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Abstract. In this paper, we extend Dung’s seminal argument framework
to form a probabilistic argument framework by associating probabilities
with arguments and defeats. We then compute the likelihood of some set
of arguments appearing within an arbitrary argument framework induced
from this probabilistic framework. We show that the complexity of com-
puting this likelihood precisely is exponential in the number of arguments
and defeats, and thus describe an approximate approach to computing
these likelihoods based on Monte-Carlo simulation. Evaluating the latter
approach against the exact approach shows significant computational sav-
ings. Our probabilistic argument framework is applicable to a number of
real world problems; we show its utility by applying it to the problem of
coalition formation.

1 Introduction

Likelihoods and probabilities form a cornerstone of reasoning in complex do-
mains. When argumentation is used as a form of defeasible reasoning, uncertainty
can affect the decisions reached during the reasoning process [27]. Uncertainty
can also affect applications of argumentation technologies in other ways. For
example, in the context of a dialogue, uncertainty regarding the knowledge of
participants can affect both the dialogue outcome, and the utterances the par-
ticipants choose to make. Furthermore, if uncertainty is viewed as a proxy for
argument strength, questions immediately arise regarding argument interaction
and the strength of conclusions given an argument system.

In this paper we examine the role of probabilities in an abstract argument
framework. Within such a framework, an argumentation semantics defines a
method by which a set of justified arguments can be deduced. As a reasoning
approach, a semantics takes an argumentation framework as its knowledge base
and produces a set of justified arguments as its output. The problem we address
thus involves identifying the effects of probabilities on argument justification.

At the intuitive level, our approach is relatively simple. Starting with Dung’s
abstract argumentation framework[9] as its base1, we assign probabilities to ar-
guments and defeats. These probabilities represent the likelihood of existence of
a specific argument or defeat, and thus capture the uncertainties inherent in the

1 Though as discussed in Section 6, our techniques are applicable to nearly any other
argumentation framework.

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 H. Li, N. Oren, and T.J. Norman

argument system. Within such a probabilistic argument framework (abbreviated
PrAF), all possible arguments neither definitely exist, nor completely disappear.
Instead, all elements of the framework have a different chance of existing. The
semantics of such a framework then identify the likelihood of different sets of
arguments being justified according to different types of extensions.

Now, since we are interested in the likelihood of a set of arguments being
justified we are, in a sense, reversing the standard semantics of argumentation.
Rather than identifying which arguments are in some sense compatible, we are
instead identifying a set of arguments and asking what their likelihood of being
compatible is (with respect to the other arguments, defeats and probabilities
which make up the framework). Answering this type of question has a number
of real world applications, including to the domains of trust and reputation [32]
and coalition formation [28].

As we show, a näıve approach to computing the likelihood of some set of
arguments being justified within a probabilistic argumentation framework based
on the standard laws of probability has exponential computational complexity
with respect to the number of arguments even in situations where the underlying
semantics has linear complexity. Given that this is impractical for most real-life
scenarios we propose, and evaluate, an approximation method based on the idea
of Monte-Carlo simulation for calculating the likelihood of a set of arguments
being justified.

The remainder of this paper is structured as follows. In the next section, we
describe and formally define probabilistic argumentation frameworks, and ex-
plain the näıve method for performing computations over such PrAFs. Section
3 then details the Monte-Carlo simulation based approximation method. In Sec-
tion 4, we empirically evaluate the performance of both of our techniques. An
illustrative application for which PrAFs are particularly applicable is detailed in
Section 5, following which Section 6 provides a more general discussion together
with suggestions for future work. We then summarise our results and conclude
the paper in Section 7.

2 Probabilistic Argumentation Frameworks

In this section, we extend Dung’s argumentation framework to include uncer-
tainty with respect to arguments and defeats. Essentially, we assign a probability
to all elements of the argument framework, namely to every argument and ele-
ment of the defeat relation. It should be noted that our approach can be easily
extended to other frameworks such as the bipolar [7], evidential [20] and value
based argumentation frameworks [5] as probabilities can be also assigned to the
additional elements of these frameworks (e.g. to the members of the support
relation in the case of bipolar frameworks). We begin this section by briefly de-
scribing Dung’s system, following which we discuss our extensions and methods
for reasoning about probabilistic frameworks.
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Definition 1. (Dung Argumentation Framework) A Dung argumentation
framework DAF is a pair (Arg,Def ) where Arg is a set of arguments, and Def ⊆
Arg ×Arg is a defeats relation.

A set of arguments S is conflict-free if �a, b ∈ S such that (a, b) ∈ Def . An
argument a is acceptable with respect to a set of arguments S iff ∀b ∈ Arg such
that (b, a) ∈ Def , ∃c ∈ Arg such that (c, b) ∈ Def . A set of arguments S is
admissible iff it is conflict free and all its arguments are acceptable with respect
to S.

From these definitions, different semantics have been defined [4]. These seman-
tics identify sets of arguments which are, in some intuitive sense, compatible
with each other. For example, the grounded semantics yield a single extension
which is the least fixed point of the characteristic function FAF (S) = {a|a ∈
Arg is acceptable w.r.t S}. In the remainder of this paper, we will concentrate
on the grounded semantics due to its computational tractability [11].

2.1 Formalising Probabilistic Argumentation Frameworks

A probabilistic argumentation framework extends Dung’s argument framework
by associating a likelihood with each argument and defeat in the original system.
Intuitively, a PrAF represents an entire set of DAFs that exist in potentia. A
specific DAF can then has a certain likelihood of being induced from the PrAF.

Definition 2. (Probabilistic Argumentation Framework) A Probabilistic
Argumentation framework PrAF is a tuple (A,PA, D, PD) where (A,D) is a
DAF, PA : A → (0 : 1] and PD : D → (0 : 1].

The functions PA and PD map individual arguments, and defeats to likelihood
values. These represent the likelihood of existence of an argument within an ar-
bitrary DAF induced from the PrAF. As discussed below, PD is, implicitly, a
conditional probability. It should be noted that the lower bound of these proba-
bilities is not 0 (but approaches it in the limit). This requirement exists because
any argument or defeat with a likelihood of 0 cannot ever appear within a DAF
induced from the PrAF, and is thus redundant.

A PrAF represents the set of all DAFs that can potentially be created from
it. We call this creation process the inducement of a DAF from the PrAF. All
arguments and defeats with a likelihood of 1 will be found in the induced DAF,
which can then contain additional arguments and defeats, as specified by the
following definition.

Definition 3. (Inducing a DAF from a PrAF) A Dung argument frame-
work AF = (Arg,Def ) is said to be induced from a probabilistic argumentation
framework PrAF = (A,PA, D, PD) iff all of the following hold:

– Arg ⊆ A
– Def ⊆ D ∩ (Arg ×Arg)
– ∀a ∈ A such that PA(a) = 1, a ∈ Arg
– ∀(f, t) ∈ D such that PD((f, t)) = 1 and PA(f) = PA(t) = 1, (f, t) ∈ Def
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Fig. 1. A graphical depiction of a PrAF

We write I(PrAF )to represent the set of all DAFs that can be induced from
PrAF.

A DAF induced from a PrAF thus contains a subset of the arguments found
in the PrAF, together with a subset of the defeats found in the PrAF, subject
to these defeats containing only arguments found within the induced DAF. The
process of inducing a DAF eliminates information regarding likelihoods found in
the original PrAF.

Now, consider a situation where a number of entities are participating in a
dialogue, and one of them (labelled α) would like to compute what conclusions
might be drawn at the end of this interaction. Let us assume that α has ar-
guments a and b in its knowledge base, and it believes that the other dialogue
participants have arguments c and d in their knowledge base. This belief is how-
ever uncertain; c is believed to be known by the others with a likelihood of 0.7,
and d with a likelihood of 0.3. Now let us assume that argument a defeats c
and d defeats a. For simplicity, we assume that these defeat relations have no
uncertainty associated with them (i.e. PD = 1 for each of them). Formally, this
can be represented by the PrAF following PrAF, illustrated in Figure 1.

({a, b, c, d}, {(a, 1), (b, 1), (c, 0.7), (d, 0.3)}, {(a, c), (d, a)}, {((a, c), 1), ((d, a), 1)})
Given this PrAF, we can induce the following DAFs:

({a, b}, {}), ({a, b, c}, {(a, c)}),
({a, b, d}, {(d, a)}), ({a, b, c, d}, {(a, c), (d, a)})

Clearly, b appears in the grounded extension of all of these DAFs, while a appears
in the grounded extension of 3 out of 4 induced DAFs. Now, α might want to
identify the likelihood of a being justified (i.e. in the grounded extension) at the
end of the dialogue, perhaps to decide whether to advance it or not (assuming
that advancing an argument has some associated utility cost [21]).

2.2 Probabilistic Justification

Our goal is to compute the likelihood that some set of arguments exists and is
justified according to some semantics within the DAFs induced from a PrAF.
This likelihood can be obtained from the basic laws of probability, and we detail
this procedure next. We make one critical simplifying assumption, namely that
the likelihood of one argument (defeat) appearing in an induced DAF is inde-
pendent of the likelihood of some other argument (defeat) appearing. With this
assumption in hand, we begin by computing the likelihood of some DAF being
induced from the PrAF.
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As mentioned earlier, the PD relation associates a conditional probability with
each possible defeat. That is, for some arguments a, b

PD(a, b) = P ((a, b) ∈ Def |a, b ∈ Arg) for the induced DAF (Arg,Def )

Informally, the probability of some DAF AF being induced from a PrAF can
be computed via the joint probabilities of the arguments and defeat relations
appearing in AF . In order to formalise this concept compactly, we must identify
the set of defeats that may appear in an induced DAF. We label this set as
DefA. Given a DAF with arguments Args, and a PrAF containing defeats D

DefA = {(a, b)|a, b ∈ Args and (a, b) ∈ D}
This allows us to compute the probability of some DAF AF being induced from a
PrAF, written P I

PrAF (AF ), by computing the joint probabilities of independent
variables as follows:

P I
PrAF (AF ) =

∏

a∈Arg

PA(a)
∏

a∈A\Arg

(1−PA(a))
∏

d∈Def

PD(d)
∏

d∈DefA\Def

(1−PD(d))

(1)
Applying this to our earlier example, P I

PrAF (({a, b}, {})) = 0.21.

Proposition 1. The sum of probabilities of all DAFs that can be induced from
an arbitrary PrAF is 1. That is,

∑
a∈I(PrAF) P

I
PrAF (a) = 1.

Now our goal is to identify the likelihood of some set of arguments being con-
sistent with respect to some set of argumentation semantics. Such a semantics
may return one or many extensions for a given argument framework, and we for-
malise our notion of consistency through the definition of a semantic evaluation
function, ξS(AF , X) which returns true if and only if the set of arguments X
is deemed consistent using the semantics S when evaluated over the argument
framework AF . Thus, for example ξG(AF , X) could return true if the set of
arguments X appears as a subset of the grounded extension of AF .

Then, following on from Proposition 1, given some PrAF , the likelihood of X
being consistent according to the semantics S is defined as follows:

PPrAF (X) =
∑

AF∈I(PrAF)

P I
PrAF (a) where ξS(AF , X) = true (2)

Referring again to our earlier example, PPrAF ({a, b}) = 0.7.
While we can utilise Equations 1 and 2 to compute the exact likelihood of a set

of arguments being justified with regards to some semantics, the size of the set
of possible DAFs which can be induced from a PrAF grows exponentially with
regards to the number of arguments and defeats within the PrAF, resulting in
exponential time complexity (not including the computational costs associated
with computing the results of ξS). This is clearly impractical for a large set
of arguments, and in the next section, we examine an approximate method for
determining these likelihoods.
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3 Approximate Solutions in Probabilistic Argumentation
Frameworks

In this section we describe a Monte-Carlo simulation based approach to com-
puting PPrAF (X) for an arbitrary set of arguments X . At an abstract level, a
Monte-Carlo simulation operates by repeatedly sampling a distribution many
times in order to approximate it. More specifically, such a simulation has three
basic steps. First, given a possible set of inputs, a subset of these inputs is se-
lected according to some probability distribution. Second, some computation is
performed using the selected inputs. Finally, the results of repeating the first two
steps multiple times is aggregated. Monte-Carlo simulation has a long history,
and has been applied to a variety of computationally difficult problems including
inference in Bayesian Networks [19], reinforcement learning [31] and computer
game playing [8].

In this context of probabilistic argumentation frameworks, this process in-
volves randomly inducing DAFs from a PrAF, with the likelihood of an arbitrary
DAF being induced being dependant on the underlying probability distribution
of its individual members. We thus sample the space of possible DAFs in a way
that approximates the DAFs true distribution in the probability space.

The only source of uncertainty in Equation 2 lies in P I
PrAF which in turn

depends only on the probabilities found in the underlying PrAF. Therefore, in
order to approximate PPrAF (X) we need only sample the space of arguments and
defeats found in the PrAF. Algorithm 1 describes this process more precisely.

The algorithm samples N DAFs from the set of inducible DAFs. A single
DAF is generated by randomly selecting arguments and defeats according to
their likelihood of appearance (Lines 4-7 and 10-14 respectively). This resultant
DAF is then evaluated for the presence of X through the ξS function (Line 16),
and if this function holds, the DAF is counted. PPrAF (X) is finally approximated
as the ratio of the total number of DAFs in which ξS(X) holds to the number
DAFs sampled (Line 20).

The following proposition states that as our number of trials increases, the
error in our approximation of PPrAF (X) shrinks.

Proposition 2. If we denote the output of Algorithm 1 as P ′
PrAF (X), then as

N → ∞, PPrAF (X) − P ′
PrAF (X) → 0. More specifically, there is some N ∈

�
+ and ε ∈ �+ such that for all M > N , if M trials are run, |PPrAF (X) −

P ′
PrAF (X)| < ε.

This proposition means that our algorithm has an anytime property: it may be
terminated at any time, and earlier terminations will still provide an approxima-
tion to the true probability, albeit with a greater error than would be provided
from a later termination.

While this proposition provides some guarantees regarding the accuracy of
our results given enough trials, it does not answer one critical question: how
many trials must be run to ensure (with some level of confidence) that our
approximation has only a small level of error?
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Algorithm 1. An algorithm to approximate PPrAF (X)

Require: A Probabilistic Argumentation Framework PrAF = (A,PA, D, PD)
Require: A set of arguments X ⊆ A
Require: A number of trials N ∈ N

Require: A semantic evaluation function, ξS

1: Count = 0
2: for I = 0 to N do
3: Arg = Def = {}
4: for all a ∈ A do
5: Generate a random number r such that r ∈ [0, 1]
6: if PA(a) ≥ r then
7: Arg = Arg ∪ {a}
8: end if
9: end for
10: for all (f, t) ∈ D such that f, t ∈ Arg do
11: Generate a random number r such that r ∈ [0, 1]
12: if PD((f, t)) ≥ r then
13: Def = Def ∪ {(f, t)}
14: end if
15: end for
16: if ξS((Arg ,Def ), X) = true then
17: Count = Count + 1
18: end if
19: end for
20: return Count/N

In order to answer this question, we note that the results of a Monte-Carlo sim-
ulation can be viewed as a normal distribution over possible values for PPrAF (X),
and with P ′

PrAF (X) as its mean. Given this, we may make use of the notion of
a confidence interval in order to answer our question. In statistics, a confidence
level of l for a given a confidence interval CI and a mean p′ can be read as
stating that the true mean lies within p′ ± CI with a likelihood of l. Such a
confidence interval is dependant on the observed likelihood of an event and the
number of trials used to make the observations. We can thus recast our problem
to ask how many trials need to be run in order to ensure that the confidence
interval around P ′

PrAF (X) (i.e. its error) is smaller than some value ε with some
specific confidence level (e.g. 95%).

Probably the most common approach to computing such an interval is the
normal approximation interval [18], which is defined as follows:

p′ ± z1−(α/2)

√
p′(1− p′)

n
(3)

Here, p′ is the observed mean, n is the number of trials, and z1−(α/2) the 1−(α/2)
percentile of the normal distribution. In the experiments described in Section 4,
we required a 95% confidence level, resulting in z1−(α/2) = 1.96. Then we get
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the following equation to compute the number of trials required to achieve an
error level below ε:

N >
p′(1− p′)

ε2
(1.96)2 (4)

However, this approximation is problematic in our situation as p′ is either 0 or
1 after a single trail, which will break down the calculation. To overcome this
problem, we utilise the Agresti-Coull interval [1] instead. The general form of
this interval is the same as that of Equation 3. However, the values of n and p′

are computed differently:

n = N + z21−α/2 p′ =
X + z21−α/2/2

n

Here, N is the number of trials and X is the number of “successes” observed.
Intuitively, it adds two different trivial numbers to the number of trials and the
number of “successes” respectively, which ensures p′ will never be 0. Approxi-
mating 1 − α/2 with the value 2 yields the above new equation. This method
guarantees the real “anytime” feature of our algorithm.

N >
4p′(1− p′)

ε2
− 4 (5)

Figure 2 provides a plot of this function. As seen here, initially, as the number
of trials increase, the error falls off rapidly. However, this shrinking of the error
quickly ceases, and additional trials serve to reduce the error by only a small
amount. It should also be noted that the likelihoods of variables with extreme
values (i.e. near 0 or 1) can be approximated far more quickly than variables
with values near 0.5.

Given a desired error level ε and confidence level, Equation 5 provides us
with a new stopping condition for Algorithm 1. The for loop of Line 2 can be
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substituted for a while loop which computes whether the expected error level
falls below ε given the number of iterations that have been run so far. If this is
the case, the loop can end, and the algorithm will terminate.

4 Evaluation

We have described, given some PrAF, two approaches to computing the likeli-
hood of a chosen set of arguments being justified with respect to some semantics.
While it is clear that the exact approach is exponential in complexity, it is use-
ful to identify the approximate number of arguments in a PrAF at which point
this becomes impractical. Similarly, in order to use it in real world settings,
the approximate running time of the Monte-Carlo based approach must also be
evaluated.

We implemented both of the approaches described in the paper using SWI-
Prolog2. For simplicity, we associated likelihood values only with arguments
within the PrAF; all defeats had a likelihood of 1. The goal of our first experiment
was to identify the effects of differently sized PrAFs on the runtimes of the exact
approach, and of the Monte-Carlo based approach with different error tolerances
(ε = 0.01 and ε = 0.005). In order to do so, we evaluated the approaches on
identical PrAFs with each PrAF containing between 1 and 16 arguments. Our
semantic evaluation function ξS(X) computed whether X formed a subset of the
grounded extension. We ran our experiment 20 times for each unique number
of arguments, and Figure 3 shows our results. As expected, the time taken by
the exact approach increases exponentially; the Monte-Carlo based approaches
overtake the exact approach at around 13 (when ε = 0.01) and 15 (when ε =
0.005) arguments. The introduction of uncertainty into the defeats relation would
increase the number of DAFs that can be induced from the PrAF meaning that
our results, in a sense, represent the best case for the exact approach.

In order to more closely examine the effect of ε and the size of the PrAF
on the performance of our approximate algorithm, Figure 4 compares the av-
erage number of iterations, and runtime, required to achieve the desired level
of accuracy against the number of arguments found in the PrAF. As expected,
an increase in the size of the PrAF has only a linear effect on the runtime of
our algorithm. This increase occurs due to an increase in the time required to
computing the membership of grounded extension (as computing this has linear
complexity) rather than additional iterations. In other words, the complexity
level of our algorithm depends on the complexity of computing membership un-
der some semantics. This result can clearly be seen from Figure 2; the number
of iterations required to obtain a certain error level do not depend on the num-
ber of arguments and defeats in the PrAF, but only on the joint probabilities
obtained from the PrAF. Figure 2 also predicts another result clearly seen in
Figure 4, namely that as the permitted error shrinks, the standard deviation
of the number of iterations that must be executed grows. This is because the
number of iterations required to obtain an error ε when the joint probability in

2 http://www.swi-prolog.org

http://www.swi-prolog.org
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question is close to 0 or 1 grows much more slowly than when the probability is
close to 0.5.

Finally, it can also be seen that there exists some variability between the
number of iterations required and the time to execute these iterations; this arises
due to the underlying Prolog implementation, and the number of iterations is
thus a better indicator of algorithm performance.

5 Applying PrAFs to Coalition Formation

In this section, we describe an application of our approach to a real world prob-
lem, namely coalition formation. According to [28], “Coalition formation is a
fundamental form of interaction that allows the creation of coherent groupings
of distinct, autonomous, agents in order to efficiently achieve their individual or
collective goals”. Coalition formation is applicable to both virtual domains such
as e-commerce (where virtual organisations can form in order to satisfy a cus-
tomer’s requirements [24]), and physical domains where, for example, a search
and rescue team must be composed of agents with specific capabilities in order
to be able to undertake some mission [26].

Most approaches to coalition formation treat the problem as one of utility
maximisation; agents will join a coalition if being in the coalition will yield a
greater utility than not. Here, we show how to address the problem of coalition
formation from a very different perspective. This different perspective allows us
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to explore an aspect of the social dimensions involved in coalition formation; i.e.
the notion of whether or not an individual’s presence in a coalition may influence
another’s membership. More specifically, we model a system containing agents
with different capabilities, each of which has a prior probability of joining the
coalition, and a probability of preventing other potential coalition members from
joining the coalition. We would then like to determine what the probability of a
coalition forming which is capable of achieving some task.

Translating this problem into a PrAF is trivial. Each agent can be represented
as an argument within the PrAF, an associated PA equal to its prior probability
of joining the coalition. Defeats then represent the likelihood of the presence
of one member in the coalition preventing another member from joining. Com-
puting the likelihood of a coalition containing specific members can then be
computed by computing PPrAF .

As an illustrative example3, consider a small mercenary team consisting of a
leader h, a pilot m, a mechanic b and an expert in persuasion f . Now assume
that the presence of the pilot cannot be tolerated by the mechanic, and that f
is generally disliked by other team members (to varying degrees); f ’s presence
in a coalition will increase the risk that others will not join. Finally, assume
that both f and h are often busy, and occasionally cannot join the team. This
situation can be represented by the PrAF shown in Figure 5.

3 This example is based on the characters from a 1980’s television series.
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Fig. 5. A PrAF representing the coalition formation example

A system user could use the techniques presented in this paper to compute
the likelihood of a specific team being formed, for example consisting of h,m
and b (this would be 0.037632+0.056=0.093632. The first value is the likelihood
of the full team forming, and the second, the probability of the team forming
without f). Given this likelihood, the user might decide to change their goals,
or add new agents to the system to increase the chances of success.

The discussion thus far has concentrated on determining whether a coalition
can be formed containing some specific set of agents. However, in the context
of coalition formation, the goal is often to form a coalition consisting of agents
taking on some set of specific roles (e.g. a coalition requires two mechanics and
a pilot). One approach to determining the likelihood of forming such a coalition
involves identifying all possible ways in which such a coalition can form, and
combining the probabilities of each individual coalition to obtain an aggregate
probability. However, this approach does not scale well as the size of the system
increases. We intend to investigate techniques for dealing with this issue in future
work, and discuss it further in the next section.

6 Discussion and Future Work

The use of likelihood in different facets of argumentation for modelling strength
or uncertainty of arguments has a long and rich history. Most commonly, such
likelihood measures have served as a proxy for argument strength [27,14], or
causal strength between arguments [23]. Argument framework incorporating un-
certainty about arguments have utilised probabilities to compute the likelihood
of some conclusion holding using a variety of different methods. For example,
[17,16] consider probability in the construction of argument, deriving a probabil-
ity of argument from the probabilities of its premises by several different meth-
ods. In the context of abstract argumentation frameworks, some approaches for
modelling uncertainties such as assigning a numerical values [10] or preference
ordering [2] to attacks have been developed. Another approach to strengths of
argument involves counting the number of subsets which meet the requirements
of some (multiple status) semantics [3], and in which the argument under ques-
tion appears. The ratio of this number to the total number of extensions then
serves to act as a measure of strength for the argument. Our approach is sim-
ilar in spirit to this latter work as we compute the likelihood of some subset
of arguments appearing. However, the introduction of probabilities, through the
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definition of a PrAF, makes the approach applicable to both single and multiple
status semantics, with the distinct advantage of the former’s tractability. An-
other similar work is by Janssen et al [15] in which they do not use probability
but also a value between 0 and 1 to model the strength of arguments and attack
relations. They borrow the idea from fuzzy logic and these values capture the
concept of degree; they define their semantics based on fuzzy logic operations.

Within the machine learning and knowledge representation communities,
Bayesian Networks [25] form a popular approach to modelling and reasoning
about uncertainty. Such networks allow one to reason about the posterior prob-
ability of the value of variables within the network given observations about
some other parts of the network. The idea of representing a PrAF as a Bayesian
Network is intuitively appealing, but not trivial. The DAF induced from a PrAF
captures the probability that an argument exists, while the PrAF based seman-
tics computes the likelihood that an argument (or set of arguments) is present
in an extension. It is not clear how both of these values can be encoded in, or
computed from, a single Bayesian Network, and as future work, we intend to
investigate whether, and how, a Bayesian Network representing a PrAF can be
constructed.

In Section 5, we discussed one possible application for PrAFs, namely answer-
ing questions about the likelihood of a coalition with certain characteristics being
formed. We discussed one shortcoming, namely the inability of the basic ap-
proach to deal with the notion of roles in coalition formation, and suggested one
method for overcoming this shortcoming. Another more nuanced approach in-
volves the use of resource bounded argumentation frameworks [30], which would
allow us to place requirements on team composition via constraints, and thus
also allow for more nuanced team formation. Another shortcoming involves our
underlying Dung based model wherein only defeats between arguments are mod-
elled. Constructing a PrAF on top of a bipolar framework (e.g. [7,20]) would
allow us to cater for situations where one agent is more likely to enter into a
coalition if some other agent will be present. Another way of achieving this would
be to lift the independence assumption regarding the likelihood of argument and
defeat relation likelihoods, and all of these form enticing possibilities for future
work.

PrAFs and the techniques described in this paper can be applied to other
argument frameworks and domains. For example, a value based argumentation
framework (VAF) [5] provides a model of determining whether some set of argu-
ments will be accepted by audiences containing agents with different preferences
over the defeat relation. Constructing a PrAF on top of such a VAF can allow
us to answer questions such as “what is the likelihood of all members in the
audience accepting this argument”. Clear applications of this include opponent
modelling [21] and heuristics for argument [22,29,12]. Another interesting pos-
sibility lies in associating a probability distribution with the preferences of the
audience within the VAF.

Apart from the coalition formation and argument strategy domains, the ideas
associated with constructing and evaluating PrAFs can also play a role in other
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domains where the notion of the strength of an argument is relevant. For ex-
ample, in the area of trust and reputation [32], PrAFs can be used to associate
reputation information with individual agents. Distrust relationships (follow-
ing [13]) or biases in trust relationships (following [6]) can then be constructed
through the defeats relation , and, by using a bipolar framework, trust relation-
ships can be created through support links. The resultant PrAF can then be
used to compute the likelihood of some set of agents considering one another
trustworthy.

7 Conclusions

In this paper we introduced probabilistic argumentation frameworks. These frame-
works add the notion of likelihood to all elements of an abstract argument frame-
work (in this paper, we concentrated on Dung argument frameworks, and thus
associated likelihoods with arguments and defeats), and are used to determine
the likelihood of some subset of arguments appearing within an extension. The
exact method for determining this likelihood has exponential complexity, and is
thus impractical for use with anything other than a small argumentation sys-
tem. To overcome this limitation, we introduced a Monte-Carlo simulation based
approach to approximate the likelihood. This latter technique scales up well, pro-
viding good results in a reasonable period of time, and has anytime properties,
making it ideal for use in almost all situations.

PrAFs have applications to a myriad of domains. In this paper, we focused
on one such domain, namely coalition formation, and described how PrAFs can
be used to assist a system designer. While we have touched on the applications
of PrAFs to other domains, and suggested a number of extensions to their ba-
sic representation, we intend to further explore their potential applicability to
additional argumentation frameworks and application domains.
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