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Preface

The theory of modular forms is an important subject of number theory. Also it has
very important applications to other areas of number theory such as elliptic curves,
quadratic forms, etc. Its contents is vast. So any book on it must necessarily make a
rather limited selection from the fascinating array of possible topics. Our focus is on
topics which deal with the fundamental theory of modular forms of one variable with
integral and half-integral weight. Even for such a selection we have to make further
limitations on the themes discussed in this book. The leading theme of the book is
the development of the theory of Eisenstein series.

A fundamental problem is the construction of a basis of the space of modular
forms. It is well known that, for any weight > 2 and the weight 1, the orthogonal
complement of the space of cusp forms is spanned by Eisenstein series. Does this
conclusion hold for the half-integral weight < 27 The problem for weight 1/2 was
solved by J.P.Serre and H.M.Stark. Then one of the authors of this book, Dingyi
Pei, proved that the conclusion holds for weight 3/2 by constructing explicitly a
basis of the orthogonal complement of the space of cusp forms. To introduce this
result and some of its applications is our motivation for writing this book, which is a
large extension version of the book “Modular forms and ternary quadratic forms” (in
Chinese) written by Dingyi Pei.

Chapter 1 can be viewed as an introduction to the themes discussed in the book.
Starting from the problem of representing integers by quadratic forms we introduce
the concept of modular forms. In Chapter 2, we discuss the analytic continuation of
Eisenstein series with integral and half-integral weight, which prepares the construc-
tion of Eisenstein series in Chapter 7.

In Chapters 3-5, some fundamental concepts, notations and results about modu-
lar forms are introduced which are necessary for understanding later chapters. More
specifically, we introduce in Chapter 3 the modular group and its congruence sub-
groups and the Riemannian surface associated with a discrete subgroup of SLa(R).
Furthermore, the concept of cusp points for a congruence subgroup is presented. In
Chapter 4, we define modular forms with integral and half-integral weight, calculate
the dimension of the space of modular forms using the theorem of Riemann-Roch.
Chapter 5 is dedicated to define Hecke rings and discuss some of their fundamental
properties. Also in this chapter the Zeta function of a modular form with integral or
half-integral weight is described. In particular, we deduce the functional equation of
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the Zeta function of a modular form, and discuss Weil’s Theorem.

In Chapter 6, the definitions of new forms and old forms with integral and half-
integral weight are given. In particular the Atkin-Lehner’s theory and the Kohnen’s
theory, with respect to new forms for integral and half-integral weight, are discussed
at length respectively.

In Chapter 7, we construct Eisenstein series. The first objective is to construct
Eisenstein series with half-integral weight > 5/2. The second objective is the con-
struction of Eisenstein series with weight 1/2 according to Serre and Stark. Then the
method of the construction for Eisenstein series of weight 3/2 is introduced, followed
by the construction of Cohen-Eisenstein series. For completeness, the construction of
Eisenstein series with integral weight, which is due to Hecke, is also given in the last
section of the chapter.

The Shimura lifting is the main objective of Chapter 8 where we follow the way
depicted by Shintani. Weil representation is introduced first and some elementary
properties of Weil representation are discussed. Then the Shimura lifting from cusp
forms with half-integral weight to ones with integral weight is constructed. Also the
Shimura lifting for Eisenstein spaces is deduced in this chapter.

In Chapter 9, we discuss the Eichler-Selberg trace formula for the space of modular
forms with integral and half-integral weight. The simplest case of the Eichler-Selberg
trace formula on SLy(Z) is deduced in terms of Zagier’s method. Then the trace
formula on a Fuchsian group is obtained by Selberg’s method. Finally the Niwa’s and
Koknen’s trace formulae are obtained for the space of modular forms with half-integral
weight and the group To(V).

In Chapter 10, some applications of modular forms and Eisenstein series to the
arithmetic of quadratic forms are described. We first present the Schulze-Pillot’s
proof of Siegel theorem. Then some results of representation of integers by ternary
quadratic forms are explained. We also give an upper bound of the minimal positive
integer represented by a positive definite even quadratic form with level 1 or 2.

Although many modern results on modular forms with half-integral weight are
contained in this book, it is written as elementarily as possible and it’s content is
self-contained. We hope it can be used as a reference book for researchers and as a
textbook for graduate students.

The authors would like to thank Ms. Yuzhuo Chen for her many helps. Also many
thanks should be given to Dr. Junwu Dong for his helpful suggestions and carefully
typesetting the draft of this book. We especially wish to thank Dr. Wolfgang Happle
Happle for carefully reading the draft of this book and correcting some errors in the
draft. The author Xueli Wang wishes to thank Prof. Dr. Gerhard Frey for stimulating
discussions and providing the environment of I.LE.M in Essen University, where part
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of the draft has been done. Xueli Wang hope to give deepest gratitude for his lovely
and beautiful wife, Dr. Dongping Xu, who assumed all of the housework over the
years. Finally, the author Xueli Wang would like to dedicate this book to the 80th
birthday of his father.

Xueli Wang Dingyi Pei
Guangzhou

September, 2011
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Chapter 1

Theta Functions and Their Transformation
Formulae

In this chapter, we introduce theta functions of positive definite quadratic forms and
study their transformation properties under the action of the modular group.

Let a,b, c and n be positive integers with (a,b,c) = 1. Denote by N(a,b, c;n) the
number of integral solutions (x,y, z) € Z* of the following equation:

az® 4 by? + c2? = n.

Define the theta function by

0(z) = Z 62”1”2'37 z € H,
where H is the upper half of the complex plane, i.e., H = {z € C|Im(z) > 0}. It is
clear that 6(z) is holomorphic on H. Put

f(2) = 6(az)0(bz)0(c2),

then

oo

fz)=1+ Z N(a, b, ¢;n)e*™ 2,

n=1
Hence the number N(a,b,c;n) is the n-th Fourier coefficient of the function. This
shows that we know the number N(a,b, ¢;n) if the Fourier coefficients of f can be
computed explicitly. It is clear that there is a close relationship between f(z) and
the € function. We shall see later that f(z) is a modular form of weight 3/2 from the
transformation properties of 6 under the action of linear fractional transformations.
After having studied some properties of modular forms, we shall resume this topic
later. Firstly, we shall consider some more general problems.

Now let t be a positive real number, put

o0

plr) = 3 et

n=—oo
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The series satisfies p(x + 1) = ¢(z). Hence it has the following Fourier expansion:

@)= Y e,

m=—o00
where
1 0o
Cm = / (p(x)e—2nimzdx — / e—ntmz—Qnimxdx _ t—1/26—nm2/t.
0 —o00
Hence
%)
(p(x) — t_1/2 Z e—nm2+2nimz. (11)
m=—o00

Taking « = 0 in equation (1.1) we get
6(it) = t=Y26(-1/(it)),

where 0(z) = 6(z/2). Because 0(z) is a holomorphic function on the upper half plane,
we have that

6(—1/z2) = (—i2)"/?0(z), VzeH. (1.2)

For the multi-valued function z'/2, we choose arg(z'/2) such that —m/2 < arg(z!/?) <
/2. In general, we have that (z122)/2 = +2,/%22/% where we take “—” if one of the
following conditions is satisfied:

(1) Im(21) < 0, Im(22) < 0, Im(z122) > 0;

(2) Im(z1) < 0, Im(z2) > 0, Im(z122) < 0;

(3) z1 and 29 are both negative, or one of them is negative and the imaginary of
the other one is positive.

Otherwise we take “+7”.

Let f(xz1,---,2x) be an integral positive definite quadratic form in k variables.

2
A= of .
3$i3$j

Then A is a positive definite symmetric integral matrix with even entries on the
diagonal. It is clear that

Define the matrix

1
flay, - o) = ixAxT,

where x = (21, ,7%) € Z¥ is a row vector, 7T is the transposal of z. We now define
the 8 function of f as

0r(z) = Z eZif (@)= for all z € H.

TEZLR
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It is clear that

0
0f (Z) — Z enizAsz _ Z T(f, n)e2ﬂinz7
YA n=0

where 7(f,n) is the number of the solutions of f(r) = n with € ZF. 0(2) is
absolutely and uniformly convergent in any bounded domain of H, so it is holomorphic
on the whole of H.

Let N be the least positive integer such that all the entries of the matrix NA~!
are integers and the entries on the diagonal are even. This implies that det A is a
divisor of N*. Hence the prime divisors of det A are also prime divisors of N. But it
is clear that N|2det A. So all the odd prime divisors of N are certainly prime divisors
of det A.

If we consider A as a matrix on the ring Zs of 2-adic integers, it can be proved
that there exists an inverse matrix S on Zs such that

A 0 - 0
sast— | O P ],
0 0 - A,

b 2c

It is clear that there is at least one A; which is a 1 x 1 matrix if k is odd. So we

where A; is either an integer of 2Z5 or a symmetric matrix (2a b ) with a,b,c € Zs.

get the following

Lemma 1.1 If k is odd, then 2|det A and 4|N; if k is even, then N|det A. If 4|k,
then det A = 0 or 1 mod 4; if k = 2 mod 4, then det A = 0 or 3 mod 4. Hence
(=1)k/2 det A is always 1 or 0 modulo by 4 if k is even.

Let h be a vector in Z* such that hA € NZ* and define a function on H as follows
2mAmT
Q(Z,h,A,N): Z €<W>7
m=h(N)
where e(z) = ™2,
Proposition 1.1  We have the following transformation formula

0(—1/z;h, A, N) = (det A)~1/2(—iz)*/? > e(hAKT IN®)0(z; k, A, N).
kmod N, kA=0(N)

Proof Let v be a positive real number, = (x1,--- ,2;) € R¥, and

glx) = Z e(iv(z +m)A(z +m)T/2).

meZk
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Then g(z) has Fourier expansion

where

G = / e / g(x)e(—z-mT)dz = / e / e(iveAzT /2 — z-m")d.
0<z; <1 —o0 —00

There exists a real orthogonal matrix S such that SAST is a diagonal matrix
diag{ay, - -+ ,ax} with a; > 0(1 <7 < k). We make a variable change x = yS in the
above integral and denote Sm™ = (uy,--- ,ux)". Then

k )
_ —m;ozjyz—Qniujy
A, = e dy
j=177%
k o0 ( 4 iuj )2 u
S . __ 3
— H / e vy vy vag dy

%)

= v k/2(det A) "1/ 2emmmAT M /v, (1.4)

For any m € ZF, let k = mNA~! (mod N). Then kA =0 (mod N) and m can
be written as (Nu + k)A/N (u € ZF). Inserting (1.4) into (1.3), we get

g(z) = v %2 (det A)~1/2 Z e(zAkT/N)
kmod N,
kA=0(N)
Y e(wAu” +i(Nu+ k)A(Nu + k)" /(20N?)).

u

Since #(iv; h, A, N) = g(h/N), we get by the above equality

1
O(iv;h, A,N) = v *?(det A)"/2 " e(hAK"/N?)0 (-,;k,A,N),
kmod N, 1w
kA=0(N)

which shows that Proposition 1.1 holds for z = —1/iv. This implies that the propo-
sition holds because 6(z; h, A, N') is holomorphic on the whole of H. |

Now we define the full modular group of order 2 as follows

wew- (1)

a,b,c,deZ,ad—bCZI}.
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7=<‘; Z>65L2(Z).

We want to find the transformation formula of 6(z; h, A, N') under the transformation
z = y(z) = (az+b)/(cz+d). We first assume that ¢ > 0, then we get by Proposition
1.1 that

Let

()i AN = 3 e (mAmT (a— Czi d) /(ch2)>

m=h(N)

= Y elagAgT/(2eN?))
g mod (¢N),
g=h(N)

Z e(—emAm™T /[2(cz + d)(cN)?))
m=g mod (cN)
= (det A)~2e¢7F2 (—i(cz + d))F/?

> o(hk)b(czik, cA,cN), (1.5)
k mod (¢N),
kA=0(N)

where
d(hk)= > e(lagAg” +2kAg" + dkAk"]/(2cN?))

g mod (cN),
g=h(N)

and we also used the fact that mAmT is even for any m € ZF. Since ad = bc + 1, it

follows
o(hk)= > elalg+dk)A(g + dk)"/(2cN?))e( — b[2gAk™ + dkAKT]/(2N?))
g mod (cN),
g=h(N)

=e( — b[2hRAKT + dkAKT]/(2N?)) &(h + dk,0),
which implies that @(h, k) is only dependent on &k mod N. By equality (1.5) we get
0(y(2); h, A, N)(det A)/2eM2(—i(cz + d)) =2

= Y o(hk) ) Oczg.cAcN)

k mod (NV), g mod (cN),
kA=0(N) g=k(N)
= > o(hk)0(zk AN).

k mod (N),
kA=0(N)
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Substituting z by —1/z, we get by Proposition 1.1

G(ZZ —a h, A, N) det Ack/2( —i(d — c/z))fkﬂ(—iz)*k/2

)
zZ —C

= > { > e(lAkT/NQ)fﬁ(h,k)}@(z;l,A,N). (1.6)
! mod N, \ kK mod N,

lA=0(N) kA=0(N)

Now suppose that d = 0(N). Since NA~! is an integral matrix with even entries
on the diagonal,

EAKT/(2N) = (N7'EA-NA™' - N71AKT) /2
is an integer. Hence
®(h, k) = e(—bhAET /N?)&(h,0)
and the right hand of (1.6) becomes

@(h,0) Y { > e((l—bh)AkT/N2)}9(z;l,A7N).

!l mod N, k mod N,
IA=0(N) KkA=0(N)

We now compute the inner summation of the formula above. There exist modular
matrices P, @, such that PAQ = diag{ay, - ,ax}. Since NA™! is an integral matrix,
then a;|N(1 <4 < k). Since

kA= (1—bh)A=0(N),

a direct computation shows that

0, if 1 bh(N),

S e((l - bh)ART /N?) = { i 17 Bh(N)

kmod(N), det 147 lf 1= bh(N)
kA=0(N)

Now substituting (b ¢

a b —
d —c) by <c d)’ we assume that ¢ = 0(N),d < 0. Then

we have that
0((az +b)/(cz + d);h, A, N) = (=i(c + d/2))*?(—=i2)*2Wb(z;ah, A,N),  (1.7)

where
W=1d " N e(—bgAg"/(2[dIN?)).

gmod(|d|N),
g=h(N)
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Since Im(—i) < 0, Im(c + d/z) > 0, then (—i(c + d/2))*/? = (=i)*/2(c + d/z)*/?.
Similarly, since Im(—i) < 0, Im(z) > 0, we get (—iz)¥/? = (—i)¥/22%/2, Again since
Im(cz + d) = cIm(z), it follows

e+ d)2)"? = sgu(e)* (cz + )2,

1, if ¢ >0,
()= dre<o

where

Therefore
(—i(c+d/2))"2(=iz)F/? = (—isgn(c))* (cz + d)*/2. (1.8)

Since ad = 1(N), we can express g in W as adh + Nu with u € (Z/|d|Z)¥. Then
W = e(abhAh™ /(2N?))w(b, |d]), (1.9)

where

wb,|d]) = |d| 72 Y7 e(—buAuT/(2]d])).

umod|d|

If c=0orb=0, then d = —1 and hence w(b, |d|) = 1. Now suppose that bc # 0
and d is an odd. We substitute z by z 4+ 8m(m € Z) in (1.7) such that d + 8mc < 0.
By (1.8) and (1.9) we know that

w(b, |d]) = w(b + 8ma, |d + 8mc|).

Because d and 8c are co-prime, we can find an integer m such that —d — 8mc is an
odd prime which will be denoted by p. Let = —(b+ 8ma). Then

w(b, |d]) = w(=B,p) =p~** Y e(BuAu”/(2p)).

umodp

Suppose that § = 26'(p). Since ¢ = 0(N), d and ¢ are co-prime, then p and N
are co-prime, and hence p and det A are co-prime. There exists an integral matrix S
such that det S is prime to p and SAS? is congruent to diag{qi,-- ,qx} modulo p.
By Gauss sum, we have that

w(b, |d)) = "“”H(Z (g 2/p>> ok (M)

p

where (Q) is the Legendre symbol
p

(q) { 1, if ¢ is a quadratic residue modulo p,

p —1, otherwise.
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The symbol g, is defined for all odd integers:

1, ifn=1(4),
T4, ifn=3(4).

It is clear that ¢, = e_4 = ie;l. Since all prime divisors of det A are divisors of

N, p= —d(8N), ) }
(5)-(=4)

Since (Z :]ﬂ?> € SLy(Z), i.e., Bc —ap =1, we get 26'c = 1(p). Hence

() =()= ()

Let a be an integer, b # 0 be an odd. We define a new quadratic residue symbol

(%) satisfying the following properties:

a

(1) (3) — 0if (a,b) # 1;

@ (5) =

(3) If b > 0, then (%) is the Jacobi symbol, i.e., if b = Hpr, then (%) =

I(5)
(4) If b < 0, then (%) — sgn(a) (ﬁ;l)

Hereafter, the symbol (%) will be defined as above. Then we have

2cdet A)

w(b, |d|) = e (sgn(c)i)k ( y (1.10)

and (1.10) holds for ¢ =0 or ¢ # 0.
Define a subgroup of the full modular group as follows

[o(N) = {(‘CL Z) € SLy(Z)

e=om) .

Proposition 1.2 Let v = (Z Z) € IW(N). If k is odd, then we have

detA> (%

k
pi d) egk(chrd)k/QG(z;ah,A,N),

(1.11)

0(v(2);h, A N) = e(abhAhT/(QNQ)) (



Chapter 1 Theta Functions and Their Transformation Formulae 9

If k is even, then we have

(—1)F/2 det A

9(7(2); h, A, N) = e(abhAhT/(2N2)) ( =

)(cz +d)*/20(z;ah, A, N),
(1.12)
Proof  First assuming that &k is odd. By Lemma 1.1, N = 0(4). Hence d is odd.

For d < 0, inserting (1.8), (1.9) and (1.10) into (1.7), we can get (1.11) immediately.
For d > 0, substituting v by —v and noting that (—v)(z) = v(z), we have

k
6((2); h, A, N) = e(abh AR™ /(2N?)) (de:zA> <_—2d>
X E:Z(—CZ — d)k/29(z; —ah, A, N).

It is clear that 6(z; —ah, A, N) = 0(z;ah, A, N). If c =0, then d = 1 and

—92c\*
(_;) eal—ez— ) =iTH ()2 =1,

If ¢ # 0, we have

k k
(-__2;) e_k(—cz — d)*? = (—sgn(c))* (%) i~Fe *(—isgn(c))* (cz + d)*/?

2¢\ "
=e;" (E) (cz 4 d)*/2.

This shows that (1.12) holds also for d > 0. Now assuming that & is even. If d is
odd, we can get (1.12) by proceeding similarly as above. If d is even, then ¢ is odd,
and N is also odd. By the result for the case d odd, we have

az+alN+b
——h, AN
(cz—|—cN—&—d7 Y )

:e(abhAhT> ((—1)’6/2 det A

N2 cN +d > (cz+cN + d)k/29(z;ah7A, N), (1.13)

where we used the fact that hAhT/(2N) is an integer. By Lemma 1.1 and Lemma
1.2 which will be proved later, we have

<(_1C);;/id§m> _ ((—1)’65 detA) 7

_1\k/2

(=1)*=det A  Qub.
det A+d

stituting z by z — N in (1.13) we get (1.12). O

where d is even. So the right hand side of above is equal to (
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It is clear that 6f(z) = 6(2;0, A4, N). Thus we obtain the main theorem of this
chapter:

Theorem 1.1  Let v = (i Z) € IW(N). If k is odd, then

0;(v(2)) = (Mzt“l) ez" (g)k (cz+ )20 ().

If k is even, then
Y
ostae) = (E 0 (e 2.

In particular, taking k = 1, A = 2, then N = 4. For any 7 = (Z Z) € Iv(4), by

Theorem 1.1, we have

We define the symbol
. 4 /cC
i(v2)=¢;" (E) (cz+d)Y?, e Io(4).
If 71,72 € I'(4), by the above result, we have

0(1172(2)) = j(1172,2)0(2)
and
0(7172(2)) = J(711,72(2))0(72(2)) = j(71,72(2))i (72, 2)6(2).
Therefore
31z, 2) = 3 (1, 72(2))5 (72, 2)- (1.14)
Lemma 1.2 Let a = ds? # 0 be an integer, d square-free. Let

{M7 if d=1(4),
Ald|, if d=2,3(4).

Then the map b — (%) (b is odd) defines a character modulo 4a with conductor D.

Proof If a, b are co-prime, it is clear that

(5)=(5)
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(1) Suppose d > 0 and d odd. If b > 0, then

(ﬁ) ) (Z) if d=1(4),
b

- (_71> (g> , ifd=3(4).
OO0
()-()-G(-())

These conclusions show that the lemma holds in this case.
(2) Suppose d < 0, d is odd. If b > 0, then

O AR @ v
ICECECRG)
(--(2)-GE- I

These conclusions show that the lemma holds in this case.

(3) Suppose d = 2d’, then
4\ _(2) (&
b)  \b b )’
2

(3) is a character modulo 8, gathering the results in (1) and (2), we proved the
lemma. O

Remark 1.1 Ifa=1(4),b~— (%) is a character modulo a. In this case, b can
be an even integer.



Chapter 2

Eisenstein Series

2.1 Eisenstein Series with Half Integral Weight

In this section we always assume that k is an odd integer, IV is a positive integer such
that 4|N, w is an even character modulo N, i.e., w(—1) = 1. We shall construct a
class of holomorphic functions which are named as Eisenstein series with the following

property
P0G = ()it 7@, = (1) eTo)

Lemma 2.1 Let k > 2 be a positive integer, z € H. Put
L ={mz+n|m,n € Z}.

Then the series

Ex(2) = Z wk = Z "(mz +n)~k

weL\{0} mn

s a holomorphic function on the upper half plane H where Z " indicates the summa-
tion over all (m,n) # (0,0).

Proof Let P, be the parallelogram with vertices £mz 4+ m. Denote
r = min{|w|,w € P},
for any w € P,,, we have that |w| > mr. Since there are 8m points in L[ P,,, then
oo oo
2, ™= D ™ <8 ) mmn)™,
weL\{0} m=1weP,, m=1

It is clear that the right hand side of the above is convergent for k£ > 2. So Ej(z) is
absolutely and uniformly convergent in any bounded domain of H. This shows that
Ej(z) is holomorphic on the whole of H. O

ee={e (3 1) e,

Let
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which is clearly a subgroup of I'o(N). Suppose k > 5 and define
Exw,N)(2)= Y w(d)i(y2)7", (2.1)
'YEFOO\FO (N)
where v runs over a complete set of representatives of right cosets of I'o in I'o(NV).
For +' € I's, by (1.14), we have that
w(d'y"y)j(’Y/’Ya Z)_k = w(d)j(v, Z)_ka

which implies that Ej(w, N)(z) is well defined. By Lemma 2.1 it is a holomorphic
function on H. For any 4" € IH(N), it is easy to verify

Ei(w, N)(7(2)) = @(dy)j (7', 2)* Ex(w, N)(2).

For 1 < k < 5, the series defined in (2.1) is not absolutely convergent. We now
introduce the following function

Ep(s,w,N)(2) =" Y w(dy)j(y.2) iy, 2)1 7%, (2.2)
Y€l o\l (N)

where y = Im(z) > 0, s is a complex variable and we will therefore call |j(v, )| ~2*
Hecke convergence factor because it was first introduced by Hecke. It is clear that
for Re(s) > 2 — k/2 the series (2.2) is absolutely convergent and has the following
transformation property

Ei(s,w, N)(1(2)) = ©(d,)j(7, 2)" Be(s,w, N)(2), ve€To(N).  (23)

We shall study the meromorphic continuation of Fj(s,w,N) to the whole s-plane.
Then we get a holomorphic function on H for s = 0. By (2.3)

Ey(s,w,N)(z+ 1) = Ex(s,w,N)(2),

i.e., Er(s,w,N)(z) has period 1. We shall first compute the Fourier expansion of
Ej(s,w, N)(z) with respect to e*#. Then we can get the analytic continuation with
respect to s. Now we assume that k£ > 1. We need some lemmas.

Lemma 2.2 Let \,y e R,3€C, and y > 0,Re(B) > 0. Then

y+ioco \B—1 -1 :
/ v—ﬁe)\vdv _ 27\ F(ﬁ) ) ZfA > Oa
y—ioco 0, Zf A < 0.

Proof  We only need to prove the lemma for 0 < Re(8) < 1. Let
B=a+ib, v=|v]el¥ =s+it, s,tER.
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For A < 0, we integrate along a path shown in Figure 2.1. Since
T R

by the Cauchy Theorem for path integrals, we know that the lemma holds. For A > 0,

y+ioco Ay+ioo
/ v BN dy = )\571/ v Pevdw,
Yy

—ioco Ay—ioco

we integrate along the path as in Figure 2.2. When v runs over the small circle with
radius r, we get
rlv=Pe?| = r1=%e?| — 0, r — 0,

since 0 < a < 1. On the other hand,

—alg |v|+bo+s

lv=Fe’| =e — 0, |v]— 00,8 < \y.

I N
II oV |xy
0 y
—
Figure 2.1 Figure 2.2

Hence by the Cauchy Theorem we have

Ay—+ioco 0 —00
/ v Peldy = —/ v Pevdv —/ v Pevdu,
Ay—ioco — 00 0

where the variable v in the first integral runs above the negative real axis and the
variable v in the second integral runs underneath the negative real axis. Therefore

0 oS
/ v Peldv = e*i”ﬁ/ rPe %z = e (1 - ),
0

/ v Pedv = —ei”B/ zPe%dr = —e"T(1 - ).
0 0

But
(€ — e D(1 — B) = 2T(1 — B) sinnB = 2mil'(3) ",

which completes the proof. O
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Let y > 0, a, 0 € C and define

oo

Wy, a, 8) =T(5)" /O (1 +u)* P~ te ¥du,

which is called the Whittaker function. It is clear that the integral is convergent for
Re(8) > 0. Applying integration by parts we get

W(y,o,8) =yW(y,a, B+ 1)+ (1 —a)W(y,a = 1,8+1). (2.4)

Due to the above equality W (y, o, ) can be continued analytically to C2 for (a, 3).
We will also denote the continued function by W (y, «, §).

Lemma 2.3 W(y,a,0) =1, W(y,a,—1/2) = y'/2.
Proof Taking 5 = 0 in equality (2.4), we have
W(y,o,0) =yW(y,e,1) + (1 - )W (y,a0 — 1,1)

o0

= y/ (14 u)* e ¥du+ (1 — a) (14 u)* 2e ¥ du
0 0

- y/ (14 u)* e ¥du — / e vud(1 4+ u)>?
0 0
=—e V(14 u)* =1,

Similarly taking 8 = —1/2 in (2.4), we have
Wy, 1,—1/2) = yW(y,1,1/2) = yT'(1/2)"! / w2y = y 2,
0

which completes the proof. ]
Lemma 2.4 Lety > 0,a,8 € C. Then
YWy, a,8) =y " *W(y,1-5,1-a).

Proof  Taking the Mellin transformation of I'(8)W (y, o, B) (assume Re(s) > 0),

we see
r@) [ Wona s = [t [T yte g
=T(s) /Ooo(u + 1) P .
Suppose Re(1 — «) > 0 and insert the following equality into the formula above

(w+1)2 =71 —-0a)! / e D gy,
0
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we get
I'(1—a)T(B) /000 W (y, a,ﬂ)ysfldy =T (B -s)I'1—a—0+s).

By the inverse Mellin transformation, we see

o
omi v as

! o P(HI(B—s)T(1—a— B+ 5)
W@“”*”*lmm (11— a)0(3)

where ¢ satisfies the inequalities ¢ > 0, Re(8) > ¢ > Re(a+ 8 — 1). There exists such
a c if Re(f) > 0, Re(1 —a) > 0. Let S = s — (3, we have
L [P p(—S(B+ Sl —a+S)
ﬂW _
W =gg [ =)l (3

y~5ds,

where p satisfies 0 < p < min{Re(1 — a),Re(8)}. The right hand side of the above
equality is stable under the transformation « — 1 — 3,3 — 1 — a. This shows that
the lemma holds for Re(1 — a) > 0,Re(8) > 0. But W(y, a, 3) is analytic on C2. So
the lemma holds for any («, 3) € C2, which completes the proof. O

Lemma 2.5 Suppose that Re(a) > 0, Re(8) > 0, Re(a+ 5) > 1,z = x + iy € H,
then

+o0 “+o00
Z (z4+m) *EZ+m) P = Z ta(y, a, B)eXmin
where
n TP e TP () T W (dnny, o, B), i n >0,
*8(2m) Pt (y, 0, 8) = § 0TI (3) W (dnfnly, B,0), if n <0,
T(a) 'T(8) 'T(a+ 4 —1)(4my)' ~*7, if n=0.
Proof Let
+o00
f@)y= Y (@+iy+m) (@ —iy+m)".

This series is absolutely convergent for Re(a + ) > 1. Since f(z + 1) = f(z), we
have

+oo
fa)= Y et

n=—oo
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where
1 .
Cn = / f(x)e 2nedy
0
+o00 .
= / (z +iy)~Y(z —iy) Pe 22y
—o0
+oo .
=i« / (y —iz) " %(y + iz) Pe 21"%dy

— 0o

y+ioco
_ iﬁ—a—lemmy / ’U_Q(Qy _ U)—ae—27m”d1)
Yy

—ioco

y+ioco [e%e)
— iﬁfafle%myl-\(a)fl /y U*,Gefm'mv / efﬁ(2y7v)€a71d£dv
y—ico 0
e’} y+ioco
— iﬁfafle%myl-w(a)fl / £ale2y£{ / 1},6’6(52:'m)vdv}d£7
0 y—ico

where we used the fact that
(2y—v)* =T() ! [ e igg
0

for Re(a) > 0.
Now let & = 2np, u = max{0,n}. Since Re(3) > 0, by Lemma2.2 we have

e = 2 L) D) [ e ) e g
2nu

_ (zn)a+ﬁiﬁfae2rmyr(a)7111(6)71 / pafl(p o n),6’71674npydp.

u

If n >0, then u =n, let p—n =nqg. If n <0, then u = 0, let p = —nq. Hence we
have

o0
/ P Hp—n)’ e PYdp
u

o0
na+ﬂ_1/ (g + 1) 1go e tm+augg  if n >0,
0

oo
= |n|a+ﬂ_1/ (q+1)f~tgote#inlavqg, itn <0,
0

/ poé+ﬁ726743'517ydp7 ifn=0
0
na+3716—4nnyw(4nny’ a,f), ifn>0,
_ ‘n|a+ﬂ—1w(4n|n|y7ﬂ7a)7 if n < O,
(43‘[y)1_a_61—‘(0‘ +B-1), if n =0,

which completes the proof. O
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Now we can compute the Fourier expansion of Ey(s,w, N)(z). Let
W = {(c,d)|c,d € Z,gcd(c,d) = 1,N|c,c 2 0,d =1 if ¢ = 0}.

Then we can prove that there exists a one-to-one correspondence between W and the
set of representatives of right cosets of ', in I'H(N). Suppose Re(s) > 2 — k/2, by
Lemma 2.5 we have (substituting ¢ by ¢N)

+oo  +oo
Ey(s,w,N)(z) 5/2{1+ Z Z ( )ch+d)k/2|ch+d|s}

d=—o00 c=1

:ys/2{1 + i(cN)*k/H EN: (e (?)

c=1 d=1
X n_z_:oo (z + —+ n) e (?4— % + n) o }
= ys/2{1 + n_f:oo ar(n, s,w, N)tn(y, (k+ 5)/2, S/Z)e(mc)} (2.5)
where
ar(n, s,w,N) = i(czv)—m—s :Ziw(d)e’; (%) e (:—]@ . (2.6)

For Re(s) > 2 — k/2, define

Ei(s,w,N)(z) = 27 *2E}(s,w, N)(—=1/(Nz)). (2.7)

Now assume that v = (i Z) € I'h(N). Then by (2.3) we can verify easily that

By N0 (:) = (@) () 4009 Bhlovn W)(2), (23)

Now let W’ = {(c¢,d)|c,d € Z,ged(c,d) = 1,N|c,d > 0}. Then there exists a one-
to-one correspondence between W’ and the set of representatives of cosets of Iy, in
I'o(N). Then we can similarly get that

Ei(s,w,N)(2) =y P N7/ 3" bp(n,s,w0, N)ta(y, (k +5)/2,5/2)e(nz), (2.9)

n=—oo

where

d

i, )= 3 (S etk 3 (e () )

m=1
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Lemma 2.6 Let wg be a primitive character modulo r, w be a character modulo rs,
and w(n) = wo(n) for ged(n,s) = 1. Then for any integer q we have

s

Zw(n)e (%) = Z wo(m)e(m/r) Z cp(s/c)wo(s/c)wo(g/c).
n=1 m=1 cl(:0)

Proof We have that

rSs

Setne (72) = Sent) 3 e (72)

n=1 di(sn)
rs/d d
:Z,u, ZWO nd <n q)
d|s
s/d
d
S (2)E(2)

Denote ¢ = s/d, then the inner summation in the above formula is zero for all ¢ { ¢
and is ¢ for ¢|¢g which shows the lemma. O

Now let d = ru? be an odd positive integer with r square free. Taking w =

(a) , Wo = (—) ,q¢=n,s=u?in Lemma 2.6, we have
r

> (2)e (M) = T it (L) (2),

m=1 ol (u?,n)
.

(#)e(2) -

m=1

where we used the fact

Let A = (k —1)/2 and n be an integer. We define a primitive character w,i")

satisfying

d

We also define a primitive character w’ satisfying

—1)n
w™(d) = (M) w(d), if (d,nN)=1

W'(d) = w(d), if (d,N)=

Suppose that y is a character modulo a factor of N. Define

> xmn=T[0 = xp*) ",

(n,N)=1 pIN

where p runs over all primes co-prime to N.
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Proposition 2.1  We have
Ln(25 42X\, w")bi(0,5,w, N) = Ly(2s + 2\ — 1,u).
For n # 0, we have
Ln(2s + 2\, )bg(n, s,w, N) = Ly (s + A, wk NBi(n, s,w, N),
where

Br(n, s,w, N) Zﬂ W' (b)a s Ap 25T+ (2.12)

where a, b run over all positive mtegers such that (ab, N) = 1 and (ab)?|n.

Proof For n = 0, the inner summation of (2.10) is nonzero only for d a square.
Therefore

u=1
_ {Zw(p2z)p (2s+k)i (p )}
ptN \i=0
_ {1+Z (1 — 1) (w(p?)p~ (2 +h-2) }
PN i=1 P
B 1 — w(p?)p=25—k-1
- _ 2\p—2s—k+2
oy Fow@p

= Ln(25+ 2\ — 1,w') Ly (25 + 2\, )7}

Now assume that n = tm? # 0, t square free. Since N is even, the summation in
(2.10) is nonzero only for odd integer d. By (2.11) we get

—-N
bi(n,s,w,N) = Z () €f+lcU(7’u2)(ru2)75*k/2r1/2

ru?
U
2 u?/c\ (n/c
x [
> o (5F) (7).
c|(u?,n)
where r,u run over all positive integers with r square free. Denote u? = ac, then
w(a) # 0 only for a square free. So we can suppose u = ab. Then
c=ab? u’n/c® =n/b?
hence
—1)*nN/b?
br(n, s,w, N) = Z p(a)r= 57 Aa 257 A= 2L (1202 (( )"n N/ ) ,
T
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where we used the fact

)12
ekl (( ) )

”
and 7, a, b run over all positive integers such that (rab, N) = 1, ab? | n and r square
free. Since ab? | n = tm?, we see that b | m. Let m = bh, then a | th, n/b* = th%.
Since
(~1)ANth? 0, if (r,thN) > 1
wr) ("] =1 m .
r wy ' (r), if (r,thN) =

we have

bi(n,s,w,N) Zw 1)_2‘§_2>‘+1 Z,u(a)wQ(a)a_%_z)‘

alth
X Z /,LQ(T)WI(:)(T)’I"_S_A. (2.13)
(rithN)=1
It is clear that
S @t @a P = T (1-w > (2.14)
alth plth,ptN
and
> w2 = I (1o )
(rthN)=1 PIhN
—25—2A\

_ H 1—uw'(p)p
iy 1= (p)p=s

_ Ln(s+ A" 1 - @)~

-~ Ly(25+2)\w) 1 — W (p)p=2s—277

(2.15)
plth,ptN

For primes p such that p | t,p 1 N, we have w,i") (p) = 0. Inserting (2.14) and (2.15)
into (2.13), we get

(n)
_ Ln(s+ A wi”) 27\ —25—2A+1 (n) —s—A
b 0, N) = Frg SRS ST B [T (-wep )

blm plh,ptN
Ly s+)\wk s Ay_2s_9)
[ I S A b s p—2s +1
T In(2s+ 200 Z“ w(b)a ’
which completes the proof. ]

Let n be any integer and X, a primitive character satisfying

Xn(d) = (g) for all (d,4n) =1
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By Lemma 1.2, if n = ab? with a square free, then the conductor of x,, is |a| or 4|a|
according to a = 1(4) or a = 2, 3(4) respectively.

Proposition 2.2  We have that
ak(n, s,w, N) =bg(n,s,wxn, N)ck(n,s,w, N),

where

cx(n,s,w,N)= > Z( ) d)eke (’;j) M—s7k/2, (2.16)

N|M|N%> d=1

And ci(n,s,w, N) is a finite series for all n # 0. (M|N® implies that every prime
factor of M is also a factor of N.)

Proof Denote ¢cN = aM with (a, N) =1 and N|M|N°°. Then

CEN: (d)€d<cfiv>e("d) ij (dra + dy M)

d=1 di=1dz=1

& aM n(dia + do2 M)
X €5 4 e .
b dia + do M alM
For positive odds a, b, we have by Lemma 1.2 that
a b\ . _
(-
aM _ M a
dia+daM ) \dia+deM ) \dia+ doM

M\ (deMY _, _,
= (dm) ( " ) e, dlasdl (2.17)
Hence by (2.6) we have

> R

d=1

5B () (G

N|M|N= d=1

= bx(n, s,wxn, N)cg(n,s,w, N).

For k = 1(4), we have

i () -30- ()
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Hence the coefficient of M ~**/2 in the inner summation of cy(n, s,w, N) is

L Z (4 i (2) + 12 :Il ()t (57).

We employ Lemma 2.6 to the above sums. If M is sufficiently large, then u(s/c) =
0 for any ¢|(s,n)(s is determined by M). This shows that cg(n, s,w, N) is a finite sum
for k = 1(4). It can be proved similarly for the case k = 3(4), which completes the

proof.

|

In order to discuss the analytic continuation of Ei(s,w,N), we also need the

following two lemmas.
Lemma 2.7 Let w be a primitive character modulo v, v # 1, and

R(s,w) = (r/m)+20((s + ) /2) L(s,w),

where v =0 or 1 according to w(—1) = 1 or —1 respectively. Then for any compact
subset J of R, there exists a constant c;(it is independent on r and w) such that

|R(s,w)| < eyr!?l/2¥2 6 = Re(s) € J.

Proof Put -
gu(t,w) = Z w(n)n”e‘“"zt/r, for t > 0.
Using
(nzn/r)(_s+”)/2f((s + V)/Q) _ / e_ant/rt(s+y)/2—1dt’
0
we get

2
Taking the derivative with respect to 2 on both sides of (1.1), we have

1 oo
R(s,w) = —/ gu(t,w)tsT/2= 1,
0

Z (n+x)e_“t("+9”)2 — _jt—3/2 Z pe—Tn’/t+2minz
Therefore
gt w)=) w(dr” Z (m + d/r)"e " (m+d/r)*/t
d=1 m=—00
o0 r d
— (e Y e Y e (1)

n=-00 d=1 T

:(_i)uT_l/2ty+1/2ZW(d)€ </Cri> Z w(n)nue—ntnz/r

n=—oo

d=1
=cv (w)t”+1/2g,,(t, w),

(2.18)

(2.19)
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where

ev(w) = (1) _1/22 Ye(d/T),

whose absolute value equals to 1. By (2.18) and (2.19), we have

1 o0 oo
R(s,w)= 9 (/1 gy (t, W)t/ 1y +/1 gy(t_l,w)t_(s+”)/2_1dt>

1 [ ) o
=§/ gy(t,w)t(””)”‘ldwi;)/ gu(t, @)t =sT/2= 14 (2.20)
1 1

Denote the first term in the formula above by P(s,w). Then the second term is
€,(w)P(1 — s,w). This shows that R(s,w) can be analytically continued to a holo-
morphic function on the whole s-plane. And we have the following functional equation

R(1 - s,w) =e,(w)R(s,w). (2.21)
For o > 1, we have
R(1 = s,0)| = [R(s,)| < (r/7)TH)2D((0 + ) /2)C(0): (2.22)

Now we only need to prove Lemma 2.7 for —1 < o < 2 because of the functional
equation. Since

‘gl/(tuw)‘ < 2 Z nefnnt/r = 2e7nt/"'(]_ _ e*nt/r)72’
n=1

hence
|P(s,w)| </ e—nt/r(l _ e—nt/r)—2t(o—+y)/2—1dt
1

= (r/m)oF¥)/2 / / e (1 —et)2lot)/2=1g, (2.23)
/T

Without loss of generality, we can assume r > m. Then we divide the interval
(rt/r,00) into (;t/r,1) and (1,00). The integral on the interval (1,00) is independent
on r and w. Since t/(1 —e™*) is continuous on (0, 1), there exists a constant A such
that e~ (1 — e~%)=2 < At~2. This implies that for —1 < o < 2 there exist constants
B, C independent on r and w such that

/ et (1 —e ) 2lotn)/2=1qs < A/ tet2=3qr < B4 Cr2= (012 (2.24)
a/r
Inserting (2.24) into (2.23) we get

|P(s,w)| < Dr?, —1<o<2
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with a constant D. Therefore
Re(s,w)| < Cyr?, —1<o<2. (2.25)
Now (2.22) and (2.25) show our result. O

In the proof of Lemma 2.7 we really showed that R(s,w) is holomorphic on the
whole s-plane for any non-trivial character w and got its functional equation (2.21).

For the trivial character, let

n(s) = n=%/°T'(s/2)¢(s), Re(s) >1

where ((s) is the Riemannian (-function. In a similar way we get for Re(s) > 1:

/ ( Z e~ 2t ) ts/2_1dt
1 —mn?t s/2—1
=t Z e /27 dt

n(s)

n=—oo

o0

1 [ —an’t (1—s)/2—1
+§/1 <Ze“ —1>t dt.

This shows that £(s) = s(s — 1)n(s) is holomorphic on the whole s-plane and £(s) =
£(1-s).

Lemma 2.8 Let K be a compact subset of C?, then there exist two constants A and
B such that

|y5W(y,a,ﬂ)\ < Amax{y*B, 1} for all (o, B) € K.

Proof In the proof of Lemma 2.4 we got

1 /—P+i°° T(—s)T(s+ AT(s+ 1 — )
2751 —p—ico F(—O[)F(IB)
where 0 < p < min{Re(3),Re(1 — «)}. Suppose Re(3) > —q,Re(l — a) > —q,q be a
positive number. We move the integral line Re(s) = —p to Re(s) = ¢. Since

YW (y,a,B8) = y~*ds,

B I'(=s+m+1)
M) = st ) (s P

the residue of T'(—s) at s = m is (—1)™/m!. Hence
% T'(m + B)T( m—|—1—a)(_ )
— T(m+ )1 - )T(5)  *

L e D) T(s + B (s + 1 — )
* omi /q (1 — a)0(3)

Wy, a,B) =

y~ °ds.
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Since both terms of the above formula are holomorphic on C?2, the above equality
holds for all (o, 3) € C? and hence the lemma holds. O
Theorem 2.1 Let z € H,s € C. Define

s+k r s+ A+ Ao
2 2

F,é(s,w,N)(z):F( )LN(23—|—ZA,w’)E,’C(s,w,N)(z),

where A = (k —1)/2 and A\g = 0 or 1 according to 2 | A or 2 1 X respectively. Then
(s +X—1)F] can be continued to a holomorphic function on the s-plane. If (k+1)/2
is even or w' is a non-trivial character, then F}, can be continued to a holomorphic
function on the s-plane.

Proof By (2.9) and Proposition 2.1 we have

(—i)*2(2m) ANy 2 F (5,0, N)(2) = 3 Ay, $)e2 eI /271,

n:_m (2.26)
where
A(n,y,s) = Ly(s+ A, wl,(:))ﬂk(n7 s,w, N)T((s + A+ X)/2)
{W(4rmy, (s+k)/2,5/2), if n >0,
T((s+k)/2)[(s/2) "W (4x|nly, s/2, (s + k) /2), ifn <O0.
And
A(0,y,5) =T(s/2) 7' T((s + A+ Xo)/2)T(s + k/2 — 1)
Ly (25 42X — 1,0") (4y) =5 F/2,

We have

T((s+ A+ X)/2)T(s/2) "t =27¢ f[(s + A+ Ao — 2a),

a=1

where ¢ = (A + X\g)/2, and
I'(s+k/2—1)Ly(2s +k —2,u")

=T(s+k/2—-1)L(25+k —2,w") H (1 — o (p)p? k) .
p|N

This shows that A(0,y, s) is meromorphic on the s-plane. If &’ is non-trivial, by
(2.20) we know that I'(s+k/2—1) L(2s+k—2, w’) is holomorphic on the s-plane. Hence
A(0,y, s) is holomorphic on the s-plane. If w’ is trivial, then I'(s+k/2—1){(2s+k—2)
has two poles s = 1 — k/2,1 — X with order 1. The first pole s = 1 — k/2 can be
cancelled by the factor 1 — 227257%_ For odd ), the second pole can be cancelled by
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the factor s+ A — 1. Hence (s + A —1)A(0,y, s) is holomorphic on the s-plane. And if
A+1=(k+1)/2is even or v’ is non-trivial, A(0,y, s) is holomorphic on the s-plane.
If n > 0, then Bg(n, s,w, N) is holomorphic on the s-plane and

| ﬂk(n,s,w,N) |< ’Y|n‘60+57

where constants v, d, ¢ is independent on n. W (4mny, (s + k)/2,s/2) is also holo-
morphic on the s-plane, and for any s € K C C(K compact), by Lemma 2.8 we
have

W (4mwny, (s + k) /2, 5/2)| < C(4mny)~%? max{(4mny) B 1},

where constants B, C' are determined by K and independent on n. We also have

T((s+ A+ X0)/2)Ln(s + A w™)

=T((s+ A+ 2)/2)L(s + A wf™) [T (1= i @)p ).
pIN

Since w,(cn)(—l) = —1 and Ap = 1 for odd A, w,(cn)(—l) = 1 and Ay = 0 for
even A, by Lemma 2.7 we know that T'((s + A 4+ X\g)/2)L(s + )\7w,(cn)) is holomorphic
on the s-plane for non-trivial w,(cn). And hence A(n,y,s) is holomorphic on the s-
plane. If w,(cn) is trivial (then X is even), then T'((s + \)/2)L(s + )\7w,(cn)) has two
poles s = —\,s = 1 — X\ with order 1. The first pole can be cancelled by the factor
1 —275=*, Therefore (s + A —1)A(n, ¥, s) is holomorphic on s-plane. By Lemma 2.7,
we have that

(s + A =1 A(n,y,8)| <un’(y" +y~ "), se€K, (2.27)

where constants u, v, W are determined by K and independent on n.

Now consider the case n < 0. For odd or even A, w,(cn)(—l) = 1 or —1 respectively.

Let n =0 or 1 according to A odd or even. Then
A(n,y,s) =T ((s+X+n)/2)L (S + )\7w,(cn)> X H (1 — w,(cn) (p)p_s_k) Brk(n, s,w, N)
pIN

x W(dn|nly,s/2, (s + k)/2) x I'((s + k)/2)
xT((s+A+0)/2)7'T((s + X+ Xo)/2)[(s/2) "
The product of the last four factors of the above equality is

C

d
2 (s +k—2b) [[ (s + A+ Ao — 20),
b=1 a=1

where d = (A —n + 1)/2. Proceeding similarly for the case n > 0, we can prove that
A(n,y,s) is holomorphic on the s-plane, and for s € K we have

[A(n,y,s)| < u'n” (3" +y™), (2.28)
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where constants u/,v’, W' are determined by K and independent on n.
By (2.27) and (2.28) we know that the series (2.26) multiplied by (s + A — 1) is
absolutely and uniformly convergent in K, which completes the proof. ([

By Theorem 2.1, Ej (s, w, N)(z) can be continued to a meromorphic function on
the s-plane. By (2.7), Ex(s,w, N)(z) can be continued to a meromorphic function on
the s-plane. And the transformation formulae (2.3) and (2.8) hold for all s. We want
to calculate their values at s = 0.

Now suppose that £ > 3, and w is not a real character if £ = 3. Then Ly(A,

(wx N),(C”)) is finite for any n. Define functions as follows

Ey(w, N)(2) = Ex(0,w, N)(2),
Ey(w,N)(2) = E;(0,w, N)(2).
Since I'(0)~! = 0, W (4mny, k/2,0) = 1, by Proposition 2.1, Proposition 2.2, Lemma
2.5 and equality (2.5) we have
(—2mi)k/2 & L (% (EXN)Q"))
—
Ck/2) 2= Ly (A&
X Br(n,0,wxn, N)ck(n,0,w, N)nk/z_le(nz). (2.29)

Ey(w,N)(z)=1+

Similarly, by (2.9) we can get
(—2ni)k/2 >~ Ly ()\7(,0](6”))
I(k/2) = Ln(2A,w)
X B1(n,0,w, N)n*/2"Le(nz). (2.30)

Ep(w,N)(2)=

Denote n = tm? with t a square free positive integer. By Lemma 2.7 we know
’LN (M (EXN);(JL))‘ < ot

where p is a constant independent on n. For n # 0, by Proposition 2.2 we know that
cr(n,0,w, N) is a series with finite terms. Hence

|Ei(w, N)(2)| S 1+ p ) ) o220 < 1 py= (9072, (2.31)

n=1

where p may be a different constant. Therefore we know that Ey(w, N)(z) is a holo-
morphic function on H. Similarly we can prove that Ej (w, N)(z) is also a holomorphic
function on HL.
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By (2.3) and (2.8), we have

Bi(w, N)(v(2)) =w(d)j (7, 2)" Ex(w, N)(2),

Ej(w, N)(y(2)) =w(dy) (éi) (7, 2) B (w, N)(2), (2.32)

where v € IH(N).

Proposition 2.3  Let v be a positive integer, p an odd prime. Put

Then o
ck(n,s,id.,N) = H Z p7(5+k/2)yak(pyan)v

p|N v=N(p)

where id. is the identity character, N(p) satisfies that pV(®) || N.

Proof By (2.16), we have

cr(n, s,id, N) = 3 Z( >5de nd/M)M—5~F/2,

N|M|N% d=1

Put M = 2°M;,e > 2, with M7 odd. Then

i (%) eke(nd/M)

d=1

My 2 2 )\ f
1 k € e
= P AT , 2°dy + Mida)/(2°M
3857 (g ) o sy
1= 2=

ZQG 2 S /2¢d
k e 1 k k
dom1 (Mld2> ehra,e(ndz/ )dzlzl ( M, >€d25Ml5Mldz (ndy/My)

:ak(Q )E]\/[kl) Z (;\211> (ndl/Ml)

di=1

where we used (2.17). Furthermore put M; = MsMs with My and Ms co-prime.
Then
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_ d
ek ( L e /a1
di=1

e g: gf (dzMﬂ) (dj\x?) e (n(deMs + ds Ms) /(MaMs))

do=1d3z=1
iR [ e R ((ds
< Y () ctntapreits 3 () ena /ot
do=1 dz=1
from which we can prove the proposition. o

Lemma 2.9 Let v > 2 be a positive integer. Then

2u—3/2en1(l/2+(—1) /4)7 an _ 21/—2l7 2|l, 2|I/,

ar(2.m) = 2u—3/2eni(l/2—(—1)>‘/4)’ | ifn = 2”_2l, 241,2[v,
2715 ((u — (=1)Y)/4)e™ A, ifn =2"Bu, 24 u, 21 v,
0, otherwise,

where 6(x) =1 or 0 according to x an integer or not respectively.
Proof If v is even, then

ar(2”,n) = (e(n/2") +i*e(3n/2")) l e(nd/2"~?).
d=0

If 2¥=2 4 n, the above summation is zero. If 2¥~2|n, the above summation is 2¥~2.
Suppose that n = 2¥72[, then

\/ie“i(l/“(—l)k/‘*), if 2|1,

V2em/2= DN oy

e(n/2") +i*e(3n/2") = e(1/4)(1 + iFe™!) =

If v is odd, then v > 3 and

281
ar(2V,n) = (e(n/2") — i*e(3n/2") — e(5n/2") + ike(7n/2”)) e(nd/2"=3).
d=0

If 273 { n, the above summation is zero. If 2/~2 | n, the above summation is 2¥~3.
Suppose that n = 2¥~3u. If 2 | u, then

e(u/8) =e(5u/8), e(3u/8) = e(Tu/8),
which implies that the first factor of ax(2”,n) is zero. If 2 { u, the factor is

2e(u/8) — iFe(3u/8)) = 2e(u/8)(1 — iFH) = { Z;(u/s), ﬁ Z i "= gﬁ;

But 6((u + k +2)/4) = §((u — (=1)*)/4) which implies the lemma. O
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Lemma 2.10 Let v be a positive integer, p an odd prime. Then

v— -1 anl—u . v— v
p 1/2<# . ifp T I np” tn, 24y,

p
v —
ar(p”,m) = —p ifp" " m,p" tn,2 | v,

e(p”), otherwise .
Proof We know that

p—1p” !
b
—k (a—i—p) (na + nbp)/p")
b=1

ki( ) na/p)Z:Z:e(nb/pyl).

If p*~1 { n, the inner summation of the above formula is zero. If p*~! | n, it is p¥~!.

Now suppose that p*~! | n. If v is odd, then

0, if p” | n,

_ k v—1 1—v 1—u
n) =¢, e(an
ar(p”, Z ( ) p " /p) = pV71/2511;k (%) . if p fn.

1)
But ¢ % = (%) which shows the case for odd v. If v is even, then

v—1

—p¥ 7, if p” tn,
ar(p’,n) =p"" 1 e(anp' " /p) = { b o
Z P p—1), ifp¥|n,

which completes the proof. ]

Now define

= Z 277k 20, (2% n),

Al (2,n) 22 vh2q5,(2",n),

Ak(p,n) = Zp‘”k/zak(p”yn).

v=1
Let D be a square free positive odd integer. By Proposition 2.3, we have
ck(n,0,id.,4D) = AR(2,n) H Ak(p,n
p|D

ck:(na Ovid~u 8D) = A;c(27n) H Ak(pvn
p|D
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Put
Lap(A, X(=1)>n)
Lap(2Aid.)

If k > 3, by (2.29) and (2.30) we have

)\]C(TL,4D) = 519(”70;XD74D)-

—2mi)k/? o
: _ /2—1
Ey(id.,4D)(z) =1 —|— /%) E Ak(n,4D) I | Ak(p,n e(nz),

p|2D

(—2mi)*/? &

E,(xp,4D)(z) = (/2) ZAk n,4D)n*?"te(nz).

Lemma 2.11  Let v5(n) be the integer such that 2V || n, then

1 — 2@2=k)(r2(n)-1)/2
1-—22-F

27k (1 + (—1)*1){

_ 2(2—k)<u2<n)—1)/2},
if 24 va(n),

)

_ NN 9(2=k)ra(n)/2
2P N e -

2<2fk)u2<n)/2}
Ar(2,n) = if 2| va(n), (—1)*n/2"2™ =

_ N 9(2=k)(v2(n)—1)/2
2+ (M

(1202 (G

92—k)va(n)/2

and

, _[o if (—=1)*n =2,3(4),
Ar(2,n) _{ Ap(2,n) = 27F (1 + (=DM), if (-1)*=0,1

33

(2.33)

(2.34)

_1(4),

Proof In order to simplify the notation, we denote vo(n) by h. Suppose 21 h, by

Lemma2.9, we have

(h+1)/2
A@2n) = ) 9(2—k)s=3/2mi(n/2%" " +(=1)/4)
s=1
(h—1)/2
— 4—1(1 4 (_1))\1){ Z 2(2—k)s _ 2(2—k)(h+1)/2}
s=1
| _ 9@—k)(h=1)/2

1— 22k

=27F1 + (_1)%){ - 2<2—k)<h—1>/2}.
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Suppose that 2 | h, n = 2"u. Then

h/2
Ap(2,n) = Z 2(2—k)/2—3/2eni(n/22571+(—1)>‘/4)

s=1

+ 2—k+(2—k)h/2+1/2em(u/2—(—1)*/4)
+ 2(27k)h/273k/2+1/25 ((u _ (_1))\)/4) e7'5iu/4
1— 2(2—k)h/2
1—22-k
+ 27k+(27k)h/2+1/2eni(u/27(fl)’\/4)

=271+ (-1)M)

+ 2(2—k)h/2—3k/2+1/25 ((u _ (_1))\)/4) eniu/4.

Now we can prove the results for Ax(2,n) in the lemma by a direct computation. By
Lemma 2.9, if (—1)*n = 2, 3(4), then ax(2",n) = 0 for any v > 3. If (—1)*n = 0,1(4),
then ay(22,n) = 1+ (—1)*. This implies the results for A} (2,n) which completes the
proof. O

By (2.29) and Lemma 2.11, we have

By (id 8D)()—1+M > Ak(n,4D)(Ar(2,7n)
k1 °y R)= F(k/2) k n7 k 777,
n>1,(—1)*n=0,1(4)

=271+ (=) [] Arlp,n)n** te(n2). (2.35)
p|2D

Lemma 2.12  Let p be an odd prime, p*»™) || n. Then

(p— 1)1 — pP-Pe(m-1/2) R ()41 /21
p(ph=2—1) ’
Ax(pon) if 21 vp(n),
IAVL) = —Kv. (n v,(n
(p—1)(1 — p=R( )/2) . ((—1)%/17 o )> p(2—k)(yp(n)+1)/2—1/27
p(pF=2 — 1) p
if 2| vp(n).

Proof Denote v,(n) by h. If 2t h, by Lemma 2.10 we have

(h—1)/2
A}c(p, n) _ Z pfksso(pzs) _pflc(h+1)/2+h

s=1
_ =10 - p=R(h=1)/2) _ p=k)(ht1)/2-1
p(p—2—1) '
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If 2 | h, then
h/2 N
—1)*n _
Ar(pn) =Y p7H0(@™) + <7( )p [P )p R(htD)/2Hht1/2
s=1
_ (=1 - pE—Rh=D2) ((—I)An/l?h> =R (1) /2-1/2
p(pF=2-1) p ’
which completes the proof. O

Now we consider the values of Ej3(s,id.,4D)(z) and FE4(s,id.,4D)(z) at s = 0,
where D is a square free positive odd integer. Suppose that n = tm? with t square

n —t . . .
free. Then it is easy to see that (X4D)§ ) = () If n is negative and —n is not
a perfect square, then the term e(nx) disappears in the expansions of F3(0,id.,4D)
and F%(0,1d.,4D) since t,(y,3/2,0) = 0 and Lyp (17 (—n)) is a finite number. If

n = —m? is a negative perfect square, then (x4 D)gn) is the trivial character. Since

CA+ ) (s/2) = (s/2)¢(L+ )P (1 +5/2) = 271, s =0,

the term e(—m?z) appears in the expansions of E5(0,id.,4D) and E%(0,id.,4D).
By Proposition 2.3, Lemma 2.11 and Lemma 2.12 we have
cs(—m?,0,id..4D) = A3(2,—m?) [ [ As(p, —m?) = (4D)~'(1 —1).

p|D

By (2.5), (2.9) and Proposition 2.2 we have
B5(0,id.,4D)(2) — (4D) "' (1 — 1) E4(0,id.,4D)(2)

=1—4n(l+1i) i As(n,4D) ( H As(p,n) — (4D)71(1 — 1)) n'%e(nz), (2.36)

n=1 p|D

which will be denoted by f1(id., 4D)(z).
For I | D, we get similarly that

E3(0, x1,4D)(2) — (4D) (1 = )I'* B5(0, xp 1, 4D) (2)

=1—4m(1 411" " As(In,4D) < [T 4s(p,in) — (4D)'(1 - i)) nt'2e(nz), (2.37)
n=1 p|D
which will be denoted by f1(xi,4D). Likewise we have

cs(—m?,0,id..8D) = A}(2,—m?) [ [ As(p, —m*) = (8D) (1 —1).
p|D
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For 1| 2D, we have that
E3(0,x1,8D)(2) — (8D) ' (1 — 1)I"/*E4(0, xap1,8D)(2)

=1—4n(1+1)I'?) " A3(In,8D)

n=1

X (Ag(z in) [] As(p.In) — (8D) "' (1 - i)) n'/2e(nz), (2.38)

p|D

which will be denoted by f1(xi,8D).
We consider furthermore the values of E3(s,w, N) and F%(s,w, N) at s = —1. Put

. Eg(S,w, N)LN(QS + 2,@’)
falw, N)(2) = = 2n(1+4)Ly(2s + 1,0) 52717 (2.39)
*  By(s.wxn N)Lu(25 +2,0)
fo(w,N)(z) = 2r(L+ )N 2Ly (2s 1 1,5) |, (2.40)

If w is a non-trivial even character, then L(0,w) = 0 (see Lemma 2.7). Hence

Ln(1+s,w) |S_1:L(1+s,w)H(l—w(p)>’ =0.

1+s
p|N p s=-1

If w is trivial, then the product in the above equality is zero. Therefore terms e(nz)
with n < 0 disappear in the expansion of fa(w, N). If n > 0, by Lemmas 2.3, 2.4 and
2.5 we have

ta(y, 1, -1/2) = (2m) Y4732 =20 =12 (47tny, 1, —1/2)
— —231(1 + i)y1/2e—2nny

and
to(y,1,—1/2) = —2m(1 +i)y'/2.
So we have
Fa(w, N)(2) =e3(0, +Z“’XN)§"))
xPs(n, —1,wxn, N)cs(n, —1,w, N)e(nz), (2.41)
where ¢3(0, —1,w, N) is the value at s = —1 of the analytic continuation of the series

(2.16) with respect to s.
Similarly we get

F5(w. N _Hz%

_’w
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For the sake of our applications, we rewrite the Az(p,n) in Lemma 2.11, 2.12 as
follows
11— 1) (1 =327 H()/2) - if 24 by (n)
)(1—3. 2702/ if 9| py(n), /272 = 1(4),
( (n)
(n)

1
1 —i)(1 —27v2(m/2y, if 2 | vo(n),n/22™ = 3(4),
11 —1), if 2 | va(n),n/22" = 7(8)
(2.43)
If p # 2, then
p~t = (L4 p)p= G2 i 2 44 (n),
— vp ()
-1 _ 2 —1—yp(n)/27 if 2 , n/p — _1’
As(pm) =4 P TP 21 P
pilv if 2 | Vp(n)a <M> =1
p
(2.44)

Finally we have

Lemma 2.13 Let m be a positive factor of D, then
FE(id.4m)(z) =1 — 4m(1 + 1) ZAg n,4D)(A3(2,n) — 4711 — 1))
X H As(p,n) —p~ ') H (14 Asz(p,n))n'/?e(nz) (2.45)

plm p|D/m

and
=271 (1 + 1)u(m) fo(id.,.8m)(2)

—1— 4m(1 +1) f: As(n, 4D) (As(2,n) — 471(1 — 1))
n=0,3(4)

x [T (Asw,n) =p7") T] (14 As(p,n)n'e(nz). (2.46)

plm p|D/m

We omit the proof.

2.2 Eisenstein Series with Integral Weight

In this section we always assume that N and k are positive integers. Let w be a
character modulo N with w(—1) = (=1)*. Put

(o) 7)mer

W:{( * :;) ESLQ(Z)]m>Oandnzlifm:O}.

and
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It is easy to check that W is a complete set of representatives of I'ns \ I'o(N). For
v = < (Cl z ), set J(v,2) = cz + d. Define

Bi(zs,w0,N)=y* > @(dy)J(7,2) | (y,2)] >
YETNTo(N)

= Z G(n)(mNz +n) *|mNz 4 n|~%,
(m,n)=1
where s is a complex variable, m,n run over the set of all co-prime pairs of integers
(pairs of positive and negative integers). It is clear that for Re(s) > 2 — k the above

series is absolutely convergent, so a holomorphic function with respect to the variable
s. It is easy to verify that for any v € I'h(N)

Er(v(2), 8,0, N) = w(d,)J (v, 2)*Ep(2, s,w, N). (2.47)

Using Lemma 2.5 we have

Ey(z,s,w,N)= %L;,l(k + 25,0) Z ‘G(n)(mNz+n)"*|mNz +n| 2

oo

N
:ys—|—ySN_k_2SL (k4 2s,w) Zwa

=la=1

X Z (mz4+aN"1+ )" S(mz4+aN"1+5)°

j=—o00

=y® +iF2aN 2y Lo (k4 25, W)

oo oo N
X Z Z tn(my, k + s, s) Zw(a)e(nmx +anN"1), (2.48)
n=—ocom=1 a=1
where Z’ means summation over all (m,n) # (0,0). Similar to the case of half

integral weight, Fj(z,s,w, N) can be continued to a meromorphic function on the
whole s-plane and (2.47) holds also for the continued function. For k # 2 or k =
2,w # id. we define

Ey(z,w,N) = E(z,0,w,N).

Since I'(s)™! — 0(s — 0) and W (y,a,0) = 1, the terms corresponding to n < 0 of
the expansion (2.48) of Ey(z,0,w, N) will disappear. Therefore

Ek(z’w’N):l+Nk(k(—127'£2Nkw Z{de IZ ad/N} (nz).

n=1 " dln a=1

(2.49)
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For k£ = 2 and w = id., we see that

np(N) B 4m?
2yN2Ly (2, id )~ N?Ly(2,1d)

X Z { > Z (ad/N)}e(nz). (2.50)

d|n (a,N)=1,a=1

Bs(2,0,id.,N)=1—

b

Let f be a function on the upper half plane H, o = (Ccl d

) € GL3(R) and k a

positive integer. Define

Fllole = det(a)¥/2 0 (0, 2)7* f(o(2)),

az+b
z+d
Let @Q be a positive integer Wlth Q|N and (Q,N/Q) =1, put

where J(0,2) =cz+d,o(z) =

(
W(Q) = ( ) € GLI (Z

with jQ + IN/Q = 1. It is clear that W(Q)Io(N)W(Q)™! = I'h(N). We want to
compute the Fourier expansion of Fy(z,w, N)|[W(Q)]x. We first have that

Ly(k +2s,0)E;(z, s,w, N)|[[W(Q)]

Q*k/272sys
=2 Bm)(miQ — n)NQ™ 'z + ImNQ™" +n) ™"
x|(mjQ = n)NQ ™'z + ImNQ ™! +n| >
Q*k/272sys
=5 2 Bmm:()(mNQ T e +n) HmNQ ™ 2 4 | 7
o N/Q
= NTQHy Y @i (-m) 3 @aa)
m=1 a=1

X Z (mz4+aQN " +u) " *(mz+aQN"1 +u)"*

Uu=—00

:ik(anfl)kJrZSQk/st Z Z wl(_m
n=—ocom=1
N/Q
Xt (my, k+ s,8) Z Wa(a)e(anQN ! 4+ nma), (2.51)
a=1

where w1, ws are characters modulo @ and N/Q respectively with w = wiws.
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Therefore we get for k > 3 or k = 2,w # id. that
Ey(z,w, N)|[W(Q)] = Ex(2,0,w, N)[[W(Q)]

) k:Qk:/2 0
:Nk((k —nll)'LN k@) Z{Z (=n/d)d"™!
d|n

n=1

N/Q

xsz Je(adQ/N) ve(nz). (2.52)

H/—/

For k = 1,wsy # id., we have that

El (Z’ W, N) | [W(Q)]

=E(z,0,w,N)|[W(Q)]
o s N/Q
- Nsztil\Fw z:: { %wl —n/d) Z (a)e(adQ/N)}e(nz), (2.53)

If k = 1,ws = id., then the term corresponding to n = 0 appears, we have that

E1(27W7N)HW<Q)] :El(z,O,w, N)HW(Q)]

_ miLg(0,w) (1 B 1) 2@

B w NLy(1
Varne) A7) T NI
N/Q
X Z { Zw —n/d) Z e(adQ/N)}e(nz). (2.54)
d|n (a,N/Q)=1,a=1
Finally, we see that for k = 2, w = id.
Es(2,0,w, N)|[[W(Q)]
o np(N) 3 47%Q
2yN2Ly(2,id.) NZ2Ly(2,id.)

N/Q

X Z:l{ Z Z e(adQ/N)}e(nz). (2.55)

din,(n/d,Q)=1(a,N/Q)=1,a=1
Assume that w is a primitive character modulo N and ) meets the conditions

given before. Put

N/Q

Zwl —n/d)d*~ 1Zw2 e(adQ/N),

d|n

where w1, ws are characters modulo @ and N/Q respectively satisfying wiws = w. It
is clear that wo is a primitive character modulo N/@. Since the inner summation of
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the above formula is zero for any (d, N/Q) > 1, we see that

N/Q
bi(n) = Z wo(a)e(aQ/N) Zwl(—n/d)wg(d)dkfl.
a=1 d|n

Let p be a prime. If pt N and p t n, then it is clear that

b (pn) = (w1 (p) + w2 (p)p"~")bx(n),
if p{ N and p|n, write n = p'ny, with p{n;. Then we have that

N/Q
bi(pn) = w1(p)bi(n) + wa(p)p"~" Z wa(@)e(@Q/N) > wi(—n1/d)ws(p'd)(p'd)*~

d|ny
= w1 (p)bi(n) + w2 (p)p* " (br(n) — w1 (p)br(n/p))
= (w1(p) + w2(p)p" 1)br(n) — w(p)p* " bi(n/p),

if p|@, then it is easy to see that
bi.(pn) = wa(p)p* " br(n);

if p|N/@, then
bi(pn) = w1(p)bk(n).

Collecting the above discussions we obtain

(W1(p) + wa(p)p")br(n) = bi(pn) +w(p)p* " br(n/p),

where we put that bg(n/p) = 0 for any p { n. Therefore we see that

N brmn = = b [ (1= w2 %) [ (- wip™) ™"
n=1

plQ p|N/Q
X H 1 — (w1(p) + wa(p)p k— 1)p*8 —&—w(p)pkflf%)*l
ptN
=[O =) T (1 —walppt%) "
piQ PIN/Q

= bk(l)L(S,wl)L(S —k + 1,(4)2).
Fork#2ork=2w#id. (ie. N > 1), set
Nk(k' — DLy (k,wiws)

N/Q

(—270)*Q¥/2wi (1) Y Wa(a)e(aQ/N)

a=1

Ek(z7w17w2) = Ek(zﬁwlw%N)HW(Q)]'
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It is easy to check that

Eg(z,w1,w2) = (br(1)) 71D bi(n)e(nz)
n=1
and hence
L(s, Ex(z,w1,w2)) = L(s,w1)L(s — k 4+ 1,w2), (2.56)
where for f(z) = i a(n)e(nz) we define L(s, f) = i a(n)n™% and L(s, f) is called
n=0 n=1

the zeta function of f.

Let t be a square free positive integer with ¢|N. Define

= (@) Ea(2,0,id..t)[[W(t/Q)].

Qlt

By (2.50) and (2.55), we see that

Q

9u(2) = n(t) - tLt X Z“ Z{ >ood oy e(ad/@}e(nz).
djn,(

t/Q.n/d)=1 a=1,(a,Q)=1

Write n = n/ Hp””(") with (n/,t) =1 and put Q* = Hp””(”). Then
plt plQ

Q
> d Y e(ad/Q)

(Q)
>
Qlt @ d|n,(t/Q,n/d)=1 a=1,(a,Q)=1
Q Q
P IS o)

plt/Q dlQ* d'n’  a=1,(a,Q)=1

P

= Zd’;% H p”p(")H Z d Z e(ad/p)

d’|n’ plt/Q plQd|pvr(™  (a,p)=1,a=1

vp(n)
S d]] (p””(") —p (—1 +p—-1) ) pi))
d'ln’ plt i=1

S d[Ja+ph.

d'|ln’ pl|t
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Put
—1
g (2)= H Q+p ) al2)
(tLt ot )
)

Ma+r
-t ( %
n=1 \dn,(d,t)=

It is easy to see that
L(s,9;) = C(s)L(s — 1, 1),

where 1; is the trivial character modulo ¢.

1 d) e(nz).

43

(2.57)

(2.58)



Chapter 3
The Modular Group and Its Subgroups

R

For any 0 = (Z Z) € SLy(R), define a transformation on the whole complex plane

Let
a,b,c,deR,ad—bc=1}.

as follows
(2) az+b
o(z) = .
cz+d
It is easy to prove
Im(z)

Im(o(z)) = o+ dP’

So ¢ induces a transformation on the upper-half plane H. Since +o¢ induce the same
transformation on H, we get a transformation group SLo(R)/ & I of H.
The fixed points of the transformation z — o(z) are roots of the equation

c2> 4 (d—a)z —b=0.

If ¢ # 0, then it has two roots (a —d++/(a + d)2 —4)/(2¢). If ¢ = 0, then o(00) = .

And multiplied by a, the above equation becomes
(1-a?)z—ab=0.

So if ¢ = 0,a? = 1, the transformation has a unique fixed point oo; if ¢ = 0,a? # 1,
then the transformation has two fixed points co and ab/(1 — a?).

Definition 3.1 Let 0 € SLy(R), 0 # 1. If the transformation z — o(z) has
one fized point in H, then o is called an elliptic element; if the transformation z —
o(2) has a unique fized point in R|J{oco}, then o is called a parabolic element; if the
transformation z — o(z) has two fived points in R|J{oc}, then o is called a hyperbolic
element.

Put tr(c) = a + d. Then by the above discussions we get

Proposition 3.1 Let 0 € SLy(R),0 # +1I. Then o is an elliptic(or parabolic,
hyperbolic respectively) element if and only if |tr(o)| < 2 (or = 2, > 2 respectively).
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Form this proposition we know that if ¢ is an elliptic (or parabolic, hyperbolic
respectively) element, then so is To7~! for any 7 € SLy(R).

Let o = (Ccl Z) € SLy(R). If o(i) =i, then a = d,c = —b, hence a® +b* = 1. So

{0 € SLo(R) | o(i) =i} = {( cos sjng) ‘o << Qﬂ}.

—ginf cosf

We denote this group by SO(2). Let z = x + iy € H. Then
/2 g 1/2
T = ((yo yy1/2>> GSLQ(R)

{0 € SLy(R) | o(2) =2} =7-S0(2) - 7%

and 7(i) = z. So

Let s € R|J{oo} and
F(s) ={o € SLy(R) | o(s) = s},
P(s) ={o € F(s) | o is parabolic or + I}.

F(oo):{<g ab1> a7b€R7a7é0},

P(oo) = {i((l) }f) ‘heR}.

It is easy to see that

For any s € R, put

Since 7(s) = oo,
F(s) =717'F(c0)r, P(s)=71"'P(c0)T.

The topology of R induces a topology of SLy(R). Suppose that I' is a discrete
subgroup of SLy(R), z is a point in H. If there is an elliptic element o € I" such that
o(z) = z, then z is called an elliptic point of I". Suppose that s € R|J{oo}. If there
is a parabolic element o € I' such that o(s) = s, then s is called a cusp point of I
If w is an elliptic (or a cusp respectively) point of I', then v(w) is also an elliptic (or
a cusp respectively) point of I" for any v € I

The modular group SLy(Z) is an important discrete subgroup of SLy(R). Let N
be a positive integer, put

[(N) = {(i Z) € SLs(Z)

azdzl,bECEO(N)},
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which is also a discrete subgroup of SL2(R).

If I' is a subgroup of the modular group, and there exists a positive integer N
such that I'(N) C I, then I' is called a congruence subgroup of the modular group.
Hereafter congruence subgroups I'h(N) and I'(N) will be our main research objects.

Proposition 3.2  Suppose that I' is a discrete subgroup of SLa(R), s a cusp point
of I' and z an elliptic point of I, then

(1) I, :={o € I' | o(2) = 2z} is a finite cyclic group (in this case, we call
[[, : I'({£I}] the order of the elliptic point z);

(2) I's/TN{£I} (where I's := {o € I' | o(s) = s}) is isomorphic to Z, and any
element of I's is =1 or parabolic.

Proof  These are two well-known facts, therefore we omit the proof. O

Definition 3.2  Let wy,wy € HURU{oo}. If there exists a 7 € I' such that
T(w1) = wa, then wy and wy are called I'-equivalent.

Now we discuss the cusp points and elliptic points of the modular group.

It is clear that oo is a fixed point of ((1) 1

group. Let s € R be a cusp point of the modular group. Then there exists a parabolic

b
d

So s is the unique solution of the following equation

). So oo is a cusp point of the modular

matrix o = (Z ) such that s is its unique fixed point. Since s # oo, then ¢ # 0.

cx? + (d—a)z —b=0,
which implies that s is rational. Conversely if p/q is any rational number such that p, ¢

are co-prime, then there exist integers u, ¢t satisfying pt —ug =1, i.e., 0 = (g ?) €

SLs(Z). Since o(o0) = p/q and oo is a cusp point of the modular group, so is p/q.
From above we know that Q| J{oo} are all cusp points of the modular group and all
are equivalent to oo.

Suppose that ¢ is an elliptic element of the modular group. By Proposition 3.1
we have that tr(c) = 0 or 1 since o is an integral matrix. Then the characteristic
polynomial of ¢ is 22 4+ 1 or 22 + 2 + 1. Hence 02 = —J or ¢® = £I. But if 0% = —1I,
then (—o)3 = I. So we only need to consider the cases 02 = —I and ¢ = I.

Let 02 = —I. Put Z[o] = {a + bo | a,b € Z}. Then Z[o] is isomorphic to Z[i]. So
it is an Euclidean ring. For any 7 € Z[o], we can define a transformation on Z? as

G)==() ()=

follows:
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So Z? is a Z[o]-module. If for any non-zero element (5) € Z?, there exists 7 = a+bo

such that 7 (?j) =0, then

0= (a—bo)(a+ bo) (z) = (a®>+1?) (Z)

This shows that a = b = 0, i.e., 7 = 0. By the fundamental theorem for finitely
generated modules over Euclidean rings, there exists a v € Z? such that

7? = Zolu = Zu + Zou.

Put v = ou, then ov = —u. So

a(u,v)z(u,v)(? ‘01>,

where (u,v) represents the matrix with columns u,v. Since u, v consist of a basis of
72, det(u,v) = 1. If det(u,v) = 1, then (u,v) € SLy(Z) and

o= (u,v) <? _01> (u, )71,

If det(u,v) = —1, then (v,u) € SLa(Z) and

o = (v,u) <_01 (1)) (v, u) L.

0 1
-1 0

H of these two elements. So the fixed point of ¢ is equivalent to ¢ which is an elliptic

This shows that ¢ is conjugate to ((1) _01> or ( ) But 7 is the fixed point in

point with order 2.

Now let 03 = I. Then Z[o] is also an Euclidean ring and Z? is a Z[o]-module. If for

any non-zero element (?j) € 72, then there exists 7 = a + bo such that 7 (;C) =0,
then

0=(a—0b—>bo)(a+bo) (”y”) = (a® — ab+ %) (z)

This shows that a> —ab+b> =0,s0 a = b = 0, i.e., 7 = 0. By the fundamental
theorem for finitely generated modules over Euclidean rings, there exists a u € Z2
such that

7? = Zlolu = Zu + Zow.
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Put v = ou, then ov = —ocu —u=—v —u,

J(u,v):(uw)((l) j)

where (u,v) represents the matrix with columns wu,v. Since u, v consist of a basis of
72, det(u,v) = 1. If det(u,v) = 1, then (u,v) € SLa(Z) and

_ 0 —1\,
U—(u,v)<1 _1>(u,v) .
If det(u,v) = —1, then (v,u) € SLy(Z) and

o = (v,u) <j é) (0,u) L.

(0 1) (11
T7l1 -1 T7\21 0)

The fixed point in H of 7 is the root p = e*W/3 of 22 — 2 + 1 = 0. Hence the fixed
point in H of ¢ is an elliptic point with order three and equivalent to p. Therefore we

So o is conjugate to

have the following

Theorem 3.1 QJ{oo} are all cusp points of the modular group. Every cusp point is
equivalent to co. Any elliptic point of the modular group has order 2 or 3. All elliptic
points with order 2 (or with order 3 respectively) are equivalent to i (orp respectively).

Now we want to discuss the cusp and elliptic points of the congruence subgroup
I'(N) and I'o(N) with N > 1 (It is clear that I'(1) = I'h(1) = SL2(Z)).

By above discussions we know that all elliptic elements of the modular group are
conjugate to one of the following elements:

0 -1 0 -1 -1 1
(1 0) = 2) =(50)
I'(N) is a normal subgroup of the modular group. All the above elements do not
belong to I'(N) for N > 1. Hence I'(N) has no elliptic points. By Theorem 3.1, the
elliptic points of I'((/N) are only of order 2 or 3.

Theorem 3.2 Let vs and v3 be the numbers of the equivalence classes of the elliptic
points with order 2 and 3 of I'o(N) respectively. Then

0. if 4| N,
vo = H(1+(‘pl>>7 if 41N,
p|N
0. if 9| N,

L () o
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where
0, if p=2,
<_1> “l1 ifp=104),
P -1, if p=3(4),
0, ifp=3,
(‘3) 3L ifp=10),
P -1, if p=2(3).

Proof  We consider first elliptic points with order 2. Let 21, 25 be two elliptic points
with order 2. Then

I',, ={c€Iy(N)|o(z1) =21} ={£I,to1},
FZZ = {O’ S Fo(N) ‘ 0’(22) = 22} = {i[,i02}7

where 01,09 are elliptic elements of IH)(N) which can be assumed to be equivalent

1 0

7 € I'o(N) such that 7(z1) = z2. Then 77 loo7 € I',,. It can be shown that 7= too7
must be o1. So 21, 22 are I'h(IV)-equivalent if and only if o1, o9 are (N )-conjugate.
This means that v is the number of the conjugate classes of the elements in the set

0 -1
to ( ) in the modular group. If z1, zo are I'y(IN)-equivalent, then there exists

r= {Tl (? _01> Tc FO(N)‘T € SLQ(Z)}

in Fo(N)
. (0 1
Suppose 0 =T

1 O)TeE,andpu‘c

(wl, wg) = (].7 I)T
Then {w1,w2} is a basis of Z[i] as a Z-module. And

(iwr, iws) = (1,1) ((1) _01> T = (w1, ws)o. (3.1)

Put
J = {aw1 +bNws | a,b € Z} C Z[i].

Then the equality (3.1) shows that J is an ideal of Z[i] and J satisfies the following
two properties

(1) The Norm N (J) of the ideal J is [Z][i] : J] = N;

(2) For any integer ¢ # +1, J is not contained in the ideal (q) generated by ¢(since
w1 € (q) = {aqwi + bgws | a,b € Z}).

Conversely, if J is an ideal of Z[i] with the above properties, then by property (1)
we can find a basis wy,ws of Z[i] such that e1wy, eqwa(e1,e2 € Z) is a basis of J and
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€1 | €2,e182 = N. In this case we have that J C (e1). By property (2) we know that
€1 = 1,69 = N. If necessary, substituting wy by —ws, we can assume

(wh(UQ) = (].,i)T, T e SLQ(Z)

Therefore

(w1, iws) = (w1, w2)T ™! (? _01> T.

0 -1
1 0

Now we can prove that there is a bijection between the set of the conjugate classes
of the elements of X' in I'H(IN) and the set of the ideals of Z][i] with properties (1) and

Since iw; € J, so T~1 ( >T€E.

(2). Let
0 -1 0 -1
_ -1 _ =1
oc=T (1 0>TEZ7 o1 =1] (1 0>T1€Z.
Define
(w17w2) = (l,i)T, (wllawé) = (Li)Tl
and

J = {aw1 + bNws | a,b € Z},
J1 = {aw) + bNwh | a,b € Z}.
If J = Jp, since (wy,ws) = (wi,wh) Ty T and wy € Ji, we have that
Ty =7 € TH(N).
Hence 0 = 7~ 'oy7 which means that 0,01 are conjugate in I'y(N). Conversely, if
0,01 are conjugate in I'g(N), suppose that o = 77107 with 7 € IH(N). Put

(wilv le/) = (wi ) w/Q)T’

we have that
(iwr,iws) = (w1,w2)o, (iw],iwy) = (W}, wh)o.
(w1, ws) and (wf,wf) are the solution of

{ (0’11 — 1).73 + 021y = 0,
012 + (022 — 1)y =0,

011 012
where o = .
(021 022>
Therefore there is a A € Q(i) such that w; = Aw{,ws = Awf. Since {wf,wd
is a basis of Z[i], there exist integers n,m such that nw! + mw) = 1 and hence
nwy + mwe = A, i.e., A € Z[i]. Since {w1,ws} is a basis of Z[i], we can similarly prove
that A= € Z[i]. So A is an invertible element of Z[i] and

J ={aw] + bDNW} | a,b € Z} = J;.
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It is well-known that Z[i] is a principal ideal domain. If an ideal J = (z + iy) has
properties (1) and (2), then
> +y?=N, (x,y)=1.

The number of solutions of this equation is ( please see, e.g., Hua Luokong: An
introduction to number theory, §7, Chapter 6)

4H(1+(_71>>7 if 41 N;

p|N
0, if 4| N.

Since *+(x + iy), =(—y + iz) generate the same ideal, we get the result for vs.
Now we consider the elliptic points with order 3 of I'H(N). Let 21, 22 be two elliptic
points with order 3 of I'y(N). Then

I, ={+l,+01,%07}, TI., ={£l, 09,403}

. 0 —1Y.
We can assume that o1, o9 are conjugate to ( 1 1 ) in the modular group. Then we

can prove that z1, 29 are I'g(INV)-equivalent if and only if o1, o9 are I'y(INV)-conjugate. In
fact, if z1, 22 are I'y(IN)-equivalent, then there exists a 7 € I'y(N) such that 7(z1) = 2.
Hence 77 logr € I',,. We want to show that 77 oo must be o1. In order to prove
this, we only need to show that

0 -1 -1 1 0 1 1 -1
1 -1/’ -1 0)° -1 1)’ 1 0
are not conjugate to each other in the modular group. Their characteristic polyno-
mials are respectively
AA+D)+1, AMA+D+1, xA-1D)+1, MA—-1)+1

So it is only possible that the first and the second are conjugate, the third and

-1 -1 1
the fourth are conjugate. Let « be <(1) _1>. Then o~ ! = (_1 0). Suppose
that there is a v € SL2(Z) such that yay™' = a~!. We know that there exists a
7 € SL2(R) such that Tar™! = (_pq ;) € SO(2). Put

Tt = a b
K " \ec d)’
Since ya = a !y, we have

(o) (5o)=0 )
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ie.,

ap—bq bp+aq\ _ (fap—cq bp—dg
cp—dq dp+cq cp+aqg dp+bg)’

It shows that a = —d, b = ¢ and hence
dety = ad — be = —a® — d? < 0,

which is impossible. Therefore a, @' are not conjugate in the modular group. Simi-
0 1 1 -1 . .

larly we can prove that ( 1 1)\ o ) not conjugate in the modular group.

Therefore 21, z9 are I'h(N)-equivalent if and only if 01, 02 are I'y(N)-conjugate. So vs
is the number of the conjugate classes of the elements of the set

{Tl (? j) Te FO(N)‘T c SLQ(Z)}

in I'H(N). By a similar reasoning for elliptic points of order 2, but substituting Z|[i]
by Z[p], we can show that 65 is the number of solutions of the following equation:

?—zy+y* =N, (z,y)=1

By referring to the classical result for the number of solutions of the equation, we are
finished with the proof of the theorem. 1

Lemma 3.1 We have that

1SLa(2) : T(V)] = N* [[(1 - p ),
pIN

[SLa(Z) : To(N)] = N (1 +p7").
pIN

Proof Let I' = SLy(Z) and define a homomorphism

f:I'—=SLy(Z/NZ),
a —a mod N.

Then the kernel of the map is I'(N). We now show that f is an epimorphism. For any
2 x 2 integral matrix A with det A = 1(NV), it is well known that there exist U,V € I

such that
UAV = (“1 0 ) .
0 as

So ajas =1+ rN with r an integer. Put

+aN yN
B =" .
( N ag )
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Since aq, N are co-prime, there are two integers x, y such that r +aox —yN = 0. Thus
det B’ = ayas + asxN —yN? =1,

i.e., B € I'. Tt is easy to see that UAV = B’(N). Taking B = U~!B'V~!, then
B e I' and A = B(N) which means that f is an epimorphism. And so

[[': I'(N)] = [SL2(Z/NZ) : 1.

Let N = H p¢ be the standard factorization of N, by Chinese Remainder Theorem,

we have that

[SLo(Z/NZ) : 1] = [ [[SL2(Z/p°Z) : 1]. (3.2)

p|N

Consider the map
h :GLy(Z/p°Z) — GLy(Z/pZ),
a mod p° —a mod p.

Then the kernel of h is

X:{(i Z)EGLQ(Z/peZ)‘<z Z>EI(p)}.

It is easy to see that [X : 1] = p*(¢=1. Tt is well-known that

[GL2(Z/pZ) : 1] = (p* = 1)(p* — D),

S0
[GLo(Z/p°Z) - 1] = p**(1 = p~ ") (1 = p7?).

Consider the map: « — det a from GLy(Z/p°Z) to (Z/p°Z)*. The map is an epimor-

phism and the kernel is SLy(Z/p°Z). So

[SLao(Z/p°Z) : 1] = [GLo(Z/p°Z) : 1]/(p°) = p** (1 — p~?).

By (3.2) we get the result for [I" : I'(N)]. The image of I'H(N) under the homomor-

phism f is
{(g Z) € SLy(Z/NZ)

which has No(N) elements. So

ad = l(N)},

[SLy(Z/NZ) : )
s ro)) = PEEEEE “NIL0+r).

which completes the proof. O

Lemma 3.2 Let I' be a discrete subgroup of SLa(R) and I a subgroup of I'. If
[[:T"] < o0, then I' and I'" have the same set of cusp points.
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Proof It is obvious that any cusp point of I is also one of I". Conversely, let s be
a cusp point of I'. Then there exists a parabolic element ¢ € I" such that o(s) = s.
Since [I' : T"] < oo, there is a positive integer n such that ¢ € I'". But o must be

conjugate to an element <(1) }1L> in SLo(R). Then o™ and ((1) n1h> are conjugate.

So o™ is a parabolic element. But ¢™(s) = s implies that s is a cusp point of I".

By Lemma 3.1, Lemma 3.2 we know that I'(N) and I'j(NN) have the set Q J{oc}
of cusp points. That d/c is a cusp point implies that d is an integer and ¢ a non
negative integer with (¢,d) =1. If ¢ =0, then d =1 and 1/0 is occ. O

Theorem 3.3 Let R. n be a reduced residue system modulo (¢, N/c),
ie. {d+ (¢, N/c)Z |d€ Ren} = (Z/(c,N/c)Z)". The set
{d/c|c| N,(c,d) =1,d € R..N} (3.3)

is a complete set of representatives of equivalence classes of the cusp points of I'H(N).
Hence the number of equivalence classes of the cusp points of I'o(N) is equal to

=> o((e,N/e)
c|N
Proof If d is prime to (¢, N/c), put
d=d + (¢, N/c) H p.
ple,ptd’

It is clear that d is prime to ¢ and d = d’ mod (¢, N/¢). So the number of the cusp
points in the set (3.3) is equal to

> e((e,N/e)).

c|N

Now we need only to prove that any cusp point of IH(/N) is equivalent to one in the
set (3.3) and any two elements in the set (3.3) are not equivalent for I'o (V). Let d/c,
dy/c be two cusp points and ¢ | N, d = d; mod (¢, N/c). Then there are two matrices

a d al dl
(b ) (bl Cl)eSLg(Z).

bd = b1d; = —1 mod (¢, N/c),

It is clear that

Therefore b = by mod (¢, N/c¢). There exist integers m, n such that b = by +mc+nN/c.

Hence 4 d J
_(a—-m c —d
fy_(b—mc c) (—b1 ai >€FO(N)
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satisfies y(dy/c) = d/c. This shows that d/c and d;/c are equivalent each other for
Io(N).
Let n/m be a cusp point and (m, N) = ¢. There exist integers «, 5 such that

am + fnN = c.

Put
o' =a+nN/c H p, B=pB-m/c H .
p‘N,Ma p\N,Ma

It is easy to see that a’m/c+ /nN/c =1 and ' is prime to 3’ N. Therefore there is

* *
g = (ﬂ/N O/) 6F0(N)7

which satisfies o(n/m) = d/c, (¢,d) = 1. d/cis Iy(N)-equivalent to some cusp
point in the set (3.3). And so is n/m.

Now we assume that d/c, di/c; are two points in the set (3.3) and that they are
I'n(N)-equivalent. Then there exists

a f
U_(’VN 5)€F0(N)
such that
ad+ fe=dy, yNd+dc=c. (3.4)

By the second equality of (3.4) we have ¢ | ¢;. Because of symmetry we can show
similarly that ¢; | ¢. Hence ¢ = ¢; and so § = 1(modN/c¢). But ad = 1(modN), so
a = 1(modN/c). By the first equality of (3.4) we know that d = d; mod (¢, N/¢)
which means that d/c and dy/c; are the same point in the set (3.3). This completes
the proof. 1

Lemma 3.3 Let a,b,c,d be positive integers, (a,b) = 1,(¢,d) =1 and a = ¢,b =
d(modN). Then there exists o € I'(N) such that

()= ()

Proof  We first consider the case ¢ = 1,d = 0. Then a = 1,b = 0(modXN). There
exist integers p, ¢ such that ap — bg = (1 — a)/N and so

(3 ) e (5)=o(3)

We now consider the general case. There exists

= (; :) € SLy(Z)
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T((l)) = (d> - (,,) (mod V).
71(2)55(3) (modN).

By above discussion we know that there exists o € I'(IV) such that

7 ()=o)
(5) = (a)

It is easy to see that Tor~1 € I'(N) which implies the lemma. O

such that

Then

hence

Theorem 3.4 Let s =a/b, s’ = ¢/d be cusp points. Then s, s' are I'(N)-equivalent
if and only if + <Z> = (Z) (modN). The number of the equivalence classes of cusp

points of I'(N) is ,
N
o Ha-p™), irN>2

Voo = p|N

3, if N=2.

Proof  Assume that + (Z) = (Z) (modN). By Lemma 3.3 there is 0 € I'(N)

such that o(s) = s’. Conversely, if there is 0 € I'(N) such that o(s) = ¢, then

o (Z) =m 2 with an integer m. But (a,b) = (¢,d) = 1 implies that m = +1,
a\ _ ¢
and so (b) =4 (d) (modN).

J = {(al,ag) | 1 S ai, az S ]\77 (al,ag,N) = 1}

Let s = ¢/d be a cusp point of I'(N). Put a; = ¢,a3 = d(modN) and 1 < aj,a2 < N.
Since (a1, a2, N) | (¢,d) = 1, then (a1, a2) € J. Thus each cusp point s corresponds to
an element of J as shown above. If another cusp point s’ corresponds to an element
(a},ah) € J, then by the first result of the theorem, s,s’ are I'(N)-equivalent if and
only if a1 = a},a2 = af or a3 = N — a),as = N — a}. Conversely, if (a1,as2) is any

element of J, it is easy to see that ag and ¢ = a1+ N H p are co-prime. Hence the

plaz,pta:
cusp point ¢/ag corresponds to (a1, az2) according to the above definition. Therefore
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for N >2, N = I—Ipe7 we have
P

N
voo = #7/2= 3 3" pl(a, NN/ (0, N)

a=1

= ST el /)
pIN a=1

e

= % 11> e)e/p

pIN i=1

== 1]a-»7?).
p|N

A direct computation shows that vo, = #J = 3 for N = 2, which completes the
proof. O

Let I" be a discrete subgroup of SLa(R). A domain F in H is called a fundamental
domain for I if

(I) F is a connected open set;

(IT) any two points in F' are I'-inequivalent;

(IIT) any point in H is I-equivalent to a point of the closure F of F.

Lemma 3.4  The following set
F={zeH|-1/2 <Re(z) <1/2,|z] > 1}
18 a fundamental domain of the modular group.

Proof It is clear that F' satisfies the first condition (I). Let z1, 22 € F. If they are

SLo(Z)-equivalent, then there exists o = (i Z) € SL2(Z) such that o(z9) = 2.
. . Im(zs)
Without loss of generality, we can assume that Im(ze) <Im(z) = T+ P Then
CZ9
|c[Im(zg) < |ezo +d| < 1. (3.5)

If ¢ =0, then a =d = +1, 21 = 25 £+ b, b is an integer which is impossible. So ¢ # 0.
Since 29 € F, Im(22) > v/3/2. By (3.5) we have |c| = 1 and |22 £ d| < 1 which is also
impossible. Therefore the second condition (II) is satisfied. Let z be any point of H.

a b
o= (c d) € SLy(Z). Because
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we know that Im(o(z)) will get its maximum when o runs over the modular group.

-1
Let Im(o¢(z)) be the maximum. Write w = 0¢(2) = x+iy,y = (? 0 ) € SLy(Z).
Then
Im(yoo(2)) = Im(~1/w) = y/|w|* < y.
1 1

This shows that |w| > 1. Put 7 = (0 1

> € SLy(Z). Then for any integer h

Th(O'o(Z)) =z + h+ iy,

which implies that Im(7"0¢(2)) = Im(co(2)). So |7"a0(2)| = 1 for any h. A suitable h
will assure that 7"0¢(2) € F which shows that the third condition (III) is satisfied. [

Now Put
F'=FU{z€eH]||z| >1,Re(z) = -1/2}U{z € H | |2] = 1,—-1/2 < Re(z) < 0}.
It is clear that F” is a complete set of representatives of SLo(Z) \ H. Put
H* = HUQU{ oo}
QU{oo} are all cusp points of the modular group. By Theorem 3.1 we have
SLa(Z) \ H' = (SLa(2) \ H)U{ox}.

In general, let G = SLy(R). The topology of R* induces a topology on G, and so G
becomes a topological group. Let I" be a discrete subgroup of G. Put

H* = H| J{ all cusp points of I'}.

We introduce a topology on I' \ H*. We first introduce a topology on H*. If 2z € H,
then all the neighbors of z in H are all the ones of z in H*. If oo is a cusp point of I,
define the following sets

{0} J{z € H|Im(z) > ¢ > 0} (3.6)

as the system of open neighbors of co. If s € R is a cusp point of I', define the system
of open neighbors of s as follows

{sHU{ the inner of a disc in H tangent to the real axis at s}.

It can be verified directly that H* becomes a topological space under the above def-
inition. It can also be verified that each element of I' defines a homeomorphism of
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H*. Then the topology over I' \ H* is defined as the quotient topology of H* with
respect to I'.
It can be proved that for any v € H* there is a neighbor U of v such that

{ocel o UNNU#£2}={oel|oWw) =v}=1T,.

That is, I, \ U can be imbedded into I"'\H*. Let ¢ be the natural map: H* — '\ H*.
If v € H is not an elliptic point, then I, = I'\{£I}. Then ¢ : U — [, \ U is a
homeomorphism. Let (I, \ U, ¢~ 1) be an element of the complex structure of I"\ H*.
If v € H is an elliptic point, then I, = I,/(I, ({£I}) is a finite cyclic group with

order e. Let
a b
O’—(C d) erl,

correspond to a generator of I',,. Put

whose matrix (1 U_) is also denoted by A. Then

1 —v
-1 _ cv+d 0
Ao —( 0 cv+d>'

Denote € = cv + d. Then £€ = 1. Let e be the smallest positive integer such that
0 =41, ie., £ = +1. If e is even, it must be that £¢ = —1. So £ is a primitive root
of the unit with degree 2e. Anyway, £ is always a primitive root of the unit with
degree e. Put ¢ = ¢72. Then AI,A ! is the set of the following transformations:

2=z, i=1,2,--- e

The transformation z — A(z) maps [',-equivalent points in U to A, A\~ !-equivalent
points in A(U). That is, X induces a bijection from I, \ U to A[L,A~1\ A(U). Two
points wy,wy € A(U) are AI', A~ -equivalent if and only if w$ = w§. Define a map:

p: I,\U —C,
w(z) — Az)¢, zeUl.

We regard (I, \ U,p) as an element of the complex structure on I' \ H* which is a
homeomorphism from I, \ U into C.
If v is a cusp point of I', then there exists p € G such that p(v) = co. So

pFUp_l-{:tI}:{:I:<(l) ff) ’mEZ}, h > 0.
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Define a homeomorphism p from I, \ U into C: p(p(z)) = e*™P)/" We consider
(I'y \ U, p) as an element of the complex structure on I" \ H*.

We can prove that I' \ H* becomes a Riemann surface. In general it is locally
compact. If it is compact, then the discrete subgroup I is called a Fuchsian group of
the first kind.

We can show

Lemma 3.5 I'\H* is a compact Riemann surface if and only if there is a compact
subset C' of H* such that H* = I'C.

Let
F={cc}U{z€eH]||z] > 1,-1/2 < Re(z) < 1/2}.

Then F is a compact subset of H* and H* = SLy(Z) - F. By the above lemma we
know that SLy(Z) \ H* is a compact Riemann surface and hence the modular group
is a Fuchsian group of the first kind.

Let I' be a Fuchsian group of the first kind. I is a subgroup of I" with n = [I" :

Il < o0. Then I' = U I'o;. By Lemma 3.5 there exists a compact subset C' of H*
i=1
such that H* = I'C. And hence

H*ZF/ <CJO’10>,

i=1

n

which implies that I'’ is of the first kind since U 0;C' is a compact subset of H*. This
i=1

means that I'(N) and Ih(N) are Fuchsian groups of the first kind.

Let I', I'" be as above. Then they have the same cusp points and define the same
H*. Let v € H*. The set of the points I'-equivalent to v are divided into finite
I'"-equivalence classes. Suppose the number of the I''-equivalence classes is h and
wi(1 < i < h) is a system of representatives. Let ¢’ be the natural map H* — I\ H*.
Then we can get a covering map f from I'" \ H* to I \ H* as follows

- id. o

/| |#

It is clear that f is a holomorphic map. f maps ¢'(w;) to ¢(v). Denote ¢; =
¢ (w;) € I'"\ H*. Let u be the local coordinate at ¢; and ¢ the local coordinate at
p(v). If

t(f(a)) = ac(w(@)® + acs1(u(@))*™ + -+, ac#0
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for any point ¢ in a neighborhood of ¢;, then e is called the ramification index of f
at ¢;.

Since w; is I'-equivalent to v, then there exists o; € I' such that w; = o;(v).
Denote I' = I'/(I' N{%I}).

Lemma 3.6 Notations as above. Then the ramification index of f at q; is

—/

ei=[Ty,:T,]=1[T,: O’;lf/O'Z'ﬂTvL 1<i<h.

wi]

And ey + e+ +ep = [I: fl]. That 1is, f is a covering with degree [I' : T/]. In
— — — =
particular, if I' is a normal subgroup of I, theney = eg = ---=ep and [ : I'| = e1h.

Proof By the definition of the complex manifold, we know that )\i(z)[ﬁ’i:l} is a

local coordinate at g; of I'\ H*, where \;(z) = (2 — w;)/(z —w;). Similarly \;(z)L 1]
is a local coordinate at p(w;) of I' \ H*. So the ramification index of f at ¢; is
— — — —

T :1)/[T,. : 1] =ei. But T, = 050, L, T, = 0: 0o, " T So

e; = [T, :Tvﬂoflflai].

We have a double coset decomposition of I as follows:
h /
T=JToT
i=1

In fact, for any o € I', o(v) must be I'’ —equivalent to some w;. That is, there exist
i, 0’ € T such that o(v) =o'oi(v). So (¢'0;) 1o € T,. Hence o € o'0; T, 1f i # j
and there is an element belonging to T/O'iTv and T 0; T, then there are Y1, v2 € I,
61,09 € I'y, such that
Y1001 = 7Y20;02.
Then
Y1 (wi) = M0i61(v) = 720;02(v) = Y2(w;),

which is impossible because w;, w; are not I"”-equivalent each other. This shows that
I has such a decomposition. Now consider the number of the right cosets of T'in
T'0;T,. Let 61, 8 € I',. Then there exists v € I such that 0;6; = y0:05 if and only
if 5162_1 € O'i_lf/O'iﬂTv. Hence there are [I', : Ji_lfloi N '] = e; right cosets of T
in I"0;T",. Therefore

[ :Tl]:el +es+--+ep,
which completes the proof. ]

Lemma 3.7 Let f be a covering with degree n from a compact Riemann surface R’
to another compact Riemann surface R. Suppose that the genuses of R’ and R are ¢’
and g respectively. Then

29 ~2=n(29~2)+ 3 (es 1),

zZER'
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where e, is the ramification index of f at z € R'.

Proof  This is the so-called Hurwitz formula. O

Theorem 3.5 Let I' be a subgroup of the modular group and p = [SLo(Z) : T).
Denote the numbers of the equivalence classes of elliptic points with order 2 and 3 of
I' by vo and vs respectively. Let v be the number of the equivalence classes of the
cusp points of I'. Then the genus of I' \ H* is
12 1% Vs Voo

TR BN
Proof Consider the ramification covering f with degree y defined in Lemma 3.6:
f: IT'\H* — SLy(Z)\ H*. If the ramification indexes of the inverse images in "\ H*
of <p(e2m/3) € SLy(Z) \ H* are ey, eq,- - , e, respectively, then eq +ex + -+ - + €, = p.
Each e; is equal to 1 or 3. And v3 is just the number of e; = 1. Put v =¢ — v3. By
vs + 34 = u, we have

t

> (e —1) =2vf = 2(u—v3)/3.

i=1
Similarly, if the ramification indexes of the inverse images in I"'\H* of p(i) € SL2(Z)\
H* are e/, e5,- -+ , e}, respectively, then e} +e5 + -+ + ¢}, = p. Each e; is equal to 1
or 2. And v5 is just the number of e; = 1. And the others are of index 2. Hence

h

D (e —1) = (u—w)/2

i=1
Voo is the number of the inverse images of ¢(co) under f. Let their ramification
indexes be ef, - -+, el respectively. Then

Voo

Voo

Z(eél —1)=p—ve.

i=1
But SLy(Z) \ H* is a sphere with genus 0, by Lemma 3.7 we have
20—-2==2p+2(n—v3)/3+ (p—12)/2+ 1 — Voo
which implies the result of the theorem. ]

Example Let N > 2, then I'(IN) has no elliptic points and —I ¢ I'(N). So

[SLy(Z) : T(N)] = [SL(Z) : I'(N)]/2.

By Lemma 3.1 we have

N3 H(l 2) f N 2
- N —p7?), if N>2,
pn = [SLa2(Z) : ['(N)] = 2 p|N ’

6, if N = 2.
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By Theorem 3.4 we know that voo = iy /N. So the genus of I'(N) \ H* is
1+ pun(N —6)/(12N), N> 1. (3.7)
For I'y(N) we have

[SLo(Z) : I'hv(N)] = [SL2(Z) : I'h(N)] = NH(I +p ).
p|N

By Theorems 3.2, 3.3, 3.5, we can compute the genus of I'o(N) \ H*.



Chapter 4

Modular Forms with Integral Weight or
Half-integral Weight

4.1 Dimension Formula for Modular Forms with Integral
Weight

Let I" be a Fuchsian group of the first kind. Then M = I'\ H* is a compact Riemann
surface. Denote by K the field of all meromorphic functions on M. It is well-known
that K is an algebraic function field over C. Let ¢ : H* — M be the natural map. For
g € K we call f(z) = g(¢(z)) an automorphic function on H which is a meromorphic
function on H. It is clear that f(y(z)) = f(z) for any v € I'. Now we introduce a
more wide range of functions on H.

Let 0 = <z Z) € GL2(R). Put J(o,z) = cz +d for any z € H. It can be easily

verified that
J(od',2) = J(0,0'(2))J (0, 2)

for any 0,0’ € GLy(R). For any integer k, ¢ € GL3 (R), any function f on H we
define an operator as follows

fllolk = det(0)*/?J(0,2)7* f(a(2)).

It is clear that
flloa'lk = (fllole)llo’ Ik, o,0" € GLT (R).

Definition 4.1  Let k be an integer, f a complex function on H. We call f an
automorphic form with weight k for I' if it satisfies the following three conditions:
(1) f is meromorphic on H;
(2) for any v € I, we have f|[Y]x = f;
(3) f is meromorphic at each cusp point of I
The set of all automorphic forms with weight k for I' is denoted by Ay (I") which is a
vector space over C.



66 Chapter 4 Modular Forms with Integral Weight or Half-integral Weight

We need to give some explanation for the third condition: let s be a cusp point,
then there is p € SLy(R) such that p(s) = co. Then

plsp™ b {£I} = {j: (é ff) ’m € 2}7 h >0,
where h is a positive real number and

Iy={verl'l|v(s) = s}

By the second condition we know that f|[p~!]) is invariant under the action of [o]j
with o € plsp™t. Put w = p(z),g(w) = (f|[p~1]x)(w). Then

g\ HE ?)L=<il)kg<w+h>=g<w>. (4.1)

If k£ is even, by (4.1) we have

g(w+h) = g(w).
In this case, the third condition means that there exists a meromorphic function
®(q),q = e*™/" at a neighbor of zero such that g(w) = &(q). If k is odd and
—1I € I', then the second condition implies f = 0, there are no non-zero automorphic
forms with weight k. So we always assume that —I ¢ I' if k is odd. In this case,

one of <(1) ff) ,— <(1) }1L> does not belong to plsp~!t. If pI'\p~" is generated by

0 01

called an irregular cusp point. If s is regular, the meaning of the third condition is

(1 }f), s is called a regular cusp point. If pI'sp~! is generated by — (1 h), s is

the same as the one for k even. If s is irregular, by (4.1) we have
9(w +2h) = g(w).

In this case the third condition means that there is an odd meromorphic function
at a neighbor of zero such that

g(w) = ()

It is easy to show that the above definition is independent on the choices of p. By

2niw/h wiw/h.

the discussion above, f|[p™!]x is a power series of e ore

f|[P_1]k: Z CneQJ'[inw/h or Z Cneninw/h7
n>=ngo nzng

which is called the Fourier expansion of f at the cusp point s. ¢, is called its n-th
Fourier coefficient. If ng = 0, then ¢y is called the value of f at the cusp point s which
is independent on the choices of p.
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Ap(K) is just the field K of functions on M. If an automorphic form f is holomor-
phic on H, and the Fourier coefficients of f at all cusp points satisfy that ¢, = 0 for
all n < 0, then f is called a holomorphic automorphic form. In particular, f is called
a cusp form if the Fourier coefficients of f at all cusp points vanish for all n < 0.
We denote by G (I')(or Si(I") respectively) the set of all holomorphic forms (or cusp
forms respectively). If I' is a congruence subgroup of the modular group, then an
automorphic form of I" is called a modular form.

It is clear that fg € Apyn(I') if f € A () and g € A, (I'). Similar results hold
for G, (I"), Sp(I"). Hence if f,g € A,(I') and g # 0, then f/g € Ao(I") = K. So
A (I') is a vector space over K with dimension one if A, (") # 0.

For any meromorphic function f € K on the Riemann surface M, define a divisor
associated with f as follows

div(f) = > w(f)p,

peEM

where v,(f) is the order of f at p, and v,(f) is positive( or negative) if p is a zero
(or pole) of f. Otherwise v,(f) = 0.

For F' € A(I'), we denote by v,_.,(F) the degree of the leading term of the
expansion of F' at zp € H with respect to z — zg. Put p = ¢(20). If p is not an elliptic
point, let vp(F) = v,_,, (F). If p is an elliptic point with order e, put

Az) = 220

z—Z
Then A(z)€ is a local coordinate at p, so we put

Vp(F) = vzezy(F) /e
Now let p = ¢(s) be a cusp point and

172\ e qoie -
Fllp~ 1 = {w(q ), if kis odd and s is irregular,
?(q), otherwise ,

where ¢ = e*™%/ (with the definitions of w,h as above.) is a local coordinate at p.
Put
(F) = { ve(1)/2, if kis odd and s is irregular,
P L yg(@),  otherwise ,
where t = ¢'/2. Since v is an odd function, (%) is an odd integer.

Let D be the group of all divisors of M. Put Dg = D ®z Q. For any F' € Ai(I'),
define a divisor of Dg as follows

div(F) = > v,(F)p € Dy,
peEM
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which is a finite sum because of the compactness of M.
Let f € Ao(I") = K not be a constant. Then

for all v € I'. Taking the derivative with respect to z on both sides, we get

df o df
06 =70.97 £ 560,
Let
Then we have
Flhla = F.

If s is a cusp point of I', k is even( or odd but regular), we have a meromorphic
function @(q) at ¢ = 0 such that f(p~'(w)) = &(gq). Taking the derivative with
respect to w on both sides, we get
Lo df o dpTH(w) -
' (q)q - 2ni/h = == (p~ (w))L=—2 = F|[p~ 2.
(@)g - 2mi/h = == (o™ (w)) —~ o™ ]2

If k is odd and s is irregular, we can get an expansion of F'|[p~!] similarly. These show
that F € Ay(I'). df is a meromorphic differential which is represented formally by
F(2)dz. Conversely, for any Fy(z) € Ax(I"), we can regard F;(z)dz as a meromorphic
differential on M since

1
Fi(2)dz = Fy(2) (%) af = 1;1((5)) af

and Fy/F € K,df is a meromorphic differential. Denote by Dif (M) the set of all
meromorphic differentials on M which is a vector space over K with dimension 1. Let
w € Dif (M), then there exists g € K such that w = gdf = gF(2)dz with gF € Ay(T),
which shows that F(z) — F(z)dz is an isomorphism from A, (I") to Dif (M) as vector
spaces over K.

For any meromorphic differential w € Dif (M), define its divisor as follows:

div(w) = 3 v (w)p,

peEM

where v,(w) = v (w/dt) if ¢ is a local coordinate at p.
Define a graded algebra D with degree as follows

D= f: Dif" (M)

n=—oo
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satisfying the following conditions

(1) Dif®(M) = K, Dif' (M) = Dif(M);

(2) Dif" (M) is a vector space over K with dimension 1 for any n € Z;

(3) 0 # a3 € DIf ™™ (M) for any 0 # o € Dif™(M),0 # 3 € Dif™*(M).

It can be proved that the conditions determine uniquely the algebra D. Taking
0 # w € Dif (M), each element of Dif" (M) can be represented as £ = fw™ with f € K.
If f # 0, we define

vp(&) = vp(f) + nvp(w) = vp(§/dt"),
where ¢ is a local coordinate at p. So for any 0 # £ € Dif" (M) we define the divisor
of £ as follows
div(€) = Y vp(Op = div(f) + ndiv(w).
peEM

It is clear div(én) = div(§) + div(n) for any £, n € D. Suppose the genus of M is g.
Then it is well known that deg(div(w)) = 2¢g — 2, deg(div(f)) = 0. So deg(div(§)) =
n(2g — 2) if 0 # w € Dif"(M).

Let f € K not be a constant. If F(2) € Ay, (I'), then F/(f)"* € K. So

F(z)(dz)" = (F/(f)")(df)" € Dif"(M).

Conversely, if n € Dif™ (M), then there exists ¢ € K such that n = gw™ with w =
Fi(z)dz and Fi(z) € As(I"). Hence

n =gk (z)(dz)"

and gF* € Asn(I') which shows that F'(z) — F(z)(dz)" is an isomorphism from
Aoy (T) to Dif"(M). Let Fy, F» be two automorphic forms, then

diV(FlFQ) = le(Fl) + le(FQ)
Let D, = Zal(p)p7 Dy = Zag (p)p be two divisors of Dg. Then we define that

p P
D1 > Dy if a1(p) = as(p) for every p € M.

After introducing divisors associated with automorphic forms, we can give some
equivalent definitions for holomorphic forms and cusp forms:

Gi(I') ={F € Ap(I)|div(F) = 0}

and

{F € Ai(I")

div(F) > Z Q; + Z Q;}7 if k is even,
j=1 j=1
() = J J

’
u

{F e An(D)|div(F) = 3" Q; + IZQ;}, if k is odd,
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where Q1, -+ -, @, are all regular cusp points of I', Qf, - -, Q. are all irregular cusp
points of I'.

Lemma 4.1 Let Py, -, P, be all elliptic points of M = I'\H* with orderey,--- ,e,
respectively, and Q;, Q' as above. Let 0 # F € Ap(I') (k is even). Put

n = F(z)(dz)¥/? e Dif*/?(M).

Then

div(F)zdiv(n)ﬂ-%(Zl—e pz—&-ZQJ-FZQ)
i=1

deg(div(F)) = (29 2+Zl—e +u+u>

And the second equality above holds also for k odd.

Proof Now we assume that k is even and P € M. If p = p(z0), 20 € H and zy is
not an elliptic point, then z is a local coordinate at p. So

vp(1) = Vamz (F(2)(d2/dt)*?) = v, (F).

If zg is an elliptic point of I' with order e, then

=)

is a local coordinate at p, and
k
vp(n) = ve(F(2)(dz/dt)*/?) = v, (F(2)) - Jve(dt/dz)

= () = (A - )~ ) 7 )

k

+ 5(671 - ].)

2niw/h

If p = p(s),s is a cusp point of I', then ¢ = e is a local coordinate at p with

w = p(z), p(s) = co. We have
F(2)(d2)"? = F(p~ " (w))(dz/dw)"?(dg/dw) "/ (dg)*/?
= Fllp™" k(g - 2ti/k)~*/*(dg)"?
= ®(q)(2miq/k) "2 (dg)*"*.

Hence
vp(n) = vg(F(2)(dz/dg)*?) = v4(8(q)q~*/?) = v, (F) — k/2,



4.1  Dimension Formula for Modular Forms with Integral Weight 71

which implies the first result of the lemma. If &k is even, by

deg(div(n)) = 5(29 —2),

we get the second equality from the first one. If k is odd, applying the first equality to
F? and noting that div(F) = 27 div(F?), we get the second equality for odd k. [

Now we introduce the definition of modular forms with half integral weight. We
introduce an extension of the group GL (R) as follows. Let

o= (i Z) € GLI(R).

Take any holomorphic function ¢(z) on H such that
©?(z) = tdet(a)"V?(cz + d),

where ¢ is any complex number satisfying |¢| = 1. Consider all pairs {«, p(z)} and
define a multiplication for these pairs:

{1, p1(2) Hao, p2(2)} = {araz, g1(az(2))p2(2) }- (4.2)

It is easy to verify that the set of all such pairs with the above multiplication forms a
group which is denoted by G. There exists a natural projection P from G to GL3 (R):

P:{a,p(z)} — .

It is clear that Ker(P) = {(I,t)||[t| = 1}. For any odd integer k, any function f(z) on
H and any £ = {a, ¢(2)} € G, we define an operator

FllElk = fla(2)p(2)7F

It is easy to verify that
F1Enle = (FI1ElR) k- (4.3)
Let det £ = det «, define a subgroup C/?\l of G:

Gy = {€ € G|det & = 1}

A subgroup A of é\l is called a Fuchsian group of the first kind if it satisfies the
following three conditions:

(1) P(4) is a discrete subgroup of SLy(R) and P(A) \ H* is a compact Riemann
surface;

(2) P is a bijection from A to P(A), i.e., there is no element of the form {I,t}
(It| =1) in A except {I,1};
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(3) If —I € P(A), then {—1,1} € A.

Let A be a Fuchsian group of the first kind. A meromorphic (or holomorphic re-
spectively) function f(z) on H is called an automorphic (or holomorphic respectively)
form with weight k/2 for the group A if

(1) Fl[Elk = f for all € € A;

(2) f is meromorphic (or holomorphic respectively) at all cusp points of P(A).

The set of all automorphic (or holomorphic respectively) forms is denoted by
Ag/2(4) (or Gij(4)).

Now we need to explain the meaning of the second condition. Let & = {a, ¢} € A,
s be a cusp point of P(A). Put £(s) = a(s) and

As ={€ € Af¢(s) = s}

By Proposition 3.2, Ay is an infinite cyclic group or the product of an infinite cyclic
group and {—1,1}. Now let n be the generator of the cyclic group. Choose p € Gy
such that p(s) = oo. Since P(pnp~1) is a parabolic element, we have

4 1 h B

Without loss of generality, we can assume that h > 0 (otherwise we substitute n by
nt).

It is easy to verify that ¢ is independent on choices of p. If s and s; are P(A)-
equivalent, let s = vy(s1), then y~!7y is a generator of the infinite cyclic part of Ay,
and py(sy) = s1. Since py -y~ Iy - (py)~! = pnp~!, t is independent of the choice of
the representative of the equivalence class of the cusp point. By (4.3), we have

e [{= (o 1) 4f] =

that is, f|[p~ k(2 + h) = t* f|[p~ k. Hence f|[p~!]x has the following expansion

Fllo™ e =D eael(n +1)z/h),

where e(r) = t* (0 < r < 1). Now the meaning of the condition (2) is that f is
meromorphic (or holomorphic respectively) if and only if ¢, # 0 for finitely many
n < 0 (or ¢, = 0 for all n < 0 respectively). Let vs(f) be the exponent n + r of the
leading term of the expansion above. Similarly to the case for integral weight, we can
define divisors associated with modular forms with half integral weight. Let N be a
positive integer with 4|N. Define a map from I'h(N) to Gi:

L:vy—={vj2)}
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where j(v, z) is defined as in Chapter 1. It is clear that L is an imbedding from (V)
into Gy and j(—I,z) = 1. So L(I'y(N)) is a Fuchsian subgroup of G; with the first
kind which is denoted by Ag(N). Put

I(N) = { <‘C‘ g) € ITy(N)

It is clear that Ay(N) := L(In(N)), A(N) := L(I'(N)) are Fuchsian groups of
the first kind.

Let k be an integer, w a character modulo N and w(—1) = (=1)*. Let A(N,k,w)
be the set of functions on H satisfying

a=d= l(N)}.

(1) f is meromorphic on Hj

@ Sl =wld)f forany = (& %) € 1oV

(3) f is meromorphic at each cusp point of I'h(N).

Such a function f is called a modular form of weight k and with character (or
Neben-type) w for I'1(N). Denote by G(N, k,w) (and S(N, k,w) respectively) the set
of holomorphic (and cusp respectively) modular forms in A(N, k, w).

In the remaining part of this chapter, we shall give some dimension formulae for
G(N,k,w), S(N, k,w) with the aid of the Riemann-Roch Theorem which is formulated
as follows.

Suppose that A is a divisor of a compact Riemann surface M, K is the field of
meromorphic functions on M. Define

L(A) = {f € K|f = 0or div(f) > —A},
which is a vector space with finite dimension [(A).

Theorem 4.1 (Riemann-Roch Theorem) Let M be a compact Riemann surface with
genus g, w a non-zero differential on M. Then for any divisor A of M, we have

[(A) = deg(A) — g+ 1+ (div(w) — A).

Let f(2) € G(N,k,w). It is easy to show that f(—z) € G(N,k,w). So G(N, k,w)
and G(N, k,w) have the same dimension. Also S(N,k,w) and S(N,k,©) have the
same dimension. If f € A(N,k,w),g € A(N,2 — k,w), then fg € A2(IH(N)). Hence
a = fgdz is a differential on I'h(N) \ H*. By Lemma 4.1, we have

div(a) = div(f) + div(g) = Y _ (L —¢, ") p. (4.4)

p

where p runs over Io(N) \ H*, e, = oo if p is cusp point.
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For any ¢’ € A(N,2 —k,w),g9/g" € Ao(Io(N)), so vp(g) — vp(g’) is an integer for
any p. Hence there exist ,u;, such that

0<py, <1, v(g") = py, mod Z.

If p is an elliptic point, then ep,up is an integer, ﬂp l—e, L Putp,=1- e, — Mp7
by (4.4) we have

0< pup <1, vp(f) = pp mod Z

for any f € A(N, k,w).

If p is a cusp point with ,u; = 0, then p is called a regular cusp point. Otherwise
p is an irregular cusp point. This definition is relative to k. It is a generalization of
the concept of regular cusp points in Definition 4.1.

Define two divisors in Dg:
= wpp, Da=-=)_up.
p P
By (4.4) we have

Dy +div(f) + D2 + div(g) = div(«). (4.5)

D1 +div(f) and Dy +div(g) are divisors in D. By the definitions of holomorphic and
cusp forms we have

dim G(N,2 — k,w) =1(Dy +div(g)), dimS(N,k,w)=1(D;y+div(f)).
By Riemann-Roch Theorem and (4.5) we have

dim S(N, k,w) — dim G(N, 2 — k,w)
:deg(D1 +div(f)) —g+1

k Liog - 2+Zl—e_1 +Z(1_e ~ 1y
- %mro(zv) i+ Y

where we used the following fact
p(Io(N) \H*) = // dady =29 -2+ ) (1—e,"),
To(N)\H* b

whose proof can be found in G. Shimura, 1971.
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Theorem 4.2 (Dimension formula for integral weight)  Let w be a character modulo

N = Hp’”” and w(—1) = (=1)*. Suppose that F = Hpsl’ is the conductor of w.
Then

dim S(N, k,w) — dimG(N,2 — k,w)
(k—=1)N _
STl | ((RSODRES | QCAED
pIN pIN
tue Y w@rm Y w@)
zmodN, zmodN,
z2=—1(N) z24+2+1=0(N)
where
o+ if 2s, <rp=2r"(r' €7),
Arp, $p,p) = 2", if 2sp <r1p=2r"+1(r' € Z),
2p" PP if 2sp > 1p,
0, if 24k, 0, if k=1(3),
1 . 1
vV = _17 ka52(4)7 W = _37 Zf k52(3)7
1
W E=00), 5 ifk=0(3).

Proof  Since I'h(1) \ H* has genus 0, one cusp point, one elliptic point with order
2, one elliptic point with order 3,

p(Lo()\H*) = —2+1+(1—-1/2)+ (1 —1/3) =1/6.

Hence by Lemma 3.1 we have

p(To(N) V) = [0(1) s To(M)]a(To(1) \ %) = 5 [T +57)

p|N

and obtain the first term of the dimension formula by equality (4.6). Consider the
second summation on the right side of (4.6). For the remaining part of this proof
we write I' = IH(N). Let p = ¢(s) with s = d/c be a cusp point, where ¢ is the
natural map from H* to T\ H*. By Theorem 3.3 we can assume that ¢ is a divisor

of N and (d,N/c) = 1. Let ¢ = H p°? be the standard factorization of ¢. There

b

exists p = (Z —d) € I'v(1) such that p(s) = co. Take ¢ € I's corresponding to a

generator of I';. Since —I € I', we can assume

4 (1 h
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which is a generator of pI'sp~'. Hence
1 h 1—hed  hd?
_ 1 _
0=» (o 1>p_ < —he? 1+hcd> el

N
h should be the smallest positive integer such that N|hc?. So h = ——— . Since
c(c, N/e)

At (5 1)] = 101 =1 + ety
then
f|[p71]lc _ CnGQni(n+r)z/h +y Cn 7& 0’

where w(1 + hed) = ™7 0 < r < 1. Hence p, = 7.
For any factor ¢ of N, put

Je= Z (% - :“w(S))’
s=d/c

where d runs over (Z/(c, N/¢)Z)* and (d,c) = 1.
If F|N/(e, N/c), then

w(l + hed) =w(1+dN/(c,N/c)) =1

and
Ho(d/e) = 1, fC = _2_1410((05 N/C))
If FYN/(¢c,N/c¢) and (d, (¢, N/c)) =1, then

w(l+dN/(c,N/c)) # 1.
In fact, if otherwise, there exists dy such that (dy, (¢, N/c)) =1 and
w(l+doN/(e,N/c)) = 1.
Since (¢, N/c)?|N, for any integer m, we have
(1+doN/(c,N/c))™ =1+ mdoN/(c, N/c) mod N.

So w(1 + mdoN/(c, N/c)) = 1. Since (do, (¢, N/c)) = 1, there exists mg such that
modo = 1 mod (¢, N/¢). This means that for any integer m, we have

w(l+mN/(¢,N/c)) =1,

which induces F|N/(¢, N/c). This contradicts the assumption F' ¥ N/(c, N/c).
Now take d’ such that (d',¢) = 1, d = —d (mod (¢, N/c)). Put p’ = ¢(d'/c).
Then
w(l+d'N/(¢,N/c)) =w(l+dN/(c,N/c)) # 1.
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If (¢, N/c) # 2, then p and p’ are different cusp points on I' \ H*, u, + pp = 1 and
fe=0.1f (¢, N/¢) = 2, then w(1+ N/2) = —1, pup, = 1/2 and f. = 0. Hence we have
fe=01if Ft N/(c, N/c). Therefore if p runs over all cusp points, we have

S (Gm)=—y X eleNo)

p:cusp points (¢,N/c)|N/F
1 -
=— 11 > e, ) [ (47)
pIN cp=0,

min{ep,rp—Cp}<Tp—sp

If 5, < rp/2, the summation in the product of (4.7) is

Tp r’ r’'—1 : _ ol ot
S ey = {0 TP e
g 2p" ifr,=2r"4+1,r" € Z.
If s, > rp/2, then the summation is
Tp—Sp Tp Tp—Sp
Do)+ D ey =2 > e(pr) =2p 0,
cp=0 Cp=Sp cp=0

which gives the second term of the dimension formula.
Now suppose that p is an elliptic point with order e. Let zg € H with p = ¢(20).
b
There exists f = (Z d) € I' such that (z9) = 2o and 3 corresponds to a generator
of I',,. Take

Then A(zp) =0 and

cZo+d 0 ) (4.8)

-1 _
ABA _< 0 czp+d

Since e is the smallest positive integer such that 8¢ = +1I, so (czo + d)? is an e-th
primitive root of unity.
Let

f@)=cn(z—20)"+ -+, cn#0
be the expansion of f(z) € A(N, k,w) at z = 2. Noting that

zZ— 20
(cz+d)(czo + d)

B(2) — 20 = B(2) — B(20) =

and

F(B(2)) = w(d)(cz + d)* £ (),
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we have
cnlcz+d) ™ (czo +d) (2 — 20)" + - =w(d)(cz 4+ d)Fen(z —2)" + - .

So
w(d)(czo +d)* = (cz0 + d) 2" = (czo + d) 217, (4.9)

where we used the facts that v,(f) = n/e = p, mod Z and (czg + d)? is a root of
unity with degree e.
I'o(N) has only elliptic points of order 2 or 3. We first assume that e = 2 and 3 is

conjugate to <(1) _01> in the modular group. That is, there exists v € SLy(Z) such

0 -1\ _
5=7<1 0)71,

It is clear that (i) = zo which is the fixed point of 5 in H. Hence Ay(i) = 0, \y(—i) =

0. So
u 0 1 —i
)q—(o v)(l i)’ u,v € C
(-1 0
o= (30

By (4.8), we see that czp + d = 1. Since

I a?+bc ab+cd
ac+dc be+d? )’

that

and

we know that d? + 1 = 0(modN). Thus

w(d)? =w(-1) = (1)~ (4.10)
a v
Let zy be another elliptic point with order 2 of I', p’ = ¢(z(), B’ = (c’ )

- . 0 .
corresponds to a generator of I',; and B’ conjugate to ( ) in the modular

1 0

group. We can similarly prove that (d')? + 1 = 0(modN) and ¢z}, + d’' = i. If 2{, 2o
are ['-equivalent, by the proof of Theorem 3.2, we know that 3, 3’ are conjugate in I’
which implies that d = d'(modN). That is, they correspond to the same solution of
the congruence equation:

22 +1 = 0(modN). (4.11)

The number vy of elliptic points with order 2 on I \ H* is just the one of solutions of
(4.11). So there is a bijection between the set of elliptic points on I" \ H* and the set
of solutions of the equation (4.11).
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We first consider the case that k is odd. If N < 2, (4.11) has only one solution
d = 1(modN). By (4.10) it is impossible for k to be an odd. So we have N > 2.
Suppose that d is a solution of (4.11). Put d’ = —d(modN). d’ is also a solution of
(4.11) and d,d’ correspond to different elliptic points p,p’. By (4.10), without loss of
generality, we can assume that w(d) =i, w(d’) = —i. By (4.9), we have

P = (—1)2e R = (1)
These imply that p, = 0, pty = 1/2 or p, = 1/2, py = 0. So the two terms in the

summation of (4.6) corresponding to p, p’ counteract each other. If k is even, (4.10)
means that w(d) = £1. By (4.9), if w(d) = 1, then

B {07 if k= 0(4),
o= V1y2, itk =204).

If w(d) = —1, then
{1/2, if k= 0(4),
=0, itk =204).

So 1/4 — p, = vgw(d) which gives the third term of the equality of Theorem 4.2.
Finally we consider the case e = 3. By Theorem 3.2, 9 + N. Suppose that [ is
-1

conjugate to ((1) _ 1) in the modular group. Then there is v € SL2(Z) such that

8= (0 _1> =L Put p = e*™/3, Tt is easy to see y(—p) = 2o and My(—p) = 0,

1 -1
_(u 0 1 p
)q—(o v)(l p)’ u,v € C

Ay (=p) = co. Hence
(P 0
AGA _(0 p2).

By (4.8) we have that czo + d = p?. By 82 = I we get d®> = 1(modN). We want
to prove that d satisfies the following congruence equation:

and

2? + 2+ 1= 0(modN). (4.12)

Suppose that ¢ is a prime factor of (d—1, N). Since ad = 1(modgq), tr(8) = a+d = +1,
then a +d = 2 = +1(modq) and ¢ must be 3. It is clear that d*> + d + 1 = 0(mod3)
holds for all d prime to 3. Since 9 1 N, it shows that d is a solution of (4.12). The
number of elliptic points with order 3 on I"\ H* is equal to the number of solutions of
(4.12). Similar to the proof for the case e = 2, we can prove that there is a bijection
between the set of elliptic points of order 3 on I' \ H* and the set of solutions of
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(4.11). Let d be a solution of (4.12). Put d’ = d~!(modN). If d = d’(modN), then
d® = d?* = 1(modN). So d = 1(modN) which shows that N =1 or 3 by (4.9) . It is
obvious that w(d) = 1. By (4.9) we get p?* = pS#». p is the unique elliptic point with
order 3, so
0, if k£ =0(3),
wp =< 1/3, if k=1(3),
2/3, if k= 2(3),
which implies that 1/3 — u, = p.
Now let N # 1 or 3. Then d # d'(modN). Suppose that the elliptic points
corresponding to d,d’ are p,p’ respectively. Without loss of generality, we assume
that w(d) = p,w(d’) = p?. By (4.9) we get

PRI = pBun 22 Oy
Hence
2/3, if k=0(3),
tp =14 0, if k=1(3),
1/3, ifk=2(3)
and
1/3, ifk=0(3),
pp =< 2/3, if k=1(3),
0, if kK =2(3).
Therefore
(/3 = pp) + (1/3 = py) = = = p(w(d) + w(d')),
which completes the proof of the theorem. 1

Proposition 4.1  Let k be a negative integer, I' be a Fuchsian group of the first
kind. Then

dim Gi(I") = 0.
Proof  Take a non-zero element Fy € A (I"), then
Gi(I') = {fFol|f € Ao(I"),div(fFp) > 0}.
If div(Fp) = Y v,p € Dy, define divisor [div(Fo)] :== Y _[1]p. Then
dim G (T") = I([div(Fy))).

By Lemma 4.1 and

p(P\H) =29 -2+ (1—¢,"),
p
we have

deg([div(Fp)]) < deg(div(Fp)) = (L' \H*) - k/2 < 0.
Therefore dim Gy (I") = 0. O
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By Theorem 4.2 and Proposition 4.1, we can get the formulae for G(N,k,w),
S(N,k,w) for all k > 2 since G(N,k,w) C Gx(I'(N)) and dimG(N,0,id.) = dim
Go(IH(N)) =1. And we can get also

dimG(N, k,w) —dimS(N,k,w) = > ¢((e,N/e)), if k=3 or k =2,w #id,,
(e,N/e)|N/F
(4.13)
dimG(N,2,id.) —dim S(N,2,id.) = Y ¢((¢,N/c)) - 1 (4.14)
(e.N/e)|N/F

and 1

dim G(N, 1,w) — dim S(N,1,w) = 5 > elle,Ne)). (4.15)
(e,N/e)|N/F

4.2 Dimension Formula for Modular Forms with Half-Integral
Weight

For the remaining part of this chapter, we consider the dimension formula for modular
forms with half integral weight.

Let k be an odd integer, N a positive integer with 4|N and w a character modulo
N. A holomorphic function on H is called a holomorphic modular form of I'y(N) with
weight k/2 and character w if

(1) for any & = {~,7(v,2)} € Ao(N), we have

e =w@)r, = (1 ;) eny

(2) f(2) is holomorphic at all cusp points of I'o(V).

The set of all such modular forms is denoted by G(N, k/2,w). The constant term of
the expansion of f at a cusp point p is called the value of f at p. f(z) € G(N,k/2,w)
is called a cusp form if vs(f) > 0 for any cusp point s of IH(N). The set of all
such cusp forms is denoted by S(N,k/2,w). We shall compute the dimensions of
G(N,k/2,w),S(N,k/2,w).

Since {—1I,1} € Ag(N), if w is an odd character modulo N, then

SIL-L 1k = w(=1) f,

which implies that f = 0. So we must assume that w is an even character modulo
N. From the proof of (4.6) we know that the equality (4.6) holds also if the weight
k is substituted by k/2. Since 4|N, we know that IH(N) has no elliptic points by
Theorem 3.2. So we have

dim S(N, k/2,w)—dim G(N, 2—k/2,w) = %u(FO(N)\H*HZu/z—HP), (4.16)
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where p runs over all cusp points on IH(N) \ H*. For any f € G(N,k/2,w) we have
that v,(f) = pp (mod Z) and 0 < pp < 1.
Let F' be the conductor of w, N = Hpr”, F = Hpsl’ be the standard factoriza-
tions of N, F' respectively. We define the following condition:
there is a prime factor p of N such that p = 3(4), r, is odd or 0 < 7, < 2s,. (4.17)

If (4.17) does not hold, and p is a prime factor of N with p = 3(4), then r, must be
an even integer and r, > 2s,.

Lemma 4.2 Let n,p,q be positive integers with n > 1,p < q. Then
n—1
p,r|_¢M0 (¢—p)n
SRR B W (G
r=0,(r,n)=1 { 4 " 2 d|n qd
where {x} is the fractional part of x, i.e., {z} =z — [z].

Proof We have

n—ol {g + %} :f{g + ;}d( pi(d)

r=u, r=0 rn
(ryn)=1 )
n/d—1 P rd
= Suta) > {24}
d|n r=0 4 "
n/d—1
=3 u(d) (13+T_ci>_<ﬁ_l_(q—p)n+{(q—p)n}>}
™ —\¢g n d qd qd
= Soutd) | glnja 1 - { P
d|n
p(n) (¢ —p)n
=S {0
d|n
which completes the proof. ]
For an odd integer n we define x2(n) = (_—1>
n

Lemma 4.3 Let n, k be positive odd integers. Suppose n has v prime factors which
are all congruent to 3 modulo 4. Then

Su@ {5} =2 )

d|n
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Proof We only consider the case k = n = 1(4). Other cases can be proved similarly.

We have
IC) fn\ L 3 (v Liv)_3(vy_
< MU a1 a\1) Ta\2)  4\3
1 v v  op—2
e () (D))
which completes the proof. ]

Theorem 4.3 (Dimension Formula for Half Integral Weight)  We have
dim S(N, k/2,w)—dim G(N,2—k/2,w) = =2y [Ta+ —1)—£ IT Aopspp)
9 ) ) ) 24 p 2 P pap7

pIN pIN,p#2

where A(rp, Sp,p) is defined as in Theorem 4.2, and ¢ is defined as follows: if ro >
4, = Mra,892,2); if ro = 3,( = 3; if ro = 2 and the condition (4.17) holds, ¢ = 2; if
ro = 2 and the condition (4.17) does not hold, then

3/2, if so=0and k=1(4),
5/2, if s =2 and k =1(4),
5/2, if s5 =0 and k = 3(4),
3/2, if s9 =2 and k = 3(4).

Proof  We only need to calculate the sum in the equality (4.16). Let M be the
sum, s = d/c a cusp point of I'h(N) and ¢ a positive factor of N. Put

fC = Z (1/2 - :u’ip(s))7

s=d/c

where d runs over (Z/(c, N/¢)Z)* and (d,c) = 1, @ is the natural map H* — IH(N) \

H*. Hence
M=
c|N

Take
a b
p = (C —d) S SLQ(Z)

It is clear that p(d/c) = co. Let & be a generator of I's where
s=dfe, TI's={ye€Ilo(N)lv(s)=s}.

Since —I € I'ho(N), we can assume that

1 _ (1 h
pop —(0 L h > 0.
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1 h 1—hed  hd?
—_ 1 _
o=» (o 1>p_ ( —he? 1+hcd) € Io(N).
This implies that h = N/(c(c, N/c)) since h is the smallest positive integer such that
N|hc?. Put

Hence

p*={p, (cz—d)"/*} € Gy.

o ={(3 1) A}

Suppose f € G(N,k/2,w). Since

()™ o™ L(8)(p™) " ik = w(l + hed) £I[(0") Ik,

we know that v,(f) = pp mod Z,0 < pp < 1 where p = ¢(s) and ), is determined by

Then

_ —h
e(pp) = w(l + hed)er ey (1+hcd> :

We denote by (d/c) the right side of the above equality. Let ¢ = [[p° be the
standard factorization of ¢. A direct computation shows that

—k

iR iy =200 =1,
€1thed =

1, otherwise,

and
1, if ro > 4,

1, ifrs=3,c0=0,23,
_h 1, ifro=3,c=1,

(1+hcd>: 1,  ifra=2,e=0,2,

-1, ifro=2co=1h=1(4),

1, if rg =2,¢0 =1,h =3(4).

We now calculate M according to different cases:
(1) If ro > 4, then 9(d/c) = w(1 + hed), similar to the proof of (4.7), we have

{0, if (¢, N/¢)t N/F,

fc: _%(]0(07]\/'/0)7 1f(C7N/C)|N/F

(4.18)

Hence

Mz—% Z @(C,N/c)z—%H)\(rpvspvp)

¢|N,(¢,N/c)|N/F pIN

just as in the proof of Theorem 4.2.
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(2) Suppose 13 = 3. If ca = 0, 2, 3, then ¢¥(d/c) = w(l + hed) and (4.18)
holds yet. If ¢; = 1, then ¢(d/c) = —w(1 + hed). It FIN/(c,N/c), then ¥(d/c) =
—w(l + hed) = —1 and f. = 0. Now suppose F' 1 N/(¢,N/c). If ¢(d/c) = 1, i.e.,
w(l4+dN/(c,N/c)) = —1, then

w(l+2dN/(¢c,N/c)) =1,

which implies that F|2N/(¢, N/c) since (d, (¢, N/c)) = 1. Hence (¢, N/c)|2N/F. But
(¢, N/e)t N/F,s02{N/F.1f 24 N/F and 27 (¢, N/c)|N/F, then for any d we have
¥(d/c) =1, and hence in this case

o=~ N/e)

If 2|N/F, taking d’ such that d = —d (mod (¢, N/c)) and (d’,¢) = 1, we see that
Y(d/c) = (d'Je) # 1. Since 2|N/F and (¢, N/c){ N/F, we see that (c, N/c) # 2 and
(d/c),p(d’ /c) are different cusp points on I'o(N) \ H*. Hence f. = 0. Therefore we

have
M= > f+ > f
c, c s -1 c c
( é\zf/:&lé\gF 27 7CJ\27/:1)|N/F7
3 .
:_5 H A(Tp75p7p)’ 1f2+N/Fa
p|N,p#2

and

3 .
M = Z fc:_§ H A(rp, $p,p), if 2|N/F.

(e;N/c)|N/F, p|N,p#2
c2=0,2,3

(3) Suppose ro = 2. If ¢3 = 0,2, then ¥(d/c) = w(1+hed) and (4.18) holds. Hence

Z fo= Z fe=— H A(Tp, Sp, D). (4.19)

c|N,c2=0,2 (¢;N/c)|N/F, p|N,p#2
6220,2

If ¢ = 1, we have to discuss the following three cases:
(1) N has a prime factor p = 3 (mod 4). If r, is odd, for any ¢|N, put ¢ =
cp"»~2¢. Then ¢/|N and
N N
c(e,N/ec) c(c,N/c)

MW@zECdN@%M>

C

(mod 4).

So we have

Hence f.+ f. =0. By (4.19) we have

M = Z fet+ Z fe=— H Mrp, $p,p).

¢|N,c2=0,2 ¢|N,co=1 p|N,p#2
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Now we assume that 7, is even for any prime factor p = 3 (mod 4) of N. Then for
any ¢|N, we have h = N/(c¢(¢, N/c)) =1 (mod 4). Hence

W(d/c) = e/ 2w(1 + dN/(c, N/c)).

Put
Ne = 1_[pszfa*Tzoerin{Tzv*szczo}7
P
where p runs over the set of all odd prime factors ¢ of N satisfying r, — min{r, —
CqrCq} < 84. It is easy to see that 271 (c, N/¢)|N/F if and only if n. = 1. Suppose
s9 = 0. If n. = 1, then (d/c) = e™/2 and

T fc:(;_{g})( S (e N/o)

(¢,N/c)|N/F, ¢,N/c)|N/F,
C2:1 C2:1
x2(k)
= 4 H )‘(rpvspvp)' (420)
pIN,p#2

If ne # 1, then w(1 + dN/(c, N/c)) is a n.-th primitive root of unity. Since
w(l+diN/(e, N/e))w(l 4+ daN/(e,N/c)) = w(l + (d1 + d2)N/(c, N/c)),

we can assume that w(1+N/(c, N/c)) = e*™/". Hence ¢(d/c) = e>™(*/4+d/ne) where
ne is a factor of (¢, N/c¢). If d runs over (Z/(c, N/¢)Z)*, then it runs over (Z/n.Z)*
for p(c, N/c)/p(n,) times. By Lemma 4.2 we have

1 = ko d ¢,N/e
fo=gele N/ - Y { }M

d=0,(d,ne)=1 4 ne p(ne)
Gl N/ o [ = e
T p(ne) > N(d){ o } (4.21)

d|n.

Suppose sg = 2. Then w(1 + dN/(¢, N/c)) is a 2n.-th primitive root of the unity. If
ne = 1, then
w(d/c) _ e2ni(2+k)/4.

Hence

> =G-) T e

27 (¢,N/c)|N/F, 27" (¢,N/c)|N/F,
62:1 02:1

X2(k
=— i ) H A7Tp, Sps D)- (4.22)
p|N,p#2
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If n. # 1, without loss of generality, we can assume
w(l+dN/(c,N/c)) = e*M/2ne = _e2mid'/ne
where 2d’ = d (mod n.). Then
(dfe) = I

and

1 o((e,NJe)) "= (2+k
fe=50((e,Nje) = == > {4+}

o(ne) d=0, Te
(d)nc):]-
_ ol(e, N/¢)) kne
== o) Zu(d){ 1 } (4.23)

d|n.

(2) We assume that r, is even and r, > 2s, for any prime factor p = 3 (mod 4)
of N, i.e., the condition (4.17) does not hold. Since

rp —min{r, — cp,cp} = 1p/2 = $p,

n. has no prime factors congruent to 3 modulo 4. If n. # 1, then

Sua{ it = {5} S u o

d|n. d|ne

Gathering (4.19), (4.20), (4.21), (4.22), (4.23), we get the desired result.
(3) We assume that r, is even for any prime factor p =3 (mod 4) of N, but there
is at least one of these prime factors p such that 0 < r, < 2s,. Put

R={plp=3 (mod4),p|N,0<r, <2sp}.

If n. has a prime factor congruent to 1 modulo 4, let n. = n/.n/, such that each prime

c'’c?

factor of n. is congruent to 1 modulo 4 and each one of n” is congruent to 3 modulo
4. Since n/, # 1,

Su@{ et = 3wy 3 wan{ e =0

d|n. d’'|n!, d" |n!

So the corresponding f. = 0. This shows that f. may be non-zero only if all prime
factors of n. are congruent to 3 modulo 4. In this case, each prime factor of n. belongs
to the set R. For any subset R’ of R, put

¢(R") = {c|ea = 1,¢|N, the set of prime factors of n. is R'}.
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Suppose so = 0. By (4.21) and Lemma 4.3, we get

Z fo= Z Z H (p(pmin{rp—cp,cp}) H 2prp—st2(knC)/4

ne#l,ca=1 R'CR cec(R’) p|N,ptn. plne
i sp—1
_ X2( ) Z H Z X2(psp—rp+min{rp—cp,cp}) H >\(7"p75p7p)
4 R'CRpER’ cp=rp—sp+1 p|N,p#2
k /
:X“‘i ) ST Arp.spp)
R'CR PN p#2
x2(k)
== H ATp, Sp,D)-
p|N,p#2

(4.24)
By (4.19), (4.20) and (4.24) we get the desired result. If s = 2, by (4.19), (4.22),
(4.23) and Lemma 4.3 we can get the result similarly. This completes the proof. [

By Proposition 4.1 we have dim G(N, k/2,w) = 0 for any k < 0. In fact, for any
f € G(N,k/2,w), we have f? € G(N,k,w?) C Gr(I'y(N)) = 0 by Proposition 4.1.
Hence we shall get an expression for dim S(N, k/2,w) for k > 5 from Theorem 4.3.
Similarly we can get an expression for dim G(N, k/2,w) if k > 5. But for k = 1, 3 we
only get some expressions for

dim S(N,1/2,w) — dim G(N, 3/2,w)
and
dim S(N,3/2,w) —dim G(N,1/2,w)

respectively. So if we want to know the dimension of S(N,3/2,w) ( or G(N,3/2,w)
respectively) we have to know the dimension of G(N,1/2,w)( or S(N,1/2,w) respec-
tively) which was found by J.P.Serre and H.M.Stark.
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Chapter 5

Operators on the Space of Modular Forms

5.1 Hecke Rings

Let G be a group, I', I'" be subgroups of G. Then I' and I’ are commensurable
if '(I" is of finite index in I and in I''. We write I' ~ I'" if I" and I are
commensurable. For any subgroup I" of G, put

I'={aeGlal'a™' ~T}.

It is easy to see that I'is a subgroup of G containing I" and the center of G.
Moreover, if I’ is commensurable with I", then I' = I'". We call I" the commensurator
of I''in G.

Lemma 5.1 Let Il and I's be two subgroups of G. For any o € G, put d = [I'z :
IyNa tal, e = [y : IT (N alxa™t], then we have disjoint coset decompositions

d e
FlaF2:UF1aZ-, FlaFQZU,BjFQ.
i=1 Jj=1

Proof Consider a disjoint coset decomposition

d
I5 = U(Fzﬂa’lfla)6i7

i=1
where §; € I's. Therefore

d
FlOéFQ = U FlOéCSi.
i=1

If Iad; = I'ady, then there is a v € I'y such that ad; = yad;. Hence

61»5;1 =a 'ya € Do Mo,

which implies that ¢ = j. This completes the proof. ([
Let I' be a subgroup of G, A be a semigroup in G such that I' C A C I CG.

Put
R(I',A) = {Zcifaiﬂai cAvcie Z}.
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We shall now introduce an addition and a multiplication on R(I", A). The addition
is given by adding formally. We consider now the multiplication of two double cosets
as follows: First consider disjoint coset decompositions

roal =\ I'e;, TBIr=|]JIp;
t J

with a and 3 € A. Then T'al'8I' = | JTal's; = | JI'aiB;. Therefore Tal' 3T
J i,

is a finite union of double cosets of the form I'€I". We define the multiplication of

u:= I'al and v := I'BI" to be the element

> eIl € R(T', A),
¢

where

ce = #{(i,5) | 85 = I}

To make this definition meaningful, we have to show that c¢c depends only on u, v and
w := I'{I", and not on the choice of representatives «;, 3;,£. We see that I'a;3; = I'€
if and only if I'a; = I'€ ﬂj’l. Further, for a given j, the last equality holds for exactly
one 7. Therefore

ce = #{(i, )T iflj = '€y = #{j|éB; " € Tal'}
= #{j|8; € Ta™'T'¢} = #{jIT'B; C I'a™'T¢}
= the number of right cosets of I" in I'8I'('a~'T¢.

The last number is obviously independent of the choice of «;, ;. Now, if I'¢é1" = I'nI’,
then & = dnd’ with 6,6’ € I', hence

I'BrN\Ira~'r¢ = (I'BrO\fa=*rn)s.

Therefore the number c¢;¢ is independent of the choice of &.
We can now define the multiplication by extending Z-linearly the map (u,v) — u-v
in an obvious way.

Definition 5.1  The degree of I'al is defined to be the number of right cosets of I’
in T'al’ which is denoted by deg(I'al’). And deg (Z 65F§F) = 205 deg(I'ED).

Lemma 5.2 [Ifl'al - I'Gl = Zcﬁ“{F, then

cedeg(I'€T) = #{(i,j)|['ci;I" = T'ET'}.
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f
Proof LetI'él = U I'éy. be a disjoint coset decomposition. Then I'a;8; 1" = I'ET
k=1
if and only if I'e; 3; = I'§j, for exactly one k. Hence we have

f
#{(6, )| Taufl;T =TTy = #{(6, )| Ty = Téx}

k=1
= cef = cedeg(I'E1),

where we used the fact that ¢, is independent of the choice of the representative £(so
ce = cg, ). This completes the proof. O

Lemma 5.3 Letz, y € R(I', A), then
deg(z) deg(y) = deg(xy).

Proof We only need to show the formula for x = I'al',y = I'GI" by linearity. Put

xyzZQFgF,
£

then by Lemma 5.2 we get

deg(zy) =Y e deg(I'ET)
£
= " #{(i,§)|li I = TET}
3

= #{(i,J)} = deg(z) deg(y).
This completes the proof. O

Lemma 5.4  The above multiplication is associative in the sense that (x -y) -z =
x-(y-z) for any xz,y,z € R(I", A).

Proof Put N
M = {Zciﬂmci S Zﬂ?i S F}7

which is a Z-module of all formal finite sums Zcifni. Let u = I'al' = UFC“

(disjoint). Define a Z-linear map of M as follows:

u - ZCZ'FUZ' = Zcifozjm.
(2¥]

It is easy to see that this does not depend on the choice of «;,7;. By linearity we
get a map from R(I", A) to Hom(M, M). We emphasize that this map is injective. In
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fact, if Z co(l'al’) - I'm = 0 is a non-trivial cancellation, we have I'ay I' = I'ao I for

«
some «q, aa. But this implies that I'ay " = I'asI', hence it is impossible. Therefore
the map is injective. Now consider disjoint coset decompositions:

ol =\ JIe;, 18r=]JIs;.
% J

Put

Fal \TAI'=Y ¢, T&T, T&T =\ Iéx.
t k

Then we have
TFal(I'BT -Tn)=Tal'y I'Bn

J
=Y TaiBm=>_ce,T&in
5, t,k
= (lal-T'pI) - I'n.
This implies that (yz)a = y(za) for any y,z € R(I', A) and a € M. Let now z,y,z €
R(I', A), then
((zy)z)a = (zy)(za) = 2(y(za)) = z((yz)a) = (z(yz))a.
By the injectivity proved above, we get (zy)z = x(yz). This completes the proof. O

By Lemma 5.4 we know that R(I", A) is an algebra. It is called the Hecke algebra
for I' and A.

Lemma 5.5 Assume o € ' such that d = e (see Lemma 5.1 for the definitions of
d, e). Then we can find {a;}¢_, such that

d d
Ial’ = U Toa; = U a;T.
=1

=1
Proof Let
d d
roar =\ Jrp;=Jsr
i=1

i=1
be decompositions of I'al'. Since §; € I'al' = ', T, there are two elements d,¢ € I’
such that 3; = 6Bje. Put a; = 6-13; = Ble. Then

Fai:F5i7 CVZF:,B;F
This completes the proof. O

Lemma 5.6 If G has an anti-automorphism o +— o such that I' = I'* and
I'al’ = (I'al)* for every a € A, then R(I", A) is commutative.
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Proof  Applying the anti-automorphism * to I'al’, we find that d = e. Therefore,
by Lemma 5.5, for any «, 8 € A, we have disjoint decompositions

ror =\ Jro;=Jor, rpr=Jrg;=Jsr
i J J

Then

Ial =Ta*I' = UFozz, rgr=rgr=\Jrs;.
J

If Nal'BI = \JTEI, then

I'Bral = T'3*I'a*T = (el BI)* U I¢r.

Then we have

(Fal)(I'BL) =Y ce(I'€r), (IBr)(Ial) =) c(IED)
¢ ¢

with the same components I'éI". By Lemma 5.2 we have

ce deg(I'ET) = #{(i, j)|Maifp; I = TET}
= #{( )8 ' = I'Er}
— ¢, deg(T'€T),

which shows that c¢ = c;. This completes the proof. O
Let G = GL3(Q) and I' = I'(1) = SLy(Z). Then we have
Lemma 5.7 I =G.

Proof For any a € G, there exist ¢ € Q, 8 € M3(Z) such that a = ¢8. We have
that al'a~! = BI'3~1. Put b = det(8) and I, = I'(b). Since

b3 'B=0  (modb),
we see that 3~'I,8 € I'. Hence I, c ' BB "
[ TNBrB Y < [I': 1) < +oo.
But
[B=trg: =IO = (I INBIA™Y,
we get, by substituting 37! by 3,
(BBt : TNBTB™Y < +oo.

That is, « = ¢ € I'. This completes the proof. O
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We choose now A = {a € Ms(Z)|det(e) > 0} and consider the Hecke ring
R(I',A). For any a € A, there is a unique pair (a,b) with a,b positive integers

a 0
0 b

T(a,b) =T (g 2) I.

Theorem 5.1 R(I', A) is commutative.

and al|b such that I'al' =T ( > I'. Hence we put, for any pair (a, b) of positive

integers with alb,

Proof It is clear that the transposition on G is an anti-automorphism such that
T(a,b) is invariant for any (a,b). So we get the theorem by Lemma 5.6. O

Lemma 5.8 Let ay, ag, b1, by be positive integers such that ai|ag, b1|ba, (ag, by) =1,
then
T(al, G,Q)T(bl, bg) = T(albl, agbg).

o= <a1 0 ) 5 _ (b1 0 )
0 a2 ’ 0 b2 '
It is clear that I'aBI’ C I'al'BI’. For any ~ € I', consider elementary divisors of
avf. Since any entry of « is divisible by a;, and any one of v is divisible by by, any
entry of ay( is divisible by a1b;. In fact a1b; is the maximal positive integer with
this property. Hence ay8 € I'aBI'. This implies that I'aBI" = I'al'BI'. We have
disjoint decompositions

Proof Let

S1 U
rar = | J F(o SZ)al,

S81,82,u
tl v
gl = r by.
g U (0 t2> !
t1,t2,v
where
s182 = as/a1, 0<u<sa, (s582,u)=1,
and
tita = ba/b1, 0< v <ty, (t1,t2,v) =1
If

$1u t1 v aiby O
I =T
(0 SQ)(O t2>a1a2 ( 0 a2b2>’
it is easy to see that s; = t1 =1, so = as/aq, ta = ba /b1, u = v = 0. Therefore

Ial - TBI = Tafl,

which completes the proof. O
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Similar to the proof above, we have the following:
Lemma 5.9 T(c,c)T(a,b) = T(ac,bc).

By Lemma 5.8 and Lemma 5.9, we know that every T(a,b) can be represented as
a polynomial of some T(p,p), T(1,p*) with p primes and k positive integers.
Let n be a positive integer, define

T(n)= > T(a,d),

ad=n,a|d

that is, T(n) is the sum of all double cosets I'al’ with det(a) = n,a € A. Then by
Lemma 5.8 we have
T(m)T(n) = T(mn) (5.1)

for any m,n with (m,n) = 1.
It is easy also to show that

Lemma 5.10 We have

That is, we can choose

{(: )

as a complete set of representatives of right cosets of I' in T(n).

ad =mn,d > 0,b (mod d)}

Lemma 5.11 For any 0 < m < n, we have

m

T(p™)T(p") =Y p'T(p,p)" T(p™ ).
1=0

Proof  We shall prove this lemma by induction. It is clear for m = 0 since T(1) =
T(1,1) is the identity of R(I", A).
For any prime p, by the definition of T(n), we know that

T(p") = > TE,p"™).

2i<n

Hence, by Lemma 5.9, we get

T(p") = T(1,p") + T(p,p)T(p"?). (5.2)
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By Lemma 5.10 we see that the following sets

x={(42)]s mean}u{(z 1)}

pi t . n—i
= i <1,
Y {( 0 p"_z> ‘O i<n,t (modp )}

are complete sets of representatives of right cosets of I" in T(p) and T (p™) respectively.
Then the set of products of elements in X and elements in Y is

{ (% t;;i]l)ﬂ- ) ‘O <i<n,t (modp"?),s (mod p)}

i+1 .
U{ (po fft_i> ‘0 <i<n,t (mod p”‘l)}

p

— { (% pnfl_z) ‘Ogign—&—l,t (modp"+1_i)}

p 0 pi t . n—i
. <1< n— .
U{ (0 p) (0 pnlz>’0\z\n 1, (mod p )}

By Lemma 5.10, we know that { (% pnfl_z) ‘0 <i<n+1,t (mod pn+1i)}

is a complete set of representatives of right cosets of I in T(p"*1), and every element
in T(p"~!) appears repeatedly p times in the following set

pi ¢ ; n—i
{(O pn_l_i>‘0§z<n—1,t (mod p )}

and above set has no other elements. So we get

T(p)T(p") = T(p"*") + pT(p.p)T(P" ), (5.3)

which shows the lemma for m = 1. We now assume that m > 1, then by (5.2), we
see that

T(p™) =T(p)T(p™ ") = pT(p,p)T(P" 7).
Then by induction hypothesis we get

T(p)TE™ HTE") = T(p) Z_: PT(p,p)' T(pm+n=17%)
1=0
m—1
= p'T(p,p) (T(E™ ") + pT(p, p) T(p™ " 272))
=0
—pT(p,p)T(P"™*)T(p")
m—2
= —pT(p,p) Y p'T(p,p)' T(P™ 272

1=
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Therefore
m—1
T(p™)T@") = Y p'Tlp,p) T(™ ") + p"T(p,p)"T(p" ™)
i=0
= p'T(p,p)'T (p™"%).
i=0
This completes the proof. ]

By Lemma 5.11 and the equality (5.1) we get

Tm)T(n) = 3. dT(aLd)T(%). (5.4)
d|(m,n),d>0

Theorem 5.2  Let p be a prime. Denote by R, the subalgebra of R(I', A) generated
by I'al with o € A and det(a) a power of p. Then R, is the polynomial algebra over
Z generated by T(p) and T(p,p).

Proof It is clear that R, is generated by T(p™,p") with m < n. By Lemma 5.9
we know that

T(p™,p") = (T(p,p))" T(L,p"™).
By (5.2) we see that T(1,p') = T(p') — T(p,p)T(p'~2) for any [ > 2. Hence we know
that T(p") is a polynomial of T(p) and T(p,p). This shows that R, is generated
by T(p) and T(p,p). We need to show that T(p) and T(p,p) are algebraically inde-
pendent. Otherwise, put Z, = T(p,p)Rp,. Then 7, is an ideal of R,. By (5.3) we
have

T(p)T(p") = T(P"*') (mod I,).

Hence
T(p)" =T({p") (modI,).

And therefore
T(p)" =T(1,p") (mod I).

It is easy to see that T(1,p") (n =0, 1, 2, ---) are linearly independent modulo
Z,. So are T(p)" (n =0, 1, 2, ---) modulo Z,. Now let f(z,y) be the polynomial
with the lowest degree such that f(T(p), T(p,p)) = 0. Put

f(x,y) = fO(x) + yfl(xvy)’ fo(.%‘) € Z[x]’fl(x7y) € Z[l‘,y}

Then by above discussion we get fo = 0. Hence

T(p,p) f1(T(p), T(p,p)) = 0.

But we see that T(p,p) is not a zero divisor by Lemma 5.8 and Lemma 5.9. So
f1(T(p), T(p,p)) = 0 which contradicts the assumption on the degree of f. This
completes the proof. O
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Corollary 5.1  R(I',A) is the polynomial algebra generated by T(p), T(p,p). (p
runs over the set of all primes.)

Theorem 5.3 The formal power series

o0
= Z T(n)n~
n=1
has the following infinite product expression

D(s) = [0 = T®p~* + T(p,p)p' )",

P

where p runs over all primes.

Proof By (5.1) we get

s)=[1D>_Tw"p ™.

p n=0

So we only need to show that

(I—T( )p +T p’ 1 2s <ZT ns) 1.

By (5.3) we obtain

Y T p ™ =Tp)p * + Z p" )+ pT(p, ) T(P" 1 ))p~™7*

Z p" (p,p)pl‘ZSZT(p”)p‘"s
=—1+ (1+T(p,p)p' ) ZT )p "

This completes the proof. O

The product in Theorem 5.3 is called Euler product of D(s). When a represen-
tation of R(I',A) is given, we can get the product property of the representation
by D(s). For example, since I'al’ — deg(I'al’) is a representation of R(I", A) (see
Lemma 5.3) and deg(T(p)) = 1+ p, deg(T(p,p)) = 1, we obtain

Z deg(T(n))n~* = H(l — (L4 p)p = +pt2)!
=H (1=p~*) "1 —p' )~ = {(s)¢(s — 1)
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Hence we get

deg(T(n)) =Y d.
d|n

From now on we study the Hecke algebra of a congruence subgroup of the full
modular group. Let N be a positive integer, to simplify symbols, put I'y = I'(N).
Assume that I is a congruence subgroup such that I'v Cc I C T'.

Lemma 5.12  Let a,b be positive integers and ¢ = (a,b). Then [ = [4T}.

Proof It is clear that I',I, C I'.. Now let a be an element of I.. By the Chinese
Remainder Theorem, we can find § € M3(Z) such that

B=1 (moda), f=a (modbd).

Hence det(3) =1 (mod ab/c). Therefore thereisa~y € I" such that v = 8 (mod ab/c).
This shows that ¥ = 1 (mod a), v 'a = 1 (mod b). That is, v € Iy, v 'a € I}.

Hence o = v -y ta € I, I}. This completes the proof. O

Let @ € M3(Z). Define Ay (a) = o (mod N) € My(Z/NZ). Put
An ={a € M3(Z)|det(a) > 0, (det(a), N) = 1}
and
®={a € AN|AN(T"a) = An(al)}.
It is clear that Ay («) € GL2(Z/NZ) for any « € Ay and ¢ = Ay if and only if
I'"=Ty.

Lemma 5.13 Let notations be as above and o, 3 € An. Then the following asser-
tions hold:

(1) 'al' =Tal'y = I'yal’ = T'al’ =Tl

(2) I'al" ={¢ e I'al'lAn(§) e An(IMa)} if a € P

(3) I'val'n = I'nBIN if and only if Tal’ = I'BI" and a« = 5 (mod N);

4) I'"'al" =T"al'y = I'nal” if a €

(5) Ifa € @ and I'al” = UF’ai is a disjoint union, then I'al = Ufai s a

disjoint union.

Proof Puta = det(a). By Lemma 5.12, since (a, N) = 1, we have that I' = I', I'n.
But al,oa=' CcI'. SoI' =TI,y Ca 'T'aly, and then

o 'Iral =a 'Tal,I'y C o 'T(al,a Yaly
Ca 'I'Tal'y c a 'T'aly.

Hence I'al' C I'al'y C I'al”. Since the opposite inclusion is obvious, we get (1).
To see (2), let £ € I'al’ and An(§) € An(I"«). Then £ = v (mod N) with v € I'.
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By (1), ¢ € I'al'y, hence & = dae with 6 € I', ¢ € I'y. Then v = § (mod N)
and &y~ € I'y. Since I'y C I, we see that § = (6y~ 1)y € I'vI’ C I, hence
e I'al'y C I"al”. Conversely if £ € I"al"’, we have clearly £ € I'al’, and by
the definition of @, An(§) € An(I"«). This completes (2). At the same time, we
have proved that I"aI” C I"al'y. Since the opposite inclusion is clear, we get (4).
The assertion (3) is a special case of (2). Finally we want to prove (5). Let v € &,

and F’aF’:UF’ai. Then FozF:FozF’:UFozi by (1). Assume I'a; = o;.

Then o; = 'ya; with v € I'. By (2), since a;,; € I"al”, we have that a; = o
(mod N) with § € I'". Then v =§ (mod N), and so vd~! € I'y. Since I'y C I, we
get v = (y67 16 € I'nI" = I", so that I"a; = I, and hence i = j. This completes
the proof. O

Lemma 5.14  The correspondence I''al" — I'al’, with o € @, defines a homomor-
phism of R(I", ®) into R(I', A).

Proof We only need to show that the correspondence preserves the multiplications
of R(I", §) and R(I", A). Let o, B € &, and let

I'al” =My, I'BI" =UI";
be disjoint unions. By (5) of Lemma 5.13, we have that
I'al' =Jl'oy, I'Br=I'G;
are disjoint unions. Put
I'al" -T'BI" =Y " I'¢I”,
13
where

ce = #{(6, )| B = T}

By (1) of Lemma 5.13, we get

IFal'T =Tal'fI" = Jrer' = rer

3 3

and different £’s correspond to different double cosets. Otherwise, if I'él = I'E'T,
since

AN(§) € An(I"aB), An(E) € An(I"ap),
we get ["ET" = I'"E'T. Therefore put

ol -TAI' = ¢T¢r,
¢
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then
ce = #{(i,J)|loiff; = I'e}.
We want to show that c¢ = ;. That is, to show that ["a;8; = I''¢ if and only if
I'a;3; = I'E. Assume I'e;8; = I'§. Then & = ya,; 8; withy € I'. Since § € Ial’ 317,
then
AN (&) € An (I aif3y).

Hence we have that £ = do;5; (mod N) with § € I''. Then 6 = v (mod N), hence
v € I'". Therefore I"o;3; = I''§. Since the converse is obvious, this completes the
proof. O

Let t be a positive divisor of N and Z a subgroup of (Z/NZ)*. Put

F’:{(‘c’ 2) € SLy(Z)
A':{(Z 2) € M (Z)

It is easy to see that for Z=1,¢t= N, we have [' = I'y; for Z = (Z/NZ)*,t =1
we have I'" = I'j(N). It is obvious that I'y C I C I'. Similar to the proof of Lemma
5.7, we can show that A" C I'". We discuss now the Hecke ring R(I"”, A"). Put

ve{(Ea)es

A% = {a € M;(Z)‘AN(a) - (é 2) (d.N) = 1}.

a €1, tlb, N|C},

a €T, tlb, Nc}.

(d,N):l},

It is clear that A}, C Ay C A'.

Lemma 5.15 We have that
N =ANT =T"A%, v C D.

Proof Let o € A), d = det(w), then

det[((l) 2>a]51 (mod N),

where ed =1 (mod N). Hence we can find a v € I" such that

v = <(1) 2) a (mod N).

This implies that v € I'" and

a’y‘lz(é 2) (mod N),
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then o = ay ™1y € AT, so that Ay = AN I". Similarly, we have that Ay, = I A%,
Hence for any a € Ay we can find a o/ € A} such that Il = I'"o/I", so that

R(I'", Ay) = R(I", A).

0

F’azF’(é 2>E<(1) g)F’EaF’ (mod N).

Therefore A%, C @. This completes the proof. O

For any a € Ay, if a € I"o/, An(e) = (1 g) then

Theorem 5.4  The correspondence I''al” — I'al’, with a € Ay, defines an iso-
morphism of R(I", A’y) onto R(I', An).

Proof By Lemma 5.14, it is sufficient to show that the map is injective and sur-
jective. Let n € Ay, d = det(n). Then similar to the proof of Lemma 5.15 we can
find a v € I' such that

10
—1 —
o= (0 d) (mod N),
that is, ny~ € A%. Hence
I'py™ " Ty ™' = Iyl

which implies the surjectivity. Let o, § € A}, (By Lemma 5.15, for any o € Aly, we
can find o € A%, v € I'" such that a = /v, so that "ol = I"a/I". Hence we can
assume a € AY) . Put

wi = (5 2) wer= (g 5)

If 'al’ = I'GI, then ¢ = det(a) = det(8) = d (mod N). By (3) of Lemma 5.13, we
get I'val'y = I'nBI'w, hence I'"aI” = I'"3I"". This completes the proof. O

Let p be a prime, put E, = GL2(Zy). For any o, 8 € A, E,aE, = E,(E, if and
only if the p-part of the elementary divisors of « is equal to the ones of g.

Lemma 5.16 Let o € A, det(a) = mgq, m|N*°, (¢, N) = 1. Then the following
assertions hold:
(1) I"al" = {B € A'|det(B) = mq, E,aE, = E,BE, for all prime factors p of q }.
(2) There exists an element £ € A% such that det(§) = ¢ and EpaE, = E{E,
for any prime factor p of q.

1 0 .
(3) Let n = (O m) and & be as in (2), then

I'al' =T'¢r" - I'nI" = I'nI” - T'EX.
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Proof Let X(«) denote the set defined by the right hand side of (1). It is clear
that IMal" C X(a) (if B € I"al”, then

det(3) = det(a) = myq,

0 and « have the same elementary divisors, so that 5 € X («)). To prove the opposite

a

inclusion, let 8 = <* :) € X(a). Since (a,mN) = 1, ae = 1 (mod mN) for

some e € Z. Hence there exists an element v € SLo(Z) such that v = (8 2)

1
(mod mN). Since 8 € A’, we have that v € I/, and 78 = (fN tf) (mod mN)
with integers fand b. Put o= ( - %) Thende 1" andorg= (-
& ' “\ sy 1) ’ =10 g
(mod mN) with g € Z. Taking the determinant, we get mg = g (mod mN), so that

(1 (10N (1t .
5fyﬂ_(0 mq) (mod mN). Putn—(o m)e—(o 1),5—57ﬁe Nt

Then det(§) = ¢q,& = <(1) 2) (mod N). Therefore £ € A%. Moreover, we see that
B € I'"énl". For any prime factor p of g, since d, v, €, n € E,, we have that
EE, = E,(E, = E,aE,,

which shows (2). The element ¢ may depend on 3. We want to show that I'"énIl”’
is determined only by « and independent of the choice of 3. If so, then we have
X(a) C I'"EnI", that is, (1) holds. Let now (1 be an element of X («). In the same
way as above we can find & € A} such that det(§1) = ¢ and E 1 E, = EpaE, for
any prime factor p of g. Then £ and & have the same elementary divisors, hence

é 2) (mod N), we have FNer = FN§1FN by

(3) of Lemma 5.13. Hence & = ¢&¢ with ¢ and ¢ in I'y. By the Chinese remainder
theorem, we can find an element 6 € M5(Z) such that

Ier = rar. Since{zglz(

=1 (modmN),
0=n""y "'y (mod gMx(Z,)) for all p dividing q .

Then det(6) = 1 (mod mNgq), we can assume that § € SLy(Z), and hence 6 € I, N
and ynfn~' € I, by the first and second congruence relation respectively. Put
w = &Ynh(én)~L. Then det(w) = 1 and

w=1 (mod NM3(Z,)) for all p dividing N,
w=1 (mod My(Z,)) for all p dividing q.
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Therefore w € My(Z,) for all p, so that w € M>(Z) and w € I'y. Since &Ym= wEnh=1,
we see that I"&nl = I'éynl’ = I''énIY, which shows that I"énI” is determined
only by a. Moreover, we have that "ol C X (a) C I"énI"'. Therefore these three
sets must coincide, which shows (1).

We want now to prove (3). By the above proof for (1), we have that

X(a)=T"al” = I'ernI" = I'nler.

Suppose that I"¢I" = |JI'¢;. Since £ € A%, C &, by (5) of Lemma 5.13, we get
rer =y rg;,. We have the following disjoint union (see Lemma 5.17):

m—1 m—1

/o (1 tr L /

FnF_UF(Om = Mn,-
r=0 r=0

It is easy to verify that

F(l tr>7 r=0,1,-,m—1
0 m

are different right cosets of I'al". Since det(£) = ¢ is prime to det(n) = m, by Lemma
5.8, we have
rer -l = I'énl’ = I'al.

So the number of (i, r) such that I'§;n, = I'a is at most one, hence the number of (4, 7)
such that I'¢;n,. = I'a is at most one. This shows that Mol = "¢ - I'nl. The
product I'nI"" - [T can be treated in the same way. This completes the proof. [

Lemma 5.17 Let a € A’ det(a) = m, m|N°°. Then we have the following disjoint
UNLON:

m—1
[al’ = {8 € A'ldet(8) =m} = | r'(l ”).

0 m
r=0
Proof The first equality is a special case of Lemma 5.16. We prove now the second
equality. Let 5 € A’ det(8) = m. By the proof of Lemma 5.16, there exist § € I,
~v € I'" and £ € I'y such that
1 th

598 = ¢ (0 m) .

Write b = r + mh with 0 < < m — 1, we have that

(b m)=G )G )

(1 tr
66F<0 m).

ie.,



5.1  Hecke Rings 105

It is not difficult to show that

F'(l tr) O0<r<m-—1)

0 m

are different right cosets in Ial"”. This completes the proof. ]

For any positive integer n, let T'(n) be the sum of all I"al"” with « € A’ and
det(a) = n. By Lemma 5.17 we see that deg(T’(m)) = m. For any positive integers
a,d with a|d, (d, N) = 1, we define T'(a,d) € R(I", A’y) as the image of T(a, d) under
the isomorphism in Theorem 5.4. We have that

T'(a,d) = o, (8 2) r

“ a01> (mod N). Therefore o, (a 0) € Ay

0

Whereaaeﬂoaz( 0 d

Theorem 5.5 (1) R(I", A") is the polynomial ring over Z generated by
T'(p), VpIN: T'(Lp), T(p.p), YpiN;
(2) Every double coset I''al” with o € A’ is uniquely expressed as a product
I'al" =T'(m) - T (a,d) = T'(a,d) - T'(m)

with m|N*°, al|d, (d,N) =
(3) T'(m)T'(n) =T (77%7l)f07”allm|1\’oo n| N>
(4) T'(n1)T'(n2) = T (n1n2) if (n1,n9) = 1.
Proof  The assertion (2) follows from Lemma 5.16 and Lemma 5.17. By Lemma

5.17, we see that
T/ (m)T'(n) = T’ (mn)

with a positive integer c¢. Taking deg, we get
deg(T"(m)) deg(T'(n)) = cdeg(T'(mn)) = cdeg(T'(m)) deg(T'(n)).

Hence ¢ = 1. This shows (3). (1) follows from (2),(3) and Theorem 5.4. (4) follows
from (3) and Lemma 5.8. O

By Theorem 5.4, we have that
pT'(p,p) = T'(p)* = T'(p*)

for all primes p not dividing N. Thus the multiplication of elements T/(n) can be
reduced to that of T/(p*) with primes p. If p|N, we have T'(p*) = T'(p)*. If (p, N) =
1, the elements T’(p") satisfy the formulae satisfied by T(p*) by Theorem 5.4. We
can express these facts as
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Theorem 5.6 R(I"”,A’) is a homomorphic image of R(I", A) through the map:

T(n) — T'(n), for all positive integers n,
T(p,p) — T'(p,p), for all primes p prime to N,
T(p,p) — 0, for all primes p dividingN .

Therefore we have that

T'(m)T'(n) = > dT'(d,d)T'(mn/d”)

by equality (5.4).
Moreover, defining a formal Dirichlet series

'(s) = Z T (n)n~
n=1

we obtain

@I (X
k=0

=[Ja-T'wp )" x [[A=T@p* +T@pp" )" (55
p|N ptN

By the definition, we have
1 0
T (p) = I" I’
w=r(5 y)
for every prime p. For any positive integer ¢ prime to N, there exists an element
04 € SL2(Z) such that

—1

)\N(Uq)=<q0 2) (mod N).

Therefore Ay (qoq) = ((1)

(?2>, and I'q - o,I" = T(q, q), so that

T'(q,q) =I'"q- oI

Lemma 5.18 Let o, ((a, N) = 1) be defined as above. Then, for any positive integer
n, we have the following disjoint union:

T'(n) = {a € Al det(@) =n} = | UF' (a “’).

ad=n,
(d,N)=



5.1  Hecke Rings 107

Proof  The right hand side is clearly contained in the left hand side. To show the

disjointness of the right hand side, assume yo, (g t;) =0y (g i:j) with v € I'.

4 (e f e f a tb\ [(u tv ‘ . .
Put o, ’Y%—(g h).Then(g h) (O a)= o w , so that g = 0. Since

det(o,1v0,) = 1 and au > 0, we see that e = h = 1, hence a = u, d = w, and
vt = bt + fd. Since v € I'', f = f't with some f’ € Z. Therefore v = b+ f’d, so that
v = b which shows the disjointness. Now let n = mgq, m|N°°, (¢, N) = 1, then

deg(T'(n)) = deg(T'(m)) deg(T'(q mz d.
dlq

This shows that deg(T’(n)) coincides with the number of the cosets of the right hand
side which implies the equality desired. This completes the proof. ]

Let oo = (Z b) € M,(C), put

d
(%)
o = .
—c a

Then it is clear that

(a+pB)" =a” + 07,
(ap)” =p"a’,
(ca)” =ca"(c € C),

a+a” =Tr(a) -1,
aa” = det(a) - 1.
The map 7 is called the main involution of M>(C). For any a € A}, with det(a) = ¢,
we can find a o, € I" such that

—1
g = (q() 2) (mod N),

hence
j— T — T
a=o040" =a’0, (mod N),

0 01

divisors, by (3) of Lemma 5.13, we have

by An(a) = (1 2) ,An(aT) = (q 0). Since ae and a” have the same elementary

I'al" =T"o, oI =I"a"o,I".

It is easy to verify that "o, = 041", so that I"o,I'" = I"oq. Let I 1" = JI' oy
be a disjoint union. We can verify that I"o,0; = I"o4a; if and only if i = j (if
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I'oqoy = I'ogoy, then oIy = 041" o since oy = o4, so that I"a; = I o).
Therefore
'al’ =Mo" - I'a™ " = I'a™ I - o, I
So that we obtain
'l -’ I"=T"a"I"-T"al".
This showed the following
Lemma 5.19 I"al’ commutes with I''a™ I if o € AY.

The following lemmas will be useful in Section 9.3.

4 1 b .
0 dn? d) € GLo(Z) with

ad — be = 1612 is in Io(4N)C, Io(4N) if and only if c = 0 (mod 16N), a =d =0
(mod 4), (a/c,N) =1 and (a,b,c,d) = 1.

Lemma 5.20 Let C, = ( ) Then a matrix (Z

Proof It can easily be checked by using the decomposition
1 4 1
Iy(AN)C, I'v(AN) = I[H(4N) (0 7”?2> I'o(AN) - IH(4N) (0 4> I'v(4N)

and two identities

To(4N) ((1) £2> To(4N)

{(z £) e

and

¢=0 (mod4N),(a,4N)=1,(a,b,c,d) = l,ad—bc:nQ}

1}(4]\7)(81 i)ro(yv): > 1“0(41\7)<8l i) <4Jifu ?)

pmod 4

|

Let N be a positive integer, w an even Dirichlet character modulo 4N, A = ( (cl Z ) €
GL3 (R). Then we put A* = {4, #(z)} where

o) = i) (%) (‘74) (2 +d)t.

Lemma 5.21  Let C, be as in Lemma 5.20 and (Ccl Z) € IW(AN)C,IH(4N).

Suppose that (b,d) = 1. Then

8- e (B O e

heresgnx:%forx;é() and sgn 0 = 1.

[SIE

N
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Proof  Suppose (CCL Z) is in I'9(4N)C, IH(4N) and satisfies (b,d) = 1. First

assume d > 0. Note that a = d =0 (mod 4), ¢ =0 (mod 16N) and b =1 (mod 2).
From (b,d) = 1 and ad — be = 16n? it follows that (b,4N?) | % and (d,4n?) | 2 Thus

there exists an integer w such that

%—N@b—bz%—AMd—dEO (mod 4n?). (5.6)
Thus the matrix a
a —— 4+ Nwb+b
C  Nwpb -4
C— 4 4n?
- c
c —— 4+ Nwd +d
— — Nwd 4—
4 4n?

is in I'i(4N), and we have

hence
a b\" " 1 1 0\"
(c d) C*(Csm )(4Nw 1)
c 1
~ — Nwd ?
1 —4
= @b ,(471)_5 é a
¢ d S Nuwb ] \ == Nuwb
4 4
cz+d 7 1
| 4N 1)z 5.
<4Nwz—|—1> (4Nwz +1) }
By (5.6)

)= (F)
%—wa b

Furthermore using (5.6) and the conditions d > 0, (b,d) = 1 one checks that

Cc

: . (d
P (2 d)3.
. 4Nwz+1> (ANwz + 1) <b>(cz+ )
4

[SIES

Thus
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as we claimed. ) .
. a —a -
If d < 0 we write (c d) ——( _d>7use (5.7) and

-1 0\ _[[(-1 0 .
0o -1) 0o -1)'7J°
This completes the proof of Lemma 5.21. ([
Lemma 5.22 Let C, be as in Lemma 5.20. Ewvery elliptic or hyperbolic conjugate
class in IToy(AN)CpIo(4N) contains an element (Z Z) with d > 0, (b,d) =1 and
(b 2 — 64n?
o

Proof First recall that for ¢ and f fixed there is a bijective correspondence between

b
the set {(i d) € GL2(Z)

of integral binary primitive quadratic forms with discriminant (t? — 64n?)/f? given
by

):1 where t =a+d, f = (d—a,b,c).

ad—bc:16n2,a+d:t7(d—a,b7c):f} and the set

(‘C‘ Z) - %(CXQ +(d—a)XY —bY?)
conjugation by I'(1) corresponding to the usual action of I'(a) on quadratic forms.
We need the following:
Sublemma Let F(X,Y) = aX? + 3XY + 7Y ? be an integral binary primitive
quadratic form with v odd. Let M be a non-zero integer. Then there exists (z,y) € Z?
with (z,y) = (y,M) =1 and (F(z,y), M) = 1.

This can be seen as follows. Let p be a prime factor of M and suppose p | F(z,y)
for all (z,y) € Z? with pty. Because of F(0,1) =~ =1 (mod 2), the prime p must
be odd. But from

F(0,1)=y=0 (mod p),
Fl,1)=a+p+~y=0 (mod p),
F(2,1)=4a+28+~v=0 (mod p),

we then conclude p | («, 3,7), a contradiction, since F' is primitive. Now for each
prime factor p, of M choose a pair (x,,y,) € Z? with p, { v, and p,  F(z,,v.).
Determine z, y € Z with ¢ = z, (mod p), ¥y = y, (mod p) for all v. If we put
' =x/(x,y), v =y/(x,y) we have (z',y')=1=(y,M) and (F(2',y'), M) = 1.

Now let (i b) be an elliptic or hyperbolic element in I'o(4N)C,Io(4N) and

d
1
f
odd and (2 — 64n?)/f? # 0. Applying the Sublemma with M = 4N (t? — 64n?)/f?

F(X,Y)=—(cX?+ (d—a)XY — bY?) its associated quadratic form. Note that b is
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we see that there exists (z,y) € Z and z € Z such that (z,y) = (y,4N) = 1,
F(x,y) = z and (z, (t> — 64n?)/f?) = 1. Consequently we may transform F with a

b
matrix (: :;) € I'y(4N) into a form whose coefficient at Y2 is z, i.e. (i d) is

i /
I'y(4N)-conjugate to an element (i, Z,) with (b'/f, (t* — 64n?)/f?) = 1.

Now observe
1 —m a v I m\ [ bV
0 1 d d 0 1) \x a

with b = a'm +b — m(c'm + d’) and d’ = ¢/m + d’; hence if we choose m € Z in
such a way that m is prime to (b',d’) and divisible by all prime factors of 16n2, which
do not divide (b,d’), and divisible by all primes dividing (#* — 64n?)/f? (note that
(t? — 64n?)/ f? is prime to (b',d’)), then (b”,d”) =1 and (V"/f, (t* — 64n?)/f?) = 1.
Moreover, if we choose |m| big with sgn(m) = sgn(c) we have d” > 0 which completes
the proof. O

Lemma 5.23 Let A= (a b
c d

det A = 16n%, t = 0 (mod 4) and f odd. Then for N odd and square-free there are
w(t/4, f,n?, N) matrices B € I'(1)/Io(4N) with B~*AB € I'1(4N)C,, It(4N) where
t, f were defined as in Lemma 5.22 and

) € GLy(Z) be an elliptic or hyperbolic matriz with

p(t, fyn, M) = H (I+p)x#{zeZ|l<xz< M,
pl(M,f)
(x,M)=1, 2> —tr+n=0 (mod (fM,M?))}.

Proof Denote by ns the number of matrices B € I'(1)/I'o(4N) with B~*AB €
I'v(AN)C,ITo(4N). For x € Z with 1 < x < N, (x, N) = 1 put

4x +4Nv

Ve = {B € F(l)’BlAB = ( 0

:) (mod 16N) for some v € Z} ,

4z

Via = {B € F(l)’B_lAB = ( 0

:) (mod 16) for some v € Z}

and

4dx + 4Nv

Vi = {B € F(l)‘B‘lAB = ( 0

:) (mod 16) for some v € Z} .
The group I'hy(4N) resp. Io(IN) operates on V, resp.V, 1 by multiplication from
right. Noticing ¢ =0 (mod 4) and Lemma 5.20 one sees that

na= Y. #{Va/To(4N)}.
1<z<N,
(x,N)=1
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We wish to show that

#{Vo/To(AN)} = #{Vo1/To(N)}. (5.8)
The latter number is equal to H (1 + p) or 0 according to
pl(N,f)
(4x)* — 4tz + 16n* = (mod (fN, N?))

or not by J. Oesterlé, 1977. Noticing that N and f are odd, we will then prove the
lemma.

Now if (By,Bg) € Vi1 x Vg2 choose B € I'(1) with B = By (mod N), B = B,
(mod 16) and define ¢(B1, Bz) to be the class of B mod I'4(4N). Then ¢ is a well-
defined map from V1 X V. 2 onto V,/IH(4N), and ¢(B1, B2) = ¢(B}, Bj) if and only
if By and Bf are equivalent under I'i(N) and By and B) are equivalent under I(4).

To prove (5.8) it remains to show that modulo multiplication from the right there

. . . . U w ..
is exactly one equivalence class in V, 2. Fix v € Z. If B = (v . ), the condition

B 'AB = (4”“" +04N” :) (mod 16) (5.9)

is equivalent to

(a—4(xc+ Nv) d_4(;+ NV)) (1;) —0  (mod 16). (5.10)

From ad — be = 16n? and 4|t we see that (a — 4(z + Nv))(d — 4(x + Nv)) —bc = 0
(mod 16), and from 21 f it follows that (a — 4(z + Nv), b, ¢, d — 4(z + Nv), 16) = 1.
Thus the system (5.10) has exactly one solution (u mod 16, v mod 16) in P(Z/16Z)
(the projective line over Z/16Z), hence exactly one solution in P(Z/4Z). Since

I'(1)/I'h(4) is one-to-one correspondence with P(Z/4Z) under the map <Z 75) —

(u mod 4, v mod 4), we conclude that modulo I'y(4) the congruence (5.10) has exactly
one solution.
Now if m is an odd integer we can choose a’,b’ € Z with a’ Nm — 4b’ = 1. Then

li /
(‘; me> is in Tp(4) and

a W\ (4 +4Nv m a b\
4 Nm 0 4y 4 Nm
!
= (4”“" +O4N” :) (mod 16).

This shows that there is indeed only one equivalence class in V, o which completes
the proof of Lemma 5.23. O
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5.2 A Representation of the Hecke Ring on the Space of Mo-
dular Forms

In this section we shall consider a representation of the Hecke ring on the space of
modular forms. We recall first some notations:

jlo,z) =cz+d, VzeH, or:(ccl Z)EGLQ(R)7

fllolk = det(0)*? f(o(2))j(o,2) ™"

for a function on H.
Let now G = GLJ (R), I' a Fuchsian group (of the first kind) of SLy(R) and I’

the commensurator of I' in GL} (R). For o € I', put I'al’ = U I'oy; (disjoint union).

K2

We define a linear operator on Ay (I"):

fl[Fal), = det(a)/2~1 Zf“ai];w Vf e Ap(D).

It is clear that the definition of f|[I'al]) is independent of the choice of the repre-
sentatives a;.

Lemma 5.24 [['al'|y maps Ap(I), Gp(I"), Sk(I") into Ar(I"), Gi(I"), Sk(I") re-
spectively.

Proof Let f € Ax(I'), then f|[a;]i € Ak(ai_ll“ai). Put

Iy =(\e; ' raiNT).

%

It is clear that f|[I'al']y € Ar(I1). Since [I": ozi_lfoq N I'] < oo, it is easy to show
that [I" : I'1] < oo and I', I'y have the same set of cusp points. For any 6 € I', the set
{I'a;d} is a permutation of {I'a;}, so that

FIICal)i|[6)k = det(a)™/>~! Z Flled]y, = det(a)*/~! Z Fllailk = fIIT -

So f|[l'al'] € Ax(I'). By the above proof, we have also that [I"al']; sends G (I)
and Sg(I") into Gi(I"), Sk (I") respectively. This completes the proof. O

For any X = ZC§F§F € R(I', T), we define
FIX)e =Y cefIDErTk, Vf € A(D).
Lemma 5.25 Let X,Y € R(I',I"). Then

(X Y]k = [X]k - [Y].
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Proof It is sufficient to show that
[Fal), - [T = [[al - TBI,, VYa,Bel.

Let I'al’ = UFai, Ipr = U Ip; and

Fal -TAI =Y ¢ I'€r, TEr=|JIé,
¢ h

be disjoint unions. By the definition of multiplication, we see that
> Taifi=> el
,J &h

Therefore we have

(fI[Pall)|[DBT ) = det(aB) s ! Zfl i3]k
= det(af3)? Zcfﬂ Enlk

=S eIl Fgr x = fl[[al - T3
3

This completes the proof. ]

By the above lemmas we see that the action of R(I",I') on Ay (I') (resp. Gy(I'),
Sk(I')) defines a representation of the Hecke ring on the space of modular forms.

Let f,g € Gx(I'). Then f(2)g(z)y* and y~2dady is invariant under I'. Therefore
the following integral is well-defined if it is convergent:

F(2)g(2)y* > dady.
FH

We consider now the convergence of the integral. Since f, g are holomorphic on H,
it is sufficient to consider the convergence of it at cusp points of I'. Let s be a cusp
point of I', and p € SLa(R) such that p(s) = co. Put w = p(2), ¢ = "/ with h > 0
defined as in Chapter 3, then we have

e e =), gllp™' e = ¢(q)

and ¢, are holomorphic at ¢ = 0. Then

F(2)9(2)y" = f(p~ w)g(p~Tw) (Im(w))* [T (p~ ", w)| 2
#(q)v(q) (Im(w))".
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If either f or g is in Si(I"), then ¢(0)y(0) = 0, so that the integral is convergent at
w = oo, and hence it is convergent at z = s. Put

1 _
f9) = —/ F(2)g(z)y" 2 dady,
(1.9) = 55 | 1))
where D is a fundamental domain of I" and
u(D) = / y~dady.
D

We call (f,g) the Petersson inner product of f and g. It is easy to verify that Sy (I")
is a Hilbert space under the Petersson inner product. If I'” is a subgroup of I' and
[[": I'"] < oo, then the Petersson inner product of f and g on I' is equal to the one
of fand g on I".

Let o € GLF (R). Then f|[a]x, g|[a]x € Ar(a~'TI'a). Denote by D’ a fundamental
domain of a~'I"a, then a(D’) is a fundamental domain of I". So that

(fl[e]r, glle]r) = det()* (u(D")~* . fla(2))g(a(2))]J (@, )| "2 y*2dady

— (D)) / ()92 dady = (£, 9). (5.11)

a(D’)

Lemma 5.26 Let f, g € Si(I'), a € I, and o™ = det(a)a™" be the main involution
of a. Then we have

(flllalk, g) = (f, gl[I"'a” ).

Proof Let D be a fundamental domain of I and I"' = U(Fﬂoz_lfoz)ei (disjoint

%

union) with ¢; € I'. Then I'al' = UFO‘ei and D; = UQ‘(D) is a fundamental

domain of ' a~'I'a. By (5.11), we have
u(D){fI[Fallk, g) = det(a)*/>7 Z/D(fl[aei]k)(ﬁl[ei]k)yk_2dxdy
=det(@ 1Y [ (flele)ay ey

det(cr) /! /D (flladi)gy*~2dady = det(a)*/>~! / » )f~<§|[a‘1]k)yk—2dxdy

— det(a)*/>! / £ - @07yt 2dady,
a(D1)

where we used the fact g|[a™]x = g|[a”]x.
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Let I' = U([‘ﬂ(aT)*lFoﬁ)e}. Then I'a™ ' = UFaTe} and Ue;(D) is a funda-
j J J
mental domain of I'(al'a™! (since al'a™t = (a”)"!I'a™). Therefore we have

u(D){f. gllla™ I) = det(a)*/?7! Z/D f - (glla7€wy**dady

—det lc/2 IZ / f- gl k72dxdy
I (D)

— det(a)/2! / £ - @l 1)y 2dady.
a(Dr1)

This completes the proof. ]

In fact, by the above proof, we see that the lemma holds if either f or g is in
Sg(I).

We consider now the case I' = SLy(Z). Let a € A = My (Z). Since a and o
have the same elementary divisors, we have that I'al’ = I'a™ I', so that

(flllallk, g) = (f,glllallk),  f,g € S(D).

This shows that the operators {[I'al'|t}aca are commutative and self-associated
operators on Si(I"). Therefore there exists a basis of Si(I") whose every element is a
common eigenfunction of these operators and the corresponding eigenvalues are real
numbers. For any f € Si(I'), we have

fIIT(p,p)lk = p*2f.

Since R, is generated by T(p, p) and T(p), f is a common eigenfunction of all operators
{[I’'alk}aca if and only if f is a common eigenfunction of [T(p)]x for any prime p.

Theorem 5.7 Let f = Z c(n)e(nz) € Gi(I') not be a constant. Assume that for
n=0
any positive integer n, we have
AT = nf, A €R
Then ¢(1) # 0, c¢(n) = A\c(1), and we have formally
S T =TJA=App* +p5 %)L (5.12)
n=1

P
Conversely, if we have formally that

Z = [0 = e+, (5.13)

then f|[T(n)]r = c(n)f for any positive integer n.



5.2 A Representation of the Hecke Ring on the Space of Modular Forms 117

Proof By Lemma 5.10, we have

it a b
Mnf = AT =n*270 7 Zf'(o d>k

ad=n,a>0 b=0
k 1 § :
ad=

n

d—1

ZZ m(az +b)/d)d"
b=0

m=0

d—1
= Z ab gt Z Je(maz/d) )y e(mb/d)
ad=n b=0
:ZZakflc(nt/a)e(taz)
t=1 a|n

—Z Z a*te(mn/a®)e(mz). (5.14)

m=0 a|(n,m)
Comparing the coefficient of e(z) of both sides, we get
Anc(l) = ¢(n).

Since f is not a constant, ¢(1) # 0. Now Theorem 5.3 gives equality (5.12). The
convergence of the series will be proved in next section.
We assume now that (5.13) holds. Put

Zb —re _ 1 _ C( )p—s _|_pk—1—2s)—1 _ (1 _ Ap—s)—l(l _ Bp—s)—l
Ar+1 _ Br+1 s
= 2 TA B P,

where A, B satisfy that A + B = ¢(p), AB = p*~!. Hence
Ar+1 _ Br+1 r o
b T e — AT‘—’LB'L.
(") . ;
For any r < I, we have

b(PHb(p") = (A" 'b(p") — B b(p"))(A— B) !

_ (Al+1 iAr—iBi _ Bl+1 iAlBr—z> (A _ B)—l

=0 =0

— iAiBi(Al+1+r72i o Bl+1+r72i)(A _ B)71
=0

— Zpi(kfl)b(pbkrf%) _ Z alcflb(pl+r/a2).
=0

al(pt,pm)
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Let 0 #n = Hp”” be the standard factorization of n. By (5.13), we obtain that

n) = [ o).

pln

Let m = H p™?. Then we have
m) = [J o™ )b(p™")
P+ P
= H Z ak1b<p ) Z a*te(mn/a®).

P al|(p"P,p™P) al(m,n)

By the above equality and (5.14), we obtain that f|[T(n)]x = c¢(n)f. This completes
the proof. |

We consider now the case that I'" is a congruence subgroup of I". For any a €
I, we define a linear operator [I"al"]; on the space Ap(I"). Since R(I”,A’) is a
commutative ring, the elements of R(I", A’) give linear operators on Ay (") which
commute one another. And by Lemma 5.19, we see that [I"al"”], with a € A% is a
normal operator on Ai(I"). If o € A’ is such that det(a) = m|N°°, then by Lemma
5.17, we see that I"al” = I'a”I”. This implies that [I"al”]; is a self-associated
operator on A (). Since Si(I"”) is a finite dimensional vector space, we see that
there exists a basis of Si(I"") whose every element is a common eigenfunction of the
operators [["al"]; for all a € A’

For a fixed positive divisor ¢ of N, put

I = {76 SLQ(Z)‘/\N(W) = (8 atb ) a € (Z/NZ)* beZ/NZ},
((1) tb) beZ/NZ}

Al = {a € A’)\N(a) = (8 t;) a € (Z/NZ)*,b,d e Z/NZ},
(o

“’) bde Z/NZ}

It is clear that I} = I'h\(N) if t = 1. We denote by I'1 (N) the group I'" if t = N

It is clear that I'” is a normal subgroup of I} and I'}/I"" ~ (Z/NZ)*. For any
f € Grp(I'), v € T}, we see that f|[y]x € Gx(I'""). Hence we get a representation of
Ibon Gp(I'") : f — fl[¥lk- If v € I'", then f|[y]x = f, so that the representation
induces a representation of I'; /I on the space G (I""). This implies that the space
Gr(I'") is a direct sum of the spaces G (I'},v), where v is a character modulo N
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with ¢(—1) = (—1)* and

(I ) = {f € Gu(I")

ol = via)f foratiy = (15 ) e ).

Let o € Ay and Ijal() = Uféav be a disjoint union. For f € Gy (I}, ), put

FITGal gl = (det(a)™*~ 1Z¢ dy) f vk,

*
dy
Gr(I'§,%). Therefore we obtain a representation of R(I7), A) on the space G (I'§, ¥).
Denote by T'(a, d)k,y and T'(m)x,s the actions of T'(a,d) and T'(m) on the space
Gr(I§, ) respectively.

where «, = (: ) It is easy to verify that [Ijal}]x is a linear operator on

The subgroup fixing ico of I'} is generated by ((1) i) For any f € Gi(I}), f(2)

has the following Fourier expansion at ico:

o0
Zc Je(nz/t).
n=0

Let m be a positive integer, put

oo

9(z) == fIT (m)p,p = Zc’(n)e(nz/t).

n=0

By Lemma 5.18 and o, € I}, we see that

- 3 211’ <a2+bt>dk

ad=m,a>0 b=0

Qu
|
—-

:Zc(n) Z a*Y(a)e(naz/dt)d=1 > e(nb/d)
n=0

ad=m,a>0 0

= Z Z a*1(a)c(nm/a)e(anz/t)

n=0a|m

_Z Z F=Ly(a)e(nm/a?)e(nz/t),

n=0 a|(n,m)

o
Il

so that,

d(n) = Z a*Y(a)c(nm/a?).

al(n,m)
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If ¢ is prime to N, then

FT (4, ke = " 20(0) f, Vf € Gr(I§, ).

By (5.5), we see that

S T)kypn ™ =0 = T'®)kwp* + T (0, p)rpp' )"
n=1 P

Therefore, similar to Theorem 5.7, we obtain the following:

Theorem 5.8 Let0# f = Z c(n)e(nz/t) € Gip(I§, ) be a common eigenfunction
n=0

for all Hecke operators T'(n)k,q :

FT' (n)kp = M f.

Then ¢(1) # 0,c¢(n) = Ape(l) and we have formally

Do =TT =M™ + w727
n=1

P
Conversely, if we have formally
c(n)n™ =[] = ep)p™ + ¢p)p" %),
n=1 D

then we have f|T'(n)gy = c(n)f, where ¥(p) =0 if p|N.

5.3 Zeta Functions of Modular Forms, Functional Equation,
Weil Theorem

o0

Let f(z) = Z c(n)q” € G(N, k,w). Define its Zeta function as follows:

n=0

L(s, f) = Zc(n)n‘s7 se C.

n=1

In this section we shall discuss the convergence, analytic continuation and func-
tional equation of L(s, f).

Lemma 5.27  Let f(z) be as above. Then there exists a constant A such that
|f(2)| < Alm(2)~F for z € H and c¢(n) = O(n*).
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Proof Let s =d/c be a cusp point of I'H(N). Take

p= (_“C 2) € SLo(Z)

such that p(s) = ico. By the definition of a holomorphic modular form, f(p=1(z))(cz+
a)~" is holomorphic at z = ico. Therefore we see that

lim f(dz — b) (cz+a)™F = lii%(—cr)kf(T + )

2—100 cz+a
is a finite constant. Hence there exists a constant A, such that
f(2)] < Aslz — | 7% < AgIm(z) 7"

holds for all z nearby s. Since IH(N)\ H* is a compact Riemann surface, there exists
a constant A such that

|f(2)] < Alm(z)

for any z € H. By the Cauchy integral theorem, we have

—n 1
2m / 1a dg.

lg|=r

1
Take Im(z) = oy ie., 7 =e /" we obtain that
n

1
<5 [ IF@I g < A
lq|=e=1/n
This completes the proof. ]
Lemma 5.28 Let f(z Z n)q" € S(N,k,w). Then there exists a constant A

such that | f(2)| < Im(z)~%2 with z € H and ¢(n) = O(n*/?).
Proof Put g(z) = f(2)Im(z)¥/2. Then

9(v(2)) = 9(2)

for any v € I'o(IN). Let s be a cusp point of I'H(N). Take p € SLy(Z) such that
p(s) = ico. By the definition of a cusp form, we see that Zlirinoog(pfl(z)) = 0.
Therefore g(z) is a continuous function on the compact Riemann surface o(N)\H*, so
that it is bounded on I'h(N)\ H*. This shows that there exists A such that |g(z)| < A
for any z € H, i.e., |f(2)| < Alm(z)~*/2. The remaining part can be proved similarly
in the way used in the proof of Lemma 5.27. This completes the proof. O
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0

Lemma 5.29 Let W(N) = N

G(N,k,w) into G(N,k,).

_01>. Then the map : f — f|[W(N)], sends

Proof  For any (i Z) € IH(N), we have

W(N) (a Z) W(N)~! = (_?Vb _N_lc> € To(N).

c a
This shows the lemma. 1
Theorem 5.9 Let f(z) = Z c(n)q" € G(N,k,w). Put
n=0

L(s.f) = em)n",

Ry (s, f) = (2m)"N°I'(s)L(s, f)-

Then L(s, f) is absolutely convergent for Re(s) > 1+ k. Ry (s, f) can be analytically
continued to a meromorphic function on the s-plane with possible poles s = 0 and
s = k of order 1, and the residues are c¢(0) and b(0)N~*/2 respectively, where b(0)
is the constant term of the Fourier expansion of f|[W(N)]x at ico. And Rn(s, f)
satisfies the following functional equation:

Ry (s, f) = Ry (k — s, fI[W(N)]x).

Proof For Re(s) > 1+ k, by Lemma 5.27, we know that L(s, f) is absolutely
convergent. A formal computation shows that

| ) = ay=Yctn) [ty
0 1 0
=(2n) " °I'(s)L(s, f). (5.15)
We verify now the rationality of (5.15). For positive real numbers €, M, we have
[ cony | < a [T ey iay o, -,
M M
with a constant A. Put

o= IV =3 bn)g™.
n=0

Then we have, by Lemma 5.29 and Lemma 5.27,

[ oo =| [ (w00 () —e) vt w0 o
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oo
Since ¢(n) = O(n*), we see that Z c(n)e” ™Y is absolutely convergent for y > e.

Hence n=1
M - u
/ (f(lll) - C(O))ys—ldy = Z C(n)/ e—2nnyys_1dy.
‘ n=1 €

For any given small number € > 0, 7 > 0, there exists a sufficiently large number ng
such that

M [eS)
S el [ eyt < 3 kel [ ey
€ 0

n>ng n>ng

= (20) ') Y le(n)ln~" <,

n>no

where ¢ = Re(s). Therefore

\ / (i) - e(0))y*dy - Z (n) / N e—myys—ldy\

M 1o M
= tin | [ ) = ey = 3ot [ eyt <o
MHO’O € n=1 €

This proves (5.15). Taking B = N~/2, we have

%) B %)
/ (f(ig)—c(0))y*'dy = / (f(ig)—c(0))y* "dy+ / (f(iy)—c(0)y* 'dy. (5.16)
0 0

B

The first integral is absolutely convergent for Re(s) > 1 + k, the second one is con-

1
vergent for any s. Substituting y by N in the first integral, we get
Y

B
/0 (f(iy) — c(0))y**dy

= [N gli) = )Ny

c(0)  i*b(0)
sNs/2  (k—s)Ns/2’

—ittiee [ " (9li) — b(O))h Ry — (5.17)

The last integral in (5.17) is convergent for any s. Inserting (5.17) into (5.16), we
obtain

R(s. ) =N [ " (Fliy) — e(0))y>dy

B

22 [ y) - bty - - LU NERD
B s -5
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This shows that Ry (s, f) can be analytically continued to a meromorphic function
on the s-plane with two possible poles s = 0 and s = k of order 1, and with residues
¢(0) and b(0) respectively. Since f = (—1)*g|[W (N)]x, by changing f and g, we get

R (k= 5.) = N2 [ (glin) = b))y
> i*b(0 0
# N2 [ () 0y ay - T2 LY
B k—s s
- RN (87 f)
This completes the proof. ]

Lemma 5.30 (Phragmen-Lindel6f Theorem) Let
B = {s € Cloy < Re(s) < 02,Im(s) >t }.
Let f(s) be a holomorphic function in an open set containing B such that
f(s)| < Cel*", Vs e B,

where C,~y are positive constants. Assume furthermore that |f(s)| < M for any s on
the boundary of B. Then we have

F&) <M, VseB.

Proof It is well known as the Phragmen-Lindel6f Theorem. U

Theorem 5.10 Let {a,}, {bn} be two complex series such that a, = O(n°°),b, =
O(n°) with oo a positive constant. Put

oo oo
f(Z) _ ZaneQﬂinz7 g(z) _ Z bnem'tinz7 = Hv
n=0 n=0

Dy(s) = iannisa Dy(s) = i bnn™ ",
n=1 n=1

where Re(s) > oo + 1. If there exist constants A > 0,k > 0,C # 0 such that

—k
f(z) = OA’“/Q(A:> g(—1/(A2)), (5.19)

then Ps(s), Py(s) can be analytically continued to a meromorphic function on the
s-plane with two possible poles s =0, k of order 1, ®¢(s), $4(s) are bounded on any
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domain o1 < Re(s) < o2 not containing s = 0, k, and they satisfy the following
functional equation
By(s) = CA™FF 2, (k — s). (5.20)

Conversely, if $5(s), Pg(s) have these properties, then the equality (5.19) holds and
—ag, —bo are the residues of @5, @4 at s = 0 respectively.

Proof  The first part can be showed similarly as in the proof of Theorem 5.9. We
prove now the second part of the theorem. Consider the following integral:

e 1 I'(s)
et =5 / e ds, Re(z)>0,0>0. (5.21)
Re(s)=0o

Assume that @;(s), &,(s) have the properties stated in the theorem. Take
B = {s|o1 < Re(s) < o2,Im(s) > ¢; > 0}.

We want to show that there exists a constant a such that D¢(s) = O(|s|*) holds for
any s € B.

We take 01, o2 such that oy is small enough and o9 is large enough. Then D (s)
and Dg4(k — s) are bounded on Re(s) = 02 and Re(s) = o1 respectively. (5.20) can be

rewritten as
2s—k F(k - S)

Dj(s) = CA=5TF/2(27) 0

Dy(k — s).
By the Stirling formula, we see that
I'(s) ~ Vorto 1V 2e U2 g = 5 4t [t| — 400,

so that

~ |t|k7201

I _
‘(ks) . Re(s) = o1, |t| — +o0.

I'(s)

Therefore Dys(s) = O(|s|¥7291) for any Re(s) = o1. Let a = max{0,k — 201 }.

Then s~*D¢(s) is bounded on the boundary of B. By assumption, &¢(s) is bounded

on B. The Stirling formula gives that I'(s)~ = O(el*7) for any v > 1. Hence we

obtain that Dj(s) = O(el*I7), so that s™*Dy(s) is bounded on B by Lemma 5.30.
Therefore Dy(s) = O(|s|*) holds on B. This shows that

Bp(s) = O(t|7 o~ V2e~H/2)  |t| — o0, Re(s) = o (5.22)

holds uniformly for o1 < 0 < 03.
For o > k, put

F(z) = — / P(s)z™%ds, Re(x) > 0. (5.23)
Re(s)=0

Since |z7%| = e~ 787 (r = |2|, § = arg(x), |6] < m/2), by (5.22), we see that
the integral in (5.23) is absolutely convergent for any o > k. Therefore F(x) is
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independent on ¢ by the holomorphy of ¢(s) (for Re(s) > k), (5.22) and the Cauchy
integral theorem. It is easy to verify that we can integrate (5.23) term by term for
any o large enough:

1 - —s —Ss,. —S8 - —2mnax
F(l‘):ﬁzan / (2n)~°I'(s)z™°n ds:z_:lane ,
n= Re(s)=c n=
by (5.21).
We can discuss @,(s) similarly, i.e., for o > k, put
G =5 [ Bls)d
T o g\8)T a8,
Re(s)=0c

then -
G(z) =) bpe .
n=1
We consider now the integral of @(s)z~° along the path: Re(s) = o, Re(s) =k — o,
Im(s) = ¢, Im(s) = —t with ¢ > 0. By (5.22), we see that the integrals along
Im(s) = £t converge to zero (for t — 00). Let —ag, —bg be the residues of @¢(s) and

®,(s) at s = 0 respectively. Then (5.20) shows that byC' A~*/2 is the residue of & (s)
at s = k, so that, by the residue theorem, we have

F(x)=— / Py(s)x™ds —aop + boCA 2",
Re(s)=k—o
By (5.20) again, we see that
F(z) +ag = CA 22 "(G(1/(Az)) + bo).
That is,
i ape” 2T — CA- 5y~ i bne_%.
n=0

n=0

Let x = —iz in the above equality with z € H, then by the definition of f, g, we obtain

e (5) k)

which is the desired result. This completes the proof. O

Remark 5.1 Let f, g be as in Theorem 5.9. Since W(N)? = —N, we see that
f = (=1)Fg|[W(N)]x, so that

f(z) = i’“g( - (le)> (Aiz> Nt
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Hence the functions f, g satisfy the conditions in Theorem 5.10, so that we get The-
orem 5.9 from Theorem 5.10 (Take A = N, C = i* in Theorem 5.10).

We consider the following;:
Condition(x) Let f(z) be a holomorphic function on H with generalized uniformly
absolutely convergent Fourier expansion:

oo
f(Z) _ Z anemtmz
n=0

and there exists a positive constant V' such that
f(z) = O((Im(2))""), Tm(z) =0

holds uniformly for Re(z) (This is equivalent to a,, = O(n")).

By a “generalized uniformly” property we mean that there exists a positive number
[ such that the series has the property uniformly for Im(z) > . By Theorem 5.10, we
have

Theorem 5.11 Let k, N be positive integers, and let
f(Z) — z:alne%tinz7 g(z) — Z bne2ninz
n=0 n=0

satisfy the Condition(x), and Ry (s, f), Rn(s,g) defined as in Theorem 5.9. Then
the following two assertions (1) and (2) are equivalent:

(1) g(z) = (FIIW (N)]k)(2);
(2) Rn(s, f) and Rn(s,g) can be continued analytically to a meromorphic function
on the s-plane and satisfy the functional equation:

RN(S’ f) = ikRN(k_Svg)

i*b
k—s

and Ry (s, f) + 2—0 +
Re(s) < o2.

is a bounded holomorphic function in any domain o1 <

Let f(z) satisfy Condition(x) and 1 a primitive Dirichlet character with conductor
m = my. Put

fo(z) =Y (n)ane™n?,
n=0

L(s, f,9) = Y _ ¢(n)ann™>,
n=1

mvVN

) TOIL ),

Rts. £ = (
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It is clear that

L(s, fy) = L(s, f.¥), Rmz(s, fu) = Rn(s, f, ). (5.24)
By (5.24) and Theorem 5.11, we have

Lemma 5.31 Let f, g be functions on H satisfying Condition(x), ¥ a primitive
Dirichlet character with conductor m = my. Then the following two assertions are
equivalent:

(Ay) folW(Nm)]k = Cygy;

(By) Rn(s, f,) can be continued analytically to a holomorphic function on the
s-plane, which is bounded in any domain o1 < Re(s) < o2, and satisfies the following
functional equation:

RN(S’ fa w) = lkOﬂlRN(k -5 g7a)

For any real number a, put a(a) = ((1) (11>

Lemma 5.32 (1) Let f,v be as in Lemma 5.31. Then for any positive integer k,
we have

Fo =W w s o (L)] (5:25)
u=1

where W (1) is the Gauss sum of 1 :

(2) Let f(z) € G(N,k,x), my the conductor of x, M the least common multiple
of N, mi and mymy. Then fy, € G(M,k,x¥?), and fy is a cusp form if f is a cusp
form.

Proof For any integer u, we see that

(1o (2)),) 1= S

Hence
:1¢(u) <f {a (%)] k) (2) = 2 (gw(u)e%i“”/m)ane%im = W(¥)fy(2).

This shows the first part of the lemma.
Suppose now that f € G(N, k, x). Since

a(u/m)I'(Nm?)a(u/m)~" C ITh(N),
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flla(u/m)]x € G(I'(Nm?),k). Hence fy, € G(I'(Nm?),k) by the first part of the

lemma. So we only need to show that, for any v = (: d* ) € Iy(M),
y

Folle = (®)(dy) fy

holds. For v = ( ¢ b) € I[h(M), put

cM d
¥ = a(u/myya(dufm)~",

!

/
then v/ € I'hy(M) C I'o(N). Denote v/ = (i, Z,), then

Therefore
Fllatu/m)y]e = x(d) flla(d?u/m)].

Multiplying on both sides by ¢(u) and adding them for u, by (5.25), we obtain

Folle = 9(d®)x(d) fo-
This completes the proof. O

Theorem 5.12 Let f € G(N, k,x), ¥ a primitive Dirichlet character with conductor
m prime to N. Then

Fol[W(Nm?))y, = Cygy,
where g = f|[W(N)]x and

Com O = x(mm—mg% _ AW

Proof For any integer u prime to m, there exist integers n, v such that nm—Nuv =
1, then

m —v

alu/m)W(Nm?) = (mI)W(N) <—uN n ) alv/m). (5.26)
Since g = f|[W(N)]x € G(N, k,X), we see that

Flle(u/m)W (Nm?)], = x(m)glla(v/m)]i,
by (5.26). Now Lemma 5.32 gives

W () fy W Z¢ a(u/m)W (Nm?)J
= xX(m) 3 0= Nolglodu/m)
Z«/} )glla(v/m)]

= X(mW(—N)W(w)ga
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This completes the proof. ]

Theorem 5.13 Let f(z) € S(N,k,x), ¥ a primitive Dirichlet character with con-
ductor my, prime to N. Then Rn(s, f,v) is a bounded holomorphic function in any
domain o1 < Re(s) < 02, and satisfies the functional equation:

RN(Sa fa ¢) = lkci/JRN(k - S, f|[W(N)]kaE)a
where Cy, is defined as in Theorem 5.12.

Proof Thisis a direct conclusion of Theorem 5.11, the equality (5.24) and Theorem
5.12. O

The remaining part of this section is dedicated to proving Weil’s theorem which
may be looked upon as the inverse proposition of Theorem 5.13 under some assump-
tions.

For any integers m, v with (m,vN) = 1, take integers n, u such that mn—uvN = 1,
and put

sy = (e ) € 1)

n

It is clear that the choices of n, v are not determined uniquely by m,v. But © mod m
is unique and
alu/m)W(Nm?) = (mI)W(N)y(m,v)a(v/m).

We can extend the action of GL3 (R) on functions on the upper half plane to the

group ring C[GLS (R)]: for any 3 = Z ana € C[GLS (R)], define

Blk =Y _aafllele, Vf:H-—C.

Lemma 5.33 Let k, N, f,g be as in Theorem 5.11, f, g satisfy the condition (A) in
Theorem 5.11 and the condition (Ay) in Lemma 5.31. Let ¢ be a primitive character
with conductor m > 4 a prime. Put

Then, for any integers u,v prime to m, we have

9ll(x(m) =~ (m, u))a(u/m)]i = gl[(x(m) = y(m,v))a(v/m)].

Proof By the condition (Ay) and Lemma 5.32, we see that

Zw alu/m)W (Nm?)] Z¢ a(u/m)]. (5.27)
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For any u, take an integer v such that —uvN =1 (mod m), by (5.26), we have
Flla(u/m)W (Nm?)]i, = glly(m, v)a(v/m)]k. (5.28)

The left hand side of (5.28) is independent of the choice of the representatives of
u mod m, so is the right one. Hence, by (5.27) and (5.28), we obtain

> $@)(gll(x(m) = y(m,v))a(v/m)]; = 0. (5.29)
vmodm
Let v1,v2 be integers prime to m. Multiplying the both sides of (5.29) by (¢¥(v1) —
¥ (v2)) and adding them for all primitive characters ¢ modulo m, we get
gll(x(m) = v(m, v1))a(vi/m)]i = gl|[(x(m) — v(m, v2))a(ve/m)]k.
This completes the proof. O

Lemma 5.34 Let k, N, f, g be as in Lemma 5.33, m > 4,n > 4 primes, ¥ a
primitive character modm or modn with conductor my,. Put

Cy = x(mww—mm.

Then, for any v = (—7:]\7 —nv> € Ih(N), we have

gl =x()g.

Proof Puty = (un;] Z), by Lemma 5.33, we have

gll(x(m) =7 )a(=v/m)]x = gl[(x(m) = v)e(v/m)]x.

Hence
9ll(x(m) = v")a(=2v/m)]k = gllx(m) — 7] (5.30)

/—1

Substituting v by 7'+, in the same way, we obtain

gllx(n) =77k = gll(x(n) =y Ha(=2v/n)]. (5.31)
Since x(n)x(m) =1,

x(n) ="t = —x(n)(x(m) =),

(x(n) =y~ Ha(=2v/n) = —x(n)(x(m) — )7~ a(=2v/n).

Inserting (5.32) into (5.31), we obtain

(5.32)

gllx(m) =+'Te = gll(x(m) = Y~ a(=2v/n)y ]k (5.33)
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Therefore, by (5.30) and (5.33), we see that
gllix(m) =N =7 a(=2v/n)y'a(=2v/m))] = 0.

Put h = g|[x(m) —v]x = x(m)g — g|[V]x, then h is an analytically function on H and
satisfies

Bk = h, (5.34)
where ) 20
R I _ —Zv/m
f=7"a(=2v/n)ya(=2v/m) <2uN/n —3+4/mn> '
Since Tr(8) = |—2+4/mn| < 2, § is an elliptic element. It is clear that |Tr(5)| # 0, 1.

So that, the eigenvalues of 3 are not roots of the unity. Let 2y € H be a fixed point

of 3, put
1 —
p= (Zo —%)71 (1 ﬁ) S SLQ(C)
%
For z € K := {z € C||z| < 1}, put

p(z) = (hllp™ o) (2) = (P~ 2) " Fh(p™t2).

Then p(z) is an analytical function on K. Let
1_ (¢ O
pﬂp - (0 <71 ) 9

p(¢%2) = ¢ p(2).

then, by (5.34), we get

Let p(z) = Z a,z" be the Taylor expansion of p(z) at z = 0, then a,(*" = (" *a,.

n=0

Since ¢?"** # 1 we must have a,, = 0 and hence h(z) = 0. This shows that

9lve = xX(0)g-
This completes the proof. O

For any co-prime positive integers a,b, put S(a,b) = {a + bn|n € Z}. Let M be a
set of some primes larger than 4, which satisfies the following two conditions:

(1) any element of M is prime to N;

(2) M (N S(a,b) # & for any S(a,b).

There exists such set M, e.g., let M be the set of all primes which are prime to
N and larger than 4, then M satisfies the conditions of Dirichlet’s theorem about the
existence of primes in an arithmetical progression.

We can now state and show the following important result:
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Theorem 5.14(A.Weil) Let k, N be positive integers, x a Dirichlet character mod-
ulo N and satisfying x(—1) = (—=1)*. Let {a,}>% and {b,}°, be two complex series
satisfying a, = O(n*) and b, = O(n*) with u a positive constant respectively. Put

o0 o0
f(z) = Z:ane%'cinz7 g(z) _ anemﬂnz’ » € H.
n=0 n=0

If f and g satisfy the following two conditions:

(1) Rn(s, f) and Rn (s, g) satisfy the condition (B) in Theorem 5.11;

(2) for any primitive Dirichlet character 1 with conductor my, € M, Ry (s, f, ¥)
and Ry (s, g,) satisfy the condition (By) in Lemma 5.31 with corresponding constant

W)
Cp = Cnyp = x(my)P(=N) —==,
W ()
then f(z) € G(N,k,x),9(2) € G(N,k,X), and g = f|[W(N)|x. If, moreover, there
exists a positive number § such that L(s, f) is absolutely convergent at s = k — 9, then
f and g are cusp forms.

Proof Let~y = (c?\/' Z) € IH(N). If ¢ =0, then @ = d = %1, so that g|[y]x =

X(d)g = X(7)g by x(—1) = (=1)k. Assume now that ¢ # 0. By (a,cN) = (d,cN) = 1
and the properties of M, there exist integers s,t such that a + tcN, d + scN € M.
Putm=a+teN,n=d+ scN,u=—c,v=—(b+ sm+ bst + N + nt), then

a b\ (1 —t m —v 1 —s
cN d) \0 1 —uN n 0o 1)
By Lemma 5.34, we see that

gllV]k = X(n)g = X(d)g-

This shows that g|[v]x = X(v)g for any v € IH(N). Since b, = O(n*), g(z) =
O(y~'7#), hence g € G(N,k,X). By Theorem 5.11 and Lemma 5.29, we see that
f=(D)kgl[W(N)lk € G(N, k. x).

Assume now that L(s, f) is absolutely convergent at s = k — 0. Then L(s, f) is
absolutely convergent at s = k. By the functional equation, we see that Ry(s,g) is
holomorphic at s = 0, so that by = 0 since —bg is the residue of Ry(s,g) at s = 0.
Hence ap = 0. Put ¢(n) = Z |@m|, then

m=1

n

n
c(n) = Z || < nF7° Z | | R0,
m=1

m=1
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So that, c¢(n) = O(n*~%). This implies that Z lc(n)|e”?™Y is convergent and

n=1

D le(m)le™™ = O(y=*°71), y—o.
Since |a,| = ¢(n) — ¢(n — 1), we see that

SIS (=) 3 clajem.

Hence f(z) = O(y~**%) which implies that f is a cusp form. This completes the
proof. O

5.4 Hecke Operators on the Space of Modular Forms with
Half-Integral Weight

Let N be a positive integer with 4|V, k an odd positive integer. Put

L:ye={v,i(v,2)}

the map from I'h(N) to G. Denote by Aog(N), A1(N), A(N) the images of I'h(N),

I't(N), I'(N) under the map L respectively. Denote by G(Ao(N), k/2), G(A1(N), k/2),
G(A(N),k/2) the spaces of holomorphic modular forms with weight k/2 and the

groups Ag(N), A1(N), A(N) respectively. And let S(A¢(N),k/2), S(A1(N), k/2),

S(A(N), k/2) be the corresponding spaces of cusp forms. Let A be a Fuchsian sub-

group of the first kind of G. For any f, g € G(A,k/2) (at least one of them is in

S(A,k/2)), we can define the Petersson inner product

(rg) = (F.9)a = / F(2)9 (2> 2dady,
where D is a fundamental domain of A and

u(D) = / y~*dzdy.
D

Tt is clear that (f,g)a = (f,g)ar f A’ C Aand [A: A] < >
It is obvious that A; (V) is a normal subgroup of Ag(N). For any £ € Ag(N), we
have a linear operator on G(A1(N), k/2) as follows:

E:f e fliElk, feG(AN),k/2),

where the definition of f|[£]; is the same as the one for modular forms with half
integral weight in Chapter 3. Hence we get a representation of the quotient group
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Ao(N)/A1(N) ~ (Z/NZ)* on G(A1(N),k/2). Since (Z/NZ)* is an abelian group,
the space G(A1(N),k/2) can be decomposed into a direct sum of some one dimen-
sional representation spaces, so that

G(A1(N),k/2) = @GNk/z w), (5.35)

where w runs over all even characters modulo N. Similarly, we have

S(A1(N),k/2) = @S (N, k/2,w). (5.36)
Let £(A1(N),k/2), E(A(N),k/2) and E(N,k/2,w) be the orthogonal complement
spaces of S(A1(N),k/2), S(A(N),k/2) and S(N,k/2,w) in G(A1(N), k/2), G(A(N),

k/2) and G(N, k/2, w) with respect to Petersson inner product respectively. For any
fe&(N,k/2,w), g€ S(N, k/2,w) with w # w’, we see that

w(de)(f, 9) = (fIlElk, 9) = (f,9ll€ Tk} = &' (de)(f, 9)

for any £ € Ag(INV). Since d¢ is any element of (Z/NZ)*, it shows that (f,g) =0, i.e.,
f€&(A1(N),k/2). Therefore

E(AL(N), k/2) = @gNk/z w). (5.37)

Lemma 5.35 Let N, M be positive integers with N|M, w an even character modulo
N, k an odd positive integer. Then

(1) E(AL(N), k/2) = G(AL(N), k/2) N E(A(M), k/2);
(2) E(N,k/2,w) = G(N, k/2,w) NE(A(M), k/2); R
(3) For any f € £(A1(N),k/2), « € GLI (Z), &£ = {a,$(2)} € G, we have
FIiEle € (AN det(@)), k/2).
Proof It is clear that
G(AL(N), k/2)NE(A(M), k/2) C E(AL(N), k/2),
since S(A1(N),k/2) C S(A(M),k/2). Let

be a disjoint union, where m = [I(N) : I'(M)] = [A1(N) : A(M)] < oo. For any
fe&(AL(N),k/2), g€ S(A(M), k/2), it is easy to see that

Z gjkES ( )’k/2)7
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so that .
0=1(f,9")a,(n Zf79|§g k) A(M)
j=1

Z <f7 > A(M)>

Jj=

which shows that f € E(A(M), k/2). That is,

=

E(AL(N), k/2) C E(AM), k/2).

This shows the first assertion of the lemma. By (5.35), (5.37) and (1), we obtain (2).
We want now to prove (3). By (2), it is clear that f € £(A(N det*(«)), k/2). For any
g € S(A(N det(a)), k/2), then g|[¢ ']y € S(A(N det?(a)), k/2), and

(FlIElks 9) AN det(ay) = (F+ 9IE k) AN det2(a)) = 0
This shows that f|[¢]x € E(A(N det(a)), k/2) and hence completes the proof. O

Let A be a Fuchsian subgroup of G of the first kind. For ¢ e G’, A and £ A€ are
commensurable, then we have a disjoint union:

d
A¢A = | Ag;.

j=1

For any f € G(A,k/2), define
FI[AgA) = (det())*/* 1Zf|

It is easy to see that f|[ALA], € G(A,k/2). Let P be the projection from G to
GL3 (R). Put I' = P(A). For « € GL] (R), I' and o~ 'I'a are commensurable. Take
afe G such that P) =a. Forany v € I'Na 'Ta, PEL(Y)¢Y) =aya~t el
then there exists a t(-y) such that

Llaya ™) =EL()E L t()}, velNa 'Ta

The map ¢ : v +— t(7y) is a homomorphism from I'(a"'I'a to T := {z € C||z| = 1}
which is independent on the choices of &.
Here and after, we write f|[*] for f|[*].

Lemma 5.36  Let A, I', £, « and the map t be as above, then L(Ker(t)) =
ANETTAE. If [T : Ker(t)] < oo, then A and E1AE are commensurable. If t* # 1,
then f|[AEA] =0 for any f € G(A,k/2).



5.4  Hecke Operators on the Space of Modular Forms with Half-Integral Weight 137

Proof If v € Ker(t), then

L(y) = ¢ ' L{aya™ g € AN AC

Conversely, if L(y) € AN ¢ TAE, then EL(y)¢! € A. Since P(EL(7)67Y) = aya™t,
we see that L(aya™!) = £L(y)€7L, so that t(y) = 1. This shows that L(Ker(t)) =
ANELAE This implies also that [A @ AN E7LAE] = [I' : Ker(t)]. Since P is an
isomorphism from £ 1 A€ to o' I'a, we have

[ETAE: ANETTAE] = [a ' Ta: Ker(t)].
If [I" : Ker(t)] < oo, since I" and o~ 'I'a are commensurable, we see that A and

&Y A€ are commensurable.

Let 'Na 'la= LJKer(t)ozi7 r= U(Fﬂailfa)'yj be disjoint unions. Then

z J

A=JL(rNa 'Ta)L(v;) = J(ANE A8 Laiy),

J 0,J
so that
AEA = | J A¢ - Lai). (5.38)

%,J
Since a; € I'(a~'Ta, we see that
§L(a;) = L(aaza™)E{L, t(as) 71}

For any f € G(A,k/2), we have
FIIAEA] = (det(€))**71 3 fllgL(einy)]

= (det(€))*/4—1 Zt(ai)’“ Z FIEL()] =0,

where we used the fact that Zt(ai)k = 0. This completes the proof. O

K2

Lemma 5.37 Let the notations be as in Lemma 5.36. Then the following assertions
are equivalent:

(1) L(INa~'Ta) = ANEA

(2) Llaya™) = EL()E for any v € ' (o' Ta;

(3) P is a bijection from AEA to I'al.
If the above conditions hold, then AEA =] A& if and only if T'al = I'- P(§).
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Proof  The assertions (1) and (2) are both equivalent to Ker(t) = I'(a " !Ia.
Since ac;a~! € I' (Using the notations in the proof of Lemma 5.36), P maps bi-
jectively the right coset A{L(ay;) in (5.38) to the right coset I'ay;. Since I'al’ =

Ufomj and (5.38), P is a bijection from AA to Ial' if and only if Ker(t) =
J

I'Na 'Ia. This shows that the assertion (3) is equivalent to the assertions (1) and
(2). Finally, if the assertion (3) holds, then it is easy to see that AEA = J A¢ if and
only if 'al’ =|J I'P(&;). This completes the proof. |

Let A = Ag(N) with 4|N and I' = Iy(N). Put
o — (m 0)
0 n)’
with m, n positive integers. Take & = {a, t(n/m)'/4} € G. For any v € I'y(4), put
v ={riv2)}

If v = (‘c‘ Z) € INe~'Ta, then
ava-l= ™ 0 a b m~t 0\ _ a bmn~? cr
@ = 0 n)\c d 0 nt) 7 \enm™! d ’

(aya™h)* = {o/ya_17 ;! <(Mdn> (cnz/m + d)1/2}

et Sy (ML
evetfu (™
. mny .
This shows that v — (7> is the map t, so that f|[A¢A] =0 for any f € G(A,k/2)

if (%) is not identical to 1.

Let x,, denote the character (@>

Lemma 5.38 Let m be a positive integer with m|N°° and the conductor of the char-

1 ~
acter Xm 18 a divisor of N. Put Ay = A1(N), a = <O Tg) and £ = {a,m1/4} eq.
Then [A1€ A1) maps G(N, k/2,w), S(N,k/2,w) and E(N,k/2,w) into G(N, k/2,wxm),
S(N,E/2,wxm) and E(N, k/2,wxm) respectively. Suppose

oo

f(z)= Za(n)e(nz) € G(N,k/2,w),

n=0
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then

oo

fl[A1€A] = Z a(mn)e(nz).

n=0

Proof For any f € G(N,k/2,w), it is easy to see that

g = f‘[AlgAl] S G(A17]€/2)

For any v = (i 2) € I'y(mN) with mN|b, put § = v*, ¢ = £56 L. Since

_ a bm™!
ayo 1:<cm d >€FO(N)7

= (cwal)*{l, (%)}

Since §A1671 =eAe”! = Ay, we have

we see that

A1£A1 . A15A1 = A1§6A1 = A1€£A1 = A1€A1 . A1£A1.
And hence

o] = fllng] - 0] = 7l (s ] = (@) (% )

139

For any v € I'h(N), we can find an element 8 € I'1(N) such that 8y € Io(mN)
and the upper right entry of 87’ is divisible by mN, so that g € G(N,k/2, wxm).
Since the value of g at a cusp point is a linear combination of the values of f at some
cusp points, [A1€£A1] maps S(N, k/2,w) into S(N,k/2,wxm). If f € E(N,k/2,w), by
Lemma 5.35, f € E(A(mN), k/2). For any g’ € S(A(N),k/2), by Lemma 5.26 (it is

clear that the lemma holds also for the half integral case), we have

<gagl> = <f7 gIHAlgAlD = 07

since ¢'|[A1€41] € S(A(mN),k/2). This shows that g € E(A(N),k/2), s

[A1€A1] sends E(N, k/2,w) into E(N, k/2,wXm)-
Denote by I the group Iy (V). By Lemma 5.17, we have

" 1 b " 1 b
Flarl:bL_Jlrl(O m):L_JlF10Z<O 1)

a bm

_(a D -1 -1 _
If v = (c d) € I'Na~'I'a, then aya™ = (cm d

(mod N), we see that (aya™!)* = &y*¢~1. By Lemma 5.37, we have

mea=Uae(y 1) -
b=1

) € I'y. Since d

that
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oo

If f(z) = Za(n)e(nz) € G(N,k/2,w), then
n=0
FllALEA] = mF/* 1ZfH ( ) }
z+b
= m_l f
2i()
=m ! Z a(n)e(nz/m) Z e(nb/m)
n=0 b=1
= Z a(mn)e(nz)
n=0
This completes the proof. O

Lemma 5.39 Let m, n be square integers, and
1 0 10
(o m) o=(0)
¢={ami}, n={fni}.

Suppose that (m,n) =1 or m|N>°, and A is any one of Ag(N), A1(N) and A(N),
then
ALA - AnA = AénA = AnA - AEA.

Proof Denote by I' the group P(A). By Theorem 5.5, Lemma 5.8 and Theorem
5.4, we see that

Ial TRl =TaBl = T'AI - Tal.

Let I'al' =JI'a;, I'BI =JTI'B;, I'apI’ =] I'ey be disjoint unions. Since mn is a
square, by Lemma 5.37, we have

AA =Aaj, AnA=UAB;, AnA =4,
with P(a}) = i, P(B}) = Bj, P(e},) = ek. Since there exists unique (4, j) such that

I'a;; = I'af, there exists an unique (4, j) such that Aagﬁg = A¢&n. This completes
the proof. 0

Let m be a square, o = (é i) and £ = {a,m%}. Put

Iy =Io(N), Ag=Ag(N), Ay = A (N).
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Let Ioaly = |J oo, ApfAo = |J A& with oy = P(&;). We define the Hecke
operator Ty o (m) on G(N, k/2,w) as follows:

FITN olm) =m0 3w £

where o; = (C:f :) It is easy to verify that the actions of Ty . on G(N, k/2,w)

coincides with the one of [A1£A1], which sends S(N,k/2,w) and E(N,k/2,w) into
themselves respectively.

Theorem 5.15 Let p be a prime, f = Za(n)e(nz) € G(N,k/2,w). Put

n=0
TN ew(?) = Z b(n)e(nz).
n=0

Then
b(n) = a(p?n) + w1 (p) (g)p“am) oGP 2, (5.39)

—1 —1)*
where)\:kz,wlzw<( *) ) and a(n/p®) =0 if p* { n.

Proof If p|N, we have b(n) = a(p?n) by Lemma 5.38. So we assume that p { N.

Put o = ((1) ;) and £ = {oz,p%}. The following p? + p elements consist of a

complete set of representatives of right cosets of Iy in I'yaly:

1 b 1 0 1 b 9
= = <
w=(o )= (o ) (s 1) 0erer®
_(p hY\ _ 1 0 1 0 p h
ﬂh_(O p>_(psN 1) (O p2> (—SN r)’ 0<h<p,
> p? 0\ _ [(p* —t\[(1 O p?d t
“\o 1)\~ a)\o p2)\ =N 1)
where for each h we choose r, s such that pr+shN = 1, and ¢, d satisfy p’d+tN = 1.
For v, § € Iy, we define L(yad) = v*£6*. By Lemma 5.29, this is a bijection from
Toaly to Ap€dg, L(ay) (0 < b < p?), L(Br) (0 < h < p) and L(o) consist of a

complete set of representatives of right cosets of Ag in Ag£Ag. A direct computation
shows that

L(os) = {an,p?}, L(Gh) = {ﬂ(‘pﬁ) } L) = (o5} ).
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Therefore

FITN kw(p?) = pM272 ( > FIL(an)] +w(p) Y FILBR)] + w(p?) f| [MU)]) - (5:40)

b h

But
PR L) =P YD f (e )
b b

2

=p° Z Je(nz/p®) > e(bn/p?)
= b=0
= Z a(p®n)e(nz) (5.41)

P S = kz( ) (= + h/p)
b2k (%) g: a(n)e(nz) 5 (%)e(nh/p)
_ ((‘”A> i (”>a(n)e(nz), (5.42)

p

where we used the Gauss sum

It is clear that

P22 f|L pr 22 e(np®z) (5.43)
Inserting (5.41)—(5.43) into (5.40), we obtain the desired result. This completes the
proof. O

Let m be any positive integer, we define a translation operator V(m) as follows:
fIlV(m) = f(mz), VfeG(N,k/2,w).

Theorem 5.16 If f € G(N, k/2, w) (or S(N, k/2, w), E(N, k/2, w) respectively),
then f|V(m) € G(mN, k/2, wxm) (or S(mN, k/2, wxm), E(MN, k/2, wxm) respectively).

Proof Pu‘cf:{(%1 ?),m_1/4}. Then

FIV(m) = m~** f|[¢].
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b
For any v = (Z d) € I'y(mN), we see that

(5 1) (" )= W) enom

so that,

Hence

=
™
=)
%
|

(@ (%) 1l

which shows that f|V(m) € G(mN, k/2,wxm). The still open assertion can be proved
along similar lines as used in the proof of Lemma 5.38. This completes the proof. O

We introduce now the Fricke operator W(Q). Let @ be a positive divisor of N such

that (Q, N/Q) = 1. Take integers u, v such that v@Q 4+ uN/Q = 1, then ( Q _1)

ulN 0@
satisfies
-1
(ucg\f ;5>FO(N)<uC]2V ;5> = Io(N).

If 24Q, put

(1 0 1 Q -1\

v@={(0 o)} (o )

:{(u?V ;5>7E(51Q‘11(UNQ12+U)é}.

If 4|Q, put

_ 0 -1 oo (uN/Q v\
w={ (g )t ()
B { (ﬁv %) e TIQIWNQ 4 v
It is clear that W(Q) € G is dependent on the choices of u,v.

Theorem 5.17 Let f € G(N, k/2, wiws) with wy and wy characters modulo Q
and N/Q respectively. Then g = f|[W(Q)] € G(N, k/2, wiwaxq) is independent on
the choices of u, v. And the operator [W(Q)] sends S(N, k/2, wiwz) and E(N, k/2,
wiws) into S(N, k/2, wiwaxq) and E(N, k/2, Wiwaxqg) respectively.
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Proof  Suppose @ is an odd(we can similarly prove the theorem if 4|Q) and uq, v1
satisfy v1Q + w1 N/Q =1 also. Then

(80 (e ) (e &) (6 ) )
:<(uvl —lvul)N (1)> ‘

1 *
This shows that ¢ is independent on the choices of u, v since 0 S
(uvy —vur)N 1
a b

Ao(N). Let v = (c d) € Io(N), a= (u]\?/Q _vl>, then
(a0 b\ [ Q -1 Q -1\
70_(00 d0>_(uN vQ)W(uN 'UQ) € Io(N)

do = auN/Q + buN + cv + dv@Q.

and

Since uN/Q + vQ = 1, ad = 1 (mod N), we get dg = a (mod 4Q) and dy =

d (mod N/Q@). But
-1 _ ag bOQ
o= (e i)

so that

since (Q> = (Q> = (Q> Therefore we have
do a d

g = fIIW(Q)7"] = (wxq)(do)g = (@iwaxq)(d)g,

where w = wyiwe. This shows that [W(Q)] sends G(N, k/2, wiws) into G(N, k/2,
wiwax@). It is easy to see that [W(Q)] sends also S(N, k/2, wiws) into S(N, k/2,
wiwzXq). Then, by Lemma 5.35, we see that [W(Q)] sends also E(N, k/2, wiws) into
E(N, k/2, Wiwaxq). This completes the proof. |
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It is easy to verify that W (Q)? is the identity operator. If Q= N, since ( u 1 )

vN 1
EAO(N)and
u  —1\" N =1\ st
(uv 1) {(mv UN>’e /4N4(“Z+”)}
0 -1 1, .1
(v )it}

we can take W(N) = { (1(3, _01) 7Ni(—iz)5}.

=

Let f(z) = i a(n)e(nz) € G(N,k/2,w), and ¢ a primitive character modulo m.
Put " .
Twist(f) = Y b(u)f (2 + )
u=1
=Y dwe () 3 vimam)e(nz)
u=1 n=0

Theorem 5.18  Let s be the conductor of w. Then Twist(f) € G(N*,k/2,w?)
with N* the least common multiple of N, sm, 4m and m?. If f € S(N, k/2, w) or
f€EN, k/2, w), then Twist(f) € S(N*, k/2, wp?) or Twist(f) € E(N*, k/2, wip?)
respectively.

Proof Let~y= ( N b) € I'o(N*) and

cN* d
a =a+ cuN*/m,
b =b+du(l — ad)/m — cd®*u®>N*/m?,
d =d— cd>uN*/m.

It is clear that a’, b, d’ are integers. It is easy to verify that

()= ({5

N* N*
where we used the facts: d = d’ (mod 4) and (C ) = (C ) Hence

dl

Twist (/)" = gﬁ(“)f (¢ %> o
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where we used the fact sm|N*. This shows that Twist(f) € G(N*, k/2, w?). The
rest results can be proved similarly as in the proof of Theorem 5.17. This completes
the proof. O

The operator Twist(-) is called the twist operator.

Let f(z Z a(n)e(nz) € G(N, k/2, w). We define the conjugate operator H
n=0
as follows: .
(f1H)(z) =Y aln
n=0

For any v = <z Z) € I'o(N), we have

() = (A0 ) st (5 ) e + 7T

That is, f|[H € G(N, k/2, w). It is easy to verify that f|H € S(N, k/2, &) (resp.
E(N, k/2,w)) if f € S(N, k/2,w) (resp. € E(N, k/2, w)).
Theorem 5.19 Let f € G(N, k/2, w). Then

IV ) T kwren (0°) = (FITN oo (@) |V (M), ptm,

(
(FHDITN kw(0?) = (FITN ke (%) H,

(W (NDITN ke (07) = D) (TN e ®@)WN)],  ptN.

Proof  The first two equalities can be deduced by (5.39) and the definitions of
V(m) and H respectively. By (5.40), we have

p>—1

(FIW (N)DIT N gz IV (V)] =p’“/“( > AW (N)L(o)W (N) ']
b=0

N 22
o) (M) ST AW LG W ()
P () S AW DLEW )
+D(p2)f|[W(N)L(G)W(N)‘1]>- (5.44)

Write o = ((1) ;), 8= ( 0 _01>, then Baf~! = 0. It is easy to see that

b
For any v = (Z d) € I'h(N), it is easy to verify that

W)W = ns {1 (5 )}
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For any 6 = y1ays = (: Z), Y1, Y2 € To(N), then

W(N)L@EW (N)™ =W (N)L(y)W(N)™
X W (N)L(e)W (N) ' W (N)L(y2)W (N) ™!

N

=L(B5s"){1, (E)} (5.45)

If pt b, taking integers s, t such that sp? + tbN = 1, we have

(P 0\ _ [ p ot 1 —t
Pawl 1_<—bN 1>_(—bN s> (0 p2>'

If p|b # 0, taking integers s', ¢ such that s'p? +#'bN = p, we have

R A S A D t/ p —t
Bewfs 1_<—bN 1>_(—bN/p s’) (O p)’

For any h (0 < h < p), taking integers s”, t”” such that s”"p+t”"hN = 1, we have

o p 0 B p t// 1 _t//p
Bﬂhﬁ b= (—hN p) - (—hN S//) (0 p2 )

y (5.45), we see that the right hand side of (5.44) equals to
PP AL@) @) Y FIL(ew)]

0<b<p?,ptb
p) > fILGB)+@0%) Y fllL(aw)]
0<h<p 0<b<p?,p|b
+ (%) fI[L(0)]) = T(P*) fI TN kw (P?)-
This completes the proof. ]

Let po be a prime with pg|N/4. Then I'h(N) is a subgroup of I'h(N/pg). Denote
by u the index of I'H(N) in IH(N/po). Let

Lo(N/po) = [ To(N)A4
j=1

b;

I . a;
be a disjoint union, where A; = ( J
dj

> eIy N/po LethG(N,k/Q,W). ‘We

define the trace operator Tr(w) as follows:

u

FITe(w) =Y wlay)fI[A7],

j=1
which is independent on the choices of {A;}}_;. If w is a character modulo N/po,
then f|Tr(w) € I'n(N/po, k/2,w). If f € G(N/po,k/2,w), then f|Tr(w) =uf.
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Theorem 5.20 Let f € G(N,k/2,w). Assume w is a character modulo N/py. Then
for any prime p prime to N, we have

(ITe@)IT N /po, k0 (P%) = (FITN w0 (%) Tr(w).

Proof  For any integers a, ¢, we can find two integers s, ¢ such that (s,t) = 1,
p?|sa + tc and N|s. This implies that if necessary, we can left multiply A; by an
element v of I'h(NV) such that the lower left entry of yA; is divisible by p?. So we can
assume that p?|c;. Put

£:{<(1) po2>7p1/2}a 5['0 UFO Za alGFO(N)

For any i, we have
. NA* * * - —1 aj bjp2 * * 4
Zw(aj) G807 = &oy Z w(az)(a; )" =2 ds ;- (5.46)
j=1 j=1 ip /

For any two positive integers j, j' satisfying 1 < j < j' < u, if there exists v € I'h(V)

such that
—1 -1
1 0 1 0 1 0 1 0
(0 p2) Aj<0 p2>_7<0 p2> Aj'<0 p2>’
then .
1 0 1 0\
and hence

(1 02) ) (1 02)1 = A;45" € To(N/po).

0 p 0 p
Since v € I'h(NN), we see that

(6 2(o 3) enam

This contradicts the fact that A; and Aj belong to different right cosets of I'h(N) in
I'o(N/po). Therefore

—1
1 0 10
. <71 K
{<0 p2> AJ(O pQ)’l\J\u}

is a complete set of representatives of right cosets of I'o(N) in I'o(N/pg). Therefore

2
1 a; bip )
{ai (ijjz le ) alsIs u}

is also a complete set of representatives of right cosets of I'o(N) in I'o(IN/po). Hence
the equality in the theorem holds due to (5.46) and the definitions of Tr(w) and T, j .
This completes the proof. O
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Put
S(w) := S(w, N, po) := pg/ u= W (N)| Te(@xn)[W (N/po))-

Theorem 5.21  Let wxp, be well-defined modulo N/po. Then
(1) S(w) sends G(N,k/2,w) into G(N/po, k/2,wXp,);
(2) If (m,po) =1 and f € G(N,k/2,w), then

fIS(w, N,po) = f|S(w,mN,po);
(3) If pt N and f € G(N, k/2,w), then
(FIS@DITN/po kwxpo @) = (FITN kw0 (P*)]S (w);
(4) If g € G(N/po, k/2,wxp,), then g|V(po) € G(N,k/2,w) and
(91V (po))[S(w, N, po) = g

(5) Let p be a prime with 4p|N,p # po, and wy, well-defined modulo N/p, if
g € G(N/p, k/2, wxp), then

(9lV(p)|S(w, N, po) = (g]S(wxp, N/p;po))|V (p)-

Proof  If wyy, is well-defined modulo N/po, then Wx N = Wxp, X n/p, 18 t00, s0 that
(1) can be deduced from Theorem 5.17. Let

(¢ 5) € romivsom)

with po t m. Since

a b a bm

W) (2 0) womnj) = mr 1w ) (0 ") W)

we see that (2) holds. If p{ N, then Theorem 5.19 and Theorem 5.20 give (3). Since

{ (z:)o ?) oyl }W(N) = {pol, 1}W(N/po),

we have
(9lV (o)W (V)] = g g [W (N /po)).
Since g|[W(N/po)] € G(N/po, k/2, Wxn), it is fixed by u='Tr(@xn), (4) holds by
[W(N/po)]* = 1.
Finally, since 4ppo|N, wXpp, is well-defined modulo N/ppy and

{0 1) twen = erawam,
w/m) =wimo{ (5 1)1,

WXN = WXpXN/ps

(5) holds. This completes the proof. O
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Finally, we discuss now Zeta functions and Euler products of modular forms with

half integral weight.

Theorem 5.22 Let f(z) = Z c(n)q" € G(N,k/2,w). Put

n=0

L(s.f) =Y elnn,

Ry (s, f) = (2n)"*N*/2I'(s)L(s, f).

Then L(s, f) is absolutely convergent for Re(s) > 14+k/2. Ry (s, f) can be analytically
continued to a meromorphic function on the s-plane with possible poles s = 0 and
s = k/2 of order 1, and the residues of Rn(s,f) at s = 0 and k/2 are ¢(0) and
b(0)N—F/* respectively, where b(0) is the constant term of the Fourier expansion of
FIIW(N)] at ico. And Ry (s, f) satisfies the following functional equation:

Ry(s, f) = Rn(k/2 = s, fI[W(N))).

Proof  This can be proved completely similarly as done in the proof of Theorem
5.9. |

Lemma 5.40 Lett be a positive integer, p a prime. Let

oo

f(z) = c(n)e(nz) € G(N,k/2,w)

n=0

be an eigenfunction of Tn kw(p*) with eigenvalue \,. Suppose that p|N or p® { t.
Then

(1) Ape(t) = c(p?t) + w1 () (%) P le();

(2) A\pc(p?™t) = c(P*™F2t) + w1 (p?)p*~2c(p?™~2t) for any positive integer m, and

i c(tn®)n”* =< > C(th)n_S> (1 —wi(p) (;>pA—1_s>

(p,n)=1
X (1= App™* +w(p®)p"27%) 7,

Proof By Theorem 5.15 and f|Tnw(p®) = Apf, we obtain immediately, if
(n,p) = 1, that

Mpe(tn?) = c(tp*n?) + w1 (p) (%) p*Le(tn?), (5.47)

Ape(tp®™n?) = c(tp®™2n?) + w(p?)p*2e(tp®™2n?), m > 0. (5.48)
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This shows the first two equalities (1) and (2). Put

Multiplying both sides of (5.47) and (5.48) by = and ™! respectively, we get

Nt () = Ho(a) — c(tn?) + w1 (p) (;)p“can% o (2),
so that

,(0) = cltn?) (1= ) (£ )71 ) 1= A+ w2

Since Z c(tn®*)n% = Z H,(p~®)n"?%, we see that

(pn)=1
Zc(tn2)rfS
n=1
—s t —s —2s
= 3 wetnt) (1) (5 ) ) (- A w2
_ p
(pn)=1
t
(3 et ) (1- ) ()0 -ttt
* p
(p,n)=1
This completes the proof. O
Theorem 5.23  Let f(z) = Zc(n)e(nz) € G(N, k/2, w) satisfy f|Tnrw(p?) =
n=0

Apf for any prime p. Suppose that t is a square free positive integer and prime to IN.
Then we have the following Euler product:

>~ ety = o) [] (19 (£ )21 1ttt 5.1)

n=1 D

Proof  This is a direct conclusion of Lemma 5.40. O

Remark 5.2 We recall the Euler product of modular forms with integral weight

oo

k (see Theorem 5.8). Let g = Zc(n)e(nz) € G(N,l,¢) not be a constant with
n=0
¢(1) = 1. Assume that for any positive integer n, we have

gl[T(m)) = Mg, An ER.
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Then c(n) = A, and we have

S =T (1 - clp)p +dpp72) .
n=1

p

So the denominator of (5.49) is very similar to an Euler product (take | = k — 1,
Y = w?). Put

Z A(n)n_s — H (1 _ )\pp—s + w(p2)pk—2—2s)—1 ’
n=1

F(z) = Z A(n)e(nz).
n=1

Shimura showed that F(z) is a modular form with weight k& — 1, character w? and
level N if f € S(N, k/2, w), k > 3. We call the map from f € S(N,k/2,w) to

F(z) € G(N',k — 1,w?) the Shimura lifting. We will discuss the map in detail later.

References

J. Oesterlé, Sur la Trace des Opérateurs de Hecke, These Pour Obtenir le Titre de Docteur
3e Cycle. Paris-Sud, 1977.



Chapter 6

New Forms and Old Forms

6.1 New Forms with Integral Weight

Let N, k positive integers, x a character modulo N. We know that the Hecke operators
T(n),(n, N) = 1 can be diagonalized simultaneously in the space S(N,k,x). On the
other hand, if f is an eigenfunction of all Hecke operators T(n), then L(s, f) has an
Euler product. So we want to ask the following question: Can all Hecke operators
T(n) be diagonalized simultaneously in the space S(N,k, x). The following example
gives a counterexample to the question:
Example 6.1 Consider the space V = S(2,12,id.) which has dimension 2. Then
64m!?
fi(z) = A(z) == 2—7((154(2))3 — (Bs(2))%) €V,
fa(z) = A(2z) € V.

For any odd prime p, they have the same eigenvalue for T(p). If there exists a basis
{g1, g2} of V such that g, g2 are eigenfunctions of all Hecke operators T(p) for any
prime p, then by the properties of f1, f2, we see that (g1 — g2)|T(p) = 0 for any odd
prime p. Hence (g1 — g2)|T(n) = 0 if n has an odd divisor. That is, the n-th Fourier
coefficient ¢(n) of g1 — g2 is equal to 0 if n has an odd divisor. This implies that

g1 — g2 = 0 by the following Lemma 6.1. This contradicts the assertion. O
Lemma 6.1 (1) Let a = (i 2) € Ms(Z) with (a,b,c,d) = 1,det(a) =n > 1,
(n,N) =1. Assume that f € G(I'(N)) and f|[a]r € Gx(I'(N)), then f =0.
(2) Let pt N be a prime and f(z) = ic(n)emmzﬂv € Gi(I'(N)) satisfy
n=0

c¢(n)=0, foralln#0 (mod p).

Then f =0.
(3) Let p and f be as above. If

c¢(n)=0, foraln=0 (mod p),

then f =0.
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Proof  Since I'(N) is a normal subgroup of I'(1), we may assume that o =

((1) 2) Put 7 = ((1) 1) Then flla]x[mV])x = fllak, ie., fllamVa ", = f.

But arVNa~ ! =n"! (8 Z)’ so that

G ).+

1
1

527(8 Z)zjv(g 1) (mod ).

) (mod n) and det(8') = n? for any positive integer I. This

Take v € I'(1) such that v = <
Put

2) (mod n),v = T (mod N). Then v € I'(N).

Then 3' = N! (8 }

implies that (' is primitive (i.e., the entries of 3! are co-prime.). By (6.1), we have
f1l8]k = f and hence
A8 = f

for any positive integer . Take a positive integer [ such that n' =1 (mod N), then

g=(""Y l=1 (mod N)
=(g )= .

Since B is primitive, its elementary divisors are {1,n%'}. Therefore there exist J, ¢ €
0
2l
(mod N), i.e., d¢, €d € I'(N), so that

FlO)lo™] = f1[6)k. (6:2)

Put g = f|[d]k, then g € Gi(I'(N)). Let

I'(1) such that 8 = 6 ((1) ) € = 6a®e. By the choice of [, we see that de = ¢ = [

g(z) — Za(s)e2nisz/N

s=0
be the Fourier expansion of ¢ at ico. Then by (6.2) we see that g (f) = pm/2
r

with 7 = n?", so that

9(2)

a(s) =0, ¥rts, a(sr)=r""a(s).

This implies that a(s) =0 for all s > 1, so that g = 0 and f = 0. This shows (1).
By the assumption of (2), we see that f(z + N/p) = f(z), so that f € Gr(I'(N))
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N
and flla]x = f € Gx(I'(N)) with a = (g » ) Since « is primitive, we obtain (2)
by (1).
By Lemma 5.18, we have

PR fIT(p) =

(3 D126 DI,

where ¢|N. By the assumption of (3), we see that

SAIG DL =g (5

e’} p—1
_ p—k/2 Z C(n)eQRinz/p Z eQnintb/p =0,
n=0,pin b=0
p—1
where we used the fact Zezni"“’/ P =0 (since p t nt). Therefore
b=0

o (b )] =rrime e o

Since <€ (1)> is primitive, we see that f|[o]x = 0 by (1), so that f = 0. This
completes the proof. O

[ o

01 ) It is clear that, for any function

Let k, I be positive integers, put §; = (

f on H, we have

Fz) = 1F2(f1[0k) (2).

For any element v = ( a b

N d) € IH(IN), we have

_ bl
Syo; Y = (5\/ d) € Iy(N).
For any f € G(N,k,x), put g = f|[d1]x. Then

9lVk = (FI0v6; Tl 6k = x(d) FII6:]k = x(d)g,

so that we have the following;:

Lemma 6.2 Let f € G(N,k,x). Then, for any positive integer |, we have
F1z) = UFP(f1[8]k)(2) € G(NT K, X).

Furthermore, f(1z) is a cusp form if f is a cusp form.
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Remark 6.1 We denote by V(I) the operator in Lemma 6.2 and call it translation
operator. It is clear that it is an analog of the translation operator for modular forms
with half integral weight (see Theorem 5.16). Similar to Theorem 5.19, we can prove
the following:

Lemma 6.3 Let f € G(N,k,x), l a positive integer. Then we have
(SIVI)IT(n) = (f[T()[V (D), (n, 1) = 1.

Let x be a primitive character modulo m with m|N. Then S(N, k, x) contains the

{re) s Tt (6:3)

The functions f1, fo are in the corresponding set (6.3) of S(2,12,id.). We shall
show that all Hecke operators can be diagonalized in the orthogonal complement of

following set

f(z) € S(L,k,x),m|L, LIN,1

the space spanned by (6.3) in S(N, k, x) with respect to Petersson inner product.
Put

Ao(N) = { <“ Z) € My(Z)

AG(N) = { (i 2) € My(Z)

Lemma 6.4 Let a € Ag(N) or € A§(N) respectively. Then there exist positive
integers 1, m satisfying llm, (I, N) = 1 such that

¢=0 (mod N),(a,N) = 1,ad—bc>0},

¢=0 (mod N),(d,N) zl,ad—bc>0}.

RWar() = 1) (1)) 1)

or

naro) =) (1)

respectively.

a b

Proof Let a = (CN d

), a’ = (a,c). Then (a,cN) = a’. Let u,v be integers

u v
—cN/d' a/d

(e o) (G )= (0 )2

It is clear that 0 < @’ < |a|, and 0 < o < |a| if @ ¥ ¢. Put a1 = (a/,V'), then
0<a; <a,and 0 <ay <d ifa’1¥. It is easy to see that (a’,0'N) = a;. Let uy,vq

such that (u,v) =1, au + ¢Nv = da’. Then ( > € I'h(N) and
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Ul —b’/a1
uN  d/ay

a b uy  —bJar\ [ a1 O
(0 d’) (le a'/ay ) N (clN d1> € Ao(N).

The above process shows that, if a { b or ¢, then there exist v1,72 € I'o(IN) such
that y1ay72 € Ap(N) and the upper left entry a; of yiaye satisfies 1 < |a1| < |al.
Repeating the above process, we may assume that a € Ag(N) satisfies a|(b, ¢). Then

<—c]1\7/a (1)> eFo(N)((l) _?/a> € I')(N) and

(v V) (v ) (o )= (5 &) e 20

Put I = (a, dq), then | = (a, diN). Take integers aa, co such that (as, c2) = 1,

B 1 -1 az  di/l
aza — caNdy =1, then (—dlcgN/l aag/l> € I'o(N), (62N 7 ) € I'n(N) and

(—dlclzN/l a;21/l> (8 i) (czj\f CS/;) - (é 7?1) € Ao(N).

Taking determinants, we obtain that ady = Im = det(«), so that m > 0, I|m since
I = (a,dy). This shows the assertion for Ayg(N). We can prove the assertion for
A§(N) similarly. This completes the proof. O

be integers such that (u1,v1) = 1,a'u; + ¥’ Nvy = aq, then (

) € Ih(N)

and

Lemma 6.5 Let f € G(N,k,x). Let a = (Z Z) € Ao(N) satisfy

(1) det() > 1;
(2) (det(a), N) = 1;
(3) (a,b,¢,d) =1.
If flla=Y]x € G(N,k,x), then f =0.

Proof By (2), we see that a € A{(N), by Lemma 6.4, there exist v1, y2 € I'o(IV)
such that y1avy, = (%1 ?) with I|m, I, m > 0. By (3), (I, m) = 1, so that | = 1.
By (1), m > 1 and

-1
(5 D (x DG 1) = (g 1) 200
hence aly(N)a=t ¢ I'o(N). Take v € Io(N) such that aya™t ¢ Ih(N). Since
det(a)a™t = (_dc _ab) € Ag(N), det(a)aya™t € Ap(N), by Lemma 6.4, there
exist y3, va € I'o(INV) such that

det(a)yzayaty, = (1(; 2) , ulv,u,v > 0. (6.4)
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Taking the determinants, we have (det(a))? = uv. If u = v, then aya~™' =53y, €

I'o(N) which is impossible. Therefore, h = v/u > 1. Considering the action of both
sides of (6.4) on g = f|[a™!], we obtain that

g(z/h) = (det(a)) " " x(y3)x(7)x(10)9(2) := cg(2).
Let g(2) = Z a(n)e(nz) be the Fourier expansion of g. Then, for any positive integer

n=0
s, we have

a(n) = ¢ ta(n/h) = ¢ *a(n/h®),
so that a(n) = 0 for any n > 0 since k > 0 and |c| = h*/2 > 1. Therefore g = 0 and
hence f = 0. This completes the proof. [l

Theorem 6.1 Let I be a positive integer, f a function on H satisfying:
(i) f(z+1) = f(2);
(i) f(lz) € G(N,k, x).
Then the following two assertions hold:
(1) f(2) € G(N/L, k, x) if lmy|N;
(2) () =0 if lm, £ N,
where m, is the conductor of x. Furthermore, f(z) € S(N/l,k,x) if f(1z) € S(N, k, x).

Proof We need only to show the theorem for [ a prime since we can apply induction
on the number of prime factors of I. So we assume now that [ is a prime. Because of
the assumptions in the theorem, we have

1—
0 I 5

Gk > f) =122 (s | (o )] + 3 s

m=0

-1

=112 + % > fz+m))
m=0

=11 E122) + f(12).

Hence f(I*z) € G(N, k,x) since f(Iz) € G(N,k,x). If L N, taking a = (é (1)) n

Lemma 6.5, we see that f(I22) =0, so that f(z) = 0. Therefore we assume now [|N.

We consider first the case im,, t+ N. For any element v = (c?\f Z) € IH(N),

owing to the assumptions in the theorem, we see that

[ (s )] = omar = xiar. (65)

For any given positive integers m, n, put

(o M G DG )
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- (1 +1\7;%V/l " —|—1n_(|_17j—NT7lN/l)) € Io(N/D). (6.6)

In particular, if n, m are chosen such that nN/l+ 1 # 0 (mod !) and
n(l+mN/l)+m=n+ (nN/l+1)m=0 (mod ), (6.7)
then, by (6.6) and (6.7), we have

L+mN/l I7Y(m+n(l+mN/l))
< N 1+ nN/I )GFO(N)'

Then we obtain
fllv)e = x@ +nN/l) f

1 0\., (1 0 o )
by (6.5). But ¢ (N 1) 0, - = (N/l 1), so by assumptions (i) and (ii), we see

(eI

This shows that x(1+nN/l) =1 for any (1+nN/I,1) =1if f # 0. This implies that
the conductor m, of x satisfies m,|N/l. This contradicts lm, t N. Hence we have
f=0if Imy { N.

that

a b
N/l d
an m satisfying [ t (a + mcN/1) since (a,c¢N/l) = 1, then take an n such that I|(a +
meN/U)n + b+ md, so that

(o T) (v ) G 3) = (o )
"

a
dN d
z = lw, g(w) = f(lw), by (i), (ii) and m,|N/l, we have

it = (1] (o %)) )@

We now assume that Im,|N. For any v = ( ) € I'v(N/l), we can find

with o/, b, ¢, d’ integers. Hence ( ) € I'n(N) and d’ = d (mod N/I). Put

Ly Nk a'z+ bl

=(Nz/l+d) f(ic’]\fz/l—&—d’
_ l(aw+V)

_ / N—k

= (Nw+d) f(c’Nw+d’>

(o 2)] )
= x(d)g(w) = X(D(2).

This shows that f| € G(N/I,k,x). It is clear that f(z) € S(N/Lk,x) if f(lz) €
S(N, k,x). This completes the proof. |



160 Chapter 6 New Forms and Old Forms

oo

Lemma 6.6 Let f = Za(n)e(nz) € G(N,k,x) and L a positive integer. Put
n=0
g(z) = Z a(n)e(nz). Then g(z) € G(M,k,x) with M = N H D H q,
(n,L)=1 plL,pIN  q|L.gtN

where p,q are primes. Furthermore, g(z) is a cusp form if f(z) is a cusp form.

Proof We only need to show the lemma for L a prime since we can apply induction
on the number of prime factors of L. So we assume now that L is a prime. Put

N, ifp|N,
N' =
{pN, if pf N.

Then p|N’. By Lemma 5.17, we have
) (5 0) r) = U nov (4 "). (65
0 p
Since G(N, k,x) C G(N',k, x), we see that
fIT(p) € G(N', %, x)
holds in G(N', k, x). By (6.8), we have

p—1 o)
(fIT(p) -1 Z Z eZrin(z+m)/p Z a(np)e(nz).
m=0 n=0
By Lemma 6.2, we see that
(fIT(p) Za e(npz) € G(N'p, k, x).
n=0

Put M = N'p, then
9(2) = f(z) = (fIT(p))(pz) € G(M, k, x).
This completes the proof. ]

Lemma 6.7 Let N be a positive integer, p a prime. Then

rom) () 1)
le( ((1) 2)( ) if pIN,

m=0

p—1
rom) (o W) U o) (o 0 ) (5 7). et
0

m=
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where o is a matriz satisfying

10 0 -
op € Th(N), O'pE<0 1) (mod N), O'pE<l/ 0) (mod p)

with | any fized integer such that ptl and ' an integer such that ll' =1 (mod p).

cN d
and hence p 1 a. Take 0 < v < p— 1 with av = b (mod p). Put by = (b — av)/p,

Proof  Assume first that p|N. Let v = ( ¢ b) € IH(N). Then (a,cN) =1

a
cpN  dy

(o) (o i) (o 2) (6 1)= (o 4) =~

This shows the first case in the lemma.

dy =d—veN. Then%:( bl)efo(pN) and

a b . .
N d) € IH(N), if p1 a, then similar to
the first case, there exists v1 € Io(pN), 0 < v < p — 1 such that

(o)) o 1)

If pla, since p { N, there exists a; such that a;p = 1 (mod N). Take ¢; such that
ciN =1’ (mod p) and (c¢1, a;p) = 1 (since p f ¢1, if necessary, take an integer ¢ such
that pt+c; is a prime larger than ay, then (pt +c1,a1p) = 1). Then (a;p?, ¢ N?) = 1.
ap bN
ClN dlp

Now assume that p{ N. For any v = (

Take by, di € Z such that dya1p? — bicy N? = 1, then o, = ( ) satisfies

the conditions in the lemma. And
-1 _ a b dlp —blN o ag bzp
M9 = (CN d) (—clN arp "\ &N dy € Io(N)

and as, by, o, do € Z. Therefore ( € Ih(pN), and

ag b2
copN  da
1 0 as b2 1 0 o as b2p _ 0__1
0 p! capN  ds 0 p) \aN d =% -
This shows the second case in the lemma. This completes the proof. ]

Lemma 6.8 Let x be a character modulo N, | a positive integer, p11 a prime. Put
M =[N, then we have the following two commutative diagrams:
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1 0
Fo(PN)<O p)Fo(N)
G(N,k,x)

G(pN, k, x)
lEmbedding lEmbedding
G(pM, k, x) o G(M, k,x)
Fo(PM)< )Fo(M)
0 p
(2)
1 0
Fo(pN)(O p)Fo(N)
G(pN, k, x) G(N,k, x)
[Sl]kl l[igz]k
G(pM, k, x) G(M, K, x).

1 0
Fo(PM)<0 p)Fo(M)

And similar results hold for cusp forms.

Proof The diagram (1) is an immediate conclusion of Lemma 6.7. We show now
the second diagram. Let f(z) € G(pN,k,x). Put g(z) = f|[di]x. By Lemma 6.7, we
have

o) (0 ) o)

S 6 L6 e

(where the last term disappears if p|M).

P /1 0\ /1 w 10

=2 o ) G D] Goo),

p—1 r

6 DG ol A Dy
v=0 - k k
L/ 0N /1wl 1 0\ -
=G 2) G ¥)el,+ Lo p) e,

10 (0 -ml
0 1) (mod N), and furthermore 7, = ((ml)’ 0 >

where o, € I'y(N) satisfies 7, E(

(mod p) if 0, = (72, —gn) (mod p). Hence, by Lemma 6.7, we see that

(adalren (o ) roan = (Arem) (§ 0) 7o) ) o
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This completes the proof. ]

o0
Lemma 6.9 Let 1 be a square free positive integer, f(z Za
n=0

G(N,k,x) such that a(n) =0 if (n,l) =1. Then

2= a(p).

pll

where g,(z) € G(NI?, k,x) and moreover g,(z) € G(NI,k,x) if |N. Furthermore, all
gp are cusp forms if f(z) is a cusp form.

Proof  We assume first that [ is a prime. Put g(z) = f(z/l). By Theorem 6.1, we
see that g(z) € G(N/l,k,x) or g(z) = 0 if Imy|N or Im, { N respectively. Anyway,
g(z) € G(Nl,k,x) and f(z) = g(lz), the lemma holds. Now assume that [ is a
composite and the lemma holds for any proper factor of I. Let p be a prime factor

of I. Put !’ =1/p and h(z) = Za(n)e(nz). By Lemma 6.6, we see that h(z) €
pin

G(Np% k,x). Put f(z Z b(n . It is clear that b(n) = 0if ptn. Set
gp(2) = f(z/p) — h(z/p), by Theorem 6.1, we have that g,(z) € G(Np, k, x) and

f(2) = gp(p2) + h(2).

Since h(z), Np?, 1’ satisfy the conditions in the lemma, by induction hypothesis, we
have

= 94(q2), 94(2) € G(NI”, k, x) C G(NI?, k, ),
qll’

with ¢ primes. It is clear that, by Lemma 6.6 and the above proof, g, € G(NI, k, x)

if I|N. This completes the proof. O
Theorem 6.2 Let f(z) = Z a(n)e(nz) € G(N,k,x), | a positive integer. Assume
n=0

that a(n) =0 if (I,n) =1. Then

(1) f(z) =0df (I, N/my) = 1;

(2) if (I, N/my) # 1, then for any prime factor p of (I, N/m,,) there exists fp(z) €
G(N/p,k, x) such that

f@= > f),
pl(L,N/my)

where m,, is the conductor of x. Furthermore, all f, are cusp forms if f is a cusp
form.
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Proof  Without loss of generality, we may assume that [ is square free. It is clear
that, by Theorem 6.1, the theorem holds for [ a prime. Now assume that [ is a
composite and the theorem holds for any proper factor of [. Let p be a prime factor
of land I’ =1/p. Set

h(z) = Z a(n)e(nz),
(n,1)#1

9(2) = f)—hz)= Y a(n)e(nz).

(n,l")=1

(6.9)

By Lemma 6.6, g(z) € G(NI'?, k,x) and so h(z) € G(NI'?,k,x). It is clear that
the Fourier coefficient a(n) of g(z) must be zero if p { n, so that g,(z + 1) = gp(2)
where g,(z) = g(z/p). If pmy t N, then pm, { NI'?, and g(z) = 0 by Theorem 6.1.

Therefore f(z) = h(z) = Z a(n)e(nz). This shows that the theorem holds by
(n,1")#1

the induction hypothesis. Now assume that pm,|N. By Theorem 6.1, we see that

gp(2) € G(NI"?/p, k, x). Lemma 6.7 gives

ro(m’?)(é 2) ro(Nz'2/p):ro(Nz'2)((l) 2>ap:gr0(m’2)<é 2) (é 7;)

where the first term disappears if p?| N, so that,

(aroe) (g 3) B2/ )2

=S 0lG )G DL (6 5o

=p1§(gp (o 3)] )@+, @l

~ %),
where d = {p, ?f pz|N, . Therefore
p+1, ifp°tN
o) =) =2 (o] i) (o 0 ) ) ) ). (610)
Since J _—
= 2o (5 0) i ) 2) € Gk,

we have that, by Lemma 6.8,
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o) = S (1| r) (§0) v ) o) (6.11)

We want to show that f(z) — f,(pz) satisfies the conditions in the theorem for I/,
and hence we can complete the proof by induction. It is clear that f(z) — fp(pz) €
G(N,k,x). By (6.9)—(6.11), we see that

f(2) = fo(02) = f(2) = fp(p2) = 9(2) + gp(p2)

—n) - 2 (e (§ 0) e o). 612)
p
Applying the induction hypothesis for h(z), NI'? and I’, we have
= he(qz),  he(z) € GINI” K, x) (6.13)

qlt’
with ¢ primes. By Lemma 6.8, for any prime factor ¢q of I’, we have

i) (o ) F ) = nn e (o) o) 60

and this holds also if & is substituted by hq. By (6.13), (6.14) and (2) of Lemma 6.8,

we have
(h

- (Zm—k/%qwk)

qll’

—Z(

qll’

) (5 9) v ) )

o) (o ) Bl ) o)

To(NI™) ((1) 0>F0(Nl/3/p)>( 2).

This implies that the Fourier coefficient b(n) of <h’[‘0(Nl'2) ((1) 2) Iy (Nl’2/p)> (2)

must be zero if (n,l") = 1, and hence, by (6.12) and (6.13), so is the Fourier coefficient
c(n) of f(z) — fp(pz). This shows that f(z) — f,(pz) satisfies the conditions in the
theorem for . Hence

F(2) = fop2) =D falaz), fq(2) € G(N/q, k,X),
qlt’
where ¢ runs over all prime factors of (I', N/m,). This completes the proof. 1

Definition 6.1  Denote by S°'Y(N, k,x) the subspace of S(N, k,x) generated by
U U {r@a)irz) e s,k x)}-

my | M|N, [|N/M
M#N

And any modular form in SN, k,x) is called an old form.
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Definition 6.2  Denote by S™V(N,k,x) the orthogonal complement subspace of
SN, k,x) in S(N, k, x) with respect to the Petersson inner product. And any mod-
ular form in S™V(N,k, x) is called a new form.

By the definitions, we have

Lemma 6.10 (1) S(N,k,x)=S"V(N,k,x) if x is a primitive character modulo N’;
(2) S(M,k,x) © S9N, k,x) if my MIN and M £ N;
(3) S(N, k,x) is generated by | | |J {F(12)|f(2) € ™V (M, k, x)}-

my | M|N [|N/M

Lemma 6.11  Let n be a positive integer with (n,N) = 1. Then T(n) sends
SN, k,x) (and S*¥ (N, k,x) resp.) into SN, k,x) (and S™V (N, k,x) resp.).

Proof Let f(z) € S°4(N,k, x). By the definition of old forms, we have

f(z) =) folloz), fo € S(My,k, x),1uMy|N, M, # N.

Put g,(z) = fu(lyz). Since T(n) commutes with [§;]; for any (n,l) = 1, we see that

(fITm)(2) = D (90| T(m))(2) = Y (fuol T(n))(lu2).
Since f, € S(My,k,x), we have that f,|T(n) € S(M,,k,x), so that f|T(n) €
S°M(N Kk, x). This shows that T(n) sends S°'4(N, k,x) into itself. The next lemma
will show that x(n)T(n) is the conjugate operator of T(n) on the space S(N,k,x)
with respect to the Petersson inner product, so that T(n) sends S™V(N,k, x) into
itself. This completes the proof. O

Lemma 6.12 Let f(z) = Za(m)e(mz) € SN, k,x) and f(2)|T(n) =

m=1
Z b(m)e(mz) € S(N,k,x). Then
(1) bm) = > x(d)d* a(mn/d®);

1<d|(m,n)
(2) the conjugate operator T(n)* of T(n) (with respect to the Petersson inner
product) is equal to X(n)T(n) for any (n, N) = 1.

Proof (1) is a direct conclusion of (5.14).
(2) is a direct conclusion of Lemma 5.18 and Lemma 5.26. O

By Lemma 6.11, there is a basis in S"% (N, k, x) (and in S°'4(N, k, x) resp.) whose
elements are eigenfunctions of all Hecke operators T(n) with (n, N) = 1.
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Lemma 6.13 Let L be a positive integer, and

o0

0# f(z) = Y a(n)e(nz) € S (N, k, x)

n=0
an eigenfunction of all Hecke operators T(n) with (n,L) =1. Then a; # 0.

Proof  Assume that a; = 0. If a(n) = 0 for any (n, L) = 1, then, by Theorem 6.2,
f(2) € SN, k,x) which is impossible. Hence

m = min{n|(n, L) = 1,a(n) # 0} > 1.

Let p be a prime factor of m. Then f|T(p) = ¢, f with ¢, a constant. By Lemma
6.12, we see that c,a(m/p) = a(m) + x(p)p*~ta(m/p?). By the definition of m, we
have a(m/p) = a(m/p?) = 0, so that a(m) = 0, which is impossible. This completes
the proof. O

Theorem 6.3 Let L be a positive integer, f and g € S(N, k, x) such that f|T(n) =
S, g|T(n) = Ang for all (n,L) = 1 with A,, constants. Then f = cg for a constant
cif 0F# f € S"Y(N,k,x).

oo

Proof Let f(z) = Z a(n)e(nz). Without loss of generality, we can assume that
n=1

a(1) = 1 by Lemma 6.13. We may assume also that N|L. Set
9(=) =gV () + 9V (), 99(2) € "N K x), g (2) € STUN, k).
By Lemma 6.11, we see that

DT(n) = Ag®, gV IT(n) = N9, (n,L) =

Hence, by Lemma 6.13, b(1) # 0 if ¢(9(z) Z b(n)e(nz) # 0. By Lemma 6.12, we

have
fIT(n) = a(n)f, ¢|T(n) = MO (n,L) =1
This shows that a(n)b(1) = b(n) for all (n,L) =1. Put

g(O) —b(1 i

then c(n) = 0 for all (n,L) = 1, so that ¢g(® —b(1)f € S°'4(N, k, x) by Theorem 6.2.
This implies that ¢(©) — b(1)f = 0. We shall now prove that g/ = 0. If m, = N,
then S°4(N, k, ) = 0. So we may assume that m, # N. Suppose that g(!) # 0, then

g (z Zh (1b2), hy € S™V(My, k,x), L,M,|N, M,+# N. (6.15)
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Since there is a basis in S™*V(M,, k, x) whose elements are eigenfunctions for all T'(n)
((n, M) = 1), we may assume that h,(z) is an eigenfunction of all T(n) ((n, M,) = 1),
so that, by Lemma 6.3, h,(l,2) is an eigenfunction of all T(n) ((n,L) = 1). Since
eigenfunctions corresponding to different eigenvalues are linearly independent, the
sum of h,(l,z) with eigenvalue different from a(n) with respect to T(n) must be zero.
Therefore every h,(z) on the right hand side of (6.15) must satisfy

hy|T(n) = a(n)hy,, (n,L)=1.

Denote by h any fixed one of these h,. Let d be the first coefficient of the Fourier
expansion of h, then d # 0 by Lemma 6.13. Put

h(z) —df(z) = ) d(n)e(nz),
n=1

then d(n) = 0 for all (n, L) = 1, so that h(z) — df(z) € S°'4(N, k, x) by Theorem 6.2.
Therefore

£(2) = = (h(z) — (=) + 5h(z) € SN, )

which implies that f(z) = 0 since f(z) € S™*V(N, k, x). This contradicts the hypoth-
esis f # 0. This completes the proof. [l

Theorem 6.4 Let Ry(N) and R§(N) be the Hecke algebras R(I'o(N), Ag(N)) and
R(Iy(N), A5(N)) respectively. Then there is a basis in SV (N, k, x) whose elements
are common eigenfunctions of Ro(N) and R§(N).

Proof By Theorem 5.5, Ro(N) and R§(N) are commutative and T(n) € Ro(NN)
for any (n, N) = 1. Let {f1, fo, --+, fr} be a basis of S™¥ (N, k, x) such that every
fi is a common eigenfunction of T(n) for all (n, N) = 1. Put f;|T(n) = a(n,?)f;,
(n, N) = 1 with a(n, i) a constant. For any T' € Ro(N), since T(n) ((n, N) = 1)
commutes with T', we see that

(fil D) T(n) = (fil T[T = a(n, ) fi T, (n, N) = 1.

That is, f;|T is a common eigenfunction of all T(n) with eigenvalue a(n, 7). By
Theorem 6.3, we have that f;|T = ¢f; with a constant ¢. This shows that f; is a
common eigenfunction of Ro(N). This shows the first part of the theorem. Since
T(n)* € R§(N) ((n, N) = 1) commutes with any T' € R§(N), and T(n)* = x(n)T(n),
(n,N) = 1, we see that T(n) commutes with T" € RS(N). Similar to the above
process, f;|T = ¢ f; with a constant ¢ for any T € R§(N), so that, f; is also a
common eigenfunction of R§(N). Therefore f; (1 < i < r) are common eigenfunctions
of Ro(N) and R{(N). This completes the proof. O

Definition 6.3 f(z) = Za(n)e(nz) € S(N,k,x) is called a primitive cusp form

n=1
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if it satisfies the following two conditions:
(1) f € S*Y(N,k,x) and it is a common eigenfunction of Ro(N);
(2) a(1) = 1.

By Theorem 6.4, a primitive cusp form is also a common eigenfunction of R§(N),
and there exists a basis in S™V (N, k, x) whose elements are primitive cusp forms.

Lemma 6.14 Let f € S(N,k,x) be a common eigenfunction of all T(n) with
(n,N)=1, and f|T(n) =a(n)f, (n,N)=1. Then there exists a factor M of N and
a primitive cusp form g of S™V (M, k, x) such that

9|T(n) = a(n)g, (n,N)=1.
Furthermore, we can take M # N if f & S*V(N,k, x).

Proof If f € S™Y(N,k,x), the lemma is obvious. So assume f & S™V(N,k, x).
By the proof of Theorem 6.3, there exists N # M|N and h € S™*¥(M, k, x) such that

Rh|T(N) = a(n)h,(n,N) = 1.
Take g = éh with d the first Fourier coefficient of h. This completes the proof. [
Lemma 6.15 Let f € G(N,k,x). Then
(FITEmNDIWV Nk = (FI[WN)]R)T(m, 1),
(FITDIW Nk = (FIW(N)]E)[T(n)".

Proof It is clear that we only need to show the first equality in the lemma. It is
clear that the map: o — W (N)~1aW (N) is an isomorphism from Ag(N) to A(N),
and W (N)™1I(N) W(N) = Io(N). For any a € Ag(N), we have

X(W(N)"aW (N)) = x(e) 7.

[0

Letpo(N)<0 m

) Io(N) = U I'o(N)aw, be a disjoint union, then

m 0

r) () 7o) = R w ), W),
Hence, for any g € G(N, k,X), we have
gl [W(N) T (L m) [W (N)],
=(Im)*>71 > " x () gl [W(N) W)
=(Im)*> 1 (W (N) " a, W(N)) gl [W(N) L, W(N)]

=g|T(m,1)".

Since W(N) is an isomorphism from G(N, k,x) to G(N,k,Y), we see that the first
equality holds in the lemma. This completes the proof. ([



170 Chapter 6 New Forms and Old Forms

Theorem 6.5 (1) The map: f — f|[W(N)]r induces the following isomorphisms.

S"Y(N, k,x) = S"¥(N, k,X),
SN, k, x) = SP(N, k,X);

(2) Let
Za e(nz) € S(N,k, x)
n=1

be a primitive cusp form, then

8

is a primitive cusp form of S(N,k,X), and f|[W(N)]x = cg with a constant c.

Proof (1) We show first that [IW(N)]x sends S'4(N, k, x) into S°'4(V, k,X). This
is equivalent to show the following assertion: let N # M|N, m,|M, I|N/M, and let
h € S(M,k,x) such that f(z) = h|[&]k, then f|][W(N)]x € S?'4(N,k,%). We show
now the assertion. Put I’ = N/(IM). Then §W (N)d, ! =W (M), so that

FIW Nk = RI[&W (N)6; uls = (hl[W (M)]k)| [0 ]k
Since h|[W (M)|x € S(M,k,X), f|[W(N)]x € S°4(N, k,xX). Now suppose f € S"%(N
k,x). Then, for any f; € S°'4(N, k,X), we have
(FIW Ny f1) = (f, AV (N) Tk = (D)™, AW (N)]e) = 0,

since f1|[W(N)]i € S9N, k, x). Therefore f|[W(N)], € S™V(N,k,X). This shows

(1)
(2) By (1), we have f|[W(N)]i € S"¥(N,k,X). By Lemma 6.15, we have

(W N)]R)IT() = (FIT(n)*)|[W (N = aln) fI[W (N)]x

for any positive integer n. Hence f|[W(N)]y must be a constant multiple of some
primitive cusp form g. Let b(n) be the n-th Fourier coefficient of f|[W(N)]x, then
b(n) = a(n)b(1), so that

8

(1w (N

Since a(1) = 1 and the first Fourier coefficient of g is also equal to 1, we see that

=Y aln)e(nz), fIW(N)]x = b(1)g.

n=1

This completes the proof. O
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Z a(n)e(nz) € S(N, k, x) be a primitive cusp form. Then

n=1

Let f(z)

1

L(s, f) = Z a(n)n™% = H (1 —a(p)p~® + X(p)pk—l_zs)—
n=1 p
=TT —ap~ +xp*72) "L (- ap™) "
pIN

pIN
For any p{ N, by the Ramanujan-Petersson Conjecture (proved by Deligne), we have
la(p)| < 2pk=1D/2. We discuss now a(p) for p|N. For any p|N, set N = N, N, with
p{ N,, and x, the character modulo N, induced from x. Fix a prime factor q of N,

put X' = H Xp- Let g, 74 € SLa(Z) satisfy
p#q

B ((1) _01> (mod NJ), . (é ?) (mod N2),
" ((1) ?) (mod (N/Ny)?), " (? 0) (mod (N/N,)?)
) "q:”‘I(Aéq ?) né:v;(N/ONq (1))

then
ngLo(N)ng ' = To(N), n,To(N)y', = Io(N)
and for any v € IH(N), we have
x(mavmg ) = (X)), xgry ) = (0xa) ()-

Hence we have the following two isomorphisms:

SNk, x) 2 S(N, by x'Xa),

[U;]k

S(N,k,x) S(N,k,X'Xq)-
And the following two diagrams are commutative:
SN hy) L S(Nkx)
il | [+ (. Ng) =15
T(n)

S(N7 kvXIX_q) - S(N7 kvXIX_q)

X' (n)T(n
S ko) SNk )

[né]kl J[Vlé]k » (n,N/Ng) =1.

S(N7 ka X/Xq) I — S(N7 ka X/Xq)
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These can be proved along similar lines as in the proof of Lemma 6.15. In particular,
we see that f|[nglx € S(N,k,x'Xq) and f|[n)]r € S(N,k,x'xq) are common eigen-
functions of all T(n) ((n,N) =1)if f € S(N,k, x) is a common eigenfunction of all
T(n) ((n, N) = 1). Therefore we see that the assertion (1) of the following theorem

holds:

Theorem 6.6 (1) We have the following isomorphisms:

o s STV k) = ST, kXX,
I : S9N, K, x) =~ SOld(N,k7Xl7q)a
Jo o S"Y(N, k,x) ~ S™Y(N, k, x'Xq),
Jk - SOM(N, k, x) ~ SN, k, X Xq)-

(2) For any f € S(N,k,x), we have
FIgle = xa(=1X (Ng) f,

T3k = X (~D)Xa(N/N) f,
Fllngnglie = X' (Ng) FI[W (N)] .-
) If f= Z € S"Y(N,k,x) is a primitive cusp form, set

fllngle = €Y _b(n)e(nz),b(1) =1, gy(2) =Y b(n)e(nz)

then gq(2) is a primitive cusp form of S(N,k,x'Xq) and

Go)a), Hpta.
ole) = { Qalg), ifp=aq.

Proof  (2) Put n? = Ngv, then v € I'(1) and

(%) v

(ng N2_1> (mod (N/N,).

2
Ml

So that, v € I')(N), and hence f|[n2]x = xq(—1)X'(Ng)f. Similarly set 77’2 =

then 1 € I'h(N) and

N

Ny

1,
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Hence
2 .
Al gle = X' (=1)Xq(N/Ng) f.
Set y2 = ngn,W(N)~', then v, € I3(N) and

(1)

N (5 ) (o Y/

Hence
Fllngngli = X' (Ng) FI[W (N)]-
(3) If (n,q) =1, then

(f1[nalw)IT(n) = Xq () (fIT())|[ng]r = Xq(n)a(n) f][ng]x- (6.16)
If (n, N/Ng) =1, then
(f1[1g]e)IT(n) = X (n)a(n) fl[ngle- (6.17)

Since fl[nglx € S™™ (N, k,x"Xq) by (1), fl[nslx is a constant multiple of a primitive
cusp form by Lemma 6.14, and by (6.16) we have

b(p) = Xq(p)alp), ifp#q.
By (2), we see that f|[ng]x = cf|[W(N)n;]i with ¢ = x'(=Ng)xq(N/Ny), so that

(f1[qli)IT(n) = c((£ITW (N)]i)l 1] )| T ().
Since f|[W(N)]r € S(N,k,X), we see that, by (6.17) and Lemma 6.15,

Therefore b(q) = x’(¢)a(q). This completes the proof. O
Theorem 6.7 Let f(z) = Za(n)e(nz) € S(N,k,x) be a primitive cusp form, m
n=1

the conductor of x. For any prime g|N, put N = N N}, m = mgmy, with ¢t N, and

(1 |aq| = q(k—l)/z, if Ng =myg;
a? = ?(q)qk*z7 if Ng =q and mg = 1;

2
q
¢ =0, if >IN and N, # m,.
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Proof (1) Let v, 14 be as above, a a positive integer prime to ¢q. Take a positive
integer b such that ab+ 1 =0 (mod N,) and a = b (mod N/Ny). Let v be a matrix

satisfying
1 a 1 b e
(0 qe>vq—v(0 qe>, Ny =¢",
then v € SLy(Z) and

a * 10
so that v € I'y(N) and x(v) = xq(—b). Therefore we obtain

(o &) =een (6 )],

Let a run over a reduced residue system modulo Vg4, then we get

e 2 G L)

(a,Ng)=1

e !

(b,Ng)=

:qe(k/2—1)xq(_1)<z xq(b)e%inb/qe)a(n)e(nz)

n=1(b,N4)=1

1]k

=" 2DW (x,) 3 wg(—n)a(n)e(nz), (6.18)
n=1

a b
Ja 0 d k?
we see that

w0 2 (k)] mer-emamen(3 )],

a,Ng)=1
—a(e)f -~ ol ]| (5 0)]
k

where W (x,) is the Gauss sum of y,. Since

fIT()y=n*"1 %" M f

ad=n,a>0,b mod d
(a,N)=1

Hence we obtain

w2 3 Ul )]l

(a,Ngq)=1

=a(q®) fInglk — X' ()" a(g® ) (f|nq]
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-1
where we used the facts: v = <(1) 2) g (g ?) ng ' € SLy(Z) and x(v) = X'(q).

Let g(= Zb ) be as in (3) of Theorem 6.6, then f|[ny]x = cg with a

constant c. Comparmg the coefficients of e(z) and e(qz) of (6.18), (6.19), we obtain
ca(q®) = ¢“"*TIW(x,), calg®)blg) — ex'(a)g" alg*™") = 0.
Hence we have, by Theorem 6.6,
lalg) = ¢" e=Wxg)a > Va(g?) "
(2) By Lemma 5.17 and Lemma 6.8, since N, = ¢, we see that

) (g 0) fo) = 1) (o0 ) o) U 1oV

q 0

-1
0 1) € I'o(N). Therefore

since we can take o, = v, and v =, (0 ?) o, (

o) (0) To/a) = F1T(@) + 2 g

If (n, N) =1, then T(n) commutes with T(g) and [ny]x, so that

g:=1Ff

r) (g o) Fo5/a) € S(N/ak )

is a common eigenfunction of all T(n), (n, N) = 1 and the eigenvalues are the same
as the ones of f. By Theorem 6.3, g is a constant multiple of f. This implies that
g =0since g € S(N/q,k,x) and f is a new form. So that, we get

"7 fllngl = —ala)f,
and hence, by (2) of Theorem 6.6, we have

¢ (10X (@) f = ¢ fln2le = —alq) gk = ¢* " ?alq)? f.

That is, a(q)? = xq(=1)X(q)g" 2. Since mq = 1, xo(—1) = 1, a(q)® = X" ()" .
(3) Similar to the proof of (2), we have

) (o 0) rva) = r (o 0 ) 5o,

Hence we get, along similar arguments for the assertion (2),

f1T(a) fHFo (é O)FO(N/@} 0.

k

This implies that a(g) = 0, which completes the proof. |
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During the proof of Theorem 6.7, we have also shown the following;:
Corollary 6.1 (1) If Ny = my, then
Fllnale = ala®) " "W (xg)g

with g a primitive cusp form of S(N,k, x'"Xq)-
(2) if Ny =q, mg =1, then

gk = —a(@)g" " *? £, alg) = X' (¢)alq).
Theorem 6.8 Let f(z) = Z Je(nz) € S(N,k,x) be a common eigenfunction

of Ro(N) and Ri(N), a(l) =1 and g = Zb ) € S(M, k,w) a primitive cusp

form. Assume that there ezists a posztwe mteger L such that a(n) = b(n) for all
(n,L)=1. Then N=M, x=w and f = g.

Proof  Without loss of generality, we may assume that L is a common multiple of
M and N. If pt L, by Lemma 6.12, we have

P x(p) = alp)® —a(®?), P'w(p) = blp)® - b(p?).

But b(p) = a(p) and a(p?) = b(p?) for any p 1 L, so that x(p) = w(p) for any p { L.
Hence we obtain

x(n) =w(n), if (n,L)=1.
By the functional equation in Theorem 5.9, we see that

Rx(s,f) _ Rwlk—s JIW(N)]e)
Rar(s.9) ~ ar(k— s, g WO)})

(6.20)

Since Ly (s, f) and Ly(s, g) have Euler products for Re(s) > 1+ k/2 respectively, we
see that for Re(s) > 1+ k/2

Ry (s, f) _ (\/N> | LS w(p)ph—12 (6.21)
Ru(s,9)  \VM/ 7 1—a(p)p™ +x(p)pt~17*

By the analytic continuation principle, we know that (6.21) holds for all s. Similarly,
by (2) of Theorem 6.5 and Lemma 6.15, we have

R k—s7 W(N \/N k—s 1 _r s—k o 2s—k—1
N ( fIW( )]’“):c( ) Hl— ()" " +w(p)p

Ry (k — s, g|[W(M)]) VM o 20— + x(p)pr—t1 (6.22)
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with a constant ¢. Comparing (6.20)—(6.22), we obtain

(N)S 1 1—b(p)p* +w(ppr—'=2 C( VN) g 1 1—b(p)p** + w(p)p?s—F1

M) i —alp= +x@p T \VM

oL L a@)psF + x(p)p?s Tt

(6.23)
Let M, and N, be the p-parts (i.e., M, = p*»™) and N, = p»N) where v,(x) is
the p-valuation.) of M and N respectively. By (6.23) and the uniqueness of Dirichlet
series, for p|L we have that

<Np> T1-bpp T +wppt T oL blp)p*~* + W(p)p*
My) 1—a(p)p= + x()p*172 "1 = a(p)ps—F + x(p)p>s—F-1

with ¢, a constant. Set x = p~*, then

Denote by u, v the degrees of the above polynomials with respect to x. It is clear
that 0 < u, v < 2.

(1) If w = v =0, we see that M, = N,,.

(2)fu=0,v=1,set Np/M, = p°, then we see that

1 —b(p)z = cpa®(1 — b(p)p "z~ "),b(p) # 0.

Therefore |b(p)|? = p* which contradicts Theorem 6.7, so that it is impossible that
u=0and v =1

(3) If w =1, v = 0, similar to (2), it is easy to see that M, = pN,,.

(4) If u =0, v =2, set N,/M, = p°, then

L= b(p)z +w(p)p*'a® = cpz(1 = b(p)p~ 2™t +@(p)p~ " 1a?).

This implies that ¢ = 2 and hence |w(p)] = p which is impossible, so that it is
impossible that u =0, v = 2.

(5) If u =2, v = 0, similar to (4), it is easy to see that M, = p?N,,.

(6) If u =1, v =2, set N,/M, = p°, then

1 —b(p)z + w(p)p*—'a? AL —=bp)p et +w(p)pF a2
= Cp.T — .

1—a(p)x 1—a(p)p=Fz—1

This implies that e = 1, so that

(1=b(p)z + w(p)p* 'a?)(z —
=cp(1 —a(p)z) x (2 w(p)p ). (6.24)

By comparing the coefficients on both sides of (6.24), we obtain
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la(p)l = 271 eyl = 92, (6.25)

By (6.24) and (6.25), we see that a(p)~! = p~*+2a(p) should be a root of 1 — b(p)z +
wip)pF~1z? =0, i.e.,

1= b(p)p~*alp) + w(p)p® Falp) =0,

so that,
b(p) = a(p) + w(p)pa(p) = a(p) — c(p). (6.26)
By (6.25) and (6.26), we have
11— [b(p) —k/2’<p L

which contradicts Theorem 6.7, and it is impossible that v =1, v = 2.

(7) If w =2, v =1, similar to (6), it is easy to see that M, = pN,,.

(8) If u = v =2, it is easy to see that M, = N),.

Anyway, we proved that N|M and x(n) = w(n) if (n, M) = 1. This implies that

S(N,k,x) C S(M, k,w). By Theorem 6.3, we have f = g, and hence M = N in terms
of Lemma 6.14. This completes the proof. |

By Lemma 6.14 and Theorem 6.8, it is easy to show the following:
Corollary 6.2 (1) Let 0 # f(z) € S(N,k, x), and

fIT(n) =a(n)f, (n,N)=1
Then there exists a unique factor M of N and a unique primitive cusp form g(z) of
S(M, k,x) such that
9|T(n) = a(n)g, (n,N)=1
(2) Let f(z) € S(N,k,x) be a common eigenfunction of Ro(N) and Ri(N). Then
f(2) is a constant multiple of some primitive cusp form of S™V(N,k,x).

6.2 New Forms with Half Integral Weight

In this section we discuss the Kohnen’s theory of new forms with half integral weight.

Here and after, we always assume that IV is an odd square free positive integer, x a
4de
quadratic character modulo N with conductor ¢. Put e = x(—1) and x; = () X-

We define Sy 1/2(IN, x) as the space of cusp forms of weight k£ + 1/2 and char-

acter x1 on Io(4N) which have a Fourier expansion Za(n)e(nz) with a(n) = 0
n=1

for e(—1)*n = 2,3 (mod 4). We write Skt1/2(N) for Sp41/2(N,id.) and we call this

space Kohnen’s “+” space. It is clear that Sjy1/2(N,x) C S(4N,k+1/2,x1).
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o (4 1Y a2 aiga
o {(1 1))

Q= Qr,N,x; = [Ao(4N, x1)&k,c Ao (4N, x1)],

Put

where Ag(M, w) = {(A, $)|A = (i Z) & To(M), 6(2) = w(d) (5) (‘74)1/2 (czt

d)l/Q}. We usually omit the subscripts k + 1/2,4N, x; and write just &, Q.

Lemma 6.16  The operator Q satisfies the quadratic equation (Q — a)(Q —3) =0
where a = (—1)[(’“‘1)/2]52\/5 and B = —%. It is Hermitian, and its o eigenspace is
Just Syy1/2(N, X).

Proof It is easy to check that

EFAg(AN, x1)EF N Ao(AN, x1) = Ag(16N, x1).

Therefore
Ag(4N, x1)EF Ao(4N, x1) = U Ao(16N, x1)E7¢, (6.27)
is a disjoint union, where {&,} is a set of representatives for Ag(4N, x1)/Ao(16N, x1).
For any v € Z, put A, = (411]1} ?) Then {A}|v mod 4} is a set of representatives
for Ag(4N, x1)/ Ao (16N, x1), by (6.27), we see that
o= Jlieay,
v mod 4

AQP= > > flieAseas).

v mod 4 © mod 4

i (2 ) )
10 ANu —4 2
_{<0 1)’Xl(_ZNU+1)(—2Nu+1>(—2Nu+1> }
14+2Nu  —Nu \~ 2 1\ g
X( ANu 1—2Nu> {8(0 2)’61 '

By the invariance of f under the operation of elements in Ag(4N, x1) and the fact

that
ANy —4 —k-1/2
2 Xl(_QNu+1)(—2Nu+1>(—2Nu+1> =0,

w mod 4

Now

we obtain that
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> fligAeAL] = 0.

u mod 4

Next we observe that

10 > —4 VR
5Aﬂ’5={<o 1>’X1(1iN+N)(1iN+N2> ¢ }

N+1\2\"
I1FN+ N2 (2 —2 .
+ ( 2 ) £Ai17
_4N? 14+ N + N2

hence

_ k—1/2 _
Y flleAnea;) :xl<1iN+N2>(7‘*) £h=1/2e= @k e/ £ )

2
uw mod 4 1iN+N
Since
4 k—1/2
1+ N+ N[ —
xall+ N+ )(1+N+N2>
4 k—1/2
_ (= - _1\k:
+x11-N+N )(1_N+N2> 14 e(—1)M,
we obtain
S (FIEATEAL + FIEAT EAL]) = (1 + e(—1)i)e 1/ 2o (RHDai/4 p .
uw mod 4
Finally
1+ N\ *
514;5:{(16 0>71}<1+2N T)
0 16 SN 142N
and so

> FIIEAsEAT] = Af.

u mod 4

Summarizing the facts above we showed that
Q2 _ (1 +5(—1)’“1)6"“‘1/26_(2k+1)“i/4Q + 4,

that is,
(@—a)(@—-pB)=0.

The adjoint operator of ) is given by

Q=" fliEl.
3

where £ runs through a set of representatives of the right cosets of Ag(4N, x1) in

Ao(AN, x1) € Ag(AN, 1) with & = { (é _41> ,s—k—1/2e—<2k+1>m/4}, but
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N—1\* .
g,:<1—2N T) g( 1 0)
SN 1—2N —8N 1

so that () is Hermitian.

Let f = Z a(n)e(nz) be an element of S(4N,k+1/2,x1). Then
n=1

ng + 5/] _ s_k_1/2e_(2k+1)m/4f(z + 1/4) + €k+1/26(2k+1)m/4f(2 _ 1/4)

_ Ek i(€—1/2i—ke—ni/4enin/2 +El/2ikeni/4e—nin/2)a(n)e(nz)
n=1
and hence
flle+€1= <—1>“’“+”/2W5( S ame(nz) -~ Y a(n)emz))-

e(—1)kn=0,1 mod 4 e(—1)kn=2,3 mod 4
(6.28)

This shows that f is in Sy.1/2(N,x) if and only if f|[¢ + &] = % F. Now by the
definition of the trace operator in Section 5.4, we see that, by (6.27),

£1Q = (fIEDITr, 1@ = (f1[€'DITr, (6.29)

where Tr is the trace operator from S(16N,k+1/2,x1) to S(4N,k+1/2,x1). Thus,
if f € Sky1/2(NV,x), we see that

£1Q = LFIQ + @ = S(NENITe + (FIEDT) = & FiTe = .
Conversely, suppose that f|Q = af. Then
(f1l¢ = /4D Tr = (fI[§' — a/4])|Tr =0

and so
(fIl€ + €& —a/2])|Tr = 0. (6.30)
By the definition of Tr, the equation (6.30) implies that the function [’ := f|[{+& —

«/2] is in the orthogonal complement of S(4N,k+1/2,x1) in S(16N,k+1/2,x1). In
particular, we have

(f',f)=0.
Since (f|[§ +&'])|[§ + €] = 2f, we see that

(P AlE+EN = (Fle+ €10 = (2 = SAlE+E1 £y = =S (. hr =0.

Together with (f’, f) = 0, this implies that (f’, f') = 0,i.e. f|[(+&] = %f. Therefore
fisin Sii1/2(N, x). This completes the proof. |
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For each prime divisor p of N, we defined an operator W (p) in Section 5.4 by

_ p a —1,1/4 1/2
W ={ ([ ) &Nz ),
where a, b are integers with p?b — 4Na = p. Then W (p) maps S(4N,k + 1/2,x1) to
1p _ 4\ ~(2k+D)/4
S <4N,k +1/2,x1 ()) and (p) W(p) acts as an unitary involution
on the sum of these spaces (see Section 5.4).

Lemma 6.17  W(p) maps the space Syi1/2(N,X) isomorphically onto the space

sios (¥ 5))

Proof =~ We must show that Sy q,2(N,x)|[W(p) C Sk+1/2(N,X(;)). In view of
Lemma 6.16 we only need to show that

WO (o), = (5 ) 1) IV (6.31)

holds for f € S(4N,k + 1/2,x1). It is easy to verify that for every v € Z there is
some v, € IH(4N) such that

w4 ={ (3 1) (5) precamo

where u is determined mod 4 by Nu= —1—b(1+ Nv) + N/p (mod 4). This implies
(6.31) since flQ = > (fI[§, (=4)e)I4;. This completes the proof. O
Np

v mod 4

Let m|N*° and U(m) be the operator defined as in Lemma 5.38. For any prime
divisor p of N, put

w =Wy py1/2,n =p VAU ()W (p)

and define S,:thl /2(]\7 ) as the subspace of Sj41/2(IV) consisting of forms whose n-th
(—1)*n

Fourier coefficients vanish for ( ) = F1. Then we set

Wp,y 7= Wy kt1/2,N,x = U)Wy pr1/2 NU (1),

S]:Ct_fl/z(Nv X) = S]ztfl/z(N)‘U(t)v

where we used the fact that U(t) is an isomorphism from S 11 /2(N) to Spy1/2(N, x)
which will be proved in (1) of the following lemma.
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Lemma 6.18 (1) The operator U (t) maps isomorphically Sy i1 /2(N) onto Syyq/2(N,
X) where t is the conductor of x.
(2) The operator wy j41/2,n @5 a Hermitian involution on Syyq/2(N,x) whose

(£1)-eigen -space is Skifl/Q(N7 X)- In particular, for any p|N, we have an orthogonal
decomposition
Sk+1/2( ) S}:fl/Q(N X)@Sk_fl/Q(N7X)'

t
If p t t, then wy, coincides with the restriction of (—) p~CE=D/AU ()W (p) to
p
Sk+1/2(N, x), and Sk+1/2( ,X) coincides with the subspace of Sy41/2(N, x) consisting
, ) . (—1)ktn
of forms whose n — th Fourier coefficients vanish for T = Fl.

Proof  We prove first the following assertion: suppose p t ¢, then p~*=D/4U (p)W (p)
defines a Hermitian involution on Sji/2(N,x) whose (£1)-eigenspace consists of

oo

those functions f which have a Fourier expansion f = Z a(n)e(nz) with a(n) =0

In fact, by the definition of U(p), we see that

- 5 1))

v mod p

and so
flp~ DU (p)W (p)

_ p+4Nv a+ pbu 4\ /2
—p /2 Z fH ( ANp b >,<p> (ANz +pb)/2 4]

v mod p

If 1+ 4Nv/p#0 (mod p), then 4N and 1+ 4Nwv/p are co-prime, and so we can find
. o B

integers «, 8 such that a(—1 — 4Nv/p) — 4N3 = 1. Thus <4N 1 —4Nv/p> €
I'y(4N), by f € Sit1/2(N,x) and p { t, we see that

f‘ H (pl—;ﬁ:v ¢ —;212[”}) ,(ANz +pb)1/2H

MG G

f|p<%1>/4U<p>W<p)=(N—/”)(‘f)kmp1/2 > s

p

16 5) G

a mod p,
(a,p)=1
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({2 )

where vg is an integer with 14+ 4Nwvy/p =0 (mod p). Since

= O 2 Ml

(a,p)=1

(6.32)

=0,
we see from (6.32) that

Flip= =D ()W (p))?

H ((1) ?) ’p”‘*H \W(p)‘mp)mp)
2. 2 GG S fDwol[{ (o 5) ] wo

Since p1t, it is easy to check that

(O )G ) ol (6

o )W) € A,
p
so that, we have

:p—(2k+1)/4f

Flp~CE=DAT ()W (p))? = f.

weneanne((3 2. ()G V(G QG

p

p p
.. 1 v 1/4 . * L wo 1/4
and the adjoint of 0 p , D W (p) can be written as C 0 p D W(p)
with C' € T'y(4N), it follows that p~*=D/4U (p)W (p) is Hermitian.
Finally, by Gauss sum and (6.32), we have

G = () 37 (S5 Jatmeta

H ((1) 1;) ’pwH W(p).  (6.33)

Therefore to complete the proof of our assertion we only need to show that

—k—1/2
11U (@) = i(‘;) P/ f1 ()

+p 12 f

is equivalent to the identity

P 3wl

p) (U@ p2),
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which can be derived from the following fact
1/2
1 v 1/4 _ 10 —4 N/p
{(0 p)’p =10 1)\ P

cww{ (4 1) (6.34)

with C' € Ty(4N), and hence the assertion is proved. Since we have the following
commutation rule

FUOW () = (;)ﬂW(p)U(t), pit,

the assertions in (2) of the lemma will be clear once (1) will have been proved. By
Lemma 6.17, we have that dim(Sy1/2(N)) = dim(Si41/2(N, x)). So we only need to
show that U(t) is injective on Sy 1/2(N). But we have shown above that U(p)W (p)
is injective on Si11/2(N, x) for p{ ¢, so U(p) is injective on Sy /2(N, x) for p{t, and
hence we conclude by induction that U(t) is injective on Si41/2(/N). This completes
the proof. 1

We introduce now the Hecke operators on Sj1/2(V, x). Let
1
a—p
be the orthogonal projection onto Sj.y1,2(N, x). For a prime p { N, we define T(p) :=

(Qr,N i — B)

Pr-=DPIk N *=

Tn.k(p) as the restriction of

_ 1 0
vppt 3/ [Ao(‘lN,Xl){ (0 p2> 7p1/2}A0(4N7X1)]Pr

to Sit1/2(N,x), where v, = 1 or 3/2 according to p # 2 or p = 2. It is clear that
for an odd p, Tk, (p) is the restriction of the Hecke operator T .y, (p?). We write
Tn.i(p) for T kia.(p)-

Lemma 6.19  Let f(z) = Za(n)e(nz) € Spy12(N,x). Put f|Tney(p) =

n=1
Zb(n)e(nz). Then
—1)*n
b(n) = a(an)—FX(p)(L ;) )pkla(n)—ka(n/pQ), if e(=1)*n=0,1 (mod 4),
0, ife(=1)fn=2,3 (mod 4).

(6.35)
The operators T(p) generate a commutative C-algebra of Hermitian operators.

Proof  Since T(p) is just the Hecke operator T(p?) for p # 2, so (6.35) is clear for p
odd by Theorem 5.15. Let us now prove (6.35) for p = 2. We use the same notations
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as in the proof of Lemma 6.16. By the definition of U(m), we see that
k—3/2 L 0Y Jip2
U4) =2 Ao(dN x1)y (o 4 )27 (AodN. xa) ).
By the definition of T(2) and (6.29), we have

JIT@) = = (U@ [T+ 31U = fi + fo + fy

with
fi = S(AIU@IEDIAG + 431 + 1 U (4),
fa = S(FIU@)EDIAY],
fs = S((FIU@)EDIA” vs].

Since

*

N+1

. 10 . 14+2N ——
=30} (2 Y e

8N 1+2N

and f € Sii1/2(N, x), we see that

fi =~ (V@) + €]+ 37U ()
By (6.28) and Lemma 5.38, we have

fi= Z a(4n)e(nz).

e(—1)kn=0,1 mod 4

- 5 (G 5) )

v mod 4

But we have also

so that

k—3/2
rtm 2 ARG 0 2]l

v mod 4

A+ 4N (4o +1) dv+1 .
k—3/2 1/2 mi/4 2 1/2
Cpen ] (FRD S e, el

v mod 4

For v € Z we can find an integer a such that
—a(l+ N?(4v+1)) +2(4v+1)=0 (mod 16),

so that
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2
{<4+4N (4v+1) 4v+1> ’81/2eni/4(8N2Z+2)1/2}

64N2 16
1+ N2(4v+1) —a(l+N?*4v+1)+24dv+1)\"*
— 2 16
SN2 —aN?% +2

A0 e (D) )

Moreover, if v runs through integers mod 4, a runs through a reduced residue system
mod 8. Thus

@22 s () (£)(E)(2)

a mod 8,
a odd

From this equality, it is easy to verify that

f2=x(2) i (@)a(n)e(nz).

n=1

We want now to compute f3. By the proof of Lemma 6.16, we know that

a
fllE+&=5r (6.36)
Since
1 +1 —N*4+1 1 .
(6 ) #H (i ) anevanceonr)
1— N4 (4£1)(1 - N4\ *
4 - 7
_ TN —&-74 1+ 16 £F1,
—4N*4 FN*+4

so (6.36) implies

2= 3 G D2 3) et}

and hence

PREHES|

:%f’ |:{ (4]4\5‘4 _JV—41+1> 7((;_1/2em/421/2(4]\/v4z_]\[4_’_1)1/2}:|. (637)

Since a(n) =0 for n =2 (mod 4), we have

2 H ((1) 4) 2 H =22k fU ().
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From (6.37) we obtain

f|U(4) _ 2k—3/2af |:{ (4]%74 _N_41+ 1) ’8—1/26—7[1/42—1/2(4]\]42 _ N4 + 1)1/2}:|

{9 e
Hence
f= i el =221 [ (5 1) 2]
=921 Tia(n/ll)e(nz). (6.38)

Putting together all expansions for fi, fo and f3, we get (6.35) for p = 2. It is
clear that the operators Ty (p) commute each other from (6.35). Tk (p) (p 1

2N) is Hermitian since the operator HAO(4N7X1) <(1) ;) 71)1/2}A0(4N,X1)} is

Hermitian for p { N. So we only need to show that T(2) is Hermitian. Let f, g be in
Skt1/2(N,x). Then

SUIT(2),9) = (U @)pr,) = (F1U (), glp)

swtaa-n 5 ()
ARG <f7 g

£ (D))
R (e

{6 1))

L (U @) e [A%s), (6.39)

(07

Now we have

L (U @) DI o] =232

«

and the first equality is derived from (6.38), and the second can be proved similarly.
By (6.39), we see easily that

H (3 (1)> 72_1/2” = E(QIU(ZI))I[&A*_M +ETTAR).

2k+1/29

Thus

SUITR),0) = (f, U (@)EA s + € AR

(fl[ANsE™" + A% ys€] U (4))

SN RN N



6.2 New Forms with Half Integral Weight 189

= 2{7le+ € glU @)

2
= {£,9lUW)) = 3{f,9|T(2)).
This completes the proof. O

For a positive divisor d of N we set Sj1/2(d, x) = Siy1/2(d)|U(t). Put
S s (NX) = D (Skry2(dyX) + Serrj2(d, )T (N?/d?))
N#£d|N

which is called the space of old forms in Sj;,2(N,x). And we define the space of

new

new forms, denoted by Sk+1/2 (N, x), to be the orthogonal complement of the space
of old forms in Sjy41/2(IV, x) with respect to the Petersson inner product. We write

Sei12(N) = SpfY o (N, id.).
Lemma 6.20 We have

SEv1/2(N, x) = SEL1 2 (N)[U ()

Proof By Lemma 6.18 it suffices to show the inclusion
S 2(NIU(E) € SET /2 (N, x)-
Let f € Sp9Y 5 (V). We must show that
(glU(t), fIU(t)) =0

for all old forms g in Sy 1/2(IN). Let t = p1 ---p, be the standard factorization of .
Then we have

(glU®), FIU®) = pi (gl U (t/pr). FIU(t/pr)),

SR/

since W (p,) is unitary and p, pr)W (pr) is a Hermitian involution on Sy 119

(N)|U (p_> (by the proof of Lemma 6.18). By induction, we see that

(glU ), X)) = t*+12(g, f) = 0.

This completes the proof. O

We shall carry over the basic facts about the space of new forms S™W(N, 2k)
to S 2(N, x). Recall that for every prime divisor p of N the operator U( )
preserves SneW(N,Qk) C S(N,2k) and that U(p) = —pF~1W, 21 n on S"V(N, 2k),
where W), ox nv is the Atkin-Lehner involution on S(N, Qk) defined by

pz+a

(fWporn)(2) = p"(4N= +pb)‘2kf<m

), a,beZ,p’b—4Na=p

We shall now prove an analogous result for new forms of half integral weight.



190 Chapter 6 New Forms and Old Forms

Theorem 6.9  For every prime p|N, the operators U(p?) and wpy = Wp N x
preserve the space of new forms. And we have U(p?) = —p*~lw, \ on Si‘i"{ﬂ(N, X)-

Proof  We first show that w, , := wp r,~, maps new forms to new forms. Since
Wp,y is Hermitian it is sufficient to show that w, , maps old forms to old forms. By
the definitions we only need to show this for x = id. Now set wy, := wy 1, n. We only
need to show that wy, maps Syy1/2(N/1) and Sy11/2(N/1)|U(I?) to old forms for every
prime divisor [ of N.

Let f € Spq1/2(N/1). If p # 1, by (2) of Lemma 6.18, f|w,, is in Sj1/2(N/1) and
so an old form. The same is true for f|U(I?)|w, = f|w,|U(I?). Thus we assume that

p=1. Let f(z) = Z a(n)e(nz). Then, by (6.34) and (6.35) in the proof of Lemma
n=1

6.18, we see that

= (1 (g 2) )
(DG
-G DG ]
Thus we obtain that

flup = (22 f_oj (((‘”k”)mm ol s?))elnz),

p

Fluy = (%”)pk+l<—f|U<p2> T 2). (6.40)

This shows that f|w, is an old form. Moreover, applying w, on both sides of (6.40)
and noting w? = id. we see that (f|U(p®))|w) is an old form. This shows that w,
maps old forms to old forms, and so that, new forms to new forms.

new

Finally, we must now prove that on S;¢ /2(N ,X)

Up?) = —11)’“_1101,71671\;7)(7 p prime , p|N. (6.41)
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But Lemma 6.20 and the injectivity of U(t) on Sji1/2(N) (see Lemma 6.18) allows
us to assume x = id. for the proof of (6.41). Denote by Tr := Tr%/p :S(NkE+1/2) —
S(N/p, k + 1/2) the trace operator. It is easy to verify that Tr%/p maps Syy1/2(N)

to Spi1/2(N/p) by Lemma 6.16. Let f € S}in{ﬂ(]\f). Since f is orthogonal to

. 1 0 1 u
Sk+1/2(N/p), it follows that f|Tr = 0. On the other hand, (4N/p 1) (0 1)

1
(u mod p) together with < 0 ?) form a complete set of representatives for I'H(4N)/
I'v(4N/p). Thus we have

fITe=f+ 3 fH(Mé/p 2)(5 ?)}

u mod p
But

(o 2) 1) =G 0) G oo 6 i) )
so that

N\ k12
fITe=f+ (?) M2/ LW () U ().

Since f|Tr = 0, we obtain that

g\ B2
AW @)U () = - (7) P/,

By (2) of Lemma 6.18 and the fact that wp , n, preserves the space of new forms,
we see that U(p)W(p) is an isomorphism of SpTY /2(]\7 ). Thus replacing f with
fIU(p)W (p) in the above equality, we see that

g\ B2
(7) UG = [IUGW W)U D)
g\ B2
—(3) e
i.e.
U@ =~ fluy.
This completes the proof. O

Lemma 6.21 Let f = Za(n)e(nz) € S(4AN,k +1/2,x1) satisfy that a(n) =0 for
n=1

n =2 (mod 4). Then f is in Syy1/2(N, X).

Proof  The hypothesis a(n) = 0 for n =2 (mod 4) is equivalent to
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G DA D
esmguia{ (3 4)0)

Now apply the trace operator Tr := Tri?VN from S(16N,k + 1/2,x1) to SAN,k +
1/2,x) on both sides of the above equation. Because of the identity (6.29) and the
fact that @ is Hermitian, we obtain that

e(—1)EH1/2 /2 f1 0 = 2—k+1/2<(f|U(4))‘ H (3 (1)) 72_1/2}D

Since U(4) and {(é ?),2—1/2} Tr equal 2’“—3/2[A0(4N,x1){<é 3),21/2}

A0(4N,X1)] and [A0(4N,x1){ (3 ?) ,2_1/2}A0(4N,X1)] respectively, and also

since

Tr.  (6.42)

A0(4N7X1){((1) Z>,21/2}A0(4N7X1)

sy (5 1) 2 fanavo)
—aaavon){ (5 7)1} anavon)
o] (o ) 1fasano
rasanvoan{ (o 7)) 1 paana)
o (o 7)1} aavn,

the right hand side of (6.42) equals

5 (47 + (-2

so that
F1Q = (1) /22 /3¢
and hence f is in Sjy1/2(V, x) by Lemma 6.16. This completes the proof. O

Lemma 6.22 Let p be a prime and 0 # f = Za(n)e(nz) € G(N,k/2,w). Assume

n=1
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that a(n) = 0 for all n with p{n. Then p|N/4, wx, is well-defined modulo N/p and

f=9glV(p) with g € G(N/p,k/2,wx,) where x, = (g)

Proof Put
((ER D

N = {JJ\Vf{p, i;fppfj\;//‘: To(N',p) = { (Z 2) € FO(N')|p|b}.

o0

9(z) = f(z/p) = Z =ph/f

Set

IfA= (Z Z) € I'o(N',p), then 4; = (a b/p) € I'o(N) and we see that

cp d
{(5 o) weba =aog@ai (5 5) 0}
enee gll4"] = wld)p (d)g. (6.44)

By (6.43) we hav
R (R

1 1
Since I'o(N') can be generated by Io(N', p) and (O 1 ), we see that (6.44) holds for

any A € I'y(N'). We declare that wy, must be well-defined modulo N’. Otherwise,
there exist integers a and d such that ad = 1 (mod N') and wx,(a) - wxp(d) # 1.
Take a b

B= (N, d) € Iy(N'),

we have that g = ¢|[B*(B™!)*] = wyp(a)wxp(d)g, which is impossible since g # 0.
Therefore wy, must be well-defined modulo N’, so that p|N/4 and N' = N/p. It
is therefore clear that ¢ is in G(N/p,k/2,wx,) and f = ¢g|V(p). This completes the
proof. 1

Lemma 6.23 Let m be a positive integer, and

oo

f(z)= Za(n)e(nz) € G(N,k/2,w).

n=0

Suppose that a(n) = 0 for any n with (n,m) = 1. Then
F=2 5V, fr€GN/p.k/2.wx).

where the prime p runs over the set of common factors of m and N/4. And wy, is
well-defined modulo N/p. f, can be chosen as cusp forms if f is a cusp form. fp
are eigenfunctions for almost all Hecke operators T(p?) if f is an eigenfunction for
almost all Hecke operators T(p?).
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Proof  We can assume that m is square-free. Let r be the number of different
prime factors of m. If r = 0, then f = 0 and the lemma holds. If 7 = 1, this is the
Lemma 6.22. We now prove the lemma by induction on r. Let m = pgmg. Take a
prime p and put K(p) = 1 — T(p, Np)V(p) where T(p, Np) is the Hecke operator
Tnp.kw(p) on the space G(pN, k/2, w). By the properties of Hecke operators, we
have
fIK(p) = Z a(n)e(nz) € G(p°N,k/2,w).
(n,p)=1
So
h:= > a(m)e(nz)=f| [[ Kp) € GmIN, k/2,w).
(n,mo)=1 plmo
If h = 0, replacing m by mg, we see that the lemma holds by induction hypothesis.
Now suppose that h # 0. If (n, mg) = 1 and a(n) # 0, then po|n. By Lemma 6.22,
there is g,, € G(m3N/p, k/2, wxp,) such that h = g,,|V (po), and wx,, is well-defined
modulo m3N/py. Hence po|N/4 and wyy, is well-defined modulo N/py. We have

f=h=f=gplV(po) = _bn)e(nz).
n=0
Noting that b(n) = 0 if (n, mg) = 1 and applying induction hypothesis, we have
F=9p0lV(P0) =D gV (D),
p

where p runs over the set of prime factors of mg, and wy, is well-defined modulo
m2N/p. Therefore by Theorem 5.21, we see that

FIS@) = gpo = D (9l S (@xp: MmN/, p0)) |V (p).

P
Put fp, = f|S(w). Then f,, € G(N/po, k/2,wXp,). If we write
FoolV(po) =) eln)e(nz),
n=0

then the nth Fourier coefficient of f,, |V (po) — gp, |V (po) is not zero only for (n, mg) #
1. So we get ¢(n) = a(n) for (n,mo) = 1, and hence the nth Fourier coefficient
of f — fpo|V(po) is zero for (n,mg) = 1. By the induction hypothesis we get the
decomposition of f as stated in the lemma. The other results can be proved also by
induction. This completes the proof. O

Corollary 6.3 Let f be as in Lemma 6.23. If f is an eigenfunction of almost all
Hecke operators, then f € G4 (N,k/2,w).
Theorem 6.10 We have the following decomposition:

Ser2(Nox) = @D i e(d U ().
r,d>1,rd|N
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Proof  We now prove the decomposition for the case N = ¢ with ¢ an odd prime.
We can prove the general case by induction. First assume y = 1. Suppose that
f € Skt1/2(1) and f|U(¢?) € Sky1/2(1). We may assume that f is an eigenfunction
of all Hecke operators T(p) := T1,1(p). To prove the decomposition we must show
that f = 0. If otherwise, since f and f|U(¢?) have the same eigenvalues for all T(p)
with p # ¢, we conclude that f|U(¢?) = cf with some constant ¢ € C (in fact, by
Theorem 6.3, a non-zero Hecke eigenform in S(1, 2k, id.) is completely determined
up to a constant factor by prescribing all up to finitely many of its eigenvalues, so is
also a non zero Hecke eigenform in Sy 1/2(1) by Theorem 9.7).

Now let A\, be the eigenvalue of f with respect to T(g) and write f = Z a(n)e(nz).
n=1

Then, by the definition of T(q) and the fact that f|U(¢?) = cf, we have

(=D _ 2k—1 2
Ag — € . q a(n) =¢*" " a(n/q¢®), VneN. (6.45)
By Lemma 6.22 we can choose n' such that ¢{n’ and a(n’) # 0. We see then that

Ag=c+ <(_1q)k”/>qk—1. (6.46)

Substituting (6.46) into (6.45) we have

(<(_1q)kn/> B (Hq)kn>>a(”) = ¢"a(n/q*), VnéeN,

(-
q

()

|)‘q| = qk + qk_17

so that

10 = (S5 )t =0 mod )

ie.,

Thus by (6.46) we see that

which is impossible by Ramanujan-Petersson-Deligne’s Theorem. Thus we proved
that

Skt1/2(1) N Sig2(V|U(¢%) = {0}.
Hence by the definitions of new forms and old forms, we have
Skr1/2(0) = Sp{H 2(0) & (Skt1/2(1) + Sk+1/2(1)|U(q2))
= S )2(@) @ Sky1/2(1) @ Spa1/2(D[U(¢?)
= Sii1/2(0) & i 2 (1) & St o (DIU (6°).

~— ~—
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Thus the theorem is proved for xy = 1. If x is primitive modulo ¢, the theorem follows
from the following facts (see Lemma 6.18 and Lemma 6.20) :

Skr172(@IU (@) = Skr1/2(4:X), St 2(@IU (@) = SpdT 2(¢: X)-

This completes the proof. O

Theorem 6.11 (1) The space S}g+1/2(N X) has an orthogonal basis of common
eigenfunctions for all operators T(p) := Tn(p) (p prime, p t N) and U(p?) (p
prime, p|N), uniquely determined up to multiplication with non-zero complex num-
bers, the eigenvalues corresponding to U(p®) with p|N are +p*~1. If f is such an
eigenfunction and X, the eigenvalue corresponding to T(p) resp. U(p?), then there
is an eigenfunction F € SSV(N), uniquely determined up to multiplication with
non-zero complex number, which satisfies F|T n or(p) = ApF resp. F|U( %) = M\ F

for all primes p with pt N resp. p|N. Let f = Z a(n)e(nz) and F = Z A(n
n=1

and D a fundamental discriminant with ¢(—1)*D > 0. Then we have

L(s—k+1,xxp) Z (ID[n?)n~* = a(|D|) Z

(2) Let the map Lp n i,y be defined by

Z b(n)e(nz) — Z (ZX(d)xp(d)dk_lb(n2|D|/d2)>e(nz).
n=1

n=1 d|n

Then Lp,Nky maps Sgt172(N,x) to S(N,2k,id.), ST (N, x) to S™Y(N, 2k, id.)
and Skfl/2( X) N SES (N, x) to SEP(N, 2k,id.) () S"V(N, 2k,id.) with p any
prime divisor of N where S*P(N,2k,id.) = {f € S(N,2k,id.)| f[Wporn = £f}.
It satisfies

TN kx(P) LD, Nkx = LDNkxTN2k1(p), VPIN,

UP*)Lp Ny = LonixU(p), Vp|N.

There exists a linear combination of the Lp n i which maps kS’}Clﬁ_Vz/z(]\f7 X) resp.

SEPL (V. X) N S 2(N, X)
1somorphically onto w id.) resp. id. w id.).
phically SReW(N, 2k, id.) D SjEP(N7 2k,id.) [ S™°Y(N, 2k,id.)

Proof  Since T(p) commutes with U(d?) for d|N, and since for f € Sgy1/2(N) we
have

FIU@IT(p) = FIT@)IU (@),
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it follows that the Hecke operator T(p) preserves the space of old forms and so pre-
serves also ST /2(N ,X)- We now have that

Tr(Tw kx (1); Sk$7 /2 (N, X)) = Tr(Twv 26(n), S™V(N, 2k)) (6.47)

for all n € N with (n,2N) = 1. In fact, this follows by induction from the decompo-
sitions:

SN = B S pd 0IUE),

r,d>1,rd|N

S"N(N)= @ 5™V(d,2k)|U(r)
r,d>1,rd|N
and from the Theorem 9.7.

By (6.47) and the corresponding statement for S™°V(N, 2k) (see Section 6.1), we
deduce that SpTY /2 (N, x) has an orthogonal basis of common eigenfunctions for all
operators T i, (p) (p12N), uniquely determined up to multiplication with non-zero
complex numbers. Since Ty .1 (p) (p12N), U(p?)(p|N) and Ty k(2) commute, so
these functions are also eigenfunctions of U (p?)(p|N) and Ty ., (2). Furthermore, by
Theorem 6.9 and in particular the fact that wy , ry1/2,, is an involution shows that

the eigenvalues with respect to U(p?)(p|N) are £p*~1. Now let f = Z a(n)e(nz) be
n=1

an eigenfunction and assume that f|T(p) = A\, f resp. flU(p?) = A, f for pt N resp.

p|N. Then a formal computation as in Lemma 5.40 and Theorem 5.23 shows that

e} N 2 —1
L(s—k+1xxp) S a(lDln?) = a(ID) [ ( o+ (p) p)
n=1

p

for every fundamental discriminant D with e(—1)*D > 0.
Let us show the assertions about the maps Lp := Lp n . Note that the Hecke
operators Ty k (p) and Tx 2xia.(p) act in a natural way on the formal power series

in g = e(z). It is clear that for a formal power series f = Z a(n)q™, we
e(—1)kn=0,1 mod 4

have
[ TN kx| Lp = fILD| TN 2ka.(p), VP{N,

flUP)|Lp = fILplU(p), Vp|N,

by a formal computation.
The other assertions will be shown first under the assumption that D = 0 (mod 4).
Write D = 4¢ with t square free and ¢t = 2,3 (mod 4). For

f= Za e(nz) € Sgy1/2(N, x),
n=1

put



198 Chapter 6 New Forms and Old Forms

FILt ANk = Z (Z (%)X(d)dk_la(nz|t|/d2))e(nz).

n=1 d|n

Then f|Lian k. is a cusp form of weight 2k on I'y(2N) by the results of Chapter 8.
Since f € Sji1/2(N,x), the nth Fourier coefficients of f|Ltan x,y, are zero for any
odd n. Hence the function (f|L¢an k. )|U(2) = f|LDp N,k is in S(N, 2k,id.).

If fe Sy /2 (N, x) is a Hecke eigenfunction, then from Theorem 6.9 we see that

flU@?) =" f. ¥V p|N.

Therefore F' = f|Lp is a Hecke eigenform in S(N, 2k,id.) with F|U(p) = £p*~1F for
all p|N, and this implies that F' must be in S®°V(N, 2k, id.) by the results in Section
6.1.

That Lp maps S;.7; (N, x) ) SpSY (N, x) to SEP(N, 2k,id.) () S (N, 2k, id.)
follows from Theorem 6.9, the identity U(p*)Lp = LpU(p) and the fact that U(p) =
—p* W, N ok on SPCV (N, 2k, id.).

We shall now prove that there is a linear combination of Lp with D =0 (mod 4)
which gives an isomorphism of ST /2( X) onto S™V (N, 2k, id.). Now suppose
that f € SPSY 5 (N, x) is a non-zero Hecke eigenfunction. We declare that there is a
fundamental discriminant D = 0 (mod 4) with ¢(—1)*D > 0 such that the Fourier
coefficient of f at e(|D|z) is non-zero. Otherwise, then the n-th Fourier coeflicients
of g = f|U(4) are zero for all n = 2 (mod 4), and so that g is in Syq1/2(N, x) by
Lemma 6.21. It follows that g = c¢f for some constant c. In fact, by Theorem 9.7 and
identity (6.47), we see that there exists an isomorphism 1 : Syt 1/2(N, x) — S(N, 2k,
id.) which maps new forms onto new forms and YTy r41/2.(P) = Tn,2x(p)3 for all
primes p t 2N. So f|i¢ is a new form with the same eigenvalues as gl for all Hecke
operators T ox(p) with p 1 2N, and so that g|yy € Cf|¢ by the results in Section 6.1.
This shows that g = cf for some constant ¢. Now note that f is an eigenfunction of
TN,k (2). Denote by Ay the corresponding eigenvalue, then similar to the proof of
Theorem 6.10, we have

|/\2| _ 2k + 2k—1’

which contradicts the Ramanujan-Petersson-Deligne Theorem. Thus we proved the
above claim.

Let f1, fo, -+, fr € Skq1/2(IV, x) be an orthogonal basis of common eigenfunctions
of the operators Tn i (p)(p f N) resp. U(p?)(p|N), and write f; = Zai(n)e(nz).
n=1

For every i find a fundamental discriminant D; = 0 (mod 4) with e(—1)*D; > 0 and
a;(|D;|) # 0. Then the polynomial

P(zi,xs,---a,) = [[ (@(IDil)zy+ - + ai(| Dy ))ay)

1<igr
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is non-zero. Choose ¢1,--- ,¢, € C such that P(cq,---,¢.) # 0 and put

Lk = ZCiLDi,N,k,X-
i
Then it is immediate that Ly k  is an isomorphism of S,‘C‘i"{ﬂ(N, X) onto S™¢V(N, 2k,

id.). By Lemma 6.18 and the fact that S,ffl/Q(N X) is the (£1)-eigenspace of the

involution wy, x11/2,n,y, We see that Ly x, maps Sk+1/2( x) N Sk+1/2( X) onto
SEP(N, 2k, id.) () S™eV(N, 2k, id.).

Finally we must prove the assertions about Lp ny,y for D =1 (mod 4). It is
enough to show that Lp n k, maps k12 (N, x) to S™V (N, 2k,id.). In fact, for any
prime divisor {|V, it is easy to verify that

D
Lo Ny = Lonix (1 - (T>l’“1V(l))7

U(t)Lp,Nkx = Lpy,Nkia.U((D,1)?),

Dy
where V(1) is the translation operator defined by (f|V(1))(z) = f(Iz) and ( " ) is the

D
primitive character induced by (*> X- It then follows inductively that Sy /2(N, x)

is mapped to S(N 2k,id.). And the same argument as in the case D = 0 (mod 4)
shows that ;7 712 (N, X) SRSy (N, x) is mapped to SEP(N, 2k,id.) () SV (N
2k, id.).

Now let F' be a normalized eigenform in S™V(N, 2k,id.) with F|Tx 2x(p) = A\pF

resp. F|U(p) = A, F for all primes p{ N resp. p|N. Then F = Z Ane(nz) and A, is
n=1

determined by

Z)\nn—s :H 1_/\pp +XN( )2 2k—1— 25) iy
n=1

P

Write ¢y i, for the inverse of Ly i, and put G = F|én kLD Nk Then G is
a power series in ¢ = e(z) which converges on H and satisfies G|Ty 21(p) = A\pG
resp. G|U(p) = ApG for all primes p f N resp. p|N. Hence it follows that the
coefficient of G at e(nz) equals ¢\, with ¢ the first Fourier coefficient of G. Thus we
have that (F|¢n,k,x)|LD,Nkx = cF. This shows that Lp n,k,y maps SpTY (N, X) to
SPeW(N, 2k,id.). This completes the proof. |

Corollary 6.4 Let N1 and Ny be two square free positive integers, f1 and fo two
new forms in Sk+1/2 (N1, w1) and 5211/2 (N2, ws) respectively such that fi and fo have
the same eigenvalues with respect to infinitely many operators T(p) for (p, N1N3) = 1.
Then N1 = Ns and f1 = cfy with some constant c.

Proof  This is a direct conclusion of Theorem 6.11 and Theorem 6.8. O
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6.3 Dimension Formulae for the Spaces of New Forms

In this section we shall give some dimension formulae of the spaces of new forms.

Recall first the following result:

Theorem 6.12  Let k be any even positive integer and N a positive integer. Then
we have
k—1 1
do(N, k) = TNSQ(N) — §VOO(N) —|— CQ(k)VQ(N) + Cg(N)Vg(N) + 617k/2,
where do(N, k) is the dimension of the space of cusp forms with weight k on the group
I'y(N), 05,y is zero or 1 according to © =y or x # y respectively, and the functions
S0, Voos V2, V3, C2 and c3 are defined as follows:

50 : the multiplicative function defined by so(p') =1+ ]1) for all t > 1;
Voo & the multiplicative function defined by

o) = {Qf/(sl)/j/,z_l Z:ft ZS odd,

P +p , if t is even.

Vo : the multiplicative function defined by
1, difp=2,t=1,
0, ifp=21t>2,
2, ifp=1(4),t>1,
0, fp=34),t=1

va(p') =

vs : the multiplicative function defined by
1, ifp=3t=1,

o Jo ip=3t>2
v3(p’) = o
2, ifp=1(3),t>1,
0, fp=23),t>1
) 1 k
co : the function defined by ca(k) = 1 + ik
) 1 k
cs : the function defined by cs3(k) = 3 + 3l

Proof  This is a direct conclusion of the dimension formula of the space of cusp
forms with integral weight in Section 4.1. O

We now denote by dj¥ (N, k) the dimension of the space of new forms with weight
k on the group I'p(NV).
Then we have the following
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Theorem 6.13 Let k be any even positive integer and N a positive integer. Then

k—1 1
B (N, k) = NN = LR (N + () (N)
+ e3(k)vs (N) + 61,5/20(N),
where the function ca, c3,01 /2 are as in Theorem 6.12, u is the Moebius function and
SQV, VAV VBV VBV are defined as follows:

56V ¢ the multiplicative function defined by
1
1-— -, ift =1,
p
1 1

S =1 - ift=2

p  p¥

(T
p p

v2W s the multiplicative function defined by
0, if t is odd,
g =< p—2 ift =2,
pt/2*2(p —1)%,  ift>4 even.

vV i the multiplicative function defined by

ifp=2,t=1 or?2,

pmew () — 0, Z:pr (4),t=1o0rt>3,
-1, ifp=14),t =2,
-2, ifp=3(4),t=1,
1, if p=3(4),t=2,
0, ifp=3(4),t>3

v3V . the multiplicative function defined by

-1, ifp=3,t=1o0r2,

pnew (p) = 0, Z:pr (3),t=1ort >3,
-1, fp=1(3),t=2,
-2, ifp=23),t=1,
) if p=2(3),t=2,
0, ifp=203),t=3
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Proof  We recall first the following facts about arithmetic functions: the set of
arithmetic functions f : N — C forms a ring under the usual addition of functions
and the Dirichlet convolution as the multiplication operation:

= f(d)g(n/d) (6.48)
d|n

for any two arithmetic functions f and g. And the function d(n) := 01, is the
multiplicative identity of the ring. And the set of all multiplicative functions f with
f(1) # 0 forms a multiplicative subgroup under the Dirichlet convolution. In fact, if
f(1) # 0, then the function g defined as follows:

ifn=1,

n) = 6.49
o) Z f(n/d)g(d), ifn>1 ( )

d|n d#n

is the inverse of f. By Moebius inversion formula we see that the Moebius function
1 is the inverse of the function 1(n) which takes the value 1 at all positive integers:

(nx1)(n) = u(d)

d|N

And in general we use the following Moebius inversion formula: for any two arithmetic
functions f and g, we have

=> g(d), YneN
d|n

if and only if
=Y u(n/d)f(d), ¥neN.

In fact, we have

Zg = (1xg)(n)

if and only if

= p(n/d)f(d)
d|n
From the results in Section 6.1 we have

—P P svk)IVm),

IIN m|N/l
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where V(m) is the translation operator defined by f|V(m) = f(mz) which is an
injection from S(I, k) to S(N, k). Therefore we have

do(N k) =" > dg™ (k) =Y dg™ (1, k)T(N/1), (6.50)

IIN m|N/l IIN

where 7(n) = Z 1 is the number of positive divisors of n. In terms of Dirichlet
d|n
convolution, we see that from (6.50)

do =dg®™ * T
holds for any fixed k. Let A be the inverse of 7. Since 7 =1 % 1, we see that
A=rt=00x)t=1" 51" =pxp

Hence, from (6.48), A is the multiplicative function defined by

-2, ift=1,
Aph) =<1, if t =2,
0, ift>3

Therefore we see that dj®Y = dp * A, and so that

A5 (N, k) =L ((f030) # MY(V) — 5 (v # NY(NV)

+ ca(k)(v2 * A)(N) + c3(k) (v % A)(N) + 01k /2(1 % A)(NV)

from Theorem 6.12 and the fact that the set of arithmetic functions forms a ring
under the usual addition and the Dirichlet convolution, where ig(n) = n is the identity
function on N. But we see that 1+ A = 1 (uxp) = (Lkp)*pu=5+*pu = p, and v x A,
Vo * A, v3 % A are multiplicative functions which equal V55V, v3*%, v3e¥

by (6.48) and the definitions of v3S%, v3°V, v8°V. Finally we see that

oo )

respectively

t
io(P)so(p") = A(p) = Y p™so(P™)AP' ™) = 5 (),
m=0
i.e. the multiplicative function ((igso) * A)(N) = Ns§®¥ (V). This completes the
proof. O

By Theorem 6.11, there exists a linear combination of the Shimura lifting Lp v k,y
which maps k12 (N, x) isomorphically onto S™V(N,2k), so that

dim(SpSY (N, X)) = dim (5™ (N, 2k))

Hence by Theorem 6.13 we have the following:
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Corollary 6.5 Let k be a positive integer, N a square free positive integer and x a
quadratic character modulo N. Then
2k —1 1
A (N, o+ 1/2) == NSE™ (N) = S (N)
+ c2(2k)r3™ (N) + 3 (2k)v3™ (N) 4 61, ,1u(N),

where dg™ (N, k +1/2) := dim (S 5 (N, x))-



Chapter 7

Construction of Eisenstein Series

7.1 Construction of Eisenstein Series with Weight > 5/2

In this section we study the following two problems: construct a basis of the Eisenstein
space E(4N, k+1/2, ;) which are eigenfunctions for all Hecke operators, and calculate
their values at all cusp points.

Now we introduce some notations as in Chapter 2. For any odd positive integer

k, let A = % and

Ak(n, AN) = Lan (2X,id.) ™" Lan (A, X(— 1)) Bk (1, X v, 4N)
1 — 2(2=k)(v2(n)—1)/2
( 1 — 22—k
if 2 f 1/2(71),

27K (1 + (—1))

_ 2(2—k)<u2<n)—1>/2> 7

(1= 2@2ka(n)/2
24@(1 + (_1)>\1) ( o 2(279)1/2(“)/2) ;
Ap(2,n) = if 2|vp(n), (—1)*n/2"2(") = —1  (mod 4),

(1 —2@-Kra2(n)/2
sz(l + (—I)Al) (W + 2(27}9)112(1’7,)/2

(1 42682 <(7‘1)A”2/2V2(n) ) )) 7

if 2|va(n), (—1)*n/2"2(™) =1 (mod 4),
(p—1)(1 — p(2fk)(up(n)fl)/2)
p(pF—2 —1)
— p=R)p(m)+1)/2-1, if 21 v,(n),
(p— 1)(1 — pERwe(m)/2)
p(pF=2-1)

—1 A vp(n)
N (H’;/p> pE-REpMD/2-1/2 it 9y, (),

Ak(p7 ’I’L)
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oo

Ly(s,x) = >, x(mn= =T =xm@p )"

(n,N)=1 ptN
—1)*n
51{:(”7 XN 4N) = Z /j‘(a’) (%) a’iAb2ik7
(ab)?|n,(ab,2N)=1
a,b positive integers
—2mi)k/?
L(n,4N) = (7 4N).

We define functions gx(xi, 4m,4N)(z) (m|N) and gx(xi, m,4N)(z) (m|N) as fol-
lows: For k > 5,

gr(x1, AN AN)(2) = 14 > N (I, AN) T (Ax(p. In) — np) (In)*/> g™,
n=1 p|2N

gr(x1,4m AN (2) = Y N (In, AN) [ (Ak(p. In) — np)(In)¥/>~q", ¥ N #m|N,
n=1

p|2m

gk(xa,m,AN)(2) = Y~ N (In, 4N) [ [ (Ar(p, In) = ) (In)** 1", ¥ m|N,
n=1

plm
‘ 1+ (=DM p—1
where ¢ = e(z) = e*™*, ny ok — 4 and 7 e p— or p #

Lemma 7.1 Let k be a positive odd integer, n a positive integer and p a prime, D
a square free positive integer and m|D. Then

(D) Ak(n,4m) = \e(n,4D) ] (1 + Ax(p,n)),
p|D/m
(I1) Ag(p,p°n) —np = P2 (Ak(p,n) — np).
Proof  The second equality is clear from the definition of Ag(p,n). The first equal-

ity can be proved from the definition of Ag(n,4D) and the properties of 8x(n, xp, 4D).
We omit the details. O

Theorem 7.1 Let k > 5 be an odd positive integer, D a square-free positive odd
integer and | a divisor of D. Then the functions

{gk(Xh4m74D)79k(lem74D) |m|D}

constitute a basis of E(4D,k/2,x1) and are eigenfunctions for all Hecke operators,

and , ) ,
gr(x1,7,4D)(z), if plj,

9k(x1,3,4D)(2)|IT(P*) = { P 2gr(x1.4,4D)(2), if p|8D/j,
(1+p* )gr(x1,4,4D)(2), if pt2D,
where j = m or 4m, m|D.
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Proof By the definition of a Hecke operator, we know that gi(xi, 7, 4D) = gx(id.,
J, 4D)|T'(1). Hence we only need to prove Theorem 7.1 for [ = 1. We first show that
gx(id., j, 4D) belongs to £(4D, k/2, id.).

By Chapter 2, for square free odd positive integer D, the following functions belong
to £(4D, k/2,id.)

Ep(id,4D)(z) = > ()7

YET\I'0(4D)

= 14> X(n,4D) [ Axlp,n)n*>~'q",

n=1 p|2D

1
E4(x0AD)(2) = 2 Eu(xpaD) (- 13-

=3 N(n, 4Dt g,
We introduce the following functions:

F(4D)(2) = Ey(id.,4D)(2) = 1+ Y _ A (n,4D) [] Ar(p,n)n**"1q",

n=1 p|2D
Fi(4m)(2) = > XNp(n,4D) T A(p,n)n*/*~'q", (7.1)
n=1 pl2m
Fiulm) = 32 X, 4D) [T Aulp.mn/2 g7
n=1 p|m

Since Lemma 7.1, we see that for any m|D,

Ey(id., 4m)( —1+Z/\/n4m HAH% nk/2=1gn
pl2m
=1+ Z N (n,4D) H Ak (p,n H (Ap(p,n) + 1)n*/ 21",
- pl2m p|D/m (72)
EI/c(er 4m)(2) - Z >\;€ (n’ 4m)nk/27lqn
n=1
=3 4D) TT (Axlpor) + 1721
n=1 p|D/m
Because

[T 4k = T Axlo.n) T (1 + Axp.n) — Aw(p. )

= > w@d [ 4@n) J] 1+ Akpn)),

dD/m  pl2md p|D/(md)
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1T Ace.n) Zﬂ IT 0+ Aup.n)). (7.3)
p|m

plm/d
By (7.1)—(7.3), we see that
Fp(4m) = > p(d)Ei(id.,4md) € Ey,»(4D,id.),
d|D/m

Fe(m) = ju(d) B}, (Xap/m-4dD/m) € Ej5(4D,id.).

d|m

But
g(id., 4m, 4D) = > p(d) [ [ mpFi(4m/d) = > " pu(d) [ ] mpFic(m/d),
d|m pld dlm pl2d (74)
x(id., m,4D) Zu anFk(m/d),
d|m pld

which implies that g (id.,4m,4D) and g (id., m,4D) belong to £(4D, k/2, id.).

We now want to prove the equalities in Theorem 7.1. We recall the definition
o0

of Hecke operators: for any f(z) = Za(n)e(nz) € G4D,k/2,w), we have that

n=0
Z b(n ) where

1)
b(n) = a(p®n) + w(p) (“)

- )pk La(n) + w(pP)pt2a(n/p?),

where a(n/p?) = 0 if p? { n.

In particular, if p|4D, then b(n) = a(p?n). It is clear that B¢ (p*n, xp, 4D) = Bi(n,
XD, 4D) for any p|2D. So the first two equalities in Theorem 7.1 can easily be deduced
from Lemma 7.1 (IT) and the obvious fact that Ag(p,qn) = Ax(p,n) if ptq. So we
only need to prove the third equality. So suppose that ¢ is a prime with ¢ 1 2D. We
consider the action of T(¢?) on f = gx(id.,4m, 4D). Denote

a(n) = N, (n,4D) [ (Ak(p.n) — np)n*/?~!

p|2m
and
fIT (¢ Z b(n
Since q { 2D, then Ag(p,¢?n) = Ax(p,n) and

Lip(N X(=1)r1g2n) H (Ak(p,Ing®) = mp) = Lap(A, X(—1)rn) H (Ak(p,In) —np).

p|2m p|2m
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Now consider the term S (In, xp,4D). Denote In = 702 with 7 a square free positive
integer. Let v,(m) be the valuation of m with respect to p. Then we have that

—DMn
ﬂk(TO'2’XD74D) — Z ,U,(O/) ((l)l> a—>\b—k-‘y-27

a
(ab)?|702,(ab,2D)=1

a,b positive integers
(vp(r0?)=1)/2

H Z ploR )t

p12D,p|T
(1o )/2 vp(To?)/2—-1
<1 (0 I Sl )
pt2DT,plo t=0
Therefore, if v4(In) = 0, i.e., ¢ { In, then
ﬂk(7—02q2a XD, 4D) = (1 + q_k+2 - X(fl)’\lT(Q)q_)\)ﬂk(TO-27 XD, 4D) (75)
If ¢|7, then
(vg(To?)+1)/2 (vg(To?)—1)/2 -1
Be(r0°¢*, xp,4D) = ( > q“““”) ( > q(’““)t) Br(r0”, xp,4D).
t=0 t=0
(7.6)
If g1 7, q|o, then
ve(To?)/2+1 vg(ra?)/2
Br(to*q®, xp,AD) = ( D AL VERE () VY q(’““)t)
t=0 t=0

ve(to?)/2—1

”q(”""Q)/2 —1
><< S dT G @t Y q“““”)

t=0 t=0
X Br(T0?, XD, 4D)

a(n)=M\,(n,4D) H (Ag(p,n) — np)nk/2—1

pl2m
~(=2ai)*/2 Lap(A\, X(—1)rin)
- I'(k/2) Lap(2),id.)
x [ (A, tn) —np)(In)*/> 1. (7.7)

p|2m

Br(ln,xp,4D)

Hence we know that the coefficient b(n) of f|T(q?) is
(1) If v4(In) = 0, then by equality (7.5)

b(n) = a(g®n) + x(—1y(@) (g) P la(n) + ¢ 2a(n/q?)

=1+ ¢ " = xCypr(@a )" 2aln) + x iy (@)a?
= (1+¢*?)a(n).

a(n)
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(2) It vy(In) =1, i.e., q|7, ¢ 1 0, we see by equality (7.6) that

b(n) = a(g®n) + x—1ynr (@) a(n) + ¢ 2a(n/q?)
= a(¢®n) + x(—1ynr (@7 aln)
=a(¢®n) = (1+¢ "*?)¢" 2a(n) = (1 4+ ¢" ?)a(n).

(3) If ¢|7, g|o, then v4(In) > 3, we have by equality (7.6),

b(n) = a(¢®n) + X1 (@O a(n) + ¢*2a(n/¢®) = a(¢®n) + ¢"*a(n/q?)

(vg(In)+1)/2 (vq(in)—1)/2
= Z g —RtDs Z g Rt ¢"2a(n)
s=0 s=0
(vq(in)—3)/2 (vq(in)—1)/2 !
+ qk72 Z q(7k+2)s Z q(7k+2)s a(n)qf(kfz)
s=0 s=
(vq(In)+1)/2 (vq(in)—3) /2
— | g2 Z g DS 4 Z g s
s=0 s=0
(vq(In)—1)/2 -1
. q(—k+2)s a(n)
s=0

(vq(in)—1)/2
— qk—2 Z q(—k+2)s + q(—k+2)(yq(ln)—1)/2

+ Z q(—k+2)s _ q(—k+2)(yq(ln)—1)/2

(vq(in)—1)/2
Z q(fk+2)s a(n)

s=0

= (1+¢" *)a(n).
Finally, if g 1 7, g|o, then by equality (7.7), we have that

b(n) = a(g®n) + x—1ynir (@) aln) + ¢ 2a(n/q?)

vq(ln) /241 vq(ln)/2
=¢"2am) | D " (g D TF
t=0 t=0
vq(ln)/2 ve(ln)/2—1 -1

D i VR PV (/) e SO Sk
t=0 t=0
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ve(ln)/2—1 vq(ln)/2—2
+am) | DY @ @t D gTE
t=0 t=0
vq(ln)/2 vq(ln)/2—1 -1
I AL VRIS ()l gkt
t=0 t=0
= ¢*2a(n) (1 n (q(—k+2)(yq(ln)/2+l) _ X(il)/\lT(q)q—k+(—k+2)uq(ln)/2>
vq(ln)/2 vq(ln)/2—1 -1
I AL VR ()l D A
t=0 t=0

+a(n) (1 — (q(—k+2)uq(ln)/2 _ X(il)/\l‘r(q)q—)\+(—k+2)(uq(ln)/2—1)>

ve(ln)/2 ve(ln)/2—1 -1

Z ¢ — X Cr (@) g

= (1+¢"?)a(n).
Hence we have proved that for any prime q { 2D, g(xi, 4m, 4D)|T(¢?) = (1+¢*?)g(xu,
4m,4D). Similarly, we can show that for any q 1 2D, g(xi,m,4D)|T(¢*) = (1 +
qk_2)g(Xl7 m, 4D)

Since the functions in Theorem 7.1 are eigenfunctions of Hecke operators with
different eigenvalues, they are linearly independent. Thus they constitute a basis of
EMAD, k/2, x1) since the number of the functions is equal to the dimension of £(4D,
k/27 Xl)'

This completes the proof of Theorem 7.1. ([

Theorem 7.2 Let k > 5 be an odd positive integer, D a square-free positive odd
integer, m,l be divisors of D, a be a divisor of m, 6 = 1 or —1 according to k =1
or —1 (mod 4) respectively. Then

—5y,
V@ . 4D), 1) = = Gttt 1) el (500,

e/t a/(1,0)
_ 6, af(l,a
Va4 AD), 1/(3)) = o a0yt (SR

V(g(xi1,4m,4D),p) =0, if p# 1/« or 1/4a(a|D),p a cusp point.

V(g(x,m,4D),1/a) = i_ﬁkﬂ(m/a)nm/alk/z_l(l, @)_k/2+15ik/ (l,a) ( l//(( )))
V(g(xi,m,4D),p) =0, if p#1/a(alD),

where p is a cusp point and V (f,p) is the value of f at the cusp point p, and 1, =

an'
pla
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Proof Inorder to calculate the values of functions at cusp points, we first remember
the definition of the value of a function at a cusp point. Let f(z) € G(N, k/2, x1),
a b
—c d
We call the constant term of the Fourier expansion at z = ico of f|p~! the value of f
at the cusp point s. Denote it by V(f,s). For ¢ # 0, we have

and s = d/c be a cusp point of IH(NV). Let p = ( ) € SLy(Z), then p(s) = ioco.

VU=t g (B0 (b0

cz+a

= lim f(—c Hez+a) "t +de ) (cz+a)F?

= lir%f(T+dC_1)(—CT)k/2. (7.8)
In particular, for s = 1/N, we see that V(f,1/N) =V (f,ic0) = lim f(z). O

An obvious, but useful fact is
Lemma 7.2 Let f € G(N,k/2,w). Suppose cusp point s1 = di/c1 and so = da/co
are equivalent for the group I'h(N), i.e., there exists p = (‘Z Z) € Io(N) such that

p(s1) = s2, then
V(f,52) = @xe(d)eg "V (f, 51).

A classical result for the values of Eisenstein series Ey(w, N)(z), E}.(w, N)(z) is the
following Lemma 7.3, which can be showed by the results in Chapter 2 and Lemma
7.2. Now we denote S(N) a complete set of representatives of equivalence classes of
cusp points for the group I'p(NV). In fact we can choose

S(N) ={d/c| ¢|N,de (Z/(c,N/e)Z)* and (d,c) = 1}.

Lemma 7.3 Letk > 5 be an odd, w a character modulo N. Then we have
(1) V(E,(w,N),1)=i"%, and for any d/c€ S(N)with c#1,V (E} (w, N),d/c)=0;
(2) V(Ek(w, N),ic0)=1, and for any d/ce S(N) with c#N,V(Ei(w,N),d/c)=

We now return to our proof of Theorem 7.2. We need the following:

Lemma 7.4 Let D be square free odd positive integer, m,l, and 3 are divisors of
D, « a divisor of m. And suppose that f € G(8D,k/2,x;) satisfies

fIT®?) = f for all prime plm,
fIT(p?) =p*=2f for all prime p|Dm~".

Then we have

VU1 = e o e (G ) vV
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V1/60) = ey o e (1) Vi,
VU = e )M e (o ) (e ) VO U9

where 1, = an, 0 =1 or —1 according to k =1 or —1 (mod 4) respectively. And
pla

for (8,D/m) # 1,r =0,1,2,3, we have that V(f,1/(2"8)) =0

Proof We only prove the Lemma 7.4 for the case k = 3 (mod 4). For the case k = 1
(mod 4) it can be proved by a similar method. We first prove the last result. Suppose
p prime, p|(3, D/m). By our assumption in the lemma we have f|T(p?) = p*~2f and
by the definition of Hecke operators, we see that

. 1Y (2 1428
P f(z+2rﬂ>_p Zf<p2+ 27 Bp? )

b=1
. 9 . 1+278b . . .
Since (142"/b, 2" 8p*) = 1, the rational number W is a cusp point. By equality
(7.8), we know
2
p
B 14278
k—2 -2
\%4 . .
p (f,2rﬂ> p ;V( 232 ) (7.9)
Since (2"6p?,8D) = 273 and (2"3,8D/(2"3)) = 1 or 2 according to r = 0, 3 or
2" 1
r =1, 2, we know that the cusp point J is equivalent to the cusp point
27 Bp? 273

e) € I(8D) such that

for the group I'H(8D). Therefore there exists a matrix (Ccl d

a e 1 [ 14273b
c d 273 )\ 27pp? )
Hence a + 2" Be = 1+ 2"3b, c+ 2" 3d = 2" 3p?. Noting ad — ce = 1 and 8D|c, we have

that a = d =1 (mod 2"4), and d = p? (mod 8D/(2"3)). This shows that for r = 0,
1,2, 3, we have ¢4 = 1 and

(- (254) - ()

By Lemma 7.2, we see
14+276bY 1
v(ras )= (fs):

By equality (7.9), we obtain
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1+278b
v (r )

=p~2 ) VI(£,1/(2°8)) = V(f,1/(2"B)),

b=1

PPTRV(£,1/(278) = p 2

M“w

S
M

which implies that V(f,1/(2"3)) = 0. Now we begin to prove the first equality in
Lemma 7.4. It is clear that the equality holds for &« = 1. We shall complete the proof
by induction on the number of prime divisors of a. We assume that the equality holds
for o with @ # m. We must prove that the equality holds for V(f,1/(ap)) with p
prime and satisfying ap|m. Since f|T(p?) = f, we get

et 1) p2§f<z 1+ba>.

b=1

1+ ba
Because it is possible that p|1 + ba, in general the rational number —27 is not
p2a

reduced. We have to cancel the greatest common divisor in order to obtain a cusp
point. Now there exists a unique integer b; such that 1 < by < p, 1 + aby = pt;.
Similarly, there exists a unique integer by such that 1 < by < p?, 1 + by = p3ty,
where t1, to are integers. Hence by the definition of values of a modular function at
cusp points and equality (7.8), we obtain

V(f.1/a)=p Z V<f7l+ba>

1<b<p?
pil+ba
_ t1 + ba _
+pH2 N V(ﬂ 1—) +p" 2V (fita/a). (7.10)
po
1<bsp
pit1+ba
1+ t1+0b
The cusp points —Z e (p11+ba), Lt oo (ptt1+ba) and ta/«a are equivalent
o

1 1
to —, — and 1/a under the group I'4(8D) respectively. We now consider the case
ba pa

ptl. Let (i 2) € I'(8D) such that

a e 1 1+ ba
(20 Ga) = () 1y
which deduces that a 4+ epa = 1 + bo, ¢ + dpor = p?a. But ad — ce = 1. So we

obtain that d = a = 1 (mod «), d = p(mod i) Since 8D|ec,p t I, then d =
po

p (mod 41/(l,«@)). By Lemma 7.2, we obtain
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V() = () av o)

_ (l/ G, O‘>> (C/ . C“)) eV (£,1/(pa)

- (W’a)) <a/<czl, a)) Sda/(te)%a(anfa V(1) (pa))

p

:(W_»a)

” ) Epa/(1,0)Em) () V (F+ 1/ (). (7.12)

Similarly, we can deduce

{ (f’ : +ba> N (tl ;ba> (a/(]l), a)) Vif 1/ (pa)), (7.13)

(fu t2/a) - V(f7 ]_/Ck)

Inserting equalities (7.12) and (7.13) into (7.10), we see that the second sum in equality
(7.10) is zero, and hence

VU =07 S oot (L) VU G+ V()

P - )sap/aa)ea}la)( )Vf,l/pa PRV, 1),

which implies, by the induction assumption,

(P2 =1p l/
V(f,1/(pa)) = _ﬁgap/ (La)Ea/(la) V(f,1/a)
/(L «
_1 5
=" cxp/(l a)sa/(l a ( P > V
/(L «
—1 ) —k/24+1_—1
=" ocp/(l a)Ca/(la) ( D )l‘ /2 €a/(l,a)

() v

= )21y (G ) VUL

where we assumed p 1 [. Therefore for p 1 I we have proved the result. Now suppose
p|l. In this case, from equality (7.11), we see

d=a=1 (moda), d=p (mod4l/(l,pa)), (1+ba)d=1 (mod p).

Hence by Lemma 7.2,

V() = (5) cavtsasiva)

p2a
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_ (l/(l;lpa)> (pa/gva)> caV (£,1/(pa))
d

1/(l, pa -
- < /(pp )) (pa/(l7a)> Ea/(10)E pastcyV (11 1/ (p)
P

= €0‘/(1713‘)€;l7a/(l7o¢)

Similarly we can show
t1 + bo _ P N
V(2 25) = () V01
V(fit2/a) =V (f,1/a).

Inserting these results into the equality (7.10), we get that the first sum in the equality
is zero, and hence

V(1) =2 Y (s ) VU e+ ()

2 \aftaD
pit1+bo

_ o k/2=20 _r o k—2 o
P22 1) (s VU )+ V(L)

which implies, by the induction assumption,

k—2
V(1 0) =~ (g ) V)

P22 (p— 1) \ /()

= o0 (L) isa)

—k/241_—1 ( Hpa ) )V(f,1)7

—_— 71 TN
= p(pa)iipe (pov, 1) “ra/weel) \ por/ (par, )

where we assumed p|l. Hence for the case p|l the first equality in the Lemma 7.4
holds. By induction, we know that this equality holds for any «|m. The other two
equalities in the Lemma 7.4 can be proved by a similar method which we omit. This
completes the proof of Lemma 7.4.

Now we can prove Theorem 7.2 as follows.

Noting that gx(id., j,4D)|T(l) = gx(x1, 4, 4D), we first consider the case [ = 1, i.e.,
x: = id. For this case, by the equality (7.4), we have

gi(id., 4m,4D) =~ p(d)naFx(4m/d) = > p(d)iaa Fi(m/d),
dlm d|m

where
F,(4D) = Ei(id.,4D)(z),



7.1  Construction of Eisenstein Series with Weight > 5/2 217

Fp(4m) = > p(d)Ei(id., 4md),
d|D/m

Fi(m) = jUd)E},(Xap/m- 4D /m).
dlm

By Lemma 7.3, we have
V(Fp(4m),1) = > p(d)V (Eg(id., 4md),1) = 0,

d|D/m
=" w(d)V (E; (Xap/m» 4dD/m), 1) = > p(d)i
dlm dlm

=i*oro according tom =1 or # 1.

Hence
V(gk(id.,4m,4D), 1) = > p(d)naV (Fi(4m/d), 1) = > p(d)neaV (Fi(m/d), 1)
d|m dlm
= —pu(m)nami=* = =% p(m)nam.

We now show that for any 5D, V(gx(id.,4m,4D), 1/(28)) = 0. In fact, since
gx(id.,4m,4D)|T(4) = gr(id.,4m,4D),

we know

gr(id., 4m, 4D)(z + 1/(26)) = 4713 gi(id., 4m, 4D) (Z/4+ L+ 266),
b=1

80

1+28b
80
for the group I'h(4D). Therefore there exists a matrix (

Because (1420b,80) =1, is a cusp point equivalent to the cusp point 1/(4(5)

ap
Cy

ap e€p 1 _ 1+ 266

Cp db 4 o Sﬂ ’
which implies that a, + 40, = 1+ 20b, ¢, + 408dy = 85, dp(1 + 26b) = 1 (mod 475).
By equality (7.8) and Lemma 7.2, we obtain

2b> € Iy(4D) such that
b

4
Vlanid, m,4D),1/26) = 17 3 (5 ) e Vian(id am. 1D, 1/45)
p=1 V7P

4

b

v Z (1 T zﬂb> ervagV (9 (id., 4m, 4D), 1/4).
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2 2
Since A =— —6 , it is clear that the above is equal to zero.
a+ 480 a

In order to compute the value of g (id.,4m,4D) at the cusp point 1/4, we use the
fact

Then
4

gr(id.,4m,4D)(z) = 47" " gi(id., 4m, 4D)(z/4 + b/4).
b=1

Since V (gx(id.,4m,4D),1/2) = 0, we see

V(gk(id.,4m,4D), 1)
=47V (gx(id., 4m,4D), 1/4) + 47V (gx(id., 4m, 4D), 3 /4)
+28=2V (gi(id., 4m, 4D), 1) (7.14)

But the cusp point 3/4 is equivalent to 1/4 for the group I'o(4D). Therefore there

e

d) € I'v(4D) such that

£ 90)-)

Hence by Lemma 7.2, we have

. . a
exists a matrix (
c

V(ge(id., 4m, 4D), 3/4) = (2) 7%V (gr(id., 4m, 4D), 1/4)

= i7%V(gp(id., 4m, 4D),1/4).

Combining with equality (7.14), we have

. 2k —4 .
V(gr(id.,4m,4D),1/4) = —1_|_ﬁV(gk(1d.7 4m,4D),1)
28 —4
= 1iin (=1 pu(m)n2m)
= p(m) N
By the above discussions, we know that
. 5, 14170
Vigu(id., 4m,4D), 1) = =i~ p(m)iom = — 53—~ p(m)m,

V(gr(id.,4m,4D),1/4) = p(m)nm,
V(gx(id.,4m,4D),1/283) = 0, for any S|D.
Hence by Theorem 7.1 and Lemma 7.4, we have proved that the first two equalities

in Theorem 7.2 hold for [ = 1. Now we consider the function g;(id.,m,4D). By
Theorem 7.1, we have
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gr(id.,m, 4D)|T(p?) = gi(id.,m,4D)  for all p|m,
gr(id., m,4D)|T(p?) = p*2g(id.,m,4D)  for all p|2D/m.
In particular, we see
gr(id.,m,4D)|T(4) = 2¥2g,(id., m, 4D).

Noting that the cusp point (1 4+ 4b3)/(163) is equivalent to 1/(43) for the group
I'n(4D), by equality (7.8) and Lemma 7.2, we see

4
22V (gi(id., m, 4D), 1/46) = 41 3 v(gkud., m,4D),
b=1
= V(gk(ldv m, 4D)7 1/45)7

1+ 4b3
164 )

which implies that V (gx(id., m,4D),1/43) = 0. In the same way, by equality (7.8),
we have

4
242V (g (id., m, 4D), 1/20) = 41 3 v(gkud., m,4D),
b=1

1+ 203
80 )

Since the cusp point (1 4 2b8)/(808) is equivalent to 1/(408) for the group I'4(4D),
the right hand side of the above equality is zero. So by Lemma 7.4, we only need to
calculate the value of gi(id.,m,4D) at the cusp point 1. But we know from the proof
of Theorem 7.2,

k(id., m,4D) Zﬂ naFr(m/d).

Noting that V(Fy(m),1) = i~% or 0 accordlng tom =1 or m # 1 respectively, we
have

V(gr(id.,m,4D), 1) = > u(d)naV (Fi(m/d), 1)
d|m
_ =0k
=i " p(m)nm,.
Hence by Theorem 7.1 and Lemma 7.4, we have proved the claim for the values of

gx(id., m, 4D).
Now we consider the case [ # 1. In this case we have

gk(x1,4m,4D)(z) = gx(id., 4m,4D)(z)|T()

!
b
—! id., 4m, 4D)  Z .
> (it am.40) ()

Hence by the equality (7.8) and Lemma 7.2, we see

1/d

Vige(xi,4m,4D), 1) = 17"y "d*? > V(gi(id., 4m,4D),b/(1d" "))

dll b=1
(b,l/d)=1
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1/d

NN (ldb1> V(gr(id.,4m,4D),1/(ld" "))

d|l b=1
1/d

b

-1 k/2 . _

=1 Zd 2V (gr(id., 4m, 4D), 1/(ld ))Z (ld—1>
d|l =

=17Y%2V (gi(id., 4m, 4D), 1)

= P (0% () nagn)

1+i% _
=~ )l

Similar to the case I = 1, we can prove V(gx(xi,4m,4D),1/28) = 0 for any g|D.
Since gk (xi,4m,4D)|T(4) = gx(xi,4m,4D), we have

V(gr(x1,4m,4D),1) =47V (gr(x1, 4m, 4D), 1/4) + 4~V (gr(x1, 4m, 4D), 3/4)
+2572V (g1 (x1,4m, 4D), 1), (7.15)

where we used the fact V(gr(xi,4m,4D),1/23) = 0 for any 8|D. Because the cusp

point 3/4 is equivalent to 1/4, so there exists a matrix (i z> € I'9(4D) such that

a b 1y (3
c dJ\4) \4)’
which implies d =3 (mod 4), d =1 (mod ), ¢ =4 (mod d). By Lemma 7.2, we have

V(gr(x1,4m,4D),3/4) = (é) 1%V (gr(x1,4m,4D), 1/4)

d
=il (l> V(g(xt, 4m. 4D), 1/4)
=i %V (gk(x1, 4m,4D), 1/4).
Inserting this into equality (7.15), we obtain
2k _ 4
1+i-0ke?

2k — 4 14+i % P
T i ke <_ gt )t )

V(Qk(le4m74D)71/4) = - V(gk(xla4ma4D)al)

= (im0,

Similarly we can prove that V(gr(xi,m,4D),1/28) = V(gr(x1, m,4D),1/45) = 0 for
any GB|D and V (gx(x1,4m,4D), 1) = i=% p(m)n,1*/?~. Collecting all the above and
Lemma 7.2 we proved our Theorem 7.2 for [ # 1. This completes the whole proof for
Theorem 7.2. ([
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7.2 Construction of Eisenstein Series with Weight 1/2

Let v be a primitive character modulo r with ¢(—1) = (-1)" (v =0 or 1). Put

Zw ne(n?z), z€H.

n=—oo

Then it is easy to see that

T

Oy(2) = D w(k)8(2rz; k),

k=1

where

0(z; k,r) = Z m¥e(zm?/(2r)), z¢cH.

m=k mod r

Lemma 7.5 We have the following transformation formula:

0(—1/z;k,r) = (—1)”T_1/2(—iz)(1+2”)/2 Ze(jk/r)@(z;j, ).

Proof Set

oo

g(z) = Z (z +m)Ye(irt(x +m)?/2).

m=—0o0

It is obvious that g(z + 1) = g(z). So by some computation we have a Fourier
expansion:

g(x) = > a(m)e(maz)
with
a(m) = (_i)v(Tt)—(1+2v)/2e—nm2/(ri£)7
so that

U — v > rimaz—mm?/(r
gla) = (=) (rt) (/2 F 2 fiee

m=—0oo

It is easy to see that

T

0(it; k,r) = rVg(k/r) = (=) r~ 222N ek /r)f(=1/(it); j, ),

j=1

which implies the lemma. This completes the proof. ([

Lemma 7.6 Lety= (Z b> € SLy(Z) with b even and ¢ =0 (mod 2r). Then

d

2cr

0(v(2); k,r) = e(abk?/(2r))e," (7> (cz 4 d)AF2/29(z2; ak,r).
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Proof  Assume that ¢ > 0. By Lemma 7.5, we have

0(v(2);k,r) = Y n”e<n2 (a— Czid>/(2cr)>

n=k mod r

= (=i)¥(er) "2 (=i(cz + d))1+20)/2 Z O (k,t)

t mod cr

Z ne(n®z/(2r)),

n=t mod cr

where
O(kt)= Y el(ag’+tg+t?)/(cr))

g mod cr,
g=k mod r

and «, ¢ are integers such that a = 2« (mod ¢r), d = 26 (mod cr). The remaining
part of this proof is completely similar to the proof of Proposition 1.2. This completes
the proof. O

Theorem 7.3  0y(z) is in G(4r2,1/2,9) if v =0 and 0y (2) is in S(4r?,3/2,19x-1)
ifv=1.

a b

Proof Lety= (c d) € Iy(4r?). By Lemma 7.6, we see that

B01(:)) = w0085y g o)

= 6;1 (2) (cz + d)(H'Qv)/2 Z Y(k)0(2rz; ak,T)

k=1
= ¥(d)eqi(y, 2) 20y (2).
b

d) € SLy(Z) with

Consider the holomorphy of 6, (z) at cusp points. Let p = (_a

¢ > 0. Then we see that

|0y(2)] <1—v+ ZZn”e*%”Qy <1—v+Cy /2y oo,
n=1
where C' is a constant. So that
0001 (2))(cz +a)~AH20/2) < (1 — v+ Oy~ /D |y 4 a|"+2)|cz + o]~ 1H20)/2
»\p

<
< (1 —w +C/y1+v/2)y—(1+2v)/27 y — 0,

which implies that 0y (2) € G(4r%,1/2,4) or S(4r?,3/2,1x—1) according to v = 0 or
1 respectively. This completes the proof. ([
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Let now t be a positive integer, ¥ a primitive even character modulo r. Put

Oy (2 Zw e(tn®z), z € H,

n=—oo

which is equal to 0,V (t), so 0y +(2) is in G(472t,1/2,4x¢). Let w be an even character
modulo N, v a primitive even character modulo 7(1), t a positive integer. We denote
by Q(N,w) the set of pairings (1, t) satisfying the following conditions:

(1) 4(r())?t|N;

(2) w(n) = ¢¥(n)xi(n) for any integer n prime to N.
Let ¢ = H ¥, with 1, the p-part of the character . If every v, is an even

plr(¥)

character, then v is called a totally even character. Denote by (N, w) the set of all
parings (v, %) in Q(N,w) where ¢ is totally even. Set Qc(N,w) = Q(N,w) —Qe(N, w).
The following is our main result in this section.

Theorem 7.4 (1) The set {0y,](¢,t) € Q(N,w)} is a basis of G(N,1/2,w);
(2) The set {0y.|(1,t) € Qc(N,w)} is a basis of S(N,1/2,w), and the set {0y (| (¥, 1)
€ Qo(N,w)} is a basis of the orthogonal complement of S(N,1/2,w) in G(N,1/2,w).

To show Theorem 7.4 we need some lemmas.

Lemma 7.7 (1) There exists a basis in G(N, k/2,w) such that all Fourier coefficients

of every function in the basis belong to some algebraic number field,
o0

(2) let f(z) = Za(n)e(nz) € G(N,k/2,w) with a(n) all algebraic numbers for
n=0
n > 0. Then there exists an integer D such that Da(n) are all algebraic integers for
alln > 0.

Proof Put
fo(z) = 0(2)%% =1 + 6ke(2) +

Define a map ¢ : f — ffo. Then ¢ maps G(N,k/2,w) into G(N,2k,w). If f has
algebraic coeflicients, so does f fo. (2) holds for f fy (Please compare Theorem 3.52 of
G. Shimura, 1971), so does (2) for f. Now show (1). §(z) has no zeros in H, and it is
zero only at the cusp point 1/2 € S(4) = {1, 1/2, 1/4}. A function g € G(N, 2k, w)
is an image of ¢ (i.e., g/ fo € G(N, k/2, w)) if and only if ¢ has high enough orders of
zeros at all cusp points in S(N) which are I'H(N)-equivalent to 1/2. We know that the
theorem we want to show holds for the spaces of modular forms integral weights. So
there exists a basis {¢;} in G(N, 2k, w) such that the Fourier coeflicients of g; at every
cusp point are algebraic numbers. g is a linear combination of {g;}, and g gets value
zero with some orders at part of cusp points. This implies that the coefficients of the
linear combination satisfy a system of some linear equations with algebraic numbers
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as the coefficients of these linear equations. Hence there exists a basis in G(N, k/2,

w) whose every element has algebraic coefficients. This completes the proof. O
Lemma 7.8 Let 0 # f(2) = Za(n)e(nz) be in G(N,1/2,w),pt N a prime and
n=0

fIT(p?) = cpf. Assume that m is a positive integer with p*> t m. Then

) almp*) = sty (2 ) for any n > 0

(2) if a(m) # 0, then ptm and cp, = w(p) (%) (1+ph).

Proof  Since T(p?) maps a modular form with algebraic coefficients to one of the
same kind, by Lemma 7.7, we see that the eigenvalue ¢, of T(p?) is an algebraic number
and the corresponding eigenspace has a basis with algebraic coefficients. Without loss
of generality, we may assume that the coeflicients of f are algebraic. Put

A(T) =" a(mp™)T™
n=0
By Lemma 5.40 we have
A(T) = a(m)———0T

(1= pT)1 =1T)’

where a = w(p)p‘1<7;:>, B+ =cp By =wp®)p~!. Assume a(m) # 0. Then

A(T) is a non-zero rational function. We may think A(T") as a p-adic T function, i.e.,
think the coefficients of A(T) as elements in some algebraic extension of the p-adic
number field Q,. By Lemma 7.7 the p-adic absolute value of a(mp?") (n > 0) are
bounded. Therefore A(T') is convergent for all |T'|, < 1. A(T) has no poles in the
unit disc U = {T'||T|, < 1}. If (1 — 8T)(1 — A7) is prime to 1 — o7, then |8], < 1,
||, < 1. But |87], = |w(p?)p~1|, > 1. So we see that one of 3 and v must be a. We
may assume that 3 = a and hence A(T) = a(m)/(1 —~T), a(mp?**) = y"a(m). Since
B # 0, we see that « # 0, so p4m and

w(p?)p~! m
7= Byfa=—L0___ ) (—)
w(p)p~! <m> P
p
This shows that a(mp®") = a(m)w(p)” <E> whichis (1). And ¢, = f+y=a+vy =
p
w(p) (Zj) (1+ p~1) which is (2). This completes the proof. O

Lemma 7.9 Let 0 # f(2) = Za(n)e(nz) be in G(N,1/2,w), N’ a multiple of N.

n=0



7.2 Construction of Eisenstein Series with Weight 1/2 225

Assume that f|T(p?) = cpf for any p { N'. Then there exists a unique square-free
positive integer t such that a(n) = 0 if n/t is not a square and
(1) t|N';

@ =) (1) 0+ for am
(3) a(nu?) = a(n)w(u) (i) for any u > 1 with (u, N') = 1.

Proof Let m,m’ be any positive integers with a(m) # 0 and a(m’) # 0, P the set
of primes satisfying p t N'mm’. For any p ¢ P, by Lemma 7.8 we see that

m m’

o) ()17 =) (%) a7

mm'’

so that ( ) = 1. This implies that mm’ must be a square. Therefore there exists

a square-free positive integer ¢ with m = tv?,m’ = t(v")? which implies the first part
of the lemma. Let now p be any prime with p { N’. Write v = p™u, p { u. Since
0 # a(m) = a(tp®"u?), we see that a(tu®) # 0 by the part (1) of Lemma 7.8, so that

t
p1tand ¢p = w(p) (p) (14+p~1) by the part (2) of Lemma 7.8. This showed (2) and

(1) since t is square-free. For the proof of the part (3), we only need to consider the
case that u = p,p{ N’, then we can write n = mp>® with p? { m. It is then clear that
(3) can be deduced from the part (2) of Lemma 7.8. This completes the proof. [

Corollary 7.1  Let the assumptions be as in Lemma 7.9. And assume furthermore
a(l) #0. Thent =1 and ¢, = w(p)(1 +p~ ') for any p{ N'. This implies that the
character w is determined uniquely by the set of eigenvalues cp.

Corollary 7.2  Under the assumptions of Lemma 7.9 we have that

ga(n)ns :tS( ) a(tn2)n2s> 11 (1 —w(p)(;))p%)_l.

nIN/oo ;DTN'

Proof  This is a direct conclusion of the parts (1) and (3) of Lemma 7.9. O

From now on we always assume that

f(z)= Za(n)e(nz) € G(N,1/2,w)

n=0
is a new form.
Lemma 7.10 Let f(z) = Za(n)e(nz) be a new form in G(N,1/2,w) which is an
n=0

eigenfunction of T(p?) for almost all primes p. Then a(1) #0 and t = 1.
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Proof If a(1) = 0, then a(n) = 0 for any n with (n, N’) = 1 by Lemma 7.9. By
Corollary 6.3 we see that f is in G°'(V, 1/2,w) which is impossible, so that a(1) # 0
and hence t = 1 by Corollary 7.1. This completes the proof. ([

From now on we always assume that a(1) = 1. In this case f is called a normalized

new form.

Lemma 7.11 Let g € G(N,1/2,w) be an eigenfunction of T(p?) for almost all
primes p and whose eigenvalues are equal to the ones of f. Then g = cf with a
constant c.

Proof Let ¢ be the coefficient of e(z) of the Fourier expansion of g. Then the
coefficient of e(z) of the Fourier expansion of h = g — c¢f is zero. If h # 0, then
h is an eigenfunction of almost all Hecke operators. By Corollary 7.2 we can find
N’ such that the coefficient of e(nz) of the Fourier expansion of h is zero for all n
with (n, N') = 1. By Corollary 6.3 we know that h € G°'4(N,1/2,w). Hence there
exists a factor N7 of N, a character v modulo N7 and a normalized new form ¢; in
G(N1,1/2,4) such that ¢, f and h have the same eigenvalues for almost all Hecke
operators. But the character 1 is determined uniquely by the set of all eigenvalues
¢p by Corollary 7.1. Hence ¢ = w and g1 € G°'4(N,1/2,w). Similarly we have that
f—g1 €GN, 1/2,w), 50 f = g1+ (f—g1) € G'Y(N,1/2,w) which contradicts that
f is a new form. This implies that h = 0, i.e., g = ¢f. This completes the proof. [

Lemma 7.12  Let f be a new form in G(N,1/2,w) and be an eigenfunction of
almost all Hecke operators. Then f is an eigenfunction of all Hecke operators T(p?).
Assume that f|T(p?) = c,f. Then

2 amn™ = [ —ep™) 7 [[O - wpp™) ™
n=1

p|N PIN
and ¢, =0 if 4p|N.

Proof Let p be any prime. Put g = f|T(p?). By the assumptions of the lemma
we know that g and f have the same eigenvalues with respect to the Hecke operators
T(g?) for almost all primes ¢. By Lemma 7.11 we have g = ¢f. This shows that f is an
eigenfunction of all Hecke operators. The Euler product can be deduced by Corollary
7.2. Assume that 4p|N, then by Lemma 7.9 we see that f|T(p) € G(N,1/2,wx,) and

fIT(p) = alnp)e(nz) = Y a(m’p*)e(pm®z) = (FITO*)|V(p) = cp [V ().
n=0 m=0

If ¢, # 0, applying Lemma 6.22 to f|T(p) we know that w is well-defined modulo
N/p and there exists a ¢ € G(N/p,1/2,w) such that f|T(p) = g|V(p). Hence g = ¢, f
which contradicts the fact that f is a new form, so that ¢, = 0. This completes the
proof. O
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Lemma 7.13  Let the assumptions be the same as in Lemma 7.12. Then N is a
square and f|W(N) = ¢f|H with a constant c.

Proof Let pt N be a prime. Then f|T(p?) = ¢,f and ¢, = w(p)(1 +p~!). By
Theorem 5.19 we see that

FIWN)T(p*) =w(p)ep fIW(N) =G fIW(N),  fIHT(p?) = (e /)| H =& f|H.

Since W(N), H send new forms to new forms, f|W(N) is anew formin G(N,1/2,wxn)
and f|H a new form in G(N,1/2,w). Since they have the same eigenvalues with re-
spect to T(p?) for all p ¥ N, and the set of eigenvalues ¢, determines uniquely the
corresponding character, we know that wyy = w. This shows that N is a square.
Lemma 7.11 implies that f|W(N) = cf|H with a constant c¢. This completes the
proof. 1

Theorem 7.5 Let f € G(N,1/2,w) be a normalized new form which is an eigenfunc-

tion of almost all Hecke operators. Denote by r the conductor of w. Then N = 4r2,

1
f == §9w
Proof Put
F(s):=> amn ™ =[[(1—cpp™ ) [J(1 —w(pp~ )",
n=1 pIN PIN
F(s) := Za(n)n_s.

By Theorem 5.22 we know that the above series is absolutely convergent for Re(s) >
3/2 and we have the following functional equation:

s—1/2
(20) T (s)F(s) = 1 (?\f) r(1/2 - $)F(1/2 — s), (7.16)

where we used the fact that f|W(N) = ¢f|H, ¢; and the following ¢, c3, ¢4 are all

constants. Set
G(s) = L(2s,w) = [ [(1 —w(p)p™) ",

pir
G(s) = L(2s,w).
Then we have
2t s—1/2 -
(2m) " I'(s)G(s) = c2 (@> I(1/2—3s)G(1/2—s). (7.17)
From (7.16) and (7.17) we see that
1— Cpp72s B N s—1/2 1— @p%*l
1l7= o <4T2> = wpp?s (7.18)

plm plm
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where m is the product of all prime divisors p of N with ¢, # w(p). If there exists a
p|m with w(p) # 0, then the function on the left (resp. right) hand side of (7.18) has
infinite (resp. no) poles on the line Re(s) = 0. Hence w(p) = 0 (i.e., p|r) for any p|m.
In this case we have ¢, # 0 since ¢, # w(p),

10 o9 (222 T -

plm plm

where c; = p/¢,. Considering the zeros of the functions on both sides of the above
equality we know that ¢, = c; for any p|m, so that |c,|> = p and hence ¢4 = 1,
Nm? = 4r?. By Lemma 7.12 we know that ¢, = 0 if 4p|N. This implies that
m = 1 or m = 2 by the definition of m. If m = 1, then N = 4r2. If m = 2, then
ca # 0,50 84 N. But w(2) = 0, so 4|r which contradicts the fact that 4N = 472
and 8 { N. We have shown that N = 4r% and F(s) = G(s). Thus for any n > 1 the

1
coefficients of e(nz) in the Fourier expansions of f and §0w coincide with each other,

1
ie, f— §9w € G(N,1/2,w) is a constant, so that it must be zero. This completes
the proof. 1

1
Lemma 7.14 Let w be an even character with conductor r. Then 50“} € G(4r?,1/2,

w) is a normalized new form.

Proof = We know that 6, is in G(4r%,1/2,w). By Theorem 5.15 we see that
0u|T(p*) = w(p)(L+p~ )0, Vptdr?.

If 6, is not a new form in G(472, 1/2, w), then there exists a proper divisor N7 of 472,
a character ¥ modulo N7 and a new form f in G(Ny, 1/2, ¢) such that f and 6, have
the same eigenvalues ¥(p)(1 + p~!) = w(p)(1 + p~ ) for almost all Hecke operators
T(p?). Therefore w = v and Ny = 4r? by Theorem 7.5. This contradicts Ny < 4r2,

hence 0, € G(472,1/2,w) is a new form. This completes the proof. O
a b a b\ _[1 «
({5 I 5=(2 ) )
Suppose that f(z) = Za(n)e(nz) is a modular form of weight k/2 for the group
n=0

I''(N). Let € be a periodic function on Z with period M. Put

o0

(fxe)(z) = Z a(n)e(n)e(nz).

n=0

The Fourier transformation of ¢ is
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M
é(m) =M1 Ze(n)e(—nm/M),

by the inverse Fourier transformation we have

M
e(n) =Y é(m)e(nm/M).
Hence we obtain that
M
(fxe)(z) = > &(m)f(z+m/M),
m=1

It is clear that the function f(z+m/M) is a modular form of weight k/2 for the group
I(NM?2).

Lemma 7.15 The following two assertions are equivalent:

(1) the values of f at all cusp points m/M (m € Z) are equal to zero (where m
and M may not be co-prime to each other);

(2) for every periodic function e with period M, the function

L(fxe,s) = Z a(n)e(n)n™?

n=1

is holomorphic at s = k/2.

The similar result holds also for modular forms of integral weights and the proof
is completely similar to the following one.

Proof The assertion (1) is equivalent to the fact that for any periodic function e
with period M the function f x ¢ takes value 0 at the cusp point s = 0. By Theorem
5.22 the assertion (2) is equivalent to the fact that the function f *c|W (N M?) takes
value 0 at ico. But the value of f *e|W (NM?) at ico differs from the one of f * ¢ at
the cusp point s = 0 by a constant multiple, so the lemma holds. This completes the
proof. O

Corollary 7.3 [ is a cusp form if and only if L(f ¢, s) is holomorphic at s = k/2
for any periodic function € on Z.

Since every cusp point is I'y(/V)-equivalent to some cusp point m/N, (m and N
may not be co-prime to each other), we only need to consider periodic functions with
period N for f € G(N,1/2,w).

Lemma 7.16 Let v be an even character but not totally even. Then 8y is a cusp
form.
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Proof Let € be any periodic function on Z with period N. Without loss of gener-
ality, we may assume that N is a multiple of the conductor 7(1)) of ¥. By Corollary
7.3, we only need to show that

F.(s) =2 e(n®)p(n)n=2*

is holomorphic at s = 1/2. We have

N
Fe(s) =2 ) e(m®)g(m)Fp,n(29),

m=1
where

n=m mod N,
n>1

It is well known that F,,, n(s) has a simple pole at s = 1 with residue 1/N. Hence
N

the residue of F.(s) at s = 1/2 is equal to R(e,v)/N with R(e, ) = Z e(m?)(m).
m=1

We now only need to show that R(e,) = 0. Since ¢ is not totally even, there exists

a prime divisor [ of r(1)) such that the [-part ¢, of ¥ is odd. Write N = [*N’ with

1t N’. Take an integer I’ such that I’ = —1 (mod %), I’ =1 (mod N’). It is clear

that I’ is invertible in Z/NZ and I'> = 1(N), (') = —1. Therefore

R )= Y e(@mP)pm)=— Y em®(m)=—R(,v),

m mod N m mod N

i.e., R(e,v) = 0. This completes the proof. O

Lemma 7.17 Let ¢ be a totally even character, T a finite set of positive integers.

If f = Z ct0y1(ci € C) is a cusp form, then ¢, =0 for all t.
teT

Proof  Otherwise, let ¢y be the smallest number in 7" such that ¢;, # 0. Take a
positive integer M such that M is a common multiple of 2r(1)) and all numbers of T'.
Since 4 is totally even, there exists a character o modulo M with o? = 1. Define a
periodic function € on Z as follows:

e(n) = {a(n/to), if to|n and (n/to, M) =1,

0, otherwise.
We see that E( ) it (n M) = 1
n), if (n, =1,
cttor®) = { .
0, otherwise
and

e(tn?) =0, ifteT,t>to,
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(since (tn?, M) >t > tg). Therefore

L(f xe,s) = 2¢, Z P(n)h(n)(ton?) ™% = ¢4ty Z n=2s

(n,M)=1,n>1 (n,M)=1,n2>1
whose residue at s = 1/2 is

croty 2p(M)/M # 0.

By Corollary 7.3 we see that f is not a cusp form which is impossible. This completes
the proof. 1

Proof of Theorem 7.4 (1) We first prove that {6y (¢, t) € Q(N,w)} are linearly
independent. Since 1) is determined uniquely by w and ¢, ¢ appears only one time as
the second entry of a paring (¢, t) in Q(N,w). Assume

i Aiby; i, =0,
i=1

where t1 < to < -+ <tm, A\; #0 (1 <i<m). The coefficient of e(¢1z) of the Fourier
expansion of @y, ¢+, is equal to 2, and the ones of 0y, +, (i > 2) are equal to 0. This
shows that A\; = 0 which contradicts A\; # 0.

We now show that {0y .(¢,t) € Q(N,w)} generate G(N,1/2,w). Let f,g €
G(N,1/2,w). For any p{ N, using Lemma 5.26 we have

(fIT(p*), 9) = w(@*){f. 9IT(p*)),

which shows that @T(p?), p{ N are Hermitian and commute each other. So there
is a basis of G(N,1/2,w) whose every element is an eigenfunction of T(p?), p f N.
Hence we only need to show that if f is an eigenfunction of T(p?) (p  N) then f
is a linear combination of {6y .|(¢,t) € Q(N,w)}. We apply induction on N. If
f is a new form, Theorem 7.5 gives what we want. If f is an old form, then f is
either in G(N/p,1/2,w) and w is well-defined for modulo N/p, or f = ¢|V(p) with
g € G(N/p,1/2,wx,) and wx, well-defined modulo N/p. In the first case, f is a
linear combination of {6y .|(1,t) € Q(N/p,w)} by the induction hypothesis. It is
clear that Q(N/p,w) C Q(N, w). For the second case, g is a linear combination
of {0y |(1,t) € QN/p,wxp)} due to the induction hypothesis, hence f is a linear
combination of {6y ¢|(¥,t) € Q(N,w)}. This completes the proof of the part (1).

(2) We only need to show the following three assertions: @ if (¢,t) € Qc(N,w),
then 6y ¢ is a cusp form; @ any non-zero linear combination of {6y .| (¢, t) € Qe(N,w)}
is not a cusp form; @ if (¢, t) € Qc(N,w), (¥, ') € Qe(N,w), then 6y, is orthogonal
with 6, under the Petersson inner product.

The assertion @ is deduced from Lemma 7.16. Let now V be the intersection of
the set of linear combinations of {8y ¢|(¥,t) € Qe(N,w)} and the space of cusp forms.
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If V # 0, since V is an invariant space for the Hecke operators T(p?)(p f N), there
exists a 0 # f € V which is an eigenfunction of all T(p?)(pt N). But ¢(p)(1 +p~1)
is the eigenvalue of 6, ; with respect to T(p?). Hence f is a linear combination of
some @y, with the same ¢. This contradicts Lemma 7.17 and hence V = 0 which
shows the assertion @. Finally we prove the assertion @). Since 1/’w? is a totally even
character, we see that 1//w? # 1. So there exists a prime p with ¥(p) # 1'w?(p). Then
Y(p)(1+ p~ ') and ¢/(p)(1 + p~!) are the eigenvalues of 6, + and 6y respectively
with respect to T(p?). By the properties of Petersson inner product we have

(0.t T(p?), 0 1) = w?(p) (Bup.t, Our | T(p?)),

thus oy
P(p){Oy.t, Oy ) = V'™ (D) (O 1, Oy 1),
ie.,
(O, 0y 1) = 0,
which showed &. This completes the proof of Theorem 7.4. O

7.3 Construction of Eisenstein Series with Weight 3/2

In this section we shall construct a basis of the Eisenstein space of weight 3/2 for a
modular group I'h(4N) with N a square-free odd positive integer. The content of this
section is due to D. Y. Pei, 1982. Considering the Eisenstein series in Chapter 2, we
have

Theorem 7.6 For any k > 3 and w not a real character, Ex(w, N) and E} (Wxn, N)
belong to E(N,k/2,w). The functions f5(w,N) and fa(w, N) belong to E(N,3/2,w).
If D is a square-free odd positive integer, then the functions f1(id.,4D) and fi(id.,8D)
belong to £(4D,3/2,id.) and £(8D,3/2,id.) respectively.

Proof  We only prove the theorem for Ej(w, N) since the other assertion can be
proved similarly. In Chapter 2 we proved that Ej(w, N) is a holomorphic function on
H. We prove that it is also holomorphic at each cusp point. It is clear that Ey(w, N)

b) € SLy(Z) with ¢ # 0, we have

is holomorphic at ico. For any v = (CCL d

| Bi(w, N)(1(2))(cz +d) /2|
y’" (y— o0

by equality (2.31).

This shows that Ej(w, N) is holomorphic at all cusp points which means that
Ei(w, N) belongs to G(N, k/2,w). Now, we want to prove E(w, N) is orthogonal to
cusp forms. Let

Zc e(nz) € S(N,k/2,w)
n=1
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1
and v € I'H(N). Since / f(2)dz =0 and
0

FOr@)Im(y(2)) 2 = 3(d,)j (3, 2) i, ) 2 F )y,

we have
0= /OO ylstk)/2-2 /1 f(2)dady = / flx+ iy)y(s+k)/2_2dxdy
0 0 oo \H
= / Er(s,w, N)(z +iy) f(z + iy)y*/ > 2dzdy.
To(N)\H
To take s = 0 gives the orthogonality. |

We can compute the values of E%(w, N), Es(w, N), f1(id.,4D), f3(id.,4D), f5(id.,
8D) and f5(id.,8D) at cusp points similarly as is done in Section 7.1.

Lemma 7.18 (1) Let w? # id., then V(E4(w, N),1) =i. For any d/c € S(N) and
¢ # 1, we have V(E,(w, N),d/c) = 0.

(2) Let w? #id., then V(E3(w, N),icc) = 1. For any d/c € S(N) and ¢ # N, we
have V(E3(w, N),d/c) = 0.

Proof (1) By (2.7) we have
(—2)2 By(w, N)(2) = iB3(w, N)(=1/(Nz)). (7.19)

Hence, V(E5(w, N),1) =iV (E3(w, N),ic0) = i.

The other assertion can be proved by a method similar to the proof of Theorem
7.2.

(2) The first result is obvious and the second one is obvious from (7.19). O

Lemma 7.19 We have

V(fi(id.,4D),1) = —(1 +1)(4D) ™!,
V(fi(id.,8D),1) = —(1 4+1)(8D) .

Proof By the definition of fi(id.,4D), we have
f1(id.,4D)(2) = E3(0,id.,4D)(z) — (1 = 1)(4D) ' 27*2E4(0, xp, 4D)(—(4D2)7").
Therefore,

22 f1(id., 4D)(—(4D2)"Y) = E}(0,id., 4D)(2) — 2D"/2(1 + 1) E3(0, x p, 4D)(2)
= —2DY?(1 +1i) fi(xp,4D)(z).

By the definition of V'(f1(id.,4D),1) and (2.37), we have
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V(f1(id.,4D),1) = lim (4Dz)~%/2f(id.,4D)(—(4Dz)™1)

= Z—(1100+ i)(4D)~.
And the second result can be proved similarly. O
Lemma 7.20 We have
V(f5(id.,4D),1/8) = —4
V(f;(id.,4D),1/(2p)) = 0,
V(f3(id.,4D),1/(4)) = w(D/B)B/D.

Proof  We know that f3(id., 4D) € G(4D, 3/2, id.) and for any prime factor p|2D,
f3IT(p?) = f5 (This can be proved by (2.42)).
In particular, f5|T(4) = f5. Hence

A +1)u(D/B)B/(Dep),

. 1 i L 1+ 2k3
f2(1d-74D)<2+%>=41;f2(1d-,4D)(2+ ),

But (14 28k)/(88) and 1/(43) are I'x(4D)-equivalent. So we have

1+ 28k
o)

4
V(£ 4D),1/28) =47 S0 (556,40,
k=1

:4_1;( 26 >€1+2kv(f2*(id.,4D),1/(4ﬂ)):0’

1+ 28k
h ed the fact (20} = — (%) g V(f;(id.,4D),1/(4D)) = 1, b
where we use e fac ardi) = . ) ince 5 (id., , =1, by

Lemma 7.1, we have V (f5 (id.,4D),1/4) = u(D)D~'. Hence we get the third equality
by the second equality of Lemma 7.1. Using

£3(id., 4D)(z) = 47! f: f2(id., 4D) (Z + Z)
=1
and
V(f;(id.,4D),1/2) = 0,
we get
V(f3(id.,4D),1) = 4~ Y (1 + )V (f3 (id.,4D), 1/4) + 2V (5 (id.,4D), 1).
Since 3/4 and 1/4 are Ih(4D)-equivalent, we get
V(f3(id.,4D),1) = =41 (1 +i)u(D)D~ L.

This proves the first assertion in Lemma 7.20 from Lemma 7.1. This completes the
proof. O
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Lemma 7.21  Let m, 3,1 be factors of D. Let f(z) € G(8D,3/2, x21) satisfy

fIT(®*) =f, ¥ p|m,
fIT®?) =pf, ¥ p|Dm™*

Then
1—r a
V(f,1/(2"a)) = pla)ala, 1) ) l)(W)V(ﬂl/?r% r=0,1,
V(£.1/(80) = n(@aton) M eywner (S0 )V (11/5)

V(fal/(Qrﬂ)):O7 T2071a3 and (67D/m)7é1
Proof  This can be proved in a similar way as in the proof of Lemma 7.4. o
Lemma 7.22 Let 3 be any factor of D. Then we have

—27 (1L +0)u(D/ 882D,
274 (1 +)u(D/F)FY D,

V(f3(x2p,8D),1/8
V(f3(x2p,8D),1/(28)
V(f3(x2p,8D),1/(43)

(x2p,8D),1/(88)

’

wD/B)BPD™ e .

)=
)
)
)

Proof Put h = f;(x2p,8D). Then h € G(8D,3/2,x2p) and h|T(p*) = h for
any prime factor p|2D. Using h|T(4) = h and V(h,1/(8D)) = 1, we can prove
V(h,1/(408)) = 0 for any 3|D and

V(h,1) = —273/2(1 +)u(D)D~ /2,
V(h,1/2) =27 (1 +i)u(D)D~ /2,
V(h,1/8) = w(D)D~2¢p

Now taking [ = D in Lemma 7.21 gives Lemma 7.22. |

Lemma 7.23 Let 3 be any factor of D. Then we have

2711+ )u(D)V (f2(id.. 8D), 1/5) =—16*1<1+i>ﬂ<D/mﬁD e,
1(1+1)M(D)V(f2(1d 8D),1/(28)) =
271+ DDV (1214, 8D),1/(49)) = =2~ u(D/ )50
—27 (1 + )u(D)V (f2(id.,8D), 1/(88)) = u(D/B)BD

Proof By the definition of f3(x2p,8D)(2) and fa(id.,8D)(z), we have

f3(x2p.8D)(—1/(8Dz2))z3/* = 8iD f5(id., 8D)(2).
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Let ¢ be a divisor of 8D. Since
(—cz)‘n’/zfg(id.7 8D)(z +c¢ ') =— i(8D)_163/2f2*(x2D, 8D)

3/2
% N\ (__Z
(8D(z—|—c—1) 8D>( z+c—1> ’

V(f2(id.,8D),1/¢) = =i(8D) "¢V (f5(x20,8D), —¢/(8D)).

We have

Since the cusp points —¢/(8D) and ¢/(8D) are IH(8D)-equivalent, we get the lemma
by Lemma 7.22. |

Lemma 7.24 Let f € G(N,3/2,w) be zero at all cusp points of S(N) except 1/N.
Then g = fIW(Q) is zero at all cusp points of S(N) except 1/(NQ™1).

—1
Proof It is clear that the transformation z — in induces a permutation
ulNz +vQ
of the equivalent classes of cusp points of I'x(N) and
Q-1 _Q-N/Q
uNz+vQ|,_gn-1  (ut+v)N’

which is I'g(NV)-equivalent to 1/N. These two facts imply Lemma 7.24. O

Let N =2"N',r > 2,2{ N’ and w be an even character modulo N with conductor
r(w). Then by the dimension formula, we have

2 > o((c, N'/c)) — dim&E(N,1/2,w), if r =2,
c|N’
(e.N'/e)IN/r(w)
3 > o((c, N'/c)) — dim&E(N,1/2,w), if r =3,
c|N’
(e.N'/e)IN/r(w)
> (e, NJe)) — dimE(N,1/2,w), if r > 4.

c|N
(e;N/e)IN/r(w)

dim&(N, 3/2,w) =

By Theorem 7.4, we know that dim&(N,1/2,w) is the number of pairs (¢,t) of
Qe(N,w).

Now we always assume that D is an odd square-free positive integer, m,[l and 3
are divisors of D, « is a divisor of m and v is the number of prime divisors of D. Since

(4D, y1) = {(id., )}, Q(8D, x1) = {(id., 1)}, Qe(8D, yar) = {(id., 21)}, we have

dim&(4D,3/2,x;) = 2T — 1,
dim&(8D,3/2, x;) = Aim&(8D, 3/2, x21) = 3 - 27 — 1.



7.3 Construction of Eisenstein Series with Weight 3/2 237

We shall construct a basic of £(4D,3/2,x:), £(8D,3/2,x;) and £(8D,3/2, xa1) re-
spectively. Since only Eisenstein series of weight 3/2 are considered, we shall omit all
Subscripts 3. E.g., we define

/\(n7 4D) = )\3(71, 4D) = L4D(2a id')_1L4D(1v X—n)ﬂ3(na 07 XD, 4D)
and
A(pv TL) = A3 (p7 n)v etc.
Define functions

g(x1,4D,4D)(z) =1 — 4m(1 4 1)I*/? i Min,4D)(A(2,In) — 471 (1 — 1))

n=1

X H (p,In) — p~HHn'%e(nz),

p|D

g(x1,4m, 4D)(z) = — 4n(1 4 1)I*/? i AMin,4D)(A(2,In) — 471 (1 — 1))

n=1

X H (p,In) — )n1/2e(nz), Ym # D,

g(x1,m,4D)(z) = 2ml*/? Z A(ln,4D) I_I(A(p7 In) —p~YHn'?e(nz), Vm+#1.

n=1 plm
Theorem 7.7 (1) The functions g(xi,4m,4D), (Vm|D) and g(xi,m,4D) (V 1 #
m|D) constitute a basis of £(4D,3/2,x1).
(2) For any p € S(4D), we have
—47 (1 + i) p(m/a)am = 1M2(1, 04)_1/25;/1(1 o) (

ifp=1/a, ajm,

/(1)
a/(l,a))’

V(g(xi,4m,4D),p) = u(m/a)amflllm(l, a)71/2€l/(l,a) a/(l, a) 7
/(1)
if p=1/(4a), a|m,
0, otherwise.

(3) For any p € S(4D), we have

—A7H L+ Dulm/@)am =21 0) T 2T (%>
V(g(xi,m,4D),p) = if p=1/a, a|m, 7

0, otherwise.
Proof  We first prove (2) for [ = 1. By equality (2.45), we have g(id.,4D,4D) =

f5(id.,4D). Hence the theorem holds for g(id.,4D,4D) by Theorem 7.6 and Lemma
7.20. Now suppose m # D. We have
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o0

glid., 4m,4D) = —4n(1+i) [[ p(1+p)~ Z (n,4D)(A(2,n) — 471 (1 — 1))
p|D/m n=1
< [[(A,n)—p™) ] {1+A@.n)—(Ap,n)—p~ ")} n'/?e(nz2)
plm p\D/m
IT »(+p)7" > wld)fs(d., 4md).
p|D/m d|D/m

Therefore g(id.,4m,4D) € £(4D,3/2,id.). But

A(2,4n) — 4711 — 1) =271 (A(2,n) — 4711 — 1)), (7.20)
A(p,p*n) —p~ ' =p (Alp,n) —p7"), p#2 '
implies that
g(id.,4m,4D)|T(p*) = g(id.,4m,4D), p|2m (7.21)
g(id., 4m,4D)|T(p*) = pg(id., 4m,4D), p|D/m. '
By Lemma 7.20, we have
V(g(id.,4m,4D),1) = [] p(t+p)~" D wdV(f;(id., 4md),1)
p|D/m d|D/m
=—47 1410 ] pt+p)" D w(d)p(md)(md) =
p|lD/m d|D/m

= —47 1+ 1) p(m)ym™.

Using g(id., 4m,4D)|T(4) = g(id., 4m,4D) and the method for showing Lemma 7.20,
we can prove that
V(g(id.,4m,4D),1/(2p)) = 0

and
V(g(id.,4m, 4D),1/4) = —4(1 +1) "'V (g(id., 4m,4D), 1) = p(m)m™ .

By Lemma 7.4 we get part (2) of the theorem for [ = 1.
For [ # 1, we have

l
9(x1,4m,4D)(z) = g(id., 4m,4D)(2)|T(1) = 1"* > g(id., 4m, 4D) (z T k)
k=1

Hence g(x;,4m,4D) € £(4D, 3/2, x;) and we have

1/d
V(g(xi,4m,4D),1) = 17" "d** Y~ V(g(id.,4m,4D),k/(1d™"))

d|l k=1
(k,1/d)=1
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1/d

=1 12#”2( i )V(g(id.,4m,4D),1/(1d—1))

d|l =
= 471+ i)p(m)m Y2

by Lemma 7.2. Since (7.21) holds also for g(xi,4m,4D), we can prove that the part
(2) of the theorem holds also for g(x;,4m,4D). This completes the proof of the part

(2).
Now we prove part (3) of the theorem. Similar to the above, we only need to
consider the case [ = 1. Suppose g(id., m, 4D) € £(4D, 3/2, id.), then by (7.20) we

have

g(id.,m,4D)|T(p?) = pg(id.,m,4D), V p|2D/m.
Using (7.22) for p = 2, we have

(7.22)

V(g(id.,m,4D),1/(48)) =471 > V(g(id., m,4D),

k=1

— V(g(id.,m, D), 1/(45)),

which implies V' (g(id., m, 4D), 1/(48)) =0
Using again (7.22) for p = 2, we have also

1+ 4Pk
)

2V (g(id.,m,4D),1/(28)) = 4~ 1ZV( id.,m,4D),

k=1

1+28k\
843 )‘0‘

So if V(g(id.,m,4D), 1) is known, then the values of g(id., m,4D) at all cusp points
can be computed by Lemma 7.4. Put

fa(id.,4D)(z) = 21 Y _ A(n,4D) ( [TA®.n) - D1> n'/%e(nz).

n=1 p|D

Then
f1(id.,4D) = —f3(id., 4D) + 1 — 4w (1 + i) f:A (n,4D)(A(2,n) — 471 (1 —1))
n=1
X HA(p, n)nt/?e(nz)

p|D

=D myg(id.,4m,4D) — f5(id.,4D),
m|D

which implies that fg(id. 4D) € £(4D, 3/2,id.) and

V(f3(id.,4D),1)=D~" Y " mV (g(id.,4m,4D),1) = V(f1(id.,4D), 1)
m|D
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=4 Y um) D)™

m|D
=(141)(4D)™ " (7.23)

We shall prove that g(id.,m,4D) € £(4D,3/2,id.) and calculate V' (g(id.,m,4D), 1)
by induction, and hence will complete the proof of part (3).

If D = pis a prime, then g(id., p, 4p) = f3(id., 4p) € E(4p, 3/2,id.) and then (7.23)
implies the part (3). Now we use induction on the number of prime divisors of D.

Since
[[a+» " TAwn) -
|8 p|D
=[] @A@n) -p™H][{Q+A@n)a+p) " -p '}
p|D/B |
=> u(@d)ds~" [ (Aw,n) —p O[O+ A, n)(A +p)7,
d|p plD/B pld
we get
S ou@[a+p) " [[(Ap.n) -
D#B|D p|B p|D
=[[A@.n)-D7'+ > > uld)ds™
p|D D#B|D 1#d|B
IT Ap.n) —p H ]+ Ap.n)(1+p)~"
plD/B pld
But
Ai(n,4m) = \e(n,4D) ] (1 + Ax(p,n)),
p|D/m
we get

S uw® [ +p) " gld. D.4D)

D#pB|D plB

= f3(id.,4D) + > Y p(d)dB~'g(id.,D/B3,4D/d).
D+#B|D 1#£d|8

By induction hypothesis, we get g(id., D,4D) € £(4D,3/2,id.) and

> uw@ ] +p)'Viglid., D,4D),1)

D#B|D plﬁ

=(1+ Y w@ds T [ +p) (-4 A+ )u(D/B)BD )

D#B|D 1#d|3 pld

= @)@+ D) Y w@ A+

D#B|D plB
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Therefore, V(g(id., D,4D),1) = —(4D)~*(1 + i)u(D), which completes the proof of
part (3) for m = D.
For m|D, by the method used in the proof of the part (2), we get

g(id.,m,4D) = ] p(1+p)~" Y w(d)g(id.,md,4md).
p|D/m d|D/m

Using the induction hypothesis and the above result, g(id., md,4md) € £(4D, 3/2,id.),
and hence g(id.,m,4D) € £(4D, 3/2,id.) and as well as

V(g(id,m,4D),1) = [ p(t+p)~" > wdV(g(id., md,4md),1)
p|D/m d|D/m

= a0 [T o040 Y d)ptmd)md)

p|D/m d|D/m
—(4m) 7 (1 +i)u(m),

we complete the proof of part (3).
Finally we prove part (1). For each prime divisor p of D, we define

1/(1,p)
p/(l,p)

Gt 4D) = 21 = D200 ey (2 )l D),
G(x1,4,4D) = 1""%  g(x1,4,4D).
We define the following function by induction on the number of prime factors of m:

m/(l,m)
l/(lm)> {Q(X“‘lm’ 4D) - g(xi,m,4D)

— p(m)ym= 2N p(@)a(l, @) ey 0,0

malm
X (?// ((zl,’S)) > G(x1,4a, 4D) }

G(Xl7 m, 4D) = 2(1 - 1)l_1/2(la m)1/2€m/(l,m) (

G(X17 4m, 4D) = l_l/z(l’ m)1/2 l_/}l m) (

and

1/(1,m)
m/(l,m))

X {Q(Xl, m,4D) + (1 41)(4m)~!

xp(m) D p@)ad P (a) el

1,m#alm

(o)

We can prove that for » = 0 or 2, V(G(xy, 2"m, 4D), p) =0 for all p € S(4D) except
for p=1and 1/(2"m) and
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V(G(xi, 4m,4D),1/(4m)) = V(G(x, m,4D),1/m) =1,

V(Glx, 4m, AD), 1) = = (m) " (L D) (1 m) ! Repf, ) (%)

V(GOa,m.AD). 1) = =m ™ (1.m) e 1. (%)

These equalities imply that G(x;,4m,4D) (Ym|D) and G(x;,m,4D) (1 # m|D) are
linearly independent. But the number of these functions is equal to the dimension of
E(4D,3/2,x1). So they constitute a basis of £(4D,3/2, x;), so do g(xi,4m,4D) and
g(x1, m,4D). This completes the proof of the theorem. |

We shall construct a basis of £(8D,3/2,x;) and £(8D, 3/2, x21) respectively. Put
R={neZn>1,n=10r2 (mod4)}.

Define
fa(id.,4D) = 21 Y~ A(n,4D) [[(A(p,n) — p~")n'/2e(n2).

neR p|D
Then 3
f3(id.,4D) + 27 (1 + §)p(D) f2(id., 8D) = T fa(id., 8D),
where we used the fact A(2,n) — 4711 —i) = %(1 —1) for n € R. Tt follows that
fa(id.,8D) € £(8D, 3/2,id.). By Lemma 7.21 and Lemma 7.23, we get
V(fa(id.,8D),1/8) = =8~ ' (1 +)u(D/B)BD ‘e, (7.24)
V(fa(id.,8D),1/(48)) = u(D/B)BD~".
For any m|D, define

g(x1,4m,8D) = 2nl*/? Z A(in,4D) I—I(A(p7 In) —p~Hn'’2e(nz).
In€ER plm

Theorem 7.8 (1) The functions g(xi,4m,8D) (V m|D), g(xi,4m,4D) (V¥ m|D)
g9(x1,m,4D) (V¥ 1 # m|D)) constitute a basis of £(8D,3/2,x1).
(2)

=87 (1 +i)u(m/a)am ™12 (1)~ e ] (
lf p= ]_/0[7 alma

Vioouw s SPLD =0 e 1020,0) 0 (S22 )
if p=1/(4a), a|m,

0, otherwise.

/(1)
a/(l,a))
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Proof  We first prove (2). Since g(x;,4m,8D) = ¢(id.,4m,8D)|T(l). So we only
need to prove (2) for [ = 1. We can get

g(id.,4m,8D) = [ p(1+p)~" D w(d)fs(id.,8md) € £(8D,3/2,id.)
p|D/m d|D/m
by a similar method used in the proof of theorem 7.7. By (7.24) we have
V(g(id.,4m,8D),1/(80)) = V(¢(id.,4m,8D),1/(20)) = 0,
V(g(id., 4m,8D),1) = =811 + i) u(m)m ™1,
V(g(id.,4m,8D),1/4) = u(m)m™*.

Bt (id.,4m,8D), Vp|
id., 4m, ) m,
g(id., 4m, 8D)|T(p?) = {g | !
pg(id.,4m,8D), Vp|D/m
implies (2) by Lemma 7.4.

1
Now we prove (1) by a method similar to the proof of Theorem 7.7. Since 30 and
e

1
1o e I'v(4D)-equivalent, we have
!

V(9(xt, 4m, 4D), 1/(80)) = p(m/a)am™12(L,a) ;1.0 (

Define
G(x1,4,8D) = 17?1 g(x1,4,8D),

2
G(xi,8,8D) =172 <l> {90x1,4,4D) = g(x1,4,8D)}.
Then we define by induction

2m/(1,m)
it ) ot aman
- g(Xla 4m, 8D) - 2719()(17 m, 4D)

— pmm Y a)adl, @)

m#alm

X €1/ (1,a) (%) G(xi, 8a, 8D)}

G(x1,8m,8D) =1"1/2(i, m)l/zsl_/b m) (

and

— 27 g(x1,m, 4D) — p(m)m=11/? Z p(a)a(l, o) ~1/?

m#Zalm

G(xi,4m,8D) =17"2(l,m)" %1, m)(

X €1/(1.a0) (m>G(XZ,4a,4D)}.
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We define also G(x;,m,8D) = G(xi,m,4D) for m # 1. We can prove that for
r=20,2,3,V(G(xi,2"m,8D),p) = 0 for all p € S(8D) except p =1 and 1/(2"m) by
induction, and
V(G(xi,m,8D),1/m)=1, m#1,
V(G(xi,4m,8D),1/(4m)) = V(G(xi,8m,8D), 1/(8m)) =1,

V(G(Xl’ m, 8D)’ 1) = _mil(l7 m)l/zgm/(hm) (%>’
V(G(xi,4m,8D),1) = =87 (L +i)m ™" (L, m) %4, (W)
V(G(xi,8m,8D). 1) = =8 (1 + m~ (Lm) e,y (W)

Gathering the values of G(x;, m,4D) at 1/m and 1 computed in the proof of Theorem
7.7, we know that G(x;,8m,8D) (¥ m|D), G(xi,4m,4D) (¥ m|D) and G(x;, m,8D)
(V 1 # m|D) constitute a basis of £(8D,3/2, x;). This completes the proof. O

Finally we consider £(8D, 3/2, x2:). Define
9(xa1,m,8D) = g(xi,m, AD)|T(2), ¥ 1 #m|D
9(xa1,2m,8D) = g(x1,4m,8D)|T(2), ¥ m|D,
9(x21,8m,8D) = g(x1,4m,4D)|T(2), V m|D.
Then we have

Theorem 7.9 (1) The functions g(xai, m,8D) (V 1 # m|D), g(xai,2m,8D) (V m|D)
and g(xai,8m,8D) (VY m|D) constitute a basis of £(8D,3/2, xai)-
(2) For p € S(8D), we have

—2732(1 + i) u(m/a)am=1M2(1, a)*l/%;}(l o (21/(Z7 a)>7

a/(l, )
V(g(xai, m,8D),p) = if p=1/a, a|m,
0, otherwise,
_ . _ 12— 21/(1, a)
_9-5/2 171/2 1/2_—1 A
27721 + Hu(m/a)am™ 12 (1, «) €a/(0) (a/(l,a))’

if p=1/a, alm,

Viovan 2 8DLE) = o (it a)am1/20,0) e e (25,

if p=1/2a), alm,

0, otherwise,
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gy 4 j)u(m/a)am_lll/Q(l’a) 1/2¢-1 a/(l,a) (205//(())>

if p=1/a, alm,

=27 (1+i)pu(m/a)am=M2(1, a)*l/%;/l(l)a)&fl (i//((l; Z)))
V(g(xai,8m,8D),p) = if p=1/2c), alm, ’

p(m/a)am =21 a) " 2y 0 <?//((ll’§))>7
if p=1/(8a), alm,

0, otherwise.

Proof  Since dim&(8D,3/2, x21) = dim&(8D,3/2, x;) and T(2) is a linear operator
from £(8D,3/2, x;) to £(8D,3/2, xa1), we get the part (1) by Theorem 7.8. The part
(2) can be proved by Theorem 7.7, Theorem 7.8 and the definitions of g(xai,2"m,8D)
(r=0,1,3). O

Several applications of the basis given in Theorems 7.1-7.9 will be described in
the rest part of the book:

(1) Construct certain generalization of Cohen-Eisenstein (Section 7.4);

(2) Prove Siegel theorem for positive definite ternary quadratic forms (Section
10.1);

(3) Determine the eligible numbers of certain positive definite ternary quadratic
forms (Section 10.3).

It is worth mentioning one more application briefly, which is due to G. Shimura,
[S5] here. Let

oo

Z n)exp{2ninz}, g(z)= Z b(n)exp{2ninz}
n=0

be a cusp form with the weight k/2 and a modular form with the weight (/2 respec-
tively, where k and (I < k) are positive odd numbers and the Fourier coefficients a(n)
and b(n) are algebric numbers. Define Zeta function

= Z a(n)b(n)n™

Shimura proved that the number D(t/2, f, g), where 1 < t < k — 2, multiplied by the
number st~ "u_(F') is a algebric number, where the integer r is determined by ¢,1, k
and u_(F) is the period of a modular form F' determined by f with the weight k — 1.
In the Shimura’s proof of the above result the basis constructed in Theorems 7.7-7.9
were used when k = 3.
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7.4 Construction of Cohen-Eisenstein Series

Let x be a Dirichlet character modulo N, and denote by L(s, x) the associated L-series
=> x(n)n~
n=1

B
For a positive integer & we have that L(1 — k, ) = Z’X,

are defined by

N a e k
x(a)te® t
Nt _ 1 ZB’“XE'
a=1 k=0
Fix an integer k > 2 and define rational numbers H(k,n) by

H(k’n) = L(l _kaXD)Z/’L(d)XD(d)dk710-2k71(f/d)7 if (_]‘)kn: Df27
dlf
0, otherwise,

where ¢ denotes the Riemann (-function, u the Moebius function, D a fundamental
discriminant, x p the quadratic character associated with Q(\/B) and the arithmetical
function o, is defined by o,.(m) = Z d". H.Cohen introduced the rational numbers

d|m
H(k,n) and proved that

Hy(2) =Y H(k,n)exp(2minz) (7.25)
n=0
is a modular form of half-integral weight k + 1/2 for I'p(4) in [C] which is now named
Cohen-Eisenstein series. For k = 1 and group I'o(4p) with p a prime, Cohen-Eisenstein
series is defined by

Hy (2 Z H(n), exp(2ninz), (7.26)

where H(n), := H(p’n) — pH(n) w1th H(n) (for n > 0) the number of classes of
positive definite binary quadratic forms of discriminant —n (where forms equivalent
to a multiple of 22 + 3% or x? + 2y + y? are counted with multiplicity 1/2 or 1/3
respectively) and H(0) = —1/12. H; p is a modular form of weight 3/2 on I'y(4p).

We shall construct some explicit modular forms in the space E,:;l /2 (4N, x;) with
k > 1 which can be viewed as a generalization of Cohen-Eisenstein series and consti-
tute a basis of Ek+1/2(4N, X1)-

Let By y be the generalized Bernoulli number defined by

N a e k
x(a)te™ t
Nt _ 1 ZB’“XE’

a=1 k=0
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where N is a square free odd positive integer and x is a Dirichlet character modulo

N. And let M,;:1/2(4N, X:) be Kohnen’s “+ space” defined by
M (W) = { 16) = S a(m)a"lf € GUN, -+ 1/2, )
n=0
with a(n) = 0 whenever e(—1)*n =2,3 (mod 4)},
S:+1/2(4N, x:) the Kohnen’s “space” defined by
Sk+1/2(4Nx1 { ia )"|f € SAN,k+1/2,x1)
n=0

with a(n) = 0 whenever e(—1)*n =2,3 (mod 4)},

E+

fr1/2 (4N, x;) the Kohnen’s “space” defined by

a(n)q"|f € E(AN,k+1/2,x1)

Dﬂg

B aaaN) = { £2) =

Il
o

with a(n) = 0 whenever ¢(—1)*n =2,3 (mod 4)}
We define the following rational numbers H(k,l, N, N;n) and H(k,l,m, N;n) with
N # m|N:
Ly(1—2k,id.), ifn =0,
Ly(1 =k, xpy) Y w(d)xi(d)xp, (d)d* " onak—1(fa/d),

H(k,l,N,N;n):= At
if e(—1)kn = D, f2 and (—1)kIn = D, (f.)?,
0, otherwise,
| . . . . 21
where oy 2k—1 is the arithmetical function defined by oy 2k—1(t) := Z d
dlt,(d,N)=1
and
0, if n=0,
=t (%) ¢
Lon(1 =k, xpr P o
( XDn) H 1—p2k ((L D,,. m))
H(k,l,m,N;n):= pIN/m
x Y il d)xi(d)xp, ()" o N 26-1(fn/d),
d|fn
if e(—1)*n = D, f2 and (—1)kIn = D/, (f.)?,
0, otherwise,
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where 0, v 2k—1 is the arithmetical function defined by

Om,N,2k—1(t) = Z a1,

djt,(dym)=1,
(t/d,N/m)=1
Note that H(k,1,1,1;n) = H(k,n) are just the rational numbers defined by H.Cohen.

Theorem 7.10 Let N be a square-free odd positive integer and | a divisor of N.
Then
(1) If k =1 and N > 1, then the functions defined by

Hi(xi;, N,N)(2) :

> H(1,1,N,N;n)q",

n=0

Hi(xi,m,N)(z) := ZH(l,l,m,N;n)q” for all m with 1, N # m|N

n=0

belong to E;r/2(4N, X1) and constitute a basis of the space E;/Q(él]\f7 Xi1)-
(2) If k = 2, then the functions defined by

Hy(x1, N,N)(2) := > _ H(k,1,N,Nin)q",

n=0

Hy(xi,m,N)(z) := ZH(k,l,m,N;n)q” for all m with N # m|N

n=0

belong to E,j'_~_1/2(4]\f7 Xt) and constitute a basis of the space E;‘+1/2(4N, Xi)-

Remark 7.1 H(id., 1,1)(z) is just the Cohen-Eisenstein series Hy(z). Since

Ly(-1,id) =~ [[( - )

p|N

and WD D
1w = 33 S uta) () s/
dlf
where —n = D f? with D a negative fundamental discriminant, w(D) half the number
of units in Q(v/D), we see that H (id., p, p) is just the Cohen-Eisenstein series Hi (%)
by class number formula.
We need the following:

Lemma 7.25 Let n be a positive integer with (—1)kn = D(2" f)? where D is a
Sfundamental discriminant, f is a positive odd integer and r > —1 is an integer. Then

(AR(2,n) —n2)2"2(1 — (=DM)(1 — 282) (1 —27A (g)) (1 -2kt
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:2—T(k—2) 1— 2>\—1 B
2 )

(Ai(pyn) — )t rDE=2)(1 = pF-2) (1 —p (lp)) )(1 ~pihy

D
=1—pt! (—) , P s an odd prime ,
p

where A = (k—1)/2 for an odd integer k.

Proof The lemma can be proved by the definitions and some direct calculations.
|

Proof of Thorem 7.10 (1) We know that the dimension of E3/2 (4N, x) is 2t0V) —

1. So we only need to prove that Hy(x;, m, N)(z) (1 # m|N) belong to E;'/Q(él]\f7 X)
and are linearly independent.
By the results in Section 7.3 we know that the following functions
3
H{(xi,m,N) = g(xi,4m,4N) — 29 g(xi,m,4N), V 1+#m|N (7.27)

belong to £(4N, 3/2, x;) and are linearly independent. We now prove that H (x;, m, N)
belongs to E3+/2(4N, x:) and is a non-zero multiple of Hi(x;,m,N) with 1 # m|N.
By the definition, we see that

H!(x1,m,N) Zam = —4n(1 ZAg (In,4N)(A3(2,1n) +273(1 — 1))
n=1
x H (As(p,In) —p~")(In)'/?q", ¥ m|N,m # 1, N, (7.28)
plm

H!(xi,N,N) : ZaN n)q :1—4n(1+i)§:/\3(ln,4N)(A3(2,ln)+2_3(1—i))

n=1
x H (A3(p,in) —p~")(In)"2q".
pIN
Denote
I(l,n) == A3(2,In) +273(1 —i). (7.29)

By the definition of A(2,In), we see easily that I(l,n) = 0 if In = 1,2 (mod 4)
and hence a,,(n) =0, ay(n) = 0 if In = 1,2 (mod 4). This implies that Hj(x;, m,
N) e ESJ)F/2(4N, Xi)- Whenin =0,3 (mod 4), ¢ = (—l)lfT1 =1 (mod 4) which implies
that en = 0,3 (mod 4). Hence we can suppose that —en = D,, 2 and —In = D/, (f)?
with D,, and D/, fundamental discriminants, f,, and f! positive integers. It is clear
that D], = elD,,/(l, Dy)?, fi = (I, D,,) fn. From these we see that if p{ N then p|D,,
if and only if p|D), and v,(fn) = vp(f}). By the definition of Az(p,in) and some
calculations we have that



250 Chapter 7 Construction of Eisenstein Series
D/
4711 —1) (1—|—2 ( 2 )), ifin=3 (mod 4),
3 va(f,,)
—t . _
16 (1-1) Z 2 ifin=0 (mod 4) and 21 15(In),
va(f,) s ve(fn)-1
I(Ln): -1 s D, 7t_1 Dn —t
4711 1)(1+2(2 > 2 515 27t |,
t=0 t=0
if in=0 (mod 4) and 2|v5(In),21 D},
3 va(f},)
—(1-i) Y 27, if In=0 (mod 4) and 2|vs(In),2|D,.
16 =

(7.30)
By Lemma 7.25 we obtain that for In = 0,3 (mod 4)

TTastotm ~ =302 = 4 12 TT (1= (52 ) ) =

plm plm

({, Dn)

(1, Dy, m) yn (1 - (%)) (1-p)

—| D, |2

D'\ !
x (1 —p ! (—”)) Q-p ) [[p~Y.  (131)
p
ptm
We also have that
/63(ln7 XN, 4N)
—In 1
= > p(a) Y (ab)
(ab)?|in,(ab,2N)=1
a7b positive integers
”p(f/) Vp(f,) Vp(f,)_l
n B n _ B D;L n B
:H Zpt pt_p1<_> pt
pID, 2N 1=0  piaND; \ =0 P/ =
’/:D(fn Vp fn D Vp(fn)_l
- I Yo I (S rraw () X o] as
plDyopl2N =0 p2ND, \ =0 p =0

where we have used the fact that p|D,, if and only if p|D;, and v,(fn) = vp(f}) for
p1 N. By the functional equation of L-functions we see that
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s (%)
Lan(2,id.)
Dy, 1 ( Dy
—o(1+1)| D, |72 L <0C’(<_1)>) H (1 _f_p(zp >> (7.33)
pl2N

Using these equalities (7.28)—(7.33), we finally find that for 1, N # m|N and n

) <07 (D_>> (1. Dy) (1 e (D_>>

b
L, (—1,id. l,D,, 1_p-2
i) Go.m 1 »
3 udyi(d) (D) T
d b
d|fn e|fn/d,(e;m)=1
(fn/de,N/m):l

where we used the fact that

Z pt
p|Dn,ptN t=0 ptND,, \ t=0

vp (fn) vp(fn) vp(fn)—1
I T Y o IS o -riion (22)
ptm

VP(fn Vp(fn
— H p”p(fn

D vp(fn)—1
I X/ I (X o ()
p|N/m

t
> p
p| Dy ptN =0 ptN Dy, t=0

t=0
- i@ (%) ¥ -

el fn/d,(e,m)=1,
(fn/de,N/m)=1

Similarly we have that

an(n)

LN<0 (D;»ZH Dxi(d (Z) S e

These show that

D/
w0 (%)) b,
R NN =1+ S e A S @ () X e
n>0, d\fn
In=0,3(mod 4)
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HwmN) = Y b (O(Dn» (1,Dy)

Lp(-1,id.) (I, Dy, m)

n>0,
In=0,3(mod 4)

T (“i’_ (D/»Zﬂ o(Z) ¥ e

pIN/m d|fn el fn/d,(e,m)=1
(fn/de,N/m)=1

Comparing the coeflicients of Hi(x;, m, N) and H{(x;, m, N), we find that

Hl(Xl’mv N) = Lm(_Lid')H{(Xlama N)
1
:_E (l—p)H{(Xl,m,N)

plm

for all 1 £ m|N. This completes the proof of (1).
(2) We define the following functions

Hj (x1,m, N) = gagy1(x1, 4m, 4N) + (272711 4+ (=1)%0) + 02)gar+1 (i, m, AN).

Similar to the proof of (1), we want to prove that Hj,(x;, m, N) with m|N constitute
a basis of Ek+1/2(4N, x:) and is a non-zero multiple of H(x;,m,N). Since the

dimension of Ek 11 /2(4]\7 ,X1) is equal to the number of positive divisors of N, by

Theorem 7.1 we only need to show that Hj(x;,m,N) € E;+1/2(4N, xi) and is a
non-zero multiple of Hy(x;, m, N). By results in Section 7.1 we see that

H (xi,m,N) : Zam

oo

N1 (In, AN) (Aggei1(2,In) + 272F71(1 + (=1)k))
=1

H (Aok+1(p, In) )(ln)k_l/Qq”7 VYm|N,m # N,
i (7.34)
Hk leN N ZGN

=1+ Z Nyjoir (I, 4N) (Azpi1 (2, In)

n=1

£ 27504 (<1)9) [T (Aaie (0. 1) — ) (1) /24"
p|N

Let
Ii(l,n) := Agpy1(2,In) + 2728711 + (= 1)M).
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By the definition of Ax(2, In), we see that I (I,n) = 0 if (=1)¥in = 2,3 (mod 4).
This shows that a,,(n) = 0 and ay(n) = 0 whenever (—1)*In = 2,3 (mod 4) and
hence Hy (xi,m,N) € Ek+1/2(4]\77 x1)- Now we must compute the coefficients a,,(n)
of H](x;,m,N) for all m|N. When (—1)¥in = 0,1 (mod 4), we denote that ¢ =
(=1)'z" =1 (mod 4), (=1)ken = D, f2 and I(—1)kln = D/, (f)? with D,, D/, fun-
damental discriminants, f,,, f, positive integers. It is clear that D!, = elD,/(l, D,)?
and f! = (I, Dy) fn-

By the definition of A (p,in) and some calculations we have that
DI
272k (1 4 (—1)*i) (1 +27k (f)) , if (=1)*In = 1(mod 4),

va(f1)

27219(1 + (—l)kl)(l _272k) Z 2(172k)t’
t=0

if (—1)*In = 0(mod 4) and 2 { v (In),

272K (14 (—1)F )<1+2 k( ))
va(fy,) V2(fn) 1

(3 e (2 ) s-ae),
t=0

if (—1)FIn = O(mod 4),2|ve(In) and 2 1 D},

I}C(LTL)

va(f,,)
27219(1 + (—l)kl)(l _272k) Z 2(172k)t’
t=0
if In = 0(mod 4), 2|v2(In) and 2|D),.

(7.35)
y Lemma 7.25 we obtain that for (—=1)"Iin =0,1 (mod 4
By L b hat f k] d
H(A2k+1 (p, In) = mp)(In)"*~1/2
plm
:| D’ |k—1/2 H (1 _pk—l (m)) (1 _p2k—1)—1
! plm b
" ( ( )) (1 p2%) [T o)
ptm
l,D 2k—1 B D’ L
|D/ |k 1/2 ((l(D ))) H(l_pk 1<pn>> (1_p2k 1) 1
p|m
/AN
X (1 —pk (7”» (1= p k) [T pBF— 1wl (7.36)

ptm
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We also have that
Barr1(ln, xn,4N)

—1)k
— Z ;U’(a) (( ) n) a—kb1—2k
(ab)?|in,(ab,2N)=1 “

a7b positive integers

’

S T (S ()5 e
— (1—2k)t p12t —() 1-2k)t

p|D},,pf2N  t=0 pl2N D/, t=0 -0
l/p(fn l/p(fn) D yp(fn)_l
= [T > 2“7 I [ X 2" ") (") DO Sl
p|Dn pf2N =0 PI2ND,\ t=0 p =0

(7.37)

where we have used the fact that p|D,, if and only if p|D;, and v,(fn) = vp(f}) for
p1 N. By the functional equation of L-function we see that

k()

¢(1—2k)

D/
(%)
< [ P /7 (7.38)
Using these equalities (7.33)—(7.37), we finally find that for N # m|N and n > 1

L (1-k, D—/ 5 - |t f?;il
(o) (g ()

L, (1 —2k,id.) l,D,,m 1—p2k

N (In, aN)=2%"1(1 — (-1

am(n) =

D, B _

< Suania (Dr)ar Y e
d|fn elfn/d,(e;m)=1
(fn/dC,N/m):l

where we used the fact that

Hp(%—l)vp(fn H Vlgf (1—2k)t
ptm p|Dn,ptN  t=0

vp(fn) D vp(fn)—1
% H Z p(1—2k)t p_kX; ( ) Z p(l 2k)t

ptND, \ t=0
vp(fn)

Hp2k Dvp(fn) H Z (2k—1)t

pIN/m p|Dn,ptN =0
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vp(fn) D vp(fn)—1
% H Z p(2k—1)t _pk—lxg(p) <n> Z p(2k—1)t

p»i’NDn t=0 p t=0

=S (Z) e e

d|fn el fn/d,(e;m)=1
(fn/de,N/m)=1

Similarly we have that

aN(n):LN (1—1%([)/)) S wld)i(d (%) D S

Ln(l— 2k,1d.)
d|fn e|lfn/d,(e,N)=1

These show that

H (v, N,N) =1+ 5 {LN (l_k’ <Dn>>

= Ly(1 - 2k,id.)
(71)kln50,1im0d 4)

XZ#X;() ST e }”;

d|fn elfn/d
(e,N)=1
/
Lm (]. — k7 (&>> (l D ) 2k—1
H; N) = . S
}c(lemv ) 7; { Lm(]- —2k7id.) ((lanvm)>

(—=1)*in=0,1(mod 4)

D e

p|N/m d|fn

« Z er—l}qn

e|fn/d,(e;m)=1
(fn/de,N/m)=1

Comparing the coefficients of Hy(x;, m, N') and Hj,(x;, m, N) show that Hy(x;,m, N) =
_ Bay

2k
the r-th Bernoulli number. This completes the proof of (2). O

L,,(1 —2k,id.)H}.(x;, m,N) = ———H}.(x1s,m, N) for all m|N where B, := B;iq. is

7.5 Construction of Eisenstein Series with Integral Weight

Let N and k be positive integers, w a character modulo N with w(—1) = (—1)*. Take
a positive integer @) such that Q|N and (Q, N/Q) = 1. Define a matrix

W(Q) = (f@z Qtv> € GLE(Z), det(W(Q)) = Q.
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We see that W (Q)Io(N)W(Q)™1 = IH(N).
Lemma 7.26  Let W(Q) be as above, w = wiwa, where w1 and we are characters
modulo Q and N/Q respectively. If f € G(N,k,w) (resp. E(N,k,w)), then g =
fHW(Q)]k € G(N7 kv"‘TIWQ) (resp.S(N, kv"‘TIWQ))'
a b 1 ap bo .
Proof  Take any v = € I'o(N), set W(Q)YW(Q)™ ! = . It is
c d co  do
easy to check that ¢ = 0 (mod N), dg = a (mod Q), dy = d (mod (N/Q)). Hence
we see that

gllvl = AIW(@nW(Q)™'W(Q)] = w(do) fI[W(Q)] = w(do)g,
ie., g € G(N,k,wiws). Similar to Lemma 5.35, we have for N|M that
E(N,k,w)=G(N,k,w) N EL(M),k),

from which the last conclusion of the lemma can be deduced. This completes the
proof. 1

Let now Ej(z,w1,w2) be as in Section 2.2. By the computation in Section 2.2 we
see that Fj(z,wr,ws) is a common eigenfunction of all Hecke operators and

Ek(27w17w2)|T(p) = (wl(p) +pk_1w2(p))Ek(zaw1’w2)'

Similar to Theorem 5.18 we have the following:

o0

Lemma 7.27 Let f(z) = Z a(n)e(nz) € G(N, k,w). Assume that t is the conduc-
n=0

tor of w and Y is a primitive character modulo r. Put
hz)=> b f(z+u/r)=> dwe(u/r) Y v(n)a(n)e(nz),
u=1 u=1 n=1

then h(z) € G(M, k,w?) with M = [N, rt,r?]. If f(z) € S(N,k,w) (resp. E(N, k,w)),
then h(z) € S(M, k,wt?) (resp. E(M, k,wip?)).

Let Ei(z,w,N) be as in Section 2.2. From the transformation formula of Ej(z,w,
N) and a standard method invented by Petersson we know that Ej(z,w, N) € E(N, k,
w) fork # 2or k = 2, w # id. Hence we know that Ey(z,w, N)|[W(Q)] € E(N, k, wiwa)
from Lemma 7.26. Let now w = wjws. Assume that r; and re are the conductors of
w1 and we respectively. Write

m m m m
_ o _ Bi _ ) _ )
= p; T2 = p;H w1 = Wi,i, W2 = w24,
i=1 i=1 i=1 i=1
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where wy; and wa; have conductors pf* and piﬁ ‘ respectively. Without loss of gen-
erality, we may assume that there is a positive integer m; such that «; > 3; for
1<i<my <manda; < f; for my <i < m. In terms of Lemma 7.26, we know that
there is a Ey(z) such that

Ek ( le iw2 K2 H w1 ,iW2 z)

1=mqi+1

eS(Hp?i H p klezWQz H w11w2z>
=1

1=mqi+1 1=mqi+1

mi m ma m
Put ¢ = ngﬂ- H w1 i, then the conductor of ¢ is r = le‘ H Pyt Set

i=1 i=my+1 i=1 i=my+1

Ey(z,w1,ws) <Z¢ u/r)) Zz/) Ek (z +u/r), (7.39)

then Fi(z,wi,ws) € E(r1712, k,w) by Lemma 7.27. And we have also that

L(S Ek(z wl,wg (S ¢Hw1 iWo z)L(S —k+ 1,9 H 5171'(.«}271‘)

1=mi1+1
= L(s,wl) (s —k+1,w9).

Let [ be a positive integer, w a character modulo N with conductor r, w; and
wo two primitive characters modulo r; and 7o respectively. Denote by A(N,r) the
number of (I, ws,ws) satisfying

W = wiwa, lrira|N. (7.40)
For any such (I,w1,ws) there is a function
Ek(lz7 Wi, (.UQ) € 5([7"17"27 ka W) - E(Na k7 W)

such that
L(s, Ex(lz,wi,w2)) =1"°L(s,w1)L(s — k + 1, ws).

Lemma 7.28 We have that

AN = Y elle N/o).

¢|N,(¢,N/c)|N/r

Proof Let B(N,r) be the right hand side of the above equality. If N = N1 Ny, r =
r17r9 With (Nl, Ng) =1, 7“1|N1, T2|N2, then we see that A(N, T) = A(Nl,rl)A(NQ,TQ),
B(N,r) = B(Ny,r1)B(N2,72). Hence we only need to show the lemma for the case
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N = p% r = p® with b < a. If (p’,w1,ws) satisfies (7.40), then one of the r; and 72
must be a multiple of 7, so 0 < 7 < a—b. If one of the r; and r; is larger than r, then
r1 = rg. Since wy = wwy, we see that wy is determined by w;.

We assume first that 20 < a. If 0 < i < a — 2b, the maximal possible value of ry is
pl(@=)/2] We see that [(a —i)/2] > b and w; can be any character modulo pl(*=/2],
Ifa—2b+1<i<a—>b,thenb>1,2b+¢ > a and it is impossible that pb|r1 and
p®|r2. But one of 1 and 7, must be p®, so w; can be x or wx where Y is any character

modulo p®~°~%. Hence we see that
b—1 ) a—2b .
A, ") =23 o) + 3 el
i=0 i=0
a/2—1

2 > o) +9(@"?) =B@".p"), if 2a,

i=0
N (a-1/2

2 > o) =B@"p"), if21a.

i=0

Assume now a < 2b. Then one of r; and ro must be p® and w; can be x or wy with
x any character modulo p®~®~%. Therefore

a—b
A@p®,p") =2 ¢') = B, p").
i=0
This completes the proof. ]

By Theorem 5.9 we see that —L(0,w1)L(1 — k,w9) is the constant term of the
Fourier expansion at co of Fi(lz,w1,ws2). And if w is a primitive character modulo
r # 1 with w(—1) = (=1)” (v =0 or 1), then the function

R(s,w) := (r/n)(5+y)/2F<S;I/>L(s,w)

is holomorphic on the whole s-plane. It is well known that the function
12 s(s — 1) I(s/2)C(s)

is holomorphic on the whole s-plane. Since s = 0 and negative integers are poles of
I'(s) with order 1, we know that L(0,w) = 0 (resp.L(1 —k,w) = 0) if w is a non-trivial
even character(resp. if k > 1 is odd and w is even or k is even and w is odd.). Hence

0, if £ # 1 and w; is nontrivial,
CL(0,w1)L(1 — K, ws) = or both w; and wy are non-trivial,

L(1 —k,w) .

— 5 otherwise,

where we used the fact that ¢(0) = —1/2.
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Let N = p{*---p¥" be a positive integer. We introduce an order in the set of all
factors of N as follows: if [ = pf' ... pP» and l' = p]* - pI» are two divisors of N,
then we define [ > I’ if there exist ¢ with 0 < 4 < n such that §; = v; for 1 < j <1

and Biy1 > Yit1-

Theorem 7.11 Let w, wy, we, 71, T2 be as above. Then
(1) For k > 3 or k = 2,w # id., the functions

Er(lz,wi,wy) = —L(0,w1)L(1 — k,w2) + Z (Zwl (n/d)ws(d)d"~ 1>e(lnz),

d|n

constitute a basis of E(N, k,w) where (I,w1,w2) runs over all triples satisfying (7.40).
(2) The functions

Ei(lz,w1,w2) = —L(0,w1)L(0,ws) + Z (Zwl (n/d)wa( )e(lnz)

d|n
constitute a basis of E(N,1,w) where (I,w1,ws) runs over all triples satisfying (7.40)

but only one of (I,w1,ws) and (I,wq,w1) can be taken.

Proof (1) It is clear that Ej(lz,w1,w2) € E(N,k,w). By dimension formula and
Lemma 7.28 we have that dim(E(N, k,w)) = A(N,r). Hence it is sufficient to show
that the functions are linearly independent. Assume

0= Z b(n)e(nz) = Z c(l,w1,ws) B (lz, w1, we),
n=0

(lw1,w2)

where (I,w1,w2) runs over the set of triples satisfying (7.40). Let 1x be the trivial
character modulo N. For any given (1,w1,ws) satisfying (7.40), we see that

0= Z Inywz(n)b(n)n=*
n=1

=c(1,wi,w2)L(s,wiwaln)L(s — k+ 1,1x)
+ Y (1w, wh)L(s,wiwaln)L(s — k + 1, whws 1), (7.41)
wh Fws

where the last summation is taken for triples (I, w1, w}) satisfying (7.40) but we # w}.
The first term on the right hand side of (7.41) has a pole at s = k with order 1 and
the others have no poles at s = k. Hence ¢(1,wr,w2) = 0 for any (1,w;,ws). Assume
that ¢(l’,w1,ws) = 0 for all I’ < and that (I,w;,ws) satisfies (7.40), we see that

0= Z Inwz(n)b(in)n=*
n=1

=c(l,wr,w2)L(s,wiwzlN)L(s —k+1,1n)
+ Z (I, w],wy) L(s,wjwal n)L(s — k + 1, whwa 1),

whFwz
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50 ¢(l,w1,ws) = 0 by a similar argumentation. By induction we see that ¢(l, w1, ws) =
0 for any (I, w1, ws).
(2) It is clear that F4(lz,w1,ws2) € E(N,1,w). By the dimension formula we see

1
that dim(E(N, 1, w)) = 5A<N7 7). Therefore we only need to show that the functions

are linearly independent. But this can be done similarly as we did in the proof of (1).
This completes the proof. ]

Recall the definition of the function g} (z) in Section 2.2:
9¢ (2) = ! p) + Z ( Z d)e(nz).
24
p\t d|n,(d,t)=1

It is easy to show that g; € £(t,2,id.). For any positive integer I, put t(I) = Hp.
pll
For [ # 1 we define

Es(lz,id.,id.) = gf(l)(lz/t(l)) € &(l,2,id.).
It is easy to see that
L(s, By(lz,id.,id.)) = (1/t(1))*¢(s)L(s — 1, Ly)-

It should be noticed that the symbol F5(z,id.,id.) is not defined. If w; is non-trivial
but w? = id., we define

-1 m

Es(z,w1,ws) = (Zwl u/r1)> Zwl (WG, (2 +u/r1),

then Fs(z,w1,ws) € £(r?,2,id.) by Lemma 7.27, and
L(s, E3(z,w1,w2)) = L(s,w1)L(s — 1,wa).

If w? # id., we define

-1 m

Es(z,w1,ws) (Zwl u/r1)> Zwl VEo(z 4+ u/ry,id., w1 )7

where Fy(z,id.,07?) is well defined as in (7.39) since w? # id.. It is not difficult to
show that Es(z,wi,ws) € £(r?,2,id.) and

L(s, E2(z,w1,ws)) = L(s,w1)L(s — 1,w2).
So we have a function Es(lz,w1,ws) € E(N, 2,id.) for every triple (I, w;,ws) satisfying

wiwe =1id., Irire/N and 1#1 if ri=ry=1. (7.42)
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Let ag(l,w1,w2) be the constant term of the Fourier expansion of Fa(lz,wr,w2). It is

easy to see that
0, if wy is non-trivial,

ao(l,wi,we) = ¢ _ ° H(l —p), if wy is trivial,

Theorem 7.12  The functions

Es(lzywr,we) = ag(l, w1, ws) + Z (Zwl(n/d)wg(d)d> e(lnz)

n=1 d|n

constitute a basis of E(N,2,1id.), where (I, w1, ws) runs over the set of triples (I, w1, ws)
satisfying (7.42).

Proof  We only need to show that the functions are linearly independent. Assume
Z c(l,w1,ws)Ea(lz,wi,ws) =0, (7.43)

where the summation was taken over all triples (I, w1, ws) satisfying (7.42).

Let f(z) = Za(n)e(nz) € G(N,k,w), r[N and ¢ any character modulo N.

n=0
Define

s, fo,7) Zw

We have that L(s, Ea(lz,id.,id.), ¢, r) = 0 if I/¢(1) t r. If 1/¢(1)|r, then

n)( Z d)n_
d|nrt(l)/1,

(d,l)=1

H (1 +p +- +pr(T))L(s7¢)L(s - ]-7 1/})7
plr,pfl

L(s, E2(lz,id.,id.), ¥, r) =

et
=

where v, (r) is the p-adic valuation of r. If ¢ is non-trivial, then L(s, Ex(Iz,id.,id.), ¢, 7)
is holomorphic at s = 2, by the same argumentation as in the proof of Theorem 7.11
and (7.43) we know that ¢(l,w1,ws) = 0 if wy is a non-trivial character.

Denote by f the left hand side of (7.43). It is clear that L(s, f, 1y, r) has no pole
at s = 2. Hence

A=Y J[a+p+ 4 p»)e() =0, N #r|N, (7.44)

U|N,I#1, p]r,

/t)r ph
where ¢(1) = ¢(l, id., id.). The equality (7.44) is a system of linear equations with
respect to {c(1)|1 # I[|N}. We shall prove the system has only zero as solution which
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implies the theorem. If N = p™ with p a prime, it is then clear that 4; =0, A, =0,

oy A = 0,50 ¢(p) =0, ¢(p?) =0, -+, ¢(p™) = 0. We apply induction to the
number of prime factors of N: let N = p?N; with (p1, N1) = 1, suppose that (7.44)
has only zero as solution if N = N;. Now suppose that r1|N7, then

Appry = A, =00 Y [[+p+-4+p720)el) =0, Ny #11| Ny,
L£UN, plry,
L/tD)|rr ph
By induction hypothesis we see that ¢(I) = 0 if p; tI. But p; can be any prime factor
of N, we see that ¢(I) = 0 if there exists some prime factor p of N such that p t [.
Hence

An= S JI@+p+-+p2T)epal) =0, Ny # |y,
1#£1| N1, p|r1,
t)lr pf
By induction hypothesis again we see that ¢(p1l) = 0 for I|N;. Similarly using the
fact that A,,, = 0,42, =0,--- 7Ap11—1r1 = 0 for N1 # r1|N1, we obtain that

PiT1
c(p?l) = 0,--- ,c(ptl) = 0 for I|N;. This shows that the system (7.44) has only zero
solution. This completes the proof. ([
Theorem 7.13  Let f(z) = Za(n)e(nz) € G(N,k,w). Then f(z) is a cusp form
n=0

if and only if the function L(s, f,1, 1) is holomorphic at s = k for any proper divisor
r of N and any character v modulo N.

Proof  The necessity can be deduced from Lemma 7.15. We now assume that
the function L(s, f,,r) is holomorphic at s = k. Since G(N, k,w) = E(N,k,w) @
S(N, k,w), we have

f(Z) = Z C(l7w1’w2)Ek(lZ’w17w2) + g(z),

where the summation was taken over the set of triples satisfying the conditions in
Theorem 7.11 or Theorem 7.12 according to k # 2,k = 2,w # id. or k = 2,w = id.
respectively, and g(z) € S(N, k,w). By the holomorphy of L(s, f,¥,r) at s = k and
applying the similar argumentation used in the proofs of Theorem 7.11 and Theorem
7.12, we can prove that c(l,w1,w2) = 0. Hence f(z) € S(N, k,w). This completes the
proof. 1

Remark 7.2  The hypothesis in Theorem 7.13 can be represented as follows: L(s, f,
¥, ) is holomorphic at s = k for any proper divisor r of N and any primitive character
1 induced from any character modulo N. The necessity can be deduced from Lemma
7.15. We now assume the above condition is satisfied. Let x be any character modulo
N and v the primitive character induced by x. Then
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s, X:7) Zx
= (d)d*L(s, f,¢,rd),

d|N

Z u(d)a(rn)n™*

d|(n N)

which implies the holomorphy of L(s, f,x,r) at s = k. Hence f is a cusp form
by Theorem 7.13. Also the condition can be represented as follows: L(s, f,4,r) is
holomorphic at s = k for any positive integer 7| N and any primitive character .
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Chapter 8
Weil Representation and Shimura Lifting

8.1 Weil Representation

Let V be an n-dimensional real vector space and V* be the dual space of V. Denote
by B a bilinear form on (V x V*) x (V x V*) given by B(z1, z2) = (v1, v3) = v3(vy) for
z1 = (v1,v7) and zg = (ve,v3). Let A(V') be the Lie group with underlying manifold
V x V* x T whose multiplication is given by

(2,8) (2, t) = (2 + 2/, tt'e(B(z,2')), Vz,2/ eV xV*tt eT,

where T = {z € C||z| = 1} and e(z) = ™=,
We fix a Euclidean measure dz on V' and denote by dz* the FEuclidean measure
which is dual to dz. Namely, the Fourier transformation
fr@®) — ., [ (@ )e((z,27))da”
gives an isometric mapping from L?(V*,dz*) onto L?(V,dz). We denote by U a
unitary representation of A(V') on L?(V) given by

{U(z,t) f}(x) = te((z,v")) f(x+v), VeeV,z=(v,0")eV xV*teT.

Then U is irreducible and ¢(V'), the space of rapidly decreasing functions over V, is
a dense invariant subspace of L2(V). A linear transformation of V' x V* is said to be
sympletic if it leaves the alternating form A(z1,22) = B(z1,22) — B(22, z1) invariant.
We denote by S,(V x V*) the group of symplectic linear transformations of V' x V*.
For o € Sp(V,V*) and z = (v,v*) € V x V*, we write

o(2) = (v,0") (‘c’ Z) = (a(v) + c(v"), b(v) + d(u")),

where a, b, c and d are linear mappings from V to V, from V to V*, from V* to V
and from V* to V* respectively. In the following we often identity o with the matrix

(i z> For o € S,(V x V*) and z € V x V*. Put

Fy(z) = exp (niB(0(2),0(2))) / exp(niB(z, 2)).
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It is easy to see that
Fy(z + ) = By (2)Fy ())e(B(o(2), o)) — B(z, ),
Fyr(2)=Fr(0(2))Fy(2). (8.1)
This shows that the group S,(V x V*) acts on A(V) as a group of automophisms via

the mapping:
w i w” = (0(2),tF,(2)), Y = (2,1) € A(V).

Set U% (w) = U(w?), then U? is an irreducible unitary representation of A(V) which
is equivalent to U. Namely, there is a unitary operator 7(c) on L?(V) which satisfies

Uw®) =r(o) *U(w)r(e), Ywe A(V). (8.2)

The operator r(¢) is unique up to a multiplication by a complex number of modulus 1.
Furthermore, the mapping o — (o) gives rise to a projective unitary representation
of Sp(VxV*)on L?(V). In other words, for each pair (0, z) € S,(V xV*)xS,(V xV*),
there is a constant ¢(c, z) which satisfies

r(oz) = c(o, 2)r(o)r(z). (8.3)

This projective unitary representation is called the Weil representation of Sp,(V x V*).
If the entry c of o is either non-singular or zero, we may normalize r(o) as follows:

|c\1/2/ Fy(v,0%) f(a(v) + ¢(v*))dv*, if ¢ is non-singular,
V*

r(o)f(v) = (8.4)
% ( a(o). (o)) ) F(a(0) ite=o0,
where o = (CCL Z), d(c(z*)) = |e|d*z* and d(a(z)) = |a|dz.

Let L be a lattice in V and L* be the dual lattice of L in V*. Let M* be a
sublattice of L* and M the dual lattice of M* in V. Denote by S,(L x M™*) the
subgroup of S,(V x V*) consisting of linear transformations which leave the lattice
L x M* invariant. For a character x of L x M* and for a 0 € S,(L x M™*), we set

XTN) = x(@TYA)E,-1(\), VAeLx M.

Then x? is also a character of L x M* and x°™ = (x?)7.
We denote also by x the character of a subgroup L x M* x T of A(V') given by

x((z,t)) =tx(z), VzeLxM".
Then there exists a (vy,vy) € V x V* satisfying

X(/\,,u,*):e((UX,,u,*)—(A,U;)), V(/\vﬂ*) €L xM".
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The map x — (vy, v;) gives an isomorphism between the character group of L x M*
and the additive group V/M x V*/L*. For a u € M/L, we denote by x(u) the
character of L x L* corresponding to (vy + p,vy) of V/L x V*/L*. Any extension of
X to a character of L x L* coincides with x(u) for a suitable u € M/L. We denote
by Ty (L x M*) the unitary representation of A(V') induced from the character x of
L x M* x T as follows: the representation space @, (L x M*) is the Hilbert space of
measurable functions 6(z) on V' x V* satistying the following conditions:

e(B(X,2))0(A+2) =x(N\)0(z), YVAeLxM* zeV xV*,
16]2 = / 10(z, 27)[2dade” < +o
V/LxV* /M
and Ty, (L x M*) is given by
T (L, M*) ((w, 1)) 0(2) = te(B(z,w))0(z + w).

It is easy to see that the space Oy, (L x L*) (Vpu € M/L) is a closed invariant
subspace of O, (L x M*) and

Oy(Lx M*) = @ Oy(L x L*).
uEM/L

Put
@X = QX(L X M*), QX(M) = @X(M)(L X L*)7 TX = TX(L X M*)

For an f € ¢(V)(where ¢(V) is the space of rapidly decreasing functions on V, for
the definition, please compare [?] ), we define

Oty ()@ ) =(VVol(V/M*) S e((U + p + vy, 2%)

leL
+ (o)) flo+ 1+ i+ vy),

where vol(V*/M*) = / dz*.
Ve IM*
It is clear that 6, (f) depends on the choice of a representative of (v +u) € V/L
in V. Here and after we choose representatives for (v, + ) (# € M/L) and fix them.
Then 6y, (f) is a smooth function in 6,,) and

O (U(9)f) = To(9)0 () (f), ¥V g € A(V),
1 (F)I12 = 17117 = / ().
174

Conversely, for a smooth function 6 € 6 the following function

x(p)>
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fo(x) = ( vol(V*/M*)) / O(x — 1 — vy, z%)e( — (n+ vy, 2"))dz"  (8.5)

belongs to ¢(V') and 6, (f) = 0. Thus 60,,,) gives a norm preserving linear map
from (V) onto the bpace of smooth functions in 6,,) which commutes with the
action of A(V). The inverse of 0,(,) is given by (8.5). These show that 6, is
extended to linear isometric map from L?(V) onto ©,(,) which gives an equlvalence
of two unitary representations (U, L*(V')) and (Ty, Oy,)) for any p € M/L. Since
(U, L*(V)) is irreducible and (T, ©y) is a direct sum of (T}, Oy(,)) (n € M/L), any
bounded linear map of L*(V) into @y is a linear combination of 0,y (u € M/L) if
it commutes with the action of A(V'). Finally, put

0(f, x(1)) = bx()()(0,0).
All the above results and their proofs can be found in André Weil, 1964.

Proposition 8.1(Generalized Poisson Summation Formula) (1) Let r(0)(0 €S, (L X
M*)) be the unitary operator in L?(V') which satisfies (8.2). There exist constants
CX(u,v) (u,v € M/L) which satisfy

0(r(o)f,x(w) = > CXw,0)0(f,x°(v), VfesV).
veEM/L

(2) Denote by CX the matriz of size [M : L] whose (u,v)-entry (u,v € M/L) is
CX(u,v). Then CX is a unitary matriz and CX, = c(o,7)CXCX" where c(o,7) is a
complex number of modulus 1 defined in (8.3).

(3) Set o = (Z Z) and assume c is non-singular and (o) is nomalized by the

formula (8.4). Then the constant CX(u,v) is given by
1
vol(V* /M™*) || 2CX (u, v) = Z 6(2(l +u'), e ta(l + u’))
lEL/c* (M*)
1

— (I et w) + 3 de™H (v")) + (1, vy)),
where u' = u+ vy and v = v+ vyo.
Proof  For the details, see T. Shintani, 1975. O

From now on, we set V = R”. Take a non-degenerate symmetric n X n matrix

Q and identify V with its dual by setting (z,y) = yTQz. We put dz = dxy - --dz,
Then the dual measure dz* is given by dz* = |det@|dz. We denote by r(-, Q) the Weil

representation of S,(V x V*) on L?(V), to emphasize its dependence on Q. Identify
the group SLy(R) with a subgroup of S,(V x V*) by settings
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o(z,y) = (ax + cy,bx + dy), Vx,yeV,o= (Ccl Z) € SLy(R).

By (8.4), we have the following expression for r(o)=r(0,Q) (o= ((z Z) €SLy(R)):

2c

|a|”/2e(ab(§’x)>f(ax), ife=0.

|C‘_n/2\/M/ €<a(x,x) —2@,y) + dly, y)>f(y)dy, if c#£0,
(r(o,Q)f)(x)= v

The group GL,(R) acts on L?(V), as a group of unitary operators if we put

(Tf)(x) = V/|detT|~1f(T" "), (8.6)
It is clear to verify that
r(o, (T QT T =T r(6,Q), Yoe&SLyR),T € GL,(R). (87

We are going to determine the constant c¢(o,7) in (8.3) for o, 7 € SLa(R).
Denote by H the complex upper half plane. For o € SLa(R), set

Vi, if ¢ >0,
(o) = ¢ itEn@/2 0 if o =,
Vil if ¢ < 0.

Take a positive definite symmetrix R such that RQ™'R = Q. For z = u+iv € H, put
Q. =u@Q +ivR.
Let P,(z) be a homogeneous polynomial of degree v which has the following expres-
sion:
1, if v=0,
Py(z) =< (r,z), (r € C",Qr = Rr), ifv=1,
Zcr(r,x)”,cr eCreC",Qr=Rr,(r,r)=0, ifv>2

(if rank(Q — R) = 1, we assume v < 1).
Lemma 8.1 Assume @ has p positive and q negative eigenvalues (p+q =mn,p > 0).
Set .
F.(x) = e(zQz(x)>Pv(x).
Then B
r(0,Q)F=(x) = e(0)P "1/ J(0,2)" " |J(0,2)| "I (0,2) 7" Fpzy ()
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for any o = (Ccl 2) € SLy(R), and where J(o,z) = cz +d.

Proof  There exists a T € GL,(R) such that TTQT = (Ip 7 ) and TTRT =
g

I,,. By (8.7), it is sufficient to show the lemma under the additional assumption that

I, _
QZ( _Iq>7 f=1n

Put o = (Z Z) If ¢ = 0, the lemma is clear. If ¢ # 0, by a direct computation, we

have

r(o,Q)F,(x) = |c|_”/2\/v —iu—id/c p\/v +iu+id/c qJ(O’, 2) " Fyy ().

Now the lemma follows from the definitions of (o) and J(o, z). This completes the
proof. O

By Lemma 8.1, we have

o) Tiord) | (8.8)
VI (0,7(i)\/J ()
For o € SL2(R), set
r0(0,Q) =¢€(0)"Pr(0,Q). (8.9)

Let G7 be the Lie group with the underlying manifold SLy(R) x 7" and the mul-
tiplication given by
(O-v t) (O'/a t/) = (Uala tt/CO(O-a OJ))'

Then the subgroup {(o, £1)|o € SL2(R)} of Gy is isomorphic to the two-fold covering
group of SLa(R). For a o = (0,t) € Gy, set ro(c,Q) = tP~Ir¢(0,Q). The following
lemma is now immediate to see.

Lemma 8.2 (1) The mapping: ¢ — ro(0,Q) gives a unitary representation of Gy
on L%(V). The space ¢(V) is a dense invariant subspace.

(2) For any f € ¢(V), the mapping & — ro(c,Q) [ is a smooth mapping from G
into ¢(R™);

It is clear that the mapping ¢ — (o, 1) gives a locally isomorphic imbedding of
SLs(R) into G7. Hence, for any element u of the universal enveloping algebra of the
Lie algebra of SLa(R), 79(u, Q) has an obvious meaning as a differential operator on
V. In particular set
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Co=710(C,Q), C=2XY +2YX + H?,

SR oY e

Then Cg commutes with r9(c, Q) for any ¢ € G;.

cosf) sin6

For 0 € R, let kg = (—sin@ cosf

) and 2 = {(k¢,€)|0 € R,e = £1}. Put

X (ko 2)) = (Vo) " em.
Then X, is a character of 2 and for any f € ¢(V') we have

ro(k, Q) f = xm(k)f, Vke€ 2. (8.11)
Lemma 8.3 Forz=u+iv € H, set

azz(ﬁ WZ“).

0 Vo
Then 52 o2 5
TO(Uza Q)CQf = 40? (ﬁ + w — Zimv%>ro(oz, Q)f
Proof Seel. Gelfand. O

Let G be the connected component of the identity element of the group O(Q) of
real linear transformations which leave the quadratic form ) invariant. Then (8.6)
gives a unitary representative of G on L?(V) which commutes with (&, Q) for any

o € G1. Take a T € GL,(R) satisfying TTQT = (%’ (} ) and set
g

7

<i<j<por p<i<j<n,
<kL<p<li<n.

Xij = T(eij — )T,
Yi = T(ew +ew)T ™1,

Then X;; and Yj; form a base of the Lie algebra of G. Put

— E 2 2 2
1<i<j<por 1<k<p<iI<n
p<i<j<n

Then Lg is the Casimir operator on G. The representation (8.6) of G maps Lg to a
second order differential operator on R™ which is also denoted by L.

Lemma 8.4 For any F € ¢(V'), we have

CQF = (LQ + n(n — 4)/4)F.
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I
Proof By (8.7), we may assume that Q = ( p 7 > In this case, a simple
—1q
computation shows that

" 9F n
= i 7Fa
;Z‘ axi + 2

r(X,Q)F = mi(z,2)F,

. p 52 n 52
QF =it (Y - 3
i=1 i=p

K +1 J
0 1 0 0 1 0
WhereX—<0 O),Y—<1 O) dH—<O _1> Thus
P02 = & ", L O%F
2
CQF__(JU’J:)<ZW_ a$2> +Z )
i=1 ? j=p+1 J =
" OF n® 0*F
DY wig+ (S —n)F ;

+(n )Zx o0x; * 4 ) + . Tity dz;0z;"

i=1 1<i<j<n

On the other hand,
o o\’ Kl 0\
02 " 9%F
=~ @) ( 2 5,2 Ox? Z;L )F T2 D Wy o Ox;0x;

=1 i 1<i<j<n
2
+(n—-1) E xz E T; 8

Therefore, Cg = Lo +n(n — 4)/4. O

Here and after, we assume @ to be a rational symmetric matrix with p (> 0)
positive and ¢ (= n — p) negative eigenvalues. Let L be a lattice of V', and L* be the
dual of L in V| i.e.,

L*={zcV|(x,y) =2TQy € Z,Vy € L}.
We always assume L C L*. Let v(L) be the volume of the fundamental parallelotop

of Lin V:
v(L) = / dz.

]Rn/L

For any f € ¢(V) and h € L*/L, put 6(f, h) Zfl—i—h
leL



8.1  Weil Representation 273

b
Proposition 8.2 Let 0 = <i ) € SLy(Z) satisfy the following condition

d
ab(z,z) = cd(y,y) =0 (mod 2), Va,y € L. (8.13)

Then we have

(1) 6(r(o,Q)f,h) = Z c(h,k)o0(f, k), Vfed(V), where

keL*/L
ch,k)y =

5h7ak€<M>, if c=0,

2
hdetQ|_1v(L)*l|c|7”/2 Z e(a(fH—r,h—H’)—ZQ(Ck,h—H“)—Fd(kJﬂ))7 e,

reL/cL

(2) Further assume that ¢ is even, cL* C L, ed # 0 and ¢(z,z) =0 (mod 2) for
any x € L*. Let {\1,--- ,\n} be a Z-base of L and set D = det((A;, \;)). Then

e (P2) maonr (%) (2) <o

ab(h,h)\ ,, [ —2c\" (D .
5h7dke( D) ){-?d( d) <d>, 1fd>07

where g =1 or i according to d =1 or 3 (mod 4) respectively.

\/i—(p—q)sgn(cd)c(h’ K)o =

Proof (1) We note that the group SLs(Z) is mapped into a subgroup of S,(L x L)
by our embedding of SLs(R) into S,(V x V*). Thus, the result in (1) is an immediate
consequence of Proposition 8.1.

(2) Let eg be the index of L in L*. Denote by C, the matrix of size ey whose
(h, k) entry is c(h, k), (h,k € L*/L). If 0,0’ and oo’ all satisfy the condition (8.13),
it follows from the second statement of Proposition 8.1 that

ngl = C(O’7 O'I)CUCU/.

Put o' = b a and w = 0 -1 . Then ¢’,w and o = ¢’w all satisfy the
—d ¢ 1 0
condition (8.13). By (8.8) we have

—q)sgn(cd
):\/i(p q)sgn( ).

clo’ w
Hence
clh, D) =V et @) Mo(L) a2

" Z Z e(—b(h+r,h+r) —2(l,h+7) +C(l’l)>e(—(l,k)).

—2d
reL/dLieL*/L
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Since ¢L* C L, the map ! — dl induces an automorphism of L*/L. Taking into
account the assumption that c(z,z) € 2Z (Vx € L*), we have

5 e<_b(h+r,h+r):;l(lvh”)*C(Z’Z))e(—(l,k))
leL*/L
b(h+rh+7)
_ (bt htr) e((l, h — dk))
() 5

On the other hand, the Poisson summation formula implies that | det(Q)|~v(L) 2eo =
1. Furthermore,

5 e(b(h+;,dh+r)>: 5 €<b(adh+72",dadh+r)>

reL/dL reL/dL

() (),

reL/dL

Thus, we have

—q)sgn(cd bh7h _ b y
e(h K)o = SpaVi )e(" < )>|d| Y e( (gd’“))
reL/dL

Now we can use the argument in the proof of Proposition 1.1 and Proposition 1.2

with a slight modification and get
2¢\"( D
e; " (sgn(c)i)” (g) (_—d>, if d <0,

_ b(r,r)
RN CON
| | reg/:dL 2d 53 ;20 B if d>0
d d b b
which completes the proof. O

Let G be the connected component of the identity of the real orthogonal group
of Q. Let I' be the subgroup of G of all elements which leave the lattice L invariant
and leave L*/L point-wise fixed. Then, as a function on G, 0(g - f,h) (Vv f € ¢(V),
g € G, g- f was defined as in equality (8.6), h € L*/L) is left '-invariant and slowly
increasing on G/I' (For the definitions of slowly increasing functions and rapidly
decreasing functions on G/I", see R. Godement). Take a rapidly decreasing function
¢ on G/I' and put

0(f, ;1) = / 6g - f.h) B(g)dg,

G/r



8.1  Weil Representation 275

where dg is a Haar measure on G. Now assume that f satisfies (8.11) and set
O(z, f, &:h) = v 0(r(02, Q)f, &5h) (8.14)

for z=u+iv € H.
If no confusion is likely, we write

O(z,h) = O(z, f, D; h).
Proposition 8.3  Assume f satisfies (8.11). Then we have

(1) If vy = (i Z) € SLy(Z) satisfies the condition (8.13), then

\/i(p—q)sgn(C)\/m—mQ(v(Z%h): Z c(h,k)yO(z, k), c#0.
keL*/L

(2) Assume that ¢ satisfies the differential equation Lo ® = AP on G. Then
0? 0? 0 0
2 .
{41} <8u2 + e 2) - 21mv<% —&—1%) }Q(ZJL)

N R

for z=u+iv € H.
Proof (1) It follows easily from (8.8) that

T(PY’ Q)T(Uw Q) = T(O"y(z) ’ Q)T(k9a Q)7

cosf) sinf

0 _ =
where e = J(v,2)/]J(v,2)| and ko = (—sin9 cosf

). Since f satisfies (8.11),

r(ke, Q)f = Vi T ]

(see (8.9)). So, by Proposition 8.2, we have

\A(P*Q)sg“(c)m_me(y(z),h): Z c(h, k), O(z, k).

keL*/L

(2) By Lemma 8.3, we have
0? 0? , o .0
{41} (8u2 + 5 2) — 21mv<8u +16v> }9(2, f, @;h)
—m<1 - Z‘) 0(z,h) + O(z,Cof, &: h).

By Lemma 8.2, Lemma 8.4 and integration by parts, we have (8.15). This completes
the proof. 0
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Example 8.1 Letn =1,Q = (2/N), L = NZ and f(z) = exp(—2nz?/N). Then we
havep =1, ¢ =0, L* = Z/2, 7(k(0)) f = (cos@ —isin )~/ f and 0(z, f,0) = O(Nz),
where 0(z, f, h) = v~ *0(r(0., Q)f, h) and 6(z) is defined as in Chapter 1. From

b

d) € I'y(4N) that

Proposition 8.3 we have for o = (Z

(V1)*# ) (cz + d)"/20(No(2)) = ¢(0,0),0(Nz),

6(070)0 _ (\ﬁ)sgn(c)j(g’ Z)(CZ + d)—1/2 (5)

Of course these formulas are the same as the transformation formula for Theta-
function in Chapter 1.

We note that ¢(h, k), in Proposition 8.2 does not depend on f. We can interpret
the Weil representation by the so-called Fock representation. We define a map

I:L*R) — H = L*(C,exp{—nzz}dz)

by the integral transformation

1(f)(z) = / ke, 2) f(2)de,
R

where f € L?(R) and

k(x,z) = exp{—mma?}e(xy/mz) exp{nz?/2}.
dS

dzs

exp(—2ma?)
vmz
in L?(R) to the polynomial z* in H up to a constant multiple. Moreover, by a direct
computation one can easily check that

I(r(k(8))f) = (cosf —isin )2 M (e)I(f),

Then I is bijective and maps the Hermite function exp(tma?)

where f € L2(R), Q = (m) and M (e'?) is the map such that M (e?)g(z) = g(e'?z) for
g(z) € H. In this way we can find a function f; s € L?(R) satisfying

r(k(0)) fr.e = (cos@ —ising)~ZsT1/2f
for a positive integer s. Namely,
fr.s(x) = Hy(2y/mma?),
where

dS
daxs

Hy(z) = (—1)° exp{a®/2}— exp{—2?/2}

is a Hermite polynomial.
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Put again m = 2/N and let L be as above. Then

0(2, f1,5,0) = 01 5(2) = v~ /? Z H(2V2Nmvz) exp{2niN zz?}

satisfies N
01,5(c(2)) = <E>j(a, z)(cz + d)°01,5(2)
according to the independence of ¢(h, k), to f. In the same way we can prove

01..(—1/4ANz) = (2N)*/?(v/=2i2)>*10,(=),

where -
0,(z) = (20)7°/2 Z exp{2miz?z} Hy (2 2mvz).
Il
. 0 —4/N)\ .
Example 8.2 Now we consider the case n =2, QQ = (—4/N 0 ), ie.,

4
(z,y) = —N(l‘lyz + w2y1)

and
L = (4NZ) & (NZ/4).
Then p =q = 1,r = ro, L* = (Z) ® (Z/16) and ANL* = L satisfies the assumption

Z) € IL(4N),

O(f,ah) are valid. If f € ¢(R?) satisfies 7(k(0))f =

of Proposition 8.2. Put L' = Z @® (NZ/4), h € L'. Then for 0 = (Z

C(hv k)o’ = 5k7ah and 9(710 (J)fv h) =
e'*? f and if we define 0, 4(z, f) by

O25(2, )= Y xi(h)0(z, f,h),

heL’/L*

A
-1
where 1 = x (*> with A\ a positive integer and y a character modulo 4N. Then

we have

02,5(0(2), f) = x1(d)(cz + d)°02,5(2, f).
0 —2m

We explain how to find f with this property. Put Q = (—Zm 0

),m>0. We

define a partial Fourier transformation F' by
F(f)(z1,22) =V 2m/ f(z1,t) exp{dmimtz, }dt,

FH(f) (w1, 22) = \/%/_OO f(z1,t) exp{—4mimtzs }dt.
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One can easily check that
r(0)f = FR(o)F~(f),
where
(B(0)f)(x) = f((z1,72)0).
And so r is a representation of SLo(R) although Weil representation is not always a
multiplicative representation. Put

f(w1,220) = (z1 + ize)® exp(—2mmn(z] + 23));
fo.s(x) = F(f')(x) = V2(Varm) > H(VAmm(z1 — x2)) exp(—2ma(2? + 23)).
Then
R(k(8) ' = 27,

and f> s has the required property. Generally, the Weil representation commutes with
the action of the orthogonal group of @ on L?(R™). In the present case, the elements
of that group are diagonal matrices in SLo(R). Put f,(@1,22) = fos(n~ a1,n32),
and m = 2/N. Put 65 s(z,n) = 02,5(2, f;,). Then
N 4
0,(2,m) =0~/ Z X1 (21) exp{ — 2niuz zo — TUTW%U2 - J\qf]ﬂﬁn_2}

z1,22€Z

/2 N
x Hy (2 N7w<93177_1 — 5277)).

Observing that fo s = F(f’) and using the Poisson summation formula, we get a
different expression for 6 ,:

02,5(2,m) =<\/%> Hl(\/ﬁ)—lisn—s—lv—s

- _ s 4
X Z X1(z1) (212 + x2) exp{—m|xlz+x2|2}.

r1,22€Z

O

Example 8.3 We denote by () the Weil representation in the vector space V;,
i=1,2,3,and by L;, L}, r((f), h; € L¥ and ¢;(h;, ki), corresponding lattices, etc.

If V3 is the orthogonal sum of V; and V5, then rég) = rél) ® 7’(()2)77“(3) =r g r(2)7
and Cg(h37]€3)g = Cl(hl, kl)ac2(h27k2)g is obvious for h3 = (hl, hg), kg = (kl, kz) If

0 0 -2
n=3Q=%| 0 1 0 |and L=4NZ& NZ& (NZ/4), then according to the
-2 0 0

preceding two examples, we have

c(h, k) g = O.an(V1)¥) (0, 2) (cz + d) /2 (5)
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23 _fa b
forfEL(R),a-(c d

Therefore, if 7(k(6))(f) = (cos — isin@)~"/2f is satisfied, then by Proposition 8.3
we have

) € I'y(4N) and h, k € L' /L with L' = Z& NZ& (NZ/4).

0u(o(2).1) = w3 )sto 21 + a0
where k = 2\ + 1, for h = (hq, ha, h3) we define, X, (h) =X;(h1) and
Ou(z,f) = > xa(h)O(z, f,h).
heL’/L

One can take here fi s(z2)f2a—s(z1,23) (s =1, 2, ---, A), or their linear combi-
nations for such f(z). In view of

(x—iy)* = ﬁ: <A> Hy—s(2)Hy(y)(—1)*,

S
s=0

f3(z) = (z1—ivg—x3)* exp{—mm(222+23+222)} is available, too. On the other hand,
the action of SLy(R) on R? is defined as follows: g € SLy(R) operates on R? through
the symmetric tensor representation, i.e., for x = (21,22, 73) € R3, gz = (2, 2%, %)

is determined by
v x2/2\ ¢ [ xy  w5/2
I\ 2y /2 a3 9= xh/2  xh )

and gives an isomorphism of SLs(R) with the orthogonal group of Q.

A
-1
Let N be a positive integer, x a character modulo 4N and y; = X<—> with a
*

positive integer A. Define a function on R? by
f(x) = (21 —izg — x3)  exp{(—2m/N) (222 + x2 + 222)}.

For k =2\ +1, 2 = u + iv € H and for the lattice L' = Z ® NZ @& (NZ/4) € Q3, we
define a theta series 6(z, g) by

0(z,9) = Y Xa(e1)o®~ (exp{2mi(u/N) (@3 — dzr23)}) f(Vog~ ),

zeLl’

where /v € R is viewed as a scalar of the vector space R?, and g € SLz(R) operates
on R? as above.

Let gf € L?(R?) be defined by (9f)(z) = f(g~'z) and take m = 2/N in f3(z).
Then it is clear that 6(z,g) = 0(z,gf3). The action of ro(k(f)) commutes with that
of g in L?(R®), gf3 has the same property as f3, and the required transformation
formula of 0(z, g) is



280 Chapter 8 Weil Representation and Shimura Lifting

We note that f3 has the property f3(k(a)z) = e f3(z), and so 0(z,gk(a)) =
e~ 2 (z, g). O

8.2 Shimura Lifting for Cusp Forms

Let G(= Z e(nz) be an element of S(4N,k+1/2,x), ¢ a square-free positive

-1 t
integer, put y; = X(T) (;) and & (w Z Ai(n)e(nw) with A;(n) defined by

the following equality

nﬁ_ojl Ay(n)e(mo) = (g‘lxm)m“s) ( > a(tm2)m5>.

m=1
Then @;(w) is called the Shimura ¢—lifting of G(z). The main theorem of G. Shimura,
1973 asserted that @; belongs to G(N;, k — 1, x?) , and in fact & € S(IN;, k — 1,
x?) for k > 5 with a certain positive integer N;. He proved this result through Weil
theorem. He also conjectured the level N, can be taken as 2N, and for k = 1, ¢(w)
is a cusp form if and only if G(z) is orthogonal to some theta series with respect to
the Petersson inner product.

In this section we shall study these problems and prove these results. Our presen-
tation is due to T. Shintani, S. Niwa, 1975, H. Kojima, 1980 and J. Sturm, 1982.

From now on, we always think of 6(z,g9) = 6(z,gf3) as the function defined in

N
Section 8.1. Now let F'(z) be in S(4N, k/2, X<?>> with k£ = 2A+1 an odd positive

integer. Since F'(z) is rapidly decreasing at each cusp of T'g(4N), while 6(z, g) is at
most slowly increasing there, so the following integral, which is the Petersson inner
product of F(2) and 0(z, g), is well-defined:

Fo)= [ R ot
Do (4N) v

where Dg(4N) is the fundamental domain of I'h(4N). We have the following

Lemma 8.5 The function F(g) has the following properties:
(1) F(g) € C™(SLa2(R)) is an eigenfunction of the Casimir operator Dy, i.e.,
DyF = A\ —1)F, where

ne (04 D=0 D6 )

(2) F (9 ( cosf Sma)) = exp{2)0i} F(g);

—sinf cosf
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@) Flog) =\ @F() for everyy = (& 1) e (50 ) meemy (12 5)

Proof  The first conclusion is a direct consequence of the Proposition 8.3. In fact,
by the proposition, we have

0? 0? 0 0 k 3
N PP R A WY o .0 k_
Dgﬁ(z,g)—[élv (82+82> 21kv(a +18>+k( 1>+4],

where D, is the Casimir operator on SL2(R). By Green’s formula we have
dud — dud
D, / /280 (A - 1) / F(2)0(z, g)o*/? ==,
v? v
Do(4N) Do(4N)

which is just (1).
Since 0(z, gk(a)) = e~ 2220(z, g), so

= [ FE#e gk

Do(4N)

/2 dudv
V2

= / F(2)e=2220(z, g)vk/? dudv

Do(4N)
= exp{2i\a}F(g),

02

which is (2).

Now we prove that 0(z,vg) = x?(d)0(z, g) for v = (Z Z) € (3 1(/)2> I'v(2N)

(1(/)2 g) from which (3) is deduced. Recalling the definition of 6(z, g):

0(z,9) = Z X1 (21)vC /4 (exp{2mi(u/N) (a2 — da123)}) f (Vg '),

xeL’

o (a b 2 0 1/2 0Y .
where ' =Z & NZ & (NZ/4). For’y-(c d>€<0 1/2>F0(2N)< 0 2 , it

is easy to verify that a,d € Z,c € NZ/2,b € 4Z. By the definition of the symmetric
tensor representation, for z = (z1,z2,73) € R3, yo = (2, 24, x%) is determined by

x1  x2/2\ T xp  ah/2
vy V= ’ / .
x2/2  x3 xh/2  ah

o) = a’xy + abxo + b3,
xh = 2caxy + (ad + be)wa + 2bdxs,

That is,

vy = x4 cdrg + d*xs3.
It is clear that both lattices L = 4NZ & NZ & (NZ/4) and L' are stable by =
and 2y = a’z; (mod 4N) for x = (z1, w2, z3) € L’ which imply that 6(z, vg) =
(x())%0(z, g) = x%(d)0(z, g) since X%(a) = x%(d). This completes the proof. O
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We define two functions ¥(w) and $(w) (w =& +in € H) by

A=)

H(w) = w( — 2;@) (2N)N(—2Nw) =2,

and

Let W be the isomorphism of S(4N7 k/2, X(f)) onto S(4N, k/2, x) defined
by
G(2) = (FI[W@AN)])(2) = F(=1/4Nz)(4N) "4 (—iz)7*/2

N
for all F(z) € S<4N7 k/2, x<*>> Then G(z) has the Fourier expansion

G(z) = Z a(n)e(nz)
n=1
at 0o. Define a sequence {A(n)}52; by the following relation

Z Ann™® =L(s—A+1,x1) Z a(n®*)n*,
n=1 n=1

A
-1
where x1 = X(T) . Then we define the Shimura lifting I, (k > 3) by

I, (G(2)) = ZA(n)e(nz) for G(z) € S(4N,k/2,x).
n=1
Now we can present the main result of this chapter as follows.
Theorem 8.1 Ifk > 3, then &(w) belongs to G(2N, k — 1, x?) and ¢(w) =
clk(G(2)) with
c= ik—lNk/42(—9k+15)/4Re((2 _ i)(k_l)/2).
Moreover, if k =5, then ®(w) belongs to S(2N, k —1, x?).

Proof By Lemma 8.5, we have

0(z,7'g) = x*(d)0(z,9)

VIZ(Z’/ 2/’>€((2) 1(/)2>F°(2N)<1(/)2 (2))

for any
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And consequently, by the definition of ¥(w) we have
¥ (v(w)) = X*(d)(cw + d)** ¥ (w)

for any v = (i Z) € I'y(2N). This implies that

P(v(w)) = x*(d)(cz + d)" ' S(w)

for any v = (Z Z) € IH(2N). Therefore, if $(w) is holomorphic on H, then we

can conclude that @(w) is an integral modular form of weight 2A = k — 1 for the
congruence subgroup I'o(2N). Now we prove that @(w) is holomorphic on H. For the
simplicity we assume k = 3 though the method is applicable in all cases. By virtue
of Lemma 8.5 and the invariance of the Casimir operator D, we have

(4G 5) - ) -o

Now &(w) has the Fourier expansion

o0

P(w) = Z am (n) exp{2nimé}

m=—0oo

at 0o. So a,;,(n) is a solution of the differential equation

d—2+zi+(—4n2m2+4nm/) am(n) =0

Therefore we get
) { by exp{—2tmn} + cpum(n), if m #0,
am(n) =
K bo—&—covfl7 if m=0.

where n
eXp{—Qﬂmn}/ n~? exp{dmmn}dn, if m >0,
um(n) = 1oo
eXp{—Qnmn}/ n~ 2 exp{dmmn}dn, if m <O0.
n

By integration by parts, we have the following asymptotic behavior of w,,(n):
[t ()] = (4m — 1) ™! exp{—2mmn}| exp{(4m — w)n} — exp{dmm — x}| (8.16)

for m > 0, and
exp{2mtm
U (1) = _exp{2mmn}

m 1
o+ ) (3.17)
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for m < 0, where
|ovm ()] < exp{2mmn}(1/87%m?|n* + 15/327°|m?|n*).
Moreover we have
n®d(w) =0(n+n""') forn—0andn— oo, (8.18)

uniformly in £, which will be proved later. Since

1 o
/0 Plo@)Pde= 3 lamm)lPr,
we get from (8.18)
lam ()| < M((n+n"")n"), (8.19)

where M is independent of m and 1. Hence by (8.16) and (8.17), we have ¢,, = 0 for
all m > 0 and b,, = 0 for all m < 0. Hence we see

P(w) = Z by, exp{ —2mmn} exp{2mimé&}

m=1

+ Z Comt—m(n) exp{—2wim&} + ap(n). (8.20)

By (8.19) we have |a,,(1/|m|)| < M(1 + m?). Hence we get b,, = O(m")(m — o00)
and ¢_,, = O(m”)(m — o0) for some v > 0. We shall prove that &(in) has the
following asymptotic behavior later:

On™*), m— +4oo forall p>0,

&(in) = 8.21
(i) {O(n“), n—0 for all p > 0. (8.21)

In particular, we see that ag(n) = 0. Hence we have

P(w)= Z by, exp{ —2mtmn} exp{2wimé}

m=1

+ Z ComU_m(n) exp{—2mim¢}. (8.22)

By virtue of (8.21), ®(in)n'~! belongs to L;(R*) for a sufficiently large I > 0. Let
£2(s) be the Mellin transformation of ®(in), i.e.,

2(s) = /Ooo @ (in)n* ' dn.

Here we note that @(in) is a function with bounded variation on all compact subsets
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%(¢(i(77 +0)) + @(i(n — 0))) for all n > 0. Hence the Mellin

inversion formula gives

of RT and &(in) =

1 l+ico
Bin) = 5 /l (s, (8.23)

On the other hand, we shall compute that

2(s) = e(2m)~*I'(s)L(s, x1) Z 2m) " I'(s) Za;n*i
n=1 n=1
where G(z Z a(n ). Consequently, we get
n=1
= Z al, exp{—2mnn}. (8.24)
n=1

Therefore, by (8.20), to prove that ¢(w) is holomorphic it is sufficient to show that
c—m = 0for all m > 1. We assume that c_,,, # 0 and c_,,, = 0 for all m < mg. Then
by (8.20) and (8.24) we have

>~ et () Hng (1) + € gty (1)) Hoy (1)

m>mo

Z n) exp{—2mnn}/Hm, (1), (8.25)

where H,,, (1) = exp{—2mmon}/4xmon?.
We note that the series on both sides of (8.25) are uniformly convergent on [1, c0).
Set t = exp{—2nn} for n > 0. The right hand side of (8.25) is equal to

logt ia — by, )",

By virtue of (8.17), we see that the left hand side of (8.25) converges to c_.,, as
n — +o0o. Hence we get

o0

. n—mo —
t—}%)r,?>o{ (logt) Z n)t } =C_mg # 0,

which is a contradiction and we proved that @(w) is holomorphic.

There still remains the investigation of the asymptotic behavior of ®(in) asn — 0
and oo, and the computation of the Mellin transformation of @(in).

We first compute the Mellin transformation of @(in) for any k& > 3. By the
definition of Mellin transformation we have
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o0

By~ dn = (DN [y
0 0

2(s) =
[ 1\A A—s 41— s—A\ ”Uk/2_ 2, O gin— Pl
= (=1)"(2N)"%4 /0 7 /DO o~ 0(z, 04in—1)F (2)d

dn
n’

dud 1/2 —-1/2
where dz = 1:21} andaw:(no €:1/2> for w = ¢ +in € H.

From the definition of 6(z, g) and the relation

(o~ iy) =Z( ) @) 0

we have a simple expression

0(2, 01y) = (2 %n) - 2/\: (2) (—1)%02,2—c(2,1)01.c(2),

e=0

where 6 \_¢, 01 are defined as in Example 8.1 and Example 8.2. Therefore by chang-
ing the order of integration whose justification can be deduced from the asymptotic
behaviors (8.21) of &(in), we get

o =awy ()¢ [ e R e T

e=0

with ¢;(s) = (—=1)*(2N)*~%45723(2,/2n/N)~*. Note that we can exchange the order
of the summation and the integration as above. In terms of the different expressions
of 8¢ given in Example 8.2, the integral in the bracket becomes an Eisenstein series

A—e+1 (s—e—1)/2
8w 1 N
[o——1(_\A—€, —Ate [ —

— 1
e I S O
(z1,22)ELXZL

Changing the variable z to —1/4Nz and using G(2) = F(—1/4Nz)(4N)~*/*(—iz)~*/?
and

01.(—1/4Nz) = (2N)*/2(v/=2i2)#*10.(2),

we get

Z() VIR I (s),

=0
where c3(s) is like ¢1(s) above and J.(s) is given by

(')
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7] — 1
Je(s) = / G(Z)Qs(z)v(s+5+2)/2n—(5—5+1)/2F(SZ+)

X Z Xl(Il)(4N1‘22—|—xl)k—€|4Nx22+xl|—s+s—le

r1,22€Z

1 _
:n—(s—€+1)/2f( et ) (s—=A+1, Xl/ /G )0 (

287

9+s+2 /2dZ

We note that 6.(2) = 0 if € is odd. The convolution appearing in J:(s) is easily

oo

computed by Fourier expansion 6.(z) = Z (20) /2 H,(2v/2mvk) exp{2nk?z} and

k=—o0

by partial integration, that is,

/ / G (2)0.(2)duv 9+6>/2‘1—“:21—6(4n)—8/2(5 —1)(s—2) - (s— g)r<s 5 6)D(s),

where D(s Z a( * with G(z Z af . Therefore we get
k=1 k=1

Jo(s) = 2272507 5F/20(s) L(s — A+ 1, x1) D(s).

Hence we have
2(s) = c(2n)~°T'(s)L(s — A+ 1,x1)D(s).

By the definition of the Shimura lifting I and the computation of the Mellin
transformation of @(in), we see that @(w) = cIx(G(z)). For k > 5, the function @(w)
belongs to S(2N, k — 1, x?) by virtue of the magnitude of the growth of A;(n).

In order to complete the proof of the theorem we only need to give the proofs for
(8.18) and (8.21). Now we first prove (8.18). It is easy to see that we only need to
show it for ¥(w) by the relation between @(w) and ¥(w). In fact, we shall prove a

more general result for any k > 3
¥ (w) =0 +n"").

Recalling the definition of 6(z, g):

29) = 3 Xilan)o® ™/ exp{2mi(u/N) (3 — dxy23)} f(v/og '),

xeL’

we get

10(2, 04w)| < VETAN " f (Vo).

rzel’
Put M =Z/4®Z/4® Z/4, then

D Wvoga)l < Y |f Vool = Y |f(Vvo @)l for v € SLa(Z).

xzeLl’ zeM zeM
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If n > ¢; > 0 and || < ¢, then there exist 0 < h;(z) € ¢(R), j =1, 2, 3 such that

‘ <(1) f{’?) f(x)’ < hi(w1)ha(z2)hs(23)

for all x = (x1, z2, x3) € R3. Thus

> vl = S |07 o) (o 4 v

xeM rzeM

(St o) (i) (S

where z; € Z/4. Therefore

S 1 (Wvoyta) = (Vo + 1)2(Vo '+ 1))

zeM

for w = E+in with |£] < ea,m > ¢1 > 0. Put U = {w = {+in]|€] < 1/2,n > 0, |w| > 1}.
Let ¢; < v/3/2,¢2 > 1/2 and choose v € SLy(Z) for w € H such that v(w) € U. Then

Yo Vv )| < Y 1f (Vo)

zel! zeM
=O0(vo ™ +1)*(Im(y(w)) + 1)
=O0((w™* 2+ 1)(n+n7")).
Thus [0(2, 040)| = OWC=R/4(v=3/2 £ 1)(n +n1)) for all w € H, 2z € H, and hence
¥ (w) = O(n+n~1) for all w € H by the definition of ¥(w).

Finally we prove (8.21). By the definition of 63 x_.(2,7n), we know that it is
majorized by n~ 1o~ e (2, ), where F.(z,7) is defined by

_ 47
z,1m) = Z |z12 + 22 EBXP{ - Nn2v|1‘12+932|2}7

x1,T2

where (0,0) # (21, 22) € Z*. Therefore, if 3 is the smallest integer > (A — €)/2, then

i )<{lvg+1e_“h/”"27 ifn<1,0>c¢>0,¢c<v3/2,
z,1m) <
== l'nz(A*EH)vﬁHe*mQh/“, ifn>1,0>c¢>0,¢c<v3/2

where [, I’ and h are positive constants depending only on ¢ and ¢. Put U = {z =
u+iv € H||u|l < 1/2,|z| = 1}, choose ; € SL2(Z) such that Dy(4N) U%

and put T(z) = v*/26; .(2)F(2), then T(v;(z)) = O(gi(v)) for z € U where the gi’s

are some rapidly decreasing functions. Put F/(z,n) = n~* T o= *¢F_(z,7), then
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t
[ @ Zcz/ Fl (=), 1)z
Do (4N) =1
t 00
ei/ v"in®g;(v) exp{—mn*hv ™ }dv
i=1 ¢
for all n > 1 with some constants ¢;, e;, v;, a. Since n**v=+ exp{—nn*hv=1} < C,

for 4 > 0 with some constant C,, and n*" a/ v"in®g;(v) exp{—mn*hv }dv <
(&

o0
Cu / vV g;(v)dv = C), with some constant C/,. Therefore
(&

/ T (s (22 ) |dz = O~ ")

Do (4N)
for any p > 0 if n > 1. In the same way, we get
/ |T(Z)§2,)\—s(za 7771)|d2 = 0(77”)
Do (4N)

for any p > 0 if n < 1. Hence we get (8.21) by the above estimations, the definition
of ¢(w) and

0(2, 01y) = (2 %n) - i (2) (—1)%02,2—c(2,1)01,c(2).

e=0
This completes the proof. O
Let G(z Z e(nz) be an element of S(4N, k/2, x), let t be a square-free
e -1 t
positive integer, put y; = X<—> (—) and &;(w ZAt ) with A;(n)
* *
defined by

,iAt(n)ns = (gm(m)mAlS) ( i a(th)ms)

m=1
Then we have
Corollary 8.1 &;(w) € G2N, k—1, x?) for all k > 3 and ®,(w) € S(2N, k — 1,
X*) if k=5

Proof  Since G(t2) Z b(n)e(nz) belongs to S <4tN k/2, x < t ) ), Theorem 8.1
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implies that 515 Z Bi(n , defined by

belongs to G(2tN, k — 1, x?) for all k > 3 and S(2tN, k — 1, x?) if K > 5. Since
b(m?) = a(tj?) or 0 according as m = tj or ¢ does not divide m, we know that

i Bi(n)yn™®=t"° i Ar(m)m™
n=1 m=1

holds and so Bi(n) = A;(n/t) or 0 according as t|n or ¢t { n. Hence we have

—_—

@(U)) = @t(tUJ)7
and so
Oy (o(w)) = (cw + d)* x*(d) @y (w)
for all o = (Z z> € I'l(2N) with T(2N) = {(i Z) € Iy(2N)|b=0 (mod t)}.

Put I'y, = {( ) ‘b € Z}. Since I'y(2N) is generated by I's, and I (2N), & (w)

belongs to G(2N, k — 1, x?) for all k > 3 and S(2N, k — 1, x?) if k > 5. This
completes the proof. O

Now we consider the Shimura lifting for cusp forms with weight 3/2. By Theorem

8.1 and Corollary 8.1 we know that, for any f(z) = Z a(n)e(nz) € S(4N, 3/2, x),
=0

t a square-free positive integer, the Shimura lifting 13 +(f) of f belongs to G(2N, 2,
x?). It is clear that the Zeta function of I3;(f) is

L(s, Is1(f)) = L(s, X(;)) f: a(tm?)m™>. (8.26)

m=1
We shall prove that I3 ;(f) is a cusp form if and only if (f, h) = 0 for all h € T, where

T is the vector space spanned by all theta series of S(4N, 3/2, x) associated with
some Dirichlet characters.

Proposition 8.4 Let v be a primitive character modulo r, put

Zw nen2z vV z e H.

Then h € S<4r2, 3/2, w(_*l>>
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Proof  This is one of the conclusions in Theorem 7.3. O

By (8.26) we get

L(S? 1371(}7’(2’ ¢))) = L<S7 d))L(S - 1a ¢)a
which shows that I5 1(h(z,)) is an Eisenstein series (not a cusp form).

Proposition 8.5 Let a be a non-negative integer, A a positive integer, ¢ a primitive
character modulo A. Define

Hy(s,2,¢) =~ °T'(s)y® Z "d(n)(mAz +n)*|mAz + n| =,

where z € H, (0,0) # (m,n) € Z?. Suppose that o > 0 or A > 1, then the series
above is absolutely convergent for Re(s) > 1+ «/2, Hy(s,z,¢) can be continued to
a holomorphic function on the whole s-plane and satisfies the following functional
equation

Hy(a+1—s,2,0) = (=1)%g(¢) A%~ *"22H, (s, —1/Az, §),

A
where g(¢) =Y _ d(k)e(k/A).

k=1

Proof We have
/OO /OO exp{—nt|uz + v|*/y}e(ur + vs)dudv
:/ . / " exp{mtl(ur + ) + 2y fybe(ur + vs)dudo
:/OO /OO exp{—nt(v? + u?y?)/y}e(u(r — xs) + vs)dudv

=) 2 [ exp{omile(ulr —as) (1)) du(ey ) 2

X / exp{ —mv?}e(vsy'/? /tY/?)dv

— Lo allr—=s)?/(ty)+s%y/t] _ y—1o—nlr—sz|*/(ty) (8.27)
Since

0 0 .
(Zar + 88>e(ur +ws) = 2mi(uz + v),

(Z(?ar + gg) exp{—n|r — s52|?/(ty)} = —2mit " (r — 52) exp{—n|r — sz|*/(ty)},
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0 0
applying « times the differential operator (z + ) on both sides of (8.27), we

or T os
get
/ / " (uz 4 0) exp{—mtluz + o /ye(ur + vs)dudo
(1) s2) exp{—alr — 522/ (1), (3.25)
Put

C(t,z,u,v) = Z((m +u)z +n+v)* exp{—nt|(m +u)z +n + v|*/y}

m,n

= Z c(m,n)e(mu + nv).

m,n

By (8.28) we get

c(—=m,—n) = /01 /01 %/((m' +u)z+n' +v)*

x exp{—mt|(m' + u)z +n' +v[*/y}e(mu + nv)dudv
= /°° /°° (uz + v)® exp{—nt|uz + v|? /y}e(mu + nv)dudv
=(:1)at:°‘_1(m —n2)* exp{—n|m — nz|*/(ty)}.
Hence

C(t, z,u,v) = (=1)%¢ 7! Z(mz +n)* exp{—n|mz + n|*/(ty) ye(mv — nu). (8.29)

m,n

Suppose that p, ¢ are integers, define

&(t,2,p,q) = > (mz +n)® exp{—mt|mz + n|*/(A%y)}
(m.n)=(p,q)( mod A)

and
n(t, z,p,q Zqﬁ &(t, 2z, kp, kq). (8.30)
Suppose that (p,q) # (0,0) (mod A) if A > 1. By (8.29) we have
¢(t,z,p, )ZAa (t,z,p/A,q/A)

YT 12 (gm — pn)/A)(mz + n)® exp{—n|mz + n|*/(ty)}

= (=)t Y el(ga —pb)/A)E(A%, 2 a,0)

(a,b) mod A
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and
A
77 s 2,P,4 Z¢ ,z,pk,qk)
k=1
A)egett Z d(k) > e(k(qa—pb)/A)E(A%, 2, a,b)
= (a,b) mod A
= (At g(e) > dlga—pb)E(A®, 2z, p,q). (8.31)
(a,b) mod A

If « > 0 or A > 1, the terms corresponding to m = n = 0 on both sides of (8.31)
disappear. Hence by (8.30) and (8.31) we have

Me™¢, ift > 1,
Mt e/t if <1,

n(t,z,p,q)| < { (8.32)

where M, M’, ¢, ¢’ are positive constants dependent only on z, p, g. We can integrate
the following integral term by term

oo A
/ n(t, z,p, Q)tsfldtzzqﬂk) Z (mz +n)*
0 k=1 (m,n)=k(p,q)( mod A)

X / exp(—mt|mz + n|?/(A%y))t5~Ldt
0

A
:A25n75ysf(s)z (k) Z (mz+n)*mz+n|"2%.
k=1 (m,n)=(p,q)( mod A)
(8.33)

The series on the right hand side of (8.33) is absolutely convergent for Re(s) > 14+a/2.

1 0o
Divide the integral of the right hand side of (8.33) into two parts: / and / . Using
0 1

(8.32), we know that these two integrals are holomorphic functions on the s-plane
which continues the series of the right hand side of (8.33) to a holomorphic function
on the s-plane. And we have

AP Hy(s,2,¢) = / n(t, 2,0, 1)t dt. (8.34)
0

Therefore for a > 0 or A > 1, H,(s, 2, ¢) can be continued to a holomorphic function
on the s-plane. Substituting s by e + 1 — s in (8.34), we get

oo

A= (a+1—s,2,0) :/ n(t, z,0,1)t*"°dt = / n(t™t, 2,0, 1)t 2dt
0

= (=A%) Y. ¢ / £(A%t, 2,a,b)t*~1dt

(a,b) mod A
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= (—A)%g(@)y’n°T(s Z d(m)(mz+n)¥|mz4n|~%

= (—1)a9(¢)A°‘+SZ°‘Ha(8, ~1/Az.9),
which completes the proof. ]

Proposition 8.6 Let w be a character modulo A, put

G(s)=TI'(s) Z "w(n)|mAz + n|7%.

m,n

Then G(s) can be continued to a holomorphic function if w is non-trivial; G(s) can
be continued to a meromorphic function with only two poles s = 0, 1 of order 1 if
A =1, and with the corresponding residues —1 and mt/y respectively; and G(s) can be
continued to a meromorphic function with only one pole 1 of order 1 if A > 1 and w

is trivial and with the corresponding residue m H(l —pH/(Ay).
plA

Proof Let B be the conductor of w and A = BC, let ¢ be the primitive character
modulo B determined by w. Then

960 Y pdlmAz + a2

d|(n,C)

)Y uld)p(d)d—>* Z o(n

d|c

—2s

—z +n (8.35)

Hence, by Proposition 8.5, G(s) can be continued to a holomorphic function if B > 1
(i.e. if w is non-trivial).
Now suppose that A = 1, put

z) = Z exp{—mntlmz +n|?/y}.

m,n

By (8.31) we get

We have, for all Re(s) > 1, that

/Ooo(n(t ) — Dt tae

/100(17(151, z) — Dt~ dt + /loo(n(t, z) — 1)t tdt
it )
1

/1 1

= - +/100(n(t,z) - 1)t5dt+/loo(n(t,z) — 1)t5 1.

s—1 s

y %) —

n *y*G(s) =

(t,2) —1)+t— 1)t*5*1dt+/ (n(t,z) — 1)t5~de
1
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The two integrals on the right hand side of the above are holomorphic, so G(s) can
be continued to a meromorphic function with only two poles s = 0, 1 of order 1 and
residues —1 and 7/y respectively.

Now suppose that B =1, A > 1. By (8.35) we get

G(s) = Z w(d)d=2T'(s) Z /|mAz/d +n|28,
d|A m,n
. A .
Substituting 77 by z and using the above result for A = 1, we know that G(s) can

be continued to a meromorphic function with pole s = 1 and the residue

> uld)dPad/(Ay) = a [J(1 = p7h)/(Ay).

d|A plA
This completes the proof. ]
Now put
T = {h(tz, )| is any odd primitive character, ¢ is any positive integer}
and T the vector space spanned by T'. Also put
Ty = {h(tz,9)|¢ is any odd character, ¢ is any positive integer}
and
Ty ={6(tz,h, N)|t,h, N € Z,t > 0, N > 0},

where

0(z,h,N) = Z me(m?z).
m=h( mod N)

Denote by ﬁ the vector space spanned by T; for i = 1, 2.
Lemma 8.6 We have T = ﬁ/ = E

Proof It is clear that T C ﬁ C E/ Let ¢ be any odd character modulo N, 7:23 the

primitive character determined by 1. Then ¢ (d) = ¢(d) for all (d, N) =1, and

S wlmyme(tm®z) = 3" 3 p(d)dm)me(tm?2)

m=1 m=1 d| (m,N)

=" uld)d(d)h(td*z,$) € T,

d|N

which shows that 7' = T;. Denote d = (h, N). We have
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O(tz,h,N)=d Z me(td*m?z)
m=hd~'( mod Nd—1)

=d¢(Nd~" )" Y > " ap(hd ™ )p(m)me(td*m*z)

m=1
= dg(Nd™1) Y i(hd " )h(td*z,v) € Ty,
P

where ¢ runs over all characters modulo N d~', ¢ is the Euler function. Therefore
T, = T, which completes the proof. L

If f(z) = Z a(n)e(nz) is a formal series, define
neQ

oo

E(f(2)) =) a(n)e(nz).

n=0
Put
F ={0(zA"1)|0(z) € T, A is any positive integer}.

Lemma 8.7 Let G(z) € F, v = (i Z) € SLy(Z) and H(z) = G(y(2))(cz +

d)=3/2. Then H(z) € F, £(G(2)) e T.

1 1 -1
Proof  Since SLy(Z) is generated by v = (O 1) and o = (? 0 ), we only

need prove that H(z) € F for 71, 2. Without loss of generality, we can assume that
G(z) =0(tA= 1z, h, N). It is easy to see

Gn())= ) eltg’/A)d(tz/A AN, g) € F.
g=h( mod N),
g mod AN
Using Lemma 7.5, we can prove that H(z) € F for 7. Now we prove £(G(z)) € T.
Assume again G(z) = 6(tz/A, h, N). Then

G = Y. me(tm®z/A).
m=h( mod N),
m?=0( mod A)

Let A =pf*-- -p;j be the standard factorization of A. Take B = p{l o -p;fj such that
fi are the smallest positive integers with property 2f; > e; for all 1 < ¢ < j. Then

G = Y. me(tm®z/A).
m=h( mod N),
m=0( mod B)
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Denote d = (B,N). If d 1 h, then £(G(z)) = 0. If d|h, put ' = h/d, N' = N/d,
t' = tB%/A and take B’ such that Bd~1B’ =1 (mod N’), then

£(G(2) = Z nBe(tn?B*z/A) = 0(t'z,'B',N') € T.
n=h’B’( mod N’)
This completes the proof. O
Theorem 8.2  Let 4|N, f(z Z e(nz) € S(N, 3/2, w). Then for any

square-free positive integer t, I ¢(f) is a cusp form if and only if f(z) is orthogonal
to the subspace S(N, 3/2, w)NT.

Proof  Let I3,(f Zb e(nz) € G(N/2, 2, w?). By Theorem 7.13, I3(f)
is a cusp form if and only 1f for all primitive character ¢ and all positive integer r,

L(s,I3+(f),%,r) is holomorphic at s = 2. Substituting N by [N,r] =l.cm. of N,r,
without loss of generality, we can assume that 7| N°°. We have

nil b(n)n~* = L(sw<§>> nil a(tn)n-

Since w is a character modulo N,

L(s, Iu(f)sthr) = > 9p(n)b(rn)n™*

Put

TLGTLZ

HME@

where ¢(—1) = (-1)",v =0, 1. Takmg a constant o > 0, for Re(s) > o, we have

/ / F(2)h(tr?z, )y* tdady = Z Z / i(n+tr2m?)y)y " dy

n=1m=1

1
—tr*m?)z)da
X/o e((n—t )z)d

=(4mtr?)~°T(s) Y(m)a(trim?)ym” =25,

NE

1

R Cle)

3
Il

Denote by g the conductor of 9. Then h(tr?z,)eG .

N
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by Theorem 7.3 and Theorem 5.16. Denote N = (4tr2g% N), define B(z,s) =

f(2)h(tr?z,4)y**1. Then for any v = (i 2) € I' = I'y(N), we have

B (2)s) = w5 ) (e + e+ P2 B(e)
Therefore
L(25 — v, T s (), 1) = (dutr?)*T(s) " / B(Z,S)L<zs—y,w¢<;>>

I\H

! dzd
X Z w¢(d)<d)(cz+d)1—u|cz+d|2u_1_23ZQy.

(2 b)erw\r

c

(8.36)
It is easy to see
_ __t __t 1—v 2v—1-2s
L(Qs I/,wzb( . )) Z w1/1(d)< yi )(cz+d) lcz + d
(¢ Ders\r
—Z wip(n ( )(mNz—i—n)l YImNz + n|? 172, (8.37)

If v = 0, by Proposition 8.5, L(s, I3 +(f), %, ) is holomorphic at s = 2. If v = 1,
by Proposition 8.6, we know that the series in (8.36) is holomorphic except the case

Sy
w=1 <*> In that case, it has a pole s = 3/2 of order 1 with residue ¢/y and ¢ # 0
[t
a constant. Hence, by (8.36), only for w = dj(?)’ L(s, I3 (f), ¥, r) has a possible

pole s = 2 of order 1 with residue ¢’ < f, h(tr?z, ¥) > and ¢’ # 0 a constant.
Now suppose that I3(f) is a cusp form. By the above argumentation we know

_ . iy
that f is orthogonal to h(tr?z, 1) if w = ¢(*> If w # z/)<*>, put W' =

E(;) Then f € S(N, 3/2, w), h(tr®z, ¥) € S(N, 3/2, w'). Therefore for any
v= (Z: Z:) € I'y(N) we have
(o () (- hltr22, By iy = I B2 D)) 1
= ([, h(t7’22’¥)>p0(ﬁ)
Since w # ', we can find a y € IH(N) such that w(d y) # w'(dy). Hence we get

{f, h(trzz,ﬂ)) = 0. But any positive integer u can be written as u = = tr? with t
square-free. So f is orthogonal to T' and hence is orthogonal to S(N, 3/2, w) N T.
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Conversely, suppose f is orthogonal to S(NN, 3/2, w)N T. Take any h(uz,v) € T.

Then h(uz, ) € S<4ug27 3/2, w(;)) where g is the conductor of 1. Denote N =

[4ug?, N]. Suppose w = w(—:) Let I'y(N) = U I'(N)~; be the decomposition of
i=1

I'o(N) into right cosets with respect to I'(N). Let

L a; bl
Vi = C; dz ’

9(2) = ZW(ai)h(uzw)l[%]

i=1

Then

belongs to S(V, 3/2, w). By Lemma 8.7 we know that g(z) € F'. Since g(z+1) = g(2),
&(g(2)) = g(z). By Lemma 8.7 we know that g(z) € T, i.e., g € S(N, 3/2, w)NT. By
hypothesis, we get

0=(f(2),9(2))
w(ai)(f(2), h(uz, ¥)[[7])

©
Il
=

I
N

@(ai)(fIlvi (=), hluz, ¥)

r(f(2), h(uz, ),

which shows that f is orthogonal to h(uz,). Hence L(s, Is+(f), %, r) is holomorphic
at s = 2 (since whose residue at s = 2 is 0 or ¢/{f, h(tr?z,1)) = 0). This shows that
I5+(f) is a cusp form.

This completes the proof. ]

.
Il

8.3 Shimura Lifting of Eisenstein Spaces

In this section we deal with Shimura lifting of Eisenstein spaces.
Let x be a Dirichlet character modulo N, and denote by L(s,x) the associated
L-series

L(s,x) = Y x(n)n"".

By,

For a positive integer k we have that L(1 — k, x) = —T’X7 where the numbers By,

are defined by
N a e k
X(a)te t Z t
= B

= b = -
Nt __ X 1.
e 1 = k!
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Fix an integer k > 2, we define rational numbers H(k,n) by

C(1— 2k), it n =0,
H(k,n) = { L—=kXxD) C”Zfﬂ(d)XD(d)dkla%l(f/d)a if (=1)*n = Df?,
0, otherwise,

where ¢ denotes the Riemann (-function, p the Moebius function, D a fundamental
discriminant, x p the quadratic character associated with Q(\/ﬁ) and the arithmetical
function o, is defined by o,(m) = Z d". H.Cohen introduced the rational numbers

d|m

H(k,n) and proved that

Hy(z) := ZH(k,n)exp{Qﬂinz} (8.38)
n=0
is a modular form of half-integral weight k+ 1/2 for I'p(4) in [C] which is now named
Cohen-Eisenstein series. For k = 1 and group I'o(4p) with p a prime, Cohen-Eisenstein
series are defined by

Hyp(z) = H(n)yexp{2minz}, (8.39)
n=0

where H(n), := H(p?n) — pH(n) with H(n)(for n > 0) the number of classes of

positive definite binary quadratic forms of discriminant —n(where forms equivalent

to a multiple of z2+12 or 22+xy+1y? are counted with multiplicity 3 or 3 respectively)
1

and with H(0) = ~13' H, , is a modular form of weight 3/2 on I(4p).

The problem of constructing Shimura lifting of non-cusp forms was first considered
by W.Kohnen for the Cohen-FEisenstein series and later by A.G.Van Asch for the space
of non-cusp forms of weight k+1/2(k > 2) on I(4) and I'o(4p) with p an odd prime.

In this section we shall consider more general cases.

Let the rational numbers H(k, I, N, N; n) and H(k, I, m, N; n) be defined as in
Section 7.4 with N # m|N.

Note that H(k, 1, 1, 1; n) = H(k, n) is just the rational numbers defined by
H.Cohen.

Theorem 8.3 Let N be a square-free odd positive integer, | a divisor of N and D
a fundamental discriminant with e(—1)*D > 0. Then

D
(1) If k=1 and (—) # 1 for all p|N, then the Shimura lifting defined by
p

po (S0} = D (0,(2)) 55 (5 (2) o (015 )

n=0 n=1 d|n
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gives an one-to-one correspondence from E;/Q(él]\f7 id.) to £(N,2,id.).
(2) If k > 2, then the Shimura lifting defined by

Lp (ga(n)q"> :=@LN (1 =k, X (2»

30| (B) e (10 ) | o

n=1 d|n
gives a one-to-one correspondence from E;+1/2(4N, xi) to E(N, 2k, id.).

Proof  We denote by U(m)(m|N) the following operator defined by

U(m) (Z a(n)q”) = Z a(mn)q"

n=0 n=0
for any f(z) = Za(n)q” € GAN, k+1/2, x;) or G(N, 2k, id.). Then U(m)
n=0

(m|N°°) map G(N, 2k, id.) to G(N, 2k, id.) and U (m?) (m|N>°) map G(4N, k + 1/2,
x1) to GAN, k+1/2, x;). A direct calculation shows that Lp o U(m?) = U(m)o Lp
for any m|N° and any fundamental discriminant D with e(—1)*D > 0.

(1) Since Lp is a linear map on the space consisting of all formal power series

Z a(n)q"™ with a(n) € C, we only need to prove that L p maps a basis of E3+/2(4N, id.)
n=0
to a basis of (N, 2, id.). We first consider the case that N = p is a prime. Then

the dimension of E (4p, id.) equals to one and H; (id., p, p ) € E;“/z(élp, id.). Denote

that H(id., p, p) := Z a(n)q™ and Lp(Hq(id., p, p Zb )g". Then by the
n=0

definition of Lp, we see that

3/2

D’ D
D \D\ |D| %3
- (E) L, (o, > ﬂ(d1)< — ) Y e
d|n dl‘lelng €| \D\"z /d1
(exp) 1
D D D
> (3) 8 (0(2) X (3) 3 ¢
. 1
d|n di|n/d eln/ddy
(e;p)=1
D D D
-u(0()2(F) T Tro-n(u(2) T -
sln eln/s,(e,p)=1 d|s eln,(e,p)=1
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b(0) = %a(O)Lp (o, (D>> _ %LP (o, (D>> L(~1,id) = ]’2;41@, (o, <D>> .

Hence we obtain that
Lottta.p) =1, (0.(7) ) £
where
EW (z) = 1”2%11 + f: Y d|q"€&p2.id)
n=1 \d|n,p|d

is the normalized Eisenstein series of weight 2 on I'y(p). By the hypothesis in Theorem
8.3 we see that

(0 (2)-(- () 0(2) - - (2) 82

where wp is the half of the number of units in Q(v/D).

This shows that Lp is a bijection if N = p is a prime. We now prove that this
holds for any square-free positive integer N > 1. Suppose that N = p1py---p;. For
any prime divisor p; of N, denote the following Eisenstein series by E;p i) (2):

Eépi)(z) = Zai(n)q” — piQ; 1 + Z Z d|q",
n=1

n=1 \d|n,pi|d

which is the normalized Eisenstein series of weight 2 on I'y(p;).
Let

Si = {UMES(2)) | UN/(pr - i)}
for 1 < @ < t. By the properties of U(m) we know that S; C E(N, 2, id.) for

t

1 < i < t. We want to prove that S := USi is a basis of £(N, 2, id.). Since
i=1

dim(E(N, 2,id.)) = 2! — 1 = the number of elements in S, we only need to prove that

the elements in S are linearly independent. We denote that Eépf)(z) = U()(EF ().

Suppose that there exist complex numbers ¢;(I) such that

Sy awEed =o. (8.40)

i=LUN/(prp1)

We must prove that ¢;(I) = 0 for all 1 < ¢ < ¢t and I|N/(p1---p;). We prove this
by induction on ¢. If ¢t = 1, it is clear that S = S; = {Eépl)(z)} is a basis of
E(N,2,id.) = E(py, 2,id.).
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For any modular form f(z) = Z a(n)q”, let L(s, f) := Z a(n)n?% be the corre-
n=0 n=1
sponding Dirichlet series. Then by a direct calculation we see that

L(s, ES")) = ¢(s)L(s — 1,1,,),

where 1,, denotes the trivial character modulo m for any positive integer m.

For f(z) = Za(n)q" € G(N,2,id.), r|N and v any character modulo N, we

n=0

define
s, f,,7) Z b(n

Then we have that (n) =0 if (n, N) # 1, and so

L(s, ES) (= Zz/) >oodfn

dlnir, (pi,d)=1

p(n) Z d]n~®

(n,N)=1 d|nlr,(p;,d)=1
- oy o ()
a|lr,(p“a) 1 (’I’L,N):l dln

T4+p+p*4-4+p»)L(s,p)L(s — 1,¢).  (8.41)

pﬂﬁpllr

Hence from (8.40) and (8.41) we obtain that

t
0=>" 3 aOL(sEY )

1t=11|N/(p1--p:)
t

=Z Z ci(l) H A+p+p>+-+p"UNL(s,)L(s — 1,1).
=1 1|N/(p1-ps) piplir

This implies that

t
Z Soa J[ Qp+p’ 4407y =0, VrN.  (842)

LIUN/(p1---ps) pi#p|lr

That is, ¢;(1) must satisfy the above system of linear equations (8.42). Hence we only
need to prove that the system of linear equations (8.42) has only the solution zero.
It is clear that this holds for ¢ = 1. Suppose that (8.42) has only the solution zero
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for t — 1. Write that N = p; N7 with (p1, N1) = 1. Let r1 be a positive divisor of Nj.
Then

Aplrl —Anzz Z Ci(l) H (1+p+p2+...+pr(lP17’1))

i=1I|N/(p1---pi) pi#pllpira
t
=2 > a0 I aprpt eyt
i=11|N/(p1---p:) piFp|lr:
t
=> > a| II G+p+pteogprtnm)
i=1I|N/(p1---ps) pi#pllpiry

- ] a+p+p’+--+psm))

pi#p|lry
t

=y Y ) [T G+p+p®+op0)
i=21|N/(p1---pi) pi#pllr:
t

0> Y a) J] pap? 40 =0, VN
i=2 I|N1/(p2--p:) pi#pllr

(8.43)

By the induction assumption, we know that (8.43) has only the solution zero. There-
fore ¢;(1) =0 for all 2 < i <t and I|N/(p1---p;). Then (8.42) becomes

Sooa [ @rptptt @)= 3" a@) Y d=0, VrN. (8.44)

{IN/p1 p1#p|lr [IN/p1 d|lr,p1ld

This shows that ¢;(l) must satisfy the system of linear equations (8.44). So we only
need to prove that (8.44) has only the solution zero. For any positive integer N > 1
and any prime p with (p, N) = 1, we define the following system of linear equations
for z(l) with [|N

Byn(r):=>» a(l) Y d=0, Vr|N. (8.45)

N d|lr,p|d

It is clear that (8.44) has only the solution zero if we can prove that (8.45) has only
the solution zero. We prove that (8.45) has only the solution zero by induction on
the number of prime factors of N. For ¢t = 0, it is obvious. Suppose that (8.45) has
only the solution zero for ¢ — 1. We want to prove that our assertion holds also for
N =pip2---p;. Write N = p; N; with (p;, N;) =1 for all 1 < ¢ < t. Let r;|N; be any
positive divisor of N;. Then

0=Byn(ri) = Bpn,(ri) =Y a(l) > d=Y () > d

N d|lr,pld IIN; d|lri,pld
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Sa®)+ Yo a) | Y A= xl) >

IIN; pill|N d|lri,pld l|N; d|lr;,p|d
=D ell) > d
1;|N; dlpslirs,p|d
=(pi+1) Y xlpils) > d, Vi N; with1<i<t,
llu\f1 d|li'r‘i,p|d

where we used the fact that (I;7;,p;) = 1 to deduce the last equality. Hence
Z I(pzll) Z d= 0, v TilNi with 1 S ) § t
L N; d|lir;,pld

By the induction hypothesis, we see that z(p;l;) = 0 for all [;|N;,1 < i < t. Therefore

x(l) = 0 for all | N with [ # 1. Substituting these into (8.45) we obtaln that z(1) =0.
This shows that (8.45) and hence (8.44) has only the solution zero. We have proved
that S is a basis of £(N, 2,id.). Now let

Si ={U@)(H (., pi;pi)(2) | L] N/ (pr---pa)},  for 1<i<t
t

s =S
i=1

We know that Hy (id., p;, p;) € E;_/z(llpi, id.) C 3/2(4N id.) and hence U (1%)(H (id.,

Di, i)(2)) € E;r/2( N, id.) for all I | N/(py---p;). This shows that S’ C E;/Q(ALN7

id.). Using the properties of U(I?) and Lp and the result proved above, we see that
Lp o U(I*)(Hy(id., pi, ps)(2))

=U(l) o Lp(Hy(id., pi, pi)(2))

(o0 (o(2)) )

:Lm<m(2>>qu59R@)eaNag¢% VI<i<tand I[N/(pr---ps),

where we used the fact that Eépi)(z) € Ey(pi,id.) C £(N,2,id.) and U(l)(Eépi)(z)) €
D

E(N,2,id.) for all I | N. Since (—) # 1 for all p;|N, then Ly, (0, (£)) # 0. Hence
bi

we have proved that Lp maps S’ to a basis of £(N,2,id.). Because Lp is a linear

operator, S’ is a basis of Ej /2(4N id.). This implies that Lp is a bijection from

E&,(4N,id.) to (N, 2,id.).

3/2
(2) Since Lp is a linear operator, we only need to calculate the image of Hy(x, m, N)

under the Shimura lifting Lp. Denote that Hg(x, N, N) Z an(n)q™ and Lp(Hg(x,
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= Z by (n)q"™. Then by the definition of Lp, we see that

0 () (o)

d|n
D_ .,
=S () e (1w | 2
d|n '
Dippaz
X Z (dl)X;(dl) ( o > d}f71 Z e2k—1
dllf‘D‘nz |f‘D‘n2/ 1
(PN)
D
=) (B) et (1-k0 (2)
d|n
D k—1 2k—1
x> pldoxi() () di™h D e
di|n/d 1 eln/ddy
(e,N)=1

—i 1=k (7)) Snie (7)1 X @

sln eln/s,(e,N)=1 d|s

D
:LN (1_k7XE ()) Z e2k_1a
eln,(e,N)=1

b(0) = %aN(O)LN (1 — kX (2»
_ %LN (1 . (D>> L(1 - 2k,id.).

Lp(Hi(x,N,N)) = Ly (1 — kX (2)> Gar,n (2),

Hence

where
o0

Ln(1—2k,id.
Copn(2) = n( )1 )+Z Z d2=1 | g,

2
n=1 \d|n,(d,N)=1

For m|N with m # N we can compute similarly and obtain that

Lp(Hy(x,m,N)) =L, (1 —ky (Q)) <%>2k—1

1-xi(p) (2)p~*
X H {_p(_zk) GQk,m(Z)a

p|N/m
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where
Gak,m( Z Z d?*=1 1 ¢", Ym|N with m # N.
n=1\ d|n,(d,m)=1,
(n/d,N/m)=1

Hence we only need to prove that {Garm(z) | m | N} constitute a basis of E(N, 2k,
id.) which is stated as the following

Lemma 8.8 Let N be a square-free positive integer and k > 4 an even integer.
Then

Gk7N(Z) :

Ly(l—kid) & k=1 n
e VL SN DR L

n=1 \d|n,(d,N)=1

oo

Grm(2) i = Z Z d* 1 | ¢, Vm|N with m # N
n=1 d|n,(d,m)=1,
(n/d,N/m)=1

constitute a basis of E(N, k,id.).

Proof Let Ei(z) be the Eisenstein series defined by

E(z) = +Z de e

Then it is well known that {Ex(lz) | I | N} constitute a basis of E(N,k,id.). We
define functions qx,m (%) as follows

gr,n(z) 1 = Ex(Nz),

Grm(2) 1 = Z w()Eg(mlz), Y m|N,m # N.
I|IN/m

Then it is clear that {qxm | m | N} constitute a basis of £(N, k,id.). And

EES D INTD ) S

n=1[|N/m ln din/l

=33 "d > uem
n=1 d|n l|(n/d,N/m)

_ Z Z dkflqmn.
n=1 d|n

(n/d,N/m)=1
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For m|N, denote by G}, (2) the following function

=2 110 =r"Nas2)

s|lm pls

= Zam(n)q”7 YV m|N,m # N,

and
=TT =N Z ax(n
s|N pls
It is clear that these functions constitute a basis of £(NV, k,id.). O

For any fixed n, let it be that (n,m) = mi,m = myma,n = n' H pr(") with

(n',m) = 1. p|lM
n)=> [a-o*1 > !
slma pls din/s
(n/sd,N/s)=1
vp(n)—
= Z H(l _pk_l) H Z 1p(k_1)t H p(k_l)”p(n) Z dk—l
s|m1 pls pls t=0 plmi/s din,(d,m)=1

(n/d,N/m)=1

SO -y JT pk-vm 5 ghel

slm1 ps plma /s din,(dm)=1,
(n/d,N/m)=1
R
d|n,(d,m)=1
(n/d,N/m)=1

This shows that Gy m(2) = G}, (2) for all m|N with m # N. We can prove similarly
that Gy, n(2) = G, x(2). Therefore {Gk,m(z) | m|N} constitute a basis of (N, k,id.).
This completes the proof of Theorem 8.3. ([

As a Corollary of the above proof, we have
Corollary 8.2 Let N be a square-free positive odd integer. Define

Gon(z):=— 214 +Z dooodfqn,

plN n=1 \d|n,(d,N)=1

Gom(z): = > d|q", Vm|N withm#1,N.

n=1 \ din,(dm)=1,
(n/d,N/m)=1
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Then {Ga,m | m|N,m # 1} constitute a basis of E(N,2,id.).
Proof  Completely similar to the proof of Theorem 8.3 (2), we can calculate the

images of Hy(id., m, N) under Lp for all m|N, m # 1. In particular, if we choose a
negative fundamental discriminant D satisfying D =0 (mod N), then

Lp(H,(id.,m, N)) = h(D) H 1_1 5Gom(z), VY m|N,m#1.

pIN/m b
We have shown in the proof of Theorem 8.3 (1) that Lp is a bijection from E3+/2(4N, id.)
1

to £(N,2, id.). Hence Gom(z) = Lp(h(D)~ H (1 —p 2)Hy(id., m, N)) € E(N
pIN/m
2, id.) and constitute a basis of E(N, 2, id.). O

8.4 A Congruence Relation between Some Modular Forms

In this section we will give a congruence relation between some modular forms. A
special case of our congruence (which was proved by Kohnen and J.A. Antoniadis,
1986) has important applications on the structure of the Selmer groups of some elliptic
curves (Please compare J.A. Antoniadis, 1990).

Theorem 8.4 Let N > 3 be a square-free positive odd integer with N = 3 (mod 4),

1
and let | > 5 be a prime which divides the exact numerator of 2 H(p — 1), but does

pIN
not divide the class number h(—N) and H p+1) for any 1 < m|N. We let
pIN/m
o 05 (£ ()

dln

—-N
be the FEisenstein series of weight 1 and Nebentypus (—) on I'yw(N) for the cusp
oco. Put

Cy = 35 [T0 - PGrn@)? = 3h-N? 32 (T 52 | Gamo)

p|N 1<m|N p|N/mp+ 1

Cy =5 [J0-n)G w202 5h(-N) 2 | TT L) mdm, N)(z),

p|N 1<m|N \p|N/m

F][V(l—p) -
GQ,N(Z);:—”‘T+Z S d]gn

n=1 \d|n,(d,N)=1
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Gom(z): = Z Z d|q", VYm|N withm #1,N.
n=1\ d|n,(d,m)=1,
(n/d,N/m)=1

Then
(1) The function C\(z) € S;_/z (4N,id.) has l-integral Fourier coefficients, is non-
zero modulo 1, and the congruence

1 1-—
Ch(z)=—5h(-N) > | TI P HiGd,m,N)(z)  (mod 1)
1<m|N \p|N/m
holds.
(2) The function Cn(z) € S(N, 2, id.) has l-integral Fourier coefficients, is non-
zero modulo 1, and the congruence

CN(z)E—%h(—N)2 S | I —& | Gemlz)  (mod 1)

1<m|N p\N/mp+ 1

holds. And one has L_n(C/y(2)) = Cy.

(3) Suppose that Cly(z) belongs to a subspace V' of 5’;?2(4]\77 id.) which is isomor-
phic to a subspace of S(N, 2, 1d.) as modules over the Hecke algebra. And suppose that
V' has a basis { fi(z)}Yi_; with fi(z) are all Hecke eigenforms and f;(z) := Z ci(n)g”

n>1
corresponding to F; € S(N, 2, id.). Then one has

1 "\ L(F;, 1)c;i(N)
Cy=——TTa-p) o S A0
S | D A

where o is a non-zero constant not depending on N, L(F;,s) is the L-function as-

sociated with F; and ||fi||* = / |fil2y~Y%dzdy (z = Re(z), y = Im(z)) the
To(AN)\H

square of the Petersson norm of f;.
Proof (1) We first prove that Cy(z) has l-integral Fourier coefficients. Since

1
v 13 H(l —p)| > 0 and G1,_n(42)0(Nz) has rational Fourier coefficients, we
pIN

only need to show that

I % Hy(id.,m, N)(2)

1<m|N \p|N/m
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has l-integral Fourier coefficients. By the definition of H;(id.,m, N) we see that the
nth Fourier coefficient of

I1 L2 by ey m, N ()
pIN/m b

equals to

D
o (2)
H ﬂH(Ll,m,N;n): H ﬂLm(OJCDn) H s

1— —2
p|N/m p p|N/m p p|N/m p
x> w(d)xp, (d)om N1 (fa/d)

Dy
=L (0,xD,) H (7>_p

1
p|N/m TP

x Z w(d)xp, ()om N 1(fn/d),

dlfn

which is l-integral by hypothesis of Theorem 8.4, and hence C'y(z) has l-integral
Fourier coeflicients.
Now we need only to prove that Cly(z) € S

3/2(4N, id.), as the other assertions are
obvious. We must show that Cly(z) € M;2(4N ,id.) and the values of C/y(z) are zero

at all cusp points. In order to do this we introduce the following Eisenstein series: For
any positive integer k, and D, Dy relatively prime fundamental discriminants with
(_].)kD].DQ > 0 set

Gr,py,0s(2) = Y p, X Z( )( )(mD12+n) :

D\ Y2 2
where v, p, == (_1) |D1|—k+z Ek —ml)) and Z means that (m,n) run over Z x Z

D
except (0,0). The function G, p, b, is an Eisenstein series in M}, (FO(D)7 () ) (D=

1
D1 D) for the cusp Do The Fourier expansion of Gy, p, p,(2) is given by

Gr,p,,D, (2 E Ok—1,D:,D,(1)q",

where
_L(l_kvxDl) (0 XD2) 1fn:07

D D
Ok—1,0,,D,(n) := Z (d_11> (d;) d’“ Loifn>0.

dy,d2>0
dldzzn
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We must note that for £ = 1 or 2 there is a slight problem of convergence. But we
can define Gi p,.p, (%) as the holomorphic continuation to s = 0 of the corresponding
non-holomorphic Eisenstein series of weight 1 or 2. Anyway the above formula for
the Fourier expansion of G, p, p, holds for k =1,2.

Hence we know that for any k > 2

1
—L(1 -k if Do =1

ohorpnpy(0) = 4 2P Rxp) i D2 =1, (8.46)
0, if Dy #1

and )
—h(D if Dy =1 D=1
Uo,Dl,DQ(O) = 2 ( )a 1 2 or Lz ,

0, 1fD27é1and Dl#l

(8.47)

Denote Gg,p(2), Gi,ap(z) the following Eisenstein series

Grp(2) : = %L(l —k,xp) + 3 > (g) a1 q" e G(D, k, (9> )

n=1 d|n

) Grp(22) € G(4D, k, (9> )

(D12 + 1) Grop ( : )

Gk})4D(Z) L= G;c)D(4Z) — 27k

| o

Now one can show that

|Di]z+1
D2 —1/2 D2 1 z+ |l)1|>‘<
=== =) Dy 7Y@ R L 8.48
(Z2) () m2emn () say
where |D;]* is an integer with |D1||D;1]* = 1( mod Dy).

And

g1 4z |D|z
4|D nkzg 0
(A Dulz+ 1) Grp <4|D1|z+1> <4|D1|z+1>

D2 1 4z + |D1|* |D1|Z + 4%
= D 0 4
<—|Dl|>' d GWI’DZ( D o) @9

where a* € Z with aa* = 1 (mod Ds) (Please compare with W. Kohnen, 1981, 192-
197).
From (8.47) we see immediately that

v(ak,D<4z>e<|D|z>7 ﬁ)

1 4 D
:nm(4|D1|z+1)—k—sz,D( : )9( D}z )

z—ioo 4|D1|Z+1 4|D1|Z+1
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, Dy 42+|D1|*> (|D1|z+4*>
lim D>|71@ ( 0
J, <—|D |> [Del G021 BY

D, » | .
(—|D1 |) |D2| ™"V (Gg,p,,D,s(2),100)V (0(%), ic0)

Dy _
= (—|D1|> |Da| ™ ox—1,,,0,(0).

Especially, from (8.47), we see that

8.4

N | =
7N\
|

5|F

) |D2|71h(D), if Dy =1or Dy = 1,

ing;«élanlesél.

v (euotoonnno. ) -§
(8.50)

Since 4/|D1| and 1/|Dq| are I'g(4]|D|)-equivalent, we can also calculate the value of
G1,p (42)6(|D|z) at the cusp point 1/|D1| by Claim 1 of Theorem 10.9 and (8.48) as

=

follows:

v(Guot2la). ) = v (Gt o )v (0001, - )

= lim (—|D1]2)G1.p (4(z + |D1|)>

Z—100

X limoo(—|D1|z)1/20(|D|(z + |D|)>

z—1

= g (@000 i)V (060 15y

1 D
= () (600 g V0

1—i 2/ p 1
“so () (5) (o) o om0

1—i /D) (D 1/2( )
:—LO, 1 0 2 _
(0:x0,) L0, xp.) 8|Dz|(d>( 1) D]

where d is an integer such that

V(0(z),|Dal)

[ V)

a b a b
(%) ertohaa (L 0)a/pih=1/pil
Therefore we get that

—-1-i
———h(D), if D=1

1 16|D| ( )a 1 1 )

1% <G17D(4Z) (|D|2), D |> 11—61h(D)7 it D, = D, (8.51)
0, ifDlyéland Dl#D
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Finally since V' (0(z),1/2) = 0, we see easily that

v((Gl,D(4z)e(|D|z)7 ﬁ)) — 0. (8.52)

By Theorem 7.7 we can calculate the values of Hy(id.,m,N) at cusp points as
follows: For any positive divisor d of N,

V(H;(id.,m, N),1/d) =V (L (—1,id.)H, (id.,m, N),1/d)
= TI0 — »)(V(gs(id., 4m,aN), 1/d)
plm

_gV(gg(id., m,4N),1/d))

1 141

=-15 110 -7»)

plm

p(m/d)dm 't (8.53)

and
V(H,(id.,m, N),1/2d) = 0 (8.54)

and

V(Hy(id.,m, N),1/4d) =V (L (—1,id.) H, (id., m, N), 1/4d)

_ 112 (1 = p)(V(g1(id., 4m, 4N), 1/4d)
plm

_gwgl(id., m, AN), 1/4d))
- 1Ta - putm/dydm=. (8.55)

12
plm

Using the above results we can compute the values of Cy(z) at all cusp points. For
example, we have for D # 1 and D; # —N by (8.50) and (8.55),

V(Cy(2).1/41D1]) = V( - 5 [10 - P v0va)
pIN
1;£m|N |N/m

N) D

1;£m|N (pN/m

) V(Hy(id.,m, N)(2),1/4|D1])

)

h(—
= ——h
1;& |
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x (—112 [a —p>) plom | D1 )| Dy ™

plm
N T om0\ _
=S Tl p)lD”K%N”(IDll) 0.
For D; = 1, we have by (8.46) and (8.55)
V(T (), 1/4) = 55 IO - V(G n(42)0(N =), 1/4)
p|N
P -n 3 wom)
pIN 1<m|N
e | CETO ==y (SRR
p|N p|N

For D; = —N, we have by (8.46) and (8.55)

V(Cy(2),1/4N) = _—H (1 —p)V(G1,_n(42)0(Nz),1/4N)
pIN
h(-N
+ ;4N)£[V1— Ngn:N w(m/N)
= _L;LLN) [[a-p»+ —h(;fv) [[a-p=o0.
p|N p|N

This shows that for all positive divisors d of N, we have

V(Chy(2),1/4d) = 0.

It is clear that V(C/\(2),1/2d) = 0 for all positive divisors d of N from (8
(8.54). We now compute the values of C/y(z) at the cusp point 1/|D4| by (8.

(8.53): for D1 # 1 and D9 # 1,

V((C§V(z),1/|D1|)—0—_h N > 1 ( p )

1<m|N p|N/m

. 1—|—i m _ _
X L (—1,id.) 1 (W) m 1|D1|€‘D11‘

(I1+1)h(=N) m
Zwmﬂ o l[0-p > “<|D1|> =0

pIN 1<m|N

and

315

2) and
1) and
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V(Cy().1) = — [[1-p) <_<1+1>6f;é—m>

—%h(—N) Z H (%) Lm(—l,id.)%u(m)mflefl

1<m|N p|N/m

p|N p|N 1<m|N
_ (I+i)h(=N) (1 +1)h(—N) B
BT | S |

Since N =3 (mod 4), we have ey =i and hence

(1- i)h(—N))

12 16

e Y TI (7’) Ln(~1id) S (1) m Ve

1<m|N p|N/m

1—i)h(—N 1+i)h(—N - m
O 0 U i 5 ()

V(Cy(2).1/N) = —= T - ) (—
p|N

pIN p|N 1<m|N
_ (A =Dhr(=N) (1 —Dh(=N) _
T Hv(l_pH 192 E(l_p)_o'

This shows that V(C/y(2),1/d) = 0 for any positive divisor d of N. Hence C/y(z) €
S(4N, 3/2,id.) is a cusp form. On the other hand, we can prove that G, _n(42)0(Nz)
=r X pr(G1,—an(2)0(z)) with r a constant by the method as exposed in W. Kohnen,
1981 where pr denotes the projection from the space G(4N, 3/2, id.) to the space

M;'/Q(ZLN7 id.) (W. Kohnen, 1982). This shows that C/y(z) € M;'/2(4N, id.) and hence
Chy(z) € 5;/2(4N, id.). This completes the proof of (1).

(2) It is clear that Cx(2) has l-integral Fourier coefficients by the hypothesis in
Theorem 8.4. We only need to show that L_n(C/y(z)) = Cn. The proof is similar to
the arguments used in W. Kohnen, 1981. For the sake of completeness we give it as
follows. Write ¢(n) resp. b(n) for the nth Fourier coefficient of Gy _n(42)0(Nz) resp.

G1.—n(2). Then
cny= > b(n_4W>

TEZ7NT2§n
n=Nr2( mod 4)

oo

Denote that L_n(G1,-n(42)8(Nz)) := Z a(n)q™. Then for n > 0 we have that

n=0
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g (2)-(:3)

_N n2 — 1242
(7)) T ()
dln reZ,|r|<y/n/d

r=n/d( mod 2)

—rd d
Observing that b(Nm) = b(m) for any m > 0 and writing n; = n 2T JNg = n —;T ,

we see that the coefficient

= S () ().
i )

By the multiplicative properties of b(n), the inner sum equals b(n1)b(nz), hence

an) =Y b(n1)b(na),

ni,n2=0
ni+ne=n

which is the nth Fourier coefficient of G1,_n(2)2. But

a(0) = D L0, x-x) = Th(-N),

which is the constant term of Gy _n(2)?. This shows that L_n(G1,_n(42)0(Nz)) =
G1,-n(2)?. But we know that from Corollary 8.2
1
L_n(Hi(id.,m,N)) = h(=N) ] 1_71)_2@2,,,1(2)7 Y m|N,m # 1,
p|N/m

which implies that L_n(C/y(2)) = Cn(z) as desired.
(3) It can be proved by Rankin’s trick, just as used in W. Kohnen, 1981 and J.A.

Antoniadis, 1986. We omit the proof because of the complete similarity with the one
in W. Kohnen, 1981 and J.A. Antoniadis, 1986. |

Proposition 8.7 Let p > 3 be a prime with p = 3 (mod 4), and let | > 5 be

a prime which divides the exact numerator of %, but does mot divide the class

number h(—p). Then
(1) The function C,,(2) € 5’;/2(4N, id.) has l-integral Fourier coefficients, is non-
zero modulo 1, and the congruence

Cy(2) = —yh(p)Hip(z) (mod I

holds.
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(2) The function Cy(z) € S(N, 2, id.) has l-integral Fourier coefficients, is non-
zero modulo 1, and the congruence

Cp(2) = —5h(~p)’Gap(2) (mod 1)

holds. And one has
L_p((C;(z)) =G,

(3) Cly(z) belongs to a subspace V' of S;'/2(4N, id.) which is isomorphic to a sub-
space of S(N,2,id.) as modules over the Hecke algebra. Suppose that V' has a basis
{fi(2)}r_, with all f;(z) are Hecke eigenforms and f;(z) := Z ci(n)q" corresponding

n>1
to F; € S(N, 2,id.). Then one has

T

L(F, )e;
D D L
= Al

where o/ is a non-zero constant not depending on p, L(F;, s) is the L-function associ-

ated with F; and || f;||? == / \fil?y~Y2dady (z = Re(z),y = Im(2)) the square
To(4p)\ H

of the Petersson norm of f;.

Proof This is a special case of Theorem 8.4. O
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Chapter 9

Trace Formula

9.1 Eichler-Selberg Trace Formula on SLs(Z)

Throughout this section we write I' = SLy(Z). And let F be a fundamental domain
of I'. Let k > 2 be a fixed positive integer. We write T(n) for the Hecke operator on
the space of cusp forms Sy := S(1, 2k, id.).

In this section we want to compute the trace of the Hecke operator T(n) as a
Hermitian operator on the space Si. The method given in this section is owed to
D.Zagier.

Let h(z,z’) be a function of two variables z, 2’ in H, and assume that h is a cusp
form of weight 2k as a function of each variable. We define f * h for any f € Si as a
function of 2z’ by

/f (z, —2")y*2dady. (9.1)

Let m be a positive integer and z, 2’ € H. Put

hm(z,2') = Z (czz' +d2' +az+b)~2k

a,b,c,d€Z,
ad—bc=m

_ —2k (1 az + by -2k
—ag%(wd) (' + )

ad—bc=m

= Z (cz' +a)~ (z +

a,b,c,d€Z,
ad—bc=m

dz' + b)—2k
cz' +a

(9.2)

It is clear that the above series converges absolutely and uniformly on any bounded
closed set of H x H. Therefore h,,(z,2’) is an analytic function in z,2’. It is also
obvious from (9.2) that h,,(z,2’) is a cusp form in every variable separately.

(—1)tx
92k3(2k — 1)
cm” L (fIT(m)(2') = (f % hn) (')
holds for any f € Sy.

Lemma 9.1 Setc, = Then
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a b

Proof  Assume first that m = 1. Since for any M = <c d) € ' and f € S we

have
(z+d)" f(2)y* = f(Mz)(Im(Mz))*
Hence from (9.2) we see that

F@h(z, 2Ny = Y (& + Mz) 2 f(Mz)(lm(M =)
Mero

and

f*hi)( / —2' + MZ) 72k f(M2)(Im(M 2))**y~2dady. (9.3)
F MEF

Since the series on the right hand side in (9.3) is absolutely and uniformly convergent,
we can interchange the integration and the sum

(fxh1)(2) = Z / —2' + M%) 72k f(M2)(Im(M 2))**y~2dady

Mer

— Z / (=72 +E)72kf(z) (Im(z))2ky*2dxdy (9.4)

MET /iy
= 2/ / (x —iy — 2) "2 f(z + iy)y** 2dady,
0 —00

where the last equality comes from the fact that the upper half plane is equal to the
union of transformations of the fundamental domain F' under I', disjoint except for
boundary points of measure zero, and the factor 2 comes from the fact that +v € I
give the same transformation. Since f(z) is holomorphic on H and zero at ico, we
obtain from Cauchy’s formula that

/_Z(m—iy—z) 2kf( + iy)dz %f@k_l)(%y—&-z’). (9.5)

From (9.4) and (9.5) we get

(Frh))= 0 / Y22 R (94 4 Ny
0

(2k — 1)!
Ami -1\ %72 -1,
= 2k 1) (3 2k = 2)l5- F(&)
:Ck:f(’z/)v

where we used repeatedly integration by parts and the fact that f € Si. This implies
that the lemma holds for m = 1 since T(1) = id. Let T(m) operate on h; with respect
to the first variable z. Then
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_ _ a1z +b
hi(z, 2')|T(m)=m2*1 Z dy 2kh1<1d11,2/>

a1di=m,d1>0,b; mod di

=m?k-1 > > PR fratanl +d -
! d

a,b,c,d€Z,ad—bc=m aidy=m,d;>0,b; mod d; 1

% Z/+M a12—|—b1 —2k
dy

. 2k—1 o, ez b\
=m Z (cz+d) 2+ , (9.6)

cz+d
a,b,c,d€Z, +

ad—bc=m

where M = (Z and the last equality comes from the fact that the following set

b
d
ay b1
R ardy = m, dy > 07 b1 mod d;
0 dy

is a complete set of right cosets of A,, with respect to I" where

= r=(02)

Hence from (9.6) and the definition of h,,, we see that

a7b,c7d€Z7ad—bc:m}.

(h1|T(m))(z,2") = m** h,, (2, 2'), (9.7)

where T(m) operates on the first variable z. Hence from (9.7), the fact that the
lemma holds for m = 1 and the properties of the Petersson inner product we see that

(f % hm)(2") = m =2 (f % ha|T(m)) (=)
=m= 2 ((fIT(m)) * ha)
=m 2 ey f|T(m).
This completes the proof. O
Let now f1,---, fr be an orthogonal basis of eigenfunctions for the Hecke opera-

tors, and assume that they are normalized, i.e., for 1 < j < r,

fi= Zag)e(nz), agj) =1
n=1
Then we have
[ T(m) = o) f;. (9.8)

Lemma 9.2 (1) We have that
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" gV
-1 _ 2k—1 /
¢ mT T him(z,27) = Z <fmfg>f( )fi(2), (9.9)

where (*,%) is the the Petersson inner product.
(2) We have that

tr(T(m)) = clzlm%_l/ B (2, —2)y*F2dady. (9.10)
F

Proof (1) Since T(m) is Hermitian and f; is the eigenfunction of T(m) with

eigenvalue a,(%), a%) is a real number for all m, j, and hence we have

fj(—§) = fj(Z), 1<j<r (9.11)
Since f1, -+ -, fr consist of a basis, and h,,(z,2") as a function of z or 2’ is in Sy,
hm(zazl) = Z aijfi(z)fj(zl)a (912)
ij=1

where a;; are some constants. By Lemma 9.1, (9.8), (9.12) and (9.11) we see that
cm™Hall) fi(2') = eem ™2 T(m))(2) = (fi x hn) (=)
= Z T / F2) fi(2) £ (=2 2dady

4,5=1
= Zafz] flafz fj Zal] flvfl fj( )
4,5=1
where the last equality comes from the fact that fi,---, f, are orthogonal to each

other. Hence we have that a;; = 0 if [ # j and

ckm*%“

l
G fy ™

a) =

This shows (1) of the lemma.
(2) By the definition of the trace of a linear operator, we see that

I
j=1
Hence by (1) we know that

c,:lmzk_l/ B (2, —=2)y*F~2dady

fo /ff A5 (=2 dady
J’J
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Z fj fj y?F2dady
(fi f
3 )i

- Zaw — tx(T(m)),

where the second equality comes from (9.11). This completes the proof. O

We shall give an explicit expression for the trace in terms of the (2) of Lemma
9.2. We need some notations and definitions. We define a function H(n) for integers

n as follows: )

E-
If n > 0, let H(n) be the number of equivalence classes with respect to I' of positive

H(n)=0, VYn<O0and H0)=—

definite binary quadratic forms az? + bxy + cy? with discriminant b2 — 4ac = —n,
counting forms equivalent to a multiple of 2% + y2 or z? + xy + y? with multiplicity

1 1
33 respectively. By the definition we see that H(n) =0if n=1,2 (mod 4). We
also define a polynomial P;(t,m) as the coefficient of 2772 in the formal power series

expansion of (1 —tz +ma?)7 1, ie.,

(1 —to +ma?)~ ZPjtmxj2
j=2
It is easy to verify that
Pl piml
Pj(t,m) = ————, (9.13)
p—p

where p,p are the roots of the equation 2 — to +m = 0.

Theorem 9.1 Letm > 1 and k > 2 be positive integers, then the trace of the Hecke
operator T(m) on the space Sk is given by

tr(T(m)) = —% > Po(t,m)H(4m — t%) — % > min{d,d'}** 1, (9.14)
— 00 dd'=m

where d and d' are positive integers such that dd' = m.

Proof By Lemma 9.2 we have

2k

ke Yy dady
tr(T(m)) = ¢ 'm? 1/ > AT E e (9.15)
ad—bc=

To show the theorem we only need to compute the integral. The sum on the right
hand side is invariant under the action of I" since the integral is independent of the
choice of the fundamental domain F'.
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Suppose that M = (™ ) e waite 1 (¢ P = (% ) Then
c1 dip c d ca da

a direct computation shows that
ca|z|? + doZ — agz — by = (c|Mz|? +dMz — aMz — b)|c1z + di|?.
Therefore
Tmn(Mz)2* Y2k

(c|Mz)2 +dMz — aMz —b)2*  (c2|2|? + doZ — asz — b2k’

where we used the fact that Im(Mz) = |c12 + d1|~2Im(z). This shows that replacing

b b
z by Mz amounts to replacing the matrix (Z d) by M1 (Z d) M in terms

of the sum (9.15). These two matrices have the same determinant and the same
trace. Therefore we may decompose the sum into pieces which are invariant under I,
characterized by the condition a + d =constant, so that

tr(T(m)) = Y _ I(m,t),

t=—o00

where

2k
_ _ Y dxdy
I(m,t) = ¢; 'm2k—1 / - . (9.16)
k F ad_%::m (c|z]? +dz —az — b)? y?

a+d=t

We shall prove

1
—ink(t, m)H (4m — t?), if t? —4m <0,
2k—1 0 1 i
- , ift?—4m =0,
X o1 M 1 i m
SI(m,t) +I(m, —t)) = ¢ 1 /[t] — w2
2 __<||—u> , if 2 — 4m = u?
2 2
with u a positive integer,
0, if 2 — 4m > 0 is non-square,

which implies the theorem. To calculate the integral (9.16), we first note that there

. —— . a b . .
is a bijection between the set of matrices (C ) with determinant m and trace ¢,

d

and the set of binary quadratic forms g with discriminant |g| = t2 — 4m. In fact, the
bijection is given by

(i Z) — g(u,v) = cu® + (d — a)uv — bv?,
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t=p
— 2 2 2
g(u,v) = au” + Puv + yv° — . {48
2
For any form g(u,v) = au? + Buv + yv? and real t, z = x + iy € H, put
Y2k
Ry(z,t) = - , 9.17
o(2 1) (a(z? 4+ y?) + Bz + v — ity)?k (9.17)

then we see that

I(m,t) = clzlm%*l/ Z Ry(z,t) dzgy, (9.18)
F
lgl

g|=t2—4m

where the sum is taken over all forms with discriminant t?> — 4m. Any M € I
transforms a quadratic form ¢ into a form Mg. A direct computation shows that

Ry(Mz,t) = Ryg(z,1). (9.19)

Therefore for each discriminant D, i.e., for each integer D =0 or 1 (mod 4), we have

Z Ry(z,t) = Z Z Rarg(z,t)

|lg|=D lg|=D mod I MeI'/ Ty

= Z Z R!](Mzﬂt)v

lg|=D mod I MeI'/ Ty

where the first sum is taken over a set of representatives for classes of quadratic forms
with discriminant D, and the second sum is taken over right cosets of I" with respect
to the isotropy group Iy of elements leaving g fixed. For D # 0, the class number
h(D) is finite, and hence the first sum is finite and

/ S RenEW oy / Rg(z,t)digy, (9.20)

Y
a lg|=D |g|=D mod FFg

where F, = U M (F) is a fundamental domain of I'; on H. For D = 0 we can
Mer/r,

take g,(u,v) = rv? (r € Z) as a complete set of representatives for the forms with

discriminant 0. The isotropy group I, of g, is equal to I" for r = 0, and is equal to

1 n
Y
for r # 0. Hence we have

dzd dzd dzd
/Z Ry (=, 1) 20 =/Rgo<z,t>7y+/ SR, ()P (92)
F F.

— Y . Y
F lgl=0 . TEL
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where Foo = {z € H|0 < Re(z) < 1} is a fundamental domain of 'y, on H. The
integrals at the right hand side of (9.20) and (9.21) for D = t? — 4m remain to be
computed. We distinguish four cases.
Case (1). D < 0. In this case I'; is finite (and one can prove that its order is 1, 2
or 3). Let
g(u,v) = au® + puv + yv*

be a quadratic form with discriminant |g| = D, then

1
/ Ry dx;iy - / Ry (=, 1) 20
g y
H
L/ y?k dady
[Tyl ) (alz]? + Bz + v —ity)?F y?
H

For a > 0, replacing z by . ﬁ we have
a 2«

/R ; dxdy y2k dxdy
y2 IFI |Z|2—1ty D/4)*k y?

For o < 0, using (o, 3,7) — (—«a, —3, —7) we can obtain that

/R (2,1) drdy 1 y2k dxdy
TS _IFgIH (Iz] + ity — D/4)*k o2~

Fy

Set

2k

y dxdy

I(t) = 22

®) / (22 —ity — DJA)F 32 (9.22)
H

which is only dependent on D, ¢t and k. Therefore

| ¥ RS-t Y o

F lgl=D lg|=D mod I |
=H(—-D)(I(t) + I(-t)). (9.23)

A direct computation shows that

oS} —3/2
/ (2° +5)%da = ns2

holds for any Re(s) # 0. Taking derivatives with respect to s we obtain that

Tt e = T L3 (3
/_Do(ac + s) dx_(l—l)!Q 5 (l 2)5
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for any [ > 2 and Re(s) # 0. Therefore we see that

I(t) = / y2k_2/ (2% + % — ity — D/4) "2k dzdy
0 —00

U 3 (2K — 3/2)/ (42 — iyt — D/4)~2k+1/2,2k=2q,
2k —1)! o
1

T2k 1)
k o0
((21k) )ldt2k 2/0 (y? — ity — D/4)~3/%dy
_ (=1
_ =

2
=202k — 1)' at2h—2 D \/y2 —iyt— D/4|,_q

)k 13‘[ d2k 2 4
©2(2k — 1) de2h- 2(,/|D | V/I|D] —zt)
2z 1

2k =1 /|D| <\/|D|—uf>2k—1

Hence from the above equality and (9.23) we obtain for t> — 4m < 0 that

2 1
I(m. 1) = i m* ™ H (dm — 1) - 57 - 1 Vam 2

1 1
8 <(\/m_ T (Vim—P+ it)2k1>
H(dm — 12) p2h—1 — p2k—1
- 2 p—p
where p = (t + iv/4m — 12) /2. Therefore for t> — 4m < 0 we have
H(dm — 12) p26=1 — p2h—1
2 p—=>

_ —%H(élm )Py (t,m)

%(I(m, 1)+ I(m, —t)) =

from the definition of P;(t,m).
Case (2). D = 0. In this case we have t = +2,/m with m a square. The first term
of the right hand side of (9.21) is equal to

/Rgo(z,t) dzdy (—=1)* / dedy (—].)kﬂ:. (9.24)
F F

y2 t2k y2 3t2k

And the second term of the right hand side of (9.21) is equal to

/ Z R, (= dxdy / / —ity) 2y P2 dy
D 0

> 0#£reZ O;érEZ

:/ 22§ ( — ity)~2dy
0

0#r€Z
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( 1)k 1 d2k 2 /OO ) L
— 1t d
T (2k— 1)l A2 2 (r —ity)—dy
( l)k 1 d2k /oo 1 J'lj2 >d
(2K —1)'dt2’f o \#%y? sinh®nty Y

- -y i)
(

y=0
( l)k 1 d2k72
T (2k — 1) de2k-2

t
_1\k—1
i) = ¢n|t|*2’@+17 (9.25)

where we used the fact that
1 T
~+ -4+ 0(? if 0
cth(x):{x+3+ (z°), ifz—0,
1 if x — oo.

)

Therefore we obtain for ¢ = 4m that

(—1)Fn N (—1)F1x 1
3Am)F T 2k —1 (2y/m)2k1
_ 2= Ly

= o m 4m .

I(m,t) = c; 'm?*1 (

Case (3). D =12,1> 0 a positive integer. Then every form with discriminant D
is similar to one of the following standard forms:

Jo(u,v) = au® +luww, 1<a<l.

It is clear that |I'; | = 1, and hence

da:dy Y2k dzprdyn
2
/Z Ry (2,1) Z/ Z CV\ZM|2+ZHJM ityv)?* ya (9.26)

lgl=D Mer

where z); = Mz = xp + iyp. We write the integral on the right hand side of (9.26)

as
yak dxardyas

I, = lim/ , 9.27
£—0 Mzer (alzp)? + lxM —itym)?* 3, ( )

where
F.:={z € F|lm(z) < 1/e}

is a compact set for any € > 0. So we can interchange the integral and the summation,
but we must be careful by taking limit because there are probably some problems at
the points which are the roots of a|zps|? + lzar — ityar = 0. So we have

2k
Y daedy . )
fo= /H (alz]? + 1z —ity)%k 2 lim I — lim J, (9.28)
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where -
Y

(a|z]? + Lz — ity)?+

|z—ei/a|<e/a

I. = dady,

y2k—2
Je = dad
c / (a|z]? + Iz — ity)2k vy

|z4+l/a—ci/al<e/a

l
for a sufficiently small £ > 0. Replacing z by S 20’ then we see from (9.28) that
e e

oo oo 2k—2
= y R + 7 —
= /o /—oo @t — ity — T e i L

where
. y2h—2
I = T — ity — ) dzdy, (9.29)
|2/a—1/(20)—<i/al<e/a
- y2k—2
I = ity — ) dzdy. (9.30)

|z+1/(20)—¢i/a|<e/a

Similar to the case D < 0, we have that

oo oo 2k—2 k
Y _ (D)2l 1ok
/o /_oo (22 + y2 — ity — [2/4)%k dedy = > — (4 [t)

Substituting x and y by +£1/2+ ca and € + €b resp. in (9.29) and (9.30), we see that

I / (1+ b)**~2dadb
< (£al —it(1+b) +e(a? + 1+ b2))2k"

a?2+b2<1
Hence
1+ b)%k=2dadb
lim I+ = ( =1
0 / (al Fit(1+ b))k =+
a?+b2<1
and

[ / (1+ b)**~2dadb
L (al —it(1 4 b))2*

a?+b2<1
1 V1-b2 d
= [ 1+ 2k—2/ : db
/_1( T e Ga w1+ )
1 _ 140 2k—2 )
:/1 73(%_)1) (11— b2 —it(1+ b))t

+ (IV1 = b2 4 it(1 + b)) =2k)db,
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. 1— 02
replacing b by T then
2 o vdv
I = — l it 1-2k lv — it 1-2k
= ) (i i
2 *° vdv
- = l it 1-2k Y4V
(zk—l)z/,w(”“) 1+ 02
2 © (1 k—1 J2k—2
= - / ()T d (I +it)— 1
(2k — 1)1 J_o (2k —2)! d¢2k—2 1+ v?
o 2(=1)F g2 /°° vdv
2k — D)V de2k=2 (v +it) (1 +v2)’

But
o vdv o (lv — it)vdv
/_OO (lv +it)(1 + v?) - /_OO (1202 + 2)(1 + v?)
o lv?dv R e vdo
= /_OO B+ )1+ 02) lt/_oo (202 + 2)(1 + 02)’

the second integral in the above line is zero since the function is odd, so that

/°° vdwv o /°° 12 1 do
oo (i) +02) 212 )\ 20212 1402

2 1 AN ! o~
= m; arctan (;) |7oo — m arctan(v)Loo
TT

Y

and hence

(—1)F2m
1(2k —1)
(-1)F12x
1(2k—1)

Iy = (It + 02",

I, = (It + D)t 2-.

Therefore we obtain that

l

dzdy —1)F12x _

§ : R9(27t) 2 = E Ll = ( )_ (|t|+l)1 2k7
y 2k —1

7 lgl=t? a=1

so that

_ k—1
1 op g ()R 12m IV AT A
I(m,t) =c 1m2k 1%7_1““ + l)l 2k _ 5 T .

Therefore for t2 — 4m = 2 with [ a positive integer we have

2k—1
%(I(m,t) + I(m, —t)) = —% (“;) .
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Case (4). D > 0 and D is non-square. Then the isotropy group of the form
g(u,v) = au® + puv + yv*

is an infinitely cyclic group, where the discriminant of g is equal to D. Let w > w’ be

two real roots of the equation ax? + Bz + v = 0, then w + w' = —%7 ww' = 1. Put
@
1 w o w
and
g @ B/2y_vD (01
g2 v ) 2 \1 0)’

where J7 is the transpose of J. If £1 # T = (Z Z

r{ « ﬁ/2> :< @ ﬁ/2>
g (5/2 ¥ T B2 v )’
ie., £T € I, then £1 # S := J-'T.J € SLy(R) and
0 1 0 1
(Y 0)s=(10)
13
0

> € SLy(Z) such that

From this we know that S = ( 5(_)1> with a real € # +1. Then

T=J (g 5(_)1> J L (9.31)

This shows that w,w’ are fixed points of T, i.e., w,w’ are roots of the equation
cx? 4+ (d —a)x — b =0, so that

c=ma, d—a=mpB, —b=my. (9.32)
Set t = a + d, then
_t-ms b=—-m c=maua d—t+mﬂ
- 2 9 - fY’ - ) - 2 b (9.33)

t2 — Dm? = (a + d)? — m?(B* — 4ay) = 4.
From (9.31) we know that e + e~} = a+d = t, so that

6jﬂ:ti\/ﬁ—zx :t:tm\/ﬁ.
2 2

(9.34)

Set m = s/q with ¢ > 1, s integers and (s,¢) = 1. Then from (9.32) we see that
ql(a, B,7). Tt is also clear that (o, 8,7)?|D. Put
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= A(a, 8,7)% (9.35)

with A € N a non-square. So we can write

p
m= 9.36
(.6.7) (939
with p € Z. From (9.34), (9.35) and (9.36) we get
A
2
so that from (9.33), (9.35) and (9.36)
2 — Ap? = 4.

We know that Pell’s equation has the solutions

e==ey, 0#nez, (9.37)

> 1 is the fundamental unit. By (9.31) and (9.37) we have

- e 0 1 o 0 ,_1\"
resa (T )00 )

which implies that the isotropy group I, is the infinitely cyclic group generated by

J (50 01> JL
0 &g
Therefore

ded ded dad
/th“’ /RJg QPR i /Rngt)”;y (9.38)

J-1F,

where g =

to +povVA
2

€0 0
0 &t
such that J='F, = {z = 2 +iy|ly > 0,1 < |z| < 3}. Hence from (9.38) and the fact

that [« B2y _ VD (01
Mo )2 (00)

/R dxdy / (vV'Dd — ity) 2y * 2 dzdy,

y>0,1<|z|<ed

Since Iy is generated by J ( ) J~!, we may assume that Fy can be chosen

we see that

replacing = and y by pcosf and psin@ resp., we see that
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/R dxdy / / VD cosf — it sin 0) ~2*(sin 0)?* 2 p~*dpd#

Fy

= (2log(eo)) / (V'D cos 6 — it sin 8) ~2* (sin 6)2*~2d9),
0

dzd pydard
:/Rg(z, =Y /R =Y
i,

=(210g(eo))/ (V/D cos 0 — it sin ) =% (sin 0)%F 2460

VT (€~ )2
=s(Vflogte) [

<=1

so that

d¢,

where ¢ = e, Since

(22 — 1)2+—2;
(VD —t)z2+ (VD +1))%
is holomorphic in |z| < 1, we see that I = 0 by residue theorem. This shows that
I(m,t) + I(m,—t) = 0 if D =t — 4m > 0 is non-square.
This completes the proof of the Eichler-Selberg trace formula on SLo(Z). |

f(z) =

9.2 Eichler-Selberg Trace Formula on Fuchsian Groups

In this section we shall discuss the Eichler-Selberg trace formula of the Hecke operator
on a Fuchsian group.

Let I' C G = SLs(R) be a Fuchsian group of the first kind. For any g = (i Z) €

I' and any real «, put

Jg(2) =cz+d, Ji(z)= exp{alog(Jy(2))},
where
log(w) = log(|w]) +iarg(w), —n < arg(w) < m.
It is clear that the function on G x G

9192

Cal91,92) =

is independent of the choice of z, its value is equal to 1 or exp{+2mnia}, and |C, (g1,

92)| =1.
Let V be a complex Hilbert space with dimension n, inner product (x, x) and norm

[l
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Definition 9.1 A map € from the group I' to the group of unitary operators on V
1s called a multiplier of weight « if it satisfies the following conditions:

e(m2) = Ca(r1,72)e(M)e(12), Vyi,2 €1

and
e(—=1I) =exp{—mia}E, if-I€Tl,

where E is the identity on V and I is the identity of I.

Let A2(I',V,e) be the vector space on C of analytical functions @ from H to V
satisfying the following conditions:
(1) [@lloo := Sup(||€’5||y”“/2) < 003

(2) 8(72) = Jo(2)e(x) B() for any 7 € T
Let A be a I' double coset such that every element of A belongs to a subgroup of
G which is commensurable with I'. For any ~ € I, set

For any ¢ € A, take an operator 7({) on V' such that ¢¢(z) = J “(2)n(£) satisfies
Vyngna(2) = Yy () (122)001, (§722),  Vm, 72 €T, €A (9.39)
Note that (9.39) is equivalent to
N(11672) = C—a(71,€72)C=a(§;72)e(v2) ' n(€)e(m1) ™! (9.40)

for any v1, o€ I, £ € A
Now let A = U I'$, be a disjoint union of right cosets of I". We define the Hecke

operator T(A) on the space A (I, V, ) as follows:
(B|T(A Zwv ?(8,2)

Tt is clear that T(A) is independent of the choice of §, and
T(A)AZ (I, V,2) € AZ(I,V,2).

For &, £ € A we define an equivalent relation between £ and £’ as follows:
(1) If &, & are scalars, then £ = ¢';
(2) If &, ¢ are all elliptic (or hyperbolic), there exists ay € I" such that 4y~ 1&y = ¢/;
(3) If &,& are all parabolic, there exists a v € I' such that y~1¢'y € I't£ with
Ie={yelhy y=¢}
Now let C' = C(&) be the equivalent class of . We define I(C) as follow:
(1) If £ is a scalar, then
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1C) = ot Vol ().

where Vol(F) = / y~2dxdy with F a fundamental domain of I".
F

(2) If £ € A is an elliptic element with fixed points 2p, Zg and 2z € H, set

_ (%0 % e (A0 . B
p_<1 1>7thenp 5/’-(0 A) Wlth|)\|—17deﬁne

tr(te (20))
I(C)= ————7—.
=T -a
(3) If £ € A is hyperbolic whose fixed points are not cusp points of I'; then
I(C) = 0;
(4) If £ € A is hyperbolic whose fixed points u, v are cusp points of I', we take
-1
p € G such that p(0) = u, p(c0) = v, then p~'&p = ()\0 ?\) with A a real and
[A| > 1. Set
b= Calp, p ) Calp™ ep, p™1)Ca(p™h, )Xt (0(€)),
then

v
[ T)(1—A-2)

(5) If ¢ € A is parabolic whose fixed point s is a cusp point of I', then I /TeN{£I}
is an infinitely cyclic group with a generator §, there exists p € G such that p~'dp =

1(C) = —

t((l) 1) =01, t==%1and Plfpzc((l) ;) = &1, ¢ = £1 with r a real. Set

¥ = Calp:p ') Calp™ep, p~1)Coalp™, p)e™n(£),

g5 =Calp,p 1 6)C_alp™'0p, p " )Calp™", p)te(6)
and denote by e*" (0 < n; < 1,j =1,---,n) the eigenvalues of €5, (1;;) the matrix
of 1 under the basis consisting of the eigenvectors of £5. Then

1

n _ 3~ M if C=C(&) C £, i.e., r is an integer,
I(C) = Z ¢jje2mrn]‘ X 1
j=1 1 i if C=C(&) ¢ +TI', i.e., r is not an integer.
—e 17

Theorem 9.2  Let a > 2 be a real, then the space AX(I',V,¢) is finite dimensional
and

tr(T(4)) = Y 1(0),
C
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where C' runs over the set of equivalent classes of A.

Our destination in this section is to prove this theorem. To do this we shall first
express the Hecke operator as an integral operator on the space AX(I", V, €). Let
A(H, V) be the set of analytical functions on H with values in V" and

Ao(I',Vie) = {0 € A(H, V)| @(vz) = JJ(2)e(y) @(2) for any v € I'}.

Denote by p the G-invariant measure of H, i.e., for any z = x + iy € H, we have that
dp(z) = y~2dady. We also denote by p the measure on the Riemann surface I\ H.
It is clear that ||®(2)||y®/? is [-invariant for any & € A, (I, V,¢). Let I > 1 be a real,
define a [-Norm of ¢ € A,(I',V,¢):

|9ll = ( / ||¢<z>||lyla/2du<z>)m
a

and set
AL (D, V,e)={D € An(I",V,&)||| D]l < o0}

The following fact is clear.
Lemma 9.3 AL(I',V,¢) is a Banach space for any 1 <1 < oo.
Since p(F') < oo, we see for any 1 < I < oo that
AZ(IVie) C AT, V,e) C Ay(T,V,e)

and the imbeddings are continuous. Put
ALEV) = @ € AEV)| [ 18]y du(z) < o0
H

For any & € AL(H,V),a > 2, we define the Poincare series as follows

Bad(z) = 3 U (2) B(72).

~er
where
Wy (2) = J7(2)e(n) 7
Lemma 9.4 0,9 € AL (H,V,e) for any ¢ € AL(H,V).

Proof It follows from the fact that

161 < / | 8(2) ][5/ 2du(z).
H
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In particular A2(I",V,¢) is a Hilbert space with inner product
(@0)= [ @@ v, 0,0 e AT V),
F

where (@, ¥) is the inner product on the space V.
For any real a put

kgzw)=<2_?v_ﬁ sweH. (9.41)

Then we have the following

Lemma 9.5 For any g € G we have that

ka(gz, gw) = Jg'(2)J§(w)ka (2, w), 2z,w € H. (9.42)

For any given z € H, we consider the map from D = {w € C||w| < 1} to H:

p(w) = E;Ujlz (9.43)
and set
Jy(w) = 2y~ %M (1 ), 2 =a+iy. (9.44)
Then
ko(pw, pr) = 2°J) (0)J¢ (T)(1 — wT) ™, (9.45)
in particular, we have
ka(z, pr) = 22J2(0)J(7), (9.46)
(Im(p7)* = k—a(pr, pr) = 27| J,(7)| 72 (1 = |7*), (9.47)
and
dgj):J;%ﬂ. (9.48)

Lemma 9.6 Let « > 2 be real and f(z) a holomorphic function on H such that for
any z € H the integral

I() = / a2, €) £(€) (Im(€))*dpu(€)

H
converges absolutely. Then for any z € H we have

a—1

fz) = ka (2, €)f(€)(Im(£))*du(§)-

T 4m
i
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Proof By (9.41)-(9.48) we can obtain that

I(z) = 2J5(0) / Ty (1) f(pr)(1 = [7[*)*72|dT A dT].
D

Put 7 = rel®. Then

2n

1
I(z) = 4J§‘(0)/0 (1- r2)a2r( Jpa(rei¢)f(p(rei¢))dqb> dr

0

and applying Cauchy’s integral theorem we see that

/O i T, (re!?) f(p(re'?))de = 2, %(0) f(p(0)) = 21T *(0) f(2),

thus,

1
I(z) = 8nf(z)/ (1—7r2)*"2rdr =

0
This completes the proof. ]

Lemma 9.7 Let a > 2 be a real, then
(1) ka(-,€) € AG(H, C) for any € € H;

(2) ka(z,-) € AL(H,C) for any » € H.
Proof  Obvious. |

Denote by V’ and ¢ the space of all linear operators of V' and the multiplier in V'
induced from € respectively. Put

Ko(2,8) = Y ka(v2,6)14(2). (9.49)

yerl'
Then it is easy to show the following:

Lemma 9.8 Let a > 2, then for any &

(1) Ka(-€) € AL(D, V/,e);

(2) Ko(-,€) € AX(I', V' e) and the right hand side of (9.49) is convergent for
(2,&) with respect to the norm.

(3) If we consider K,(z,£) with respect to the variable £, then (K.(z,£))* =
K (& 2) for 2,6 € H where (Ko (2,£))* is the conjugate operator of K, (z,£) in'V. In
particular, for any given z € H, K,(z,£) is anti-analytical with respect to & (i.e., is
analytical with respect to £) and

Ka(2,79€) = Ka(2,073(©e(1) ™", yeT.

By Lemma 9.7 and Lemma 9.8 we have immediately the following
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Lemma 9.9 Let a > 2. Then for any ® € AL (I',V,¢) with 1 <1 < oo we have

oa—1
) = i / Kolz €)(m()" $(©)du(e), =€ H
From the above lemma we see that AS°(I", V, ¢) is dense everywhere in A% (I, V,¢).

Put
a—1

mer e 9

Then from Lemma 9.9 and Lemma 9.8 we have the following:

Ka(z,&) =

Theorem 9.3  Let {$,,(2)} be a standard orthogonal basis of A%2(I",V,e). Then for
any vector v € V- we have that

lCa(z,g)v: Z(Uv ¢m(£))@m(z)7 27£EH
and the series on the right hand side above is absolutely and uniformly convergent on

any compact subset of H x H.

Corollary 9.1 Let vy, -+, v, be a standard orthogonal basis of V.. Then for any
z,& € H we have

(Ka(2,6) = 32 300, () (B (2), v1)

m =1

and the series on the right hand side above is absolutely and uniformly convergent on
any compact subset of H x H. In particular we have

tr( ZH@ )2,

dim(A%(I',V,¢)) = /tr(ICa(z7z)y°‘du(z).
F
Remark 9.1 We will know that the dimension of A%(I',V,e) is finite. Hence
AX(I',V,e) = A2(I',V,e). So we can consider the Hecke operator in the space
A%(I,V,e).
By the definition of the Hecke operator T(A) we obtain immediately the following:

Lemma 9.10 We have

(07

Kao(z,w)|T(A) = 4:@?;;] ZAka(w,@ww(z)

and the series on the right hand side above is absolutely and uniformly convergent on
any compact subset of H x H, where the Hecke operator T(A) is supposed to operate
on the variable z. Write To(A)(z,€) := Ka(z,w)|T(A).
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Lemma 9.11 (1) For any z € H, the function To(A)(2,€) is anti-analytical with
respect to £ and

sup([| 7o (4) (2, €) | (Im(£))*/* < .
£eH
(2) For any v € I we have

To(A)(2,7€) = Ta(A) (2, ) I (E)e(v)
Proof  Obvious. O

By Lemma 9.9, Theorem 9.3, Lemma 9.10 and Lemma 9.11 we have the following:
Theorem 9.4 Let a > 2 be a real, ¢ € AX(I',V,e) = A2(I",V,e). Then

(41T / T (4)(2. ) $(€) (1n(6)*du (&)
and
(1)) = [ (T () e )y ).
F
The Proof of Theorem 9.2 We know that
T(A @ . .
() = A / S kalez, 2ty dpz). (950)
el
We take a fundamental domain F' of I' as follows:
h
F=F U Fj,  disjoint union, (9.51)
k=1
where Fj is compact, and for every k = 1, ---, h there exists a gx € G such that
grFyx = II, with a > 0 and
I, = {z €e H|Im(z) > a,0 < Re(z) < 1}. (9.52)

Suppose A > a, set Fj a4 = F, — gk_lﬁA and let z; be the cusp point corresponding
to F}. Put

Ay = {C S AlC(Ek = xk} (9.53)
By (9.50)-(9.53), we see that

tr(T(AQ)) = 4;—;[0;3%,411520 (Z/k (&z, 2)tr(ve(2))y“du(z)

ceAp

Yy [ kalez, e duce)

k=1¢€A—Aj

T [ bl i) ) o

k=1¢€Aup |
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Classifying them according to the equivalence classes C' C A, we have from (9.54)
that )
o —
T(A) = ———— ). .
w(T(A) = i 2 IO (9.55)
ccaA
We now compute I'(C) as follows.

Case (1): C=C(§), ==+ (é (1)> Then )¢ (2) = 1¢ is independent of z, and

re)= [ (557) ety - P 059

Case (2): C = C(&) with £ € A an elliptic element. Then we have

I'(C) = 2tr(n(& i;; f / / _5" “EB)

% (1= X wl?)=%(1 — |w[2)*~2|dw A dw].

It is easy to verify that

I (p~ ep(w) oy, oy 2dwndm] - mw 4z
TGty ~ 0k @) =T ey F= T
and )
__2w27a w22 |dw A dT] = T
[ =Rl =ty dw am =
hence
7o) = —EL e, (9.57)

(0= 1)(1 = X)[Le : 1]

Case (3): C = C(§) with £ € A a hyperbolic element with non-cuspidal fixed
points. Then

r'(C) = /F (2, 2)tr (e (2)y*dp(2),

where F¢ is a fundamental domain of I'c. In this case the group I'¢/I'e N (£I) is

-1
infinitely cyclic. Taking p € G with p~1¢p = (AO g\) and A > 1 a real, we have
t A2+1)\ " d
—C/ ld,,,/ ( CO ¢+ ( + )) - ;b :0’ (9.58)
21 sin® ¢

where b, ¢ are constants.
Case (4): C = C(€§) with £ € A a hyperbolic element with two cuspidal fixed points
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-1
u, v. Taking p € G such that p(0) = u, p(cc) = v, we have that p~1&p = (AO g)

with X a real and |A\] > 1. Set

¥ =Calp, p " )Calp™ " Ep. p 1 NCalp™, p)A™“tr(n(¢)),

then
I (™ Ep2)
I' o) = lim  tr(n(¢ P 2T ko (ppz, 2)y*du(z),
(=028 [ e T2 T30 W du(z)
where

Co(A) ={z € H||z—i/(24)| < 1/(24)}, C«(B) ={z € H|Im(z) > B}.

Since
% = Calp, p &) Calp " Ep,p " )Ca(p™ " P)A™,
we see that
10 =y Jim, On ((A_Q‘I)COSQS; i(””l)sm‘b)‘lsma—w /Sij;jj¢r_1drd¢
=—2¢/ ( cot;li-i-l()\ 2+1)> loi(;nj) a6
a2 411)/}(@ ) / ((A_2 — COtji o ))w cot ¢dg,

where we used integration by parts to obtain the last equality. Set u = cot ¢, we see
that

, 4ip TR A2 = Du+iA2+ 1) 17 udu
Fe)= (1—x2 )(a—l)/ ( 2 ) 1+ u?
4inh (O DuiA 2D\ T
T (1- a2 )(a—l)fiebi( 2 ) u—i
4y
P et (9.59)

Case (5): C'= C(§) with £ a parabolic element. Then I'/I': N (£I) is an infinitely
cyclic group and

I'(C) =[£I : I Jim " Calp,p'6"E)Calp™ 5" Ep, p™")

A 1
< Coalp™ (67 ) [ 5772 [ halo 760z 2105 g () Ay
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=[£1: 7] lim D Ca(67"¢1, ™ )Coalp™ p)tx(n(psi"ép™ "))

X /OA Y2 /01 ka((S{n&Z,Z)JE{fgl (z)dady,
where Z " means that m runs over all integers with "¢ # 1 # 07%¢;. It is easy to
see thatm
Vopes (2) = Calp, 67619~ )Ca(07€, p71)Calp ™, ) e, (2)n(p3T"Ep ")
is independent of z and satisfies
Vspe (2) = -5
Therefore we have

—2mimn;
5 me ( E vjje 7

SO

n A —«
I'(C)=[+I:T] Z ; lim Z e_QT“m"]/ <y+m;7ﬂ> ¥ 2dy

2 n , e—2mmnj m4r l1-a
1 9.60
S e () e

where Z " means that m runs over all integers with m +r # 0.

For any real n with 0 < n <1, put

Star) = Jim Y3 S mar) (9.61)
= 1m .
mr A—oo e m-+r 2iA ’
m+7‘7ﬁ70

then

2mi(n — 1/2), if r is an integer,

S(n,r) = e2mirn (9.62)
—2mi if r is not an integer

1— eQnir ’

In fact, since S(n,r) = ™17 S(n, {r}) where {r} is the fractional part of r, we may
assume that 0 < r < 1.
If 0 < n < 1, since

—2mimn 23’[1(7?, - 1/2)7 if r = Oa

re
E = eQnirn
m-+r i

m _27511 _ e2nir ’

ifo<r<l1
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is boundedly convergent, we may interchange the summation and the limitation in
(9.61) and hence obtain (9.62). So we may now assume that n = 1. Then

1 1—a
S(n,r) =S(1,r) = lim Z m+r(1+ngj4r> .
meZ,

If r =0, then

. > 1 m ' 1 m \ '
S<”’°>—)£&Z_l(m(“m> _m<1_2iA> )

= mi,

where we used the residue theorem to get the last equality.
If  # 0, then

1 1 1 < Az} /°° {«}
S =- — dr — ———d
(n,7) T+T+1 1—r+/1 (x —7)2 o 1 (z+7r)? “
j e 11—«
1 [*1 T T 1+7r
+§/w;<(l+£> _(1_ﬁ> )dx—logl_r, (9.63)
where the last term came from
(147r)/A 1 -« (1-r)/A 1 -«
—  lim / —<1+i> da:—/ —(1—5) da
A—00,e—0 J, z 2i . z 2i
(1+r)/A 4 (1-r)/A 4
=— lim (/ —dx —/ —dx)
A—00,e—0 c c

147
1—7
On the other hand we have

o e

(z
f: ( m+1 W)l2dx+ " de>
(s

—log

m=1 m

i 1 +/m+1 1 AW
— x
r+m+1 r—m-—1 m r—r x4+

m=1
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- 1 1 ~— 1 1 </ 1 1
= - — - = - d
2(r+m m>+mZ (r+m m>+/1 (ac—r x+r> v

m= —2

= 1 1 147
= Z - — ] +log 1,
meZ,m#0,£1 r+m m r

By the above equality and (9.63) we obtain that

S(n,r)=mncot(mr) +;/_O:O ;((1 + ;)1_a - (1 - ;)1_a>dx

=i + 7 cot(ar), (9.64)

where to obtain the last equality we used the following fact:
/Ool ) T - 2) Ve
" 2 21
o0 l—«
1 1 x 1
== -1+ = - ——|d
2/mx(<+2i> x2+1>$
1 [=1/ 1 )\
= N —1-= d
+2/_oom(ac2—|—1 ( 21) )x

=i
by the residue theorem.
This completes the proof of Theorem 9.2 because of (9.56)-(9.62). O
Let £ > 1 and N be positive integers. Applying Theorem 9.2, we can prove the
following trace formula (please compare J. Oesterlé, 1977).

Theorem 9.5 We have the following trace formula:

tI'(TQk)N(TL), S(N, 2k71d)) = B+ By + Bs + B4 + Bk, (TL, N) =1

)2 )

p|N

2 _
B2:_% Z P2k(3,n) Z h/(84n>:u(safan7N)a

f2
|s|<2ym 215 —an,
(s*—4n)/f*>=0,1 mod 4

NN = X),n)

with

By = —0o(N
3 UO( ) / ()\ — )\,’n) )
0<N <A,
AN =n
1
By = — 5 o(Vmoo(N),
0, if k> 1,
By = { v
Ul(n), ka = ].7
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where Py(t,j) is defined in equality (9.13), u(t, f,n, M) is defined in Lemma 5.23,
h'(m) is defined as the number of S Lo(Z)-equivalence classes of positive definite prim-
itive integral binary quadratic forms of discriminant m, and a form equivalent to
X24Y? or X2+ XY +Y? is counted with multiplicity 1/2 or 1/3 respectively, oo(N)
is defined as the number of positive divisors of N. §(z) is 1 or 0 according as x € Z
or not, and ¢(k) is Euler function.

Also, applying Theorem 9.2, S. Niwa proved the similar result for Hecke operators
half-integral weight (please compare S. Niwa, 1977).

Theorem 9.6 Let k > 1 be a positive integer and N an odd positive integer. Then
for any (n,2N) = 1 we have

t1(Thr1 j2.an (n%), SAN, k + 1/2,id.)) = tr(Tog an (n), S(2N, 2k,id.)).

We shall not give the proofs of Theorem 9.5 and Theorem 9.6, since they are
similar to the proof of Kohnen’s trace formula for Kohnen’s + space which will be

given in next section.

9.3 Trace Formula on the Space Sy11/2(IV, X)

In this section we compute the traces of Hecke operators on the space Sy 1/2(V, x)
discussed in Section 6.2. We will use the notations of Section 6.2. Our presentation
is due to W. Kohnen, 1982.

Denote by % the subalgebra of the Hecke algebra with respect to I'o(IV) and

(G2 2) s

which is generated by the double cosets I'H(N) (

c=0 (mod N)7(a,N):17ad—bc>0},

1 0
0 n

) I'v(N) form a C-basis of #%, where

>F0(N) with n € N and

a 0

(n,2N) = 1. Then the elements I'H(N) (0 d

a, d >0, ald and (d,2N) = 1.
Define a linear map R from . to Endc(S1/2(n, x)) by requiring that

R(FO(N)<8 2) FO(N)>:a(ad)k_3/2[Ao(4N,x1){(%2 ;),(d/a)l/z}Ao(élN,x)]

4y (-1
restricted to Si41/2(V, x), where x; = <L>X Since

o {( @) (@2} aoan.v)
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is a polynomial in Tk+1/274N7X1(p2) (p prime, p { 2N), it preserves Sy q/2(N,x).
Then R is a representation of % . On the other hand, we have a representation
R : 7y — Endc(S(N, 2k, id.)) defined by

I (FO(N) (g 2) FO(N)) — (ad)?! [FO(N) (8 2) FO(N)Lk.

The aim of this section is to prove that the representations R and R are equivalent
which can be deduced from the following:

Theorem 9.7 Let notations be as above. Then
tr(Tk+1/27N7X(n), Sk+1/2(N, X)) = tr(Tag,n(n), S(N, 2k,id.)), (n,2N)=1, (9.65)

10

where Tyi1/2,n8,4(n) resp. Top n(n) are the images of I'o(N) (0 n) I'o(N) under

R resp. R.

An explicit expression of the trace of Toy n(n) on Sor(N) was obtained in The-
orem 9.5. We will show that the left-hand side of (9.65) is also given by this ex-
pression. We know that U(t) is an isomorphism from Sj1/2(NV) onto Spy1/2(N, x)
by the results of Section 6.2. Since U(t) commutes with Hecke operators, it is suffi-
cient to compute the left-hand side of (9.65) for trivial x. In the following we write

Tjt1/2,n(n) resp. Tk+1/274N(n2) for Ty11/2,n,1a.() Tesp. Tk+1/274N7(%)(n2) and ab-

4
breviate Ag (4]\77 ()) as Ag(4N). By the definition of T,/ n(n) we have

4
tr(Tk+1/27N(n), Sk+1/2(N)) =tr (Tk+1/274N(n2)pr, S <4N, k + ]./2, <—> )) .
Substituting the definition of pr we see that

tr(Tk+1/27N(n)7 Sk+1/2(N))

- (1;(_1)[(k+1)/2]\/§tr<Tk+1/2,4N(n2)Q,5(4]\77]{; +1/2, (4) ))

%tr (Tk+1/274N(n2), S(AN, k+1/2, <4> )) (9.66)

The second trace on the right-hand side was computed in Theorem 9.6 for k > 2,
in which case the term is equal to the trace of the usual Hecke operator of degree n
on the space of weight 2k for I'1(2N). So we only need to compute the first summand
on the right of (9.66).

Lemma 9.12  We have the following equality:
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Ao(4N) { ((1) 7?2 ) .nt/ 2} Ag(AN) - Ag(AN)EAG(AN)

— Ao(4N) { (g 47112 ) ,eﬂi/4n1/2} Ap(4N), (9.67)

4 1 .
where & = Epy1/0, = {(0 4) 7el/Qe’“/‘*}.

Proof  For any double coset & denote by deg(Z) its degree, i.e. the number of
right cosets contained in 9. Using (n,2N) = 1 we can check that

deg(Ao(4N) { (é 1;) ,n1/2} Ao(AN)) = [To(4N) : To(ANR2)].

Furthermore, by (6.27), we see that
deg(Ao(4N)EAo(4N)) = 4,

so the degree of the left-hand side of (9.67) is equal to 4[I(4N) : Ih(4Nn?)]. On the
other hand we can verify that

Ao(4N) Nado(4N)a™t = Ag(16Nn?),

where o = {(g 47112> ,e”i/4n1/2}. So the degree of the right-hand side of (9.67) is

equal to

[[0(4N) : To(16Nn?)] = [[4(4Nn?) : To(16Nn?)|[I(4N) : Io(4Nn?)]
= 4[I4(4N) : I'h(4Nn?)].

Therefore the degree of the expressions on both sides of (9.67) are equal. Since

{((1) 732)7”1/2}5:{(3 47112>’em/4n1/2}’

the set on the right of (9.67) is contained in the set on the left, the desired equality
holds. ]

From Lemma 9.12 we see that

%(—1)[@“)/21\/% (Tk+1/274N(n2)Q7 S(4N, k+1/2, <§> ))
:cn,ktr<[Ao(4N)(cmn1/2)AO(4N)], S<4N, kE41/2, (§> ))

L . 41
where ¢, = énk 2(1 = (=1)*) and C,, = (0 4n2>'
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We shall now apply the Eichler-Selberg trace formula proved in Section 9.2. We
suppose k > 1. It C = D1C,, Dy with D1, Dy € I'H(4N) we put C* = D5 (C,,, n1/2)D§.
Then it is easy to verify that the map C +— C* is a well-defined bijection between
I'0(4N)C, TH(4N) and Ag(4N)(Cp, n'/?)Ag(4N). For C € GLF(R) we denote by
Iy(4N)e = {D € I',(4N)|D~1CD = C} the stabilizer of C in I'1(4N), and for a cusp
r € QU {ico} we write Ag(4N) () = {D* € Ag(4N)|Dx = z}.

Two elements C' and C’ in ['4(4N)C,, [1(4N) are equivalent if one of the following
conditions is satisfied:

(1) There exists D € I'y(4N) with ¢’ = D=1CD;

(2) C, C" are parabolic and there exists D € I'((4N) and D’ € I(4N)c with
C'=D7'D'CD.

Then according to S. Niwa, 1977 we have

é(_1)[<k+1>/21\/itr<Tk+1/2,4N(n2), S(4N, k+1/2, <4> )) = cn,k(zé:l(c’) + 7«>,

where the summation extends over all classes C' in I'y(4N)C, Ih(4N) modulo the
equivalence relation defined above and the complex number I(C') is dependent only
on the class of C' and is given as follows:

(1) If C is scalar, C* = { (8 2) ,77}, one has

1 _
I(C) = (k- I/Z)M / y~2dady.
To(4N)\H

(2) If C is elliptic, C* = { ((cl Z) ,tc(cz—i-d)l/2}7 one has

I(C) = (octep**(p—p) 7",

where p and 7 are the eigenvalues of C' with sgn(Im(p)) = sgn(c) and o¢ is the order
of I'y(4N)c.

(3) If C is hyperbolic and its fixed points are not cusps of I'x(4N), I(C) = 0.

(4) If C is hyperbolic and its fixed points are cusps of I'y(4N), let G be the
group consisting of pairs (A, ¢(z)), where A € GL3 (R) and ¢(z) is a complex-valued
holomorphic function on the upper half-plane satisfying |¢(z)| = (det(A))~"4|cz +
d|*/? (please see Section 4.1), choose § € SG (the subset of G of clements whose first

components have determinant 1) such that §~1C*§ = { (6\ /(\),> ,n} with [N] < ||

Then Ly B
1o=,((x-1)) -
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(5) If C is parabolic with fixed point z € Q U {ico}, there exists 6 € 5@7 X eR,
p € Cand p € {1} such that 5{p ((1) )1(> ,u}dl generates Ag(4N)y/{(£1,1)}.

If 6-1C*6 = { (8 a%j() 717} and p = e~ 2" (0 < a < 1), one has
1 —2miua :
—3.¢ (1-2a), ifue?,
1e)=4 7

——e

o el _jcot(ru)), ifugZ.

Finally
0, if k> 1,
{ ([AO(4N)(C n=1/2) Ag(4N)], G(4N, 1/27id.))  ifk=1,

where G(4N,1/2,id.) is the space of modular forms of weight 1/2 on I'h(4N).
Therefore we can write

Cn,k<ZI(C)+T> =A; +As+ As + Ay + As,

where A;, Az, Az and Ay is ¢, times the contribution from the scalar, elliptic,
hyperbolic and parabolic elements, respectively, and As = ¢, ;7.
Since the upper right entry of a matrix in I'o(4N)Cp I (4N) is always odd, I'o(4N)

- Cplo(4N) contains no scalar matrices and so Ay = 0.

a b

Computation of Ay For an elliptic matrix C' = (c d) € IY(AN)CpITh(4N)

put ¢’ = (_ac _db) and J(C) = I(C) + I(C"). Then

Ay =cop »_J(C)
c

where the summation extends over those elliptic I'((4N)—conjugacy classes C for
which the lower left entry of C is positive. Now the fact that C' € IH(4N)C,1o(4N)
implies ¢ = 0(mod 4) and f odd. Since C is primitive, we have (f,n) = 1. Therefore

Ay =cnpy WY DY C Z<4)J BTAB), (9.68)
¢ I A

we may write

1) 2
where Z( extends over t € Z with [t] < 8n,t =0 (mod 4) and where Z( : extends

: 2| (42 2 . (3
over f € Nwith f2|(¢t*—64n*) and (f,2n) = 1; for ¢t and f fixed A in Z runs over a



9.3 Trace Formula on the Space Sk41,2(N, x) 353

set of representatives of I'(1)-conjugacy classes of primitive matrices in GL2(Z) with

. . . o . (4
determinant 16n2, invariants ¢t and f and lower left entry positive, and B in Z

runs over those elements in I'(1)/I5(4N) for which B~YAB € I'/(4N)C,, IH(4N).

¢ Z with ¢ > 0 representing
aclass in I'1(4N)Cp,Iv(4N). By Lemma 5.21 resp. Lemma 5.22 we may suppose that

Now we want to compute J(C) for a matrix C' =

b 12 — 64n?
d>0, (bd) =1, (7#) =1 (9.69)
and that 1o
_4 -
C*:{(i 2)44”)‘”2(?) (b) <cz+d)1/2}.
Put
t+i\/64n2—t2
p=—"————.
2

Then it is easily checked that

pH/Ek — (
J(C) = c;}%n%—lf’“ay (Z) (1 - (f) (-1)’“1)

Since (f,t+8n,t—8n) = 1 we can decompose f as f = f1fo with fZ|(t+8n), f2](t—8n)
and (¢t + 8n, fa) = (t — 8n, f1) = 1. Then noticing d > 0,b odd and (d,b/f) =
((t +8n)/f2,b/f) =1 we find

() - (50

(o77) = (7™
Similarly

(i7) = (=77%)
and

()= () (2)-(2")

Thus we see that
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()= (F)
(t —f18n> (t—;jn) ((t —bs/y})/fz)
V8n —t+iyV8n+t M

)\t;n - 4 5 pk+1/2(t7n) =

Finally put

Then A7, = —p/4, A2, ,, = p/4 and

(-G
= _p2k-19-2k ((f) \/%pqu/g(t,n) + \/S;_Hpkﬂ/z(—t,n)) . (9.71)

_ 2
Substituting (9.70) and (9.71) into (9.69) and setting n(C) = <(8nb/?/fz>, we

obtain

-1
J(C) =~ C%k ((8nf1— t) (—8;2— t) \/%pk+l/2(t’ n)géln(c)
t—28 t+8 1 )
+( f1 n)( —;2 n) \/mpk+l/2(—t7n)gcln(_c)> .

If we assume that the matrices B~'AB in (9.68) satisfy the conditions (9.69), sub-
stitute the expression in terms of N,n,t and f found for J(B~1AB) into (9.68) and
observe that op-14p equals the order w4 of the I'(1)-stabilizer of A, we see that

T
x Y By Z B~'AB) )
A

Now recall that the association

A FA(X)Y) = 7 y

is a bijective correspondence between the set By ¢, of integral elliptic primitive ma-

l(—bx2+(a—d))ﬁ/+cy2), A:(ﬁ b)

trices with determinant 16n?, invariants ¢ and f and lower left entry positive and
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the set of positive definitive primitive integral binary quadratic forms of discriminant

t2 — 64n?
12

action of I'(1) on quadratic forms.

—d)f'+ /(2 —64n2)f2
For A € B, ., denote by a4 the ideal bf~'Z & (e—d)f” + 2( n?)f 7,

with (f,2n) = 1, and that conjugation by I'(1) corresponds to the usual

corresponding to F4 and contained in the order O of discriminant (> — 64n?)/f>
of the imaginary quadratic field Q(1/(t?2 — 64n2)f~2). Then the norm 9(aa) of au
equals —b/ f, hence

n(B'AB) = ((8" b_/?/f§> = ((&;{—(3{5) = ¥(aa),

where ¢ = (g, _y), 218 the genus character of the ideal class group of O corresponding

.. 2_64n? 8n—t—-8n—t _t?—64n?
to the decomposition = 5— of into a product of two

f? A f?

discriminants.
If (8n —t)/f2 is not a perfect square, then ¢ is a non-trivial character, and for
any set of representatives {A,} for I'(1)\By,r,» we have

Z @wilp(aa,) =
v

hence also

3Gy 12(4) B'AB) =0,
A

since the number of B € I'(1)/Iy(4N) such that B~'AB € I'y(4N)C,,I,(4N) depends
only on N, n, t and f (cf. Lemma 5.23).

On the other hand, if (8n —t)/f3 is a perfect square, then n(B~1AB) = 1, so we
obtain

1 t t? — 64n?
E G 1 E (4) 1AB - SN[ ——
- Ple (4,f,n, >h< 12 )’

where u is defined as in Lemma 5.23 and h'(m) is the number of I'(1)-equivalence
classes of positive definite primitive integral binary quadratic forms of discriminant m
and a form equivalent to X2 + Y2 (resp.X? + XY + Y?) is counted with multiplicity
1/2 (resp. 1/3).

Now if 8n — t = 452 with s € N, then

8n +t=4(4n—s%), t*—64n* = 165%(s* — 4n)

and the condition [t| < 8n is equivalent to |s| < 2v/n, and f2|(t> — 64n?) means
f2|(s% — 4n), fa|s. Put
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\2k-1 _sz—l

A=A
with A, X the solutions of X2 — sX 4+ n = 0 we may therefore rewrite Ay as

A2:_1,i Z p2k(57n) Z Z/,L(QR—SQ’flf27n27N)

p2k(57 n) =

3 2s
|s|<2v/n, fZ|s%—4n, f2|s
s>0 (f1,2n)=1
82—4n> ( s s —4n>
X % . 9.72
( f2 37 672)

Now we want to compute the sum over fs in (9.72). We claim that

) s2 —4dn\ , s s? —4n
%ZU(Qn—SQ,f1f2vn2’N)( f2 )h( 1272 >

fals

_ (z ; (4) )ms, Fum N (2 — 4n)/ 12). (9.73)

We shall give the proof of (9.73) only for the case N = 1 and N = [ an odd prime.
(The general case is of course similar.)

=m]] (1 - () p‘1> W' (D), (9.74)

plm

Using the formula

where D is a fundamental discriminant and m € N, one first checks that (please
compare with S. Niwa, 1977)

LR () (0577 ~(oe (oo, o

which proves (9.73) for N = 1.

Next consider N = [. Write s =[7S with [ { S and v > 0. If v = 0, then (9.73)
again follows immediately from (9.75). If v > 1, then [ { (s® — 4n), hence [ { f1, and
by definition of i, the left-hand side of (9.73) equals

1 S2 —4n 5% s%2 —dn
n {1612 =
2008 2 ( f2 ) ( 3 f )

f2|S
s2 —4n s2 —4n 5?2 —dn
+l+1) Y ( - )Z( )h(mﬁ7 v )
1<v<y ! f21S fa f2 fi

By (9.74) we have for 0 < v <«

52 52 —4n s2 —4n S2 52 —4n
B’ (161272 ) =V (1 — ( ) l—1> h' (16) .
( 2 ! 3’7
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Since
2 _ 2 _
l‘”(l” (1—(8 l4">1—1>+(l+1) (1—(5 l4n> z—1>
52 —4n — 52 —4n
x>y ( T )m +(l+1)( 5 ))
1<rgy—1
2 _
:1+(8 4n>
l
and

EE () (5572 e (e,

f218

we see that the left-hand side of (9.73) is

(2 () (+ (%)) W — an)/f2)

as was to be proved.
Substituting now (9.73) into (9.72) we find

Ay :% (2+ (i)) Y palsn)

|s|<2y/m,s>0 ( . )
9.76
x Yo W —4n)/f)uls, fr.n,N).
fils®—4n,
(f1,2n)=1
Computation of A3 For a hyperbolic matrix C = (i Z) € I[h(AN)C,IH(4N),

put C' = (—ac _db> and J(C) = I(C) + I(C"). If C runs through a set of repre-

sentatives of hyperbolic I'y(4N)-conjugacy classes in I'o(4N)Cy,Io(4N), whose fixed
points are cusps of IH(4N), then so does C’. Noticing I(C) = I(—C) we therefore
have

Az =cor Yy J(C),
¢

where the sum is over all hyperbolic I'H(4N)-conjugacy classes C such that C fixes a
cusp of I'H(4N) and ¢ > 0.

Now
(G 1) e

1/1/:16712,0<V’<V,O§T<V—1/}
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is a set of representatives of I'(1)-conjugacy classes of integral hyperbolic matrices with
determinant 16n2 and positive trace, whose fixed points are cusps of I'(1). Hence

/
_ (1) 1 14 T
Ay =en 3 ZJ(B (0 ") B).
v,V T B
= . e, ) ,

where v, V', 7 in Z run over integers satisfying v’ = 16n°, 0 < v <v,0< 7 <
v—v', (v—7/,7,2n) = 1 and for v, v/ and 7 fixed, B runs over a set of representatives

!
v

of I'(1)/Iy(4N) such that B~1 ( 0

Z) B is in Iy(4N)C, Io(4N).

Let C = (Z fl) € I'v(4N)C,I9(4N) be a hyperbolic matrix with d > 0, (b,d) =
/
Land (b/f, (#*—64n?)/f?) = 1 (cf. Lemma 5.22). Suppose that C' = B! (VO Z) B

with B € T'(1). For B = (2 ;) put

5= {(é /= ’”) 71} (B, (vz +w)'/?}.

Then by Lemma 5.21

i {(§ wronn() (O}

From this one can easily see that

9—2k+2 [ /k=1/2 /4
_ _ 1 e
J(C) - ka 3 v—1u! (b) .

Arguing now as in the elliptic case we find that
/
(1) -1 (Vv T _
> s(e (5 1)p)-0

unless v + v/ + 8n is a perfect square, and that in the latter case
(Vv T / / 2
ZJ B 0 b B =pu(v+v)/4,(v-1",7),n°, N). (9.77)
B

Since for a divisor b of v — v/ there are ¢((v — v')/b) different values of 7 satisfying
0<7<v—v and b= (v—1/,7), and since (v — v/, 7,2n) = 1, we can rewrite (9.77)

as 2.7 (B‘I(B/ Z)B)Z > 6w =)Dl +v')/4,b,0% N).

blv—v/,
(b,2n)=1
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Now if v+ 1/ + 8n =4s? and v — v/ — 8n = 472 with r, s € N, define A\, \' € Z by
s=A+XN,r=X—X. Then v/ = 4)\?, v = 4)\? and the conditions vv/ = 16n? resp.
0 < V' < v are equivalent to AN = n resp. 0 < X' < A. Thus we have

1 )\/21{:71
As=—2 3 Hm D SO NDBUOE + X2 b A N).  (978)
0<N <A, bIAZ—\"2,
M A=n (b,2n)=1

Now one can easily check the formula for 0 < X < A\, AN =n

1 / , (A= N, n))
D A2 = N2 /D) (A2 + N2 b, n2, N) = DA T A oy
2()\2 )\12) b|()\27)\/2),d)(( )/ )/Jl( ! ) ()\ )‘/7”) O.O( )

(b,2n)=1

here o¢(NN) denotes the number of positive divisors of N. Substituting the above
identity into (9.78) we obtain

ao(NV) NZETP((A = X'y n))

Az = A=N.n) (9.79)

0<N <,
AN =n

Computation of A; Since N is odd and square-free, the cusp of I'H(4N) are
represented by the numbers 1/¢, where ¢ runs over all positive divisors of 4N. For

14+t
—t

1/t in Ag(4N)/{+1,1} is generated by

sl T —t2T —4 \7V? 5
t 0 1)'\1+t7)\14+tT ¢

1T T —2T —4 N\, 12
_{<_th 1+tT>’<1+tT><1+tT) (=822 +144T)V/2\ |

where T is the least natural number such that 7 = 0 (mod 4N).
Let C € GL2(Z) be a parabolic matrix with det C = 16n? and with fixed point

1/t. Then
a1 f4n T _ (4n—tT T
C=4 (0 4n>At_( —t2r 4n—|—tT>

with some 7 € Z. Using Lemma 5.20 one can easily see that C is in I9(4N)C,, I[H(4N)
if and only if t = 0( mod 4),T = 4N/t and 7 = 4Nv/t with some v € Z, (v,4N) =
1. Thus a set of representatives of parabolic matrices in IH(4N)C,,IH(4N) for the

such a t put 4; = ( _11) and 0 = {Ay, (—tz + 1)1/2}. Then the stabilizer of

equivalence relation defined above is formed by the matrices

o dn — 4Nw Nu/t
vt =\ —16Nvt 4n+4Nv )’
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where t runs over all positive divisors of N and v runs over a reduced residue system
mod 4n, and we have u = uy+ = v/4n and o = ay, ¢+ = 0.
Now note that (Nv/t,4n + 4Nv) = 1. Hence if we assume v > 0 one sees from

Lemma 5.21 that
B B An g\ R
=Tt = Nuv/t) \ Nv/t

and if we suppose 4n — 4Nv < 0 we have

N—v,—t = Nu,t-
Since Uyt = U_y,—¢ and cot is an odd function it follows

1
'r]v,t7

I(Cyi) +I(C_y ) = —

hence

Cn,k 1
Ay =58 D> (I(Cop) +I(Cy 1) =3 z;

v,t

nvt

If we replace ¢ with N/t and substitute the value of 7, ; we find

e ooz () T (5)E)

tIN v mod 4n

But the sum over v equals

3(vn)(1 + (=1)*)d(n),

where §(z) is 1 or 0 according as z € Z or not. Thus

Ay = — k=25 ().

Using ¢(m?) = me(m)( for m € Z) we obtain the final formula

1
Ag = = n* (oo (V). (9.80)
Computation of A5 Let k = 1. Then
As = coatr ([Ao(4N){C ,n~ Y2} Ag(4N)], G(4N, 1/2,id.)) .

We have by Lemma 9.12

AoamCton 2 aafam] = |0 { () ]) o2} duam)

faan(s )]
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and the first factor on the right equals

[Ao(zuv) {(é 7‘32> ,n1/2} AO(4N)] = 032, gy 4y (n2).

Consequently

1+i -
4, = 200, (T1/2,4N(n2> [A0(4N) {(3 41) 71} A0(4N)] [GUN, 1/2,id.)> -
But by Section 7.2,
G(4N,1/2,id.) = C9,

where 0(z) = Z q”2 is the standard theta function. Noticing
nez

nOIT 2 4 (n?) = Ul(n)9’ [A0(4N) { (3 _41) 7 1} A0(4N)] - 9(2 - i) To
and )
9(2 — 4) Tr = 2(1 —1)0(2).
We conclude that 5
A5 = ggl(n)
Thus
0, if k>1,
As =< 2 9.81
° {301(71), if k=1. (9.81)

Summarizing we have proved up to now that
(_1)[(k+1)/2]
6

with Ay, A3, Ay and Aj given by (9.76), (9.79), (9.80) and (9.81), respectively. Now
let us consider the second summand of (9.66). As Niwa proved that for k > 2

V2tr(Thy1 /248 (%)@, S(AN, k +1/2,id.)) = As + As + Ay + As

t1(Thr1 joan (n2), SUN, k + 1/2,id.)) = tr(Top on (n), S(2N, 2k,id.)).  (9.82)

Identity (9.82) is also correct for k = 1, as one sees as above using G(4N,1/2,id.) =
Ch.

Now we have from Theorem 9.5

tr(Tokan(n), S(2N, 2k,id.)) = A} + AL + AL + A) + AL

AL =6 (%) W 11 (1 + %) (9.83)

pI2N

with
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2 _
A/Q = _% Z p?k(svn) Z h (S 4n> ;U’(Sﬂ f,?%QN), (984)

2
|sl<2vn £|s*—4n, /
(s2—4n)/f%=0,1 mod 4,
(fim)=1
R (CEPO))
Al = —0p(2N ’
1
A = —ink*1¢(\/ﬁ)ao(2N) (9.86)
and .
A’ _{0, ifk>1, (0.87)
> \oi(n), ifk=1. '

1 1 1 1
Now §A’1, the sum Ay + §A’2,A3 + §A§ and Ay + §Aﬁl are also given by the
right hand side of (9.83)-(9.86), respectively, except that 2N has to be replaced by

N. Furthermore

1 0, if k> 1,

oi(n), ifk=1.
So we see again that
1 /
> Aty > 4
2<v<h 1<v<s

is exactly the trace of To n(n) on S(2N,2k,id.). Thus we have proved the theorem.
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Chapter 10

Integers Represented by Positive Definite
Quadratic Forms

10.1 Theta Function of a Positive Definite Quadratic Form
and Its Values at Cusp Points
In the first chapter we introduced the theta function of a positive definite quadratic
form and discussed its transformation formula under the action of the modular group.
We want now to show that the theta function is a modular form.
Let f(z1,---,xk) be a positive definite quadratic form with integral coefficients.
Define the matrix A of f(z1, - ,zk) as follows:

2
A= of .
aftiaxj

It is clear that A is a symmetric matrix with even diagonal entries. Put

0r(z) = Z e(zmAm*/2), zeH.
meZk
It is clear that 67(z) is a holomorphic function on H. Let N be the level of f(x1,-- - , %),
i.e., the minimal positive integer NV such that NA~! is an integral matrix with even
diagonal entries. Set

<2detA>, if & is odd,

X= ((_1)'6/.2 detA)

, if k is even.
Theorem 10.1  0¢(z) is in G(N,k/2,x).

Proof By the results in Chapter 1 we need only to consider the behavior of 6¢(z)
at the cusp points of I'g(V). It is clear that

lim 6f(2) =1,

Z—100

i.e., 8¢(2) is holomorphic at ico. Let a/c be any cusp point with ¢ > 0. Take
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p= (Z Z) € SLy(Z), then p(co) = a/c. We have that

0f(2) (Zjic[;) = Z e(azAz™ /2¢) Z e(—(m+z/c)A(m +x/c)T )2(2 + d/c)),

z mod ¢ mezk
(10.1)
where z € ZF. By the proof of Proposition 1.2 we see that

Z e(—(z+m)A(z+m)"/2z2) = (—iz)*/?(det A)~1/? Z e(zmAtmT )24 2-mT),

meZk mezk

where 2 € R¥. Replacing = by z/c in the above equality we get

cz+d
meZkF

X Z e(ax Azt /2c + x-m" Jc + dmA™Im! /2¢),

z mod ¢

hence

lim (z+d/c)_k/29f(az+b> = (—i)*/?(det A)~1/2 Z e(axAzT /2¢), (10.2)

Z—100 cz + d
x mod ¢
i.e., 87(2) is holomorphic at the cusp point a/c. This completes the proof. |
Let f1 = fi(x1, -+, xx) and fo = fo(x1, - -+, zk) be two positive definite quadratic

forms with integral coefficients, A; and As the corresponding matrices of f; and fs
respectively. f1 and fs are called equivalent if there exists an integral matrix S with
determinant +1 such that SA;ST = Ay. f1 and fo are called equivalent over the
real field R if there exists a real invertible matrix S, such that S,A4;SF = As. Let p
be a prime and take A;, Ay as matrices over the finite field F,, := Z/pZ. f; and fo
are called equivalent over I, if there exists an invertible matrix S, on IF,, such that
SpAlS];F = A,. f1 and f5 are called in the same genus if f; and fy are equivalent over
R and over F, for any prime p. It is clear that f; and f, are in the same genus if
they are equivalent. It can be proved that there are only finite equivalence classes in
a genus.

Let f = f(z1, 2, -+, xx) be a positive definite quadratic form, and f1, fa, - - -,
frn be a full system of representations of all different classes in the genus of f. Let
n be an arbitrary non-negative integer, and r(f;,n) denote the number of integral
solutions of the equation f;(z) = n. It is difficult to find an analytical expression for
the number 7(f;,n) in general cases.
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Denote by My(Z) the set of all k x k integral matrices. Put O(f) = #{S €
My(Z)|SAST = A}, define the theta function @ of the genus of f:

O(gen. f, z) = (é O(li)>_1 " 0y,(2)

=1

Then
O(gen.f, 2) Zr gen. f, n)exp{2minz}
n=0

h 1 h oo
Z(O Z)> ZZ éf(z}z) exp{2minz},

i=1 i=1 n=0

it follows that

1k (fim)
i =3 (ols) %0
i.e., the number r(gen.f,n) is a mean of the numbers r(f;,n), (n > 0) when k > 5
This result is called Siegel theorem C.L.Siegel, 1966, which is equivalent to the fact
that the function is an Eisenstein series of the weight £/2. A.N. Andrianov, 1980
obtained the same conclusion of Siegel theorem in the case of k = 4. Finally R.
Schulze, 1984 reduced the same result of Siegel theorem in the case of £ = 3. He proved
that the function 6(gen.f, z) is an Eisenstein series of the weight 3/2 when k = 3.
Under certain conditions, if the function 6(gen. f, z) belongs to the space £(4D, 3/2, x1)
or £(8D,3/2,x;) then it can be represented as a linear combination of the basis
functions for these spaces given in the Theorem 7.7 and Theorem 7.8 respectively.
The coefficients of the linear combination can be determined using the values of the
function f(gen.f, z), thus an analytic expression for the number r(gen.f,n) can be
reduced in this way.

The Scholze-Pillot’s Proof for Siegel theorem will be described below.

Let f1 and f5 be in the same genus. Then the corresponding matrices of f; and
f2 have the same determinant. If a/c is a cusp point with ¢ > 0, then there exists an
integral matrix S such that (det S,2c) = 1 and SA;ST = Ay (mod 2¢) by the above
definitions and the Chinese remainder theorem. This shows that ¢, (z) and 6y, (z)
have the same value at the cusp point a/c by (10.2). Hence 0y, (z) — 6y,(2) is a cusp
from.

Theorem 10.2 Let p be a prime, pt N. Set

PP, if 21k,

A = —1)¥/2det A
D pk_g +2pk/2—1 (%) +1, Zf2|k
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Then
O(gen.f, 2)|T(p*) = Apb(gen.f, 2),
where T(p?) is the Hecke operator on the space G(N,k/2,x).
Proof Please see R. Schulze, 1984 and P. Ponomarev, 1981. |
Theorem 10.3  The function 6(gen.f, z) is in the space E(N,k/2,x).

Proof We assume first that £ > 4 is an even. Since
G(N,k/2,x) = E(N,k/2,x) © S(N, k/2, ),
there exist two functions ¢;(z) and g2(z) such that

O(gen.f,z) = g1(2) + g2(2),  g1(2) € S(N,k/2,x), g2(2) € E(N, k/2,x).

Let g1(2) = Z c(n)e(nz),c(ng) # 0. For any p { N, by Theorem 10.2, we see that

n=no

91(2)|T(p?) = Apgi1(2), and hence
Apc(no) = c(nop®) + x(p) (_;O> a(ng).

By Lemma 7.24 we have that c(n) = O(n*/4), so \, = O(p*/?). If k > 6, we see that
Ay ~ p*=2 (p — oo) which contradicts \, = O(p*/?). Hence we have g;(z) = 0, which
shows the theorem. If k = 4, we can prove the theorem similarly in terms of a more
precise estimation ¢(n) = O(n*/*~1/%) proved by R.A. Rankin, 1939. This shows the
theorem for k > 4 even.

Now assume that k is an odd. For & > 5 we can prove the theorem by a similar
method as for the case k > 6 an even. Now let k = 3 and V := S(NV,3/2,x) 7T be
as in Theorem 8.2. Denote by V* the orthogonal complement of V in S(N,3/2,x).
Then we have

O(gen.f,z) =g1+g2+9gs, 1€V, g2€ Vi, gse E(N,3/2,%).

By Theorem 10.2 we see that g:|T(p?) = (p+1)g; forany pt N and i = 1,2, 3. But by
the definition of T' we know that g7 is a finite linear combination of functions h(tz; 1))

—1
with x = ¢ (—) Hence we have

—1
BTG =) (1) (o + DGz 0).
There must be a prime p such that

h(tz;9)|T(p?) = = (p + 1)h(tz; )
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holds for all finite functions h(tz;%), so that g (2)|T(p?) = —(p+1)g1, from which we
get g1 = 0 since we have also g1 (2)|T(p?) = (p+1)g1. g2(z) is mapped in S(N/2,2,id.)
under the Shimura lifting S and the image S(gz2) of g2 is also an eigenfunction of T(p)
with eigenvalue p + 1. In terms of Rankin’s estimation c¢(n) = O(n*/®) we can show

that go = 0. Therefore 6(gen.f, z) € E(N,3/2,x). This completes the proof. |
Let f(z1,z2, -+ ,xk) be a positive definite quadratic form with integral coeffi-
cients. Put

0r(z) = Z e(zmAmY/2), z€H,
meZF

O(f) = #{S € My,(Z)|SAS™ = A},

end2) (Zsz ) g oy

where the f; run over a complete set of representatives of the equivalence classes in

the genus of f.
Suppose that N is the level of f, i.e.,

N = min{ N|NA~!is integral and the diagonal entries are even, N positive integer}.

Let now S(N) denote a complete set of representatives of equivalence classes of
cusp points for the group IoH(N). In fact we can choose S(N) = {d/c|¢|N,d €
(Z/(c,N/c)Z)" and (d,c) = 1}.
We want to compute the values of §;(z) at cusp points for IH(V). It is clear that
lim 6;(z) =1.

Z2—100

Now suppose that a/c is a cusp point, where (a,c) = 1,¢|N,a € (Z/(c,N/c)Z)" .

a b

Choose a matrix v = ( e d ) € SLy(Z), then ~(ico) = a/e. So in terms of the

equality (10.2) we obtain
_ —k/2 az+b
ViOr.a/0) = lim (e )20y (£
= (—1)"?(det A)~V/2cR/2 Z e(axAz™ /2¢)

x mod ¢

This shows that in order to get the values of 0¢(z) at cusp points we only need to
evaluate the Gauss sum

Z e(azAz™ /2¢)

z mod ¢

where ¢, a are co-prime positive integers.
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Now we will calculate the Gauss sum

G(a,c) := Z e(axAz" /2¢), (c,a) = 1.

z mod ¢

Lemma 10.1 If (¢,d) =1, then

G(a,cc’) = G(ac,)G(ad, c).

Proof Letx = cy+ 'z, then
G(a,cc') = Z e(azAzT /2¢c)

z mod cc’

y mod ¢’ z mod ¢

Z Z e(a(cy + ¢ 2)A(cy + ¢ 2)T /2ec)
Z e(acyAyT /2¢) Z e(ac’ zAz" /2¢)

y mod ¢’ z mod ¢

= Glac,d)Glad,c).

This completes the proof.

|

By Lemma 10.1, we only need to evaluate the Gauss sum G(a,p™) where pta a

prime and m is a positive integer.

We first assume that p is an odd prime. Then there exists an invertible matrix S

over the ring Z, of p-adic integers such that

SAST = diag{a1p”, ap™, - -

B akpﬂk }a

where a;,detS € Z;, 0 < 81 < 2 < -+ < B are rational integers. Let l,, =

#{Bi|Bi = m}.

Hence

G(a,p™) = Z e(ax Azt /2p™)

z mod p™

k
= Z e (ax (@ aip6i> J:T/me>
x mod p™ i=1

k

= Z H e(ac;p®ix?/2p™)

z=(x1,,xr) mod p™ i=1

=p™ 11 > elaaia?/pm )

Bi<m \ x mod p™

(where o, = 27 a; mod p™#)

=" I | X D elaaily+pmPz)?pm %)

Bi<m \ z mod pPi y mod p™—Pi
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=" [T [ > Do elaaiy?/pm %)

Bi<m \ z mod pPi y mod p™~Fi

— pmlnl H pﬁz S(aa;7pm7ﬁ1)

Bi<m
) ac: m=—8;
=pm I »” (mlﬁi gD 2
Bi<m p
!/
I ao; m+B;
:pm H ( m_z[;i>5pmﬁip 2,
Bi<m p
where S(a,p®) = Z e(az®/pP) is the classical Gauss sum, and e4 = 1 or i
= mod pP

according to d =1 or 3 (mod 4) respectively.
Now consider the case p = 2. In this case, there exists an invertible matrix S over
the ring Zo of 2-adic integers such that

L b 0 1)\ A2 2 1
T 95§ ot Ug
SAST =P a2 @ﬂJQJ(l 0)@%2 (1 2)’
i=1 j=1 =1

where ay, B, vs € Z3, s; 2 1, tj, us > 0 are rational integers.
Hence we have

G(a,2™)= Z e(axAxT /2FT1)

x mod 2™

l I
SPRICI(- TR G
i=1 j=1

x mod 2™
2 2 1

Ug T /0k+1
(] 3))12),

which implies that we only need to evaluate the following kinds of Gauss sums:

G1i(aq;,2™) = Z e(acyz?/2Y),

x mod 2™

G2,t(a5ja2m) = Z e(aﬁj‘ry/zt)v

(z,y) mod 2™

Gar(ays,2™) = > e(ays(a® +ay +y*)/2"),

(z,y) mod 2™

where t is a positive integer and t < m.

Now we compute the above Gauss sums:
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Gi(aq;,2™) = Z e(aaix2/2t)
z mod 2™
Z Z e(aa;(y +2'2)? /2%

y mod 2t z mod 2m—t

Z Z e(aciy?/2Y) = 28718 (aay, 2Y)
z mod 2™t y mod 2¢

0, ift=1,
={ (14i%)2m=2  if ¢ is even,

t—1 niao,

2"~ "7 e 4, ift>1andodd.

Ga(aB;,2™) = Z e(aBjzy/2") = Z Z e(aBjzy/2")

(z,y) mod 2™ z mod 2™ y mod 2™
Z szt Z e(aﬂjxy/Qt) — 2771,775 Z 2t — 22m7t’
« mod 2™ y mod 2¢ z mod 2™,
2t |z
Gai(a75,2™) = > e(avs(@® +ay+y°)/2")
(z,y) mod 2™

= Y ) elavs@® +ay+y7)/2"

z mod 2™ y mod 2™

Z e(aysxz? /2 Z e(ays(zy +y%)/2")

x mod 2™ y mod 2™
2 /ot
= E e(aysz®/2%) g E
z mod 2™ z mod 2™~y mod 2t

e(ays(z(y +2%2) + (y +2'2)%)/2")

= Z e(avysxz? /2 Z Z e(avs(zy +4*)/2")

z mod 2™ z mod 2™m~—* y mod 2t

—2m Y elana?/2) Y elava(ay +y7)/2)

x mod 2™ y mod 2t

— 92(m—t) Z e(arvysz?/2Y) Z e(avs(zy +y°)/2").

z mod 2t y mod 2t

Now let w = [%]7 then

> elayslay +y?)/2Y)

y mod 2t

S Y elavlalut20) + (u+2v0)%)/2)

u mod 2% v mod 2t—w

Z e(arys(zu +u?)/2) Z e(ays(z + 2u)v/217Y)

u mod 2% v mod 2t—w
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= Z 27e(arys (zu 4 u?)/2Y).
u mod 2%,
207 | (2 4-2u)
Therefore, we obtain

GS,t(a’y‘Sv zm)
=227 N e(avea®/2h) Y 27 e(ays(au + u?) /2

z mod 2¢ w mod 2%,
21 (4-2u)
= 2m—t-w Z e(aysu®/2) Z e(ays(zu + 22)/2%)
u mod 2% z mod 2,

z+2u=0(21"")

_ 22m7t7w Z e(a,ysu2/2t) Z

u mod 2% y mod 2%

e(ays((—2u + 27y u + (—2u + 217y)?) /2Y)

= g2m—i~w Z e(3arysu?/2") Z e(—3aysyu/2%)e(ays 22w y2 /21,

u mod 2w y mod 2%

t+1

Now, if t = 2¢ is even, then w = [ 5

Therefore we get

Gap(ays,2™) =227 N~ e(Bayu?/2) Y e(—3avsyu/2Y)

u mod 2w y mod 2%

= 22m~—t-w Z 2%e(3aysu?/2")
u  mod 2%,
2" |u

— 22m7t

t+1

371

] =g, and t —w = g, 22(t-w)y2 /9t — 42,

Ift = 2g+1is odd, then w = {—} =g+1,and t—w = g, 22(=w)y2 /2t = 42 /2,

2
Therefore we get

GS,t(a’y‘Sv zm)

_ 92m—t—w Z e(3a’ysu2/2t) Z e(—3a’}/syu/2w)€(a’}/sy2/2)

u mod 2w y mod 2%
= 5 /) (- L el-sanan2)
u mod 2% y mod 2%,
y isodd

+ Z e(—3avsyu/2w)>

y mod 2%,
yiseven
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= grmot-w $° e(3avsu2/2t)(— > e(—3avayu/2v)

u mod 2w y mod 2%
22 Y el-gan/2)
y mod 2V,
yiseven
= —2¥m—t-w Z e(3aysu?/2") Z e(—3aysyu/2%)
u mod 2w y mod 2w
4 9¥m—tmwtl Z e(3aysu?/2") Z e(—3avysyu/2")
u mod 2% y mod 2%,
yiseven

— _ 22m7t7w Z 2w€(3a’ysu2/2t)

u mod 2%,2% |y

4 22m—tmwtl Z e(3aysu?/2") Z e(—3aysyu/2V 1)

u mod 2% y mod 2w—1
- _ 22m7t 4 22m7t7w+1 § 2’[0716(30’,}/8“2/275)
u mod 2%
gw=ljy

— _ 22m7t + 22m7t(1 + 6(3(1’}/5(21“71)2/275))

— 22m—t 4 22m—t(1 4 6(30/'}@/2))

2m—t
=—2 ,

where e(3a7s/2) = —1 since 3avs = 1 (mod 2).
Therefore we have proved

G3.i(ays,2™) = (—1)t22m~t,

Now let I, = #{si|s; = m + 1} + 2#{t;|t; > m} + 2#{us|us > m}. Finally we
have

G(a 2
bm H G1 ym+l—s; aaz; H G2m t; a’ﬁ]v ) H GS,mfus(a’Vsu2m)
s;<m+41 t;<m us<m
2mlm H Gl,m+1—si(a0¢ia2m) H 22m7(m7tj) H (_1)m7u522m7(m7us)
s;<m+1 t;<m us<m
H G1m+1-s; (ac;, 2™) H 2mts H (—1)ymTragme,
s;<m+1 t;j<m us<m

So we can compute the values of 87(z) at each cusp point.
Example 10.1 Let f(z,y) = az? + bxy + cy? be an integral primitive, positive def-
inite, binary quadratic form with fundamental discriminant D. We want to evaluate
07(z) at cusp point 1/« where a|D. Since D is a fundamental discriminant, the odd



10.1  Theta Function of a Positive Definite Quadratic Form and Its Values... 373

part of D is square free. If p|D is an odd prime, then p{ a or p 1 ¢ since f is primitive.

Hence we have
2a b 2a 0
b 2c 0 (2a)"'detA

(1) If pta, then
over Zy.

2a b 2c 0

b 2c 0 (2¢) tdetA

(2) If p{c, then

over Zy.
Therefore

pS(an,p) = <(m> epp/?, ifpfa,
G(n,p) = p

pS(en,p) = (%) ep®?,  ifpte
So for @ = p1ps - - ps| D, p; odd, we have
> > dia/ps > d;0/p;
G(I,Oé) = HG(OZ/phpi) = H (p/> 5pip?/2 = 043/2 H (p/> Epis
i=1 i=1 v i=1 v

where d§; = a or ¢ according to p; { a or p; { c. Hence

V(05,1/a) = —i(det A)"Y2a"1G(1, @)

() (Y e = () T (P2 e

i=1

We now compute the Gauss sum for p = 2.
(3)If D=10%>—4ac=1 (mod 4), and a = ¢ =1 (mod 2), then

(2; 2bc>w(§ ;>

G(n,2™) = (—-1)™2™ for any odd positive integer n.

over Zs. Therefore
(4) If D=1 (mod 4), ac =0 (mod 2), then
2a b 0 1
b 2c 1 0

G(n,2™)=2™, for any odd positive integer n.

over Zso. Therefore
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(5) If D =0 (mod 4), then 2]b. Denote b = 2V'. Tt is clear that 2{ a or 21 ¢ since
(a,b,¢) = 1. We assume that 2t a. Hence

20 b a b a 0
(% )20 2) (0 .t

over Zs. Therefore we have

G(n,2™) = G1,m(na,2™)Gy m—t(nB3,2™),

’ ’ D
where t = va(c —a"'h?) =1p(D/4), B = (c—a " 'D?)27" = a’_122+t’

and we think
Gim—t(np,2m)=2"
for any m < ¢. In particular, we know that
G(n,2) = G(n, 2" = 0.

Since D is a fundamental discriminant, t = v2(D/4) = 0 or 1 according to D = 12
or 8 (mod 16) respectively.
So for a = 2™|D, we have

V(0f,1/2™) = —i(det A)~1/227™G(1,2™)
= —(D)7227" G (0, 27) G 1 (B, 27).

In particular
V(#r,1/a) =0

for any o = 2™ |D where m =1 ort+ 1,24 a;. For a« = 2™y = 2’"Hp¢|D with
i=1
m # 1,t+ 1, we have

V(05,1/a) = —i(det A)"2a71G(1, a)
= —(D)"2a7'G(2™, a1)G(aq, 2™)

7

— _(D)_l/za_lol?/QGLm(aOél, Qm)Gl,m—t(alﬁ7 2m) H (5zz/pz> 5pi

= —(a/D)1/2273m/2G1,m(aa17 Qm)Gmet(al/Ba 2m) H (5ia/pi> Ep;-

i=1 i

O
Remark 10.1 If Dis an odd fundamental discriminant, our result is just Lemma
IV(2.3) in B.H.Gross, D.B.Zagier 1986. If D is even, our result is just Proposition 2
in I. Kiming, 1995.

Example 10.2 Let f = f(x1,--- ,x) be a positive definite quadratic form with
k odd. Suppose that the level of f is 4D with D square free odd integer. Let
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D = p1pa---p¢. Since D is square free, there exists an invertible matrix S; over Z,,
such that

T .
S;AS; = diag{oi1, 2, , s,y Qis,+1Dis 5 Qi kP }

with «; ; € Z,,,. Hence

Si ! S Si
ks, na; 1/2 k— i (T iA;
G(n,pi) =D; ° | I ( Z'g>8pipi/ =D 26;7; ( p; 1>7
K3

A

Si
where A; = Ha;g and a; , = 27'a; 4 (mod p;). Therefore for any a =
g=1

t
pr” |D,d; =0 or 1, we can evaluate
i=1

‘ + ) d;

) ) _ 5 nslAi ‘

Ge) = [Tete/m ) =TT (v Fe (S2))
i—1 T

i=1 %

Since 4D is the level of f and D square free, there exists an invertible matrix S
over Zs such that

l h 01\ 4 2 1
T _ 0a; ot Usg
545" = @ ecz" P52 ( 0! )@%2 ( > )
i=1 j=1 s=1
Since k is odd, «; appears at least one time and s; = 1,t;,us < 2. Hence we have

G(n,2) =0,

l
G(n,4) =2 [ Granas, 4) [ 27 [ (—1)22t
i=1 t5<2 us<2
l
— (_1)622a+l+2b+2c+d+e H(l + ina¢)7
i=1

where a = #{t;, us|t; = us = 2},b = #{t;[t; < 2}, ¢ = #{uslus < 2}, d = Z tj,
t;<2
e = Z us. From the above calculation we obtain the value
us <2

V(05,1/a) = (=i)*?(det A)"2a"*2G(1, a)

for any a|4D. In particular we know that V' (6,1/28) = 0 for any §|D since G(n,2) =
0 for any odd integer n. O
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10.2 The Minimal Integer Represented by a Positive Definite
Quadratic Form

We consider the following problem: for a given positive definite quadratic form f,
find an upper bound on the size for the minimal positive integer represented by f.
We first consider the case that the level of f is equal to 1. Let

1 / 1
?) QZlm (Iz+m)k’ 6.8, (103)

where (I, m) run over all pairs of integers except (0,0). By Section 7.5 we know that

Nk oo
B(:) = () + 1y PILRIGTS (10.4)
where
og(n) = ng.
d|n
In view of (o) B
_ JT1 k
Ej(z) can be expressed by the formulae
Ei(2) = ((k)Gi(2), Gi(2 —1——Zak ((n)g", k=4,6,8---.  (10.6)

In particular, we have the Bernoulli numbers:

1 1 1 5 7
Py BG—Ea Bs——%, Blo—%7 314—6

)

and hence
Ga(z) =1+240> o3(n)q",

Go(z) =1-504> a5(n)q",
Gg(n)=1+480207n q", (10.7)
Gho(z —1—264209 "

Gu(z) =1-24> o13(n)

with integral coefficients and constant 1. By the dimension formula we see that the

h}—&—lor

dimension 7y of the linear space of modular forms of weight h is equal to [ 12

h
{12} according to h £ 2 (mod 12) or h = 2 (mod 12) respectively. In particular we
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have ) )

Gy =Gs, GuGg =G, G1Gs =G, GGy =Gy, (108)

l=h—12r, +12=0,4,6,8,10, 14 '
and for the modular form -
H 1—q")
of weight 12,
17284 = G — G&.
Let
i(2)=Gi/AE) =q "+ (10.9)

be the absolute invariant, then

dj G da
A2 J_3G2 LA-Gr
z
dGy dGy
1728G4GG<2G4—3G6 e )

and the expression in the brackets is a modular form of weight 12 and indeed a cusp
form which can therefore differ from A at most by a constant factor. Comparing the
coeflicients of ¢ in the Fourier expansions, we get
dj
dlogq

= -G AL (10.10)

Let hereafter, h > 2, and hence r, > 0. The power-products G$G%, where the
exponents a, b run over all non-negative rational integer solutions of

4a+6b=nh

form a basis of the space G(1,h,id.) := G(h). It follows from this that, for every
function M € G(h), MG;i12r+l2 always belongs to G(12r — 12). Since A1 is a
modular form of weight 127 — 12, not vanishing anywhere in the interior of the upper
half-plane,

MG;i12T+12A1_T =w(f) = w, (10.11)

is an entire modular function and hence a polynomial in j with constant coefficients.
Let
T = G12T,h+2A7T (10.12)

with Fourier expansion

Th=chrq "+ +cnq " +chot - (10.13)
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and first coefficient ¢, = 1. Since
oo
A—l :q—l H(1+qn+q2n+)24’ (1014)
n=1
all the Fourier coefficients of T} turn out to be rational integers.
Theorem 10.4 Let
M =ag+ a1q + asq® + asqg® + - - (10.15)
be the Fourier series of a modular form M of weight h. Then
Cho@o + Cp1a1 + + -+ + cprar = 0.

Proof Forl=0,1,2,---, we have

A 1 4T
dz 141 dz ’

and hence, by (10.9), it has a Fourier series without constant term. Since the function

di
w defined by (10.11) is a polynomial in j, the product w—j has also a Fourier series

dz
without constant term. Because of (10.8) and (10.10), we have
1 d.] -1 Al—r A_l AT
—%w& = MGh712r+12 G14 = MGlQr_h+2 = MTh

from which the theorem follows on substituting the series (10.13) and (10.15) for T},
and M respectively. ]

Put cpo := ¢, for brevity. We have the following:
Theorem 10.5 We have ¢;, # 0.

Proof  First, consider the case h = 2 (mod 4). So that h = 2t (mod 12) with
t =1, 3, 5. Then correspondingly 12r = h—2, h+6, h+ 2, hence 12r —h+2 =0, 8§,
4 and

Gior—n+2 = Go, G5, Gy.

Since by (10.7), G4 has all its Fourier coefficients positive and the same holds for A~"
as a consequence of (10.14). We conclude from (10.12) that all the coefficients in the
expansion (10.13) are positive. Therefore the integers cpo, cp1, * - -, cpr are all positive
and in particular, ¢, = cpo > 0, i.e., ¢y # 0.

Let now h = 0 (mod 4), so that A = 4t (mod 12) with ¢ = 0, 1, 2 whence
12r =h — 4t 412, h — 12r 4+ 12 = 4t and

t
gh—12r+12 = G4y = G.
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Furthermore we have now

dj
T, = — 7‘7 Alfr -1
h G1or—h+2 Gij dlog
B B d_] 3 o djlft/S
= _G tAl r — Al r—t/3
4 dlogg t—3 dlogq

3 dGytaT) LBt =3 s dA—"
t—3 dloggq B—t)yr 1 dlogq’

hence cpg is also the constant term in the Fourier expansion of the function

Ir+t—3 5_,dA™"
(3—t)r * dlogq’

Vi, =

Because of the assumption A > 2, we see that 3r +¢ — 3 > 0. The series for Gf’l_t
begins with 1 and has again all its coefficients positive. Furthermore, by (10.14), the
coefficients of the negative powers ¢~ !, ---, ¢~" of ¢ in the derivative of A™" with
respect to log ¢ are all negative while the constant term is absent. Hence the constant

term in V}, is negative and ¢, = cpo < 0, i.e., ¢y # 0. This completes the proof. [

A most important consequence of Theorem 10.4 and Theorem 10.5 is the fact that,
for every modular form M of weight h and level 1, the constant term aq in its Fourier
expansion is determined by the r Fourier coefficients a1, -- -, a,, which comes out of
the formula

ag = c,:l(chlal + o 4 epray). (10.16)

If, in particular, ag # 0, then there must be some i (1 <4 < r) such that a; # 0. In
particular, if taking the theta function of a positive definite even unimodular quadratic
form @ in 2h variables as our M, we have that ap = 1 # 0, and hence conclude that
@ represents a positive integer n < r,(Please compare [?]).

We now want to extend Siegel’s results above to the case with level 2.

Let G(2,h) be the vector space of holomorphic modular forms of weight h for
Iv(2), r = r(2,h) := dim(G(2,h)). Then by the dimension formula we see that

h
r(2,h) =1+ {Z] for any even nonnegative number h.

We introduce some analogues of the above function T}. In order to do this, we
need some more Eisenstein series.

Put
odd( Z d*,  o(n):= Z (—1)%a*, onx(n) = Z d.
0<d|n 0<d|n 0<d|n
2td Nt(n/d)

2
Since 7(2,2) = LJ +1=1, let E, 2 be the unique normalized modular form (in
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fact, the Eisenstein series) in G(2,2) defined by

Fw _1+24Zaodd

4
Since r(2,4) = LJ +1 =2, the vector space G(2,4) is spanned by two Eisenstein

series Ep 4(z) and Eoo 4(z) with respect to the cusp points 0 and oo respectively. They
have Fourier expansions:

Eos=1+ 1620"‘“ q", EBou=)» 054(n)g
n=1 n=1
In fact, in terms of the results in Section 7.5, we can easily see that all the functions
Ew2(z) and Ep4(2), Ex 4(2) are in £(2,2,1d.) and £(2,4,1d.) respectively.
We also denote by ja = ja(2) the following modular function for I'p(2):
j ( ) E2 2Eoo 4
which is a level two analogue of j(z) for I'g(1). Finally, we introduce analogues of the
Th:
T2,h = E 2E0 4E7T4 if r= T(2 h) = O(mod 4)
Ty = E2 9Eo 4Bl if r = 7(2,h) = 2(mod 4).
We need the following;:

Lemma 10.2  The function ja is a modular function for I'o(2). It is holomorphic on
H with a simple pole at infinity and defines a bijection of H/I'y(2) onto C by passage
to the quotient.

Proof  The first two conclusions are clear. Let S: 2z — —1/zand T : z — 2+ 1 be
two linear fractional transformations. Let

F={zeH||z| > 1, |Re(z)| < 1/2}

be the fundamental domain of I'H(1). Denote by V' the closure of F'|JS(F)|JST(F),
and put F» = V[ J{ioco}. Then F; is a fundamental domain for I'y(2) which has two
I'v(2)-inequivalent cusp points: zero and ico. The only non-cusp in F fixed by a map
1 1
in I'n(2) is v = —3 + 51. The number of zeros in a fundamental domain of a non
zero function in G(2,h) is h/4. Now let fx = EZ 5 — AEu 4 for any A € C. Then
fr € G(2,4). The sum of its zero orders in a fundamental domain is 1. If fy has
multiple zeros in a fundamental domain, there must be exactly two of them in the
equivalence class of 7, or exactly three in the one of p = ¢*%/3, This completes the
proof. O
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Lemma 10.3 Let f be a meromorphic function on H*. Then the following state-
ments are equivalent:

(1) f is a modular function for IH(2);

(2) f is a quotient of two modular forms for I'h(2) of equal weight;

(3) f is a rational function of jo.

Proof It is clear that (3) = (2) = (1). for z € H*, denote by [z] the equivalence
class of z in H/I'h(2). By an abuse of the notation we may take f asin (1) as a function
from H*/T'y(2) to C. The functlon J2, also regarded in this fashion, is invertible. Let
f: C—C satisfy f f Oj2 . Then f is meromorphlc on (C so that it is rational. If

zeCletu=jy'(z) € H*/Fo( ). Then f(u) = f(jz () = f(2) = f(j2(2)). Thus
f is a rational function in js. |

Lemma 10.4 For z € H, we have that

d . . _
&jg(z) = —2mE0072(z)EOA(z)EOOlA(z).

Proof It is clear from the definition of a modular function that the derivative of a
modular function has weight two. Therefore both sides of the equality in the lemma
are meromorphic modular forms of weight 2 for I'j(2). The only poles of either
functions lie at infinity. On both sides, the principal parts of the Fourier expansions
at infinity consist only of the term —2mig~!. Hence the modular form

d . . _
o= ajg(z) + 2n1Eoo72(z)E074(z)Eool)4(z)

is holomorphic with weight two. For a non zero modular form in G(2, k), the number
of zeros in a fundamental domain is h/4, we can easily check that the exponent of
the first nonzero Fourier coefficient in the expansion of « exceeds h/4 = 1/2. This
exponent counts the number of zeros at ico. Hence @ = 0 and the lemma holds. [

We now introduce an analogue of the map w in (10.11).
For h =0 (mod 4) and f € G(2,h), let

Wa(f) = FELY"
For h =2 (mod 4) and f € G(2,h), let
Walf) = fBoc B

Lemma 10.5 Let h be an even positive integer. Then
(1) the restriction of Wa to G(2, h) is an isomorphism from the vector space G(2, h)
to the vector space of polynomials in jo of degree less than r = r(2,h) or of degree
between 1 and r inclusive according to r =0 (mod 4) or h =2 (mod 4) respectively.
(2) for any f € G(2,h), the constant term in the Fourier expansion at infinity of
fTop s zero.
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Proof (1) Suppose h =0 (mod 4) and f € G(2,h), then

Wa(f) = fE{" = fEL L.

00,4
For d = 0, 1, 2, ---, r — 1, the products ngg;i belong to G(2,h). We have
Wg(nggofi) = jd. Let V be the subspace of G(2,h) generated by the modular
forms ng;;i ford=0,1,2,---,r—1. And denote by V; the space of polynomials in

Jjo of degree at most r — 1. Wy carries V' isomorphically onto V3. Hence dim(V) =r
which implies that V' = G(2,h). Now let h =2 (mod 4). Then

Wa(f) = fEx 2By
Ford=0,1, 2, ---, r— 1, the products ngoo,gEgofi belong to G(2,h) and
Wa(j3 Bc 2ELgy) = G5 -
Wy carries E 2V isomorphically onto jaVi. Therefore dim(Es2V) = r. Hence
Ex2V =G(2,h).
(2) Suppose h =0 (mod 4). Then
dj2

Wa( f)a = —fE 12miEy 2 B0 s By = —2mi fTo .

We can obtain the same result for h = 2 (mod 4) by a similar computation. Thus

fTa,p is the derivative of a polynomial in jo, so it can be expressed in a neighborhood

of infinity as the derivative with respect to z of a power series in the variable ¢ = €™,

This derivative is a power series in ¢ with vanishing constant term. This completes
the proof. 1

Lemma 10.6 (1)

Bwa(z)=q [] A=am® ] -5

0<ne27 0<nEZ\2Z

(2) For a given set A and a given arithmetical function f, the number pa r(n)
defined by the equation

H (1— xn)*f(n)/n =1+ ZpA,f(n)-Tn
n=1

neA

satisfies the recursion formula

n

npap(n) = falk)pas(n—k),

k=1

where pa £(0) =1 and fa(k) = Z f(d).
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Proof (1) This is equivalent to show that
Booa(2) =n(22)""n(2) 7"

Denote by f(z) the right hand side of the above. The function f is holomorphic on
H because 7 is non-vanishing on H. We see that f has the product expansion

f@=q [ a=¢m® ] a-¢*®

0<ne2z 0<n€Z\2Z

from the product expansion of 7. It follows that f has a simple zero at infinity. The
number of zeros in a IH(2) fundamental domain for a modular form in G(2,4) is one.
But from the transformation formula of the n function we know easily that f is in
G(2,4). This shows that f and E 4 are monic modular forms with the same weight,
level and divisor (both equal to 1 -ic0), hence identical.

(2) By induction. O

Theorem 10.6 For any even positive integer h, the constant term in the Fourier
expansion at infinity of Ty is non zero.

d
Proof Let h =0 (mod 4). Put u = 2miz = logq. Write D for the operator aQu

It is clear that D(¢") = ng™. Put mo = jo — 64. It is easy to see that E§O72 =
Eo4 + 64F 4. So that mg = Eg4E.",. Thus

dms  djs . 1
=2 02 oniB 2FouE
dz dz Tl 20,4 0,4

and D(ma) = —Ex 2Eo4EL",. 1t follows that
Ty = —EL 1 D(my).

Therefore

E1D(m2)=D(EL; jma) —maD(EL})

= D(E; jmg) —ma(1 —r)EL,D(Ex 1)
—Tr —Tr 1 ‘s —Tr
:D(E;oAmQ) +(r— 1)m2Eoo,4( - ;E;OJ’:4D(EOO,4)>

y 1—r _r
=D(EL im2) + TszooAD(EooA)

—r T —r
=D(E}; tms) + " Eo4D(EL,).

The term D(E;;ng) makes no contribution to the constant term. Hence the constant

r—1
Eo4D(E,). We now compute the principal
r :

term of T p is equal to that of
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part of D(E.,).
By Lemma 10.6, for fixed s, if we write

EZ,=q°) R(n)
n=0
then R(0) =1 and
85 It
=22 a — ) 10.1
R(n) = — ;al (@)R(n—a), ¥Yn>0 (10.17)

Because 0{!*(a) alternates sign, the alternation of the sign of R(n) follows by an in-
duction from (10.16). So we can write R(n) = U, (—1)" with some U,, > 0. Therefore
we have

By =Uo(-1)°0 "+ (=)' 4 Upa (Z1) g 04
hence

D(E ) =—rUo(-1)°q¢" + (1 = r)Ur (1) ¢" "
oot (DU (1) T O+

( 1)1q T_,'_Vr 1( 1)2q17T_|_..._|_V1(_1)7‘q71_|_O+.” ’
where V; = iU,_; > 0 for 1 < ¢ < r. On the other hand, the Fourier coefficient of

q"(n > 0) in the expansion of Ey 4 is W,(—1)" for positive W,,, by the definition of
Eo,4. Therefore the constant term of Eo4D(EL,) is equal to

ivn(_ r+1— nW ( _ r+lzv WT“
n=1

so that the constant term of T3y, is equal to

r—1
r (=

)Y VW, # 0
n=1

for h > 4,h = 0(4) (since r > 1 in this case).
Now we assume that h = 2 (mod 4). We have proved the following equality above

d d . ) _
Emg(z) = E_]Q(Z) = —2mEoo72(z)EOA(z)EOOlA(z).

So D(ms(2)) = —Eoovg(z)EOA(z)E;OlA(z). This implies that

Ty = E% yF04EL ;" = —Es2EL 4D (my).
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Therefore

Eoo 2B 4 D(m2)
:D<E002E 4m2) E QmQD(EOO4) E(:oTAWLQD(EOOQ)
=D(Eo 25 ym3) — Eso oma(—1)E 7' D(Exc ) — EouE ;' D(Ex 2)

1 o
=D(Ex 2B yma) — Eco oma(—1)E Y ! ( 1) EQED(EOOA Y

00,4 —r—
—E04E_T4 D(E 2)

— r —r— r —r— r—
=D(Exo 2B/ yms) — ——FEo oma B ELID(E ) — Eg B ' D(Es )
B r + 1 ) ) )

-Tr r —_r— rT—
:D(Eoo,gEoo4m2)——Eo74Eoo72D(EOO41) Eo 4B 'D(Ex2)
: _— :

=D(Ex2E ] ms) — ﬁEM(D(E 2E i) —E'D(Ex2))
—E0 4B 'D(Ex 2)
.
=D(FEp2F7 — FouD(EsET"T ——E E i 'D(Ex ).
(Boo2B5)ym2) — 1 Foa (B 2B 0 ) oy 1 oa (Feo.2)

The term D(Eo 2 £,y m2) makes no contribution to the constant term of T3 , because

for any formal series Z bnq"™ we have that D <Z bnq”> = Z nb,q" which has no

n=0 n=0 n=0

r
constant term. Hence we only need to compute the constant terms of ?EOA

D(Es2E[;") and —E04E o ' D(Ese2).

For any positive mteger s, we write

B =q" Z Rs(n)q
n=0

Then by Lemma 10.6 and by an easy induction we can prove that Rs(n) = (—1)"Us(n)
with Us(n) >0
But we know

Fw —1+24Za°dd

Hence we have

EooE =g f:aiqi
<1 —|—24Za°dd ) (Z(—1)"Ur+1(n)q">,

n=0
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where
o 1
= 2420— Uria(i — §)(=1)9, 0994(0) := o (10.18)

Hence

D(EOOQE =q " 1Zz—r—1 aiq'.

Noting that the nth Fourier coefficient of

E04—1—|—162:oralt )q"

n=1

has the form (—1)"W,, with W,, = (—=1)"1603!*(n) a positive integer, we see that

EouD(Ex2E (") = Z ang"

n=—r—1
= (Z(—l)”qu"> <Z(z —r— 1)a¢qi_’”_1> .
n=0 =0
In particular, we have
ap = (i—7r— l)ai(—l)r+17iWr+1—z‘- (10.19)
i=0

On the other hand, we have

o0
BByt =) bt = (
=0

it
I

q"> (Z(—l)”UrH(n)q“) 7

n=0
where ,
b=y (=1)'Ups1(i — j)W; (10.20)
§=0
and
Eyp2) =24 Z nUOdd
Hence
EouE ;' D(Ecy2) =Y bq" = <Z biqirl> <Q4Zno—gdd(n)qn>.
n=-—r =0 n=1

In particular, we have

by =24 bi(r+1—i)og™(r+1—1) (10.21)
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From (10.17)-(10.20) we see

ap= 24074 (U1 (i = §) (1) (i = = YWiga
i=0 j=0
=24 (i —r = D)Wiga » (=1 U100 — §)07 (),
i=0 =0
=243 S Uria(i — HWi(~1)i(r + 1 = )™ (r + 1)
i=0 j=0
—242 (r+1—1i)od4(r +1—1) ZUT-H (i — J)W;.
7=0
Therefore the constant term of 15 j, is equal to
r A 1 /
r4+ 1a0 r+1°
24r - . : r4+l1—j odd
:—T+1Z(Z—T—1)Wr+1—i2(—1) Urt1(i — )07 ()
i=0 =0
24 - 7 -\ _odd
T+IZ(_1)(T+1_Z)01 (r+1-— ZUT+1Z—j
=0
24 : .
T TZ (r+1—0)Wrp- ZZ( 1)U 1(i = j)o dd(])
7=0
+ (D) + 1= i)at ZUm
i=0
_ A i(r +1 =) (=) Wyp1—i + (=170 (r + 1 — i)
r+1 T+l 1

i=0
K3
x> (1) 024 () + W),
j=0
For any nonnegative even integer n, it is clear that (—1)"c¢4(n)+W,, > 0 because
0999(n) > 0 and W,, > 0 for any nonnegative integer n. For any odd integer n we

have
(—=1)"04(n) -y d-16 Y (-1)%d
0<d|n 0<d|n
2td
= (16d° —d)— Y (16d°) = Y (16d* —d) > 0.
0<d|n 0<d|n 0<d|n

2td 2|d 2td
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And it is clear that rW,11_; + (—=1)""'e99d(r +1 —4) > 0 if r — i is even. If r — i
is odd, then r + 1 — ¢ is even, so we see that

TWT+1—Z‘ + (— )T_i Odd(T +1-— Z)

=167 Z 1)%d® — Zd

0<d|r4+1—i 0<d|n
24d
=16r > d*— > (16d°+d) TZ 16(2d;) Z(lGdf’ +d;)
0<d|r+1—i 0<d|n =1
2|d 24d

t
= (128rd} — 16d; — 1)d; >0 for all r > 1
i=1

where d; with 1 <7 <t are all distinct odd divisors of r + 1 — 1.
This shows that

T T

et = b= g S L= (L W+ (<)ot 4 1)
=0

XZUm(i—j)((— ) o244 (5) + W)

_ T+IT+IZXZY%

where
Xi=(+1=)(Wep—; + (1) 0¥ (r +1-14)) >0

and ‘
Yj o= Uppa (i — 5)((=1)7 094 () + W;) > 0

This proves that the constant term of T3y, is

r !/ 1 /
—0by #0
LA L
for any positive integer r. This completes the proof. |

Theorem 10.7  Suppose f € G(2,h) with Fourier expansion at infinity
z) = ZAnq" with Ag # 0.

If h =0 (mod 4), then there is some A, #0 for 1 <n < r(2,h). If h =2 (mod 4),
then there is some A, #0 for 1 <n < 1+7(2,h).
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Proof  First suppose that h = 0 (mod 4). We denote the coefficient of ¢™ in the
Fourier coefficient of any modular form ¢ at infinity as ¢,(g). The meromorphic
modular form 75 ; has a Fourier expansion

oo

Top = Z cn(T2,n)q"

n=-—r

with ¢_,(T%,5) = 1. By the part (2) of Lemma 10.5, we see that
0= CO T2 hf Z C_ T2 h
By hypothesis, Ag # 0. By Theorem 10.6, c¢o(T5,) # 0, so

Ao Q)léh E:C zjbh X

which implies that there exists an n with 1 < n < r such that A,, # 0.
If h =2 (mod 4), then

o0

Ton= Y cn(Ton)g"

n=—r—1
with ¢_,_1(T2 ;) = 1. By the part (2) of Lemma 10.5, we see that

r+1
0=co(Tonf) = ZC (T2,n)A

By hypothesis, Ag # 0. By Theorem 10.6, ¢o(T5,) # 0, so that

r+1
Ag = —(co(T2,1)) E c—i(To,n)Ai,

which implies that there exists an n with 1 < n < r + 1 such that A, # 0. This
completes the proof. 1

Theorem 10.8 Let @ be an even positive definite quadratic form of level two in
v variables. Then Q) represents a positive integer 2n < 2+ v/4 or a positive integer
n < 3+ v/4 according to v =0 (mod 8) or v =4 (mod 8) respectively.

Proof  Suppose that @ is an even positive definite quadratic form of level two in
v variables with v = 4 (mod 8). Put v = 8k + 4. Then by the well-known facts on
f-functions we know that the function defined by

Z#Q (2n)q" € G(2,v/2)
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is a holomorphic modular form where

#Q_l(Qn) = #{(.I‘l,IQ, e 73?@) S ZU|Q($1’$2’ e ax’U) = 2”}

It is clear that #Q~'(0) = 1. Hence by Theorem 10.7 we know that there exists an

no with 1 < ng < 1+ 7(2,v/2) such that #Q~*(2n¢) > 0. That means Q represents
4k + 2

the integer 2ng with ng < 1+ r(2,v/2) =1+ r(2,4k+2) =2+ [:} =2+k.

Hence @ represents the integer 2ng < 2(2+ k) = 4+ 2k = 3+ v/4. We can prove the

case h =0 (mod 8) similarly. This completes the proof. |

10.3 The Eligible Numbers of a Positive Definite Ternary
Quadratic Form

In this section we study the problem of how to find the integers represented by a
positive definite ternary quadratic form. It is a classical result that, taken together,
the forms of a genus represent all numbers not ruled out by some corresponding
congruences B.W. Jones, 1931; B.W. Jones, 1950. Following Kaplansky, we call these
the eligible numbers of the genus 1. Kaplansky, 1995. But it is very difficult to
determine which of these eligible numbers can be represented by a form in the genus.
In general we have the following results:

(R1) A positive definite ternary quadratic form f represents all of sufficiently large
numbers which are represented by the spinor genus of f. (cf. W. Duke, 1990.)

(R2) Let ng be a square-free positive integer represented primitively by the genus
of a positive definite ternary quadratic form f with discriminant d, then f primitively
represents all of sufficiently large integers ngt? if (t,2d) = 1 and ngt? are primitively
represented by the spinor genus of f. (cf. J. Hsia, 1997.)

But there are no effective algorithm to determine all exceptions because (R1) and
(R2) are dependent on Siegel’s ineffective lower bound for the class numbers and
the Iwaniec’s estimation for the coeflicients of cusp forms (cf. Remark 10.3). Even
for the simplest cases, we can not do this. For example, let fi = 22 + y2 + 722,
fo =22+ 7y?+ 722 Then f; and g1 = 22 +2y% + 422 +2y2z belong to the same genus,
fo and go = 222 +4y? +72% — 2y belong to another genus. The eligible numbers of f;
and g1 (f2 and g respectively)are numbers which are not the product of an odd (even
respectively) power of 7 and a number congruent to 3, 5 or 6 mod 7 (see Example
10.1 and Example 10.2). We also can not determine which of them are represented
by f1 and fo respectively.

In I. Kaplansky, 1995 Kaplansky proved the following result and pointed out the
following tables:

Theorem The form f; represents all eligible numbers which are multiples of 9;
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it also represents all eligible numbers congruent to 2 mod 3 which are not of the form
14¢2.

List I: Up to 100, 000 there are 27 eligible numbers prime to 7 not represented
by fi: 3, 6,19, 22, 31, 51, 55, 66, 94, 139, 142, 159, 166, 214, 235, 283, 439, 534, 559,
670, 874, 946, 1726, 2131, 2419, 3559, 4759.

List II: Up to 100,000 there are 26 eligible numbers congruent to 1,2 or 4 mod
7 which are not represented by fa: 2, 22, 46, 58, 85, 93, 102, 205, 298, 310, 330, 358,
466, 478, 697, 862, 949, 1222, 1402, 1513, 1957, 1978, 2962, 3502, 7165, 10558.

List ITI: Up to 100,000 there are 3 eligible numbers prime to 7 not represented
by f3 = 2% + 2y? + Ty?: 5, 20, 158.

List IV: Up to 100, 000 there are 3 eligible numbers congruent to 1,2 or 4 mod 7
which are not represented by f4 = 2 + 7y? + 1422%: 2, 74, 506.

It is clear that 14 - 72 = 2 (mod 3) and f; does not represent 14 - 72¥ for any
non-negative integer k by a simple induction. We call the numbers of 14 - 72* to be
of trivial type. Hence there are indeed eligible numbers of the form 14¢?> which are
missed by f1. But as Kaplansky pointed out, List IT shows, that up to 700, 000 there
are no further eligible numbers of form 14t that are missed by f; and which are not
of trivial type. This motivated Kaplansky to make the following:

Conjecture f; represents all eligible numbers congruent to 2 mod 3 which are
not of trivial type.

Kaplansky also conjectured that these four lists describe all exceptions, and so our
knowledge of the integers represented by f; and g; would be complete.

In this section we want to show some general results about the eligible numbers
of positive definite ternary forms by using modular forms of weight 3/2, and give
an algorithm for the number of representations of a positive integer n by a genus of
positive definite ternary quadratic forms which is of an independent interest because
it is a generalization of the classical theorem of Gauss concerning the number of rep-
resentations of a natural number as a sum of three squares. By this algorithm, we
can more precisely deal with eligible numbers and prove that the above Conjecture
holds. We will also show how to use the algorithm to compute the number of represen-
tations and eligible numbers of a positive integer n by a genus of a positive definite
ternary quadratic forms. We will study the relationships between the numbers of
representations of ternary positive definite quadratic forms and elliptic curves.

Now let a, 3, v be square-free positive odd integers with («, 8, v) =1, D = [, 5,
v], and Ay, (m|D) and Ay, (1 # m|D) be the unique solution of the following system
of linear equations:
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S Com - pm/dym™) + 3 (Con - alomfdym™

m|D 1#m|D
1/ af/(a, B)? B/ (8,7)? va/(y,a)®
( ) D ( d > ((dvavﬁ)(duluv)> (dvﬁv’y)(dvlva)> ((dv'}/ua)(dvlvﬁ)>’
* 1 -1 aB/(a, §)?
S Cun-ptonfin™ = s (S (a0

m|D

Bv/(B,7)° v/ (v, a)?
. (a(ﬁ,v)(a,ﬁvd)l(ﬁde) (5(%@)(@ avd)l(%a,dW) AD.

which will be proved to have a unique solution later (cf. The proof of Theorem 10.9).
It is clear that Ay, (m|D) and A, (1 # m|D) are only dependent on a, 3, 7.
For positive integers n, D, [ we define:

3% 2-(H2)/2 i 94 1y (n),

a(n) = 3 x 27 (H¥2(n)/2) if 9uy(n), n/2v2(M = 1(mod 4),
T 27e()/2) if 2|ve(n),n/22(™ = 3(mod 8),
0, if 2|1y (n),n/22(™ = 7(mod 8)
and
(14 p)ptt=re D2 if 24 1, (In),
) _ln/pu,,(ln)
opt=rpin)/2, if 2|v,(In), <7 =1,
frpln) = %P A
—1 vp(In)
0, if 2|, (In), (L> —1.
p
and

Bnxp4D)= S () (‘a”> (ab)L.

(ab)?|n,(ab,2D)=1

a,b positive integers

Note that Bs(n, xp,4D) = 1 if n is square-free.
Let f be a positive definite ternary quadratic form, {f1 = f, fa, -+, fi} a set of
representatives of equivalence class in the genus of f. Denote by r;(n) = r(f;,n) the

ri(n)

. With these notations
O(fi)

t
number of representations of n by f;. Put G(n) = Z
i=1

we get the following

Theorem 10.9  Let «, 3, v be square-free odd positive integers such that («, [,
v) =1, f=az?+py>+722 Let A= {f1=f, fa, -+, fi} be a set of representatives
for the equivalence classes in the genus of f. Then for any positive integer n we have
that

G(n) =r(a, B,7v;n) - h(=In),
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where | = aBv/((a, B)*(a,7)?(8,7)?) and r(c, B,7;n) is given by the following for-
mula:

r(a, B,7v;n)
32 _ In ‘L1
:w—lna(ln)(l—Q Ly _n(2)) (E) Bs(In, xp,4D) <;0 7 )
yt(m) (1= x-tn@p~ P 77 A = x-t(p)p™")
< Y (=D, ] _1 H —1 Bip(n)
m|D p|D/m p p
_ —1
Y Coen 1 (1—x- ln_l Dp? H - X- li];p )ﬂz,p(n)>.
1#m|D p|D/m p p

Proof  We recall the following notations introduced in Section 7.3

)\S(nu 4D) :L4D(2 id. )71L4D(17X* )/83(n7XDa 4D)

471 —9)(1 = 3 27(H2(D/2) - if 2§ uy(n),
A (2 n): 4—1(1—1)(1—3 2 (1+u2(n)/2))’ if 2|l/2(n),n/2”2 n) =1 (mod 4)7
34, 4—1(1 — 1)(1 — 2= Dz(n)/Q)’ if 2|V2(n)7n/21/2 n) =3 (mod 8)7
4711 1), if 2|va(n), n/2v2(M =7 (mod 8).
pt—(1 +p)p—(3+'fp(n))/2’ if 24 1, (n), .
-1 _9p—1-vp(n)/2 £9 —n/p >: 1,
AB(p7n): p P ’ 1 |Vp( )a » o
p if 2|vp(n), (—n/p ! ):1’
p
> X =T - x5,
n,N)=1 pIN

Bs(m, xp, 4D) = _Z ) (1) (),

(ab)?|n,(ab,2D)=1

a7b positive integers

where v5(n) is the maximal non-negative integer such p*2("™|n,
We define functions g(xi,4m,4D)(z) (m|D) and g(x;, m,4D)(z) (m # 1,m|D),
where D is a square—free odd positive integer and I|D as follows:

9(x1,4D,4D)(z) =1 — 4x(1 +1)I? i A3(In,4D)(A(2,In) — 471 (1 — 1))

n=1

X H (p.ln) —p~Y)n> exp{2mninz},
p|D

g(x1,4m, 4D)(2) = —4m(1 + 1)1z > A3(In, AD)(A(2,In) — 47 (1 — 1))

n=1
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X H (p,In) 1)n% exp{2minz}, VD # m|D,

g(xi,m,4D)(z) = 2nl? Z A(In,4D) I_I(A(p7 In) — pil)n% exp{2mninz}.

n=1 plm
By the results of Section 7.3, the set of functions
g(Xl74m74D)(m|D)’ g(lema4D)a 1 #mlD

is a basis of £(4D, 3/2, x;), and we have

V(g(xi,4m,4D),1/a) = =47 (1 + i)ﬂ(m/a)amfll%(l,a)*%q;/l(ha) (%) ;

a/(l, @)
(l,a) ) ’

V(9(xt, 4m, 4D), 1/(4a)) = p(m/a)om=" 12 (1, 0) " Fe.0 (

(g(

V(g(xi,4m,4D),1/(2a)) = 0,

(o, 4D),1/e) = —47 (0 a1 1) e (55 )
(g

(g

<

a/(l, )
V(g(x1,m,4D),1/(2a)) = 0,
V(g(xi,m,4D),1/(4a)) =0,

where « is any positive divisor odd D and V(f,p) represents the value of f at the
cusp point p.

For f = ax? 4+ By? + 722, we see that 0¢(2) € G(4D,3/2,x;) and O(gen.f,z) €
E(4D,3/2, x1) by the results in Section 10.1, where D = [, 8,7] and | = aB7y/((«, 8)?
(a,7)%(8,7)?). Therefore there exist complex numbers cy,, (m|D) and c¢,,(m|D,m #
1) such that

O(gen.f,z) = Z camg(xi,4m,4D) + Z emg(xi, m,4D).
m|D 1#m|D

If we can compute explicitly these complex numbers, then we can obtain the explicit

ri(n)
— O(fi)
sides of the above equality. In order to do this, we only need to calculate the values

of O(gen.f, z) at cusp points.
Claim 1 Let d/c be a cusp point (¢ > 0, (¢,d) = 1). Then

521 (%) , if 4|e,

V(@.dje)=9q 17 (%) . if2¢te,

expression of G(n) := by comparing the Fourier coefficients of the two

2
0, if 2 || ¢,
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oo

where 0(z) = Z exp{m?z}.

m=—0oo

Claim 2 Let d be a square-free odd positive integer, then

The proofs of these two claims are just simple calculations, and hence they are omitted.
It is easy to see that for square-free positive odd D, S(4D) := {1/d, 1/2d, 1/4d |
d|D} is a representative system of all equivalent classes of cusp points of I'h(4D).
Claim 3 Let be f = az?+ fy? + 722, where o, 8, v are square—free positive odd
integers such that («, 3,7) = 1. Then

(L+i)at/z L/(1,d)
V(0r,1/d)= W d/(dl)( ) (d/(l ))

(i) (@) (@aits)
V(0y,1/4d)=dD~1"2(1,d) " %e; 1. a) (D/d> (Czl//((zlj))>

oB/(a, B)?
* (v(aaﬁ)(a757d)1(v,a5d)1>

By/(B,7)? v/ (v, )
. (a(ﬁm)(aﬁvd)l(ﬂ,%d)l) (ﬂ(%a)(ﬁvavd)l(%aydW) ’
V(0y,1/2d)=0,

where d|D.
This is a special case of our general result in Section 10.1. But now we can give a
new proof for this fact. We have that

V(05,1/d)= lim (~dz)*/20; (z + ;)

= lim (—d2)**f(a(z + 1/d))8(B(= + 1/d)0((= + 1/d))

(B(z
_hr%( dz)3/29<az+ Zd> ( ﬁ 7d§>9<72+%8:£>
((ad)(ﬂﬁd %) ( a/(a )

apry
v (0.559) v (o %:di)

We express d as d = (d, 1) x

d
@1 Suppose that p is a prime factor of d. Then p|(d, )
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if and only if only one of «, 3, is divisible by p, p|d/(d,1) if and only if only two of
a, 3, are divisible by p. This shows that a8y = D?/I, (o, d)(B3,d)(v,d) = d*/(d,1).
Hence by the above claims we obtain that

V(05,1/d) = =47 (1 +1)dD 1 1Y2(d, 1)~/ %W,

where

/(v d)
Vi=¢€d/(a,d)€d/(8,d)Ed/(~.d) (d T, d)

)
I I st I (“)
)

pld  pld/(d,l) pld/(a,d)

() 0 (5

/.y N P pldsivay N P
-1\ d(p(d,1))~!
=(7 ) satan T ("
pld/(dl)
11 (ad/p> I (ﬂd/p> I <7d/p>
P P P
pld/ (a,d) pld) (5,d) pld/(v.d)

=(7) o (50) (@)
(o) (i) (arer) (@97)

- (7)o (7500 (@rmies)
(aram) (@)

which implies the expression of V(6f,1/d).
Similarly we have that

V(05,1/4d) :;13%(—4@)%@(2 + 1/4d)
= ;i_r%(—éldz)%ﬁ(a(z +1/4d))0(B(z + 1/4d))0(y(z + 1/4d))

(1) v e
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v (9’ Z/%ﬁ)) v ("’ Zd//%’fg))

=dD™212 (I,d) "> Va,

where

o= eloaiinasion (aften) (5rza) (576:0)
ST e T (57) T (57) I, (5)

p|D/p plt/(L,a)  pla/(a.d) p|B/(8,d) ply/(v,d)

o () 1L, (452 1, ()

pll/(l,d)

(5,1, (%)

p|B/(B,d) ply/(v,d)

pla/(a,d)

since
1/(l,d) = a/ (o, Byd) x B/(B,vad) x v/ (v, aBd).

Hence,
vi=een (o7a) (iiosa) (aoaa) (maea)
() () (o
_ (0% [0 2
aun (575) () (et

y ( By/(B,7)? ) < v/ (v, @)? )
(B:)/ (B, d) x af (e, Byd) ) \ (v, )/ (v, a,d) x B/(B,vad) )

which implies the expressions for V' (6, 1/4d). Finally we can show that V(6;,1/2d) =
0 by the fact that V' (0,1/2) = 0. This completes the proof of Claim 3.
Since 0¢(z) and f(gen. f, z) have the same values at each cusp point, we see that

V(b(gen.f,z),p) = V(05(2),p)

=Y CamV(g(xi,4m,4D),p) + Y CoV(g(xi,m,4D),p)
m|D 1#m|D

for each cusp point p. Hence we obtain a system of equations:
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> CumV(glxi,4m,4D), 1/a) + > CowV(g(x,m,4D), 1/a)

m|D 1#m|D
=V(0y,1/a),(a|D),

> CumV(9(xi,4m,4D),1/(20)) + > CwV(g(x1,m,4D),1/(200))

m|D 1#m|D (10.22)
=V(05,1/(2a)) = 0, (a|D),

Y CanV(9(xi,4m,4D),1/(4a)) + > CnV(9(xi,m,4D), 1/(4a))

m|D 1%m|D
=V(0,1/(40)), (a|D).

Inserting the values of the functions at cusp points into equality (10.22), we have that

> (Cu - plmfdym™") + " (Co - p(m/dym™"

m|D 1#m|D
=5 (7) (@osiar) (armara) (aatuts)

a1 -1 ap/(a, B)*
> Con sl ™ = 15 (S e A1) 002

m|D
B/ (B,7) -
X(aﬁv ozﬂvd) 164 1)
va/(v,q)
X (ﬂ )(B, ayd)~t (’Y,oz,d)—1> . (d|D).

We must prove that the system (10.23) has a unique solution for Cy,, (m|D) and
Cp (1 # m|D). This is equivalent to proving that the corresponding homogeneous
system has only zero as a solution. Otherwise, suppose that Cy,,, = A4y, (m|D) and
Cm = Am (1 # m|D) is a non-zero solution of (10.23), i.e

> Q- plm/dym™) 3~ (A - plm/d)m™" =0,
m|D 1#m|D

Z M - pp(m/d)m~" =0, d|D.

m|D

(10.24)

Consider the following function:

= Mamg(x,4m, 4D) + > Amg(xi,m,4D),
m|D 1#m|D

which belongs to the space £(4D,3/2, x;). We now compute the values of h(z) at all
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cusp points. For any d|D, we see that:

2),1/d) =" X\amV(g(x1,4m,4D), 1/d) + > AuV(9(x1,m,4D),1/d)
m|D 1#m|D

=47 (1)l (1, d) " 2e gy

UG
X(d/(7 )> (Z/\4mum/dm + Z Amp(m/d)m )

1#m|D

V(h(z),1/(2d)) ZAM 9(x1,4m,4D),1/(2d))+ Y AV (g(x1,m,4D),1/(2d))

m|D 1#m|D
=Y Xm0+ Y Ap-0=
m|D 1#m|D
V(h(2),1/(4d)) =Y MamV (9(x1, 4m, 4D),1/(4d))+ > AV (g9(x1,m, 4D), 1/(4d))
m|D 1#m|D

—a ) 2oy (S )(ZAW m/dym )

These imply that the values of modular form h(z) are equal to zero at all cusp
points of T'g(4D). Hence h(z) € S(4D,3/2,x;) which shows that h(z) € S(4D,

3/2,x1)€EMAD,3/2,x;) = {0}, i.e.,

Z Aamg(x1,4m,4D) + Z Amg(x1,m,4D) = 0.
m|D 1#m|D

But g(xi,4m,4D) (m|D) and g(x;,m,4D) (1 # m|D) are linearly independent.
Therefore Ay, = 0 (m|D) and A\, = 0 (1 # m|D) which contradicts the assump-
tion for A4y, and A, and hence show that the system (10.23) has only zero as a
solution.

From (10.23) we can easily calculate explicitly all the C,,, (1 # m|D) and Cy,, (m|D),
it is clear that all these are rational numbers and only dependent on «, 3,y

That is, we obtain explicitly rational numbers C,,, and Cy,, such that

O(gen.f,z) = > Camg(x1,4m,AD)+ > Crg(xi,m,4D). (10.25)
m|D 1#m|D

On the other hand, let

a(n)=2(1+i)(471(1 — 1) — A3(2,n))
3 x 2= (Hv2(n)/2 - if 9 4 1y (n),

) 3 x 27 (/2 1 if 9ug(n), n/2v2(™) = 1(mod 4), (10.26)
2—v2(n)/2 if 2|va(n), n/2v2(") = 3(mod 8), ’
0, if 2|ve(n),n/2v2(M) = 7(mod 8)
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and
Bip(n)=p*(p~" — As(p,In))
(1 +p)p(1_l’17(ln))/2’
B 2p1—yp(ln)/2’
0,

Integers Represented by Positive Definite Quadratic Forms

it 24 v, (In),
— vp(ln)
In/p ) _

if 21/p(ln),( )

— vp(ln)
if 2|vp(In), (ln/g) = 1.

' (10.27)

Let d;,, be the conductor of the character x_;, and h(—In) be the class number of the
imaginary quadratic field Q(v/—In). Then the class number formula shows that

h(=in) = (2
where
6,
Win = 4,
2,
Hence
/\3(ln,4D)
=L(2,id)" [T
p|4D
JTO = x-m@p

p|4D

= Ta-»>

pl4D

) 152(.«}ln (LX—ln),

if &y, = 3,
if 0y, = 4,
if otherwise.

=L4p(2 id)_1L4D(1 X— zn)ﬂs(l” XD, 4D)

1L]—X ln)

71) : ﬂ3(ln7XD74D)

(1= Xx-m(@p™")

B(=In) - 2m - wi 16,2 By(In, X, AD)

_12 11 (1= x-in(p)p~")p*>  h(=In)

. ,Bg(ln, XD74D)~

p*—1

pl4D

This implies that

WinV 5171

g(x1,4D,4D) =1+ (—1)*P)32 i h(=In)w;, a(in)(1 — 27 10 (2))
n=1

<11

5ln

9(xt, 4m,4D) = (~

|: Xln
p|D

1/2
. (l_n) Bs(In, xp,4D) exp{2ninz},

322h —ln)w

”mm]

a(ln)(1 - 27 x-m(2))
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< TI (]._Xpln_l )p? H - X— znzlop 1)5@(”)

p|D/m plm

1
2
X (l_n) Bs(ln, xp,4D) exp{2ninz},

5ln
g(xi,m, 4D) = (—1)"™32 3 " h(—In)w;, (1 — 27 xin(2)) (10.28)
n=1
p? — 1 1 Le
p|D/m plm
In\?
X (g> Bs(ln, xp,4D) exp{2ninz},

where t(m) is the number of distinct prime factors of m. Let be In = ds? with d
square-free, then d;,, = d or 4d according to d =1 (mod 4) or d = 2,3 (mod 4) which

. . In 1/2 dS2 1/2 In 1/2 dS2 1/2
implies that (E) = (7> = s or (E) = (4_d> -

In
Sin
rational number. Now we compare the Fourier coefficients of the two sides of (10.24),
and use (10.27) to obtain that

—~

according to

N ®»

1/2
d=1 (mod4) or d =2,3 (mod 4). Anyway, ( ) is an explicitly determined

G(n) =r(o, B,v;n)h(=In),

where r(a, 8,7;n) is defined as in 10.9. This completes the proof of the theorem. [

By Theorem 10.9 we obtain the following;:

An Algorithm for G(n) and eligible numbers of f:

Input: A positive definite ternary quadratic form f;

Output: G(n) and the set E of eligible numbers of f;

Step 1: Solve the system (x);

Step 2: Use Theorem 10.9 to compute G(n);

Step 3: Put E = {n € N|r(«, 8,v;n) = 0}.

We will compute some examples with this algorithm.

It is clear that Theorem 10.9 holds indeed for any positive definite ternary quadratic
form f with level 4D (D a square-free odd positive integer). Hence by Theorem 10.9
we can always give the precise major part for the number r(f,n) of representations
for n by f. Especially if the space S(NN, 3/2, x;) is the null space, we can obtain the
precise formula for r(f,n) by Theorem 10.9. For example, by the dimension formulae
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for the space of modular forms, we can find that the following spaces are all null
spaces:
8,3/2,x1),  5(8,3/2,x2),
12,3/2,x3), S(16,3/2,x1),
), S5(24,3/2,xa
24 3/2 x3), S(
), S(

)
)
24 3/2 X6):
)-

9

Hence we can obtain the following formulae: Let be N (a, b, ¢;n) = r(az?+by?+cz?,n),
0(x) =1 or 0 according to x is an integer or not, then

N(1,1,1;n) = 27m2)\ (n,4)a(n), (Gauss formula)

N(1,2,2;n) = 2703 \( (a (”_1>—6<n;2>>,

N(1,3,3;n) = 2mn? An,12)(1/3 — A(3,n))(2 — a(n)),
N(1,5,5;n) = 2mn 2 A(n, O)a(n)(A(5,n) +1/5),

N(2,3,6:0) = 23 A(n,12)(1/3 + A(3,n)) (a(n)—6 (” - 1) 5 (" - 2)) ete.

From this point of view we see that Theorem 10.9 is a generalization of the classical
result of Gauss concerning the number of representations of a natural number as a
sum of three squares.

Corollary 10.1  Let f = z? +y2 4 pz?, p an odd prime, then

32 1
wpn(p2 _ 1)h( pn)a(pn)(Qp - /817717(”))717(”) ’ <; O(fl)) ’
B ifp = 1(mod 4)
32 S
o =)@ = alen)Bpp () () (; O(f¢)> :
ifp = 3(mod 4),

where v, (n) = (1= 27" X—pn(2))(pn/6pn)? Y~ pla)x—pn(a)(ab) "

(ab)®|n
(ab,2p)=1

Proof Just as in the proof of Theorem 10.9, we have that D =1 = p. So by (10.28)
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we see that £(4p, 3/2, xp) has a basis as follows:

32 o _ .
9(xp,4p,4p) =1 — 21 Z h(—pn)wpnla(pn)ﬂpm(n)'yp(n) exp{2ninz},
n=1
> h(=pn)wy, a(pn)y,(n) exp{2minz},
n=1

oo

32 B .
9(Xp,p,4p) = o1 Z h(—pn)wp;ﬁp,p(n)*yp(n) exp{2minz}.
n=1

32p?
g(XPa474p):p2 1

We can easily calculate the solution of the system of equations (10.23):

2
C4 ]_) 0
Cap = 1 or 1
Cp 0 -2

according to p =1 or 3 (mod 4). Hence we see that

O(gen. f, z) = 9(xps 4, 4p) + 201 g(xXp> 4, 4p), if p = 1(mod 4),
g 9(Xp,4p,4p) — 29(xp, P, 4p), if p = 3(mod 4).

Hence we see that

32 h(—pn)a(pn)(2p — By p(n))vp(n) - <Z 01 ) )

wpn (p* — 1) —~ O(fi)
fp=1 d4
Gn) = ) ifp t (Hllo )
o2 = 1) P2 = aen)Bpp () () - (; O(f¢)> :
ifp=3 (mod 4)
as stated in the corollary. ]

Example 10.3 Letp =7, then f = fi; = 22 +4y?>+72% and g1 = 22+ 2y + 422 +2yz
belong to the same genus, O(f1) =8, O(g1) = 4. Hence

ri(n)  ri(n) 1

8 4 = Zw;nl . (2 — O[(7n))ﬂ777(n)r}/7(n)h(_7n)

Corollary 10.2 Let f = z2 + py? + pz2, p an odd prime, then
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32 v t 1 o
32 )
mh(—n)@ —a(n))B1,p(n <; ) , ifp=3(mod 4),

where ~p(n) = (1 =27 X0 (2))(1 = X—n(p) - p~1)(1/82)"/2 Y (@) x—n(a)(ab) "

Proof Just as in the proof of Theorem 10.9, we have that D = p, [l = 1. So by
(10.28) we see that £(4P,3/2,x1) has a basis as follows:

9(x1,4p,4p) =1 — Zh (n)B1p(n)7) (n) exp{nz},

oo

g(x1.4,4p) = (n)y,(n) exp{nz},

g9(x1,p,4p) = Z n)wy, ' B1,p(n)7y(n) exp{nz}.

We can also calculate the solution of the system of equations (10.23):

Cyq
C4p =
Cp

according to p =1 or 3 (mod 4). Hence we see that

S = 3
o
=
VRS
|
N = O
N——

H(gen f Z) _ {g(Xla4p7 4p) + 2]9719()(1;474]9); lfp = ]-(mOd 4)7
e g(X1a4p74p)_2\g(X17pa4p)7 1pr3(m0d 4)
Therefore we see that
32 i
wn(pg — 1) h(_ ) ( )(2p /Bl,p (Z O fz > 5
ifp=1 (mod 4),
G = 32 i
wn(pg — 1) h( pn)( ( ))51717 (Z O fz > )
if p=3 (mod 4)

This completes the proof. O
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Example 10.4 Let f = fo = 22+ 7y?>+ 722, then fo and go = 222 +4y? + 722 — 2xy
belong to the same genus, O(f2) =8, O(g2) = 4. Hence

Gan) = "2 120 L o )8y () (m)(—m).

By Corollary 10.1 and Corollary 10.2, we can prove the following

Corollary 10.3  Let f,) = 22 +y? + pz2, p an odd prime, then
(1) if p=3 (mod 4), the eligible numbers of the genus of f,) are numbers which

are not the product of an odd power of p and a number n satisfying (—_n) =1;
p

(2) if p=1 (mod 8), the eligible numbers of the genus of f(,y are numbers which
are not the product of an even power of 2 and a number congruent to 7 mod 8;

(3) if p=5 (mod 8), the eligible numbers of the genus of f,) are numbers which
are not the product of an even power of 2 and a number congruent to 3 mod 8.

Corollary 10.4  Let g, = 22 4+ py? + pz2, p an odd prime, then
(1) if p=3 (mod 4), the eligible numbers of the genus of g,y are numbers which

are not the product of an even power of p and a number n satisfying (—n) =1;
p
(2) if p=1 (mod 4), the eligible numbers of the genus of g, are numbers which

n
are not the numbers n satisfying (—) = —1 or the product of an even power of 2 and
p

a number congruent to 7 mod 8.

Proof By definition, a positive integer n is eligible if and only if G(n) > 0, i.e., n
is not an eligible integer if and only if G(n) = 0. If p = 3 (mod 4), then

Wpn

G(n) = 2 h(~pn)(2 — a(pn))Bp p(m)p(n) - (Z ﬁ) ’
i=1 !

which implies that G(n) = 0 if and only if one of the factors at the right end of the

t
2 1
above equality equals zero. But it is clear that 3—h(—pn) Z
Wpn =1 O(fi)
only need to consider the other three factors. By (10.26) we see that 2 — a(pn) >
2—3/2=1/2. So the only possibilities are that 8, ,(n) = 0 or v,(n) = 0. By (10.27)

_n/p n( )) 1
p

Hence if we can prove that v,(n) # 0, then this completes the proof of (1). In fact,
we can prove the following claim which completes the proof of (1). The proofs of (2)
and Corollary 10.4 are similar.

>>0. So we

we know that 5, ,(n) = 0 if and only if v,(n) = 1 (mod 2) and (
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Claim Let D be a square-free positive integer, then

—n B
fanoaD) = Y o) () @ £0
(ab)?|n,(ab,2D)=1
a,b positive integers
for any positive integer n.
In fact, by definition, we see that

GanypaD)= Y ma)(‘—”)(ab)l
(ab)?|n,(ab,2D)=1

a,b positive integers

= 1] pzfnp.H y%p— <D>DP§1pta

pf2D,p|Dy,  t=0 pi2DD,, \ t=0

where —n = D,, 2 such that D,, is a fundamental discriminant and f,, is a positive
integer. The above equality implies that fs5(n,xp,4D) # 0. This completes the
proofs. 1

Example 10.5 The eligible numbers of f; = f7) = 22 4 3% + 722 are numbers
which are not the product of an odd power of 7 and a number congruent to 3,5 or 6

mod 7 since (_7”> =1 if and only if n congruent to 3,5 or 6 mod 7. 0

Example 10.6  The eligible numbers of fo = g7y = 2 + Ty? + 72% are numbers
which are not the product of an even power of 7 and a number congruent to 3,5 or 6

mod 7 since (_7”> = 1 if and only if n is congruent to 3, 5 or 6 mod 7. 0

Theorem 10.10 Let f be a positive definite quadratic form with matriz A. Then
there are only finitely many square-free eligible integers which are prime to 2|A| and
not represented by f.

Proof  The proof of this theorem is similar to the one in W. Duke, 1990. For the
sake of completeness we include it here. In order to prove the theorem, we need some
of the results in B.W. Jones, 1950, esp. Theorem 86 in B.W. Jones, 1950 which can
be described as the following claim:

Claim: Let f be a positive definite ternary quadratic form with matrix A, d =
|A|, 2 the g.c.d. of the 2-rowed minor determinants of A and A = ¢d/2? with ¢
prime to 2d, then for any eligible number ¢ of the genus of f with (g, 2d) = 1 we have
that

G(A q) =27V H(A)pa

where t(w) is the number of odd prime factors of w, H(A) is the number of properly
primitive classes of positive binary forms ax? +2bzy + cy? of determinant A = ac—b?,
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p4 is a rational number equal to 1/8,1/6,1/4,1/3,1/2,2/3, 1, 2, 4 according to the
different cases of the values of A, and G(A,q) is the number of essentially distinct
primitive representations of ¢ by the genus of f. Please compare Theorem 86 in B.W.
Jones, 1950 for details.

Now let G = {f = f1,f2, -, ft} be a set of representatives of the genus of f.

Define
0r(z)= Z e(zmAmT/2), z€H,

mezZ3
O(f) = #{5 € Ma(2)|5AS™ = A},
1
5 0.(2)
aen s, )= 25 - Of)

then we have that
07(2) — O(gen.f,z) € S(N,3/2,x)

by the results in Section 10.1. Now let 7;(n) be the number of representations of n
by f;, then

n=1
= 3 r1(n)q" — 1 s ri(n)
_; 1(n)g ;O(fi) 7; ;O(fi)

Now suppose that ng is a square-free eligible number of G which can not be represented
by f = fi, i.e., r1(ng) = 0. Then by Iwaniec’s H. Iwaniec, 1987 and Duke’s W. Duke,
1988 we have that
-1
ri(n)

=0 )\ 4o

3
< 7(no)ng (log2ng)?.

On the other hand, let G;(n) be the essentially distinct primitive representations of n
by fi, it is clear that 2G;(n) < r;(n) because every positive definite ternary quadratic
form has at least two automorphs. So we see that

/=2 Ciln <5 Enm)

fi
© 3+
<O(G) ri(n) _ fi O(fi) la(n)|
S22 O(fi) 2 ’

Ji
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where O(G) = max{O(f;)}. So by the above Claim and Siegel’s lower bounds for
the class numbers we see that

la(ng)| > G(A,ng) > H(A) = H(ngd/2%) > n(1)/2—e.

Comparing these two estimations we see that there are only finitely many square-free
eligible integers prime to 2|A| which can not be represented by f. This completes the
proof. O

Remark 10.2 Notice that there are some similarities between our Theorem 10.9
and Theorem 86 in B.W. Jones, 1950, but they differ from one another in the following
aspects:

(1) In general G(n) # G(A,n) and there is no simple equality between them. Of

0(G)

course we have the inequality G(n) < G(A,n) < TG(n) just as we saw in the

proof of Theorem 10.10;

(2) In Jones” Theorem 86, it is assumed that (n, N) = 1 where N is the level of
the quadratic form f. But we need not this assumption in our Theorem 10.9;

(3) Jones’ Theorem 86 can not tell us which are the eligible numbers for the genus
but our Theorem 10.9 can do this (c¢f. Example 10.5 and Example 10.6). Anyway
neither does our Theorem 10.9 contain Jones’ Theorem 86, nor is the converse the
case.

Since we employed Theorem 86 (i.e., our Claim) in B.W. Jones, 1950 in our
proof of Theorem 10.10, we have to limit ourselves to the case with ny prime to 2d.
For the case with ng not prime to 2|A|, we may employ our Theorem 10.9. For a
concrete positive definite ternary quadratic form f, we can always investigate any
square-free natural number n (prime or not prime to 2|A|) by Theorem 10.9. For
example we take the forms in Corollary 10.1 and Corollary 10.2. Suppose that p = 3
(mod 4), N a square-free eligible number not represented by f, = 2 + 22 + p2% or
fp = 2% + py? + p22, by (10.26), (10.26):

a(pN)=a(N) = g, 1lor0,

Bpp(N)=p+1 or 2,

won=(1-25 ) (1) 5

B1p(N)=p+1 or 2p,

0= (1= XY (1)) (XY ot

Then Corollary 10.1 and Corollary 10.2 imply that
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-1

la(V)| = %;O(lfi) ) 08?) > h(—pN) > N1/

—1

- 1 ri(n) —e
la(N)[= ;O(fi) > 0(f) > h(—N) > N'/?

because of Siegel’s lower bounds for class numbers. Together with the estimations
in H. Iwaniec, 1987 and W. Duke, 1988 as above, we obtain that there exist at
most finitely many square-free eligible integers which are not represented by f, =
22 +y? +pz? or f, = 2% +py? +pz? for p =3 (mod 4). We can similarly discuss this
phenomenon for p =1 (mod 4).

Remark 10.3 Even though there exist only finitely many square-free eligible num-
bers prime to 2|A| which can not be represented by a positive definite ternary quadratic
forms, it is not implementable to find all of these eligible numbers through compu-
tation for two reasons: @ Siegel’s lower bounds for class numbers are not effective;
@ it is impossible to obtain a contradiction through computation even if we as-
sume that the lower bounds are effective since we have to compute all of n with
n'/2 < 7(n)n®/7(log(2n))? which requires that n is about 107°. Even if we replace
Iwaniec’s bound by a sharper bound, cf. V.A. Bykovskii, 1998, we also can not im-
plement the algorithm to find all of these exceptional eligible integers by calculation.

Theorem 10.11  Let A = {f1, fo, ---, fi} be a set of representatives of the genus
of a positive definite ternary quadratic form of level N. Assume that there are the
following linear combinations of Theta- functions:

i+1

filz) = _bi(n)g" = ai ;0(f;)
n=1 j=1

with o 105541 # 0 for 1 <i<t—1, such that ﬁ(z) is an eigenfunction for all Hecke
operators whose Shimura lifting is a cusp form corresponding to an elliptic curve
E;. Then we can find an effectively determinable finite set Py = {po,p1,--- ,ps} Of
primes such that for every square-free eligible number ng of A with (ng, N) =1 (i.e.,
(no, N) =1 and no can be represented by one of the forms in A) and for every prime
p not in Py, we have that p?>ng can be represented by fi.

Proof We only consider the case t = 3 because the general case is similar. Let N be

the level of f1, Pn the set of all distinct prime factors of N, and F;(z) := Z B;(n)q"
n=1

the Shimura lifting of ﬁ(z) Since ﬁ(z) is an eigenfunction for all Hecke operators,
there exist complex numbers ), such that Tp2(fi(2)) = aup fi(2). But Hecke operators
commute with Shimura liftings. Therefore
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Ty(Fi(2)) = Tp(S(fi(2)) = S(Tp2(fi(2))) = S(@ipfi(2)) = aipFi(2).
But because F;(z) is a new form corresponding to the elliptic curve E;, it shows that
T,(Fi(2)) = B;(p)Fi(%). Hence we see that a;, = B;(p) for any p ¢ Pyn. This implies
that

Bi(p)bi(n) = bi(p*n) + x(p) (‘Tf) ba(n) + pbi (/)

for any prime p with (p, N) = 1 and any positive integer n. Especially for any
square-free positive integer n we have that

Buoo) = o)+ x) () i,
Hence we see that

aur ) + arra(pn) = (anra(n) + anra(o)) (:0) - x) (21 ) 1029

a2171(p*n) + a2ara(p®n) + azsrs(p®n)
— (71 (n) + azara(n) + azars(n)) (Ba(p) — x(p) (‘p") L 030)

where r;(n) is the number of representations of n by f;. We want to prove that for
any square-free eligible number ng of A which is prime to N and not represented by
f1, P*>no can be represented by f; where p ¢ Py and P, containing Py is an effectively
determinable finite set of primes. Otherwise, suppose that p ¢ Py is a prime such
that p?ng can not be represented by fi. Let be n = ng in (10.29) and (10.30), then

—no

ra(sne) = rafm) (Br(s) ) (22 )). (10.31)

p

agara(p*no) + azsrs(p*ng) = asera(no) + azsrs(ng)) (Bz(P) - x(p) (__”0)> ’

since r1(ng) = r1(p?no) = 0. By (10.31) and (10.32) it is clear that
ao3r3(p*ng) == ara (ng) + Bra(ng)

~ asa(Balp) ~ Ba(p)rato) + azs (Balp) ~x(p) (1) ) rana

Now let G(n) and G;(n) be the essentially distinct primitive representations of n by

A and f; respectively. Then we have that 2G;(n) < r;(n) and G;(n) > g((;)) So

t t

1 O(A) = ri(n
=36 < 3 3ot < O3 060

i=1 =1
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where O(A) = max{O(f;)}. From these and the Claim in the proof of Theorem 10.10
we see that

H(p?A)py2a _ G(p*no) < O(A) ;
H(A)pa G(no) ~ 2

O(A) 6272 (p*ng) + d37r3(p?no)

2 dar2(ng) + d37r3(ng)

O(A) 6272 (p*ng) + 53@2_31ar2 (ng) + 52@2_315r3 (no)
2 dar2(ng) + d3r3(ng)

. (10.33)

1
where §; = 0 and A = ngd/ 2?2 as in the proof of Theorem 10.10. Now consider

(f)
two cases:
Case (1) Suppose that r3(ng) < r2(ng), then (10.31)-(10.33) show that

_173(n0)

r2(p*no) -1
5o 2\ 0
+ d3aan; + 038053 ra(10)

omﬂ2mmw
2 7“3("0)

do + 03 7712(”/0)

_ O(QA) Bi(p) — x(p) (?)52

1
“(p—1)<
3(p )

02

+ | 3y | + | dsBagy |

Case (2) Suppose that r2(ng) < r3(ng), a similar computation shows that

r2(p*no) 1 _172(no)
0o ——— + 038054 + d3a
l(p_ 1)< O(A) | r3(no) sz +hsa0g r3(no)
3 2 53 + 52 7‘2(77,0)
r3(n0)
7’2(172"0) -1 -1
_ O(A) 62 T‘Q(Tlo) + | 5360&23 | + | 53040[23
=2 53
- iy 1 -1
_ow ™ [B® W) (1) |+ 1 dvaag |+ s |
) 3 ’

A

where we used the facts that H(p?A)/H(A) = p — <> and p2a/pa = 1/3 (cf.
p

Theorem 86 in B.W. Jones, 1950). Anyway we have obtained the following inequality:

p—1<C1|Bi(p) | +C2 | Ba(p) | +Cs,
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where C1,Cs, C3 are positive constants only dependent on «;; and O(f;). On the
other hand we have that | B;(p) |< 2p'/? which implies that

p—1<2(C —&-CQ)\/];-FC;;.

It is clear that this inequality only holds for finitely many primes. Denote it by P.
Then for any p ¢ Py = P|J Py we have that p?ng can be represented by f; which
completes the proof. O

The argumentation in the above proof implies the following

Corollary 10.5 Let A = {f, g} be a genus consisting of two equivalence classes such
that f(z) = af(f)+ B0(g) is an eigenfunction for all Hecke operators and its Shimura
lifting is a cusp form corresponding to an elliptic curve E. Then for any eligible integer
no which is prime to 2|A| and not represented by f and any prime p ¢ Py, p*ng can

1 O(A
be represented by [ where Py = {p prime | p|N or g(p -1 < %(2\/13 + 1)} and

N is the level of f.

Remark 10.4 Just as pointed out in Remark 10.2, to investigate the case n not
prime to the level or to obtain more precise result about the set Py, we may employ
our Theorem 10.9. The following proof of Theorem 10.12 is an example together with
the ideas in Theorem 10.11 and Theorem 10.9.

Theorem 10.12  Let be fo = x2+7y2+722. If n is a positive integer with (g) =1

(i-e., n is an eligible integer prime to 7) which can not be represented by fo, then n is
square-free.

Proof By Example 10.4 and the fact that n is an eligible integer, we know that

0<Gn) = 2 72l

8 4 iwﬁ(z — a(n))B17(n)yr(n)h(—n), (10.34)

where 73(n) and 75(n) denote the numbers of representations of n by fz and go =
22 + 4y? + 72% — 2zy respectively. We also easily know that

Fa(2) = 3 b(n)ermine = %Z(Tg(n) — vl (n)) exp{2minz},
n=1 n=1

is an eigenfunction of all Hecke operators T,,2 in the space S(28,3/2,x1) by a direct

computation. And the Shimura lifting Fy(z) = S(f2(z)) of fo(z) is a new form with

weight 2, character x1 and level 14, i.e., Fa(z) € S™%(14,3/2,x1). So there exist

complex numbers ay, such that Th2(f2(2)) = an f2(2). But Hecke operators commute

with the Shimura lifting. So we see that

To(F2(2)) = Tu(S(f2(2))) = S(T2(f2(2)) = S(anfo(2)) = anS(f2(2)) = anFa(2)
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which implies that «,, are also the eigenvalues of T,, for F5(z). But because Fs(z) is
a new form with weight 2 shows that for any positive integer m with (m,14) = 1,

am = B(m) where Fy(z) = Z B(n)e*™"* is the Fourier expansion of Fy(z). These
n=1
facts show that

B(p)b(n) = a,b(n) = b(p*n) + (—pn) b(n) + pb(n/p?) (10.35)

ro(n) —
for any prime p with (p, 14) = 1 and any positive integer n. We obtain by 2
instead of b(n) that

—n

ra(n) = o) = (B = (=) ) (o) = ) + i) = /)

In particular, if n is a square-free positive integer, then for any prime p with (p, 14) =
1, we see that

() = o) = (B@) - (7)) ) = i) (1030

For a prime p such that p|14, by the definition of Hecke operators, we see that

e (f2(2)) = Z b(p*n)e?™"* which implies that

n=1
apb(n) = b(p°n),
i.e.
ra(p?n) — 5 (p*n) = oy (ra(n) — ry(n)). (10.37)
An easy calculation shows that as = —1 and oy = 1. We now want to prove that

if ng is square-free eligible number such that r2(ng) = 0 (i.e., ng is not represented
by f2) then 72(p*ng) # 0 (i.e., p>ng can be represented by f2) for any prime p with
(p,7) = 1. Otherwise, we have by (10.36), (10.37) that

M =B(p) — (—_m) < B(p) +1,

r5(no) p
ntn | (10.38)

r5(no) '

On the other hand, we have that by (10.34)
r5(p°no) _ Ga(p*no)
ry(no)  Ga(no)

 Whan,, (2 = a(p®n0))B17 (0710) ¥4 (97 10)h(—p*no)

- Wi (2 = a(no))Br7(10)7% (no) h(—no)

_ (2= a(p?n0))B1,7(p*no)v7(p*no) (10.39)

(2 = a(no))B1,7(no)v7(no)
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We now suppose that p # 7 and 2, then by the definitions of a(n), 51,7(n), v4(n) and
ng a square-free integer, we easily obtain that

a(p’ng) = a(no),
B1,7(p*n0) = Bi,7(no),

Y7 (p*n0) = (p + 1)¥5(no),

1

a(2%ng) = ia(no),

Bi,7(2°n0) = B1,7(no),
3
1162 o ’
77(2 nO) - 1— 2_1X—n0(2)77(n0)’
a(72n0) = a(no),
1
Bi,7(7*ng) = ?ﬂm(no)y
8
12 o ’
V7(77no) = 1_ X_n0(7)7_177(n0)~
Hence we see that
p+1, ifp#2,7,
5, if p=2,1(ng) =1,
(o) 15, ifp=2,n9=1 (mod 4),
VR ') ifp=2,n=3 (mod8), (10.40)
r3(no) 6, ifp=2,n=7 (mod8),
8
%  _ ifp=
T—xm@

For any prime p # 2,7, by equalities (10.38) and (10.40) we have that

B(p) = p

and
5 (2%ng)
r5(no)

which is impossible, since ng is an eligible integer. On the other hand, it is well
known that B(p) < 2pz by Deligne’s estimation for coefficients of modular forms.
This implies that Zp% > p for any prime p # 2 and 7 which is impossible.

What we have proved is that if n is any square-free eligible number of the genus of
fo which is not represented by fs, then p?n can be represented by fo for any prime p
with p # 7. This, of course, is equivalent to saying that if an eligible number n prime

0< =-1<0,

to 7 can not be represented by f2 then n is square-free. This completes the proof. [

As a conclusion of Theorem 10.12 we have that
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Theorem 10.13  The form fi = 22 +y? + 722 represents all eligible numbers which
are multiples of 9; it also represents all eligible numbers congruent to 2 mod 3 except
those of the trivial type. In other words, the Kaplansky’s Conjecture holds.

Proof  We first show the following fact: f; = 22 + y? + 722 does not represent 7A
if and only if fo = 2% + 7y? + 722 does not represent A.

In fact, it is obvious that if f5 represents A, i.e., there are integers a, b, ¢ such that
a4+ 7b%+7c® = A, then TA = (7b)? + (7¢)? + 7a®. Conversely, if TA = 22 + 4> + 722,
then z2 + y?> = 0 (mod 7) which implies that x = 0 (mod 7) and y = 0 (mod 7).
Let be z = T2', y = Ty’, we see that A = 22 + 7(2)? + 7(y')? which shows that fo
represents A.

By Example 10.6, we know that the eligible numbers of f; are precisely all integers
which are not the product of an even power of 7 and a number congruent to 3, 5, 6
mod 7. Hence, to prove Theorem 10.13 we only need to show that fy represents all
eligible numbers which are congruent to 1, 2, 4 mod 7 and of form 2t? with ¢ # 1 and
71t If 2Jt, it is clear that f, represents 2t? because f» represents 8. Hence we can
assume that ¢ is an odd integer. This shows that Theorem 10.12 implies Theorem
10.13. |

Remark 10.5 If n is not prime to 7, the result in Theorem 10.12 does not hold. For
example n = 98 = 2 - 72 can not be represented by fo. In fact, for p = 7, the above
proof is not suitable because we can not obtain a contradiction as above for p # 7.
For if we assume that ng is an eligible number such that ro(ng) = r2(7?ng) = 0, then
~ r5(7%no)
T—Xm(D  rh(n0)
holds, e.g., ng = 2 makes it hold. In this proof we need not introduce the concept of

the calculations above show that = a7 = 1, which possibly

essentially distinct primitive representations. And for the formula giving the number
of representations for a genus of positive definite ternary quadratic forms, we also
need not assume that our discussion is limited to the integers prime to the level of the
quadratic form because we do not employ Theorem 86 in B.W. Jones, 1950. In fact,
the argumentation of the above proof can also be applied to other genera consisting
of two equivalent classes. For example, we can prove the following result:

Corollary 10.6  Let f(,) = z2 + py? + pz? with an odd prime p and assume that
the genus of f() consists of two equivalence classes which we denote by f,) and gy
Denote

DN | =

J?(p)(Z) = Z b(n)e?™n* = Z(r(n) — 1 (n))e2Hinz,
n=1 n=1

where r(n) and r'(n) are the numbers of representations of n by fe,) and g, respec-
tively. And assume that the Shimura lifting F,)(z) = S(f(p) (2)) of f(p)(z) is a new
form of weight 2 corresponding to a modular elliptic curve, then every eligible number
prime to 2p of the genus of f(,) not represented by f,) is square-free.
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Proof It is completely similar to the proof of Theorem 10.12. O

Example 10.7 Every eligible integer prime to 34 not represented by fi7) =
2% + 17y? + 172 is square free. This is because that the genus for f(;7) consists of
far and g7y = 222 +9y® 4+ 172 + 22y and the Shimura lifting of f(m(z) is the new
form corresponding to the modular elliptic curve (34A). O

Combining Theorem 10.10, Theroem 10.12, Remark 10.2 and the result of Corol-
lary 10.6 we indeed obtain:

Corollary 10.7  Let fq,) = 22 + py? + pz? be as in Corollary 10.6. Then there
are only finitely many eligible numbers which are prime to 2p and not represented by
the quadratic form f,) . In particular, there are only finitely many eligible numbers
prime to 7 and 34 not represented by the forms f(7) and f(17) respectively.

We now consider the following problem: Let n be a square free positive integer,
f and g be two ternary positive definite quadratic forms in the same genus, then
when do we have that r(f,n) # r(g,n) where r(f,n) and r(g,n) are the numbers of
representation of n by f and g respectively. For example, if f7) = 2% + Ty* + 722,
gy = 2x® + 4y? + 72% — 2xy, then f(7) and g(7) are in the same genus, and we want
to know when do we have that r(f(7),n) # 7(g(r),n) for a positive integer. It is clear
that we only need to consider eligible numbers n because r(f,n) = r(g,n) =0 if n is
not eligible.

We now assume always that f and g are in the same genus and r(f,1) # r(g, 1).
Let

F2) =3 b = 15" (r(f.m) — rlg,m)) exp{2minz),

where r = r(f,1) —r(g,1) # 0. Then f(z) € S(N, 3/2, x;). For example, we have
that

oo

1

17(7)(2) = 9 Z(T(fmm) — T(g(7), n)) exp{2minz}

n=1
=q+---€5(28,3/2,x1), q=exp{2miz}.

We assume further that the Shimura lifting F'(z) of f(z) is a new form correspond-
ing to a modular elliptic curve E/Q. For example, we see that F(7)(z) = S(f(7)(2))
is the new form corresponding to the modular elliptic curve (14C):

(14C) : y? =2 + 22 + 72z — 368.

Fap(z) =8 (f(n) (2)) is the new form corresponding to the modular elliptic curve
(11B) where f(11) = 2 + 11y? 4 1122

(11B) : v +y=2a®— 2% — 10z — 20.



10.3  The Eligible Numbers of a Positive Definite Ternary Quadratic Form 417

By the definition of f(z), what we want to know is that when are the coefficients of

f(2) not equal to zero. In order to do this we need the following result of Waldspurger:

Lemma 10.7 Assume that E/Q is a modular elliptic curve with corresponding cusp
form fg, and that
F e S(N,3/2,x:)NSo(N, x:)*

with -
S(F) = fo. F =Y ane™,
n=1

where So(N, 1)) is the subspace of S(N,3/2,1) generated by the form F of the following
type: There is a t € N and a quadratic character x with conductor r such that F' =

o0
Z X(m)mqtm2 and N = 4r%t, ¢ = x - x¢ - X—1. Assume that d and dy are natural
m=1

square free numbers with

d = dy mod<H@;;2>, and (ddg, N) = 1.

p|N

Then
LE—td(l)\/Ea?lo = LE_tdO (1) doa?l.

So especially: if
LEfmoa'do 75 0,

then
LE—td(l) =0 if and only if ag = 0,

where Ly, (s) is the Hasse- Weil Zeta function of the D-th twist of elliptic curves E.

Now denote the set of representatives of all inequivalent integers mod HQ}?
p|N
which are eligible numbers for the genus of f and prime to N by Dy, then Dy is
finite. Let be Dy = {dl, da, + -, dl}.
We have that for any square free eligible natural integer d such (d, N) = 1, there
exist unique d; € Dy such that

Lp_,,(1)Vd _ Leg_,, (D)Vd;

2 2
Ay Ay,

i

Using this equality, we can deduce when the coefficients a4 are different from zero.
Example 10.8 Let f = f(7), g = g(7), £ = (14C), then

fen(z) = 5 (0(f()) — 0(9¢r))) € S3/2(28,x1)

N | =
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and
Fipy(2) = S(fir)(2)) € S5°"(14)

corresponding to the modular elliptic curve (14C). And we can calculate that
Dog={1,11,15,29},
Lg_, #0,for alld; € Das,

b1= %(T(fm’ ) =r(gm,1) =1,

b = 5 (), 11) = r(ggay, 11)) = 5(8 — 8) =0,
bis =5 (r(fr):15) = rlgcn 15)) = (8~ 8) =0,
bag = %(r(fm, 29) —r(9(7),29)) = %(8 —4)=2.

These calculations and Waldspurger’s Theorem show that for square free eligible
numbers d such that (d,14) = 1:

r(fery,d)=r(g9(7),d), ifd=11,15 mod H Q;Q ,
p|28

r(fery,d) #r(9(7),d) if and only if Lg_,(1) # 0 for d = 1,29 mod H Q;Q
p|28

Hence we have the following:

Theorem 10.14  Let be f7) = x? + Ty? + 722, g(7) = 20% + 4y? + 72% — 2ay, E the
corresponding modular elliptic curve of the cusp form %(H(fm) —0(g9(7))) and E_4
the —d-twist of E. Then for any square free eligible numbers d such that (d,14) =1,
we have that

(1) 1(frod) = rlgryrd), fd=11,15 mod | [T Q2]
p|28

(2) r(fery,d) # 7(gery,d) if and only if Lg_,(1) # 0 for d =1,29 mod H Q;‘f ,
p|28
where Lg_,(s) is the Hasse-Weil L-function of the elliptic curve E_q. Especially, if
n 1s a square free natural number such that

n = 3 (mod 8) and (%) =1
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. n =7 (mod 8) and (g) =1,

then
T(f('y) ) n) = T(g(7)a n)

Proof  Above all proved except for the last assertion. But
n
n =3 (mod 8) and (;) =1

implies that

n = 11mod (HQ;‘)Q).

p|28
And n
n=7(mod 8) and (7> =1

implies that

n = 15mod (HQ;?)

p|28

which shows this theorem. O

From this theorem, we see that for the cases of d = 11,15 mod H Q;‘,Q , the
|28

result (1) is completely pleasant. And for the cases of d = 1,29 mod H Q;? , the
p|28

result (2) is not so pleasant because it is not an easy task to determine if Ly_,(1) = 0.
But we have the following:

Theorem 10.15 Let p = 1 mod HQ;? be a prime not dividing 14, then
p|28

r(f7),p) # 7(9(7),p) if p is represented by 2X2 +7Y2.
Proof Asin J.A. Antoniadis, 1990, we denote
Fo = (0(X? 4 14Y?) — 02X> + 7Y?)) - fia1a := Y ane®™ " € S3,5(56, x1),
n=1
where

b4 1= Z ¢ e My 5(56, x14),  O(X*+14Y?) —0(2X* +7Y?) € S1(56, x—14).

n=—oo
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Then by the results in J.A. Antoniadis, 1990, we know that Fp is mapped to the cusp
form corresponding to the modular elliptic curve (14C) under Shimura lifting and

a, # 0 if p is a prime not dividing 14 and represented by 2X?2 + 7Y2. Since p = 1

mod H Q;? , by Waldspurger’s Theorem, we see that
p|28

Lg_,(1)y/pai = Lg_,(1)a.
A direct computation shows that a; - Lg_, (1) # 0 which implies that
Lg_,(1) =0 if and only if a, = 0.
Therefore by Lemma 10.7, we have proved that

r(fry,p) # r(g(ry, p) if and only if a;, # 0,

which completes the proof since a, # 0 if (p,14) = 1 and represented by 2X? +
Y2, |

Our method can be used for other ternary positive definite quadratic forms. For
example, we can similarly study the forms f(11),g(11)- In this case, we calculate:

Dy ={1,3,5,15},

Lg_,, #0, forall d; € Dy,

bp=1, bs3=—-1m bs=-1, b5=1
Hence we conclude that

Theorem 10.16  Let be f11) = 2% +11y* 4+ 1122, g1y = 32° +4y*> +112° + 22y, E

1
the corresponding modular elliptic curve of the cusp form i(e(f(ll)) —0(ga1))) and

E_g; the —d-twist of E. Then for square free eligible numbers d such that (d,22) =1,
we have that

r(fay),d) #r(g9ay,d) if and only if Lg_,(1) # 0,

where Lg_,(s) is the Hasse-Weil L-function of the elliptic curve E_q4. FEspecially, we
have that (f11),d) # 7(9(11),d) if d satisfies one of the following conditions:

(1) d = p is a prime not splitting in Q(v/—11)(2)/Q(v/—11), where Q(v/—11) o) is
the class field of Q(v/—11) with conductor 2;

(2) d = p is a prime with (p,22) = 1 such that p is represented by 3X2+2XY +4Y?;

(3) 51 h(—d).

Proof  Since Lg_, (1)-bg; # 0 for alld; € Dy, we know that r(f11),d) # r(g9(11), d)
if and ounly if Lg ,(1) # 0 by Waldspurger’s Theorem. All other assertions are
immediate conclusions of Proposition 4.2 and Proposition 4.8 in J.A. Antoniadis,
1990. O
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Remark 10.6 Our method in this section can be used to any other positive definite
quadratic forms satisfying our assumptions in the paragraph before Lemma 10.7. For
example, we can study similarly the forms f(;7) and g7, etc.

Finally we consider the following problem: for a given positive definite quadratic
form with integral coeflicients, find an exact formula for the number of representations
of integers by this form. In general it is a difficult classical problem. Even for the
simplest cases, i.e., binary forms and ternary forms, the problem is still open. For the
general case, what we know is that the sum of the numbers of representations of an
integer by all classes in a fixed genus is in relation to the coefficients of some modular
forms in an Eisenstein subspace. But even for the sum, it is non-trivial to give an
exact formula for a form given generally. In any case, the number of representations
of an integer by one form in the genus has never been formulated if the class number
of the genus is larger than one.

We shall consider some ternary quadratic forms with class number two of their
genus, and give exact formulae for the numbers of representations of an integer by
these forms. The main idea is as follows. For a positive definite ternary form f,
let f and g be the representatives of classes in the genus of f. On the one hand,
some linear combination of the numbers of representations of an integer by f and g
can be related to the class number of a certain quadratic field; on the other hand,
sometimes, we can find another linear combination of these numbers which is related
to the L-function of an elliptic curve. By these two linear combinations, in terms of
class number of a quadratic field and the special value of the L-function of an elliptic
curve, we can get exact formulae for the number of representations of an integer by f
and g respectively. This also shows the difficulty of the classical problem mentioned
above because of the mysterious properties of the special values of L-functions and

class numbers.

Theorem 10.17 Let f = ax? + By? + 22 be a positive definite ternary quadratic
form with level N. Suppose the genus of f consists of two classes, f and g are the
representatives of the classes. We assume further that pO(f) — vO(g) # 0, and

pby + 18 = ane®™"* € S(N,3/2,x)NSo(N, xi)*
n=1
and the Shimura lifting F(z) of pfy + v, is a new form corresponding to an elliptic
curve E/Q. Let n with (n, N) = 1 be any square-free eligible number of the genus (i.e.,
d can be represented by the genus of f) with n = d; mod H Q;‘f and Lg_,, (1) #0,
pIN
then
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O(f)adi % - I/O(f)O(g)'r(a’ b, c; n)h(—ln)
e pO(f) = vO(9) )

KOO r(a b (1) — Ofgaa, [ 7520
r(g,n)= —1d; 7

nO(f) —vO(g)

where d; € Dy = {dy,da,--- ,di}, Lg,(s) is the Hasse-Weil Zeta function of the D-th
twist of the elliptic curve E.

Proof In Lemma 10.7, we take F(2) = pufs(z) + vd,( Z a,e®™"% . Then by

n=1

Theorem 10.9 we obtain the following system of equations:

pr(f,n) +vr(g,n) = an,

r(f,n)  rlg,n) g (10.41)
o(f) 0g) =r(a,b,c;n)h(—In).

For the positive integer n, there is a unique d; € Dy with n = d; mod H Q;‘,Q
pIN
By the above Lemma 10.7, under the assumptions of the theorem, we have that

a a LE—ln(]')
n — d; T 4\

LE—ldi (1)
solving the system (10.41) for r(f,n),r(g,n), and inserting above the expression for
an, we get the results desired, which completes the proof. O
Remark 10.7 Because the set Dy = {dl, da, -, dl} is finite, we see that r(f,n)

and r(g,n) can be represented explicitly in terms of the classnumber h(—In) and the
special value Lg_,, (1) of L-function of the twist of the elliptic curve E.

Example 10.9 Let be f; = 22 + Ty + 722, g1 = 222 + 4y? + 72% — 2zy.Then
O(f1) =8, O(g1) = 4, and

= Z an exp{2minz}
n=1
1 L, 1 .
= 30(2) — 305, () = 5 3 (r(fi,m) — r{g1,m)) exp{2inz)
n:l

=q+---€5(28,3/2,x1), q=exp{2miz}
and F(z) = S(f(2)) is the new form corresponding to the elliptic curve (14C):
(14C) : y? =2 + 22 + 72x — 368.
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We can easily calculate that

Dog={1,11,15,29},
Lp_, #0 forall d; € Das,

=5 (r(f,1) ~ (g, 1) =1,

1 1
a1 = 5(r(f,11) = r{g, 1)) = 2(8 - 8) =0,
a1s = 5 (r(f,15) — r(9,15)) = (8~ 8) =0,
as0 = 5(r(f,29) ~ 7(0,29)) = 2(8 —4) =2,

Hence by Theorem 10.17, for any square-free eligible integer n , we have that

4 |L 1
r(fi,n)= 3 Iz_jél)) + 27"(1,7, 7;n)h(—n), ifn=1mod H Q2
p|28
8 1 [Lg_,(1 . *
r(gl,n):gr(1,7,7;n)h(—n)+ 3 LJZIEIS’ if n =1 mod HQPQ,
p|28
r(fi,n)=r(g1,n) = gr(l, 7,7;n)h(—n), if n =11 mod H Q;27
p|28
8 . x
r(fi,n)=r(g1,n) = gr(l, 7,7;n)h(—n), if n =15 mod H (@p27
p|28
8 LE—n(]') 8 . — *2
T‘(fhn) = g m + 57‘(1, 77 7, n)h(—n), if n =29 mod pl;[ng s

2 | L 1
r(ghn):§r(1,777;n)h(—n)+ = ﬂ, if n = 29 mod 1_[(@;;27
3 3\ L (1) o

P17, T5m) = g+ (2= () Bur(n)h ()
(1 =27 %0 (@)1 = x=n(p) - P~ (n/5)
x 0 @ a(a)(an)!

(ab)?|n
(ab,2p)=1

where

Yp(1)

for any prime p; In particular we know that +,(n) = (1 — 27 'x_n(2))(1 — x—n(p) -
p~1)(n/8,)"/? for any square-free positive integer n.



424 Chapter 10  Integers Represented by Positive Definite Quadratic Forms

From these results, we can get very explicit formulae for the number of represen-
tations of the square-free positive eligible number n with (n,28) =1 by f and g. E.g.,

for any square-free positive integer n > 3 with n = 3 mod 8 and (g) = 1, then

n =11 mod H Q;Q . By the definitions of a(n), #1,7(n) and v4(n), we have that
p|28

a(n) =1, Birln) =14, 2(n) =+

So
r(f1,n) =r(g1,n) = 8h(—n).

Of course, we can discuss also other square-free positive integers n in a similar
way. U
Example 10.10 Let be fo = 22 + 11y% + 1122, go = 322 + 4y? + 1122 + 22y. Then
we have that

Dy = {]., 3,5, 15}, LE—di 7é 0, for all d; € Dyy,

a1 = ].7 as = —].7 as = —].7 als = 1.

And O(f2) = 8,0(g2) =4,

1= anexp(2nin:) = $05(2) — 500,(2)

5 (r(f2,m) — (g2, m)) exp{2ninz)
=q —Z_l - €.5(28,3/2,x1), q = exp{2niz}
and F(z) = S(f(2)) is the new form corresponding to the elliptic curve (11B):
(11B) : 2 +y =12 — 2% — 10z — 20,

So by Theorem 10.17, we can get the exact formulae for the number of representations
of any square-free eligible integer n with (n,22) = 1 by f and g in terms of h(—n)
and Lg_, (1). We omit the calculations. O

Theorem 10.18 Suppose that n is an odd square-free positive integer congruent to
1 or 3 modulo 8. f3 = % + 2y? + 3222, g3 = 222 + 4y + 922 — 4yz. Then

r(form) = e(mh(—n) + 2, ZEz L)
h(—n)—2

B

w

—_

LEnQ( )

r(gs,n) = ¢(n)

)

B

w
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where c¢(n) = 2 or 6 according ton =1 or3 (mod 8), w is the real period of the elliptic
curve B : y? = 423 — 4z and Lg ,(s) is the L-function of the congruent elliptic curve
defined by y? = 3 — n’z.

Proof Let f3 = 22 + 2y% + 3222, g3 = 222 + 4y + 922 — 4yz. We want to give
the formula for the number of representations of n by f; and gs. It is clear that
r(fs,m) = r(gs,n) = 0 for any n = 5 or 7 (mod 8). So we only need to consider
positive integers congruent to 1 or 3 modulo 8. Now let f; = 222 + y? + 3222,
g5 = 22% + y? + 822, then by Tunnell’s paper J.B. Tunnell, 1983, for any odd positive

integer n, we have
L 1 1
Enz( ) _ _a/(n)Q7
wy/n 4
3 2

where E,2 is the congruent elliptic curve defined by y? = 2% — n?z, w is the real

1
period of the elliptic curve y? = 42® — 4z and a(n) = r(f,n) — ir(gg,n). It is not

difficult to see that a(n) = L r(fs,n) —r(gs,n)) for any odd n. So we have
2

LEnQ(]‘) o 1
o = Za(n)27 (10.42)

where a(n) = %(T(fg, n) —r(gs,n)).

In order to get the formulae for the number of representations of n by f3 and gs,
we only need to find the number r(fs3,n)+17(g3,n) by (10.42). But by the definitions
of 7(f3,n) and 7(g3,n), we see that r(fs,n) +r(gs,n) = r(2? + 2y* + 82%,n). So we
only need to calculate the number 7(2? +2y? + 822, n). We shall prove that for n > 3
square-free,

4h(—n) if n =1 (mod 8),

2 2 2 .
r(z® +2y° +8z°,n) = { 12h(—n) if n = 3 (mod 8).

In fact, if n = 1 (mod 8), then for any triple (z,y, z) € Z> such that #2+2y>+22% = n,
the £ must be odd and y, z are both even. So we have a one-to-one correspondence:

{(z,y,2) € Z%|2* + 2¢y* + 22° = n} = {(2,y, 2) € Z%|2® + 2y* + 82% = n},
(@,y,2) = (,9,2/2).
If n =3 (mod 8), then for any triple (z,vy,2) € Z* such that 22 + 2y? + 222 = n, the
x must be odd and there is exactly one of y, z that is odd. We let z be the even one.
Then we have a two-to-one correspondence:
{(z,y,2) € 2|2 + 2y + 22% = n} = {(2,y, 2) € Z°[a® + 2y* + 82" = n}
{ (z,y,2)

v e waf2)
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So we have

r(x? +2y? + 222, n) if n = 1 (mod 8),
r(z? + 2y +82%,n) = 1
57’(582 +2y? + 222, n) if n = 3 (mod 8).

Now we can compute the number r(x? + 2y2 + 222, n) in terms of our Theorem
10.9. By Theorem 10.9 it can be proved that for any positive integer n

r(x? +2y° + 227, n) = %ﬂ (1 - %Xn(2)>

e () - (%))
> ()

(ab)?|n,(ab,2)=1

a,b positive integers

where §(z) = 1 or 0 according to = an integer or not.

In particular, for any square-free odd positive integer n, the sum is equal to 1, and
since the conductor d,, of x_,, is equal to 4n or n according to n = 1 or 3 (mod 4),
we have

2, ifn=1,
8, if n =3,
4h(—n), ifn=1(mod 8),n # 1,
24h(—n), if n =3 (mod 8),n # 3.

r(x? 4 2y? + 222 n) =

Therefore we have for any square-free odd positive integer n > 3

4h(—n), if n =1 (mod 8),
U +rignm =rtat e tesstn = { R Z L S do
By the above (10.40) and (10.42) we have proved the theorem. O

Let N = p1ps - - - ppy With p1, pa,- -+, pmy distinet odd primes, at most two of them
congruent to 3 modulo 8 and others congruent to 1 modulo 8. If there is at most one
of p; congruent to 3 modulo 8, then we define a simple graph Gy = (V(Gy), E(Gn))

()}

where (—) is the Legendre symbol as usual. Otherwise, without loss of generality,

with vertices V(Gy) = {p1,p2, -+ ,Pm} and edges E(Gn) = {(pi,pj)

we may assume p; = p2 = 3 (mod8) and p; = 1 (mod8) for i > 3. We define a
simple graph G = (V(Gn), E(Gn)) with vertices V(Gn) = {p1,p2,- - ,pm} and

edges E(Gy) = {(pl,pg)U(pi,pj) (’;) =—1,{i,j} # {1,2}}. By the quadratic
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reciprocity law, the graph Gy is a non-directed graph. We denote the number of
spanning trees of G by 7(Gy) if N has at most one prime factor congruent to 3
modulo 8, otherwise 7 is the number of spanning trees containing the special edge
(p1, p2)(a subgraph of a non-directed simple graph is called a spanning tree if it is a
tree and its vertices coincide with that of the original graph). Let v5(n) be the 2-adic
additive valuation normalized by v5(2) = 1.

Theorem 10.19 Let N = pip2---pm > 3 congruent to 1 or 3 modulo 8, with
P1,D2, ¢, Pm distinct odd primes, at most two of them congruent to 3 modulo 8 and
all others congruent to 1 modulo 8. Let f3,gs be as in Theorem 10.18. Then

(1) v2(r(fs, N)) = m,va(r(gs, N)) = m;

(2) if all p;(i =1,2,--- ,m) are congruent to 1 modulo 8, then the equality in (1)
holds if and only if vo(h(—=N)) =m — 1;

(3) if there is only one or two p; (i =1,2,--- ,m) congruent to 3 modulo 8, then
the equality in (1) holds if and only if one of the following conditions is satisfied:
i) vo(h(=N)) =m—1 and 7(Gy) is even; ii) va(h(—N)) > m —1 and 7(Gy) is odd.

Proof In order to prove the theorem, we need the following facts(for the proofs of
these facts please see C. Zhao, 1991, C. Zhao, 2001, C. Zhao, 2003):
Claim Let the notations be as in the theorem. Then

Lg (1))
) v [ —222) >2mifall p; (i =1,2,--- ,m) are congruent to 1 modulo 8;
(1) 2( N i ( ) g

(2) vo (%) > 2m — 2 if one or two of p;(i = 1,2, -+ ,m) are congruent to
3 modulo 8 and others are congruent to 1 modulo 8. Moreover, the equality holds if
and only if 7(G) is odd.

We consider the 2-adic valuation of the terms on the right side of the conclusion
of Theorem 10.18. It is clear that v5(¢(N)) = 1. From the Gauss genus theory we
know that

vo(h(—N)) =Zm —1, (10.44)

where m is the number of prime factors of N. By the claim we see that vy

L 1
<4EL()> > 2m. So the first conclusion (1) of the theorem is valid.
wv N

Now suppose that N = p1py - - - pp, with all p; =1 (mod 8). Then we have that

Lg (1)>
vy [ 4222 ) > 2m + 2.
2( wvV N

Therefore, by Theorem 10.18, (10.43) and (10.44), we see that vo(r(fs, N)) = v2(r(gs,
N)) = m if and only if va(c(N)h(—N)) = m, which is equivalent to va(h(—N)) =
m — 1. This is the second assertion (2) of the theorem.
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Finally, suppose that N = pips - - pp, as in (3) of the theorem. By the claim we

have I 1)
E 2
vy | 4——=| > 2m. 10.45
(1752 (10.45)

And the equality holds if and only if 7(Gy) is odd. By (10.43), we have
va(e(N)h(=N)) = m (10.46)

and the equality holds if and only if vo(h(—N)) = m — 1. Therefore by Theorem
10.18, va(r(fs, N)) = v2(r(gs, N)) = m if and only if one of the inequalities in (10.45)
and (10.46) holds while the other one does not hold. This is the assertion (3) of the

theorem which completes the proof. O
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Hecke operator, 153

Hecke operators, 153
Hermitian operator, 321
Hilbert space, 339
holomorphic automorphic form, 67
holomorphic form, 72
holomorphic modular form, 81
Hurwitz formula, 53
hyperbolic element, 45

in the same genus, 364
Kohnen space, 178, 247

Legendre symbol, 7

lie group, 265

local coordinate, 67

locally isomorphic imbedding, 270

Moéebius function, 300
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main involution, 107

Mellin transformation, 284
meromorphic differential, 68
modular form, 67

modular group, 46
multiplier, 336

new form, 166
non-regular cusp point, 74

old form, 166
order, 259

parabolic element, 45

partial Fourier transformation, 277
Petersion inner product, 134
Petersson inner product, 115
Phragman-Lindeloef Theorem, 124
pole, 67

positive definite quadratic form, 2
primitive cusp form, 169

quadratic residue symbol, 8

ramification index, 62

Rankin’s estimation, 367

rapidly decreasing functions, 265
rational numbers, 247

Index

real orthogonal group, 274
regular cusp point, 74
Riemann (-function, 300
Riemann surface, 61
Riemann-Roch Theorem, 73

second order differential operator, 271
Selmer groups, 309

Shimura lifting, 152, 280

Siegel theorem, 365

slowly increasing, 274

sympletic linear transformation, 265

theta function, 1, 363

trace of the Hecke operator, 321
transformation formula, 363
translation operator, 156

twist operator, 146

universal enveloping algebra, 270
value, 81

Weil representation, 266
Whittaker function, 16

zero, 67
Zeta function, 42, 120
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