points of the congruence subgroup
Γ (N) and Γ0(N) with N > 1 (It is clear that Γ (1) = Γ0(1) = SL2(Z)).

By above discussions we know that all elliptic elements of the modular group are
conjugate to one of the following elements:

±
(

0 −1
1 0

)
, ±

(
0 −1
1 −1

)
, ±

(
−1 1
−1 0

)
.

Γ (N) is a normal subgroup of the modular group. All the above elements do not
belong to Γ (N) for N > 1. Hence Γ (N) has no elliptic points. By Theorem 3.1, the
elliptic points of Γ0(N) are only of order 2 or 3.

Theorem 3.2 Let ν2 and ν3 be the numbers of the equivalence classes of the elliptic
points with order 2 and 3 of Γ0(N) respectively. Then

ν2 =

⎧⎪⎨⎪⎩
0, if 4 | N,∏
p|N

(
1 +
(
−1
p

))
, if 4 � N,

ν3 =

⎧⎪⎨⎪⎩
0, if 9 | N,∏
p|N

(
1 +
(
−3
p

))
, if 9 � N,
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where (
−1
p

)
=

⎧⎪⎨⎪⎩
0, if p = 2,

1, if p ≡ 1(4),

−1, if p ≡ 3(4),(
−3
p

)
=

⎧⎪⎨⎪⎩
0, if p = 3,

1, if p ≡ 1(3),

−1, if p ≡ 2(3).

Proof We consider first elliptic points with order 2. Let z1, z2 be two elliptic points
with order 2. Then

Γz1 = {σ ∈ Γ0(N) | σ(z1) = z1} = {±I,±σ1},
Γz2 = {σ ∈ Γ0(N) | σ(z2) = z2} = {±I,±σ2},

where σ1, σ2 are elliptic elements of Γ0(N) which can be assumed to be equivalent

to
(

0 −1
1 0

)
in the modular group. If z1, z2 are Γ0(N)-equivalent, then there exists

τ ∈ Γ0(N) such that τ(z1) = z2. Then τ−1σ2τ ∈ Γz1 . It can be shown that τ−1σ2τ

must be σ1. So z1, z2 are Γ0(N)-equivalent if and only if σ1, σ2 are Γ0(N)-conjugate.
This means that ν2 is the number of the conjugate classes of the elements in the set

Σ =
{

T−1

(
0 −1
1 0

)
T ∈ Γ0(N)

∣∣∣∣T ∈ SL2(Z)
}

in Γ0(N).

Suppose σ = T−1

(
0 −1
1 0

)
T ∈ Σ , and put

(ω1, ω2) = (1, i)T.

Then {ω1, ω2} is a basis of Z[i] as a Z-module. And

(iω1, iω2) = (1, i)
(

0 −1
1 0

)
T = (ω1, ω2)σ. (3.1)

Put
J = {aω1 + bNω2 | a, b ∈ Z} ⊂ Z[i].

Then the equality (3.1) shows that J is an ideal of Z[i] and J satisfies the following
two properties

(1) The Norm N(J) of the ideal J is [Z[i] : J ] = N ;
(2) For any integer q �= ±1, J is not contained in the ideal (q) generated by q(since

ω1 �∈ (q) = {aqω1 + bqω2 | a, b ∈ Z}).
Conversely, if J is an ideal of Z[i] with the above properties, then by property (1)

we can find a basis ω1, ω2 of Z[i] such that ε1ω1, ε2ω2(ε1, ε2 ∈ Z) is a basis of J and
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ε1 | ε2, ε1ε2 = N . In this case we have that J ⊂ (ε1). By property (2) we know that
ε1 = 1, ε2 = N . If necessary, substituting ω2 by −ω2, we can assume

(ω1, ω2) = (1, i)T, T ∈ SL2(Z).

Therefore

(iω1, iω2) = (ω1, ω2)T−1

(
0 −1
1 0

)
T.

Since iω1 ∈ J , so T−1

(
0 −1
1 0

)
T ∈ Σ .

Now we can prove that there is a bijection between the set of the conjugate classes
of the elements of Σ in Γ0(N) and the set of the ideals of Z[i] with properties (1) and
(2). Let

σ = T−1

(
0 −1
1 0

)
T ∈ Σ , σ1 = T−1

1

(
0 −1
1 0

)
T1 ∈ Σ .

Define
(ω1, ω2) = (1, i)T, (ω′1, ω

′
2) = (1, i)T1

and
J = {aω1 + bNω2 | a, b ∈ Z},

J1 = {aω′1 + bNω′2 | a, b ∈ Z}.

If J = J1, since (ω1, ω2) = (ω′1, ω
′
2)T

−1
1 T and ω1 ∈ J1, we have that

T−1
1 T = τ ∈ Γ0(N).

Hence σ = τ−1σ1τ which means that σ, σ1 are conjugate in Γ0(N). Conversely, if
σ, σ1 are conjugate in Γ0(N), suppose that σ = τ−1σ1τ with τ ∈ Γ0(N). Put

(ω′′1 , ω′′2 ) = (ω′1, ω
′
2)τ,

we have that
(iω1, iω2) = (ω1, ω2)σ, (iω′′1 , iω′′2 ) = (ω′′1 , ω′′2 )σ.

(ω1, ω2) and (ω′′1 , ω′′2 ) are the solution of{
(σ11 − i)x + σ21y = 0,

σ12x + (σ22 − i)y = 0,

where σ =
(

σ11 σ12

σ21 σ22

)
.

Therefore there is a λ ∈ Q(i) such that ω1 = λω′′1 , ω2 = λω′′2 . Since {ω′′1 , ω′′2}
is a basis of Z[i], there exist integers n, m such that nω′′1 + mω′′2 = 1 and hence
nω1 + mω2 = λ, i.e., λ ∈ Z[i]. Since {ω1, ω2} is a basis of Z[i], we can similarly prove
that λ−1 ∈ Z[i]. So λ is an invertible element of Z[i] and

J = {aω′′1 + bNω′′2 | a, b ∈ Z} = J1.
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It is well-known that Z[i] is a principal ideal domain. If an ideal J = (x + iy) has
properties (1) and (2), then

x2 + y2 = N, (x, y) = 1.

The number of solutions of this equation is ( please see, e.g., Hua Luokong: An
introduction to number theory, §7, Chapter 6)⎧⎪⎨⎪⎩

4
∏
p|N

(
1 +
(
−1
p

))
, if 4 � N ;

0, if 4 | N.

Since ±(x + iy),±(−y + ix) generate the same ideal, we get the result for ν2.
Now we consider the elliptic points with order 3 of Γ0(N). Let z1, z2 be two elliptic

points with order 3 of Γ0(N). Then

Γz1 = {±I,±σ1,±σ2
1}, Γz2 = {±I,±σ2,±σ2

2}.

We can assume that σ1, σ2 are conjugate to
(

0 −1
1 −1

)
in the modular group. Then we

can prove that z1, z2 are Γ0(N)-equivalent if and only if σ1, σ2 are Γ0(N)-conjugate. In
fact, if z1, z2 are Γ0(N)-equivalent, then there exists a τ ∈ Γ0(N) such that τ(z1) = z2.
Hence τ−1σ2τ ∈ Γz1 . We want to show that τ−1σ2τ must be σ1. In order to prove
this, we only need to show that(

0 −1
1 −1

)
,

(
−1 1
−1 0

)
,

(
0 1
−1 1

)
,

(
1 −1
1 0

)
are not conjugate to each other in the modular group. Their characteristic polyno-
mials are respectively

λ(λ + 1) + 1, λ(λ + 1) + 1, λ(λ − 1) + 1, λ(λ − 1) + 1.

So it is only possible that the first and the second are conjugate, the third and

the fourth are conjugate. Let α be
(

0 −1
1 −1

)
. Then α−1 =

(
−1 1
−1 0

)
. Suppose

that there is a γ ∈ SL2(Z) such that γαγ−1 = α−1. We know that there exists a

τ ∈ SL2(R) such that τατ−1 =
(

p q

−q p

)
∈ SO(2). Put

τγτ−1 =
(

a b

c d

)
.

Since γα = α−1γ, we have(
a b

c d

)(
p q

−q p

)
=
(

p −q

q p

)(
a b

c d

)
,
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i.e., (
ap − bq bp + aq

cp − dq dp + cq

)
=
(

ap − cq bp − dq

cp + aq dp + bq

)
.

It shows that a = −d, b = c and hence

det γ = ad − bc = −a2 − d2 < 0,

which is impossible. Therefore α, α−1 are not conjugate in the modular group. Simi-

larly we can prove that
(

0 1
−1 1

)
,

(
1 −1
1 0

)
are not conjugate in the modular group.

Therefore z1, z2 are Γ0(N)-equivalent if and only if σ1, σ2 are Γ0(N)-conjugate. So ν3

is the number of the conjugate classes of the elements of the set{
T−1

(
0 −1
1 −1

)
T ∈ Γ0(N)

∣∣∣T ∈ SL2(Z)
}

in Γ0(N). By a similar reasoning for elliptic points of order 2, but substituting Z[i]
by Z[ρ], we can show that 6ν3 is the number of solutions of the following equation:

x2 − xy + y2 = N, (x, y) = 1.

By referring to the classical result for the number of solutions of the equation, we are
finished with the proof of the theorem.

Lemma 3.1 We have that

[SL2(Z) : Γ (N)] = N3
∏
p|N

(1 − p−2),

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + p−1).

Proof Let Γ = SL2(Z) and define a homomorphism

f :Γ →SL2(Z/NZ),
α →α mod N.

Then the kernel of the map is Γ (N). We now show that f is an epimorphism. For any
2× 2 integral matrix A with detA ≡ 1(N), it is well known that there exist U, V ∈ Γ
such that

UAV =
(

a1 0
0 a2

)
.

So a1a2 = 1 + rN with r an integer. Put

B′ =
(

a1 + xN yN

N a2

)
.



54 Chapter 3 The Modular Group and Its Subgroups

Since a2, N are co-prime, there are two integers x, y such that r+a2x−yN = 0. Thus

detB′ = a1a2 + a2xN − yN2 = 1,

i.e., B′ ∈ Γ . It is easy to see that UAV ≡ B′(N). Taking B = U−1B′V −1, then
B ∈ Γ and A ≡ B(N) which means that f is an epimorphism. And so

[Γ : Γ (N)] = [SL2(Z/NZ) : 1].

Let N =
∏

pe be the standard factorization of N , by Chinese Remainder Theorem,

we have that
[SL2(Z/NZ) : 1] =

∏
p|N

[SL2(Z/peZ) : 1]. (3.2)

Consider the map
h : GL2(Z/peZ)→GL2(Z/pZ),

α mod pe →α mod p.

Then the kernel of h is

X =
{(

a b

c d

)
∈ GL2(Z/peZ)

∣∣∣∣ ( a b

c d

)
≡ I(p)

}
.

It is easy to see that [X : 1] = p4(e−1). It is well-known that

[GL2(Z/pZ) : 1] = (p2 − 1)(p2 − p),

so
[GL2(Z/peZ) : 1] = p4e(1 − p−1)(1 − p−2).

Consider the map: α �→ detα from GL2(Z/peZ) to (Z/peZ)∗. The map is an epimor-
phism and the kernel is SL2(Z/peZ). So

[SL2(Z/peZ) : 1] = [GL2(Z/peZ) : 1]/ϕ(pe) = p3e(1 − p−2).

By (3.2) we get the result for [Γ : Γ (N)]. The image of Γ0(N) under the homomor-
phism f is {(

a b

0 d

)
∈ SL2(Z/NZ)

∣∣∣∣ad ≡ 1(N)
}

,

which has Nϕ(N) elements. So

[Γ : Γ0(N)] =
[SL2(Z/NZ) : 1]

Nϕ(N)
= N

∏
p|N

(
1 + p−1

)
,

which completes the proof.

Lemma 3.2 Let Γ be a discrete subgroup of SL2(R) and Γ ′ a subgroup of Γ . If
[Γ : Γ ′] < ∞, then Γ and Γ ′ have the same set of cusp points.
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Proof It is obvious that any cusp point of Γ ′ is also one of Γ . Conversely, let s be
a cusp point of Γ . Then there exists a parabolic element σ ∈ Γ such that σ(s) = s.
Since [Γ : Γ ′] < ∞, there is a positive integer n such that σn ∈ Γ ′. But σ must be

conjugate to an element
(

1 h

0 1

)
in SL2(R). Then σn and

(
1 nh

0 1

)
are conjugate.

So σn is a parabolic element. But σn(s) = s implies that s is a cusp point of Γ ′.
By Lemma 3.1, Lemma 3.2 we know that Γ (N) and Γ0(N) have the set Q

⋃
{∞}

of cusp points. That d/c is a cusp point implies that d is an integer and c a non
negative integer with (c, d) = 1. If c = 0, then d = 1 and 1/0 is ∞.

Theorem 3.3 Let Rc,N be a reduced residue system modulo (c, N/c),
i.e. {d + (c, N/c)Z | d ∈ Rc,N} = (Z/(c, N/c)Z)∗. The set

{d/c | c | N, (c, d) = 1, d ∈ Rc,N} (3.3)

is a complete set of representatives of equivalence classes of the cusp points of Γ0(N).
Hence the number of equivalence classes of the cusp points of Γ0(N) is equal to

ν∞ =
∑
c|N

ϕ((c, N/c)).

Proof If d′ is prime to (c, N/c), put

d = d′ + (c, N/c)
∏

p|c,p�d′
p.

It is clear that d is prime to c and d ≡ d′ mod (c, N/c). So the number of the cusp
points in the set (3.3) is equal to ∑

c|N
ϕ((c, N/c)).

Now we need only to prove that any cusp point of Γ0(N) is equivalent to one in the
set (3.3) and any two elements in the set (3.3) are not equivalent for Γ0(N). Let d/c,
d1/c be two cusp points and c | N , d ≡ d1 mod (c, N/c). Then there are two matrices(

a d

b c

)
,

(
a1 d1

b1 c1

)
∈ SL2(Z).

It is clear that
bd ≡ b1d1 ≡ −1 mod (c, N/c),

Therefore b ≡ b1 mod (c, N/c). There exist integers m, n such that b = b1+mc+nN/c.
Hence

γ =
(

a − md d

b − mc c

)(
c −d1

−b1 a1

)
∈ Γ0(N)
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satisfies γ(d1/c) = d/c. This shows that d/c and d1/c are equivalent each other for
Γ0(N).

Let n/m be a cusp point and (m, N) = c. There exist integers α, β such that

αm + βnN = c.

Put
α′ = α + nN/c

∏
p|N,p�α

p, β′ = β − m/c
∏

p|N,p�α

p.

It is easy to see that α′m/c + β′nN/c = 1 and α′ is prime to β′N . Therefore there is

σ =
(

∗ ∗
β′N α′

)
∈ Γ0(N),

which satisfies σ(n/m) = d/c, (c, d) = 1. d/c is Γ0(N)-equivalent to some cusp
point in the set (3.3). And so is n/m.

Now we assume that d/c, d1/c1 are two points in the set (3.3) and that they are
Γ0(N)-equivalent. Then there exists

σ =
(

α β

γN δ

)
∈ Γ0(N)

such that
αd + βc = d1, γNd + δc = c1. (3.4)

By the second equality of (3.4) we have c | c1. Because of symmetry we can show
similarly that c1 | c. Hence c = c1 and so δ ≡ 1(modN/c). But αδ ≡ 1(modN), so
α ≡ 1(modN/c). By the first equality of (3.4) we know that d ≡ d1 mod (c, N/c)
which means that d/c and d1/c1 are the same point in the set (3.3). This completes
the proof.

Lemma 3.3 Let a, b, c, d be positive integers, (a, b) = 1, (c, d) = 1 and a ≡ c, b ≡
d(modN). Then there exists σ ∈ Γ (N) such that(

a

b

)
= σ

(
a

b

)
.

Proof We first consider the case c = 1, d = 0. Then a ≡ 1, b ≡ 0(modN). There
exist integers p, q such that ap − bq = (1 − a)/N and so

σ =
(

a Nq

b 1 + Np

)
∈ Γ (N),

(
a

b

)
= σ

(
1
0

)
.

We now consider the general case. There exists

τ =
(

c ∗
d ∗

)
∈ SL2(Z)
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such that

τ

(
1
0

)
=
(

c

d

)
≡
(

a

b

)
(modN).

Then

τ−1

(
a

b

)
≡
(

1
0

)
(modN).

By above discussion we know that there exists σ ∈ Γ (N) such that

τ−1

(
a

b

)
= σ

(
1
0

)
,

hence (
a

b

)
= τστ−1

(
c

d

)
.

It is easy to see that τστ−1 ∈ Γ (N) which implies the lemma.

Theorem 3.4 Let s = a/b, s′ = c/d be cusp points. Then s, s′ are Γ (N)-equivalent

if and only if ±
(

a

b

)
≡
(

c

d

)
(modN). The number of the equivalence classes of cusp

points of Γ (N) is

ν∞ =

⎧⎪⎨⎪⎩
N2

2

∏
p|N

(1 − p−2), if N > 2,

3, if N = 2.

Proof Assume that ±
(

a

b

)
≡
(

c

d

)
(modN). By Lemma 3.3 there is σ ∈ Γ (N)

such that σ(s) = s′. Conversely, if there is σ ∈ Γ (N) such that σ(s) = s′, then

σ

(
a

b

)
= m

(
c

d

)
with an integer m. But (a, b) = (c, d) = 1 implies that m = ±1,

and so
(

a

b

)
≡ ±

(
c

d

)
(modN).

Let
J = {(a1, a2) | 1 � a1, a2 � N, (a1, a2, N) = 1}.

Let s = c/d be a cusp point of Γ (N). Put a1 ≡ c, a2 ≡ d(modN) and 1 � a1, a2 � N .
Since (a1, a2, N) | (c, d) = 1, then (a1, a2) ∈ J . Thus each cusp point s corresponds to
an element of J as shown above. If another cusp point s′ corresponds to an element
(a′1, a

′
2) ∈ J , then by the first result of the theorem, s, s′ are Γ (N)-equivalent if and

only if a1 = a′1, a2 = a′2 or a1 = N − a′1, a2 = N − a′2. Conversely, if (a1, a2) is any

element of J , it is easy to see that a2 and c = a1+N
∏

p|a2,p�a1

p are co-prime. Hence the

cusp point c/a2 corresponds to (a1, a2) according to the above definition. Therefore
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for N > 2, N =
∏
p

pe, we have

ν∞ = #J/2 =
1
2

N∑
a=1

ϕ((a, N))N/(a, N)

=
N

2

∏
p|N

pe∑
a=1

ϕ((a, pe))/(a, pe)

=
N

2

∏
p|N

e∑
i=1

ϕ(pi)ϕ(pe−i)/pi

=
N2

2

∏
p|N

(1 − p−2).

A direct computation shows that ν∞ = #J = 3 for N = 2, which completes the
proof.

Let Γ be a discrete subgroup of SL2(R). A domain F in H is called a fundamental
domain for Γ if

(I) F is a connected open set;
(II) any two points in F are Γ -inequivalent;
(III) any point in H is Γ -equivalent to a point of the closure F of F .

Lemma 3.4 The following set

F = {z ∈ H | −1/2 < Re(z) < 1/2, |z| > 1}

is a fundamental domain of the modular group.

Proof It is clear that F satisfies the first condition (I). Let z1, z2 ∈ F . If they are

SL2(Z)–equivalent, then there exists σ =
(

a b

c d

)
∈ SL2(Z) such that σ(z2) = z1.

Without loss of generality, we can assume that Im(z2) � Im(z1) =
Im(z2)

|cz2 + d|2 . Then

|c|Im(z2) � |cz2 + d| � 1. (3.5)

If c = 0, then a = d = ±1, z1 = z2 ± b, b is an integer which is impossible. So c �= 0.
Since z2 ∈ F , Im(z2) �

√
3/2. By (3.5) we have |c| = 1 and |z2 ± d| � 1 which is also

impossible. Therefore the second condition (II) is satisfied. Let z be any point of H.

σ =
(

a b

c d

)
∈ SL2(Z). Because

Im(σ(z)) =
Im(z)

|cz + d|2 ,
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we know that Im(σ(z)) will get its maximum when σ runs over the modular group.

Let Im(σ0(z)) be the maximum. Write w = σ0(z) = x+ iy, γ =
(

0 −1
1 0

)
∈ SL2(Z).

Then
Im(γσ0(z)) = Im(−1/w) = y/|w|2 � y.

This shows that |w| � 1. Put τ =
(

1 1
0 1

)
∈ SL2(Z). Then for any integer h

τh(σ0(z)) = x + h + iy,

which implies that Im(τhσ0(z)) = Im(σ0(z)). So |τhσ0(z)| � 1 for any h. A suitable h

will assure that τhσ0(z) ∈ F which shows that the third condition (III) is satisfied.

Now Put

F ′ = F
⋃
{z ∈ H | |z| � 1, Re(z) = −1/2}

⋃
{z ∈ H | |z| = 1,−1/2 < Re(z) � 0}.

It is clear that F ′ is a complete set of representatives of SL2(Z) \ H. Put

H∗ = H
⋃

Q
⋃
{∞}.

Q
⋃
{∞} are all cusp points of the modular group. By Theorem 3.1 we have

SL2(Z) \ H∗ = (SL2(Z) \ H)
⋃
{∞}.

In general, let G = SL2(R). The topology of R4 induces a topology on G, and so G

becomes a topological group. Let Γ be a discrete subgroup of G. Put

H∗ = H
⋃
{ all cusp points of Γ}.

We introduce a topology on Γ \ H∗. We first introduce a topology on H∗. If z ∈ H,
then all the neighbors of z in H are all the ones of z in H∗. If ∞ is a cusp point of Γ ,
define the following sets

{∞}
⋃
{z ∈ H | Im(z) > c > 0} (3.6)

as the system of open neighbors of ∞. If s ∈ R is a cusp point of Γ , define the system
of open neighbors of s as follows

{s}
⋃
{ the inner of a disc in H tangent to the real axis at s}.

It can be verified directly that H∗ becomes a topological space under the above def-
inition. It can also be verified that each element of Γ defines a homeomorphism of
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H∗. Then the topology over Γ \ H∗ is defined as the quotient topology of H∗ with
respect to Γ .

It can be proved that for any v ∈ H∗ there is a neighbor U of v such that

{σ ∈ Γ | σ(U)
⋂

U �= ∅} = {σ ∈ Γ | σ(v) = v} = Γv.

That is, Γv \U can be imbedded into Γ \H∗. Let ϕ be the natural map: H∗ → Γ \H∗.
If v ∈ H is not an elliptic point, then Γv = Γ

⋂
{±I}. Then ϕ : U → Γv \ U is a

homeomorphism. Let (Γv \U, ϕ−1) be an element of the complex structure of Γ \H∗.
If v ∈ H is an elliptic point, then Γv = Γv/(Γv

⋂
{±I}) is a finite cyclic group with

order e. Let

σ =
(

a b
c d

)
∈ Γv

correspond to a generator of Γ v. Put

λ(z) =
z − v

z − v
,

whose matrix
(

1 v
1 −v

)
is also denoted by λ. Then

λσλ−1 =
(

cv + d 0
0 cv + d

)
.

Denote ξ = cv + d. Then ξξ = 1. Let e be the smallest positive integer such that
σe = ±I, i.e., ξe = ±1. If e is even, it must be that ξe = −1. So ξ is a primitive root
of the unit with degree 2e. Anyway, ξ2 is always a primitive root of the unit with
degree e. Put ζ = ξ−2. Then λΓvλ−1 is the set of the following transformations:

z �→ ζiz, i = 1, 2, · · · , e.

The transformation z �→ λ(z) maps Γv-equivalent points in U to λΓvλ−1-equivalent
points in λ(U). That is, λ induces a bijection from Γv \ U to λΓvλ−1 \ λ(U). Two
points w1, w2 ∈ λ(U) are λΓvλ−1-equivalent if and only if we

1 = we
2. Define a map:

p : Γv \ U → C,
ϕ(z) �→ λ(z)e, z ∈ U.

We regard (Γv \ U, p) as an element of the complex structure on Γ \ H∗ which is a
homeomorphism from Γv \ U into C.

If v is a cusp point of Γ , then there exists ρ ∈ G such that ρ(v) = ∞. So

ρΓvρ−1 · {±I} =
{
±
(

1 h
0 1

)m ∣∣∣∣m ∈ Z

}
, h > 0.
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Define a homeomorphism p from Γv \ U into C: p(ϕ(z)) = e2πiρ(z)/h. We consider
(Γv \ U, p) as an element of the complex structure on Γ \ H∗.

We can prove that Γ \ H∗ becomes a Riemann surface. In general it is locally
compact. If it is compact, then the discrete subgroup Γ is called a Fuchsian group of
the first kind.

We can show

Lemma 3.5 Γ \H∗ is a compact Riemann surface if and only if there is a compact
subset C of H∗ such that H∗ = ΓC.

Let
F = {∞}

⋃
{z ∈ H | |z| � 1,−1/2 � Re(z) � 1/2}.

Then F is a compact subset of H∗ and H∗ = SL2(Z) · F . By the above lemma we
know that SL2(Z) \ H∗ is a compact Riemann surface and hence the modular group
is a Fuchsian group of the first kind.

Let Γ be a Fuchsian group of the first kind. Γ ′ is a subgroup of Γ with n = [Γ :

Γ ′] < ∞. Then Γ =
n⋃

i=1

Γ ′σi. By Lemma 3.5 there exists a compact subset C of H∗

such that H∗ = ΓC. And hence

H∗ = Γ ′
(

n⋃
i=1

σiC

)
,

which implies that Γ ′ is of the first kind since
n⋃

i=1

σiC is a compact subset of H∗. This

means that Γ (N) and Γ0(N) are Fuchsian groups of the first kind.
Let Γ ,Γ ′ be as above. Then they have the same cusp points and define the same

H∗. Let v ∈ H∗. The set of the points Γ -equivalent to v are divided into finite
Γ ′-equivalence classes. Suppose the number of the Γ ′-equivalence classes is h and
ωi(1 � i � h) is a system of representatives. Let ϕ′ be the natural map H∗ → Γ ′ \H∗.
Then we can get a covering map f from Γ ′ \ H∗ to Γ \ H∗ as follows

H∗ id.−−−−→ H∗

ϕ′
⏐⏐& ⏐⏐&ϕ

Γ ′ \ H∗ −−−−→
f

Γ \ H∗

It is clear that f is a holomorphic map. f maps ϕ′(ωi) to ϕ(v). Denote qi =
ϕ′(ωi) ∈ Γ ′ \ H∗. Let u be the local coordinate at qi and t the local coordinate at
ϕ(v). If

t(f(q)) = ae(u(q))e + ae+1(u(q))e+1 + · · · , ae �= 0
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for any point q in a neighborhood of qi, then e is called the ramification index of f

at qi.
Since ωi is Γ -equivalent to v, then there exists σi ∈ Γ such that ωi = σi(v).

Denote Γ = Γ/(Γ
⋂
{±I}).

Lemma 3.6 Notations as above. Then the ramification index of f at qi is

ei = [Γωi : Γ
′
ωi

] = [Γ v : σ−1
i Γ

′
σi

⋂
Γ v], 1 � i � h.

And e1 + e2 + · · · + eh = [Γ : Γ
′
]. That is, f is a covering with degree [Γ : Γ

′
]. In

particular, if Γ
′
is a normal subgroup of Γ , then e1 = e2 = · · · = eh and [Γ : Γ

′
] = e1h.

Proof By the definition of the complex manifold, we know that λi(z)[Γ
′
ωi

:1] is a
local coordinate at qi of Γ \H∗, where λi(z) = (z−ωi)/(z−ωi). Similarly λi(z)[Γωi

:1]

is a local coordinate at ϕ(ωi) of Γ \ H∗. So the ramification index of f at qi is
[Γωi : 1]/[Γ

′
ωi

: 1] = ei. But Γωi = σiΓ vσ−1
i , Γ

′
ωi

= σiΓ vσ−1
i

⋂
Γ
′
. So

ei = [Γ v : Γ v

⋂
σ−1

i Γ
′
σi].

We have a double coset decomposition of Γ as follows:

Γ =
h⋃

i=1

Γ
′
σiΓ v.

In fact, for any σ ∈ Γ , σ(v) must be Γ ′-equivalent to some ωi. That is, there exist
σi, σ′ ∈ Γ

′
such that σ(v) = σ′σi(v). So (σ′σi)−1σ ∈ Γ v. Hence σ ∈ σ′σiΓ v. If i �= j

and there is an element belonging to Γ
′
σiΓ v and Γ

′
σjΓ v, then there are γ1, γ2 ∈ Γ ′,

δ1, δ2 ∈ Γ v such that
γ1σiδ1 = γ2σjδ2.

Then
γ1(ωi) = γ1σiδ1(v) = γ2σjδ2(v) = γ2(ωj),

which is impossible because ωi, ωj are not Γ ′-equivalent each other. This shows that
Γ has such a decomposition. Now consider the number of the right cosets of Γ

′
in

Γ
′
σiΓ v. Let δ1, δ2 ∈ Γ v. Then there exists γ ∈ Γ

′
such that σiδ1 = γσiδ2 if and only

if δ1δ
−1
2 ∈ σ−1

i Γ
′
σi

⋂
Γ v. Hence there are [Γ v : σ−1

i Γ
′
σi

⋂
Γ v] = ei right cosets of Γ

′

in Γ
′
σiΓ v. Therefore

[Γ : Γ
′
] = e1 + e2 + · · · + eh,

which completes the proof.

Lemma 3.7 Let f be a covering with degree n from a compact Riemann surface R′

to another compact Riemann surface R. Suppose that the genuses of R′ and R are g′

and g respectively. Then

2g′ − 2 = n(2g − 2) +
∑
z∈R′

(ez − 1),
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where ez is the ramification index of f at z ∈ R′.

Proof This is the so-called Hurwitz formula.

Theorem 3.5 Let Γ be a subgroup of the modular group and μ = [SL2(Z) : Γ ].
Denote the numbers of the equivalence classes of elliptic points with order 2 and 3 of
Γ by ν2 and ν3 respectively. Let ν∞ be the number of the equivalence classes of the
cusp points of Γ . Then the genus of Γ \ H∗ is

g = 1 +
μ

12
− ν2

4
− ν3

3
− ν∞

2
.

Proof Consider the ramification covering f with degree μ defined in Lemma 3.6:
f : Γ \H∗ → SL2(Z) \H∗. If the ramification indexes of the inverse images in Γ \H∗

of ϕ(e2πi/3) ∈ SL2(Z) \ H∗ are e1, e2, · · · , et respectively, then e1 + e2 + · · · + et = μ.
Each ei is equal to 1 or 3. And ν3 is just the number of ei = 1. Put ν′3 = t − ν3. By
ν3 + 3ν′3 = μ, we have

t∑
i=1

(ei − 1) = 2ν′3 = 2(μ − ν3)/3.

Similarly, if the ramification indexes of the inverse images in Γ \H∗ of ϕ(i) ∈ SL2(Z)\
H∗ are e′1, e

′
2, · · · , e′h respectively, then e′1 + e′2 + · · · + e′h = μ. Each ei is equal to 1

or 2. And ν2 is just the number of ei = 1. And the others are of index 2. Hence

h∑
i=1

(e′i − 1) = (μ − ν2)/2.

ν∞ is the number of the inverse images of ϕ(∞) under f . Let their ramification
indexes be e′′1 , · · · , e′′ν∞ respectively. Then

ν∞∑
i=1

(e′′i − 1) = μ − ν∞.

But SL2(Z) \ H∗ is a sphere with genus 0, by Lemma 3.7 we have

2g − 2 = −2μ + 2(μ − ν3)/3 + (μ − ν2)/2 + μ − ν∞,

which implies the result of the theorem.

Example Let N > 2, then Γ (N) has no elliptic points and −I �∈ Γ (N). So

[SL2(Z) : Γ (N)] = [SL2(Z) : Γ (N)]/2.

By Lemma 3.1 we have

μN = [SL2(Z) : Γ (N)] =

⎧⎪⎨⎪⎩
N3

2

∏
p|N

(1 − p−2), if N > 2,

6, if N = 2.
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By Theorem 3.4 we know that ν∞ = μN/N . So the genus of Γ (N) \ H∗ is

1 + μN (N − 6)/(12N), N > 1. (3.7)

For Γ0(N) we have

[SL2(Z) : Γ0(N)] = [SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + p−1).

By Theorems 3.2, 3.3, 3.5, we can compute the genus of Γ0(N) \ H∗.



Chapter 4

Modular Forms with Integral Weight or

Half-integral Weight

4.1 Dimension Formula for Modular Forms with Integral

Weight

Let Γ be a Fuchsian group of the first kind. Then M = Γ \H∗ is a compact Riemann
surface. Denote by K the field of all meromorphic functions on M . It is well-known
that K is an algebraic function field over C. Let ϕ : H∗ → M be the natural map. For
g ∈ K we call f(z) = g(ϕ(z)) an automorphic function on H which is a meromorphic
function on H. It is clear that f(γ(z)) = f(z) for any γ ∈ Γ . Now we introduce a
more wide range of functions on H.

Let σ =
(

a b
c d

)
∈ GL2(R). Put J(σ, z) = cz + d for any z ∈ H. It can be easily

verified that

J(σσ′, z) = J(σ, σ′(z))J(σ′, z)

for any σ, σ′ ∈ GL2(R). For any integer k, σ ∈ GL+
2 (R), any function f on H we

define an operator as follows

f |[σ]k = det(σ)k/2J(σ, z)−kf(σ(z)).

It is clear that

f |[σσ′]k = (f |[σ]k)|[σ′]k, σ, σ′ ∈ GL+
2 (R).

Definition 4.1 Let k be an integer, f a complex function on H. We call f an
automorphic form with weight k for Γ if it satisfies the following three conditions:

(1) f is meromorphic on H;
(2) for any γ ∈ Γ , we have f |[γ]k = f ;
(3) f is meromorphic at each cusp point of Γ .

The set of all automorphic forms with weight k for Γ is denoted by Ak(Γ ) which is a
vector space over C.
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We need to give some explanation for the third condition: let s be a cusp point,
then there is ρ ∈ SL2(R) such that ρ(s) = ∞. Then

ρΓsρ
−1 · {±I} =

{
±
(

1 h
0 1

)m ∣∣∣∣m ∈ Z

}
, h > 0,

where h is a positive real number and

Γs = {γ ∈ Γ | γ(s) = s}.

By the second condition we know that f |[ρ−1]k is invariant under the action of [σ]k
with σ ∈ ρΓsρ

−1. Put w = ρ(z), g(w) = (f |[ρ−1]k)(w). Then

g

∣∣∣∣ [±( 1 h
0 1

)]
k

= (±1)kg(w + h) = g(w). (4.1)

If k is even, by (4.1) we have
g(w + h) = g(w).

In this case, the third condition means that there exists a meromorphic function
Φ(q), q = e2πiw/h at a neighbor of zero such that g(w) = Φ(q). If k is odd and
−I ∈ Γ , then the second condition implies f = 0, there are no non-zero automorphic
forms with weight k. So we always assume that −I �∈ Γ if k is odd. In this case,

one of
(

1 h
0 1

)
,−
(

1 h
0 1

)
does not belong to ρΓsρ

−1. If ρΓsρ
−1 is generated by(

1 h
0 1

)
, s is called a regular cusp point. If ρΓsρ

−1 is generated by −
(

1 h
0 1

)
, s is

called an irregular cusp point. If s is regular, the meaning of the third condition is
the same as the one for k even. If s is irregular, by (4.1) we have

g(w + 2h) = g(w).

In this case the third condition means that there is an odd meromorphic function ψ

at a neighbor of zero such that

g(w) = ψ(eπiw/h).

It is easy to show that the above definition is independent on the choices of ρ. By
the discussion above, f |[ρ−1]k is a power series of e2πiw/h or eπiw/h:

f |[ρ−1]k =
∑

n�n0

cne2πinw/h or
∑

n�n0

cneπinw/h,

which is called the Fourier expansion of f at the cusp point s. cn is called its n-th
Fourier coefficient. If n0 = 0, then c0 is called the value of f at the cusp point s which
is independent on the choices of ρ.
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A0(K) is just the field K of functions on M . If an automorphic form f is holomor-
phic on H, and the Fourier coefficients of f at all cusp points satisfy that cn = 0 for
all n < 0, then f is called a holomorphic automorphic form. In particular, f is called
a cusp form if the Fourier coefficients of f at all cusp points vanish for all n � 0.
We denote by Gk(Γ )(or Sk(Γ ) respectively) the set of all holomorphic forms (or cusp
forms respectively). If Γ is a congruence subgroup of the modular group, then an
automorphic form of Γ is called a modular form.

It is clear that fg ∈ Am+n(Γ ) if f ∈ Am(Γ ) and g ∈ An(Γ ). Similar results hold
for Gn(Γ ), Sn(Γ ). Hence if f, g ∈ An(Γ ) and g �= 0, then f/g ∈ A0(Γ ) = K. So
An(Γ ) is a vector space over K with dimension one if An(Γ ) �= 0.

For any meromorphic function f ∈ K on the Riemann surface M , define a divisor
associated with f as follows

div(f) =
∑
p∈M

νp(f)p,

where νp(f) is the order of f at p, and νp(f) is positive( or negative) if p is a zero
(or pole) of f . Otherwise νp(f) = 0.

For F ∈ Ak(Γ ), we denote by νz−z0(F ) the degree of the leading term of the
expansion of F at z0 ∈ H with respect to z − z0. Put p = ϕ(z0). If p is not an elliptic
point, let νp(F ) = νz−z0(F ). If p is an elliptic point with order e, put

λ(z) =
z − z0

z − z0
.

Then λ(z)e is a local coordinate at p, so we put

νp(F ) = νz−z0(F )/e.

Now let p = ϕ(s) be a cusp point and

F |[ρ−1]k =
{

ψ(q1/2), if k is odd and s is irregular,
Φ(q), otherwise ,

where q = e2πiw/h (with the definitions of w, h as above.) is a local coordinate at p.
Put

νp(F ) =
{

νt(ψ)/2, if k is odd and s is irregular,
νq(Φ), otherwise ,

where t = q1/2. Since ψ is an odd function, νt(ψ) is an odd integer.
Let D be the group of all divisors of M . Put DQ = D ⊗Z Q. For any F ∈ Ak(Γ ),

define a divisor of DQ as follows

div(F ) =
∑
p∈M

νp(F )p ∈ DQ,
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which is a finite sum because of the compactness of M .
Let f ∈ A0(Γ ) = K not be a constant. Then

f(γ(z)) = f(z)

for all γ ∈ Γ . Taking the derivative with respect to z on both sides, we get

df

dz
(z) = J(γ, z)−2 df

dγ(z)
(γ(z)).

Let
F (z) =

df

dz
(z).

Then we have
F |[γ]2 = F.

If s is a cusp point of Γ , k is even( or odd but regular), we have a meromorphic
function Φ(q) at q = 0 such that f(ρ−1(w)) = Φ(q). Taking the derivative with
respect to w on both sides, we get

Φ′(q)q · 2πi/h =
df

dz
(ρ−1(w))

dρ−1(w)
dw

= F |[ρ−1]2.

If k is odd and s is irregular, we can get an expansion of F |[ρ−1]2 similarly. These show
that F ∈ A2(Γ ). df is a meromorphic differential which is represented formally by
F (z)dz. Conversely, for any F1(z) ∈ A2(Γ ), we can regard F1(z)dz as a meromorphic
differential on M since

F1(z)dz = F1(z)
(

df

dz

)−1

df =
F1(z)
F (z)

df

and F1/F ∈ K, df is a meromorphic differential. Denote by Dif(M) the set of all
meromorphic differentials on M which is a vector space over K with dimension 1. Let
ω ∈ Dif(M), then there exists g ∈ K such that ω = gdf = gF (z)dz with gF ∈ A2(Γ ),
which shows that F (z) �→ F (z)dz is an isomorphism from A2(Γ ) to Dif(M) as vector
spaces over K.

For any meromorphic differential ω ∈ Dif(M), define its divisor as follows:

div(ω) =
∑
p∈M

νp(ω)p,

where νp(ω) = νt(ω/dt) if t is a local coordinate at p.
Define a graded algebra D with degree as follows

D =
∞∑

n=−∞
Difn(M)
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satisfying the following conditions
(1) Dif0(M) = K, Dif1(M) = Dif(M);
(2) Difn(M) is a vector space over K with dimension 1 for any n ∈ Z;
(3) 0 �= αβ ∈ Difm+n(M) for any 0 �= α ∈ Difm(M), 0 �= β ∈ Difn(M).
It can be proved that the conditions determine uniquely the algebra D. Taking

0 �= ω ∈ Dif(M), each element of Difn(M) can be represented as ξ = fωn with f ∈ K.
If f �= 0, we define

νp(ξ) = νp(f) + nνp(ω) = νp(ξ/dtn),

where t is a local coordinate at p. So for any 0 �= ξ ∈ Difn(M) we define the divisor
of ξ as follows

div(ξ) =
∑
p∈M

νp(ξ)p = div(f) + ndiv(ω).

It is clear div(ξη) = div(ξ) + div(η) for any ξ, η ∈ D. Suppose the genus of M is g.
Then it is well known that deg(div(ω)) = 2g − 2, deg(div(f)) = 0. So deg(div(ξ)) =
n(2g − 2) if 0 �= ω ∈ Difn(M).

Let f ∈ K not be a constant. If F (z) ∈ A2n(Γ ), then F/(f ′)n ∈ K. So

F (z)(dz)n = (F/(f ′)n)(df)n ∈ Difn(M).

Conversely, if η ∈ Difn(M), then there exists g ∈ K such that η = gωn with ω =
F1(z)dz and F1(z) ∈ A2(Γ ). Hence

η = gFn
1 (z)(dz)n

and gFn
1 ∈ A2n(Γ ) which shows that F (z) → F (z)(dz)n is an isomorphism from

A2n(Γ ) to Difn(M). Let F1, F2 be two automorphic forms, then

div(F1F2) = div(F1) + div(F2).

Let D1 =
∑

p

a1(p)p, D2 =
∑

p

a2(p)p be two divisors of DQ. Then we define that

D1 � D2 if a1(p) � a2(p) for every p ∈ M .
After introducing divisors associated with automorphic forms, we can give some

equivalent definitions for holomorphic forms and cusp forms:

Gk(Γ ) = {F ∈ Ak(Γ )|div(F ) � 0}

and

Sk(Γ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
F ∈ Ak(Γ )

∣∣∣∣div(F ) �
u∑

j=1

Qj +
u′∑

j=1

Q
′
j

}
, if k is even,

{
F ∈ Ak(Γ )

∣∣∣∣div(F ) �
u∑

j=1

Qj +
1
2

u′∑
j=1

Q
′
j

}
, if k is odd,
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where Q1, · · · , Qu are all regular cusp points of Γ , Q′1, · · · , Q′u′ are all irregular cusp
points of Γ .

Lemma 4.1 Let P1, · · · , Pr be all elliptic points of M = Γ \H∗ with order e1, · · · , er

respectively, and Qi, Q
′
i as above. Let 0 �= F ∈ Ak(Γ ) ( k is even). Put

η = F (z)(dz)k/2 ∈ Difk/2(M).

Then

div(F ) = div(η) +
k

2

( r∑
i=1

(1 − e−1
i )pi +

u∑
j=1

Qj +
u′∑

j=1

Q′j

)
,

deg(div(F )) =
k

2

(
2g − 2 +

r∑
i=1

(1 − e−1
i ) + u + u′

)
.

And the second equality above holds also for k odd.

Proof Now we assume that k is even and P ∈ M . If p = ϕ(z0), z0 ∈ H and z0 is
not an elliptic point, then z is a local coordinate at p. So

νp(η) = νz−z0(F (z)(dz/dt)k/2) = νp(F ).

If z0 is an elliptic point of Γ with order e, then

t = λ(z)e =
(

z − z0

z − z0

)e

is a local coordinate at p, and

νp(η) = νt(F (z)(dz/dt)k/2) = νp(F (z)) − k

2
νt(dt/dz)

= νp(F ) − k

2
νt

(
eλ(z)e−1(z0 − z0)(z − z0)−2

)
= νp(F ) +

k

2
(e−1 − 1).

If p = ϕ(s), s is a cusp point of Γ , then q = e2πiw/h is a local coordinate at p with
w = ρ(z), ρ(s) = ∞. We have

F (z)(dz)k/2 = F (ρ−1(w))(dz/dw)k/2(dq/dw)−k/2(dq)k/2

= F |[ρ−1]k(q · 2πi/k)−k/2(dq)k/2

= Φ(q)(2πiq/k)−k/2(dq)k/2.

Hence
νp(η) = νq(F (z)(dz/dq)k/2) = νq(Φ(q)q−k/2) = νp(F ) − k/2,
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which implies the first result of the lemma. If k is even, by

deg(div(η)) =
k

2
(2g − 2),

we get the second equality from the first one. If k is odd, applying the first equality to
F 2 and noting that div(F ) = 2−1div(F 2), we get the second equality for odd k.

Now we introduce the definition of modular forms with half integral weight. We
introduce an extension of the group GL+

2 (R) as follows. Let

α =
(

a b
c d

)
∈ GL+

2 (R).

Take any holomorphic function ϕ(z) on H such that

ϕ2(z) = t det(α)−1/2(cz + d),

where t is any complex number satisfying |t| = 1. Consider all pairs {α, ϕ(z)} and
define a multiplication for these pairs:

{α1, ϕ1(z)}{α2, ϕ2(z)} = {α1α2, ϕ1(α2(z))ϕ2(z)}. (4.2)

It is easy to verify that the set of all such pairs with the above multiplication forms a
group which is denoted by Ĝ. There exists a natural projection P from Ĝ to GL+

2 (R):

P : {α, ϕ(z)} �→ α.

It is clear that Ker(P ) = {(I, t)||t| = 1}. For any odd integer k, any function f(z) on
H and any ξ = {α, ϕ(z)} ∈ Ĝ, we define an operator

f |[ξ]k = f(α(z))ϕ(z)−k.

It is easy to verify that
f |[ξη]k = (f |[ξ]k)|[η]k. (4.3)

Let det ξ = detα, define a subgroup Ĝ1 of Ĝ:

Ĝ1 = {ξ ∈ G| det ξ = 1}.

A subgroup Δ of Ĝ1 is called a Fuchsian group of the first kind if it satisfies the
following three conditions:

(1) P (Δ) is a discrete subgroup of SL2(R) and P (Δ) \ H∗ is a compact Riemann
surface;

(2) P is a bijection from Δ to P (Δ), i.e., there is no element of the form {I, t}
(|t| = 1) in Δ except {I, 1};
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(3) If −I ∈ P (Δ), then {−I, 1} ∈ Δ.
Let Δ be a Fuchsian group of the first kind. A meromorphic (or holomorphic re-

spectively) function f(z) on H is called an automorphic (or holomorphic respectively)
form with weight k/2 for the group Δ if

(1) f |[ξ]k = f for all ξ ∈ Δ;
(2) f is meromorphic (or holomorphic respectively) at all cusp points of P (Δ).
The set of all automorphic (or holomorphic respectively) forms is denoted by

Ak/2(Δ) (or Gk/2(Δ)).
Now we need to explain the meaning of the second condition. Let ξ = {α, ϕ} ∈ Δ,

s be a cusp point of P (Δ). Put ξ(s) = α(s) and

Δs = {ξ ∈ Δ|ξ(s) = s}.

By Proposition 3.2, Δs is an infinite cyclic group or the product of an infinite cyclic
group and {−I, 1}. Now let η be the generator of the cyclic group. Choose ρ ∈ Ĝ1

such that ρ(s) = ∞. Since P (ρηρ−1) is a parabolic element, we have

ρηρ−1 =
{
±
(

1 h
0 1

)
, t

}
, |t| = 1.

Without loss of generality, we can assume that h > 0 (otherwise we substitute η by
η−1).

It is easy to verify that t is independent on choices of ρ. If s and s1 are P (Δ)-
equivalent, let s = γ(s1), then γ−1ηγ is a generator of the infinite cyclic part of Δs1

and ργ(s1) = s1. Since ργ · γ−1ηγ · (ργ)−1 = ρηρ−1, t is independent of the choice of
the representative of the equivalence class of the cusp point. By (4.3), we have

(f |[ρ−1]k)|
[{

±
(

1 h
0 1

)
, t

}]
k

= f |[ρ−1]k,

that is, f |[ρ−1]k(z + h) = tkf |[ρ−1]k. Hence f |[ρ−1]k has the following expansion

f |[ρ−1]k =
∑

n

cne((n + r)z/h),

where e(r) = tk (0 � r < 1). Now the meaning of the condition (2) is that f is
meromorphic (or holomorphic respectively) if and only if cn �= 0 for finitely many
n < 0 (or cn = 0 for all n < 0 respectively). Let νs(f) be the exponent n + r of the
leading term of the expansion above. Similarly to the case for integral weight, we can
define divisors associated with modular forms with half integral weight. Let N be a
positive integer with 4|N . Define a map from Γ0(N) to Ĝ1:

L : γ �→ {γ, j(γ, z)},
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where j(γ, z) is defined as in Chapter 1. It is clear that L is an imbedding from Γ0(N)
into Ĝ1 and j(−I, z) = 1. So L(Γ0(N)) is a Fuchsian subgroup of Ĝ1 with the first
kind which is denoted by Δ0(N). Put

Γ1(N) =
{(

a b
c d

)
∈ Γ0(N)

∣∣∣∣a ≡ d ≡ 1(N)
}

.

It is clear that Δ1(N) := L(Γ1(N)), Δ(N) := L(Γ (N)) are Fuchsian groups of
the first kind.

Let k be an integer, ω a character modulo N and ω(−1) = (−1)k. Let A(N, k, ω)
be the set of functions on H satisfying

(1) f is meromorphic on H;

(2) f |[γ]k = ω(d)f for any γ =
(

a b
c d

)
∈ Γ0(N);

(3) f is meromorphic at each cusp point of Γ0(N).
Such a function f is called a modular form of weight k and with character (or

Neben-type) ω for Γ0(N). Denote by G(N, k, ω) (and S(N, k, ω) respectively) the set
of holomorphic (and cusp respectively) modular forms in A(N, k, ω).

In the remaining part of this chapter, we shall give some dimension formulae for
G(N, k, ω), S(N, k, ω) with the aid of the Riemann-Roch Theorem which is formulated
as follows.

Suppose that A is a divisor of a compact Riemann surface M , K is the field of
meromorphic functions on M . Define

L(A) = {f ∈ K|f = 0 or div(f) � −A},

which is a vector space with finite dimension l(A).

Theorem 4.1(Riemann-Roch Theorem) Let M be a compact Riemann surface with
genus g, ω a non-zero differential on M . Then for any divisor A of M, we have

l(A) = deg(A) − g + 1 + l(div(ω) − A).

Let f(z) ∈ G(N, k, ω). It is easy to show that f(−z) ∈ G(N, k, ω). So G(N, k, ω)
and G(N, k, ω) have the same dimension. Also S(N, k, ω) and S(N, k, ω) have the
same dimension. If f ∈ A(N, k, ω), g ∈ A(N, 2 − k, ω), then fg ∈ A2(Γ0(N)). Hence
α = fgdz is a differential on Γ0(N) \ H∗. By Lemma 4.1, we have

div(α) = div(f) + div(g) −
∑

p

(
1 − e−1

p

)
p. (4.4)

where p runs over Γ0(N) \ H∗, ep = ∞ if p is cusp point.
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For any g′ ∈ A(N, 2 − k, ω), g/g′ ∈ A0(Γ0(N)), so νp(g) − νp(g′) is an integer for
any p. Hence there exist μ′p such that

0 � μ′p < 1, νp(g′) ≡ μ′p mod Z.

If p is an elliptic point, then epμ
′
p is an integer, μ′p � 1− e−1

p . Put μp = 1− e−1
p −μ′p,

by (4.4) we have

0 � μp � 1, νp(f) ≡ μp mod Z

for any f ∈ A(N, k, ω).
If p is a cusp point with μ′p = 0, then p is called a regular cusp point. Otherwise

p is an irregular cusp point. This definition is relative to k. It is a generalization of
the concept of regular cusp points in Definition 4.1.

Define two divisors in DQ:

D1 = −
∑

p

μpp, D2 = −
∑

p

μ′pp.

By (4.4) we have

D1 + div(f) + D2 + div(g) = div(α). (4.5)

D1 + div(f) and D2 + div(g) are divisors in D. By the definitions of holomorphic and
cusp forms we have

dimG(N, 2 − k, ω) = l(D2 + div(g)), dimS(N, k, ω) = l(D1 + div(f)).

By Riemann-Roch Theorem and (4.5) we have

dimS(N, k, ω) − dimG(N, 2 − k, ω)

=deg(D1 + div(f)) − g + 1

=
k − 1

2
(2g − 2 +

∑
p

(1 − e−1
p )) +

∑
p

(1 − e−1
p

2
− μp

)
=

k − 1
2

μ(Γ0(N) \ H∗) +
∑

p

(1 − e−1
p

2
− μp

)
, (4.6)

where we used the following fact

μ
(
Γ0(N) \ H∗

)
=

∫∫
Γ0(N)\H∗

y−2dxdy = 2g − 2 +
∑

p

(1 − e−1
p ),

whose proof can be found in G. Shimura, 1971.
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Theorem 4.2 (Dimension formula for integral weight) Let ω be a character modulo

N =
∏

prp and ω(−1) = (−1)k. Suppose that F =
∏

psp is the conductor of ω.

Then
dimS(N, k, ω) − dimG(N, 2 − k, ω)

=
(k − 1)N

12

∏
p|N

(1 + p−1) − 1
2

∏
p|N

λ(rp, sp, p)

+ νk

∑
xmodN,

x2≡−1(N)

ω(x) + μk

∑
xmodN,

x2+x+1≡0(N)

ω(x)

where

λ(rp, sp, p) =

⎧⎪⎨⎪⎩
pr′ + pr′−1, if 2sp � rp = 2r′(r′ ∈ Z),

2pr′, if 2sp � rp = 2r′ + 1(r′ ∈ Z),

2prp−sp , if 2sp > rp,

νk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 2 � k,

−1
4
, if k ≡ 2(4),

1
4
, if k ≡ 0(4),

μk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if k ≡ 1(3),

−1
3
, if k ≡ 2(3),

1
3
, if k ≡ 0(3).

Proof Since Γ0(1) \ H∗ has genus 0, one cusp point, one elliptic point with order
2, one elliptic point with order 3,

μ
(
Γ0(1) \ H∗

)
= −2 + 1 + (1 − 1/2) + (1 − 1/3) = 1/6.

Hence by Lemma 3.1 we have

μ
(
Γ0(N) \ H∗

)
= [Γ0(1) : Γ0(N)]μ(Γ0(1) \ H∗) =

N

6

∏
p|N

(1 + p−1)

and obtain the first term of the dimension formula by equality (4.6). Consider the
second summation on the right side of (4.6). For the remaining part of this proof
we write Γ = Γ0(N). Let p = ϕ(s) with s = d/c be a cusp point, where ϕ is the
natural map from H∗ to Γ \ H∗. By Theorem 3.3 we can assume that c is a divisor

of N and (d, N/c) = 1. Let c =
∏

pcp be the standard factorization of c. There

exists ρ =
(

a b

c −d

)
∈ Γ0(1) such that ρ(s) = ∞. Take δ ∈ Γs corresponding to a

generator of Γs. Since −I ∈ Γ , we can assume

ρδρ−1 =
(

1 h

0 1

)
, h > 0,
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which is a generator of ρΓsρ
−1. Hence

δ = ρ−1

(
1 h

0 1

)
ρ =

(
1 − hcd hd2

−hc2 1 + hcd

)
∈ Γ .

h should be the smallest positive integer such that N |hc2. So h =
N

c(c, N/c)
. Since

(f |[ρ−1]k)|
[(

1 h

0 1

)]
k

= (f |[δ]k)|[ρ−1]k = ω(1 + hcd)f |[ρ−1]k,

then
f |[ρ−1]k = cne2πi(n+r)z/h + · · · , cn �= 0,

where ω(1 + hcd) = e2πir, 0 < r � 1. Hence μp = r.
For any factor c of N , put

fc =
∑

s=d/c

(1
2
− μϕ(s)

)
,

where d runs over (Z/(c, N/c)Z)∗ and (d, c) = 1.
If F |N/(c, N/c), then

ω(1 + hcd) = ω(1 + dN/(c, N/c)) = 1

and
μϕ(d/c) = 1, fc = −2−1ϕ((c, N/c)).

If F � N/(c, N/c) and (d, (c, N/c)) = 1, then

ω(1 + dN/(c, N/c)) �= 1.

In fact, if otherwise, there exists d0 such that (d0, (c, N/c)) = 1 and

ω(1 + d0N/(c, N/c)) = 1.

Since (c, N/c)2|N , for any integer m, we have

(1 + d0N/(c, N/c))m ≡ 1 + md0N/(c, N/c) mod N.

So ω(1 + md0N/(c, N/c)) = 1. Since (d0, (c, N/c)) = 1, there exists m0 such that
m0d0 ≡ 1 mod (c, N/c). This means that for any integer m, we have

ω(1 + mN/(c, N/c)) = 1,

which induces F |N/(c, N/c). This contradicts the assumption F � N/(c, N/c).
Now take d′ such that (d′, c) = 1, d′ ≡ −d (mod (c, N/c)). Put p′ = ϕ(d′/c).

Then
ω(1 + d′N/(c, N/c)) = ω(1 + dN/(c, N/c)) �= 1.
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If (c, N/c) �= 2, then p and p′ are different cusp points on Γ \ H∗, μp + μp′ = 1 and
fc = 0. If (c, N/c) = 2, then ω(1 + N/2) = −1, μp = 1/2 and fc = 0. Hence we have
fc = 0 if F � N/(c, N/c). Therefore if p runs over all cusp points, we have∑

p:cusp points

(1
2
− μp

)
=−1

2

∑
(c,N/c)|N/F

ϕ((c, N/c))

=−1
2

∏
p|N

⎛⎜⎜⎝ rp∑
cp=0,

min{cp,rp−cp}�rp−sp

ϕ((pcp , prp−cp))

⎞⎟⎟⎠ . (4.7)

If sp � rp/2, the summation in the product of (4.7) is

rp∑
cp=0

ϕ((pcp , prp−cp)) =
{

pr′ + pr′−1, if rp = 2r′, r′ ∈ Z,

2pr′ , if rp = 2r′ + 1, r′ ∈ Z.

If sp > rp/2, then the summation is

rp−sp∑
cp=0

ϕ(pcp) +
rp∑

cp=sp

ϕ(prp−cp) = 2
rp−sp∑
cp=0

ϕ(pcp) = 2prp−sp ,

which gives the second term of the dimension formula.
Now suppose that p is an elliptic point with order e. Let z0 ∈ H with p = ϕ(z0).

There exists β =
(

a b

c d

)
∈ Γ such that β(z0) = z0 and β corresponds to a generator

of Γ z0 . Take

λ =
(

1 −z0

1 −z0

)
.

Then λ(z0) = 0 and

λβλ−1 =
(

cz0 + d 0
0 cz0 + d

)
. (4.8)

Since e is the smallest positive integer such that βe = ±I, so (cz0 + d)2 is an e-th
primitive root of unity.

Let
f(z) = cn(z − z0)n + · · · , cn �= 0

be the expansion of f(z) ∈ A(N, k, ω) at z = z0. Noting that

β(z) − z0 = β(z) − β(z0) =
z − z0

(cz + d)(cz0 + d)

and
f(β(z)) = ω(d)(cz + d)kf(z),
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we have

cn(cz + d)−n(cz0 + d)−n(z − z0)n + · · · = ω(d)(cz + d)kcn(z − z0)n + · · · .

So
ω(d)(cz0 + d)k = (cz0 + d)−2n = (cz0 + d)−2eμp , (4.9)

where we used the facts that νp(f) = n/e ≡ μp mod Z and (cz0 + d)2 is a root of
unity with degree e.

Γ0(N) has only elliptic points of order 2 or 3. We first assume that e = 2 and β is

conjugate to
(

0 −1
1 0

)
in the modular group. That is, there exists γ ∈ SL2(Z) such

that

β = γ

(
0 −1
1 0

)
γ−1,

It is clear that γ(i) = z0 which is the fixed point of β in H. Hence λγ(i) = 0, λγ(−i) =
∞. So

λγ =
(

u 0
0 v

)(
1 −i
1 i

)
, u, v ∈ C

and

λβλ−1 =
(
−i 0
0 i

)
.

By (4.8), we see that cz0 + d = i. Since

−I = β2 =
(

a2 + bc ab + cd

ac + dc bc + d2

)
,

we know that d2 + 1 ≡ 0(modN). Thus

ω(d)2 = ω(−1) = (−1)k. (4.10)

Let z′0 be another elliptic point with order 2 of Γ , p′ = ϕ(z′0), β′ =
(

a′ b′

c′ d′

)
corresponds to a generator of Γ z′0 and β′ conjugate to

(
0 −1
1 0

)
in the modular

group. We can similarly prove that (d′)2 + 1 ≡ 0(modN) and c′z′0 + d′ = i. If z′0, z0

are Γ -equivalent, by the proof of Theorem 3.2, we know that β, β′ are conjugate in Γ
which implies that d ≡ d′(modN). That is, they correspond to the same solution of
the congruence equation:

x2 + 1 ≡ 0(modN). (4.11)

The number ν2 of elliptic points with order 2 on Γ \H∗ is just the one of solutions of
(4.11). So there is a bijection between the set of elliptic points on Γ \H∗ and the set
of solutions of the equation (4.11).
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We first consider the case that k is odd. If N � 2, (4.11) has only one solution
d ≡ 1(modN). By (4.10) it is impossible for k to be an odd. So we have N > 2.
Suppose that d is a solution of (4.11). Put d′ ≡ −d(modN). d′ is also a solution of
(4.11) and d, d′ correspond to different elliptic points p, p′. By (4.10), without loss of
generality, we can assume that ω(d) = i, ω(d′) = −i. By (4.9), we have

ik+1 = (−1)2μp , −ik+1 = (−1)2μp′ .

These imply that μp = 0, μp′ = 1/2 or μp = 1/2, μp′ = 0. So the two terms in the
summation of (4.6) corresponding to p, p′ counteract each other. If k is even, (4.10)
means that ω(d) = ±1. By (4.9), if ω(d) = 1, then

μp =
{

0, if k ≡ 0(4),

1/2, if k ≡ 2(4).

If ω(d) = −1, then

μp =
{

1/2, if k ≡ 0(4),

0, if k ≡ 2(4).

So 1/4 − μp = νkω(d) which gives the third term of the equality of Theorem 4.2.
Finally we consider the case e = 3. By Theorem 3.2, 9 � N . Suppose that β is

conjugate to
(

0 −1
1 −1

)
in the modular group. Then there is γ ∈ SL2(Z) such that

β = γ

(
0 −1
1 −1

)
γ−1. Put ρ = e2πi/3. It is easy to see γ(−ρ) = z0 and λγ(−ρ) = 0,

λγ(−ρ) = ∞. Hence

λγ =
(

u 0
0 v

)(
1 ρ

1 ρ

)
, u, v ∈ C

and

λβλ−1 =
(

ρ2 0
0 ρ2

)
.

By (4.8) we have that cz0 + d = ρ2. By β3 = I we get d3 ≡ 1(modN). We want
to prove that d satisfies the following congruence equation:

x2 + x + 1 ≡ 0(modN). (4.12)

Suppose that q is a prime factor of (d−1, N). Since ad ≡ 1(modq), tr(β) = a+d = ±1,
then a + d ≡ 2 ≡ ±1(modq) and q must be 3. It is clear that d2 + d + 1 ≡ 0(mod3)
holds for all d prime to 3. Since 9 � N , it shows that d is a solution of (4.12). The
number of elliptic points with order 3 on Γ \H∗ is equal to the number of solutions of
(4.12). Similar to the proof for the case e = 2, we can prove that there is a bijection
between the set of elliptic points of order 3 on Γ \ H∗ and the set of solutions of
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(4.11). Let d be a solution of (4.12). Put d′ ≡ d−1(modN). If d ≡ d′(modN), then
d3 ≡ d2 ≡ 1(modN). So d ≡ 1(modN) which shows that N = 1 or 3 by (4.9) . It is
obvious that ω(d) = 1. By (4.9) we get ρ2k = ρ6μp . p is the unique elliptic point with
order 3, so

μp =

⎧⎪⎨⎪⎩
0, if k ≡ 0(3),

1/3, if k ≡ 1(3),

2/3, if k ≡ 2(3),

which implies that 1/3 − μp = μk.
Now let N �= 1 or 3. Then d �≡ d′(modN). Suppose that the elliptic points

corresponding to d, d′ are p, p′ respectively. Without loss of generality, we assume
that ω(d) = ρ, ω(d′) = ρ2. By (4.9) we get

ρ2k+1 = ρ6μp , ρ2k+2 = ρ6μp′ .

Hence

μp =

⎧⎪⎨⎪⎩
2/3, if k ≡ 0(3),

0, if k ≡ 1(3),

1/3, if k ≡ 2(3)
and

μp′ =

⎧⎪⎨⎪⎩
1/3, if k ≡ 0(3),

2/3, if k ≡ 1(3),

0, if k ≡ 2(3).
Therefore

(1/3 − μp) + (1/3 − μp′) = −μk = μk(ω(d) + ω(d′)),

which completes the proof of the theorem.

Proposition 4.1 Let k be a negative integer, Γ be a Fuchsian group of the first
kind. Then

dimGk(Γ ) = 0.

Proof Take a non-zero element F0 ∈ Ak(Γ ), then

Gk(Γ ) = {fF0|f ∈ A0(Γ ), div(fF0) � 0}.

If div(F0) =
∑

νpp ∈ DQ, define divisor [div(F0)] :=
∑

[νp]p. Then

dim Gk(Γ ) = l([div(F0)]).

By Lemma 4.1 and
μ(Γ \ H∗) = 2g − 2 +

∑
p

(1 − e−1
p ),

we have
deg([div(F0)]) � deg(div(F0)) = μ(Γ \ H∗) · k/2 < 0.

Therefore dim Gk(Γ ) = 0.
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By Theorem 4.2 and Proposition 4.1, we can get the formulae for G(N, k, ω),
S(N, k, ω) for all k � 2 since G(N, k, ω) ⊂ Gk(Γ (N)) and dimG(N, 0, id.) = dim
G0(Γ0(N)) = 1. And we can get also

dimG(N, k, ω) − dimS(N, k, ω) =
∑

(c,N/c)|N/F

ϕ((c, N/c)), if k � 3 or k = 2, ω �= id.,

(4.13)
dimG(N, 2, id.) − dimS(N, 2, id.) =

∑
(c,N/c)|N/F

ϕ((c, N/c)) − 1 (4.14)

and
dimG(N, 1, ω) − dimS(N, 1, ω) =

1
2

∑
(c,N/c)|N/F

ϕ((c, N/c)). (4.15)

4.2 Dimension Formula for Modular Forms with Half-Integral

Weight

For the remaining part of this chapter, we consider the dimension formula for modular
forms with half integral weight.

Let k be an odd integer, N a positive integer with 4|N and ω a character modulo
N . A holomorphic function on H is called a holomorphic modular form of Γ0(N) with
weight k/2 and character ω if

(1) for any ξ = {γ, j(γ, z)} ∈ Δ0(N), we have

f |[ξ]k = ω(dγ)f, γ =
(
∗ ∗
∗ dγ

)
∈ Γ0(N);

(2) f(z) is holomorphic at all cusp points of Γ0(N).
The set of all such modular forms is denoted by G(N, k/2, ω). The constant term of

the expansion of f at a cusp point p is called the value of f at p. f(z) ∈ G(N, k/2, ω)
is called a cusp form if νs(f) > 0 for any cusp point s of Γ0(N). The set of all
such cusp forms is denoted by S(N, k/2, ω). We shall compute the dimensions of
G(N, k/2, ω), S(N, k/2, ω).

Since {−I, 1} ∈ Δ0(N), if ω is an odd character modulo N , then

f |[{−I, 1}]k = ω(−1)f,

which implies that f = 0. So we must assume that ω is an even character modulo
N . From the proof of (4.6) we know that the equality (4.6) holds also if the weight
k is substituted by k/2. Since 4|N , we know that Γ0(N) has no elliptic points by
Theorem 3.2. So we have

dimS(N, k/2, ω)−dimG(N, 2−k/2, ω) =
k − 2

4
μ(Γ0(N)\H∗)+

∑
p

(1/2−μp), (4.16)
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where p runs over all cusp points on Γ0(N) \ H∗. For any f ∈ G(N, k/2, ω) we have
that νp(f) ≡ μp (mod Z) and 0 < μp � 1.

Let F be the conductor of ω, N =
∏

prp , F =
∏

psp be the standard factoriza-

tions of N, F respectively. We define the following condition:

there is a prime factor p of N such that p ≡ 3(4), rp is odd or 0 < rp < 2sp. (4.17)

If (4.17) does not hold, and p is a prime factor of N with p ≡ 3(4), then rp must be
an even integer and rp � 2sp.

Lemma 4.2 Let n, p, q be positive integers with n > 1, p < q. Then

n−1∑
r=0,(r,n)=1

{
p

q
+

r

n

}
=

ϕ(n)
2

−
∑
d|n

μ(d)
{

(q − p)n
qd

}
,

where {x} is the fractional part of x, i.e., {x} = x − [x].

Proof We have

n−1∑
r=0,

(r,n)=1

{
p

q
+

r

n

}
=

n−1∑
r=0

{
p

q
+

r

n

} ∑
d|(r,n)

μ(d)

=
∑
d|n

μ(d)
n/d−1∑

r=0

{
p

q
+

rd

n

}

=
∑
d|n

μ(d)
[ n/d−1∑

r=0

(
p

q
+

rd

n

)
−
(

n

d
− 1 − (q − p)n

qd
+
{

(q − p)n
qd

})]

=
∑
d|n

μ(d)
[
1
2
(n/d + 1) −

{
(q − p)n

qd

}]

=
ϕ(n)

2
−
∑
d|n

μ(d)
{

(q − p)n
qd

}
,

which completes the proof.

For an odd integer n we define χ2(n) =
(
−1
n

)
.

Lemma 4.3 Let n, k be positive odd integers. Suppose n has ν prime factors which
are all congruent to 3 modulo 4. Then∑

d|n
μ(d)

{
kn

4d

}
= −2ν−2χ2(kn).
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Proof We only consider the case k ≡ n ≡ 1(4). Other cases can be proved similarly.
We have ∑

d|n
μ(d)

{
kn

4d

}
=

1
4
− 3

4

(
ν

1

)
+

1
4

(
ν

2

)
− 3

4

(
ν

3

)
+ · · ·

= −1
2

[
1 +
(

ν

2

)
+
(

ν

4

)
+ · · ·

]
= −2ν−2,

which completes the proof.

Theorem 4.3 (Dimension Formula for Half Integral Weight) We have

dimS(N, k/2, ω)−dimG(N, 2−k/2, ω) =
k − 2
24

N
∏
p|N

(1+p−1)− ζ

2

∏
p|N,p�=2

λ(rp, sp, p),

where λ(rp, sp, p) is defined as in Theorem 4.2, and ζ is defined as follows: if r2 �
4, ζ = λ(r2, s2, 2); if r2 = 3, ζ = 3; if r2 = 2 and the condition (4.17) holds, ζ = 2; if
r2 = 2 and the condition (4.17) does not hold, then

ζ =

⎧⎪⎪⎨⎪⎪⎩
3/2, if s2 = 0 and k ≡ 1(4),
5/2, if s2 = 2 and k ≡ 1(4),
5/2, if s2 = 0 and k ≡ 3(4),
3/2, if s2 = 2 and k ≡ 3(4).

Proof We only need to calculate the sum in the equality (4.16). Let M be the
sum, s = d/c a cusp point of Γ0(N) and c a positive factor of N . Put

fc =
∑

s=d/c

(1/2 − μϕ(s)),

where d runs over (Z/(c, N/c)Z)∗ and (d, c) = 1, ϕ is the natural map H∗ → Γ0(N) \
H∗. Hence

M =
∑
c|N

fc.

Take

ρ =
(

a b

c −d

)
∈ SL2(Z).

It is clear that ρ(d/c) = ∞. Let δ be a generator of Γs where

s = d/c, Γs = {γ ∈ Γ0(N)|γ(s) = s}.

Since −I ∈ Γ0(N), we can assume that

ρδρ−1 =
(

1 h

0 1

)
, h > 0.
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Hence

δ = ρ−1

(
1 h

0 1

)
ρ =

(
1 − hcd hd2

−hc2 1 + hcd

)
∈ Γ0(N).

This implies that h = N/(c(c, N/c)) since h is the smallest positive integer such that
N |hc2. Put

ρ∗ = {ρ, (cz − d)1/2} ∈ Ĝ1.

Then

ρ∗L(δ)(ρ∗)−1 =
{(

1 h

0 1

)
, ε−1

1+hcd

(
−h

1 + hcd

)}
.

Suppose f ∈ G(N, k/2, ω). Since

(f |[(ρ∗)−1]k)|[ρ∗L(δ)(ρ∗)−1]k = ω(1 + hcd)f |[(ρ∗)−1]k,

we know that νp(f) ≡ μp mod Z, 0 < μp � 1 where p = ϕ(s) and μp is determined by

e(μp) = ω(1 + hcd)ε−k
1+hcd

(
−h

1 + hcd

)
.

We denote by ψ(d/c) the right side of the above equality. Let c =
∏

pcp be the
standard factorization of c. A direct computation shows that

ε−k
1+hcd =

{
i−k, if r2 = 2, c2 = 1,

1, otherwise,

and

(
−h

1 + hcd

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if r2 � 4,

1, if r2 = 3, c2 = 0, 2, 3,

−1, if r2 = 3, c2 = 1,

1, if r2 = 2, c2 = 0, 2,

−1, if r2 = 2, c2 = 1, h ≡ 1(4),

1, if r2 = 2, c2 = 1, h ≡ 3(4).

We now calculate M according to different cases:
(1) If r2 � 4, then ψ(d/c) = ω(1 + hcd), similar to the proof of (4.7), we have

fc =

{
0, if (c, N/c) � N/F,

−1
2
ϕ(c, N/c), if (c, N/c)|N/F.

(4.18)

Hence
M = −1

2

∑
c|N,(c,N/c)|N/F

ϕ(c, N/c) = −1
2

∏
p|N

λ(rp, sp, p)

just as in the proof of Theorem 4.2.
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(2) Suppose r2 = 3. If c2 = 0, 2, 3, then ψ(d/c) = ω(1 + hcd) and (4.18)
holds yet. If c2 = 1, then ψ(d/c) = −ω(1 + hcd). If F |N/(c, N/c), then ψ(d/c) =
−ω(1 + hcd) = −1 and fc = 0. Now suppose F � N/(c, N/c). If ψ(d/c) = 1, i.e.,
ω(1 + dN/(c, N/c)) = −1, then

ω(1 + 2dN/(c, N/c)) = 1,

which implies that F |2N/(c, N/c) since (d, (c, N/c)) = 1. Hence (c, N/c)|2N/F . But
(c, N/c) � N/F , so 2 � N/F . If 2 � N/F and 2−1(c, N/c)|N/F , then for any d we have
ψ(d/c) = 1, and hence in this case

fc = −1
2
ϕ(c, N/c).

If 2|N/F , taking d′ such that d′ ≡ −d (mod (c, N/c)) and (d′, c) = 1, we see that
ψ(d/c) = ψ(d′/c) �= 1. Since 2|N/F and (c, N/c) � N/F , we see that (c, N/c) �= 2 and
ϕ(d/c), ϕ(d′/c) are different cusp points on Γ0(N) \ H∗. Hence fc = 0. Therefore we
have

M =
∑

(c,N/c)|N/F,
c2=0,2,3

fc +
∑

2−1(c,N/c)|N/F,
c2=1

fc

= −3
2

∏
p|N,p�=2

λ(rp, sp, p), if 2 � N/F,

and
M =

∑
(c,N/c)|N/F,

c2=0,2,3

fc = −3
2

∏
p|N,p�=2

λ(rp, sp, p), if 2|N/F.

(3) Suppose r2 = 2. If c2 = 0, 2, then ψ(d/c) = ω(1+hcd) and (4.18) holds. Hence∑
c|N,c2=0,2

fc =
∑

(c,N/c)|N/F,
c2=0,2

fc = −
∏

p|N,p�=2

λ(rp, sp, p). (4.19)

If c2 = 1, we have to discuss the following three cases:
(1) N has a prime factor p ≡ 3 (mod 4). If rp is odd, for any c|N , put c′ =

cprp−2cp . Then c′|N and

N

c(c, N/c)
≡ − N

c′(c′, N/c′)
(mod 4).

So we have

ψ(d/c) = ψ

(
(c′, N/c′) − d

c′

)
.

Hence fc + f ′c = 0. By (4.19) we have

M =
∑

c|N,c2=0,2

fc +
∑

c|N,c2=1

fc = −
∏

p|N,p�=2

λ(rp, sp, p).
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Now we assume that rp is even for any prime factor p ≡ 3 (mod 4) of N . Then for
any c|N , we have h = N/(c(c, N/c)) ≡ 1 (mod 4). Hence

ψ(d/c) = ekπi/2ω(1 + dN/(c, N/c)).

Put
nc =

∏
p

psp−rp+min{rp−cp,cp},

where p runs over the set of all odd prime factors q of N satisfying rq − min{rq −
cq, cq} < sq. It is easy to see that 2−1(c, N/c)|N/F if and only if nc = 1. Suppose
s2 = 0. If nc = 1, then ψ(d/c) = ekπi/2 and

∑
(c,N/c)|N/F,

c2=1

fc =
(

1
2
−
{

k

4

}) ∑
(c,N/c)|N/F,

c2=1

ϕ((c, N/c))

=
χ2(k)

4

∏
p|N,p�=2

λ(rp, sp, p). (4.20)

If nc �= 1, then ω(1 + dN/(c, N/c)) is a nc-th primitive root of unity. Since

ω(1 + d1N/(c, N/c))ω(1 + d2N/(c, N/c)) = ω(1 + (d1 + d2)N/(c, N/c)),

we can assume that ω(1+N/(c, N/c)) = e2πi/nc . Hence ψ(d/c) = e2πi(k/4+d/nc) where
nc is a factor of (c, N/c). If d runs over (Z/(c, N/c)Z)∗, then it runs over (Z/ncZ)∗

for ϕ(c, N/c)/ϕ(nc) times. By Lemma 4.2 we have

fc =
1
2
ϕ(c, N/c) −

nc−1∑
d=0,(d,nc)=1

{
k

4
+

d

nc

}
ϕ((c, N/c))

ϕ(nc)

=
ϕ((c, N/c))

ϕ(nc)

∑
d|nc

μ(d)
{

(4 − k)nc

4d

}
. (4.21)

Suppose s2 = 2. Then ω(1 + dN/(c, N/c)) is a 2nc-th primitive root of the unity. If
nc = 1, then

ψ(d/c) = e2πi(2+k)/4.

Hence ∑
2−1(c,N/c)|N/F,

c2=1

fc =
(

1
2
−
{

2 + k

4

}) ∑
2−1(c,N/c)|N/F,

c2=1

ϕ((c, N/c))

=−χ2(k)
4

∏
p|N,p�=2

λ(rp, sp, p). (4.22)
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If nc �= 1, without loss of generality, we can assume

ω(1 + dN/(c, N/c)) = e2πid/2nc = −e2πid′/nc ,

where 2d′ ≡ d (mod nc). Then

ψ(d/c) = e2πi( 2+k
4 + d′

nc
)

and

fc =
1
2
ϕ((c, N/c)) − ϕ((c, N/c))

ϕ(nc)

nc−1∑
d=0,

(d,nc)=1

{
2 + k

4
+

d′

nc

}

=
ϕ((c, N/c))

ϕ(nc)

∑
d|nc

μ(d)
{

knc

4d

}
. (4.23)

(2) We assume that rp is even and rp � 2sp for any prime factor p ≡ 3 (mod 4)
of N , i.e., the condition (4.17) does not hold. Since

rp − min{rp − cp, cp} � rp/2 � sp,

nc has no prime factors congruent to 3 modulo 4. If nc �= 1, then∑
d|nc

μ(d)
{

knc

4d

}
=
{

k

4

}∑
d|nc

μ(d) = 0.

Gathering (4.19), (4.20), (4.21), (4.22), (4.23), we get the desired result.
(3) We assume that rp is even for any prime factor p ≡ 3 (mod 4) of N , but there

is at least one of these prime factors p such that 0 < rp < 2sp. Put

R = {p|p ≡ 3 (mod 4), p|N, 0 < rp < 2sp}.

If nc has a prime factor congruent to 1 modulo 4, let nc = n′cn
′′
c , such that each prime

factor of nc is congruent to 1 modulo 4 and each one of n′′c is congruent to 3 modulo
4. Since n′c �= 1,

∑
d|nc

μ(d)
{

knc

4d

}
=
∑
d′|n′c

μ(d′)
∑

d′′|n′′c
μ(d′′)

{
kn′′c
4d′′

}
= 0.

So the corresponding fc = 0. This shows that fc may be non-zero only if all prime
factors of nc are congruent to 3 modulo 4. In this case, each prime factor of nc belongs
to the set R. For any subset R′ of R, put

c(R′) = {c|c2 = 1, c|N, the set of prime factors of nc is R′}.
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Suppose s2 = 0. By (4.21) and Lemma 4.3, we get∑
nc �=1,c2=1

fc =
∑

R′⊂R

∑
c∈c(R′)

∏
p|N,p�nc

ϕ(pmin{rp−cp,cp})
∏
p|nc

2prp−spχ2(knc)/4

=
χ2(k)

4

∑
R′⊂R

∏
p∈R′

sp−1∑
cp=rp−sp+1

χ2(psp−rp+min{rp−cp,cp})
∏

p|N,p�=2

λ(rp, sp, p)

=
χ2(k)

4

∑
R′⊂R

(−1)|R
′| ∏

p|N,p�=2

λ(rp, sp, p)

= −χ2(k)
4

∏
p|N,p�=2

λ(rp, sp, p).

(4.24)
By (4.19), (4.20) and (4.24) we get the desired result. If s2 = 2, by (4.19), (4.22),
(4.23) and Lemma 4.3 we can get the result similarly. This completes the proof.

By Proposition 4.1 we have dim G(N, k/2, ω) = 0 for any k < 0. In fact, for any
f ∈ G(N, k/2, ω), we have f2 ∈ G(N, k, ω2) ⊂ Gk(Γ0(N)) = 0 by Proposition 4.1.
Hence we shall get an expression for dim S(N, k/2, ω) for k � 5 from Theorem 4.3.
Similarly we can get an expression for dimG(N, k/2, ω) if k � 5. But for k = 1, 3 we
only get some expressions for

dim S(N, 1/2, ω)− dim G(N, 3/2, ω)

and
dim S(N, 3/2, ω)− dim G(N, 1/2, ω)

respectively. So if we want to know the dimension of S(N, 3/2, ω) ( or G(N, 3/2, ω)
respectively) we have to know the dimension of G(N, 1/2, ω)( or S(N, 1/2, ω) respec-
tively) which was found by J.P.Serre and H.M.Stark.
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Chapter 5

Operators on the Space of Modular Forms

5.1 Hecke Rings

Let G be a group, Γ , Γ ′ be subgroups of G. Then Γ and Γ ′ are commensurable
if Γ

⋂
Γ ′ is of finite index in Γ and in Γ ′. We write Γ ∼ Γ ′ if Γ and Γ ′ are

commensurable. For any subgroup Γ of G, put

Γ̃ = {α ∈ G|αΓα−1 ∼ Γ}.

It is easy to see that Γ̃ is a subgroup of G containing Γ and the center of G.
Moreover, if Γ ′ is commensurable with Γ , then Γ̃ = Γ̃ ′. We call Γ̃ the commensurator
of Γ in G.

Lemma 5.1 Let Γ1 and Γ2 be two subgroups of G. For any α ∈ G, put d = [Γ2 :
Γ2

⋂
α−1Γ1α], e = [Γ1 : Γ1

⋂
αΓ2α

−1], then we have disjoint coset decompositions

Γ1αΓ2 =
d⋃

i=1

Γ1αi, Γ1αΓ2 =
e⋃

j=1

βjΓ2.

Proof Consider a disjoint coset decomposition

Γ2 =
d⋃

i=1

(Γ2

⋂
α−1Γ1α)δi,

where δi ∈ Γ2. Therefore

Γ1αΓ2 =
d⋃

i=1

Γ1αδi.

If Γ1αδi = Γ1αδj , then there is a γ ∈ Γ1 such that αδi = γαδj . Hence

δiδ
−1
j = α−1γα ∈ Γ2

⋂
α−1Γ1α,

which implies that i = j. This completes the proof.

Let Γ be a subgroup of G, Δ be a semigroup in G such that Γ ⊆ Δ ⊆ Γ̃ ⊆ G.
Put

R(Γ ,Δ) =
{∑

ciΓαiΓ |αi ∈ Δ, ci ∈ Z
}

.
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We shall now introduce an addition and a multiplication on R(Γ ,Δ). The addition
is given by adding formally. We consider now the multiplication of two double cosets
as follows: First consider disjoint coset decompositions

ΓαΓ =
⋃
i

Γαi, ΓβΓ =
⋃
j

Γβj

with α and β ∈ Δ. Then ΓαΓβΓ =
⋃
j

ΓαΓβj =
⋃
i,j

Γαiβj . Therefore ΓαΓβΓ

is a finite union of double cosets of the form Γ ξΓ . We define the multiplication of
u := ΓαΓ and v := ΓβΓ to be the element∑

ξ

cξΓ ξΓ ∈ R(Γ ,Δ),

where
cξ = #{(i, j)|Γαiβj = Γ ξ}.

To make this definition meaningful, we have to show that cξ depends only on u, v and
w := Γ ξΓ , and not on the choice of representatives αi, βj , ξ. We see that Γαiβj = Γ ξ

if and only if Γαi = Γ ξβ−1
j . Further, for a given j, the last equality holds for exactly

one i. Therefore

cξ = #{(i, j)|Γαiβj = Γ ξ} = #{j|ξβ−1
j ∈ ΓαΓ}

= #{j|βj ∈ Γα−1Γ ξ} = #{j|Γβj ⊂ Γα−1Γ ξ}
= the number of right cosets of Γ in ΓβΓ

⋂
Γα−1Γ ξ.

The last number is obviously independent of the choice of αi, βj . Now, if Γ ξΓ = ΓηΓ ,
then ξ = δηδ′ with δ, δ′ ∈ Γ , hence

ΓβΓ
⋂

Γα−1Γ ξ = (ΓβΓ
⋂

Γα−1Γη)δ′.

Therefore the number cξ is independent of the choice of ξ.
We can now define the multiplication by extending Z-linearly the map (u, v) �→ u·v

in an obvious way.

Definition 5.1 The degree of ΓαΓ is defined to be the number of right cosets of Γ

in ΓαΓ which is denoted by deg(ΓαΓ ). And deg
(∑

cξΓ ξΓ
)

=
∑

cξ deg(Γ ξΓ ).

Lemma 5.2 If ΓαΓ · ΓβΓ =
∑

cξΓ ξΓ , then

cξ deg(Γ ξΓ ) = #{(i, j)|ΓαiβjΓ = Γ ξΓ}.
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Proof Let Γ ξΓ =
f⋃

k=1

Γ ξk be a disjoint coset decomposition. Then ΓαiβjΓ = Γ ξΓ

if and only if Γαiβj = Γ ξk for exactly one k. Hence we have

#{(i, j)|ΓαiβjΓ = Γ ξΓ} =
f∑

k=1

#{(i, j)|Γαiβj = Γ ξk}

= cξf = cξ deg(Γ ξΓ ),

where we used the fact that cξ is independent of the choice of the representative ξ(so
cξ = cξk

). This completes the proof.

Lemma 5.3 Let x, y ∈ R(Γ ,Δ), then

deg(x) deg(y) = deg(xy).

Proof We only need to show the formula for x = ΓαΓ , y = ΓβΓ by linearity. Put

xy =
∑

ξ

cξΓ ξΓ ,

then by Lemma 5.2 we get

deg(xy) =
∑

ξ

cξ deg(Γ ξΓ )

=
∑

ξ

#{(i, j)|ΓαiβjΓ = Γ ξΓ}

= #{(i, j)} = deg(x) deg(y).

This completes the proof.

Lemma 5.4 The above multiplication is associative in the sense that (x · y) · z =
x · (y · z) for any x, y, z ∈ R(Γ ,Δ).

Proof Put
M =

{∑
ciΓηi|ci ∈ Z, ηi ∈ Γ̃

}
,

which is a Z-module of all formal finite sums
∑

ciΓηi. Let u = ΓαΓ =
⋃
i

Γαi

(disjoint). Define a Z-linear map of M as follows:

u ·
∑

ciΓηi =
∑
i,j

ciΓαjηi.

It is easy to see that this does not depend on the choice of αj , ηi. By linearity we
get a map from R(Γ ,Δ) to Hom(M, M). We emphasize that this map is injective. In
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fact, if
∑

α

cα(ΓαΓ ) ·Γη = 0 is a non-trivial cancellation, we have Γα1Γ = Γα2Γ for

some α1, α2. But this implies that Γα1Γ = Γα2Γ , hence it is impossible. Therefore
the map is injective. Now consider disjoint coset decompositions:

ΓαΓ =
⋃
i

Γαi, ΓβΓ =
⋃
j

Γβj .

Put
ΓαΓ · ΓβΓ =

∑
t

cξtΓ ξtΓ , Γ ξtΓ =
⋃
k

Γ ξt,k.

Then we have
ΓαΓ (ΓβΓ · Γη) = ΓαΓ

∑
j

Γβjη

=
∑
i,j

Γαiβjη =
∑
t,k

cξtΓ ξt,kη

= (ΓαΓ · ΓβΓ ) · Γη.

This implies that (yz)a = y(za) for any y, z ∈ R(Γ ,Δ) and a ∈ M . Let now x, y, z ∈
R(Γ ,Δ), then

((xy)z)a = (xy)(za) = x(y(za)) = x((yz)a) = (x(yz))a.

By the injectivity proved above, we get (xy)z = x(yz). This completes the proof.

By Lemma 5.4 we know that R(Γ ,Δ) is an algebra. It is called the Hecke algebra
for Γ and Δ.

Lemma 5.5 Assume α ∈ Γ̃ such that d = e (see Lemma 5.1 for the definitions of
d, e). Then we can find {αi}d

i=1 such that

ΓαΓ =
d⋃

i=1

Γαi =
d⋃

i=1

αiΓ .

Proof Let

ΓαΓ =
d⋃

i=1

Γβi =
d⋃

i=1

β′iΓ

be decompositions of ΓαΓ . Since βi ∈ ΓαΓ = Γβ′iΓ , there are two elements δ, ε ∈ Γ
such that βi = δβ′iε. Put αi = δ−1βi = β′iε. Then

Γαi = Γβi, αiΓ = β′iΓ .

This completes the proof.

Lemma 5.6 If G has an anti-automorphism α �→ α∗ such that Γ = Γ ∗ and
ΓαΓ = (ΓαΓ )∗ for every α ∈ Δ, then R(Γ ,Δ) is commutative.
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Proof Applying the anti-automorphism ∗ to ΓαΓ , we find that d = e. Therefore,
by Lemma 5.5, for any α, β ∈ Δ, we have disjoint decompositions

ΓαΓ =
⋃
i

Γαi =
⋃

αiΓ , ΓβΓ =
⋃
j

Γβj =
⋃
j

βjΓ .

Then
ΓαΓ = Γα∗Γ =

⋃
i

Γα∗i , ΓβΓ = Γβ∗Γ =
⋃
j

Γβ∗j .

If ΓαΓβΓ =
⋃

Γ ξΓ , then

ΓβΓαΓ = Γβ∗Γα∗Γ = (ΓαΓβΓ )∗ =
⋃
ξ

Γ ξΓ .

Then we have

(ΓαΓ )(ΓβΓ ) =
∑

ξ

cξ(Γ ξΓ ), (ΓβΓ )(ΓαΓ ) =
∑

ξ

c′ξ(Γ ξΓ )

with the same components Γ ξΓ . By Lemma 5.2 we have

cξ deg(Γ ξΓ ) = #{(i, j)|ΓαiβjΓ = Γ ξΓ}
= #{(i, j)|Γβ∗j α∗i Γ = Γ ξΓ}
= c′ξ deg(Γ ξΓ ),

which shows that cξ = c′ξ. This completes the proof.

Let G = GL+
2 (Q) and Γ = Γ (1) = SL2(Z). Then we have

Lemma 5.7 Γ̃ = G.

Proof For any α ∈ G, there exist c ∈ Q, β ∈ M2(Z) such that α = cβ. We have
that αΓα−1 = βΓβ−1. Put b = det(β) and Γb = Γ (b). Since

bβ−1Γbβ ≡ 0 (mod b),

we see that β−1Γbβ ∈ Γ . Hence Γb ⊂ Γ
⋂

βΓβ−1, and

[Γ : Γ
⋂

βΓβ−1] < [Γ : Γb] < +∞.

But
[β−1Γβ : β−1Γβ

⋂
Γ ] = [Γ : Γ

⋂
βΓβ−1],

we get, by substituting β−1 by β,

[βΓβ−1 : Γ
⋂

βΓβ−1] < +∞.

That is, α = cβ ∈ Γ̃ . This completes the proof.
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We choose now Δ = {α ∈ M2(Z)| det(α) > 0} and consider the Hecke ring
R(Γ ,Δ). For any α ∈ Δ, there is a unique pair (a, b) with a, b positive integers

and a|b such that ΓαΓ = Γ
(

a 0
0 b

)
Γ . Hence we put, for any pair (a, b) of positive

integers with a|b,

T(a, b) = Γ
(

a 0
0 b

)
Γ .

Theorem 5.1 R(Γ ,Δ) is commutative.

Proof It is clear that the transposition on G is an anti-automorphism such that
T(a, b) is invariant for any (a, b). So we get the theorem by Lemma 5.6.

Lemma 5.8 Let a1, a2, b1, b2 be positive integers such that a1|a2, b1|b2, (a2, b2) = 1,

then
T(a1, a2)T(b1, b2) = T(a1b1, a2b2).

Proof Let

α =
(

a1 0
0 a2

)
, β =

(
b1 0
0 b2

)
.

It is clear that ΓαβΓ ⊂ ΓαΓβΓ . For any γ ∈ Γ , consider elementary divisors of
αγβ. Since any entry of α is divisible by a1, and any one of γβ is divisible by b1, any
entry of αγβ is divisible by a1b1. In fact a1b1 is the maximal positive integer with
this property. Hence αγβ ∈ ΓαβΓ . This implies that ΓαβΓ = ΓαΓβΓ . We have
disjoint decompositions

ΓαΓ =
⋃

s1,s2,u

Γ
(

s1 u

0 s2

)
a1,

ΓβΓ =
⋃

t1,t2,v

Γ
(

t1 v

0 t2

)
b1.

where
s1s2 = a2/a1, 0 � u < s2, (s, s2, u) = 1,

and
t1t2 = b2/b1, 0 � v < t2, (t1, t2, v) = 1.

If

Γ
(

s1 u

0 s2

)(
t1 v

0 t2

)
a1a2 = Γ

(
a1b1 0

0 a2b2

)
,

it is easy to see that s1 = t1 = 1, s2 = a2/a1, t2 = b2/b1, u = v = 0. Therefore

ΓαΓ · ΓβΓ = ΓαβΓ ,

which completes the proof.
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Similar to the proof above, we have the following:

Lemma 5.9 T(c, c)T(a, b) = T(ac, bc).

By Lemma 5.8 and Lemma 5.9, we know that every T(a, b) can be represented as
a polynomial of some T(p, p), T(1, pk) with p primes and k positive integers.

Let n be a positive integer, define

T(n) =
∑

ad=n,a|d
T(a, d),

that is, T(n) is the sum of all double cosets ΓαΓ with det(α) = n, α ∈ Δ. Then by
Lemma 5.8 we have

T(m)T(n) = T(mn) (5.1)

for any m, n with (m, n) = 1.
It is easy also to show that

Lemma 5.10 We have

T(n) =
∑

ad=n,d>0,
b (mod d)

Γ
(

a b

0 d

)
.

That is, we can choose{(
a b

0 d

) ∣∣∣∣ad = n, d > 0, b (mod d)
}

as a complete set of representatives of right cosets of Γ in T(n).

Lemma 5.11 For any 0 � m � n, we have

T(pm)T(pn) =
m∑

i=0

piT(p, p)iT(pm+n−2i).

Proof We shall prove this lemma by induction. It is clear for m = 0 since T(1) =
T(1, 1) is the identity of R(Γ ,Δ).

For any prime p, by the definition of T(n), we know that

T(pn) =
∑
2i�n

T(pi, pn−i).

Hence, by Lemma 5.9, we get

T(pn) = T(1, pn) + T(p, p)T(pn−2). (5.2)
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By Lemma 5.10 we see that the following sets

X :=
{(

1 s

0 p

) ∣∣∣∣s (mod p)
}⋃{( p 0

0 1

)}
,

Y :=
{(

pi t

0 pn−i

) ∣∣∣∣0 � i � n, t (mod pn−i)
}

are complete sets of representatives of right cosets of Γ in T(p) and T(pn) respectively.
Then the set of products of elements in X and elements in Y is{(

pi t + spn−i

0 pn+1−i

) ∣∣∣∣0 � i � n, t (mod pn−i), s (mod p)
}

⋃{( pi+1 pt

0 pn−i

) ∣∣∣∣0 � i � n, t (mod pn−i)
}

=
{(

pi t

0 pn+1−i

) ∣∣∣∣0 � i � n + 1, t (mod pn+1−i)
}

⋃{( p 0
0 p

)(
pi t

0 pn−1−i

) ∣∣∣∣0 � i � n − 1, t (mod pn−i)
}

.

By Lemma 5.10, we know that
{(

pi t

0 pn+1−i

) ∣∣∣∣0 � i � n + 1, t (mod pn+1−i)
}

is a complete set of representatives of right cosets of Γ in T(pn+1), and every element
in T(pn−1) appears repeatedly p times in the following set{(

pi t

0 pn−1−i

) ∣∣∣∣0 � i � n − 1, t (mod pn−i)
}

and above set has no other elements. So we get

T(p)T(pn) = T(pn+1) + pT(p, p)T(pn−1), (5.3)

which shows the lemma for m = 1. We now assume that m > 1, then by (5.2), we
see that

T(pm) = T(p)T(pm−1) − pT(p, p)T(pm−2).

Then by induction hypothesis we get

T(p)T(pm−1)T(pn) = T(p)
m−1∑
i=0

piT(p, p)iT(pm+n−1−2i)

=
m−1∑
i=0

piT(p, p)i(T(pm+n−2i) + pT(p, p)T(pm+n−2−2i))

− pT(p, p)T(pm−2)T(pn)

= −pT(p, p)
m−2∑
i=0

piT(p, p)iT(pm+n−2−2i).
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Therefore

T(pm)T(pn) =
m−1∑
i=0

piT(p, p)iT(pm+n−2i) + pmT(p, p)mT (pn−m)

=
m∑

i=0

piT(p, p)iT
(
pm+n−2i

)
.

This completes the proof.

By Lemma 5.11 and the equality (5.1) we get

T(m)T(n) =
∑

d|(m,n),d>0

dT(d, d)T
(mn

d2

)
. (5.4)

Theorem 5.2 Let p be a prime. Denote by Rp the subalgebra of R(Γ ,Δ) generated
by ΓαΓ with α ∈ Δ and det(α) a power of p. Then Rp is the polynomial algebra over
Z generated by T(p) and T(p, p).

Proof It is clear that Rp is generated by T(pm, pn) with m � n. By Lemma 5.9
we know that

T(pm, pn) = (T(p, p))mT(1, pn−m).

By (5.2) we see that T(1, pl) = T(pl) − T(p, p)T(pl−2) for any l � 2. Hence we know
that T(pn) is a polynomial of T(p) and T(p, p). This shows that Rp is generated
by T(p) and T(p, p). We need to show that T(p) and T(p, p) are algebraically inde-
pendent. Otherwise, put Ip = T(p, p)Rp. Then Ip is an ideal of Rp. By (5.3) we
have

T(p)T(pn) ≡ T(pn+1) (mod Ip).

Hence
T(p)n ≡ T(pn) (mod Ip).

And therefore
T(p)n ≡ T(1, pn) (mod Ip).

It is easy to see that T(1, pn) (n = 0, 1, 2, · · · ) are linearly independent modulo
Ip. So are T(p)n (n = 0, 1, 2, · · · ) modulo Ip. Now let f(x, y) be the polynomial
with the lowest degree such that f(T(p), T(p, p)) = 0. Put

f(x, y) = f0(x) + yf1(x, y), f0(x) ∈ Z[x], f1(x, y) ∈ Z[x, y].

Then by above discussion we get f0 = 0. Hence

T(p, p)f1(T(p), T(p, p)) = 0.

But we see that T(p, p) is not a zero divisor by Lemma 5.8 and Lemma 5.9. So
f1(T(p), T(p, p)) = 0 which contradicts the assumption on the degree of f . This
completes the proof.
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Corollary 5.1 R(Γ ,Δ) is the polynomial algebra generated by T(p), T(p, p). (p
runs over the set of all primes.)

Theorem 5.3 The formal power series

D(s) =
∞∑

n=1

T(n)n−s

has the following infinite product expression

D(s) =
∏
p

(1 − T(p)p−s + T(p, p)p1−2s)−1,

where p runs over all primes.

Proof By (5.1) we get

D(s) =
∏
p

∞∑
n=0

T(pn)p−ns.

So we only need to show that

(1 − T(p)p−s + T(p, p)p1−2s)

( ∞∑
n=0

T(pn)p−ns

)
= 1.

By (5.3) we obtain

T(p)p−s
∞∑

n=0

T(pn)p−ns = T(p)p−s +
∞∑

n=1

(T(pn+1) + pT(p, p)T(pn−1))p−ns−s

=
∞∑

n=1

T(pn)p−ns + T(p, p)p1−2s
∞∑

n=0

T(pn)p−ns

= −1 +
(
1 + T(p, p)p1−2s

) ∞∑
n=0

T(pn)p−ns.

This completes the proof.

The product in Theorem 5.3 is called Euler product of D(s). When a represen-
tation of R(Γ ,Δ) is given, we can get the product property of the representation
by D(s). For example, since ΓαΓ �→ deg(ΓαΓ ) is a representation of R(Γ ,Δ) (see
Lemma 5.3) and deg(T(p)) = 1 + p, deg(T(p, p)) = 1, we obtain

∞∑
m=1

deg(T(n))n−s =
∏
p

(1 − (1 + p)p−s + p1−2s)−1

=
∏
p

(1 − p−s)−1(1 − p1−s)−1 = ζ(s)ζ(s − 1).
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Hence we get
deg(T(n)) =

∑
d|n

d.

From now on we study the Hecke algebra of a congruence subgroup of the full
modular group. Let N be a positive integer, to simplify symbols, put ΓN = Γ (N).
Assume that Γ ′ is a congruence subgroup such that ΓN ⊂ Γ ′ ⊂ Γ .

Lemma 5.12 Let a, b be positive integers and c = (a, b). Then Γc = ΓaΓb.

Proof It is clear that ΓaΓb ⊂ Γc. Now let α be an element of Γc. By the Chinese
Remainder Theorem, we can find β ∈ M2(Z) such that

β ≡ 1 (mod a), β ≡ α (mod b).

Hence det(β) ≡ 1 (mod ab/c). Therefore there is a γ ∈ Γ such that γ ≡ β (mod ab/c).
This shows that γ ≡ 1 (mod a), γ−1α ≡ 1 (mod b). That is, γ ∈ Γa, γ−1α ∈ Γb.
Hence α = γ · γ−1α ∈ ΓaΓb. This completes the proof.

Let α ∈ M2(Z). Define λN (α) ≡ α (mod N) ∈ M2(Z/NZ). Put

ΔN = {α ∈ M2(Z)| det(α) > 0, (det(α), N) = 1}

and
Φ = {α ∈ ΔN |λN (Γ ′α) = λN (αΓ ′)}.

It is clear that λN (α) ∈ GL2(Z/NZ) for any α ∈ ΔN and Φ = ΔN if and only if
Γ ′ = ΓN .

Lemma 5.13 Let notations be as above and α, β ∈ ΔN . Then the following asser-
tions hold:

(1) ΓαΓ = ΓαΓN = ΓNαΓ = ΓαΓ ′ = Γ ′αΓ ;
(2) Γ ′αΓ ′ = {ξ ∈ ΓαΓ |λN (ξ) ∈ λN (Γ ′α)} if α ∈ Φ;
(3) ΓNαΓN = ΓNβΓN if and only if ΓαΓ = ΓβΓ and α ≡ β (mod N);
(4) Γ ′αΓ ′ = Γ ′αΓN = ΓNαΓ ′ if α ∈ Φ;

(5) If α ∈ Φ and Γ ′αΓ ′ =
⋃
i

Γ ′αi is a disjoint union, then ΓαΓ =
⋃
i

Γαi is a

disjoint union.

Proof Put a = det(α). By Lemma 5.12, since (a, N) = 1, we have that Γ = ΓaΓN .
But αΓaα−1 ⊂ Γ . So Γ = ΓaΓN ⊂ α−1ΓαΓN , and then

α−1ΓαΓ = α−1ΓαΓaΓN ⊂ α−1Γ (αΓaα−1)αΓN

⊂ α−1ΓΓαΓN ⊂ α−1ΓαΓN .

Hence ΓαΓ ⊂ ΓαΓN ⊂ ΓαΓ ′. Since the opposite inclusion is obvious, we get (1).
To see (2), let ξ ∈ ΓαΓ and λN (ξ) ∈ λN (Γ ′α). Then ξ ≡ γα (mod N) with γ ∈ Γ ′.
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By (1), ξ ∈ ΓαΓN , hence ξ = δαε with δ ∈ Γ , ε ∈ ΓN . Then γ ≡ δ (mod N)
and δγ−1 ∈ ΓN . Since ΓN ⊂ Γ ′, we see that δ = (δγ−1)γ ∈ ΓNΓ ′ ⊂ Γ ′, hence
ξ ∈ Γ ′αΓN ⊂ Γ ′αΓ ′. Conversely if ξ ∈ Γ ′αΓ ′, we have clearly ξ ∈ ΓαΓ , and by
the definition of Φ, λN (ξ) ∈ λN (Γ ′α). This completes (2). At the same time, we
have proved that Γ ′αΓ ′ ⊂ Γ ′αΓN . Since the opposite inclusion is clear, we get (4).
The assertion (3) is a special case of (2). Finally we want to prove (5). Let α ∈ Φ,

and Γ ′αΓ ′ =
⋃
i

Γ ′αi. Then ΓαΓ = ΓαΓ ′ =
⋃
i

Γαi by (1). Assume Γαi = Γαj .

Then αi = γαj with γ ∈ Γ . By (2), since αi, αj ∈ Γ ′αΓ ′, we have that αi ≡ δαj

(mod N) with δ ∈ Γ ′. Then γ ≡ δ (mod N), and so γδ−1 ∈ ΓN . Since ΓN ⊂ Γ ′, we
get γ = (γδ−1)δ ∈ ΓNΓ ′ = Γ ′, so that Γ ′αi = Γ ′αj , and hence i = j. This completes
the proof.

Lemma 5.14 The correspondence Γ ′αΓ ′ �→ ΓαΓ, with α ∈ Φ, defines a homomor-
phism of R(Γ ′,Φ) into R(Γ ,Δ).

Proof We only need to show that the correspondence preserves the multiplications
of R(Γ ′,Φ) and R(Γ ,Δ). Let α, β ∈ Φ, and let

Γ ′αΓ ′ =
⋃

Γ ′αi, Γ ′βΓ ′ =
⋃

Γ ′βi

be disjoint unions. By (5) of Lemma 5.13, we have that

ΓαΓ =
⋃

Γαi, ΓβΓ =
⋃

Γβi

are disjoint unions. Put

Γ ′αΓ ′ · Γ ′βΓ ′ =
∑

ξ

c′ξΓ
′ξΓ ′,

where
c′ξ = #{(i, j)|Γ ′αiβj = Γ ′ξ}.

By (1) of Lemma 5.13, we get

ΓαΓβΓ = ΓαΓ ′βΓ ′ =
⋃
ξ

Γ ξΓ ′ =
⋃
ξ

Γ ξΓ

and different ξ’s correspond to different double cosets. Otherwise, if Γ ξΓ = Γ ξ′Γ ,
since

λN (ξ) ∈ λN (Γ ′αβ), λN (ξ′) ∈ λN (Γ ′αβ),

we get Γ ′ξΓ ′ = Γ ′ξ′Γ ′. Therefore put

ΓαΓ · ΓβΓ =
∑

ξ

cξΓ ξΓ ,



5.1 Hecke Rings 101

then
cξ = #{(i, j)|Γαiβj = Γξ}.

We want to show that cξ = c′ξ. That is, to show that Γ ′αiβj = Γ ′ξ if and only if
Γαiβj = Γ ξ. Assume Γαiβj = Γ ξ. Then ξ = γαiβj with γ ∈ Γ . Since ξ ∈ Γ ′αΓ ′βΓ ′,
then

λN (ξ) ∈ λN (Γ ′αiβj).

Hence we have that ξ ≡ δαiβj (mod N) with δ ∈ Γ ′. Then δ ≡ γ (mod N), hence
γ ∈ Γ ′. Therefore Γ ′αiβj = Γ ′ξ. Since the converse is obvious, this completes the
proof.

Let t be a positive divisor of N and I a subgroup of (Z/NZ)∗. Put

Γ ′ =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣a ∈ I, t|b, N |c
}

,

Δ′ =
{(

a b
c d

)
∈ M+

2 (Z)
∣∣∣∣a ∈ I, t|b, N |c

}
.

It is easy to see that for I = 1, t = N , we have Γ ′ = ΓN ; for I = (Z/NZ)∗, t = 1
we have Γ ′ = Γ0(N). It is obvious that ΓN ⊂ Γ ′ ⊂ Γ . Similar to the proof of Lemma
5.7, we can show that Δ′ ⊂ Γ̃ ′. We discuss now the Hecke ring R(Γ ′,Δ′). Put

Δ′N =
{(

a b
c d

)
∈ Δ′

∣∣∣∣(d, N) = 1
}

,

Δ∗N =
{

α ∈ M+
2 (Z)

∣∣∣∣λN (α) =
(

1 0
0 d

)
, (d, N) = 1

}
.

It is clear that Δ∗N ⊂ Δ′N ⊂ Δ′.

Lemma 5.15 We have that

Δ′N = Δ∗NΓ ′ = Γ ′Δ∗N , Δ′N ⊂ Φ.

Proof Let α ∈ Δ′N , d = det(α), then

det
[(

1 0
0 e

)
α

]
≡ 1 (mod N),

where ed ≡ 1 (mod N). Hence we can find a γ ∈ Γ such that

γ ≡
(

1 0
0 e

)
α (mod N).

This implies that γ ∈ Γ ′ and

αγ−1 ≡
(

1 0
0 d

)
(mod N),
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then α = αγ−1·γ ∈ Δ∗NΓ ′, so that Δ′N = Δ∗NΓ ′. Similarly, we have that Δ′N = Γ ′Δ∗N .
Hence for any α ∈ Δ′N we can find a α′ ∈ Δ∗N such that Γ ′αΓ ′ = Γ ′α′Γ ′, so that

R(Γ ′,Δ′N) = R(Γ ′,Δ∗N).

For any α ∈ Δ′N , if α ∈ Γ ′α′, λN (α′) =
(

1 0
0 x

)
, then

Γ ′α ≡ Γ ′
(

1 0
0 x

)
≡
(

1 0
0 x

)
Γ ′ ≡ αΓ ′ (mod N).

Therefore Δ′N ⊂ Φ. This completes the proof.

Theorem 5.4 The correspondence Γ ′αΓ ′ �→ ΓαΓ , with α ∈ Δ′N , defines an iso-
morphism of R(Γ ′,Δ′N ) onto R(Γ ,ΔN ).

Proof By Lemma 5.14, it is sufficient to show that the map is injective and sur-
jective. Let η ∈ ΔN , d = det(η). Then similar to the proof of Lemma 5.15 we can
find a γ ∈ Γ such that

ηγ−1 ≡
(

1 0
0 d

)
(mod N),

that is, ηγ−1 ∈ Δ∗N . Hence

Γ ′ηγ−1Γ ′ �→ Γηγ−1Γ = ΓηΓ ,

which implies the surjectivity. Let α, β ∈ Δ∗N (By Lemma 5.15, for any α ∈ Δ′N , we
can find α′ ∈ Δ∗N , γ ∈ Γ ′ such that α = α′γ, so that Γ ′αΓ ′ = Γ ′α′Γ ′. Hence we can
assume α ∈ Δ∗N ) . Put

λN (α) =
(

1 0
0 c

)
, λN (β) =

(
1 0
0 d

)
.

If ΓαΓ = ΓβΓ , then c ≡ det(α) = det(β) ≡ d (mod N). By (3) of Lemma 5.13, we
get ΓNαΓN = ΓNβΓN , hence Γ ′αΓ ′ = Γ ′βΓ ′. This completes the proof.

Let p be a prime, put Ep = GL2(Zp). For any α, β ∈ Δ, EpαEp = EpβEp if and
only if the p-part of the elementary divisors of α is equal to the ones of β.

Lemma 5.16 Let α ∈ Δ′, det(α) = mq, m|N∞, (q, N) = 1. Then the following
assertions hold:

(1) Γ ′αΓ ′ = {β ∈ Δ′| det(β) = mq, EpαEp = EpβEp for all prime factors p of q }.
(2) There exists an element ξ ∈ Δ∗N such that det(ξ) = q and EpαEp = EpξEp

for any prime factor p of q.

(3) Let η =
(

1 0
0 m

)
and ξ be as in (2), then

Γ ′αΓ ′ = Γ ′ξΓ ′ · Γ ′ηΓ ′ = Γ ′ηΓ ′ · Γ ′ξΓ ′.
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Proof Let X(α) denote the set defined by the right hand side of (1). It is clear
that Γ ′αΓ ′ ⊂ X(α) (if β ∈ Γ ′αΓ ′, then

det(β) = det(α) = mq,

β and α have the same elementary divisors, so that β ∈ X(α)). To prove the opposite

inclusion, let β =
(

a ∗
∗ ∗

)
∈ X(α). Since (a, mN) = 1, ae ≡ 1 (mod mN) for

some e ∈ Z. Hence there exists an element γ ∈ SL2(Z) such that γ ≡
(

e 0
0 a

)
(mod mN). Since β ∈ Δ′, we have that γ ∈ Γ ′, and γβ ≡

(
1 tb

fN ∗

)
(mod mN)

with integers f and b. Put δ =
(

1 0
−fN 1

)
. Then δ ∈ Γ ′, and δγβ ≡

(
1 tb

0 g

)
(mod mN) with g ∈ Z. Taking the determinant, we get mq ≡ g (mod mN), so that

δγβ ≡
(

1 tb

0 mq

)
(mod mN). Put η =

(
1 0
0 m

)
, ε =

(
1 tb

0 1

)
, ξ = δγβε−1η−1.

Then det(ξ) = q, ξ ≡
(

1 0
0 q

)
(mod N). Therefore ξ ∈ Δ∗N . Moreover, we see that

β ∈ Γ ′ξηΓ ′. For any prime factor p of q, since δ, γ, ε, η ∈ Ep, we have that

EpξEp = EpβEp = EpαEp,

which shows (2). The element ξ may depend on β. We want to show that Γ ′ξηΓ ′

is determined only by α and independent of the choice of β. If so, then we have
X(α) ⊂ Γ ′ξηΓ ′, that is, (1) holds. Let now β1 be an element of X(α). In the same
way as above we can find ξ1 ∈ Δ∗N such that det(ξ1) = q and Epξ1Ep = EpαEp for
any prime factor p of q. Then ξ and ξ1 have the same elementary divisors, hence

Γ ξΓ = Γ ξ1Γ . Since ξ ≡ ξ1 ≡
(

1 0
0 q

)
(mod N), we have ΓNξΓN = ΓNξ1ΓN by

(3) of Lemma 5.13. Hence ξ1 = φξψ with φ and ψ in ΓN . By the Chinese remainder
theorem, we can find an element θ ∈ M2(Z) such that

θ ≡ I (mod mN),

θ ≡ η−1ψ−1η (mod qM2(Zp)) for all p dividing q .

Then det(θ) ≡ 1 (mod mNq), we can assume that θ ∈ SL2(Z), and hence θ ∈ ΓmN

and ψηθη−1 ∈ Γq by the first and second congruence relation respectively. Put
ω = ξψηθ(ξη)−1. Then det(ω) = 1 and

ω ≡ 1 (mod NM2(Zp)) for all p dividing N,

ω ≡ 1 (mod M2(Zp)) for all p dividing q.
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Therefore ω ∈ M2(Zp) for all p, so that ω ∈ M2(Z) and ω ∈ ΓN . Since ξψη = ωξηθ−1,
we see that Γ ′ξ1ηΓ ′ = Γ ′ξψηΓ ′ = Γ ′ξηΓ ′, which shows that Γ ′ξηΓ ′ is determined
only by α. Moreover, we have that Γ ′αΓ ′ ⊂ X(α) ⊂ Γ ′ξηΓ ′. Therefore these three
sets must coincide, which shows (1).

We want now to prove (3). By the above proof for (1), we have that

X(α) = Γ ′αΓ ′ = Γ ′ξΓ ′ηΓ ′ = Γ ′ηΓ ′ξΓ ′.

Suppose that Γ ′ξΓ ′ =
⋃

Γ ′ξi. Since ξ ∈ Δ∗N ⊂ Φ, by (5) of Lemma 5.13, we get
Γ ξΓ =

⋃
Γ ξi. We have the following disjoint union (see Lemma 5.17):

Γ ′ηΓ ′ =
m−1⋃
r=0

Γ ′
(

1 tr

0 m

)
:=

m−1⋃
r=0

Γ ′ηr.

It is easy to verify that

Γ
(

1 tr

0 m

)
, r = 0, 1, · · · , m − 1

are different right cosets of ΓαΓ . Since det(ξ) = q is prime to det(η) = m, by Lemma
5.8, we have

Γ ξΓ · ΓηΓ = Γ ξηΓ = ΓαΓ .

So the number of (i, r) such that Γ ξiηr = Γα is at most one, hence the number of (i, r)
such that Γ ′ξiηr = Γ ′α is at most one. This shows that Γ ′αΓ ′ = Γ ′ξΓ ′ · ΓηΓ ′. The
product ΓηΓ ′ · Γ ′ξΓ ′ can be treated in the same way. This completes the proof.

Lemma 5.17 Let α ∈ Δ′, det(α) = m, m|N∞. Then we have the following disjoint
union:

Γ ′αΓ ′ = {β ∈ Δ′| det(β) = m} =
m−1⋃
r=0

Γ ′
(

1 tr

0 m

)
.

Proof The first equality is a special case of Lemma 5.16. We prove now the second
equality. Let β ∈ Δ′, det(β) = m. By the proof of Lemma 5.16, there exist δ ∈ Γ ′,
γ ∈ Γ ′ and ξ ∈ ΓN such that

δγβ = ξ

(
1 tb

0 m

)
.

Write b = r + mh with 0 � r � m − 1, we have that(
1 tb

0 m

)
=
(

1 th

0 1

)(
1 tr

0 m

)
,

i.e.,

β ∈ Γ ′
(

1 tr

0 m

)
.
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It is not difficult to show that

Γ ′
(

1 tr

0 m

)
(0 � r � m − 1)

are different right cosets in Γ ′αΓ ′. This completes the proof.

For any positive integer n, let T′(n) be the sum of all Γ ′αΓ ′ with α ∈ Δ′ and
det(α) = n. By Lemma 5.17 we see that deg(T′(m)) = m. For any positive integers
a, d with a|d, (d, N) = 1, we define T′(a, d) ∈ R(Γ ′,Δ′N ) as the image of T(a, d) under
the isomorphism in Theorem 5.4. We have that

T′(a, d) = Γ ′σa

(
a 0
0 d

)
Γ ′,

where σa ∈ Γ , σa ≡
(

a 0
0 a−1

)
(mod N). Therefore σa

(
a 0
0 d

)
∈ Δ∗N .

Theorem 5.5 (1) R(Γ ′,Δ′) is the polynomial ring over Z generated by

T′(p), ∀p|N ; T′(1, p), T′(p, p), ∀p � N ;

(2) Every double coset Γ ′αΓ ′ with α ∈ Δ′ is uniquely expressed as a product

Γ ′αΓ ′ = T′(m) · T′(a, d) = T′(a, d) · T′(m)

with m|N∞, a|d, (d, N) = 1;
(3) T′(m)T′(n) = T′(mn) for all m|N∞, n|N∞;
(4) T′(n1)T′(n2) = T′(n1n2) if (n1, n2) = 1.

Proof The assertion (2) follows from Lemma 5.16 and Lemma 5.17. By Lemma
5.17, we see that

T′(m)T′(n) = cT′(mn)

with a positive integer c. Taking deg, we get

deg(T′(m)) deg(T′(n)) = c deg(T′(mn)) = c deg(T′(m)) deg(T′(n)).

Hence c = 1. This shows (3). (1) follows from (2),(3) and Theorem 5.4. (4) follows
from (3) and Lemma 5.8.

By Theorem 5.4, we have that

pT′(p, p) = T′(p)2 − T′(p2)

for all primes p not dividing N . Thus the multiplication of elements T′(n) can be
reduced to that of T′(pk) with primes p. If p|N , we have T′(pk) = T′(p)k. If (p, N) =
1, the elements T′(pk) satisfy the formulae satisfied by T(pk) by Theorem 5.4. We
can express these facts as



106 Chapter 5 Operators on the Space of Modular Forms

Theorem 5.6 R(Γ ′,Δ′) is a homomorphic image of R(Γ ,Δ) through the map:

T(n) �→ T′(n), for all positive integers n,

T(p, p) �→ T′(p, p), for all primes p prime to N,

T(p, p) �→ 0, for all primes p dividingN.

Therefore we have that

T′(m)T′(n) =
∑

d|(m,n),
(d,N)=1

dT′(d, d)T′(mn/d2)

by equality (5.4).
Moreover, defining a formal Dirichlet series

D′(s) :=
∞∑

n=1

T′(n)n−s,

we obtain

D′(s)=
∏
p

( ∞∑
k=0

T′(pk)p−ks

)
=
∏
p|N

(1 − T′(p)p−s)−1 ×
∏
p�N

(1 − T′(p)p−s + T′(p, p)p1−2s)−1. (5.5)

By the definition, we have

T′(p) = Γ ′
(

1 0
0 p

)
Γ ′

for every prime p. For any positive integer q prime to N , there exists an element
σq ∈ SL2(Z) such that

λN (σq) =
(

q−1 0
0 q

)
(mod N).

Therefore λN (qσq) =
(

1 0
0 q2

)
, and Γq · σqΓ = T(q, q), so that

T′(q, q) = Γ ′q · σqΓ ′.

Lemma 5.18 Let σa ((a, N) = 1) be defined as above. Then, for any positive integer
n, we have the following disjoint union:

T′(n) = {α ∈ Δ′| det(α) = n} =
⋃

ad=n,
(d,N)=1

d−1⋃
b=0

Γ ′σa

(
a tb

0 d

)
.
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Proof The right hand side is clearly contained in the left hand side. To show the

disjointness of the right hand side, assume γσa

(
a tb

0 d

)
= σu

(
u tv

0 w

)
with γ ∈ Γ ′.

Put σ−1
u γσa =

(
e f

g h

)
. Then

(
e f

g h

)(
a tb

0 d

)
=
(

u tv

0 w

)
, so that g = 0. Since

det(σ−1
u γσa) = 1 and au > 0, we see that e = h = 1, hence a = u, d = w, and

vt = bt + fd. Since γ ∈ Γ ′, f = f ′t with some f ′ ∈ Z. Therefore v = b + f ′d, so that
v = b which shows the disjointness. Now let n = mq, m|N∞, (q, N) = 1, then

deg(T′(n)) = deg(T′(m)) deg(T′(q)) = m
∑
d|q

d.

This shows that deg(T′(n)) coincides with the number of the cosets of the right hand
side which implies the equality desired. This completes the proof.

Let α =
(

a b
c d

)
∈ M2(C), put

ατ =
(

d −b
−c a

)
.

Then it is clear that
(α + β)τ = ατ + βτ ,

(αβ)τ = βτατ ,

(cα)τ = cατ (c ∈ C),

α + ατ = Tr(α) · I,

αατ = det(α) · I.

The map τ is called the main involution of M2(C). For any α ∈ Δ∗N with det(α) = q,
we can find a σa ∈ Γ such that

σq ≡
(

q−1 0
0 q

)
(mod N),

hence
α ≡ σqα

τ ≡ ατσq (mod N),

by λN (α) =
(

1 0
0 q

)
, λN (ατ ) =

(
q 0
0 1

)
. Since α and ατ have the same elementary

divisors, by (3) of Lemma 5.13, we have

Γ ′αΓ ′ = Γ ′σqα
τΓ ′ = Γ ′ατσqΓ ′.

It is easy to verify that Γ ′σq = σqΓ ′, so that Γ ′σqΓ ′ = Γ ′σq. Let Γ ′ατΓ ′ =
⋃

Γ ′αi

be a disjoint union. We can verify that Γ ′σqαi = Γ ′σqαj if and only if i = j (if
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Γ ′σqαi = Γ ′σqαj , then σqΓ ′αi = σqΓ ′αj since Γ ′σq = σqΓ ′, so that Γ ′αi = Γ ′αj).
Therefore

Γ ′αΓ ′ = Γ ′σqΓ ′ · Γ ′ατΓ ′ = Γ ′ατΓ ′ · Γ ′σqΓ ′.

So that we obtain
Γ ′αΓ ′ · Γ ′ατΓ ′ = Γ ′ατΓ ′ · Γ ′αΓ ′.

This showed the following

Lemma 5.19 Γ ′αΓ ′ commutes with Γ ′ατΓ ′ if α ∈ Δ∗N .

The following lemmas will be useful in Section 9.3.

Lemma 5.20 Let Cn =
(

4 1
0 4n2

)
. Then a matrix

(
a b

c d

)
∈ GL2(Z) with

ad − bc = 16n2 is in Γ0(4N)CnΓ0(4N) if and only if c ≡ 0 (mod 16N), a ≡ d ≡ 0
(mod 4), (a/c, N) = 1 and (a, b, c, d) = 1.

Proof It can easily be checked by using the decomposition

Γ0(4N)CnΓ0(4N) = Γ0(4N)
(

1 0
0 n2

)
Γ0(4N) · Γ0(4N)

(
4 1
0 4

)
Γ0(4N)

and two identities

Γ0(4N)
(

1 0
0 n2

)
Γ0(4N)

=
{(

a b

c d

)
∈ M2(Z)

∣∣∣∣c ≡ 0 (mod 4N), (a, 4N) = 1, (a, b, c, d) = 1, ad− bc = n2

}
and

Γ0(4N)
(

4 1
0 4

)
Γ0(4N) =

∑
μmod 4

Γ0(4N)
(

4 1
0 4

)(
1 0

4Nμ 1

)
.

Let N be a positive integer, ω an even Dirichlet character modulo 4N , A =
(

a b
c d

)
∈

GL+
2 (R). Then we put A∗ = {A, φ(z)} where

φ(z) = ω(d)
( c

d

)(−4
d

)− 1
2

(cz + d)
1
2 .

Lemma 5.21 Let Cn be as in Lemma 5.20 and
(

a b

c d

)
∈ Γ0(4N)CnΓ0(4N).

Suppose that (b, d) = 1. Then(
a b

c d

)∗
=

{(
a b

c d

)
, (4n)−1/2

(
sgn d

−sgn c

)(
d

b

)(
−4
b

)− 1
2

(cz + d)
1
2

}
;

here sgn x =
x

|x| for x �= 0 and sgn 0 = 1.
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Proof Suppose
(

a b

c d

)
is in Γ0(4N)CnΓ0(4N) and satisfies (b, d) = 1. First

assume d � 0. Note that a ≡ d ≡ 0 (mod 4), c ≡ 0 (mod 16N) and b ≡ 1 (mod 2).

From (b, d) = 1 and ad− bc = 16n2 it follows that (b, 4N2) | a

4
and (d, 4n2) | c

4
. Thus

there exists an integer w such that

a

4
− Nwb − b ≡ c

4
− Nwd − d ≡ 0 (mod 4n2). (5.6)

Thus the matrix

C =

⎛⎜⎜⎜⎝
a

4
− Nwb

−a

4
+ Nwb + b

4n2

c

4
− Nwd

− c

4
+ Nwd + d

4n2

⎞⎟⎟⎟⎠
is in Γ0(4N), and we have(

a b

c d

)
= C

(
4 1
0 4n2

)(
1 0

4Nw 1

)
,

hence (
a b

c d

)∗
= C∗(Cn, n

1
2 )
(

1 0
4Nw 1

)∗

=

⎧⎪⎨⎪⎩
(

a b

c d

)
, (4n)−

1
2

⎛⎝ c

4
− Nwd

a

4
− Nwb

⎞⎠⎛⎝ −4
a

4
− Nwb

⎞⎠−
1
2

·
(

cz + d

4Nwz + 1

) 1
2

(4Nwz + 1)
1
2

}
.

By (5.6) ⎛⎝ −4
a

4
− Nwb

⎞⎠ =
(
−4
b

)
.

Furthermore using (5.6) and the conditions d � 0, (b, d) = 1 one checks that⎛⎝ c

4
− Nwd

a

4
− Nwb

⎞⎠( cz + d

4Nwz + 1

) 1
2

(4Nwz + 1)
1
2 =

(
d

b

)
(cz + d)

1
2 .

Thus (
a b

c d

)∗
=

{(
a b

c d

)
, (4n)−

1
2

(
d

b

)(
−4
b

)− 1
2

(cz + d)
1
2

}
(5.7)
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as we claimed.

If d < 0 we write
(

a b

c d

)
= −

(
−a −b

−c −d

)
, use (5.7) and

(
−1 0
0 −1

)∗
=
{(

−1 0
0 −1

)
, 1
}

.

This completes the proof of Lemma 5.21.

Lemma 5.22 Let Cn be as in Lemma 5.20. Every elliptic or hyperbolic conjugate

class in Γ0(4N)CnΓ0(4N) contains an element
(

a b

c d

)
with d > 0, (b, d) = 1 and(

b

f
,
t2 − 64n2

f2

)
= 1 where t = a + d, f = (d − a, b, c).

Proof First recall that for t and f fixed there is a bijective correspondence between

the set
{(

a b

c d

)
∈ GL2(Z)

∣∣∣∣ad − bc = 16n2, a + d = t, (d − a, b, c) = f

}
and the set

of integral binary primitive quadratic forms with discriminant (t2 − 64n2)/f2 given
by (

a b

c d

)
�→ 1

f
(cX2 + (d − a)XY − bY 2)

conjugation by Γ (1) corresponding to the usual action of Γ (a) on quadratic forms.
We need the following:
Sublemma Let F (X, Y ) = αX2 + βXY + γY 2 be an integral binary primitive
quadratic form with γ odd. Let M be a non-zero integer. Then there exists (x, y) ∈ Z2

with (x, y) = (y, M) = 1 and (F (x, y), M) = 1.
This can be seen as follows. Let p be a prime factor of M and suppose p | F (x, y)

for all (x, y) ∈ Z2 with p � y. Because of F (0, 1) = γ ≡ 1 (mod 2), the prime p must
be odd. But from

F (0, 1) = γ ≡ 0 (mod p),

F (1, 1) = α + β + γ ≡ 0 (mod p),

F (2, 1) = 4α + 2β + γ ≡ 0 (mod p),

we then conclude p | (α, β, γ), a contradiction, since F is primitive. Now for each
prime factor pν of M choose a pair (xν , yν) ∈ Z2 with pν � yν and pν � F (xν , yν).
Determine x, y ∈ Z with x ≡ xν (mod p), y ≡ yν (mod p) for all ν. If we put
x′ = x/(x, y), y′ = y/(x, y) we have (x′, y′) = 1 = (y′, M) and (F (x′, y′), M) = 1.

Now let
(

a b

c d

)
be an elliptic or hyperbolic element in Γ0(4N)CnΓ0(4N) and

F (X, Y ) =
1
f

(cX2 + (d − a)XY − bY 2) its associated quadratic form. Note that b is

odd and (t2 − 64n2)/f2 �= 0. Applying the Sublemma with M = 4N(t2 − 64n2)/f2
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we see that there exists (x, y) ∈ Z and z ∈ Z such that (x, y) = (y, 4N) = 1,
F (x, y) = z and (z, (t2 − 64n2)/f2) = 1. Consequently we may transform F with a

matrix
(
∗ x

∗ y

)
∈ Γ0(4N) into a form whose coefficient at Y 2 is z, i.e.

(
a b

c d

)
is

Γ0(4N)-conjugate to an element
(

a′ b′

c′ d′

)
with (b′/f, (t2 − 64n2)/f2) = 1.

Now observe (
1 −m

0 1

)(
a′ b′

c′ d′

)(
1 m

0 1

)
=
(
∗ b′′

∗ d′′

)
with b′′ = a′m + b′ − m(c′m + d′) and d′′ = c′m + d′; hence if we choose m ∈ Z in
such a way that m is prime to (b′, d′) and divisible by all prime factors of 16n2, which
do not divide (b′, d′), and divisible by all primes dividing (t2 − 64n2)/f2 (note that
(t2 − 64n2)/f2 is prime to (b′, d′)), then (b′′, d′′) = 1 and (b′′/f, (t2 − 64n2)/f2) = 1.
Moreover, if we choose |m| big with sgn(m) = sgn(c) we have d′′ > 0 which completes
the proof.

Lemma 5.23 Let A =
(

a b

c d

)
∈ GL2(Z) be an elliptic or hyperbolic matrix with

detA = 16n2, t ≡ 0 (mod 4) and f odd. Then for N odd and square-free there are
μ(t/4, f, n2, N) matrices B ∈ Γ (1)/Γ0(4N) with B−1AB ∈ Γ0(4N)CnΓ0(4N) where
t, f were defined as in Lemma 5.22 and

μ(t, f, n, M) =
∏

p|(M,f)

(1 + p) × #{x ∈ Z | 1 � x � M,

(x, M) = 1, x2 − tx + n ≡ 0 (mod (fM, M2))}.

Proof Denote by nA the number of matrices B ∈ Γ (1)/Γ0(4N) with B−1AB ∈
Γ0(4N)CnΓ0(4N). For x ∈ Z with 1 � x � N, (x, N) = 1 put

Vx =
{

B ∈ Γ (1)
∣∣∣∣B−1AB ≡

(
4x + 4Nν ∗

0 ∗

)
(mod 16N) for some ν ∈ Z

}
,

Vx,1 =
{

B ∈ Γ (1)
∣∣∣∣B−1AB ≡

(
4x ∗
0 ∗

)
(mod 16) for some ν ∈ Z

}
and

Vx,2 =
{

B ∈ Γ (1)
∣∣∣∣B−1AB ≡

(
4x + 4Nν ∗

0 ∗

)
(mod 16) for some ν ∈ Z

}
.

The group Γ0(4N) resp. Γ0(N) operates on Vx resp.Vx,1 by multiplication from
right. Noticing t ≡ 0 (mod 4) and Lemma 5.20 one sees that

nA =
∑

1�x�N,
(x,N)=1

#{Vx/Γ0(4N)}.
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We wish to show that

#{Vx/Γ0(4N)} = #{Vx,1/Γ0(N)}. (5.8)

The latter number is equal to
∏

p|(N,f)

(1 + p) or 0 according to

(4x)2 − 4tx + 16n2 ≡ 0 (mod (fN, N2))

or not by J. Oesterlé, 1977. Noticing that N and f are odd, we will then prove the
lemma.

Now if (B1, B2) ∈ Vx,1 × Vx,2 choose B ∈ Γ (1) with B ≡ B1 (mod N), B ≡ B2

(mod 16) and define φ(B1, B2) to be the class of B mod Γ0(4N). Then φ is a well-
defined map from Vx,1×Vx,2 onto Vx/Γ0(4N), and φ(B1, B2) = φ(B′1, B

′
2) if and only

if B1 and B′1 are equivalent under Γ0(N) and B2 and B′2 are equivalent under Γ0(4).
To prove (5.8) it remains to show that modulo multiplication from the right there

is exactly one equivalence class in Vx,2. Fix ν ∈ Z. If B =
(

u w

v z

)
, the condition

B−1AB ≡
(

4x + 4Nν ∗
0 ∗

)
(mod 16) (5.9)

is equivalent to(
a − 4(x + Nν) b

c d − 4(x + Nν)

)(
u

v

)
≡ 0 (mod 16). (5.10)

From ad − bc = 16n2 and 4|t we see that (a − 4(x + Nν))(d − 4(x + Nν)) − bc ≡ 0
(mod 16), and from 2 � f it follows that (a− 4(x + Nν), b, c, d− 4(x + Nν), 16) = 1.
Thus the system (5.10) has exactly one solution (u mod 16, v mod 16) in P (Z/16Z)
(the projective line over Z/16Z), hence exactly one solution in P (Z/4Z). Since

Γ (1)/Γ0(4) is one-to-one correspondence with P (Z/4Z) under the map
(

u w

v z

)
�→

(u mod 4, v mod 4), we conclude that modulo Γ0(4) the congruence (5.10) has exactly
one solution.

Now if m is an odd integer we can choose a′, b′ ∈ Z with a′Nm − 4b′ = 1. Then(
a′ b′

4 Nm

)
is in Γ0(4) and

(
a′ b′

4 Nm

)ν−ν′ ( 4x + 4Nν m

0 4y

)(
a′ b′

4 Nm

)ν′−ν

≡
(

4x + 4Nν′ ∗
0 ∗

)
(mod 16).

This shows that there is indeed only one equivalence class in Vx,2 which completes
the proof of Lemma 5.23.
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5.2 A Representation of the Hecke Ring on the Space of Mo-

dular Forms

In this section we shall consider a representation of the Hecke ring on the space of
modular forms. We recall first some notations:

j(σ, z) = cz + d, ∀z ∈ H, σ =
(

a b
c d

)
∈ GL2(R),

f |[σ]k = det(σ)k/2f(σ(z))j(σ, z)−k

for a function on H.
Let now G = GL+

2 (R), Γ a Fuchsian group (of the first kind) of SL2(R) and Γ̃

the commensurator of Γ in GL+
2 (R). For α ∈ Γ̃ , put ΓαΓ =

⋃
i

Γαi (disjoint union).

We define a linear operator on Ak(Γ ):

f |[ΓαΓ ]k = det(α)k/2−1
∑

i

f |[αi]k, ∀f ∈ Ak(Γ ).

It is clear that the definition of f |[ΓαΓ ]k is independent of the choice of the repre-
sentatives αi.

Lemma 5.24 [ΓαΓ ]k maps Ak(Γ ), Gk(Γ ), Sk(Γ ) into Ak(Γ ), Gk(Γ ), Sk(Γ ) re-
spectively.

Proof Let f ∈ Ak(Γ ), then f |[αi]k ∈ Ak(α−1
i Γαi). Put

Γ1 =
⋂
i

(α−1
i Γαi

⋂
Γ ).

It is clear that f |[ΓαΓ ]k ∈ Ak(Γ1). Since [Γ : α−1
i Γαi

⋂
Γ ] < ∞, it is easy to show

that [Γ : Γ1] < ∞ and Γ ,Γ1 have the same set of cusp points. For any δ ∈ Γ , the set
{Γαiδ} is a permutation of {Γαi}, so that

f |[ΓαΓ ]k|[δ]k = det(α)k/2−1
∑

i

f |[αiδ]k = det(α)k/2−1
∑

i

f |[αi]k = f |[ΓαΓ ]k.

So f |[ΓαΓ ] ∈ Ak(Γ ). By the above proof, we have also that [ΓαΓ ]k sends Gk(Γ )
and Sk(Γ ) into Gk(Γ ), Sk(Γ ) respectively. This completes the proof.

For any X =
∑

cξΓ ξΓ ∈ R(Γ , Γ̃ ), we define

f |[X ]k =
∑

cξf |[Γ ξΓ ]k, ∀f ∈ Ak(Γ ).

Lemma 5.25 Let X, Y ∈ R(Γ , Γ̃ ). Then

[X · Y ]k = [X ]k · [Y ]k.
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Proof It is sufficient to show that

[ΓαΓ ]k · [ΓβΓ ]k = [ΓαΓ · ΓβΓ ]k, ∀α, β ∈ Γ̃ .

Let ΓαΓ =
⋃
i

Γαi, ΓβΓ =
⋃
j

Γβj and

ΓαΓ · ΓβΓ =
∑

ξ

cξΓ ξΓ , Γ ξΓ =
⋃
h

Γ ξh

be disjoint unions. By the definition of multiplication, we see that∑
i,j

Γαiβj =
∑
ξ,h

cξΓ ξh.

Therefore we have

(f |[ΓαΓ ]k)|[ΓβΓ ]k = det(αβ)
k
2−1
∑
i,j

f |[αiβj ]k

= det(αβ)
k
2−1
∑
ξ,h

cξf |[ξh]k

=
∑

ξ

cξf |[Γ ξΓ ]k = f |[ΓαΓ · ΓβΓ ]k.

This completes the proof.

By the above lemmas we see that the action of R(Γ , Γ̃ ) on Ak(Γ ) (resp. Gk(Γ ),
Sk(Γ )) defines a representation of the Hecke ring on the space of modular forms.

Let f, g ∈ Gk(Γ ). Then f(z)g(z)yk and y−2dxdy is invariant under Γ . Therefore
the following integral is well-defined if it is convergent:∫

Γ\H
f(z)g(z)yk−2dxdy.

We consider now the convergence of the integral. Since f , g are holomorphic on H,
it is sufficient to consider the convergence of it at cusp points of Γ . Let s be a cusp
point of Γ , and ρ ∈ SL2(R) such that ρ(s) = ∞. Put w = ρ(z), q = eπiw/h with h > 0
defined as in Chapter 3, then we have

f |[ρ−1]k = φ(q), g|[ρ−1]k = ψ(q)

and φ, ψ are holomorphic at q = 0. Then

f(z)g(z)yk = f(ρ−1w)g(ρ−1w)(Im(w))k|J(ρ−1, w)|−2k

= φ(q)ψ(q)(Im(w))k.
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If either f or g is in Sk(Γ ), then φ(0)ψ(0) = 0, so that the integral is convergent at
w = ∞, and hence it is convergent at z = s. Put

〈f, g〉 =
1

μ(D)

∫
D

f(z)g(z)yk−2dxdy,

where D is a fundamental domain of Γ and

μ(D) =
∫

D

y−2dxdy.

We call 〈f, g〉 the Petersson inner product of f and g. It is easy to verify that Sk(Γ )
is a Hilbert space under the Petersson inner product. If Γ ′ is a subgroup of Γ and
[Γ : Γ ′] < ∞, then the Petersson inner product of f and g on Γ is equal to the one
of f and g on Γ ′.

Let α ∈ GL+
2 (R). Then f |[α]k, g|[α]k ∈ Ak(α−1Γα). Denote by D′ a fundamental

domain of α−1Γα, then α(D′) is a fundamental domain of Γ . So that

〈f |[α]k, g|[α]k〉=det(α)k(μ(D′))−1

∫
D′

f(α(z))g(α(z))|J(α, z)|−2kyk−2dxdy

=(μ(D′))−1

∫
α(D′)

f(z)g(z)yk−2dxdy = 〈f, g〉. (5.11)

Lemma 5.26 Let f, g ∈ Sk(Γ ), α ∈ Γ̃ , and ατ = det(α)α−1 be the main involution
of α. Then we have

〈f |[ΓαΓ ]k, g〉 = 〈f, g|[ΓατΓ ]k〉.

Proof Let D be a fundamental domain of Γ and Γ =
⋃
i

(Γ
⋂

α−1Γα)εi (disjoint

union) with εi ∈ Γ . Then ΓαΓ =
⋃
i

Γαεi and D1 =
⋃
i

εi(D) is a fundamental

domain of Γ
⋂

α−1Γα. By (5.11), we have

μ(D)〈f |[ΓαΓ ]k, g〉 = det(α)k/2−1
∑

i

∫
D

(f |[αεi]k)(g|[εi]k)yk−2dxdy

= det(α)k/2−1
∑

i

∫
εi(D)

(f |[α]k)gyk−2dxdy,

det(α)k/2−1

∫
D1

(f |[α]k)gyk−2dxdy = det(α)k/2−1

∫
α(D1)

f · (g|[α−1]k)yk−2dxdy

= det(α)k/2−1

∫
α(D1)

f · (g|[ατ ]k)yk−2dxdy,

where we used the fact g|[α−1]k = g|[ατ ]k.
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Let Γ =
⋃
j

(Γ
⋂

(ατ )−1Γατ )ε′j . Then ΓατΓ =
⋃
j

Γατ ε′j and
⋃
j

ε′j(D) is a funda-

mental domain of Γ
⋂

αΓα−1 (since αΓα−1 = (ατ )−1Γατ ). Therefore we have

μ(D)〈f, g|[ΓατΓ ]k〉 = det(α)k/2−1
∑

j

∫
D

f · (g|[ατ ε′j]kyk−2dxdy

= det(α)k/2−1
∑

j

∫
ε′j(D)

f · g|[ατ ]kyk−2dxdy

= det(α)k/2−1

∫
α(D1)

f · (g|[ατ ]k)yk−2dxdy.

This completes the proof.

In fact, by the above proof, we see that the lemma holds if either f or g is in
Sk(Γ ).

We consider now the case Γ = SL2(Z). Let α ∈ Δ = M+
2 (Z). Since α and ατ

have the same elementary divisors, we have that ΓαΓ = ΓατΓ , so that

〈f |[ΓαΓ ]k, g〉 = 〈f, g|[ΓαΓ ]k〉, f, g ∈ Sk(Γ ).

This shows that the operators {[ΓαΓ ]k}α∈Δ are commutative and self-associated
operators on Sk(Γ ). Therefore there exists a basis of Sk(Γ ) whose every element is a
common eigenfunction of these operators and the corresponding eigenvalues are real
numbers. For any f ∈ Sk(Γ ), we have

f |[T(p, p)]k = pk−2f.

Since Rp is generated by T(p, p) and T(p), f is a common eigenfunction of all operators
{[ΓαΓ ]k}α∈Δ if and only if f is a common eigenfunction of [T(p)]k for any prime p.

Theorem 5.7 Let f =
∞∑

n=0

c(n)e(nz) ∈ Gk(Γ ) not be a constant. Assume that for

any positive integer n, we have

f |[T(n)]k = λnf, λn ∈ R.

Then c(1) �= 0, c(n) = λnc(1), and we have formally
∞∑

n=1

λnn−s =
∏
p

(1 − λpp
−s + pk−1−2s)−1. (5.12)

Conversely, if we have formally that
∞∑

n=1

c(n)n−s =
∏
p

(1 − c(p)p−s + pk−1−2s)−1, (5.13)

then f |[T(n)]k = c(n)f for any positive integer n.



5.2 A Representation of the Hecke Ring on the Space of Modular Forms 117

Proof By Lemma 5.10, we have

λnf =f |[T(n)]k = nk/2−1
∑

ad=n,a>0

d−1∑
b=0

f
∣∣ ( a b

0 d

)
k

=nk−1
∑

ad=n

d−1∑
b=0

∞∑
m=0

c(m)e(m(az + b)/d)d−k

=
∑

ad=n

ak−1d−1
∞∑

m=0

c(m)e(maz/d)
d−1∑
b=0

e(mb/d)

=
∞∑

t=1

∑
a|n

ak−1c(nt/a)e(taz)

=
∞∑

m=0

∑
a|(n,m)

ak−1c(mn/a2)e(mz). (5.14)

Comparing the coefficient of e(z) of both sides, we get

λnc(1) = c(n).

Since f is not a constant, c(1) �= 0. Now Theorem 5.3 gives equality (5.12). The
convergence of the series will be proved in next section.

We assume now that (5.13) holds. Put
∞∑

r=0

b(pr)p−rs = (1 − c(p)p−s + pk−1−2s)−1 = (1 − Ap−s)−1(1 − Bp−s)−1

=
∞∑

r=0

Ar+1 − Br+1

A − B
p−rs,

where A, B satisfy that A + B = c(p), AB = pk−1. Hence

b(pr) =
Ar+1 − Br+1

A − B
=

r∑
i=0

Ar−iBi.

For any r � l, we have

b(pl)b(pr) = (Al+1b(pr) − Bl+1b(pr))(A − B)−1

=
(

Al+1
r∑

i=0

Ar−iBi − Bl+1
r∑

i=0

AiBr−i

)
(A − B)−1

=
r∑

i=0

AiBi(Al+1+r−2i − Bl+1+r−2i)(A − B)−1

=
r∑

i=0

pi(k−1)b(pl+r−2i) =
∑

a|(pl,pr)

ak−1b(pl+r/a2).
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Let 0 �= n =
∏

pnp be the standard factorization of n. By (5.13), we obtain that

c(n) =
∏
p|n

b(pnp).

Let m =
∏

pmp . Then we have

c(n)c(m) =
∏
p

b(pnp)b(pmp)

=
∏
p

∑
a|(pnp ,pmp )

ak−1b

(
pnp+mp

a2

)
=
∑

a|(m,n)

ak−1c(mn/a2).

By the above equality and (5.14), we obtain that f |[T(n)]k = c(n)f . This completes
the proof.

We consider now the case that Γ ′ is a congruence subgroup of Γ . For any α ∈
Γ̃ ′, we define a linear operator [Γ ′αΓ ′]k on the space Ak(Γ ′). Since R(Γ ′,Δ′) is a
commutative ring, the elements of R(Γ ′,Δ′) give linear operators on Ak(Γ ′) which
commute one another. And by Lemma 5.19, we see that [Γ ′αΓ ′]k with α ∈ Δ∗N is a
normal operator on Ak(Γ ′). If α ∈ Δ′ is such that det(α) = m|N∞, then by Lemma
5.17, we see that Γ ′αΓ ′ = ΓατΓ ′. This implies that [Γ ′αΓ ′]k is a self-associated
operator on Ak(Γ ′). Since Sk(Γ ′) is a finite dimensional vector space, we see that
there exists a basis of Sk(Γ ′) whose every element is a common eigenfunction of the
operators [Γ ′αΓ ′]k for all α ∈ Δ′.

For a fixed positive divisor t of N , put

Γ ′0 =
{

γ ∈ SL2(Z)
∣∣∣∣λN (γ) =

(
a tb
0 a−1

)
, a ∈ (Z/NZ)∗, b ∈ Z/NZ

}
,

Γ ′′ =
{

γ ∈ Γ ′0

∣∣∣∣λN (γ) =
(

1 tb
0 1

)
, b ∈ Z/NZ

}
,

Δ′0 =
{

α ∈ Δ
∣∣∣∣λN (α) =

(
a tb
0 d

)
, a ∈ (Z/NZ)∗, b, d ∈ Z/NZ

}
,

Δ′′ =
{

α ∈ Δ
∣∣∣∣λN (α) =

(
1 tb
0 d

)
, b, d ∈ Z/NZ

}
.

It is clear that Γ ′0 = Γ0(N) if t = 1. We denote by Γ1(N) the group Γ ′′ if t = N .
It is clear that Γ ′′ is a normal subgroup of Γ ′0 and Γ ′0/Γ ′′ � (Z/NZ)∗. For any

f ∈ Gk(Γ ′′), γ ∈ Γ ′0, we see that f |[γ]k ∈ Gk(Γ ′′). Hence we get a representation of
Γ ′0 on Gk(Γ ′′) : f �→ f |[γ]k. If γ ∈ Γ ′′, then f |[γ]k = f , so that the representation
induces a representation of Γ ′0/Γ

′′ on the space Gk(Γ ′′). This implies that the space
Gk(Γ ′′) is a direct sum of the spaces Gk(Γ ′0, ψ), where ψ is a character modulo N
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with ψ(−1) = (−1)k and

Gk(Γ ′0, ψ) =
{

f ∈ Gk(Γ ′′)
∣∣∣∣f |[γ]k = ψ(dγ)f for all γ =

(
∗ ∗
∗ dγ

)
∈ Γ ′0

}
.

Let α ∈ Δ′0 and Γ ′0αΓ ′0 =
⋃
v

Γ ′0αv be a disjoint union. For f ∈ Gk(Γ ′0, ψ), put

f |[Γ ′0αΓ ′0]k,ψ = (det(α))k/2−1
∑

v

ψ−1(dv)f |[αv]k,

where αv =
(
∗ ∗
∗ dv

)
. It is easy to verify that [Γ ′0αΓ ′0]k is a linear operator on

Gk(Γ ′0, ψ). Therefore we obtain a representation of R(Γ ′0,Δ
′
0) on the space Gk(Γ ′0, ψ).

Denote by T′(a, d)k,ψ and T′(m)k,ψ the actions of T′(a, d) and T′(m) on the space
Gk(Γ ′0, ψ) respectively.

The subgroup fixing i∞ of Γ ′0 is generated by
(

1 t
0 1

)
. For any f ∈ Gk(Γ ′0), f(z)

has the following Fourier expansion at i∞:

f(z) =
∞∑

n=0

c(n)e(nz/t).

Let m be a positive integer, put

g(z) := f |T′(m)k,ψ =
∞∑

n=0

c′(n)e(nz/t).

By Lemma 5.18 and σa ∈ Γ ′0, we see that

g(z) =
∑

ad=m,a>0

d−1∑
b=0

ψ(a)f
(

az + bt

d

)
d−k

=
∞∑

n=0

c(n)
∑

ad=m,a>0

ak−1ψ(a)e(naz/dt)d−1
d−1∑
b=0

e(nb/d)

=
∞∑

n=0

∑
a|m

ak−1ψ(a)c(nm/a)e(anz/t)

=
∞∑

n=0

∑
a|(n,m)

ak−1ψ(a)c(nm/a2)e(nz/t),

so that,
c′(n) =

∑
a|(n,m)

ak−1ψ(a)c(nm/a2).
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If q is prime to N , then

f |T′(q, q)k,ψ = qk−2ψ(q)f, ∀f ∈ Gk(Γ ′0, ψ).

By (5.5), we see that

∞∑
n=1

T′(n)k,ψn−s =
∏
p

(1 − T′(p)k,ψp−s + T′(p, p)k,ψp1−2s)−1.

Therefore, similar to Theorem 5.7, we obtain the following:

Theorem 5.8 Let 0 �= f =
∞∑

n=0

c(n)e(nz/t) ∈ Gk(Γ ′0, ψ) be a common eigenfunction

for all Hecke operators T′(n)k,ψ :

f |T′(n)k,ψ = λnf.

Then c(1) �= 0, c(n) = λnc(1) and we have formally

∞∑
n=1

λnn−s =
∏
p

(1 − λpp
−s + ψ(p)pk−1−2s)−1.

Conversely, if we have formally

∞∑
n=1

c(n)n−s =
∏
p

(1 − c(p)p−s + ψ(p)pk−1−2s)−1,

then we have f |T′(n)k,ψ = c(n)f, where ψ(p) = 0 if p|N .

5.3 Zeta Functions of Modular Forms, Functional Equation,

Weil Theorem

Let f(z) =
∞∑

n=0

c(n)qn ∈ G(N, k, ω). Define its Zeta function as follows:

L(s, f) =
∞∑

n=1

c(n)n−s, s ∈ C.

In this section we shall discuss the convergence, analytic continuation and func-
tional equation of L(s, f).

Lemma 5.27 Let f(z) be as above. Then there exists a constant A such that
|f(z)| � AIm(z)−k for z ∈ H and c(n) = O(nk).



5.3 Zeta Functions of Modular Forms, Functional Equation, Weil Theorem 121

Proof Let s = d/c be a cusp point of Γ0(N). Take

ρ =
(

a b

−c d

)
∈ SL2(Z)

such that ρ(s) = i∞. By the definition of a holomorphic modular form, f(ρ−1(z))(cz+
a)−k is holomorphic at z = i∞. Therefore we see that

lim
z→i∞

f

(
dz − b

cz + a

)
(cz + a)−k = lim

τ→0
(−cτ)kf(τ + s)

is a finite constant. Hence there exists a constant As such that

|f(z)| � As|z − s|−k � AsIm(z)−k

holds for all z nearby s. Since Γ0(N) \H∗ is a compact Riemann surface, there exists
a constant A such that

|f(z)| � AIm(z)−k

for any z ∈ H. By the Cauchy integral theorem, we have

c(n) =
1

2πi

∫
|q|=r

f(q)q−n−1dq.

Take Im(z) =
1

2πn
, i.e., r = e−1/n, we obtain that

|c(n)| � 1
2π

∫
|q|=e−1/n

|f(q)|e1+1/ndq � A(2πn)k.

This completes the proof.

Lemma 5.28 Let f(z) =
∞∑

n=1

c(n)qn ∈ S(N, k, ω). Then there exists a constant A

such that |f(z)| � Im(z)−k/2 with z ∈ H and c(n) = O(nk/2).

Proof Put g(z) = f(z)Im(z)k/2. Then

g(γ(z)) = g(z)

for any γ ∈ Γ0(N). Let s be a cusp point of Γ0(N). Take ρ ∈ SL2(Z) such that
ρ(s) = i∞. By the definition of a cusp form, we see that lim

z→i∞
g(ρ−1(z)) = 0.

Therefore g(z) is a continuous function on the compact Riemann surface Γ0(N)\H∗, so
that it is bounded on Γ0(N)\H∗. This shows that there exists A such that |g(z)| � A

for any z ∈ H, i.e., |f(z)| � AIm(z)−k/2. The remaining part can be proved similarly
in the way used in the proof of Lemma 5.27. This completes the proof.
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Lemma 5.29 Let W (N) =
(

0 −1
N 0

)
. Then the map : f �→ f |[W (N)]k sends

G(N, k, ω) into G(N, k, ω).

Proof For any
(

a b

c d

)
∈ Γ0(N), we have

W (N)
(

a b

c d

)
W (N)−1 =

(
d −N−1c

−Nb a

)
∈ Γ0(N).

This shows the lemma.

Theorem 5.9 Let f(z) =
∞∑

n=0

c(n)qn ∈ G(N, k, ω). Put

L(s, f) =
∞∑

n=1

c(n)n−s,

RN (s, f) = (2π)−sNsΓ (s)L(s, f).

Then L(s, f) is absolutely convergent for Re(s) > 1 + k. RN (s, f) can be analytically
continued to a meromorphic function on the s-plane with possible poles s = 0 and
s = k of order 1, and the residues are c(0) and b(0)N−k/2 respectively, where b(0)
is the constant term of the Fourier expansion of f |[W (N)]k at i∞. And RN (s, f)
satisfies the following functional equation:

RN (s, f) = ikRN (k − s, f |[W (N)]k).

Proof For Re(s) > 1 + k, by Lemma 5.27, we know that L(s, f) is absolutely
convergent. A formal computation shows that∫ ∞

0

(f(iy) − c(0))ys−1dy =
∞∑

n=1

c(n)
∫ ∞

0

ys−1e−2πnydy

=(2π)−sΓ (s)L(s, f). (5.15)

We verify now the rationality of (5.15). For positive real numbers ε, M , we have∣∣∣∣ ∫ ∞
M

(f(iy) − c(0))ys−1dy

∣∣∣∣ � A

∫ ∞

M

e−2πyyRe(s)−1dy → 0, M → ∞,

with a constant A. Put

g = f |[W (N)]k =
∞∑

n=0

b(n)qn.

Then we have, by Lemma 5.29 and Lemma 5.27,∣∣∣∣ ∫ ε

0

(f(iy) − c(0))ys−1dy

∣∣∣∣ = ∣∣∣∣ ∫ ε

0

(
Nk/2y−kg

(
i

yN

)
− c(0)

)
ys−1dy

∣∣∣∣→ 0, ε → 0.



5.3 Zeta Functions of Modular Forms, Functional Equation, Weil Theorem 123

Since c(n) = O(nk), we see that
∞∑

n=1

c(n)e−2πny is absolutely convergent for y � ε.

Hence ∫ M

ε

(f(iy) − c(0))ys−1dy =
∞∑

n=1

c(n)
∫ M

ε

e−2πnyys−1dy.

For any given small number ε > 0, η > 0, there exists a sufficiently large number n0

such that ∣∣∣∣ ∑
n>n0

c(n)
∫ M

ε

e−2πnyys−1dy

∣∣∣∣ � ∑
n>n0

|c(n)|
∫ ∞

0

e−2πnyyt−1dy

= (2π)−tΓ (t)
∑

n>n0

|c(n)|n−t < η,

where t = Re(s). Therefore∣∣∣∣ ∫ ∞
0

(f(iy) − c(0))ys−1dy −
n0∑

n=1

c(n)
∫ ∞

0

e−2πnyys−1dy

∣∣∣∣
= lim

ε→0,
M→∞

∣∣∣∣ ∫ M

ε

(f(iy) − c(0))ys−1dy −
n0∑

n=1

c(n)
∫ M

ε

e−2πnyys−1dy

∣∣∣∣ < η.

This proves (5.15). Taking B = N−1/2, we have∫ ∞
0

(f(iy)−c(0))ys−1dy =
∫ B

0

(f(iy)−c(0))ys−1dy+
∫ ∞

B

(f(iy)−c(0))ys−1dy. (5.16)

The first integral is absolutely convergent for Re(s) > 1 + k, the second one is con-

vergent for any s. Substituting y by
1

yN
in the first integral, we get

∫ B

0

(f(iy) − c(0))ys−1dy

=
∫ ∞

B

(ikNk/2ykg(iy) − c(0))N−sy−s−1dy

=ikNk/2−s

∫ ∞
B

(g(iy) − b(0))yk−1−sdy − c(0)
sNs/2

− ikb(0)
(k − s)Ns/2

, (5.17)

The last integral in (5.17) is convergent for any s. Inserting (5.17) into (5.16), we
obtain

RN (s, f)=Ns/2

∫ ∞
B

(f(iy) − c(0))ys−1dy

+ikNk/2−s/2

∫ ∞
B

(g(iy) − b(0))yk−1−sdy − c(0)
s

− ikb(0)
k − s

. (5.18)
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This shows that RN (s, f) can be analytically continued to a meromorphic function
on the s-plane with two possible poles s = 0 and s = k of order 1, and with residues
c(0) and b(0) respectively. Since f = (−1)kg|[W (N)]k, by changing f and g, we get

ikRN (k − s, g) = ikNk/2−s/2

∫ ∞
B

(g(iy) − b(0))yk−s−1dy

+ Ns/2

∫ ∞
B

(f(iy) − c(0))ys−1dy − ikb(0)
k − s

− c(0)
s

= RN (s, f).

This completes the proof.

Lemma 5.30 (Phragmen-Lindelöf Theorem) Let

B = {s ∈ C|σ1 � Re(s) � σ2, Im(s) � t1}.

Let f(s) be a holomorphic function in an open set containing B such that

|f(s)| � Ce|s|γ , ∀s ∈ B,

where C, γ are positive constants. Assume furthermore that |f(s)| � M for any s on
the boundary of B. Then we have

|f(s)| � M, ∀s ∈ B.

Proof It is well known as the Phragmen-Lindelöf Theorem.

Theorem 5.10 Let {an}, {bn} be two complex series such that an = O(nσ0 ), bn =
O(nσ0 ) with σ0 a positive constant. Put

f(z) =
∞∑

n=0

ane2πinz, g(z) =
∞∑

n=0

bne2πinz, z ∈ H,

Df (s) =
∞∑

n=1

ann−s, Dg(s) =
∞∑

n=1

bnn−s,

Φf (s) = (2π)−sΓ (s)Df (s),

Φg(s) = (2π)−sΓ (s)Dg(s),

where Re(s) > σ0 + 1. If there exist constants A > 0, k > 0, C �= 0 such that

f(z) = CAk/2

(
Az

i

)−k

g
(
− 1/(Az)

)
, (5.19)

then Φf (s), Φg(s) can be analytically continued to a meromorphic function on the
s-plane with two possible poles s = 0, k of order 1, Φf (s), Φg(s) are bounded on any
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domain σ1 � Re(s) � σ2 not containing s = 0, k, and they satisfy the following
functional equation

Φf (s) = CA−s+k/2Φg(k − s). (5.20)

Conversely, if Φf (s), Φg(s) have these properties, then the equality (5.19) holds and
−a0, −b0 are the residues of Φf , Φg at s = 0 respectively.

Proof The first part can be showed similarly as in the proof of Theorem 5.9. We
prove now the second part of the theorem. Consider the following integral:

e−x =
1

2πi

∫
Re(s)=σ

Γ (s)
xs

ds, Re(x) > 0, σ > 0. (5.21)

Assume that Φf (s), Φg(s) have the properties stated in the theorem. Take

B = {s|σ1 � Re(s) � σ2, Im(s) � t1 > 0}.

We want to show that there exists a constant a such that Df(s) = O(|s|a) holds for
any s ∈ B.

We take σ1, σ2 such that σ1 is small enough and σ2 is large enough. Then Df(s)
and Dg(k− s) are bounded on Re(s) = σ2 and Re(s) = σ1 respectively. (5.20) can be
rewritten as

Df (s) = CA−s+k/2(2π)2s−k Γ (k − s)
Γ (k)

Dg(k − s).

By the Stirling formula, we see that

Γ (s) ∼
√

2πtσ−1/2e−π|t|/2, s = σ + it, |t| → +∞,

so that ∣∣∣∣Γ (k − s)
Γ (s)

∣∣∣∣ ∼ |t|k−2σ1 , Re(s) = σ1, |t| → +∞.

Therefore Df(s) = O(|s|k−2σ1 ) for any Re(s) = σ1. Let a = max{0, k − 2σ1}.
Then s−aDf (s) is bounded on the boundary of B. By assumption, Φf (s) is bounded
on B. The Stirling formula gives that Γ (s)−1 = O(e|s|γ) for any γ > 1. Hence we
obtain that Df(s) = O(e|s|γ), so that s−aDf (s) is bounded on B by Lemma 5.30.
Therefore Df (s) = O(|s|a) holds on B. This shows that

Φf (s) = O(|t|σ+a−1/2e−π|t|/2), |t| → ∞, Re(s) = σ (5.22)

holds uniformly for σ1 � σ � σ2.
For σ > k, put

F (x) =
1

2πi

∫
Re(s)=σ

Φ(s)x−sds, Re(x) > 0. (5.23)

Since |x−s| = e−σ log r+tθ (r = |x|, θ = arg(x), |θ| < π/2), by (5.22), we see that
the integral in (5.23) is absolutely convergent for any σ > k. Therefore F (x) is
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independent on σ by the holomorphy of Φ(s) (for Re(s) > k), (5.22) and the Cauchy
integral theorem. It is easy to verify that we can integrate (5.23) term by term for
any σ large enough:

F (x) =
1

2πi

∞∑
n=1

an

∫
Re(s)=σ

(2π)−sΓ (s)x−sn−sds =
∞∑

n=1

ane−2πnx,

by (5.21).
We can discuss Φg(s) similarly, i.e., for σ > k, put

G(x) =
1

2πi

∫
Re(s)=σ

Φg(s)x−sds,

then

G(x) =
∞∑

n=1

bne−2πnx.

We consider now the integral of Φ(s)x−s along the path: Re(s) = σ, Re(s) = k − σ,
Im(s) = t, Im(s) = −t with t > 0. By (5.22), we see that the integrals along
Im(s) = ±t converge to zero (for t → ∞). Let −a0, −b0 be the residues of Φf (s) and
Φg(s) at s = 0 respectively. Then (5.20) shows that b0CA−k/2 is the residue of Φf (s)
at s = k, so that, by the residue theorem, we have

F (x) =
1

2πi

∫
Re(s)=k−σ

Φf (s)x−sds − a0 + b0CA−
k
2 x−k.

By (5.20) again, we see that

F (x) + a0 = CA−
k
2 x−k(G(1/(Ax)) + b0).

That is,
∞∑

n=0

ane−2πnx = CA−
k
2 x−k

∞∑
n=0

bne−
2πn
(Ax) .

Let x = −iz in the above equality with z ∈ H, then by the definition of f, g, we obtain

f(z) = CA
k
2

(
Az

i

)−k

g

(
− 1

(Az)

)
,

which is the desired result. This completes the proof.

Remark 5.1 Let f , g be as in Theorem 5.9. Since W (N)2 = −N , we see that
f = (−1)kg|[W (N)]k, so that

f(z) = ikg

(
− 1

(Nz)

)(
Nz

i

)−k

N
k
2 .
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Hence the functions f, g satisfy the conditions in Theorem 5.10, so that we get The-
orem 5.9 from Theorem 5.10 (Take A = N , C = ik in Theorem 5.10).

We consider the following:
Condition(�) Let f(z) be a holomorphic function on H with generalized uniformly
absolutely convergent Fourier expansion:

f(z) =
∞∑

n=0

ane2πinz

and there exists a positive constant V such that

f(z) = O((Im(z))−V ), Im(z) → 0

holds uniformly for Re(z) (This is equivalent to an = O(nV )).
By a “generalized uniformly” property we mean that there exists a positive number

l such that the series has the property uniformly for Im(z) > l. By Theorem 5.10, we
have

Theorem 5.11 Let k, N be positive integers, and let

f(z) =
∞∑

n=0

ane2πinz, g(z) =
∞∑

n=0

bne2πinz

satisfy the Condition(�), and RN (s, f), RN (s, g) defined as in Theorem 5.9. Then
the following two assertions (1) and (2) are equivalent:

(1) g(z) = (f |[W (N)]k)(z);
(2) RN (s, f) and RN (s, g) can be continued analytically to a meromorphic function

on the s-plane and satisfy the functional equation:

RN (s, f) = ikRN (k − s, g)

and RN (s, f) +
a0

s
+

ikb0

k − s
is a bounded holomorphic function in any domain σ1 �

Re(s) � σ2.

Let f(z) satisfy Condition(�) and ψ a primitive Dirichlet character with conductor
m = mψ. Put

fψ(z) =
∞∑

n=0

ψ(n)ane2πinz ,

L(s, f, ψ) =
∞∑

n=1

ψ(n)ann−s,

RN (s, f, ψ) =
(

m
√

N

2π

)s

Γ (s)L(s, f, ψ).
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It is clear that

L(s, fψ) = L(s, f, ψ), RNm2(s, fψ) = RN (s, f, ψ). (5.24)

By (5.24) and Theorem 5.11, we have

Lemma 5.31 Let f , g be functions on H satisfying Condition(�), ψ a primitive
Dirichlet character with conductor m = mψ. Then the following two assertions are
equivalent:

(Aψ) fψ|[W (Nm2)]k = Cψgψ;
(Bψ) RN (s, f, ψ) can be continued analytically to a holomorphic function on the

s-plane, which is bounded in any domain σ1 � Re(s) � σ2, and satisfies the following
functional equation:

RN (s, f, ψ) = ikCψRN (k − s, g, ψ).

For any real number a, put α(a) =
(

1 a
0 1

)
.

Lemma 5.32 (1) Let f, ψ be as in Lemma 5.31. Then for any positive integer k,

we have

fψ = W (ψ)−1
m∑

u=1

ψ(u)f |
[
α
( u

m

)]
k
, (5.25)

where W (ψ) is the Gauss sum of ψ :

W (ψ) =
m∑

u=1

ψ(u)e
2πiu
m .

(2) Let f(z) ∈ G(N, k, χ), mχ the conductor of χ, M the least common multiple
of N, m2

ψ and mψmχ. Then fψ ∈ G(M, k, χψ2), and fψ is a cusp form if f is a cusp
form.

Proof For any integer u, we see that(
f

∣∣∣∣ [α( u

m

)]
k

)
(z) =

∞∑
n=0

ane
2πiun

m e2πinz .

Hence
m∑

u=1

ψ(u)
(

f

∣∣∣∣ [α( u

m

)]
k

)
(z) =

∞∑
n=0

( m∑
u=1

ψ(u)e2πiun/m

)
ane2πinz = W (ψ)fψ(z).

This shows the first part of the lemma.
Suppose now that f ∈ G(N, k, χ). Since

α(u/m)Γ (Nm2)α(u/m)−1 ⊂ Γ0(N),
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f |[α(u/m)]k ∈ G(Γ (Nm2), k). Hence fψ ∈ G(Γ (Nm2), k) by the first part of the

lemma. So we only need to show that, for any γ =
(
∗ ∗
∗ dγ

)
∈ Γ0(M),

fψ|[γ]k = (χψ2)(dγ)fψ

holds. For γ =
(

a b

cM d

)
∈ Γ0(M), put

γ′ = α(u/m)γα(d2u/m)−1,

then γ′ ∈ Γ0(M) ⊂ Γ0(N). Denote γ′ =
(

a′ b′

c′ d′

)
, then

d′ = d − cd2uM

m
≡ d (mod m).

Therefore
f |[α(u/m)γ]k = χ(d)f |[α(d2u/m)]k.

Multiplying on both sides by ψ(u) and adding them for u, by (5.25), we obtain

fψ|[γ]k = ψ(d2)χ(d)fψ .

This completes the proof.

Theorem 5.12 Let f ∈ G(N, k, χ), ψ a primitive Dirichlet character with conductor
m prime to N . Then

fψ|[W (Nm2)]k = Cψgψ,

where g = f |[W (N)]k and

Cψ = CN,ψ = χ(m)ψ(−N)
W (ψ)
W (ψ)

=
χ(m)ψ(N)W (ψ)2

m
.

Proof For any integer u prime to m, there exist integers n, v such that nm−Nuv =
1, then

α(u/m)W (Nm2) = (mI)W (N)
(

m −v

−uN n

)
α(v/m). (5.26)

Since g = f |[W (N)]k ∈ G(N, k, χ), we see that

f |[α(u/m)W (Nm2)]k = χ(m)g|[α(v/m)]k,

by (5.26). Now Lemma 5.32 gives

W (ψ)fψ|[W (Nm2)]k =
∑

u

ψ(u)f |[α(u/m)W (Nm2)]k

= χ(m)
∑

v

ψ(−Nv)g|[α(v/m)]k

= χ(m)ψ(−N)
∑

v

ψ(v)g|[α(v/m)]k

= χ(m)ψ(−N)W (ψ)gψ .
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This completes the proof.

Theorem 5.13 Let f(z) ∈ S(N, k, χ), ψ a primitive Dirichlet character with con-
ductor mψ prime to N . Then RN (s, f, ψ) is a bounded holomorphic function in any
domain σ1 � Re(s) � σ2, and satisfies the functional equation:

RN (s, f, ψ) = ikCψRN (k − s, f |[W (N)]k, ψ),

where Cψ is defined as in Theorem 5.12.

Proof This is a direct conclusion of Theorem 5.11, the equality (5.24) and Theorem
5.12.

The remaining part of this section is dedicated to proving Weil’s theorem which
may be looked upon as the inverse proposition of Theorem 5.13 under some assump-
tions.

For any integers m, v with (m, vN) = 1, take integers n, u such that mn−uvN = 1,
and put

γ(m, v) =
(

m −v
−uN n

)
∈ Γ0(N).

It is clear that the choices of n, u are not determined uniquely by m, v. But u mod m

is unique and
α(u/m)W (Nm2) = (mI)W (N)γ(m, v)α(v/m).

We can extend the action of GL+
2 (R) on functions on the upper half plane to the

group ring C[GL+
2 (R)]: for any β =

∑
α

aαα ∈ C[GL+
2 (R)], define

f |[β]k =
∑

α

aαf |[α]k, ∀f : H → C.

Lemma 5.33 Let k, N, f, g be as in Theorem 5.11, f, g satisfy the condition (A) in
Theorem 5.11 and the condition (Aψ) in Lemma 5.31. Let ψ be a primitive character
with conductor m > 4 a prime. Put

Cψ = χ(m)ψ(−N)
W (ψ)
W (ψ)

.

Then, for any integers u, v prime to m, we have

g|[(χ(m) − γ(m, u))α(u/m)]k = g|[(χ(m) − γ(m, v))α(v/m)]k.

Proof By the condition (Aψ) and Lemma 5.32, we see that∑
u

ψ(u)f |[α(u/m)W (Nm2)]k = χ(m)
∑

u

ψ(u)g|[α(u/m)]k. (5.27)
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For any u, take an integer v such that −uvN ≡ 1 (mod m), by (5.26), we have

f |[α(u/m)W (Nm2)]k = g|[γ(m, v)α(v/m)]k. (5.28)

The left hand side of (5.28) is independent of the choice of the representatives of
u mod m, so is the right one. Hence, by (5.27) and (5.28), we obtain∑

v modm

ψ(v)(g|[(χ(m) − γ(m, v))α(v/m)]k = 0. (5.29)

Let v1, v2 be integers prime to m. Multiplying the both sides of (5.29) by (ψ(v1) −
ψ(v2)) and adding them for all primitive characters ψ modulo m, we get

g|[(χ(m) − γ(m, v1))α(v1/m)]k = g|[(χ(m) − γ(m, v2))α(v2/m)]k.

This completes the proof.

Lemma 5.34 Let k, N, f, g be as in Lemma 5.33, m > 4, n > 4 primes, ψ a
primitive character mod m or mod n with conductor mψ. Put

Cψ = χ(mψ)ψ(−N)
W (ψ)
W (ψ)

.

Then, for any γ =
(

m −v

−uN n

)
∈ Γ0(N), we have

g|[γ]k = χ(γ)g.

Proof Put γ′ =
(

m v

uN n

)
, by Lemma 5.33, we have

g|[(χ(m) − γ′)α(−v/m)]k = g|[(χ(m) − γ)α(v/m)]k.

Hence
g|[(χ(m) − γ′)α(−2v/m)]k = g|[χ(m) − γ]k. (5.30)

Substituting γ by γ′−1, in the same way, we obtain

g|[χ(n) − γ′−1]k = g|[(χ(n) − γ−1)α(−2v/n)]k. (5.31)

Since χ(n)χ(m) = I,

χ(n) − γ′−1 = −χ(n)(χ(m) − γ′)γ′−1,

(χ(n) − γ−1)α(−2v/n) = −χ(n)(χ(m) − γ)γ−1α(−2v/n).
(5.32)

Inserting (5.32) into (5.31), we obtain

g|[χ(m) − γ′]k = g|[(χ(m) − γ)γ−1α(−2v/n)γ′]k. (5.33)
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Therefore, by (5.30) and (5.33), we see that

g|[(χ(m) − γ)(I − γ−1α(−2v/n)γ′α(−2v/m))]k = 0.

Put h = g|[χ(m)− γ]k = χ(m)g − g|[γ]k, then h is an analytically function on H and
satisfies

h|[β]k = h, (5.34)

where

β = γ−1α(−2v/n)γ′α(−2v/m) =
(

1 −2v/m

2uN/n −3 + 4/mn

)
.

Since Tr(β) = |−2+4/mn| < 2, β is an elliptic element. It is clear that |Tr(β)| �= 0, 1.
So that, the eigenvalues of β are not roots of the unity. Let z0 ∈ H be a fixed point
of β, put

ρ = (z0 − z0)−1

(
1 −z0

1 −z0

)
∈ SL2(C).

For z ∈ K := {z ∈ C||z| � 1}, put

p(z) = (h|[ρ−1]k)(z) = j(ρ−1, z)−kh(ρ−1z).

Then p(z) is an analytical function on K. Let

ρβρ−1 =
(

ζ 0
0 ζ−1

)
,

then, by (5.34), we get
p(ζ2z) = ζ−kp(z).

Let p(z) =
∞∑

n=0

anzn be the Taylor expansion of p(z) at z = 0, then anζ2n = ζ−kan.

Since ζ2n+k �= 1 we must have an = 0 and hence h(z) = 0. This shows that

g|[γ]k = χ(γ)g.

This completes the proof.

For any co-prime positive integers a, b, put S(a, b) = {a + bn|n ∈ Z}. Let M be a
set of some primes larger than 4, which satisfies the following two conditions:

(1) any element of M is prime to N ;
(2) M

⋂
S(a, b) �= ∅ for any S(a, b).

There exists such set M , e.g., let M be the set of all primes which are prime to
N and larger than 4, then M satisfies the conditions of Dirichlet’s theorem about the
existence of primes in an arithmetical progression.

We can now state and show the following important result:
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Theorem 5.14(A.Weil) Let k, N be positive integers, χ a Dirichlet character mod-
ulo N and satisfying χ(−1) = (−1)k. Let {an}∞n=0 and {bn}∞n=0 be two complex series
satisfying an = O(nμ) and bn = O(nμ) with μ a positive constant respectively. Put

f(z) =
∞∑

n=0

ane2πinz , g(z) =
∞∑

n=0

bne2πinz, z ∈ H.

If f and g satisfy the following two conditions:
(1) RN (s, f) and RN (s, g) satisfy the condition (B) in Theorem 5.11;
(2) for any primitive Dirichlet character ψ with conductor mψ ∈ M, RN (s, f, ψ)

and RN (s, g, ψ) satisfy the condition (Bψ) in Lemma 5.31 with corresponding constant

Cψ = CN,ψ = χ(mψ)ψ(−N)
W (ψ)
W (ψ)

,

then f(z) ∈ G(N, k, χ), g(z) ∈ G(N, k, χ), and g = f |[W (N)]k. If, moreover, there
exists a positive number δ such that L(s, f) is absolutely convergent at s = k− δ, then
f and g are cusp forms.

Proof Let γ =
(

a b

cN d

)
∈ Γ0(N). If c = 0, then a = d = ±1, so that g|[γ]k =

χ(d)g = χ(γ)g by χ(−1) = (−1)k. Assume now that c �= 0. By (a, cN) = (d, cN) = 1
and the properties of M , there exist integers s, t such that a + tcN , d + scN ∈ M .
Put m = a + tcN , n = d + scN , u = −c, v = −(b + sm + bst + N + nt), then(

a b

cN d

)
=
(

1 −t

0 1

)(
m −v

−uN n

)(
1 −s

0 1

)
.

By Lemma 5.34, we see that

g|[γ]k = χ(n)g = χ(d)g.

This shows that g|[γ]k = χ(γ)g for any γ ∈ Γ0(N). Since bn = O(nμ), g(z) =
O(y−1−μ), hence g ∈ G(N, k, χ). By Theorem 5.11 and Lemma 5.29, we see that
f = (−1)kg|[W (N)]k ∈ G(N, k, χ).

Assume now that L(s, f) is absolutely convergent at s = k − δ. Then L(s, f) is
absolutely convergent at s = k. By the functional equation, we see that RN (s, g) is
holomorphic at s = 0, so that b0 = 0 since −b0 is the residue of RN (s, g) at s = 0.

Hence a0 = 0. Put c(n) =
n∑

m=1

|am|, then

c(n) =
n∑

m=1

|am| � nk−δ
n∑

m=1

|am|m−k+δ.
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So that, c(n) = O(nk−δ). This implies that
∞∑

n=1

|c(n)|e−2πny is convergent and

∞∑
n=1

|c(n)|e−2πny = O(y−k+δ−1), y → 0.

Since |an| = c(n) − c(n − 1), we see that

|f(z)| � (1 − e−2πy)
∞∑

n=1

c(n)e−2πny.

Hence f(z) = O(y−k+δ) which implies that f is a cusp form. This completes the
proof.

5.4 Hecke Operators on the Space of Modular Forms with

Half-Integral Weight

Let N be a positive integer with 4|N , k an odd positive integer. Put

L : γ �→ {γ, j(γ, z)}

the map from Γ0(N) to Ĝ. Denote by Δ0(N), Δ1(N), Δ(N) the images of Γ0(N),
Γ1(N), Γ (N) under the map L respectively. Denote by G(Δ0(N), k/2), G(Δ1(N), k/2),
G(Δ(N), k/2) the spaces of holomorphic modular forms with weight k/2 and the
groups Δ0(N), Δ1(N), Δ(N) respectively. And let S(Δ0(N), k/2), S(Δ1(N), k/2),
S(Δ(N), k/2) be the corresponding spaces of cusp forms. Let Δ be a Fuchsian sub-
group of the first kind of Ĝ. For any f , g ∈ G(Δ, k/2) (at least one of them is in
S(Δ, k/2)), we can define the Petersson inner product

〈f, g〉 = 〈f, g〉Δ =
1

μ(D)

∫
D

f(z)g(z)yk/2−2dxdy,

where D is a fundamental domain of Δ and

μ(D) =
∫

D

y−2dxdy.

It is clear that 〈f, g〉Δ = 〈f, g〉Δ′ if Δ′ ⊂ Δ and [Δ : Δ′] < ∞.
It is obvious that Δ1(N) is a normal subgroup of Δ0(N). For any ξ ∈ Δ0(N), we

have a linear operator on G(Δ1(N), k/2) as follows:

ξ : f �→ f |[ξ]k, f ∈ G(Δ1(N), k/2),

where the definition of f |[ξ]k is the same as the one for modular forms with half
integral weight in Chapter 3. Hence we get a representation of the quotient group
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Δ0(N)/Δ1(N) � (Z/NZ)∗ on G(Δ1(N), k/2). Since (Z/NZ)∗ is an abelian group,
the space G(Δ1(N), k/2) can be decomposed into a direct sum of some one dimen-
sional representation spaces, so that

G(Δ1(N), k/2) =
⊕

ω

G(N, k/2, ω), (5.35)

where ω runs over all even characters modulo N . Similarly, we have

S(Δ1(N), k/2) =
⊕

ω

S(N, k/2, ω). (5.36)

Let E(Δ1(N), k/2), E(Δ(N), k/2) and E(N, k/2, ω) be the orthogonal complement
spaces of S(Δ1(N), k/2), S(Δ(N), k/2) and S(N, k/2, ω) in G(Δ1(N), k/2), G(Δ(N),
k/2) and G(N , k/2, ω) with respect to Petersson inner product respectively. For any
f ∈ E(N , k/2, ω), g ∈ S(N , k/2, ω′) with ω �= ω′, we see that

ω(dξ)〈f, g〉 = 〈f |[ξ]k, g〉 = 〈f, g|[ξ−1]k〉 = ω′(dξ)〈f, g〉

for any ξ ∈ Δ0(N). Since dξ is any element of (Z/NZ)∗, it shows that 〈f, g〉 = 0, i.e.,
f ∈ E(Δ1(N), k/2). Therefore

E(Δ1(N), k/2) =
⊕

ω

E(N, k/2, ω). (5.37)

Lemma 5.35 Let N, M be positive integers with N |M, ω an even character modulo
N, k an odd positive integer. Then

(1) E(Δ1(N), k/2) = G(Δ1(N), k/2)
⋂
E(Δ(M), k/2);

(2) E(N, k/2, ω) = G(N, k/2, ω)
⋂
E(Δ(M), k/2);

(3) For any f ∈ E(Δ1(N), k/2), α ∈ GL+
2 (Z), ξ = {α, φ(z)} ∈ Ĝ, we have

f |[ξ]k ∈ E(Δ(N det(α)), k/2).

Proof It is clear that

G(Δ1(N), k/2)
⋂
E(Δ(M), k/2) ⊂ E(Δ1(N), k/2),

since S(Δ1(N), k/2) ⊂ S(Δ(M), k/2). Let

Δ1(N) =
m⋃

j=1

Δ(M)ξj

be a disjoint union, where m = [Γ1(N) : Γ (M)] = [Δ1(N) : Δ(M)] < ∞. For any
f ∈ E(Δ1(N), k/2), g ∈ S(Δ(M), k/2), it is easy to see that

g′ =
m∑

j=1

g|[ξj ]k ∈ S(Δ1(N), k/2),
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so that

0 = 〈f, g′〉Δ1(N) =
m∑

j=1

〈f, g|[ξj ]k〉Δ(M)

=
m∑

j=1

〈f |[ξ−1
j ]k, g〉Δ(M) = m〈f, g〉Δ(M),

which shows that f ∈ E(Δ(M), k/2). That is,

E(Δ1(N), k/2) ⊂ E(Δ(M), k/2).

This shows the first assertion of the lemma. By (5.35), (5.37) and (1), we obtain (2).
We want now to prove (3). By (2), it is clear that f ∈ E(Δ(N det2(α)), k/2). For any
g ∈ S(Δ(N det(α)), k/2), then g|[ξ−1]k ∈ S(Δ(N det2(α)), k/2), and

〈f |[ξ]k, g〉Δ(N det(α)) = 〈f, g|[ξ−1]k〉Δ(N det2(α)) = 0.

This shows that f |[ξ]k ∈ E(Δ(N det(α)), k/2) and hence completes the proof.

Let Δ be a Fuchsian subgroup of Ĝ of the first kind. For ξ ∈ Ĝ, Δ and ξ−1Δξ are
commensurable, then we have a disjoint union:

ΔξΔ =
d⋃

j=1

Δξj .

For any f ∈ G(Δ, k/2), define

f |[ΔξΔ]k = (det(ξ))k/4−1
d∑

j=1

f |[ξj ]k.

It is easy to see that f |[ΔξΔ]k ∈ G(Δ, k/2). Let P be the projection from Ĝ to
GL+

2 (R). Put Γ = P (Δ). For α ∈ GL+
2 (R), Γ and α−1Γα are commensurable. Take

a ξ ∈ Ĝ such that P (ξ) = α. For any γ ∈ Γ
⋂

α−1Γα, P (ξL(γ)ξ−1) = αγα−1 ∈ Γ ,
then there exists a t(γ) such that

L(αγα−1) = ξL(γ)ξ−1{1, t(γ)}, γ ∈ Γ
⋂

α−1Γα.

The map t : γ �→ t(γ) is a homomorphism from Γ
⋂

α−1Γα to T := {z ∈ C||z| = 1}
which is independent on the choices of ξ.

Here and after, we write f |[∗] for f |[∗]k.

Lemma 5.36 Let Δ, Γ , ξ, α and the map t be as above, then L(Ker(t)) =
Δ
⋂

ξ−1Δξ. If [Γ : Ker(t)] < ∞, then Δ and ξ−1Δξ are commensurable. If tk �= 1,

then f |[ΔξΔ] = 0 for any f ∈ G(Δ, k/2).



5.4 Hecke Operators on the Space of Modular Forms with Half-Integral Weight 137

Proof If γ ∈ Ker(t), then

L(γ) = ξ−1L(αγα−1)ξ ∈ Δ
⋂

ξ−1Δξ.

Conversely, if L(γ) ∈ Δ
⋂

ξ−1Δξ, then ξL(γ)ξ−1 ∈ Δ. Since P (ξL(γ)ξ−1) = αγα−1,
we see that L(αγα−1) = ξL(γ)ξ−1, so that t(γ) = 1. This shows that L(Ker(t)) =
Δ
⋂

ξ−1Δξ. This implies also that [Δ : Δ
⋂

ξ−1Δξ] = [Γ : Ker(t)]. Since P is an
isomorphism from ξ−1Δξ to α−1Γα, we have

[ξ−1Δξ : Δ
⋂

ξ−1Δξ] = [α−1Γα : Ker(t)].

If [Γ : Ker(t)] < ∞, since Γ and α−1Γα are commensurable, we see that Δ and
ξ−1Δξ are commensurable.

Let Γ
⋂

α−1Γα =
⋃
i

Ker(t)αi, Γ =
⋃
j

(Γ
⋂

α−1Γα)γj be disjoint unions. Then

Δ =
⋃
j

L(Γ
⋂

α−1Γα)L(γj) =
⋃
i,j

(Δ
⋂

ξ−1Δξ)L(αiγj),

so that

ΔξΔ =
⋃
i,j

Δξ · L(αiγj). (5.38)

Since αi ∈ Γ
⋂

α−1Γα, we see that

ξL(αi) = L(ααiα
−1)ξ{1, t(αi)−1}.

For any f ∈ G(Δ, k/2), we have

f |[ΔξΔ] = (det(ξ))k/4−1
∑
i,j

f |[ξL(αiγj)]

= (det(ξ))k/4−1
∑

i

t(αi)k
∑

j

f |[ξL(γj)] = 0,

where we used the fact that
∑

i

t(αi)k = 0. This completes the proof.

Lemma 5.37 Let the notations be as in Lemma 5.36. Then the following assertions
are equivalent:

(1) L(Γ
⋂

α−1Γα) = Δ
⋂

ξ−1Δξ;
(2) L(αγα−1) = ξL(γ)ξ−1 for any γ ∈ Γ

⋂
α−1Γα;

(3) P is a bijection from ΔξΔ to ΓαΓ.
If the above conditions hold, then ΔξΔ =

⋃
Δξl if and only if ΓαΓ =

⋃
Γ · P (ξl).
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Proof The assertions (1) and (2) are both equivalent to Ker(t) = Γ
⋂

α−1Γα.
Since ααiα

−1 ∈ Γ (Using the notations in the proof of Lemma 5.36), P maps bi-
jectively the right coset ΔξL(αiγj) in (5.38) to the right coset Γαγj . Since ΓαΓ =⋃
j

Γαγj and (5.38), P is a bijection from ΔξΔ to ΓαΓ if and only if Ker(t) =

Γ
⋂

α−1Γα. This shows that the assertion (3) is equivalent to the assertions (1) and
(2). Finally, if the assertion (3) holds, then it is easy to see that ΔξΔ =

⋃
Δξl if and

only if ΓαΓ =
⋃

ΓP (ξl). This completes the proof.

Let Δ = Δ0(N) with 4|N and Γ = Γ0(N). Put

α =
(

m 0
0 n

)
,

with m, n positive integers. Take ξ = {α, t(n/m)1/4} ∈ Ĝ. For any γ ∈ Γ0(4), put

γ∗ = {γ, j(γ, z)}.

If γ =
(

a b
c d

)
∈ Γ
⋂

α−1Γα, then

αγα−1 =
(

m 0
0 n

)(
a b
c d

)(
m−1 0

0 n−1

)
=
(

a bmn−1

cnm−1 d

)
∈ Γ ,

so that,

(αγα−1)∗ =
{

αγα−1, ε−1
d

(
cmn

d

)
(cnz/m + d)1/2

}
= ξγ∗ξ−1

{
1,

(
mn

d

)}
.

This shows that γ �→
(mn

d

)
is the map t, so that f |[ΔξΔ] = 0 for any f ∈ G(Δ, k/2)

if
(mn

d

)
is not identical to 1.

Let χm denote the character
(m

·
)
.

Lemma 5.38 Let m be a positive integer with m|N∞ and the conductor of the char-

acter χm is a divisor of N . Put Δ1 = Δ1(N), α =
(

1 0
0 m

)
and ξ = {α, m1/4} ∈ Ĝ.

Then [Δ1ξΔ1] maps G(N, k/2, ω), S(N, k/2, ω) and E(N, k/2, ω) into G(N, k/2, ωχm),
S(N, k/2, ωχm) and E(N, k/2, ωχm) respectively. Suppose

f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω),
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then

f |[Δ1ξΔ1] =
∞∑

n=0

a(mn)e(nz).

Proof For any f ∈ G(N, k/2, ω), it is easy to see that

g = f |[Δ1ξΔ1] ∈ G(Δ1, k/2).

For any γ =
(

a b

c d

)
∈ Γ0(mN) with mN |b, put δ = γ∗, ε = ξδξ−1. Since

αγα−1 =
(

a bm−1

cm d

)
∈ Γ0(N),

we see that

ε = (αγα−1)∗
{

1,

(
m

d

)}
.

Since δΔ1δ
−1 = εΔ1ε

−1 = Δ1, we have

Δ1ξΔ1 · Δ1δΔ1 = Δ1ξδΔ1 = Δ1εξΔ1 = Δ1εΔ1 · Δ1ξΔ1.

And hence

g|[δ] = f |[Δ1ξΔ1] · [δ] = f |[ε] · [Δ1ξΔ1] = ω(d)
(

m

d

)
g.

For any γ′ ∈ Γ0(N), we can find an element β ∈ Γ1(N) such that βγ′ ∈ Γ0(mN)
and the upper right entry of βγ′ is divisible by mN , so that g ∈ G(N, k/2, ωχm).
Since the value of g at a cusp point is a linear combination of the values of f at some
cusp points, [Δ1ξΔ1] maps S(N, k/2, ω) into S(N, k/2, ωχm). If f ∈ E(N, k/2, ω), by
Lemma 5.35, f ∈ E(Δ(mN), k/2). For any g′ ∈ S(Δ(N), k/2), by Lemma 5.26 (it is
clear that the lemma holds also for the half integral case), we have

〈g, g′〉 = 〈f, g′|[Δ1ξΔ1]〉 = 0,

since g′|[Δ1ξΔ1] ∈ S(Δ(mN), k/2). This shows that g ∈ E(Δ(N), k/2), so that
[Δ1ξΔ1] sends E(N, k/2, ω) into E(N, k/2, ωχm).

Denote by Γ1 the group Γ1(N). By Lemma 5.17, we have

Γ1αΓ1 =
m⋃

b=1

Γ1

(
1 b

0 m

)
=

m⋃
b=1

Γ1α

(
1 b

0 1

)
.

If γ =
(

a b

c d

)
∈ Γ1

⋂
α−1Γ1α, then αγα−1 =

(
a bm−1

cm d

)
∈ Γ1. Since d ≡ 1

(mod N), we see that (αγα−1)∗ = ξγ∗ξ−1. By Lemma 5.37, we have

Δ1ξΔ1 =
m⋃

b=1

Δ1ξ

(
1 b

0 1

)∗
.
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If f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω), then

f |[Δ1ξΔ1] = mk/4−1
m∑

b=1

f

∣∣∣∣[ξ( 1 b

0 1

)∗ ]

= m−1
m∑

b=1

f

(
z + b

m

)

= m−1
∞∑

n=0

a(n)e(nz/m)
m∑

b=1

e(nb/m)

=
∞∑

n=0

a(mn)e(nz).

This completes the proof.

Lemma 5.39 Let m, n be square integers, and

α =
(

1 0
0 m

)
, β =

(
1 0
0 n

)
,

ξ = {α, m
1
4 }, η = {β, n

1
4 }.

Suppose that (m, n) = 1 or m|N∞, and Δ is any one of Δ0(N), Δ1(N) and Δ(N),
then

ΔξΔ · ΔηΔ = ΔξηΔ = ΔηΔ · ΔξΔ.

Proof Denote by Γ the group P (Δ). By Theorem 5.5, Lemma 5.8 and Theorem
5.4, we see that

ΓαΓ · ΓβΓ = ΓαβΓ = ΓβΓ · ΓαΓ .

Let ΓαΓ =
⋃

Γαi, ΓβΓ =
⋃

Γβj , ΓαβΓ =
⋃

Γεk be disjoint unions. Since mn is a
square, by Lemma 5.37, we have

ΔξΔ =
⋃

Δα′i, ΔηΔ =
⋃

Δβ′j , ΔξηΔ =
⋃

Δε′k

with P (α′i) = αi, P (β′j) = βj , P (ε′k) = εk. Since there exists unique (i, j) such that
Γαiβj = Γαβ, there exists an unique (i, j) such that Δα′iβ

′
j = Δξη. This completes

the proof.

Let m be a square, α =
(

1 0
0 m

)
and ξ = {α, m

1
4 }. Put

Γ0 = Γ0(N), Δ0 = Δ0(N), Δ1 = Δ1(N).
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Let Γ0αΓ0 =
⋃

Γ0αi, Δ0ξΔ0 =
⋃

Δ0ξi with αi = P (ξi). We define the Hecke
operator TN,k,ω(m) on G(N, k/2, ω) as follows:

f |TN,k,ω(m) = mk/4−1
∑

i

ω(ai)f |[ξi],

where αi =
(

ai ∗
∗ ∗

)
. It is easy to verify that the actions of TN,k,ω on G(N, k/2, ω)

coincides with the one of [Δ1ξΔ1], which sends S(N, k/2, ω) and E(N, k/2, ω) into
themselves respectively.

Theorem 5.15 Let p be a prime, f =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω). Put

f |TN,k,ω(p2) =
∞∑

n=0

b(n)e(nz).

Then

b(n) = a(p2n) + ω1(p)
(

n

p

)
pλ−1a(n) + ω(p2)pk−2a(n/p2), (5.39)

where λ =
k − 1

2
, ω1 = ω

(
(−1)λ

∗

)
and a(n/p2) = 0 if p2 � n.

Proof If p|N , we have b(n) = a(p2n) by Lemma 5.38. So we assume that p � N .

Put α =
(

1 0
0 p2

)
and ξ = {α, p

1
2 }. The following p2 + p elements consist of a

complete set of representatives of right cosets of Γ0 in Γ0αΓ0:

αb =
(

1 b

0 p2

)
=
(

1 0
0 p2

)(
1 b

0 1

)
, 0 � b < p2,

βh =
(

p h

0 p

)
=
(

1 0
psN 1

)(
1 0
0 p2

)(
p h

−sN r

)
, 0 < h < p,

σ =
(

p2 0
0 1

)
=
(

p2 −t

N d

)(
1 0
0 p2

)(
p2d t

−N 1

)
,

where for each h we choose r, s such that pr+shN = 1, and t, d satisfy p2d+ tN = 1.
For γ, δ ∈ Γ0, we define L(γαδ) = γ∗ξδ∗. By Lemma 5.29, this is a bijection from
Γ0αΓ0 to Δ0ξΔ0, L(αb) (0 � b < p2), L(βh) (0 < h < p) and L(σ) consist of a
complete set of representatives of right cosets of Δ0 in Δ0ξΔ0. A direct computation
shows that

L(αb) = {αb, p
1
2 }, L(βh) =

{
βh, ε−1

p

(
−h

p

)}
, L(σ) = {σ, p−

1
2 }.
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Therefore

f |TN,k,ω(p2) = pk/2−2

(∑
b

f |[L(αb)] + ω(p)
∑

h

f |[L(βh)] + ω(p2)f |[L(σ)]
)

. (5.40)

But

pk/2−2
∑

b

f |[L(αb)]=pk/2−2
∑

b

f((z + b)/p2)p−k/2

=p−2
∞∑

n=0

a(n)e(nz/p2)
p2−1∑
b=0

e(bn/p2)

=
∞∑

n=0

a(p2n)e(nz), (5.41)

pk/2−2
∑

h

f |[L(βh)]=pk/2−2εk
p

∑
h

(
−h

p

)
f(z + h/p)

=pk/2−2εk
p

(
−1
p

) ∞∑
n=0

a(n)e(nz)
p−1∑
h=1

(
h

p

)
e(nh/p)

=pλ−1

(
(−1)λ

p

) ∞∑
n=0

(
n

p

)
a(n)e(nz), (5.42)

where we used the Gauss sum

p−1∑
h=1

(
h

p

)
e(h/p) = εpp

1
2 .

It is clear that

pk/2−2f |[L(σ)] = pk−2
∞∑

n=0

a(n)e(np2z). (5.43)

Inserting (5.41)–(5.43) into (5.40), we obtain the desired result. This completes the
proof.

Let m be any positive integer, we define a translation operator V (m) as follows:

f |V (m) = f(mz), ∀f ∈ G(N, k/2, ω).

Theorem 5.16 If f ∈ G(N , k/2, ω) (or S(N, k/2, ω), E(N, k/2, ω) respectively),
then f |V (m) ∈ G(mN, k/2, ωχm) (or S(mN, k/2, ωχm), E(mN, k/2, ωχm) respectively).

Proof Put ξ =
{(

m 0
0 1

)
, m−1/4

}
. Then

f |V (m) = m−k/4f |[ξ].
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For any γ =
(

a b

c d

)
∈ Γ0(mN), we see that

(
m 0
0 1

)
γ

(
m−1 0

0 1

)
=
(

a bm

cm−1 d

)
∈ Γ0(N),

so that,

γ∗ = ξ−1

(
a bm

cm−1 d

)∗
ξ

{
1,

(
m

d

)}
.

Hence

f |[ξ][γ∗] = ω(d)
(

m

d

)
f |[ξ],

which shows that f |V (m) ∈ G(mN, k/2, ωχm). The still open assertion can be proved
along similar lines as used in the proof of Lemma 5.38. This completes the proof.

We introduce now the Fricke operator W (Q). Let Q be a positive divisor of N such

that (Q, N/Q) = 1. Take integers u, v such that vQ + uN/Q = 1, then
(

Q −1
uN vQ

)
satisfies (

Q −1
uN vQ

)
Γ0(N)

(
Q −1

uN vQ

)−1

= Γ0(N).

If 2 � Q, put

W (Q) =
{(

1 0
0 Q

)
, Q

1
4

}(
Q −1

uN/Q v

)∗
=
{(

Q −1
uN vQ

)
, ε−1

Q Q
1
4 (uNQ−1z + v)

1
2

}
.

If 4|Q, put

W (Q) =
{(

0 −1
Q 0

)
, Q

1
4 (−iz)

1
2

}(
uN/Q v
−Q 1

)∗
=
{(

Q −1
uN vQ

)
, e−πi/4Q

1
4 (uNQ−1z + v)

1
2
}
.

It is clear that W (Q) ∈ Ĝ is dependent on the choices of u, v.

Theorem 5.17 Let f ∈ G(N, k/2, ω1ω2) with ω1 and ω2 characters modulo Q

and N/Q respectively. Then g = f |[W (Q)] ∈ G(N, k/2, ω1ω2χQ) is independent on
the choices of u, v. And the operator [W (Q)] sends S(N, k/2, ω1ω2) and E(N, k/2,

ω1ω2) into S(N, k/2, ω1ω2χQ) and E(N, k/2, ω1ω2χQ) respectively.
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Proof Suppose Q is an odd(we can similarly prove the theorem if 4|Q) and u1, v1

satisfy v1Q + u1N/Q = 1 also. Then{(
1 0
0 Q

)
, Q

1
4

}(
Q −1

uN/Q v

)∗(
v1 1

−u1N/Q Q

)∗{( 1 0
0 Q−1

)
, Q−

1
4

}
=
(

1 0
(uv1 − vu1)N 1

)∗
.

This shows that g is independent on the choices of u, v since
(

1 0
(uv1 − vu1)N 1

)∗
∈

Δ0(N). Let γ =
(

a b

c d

)
∈ Γ0(N), α =

(
Q −1

uN/Q v

)
, then

γ0 =
(

a0 b0

c0 d0

)
=
(

Q −1
uN vQ

)
γ

(
Q −1

uN vQ

)−1

∈ Γ0(N)

and

d0 = auN/Q + buN + cv + dvQ.

Since uN/Q + vQ = 1, ad ≡ 1 (mod N), we get d0 ≡ a (mod 4Q) and d0 ≡
d (mod N/Q). But

αγα−1 =
(

a0 b0Q

c0/Q d0

)
,

so that

W (Q)γ∗W (Q)−1

=
{(

1 0
0 Q

)
, Q

1
4

}
(αγα−1)∗

{(
1 0
0 Q−1

)
, Q−

1
4

}
=
{(

1 0
0 Q

)
, Q

1
4

}{(
1 0
0 Q−1

)
γ0, ε

−1
d0

(
c0Q

d0

)
(c0z + d0)

1
2 Q−

1
4

}
= γ∗0

{
1,

(
Q

d0

)}
= γ∗0

{
1,

(
Q

d

)}
,

since
(

Q

d0

)
=
(

Q

a

)
=
(

Q

d

)
. Therefore we have

g|γ∗ = f |[W (Q)γ∗] = (ωχQ)(d0)g = (ω1ω2χQ)(d)g,

where ω = ω1ω2. This shows that [W (Q)] sends G(N , k/2, ω1ω2) into G(N , k/2,
ω1ω2χQ). It is easy to see that [W (Q)] sends also S(N , k/2, ω1ω2) into S(N , k/2,
ω1ω2χQ). Then, by Lemma 5.35, we see that [W (Q)] sends also E(N , k/2, ω1ω2) into
E(N , k/2, ω1ω2χQ). This completes the proof.



5.4 Hecke Operators on the Space of Modular Forms with Half-Integral Weight 145

It is easy to verify that W (Q)2 is the identity operator. If Q=N , since
(

u −1
vN 1

)∗
∈ Δ0(N) and (

u −1
vN 1

)∗{(
N −1
uN vN

)
, e−πi/4N

1
4 (uz + v)

1
2

}
=
{(

0 −1
N 0

)
, N

1
4 (−iz)

1
2

}
,

we can take W (N) =
{(

0 −1
N 0

)
, N

1
4 (−iz)

1
2

}
.

Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω), and ψ a primitive character modulo m.

Put

Twist(f) =
m∑

u=1

ψ(u)f
(
z +

u

m

)
=

m∑
u=1

ψ(u)e
( u

m

) ∞∑
n=0

ψ(n)a(n)e(nz).

Theorem 5.18 Let s be the conductor of ω. Then Twist(f) ∈ G(N∗, k/2, ωψ2)
with N∗ the least common multiple of N, sm, 4m and m2. If f ∈ S(N, k/2, ω) or
f ∈ E(N, k/2, ω), then Twist(f) ∈ S(N∗, k/2, ωψ2) or Twist(f) ∈ E(N∗, k/2, ωψ2)
respectively.

Proof Let γ =
(

a b

cN∗ d

)
∈ Γ0(N∗) and

a′ = a + cuN∗/m,

b′ = b + du(1 − ad)/m − cd2u2N∗/m2,

d′ = d − cd2uN∗/m.

It is clear that a′, b′, d′ are integers. It is easy to verify that{(
1 u/m

0 1

)
, 1
}

γ∗ =
(

a′ b′

cN∗ d′

)∗{(
1

d2u

m
0 1

)
, 1
}

,

where we used the facts: d ≡ d′ (mod 4) and
(

cN∗

d′

)
=
(

cN∗

d

)
. Hence

Twist(f)|γ∗ =
m∑

u=1

ψ(u)f
∣∣∣∣[{( 1

u

m
0 1

)
, 1
}

γ∗
]

= ω(d′)
m∑

u=1

ψ(u)f
∣∣∣∣[{

(
1

d2u

m
0 1

)
, 1
}]

= (ωψ2)(d)Twist(f),
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where we used the fact sm|N∗. This shows that Twist(f) ∈ G(N∗, k/2, ωψ2). The
rest results can be proved similarly as in the proof of Theorem 5.17. This completes
the proof.

The operator Twist(·) is called the twist operator.

Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N , k/2, ω). We define the conjugate operator H

as follows:

(f |H)(z) = f(−z) =
∞∑

n=0

a(n)e(nz).

For any γ =
(

a b
c d

)
∈ Γ0(N), we have

(f |H)(γ(z)) = f

(
a(−z) − b

−c(−z) + d

)
= ω(d)εk

d

(
−c

d

)
(cz + d)k/2f(−z).

That is, f |H ∈ G(N , k/2, ω). It is easy to verify that f |H ∈ S(N , k/2, ω) (resp.
∈ E(N , k/2, ω)) if f ∈ S(N , k/2, ω) (resp. ∈ E(N , k/2, ω)).

Theorem 5.19 Let f ∈ G(N, k/2, ω). Then

(f |V (m))|TmN,k,ωχm(p2) = (f |TN,k,ω(p2))|V (m), p � m,

(f |H)|TN,k,ω(p2) = (f |TN,k,ω(p2))|H,

(f |[W (N)])|TN,k,ωχN (p2) = ω(p2)(f |TN,k,ω(p2))|[W (N)], p � N.

Proof The first two equalities can be deduced by (5.39) and the definitions of
V (m) and H respectively. By (5.40), we have

(f |[W (N)])|TN,k,ωχN (p2)|[W (N)]−1 =pk/2−2

( p2−1∑
b=0

f |[W (N)L(αb)W (N)−1]

+ω(p)
(

N

p

) p−1∑
h=1

f |[W (N)L(βh)W (N)−1]

+ω(p2)f |[W (N)L(σ)W (N)−1]
)

. (5.44)

Write α =
(

1 0
0 p2

)
, β =

(
0 −1
N 0

)
, then βαβ−1 = σ. It is easy to see that

W (N)L(α)W (N)−1 = L(σ).

For any γ =
(

a b

c d

)
∈ Γ0(N), it is easy to verify that

W (N)L(γ)W (N)−1 = L(βγβ−1)
{

1,

(
N

d

)}
.
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For any δ = γ1αγ2 =
(
∗ ∗
∗ d

)
, γ1, γ2 ∈ Γ0(N), then

W (N)L(δ)W (N)−1 =W (N)L(γ1)W (N)−1

×W (N)L(α)W (N)−1W (N)L(γ2)W (N)−1

=L(βδβ−1)
{
1,
(N

d

)}
(5.45)

If p � b, taking integers s, t such that sp2 + tbN = 1, we have

βαbβ
−1 =

(
p2 0

−bN 1

)
=
(

p2 t

−bN s

)(
1 −t

0 p2

)
.

If p|b �= 0, taking integers s′, t′ such that s′p2 + t′bN = p, we have

βαbβ
−1 =

(
p2 0

−bN 1

)
=
(

p t′

−bN/p s′

)(
p −t′

0 p

)
.

For any h (0 < h < p), taking integers s′′, t′′ such that s′′p + t′′hN = 1, we have

ββhβ−1 =
(

p 0
−hN p

)
=
(

p t′′

−hN s′′

)(
1 −t′′p
0 p2

)
.

By (5.45), we see that the right hand side of (5.44) equals to

pk/2−1(f |[L(σ)] + ω(p2)
∑

0<b<p2,p�b

f |[L(αb)]

+ ω(p)
∑

0<h<p

f |[L(βh)] + ω(p2)
∑

0<b<p2,p|b
f |[L(αb)]

+ ω(p2)f |[L(α0)]) = ω(p2)f |TN,k,ω(p2).

This completes the proof.

Let p0 be a prime with p0|N/4. Then Γ0(N) is a subgroup of Γ0(N/p0). Denote
by u the index of Γ0(N) in Γ0(N/p0). Let

Γ0(N/p0) =
u⋃

j=1

Γ0(N)Aj

be a disjoint union, where Aj =
(

aj bj

cj dj

)
∈ Γ0(N/p0). Let f ∈ G(N, k/2, ω). We

define the trace operator Tr(ω) as follows:

f |Tr(ω) =
u∑

j=1

ω(aj)f |[A∗j ],

which is independent on the choices of {Aj}u
j=1. If ω is a character modulo N/p0,

then f |Tr(ω) ∈ Γ0(N/p0, k/2, ω). If f ∈ G(N/p0, k/2, ω), then f |Tr(ω) = uf .
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Theorem 5.20 Let f ∈ G(N, k/2, ω). Assume ω is a character modulo N/p0. Then
for any prime p prime to N, we have

(f |Tr(ω))|TN/p0,k,ω(p2) = (f |TN,k,ω(p2))|Tr(ω).

Proof For any integers a, c, we can find two integers s, t such that (s, t) = 1,
p2|sa + tc and N |s. This implies that if necessary, we can left multiply Aj by an
element γ of Γ0(N) such that the lower left entry of γAj is divisible by p2. So we can
assume that p2|cj . Put

ξ =
{(

1 0
0 p2

)
, p1/2

}
, Γ0(N)ξΓ0(N) =

⋃
i

Γ0(N)ξα∗i , αi ∈ Γ0(N).

For any i, we have
u∑

j=1

ω(aj)A∗j ξα
∗ = ξα∗i

u∑
j=1

ω(aj)(α−1
i )∗

(
aj bjp

2

cjp
−2 dj

)∗
α∗i . (5.46)

For any two positive integers j, j′ satisfying 1 � j < j′ � u, if there exists γ ∈ Γ0(N)
such that (

1 0
0 p2

)−1

Aj

(
1 0
0 p2

)
= γ

(
1 0
0 p2

)−1

Aj′

(
1 0
0 p2

)
,

then

Aj =
(

1 0
0 p2

)
γ

(
1 0
0 p2

)−1

Aj′ ,

and hence (
1 0
0 p2

)
γ

(
1 0
0 p2

)−1

= AjA
−1
j′ ∈ Γ0(N/p0).

Since γ ∈ Γ0(N), we see that(
1 0
0 p2

)
γ

(
1 0
0 p2

)−1

∈ Γ0(N).

This contradicts the fact that Aj and Aj′ belong to different right cosets of Γ0(N) in
Γ0(N/p0). Therefore {(

1 0
0 p2

)−1

Aj

(
1 0
0 p2

)
, 1 � j � u

}
is a complete set of representatives of right cosets of Γ0(N) in Γ0(N/p0). Therefore{

α−1
i

(
aj bjp

2

cjp
−2 dj

)
αi, 1 � j � u

}
is also a complete set of representatives of right cosets of Γ0(N) in Γ0(N/p0). Hence
the equality in the theorem holds due to (5.46) and the definitions of Tr(ω) and T∗,k,ω.
This completes the proof.
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Put
S(ω) := S(ω, N, p0) := p

k/4
0 u−1[W (N)]Tr(ωχN )[W (N/p0)].

Theorem 5.21 Let ωχp0 be well-defined modulo N/p0. Then
(1) S(ω) sends G(N, k/2, ω) into G(N/p0, k/2, ωχp0);
(2) If (m, p0) = 1 and f ∈ G(N, k/2, ω), then

f |S(ω, N, p0) = f |S(ω, mN, p0);

(3) If p � N and f ∈ G(N, k/2, ω), then

(f |S(ω))|TN/p0,k,ωχp0
(p2) = (f |TN,k,ω(p2))|S(ω);

(4) If g ∈ G(N/p0, k/2, ωχp0), then g|V (p0) ∈ G(N, k/2, ω) and

(g|V (p0))|S(ω, N, p0) = g.

(5) Let p be a prime with 4p|N, p �= p0, and ωχp well-defined modulo N/p, if
g ∈ G(N/p, k/2, ωχp), then

(g|V (p))|S(ω, N, p0) = (g|S(ωχp, N/p, p0))|V (p).

Proof If ωχp0 is well-defined modulo N/p0, then ωχN = ωχp0χN/p0 is too, so that
(1) can be deduced from Theorem 5.17. Let(

a b

c d

)
∈ Γ0(mN/p0)

with p0 � m. Since

W (mN)
(

a b

c d

)∗
W (mN/p0) = {mI, 1}W (N)

(
a bm

cm−1 d

)∗
W (N/p0),

we see that (2) holds. If p � N , then Theorem 5.19 and Theorem 5.20 give (3). Since{(
p0 0
0 1

)
, p
− 1

4
0

}
W (N) = {p0I, 1}W (N/p0),

we have
(g|V (p0))|[W (N)] = p

−k/4
0 g|[W (N/p0)].

Since g|[W (N/p0)] ∈ G(N/p0, k/2, ωχN ), it is fixed by u−1Tr(ωχN ), (4) holds by
[W (N/p0)]2 = I.

Finally, since 4pp0|N , ωχpp0 is well-defined modulo N/pp0 and{(
p 0
0 1

)
, p−

1
4

}
W (N) = {pI, 1}W (N/p),

W (N/p0) = W (N/pp0)
{(

p 0
0 1

)
, p−

1
4

}
,

ωχN = ωχpχN/p,

(5) holds. This completes the proof.
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Finally, we discuss now Zeta functions and Euler products of modular forms with
half integral weight.

Theorem 5.22 Let f(z) =
∞∑

n=0

c(n)qn ∈ G(N, k/2, ω). Put

L(s, f) =
∞∑

n=1

c(n)n−s,

RN (s, f) = (2π)−sNs/2Γ (s)L(s, f).

Then L(s, f) is absolutely convergent for Re(s) > 1+k/2. RN (s, f) can be analytically
continued to a meromorphic function on the s-plane with possible poles s = 0 and
s = k/2 of order 1, and the residues of RN (s, f) at s = 0 and k/2 are c(0) and
b(0)N−k/4 respectively, where b(0) is the constant term of the Fourier expansion of
f |[W (N)] at i∞. And RN (s, f) satisfies the following functional equation:

RN (s, f) = RN (k/2 − s, f |[W (N)]).

Proof This can be proved completely similarly as done in the proof of Theorem
5.9.

Lemma 5.40 Let t be a positive integer, p a prime. Let

f(z) =
∞∑

n=0

c(n)e(nz) ∈ G(N, k/2, ω)

be an eigenfunction of TN,k,ω(p2) with eigenvalue λp. Suppose that p|N or p2 � t.
Then

(1) λpc(t) = c(p2t) + ω1(p)
(

t

p

)
pλ−1c(t);

(2) λpc(p2mt) = c(p2m+2t) + ω1(p2)pk−2c(p2m−2t) for any positive integer m, and

∞∑
n=1

c(tn2)n−s =
( ∑

(p,n)=1

c(tn2)n−s

)(
1 − ω1(p)

(
t

p

)
pλ−1−s

)
× (1 − λpp

−s + ω(p2)pk−2−2s)−1,

where λ =
k − 1

2
, ω1 = ω

(
(−1)λ

·

)
.

Proof By Theorem 5.15 and f |TN,k,ω(p2) = λpf , we obtain immediately, if
(n, p) = 1, that

λpc(tn2)= c(tp2n2) + ω1(p)
(

t

p

)
pλ−1c(tn2), (5.47)

λpc(tp2mn2)= c(tp2m+2n2) + ω(p2)pk−2c(tp2m−2n2), m > 0. (5.48)
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This shows the first two equalities (1) and (2). Put

Hn(x) =
∞∑

m=0

c(tn2p2m)xm.

Multiplying both sides of (5.47) and (5.48) by x and xm+1 respectively, we get

λpxHn(x) = Hn(x) − c(tn2) + ω1(p)
(

t

p

)
pλ−1c(tn2)x + ω(p2)pk−2x2Hn(x),

so that

Hn(x) = c(tn2)
(

1 − ω1(p)
(

t

p

)
pλ−1x

)
(1 − λpx + ω(p2)pk−2x2)−1.

Since
∞∑

n=1

c(tn2)n−s =
∑

(p,n)=1

Hn(p−s)n−s, we see that

∞∑
n=1

c(tn2)n−s

=
∑

(p,n)=1

n−sc(tn2)
(

1 − ω1(p)
(

t

p

)
pλ−1p−s

)
(1 − λpp

−s + ω(p2)pk−2p−2s)−1

=
( ∑

(p,n)=1

c(tn2)n−s

)(
1 − ω1(p)

(
t

p

)
pλ−1−s

)
(1 − λpp

−s + ω(p2)pk−2−2s)−1.

This completes the proof.

Theorem 5.23 Let f(z) =
∞∑

n=0

c(n)e(nz) ∈ G(N, k/2, ω) satisfy f |TN,k,ω(p2) =

λpf for any prime p. Suppose that t is a square free positive integer and prime to N .
Then we have the following Euler product:

∞∑
n=1

c(tn2)n−s = c(t)
∏
p

(
1−ω1(p)

(
t

p

)
pλ−1−s

)
(1−λpp

−s+ω(p2)pk−2−2s)−1. (5.49)

Proof This is a direct conclusion of Lemma 5.40.

Remark 5.2 We recall the Euler product of modular forms with integral weight

k (see Theorem 5.8). Let g =
∞∑

n=0

c(n)e(nz) ∈ G(N, l, ψ) not be a constant with

c(1) = 1. Assume that for any positive integer n, we have

g|[T(n)]l = λng, λn ∈ R.
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Then c(n) = λn, and we have

∞∑
n=1

λnn−s =
∏
p

(
1 − c(p)p−s + ψ(p)pk−1−2s

)−1
.

So the denominator of (5.49) is very similar to an Euler product (take l = k − 1,
ψ = ω2). Put ∑

n=1

A(n)n−s =
∏
p

(
1 − λpp

−s + ω(p2)pk−2−2s
)−1

,

F (z) =
∞∑

n=1

A(n)e(nz).

Shimura showed that F (z) is a modular form with weight k − 1, character ω2 and
level N ′ if f ∈ S(N , k/2, ω), k � 3. We call the map from f ∈ S(N, k/2, ω) to
F (z) ∈ G(N ′, k − 1, ω2) the Shimura lifting. We will discuss the map in detail later.
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Chapter 6

New Forms and Old Forms

6.1 New Forms with Integral Weight

Let N , k positive integers, χ a character modulo N . We know that the Hecke operators
T(n), (n, N) = 1 can be diagonalized simultaneously in the space S(N, k, χ). On the
other hand, if f is an eigenfunction of all Hecke operators T(n), then L(s, f) has an
Euler product. So we want to ask the following question: Can all Hecke operators
T(n) be diagonalized simultaneously in the space S(N, k, χ). The following example
gives a counterexample to the question:
Example 6.1 Consider the space V = S(2, 12, id.) which has dimension 2. Then

f1(z) = Δ(z) :=
64π12

27
((E4(z))3 − (E6(z))2) ∈ V,

f2(z) = Δ(2z) ∈ V.

For any odd prime p, they have the same eigenvalue for T(p). If there exists a basis
{g1, g2} of V such that g1, g2 are eigenfunctions of all Hecke operators T(p) for any
prime p, then by the properties of f1, f2, we see that (g1 − g2)|T(p) = 0 for any odd
prime p. Hence (g1 − g2)|T(n) = 0 if n has an odd divisor. That is, the n-th Fourier
coefficient c(n) of g1 − g2 is equal to 0 if n has an odd divisor. This implies that
g1 − g2 = 0 by the following Lemma 6.1. This contradicts the assertion. �

Lemma 6.1 (1) Let α =
(

a b

c d

)
∈ M2(Z) with (a, b, c, d) = 1, det(α) = n > 1,

(n, N) = 1. Assume that f ∈ Gk(Γ (N)) and f |[α]k ∈ Gk(Γ (N)), then f = 0.

(2) Let p � N be a prime and f(z) =
∞∑

n=0

c(n)e2πinz/N ∈ Gk(Γ (N)) satisfy

c(n) = 0, for all n �≡ 0 (mod p).

Then f = 0.
(3) Let p and f be as above. If

c(n) = 0, for all n ≡ 0 (mod p),

then f = 0.
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Proof Since Γ (N) is a normal subgroup of Γ (1), we may assume that α =(
1 0
0 n

)
. Put τ =

(
1 1
0 1

)
. Then f |[α]k[τN ]k = f |[α]k, i.e., f |[ατNα−1]k = f .

But ατNα−1 = n−1

(
n N

0 n

)
, so that

f

∣∣∣∣[(n N

0 n

)]
k

= f. (6.1)

Take γ ∈ Γ (1) such that γ ≡
(

1 0
1 1

)
(mod n), γ ≡ I (mod N). Then γ ∈ Γ (N).

Put

β = γ

(
n N

0 n

)
≡ N

(
0 1
0 1

)
(mod n).

Then βl ≡ N l

(
0 1
0 1

)
(mod n) and det(βl) = n2l for any positive integer l. This

implies that βl is primitive (i.e., the entries of βl are co-prime.). By (6.1), we have
f |[β]k = f and hence

f |[βl]k = f

for any positive integer l. Take a positive integer l such that nl ≡ 1 (mod N), then

βl ≡
(

n 0
0 n

)l

≡ I (mod N).

Since βl is primitive, its elementary divisors are {1, n2l}. Therefore there exist δ, ε ∈

Γ (1) such that βl = δ

(
1 0
0 n2l

)
ε = δα2lε. By the choice of l, we see that δε ≡ εδ ≡ I

(mod N), i.e., δε, εδ ∈ Γ (N), so that

f |[δ]k[α2l]k = f |[δ]k. (6.2)

Put g = f |[δ]k, then g ∈ Gk(Γ (N)). Let

g(z) =
∞∑

s=0

a(s)e2πisz/N

be the Fourier expansion of g at i∞. Then by (6.2) we see that g
(z

r

)
= rm/2g(z)

with r = n2l, so that

a(s) = 0, ∀r � s, a(sr) = rm/2a(s).

This implies that a(s) = 0 for all s � 1, so that g = 0 and f = 0. This shows (1).
By the assumption of (2), we see that f(z + N/p) = f(z), so that f ∈ Gk(Γ (N))
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and f |[α]k = f ∈ Gk(Γ (N)) with α =
(

p N

0 p

)
. Since α is primitive, we obtain (2)

by (1).
By Lemma 5.18, we have

p1−k/2f |T(p) = f

∣∣∣∣[σp

(
p 0
0 1

)]
k

+
p−1∑
b=0

f

∣∣∣∣[( 1 bt

0 p

)]
k

,

where t|N . By the assumption of (3), we see that

p−1∑
b=0

f

∣∣∣∣[( 1 bt

0 p

)]
k

= p−k/2

p−1∑
b=0

(
z + bt

p

)

= p−k/2
∞∑

n=0,p�n

c(n)e2πinz/p

p−1∑
b=0

e2πintb/p = 0,

where we used the fact
p−1∑
b=0

e2πintb/p = 0 (since p � nt). Therefore

f

∣∣∣∣[σp

(
p 0
0 1

)]
k

= p1−k/2f |T(p) ∈ Gk(Γ (N)).

Since
(

p 0
0 1

)
is primitive, we see that f |[σ]k = 0 by (1), so that f = 0. This

completes the proof.

Let k, l be positive integers, put δl =
(

l 0
0 1

)
. It is clear that, for any function

f on H, we have
f(lz) = l−k/2(f |[δl]k)(z).

For any element γ =
(

a b
clN d

)
∈ Γ0(lN), we have

δlγδ−1
l =

(
a bl

cN d

)
∈ Γ0(N).

For any f ∈ G(N, k, χ), put g = f |[δl]k. Then

g|[γ]k = (f |[δlγδ−1
l ]k)|[δl]k = χ(d)f |[δl]k = χ(d)g,

so that we have the following:

Lemma 6.2 Let f ∈ G(N, k, χ). Then, for any positive integer l, we have

f(lz) = l−k/2(f |[δl]k)(z) ∈ G(Nl, k, χ).

Furthermore, f(lz) is a cusp form if f is a cusp form.
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Remark 6.1 We denote by V (l) the operator in Lemma 6.2 and call it translation
operator. It is clear that it is an analog of the translation operator for modular forms
with half integral weight (see Theorem 5.16). Similar to Theorem 5.19, we can prove
the following:

Lemma 6.3 Let f ∈ G(N, k, χ), l a positive integer. Then we have

(f |V (l))|T(n) = (f |T(n))|V (l), (n, l) = 1.

Let χ be a primitive character modulo m with m|N . Then S(N, k, χ) contains the
following set {

f(z), f(lz)
∣∣∣∣f(z) ∈ S(L, k, χ), m|L, L|N, l

∣∣∣∣NL
}

. (6.3)

The functions f1, f2 are in the corresponding set (6.3) of S(2, 12, id.). We shall
show that all Hecke operators can be diagonalized in the orthogonal complement of
the space spanned by (6.3) in S(N, k, χ) with respect to Petersson inner product.

Put

Δ0(N) =
{(

a b
c d

)
∈ M2(Z)

∣∣∣∣c ≡ 0 (mod N), (a, N) = 1, ad − bc > 0
}

,

Δ∗0(N) =
{(

a b
c d

)
∈ M2(Z)

∣∣∣∣c ≡ 0 (mod N), (d, N) = 1, ad − bc > 0
}

.

Lemma 6.4 Let α ∈ Δ0(N) or ∈ Δ∗0(N) respectively. Then there exist positive
integers l, m satisfying l|m, (l, N) = 1 such that

Γ0(N)αΓ0(N) = Γ0(N)
(

l 0
0 m

)
Γ0(N)

or

Γ0(N)αΓ0(N) = Γ0(N)
(

m 0
0 l

)
respectively.

Proof Let α =
(

a b

cN d

)
, a′ = (a, c). Then (a, cN) = a′. Let u, v be integers

such that (u, v) = 1, au + cNv = a′. Then
(

u v

−cN/a′ a/a′

)
∈ Γ0(N) and

(
u v

−cN/a′ a/a′

)(
a b

cN d

)
=
(

a′ b′

0 d′

)
∈ Δ0(N).

It is clear that 0 < a′ � |a|, and 0 < a′ < |a| if a � c. Put a1 = (a′, b′), then
0 < a1 � a′, and 0 < a1 < a′ if a′ � b′. It is easy to see that (a′, b′N) = a1. Let u1, v1
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be integers such that (u1, v1) = 1, a′u1 + b′Nv1 = a1, then
(

u1 −b′/a1

v1N a′/a1

)
∈ Γ0(N)

and (
a′ b′

0 d′

)(
u1 −b′/a1

v1N a′/a1

)
=
(

a1 0
c1N d1

)
∈ Δ0(N).

The above process shows that, if a � b or c, then there exist γ1, γ2 ∈ Γ0(N) such
that γ1αγ2 ∈ Δ0(N) and the upper left entry a1 of γ1αγ2 satisfies 1 � |a1| < |a|.
Repeating the above process, we may assume that α ∈ Δ0(N) satisfies a|(b, c). Then(

1 0
−cN/a 1

)
∈ Γ0(N),

(
1 −b/a

0 1

)
∈ Γ0(N) and(

1 0
−cN/a 1

)(
a b

cN d

)(
1 −b/a

0 1

)
=
(

a 0
0 d1

)
∈ Δ0(N).

Put l = (a, d1), then l = (a, d1N). Take integers a2, c2 such that (a2, c2) = 1,

a2a − c2Nd1 = l, then
(

1 −1
−d1c2N/l aa2/l

)
∈ Γ0(N),

(
a2 d1/l

c2N a/l

)
∈ Γ0(N) and(

1 −1
−d1c2N/l aa2/l

)(
a 0
0 d1

)(
a2 d1/l

c2N a/l

)
=
(

l 0
0 m

)
∈ Δ0(N).

Taking determinants, we obtain that ad1 = lm = det(α), so that m > 0, l|m since
l = (a, d1). This shows the assertion for Δ0(N). We can prove the assertion for
Δ∗0(N) similarly. This completes the proof.

Lemma 6.5 Let f ∈ G(N, k, χ). Let α =
(

a b

c d

)
∈ Δ0(N) satisfy

(1) det(α) > 1;
(2) (det(α), N) = 1;
(3) (a, b, c, d) = 1.

If f |[α−1]k ∈ G(N, k, χ), then f = 0.

Proof By (2), we see that α ∈ Δ∗0(N), by Lemma 6.4, there exist γ1, γ2 ∈ Γ0(N)

such that γ1αγ2 =
(

m 0
0 l

)
with l|m, l, m > 0. By (3), (l, m) = 1, so that l = 1.

By (1), m > 1 and(
m 0
0 1

)(
1 0
N 1

)(
m 0
0 1

)−1

=
(

1 0
N/m 1

)
�∈ Γ0(N),

hence αΓ0(N)α−1 �⊂ Γ0(N). Take γ ∈ Γ0(N) such that αγα−1 �∈ Γ0(N). Since

det(α)α−1 =
(

d −b

−c a

)
∈ Δ0(N), det(α)αγα−1 ∈ Δ0(N), by Lemma 6.4, there

exist γ3, γ4 ∈ Γ0(N) such that

det(α)γ3αγα−1γ4 =
(

u 0
0 v

)
, u|v, u, v > 0. (6.4)
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Taking the determinants, we have (det(α))2 = uv. If u = v, then αγα−1 = γ−1
3 γ−1

4 ∈
Γ0(N) which is impossible. Therefore, h = v/u > 1. Considering the action of both
sides of (6.4) on g = f |[α−1]k, we obtain that

g(z/h) = (det(α))−kvkχ(γ3)χ(γ)χ(γ4)g(z) := cg(z).

Let g(z) =
∞∑

n=0

a(n)e(nz) be the Fourier expansion of g. Then, for any positive integer

s, we have
a(n) = c−1a(n/h) = c−sa(n/hs),

so that a(n) = 0 for any n � 0 since k > 0 and |c| = hk/2 > 1. Therefore g = 0 and
hence f = 0. This completes the proof.

Theorem 6.1 Let l be a positive integer, f a function on H satisfying:
(i) f(z + 1) = f(z);
(ii) f(lz) ∈ G(N, k, χ).

Then the following two assertions hold:
(1) f(z) ∈ G(N/l, k, χ) if lmχ|N ;
(2) f(z) = 0 if lmχ � N,

where mχ is the conductor of χ. Furthermore, f(z) ∈ S(N/l, k, χ) if f(lz) ∈ S(N, k, χ).

Proof We need only to show the theorem for l a prime since we can apply induction
on the number of prime factors of l. So we assume now that l is a prime. Because of
the assumptions in the theorem, we have

G(N, k, χ) � f(lz)|T(l) = lk/2−1

(
f(lz)

∣∣∣∣[( l 0
0 1

)]
k

+
l−1∑
m=0

f(lz)
∣∣∣∣[( l m

0 l

)]
k

)

= lk−1f(l2z) +
1
l

l−1∑
m=0

f(l(z + m/l))

= lk−1f(l2z) + f(lz).

Hence f(l2z) ∈ G(N, k, χ) since f(lz) ∈ G(N, k, χ). If l � N , taking α =
(

l 0
0 1

)
in

Lemma 6.5, we see that f(l2z) = 0, so that f(z) = 0. Therefore we assume now l|N .

We consider first the case lmχ � N . For any element γ1 =
(

a b

cN d

)
∈ Γ0(N),

owing to the assumptions in the theorem, we see that

f

∣∣∣∣[( a bl

N/l d

)]
k

= f |[δlγ1δ
−1
l ] = χ(d)f. (6.5)

For any given positive integers m, n, put

γ =
(

1 m

0 1

)(
1 0

N/l 1

)(
1 n

0 1

)
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=
(

1 + mN/l m + n(1 + mN/l)
N/l 1 + nN/l

)
∈ Γ0(N/l). (6.6)

In particular, if n, m are chosen such that nN/l + 1 �≡ 0 (mod l) and

n(1 + mN/l) + m = n + (nN/l + 1)m ≡ 0 (mod l), (6.7)

then, by (6.6) and (6.7), we have(
1 + mN/l l−1(m + n(1 + mN/l))

N 1 + nN/l

)
∈ Γ0(N).

Then we obtain
f |[γ]k = χ(1 + nN/l)f

by (6.5). But δl

(
1 0
N 1

)
δ−1
l =

(
1 0

N/l 1

)
, so by assumptions (i) and (ii), we see

that

f |[γ]k = f

∣∣∣∣[( 1 m

0 1

)(
1 0

N/l 1

)(
1 n

0 1

)]
k

= f.

This shows that χ(1+nN/l) = 1 for any (1+nN/l, l) = 1 if f �= 0. This implies that
the conductor mχ of χ satisfies mχ|N/l. This contradicts lmχ � N . Hence we have
f = 0 if lmχ � N .

We now assume that lmχ|N . For any γ =
(

a b

cN/l d

)
∈ Γ0(N/l), we can find

an m satisfying l � (a + mcN/l) since (a, cN/l) = 1, then take an n such that l|(a +
mcN/l)n + b + md, so that(

1 m

0 1

)(
a b

cN/l d

)(
1 n

0 1

)
=
(

a′ b′l
c′N/l d′

)
with a′, b′, c′, d′ integers. Hence

(
a′ b′

c′N d′

)
∈ Γ0(N) and d′ ≡ d (mod N/l). Put

z = lw, g(w) = f(lw), by (i), (ii) and mχ|N/l, we have

(f |[γ]k)(z + n) =
(

f

∣∣∣∣[( a′ b′l
c′N/l d′

)]
k

)
(z)

= (c′Nz/l + d′)−kf

(
a′z + b′l

c′Nz/l + d′

)
= (c′Nw + d′)−kf

(
l(a′w + b′)
c′Nw + d′

)
=
(

g

∣∣∣∣[( a′ b′

c′N d′

)]
k

)
(w)

= χ(d′)g(w) = χ(d)f(z).

This shows that f | ∈ G(N/l, k, χ). It is clear that f(z) ∈ S(N/l, k, χ) if f(lz) ∈
S(N, k, χ). This completes the proof.
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Lemma 6.6 Let f =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, χ) and L a positive integer. Put

g(z) =
∑

(n,L)=1

a(n)e(nz). Then g(z) ∈ G(M, k, χ) with M = N
∏

p|L,p|N
p
∏

q|L,q�N

q2,

where p, q are primes. Furthermore, g(z) is a cusp form if f(z) is a cusp form.

Proof We only need to show the lemma for L a prime since we can apply induction
on the number of prime factors of L. So we assume now that L is a prime. Put

N ′ =
{

N, if p|N,

pN, if p � N.

Then p|N ′. By Lemma 5.17, we have

Γ0(N ′)
(

1 0
0 p

)
Γ0(N ′) =

p−1⋃
m=0

Γ0(N ′)
(

1 m

0 p

)
. (6.8)

Since G(N, k, χ) ⊂ G(N ′, k, χ), we see that

f |T(p) ∈ G(N ′, k, χ)

holds in G(N ′, k, χ). By (6.8), we have

(f |T(p))(z) = p−1
∞∑

n=0

a(n)
p−1∑
m=0

e2πin(z+m)/p =
∞∑

n=0

a(np)e(nz).

By Lemma 6.2, we see that

(f |T(p))(pz) =
∞∑

n=0

a(np)e(npz) ∈ G(N ′p, k, χ).

Put M = N ′p, then

g(z) = f(z) − (f |T(p))(pz) ∈ G(M, k, χ).

This completes the proof.

Lemma 6.7 Let N be a positive integer, p a prime. Then

Γ0(pN)
(

1 0
0 p

)
Γ0(N)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p−1⋃
m=0

Γ0(pN)
(

1 0
0 p

)(
1 0
0 m

)
, if p|N,

Γ0(pN)
(

1 0
0 p

)
σp

p−1⋃
m=0

Γ0(pN)
(

1 0
0 p

)(
1 m

0 1

)
, if p � N,
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where σ is a matrix satisfying

σp ∈ Γ0(N), σp ≡
(

1 0
0 1

)
(mod N), σp ≡

(
0 −l

l′ 0

)
(mod p)

with l any fixed integer such that p � l and l′ an integer such that ll′ ≡ 1 (mod p).

Proof Assume first that p|N . Let γ =
(

a b

cN d

)
∈ Γ0(N). Then (a, cN) = 1

and hence p � a. Take 0 � v � p − 1 with av ≡ b (mod p). Put b1 = (b − av)/p,

d1 = d − vcN . Then γ1 =
(

a b1

cpN d1

)
∈ Γ0(pN) and

(
1 0
0 p−1

)(
a b1

cpN d1

)(
1 0
0 p

)(
1 v

0 1

)
=
(

a b

cN d

)
= γ.

This shows the first case in the lemma.

Now assume that p � N . For any γ =
(

a b

cN d

)
∈ Γ0(N), if p � a, then similar to

the first case, there exists γ1 ∈ Γ0(pN), 0 � v � p − 1 such that

γ =
(

1 0
0 p−1

)
γ1

(
1 0
0 p

)(
1 v

0 1

)
.

If p|a, since p � N , there exists a1 such that a1p ≡ 1 (mod N). Take c1 such that
c1N ≡ l′ (mod p) and (c1, a1p) = 1 (since p � c1, if necessary, take an integer t such
that pt+c1 is a prime larger than a1, then (pt+c1, a1p) = 1). Then (a1p

2, c1N
2) = 1.

Take b1, d1 ∈ Z such that d1a1p
2 − b1c1N

2 = 1, then σp =
(

a1p b1N

c1N d1p

)
satisfies

the conditions in the lemma. And

γσ−1
p =

(
a b

cN d

)(
d1p −b1N

−c1N a1p

)
=
(

a2 b2p

c2N d2

)
∈ Γ0(N)

and a2, b2, c2, d2 ∈ Z. Therefore
(

a2 b2

c2pN d2

)
∈ Γ0(pN), and

(
1 0
0 p−1

)(
a2 b2

c2pN d2

)(
1 0
0 p

)
=
(

a2 b2p

c2N d2

)
= γσ−1

p .

This shows the second case in the lemma. This completes the proof.

Lemma 6.8 Let χ be a character modulo N, l a positive integer, p � l a prime. Put
M = lN, then we have the following two commutative diagrams:
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(1)

G(pN, k, χ)
Γ0(pN)

(
1 0
0 p

)
Γ0(N)

−−−−−−−−−−−−−−−−→ G(N, k, χ)⏐⏐&Embedding

⏐⏐&Embedding

G(pM, k, χ) −−−−−−−−−−−−−−−−→
Γ0(pM)

(
1 0
0 p

)
Γ0(M)

G(M, k, χ)

(2)

G(pN, k, χ)
Γ0(pN)

(
1 0
0 p

)
Γ0(N)

−−−−−−−−−−−−−−−−→ G(N, k, χ)

[δl]k

⏐⏐& ⏐⏐&[δl]k

G(pM, k, χ) −−−−−−−−−−−−−−−−→
Γ0(pM)

(
1 0
0 p

)
Γ0(M)

G(M, k, χ).

And similar results hold for cusp forms.

Proof The diagram (1) is an immediate conclusion of Lemma 6.7. We show now
the second diagram. Let f(z) ∈ G(pN, k, χ). Put g(z) = f |[δl]k. By Lemma 6.7, we
have

g|Γ0(pM)
(

1 0
0 p

)
Γ0(M)

=
p−1∑
v=0

g

∣∣∣∣[( 1 0
0 p

)(
1 v

0 1

)]
k

+ g

∣∣∣∣[( 1 0
0 p

)
σp

]
k

(where the last term disappears if p|M).

=
p−1∑
v=0

f

∣∣∣∣[δl

(
1 0
0 p

)(
1 v

0 1

)]
k

+ f

∣∣∣∣[δl

(
1 0
0 p

)
σp

]
k

=
p−1∑
v=0

f

∣∣∣∣[( 1 0
0 p

)
δl

(
1 v

0 1

)
δ−1
l δl

]
k

+ f

∣∣∣∣[( 1 0
0 p

)
δlσpδ

−1
l δl

]
k

=
p−1∑
v=0

f

∣∣∣∣[( 1 0
0 p

)(
1 vl

0 1

)
δl

]
k

+ f

∣∣∣∣[( 1 0
0 p

)
σ̂pδl

]
k

,

where σ̂p∈Γ0(N) satisfies σ̂p ≡
(

1 0
0 1

)
(mod N), and furthermore σ̂p≡

(
0 −ml

(ml)′ 0

)
(mod p) if σp ≡

(
0 −m

m′ 0

)
(mod p). Hence, by Lemma 6.7, we see that

(f |[δl]k)|Γ0(pM)
(

1 0
0 p

)
Γ0(M) =

(
f |Γ0(pN)

(
1 0
0 p

)
Γ0(N)

)
|[δl]k.
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This completes the proof.

Lemma 6.9 Let l be a square free positive integer, f(z) =
∞∑

n=0

a(n)e(nz) ∈

G(N, k, χ) such that a(n) = 0 if (n, l) = 1. Then

f(z) =
∑
p|l

gp(pz),

where gp(z) ∈ G(Nl2, k, χ) and moreover gp(z) ∈ G(Nl, k, χ) if l|N . Furthermore, all
gp are cusp forms if f(z) is a cusp form.

Proof We assume first that l is a prime. Put g(z) = f(z/l). By Theorem 6.1, we
see that g(z) ∈ G(N/l, k, χ) or g(z) = 0 if lmχ|N or lmχ � N respectively. Anyway,
g(z) ∈ G(Nl, k, χ) and f(z) = g(lz), the lemma holds. Now assume that l is a
composite and the lemma holds for any proper factor of l. Let p be a prime factor

of l. Put l′ = l/p and h(z) =
∑
p�n

a(n)e(nz). By Lemma 6.6, we see that h(z) ∈

G(Np2, k, χ). Put f(z) − h(z) =
∞∑

n=0

b(n)e(nz). It is clear that b(n) = 0 if p � n. Set

gp(z) = f(z/p)− h(z/p), by Theorem 6.1, we have that gp(z) ∈ G(Np, k, χ) and

f(z) = gp(pz) + h(z).

Since h(z), Np2, l′ satisfy the conditions in the lemma, by induction hypothesis, we
have

h(z) =
∑
q|l′

gq(qz), gq(z) ∈ G(Nl′2, k, χ) ⊂ G(Nl2, k, χ),

with q primes. It is clear that, by Lemma 6.6 and the above proof, gp ∈ G(Nl, k, χ)
if l|N . This completes the proof.

Theorem 6.2 Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, χ), l a positive integer. Assume

that a(n) = 0 if (l, n) = 1. Then
(1) f(z) = 0 if (l, N/mχ) = 1;
(2) if (l, N/mχ) �= 1, then for any prime factor p of (l, N/mχ) there exists fp(z) ∈

G(N/p, k, χ) such that
f(z) =

∑
p|(l,N/mχ)

fp(pz),

where mχ is the conductor of χ. Furthermore, all fp are cusp forms if f is a cusp
form.
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Proof Without loss of generality, we may assume that l is square free. It is clear
that, by Theorem 6.1, the theorem holds for l a prime. Now assume that l is a
composite and the theorem holds for any proper factor of l. Let p be a prime factor
of l and l′ = l/p. Set

h(z) =
∑

(n,l′) �=1

a(n)e(nz),

g(z) = f(z) − h(z) =
∑

(n,l′)=1

a(n)e(nz).
(6.9)

By Lemma 6.6, g(z) ∈ G(Nl′2, k, χ) and so h(z) ∈ G(Nl′2, k, χ). It is clear that
the Fourier coefficient a(n) of g(z) must be zero if p � n, so that gp(z + 1) = gp(z)
where gp(z) = g(z/p). If pmχ � N , then pmχ � Nl′2, and g(z) = 0 by Theorem 6.1.

Therefore f(z) = h(z) =
∑

(n,l′) �=1

a(n)e(nz). This shows that the theorem holds by

the induction hypothesis. Now assume that pmχ|N . By Theorem 6.1, we see that
gp(z) ∈ G(Nl′2/p, k, χ). Lemma 6.7 gives

Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p) = Γ0(Nl′2)

(
1 0
0 p

)
σp

p−1⋃
v=0

Γ0(Nl′2)
(

1 0
0 p

)(
1 v

0 1

)
,

where the first term disappears if p2|N , so that,(
g|Γ0(Nl′2)

(
1 0
0 p

)
Γ0(Nl′2/p)

)
(z)

= pk/2−1

p−1∑
v=0

(
g

∣∣∣∣[( 1 0
0 p

)(
1 v

0 1

)]
k

)
(z) + pk/2−1

(
g

∣∣∣∣[( 1 0
0 p

)
σp

]
k

)
(z)

= p−1

p−1∑
v=0

(
gp

∣∣∣∣[( 1 v

0 1

)]
k

)
(z) + p−1(gp|[σp]k)(z)

=
d

p
gp(z),

where d =
{

p, if p2|N,

p + 1, if p2 � N
. Therefore

g(z) = gp(pz) =
d

p

(
g

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(pz). (6.10)

Since

fp(z) =
d

p

(
f

∣∣∣∣Γ0(N)
(

1 0
0 p

)
Γ0(N/p)

)
(z) ∈ G(N/p, k, χ),

we have that, by Lemma 6.8,
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fp(z) =
d

p

(
f

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(z). (6.11)

We want to show that f(z) − fp(pz) satisfies the conditions in the theorem for l′,
and hence we can complete the proof by induction. It is clear that f(z) − fp(pz) ∈
G(N, k, χ). By (6.9)–(6.11), we see that

f(z) − fp(pz)=f(z) − fp(pz) − g(z) + gp(pz)

=h(z) − d

p

(
h

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(pz). (6.12)

Applying the induction hypothesis for h(z), Nl′2 and l′, we have

h(z) =
∑
q|l′

hq(qz), hq(z) ∈ G(Nl′2, k, χ) (6.13)

with q primes. By Lemma 6.8, for any prime factor q of l′, we have

h
∣∣Γ0(Nl′2)

(
1 0
0 p

)
Γ0(Nl′2/p) = h

∣∣Γ0(Nl′3q)
(

1 0
0 p

)
Γ0(Nl′3q/p) (6.14)

and this holds also if h is substituted by hq. By (6.13), (6.14) and (2) of Lemma 6.8,
we have (

h

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(z)

=
(∑

q|l′
(q−k/2hq|[δq]k)

∣∣∣∣Γ0(Nl′3q)
(

1 0
0 p

)
Γ0(Nl′3q/p)

)
(z)

=
∑
q|l′

(
hq

∣∣∣∣Γ0(Nl′3)
(

1 0
0 p

)
Γ0(Nl′3/p)

)
(qz).

This implies that the Fourier coefficient b(n) of
(

h
∣∣Γ0(Nl′2)

(
1 0
0 p

)
Γ0(Nl′2/p)

)
(z)

must be zero if (n, l′) = 1, and hence, by (6.12) and (6.13), so is the Fourier coefficient
c(n) of f(z) − fp(pz). This shows that f(z) − fp(pz) satisfies the conditions in the
theorem for l′. Hence

f(z) − fp(pz) =
∑
q|l′

fq(qz), fq(z) ∈ G(N/q, k, χ),

where q runs over all prime factors of (l′, N/mχ). This completes the proof.

Definition 6.1 Denote by Sold(N, k, χ) the subspace of S(N, k, χ) generated by⋃
mχ|M|N,

M �=N

⋃
l|N/M

{f(lz)|f(z) ∈ S(M, k, χ)}.

And any modular form in Sold(N, k, χ) is called an old form.
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Definition 6.2 Denote by Snew(N, k, χ) the orthogonal complement subspace of
Sold(N, k, χ) in S(N, k, χ) with respect to the Petersson inner product. And any mod-
ular form in Snew(N, k, χ) is called a new form.

By the definitions, we have

Lemma 6.10 (1) S(N, k, χ)=Snew(N, k, χ) if χ is a primitive character modulo N ;

(2) S(M, k, χ) ⊂ Sold(N, k, χ) if mχ|M |N and M �= N ;

(3) S(N, k, χ) is generated by
⋃

mχ|M|N

⋃
l|N/M

{f(lz)|f(z) ∈ Snew(M, k, χ)}.

Lemma 6.11 Let n be a positive integer with (n, N) = 1. Then T(n) sends
Sold(N, k, χ) (and Snew(N, k, χ) resp.) into Sold(N, k, χ) (and Snew(N, k, χ) resp.).

Proof Let f(z) ∈ Sold(N, k, χ). By the definition of old forms, we have

f(z) =
∑

v

fv(lvz), fv ∈ S(Mv, k, χ), lvMv|N, Mv �= N.

Put gv(z) = fv(lvz). Since T(n) commutes with [δl]k for any (n, l) = 1, we see that

(f |T(n))(z) =
∑

v

(gv|T(n))(z) =
∑

v

(fv|T(n))(lvz).

Since fv ∈ S(Mv, k, χ), we have that fv|T(n) ∈ S(Mv, k, χ), so that f |T(n) ∈
Sold(N, k, χ). This shows that T(n) sends Sold(N, k, χ) into itself. The next lemma
will show that χ(n)T(n) is the conjugate operator of T(n) on the space S(N, k, χ)
with respect to the Petersson inner product, so that T(n) sends Snew(N, k, χ) into
itself. This completes the proof.

Lemma 6.12 Let f(z) =
∞∑

m=1

a(m)e(mz) ∈ S(N, k, χ) and f(z)|T(n) =

∞∑
m=1

b(m)e(mz) ∈ S(N, k, χ). Then

(1) b(m) =
∑

1�d|(m,n)

χ(d)dk−1a(mn/d2);

(2) the conjugate operator T(n)∗ of T(n) (with respect to the Petersson inner
product) is equal to χ(n)T(n) for any (n, N) = 1.

Proof (1) is a direct conclusion of (5.14).
(2) is a direct conclusion of Lemma 5.18 and Lemma 5.26.

By Lemma 6.11, there is a basis in Snew(N, k, χ) (and in Sold(N, k, χ) resp.) whose
elements are eigenfunctions of all Hecke operators T(n) with (n, N) = 1.
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Lemma 6.13 Let L be a positive integer, and

0 �= f(z) =
∞∑

n=0

a(n)e(nz) ∈ Snew(N, k, χ)

an eigenfunction of all Hecke operators T(n) with (n, L) = 1. Then a1 �= 0.

Proof Assume that a1 = 0. If a(n) = 0 for any (n, L) = 1, then, by Theorem 6.2,
f(z) ∈ Sold(N, k, χ) which is impossible. Hence

m = min{n|(n, L) = 1, a(n) �= 0} > 1.

Let p be a prime factor of m. Then f |T(p) = cpf with cp a constant. By Lemma
6.12, we see that cpa(m/p) = a(m) + χ(p)pk−1a(m/p2). By the definition of m, we
have a(m/p) = a(m/p2) = 0, so that a(m) = 0, which is impossible. This completes
the proof.

Theorem 6.3 Let L be a positive integer, f and g ∈ S(N, k, χ) such that f |T(n) =
λnf , g|T(n) = λng for all (n, L) = 1 with λn constants. Then f = cg for a constant
c if 0 �= f ∈ Snew(N, k, χ).

Proof Let f(z) =
∞∑

n=1

a(n)e(nz). Without loss of generality, we can assume that

a(1) = 1 by Lemma 6.13. We may assume also that N |L. Set

g(z) = g(0)(z) + g(1)(z), g(0)(z) ∈ Snew(N, k, χ), g(1)(z) ∈ Sold(N, k, χ).

By Lemma 6.11, we see that

g(0)|T(n) = λng(0), g(1)|T(n) = λng(1), (n, L) = 1.

Hence, by Lemma 6.13, b(1) �= 0 if g(0)(z) =
∞∑

n=1

b(n)e(nz) �= 0. By Lemma 6.12, we

have

f |T(n) = a(n)f, g(0)|T(n) =
b(n)
b(1)

g(0), (n, L) = 1.

This shows that a(n)b(1) = b(n) for all (n, L) = 1. Put

g(0) − b(1)f =
∞∑

n=1

c(n)e(nz),

then c(n) = 0 for all (n, L) = 1, so that g(0) − b(1)f ∈ Sold(N, k, χ) by Theorem 6.2.
This implies that g(0) − b(1)f = 0. We shall now prove that g(1) = 0. If mχ = N ,
then Sold(N, k, χ) = 0. So we may assume that mχ �= N . Suppose that g(1) �= 0, then

g(1)(z) =
∑

v

hv(lvz), hv ∈ Snew(Mv, k, χ), lvMv|N, Mv �= N. (6.15)



168 Chapter 6 New Forms and Old Forms

Since there is a basis in Snew(Mv, k, χ) whose elements are eigenfunctions for all T(n)
((n, Mv) = 1), we may assume that hv(z) is an eigenfunction of all T(n) ((n, Mv) = 1),
so that, by Lemma 6.3, hv(lvz) is an eigenfunction of all T(n) ((n, L) = 1). Since
eigenfunctions corresponding to different eigenvalues are linearly independent, the
sum of hv(lvz) with eigenvalue different from a(n) with respect to T(n) must be zero.
Therefore every hv(z) on the right hand side of (6.15) must satisfy

hv|T(n) = a(n)hv, (n, L) = 1.

Denote by h any fixed one of these hv. Let d be the first coefficient of the Fourier
expansion of h, then d �= 0 by Lemma 6.13. Put

h(z) − df(z) =
∞∑

n=1

d(n)e(nz),

then d(n) = 0 for all (n, L) = 1, so that h(z)− df(z) ∈ Sold(N, k, χ) by Theorem 6.2.
Therefore

f(z) = −1
d

(h(z) − df(z)) +
1
d
h(z) ∈ Sold(N, k, χ),

which implies that f(z) = 0 since f(z) ∈ Snew(N, k, χ). This contradicts the hypoth-
esis f �= 0. This completes the proof.

Theorem 6.4 Let R0(N) and R∗0(N) be the Hecke algebras R(Γ0(N),Δ0(N)) and
R(Γ0(N), Δ∗0(N)) respectively. Then there is a basis in Snew(N, k, χ) whose elements
are common eigenfunctions of R0(N) and R∗0(N).

Proof By Theorem 5.5, R0(N) and R∗0(N) are commutative and T(n) ∈ R0(N)
for any (n, N) = 1. Let {f1, f2, · · · , fr} be a basis of Snew(N, k, χ) such that every
fi is a common eigenfunction of T(n) for all (n, N) = 1. Put fi|T(n) = a(n, i)fi,
(n, N) = 1 with a(n, i) a constant. For any T ∈ R0(N), since T(n) ((n, N) = 1)
commutes with T , we see that

(fi|T )|T(n) = (fi|T(n))|T = a(n, i)fi|T, (n, N) = 1.

That is, fi|T is a common eigenfunction of all T(n) with eigenvalue a(n, i). By
Theorem 6.3, we have that fi|T = cfi with a constant c. This shows that fi is a
common eigenfunction of R0(N). This shows the first part of the theorem. Since
T(n)∗ ∈ R∗0(N) ((n, N) = 1) commutes with any T ∈ R∗0(N), and T(n)∗ = χ(n)T(n),
(n, N) = 1, we see that T(n) commutes with T ∈ R∗0(N). Similar to the above
process, fi|T = c′fi with a constant c′ for any T ∈ R∗0(N), so that, fi is also a
common eigenfunction of R∗0(N). Therefore fi (1 � i � r) are common eigenfunctions
of R0(N) and R∗0(N). This completes the proof.

Definition 6.3 f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) is called a primitive cusp form
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if it satisfies the following two conditions:
(1) f ∈ Snew(N, k, χ) and it is a common eigenfunction of R0(N);
(2) a(1) = 1.

By Theorem 6.4, a primitive cusp form is also a common eigenfunction of R∗0(N),
and there exists a basis in Snew(N, k, χ) whose elements are primitive cusp forms.

Lemma 6.14 Let f ∈ S(N, k, χ) be a common eigenfunction of all T(n) with
(n, N) = 1, and f |T(n) = a(n)f , (n, N) = 1. Then there exists a factor M of N and
a primitive cusp form g of Snew(M, k, χ) such that

g|T(n) = a(n)g, (n, N) = 1.

Furthermore, we can take M �= N if f �∈ Snew(N, k, χ).

Proof If f ∈ Snew(N, k, χ), the lemma is obvious. So assume f �∈ Snew(N, k, χ).
By the proof of Theorem 6.3, there exists N �= M |N and h ∈ Snew(M, k, χ) such that

h|T(N) = a(n)h, (n, N) = 1.

Take g = 1
dh with d the first Fourier coefficient of h. This completes the proof.

Lemma 6.15 Let f ∈ G(N, k, χ). Then

(f |T(l, m))|[W (N)]k = (f |[W (N)]k)|T(m, l)∗,

(f |T(n))|[W (N)]k = (f |[W (N)]k)|T(n)∗.

Proof It is clear that we only need to show the first equality in the lemma. It is
clear that the map: α �→ W (N)−1αW (N) is an isomorphism from Δ0(N) to Δ∗0(N),
and W (N)−1Γ0(N) W (N) = Γ0(N). For any α ∈ Δ0(N), we have

χ(W (N)−1αW (N)) = χ(α)−1.

Let Γ0(N)
(

l 0
0 m

)
Γ0(N) =

⋃
v

Γ0(N)αv be a disjoint union, then

Γ0(N)
(

m 0
0 l

)
Γ0(N) =

⋃
v

Γ0(N)(W (N)−1αvW (N)).

Hence, for any g ∈ G(N, k, χ), we have

g|[W (N)−1]kT(l, m)[W (N)]k

=(lm)k/2−1
∑

v

χ(αv)−1g|[W (N)−1αvW (N)]k

=(lm)k/2−1
∑

v

χ(W (N)−1αvW (N))−1g|[W (N)−1αvW (N)]k

=g|T(m, l)∗.

Since W (N) is an isomorphism from G(N, k, χ) to G(N, k, χ), we see that the first
equality holds in the lemma. This completes the proof.
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Theorem 6.5 (1) The map: f �→ f |[W (N)]k induces the following isomorphisms.

Snew(N, k, χ) � Snew(N, k, χ),

Sold(N, k, χ) � Sold(N, k, χ);

(2) Let

f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ)

be a primitive cusp form, then

g(z) :=
∞∑

n=1

a(n)e(nz)

is a primitive cusp form of S(N, k, χ), and f |[W (N)]k = cg with a constant c.

Proof (1) We show first that [W (N)]k sends Sold(N, k, χ) into Sold(N, k, χ). This
is equivalent to show the following assertion: let N �= M |N , mχ|M , l|N/M , and let
h ∈ S(M, k, χ) such that f(z) = h|[δl]k, then f |[W (N)]k ∈ Sold(N, k, χ). We show
now the assertion. Put l′ = N/(lM). Then δlW (N)δ−1

l′ = lW (M), so that

f |[W (N)]k = h|[δlW (N)δ−1
l′ δl′ ]k = (h|[W (M)]k)|[δl′ ]k.

Since h|[W (M)]k ∈ S(M, k, χ), f |[W (N)]k ∈ Sold(N, k, χ). Now suppose f ∈ Snew(N,

k, χ). Then, for any f1 ∈ Sold(N, k, χ), we have

〈f |[W (N)]k, f1〉 = 〈f, f1|[W (N)τ ]k = (−1)k〈f, f1|[W (N)]k〉 = 0,

since f1|[W (N)]k ∈ Sold(N, k, χ). Therefore f |[W (N)]k ∈ Snew(N, k, χ). This shows
(1).

(2) By (1), we have f |[W (N)]k ∈ Snew(N, k, χ). By Lemma 6.15, we have

(f |[W (N)]k)|T(n) = (f |T(n)∗)|[W (N)]k = a(n)f |[W (N)]k

for any positive integer n. Hence f |[W (N)]k must be a constant multiple of some
primitive cusp form g. Let b(n) be the n-th Fourier coefficient of f |[W (N)]k, then
b(n) = a(n)b(1), so that

(f |[W (N)]k)(z) = b(1)
∞∑

n=1

a(n)e(nz).

Since a(1) = 1 and the first Fourier coefficient of g is also equal to 1, we see that

g(z) =
∞∑

n=1

a(n)e(nz), f |[W (N)]k = b(1)g.

This completes the proof.
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Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) be a primitive cusp form. Then

L(s, f) =
∞∑

n=1

a(n)n−s =
∏
p

(
1 − a(p)p−s + χ(p)pk−1−2s

)−1

=
∏
p�N

(
1 − a(p)p−s + χ(p)pk−1−2s

)−1∏
p|N

(
1 − a(p)p−s

)−1
.

For any p � N , by the Ramanujan-Petersson Conjecture (proved by Deligne), we have
|a(p)| � 2p(k−1)/2. We discuss now a(p) for p|N . For any p|N , set N = NpN

′
p with

p � N ′
p, and χp the character modulo Np induced from χ. Fix a prime factor q of N ,

put χ′ =
∏
p�=q

χp. Let γq, γ′q ∈ SL2(Z) satisfy

γq ≡

⎧⎪⎪⎨⎪⎪⎩
(

0 −1
1 0

)
(mod N2

q ),(
1 0
0 1

)
(mod (N/Nq)2),

γ′q ≡

⎧⎪⎪⎨⎪⎪⎩
(

1 0
0 1

)
(mod N2

q ),(
0 −1
1 0

)
(mod (N/Nq)2).

Set

ηq = γq

(
Nq 0
0 1

)
, η′q = γ′q

(
N/Nq 0

0 1

)
,

then
ηqΓ0(N)η−1

q = Γ0(N), η′qΓ0(N)η′−1
q = Γ0(N)

and for any γ ∈ Γ0(N), we have

χ(ηqγη−1
q ) = (χ′χq)(γ), χ(η′qγη′−1

q ) = (χ′χq)(γ).

Hence we have the following two isomorphisms:

S(N, k, χ)
[ηq ]k−−−−→ S(N, k, χ′χq),

S(N, k, χ)
[η′q ]k−−−−→ S(N, k, χ′χq).

And the following two diagrams are commutative:

S(N, k, χ)
χq(n)T(n)−−−−−−−→ S(N, k, χ)

[ηq ]k

⏐⏐& ⏐⏐&[ηq ]k

S(N, k, χ′χq)
T(n)−−−−−−−→ S(N, k, χ′χq)

, (n, Nq) = 1;

S(N, k, χ)
χ′q(n)T(n)
−−−−−−−→ S(N, k, χ)

[η′q ]k

⏐⏐& ⏐⏐&[η′q ]k

S(N, k, χ′χq)
T(n)−−−−−−−→ S(N, k, χ′χq)

, (n, N/Nq) = 1.
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These can be proved along similar lines as in the proof of Lemma 6.15. In particular,
we see that f |[ηq]k ∈ S(N, k, χ′χq) and f |[η′q]k ∈ S(N, k, χ′χq) are common eigen-
functions of all T(n) ((n, N) = 1) if f ∈ S(N, k, χ) is a common eigenfunction of all
T(n) ((n, N) = 1). Therefore we see that the assertion (1) of the following theorem
holds:

Theorem 6.6 (1) We have the following isomorphisms:

[ηq]k : Snew(N, k, χ) � Snew(N, k, χ′χq),

[ηq]k : Sold(N, k, χ) � Sold(N, k, χ′χq),

[η′q]k : Snew(N, k, χ) � Snew(N, k, χ′χq),

[η′q]k : Sold(N, k, χ) � Sold(N, k, χ′χq).

(2) For any f ∈ S(N, k, χ), we have

f |[η2
q ]k = χq(−1)χ′(Nq)f,

f |[η′2q ]k = χ′(−1)χq(N/Nq)f,

f |[ηqη
′
q]k = χ′(Nq)f |[W (N)]k.

(3) If f =
∞∑

n=1

a(n)e(nz) ∈ Snew(N, k, χ) is a primitive cusp form, set

f |[ηq]k = c
∞∑

n=1

b(n)e(nz), b(1) = 1, gq(z) =
∞∑

n=1

b(n)e(nz),

then gq(z) is a primitive cusp form of S(N, k, χ′χq) and

b(p) =
{

χq(p)a(p), if p �= q,

χ′(q)a(q), if p = q.

Proof (2) Put η2
q = Nqγ, then γ ∈ Γ (1) and

γ ≡

⎧⎪⎪⎨⎪⎪⎩
(
−1 0
0 −1

)
(mod Nq),(

Nq 0
0 N−1

q

)
(mod (N/Nq)).

So that, γ ∈ Γ0(N), and hence f |[η2
q ]k = χq(−1)χ′(Nq)f . Similarly set η′2q =

N

Nq
γ1,

then γ1 ∈ Γ0(N) and

γ1 ≡

⎧⎪⎪⎨⎪⎪⎩
(

N/Nq 0
0 (N/Nq)−1

)
(mod N/Nq),(

−1 0
0 −1

)
(mod Nq).
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Hence
f |[η′2q]k = χ′(−1)χq(N/Nq)f.

Set γ2 = ηqη
′
qW (N)−1, then γ2 ∈ Γ0(N) and

γ2 ≡

⎧⎪⎪⎨⎪⎪⎩
(

1 0
0 1

)
(mod Nq),(

Nq 0
0 N−1

q

)
(mod (N/Nq)).

Hence
f |[ηqη

′
q]k = χ′(Nq)f |[W (N)]k.

(3) If (n, q) = 1, then

(f |[ηq]k)|T(n) = χq(n)(f |T(n))|[ηq ]k = χq(n)a(n)f |[ηq]k. (6.16)

If (n, N/Nq) = 1, then

(f |[η′q]k)|T(n) = χ′(n)a(n)f |[η′q]k. (6.17)

Since f |[ηq]k ∈ Snew(N, k, χ′χq) by (1), f |[ηq]k is a constant multiple of a primitive
cusp form by Lemma 6.14, and by (6.16) we have

b(p) = χq(p)a(p), if p �= q.

By (2), we see that f |[ηq]k = cf |[W (N)η′q]k with c = χ′(−Nq)χq(N/Nq), so that

(f |[ηq]k)|T(n) = c((f |[W (N)]k)|[η′q ]k)|T(n).

Since f |[W (N)]k ∈ S(N, k, χ), we see that, by (6.17) and Lemma 6.15,

(f |[ηq]k)|T(n) = cχ′(q)((f |[W (N)]k)|T(n))|[η′q ]k
= cχ′(q)a(n)f |[W (N)η′q]k

= χ′(q)a(n)f |[ηq]k.

Therefore b(q) = χ′(q)a(q). This completes the proof.

Theorem 6.7 Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) be a primitive cusp form, m

the conductor of χ. For any prime q|N, put N = NqN
′
q, m = mqm

′
q with q � N ′

q and
q � m′

q. Then

(1) |aq| = q(k−1)/2, if Nq = mq;

(2) a2
q = χ′(q)qk−2, if Nq = q and mq = 1;

(3) aq = 0, if q2|N and Nq �= mq.
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Proof (1) Let γq, ηq be as above, a a positive integer prime to q. Take a positive
integer b such that ab + 1 ≡ 0 (mod Nq) and a ≡ b (mod N/Nq). Let γ be a matrix
satisfying (

1 a

0 qe

)
γq = γ

(
1 b

0 qe

)
, Nq = qe,

then γ ∈ SL2(Z) and

γ ≡
(

a ∗
0 −b

)
(mod Nq), γ ≡

(
1 0
0 1

)
(mod N/Nq),

so that γ ∈ Γ0(N) and χ(γ) = χq(−b). Therefore we obtain

f

∣∣∣∣[( 1 a

0 qe

)
γq

]
k

= χq(−b)f
∣∣∣∣[( 1 b

0 qe

)]
k

.

Let a run over a reduced residue system modulo Nq, then we get

qe(k/2−1)
∑

(a,Nq)=1

(
f

∣∣∣∣[( 1 a

0 qe

)]
k

)∣∣∣∣[ηq]k

= qe(k/2−1)

( ∑
(b,Nq)=1

χq(−b)f
∣∣∣∣[( 1 b

0 qe

)]
k

)∣∣∣∣[( qe 0
0 1

)]
k

= qe(k/2−1)χq(−1)
( ∞∑

n=1

∑
(b,Nq)=1

χq(b)e2πinb/qe

)
a(n)e(nz)

= qe(k/2−1)W (χq)
∞∑

n=1

χq(−n)a(n)e(nz), (6.18)

where W (χq) is the Gauss sum of χq. Since

f |T(n) = nk/2−1
∑

ad=n,a>0,
(a,N)=1

∑
b mod d

f

∣∣∣∣[σa

(
a b

0 d

)]
k

,

we see that

qe(k/2−1)
∑

(a,Nq)=1

f

∣∣∣∣[( 1 a

0 qe

)]
k

= f |T(qe) − qk/2−1(f |T(qe−1))
∣∣∣∣[( 1 0

0 q

)]
k

= a(qe)f − qk/2−1a(qe−1)f
∣∣∣∣[( 1 0

0 q

)]
k

.

Hence we obtain

qe(k/2−1)
∑

(a,Nq)=1

(
f

∣∣∣∣[( 1 a

0 qe

)]
k

)∣∣∣∣[ηq]k

=a(qe)f |[ηq]k − χ′(q)qk/2−1a(qe−1)(f |[ηq]k

∣∣∣∣[( q 0
0 1

)]
k

, (6.19)
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where we used the facts: γ =
(

1 0
0 q

)
ηq

(
q 0
0 1

)−1

η−1
q ∈ SL2(Z) and χ(γ) = χ′(q).

Let g(z) =
∞∑

n=1

b(n)e(nz) be as in (3) of Theorem 6.6, then f |[ηq]k = cg with a

constant c. Comparing the coefficients of e(z) and e(qz) of (6.18), (6.19), we obtain

ca(qe) = qe(k/2−1)W (χq), ca(qe)b(q) − cχ′(q)qk−1a(qe−1) = 0.

Hence we have, by Theorem 6.6,

|a(q)|2 = qk−1, c = W (χq)qe(k/2−1)a(qe)−1.

(2) By Lemma 5.17 and Lemma 6.8, since Nq = q, we see that

Γ0(N)
(

1 0
0 q

)
Γ0(N/q) = Γ0(N)

(
1 0
0 q

)
Γ0(N)

⋃
Γ0(N)ηq ,

since we can take σq = γq and γ = γq

(
q 0
0 1

)
σ−1

q

(
q 0
0 1

)−1

∈ Γ0(N). Therefore

f
∣∣Γ0(N)

(
1 0
0 q

)
Γ0(N/q) = f |T(q) + qk/2−1f |[ηq]k.

If (n, N) = 1, then T(n) commutes with T(q) and [ηq]k, so that

g := f

∣∣∣∣Γ0(N)
(

1 0
0 q

)
Γ0(N/q) ∈ S(N/q, k, χ)

is a common eigenfunction of all T(n), (n, N) = 1 and the eigenvalues are the same
as the ones of f . By Theorem 6.3, g is a constant multiple of f . This implies that
g = 0 since g ∈ S(N/q, k, χ) and f is a new form. So that, we get

qk/2−1f |[ηq]k = −a(q)f,

and hence, by (2) of Theorem 6.6, we have

qk/2−1χq(−1)χ′(q)f = qk/2−1f |[η2
q ]k = −a(q)f |[ηq]k = q1−k/2a(q)2f.

That is, a(q)2 = χq(−1)χ′(q)qk−2. Since mq = 1, χq(−1) = 1, a(q)2 = χ′(q)qk−2.
(3) Similar to the proof of (2), we have

Γ0(N)
(

1 0
0 q

)
Γ0(N/q) = Γ0(N)

(
1 0
0 q

)
Γ0(N).

Hence we get, along similar arguments for the assertion (2),

f |T(q) = f

∣∣∣∣[Γ0(N)
(

1 0
0 q

)
Γ0(N/q)

]
k

= 0.

This implies that a(q) = 0, which completes the proof.
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During the proof of Theorem 6.7, we have also shown the following:

Corollary 6.1 (1) If Nq = mq, then

f |[ηq]k = a(qe)−1qe(k/2−1)W (χq)g

with g a primitive cusp form of S(N, k, χ′χq).
(2) if Nq = q, mq = 1, then

f |[ηq]k = −a(q)q1−k/2f, a(q) = χ′(q)a(q).

Theorem 6.8 Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) be a common eigenfunction

of R0(N) and R∗0(N), a(1) = 1 and g =
∞∑

n=1

b(n)e(nz) ∈ S(M, k, ω) a primitive cusp

form. Assume that there exists a positive integer L such that a(n) = b(n) for all
(n, L) = 1. Then N = M , χ = ω and f = g.

Proof Without loss of generality, we may assume that L is a common multiple of
M and N . If p � L, by Lemma 6.12, we have

pk−1χ(p) = a(p)2 − a(p2), pk−1ω(p) = b(p)2 − b(p2).

But b(p) = a(p) and a(p2) = b(p2) for any p � L, so that χ(p) = ω(p) for any p � L.
Hence we obtain

χ(n) = ω(n), if (n, L) = 1.

By the functional equation in Theorem 5.9, we see that

RN (s, f)
RM (s, g)

=
RN (k − s, f |[W (N)]k)
RM (k − s, g|[W (M)]k)

. (6.20)

Since LN (s, f) and LM (s, g) have Euler products for Re(s) > 1+k/2 respectively, we
see that for Re(s) > 1 + k/2

RN (s, f)
RM (s, g)

=
(√

N√
M

)s∏
p|L

1 − b(p)p−s + ω(p)pk−1−2s

1 − a(p)p−s + χ(p)pk−1−2s
. (6.21)

By the analytic continuation principle, we know that (6.21) holds for all s. Similarly,
by (2) of Theorem 6.5 and Lemma 6.15, we have

RN (k − s, f |[W (N)]k)
RM (k − s, g|[W (M)]k)

= c

(√
N√
M

)k−s∏
p|L

1 − b(p)ps−k + ω(p)p2s−k−1

1 − a(p)ps−k + χ(p)p2s−k−1
(6.22)
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with a constant c. Comparing (6.20)–(6.22), we obtain(
N

M

)s∏
p|L

1 − b(p)p−s + ω(p)pk−1−2s

1 − a(p)p−s + χ(p)pk−1−2s
= c

(√
N√
M

)k∏
p|L

1 − b(p)ps−k + ω(p)p2s−k−1

1 − a(p)ps−k + χ(p)p2s−k−1
.

(6.23)
Let Mp and Np be the p-parts (i.e., Mp = pνp(M) and Np = pνp(N), where νp(∗) is
the p-valuation.) of M and N respectively. By (6.23) and the uniqueness of Dirichlet
series, for p|L we have that(

Np

Mp

)s 1 − b(p)p−s + ω(p)pk−1−2s

1 − a(p)p−s + χ(p)pk−1−2s
= cp

1 − b(p)ps−k + ω(p)p2s−k−1

1 − a(p)ps−k + χ(p)p2s−k−1

with cp a constant. Set x = p−s, then

1 − a(p)p−s + χ(p)pk−1−2s = 1 − a(p)x + χ(p)pk−1x2,

1 − b(p)p−s + ω(p)pk−1−2s = 1 − b(p)x + ω(p)pk−1x2.

Denote by u, v the degrees of the above polynomials with respect to x. It is clear
that 0 � u, v � 2.

(1) If u = v = 0, we see that Mp = Np.
(2) If u = 0, v = 1, set Np/Mp = pe, then we see that

1 − b(p)x = cpx
e(1 − b(p)p−kx−1), b(p) �= 0.

Therefore |b(p)|2 = pk which contradicts Theorem 6.7, so that it is impossible that
u = 0 and v = 1.

(3) If u = 1, v = 0, similar to (2), it is easy to see that Mp = pNp.
(4) If u = 0, v = 2, set Np/Mp = pe, then

1 − b(p)x + ω(p)pk−1x2 = cpx
e(1 − b(p)p−kx−1 + ω(p)p−k−1x−2).

This implies that e = 2 and hence |ω(p)| = p which is impossible, so that it is
impossible that u = 0, v = 2.

(5) If u = 2, v = 0, similar to (4), it is easy to see that Mp = p2Np.
(6) If u = 1, v = 2, set Np/Mp = pe, then

1 − b(p)x + ω(p)pk−1x2

1 − a(p)x
= cpx

e 1 − b(p)p−kx−1 + ω(p)p−k−1x−2

1 − a(p)p−kx−1
.

This implies that e = 1, so that

(1 − b(p)x + ω(p)pk−1x2)(x − a(p)p−k)

= cp(1 − a(p)x) × (x2 − b(p)p−kx + ω(p)p−k−1). (6.24)

By comparing the coefficients on both sides of (6.24), we obtain
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|a(p)| = pk/2−1, |cp| = pk/2. (6.25)

By (6.24) and (6.25), we see that a(p)−1 = p−k+2a(p) should be a root of 1− b(p)x+
ω(p)pk−1x2 = 0, i.e.,

1 − b(p)p−k+2a(p) + ω(p)p3−ka(p)
2

= 0,

so that,
b(p) = a(p) + ω(p)pa(p) = a(p) − c(p). (6.26)

By (6.25) and (6.26), we have ∣∣1 − |b(p)|p−k/2
∣∣ < p−1,

which contradicts Theorem 6.7, and it is impossible that u = 1, v = 2.
(7) If u = 2, v = 1, similar to (6), it is easy to see that Mp = pNp.
(8) If u = v = 2, it is easy to see that Mp = Np.
Anyway, we proved that N |M and χ(n) = ω(n) if (n, M) = 1. This implies that

S(N, k, χ) ⊂ S(M, k, ω). By Theorem 6.3, we have f = g, and hence M = N in terms
of Lemma 6.14. This completes the proof.

By Lemma 6.14 and Theorem 6.8, it is easy to show the following:

Corollary 6.2 (1) Let 0 �= f(z) ∈ S(N, k, χ), and

f |T(n) = a(n)f, (n, N) = 1.

Then there exists a unique factor M of N and a unique primitive cusp form g(z) of
S(M, k, χ) such that

g|T(n) = a(n)g, (n, N) = 1.

(2) Let f(z) ∈ S(N, k, χ) be a common eigenfunction of R0(N) and R∗0(N). Then
f(z) is a constant multiple of some primitive cusp form of Snew(N, k, χ).

6.2 New Forms with Half Integral Weight

In this section we discuss the Kohnen’s theory of new forms with half integral weight.
Here and after, we always assume that N is an odd square free positive integer, χ a

quadratic character modulo N with conductor t. Put ε = χ(−1) and χ1 =
(

4ε

·

)
χ.

We define Sk+1/2(N, χ) as the space of cusp forms of weight k + 1/2 and char-

acter χ1 on Γ0(4N) which have a Fourier expansion
∞∑

n=1

a(n)e(nz) with a(n) = 0

for ε(−1)kn ≡ 2, 3 (mod 4). We write Sk+1/2(N) for Sk+1/2(N, id.) and we call this
space Kohnen’s “+” space. It is clear that Sk+1/2(N, χ) ⊂ S(4N, k + 1/2, χ1).
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Put

ξ := ξk,ε =
{(

4 1
0 4

)
, ε1/2eπi/4

}
,

Q := Qk,N,χ1 = [Δ0(4N, χ1)ξk,εΔ0(4N, χ1)],

where Δ0(M, ω) :=
{

(A, φ)|A =
(

a b
c d

)
∈ Γ0(M), φ(z) = ω(d)

( c

d

)(−4
d

)−1/2

(cz+

d)1/2

}
. We usually omit the subscripts k + 1/2, 4N, χ1 and write just ξ, Q.

Lemma 6.16 The operator Q satisfies the quadratic equation (Q − α)(Q − β) = 0

where α = (−1)[(k+1)/2]ε2
√

2 and β = −α

2
. It is Hermitian, and its α eigenspace is

just Sk+1/2(N, χ).

Proof It is easy to check that

ξ∓Δ0(4N, χ1)ξ±
⋂

Δ0(4N, χ1) = Δ0(16N, χ1).

Therefore
Δ0(4N, χ1)ξ±Δ0(4N, χ1) =

⋃
Δ0(16N, χ1)ξ±ξu (6.27)

is a disjoint union, where {ξu} is a set of representatives for Δ0(4N, χ1)/Δ0(16N, χ1).

For any v ∈ Z, put Av =
(

1 0
4Nv 1

)
. Then {A∗v|v mod 4} is a set of representatives

for Δ0(4N, χ1)/Δ0 (16N, χ1), by (6.27), we see that

f |Q =
∑

v mod 4

f |[ξA∗v],

f |Q2 =
∑

v mod 4

∑
u mod 4

f |[ξA∗vξA∗u].

Now

ξA0ξAu =
{

8
(

2 1
0 2

)
, εi1/2

}
A∗u

=
{(

1 0
0 1

)
, χ1(−2Nu + 1)

(
4Nu

−2Nu + 1

)(
−4

−2Nu + 1

)1/2}
×
(

1 + 2Nu −Nu

4Nu 1 − 2Nu

)∗{
8
(

2 1
0 2

)
, εi1/2

}
.

By the invariance of f under the operation of elements in Δ0(4N, χ1) and the fact
that ∑

u mod 4

χ1(−2Nu + 1)
(

4Nu

−2Nu + 1

)(
−4

−2Nu + 1

)−k−1/2

= 0,

we obtain that
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∑
u mod 4

f |[ξA∗0ξA∗u] = 0.

Next we observe that

ξA∗±1ξ =
{(

1 0
0 1

)
, χ1(1 ± N + N2)

(
−4

1 ± N + N2

)−1/2

eπi/4

}

×

⎛⎝ 1 ∓ N + N2

(
N ± 1

2

)2

−4N2 1 ± N + N2

⎞⎠∗ ξA∗±1,

hence∑
u mod 4

f |[ξA∗±1ξA
∗
u] = χ1(1 ± N + N2)

(
−4

1 ± N + N2

)k−1/2

ε−k−1/2e−(2k+1)πi/4f |Q.

Since

χ1(1 + N + N2)
(

−4
1 + N + N2

)k−1/2

+ χ1(1 − N + N2)
(

−4
1 − N + N2

)k−1/2

= 1 + ε(−1)ki,

we obtain∑
u mod 4

(f |[ξA∗1ξA∗u] + f |[ξA∗−1ξA
∗
u]) = (1 + ε(−1)ki)ε−k−1/2e−(2k+1)πi/4f |Q.

Finally

ξA∗2ξ =
{(

16 0
0 16

)
, 1
}(

1 + 2N
1 + N

2
8N 1 + 2N

)∗
and so ∑

u mod 4

f |[ξA∗2ξA∗u] = 4f.

Summarizing the facts above we showed that

Q2 = (1 + ε(−1)ki)ε−k−1/2e−(2k+1)πi/4Q + 4,

that is,
(Q − α)(Q − β) = 0.

The adjoint operator of Q is given by

f |Q̃ =
∑

ξ

f |[ξ],

where ξ runs through a set of representatives of the right cosets of Δ0(4N , χ1) in

Δ0(4N , χ1) ξ′Δ0(4N , χ1) with ξ′ =
{(

4 −1
0 4

)
, ε−k−1/2e−(2k+1)πi/4

}
, but
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ξ′ =

(
1 − 2N

N − 1
2

8N 1 − 2N

)∗
ξ

(
1 0

−8N 1

)∗
,

so that Q is Hermitian.

Let f =
∞∑

n=1

a(n)e(nz) be an element of S(4N, k + 1/2, χ1). Then

f |[ξ + ξ′] = ε−k−1/2e−(2k+1)πi/4f(z + 1/4) + εk+1/2e(2k+1)πi/4f(z − 1/4)

= εk
∞∑

n=1

(ε−1/2i−ke−πi/4eπin/2 + ε1/2ikeπi/4e−πin/2)a(n)e(nz)

and hence

f |[ξ + ξ′] = (−1)[(k+1)/2]ε
√

2
( ∑

ε(−1)kn≡0,1 mod 4

a(n)e(nz) −
∑

ε(−1)kn≡2,3 mod 4

a(n)e(nz)
)

.

(6.28)
This shows that f is in Sk+1/2(N, χ) if and only if f |[ξ + ξ′] =

α

2
f . Now by the

definition of the trace operator in Section 5.4, we see that, by (6.27),

f |Q = (f |[ξ])|Tr, f |Q̃ = (f |[ξ′])|Tr, (6.29)

where Tr is the trace operator from S(16N, k + 1/2, χ1) to S(4N, k + 1/2, χ1). Thus,
if f ∈ Sk+1/2(N, χ), we see that

f |Q =
1
2
f |[Q + Q̃] =

1
2
((f |[ξ])|Tr + (f |[ξ′])|Tr) =

α

4
f |Tr = αf.

Conversely, suppose that f |Q = αf . Then

(f |[ξ − α/4])|Tr = (f |[ξ′ − α/4])|Tr = 0

and so
(f |[ξ + ξ′ − α/2])|Tr = 0. (6.30)

By the definition of Tr, the equation (6.30) implies that the function f ′ := f |[ξ + ξ′−
α/2] is in the orthogonal complement of S(4N, k +1/2, χ1) in S(16N, k +1/2, χ1). In
particular, we have

〈f ′, f〉 = 0.

Since (f |[ξ + ξ′])|[ξ + ξ′] = 2f , we see that

〈f ′, f |[ξ + ξ′]〉 = 〈f ′|[ξ + ξ′], f〉 =
〈
2f − α

2
f |[ξ + ξ′], f

〉
= −α

2
〈f ′, f〉 = 0.

Together with 〈f ′, f〉 = 0, this implies that 〈f ′, f ′〉 = 0, i.e. f |[ξ+ξ′] =
α

2
f . Therefore

f is in Sk+1/2(N, χ). This completes the proof.
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For each prime divisor p of N , we defined an operator W (p) in Section 5.4 by

W (p) =
{(

p a
4N pb

)
, ε−1

p p1/4(4Nz + pb)1/2

}
,

where a, b are integers with p2b − 4Na = p. Then W (p) maps S(4N, k + 1/2, χ1) to

S

(
4N, k + 1/2, χ1

(
4p

·

))
and

(
−4
p

)−(2k+1)/4

W (p) acts as an unitary involution

on the sum of these spaces (see Section 5.4).

Lemma 6.17 W (p) maps the space Sk+1/2(N, χ) isomorphically onto the space

Sk+1/2

(
N, χ

(
·
p

))
.

Proof We must show that Sk+1/2(N, χ)|W (p) ⊂ Sk+1/2(N, χ
( ·

p

))
. In view of

Lemma 6.16 we only need to show that

(f |W (p))|Q
k,N,
(

4p
·
)
χ1

=
(
−4
p

)
(f |Qk,N,χ1)|W (p) (6.31)

holds for f ∈ S(4N, k + 1/2, χ1). It is easy to verify that for every v ∈ Z there is
some γv ∈ Γ0(4N) such that

W (p)ξk,(−4
p )εA

∗
v =

{(
1 0
0 1

)
,

(
−4
p

)}
γ∗vξk,εA

∗
uW (p),

where u is determined mod 4 by Nu ≡ −1− b(1 + Nv) + N/p (mod 4). This implies

(6.31) since f |Q =
∑

v mod 4

(f |[ξk,(−4
p )ε])|A

∗
v . This completes the proof.

Let m|N∞ and U(m) be the operator defined as in Lemma 5.38. For any prime
divisor p of N , put

w := wp,k+1/2,N := p−(2k−1)/4U(p)W (p)

and define S±p
k+1/2(N) as the subspace of Sk+1/2(N) consisting of forms whose n-th

Fourier coefficients vanish for
(

(−1)kn

p

)
= ∓1. Then we set

wp,χ := wp,k+1/2,N,χ := U(t)−1wp,k+1/2,NU(t),

S±p
k+1/2(N, χ) = S±p

k+1/2(N)|U(t),

where we used the fact that U(t) is an isomorphism from Sk+1/2(N) to Sk+1/2(N, χ)
which will be proved in (1) of the following lemma.
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Lemma 6.18 (1) The operator U(t) maps isomorphically Sk+1/2(N) onto Sk+1/2(N,

χ) where t is the conductor of χ.
(2) The operator wp,k+1/2,N,χ is a Hermitian involution on Sk+1/2(N, χ) whose

(±1)-eigen -space is S±p
k+1/2(N, χ). In particular, for any p|N , we have an orthogonal

decomposition
Sk+1/2(N, χ) = S+p

k+1/2(N, χ) ⊕ S−p
k+1/2(N, χ).

If p � t, then wp,χ coincides with the restriction of
(

t

p

)
p−(2k−1)/4U(p)W (p) to

Sk+1/2(N, χ), and S±p
k+1/2(N, χ) coincides with the subspace of Sk+1/2(N, χ) consisting

of forms whose n − th Fourier coefficients vanish for
(

(−1)ktn

p

)
= ∓1.

Proof We prove first the following assertion: suppose p � t, then p−(2k−1)/4U(p)W (p)
defines a Hermitian involution on Sk+1/2(N, χ) whose (±1)-eigenspace consists of

those functions f which have a Fourier expansion f =
∞∑

n=1

a(n)e(nz) with a(n) = 0

for
(

(−1)kn

p

)
= ∓1.

In fact, by the definition of U(p), we see that

f |U(p) = p(2k−3)/4
∑

v mod p

f

∣∣∣∣[{( 1 v

0 p

)
, p1/4

}]
and so

f |p−(2k−1)/4U(p)W (p)

= p−1/2
∑

v mod p

f

∣∣∣∣[{( p + 4Nv a + pbv

4Np p2b

)
,

(
−4
p

)−1/2

(4Nz + pb)1/2

}]
.

If 1 + 4Nv/p �≡ 0 (mod p), then 4N and 1 + 4Nv/p are co-prime, and so we can find

integers α, β such that α(−1 − 4Nv/p) − 4Nβ = 1. Thus
(

α β

4N −1 − 4Nv/p

)
∈

Γ0(4N), by f ∈ Sk+1/2(N, χ) and p � t, we see that

f

∣∣∣∣[{( p + 4Nv a + pbv

4Np p2b

)
, (4Nz + pb)1/2

}]
=
(

N/p

p

)
f

∣∣∣∣[{( p −aα

0 p

)
,

(
aα

p

)}]
.

Hence we have

f |p−(2k−1)/4U(p)W (p)=
(

N/p

p

)(
−4
p

)k+1/2

p−1/2
∑

α mod p,
(α,p)=1

f

∣∣∣∣[{( p α

0 p

)
,

(
−α

p

)}]
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+p−1/2

(
f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}])∣∣∣∣W (p), (6.32)

where v0 is an integer with 1 + 4Nv0/p ≡ 0 (mod p). Since∑
α mod p,
(α,p)=1

(
f

∣∣∣∣[{( p α

0 p

)
,

(
−α

p

)}])∣∣∣∣U(p) = 0,

we see from (6.32) that

f |(p−(2k−1)/4U(p)W (p))2

= p−(2k+1)/4f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}]∣∣∣∣W (p)
∣∣∣∣U(p)W (p)

=
1
p

∑
u mod p

(
f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}])∣∣∣∣W (p)
∣∣∣∣[{( 1 u

0 p

)
, p1/4

}]∣∣∣∣W (p).

Since p � t, it is easy to check that{(
p−2 0
0 p−2

)
, 1
}{(

1 v0

0 p

)
, p1/4

}
W (p)

{(
1 u

0 p

)
, p1/4

}
W (p) ∈ Δ0(4N, χ),

so that, we have
f |(p−(2k−1)/4U(p)W (p))2 = f.

Since the adjoint of
{(

p α

0 p

)
,

(
−α

p

)(
−4
p

)−1/2}
is
{(

p −α

0 p

)
,

(
α

p

)(
−4
p

)−1/2}
,

and the adjoint of
{(

1 v0

0 p

)
, p1/4

}
W (p) can be written as C∗

{(
1 v0

0 p

)
, p1/4

}
W (p)

with C ∈ Γ0(4N), it follows that p−(2k−1)/4U(p)W (p) is Hermitian.
Finally, by Gauss sum and (6.32), we have

f |p−(2k−1)/4U(p)W (p)=
(

N/p

p

) ∞∑
n=1

(
(−1)kn

p

)
a(n)e(nz)

+p−1/2f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}]
W (p). (6.33)

Therefore to complete the proof of our assertion we only need to show that

f |U(p) = ±
(
−4
p

)−k−1/2

p(2k−1)/4f |W (p)

is equivalent to the identity

p−1/2

(
f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}]
W (p)

)
(z) = ±

(
N/p

p

)
(f |U(p))(pz),
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which can be derived from the following fact{(
1 v0

0 p

)
, p1/4

}
W (p)=

{(
1 0
0 1

)
,

(
−4
p

)1/2(
N/p

p

)}
C∗W (p)

{(
p 0
0 1

)
, p−1/4

}
(6.34)

with C ∈ Γ0(4N), and hence the assertion is proved. Since we have the following
commutation rule

f |U(t)W (p) =
(

t

p

)
f |W (p)U(t), p � t,

the assertions in (2) of the lemma will be clear once (1) will have been proved. By
Lemma 6.17, we have that dim(Sk+1/2(N)) = dim(Sk+1/2(N, χ)). So we only need to
show that U(t) is injective on Sk+1/2(N). But we have shown above that U(p)W (p)
is injective on Sk+1/2(N, χ) for p � t, so U(p) is injective on Sk+1/2(N, χ) for p � t, and
hence we conclude by induction that U(t) is injective on Sk+1/2(N). This completes
the proof.

We introduce now the Hecke operators on Sk+1/2(N, χ). Let

pr := prk,N,χ1
:=

1
α − β

(Qk,N,χ1 − β)

be the orthogonal projection onto Sk+1/2(N, χ). For a prime p � N , we define T(p) :=
TN,k,χ(p) as the restriction of

νpp
k−3/2

[
Δ0(4N, χ1)

{(
1 0
0 p2

)
, p1/2

}
Δ0(4N, χ1)

]
pr

to Sk+1/2(N, χ), where νp = 1 or 3/2 according to p �= 2 or p = 2. It is clear that
for an odd p, TN,k,χ(p) is the restriction of the Hecke operator TN,k,χ1(p2). We write
TN,k(p) for TN,k,id.(p).

Lemma 6.19 Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ Sk+1/2(N, χ). Put f |TN,k,χ(p) =

∞∑
n=1

b(n)e(nz). Then

b(n)=

⎧⎨⎩ a(p2n)+χ(p)
(

ε(−1)kn

p

)
pk−1a(n)+a(n/p2), if ε(−1)kn≡0, 1 (mod 4),

0, if ε(−1)kn≡2, 3 (mod 4).
(6.35)

The operators T(p) generate a commutative C-algebra of Hermitian operators.

Proof Since T(p) is just the Hecke operator T(p2) for p �= 2, so (6.35) is clear for p

odd by Theorem 5.15. Let us now prove (6.35) for p = 2. We use the same notations
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as in the proof of Lemma 6.16. By the definition of U(m), we see that

U(4) = 2k−3/2

[
Δ0(4N, χ1)

{(
1 0
0 4

)
, 21/2

}
Δ0(4N, χ1)

]
.

By the definition of T(2) and (6.29), we have

f |T(2) =
1
α

((f |U(4))|[ξ]) |Tr +
1
2
f |U(4) = f1 + f2 + f3

with
f1 =

1
α

((f |U(4))|[ξ])|[A∗0 + A∗2] +
1
2
f |U(4),

f2 =
1
α

((f |U(4))|[ξ])|[A∗N ],

f3 =
1
α

((f |U(4))|[ξ])|[A∗−N3 ].

Since

A∗0 =
{(

1 0
0 1

)
, 1
}

, ξA∗2 =

(
1 + 2N

N + 1
2

8N 1 + 2N

)∗
ξ′

and f ∈ Sk+1/2(N, χ), we see that

f1 =
1
α

(f |U(4))|[ξ + ξ′] +
1
2
f |U(4).

By (6.28) and Lemma 5.38, we have

f1 =
∑

ε(−1)kn≡0,1 mod 4

a(4n)e(nz).

But we have also

f |U(4) = 2k−3/2
∑

v mod 4

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]
,

so that

f2 =
2k−3/2

α

∑
v mod 4

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]∣∣∣∣A∗N
= 2k−3/2

∑
v mod 4

f

∣∣∣∣[{( 4 + 4N2(4v + 1) 4v + 1
64N2 16

)
, ε1/2eπi/4(8N2z + 2)1/2

}]
.

For v ∈ Z we can find an integer a such that

−a(1 + N2(4v + 1)) + 2(4v + 1) ≡ 0 (mod 16),

so that
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4 + 4N2(4v + 1) 4v + 1

64N2 16

)
, ε1/2eπi/4(8N2z + 2)1/2

}

=

⎛⎝ 1 + N2(4v + 1)
2

−a(1 + N2(4v + 1)) + 2(4v + 1)
16

8N2 −aN2 + 2

⎞⎠∗

×
{(

8 a

0 8

)
, χ(2)

(
4ε

a

)(
8
a

)(
−4
a

)−1/2}
.

Moreover, if v runs through integers mod 4, a runs through a reduced residue system
mod 8. Thus

f2 = χ(2)
2k−3/2

α

∑
a mod 8,

a odd

f

∣∣∣∣[{( 8 a

0 8

)
, ε1/2eπi/4

(
4ε

a

)(
8
a

)(
−4
a

)−1/2}]
.

From this equality, it is easy to verify that

f2 = χ(2)
∞∑

n=1

(
ε(−1)kn

2

)
a(n)e(nz).

We want now to compute f3. By the proof of Lemma 6.16, we know that

f |[ξ + ξ′] =
α

2
f. (6.36)

Since {(
1 ±1
0 4

)
, 21/2

}{(
−N4 + 1 1
−4N4 4

)
, ε1/2eπi/421/2(−N4z + 1)1/2

}

=

⎛⎝∓N4 +
1 − N4

4
±1 +

(4 ± 1)(1 − N4)
16

−4N4 ∓N4 + 4

⎞⎠∗ ξ∓1,

so (6.36) implies

α

2
f =

∑
v=1,−1

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}{(
−N4 + 1 1
−4N4 4

)
, ε1/2eπi/421/2(−N4z + 1)1/2

}]
,

and hence∑
v=1,−1

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]

=
α

2
f

∣∣∣∣[{( 4 −1
4N4 −N4 + 1

)
, ε−1/2e−πi/42−1/2(4N4z − N4 + 1)1/2

}]
. (6.37)

Since a(n) = 0 for n ≡ 2 (mod 4), we have∑
v=1,−1

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]
= 21/2−kf |U(4).
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From (6.37) we obtain

f |U(4) = 2k−3/2αf

∣∣∣∣[{( 4 −1
4N4 −N4 + 1

)
, ε−1/2e−πi/42−1/2(4N4z − N4 + 1)1/2

}]
= 2k−3/2α

(
f

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}])∣∣∣∣[A∗N3 ]
∣∣∣∣[ξ−1].

Hence

f3 =
1
α

((f |U(4))|[ξ])|[A∗−N3 ] = 2k−3/2f

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]
=22k−1

∞∑
n=1

a(n/4)e(nz). (6.38)

Putting together all expansions for f1, f2 and f3, we get (6.35) for p = 2. It is
clear that the operators TN,k,χ(p) commute each other from (6.35). TN,k,χ(p) (p �

2N) is Hermitian since the operator
[{

Δ0(4N, χ1)
(

1 0
0 p2

)
, p1/2

}
Δ0(4N, χ1)

]
is

Hermitian for p � N . So we only need to show that T(2) is Hermitian. Let f , g be in
Sk+1/2(N, χ). Then

2
3
〈f |T(2), g〉 = 〈f |U(4)pr, g〉 = 〈f |U(4), g|pr〉

= 〈f |U(4), g〉 = 2k−3/2
∑

v mod 4

〈
f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]
, g

〉
= 2k−3/2

∑
v mod 4

〈
f, g

∣∣∣∣[{( 4 −v

0 1

)
, 2−1/2

}]〉
= 2k+1/2

〈
f, g

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]〉
.

Now we have
1
α

((g|U(4))|[ξ])|[A∗−N3 ]=2k−3/2g

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]
=

1
α

((g|U(4))|[ξ−1])|[A∗N3 ], (6.39)

and the first equality is derived from (6.38), and the second can be proved similarly.
By (6.39), we see easily that

2k+1/2g

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]
=

2
α

(g|U(4))|[ξA∗−N3 + ξ−1A∗N3 ].

Thus
2
3
〈f |T(2), g〉 =

2
α
〈f, g|U(4))|[ξA∗−N3 + ξ−1A∗N3 ]〉

=
2
α
〈f |[A∗N3ξ−1 + A∗−N3ξ], g|U(4)〉
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=
2
α
〈f |[ξ + ξ−1], g|U(4)〉

= 〈f, g|U(4)〉 =
2
3
〈f, g|T(2)〉.

This completes the proof.

For a positive divisor d of N we set Sk+1/2(d, χ) = Sk+1/2(d)|U(t). Put

Sold
k+1/2(N, χ) =

∑
N �=d|N

(
Sk+1/2(d, χ) + Sk+1/2(d, χ)|U(N2/d2)

)
,

which is called the space of old forms in Sk+1/2(N, χ). And we define the space of
new forms, denoted by Snew

k+1/2(N, χ), to be the orthogonal complement of the space
of old forms in Sk+1/2(N, χ) with respect to the Petersson inner product. We write

Snew
k+1/2(N) = Snew

k+1/2(N, id.).

Lemma 6.20 We have

Snew
k+1/2(N, χ) = Snew

k+1/2(N)|U(t).

Proof By Lemma 6.18 it suffices to show the inclusion

Snew
k+1/2(N)|U(t) ⊂ Snew

k+1/2(N, χ).

Let f ∈ Snew
k+1/2(N). We must show that

〈g|U(t), f |U(t)〉 = 0

for all old forms g in Sk+1/2(N). Let t = p1 · · · pr be the standard factorization of t.
Then we have

〈g|U(t), f |U(t)〉 = pk+1/2
r 〈g|U(t/pr), f |U(t/pr)〉,

since W (pr) is unitary and p
−(2k+1)/4
r U(pr)W (pr) is a Hermitian involution on Sk+1/2

(N)|U
(

t

pr

)
(by the proof of Lemma 6.18). By induction, we see that

〈g|U(t), f |U(t)〉 = tk+1/2〈g, f〉 = 0.

This completes the proof.

We shall carry over the basic facts about the space of new forms Snew(N , 2k)
to Snew

k+1/2(N , χ). Recall that for every prime divisor p of N the operator U(p)
preserves Snew(N, 2k) ⊂ S(N, 2k) and that U(p) = −pk−1Wp,2k,N on Snew(N, 2k),
where Wp,2k,N is the Atkin-Lehner involution on S(N, 2k) defined by

(f |Wp,2k,N )(z) = pk(4Nz + pb)−2kf

(
pz + a

4Nz + pb

)
, a, b ∈ Z, p2b − 4Na = p.

We shall now prove an analogous result for new forms of half integral weight.
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Theorem 6.9 For every prime p|N , the operators U(p2) and wp,χ := wp,k,N,χ

preserve the space of new forms. And we have U(p2) = −pk−1wp,χ on Snew
k+1/2(N, χ).

Proof We first show that wp,χ := wp,k,N,χ maps new forms to new forms. Since
wp,χ is Hermitian it is sufficient to show that wp,χ maps old forms to old forms. By
the definitions we only need to show this for χ = id. Now set wp := wp,k,N . We only
need to show that wp maps Sk+1/2(N/l) and Sk+1/2(N/l)|U(l2) to old forms for every
prime divisor l of N .

Let f ∈ Sk+1/2(N/l). If p �= l, by (2) of Lemma 6.18, f |wp is in Sk+1/2(N/l) and
so an old form. The same is true for f |U(l2)|wp = f |wp|U(l2). Thus we assume that

p = l. Let f(z) =
∞∑

n=1

a(n)e(nz). Then, by (6.34) and (6.35) in the proof of Lemma

6.18, we see that

f |wp =
(

N/p

p

) ∞∑
n=1

(
(−1)kn

p

)
a(n)e(nz)

+
(
−4
p

)−k−1/2(
N/p

p

)
p−1/2(f |W (p))

∣∣∣∣[{( p 0
0 1

)
, p−1/4

}]
.

Since f ∈ Sk+1/2(N/p), we have

f |W (p) =
(

f

∣∣∣∣ ( −1 0
4N/p −1

)∗)∣∣∣∣W (p)

= f

∣∣∣∣[{(−p −a

0 −1

)
,

(
−4
p

)−1/2

p−1/4

}]
= f

∣∣∣∣[{( p 0
0 1

)
,

(
−4
p

)−1/2

p−1/4

}]
.

Thus we obtain that

f |wp =
(

N/p

p

) ∞∑
n=1

((
(−1)kn

p

)
a(n) + pka(n/p2)

)
e(nz),

i.e.

f |wp =
(

N/p

p

)
p−k+1(−f |U(p2) + f |TN/p,k(p2)). (6.40)

This shows that f |wp is an old form. Moreover, applying wp on both sides of (6.40)
and noting w2

p = id. we see that (f |U(p2))|wp is an old form. This shows that wp

maps old forms to old forms, and so that, new forms to new forms.
Finally, we must now prove that on Snew

k+1/2(N, χ)

U(p2) = −pk−1wp,k,N,χ, p prime , p|N. (6.41)
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But Lemma 6.20 and the injectivity of U(t) on Sk+1/2(N) (see Lemma 6.18) allows

us to assume χ = id. for the proof of (6.41). Denote by Tr := TrN
N/p : S(N, k+1/2) →

S(N/p, k + 1/2) the trace operator. It is easy to verify that TrN
N/p maps Sk+1/2(N)

to Sk+1/2(N/p) by Lemma 6.16. Let f ∈ Snew
k+1/2(N). Since f is orthogonal to

Sk+1/2(N/p), it follows that f |Tr = 0. On the other hand,
(

1 0
4N/p 1

)(
1 u

0 1

)
(u mod p) together with

(
1 0
0 1

)
form a complete set of representatives for Γ0(4N)/

Γ0(4N/p). Thus we have

f |Tr = f +
∑

u mod p

f

∣∣∣∣[( 1 0
4N/p 1

)∗( 1 u

0 1

)∗ ]
.

But(
1 0

4N/p 1

)∗( 1 u

0 1

)∗
=
{(

p 0
0 p

)
,

(
−4
p

)1/2}
W (p)

{(
1 u − a

0 1

)
, p1/4

}
,

so that

f |Tr = f +
(
−4
p

)−k−1/2

p−k/2+3/4f |W (p)U(p).

Since f |Tr = 0, we obtain that

f |W (p)U(p) = −
(
−4
p

)k+1/2

p(2k−3)/4f.

By (2) of Lemma 6.18 and the fact that wp,k,N,χ preserves the space of new forms,
we see that U(p)W (p) is an isomorphism of Snew

k+1/2(N). Thus replacing f with
f |U(p)W (p) in the above equality, we see that(

−4
p

)k+1/2

f |U(p2) = f |U(p)W (p)W (p)U(p)

= −
(
−4
p

)k+1/2

p(2k−3)/4f |U(p)W (p),

i.e.
f |U(p2) = −pk−1f |wp.

This completes the proof.

Lemma 6.21 Let f =
∞∑

n=1

a(n)e(nz) ∈ S(4N, k + 1/2, χ1) satisfy that a(n) = 0 for

n ≡ 2 (mod 4). Then f is in Sk+1/2(N, χ).

Proof The hypothesis a(n) = 0 for n ≡ 2 (mod 4) is equivalent to
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f

∣∣∣∣[{( 4 1
0 4

)
, 1
}]

+ f

∣∣∣∣[{( 4 −1
0 4

)
, 1
}]

=2−k+1/2(f |U(4))
∣∣∣∣[{( 4 0

0 1

)
, 2−1/2

}]
.

Now apply the trace operator Tr := Tr16N
4N from S(16N, k + 1/2, χ1) to S(4N, k +

1/2, χ) on both sides of the above equation. Because of the identity (6.29) and the
fact that Q is Hermitian, we obtain that

ε(−1)[(k+1)/2]
√

2f |Q = 2−k+1/2

(
(f |U(4))

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}])∣∣∣∣Tr. (6.42)

Since U(4) and
{(

4 0
0 1

)
, 2−1/2

}∣∣∣∣Tr equal 2k−3/2

[
Δ0(4N, χ1)

{(
1 0
0 4

)
, 21/2

}
Δ0(4N, χ1)

]
and

[
Δ0(4N, χ1)

{(
4 0
0 1

)
, 2−1/2

}
Δ0(4N, χ1)

]
respectively, and also

since

Δ0(4N, χ1)
{(

1 0
0 4

)
, 21/2

}
Δ0(4N, χ1)

· Δ0(4N, χ1)
{(

4 0
0 1

)
, 2−1/2

}
Δ0(4N, χ1)

= 4Δ0(4N, χ1)
{(

4 0
0 4

)
, 1
}

Δ0(4N, χ1)

+ Δ0(4N, χ1)
{(

4 1
0 4

)
, 1
}

Δ0(4N, χ1)

+ Δ0(4N, χ1)
{(

4 −1
0 4

)
, 1
}

Δ0(4N, χ1)

+ Δ0(4N, χ1)
{(

4 2
0 4

)
, 1
}

Δ0(4N, χ1),

Δ0(4N, χ1)
{(

4 2
0 4

)
, 1
}

Δ0(4N, χ1) = 0,

the right hand side of (6.42) equals

1
2

(
4f + ε(−1)[(k+1)/2]

√
2f |Q

)
,

so that
f |Q = ε(−1)[(k+1)/2]2

√
2f

and hence f is in Sk+1/2(N, χ) by Lemma 6.16. This completes the proof.

Lemma 6.22 Let p be a prime and 0 �= f =
∞∑

n=1

a(n)e(nz) ∈ G(N, k/2, ω). Assume
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that a(n) = 0 for all n with p � n. Then p|N/4, ωχp is well-defined modulo N/p and

f = g|V (p) with g ∈ G(N/p, k/2, ωχp) where χp =
(

p

∗

)
.

Proof Put

g(z) = f(z/p) =
∞∑

n=0

a(np)e(nz) = pk/4f

∣∣∣∣[{( 1 0
0 p

)
, p1/4

}]
. (6.43)

Set

N ′ =
{

N/p, if p|N/4,

N, if p � N/4.
Γ0(N ′, p) =

{(
a b

c d

)
∈ Γ0(N ′)

∣∣p|b}.

If A =
(

a b

c d

)
∈ Γ0(N ′, p), then A1 =

(
a b/p

cp d

)
∈ Γ0(N) and we see that{(

1 0
0 p

)
, p1/4

}
A∗ = {1, χp(d)}A∗1

{(
1 0
0 p

)
, p1/4

}
.

Hence
g|[A∗] = ω(d)χp(d)g. (6.44)

By (6.43) we have
g

∣∣∣∣[{( 1 1
0 1

)
, 1
}]

= g.

Since Γ0(N ′) can be generated by Γ0(N ′, p) and
(

1 1
0 1

)
, we see that (6.44) holds for

any A ∈ Γ0(N ′). We declare that ωχp must be well-defined modulo N ′. Otherwise,
there exist integers a and d such that ad ≡ 1 (mod N ′) and ωχp(a) · ωχp(d) �= 1.
Take

B =
(

a b

N ′ d

)
∈ Γ0(N ′),

we have that g = g|[B∗(B−1)∗] = ωχp(a)ωχp(d)g, which is impossible since g �= 0.
Therefore ωχp must be well-defined modulo N ′, so that p|N/4 and N ′ = N/p. It
is therefore clear that g is in G(N/p, k/2, ωχp) and f = g|V (p). This completes the
proof.

Lemma 6.23 Let m be a positive integer, and

f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω).

Suppose that a(n) = 0 for any n with (n, m) = 1. Then

f =
∑

fp|V (p), fp ∈ G(N/p, k/2, ωχp),

where the prime p runs over the set of common factors of m and N/4. And ωχp is
well-defined modulo N/p. fp can be chosen as cusp forms if f is a cusp form. fp

are eigenfunctions for almost all Hecke operators T(p2) if f is an eigenfunction for
almost all Hecke operators T(p2).
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Proof We can assume that m is square-free. Let r be the number of different
prime factors of m. If r = 0, then f = 0 and the lemma holds. If r = 1, this is the
Lemma 6.22. We now prove the lemma by induction on r. Let m = p0m0. Take a
prime p and put K(p) = 1 − T(p, Np)V (p) where T(p, Np) is the Hecke operator
TNp,k,ω(p) on the space G(pN , k/2, ω). By the properties of Hecke operators, we
have

f |K(p) =
∑

(n,p)=1

a(n)e(nz) ∈ G(p2N, k/2, ω).

So
h :=

∑
(n,m0)=1

a(n)e(nz) = f
∣∣ ∏

p|m0

K(p) ∈ G(m2
0N, k/2, ω).

If h = 0, replacing m by m0, we see that the lemma holds by induction hypothesis.
Now suppose that h �= 0. If (n, m0) = 1 and a(n) �= 0, then p0|n. By Lemma 6.22,
there is gp0 ∈ G(m2

0N/p, k/2, ωχp0) such that h = gp0 |V (p0), and ωχp0 is well-defined
modulo m2

0N/p0. Hence p0|N/4 and ωχp0 is well-defined modulo N/p0. We have

f − h = f − gp0 |V (p0) =
∞∑

n=0

b(n)e(nz).

Noting that b(n) = 0 if (n, m0) = 1 and applying induction hypothesis, we have

f − gp0 |V (p0) =
∑

p

gp|V (p),

where p runs over the set of prime factors of m0, and ωχp is well-defined modulo
m2

0N/p. Therefore by Theorem 5.21, we see that

f |S(ω) − gp0 =
∑

p

(gp|S(ωχp, m
2
0N/p, p0))|V (p).

Put fp0 = f |S(ω). Then fp0 ∈ G(N/p0, k/2, ωχp0). If we write

fp0 |V (p0) =
∞∑

n=0

c(n)e(nz),

then the nth Fourier coefficient of fp0 |V (p0)−gp0 |V (p0) is not zero only for (n, m0) �=
1. So we get c(n) = a(n) for (n, m0) = 1, and hence the nth Fourier coefficient
of f − fp0 |V (p0) is zero for (n, m0) = 1. By the induction hypothesis we get the
decomposition of f as stated in the lemma. The other results can be proved also by
induction. This completes the proof.

Corollary 6.3 Let f be as in Lemma 6.23. If f is an eigenfunction of almost all
Hecke operators, then f ∈ Gold(N, k/2, ω).

Theorem 6.10 We have the following decomposition:

Sk+1/2(N, χ) =
⊕

r,d�1,rd|N
Snew

k+1/2(d, χ)|U(r2).
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Proof We now prove the decomposition for the case N = q with q an odd prime.
We can prove the general case by induction. First assume χ = 1. Suppose that
f ∈ Sk+1/2(1) and f |U(q2) ∈ Sk+1/2(1). We may assume that f is an eigenfunction
of all Hecke operators T(p) := T1,k,1(p). To prove the decomposition we must show
that f = 0. If otherwise, since f and f |U(q2) have the same eigenvalues for all T(p)
with p �= q, we conclude that f |U(q2) = cf with some constant c ∈ C (in fact, by
Theorem 6.3, a non-zero Hecke eigenform in S(1, 2k, id.) is completely determined
up to a constant factor by prescribing all up to finitely many of its eigenvalues, so is
also a non zero Hecke eigenform in Sk+1/2(1) by Theorem 9.7).

Now let λq be the eigenvalue of f with respect to T(q) and write f =
∞∑

n=1

a(n)e(nz).

Then, by the definition of T(q) and the fact that f |U(q2) = cf , we have(
λq − c −

(
(−1)kn

q

)
qk−1

)
a(n) = q2k−1a(n/q2), ∀n ∈ N. (6.45)

By Lemma 6.22 we can choose n′ such that q � n′ and a(n′) �= 0. We see then that

λq = c +
(

(−1)kn′

q

)
qk−1. (6.46)

Substituting (6.46) into (6.45) we have((
(−1)kn′

q

)
−
(

(−1)kn

q

))
a(n) = qka(n/q2), ∀n ∈ N,

so that

f |U(q2) =
(

(−1)kn′

q

)
qkf, ∀n ≡ 0 (mod q2),

i.e.,

c =
(

(−1)kn′

q

)
qk.

Thus by (6.46) we see that
|λq| = qk + qk−1,

which is impossible by Ramanujan-Petersson-Deligne’s Theorem. Thus we proved
that

Sk+1/2(1)
⋂

Sk+1/2(1)|U(q2) = {0}.

Hence by the definitions of new forms and old forms, we have

Sk+1/2(q) = Snew
k+1/2(q) ⊕

(
Sk+1/2(1) + Sk+1/2(1)|U(q2)

)
= Snew

k+1/2(q) ⊕ Sk+1/2(1) ⊕ Sk+1/2(1)|U(q2)

= Snew
k+1/2(q) ⊕ Snew

k+1/2(1) ⊕ Snew
k+1/2(1)|U(q2).
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Thus the theorem is proved for χ = 1. If χ is primitive modulo q, the theorem follows
from the following facts (see Lemma 6.18 and Lemma 6.20) :

Sk+1/2(q)|U(q) = Sk+1/2(q, χ), Snew
k+1/2(q)|U(q) = Snew

k+1/2(q, χ).

This completes the proof.

Theorem 6.11 (1) The space Snew
k+1/2(N, χ) has an orthogonal basis of common

eigenfunctions for all operators T(p) := TN,k,χ(p) (p prime, p � N) and U(p2) (p
prime, p|N), uniquely determined up to multiplication with non-zero complex num-
bers, the eigenvalues corresponding to U(p2) with p|N are ±pk−1. If f is such an
eigenfunction and λp the eigenvalue corresponding to T(p) resp. U(p2), then there
is an eigenfunction F ∈ Snew

2k (N), uniquely determined up to multiplication with a
non-zero complex number, which satisfies F |TN,2k(p) = λpF resp. F |U(p2) = λpF

for all primes p with p � N resp. p|N . Let f =
∞∑

n=1

a(n)e(nz) and F =
∞∑

n=1

A(n)e(nz),

and D a fundamental discriminant with ε(−1)kD > 0. Then we have

L(s − k + 1, χχD)
∞∑

n=1

a(|D|n2)n−s = a(|D|)
∞∑

n=1

A(n)n−s.

(2) Let the map LD,N,k,χ be defined by

∞∑
n=1

b(n)e(nz) �→
∞∑

n=1

(∑
d|n

χ(d)χD(d)dk−1b(n2|D|/d2)
)

e(nz).

Then LD,N,k,χ maps Sk+1/2(N, χ) to S(N, 2k, id.), Snew
k+1/2(N, χ) to Snew(N, 2k, id.)

and S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ) to S±p(N, 2k, id.)
⋂

Snew(N, 2k, id.) with p any
prime divisor of N where S±p(N, 2k, id.) = {f ∈ S(N, 2k, id.) | f |Wp,2k,N = ±f}.
It satisfies

TN,k,χ(p)LD,N,k,χ = LD,N,k,χTN,2k,1(p), ∀p � N,

U(p2)LD,N,k,χ = LD,N,k,χU(p), ∀p|N.

There exists a linear combination of the LD,N,k,χ which maps Snew
k+1/2(N, χ) resp.

S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ)

isomorphically onto Snew(N, 2k, id.) resp. S±p(N, 2k, id.)
⋂

Snew(N, 2k, id.).

Proof Since T(p) commutes with U(d2) for d|N , and since for f ∈ Sk+1/2(N) we
have

f |U(t)|T(p) = f |T(p)|U(t),
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it follows that the Hecke operator T(p) preserves the space of old forms and so pre-
serves also Snew

k+1/2(N, χ). We now have that

Tr(TN,k,χ(n), Snew
k+1/2(N, χ)) = Tr(TN,2k(n), Snew(N, 2k)) (6.47)

for all n ∈ N with (n, 2N) = 1. In fact, this follows by induction from the decompo-
sitions:

Sk+1/2(N, χ) =
⊕

r,d�1,rd|N
Snew

k+1/2(d, χ)|U(r2),

Snew(N) =
⊕

r,d�1,rd|N
Snew(d, 2k)|U(r)

and from the Theorem 9.7.
By (6.47) and the corresponding statement for Snew(N, 2k) (see Section 6.1), we

deduce that Snew
k+1/2(N, χ) has an orthogonal basis of common eigenfunctions for all

operators TN,k,χ(p) (p � 2N), uniquely determined up to multiplication with non-zero
complex numbers. Since TN,k,χ(p) (p � 2N), U(p2)(p|N) and TN,k,χ(2) commute, so
these functions are also eigenfunctions of U(p2)(p|N) and TN,k,χ(2). Furthermore, by
Theorem 6.9 and in particular the fact that wN,p,k+1/2,χ is an involution shows that

the eigenvalues with respect to U(p2)(p|N) are ±pk−1. Now let f =
∞∑

n=1

a(n)e(nz) be

an eigenfunction and assume that f |T(p) = λpf resp. f |U(p2) = λpf for p � N resp.
p|N . Then a formal computation as in Lemma 5.40 and Theorem 5.23 shows that

L(s − k + 1, χχD)
∞∑

n=1

a(|D|n2) = a(|D|)
∏
p

(
1 − λpp

−s +
(

N

p

)2

p2k−1−2s

)−1

for every fundamental discriminant D with ε(−1)kD > 0.
Let us show the assertions about the maps LD := LD,N,k,χ. Note that the Hecke

operators TN,k,χ(p) and TN,2k,id.(p) act in a natural way on the formal power series

in q = e(z). It is clear that for a formal power series f =
∑

ε(−1)kn≡0,1 mod 4

a(n)qn, we

have
f |TN,k,χ(p)|LD = f |LD|TN,2k,id.(p), ∀p � N,

f |U(p2)|LD = f |LD|U(p), ∀p|N,

by a formal computation.
The other assertions will be shown first under the assumption that D ≡ 0 (mod 4).

Write D = 4t with t square free and t ≡ 2, 3 (mod 4). For

f =
∞∑

n=1

a(n)e(nz) ∈ Sk+1/2(N, χ),

put
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f |Lt,4N,k,χ1 =
∞∑

n=1

(∑
d|n

(4εt

d

)
χ(d)dk−1a(n2|t|/d2))e(nz).

Then f |Lt,4N,k,χ1 is a cusp form of weight 2k on Γ0(2N) by the results of Chapter 8.
Since f ∈ Sk+1/2(N, χ), the nth Fourier coefficients of f |Lt,4N,k,χ1 are zero for any
odd n. Hence the function (f |Lt,4N,k,χ1)|U(2) = f |LD,N,k,χ is in S(N, 2k, id.).

If f ∈ Snew
k+1/2(N, χ) is a Hecke eigenfunction, then from Theorem 6.9 we see that

f |U(p2) = ±pk−1f, ∀ p|N.

Therefore F = f |LD is a Hecke eigenform in S(N, 2k, id.) with F |U(p) = ±pk−1F for
all p|N , and this implies that F must be in Snew(N, 2k, id.) by the results in Section
6.1.

That LD maps S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ) to S±p(N, 2k, id.)
⋂

Snew(N, 2k, id.)
follows from Theorem 6.9, the identity U(p2)LD = LDU(p) and the fact that U(p) =
−pk−1Wp,N,2k on Snew(N, 2k, id.).

We shall now prove that there is a linear combination of LD with D ≡ 0 (mod 4)
which gives an isomorphism of Snew

k+1/2(N , χ) onto Snew(N , 2k, id.). Now suppose
that f ∈ Snew

k+1/2(N , χ) is a non-zero Hecke eigenfunction. We declare that there is a
fundamental discriminant D ≡ 0 (mod 4) with ε(−1)kD > 0 such that the Fourier
coefficient of f at e(|D|z) is non-zero. Otherwise, then the n-th Fourier coefficients
of g = f |U(4) are zero for all n ≡ 2 (mod 4), and so that g is in Sk+1/2(N , χ) by
Lemma 6.21. It follows that g = cf for some constant c. In fact, by Theorem 9.7 and
identity (6.47), we see that there exists an isomorphism ψ : Sk+1/2(N , χ) → S(N , 2k,
id.) which maps new forms onto new forms and ψTN,k+1/2,χ(p) = TN,2k(p)ψ for all
primes p � 2N . So f |ψ is a new form with the same eigenvalues as g|ψ for all Hecke
operators TN,2k(p) with p � 2N , and so that g|ψ ∈ Cf |ψ by the results in Section 6.1.
This shows that g = cf for some constant c. Now note that f is an eigenfunction of
TN,k,χ(2). Denote by λ2 the corresponding eigenvalue, then similar to the proof of
Theorem 6.10, we have

|λ2| = 2k + 2k−1,

which contradicts the Ramanujan-Petersson-Deligne Theorem. Thus we proved the
above claim.

Let f1, f2, · · · , fr ∈ Sk+1/2(N, χ) be an orthogonal basis of common eigenfunctions

of the operators TN,k,χ(p)(p � N) resp. U(p2)(p|N), and write fi =
∞∑

n=1

ai(n)e(nz).

For every i find a fundamental discriminant Di ≡ 0 (mod 4) with ε(−1)kDi > 0 and
ai(|Di|) �= 0. Then the polynomial

P (x1, x2, · · · , xr) =
∏

1�i�r

(ai(|D1|)x1 + · · · + ai(|Dr|)xr)
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is non-zero. Choose c1, · · · , cr ∈ C such that P (c1, · · · , cr) �= 0 and put

LN,k,χ =
∑

i

ciLDi,N,k,χ.

Then it is immediate that LN,k,χ is an isomorphism of Snew
k+1/2(N, χ) onto Snew(N, 2k,

id.). By Lemma 6.18 and the fact that S±p
k+1/2(N, χ) is the (±1)-eigenspace of the

involution wp,k+1/2,N,χ, we see that LN,k,χ maps S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ) onto
S±p(N, 2k, id.)

⋂
Snew(N, 2k, id.).

Finally we must prove the assertions about LD,N,k,χ for D ≡ 1 (mod 4). It is
enough to show that LD,N,k,χ maps Snew

k+1/2(N, χ) to Snew(N, 2k, id.). In fact, for any
prime divisor l|N , it is easy to verify that

LD,N/l,k,χ = LD,N,k,χ

(
1 −
(

D

l

)
lk−1V (l)

)
,

U(t)LD,N,k,χ = LD0,N,k,id.U((D, t)2),

where V (l) is the translation operator defined by (f |V (l))(z) = f(lz) and
(

D0

∗

)
is the

primitive character induced by
(

D

∗

)
χ. It then follows inductively that Sk+1/2(N, χ)

is mapped to S(N, 2k, id.). And the same argument as in the case D ≡ 0 (mod 4)
shows that S±p

k+1/2(N, χ)
⋂

Snew
k+1/2(N, χ) is mapped to S±p(N, 2k, id.)

⋂
Snew(N,

2k, id.).
Now let F be a normalized eigenform in Snew(N, 2k, id.) with F |TN,2k(p) = λpF

resp. F |U(p) = λpF for all primes p � N resp. p|N . Then F =
∞∑

n=1

λne(nz) and λn is

determined by
∞∑

n=1

λnn−s =
∏
p

(1 − λpp
−s + χN (p)2p2k−1−2s)−1.

Write φN,k,χ for the inverse of LN,k,χ and put G = F |φN,k,χLD,N,k,χ. Then G is
a power series in q = e(z) which converges on H and satisfies G|TN,2k(p) = λpG

resp. G|U(p) = λpG for all primes p � N resp. p|N . Hence it follows that the
coefficient of G at e(nz) equals cλn with c the first Fourier coefficient of G. Thus we
have that (F |φN,k,χ)|LD,N,k,χ = cF . This shows that LD,N,k,χ maps Snew

k+1/2(N, χ) to
Snew(N, 2k, id.). This completes the proof.

Corollary 6.4 Let N1 and N2 be two square free positive integers, f1 and f2 two
new forms in Snew

k+1/2(N1, ω1) and Snew
k+1/2(N2, ω2) respectively such that f1 and f2 have

the same eigenvalues with respect to infinitely many operators T(p) for (p, N1N2) = 1.
Then N1 = N2 and f1 = cf2 with some constant c.

Proof This is a direct conclusion of Theorem 6.11 and Theorem 6.8.
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6.3 Dimension Formulae for the Spaces of New Forms

In this section we shall give some dimension formulae of the spaces of new forms.
Recall first the following result:

Theorem 6.12 Let k be any even positive integer and N a positive integer. Then
we have

d0(N, k) =
k − 1
12

Ns0(N) − 1
2
ν∞(N) + c2(k)ν2(N) + c3(N)ν3(N) + δ1,k/2,

where d0(N, k) is the dimension of the space of cusp forms with weight k on the group
Γ0(N), δx,y is zero or 1 according to x = y or x �= y respectively, and the functions
s0, ν∞, ν2, ν3, c2 and c3 are defined as follows:

s0 : the multiplicative function defined by s0(pt) = 1 +
1
p

for all t � 1;

ν∞ : the multiplicative function defined by

ν∞(pt) =
{

2p(t−1)/2, if t is odd,

pt/2 + pt/2−1, if t is even.

ν2 : the multiplicative function defined by

ν2(pt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if p = 2, t = 1,

0, if p = 2, t � 2,

2, if p ≡ 1(4), t � 1,

0, if p ≡ 3(4), t � 1

ν3 : the multiplicative function defined by

ν3(pt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if p = 3, t = 1,

0, if p = 3, t � 2,

2, if p ≡ 1(3), t � 1,

0, if p ≡ 2(3), t � 1.

c2 : the function defined by c2(k) =
1
4

+
⌊

k

4

⌋
;

c3 : the function defined by c3(k) =
1
3

+
⌊

k

3

⌋
.

Proof This is a direct conclusion of the dimension formula of the space of cusp
forms with integral weight in Section 4.1.

We now denote by dnew
0 (N, k) the dimension of the space of new forms with weight

k on the group Γ0(N).
Then we have the following
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Theorem 6.13 Let k be any even positive integer and N a positive integer. Then

dnew
0 (N, k) =

k − 1
12

Nsnew
0 (N) − 1

2
νnew
∞ (N) + c2(k)νnew

2 (N)

+ c3(k)νnew
3 (N) + δ1,k/2μ(N),

where the function c2, c3, δ1,k/2 are as in Theorem 6.12, μ is the Moebius function and
snew
0 , νnew∞ , νnew

2 , νnew
3 are defined as follows:

snew
0 : the multiplicative function defined by

snew
0 (pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
p
, if t = 1,

1 − 1
p
− 1

p2
, if t = 2,(

1 − 1
p

)(
1 − 1

p2

)
, if t � 3.

νnew
∞ : the multiplicative function defined by

νnew
∞ =

⎧⎪⎨⎪⎩
0, if t is odd,

p − 2, if t = 2,

pt/2−2(p − 1)2, if t � 4 even.

νnew
2 : the multiplicative function defined by

νnew
2 (pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if p = 2, t = 1 or 2,

1, if p = 2, t = 3,

0, if p = 2, t � 4,

0, if p ≡ 1(4), t = 1 or t � 3,

−1, if p ≡ 1(4), t = 2,

−2, if p ≡ 3(4), t = 1,

1, if p ≡ 3(4), t = 2,

0, if p ≡ 3(4), t � 3.

νnew
3 : the multiplicative function defined by

νnew
3 (pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if p = 3, t = 1 or 2,

1, if p = 3, t = 3,

0, if p = 3, t � 4,

0, if p ≡ 1(3), t = 1 or t � 3,

−1, if p ≡ 1(3), t = 2,

−2, if p ≡ 2(3), t = 1,

1, if p ≡ 2(3), t = 2,

0, if p ≡ 2(3), t � 3.
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Proof We recall first the following facts about arithmetic functions: the set of
arithmetic functions f : N → C forms a ring under the usual addition of functions
and the Dirichlet convolution as the multiplication operation:

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) (6.48)

for any two arithmetic functions f and g. And the function δ(n) := δ1,n is the
multiplicative identity of the ring. And the set of all multiplicative functions f with
f(1) �= 0 forms a multiplicative subgroup under the Dirichlet convolution. In fact, if
f(1) �= 0, then the function g defined as follows:

g(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

f(1)
, if n = 1,

− 1
f(1)

∑
d|n,d �=n

f(n/d)g(d), if n > 1
(6.49)

is the inverse of f . By Moebius inversion formula we see that the Moebius function
μ is the inverse of the function 1(n) which takes the value 1 at all positive integers:

(μ ∗ 1)(n) =
∑
d|N

μ(d) = δ(n).

And in general we use the following Moebius inversion formula: for any two arithmetic
functions f and g, we have

f(n) =
∑
d|n

g(d), ∀ n ∈ N

if and only if
g(n) =

∑
d|n

μ(n/d)f(d), ∀ n ∈ N.

In fact, we have
f(n) =

∑
d|n

g(d) = (1 ∗ g)(n)

if and only if
g(n) = ((μ ∗ 1) ∗ g)(n)

= (μ ∗ (1 ∗ g))(n)

= (μ ∗ f)(n)

=
∑
d|n

μ(n/d)f(d).

From the results in Section 6.1 we have

S(N, k) =
⊕
l|N

⊕
m|N/l

Snew(l, k)|V (m),



6.3 Dimension Formulae for the Spaces of New Forms 203

where V (m) is the translation operator defined by f |V (m) = f(mz) which is an
injection from S(l, k) to S(N, k). Therefore we have

d0(N, k) =
∑
l|N

∑
m|N/l

dnew
0 (l, k) =

∑
l|N

dnew
0 (l, k)τ(N/l), (6.50)

where τ(n) =
∑
d|n

1 is the number of positive divisors of n. In terms of Dirichlet

convolution, we see that from (6.50)

d0 = dnew
0 ∗ τ

holds for any fixed k. Let λ be the inverse of τ . Since τ = 1 ∗ 1, we see that

λ = τ−1 = (1 ∗ 1)−1 = 1−1 ∗ 1−1 = μ ∗ μ.

Hence, from (6.48), λ is the multiplicative function defined by

λ(pt) =

⎧⎪⎨⎪⎩
−2, if t = 1,

1, if t = 2,

0, if t � 3

Therefore we see that dnew
0 = d0 ∗ λ, and so that

dnew
0 (N, k) =

k − 1
12

((i0s0) ∗ λ)(N) − 1
2
(ν∞ ∗ λ)(N)

+ c2(k)(ν2 ∗ λ)(N) + c3(k)(ν3 ∗ λ)(N) + δ1,k/2(1 ∗ λ)(N)

from Theorem 6.12 and the fact that the set of arithmetic functions forms a ring
under the usual addition and the Dirichlet convolution, where i0(n) = n is the identity
function on N. But we see that 1 ∗λ = 1∗ (μ∗μ) = (1∗μ)∗μ = δ ∗μ = μ, and ν∞ ∗λ,
ν2 ∗ λ, ν3 ∗ λ are multiplicative functions which equal νnew

∞ , νnew
2 , νnew

3 respectively
by (6.48) and the definitions of νnew

∞ , νnew
2 , νnew

3 . Finally we see that

i0(pt)s0(pt) ∗ λ(pt) =
t∑

m=0

pms0(pm)λ(pt−m) = ptsnew
0 (pt),

i.e. the multiplicative function ((i0s0) ∗ λ)(N) = Nsnew
0 (N). This completes the

proof.

By Theorem 6.11, there exists a linear combination of the Shimura lifting LD,N,k,χ

which maps Snew
k+1/2(N, χ) isomorphically onto Snew(N, 2k), so that

dim(Snew
k+1/2(N, χ)) = dim (Snew(N, 2k)) .

Hence by Theorem 6.13 we have the following:
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Corollary 6.5 Let k be a positive integer, N a square free positive integer and χ a
quadratic character modulo N . Then

dnew
0 (N, k + 1/2) =

2k − 1
12

Nsnew
0 (N) − 1

2
νnew
∞ (N)

+ c2(2k)νnew
2 (N) + c3(2k)νnew

3 (N) + δ1,kμ(N),

where dnew
0 (N, k + 1/2) := dim(Snew

k+1/2(N, χ)).



Chapter 7

Construction of Eisenstein Series

7.1 Construction of Eisenstein Series with Weight � 5/2

In this section we study the following two problems: construct a basis of the Eisenstein
space E(4N, k+1/2, χl) which are eigenfunctions for all Hecke operators, and calculate
their values at all cusp points.

Now we introduce some notations as in Chapter 2. For any odd positive integer

k, let λ =
k − 1

2
, and

λk(n, 4N) = L4N (2λ, id.)−1L4N (λ, χ(−1)λn)βk(n, χN , 4N)

Ak(2, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−k(1 + (−1)λi)
(

1 − 2(2−k)(ν2(n)−1)/2

1 − 22−k
− 2(2−k)(ν2(n)−1)/2

)
,

if 2 � ν2(n),

2−k(1 + (−1)λi)
(

1 − 2(2−k)ν2(n)/2

1 − 22−k
− 2(2−k)ν2(n)/2

)
,

if 2|ν2(n), (−1)λn/2ν2(n) ≡ −1 (mod 4),

2−k(1 + (−1)λi)
(

1 − 2(2−k)ν2(n)/2

1 − 22−k
+ 2(2−k)ν2(n)/2

(
1 + 2(3−k)/2

(
(−1)λn/2ν2(n)

2

)))
,

if 2|ν2(n), (−1)λn/2ν2(n) ≡ 1 (mod 4),

Ak(p, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p − 1)(1 − p(2−k)(νp(n)−1)/2)
p(pk−2 − 1)

− p(2−k)(νp(n)+1)/2−1, if 2 � νp(n),

(p − 1)(1 − p(2−k)νp(n)/2)
p(pk−2 − 1)

+
(

(−1)λn/pνp(n)

p

)
p(2−k)(νp(n)+1)/2−1/2, if 2|νp(n),
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LN(s, χ) =
∞∑

(n,N)=1

χ(n)n−s =
∏
p�N

(1 − χ(p)p−s)−1,

βk(n, χN , 4N) =
∑

(ab)2|n,(ab,2N)=1
a,b positive integers

μ(a)
(

(−1)λn

a

)
a−λb2−k,

λ′k(n, 4N) =
(−2πi)k/2

Γ (k/2)
λk(n, 4N).

We define functions gk(χl, 4m, 4N)(z) (m|N) and gk(χl, m, 4N)(z) (m|N) as fol-
lows: For k � 5,

gk(χl, 4N, 4N)(z) = 1 +
∞∑

n=1

λ′k(ln, 4N)
∏
p|2N

(Ak(p, ln) − ηp)(ln)k/2−1qn,

gk(χl, 4m, 4N)(z) =
∞∑

n=1

λ′k(ln, 4N)
∏
p|2m

(Ak(p, ln) − ηp)(ln)k/2−1qn, ∀ N �= m|N,

gk(χl, m, 4N)(z) =
∞∑

n=1

λ′k(ln, 4N)
∏
p|m

(Ak(p, ln) − ηp)(ln)k/2−1qn, ∀ m|N,

where q = e(z) = e2πiz, η2 =
1 + (−1)λi

2k − 4
and ηp =

p − 1
p(pk−2 − 1)

for p �= 2.

Lemma 7.1 Let k be a positive odd integer, n a positive integer and p a prime, D

a square free positive integer and m|D. Then

(I) λk(n, 4m) = λk(n, 4D)
∏

p|D/m

(1 + Ak(p, n)),

(II) Ak(p, p2n) − ηp = pk−2(Ak(p, n) − ηp).

Proof The second equality is clear from the definition of Ak(p, n). The first equal-
ity can be proved from the definition of λk(n, 4D) and the properties of βk(n, χD, 4D).
We omit the details.

Theorem 7.1 Let k � 5 be an odd positive integer, D a square-free positive odd
integer and l a divisor of D. Then the functions

{gk(χl, 4m, 4D), gk(χl, m, 4D) |m|D}

constitute a basis of E(4D, k/2, χl) and are eigenfunctions for all Hecke operators,
and

gk(χl, j, 4D)(z)|T (p2) =

⎧⎪⎨⎪⎩
gk(χl, j, 4D)(z), if p|j,
pk−2gk(χl, j, 4D)(z), if p|8D/j,

(1 + pk−2)gk(χl, j, 4D)(z), if p � 2D,

where j = m or 4m, m|D.



7.1 Construction of Eisenstein Series with Weight � 5/2 207

Proof By the definition of a Hecke operator, we know that gk(χl, j, 4D) = gk(id.,
j, 4D)|T (l). Hence we only need to prove Theorem 7.1 for l = 1. We first show that
gk(id., j, 4D) belongs to E(4D, k/2, id.).

By Chapter 2, for square free odd positive integer D, the following functions belong
to E(4D, k/2, id.)

Ek(id., 4D)(z) =
∑

γ∈Γ∞\Γ0(4D)

j(γ, z)−k

= 1 +
∞∑

n=1

λ′k(n, 4D)
∏
p|2D

Ak(p, n)nk/2−1qn,

E′k(χD, 4D)(z) = z−k/2Ek(χD, 4D)
(
− 1

4Dz

)
=

∞∑
n=1

λ′k(n, 4D)nk/2−1qn,

We introduce the following functions:

Fk(4D)(z) = Ek(id., 4D)(z) = 1 +
∞∑

n=1

λ′k(n, 4D)
∏
p|2D

Ak(p, n)nk/2−1qn,

Fk(4m)(z) =
∞∑

n=1

λ′k(n, 4D)
∏
p|2m

Ak(p, n)nk/2−1qn,

Fk(m) =
∞∑

n=1

λ′k(n, 4D)
∏
p|m

Ak(p, n)nk/2−1qn.

(7.1)

Since Lemma 7.1, we see that for any m|D,

Ek(id., 4m)(z) = 1 +
∞∑

n=1

λ′k(n, 4m)
∏
p|2m

Ak(p, n)nk/2−1qn

= 1 +
∞∑

n=1

λ′k(n, 4D)
∏
p|2m

Ak(p, n)
∏

p|D/m

(Ak(p, n) + 1)nk/2−1qn,

E′k(χm, 4m)(z) =
∞∑

n=1

λ′k(n, 4m)nk/2−1qn

=
∞∑

n=1

λ′k(n, 4D)
∏

p|D/m

(Ak(p, n) + 1)nk/2−1qn.

(7.2)

Because ∏
p|2m

Ak(p, n) =
∏

p|2m

Ak(p, n)
∏

p|D/m

(1 + Ak(p, n) − Ak(p, n))

=
∑

d|D/m

μ(d)
∏

p|2md

Ak(p, n)
∏

p|D/(md)

(1 + Ak(p, n)),
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∏
p|m

Ak(p, n) =
∑
d|m

μ(d)
∏

p|m/d

(1 + Ak(p, n)). (7.3)

By (7.1)–(7.3), we see that

Fk(4m) =
∑

d|D/m

μ(d)Ek(id., 4md) ∈ Ek/2(4D, id.),

Fk(m) =
∑
d|m

μ(d)E′k(χdD/m, 4dD/m) ∈ Ek/2(4D, id.).

But

gk(id., 4m, 4D) =
∑
d|m

μ(d)
∏
p|d

ηpFk(4m/d) −
∑
d|m

μ(d)
∏
p|2d

η2pFk(m/d),

gk(id., m, 4D) =
∑
d|m

μ(d)
∏
p|d

ηpFk(m/d),
(7.4)

which implies that gk(id., 4m, 4D) and gk(id., m, 4D) belong to E(4D, k/2, id.).
We now want to prove the equalities in Theorem 7.1. We recall the definition

of Hecke operators: for any f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(4D, k/2, ω), we have that

f(z)|T(p2) =
∞∑

n=0

b(n)e(nz) where

b(n) = a(p2n) + ω(p)
(

(−1)λn

p

)
pλ−1a(n) + ω(p2)pk−2a(n/p2),

where a(n/p2) = 0 if p2 � n.
In particular, if p|4D, then b(n) = a(p2n). It is clear that βk(p2n, χD, 4D) = βk(n,

χD, 4D) for any p|2D. So the first two equalities in Theorem 7.1 can easily be deduced
from Lemma 7.1 (II) and the obvious fact that Ak(p, qn) = Ak(p, n) if p � q. So we
only need to prove the third equality. So suppose that q is a prime with q � 2D. We
consider the action of T(q2) on f = gk(id., 4m, 4D). Denote

a(n) = λ′k(n, 4D)
∏

p|2m

(Ak(p, n) − ηp)nk/2−1

and

f |T(q2) =
∞∑

n=0

b(n)e(nz).

Since q � 2D, then Ak(p, q2n) = Ak(p, n) and

L4D(λ, χ(−1)λlq2n)
∏

p|2m

(Ak(p, lnq2) − ηp) = L4D(λ, χ(−1)λn)
∏

p|2m

(Ak(p, ln) − ηp).
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Now consider the term βk(ln, χD, 4D). Denote ln = τσ2 with τ a square free positive
integer. Let νp(m) be the valuation of m with respect to p. Then we have that

βk(τσ2, χD, 4D) =
∑

(ab)2|τσ2,(ab,2D)=1
a,b positive integers

μ(a)
(

(−1)λln

a

)
a−λb−k+2,

=
∏

p�2D,p|τ

(νp(τσ2)−1)/2∑
t=0

p(−k+2)t

×
∏

p�2Dτ,p|σ

( νp(τσ2)/2∑
t=0

p(−k+2)t−χ(−1)λln(p)p−λ

νp(τσ2)/2−1∑
t=0

p(−k+2)t

)
.

Therefore, if νq(ln) = 0, i.e., q � ln, then

βk(τσ2q2, χD, 4D) = (1 + q−k+2 − χ(−1)λlτ (q)q−λ)βk(τσ2, χD, 4D). (7.5)

If q|τ , then

βk(τσ2q2, χD, 4D)=
( (νq(τσ2)+1)/2∑

t=0

q(−k+2)t

)( (νq(τσ2)−1)/2∑
t=0

q(−k+2)t

)−1

βk(τσ2, χD, 4D).

(7.6)
If q � τ , q|σ, then

βk(τσ2q2, χD, 4D)=
( νq(τσ2)/2+1∑

t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(τσ2)/2∑
t=0

q(−k+2)t

)

×
( νq(τσ2)/2∑

t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(τσ2)/2−1∑
t=0

q(−k+2)t

)−1

×βk(τσ2, χD, 4D)

a(n)=λ′k(n, 4D)
∏

p|2m

(Ak(p, n) − ηp)nk/2−1

=
(−2πi)k/2

Γ (k/2)
L4D(λ, χ(−1)λln)

L4D(2λ, id.)
βk(ln, χD, 4D)

×
∏
p|2m

(Ak(p, ln) − ηp)(ln)k/2−1. (7.7)

Hence we know that the coefficient b(n) of f |T(q2) is
(1) If νq(ln) = 0, then by equality (7.5)

b(n) = a(q2n) + χ(−1)λl(q)
(

n

q

)
qλ−1a(n) + qk−2a(n/q2)

= (1 + q−k+2 − χ(−1)λlτ (q)q−λ)qk−2a(n) + χ(−1)λln(q)qλ−1a(n)

= (1 + qk−2)a(n).
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(2) If νq(ln) = 1, i.e., q|τ , q � σ, we see by equality (7.6) that

b(n) = a(q2n) + χ(−1)λlτ (q)qλ−1a(n) + qk−2a(n/q2)

= a(q2n) + χ(−1)λlτ (q)qλ−1a(n)

= a(q2n) = (1 + q−k+2)qk−2a(n) = (1 + qk−2)a(n).

(3) If q|τ , q|σ, then νq(ln) � 3, we have by equality (7.6),

b(n) = a(q2n) + χ(−1)λlτ (q)qλ−1a(n) + qk−2a(n/q2) = a(q2n) + qk−2a(n/q2)

=

⎛⎝(νq(ln)+1)/2∑
s=0

q(−k+2)s

⎞⎠⎛⎝(νq(ln)−1)/2∑
s=0

q(−k+2)s

⎞⎠−1

qk−2a(n)

+ qk−2

⎛⎝(νq(ln)−3)/2∑
s=0

q(−k+2)s

⎞⎠⎛⎝(νq(ln)−1)/2∑
s=0

q(−k+2)s

⎞⎠−1

a(n)q−(k−2)

=

⎛⎝qk−2

(νq(ln)+1)/2∑
s=0

q(−k+2)s +
(νq(ln)−3)/2∑

s=0

q(−k+2)s

⎞⎠
·

⎛⎝(νq(ln)−1)/2∑
s=0

q(−k+2)s

⎞⎠−1

a(n)

=

⎛⎝qk−2

(νq(ln)−1)/2∑
s=0

q(−k+2)s + q(−k+2)(νq(ln)−1)/2

+
(νq(ln)−1)/2∑

s=0

q(−k+2)s − q(−k+2)(νq(ln)−1)/2

⎞⎠
·

⎛⎝(νq(ln)−1)/2∑
s=0

q(−k+2)s

⎞⎠−1

a(n)

= (1 + qk−2)a(n).

Finally, if q � τ, q|σ, then by equality (7.7), we have that

b(n) = a(q2n) + χ(−1)λlτ (q)qλ−1a(n) + qk−2a(n/q2)

= qk−2a(n)

⎛⎝νq(ln)/2+1∑
t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(ln)/2∑
t=0

q(−k+2)t

⎞⎠
·

⎛⎝νq(ln)/2∑
t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(ln)/2−1∑
t=0

q(−k+2)t

⎞⎠−1



7.1 Construction of Eisenstein Series with Weight � 5/2 211

+ a(n)

⎛⎝νq(ln)/2−1∑
t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(ln)/2−2∑
t=0

q(−k+2)t

⎞⎠
·

⎛⎝νq(ln)/2∑
t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(ln)/2−1∑
t=0

q(−k+2)t

⎞⎠−1

= qk−2a(n)
(
1 + (q(−k+2)(νq(ln)/2+1) − χ(−1)λlτ (q)q−λ+(−k+2)νq(ln)/2

)
·

⎛⎝νq(ln)/2∑
t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

⎞⎠⎛⎝νq(ln)/2−1∑
t=0

q(−k+2)t

⎞⎠−1

+ a(n)
(
1 − (q(−k+2)νq(ln)/2 − χ(−1)λlτ (q)q−λ+(−k+2)(νq(ln)/2−1)

)
·

⎛⎝νq(ln)/2∑
t=0

q(−k+2)t − χ(−1)λlτ (q)q−λ

νq(ln)/2−1∑
t=0

q(−k+2)t

⎞⎠−1

= (1 + qk−2)a(n).

Hence we have proved that for any prime q � 2D, g(χl, 4m, 4D)|T(q2) = (1+qk−2)g(χl,

4m, 4D). Similarly, we can show that for any q � 2D, g(χl, m, 4D)|T(q2) = (1 +
qk−2)g(χl, m, 4D).

Since the functions in Theorem 7.1 are eigenfunctions of Hecke operators with
different eigenvalues, they are linearly independent. Thus they constitute a basis of
E(4D, k/2, χl) since the number of the functions is equal to the dimension of E(4D,
k/2, χl).

This completes the proof of Theorem 7.1.

Theorem 7.2 Let k � 5 be an odd positive integer, D a square-free positive odd
integer, m, l be divisors of D, α be a divisor of m, δk = 1 or −1 according to k ≡ 1
or −1 (mod 4) respectively. Then

V (gk(χl, 4m, 4D), 1/α)=−1+i−δk

2k − 4
μ(m/α)ηm/αlk/2−1(l, α)−k/2+1εδk

α/(l,α)

(
l/(l, α)
α/(l, α)

)
.

V (g(χl, 4m, 4D), 1/(4α)) = μ(m/α)ηm/αlk/2−1(l, α)−k/2+1ε−δk

l/(l,α)

(
α/(l, α)
l/(l, α)

)
.

V (g(χl, 4m, 4D), p) = 0, if p �= 1/α or 1/4α(α|D), p a cusp point.

V (g(χl, m, 4D), 1/α) = i−δkμ(m/α)ηm/αlk/2−1(l, α)−k/2+1εδk

α/(l,α)

(
l/(l, α)
α/(l, α)

)
.

V (g(χl, m, 4D), p) = 0, if p �= 1/α (α|D),

where p is a cusp point and V (f, p) is the value of f at the cusp point p, and ηα =∏
p|α

ηp.
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Proof In order to calculate the values of functions at cusp points, we first remember
the definition of the value of a function at a cusp point. Let f(z) ∈ G(N , k/2, χl),

and s = d/c be a cusp point of Γ0(N). Let ρ =
(

a b

−c d

)
∈ SL2(Z), then ρ(s) = i∞.

We call the constant term of the Fourier expansion at z = i∞ of f |ρ−1 the value of f

at the cusp point s. Denote it by V (f, s). For c �= 0, we have

V (f, s)= lim
z→i∞

f

(
dz − b

cz + a

)
(cz + a)−k/2

= lim
z→i∞

f(−c−1(cz + a)−1 + dc−1)(cz + a)−k/2

= lim
τ→0

f(τ + dc−1)(−cτ)k/2. (7.8)

In particular, for s = 1/N , we see that V (f, 1/N) = V (f, i∞) = lim
z→i∞

f(z).

An obvious, but useful fact is

Lemma 7.2 Let f ∈ G(N, k/2, ω). Suppose cusp point s1 = d1/c1 and s2 = d2/c2

are equivalent for the group Γ0(N), i.e., there exists ρ =
(

a b

c d

)
∈ Γ0(N) such that

ρ(s1) = s2, then
V (f, s2) = ω̄χc(d)ε−k

d V (f, s1).

A classical result for the values of Eisenstein series Ek(ω, N)(z), E′k(ω, N)(z) is the
following Lemma 7.3, which can be showed by the results in Chapter 2 and Lemma
7.2. Now we denote S(N) a complete set of representatives of equivalence classes of
cusp points for the group Γ0(N). In fact we can choose

S(N) = {d/c | c|N, d ∈ (Z/(c, N/c)Z)∗ and (d, c) = 1}.

Lemma 7.3 Let k � 5 be an odd, ω a character modulo N . Then we have
(1) V (E′k(ω, N), 1)=i−k, and for any d/c∈S(N)with c �=1, V (E′k(ω, N), d/c)=0;
(2) V (Ek(ω, N), i∞)=1, and for any d/c∈S(N) with c �=N, V (Ek(ω, N), d/c)=

0.

We now return to our proof of Theorem 7.2. We need the following:

Lemma 7.4 Let D be square free odd positive integer, m, l, and β are divisors of
D, α a divisor of m. And suppose that f ∈ G(8D, k/2, χl) satisfies

f |T(p2) = f for all prime p|m,

f |T(p2) = pk−2f for all prime p|Dm−1.

Then we have

V (f, 1/α) = μ(α)η−1
α (α, l)−k/2+1εδk

α/(α,l)

(
l/(α, l)
α/(α, l)

)
V (f, 1),
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V (f, 1/(4α)) = μ(α)η−1
α (α, l)−k/2+1εδk

l/(α,l)ε
−1
l

(
α/(α, l)
l/(α, l)

)
V (f, 1/4),

V (f, 1/(8α)) = μ(α)η−1
α (α, l)−k/2+1εδk

l/(α,l)ε
−1
l

(
2

(α, l)

)(
α/(α, l)
l/(α, l)

)
V (f, 1/8),

where ηα =
∏
p|α

ηp, δk = 1 or −1 according to k ≡ 1 or −1 (mod 4) respectively. And

for (β, D/m) �= 1, r = 0, 1, 2, 3, we have that V (f, 1/(2rβ)) = 0.

Proof We only prove the Lemma 7.4 for the case k ≡ 3 (mod 4). For the case k ≡ 1
(mod 4) it can be proved by a similar method. We first prove the last result. Suppose
p prime, p|(β, D/m). By our assumption in the lemma we have f |T(p2) = pk−2f and
by the definition of Hecke operators, we see that

pk−2f

(
z +

1
2rβ

)
= p−2

p2∑
b=1

f

(
z

p2
+

1 + 2rβb

2rβp2

)
.

Since (1+2rβb, 2rβp2) = 1, the rational number
1 + 2rβb

2rβp2
is a cusp point. By equality

(7.8), we know

pk−2V

(
f,

1
2rβ

)
= p−2

p2∑
b=1

V

(
f,

1 + 2rβb

2rβp2

)
. (7.9)

Since (2rβp2, 8D) = 2rβ and (2rβ, 8D/(2rβ)) = 1 or 2 according to r = 0, 3 or

r = 1, 2, we know that the cusp point
1 + 2rβb

2rβp2
is equivalent to the cusp point

1
2rβ

for the group Γ0(8D). Therefore there exists a matrix
(

a e

c d

)
∈ Γ0(8D) such that

(
a e

c d

)(
1

2rβ

)
=
(

1 + 2rβb

2rβp2

)
.

Hence a + 2rβe = 1 + 2rβb, c + 2rβd = 2rβp2. Noting ad− ce = 1 and 8D|c, we have
that a ≡ d ≡ 1 (mod 2rβ), and d ≡ p2 (mod 8D/(2rβ)). This shows that for r = 0,
1, 2, 3, we have εd = 1 and( c

d

)
=
(

2rβp2 − 2rβd

d

)
=
(

2rβ

d

)
= 1.

By Lemma 7.2, we see

V

(
f,

1 + 2rβb

2rβp2

)
= V

(
f,

1
2rβ

)
.

By equality (7.9), we obtain
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pk−2V (f, 1/(2rβ)) = p−2

p2∑
b=1

V

(
f,

1 + 2rβb

2rβp2

)

= p−2

p2∑
b=1

V (f, 1/(22β)) = V (f, 1/(2rβ)),

which implies that V (f, 1/(2rβ)) = 0. Now we begin to prove the first equality in
Lemma 7.4. It is clear that the equality holds for α = 1. We shall complete the proof
by induction on the number of prime divisors of α. We assume that the equality holds
for α with α �= m. We must prove that the equality holds for V (f, 1/(αp)) with p

prime and satisfying αp|m. Since f |T(p2) = f , we get

f(z + 1/α) = p−2

p2∑
b=1

f

(
z

p2
+

1 + bα

p2α

)
.

Because it is possible that p|1 + bα, in general the rational number
1 + bα

p2α
is not

reduced. We have to cancel the greatest common divisor in order to obtain a cusp
point. Now there exists a unique integer b1 such that 1 � b1 � p, 1 + αb1 = pt1.
Similarly, there exists a unique integer b2 such that 1 � b2 � p2, 1 + b2α = p2t2,
where t1, t2 are integers. Hence by the definition of values of a modular function at
cusp points and equality (7.8), we obtain

V (f, 1/α)=p−2
∑

1�b�p2

p�1+bα

V

(
f,

1 + bα

p2α

)

+pk/2−2
∑

1�b�p
p�t1+bα

V

(
f,

t1 + bα

pα

)
+ pk−2V (f, t2/α). (7.10)

The cusp points
1 + bα

p2α
(p � 1 + bα),

t1 + bα

pα
(p � t1 + bα) and t2/α are equivalent

to
1
pα

,
1
pα

and 1/α under the group Γ0(8D) respectively. We now consider the case

p � l. Let
(

a e

c d

)
∈ Γ0(8D) such that(

a e

c d

)(
1
pα

)
=
(

1 + bα

p2α

)
, (7.11)

which deduces that a + epα = 1 + bα, c + dpα = p2α. But ad − ce = 1. So we

obtain that d ≡ a ≡ 1 (mod α), d ≡ p

(
mod

c

pα

)
. Since 8D|c, p � l, then d ≡

p (mod 4l/(l, α)). By Lemma 7.2, we obtain
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V

(
f,

1 + bα

p2α

)
=
(

lc

d

)
εdV (f, 1/(pα))

=
(

l/(l, α)
d

)(
c/(l, α)

d

)
εdV (f, 1/(pα))

=
(

l/(l, α)
p

)(
d

α/(l, α)

)
εdα/(l,α)ε

−1
α/(α,l)ε

−1
d V (f, 1/(pα))

=
(

l/(l, α)
p

)
εpα/(l,α)ε

−1
α/(α,l)V (f, 1/(pα)). (7.12)

Similarly, we can deduce⎧⎨⎩ V

(
f,

t1 + bα

pα

)
=
(

t1 + bα

p

)(
p

α/(l, α)

)
V (f, 1/(pα)),

V (f, t2/α) = V (f, 1/α).
(7.13)

Inserting equalities (7.12) and (7.13) into (7.10), we see that the second sum in equality
(7.10) is zero, and hence

V (f, 1/α) = p−2
∑

1�b�p2

p�1+bα

εαp/(l,α)ε
−1
α/(l,α)

(
l/(l, α)

p

)
V (f, 1/(pα)) + pk−2V (f, 1/α)

= p−2(p2 − p)εαp/(l,α)ε
−1
α/(l,α)

(
l/(l, α)

p

)
V (f, 1/(pα)) + pk−2V (f, 1/α),

which implies, by the induction assumption,

V (f, 1/(pα)) = − (pk−2 − 1)p
p − 1

ε−1
αp/(l,α)εα/(l,α)

(
l/(l, α)

p

)
V (f, 1/α)

= −η−1
p ε−1

αp/(l,α)εα/(l,α)

(
l/(l, α)

p

)
V (f, 1/α)

= −η−1
p ε−1

αp/(l,α)εα/(l,α)

(
l/(l, α)

p

)
μ(α)η−1

α (α, l)−k/2+1ε−1
α/(l,α)

·
(

l/(l, α)
α/(α, l)

)
V (f, 1)

= μ(pα)η−1
pα (pα, l)−k/2+1ε−1

αp/(l,α)

(
l/(l, pα)

pα/(pα, l)

)
V (f, 1),

where we assumed p � l. Therefore for p � l we have proved the result. Now suppose
p|l. In this case, from equality (7.11), we see

d ≡ a ≡ 1 (mod α), d ≡ p (mod 4l/(l, pα)), (1 + bα)d ≡ 1 (mod p).

Hence by Lemma 7.2,

V

(
f,

1 + bα

p2α

)
=
(

lc

d

)
εdV (f, 1/(pα))
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=
(

l/(l, pα)
d

)(
pα/(l, α)

d

)
εdV (f, 1/(pα))

=
(

l/(l, pα)
p

)(
d

pα/(l, α)

)
εα/(l,α)ε

−1
pα/(l,α)V (f, 1/(pα))

= εα/(l,α)ε
−1
pα/(l,α)

(
(1 + bα)l/(l, pα)

p

)
V (f, 1/(pα)).

Similarly we can show

V

(
f,

t1 + bα

pα

)
=
(

p

α/(α, l)

)
V (f, 1/(pα)),

V (f, t2/α) = V (f, 1/α).

Inserting these results into the equality (7.10), we get that the first sum in the equality
is zero, and hence

V (f, 1/α) = pk/2−2
∑

1�b�p
p�t1+bα

(
p

α/(α, l)

)
V (f, 1/(pα)) + pk−2V (f, 1/α)

= pk/2−2(p − 1)
(

p

α/(α, l)

)
V (f, 1/(pα)) + pk−2V (f, 1/α),

which implies, by the induction assumption,

V (f, 1/(pα)) = − pk−2 − 1
pk/2−2(p − 1)

(
p

α/(α, l)

)
V (f, 1/α)

= −η−1
p p−k/2+1

(
p

α/(α, l)

)
V (f, 1/α)

= −η−1
p p−k/2+1

(
p

α/(α, l)

)
μ(α)η−1

α (α, l)−k/+1ε−1
α/(α,l)

(
l/(α, l)
α/(α, l)

)
V (f, 1)

= μ(pα)η−1
pα (pα, l)−k/2+1ε−1

pα/(pα,l)

(
l/(pα, l)

pα/(pα, l)

)
V (f, 1),

where we assumed p|l. Hence for the case p|l the first equality in the Lemma 7.4
holds. By induction, we know that this equality holds for any α|m. The other two
equalities in the Lemma 7.4 can be proved by a similar method which we omit. This
completes the proof of Lemma 7.4.

Now we can prove Theorem 7.2 as follows.
Noting that gk(id., j, 4D)|T(l) = gk(χl, j, 4D), we first consider the case l = 1, i.e.,

χl = id. For this case, by the equality (7.4), we have

gk(id., 4m, 4D) =
∑
d|m

μ(d)ηdFk(4m/d) −
∑
d|m

μ(d)η2dFk(m/d),

where
Fk(4D) = Ek(id., 4D)(z),
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Fk(4m) =
∑

d|D/m

μ(d)Ek(id., 4md),

Fk(m) =
∑
d|m

μ(d)E′k(χdD/m, 4dD/m).

By Lemma 7.3, we have

V (Fk(4D), 1) = V (Ek(id., 4D), 1) = 0,

V (Fk(4m), 1) =
∑

d|D/m

μ(d)V (Ek(id., 4md), 1) = 0,

V (Fk(m), 1) =
∑
d|m

μ(d)V (E′k(χdD/m, 4dD/m), 1) =
∑
d|m

μ(d)i−k

= i−k or 0 according to m = 1 or �= 1.

Hence

V (gk(id., 4m, 4D), 1) =
∑
d|m

μ(d)ηdV (Fk(4m/d), 1) −
∑
d|m

μ(d)η2dV (Fk(m/d), 1)

= −μ(m)η2mi−k = −i−δkμ(m)η2m.

We now show that for any β|D, V (gk(id., 4m, 4D), 1/(2β)) = 0. In fact, since

gk(id., 4m, 4D)|T(4) = gk(id., 4m, 4D),

we know

gk(id., 4m, 4D)(z + 1/(2β)) = 4−1
4∑

b=1

gk(id., 4m, 4D)
(

z/4 +
1 + 2βb

8β

)
.

Because (1+2βb, 8β) = 1,
1 + 2βb

8β
is a cusp point equivalent to the cusp point 1/(4β)

for the group Γ0(4D). Therefore there exists a matrix
(

ab eb

cb db

)
∈ Γ0(4D) such that(

ab eb

cb db

)(
1
4

)
=
(

1 + 2bβ

8β

)
,

which implies that ab + 4βb = 1 + 2βb, cb + 4βdb = 8β, db(1 + 2βb) ≡ 1 (mod 4β).
By equality (7.8) and Lemma 7.2, we obtain

V (gk(id., 4m, 4D), 1/2β) = 4−1
4∑

b=1

(
cb

db

)
ε−k

db
V (gk(id., 4m, 4D), 1/4β)

= 4−1
4∑

b=1

(
8β − 4βdb

db

)
ε−k
1+2βbV (gk(id., 4m, 4D), 1/4β)

= 4−1
4∑

b=1

(
2β

1 + 2βb

)
ε−k
1+2βbV (gk(id., 4m, 4D), 1/4β).
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Since
(

2β

a + 4βb

)
= −

(
2β

a

)
, it is clear that the above is equal to zero.

In order to compute the value of gk(id., 4m, 4D) at the cusp point 1/4, we use the
fact

gk(id., 4m, 4D)|T(4) = gk(id., 4m, 4D),

Then

gk(id., 4m, 4D)(z) = 4−1
4∑

b=1

gk(id., 4m, 4D)(z/4 + b/4).

Since V (gk(id., 4m, 4D), 1/2) = 0, we see

V (gk(id., 4m, 4D), 1)

=4−1V (gk(id., 4m, 4D), 1/4) + 4−1V (gk(id., 4m, 4D), 3/4)

+2k−2V (gk(id., 4m, 4D), 1) (7.14)

But the cusp point 3/4 is equivalent to 1/4 for the group Γ0(4D). Therefore there

exists a matrix
(

a e

c d

)
∈ Γ0(4D) such that(

a e

c d

)(
1
4

)
=
(

3
4

)
.

Hence by Lemma 7.2, we have

V (gk(id., 4m, 4D), 3/4) =
( c

d

)
ε−δk

d V (gk(id., 4m, 4D), 1/4)

= i−δkV (gk(id., 4m, 4D), 1/4).

Combining with equality (7.14), we have

V (gk(id., 4m, 4D), 1/4) = − 2k − 4
1 + i−δk

V (gk(id., 4m, 4D), 1)

= − 2k − 4
1 + i−δk

(−i−δkμ(m)η2m)

= μ(m)ηm.

By the above discussions, we know that

V (gk(id., 4m, 4D), 1) = −i−δkμ(m)η2m = −1 + i−δk

2k − 4
μ(m)ηm,

V (gk(id., 4m, 4D), 1/4) = μ(m)ηm,

V (gk(id., 4m, 4D), 1/2β) = 0, for any β|D.

Hence by Theorem 7.1 and Lemma 7.4, we have proved that the first two equalities
in Theorem 7.2 hold for l = 1. Now we consider the function gk(id., m, 4D). By
Theorem 7.1, we have
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gk(id., m, 4D)|T(p2) = gk(id., m, 4D) for all p|m,

gk(id., m, 4D)|T(p2) = pk−2gk(id., m, 4D) for all p|2D/m.

In particular, we see

gk(id., m, 4D)|T(4) = 2k−2gk(id., m, 4D).

Noting that the cusp point (1 + 4bβ)/(16β) is equivalent to 1/(4β) for the group
Γ0(4D), by equality (7.8) and Lemma 7.2, we see

2k−2V (gk(id., m, 4D), 1/4β) = 4−1
4∑

b=1

V

(
gk(id., m, 4D),

1 + 4bβ

16β

)
= V (gk(id., m, 4D), 1/4β),

which implies that V (gk(id., m, 4D), 1/4β) = 0. In the same way, by equality (7.8),
we have

2k−2V (gk(id., m, 4D), 1/2β) = 4−1
4∑

b=1

V

(
gk(id., m, 4D),

1 + 2bβ

8β

)
.

Since the cusp point (1 + 2bβ)/(8β) is equivalent to 1/(4β) for the group Γ0(4D),
the right hand side of the above equality is zero. So by Lemma 7.4, we only need to
calculate the value of gk(id., m, 4D) at the cusp point 1. But we know from the proof
of Theorem 7.2,

gk(id., m, 4D) =
∑
d|m

μ(d)ηdFk(m/d).

Noting that V (Fk(m), 1) = i−δk or 0 according to m = 1 or m �= 1 respectively, we
have

V (gk(id., m, 4D), 1) =
∑
d|m

μ(d)ηdV (Fk(m/d), 1)

= i−δkμ(m)ηm.

Hence by Theorem 7.1 and Lemma 7.4, we have proved the claim for the values of
gk(id., m, 4D).

Now we consider the case l �= 1. In this case we have

gk(χl, 4m, 4D)(z) = gk(id., 4m, 4D)(z)|T(l)

= l−1
l∑

b=1

gk(id., 4m, 4D)
(

z + b

l

)
.

Hence by the equality (7.8) and Lemma 7.2, we see

V (gk(χl, 4m, 4D), 1) = l−1
∑
d|l

dk/2

l/d∑
b=1

(b,l/d)=1

V (gk(id., 4m, 4D), b/(ld−1))
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= l−1
∑
d|l

dk/2

l/d∑
b=1

(
b

ld−1

)
V (gk(id., 4m, 4D), 1/(ld−1))

= l−1
∑
d|l

dk/2V (gk(id., 4m, 4D), 1/(ld−1))
l/d∑
b=1

(
b

ld−1

)
= l−1lk/2V (gk(id., 4m, 4D), 1)

= lk/2−1(−i−δkμ(m)η2m)

= −1 + i−δk

2k − 4
μ(m)ηmlk/2−1.

Similar to the case l = 1, we can prove V (gk(χl, 4m, 4D), 1/2β) = 0 for any β|D.
Since gk(χl, 4m, 4D)|T(4) = gk(χl, 4m, 4D), we have

V (gk(χl, 4m, 4D), 1)=4−1V (gk(χl, 4m, 4D), 1/4) + 4−1V (gk(χl, 4m, 4D), 3/4)

+2k−2V (gk(χl, 4m, 4D), 1), (7.15)

where we used the fact V (gk(χl, 4m, 4D), 1/2β) = 0 for any β|D. Because the cusp

point 3/4 is equivalent to 1/4, so there exists a matrix
(

a b

c d

)
∈ Γ0(4D) such that

(
a b

c d

)(
1
4

)
=
(

3
4

)
,

which implies d ≡ 3 (mod 4), d ≡ 1 (mod l), c ≡ 4 (mod d). By Lemma 7.2, we have

V (gk(χl, 4m, 4D), 3/4) =
(

l

d

)
i−δkV (gk(χl, 4m, 4D), 1/4)

= i−δkεd−1
l

(
d

l

)
V (gk(χl, 4m, 4D), 1/4)

= i−δkε2
l V (gk(χl, 4m, 4D), 1/4).

Inserting this into equality (7.15), we obtain

V (gk(χl, 4m, 4D), 1/4) = − 2k − 4
1 + i−δkε2

l

V (gk(χl, 4m, 4D), 1)

= − 2k − 4
1 + i−δkε2

l

(
−1 + i−δk

2k − 4
μ(m)ηmlk/2−1

)
= μ(m)ηmlk/2−1ε−δk

l .

Similarly we can prove that V (gk(χl, m, 4D), 1/2β) = V (gk(χl, m, 4D), 1/4β) = 0 for
any β|D and V (gk(χl, 4m, 4D), 1) = i−δkμ(m)ηmlk/2−1. Collecting all the above and
Lemma 7.2 we proved our Theorem 7.2 for l �= 1. This completes the whole proof for
Theorem 7.2.
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7.2 Construction of Eisenstein Series with Weight 1/2

Let ψ be a primitive character modulo r with ψ(−1) = (−1)v (v = 0 or 1). Put

θψ(z) =
∞∑

n=−∞
ψ(n)nve(n2z), z ∈ H.

Then it is easy to see that

θψ(z) =
r∑

k=1

ψ(k)θ(2rz; k, r),

where
θ(z; k, r) =

∑
m≡k mod r

mve(zm2/(2r)), z ∈ H.

Lemma 7.5 We have the following transformation formula:

θ(−1/z; k, r) = (−1)vr−1/2(−iz)(1+2v)/2
r∑

j=1

e(jk/r)θ(z; j, r).

Proof Set

g(x) =
∞∑

m=−∞
(x + m)ve(irt(x + m)2/2).

It is obvious that g(x + 1) = g(x). So by some computation we have a Fourier
expansion:

g(x) =
∞∑

m=−∞
a(m)e(mx)

with
a(m) = (−i)v(rt)−(1+2v)/2e−πm

2/(rt),

so that

g(x) = (−i)v(rt)−(1+2v)/2
∞∑

m=−∞
e2πimx−πm2/(rt).

It is easy to see that

θ(it; k, r) = rvg(k/r) = (−i)vr−1/2t−(1+2v)/2
r∑

j=1

e(jk/r)θ(−1/(it); j, r),

which implies the lemma. This completes the proof.

Lemma 7.6 Let γ =
(

a b

c d

)
∈ SL2(Z) with b even and c ≡ 0 (mod 2r). Then

θ(γ(z); k, r) = e(abk2/(2r))ε−1
d

(
2cr

d

)
(cz + d)(1+2v)/2θ(z; ak, r).
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Proof Assume that c > 0. By Lemma 7.5, we have

θ(γ(z); k, r) =
∑

n≡k mod r

nve

(
n2

(
a − 1

cz + d

)
/(2cr)

)
= (−i)v(cr)−1/2(−i(cz + d))(1+2v)/2

∑
t mod cr

Φ(k, t)∑
n≡t mod cr

nve(n2z/(2r)),

where
Φ(k, t) =

∑
g mod cr,

g≡k mod r

e((αg2 + tg + δt2)/(cr))

and α, δ are integers such that a ≡ 2α (mod cr), d ≡ 2δ (mod cr). The remaining
part of this proof is completely similar to the proof of Proposition 1.2. This completes
the proof.

Theorem 7.3 θψ(z) is in G(4r2, 1/2, ψ) if v = 0 and θψ(z) is in S(4r2, 3/2, ψχ−1)
if v = 1.

Proof Let γ =
(

a b

c d

)
∈ Γ0(4r2). By Lemma 7.6, we see that

θψ(γ(z)) =
r∑

k=1

ψ(k)θ
(

2rza + 2rb

2rz(c/(2r)) + d
; k, r

)

= ε−1
d

(
c

d

)
(cz + d)(1+2v)/2

r∑
k=1

ψ(k)θ(2rz; ak, r)

= ψ(d)ε2
dj(γ, z)1+2vθψ(z).

Consider the holomorphy of θψ(z) at cusp points. Let ρ =
(

a b

−c d

)
∈ SL2(Z) with

c > 0. Then we see that

|θψ(z)| � 1 − v + 2
∞∑

n=1

nve−2πn2y < 1 − v + Cy−(1+v/2), y → ∞,

where C is a constant. So that

|θψ(ρ−1(z))(cz + a)−(1+2v)/2| � (1 − v + Cy−(1+v/2)|cz + a|v+2)|cz + a|−(1+2v)/2

� (1 − v + C′y1+v/2)y−(1+2v)/2, y → ∞,

which implies that θψ(z) ∈ G(4r2, 1/2, ψ) or S(4r2, 3/2, ψχ−1) according to v = 0 or
1 respectively. This completes the proof.
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Let now t be a positive integer, ψ a primitive even character modulo r. Put

θψ,t(z) =
∞∑

n=−∞
ψ(n)e(tn2z), z ∈ H,

which is equal to θψ|V (t), so θψ,t(z) is in G(4r2t, 1/2, ψχt). Let ω be an even character
modulo N , ψ a primitive even character modulo r(ψ), t a positive integer. We denote
by Ω(N, ω) the set of pairings (ψ, t) satisfying the following conditions:

(1) 4(r(ψ))2t|N ;
(2) ω(n) = ψ(n)χt(n) for any integer n prime to N .

Let ψ =
∏

p|r(ψ)

ψp with ψp the p-part of the character ψ. If every ψp is an even

character, then ψ is called a totally even character. Denote by Ωe(N, ω) the set of all
parings (ψ, t) in Ω(N, ω) where ψ is totally even. Set Ωc(N, ω) = Ω(N, ω)−Ωe(N, ω).
The following is our main result in this section.

Theorem 7.4 (1) The set {θψ,t|(ψ, t) ∈ Ω(N, ω)} is a basis of G(N, 1/2, ω);
(2) The set {θψ,t|(ψ, t) ∈ Ωc(N, ω)} is a basis of S(N, 1/2, ω), and the set {θψ,t|(ψ, t)

∈ Ωe(N, ω)} is a basis of the orthogonal complement of S(N, 1/2, ω) in G(N, 1/2, ω).

To show Theorem 7.4 we need some lemmas.

Lemma 7.7 (1) There exists a basis in G(N, k/2, ω) such that all Fourier coefficients
of every function in the basis belong to some algebraic number field;

(2) let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω) with a(n) all algebraic numbers for

n � 0. Then there exists an integer D such that Da(n) are all algebraic integers for
all n � 0.

Proof Put
f0(z) = θ(z)3k = 1 + 6ke(z) + · · · .

Define a map φ : f �→ ff0. Then φ maps G(N, k/2, ω) into G(N, 2k, ω). If f has
algebraic coefficients, so does ff0. (2) holds for ff0 (Please compare Theorem 3.52 of
G. Shimura, 1971), so does (2) for f . Now show (1). θ(z) has no zeros in H, and it is
zero only at the cusp point 1/2 ∈ S(4) = {1, 1/2, 1/4}. A function g ∈ G(N , 2k, ω)
is an image of φ (i.e., g/f0 ∈ G(N , k/2, ω)) if and only if g has high enough orders of
zeros at all cusp points in S(N) which are Γ0(N)-equivalent to 1/2. We know that the
theorem we want to show holds for the spaces of modular forms integral weights. So
there exists a basis {gi} in G(N , 2k, ω) such that the Fourier coefficients of gi at every
cusp point are algebraic numbers. g is a linear combination of {gi}, and g gets value
zero with some orders at part of cusp points. This implies that the coefficients of the
linear combination satisfy a system of some linear equations with algebraic numbers
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as the coefficients of these linear equations. Hence there exists a basis in G(N , k/2,
ω) whose every element has algebraic coefficients. This completes the proof.

Lemma 7.8 Let 0 �= f(z) =
∞∑

n=0

a(n)e(nz) be in G(N, 1/2, ω), p � N a prime and

f |T(p2) = cpf . Assume that m is a positive integer with p2 � m. Then

(1) a(mp2n) = a(m)ω(p)n

(
m

p

)n

for any n � 0;

(2) if a(m) �= 0, then p � m and cp = ω(p)
(

m

p

)
(1 + p−1).

Proof Since T(p2) maps a modular form with algebraic coefficients to one of the
same kind, by Lemma 7.7, we see that the eigenvalue cp of T(p2) is an algebraic number
and the corresponding eigenspace has a basis with algebraic coefficients. Without loss
of generality, we may assume that the coefficients of f are algebraic. Put

A(T ) =
∞∑

n=0

a(mp2n)T n.

By Lemma 5.40 we have

A(T ) = a(m)
1 − αT

(1 − βT )(1 − γT )
,

where α = ω(p)p−1

(
m

p

)
, β + γ = cp, βγ = ω(p2)p−1. Assume a(m) �= 0. Then

A(T ) is a non-zero rational function. We may think A(T ) as a p-adic T function, i.e.,
think the coefficients of A(T ) as elements in some algebraic extension of the p-adic
number field Qp. By Lemma 7.7 the p-adic absolute value of a(mp2n) (n � 0) are
bounded. Therefore A(T ) is convergent for all |T |p < 1. A(T ) has no poles in the
unit disc U = {T | |T |p < 1}. If (1 − βT )(1 − γT ) is prime to 1 − αT , then |β|p < 1,
|γ|p < 1. But |βγ|p = |ω(p2)p−1|p > 1. So we see that one of β and γ must be α. We
may assume that β = α and hence A(T ) = a(m)/(1− γT ), a(mp2n) = γna(m). Since
βγ �= 0, we see that α �= 0, so p � m and

γ = βγ/α =
ω(p2)p−1

ω(p)p−1

(
m

p

) = ω(p)
(

m

p

)
.

This shows that a(mp2n) = a(m)ω(p)n

(
m

p

)n

which is (1). And cp = β+γ = α+γ =

ω(p)
(

m

p

)
(1 + p−1) which is (2). This completes the proof.

Lemma 7.9 Let 0 �= f(z) =
∞∑

n=0

a(n)e(nz) be in G(N, 1/2, ω), N ′ a multiple of N .
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Assume that f |T(p2) = cpf for any p � N ′. Then there exists a unique square-free
positive integer t such that a(n) = 0 if n/t is not a square and

(1) t|N ′;

(2) cp = ω(p)
(

t

p

)
(1 + p−1) for any p � N ′;

(3) a(nu2) = a(n)ω(u)
(

t

u

)
for any u � 1 with (u, N ′) = 1.

Proof Let m, m′ be any positive integers with a(m) �= 0 and a(m′) �= 0, P the set
of primes satisfying p � N ′mm′. For any p �∈ P , by Lemma 7.8 we see that

ω(p)
(

m

p

)
(1 + p−1) = ω(p)

(
m′

p

)
(1 + p−1),

so that
(

mm′

p

)
= 1. This implies that mm′ must be a square. Therefore there exists

a square-free positive integer t with m = tv2, m′ = t(v′)2 which implies the first part
of the lemma. Let now p be any prime with p � N ′. Write v = pnu, p � u. Since
0 �= a(m) = a(tp2nu2), we see that a(tu2) �= 0 by the part (1) of Lemma 7.8, so that

p � t and cp = ω(p)
(

t

p

)
(1 + p−1) by the part (2) of Lemma 7.8. This showed (2) and

(1) since t is square-free. For the proof of the part (3), we only need to consider the
case that u = p, p � N ′, then we can write n = mp2a with p2 � m. It is then clear that
(3) can be deduced from the part (2) of Lemma 7.8. This completes the proof.

Corollary 7.1 Let the assumptions be as in Lemma 7.9. And assume furthermore
a(1) �= 0. Then t = 1 and cp = ω(p)(1 + p−1) for any p � N ′. This implies that the
character ω is determined uniquely by the set of eigenvalues cp.

Corollary 7.2 Under the assumptions of Lemma 7.9 we have that

∞∑
n=1

a(n)n−s = t−s

( ∑
n|N ′∞

a(tn2)n−2s

) ∏
p�N ′

(
1 − ω(p)

(
t

p

)
p−2s

)−1

.

Proof This is a direct conclusion of the parts (1) and (3) of Lemma 7.9.

From now on we always assume that

f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, 1/2, ω)

is a new form.

Lemma 7.10 Let f(z) =
∞∑

n=0

a(n)e(nz) be a new form in G(N, 1/2, ω) which is an

eigenfunction of T(p2) for almost all primes p. Then a(1) �= 0 and t = 1.
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Proof If a(1) = 0, then a(n) = 0 for any n with (n, N ′) = 1 by Lemma 7.9. By
Corollary 6.3 we see that f is in Gold(N, 1/2, ω) which is impossible, so that a(1) �= 0
and hence t = 1 by Corollary 7.1. This completes the proof.

From now on we always assume that a(1) = 1. In this case f is called a normalized
new form.

Lemma 7.11 Let g ∈ G(N, 1/2, ω) be an eigenfunction of T(p2) for almost all
primes p and whose eigenvalues are equal to the ones of f . Then g = cf with a
constant c.

Proof Let c be the coefficient of e(z) of the Fourier expansion of g. Then the
coefficient of e(z) of the Fourier expansion of h = g − cf is zero. If h �= 0, then
h is an eigenfunction of almost all Hecke operators. By Corollary 7.2 we can find
N ′ such that the coefficient of e(nz) of the Fourier expansion of h is zero for all n

with (n, N ′) = 1. By Corollary 6.3 we know that h ∈ Gold(N, 1/2, ω). Hence there
exists a factor N1 of N , a character ψ modulo N1 and a normalized new form g1 in
G(N1, 1/2, ψ) such that g1, f and h have the same eigenvalues for almost all Hecke
operators. But the character ψ is determined uniquely by the set of all eigenvalues
cp by Corollary 7.1. Hence ψ = ω and g1 ∈ Gold(N, 1/2, ω). Similarly we have that
f −g1 ∈ Gold(N, 1/2, ω), so f = g1+(f −g1) ∈ Gold(N, 1/2, ω) which contradicts that
f is a new form. This implies that h = 0, i.e., g = cf . This completes the proof.

Lemma 7.12 Let f be a new form in G(N, 1/2, ω) and be an eigenfunction of
almost all Hecke operators. Then f is an eigenfunction of all Hecke operators T(p2).
Assume that f |T(p2) = cpf . Then

∞∑
n=1

a(n)n−s =
∏
p|N

(1 − cpp
−2s)−1

∏
p�N

(1 − ω(p)p−2s)−1

and cp = 0 if 4p|N .

Proof Let p be any prime. Put g = f |T(p2). By the assumptions of the lemma
we know that g and f have the same eigenvalues with respect to the Hecke operators
T(q2) for almost all primes q. By Lemma 7.11 we have g = cf . This shows that f is an
eigenfunction of all Hecke operators. The Euler product can be deduced by Corollary
7.2. Assume that 4p|N , then by Lemma 7.9 we see that f |T(p) ∈ G(N, 1/2, ωχp) and

f |T(p) =
∞∑

n=0

a(np)e(nz) =
∞∑

m=0

a(m2p2)e(pm2z) = (f |T(p2))|V (p) = cpf |V (p).

If cp �= 0, applying Lemma 6.22 to f |T(p) we know that ω is well-defined modulo
N/p and there exists a g ∈ G(N/p, 1/2, ω) such that f |T(p) = g|V (p). Hence g = cpf

which contradicts the fact that f is a new form, so that cp = 0. This completes the
proof.
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Lemma 7.13 Let the assumptions be the same as in Lemma 7.12. Then N is a
square and f |W (N) = cf |H with a constant c.

Proof Let p � N be a prime. Then f |T(p2) = cpf and cp = ω(p)(1 + p−1). By
Theorem 5.19 we see that

f |W (N)T(p2) = ω(p2)cpf |W (N) = cpf |W (N), f |HT(p2) = (cpf)|H = cpf |H.

Since W (N), H send new forms to new forms, f |W (N) is a new form in G(N, 1/2, ωχN )
and f |H a new form in G(N, 1/2, ω). Since they have the same eigenvalues with re-
spect to T(p2) for all p � N , and the set of eigenvalues cp determines uniquely the
corresponding character, we know that ωχN = ω. This shows that N is a square.
Lemma 7.11 implies that f |W (N) = cf |H with a constant c. This completes the
proof.

Theorem 7.5 Let f ∈ G(N, 1/2, ω) be a normalized new form which is an eigenfunc-

tion of almost all Hecke operators. Denote by r the conductor of ω. Then N = 4r2,

f =
1
2
θω.

Proof Put

F (s) :=
∞∑

n=1

a(n)n−s =
∏
p|N

(1 − cpp
−2s)−1

∏
p�N

(1 − ω(p)p−2s)−1,

F (s) :=
∞∑

n=1

a(n)n−s.

By Theorem 5.22 we know that the above series is absolutely convergent for Re(s) >

3/2 and we have the following functional equation:

(2π)−sΓ (s)F (s) = c1

(
2π
N

)s−1/2

Γ (1/2 − s)F (1/2 − s), (7.16)

where we used the fact that f |W (N) = cf |H , c1 and the following c2, c3, c4 are all
constants. Set

G(s) = L(2s, ω) =
∏
p�r

(1 − ω(p)p−2s)−1,

G(s) = L(2s, ω).
Then we have

(2π)−sΓ (s)G(s) = c2

(
2π
4r2

)s−1/2

Γ (1/2 − s)G(1/2 − s). (7.17)

From (7.16) and (7.17) we see that∏
p|m

1 − cpp
−2s

1 − ω(p)p−2s
= c3

(
N

4r2

)s−1/2∏
p|m

1 − cpp
2s−1

1 − ωpp2s−1
, (7.18)
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where m is the product of all prime divisors p of N with cp �= ω(p). If there exists a
p|m with ω(p) �= 0, then the function on the left (resp. right) hand side of (7.18) has
infinite (resp. no) poles on the line Re(s) = 0. Hence ω(p) = 0 (i.e., p|r) for any p|m.
In this case we have cp �= 0 since cp �= ω(p),∏

p|m
(1 − cpp

−2s) = c4

(
Nm2

4r2

)s∏
p|m

(1 − c′pp
−2s),

where c′p = p/cp. Considering the zeros of the functions on both sides of the above
equality we know that cp = c′p for any p|m, so that |cp|2 = p and hence c4 = 1,
Nm2 = 4r2. By Lemma 7.12 we know that cp = 0 if 4p|N . This implies that
m = 1 or m = 2 by the definition of m. If m = 1, then N = 4r2. If m = 2, then
c2 �= 0, so 8 � N . But ω(2) = 0, so 4|r which contradicts the fact that 4N = 4r2

and 8 � N . We have shown that N = 4r2 and F (s) = G(s). Thus for any n � 1 the

coefficients of e(nz) in the Fourier expansions of f and
1
2
θω coincide with each other,

i.e., f − 1
2
θω ∈ G(N, 1/2, ω) is a constant, so that it must be zero. This completes

the proof.

Lemma 7.14 Let ω be an even character with conductor r. Then
1
2
θω ∈ G(4r2, 1/2,

ω) is a normalized new form.

Proof We know that θω is in G(4r2, 1/2, ω). By Theorem 5.15 we see that

θω|T(p2) = ω(p)(1 + p−1)θω , ∀ p � 4r2.

If θω is not a new form in G(4r2, 1/2, ω), then there exists a proper divisor N1 of 4r2,
a character ψ modulo N1 and a new form f in G(N1, 1/2, ψ) such that f and θω have
the same eigenvalues ψ(p)(1 + p−1) = ω(p)(1 + p−1) for almost all Hecke operators
T(p2). Therefore ω = ψ and N1 = 4r2 by Theorem 7.5. This contradicts N1 < 4r2,
hence θω ∈ G(4r2, 1/2, ω) is a new form. This completes the proof.

Let

Γ1(N) =
{(

a b
c d

) ∣∣∣∣ (a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

Suppose that f(z) =
∞∑

n=0

a(n)e(nz) is a modular form of weight k/2 for the group

Γ1(N). Let ε be a periodic function on Z with period M . Put

(f ∗ ε)(z) =
∞∑

n=0

a(n)ε(n)e(nz).

The Fourier transformation of ε is
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ε̂(m) = M−1
M∑

n=1

ε(n)e(−nm/M),

by the inverse Fourier transformation we have

ε(n) =
M∑

m=1

ε̂(m)e(nm/M).

Hence we obtain that

(f ∗ ε)(z) =
M∑

m=1

ε̂(m)f(z + m/M),

It is clear that the function f(z+m/M) is a modular form of weight k/2 for the group
Γ1(NM2).

Lemma 7.15 The following two assertions are equivalent:
(1) the values of f at all cusp points m/M (m ∈ Z) are equal to zero (where m

and M may not be co-prime to each other);
(2) for every periodic function ε with period M , the function

L(f ∗ ε, s) =
∞∑

n=1

a(n)ε(n)n−s

is holomorphic at s = k/2.

The similar result holds also for modular forms of integral weights and the proof
is completely similar to the following one.

Proof The assertion (1) is equivalent to the fact that for any periodic function ε

with period M the function f ∗ ε takes value 0 at the cusp point s = 0. By Theorem
5.22 the assertion (2) is equivalent to the fact that the function f ∗ ε|W (NM2) takes
value 0 at i∞. But the value of f ∗ ε|W (NM2) at i∞ differs from the one of f ∗ ε at
the cusp point s = 0 by a constant multiple, so the lemma holds. This completes the
proof.

Corollary 7.3 f is a cusp form if and only if L(f ∗ ε, s) is holomorphic at s = k/2
for any periodic function ε on Z.

Since every cusp point is Γ0(N)-equivalent to some cusp point m/N, (m and N

may not be co-prime to each other), we only need to consider periodic functions with
period N for f ∈ G(N, 1/2, ω).

Lemma 7.16 Let ψ be an even character but not totally even. Then θψ is a cusp
form.
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Proof Let ε be any periodic function on Z with period N . Without loss of gener-
ality, we may assume that N is a multiple of the conductor r(ψ) of ψ. By Corollary
7.3, we only need to show that

Fε(s) = 2
∞∑

n=1

ε(n2)ψ(n)n−2s

is holomorphic at s = 1/2. We have

Fε(s) = 2
N∑

m=1

ε(m2)ψ(m)Fm,N (2s),

where
Fm,N (s) =

∑
n≡m mod N,

n�1

n−s.

It is well known that Fm,N (s) has a simple pole at s = 1 with residue 1/N . Hence

the residue of Fε(s) at s = 1/2 is equal to R(ε, ψ)/N with R(ε, ψ) =
N∑

m=1

ε(m2)ψ(m).

We now only need to show that R(ε, ψ) = 0. Since ψ is not totally even, there exists
a prime divisor l of r(ψ) such that the l-part ψl of ψ is odd. Write N = laN ′ with
l � N ′. Take an integer l′ such that l′ ≡ −1 (mod la), l′ ≡ 1 (mod N ′). It is clear
that l′ is invertible in Z/NZ and l′2 ≡ 1(N), ψ(l′) = −1. Therefore

R(ε, ψ) =
∑

m mod N

ε((l′m)2)ψ(l′m) = −
∑

m mod N

ε(m2)ψ(m) = −R(ε, ψ),

i.e., R(ε, ψ) = 0. This completes the proof.

Lemma 7.17 Let ψ be a totally even character, T a finite set of positive integers.

If f =
∑
t∈T

ctθψ,t(ct ∈ C) is a cusp form, then ct = 0 for all t.

Proof Otherwise, let t0 be the smallest number in T such that ct0 �= 0. Take a
positive integer M such that M is a common multiple of 2r(ψ) and all numbers of T .
Since ψ is totally even, there exists a character α modulo M with α2 = ψ. Define a
periodic function ε on Z as follows:

ε(n) =
{

α(n/t0), if t0|n and (n/t0, M) = 1,

0, otherwise.

We see that

ε(t0n2) =
{

ψ(n), if (n, M) = 1,

0, otherwise

and
ε(tn2) = 0, if t ∈ T, t > t0,
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(since (tn2, M) � t > t0). Therefore

L(f ∗ ε, s) = 2ct0

∑
(n,M)=1,n�1

ψ(n)ψ(n)(t0n2)−s = 2ct0t
−s
0

∑
(n,M)=1,n�1

n−2s

whose residue at s = 1/2 is

ct0t
−1/2
0 ϕ(M)/M �= 0.

By Corollary 7.3 we see that f is not a cusp form which is impossible. This completes
the proof.

Proof of Theorem 7.4 (1) We first prove that {θψ,t|(ψ, t) ∈ Ω(N, ω)} are linearly
independent. Since ψ is determined uniquely by ω and t, t appears only one time as
the second entry of a paring (ψ, t) in Ω(N, ω). Assume

m∑
i=1

λiθψi,ti = 0,

where t1 < t2 < · · · < tm, λi �= 0 (1 � i � m). The coefficient of e(t1z) of the Fourier
expansion of θψ1,t1 is equal to 2, and the ones of θψi,ti (i � 2) are equal to 0. This
shows that λ1 = 0 which contradicts λ1 �= 0.

We now show that {θψ,t|(ψ, t) ∈ Ω(N, ω)} generate G(N, 1/2, ω). Let f, g ∈
G(N, 1/2, ω). For any p � N , using Lemma 5.26 we have

〈f |T(p2), g〉 = ω(p2)〈f, g|T(p2)〉,

which shows that ωT(p2), p � N are Hermitian and commute each other. So there
is a basis of G(N, 1/2, ω) whose every element is an eigenfunction of T(p2), p � N .
Hence we only need to show that if f is an eigenfunction of T(p2) (p � N) then f

is a linear combination of {θψ,t|(ψ, t) ∈ Ω(N, ω)}. We apply induction on N . If
f is a new form, Theorem 7.5 gives what we want. If f is an old form, then f is
either in G(N/p, 1/2, ω) and ω is well-defined for modulo N/p, or f = g|V (p) with
g ∈ G(N/p, 1/2, ωχp) and ωχp well-defined modulo N/p. In the first case, f is a
linear combination of {θψ,t|(ψ, t) ∈ Ω(N/p, ω)} by the induction hypothesis. It is
clear that Ω(N/p, ω) ⊂ Ω(N , ω). For the second case, g is a linear combination
of {θψ,t|(ψ, t) ∈ Ω(N/p, ωχp)} due to the induction hypothesis, hence f is a linear
combination of {θψ,t|(ψ, t) ∈ Ω(N, ω)}. This completes the proof of the part (1).

(2) We only need to show the following three assertions: if (ψ, t) ∈ Ωc(N, ω),
then θψ,t is a cusp form; any non-zero linear combination of {θψ,t|(ψ, t) ∈ Ωe(N, ω)}
is not a cusp form; if (ψ, t) ∈ Ωc(N, ω), (ψ′, t′) ∈ Ωe(N, ω), then θψ,t is orthogonal
with θψ′,t′ under the Petersson inner product.

The assertion is deduced from Lemma 7.16. Let now V be the intersection of
the set of linear combinations of {θψ,t|(ψ, t) ∈ Ωe(N, ω)} and the space of cusp forms.



232 Chapter 7 Construction of Eisenstein Series

If V �= 0, since V is an invariant space for the Hecke operators T(p2)(p � N), there
exists a 0 �= f ∈ V which is an eigenfunction of all T(p2)(p � N). But ψ(p)(1 + p−1)
is the eigenvalue of θψ,t with respect to T(p2). Hence f is a linear combination of
some θψ,t with the same ψ. This contradicts Lemma 7.17 and hence V = 0 which
shows the assertion . Finally we prove the assertion . Since ψ′ω2 is a totally even
character, we see that ψ′ω2 �= ψ. So there exists a prime p with ψ(p) �= ψ′ω2(p). Then
ψ(p)(1 + p−1) and ψ′(p)(1 + p−1) are the eigenvalues of θψ,t and θψ′,t′ respectively
with respect to T(p2). By the properties of Petersson inner product we have

〈θψ,t|T(p2), θψ′,t′〉 = ω2(p)〈θψ,t, θψ′,t′ |T(p2)〉,

thus
ψ(p)〈θψ,t, θψ′,t′〉 = ψ′ω2(p)〈θψ,t, θψ′,t′〉,

i.e.,
〈θψ,t, θψ′,t′〉 = 0,

which showed . This completes the proof of Theorem 7.4.

7.3 Construction of Eisenstein Series with Weight 3/2

In this section we shall construct a basis of the Eisenstein space of weight 3/2 for a
modular group Γ0(4N) with N a square-free odd positive integer. The content of this
section is due to D. Y. Pei, 1982. Considering the Eisenstein series in Chapter 2, we
have

Theorem 7.6 For any k > 3 and ω not a real character, Ek(ω, N) and E′k(ωχN , N)
belong to E(N, k/2, ω). The functions f∗2 (ω, N) and f2(ω, N) belong to E(N, 3/2, ω).
If D is a square-free odd positive integer, then the functions f1(id., 4D) and f1(id., 8D)
belong to E(4D, 3/2, id.) and E(8D, 3/2, id.) respectively.

Proof We only prove the theorem for Ek(ω, N) since the other assertion can be
proved similarly. In Chapter 2 we proved that Ek(ω, N) is a holomorphic function on
H. We prove that it is also holomorphic at each cusp point. It is clear that Ek(ω, N)

is holomorphic at i∞. For any γ =
(

a b

c d

)
∈ SL2(Z) with c �= 0, we have

|Ek(ω, N)(γ(z))(cz + d)−k/2| �
(
1 + ρy−(k+5)/2|cz + d|k+5

)
|cz + d|−k/2

� ρ′y5/2 (y → ∞)

by equality (2.31).
This shows that Ek(ω, N) is holomorphic at all cusp points which means that

Ek(ω, N) belongs to G(N, k/2, ω). Now, we want to prove Ek(ω, N) is orthogonal to
cusp forms. Let

f(z) =
∞∑

n=1

c(n)e(nz) ∈ S(N, k/2, ω)
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and γ ∈ Γ0(N). Since
∫ 1

0

f(z)dx = 0 and

f
(
γ(z)

)
Im
(
γ(z)

)(s+k)/2 = ω(dγ)j(γ, z)−k|j(γ, z)|−2sf(z)y(s+k)/2,

we have

0 =
∫ ∞

0

y(s+k)/2−2

∫ 1

0

f(z)dxdy =
∫
Γ∞\H

f(x + iy)y(s+k)/2−2dxdy

=
∫∫

Γ0(N)\H

Ek(s, ω, N)(x + iy)f(x + iy)yk/2−2dxdy.

To take s = 0 gives the orthogonality.

We can compute the values of E′3(ω, N), E3(ω, N), f1(id., 4D), f∗2 (id., 4D), f∗2 (id.,

8D) and f2(id., 8D) at cusp points similarly as is done in Section 7.1.

Lemma 7.18 (1) Let ω2 �= id., then V (E′3(ω, N), 1) = i. For any d/c ∈ S(N) and
c �= 1, we have V (E′3(ω, N), d/c) = 0.

(2) Let ω2 �= id., then V (E3(ω, N), i∞) = 1. For any d/c ∈ S(N) and c �= N , we
have V (E3(ω, N), d/c) = 0.

Proof (1) By (2.7) we have

(−z)3/2E′3(ω, N)(z) = iE3(ω, N)(−1/(Nz)). (7.19)

Hence, V (E′3(ω, N), 1) = iV (E3(ω, N), i∞) = i.
The other assertion can be proved by a method similar to the proof of Theorem

7.2.
(2) The first result is obvious and the second one is obvious from (7.19).

Lemma 7.19 We have

V (f1(id., 4D), 1) = −(1 + i)(4D)−1,

V (f1(id., 8D), 1) = −(1 + i)(8D)−1.

Proof By the definition of f1(id., 4D), we have

f1(id., 4D)(z) = E3(0, id., 4D)(z) − (1 − i)(4D)−1z−3/2E′3(0, χD, 4D)(−(4Dz)−1).

Therefore,

z−3/2f1(id., 4D)(−(4Dz)−1) = E′3(0, id., 4D)(z) − 2D1/2(1 + i)E3(0, χD, 4D)(z)

= −2D1/2(1 + i)f1(χD, 4D)(z).

By the definition of V (f1(id., 4D), 1) and (2.37), we have
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V (f1(id., 4D), 1) = lim
z→i∞

(4Dz)−3/2f1(id., 4D)(−(4Dz)−1)

= −(1 + i)(4D)−1.

And the second result can be proved similarly.

Lemma 7.20 We have

V (f∗2 (id., 4D), 1/β) = −4−1(1 + i)μ(D/β)β/(Dεβ),

V (f∗2 (id., 4D), 1/(2β)) = 0,

V (f∗2 (id., 4D), 1/(4β)) = μ(D/β)β/D.

Proof We know that f∗2 (id., 4D) ∈ G(4D, 3/2, id.) and for any prime factor p|2D,
f∗2 |T(p2) = f∗2 (This can be proved by (2.42)).

In particular, f∗2 |T(4) = f∗2 . Hence

f∗2 (id., 4D)
(

z +
1
2β

)
= 4−1

4∑
k=1

f∗2 (id., 4D)
(

z

4
+

1 + 2kβ

8β

)
.

But (1 + 2βk)/(8β) and 1/(4β) are Γ0(4D)-equivalent. So we have

V (f∗2 (id., 4D), 1/(2β)) = 4−1
4∑

k=1

V

(
f∗2 (id., 4D),

1 + 2βk

8β

)

= 4−1
4∑

k=1

(
2β

1 + 2βk

)
ε1+2kV (f∗2 (id., 4D), 1/(4β)) = 0,

where we used the fact
(

2β

a + 4β

)
= −

(
2β

a

)
. Since V (f∗2 (id., 4D), 1/(4D)) = 1, by

Lemma 7.1, we have V (f∗2 (id., 4D), 1/4) = μ(D)D−1. Hence we get the third equality
by the second equality of Lemma 7.1. Using

f∗2 (id., 4D)(z) = 4−1
4∑

k=1

f∗2 (id., 4D)
(

z

4
+

k

4

)
and

V (f∗2 (id., 4D), 1/2) = 0,

we get

V (f∗2 (id., 4D), 1) = 4−1(1 + i)V (f∗2 (id., 4D), 1/4) + 2V (f∗2 (id., 4D), 1).

Since 3/4 and 1/4 are Γ0(4D)-equivalent, we get

V (f∗2 (id., 4D), 1) = −4−1(1 + i)μ(D)D−1.

This proves the first assertion in Lemma 7.20 from Lemma 7.1. This completes the
proof.



7.3 Construction of Eisenstein Series with Weight 3/2 235

Lemma 7.21 Let m, β, l be factors of D. Let f(z) ∈ G(8D, 3/2, χ2l) satisfy

f |T(p2) =f, ∀ p|m,

f |T(p2) =pf, ∀ p|Dm−1.

Then

V (f, 1/(2rα)) = μ(α)α(α, l)−1/2ε−1
α/(α,l)

(
21−rl/(α, l)

α/(α, l)

)
V (f, 1/2r), r = 0, 1,

V (f, 1/(8α)) = μ(α)α(α, l)−1/2εl/(α,l)ε
−1
l

(
α/(α, l)
l/(α, l)

)
V (f, 1/8),

V (f, 1/(2rβ)) = 0, r = 0, 1, 3 and (β, D/m) �= 1.

Proof This can be proved in a similar way as in the proof of Lemma 7.4.

Lemma 7.22 Let β be any factor of D. Then we have

V (f∗2 (χ2D, 8D), 1/β) = −2−3/2(1 + i)μ(D/β)β1/2D−1/2,

V (f∗2 (χ2D, 8D), 1/(2β)) = 2−1(1 + i)μ(D/β)β1/2D−1/2,

V (f∗2 (χ2D, 8D), 1/(4β)) = 0,

V (f∗2 (χ2D, 8D), 1/(8β)) = μ(D/β)β1/2D−1/2εD/β .

Proof Put h = f∗2 (χ2D, 8D). Then h ∈ G(8D, 3/2, χ2D) and h|T(p2) = h for
any prime factor p|2D. Using h|T(4) = h and V (h, 1/(8D)) = 1, we can prove
V (h, 1/(4β)) = 0 for any β|D and

V (h, 1) = −2−3/2(1 + i)μ(D)D−1/2,

V (h, 1/2) = 2−1(1 + i)μ(D)D−1/2,

V (h, 1/8) = μ(D)D−1/2εD.

Now taking l = D in Lemma 7.21 gives Lemma 7.22.

Lemma 7.23 Let β be any factor of D. Then we have

−2−1(1 + i)μ(D)V
(
f2(id., 8D), 1/β

)
= −16−1(1 + i)μ(D/β)βD−1ε−1

β ,

−2−1(1 + i)μ(D)V
(
f2(id., 8D), 1/(2β)

)
= 0,

−2−1(1 + i)μ(D)V
(
f2(id., 8D), 1/(4β)

)
= −2−1μ(D/β)βD−1,

−2−1(1 + i)μ(D)V
(
f2(id., 8D), 1/(8β)

)
= μ(D/β)βD−1.

Proof By the definition of f∗2 (χ2D, 8D)(z) and f2(id., 8D)(z), we have

f∗2 (χ2D, 8D)(−1/(8Dz))z−3/2 = 8iDf2(id., 8D)(z).
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Let c be a divisor of 8D. Since

(−cz)3/2f2(id., 8D)(z + c−1) = − i(8D)−1c3/2f∗2 (χ2D, 8D)

×
(

cz

8D(z + c−1)
− c

8D

)(
− z

z + c−1

)3/2

.

We have

V (f2(id., 8D), 1/c) = −i(8D)−1c3/2V (f∗2 (χ2D, 8D),−c/(8D)).

Since the cusp points −c/(8D) and c/(8D) are Γ0(8D)-equivalent, we get the lemma
by Lemma 7.22.

Lemma 7.24 Let f ∈ G(N, 3/2, ω) be zero at all cusp points of S(N) except 1/N .
Then g = f |W (Q) is zero at all cusp points of S(N) except 1/(NQ−1).

Proof It is clear that the transformation z → Qz − 1
uNz + vQ

induces a permutation

of the equivalent classes of cusp points of Γ0(N) and

Qz − 1
uNz + vQ

∣∣∣∣
z=QN−1

=
Q − N/Q

(u + v)N
,

which is Γ0(N)-equivalent to 1/N . These two facts imply Lemma 7.24.

Let N = 2rN ′, r � 2, 2 � N ′ and ω be an even character modulo N with conductor
r(ω). Then by the dimension formula, we have

dimE(N, 3/2, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑
c|N ′

(c,N ′/c)|N/r(ω)

φ((c, N ′/c)) − dimE(N, 1/2, ω), if r = 2,

3
∑
c|N ′

(c,N ′/c)|N/r(ω)

φ((c, N ′/c)) − dimE(N, 1/2, ω), if r = 3,

∑
c|N

(c,N/c)|N/r(ω)

φ((c, N/c)) − dimE(N, 1/2, ω), if r � 4.

By Theorem 7.4, we know that dimE(N, 1/2, ω) is the number of pairs (ψ, t) of
Ωe(N, ω).

Now we always assume that D is an odd square-free positive integer, m, l and β

are divisors of D, α is a divisor of m and v is the number of prime divisors of D. Since
Ωe(4D, χl) = {(id., l)}, Ωe(8D, χl) = {(id., l)}, Ωe(8D, χ2l) = {(id., 2l)}, we have

dimE(4D, 3/2, χl) = 2v+1 − 1,

dimE(8D, 3/2, χl) = dimE(8D, 3/2, χ2l) = 3 · 2v − 1.
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We shall construct a basic of E(4D, 3/2, χl), E(8D, 3/2, χl) and E(8D, 3/2, χ2l) re-
spectively. Since only Eisenstein series of weight 3/2 are considered, we shall omit all
Subscripts 3. E.g., we define

λ(n, 4D) = λ3(n, 4D) = L4D(2, id.)−1L4D(1, χ−n)β3(n, 0, χD, 4D)

and
A(p, n) = A3(p, n), etc.

Define functions

g(χl, 4D, 4D)(z) =1 − 4π(1 + i)l1/2
∞∑

n=1

λ(ln, 4D)(A(2, ln) − 4−1(1 − i))

×
∏
p|D

(A(p, ln) − p−1)n1/2e(nz),

g(χl, 4m, 4D)(z) = − 4π(1 + i)l1/2
∞∑

n=1

λ(ln, 4D)(A(2, ln) − 4−1(1 − i))

×
∏
p|m

(A(p, ln) − p−1)n1/2e(nz), ∀m �= D,

g(χl, m, 4D)(z) = 2πl1/2
∞∑

n=1

λ(ln, 4D)
∏
p|m

(A(p, ln) − p−1)n1/2e(nz), ∀ m �= 1.

Theorem 7.7 (1) The functions g(χl, 4m, 4D), (∀m|D) and g(χl, m, 4D) (∀ 1 �=
m|D) constitute a basis of E(4D, 3/2, χl).

(2) For any p ∈ S(4D), we have

V (g(χl, 4m, 4D), p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4−1(1 + i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1
α/(l,α)

(
l/(l, α)
α/(l, α)

)
,

if p = 1/α, α|m,

μ(m/α)αm−1l1/2(l, α)−1/2εl/(l,α)

(
α/(l, α)
l/(l, α)

)
,

if p = 1/(4α), α|m,

0, otherwise.

(3) For any p ∈ S(4D), we have

V (g(χl, m, 4D), p) =

⎧⎪⎪⎨⎪⎪⎩
−4−1(1 + i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1

α/(l,α)

(
l/(l, α)
α/(l, α)

)
,

if p = 1/α, α|m,

0, otherwise.

Proof We first prove (2) for l = 1. By equality (2.45), we have g(id., 4D, 4D) =
f∗2 (id., 4D). Hence the theorem holds for g(id., 4D, 4D) by Theorem 7.6 and Lemma
7.20. Now suppose m �= D. We have
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g(id., 4m, 4D) = −4π(1 + i)
∏

p|D/m

p(1 + p)−1
∞∑

n=1

λ(n, 4D)(A(2, n) − 4−1(1 − i))

×
∏
p|m

(A(p, n)−p−1)
∏

p|D/m

{
1+A(p, n)−(A(p, n)−p−1)

}
n1/2e(nz)

=
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)f∗2 (id., 4md).

Therefore g(id., 4m, 4D) ∈ E(4D, 3/2, id.). But

A(2, 4n) − 4−1(1 − i) = 2−1(A(2, n) − 4−1(1 − i)),

A(p, p2n) − p−1 = p−1(A(p, n) − p−1), p �= 2
(7.20)

implies that
g(id., 4m, 4D)|T(p2) = g(id., 4m, 4D), p|2m

g(id., 4m, 4D)|T(p2) = pg(id., 4m, 4D), p|D/m.
(7.21)

By Lemma 7.20, we have

V (g(id., 4m, 4D), 1) =
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)V (f∗2 (id., 4md), 1)

= −4−1(1 + i)
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)μ(md)(md)−1

= −4−1(1 + i)μ(m)m−1.

Using g(id., 4m, 4D)|T(4) = g(id., 4m, 4D) and the method for showing Lemma 7.20,
we can prove that

V (g(id., 4m, 4D), 1/(2p)) = 0

and

V (g(id., 4m, 4D), 1/4) = −4(1 + i)−1V (g(id., 4m, 4D), 1) = μ(m)m−1.

By Lemma 7.4 we get part (2) of the theorem for l = 1.
For l �= 1, we have

g(χl, 4m, 4D)(z) = g(id., 4m, 4D)(z)|T(l) = l−1
l∑

k=1

g(id., 4m, 4D)
(

z + k

l

)
.

Hence g(χl, 4m, 4D) ∈ E(4D, 3/2, χl) and we have

V (g(χl, 4m, 4D), 1) = l−1
∑
d|l

d3/2

l/d∑
k=1

(k,l/d)=1

V (g(id., 4m, 4D), k/(ld−1))
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= l−1
∑
d|l

l3/2

l/d∑
k=1

(
k

ld−1

)
V (g(id., 4m, 4D), 1/(ld−1))

= −4−1(1 + i)μ(m)m−1l1/2

by Lemma 7.2. Since (7.21) holds also for g(χl, 4m, 4D), we can prove that the part
(2) of the theorem holds also for g(χl, 4m, 4D). This completes the proof of the part
(2).

Now we prove part (3) of the theorem. Similar to the above, we only need to
consider the case l = 1. Suppose g(id., m, 4D) ∈ E(4D, 3/2, id.), then by (7.20) we
have

g(id., m, 4D)|T(p2) = g(id., m, 4D), ∀ p|m,

g(id., m, 4D)|T(p2) = pg(id., m, 4D), ∀ p|2D/m.
(7.22)

Using (7.22) for p = 2, we have

2V (g(id., m, 4D), 1/(4β)) = 4−1
4∑

k=1

V

(
g(id., m, 4D),

1 + 4βk

4β

)
= V (g(id., m, 4D), 1/(4β)),

which implies V (g(id., m, 4D), 1/(4β)) = 0.
Using again (7.22) for p = 2, we have also

2V (g(id., m, 4D), 1/(2β)) = 4−1
4∑

k=1

V

(
g(id., m, 4D),

1 + 2βk

8β

)
= 0.

So if V (g(id., m, 4D), 1) is known, then the values of g(id., m, 4D) at all cusp points
can be computed by Lemma 7.4. Put

f3(id., 4D)(z) = 2π
∞∑

n=1

λ(n, 4D)
(∏

p|D
A(p, n) − D−1

)
n1/2e(nz).

Then

f1(id., 4D) = −f3(id., 4D) + 1 − 4π(1 + i)
∞∑

n=1

λ(n, 4D)
(
A(2, n) − 4−1(1 − i)

)
×
∏
p|D

A(p, n)n1/2e(nz)

= D−1
∑
m|D

mg(id., 4m, 4D)− f3(id., 4D),

which implies that f3(id., 4D) ∈ E(4D, 3/2, id.) and

V (f3(id., 4D), 1)=D−1
∑
m|D

mV (g(id., 4m, 4D), 1)− V (f1(id., 4D), 1)
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=−4−1(1 + i)D−1
∑
m|D

μ(m) + (1 + i)(4D)−1

=(1 + i)(4D)−1. (7.23)

We shall prove that g(id., m, 4D) ∈ E(4D, 3/2, id.) and calculate V (g(id., m, 4D), 1)
by induction, and hence will complete the proof of part (3).

If D = p is a prime, then g(id., p, 4p) = f3(id., 4p) ∈ E(4p, 3/2, id.) and then (7.23)
implies the part (3). Now we use induction on the number of prime divisors of D.
Since ∏

p|β
(1 + p)−1

∏
p|D

(A(p, n) − p−1)

=
∏

p|D/β

(A(p, n) − p−1)
∏
p|β

{
(1 + A(p, n))(1 + p)−1 − p−1

}
=
∑
d|β

μ(β|d)dβ−1
∏

p|D/β

(A(p, n) − p−1)
∏
p|d

(1 + A(p, n))(1 + p)−1,

we get ∑
D �=β|D

μ(β)
∏
p|β

(1 + p)−1
∏
p|D

(A(p, n) − p−1)

=
∏
p|D

A(p, n) − D−1 +
∑

D �=β|D

∑
1�=d|β

μ(d)dβ−1

∏
p|D/β

(A(p, n) − p−1)
∏
p|d

(1 + A(p, n))(1 + p)−1.

But
λk(n, 4m) = λk(n, 4D)

∏
p|D/m

(1 + Ak(p, n)),

we get ∑
D �=β|D

μ(β)
∏
p|β

(1 + p)−1g(id., D, 4D)

= f3(id., 4D) +
∑

D �=β|D

∑
1�=d|β

μ(d)dβ−1g(id., D/β, 4D/d).

By induction hypothesis, we get g(id., D, 4D) ∈ E(4D, 3/2, id.) and∑
D �=β|D

μ(β)
∏
p|β

(1 + p)−1V (g(id., D, 4D), 1)

=(1 + i)(4D)−1 +
∑

D �=β|D

∑
1�=d|β

μ(d)dβ−1
∏
p|d

(1 + p)−1
(
− 4−1(1 + i)μ(D/β)βD−1

)
= − (4D)−1(1 + i)μ(D)

∑
D �=β|D

μ(β)
∏
p|β

(1 + p)−1.
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Therefore, V (g(id., D, 4D), 1) = −(4D)−1(1 + i)μ(D), which completes the proof of
part (3) for m = D.

For m|D, by the method used in the proof of the part (2), we get

g(id., m, 4D) =
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)g(id., md, 4md).

Using the induction hypothesis and the above result, g(id., md, 4md) ∈ E(4D, 3/2, id.),
and hence g(id., m, 4D) ∈ E(4D, 3/2, id.) and as well as

V (g(id., m, 4D), 1) =
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)V (g(id., md, 4md), 1)

= −4−1(1 + i)
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)μ(md)(md)−1

= −(4m)−1(1 + i)μ(m),

we complete the proof of part (3).
Finally we prove part (1). For each prime divisor p of D, we define

G(χl, p, 4D) = 2(i − 1)l−l/2(l, p)1/2εp/(l,p)

(
l/(l, p)
p/(l, p)

)
g(χl, p, 4D),

G(χl, 4, 4D) = l−1/2ε−1
l g(χl, 4, 4D).

We define the following function by induction on the number of prime factors of m:

G(χl, 4m, 4D) = l−l/2(l, m)1/2ε−1
l/(l,m)

(
m/(l, m)
l/(l, m)

){
g(χl, 4m, 4D)− g(χl, m, 4D)

− μ(m)m−1l1/2
∑

m �=α|m
μ(α)α(l, α)−1/2εl/(l,α)

×
(

α/(l, α)
l/(l, α)

)
G(χl, 4α, 4D)

}
and

G(χl, m, 4D) = 2(i − 1)l−1/2(l, m)1/2εm/(l,m)

(
l/(l, m)
m/(l, m)

)
×
{

g(χl, m, 4D) + (1 + i)(4m)−1

× μ(m)
∑

1,m �=α|m
μ(α)αl1/2(l, α)−1/2ε−1

α/(l,α)

×
(

l/(l, α)
α/(l, α)

)
G(χl, α, 4D)

}
.

We can prove that for r = 0 or 2, V (G(χl, 2rm, 4D), p) = 0 for all p ∈ S(4D) except
for p = 1 and 1/(2rm) and



242 Chapter 7 Construction of Eisenstein Series

V (G(χl, 4m, 4D), 1/(4m)) = V (G(χl, m, 4D), 1/m) = 1,

V (G(χl, 4m, 4D), 1) = −(4m)−1(1 + i)(l, m)1/2ε−1
l/(l,m)

(
m/(l, m)
l/(l, m)

)
,

V (G(χl, m, 4D), 1) = −m−1(l, m)1/2εm/(l,m)

(
l/(l, m)
m/(l, m)

)
.

These equalities imply that G(χl, 4m, 4D) (∀m|D) and G(χl, m, 4D) (1 �= m|D) are
linearly independent. But the number of these functions is equal to the dimension of
E(4D, 3/2, χl). So they constitute a basis of E(4D, 3/2, χl), so do g(χl, 4m, 4D) and
g(χl, m, 4D). This completes the proof of the theorem.

We shall construct a basis of E(8D, 3/2, χl) and E(8D, 3/2, χ2l) respectively. Put

R = {n ∈ Z|n � 1, n ≡ 1 or 2 (mod 4)}.

Define
f4(id., 4D) = 2π

∑
n∈R

λ(n, 4D)
∏
p|D

(A(p, n) − p−1)n1/2e(nz).

Then
f∗2 (id., 4D) + 2−1(1 + i)μ(D)f2(id., 8D) =

3
2
f4(id., 8D),

where we used the fact A(2, n) − 4−1(1 − i) =
3
8
(i − 1) for n ∈ R. It follows that

f4(id., 8D) ∈ E(8D, 3/2, id.). By Lemma 7.21 and Lemma 7.23, we get

V (f4(id., 8D), 1/(8β)) = V (f4(id., 8D), 1/(2β)) = 0,

V (f4(id., 8D), 1/β) = −8−1(1 + i)μ(D/β)βD−1ε−1
β ,

V (f4(id., 8D), 1/(4β)) = μ(D/β)βD−1.

(7.24)

For any m|D, define

g(χl, 4m, 8D) = 2πl1/2
∑
ln∈R

λ(ln, 4D)
∏
p|m

(A(p, ln) − p−1)n1/2e(nz).

Theorem 7.8 (1) The functions g(χl, 4m, 8D) (∀ m|D), g(χl, 4m, 4D) (∀ m|D)
g(χl, m, 4D) (∀ 1 �= m|D)) constitute a basis of E(8D, 3/2, χl).

(2)

V (g(χl, 4m, 8D), p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−8−1(1 + i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1
α/(l,α)

(
l/(l, α)
α/(l, α)

)
,

if p = 1/α, α|m,

μ(m/α)αm−1l1/2(l, α)−1/2εl/(l,α)

(
α/(l, α)
l/(l, α)

)
,

if p = 1/(4α), α|m,

0, otherwise.
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Proof We first prove (2). Since g(χl, 4m, 8D) = g(id., 4m, 8D)|T(l). So we only
need to prove (2) for l = 1. We can get

g(id., 4m, 8D) =
∏

p|D/m

p(1 + p)−1
∑

d|D/m

μ(d)f4(id., 8md) ∈ E(8D, 3/2, id.)

by a similar method used in the proof of theorem 7.7. By (7.24) we have

V (g(id., 4m, 8D), 1/(8β)) = V (g(id., 4m, 8D), 1/(2β)) = 0,

V (g(id., 4m, 8D), 1) = −8−1(1 + i)μ(m)m−1,

V (g(id., 4m, 8D), 1/4) = μ(m)m−1.

But

g(id., 4m, 8D)|T(p2) =
{

g(id., 4m, 8D), ∀p|m,

pg(id., 4m, 8D), ∀p|D/m

implies (2) by Lemma 7.4.

Now we prove (1) by a method similar to the proof of Theorem 7.7. Since
1
8α

and
1
4α

are Γ0(4D)-equivalent, we have

V (g(χl, 4m, 4D), 1/(8α)) = μ(m/α)αm−1l1/2(l, α)−1/2εl/(l,α)

(
2α(l, α)
l/(l, α)

)
.

Define
G(χl, 4, 8D) = l−1/2ε−1

l g(χl, 4, 8D),

G(χl, 8, 8D) = l−1/2ε−1
l

(
2
l

)
{g(χl, 4, 4D) − g(χl, 4, 8D)}.

Then we define by induction

G(χl, 8m, 8D) = l−1/2(l, m)1/2ε−1
l/(l,m)

(
2m/(l, m)
l/(l, m)

){
g(χl, 4m, 4D)

− g(χl, 4m, 8D)− 2−1g(χl, m, 4D)

− μ(m)m−1l1/2
∑

m �=α|m
μ(α)α(l, α)−1/2

× εl/(l,α)

(
2α/(l, α)
l/(l, α)

)
G(χl, 8α, 8D)

}
and

G(χl, 4m, 8D) = l−1/2(l, m)1/2ε−1
l/(l,m)

(
m/(l, m)
l/(l, m)

){
g(χl, 4m, 8D)

− 2−1g(χl, m, 4D)− μ(m)m−1l1/2
∑

m �=α|m
μ(α)α(l, α)−1/2

× εl/(l,α)

(
α/(l, α)
l/(l, α)

)
G(χl, 4α, 4D)

}
.
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We define also G(χl, m, 8D) = G(χl, m, 4D) for m �= 1. We can prove that for
r = 0, 2, 3, V (G(χl, 2rm, 8D), p) = 0 for all p ∈ S(8D) except p = 1 and 1/(2rm) by
induction, and

V (G(χl, m, 8D), 1/m) = 1, m �= 1,

V (G(χl, 4m, 8D), 1/(4m)) = V (G(χl, 8m, 8D), 1/(8m)) = 1,

V (G(χl, m, 8D), 1) = −m−1(l, m)1/2εm/(l,m)

(
l/(l, m)
m/(l, m)

)
,

V (G(χl, 4m, 8D), 1) = −8−1(1 + i)m−1(l, m)1/2ε−1
l/(l,m)

(
m/(l, m)
l/(l, m)

)
,

V (G(χl, 8m, 8D), 1) = −8−1(1 + i)m−1(l, m)1/2ε−1
l/(l,m)

(
2m/(l, m)
l/(l, m)

)
.

Gathering the values of G(χl, m, 4D) at 1/m and 1 computed in the proof of Theorem
7.7, we know that G(χl, 8m, 8D) (∀ m|D), G(χl, 4m, 4D) (∀ m|D) and G(χl, m, 8D)
(∀ 1 �= m|D) constitute a basis of E(8D, 3/2, χl). This completes the proof.

Finally we consider E(8D, 3/2, χ2l). Define

g(χ2l, m, 8D) = g(χl, m, 4D)|T(2), ∀ 1 �= m|D,

g(χ2l, 2m, 8D) = g(χl, 4m, 8D)|T(2), ∀ m|D,

g(χ2l, 8m, 8D) = g(χl, 4m, 4D)|T(2), ∀ m|D.

Then we have

Theorem 7.9 (1) The functions g(χ2l, m, 8D) (∀ 1 �= m|D), g(χ2l, 2m, 8D) (∀ m|D)
and g(χ2l, 8m, 8D) (∀ m|D) constitute a basis of E(8D, 3/2, χ2l).

(2) For p ∈ S(8D), we have

V (g(χ2l, m, 8D), p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2−3/2(1 + i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1

α/(l,α)

(
2l/(l, α)
α/(l, α)

)
,

if p = 1/α, α|m,

0, otherwise,

V (g(χ2l, 2m, 8D), p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2−5/2(1 + i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1
α/(l,α)

(
2l/(l, α)
α/(l, α)

)
,

if p = 1/α, α|m,

−2−1(1+i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1
α/(l,α)ε

−1
l

(
l/(l, α)
α/(l, α)

)
,

if p = 1/(2α), α|m,

0, otherwise,
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V (g(χ2l, 8m, 8D), p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2−3/2(1 + i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1
α/(l,α)

(
2l/(l, α)
α/(l, α)

)
,

if p = 1/α, α|m,

−2−1(1+i)μ(m/α)αm−1l1/2(l, α)−1/2ε−1
α/(l,α)ε

−1
l

(
l/(l, α)
α/(l, α)

)
,

if p = 1/(2α), α|m,

μ(m/α)αm−1l1/2(l, α)−1/2εl/(l,α)

(
α/(l, α)
l/(l, α)

)
,

if p = 1/(8α), α|m,

0, otherwise.

Proof Since dimE(8D, 3/2, χ2l) = dimE(8D, 3/2, χl) and T(2) is a linear operator
from E(8D, 3/2, χl) to E(8D, 3/2, χ2l), we get the part (1) by Theorem 7.8. The part
(2) can be proved by Theorem 7.7, Theorem 7.8 and the definitions of g(χ2l, 2rm, 8D)
(r = 0, 1, 3).

Several applications of the basis given in Theorems 7.1–7.9 will be described in
the rest part of the book:

(1) Construct certain generalization of Cohen-Eisenstein (Section 7.4);
(2) Prove Siegel theorem for positive definite ternary quadratic forms (Section

10.1);
(3) Determine the eligible numbers of certain positive definite ternary quadratic

forms (Section 10.3).
It is worth mentioning one more application briefly, which is due to G. Shimura,

[S5] here. Let

f(z) =
∞∑

n=1

a(n)exp{2πinz}, g(z) =
∞∑

n=0

b(n)exp{2πinz}

be a cusp form with the weight k/2 and a modular form with the weight l/2 respec-
tively, where k and l(l < k) are positive odd numbers and the Fourier coefficients a(n)
and b(n) are algebric numbers. Define Zeta function

D(s, f, g) =
∞∑

n=1

a(n)b(n)n−s.

Shimura proved that the number D(t/2, f, g), where 1 � t � k − 2, multiplied by the
number π−ru−(F ) is a algebric number, where the integer r is determined by t, l, k

and u−(F ) is the period of a modular form F determined by f with the weight k− 1.
In the Shimura’s proof of the above result the basis constructed in Theorems 7.7–7.9
were used when k = 3.
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7.4 Construction of Cohen-Eisenstein Series

Let χ be a Dirichlet character modulo N , and denote by L(s, χ) the associated L-series

L(s, χ) =
∞∑

n=1

χ(n)n−s.

For a positive integer k we have that L(1 − k, χ) = −Bk,χ

k
, where the numbers Bk,χ

are defined by
N∑

a=1

χ(a)teat

eNt − 1
=

∞∑
k=0

Bk,χ
tk

k!
.

Fix an integer k � 2 and define rational numbers H(k, n) by

H(k, n) :=

⎧⎪⎪⎨⎪⎪⎩
ζ(1 − 2k), if n = 0,

L(1 − k, χD)
∑
d|f

μ(d)χD(d)dk−1σ2k−1(f/d), if (−1)kn = Df2,

0, otherwise,

where ζ denotes the Riemann ζ-function, μ the Moebius function, D a fundamental
discriminant, χD the quadratic character associated with Q(

√
D) and the arithmetical

function σr is defined by σr(m) =
∑
d|m

dr. H.Cohen introduced the rational numbers

H(k, n) and proved that

Hk(z) :=
∞∑

n=0

H(k, n) exp(2πinz) (7.25)

is a modular form of half-integral weight k + 1/2 for Γ0(4) in [C] which is now named
Cohen-Eisenstein series. For k = 1 and group Γ0(4p) with p a prime, Cohen-Eisenstein
series is defined by

H1,p(z) :=
∞∑

n=0

H(n)p exp(2πinz), (7.26)

where H(n)p := H(p2n) − pH(n) with H(n) (for n > 0) the number of classes of
positive definite binary quadratic forms of discriminant −n (where forms equivalent
to a multiple of x2 + y2 or x2 + xy + y2 are counted with multiplicity 1/2 or 1/3
respectively) and H(0) = −1/12. H1,p is a modular form of weight 3/2 on Γ0(4p).

We shall construct some explicit modular forms in the space E+
k+1/2(4N, χl) with

k � 1 which can be viewed as a generalization of Cohen-Eisenstein series and consti-
tute a basis of E+

k+1/2(4N, χl).
Let Bk,χ be the generalized Bernoulli number defined by

N∑
a=1

χ(a)teat

eNt − 1
=

∞∑
k=0

Bk,χ
tk

k!
,
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where N is a square free odd positive integer and χ is a Dirichlet character modulo
N . And let M+

k+1/2(4N, χl) be Kohnen’s “+ space” defined by

M+
k+1/2(4N, χl) :=

{
f(z) =

∞∑
n=0

a(n)qn|f ∈ G(4N, k + 1/2, χl)

with a(n) = 0 whenever ε(−1)kn ≡ 2, 3 (mod 4)
}

,

S+
k+1/2(4N, χl) the Kohnen’s “space” defined by

S+
k+1/2(4N, χl) :=

{
f(z) =

∞∑
n=0

a(n)qn|f ∈ S(4N, k + 1/2, χl)

with a(n) = 0 whenever ε(−1)kn ≡ 2, 3 (mod 4)
}

,

E+
k+1/2(4N, χl) the Kohnen’s “space” defined by

E+
k+1/2(4N, χl) :=

{
f(z) =

∞∑
n=0

a(n)qn|f ∈ E(4N, k + 1/2, χl)

with a(n) = 0 whenever ε(−1)kn ≡ 2, 3 (mod 4)
}

.

We define the following rational numbers H(k, l, N, N ; n) and H(k, l, m, N ; n) with
N �= m|N :

H(k, l, N, N ; n) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LN(1 − 2k, id.), if n = 0,

LN(1 − k, χD′n)
∑
d|fn

μ(d)χ′l(d)χDn(d)dk−1σN,2k−1(fn/d),

if ε(−1)kn = Dnf2
n and (−1)kln = D′n(f ′n)2,

0, otherwise,

where σN,2k−1 is the arithmetical function defined by σN,2k−1(t) :=
∑

d|t,(d,N)=1

d2k−1,

and

H(k, l, m, N ; n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if n = 0,

Lm(1 − k, χD′n)
∏

p|N/m

1 − p−k
(

D′n
p

)
1 − p−2k

(
(l, Dn)

(l, Dn, m)

)2k−1

×
∑
d|fn

μ(d)χ′l(d)χDn(d)dk−1σm,N,2k−1(fn/d),

if ε(−1)kn = Dnf2
n and (−1)kln = D′n(f ′n)2,

0, otherwise,
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where σm,N,2k−1 is the arithmetical function defined by

σm,N,2k−1(t) :=
∑

d|t,(d,m)=1,
(t/d,N/m)=1

d2k−1.

Note that H(k, 1, 1, 1; n) = H(k, n) are just the rational numbers defined by H.Cohen.

Theorem 7.10 Let N be a square-free odd positive integer and l a divisor of N .
Then

(1) If k = 1 and N > 1, then the functions defined by

H1(χl, N, N)(z) :=
∞∑

n=0

H(1, l, N, N ; n)qn,

H1(χl, m, N)(z) :=
∞∑

n=0

H(1, l, m, N ; n)qn for all m with 1, N �= m|N

belong to E+
3/2(4N, χl) and constitute a basis of the space E+

3/2(4N, χl).
(2) If k � 2, then the functions defined by

Hk(χl, N, N)(z) :=
∞∑

n=0

H(k, l, N, N ; n)qn,

Hk(χl, m, N)(z) :=
∞∑

n=0

H(k, l, m, N ; n)qn for all m with N �= m|N

belong to E+
k+1/2(4N, χl) and constitute a basis of the space E+

k+1/2(4N, χl).

Remark 7.1 Hk(id., 1, 1)(z) is just the Cohen-Eisenstein series Hk(z). Since

LN(−1, id.) = − 1
12

∏
p|N

(1 − p)

and

H(n) =
h(D)
w(D)

∑
d|f

μ(d)
(

D

d

)
σ1(f/d),

where −n = Df2 with D a negative fundamental discriminant, w(D) half the number
of units in Q(

√
D), we see that H1(id., p, p) is just the Cohen-Eisenstein series H1,p(z)

by class number formula.
We need the following:

Lemma 7.25 Let n be a positive integer with (−1)kn = D(2rf)2 where D is a
fundamental discriminant, f is a positive odd integer and r � −1 is an integer. Then

(Ak(2, n) − η2)2k−2(1 − (−1)λi)(1 − 2k−2)
(

1 − 2−λ

(
D

2

))
(1 − 21−k)−1
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=2−r(k−2)

(
1 − 2λ−1

(
D

2

))
,

(Ak(p, n) − ηp)pνp(f)(k−2)(1 − pk−2)
(

1 − p−λ

(
D

p

))
(1 − p1−k)−1

=1 − pλ−1

(
D

p

)
, p is an odd prime ,

where λ = (k − 1)/2 for an odd integer k.

Proof The lemma can be proved by the definitions and some direct calculations.

Proof of Thorem 7.10 (1) We know that the dimension of E+
3/2(4N, χ) is 2t(N)−

1. So we only need to prove that H1(χl, m, N)(z) (1 �= m|N) belong to E+
3/2(4N, χ)

and are linearly independent.
By the results in Section 7.3 we know that the following functions

H ′
1(χl, m, N) := g(χl, 4m, 4N) − 3

2
g(χl, m, 4N), ∀ 1 �= m|N (7.27)

belong to E(4N , 3/2, χl) and are linearly independent. We now prove that H ′
1(χl, m, N)

belongs to E+
3/2(4N, χl) and is a non-zero multiple of H1(χl, m, N) with 1 �= m|N .

By the definition, we see that

H ′
1(χl, m, N) :=

∞∑
n=1

am(n)qn = −4π(1 + i)
∞∑

n=1

λ3(ln, 4N)(A3(2, ln) + 2−3(1 − i))

×
∏
p|m

(A3(p, ln) − p−1)(ln)1/2qn, ∀ m|N, m �= 1, N, (7.28)

H ′
1(χl, N, N) :=

∞∑
n=1

aN (n)qn =1−4π(1 + i)
∞∑

n=1

λ3(ln, 4N)(A3(2, ln) + 2−3(1 − i))

×
∏
p|N

(A3(p, ln) − p−1)(ln)1/2qn.

Denote
I(l, n) := A3(2, ln) + 2−3(1 − i). (7.29)

By the definition of A(2, ln), we see easily that I(l, n) = 0 if ln ≡ 1, 2 (mod 4)
and hence am(n) = 0, aN (n) = 0 if ln ≡ 1, 2 (mod 4). This implies that H ′

1(χl, m,
N) ∈ E+

3/2(4N , χl). When ln ≡ 0, 3 (mod 4), ε = (−1)
l−1
2 ≡ l (mod 4) which implies

that εn ≡ 0, 3 (mod 4). Hence we can suppose that −εn = Dnf2
n and −ln = D′n(f ′n)2

with Dn and D′n fundamental discriminants, fn and f ′n positive integers. It is clear
that D′n = εlDn/(l, Dn)2, f ′n = (l, Dn)fn. From these we see that if p � N then p|Dn

if and only if p|D′n and νp(fn) = νp(f ′n). By the definition of A3(p, ln) and some
calculations we have that



250 Chapter 7 Construction of Eisenstein Series

I(l, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4−1(1 − i)
(

1 +
1
2

(
D′n
2

))
, if ln ≡ 3 (mod 4),

3
16

(1 − i)
ν2(f

′
n)∑

t=0

2−t, if ln ≡ 0 (mod 4) and 2 � ν2(ln),

4−1(1 − i)
(

1 +
1
2

(
D′n
2

))⎛⎝ν2(f
′
n)∑

t=0

2−t − 1
2

(
D′n
2

) ν2(f ′n)−1∑
t=0

2−t

⎞⎠ ,

if ln ≡ 0 (mod 4) and 2|ν2(ln), 2 � D′n,

3
16

(1 − i)
ν2(f

′
n)∑

t=0

2−t, if ln ≡ 0 (mod 4) and 2|ν2(ln), 2|D′n.

(7.30)
By Lemma 7.25 we obtain that for ln ≡ 0, 3 (mod 4)∏

p|m
(A3(p, ln) − p−1)(ln)1/2 = | D′n |1/2

∏
p|m

(
1 −
(

D′n
p

))
(1 − p)−1

×
(

1 − p−1

(
D′n
p

))−1

(1 − p−2)
∏
p�m

pνp(f ′n)

= | D′n |1/2 (l, Dn)
(l, Dn, m)

∏
p|m

(
1 −
(

D′n
p

))
(1 − p)−1

×
(

1 − p−1

(
D′n
p

))−1

(1 − p−2)
∏
p�m

pνp(fn). (7.31)

We also have that

β3(ln, χN , 4N)

=
∑

(ab)2|ln,(ab,2N)=1
a,b positive integers

μ(a)
(
−ln

a

)
(ab)−1

=
∏

p|D′n,p�2N

νp(f ′n)∑
t=0

p−t
∏

p�2ND′n

⎛⎝νp(f ′n)∑
t=0

p−t − p−1

(
D′n
p

) νp(f ′n)−1∑
t=0

p−t

⎞⎠

=
∏

p|Dn,p�2N

νp(fn)∑
t=0

p−t
∏

p�2NDn

⎛⎝νp(fn)∑
t=0

p−t − p−1χ′l(p)
(

Dn

p

) νp(fn)−1∑
t=0

p−t

⎞⎠, (7.32)

where we have used the fact that p|Dn if and only if p|D′n and νp(fn) = νp(f ′n) for
p � N . By the functional equation of L-functions we see that
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−4π(1 + i)L4N

(
1,

(
D′n
·

))
L4N (2, id.)

=2(1 + i) | D′n |−1/2

L

(
0,

(
D′n
·

))
ζ(−1)

∏
p|2N

(
1 − p−1

(
D′n
p

))
1 − p−2

. (7.33)

Using these equalities (7.28)–(7.33), we finally find that for 1, N �= m|N and n � 1

am(n) =
Lm

(
0,

(
D′n
·

))
Lm(−1, id.)

(l, Dn)
(l, Dn, m)

∏
p|N/m

(
1 − p−1

(
D′n
p

))
1 − p−2

×
∑
d|fn

μ(d)χ′l(d)
(

Dn

d

) ∑
e|fn/d,(e,m)=1
(fn/de,N/m)=1

e,

where we used the fact that

∏
p�m

pνp(fn)
∏

p|Dn,p�N

νp(fn)∑
t=0

p−t
∏

p�NDn

⎛⎝νp(fn)∑
t=0

p−t − p−1χ′l(p)
(

Dn

p

) νp(fn)−1∑
t=0

p−t

⎞⎠
=
∏

p|N/m

pνp(fn)
∏

p|Dn,p�N

νp(fn)∑
t=0

pt
∏

p�NDn

⎛⎝νp(fn)∑
t=0

pt − p−1χ′l(p)
(

Dn

p

) νp(fn)−1∑
t=0

pt

⎞⎠
=
∑
d|fn

μ(d)χ′l(d)
(

Dn

d

) ∑
e|fn/d,(e,m)=1,
(fn/de,N/m)=1

e.

Similarly we have that

aN (n) =
LN

(
0,

(
D′n
·

))
LN (−1, id.)

∑
d|fn

μ(d)χ′l(d)
(

Dn

d

) ∑
e|fn/d

(e,N)=1

e.

These show that

H ′
1(χl, N, N) = 1+

∑
n>0,

ln≡0,3(mod 4)

⎧⎪⎪⎨⎪⎪⎩
LN

(
0,

(
D′n
·

))
LN(−1, id.)

∑
d|fn

μ(d)χ′l(d)
(

Dn

d

) ∑
e|fn/d

(e,N)=1

e

⎫⎪⎪⎬⎪⎪⎭ qn,
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H ′
1(χl, m, N) =

∑
n>0,

ln≡0,3(mod 4)

⎧⎪⎪⎨⎪⎪⎩
Lm

(
0,

(
D′n
·

))
Lm(−1, id.)

(l, Dn)
(l, Dn, m)

×
∏

p|N/m

(
1 − p−1

(
D′n
p

))
1 − p−2

∑
d|fn

μ(d)χ′l(d)
(

Dn

d

) ∑
e|fn/d,(e,m)=1
(fn/de,N/m)=1

e

⎫⎪⎪⎬⎪⎪⎭ qn.

Comparing the coefficients of H1(χl, m, N) and H ′
1(χl, m, N), we find that

H1(χl, m, N) = Lm(−1, id.)H ′
1(χl, m, N)

= − 1
12

∏
p|m

(1 − p)H ′
1(χl, m, N)

for all 1 �= m|N . This completes the proof of (1).
(2) We define the following functions

H ′
k(χl, m, N) := g2k+1(χl, 4m, 4N) + (2−2k−1(1 + (−1)ki) + η2)g2k+1(χl, m, 4N).

Similar to the proof of (1), we want to prove that H ′
k(χl, m, N) with m|N constitute

a basis of E+
k+1/2(4N, χl) and is a non-zero multiple of Hk(χl, m, N). Since the

dimension of E+
k+1/2(4N, χl) is equal to the number of positive divisors of N , by

Theorem 7.1 we only need to show that H ′
k(χl, m, N) ∈ E+

k+1/2(4N, χl) and is a
non-zero multiple of Hk(χl, m, N). By results in Section 7.1 we see that

H ′
k(χl, m, N) :=

∞∑
n=1

am(n)qn

=
∞∑

n=1

λ′2k+1(ln, 4N)(A2k+1(2, ln) + 2−2k−1(1 + (−1)ki))

×
∏
p|m

(A2k+1(p, ln) − ηp)(ln)k−1/2qn, ∀m|N, m �= N,

H ′
k(χl, N, N) :=

∞∑
n=1

aN (n)qn

= 1 +
∞∑

n=1

λ′2k+1(ln, 4N)(A2k+1(2, ln)

+ 2−2k−1(1 + (−1)ki))
∏
p|N

(A2k+1(p, ln) − ηp)(ln)k−1/2qn.

(7.34)

Let
Ik(l, n) := A2k+1(2, ln) + 2−2k−1(1 + (−1)ki).
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By the definition of Ak(2, ln), we see that Ik(l, n) = 0 if (−1)kln ≡ 2, 3 (mod 4).
This shows that am(n) = 0 and aN (n) = 0 whenever (−1)kln ≡ 2, 3 (mod 4) and
hence H ′

k(χl, m, N) ∈ E+
k+1/2(4N, χl). Now we must compute the coefficients am(n)

of H ′
k(χl, m, N) for all m|N . When (−1)kln ≡ 0, 1 (mod 4), we denote that ε =

(−1)
l−1
2 ≡ l (mod 4), (−1)kεn = Dnf2

n and l(−1)kln = D′n(f ′n)2 with Dn, D′n fun-
damental discriminants, fn, f ′n positive integers. It is clear that D′n = εlDn/(l, Dn)2

and f ′n = (l, Dn)fn.
By the definition of Ak(p, ln) and some calculations we have that

Ik(l, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−2k(1 + (−1)ki)
(

1 + 2−k

(
D′n
2

))
, if (−1)kln ≡ 1(mod 4),

2−2k(1 + (−1)ki)(1 − 2−2k)
ν2(f ′n)∑

t=0

2(1−2k)t,

if (−1)kln ≡ 0(mod 4) and 2 � ν2(ln),

2−2k(1 + (−1)ki)
(

1 + 2−k

(
D′n
2

))

×
( ν2(f ′n)∑

t=0

2(1−2k)t − 2−k

(
D′n
2

) ν2(f ′n)−1∑
t=0

2(1−2k)t

)
,

if (−1)kln ≡ 0(mod 4), 2|ν2(ln) and 2 � D′n,

2−2k(1 + (−1)ki)(1 − 2−2k)
ν2(f ′n)∑

t=0

2(1−2k)t,

if ln ≡ 0(mod 4), 2|ν2(ln) and 2|D′n.
(7.35)

By Lemma 7.25 we obtain that for (−1)kln ≡ 0, 1 (mod 4)∏
p|m

(A2k+1(p, ln) − ηp)(ln)k−1/2

= | D′n |k−1/2
∏
p|m

(
1 − pk−1

(
D′n
p

))
(1 − p2k−1)−1

×
(

1 − p−k

(
D′n
p

))−1

(1 − p−2k)
∏
p�m

p(2k−1)νp(f ′n)

= | D′n |k−1/2

(
(l, Dn)

(l, Dn, m)

)2k−1∏
p|m

(
1 − pk−1

(
D′n
p

))
(1 − p2k−1)−1

×
(

1 − p−k

(
D′n
p

))−1

(1 − p−2k)
∏
p�m

p(2k−1)νp(fn). (7.36)
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We also have that

β2k+1(ln, χN , 4N)

=
∑

(ab)2|ln,(ab,2N)=1
a,b positive integers

μ(a)
(

(−1)kln

a

)
a−kb1−2k

=
∏

p|D′n,p�2N

νp(f ′n)∑
t=0

p(1−2k)t
∏

p�2ND′n

⎛⎝νp(f ′n)∑
t=0

p(1−2k)t − p−k

(
D′n
p

) νp(f ′n)−1∑
t=0

p(1−2k)t

⎞⎠
=

∏
p|Dn,p�2N

νp(fn)∑
t=0

p(1−2k)t
∏

p�2NDn

⎛⎝νp(fn)∑
t=0

p(1−2k)t−p−kχ′l(p)
(

Dn

p

)νp(fn)−1∑
t=0

p(1−2k)t

⎞⎠,

(7.37)

where we have used the fact that p|Dn if and only if p|D′n and νp(fn) = νp(f ′n) for
p � N . By the functional equation of L-function we see that

λ′k(ln, 4N)=22k−1(1 − (−1)ki) | D′n |1/2−k

L

(
1 − k,

(
D′n
·

))
ζ(1 − 2k)

×
∏
p|2N

(
1 − p−k

(
D′n
p

))
1 − p−2k

. (7.38)

Using these equalities (7.33)–(7.37), we finally find that for N �= m|N and n � 1

am(n) =
Lm

(
1 − k,

(
D′n
·

))
Lm(1 − 2k, id.)

(
(l, Dn)

(l, Dn, m)

)2k−1 ∏
p|N/m

(
1 − p−k

(
D′n
p

))
1 − p−2k

×
∑
d|fn

μ(d)χ′l(d)
(

Dn

d

)
dk−1

∑
e|fn/d,(e,m)=1
(fn/de,N/m)=1

e2k−1

where we used the fact that

∏
p�m

p(2k−1)νp(fn)
∏

p|Dn,p�N

νp(fn)∑
t=0

p(1−2k)t

×
∏

p�NDn

⎛⎝νp(fn)∑
t=0

p(1−2k)t − p−kχ′l(p)
(

Dn

p

) νp(fn)−1∑
t=0

p(1−2k)t

⎞⎠
=
∏

p|N/m

p(2k−1)νp(fn)
∏

p|Dn,p�N

νp(fn)∑
t=0

p(2k−1)t
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×
∏

p�NDn

⎛⎝νp(fn)∑
t=0

p(2k−1)t − pk−1χ′l(p)
(

Dn

p

) νp(fn)−1∑
t=0

p(2k−1)t

⎞⎠
=
∑
d|fn

μ(d)χ′l(d)
(

Dn

d

)
dk−1

∑
e|fn/d,(e,m)=1
(fn/de,N/m)=1

e2k−1.

Similarly we have that

aN (n) =
LN

(
1 − k,

(
D′n
·

))
LN(1 − 2k, id.)

∑
d|fn

μ(d)χ′l(d)
(

Dn

d

)
dk−1

∑
e|fn/d,(e,N)=1

e2k−1.

These show that

H ′
k(χl, N, N) = 1 +

∑
n>0,

(−1)kln≡0,1(mod 4)

{LN

(
1 − k,

(
D′n
·

))
LN (1 − 2k, id.)

×
∑
d|fn

μ(d)χ′l(d)
(

Dn

d

)
dk−1

∑
e|fn/d

(e,N)=1

e2k−1

}
qn;

H ′
k(χl, m, N) =

∑
n>0,

(−1)kln≡0,1(mod 4)

{Lm

(
1 − k,

(
D′n
·

))
Lm(1 − 2k, id.)

(
(l, Dn)

(l, Dn, m)

)2k−1

×
∏

p|N/m

(
1 − p−k

(
D′n
p

))
1 − p−2k

∑
d|fn

μ(d)χ′l(d)
(

Dn

d

)
dk−1

×
∑

e|fn/d,(e,m)=1
(fn/de,N/m)=1

e2k−1

}
qn

Comparing the coefficients of Hk(χl, m, N) and H ′
k(χl, m, N) show that Hk(χl, m, N) =

Lm(1 − 2k, id.)H ′
k(χl, m, N) = −B2k

2k
H ′

k(χl, m, N) for all m|N where Br := Br,id. is

the r-th Bernoulli number. This completes the proof of (2).

7.5 Construction of Eisenstein Series with Integral Weight

Let N and k be positive integers, ω a character modulo N with ω(−1) = (−1)k. Take
a positive integer Q such that Q|N and (Q, N/Q) = 1. Define a matrix

W (Q) =
(

Qs t
Nu Qv

)
∈ GL+

2 (Z), det(W (Q)) = Q.
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We see that W (Q)Γ0(N)W (Q)−1 = Γ0(N).

Lemma 7.26 Let W (Q) be as above, ω = ω1ω2, where ω1 and ω2 are characters
modulo Q and N/Q respectively. If f ∈ G(N, k, ω) (resp. E(N, k, ω)), then g =
f |[W (Q)]k ∈ G(N, k, ω1ω2) (resp.E(N, k, ω1ω2)).

Proof Take any γ =
(

a b

c d

)
∈ Γ0(N), set W (Q)γW (Q)−1 =

(
a0 b0

c0 d0

)
. It is

easy to check that c0 ≡ 0 (mod N), d0 ≡ a (mod Q), d0 ≡ d (mod (N/Q)). Hence
we see that

g|[γ] = f |[W (Q)γW (Q)−1W (Q)] = ω(d0)f |[W (Q)] = ω(d0)g,

i.e., g ∈ G(N, k, ω1ω2). Similar to Lemma 5.35, we have for N |M that

E(N, k, ω) = G(N, k, ω)
⋂

E(Γ (M), k),

from which the last conclusion of the lemma can be deduced. This completes the
proof.

Let now Ek(z, ω1, ω2) be as in Section 2.2. By the computation in Section 2.2 we
see that Ek(z, ω1, ω2) is a common eigenfunction of all Hecke operators and

Ek(z, ω1, ω2)|T(p) = (ω1(p) + pk−1ω2(p))Ek(z, ω1, ω2).

Similar to Theorem 5.18 we have the following:

Lemma 7.27 Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, ω). Assume that t is the conduc-

tor of ω and ψ is a primitive character modulo r. Put

h(z) =
r∑

u=1

ψ(u)f(z + u/r) =
r∑

u=1

ψ(u)e(u/r)
∞∑

n=1

ψ(n)a(n)e(nz),

then h(z) ∈ G(M, k, ωψ2) with M = [N, rt, r2]. If f(z) ∈ S(N, k, ω) (resp. E(N, k, ω)),
then h(z) ∈ S(M, k, ωψ2) (resp. E(M, k, ωψ2)).

Let Ek(z, ω, N) be as in Section 2.2. From the transformation formula of Ek(z, ω,

N) and a standard method invented by Petersson we know that Ek(z, ω, N) ∈ E(N, k,

ω) for k �= 2 or k = 2, ω �= id. Hence we know that Ek(z, ω, N)|[W (Q)] ∈ E(N, k, ω1ω2)
from Lemma 7.26. Let now ω = ω1ω2. Assume that r1 and r2 are the conductors of
ω1 and ω2 respectively. Write

r1 =
m∏

i=1

pαi

i , r2 =
m∏

i=1

pβi

i , ω1 =
m∏

i=1

ω1,i, ω2 =
m∏

i=1

ω2,i,
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where ω1,i and ω2,i have conductors pαi

i and pβi

i respectively. Without loss of gen-
erality, we may assume that there is a positive integer m1 such that αi � βi for
1 � i � m1 � m and αi < βi for m1 < i � m. In terms of Lemma 7.26, we know that
there is a Ẽk(z) such that

Ẽk(z) =Ek

(
z,

m1∏
i=1

ω1,iω2,i,

m∏
i=m1+1

ω1,iω2,i

)

∈ E
( m1∏

i=1

pαi

i

m∏
i=m1+1

pβi

i , k,

m1∏
i=1

ω1,iω2,i

m∏
i=m1+1

ω1,iω2,i

)
.

Put ψ =
m1∏
i=1

ω2,i

m∏
i=m1+1

ω1,i, then the conductor of ψ is r =
m1∏
i=1

pβi

i

m∏
i=m1+1

pαi

i . Set

Ek(z, ω1, ω2) =
( r∑

u=1

ψ(u)e(u/r)
)−1 r∑

u=1

ψ(u)Ẽk(z + u/r), (7.39)

then Ek(z, ω1, ω2) ∈ E(r1r2, k, ω) by Lemma 7.27. And we have also that

L(s, Ek(z, ω1, ω2)) = L

(
s, ψ

m1∏
i=1

ω1,iω2,i

)
L

(
s − k + 1, ψ

m∏
i=m1+1

ω1,iω2,i

)
= L(s, ω1)L(s − k + 1, ω2).

Let l be a positive integer, ω a character modulo N with conductor r, ω1 and
ω2 two primitive characters modulo r1 and r2 respectively. Denote by A(N, r) the
number of (l, ω1, ω2) satisfying

ω = ω1ω2, lr1r2|N. (7.40)

For any such (l, ω1, ω2) there is a function

Ek(lz, ω1, ω2) ∈ E(lr1r2, k, ω) ⊂ E(N, k, ω)

such that
L(s, Ek(lz, ω1, ω2)) = l−sL(s, ω1)L(s − k + 1, ω2).

Lemma 7.28 We have that

A(N, r) =
∑

c|N,(c,N/c)|N/r

ϕ((c, N/c)).

Proof Let B(N, r) be the right hand side of the above equality. If N = N1N2, r =
r1r2 with (N1, N2) = 1, r1|N1, r2|N2, then we see that A(N, r) = A(N1, r1)A(N2, r2),
B(N, r) = B(N1, r1)B(N2, r2). Hence we only need to show the lemma for the case
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N = pa, r = pb with b � a. If (pi, ω1, ω2) satisfies (7.40), then one of the r1 and r2

must be a multiple of r, so 0 � i � a− b. If one of the r1 and r2 is larger than r, then
r1 = r2. Since ω2 = ωω1, we see that ω2 is determined by ω1.

We assume first that 2b � a. If 0 � i � a− 2b, the maximal possible value of r1 is
p[(a−i)/2]. We see that [(a − i)/2] � b and ω1 can be any character modulo p[(a−i)/2].
If a − 2b + 1 � i � a − b, then b � 1, 2b + i > a and it is impossible that pb|r1 and
pb|r2. But one of r1 and r2 must be pb, so ω1 can be χ or ωχ where χ is any character
modulo pa−b−i. Hence we see that

A(pa, pb) = 2
b−1∑
i=0

ϕ(pi) +
a−2b∑
i=0

ϕ(p[(a−i)/2])

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

a/2−1∑
i=0

ϕ(pi) + ϕ(pa/2) = B(pa, pb), if 2|a,

2
(a−1)/2∑

i=0

ϕ(pi) = B(pa, pb), if 2 � a.

Assume now a < 2b. Then one of r1 and r2 must be pb and ω1 can be χ or ωχ with
χ any character modulo pa−b−i. Therefore

A(pa, pb) = 2
a−b∑
i=0

ϕ(pi) = B(pa, pb).

This completes the proof.

By Theorem 5.9 we see that −L(0, ω1)L(1 − k, ω2) is the constant term of the
Fourier expansion at ∞ of Ek(lz, ω1, ω2). And if ω is a primitive character modulo
r �= 1 with ω(−1) = (−1)ν (ν = 0 or 1), then the function

R(s, ω) := (r/π)(s+ν)/2Γ
(

s + ν

2

)
L(s, ω)

is holomorphic on the whole s-plane. It is well known that the function

π−s/2s(s − 1)Γ (s/2)ζ(s)

is holomorphic on the whole s-plane. Since s = 0 and negative integers are poles of
Γ (s) with order 1, we know that L(0, ω) = 0 (resp.L(1−k, ω) = 0) if ω is a non-trivial
even character(resp. if k > 1 is odd and ω is even or k is even and ω is odd.). Hence

−L(0, ω1)L(1 − k, ω2) =

⎧⎪⎪⎨⎪⎪⎩
0, if k �= 1 and ω1 is nontrivial,

or both ω1 and ω2 are non-trivial,
L(1 − k, ω)

2
, otherwise,

where we used the fact that ζ(0) = −1/2.
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Let N = pα1
1 · · · pαn

n be a positive integer. We introduce an order in the set of all
factors of N as follows: if l = pβ1 · · · pβn

n and l′ = pγ1
1 · · · pγn

n are two divisors of N ,
then we define l � l′ if there exist i with 0 � i � n such that βj = γj for 1 � j � i

and βi+1 > γi+1.

Theorem 7.11 Let ω, ω1, ω2, r1, r2 be as above. Then
(1) For k � 3 or k = 2, ω �= id., the functions

Ek(lz, ω1, ω2) = −L(0, ω1)L(1 − k, ω2) +
∞∑

n=1

(∑
d|n

ω1(n/d)ω2(d)dk−1

)
e(lnz),

constitute a basis of E(N, k, ω) where (l, ω1, ω2) runs over all triples satisfying (7.40).
(2) The functions

E1(lz, ω1, ω2) = −L(0, ω1)L(0, ω2) +
∞∑

n=1

(∑
d|n

ω1(n/d)ω2(d)
)

e(lnz)

constitute a basis of E(N, 1, ω) where (l, ω1, ω2) runs over all triples satisfying (7.40)
but only one of (l, ω1, ω2) and (l, ω2, ω1) can be taken.

Proof (1) It is clear that Ek(lz, ω1, ω2) ∈ E(N, k, ω). By dimension formula and
Lemma 7.28 we have that dim(E(N, k, ω)) = A(N, r). Hence it is sufficient to show
that the functions are linearly independent. Assume

0 =
∞∑

n=0

b(n)e(nz) =
∑

(l,ω1,ω2)

c(l, ω1, ω2)Ek(lz, ω1, ω2),

where (l, ω1, ω2) runs over the set of triples satisfying (7.40). Let 1N be the trivial
character modulo N . For any given (1, ω1, ω2) satisfying (7.40), we see that

0=
∞∑

n=1

1Nω2(n)b(n)n−s

= c(1, ω1, ω2)L(s, ω1ω21N )L(s − k + 1, 1N)

+
∑

ω′2 �=ω2

c(1, ω′1, ω
′
2)L(s, ω′1ω21N)L(s − k + 1, ω′2ω21N ), (7.41)

where the last summation is taken for triples (l, ω1, ω
′
2) satisfying (7.40) but ω2 �= ω′2.

The first term on the right hand side of (7.41) has a pole at s = k with order 1 and
the others have no poles at s = k. Hence c(1, ω1, ω2) = 0 for any (1, ω1, ω2). Assume
that c(l′, ω1, ω2) = 0 for all l′ ≺ l and that (l, ω1, ω2) satisfies (7.40), we see that

0 =
∞∑

n=1

1Nω2(n)b(ln)n−s

=c(l, ω1, ω2)L(s, ω1ω21N )L(s − k + 1, 1N)

+
∑

ω′2 �=ω2

c(l, ω′1, ω
′
2)L(s, ω′1ω21N )L(s − k + 1, ω′2ω21N),
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so c(l, ω1, ω2) = 0 by a similar argumentation. By induction we see that c(l, ω1, ω2) =
0 for any (l, ω1, ω2).

(2) It is clear that E1(lz, ω1, ω2) ∈ E(N, 1, ω). By the dimension formula we see

that dim(E(N, 1, ω)) =
1
2
A(N, r). Therefore we only need to show that the functions

are linearly independent. But this can be done similarly as we did in the proof of (1).
This completes the proof.

Recall the definition of the function g∗t (z) in Section 2.2:

g∗t (z) = − 1
24

∏
p|t

(1 − p) +
∞∑

n=1

( ∑
d|n,(d,t)=1

d

)
e(nz).

It is easy to show that g∗t ∈ E(t, 2, id.). For any positive integer l, put t(l) =
∏
p|l

p.

For l �= 1 we define

E2(lz, id., id.) = g∗t(l)(lz/t(l)) ∈ E(l, 2, id.).

It is easy to see that

L(s, E2(lz, id., id.)) = (l/t(l))−sζ(s)L(s − 1, 1t(l)).

It should be noticed that the symbol E2(z, id., id.) is not defined. If ω1 is non-trivial
but ω2

1 = id., we define

E2(z, ω1, ω2) =
( r1∑

u=1

ω1(u)e(u/r1)
)−1 r1∑

u=1

ω1(u)g∗t(r1)
(z + u/r1),

then E2(z, ω1, ω2) ∈ E(r2
1, 2, id.) by Lemma 7.27, and

L(s, E2(z, ω1, ω2)) = L(s, ω1)L(s − 1, ω2).

If ω2
1 �= id., we define

E2(z, ω1, ω2) =
( r1∑

u=1

ω1(u)e(u/r1)
)−1 r1∑

u=1

ω1(u)E2(z + u/r1, id., ω1
2),

where E2(z, id., ω1
2) is well defined as in (7.39) since ω2

1 �= id.. It is not difficult to
show that E2(z, ω1, ω2) ∈ E(r2

1 , 2, id.) and

L(s, E2(z, ω1, ω2)) = L(s, ω1)L(s − 1, ω2).

So we have a function E2(lz, ω1, ω2) ∈ E(N, 2, id.) for every triple (l, ω1, ω2) satisfying

ω1ω2 = id., lr1r2|N and l �= 1 if r1 = r2 = 1. (7.42)
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Let a0(l, ω1, ω2) be the constant term of the Fourier expansion of E2(lz, ω1, ω2). It is
easy to see that

a0(l, ω1, ω2) =

⎧⎪⎨⎪⎩
0, if ω1 is non-trivial,

− 1
24

∏
p|l

(1 − p), if ω1 is trivial,

Theorem 7.12 The functions

E2(lz, ω1, ω2) = a0(l, ω1, ω2) +
∞∑

n=1

(∑
d|n

ω1(n/d)ω2(d)d
)

e(lnz)

constitute a basis of E(N, 2, id.), where (l, ω1, ω2) runs over the set of triples (l, ω1, ω2)
satisfying (7.42).

Proof We only need to show that the functions are linearly independent. Assume∑
c(l, ω1, ω2)E2(lz, ω1, ω2) = 0, (7.43)

where the summation was taken over all triples (l, ω1, ω2) satisfying (7.42).

Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, ω), r|N and ψ any character modulo N .

Define

L(s, f, ψ, r) =
∞∑

n=1

ψ(n)a(rn)n−s.

We have that L(s, E2(lz, id., id.), ψ, r) = 0 if l/t(l) � r. If l/t(l)|r, then

L(s, E2(lz, id., id.), ψ, r) =
∞∑

n=1

ψ(n)

( ∑
d|nrt(l)/l,

(d,l)=1

d

)
n−s

=
∏

p|r,p�l

(1 + p + · · · + pνp(r))L(s, ψ)L(s − 1, ψ),

where νp(r) is the p-adic valuation of r. If ψ is non-trivial, then L(s, E2(lz, id., id.), ψ, r)
is holomorphic at s = 2, by the same argumentation as in the proof of Theorem 7.11
and (7.43) we know that c(l, ω1, ω2) = 0 if ω2 is a non-trivial character.

Denote by f the left hand side of (7.43). It is clear that L(s, f, 1N , r) has no pole
at s = 2. Hence

Ar =
∑

l|N,l �=1,
l/t(l)|r

∏
p|r,
p�l

(1 + p + · · · + pνp(r))c(l) = 0, N �= r|N, (7.44)

where c(l) = c(l, id., id.). The equality (7.44) is a system of linear equations with
respect to {c(l)|1 �= l|N}. We shall prove the system has only zero as solution which
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implies the theorem. If N = pn with p a prime, it is then clear that A1 = 0, Ap = 0,
· · · , Apn−1 = 0, so c(p) = 0, c(p2) = 0, · · · , c(pn) = 0. We apply induction to the
number of prime factors of N : let N = pn

1N1 with (p1, N1) = 1, suppose that (7.44)
has only zero as solution if N = N1. Now suppose that r1|N1, then

Apn
1 r1 − Apn−1

1 r1
= pn

1

∑
1�=l|N,
l/t(l)|r1

∏
p|r1,
p�l

(1 + p + · · · + pνp(r1))c(l) = 0, N1 �= r1|N1.

By induction hypothesis we see that c(l) = 0 if p1 � l. But p1 can be any prime factor
of N , we see that c(l) = 0 if there exists some prime factor p of N such that p � l.
Hence

Ar1 =
∑

1�=l|N1,
l/t(l)|r1

∏
p|r1,
p�l

(1 + p + · · · + pνp(r1))c(p1l) = 0, N1 �= r1|N1.

By induction hypothesis again we see that c(p1l) = 0 for l|N1. Similarly using the
fact that Ap1r1 = 0, Ap2

1r1
= 0, · · · , Apn−1

1 r1
= 0 for N1 �= r1|N1, we obtain that

c(p2
1l) = 0, · · · , c(pn

1 l) = 0 for l|N1. This shows that the system (7.44) has only zero
solution. This completes the proof.

Theorem 7.13 Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, ω). Then f(z) is a cusp form

if and only if the function L(s, f, ψ, r) is holomorphic at s = k for any proper divisor
r of N and any character ψ modulo N .

Proof The necessity can be deduced from Lemma 7.15. We now assume that
the function L(s, f, ψ, r) is holomorphic at s = k. Since G(N, k, ω) = E(N, k, ω) ⊕
S(N, k, ω), we have

f(z) =
∑

c(l, ω1, ω2)Ek(lz, ω1, ω2) + g(z),

where the summation was taken over the set of triples satisfying the conditions in
Theorem 7.11 or Theorem 7.12 according to k �= 2, k = 2, ω �= id. or k = 2, ω = id.

respectively, and g(z) ∈ S(N, k, ω). By the holomorphy of L(s, f, ψ, r) at s = k and
applying the similar argumentation used in the proofs of Theorem 7.11 and Theorem
7.12, we can prove that c(l, ω1, ω2) = 0. Hence f(z) ∈ S(N, k, ω). This completes the
proof.

Remark 7.2 The hypothesis in Theorem 7.13 can be represented as follows: L(s, f,

ψ, r) is holomorphic at s = k for any proper divisor r of N and any primitive character
ψ induced from any character modulo N . The necessity can be deduced from Lemma
7.15. We now assume the above condition is satisfied. Let χ be any character modulo
N and ψ the primitive character induced by χ. Then
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L(s, f, χ, r) =
∞∑

n=1

χ(n)a(rn)n−s =
∞∑

n=1

ψ(n)
∑

d|(n,N)

μ(d)a(rn)n−s

=
∑
d|N

ψ(d)d−sL(s, f, ψ, rd),

which implies the holomorphy of L(s, f, χ, r) at s = k. Hence f is a cusp form
by Theorem 7.13. Also the condition can be represented as follows: L(s, f, ψ, r) is
holomorphic at s = k for any positive integer r|N and any primitive character ψ.
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Chapter 8

Weil Representation and Shimura Lifting

8.1 Weil Representation

Let V be an n-dimensional real vector space and V ∗ be the dual space of V . Denote
by B a bilinear form on (V ×V ∗)×(V ×V ∗) given by B(z1, z2) = (v1, v

∗
2) = v∗2(v1) for

z1 = (v1, v
∗
1) and z2 = (v2, v

∗
2). Let A(V ) be the Lie group with underlying manifold

V × V ∗ × T whose multiplication is given by

(z, t)(z′, t′) = (z + z′, tt′e(B(z, z′))), ∀z, z′ ∈ V × V ∗, t, t′ ∈ T,

where T = {z ∈ C||z| = 1} and e(z) = e2πiz .
We fix a Euclidean measure dx on V and denote by dx∗ the Euclidean measure

which is dual to dx. Namely, the Fourier transformation

f∗(x∗) �→
∫

V ∗
f∗(x∗)e((x, x∗))dx∗

gives an isometric mapping from L2(V ∗, dx∗) onto L2(V, dx). We denote by U a
unitary representation of A(V ) on L2(V ) given by

{U(z, t)f}(x) = te((x, v∗))f(x + v), ∀x ∈ V, z = (v, v∗) ∈ V × V ∗, t ∈ T.

Then U is irreducible and φ(V ), the space of rapidly decreasing functions over V , is
a dense invariant subspace of L2(V ). A linear transformation of V × V ∗ is said to be
sympletic if it leaves the alternating form A(z1, z2) = B(z1, z2) − B(z2, z1) invariant.
We denote by Sp(V × V ∗) the group of symplectic linear transformations of V × V ∗.
For σ ∈ Sp(V, V ∗) and z = (v, v∗) ∈ V × V ∗, we write

σ(z) = (v, v∗)
(

a b
c d

)
= (a(v) + c(v∗), b(v) + d(v∗)),

where a, b, c and d are linear mappings from V to V , from V to V ∗, from V ∗ to V

and from V ∗ to V ∗ respectively. In the following we often identity σ with the matrix(
a b
c d

)
. For σ ∈ Sp(V × V ∗) and z ∈ V × V ∗. Put

Fσ(z) = exp (πiB(σ(z), σ(z))) / exp(πiB(z, z)).
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It is easy to see that

Fσ(z + z′)=Fσ(z)Fσ(z′)e(B(σ(z), σ(z′)) − B(z, z′)),

Fστ (z)=Fτ (σ(z))Fσ(z). (8.1)

This shows that the group Sp(V ×V ∗) acts on A(V ) as a group of automophisms via
the mapping:

w �→ wσ = (σ(z), tFσ(z)), ∀w = (z, t) ∈ A(V ).

Set Uσ(w) = U(wσ), then Uσ is an irreducible unitary representation of A(V ) which
is equivalent to U . Namely, there is a unitary operator r(σ) on L2(V ) which satisfies

U(wσ) = r(σ)−1U(w)r(σ), ∀w ∈ A(V ). (8.2)

The operator r(σ) is unique up to a multiplication by a complex number of modulus 1.
Furthermore, the mapping σ → γ(σ) gives rise to a projective unitary representation
of Sp(V ×V ∗) on L2(V ). In other words, for each pair (σ, z) ∈ Sp(V ×V ∗)×Sp(V ×V ∗),
there is a constant c(σ, z) which satisfies

r(σz) = c(σ, z)r(σ)r(z). (8.3)

This projective unitary representation is called the Weil representation of Sp(V ×V ∗).
If the entry c of σ is either non-singular or zero, we may normalize r(σ) as follows:

r(σ)f(v) =

⎧⎪⎪⎨⎪⎪⎩
|c|1/2

∫
V ∗

Fσ(v, v∗))f(a(v) + c(v∗))dv∗, if c is non-singular,

|a|1/2e

(
1
2
(a(v), b(v))

)
f(a(v)), if c = 0,

(8.4)

where σ =
(

a b
c d

)
, d(c(x∗)) = |c|d∗x∗ and d(a(x)) = |a|dx.

Let L be a lattice in V and L∗ be the dual lattice of L in V ∗. Let M∗ be a
sublattice of L∗ and M the dual lattice of M∗ in V . Denote by Sp(L × M∗) the
subgroup of Sp(V × V ∗) consisting of linear transformations which leave the lattice
L × M∗ invariant. For a character χ of L × M∗ and for a σ ∈ Sp(L × M∗), we set

χσ(λ) = χ(σ−1(λ))Fσ−1 (λ), ∀λ ∈ L × M∗.

Then χσ is also a character of L × M∗ and χστ = (χσ)τ .
We denote also by χ the character of a subgroup L × M∗ × T of A(V ) given by

χ
(
(z, t)

)
= tχ(z), ∀ z ∈ L × M∗.

Then there exists a (vχ, v∗χ) ∈ V × V ∗ satisfying

χ(λ, μ∗) = e
(
(vχ, μ∗) − (λ, v∗χ)

)
, ∀ (λ, μ∗) ∈ L × M∗.
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The map χ → (vχ, v∗χ) gives an isomorphism between the character group of L ×M∗

and the additive group V/M × V ∗/L∗. For a μ ∈ M/L, we denote by χ(μ) the
character of L ×L∗ corresponding to (vχ + μ, v∗χ) of V/L × V ∗/L∗. Any extension of
χ to a character of L × L∗ coincides with χ(μ) for a suitable μ ∈ M/L. We denote
by Tχ(L × M∗) the unitary representation of A(V ) induced from the character χ of
L ×M∗ × T as follows: the representation space Θχ(L× M∗) is the Hilbert space of
measurable functions θ(z) on V × V ∗ satisfying the following conditions:

e
(
B(λ, z)

)
θ(λ + z) = χ(λ)θ(z), ∀ λ ∈ L × M∗, z ∈ V × V ∗,

||θ||2 =
∫

V/L×V ∗/M∗

|θ(x, x∗)|2dxdx∗ < +∞

and Tχ(L × M∗) is given by

Tχ(L, M∗)
(
(w, t)

)
θ(z) = te

(
B(z, w)

)
θ(z + w).

It is easy to see that the space Θχ(μ)(L × L∗) (∀ μ ∈ M/L) is a closed invariant
subspace of Θχ(L × M∗) and

Θχ(L × M∗) =
⊕

μ∈M/L

Θχ(μ)(L × L∗).

Put
Θχ = Θχ(L × M∗), Θχ(μ) = Θχ(μ)(L × L∗), Tχ = Tχ(L × M∗).

For an f ∈ φ(V )(where φ(V ) is the space of rapidly decreasing functions on V , for
the definition, please compare [?] ), we define

θχ(μ)(f)(x, x∗) =
(√

vol(V ∗/M∗)
)−1∑

l∈L

e
(
(l + μ + vχ, x∗)

+ (l, v∗χ)
)
f(x + l + μ + vχ),

where vol(V ∗/M∗) =
∫

V ∗/M∗

dx∗.

It is clear that θχ(μ)(f) depends on the choice of a representative of (vχ+μ) ∈ V/L

in V . Here and after we choose representatives for (vχ + μ) (μ ∈ M/L) and fix them.
Then θχ(μ)(f) is a smooth function in Θχ(μ) and

θχ(μ)

(
U(g)f

)
= Tχ(g)θχ(μ)(f), ∀ g ∈ A(V ),

||θχ(μ)(f)||2 = ||f ||2 =
∫
V

|f(x)|2dx.

Conversely, for a smooth function θ ∈ Θχ(μ), the following function
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fθ(x) =
(√

vol(V ∗/M∗)
)−1

∫
V ∗/M∗

θ(x − μ − vχ, x∗)e
(
− (μ + vχ, x∗)

)
dx∗ (8.5)

belongs to φ(V ) and θχ(μ)(f) = θ. Thus θχ(μ) gives a norm preserving linear map
from φ(V ) onto the space of smooth functions in Θχ(μ) which commutes with the
action of A(V ). The inverse of θχ(μ) is given by (8.5). These show that θχ(μ) is
extended to linear isometric map from L2(V ) onto Θχ(μ) which gives an equivalence
of two unitary representations (U, L2(V )) and (Tχ,Θχ(μ)) for any μ ∈ M/L. Since
(U, L2(V )) is irreducible and (Tχ,Θχ) is a direct sum of (Tχ,Θχ(μ)) (μ ∈ M/L), any
bounded linear map of L2(V ) into Θχ is a linear combination of θχ(μ) (μ ∈ M/L) if
it commutes with the action of A(V ). Finally, put

θ(f, χ(μ)) = θχ(μ)(f)(0, 0).

All the above results and their proofs can be found in André Weil, 1964.

Proposition 8.1(Generalized Poisson Summation Formula) (1) Let r(σ)(σ∈Sp(L×
M∗)) be the unitary operator in L2(V ) which satisfies (8.2). There exist constants
Cχ

σ (u, v) (u, v ∈ M/L) which satisfy

θ(r(σ)f, χ(u)) =
∑

v∈M/L

Cχ
σ (u, v)θ(f, χσ(v)), ∀f ∈ φ(V ).

(2) Denote by Cχ
σ the matrix of size [M : L] whose (u, v)-entry (u, v ∈ M/L) is

Cχ
σ (u, v). Then Cχ

σ is a unitary matrix and Cχ
στ = c(σ, τ)Cχ

σ Cχσ

τ where c(σ, τ) is a
complex number of modulus 1 defined in (8.3).

(3) Set σ =
(

a b

c d

)
and assume c is non-singular and r(σ) is nomalized by the

formula (8.4). Then the constant Cχ
σ (u, v) is given by

vol(V ∗/M∗)|c|1/2Cχ
σ (u, v) =

∑
l∈L/c∗(M∗)

e

(
1
2
(l + u′), c−1a(l + u′)

)
− (l + u′, c−1(v′)) +

1
2
(v′, dc−1(v′)) + (l, v∗χ)),

where u′ = u + vχ and v′ = v + vχσ .

Proof For the details, see T. Shintani, 1975.

From now on, we set V = Rn. Take a non-degenerate symmetric n × n matrix
Q and identify V with its dual by setting (x, y) = yTQx. We put dx = dx1 · · · dxn.
Then the dual measure dx∗ is given by dx∗ = |detQ|dx. We denote by r(·, Q) the Weil
representation of Sp(V × V ∗) on L2(V ), to emphasize its dependence on Q. Identify
the group SL2(R) with a subgroup of Sp(V × V ∗) by settings
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σ(x, y) = (ax + cy, bx + dy), ∀x, y ∈ V, σ =
(

a b
c d

)
∈ SL2(R).

By (8.4), we have the following expression for r(σ)=r(σ, Q) (σ=
(

a b
c d

)
∈SL2(R)):

(r(σ, Q)f)(x)=

⎧⎪⎪⎨⎪⎪⎩
|c|−n/2

√
|detQ|

∫
V

e

(
a(x, x) − 2(x, y) + d(y, y)

2c

)
f(y)dy, if c �= 0,

|a|n/2e

(
ab(x, x)

2

)
f(ax), if c = 0.

The group GLn(R) acts on L2(V ), as a group of unitary operators if we put

(Tf)(x) =
√

|detT |−1f(T−1x). (8.6)

It is clear to verify that

r(σ, (T−1)
T
QT−1) · T = T · r(σ, Q), ∀σ ∈ SL2(R), T ∈ GLn(R). (8.7)

We are going to determine the constant c(σ, τ) in (8.3) for σ, τ ∈ SL2(R).
Denote by H the complex upper half plane. For σ ∈ SL2(R), set

ε(σ) =

⎧⎪⎨⎪⎩
√

i, if c > 0,

i(1−sgn(d))/2, if c = 0,
√

i
−1

, if c < 0.

Take a positive definite symmetrix R such that RQ−1R = Q. For z = u+iv ∈ H, put

Qz = uQ + ivR.

Let Pv(x) be a homogeneous polynomial of degree v which has the following expres-
sion:

Pv(x) =

⎧⎪⎨⎪⎩
1, if v = 0,

(r, x), (r ∈ Cn, Qr = Rr), if v = 1,∑
cr(r, x)v , cr ∈ C, r ∈ Cn, Qr = Rr, (r, r) = 0, if v � 2

(if rank(Q − R) = 1, we assume v � 1).

Lemma 8.1 Assume Q has p positive and q negative eigenvalues (p+q = n, p > 0).
Set

Fz(x) = e

(
1
2
Qz(x)

)
Pv(x).

Then
r(σ, Q)Fz(x) = ε(σ)p−q

√
J(σ, z)

q−p
|J(σ, z)|−qJ(σ, z)−vFσ(z)(x)
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for any σ =
(

a b

c d

)
∈ SL2(R), and where J(σ, z) = cz + d.

Proof There exists a T ∈ GLn(R) such that T TQT =
(

Ip

−Iq

)
and T TRT =

In. By (8.7), it is sufficient to show the lemma under the additional assumption that

Q =
(

Ip

−Iq

)
, R = In.

Put σ =
(

a b

c d

)
. If c = 0, the lemma is clear. If c �= 0, by a direct computation, we

have

r(σ, Q)Fz(x) = |c|−n/2
√

v − iu − id/c
−p√

v + iu + id/c
−q

J(σ, z)−vFσ(z)(x).

Now the lemma follows from the definitions of ε(σ) and J(σ, z). This completes the
proof.

By Lemma 8.1, we have

c(σ, τ) =
(

ε(στ)
ε(σ)ε(τ)

)p−q

c0(σ, τ)q−p,

c0(σ, τ) =

√
J(στ, i)√

J(σ, τ(i))
√

J(τ, i)
.

(8.8)

For σ ∈ SL2(R), set
r0(σ, Q) = ε(σ)q−pr(σ, Q). (8.9)

Let G1 be the Lie group with the underlying manifold SL2(R) × T and the mul-
tiplication given by

(σ, t)(σ′, t′) = (σσ′, tt′c0(σ, σ′)).

Then the subgroup {(σ,±1)|σ ∈ SL2(R)} of G1 is isomorphic to the two-fold covering
group of SL2(R). For a σ̃ = (σ, t) ∈ G1, set r0(σ̃, Q) = tp−qr0(σ, Q). The following
lemma is now immediate to see.

Lemma 8.2 (1) The mapping: σ̃ �→ r0(σ̃, Q) gives a unitary representation of G1

on L2(V ). The space φ(V ) is a dense invariant subspace.
(2) For any f ∈ φ(V ), the mapping σ̃ �→ r0(σ̃, Q)f is a smooth mapping from G1

into φ(Rn);

It is clear that the mapping σ �→ (σ, 1) gives a locally isomorphic imbedding of
SL2(R) into G1. Hence, for any element u of the universal enveloping algebra of the
Lie algebra of SL2(R), r0(u, Q) has an obvious meaning as a differential operator on
V . In particular set
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CQ = r0(C, Q), C = 2XY + 2Y X + H2,

X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

(8.10)

Then CQ commutes with r0(σ̃, Q) for any σ̃ ∈ G1.

For θ ∈ R, let kθ =
(

cos θ sin θ
− sin θ cos θ

)
and Ω = {(kθ, ε)|θ ∈ R, ε = ±1}. Put

χm((kθ , ε)) =
(√

e−iθ
)−m

εm.

Then χm is a character of Ω and for any f ∈ φ(V ) we have

r0(k, Q)f = χm(k)f, ∀k ∈ Ω . (8.11)

Lemma 8.3 For z = u + iv ∈ H, set

σz =
(√

v
√

v
−1

u

0
√

v
−1

)
.

Then

r0(σz , Q)CQf = 4v2

(
∂2

∂u2
+

∂2

∂v2
− 2imv

∂

∂u

)
r0(σz , Q)f.

Proof See I. Gelfand.

Let G be the connected component of the identity element of the group O(Q) of
real linear transformations which leave the quadratic form Q invariant. Then (8.6)
gives a unitary representative of G on L2(V ) which commutes with r(σ̃, Q) for any

σ̃ ∈ G1. Take a T ∈ GLn(R) satisfying T TQT =
(

Ip 0
0 −Iq

)
and set

Xij = T (eij − eji)T−1, 1 � i < j � p or p < i < j � n,

Ykl = T (ekl + elk)T−1, 1 � k � p < l � n.

Then Xij and Ykl form a base of the Lie algebra of G. Put

LQ = −
∑

1�i<j�p or
p<i<j�n

X2
ij +

∑
1�k�p<l�n

Y 2
kl. (8.12)

Then LQ is the Casimir operator on G. The representation (8.6) of G maps LQ to a
second order differential operator on Rn which is also denoted by LQ.

Lemma 8.4 For any F ∈ φ(V ), we have

CQF = (LQ + n(n − 4)/4)F.



272 Chapter 8 Weil Representation and Shimura Lifting

Proof By (8.7), we may assume that Q =
(

Ip

−Iq

)
. In this case, a simple

computation shows that

r(H, Q)F =
n∑

x=1

xi
∂F

∂xi
+

n

2
F,

r(X, Q)F = πi(x, x)F,

r(Y, Q)F = i(4π)−1

( p∑
i=1

∂2

∂x2
i

−
n∑

j=p+1

∂2

∂x2
j

)
F,

where X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
and H =

(
1 0
0 −1

)
. Thus

CQF = − (x, x)
( p∑

i=1

∂2

∂x2
i

−
n∑

j=p+1

∂2

∂x2
j

)
F +

n∑
i=1

x2
i

∂2F

∂x2
i

+ (n − 1)
n∑

i=1

xi
∂F

∂xi
+
(

n2

4
− n

)
F + 2

∑
1�i<j�n

xixj
∂2F

∂xi∂xj
.

On the other hand,

LQF = −
∑(

xj
∂

∂xi
− xi

∂

∂xj

)2

F +
∑(

xi
∂

∂xk
+ xk

∂

∂xi

)2

F

= − (x, x)
( p∑

i=1

∂2

∂x2
i

−
n∑

j=p+1

∂2

∂x2
j

)
F + 2

∑
1�i<j�n

xixj
∂2F

∂xi∂xj

+ (n − 1)
n∑

i=1

xi
∂

∂xi
+

n∑
i=1

x2
i

∂2F

∂x2
i

.

Therefore, CQ = LQ + n(n − 4)/4.

Here and after, we assume Q to be a rational symmetric matrix with p (> 0)
positive and q (= n− p) negative eigenvalues. Let L be a lattice of V , and L∗ be the
dual of L in V , i.e.,

L∗ = {x ∈ V |(x, y) = xTQy ∈ Z, ∀y ∈ L}.

We always assume L ⊂ L∗. Let v(L) be the volume of the fundamental parallelotop
of L in V :

v(L) =
∫

Rn/L

dx.

For any f ∈ φ(V ) and h ∈ L∗/L, put θ(f, h) =
∑
l∈L

f(l + h).
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Proposition 8.2 Let σ =
(

a b

c d

)
∈ SL2(Z) satisfy the following condition

ab(x, x) ≡ cd(y, y) ≡ 0 (mod 2), ∀x, y ∈ L. (8.13)

Then we have
(1) θ(r(σ, Q)f, h) =

∑
k∈L∗/L

c(h, k)σθ(f, k), ∀f ∈ φ(V ), where

c(h, k)σ =⎧⎪⎪⎪⎨⎪⎪⎪⎩
δh,ake

(
ab(h, h)

2

)
, if c = 0,

√
| detQ|

−1
v(L)−1|c|−n/2

∑
r∈L/cL

e

(
a(h+r, h+r)−2(k, h+r)+d(k, k)

2c

)
, if c �= 0.

(2) Further assume that c is even, cL∗ ⊂ L, cd �= 0 and c(x, x) ≡ 0 (mod 2) for
any x ∈ L∗. Let {λ1, · · · , λn} be a Z–base of L and set D = det((λi, λj)). Then

√
i
−(p−q)sgn(cd)

c(h, k)σ =

⎧⎪⎪⎨⎪⎪⎩
δh,dke

(
ab(h, h)

2

)
ε−n

d (sgn(c)i)n

(
2c

d

)n(
D

−d

)
, if d<0,

δh,dke

(
ab(h, h)

2

)
εn

d

(
−2c

d

)n(
D

d

)
, if d>0,

where εd = 1 or i according to d ≡ 1 or 3 (mod 4) respectively.

Proof (1) We note that the group SL2(Z) is mapped into a subgroup of Sp(L×L)
by our embedding of SL2(R) into Sp(V ×V ∗). Thus, the result in (1) is an immediate
consequence of Proposition 8.1.

(2) Let e0 be the index of L in L∗. Denote by Cσ the matrix of size e0 whose
(h, k) entry is c(h, k)σ (h, k ∈ L∗/L). If σ, σ′ and σσ′ all satisfy the condition (8.13),
it follows from the second statement of Proposition 8.1 that

Cσσ′ = c(σ, σ′)CσCσ′ .

Put σ′ =
(
−b a

−d c

)
and ω =

(
0 −1
1 0

)
. Then σ′, ω and σ = σ′ω all satisfy the

condition (8.13). By (8.8) we have

c(σ′, ω) =
√

i
(p−q)sgn(cd)

.

Hence

c(h, k)σ =
√

i
(p−q)sgn(cd)

| det(Q)|−1v(L)−2|d|−n/2

×
∑

r∈L/dL

∑
l∈L∗/L

e

(
−b(h + r, h + r) − 2(l, h + r) + c(l, l)

−2d

)
e(−(l, k)).
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Since cL∗ ⊂ L, the map l �→ dl induces an automorphism of L∗/L. Taking into
account the assumption that c(x, x) ∈ 2Z (∀x ∈ L∗), we have∑

l∈L∗/L

e

(
−b(h + r, h + r) − 2(l, h + r) + c(l, l)

−2d

)
e(−(l, k))

=e

(
b(h + r, h + r)

2d

) ∑
l∈L∗/L

e((l, h − dk))

=e0e

(
b(h + r, h + r)

2d

)
δh,dk.

On the other hand, the Poisson summation formula implies that | det(Q)|−1v(L)−2e0 =
1. Furthermore,∑

r∈L/dL

e

(
b(h + r, h + r)

2d

)
=
∑

r∈L/dL

e

(
b(adh + r, adh + r)

2d

)

= e

(
ab(h, h)

2

) ∑
r∈L/dL

e

(
b(r, r)

2d

)
.

Thus, we have

c(h, k)σ = δh,dk

√
i
(p−q)sgn(cd)

e

(
ab(h, h)

2

)
|d|−n/2

∑
r∈L/dL

e

(
b(r, r)

2d

)
.

Now we can use the argument in the proof of Proposition 1.1 and Proposition 1.2
with a slight modification and get

|d|−n/2
∑

r∈L/dL

e

(
b(r, r)

2d

)
=

⎧⎪⎪⎨⎪⎪⎩
ε−n

d (sgn(c)i)n

(
2c

d

)n(
D

−d

)
, if d < 0,

εn
d

(
−2c

d

)n(
D

d

)
, if d > 0,

which completes the proof.

Let G be the connected component of the identity of the real orthogonal group
of Q. Let Γ be the subgroup of G of all elements which leave the lattice L invariant
and leave L∗/L point-wise fixed. Then, as a function on G, θ(g · f, h) (∀ f ∈ φ(V ),
g ∈ G, g · f was defined as in equality (8.6), h ∈ L∗/L) is left Γ -invariant and slowly
increasing on G/Γ (For the definitions of slowly increasing functions and rapidly
decreasing functions on G/Γ , see R. Godement). Take a rapidly decreasing function
Φ on G/Γ and put

θ(f,Φ; h) =
∫

G/Γ

θ(g · f, h)Φ(g)dg,
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where dg is a Haar measure on G. Now assume that f satisfies (8.11) and set

Θ(z, f,Φ; h) = v−m/4θ(r(σz , Q)f,Φ; h) (8.14)

for z = u + iv ∈ H.
If no confusion is likely, we write

Θ(z, h) = Θ(z, f,Φ; h).

Proposition 8.3 Assume f satisfies (8.11). Then we have

(1) If γ =
(

a b

c d

)
∈ SL2(Z) satisfies the condition (8.13), then

√
i
(p−q)sgn(c)√

J(γ, z)
−m

Θ(γ(z), h) =
∑

k∈L∗/L

c(h, k)γΘ(z, k), c �= 0.

(2) Assume that Φ satisfies the differential equation LQΦ = λΦ on G. Then{
4v2

(
∂2

∂u2
+

∂2

∂v2

)
− 2imv

(
∂

∂u
+ i

∂

∂v

)}
Θ(z, h)

=
{

λ − m

(
m

4
− 1
)

+ n

(
n

4
− 1
)}

Θ(z, h) (8.15)

for z = u + iv ∈ H.

Proof (1) It follows easily from (8.8) that

r(γ, Q)r(σz , Q) = r(σγ(z), Q)r(kθ, Q),

where e−iθ = J(γ, z)/|J(γ, z)| and kθ =
(

cos θ sin θ

− sin θ cos θ

)
. Since f satisfies (8.11),

r(kθ , Q)f =
√

i
(p−q)sgn(c)√

J(γ, z)/|J(γ, z)|
−m

f

(see (8.9)). So, by Proposition 8.2, we have
√

i
(p−q)sgn(c)√

J(γ, z)
−m

Θ(γ(z), h) =
∑

k∈L∗/L

c(h, k)γΘ(z, k).

(2) By Lemma 8.3, we have{
4v2

(
∂2

∂u2
+

∂2

∂v2

)
− 2imv

(
∂

∂u
+ i

∂

∂v

)}
Θ(z, f,Φ; h)

=m

(
1 − m

4

)
Θ(z, h) + Θ(z, CQf,Φ; h).

By Lemma 8.2, Lemma 8.4 and integration by parts, we have (8.15). This completes
the proof.
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Example 8.1 Let n = 1, Q = (2/N), L = NZ and f(x) = exp(−2πx2/N). Then we
have p = 1, q = 0, L∗ = Z/2, r(k(θ))f = (cos θ− i sin θ)−1/2f and θ(z, f , 0) = θ(Nz),
where θ(z, f , h) = v−1/4θ(r(σz , Q)f , h) and θ(z) is defined as in Chapter 1. From

Proposition 8.3 we have for σ =
(

a b

c d

)
∈ Γ0(4N) that

(
√

i)sgn(c)(cz + d)−1/2θ(Nσ(z)) = c(0, 0)σθ(Nz),

c(0, 0)σ = (
√

i)sgn(c)j(σ, z)(cz + d)−1/2

(
N

d

)
.

Of course these formulas are the same as the transformation formula for Theta-
function in Chapter 1.

We note that c(h, k)σ in Proposition 8.2 does not depend on f . We can interpret
the Weil representation by the so-called Fock representation. We define a map

I : L2(R) → H = L2(C, exp{−πzz}dz)

by the integral transformation

I(f)(z) =
∫
R

k(x, z)f(x)dx,

where f ∈ L2(R) and

k(x, z) = exp{−πmx2}e(x
√

mz) exp{πz2/2}.

Then I is bijective and maps the Hermite function exp(πmx2)
ds

dxs

∣∣∣∣√
mx

exp(−2πx2)

in L2(R) to the polynomial zs in H up to a constant multiple. Moreover, by a direct
computation one can easily check that

I(r(k(θ))f) = (cos θ − i sin θ)−1/2M(eiθ)I(f),

where f ∈ L2(R), Q = (m) and M(eiθ) is the map such that M(eiθ)g(z) = g(eiθz) for
g(z) ∈ H . In this way we can find a function f1,s ∈ L2(R) satisfying

r(k(θ))f1,s = (cos θ − i sin θ)−(2s+1)/2f1,s

for a positive integer s. Namely,

f1,s(x) = Hs(2
√
πmx2),

where
Hs(x) = (−1)s exp{x2/2} ds

dxs
exp{−x2/2}

is a Hermite polynomial.
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Put again m = 2/N and let L be as above. Then

θ(z, f1,s, 0) = θ1,s(z) = v−1/2
∞∑

x=−∞
H(2

√
2Nπvx) exp{2πiNzx2}

satisfies

θ1,s(σ(z)) =
(

N

d

)
j(σ, z)(cz + d)sθ1,s(z)

according to the independence of c(h, k)σ to f . In the same way we can prove

θ1,s(−1/4Nz) = (2N)s/2(
√
−2iz)2s+1θs(z),

where

θs(z) = (2v)−s/2
∞∑

x=−∞
exp{2πix2z}Hs(2

√
2πvx).

�
Example 8.2 Now we consider the case n = 2, Q =

(
0 −4/N

−4/N 0

)
, i.e.,

(x, y) = − 4
N

(x1y2 + x2y1)

and
L = (4NZ) ⊕ (NZ/4).

Then p = q = 1, r = r0, L
∗ = (Z) ⊕ (Z/16) and 4NL∗ = L satisfies the assumption

of Proposition 8.2. Put L′ = Z ⊕ (NZ/4), h ∈ L′. Then for σ =
(

a b

c d

)
∈ Γ0(4N),

c(h, k)σ = δk,ah and θ(r0(σ)f, h) = θ(f, ah) are valid. If f ∈ φ(R2) satisfies r(k(θ))f =
eisθf , and if we define θ2,s(z, f) by

θ2,s(z, f) =
∑

h∈L′/L∗
χ1(h)θ(z, f, h),

where χ1 = χ

(
−1
∗

)λ

with λ a positive integer and χ a character modulo 4N . Then

we have
θ2,s(σ(z), f) = χ1(d)(cz + d)sθ2,s(z, f).

We explain how to find f with this property. Put Q =
(

0 −2m

−2m 0

)
, m > 0. We

define a partial Fourier transformation F by

F (f)(x1, x2) =
√

2m

∫ ∞
−∞

f(x1, t) exp{4πimtx2}dt,

F−1(f)(x1, x2) =
√

2m

∫ ∞
−∞

f(x1, t) exp{−4πimtx2}dt.
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One can easily check that
r(σ)f = FR(σ)F−1(f),

where
(R(σ)f)(x) = f((x1, x2)σ).

And so r is a representation of SL2(R) although Weil representation is not always a
multiplicative representation. Put

f ′(x1, x2) = (x1 + ix2)s exp(−2mπ(x2
1 + x2

2));

f2,s(x) = F (f ′)(x) =
√

2(
√

4πm)−s−1H(
√

4πm(x1 − x2)) exp(−2mπ(x2
1 + x2

2)).

Then
R(k(θ))f ′ = e2isθf ′,

and f2,s has the required property. Generally, the Weil representation commutes with
the action of the orthogonal group of Q on L2(Rn). In the present case, the elements
of that group are diagonal matrices in SL2(R). Put fη(x1, x2) = f2,s(η−1x1, ηx2),
and m = 2/N . Put θ2,s(z, η) = θ2,s(z, fη). Then

θ2,s(z, η) =v(1−s)/2
∑

x1,x2∈Z

χ1(x1) exp
{
− 2πiux1x2 −

Nv

4
πx2

2η
2 − 4v

N
πx2

1η
−2

}

× Hs

(
2

√
2
N
πv

(
x1η

−1 − Nx2

4
η

))
.

Observing that f2,s = F (f ′) and using the Poisson summation formula, we get a
different expression for θ2,s:

θ2,s(z, η) =
(√

8π
N

)s+1

(
√

2π)−1isη−s−1v−s

×
∑

x1,x2∈Z

χ1(x1)(x1z + x2)s exp
{
− 4π

Nη2v
|x1z + x2|2

}
.

�
Example 8.3 We denote by r(i) the Weil representation in the vector space Vi,
i = 1, 2, 3, and by Li, L∗i , r

(i)
0 , hi ∈ L∗i and ci(hi, ki)σ corresponding lattices, etc.

If V3 is the orthogonal sum of V1 and V2, then r
(3)
0 = r

(1)
0 ⊗ r

(2)
0 , r(3) = r(1) ⊗ r(2),

and c3(h3, k3)σ = c1(h1, k1)σc2(h2, k2)σ is obvious for h3 = (h1, h2), k3 = (k1, k2). If

n = 3, Q = 2
N

⎛⎝ 0 0 −2
0 1 0
−2 0 0

⎞⎠ and L = 4NZ ⊕ NZ ⊕ (NZ/4), then according to the

preceding two examples, we have

c(h, k)σ = δk,ah(
√

i)sgn(c)j(σ, z)(cz + d)−1/2

(
N

d

)
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for f ∈ L2(R3), σ =
(

a b

c d

)
∈ Γ0(4N) and h, k ∈ L′/L with L′ = Z⊕NZ⊕(NZ/4).

Therefore, if r(k(θ))(f) = (cos θ − i sin θ)−κ/2f is satisfied, then by Proposition 8.3
we have

θκ(σ(z), f) = χ1(d)
(

N

d

)
j(σ, z)(cz + d)λθκ(z, f)

where κ = 2λ + 1, for h = (h1, h2, h3) we define, χ1(h) = χ1(h1) and

θκ(z, f) =
∑

h∈L′/L

χ1(h)θ(z, f, h).

One can take here f1,s(x2)f2,λ−s(x1, x3) (s = 1, 2, · · · , λ), or their linear combi-
nations for such f(x). In view of

(x − iy)λ =
λ∑

s=0

(
λ

s

)
Hλ−s(x)Hs(y)(−i)s,

f3(x) = (x1−ix2−x3)λ exp{−mπ(2x2
1+x2

2+2x2
3)} is available, too. On the other hand,

the action of SL2(R) on R3 is defined as follows: g ∈ SL2(R) operates on R3 through
the symmetric tensor representation, i.e., for x = (x1, x2, x3) ∈ R3, gx = (x′1, x

′
2, x

′
3)

is determined by

g

(
x1 x2/2

x2/2 x3

)
gT =

(
x′1 x′2/2

x′2/2 x′3

)
,

and gives an isomorphism of SL2(R) with the orthogonal group of Q.

Let N be a positive integer, χ a character modulo 4N and χ1 = χ

(
−1
∗

)λ

with a

positive integer λ. Define a function on R3 by

f(x) = (x1 − ix2 − x3)λ exp{(−2π/N)(2x2
1 + x2

2 + 2x2
3)}.

For κ = 2λ + 1, z = u + iv ∈ H and for the lattice L′ = Z ⊕ NZ ⊕ (NZ/4) ∈ Q3, we
define a theta series θ(z, g) by

θ(z, g) =
∑
x∈L′

χ1(x1)v(3−κ)/4(exp{2πi(u/N)(x2
2 − 4x1x3)})f(

√
vg−1x),

where
√

v ∈ R is viewed as a scalar of the vector space R3, and g ∈ SL2(R) operates
on R3 as above.

Let gf ∈ L2(R3) be defined by (gf)(x) = f(g−1x) and take m = 2/N in f3(x).
Then it is clear that θ(z, g) = θ(z, gf3). The action of r0(k(θ)) commutes with that
of g in L2(R3), gf3 has the same property as f3, and the required transformation
formula of θ(z, g) is

θ(σ(z), g) = χ(d)
(

N

d

)
j(σ, z)κθ(z, g).
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We note that f3 has the property f3(k(α)x) = e2λiαf3(x), and so θ(z, gk(α)) =
e−2iλαθ(z, g). �

8.2 Shimura Lifting for Cusp Forms

Let G(z) =
∞∑

n=1

a(n)e(nz) be an element of S(4N, k + 1/2, χ), t a square-free positive

integer, put χt = χ

(
−1
∗

)(
t

∗

)
and Φt(w) =

∞∑
n=1

At(n)e(nw) with At(n) defined by

the following equality
∞∑

n=1

At(n)e(nw) =
( ∞∑

m=1

χt(m)mλ−1−s

)( ∞∑
m=1

a(tm2)m−s

)
.

Then Φt(w) is called the Shimura t−lifting of G(z). The main theorem of G. Shimura,
1973 asserted that Φt belongs to G(Nt, k − 1, χ2) , and in fact Φt ∈ S(Nt, k − 1,
χ2) for k � 5 with a certain positive integer Nt. He proved this result through Weil
theorem. He also conjectured the level Nt can be taken as 2N , and for k = 1, Φ(w)
is a cusp form if and only if G(z) is orthogonal to some theta series with respect to
the Petersson inner product.

In this section we shall study these problems and prove these results. Our presen-
tation is due to T. Shintani, S. Niwa, 1975, H. Kojima, 1980 and J. Sturm, 1982.

From now on, we always think of θ(z, g) = θ(z, gf3) as the function defined in

Section 8.1. Now let F (z) be in S

(
4N , k/2, χ

(
N

∗

))
with k = 2λ+1 an odd positive

integer. Since F (z) is rapidly decreasing at each cusp of Γ0(4N), while θ(z, g) is at
most slowly increasing there, so the following integral, which is the Petersson inner
product of F (z) and θ(z, g), is well-defined:

F (g) =
∫

D0(4N)

F (z)θ(z, g)vk/2 dudv

v2
,

where D0(4N) is the fundamental domain of Γ0(4N). We have the following

Lemma 8.5 The function F (g) has the following properties:
(1) F (g) ∈ C∞(SL2(R)) is an eigenfunction of the Casimir operator Dg, i.e.,

DgF = λ(λ − 1)F , where

Dg =
1
4

((
1 0
0 −1

)2

+ 2
(

0 1
0 0

)(
0 0
1 0

)
+ 2
(

0 0
1 0

)(
0 1
0 0

))
;

(2) F

(
g

(
cos θ sin θ

− sin θ cos θ

))
= exp{2λθi}F (g);
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(3) F (γg) = χ2(d)F (g) for every γ =
(

a b

c d

)
∈
(

2 0
0 1/2

)
Γ0(2N)

(
1/2 0
0 2

)
.

Proof The first conclusion is a direct consequence of the Proposition 8.3. In fact,
by the proposition, we have

Dgθ(z, g) =
[
4v2

(
∂2

∂u2
+

∂2

∂v2

)
− 2ikv

(
∂

∂u
+ i

∂

∂v

)
+ k

(
k

4
− 1
)

+
3
4

]
,

where Dg is the Casimir operator on SL2(R). By Green’s formula we have

Dg

∫
D0(4N)

F (z)θ(z, g)vk/2 dudv

v2
= λ(λ − 1)

∫
D0(4N)

F (z)θ(z, g)vk/2 dudv

v2
,

which is just (1).
Since θ(z, gk(α)) = e−2iλαθ(z, g), so

F (gk(α)) =
∫

D0(4N)

F (z)θ(z, gk(α))vk/2 dudv

v2

=
∫

D0(4N)

F (z)e−2iλαθ(z, g)vk/2 dudv

v2

= exp{2iλα}F (g),

which is (2).

Now we prove that θ(z, γg) = χ2(d)θ(z, g) for γ =
(

a b

c d

)
∈
(

2 0
0 1/2

)
Γ0(2N)(

1/2 0
0 2

)
from which (3) is deduced. Recalling the definition of θ(z, g):

θ(z, g) =
∑
x∈L′

χ1(x1)v(3−κ)/4(exp{2πi(u/N)(x2
2 − 4x1x3)})f(

√
vg−1x),

where L′ = Z⊕NZ⊕ (NZ/4). For γ =
(

a b

c d

)
∈
(

2 0
0 1/2

)
Γ0(2N)

(
1/2 0
0 2

)
, it

is easy to verify that a, d ∈ Z, c ∈ NZ/2, b ∈ 4Z. By the definition of the symmetric
tensor representation, for x = (x1, x2, x3) ∈ R3, γx = (x′1, x

′
2, x

′
3) is determined by

γ

(
x1 x2/2

x2/2 x3

)
γT =

(
x′1 x′2/2

x′2/2 x′3

)
.

That is,
x′1 = a2x1 + abx2 + b2x3,

x′2 = 2cax1 + (ad + bc)x2 + 2bdx3,

x′3 = c2x1 + cdx2 + d2x3.

It is clear that both lattices L = 4NZ ⊕ NZ ⊕ (NZ/4) and L′ are stable by γ

and x′1 ≡ a2x1 (mod 4N) for x = (x1, x2, x3) ∈ L′ which imply that θ(z, γg) =
(χ(a))2θ(z, g) = χ2(d)θ(z, g) since χ2(a) = χ2(d). This completes the proof.
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We define two functions Ψ(w) and Φ(w) (w = ξ + iη ∈ H) by

Ψ(w) = F

((
2 0
0 1/2

)(
η1/2 ξη−1/2

0 η−1/2

))
(4η)−λ

and

Φ(w) = Ψ
(
− 1

2Nw

)
(2N)λ(−2Nw)−2λ.

Let W be the isomorphism of S

(
4N , k/2, χ

(
N

∗

))
onto S(4N , k/2, χ) defined

by
G(z) = (F |[W (4N)])(z) = F (−1/4Nz)(4N)−k/4(−iz)−k/2

for all F (z) ∈ S

(
4N , k/2, χ

(
N

∗

))
. Then G(z) has the Fourier expansion

G(z) =
∞∑

n=1

a(n)e(nz)

at ∞. Define a sequence {A(n)}∞n=1 by the following relation

∞∑
n=1

A(n)n−s = L(s − λ + 1, χ1)
∞∑

n=1

a(n2)n−s,

where χ1 = χ

(
−1
∗

)λ

. Then we define the Shimura lifting Ik (k � 3) by

Ik(G(z)) =
∞∑

n=1

A(n)e(nz) for G(z) ∈ S(4N, k/2, χ).

Now we can present the main result of this chapter as follows.

Theorem 8.1 If k � 3, then Φ(w) belongs to G(2N , k − 1, χ2) and Φ(w) =
cIk(G(z)) with

c = ik−1Nk/42(−9k+15)/4Re((2 − i)(k−1)/2).

Moreover, if k � 5, then Φ(w) belongs to S(2N , k − 1, χ2).

Proof By Lemma 8.5, we have

θ(z, γ′g) = χ2(d′)θ(z, g)

for any

γ′ =
(

a′ b′

c′ d′

)
∈
(

2 0
0 1/2

)
Γ0(2N)

(
1/2 0
0 2

)
.
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And consequently, by the definition of Ψ(w) we have

Ψ(γ(w)) = χ2(d)(cw + d)2λΨ(w)

for any γ =
(

a b

c d

)
∈ Γ0(2N). This implies that

Φ(γ(w)) = χ2(d)(cz + d)k−1Φ(w)

for any γ =
(

a b

c d

)
∈ Γ0(2N). Therefore, if Φ(w) is holomorphic on H, then we

can conclude that Φ(w) is an integral modular form of weight 2λ = k − 1 for the
congruence subgroup Γ0(2N). Now we prove that Φ(w) is holomorphic on H. For the
simplicity we assume k = 3 though the method is applicable in all cases. By virtue
of Lemma 8.5 and the invariance of the Casimir operator Dg, we have(

η2

(
∂2

∂ξ2
+

∂2

∂η2

)
− 2iη

(
∂

∂ξ
+ i

∂

∂η

))
Φ(w) = 0.

Now Φ(w) has the Fourier expansion

Φ(w) =
∞∑

m=−∞
am(η) exp{2πimξ}

at ∞. So am(η) is a solution of the differential equation(
d2

dη2
+

2
η

d
dη

+ (−4π2m2 + 4πm/η)
)

am(η) = 0.

Therefore we get

am(η) =
{

bm exp{−2πmη}+ cmum(η), if m �= 0,

b0 + c0η
−1, if m = 0.

where

um(η) =

⎧⎪⎪⎨⎪⎪⎩
exp{−2πmη}

∫ η

1

η−2 exp{4πmη}dη, if m > 0,

exp{−2πmη}
∫ ∞

η

η−2 exp{4πmη}dη, if m < 0.

By integration by parts, we have the following asymptotic behavior of um(η):

|um(η)| � (4πm − π)−1 exp{−2πmη}| exp{(4πm − π)η} − exp{4πm− π}| (8.16)

for m > 0, and

um(η) = −exp{2πmη}
4πmη2

+ αm(η) (8.17)
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for m < 0, where

|αm(η)| � exp{2πmη}(1/8π2|m2|η3 + 15/32π3|m3|η4).

Moreover we have

ηΦ(w) = O(η + η−1) for η → 0 and η → ∞ , (8.18)

uniformly in ξ, which will be proved later. Since∫ 1

0

η2|Φ(w)|2dξ =
∞∑

m=−∞
|am(η)|2η2,

we get from (8.18)
|am(η)| � M((η + η−1)η−1), (8.19)

where M is independent of m and η. Hence by (8.16) and (8.17), we have cm = 0 for
all m > 0 and bm = 0 for all m < 0. Hence we see

Φ(w)=
∞∑

m=1

bm exp{−2πmη} exp{2πimξ}

+
∞∑

m=1

c−mu−m(η) exp{−2πimξ}+ a0(η). (8.20)

By (8.19) we have |am(1/|m|)| � M(1 + m2). Hence we get bm = O(mν)(m → ∞)
and c−m = O(mν)(m → ∞) for some ν > 0. We shall prove that Φ(iη) has the
following asymptotic behavior later:

Φ(iη) =
{

O(η−μ), η → +∞ for all μ > 0,

O(ημ), η → 0 for all μ > 0.
(8.21)

In particular, we see that a0(η) = 0. Hence we have

Φ(w)=
∞∑

m=1

bm exp{−2πmη} exp{2πimξ}

+
∞∑

m=1

c−mu−m(η) exp{−2πimξ}. (8.22)

By virtue of (8.21), Φ(iη)ηl−1 belongs to L1(R+) for a sufficiently large l > 0. Let
Ω(s) be the Mellin transformation of Φ(iη), i.e.,

Ω(s) =
∫ ∞

0

Φ(iη)ηs−1dη.

Here we note that Φ(iη) is a function with bounded variation on all compact subsets
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of R+ and Φ(iη) =
1
2
(Φ(i(η + 0)) + Φ(i(η − 0))) for all η > 0. Hence the Mellin

inversion formula gives

Φ(iη) =
1

2πi

∫ l+i∞

l−i∞
Ω(s)η−sds. (8.23)

On the other hand, we shall compute that

Ω(s) = c(2π)−sΓ (s)L(s, χ1)
∞∑

n=1

a(n2)n−s = (2π)−sΓ (s)
∞∑

n=1

a′nn−s,

where G(z) =
∞∑

n=1

a(n)e(nz). Consequently, we get

Φ(iη) =
∞∑

n=1

a′n exp{−2πnη}. (8.24)

Therefore, by (8.20), to prove that Φ(w) is holomorphic it is sufficient to show that
c−m = 0 for all m � 1. We assume that c−m0 �= 0 and c−m = 0 for all m < m0. Then
by (8.20) and (8.24) we have∑

m>m0

c−mu−m(η)/Hm0(η) + c−m0u−m0(η)/Hm0(η)

=
∞∑

n=1

(a′n − bn) exp{−2πnη}/Hm0(η), (8.25)

where Hm0(η) = exp{−2πm0η}/4πm0η
2.

We note that the series on both sides of (8.25) are uniformly convergent on [1,∞).
Set t = exp{−2πη} for η > 0. The right hand side of (8.25) is equal to

m0

π
(log t)2

∞∑
n=1

(a′n − bn)tn−m0 .

By virtue of (8.17), we see that the left hand side of (8.25) converges to c−m0 as
η → +∞. Hence we get

lim
t→0,t>0

{
m0

π
(log t)2

∞∑
n=1

(a′n − bn)tn−m0

}
= c−m0 �= 0,

which is a contradiction and we proved that Φ(w) is holomorphic.
There still remains the investigation of the asymptotic behavior of Φ(iη) as η → 0

and ∞, and the computation of the Mellin transformation of Φ(iη).
We first compute the Mellin transformation of Φ(iη) for any k � 3. By the

definition of Mellin transformation we have
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Ω(s) =
∫ ∞

0

Φ(iη)ηs−1dη = (−1)λ(2N)λ−s

∫ ∞
0

Ψ(iη−1)ηs−kdη

= (−1)λ(2N)λ−s4−λ

∫ ∞
0

ηs−λ

∫
D0(4N)

vk/2θ(z, σ4iη−1)F (z)dz
dη

η
,

where dz =
dudv

v2
and σw =

(
η1/2 ξη−1/2

0 η−1/2

)
for w = ξ + iη ∈ H.

From the definition of θ(z, g) and the relation

(x − iy)λ =
λ∑

ε=1

(
λ

ε

)
Hλ−ε(x)Hε(y)(−i)ε,

we have a simple expression

θ(z, σiη) =
(

2

√
2π
N

)−λ λ∑
ε=0

(
λ

ε

)
(−i)εθ2,λ−ε(z, η)θ1,ε(z),

where θ2,λ−ε, θ1,ε are defined as in Example 8.1 and Example 8.2. Therefore by chang-
ing the order of integration whose justification can be deduced from the asymptotic
behaviors (8.21) of Φ(iη), we get

Ω(s) = c1(s)
λ∑

ε=0

(
λ

ε

)
iε
∫

D0(4N)

vk/2F (z)θ1,ε(z)
[∫ ∞

0

θ2,λ−ε(z, η−1)ηs−λ dη

η

]
dz

with c1(s) = (−1)λ(2N)λ−s4s−2λ(2
√

2π/N)−λ. Note that we can exchange the order
of the summation and the integration as above. In terms of the different expressions
of θ2,ε given in Example 8.2, the integral in the bracket becomes an Eisenstein series(√

8π
N

)λ−ε+1√
2π−1(−i)λ−εv−λ+ε

(
1
2

)(
N

4π

)(s−ε−1)/2

× Γ
(

s − ε + 1
2

) ∑
(x1,x2)∈Z×Z

χ1(x1)(x1z + x2)λ−ε|x1z + x2|−s+ε−1.

Changing the variable z to −1/4Nz and using G(z) = F (−1/4Nz)(4N)−k/4(−iz)−k/2

and
θ1,ε(−1/4Nz) = (2N)ε/2(

√
−2iz)2ε+1θε(z),

we get

Ω(s) = c2(s)
λ∑

ε=0

(
λ

ε

)
(
√

2π)λ−ε+1iε−λJε(s),

where c2(s) is like c1(s) above and Jε(s) is given by
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Jε(s) =
∫

D0(4N)

G(z)θε(z)v(s+ε+2)/2π−(s−ε+1)/2Γ
(

s − ε + 1
2

)

×
∑

x1,x2∈Z

χ1(x1)(4Nx2z + x1)λ−ε|4Nx2z + x1|−s+ε−1dz

=π−(s−ε+1)/2Γ
(

s − ε + 1
2

)
L(s − λ + 1, χ1)

∫ ∞
0

∫ 1

0

G(z)θε(z)v(s+ε+2)/2dz.

We note that θε(z) = 0 if ε is odd. The convolution appearing in Jε(s) is easily

computed by Fourier expansion θε(z) =
∞∑

k=−∞
(2v)−ε/2Hε(2

√
2πvk) exp{2πk2z} and

by partial integration, that is,∫ ∞
0

∫ 1

0

G(z)θε(z)duv(s+ε)/2 dv

v
=21−ε(4π)−s/2(s− 1)(s− 2) · · · (s− ε)Γ

(
s − ε

2

)
D(s),

where D(s) =
∞∑

k=1

a(k2)k−s with G(z) =
∞∑

k=1

a(k)e(kz). Therefore we get

Jε(s) = 22−2sπ−s+ε/2Γ(s)L(s − λ + 1, χ1)D(s).

Hence we have
Ω(s) = c(2π)−sΓ(s)L(s − λ + 1, χ1)D(s).

By the definition of the Shimura lifting Ik and the computation of the Mellin
transformation of Φ(iη), we see that Φ(w) = cIk(G(z)). For k � 5, the function Φ(w)
belongs to S(2N , k − 1, χ2) by virtue of the magnitude of the growth of A1(n).

In order to complete the proof of the theorem we only need to give the proofs for
(8.18) and (8.21). Now we first prove (8.18). It is easy to see that we only need to
show it for Ψ(w) by the relation between Φ(w) and Ψ(w). In fact, we shall prove a
more general result for any k � 3:

ηλΨ(w) = O(η + η−1).

Recalling the definition of θ(z, g):

θ(z, g) =
∑
x∈L′

χ1(x1)v(3−k)/4 exp{2πi(u/N)(x2
2 − 4x1x3)}f(

√
vg−1x),

we get
|θ(z, σ4w)| � v(3−k)/4

∑
x∈L′

|f(
√

vσ−1
4wx)|.

Put M = Z/4 ⊕ Z/4 ⊕ Z/4, then∑
x∈L′

|f(
√

vσ−1
4w x)| �

∑
x∈M

|f(
√

vσ−1
w x)| =

∑
x∈M

|f(
√

vσ−1
γ(w)x)| for γ ∈ SL2(Z).



288 Chapter 8 Weil Representation and Shimura Lifting

If η > c1 > 0 and |ξ| < c2, then there exist 0 < hj(x) ∈ φ(R), j = 1, 2, 3 such that∣∣∣∣ ( 1 ξ/η

0 1

)
f(x)

∣∣∣∣ � h1(x1)h2(x2)h3(x3)

for all x = (x1, x2, x3) ∈ R3. Thus

∑
x∈M

|f(
√

vσ−1
w x)| =

∑
x∈M

∣∣∣∣ (√
η 0

0
√

η−1

)(
1 ξ/η

0 1

)
f(
√

vx)
∣∣∣∣

�
(∑

x1

h1(
√

vη−1x1)
)(∑

x2

h2(
√

vx2)
)(∑

x3

h3(
√

vηx3)
)

,

where xj ∈ Z/4. Therefore∑
x∈M

|f(
√

vσ−1
w x)| = O((

√
v
−1 + 1)2(

√
v
−1

η + 1))

for w = ξ+iη with |ξ| < c2, η > c1 > 0. Put U = {w = ξ+iη||ξ| � 1/2, η > 0, |w| � 1}.
Let c1 <

√
3/2, c2 > 1/2 and choose γ ∈ SL2(Z) for w ∈ H such that γ(w) ∈ U . Then∑

x∈L′
|f(

√
vσ−1

4w x)| �
∑
x∈M

|f(
√

vσ−1
γ(w)x)|

= O(
√

v
−1 + 1)3(Im(γ(w)) + 1)

= O((v−3/2 + 1)(η + η−1)).

Thus |θ(z, σ4w)| = O(v(3−k)/4(v−3/2 + 1)(η + η−1)) for all w ∈ H, z ∈ H, and hence
ηλΨ(w) = O(η + η−1) for all w ∈ H by the definition of Ψ(w).

Finally we prove (8.21). By the definition of θ2,λ−ε(z, η), we know that it is
majorized by η−λ+ε−1v−λ+εFε(z, η), where Fε(z, η) is defined by

Fε(z, η) =
∑

x1,x2

|x1z + x2|λ−ε exp
{
− 4π

Nη2v
|x1z + x2|2

}
,

where (0, 0) �= (x1, x2) ∈ Z2. Therefore, if β is the smallest integer � (λ − ε)/2, then

Fε(z, η) �
{

lvβ+1e−πh/vη2
, if η < 1, v > c > 0, c <

√
3/2,

l′η2(λ−ε+1)vβ+1e−πη
2h/v, if η > 1, v > c > 0, c <

√
3/2,

where l, l′ and h are positive constants depending only on ε and c. Put U = {z =

u + iv ∈ H | |u| � 1/2, |z| � 1}, choose γi ∈ SL2(Z) such that D0(4N) ⊂
t⋃

i=1

γi(U)

and put T (z) = vk/2θ1,ε(z)F (z), then T (γi(z)) = O(gi(v)) for z ∈ U where the gi’s
are some rapidly decreasing functions. Put F ′ε(z, η) = η−λ+ε−1v−λ+εFε(z, η), then
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∫
D0(4N)

|T (z)θ2,λ−ε(z, η−1)dz �
t∑

i=1

ci

∫
U

T (γi(z))F ′ε(γi(z), η−1)dz

�
t∑

i=1

ei

∫ ∞
c

vνiηαgi(v) exp{−πη2hv−1}dv

for all η > 1 with some constants ci, ei, νi, α. Since η2μv−μ exp{−πη2hv−1} < Cμ

for μ > 0 with some constant Cμ and η2μ−α

∫ ∞
c

vνiηαgi(v) exp{−πη2hv−1}dv <

Cμ

∫ ∞
c

vνi+μgi(v)dv = C′μ with some constant C′μ. Therefore∫
D0(4N)

|T (z)θ2,λ−ε(z, η−1)|dz = O(η−μ)

for any μ > 0 if η > 1. In the same way, we get∫
D0(4N)

|T (z)θ2,λ−ε(z, η−1)|dz = O(ημ)

for any μ > 0 if η < 1. Hence we get (8.21) by the above estimations, the definition
of Φ(w) and

θ(z, σiη) =
(

2

√
2π
N

)−λ λ∑
ε=0

(
λ

ε

)
(−i)εθ2,λ−ε(z, η)θ1,ε(z).

This completes the proof.

Let G(z) =
∞∑

n=1

a(n)e(nz) be an element of S(4N , k/2, χ), let t be a square-free

positive integer, put χt = χ

(
−1
∗

)(
t

∗

)
and Φt(w) =

∞∑
n=1

At(n)e(nw) with At(n)

defined by

∞∑
n=1

At(n)n−s =
( ∞∑

m=1

χt(m)mλ−1−s

)( ∞∑
m=1

a(tm2)m−s

)
.

Then we have

Corollary 8.1 Φt(w) ∈ G(2N , k − 1, χ2) for all k � 3 and Φt(w) ∈ S(2N , k − 1,
χ2) if k � 5.

Proof Since G(tz) =
∞∑

n=1

b(n)e(nz) belongs to S

(
4tN , k/2, χ

(
t

∗

))
, Theorem 8.1
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implies that Φ̃(w) =
∞∑

n=1

B1(n)e(nw), defined by

∞∑
n=1

B1(n)n−s =
( ∞∑

m=1

χt(m)mλ−1−s

)( ∞∑
m=1

b(m2)m−s

)
belongs to G(2tN , k − 1, χ2) for all k � 3 and S(2tN , k − 1, χ2) if k � 5. Since
b(m2) = a(tj2) or 0 according as m = tj or t does not divide m, we know that

∞∑
n=1

B1(n)n−s = t−s
∞∑

m=1

At(m)m−s

holds and so B1(n) = At(n/t) or 0 according as t|n or t � n. Hence we have

Φ̃(w) = Φt(tw),

and so
Φt(σ(w)) = (cw + d)2λχ2(d)Φt(w)

for all σ =
(

a b

c d

)
∈ Γ t

0(2N) with Γ t
0(2N) =

{(
a b

c d

)
∈ Γ0(2N)|b ≡ 0 (mod t)

}
.

Put Γ∞ =
{(

1 b

0 1

) ∣∣∣∣b ∈ Z

}
. Since Γ0(2N) is generated by Γ∞ and Γ t

0(2N), Φt(w)

belongs to G(2N , k − 1, χ2) for all k � 3 and S(2N , k − 1, χ2) if k � 5. This
completes the proof.

Now we consider the Shimura lifting for cusp forms with weight 3/2. By Theorem

8.1 and Corollary 8.1 we know that, for any f(z) =
∞∑

n=0

a(n)e(nz) ∈ S(4N , 3/2, χ),

t a square-free positive integer, the Shimura lifting I3,t(f) of f belongs to G(2N , 2,
χ2). It is clear that the Zeta function of I3,t(f) is

L(s, I3,t(f)) = L

(
s, χ

(
−t

∗

)) ∞∑
m=1

a(tm2)m−s. (8.26)

We shall prove that I3,t(f) is a cusp form if and only if 〈f, h〉 = 0 for all h ∈ T , where
T is the vector space spanned by all theta series of S(4N , 3/2, χ) associated with
some Dirichlet characters.

Proposition 8.4 Let ψ be a primitive character modulo r, put

h(z, ψ) =
∞∑

n=1

ψ(n)ne(n2z), ∀ z ∈ H.

Then h ∈ S

(
4r2, 3/2, ψ

(
−1
∗

))
.
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Proof This is one of the conclusions in Theorem 7.3.

By (8.26) we get

L(s, I3,1(h(z, ψ))) = L(s, ψ)L(s − 1, ψ),

which shows that I3,1(h(z, ψ)) is an Eisenstein series (not a cusp form).

Proposition 8.5 Let α be a non-negative integer, A a positive integer, φ a primitive
character modulo A. Define

Hα(s, z, φ) = π−sΓ (s)ys
∑
m,n

′
φ(n)(mAz + n)α|mAz + n|−2s,

where z ∈ H, (0, 0) �= (m, n) ∈ Z2. Suppose that α > 0 or A > 1, then the series
above is absolutely convergent for Re(s) > 1 + α/2, Hα(s, z, φ) can be continued to
a holomorphic function on the whole s-plane and satisfies the following functional
equation

Hα(α + 1 − s, z, φ) = (−1)αg(φ)A3s−α−2zαHα(s,−1/Az, φ),

where g(φ) =
A∑

k=1

φ(k)e(k/A).

Proof We have∫ ∞

−∞

∫ ∞
−∞

exp{−πt|uz + v|2/y}e(ur + vs)dudv

=
∫ ∞
−∞

∫ ∞
−∞

exp{−πt[(ux + v)2 + u2y2]/y}e(ur + vs)dudv

=
∫ ∞
−∞

∫ ∞
−∞

exp{−πt(v2 + u2y2)/y}e(u(r − xs) + vs)dudv

=(ty)−1/2

∫ ∞
−∞

exp{−πu2}e(u(r − xs)/(ty)1/2)du(ty−1)−1/2

×
∫ ∞
−∞

exp{−πv2}e(vsy1/2/t1/2)dv

= t−1e−π[(r−xs)2/(ty)+s2y/t] = t−1e−π|r−sz|2/(ty). (8.27)

Since (
z

∂

∂r
+

∂

∂s

)
e(ur + vs) = 2πi(uz + v),(

z
∂

∂r
+

∂

∂s

)
exp{−π|r − sz|2/(ty)} = −2πit−1(r − sz) exp{−π|r − sz|2/(ty)},



292 Chapter 8 Weil Representation and Shimura Lifting

applying α times the differential operator
(

z
∂

∂r
+

∂

∂s

)
on both sides of (8.27), we

get ∫ ∞
−∞

∫ ∞
−∞

(uz + v)α exp{−πt|uz + v|2/y}e(ur + vs)dudv

=(−1)αt−α−1(r − sz)α exp{−π|r − sz|2/(ty)}. (8.28)

Put

ζ(t, z, u, v) =
∑
m,n

((m + u)z + n + v)α exp{−πt|(m + u)z + n + v|2/y}

=
∑
m,n

c(m, n)e(mu + nv).

By (8.28) we get

c(−m,−n) =
∫ 1

0

∫ 1

0

∑
m′,n′

((m′ + u)z + n′ + v)α

× exp{−πt|(m′ + u)z + n′ + v|2/y}e(mu + nv)dudv

=
∫ ∞
−∞

∫ ∞
−∞

(uz + v)α exp{−πt|uz + v|2/y}e(mu + nv)dudv

=(−1)αt−α−1(m − nz)α exp{−π|m− nz|2/(ty)}.

Hence

ζ(t, z, u, v) = (−1)αt−α−1
∑
m,n

(mz + n)α exp{−π|mz + n|2/(ty)}e(mv − nu). (8.29)

Suppose that p, q are integers, define

ξ(t, z, p, q) =
∑

(m,n)≡(p,q)( mod A)

(mz + n)α exp{−πt|mz + n|2/(A2y)}

and

η(t, z, p, q) =
A∑

k=1

φ(k)ξ(t, z, kp, kq). (8.30)

Suppose that (p, q) �≡ (0, 0) (mod A) if A > 1. By (8.29) we have

ξ(t, z, p, q) = Aαζ(t, z, p/A, q/A)

= (−A)αt−α−1
∑
m,n

e((qm − pn)/A)(mz + n)α exp{−π|mz + n|2/(ty)}

= (−A)αt−α−1
∑

(a,b) mod A

e((qa − pb)/A)ξ(A2t−1, z, a, b)
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and

η(t−1, z, p, q)=
A∑

k=1

φ(k)ξ(t−1, z, pk, qk)

= (−A)αtα+1
A∑

k=1

φ(k)
∑

(a,b) mod A

e(k(qa − pb)/A)ξ(A2t, z, a, b)

= (−A)αtα+1g(φ)
∑

(a,b) mod A

φ(qa − pb)ξ(A2t, z, p, q). (8.31)

If α > 0 or A > 1, the terms corresponding to m = n = 0 on both sides of (8.31)
disappear. Hence by (8.30) and (8.31) we have

|η(t, z, p, q)| �
{

Me−ct, if t > 1,

M ′t−α−1e−c′/t, if t < 1,
(8.32)

where M , M ′, c, c′ are positive constants dependent only on z, p, q. We can integrate
the following integral term by term∫ ∞

0

η(t, z, p, q)ts−1dt=
A∑

k=1

φ(k)
∑

(m,n)≡k(p,q)( mod A)

(mz + n)α

×
∫ ∞

0

exp(−πt|mz + n|2/(A2y))ts−1dt

=A2sπ−sysΓ(s)
A∑

k=1

φ(k)
∑

(m,n)≡(p,q)( mod A)

(mz+n)α|mz+n|−2s.

(8.33)

The series on the right hand side of (8.33) is absolutely convergent for Re(s) > 1+α/2.

Divide the integral of the right hand side of (8.33) into two parts:
∫ 1

0

and
∫ ∞

1

. Using

(8.32), we know that these two integrals are holomorphic functions on the s-plane
which continues the series of the right hand side of (8.33) to a holomorphic function
on the s-plane. And we have

A2sHα(s, z, φ) =
∫ ∞

0

η(t, z, 0, 1)ts−1dt. (8.34)

Therefore for α > 0 or A > 1, Hα(s, z, φ) can be continued to a holomorphic function
on the s-plane. Substituting s by α + 1 − s in (8.34), we get

A2(α+1−s)Hα(α + 1 − s, z, φ) =
∫ ∞

0

η(t, z, 0, 1)tα−sdt =
∫ ∞

0

η(t−1, z, 0, 1)ts−α−2dt

= (−A)αg(φ)
∑

(a,b) mod A

φ(a)
∫ ∞

0

ξ(A2t, z, a, b)ts−1dt
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= (−A)αg(φ)ysπ−sΓ(s)
∑
m,n

′
φ(m)(mz+n)α|mz+n|−2s

= (−1)αg(φ)Aα+szαHα(s,−1/Az, φ),

which completes the proof.

Proposition 8.6 Let ω be a character modulo A, put

G(s) = Γ (s)
∑
m,n

′
ω(n)|mAz + n|−2s.

Then G(s) can be continued to a holomorphic function if ω is non-trivial; G(s) can
be continued to a meromorphic function with only two poles s = 0, 1 of order 1 if
A = 1, and with the corresponding residues −1 and π/y respectively; and G(s) can be
continued to a meromorphic function with only one pole 1 of order 1 if A > 1 and ω

is trivial and with the corresponding residue π
∏
p|A

(1 − p−1)/(Ay).

Proof Let B be the conductor of ω and A = BC, let φ be the primitive character
modulo B determined by ω. Then

G(s)=Γ(s)
∑
m,n

′
φ(n)

∑
d|(n,C)

μ(d)|mAz + n|−2s

=Γ(s)
∑
d|C

μ(d)φ(d)d−2s
∑
m,n

′
φ(n)

∣∣∣∣mA

d
z + n

∣∣∣∣−2s

. (8.35)

Hence, by Proposition 8.5, G(s) can be continued to a holomorphic function if B > 1
(i.e. if ω is non-trivial).

Now suppose that A = 1, put

η(t, z) =
∑
m,n

exp{−πt|mz + n|2/y}.

By (8.31) we get
η(t−1, z) = tη(t, z).

We have, for all Re(s) > 1, that

π−sysG(s) =
∫ ∞

0

(η(t, z) − 1)ts−1dt

=
∫ ∞

1

(η(t−1, z) − 1)t−s−1dt +
∫ ∞

1

(η(t, z) − 1)ts−1dt

=
∫ ∞

1

(t(η(t, z) − 1) + t − 1)t−s−1dt +
∫ ∞

1

(η(t, z) − 1)ts−1dt

=
1

s − 1
− 1

s
+
∫ ∞

1

(η(t, z) − 1)t−sdt +
∫ ∞

1

(η(t, z) − 1)ts−1dt.
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The two integrals on the right hand side of the above are holomorphic, so G(s) can
be continued to a meromorphic function with only two poles s = 0, 1 of order 1 and
residues −1 and π/y respectively.

Now suppose that B = 1, A > 1. By (8.35) we get

G(s) =
∑
d|A

μ(d)d−2sΓ(s)
∑
m,n

′ |mAz/d + n|−2s.

Substituting
A

d
z by z and using the above result for A = 1, we know that G(s) can

be continued to a meromorphic function with pole s = 1 and the residue∑
d|A

μ(d)d−2πd/(Ay) = π
∏
p|A

(1 − p−1)/(Ay).

This completes the proof.

Now put

T = {h(tz, ψ)|ψ is any odd primitive character, t is any positive integer}

and T̃ the vector space spanned by T . Also put

T1 = {h(tz, ψ)|ψ is any odd character, t is any positive integer}

and
T2 = {θ(tz, h, N)|t, h, N ∈ Z, t > 0, N > 0},

where
θ(z, h, N) =

∑
m≡h( mod N)

me(m2z).

Denote by T̃i the vector space spanned by Ti for i = 1, 2.

Lemma 8.6 We have T̃ = T̃1 = T̃2.

Proof It is clear that T̃ ⊂ T̃1 ⊂ T̃2. Let ψ be any odd character modulo N , ψ̃ the
primitive character determined by ψ. Then ψ(d) = ψ̃(d) for all (d, N) = 1, and

∞∑
m=1

ψ(m)me(tm2z) =
∞∑

m=1

∑
d|(m,N)

μ(d)ψ̃(m)me(tm2z)

=
∑
d|N

μ(d)dψ̃(d)h(td2z, ψ̃) ∈ T̃ ,

which shows that T̃ = T̃1. Denote d = (h, N). We have



296 Chapter 8 Weil Representation and Shimura Lifting

θ(tz, h, N) = d
∑

m≡hd−1( mod Nd−1)

me(td2m2z)

= dφ(Nd−1)−1
∞∑

m=1

∑
ψ

ψ(hd−1)ψ(m)me(td2m2z)

= dφ(Nd−1)
∑
ψ

ψ(hd−1)h(td2z, ψ) ∈ T̃1,

where ψ runs over all characters modulo Nd−1, φ is the Euler function. Therefore
T̃1 = T̃2, which completes the proof.

If f(z) =
∑
n∈Q

a(n)e(nz) is a formal series, define

ξ(f(z)) =
∞∑

n=0

a(n)e(nz).

Put
F = {θ(zA−1)|θ(z) ∈ T̃ , A is any positive integer}.

Lemma 8.7 Let G(z) ∈ F , γ =
(

a b

c d

)
∈ SL2(Z) and H(z) = G(γ(z))(cz +

d)−3/2. Then H(z) ∈ F , ξ(G(z)) ∈ T̃ .

Proof Since SL2(Z) is generated by γ1 =
(

1 1
0 1

)
and γ2 =

(
0 −1
1 0

)
, we only

need prove that H(z) ∈ F for γ1, γ2. Without loss of generality, we can assume that
G(z) = θ(tA−1z, h, N). It is easy to see

G(γ1(z)) =
∑

g≡h( mod N),
g mod AN

e(tg2/A)θ(tz/A, AN, g) ∈ F.

Using Lemma 7.5, we can prove that H(z) ∈ F for γ2. Now we prove ξ(G(z)) ∈ T̃ .
Assume again G(z) = θ(tz/A, h, N). Then

ξ(G(z)) =
∑

m≡h( mod N),

m2≡0( mod A)

me(tm2z/A).

Let A = pe1
1 · · · pej

j be the standard factorization of A. Take B = pf1
1 · · · pfj

j such that
fi are the smallest positive integers with property 2fi � ei for all 1 � i � j. Then

ξ(G(z)) =
∑

m≡h( mod N),
m≡0( mod B)

me(tm2z/A).
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Denote d = (B, N). If d � h, then ξ(G(z)) = 0. If d|h, put h′ = h/d, N ′ = N/d,
t′ = tB2/A and take B′ such that Bd−1B′ ≡ 1 (mod N ′), then

ξ(G(z)) =
∑

n≡h′B′( mod N ′)

nBe(tn2B2z/A) = θ(t′z, h′B′, N ′) ∈ T̃ .

This completes the proof.

Theorem 8.2 Let 4|N , f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N , 3/2, ω). Then for any

square-free positive integer t, I3,t(f) is a cusp form if and only if f(z) is orthogonal
to the subspace S(N , 3/2, ω) ∩ T̃ .

Proof Let I3,t(f) =
∞∑

n=0

b(n)e(nz) ∈ G(N/2, 2, ω2). By Theorem 7.13, I3,t(f)

is a cusp form if and only if for all primitive character ψ and all positive integer r,
L(s, I3,t(f), ψ, r) is holomorphic at s = 2. Substituting N by [N, r] =l.c.m. of N, r,
without loss of generality, we can assume that r|N∞. We have

∞∑
n=1

b(n)n−s = L

(
s, ω

(
−t

∗

)) ∞∑
n=1

a(tn2)n−s.

Since ω is a character modulo N ,

L(s, I3,t(f), ψ, r) =
∞∑

n=1

ψ(n)b(rn)n−s

= L

(
s, ωψ

(
−t

∗

)) ∞∑
n=1

ψ(n)a(tr2n2)n−s.

Put

h(z, ψ) =
∞∑

n=1

ψ(n)nνe(n2z),

where ψ(−1) = (−1)ν , ν = 0, 1. Taking a constant σ > 0, for Re(s) > σ, we have∫ ∞
0

∫ 1

0

f(z)h(tr2z, ψ)ys−1dxdy=
∞∑

n=1

∞∑
m=1

a(n)ψ(m)mν

∫ ∞
0

e(i(n+tr2m2)y)ys−1dy

×
∫ 1

0

e((n − tr2m2)x)dx

=(4πtr2)−sΓ(s)
∞∑

m=1

ψ(m)a(tr2m2)mν−2s.

Denote by g the conductor of ψ. Then h(tr2z, ψ)∈G

(
4tr2g2, (1+2ν)/2, ψ

(
(−1)νtr2

∗

))
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by Theorem 7.3 and Theorem 5.16. Denote Ñ = (4tr2g2, N), define B(z, s) =

f(z)h(tr2z, ψ)ys+1. Then for any γ =
(

a b

c d

)
∈ Γ = Γ0(Ñ), we have

B(γ(z), s) = ωψ(d)
(
−t

d

)
(cz + d)1−ν |cz + d|2ν−1−2sB(z, s).

Therefore

L(2s − ν, I3,t(f), ψ, r)= (4πtr2)sΓ(s)−1

∫
Γ\H

B(z, s)L
(

2s − ν, ωψ

(
−t

∗

))

×
∑

(a b
c d)∈Γ∞\Γ

ωψ(d)
(
−t

d

)
(cz + d)1−ν |cz + d|2ν−1−2s dxdy

y2
.

(8.36)

It is easy to see

L

(
2s − ν, ωψ

(
−t

∗

)) ∑
(a b

c d)∈Γ∞\Γ
ωψ(d)

(
−t

d

)
(cz + d)1−ν |cz + d|2ν−1−2s

=
∑
m,n

′
ωψ(n)

(
−t

n

)
(mÑz + n)1−ν |mÑz + n|2ν−1−2s. (8.37)

If ν = 0, by Proposition 8.5, L(s, I3,t(f), ψ, r) is holomorphic at s = 2. If ν = 1,
by Proposition 8.6, we know that the series in (8.36) is holomorphic except the case

ω = ψ

(
−t

∗

)
. In that case, it has a pole s = 3/2 of order 1 with residue c/y and c �= 0

a constant. Hence, by (8.36), only for ω = ψ

(
−t

∗

)
, L(s, I3,t(f), ψ, r) has a possible

pole s = 2 of order 1 with residue c′ < f , h(tr2z, ψ) > and c′ �= 0 a constant.
Now suppose that I3,t(f) is a cusp form. By the above argumentation we know

that f is orthogonal to h(tr2z, ψ) if ω = ψ

(
−t

∗

)
. If ω �= ψ

(
−t

∗

)
, put ω′ =

ψ

(
−t

∗

)
. Then f ∈ S(Ñ , 3/2, ω), h(tr2z, ψ) ∈ S(Ñ , 3/2, ω′). Therefore for any

γ =
(

aγ bγ

cγ dγ

)
∈ Γ0(Ñ) we have

ω(dγ)ω′(dγ)〈f, h(tr2z, ψ)〉Γ0(Ñ) = 〈f |[γ], h(tr2z, ψ)|[γ]〉Γ0(Ñ)

= 〈f, h(tr2z, ψ)〉Γ0(Ñ).

Since ω �= ω′, we can find a γ ∈ Γ0(Ñ) such that ω(dγ) �= ω′(dγ). Hence we get
〈f, h(tr2z, ψ)〉 = 0. But any positive integer u can be written as u = tr2 with t

square-free. So f is orthogonal to T̃ and hence is orthogonal to S(N , 3/2, ω) ∩ T̃ .
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Conversely, suppose f is orthogonal to S(N , 3/2, ω)∩ T̃ . Take any h(uz, ψ) ∈ T .

Then h(uz, ψ) ∈ S

(
4ug2, 3/2, ψ

(
−u

∗

))
where g is the conductor of ψ. Denote Ñ =

[4ug2, N ]. Suppose ω = ψ

(
−u

∗

)
. Let Γ0(N) =

r⋃
i=1

Γ (Ñ)γi be the decomposition of

Γ0(N) into right cosets with respect to Γ (Ñ). Let

γi =
(

ai bi

ci di

)
.

Then

g(z) =
r∑

i=1

ω(ai)h(uz, ψ)|[γi]

belongs to S(N , 3/2, ω). By Lemma 8.7 we know that g(z) ∈ F . Since g(z+1) = g(z),
ξ(g(z)) = g(z). By Lemma 8.7 we know that g(z) ∈ T̃ , i.e., g ∈ S(N , 3/2, ω)∩ T̃ . By
hypothesis, we get

0 = 〈f(z), g(z)〉

=
r∑

i=1

ω(ai)〈f(z), h(uz, ψ)|[γi]〉

=
r∑

i=1

ω(ai)〈f |[γ−1
i ](z), h(uz, ψ)〉

= r〈f(z), h(uz, ψ)〉,

which shows that f is orthogonal to h(uz, ψ). Hence L(s, I3,t(f), ψ, r) is holomorphic
at s = 2 (since whose residue at s = 2 is 0 or c′〈f, h(tr2z, ψ)〉 = 0). This shows that
I3,t(f) is a cusp form.

This completes the proof.

8.3 Shimura Lifting of Eisenstein Spaces

In this section we deal with Shimura lifting of Eisenstein spaces.
Let χ be a Dirichlet character modulo N , and denote by L(s, χ) the associated

L-series

L(s, χ) =
∞∑

n=1

χ(n)n−s.

For a positive integer k we have that L(1 − k, χ) = −Bk,χ

k
, where the numbers Bk,χ

are defined by
N∑

a=1

χ(a)teat

eNt − 1
=

∞∑
k=0

Bk,χ
tk

k!
.
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Fix an integer k � 2, we define rational numbers H(k, n) by

H(k, n) :=

⎧⎪⎪⎨⎪⎪⎩
ζ(1 − 2k), if n = 0,

L(1 − k, χD)
∑
d|f

μ(d)χD(d)dk−1σ2k−1(f/d), if (−1)kn = Df2,

0, otherwise,

where ζ denotes the Riemann ζ-function, μ the Moebius function, D a fundamental
discriminant, χD the quadratic character associated with Q(

√
D) and the arithmetical

function σr is defined by σr(m) =
∑
d|m

dr. H.Cohen introduced the rational numbers

H(k, n) and proved that

Hk(z) :=
∞∑

n=0

H(k, n)exp{2πinz} (8.38)

is a modular form of half-integral weight k + 1/2 for Γ0(4) in [C] which is now named
Cohen-Eisenstein series. For k = 1 and group Γ0(4p) with p a prime, Cohen-Eisenstein
series are defined by

H1,p(z) :=
∞∑

n=0

H(n)pexp{2πinz}, (8.39)

where H(n)p := H(p2n) − pH(n) with H(n)(for n > 0) the number of classes of
positive definite binary quadratic forms of discriminant −n(where forms equivalent

to a multiple of x2+y2 or x2+xy+y2 are counted with multiplicity
1
2

or
1
3

respectively)

and with H(0) = − 1
12

. H1,p is a modular form of weight 3/2 on Γ0(4p).

The problem of constructing Shimura lifting of non-cusp forms was first considered
by W.Kohnen for the Cohen-Eisenstein series and later by A.G.Van Asch for the space
of non-cusp forms of weight k +1/2(k � 2) on Γ0(4) and Γ0(4p) with p an odd prime.

In this section we shall consider more general cases.
Let the rational numbers H(k, l, N , N ; n) and H(k, l, m, N ; n) be defined as in

Section 7.4 with N �= m|N .
Note that H(k, 1, 1, 1; n) = H(k, n) is just the rational numbers defined by

H.Cohen.

Theorem 8.3 Let N be a square-free odd positive integer, l a divisor of N and D

a fundamental discriminant with ε(−1)kD > 0. Then

(1) If k = 1 and
(

D

p

)
�= 1 for all p|N , then the Shimura lifting defined by

LD

( ∞∑
n=0

a(n)qn

)
:=

a(0)
2

LN

(
0,

(
D

·

))
+

∞∑
n=1

⎛⎝∑
d|n

(
D

d

)
a

(
|D|n

2

d2

)⎞⎠ qn
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gives an one-to-one correspondence from E+
3/2(4N, id.) to E(N, 2, id.).

(2) If k � 2, then the Shimura lifting defined by

LD

( ∞∑
n=0

a(n)qn

)
:=

a(0)
2

LN

(
1 − k, χ′l

(
D

·

))

+
∞∑

n=1

⎛⎝∑
d|n

dk−1

(
D

d

)
χ′l(d)a

(
|D|n

2

d2

)⎞⎠ qn

gives a one-to-one correspondence from E+
k+1/2(4N, χl) to E(N , 2k, id.).

Proof We denote by U(m)(m|N∞) the following operator defined by

U(m)

( ∞∑
n=0

a(n)qn

)
=

∞∑
n=0

a(mn)qn

for any f(z) =
∞∑

n=0

a(n)qn ∈ G(4N , k + 1/2, χl) or G(N , 2k, id.). Then U(m)

(m|N∞) map G(N , 2k, id.) to G(N , 2k, id.) and U(m2) (m|N∞) map G(4N , k + 1/2,
χl) to G(4N , k + 1/2, χl). A direct calculation shows that LD ◦U(m2) = U(m) ◦LD

for any m|N∞ and any fundamental discriminant D with ε(−1)kD > 0.
(1) Since LD is a linear map on the space consisting of all formal power series

∞∑
n=0

a(n)qn with a(n) ∈ C, we only need to prove that LD maps a basis of E+
3/2(4N, id.)

to a basis of E(N , 2, id.). We first consider the case that N = p is a prime. Then
the dimension of E+

3/2(4p, id.) equals to one and H1(id., p, p) ∈ E+
3/2(4p, id.). Denote

that H1(id., p, p) :=
∞∑

n=0

a(n)qn and LD(H1(id., p, p)) :=
∞∑

n=0

b(n)qn. Then by the

definition of LD, we see that

b(n) =
∑
d|n

(
D

d

)
a

(
|D|n

2

d2

)

=
∑
d|n

(
D

d

)
Lp

⎛⎝0,

⎛⎝D′|D|n2
d2

·

⎞⎠⎞⎠ ∑
d1|f|D| n2

d2

μ(d1)

(
D|D|n2

d2

d1

) ∑
e|f|D| n2

d2
/d1

(e,p)=1

e

=
∑
d|n

(
D

d

)
Lp

(
0,

(
D

·

)) ∑
d1|n/d

μ(d1)
(

D

d1

) ∑
e|n/dd1
(e,p)=1

e

= Lp

(
0,

(
D

·

))∑
s|n

(
D

s

) ∑
e|n/s,(e,p)=1

e
∑
d|s

μ(d) = Lp

(
0,

(
D

·

)) ∑
e|n,(e,p)=1

e,
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b(0) =
1
2
a(0)Lp

(
0,

(
D

·

))
=

1
2
Lp

(
0,

(
D

·

))
Lp(−1, id.) =

p − 1
24

Lp

(
0,

(
D

·

))
.

Hence we obtain that

LD(H1(id., p, p)) = Lp

(
0,

(
D

·

))
E

(p)
2 (z),

where

E
(p)
2 (z) =

p − 1
24

+
∞∑

n=1

⎛⎝ ∑
d|n,p|d

d

⎞⎠ qn ∈ E(p, 2, id.)

is the normalized Eisenstein series of weight 2 on Γ0(p). By the hypothesis in Theorem
8.3 we see that

Lp

(
0,

(
D

·

))
=
(

1 −
(

D

p

))
L

(
0,

(
D

·

))
=
(

1 −
(

D

p

))
h(D)
wD

�= 0,

where wD is the half of the number of units in Q(
√

D).
This shows that LD is a bijection if N = p is a prime. We now prove that this

holds for any square-free positive integer N > 1. Suppose that N = p1p2 · · · pt. For
any prime divisor pi of N , denote the following Eisenstein series by E

(pi)
2 (z):

E
(pi)
2 (z) :=

∞∑
n=1

ai(n)qn :=
pi − 1

24
+

∞∑
n=1

⎛⎝ ∑
d|n,pi|d

d

⎞⎠ qn,

which is the normalized Eisenstein series of weight 2 on Γ0(pi).
Let

Si = {U(l)(E(pi)
2 (z)) | l|N/(p1 · · · pi)}

for 1 � i � t. By the properties of U(m) we know that Si ⊂ E(N , 2, id.) for

1 � i � t. We want to prove that S :=
t⋃

i=1

Si is a basis of E(N , 2, id.). Since

dim(E(N, 2, id.)) = 2t − 1 = the number of elements in S, we only need to prove that
the elements in S are linearly independent. We denote that E

(pi)
2,l (z) := U(l)(E(pi)

2 (z)).
Suppose that there exist complex numbers ci(l) such that

t∑
i=1

∑
l|N/(p1···pi)

ci(l)E
(pi)
2,l = 0. (8.40)

We must prove that ci(l) = 0 for all 1 � i � t and l|N/(p1 · · · pi). We prove this
by induction on t. If t = 1, it is clear that S = S1 = {E(p1)

2 (z)} is a basis of
E(N, 2, id.) = E(p1, 2, id.).
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For any modular form f(z) =
∞∑

n=0

a(n)qn, let L(s, f) :=
∞∑

n=1

a(n)n−s be the corre-

sponding Dirichlet series. Then by a direct calculation we see that

L(s, E(pi)
2 ) = ζ(s)L(s − 1, 1pi),

where 1m denotes the trivial character modulo m for any positive integer m.

For f(z) =
∞∑

n=0

a(n)qn ∈ G(N, 2, id.), r|N and ψ any character modulo N , we

define

L(s, f, ψ, r) :=
∞∑

n=1

ψ(n)a(rn)n−s.

Then we have that ψ(n) = 0 if (n, N) �= 1, and so

L(s, E(pi)
2,l (z), ψ, r)=

∞∑
n=1

ψ(n)

⎛⎝ ∑
d|nlr,(pi,d)=1

d

⎞⎠n−s

=
∑

(n,N)=1

ψ(n)

⎛⎝ ∑
d|nlr,(pi,d)=1

d

⎞⎠n−s

=

⎛⎝ ∑
a|lr,(pi,a)=1

a

⎞⎠ ∑
(n,N)=1

ψ(n)

⎛⎝∑
d|n

d

⎞⎠n−s

=
∏

pi �=p|lr
(1 + p + p2 + · · · + pνp(lr))L(s, ψ)L(s − 1, ψ). (8.41)

Hence from (8.40) and (8.41) we obtain that

0 =
t∑

i=1

∑
l|N/(p1···pi)

ci(l)L(s, E(pi)
2,l , ψ, r)

=
t∑

i=1

∑
l|N/(p1···pi)

ci(l)
∏

pi �=p|lr
(1 + p + p2 + · · · + pνp(lr))L(s, ψ)L(s − 1, ψ).

This implies that

Ar :=
t∑

i=1

∑
l|N/(p1···pi)

ci(l)
∏

pi �=p|lr
(1 + p + p2 + · · · + pνp(lr)) = 0, ∀ r|N. (8.42)

That is, ci(l) must satisfy the above system of linear equations (8.42). Hence we only
need to prove that the system of linear equations (8.42) has only the solution zero.
It is clear that this holds for t = 1. Suppose that (8.42) has only the solution zero
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for t− 1. Write that N = p1N1 with (p1, N1) = 1. Let r1 be a positive divisor of N1.
Then

Ap1r1 − Ar1 =
t∑

i=1

∑
l|N/(p1···pi)

ci(l)
∏

pi �=p|lp1r1

(1 + p + p2 + · · · + pνp(lp1r1))

−
t∑

i=1

∑
l|N/(p1···pi)

ci(l)
∏

pi �=p|lr1

(1 + p + p2 + · · · + pνp(lr1))

=
t∑

i=1

∑
l|N/(p1···pi)

ci(l)

⎛⎝ ∏
pi �=p|lp1r1

(1 + p + p2 + · · · + pνp(lp1r1))

−
∏

pi �=p|lr1

(1 + p + p2 + · · · + pν
p(lr1))

⎞⎠
=p1

t∑
i=2

∑
l|N/(p1···pi)

ci(l)
∏

pi �=p|lr1

(1 + p + p2 + · · · + pνp(lr1))

=p1

t∑
i=2

∑
l|N1/(p2···pi)

ci(l)
∏

pi �=p|lr1

(1+p+p2 + · · · + pνp(lr1))=0, ∀ r1|N1.

(8.43)

By the induction assumption, we know that (8.43) has only the solution zero. There-
fore ci(l) = 0 for all 2 � i � t and l|N/(p1 · · · pi). Then (8.42) becomes∑

l|N/p1

c1(l)
∏

p1 �=p|lr
(1+p+p2+ · · ·+pνp(lr)) =

∑
l|N/p1

c1(l)
∑

d|lr,p1|d
d = 0, ∀ r|N. (8.44)

This shows that c1(l) must satisfy the system of linear equations (8.44). So we only
need to prove that (8.44) has only the solution zero. For any positive integer N > 1
and any prime p with (p, N) = 1, we define the following system of linear equations
for x(l) with l|N

Bp,N (r) :=
∑
l|N

x(l)
∑

d|lr,p|d
d = 0, ∀ r|N. (8.45)

It is clear that (8.44) has only the solution zero if we can prove that (8.45) has only
the solution zero. We prove that (8.45) has only the solution zero by induction on
the number of prime factors of N . For t = 0, it is obvious. Suppose that (8.45) has
only the solution zero for t − 1. We want to prove that our assertion holds also for
N = p1p2 · · · pt. Write N = piNi with (pi, Ni) = 1 for all 1 � i � t. Let ri|Ni be any
positive divisor of Ni. Then

0 = Bp,N (ri) − Bp,Ni(ri) =
∑
l|N

x(l)
∑

d|lri,p|d
d −
∑
l|Ni

x(l)
∑

d|lri,p|d
d
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=

⎛⎝∑
l|Ni

x(l) +
∑

pi|l|N
x(l)

⎞⎠ ∑
d|lri,p|d

d −
∑
l|Ni

x(l)
∑

d|lri,p|d
d

=
∑
li|Ni

x(pili)
∑

d|piliri,p|d
d

= (pi + 1)
∑
li|Ni

x(pili)
∑

d|liri,p|d
d, ∀ ri|Ni with 1 � i � t,

where we used the fact that (liri, pi) = 1 to deduce the last equality. Hence∑
li|Ni

x(pili)
∑

d|liri,p|d
d = 0, ∀ ri|Ni with 1 � i � t.

By the induction hypothesis, we see that x(pili) = 0 for all li|Ni, 1 � i � t. Therefore
x(l) = 0 for all l|N with l �= 1. Substituting these into (8.45) we obtain that x(1) = 0.
This shows that (8.45) and hence (8.44) has only the solution zero. We have proved
that S is a basis of E(N, 2, id.). Now let

S′i = {U(l2)(H1(id., pi, pi)(z)) | l | N/(p1 · · · pi)}, for 1 � i � t,

S′ =
t⋃

i=1

S′i.

We know that H1(id., pi, pi) ∈ E+
3/2(4pi, id.) ⊂ E+

3/2(4N , id.) and hence U(l2)(H1(id.,
pi, pi)(z)) ∈ E+

3/2(4N , id.) for all l | N/(p1 · · · pi). This shows that S′ ⊂ E+
3/2(4N ,

id.). Using the properties of U(l2) and LD and the result proved above, we see that

LD ◦ U(l2)(H1(id., pi, pi)(z))

=U(l) ◦ LD(H1(id., pi, pi)(z))

=U(l)
(

Lpi

(
0,

(
D

·

))
E

(pi)
2 (z)

)
=Lpi

(
0,

(
D

·

))
U(l)(E(pi)

2 (z)) ∈ E(N, 2, id.), ∀1 � i � t and l|N/(p1 · · · pi),

where we used the fact that E
(pi)
2 (z) ∈ E2(pi, id.) ⊂ E(N, 2, id.) and U(l)(E(pi)

2 (z)) ∈

E(N, 2, id.) for all l | N . Since
(

D

pi

)
�= 1 for all pi|N , then Lpi

(
0,
(

D
·
))

�= 0. Hence

we have proved that LD maps S′ to a basis of E(N, 2, id.). Because LD is a linear
operator, S′ is a basis of E+

3/2(4N, id.). This implies that LD is a bijection from
E+

3/2(4N, id.) to E(N, 2, id.).
(2) Since LD is a linear operator, we only need to calculate the image of Hk(χ, m, N)

under the Shimura lifting LD. Denote that Hk(χ, N, N) :=
∞∑

n=0

aN (n)qn and LD(Hk(χ,
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N, N)) :=
∞∑

n=0

bN (n)qn. Then by the definition of LD, we see that

bN (n) =
∑
d|n

χ′l(d)
(

D

d

)
dk−1aN

(
|D|n

2

d2

)

=
∑
d|n

χ′l(d)
(

D

d

)
dk−1

⎛⎝1 − k,

⎛⎝D′|D|n2
d2

·

⎞⎠⎞⎠
×

∑
d1|f|D| n2

d2

μ(d1)χ′l(d1)

(
D|D|n2

d2

d1

)
dk−1
1

∑
e|f|D| n2

d2
/d1

(e,N)=1

e2k−1

=
∑
d|n

χ′l(d)
(

D

d

)
dk−1LN

(
1 − k, χ′l

(
D

·

))

×
∑

d1|n/d

μ(d1)χ′l(d1)
(

D

d1

)
dk−1
1

∑
e|n/dd1
(e,N)=1

e2k−1

= LN

(
1 − k, χ′l

(
D

·

))∑
s|n

χ′l(s)
(

D

s

)
sk−1

∑
e|n/s,(e,N)=1

e2k−1
∑
d|s

μ(d)

= LN

(
1 − k, χ′l

(
D

·

)) ∑
e|n,(e,N)=1

e2k−1,

b(0) =
1
2
aN(0)LN

(
1 − k, χ′l

(
D

·

))
=

1
2
LN

(
1 − k, χ′l

(
D

·

))
LN (1 − 2k, id.).

Hence

LD(Hk(χ, N, N)) = LN

(
1 − k, χ′l

(
D

·

))
G2k,N (z),

where

G2k,N (z) :=
LN(1 − 2k, id.)

2
+

∞∑
n=1

⎛⎝ ∑
d|n,(d,N)=1

d2k−1

⎞⎠ qn.

For m|N with m �= N we can compute similarly and obtain that

LD(Hk(χ, m, N)) =Lm

(
1 − k, χ′l

(
D

·

))(
(l, D)

(l, D, m)

)2k−1

×
∏

p|N/m

1 − χ′l(p)
(

D
p

)
p−k

1 − p−2k
G2k,m(z),
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where

G2k,m(z) :=
∞∑

n=1

⎛⎜⎜⎝ ∑
d|n,(d,m)=1,
(n/d,N/m)=1

d2k−1

⎞⎟⎟⎠ qn, ∀m|N with m �= N.

Hence we only need to prove that {G2k,m(z) | m | N} constitute a basis of E(N , 2k,
id.) which is stated as the following

Lemma 8.8 Let N be a square-free positive integer and k � 4 an even integer.
Then

Gk,N (z) : =
LN(1 − k, id.)

2
+

∞∑
n=1

⎛⎝ ∑
d|n,(d,N)=1

dk−1

⎞⎠ qn,

Gk,m(z) : =
∞∑

n=1

⎛⎜⎜⎝ ∑
d|n,(d,m)=1,
(n/d,N/m)=1

dk−1

⎞⎟⎟⎠ qn, ∀m|N with m �= N

constitute a basis of E(N, k, id.).

Proof Let Ek(z) be the Eisenstein series defined by

Ek(z) :=
ζ(1 − k)

2
+

∞∑
n=1

⎛⎝∑
d|n

dk−1

⎞⎠ qn.

Then it is well known that {Ek(lz) | l | N} constitute a basis of E(N, k, id.). We
define functions qk,m(z) as follows

qk,N (z) : = Ek(Nz),

qk,m(z) : =
∑

l|N/m

μ(l)Ek(mlz), ∀ m|N, m �= N.

Then it is clear that {qk,m | m | N} constitute a basis of E(N, k, id.). And

qk,m(z) =
∞∑

n=1

∑
l|N/m

μ(l)
∑
l|n

∑
d|n/l

dk−1qmn

=
∞∑

n=1

∑
d|n

dk−1
∑

l|(n/d,N/m)

μ(l)qmn

=
∞∑

n=1

∑
d|n

(n/d,N/m)=1

dk−1qmn.
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For m|N , denote by G′k,m(z) the following function

G′k,m(z) :=
∑
s|m

∏
p|s

(1 − pk−1)qk,s(z)

:=
∞∑

n=1

am(n)qn, ∀ m|N, m �= N,

and

G′k,N (z) :=
∑
s|N

∏
p|s

(1 − pk−1)qk,s(z) :=
∞∑

n=1

aN (n)qn.

It is clear that these functions constitute a basis of E(N, k, id.).

For any fixed n, let it be that (n, m) = m1, m = m1m2, n = n′
∏

p|M1

pνp(n) with

(n′, m) = 1.

am(n) =
∑
s|m1

∏
p|s

(1 − pk−1)
∑

d|n/s
(n/sd,N/s)=1

dk−1

=
∑
s|m1

∏
p|s

(1 − pk−1)
∏
p|s

⎛⎝νp(n)−1∑
t=0

p(k−1)t

⎞⎠ ∏
p|m1/s

p(k−1)νp(n)
∑

d|n,(d,m)=1,
(n/d,N/m)=1

dk−1

=
∑
s|m1

∏
p|s

(1 − p(k−1)νp(n))
∏

p|m1/s

p(k−1)νp(n)
∑

d|n,(d,m)=1,
(n/d,N/m)=1

dk−1

=
∑

d|n,(d,m)=1,
(n/d,N/m)=1

dk−1.

This shows that Gk,m(z) = G′k,m(z) for all m|N with m �= N . We can prove similarly
that Gk,N (z) = G′k,N (z). Therefore {Gk,m(z) | m|N} constitute a basis of E(N, k, id.).

This completes the proof of Theorem 8.3.

As a Corollary of the above proof, we have

Corollary 8.2 Let N be a square-free positive odd integer. Define

G2,N (z) : = − 1
24

∏
p|N

(1 − p) +
∞∑

n=1

⎛⎝ ∑
d|n,(d,N)=1

d

⎞⎠ qn,

G2,m(z) : =
∞∑

n=1

⎛⎜⎜⎝ ∑
d|n,(d,m)=1,
(n/d,N/m)=1

d

⎞⎟⎟⎠ qn, ∀ m|N with m �= 1, N.
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Then {G2,m | m|N, m �= 1} constitute a basis of E(N, 2, id.).

Proof Completely similar to the proof of Theorem 8.3 (2), we can calculate the
images of H1(id., m, N) under LD for all m|N , m �= 1. In particular, if we choose a
negative fundamental discriminant D satisfying D ≡ 0 (mod N), then

LD(H1(id., m, N)) = h(D)
∏

p|N/m

1
1 − p−2

G2,m(z), ∀ m|N, m �= 1.

We have shown in the proof of Theorem 8.3 (1) that LD is a bijection from E+
3/2(4N, id.)

to E(N ,2, id.). Hence G2,m(z) = LD(h(D)−1
∏

p|N/m

(1 − p−2)H1(id., m, N)) ∈ E(N ,

2, id.) and constitute a basis of E(N , 2, id.).

8.4 A Congruence Relation between Some Modular Forms

In this section we will give a congruence relation between some modular forms. A
special case of our congruence (which was proved by Kohnen and J.A. Antoniadis,
1986) has important applications on the structure of the Selmer groups of some elliptic
curves (Please compare J.A. Antoniadis, 1990).

Theorem 8.4 Let N > 3 be a square-free positive odd integer with N ≡ 3 (mod 4),

and let l � 5 be a prime which divides the exact numerator of
1
12

∏
p|N

(p− 1), but does

not divide the class number h(−N) and
∏

p|N/m

(p + 1) for any 1 < m|N . We let

G1,−N (z) :=
1
2
h(−N) +

∞∑
n=1

(∑
d|n

(
−N

d

))
qn

be the Eisenstein series of weight 1 and Nebentypus
(
−N

·

)
on Γ0(N) for the cusp

i∞. Put

CN := − 1
12

∏
p|N

(1 − p)(G1,−N (z))2 − 1
2
h(−N)2

∑
1<m|N

⎛⎝ ∏
p|N/m

−p

p + 1

⎞⎠G2,m(z),

C′N : =− 1
12

∏
p|N

(1−p)G1,−N(4z)θ(Nz)− 1
2
h(−N)

∑
1<m|N

⎛⎝ ∏
p|N/m

1−p

p

⎞⎠H1(id., m, N)(z),

where

G2,N (z) : = −

∏
p|N

(1 − p)

24
+

∞∑
n=1

⎛⎝ ∑
d|n,(d,N)=1

d

⎞⎠ qn,
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G2,m(z) : =
∞∑

n=1

⎛⎜⎜⎝ ∑
d|n,(d,m)=1,
(n/d,N/m)=1

d

⎞⎟⎟⎠ qn, ∀m|N with m �= 1, N.

Then
(1) The function C′N (z) ∈ S+

3/2(4N, id.) has l-integral Fourier coefficients, is non-
zero modulo l, and the congruence

C′N (z) ≡ −1
2
h(−N)

∑
1<m|N

⎛⎝ ∏
p|N/m

1 − p

p

⎞⎠H1(id., m, N)(z) (mod l)

holds.
(2) The function CN (z) ∈ S(N , 2, id.) has l-integral Fourier coefficients, is non-

zero modulo l, and the congruence

CN (z) ≡ −1
2
h(−N)2

∑
1<m|N

⎛⎝ ∏
p|N/m

−p

p + 1

⎞⎠G2,m(z) (mod l)

holds. And one has L−N(C′N (z)) = CN .

(3) Suppose that C′N (z) belongs to a subspace V of S+
3/2(4N, id.) which is isomor-

phic to a subspace of S(N , 2, id.) as modules over the Hecke algebra. And suppose that
V has a basis {fi(z)}r

i=1 with fi(z) are all Hecke eigenforms and fi(z) :=
∑
n�1

ci(n)qn

corresponding to Fi ∈ S(N , 2, id.). Then one has

C′N = − 1
12

∏
p|N

(1 − p) · α′ ·
r∑

i=1

L(Fi, 1)ci(N)
||fi||2

fi,

where α′ is a non-zero constant not depending on N , L(Fi, s) is the L-function as-

sociated with Fi and ||fi||2 :=
∫
Γ0(4N)\H

|fi|2y−1/2dxdy (x = Re(z), y = Im(z)) the

square of the Petersson norm of fi.

Proof (1) We first prove that C′N (z) has l-integral Fourier coefficients. Since

νl

⎛⎝ 1
12

∏
p|N

(1 − p)

⎞⎠ > 0 and G1,−N (4z)θ(Nz) has rational Fourier coefficients, we

only need to show that

1
2
h(−N)

∑
1<m|N

⎛⎝ ∏
p|N/m

1 − p

p

⎞⎠H1(id., m, N)(z)
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has l-integral Fourier coefficients. By the definition of H1(id., m, N) we see that the
nth Fourier coefficient of ⎛⎝ ∏

p|N/m

1 − p

p

⎞⎠H1(id., m, N)(z)

equals to

∏
p|N/m

1 − p

p
H(1, 1, m, N ; n) =

∏
p|N/m

1 − p

p
Lm(0, χDn)

∏
p|N/m

1 − p−1

(
Dn

p

)
1 − p−2

×
∑
d|fn

μ(d)χDn(d)σm,N,1(fn/d)

=Lm(0, χDn)
∏

p|N/m

(
Dn

p

)
− p

1 + p

×
∑
d|fn

μ(d)χDn(d)σm,N,1(fn/d),

which is l-integral by hypothesis of Theorem 8.4, and hence C′N (z) has l-integral
Fourier coefficients.

Now we need only to prove that C′N (z) ∈ S+
3/2(4N, id.), as the other assertions are

obvious. We must show that C′N (z) ∈ M+
3/2(4N, id.) and the values of C′N (z) are zero

at all cusp points. In order to do this we introduce the following Eisenstein series: For
any positive integer k, and D1, D2 relatively prime fundamental discriminants with
(−1)kD1D2 > 0 set

Gk,D1,D2(z) := γ−1
k,D1

× 1
2

∑
m,n

′(D1

n

)(
D2

m

)
(mD1z + n)−k,

where γk,D1 :=
(

D1

−1

)1/2

|D1|−k+ 1
2
(−2πi)k

(k − 1)!
and

∑′
means that (m, n) run over Z×Z

except (0, 0). The function Gk,D1,D2 is an Eisenstein series in Mk

(
Γ0(D),

(
D

·

))
(D =

D1D2) for the cusp
1

D1
. The Fourier expansion of Gk,D1,D2(z) is given by

Gk,D1,D2(z) =
∞∑

n=0

σk−1,D1,D2(n)qn,

where

σk−1,D1,D2(n) :=

⎧⎪⎪⎨⎪⎪⎩
−L(1 − k, χD1)L(0, χD2), if n = 0,∑
d1,d2>0
d1d2=n

(
D1

d1

)(
D2

d2

)
dk−1
1 , if n > 0.
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We must note that for k = 1 or 2 there is a slight problem of convergence. But we
can define Gk,D1,D2(z) as the holomorphic continuation to s = 0 of the corresponding
non-holomorphic Eisenstein series of weight 1 or 2. Anyway the above formula for
the Fourier expansion of Gk,D1,D2 holds for k = 1, 2.

Hence we know that for any k � 2

σk−1,D1,D2(0) :=

{ 1
2
L(1 − k, χD), if D2 = 1,

0, if D2 �= 1
(8.46)

and

σ0,D1,D2(0) :=

{ 1
2
h(D), if D2 = 1 or D1 = 1,

0, if D2 �= 1 and D1 �= 1.
(8.47)

Denote Gk,D(z), Gk,4D(z) the following Eisenstein series

Gk,D(z) : =
1
2
L(1 − k, χD) +

∞∑
n=1

⎛⎝∑
d|n

(
D

d

)
dk−1

⎞⎠ qn ∈ G

(
D, k,

(
D

·

))
,

Gk,4D(z) : = Gk,D(4z) − 2−k

(
D

2

)
Gk,D(2z) ∈ G

(
4D, k,

(
D

·

))
.

Now one can show that

(|D1|z + 1)−kGk,D

(
z

|D1|z + 1

)
=
(

D2

−1

)−1/2(
D2

|D1|

)
|D2|−1/2Gk,D1,D2

(
z + |D1|∗

|D2|

)
, (8.48)

where |D1|∗ is an integer with |D1||D1|∗ ≡ 1( mod D2).
And

(4|D1|z + 1)−k− 1
2 Gk,D

(
4z

4|D1|z + 1

)
θ

(
|D|z

4|D1|z + 1

)
=
(

D2

−|D1|

)
|D2|−1Gk,D1,D2

(
4z + |D1|∗

|D2|

)
θ

(
|D1|z + 4∗

|D2|

)
, (8.49)

where a∗ ∈ Z with aa∗ ≡ 1 (mod D2) (Please compare with W. Kohnen, 1981, 192-
197).

From (8.47) we see immediately that

V

(
Gk,D(4z)θ(|D|z),

1
4|D1|

)
= lim

z→i∞
(4|D1|z + 1)−k− 1

2 Gk,D

(
4z

4|D1|z + 1

)
θ

(
|D|z

4|D1|z + 1

)
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= lim
z→i∞

(
D2

−|D1|

)
|D2|−1Gk,D1,D2

(
4z + |D1|∗

|D2|

)
θ

(
|D1|z + 4∗

|D2|

)
=
(

D2

−|D1|

)
|D2|−1V (Gk,D1,D2(z), i∞)V (θ(z), i∞)

=
(

D2

−|D1|

)
|D2|−1σk−1,D1,D2(0).

Especially, from (8.47), we see that

V

(
G1,D(4z)θ(|D|z),

1
4|D1|

)
=

⎧⎨⎩
1
2

(
D2

−|D1|

)
|D2|−1h(D), if D2 = 1 or D1 = 1,

0, if D2 �= 1 and D1 �= 1.
(8.50)

Since 4/|D1| and 1/|D1| are Γ0(4|D|)-equivalent, we can also calculate the value of
G1,D (4z)θ(|D|z) at the cusp point 1/|D1| by Claim 1 of Theorem 10.9 and (8.48) as
follows:

V

(
G1,D(4z)θ(|D|z),

1
|D1|

)
= V

(
G1,D(4z),

1
|D1|

)
V

(
θ(|D|z),

1
|D1|

)
= lim

z→i∞
(−|D1|z)G1,D

(
4(z +

1
|D1|

)
)

× lim
z→i∞

(−|D1|z)1/2θ

(
|D|(z +

1
|D1|

)
)

=
1

4|D2|1/2
V

(
G1,D(z),

4
|D1|

)
V

(
θ(z),

|D|
|D1|

)
=

1
4|D2|1/2

(
D

d

)
V

(
G1,D(z),

1
|D1|

)
V (θ(z), |D2|)

=
1 − i

8|D2|1/2

(
D

d

)(
D2

−1

)−1/2(
D2

|D1|

)
|D2|−1/2σ0,D1,D2(0)

= −L(0, χD1)L(0, χD2)
1 − i
8|D2|

(
D

d

)(
D2

−1

)−1/2(
D2

|D1|

)
,

where d is an integer such that(
a b

c d

)
∈ Γ0(|D|) and

(
a b

c d

)
(4/|D1|) = 1/|D1|.

Therefore we get that

V

(
G1,D(4z)θ(|D|z),

1
|D1|

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 − i
16|D| h(D), if D1 = 1,

1 − i
16

h(D), if D1 = D,

0, if D1 �= 1 and D1 �= D.

(8.51)
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Finally since V (θ(z), 1/2) = 0, we see easily that

V

(
(G1,D(4z)θ(|D|z),

1
2|D1|

)
)

= 0. (8.52)

By Theorem 7.7 we can calculate the values of H1(id., m, N) at cusp points as
follows: For any positive divisor d of N ,

V (H1(id., m, N), 1/d)=V (Lm(−1, id.)H
′
1(id., m, N), 1/d)

=− 1
12

∏
p|m

(1 − p)(V (g3(id., 4m, 4N), 1/d)

−3
2
V (g3(id., m, 4N), 1/d))

=− 1
12

∏
p|m

(1 − p)
1 + i

8
μ(m/d)dm−1ε−1

d (8.53)

and
V (H1(id., m, N), 1/2d) = 0 (8.54)

and

V (H1(id., m, N), 1/4d)=V (Lm(−1, id.)H ′
1(id., m, N), 1/4d)

=− 1
12

∏
p|m

(1 − p)(V (g1(id., 4m, 4N), 1/4d)

−3
2
V (g1(id., m, 4N), 1/4d))

=− 1
12

∏
p|m

(1 − p)μ(m/d)dm−1. (8.55)

Using the above results we can compute the values of C′N (z) at all cusp points. For
example, we have for D1 �= 1 and D1 �= −N by (8.50) and (8.55),

V (C′N (z), 1/4|D1|) = V

(
− 1

12

∏
p|N

(1 − p)G1,−N (4z)θ(Nz)
)

− 1
2
h(−N)

∑
1�=m|N

⎛⎝ ∏
p|N/m

1 − p

p

⎞⎠H1(id., m, N)(z), 1/4|D1|)

= −1
2
h(−N)

∑
1�=m|N

⎛⎝ ∏
p|N/m

1 − p

p

⎞⎠V (H1(id., m, N)(z), 1/4|D1|)

= −1
2
h(−N)

∑
1�=m|N

⎛⎝ ∏
p|N/m

1 − p

p

⎞⎠
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×

⎛⎝− 1
12

∏
p|m

(1 − p)

⎞⎠μ(m/|D1|)|D1|m−1

=
h(−N)
24N

∏
p|N

(1 − p)|D1|
∑

1<m|N
μ

(
m

|D1|

)
= 0.

For D1 = 1, we have by (8.46) and (8.55)

V (C′N (z), 1/4) = − 1
12

∏
p|N

(1 − p)V (G1,−N (4z)θ(Nz), 1/4)

+
h(−N)
24N

∏
p|N

(1 − p)
∑

1<m|N
μ(m)

=
h(−N)
24N

∏
p|N

(1 − p) − h(−N)
24N

∏
p|N

(1 − p) = 0.

For D1 = −N , we have by (8.46) and (8.55)

V (C′N (z), 1/4N) = − 1
12

∏
p|N

(1 − p)V (G1,−N (4z)θ(Nz), 1/4N)

+
h(−N)
24N

∏
p|N

(1 − p)N
∑

1<m|N
μ(m/N)

= −h(−N)
24

∏
p|N

(1 − p) +
h(−N)

24

∏
p|N

(1 − p) = 0.

This shows that for all positive divisors d of N , we have

V (C′N (z), 1/4d) = 0.

It is clear that V (C′N (z), 1/2d) = 0 for all positive divisors d of N from (8.52) and
(8.54). We now compute the values of C′N (z) at the cusp point 1/|D1| by (8.51) and
(8.53): for D1 �= 1 and D2 �= 1,

V (C′N (z), 1/|D1|) = 0 − 1
2
h(−N)

∑
1<m|N

∏
p|N/m

(
1 − p

p

)

× Lm(−1, id.)
1 + i

8
μ

(
m

|D1|

)
m−1|D1|ε−1

|D1|

=
(1 + i)h(−N)

192N
|D1|ε−1

|D1|
∏
p|N

(1 − p)
∑

1<m|N
μ

(
m

|D1|

)
= 0

and
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V (C′N (z), 1) = − 1
12

∏
p|N

(1 − p)
(
− (1 + i)h(−N)

16N

)

− 1
2
h(−N)

∑
1<m|N

∏
p|N/m

(
1 − p

p

)
Lm(−1, id.)

1 + i

8
μ(m)m−1ε−1

1

=
(1 + i)h(−N)

192N

∏
p|N

(1 − p) +
(1 + i)h(−N)

192N

∏
p|N

(1 − p)
∑

1<m|N
μ(m)

=
(1 + i)h(−N)

192N

∏
p|N

(1 − p) − (1 + i)h(−N)
192N

∏
p|N

(1 − p) = 0.

Since N ≡ 3 (mod 4), we have εN = i and hence

V (C′N (z), 1/N) = − 1
12

∏
p|N

(1 − p)
(
− (1 − i)h(−N)

16

)

− 1
2
h(−N)

∑
1<m|N

∏
p|N/m

(
1 − p

p

)
Lm(−1, id.)

1 + i
8

μ
(m

N

)
m−1Nε−1

N

=− (1−i)h(−N)
192

∏
p|N

(1−p)+
(1+i)h(−N)

192

∏
p|N

(1−p)i−1
∑

1<m|N
μ
(m

N

)
= − (1 − i)h(−N)

192

∏
p|N

(1 − p) +
(1 − i)h(−N)

192

∏
p|N

(1 − p) = 0.

This shows that V (C′N (z), 1/d) = 0 for any positive divisor d of N . Hence C′N (z) ∈
S(4N , 3/2, id.) is a cusp form. On the other hand, we can prove that G1,−N (4z)θ(Nz)
= r× pr(G1,−4N (z)θ(z)) with r a constant by the method as exposed in W. Kohnen,
1981 where pr denotes the projection from the space G(4N , 3/2, id.) to the space
M+

3/2(4N, id.) (W. Kohnen, 1982). This shows that C′N(z) ∈ M+
3/2(4N, id.) and hence

C′N (z) ∈ S+
3/2(4N, id.). This completes the proof of (1).

(2) It is clear that CN (z) has l-integral Fourier coefficients by the hypothesis in
Theorem 8.4. We only need to show that L-N (C′N (z)) = CN . The proof is similar to
the arguments used in W. Kohnen, 1981. For the sake of completeness we give it as
follows. Write c(n) resp. b(n) for the nth Fourier coefficient of G1,−N (4z)θ(Nz) resp.
G1,−N (z). Then

c(n) =
∑

r∈Z,Nr2�n
n≡Nr2( mod 4)

b

(
n − Nr2

4

)
.

Denote that L−N(G1,−N (4z)θ(Nz)) :=
∞∑

n=0

a(n)qn. Then for n > 0 we have that



8.4 A Congruence Relation between Some Modular Forms 317

a(n) =
∑
d|n

(
−N

d

)
c

(
N

n2

d2

)

=
∑
d|n

(
−N

d

) ∑
r∈Z,|r|�

√
n/d

r≡n/d( mod 2)

b

(
N

n2 − r2d2

4d2

)
.

Observing that b(Nm) = b(m) for any m � 0 and writing n1 =
n − rd

2
, n2 =

n + rd

2
,

we see that the coefficient

a(n) =
∑

n1,n2�0
n1+n2=n

∑
d|(n1,n2)

(
−N

d

)
b
(n1n2

d2

)
.

By the multiplicative properties of b(n), the inner sum equals b(n1)b(n2), hence

a(n) =
∑

n1,n2�0
n1+n2=n

b(n1)b(n2),

which is the nth Fourier coefficient of G1,−N (z)2. But

a(0) =
c(0)
2

LN(0, χ−N) =
1
4
h(−N)2,

which is the constant term of G1,−N (z)2. This shows that L−N (G1,−N (4z)θ(Nz)) =
G1,−N (z)2. But we know that from Corollary 8.2

L−N (H1(id., m, N)) = h(−N)
∏

p|N/m

1
1 − p−2

G2,m(z), ∀ m|N, m �= 1,

which implies that L−N (C′N (z)) = CN (z) as desired.
(3) It can be proved by Rankin’s trick, just as used in W. Kohnen, 1981 and J.A.

Antoniadis, 1986. We omit the proof because of the complete similarity with the one
in W. Kohnen, 1981 and J.A. Antoniadis, 1986.

Proposition 8.7 Let p > 3 be a prime with p ≡ 3 (mod 4), and let l � 5 be

a prime which divides the exact numerator of
p − 1
12

, but does not divide the class

number h(−p). Then
(1) The function C′p(z) ∈ S+

3/2(4N, id.) has l-integral Fourier coefficients, is non-
zero modulo l, and the congruence

C′p(z) ≡ −1
2
h(−p)H1,p(z) (mod l)

holds.
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(2) The function Cp(z) ∈ S(N , 2, id.) has l-integral Fourier coefficients, is non-
zero modulo l, and the congruence

Cp(z) ≡ −1
2
h(−p)2G2,p(z) (mod l)

holds. And one has

L−p(C′p(z)) = Cp.

(3) C′N (z) belongs to a subspace V of S+
3/2(4N, id.) which is isomorphic to a sub-

space of S(N, 2, id.) as modules over the Hecke algebra. Suppose that V has a basis

{fi(z)}r
i=1 with all fi(z) are Hecke eigenforms and fi(z) :=

∑
n�1

ci(n)qn corresponding

to Fi ∈ S(N , 2, id.). Then one has

C′p = −1 − p

12
· α′ ·

r∑
i=1

L(Fi, 1)ci(p)
||fi||2

fi,

where α′ is a non-zero constant not depending on p, L(Fi, s) is the L-function associ-

ated with Fi and ||fi||2 :=
∫
Γ0(4p)\H

|fi|2y−1/2dxdy (x = Re(z), y = Im(z)) the square

of the Petersson norm of fi.

Proof This is a special case of Theorem 8.4.
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Chapter 9

Trace Formula

9.1 Eichler-Selberg Trace Formula on SL2(Z)

Throughout this section we write Γ = SL2(Z). And let F be a fundamental domain
of Γ . Let k � 2 be a fixed positive integer. We write T(n) for the Hecke operator on
the space of cusp forms Sk := S(1, 2k, id.).

In this section we want to compute the trace of the Hecke operator T(n) as a
Hermitian operator on the space Sk. The method given in this section is owed to
D.Zagier.

Let h(z, z′) be a function of two variables z, z′ in H, and assume that h is a cusp
form of weight 2k as a function of each variable. We define f ∗ h for any f ∈ Sk as a
function of z′ by

(f ∗ h)(z′) =
∫
F

f(z)h(z,−z′)yk−2dxdy. (9.1)

Let m be a positive integer and z, z′ ∈ H. Put

hm(z, z′)=
∑

a,b,c,d∈Z,
ad−bc=m

(czz′ + dz′ + az + b)−2k

=
∑

a,b,c,d∈Z,
ad−bc=m

(cz + d)−2k
(
z′ +

az + b

cz + d

)−2k

=
∑

a,b,c,d∈Z,
ad−bc=m

(cz′ + a)−2k
(
z +

dz′ + b

cz′ + a

)−2k
. (9.2)

It is clear that the above series converges absolutely and uniformly on any bounded
closed set of H × H. Therefore hm(z, z′) is an analytic function in z, z′. It is also
obvious from (9.2) that hm(z, z′) is a cusp form in every variable separately.

Lemma 9.1 Set ck =
(−1)kπ

22k−3(2k − 1)
. Then

ckm−2k+1(f |T(m))(z′) = (f ∗ hm)(z′)

holds for any f ∈ Sk.
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Proof Assume first that m = 1. Since for any M =
(

a b

c d

)
∈ Γ and f ∈ Sk we

have
(cz + d)−2kf(z)y2k = f(Mz)(Im(Mz))2k.

Hence from (9.2) we see that

f(z)h1(z, z′)y2k =
∑

M∈Γ
(z′ + Mz)−2kf(Mz)(Im(Mz))2k,

and

(f ∗ h1)(z′) =
∫

F

∑
M∈Γ

(−z′ + Mz)−2kf(Mz)(Im(Mz))2ky−2dxdy. (9.3)

Since the series on the right hand side in (9.3) is absolutely and uniformly convergent,
we can interchange the integration and the sum

(f ∗ h1)(z′) =
∑

M∈Γ

∫
F

(−z′ + Mz)−2kf(Mz)(Im(Mz))2ky−2dxdy

=
∑

M∈Γ

∫
M(F )

(−z′ + z)−2kf(z)
(
Im(z)

)2k
y−2dxdy

= 2
∫ ∞

0

∫ ∞
−∞

(x − iy − z′)−2kf(x + iy)y2k−2dxdy,

(9.4)

where the last equality comes from the fact that the upper half plane is equal to the
union of transformations of the fundamental domain F under Γ , disjoint except for
boundary points of measure zero, and the factor 2 comes from the fact that ±γ ∈ Γ
give the same transformation. Since f(z) is holomorphic on H and zero at i∞, we
obtain from Cauchy’s formula that∫ ∞

−∞
(x − iy − z′)−2kf(x + iy)dx =

2πi
(2k − 1)!

f (2k−1)(2iy + z′). (9.5)

From (9.4) and (9.5) we get

(f ∗ h1)(z′) =
4πi

(2k − 1)!

∫ ∞
0

y2k−2f (2k−1)(2yi + z′)dy

=
4πi

(2k − 1)!

(
−1
2i

)2k−2

(2k − 2)!
−1
2i

f(z′)

= ckf(z′),

where we used repeatedly integration by parts and the fact that f ∈ Sk. This implies
that the lemma holds for m = 1 since T(1) = id. Let T(m) operate on h1 with respect
to the first variable z. Then
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h1(z, z′)|T(m)=m2k−1
∑

a1d1=m,d1>0,b1 mod d1

d−2k
1 h1

(
a1z + b1

d1
, z′
)

=m2k−1
∑

a,b,c,d∈Z,ad−bc=m

∑
a1d1=m,d1>0,b1 mod d1

d−2k
1

(
c
a1z+b1

d1
+d

)−2k

×
(

z′ + M

(
a1z + b1

d1

))−2k

=m2k−1
∑

a,b,c,d∈Z,
ad−bc=m

(cz + d)−2k

(
z′ +

az + b

cz + d

)−2k

, (9.6)

where M =
(

a b

c d

)
and the last equality comes from the fact that the following set

(
a1 b1

0 d1

)
, a1d1 = m, d1 > 0, b1 mod d1

is a complete set of right cosets of Δm with respect to Γ where

Δm :=
{

M =
(

a b

c d

) ∣∣∣∣a, b, c, d ∈ Z, ad − bc = m

}
.

Hence from (9.6) and the definition of hm, we see that

(h1|T(m))(z, z′) = m2k−1hm(z, z′), (9.7)

where T(m) operates on the first variable z. Hence from (9.7), the fact that the
lemma holds for m = 1 and the properties of the Petersson inner product we see that

(f ∗ hm)(z′) = m−2k+1(f ∗ h1|T(m))(z′)

= m−2k+1((f |T(m)) ∗ h1)

= m−2k+1ckf |T(m).

This completes the proof.

Let now f1, · · · , fr be an orthogonal basis of eigenfunctions for the Hecke opera-
tors, and assume that they are normalized, i.e., for 1 � j � r,

fj =
∞∑

n=1

a(j)
n e(nz), a

(j)
1 = 1.

Then we have
fj |T(m) = a(j)

m fj . (9.8)

Lemma 9.2 (1) We have that
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c−1
k m2k−1hm(z, z′) =

r∑
j=1

a
(j)
m

〈fj , fj〉
fj(z)fj(z′), (9.9)

where 〈∗, ∗〉 is the the Petersson inner product.
(2) We have that

tr(T(m)) = c−1
k m2k−1

∫
F

hm(z,−z)y2k−2dxdy. (9.10)

Proof (1) Since T(m) is Hermitian and fj is the eigenfunction of T(m) with
eigenvalue a

(j)
m , a

(j)
m is a real number for all m, j, and hence we have

fj(−z) = fj(z), 1 � j � r. (9.11)

Since f1, · · · , fr consist of a basis, and hm(z, z′) as a function of z or z′ is in Sk,

hm(z, z′) =
r∑

i,j=1

aijfi(z)fj(z′), (9.12)

where aij are some constants. By Lemma 9.1, (9.8), (9.12) and (9.11) we see that

ckm−2k+1a(l)
m fl(z′) = ckm−2k+1(fl|T(m))(z′) = (fl ∗ hm)(z′)

=
r∑

i,j=1

ai,j

∫
F

fl(z)fi(z)fj(−z′)y2k−2dxdy

=
r∑

i,j=1

aij〈fl, fi〉fj(z′) =
r∑

j=1

alj〈fl, fl〉fj(z′),

where the last equality comes from the fact that f1, · · · , fr are orthogonal to each
other. Hence we have that alj = 0 if l �= j and

all =
ckm−2k+1

〈fl, fl〉
a(l)

m .

This shows (1) of the lemma.
(2) By the definition of the trace of a linear operator, we see that

tr(T(m)) =
r∑

j=1

a(j)
m .

Hence by (1) we know that

c−1
k m2k−1

∫
F

hm(z,−z)y2k−2dxdy

=
r∑

j=1

a
(j)
m

〈fj , fj〉

∫
F

fj(z)fj(−z)y2k−2dxdy
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=
r∑

j=1

a
(j)
m

〈fj , fj〉

∫
F

fj(z)fj(z)y2k−2dxdy

=
r∑

j=1

a(j)
m = tr(T(m)),

where the second equality comes from (9.11). This completes the proof.

We shall give an explicit expression for the trace in terms of the (2) of Lemma
9.2. We need some notations and definitions. We define a function H(n) for integers
n as follows:

H(n) = 0, ∀ n < 0 and H(0) = − 1
12

.

If n > 0, let H(n) be the number of equivalence classes with respect to Γ of positive
definite binary quadratic forms ax2 + bxy + cy2 with discriminant b2 − 4ac = −n,
counting forms equivalent to a multiple of x2 + y2 or x2 + xy + y2 with multiplicity
1
2

or
1
3

respectively. By the definition we see that H(n) = 0 if n ≡ 1, 2 (mod 4). We

also define a polynomial Pj(t, m) as the coefficient of xj−2 in the formal power series
expansion of (1 − tx + mx2)−1, i.e.,

(1 − tx + mx2)−1 =
∞∑

j=2

Pj(t, m)xj−2.

It is easy to verify that

Pj(t, m) =
ρj−1 − ρj−1

ρ − ρ
, (9.13)

where ρ, ρ are the roots of the equation x2 − tx + m = 0.

Theorem 9.1 Let m � 1 and k � 2 be positive integers, then the trace of the Hecke
operator T(m) on the space Sk is given by

tr(T(m)) = −1
2

∞∑
−∞

P2k(t, m)H(4m − t2) − 1
2

∑
dd′=m

min{d, d′}2k−1, (9.14)

where d and d′ are positive integers such that dd′ = m.

Proof By Lemma 9.2 we have

tr(T(m)) = c−1
k m2k−1

∫
F

∑
ad−bc=m

y2k

(c|z|2 + dz − az − b)2k

dxdy

y2
. (9.15)

To show the theorem we only need to compute the integral. The sum on the right
hand side is invariant under the action of Γ since the integral is independent of the
choice of the fundamental domain F .
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Suppose that M =
(

a1 b1

c1 d1

)
∈ Γ . Write M−1

(
a b

c d

)
M =

(
a2 b2

c2 d2

)
. Then

a direct computation shows that

c2|z|2 + d2z − a2z − b2 = (c|Mz|2 + dMz − aMz − b)|c1z + d1|2.

Therefore

Im(Mz)2k

(c|Mz|2 + dMz − aMz − b)2k
=

y2k

(c2|z|2 + d2z − a2z − b2)2k
,

where we used the fact that Im(Mz) = |c1z + d1|−2Im(z). This shows that replacing

z by Mz amounts to replacing the matrix
(

a b

c d

)
by M−1

(
a b

c d

)
M in terms

of the sum (9.15). These two matrices have the same determinant and the same
trace. Therefore we may decompose the sum into pieces which are invariant under Γ ,
characterized by the condition a + d =constant, so that

tr(T(m)) =
∞∑

t=−∞
I(m, t),

where

I(m, t) = c−1
k m2k−1

∫
F

∑
ad−bc=m,

a+d=t

y2k

(c|z|2 + dz − az − b)2k

dxdy

y2
. (9.16)

We shall prove

1
2
(I(m, t) + I(m,−t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
P2k(t, m)H(4m − t2), if t2 − 4m < 0,

2k − 1
24

mk−1 − 1
4
mk−1/2, if t2 − 4m = 0,

−1
2

(
|t| − u

2

)2k−1

, if t2 − 4m = u2

with u a positive integer,

0, if t2 − 4m > 0 is non-square,

which implies the theorem. To calculate the integral (9.16), we first note that there

is a bijection between the set of matrices
(

a b

c d

)
with determinant m and trace t,

and the set of binary quadratic forms g with discriminant |g| = t2 − 4m. In fact, the
bijection is given by(

a b

c d

)
�→ g(u, v) = cu2 + (d − a)uv − bv2,
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g(u, v) = αu2 + βuv + γv2 �→

⎛⎝ t − β

2
−γ

α
t + β

2

⎞⎠ .

For any form g(u, v) = αu2 + βuv + γv2 and real t, z = x + iy ∈ H, put

Rg(z, t) =
y2k

(α(x2 + y2) + βx + γ − ity)2k
, (9.17)

then we see that

I(m, t) = c−1
k m2k−1

∫
F

∑
|g|=t2−4m

Rg(z, t)
dxdy

y2
, (9.18)

where the sum is taken over all forms with discriminant t2 − 4m. Any M ∈ Γ
transforms a quadratic form g into a form Mg. A direct computation shows that

Rg(Mz, t) = RMg(z, t). (9.19)

Therefore for each discriminant D, i.e., for each integer D ≡ 0 or 1 (mod 4), we have∑
|g|=D

Rg(z, t) =
∑

|g|=D mod Γ

∑
M∈Γ/Γg

RMg(z, t)

=
∑

|g|=D mod Γ

∑
M∈Γ/Γg

Rg(Mz, t),

where the first sum is taken over a set of representatives for classes of quadratic forms
with discriminant D, and the second sum is taken over right cosets of Γ with respect
to the isotropy group Γg of elements leaving g fixed. For D �= 0, the class number
h(D) is finite, and hence the first sum is finite and∫

F

∑
|g|=D

Rg(z, t)
dxdy

y2
=

∑
|g|=D mod Γ

∫
Fg

Rg(z, t)
dxdy

y2
, (9.20)

where Fg =
⋃

M∈Γ/Γg

M(F ) is a fundamental domain of Γg on H. For D = 0 we can

take gr(u, v) = rv2 (r ∈ Z) as a complete set of representatives for the forms with
discriminant 0. The isotropy group Γgr of gr is equal to Γ for r = 0, and is equal to

Γ∞ :=
{
±
(

1 n

0 1

) ∣∣∣∣n ∈ Z

}
for r �= 0. Hence we have∫

F

∑
|g|=0

Rg(z, t)
dxdy

y2
=
∫
F

Rg0(z, t)
dxdy

y2
+
∫

F∞

∑
r∈Z∗

Rgr (z, t)
dxdy

y2
, (9.21)
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where F∞ = {z ∈ H|0 � Re(z) < 1} is a fundamental domain of Γ∞ on H. The
integrals at the right hand side of (9.20) and (9.21) for D = t2 − 4m remain to be
computed. We distinguish four cases.

Case (1). D < 0. In this case Γg is finite (and one can prove that its order is 1, 2
or 3). Let

g(u, v) = αu2 + βuv + γv2

be a quadratic form with discriminant |g| = D, then∫
Fg

Rg(z, t)
dxdy

y2
=

1
|Γg|

∫
H

Rg(z, t)
dxdy

y2

=
1

|Γg|

∫
H

y2k

(α|z|2 + βx + γ − ity)2k

dxdy

y2
.

For α > 0, replacing z by
z

α
− β

2α
we have

∫
Fg

Rg(z, t)
dxdy

y2
=

1
|Γg|

∫
H

y2k

(|z|2 − ity − D/4)2k

dxdy

y2
.

For α < 0, using (α, β, γ) �→ (−α,−β,−γ) we can obtain that∫
Fg

Rg(z, t)
dxdy

y2
=

1
|Γg|

∫
H

y2k

(|z|2 + ity − D/4)2k

dxdy

y2
.

Set

I(t) =
∫
H

y2k

(|z|2 − ity − D/4)2k

dxdy

y2
, (9.22)

which is only dependent on D, t and k. Therefore∫
F

∑
|g|=D

Rg(z, t)
dxdy

y2
=(I(t) + I(−t))

∑
|g|=D mod Γ

1
|Γg|

=H(−D)(I(t) + I(−t)). (9.23)

A direct computation shows that∫ ∞

−∞
(x2 + s)−2dx =

πs−3/2

2

holds for any Re(s) �= 0. Taking derivatives with respect to s we obtain that∫ ∞
−∞

(x2 + s)−ldx =
π

(l − 1)!
1
2
· 3
2
· · ·
(

l − 3
2

)
s−l+1/2
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for any l � 2 and Re(s) �= 0. Therefore we see that

I(t) =
∫ ∞

0

y2k−2

∫ ∞
−∞

(x2 + y2 − ity − D/4)−2kdxdy

=
π

(2k − 1)!
1
2
· 3
2
· · · (2k − 3/2)

∫ ∞
0

(y2 − iyt − D/4)−2k+1/2y2k−2dy

=
(−1)k−1π

2(2k − 1)!
d2k−2

dt2k−2

∫ ∞
0

(y2 − ity − D/4)−3/2dy

=
(−1)k−1π

2(2k − 1)!
d2k−2

dt2k−2

(
4

t2 − D

y − it/2√
y2 − iyt − D/4

∣∣∣∣y=∞

y=0

)
=

(−1)k−1π

2(2k − 1)!
d2k−2

dt2k−2

(
4√
|D|

1√
|D| − it

)
g

=
2π

2k − 1
1√
|D|

1
(
√

|D| − it)2k−1
.

Hence from the above equality and (9.23) we obtain for t2 − 4m < 0 that

I(m, t) = c−1
k m2k−1H(4m − t2) · 2π

2k − 1
· 1√

4m − t2

×
(

1
(
√

4m − t2 − it)2k−1
+

1
(
√

4m − t2 + it)2k−1

)
=

H(4m − t2)
2

ρ2k−1 − ρ2k−1

ρ − ρ
,

where ρ = (t + i
√

4m − t2)/2. Therefore for t2 − 4m < 0 we have

1
2
(I(m, t) + I(m,−t)) =

H(4m − t2)
2

ρ2k−1 − ρ2k−1

ρ − ρ

= −1
2
H(4m − t2)P2k(t, m)

from the definition of Pj(t, m).
Case (2). D = 0. In this case we have t = ±2

√
m with m a square. The first term

of the right hand side of (9.21) is equal to∫
F

Rg0(z, t)
dxdy

y2
=

(−1)k

t2k

∫
F

dxdy

y2
=

(−1)kπ

3t2k
. (9.24)

And the second term of the right hand side of (9.21) is equal to∫
D∞

∑
0�=r∈Z

Rgr (z, t)
dxdy

y2
=
∫ ∞

0

∫ 1

0

∑
0�=r∈Z

(r − ity)−2ky2k−2dxdy

=
∫ ∞

0

y2k−2
∑

0�=r∈Z

(r − ity)−2kdy
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=
(−1)k−1

(2k − 1)!
d2k−2

dt2k−2

∫ ∞
0

∑
0�=r∈Z

(r − ity)−2dy

=
(−1)k−1

(2k − 1)!
d2k−2

dt2k−2

∫ ∞
0

(
1

t2y2
− π2

sinh2 πty

)
dy

=
(−1)k−1

(2k − 1)!
d2k−2

dt2k−2

(
− 1

t2y
+
πcth(πty)

t

)∣∣∣∣y=∞

y=0

=
(−1)k−1

(2k − 1)!
d2k−2

dt2k−2

(
π

|t|

)
=

(−1)k−1

2k − 1
π|t|−2k+1, (9.25)

where we used the fact that

cth(x) =

{ 1
x

+
x

3
+ O(x3), if x → 0,

1, if x → ∞.

Therefore we obtain for t2 = 4m that

I(m, t) = c−1
k m2k−1

(
(−1)kπ

3(4m)k
+

(−1)k−1π

2k − 1
1

(2
√

m)2k−1

)
=

2k − 1
24

mk−1 − 1
4
mk−1/2.

Case (3). D = l2, l > 0 a positive integer. Then every form with discriminant D

is similar to one of the following standard forms:

gα(u, v) = αu2 + luv, 1 � α � l.

It is clear that |Γgα | = 1, and hence∫
F

∑
|g|=D

Rg(z, t)
dxdy

y2
=

l∑
α=1

∫
F

∑
M∈Γ

y2k
M

(α|zM |2 + lxM − ityM )2k

dxMdyM

y2
M

, (9.26)

where zM = Mz = xM + iyM . We write the integral on the right hand side of (9.26)
as

Iα = lim
ε→0

∫
Fε

∑
M∈Γ

y2k
M

(α|zM |2 + lxM − ityM )2k

dxMdyM

y2
M

, (9.27)

where
Fε := {z ∈ F |Im(z) � 1/ε}

is a compact set for any ε > 0. So we can interchange the integral and the summation,
but we must be careful by taking limit because there are probably some problems at
the points which are the roots of α|zM |2 + lxM − ityM = 0. So we have

Iα =
∫

H

y2k

(α|z|2 + lx − ity)2k

dxdy

y2
− lim

ε→0
Iε − lim

ε→0
Jε, (9.28)
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where

Iε =
∫

|z−εi/α|�ε/α

y2k−2

(α|z|2 + lx − ity)2k
dxdy,

Jε =
∫

|z+l/α−εi/α|�ε/α

y2k−2

(α|z|2 + lx − ity)2k
dxdy

for a sufficiently small ε > 0. Replacing z by
z

α
− l

2α
, then we see from (9.28) that

Iα =
∫ ∞

0

∫ ∞

−∞

y2k−2

(x2 + y2 − ity − l2/4)2k
dxdy − lim

ε→0
I+
ε − lim

ε→0
I−ε ,

where

I+
ε =

∫
|z/α−l/(2α)−εi/α|�ε/α

y2k−2

(x2 + y2 − ity − l2/4)2k
dxdy, (9.29)

I−ε =
∫

|z+l/(2α)−εi/α|�ε/α

y2k−2

(x2 + y2 − ity − l2/4)2k
dxdy. (9.30)

Similar to the case D < 0, we have that∫ ∞
0

∫ ∞
−∞

y2k−2

(x2 + y2 − ity − l2/4)2k
dxdy =

(−1)k2π/l

2k − 1
(l + |t|)1−2k.

Substituting x and y by ±l/2 + εa and ε + εb resp. in (9.29) and (9.30), we see that

I±ε =
∫

a2+b2�1

(1 + b)2k−2dadb

(±al − it(1 + b) + ε(a2 + 1 + b2))2k
.

Hence

lim
ε→0

I±ε =
∫

a2+b2�1

(1 + b)2k−2dadb

(al ∓ it(1 + b))2k
= I±t

and

It =
∫

a2+b2�1

(1 + b)2k−2dadb

(al − it(1 + b))2k

=
∫ 1

−1

(1 + b)2k−2

∫ √1−b2

−√1−b2

da

(la − it(1 + b))2k
db

=
∫ 1

−1

−(1 + b)2k−2

l(2k − 1)
((l
√

1 − b2 − it(1 + b))1−2k

+ (l
√

1 − b2 + it(1 + b))1−2k)db,
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replacing b by
1 − v2

1 + v2
, then

It = − 2
(2k − 1)l

∫ ∞
0

((lv + it)1−2k + (lv − it)1−2k)
vdv

1 + v2

= − 2
(2k − 1)l

∫ ∞
−∞

(lv + it)1−2k vdv

1 + v2

= − 2
(2k − 1)l

∫ ∞
−∞

(−1)k−1

(2k − 2)!
d2k−2

dt2k−2
(lv + it)−1 vdv

1 + v2

=
2(−1)k

l(2k − 1)!
d2k−2

dt2k−2

∫ ∞
−∞

vdv

(lv + it)(1 + v2)
.

But∫ ∞
−∞

vdv

(lv + it)(1 + v2)
=
∫ ∞
−∞

(lv − it)vdv

(l2v2 + t2)(1 + v2)

=
∫ ∞
−∞

lv2dv

(l2v2 + t2)(1 + v2)
− it

∫ ∞
−∞

vdv

(l2v2 + t2)(1 + v2)
,

the second integral in the above line is zero since the function is odd, so that∫ ∞
−∞

vdv

(lv + it)(1 + v2)
=

l

t2 − l2

∫ ∞
−∞

(
t2

l2v2 + t2
− 1

1 + v2

)
dv

=
t2

t2 − l2
1
t

arctan
(v

t

) ∣∣∞
−∞ − l

t2 − l2
arctan(v)

∣∣∞
−∞

=
π

|t| + l

and hence

It =
(−1)k2π
l(2k − 1)

(|t| + l)1−2k,

Iα =
(−1)k−12π
l(2k − 1)

(|t| + l)1−2k.

Therefore we obtain that∫
F

∑
|g|=l2

Rg(z, t)
dxdy

y2
=

l∑
α=1

Iα =
(−1)k−12π

2k − 1
(|t| + l)1−2k,

so that

I(m, t) = c−1
k m2k−1 (−1)k−12π

2k − 1
(|t| + l)1−2k − 1

2

(
|t| − l

2

)2k−1

.

Therefore for t2 − 4m = l2 with l a positive integer we have

1
2
(I(m, t) + I(m,−t)) = −1

2

(
|t| − l

2

)2k−1

.
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Case (4). D > 0 and D is non-square. Then the isotropy group of the form

g(u, v) = αu2 + βuv + γv2

is an infinitely cyclic group, where the discriminant of g is equal to D. Let w > w′ be
two real roots of the equation αx2 + βx + γ = 0, then w + w′ = −α

β
, ww′ =

γ

α
. Put

J =
1√

w − w′

(
w w′

1 1

)
∈ SL2(R)

and

JT

(
α β/2

β/2 γ

)
=

√
D

2

(
0 1
1 0

)
,

where JT is the transpose of J . If ±I �= T =
(

a b

c d

)
∈ SL2(Z) such that

T T

(
α β/2

β/2 γ

)
T =

(
α β/2

β/2 γ

)
,

i.e., ±T ∈ Γg, then ±I �= S := J−1TJ ∈ SL2(R) and

ST

(
0 1
1 0

)
S =

(
0 1
1 0

)
.

From this we know that S =
(

ε 0
0 ε−1

)
with a real ε �= ±1. Then

T = J

(
ε 0
0 ε−1

)
J−1. (9.31)

This shows that w, w′ are fixed points of T , i.e., w, w′ are roots of the equation
cx2 + (d − a)x − b = 0, so that

c = mα, d − a = mβ, −b = mγ. (9.32)

Set t = a + d, then

a =
t − mβ

2
, b = −mγ, c = mα, d =

t + mβ

2
,

t2 − Dm2 = (a + d)2 − m2(β2 − 4αγ) = 4.
(9.33)

From (9.31) we know that ε + ε−1 = a + d = t, so that

ε±1 =
t ±

√
t2 − 4
2

=
t ± m

√
D

2
. (9.34)

Set m = s/q with q � 1, s integers and (s, q) = 1. Then from (9.32) we see that
q|(α, β, γ). It is also clear that (α, β, γ)2|D. Put
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D = Δ(α, β, γ)2, (9.35)

with Δ ∈ N a non-square. So we can write

m =
p

(α, β, γ)
(9.36)

with p ∈ Z. From (9.34), (9.35) and (9.36) we get

ε±1 =
t ± p

√
Δ

2

so that from (9.33), (9.35) and (9.36)

t2 − Δp2 = 4.

We know that Pell’s equation has the solutions

ε = ±εn
0 , 0 �= n ∈ Z, (9.37)

where ε0 =
t0 + p0

√
Δ

2
> 1 is the fundamental unit. By (9.31) and (9.37) we have

T = ±J

(
εn
0 0
0 ε−n

0

)
J−1 = ±

(
J

(
ε0 0
0 ε−1

0

)
J−1

)n

,

which implies that the isotropy group Γg is the infinitely cyclic group generated by

J

(
ε0 0
0 ε−1

0

)
J−1.

Therefore∫
Fg

Rg(z, t)
dxdy

y2
=
∫
Fg

RJg(J−1z, t)
dxdy

y2
=
∫

J−1Fg

RJg(z, t)
dxdy

y2
. (9.38)

Since Γg is generated by J

(
ε0 0
0 ε−1

0

)
J−1, we may assume that Fg can be chosen

such that J−1Fg = {z = x + iy|y > 0, 1 < |z| � ε2
0}. Hence from (9.38) and the fact

that

JT

(
α β/2

β/2 γ

)
=

√
D

2

(
0 1
1 0

)
.

we see that ∫
Fg

Rg(z, t)
dxdy

y2
=

∫
y>0,1<|z|<ε2

0

(
√

Dd − ity)−2ky2k−2dxdy,

replacing x and y by ρ cos θ and ρ sin θ resp., we see that
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∫
Fg

Rg(z, t)
dxdy

y2
=
∫ π

0

∫ ε2
0

1

(
√

D cos θ − it sin θ)−2k(sin θ)2k−2ρ−1dρdθ

= (2 log(ε0))
∫ π

0

(
√

D cos θ − it sin θ)−2k(sin θ)2k−2dθ,

so that
I : =

∫
Fg

Rg(z, t)
dxdy

y2
+
∫
Fg

Rg(z,−t)
dxdy

y2

= (2 log(ε0))
∫ π
−π

(
√

D cos θ − it sin θ)−2k(sin θ)2k−2dθ

= 8(−1)ki log(ε0)
∫

|ζ|=1

(ζ2 − 1)2k−2ζ

((
√

D − t)ζ2 + (
√

D + t))2k
dζ,

where ζ = eiθ. Since

f(z) =
(z2 − 1)2k−2z

((
√

D − t)z2 + (
√

D + t))2k

is holomorphic in |z| � 1, we see that I = 0 by residue theorem. This shows that
I(m, t) + I(m,−t) = 0 if D = t2 − 4m > 0 is non-square.

This completes the proof of the Eichler-Selberg trace formula on SL2(Z).

9.2 Eichler-Selberg Trace Formula on Fuchsian Groups

In this section we shall discuss the Eichler-Selberg trace formula of the Hecke operator
on a Fuchsian group.

Let Γ ⊂ G = SL2(R) be a Fuchsian group of the first kind. For any g =
(

a b
c d

)
∈

Γ and any real α, put

Jg(z) = cz + d, Jα
g (z) = exp{α log(Jg(z))},

where
log(w) = log(|w|) + i arg(w), −π < arg(w) � π.

It is clear that the function on G × G

Cα(g1, g2) =
Jα

g1
(g2(z))Jα

g2
(z)

Jα
g1g2

(z)
, g1, g2 ∈ G

is independent of the choice of z, its value is equal to 1 or exp{±2πiα}, and |Cα(g1,

g2)| = 1.
Let V be a complex Hilbert space with dimension n, inner product (∗, ∗) and norm

‖ ∗ ‖.
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Definition 9.1 A map ε from the group Γ to the group of unitary operators on V

is called a multiplier of weight α if it satisfies the following conditions:

ε(γ1γ2) = Cα(γ1, γ2)ε(γ1)ε(γ2), ∀γ1, γ2 ∈ Γ

and
ε(−I) = exp{−πiα}E, if − I ∈ Γ ,

where E is the identity on V and I is the identity of Γ .

Let A∞α (Γ , V, ε) be the vector space on C of analytical functions Φ from H to V

satisfying the following conditions:
(1) ‖Φ‖∞ := sup

z∈H
(‖Φ‖yα/2) < ∞;

(2) Φ(γz) = Jα
γ (z)ε(γ)Φ(z) for any γ ∈ Γ .

Let Δ be a Γ double coset such that every element of Δ belongs to a subgroup of
G which is commensurable with Γ . For any γ ∈ Γ , set

ψγ(z) = J−α
γ (z)ε(γ)−1.

For any ξ ∈ Δ, take an operator η(ξ) on V such that ψξ(z) = J−α
ξ (z)η(ξ) satisfies

ψγ1ξγ2(z) = ψγ2(z)ψξ(γ2z)ψγ1(ξγ2z), ∀γ1, γ2 ∈ Γ , ξ ∈ Δ. (9.39)

Note that (9.39) is equivalent to

η(γ1ξγ2) = C−α(γ1, ξγ2)C−α(ξ, γ2)ε(γ2)−1η(ξ)ε(γ1)−1 (9.40)

for any γ1, γ2 ∈ Γ , ξ ∈ Δ
Now let Δ =

⋃
v

Γδv be a disjoint union of right cosets of Γ . We define the Hecke

operator T(Δ) on the space A∞α (Γ , V, ε) as follows:

(Φ|T(Δ))(z) =
∑

v

ψδvΦ(δvz).

It is clear that T(Δ) is independent of the choice of δv and

T(Δ)A∞α (Γ , V, ε) ⊂ A∞α (Γ , V, ε).

For ξ, ξ′ ∈ Δ we define an equivalent relation between ξ and ξ′ as follows:
(1) If ξ, ξ′ are scalars, then ξ = ξ′;
(2) If ξ, ξ′ are all elliptic (or hyperbolic), there exists a γ ∈ Γ such that γ−1ξγ = ξ′;
(3) If ξ, ξ′ are all parabolic, there exists a γ ∈ Γ such that γ−1ξ′γ ∈ Γξξ with

Γξ = {γ ∈ Γ |γ−1ξγ = ξ}.
Now let C = C(ξ) be the equivalent class of ξ. We define I(C) as follow:

(1) If ξ is a scalar, then
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I(C) =
α − 1

4π[±Γ : Γ ]
Vol(F )tr(ψξ),

where Vol(F ) =
∫

F

y−2dxdy with F a fundamental domain of Γ .

(2) If ξ ∈ Δ is an elliptic element with fixed points z0, z0 and z0 ∈ H, set

ρ =
(

z0 z0

1 1

)
, then ρ−1ξρ =

(
λ 0
0 λ

)
with |λ| = 1, define

I(C) =
tr(ψξ(z0))

[Γξ : 1](1 − λ−2)
.

(3) If ξ ∈ Δ is hyperbolic whose fixed points are not cusp points of Γ , then
I(C) = 0;

(4) If ξ ∈ Δ is hyperbolic whose fixed points u, v are cusp points of Γ , we take

ρ ∈ G such that ρ(0) = u, ρ(∞) = v, then ρ−1ξρ =
(

λ−1 0
0 λ

)
with λ a real and

|λ| > 1. Set

ψ = Cα(ρ, ρ−1ξ)Cα(ρ−1ξρ, ρ−1)C−α(ρ−1, ρ)λ−αtr(η(ξ)),

then

I(C) = − ψ

[±Γ : Γ ](1 − λ−2)
.

(5) If ξ ∈ Δ is parabolic whose fixed point s is a cusp point of Γ , then Γξ/Γξ∩{±I}
is an infinitely cyclic group with a generator δ, there exists ρ ∈ G such that ρ−1δρ =

t

(
1 1
0 1

)
= δ1, t = ±1 and ρ−1ξρ = c

(
1 r
0 1

)
= ξ1, c = ±1 with r a real. Set

ψ = Cα(ρ, ρ−1ξ)Cα(ρ−1ξρ, ρ−1)C−α(ρ−1, ρ)c−αη(ξ),

εδ = C−α(ρ, ρ−1δ)C−α(ρ−1δρ, ρ−1)Cα(ρ−1, ρ)tαε(δ)

and denote by e2πinj (0 < nj � 1, j = 1, · · · , n) the eigenvalues of εδ, (ψjl) the matrix
of ψ under the basis consisting of the eigenvectors of εδ. Then

I(C) =
n∑

j=1

ψjje2πirnj ×

⎧⎪⎨⎪⎩
1
2
− nj , if C = C(ξ) ⊂ ±Γ , i.e., r is an integer,

1
1 − e2πir

, if C = C(ξ) �⊂ ±Γ , i.e., r is not an integer.

Theorem 9.2 Let α � 2 be a real, then the space A∞α (Γ , V, ε) is finite dimensional
and

tr(T(Δ)) =
∑
C

I(C),
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where C runs over the set of equivalent classes of Δ.

Our destination in this section is to prove this theorem. To do this we shall first
express the Hecke operator as an integral operator on the space A∞α (Γ , V , ε). Let
A(H, V ) be the set of analytical functions on H with values in V and

Aα(Γ , V, ε) = {Φ ∈ A(H, V )|Φ(γz) = Jα
γ (z)ε(γ)Φ(z) for any γ ∈ Γ}.

Denote by μ the G-invariant measure of H, i.e., for any z = x + iy ∈ H, we have that
dμ(z) = y−2dxdy. We also denote by μ the measure on the Riemann surface Γ \ H.
It is clear that ‖Φ(z)‖yα/2 is Γ -invariant for any Φ ∈ Aα(Γ , V, ε). Let l � 1 be a real,
define a l-Norm of Φ ∈ Aα(Γ , V, ε):

‖Φ‖l =
(∫

F

‖Φ(z)‖lylα/2dμ(z)
)1/l

and set
Al

α(Γ , V, ε) = {Φ ∈ Aα(Γ , V, ε)|‖Φ‖l < ∞}.

The following fact is clear.

Lemma 9.3 Al
α(Γ , V, ε) is a Banach space for any 1 � l � ∞.

Since μ(F ) < ∞, we see for any 1 < l < ∞ that

A∞α (Γ , V, ε) ⊂ Al
α(Γ , V, ε) ⊂ A1

α(Γ , V, ε)

and the imbeddings are continuous. Put

A1
α(H, V ) =

⎧⎨⎩Φ ∈ A(H, V )|
∫
H

‖Φ‖yα/2dμ(z) < ∞

⎫⎬⎭ .

For any Φ ∈ A1
α(H, V ), α > 2, we define the Poincare series as follows

ΘαΦ(z) =
∑
γ∈Γ

ψγ(z)Φ(γz),

where
ψγ(z) = J−α

γ (z)ε(γ)−1.

Lemma 9.4 ΘαΦ ∈ A1
α(H, V, ε) for any Φ ∈ A1

α(H, V ).

Proof It follows from the fact that

‖ΘαΦ‖1 �
∫
H

‖Φ(z)‖yα/2dμ(z).
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In particular A2
α(Γ , V, ε) is a Hilbert space with inner product

〈Φ,Ψ〉 =
∫

F

(Φ(z), Ψ(z))yαdμ(z), Φ,Ψ ∈ A2
α(Γ , V, ε),

where (Φ,Ψ) is the inner product on the space V .
For any real α put

kα(z, w) =
(

z − w

2i

)−α

, z, w ∈ H. (9.41)

Then we have the following

Lemma 9.5 For any g ∈ G we have that

kα(gz, gw) = Jα
g (z)Jα

g (w)kα(z, w), z, w ∈ H. (9.42)

For any given z ∈ H, we consider the map from D = {w ∈ C||w| < 1} to H:

ρ(w) =
zw + z

w + 1
(9.43)

and set
Jα

ρ (w) = 2y−α/2eπiα/4(1 + w)α, z = x + iy. (9.44)

Then
kα(ρw, ρτ) = 2αJα

ρ (w)Jα
ρ (τ)(1 − wτ )−α, (9.45)

in particular, we have

kα(z, ρτ) = 2αJα
ρ (0)Jα

ρ (τ), (9.46)

(Im(ρτ))α = k−α(ρτ, ρτ) = 2−α|Jρ(τ)|−2α(1 − |τ |2)α, (9.47)

and
d(ρτ)
dτ

= J−2
ρ (τ). (9.48)

Lemma 9.6 Let α > 2 be real and f(z) a holomorphic function on H such that for
any z ∈ H the integral

I(z) =
∫
H

kα(z, ξ)f(ξ)(Im(ξ))αdμ(ξ)

converges absolutely. Then for any z ∈ H we have

f(z) =
α − 1
4π

∫
H

kα(z, ξ)f(ξ)(Im(ξ))αdμ(ξ).
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Proof By (9.41)-(9.48) we can obtain that

I(z) = 2Jα
ρ (0)

∫
D

J−α
ρ (τ)f(ρτ)(1 − |τ |2)α−2|dτ ∧ dτ |.

Put τ = reiφ. Then

I(z) = 4Jα
ρ (0)

∫ 1

0

(1 − r2)α−2r

(∫ 2π

0

J−α
ρ (reiφ)f(ρ(reiφ))dφ

)
dr

and applying Cauchy’s integral theorem we see that∫ 2π

0

J−α
ρ (reiφ)f(ρ(reiφ))dφ = 2πJ−α

ρ (0)f(ρ(0)) = 2πJ−α
ρ (0)f(z),

thus,

I(z) = 8πf(z)
∫ 1

0

(1 − r2)α−2rdr =
4π

α − 1
f(z).

This completes the proof.

Lemma 9.7 Let α > 2 be a real, then
(1) kα(·, ξ) ∈ A1

α(H, C) for any ξ ∈ H;

(2) kα(z, ·) ∈ A1
α(H, C) for any z ∈ H.

Proof Obvious.

Denote by V ′ and ε the space of all linear operators of V and the multiplier in V ′

induced from ε respectively. Put

Kα(z, ξ) =
∑
γ∈Γ

kα(γz, ξ)ψγ(z). (9.49)

Then it is easy to show the following:

Lemma 9.8 Let α > 2, then for any ξ

(1) Kα(·, ξ) ∈ A1
α(Γ , V ′, ε);

(2) Kα(·, ξ) ∈ A∞α (Γ , V ′, ε) and the right hand side of (9.49) is convergent for
(z, ξ) with respect to the norm.

(3) If we consider Kα(z, ξ) with respect to the variable ξ, then (Kα(z, ξ))∗ =
Kα(ξ, z) for z, ξ ∈ H where (Kα(z, ξ))∗ is the conjugate operator of Kα(z, ξ) in V . In
particular, for any given z ∈ H, Kα(z, ξ) is anti-analytical with respect to ξ (i.e., is
analytical with respect to ξ) and

Kα(z, γξ) = Kα(z, ξ)Jα
γ (ξ)ε(γ)−1, γ ∈ Γ .

By Lemma 9.7 and Lemma 9.8 we have immediately the following
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Lemma 9.9 Let α > 2. Then for any Φ ∈ Al
α(Γ , V, ε) with 1 � l � ∞ we have

Φ(z) =
α − 1

4π[±Γ : Γ ]

∫
F

Kα(z, ξ)(Im(ξ))αΦ(ξ)dμ(ξ), z ∈ H.

From the above lemma we see that A∞α (Γ , V, ε) is dense everywhere in A2
α(Γ , V, ε).

Put
Kα(z, ξ) =

α − 1
4π[±Γ : Γ ]

Kα(z, ξ).

Then from Lemma 9.9 and Lemma 9.8 we have the following:

Theorem 9.3 Let {Φm(z)} be a standard orthogonal basis of A2
α(Γ , V, ε). Then for

any vector v ∈ V we have that

Kα(z, ξ)v =
∑
m

(v,Φm(ξ))Φm(z), z, ξ ∈ H

and the series on the right hand side above is absolutely and uniformly convergent on
any compact subset of H × H.

Corollary 9.1 Let v1, · · · , vn be a standard orthogonal basis of V . Then for any
z, ξ ∈ H we have

tr(Kα(z, ξ)) =
∑
m

n∑
i=1

(vi,Φm(ξ))(Φm(z), vi)

and the series on the right hand side above is absolutely and uniformly convergent on
any compact subset of H × H. In particular we have

tr(Kα(z, z)) =
∑
m

‖Φm(z)‖2,

dim(A2
α(Γ , V, ε)) =

∫
F

tr(Kα(z, z)yαdμ(z).

Remark 9.1 We will know that the dimension of A2
α(Γ , V, ε) is finite. Hence

A∞α (Γ , V, ε) = A2
α(Γ , V, ε). So we can consider the Hecke operator in the space

A2
α(Γ , V, ε).

By the definition of the Hecke operator T(Δ) we obtain immediately the following:

Lemma 9.10 We have

Kα(z, w)|T(Δ) =
α − 1

4π[±Γ : Γ ]

∑
γ∈Δ

kα(γz, ξ)ψγ(z)

and the series on the right hand side above is absolutely and uniformly convergent on
any compact subset of H × H, where the Hecke operator T(Δ) is supposed to operate
on the variable z. Write Tα(Δ)(z, ξ) := Kα(z, w)|T(Δ).
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Lemma 9.11 (1) For any z ∈ H, the function Tα(Δ)(z, ξ) is anti-analytical with
respect to ξ and

sup
ξ∈H

(‖Tα(Δ)(z, ξ)‖(Im(ξ))α/2 < ∞.

(2) For any γ ∈ Γ we have

Tα(Δ)(z, γξ) = Tα(Δ)(z, ξ)Jα
γ (ξ)ε(γ)−1.

Proof Obvious.

By Lemma 9.9, Theorem 9.3, Lemma 9.10 and Lemma 9.11 we have the following:

Theorem 9.4 Let α > 2 be a real, Φ ∈ A∞α (Γ , V, ε) = A2
α(Γ , V, ε). Then

(Φ|T(Δ))(z) =
∫
F

Tα(Δ)(z, ξ)Φ(ξ)(Im(ξ))αdμ(ξ)

and
tr(T(Δ)) =

∫
F

tr(Tα(Δ)(z, z))yαdμ(z).

The Proof of Theorem 9.2 We know that

tr(T(Δ)) =
α − 1

4π[±Γ : Γ ]

∫
F

∑
ξ∈Δ

kα(ξz, z)tr(ψξ(z))yαdμ(z). (9.50)

We take a fundamental domain F of Γ as follows:

F = F0

h⋃
k=1

Fk, disjoint union, (9.51)

where F0 is compact, and for every k = 1, · · · , h there exists a gk ∈ G such that
gkFk = Πa with a > 0 and

Πa = {z ∈ H | Im(z) > a, 0 � Re(z) � 1}. (9.52)

Suppose A > a, set Fk,A = Fk − g−1
k ΠA and let xk be the cusp point corresponding

to Fk. Put
Δk = {ζ ∈ Δ|ζxk = xk}. (9.53)

By (9.50)-(9.53), we see that

tr(T(Δ))=
α − 1

4π[±Γ : Γ ]
lim

A→∞

(∑
ξ∈Δ

∫
F0

kα(ξz, z)tr(ψξ(z))yαdμ(z)

+
h∑

k=1

∑
ξ∈Δ−Δk

∫
Fk

kα(ξz, z)tr(ψξ(z))yαdμ(z)

+
h∑

k=1

∑
ξ∈Δk

∫
Fk,A

kα(ξz, z)tr(ψξ(z))yαdμ(z)
)

. (9.54)
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Classifying them according to the equivalence classes C ⊂ Δ, we have from (9.54)
that

tr(T(Δ)) =
α − 1

4π[±Γ : Γ ]

∑
C⊂Δ

I ′(C). (9.55)

We now compute I ′(C) as follows.

Case (1): C = C(ξ), ξ = ±
(

1 0
0 1

)
. Then ψξ(z) = ψξ is independent of z, and

I ′(C) =
∫

F

(
z − z

2i

)−α

tr(ψξ(z))yα−2dxdy = μ(F )tr(ψξ). (9.56)

Case (2): C = C(ξ) with ξ ∈ Δ an elliptic element. Then we have

I ′(C) = 2tr(η(ξ))
[±Γ : Γ ]
[Γξ : 1]

∫∫
D

Jα
ρ (ρ−1ξρ(w))

Jα
ξ (ρ(w))Jα

ρ (w)

× (1 − λ
2|w|2)−α(1 − |w|2)α−2|dw ∧ dw|.

It is easy to verify that

Jα
ρ (ρ−1ξρ(w))

Jα
ξ (ρ(w))Jα

ρ (w)
= J−α

ξ (z0), dμ(z) =
2|dw ∧ dw|
(1 − |w|2)2 , z =

z0w + z0

w + 1

and ∫
D

(1 − λ
2|w|2)−α(1 − |w|2)α−2|dw ∧ dw| =

2π

(α − 1)(1 − λ
2
)
,

hence

I ′(C) =
4π[±Γ : Γ ]

(α − 1)(1 − λ
2
)[Γξ : 1]

tr(ψξ(z0)). (9.57)

Case (3): C = C(ξ) with ξ ∈ Δ a hyperbolic element with non-cuspidal fixed
points. Then

I ′(C) =
∫

Fξ

kα(ξz, z)tr(ψξ(z))yαdμ(z),

where Fξ is a fundamental domain of Γξ. In this case the group Γξ/Γξ ∩ (±I) is

infinitely cyclic. Taking ρ ∈ G with ρ−1ξρ =
(

λ−1 0
0 λ

)
and λ > 1 a real, we have

I ′(C) = c

∫ b

1

r−1dr

∫ π
0

(
(λ−2 − 1) cotφ + i(λ−2 + 1)

2i

)−α dφ

sin2 φ
= 0, (9.58)

where b, c are constants.
Case (4): C = C(ξ) with ξ ∈ Δ a hyperbolic element with two cuspidal fixed points
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u, v. Taking ρ ∈ G such that ρ(0) = u, ρ(∞) = v, we have that ρ−1ξρ =
(

λ−1 0
0 λ

)
with λ a real and |λ| > 1. Set

ψ = Cα(ρ, ρ−1ξ)Cα(ρ−1ξρ, ρ−1)C−α(ρ−1, ρ)λ−αtr(η(ξ)),

then

I ′(C) = lim
A→∞,B→∞

tr(η(ξ))
∫

H−C0(A)−C∞(B)

Jα
ρ (ρ−1ξρz)

Jα
ξ (ρ(z))Jα

ρ (z)
kα(ρ−1ξρz, z)yαdμ(z),

where

C0(A) = {z ∈ H||z − i/(2A)| < 1/(2A)}, C∞(B) = {z ∈ H|Im(z) > B}.

Since
Jα

ρ (ρ−1ξρz)
Jα

ξ (ρ(z))Jα
ρ (z)

= Cα(ρ, ρ−1ξ)Cα(ρ−1ξρ, ρ−1)C−α(ρ−1, ρ)λ−α,

we see that

I ′(C) =ψ lim
A→∞,
B→∞

∫ π
0

(
(λ−2−1) cosφ +i(λ−2+1) sinφ

2i

)−α

sinα−2 φ

∫ B/ sin φ

sin φ/A

r−1drdφ

= −2ψ

∫ π
0

(
(λ−2 − 1) cotφ + i(λ−2 + 1)

2i

)−α log(sin φ)
sin2 φ

dφ

=
4iψ

(1 − λ−2)(α − 1)

∫ π
0

(
(λ−2 − 1) cotφ + i(λ−2 + 1)

2i

)1−α

cotφdφ,

where we used integration by parts to obtain the last equality. Set u = cotφ, we see
that

I ′(C)=
4iψ

(1 − λ−2)(α − 1)

∫ −∞
∞

(
(λ−2 − 1)u + i(λ−2 + 1)

2i

)1−α
udu

1 + u2

=
4iψ

(1 − λ−2)(α − 1)
Res
u=−i

(
(λ−2 − 1)u + i(λ−2 + 1)

2i

)1−α
u

u − i

=− 4πψ
(α − 1)(1 − λ−2)

. (9.59)

Case (5): C = C(ξ) with ξ a parabolic element. Then Γ/Γξ ∩ (±I) is an infinitely
cyclic group and

I ′(C) = [±Γ : Γ ] lim
A→∞

∑
m

′
Cα(ρ, ρ−1δmξ)Cα(ρ−1δmξρ, ρ−1)

× C−α(ρ−1, ρ)tr(η(δmξ))
∫ A

0

yα−2

∫ 1

0

kα(ρ−1δmξρz, z)J−α
ρ−1δmξρ(z)dxdy
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= [±Γ : Γ ] lim
A→∞

∑
m

′
Cα(δm

1 ξ1, ρ
−1)C−α(ρ−1, ρ)tr(η(ρδm

1 ξρ−1))

×
∫ A

0

yα−2

∫ 1

0

kα(δm
1 ξ1z, z)J−α

δm
1 ξ1

(z)dxdy,

where
∑
m

′
means that m runs over all integers with δmξ �= 1 �= δm

1 ξ1. It is easy to

see that

ψ̃δm
1 ξ1(z) = Cα(ρ, δm

1 ξ1ρ
−1)Cα(δm

1 ξ, ρ−1)C−α(ρ−1, ρ)J−α
δm
1 ξ1

(z)η(ρδm
1 ξρ−1)

is independent of z and satisfies

ψ̃δm
1 ξ1(z) = ψ · ε−m

δ .

Therefore we have

ψ̃δm
1 ξ1(z) =

n∑
j=1

ψjje−2πimnj ,

so

I ′(C)= [±Γ : Γ ]
n∑

j=1

ψjj lim
A→∞

∑
m

′
e−2πimnj

∫ A

0

(
y +

m + r

2i

)−α

yα−2dy

=
2i[±Γ : Γ ]

α − 1

n∑
j=1

ψjj lim
A→∞

∑
m

′ e−2πimnj

m + r

(
1 +

m + r

2iA

)1−α

, (9.60)

where
∑
m

′
means that m runs over all integers with m + r �= 0.

For any real n with 0 < n � 1, put

S(n, r) = lim
A→∞

∑
m∈Z,

m+r �=0

e−2πimn

m + r

(
1 +

m + r

2iA

)1−α

, (9.61)

then

S(n, r) =

⎧⎨⎩
2πi(n− 1/2), if r is an integer,

−2πi
e2πirn

1 − e2πir
, if r is not an integer

(9.62)

In fact, since S(n, r) = e2πi[r]nS(n, {r}) where {r} is the fractional part of r, we may
assume that 0 � r < 1.

If 0 < n < 1, since

∑
m

′ e−2πimn

m + r
=

⎧⎨⎩
2πi(n − 1/2), if r = 0,

−2πi
e2πirn

1 − e2πir
, if 0 < r < 1
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is boundedly convergent, we may interchange the summation and the limitation in
(9.61) and hence obtain (9.62). So we may now assume that n = 1. Then

S(n, r) = S(1, r) = lim
A→∞

∑
m∈Z,

m+r �=0

1
m + r

(
1 +

m + r

2iA

)1−α

.

If r = 0, then

S(n, 0) = lim
A→∞

∞∑
m=1

(
1
m

(
1 +

m

2iA

)1−α

− 1
m

(
1 − m

2iA

)1−α)

=
1
2

∫ ∞
−∞

1
x

((
1 +

x

2i

)1−α

−
(

1 − x

2i

)1−α)
dx

=
1
2

∫ ∞
−∞

1
x

((
1 +

x

2i

)1−α

− 1
x2 + 1

)
dx

+
1
2

∫ ∞
−∞

1
x

(
1

x2 + 1
−
(

1 − x

2i

)1−α)
dx

= πi,

where we used the residue theorem to get the last equality.
If r �= 0, then

S(n, r)=
1
r

+
1

r + 1
− 1

1 − r
+
∫ ∞

1

{x}
(x − r)2

dx −
∫ ∞

1

{x}
(x + r)2

dx

+
1
2

∫ ∞
−∞

1
x

((
1 +

x

2i

)1−α

−
(

1 − x

2i

)1−α)
dx − log

1 + r

1 − r
, (9.63)

where the last term came from

− lim
A→∞,ε→0

∫ (1+r)/A

ε

1
x

(
1 +

x

2i

)1−α

dx −
∫ (1−r)/A

ε

1
x

(
1 − x

2i

)1−α

dx

= − lim
A→∞,ε→0

(∫ (1+r)/A

ε

1
x

dx −
∫ (1−r)/A

ε

1
x

dx

)
= − log

1 + r

1 − r
.

On the other hand we have∫ ∞
1

{x}
(x − r)2

dx −
∫ ∞

1

{x}
(x + r)2

dx

=
∞∑

m=1

(
−
∫ m+1

m

x − m

(x + r)2
dx +

∫ m+1

m

x − m

(x − r)2
dx

)

=
∞∑

m=1

(
1

r + m + 1
+

1
r − m − 1

+
∫ m+1

m

(
1

x − r
− 1

x + r

)
dx

)
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=
∞∑

m=2

(
1

r + m
− 1

m

)
+

−∞∑
m=−2

(
1

r + m
− 1

m

)
+
∫ ∞

1

(
1

x − r
− 1

x + r

)
dx

=
∞∑

m∈Z,m �=0,±1

(
1

r + m
− 1

m

)
+ log

1 + r

1 − r
.

By the above equality and (9.63) we obtain that

S(n, r)=π cot(πr) +
1
2

∫ ∞
−∞

1
x

((
1 +

x

2i

)1−α

−
(

1 − x

2i

)1−α)
dx

=πi + π cot(πr), (9.64)

where to obtain the last equality we used the following fact:∫ ∞
−∞

1
x

((
1 +

x

2i

)1−α

−
(

1 − x

2i

)1−α)
dx

=
1
2

∫ ∞
−∞

1
x

((
1 +

x

2i

)1−α

− 1
x2 + 1

)
dx

+
1
2

∫ ∞
−∞

1
x

(
1

x2 + 1
−
(

1 − x

2i

)1−α)
dx

=πi

by the residue theorem.
This completes the proof of Theorem 9.2 because of (9.56)-(9.62).

Let k � 1 and N be positive integers. Applying Theorem 9.2, we can prove the
following trace formula (please compare J. Oesterlé, 1977).

Theorem 9.5 We have the following trace formula:

tr(T2k,N (n), S(N, 2k, id.)) = B1 + B2 + B3 + B4 + B5, (n, N) = 1

with

B1 = δ

(
1
n

)
(2k − 1)N

12

∏
p|N

(
1 +

1
p

)
,

B2 = −1
2

∑
|s|<2

√
n

P2k(s, n)
∑

f2|s2−4n,

(s2−4n)/f2≡0,1 mod 4

h′
(

s2 − 4n

f2

)
μ(s, f, n, N),

B3 = −σ0(N)
∑

0<λ′<λ,
λλ′=n

λ′2k−1
φ((λ − λ′), n)

(λ − λ′, n)
,

B4 = −1
2
nk−1φ(

√
n)σ0(N),

B5 =
{

0, if k > 1,

σ1(n), if k = 1,
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where Pk(t, j) is defined in equality (9.13), μ(t, f, n, M) is defined in Lemma 5.23,
h′(m) is defined as the number of SL2(Z)-equivalence classes of positive definite prim-
itive integral binary quadratic forms of discriminant m, and a form equivalent to
X2 +Y 2 or X2 +XY +Y 2 is counted with multiplicity 1/2 or 1/3 respectively, σ0(N)
is defined as the number of positive divisors of N . δ(x) is 1 or 0 according as x ∈ Z
or not, and φ(k) is Euler function.

Also, applying Theorem 9.2, S. Niwa proved the similar result for Hecke operators
half-integral weight (please compare S. Niwa, 1977).

Theorem 9.6 Let k � 1 be a positive integer and N an odd positive integer. Then
for any (n, 2N) = 1 we have

tr(Tk+1/2,4N (n2), S(4N, k + 1/2, id.)) = tr(T2k,2N (n), S(2N, 2k, id.)).

We shall not give the proofs of Theorem 9.5 and Theorem 9.6, since they are
similar to the proof of Kohnen’s trace formula for Kohnen’s + space which will be
given in next section.

9.3 Trace Formula on the Space Sk+1/2(N, χ)

In this section we compute the traces of Hecke operators on the space Sk+1/2(N, χ)
discussed in Section 6.2. We will use the notations of Section 6.2. Our presentation
is due to W. Kohnen, 1982.

Denote by HN the subalgebra of the Hecke algebra with respect to Γ0(N) and{(
a b
c d

)
∈ M2(Z)

∣∣∣∣ c ≡ 0 (mod N), (a, N) = 1, ad − bc > 0
}

,

which is generated by the double cosets Γ0(N)
(

1 0
0 n

)
Γ0(N) with n ∈ N and

(n, 2N) = 1. Then the elements Γ0(N)
(

a 0
0 d

)
Γ0(N) form a C-basis of HN , where

a, d > 0, a|d and (d, 2N) = 1.
Define a linear map R from HN to EndC(Sk+1/2(n, χ)) by requiring that

R

(
Γ0(N)

(
a 0
0 d

)
Γ0(N)

)
=a(ad)k−3/2

[
Δ0(4N, χ1)

{(
a2 0
0 d2

)
, (d/a)1/2

}
Δ0(4N, χ)

]

restricted to Sk+1/2(N, χ), where χ1 =
(

4χ(−1)
·

)
χ. Since

[
Δ0(4N, χ1)

{(
a2 0
0 d2

)
, (d/a)1/2

}
Δ0(4N, χ)

]
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is a polynomial in Tk+1/2,4N,χ1(p
2) (p prime, p � 2N), it preserves Sk+1/2(N, χ).

Then R is a representation of HN . On the other hand, we have a representation
R̃ : HN → EndC(S(N, 2k, id.)) defined by

R̃

(
Γ0(N)

(
a 0
0 d

)
Γ0(N)

)
= (ad)2k−1

[
Γ0(N)

(
a 0
0 d

)
Γ0(N)

]
2k

.

The aim of this section is to prove that the representations R and R̃ are equivalent
which can be deduced from the following:

Theorem 9.7 Let notations be as above. Then

tr(Tk+1/2,N,χ(n), Sk+1/2(N, χ)) = tr(T2k,N (n), S(N, 2k, id.)), (n, 2N) = 1, (9.65)

where Tk+1/2,N,χ(n) resp. T2k,N (n) are the images of Γ0(N)
(

1 0
0 n

)
Γ0(N) under

R resp. R̃.

An explicit expression of the trace of T2k,N (n) on S2k(N) was obtained in The-
orem 9.5. We will show that the left-hand side of (9.65) is also given by this ex-
pression. We know that U(t) is an isomorphism from Sk+1/2(N) onto Sk+1/2(N, χ)
by the results of Section 6.2. Since U(t) commutes with Hecke operators, it is suffi-
cient to compute the left-hand side of (9.65) for trivial χ. In the following we write
Tk+1/2,N (n) resp. Tk+1/2,4N (n2) for Tk+1/2,N,id.(n) resp. Tk+1/2,4N,( 4

· )(n
2) and ab-

breviate Δ0

(
4N,

(
4
·

))
as Δ0(4N). By the definition of Tk+1/2,N (n) we have

tr(Tk+1/2,N (n), Sk+1/2(N)) = tr
(

Tk+1/2,4N (n2)pr, S
(

4N, k + 1/2,

(
4
·

)))
.

Substituting the definition of pr we see that

tr(Tk+1/2,N (n), Sk+1/2(N))

=
1
6
(−1)[(k+1)/2]

√
2tr
(

Tk+1/2,4N (n2)Q, S

(
4N, k + 1/2,

(
4
·

)))
+

1
3
tr
(

Tk+1/2,4N (n2), S(4N, k + 1/2,

(
4
·

)))
(9.66)

The second trace on the right-hand side was computed in Theorem 9.6 for k � 2,
in which case the term is equal to the trace of the usual Hecke operator of degree n

on the space of weight 2k for Γ0(2N). So we only need to compute the first summand
on the right of (9.66).

Lemma 9.12 We have the following equality:
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Δ0(4N)
{(

1 0
0 n2

)
, n1/2

}
Δ0(4N) · Δ0(4N)ξΔ0(4N)

=Δ0(4N)
{(

4 1
0 4n2

)
, eπi/4n1/2

}
Δ0(4N), (9.67)

where ξ := ξk+1/2,ε :=
{(

4 1
0 4

)
, ε1/2eπi/4

}
.

Proof For any double coset D denote by deg(D) its degree, i.e. the number of
right cosets contained in D . Using (n, 2N) = 1 we can check that

deg(Δ0(4N)
{(

1 0
0 n2

)
, n1/2

}
Δ0(4N)) = [Γ0(4N) : Γ0(4Nn2)].

Furthermore, by (6.27), we see that

deg(Δ0(4N)ξΔ0(4N)) = 4,

so the degree of the left-hand side of (9.67) is equal to 4[Γ0(4N) : Γ0(4Nn2)]. On the
other hand we can verify that

Δ0(4N) ∩ αΔ0(4N)α−1 = Δ0(16Nn2),

where α =
{(

4 1
0 4n2

)
, eπi/4n1/2

}
. So the degree of the right-hand side of (9.67) is

equal to

[Γ0(4N) : Γ0(16Nn2)] = [Γ0(4Nn2) : Γ0(16Nn2)][Γ0(4N) : Γ0(4Nn2)]

= 4[Γ0(4N) : Γ0(4Nn2)].

Therefore the degree of the expressions on both sides of (9.67) are equal. Since{(
1 0
0 n2

)
, n1/2

}
ξ =

{(
4 1
0 4n2

)
, eπi/4n1/2

}
,

the set on the right of (9.67) is contained in the set on the left, the desired equality
holds.

From Lemma 9.12 we see that

1
6
(−1)[(k+1)/2]

√
2tr
(

Tk+1/2,4N (n2)Q, S

(
4N, k + 1/2,

(
4
·

)))
=cn,ktr

(
[Δ0(4N)(Cn, n1/2)Δ0(4N)], S

(
4N, k + 1/2,

(
4
·

)))
,

where cn,k =
1
6
nk−3/2(1 − (−1)ki) and Cn =

(
4 1
0 4n2

)
.
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We shall now apply the Eichler-Selberg trace formula proved in Section 9.2. We
suppose k � 1. If C = D1CnD2 with D1, D2 ∈ Γ0(4N) we put C∗ = D∗1(Cn, n1/2)D∗2 .
Then it is easy to verify that the map C �→ C∗ is a well-defined bijection between
Γ0(4N)CnΓ0(4N) and Δ0(4N)(Cn, n1/2)Δ0(4N). For C ∈ GL+

2 (R) we denote by
Γ0(4N)C = {D ∈ Γ0(4N)|D−1CD = C} the stabilizer of C in Γ0(4N), and for a cusp
x ∈ Q ∪ {i∞} we write Δ0(4N)(x) = {D∗ ∈ Δ0(4N)|Dx = x}.

Two elements C and C ′ in Γ0(4N)CnΓ0(4N) are equivalent if one of the following
conditions is satisfied:

(1) There exists D ∈ Γ0(4N) with C ′ = D−1CD;
(2) C, C′ are parabolic and there exists D ∈ Γ0(4N) and D′ ∈ Γ0(4N)C with

C′ = D−1D′CD.
Then according to S. Niwa, 1977 we have

1
6
(−1)[(k+1)/2]

√
2tr
(

Tk+1/2,4N (n2), S
(

4N, k + 1/2,

(
4
·

)))
= cn,k

(∑
C̃

I(C) + r

)
,

where the summation extends over all classes C̃ in Γ0(4N)CnΓ0(4N) modulo the
equivalence relation defined above and the complex number I(C) is dependent only
on the class of C and is given as follows:

(1) If C is scalar, C∗ =
{(

a 0
0 a

)
, η

}
, one has

I(C) = (k − 1/2)
1

4πη

∫
Γ0(4N)\H

y−2dxdy.

(2) If C is elliptic, C∗ =
{(

a b
c d

)
, tC(cz + d)1/2

}
, one has

I(C) = (σC tCρk−1/2(ρ − ρ))−1,

where ρ and ρ are the eigenvalues of C with sgn(Im(ρ)) = sgn(c) and σC is the order
of Γ0(4N)C .

(3) If C is hyperbolic and its fixed points are not cusps of Γ0(4N), I(C) = 0.
(4) If C is hyperbolic and its fixed points are cusps of Γ0(4N), let Ĝ be the

group consisting of pairs (A, φ(z)), where A ∈ GL+
2 (R) and φ(z) is a complex-valued

holomorphic function on the upper half-plane satisfying |φ(z)| = (det(A))−1/4|cz +
d|1/2 (please see Section 4.1), choose δ ∈ SĜ (the subset of Ĝ of elements whose first

components have determinant 1) such that δ−1C∗δ =
{(

λ 0
0 λ′

)
, η

}
with |λ′| < |λ|.

Then

I(C) =
1
2

(
η

(
λ′

λ
− 1
))−1

.
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(5) If C is parabolic with fixed point x ∈ Q ∪ {i∞}, there exists δ ∈ SĜ, X ∈ R,

μ ∈ C and ρ ∈ {±1} such that δ

{
ρ

(
1 X
0 1

)
, μ

}
δ−1 generates Δ0(4N)(x)/{(±1, 1)}.

If δ−1C∗δ =
{(

a auX
0 1a

)
, η

}
and μ = e−2πiα (0 � α < 1), one has

I(C) =

⎧⎪⎨⎪⎩
− 1

2η
e−2πiuα(1 − 2α), if u ∈ Z ,

− 1
2η

e−2πiuα(1 − i cot(πu)), if u �∈ Z .

Finally

r =

{
0, if k > 1,

tr
(
[Δ0(4N)(C−1

n , n−1/2)Δ0(4N)], G(4N, 1/2, id.)
)

, if k = 1,

where G(4N, 1/2, id.) is the space of modular forms of weight 1/2 on Γ0(4N).
Therefore we can write

cn,k

(∑
C̃

I(C) + r

)
= A1 + A2 + A3 + A4 + A5,

where A1, A2, A3 and A4 is cn,k times the contribution from the scalar, elliptic,
hyperbolic and parabolic elements, respectively, and A5 = cn,kr.

Since the upper right entry of a matrix in Γ0(4N)CnΓ0(4N) is always odd, Γ0(4N)
· CnΓ0(4N) contains no scalar matrices and so A1 = 0.

Computation of A2 For an elliptic matrix C =
(

a b
c d

)
∈ Γ0(4N)CnΓ0(4N)

put C′ =
(

a −b
−c d

)
and J(C) = I(C) + I(C′). Then

A2 = cn,k

∑
C̃

J(C),

where the summation extends over those elliptic Γ0(4N)−conjugacy classes C̃ for
which the lower left entry of C is positive. Now the fact that C ∈ Γ0(4N)CnΓ0(4N)
implies t ≡ 0(mod 4) and f odd. Since C is primitive, we have (f, n) = 1. Therefore
we may write

A2 = cn,k

∑
t

(1)
∑

f

(2)
∑
A

(3)
∑
B

(4)J(B−1AB), (9.68)

where
∑(1)

extends over t ∈ Z with |t| < 8n, t ≡ 0 (mod 4) and where
∑(2)

extends

over f ∈ N with f2|(t2−64n2) and (f, 2n) = 1; for t and f fixed A in
∑(3)

runs over a
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set of representatives of Γ (1)-conjugacy classes of primitive matrices in GL2(Z) with

determinant 16n2, invariants t and f and lower left entry positive, and B in
∑(4)

runs over those elements in Γ (1)/Γ0(4N) for which B−1AB ∈ Γ0(4N)CnΓ0(4N).

Now we want to compute J(C) for a matrix C =
(

a b
c d

)
with c > 0 representing

a class in Γ0(4N)CnΓ0(4N). By Lemma 5.21 resp. Lemma 5.22 we may suppose that

d > 0, (b, d) = 1,

(
b

f
,
t2 − 64n2

f2

)
= 1 (9.69)

and that

C∗ =

{(
a b
c d

)
, (4n)−1/2

(
d

b

)(
−4
b

)−1/2

(cz + d)1/2

}
.

Put

ρ =
t + i

√
64n2 − t2

2
.

Then it is easily checked that

J(C) = c−1
n,k

1
3
n2k−122kσ−1

C

(
d

b

)(
1 −
(
−4
b

)
(−1)ki

) ρ1/2−k −
(
−4
b

)
(−1)kiρ1/2−k

ρ − ρ
.

(9.70)

Since (f, t+8n, t−8n) = 1 we can decompose f as f = f1f2 with f2
1 |(t+8n), f2

2 |(t−8n)
and (t + 8n, f2) = (t − 8n, f1) = 1. Then noticing d > 0, b odd and (d, b/f) =
((t + 8n)/f2

1 , b/f) = 1 we find(
d

b/f

)(
(t + 8n)/f2

1

b/f

)
=
(

(4n + d)/f2
1

b/f

)
= 1,

i.e., (
d

b/f

)
=
(

(t + 8n)/f2
1

b/f

)
.

Similarly (
d

b/f

)
=
(

(t − 8n)/f2
2

b/f

)
and (

d

f1

)
=
(

t − 8n

f1

)
,

(
d

f2

)
=
(

t + 8n

f2

)
.

Thus we see that
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(
d

b

)
=
(

t − 8n

f1

)(
t + 8n

f2

)(
(t + 8n)/f2

1

b/f

)
=
(

t − 8n

f1

)(
t + 8n

f2

)(
(t − 8n)/f2

2

b/f

)
.

Finally put

λt,n =
√

8n− t + i
√

8n + t

4
, pk+1/2(t, n) =

λ2k−1
t,n − λ

2k−1

t,n

λt,n − λt,n

.

Then λ2
t,n = −ρ/4, λ2

−t,n = ρ/4 and

(
1 −
(
−4
b

)
(−1)ki

) ρ1/2−k −
(
−4
b

)
(−1)kiρ1/2−k

ρ − ρ

=−n2k−12−2k

((
−4
b

)
1√

8b − t
pk+1/2(t, n) +

1√
8n + t

pk+1/2(−t, n)
)

. (9.71)

Substituting (9.70) and (9.71) into (9.69) and setting η(C) =
(

(8n − t)/f2
2

b/f

)
, we

obtain

J(C) = −
c−1
n,k

3

((
8n− t

f1

)(
−8n− t

f2

)
1√

8n − t
pk+1/2(t, n)σ−1

C η(C)

+
(

t − 8n

f1

)(
t + 8n

f2

)
1√

8n + t
pk+1/2(−t, n)σ−1

C η(−C)
)

.

If we assume that the matrices B−1AB in (9.68) satisfy the conditions (9.69), sub-
stitute the expression in terms of N, n, t and f found for J(B−1AB) into (9.68) and
observe that σB−1AB equals the order ωA of the Γ(1)-stabilizer of A, we see that

A2 = − 2
3

⎛⎝∑
t

(1)
∑

f

(2)

(
8n − t

f1

)(
−8n− t

f2

)
1√

8n − t
pk+1/2(t, n)

×
∑
A

(3)ω−1
A

∑
B

(4)η(B−1AB)

)
.

Now recall that the association

A �−→ FA(X, Y ) =
1
f

(−bX2 + (a − d)XY + cY 2), A =
(

a b
c d

)
is a bijective correspondence between the set Bt,f,n of integral elliptic primitive ma-
trices with determinant 16n2, invariants t and f and lower left entry positive and
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the set of positive definitive primitive integral binary quadratic forms of discriminant

t2 − 64n2

f2
with (f, 2n) = 1, and that conjugation by Γ(1) corresponds to the usual

action of Γ(1) on quadratic forms.

For A ∈ Bt,f,n denote by aA the ideal bf−1Z ⊕ (a − d)f−1 +
√

(t2 − 64n2)f−2

2
Z

corresponding to FA and contained in the order O of discriminant (t2 − 64n2)/f2

of the imaginary quadratic field Q(
√

(t2 − 64n2)f−2). Then the norm N(aA) of aA

equals −b/f , hence

η(B−1AB) =
(

(8n − t)/f2
2

b/f

)
=
(

(8n − t)/f2
2

N(aA)

)
= ψ(aA),

where ψ = ψ(8n−t)/f2
2

is the genus character of the ideal class group of O corresponding

to the decomposition
t2 − 64n2

f2
=

8n − t

f2
2

−8n − t

f2
1

of
t2 − 64n2

f2
into a product of two

discriminants.
If (8n − t)/f2

2 is not a perfect square, then ψ is a non-trivial character, and for
any set of representatives {Aν} for Γ(1)\Bt,f,n we have∑

Aν

(3)ω−1
Aν

ψ(aAν ) = 0,

hence also ∑
A

(3)ω−1
A

∑
B

(4)η(B−1AB) = 0,

since the number of B ∈ Γ(1)/Γ0(4N) such that B−1AB ∈ Γ0(4N)CnΓ0(4N) depends
only on N , n, t and f (cf. Lemma 5.23).

On the other hand, if (8n − t)/f2
2 is a perfect square, then η(B−1AB) = 1, so we

obtain ∑
A

(3)ω−1
A

∑
B

(4)η(B−1AB) =
1
2
μ

(
t

4
, f, n2, N

)
h′
(

t2 − 64n2

f2

)
,

where μ is defined as in Lemma 5.23 and h′(m) is the number of Γ(1)-equivalence
classes of positive definite primitive integral binary quadratic forms of discriminant m

and a form equivalent to X2 + Y 2 (resp.X2 + XY + Y 2) is counted with multiplicity
1/2 (resp. 1/3).

Now if 8n − t = 4s2 with s ∈ N, then

8n + t = 4(4n− s2), t2 − 64n2 = 16s2(s2 − 4n)

and the condition |t| < 8n is equivalent to |s| < 2
√

n, and f2|(t2 − 64n2) means
f2
1 |(s2 − 4n), f2|s. Put
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p2k(s, n) =
λ2k−1 − λ

2k−1

λ − λ

with λ, λ the solutions of X2 − sX + n = 0 we may therefore rewrite A2 as

A2 =−1
3
· 1
2s

∑
|s|<2

√
n,

s>0

p2k(s, n)
∑

f2
1 |s2−4n,

(f1,2n)=1

∑
f2|s

μ(2n − s2, f1f2, n
2, N)

×
(

s2 − 4n

f2

)
h′
(

16
s2

f2
2

s2 − 4n

f2
1

)
. (9.72)

Now we want to compute the sum over f2 in (9.72). We claim that

1
2s

∑
f2|s

μ(2n − s2, f1f2, n
2, N)

(
s2 − 4n

f2

)
h′
(

16
s2

f2
2

s2 − 4n

f2
1

)

=
(

2 +
(

4
s

))
μ(s, f1, n, N)h′((s2 − 4n)/f2

1 ). (9.73)

We shall give the proof of (9.73) only for the case N = 1 and N = l an odd prime.
(The general case is of course similar.)

Using the formula

h′(Dm2) = m
∏
p|m

(
1 −
(

D

p

)
p−1

)
h′(D), (9.74)

where D is a fundamental discriminant and m ∈ N, one first checks that (please
compare with S. Niwa, 1977)

1
2s

∑
f2|s

(
s2 − 4n

f2

)
h′
(

16
s2

f2
2

s2 − 4n

f2
1

)
=
(

2 +
(

4
s

))
h′((s2 − 4n)/f2

1 ), (9.75)

which proves (9.73) for N = 1.
Next consider N = l. Write s = lγS with l � S and γ � 0. If γ = 0, then (9.73)

again follows immediately from (9.75). If γ � 1, then l � (s2 − 4n), hence l � f1, and
by definition of μ, the left-hand side of (9.73) equals

1
2lγS

⎛⎝∑
f2|S

(
S2 − 4n

f2

)
h′
(

16l2γ S2

f2
2

s2 − 4n

f2
1

)

+(l + 1)
∑

1�ν�γ

(
s2 − 4n

lν

)∑
f2|S

(
s2 − 4n

f2

)
h′
(

16l2γ−2ν S2

f2
2

s2 − 4n

f2
1

)⎞⎠ .

By (9.74) we have for 0 < ν � γ

h′
(

16l2γ−2ν S2

f2
2

s2 − 4n

f2
1

)
= lγ−ν

(
1 −
(

s2 − 4n

l

)
l−1

)
h′
(

16
S2

f2
2

s2 − 4n

f2
1

)
.
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Since

l−γ

(
lγ
(

1 −
(

s2 − 4n

l

)
l−1

)
+ (l + 1)

(
1 −
(

s2 − 4n

l

)
l−1

)

×
∑

1�ν�γ−1

(
s2 − 4n

lν

)
lγ−ν + (l + 1)

(
s2 − 4n

lγ

))

=1 +
(

s2 − 4n

l

)
and

1
2S

∑
f2|S

(
s2 − 4n

f2

)
h′
(

16
S2

f2
2

s2 − 4n

f2
1

)
=
(

2 +
(

4
s

))
h′((s2 − 4n)/f2

1 ),

we see that the left-hand side of (9.73) is(
2 +
(

4
s

))(
1 +
(

(s2 − 4n)/f2
1

l

))
h′((s2 − 4n)/f2

1 )

as was to be proved.
Substituting now (9.73) into (9.72) we find

A2 =
1
3

(
2 +
(

4
s

)) ∑
|s|<2

√
n,s>0

p2k(s, n)

×
∑

f2
1 |s2−4n,

(f1,2n)=1

h′((s2 − 4n)/f2
1 )μ(s, f1, n, N).

(9.76)

Computation of A3 For a hyperbolic matrix C =
(

a b
c d

)
∈ Γ0(4N)CnΓ0(4N),

put C′ =
(

a −b
−c d

)
and J(C) = I(C) + I(C′). If C runs through a set of repre-

sentatives of hyperbolic Γ0(4N)-conjugacy classes in Γ0(4N)CnΓ0(4N), whose fixed
points are cusps of Γ0(4N), then so does C′. Noticing I(C) = I(−C) we therefore
have

A3 = cn,k

∑
C̃

J(C),

where the sum is over all hyperbolic Γ0(4N)-conjugacy classes C̃ such that C fixes a
cusp of Γ0(4N) and t > 0.

Now {(
ν′ τ
0 ν

)
∈ M2(Z)

∣∣∣∣ νν′ = 16n2, 0 < ν′ < ν, 0 � τ < ν − ν′
}
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is a set of representatives of Γ(1)-conjugacy classes of integral hyperbolic matrices with
determinant 16n2 and positive trace, whose fixed points are cusps of Γ(1). Hence

A3 = cn,k

∑
ν,ν′,τ

(1)
∑
B

J

(
B−1

(
ν′ τ
0 ν

)
B

)
,

where ν, ν′, τ in
∑(1)

run over integers satisfying νν′ = 16n2, 0 < ν′ < ν, 0 � τ <

ν−ν′, (ν−ν′, τ, 2n) = 1 and for ν, ν′ and τ fixed, B runs over a set of representatives

of Γ(1)/Γ0(4N) such that B−1

(
ν′ τ
0 ν

)
B is in Γ0(4N)CnΓ0(4N).

Let C =
(

a b
c d

)
∈ Γ0(4N)CnΓ0(4N) be a hyperbolic matrix with d > 0, (b, d) =

1 and (b/f, (t2−64n2)/f2) = 1 (cf. Lemma 5.22). Suppose that C = B−1

(
ν′ τ
0 ν

)
B

with B ∈ Γ(1). For B =
(
∗ ∗
v w

)
put

δ =
{(

1 −τ/(ν − ν′)
0 1

)
, 1
}
{B, (vz + w)1/2}.

Then by Lemma 5.21

δC∗δ−1 =

{(
ν′ 0
0 ν

)
, (4n)−1/2ν1/2

(
−4
b

)−1/2(
d

b

)}
.

From this one can easily see that

J(C) = −c−1
n,k

2−2k+2

3
ν′k−1/2

ν − ν′

(
d

b

)
.

Arguing now as in the elliptic case we find that∑
ν,ν′,τ

(1)
∑
B

J

(
B−1

(
ν′ τ
0 ν

)
B

)
= 0

unless ν + ν′ + 8n is a perfect square, and that in the latter case∑
B

J

(
B−1

(
ν′ τ
0 ν

)
B

)
= μ((ν + ν′)/4, (ν − ν′, τ), n2, N). (9.77)

Since for a divisor b of ν − ν′ there are φ((ν − ν′)/b) different values of τ satisfying
0 � τ < ν − ν′ and b = (ν − ν′, τ), and since (ν − ν′, τ, 2n) = 1, we can rewrite (9.77)
as ∑

B

J

(
B−1

(
ν′ τ
0 ν

)
B

)
=

∑
b|ν−ν′,
(b,2n)=1

φ((ν − ν′)/b)μ((ν + ν′)/4, b, n2, N).
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Now if ν + ν′ + 8n = 4s2 and ν − ν′ − 8n = 4r2 with r, s ∈ N, define λ, λ′ ∈ Z by
s = λ + λ′, r = λ − λ′. Then ν′ = 4λ′2, ν = 4λ2 and the conditions νν′ = 16n2 resp.
0 < ν′ < ν are equivalent to λλ′ = n resp. 0 < λ′ < λ. Thus we have

A3 = −1
6

∑
0<λ′<λ,
λ′λ=n

λ′2k−1

λ2 − λ′2
∑

b|λ2−λ′2,
(b,2n)=1

φ(4(λ2 − λ′2)/b)μ(λ2 + λ′2, b, n2, N). (9.78)

Now one can easily check the formula for 0 < λ′ < λ, λλ′ = n

1
2(λ2 − λ′2)

∑
b|(λ2−λ′2),
(b,2n)=1

φ(4(λ2 − λ′2)/b)μ(λ2 + λ′2, b, n2, N) =
φ((λ − λ′, n))

(λ − λ′, n)
σ0(N)

here σ0(N) denotes the number of positive divisors of N . Substituting the above
identity into (9.78) we obtain

A3 = −σ0(N)
3

∑
0<λ′<λ,
λλ′=n

λ′2k−1φ((λ − λ′, n))
(λ − λ′, n)

. (9.79)

Computation of A4 Since N is odd and square-free, the cusp of Γ0(4N) are
represented by the numbers 1/t, where t runs over all positive divisors of 4N . For

such a t put At =
(

1 + t −1
−t 1

)
and δt = {At, (−tz + 1)1/2}. Then the stabilizer of

1/t in Δ0(4N)/{±1, 1} is generated by

δ−1
t

{(
1 T
0 1

)
,

(
−t2T

1 + tT

)(
−4

1 + tT

)−1/2
}

δt

=

{(
1 − tT T
−t2T 1 + tT

)
,

(
−t2T

1 + tT

)(
−4

1 + tT

)−1/2

(−t2Tz + 1 + tT )1/2

}
,

where T is the least natural number such that t2T ≡ 0 (mod 4N).
Let C ∈ GL2(Z) be a parabolic matrix with det C = 16n2 and with fixed point

1/t. Then

C = A−1
t

(
4n τ
0 4n

)
At =

(
4n − tτ τ
−t2τ 4n + tτ

)
with some τ ∈ Z. Using Lemma 5.20 one can easily see that C is in Γ0(4N)CnΓ0(4N)
if and only if t ≡ 0( mod 4), T = 4N/t and τ = 4Nv/t with some v ∈ Z, (v, 4N) =
1. Thus a set of representatives of parabolic matrices in Γ0(4N)CnΓ0(4N) for the
equivalence relation defined above is formed by the matrices

Cv,t =
(

4n − 4Nv Nv/t
−16Nvt 4n + 4Nv

)
,
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where t runs over all positive divisors of N and v runs over a reduced residue system
mod 4n, and we have u = uv,t = v/4n and α = αv,t = 0.

Now note that (Nv/t, 4n + 4Nv) = 1. Hence if we assume v > 0 one sees from
Lemma 5.21 that

η = ηv,t =
(

4n

Nv/t

)(
−4

Nv/t

)−k−1/2

and if we suppose 4n − 4Nv < 0 we have

η−v,−t = ηv,t.

Since uv,t = u−v,−t and cot is an odd function it follows

I(Cv,t) + I(C−v,−t) = − 1
ηv,t

,

hence
A4 =

cn,k

2

∑
v,t

(I(Cv,t) + I(C−v,−t)) = −1
2

∑
v,t

1
ηv,t

.

If we replace t with N/t and substitute the value of ηv,t we find

A4 = − 1
12

nk−3/2(1 − (−1)ki)
∑
t|N

(
4n

t

) ∑
v mod 4n

(
4n

v

)(
−4
vt

)k+1/2

.

But the sum over v equals

δ(
√

n)(1 + (−1)ki)φ(n),

where δ(x) is 1 or 0 according as x ∈ Z or not. Thus

A4 = −1
6
nk−3/2δ(

√
n)φ(n)σ0(N).

Using φ(m2) = mφ(m)( for m ∈ Z) we obtain the final formula

A4 = −1
6
nk−1φ(

√
n)σ0(N). (9.80)

Computation of A5 Let k = 1. Then

A5 = cn,1tr
(
[Δ0(4N){C−1

n , n−1/2}Δ0(4N)], G(4N, 1/2, id.)
)

.

We have by Lemma 9.12

[Δ0(4N){C−1
n , n−1/2}Δ0(4N)] =

[
Δ0(4N)

{(
n2 0
0 1

)
, n−1/2

}
Δ0(4N)

]
×
[
Δ0(4N)

{(
4 −1
0 4

)
, 1
}

Δ0(4N)
]

,
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and the first factor on the right equals[
Δ0(4N)

{(
1 0
0 n2

)
, n1/2

}
Δ0(4N)

]
= n3/2T1/2,4N (n2).

Consequently

A5 =
n(1 + i)

6
tr
(

T1/2,4N (n2)
[
Δ0(4N)

{(
4 −1
0 4

)
, 1
}

Δ0(4N)
]

, G(4N, 1/2, id.)
)

.

But by Section 7.2,
G(4N, 1/2, id.) = Cθ,

where θ(z) =
∑
n∈Z

qn2
is the standard theta function. Noticing

nθ|T1/2,4N (n2) = σ1(n)θ
∣∣∣∣ [Δ0(4N)

{(
4 −1
0 4

)
, 1
}

Δ0(4N)
]

= θ

(
z − 1

4

)∣∣∣∣Tr

and

θ

(
z − 1

4

)∣∣∣∣Tr = 2(1 − i)θ(z).

We conclude that
A5 =

2
3
σ1(n).

Thus

A5 =

{ 0, if k > 1,
2
3
σ1(n), if k = 1.

(9.81)

Summarizing we have proved up to now that

(−1)[(k+1)/2]

6

√
2tr(Tk+1/2,4N (n2)Q, S(4N, k + 1/2, id.)) = A2 + A3 + A4 + A5

with A2, A3, A4 and A5 given by (9.76), (9.79), (9.80) and (9.81), respectively. Now
let us consider the second summand of (9.66). As Niwa proved that for k � 2

tr(Tk+1/2,4N (n2), S(4N, k + 1/2, id.)) = tr(T2k,2N (n), S(2N, 2k, id.)). (9.82)

Identity (9.82) is also correct for k = 1, as one sees as above using G(4N, 1/2, id.) =
Cθ.

Now we have from Theorem 9.5

tr(T2k,2N (n), S(2N, 2k, id.)) = A′1 + A′2 + A′3 + A′4 + A′5

with

A′1 = δ

(
1
n

)
(2k − 1)2N

12

∏
p|2N

(
1 +

1
p

)
, (9.83)
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A′2 = −1
2

∑
|s|<2

√
n

p2k(s, n)
∑

f2|s2−4n,

(s2−4n)/f2≡0,1 mod 4,
(f,n)=1

h′
(

s2 − 4n

f2

)
μ(s, f, n, 2N), (9.84)

A′3 = −σ0(2N)
∑

0<λ′<λ,λλ′=n

λ′2k−1φ((λ − λ′, n))
(λ − λ′, n)

, (9.85)

A′4 = −1
2
nk−1φ(

√
n)σ0(2N) (9.86)

and

A′5 =
{

0, if k > 1,

σ1(n), if k = 1.
(9.87)

Now
1
3
A′1, the sum A2 +

1
3
A′2, A3 +

1
3
A′3 and A4 +

1
3
A′4 are also given by the

right hand side of (9.83)-(9.86), respectively, except that 2N has to be replaced by
N . Furthermore

A5 +
1
3
A′5 =

{
0, if k > 1,

σ1(n), if k = 1.

So we see again that ∑
2�ν�5

Aν +
1
3

∑
1�ν�5

A′ν

is exactly the trace of T2k,N (n) on S(2N, 2k, id.). Thus we have proved the theorem.
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Chapter 10

Integers Represented by Positive Definite

Quadratic Forms

10.1 Theta Function of a Positive Definite Quadratic Form

and Its Values at Cusp Points

In the first chapter we introduced the theta function of a positive definite quadratic
form and discussed its transformation formula under the action of the modular group.
We want now to show that the theta function is a modular form.

Let f(x1, · · · , xk) be a positive definite quadratic form with integral coefficients.
Define the matrix A of f(x1, · · · , xk) as follows:

A =
(

∂2f

∂xi∂xj

)
.

It is clear that A is a symmetric matrix with even diagonal entries. Put

θf (z) =
∑

m∈Zk

e(zmAmT/2), z ∈ H.

It is clear that θf (z) is a holomorphic function on H. Let N be the level of f(x1, · · · , xk),
i.e., the minimal positive integer N such that NA−1 is an integral matrix with even
diagonal entries. Set

χ =

⎧⎪⎪⎨⎪⎪⎩
(

2 detA

·

)
, if k is odd,(

(−1)k/2 detA

·

)
, if k is even.

Theorem 10.1 θf (z) is in G(N, k/2, χ).

Proof By the results in Chapter 1 we need only to consider the behavior of θf (z)
at the cusp points of Γ 0(N). It is clear that

lim
z→i∞

θf (z) = 1,

i.e., θf (z) is holomorphic at i∞. Let a/c be any cusp point with c > 0. Take



364 Chapter 10 Integers Represented by Positive Definite Quadratic Forms

ρ =
(

a b

c d

)
∈ SL2(Z), then ρ(∞) = a/c. We have that

θf (z)
(

az + b

cz + d

)
=
∑

x mod c

e(axAxT/2c)
∑

m∈Zk

e(−(m + x/c)A(m + x/c)T/2(z + d/c)),

(10.1)
where x ∈ Zk. By the proof of Proposition 1.2 we see that∑
m∈Zk

e(−(x+m)A(x+m)T/2z) = (−iz)k/2(detA)−1/2
∑

m∈Zk

e(zmA−1mT/2+x ·mT),

where x ∈ Rk. Replacing x by x/c in the above equality we get

θf

(
az + b

cz + d

)
= (−i(z + d/c))k/2(detA)−1/2

∑
m∈Zk

e(zmAmT/2)

×
∑

x mod c

e(axAxT/2c + x · mT/c + dmA−1mt/2c),

hence

lim
z→i∞

(z + d/c)−k/2θf

(
az + b

cz + d

)
= (−i)k/2(det A)−1/2

∑
x mod c

e(axAxT/2c), (10.2)

i.e., θf (z) is holomorphic at the cusp point a/c. This completes the proof.

Let f1 = f1(x1, · · · , xk) and f2 = f2(x1, · · · , xk) be two positive definite quadratic
forms with integral coefficients, A1 and A2 the corresponding matrices of f1 and f2

respectively. f1 and f2 are called equivalent if there exists an integral matrix S with
determinant ±1 such that SA1S

T = A2. f1 and f2 are called equivalent over the
real field R if there exists a real invertible matrix Sr such that SrA1S

T
r = A2. Let p

be a prime and take A1, A2 as matrices over the finite field Fp := Z/pZ. f1 and f2

are called equivalent over Fp if there exists an invertible matrix Sp on Fp such that
SpA1S

T
p = A2. f1 and f2 are called in the same genus if f1 and f2 are equivalent over

R and over Fp for any prime p. It is clear that f1 and f2 are in the same genus if
they are equivalent. It can be proved that there are only finite equivalence classes in
a genus.

Let f = f(x1, x2, · · · , xk) be a positive definite quadratic form, and f1, f2, · · · ,
fh be a full system of representations of all different classes in the genus of f . Let
n be an arbitrary non-negative integer, and r(fi, n) denote the number of integral
solutions of the equation fi(x) = n. It is difficult to find an analytical expression for
the number r(fi, n) in general cases.
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Denote by Mk(Z) the set of all k × k integral matrices. Put O(f) = #{S ∈
Mk(Z)|SAST = A}, define the theta function θ of the genus of f :

θ(gen.f, z) =
( h∑

i=1

1
O(fi)

)−1 h∑
i=1

θfi(z)
O(fi)

,

Then

θ(gen.f, z) =
∞∑

n=0

r(gen.f, n)exp{2πinz}

=
h∑

i=1

(
1

O(fi)

)−1 h∑
i=1

∞∑
n=0

r(fi, n)
O(fi)

exp{2πinz},

it follows that

r(gen.f, n) =
h∑

i=1

(
1

O(fi)

)−1 h∑
i=1

r(fi, n)
O(fi)

,

i.e., the number r(gen.f, n) is a mean of the numbers r(fi, n), (n � 0) when k � 5.

This result is called Siegel theorem C.L.Siegel, 1966, which is equivalent to the fact
that the function is an Eisenstein series of the weight k/2. A.N. Andrianov, 1980
obtained the same conclusion of Siegel theorem in the case of k = 4. Finally R.
Schulze, 1984 reduced the same result of Siegel theorem in the case of k = 3. He proved
that the function θ(gen.f, z) is an Eisenstein series of the weight 3/2 when k = 3.
Under certain conditions, if the function θ(gen.f, z) belongs to the space E(4D, 3/2, χl)
or E(8D, 3/2, χl) then it can be represented as a linear combination of the basis
functions for these spaces given in the Theorem 7.7 and Theorem 7.8 respectively.
The coefficients of the linear combination can be determined using the values of the
function θ(gen.f, z), thus an analytic expression for the number r(gen.f, n) can be
reduced in this way.

The Scholze-Pillot’s Proof for Siegel theorem will be described below.
Let f1 and f2 be in the same genus. Then the corresponding matrices of f1 and

f2 have the same determinant. If a/c is a cusp point with c > 0, then there exists an
integral matrix S such that (detS, 2c) = 1 and SA1S

T ≡ A2 (mod 2c) by the above
definitions and the Chinese remainder theorem. This shows that θf1(z) and θf2(z)
have the same value at the cusp point a/c by (10.2). Hence θf1(z) − θf2(z) is a cusp
from.

Theorem 10.2 Let p be a prime, p � N . Set

λp =

⎧⎨⎩
pk−2 + 1, if 2 � k,

pk−2 + 2pk/2−1

(
(−1)k/2 det A

p

)
+ 1, if 2|k.
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Then
θ(gen.f, z)|T(p2) = λpθ(gen.f, z),

where T(p2) is the Hecke operator on the space G(N, k/2, χ).

Proof Please see R. Schulze, 1984 and P. Ponomarev, 1981.

Theorem 10.3 The function θ(gen.f, z) is in the space E(N, k/2, χ).

Proof We assume first that k � 4 is an even. Since

G(N, k/2, χ) = E(N, k/2, χ) ⊕ S(N, k/2, χ),

there exist two functions g1(z) and g2(z) such that

θ(gen.f, z) = g1(z) + g2(z), g1(z) ∈ S(N, k/2, χ), g2(z) ∈ E(N, k/2, χ).

Let g1(z) =
∞∑

n=n0

c(n)e(nz), c(n0) �= 0. For any p � N , by Theorem 10.2, we see that

g1(z)|T(p2) = λpg1(z), and hence

λpc(n0) = c(n0p
2) + χ(p)

(
−n0

p

)
a(n0).

By Lemma 7.24 we have that c(n) = O(nk/4), so λp = O(pk/2). If k � 6, we see that
λp ∼ pk−2 (p → ∞) which contradicts λp = O(pk/2). Hence we have g1(z) = 0, which
shows the theorem. If k = 4, we can prove the theorem similarly in terms of a more
precise estimation c(n) = O(nk/4−1/5) proved by R.A. Rankin, 1939. This shows the
theorem for k � 4 even.

Now assume that k is an odd. For k � 5 we can prove the theorem by a similar
method as for the case k � 6 an even. Now let k = 3 and V := S(N, 3/2, χ)

⋂
T̃ be

as in Theorem 8.2. Denote by V ⊥ the orthogonal complement of V in S(N, 3/2, χ).
Then we have

θ(gen.f, z) = g1 + g2 + g3, g1 ∈ V, g2 ∈ V ⊥, g3 ∈ E(N, 3/2, χ).

By Theorem 10.2 we see that gi|T(p2) = (p+1)gi for any p � N and i = 1, 2, 3. But by
the definition of T̃ we know that g1 is a finite linear combination of functions h(tz; ψ)

with χ = ψ

(
−t

·

)
. Hence we have

h(tz; ψ)|T(p2) = χ(p)
(
−t

p

)
(p + 1)h(tz; ψ).

There must be a prime p such that

h(tz; ψ)|T(p2) = −(p + 1)h(tz; ψ)
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holds for all finite functions h(tz; ψ), so that g1(z)|T(p2) = −(p+1)g1, from which we
get g1 = 0 since we have also g1(z)|T(p2) = (p+1)g1. g2(z) is mapped in S(N/2, 2, id.)
under the Shimura lifting S and the image S(g2) of g2 is also an eigenfunction of T(p)
with eigenvalue p + 1. In terms of Rankin’s estimation c(n) = O(n4/5) we can show
that g2 = 0. Therefore θ(gen.f, z) ∈ E(N, 3/2, χ). This completes the proof.

Let f(x1, x2, · · · , xk) be a positive definite quadratic form with integral coeffi-
cients. Put

θf (z) =
∑

m∈Zk

e(zmAmT/2), z ∈ H,

O(f) = #{S ∈ Mk(Z)|SAST = A},

θ(gen.f, z) =
(∑

fi

1
O(fi)

)−1∑
fi

θfi(z)
O(fi)

,

where the fi run over a complete set of representatives of the equivalence classes in
the genus of f .

Suppose that N is the level of f , i.e.,

N = min{N |NA−1 is integral and the diagonal entries are even, N positive integer}.

Let now S(N) denote a complete set of representatives of equivalence classes of
cusp points for the group Γ0(N). In fact we can choose S(N) = {d/c | c|N, d ∈
(Z/(c, N/c)Z)∗ and (d, c) = 1}.

We want to compute the values of θf (z) at cusp points for Γ0(N). It is clear that

lim
z→i∞

θf (z) = 1.

Now suppose that a/c is a cusp point, where (a, c) = 1, c|N, a ∈ (Z/(c, N/c)Z)∗ .

Choose a matrix γ =
(

a b
c d

)
∈ SL2(Z), then γ(i∞) = a/c. So in terms of the

equality (10.2) we obtain

V (θf , a/c) = lim
z→i∞

(cz + d)−k/2θf

(
az + b

cz + d

)
= (−i)k/2(detA)−1/2c−k/2

∑
x mod c

e(axAxT/2c)

This shows that in order to get the values of θf (z) at cusp points we only need to
evaluate the Gauss sum ∑

x mod c

e(axAxT/2c)

where c, a are co-prime positive integers.
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Now we will calculate the Gauss sum

G(a, c) :=
∑

x mod c

e(axAxT/2c), (c, a) = 1.

Lemma 10.1 If (c, c′) = 1, then

G(a, cc′) = G(ac, c′)G(ac′, c).

Proof Let x = cy + c′z, then

G(a, cc′) =
∑

x mod cc′
e(axAxT/2cc′)

=
∑

y mod c′

∑
z mod c

e(a(cy + c′z)A(cy + c′z)T/2cc′)

=
∑

y mod c′
e(acyAyT/2c′)

∑
z mod c

e(ac′zAzT/2c)

= G(ac, c′)G(ac′, c).

This completes the proof.

By Lemma 10.1, we only need to evaluate the Gauss sum G(a, pm) where p � a a
prime and m is a positive integer.

We first assume that p is an odd prime. Then there exists an invertible matrix S

over the ring Zp of p-adic integers such that

SAST = diag{α1p
β1 , α2p

β2 , · · · , αkpβk},

where αi, detS ∈ Z∗p, 0 � β1 � β2 � · · · � βk are rational integers. Let lm =
#{βi|βi � m}.

Hence

G(a, pm) =
∑

x mod pm

e(axAxT/2pm)

=
∑

x mod pm

e

(
ax

(
k⊕

i=1

αip
βi

)
xT/2pm

)

=
∑

x=(x1,··· ,xk) mod pm

k∏
i=1

e(aαip
βix2

i /2pm)

= pmlm
∏

βi<m

⎛⎝ ∑
x mod pm

e(aα′ix
2/pm−βi)

⎞⎠ (where α′i ≡ 2−1αi mod pm−βi)

= pmlm
∏

βi<m

⎛⎝ ∑
z mod pβi

∑
y mod pm−βi

e(aα′i(y + pm−βiz)2/pm−βi)

⎞⎠
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= pmlm
∏

βi<m

⎛⎝ ∑
z mod pβi

∑
y mod pm−βi

e(aα′iy
2/pm−βi)

⎞⎠
= pmlm

∏
βi<m

pβiS(aα′i, p
m−βi)

= pmlm
∏

βi<m

pβi

(
aα′i

pm−βi

)
εpm−βi p

m−βi
2

= pmlm
∏

βi<m

(
aα′i

pm−βi

)
εpm−βi p

m+βi
2 ,

where S(α, pβ) =
∑

x mod pβ

e(αx2/pβ) is the classical Gauss sum, and εd = 1 or i

according to d ≡ 1 or 3 (mod 4) respectively.
Now consider the case p = 2. In this case, there exists an invertible matrix S over

the ring Z2 of 2-adic integers such that

SAST =
l⊕

i=1

αi2si

l1⊕
j=1

βj2tj

(
0 1
1 0

) l2⊕
s=1

γs2us

(
2 1
1 2

)
,

where αi, βj, γs ∈ Z∗2, si � 1, tj , us � 0 are rational integers.
Hence we have

G(a, 2m)=
∑

x mod 2m

e(axAxT/2k+1)

=
∑

x mod 2m

e

(
ax

( l⊕
i=1

αi2si

l1⊕
j=1

βj2tj

(
0 1
1 0

)
l2⊕

s=1

γs2us

(
2 1
1 2

))
xT/2k+1

)
,

which implies that we only need to evaluate the following kinds of Gauss sums:

G1,t(aαi, 2m) :=
∑

x mod 2m

e(aαix
2/2t),

G2,t(aβj , 2m) :=
∑

(x,y) mod 2m

e(aβjxy/2t),

G3,t(aγs, 2m) :=
∑

(x,y) mod 2m

e(aγs(x2 + xy + y2)/2t),

where t is a positive integer and t � m.

Now we compute the above Gauss sums:
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G1,t(aαi, 2m)=
∑

x mod 2m

e(aαix
2/2t)

=
∑

y mod 2t

∑
z mod 2m−t

e(aαi(y + 2tz)2/2t)

=
∑

z mod 2m−t

∑
y mod 2t

e(aαiy
2/2t) = 2k−tS(aαi, 2t)

=

⎧⎨⎩
0, if t = 1,

(1 + iaαi)2m− t
2 , if t is even,

2m− t−1
2 e

πiaαi
4 , if t > 1 and odd.

G2,t(aβj , 2m)=
∑

(x,y) mod 2m

e(aβjxy/2t) =
∑

x mod 2m

∑
y mod 2m

e(aβjxy/2t)

=
∑

x mod 2m

2m−t
∑

y mod 2t

e(aβjxy/2t) = 2m−t
∑

x mod 2m,
2t|x

2t = 22m−t,

G3,t(aγs, 2m)=
∑

(x,y) mod 2m

e(aγs(x2 + xy + y2)/2t)

=
∑

x mod 2m

∑
y mod 2m

e(aγs(x2 + xy + y2)/2t)

=
∑

x mod 2m

e(aγsx
2/2t)

∑
y mod 2m

e(aγs(xy + y2)/2t)

=
∑

x mod 2m

e(aγsx
2/2t)

∑
z mod 2m−t

∑
y mod 2t

e(aγs(x(y + 2tz) + (y + 2tz)2)/2t)

=
∑

x mod 2m

e(aγsx
2/2t)

∑
z mod 2m−t

∑
y mod 2t

e(aγs(xy + y2)/2t)

=2m−t
∑

x mod 2m

e(aγsx
2/2t)

∑
y mod 2t

e(aγs(xy + y2)/2t)

=22(m−t)
∑

x mod 2t

e(aγsx
2/2t)

∑
y mod 2t

e(aγs(xy + y2)/2t).

Now let w =
[
t + 1

2

]
, then∑

y mod 2t

e(aγs(xy + y2)/2t)

=
∑

u mod 2w

∑
v mod 2t−w

e(aγs(x(u + 2wv) + (u + 2wv)2)/2t)

=
∑

u mod 2w

e(aγs(xu + u2)/2t)
∑

v mod 2t−w

e(aγs(x + 2u)v/2t−w)



10.1 Theta Function of a Positive Definite Quadratic Form and Its Values... 371

=
∑

u mod 2w ,

2t−w |(x+2u)

2t−we(aγs(xu + u2)/2t).

Therefore, we obtain

G3,t(aγs, 2m)

= 22(m−t)
∑

x mod 2t

e(aγsx
2/2t)

∑
u mod 2w,

2t−w |(x+2u)

2t−we(aγs(xu + u2)/2t)

= 22m−t−w
∑

u mod 2w

e(aγsu
2/2t)

∑
x mod 2t,

x+2u≡0(2t−w)

e(aγs(xu + x2)/2t)

= 22m−t−w
∑

u mod 2w

e(aγsu
2/2t)

∑
y mod 2w

e(aγs((−2u + 2t−wy)u + (−2u + 2t−wy)2)/2t)

= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)e(aγs22(t−w)y2/2t).

Now, if t = 2g is even, then w =
[
t + 1

2

]
= g, and t − w = g, 22(t−w)y2/2t = y2.

Therefore we get

G3,t(aγs, 2m) = 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)

= 22m−t−w
∑

u mod 2w,
2w|u

2we(3aγsu
2/2t)

= 22m−t.

If t = 2g+1 is odd, then w =
[
t + 1

2

]
= g+1, and t−w = g, 22(t−w)y2/2t = y2/2.

Therefore we get

G3,t(aγs, 2m)

= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)e(aγsy
2/2)

= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

(
−

∑
y mod 2w,
y is odd

e(−3aγsyu/2w)

+
∑

y mod 2w,
y is even

e(−3aγsyu/2w)
)
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= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

(
−

∑
y mod 2w

e(−3aγsyu/2w)

+ 2
∑

y mod 2w,
y is even

e(−3aγsyu/2w)
)

= − 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)

+ 22m−t−w+1
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w,
y is even

e(−3aγsyu/2w)

= − 22m−t−w
∑

u mod 2w,2w|u
2we(3aγsu

2/2t)

+ 22m−t−w+1
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w−1

e(−3aγsyu/2w−1)

= − 22m−t + 22m−t−w+1
∑

u mod 2w

2w−1|u

2w−1e(3aγsu
2/2t)

= − 22m−t + 22m−t(1 + e(3aγs(2w−1)2/2t))

= − 22m−t + 22m−t(1 + e(3aγs/2))

= − 22m−t,

where e(3aγs/2) = −1 since 3aγs ≡ 1 (mod 2).
Therefore we have proved

G3,t(aγs, 2m) = (−1)t22m−t.

Now let lm = #{si|si � m + 1} + 2#{tj|tj � m} + 2#{us|us � m}. Finally we
have

G(a, 2m)

= 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2m)
∏

tj<m

G2,m−tj (aβj , 2m)
∏

us<m

G3,m−us(aγs, 2m)

= 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2m)
∏

tj<m

22m−(m−tj)
∏

us<m

(−1)m−us22m−(m−us)

= 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2m)
∏

tj<m

2m+tj

∏
us<m

(−1)m−us2m+us .

So we can compute the values of θf (z) at each cusp point.
Example 10.1 Let f(x, y) = ax2 + bxy + cy2 be an integral primitive, positive def-
inite, binary quadratic form with fundamental discriminant D. We want to evaluate
θf (z) at cusp point 1/α where α|D. Since D is a fundamental discriminant, the odd
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part of D is square free. If p|D is an odd prime, then p � a or p � c since f is primitive.
Hence we have

(1) If p � a, then (
2a b

b 2c

)
∼
(

2a 0
0 (2a)−1 detA

)
over Zp.

(2) If p � c, then (
2a b

b 2c

)
∼
(

2c 0
0 (2c)−1 detA

)
over Zp.

Therefore

G(n, p) =

⎧⎪⎪⎨⎪⎪⎩
pS(an, p) =

(
an

p

)
εpp

3/2, if p � a,

pS(cn, p) =
(

cn
p

)
εpp

3/2, if p � c.

So for α = p1p2 · · · ps|D, pi odd, we have

G(1, α) =
s∏

i=1

G(α/pi, pi) =
s∏

i=1

(
δiα/pi

pi

)
εpip

3/2
i = α3/2

s∏
i=1

(
δiα/pi

pi

)
εpi ,

where δi = a or c according to pi � a or pi � c. Hence

V (θf , 1/α) = −i(detA)−1/2α−1G(1, α)

= −i
( α

detA

)1/2 s∏
i=1

(
δiα/pi

pi

)
εpi = −

( α

D

)1/2 s∏
i=1

(
δiα/pi

pi

)
εpi .

We now compute the Gauss sum for p = 2.
(3) If D = b2 − 4ac ≡ 1 (mod 4), and a ≡ c ≡ 1 (mod 2), then(

2a b

b 2c

)
∼
(

2 1
1 2

)
over Z2. Therefore

G(n, 2m) = (−1)m2m for any odd positive integer n.

(4) If D ≡ 1 (mod 4), ac ≡ 0 (mod 2), then(
2a b

b 2c

)
∼
(

0 1
1 0

)
over Z2. Therefore

G(n, 2m) = 2m, for any odd positive integer n.
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(5) If D ≡ 0 (mod 4), then 2|b. Denote b = 2b′. It is clear that 2 � a or 2 � c since
(a, b, c) = 1. We assume that 2 � a. Hence(

2a b

b 2c

)
= 2
(

a b′

b′ c

)
∼ 2
(

a 0
0 a−1 D

4

)
over Z2. Therefore we have

G(n, 2m) = G1,m(na, 2m)G1,m−t(nβ, 2m),

where t = ν2(c − a−1b
′2) = ν2(D/4), β = (c − a−1b

′2)2−t = a−1 D

22+t
, and we think

G1,m−t(nβ, 2m) = 2m

for any m � t. In particular, we know that

G(n, 2) = G(n, 2t+1) = 0.

Since D is a fundamental discriminant, t = ν2(D/4) = 0 or 1 according to D ≡ 12
or 8 (mod 16) respectively.

So for α = 2m|D, we have

V (θf , 1/2m) = −i(detA)−1/22−mG(1, 2m)

= −(D)−1/22−mG1,m(a, 2m)G1,m−t(β, 2m).

In particular
V (θf , 1/α) = 0

for any α = 2mα1|D where m = 1 or t + 1, 2 � α1. For α = 2mα1 = 2m

s∏
i=1

pi|D with

m �= 1, t + 1, we have

V (θf , 1/α) = −i(detA)−1/2α−1G(1, α)

= −(D)−1/2α−1G(2m, α1)G(α1, 2m)

= −(D)−1/2α−1α
3/2
1 G1,m(aα1, 2m)G1,m−t(α1β, 2m)

s∏
i=1

(
δiα/pi

pi

)
εpi

= −(α/D)1/22−3m/2G1,m(aα1, 2m)G1,m−t(α1β, 2m)
s∏

i=1

(
δiα/pi

pi

)
εpi .

�
Remark 10.1 If D is an odd fundamental discriminant, our result is just Lemma
IV(2.3) in B.H.Gross, D.B.Zagier 1986. If D is even, our result is just Proposition 2
in I. Kiming, 1995.
Example 10.2 Let f = f(x1, · · · , xk) be a positive definite quadratic form with
k odd. Suppose that the level of f is 4D with D square free odd integer. Let
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D = p1p2 · · · pt. Since D is square free, there exists an invertible matrix Si over Zpi

such that
SiAST

i = diag{αi,1, αi,2, · · · , αi,si , αi,si+1pi, · · · , αi,kpi}

with αi,j ∈ Z∗pi
. Hence

G(n, pi) = pk−si

i

si∏
g=1

(
nα′i,g

pi

)
εpip

1/2
i = p

k− si
2

i εsi
pi

(
nsiAi

pi

)
,

where Ai =
si∏

g=1

α′i,g and α′i,g ≡ 2−1αi,g (mod pi). Therefore for any α =

t∏
i=1

pδi

i |D, δi = 0 or 1, we can evaluate

G(1, α) =
t∏

i=1

G(α/pδi

i , pδi

i ) =
t∏

i=1

(
p

k− si
2

i εsi
pi

(
nsiAi

pi

))δi

.

Since 4D is the level of f and D square free, there exists an invertible matrix S

over Z2 such that

SAST =
l⊕

i=1

αi2ai

l1⊕
j=1

βj2tj

(
0 1
1 0

) l2⊕
s=1

γs2us

(
2 1
1 2

)
.

Since k is odd, αi appears at least one time and si = 1, tj, us � 2. Hence we have

G(n, 2) = 0,

G(n, 4) = 24a
l∏

i=1

G1,2(nαi, 4)
∏
tj<2

22+tj

∏
us<2

(−1)us22+us

= (−1)e22a+l+2b+2c+d+e
l∏

i=1

(1 + inαi),

where a = #{tj, us|tj = us = 2}, b = #{tj|tj < 2}, c = #{us|us < 2}, d =
∑
tj<2

tj ,

e =
∑
us<2

us. From the above calculation we obtain the value

V (θf , 1/α) = (−i)k/2(detA)−1/2α−k/2G(1, α)

for any α|4D. In particular we know that V (θf , 1/2β) = 0 for any β|D since G(n, 2) =
0 for any odd integer n. �
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10.2 The Minimal Integer Represented by a Positive Definite

Quadratic Form

We consider the following problem: for a given positive definite quadratic form f ,
find an upper bound on the size for the minimal positive integer represented by f .

We first consider the case that the level of f is equal to 1. Let

Ek(z) =
1
2

∑
l,m

′ 1
(lz + m)k

, k = 4, 6, 8, · · · , (10.3)

where (l, m) run over all pairs of integers except (0, 0). By Section 7.5 we know that

Ek(z) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn, (10.4)

where
σg(n) =

∑
d|n

dg.

In view of

ζ(k) = − (2πi)kBk

2(k)!
, (10.5)

Ek(z) can be expressed by the formulae

Ek(z) = ζ(k)Gk(z), Gk(z) = 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn, k = 4, 6, 8, · · · . (10.6)

In particular, we have the Bernoulli numbers:

B4 = − 1
30

, B6 =
1
42

, B8 = − 1
30

, B10 =
5
66

, B14 =
7
6
,

and hence ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G4(z) = 1 + 240
∑

σ3(n)qn,

G6(z) = 1 − 504
∑

σ5(n)qn,

G8(n) = 1 + 480
∑

σ7(n)qn,

G10(z) = 1 − 264
∑

σ9(n)qn,

G14(z) = 1 − 24
∑

σ13(n)qn

(10.7)

with integral coefficients and constant 1. By the dimension formula we see that the

dimension rh of the linear space of modular forms of weight h is equal to
[

h

12

]
+1 or[

h

12

]
according to h �≡ 2 (mod 12) or h ≡ 2 (mod 12) respectively. In particular we
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have
G2

4 = G8, G4G6 = G10, G2
4G6 = G14, GlG14−l = G14,

l = h − 12rh + 12 = 0, 4, 6, 8, 10, 14
(10.8)

and for the modular form

Δ = q

∞∏
n=1

(1 − qn)24

of weight 12,
1728Δ = G3

4 − G2
6.

Let
j(z) = G3

4/Δ(z) = q−1 + · · · (10.9)

be the absolute invariant, then

Δ2 dj

dz
=3G2

4

dG4

dz
Δ − G3

4

dΔ
dz

=
1

1728
G2

4G6

(
2G4

dG6

dz
− 3G6

dG4

dz

)
and the expression in the brackets is a modular form of weight 12 and indeed a cusp
form which can therefore differ from Δ at most by a constant factor. Comparing the
coefficients of q in the Fourier expansions, we get

dj

d log q
= −G14Δ−1. (10.10)

Let hereafter, h > 2, and hence rh > 0. The power-products Ga
4G

b
6, where the

exponents a, b run over all non-negative rational integer solutions of

4a + 6b = h

form a basis of the space G(1, h, id.) := G(h). It follows from this that, for every
function M ∈ G(h), MG−1

h−12r+12 always belongs to G(12r − 12). Since Δr−1 is a
modular form of weight 12r− 12, not vanishing anywhere in the interior of the upper
half-plane,

MG−1
h−12r+12Δ

1−r := w(f) := w, (10.11)

is an entire modular function and hence a polynomial in j with constant coefficients.
Let

Th = G12r−h+2Δ−r (10.12)

with Fourier expansion

Th = chrq
−r + · · · + ch1q

−1 + ch0 + · · · (10.13)
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and first coefficient chr = 1. Since

Δ−1 = q−1
∞∏

n=1

(1 + qn + q2n + · · · )24, (10.14)

all the Fourier coefficients of Th turn out to be rational integers.

Theorem 10.4 Let

M = a0 + a1q + a2q
2 + a3q

3 + · · · (10.15)

be the Fourier series of a modular form M of weight h. Then

ch0a0 + ch1a1 + · · · + chrar = 0.

Proof For l = 0, 1, 2, · · · , we have

jl dj

dz
=

1
l + 1

djl+1

dz
,

and hence, by (10.9), it has a Fourier series without constant term. Since the function

w defined by (10.11) is a polynomial in j, the product w
dj

dz
has also a Fourier series

without constant term. Because of (10.8) and (10.10), we have

− 1
2πi

w
dj

dz
= MG−1

h−12r+12Δ
1−rG14Δ−1 = MG12r−h+2Δ−r = MTh

from which the theorem follows on substituting the series (10.13) and (10.15) for Th

and M respectively.

Put ch0 := ch for brevity. We have the following:

Theorem 10.5 We have ch �= 0.

Proof First, consider the case h ≡ 2 (mod 4). So that h ≡ 2t (mod 12) with
t = 1, 3, 5. Then correspondingly 12r = h− 2, h + 6, h + 2, hence 12r− h + 2 = 0, 8,
4 and

G12r−h+2 = G0, G
2
4, G4.

Since by (10.7), G4 has all its Fourier coefficients positive and the same holds for Δ−r

as a consequence of (10.14). We conclude from (10.12) that all the coefficients in the
expansion (10.13) are positive. Therefore the integers ch0, ch1, · · · , chr are all positive
and in particular, ch = ch0 > 0, i.e., ch �= 0.

Let now h ≡ 0 (mod 4), so that h ≡ 4t (mod 12) with t = 0, 1, 2 whence
12r = h − 4t + 12, h − 12r + 12 = 4t and

gh−12r+12 = G4t = Gt
4.
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Furthermore we have now

Th = −G12r−h+2Δ1−rG−1
14

dj

d log q

= −G−t
4 Δ1−r dj

d log q
=

3
t − 3

Δ1−r−t/3 dj1−t/3

d log q

=
3

t − 3
d(G3−t

4 Δ−r)
d log q

+
3r + t − 3
(3 − t)r

G3−t
4

dΔ−r

d log q
;

hence ch0 is also the constant term in the Fourier expansion of the function

Vh =
3r + t − 3
(3 − t)r

G3−t
4

dΔ−r

d log q
.

Because of the assumption h > 2, we see that 3r + t − 3 > 0. The series for G3−t
4

begins with 1 and has again all its coefficients positive. Furthermore, by (10.14), the
coefficients of the negative powers q−1, · · · , q−r of q in the derivative of Δ−r with
respect to log q are all negative while the constant term is absent. Hence the constant
term in Vh is negative and ch = ch0 < 0, i.e., ch �= 0. This completes the proof.

A most important consequence of Theorem 10.4 and Theorem 10.5 is the fact that,
for every modular form M of weight h and level 1, the constant term a0 in its Fourier
expansion is determined by the r Fourier coefficients a1, · · · , ar, which comes out of
the formula

a0 = c−1
h (ch1a1 + · · · + chrar). (10.16)

If, in particular, a0 �= 0, then there must be some i (1 � i � r) such that ai �= 0. In
particular, if taking the theta function of a positive definite even unimodular quadratic
form Q in 2h variables as our M , we have that a0 = 1 �= 0, and hence conclude that
Q represents a positive integer n � rh(Please compare [?]).

We now want to extend Siegel’s results above to the case with level 2.
Let G(2, h) be the vector space of holomorphic modular forms of weight h for

Γ0(2), r = r(2, h) := dim(G(2, h)). Then by the dimension formula we see that

r(2, h) = 1 +
[
h

4

]
for any even nonnegative number h.

We introduce some analogues of the above function Th. In order to do this, we
need some more Eisenstein series.

Put

σodd
k (n) :=

∑
0<d|n

2�d

dk, σalt
k (n) :=

∑
0<d|n

(−1)ddk, σ∗N,k(n) :=
∑

0<d|n
N �(n/d)

dk.

Since r(2, 2) =
[
2
4

]
+ 1 = 1, let E∞,2 be the unique normalized modular form (in
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fact, the Eisenstein series) in G(2, 2) defined by

E∞,2(z) := 1 + 24
∞∑

n=1

σodd
1 (n)qn.

Since r(2, 4) =
[
4
4

]
+1 = 2, the vector space G(2, 4) is spanned by two Eisenstein

series E0,4(z) and E∞,4(z) with respect to the cusp points 0 and ∞ respectively. They
have Fourier expansions:

E0,4 = 1 + 16
∞∑

n=1

σalt
3 (n)qn, E∞,4 =

∞∑
n=1

σ∗2,3(n)qn.

In fact, in terms of the results in Section 7.5, we can easily see that all the functions
E∞,2(z) and E0,4(z), E∞,4(z) are in E(2, 2, id.) and E(2, 4, id.) respectively.

We also denote by j2 = j2(z) the following modular function for Γ0(2):

j2(z) := E2
∞,2E

−1
∞,4,

which is a level two analogue of j(z) for Γ0(1). Finally, we introduce analogues of the
Th:

T2,h := E∞,2E0,4E
−r
∞,4 if r = r(2, h) ≡ 0(mod 4),

T2,h := E2
∞,2E0,4E

−1−r
∞,4 if r = r(2, h) ≡ 2(mod 4).

We need the following:

Lemma 10.2 The function j2 is a modular function for Γ0(2). It is holomorphic on
H with a simple pole at infinity and defines a bijection of H/Γ0(2) onto C by passage
to the quotient.

Proof The first two conclusions are clear. Let S : z → −1/z and T : z → z + 1 be
two linear fractional transformations. Let

F = {z ∈ H | |z| > 1, |Re(z)| < 1/2}

be the fundamental domain of Γ0(1). Denote by V the closure of F
⋃

S(F )
⋃

ST (F ),
and put F2 = V

⋃
{i∞}. Then F2 is a fundamental domain for Γ0(2) which has two

Γ0(2)-inequivalent cusp points: zero and i∞. The only non-cusp in F2 fixed by a map

in Γ0(2) is γ = −1
2

+
1
2
i. The number of zeros in a fundamental domain of a non

zero function in G(2, h) is h/4. Now let fλ = E2
∞,2 − λE∞,4 for any λ ∈ C. Then

fλ ∈ G(2, 4). The sum of its zero orders in a fundamental domain is 1. If fλ has
multiple zeros in a fundamental domain, there must be exactly two of them in the
equivalence class of γ, or exactly three in the one of ρ = e2πi/3. This completes the
proof.
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Lemma 10.3 Let f be a meromorphic function on H∗. Then the following state-
ments are equivalent:

(1) f is a modular function for Γ0(2);
(2) f is a quotient of two modular forms for Γ0(2) of equal weight;
(3) f is a rational function of j2.

Proof It is clear that (3) ⇒ (2) ⇒ (1). for z ∈ H∗, denote by [z] the equivalence
class of z in H/Γ0(2). By an abuse of the notation we may take f as in (1) as a function
from H∗/Γ0(2) to Ĉ. The function j2, also regarded in this fashion, is invertible. Let
f̃ : Ĉ → Ĉ satisfy f̃ = f ◦ j−1

2 . Then f̃ is meromorphic on Ĉ, so that it is rational. If
z ∈ Ĉ, let u = j−1

2 (z) ∈ H∗/Γ0(2). Then f(u) = f(j−1
2 (z)) = f̃(z) = f̃(j2(z)). Thus

f is a rational function in j2.

Lemma 10.4 For z ∈ H, we have that

d
dz

j2(z) = −2πiE∞,2(z)E0,4(z)E−1
∞,4(z).

Proof It is clear from the definition of a modular function that the derivative of a
modular function has weight two. Therefore both sides of the equality in the lemma
are meromorphic modular forms of weight 2 for Γ0(2). The only poles of either
functions lie at infinity. On both sides, the principal parts of the Fourier expansions
at infinity consist only of the term −2πiq−1. Hence the modular form

α :=
d
dz

j2(z) + 2πiE∞,2(z)E0,4(z)E−1
∞,4(z)

is holomorphic with weight two. For a non zero modular form in G(2, h), the number
of zeros in a fundamental domain is h/4, we can easily check that the exponent of
the first nonzero Fourier coefficient in the expansion of α exceeds h/4 = 1/2. This
exponent counts the number of zeros at i∞. Hence α = 0 and the lemma holds.

We now introduce an analogue of the map w in (10.11).
For h ≡ 0 (mod 4) and f ∈ G(2, h), let

W2(f) = fE
−h/4
∞,4 .

For h ≡ 2 (mod 4) and f ∈ G(2, h), let

W2(f) = fE∞,2E
−(h+2)/4
∞,4 .

Lemma 10.5 Let h be an even positive integer. Then
(1) the restriction of W2 to G(2, h) is an isomorphism from the vector space G(2, h)

to the vector space of polynomials in j2 of degree less than r = r(2, h) or of degree
between 1 and r inclusive according to r ≡ 0 (mod 4) or h ≡ 2 (mod 4) respectively.

(2) for any f ∈ G(2, h), the constant term in the Fourier expansion at infinity of
fT2,h is zero.
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Proof (1) Suppose h ≡ 0 (mod 4) and f ∈ G(2, h), then

W2(f) = fE
−h/4
∞,4 = fE1−r

∞,4.

For d = 0, 1, 2, · · · , r − 1, the products jd
2Er−1

∞,4 belong to G(2, h). We have
W2(jd

2Er−1
∞,4) = jd

2 . Let V be the subspace of G(2, h) generated by the modular
forms jd

2Er−1
∞,4 for d = 0, 1, 2, · · · , r−1. And denote by V1 the space of polynomials in

j2 of degree at most r − 1. W2 carries V isomorphically onto V1. Hence dim(V ) = r

which implies that V = G(2, h). Now let h ≡ 2 (mod 4). Then

W2(f) = fE∞,2E
−r
∞,4.

For d = 0, 1, 2, · · · , r − 1, the products jd
2E∞,2E

r−1
∞,4 belong to G(2, h) and

W2(jd
2E∞,2E

r−1
∞,4) = jd+1

2 .

W2 carries E∞,2V isomorphically onto j2V1. Therefore dim(E∞,2V ) = r. Hence
E∞,2V = G(2, h).

(2) Suppose h ≡ 0 (mod 4). Then

W2(f)
dj2
dz

= −fE1−r
∞,42πiE∞,2E0,4E

−1
∞,4 = −2πifT2,h.

We can obtain the same result for h ≡ 2 (mod 4) by a similar computation. Thus
fT2,h is the derivative of a polynomial in j2, so it can be expressed in a neighborhood
of infinity as the derivative with respect to z of a power series in the variable q = e2πiz.
This derivative is a power series in q with vanishing constant term. This completes
the proof.

Lemma 10.6 (1)

E∞,4(z) = q
∏

0<n∈2Z

(1 − qn)8
∏

0<n∈Z\2Z

(1 − qn)−8;

(2) For a given set A and a given arithmetical function f , the number pA,f(n)
defined by the equation

∏
n∈A

(1 − xn)−f(n)/n = 1 +
∞∑

n=1

pA,f (n)xn

satisfies the recursion formula

npA,f (n) =
n∑

k=1

fA(k)pA,f (n − k),

where pA,f (0) = 1 and fA(k) =
∑

d|k,d∈A

f(d).
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Proof (1) This is equivalent to show that

E∞,4(z) = η(2z)16η(z)−8.

Denote by f(z) the right hand side of the above. The function f is holomorphic on
H because η is non-vanishing on H. We see that f has the product expansion

f(z) = q
∏

0<n∈2Z

(1 − qn)8
∏

0<n∈Z\2Z

(1 − qn)−8

from the product expansion of η. It follows that f has a simple zero at infinity. The
number of zeros in a Γ0(2) fundamental domain for a modular form in G(2, 4) is one.
But from the transformation formula of the η function we know easily that f is in
G(2, 4). This shows that f and E∞,4 are monic modular forms with the same weight,
level and divisor (both equal to 1 · i∞), hence identical.

(2) By induction.

Theorem 10.6 For any even positive integer h, the constant term in the Fourier
expansion at infinity of T2,h is non zero.

Proof Let h ≡ 0 (mod 4). Put u = 2πiz = log q. Write D for the operator
d
du

.

It is clear that D(qn) = nqn. Put m2 = j2 − 64. It is easy to see that E2
∞,2 =

E0,4 + 64E∞,4. So that m2 = E0,4E
−1
∞,4. Thus

dm2

dz
=

dj2
dz

= −2πiE∞,2E0,4E
−1
∞,4

and D(m2) = −E∞,2E0,4E
−1
∞,4. It follows that

T2,h = −E1−r
∞,4D(m2).

Therefore

E1−r
∞,4D(m2)=D(E1−r

∞,4m2) − m2D(E1−r
∞,4)

=D(E1−r
∞,4m2) − m2(1 − r)E−r

∞,4D(E∞,4)

=D(E1−r
∞,4m2) + (r − 1)m2E

−r
∞,4

(
− 1

r
E1+r
∞,4D(E−r

∞,4)
)

=D(E1−r
∞,4m2) +

1 − r

r
m2E∞,4D(E−r

∞,4)

=D(E1−r
∞,4m2) +

1 − r

r
E0,4D(E−r

∞,4).

The term D(E1−r
∞,4m2) makes no contribution to the constant term. Hence the constant

term of T2,h is equal to that of
r − 1

r
E0,4D(E−r

∞,4). We now compute the principal
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part of D(E−r
∞,4).

By Lemma 10.6, for fixed s, if we write

E−s
∞,4 = q−s

∞∑
n=0

R(n)qn,

then R(0) = 1 and

R(n) =
8s

n

n∑
a=1

σalt
1 (a)R(n − a), ∀n > 0. (10.17)

Because σalt
1 (a) alternates sign, the alternation of the sign of R(n) follows by an in-

duction from (10.16). So we can write R(n) = Un(−1)n with some Un > 0. Therefore
we have

E−r
∞,4 = U0(−1)0q−r + U1(−1)1q−r+1 + · · · + Ur−1(−1)r−1q−1 + 0 + · · · ,

hence

D(E−r
∞,4)=−rU0(−1)0q−r + (1 − r)U1(−1)1q1−r

+ · · · + (−1)Ur−1(−1)r−1q−1 + 0 + · · ·
=Vr(−1)1q−r + Vr−1(−1)2q1−r + · · · + V1(−1)rq−1 + 0 + · · · ,

where Vi = iUr−i > 0 for 1 � i � r. On the other hand, the Fourier coefficient of
qn(n � 0) in the expansion of E0,4 is Wn(−1)n for positive Wn, by the definition of
E0,4. Therefore the constant term of E0,4D(E−r

∞,4) is equal to

r∑
n=1

Vn(−1)r+1−nWn(−1)n = (−1)r+1
r∑

n=1

VnWn,

so that the constant term of T2,h is equal to

r − 1
r

(−1)r+1
r∑

n=1

VnWn �= 0

for h � 4, h ≡ 0(4) (since r > 1 in this case).
Now we assume that h ≡ 2 (mod 4). We have proved the following equality above

d
dz

m2(z) =
d
dz

j2(z) = −2πiE∞,2(z)E0,4(z)E−1
∞,4(z).

So D(m2(z)) = −E∞,2(z)E0,4(z)E−1
∞,4(z). This implies that

T2,h = E2
∞,2E0,4E

−1−r
∞,4 = −E∞,2E

−r
∞,4D(m2).
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Therefore

E∞,2E
−r
∞,4D(m2)

=D(E∞,2E
−r
∞,4m2) − E∞,2m2D(E−r

∞,4) − E−r
∞,4m2D(E∞,2)

=D(E∞,2E
−r
∞,4m2) − E∞,2m2(−r)E−r−1

∞,4 D(E∞,4) − E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) − E∞,2m2(−r)E−r−1

∞,4

(
1

−r − 1

)
Er+2
∞,4D(E−r−1

∞,4 )

−E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E∞,2m2E

−r−1
∞,4 Er+2

∞,4D(E−r−1
∞,4 ) − E0,4E

−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E0,4E∞,2D(E−r−1

∞,4 ) − E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E0,4

(
D(E∞,2E

−r−1
∞,4 ) − E−r−1

∞,4 D(E∞,2)
)

−E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E0,4D(E∞,2E

−r−1
∞,4 ) − 1

r + 1
E0,4E

−r−1
∞,4 D(E∞,2).

The term D(E∞,2E
−r
∞,4m2) makes no contribution to the constant term of T2,h because

for any formal series
∞∑

n=0

bnqn we have that D

( ∞∑
n=0

bnqn

)
=

∞∑
n=0

nbnqn which has no

constant term. Hence we only need to compute the constant terms of
r

r + 1
E0,4

D(E∞,2E
−r−1
∞,4 ) and

1
r + 1

E0,4E
−r−1
∞,4 D(E∞,2).

For any positive integer s, we write

E−s
∞,4 := q−s

∞∑
n=0

Rs(n)qn.

Then by Lemma 10.6 and by an easy induction we can prove that Rs(n) = (−1)nUs(n)
with Us(n) > 0.

But we know

E∞,2(z) := 1 + 24
∞∑

n=1

σodd
1 (n)qn.

Hence we have

E∞,2E
−r−1
∞,4 := q−r−1

∞∑
i=0

aiq
i

=

(
1 + 24

∞∑
n=1

σodd
1 (n)qn

)( ∞∑
n=0

(−1)nUr+1(n)qn

)
,
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where

ai = 24
i∑

j=0

σodd
1 (j)Ur+1(i − j)(−1)i−j , σodd

1 (0) :=
1
24

. (10.18)

Hence

D(E∞,2E
−r−1
∞,4 ) = q−r−1

∞∑
i=0

(i − r − 1)aiq
i.

Noting that the nth Fourier coefficient of

E0,4 = 1 + 16
∞∑

n=1

σalt
3 (n)qn

has the form (−1)nWn with Wn = (−1)n16σalt
3 (n) a positive integer, we see that

E0,4D(E∞,2E
−r−1
∞,4 ) :=

∞∑
n=−r−1

a′nqn

=

( ∞∑
n=0

(−1)nWnqn

)( ∞∑
i=0

(i − r − 1)aiq
i−r−1

)
.

In particular, we have

a′0 =
r∑

i=0

(i − r − 1)ai(−1)r+1−iWr+1−i. (10.19)

On the other hand, we have

E0,4E
−r−1
∞,4 :=

∞∑
i=0

biq
i−r−1 =

( ∞∑
n=0

(−1)nWnqn

)( ∞∑
n=0

(−1)nUr+1(n)qn

)
,

where

bi :=
i∑

j=0

(−1)iUr+1(i − j)Wj (10.20)

and

D(E∞,2) = 24
∞∑

n=1

nσodd
1 (n)qn

Hence

E0,4E
−r−1
∞,4 D(E∞,2) :=

∞∑
n=−r

b′nqn =

( ∞∑
i=0

biq
i−r−1

)(
24

∞∑
n=1

nσodd
1 (n)qn

)
.

In particular, we have

b′0 = 24
r∑

i=0

bi(r + 1 − i)σodd
1 (r + 1 − i) (10.21)
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From (10.17)–(10.20) we see

a′0 =
r∑

i=0

i∑
j=0

24σodd
1 (j)Ur+1(i − j)(−1)r+1−j(i − r − 1)Wr+1−i

=24
r∑

i=0

(i − r − 1)Wr+1−i

i∑
j=0

(−1)r+1−jUr+1(i − j)σodd
1 (j),

b′0 =24
r∑

i=0

i∑
j=0

Ur+1(i − j)Wj(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

=24
r∑

i=0

(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

i∑
j=0

Ur+1(i − j)Wj .

Therefore the constant term of T2,h is equal to

− r

r + 1
a′0 −

1
r + 1

b′0

=− 24r

r + 1

r∑
i=0

(i − r − 1)Wr+1−i

i∑
j=0

(−1)r+1−jUr+1(i − j)σodd
1 (j)

− 24
r + 1

r∑
i=0

(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

i∑
j=0

Ur+1(i − j)Wj

=− 24
r + 1

⎛⎝(−1)rr

r∑
i=0

(r + 1 − i)Wr+1−i

i∑
j=0

(−1)jUr+1(i − j)σodd
1 (j)

+
r∑

i=0

(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

i∑
j=0

Ur+1(i − j)Wj

⎞⎠
=− 24

r + 1

r∑
i=0

(r + 1 − i)((−1)rrWr+1−i + (−1)iσodd
1 (r + 1 − i))

×
i∑

j=0

((−1)jσodd
1 (j) + Wj).

For any nonnegative even integer n, it is clear that (−1)nσodd
1 (n)+Wn > 0 because

σodd
1 (n) > 0 and Wn > 0 for any nonnegative integer n. For any odd integer n we

have

(−1)nσodd
1 (n) + Wn =−

∑
0<d|n

2�d

d − 16
∑

0<d|n
(−1)dd3

=
∑

0<d|n
2�d

(16d3 − d) −
∑

0<d|n
2|d

(16d3) =
∑

0<d|n
2�d

(16d3 − d) > 0.
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And it is clear that rWr+1−i + (−1)r−iσodd
1 (r + 1− i) > 0 if r − i is even. If r − i

is odd, then r + 1 − i is even, so we see that

rWr+1−i + (−1)r−iσodd
1 (r + 1 − i)

=16r
∑

0<d|r+1−i

(−1)dd3 −
∑

0<d|n
2�d

d

=16r
∑

0<d|r+1−i
2|d

d3 −
∑

0<d|n
2�d

(16d3 + d) � r

t∑
i=1

16(2di)3 −
t∑

i=1

(16d3
i + di)

=
t∑

i=1

(128rd2
i − 16d2

i − 1)di > 0 for all r � 1,

where di with 1 � i � t are all distinct odd divisors of r + 1 − i.
This shows that

− r

r + 1
a′0 −

1
r + 1

b′0 =− 24
r + 1

r∑
i=0

(r + 1 − i)((−1)rrWr+1−i + (−1)iσodd
1 (r + 1 − i))

×
i∑

j=0

Ur+1(i − j)((−1)jσodd
1 (j) + Wj)

= (−1)r+1 24
r + 1

r∑
i=0

Xi

i∑
j=0

Yj ,

where
Xi := (r + 1 − i)(rWr+1−i + (−1)r−iσodd

1 (r + 1 − i)) > 0

and
Yj := Ur+1(i − j)((−1)jσodd

1 (j) + Wj) > 0,

This proves that the constant term of T2,h is

r

r + 1
a′0 +

1
r + 1

b′0 �= 0

for any positive integer r. This completes the proof.

Theorem 10.7 Suppose f ∈ G(2, h) with Fourier expansion at infinity

f(z) =
∞∑

n=0

Anqn with A0 �= 0.

If h ≡ 0 (mod 4), then there is some An �= 0 for 1 � n � r(2, h). If h ≡ 2 (mod 4),
then there is some An �= 0 for 1 � n � 1 + r(2, h).
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Proof First suppose that h ≡ 0 (mod 4). We denote the coefficient of qn in the
Fourier coefficient of any modular form g at infinity as cn(g). The meromorphic
modular form T2,h has a Fourier expansion

T2,h =
∞∑

n=−r

cn(T2,h)qn

with c−r(T2,h) = 1. By the part (2) of Lemma 10.5, we see that

0 = c0(T2,hf) =
r∑

i=0

c−i(T2,h)Ai.

By hypothesis, A0 �= 0. By Theorem 10.6, c0(T2,h) �= 0, so

A0 = −(c0(T2,h))−1
r∑

i=1

c−i(T2,h)Ai,

which implies that there exists an n with 1 � n � r such that An �= 0.
If h ≡ 2 (mod 4), then

T2,h =
∞∑

n=−r−1

cn(T2,h)qn

with c−r−1(T2,h) = 1. By the part (2) of Lemma 10.5, we see that

0 = c0(T2,hf) =
r+1∑
i=0

c−i(T2,h)Ai.

By hypothesis, A0 �= 0. By Theorem 10.6, c0(T2,h) �= 0, so that

A0 = −(c0(T2,h))−1
r+1∑
i=1

c−i(T2,h)Ai,

which implies that there exists an n with 1 � n � r + 1 such that An �= 0. This
completes the proof.

Theorem 10.8 Let Q be an even positive definite quadratic form of level two in
v variables. Then Q represents a positive integer 2n � 2 + v/4 or a positive integer
2n � 3 + v/4 according to v ≡ 0 (mod 8) or v ≡ 4 (mod 8) respectively.

Proof Suppose that Q is an even positive definite quadratic form of level two in
v variables with v ≡ 4 (mod 8). Put v = 8k + 4. Then by the well-known facts on
θ-functions we know that the function defined by

θQ(z) :=
∞∑

n=0

#Q−1(2n)qn ∈ G(2, v/2)
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is a holomorphic modular form where

#Q−1(2n) := #{(x1, x2, · · · , xv) ∈ Zv|Q(x1, x2, · · · , xv) = 2n}.

It is clear that #Q−1(0) = 1. Hence by Theorem 10.7 we know that there exists an
n0 with 1 � n0 � 1 + r(2, v/2) such that #Q−1(2n0) > 0. That means Q represents

the integer 2n0 with n0 � 1 + r(2, v/2) = 1 + r(2, 4k + 2) = 2 +
[
4k + 2

4

]
= 2 + k.

Hence Q represents the integer 2n0 � 2(2 + k) = 4 + 2k = 3 + v/4. We can prove the
case h ≡ 0 (mod 8) similarly. This completes the proof.

10.3 The Eligible Numbers of a Positive Definite Ternary

Quadratic Form

In this section we study the problem of how to find the integers represented by a
positive definite ternary quadratic form. It is a classical result that, taken together,
the forms of a genus represent all numbers not ruled out by some corresponding
congruences B.W. Jones, 1931; B.W. Jones, 1950. Following Kaplansky, we call these
the eligible numbers of the genus I. Kaplansky, 1995. But it is very difficult to
determine which of these eligible numbers can be represented by a form in the genus.
In general we have the following results:

(R1) A positive definite ternary quadratic form f represents all of sufficiently large
numbers which are represented by the spinor genus of f . (cf. W. Duke, 1990.)

(R2) Let n0 be a square-free positive integer represented primitively by the genus
of a positive definite ternary quadratic form f with discriminant d, then f primitively
represents all of sufficiently large integers n0t

2 if (t, 2d) = 1 and n0t
2 are primitively

represented by the spinor genus of f . (cf. J. Hsia, 1997.)
But there are no effective algorithm to determine all exceptions because (R1) and

(R2) are dependent on Siegel’s ineffective lower bound for the class numbers and
the Iwaniec’s estimation for the coefficients of cusp forms (cf. Remark 10.3). Even
for the simplest cases, we can not do this. For example, let f1 = x2 + y2 + 7z2,
f2 = x2 +7y2 +7z2. Then f1 and g1 = x2 +2y2 +4z2 +2yz belong to the same genus,
f2 and g2 = 2x2+4y2+7z2−2xy belong to another genus. The eligible numbers of f1

and g1 (f2 and g2 respectively)are numbers which are not the product of an odd (even
respectively) power of 7 and a number congruent to 3, 5 or 6 mod 7 (see Example

10.1 and Example 10.2). We also can not determine which of them are represented
by f1 and f2 respectively.

In I. Kaplansky, 1995 Kaplansky proved the following result and pointed out the
following tables:

Theorem The form f1 represents all eligible numbers which are multiples of 9;
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it also represents all eligible numbers congruent to 2 mod 3 which are not of the form
14t2.

List I: Up to 100, 000 there are 27 eligible numbers prime to 7 not represented
by f1: 3, 6, 19, 22, 31, 51, 55, 66, 94, 139, 142, 159, 166, 214, 235, 283, 439, 534, 559,
670, 874, 946, 1726, 2131, 2419, 3559, 4759.

List II: Up to 100, 000 there are 26 eligible numbers congruent to 1, 2 or 4 mod
7 which are not represented by f2: 2, 22, 46, 58, 85, 93, 102, 205, 298, 310, 330, 358,
466, 478, 697, 862, 949, 1222, 1402, 1513, 1957, 1978, 2962, 3502, 7165, 10558.

List III: Up to 100, 000 there are 3 eligible numbers prime to 7 not represented

by f3 = x2 + 2y2 + 7y2: 5, 20, 158.
List IV: Up to 100, 000 there are 3 eligible numbers congruent to 1, 2 or 4 mod 7

which are not represented by f4 = x2 + 7y2 + 14z2: 2, 74, 506.
It is clear that 14 · 72k ≡ 2 (mod 3) and f1 does not represent 14 · 72k for any

non-negative integer k by a simple induction. We call the numbers of 14 · 72k to be
of trivial type. Hence there are indeed eligible numbers of the form 14t2 which are
missed by f1. But as Kaplansky pointed out, List II shows, that up to 700, 000 there

are no further eligible numbers of form 14t2 that are missed by f1 and which are not
of trivial type. This motivated Kaplansky to make the following:

Conjecture f1 represents all eligible numbers congruent to 2 mod 3 which are
not of trivial type.

Kaplansky also conjectured that these four lists describe all exceptions, and so our
knowledge of the integers represented by f1 and g1 would be complete.

In this section we want to show some general results about the eligible numbers
of positive definite ternary forms by using modular forms of weight 3/2, and give

an algorithm for the number of representations of a positive integer n by a genus of
positive definite ternary quadratic forms which is of an independent interest because
it is a generalization of the classical theorem of Gauss concerning the number of rep-

resentations of a natural number as a sum of three squares. By this algorithm, we
can more precisely deal with eligible numbers and prove that the above Conjecture
holds. We will also show how to use the algorithm to compute the number of represen-

tations and eligible numbers of a positive integer n by a genus of a positive definite
ternary quadratic forms. We will study the relationships between the numbers of
representations of ternary positive definite quadratic forms and elliptic curves.

Now let α, β, γ be square-free positive odd integers with (α, β, γ) = 1, D = [α, β,

γ], and λ4m (m|D) and λm (1 �= m|D) be the unique solution of the following system
of linear equations:
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(�)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m|D

(C4m · μ(m/d)m−1) +
∑

1�=m|D
(Cm · μ(m/d)m−1

=
1
D

(
−1
d

)(
αβ/(α, β)2

(d, α, β)(d, l, γ)

)(
βγ/(β, γ)2

d, β, γ)(d, l, α)

)(
γα/(γ, α)2

(d, γ, α)(d, l, β)

)
,

∑
m|D

C4m · μ(m/d)m−1 =
1
D

−1
(D/d)

(
αβ/(α, β)2

γ(α, β)(α, β, d)−1(γ, αβd)−1

)

×
(

βγ/(β, γ)2

α(β, γ)(α, βγd)−1(β, γ, d)−1

)(
γα/(γ, α)2

β(γ, α)(β, αγd)−1(γ, α, d)−1

)
d|D,

which will be proved to have a unique solution later (cf. The proof of Theorem 10.9).
It is clear that λ4m (m|D) and λm (1 �= m|D) are only dependent on α, β, γ.

For positive integers n, D, l we define:

α(n) =

⎧⎪⎪⎨⎪⎪⎩
3 × 2−(1+ν2(n))/2, if 2 � ν2(n),
3 × 2−(1+ν2(n)/2), if 2|ν2(n), n/2ν2(n) ≡ 1(mod 4),
2−ν2(n)/2, if 2|ν2(n), n/2ν2(n) ≡ 3(mod 8),
0, if 2|ν2(n), n/2ν2(n) ≡ 7(mod 8)

and

βl,p(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 + p)p(1−νp(ln))/2, if 2 � νp(ln),

2p1−νp(ln)/2, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= −1,

0, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= 1.

and

β3(n, χD, 4D) =
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1.

Note that β3(n, χD, 4D) = 1 if n is square-free.
Let f be a positive definite ternary quadratic form, {f1 = f , f2, · · · , ft} a set of

representatives of equivalence class in the genus of f . Denote by ri(n) = r(fi, n) the

number of representations of n by fi. Put G(n) =
t∑

i=1

ri(n)
O(fi)

. With these notations

we get the following

Theorem 10.9 Let α, β, γ be square-free odd positive integers such that (α, β,
γ) = 1, f = αx2 +βy2 +γz2. Let A = {f1 = f , f2, · · · , ft} be a set of representatives
for the equivalence classes in the genus of f . Then for any positive integer n we have
that

G(n) = r(α, β, γ; n) · h(−ln),
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where l = αβγ/((α, β)2(α, γ)2(β, γ)2) and r(α, β, γ; n) is given by the following for-
mula:

r(α, β, γ; n)

=
32
ωln

α(ln)(1 − 2−1χ−ln(2))
(

ln

δln

) 1
2

β3(ln, χD, 4D)

(
t∑

i=1

1
0(fi)

)

×
(∑

m|D
(−1)t(m)λ4m

∏
p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)

+
∑

1�=m|D
(−1)t(m)λm

∏
p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)
)

.

Proof We recall the following notations introduced in Section 7.3

λ3(n, 4D)=L4D(2, id.)−1L4D(1, χ−n)β3(n, χD, 4D)

A3(2, n)=

⎧⎪⎪⎨⎪⎪⎩
4−1(1 − i)(1 − 3 · 2−(1+ν2(n))/2), if 2 � ν2(n),
4−1(1 − i)(1 − 3 · 2−(1+ν2(n)/2)), if 2|ν2(n), n/2ν2(n)≡1 (mod 4),
4−1(1 − i)(1 − 2−ν2(n)/2), if 2|ν2(n), n/2ν2(n)≡3 (mod 8),
4−1(1 − i), if 2|ν2(n), n/2ν2(n)≡7 (mod 8).

A3(p, n)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p−1 − (1 + p)p−(3+νp(n))/2, if 2 � νp(n),

p−1 − 2p−1−νp(n)/2, if 2|νp(n),
(
−n/pνp(n)

p

)
=−1,

p−1, if 2|νp(n),
(
−n/pνp(n)

p

)
=1,

LN (s, χ)=
∞∑

(n,N)=1

χ(n)n−s =
∏
p�N

(1 − χ(p)p−S)−1,

β3(n, χD, 4D)=
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1,

where ν2(n) is the maximal non–negative integer such pν2(n)|n.
We define functions g(χl, 4m, 4D)(z) (m|D) and g(χl, m, 4D)(z) (m �= 1, m|D),

where D is a square–free odd positive integer and l|D as follows:

g(χl, 4D, 4D)(z)=1 − 4π(1 + i)l
1
2

∞∑
n=1

λ3(ln, 4D)(A(2, ln)− 4−1(1 − i))

×
∏
p|D

(A(p, ln) − p−1)n
1
2 exp{2πinz},

g(χl, 4m, 4D)(z)=−4π(1 + i)l
1
2

∞∑
n=1

λ3(ln, 4D)(A(2, ln)− 4−1(1 − i))
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×
∏
p|m

(A(p, ln) − p−1)n
1
2 exp{2πinz}, ∀D �= m|D,

g(χl, m, 4D)(z)=2πl
1
2

∞∑
n=1

λ(ln, 4D)
∏
p|m

(A(p, ln) − p−1)n
1
2 exp{2πinz}.

By the results of Section 7.3, the set of functions

g(χl, 4m, 4D)(m|D), g(χl, m, 4D), 1 �= m|D

is a basis of E(4D, 3/2, χl), and we have

V (g(χl, 4m, 4D), 1/α) = −4−1(1 + i)μ(m/α)αm−1l
1
2 (l, α)−

1
2 ε−1

α/(l,α)

(
l/(l, α)
d/(l, α)

)
,

V (g(χl, 4m, 4D), 1/(4α)) = μ(m/α)αm−1l
1
2 (l, α)−

1
2 εl/(l,α)

(
α/(l, α)
l/(l, α)

)
,

V (g(χl, 4m, 4D), 1/(2α)) = 0,

V (g(χl, m, 4D), 1/α) = −4−1(1 + i)μ(m/α)αm−1l
1
2 (l, α)−

1
2 ε−1

α/(l,α)

(
l/(l, α)
α/(l, α)

)
,

V (g(χl, m, 4D), 1/(2α)) = 0,

V (g(χl, m, 4D), 1/(4α)) = 0,

where α is any positive divisor odd D and V (f, p) represents the value of f at the
cusp point p.

For f = αx2 + βy2 + γz2, we see that θf (z) ∈ G(4D, 3/2, χl) and θ(gen.f, z) ∈
E(4D, 3/2, χl) by the results in Section 10.1, where D = [α, β, γ] and l = αβγ/((α, β)2

· (α, γ)2(β, γ)2). Therefore there exist complex numbers c4m(m|D) and cm(m|D, m �=
1) such that

θ(gen.f, z) =
∑
m|D

c4mg(χl, 4m, 4D) +
∑

1�=m|D
cmg(χl, m, 4D).

If we can compute explicitly these complex numbers, then we can obtain the explicit

expression of G(n) :=
t∑

i=1

ri(n)
O(fi)

by comparing the Fourier coefficients of the two

sides of the above equality. In order to do this, we only need to calculate the values
of θ(gen.f, z) at cusp points.

Claim 1 Let d/c be a cusp point (c > 0, (c, d) = 1). Then

V (θ, d/c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε−1

d

(
d

c

)
, if 4|c,

1 − i

2
εc

(
d

c

)
, if 2 � c,

0, if 2 ‖ c,
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where θ(z) =
∞∑

m=−∞
exp{m2z}.

Claim 2 Let d be a square-free odd positive integer, then

εd =
∏
p|d

εp

(
dp−1

p

)
.

The proofs of these two claims are just simple calculations, and hence they are omitted.
It is easy to see that for square-free positive odd D, S(4D) := {1/d, 1/2d, 1/4d |

d|D} is a representative system of all equivalent classes of cusp points of Γ0(4D).
Claim 3 Let be f = αx2 +βy2 + γz2, where α, β, γ are square–free positive odd

integers such that (α, β, γ) = 1. Then

V (θf , 1/d)=− (1 + i)dl1/2

4D(l, d)1/2
ε−1

d/(d,l)

(
−1
d

)(
l/(l, d)
d/(l, d)

)
·
(

αβ/(α, β)2

(d, α, β)(d, l, γ)

)(
βγ/(β, γ)2

(d, β, γ)(d, l, α)

)
×
(

γα/(γ, α)2

(d, γ, α)(d, l, β)

)
,

V (θf , 1/4d)=dD−1l1/2(l, d)−1/2εl/(l,d)

(
−1
D/d

)(
d/(l, d)
l/(l, d)

)
×
(

αβ/(α, β)2

γ(α, β)(α, β, d)−1(γ, αβd)−1

)
×
(

βγ/(β, γ)2

α(β, γ)(α, βγd)−1(β, γ, d)−1

)(
γα/(γ, α)2

β(γ, α)(β, αγd)−1(γ, α, d)−1

)
,

V (θf , 1/2d)=0,

where d|D.
This is a special case of our general result in Section 10.1. But now we can give a

new proof for this fact. We have that

V (θf , 1/d)= lim
z→0

(−dz)3/2θf

(
z +

1
d

)
= lim

z→0
(−dz)3/2θ(α(z + 1/d))θ(β(z + 1/d))θ(γ(z + 1/d))

= lim
z→0

(−dz)3/2θ

(
αz +

α/(α, d)
d/(α, d)

)
θ

(
βz +

β/(β, d)
α/(β, d)

)
θ

(
γz +

γ/(γ, d)
d/(γ, d)

)
=
(

(α, d)(β, d)(γ, d)
αβγ

) 1
2

V

(
θ,

α/(α, d)
d/(α, d)

)
·V
(

θ,
β/(β, d)
d/(β, d)

)
· V
(

θ,
γ/(γ, d)
d/(γ, d)

)
.

We express d as d = (d, l)× d

(d, l)
. Suppose that p is a prime factor of d. Then p|(d, l)
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if and only if only one of α, β, γ is divisible by p, p|d/(d, l) if and only if only two of
α, β, γ are divisible by p. This shows that αβγ = D2/l, (α, d)(β, d)(γ, d) = d2/(d, l).
Hence by the above claims we obtain that

V (θf , 1/d) = −4−1(1 + i)dD−1l1/2(d, l)−1/2V1,

where

V1 = εd/(α,d)εd/(β,d)εd/(γ,d)

(
α/(α, d)
d/(α, d)

)(
β/(β, d)
d/(β, d)

)(
γ/(γ, d)
d/(γ, d)

)

=
∏
p|d

ε2
p

∏
p|d/(d,l)

ε−1
p

∏
p|d/(α,d)

(
αd/p

p

)

∏
p|d/(β,d)

(
βd/p

p

) ∏
p|d/(γ,d)

(
γd/p

p

)

=
(
−1
d

)
ε−1

d/(d,l)

∏
p|d/(d,l)

(
d(p(d, l))−1

p

)

∏
p|d/(α,d)

(
αd/p

p

) ∏
p|d/(β,d)

(
βd/p

p

) ∏
p|d/(γ,d)

(
γd/p

p

)

=
(
−1
d

)
ε−1

d/(d,l)

(
α(d, l)

(d, β, γ)

)(
β(d, l)

(d, γ, α)

)
(

γ(d, l)
(d, α, β)

)(
αβ

(d, l, γ)

)(
βγ

(d, l, α)

)(
γα

(d, l, β)

)

=
(
−1
d

)
ε−1

d/(d,l)

(
l/(d, l)
d/(d, l)

)(
αβ/(α, β)2

(d, l, γ)(d, α, β)

)
(

βγ/(β, γ)2

(d, l, α)(d, β, γ)

)(
γα/(γ, α)2

(d, l, β)(d, γ, α)

)
,

which implies the expression of V (θf , 1/d).
Similarly we have that

V (θf , 1/4d)= lim
z→0

(−4dz)
3
2 θf (z + 1/4d)

= lim
z→0

(−4dz)
3
2 θ(α(z + 1/4d))θ(β(z + 1/4d))θ(γ(z + 1/4d))

=
(

(α, d)(β, d)(γ, d)
αβγ)

) 1
2

V

(
θ,

α/(α, d)
4d/(α, d)

)
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×V

(
θ,

β/(β, d)
4d/(β, d)

)
V

(
θ,

γ/(γ, d)
4d/(γ, d)

)
=dD−

1
2 l

1
2 (l, d)−

1
2 V2,

where

V2 = ε−1
α/(α,d)ε

−1
β/(β,d)ε

−1
γ/(γ,d)

(
d/(α, d)
α/(α, d)

)(
d/(β, d)
β/(β, d)

)(
d/(γ, d)
γ/(γ, d)

)
=
∏

p|D/p

ε−2
p

∏
p|l/(l,α)

εp

∏
p|α/(α,d)

(
αd/p

p

) ∏
p|β/(β,d)

(
βd/p

p

) ∏
p|γ/(γ,d)

(
γd/p

p

)

= εl/(l,d)

(
−1
D/d

) ∏
p|l/(l,d)

(
l(p(l, d))−1

p

) ∏
p|α/(α,d)

(
αd/p

p

)

×
∏

p|β/(β,d)

(
βd/p

p

) ∏
p|γ/(γ,d)

(
γd/p

p

)
,

since

l/(l, d) = α/(α, βγd) × β/(β, γαd) × γ/(γ, αβd).

Hence,

V2 = εl/(l,d)

(
−1
D/d

)(
αβ/(α, β)2

(α, β)/(α, β, d)

)(
βγ/(β, γ)2

(β, γ)/(β, γ, d)

)(
γ, α/(γ, α)2

(γ, α)/(γ, α, d)

)

×
(

αdl(d, l)−1(α, l)−2

α/(α, βγd)

)(
βdl(d, l)−1(β, l)−2

β/(β, γαd)

)(
γdl(d, l)−1(γ, l)−2

γ/(γ, αβ, d)

)

= εl/(l,d)

(
−1
D/d

)(
d/(d, l)
l/(d, l)

)(
αβ/(α, β)2

(α, β)/(α, β, d) × γ/(γ, αβd)

)

×
(

βγ/(β, γ)2

(β, γ)/(β, γ, d) × α/(α, βγd)

)(
γα/(γ, α)2

(γ, α)/(γ, α, d) × β/(β, γαd)

)
,

which implies the expressions for V (θf , 1/4d). Finally we can show that V (θf , 1/2d) =
0 by the fact that V (θ, 1/2) = 0. This completes the proof of Claim 3.

Since θf (z) and θ(gen.f, z) have the same values at each cusp point, we see that

V (θ(gen.f, z), p) = V (θf (z), p)

=
∑
m|D

C4mV (g(χl, 4m, 4D), p) +
∑

1�=m|D
CmV (g(χl, m, 4D), p)

for each cusp point p. Hence we obtain a system of equations:
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∑
m|D

C4mV (g(χl, 4m, 4D), 1/α) +
∑

1�=m|D
CmV (g(χl, m, 4D), 1/α)

=V (θf , 1/α), (α|D),∑
m|D

C4mV (g(χl, 4m, 4D), 1/(2α)) +
∑

1�=m|D
CmV (g(χl, m, 4D), 1/(2α))

=V (θf , 1/(2α)) = 0, (α|D),∑
m|D

C4mV (g(χl, 4m, 4D), 1/(4α)) +
∑

1�=m|D
CmV (g(χl, m, 4D), 1/(4α))

=V (θf , 1/(4α)), (α|D).

(10.22)

Inserting the values of the functions at cusp points into equality (10.22), we have that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m|D

(C4m · μ(m/d)m−1) +
∑

1�=m|D
(Cm · μ(m/d)m−1

=
1
D

(
−1
d

)(
αβ/(α, β)2

(d, α, β)(d, l, γ)

)(
βγ/(β, γ)2

d, β, γ)(d, l, α)

)(
γα/(γ, α)2

(d, γ, α)(d, l, β)

)
,

∑
m|D

C4m · μ(m/d)m−1 =
1
D

−1
(D/d)

(
αβ/(α, β)2

γ(α, β)(α, β, d)−1(γ, αβd)−1

)

×
(

βγ/(β, γ)2

α(β, γ)(α, βγd)−1
(β, γ, d)−1

)
×
(

γα/(γ, α)2

β(γ, α)(β, αγd)−1(γ, α, d)−1

)
, (d|D).

(10.23)

We must prove that the system (10.23) has a unique solution for C4m (m|D) and
Cm (1 �= m|D). This is equivalent to proving that the corresponding homogeneous
system has only zero as a solution. Otherwise, suppose that C4m = λ4m (m|D) and
Cm = λm (1 �= m|D) is a non-zero solution of (10.23), i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
m|D

(λ4m · μ(m/d)m−1) +
∑

1�=m|D
(λm · μ(m/d)m−1 = 0,

∑
m|D

λ4m · μ(m/d)m−1 = 0, d|D.
(10.24)

Consider the following function:

h(z) =
∑
m|D

λ4mg(χl, 4m, 4D) +
∑

1�=m|D
λmg(χl, m, 4D),

which belongs to the space E(4D, 3/2, χl). We now compute the values of h(z) at all
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cusp points. For any d|D, we see that:

V (h(z), 1/d)=
∑
m|D

λ4mV (g(χl, 4m, 4D), 1/d) +
∑

1�=m|D
λmV (g(χl, m, 4D), 1/d)

=−4−1(1 + i)dl
1
2 (l, d)−

1
2 ε−1

d/(l,d)

×
(

l/(l, d)
d/(l, d)

)⎛⎝∑
m|D

λ4mμ(m/d)m−1 +
∑

1�=m|D
λmμ(m/d)m−1

⎞⎠
=0,

V (h(z), 1/(2d))=
∑
m|D

λ4mV (g(χl, 4m, 4D), 1/(2d))+
∑

1�=m|D
λmV (g(χl, m, 4D), 1/(2d))

=
∑
m|D

λ4m · 0 +
∑

1�=m|D
λm · 0 = 0,

V (h(z), 1/(4d))=
∑
m|D

λ4mV (g(χl, 4m, 4D), 1/(4d))+
∑

1�=m|D
λmV (g(χl, m, 4D), 1/(4d))

=dl
1
2 (l, d)−

1
2 εl/(l,d)

(
d/(l, d)
l/(l, d)

)⎛⎝∑
m|D

λ4mμ(m/d)m−1

⎞⎠ = 0.

These imply that the values of modular form h(z) are equal to zero at all cusp
points of Γ0(4D). Hence h(z) ∈ S(4D, 3/2, χl) which shows that h(z) ∈ S(4D,

3/2, χl)
⋂
E(4D, 3/2, χl) = {0}, i.e.,∑

m|D
λ4mg(χl, 4m, 4D) +

∑
1�=m|D

λmg(χl, m, 4D) = 0.

But g(χl, 4m, 4D) (m|D) and g(χl, m, 4D) (1 �= m|D) are linearly independent.
Therefore λ4m = 0 (m|D) and λm = 0 (1 �= m|D) which contradicts the assump-
tion for λ4m and λm and hence show that the system (10.23) has only zero as a
solution.

From (10.23) we can easily calculate explicitly all the Cm(1 �= m|D) and C4m(m|D),
it is clear that all these are rational numbers and only dependent on α, β, γ.

That is, we obtain explicitly rational numbers Cm and C4m such that

θ(gen.f, z) =
∑
m|D

C4mg(χl, 4m, 4D) +
∑

1�=m|D
Cmg(χl, m, 4D). (10.25)

On the other hand, let

α(n)=2(1 + i)(4−1(1 − i) − A3(2, n))

=

⎧⎪⎪⎨⎪⎪⎩
3 × 2−(1+ν2(n))/2, if 2 � ν2(n),
3 × 2−(1+ν2(n)/2), if 2|ν2(n), n/2ν2(n) ≡ 1(mod 4),
2−ν2(n)/2, if 2|ν2(n), n/2ν2(n) ≡ 3(mod 8),
0, if 2|ν2(n), n/2ν2(n) ≡ 7(mod 8)

(10.26)
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and

βl,p(n)=p2(p−1 − A3(p, ln))

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 + p)p(1−νp(ln))/2, if 2 � νp(ln),

2p1−νp(ln)/2, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= −1,

0, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= 1.

(10.27)

Let δln be the conductor of the character χ−ln and h(−ln) be the class number of the
imaginary quadratic field Q(

√
−ln). Then the class number formula shows that

h(−ln) = (2π)−1δ
1
2
lnωlnL(1, χ−ln),

where

ωln =

⎧⎨⎩
6, if δln = 3,

4, if δln = 4,

2, if otherwise.

Hence

λ3(ln, 4D)=L4D(2, id)−1L4D(1, χ−ln)β3(ln, χD, 4D)

=L(2, id)−1
∏
p|4D

(1 − p−2)−1L(1, χ−ln)

·
∏
p|4D

(1 − χ−ln(p)p−1) · β3(ln, χD, 4D)

=
6
π2

·
∏
p|4D

(1 − p−2)−1(1 − χ−ln(p)p−1)

·h(−ln) · 2π · ω−1
ln δ

− 1
2

ln β3(ln, χD, 4D)

=
12
π

∏
p|4D

(1 − χ−ln(p)p−1)p2

p2 − 1
· h(−ln)
ωln

√
δln

· β3(ln, χD, 4D).

This implies that

g(χl, 4D, 4D)=1 + (−1)t(D)32
∞∑

n=1

h(−ln)ω−1
ln α(ln)(1 − 2−1χ−ln(2))

×
∏
p|D

[
(1 − χln(p)p−1)

p2 − 1
βl,p(n)

]

·
(

ln

δln

)1/2

β3(ln, χD, 4D) exp{2πinz},

g(χl, 4m, 4D)=(−1)t(m)32
∞∑

n=1

h(−ln)ω−1
ln α(ln)(1 − 2−1χ−ln(2))
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×
∏

p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)

×
(

ln

δln

) 1
2

β3(ln, χD, 4D) exp{2πinz},

g(χl, m, 4D)= (−1)t(m)32
∞∑

n=1

h(−ln)ω−1
ln (1 − 2−1χln(2))

×
∏

p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)

×
(

ln

δln

) 1
2

β3(ln, χD, 4D) exp{2πinz},

(10.28)

where t(m) is the number of distinct prime factors of m. Let be ln = ds2 with d

square-free, then δln = d or 4d according to d ≡ 1 (mod 4) or d ≡ 2, 3 (mod 4) which

implies that
(

ln

δln

)1/2

=
(

ds2

d

)1/2

= s or
(

ln

δln

)1/2

=
(

ds2

4d

)1/2

=
s

2
according to

d ≡ 1 (mod 4) or d ≡ 2, 3 (mod 4). Anyway,
(

ln

δln

)1/2

is an explicitly determined

rational number. Now we compare the Fourier coefficients of the two sides of (10.24),
and use (10.27) to obtain that

G(n) = r(α, β, γ; n)h(−ln),

where r(α, β, γ; n) is defined as in 10.9. This completes the proof of the theorem.

By Theorem 10.9 we obtain the following:
An Algorithm for G(n) and eligible numbers of f :
Input: A positive definite ternary quadratic form f ;
Output: G(n) and the set E of eligible numbers of f ;
Step 1: Solve the system (�);
Step 2: Use Theorem 10.9 to compute G(n);
Step 3: Put E = {n ∈ N|r(α, β, γ; n) = 0}.
We will compute some examples with this algorithm.
It is clear that Theorem 10.9 holds indeed for any positive definite ternary quadratic

form f with level 4D (D a square-free odd positive integer). Hence by Theorem 10.9
we can always give the precise major part for the number r(f, n) of representations
for n by f . Especially if the space S(N , 3/2, χl) is the null space, we can obtain the
precise formula for r(f, n) by Theorem 10.9. For example, by the dimension formulae
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for the space of modular forms, we can find that the following spaces are all null
spaces:

S(4, 3/2, χ1), S(8, 3/2, χ1), S(8, 3/2, χ2),
S(12, 3/2, χ1), S(12, 3/2, χ3), S(16, 3/2, χ1),
S(20, 3/2, χ1), S(20, 3/2, χ5), S(24, 3/2, χ1),
S(24, 3/2, χ2), S(24, 3/2, χ3), S(24, 3/2, χ6),
S(32, 3/2, χ1), S(32, 3/2, χ2), S(64, 3/2, χ2).

Hence we can obtain the following formulae: Let be N(a, b, c; n) = r(ax2+by2+cz2, n),
δ(x) = 1 or 0 according to x is an integer or not, then

N(1, 1, 1; n) = 2πn
1
2 λ(n, 4)α(n), (Gauss formula)

N(1, 2, 2; n) = 2πn
1
2 λ(n, 4)

(
α(n) − δ

(
n − 1

4

)
− δ

(
n − 2

4

))
,

N(1, 3, 3; n) = 2πn
1
2 λ(n, 12)(1/3 − A(3, n))(2 − α(n)),

N(1, 5, 5; n) = 2πn
1
2 λ(n, 20)α(n)(A(5, n) + 1/5),

N(2, 3, 6; n) = 2πn
1
2 λ(n, 12)(1/3 + A(3, n))

(
α(n)−δ

(
n − 1

4

)
−δ

(
n − 2

4

))
, etc.

From this point of view we see that Theorem 10.9 is a generalization of the classical
result of Gauss concerning the number of representations of a natural number as a
sum of three squares.

Corollary 10.1 Let f = x2 + y2 + pz2, p an odd prime, then

G(n) :=
t∑

i=1

ri(n)
O(fi)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
ωpn(p2 − 1)

h(−pn)α(pn)(2p − βp,p(n))γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

ifp ≡ 1(mod 4),

32
ωpn(p2 − 1)

h(−pn)(2 − α(pn))βp,p(n)γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

ifp ≡ 3(mod 4),

where γp(n) = (1 − 2−1χ−pn(2))(pn/δpn)1/2
∑

(ab)2|n
(ab,2p)=1

μ(a)χ−pn(a)(ab)−1.

Proof Just as in the proof of Theorem 10.9, we have that D = l = p. So by (10.28)
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we see that E(4p, 3/2, χp) has a basis as follows:

g(χp, 4p, 4p)=1 − 32
p2 − 1

∞∑
n=1

h(−pn)ω−1
pn α(pn)βp,p(n)γp(n) exp{2πinz},

g(χp, 4, 4p)=
32p2

p2 − 1

∞∑
n=1

h(−pn)ω−1
pn α(pn)γp(n) exp{2πinz},

g(χp, p, 4p)=− 32
p2 − 1

∞∑
n=1

h(−pn)ω−1
pn βp,p(n)γp(n) exp{2πinz}.

We can easily calculate the solution of the system of equations (10.23):

⎛⎝ c4

c4p

cp

⎞⎠ =

⎛⎜⎜⎝
2
p

1
0

⎞⎟⎟⎠ or

⎛⎝ 0
1

−2

⎞⎠
according to p ≡ 1 or 3 (mod 4). Hence we see that

θ(gen.f, z) =
{

g(χp, 4p, 4p) + 2p−1g(χp, 4, 4p), if p ≡ 1(mod 4),
g(χp, 4p, 4p)− 2g(χp, p, 4p), if p ≡ 3(mod 4).

Hence we see that

G(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
ωpn(p2 − 1)

h(−pn)α(pn)(2p − βp,p(n))γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 1 (mod 4)

32
ωpn(p2 − 1)

h(−pn)(2 − α(pn))βp,p(n)γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 3 (mod 4)

as stated in the corollary.

Example 10.3 Let p = 7, then f = f1 = x2 +y2+7z2 and g1 = x2+2y2+4z2+2yz

belong to the same genus, O(f1) = 8, O(g1) = 4. Hence

G1(n) =
r1(n)

8
+

r′1(n)
4

=
1
4
ω−1

7n · (2 − α(7n))β7,7(n)γ7(n)h(−7n).
�

Corollary 10.2 Let f = x2 + py2 + pz2, p an odd prime, then
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G(n) :=
t∑

i=1

ri(n)
O(fi)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
32

ωn(p2 − 1)
h(−n)α(n)(2p − β1,p(n))γ′p(n)

(
t∑

i=1

1
O(fi)

)
, if p ≡ 1(mod 4),

32
ωn(p2 − 1)

h(−n)(2 − α(n))β1,p(n)γ′p(n)

(
t∑

i=1

1
O(fi)

)
, if p ≡ 3(mod 4),

where γ′p(n) = (1 − 2−1χ−n(2))(1 − χ−n(p) · p−1)(n/δn)1/2
∑

μ(a)χ−n(a)(ab)−1.

Proof Just as in the proof of Theorem 10.9, we have that D = p, l = 1. So by
(10.28) we see that E(4P, 3/2, χ1) has a basis as follows:

g(χ1, 4p, 4p)=1 − 32
p2 − 1

∞∑
n=1

h(−n)ω−1
n α(n)β1,p(n)γ′p(n) exp{nz},

g(χ1, 4, 4p)=
32p2

p2 − 1

∞∑
n=1

h(−n)ω−1
n α(n)γ′p(n) exp{nz},

g(χ1, p, 4p)=− 32
p2 − 1

∞∑
n=1

h(−n)ω−1
n β1,p(n)γ′p(n) exp{nz}.

We can also calculate the solution of the system of equations (10.23):

⎛⎝ c4

c4p

cp

⎞⎠ =

⎛⎜⎜⎝
2
p

1
0

⎞⎟⎟⎠ or

⎛⎝ 0
1

−2

⎞⎠
according to p ≡ 1 or 3 (mod 4). Hence we see that

θ(gen.f, z) =
{

g(χ1, 4p, 4p) + 2p−1g(χ1, 4, 4p), if p ≡ 1 (mod 4),

g(χ1, 4p, 4p)− 2g(χ1, p, 4p), if p ≡ 3 (mod 4).

Therefore we see that

G(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
ωn(p2 − 1)

h(−n)α(n)(2p − β1,p(n))γ′p(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 1 (mod 4),

32
ωn(p2 − 1)

h(−pn)(2 − α(n))β1,p(n)γ′p(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 3 (mod 4).

This completes the proof.
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Example 10.4 Let f = f2 = x2 +7y2+7z2, then f2 and g2 = 2x2 +4y2 +7z2−2xy

belong to the same genus, O(f2) = 8, O(g2) = 4. Hence

G2(n) :=
r2(n)

8
+

r′2(n)
4

=
1
4
ω−1

n · (2 − α(n))β1,7(n)γ′7(n)h(−n).
�

By Corollary 10.1 and Corollary 10.2, we can prove the following

Corollary 10.3 Let f(p) = x2 + y2 + pz2, p an odd prime, then
(1) if p ≡ 3 (mod 4), the eligible numbers of the genus of f(p) are numbers which

are not the product of an odd power of p and a number n satisfying
(
−n

p

)
= 1;

(2) if p ≡ 1 (mod 8), the eligible numbers of the genus of f(p) are numbers which
are not the product of an even power of 2 and a number congruent to 7 mod 8;

(3) if p ≡ 5 (mod 8), the eligible numbers of the genus of f(p) are numbers which
are not the product of an even power of 2 and a number congruent to 3 mod 8.

Corollary 10.4 Let g(p) = x2 + py2 + pz2, p an odd prime, then
(1) if p ≡ 3 (mod 4), the eligible numbers of the genus of g(p) are numbers which

are not the product of an even power of p and a number n satisfying
(
−n

p

)
= 1;

(2) if p ≡ 1 (mod 4), the eligible numbers of the genus of g(p) are numbers which

are not the numbers n satisfying
(

n

p

)
= −1 or the product of an even power of 2 and

a number congruent to 7 mod 8.

Proof By definition, a positive integer n is eligible if and only if G(n) > 0, i.e., n

is not an eligible integer if and only if G(n) = 0. If p ≡ 3 (mod 4), then

G(n) =
32
ωpn

h(−pn)(2 − α(pn))βp,p(n)γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

which implies that G(n) = 0 if and only if one of the factors at the right end of the

above equality equals zero. But it is clear that
32
ωpn

h(−pn)

(
t∑

i=1

1
O(fi)

)
> 0. So we

only need to consider the other three factors. By (10.26) we see that 2 − α(pn) �
2− 3/2 = 1/2. So the only possibilities are that βp,p(n) = 0 or γp(n) = 0. By (10.27)

we know that βp,p(n) = 0 if and only if νp(n) ≡ 1 (mod 2) and
(
−n/pνp(n)

p

)
= 1.

Hence if we can prove that γp(n) �= 0, then this completes the proof of (1). In fact,
we can prove the following claim which completes the proof of (1). The proofs of (2)
and Corollary 10.4 are similar.
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Claim Let D be a square-free positive integer, then

β3(n, χD, 4D) =
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1 �= 0

for any positive integer n.
In fact, by definition, we see that

β3(n, χD, 4D)=
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1

=
∏

p�2D,p|Dn

h(p,fn)∑
t=0

p−t ·
∏

p�2DDn

⎛⎝νp(fn)∑
t=0

p−t − p−1

(
Dn

p

) νp(fn)−1∑
t=0

p−t

⎞⎠ ,

where −n = Dnf2
n such that Dn is a fundamental discriminant and fn is a positive

integer. The above equality implies that β3(n, χD, 4D) �= 0. This completes the
proofs.

Example 10.5 The eligible numbers of f1 = f(7) = x2 + y2 + 7z2 are numbers
which are not the product of an odd power of 7 and a number congruent to 3, 5 or 6

mod 7 since
(
−n

7

)
= 1 if and only if n congruent to 3, 5 or 6 mod 7. �

Example 10.6 The eligible numbers of f2 = g(7) = x2 + 7y2 + 7z2 are numbers
which are not the product of an even power of 7 and a number congruent to 3, 5 or 6

mod 7 since
(
−n

7

)
= 1 if and only if n is congruent to 3, 5 or 6 mod 7. �

Theorem 10.10 Let f be a positive definite quadratic form with matrix A. Then
there are only finitely many square-free eligible integers which are prime to 2|A| and
not represented by f .

Proof The proof of this theorem is similar to the one in W. Duke, 1990. For the
sake of completeness we include it here. In order to prove the theorem, we need some
of the results in B.W. Jones, 1950, esp. Theorem 86 in B.W. Jones, 1950 which can
be described as the following claim:

Claim: Let f be a positive definite ternary quadratic form with matrix A, d =
|A|, Ω the g.c.d. of the 2-rowed minor determinants of A and Δ = qd/Ω2 with q

prime to 2d, then for any eligible number q of the genus of f with (q, 2d) = 1 we have
that

G(A, q) = 2−t(d/Ω2)H(Δ)ρΔ

where t(w) is the number of odd prime factors of w, H(Δ) is the number of properly
primitive classes of positive binary forms ax2 +2bxy+cy2 of determinant Δ = ac−b2,
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ρΔ is a rational number equal to 1/8, 1/6, 1/4, 1/3, 1/2, 2/3, 1, 2, 4 according to the
different cases of the values of Δ, and G(A, q) is the number of essentially distinct
primitive representations of q by the genus of f . Please compare Theorem 86 in B.W.
Jones, 1950 for details.

Now let G = {f = f1, f2, · · · , ft} be a set of representatives of the genus of f .
Define

θf (z)=
∑

m∈Z3

e(zmAmT/2), z ∈ H,

O(f)=#{S ∈ M3(Z)|SAST = A},

θ(gen.f, z)=

⎛⎝∑
fi

1
O(fi)

⎞⎠−1∑
fi

θfi(z)
O(fi)

,

then we have that
θf (z) − θ(gen.f, z) ∈ S(N, 3/2, χ)

by the results in Section 10.1. Now let ri(n) be the number of representations of n

by fi, then

θf (z) − θ(gen.f, z) :=
∞∑

n=1

a(n)qn

=
∞∑

n=1

r1(n)qn −

⎛⎝∑
fi

1
O(fi)

⎞⎠−1 ∞∑
n=1

⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠ qn.

Now suppose that n0 is a square-free eligible number of G which can not be represented
by f = f1, i.e., r1(n0) = 0. Then by Iwaniec’s H. Iwaniec, 1987 and Duke’s W. Duke,
1988 we have that

|a(n0)| =

⎛⎝∑
fi

1
O(fi)

⎞⎠−1⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠� τ(n0)n
3
7
0 (log2n0)2.

On the other hand, let Gi(n) be the essentially distinct primitive representations of n

by fi, it is clear that 2Gi(n) � ri(n) because every positive definite ternary quadratic
form has at least two automorphs. So we see that

G(A, n)=
∑
fi

Gi(n) � 1
2

∑
fi

ri(n)

� O(G)
2

∑
fi

ri(n)
O(fi)

=

O(G)

⎛⎝∑
fi

1
O(fi)

⎞⎠
2

|a(n)|,
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where O(G) = max{O(fi)}. So by the above Claim and Siegel’s lower bounds for
the class numbers we see that

|a(n0)| � G(A, n0) � H(Δ) = H(n0d/Ω2) � n
1/2−ε
0 .

Comparing these two estimations we see that there are only finitely many square-free
eligible integers prime to 2|A| which can not be represented by f . This completes the
proof.

Remark 10.2 Notice that there are some similarities between our Theorem 10.9
and Theorem 86 in B.W. Jones, 1950, but they differ from one another in the following
aspects:

(1) In general G(n) �= G(A, n) and there is no simple equality between them. Of

course we have the inequality G(n) � G(A, n) � O(G)
2

G(n) just as we saw in the

proof of Theorem 10.10;
(2) In Jones’ Theorem 86, it is assumed that (n, N) = 1 where N is the level of

the quadratic form f . But we need not this assumption in our Theorem 10.9;
(3) Jones’ Theorem 86 can not tell us which are the eligible numbers for the genus

but our Theorem 10.9 can do this (cf. Example 10.5 and Example 10.6). Anyway
neither does our Theorem 10.9 contain Jones’ Theorem 86, nor is the converse the
case.

Since we employed Theorem 86 (i.e., our Claim) in B.W. Jones, 1950 in our
proof of Theorem 10.10, we have to limit ourselves to the case with n0 prime to 2d.
For the case with n0 not prime to 2|A|, we may employ our Theorem 10.9. For a
concrete positive definite ternary quadratic form f , we can always investigate any
square-free natural number n (prime or not prime to 2|A|) by Theorem 10.9. For
example we take the forms in Corollary 10.1 and Corollary 10.2. Suppose that p ≡ 3
(mod 4), N a square-free eligible number not represented by fp = x2 + x2 + pz2 or
fp = x2 + py2 + pz2, by (10.26), (10.26):

α(pN)=α(N) =
3
2
, 1 or 0,

βp,p(N)=p + 1 or 2,

γp(N)=
(

1 − χ−pN (2)
2

)(
pN

δpN

) 1
2

� 1
4
,

β1,p(N)=p + 1 or 2p,

γ′p(N)=
(

1 − χ−N (2)
2

)(
1 − χ−N (p)

p

)(
N

δN

) 1
2

� p − 1
4p

.

Then Corollary 10.1 and Corollary 10.2 imply that
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|a(N)|=

⎛⎝∑
fi

1
O(fi)

⎞⎠−1⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠� h(−pN) � N1/2−ε,

|a(N)|=

⎛⎝∑
fi

1
O(fi)

⎞⎠−1⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠� h(−N) � N1/2−ε

because of Siegel’s lower bounds for class numbers. Together with the estimations
in H. Iwaniec, 1987 and W. Duke, 1988 as above, we obtain that there exist at
most finitely many square-free eligible integers which are not represented by fp =
x2 + y2 + pz2 or fp = x2 + py2 + pz2 for p ≡ 3 (mod 4). We can similarly discuss this
phenomenon for p ≡ 1 (mod 4).
Remark 10.3 Even though there exist only finitely many square-free eligible num-
bers prime to 2|A| which can not be represented by a positive definite ternary quadratic
forms, it is not implementable to find all of these eligible numbers through compu-
tation for two reasons: Siegel’s lower bounds for class numbers are not effective;

it is impossible to obtain a contradiction through computation even if we as-
sume that the lower bounds are effective since we have to compute all of n with
n1/2 � τ(n)n3/7(log(2n))2 which requires that n is about 1075. Even if we replace
Iwaniec’s bound by a sharper bound, cf. V.A. Bykovskii, 1998, we also can not im-
plement the algorithm to find all of these exceptional eligible integers by calculation.

Theorem 10.11 Let A = {f1, f2, · · · , ft} be a set of representatives of the genus
of a positive definite ternary quadratic form of level N . Assume that there are the
following linear combinations of Theta- functions:

f̃i(z) :=
∞∑

n=1

bi(n)qn =
i+1∑
j=1

αi,jθ(fj)

with αi,1αi,i+1 �= 0 for 1 � i � t− 1, such that f̃i(z) is an eigenfunction for all Hecke
operators whose Shimura lifting is a cusp form corresponding to an elliptic curve
Ei. Then we can find an effectively determinable finite set PA = {p0, p1, · · · , ps} of
primes such that for every square-free eligible number n0 of A with (n0, N) = 1 (i.e.,
(n0, N) = 1 and n0 can be represented by one of the forms in A) and for every prime
p not in PA, we have that p2n0 can be represented by f1.

Proof We only consider the case t = 3 because the general case is similar. Let N be

the level of f1, PN the set of all distinct prime factors of N , and Fi(z) :=
∞∑

n=1

Bi(n)qn

the Shimura lifting of f̃i(z). Since f̃i(z) is an eigenfunction for all Hecke operators,
there exist complex numbers αip such that Tp2(f̃i(z)) = αipf̃i(z). But Hecke operators
commute with Shimura liftings. Therefore
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Tp(Fi(z)) = Tp(S(f̃i(z))) = S(Tp2(f̃i(z))) = S(αipf̃i(z)) = αipFi(z).

But because Fi(z) is a new form corresponding to the elliptic curve Ei, it shows that
Tp(Fi(z)) = Bi(p)Fi(z). Hence we see that αip = Bi(p) for any p /∈ PN . This implies
that

Bi(p)bi(n) = bi(p2n) + χ(p)
(
−n

p

)
bi(n) + pbi(n/p2)

for any prime p with (p, N) = 1 and any positive integer n. Especially for any
square-free positive integer n we have that

Bi(p)bi(n) = bi(p2n) + χ(p)
(
−n

p

)
bi(n).

Hence we see that

α11r1(p2n) + α12r2(p2n) = (α11r1(n) + α12r2(n))
(

B1(p) − χ(p)
(
−n

p

))
(10.29)

α21r1(p2n) + α22r2(p2n) + α23r3(p2n)

=(α21r1(n) + α22r2(n) + α23r3(n))(B2(p) − χ(p)
(
−n

p

)
, (10.30)

where ri(n) is the number of representations of n by fi. We want to prove that for
any square-free eligible number n0 of A which is prime to N and not represented by
f1, p2n0 can be represented by f1 where p /∈ PA and PA containing PN is an effectively
determinable finite set of primes. Otherwise, suppose that p /∈ PN is a prime such
that p2n0 can not be represented by f1. Let be n = n0 in (10.29) and (10.30), then

r2(p2n0) = r2(n0)
(

B1(p) − χ(p)
(
−n0

p

))
, (10.31)

α22r2(p2n0) + α23r3(p2n0) = α22r2(n0) + α23r3(n0))
(

B2(p) − χ(p)
(
−n0

p

))
,

(10.32)
since r1(n0) = r1(p2n0) = 0. By (10.31) and (10.32) it is clear that

α23r3(p2n0) :=αr2(n0) + βr3(n0)

= α22(B2(p) − B1(p))r2(n0) + α23

(
B2(p) − χ(p)

(
−n0

p

))
r3(n0).

Now let G(n) and Gi(n) be the essentially distinct primitive representations of n by

A and fi respectively. Then we have that 2Gi(n) � ri(n) and Gi(n) � ri(n)
O(fi)

. So

G(n)=
t∑

i=1

Gi(n) � 1
2

t∑
i=1

ri(n) � O(A)
2

t∑
i=1

ri(n)
O(fi)

,

G(n)=
t∑

i=1

Gi(n) �
t∑

i=1

ri(n)
O(fi)

,
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where O(A) = max{O(fi)}. From these and the Claim in the proof of Theorem 10.10
we see that

H(p2Δ)ρp2Δ

H(Δ)ρΔ
=

G(p2n0)
G(n0)

� O(A)
2

t∑
i=1

ri(p2n0)
O(fi)

t∑
i=1

ri(n0)
O(fi)

=
O(A)

2
δ2r2(p2n0) + δ3r3(p2n0)

δ2r2(n0) + δ3r3(n0)

=
O(A)

2
δ2r2(p2n0) + δ3α

−1
23 αr2(n0) + δ2α

−1
23 βr3(n0)

δ2r2(n0) + δ3r3(n0)
, (10.33)

where δi =
1

O(fi)
and Δ = n0d/Ω2 as in the proof of Theorem 10.10. Now consider

two cases:
Case (1) Suppose that r3(n0) � r2(n0), then (10.31)–(10.33) show that

1
3
(p − 1)� O(A)

2

∣∣∣∣δ2
r2(p2n0)
r2(n0)

+ δ3αα−1
23 + δ3βα−1

23

r3(n0)
r2(n0)

∣∣∣∣
δ2 + δ3

r3(n0)
r2(n0)

� O(A)
2

δ2

∣∣∣∣B1(p) − χ(p)
(
−n0

p

)∣∣∣∣+ | δ3αα−1
23 | + | δ3βα−1

23 |

δ2
.

Case (2) Suppose that r2(n0) � r3(n0), a similar computation shows that

1
3
(p − 1)� O(A)

2

∣∣∣∣δ2
r2(p2n0)
r3(n0)

+ δ3βα−1
23 + δ3αα−1

23

r2(n0)
r3(n0)

∣∣∣∣
δ3 + δ2

r2(n0)
r3(n0)

� O(A)
2

δ2

∣∣∣∣r2(p2n0)
r2(n0)

∣∣∣∣+ | δ3βα−1
23 | + | δ3αα−1

23 |

δ3

� O(A)
2

δ2

∣∣∣∣B1(p) − χ(p)
(
−n0

p

)∣∣∣∣+ | δ3αα−1
23 | + | δ3βα−1

23 |

δ3
,

where we used the facts that H(p2Δ)/H(Δ) = p −
(

Δ
p

)
and ρp2Δ/ρΔ � 1/3 (cf.

Theorem 86 in B.W. Jones, 1950). Anyway we have obtained the following inequality:

p − 1 � C1 | B1(p) | +C2 | B2(p) | +C3,
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where C1, C2, C3 are positive constants only dependent on αij and O(fi). On the
other hand we have that | Bi(p) |� 2p1/2 which implies that

p − 1 � 2(C1 + C2)
√

p + C3.

It is clear that this inequality only holds for finitely many primes. Denote it by P .
Then for any p /∈ PA = P

⋃
PN we have that p2n0 can be represented by f1 which

completes the proof.

The argumentation in the above proof implies the following

Corollary 10.5 Let A = {f, g} be a genus consisting of two equivalence classes such
that f̃(z) = αθ(f)+βθ(g) is an eigenfunction for all Hecke operators and its Shimura
lifting is a cusp form corresponding to an elliptic curve E. Then for any eligible integer
n0 which is prime to 2|A| and not represented by f and any prime p /∈ PA, p2n0 can

be represented by f where PA =
{

p prime | p|N or
1
3
(p− 1) � O(A)

2
(2
√

p + 1)
}

and

N is the level of f .

Remark 10.4 Just as pointed out in Remark 10.2, to investigate the case n not
prime to the level or to obtain more precise result about the set PA, we may employ
our Theorem 10.9. The following proof of Theorem 10.12 is an example together with
the ideas in Theorem 10.11 and Theorem 10.9.

Theorem 10.12 Let be f2 = x2 +7y2 +7z2. If n is a positive integer with
(n

7

)
= 1

(i.e., n is an eligible integer prime to 7) which can not be represented by f2, then n is
square-free.

Proof By Example 10.4 and the fact that n is an eligible integer, we know that

0 < G(n) :=
r2(n)

8
+

r′2(n)
4

=
1
4
ω−1

n (2 − α(n))β1,7(n)γ′7(n)h(−n), (10.34)

where r2(n) and r′2(n) denote the numbers of representations of n by f2 and g2 =
2x2 + 4y2 + 7z2 − 2xy respectively. We also easily know that

f̃2(z) :=
∞∑

n=1

b(n)e2πinz =
1
2

∞∑
n=1

(r2(n) − r′2(n)) exp{2πinz},

is an eigenfunction of all Hecke operators Tn2 in the space S(28, 3/2, χ1) by a direct
computation. And the Shimura lifting F2(z) = S(f̃2(z)) of f̃2(z) is a new form with
weight 2, character χ1 and level 14, i.e., F2(z) ∈ Snew(14, 3/2, χ1). So there exist
complex numbers αn such that Tn2(f̃2(z)) = αnf̃2(z). But Hecke operators commute
with the Shimura lifting. So we see that

Tn(F2(z)) = Tn(S(f̃2(z))) = S(Tn2(f̃2(z))) = S(αnf̃2(z)) = αnS(f̃2(z)) = αnF2(z)
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which implies that αn are also the eigenvalues of Tn for F2(z). But because F2(z) is
a new form with weight 2 shows that for any positive integer m with (m, 14) = 1,

αm = B(m) where F2(z) =
∞∑

n=1

B(n)e2πinz is the Fourier expansion of F2(z). These

facts show that

B(p)b(n) = αpb(n) = b(p2n) +
(
−n

p

)
b(n) + pb(n/p2) (10.35)

for any prime p with (p, 14) = 1 and any positive integer n. We obtain by
r2(n) − r′2(n)

2
instead of b(n) that

r2(p2n) − r′2(p
2n) =

(
B(p) −

(
−n

p

))
(r2(n) − r′2(n)) + p(r2(n/p2) − r′2(n/p2)).

In particular, if n is a square-free positive integer, then for any prime p with (p, 14) =
1, we see that

r2(p2n) − r′2(p
2n) =

(
B(p) −

(
−n

p

))
(r2(n) − r′2(n)). (10.36)

For a prime p such that p|14, by the definition of Hecke operators, we see that

Tp2(f̃2(z)) =
∞∑

n=1

b(p2n)e2πinz which implies that

αpb(n) = b(p2n),

i.e.
r2(p2n) − r′2(p

2n) = αp(r2(n) − r′2(n)). (10.37)

An easy calculation shows that α2 = −1 and α7 = 1. We now want to prove that
if n0 is square-free eligible number such that r2(n0) = 0 (i.e., n0 is not represented
by f2) then r2(p2n0) �= 0 (i.e., p2n0 can be represented by f2) for any prime p with
(p, 7) = 1. Otherwise, we have by (10.36), (10.37) that

r′2(p2n0)
r′2(n0)

=B(p) −
(
−n0

p

)
� B(p) + 1,

r′2(2
2n0)

r′2(n0)
=α2 = −1.

(10.38)

On the other hand, we have that by (10.34)

r′2(p
2n0)

r′2(n0)
=

G2(p2n0)
G2(n0)

=
ω−1

p2n0
(2 − α(p2n0))β1,7(p2n0)γ′7(p

2n0)h(−p2n0)

ω−1
n0 (2 − α(n0))β1,7(n0)γ′7(n0)h(−n0)

=
(2 − α(p2n0))β1,7(p2n0)γ′7(p

2n0)
(2 − α(n0))β1,7(n0)γ′7(n0)

. (10.39)
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We now suppose that p �= 7 and 2, then by the definitions of α(n), β1,7(n), γ′7(n) and
n0 a square-free integer, we easily obtain that

α(p2n0) = α(n0),

β1,7(p2n0) = β1,7(n0),

γ′7(p
2n0)= (p + 1)γ′7(n0),

α(22n0) =
1
2
α(n0),

β1,7(22n0) = β1,7(n0),

γ′7(2
2n0) =

3
1 − 2−1χ−n0(2)

γ′7(n0),

α(72n0) = α(n0),

β1,7(72n0) =
1
7
β1,7(n0),

γ′7(7
2n0) =

8
1 − χ−n0(7)7−1

γ′7(n0).

Hence we see that

r′2(p2n0)
r′2(n0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + 1, if p �= 2, 7,

5, if p = 2, ν2(n0) = 1,

15, if p = 2, n0 ≡ 1 (mod 4),
9, if p = 2, n ≡ 3 (mod 8),
6, if p = 2, n ≡ 7 (mod 8),

8
7 − χ−n0(7)

, if p = 7.

(10.40)

For any prime p �= 2, 7, by equalities (10.38) and (10.40) we have that

B(p) � p

and

0 <
r′2(2

2n0)
r′2(n0)

= −1 < 0,

which is impossible, since n0 is an eligible integer. On the other hand, it is well
known that B(p) � 2p

1
2 by Deligne’s estimation for coefficients of modular forms.

This implies that 2p
1
2 � p for any prime p �= 2 and 7 which is impossible.

What we have proved is that if n is any square-free eligible number of the genus of
f2 which is not represented by f2, then p2n can be represented by f2 for any prime p

with p �= 7. This, of course, is equivalent to saying that if an eligible number n prime
to 7 can not be represented by f2 then n is square-free. This completes the proof.

As a conclusion of Theorem 10.12 we have that
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Theorem 10.13 The form f1 = x2 + y2 +7z2 represents all eligible numbers which
are multiples of 9; it also represents all eligible numbers congruent to 2 mod 3 except
those of the trivial type. In other words, the Kaplansky’s Conjecture holds.

Proof We first show the following fact: f1 = x2 + y2 + 7z2 does not represent 7A

if and only if f2 = x2 + 7y2 + 7z2 does not represent A.
In fact, it is obvious that if f2 represents A, i.e., there are integers a, b, c such that

a2 + 7b2 + 7c2 = A, then 7A = (7b)2 + (7c)2 + 7a2. Conversely, if 7A = x2 + y2 + 7z2,
then x2 + y2 ≡ 0 (mod 7) which implies that x ≡ 0 (mod 7) and y ≡ 0 (mod 7).
Let be x = 7x′, y = 7y′, we see that A = z2 + 7(x′)2 + 7(y′)2 which shows that f2

represents A.
By Example 10.6, we know that the eligible numbers of f2 are precisely all integers

which are not the product of an even power of 7 and a number congruent to 3, 5, 6
mod 7. Hence, to prove Theorem 10.13 we only need to show that f2 represents all
eligible numbers which are congruent to 1, 2, 4 mod 7 and of form 2t2 with t �= 1 and
7 � t. If 2|t, it is clear that f2 represents 2t2 because f2 represents 8. Hence we can
assume that t is an odd integer. This shows that Theorem 10.12 implies Theorem
10.13.

Remark 10.5 If n is not prime to 7, the result in Theorem 10.12 does not hold. For
example n = 98 = 2 · 72 can not be represented by f2. In fact, for p = 7, the above
proof is not suitable because we can not obtain a contradiction as above for p �= 7.
For if we assume that n0 is an eligible number such that r2(n0) = r2(72n0) = 0, then

the calculations above show that
8

7 − χ−n0(7)
=

r′2(7
2n0)

r′2(n0)
= α7 = 1, which possibly

holds, e.g., n0 = 2 makes it hold. In this proof we need not introduce the concept of
essentially distinct primitive representations. And for the formula giving the number
of representations for a genus of positive definite ternary quadratic forms, we also
need not assume that our discussion is limited to the integers prime to the level of the
quadratic form because we do not employ Theorem 86 in B.W. Jones, 1950. In fact,
the argumentation of the above proof can also be applied to other genera consisting
of two equivalent classes. For example, we can prove the following result:

Corollary 10.6 Let f(p) = x2 + py2 + pz2 with an odd prime p and assume that
the genus of f(p) consists of two equivalence classes which we denote by f(p) and g(p).
Denote

f̃(p)(z) :=
∞∑

n=1

b(n)e2πinz =
1
2

∞∑
n=1

(r(n) − r′(n))e2πinz ,

where r(n) and r′(n) are the numbers of representations of n by f(p) and g(p) respec-
tively. And assume that the Shimura lifting F(p)(z) = S(f̃(p)(z)) of f̃(p)(z) is a new
form of weight 2 corresponding to a modular elliptic curve, then every eligible number
prime to 2p of the genus of f(p) not represented by f(p) is square-free.
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Proof It is completely similar to the proof of Theorem 10.12.

Example 10.7 Every eligible integer prime to 34 not represented by f(17) =
x2 + 17y2 + 17z2 is square free. This is because that the genus for f(17) consists of
f(17) and g(17) = 2x2 +9y2 +17z2 +2xy and the Shimura lifting of f̃(17)(z) is the new
form corresponding to the modular elliptic curve (34A). �

Combining Theorem 10.10, Theroem 10.12, Remark 10.2 and the result of Corol-
lary 10.6 we indeed obtain:

Corollary 10.7 Let f(p) = x2 + py2 + pz2 be as in Corollary 10.6. Then there
are only finitely many eligible numbers which are prime to 2p and not represented by
the quadratic form f(p) . In particular, there are only finitely many eligible numbers
prime to 7 and 34 not represented by the forms f(7) and f(17) respectively.

We now consider the following problem: Let n be a square free positive integer,
f and g be two ternary positive definite quadratic forms in the same genus, then
when do we have that r(f, n) �= r(g, n) where r(f, n) and r(g, n) are the numbers of
representation of n by f and g respectively. For example, if f(7) = x2 + 7y2 + 7z2,
g(7) = 2x2 + 4y2 + 7z2 − 2xy, then f(7) and g(7) are in the same genus, and we want
to know when do we have that r(f(7), n) �= r(g(7), n) for a positive integer. It is clear
that we only need to consider eligible numbers n because r(f, n) = r(g, n) = 0 if n is
not eligible.

We now assume always that f and g are in the same genus and r(f, 1) �= r(g, 1).
Let

f̃(z) =:
∞∑

n=1

bne2πinz =
1
r

∞∑
n=1

(r(f, n) − r(g, n)) exp{2πinz},

where r = r(f, 1) − r(g, 1) �= 0. Then f̃(z) ∈ S(N , 3/2, χl). For example, we have
that

f̃(7)(z)=
1
2

∞∑
n=1

(r(f(7), n) − r(g(7), n)) exp{2πinz}

= q + · · · ∈ S(28, 3/2, χ1), q = exp{2πiz}.

We assume further that the Shimura lifting F (z) of f̃(z) is a new form correspond-
ing to a modular elliptic curve E/Q. For example, we see that F(7)(z) = S(f̃(7)(z))
is the new form corresponding to the modular elliptic curve (14C):

(14C) : y2 = x3 + x2 + 72x − 368.

F(11)(z) = S(f̃(11)(z)) is the new form corresponding to the modular elliptic curve
(11B) where f(11) = x2 + 11y2 + 11z2:

(11B) : y2 + y = x3 − x2 − 10x − 20.



10.3 The Eligible Numbers of a Positive Definite Ternary Quadratic Form 417

By the definition of f̃(z), what we want to know is that when are the coefficients of
f̃(z) not equal to zero. In order to do this we need the following result of Waldspurger:

Lemma 10.7 Assume that E/Q is a modular elliptic curve with corresponding cusp
form fE, and that

F ∈ S(N, 3/2, χt)
⋂

S0(N, χt)⊥

with

S(F ) = fE, F =
∞∑

n=1

ane2πinz,

where S0(N, ψ) is the subspace of S(N, 3/2, ψ) generated by the form F of the following
type: There is a t ∈ N and a quadratic character χ with conductor r such that F =
∞∑

m=1

χ(m)mqtm2
and N = 4r2t, ψ = χ · χt · χ−1. Assume that d and d0 are natural

square free numbers with

d ≡ d0 mod
(∏

p|N
Q∗2p

)
, and (dd0, N) = 1.

Then
LE−td

(1)
√

da2
d0

= LE−td0
(1)
√

d0a
2
d.

So especially: if
LE−td0

ad0 �= 0,

then
LE−td

(1) = 0 if and only if ad = 0,

where LED (s) is the Hasse-Weil Zeta function of the D-th twist of elliptic curves E.

Now denote the set of representatives of all inequivalent integers mod
∏
p|N

Q∗2p

which are eligible numbers for the genus of f and prime to N by DN , then DN is
finite. Let be DN =

{
d1, d2, · · · , dl

}
.

We have that for any square free eligible natural integer d such (d, N) = 1, there
exist unique di ∈ DN such that

LE−td
(1)

√
d

a2
d

=
LE−tdi

(1)
√

di

a2
di

.

Using this equality, we can deduce when the coefficients ad are different from zero.
Example 10.8 Let f = f(7), g = g(7), E = (14C), then

f̃(7)(z) =
1
2
(
θ(f(7)) − θ(g(7))

)
∈ S3/2(28, χ1)
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and
F(7)(z) = S(f̃(7)(z)) ∈ Snew

2 (14)

corresponding to the modular elliptic curve (14C). And we can calculate that

D28 ={1, 11, 15, 29} ,

LE−di
�=0, for alldi ∈ D28,

b1 =
1
2
(r(f(7), 1) − r(g(7), 1)) = 1,

b11 =
1
2
(r(f(7), 11)− r(g(7), 11)) =

1
2
(8 − 8) = 0,

b15 =
1
2
(r(f(7), 15)− r(g(7), 15)) =

1
2
(8 − 8) = 0,

b29 =
1
2
(r(f(7), 29)− r(g(7), 29)) =

1
2
(8 − 4) = 2.

These calculations and Waldspurger’s Theorem show that for square free eligible
numbers d such that (d, 14) = 1:

r(f(7), d)= r(g(7), d), if d ≡ 11, 15 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ ,

r(f(7), d) �= r(g(7), d) if and only if LE−d
(1) �= 0 for d ≡ 1, 29 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ .

�
Hence we have the following:

Theorem 10.14 Let be f(7) = x2 + 7y2 + 7z2, g(7) = 2x2 + 4y2 + 7z2 − 2xy, E the
corresponding modular elliptic curve of the cusp form 1

2 (θ(f(7)) − θ(g(7))) and E−d

the −d-twist of E. Then for any square free eligible numbers d such that (d, 14) = 1,
we have that

(1) r(f(7), d) = r(g(7), d), if d ≡ 11, 15 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ ;

(2) r(f(7), d) �= r(g(7), d) if and only if LE−d
(1) �= 0 for d ≡ 1, 29 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠,

where LE−d
(s) is the Hasse-Weil L-function of the elliptic curve E−d. Especially, if

n is a square free natural number such that

n ≡ 3 (mod 8) and
(n

7

)
= 1
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or
n ≡ 7 (mod 8) and

(n

7

)
= 1,

then
r(f(7), n) = r(g(7), n).

Proof Above all proved except for the last assertion. But

n ≡ 3 (mod 8) and
(n

7

)
= 1

implies that

n ≡ 11mod
(∏

p|28
Q∗2p

)
.

And
n ≡ 7 (mod 8) and

(n

7

)
= 1

implies that

n ≡ 15mod
(∏

p|28
Q∗2p

)
,

which shows this theorem.

From this theorem, we see that for the cases of d ≡ 11, 15 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠, the

result (1) is completely pleasant. And for the cases of d ≡ 1, 29 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠, the

result (2) is not so pleasant because it is not an easy task to determine if LE−d
(1) = 0.

But we have the following:

Theorem 10.15 Let p ≡ 1 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ be a prime not dividing 14, then

r(f(7), p) �= r(g(7), p) if p is represented by 2X2 + 7Y 2.

Proof As in J.A. Antoniadis, 1990, we denote

F0 =
(
θ(X2 + 14Y 2) − θ(2X2 + 7Y 2)

)
· θid,14 :=

∞∑
n=1

ane2πinz ∈ S3/2(56, χ1),

where

θid,14 :=
∞∑

n=−∞
q14n2

∈ M1/2(56, χ14), θ(X2 +14Y 2)− θ(2X2 +7Y 2) ∈ S1(56, χ−14).
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Then by the results in J.A. Antoniadis, 1990, we know that F0 is mapped to the cusp
form corresponding to the modular elliptic curve (14C) under Shimura lifting and

ap �= 0 if p is a prime not dividing 14 and represented by 2X2 + 7Y 2. Since p ≡ 1

mod

⎛⎝∏
p|28

Q∗2p

⎞⎠, by Waldspurger’s Theorem, we see that

LE−p(1)
√

pa2
1 = LE−1(1)a2

p.

A direct computation shows that a1 · LE−1(1) �= 0 which implies that

LE−p(1) = 0 if and only if ap = 0.

Therefore by Lemma 10.7, we have proved that

r(f(7), p) �= r(g(7), p) if and only if ap �= 0,

which completes the proof since ap �= 0 if (p, 14) = 1 and represented by 2X2 +
7Y 2.

Our method can be used for other ternary positive definite quadratic forms. For
example, we can similarly study the forms f(11), g(11). In this case, we calculate:

D44 = {1, 3, 5, 15} ,

LE−di
�= 0, for all di ∈ D44,

b1 = 1, b3 = −1m b5 = −1, b15 = 1.

Hence we conclude that

Theorem 10.16 Let be f(11) = x2 +11y2 +11z2, g(11) = 3x2 +4y2 +11z2 +2xy, E

the corresponding modular elliptic curve of the cusp form
1
2
(θ(f(11)) − θ(g(11))) and

E−d the −d-twist of E. Then for square free eligible numbers d such that (d, 22) = 1,
we have that

r(f(11), d) �= r(g(11), d) if and only if LE−d
(1) �= 0,

where LE−d
(s) is the Hasse-Weil L-function of the elliptic curve E−d. Especially, we

have that r(f(11), d) �= r(g(11), d) if d satisfies one of the following conditions:
(1) d = p is a prime not splitting in Q(

√
−11)(2)/Q(

√
−11), where Q(

√
−11)(2) is

the class field of Q(
√
−11) with conductor 2;

(2) d = p is a prime with (p, 22) = 1 such that p is represented by 3X2+2XY +4Y 2;
(3) 5 � h(−d).

Proof Since LE−di
(1)·bdi �= 0 for all di ∈ D44, we know that r(f(11), d) �= r(g(11), d)

if and only if LE−d
(1) �= 0 by Waldspurger’s Theorem. All other assertions are

immediate conclusions of Proposition 4.2 and Proposition 4.8 in J.A. Antoniadis,
1990.
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Remark 10.6 Our method in this section can be used to any other positive definite
quadratic forms satisfying our assumptions in the paragraph before Lemma 10.7. For
example, we can study similarly the forms f(17) and g(17), etc.

Finally we consider the following problem: for a given positive definite quadratic
form with integral coefficients, find an exact formula for the number of representations
of integers by this form. In general it is a difficult classical problem. Even for the
simplest cases, i.e., binary forms and ternary forms, the problem is still open. For the
general case, what we know is that the sum of the numbers of representations of an
integer by all classes in a fixed genus is in relation to the coefficients of some modular
forms in an Eisenstein subspace. But even for the sum, it is non-trivial to give an
exact formula for a form given generally. In any case, the number of representations
of an integer by one form in the genus has never been formulated if the class number
of the genus is larger than one.

We shall consider some ternary quadratic forms with class number two of their
genus, and give exact formulae for the numbers of representations of an integer by
these forms. The main idea is as follows. For a positive definite ternary form f ,
let f and g be the representatives of classes in the genus of f . On the one hand,
some linear combination of the numbers of representations of an integer by f and g

can be related to the class number of a certain quadratic field; on the other hand,
sometimes, we can find another linear combination of these numbers which is related
to the L-function of an elliptic curve. By these two linear combinations, in terms of
class number of a quadratic field and the special value of the L-function of an elliptic
curve, we can get exact formulae for the number of representations of an integer by f

and g respectively. This also shows the difficulty of the classical problem mentioned
above because of the mysterious properties of the special values of L-functions and
class numbers.

Theorem 10.17 Let f = αx2 + βy2 + γz2 be a positive definite ternary quadratic
form with level N . Suppose the genus of f consists of two classes, f and g are the
representatives of the classes. We assume further that μO(f) − νO(g) �= 0, and

μθf + νθg =
∞∑

n=1

ane2πinz ∈ S(N, 3/2, χt)
⋂

S0(N, χt)⊥

and the Shimura lifting F (z) of μθf + νθg is a new form corresponding to an elliptic
curve E/Q. Let n with (n, N) = 1 be any square-free eligible number of the genus (i.e.,

d can be represented by the genus of f) with n ≡ di mod
∏
p|N

Q∗2p and LE−ldi
(1) �= 0,

then
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r(f, n)=

O(f)adi

√
LE−ln

(1)
LE−ldi

(1)
− νO(f)O(g)r(a, b, c; n)h(−ln)

μO(f) − νO(g)
,

r(g, n)=

μO(f)O(g)r(a, b, c; n)h(−ln) − O(g)adi

√
LE−ln

(1)
LE−ldi

(1)

μO(f) − νO(g)
,

where di ∈ DN = {d1, d2, · · · , dl}, LED(s) is the Hasse-Weil Zeta function of the D-th
twist of the elliptic curve E.

Proof In Lemma 10.7, we take F (z) = μθf (z) + νθg(z) =
∞∑

n=1

ane2πinz. Then by

Theorem 10.9 we obtain the following system of equations:⎧⎪⎨⎪⎩
μr(f, n) + νr(g, n) = an,

r(f, n)
O(f)

+
r(g, n)
O(g)

= r(a, b, c; n)h(−ln).
(10.41)

For the positive integer n, there is a unique di ∈ DN with n ≡ di mod

⎛⎝∏
p|N

Q∗2p

⎞⎠.

By the above Lemma 10.7, under the assumptions of the theorem, we have that

an = adi

√
LE−ln

(1)
LE−ldi

(1)
,

solving the system (10.41) for r(f, n), r(g, n), and inserting above the expression for
an, we get the results desired, which completes the proof.

Remark 10.7 Because the set DN =
{
d1, d2, · · · , dl

}
is finite, we see that r(f, n)

and r(g, n) can be represented explicitly in terms of the classnumber h(−ln) and the
special value LE−ln

(1) of L-function of the twist of the elliptic curve E.
Example 10.9 Let be f1 = x2 + 7y2 + 7z2, g1 = 2x2 + 4y2 + 7z2 − 2xy.Then
O(f1) = 8, O(g1) = 4, and

f̃(z) =
∞∑

n=1

an exp{2πinz}

:=
1
2
θf1(z) − 1

2
θg1(z) =

1
2

∞∑
n=1

(r(f1, n) − r(g1, n)) exp{2πinz}

= q + · · · ∈ S(28, 3/2, χ1), q = exp{2πiz}

and F (z) = S(f̃(z)) is the new form corresponding to the elliptic curve (14C):

(14C) : y2 = x3 + x2 + 72x − 368.
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We can easily calculate that

D28 ={1, 11, 15, 29} ,

LE−di
�=0 for all di ∈ D28,

a1 =
1
2
(r(f, 1) − r(g, 1)) = 1,

a11 =
1
2
(r(f, 11) − r(g, 11)) =

1
2
(8 − 8) = 0,

a15 =
1
2
(r(f, 15) − r(g, 15)) =

1
2
(8 − 8) = 0,

a29 =
1
2
(r(f, 29) − r(g, 29)) =

1
2
(8 − 4) = 2.

Hence by Theorem 10.17, for any square-free eligible integer n , we have that

r(f1, n) =
4
3

√
LE−n(1)
LE−1(1)

+
8
3
r(1, 7, 7; n)h(−n), if n ≡ 1 mod

∏
p|28

Q∗2p ,

r(g1, n) =
8
3
r(1, 7, 7; n)h(−n) +

1
3

√
LE−n(1)
LE−1(1)

, if n ≡ 1 mod
∏
p|28

Q∗2p ,

r(f1, n) = r(g1, n) =
8
3
r(1, 7, 7; n)h(−n), if n ≡ 11 mod

∏
p|28

Q∗2p ,

r(f1, n) = r(g1, n) =
8
3
r(1, 7, 7; n)h(−n), if n ≡ 15 mod

∏
p|28

Q∗2p ,

r(f1, n) =
8
3

√
LE−n(1)
LE−29(1)

+
8
3
r(1, 7, 7; n)h(−n), if n ≡ 29 mod

∏
p|28

Q∗2p ,

r(g1, n) =
8
3
r(1, 7, 7; n)h(−n) +

2
3

√
LE−n(1)
LE−29(1)

, if n ≡ 29 mod
∏
p|28

Q∗2p ,

where

r(1, 7, 7; n)=
1
4
ω−1

n · (2 − α(n))β1,7(n)γ′7(n);

γ′p(n)= (1 − 2−1χ−n(2))(1 − χ−n(p) · p−1)(n/δn)
1
2

×
∑

(ab)2|n
(ab,2p)=1

μ(a)χ−n(a)(ab)−1

for any prime p; In particular we know that γ′p(n) = (1 − 2−1χ−n(2))(1 − χ−n(p) ·
p−1)(n/δn)1/2 for any square-free positive integer n.
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From these results, we can get very explicit formulae for the number of represen-
tations of the square-free positive eligible number n with (n, 28) = 1 by f and g. E.g.,

for any square-free positive integer n > 3 with n ≡ 3 mod 8 and
(n

7

)
= 1, then

n ≡ 11 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠. By the definitions of α(n), β1,7(n) and γ′7(n), we have that

α(n) = 1, β1,7(n) = 14, γ′7(n) =
12
7

.

So
r(f1, n) = r(g1, n) = 8h(−n).

Of course, we can discuss also other square-free positive integers n in a similar
way. �
Example 10.10 Let be f2 = x2 + 11y2 + 11z2, g2 = 3x2 + 4y2 + 11z2 + 2xy. Then
we have that

D44 = {1, 3, 5, 15} , LE−di
�= 0, for all di ∈ D44,

a1 = 1, a3 = −1, a5 = −1, a15 = 1.

And O(f2) = 8, O(g2) = 4,

f̃(z)=
∞∑

n=1

an exp(2πinz) :=
1
2
θf2(z) − 1

2
θg2(z)

=
1
2

∞∑
n=1

(r(f2, n) − r(g2, n)) exp{2πinz}

= q + · · · ∈ S(28, 3/2, χ1), q = exp{2πiz}

and F (z) = S(f̃(z)) is the new form corresponding to the elliptic curve (11B):

(11B) : y2 + y = x3 − x2 − 10x − 20,

So by Theorem 10.17, we can get the exact formulae for the number of representations
of any square-free eligible integer n with (n, 22) = 1 by f and g in terms of h(−n)
and LE−n(1). We omit the calculations. �

Theorem 10.18 Suppose that n is an odd square-free positive integer congruent to
1 or 3 modulo 8. f3 = x2 + 2y2 + 32z2, g3 = 2x2 + 4y2 + 9z2 − 4yz. Then

r(f3, n) = c(n)h(−n) + 2

√
LEn2 (1)

ω
√

n
,

r(g3, n) = c(n)h(−n) − 2

√
LEn2 (1)

ω
√

n
,
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where c(n) = 2 or 6 according to n ≡ 1 or 3 (mod 8), ω is the real period of the elliptic
curve E : y2 = 4x3 − 4x and LEn2 (s) is the L-function of the congruent elliptic curve
defined by y2 = x3 − n2x.

Proof Let f3 = x2 + 2y2 + 32z2, g3 = 2x2 + 4y2 + 9z2 − 4yz. We want to give
the formula for the number of representations of n by f3 and g3. It is clear that
r(f3, n) = r(g3, n) = 0 for any n ≡ 5 or 7 (mod 8). So we only need to consider
positive integers congruent to 1 or 3 modulo 8. Now let f ′3 = 2x2 + y2 + 32z2,
g′3 = 2x2 + y2 + 8z2, then by Tunnell’s paper J.B. Tunnell, 1983, for any odd positive
integer n, we have

LEn2 (1)
ω
√

n
=

1
4
a(n)2,

where En2 is the congruent elliptic curve defined by y2 = x3 − n2x, ω is the real

period of the elliptic curve y2 = 4x3 − 4x and a(n) = r(f ′3, n) − 1
2
r(g′3, n). It is not

difficult to see that a(n) =
1
2
(r(f3, n) − r(g3, n)) for any odd n. So we have

LEn2 (1)
ω
√

n
=

1
4
a(n)2, (10.42)

where a(n) =
1
2
(r(f3, n) − r(g3, n)).

In order to get the formulae for the number of representations of n by f3 and g3,
we only need to find the number r(f3, n) + r(g3, n) by (10.42). But by the definitions
of r(f3, n) and r(g3, n), we see that r(f3, n) + r(g3, n) = r(x2 + 2y2 + 8z2, n). So we
only need to calculate the number r(x2 +2y2 +8z2, n). We shall prove that for n > 3
square-free,

r(x2 + 2y2 + 8z2, n) =
{

4h(−n) if n ≡ 1 (mod 8),
12h(−n) if n ≡ 3 (mod 8).

In fact, if n ≡ 1 (mod 8), then for any triple (x, y, z) ∈ Z3 such that x2+2y2+2z2 = n,
the x must be odd and y, z are both even. So we have a one-to-one correspondence:

{(x, y, z) ∈ Z3|x2 + 2y2 + 2z2 = n}↔{(x, y, z) ∈ Z3|x2 + 2y2 + 8z2 = n},
(x, y, z)↔ (x, y, z/2).

If n ≡ 3 (mod 8), then for any triple (x, y, z) ∈ Z3 such that x2 + 2y2 + 2z2 = n, the
x must be odd and there is exactly one of y, z that is odd. We let z be the even one.
Then we have a two-to-one correspondence:

{(x, y, z) ∈ Z3|x2 + 2y2 + 2z2 = n}↔{(x, y, z) ∈ Z3|x2 + 2y2 + 8z2 = n}{
(x, y, z)
(x, z, y)

↔ (x, y, z/2).
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So we have

r(x2 + 2y2 + 8z2, n) =

⎧⎪⎨⎪⎩
r(x2 + 2y2 + 2z2, n) if n ≡ 1 (mod 8),

1
2
r(x2 + 2y2 + 2z2, n) if n ≡ 3 (mod 8).

Now we can compute the number r(x2 + 2y2 + 2z2, n) in terms of our Theorem
10.9. By Theorem 10.9 it can be proved that for any positive integer n

r(x2 + 2y2 + 2z2, n)=
32h(−n)

√
n

ωn

√
δn

(
1 − 1

2
χ−n(2)

)
×
(

α(n) − δ

(
n − 1

4

)
−
(

n − 2
n

))
∑

(ab)2|n,(ab,2)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1,

where δ(x) = 1 or 0 according to x an integer or not.
In particular, for any square-free odd positive integer n, the sum is equal to 1, and

since the conductor δn of χ−n is equal to 4n or n according to n ≡ 1 or 3 (mod 4),
we have

r(x2 + 2y2 + 2z2, n) =

⎧⎪⎪⎨⎪⎪⎩
2, if n = 1,

8, if n = 3,

4h(−n), if n ≡ 1 (mod 8), n �= 1,

24h(−n), if n ≡ 3 (mod 8), n �= 3.

Therefore we have for any square-free odd positive integer n > 3

r(f3, n)+r(g3, n) = r(x2 +2y2 +8z2, n) =
{

4h(−n), if n ≡ 1 (mod 8),
12h(−n), if n ≡ 3 (mod 8),

(10.43)

By the above (10.40) and (10.42) we have proved the theorem.

Let N = p1p2 · · · pm with p1, p2, · · · , pm distinct odd primes, at most two of them
congruent to 3 modulo 8 and others congruent to 1 modulo 8. If there is at most one
of pi congruent to 3 modulo 8, then we define a simple graph GN = (V (GN ), E(GN ))

with vertices V (GN ) = {p1, p2, · · · , pm} and edges E(GN ) =
{

(pi, pj)
∣∣∣∣ (pj

pi

)
= −1

}
where (−) is the Legendre symbol as usual. Otherwise, without loss of generality,
we may assume p1 ≡ p2 ≡ 3 (mod8) and pi ≡ 1 (mod8) for i � 3. We define a
simple graph GN = (V (GN ), E(GN )) with vertices V (GN ) = {p1, p2, · · · , pm} and

edges E(GN ) =
{

(p1, p2)
⋃

(pi, pj)
∣∣∣∣ (pj

pi

)
= −1, {i, j} �= {1, 2}

}
. By the quadratic
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reciprocity law, the graph GN is a non-directed graph. We denote the number of
spanning trees of GN by τ(GN ) if N has at most one prime factor congruent to 3
modulo 8, otherwise τ is the number of spanning trees containing the special edge
(p1, p2)(a subgraph of a non-directed simple graph is called a spanning tree if it is a
tree and its vertices coincide with that of the original graph). Let ν2(n) be the 2-adic
additive valuation normalized by ν2(2) = 1.

Theorem 10.19 Let N = p1p2 · · · pm > 3 congruent to 1 or 3 modulo 8, with
p1, p2, · · · , pm distinct odd primes, at most two of them congruent to 3 modulo 8 and
all others congruent to 1 modulo 8. Let f3, g3 be as in Theorem 10.18. Then

(1) ν2(r(f3, N)) � m, ν2(r(g3, N)) � m;
(2) if all pi(i = 1, 2, · · · , m) are congruent to 1 modulo 8, then the equality in (1)

holds if and only if ν2(h(−N)) = m − 1;
(3) if there is only one or two pi (i = 1, 2, · · · , m) congruent to 3 modulo 8, then

the equality in (1) holds if and only if one of the following conditions is satisfied:
i) ν2(h(−N)) = m− 1 and τ(GN ) is even; ii) ν2(h(−N)) > m− 1 and τ(GN ) is odd.

Proof In order to prove the theorem, we need the following facts(for the proofs of
these facts please see C. Zhao, 1991, C. Zhao, 2001, C. Zhao, 2003):

Claim Let the notations be as in the theorem. Then

(1) ν2

(
LEN2 (1)

ω
√

N

)
� 2m if all pi (i = 1, 2, · · · , m) are congruent to 1 modulo 8;

(2) ν2

(
LEN2 (1)

ω
√

N

)
� 2m − 2 if one or two of pi(i = 1, 2, · · · , m) are congruent to

3 modulo 8 and others are congruent to 1 modulo 8. Moreover, the equality holds if
and only if τ(GN ) is odd.

We consider the 2-adic valuation of the terms on the right side of the conclusion
of Theorem 10.18. It is clear that ν2(c(N)) = 1. From the Gauss genus theory we
know that

ν2(h(−N)) � m − 1, (10.44)

where m is the number of prime factors of N . By the claim we see that ν2(
4
LEN2 (1)

ω
√

N

)
� 2m. So the first conclusion (1) of the theorem is valid.

Now suppose that N = p1p2 · · · pm with all pi ≡ 1 (mod 8). Then we have that

ν2

(
4
LEN2 (1)

ω
√

N

)
� 2m + 2.

Therefore, by Theorem 10.18, (10.43) and (10.44), we see that ν2(r(f3, N)) = ν2(r(g3,

N)) = m if and only if ν2(c(N)h(−N)) = m, which is equivalent to ν2(h(−N)) =
m − 1. This is the second assertion (2) of the theorem.
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Finally, suppose that N = p1p2 · · · pm as in (3) of the theorem. By the claim we
have

ν2

(
4
LEN2 (1)

ω
√

N

)
� 2m. (10.45)

And the equality holds if and only if τ(GN ) is odd. By (10.43), we have

ν2(c(N)h(−N)) � m (10.46)

and the equality holds if and only if ν2(h(−N)) = m − 1. Therefore by Theorem
10.18, ν2(r(f3, N)) = ν2(r(g3, N)) = m if and only if one of the inequalities in (10.45)
and (10.46) holds while the other one does not hold. This is the assertion (3) of the
theorem which completes the proof.
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C. L. Siegel. Über die analytishe Theorie der quadratishen Formen, Gesammelte Abhand-

lungen, BD. 1, Berlin: Springer, 1966: 326–405.

C. Zhao. A criterion for elliptic curves with lowest 2-power in L(1). Math. Proc. Camb.

Phil. Soc. 1997. 121: 385–400.

C. Zhao. A criterion for elliptic curves with second 2-power in L(1) (I). Math. Proc. Camb.

Phil. Soc. 2001. 131: 385–404.

C. Zhao. A criterion for elliptic curves with second 2-power in L(1) (II). Math. Proc. Camb.

Phil. Soc. 2003. 134: 407–420.

H. Iwaniec. Fourier coefficients of modular forms of half–integral weight. Invent. Math.

1987. 87: 385–401.

I. Kaplansky. The first nontrivial genus of positive definite ternary forms. Math. Comp.

1995. 64: 341–345.

I. Kiming. On certain problems in the analytical arithmetic of quadratic forms arising from

the theory of curves of genus 2 with elliptic differentials. Manuscripta Mathematica,

1995. 87: 101–129.

J. A. Antoniadis, M. Bungert, G. Frey. Properties of twists of elliptic curves. J. reine angew.

Math. 1990, 405: 1–28.

J. B. Tunnell. A classical Diophantine problem and modular forms of weight 3/2. Invent.

Math. 1983. 72: 323–334.

J. Hsia and M. Jochner, Almost strong approximations for definite quadratic spaces, Invent.

Math. 1997. 129: 471–487.



References 429

P. Ponomarev. Ternary quadratic forms and Shimura’s correspondence. Nagoya Math. J.,

1981. 81: 123–151.

R. A. Rankin. Contributions to the theory of Ramanujan’s function τ (n) and similar arith-

metical functions I, II, III, Proc. Cambridge Phil. Soc., 1939. 35: 351–356, 357–372,

1940. 36: 15–151.

R. Schulze–Pillot. Thetareihen positiver definiter quadratischer Formen. Invent. Math.

1984. 75: 283–299.

V. A. Bykovskii. A trace formula for the scalar product of Hecke Series and its application,

J. Math. Sci. 1998. 89(1): 915–932.

W. Duke and R. Schulze-Pillot. Representations of integers by positive definite ternary

quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math.

1990. 99: 49–57.

W. Duke. Hyperbolic distribution problems and half–integral weight Maass forms, Invent.

Math. 1988. 92: 73–90.



Index

2-adic integers, 3
θ function of the genus, 365

associated L-series, 299
association algebra, 68
Atkin-Lehner involution, 189
automorphic form, 65, 72
automorphic function, 65

Bernoulli number, 255
Bernoulli numbers, 376
bilinear form, 265

class number formula, 248
Cohen-Eisenstein series, 248, 300
commensurable, 89
commensurator, 89
common eigenfunction, 116
conductor, 127
congruence subgroup, 47
cusp form, 66, 81
cusp point, 47

degree, 90
Dimension Formula, 83
Dimension formula, 75
divisor, 67
dual space, 265

Eichler-Selberg trace formula, 335
eigenfunction, 153
Eisenstein serie, 13
Eisenstein space, 299
eligible numbers of the genus, 390
elliptic element, 45
elliptic point, 47

equivalent, 364
Euclid ring, 47
Euclidean measure, 265
Euler product, 98, 153

formal Dirichlet series, 106
Frick operator, 143
Fuchsian group, 61, 71, 113, 335
full modular group of order 2, 4
fundamental discriminant, 248, 300
fundamental domain, 58

Generalized Poisson Summation For-
mula, 268

Hecke algebra, 92
Hecke convergence factor, 14
Hecke operator, 153
Hecke operators, 153
Hermitian operator, 321
Hilbert space, 339
holomorphic automorphic form, 67
holomorphic form, 72
holomorphic modular form, 81
Hurwitz formula, 53
hyperbolic element, 45

in the same genus, 364

Kohnen space, 178, 247

Legendre symbol, 7
lie group, 265
local coordinate, 67
locally isomorphic imbedding, 270
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real orthogonal group, 274
regular cusp point, 74
Riemann ζ-function, 300
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