

Lecture Notes in Artificial Intelligence 7132

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Sanjay Modgil Nir Oren Francesca Toni (Eds.)

Theory and Applications
of FormalArgumentation

First International Workshop, TAFA 2011
Barcelona, Spain, July 16-17, 2011
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Sanjay Modgil
King’s College London
Department of Informatics
Strand, London, WC2R 2LS, UK
E-mail: sanjay.modgil@kcl.ac.uk

Nir Oren
University of Aberdeen
Department of Computer Science
Aberdeen, AB24 3UE, Scotland, UK
E-mail: n.oren@abdn.ac.uk

Francesca Toni
Imperial College London
Department of Computing
South Kensington Campus, London SW7 2AZ, UK
E-mail: ft@imperial.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29183-8 e-ISBN 978-3-642-29184-5
DOI 10.1007/978-3-642-29184-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2, H.4, H.3, H.5, C.2, F.1, J.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Recent years have witnessed a rapid growth of interest in formal models of
argumentation and their application in diverse sub-fields and domains of appli-
cation of AI, including reasoning in the presence of inconsistency, non-monotonic
reasoning, decision making, inter-agent communication, the Semantic Web, grid
applications, ontologies, recommender systems, machine learning, neural net-
works, trust computing, normative systems, social choice theory, judgement ag-
gregation and game theory, and law and medicine. Argumentation thus shows
great promise as a theoretically grounded tool for a wide range of applications.

TAFA-11, the First International Workshop on Theory and Applications of
Formal Argumentation, aimed at contributing to the realization of this promise,
by promoting and fostering uptake of argumentation as a viable AI paradigm
with wide-ranging application, and providing a forum for further development
of ideas and the initiation of new and innovative collaborations.

We invited submission of papers on: formal theoretical models of argumenta-
tion and application of such models in (sub-fields of) AI; evaluation of models,
both theoretical (in terms of formal properties of existing or new formal models)
and practical (in concretely developed applications); theories and applications
developed through inter-disciplinary collaborations. We received 32 submissions,
of which we accepted 9 as full papers and 12 as short papers. Extended and im-
proved versions of all full papers are included in these proceedings, as well as
extended and improved versions of eight short papers that were re-reviewed after
the workshop.

The papers included in these proceedings cover the following topics:

– Properties of formal models of argumentation
– Instantiations of abstract argumentation frameworks
– Relationships among different argumentation frameworks
– Practical applications of formal models of argumentation
– Argumentation and other artificial intelligence techniques
– Evaluation of formal models of argumentation
– Validation and evaluation of applications of argumentation

In addition to paper presentations, the workshop also included an extended panel
session on the topic: “The future of argumentation: what is its added value and
how we communicate this to researchers in the artificial intelligence commu-
nity and beyond.” The panel was conducted by three influential researchers in
the area of formal argumentation: Carlos Chesnevar (Universidad Nacional del
Sur, Argentina), Martin Caminada (Université du Luxembourg, Luxembourg),
and Stefan Woltran (Vienna University of Technology, Austria). The panelists

VI Preface

addressed and debated (with one another and the workshop participants) the
following questions:

1. Which main challenges do we need to face for argumentation theory to have
a real impact on applications?

2. Are any of the argumentation systems currently available ready for deploy-
ment?

3. Have we identified suitable “killer” applications already? If not, which direc-
tion should we look at for a “killer” application?

4. Do we need any further theoretical developments to pave the way toward
applications and if so in which direction?

5. Which “industry” is most likely to be receptive to our methodologies/
techniques?

6. Would it be useful to “team up” with any other field (in AI, or com-
puter science, or elsewhere) in order to have a higher impact/more powerful
techniques?

The panel stirred a lively debate among the 25 or so workshop participants.
Passions often ran high: a testament not to fundamental divisions within the
community, but rather a desire to ensure that “we get things right” and so
realize the promise of argumentation.

December 2011 Sanjay Modgil
Nir Oren

Francesca Toni

Organization

TAFA-11 took place at the Universitat de Barcelona, Barcelona, Catalonia (Spain)
during July 16–17, 2011, as a workshop at IJCAI-11, the 22nd International Joint
Conference on Artificial Intelligence.

Workshop Chairs

Sanjay Modgil King’s College London, UK
Nir Oren University of Aberdeen, UK
Francesca Toni Imperial College London, UK

Program Committee

Leila Amgoud IRIT, Toulouse, France
Katie Atkinson University of Liverpool, UK
Pietro Baroni University of Brescia, Italy
Floris Bex University of Dundee, UK
Elizabeth Black Universiy of Utrecht, The Netherlands
Guido Boella University of Turin, Italy
Ivan Bratko University of Ljubljana, Slovenia
Gerhard Brewka University of Leipzig, Germany
Martin Caminada University of Luxembourg, Luxembourg
Carlos Chesnevar Universidad Nacional del Sur, Argentina
Sylvie Doutre University of Toulouse 1, France
Phan Minh Dung Asian Institute of Technology, Thailand
Paul Dunne University of Liverpool, UK
Dov Gabbay King’s College London, UK
Massimilliano Giacomin University of Brescia, Italy
Tom Gordon Fraunhofer FOKUS, Germany
Anthony Hunter University College London, UK
Antonis Kakas University of Cyprus, Cyprus
Nicolas Maudet Universite Paris Dauphine, France
Peter McBurney University of Liverpool, UK
Sanjay Modgil King’s College London, UK
Pavlos Moraitis Paris Descartes University, France
Timothy J. Norman University of Aberdeen, UK
Nir Oren University of Aberdeen, UK
Simon Parsons City University of New York, USA
Henry Prakken Utrecht University and University of Groningen,

The Netherlands

VIII Organization

Iyad Rahwan Masdar Institute, UAE and Massachusetts
Institute of Technology, USA

Chris Reed University of Dundee, UK
Nicolas Rotstein University of Aberdeen, UK
Guillermo Simari Universidad Nacional del Sur, Argentina
Francesca Toni Imperial College London, UK
Leon van der Torre University of Luxembourg, Luxembourg
Serena Villata University of Turin, Italy
Simon Wells University of Dundee, UK
Stefan Woltran Vienna University of Technology, Austria

Additional Referees

Mark Snaith

Sponsoring Institutions

TAFA-11 was endorsed by the Agreement Technologies COST action.

Table of Contents

Theory and Applications of Formal Argumentation

Probabilistic Argumentation Frameworks . 1
Hengfei Li, Nir Oren, and Timothy J. Norman

Splitting Argumentation Frameworks: An Empirical Evaluation 17
Ringo Baumann, Gerhard Brewka, and Renata Wong

On the Complexity of Computing the Justification Status of an
Argument . 32

Wolfgang Dvořák

Arguments over Co-operative Plans . 50
Rolando Medellin-Gasque, Katie Atkinson, Peter McBurney, and
Trevor Bench-Capon

An Implemented Dialogue System for Inquiry and Persuasion 67
Luke Riley, Katie Atkinson, Terry Payne, and Elizabeth Black

An Argumentation Framework for Qualitative Multi-criteria
Preferences . 85

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 99
Stefano Bistarelli and Francesco Santini

Resource Boundedness and Argumentation . 117
Nicolás D. Rotstein, Nir Oren, and Timothy J. Norman

An Empirical Study of a Deliberation Dialogue System 132
Elizabeth Black and Katie Bentley

Selective Revision by Deductive Argumentation . 147
Patrick Krümpelmann, Matthias Thimm, Marcelo A. Falappa,
Alejandro J. Garćıa, Gabriele Kern-Isberner, and
Guillermo R. Simari

A Three-Layer Argumentation Framework . 163
Paulo Maio and Nuno Silva

Stable Extensions in Timed Argumentation Frameworks 181
Maria Laura Cobo, Diego C. Martinez, and Guillermo R. Simari

X Table of Contents

Computing with Infinite Argumentation Frameworks: The Case of
AFRAs . 197

Pietro Baroni, Federico Cerutti, Paul E. Dunne, and
Massimiliano Giacomin

Multi-sorted Argumentation . 215
Tjitze Rienstra, Alan Perotti, Serena Villata, Dov M. Gabbay, and
Leendert van der Torre

Conditional Labelling for Abstract Argumentation 232
Guido Boella, Dov M. Gabbay, Alan Perotti,
Leendert van der Torre, and Serena Villata

Bottom-Up Argumentation . 249
Francesca Toni and Paolo Torroni

A First Step towards Argumentation Dialogues for Discovery 263
Xiuyi Fan and Francesca Toni

Author Index . 281

Probabilistic Argumentation Frameworks

Hengfei Li, Nir Oren, and Timothy J. Norman

Department of Computing Science, University of Aberdeen, Aberdeen, AB24 3UE,
Scotland

{h.li,n.oren,t.j.norman}@abdn.ac.uk

Abstract. In this paper, we extend Dung’s seminal argument framework
to form a probabilistic argument framework by associating probabilities
with arguments and defeats. We then compute the likelihood of some set
of arguments appearing within an arbitrary argument framework induced
from this probabilistic framework. We show that the complexity of com-
puting this likelihood precisely is exponential in the number of arguments
and defeats, and thus describe an approximate approach to computing
these likelihoods based on Monte-Carlo simulation. Evaluating the latter
approach against the exact approach shows significant computational sav-
ings. Our probabilistic argument framework is applicable to a number of
real world problems; we show its utility by applying it to the problem of
coalition formation.

1 Introduction

Likelihoods and probabilities form a cornerstone of reasoning in complex do-
mains. When argumentation is used as a form of defeasible reasoning, uncertainty
can affect the decisions reached during the reasoning process [27]. Uncertainty
can also affect applications of argumentation technologies in other ways. For
example, in the context of a dialogue, uncertainty regarding the knowledge of
participants can affect both the dialogue outcome, and the utterances the par-
ticipants choose to make. Furthermore, if uncertainty is viewed as a proxy for
argument strength, questions immediately arise regarding argument interaction
and the strength of conclusions given an argument system.

In this paper we examine the role of probabilities in an abstract argument
framework. Within such a framework, an argumentation semantics defines a
method by which a set of justified arguments can be deduced. As a reasoning
approach, a semantics takes an argumentation framework as its knowledge base
and produces a set of justified arguments as its output. The problem we address
thus involves identifying the effects of probabilities on argument justification.

At the intuitive level, our approach is relatively simple. Starting with Dung’s
abstract argumentation framework[9] as its base1, we assign probabilities to ar-
guments and defeats. These probabilities represent the likelihood of existence of
a specific argument or defeat, and thus capture the uncertainties inherent in the

1 Though as discussed in Section 6, our techniques are applicable to nearly any other
argumentation framework.

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 H. Li, N. Oren, and T.J. Norman

argument system. Within such a probabilistic argument framework (abbreviated
PrAF), all possible arguments neither definitely exist, nor completely disappear.
Instead, all elements of the framework have a different chance of existing. The
semantics of such a framework then identify the likelihood of different sets of
arguments being justified according to different types of extensions.

Now, since we are interested in the likelihood of a set of arguments being
justified we are, in a sense, reversing the standard semantics of argumentation.
Rather than identifying which arguments are in some sense compatible, we are
instead identifying a set of arguments and asking what their likelihood of being
compatible is (with respect to the other arguments, defeats and probabilities
which make up the framework). Answering this type of question has a number
of real world applications, including to the domains of trust and reputation [32]
and coalition formation [28].

As we show, a näıve approach to computing the likelihood of some set of
arguments being justified within a probabilistic argumentation framework based
on the standard laws of probability has exponential computational complexity
with respect to the number of arguments even in situations where the underlying
semantics has linear complexity. Given that this is impractical for most real-life
scenarios we propose, and evaluate, an approximation method based on the idea
of Monte-Carlo simulation for calculating the likelihood of a set of arguments
being justified.

The remainder of this paper is structured as follows. In the next section, we
describe and formally define probabilistic argumentation frameworks, and ex-
plain the näıve method for performing computations over such PrAFs. Section
3 then details the Monte-Carlo simulation based approximation method. In Sec-
tion 4, we empirically evaluate the performance of both of our techniques. An
illustrative application for which PrAFs are particularly applicable is detailed in
Section 5, following which Section 6 provides a more general discussion together
with suggestions for future work. We then summarise our results and conclude
the paper in Section 7.

2 Probabilistic Argumentation Frameworks

In this section, we extend Dung’s argumentation framework to include uncer-
tainty with respect to arguments and defeats. Essentially, we assign a probability
to all elements of the argument framework, namely to every argument and ele-
ment of the defeat relation. It should be noted that our approach can be easily
extended to other frameworks such as the bipolar [7], evidential [20] and value
based argumentation frameworks [5] as probabilities can be also assigned to the
additional elements of these frameworks (e.g. to the members of the support
relation in the case of bipolar frameworks). We begin this section by briefly de-
scribing Dung’s system, following which we discuss our extensions and methods
for reasoning about probabilistic frameworks.

Probabilistic Argumentation Frameworks 3

Definition 1. (Dung Argumentation Framework) A Dung argumentation
framework DAF is a pair (Arg,Def) where Arg is a set of arguments, and Def ⊆
Arg ×Arg is a defeats relation.

A set of arguments S is conflict-free if �a, b ∈ S such that (a, b) ∈ Def . An
argument a is acceptable with respect to a set of arguments S iff ∀b ∈ Arg such
that (b, a) ∈ Def , ∃c ∈ Arg such that (c, b) ∈ Def . A set of arguments S is
admissible iff it is conflict free and all its arguments are acceptable with respect
to S.

From these definitions, different semantics have been defined [4]. These seman-
tics identify sets of arguments which are, in some intuitive sense, compatible
with each other. For example, the grounded semantics yield a single extension
which is the least fixed point of the characteristic function FAF (S) = {a|a ∈
Arg is acceptable w.r.t S}. In the remainder of this paper, we will concentrate
on the grounded semantics due to its computational tractability [11].

2.1 Formalising Probabilistic Argumentation Frameworks

A probabilistic argumentation framework extends Dung’s argument framework
by associating a likelihood with each argument and defeat in the original system.
Intuitively, a PrAF represents an entire set of DAFs that exist in potentia. A
specific DAF can then has a certain likelihood of being induced from the PrAF.

Definition 2. (Probabilistic Argumentation Framework) A Probabilistic
Argumentation framework PrAF is a tuple (A,PA, D, PD) where (A,D) is a
DAF, PA : A → (0 : 1] and PD : D → (0 : 1].

The functions PA and PD map individual arguments, and defeats to likelihood
values. These represent the likelihood of existence of an argument within an ar-
bitrary DAF induced from the PrAF. As discussed below, PD is, implicitly, a
conditional probability. It should be noted that the lower bound of these proba-
bilities is not 0 (but approaches it in the limit). This requirement exists because
any argument or defeat with a likelihood of 0 cannot ever appear within a DAF
induced from the PrAF, and is thus redundant.

A PrAF represents the set of all DAFs that can potentially be created from
it. We call this creation process the inducement of a DAF from the PrAF. All
arguments and defeats with a likelihood of 1 will be found in the induced DAF,
which can then contain additional arguments and defeats, as specified by the
following definition.

Definition 3. (Inducing a DAF from a PrAF) A Dung argument frame-
work AF = (Arg,Def) is said to be induced from a probabilistic argumentation
framework PrAF = (A,PA, D, PD) iff all of the following hold:

– Arg ⊆ A
– Def ⊆ D ∩ (Arg ×Arg)
– ∀a ∈ A such that PA(a) = 1, a ∈ Arg
– ∀(f, t) ∈ D such that PD((f, t)) = 1 and PA(f) = PA(t) = 1, (f, t) ∈ Def

4 H. Li, N. Oren, and T.J. Norman

d
0.3

a
1

c
0.7

b
1

11

Fig. 1. A graphical depiction of a PrAF

We write I(PrAF)to represent the set of all DAFs that can be induced from
PrAF.

A DAF induced from a PrAF thus contains a subset of the arguments found
in the PrAF, together with a subset of the defeats found in the PrAF, subject
to these defeats containing only arguments found within the induced DAF. The
process of inducing a DAF eliminates information regarding likelihoods found in
the original PrAF.

Now, consider a situation where a number of entities are participating in a
dialogue, and one of them (labelled α) would like to compute what conclusions
might be drawn at the end of this interaction. Let us assume that α has ar-
guments a and b in its knowledge base, and it believes that the other dialogue
participants have arguments c and d in their knowledge base. This belief is how-
ever uncertain; c is believed to be known by the others with a likelihood of 0.7,
and d with a likelihood of 0.3. Now let us assume that argument a defeats c
and d defeats a. For simplicity, we assume that these defeat relations have no
uncertainty associated with them (i.e. PD = 1 for each of them). Formally, this
can be represented by the PrAF following PrAF, illustrated in Figure 1.

({a, b, c, d}, {(a, 1), (b, 1), (c, 0.7), (d, 0.3)}, {(a, c), (d, a)}, {((a, c), 1), ((d, a), 1)})

Given this PrAF, we can induce the following DAFs:

({a, b}, {}), ({a, b, c}, {(a, c)}),
({a, b, d}, {(d, a)}), ({a, b, c, d}, {(a, c), (d, a)})

Clearly, b appears in the grounded extension of all of these DAFs, while a appears
in the grounded extension of 3 out of 4 induced DAFs. Now, α might want to
identify the likelihood of a being justified (i.e. in the grounded extension) at the
end of the dialogue, perhaps to decide whether to advance it or not (assuming
that advancing an argument has some associated utility cost [21]).

2.2 Probabilistic Justification

Our goal is to compute the likelihood that some set of arguments exists and is
justified according to some semantics within the DAFs induced from a PrAF.
This likelihood can be obtained from the basic laws of probability, and we detail
this procedure next. We make one critical simplifying assumption, namely that
the likelihood of one argument (defeat) appearing in an induced DAF is inde-
pendent of the likelihood of some other argument (defeat) appearing. With this
assumption in hand, we begin by computing the likelihood of some DAF being
induced from the PrAF.

Probabilistic Argumentation Frameworks 5

As mentioned earlier, the PD relation associates a conditional probability with
each possible defeat. That is, for some arguments a, b

PD(a, b) = P ((a, b) ∈ Def |a, b ∈ Arg) for the induced DAF (Arg,Def)

Informally, the probability of some DAF AF being induced from a PrAF can
be computed via the joint probabilities of the arguments and defeat relations
appearing in AF . In order to formalise this concept compactly, we must identify
the set of defeats that may appear in an induced DAF. We label this set as
DefA. Given a DAF with arguments Args, and a PrAF containing defeats D

DefA = {(a, b)|a, b ∈ Args and (a, b) ∈ D}

This allows us to compute the probability of some DAF AF being induced from a
PrAF, written P I

PrAF (AF), by computing the joint probabilities of independent
variables as follows:

P I
PrAF (AF) =

∏
a∈Arg

PA(a)
∏

a∈A\Arg

(1−PA(a))
∏

d∈Def

PD(d)
∏

d∈DefA\Def

(1−PD(d))

(1)
Applying this to our earlier example, P I

PrAF (({a, b}, {})) = 0.21.

Proposition 1. The sum of probabilities of all DAFs that can be induced from
an arbitrary PrAF is 1. That is,

∑
a∈I(PrAF) P

I
PrAF (a) = 1.

Now our goal is to identify the likelihood of some set of arguments being con-
sistent with respect to some set of argumentation semantics. Such a semantics
may return one or many extensions for a given argument framework, and we for-
malise our notion of consistency through the definition of a semantic evaluation
function, ξS(AF , X) which returns true if and only if the set of arguments X
is deemed consistent using the semantics S when evaluated over the argument
framework AF . Thus, for example ξG(AF , X) could return true if the set of
arguments X appears as a subset of the grounded extension of AF .

Then, following on from Proposition 1, given some PrAF , the likelihood of X
being consistent according to the semantics S is defined as follows:

PPrAF (X) =
∑

AF∈I(PrAF)

P I
PrAF (a) where ξS(AF , X) = true (2)

Referring again to our earlier example, PPrAF ({a, b}) = 0.7.
While we can utilise Equations 1 and 2 to compute the exact likelihood of a set

of arguments being justified with regards to some semantics, the size of the set
of possible DAFs which can be induced from a PrAF grows exponentially with
regards to the number of arguments and defeats within the PrAF, resulting in
exponential time complexity (not including the computational costs associated
with computing the results of ξS). This is clearly impractical for a large set
of arguments, and in the next section, we examine an approximate method for
determining these likelihoods.

6 H. Li, N. Oren, and T.J. Norman

3 Approximate Solutions in Probabilistic Argumentation
Frameworks

In this section we describe a Monte-Carlo simulation based approach to com-
puting PPrAF (X) for an arbitrary set of arguments X . At an abstract level, a
Monte-Carlo simulation operates by repeatedly sampling a distribution many
times in order to approximate it. More specifically, such a simulation has three
basic steps. First, given a possible set of inputs, a subset of these inputs is se-
lected according to some probability distribution. Second, some computation is
performed using the selected inputs. Finally, the results of repeating the first two
steps multiple times is aggregated. Monte-Carlo simulation has a long history,
and has been applied to a variety of computationally difficult problems including
inference in Bayesian Networks [19], reinforcement learning [31] and computer
game playing [8].

In this context of probabilistic argumentation frameworks, this process in-
volves randomly inducing DAFs from a PrAF, with the likelihood of an arbitrary
DAF being induced being dependant on the underlying probability distribution
of its individual members. We thus sample the space of possible DAFs in a way
that approximates the DAFs true distribution in the probability space.

The only source of uncertainty in Equation 2 lies in P I
PrAF which in turn

depends only on the probabilities found in the underlying PrAF. Therefore, in
order to approximate PPrAF (X) we need only sample the space of arguments and
defeats found in the PrAF. Algorithm 1 describes this process more precisely.

The algorithm samples N DAFs from the set of inducible DAFs. A single
DAF is generated by randomly selecting arguments and defeats according to
their likelihood of appearance (Lines 4-7 and 10-14 respectively). This resultant
DAF is then evaluated for the presence of X through the ξS function (Line 16),
and if this function holds, the DAF is counted. PPrAF (X) is finally approximated
as the ratio of the total number of DAFs in which ξS(X) holds to the number
DAFs sampled (Line 20).

The following proposition states that as our number of trials increases, the
error in our approximation of PPrAF (X) shrinks.

Proposition 2. If we denote the output of Algorithm 1 as P ′
PrAF (X), then as

N → ∞, PPrAF (X) − P ′
PrAF (X) → 0. More specifically, there is some N ∈

�
+ and ε ∈ �+ such that for all M > N , if M trials are run, |PPrAF (X) −

P ′
PrAF (X)| < ε.

This proposition means that our algorithm has an anytime property: it may be
terminated at any time, and earlier terminations will still provide an approxima-
tion to the true probability, albeit with a greater error than would be provided
from a later termination.

While this proposition provides some guarantees regarding the accuracy of
our results given enough trials, it does not answer one critical question: how
many trials must be run to ensure (with some level of confidence) that our
approximation has only a small level of error?

Probabilistic Argumentation Frameworks 7

Algorithm 1. An algorithm to approximate PPrAF (X)

Require: A Probabilistic Argumentation Framework PrAF = (A,PA, D, PD)
Require: A set of arguments X ⊆ A
Require: A number of trials N ∈ N

Require: A semantic evaluation function, ξS

1: Count = 0
2: for I = 0 to N do
3: Arg = Def = {}
4: for all a ∈ A do
5: Generate a random number r such that r ∈ [0, 1]
6: if PA(a) ≥ r then
7: Arg = Arg ∪ {a}
8: end if
9: end for
10: for all (f, t) ∈ D such that f, t ∈ Arg do
11: Generate a random number r such that r ∈ [0, 1]
12: if PD((f, t)) ≥ r then
13: Def = Def ∪ {(f, t)}
14: end if
15: end for
16: if ξS((Arg ,Def), X) = true then
17: Count = Count + 1
18: end if
19: end for
20: return Count/N

In order to answer this question, we note that the results of a Monte-Carlo sim-
ulation can be viewed as a normal distribution over possible values for PPrAF (X),
and with P ′

PrAF (X) as its mean. Given this, we may make use of the notion of
a confidence interval in order to answer our question. In statistics, a confidence
level of l for a given a confidence interval CI and a mean p′ can be read as
stating that the true mean lies within p′ ± CI with a likelihood of l. Such a
confidence interval is dependant on the observed likelihood of an event and the
number of trials used to make the observations. We can thus recast our problem
to ask how many trials need to be run in order to ensure that the confidence
interval around P ′

PrAF (X) (i.e. its error) is smaller than some value ε with some
specific confidence level (e.g. 95%).

Probably the most common approach to computing such an interval is the
normal approximation interval [18], which is defined as follows:

p′ ± z1−(α/2)

√
p′(1− p′)

n
(3)

Here, p′ is the observed mean, n is the number of trials, and z1−(α/2) the 1−(α/2)
percentile of the normal distribution. In the experiments described in Section 4,
we required a 95% confidence level, resulting in z1−(α/2) = 1.96. Then we get

8 H. Li, N. Oren, and T.J. Norman

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 50
 100

 150
 200

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Error

Variable Likelihood Number of Trials

Error

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

Fig. 2. The relationship between likelihood of a variable, the number of observations
made and the error in the observed likelihood

the following equation to compute the number of trials required to achieve an
error level below ε:

N >
p′(1− p′)

ε2
(1.96)2 (4)

However, this approximation is problematic in our situation as p′ is either 0 or
1 after a single trail, which will break down the calculation. To overcome this
problem, we utilise the Agresti-Coull interval [1] instead. The general form of
this interval is the same as that of Equation 3. However, the values of n and p′

are computed differently:

n = N + z21−α/2 p′ =
X + z21−α/2/2

n

Here, N is the number of trials and X is the number of “successes” observed.
Intuitively, it adds two different trivial numbers to the number of trials and the
number of “successes” respectively, which ensures p′ will never be 0. Approxi-
mating 1 − α/2 with the value 2 yields the above new equation. This method
guarantees the real “anytime” feature of our algorithm.

N >
4p′(1− p′)

ε2
− 4 (5)

Figure 2 provides a plot of this function. As seen here, initially, as the number
of trials increase, the error falls off rapidly. However, this shrinking of the error
quickly ceases, and additional trials serve to reduce the error by only a small
amount. It should also be noted that the likelihoods of variables with extreme
values (i.e. near 0 or 1) can be approximated far more quickly than variables
with values near 0.5.

Given a desired error level ε and confidence level, Equation 5 provides us
with a new stopping condition for Algorithm 1. The for loop of Line 2 can be

Probabilistic Argumentation Frameworks 9

substituted for a while loop which computes whether the expected error level
falls below ε given the number of iterations that have been run so far. If this is
the case, the loop can end, and the algorithm will terminate.

4 Evaluation

We have described, given some PrAF, two approaches to computing the likeli-
hood of a chosen set of arguments being justified with respect to some semantics.
While it is clear that the exact approach is exponential in complexity, it is use-
ful to identify the approximate number of arguments in a PrAF at which point
this becomes impractical. Similarly, in order to use it in real world settings,
the approximate running time of the Monte-Carlo based approach must also be
evaluated.

We implemented both of the approaches described in the paper using SWI-
Prolog2. For simplicity, we associated likelihood values only with arguments
within the PrAF; all defeats had a likelihood of 1. The goal of our first experiment
was to identify the effects of differently sized PrAFs on the runtimes of the exact
approach, and of the Monte-Carlo based approach with different error tolerances
(ε = 0.01 and ε = 0.005). In order to do so, we evaluated the approaches on
identical PrAFs with each PrAF containing between 1 and 16 arguments. Our
semantic evaluation function ξS(X) computed whether X formed a subset of the
grounded extension. We ran our experiment 20 times for each unique number
of arguments, and Figure 3 shows our results. As expected, the time taken by
the exact approach increases exponentially; the Monte-Carlo based approaches
overtake the exact approach at around 13 (when ε = 0.01) and 15 (when ε =
0.005) arguments. The introduction of uncertainty into the defeats relation would
increase the number of DAFs that can be induced from the PrAF meaning that
our results, in a sense, represent the best case for the exact approach.

In order to more closely examine the effect of ε and the size of the PrAF
on the performance of our approximate algorithm, Figure 4 compares the av-
erage number of iterations, and runtime, required to achieve the desired level
of accuracy against the number of arguments found in the PrAF. As expected,
an increase in the size of the PrAF has only a linear effect on the runtime of
our algorithm. This increase occurs due to an increase in the time required to
computing the membership of grounded extension (as computing this has linear
complexity) rather than additional iterations. In other words, the complexity
level of our algorithm depends on the complexity of computing membership un-
der some semantics. This result can clearly be seen from Figure 2; the number
of iterations required to obtain a certain error level do not depend on the num-
ber of arguments and defeats in the PrAF, but only on the joint probabilities
obtained from the PrAF. Figure 2 also predicts another result clearly seen in
Figure 4, namely that as the permitted error shrinks, the standard deviation
of the number of iterations that must be executed grows. This is because the
number of iterations required to obtain an error ε when the joint probability in

2 http://www.swi-prolog.org

http://www.swi-prolog.org

10 H. Li, N. Oren, and T.J. Norman

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

(s
)

Number of Arguments

Time complexity comparison

Exact method
Monte-Carlo based approximation (CI=0.01)

Monte-Carlo based approximation (CI=0.005)

Fig. 3. Comparison of runtimes between the exact and Monte-Carlo based approaches.
Error bars indicate 1 standard deviation.

question is close to 0 or 1 grows much more slowly than when the probability is
close to 0.5.

Finally, it can also be seen that there exists some variability between the
number of iterations required and the time to execute these iterations; this arises
due to the underlying Prolog implementation, and the number of iterations is
thus a better indicator of algorithm performance.

5 Applying PrAFs to Coalition Formation

In this section, we describe an application of our approach to a real world prob-
lem, namely coalition formation. According to [28], “Coalition formation is a
fundamental form of interaction that allows the creation of coherent groupings
of distinct, autonomous, agents in order to efficiently achieve their individual or
collective goals”. Coalition formation is applicable to both virtual domains such
as e-commerce (where virtual organisations can form in order to satisfy a cus-
tomer’s requirements [24]), and physical domains where, for example, a search
and rescue team must be composed of agents with specific capabilities in order
to be able to undertake some mission [26].

Most approaches to coalition formation treat the problem as one of utility
maximisation; agents will join a coalition if being in the coalition will yield a
greater utility than not. Here, we show how to address the problem of coalition
formation from a very different perspective. This different perspective allows us

Probabilistic Argumentation Frameworks 11

 0

 10000

 20000

 30000

 40000

 2 4 6 8 10 12 14 16
-2

-1

 0

 1

 2

 3

 4

 5

N
um

be
r

of
 It

er
at

io
ns

C
P

U
 ti

m
e

(s
)

Number of Arguments

Iteration Number and CPU Time of approximation method

Number of Iterations (CI=0.01)
Number of Iterations (CI=0.005)

CPU Time (CI=0.01)
CPU Time (CI=0.005)

Fig. 4. Comparison of runtimes and number of iterations between the Monte-Carlo
based approaches with different ε values. Error bars indicate 1 standard deviation.

to explore an aspect of the social dimensions involved in coalition formation; i.e.
the notion of whether or not an individual’s presence in a coalition may influence
another’s membership. More specifically, we model a system containing agents
with different capabilities, each of which has a prior probability of joining the
coalition, and a probability of preventing other potential coalition members from
joining the coalition. We would then like to determine what the probability of a
coalition forming which is capable of achieving some task.

Translating this problem into a PrAF is trivial. Each agent can be represented
as an argument within the PrAF, an associated PA equal to its prior probability
of joining the coalition. Defeats then represent the likelihood of the presence
of one member in the coalition preventing another member from joining. Com-
puting the likelihood of a coalition containing specific members can then be
computed by computing PPrAF .

As an illustrative example3, consider a small mercenary team consisting of a
leader h, a pilot m, a mechanic b and an expert in persuasion f . Now assume
that the presence of the pilot cannot be tolerated by the mechanic, and that f
is generally disliked by other team members (to varying degrees); f ’s presence
in a coalition will increase the risk that others will not join. Finally, assume
that both f and h are often busy, and occasionally cannot join the team. This
situation can be represented by the PrAF shown in Figure 5.

3 This example is based on the characters from a 1980’s television series.

12 H. Li, N. Oren, and T.J. Norman

f
0.6

m
1

h
0.7

b
1

0.8

0.2 0.3 0.2

Fig. 5. A PrAF representing the coalition formation example

A system user could use the techniques presented in this paper to compute
the likelihood of a specific team being formed, for example consisting of h,m
and b (this would be 0.037632+0.056=0.093632. The first value is the likelihood
of the full team forming, and the second, the probability of the team forming
without f). Given this likelihood, the user might decide to change their goals,
or add new agents to the system to increase the chances of success.

The discussion thus far has concentrated on determining whether a coalition
can be formed containing some specific set of agents. However, in the context
of coalition formation, the goal is often to form a coalition consisting of agents
taking on some set of specific roles (e.g. a coalition requires two mechanics and
a pilot). One approach to determining the likelihood of forming such a coalition
involves identifying all possible ways in which such a coalition can form, and
combining the probabilities of each individual coalition to obtain an aggregate
probability. However, this approach does not scale well as the size of the system
increases. We intend to investigate techniques for dealing with this issue in future
work, and discuss it further in the next section.

6 Discussion and Future Work

The use of likelihood in different facets of argumentation for modelling strength
or uncertainty of arguments has a long and rich history. Most commonly, such
likelihood measures have served as a proxy for argument strength [27,14], or
causal strength between arguments [23]. Argument framework incorporating un-
certainty about arguments have utilised probabilities to compute the likelihood
of some conclusion holding using a variety of different methods. For example,
[17,16] consider probability in the construction of argument, deriving a probabil-
ity of argument from the probabilities of its premises by several different meth-
ods. In the context of abstract argumentation frameworks, some approaches for
modelling uncertainties such as assigning a numerical values [10] or preference
ordering [2] to attacks have been developed. Another approach to strengths of
argument involves counting the number of subsets which meet the requirements
of some (multiple status) semantics [3], and in which the argument under ques-
tion appears. The ratio of this number to the total number of extensions then
serves to act as a measure of strength for the argument. Our approach is sim-
ilar in spirit to this latter work as we compute the likelihood of some subset
of arguments appearing. However, the introduction of probabilities, through the

Probabilistic Argumentation Frameworks 13

definition of a PrAF, makes the approach applicable to both single and multiple
status semantics, with the distinct advantage of the former’s tractability. An-
other similar work is by Janssen et al [15] in which they do not use probability
but also a value between 0 and 1 to model the strength of arguments and attack
relations. They borrow the idea from fuzzy logic and these values capture the
concept of degree; they define their semantics based on fuzzy logic operations.

Within the machine learning and knowledge representation communities,
Bayesian Networks [25] form a popular approach to modelling and reasoning
about uncertainty. Such networks allow one to reason about the posterior prob-
ability of the value of variables within the network given observations about
some other parts of the network. The idea of representing a PrAF as a Bayesian
Network is intuitively appealing, but not trivial. The DAF induced from a PrAF
captures the probability that an argument exists, while the PrAF based seman-
tics computes the likelihood that an argument (or set of arguments) is present
in an extension. It is not clear how both of these values can be encoded in, or
computed from, a single Bayesian Network, and as future work, we intend to
investigate whether, and how, a Bayesian Network representing a PrAF can be
constructed.

In Section 5, we discussed one possible application for PrAFs, namely answer-
ing questions about the likelihood of a coalition with certain characteristics being
formed. We discussed one shortcoming, namely the inability of the basic ap-
proach to deal with the notion of roles in coalition formation, and suggested one
method for overcoming this shortcoming. Another more nuanced approach in-
volves the use of resource bounded argumentation frameworks [30], which would
allow us to place requirements on team composition via constraints, and thus
also allow for more nuanced team formation. Another shortcoming involves our
underlying Dung based model wherein only defeats between arguments are mod-
elled. Constructing a PrAF on top of a bipolar framework (e.g. [7,20]) would
allow us to cater for situations where one agent is more likely to enter into a
coalition if some other agent will be present. Another way of achieving this would
be to lift the independence assumption regarding the likelihood of argument and
defeat relation likelihoods, and all of these form enticing possibilities for future
work.

PrAFs and the techniques described in this paper can be applied to other
argument frameworks and domains. For example, a value based argumentation
framework (VAF) [5] provides a model of determining whether some set of argu-
ments will be accepted by audiences containing agents with different preferences
over the defeat relation. Constructing a PrAF on top of such a VAF can allow
us to answer questions such as “what is the likelihood of all members in the
audience accepting this argument”. Clear applications of this include opponent
modelling [21] and heuristics for argument [22,29,12]. Another interesting pos-
sibility lies in associating a probability distribution with the preferences of the
audience within the VAF.

Apart from the coalition formation and argument strategy domains, the ideas
associated with constructing and evaluating PrAFs can also play a role in other

14 H. Li, N. Oren, and T.J. Norman

domains where the notion of the strength of an argument is relevant. For ex-
ample, in the area of trust and reputation [32], PrAFs can be used to associate
reputation information with individual agents. Distrust relationships (follow-
ing [13]) or biases in trust relationships (following [6]) can then be constructed
through the defeats relation , and, by using a bipolar framework, trust relation-
ships can be created through support links. The resultant PrAF can then be
used to compute the likelihood of some set of agents considering one another
trustworthy.

7 Conclusions

In this paper we introduced probabilistic argumentation frameworks. These frame-
works add the notion of likelihood to all elements of an abstract argument frame-
work (in this paper, we concentrated on Dung argument frameworks, and thus
associated likelihoods with arguments and defeats), and are used to determine
the likelihood of some subset of arguments appearing within an extension. The
exact method for determining this likelihood has exponential complexity, and is
thus impractical for use with anything other than a small argumentation sys-
tem. To overcome this limitation, we introduced a Monte-Carlo simulation based
approach to approximate the likelihood. This latter technique scales up well, pro-
viding good results in a reasonable period of time, and has anytime properties,
making it ideal for use in almost all situations.

PrAFs have applications to a myriad of domains. In this paper, we focused
on one such domain, namely coalition formation, and described how PrAFs can
be used to assist a system designer. While we have touched on the applications
of PrAFs to other domains, and suggested a number of extensions to their ba-
sic representation, we intend to further explore their potential applicability to
additional argumentation frameworks and application domains.

References

1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation
of binomial proportions. The American Statistician 52(2), 119–126 (1998)

2. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumen-
tation frameworks. Journal of Automated Reasoning 29, 125–169 (2002)

3. Baroni, P., Dunne, P.E., Giacomin, M.: On extension counting problems in argu-
mentation frameworks. In: Proceeding of the 2010 Conference on Computational
Models of Argument: Proceedings of COMMA 2010, pp. 63–74. IOS Press, Ams-
terdam (2010)

4. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Simari, G.,
Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer, US
(2009)

5. Bench-Capon, T.: Value based argumentation frameworks. In: Proceedings of the
9th International Workshop on Nonmonotonic Reasoning, Toulouse, France, pp.
444–453 (2002)

Probabilistic Argumentation Frameworks 15

6. Burnett, C., Norman, T.J., Sycara, K.: Stereotypical trust and bias in dynamic
multi-agent systems. ACM Transactions on Intelligent Systems and Technology
(in press)

7. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolar Abstract Argumentation Systems. In:
Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, ch. 4, pp.
65–84. Springer, Heidelberg (2009), http://www.springerlink.com

8. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG
2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

10. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted
argument systems: Basic definitions, algorithms, and complexity results. Artificial
Intelligence 175(2), 457–486 (2011)

11. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Simari,
G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer,
US (2009)

12. Emele, C.D., Norman, T.J., Parsons, S.: Argumentation strategies for plan resourc-
ing. In: Proceedings of the Tenth International Conference on Autonomous Agents
and Multiagent Systems (2011)

13. Erriquez, E., van der Hoek, W., Wooldridge, M.: An abstract framework for rea-
soning about trust. In: Proceedings of AAMAS 2011 (to appear, 2011)

14. Gómez Lucero, M.J., Chesñevar, C.I., Simari, G.R.: Modelling Argument Accrual
in Possibilistic Defeasible Logic Programming. In: Sossai, C., Chemello, G. (eds.)
ECSQARU 2009. LNCS, vol. 5590, pp. 131–143. Springer, Heidelberg (2009)

15. Janssen, J., Cock, M.D., Vermeir, D.: Fuzzy argumentation frameworks. In: Pro-
ceedings of IMPU 2008 (12th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems), pp. 513–520 (2008)

16. Kohlas, J., Haenni, R.: Assumption-based reasoning and probabilistic argumenta-
tion systems. Tech. Rep. 96–07, Institute of Informatics, University of Fribourg,
Switzerland (1996)

17. Krause, P., Ambler, S., Elvang-Goransson, M., Fox, J.: A logic of argumentation
for reasoning under uncertainty. Computational Intelligence 11(1), 113–131 (1995)

18. Lewicki, P., Hill, T.: Statistics: Methods and Applications. StatSoft Inc. (2005)
19. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education (1997)
20. Oren, N., Norman, T.J.: Semantics for evidence-based argumentation. In: Com-

putational Models of Argument: Proceedings of COMMA 2008, Toulouse, France,
May 28-30, pp. 276–284 (2008)

21. Oren, N., Norman, T.J.: Arguing Using Opponent Models. In: McBurney, P., Rah-
wan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS, vol. 6057, pp. 160–
174. Springer, Heidelberg (2010)

22. Oren, N., Norman, T.J., Preece, A.: Arguing with confidential information. In:
Proceedings of the 18th European Conference on Artificial Intelligence, Riva del
Garda, Italy, pp. 280–284 (August 2006)

23. Parsons, S.: Normative Argumentation and Qualitative Probability. In: Gabbay,
D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.) FAPR 1997 and ECSQARU
1997. LNCS, vol. 1244, pp. 466–480. Springer, Heidelberg (1997)

http://www.springerlink.com

16 H. Li, N. Oren, and T.J. Norman

24. Patel, J., Teacy, W.T.L., Jennings, N.R., Luck, M., Chalmers, S., Oren, N., Nor-
man, T.J., Preece, A., Gray, P.M.D., Shercliff, G., Stockreisser, P.J., Shao, J., Gray,
W.A., Fiddian, N.J., Thompson, S.: Agent-based virtual organisations for the grid.
Multiagent and Grid Systems 1(4), 237–249 (2006)

25. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

26. Pechoucek, M., Maŕık, V., Bárta, J.: A knowledge-based approach to coalition
formation. IEEE Intelligent Systems 17, 17–25 (2002)

27. Pollock, J.L.: Cognitive Carpentry. Bradford/MIT Press (1995)
28. Rahwan, T.: Algorithms for Coalition Formation in Multi-Agent Systems. Ph.D.

thesis, University of Southampton (2007)
29. Riveret, R., Prakken, H., Rotolo, A., Sartor, G.: Heuristics in argumentation: A

game theory investigation. In: Computational Models of Argument: Proceedings
of COMMA 2008, Toulouse, France, May 28-30, pp. 324–335 (2008)

30. Rotstein, N., Oren, N., Norman, T.J.: Resource bounded argumentation frame-
works. Tech. rep., University of Aberdeen (2011)

31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press (March 1998)

32. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation
in the context of inaccurate information sources. Autonomous Agents and Multi-
Agent Systems 12(2), 183–198 (2006)

Splitting Argumentation Frameworks:

An Empirical Evaluation

Ringo Baumann, Gerhard Brewka, and Renata Wong

Universität Leipzig, Johannisgasse 26, 04103 Leipzig, Germany
baumann@informatik.uni-leipzig.de

Abstract. In a recent paper Baumann [1] has shown that splitting re-
sults, similar to those known for logic programs under answer set se-
mantics and default logic, can also be obtained for Dung argumentation
frameworks (AFs). Under certain conditions a given AF A can be split
into subparts A1 and A2 such that extensions of A can be computed by
(1) computing an extension E1 of A1, (2) modifying A2 based on E1,
and (3) combining E1 and an extension E2 of the modified variant of
A2. In this paper we perform a systematic empirical evaluation of the ef-
fects of splitting on the computation of extensions. Our study shows that
the performance of algorithms may drastically improve when splitting is
applied.

1 Introduction

Dung’s abstract argumentation frameworks (AFs) [3] are widely used in formal
approaches to argumentation. They provide several standard semantics, each
capturing different intuitions about how to handle conflicts among (abstract)
arguments. This makes them a highly useful tool in argumentation (see for in-
stance Prakken’s ASPIC [6] for a typical way of using AFs) and algorithms for
computing extensions have received considerable interest.

In a recent paper, Baumann [1] has shown that splitting results, similar to
those known for logic programs under answer set semantics [4] and default logic
[8], can also be obtained for Dung argumentation frameworks. It turns out that
under certain conditions a given AF A can be split into subparts A1 and A2 such
that the computation of extensions of A can be divided into smaller subproblems:
to compute an extension of A one has to (1) compute an extension E1 of A1,
(2) modify A2 based on E1, and (3) combine E1 and an extension E2 of the
modified variant of A2.

Given these results, the obvious question is: does splitting an AF really pay off
in practice? In this paper we aim to give an empirical answer to this question. We
do this by systematically comparing the behavior of an algorithm for computing
extensions with and without splitting. Our study shows that the performance of
the algorithm indeed may drastically improve when splitting is applied.

Our evaluation is based on an implementation of Caminada’s labelling al-
gorithm [5], arguably the standard genuine algorithm for computing extensions.

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 17–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 R. Baumann, G. Brewka, and R. Wong

We focus on preferred and stable semantics. We also include results for grounded
semantics, but as this semantics is known to be polynomial an improvement of
performance here was never expected, and our results confirm this.

The paper is organized as follows: we start in Sect. 2 with the necessary
background on AFs, labellings, splitting and strongly connected components. We
then describe in Sect. 3 the algorithms used in our evaluation. Sect. 4 contains the
empirical evaluation and thus the main results of the paper. Sect. 5 concludes.

2 Background

2.1 Argumentation Frameworks

An argumentation framework A is a pair (A, R), where A is a non-empty finite
set whose elements are called arguments and R ⊆ A×A a binary relation, called
the attack relation.

In the following we consider a fixed countable set U of arguments, called the
universe. Quantified formulae refer to this universe and all denoted sets are
finite subsets of U or U × U respectively. Furthermore we will use the following
abbreviations. Let A = (A, R) be an AF, B and B′ subsets of A and a ∈ A.
Then

1. (B, B′) ∈̄ R ⇔def ∃b∃b′ : b ∈ B ∧ b′ ∈ B′ ∧ (b, b′) ∈ R,
2. a is defended by B in A ⇔def ∀a′ : a′ ∈ A ∧ (a′, a) ∈ R → (B, {a′}) ∈̄ R,
3. B is conflict-free in A ⇔def (B, B) �̄∈ R,
4. cf(A) = {C |C ⊆ A, C conflict-free in A}.

The set of all extensions of A under semantics S is denoted by ES(A). We consider
the classical semantics introduced by Dung, namely stable, preferred, complete
and grounded (compare [3]).

Definition 1. Let A = (A, R) be an AF and E ⊆ A. E is a

1. admissible extension1 (E ∈ Ead(A)) iff
E ∈ cf(A) and each a ∈ E is defended by E in A,

2. complete extension (E ∈ Eco(A)) iff
E ∈ Ead(A) and for each a ∈ A defended by E in A, a ∈ E holds,

3. stable extension (E ∈ Est(A)) iff
E ∈ Eco(A) and for every a ∈ A\E, (E, {a}) ∈̄ R holds,

4. preferred extension (i.e. E ∈ Epr(A)) iff
E ∈ Eco(A) and for each E′ ∈ Eco(A), E 	⊂ E′ holds,

5. grounded extension (E ∈ Egr(A)) iff
E ∈ Eco(A) and for each E′ ∈ Eco(A), E′ 	⊂ E holds.

1 Note that it is more common to speak about admissible sets instead of the admissible
semantics. For reasons of unified notation we used the less common version.

Splitting Argumentation Frameworks: An Empirical Evaluation 19

2.2 Labelling-Based Semantics

The labelling approach [2,5] provides an alternative possibility to describe ex-
tensions. Given an AF A = (A, R), a labelling is a total function L : A →
{in, out, undec}. We use x(L) for L−1({x}), i.e. x(L) = {a ∈ A | L(a) = x}.
This allows to rewrite a labelling L as a triple (in(L), out(L), undec(L)) which is
frequently used. Analogously to ES(A) we write LS(A) for the set of all labellings
prescribed by semantics S for an AF A.

Definition 2. Given an AF A = (A, R) and a labelling L of A. L is called a
complete labelling (L ∈ Lco(A)) iff for any a ∈ A the following holds:

1. If a ∈ in(L), then for each b ∈ A s.t. (b, a) ∈ R, b ∈ out(L),
2. If a ∈ out(L), then there is a b ∈ A s.t. (b, a) ∈ R and b ∈ in(L),
3. If a ∈ undec(L), then there is a b ∈ A s.t. (b, a) ∈ R and b ∈ undec(L) and

there is no b ∈ A s.t. (b, a) ∈ R and b ∈ in(L).

Now we are ready to define the remaining counterparts of the extension-based
semantics in terms of complete labellings.

Definition 3. Given an AF A = (A,R) and a labelling L ∈ Lco(A). L is a

1. stable labelling (L ∈ Lst(A)) iff undec(L) = ∅,
2. preferred labelling (L ∈ Lpr(A)) iff for each L′ ∈ Lco(A), in(L) 	⊂ in(L′),
3. grounded labelling (L ∈ Lgr(A)) iff for each L′ ∈ Lco(A), in(L′) 	⊂ in(L).

Theorem 1. [5] Given an AF A. For each σ ∈ {co, st, pr, gr},
1. E ∈ Eσ(A) iff ∃L ∈ Lσ(A) : in(L) = E and
2. |Eσ(A)| = |Lσ(A)| holds.

This theorem will be used to make the splitting results applicable for our algo-
rithm.

2.3 Splitting Results

Baumann [1]2 showed that, under certain conditions, the computation of the
extensions of an AF A can be considerably simplified: one splits the AF A into
two subframeworks A1 and A2, computes an extension E1 of A1, uses E1 to
reduce and modify A2, computes an extension E2 of the modified and reduced
version of A2 and then simply combines E1 and E2. We briefly recall the relevant
definitions as they are crucial for the algorithms to be discussed later.

Definition 4. Let A1 = (A1, R1) and A2 = (A2, R2) be AFs such that A1 ∩
A2 = ∅. Let R3 ⊆ A1 × A2. We call the tuple (A1,A2, R3) a splitting of the
argumentation framework A = (A1 ∪ A2, R1 ∪ R2 ∪ R3).

2 The full version is available at http://www.informatik.uni-leipzig.de/∼baumann/

20 R. Baumann, G. Brewka, and R. Wong

Definition 5. Let A = (A, R) be an AF, A′ a set disjoint from A, S ⊆ A′ and
L ⊆ A′ × A. The (S, L)-reduct of A, denoted AS,L is the AF

AS,L = (AS,L, RS,L)

where
AS,L = {a ∈ A | (S, {a}) �̄∈ L)}

and
RS,L = {(a, b) ∈ R | a, b ∈ AS,L}.

Definition 6. Let A = (A, R) be an AF, E an extension of A. The set of
arguments undefined with respect to E is

UE = {a ∈ A | a 	∈ E, (E, {a}) �̄∈ R}.
It can be checked that in case of σ ∈ {co, st, pr, gr}, UE equals undec(L), where
L is the unique σ - labelling s.t. in(L) = E holds (compare Theorem 1).

Definition 7. Let A = (A, R) be an AF, A′ a set disjoint from A, S ⊆ A′ and
L ⊆ A′ × A. The (S, L)-modification of A, denoted modS,L(A), is the AF

modS,L(A) = (A, R ∪ {(b, b) | a ∈ S, (a, b) ∈ L}).
We now present the splitting theorem in both extension-based and labelling-
based semantics style. The labelling-based notation can be easily obtained by
using the original extension-based splitting results (1.(a), 2.(a)), Theorem 1 and
the observation below Def. 6.

Theorem 2. (σ ∈ {st, pr, co, gr}) Let A = (A, R) be an AF which possesses a
splitting (A1,A2, R3) with A1 = (A1, R1) and A2 = (A2, R2).

1. (a) E1 ∈ Eσ(A1) ∧ E2 ∈ Eσ(modUE1 ,R3(AE1,R3
2)) ⇒ E1 ∪ E2 ∈ Eσ(A)

(b) L1 ∈ Lσ(A1) ∧ L2 ∈ Lσ(modundec(L1),R3(Ain(L1),R3
2) ⇒

∃! L ∈ Lσ(A) : in(L) = in(L1) ∪ in(L2)
2. (a) E ∈ Eσ(A) ⇒ E ∩A1 ∈ Eσ(A1)∧E ∩A2 ∈ Eσ(modUE∩A1 ,R3(AE∩A1,R3

2))

(b) L ∈ Lσ(A) ⇒ ∃! L1 ∈ Lσ(A1) : in(L1) = in(L) ∩ A1 ∧
∃! L2 ∈ Lσ(modundec(L)∩A1,R3(Ain(L)∩A1,R3

2)) : in(L2) = in(L) ∩ A2

2.4 Splittings and Strongly Connected Components (SCC)

To generate a splitting we use the related graph-theoretic concept of strongly
connected components. A directed graph is strongly connected if there is a path
from each vertex to every other vertex. The SCCs of a graph A (SCC(A) for
short) are its maximal strongly connected subgraphs. Contracting every SCC
to a single vertex leads to an acyclic graph. It is well-known that an acyclic
graph induces a partial order on the set of vertices. Based on this order every
SCC-decomposition can be easily transformed into a splitting. The most obvious

Splitting Argumentation Frameworks: An Empirical Evaluation 21

possibility is to take the union of the initial nodes of the decomposition (= A1)
and the union of the remaining subgraph (= A2).

The following figure exemplifies the idea. We sketch three different splittings,
namely S1, S2 and S3. Note that these are not all possible splittings.

a bC1 c dC2

eC3

fC4

g h

i

C5

C1 C2

C3

C4 C5

S1

S2

S3

Fig. 1. SCCs and Splittings

3 Algorithms

Our implementation (available at wwwstud.rz.uni-leipzig.de/∼bss01gsc/) is
based on the labelling algorithms for grounded, preferred and stable semantics
in [5] and on the standard Tarjan algorithm for computing strongly connected
components from [7]. For the latter we refer the reader to the original paper. We
briefly describe the former to make the paper more self-contained.

3.1 Labelling Algorithms

The grounded labelling (Lgr) is generated as follows: all arguments which are
not attacked are assigned the label IN. The next step is to assign the label OUT
to all those arguments that are attacked by at least one of the arguments just
labeled IN. We continue assigning the label IN to any argument having all of
its attackers labeled OUT. The iteration stops when no further assignment can
be made. The set undec(Lgr) is the set of arguments from A which were not
labeled during the iteration.

In order to present the algorithms for preferred and stable labellings, further
terminological explanations are in place.

Definition 8. Given an AF A = (A, R) and a labelling L ∈ Lσ(A), an argu-
ment a ∈ A is

22 R. Baumann, G. Brewka, and R. Wong

1. legally IN iff x is labeled IN and ∀b : (b, a) ∈ R, b is labeled OUT,
2. legally OUT iff x is labeled OUT and ∃b : (b, a) ∈ R and b is labeled IN,
3. illegally IN iff it is not legally IN,
4. illegally OUT iff it is not legally OUT,
5. super-illegally IN iff it is illegally IN and ∃b : (b, a) ∈ R and b is legally IN

or UNDEC.

The algorithm for computing all preferred labellings (Algorithm 1) starts by
assigning to all arguments the label IN (labelling LIN), and initializing an empty
set in which candidate labellings are to be stored. Then, by way of the main
procedure find labellings arguments that are illegally IN in LIN are identified.
To each of these arguments a procedure called transition step is applied, by which
the label of the given argument is changed from IN to OUT. If such an argument
whose label has been changed from IN to OUT or if any argument(s) it attacks
is illegally OUT, it will be relabeled as UNDEC. Thus we have obtained a new
labelling which contains one less IN -argument. Then the entire process repeats
again by passing any new labelling onto the main procedure, and the process
continues until an acceptance or rejection condition is met. A labelling which
does not have any argument which is illegally IN will be added to the candidate
labellings, unless at any previous stage in the recursion it is detected that a
better labelling has been found, i.e. a labelling with a larger in-set is already
contained in candidate labellings. If such a labelling with a larger cardinality of
the in-set exists, the current labelling will not be processed.

In order to avoid the situation in which incomplete labellings are being gener-
ated by any incorrect assignment of labels, the algorithm is designed to always
extract first those arguments that are super-illegally IN, i.e. arguments having at
least one attacker legally IN or UNDEC, whenever we try to extract arguments
that are illegally IN.

The algorithm for computing all stable labellings is obtainedby rewriting line 1.5
of the algorithm for preferred labellings to read “if undec(L) 	= ∅ then return”.
If the set of arguments labeled UNDEC in a labelling is not empty, i.e. it violates
the requirement for a stable labelling, the labelling will not be further processed.

3.2 Computation of Splitting

Our splitting algorithm consists of two parts: The first part (Algorithm 2) is exe-
cuted prior to the first call of a labelling algorithm for a semantics and computes
A1, A2 and the set R3. The second part (Algorithm 3) is executed after receiv-
ing an extension from the labelling algorithm. The tuple A2 is then modified in
accordance with the extension.

The first task is set to look for all the initial arguments (A1) of our framework
(A). We use the set of strongly connected components returned by the Tarjan
algorithm. The algorithm starts by introducing a Boolean variable scc attacked
which will be initialized to false for every SCC in SCC(A). Given an SCC, once
an argument in this SCC is attacked by some argument in another SCC, the
variable will be set to true and the execution of the algorithm for this SCC

Splitting Argumentation Frameworks: An Empirical Evaluation 23

Algorithm 1. Computation of Preferred Labellings
input : LIN = (in(LIN) = A, out(LIN) = ∅, undec(LIN) = ∅)

1.1 candidate labellings := ∅
1.2 find labellings(LIN)

1.3 PROCEDURE find labellings(L)
1.4 begin
1.5 if ∃L′ ∈ candidate labellings : in(L) ⊂ in(L′) then return;
1.6 if L does not contain an argument illegally IN then
1.7 foreach L′ ∈ candidate labellings do
1.8 if in(L′) ⊂ in(L) then
1.9 candidate labellings := candidate labellings − {L′}

1.10 candidate labellings := candidate labellings ∪ {L}
1.11 return;

1.12 else
1.13 if L has an argument that is super-illegally IN then
1.14 x := some argument that is super-illegally IN in L
1.15 find labellings(transition step(L,x))

1.16 else
1.17 foreach x that is illegally IN in L do
1.18 find labellings(transition step(L,x))

stops. Then the algorithm starts processing the next SCC. Only if scc attacked
remains false, which means that the corresponding SCC is not attacked, will all
the arguments of this SCC be added to A1. This way of splitting corresponds to
S1 in Fig. 1.

The splitting operation described above may result in subframeworks which
differ a lot in size. We also provide a possibility to equalize the cardinalities
along the partial ordering dictated by SCC(A). The algorithm, called optimize,
accepts the already computed arguments of A1 and adds new ones under certain
conditions. The first criterion used is the cardinality of A1. Since the addition
of new arguments relies on the partial order, it may not always be possible.
Therefore, choosing 45% as a starting condition for equalization was an attempt
to optimally equalize the numbers of arguments on the one hand, and on the
other not to slow down the splitting process unnecessarily. Another condition
limits the number of arguments added to A1 by imposing a relative restriction
on the added SCC’s cardinality, i.e. if |SCC| + |A1| > |A| ∗ 60%, the SCC will
not be accepted. The algorithm runs recursively until no further arguments can
be added (i.e. when |optimal set| = |A1|). This way of splitting corresponds to
S3 in Fig. 1.

On the basis of the set A1 we can then compute the sets R1, A2, R2 as well
as the set of attacks along which the framework is split (R3). The pseudo code
for these operations is not included here due to their obvious simplicity.

24 R. Baumann, G. Brewka, and R. Wong

The processing of the tuple A1 by a labelling algorithm may return an exten-
sion as part of a labelling, if it exists. This extension (E1) will in turn be used
for modifying the AF A2 in the second part of the splitting algorithm. We start
with the set A′

2 which is A2 minus all the arguments in A2 that are attacked by
E1, and we call it the modified set of A2.

Next we apply the second algorithm on E1, starting with an empty set, in
order to compute a reduced set of undefined arguments (UE1). Note that we are
not concerned with all the undefined arguments as stated in Definition 6, but
only with those that are sources of an attack in R3. Whenever an argument is a
source of an attack in R3, if it neither is an element of the extension E1 nor is
attacked by E1, it will be added to the set UE1 .

We then proceed to the final step in the modification of the AF A2. Given
UE1 , for every argument of A′

2 which is attacked by UE1 , a loop is added. By
this addition, we have modified the set R2. We call this modified set R′

2, and
now we can define A′

2 as the tuple (A′
2, R

′
2). With the given definition, A′

2 is to
be processed by a labelling algorithm.

4 Experimental Results

Our evaluation of the runtime for grounded, preferred and stable semantics is
based on the sampling of 100 random frameworks3. The tests were performed
on a Samsung P510 notebook with a Pentium Dual Core Processor, CPU speed:
2.0 GHz, CPU Caches: 32 KB (L1) and 1024 KB (L2), RAM: 2 GB. We focused
in our experiments on frameworks where the number of attacks (n) exceeds the
number of arguments (m) by a factor between 1.5 and 3.

The reasons for this restriction are as follows. First of all, even leaving exe-
cution times aside4, by further increasing the number of attacks the probability
of generating frameworks consisting of a single SCC grows, thus rendering the
experiment inconclusive as splitting has no effect on AFs with a single SCC.
For example, initial tests showed that if 500 or more attacks (n) are given for
100 arguments (m), then almost all of the randomly generated frameworks will
consist of only a single SCC and no effect of splitting is to be expected.

On the other hand, choosing an n smaller than m would not lead to signif-
icant differences in execution time between AFs with and without splitting as
execution times tend to be fast under such conditions anyway.

With the above limitations in mind, a total of 100 examples were collected,
with 20 examples extracted from each of the following m/n combinations: 10/30,
50/100, 100/175, 200/375 and 500/750. A brief description of the results ob-
tained will be presented below together with a tabular summary of statistical

3 The attacks were created by randomly selecting the source and the target argument
for frameworks with given number of arguments and attacks.

4 For example, our preliminary testing showed that for AFs with 100 arguments, if
200 attacks are specified, the percentage of frameworks with runtime over 3 min for
preferred semantics without splitting was about 70%.

Splitting Argumentation Frameworks: An Empirical Evaluation 25

Algorithm 2. Computation of Splitting, part 1
input : set of strongly connected components (SCC(A))
output: A1, R1, A2, R2, R3

2.1 PROCEDURE compute A1(SCC(A))
2.2 begin
2.3 foreach SCC ∈ SCC(A) do
2.4 scc attacked := false
2.5 loop:
2.6 foreach a ∈ SCC do
2.7 foreach b s.t. (b, a) ∈ R do
2.8 if b /∈ SCC then
2.9 scc attacked = true

2.10 break loop;

2.11 if scc attacked = false then add SCC to A1

2.12 return A1

2.13 PROCEDURE optimize(SCC(A), A1)
2.14 begin
2.15 optimal set := A1

2.16 illegal attacks := false
2.17 foreach SCC ∈ SCC(A) do
2.18 if |A1| < |A| ∗ 0.45 then
2.19 pick an a ∈ SCC
2.20 if a /∈ A1 and |A1| + |SCC| < |A| ∗ 0.6 then
2.21 illegal attacks = false
2.22 loop:
2.23 foreach a ∈ SCC do
2.24 foreach (b, a) ∈ R do
2.25 if b /∈ A1 and b /∈ SCC then
2.26 illegal attacks = true
2.27 break loop;

2.28 if illegal attacks = false then add SCC to A1

2.29 if |A1| < |A| ∗ 0.45 and |optimal set| 	= |A1| then
2.30 optimize(SCC(A), A1)

2.31 return A1

data for each combination. Each table contains average-runtime results (in mil-
liseconds) and gain-in-time results (in %)5 for the grounded, preferred and stable
semantics. Under “average runtime”, the first column contains results from exe-
cuting without splitting, the second from executing with non-optimized splitting

5 For convenience, in the presented data we use “0 ms” to mean “close to 0 ms” and
“100%” to mean “close to 100%”.

26 R. Baumann, G. Brewka, and R. Wong

Algorithm 3. Computation of Splitting, part 2
input : an extension of A1 (E1), A2, R1, R2, R3

output: A′
2 = (A′

2, R
′
2)

3.1 compute modified A2(E1, A2, R3)
3.2 compute UE1(E1, R1, R3)
3.3 compute modified R2(UE1 , R2, R3)

3.4 PROCEDURE compute modified A2(E1, A2, R3)
3.5 begin
3.6 A′

2 := A2

3.7 foreach a ∈ E1 do
3.8 foreach (a, b) ∈ R3 do
3.9 if b ∈ A′

2 then remove b from A′
2

3.10 return A′
2

3.11 PROCEDURE compute UE1(E1, R1, R3)
3.12 begin
3.13 UE1 := ∅
3.14 foreach (a, b) ∈ R3 do

3.15 if a /∈ E1 and (E1, {a}) /̄∈R1 then add a to UE1

3.16 return UE1

3.17 PROCEDURE compute modified R2(UE1 , R2, R3)
3.18 begin
3.19 R′

2 := R2 − {(x, y)|(x, y) ∈ R2 and (x /∈ A′
2 or y /∈ A′

2)}
3.20 foreach a ∈ UE1 do
3.21 foreach (a, b) ∈ R3 do add (b, b) to R′

2

3.22 return R′
2

and the third from executing with optimized splitting. Under “gain in time”,
minimal, maximal and average gain results, each in relation to non-optimized
and optimized splitting, are distinguished.

The 10/30 combination was the only case in which we experienced no runtime
that was over 3 min.6 Thanks to the low number of arguments we were given a
possibility of structural analysis. Although 20 examples is a small sample size, we
were able to distinguish 4 characteristics based on the structure of the framework
and the corresponding difference in runtime between executions without and
with splitting. The analysis below applies to the preferred and stable semantics
as the execution of the grounded semantics did not show any difference.

First, in 3 cases out of 20 a single SCC was generated. As splitting has no
effect on AFs consisting of a single SCC, there was no runtime improvement for

6 It comes as no surprise since the computation of preferred labellings for an AF with
10 arguments and 100 attacks takes around 260,000 ms.

Splitting Argumentation Frameworks: An Empirical Evaluation 27

all 3 semantics. However, no noticeable runtime delay in relation to the splitting
process was recorded either.

Second, 3 further examples had the form of a single argument SCC attacking
a large SCC. Here we recorded no improvement or only a slight improvement in
the runtime when splitting was applied: 0-20%.

Third, yet 3 further cases consisted of a single argument SCC with a self-loop
attacking a large SCC. The only difference regarding the single argument be-
tween this form and the previous one was that we now had a loop attack. However
in terms of runtime the gap was significant. In the second case it was between
68-71% for preferred semantics and between 99-100% for stable semantics.

And last, 11 of the random AFs had the form of a larger SCC attacking a
single argument SCC, a single argument SCC with a self-loop or two SCCs; or
the form of two SCCs, with at least one attack each, attacking a single SCC. The
difference in execution without and with splitting ranged here between 80-99%
for preferred semantics and between 59-100% for stable semantics.

The limited data suggest that splitting can render computation significantly
faster for frameworks with certain characteristics. It seems that the most relevant
are those AFs having one or more SCCs, each with at least one attack (i.e. a
single argument SCC with a loop or an SCC with at least 2 arguments), attacking
one or more SCCs whose structure in itself is not relevant.7

In general we obtained an average acceleration of 60% for both types of split-
ting in comparison to an execution without splitting. It is partly due to the fact
that for the 10/30 combination both non-optimized splitting and optimized split-
ting usually overlap, which in turn is a result of the existence of large SCCs that
limits the possibility of having different splittings. In no case was the execution
with splitting slower than the one without.

Table 1. Evaluation results for 10 arguments and 30 attacks

m = 10 average runtime (in ms) gain in time (in %)
n = 30 w/o spl. w/ spl. opt. spl. min min/op max max/op avg. avg./op

grounded 1 1 1 0 0 0 0 0 0
pref. 3871 886 890 0 0 99 99 60 61
stable 1040 267 262 0 0 100 100 59 60

7 An additional test on an AF of 10 arguments, of which 9 constituted an SCC with
81 attacks and all 9 attacked the 10th argument, recorded a 90% runtime difference
for both preferred and stable semantics. This additional result lies nicely within the
ranges of the previously obtained 80-99% and 59-100% respectively. A further test of
a single argument with a self-loop attacking each argument of an SCC with 9 argu-
ments and 81 attacks showed a 90% runtime difference for preferred semantics and
100% for stable semantics. The performance was evidently better than the previously
obtained result for preferred semantics (68-71%). Having removed the loop attack
we obtained a runtime of 1 ms for preferred and stable semantics, both with and
without splitting. Again, these results are also in compliance with the ones obtained
in the sample test using 20 examples.

28 R. Baumann, G. Brewka, and R. Wong

Table 2. Evaluation results for 50 arguments and 100 attacks

m = 50 average runtime (in ms) gain in time (in %)
n = 100 w/o spl. w/ spl. opt. spl. min min/op max max/op avg. avg./op

grounded 2 2 2 0 0 0 0 0 0
pref. 35860 23237 23352 0 0 99 99 29 26
stable 663 487 480 0 0 99 99 29 29

The runtimes for the 50/100 combination were very diversified: from 1 ms (for
stable) and 2 ms (for preferred semantics) to 381,512 ms (preferred)8 and 4,456
ms (stable). The grounded labelling was computed at the speed of 1-3 ms in
each case, no improvement nor delay was recorded for executions with splitting
in comparison to those without.

In 9 out of the 20 cases, the computation time for preferred and stable la-
bellings without and with splitting was very short (below 20 ms). No significant
difference was observed. The time gain for these cases was given as 0%, which
had a negative effect on the average gain in time as shown in Table 2: it dropped
to only 26-29%. Note that the maximal gain in time for both semantics was at
99%.

For the stable semantics we observed dramatic improvements in cases where
no labellings existed. Through splitting of the framework, the time needed to
find the first argument of the undec set, hence breaking the execution of the
labelling algorithm, was at times very short. In 8 out of 15 cases where no
labelling existed, the execution times lay below 20 ms which as mentioned above
had 0% gain. Among the remaining 7 cases, 2 recorded an improvement of 99%,
the rest between 17-75%. In none of the 20 examples was the execution without
splitting faster than the one with splitting. Neither significant improvement nor
delay was found for optimized splitting as compared to regular splitting.

Some 40% of the frameworks generated with 100 arguments and 175 attacks
had a computation time of at least 3 min for the preferred semantics without
splitting. They were not taken into consideration for the reason stated at the
beginning of this section. In the collected examples, the runtimes varied from
around 20 ms to slightly below 40,000 ms. No stable labelling existed in 19 out
of the 20 examples. In 9 out of these 19 examples, we obtained an improvement
of 90-100% for the stable semantics and 0-50% for the remaining 10. No slow
down due to the process of splitting was noticeable.

Here, for the first time, we recorded a significant improvement in runtime
when the optimized version of splitting was applied. It was 13% for the preferred
semantics and 5% for the stable semantics, both of which were better than the
non-optimized variant. On average, an execution with splitting was better than
one without splitting by 56-69% for the preferred semantics and by 60-65% for
the stable semantics.

8 This example had already been included in the data before the imposition of the
3-minute limit, and so this is the only example with a runtime above 3 mins.

Splitting Argumentation Frameworks: An Empirical Evaluation 29

Table 3. Evaluation results for 100 arguments and 175 attacks

m = 100 average runtime (in ms) gain in time (in %)
n = 175 w/o spl. w/ spl. opt. spl. min min/op max max/op avg. avg./op

grounded 2 2 2 0 0 0 0 0 0
pref. 8335 3701 2502 0 0 93 99 56 69
stable 499 297 262 0 0 100 99 60 65

Table 4. Evaluation results for 200 arguments and 375 attacks

m = 200 average runtime (in ms) gain in time (in %)
n = 375 w/o spl. w/ spl. opt. spl. min min/op max max/op avg. avg./op

grounded 3 3 3 0 0 0 0 0 0
pref. 9333 6531 6296 14 16 99 98 47 45
stable 352 236 222 26 26 96 93 56 56

The computation time for preferred and stable labellings without splitting
in frameworks of 200 arguments and 375 attacks was in general above 15 ms,
thus making a more precise comparison possible. All the generated AFs showed a
runtime improvement of at least 14% (pref.) and 26% (stable) when the execution
with splitting is compared to the execution without splitting. Here too the gain
in time reached in some cases 99% for the preferred labellings and 96% for the
stable labellings.

With an average runtime of 3 ms for the grounded semantics, no difference
between execution without and with splitting was found. The computation of
stable labellings with applied splitting took on average 56% less time than that
without. For the preferred semantics, the gain was somewhat less, it was 45%
with optimized splitting and 47% with non-optimized splitting.

It was relatively comfortable testing the 500/750 combination since only about
20% of the randomly generated frameworks had a runtime above 3 min for
preferred labellings without splitting. The execution time was quite steady. The
lowest runtime for preferred semantics without splitting was 53 ms and 58 ms
for stable semantics without splitting. The absence of drastic highs and lows was
mirrored in all the average runtimes for preferred semantics, which were much
lower than the average runtimes measured for 200/375. Here we observed also
a steady improvement after splitting was applied. The lowest of which was 35%
for preferred semantics and 33% for stable. The upper range was also less drastic
with up to 86% for preferred and 97% for stable. The average differences were
quite high with 57-61% for preferred labellings and 62-66% for stable. There
was a drop in efficiency for the optimized type of splitting as compared to the
non-optimized type (by 4% for both preferred and stable labellings). However,
in AFs with a runtime above 700 ms, the optimized type ran faster than the one
without optimization. In no case though was an execution with splitting slower
than the one without splitting.

30 R. Baumann, G. Brewka, and R. Wong

While in frameworks with 200 arguments and lower the grounded semantics
did not perform worse after splitting, here we observed a visible slowdown. There
was an average loss of 2% in the case of the non-optimized variant and an average
loss of 36% in the case of the optimized variant.

Table 5. Evaluation results for 500 arguments and 750 attacks

m = 500 average runtime (in ms) gain in time (in %)
n = 750 w/o spl. w/ spl. opt. spl. min min/op max max/op avg. avg./op

grounded 10 10 13 -12 -60 15 -15 -2 -36
pref. 2785 1697 1168 36 35 86 78 61 57
stable 232 120 99 33 47 97 89 66 62

5 Conclusions

Based on our evaluations of 100 randomly generated AFs, we have made the
following observations:

1. Among the 100 AFs, we observed an average improvement by 50-51% and
by 54% for preferred and stable semantics respectively. The data contained
some inconclusive examples which had “marred” the results to some extent.

2. No instance, neither for preferred semantics nor for stable, was found in
which the execution with splitting lasted longer than the one without. This
shows that the additional overhead introduced by splitting is negligible.

3. The optimized type of splitting did better than the non-optimized type in
cases when the AF without splitting had a relatively long runtime. When
the runtime was relatively short, the type without optimization usually per-
formed better.

4. Splitting may significantly improve runtime for stable semantics in frame-
works where no stable labellings exist. By splitting the framework, we were
able to complete the execution of the algorithm a lot faster because it took
less time to find a labelling with the undec set that was not empty.

5. It seems that there exist certain regularities between the structure of frame-
works and the corresponding runtime. Having an SCC with at least one
attack (or several SCCs with at least one attack each) attacking the rest of
the framework can improve runtime significantly. We especially hope that
this will greatly affect computation of large frameworks with large SCCs,
which so far we were unable to test due to the required long computation
time.

In future work we plan not only to extend our evaluation to larger AFs, we would
also like to see whether there is an impact of moving from randomly generated to
“natural” argumentation frameworks arising in realistic argumentation scenar-
ios. Moreover, our results together with the theoretical considerations from the
beginning of Sect. 4 suggest an advanced version of the algorithm where split-
ting is (1) performed iteratively on the identified subparts and (2) conditioned

Splitting Argumentation Frameworks: An Empirical Evaluation 31

on the number of arguments and ratio between arguments and attacks, that is,
only if the number of arguments is above a threshold and this ratio is in the
“interesting” range splitting is performed.

References

1. Baumann, R.: Splitting an Argumentation Framework. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 40–53. Springer, Heidelberg (2011)

2. Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Fisher, M., van
der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160,
pp. 111–123. Springer, Heidelberg (2006)

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

4. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, pp. 23–37 (1994)
5. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumenta-

tion frameworks. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial
Intelligence, pp. 105–132. Springer, Heidelberg (2009)

6. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument and Computation 1, 93–124 (2010)

7. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

8. Turner, H.: Splitting a default theory. In: Proc. AAAI 1996, pp. 645–651 (1996)

On the Complexity of Computing the Justification
Status of an Argument�

Wolfgang Dvořák

Technische Universität Wien, Institute for Information Systems 184/2
Favoritenstrasse 9-11, 1040 Vienna, Austria

dvorak@dbai.tuwien.ac.at

Abstract. We address the problem of determining the acceptance status of an
argument w.r.t. labeling-based semantics. Wu and Caminada recently proposed
a labeling-based justification status of arguments to distinguish different levels
of acceptability for arguments. We generalize their approach, which was origi-
nally restricted to complete semantics, to arbitrary argumentation semantics and
provide a comprehensive study of the computational properties.

1 Introduction

We study the problem of computing the acceptance status of an argument in abstract
argumentation frameworks (AFs) [12], following the approach of labeling-based justi-
fication statuses by Wu and Caminada [23].

Dung [12] introduced abstract argumentation frameworks together with semantics
which specify subsets of arguments, so called extensions, distinguishing the arguments
which are accepted from the arguments which are not. Towards a more fine-grainted
distinction of arguments several kind of argumentation labelings have been proposed
either for algorithmic or logical purposes (see, e.g. [8,21,22]). In this work we follow
the approach of three-valued labelings as proposed by Caminada [8]. Roughly speaking
such labelings partition the arguments of an framework into three sets. Similar as in
the concept of extensions, there are the acceptable arguments (which are labeled by
in) but further labelings distinguish two kinds of arguments which are not accepted:
those which are attacked by an accepted argument (and labeled out) and those which
are neither accepted nor attacked (and labeled undec).

Traditional extension-based approaches for deciding the acceptance status of argu-
ments distinguish between skeptically accepted arguments, i.e. arguments contained in
each extension, credulously accepted arguments, i.e. arguments contained in at least one
extension and arguments which are in no extension at all. However such a characteriza-
tion completely ignores the additional information provided by labelings. To take this
information into account, Wu and Caminada [23] proposed their labeling-based justifi-
cation status of an argument, which allows to distinguish different levels of acceptance
(and rejection) for arguments based on the labelings of an argumentation framework.
The main idea of this justification status for an argument a is to consider all labels l
such that at least one complete labeling of the AF assigns l to a.

� This work was supported by the Vienna Science and Technology Fund (WWTF) under grant
ICT08-028.

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 32–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Complexity of Computing the Justification Status of an Argument 33

As mentioned, Wu and Caminada only consider the justification status concerning
complete semantics. In this paper we first generalize the concept of justification status
to arbitrary argumentation semantics and then consider instantiations for several im-
portant semantics, namely the semantics defined in [12], semi-stable [4], stage [21] and
resolution-based grounded [1] semantics. We provide a detailed complexity analysis for
the concept of justification status w.r.t. the afore mentioned semantics (which has not
been done in [23]). Further we show general properties of these justification statuses as
well as relations between justification statuses for different semantics.

The structure of the remainder of the paper is as follows: In Section 2 we introduce
abstract argumentation frameworks, the semantics we consider in the paper and the
concept of labelings. We also highlight known complexity results for these semantics.
Section 3 gives the definition of the justification status of an argument, as well as ba-
sic results about the properties of such justification statuses for different semantics. In
Section 4 we provide a comprehensive complexity analysis for the decision problems
associated to the justification status of an argument. Finally, in Section 5 we conclude
the paper with a summary and discussion of the presented results.

2 Preliminaries

In this section we introduce abstract argumentation frameworks [12] and the concept
of labelings [8]. Further we recall some of the most important semantics for abstract
argumentation (see [3]). Finally, we highlight complexity results for typical decision
problems associated to such frameworks.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a
finite set of arguments and R ⊆ A×A is the attack relation. For a given AF F = (A,R)
we use AF to denote the set A of its arguments and RF to denote its attack relation R.
We sometimes use a �R b instead of (a, b) ∈ R. For S ⊆ A and a ∈ A, we also write
S �R a (resp. a �R S) in case there exists b ∈ S, such that b �R a (resp. a �R b).
In case no ambiguity arises, we use � instead of �R.

Using the extension-based approach, one assigns a set σ(F) ⊆ 2A of extensions to each
AF F = (A,R). For σ consider the functions stb, adm , prf , com, grd , stg , and sem
which stand for stable, admissible, preferred, complete, ground stage, and semi-stable
semantics. Before actually defining the semantics, we have to introduce a few more
formal concepts.

Definition 2. Given an AF F = (A,R), an argument a ∈ A is defended (in F) S ⊆ A
if for each b ∈ A, such that b � a, also S � b holds. The characteristic function
FF : 2A → 2A, is defined as FF (S) = {x ∈ AF | x is defended by S}. Moreover, for
a set S ⊆ A, we denote by S+

R the set S ∪ {a | S �R a}.

We are now ready to define the semantics.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F) (denoted as
S ∈ cf (F)), iff there are no a, b ∈ S, such that (a, b) ∈ R. For S ∈ cf (F), we define:

– S ∈ stb(F), if S+
R = A;

– S ∈ adm(F), if S ⊆ FF (S);

34 W. Dvořák

– S ∈ com(F), if S = FF (S);
– S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F) with T ⊃ S;
– S ∈ grd(F), if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;
– S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with T+

R ⊃ S+
R .

– S ∈ stg(F), if there is no T ∈ cf (F) in F , such that T+
R ⊃ S+

R ;

We recall that for each AF F , stb(F) ⊆ sem(F) ⊆ prf (F) ⊆ com(F) ⊆ adm(F),
and that for each of the considered semantics σ (except stable) σ(F) �= ∅ holds. More-
over we have that for each AF F there is an unique grounded extension, which is the
least fixed-point of FF . Further in case that an AF has at least one stable extension then
its stable, semi-stable, and stage extensions coincide.

Example 1. Consider the AF F = (A,R), with A = {a, b, c, d, e} and R = {(a, b),
(c, b), (c, d), (d, c), (d, e), (e, e)}. The graph representation of F is given as follows.

a b c d e

We have stb(F) = stg(F) = sem(F) = {{a, d}}. Further we have the admissible sets
{},{a},{c},{d},{a, c},{a, d}, and thus prf (F) = {{a, c},{a, d}}. Finally the complete
extensions of F are {a}, {a, c} and {a, d}, with {a} being the grounded extension. ♦

On the base of these semantics one can define the family of resolution-based seman-
tics [1], with the resolution-based grounded semantics being the most popular instance.

Definition 4. Given AF F = (A,R). A resolution β ⊂ R is a set of attacks such that
(a, b) ∈ β iff (b, a) /∈ β and {(a, b), (b, a)} ⊆ R. A set E ⊆ A is a resolution-based
grounded extension, denoted as E ∈ grd∗(F), if (i) there is a resolution β such that
grd((A,R \ β)) = E and (ii) there is no resolution β′ such that grd((A,R \ β′)) ⊂ E.

For the AF F in example 1 we have that grd∗(F) = {{a, c}, {a, d}}.
An extension separates the accepted arguments from the non-accepted arguments,

but there may be a substantial difference whether an argument is rejected because of a
conflict with the arguments in the extension or because the extension does not defend it.
The more fine-grained concept of labelings, as introduced by Caminada [5], generalizes
extensions and captures the above observation.

Definition 5. Let F = (A,R) be an AF. A labeling for F is a function L : A →
{in, out, undec}. We will denote labelings L also by triples (Lin,Lout,Lundec), where
Ll = {a ∈ A | L(a) = l}.

The intuition behind these labels is the following. An argument is labeled with: in if it
is accepted; out if there are strong reasons to reject it, i.e. its attacked by an accepted
argument; and by undec if the argument is undecided, i.e. neither accepted nor attacked
by accepted arguments. In [7,8], the authors define labeling-based semantics for AFs
independent of the extension-based semantics and then showed a strong correspondence
to extension based semantics. For simplicity we use this correspondence to directly
define labeling-based semantics via extensions. To this end, for each AF we define a
function mapping sets of arguments to labelings.

On the Complexity of Computing the Justification Status of an Argument 35

Definition 6. Let F = (A,R) be an AF. We define the function Ext2LabF : 2A →
{in, out, undec}A such that Ext2LabF (E) = (E,E+

R \ E,A \ E+
R) for E ⊆ A.

In [8], Ext2Lab is restricted to conflict-free sets. Here it is well-defined for arbitrary
sets of arguments, while it is equivalent to original definition when restricted to conflict-
free sets. Now one can interpret an extension-based semantics as labeling-based se-
mantics, using the function Ext2Lab to map each extension to a labeling. In particular
Ext2Lab is a one-to-one mapping [8] , i.e. different extensions yield different labelings.

Definition 7. Let F = (A,R) be an AF and σ an extension-based semantics. The cor-
responding labeling-based semantics σL is defined as follows σL(F)={Ext2Lab(E) |
E ∈ σ(F)}. If no ambiguity arises we will use σ(F) instead of σL(F).

We mention that our definition of admL doesn’t match the definition of admissible
labelings by Caminada and Gabbay [8], but what they call JV-labelings. However both
semantics propose the same justification statuses.

Next we turn to the complexity of reasoning in AFs. We assume the reader has knowl-
edge about standard complexity classes, i.e. P, NP and LOGSPACE (L), but we briefly
recapitulate the concept of oracle machines and some related complexity classes. Let
C be some complexity class. By a C-oracle machine we mean a Turing machine which
can access an oracle that decides a given (sub)-problem in C within one step. We de-
note the class of problems decidable in polynomial time when using such a C-oracle
machine, as PC if the underlying Turing machine is deterministic and NPC if the under-
lying Turing machine is nondeterministic. Moreover we consider deterministic oracle
machines where the number of allowed oracle calls is bounded by a constant k, and
denote the corresponding complexity classes as PC[k]. We now turn to concrete com-

plexity classes. The class ΣP
2 = NPNP, denotes the problems which can be decided

by a nondeterministic polynomial time algorithm that has access to an NP-oracle. The

class ΠP
2 = coNPNP is defined as the complementary class of ΣP

2 , i.e. ΠP
2 = coΣP

2 .
Finally we define the classes DP and DP

2 . A decision problem L is in the class DP iff L
can be characterized as L1 ∩ L2 for decision problems L1 ∈ NP and L2 ∈ coNP. Sim-
ilarly L ∈ DP

2 iff L can be characterized as L1 ∩ L2 for L1 ∈ ΣP
2 and L2 ∈ ΠP

2 . Next
we give an overview of relations between the complexity classes used in this paper.

L ⊆ P ⊆ NP
coNP

⊆ DP ⊆ ΣP
2

ΠP
2

⊆ PΣP2 [1] ⊆ DP
2

The typical decision problems for a semantics σ are:

– Credσ: Given AF F and a ∈ AF . Is a contained in some S ∈ σ(F)?
– Skeptσ: Given AF F and a ∈ AF . Is a contained in each S ∈ σ(F)?
– Skept′σ: Given AF F and a ∈ AF . Is a contained in each S ∈ σ(F) and σ(F) �= ∅?
– Verσ: Given AF F and S ⊆ AF . Is S ∈ σ(F)?
– Existsσ: Given AF F . Is σ(F) �= ∅?
– Exists¬∅

σ : Given AF F . Does there exist a set S �= ∅ such that S ∈ σ(F)?

From the literature [1,10,11,12,15,16,17,19,20], we obtain the complexity-landscape of
abstract argumentation as given in Table 1. We mention that most of the semantics σ
(except stable) always provide at least one extension. For these σ the problem Existsσ
can be trivially answered with yes and further the problemsSkept′σ and Skeptσ coincide.

36 W. Dvořák

Table 1. Complexity of abstract argumentation (C-c denotes completeness for class C)

σ Credσ Skeptσ Skept′σ Verσ Existsσ Exists¬∅
σ

grd P-c P-c P-c P-c trivial in L

stb NP-c coNP-c DP-c in L NP-c NP-c

adm NP-c trivial trivial in L trivial NP-c

com NP-c P-c P-c in L trivial NP-c

prf NP-c ΠP
2 -c ΠP

2 -c coNP-c trivial NP-c

sem ΣP
2 -c ΠP

2 -c ΠP
2 -c coNP-c trivial NP-c

stg ΣP
2 -c ΠP

2 -c ΠP
2 -c coNP-c trivial in L

grd∗ NP-c coNP-c coNP-c P-c trivial in P

3 Justification Status of Arguments

Here we consider the task of reasoning in AFs with labeling-based semantics. When
using extensions the usual reasoning modes are skeptical acceptance, accepting an ar-
gument if it is in all extensions, and credulous acceptance, i.e. accepting an argument
if it is an least one extension. Applying these acceptance criterions to labelings would
not take the labels out, undec in to account. To overcome this, Wu and Caminada [23]
recently proposed a more elaborate concept, the so called justification status of an ar-
gument, to reason with complete labelings. The main idea is to define the acceptance
status of an argument a, by the set of labels l such that there exists a labeling mapping
a to l. In the following definition we generalize this concept to arbitrary semantics.

Definition 8. Let F = (A,R) be an AF and σ a semantic. The justification status of an
argument a ∈ A in F is defined as JSσ(F, a) = {L(a) | L ∈ σ(F)}.

Definition 8 proposes eight different justification statuses for arguments. Following
[23], we call {in} strong accept; {in, undec} weak accept; {out} strong reject;
{out, undec} weak reject; and consider the remaining possibilities as borderline cases.

The justification status of an argument generalizes the idea of skeptical and credu-
lous reasoning in the sense that one can encode skeptical and credulous acceptance as
a property of the justification status of the argument. An argument a, is skeptically ac-
cepted iff JSσ(F, a) = {in}, whereas it is credulously accepted iff in ∈ JSσ(F, a).

While in general there are eight possible justification statuses for each argument,
none of the semantics under our considerations is able to generate all of them. In the
following we give a compact analysis of the possible justification statuses for each
semantics. We start with a general observation for unique status semantics:

Lemma 1. Let σ be an unique status semantics, F = (A,R) and a ∈ A. Then
JSσ(F, a) ∈ {{in}, {out}, {undec}}.

Proof. Immediate by the fact that there is exactly one labeling L ∈ σ(F). ��

Lemma 1 can be interpreted such that for unique status semantics the justification status
approach does not provide an additional value. This applies to grounded semantics as
well as to ideal [13], eager [6] and in general parametrized ideal [18] semantics.

On the Complexity of Computing the Justification Status of an Argument 37

The following proposition fully characterizes the possible justification statuses for
the semantics under our considerations.

Proposition 1. Let F = (A,R) be an AF and a ∈ A. Then we have that:

1. JSgrd(F, a) ∈ {{in}, {out}, {undec}}
2. JSadm(F, a) ∈ {{undec}, {in, undec}, {out, undec}, {in, out, undec}}
3. JScom(F, a) ∈ 2{in,out,undec} \ {{in, out}, ∅}
4. JSstb(F, a) ∈ {{in}, {out}, {in, out}, ∅}
5. JSprf (F, a) ∈ 2{in,out,undec} \ {∅}
6. JSsem(F, a) ∈ 2{in,out,undec} \ {∅}
7. JSstg(F, a) ∈ 2{in,out,undec} \ {∅}
8. JSgrd∗(F, a) ∈ 2{in,out,undec} \ {∅}

Proof. We have that (1) holds because grd is a unique status semantics. For (2) we use
that (∅, ∅, A) is always an admissible labeling and thus undec ∈ JSadm(F, a). The
case of complete semantics has already been studied by Wu and Caminada [23]. The
restricted domain steams from the fact that the grounded labeling Lgrd is the unique ⊆-
minimal w.r.t. both Lin and Lout complete labeling. So if Lgrd(a) = in or Lgrd (a) =
out we have that also JScom(F, a) = {in} or resp. JScom(F, a) = {out}. Otherwise
we have that Lgrd(a) = undec and therefore undec ∈ JScom(F, a). To show (4)
we use that Lundec = ∅ for every stable labeling and thus undec /∈ JSstb(F, a). The
remaining follows from the fact that for each semantic σ ∈ {prf , sem, stg, grd∗} it is
the case that σ(F) �= ∅ and thus also that JSσ(F, a) �= {}. ��

Proposition 1 shows that several justification statuses are not possible w.r.t. some se-
mantics. It remains to show that the remaining ones are possible.

Example 2. Here we use the AFs illustrated in Figure 1. First we consider the justifica-
tion statuses {in}, and {out}. For semantics σ ∈ {grd , com , stb, prf , sem, stg, grd∗}
we have that JSσ(F1, a) = {in} and JSσ(F1, b) = {out}. Next let us consider
{undec} and σ ∈ {grd , adm , com, prf , sem , stg, grd∗}, we have that JSσ(F2, a) =
{undec}. The following examples complete the picture for admissible semantics:
JSadm(F1, a) = {in, undec}, JSadm(F1, b) = {out, undec}, JSstb(F2, a) = {}
and JSσ(F3, a) = {in, out, undec} for σ ∈ {adm , com}.

Let us now consider the remaining justification statuses for complete semantics. To
this end let us consider AF4 where we have that JSσ(F4, b) = {out, undec} and
JSσ(F4, c) = {in, undec} for σ ∈ {com, prf , sem}.

Next we study the remaining justification statuses for stable, preferred, semi-stable
and stage semantics. First to get the justification status {in, out} we use the AF F3

and obtain that JSσ(F3, a) = {in, out} for σ ∈ {stb, prf , sem, stg}. The picture is
completed by the following observations on F5 and F6: JSstg (F5, a) = {in, undec},
JSstg(F5, e) = {out, undec},JSstg(F5, c) = {in, out, undec} and JSprf (F6, e) =
JSsem(F6, e) = {in, out, undec}.

Finally for resolution based grounded semantics we have that JSgrd∗(F7, a) =
{in, out}, JSgrd∗(F7, c) = {out, undec}, JSgrd∗(F7, d) = {in, undec} and
JSgrd∗(F7, e) = {in, out, undec}. ♦

38 W. Dvořák

a b

(a) F1

a

(b) F2

a b

(c) F3

d e

a b c

(d) F4

e d

a b c

(e) F5

a c e g

b d f h

(f) F6

a c e

b d f

(g) F7

Fig. 1. Example argumentation frameworks F1-F7

Wu and Caminada [23] mention that the complete labelings of an AF can be seen as
subjective but reasonable positions given the conflicting information of the AF. We are
now interested how the justification statuses are affected if we change our opinion about
what are reasonable positions, i.e. we change semantics.

Proposition 2. Let F = (A,R) be an AF and a ∈ A then:

JSstb(F, a) ⊆ JSsem(F, a) ⊆ JSprf (F, a) ⊆ JScom(F, a) ⊆ JSadm(F, a)

JSgrd(F, a) ⊆ JScom(F, a) ⊆ JSadm(F, a)

Proof. The above ⊆ follows from well-known relations between the semantics [4,12],
namely that: each stable extensions is also a semi-stable extension; each semi-stable ex-
tensions is also a preferred extension; each preferred extension is a complete extension;
each complete extension is an admissible set; and the grounded extension is a complete
extension. ��

Proposition 2 indicates that there are two kinds of skepticism. First there are different
levels of skepticism, about what is an reasonable positions in an argument, that is cap-
tured by the semantics. Second depending on ones skepticism one tolerates different
kinds of dispute about an argument. In an extension based setting this is captured be
the reasoning modes, i.e. skeptical and credulous acceptance. In a labeling based set-
ting this is captured by the justification statuses one is willing to accept. It has to be
mentioned that this kinds of skepticism differ conceptual from those introduced in [2],
which are about relations between the extensions of different semantics whereas we are
interested in the status of an argument.

We can show that the justification statuses w.r.t. admissible, complete and preferred
semantics only differ on the undec labels.

Proposition 3. Let F = (A,R) be an AF and a ∈ A.

1. JSadm(F, a) = JScom(F, a) ∪ {undec}
2. JSadm(F, a) = JSprf (F, a) ∪ {undec}

3. JScom(F, a) =

{
JSgrd(F, a) if a ∈ grd(F)+

JSadm(F, a) otherwise

On the Complexity of Computing the Justification Status of an Argument 39

4. JScom(F, a) =

{
JSgrd(F, a) if a ∈ grd(F)+

JSprf (F, a) ∪ {undec} otherwise

Proof. For (1) & (2) we first use the fact that (∅, ∅, A) ∈ adm(F) and hence adding
undec is always valid. Further by the definitions of the semantics we have that for
each L ∈ adm(F) there exists L′ ∈ com(F) (resp. L′ ∈ prf (F)) such that Lin ⊆
L′
in and Lout ⊆ L′

out. Hence JSadm(F, a) ⊆ JScom(F, a) ∪ {undec}. Further
as each complete (resp. preferred) labeling is also an admissible labeling we also get
JSadm(F, a) ⊇ JScom(F, a)∪{undec}. (3) In [23] it is observed that if a ∈ grd(F)+

then JScom(F, a) = JSgrd(F, a). Further they observe that if a �∈ grd(F)+ then
undec ∈ JScom(F, a) and by (1) then JSadm(F, a) = JScom(F, a). Finally we ob-
tain (4) by combining (2) and (3). ��

4 Complexity Analysis

In this section we provide a formal analysis of the computational properties of the justi-
fication status. To this end we define the corresponding decision problems. The canon-
ical decision problem is deciding if a given argument has a given justification status.

Definition 9. The justification status decision problem JSσ: Given an AF F = (A,R),
L ⊆ {in, out, undec} and an argument a ∈ A. Is JSσ(F, a) = L.

We can express skeptical acceptance as instance of JSσ by choosing L = {in}, but
we can’t neither express credulous acceptance nor if an argument is at least weakly
accepted. Thus we generalize the above definition to capture these cases:

Definition 10. The generalized justification status decision problem GJSσ: Given an
AF F = (A,R), L,M ⊆ {in, out, undec} and an argument a ∈ A. Is L ⊆ JSσ(F, a)
as well as JSσ(F, a) ∩M = ∅.

4.1 General Complexity

One can encode an instance of JSσ as GJSσ instance, usingM = {in, out, undec}\L.
Thus we have that GJSσ is at least as computationally hard as JSσ and as we will show,
for the semantics σ under our considerations the problems JSσ as GJSσ have the same
complexity. In the following we give hardness proofs for JSσ, and membership proofs,
i.e .algorithms, for GJSσ which then implies the completeness of both problems.

We start with some general observations about the problems JSσ and GJSσ and
then present results for specific σ ∈ {grd , adm , com , stb, prf , sem , stg, grd∗}. Our
first result allows us to propagate hardness results from skeptical acceptance to JSσ .

Proposition 4. If one of the problems coExistsσ, Skept′σ is C-hard then JSσ is C-hard.

Proof. Immediate by the fact that both coExistsσ and Skept′σ can be easily encoded as
instances of JSσ. For the first, simply set M = {} and for the latter set M = {in}. ��

Next we provide a (generic) algorithm to decide GJSσ:

Theorem 1. If for semantics σ the problem Verσ is in a complexity class C then the
problem GJSσ is in the complexity class NPC ∧ coNPC .

40 W. Dvořák

Proof. Let us consider an arbitrary instance of GJSσ, with AF F , an argument a ∈ AF

and sets L,M ⊆ {in, out, undec}. To prove GJSσ ∈ NPC ∧ coNPC we first give an
NPC algorithm to decide L ⊆ JSσ(F, a):

1. For each l ∈ L guess a labeling Ll with Ll(a) = l
2. Test whether Ll ∈ σ(F) or not, using the C-oracle.
3. Accept if for each l ∈ L, Ll ∈ σ(F)

As there are at most three labels l ∈ L the guess is polynomial in the size of the input
AF and thus we have an NPC algorithm.

Next we show that JSσ(F, a) ∩ M = ∅ can be decided in coNPC . To this end we
give an NPC algorithm that decides the complementary problem JSσ(F, a) ∩M �= ∅.

1. For each l ∈ M guess a labeling Ll with Ll(a) = l
2. Test whether Ll ∈ σ(F) or not
3. Accept if there exists an l ∈ M such that Ll ∈ σ(F)

Now as GJSσ(F, a) iff L ⊆ JSσ(F, a) and JSσ(F, a) ∩M = ∅ we finally observe
that GJSσ ∈ NPC ∧ coNPC . ��

The algorithm in the above proof is (worst case) optimal for semantics σ ∈ {adm, com ,
stb, sem, stg, grd∗}, but, as we will show, not for σ ∈ {grd , prf }. We now turn to study
the complexity for specific semantics and start with grounded semantics:

Proposition 5. The problems JSgrd , GJSgrd are P-complete.

Proof. The membership in the class P follows by the fact that the unique grounded
labeling can be computed in polynomial time (see Table 2). The hardness follows from
the fact that Skept′grd is P-hard and Proposition 4. ��

Next we consider admissible and complete semantics. By Proposition 3 the justifica-
tion statuses of admissible and complete semantics are closely related, thus it is not
surprising that we can use the same construction to show hardness for both semantics.

Proposition 6. The problems JScom , GJScom ,JSadm , GJSadm are DP-complete.

Proof. The membership is an immediate consequence of Theorem 1 and the fact that
Vercom , Veradm are in L.

We prove hardness by reducing the (DP-hard) SAT-UNSAT problem to JScom (resp.
JSadm). We assume that the two CNF formulas are given as a set of clauses, where
each clause is a set over atoms and negated atoms (denoted by x̄). For such CNFs
ϕ(X) =

∧
c∈Cϕ

c, ψ(Y) =
∧

c∈Cψ
c over variables X resp. Y with X ∩ Y = ∅, define

the AF Fϕ,ψ = (A,R) 1 with A = X ∪ X̄ ∪ Y ∪ Ȳ ∪ Cϕ ∪Cψ ∪ {t, t′} and

R = {(z, z̄), (z̄, z) | z ∈ X ∪ Y } ∪ {(l, c) | l ∈ c, c ∈ Cϕ ∪Cψ} ∪
{(c, t), (c, c) | c ∈ Cϕ} ∪ {(c, t′), (c, c) | c ∈ Cψ} ∪ {(t, t′), (t′, t)}

1 This reduction builds slightly modified standard translations (as defined in [17]) of both for-
mulas and adds a mutual attack between them.

On the Complexity of Computing the Justification Status of an Argument 41

t t′

c1 c2 c3 c4

x1 x̄1 x2 x̄2 x3 x̄3 y1 ȳ1 y2 ȳ2

Fig. 2. AF Fϕ,ψ with cϕ,1={x1, x2, x̄3}, cϕ,2={x̄1, x̄2, x̄3}, cψ,3={y1, ȳ2}, cψ,4={ȳ1, y2}

where X̄ = {x̄ | x ∈ X}, Ȳ = {ȳ | y ∈ y} and t, t′ are fresh arguments. See
Figure 2 for an illustrating example. Let us first mention that grd(F) = ∅ and thus for
each a ∈ A it holds that JScom(F, a) = JSadm(F, a). Hence it suffices to show that
(ϕ, ψ) ∈ SAT-UNSAT iff JScom(F, t) = {in, undec}.

As grd(F) = ∅ we have that undec ∈ JScom(F, t), independently of the in-
stance (ϕ, ψ). It is easy to see that2 in ∈ JScom(F, t) iff ϕ is satisfiable and that
in ∈ JScom(F, t′) iff ψ is satisfiable. Further t′ is the only not self-conflicting argu-
ment attacking t. Thus we have that out ∈ JScom(F, t) iff in ∈ JScom(F, t′) iff ψ is
satisfiable. To sum up, JScom(F, t) = {in, undec} iff ϕ is satisfiable and ψ is unsatis-
fiable, i.e. (ϕ, ψ) ∈ SAT-UNSAT. ��

Next we consider stable and resolution-based grounded semantics.

Proposition 7. The problems JSstb , GJSstb are DP-complete.

Proof. The membership follows from Theorem 1 and the fact that Verstb is in L. Further
as Skept′stb is DP-hard [17] we can use Proposition 4 to obtain DP-hardness for JSstb

and thus DP-completeness. ��

Proposition 8. The problems JSgrd∗ , GJSgrd∗ are DP-complete.

Proof. The membership follows by the fact that that Vergrd∗ is in P and Theorem 1.
Again we show hardness by reducing the (DP-hard) SAT-UNSAT problem to JSgrd∗ .
Consider two CNFs ϕ(X) =

∧
c∈Cϕ

c, ψ(Y) =
∧

c∈Cψ
c over variables X resp. Y

with X ∩ Y = ∅ and additional assume that ϕ and ψ have at least one counter model.
Define the AF Fϕ,ψ = (A,R) with A = X ∪ X̄ ∪ Y ∪ Ȳ ∪ Cϕ ∪Cψ ∪ {t, t′} and

R = {(z, z̄), (z̄, z) | z ∈ X ∪ Y } ∪ {(l, c) | l ∈ c, c ∈ Cϕ ∪ Cψ} ∪
{(c, t), (c, c) | c ∈ Cϕ} ∪ {(c, t′) | c ∈ Cψ} ∪ {(t′, t)}

where X̄ = {x̄ | x ∈ X}, Ȳ = {ȳ | y ∈ y} and t, t′ are fresh arguments. See Figure 3
for an illustrating example. We show that (ϕ, ψ) ∈ SAT-UNSAT iff JSgrd∗(F, t) =
{in, undec}.

In analogy to [1] we observe that resolving a symmetric attack between z and z̄ with
z ∈ X∪Y selects either z or z̄ for being in the grounded extension. Thus each resolution
yields a distinct extension and ⊆-minimality does not came in play for Fϕ,ψ. Now we

2 Following the argument for the standard translation in [17].

42 W. Dvořák

t t′

c1 c2 c3 c4

x1 x̄1 x2 x̄2 x3 x̄3 y1 ȳ1 y2 ȳ2

Fig. 3. AF Fϕ,ψ with cϕ,1={x1, x2, x̄3}, cϕ,2={x̄1, x̄2, x̄3}, cψ,3={y1, ȳ2}, cψ,4={ȳ1, y2}

have a one to one correspondence between pairs of true-assignments (MX ,MY) for
(ϕ, ψ) and resolutions for Fϕ,ψ. One can check that t is labeled in iff MX satisfies ϕ
and MY falsifies ψ, and that t is labeled out iff MY satisfies ψ.

Now given that (ϕ, ψ) ∈ SAT-UNSAT we have that in ∈ JSgrd∗(F, t) and out /∈
JSgrd∗(F, t). Further by the assumption that ϕ is not valid there is a pair (MX ,MY)
that falsifies both ϕ, and ψ, hence undec ∈ JSgrd∗(F, t) .

Given that JSgrd∗(F, t) = {in, undec}. By the fact that in ∈ JSgrd∗(F, t) we
conclude that ϕ has a model and by out /∈ JSgrd∗(F, t) we have that ψ has no model,
hence ϕ ∈ SAT and ψ ∈ UNSAT. ��

In the case of preferred semantics Proposition 1 does not yield the optimal membership,
i.e. it yields DP

2 membership instead of PΣP2 [1]-membership. Hence we have to provide
an algorithm for preferred semantics to show membership.

Proposition 9. The problems JSprf , GJSprf are PΣP2 [1]-complete.

Proof. To show membership we give a PΣP2 [1] algorithm for GJSprf . To this end, let
us consider an arbitrary instance with AF F = (A,R), an argument a ∈ A and sets
L,M ⊆ {in, out, undec}. First we observe that testing whether in ∈ JSσ(F, a)
(resp. out ∈ JSσ(F, a)) can be done with an NP-algorithm. Such an algorithm sim-
ple guesses an labeling L = (Lin,Lout,Lundec) and then tests if L ∈ Ladm(F) and
a ∈ Lin (resp. a ∈ Lout). But testing for undec ∈ JSσ(F, a) is not that easy, as it
doesn’t suffice to consider admissible labelings. Our algorithm proceeds as follows:
If undec ∈ L∪M (w.l.o.g. we assume L∩M = ∅) we start the followingΣP

2 algorithm.

1. Guess labeling L with L(a) = undec.
2. Test whether L is preferred or not, using a coNP-oracle.
3. Test whether L \ {undec} ⊆ JSσ(F, a), using a NP-oracle.
4. Test whether, (M \ {undec}) ∩ JSσ(F, a) = ∅, using a coNP-oracle.
5. If undec ∈ L accept iff 2,3 and 4 hold;

If undec ∈ M accept iff 2 holds, or either 3 or 4 fails.

If undec ∈ L we use the answer of the ΣP
2 algorithm as answer for the problem

GJSprf . Otherwise, i.e. undec ∈ M , we negate the answer of the ΣP
2 algorithm. In

the case where undec �∈ L ∪ M we omit steps 1 & 2 of the above algorithm, which
leads to an DP-algorithm deciding GJSprf .

We show hardness by reducing the QBF2-problem, i.e. the problem of deciding if a
QBF with one quantifier alternation is valid, to JSprf . Let Φ be an instance of QBF2,

On the Complexity of Computing the Justification Status of an Argument 43

then Φ is either of the form (i) Φ = ∀X∃Y ϕ(X,Y) or (ii) Φ = ∃X∀Y ϕ(X,Y). In case
(i) we can use the reduction from the ΠP

2 -hardness proof of Skept′prf [15] to encode φ as
Skept′-problem, which itself can be encoded as instance of JSprf . (see proof of Propo-
sition 4). In case (ii) we can encode ¬Φ as coSkept′-problem in the same way as in (i),
but it remains to show that the problem coSkept′prf can be reduced to a JSprf -instance.
To this end consider an arbitrary AF F = (A,R) with argument t ∈ A. If (t, t) ∈ R
then coSkept′ is trivially true, thus for the remainder of the proof we assume (t, t) �∈ R.
We build the AF F ′ = (A ∪ {g, u, v, w}, R ∪ {(t, g), (g, g), (g, u), (v, w), (w, v)} ∪
{(v, a) | a ∈ A \ {t}}) and claim that JSprf (F

′, u) = {in, undec} iff the argument t
is not skeptical accepted in F .

As {v, t, u} is conflict-free and attacks all the other arguments it is a preferred
extension of F ′ and thus in ∈ JSprf (F

′, u). Further as g is the only attacker of
u and (g, g) ∈ R′ we also have that out �∈ JSprf (F

′, u). It remains to show that
undec ∈ JSprf (F

′, u) iff t is not skeptical accepted in F .
To show the “if”-part, consider E ∈ prf (F) with t �∈ E. It holds that E ∪ {w} ∈

adm(F ′) and thus there exists E′ ∈ prf (F ′) such that E ∪ {w} ⊆ E′. As w ∈ E′ we
have that v �∈ E′ and as w, u, g do not attack any attacker of t, we also have that t �∈ E′.
Hence also u �∈ E′ and thus undec ∈ JSprf (F

′, u).
Next, to show the “only if”-part, assume undec ∈ JSprf (F

′, u). Then there exists
an E′ ∈ prf (F ′) such that u �∈ E′, thus by construction F ′ also t �∈ E′ and v �∈ E′.
Moreover we have that E = E′ ∩A ∈ adm(F) and E′ = E ∪{w}. Next we show that
also E ∈ prf (F). Let us assume, towards a contradiction, that E �∈ prf (F) then there
exists S ∈ prf (F) with E ⊂ F . But by construction S′ = S ∪ {w} ∈ adm(F ′) and as
E ⊂ S also E′ ⊂ S′, a contradiction to our assumption E′ ∈ prf (F ′). We have that E
is a preferred extension of F with t /∈ E, i.e. t is not skeptical accepted in F . ��

Finally we consider semi-stable and stage semantics. To this end we first recall some
concepts and results from the literature.

Definition 11. Given a QBF 2
∀ formula Φ = ∀Y ∃Z

∧
c∈C c, with C a set of clauses,

we define the AF SΦ = (A,R), where

A = {t, t̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄

R = {(c, t) | c ∈ C} ∪ {(t, t̄) , (t̄, t) , (t, b) , (b, b)} ∪
{(x, x̄) , (x̄, x) | x ∈ Y ∪ Z} ∪
{(y, y′) , (ȳ, ȳ′) , (y′, y′) , (ȳ′, ȳ′) | y ∈ Y } ∪
{(l, c) | literal l occurs in c ∈ C}.

Theorem 2 ([19]). For a semantics σ ∈ {sem, stg}, a QBF 2
∀ formula Φ is a valid iff t

is skeptically accepted in FΦ w.r.t. σ iff t̄ is not credulously accepted in FΦ w.r.t. σ.

Using this we obtain the exact complexity of JSsem , GJSsem ,JSstg and GJSstg .

Proposition 10. The problems JSsem , GJSsem are DP
2 -complete.

Proof. The membership follows from Theorem 1 and the fact that Versem ∈ coNP.
To show hardness we reducing the (DP

2 -hard) QBF 2
∀-coQBF 2

∀ problem to JSsem . The

44 W. Dvořák

t̄ t b z t̄′ t′ b′

c1 c2 c3 c4

y1 ȳ1 y2 ȳ2 z1 z̄1 y3 ȳ3 z2 z̄2

y′

1 ȳ′

1 y′

2 ȳ′

2 y′

3 ȳ′

3

Fig. 4. AF Fϕ,ψ with cϕ,1={y1, y2, z̄1}, cϕ,2={ȳ1, ȳ2, z̄1}, cψ,3={y3, ȳ3}, cψ,4={z̄1, z2}

QBF 2
∀-coQBF 2

∀ problem remains hard when the QBFs Φ, Ψ are in CNF with satisfi-
able clause sets φ, ψ. In the following we will tacitly assume Φ, Ψ are of that form.

We define the AF FΦ,Ψ = SΦ∪̇SΨ ∪ ({z}, {(b, z), (t′, z)}). Here the symbol “∪̇”
denotes the disjoint union, i.e. we rename each argument of SΨ that also occurs in SΦ,
and denote the renamed argument t ∈ SΨ by t′. One can see that E1 ∈ sem(SΦ),
E2 ∈ sem(SΨ) iff either E1∪̇E2 ∈ sem(SΨ) or E1∪̇E2 ∪ {z} ∈ sem(FΦ,Ψ). We have
to show that (Φ, Ψ) ∈ QBF 2

∀-coQBF 2
∀ iff JSsem(FΦ,Ψ , z) = {in, out}.

For the “only if“-part, let us assume (Φ, Ψ) is a valid instance of QBF 2
∀-coQBF 2

∀.
Then by Theorem 2 for each E1 ∈ sem(SΦ) holds that t ∈ E1 and thus also for
each E ∈ sem(FΦ,Ψ) holds t ∈ E. As Ψ is not valid, by Theorem 2, there exists
E2 ∈ sem(SΨ) such that t′ �∈ E2, hence t̄′ ∈ E2. Thus there exist an E ∈ sem(FΦ,Ψ)
such that t ∈ E and t̄′ ∈ E. But then E defends z and by the maximality of semi-
stable extension we have z ∈ E and therefore in ∈ JSsem(FΦ,Ψ , z). Further as ψ
is satisfiable there also exists an E2 ∈ sem(SΨ) such that t′ ∈ E2, hence an E ∈
sem(FΦ,Ψ) with t′ ∈ E and thus out ∈ JSsem(FΦ,Ψ , z). As for each E ∈ sem(FΦ,Ψ)
clearly either t′ ∈ E or t̄′ ∈ E we have undec �∈ J Ssem(FΦ,Ψ , z).

For the ”if“-part, let us assume (Φ, Ψ) �∈ QBF 2
∀-coQBF 2

∀. Then either (i) Ψ is valid
or (ii) Φ and Ψ are invalid. We have to show that JSsem(FΦ,Ψ , z) �= {in, out}.

(i) If Ψ is valid then, by Theorem 2, for each E2 ∈ sem(SΨ) it holds that t′ ∈ E2 and
thus also for each E ∈ sem(FΦ,Ψ). Hence JSsem(FΦ,Ψ , z) = {out}.

(ii) If Φ is not valid then, by Theorem 2, there exists E1 ∈ sem(SΦ) such that t �∈ E1.
If also Ψ is not valid then there exists an E ∈ sem(FΦ,Ψ) with t �∈ E and t′ �∈ E.
Thus z is neither attacked by E nor defended E, hence undec ∈ JSsem(FΦ,Ψ , z).

��
Proposition 11. The problems JSstg , GJSstg are DP

2 -complete.

Proof. The membership is immediate by Theorem 1 and the fact that Verstg ∈ coNP.
To prove hardness we reducing the (DP

2 -hard) QBF 2
∀-coQBF 2

∀ problem to JSstg .
and as before we assume that the clause sets of the QBFs are satisfiable. For our reduc-
tion we define the AF FΦ,Ψ = SΦ∪̇SΨ ∪ ({y, z, g}, {(t, y), (t, g), (t′, z), (g, g), (y, g),

On the Complexity of Computing the Justification Status of an Argument 45

t̄ t b y z t̄′ t′ b′

c1 c2 g c3 c4

y1 ȳ1 y2 ȳ2 z1 z̄1 y3 ȳ3 z2 z̄2

y′

1 ȳ′

1 y′

2 ȳ′

2 y′

3 ȳ′

3

Fig. 5. AF Fϕ,ψ with cϕ,1={y1, y2, z̄1}, cϕ,2={ȳ1, ȳ2, z̄1}, cψ,3={y3, ȳ3}, cψ,4={z̄1, z2}

(z, y)}) (again ∪̇ denotes the disjoint union). One can see that E1 ∈ stg(SΦ), E2 ∈
stg(SΨ) iff E1∪̇E2 ∪ T ∈ stg(FΦ,Ψ) with T ⊂ {y, z}. We have to show that (Φ, Ψ) is
an valid instance of QBF 2

∀-coQBF 2
∀ iff JSstg(FΦ,Ψ , z) = {in, out}.

For the “only if“-part, let us assume (Φ, Ψ) ∈ QBF 2
∀-coQBF 2

∀. Then by Theorem 2
for each E1 ∈ stg(SΦ) holds that t ∈ E1 and also for each E ∈ stg(FΦ,Ψ) holds t ∈ E.
As Ψ is not valid, by Theorem 2, there exists E2 ∈ stg(SΨ) such that t′ �∈ E2, hence
t̄′ ∈ E2. Thus there exist an extension E ∈ stg(FΦ,Ψ) such that t ∈ E and t̄′ ∈ E. But
then E attacks y and E ∪ {z} is conflict-free. By the maximality of stage extension we
have z ∈ E and thus in ∈ JSstg(FΦ,Ψ , z). Further as ψ is satisfiable there also exists
an E2 ∈ stg(SΨ) such that t′ ∈ E2, hence an E ∈ stg(FΦ,Ψ) with t′ ∈ E and thus
out ∈ JSstg(FΦ,Ψ , z). As for each E ∈ stg(FΦ,Ψ) clearly either t′ ∈ E or t̄′ ∈ E we
have undec �∈ J Sstg(FΦ,Ψ , z).

For the ”if“-part, let us assume that (Φ, Ψ) �∈ QBF 2
∀-coQBF 2

∀. Then either (i) Ψ is
valid or (ii) Φ and Ψ are invalid. We have to show that JSstg(FΦ,Ψ , z) �= {in, out}.

(i) If Ψ is valid then, by Theorem 2, for each E2 ∈ stg(SΨ) it holds that t′ ∈ E2 and
thus also for each E ∈ stg(FΦ,Ψ). Hence JSsem(F, z) = {out}.

(ii) If Φ is not valid then, by Theorem 2, there exists E1 ∈ sem(SΦ) such that t �∈ E1.
If also Ψ is not valid then there exists an E2 ∈ sem(SΨ) such that t′ �∈ E2. We
have that E = E1 ∪ E2 ∪ {y} ∈ stg(FΦ,Ψ), as it is the only conflict free superset
of E1 ∪ E2 such that g ∈ E ∪ E+. As neither z ∈ E nor E � z we have that
undec ∈ JSsem(F, z).

��
We showed that for all semantics σ under our considerations, except grounded seman-
tics, the problems JSσ , GJSσ are even harder than NP. Thus one might be interested in
tractable fragments, i.e. classes of problem instances that can be solved in polynomial
time. First, there are AFs having a special graph structure [14]. It is easy to see that
the known tractable fragments for Credσ and Skeptσ (i.e. acyclic AFs, symmetric AFs,
bipartite AFs, AFs of bounded tree-width / clique-width) are also tractable fragments
for JSσ, GJSσ . Second, one can consider instances that test for a fixed justification
status. For instance consider JScom(F, a) = {in} which can be decided in P instead
of using a DP-algorithm. While a full analysis of such fragments is beyond the scope
of this paper, we study the exact complexity of weak acceptance in detail.

46 W. Dvořák

4.2 The Complexity of Weak Acceptance

Here we consider the problem of deciding whether an argument is at least weakly ac-
cepted. This reasoning mode is in particular of interest, as its more skeptical as credu-
lous acceptance but not as skeptical as skeptical acceptance.

Definition 12. Given an AF F and an argument a ∈ AF . We say that a is weakly
accepted (in F) if JSσ(F, a) ∈ {{in}, {in, undec}}. The corresponding weak accep-
tance problem Weakσ is, given an AF F = (A,R) and an argument a ∈ A, deciding
whether a is weakly accepted.

Clearly the weak acceptance problem Weakσ is a version of GJSσ , where L = {in}
and M = {out}. This gives us upper bounds for the complexity of Weakσ.

Proposition 12. We have that:

1. Weakgrd is P-complete,

2. Weakadm = Weakcom= Weakprf is DP-complete,

3. Weakstb is DP-complete,
4. Weaksem , Weakstg are ΠP

2 -complete, and

5. Weakgrd∗ is DP-complete.

Proof. (1) By Proposition 1 we have that {in, undec} /∈ JSgrd(F, a) and therefore
Weakgrd = Skeptgrd . Hence Weakgrd is P-complete as well.

(2) By Proposition 3 we have that the justification statuses of an argument w.r.t.
admissible, complete, and preferred semantics only differ on the undec labels. As
weak acceptance of an argument only depends on the in and out labels we have that
Weakadm = Weakcom= Weakprf . Hence it suffices to consider the Weakcom here.

The membership in DP follows immediately from the complexity of GJScom . To
obtain DP-hardness, let us recall the proof of Proposition 6: There we reduced a pair
(ϕ, ψ) of propositional formulas to an AF F and proved that (ϕ, ψ) ∈ SAT-UNSAT
iff JScom(F, t) = {in, undec}. Further we observed that independently of (ϕ, ψ) it
always holds that undec ∈ JScom(F, t). That is we have that t is weakly accepted iff
JScom(F, t) = {in, undec} iff (ϕ, ψ) ∈ SAT-UNSAT. Hence Weakcom is DP-hard.

(3) The DP-completeness for Weakstb follows from the fact that, by Proposition 1,
we have that {in, undec} /∈ JSstb(F, a) and thus Weakstb = Skept′stb .

(4) To prove the membership in the class ΠP
2 we provide an ΣP

2 -algorithm for the
complementary problem, i.e. disproving that an argument a is weakly accepted. To this
end we use an alternative characterization of weak acceptance, i.e. an argument a is
weakly accepted iff {in, out} ∩ J Sσ(F, a) �= ∅ and out �∈ J Sσ(F, a). This may
seems a bit weird but can be directly checked by the following ΣP

2 -algorithm:

1. Use the NP-oracle to check whether {in, out} ∩ JSσ(F, a) = ∅ and if so accept
2. Guess a labeling L such that L(a) = out

3. Use the NP-oracle to verify that L is a semi-stable (resp. stage) labeling.
4. If L is a semi-stable (resp. stage) accept otherwise reject.

On the Complexity of Computing the Justification Status of an Argument 47

We first treat the NP membership of step (1). We have that {in, out} ∩ JSσ(F, a) �= ∅
iff there exists an admissible (resp. conflict-free) set S such that a ∈ S+. Hence we can
test {in, out} ∩ J Sσ(F, a) �= ∅ by guessing a set S, checking whether it is admissible
(conflict-free) and a ∈ S+. This clearly can be done in NP.

For the hardness part, recall the reduction from Definition 11. It is easy to see (and
was shown in [19]) that each semi-stable (stage) extension of SΦ either contains t or t̄.
So there is no extension that labels t with undec and thus the argument t is weakly ac-
cepted in SΦ iff it is skeptically accepted in SΦ. By Theorem 2 we obtain ΠP

2 -hardness.
(5) The membership in the class DP follows immediately from the complexity of

the corresponding problem GJSgrd∗ . To obtain DP-hardness, let us recall the proof of
Proposition 8: There we reduced a pair (ϕ, ψ) of formulas to an AF F and proved that
(ϕ, ψ) ∈ SAT-UNSAT iff JSgrd∗(F, t) = {in, undec} iff t is weakly accepted (as
undec ∈ JSgrd∗(F, t) anyway). Hence DP-hardness carries over to Weakgrd∗ . ��

Table 2. Overview of Complexity results (C-c denotes completeness for class C)

σ grd adm com stb prf sem stg grd∗

Credσ P-c NP-c NP-c NP-c NP-c ΣP
2 -c ΣP

2 -c NP-c

Skept′σ P-c trivial P-c DP-c ΠP
2 -c ΠP

2 -c ΠP
2 -c coNP-c

Weakσ P-c DP-c DP-c DP-c DP-c ΠP
2 -c ΠP

2 -c DP-c

JSσ P-c DP-c DP-c DP-c PΣP2 [1]-c DP
2 -c DP

2 -c DP-c

GJSσ P-c DP-c DP-c DP-c PΣP2 [1]-c DP
2 -c DP

2 -c DP-c

5 Conclusion

In this paper we generalized the labeling-based justification-status, introduced by Wu
and Caminada [23], to arbitrary argumentation semantics. In particular we considered
the justification-status w.r.t. grounded, admissible, complete, preferred, semi-stable and
stage semantics and provided a comparison between different semantics.

We have studied the computational complexity of decision problems associated to the
justification status of an argument w.r.t. different semantics (see Table 2). The overall
picture is that complexity has slightly increased compared to the complexity of credu-
lous and skeptical acceptance. The main reason for this is that, in contrast to credulous
/ skeptical acceptance, we have to do both: to determine for labels to be in the justifi-
cation status, and to determine for other labels not to be in the justification status. In
general this causes two orthogonal sources of complexity, with two notable exceptions.
First, when considering grounded semantics, we have just one labeling which can be
computed in polynomial time and thus reasoning problems remains simple. Second, for
preferred semantics we have that one can decide the labels in, out using admissible
sets which is much easier than using preferred extensions. However for deciding the
label undec admissible sets are not sufficient and we have to use (proof procedures for)
preferred extensions. Thus the complexity in case of preferred semantics is dominated

48 W. Dvořák

by the complexity of deciding undec-label. This is also mirrored by the fact that weak
acceptance w.r.t. preferred semantics is only DP-complete.

Our complexity results show that for several semantics weak acceptance is signifi-
cantly easier than validating the justification status of an argument in general. For pre-
ferred semantics weak acceptance is even easier than skeptical acceptance. A similar
observation can be made for credulous and skeptical acceptance, which can also be
stated in terms of justification statuses, the overall picture of computational complexity
is the following: Introducing justification statuses increases the complexity in general,
but if we fix the justification statuses we are interested in, we might get back the lower
complexity. For practical issues this means that it might be a bad idea (at least from
the complexity point of view) to design a general purpose algorithm handling all the
cases, but it probably make sense to use procedures that apply simpler algorithms if an
instance falls in one of the easier problem class.

An related topic is the combination of weak acceptance with ideal reasoning [18].
The basic idea behind ideal reasoning is to find the maximal admissible set that is part
of the skeptical accepted arguments w.r.t. some base-semantics. In [9], the authors intro-
duce the credulous outcome aggregation operator, which basically does ideal reasoning
build on weak acceptance instead of skeptical acceptance. So it would be interesting,
how switching from skeptical to weak acceptance influences the ideal acceptance of
arguments as well as the computational properties of ideal reasoning. Restating the re-
sults in [9,18], we have that for standard ideal [13] and eager [6] semantics (and in
general for parameterized ideal semantics with a prf -preserving base-semantics [18])
switching to weak acceptance does not change anything. On the other hand for complete
semantics we have that ideal reasoning with skeptical acceptance leads to grounded se-
mantics, while ideal reasoning with weak acceptance leads to standard ideal semantics.
The situation for stage and resolution-based grounded semantics is not that clear, but it
is easy to construct examples where ideal reasoning with skeptical acceptance and ideal
reasoning with weak acceptance lead different extensions. Thus an interesting direction
for future research would be the interaction of acceptance criterions based on a choice
of justification statuses, e.g. weak acceptance, with ideal reasoning.

Finally let us mention that the complexity results in Table 2 strongly correlate with
expressibility results presented in [20]. There the authors study (faithful) translations
between different argumentation semantics and the results there indicate an express-
ibility hierarchy of admissibility-based semantics. That is we have four levels of ex-
pressibility: grounded semantics are on the first level; admissible, complete and stable
semantics on the second level; preferred semantics on the third level; and semi-stable
semantics are on the fourth level. Ordering the semantics w.r.t. complexity of JSσ (resp.
GJSσ) leads exactly to the same hierarchy of semantics whereas this neither holds for
credulous nor for skeptical acceptance.

Acknowledgments. The author is grateful to Martin Caminada, Stefan Woltran and
the anonymous referees for fruitful discussions and valuable comments which helped
to improve the paper.

On the Complexity of Computing the Justification Status of an Argument 49

References

1. Baroni, P., Dunne, P.E., Giacomin, M.: On the resolution-based family of abstract argumen-
tation semantics and its grounded instance. Artif. Intell. 175(3-4), 791–813 (2011)

2. Baroni, P., Giacomin, M.: Comparing Argumentation Semantics with Respect to Skepticism.
In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 210–221. Springer,
Heidelberg (2007)

3. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Argumentation in
Artificial Intelligence, pp. 25–44. Springer, Heidelberg (2009)

4. Caminada, M.: Semi-stable semantics. In: Proc. COMMA 2006, pp. 121–130 (2006)
5. Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Fisher, M., van der

Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123.
Springer, Heidelberg (2006)

6. Caminada, M.: Comparing two unique extension semantics for formal argumentation: ideal
and eager. In: Proc. BNAIC 2007, pp. 81–87 (2007)

7. Caminada, M.: A labelling approach for ideal and stage semantics. Argument & Computa-
tion 2, 1–21 (2011)

8. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Log-
ica 93(2), 109–145 (2009)

9. Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation. Au-
tonomous Agents and Multi-Agent Systems 22(1), 64–102 (2011)

10. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric Argumentation Frameworks. In:
Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328. Springer, Hei-
delberg (2005)

11. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theo-
ries. Theor. Comput. Sci. 170(1-2), 209–244 (1996)

12. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

13. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. In-
tell. 171(10-15), 642–674 (2007)

14. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic con-
straints. Artif. Intell. 171(10-15), 701–729 (2007)

15. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. In-
tell. 141(1/2), 187–203 (2002)

16. Dunne, P.E., Caminada, M.: Computational Complexity of Semi-Stable Semantics in Ab-
stract Argumentation Frameworks. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA
2008. LNCS (LNAI), vol. 5293, pp. 153–165. Springer, Heidelberg (2008)

17. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Simari, G., Rahwan,
I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer, US (2009)

18. Dvořák, W., Dunne, P.E., Woltran, S.: Parametric Properties of Ideal Semantics. In: Proc.
IJCAI 2011, pp. 851–856 (2011)

19. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation
frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

20. Dvořák, W., Woltran, S.: On the intertranslatability of argumentation semantics. J. Artif.
Intell. Res. 41, 445–475 (2011)

21. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation
stages. In: Proc. NAIC 1996, pp. 357–368 (1996)

22. Verheij, B.: A Labeling Approach to the Computation of Credulous Acceptance in Argumen-
tation. In: Proc. IJCAI 2007, pp. 623–628 (2007)

23. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Studies in
Logic 3(4), 12–29 (2010)

Arguments over Co-operative Plans

Rolando Medellin-Gasque1, Katie Atkinson1,
Peter McBurney2, and Trevor Bench-Capon1

1 University of Liverpool, Department of Computer Science, Liverpool UK
{medellin,katie,tbc}@liverpool.ac.uk

2 King’s College London, Department of Informatics, London UK
peter.mcburney@kcl.ac.uk

Abstract. Autonomous planning agents that share a common goal should be able
to propose, justify and share information about plans. To reach an agreement on
the best plan, strategies for persuasion and negotiation could be used by agents
in order to share their beliefs about the world and resolve conflicts between the
agents. We present an argumentation scheme and associated critical questions to
create and justify plan proposals where plans are combinations of actions requir-
ing several agents for their execution. An analysis of different ways in which
actions can combine is presented and then associated with the argumentation
scheme and the critical questions. We believe these elements are necessary to
enable agents to engage in rational debate over co-operative plan proposals.

Keywords: plan proposal, argumentation schemes, critical questions, co-operation.

1 Introduction

Planning in Artificial Intelligence is concerned with the automatic synthesis of action
strategies from a description of actions, sensors and goals [11]. The planning literature
has been focusing in recent years on overcoming strong assumptions about plan gen-
eration. The complexity of distributed systems restricts the application of single-agent
planning strategies to distributed problems usually because a local agent view is not
sufficient. A common assumption in AI planning is that the planner has accurate and
complete knowledge of the world and the capabilities of other agents.

Our goal is to provide autonomous agents (with different views of the world) with
a strategy to propose and justify plans in terms of acceptable arguments and enable
them to critique and defend plans in order to choose the best option among these. An
argumentation based dialogue then is suitable to support some planning tasks such as
choosing the best plan, plan modification and even establishing coordination strategies
for the execution of a plan.

In this paper we present an argumentation scheme to propose and justify plans based
on the argumentation scheme for action proposals of Atkinson et al. in [3]. We ex-
tend the concept of action used in [3] with action-elements taken from the PDDL 2.1
Planning Specification1 presented in [10] such as time constraints and invariant condi-
tions. Thus, this work extends the action proposal model of [3] to more complex types

1 Planning Domain Description Language (PDDL) is an attempt to standardize planning domain
and problem description languages developed for the International Planning Competitions.

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 50–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Arguments over Co-operative Plans 51

of action-proposals involving several durative actions performed by several agents. An
analysis over different ways to combine actions to form plans is also presented in order
to create more specific critical questions. The analysis is based on interval algebra pro-
posed by Allen in [1]. Allen’s interval relations define the basic relations between time
intervals. We relate time intervals with the action duration in order to define ways in
which actions may be combined in a co-operative plan. Furthermore, we present critical
questions grouped in 6 categories that address specific elements of the plan-proposal.

As a basis to formalize our argumentation scheme we will use a formal model devel-
oped in [18], an Action-based Alternating Transition System (AATS). This transition
system defines actions that may be performed by agents through the states from which
these could be performed and the states that will result, with a particular focus on the
simultaneous action of a group of agents. This makes AATSs especially suitable for
situations where co-operation is important.

The paper is structured as follows: Section 2 presents the action representation and
proposal including action combinations. Sub-section 2.3 introduces the AATS notation
to formalize the action proposal in sub-section 2.4. In section 3 we present the plan
proposal as an argumentation scheme of AATS models together with critical questions
associated to the extended action and the ways in which actions can combine. In sec-
tion 4 we develop an example using the elements presented in this paper. Section 5
comments on related work and finally, in section 6, we conclude the paper and discuss
future research work.

2 Action Representation and Proposal

2.1 Action Representation

Actions usually are represented as operations an agent is able to perform from a state
where some preconditions hold. We want to extend this action definition and incorpo-
rate elements useful when representing and reasoning about temporal plans. We use
actions as presented in the PDDL 2.1 specification [10] which have elements to express
temporal domain descriptions over plans. In the PDDL 2.1 specification, instead of hav-
ing an action with preconditions and effects, actions are represented as durative actions
with elements to express more precisely temporal conditions and effects. The durative
action representation is as follows: initially, the action can start at a point in time when
a set of preconditions hold, at the commencement of the action, “ start effects” become
true. Action has a duration and “invariant conditions” (distinct from preconditions) and
are accessible throughout the duration of the action. Actions are not black-boxes and
access to start effects is available during the performance of the action. The end of
the action is given by “termination conditions” where upon, end effects become true2.
The planning community is still developing ways to create planners that handle tem-
porally extended actions. Our intention in presenting this durative action representation
is to consider all the elements needed by agents to engage in argumentative dialogues

2 This model still represents a simplified model of time; durative actions could be extended
to allow effects to be asserted at arbitrary points during the interval of execution, or to be a
function of duration (“until” actions).

52 R. Medellin-Gasque et al.

over co-operative plans. In the next sub-section we will define different ways in which
actions may combine to form a plan.

2.2 Action Combinations

We now define the way in which actions can be combined to form plans. By action
combinations we mean the different ways in which atomic actions could be combined
in a plan in terms of concurrency, repetition and temporal aspects. Even if there is just
one action there could be variants such as its periodicity or whether the action execution
is optional. Two or more actions could be defined in a plan as a sequence (as in classical
AI planning) or as a set of actions with no particular order (partial-order planning) that
could, but need not, overlap. We want to cover both cases and others focusing on aspects
such as the order of the actions and their periodicity.

The analysis is based on the interval algebra proposed by Allen in [1]. Interval alge-
bra is based on the 13 possible primitive relationships (6 of which are inverses) between
two time intervals (Figure 1). We apply a similar model to combinations of actions.
Most of the interest in Allen’s representation for time intervals comes from a mecha-
nism by which the time relationships between the pairs of intervals can be propagated
through the collection of all intervals. The notion of disjunction of interval relationships
can be used to declare multiple paths and interactions. This idea gives us reason to think
this analysis could be extended for larger plans. We add to Allen’s list cases focusing on
specific properties such as the periodicity, optionality and interleaving of actions. The
14 cases are presented in the following list, for arbitrary actions α and β:

AC1.- Action α occurs exactly k times, where k is a non-negative integer (α(k)).
AC2.- Optionally, action α occurs exactly k times (α(k, o)).
AC3.- Action α occurs from 1 to k times, where k > 1 (α((1 − k)).
AC4.- Optionally, action α occurs from 1 to k times (α(1 − k, o)).
AC5.- Action α precedes β (precedes(α, β)) (Figure 1a).
AC6.- Action α meets β (meets(α, β)) (Figure 1b).
AC7.- Action α overlaps β (overlaps(α, β)) (Figure 1c).
AC8.- Action α starts β. (starts(α, β)) (Figure 1d).
AC9.- Action α is entirely in action β (entirely(α, β) (Figure 1e).
AC10.- Action α finishes β. (finishes(α, β) (Figure 1f).
AC11.- Action α equals β. (equals(α, β) (Figure 1g).
AC12.- Action α or action β but not both (α|β))
AC13.- Both actions interleaving concurrently (overlapping) over periods of time until
completion of both (iC(α, β).
AC14.- Both actions executed not concurrently over periods of time until completion of
both. i(α, β).

The purpose of this analysis is to cover all of the ways in which actions may be com-
bined in a plan with questions that match the specific action combinations. This analysis
covers cases where plans are formed of one or two atomic actions. Perhaps, plans com-
prising one or two actions seem too simple for the purposes of creating real-world plans,

Arguments over Co-operative Plans 53

α

β

α β

α

β

α

β

α

β

α

β

α β

(f) α finishes β

(d) α starts β

(e) α during β

(c) α overlaps β

(b) α meets β

(a) α precedes β

Time

(g) α equals β

Fig. 1. Allen’s possible primitive time relationships between two intervals labelled α and β. Time
is represented by the horizontal axis. (a) to (f) have inverses.

but nevertheless, we want to identify basic cases in which actions may be combined be-
fore extending this to larger plans.

2.3 Action-Based Alternating Transition Systems

We use Action-based Alternating Transition Systems (AATS) as introduced in [18] as
a basis for our formalism to represent action and plan proposals. AATS models de-
fine joint-actions that may be performed by agents in a state and the effects of these
actions. In particular, an AATS model defines semantic structures useful to represent
joint-actions for multiple agents, their preconditions and the states that will result from
the transition. An AATS is an (n+7)-tuple of the form:

S = 〈Q, q0, Ag, Ac1, ..., Acn, ρ, τ, Φ, π〉
where:

– Q is a finite non-empty set of states;
– q0 ∈ Q is the initial state;
– Ag = {1, ..., n} is a finite non-empty set of agents;
– Aci is a finite, non-empty set of actions, for each i ∈ Ag, where Aci ∩ Acj = ∅

for all i �= j ∈ Ag; Now we can say that a joint action jAg for the set of agents
Ag is a tuple (αi, .., αn) where for each αj(j ≤ n) there is some i ∈ Ag such that
αj ∈ Aci. We denote the set of all joint-actions JAG. Given an element j of JAG

and an agent i ∈ Ag, i′s action in j is denoted by ji .

54 R. Medellin-Gasque et al.

qx

 Initial state
π(qx)

qy

Final state
π (qy)

ρ
 precondition

function
τ (q0) Transition

Action end Action start

Action Acn

Time

Invariant Conditions

Termination
Conditions

Start

Effects

End

Effects

Fig. 2. Action Proposal Representation

– ρ : AcAg → 2Q is an action precondition function, which for each action α ∈ AcAg

defines the set of states ρ(α) from which α may be executed;
– τ : Q × JAg → Q is a partial system transition function, which defines the state

τ(q, j) that would result by the performance of j from state q, note that, as this
function is partial, not all joint actions are possible in all states (cf. the pre-condition
function above);

– Φ is a finite, non-empty set of atomic propositions; and
– π : Q → 2Φ is an interpretation function, which gives the set of primitive propo-

sitions satisfied in each state: if p ∈ π(q), then this means that the propositional
variable p is satisfied (equivalently, true) in state q.

In [2] Atkinson and Bench-Capon extended this transition system to enable representa-
tion of a theory of practical reasoning related to arguments about action through which
values3 were added to the system. The extensions are:

– Avi, is a finite, non-empty set of values Avi ⊆ V , for each i ∈ Ag.
– δ: Q×Q×AvAg → {+,−, =} is a valuation function which defines the status (pro-

moted(+), demoted(-) or neutral (=)) of a value vu ∈ AvAg ascribed by the agent
to the transition between two states: δ(qx, qy, vu) labels the transition between qx

and qy with one of {+,−, =} with respect to the value vu ∈ AvAg .

2.4 Proposals for Action

Argumentation schemes are stereotypical patterns of defeasible reasoning used in ev-
eryday conversational argumentation. In an argumentation scheme, arguments are pre-
sented as general inference rules where under a given set of premises a conclusion can

3 Our use of the term values follows [4] where values are qualitative social interests of agents.

Arguments over Co-operative Plans 55

be presumptively drawn [20]. Artificial Intelligence has become increasingly interested
in argumentation schemes due to their potential for making significant improvements
in the reasoning capabilities of artificial agents [7] and for automation of agent inter-
actions. In [21], Walton explains: “...arguments need to be examined within the con-
text of an ongoing investigation in dialogue in which questions are being asked and
answered”. Critical questions are a way to examine the acceptability of arguments in-
stantiating schemes. Depending on the nature of the critical question, they can be used
to critique several aspects of the argument. Usually, critical questions provide pointers
which would make the argumentation scheme inapplicable or could lead to a valid way
to attack the argument, either defeating the argument on one of its premises or on its
presumptive conclusion.

The action proposal presented in [3] is as follows: In the current circumstances R,
we should perform action A to achieve new circumstances S which will realize some
goal G which will promote some value v. Furthermore, in [2] the authors re-stated the
argumentation scheme in terms of the extended AATS. Figure 2 presents an action as
in the PDDL 2.1 specification (presented in section 2.1). So, we can extend the action
proposal from [3] with elements from the PDDL 2.1 specification. The extended action
proposal and AATS representation are presented in Table 1.

Table 1. Argumentation scheme for actions

Action Proposal as an AATS model AS2

In the current circumstances R In the initial state q0 = qx ∈ Q
we should perform action A at time t with duration d agent i ∈ Ag should participate in joint action jn ∈ JAg

to achieve start effects from point t where jni = αi

given invariant conditions such that τ (qx, jn) is qy

action finishing by termination conditions such that pa ∈ π(qy) and pa /∈ π(qx)
to achieve new circumstances S or pa /∈ π(qy) and pa ∈ π(qx)
which will realize some goal G such that for some vu ∈ Avi , δ(qx, qy , vu) is +.
which will promote some value v

For the purpose of this paper, time is discrete and actions take a single time step, thus
we will not represent durative actions elements from section 2.1 in the plan proposal in
the next section. Nevertheless, in the critical questions’ section, time elements are con-
sidered. Future work will be focused on representing durative actions within the action
and plan proposal and the representation of action elements such as the propositions
satisfied during the transition, which do not arise in [3].

3 Plan Proposal and Critical Questions

We now present our argumentation scheme in terms of the action elements presented
above. Our plan proposal ASP is as follows:

Given a social context X , in the current circumstances q0 holding preconditions
π(q0), the plan PL should be performed to achieve new circumstances qx , that will hold
postconditions π(qx) which will realize the plan-goal G which will promote value(s)
VG.

56 R. Medellin-Gasque et al.

The valid instantiation of the scheme pre-supposes the existence of a regulatory envi-
ronment or a social context X in which the proponent has some rights to engage in a
dialogue with the co-operating agent. The “social context” was an extension to the ar-
gumentation scheme presented in [5] where agents use a social structure to issue valid
commands between them. Current circumstances are represented by the initial state
q0. An agent could instantiate the scheme to propose plan PL as a finite set of linked
action-combinations. The plan leads to a state in which post-conditions π(qx) hold and
the plan-goal G is achieved (where G is an assignment of truth values to a set of propo-
sitions p ⊆ Φ) and a non-empty set of values is promoted/demoted.

Our objective specifying a set of values VG rather than a single value, comes from the
idea that a plan (and the set of actions of which is conformed) might include different
preferences for different actions. In other words, a value may be promoted by the first
action of a plan and a different value promoted in the second action. So, the set of
values promoted by the plan is just the set of values promoted by all the actions that
comprise the plan. Indeed, this feature could be extended to allow a more complex
value representation for the set of actions, this representation is out of the scope of this
paper.

Table 2 presents the plan proposal and the AATS model representation.

Table 2. Plan Proposal ASP

Plan Proposal as an AATS model
Given a social context X, Given social context Δ ,
in the current circumstances qx In the initial state q0 = qx ∈ Q, where π(q0),
holding preconditions π(qx) agents i, j ∈ Ag should execute plan PL,
plan PL should be performed where PL is a finite set of joint-actions jn

to achieve new circumstances qy such that PL = {j0, .., jn}
that will hold postconditions π(qy) and {j0, .., jn} ∈ JAg and jn = {αi, .., αj}
which will realize the plan-goal G with transition given by τ (qx, PL) is qy ,
which will promote value(s) VG. where τ (q0, {j1, .., jn}) = τ (τ (q0, j1), (j2, ..jn))

and τ (qx, {}) = qx

such that pa ∈ π(qx) and pa /∈ π(qy) where G = p
and (VG ⊆ V such that v1 ∈ VG

iff δ(qx, qy , v1) is +)
and VG �= ∅

3.1 Critical Questions for Plan Proposals

A benefit of having critical questions associated with an argument scheme is that the
questions enable dialogue participants to identify points of challenge in a debate or
locate premises in an instantiation of the argument scheme that can be recognized as
questionable. Most of the critical questions are created from argumentation scheme el-
ements and represent a valid way to challenge proposals that could identify sources of
disagreement about a particular element of the argumentation scheme. A question can
be seen as a weak form of attack on a particular element of the argument scheme given
different beliefs about the world of the agent posing the question. Critical questions

Arguments over Co-operative Plans 57

then could be used to create Dialogue Games for agents where the participants put for-
ward arguments instantiating the argumentation scheme and opponents to the argument
challenge it through objections based on critical questions. Argumentation-based dia-
logues are used to formalize dialogues between autonomous agents based on theories
of argument exchange. In [19] a classification is given based on the role the question
plays in the context of the argumentation scheme. A question could be used to: criticize
a scheme premise, point to exceptional situations in which the scheme should not be
used, set conditions for the proper use of the scheme, or point to other arguments that
might be used to attack the scheme. Furthermore, questions could argue for an incom-
patible conclusion like: Are there (better) reasons for not to do plan A? We classify our
set of critical questions into 6 layers (also presented in Figure 3).

Layer 5
The timing of the plan

proposal

Layer 4
The plan proposal

Layer 2
The timing of an action

Layer 1
An action and its

elements

Comparison of different plan proposals
in time

Questions about the action
elements

Questions regarding actions
in time.

Layer 3
The way actions are

combined

Plan proposal elements

Layer 6
Elements outside the

scheme

Lowest
Level

Highest
Level

Why actions are combined in that way

Alternative paths and consequences not
foreseen

Fig. 3. Critical Question Layers

– Layer 1.- An action and its elements (Lowest level).
– Layer 2.- The timing of a particular action.
– Layer 3.- The way actions are combined.
– Layer 4.- The plan proposal overall.
– Layer 5.- The timing of the plan proposal.
– Layer 6.- Elements outside the scheme (alternative paths or consequences not fore-

seen) (Highest Level).

58 R. Medellin-Gasque et al.

The layers are derived from the different categories of critical questions that relate to the
different elements of the argumentation scheme. Each layer groups questions accord-
ing to the level of detail on which they focus. At the plan proposal level, for example,
the critical questions are all those that are independent of the way in which actions are
composed inside the plan i.e. the way in which actions are combined. This classification
allows us then, to consider questions at each layer separately. Furthermore, this classi-
fication gives us elements to create a strategy to select critical questions in a dialogue.
Having the critical questions classified, an agent could pick a layer and narrow the scope
of available questions. An agent then could focus on a specific level of the proposal e.g.
either the plan proposal or specific sequences of actions. A strategy like this involves
a dialogue-protocol where rules to issue such questions are specified. It could be that
the answer to a critical question in one layer imposes constraints within another layer,
so this may affect the optimal ordering in which the layers are addressed. Appropriate
participant strategies, and their possible relationships with the dialogue protocol are the
next step with the work.

Our set of critical questions is based on the set developed for action proposals in
command dialogues presented in [5]. The complete list of 66 critical questions neces-
sary to comprehensively question all relevant aspects of the plan proposals is presented
in [15]. We believe this analysis enables plan proposals to be questioned in a compre-
hensive way in order to be fully and explicitly justified. We present here some example
questions for each layer.

Layer 1. An action α and its elements (9 questions).
Questions aim to find inconsistencies for a particular action questioning or attacking
the validity and possibility of its elements.
- CQA-01. Is the action α possible?
- CQA-02. Are the action preconditions as stated by proponent?
- CQA-04. Are the action invariants conditions as stated by proponent?
- CQA-07. Are the termination conditions as described possible?

Layer 2. The timing of action α (10 questions).
Questions also focus on possibility but for a particular time point for which the action
has been specified.
- CQAT-02. Is the action possible with the specified duration?
- CQAT-06. What is the earliest time the action α can start?
- CQAT-08. Is the action α possible to finish at the specified time?
- CQAT-09. What is the earliest time the action α can end?

Layer 3. The way actions are combined (7 questions).
The analysis of time intervals from section 2.2 is used here and questions aim to reveal
any inconsistencies given the way actions are combined in the plan. - CQAC-01. (For
sequential actions) Could actions α and β be performed concurrently?
- CQAC-02. (For sequential actions) Can the order of the actions be changed?
- CQAC-03. (For concurrent actions) Is there a conflict in any of the invariant condi-
tions of the actions?

Arguments over Co-operative Plans 59

- CQAC-06. (For concurrent actions) Is there a maximum duration for actions to per-
form concurrently?

Layer 4. The plan proposal (18 questions).
The questions in this layer aim to question the plan as a single entity with the elements
that support it.
- CQPP-01. Is the plan possible?
- CQPP-04. Are the current plan circumstances R as stated by proponent?
- CQPP-12. Assuming believed conditions are true, will the plan bring about the desired
state?
- CQPP-14. Can the desired goal G be realized?
- CQPP-16. Are the values VG legitimate values?

Layer 5. The timing of the plan proposal (11 questions).
Questions focus in the plan possibility given the time specified.
- CQPPT-01. Is the starting point for the plan PL fixed? If not, what is the range al-
lowed?
- CQPPT-05. Can the plan duration be longer?
- CQPPT-06. Is the plan PL possible with the specified duration?
- CQPPT-16. Is the plan PL possible at the specified start time?

Layer 6. Elements outside the scheme (11 questions).
Questions in this layer try to consider other alternatives and side effects not considered.
- CQOS-01. Does performing the plan PL have a side effect which demotes the value
vn?
- CQOS-03. Is there an alternative plan PL that promotes the same value vn?
- CQOS-05. Is there an alternative plan PL to realize the same goal G?
- CQOS-06. Has the plan been already performed?
- CQOS-07. Does performing the plan promote some other value?
- CQOS-09. Is there another agent that could perform action α?

4 Example

To illustrate our approach we will use our argumentation scheme in the context of agents
representing organizations in a conflict zone. The example was first introduced in [8]
and also used in [17] to illustrate a similar problem regarding planning and dialogues
for autonomous agents. The situation is the following: two agents, one representing a
Non-Governmental Organization (NGO) and one representing a peace keeping force
(KF), are working in a conflict zone.

The initial conditions are: Agent NGO is based at zone A and agent KF is based
at zone C. The joint-goal is that agent NGO reaches zone J safely to help the villagers
there. A initial sub-goal is to meet in zone F. The values involved are: v1 representing
humanitarian help and v2 representing NGO security. The restrictions are: NGO can
traverse the routes (A,B),(B,F),(F,H),(I,J) independently, but for all the other routes it

60 R. Medellin-Gasque et al.

E

A

C D I

J
G

H

F

B

NGO

KF

Fig. 4. Example NGO

needs to be accompanied by KF . KF can traverse any route. At any time, some dis-
ruption may flare up at zone G. If this happens, only the KF agent has the surveillance
data to know this is happening, and must go to zone G to suppress the disturbance.
Furthermore, NGO cannot traverse the routes where zone G is involved if there is a
conflict. Finally agent NGO is able to see all the zones and routes only when in zone
F. The routes between zones are shown as arcs in Figure 4. The list of possible actions
and joint-actions is presented in Table 3.

Table 3. Actions and joint-actions

Actions Joint-actions
α0 = moveNGO(X, Y) j0 = (idleNGO , idleKF)
α1 = idleNGO(X) j1 = (idleNGO , controlKF)
α2 = moveKF (X) j2 = (idleNGO , moveKF)
α3 = moveKF (X, Y) j3 = (moveNGO , idleKF)
α4 = controlKF (X) j4 = (moveNGO , controlKF)

j5 = (moveNGO , moveKF)

Our strategy to coordinate the agents is based on a persuasion dialogue where the
NGO agent proposes a plan and engages in a dialogue where KF needs to accept
all the actions in the plan to execute it. Another strategy could involve agents creating
a plan from the top following a deliberation dialogue. As mentioned in section 3.1, a
dialogue-protocol for engaging in such dialogues is left for future work.

We present now a possible dialogue between 2 agents based on the scenario pre-
sented above. Three proposals are presented (plans PL1, PL2, PL3 are detailed in ta-
ble 4) and evaluated with some questions. Note that the agreement on sub-goals is out

Arguments over Co-operative Plans 61

of the scope of this paper. Also note the dialogue does not follow any particular pro-
tocol. Intuitively the agents engage in a persuasion dialogue where their proposals are
questioned. NGO agent acts as the proponent in the beginning and then in step 8 the
proponent role switches to agent KF .

Table 4. Plans

Time Plan
Plan PL1 to reach zone F

1 j5 = equals(moveNGO(A,B), moveKF (C, D))

2 j5 = equals(moveNGO(B, F),moveKF (D, E))

3 j2 = equals(idleNGO(F), moveKF (E,F))

Plan PL2 to reach zone J

4 j5 = equals(moveNGO(F, G), moveKF (F, G))

5 j5 = equals(moveNGO(G, J), moveKF (G, J))

Plan PL3 to reach zone J

4 j5 = equals(moveNGO(F, H), moveKF (F, G))

5 j4 = sodfe(moveNGO(H, J), controlKF (G))

Modified plan PL3 to reach zone J

4 j5 = equals(moveNGO(F, H), moveKF (F, G))

5 j1 = sodfe(idleNGO(H), controlKF (G))

6 j2 = sodfe(idleNGO(H),moveKF (G, H))

7 j5 = sodfe(moveNGO(H, J), moveKF (H,J))

1. NGO: I propose PL1 to reach zone F to promote v1 humanitarian help.
2. KF : (CQOS-01) Does performing the plan PL1 have a side effect which demotes

the value v2 = security?
3. NGO: None of the effects demotes value v2.
4. KF : (CQPP-05) The initial state is not possible, I am not in zone C.
5. NGO: Your position is considered as zone C .
6. KF : OK, I accept plan PL1.

(From this point we assume the plan PL1 is executed and agents have a new view
of the world. Agents are now in zone F .)

7. NGO: I propose plan PL2 to reach zone J (plan-goal) and promote values v1 and
v2, (different sets of values involved may lead to different plans.)

8. KF : (CQPP-17) Plan demotes value v2, I reject the proposal.
Agent KF detects a conflict in zone G.

9. NGO OK.
Acknowledge KF rejection.

10. KF : I propose plan PL3 to reach zone J .
11. NGO:I accept action j5 of plan PL3 The plan is then partially accepted by NGO.
12. NGO: (CQA-04) I reject joint-action j4 = sodfe(moveNGO(H, J),

controlKF (G)). Agent cannot travel alone on route (H-J).
Invariant conditions are not as stated by proponent.

62 R. Medellin-Gasque et al.

Action sequences are specified using the action combination analysis of section 2.2.
(sodfe)(j0, j1) means: joint-action j0 Starts, Overlaps, During, Finishes or Equals
joint-action j1. From here agents exchange arguments in the action level, assuming
the first action of PL3 was accepted.

13. KF : I propose a modification to plan PL3.
14. NGO: (CQA-01) Is the action control() possible?
15. KF : The action control() is possible from the state specified.
16. NGO:Accept modification to plan PL3.

We believe the exchange of arguments using critical questions in a dialogue allows
agents to choose the best possible plan. The detailed dialogue representation is pre-
sented in table 5. In the table we represent joint-states with a sub-index (q0, .., q18).
Each joint-state represents the state of agent NGO, the state of agent KF and the con-
flict status. For example, the initial state q0 is given by the function:
π(q0) = {In(A)NGO, In(C)KF , conflict(0)}.

Table 5. Possible Dialogue for the NGO example

Agent Locution Variables Comments
1 NGO ProposePlan(PL1) (q0, PL1) is q11 Initial state NGO in zone A, KF in zone C.
2 v1+ Final state NGO and KF in zone F.
3 Promotion of value “humanitarian aid”.
4 KF Question(CQOS-01) δ(q0, q1, v2) is − Is there a side effect that demotes v2?
5 NGO Provide() δ(q0, q1, v2) is = Value v2 is not demoted.
6 KF Question(CQPP-05) q0 /∈ Q Is the initial state possible?
7 NGO Provide() q0 ∈ Q q0 is possible.
8 KF AcceptProposal(PL1) Proposal accepted for plan PL1

9 NGO ProposePlan(PL2) (q11, PL2) is q16 Initial state NGO and KF in zone F.
10 G ∈ π(q16) Final state NGO and KF in zone J
11 v1+ and v2+ goal reached in q16, values promoted
12 KF RejectProposal()(CQPP-17) PL2 Plan demoted value v2

13 Provide() δ(q11, q16, v2) is − Demotion of v2

14 Provide() conflict ∈ π(q2)

15 NGO AcceptRejection()
16 KF ProposePlan(PL3) (q11, PL3) is q18 NGO and KF in zone F.
17 v1+ and v2+ NGO and KF in zone J.
18 NGO AcceptAction() j5
19 RejectAction() (CQA-04) j4 Invariant conditions are not as stated by proponent.
20 Provide() (q7, j4) /∈ Q NGO cannot travel alone proposed route.
21 KF ProposeActions() j1, j2, j5 Goal reached in q17

22 NGO Question(CQA-01) j1 /∈ JAG Is the action control() possible?
23 KF Provide() j1 ∈ JAG Action control() is possible.
24 NGO AcceptProposal(PL3) j1, j2, j5

A more complex dialogue could arise given this simple problem. Agents could pose
more critical questions and challenge arguments making more rich and complex the
interaction. The example is one illustrating how agents could interact with the elements
provided in this paper.

Arguments over Co-operative Plans 63

5 Related Work

Our approach is influenced by work on argumentation for practical reasoning [2] and
dialogues about plans [6,16,17]. Regarding dialogues and plans, Tang, Norman and
Parsons in [17] establish a model for individual and joint agents’ actions suitable for
describing the behaviour of a multi-agent team, including communication actions. Tang
et al’s work has been focused on setting a basis for implementing multi-agent planning
dialogues based on argumentation that take into account the communication needs for
the plan to be executed successfully. The model uses policies to generate plans and
the communication needs are embedded in the policy algorithm generation. From the
work of Tang et al. we are particularly interested in the techniques used to combine
planning and dialogue models using policies. In our approach agents propose and justify
previously created plans and then engage in a dialogue to justify the actions and possibly
modify the plan. The approach in Tang et al. embeds the communication policy in the
planning algorithm.

In [6] Belesiotis, Rovatsos and Rahwan develop an argumentation mechanism for
reconciling conflicts between agents over plan proposals. The authors extend a proto-
col where argument-moves enable discussion about planning steps in iterated dispute
dialogues as presented in [9]. The authors then introduce a logic for arguments about
plans based on the situation calculus [14]. From this approach we are interested in their
protocol based on iterated disputes. We plan to modify the approach extending the way
a plan proposal makes use of critical questions in the dispute tree.

Another related approach is presented in [16]. Onaindia et al. present the problem of
solving cooperative distributed planning tasks through an argumentation-based model.
The model allows agents to exchange partial solutions, express opinions on the ade-
quacy of candidate solutions and adapt their own proposals for the benefit of the overall
task. The argumentation-based model is designed in terms of argumentation schemes
and critical questions whose interpretation is given through the semantic structure of a
partial order planning paradigm. The approach assumes a lack of uncertainty and deter-
ministic planning actions, thus, focuses only on questions concerned with the choice of
actions. The argumentation scheme, based on the scheme for action proposal from [3]
is of the form:

In the current circumstances and considering the current base plan Πi, agent agi

should perform the refinement step Π
′
, which will result in a new partial plan Πj ,

which will realise some sub-goals G, which will promote some values V.
Our work is very similar in approach to this work in the sense that plans should be

entities treated at a detailed level when arguing about them. We go further and con-
sider plan proposals in more detail referring to action elements and combinations of
actions. Furthermore, our argumentation scheme is related to a more comprehensive set
of critical questions, giving an agent more options to critique and enhance a proposal.
We believe these elements allow an agent to question and/or attack the argument in a
more targeted fashion, facilitating the modification of more types of plans and specific
identification of differences between participants.

64 R. Medellin-Gasque et al.

6 Conclusion

Our research aims at contributing to solving problems related to multi-agent planning,
where agents need to agree on plans given different views of the world and of other
agents’ capabilities. We believe our main contribution in this paper is that we have ar-
ticulated a novel list of critical questions related to an argumentation scheme for plan
proposals as different combination of actions including temporal aspects. The critical
questions address each element of a proposed plan and so they are comprehensive with
respect to the representation we have chosen for plan proposals. We believe every com-
ponent and every interaction of components in our representation of a proposal for plan
is subject to a possible critical question.

The importance of this work is that it enables a proposal for plan execution to be
considered rationally and automatically by software agents engaged in deliberation
over the plan of action. The critical questions enable the proposed plan to be ques-
tioned/challenged in a comprehensive and organized manner, and to be clarified or de-
fended in response, as appropriate. Indeed, it is possible to use the critical questions
as the basis for an agent dialogue game protocol in which one participating agent may
propose, and then clarify or defend a plan of action, while other agents question or
challenge this proposal. For example, Atkinson and colleagues in [3] develop such a
dialogue protocol for proposals for single actions. Whether the proposed plan of action
survives such questions and attacks in the dialogue will depend upon the facts about
the world underlying the proposal, and the ability of the proponent agent to defend
his proposal from attack. Consequently, the acceptability or otherwise of the proposed
plan will depend upon the outcome of the multi-agent dialogue based upon the critical
questions, and vice-versa.

The multi-agent dialogue is a form of game-theoretic semantics for the statement of
a plan of action in the same way as Hintikka’s game-theoretic semantics for first-order
logic [12] interprets well-formed formulae involving existential and universal quanti-
fiers as equivalent to two-party games between a proponent and an opponent of some
proposition. Our approach will interpret proposals for plans in terms of dialogue games
between agents defending and attacking the proposal. Our work in this paper can there-
fore be seen as part of a larger effort to develop computational semantics for plans of
actions between interacting software agents [13].

Future work includes analysis on how to represent formally action elements not yet
accounted for in the formalization, such as the duration of actions and action invariants.
One limitation in this work is that we only considered plans comprising two actions, ef-
fectively a plan for each agent; how to decompose these plans into a number of actions
and the issues that arise from the interaction of their components is something we will
consider in the next phase of our research. To support this theory we will also imple-
ment a prototype where agents use a protocol that allows them to engage in dialogues
about plan proposals in a single solution.

Acknowledgements. Rolando Medellin-Gasque is grateful for financial assistance from
CONACYT of Mexico. Katie Atkinson and Trevor Bench-Capon were partially

Arguments over Co-operative Plans 65

supported by the FP7-ICT-2009-4 Programme, IMPACT Project, Grant Agreement Num-
ber 247228. The views expressed are those of the authors and are not necessarily repre-
sentative of the project.

References

1. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2), 123–
154 (1984)

2. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation using ac-
tion based alternating transition systems. Artificial Intelligence 171(10-15), 855–874 (2007)

3. Atkinson, K., Bench-Capon, T., McBurney, P.: A dialogue game protocol for multi-agent
argument over proposals for action. Autonomous Agents and Multi-Agent Systems 11(2),
153–171 (2005)

4. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical
argument. Synthese 152(2), 157–206 (2006)

5. Atkinson, K., Girle, R., McBurney, P., Parsons, S.: Command Dialogues. In: Rahwan, I.,
Moraitis, P. (eds.) ArgMAS 2008. LNCS, vol. 5384, pp. 93–106. Springer, Heidelberg (2009)

6. Belesiotis, A., Rovatsos, M., Rahwan, I.: A Generative Dialogue System for Arguing About
Plans in Situation Calculus. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.)
ArgMAS 2009. LNCS, vol. 6057, pp. 23–41. Springer, Heidelberg (2010)

7. Bex, F., Prakken, H., Reed, C., Walton, D.: Towards a formal account of reasoning about
evidence: argumentation schemes and generalisations. Artificial Intelligence Law 11(2-3),
125–165 (2003)

8. Burnett, C., Masato, D., Mccallum, M., Norman, T.J., Giampapa, J., Kollingbaum, M.J.,
Sycara, K.: Agent support for mission planning under policy constraints. In: Proceedings of
the Second Annual Conference of the ITA. Imperial College (2008)

9. Dunne, P.E., Bench-Capon, T.: Two party immediate response disputes: properties and effi-
ciency. Artificial Intelligence 149(2), 221–250 (2003)

10. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for Expressing Temporal Planning
Domains. Journal Artificial Intelligence Research (JAIR) 20, 61–124 (2003)

11. Geffner, H.: Perspectives on Artificial Intelligence Planning. In: Eighteenth National Con-
ference on Artificial intelligence, pp. 1013–1023. American Association for Artificial Intel-
ligence, Menlo Park (2002)

12. Hintikka, J.: The Game of Language: Studies in Game-Theoretical Semantics and Its Appli-
cations. Synthese Language Library, vol. 22. D. Reidel, Dordrecht (1983)

13. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Rahwan, I., Simari,
G. (eds.) Argumentation in Artificial Intelligence, ch. 13, pp. 261–280. Springer, Berlin
(2009)

14. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial in-
telligence. In: Machine Intelligence, pp. 463–502. Edinburgh University Press (1969)

15. Medellin-Gasque, R., Atkinson, K., McBurney, P., Bench-Capon, T.: Critical Questions for
Plan Proposals. Technical Report ULCS-11-003, Department of Computer Science, Univer-
sity of Liverpool, UK (March 2011)

16. Onaindía, E., Sapena, O., Torreño, A.: Cooperative Distributed Planning through Argumen-
tation. International Journal of Artificial Intelligence 4, 118–136 (2010)

17. Tang, Y., Norman, T.J., Parsons, S.: A model for integrating dialogue and the execution
of joint plans. In: AAMAS 2009: Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 883–890. International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland (2009)

66 R. Medellin-Gasque et al.

18. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time: Effective-
ness, feasibility, and synthesis. Synthese 156, 1–19 (2007)

19. Verheij, B.: Dialectical argumentation with argumentation schemes: an approach to legal
logic. Artificial Intelligence and Law 11(2-3), 167–195 (2003)

20. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum As-
sociates, Mahwah (1996)

21. Walton, D.N.: Justification of argumentation schemes. Australasian Journal of Logic 3 (2005)

An Implemented Dialogue System for Inquiry
and Persuasion

Luke Riley1, Katie Atkinson1, Terry Payne1, and Elizabeth Black2

1 Department of Computer Science,
University of Liverpool,

L69 3BX, UK
{L.J.Riley,katie,trp}@liverpool.ac.uk
2 Department of Information and Computer Sciences,

Utrecht University,
80.089, NL

lizblack@cs.uu.nl

Abstract. In this paper, we present an implemented system that enables au-
tonomous agents to engage in dialogues that involve inquiries embedded within
a process of practical reasoning. The implementation builds upon an existing for-
mal model of value-based argumentation, which has itself been extended to per-
mit a wider range of arguments to be expressed. We present extensions to the
formal underlying theory used for the dialogue system, as well as the implemen-
tation itself. We demonstrate the use of the system through a particular case study.
We discuss a number of interesting issues that have arisen from the implementa-
tion and the experimental avenues that this test-bed will enable us to pursue.

1 Introduction

Communication through argumentation is one of the key strands of work on compu-
tational argumentation. Work on agent-based dialogue systems has been greatly influ-
enced by the dialogue typology of Walton and Krabbe [12]. A number of proposals have
been set out for dialogue systems that encompass the main dialogue categories, for ex-
ample see: [4] for inquiry dialogues; [10] for negotiation; [9] for persuasion; [8] for
deliberation. However, very little work has been done on specifying and implementing
systems that combine two or more dialogue types. In [3] a formal framework was set out
for multi-agent dialogues over actions in which inquiry dialogues over beliefs are com-
bined with persuasion dialogues over actions. The dialogue system allows agents with
heterogeneous knowledge to each give input into a decision about how to act to achieve
a shared goal. The underlying representation of an argument is in terms of a formal
version of an argumentation scheme for practical reasoning, and critical questions that
agents can employ to challenge assertions made by their peers. Although this dialogue
system has been set out in a formal specification [3], it has not previously been validated
through an implementation. In this paper we present the details of an implementation
of this dialogue system for inquiry and persuasion over action. For a full implementa-
tion to be realised it was necessary to extend the formalism presented in [3] to enable a
richer set of arguments to be put forward, which we describe. The implemented system

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 67–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 L. Riley et al.

we present provides not only a proof-of-concept in terms of an application of a formal
specification, but we also note a number of issues that have been identified through this
the exercise. Furthermore, we consider this implementation to be a starting point for
further investigations into agent argumentation dialogues, in particular, with respect to
coalition formation.

The paper is structured as follows. In Section 2 we recapitulate from [3] the back-
ground material about the dialogue system we have implemented. In Section 3 we
present new material that extends the formalism of [3] by providing the full list of
critical questions associated with the argumentation scheme that is used in the dialogue
system. In Section 4 we describe the implementation and demonstrate it with an ex-
ample. In Section 5 we discuss issues that have arisen from the implementation, future
avenues this work will allow us to explore and we conclude the paper.

2 Background

Our dialogue system allows agents to inquire about beliefs (to determine the state of
the world) and collectively perform practical reasoning over an action to perform in a
given situation. To do this, agents in our system may have epistemic knowledge (be-
liefs), represented by Garcia and Simari’s Defeasible Logic Programming [6], as well
as normative knowledge about the effects of actions.

The following definitions provide the formal framework for modeling beliefs.

Definition 1: A defeasible rule λ is denoted α1 ∧ . . . ∧ αn → α0 where αi is a
literal for 0 ≤ i ≤ n. A defeasible fact is denoted α where α is a literal. A be-
lief is either a defeasible rule or a defeasible fact. We define the following functions
DefeasibleSection(λ) = {α1, . . . , αn}; DefeasibleProp(λ) = α0.

The definition of a defeasible derivation is adapted from [6] to work with our assump-
tion that all beliefs are defeasible.

Definition 2: Let Ψ be a set of beliefs and α a literal. A defeasible derivation of α
from Ψ , denoted Ψ |∼ α, is a finite sequence α1, α2, . . . , αn of literals s.t.: αn is α;
and each literal αm (1 ≤ m ≤ n) is in the sequence because either αm is a defeasible
fact in Ψ , or there exists a defeasible rule β1 ∧ . . . ∧ βj → αm in Ψ s.t. every literal βi

(1 ≤ i ≤ j) is an element αk preceding αm in the sequence (k < m).

A b-argument is a minimally consistent set of beliefs from which a claim can be defea-
sibly derived.

Definition 3: A b-argument is denoted B = 〈Φ, φ〉 where φ is a defeasible fact and Φ
is a set of beliefs s.t.: 1) Φ |∼ φ; 2) ∀φ, φ′ s.t. Φ |∼ φ and Φ |∼ φ′, it is not the case
that φ ∪ φ′ �⊥ (where � represents classical implication); and there is no subset of Φ
satisfying (1 and 2). Φ is called the support of the b-argument and φ is called the claim.

Each agent has a unique id x taken from a set I of agent identifiers. Each agent’s belief
base could be inconsistent.

Definition 4: A belief base of an agent x is a finite set of beliefs, denoted Σx.

For handling reasoning about the effects of actions, the following argumentation scheme
for practical reasoning is used, taken from [1]:

An Implemented Dialogue System for Inquiry and Persuasion 69

In the current circumstances R, we should perform action A, which will realise goal
G, which will result in the new circumstances S, which will promote some value V.

This scheme uses ‘values’ to describe a social interest an agent has, which will be pro-
moted by moving to a state in which goal G becomes true [2]. An agent may propose
an action including its justification by instantiating this scheme. Other agents can then
challenge instantiations by posing critical questions (CQ) associated with the scheme.
Seventeen critical questions are associated with the above scheme [1] which raise po-
tential issues with: the validity of the elements instantiated in the scheme; the connec-
tions between the elements of the scheme; the side effects of actions; and the possible
alternatives.

In [3] an agent’s knowledge about the effects of actions is represented as a Value-
based Alternating Transition System (VATS), a modified version of an Action-Based
Transition System (AATS) [13], which has been extended to enable the inclusion of
values.

Definition 5: The VATS formalism is as follows: A VATS for an agent x, denoted Sx,
is a 9-tuple 〈Qx, qx0 , Ac

x, Avx, ρx, τx, Φx, πx, δx〉 s.t.:

– Qx is a finite set of states;
– qx0 ∈ Qx is the designated initial state;
– Acx is a finite set of actions;
– Avx is a finite set of values;
– ρx : Acx �→ 2Q

x

is an action precondition function, which for each action a ∈ Acx

defines the set of states ρ(a) from which a may be executed;
– τx : Qx×Acx �→ Qx is a partial system transition function, which defines the state
τx(q, a) that would result by the performance of a from state q. As this function is
partial, not all actions are possible in all states;

– Φx is a finite set of atomic propositions;
– πx : Qx �→ 2Φ

x

is an interpretation function, which gives the set of primitive propo-
sitions satisfied in each state: if p ∈ πx(q), then this means that the propositional
variable p is satisfied (equivalently, true) in state q; and

– δx : Qx ×Qx ×Avx �→ {+,−,=} is a valuation function which defines the status
(promoted (+), demoted (−), or neutral (=)) of a value v ∈ Avx ascribed by the
agent to the transition between two states: δx(q, q′, v) labels the transition between
q and q′ with respect to the value v ∈ Avx.

Note, Qx = ∅ ↔ Acx = ∅ ↔ Avx = ∅ ↔ Φx = ∅.

With its VATS an agent can construct a-arguments for and against actions. Together
a-arguments and CQs are referred to as arguments over actions (AOAs).

Definition 6: An a-argument constructed by an agent x from its VATS Sx is a 6-tuple
A = 〈qx, a, qy, p, v, s〉 s.t.: qx = qx0 ; a ∈ Acx; τx(qx, a) = qy; p ∈ πx(qy); v ∈ Avx;
δx(qx, qy, v) = s where s ∈ {+,−,=}.
We define the following functions: Action(A) = a; Goal(A) = p; Value(A) = v;
EndState(A) = qy; Polarity(A) = s.
If Polarity(A) has the value +(−resp.), then we say A is an a-argument for (against
resp.) action a to achieve goal p. If Polarity(A) has the value “=”, then we say A is an
a-argument that is neutral with regards to action a.

70 L. Riley et al.

Our framework assumes a closed cooperative multi-agent system. Agents collaborate
to find the best action to achieve the dialogue initiator’s goal by entering a persuasion
over action (pAct) dialogue, which provides the agents with an opportunity to persuade
the others by putting forward AOAs for the known possible actions. However, before
the AOAs can be asserted, each agent x must inquire over its known propositions so
that its initial state can be found. Once this has occurred, the correct AOAs for the
current system state can be uttered. To find its initial state each agent x participating in
the dialogue first opens an inquiry (inq) sub-dialogue (i.e. a dialogue that is embedded
within a top-level dialogue)1 with the other agents in the system. The result is a truth
value for all of agents x’s propositions that have not already been discussed in another
inq sub-dialogue.

Our dialogue is defined as a dialogue game. Dialogue games typically consist of a set
of communicative acts (called moves) and a set of rules that firstly state which moves are
legal for any point of the dialogue (the protocol), secondly define the effect of making a
move and a lastly determine when a dialogue terminates [7,11]. Within our framework,
a dialogue denoted Dt

r, is a sequence of moves mr, . . . ,mt where r, . . . , t ∈ N repre-
sents the time-point at which each move was made, with r being the starting point of
the dialogue and t the end point. If r = 1, then this dialogue is considered a top level
dialogue whose type is pAct, which is opened by the dialogue initiator. If the top level
dialogue is closed then the dialogue game is over2. If r �= 1 then this is a sub dialogue
whose type is inq. The following functions operate over a dialogue3:

– Current(Dt
1) returns the most recently opened dialogue that has not been closed.

– Type(Dt
r) returns the type of the dialogue Dt

r (i.e. pAct or inq).
– Initiator(Dt

r) returns the agent who opened dialogue Dt
r.

– Participants(Dt
r) returns the set of agents in the dialogue Dt

r.
– Topic(Dt

r) returns the goal the agents are trying to achieve iff Type(Dt
r) = pAct .

– Topic(Dt
r) returns the set of propositions which the agents are jointly trying to find

the truth value of iff Type(Dt
r) = inq .

– Turn(Dt
r) returns the identifer of the agent whose turn it is.

The moves that the agents can perform are presented in Table 1. Agents take it in turns
to perform one move at a time. All agents’ assertions are stored in their commitment
stores (CS) that grow monotonically over time, as follows:

Definition 7: Commitment store update.
For a pAct dialogue with participants {x1, . . . , xn}, ∀x ∈ {x1, . . . , xn} and a commit-
ment store of agent x at time-point t denoted CSt

x,

CSt
x =

⎧⎨
⎩

∅ iff t = 0,
CSt−1

x ∪ Υ iff mt = 〈x, assert, Υ 〉,
CSt−1

x otherwise.

1 Further details of the inquiry sub-dialogues are discussed in Section 3.4.
2 For future work we will look into opening more than one pAct dialogue before the game is

over.
3 Further dialogue details are given in [3].

An Implemented Dialogue System for Inquiry and Persuasion 71

Table 1. The format for moves used in this dialogue game, where x represents the agent making
the move and either θ = pAct and γ is a proposition (representing the dialogue goal), or θ =
inq and γ is a set of propositions (that the agent is inquiring over); Λ is a list of agents (Λ =
[x1, . . . , xn], {x1, . . . , nn} ⊆ I); Υ is either a set of a-arguments and critical questions (if
θ = pAct) or Υ is a set of b-arguments and beliefs (if θ = inq); and x is an agent (x ∈ I)

Move Format
open 〈x, open, dialogue(θ, γ, Λ)〉
assert 〈x, assert, Υ 〉
close 〈x, close, dialogue(θ, γ, Λ)〉

Definition 8: The union of all the commitment stores is defined as

CSs =
⋃

∀xi∈{x1,...,xn} CSxi .

Dialogues commence when an event triggers one agent to open a pAct dialogue through
its pAct strategy (see Section 3.5) to identify the best action to achieve a given propo-
sition p, where p = Topic(Dt

1). The other agents that have been included in the open
dialogue move then initiate their individual pAct strategies, which are guaranteed to find
all the arguments related to the dialogue topic, via the use of the pAct protocol (Section
3.3) and the inq protocol (Section 3.4), before terminating. Both dialogue types will not
complete until all agents have made a close move one after another without a different
move separating them, as this ensures that the dialogue does not terminate until none of
the agents have anything more they want to say.

Once the pAct dialogue has terminated, the system evaluates the arguments to deter-
mine the maximally consistent acceptable set. This is achieved within our framework
using a Value-Based Argumentation Framework (VAF) [2], A VAF is an extension of
the argumentation framework (AF) of Dung [5]. In an AF an argument is admissible
with respect to a set of arguments S if all of its attackers are attacked by some argument
in S, and no argument in S attacks an argument in S. In a VAF, an argument succeeds
in defeating an argument it attacks only if its value is ranked as high, or higher, than
the value of the argument attacked; a particular ordering of the values is characterised
as an audience. Arguments in a VAF are admissible with respect to an audience A and
a set of arguments S if they are admissible with respect to S in the AF which results
from removing all the attacks that are unsuccessful given the audience A. A maximal
admissible set of a VAF is known as a preferred extension.

The output of evaluating a VAF is a recommended action (or non-action) that should
be performed to achieve the agents’ shared goal. An action can only be recommended
by the system if it is present in an AOA that is present in the preferred extension and
the AOA states that the action promotes a value. In the event that there is more than one
acceptable action the choice is offered to the dialogue initiator.

3 Extending the Formalisation of Critical Questions

The dialogue system set out in [3] handled only three of the possible seventeen criti-
cal questions associated with the practical reasoning argumentation scheme. Here we

72 L. Riley et al.

extend the dialogue system by specifying all the necessary critical questions and show
their use within the dialogue system. The CQs formalised in Section 3.2 that follow
Definition 2 are a-arguments also. All CQs can be asserted by any agent to challenge
an assertion of any other agent (including itself). If all agents follow the pAct protocol
then AOAs can only be asserted if they have not previously been asserted.

3.1 The State Comparison Definition

One particular issue that arose when implementing the dialogue system was the need for
a mechanism to clarify how agents who may be using different propositions to represent
the state of the world can accurately compare states (since agents’ VATS reflect only an
individual’s representation of the world). As such, we define that two agents, m and n
can compare their respective states qm ≈ qn iff π(qm) ∩ Φn = π(qn) ∩ Φm, otherwise
qm �≈ qn. The intersection is used to eliminate propositions that reside in only one of
the agent’s beliefs.

When the above approximation holds, the two states qn and qm cannot reasonably
be said to be different, as both states will agree for each shared proposition. However,
these two states may not be identical as the same conclusion can be reached whatever
the truth assignments of the distinct propositions. If the comparison does not hold then
the states are different due to both agents holding inconsistent truth assignments for
their shared propositions.

This comparison requires either; each agent to have an internal model of the other
agent’s beliefs, or an instantiated state in an assertion should make explicit all the propo-
sitions that the agent holds to be true or false. Both will allow an agent to access the
beliefs of another. This paper chooses the latter option due to the ease of implemen-
tation of such a representation. There are no privacy issues for this framework as it
is designed for a closed and cooperative system. The following shows how the state
comparison definition works, when:

Φm = {p, q, r, t}, Φn = {p, r, v}, qm = [p,¬q,¬r, t], qn = [p,¬r, v]
The state comparison definition:

π(qm) ∩ Φn = π(qn) ∩ Φm

The substitution:
{p, t} ∩ {p, r, v} = {p, v} ∩ {p, q, r, t}

{p} = {p}
Conclusion : No evidence to suggest the states are different.

3.2 The Additional Critical Questions

We now define arguments that instantiate the remaining critical questions given in [1]
that are applicable to our framework (those that are not applicable are discussed subse-
quent to the presentation of the definitions). Within the formal definitions given below
we also give the natural language representation of the questions. Accompanying the
definitions are figures that illustrate a situation where each CQ could be posed. All il-
lustrations usually assume (unless otherwise stated) that both agents have in the initial
state ¬p (via the interpretation function), the pAct dialogue topic is to achieve p and
agent 1 takes the first turn.

An Implemented Dialogue System for Inquiry and Persuasion 73

Definition 9: A cq2-argument. Answers the question ‘Assuming the circumstances,
does the action have the stated consequences?’. It is constructed from a VATS Sx and
denoted 〈qx, a, qy〉 s.t. qx = qx0 ; a ∈ Acx, τx(qx, a) = qy . It challenges an AOA
〈q′x, a′, q′y, p′, v′, s′〉 or an AOA 〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x, a = a′, qy �≈ q′y .

Fig. 1. Illustration of a cq2-argument (Definition 9) and a cq15-argument (Definition 21). Agent
2 will assert a cq-argument when agent 1 asserts an AOA to achieve p. The cq-argument that
agent 2 chooses depends on which formal conditions are met. No value has been included for this
example as values are not part of the definition of a cq2-argument or a cq15-arguments.

Definition 10: A cq3-argument. Answers the question ‘Assuming the circumstances,
and the action has the stated consequences, will the action bring about the desired
goal?’. It is constructed from a VATS Sx and denoted 〈qx, a, qy,¬p〉 s.t. qx = qx0 ;
a ∈ Acx; τx(qx, a) = qy; p /∈ (qy). It challenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 or an
AOA 〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x, a = a′, qy ≈ q′y .

Fig. 2. Illustration of a cq3-argument (Definition 10). Agent 2 will assert a cq3-argument when
agent 1 asserts an AOA to achieve p. The initial state of Agent 1 is [¬p,¬q] and the initial state
of Agent 2 is [¬q].

Definition 11: A cq4-argument. Answers the question ‘Does the goal realise the value
stated?’. It is constructed from a VATS Sx and denoted 〈qx, a, qy, p, v, s〉 s.t. qx = qx0 ;
a ∈ Acx; τx(qx, a) = qy; p ∈ π(qy); v ∈ Avx; δx(qx, qy, v) �= +; s ∈ {=,−}. It
challenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 iff qx ≈ q′x, p = p′, v = v′, s′ = +.

Fig. 3. Illustration of a cq4-argument (Definition 11). Agent 2 will assert a cq4-argument when
agent 1 asserts an AOA to achieve p.

74 L. Riley et al.

Definition 12: A cq5-argument. Answers the question ‘Are there alternative ways of re-
alising the same consequences?’. It is constructed from a VATSSxand denoted 〈qx, a, qy〉
s.t. qx = qx0 ; a ∈ Acx; τx(qx, a) = qy . It challenges an AOA 〈q′x, a′, q′y, v′, s′〉 or an
AOA 〈q′x, a′, q′y, p′, v′, s′〉 iff qx ≈ q′x, a �= a′ , qy ≈ q′y .

Fig. 4. Illustration of a cq5-argument (Definition 12). Agent 2 will assert a cq5-argument when
agent 1 asserts an AOA to achieve p. No value has been included for this example as values are
not part of the definition of a cq5-argument.

Definition 13: A cq6-argument. Answers the question ‘Are there alternative ways of
realising the same goal?’. It is constructed from a VATS Sx and denoted 〈qx, a, qy, p, v,+〉
s.t. qx = qx0 ; a ∈ Acx; τx(qx, a) = qy; p ∈ π(qy); v ∈ Avx; δ(qx, qy, v) = +. It chal-
lenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 iff qx ≈ q′x, a �= a′, p = p′, s′ = +.

Fig. 5. Illustration of cq6-argument (Definition 13), a cq7 argument (Definition 14), a cq10 ar-
gument (Definition 17) and a cq-11 argument (Definition 18). Agent 2 will assert a cq-argument
when agent 1 asserts an AOA to achieve p. The cq-argument that agent 2 chooses depends on
which formal conditions are met. The main difference between CQ6 and CQ7 is whether the
agent knows the new action achieves the goal (CQ6) or not (CQ7).

Definition 14: A cq7-argument. Answers the question ‘Are there alternative ways of
promoting the same value?’. It is constructed from a VATSSxand denoted 〈qx, a, qy, v,+〉
s.t. qx = qx0 ; a ∈ Acx; τx(qx, a) = qy; v ∈ Avx; δ(qx, qy, v) = +. It challenges an
AOA 〈q′x, a′, q′y, p′, v′, s′〉 or an AOA 〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x, a �= a′, v = v′,
s′ = + .

See Fig. 5 for an illustration of example VATSs that could produce a cq7-argument.

Definition 15: A cq8-argument. Answers the question ‘Does doing the action have a
side effect which demotes the value?’. It is constructed from a VATS Sx and denoted
〈qx, a, qy, v,−〉 s.t. qx = qx0 ; a ∈ Acx; τx(qx, a) = qy; v ∈ Avx; δx(qx, qy, v) = −.
It challenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 or an AOA 〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x,
a = a′, v = v′, s′ = + .

An Implemented Dialogue System for Inquiry and Persuasion 75

Fig. 6. Illustration of a cq8-argument (Definition 15) and a cq9-argument (Definition 16). Agent
2 will assert a cq-argument when agent 1 asserts an AOA to achieve p. The initial state of agent
2 is [¬p,¬q] and the side effect is q. The cq-argument that agent 2 chooses depends on which
formal conditions are met.

Definition 16: A cq9-argument. Answers the question ‘Does doing the action have a side
effect which demotes some other value?’. It is constructed from a VATS Sx and denoted
〈qx, a, qy, v,−〉 s.t.: qx = qx0 ; a ∈ Acx; τx(qx, a) = qy; v ∈ Avx; δx(qx, qy, v) = −. It
challenges an AOA 〈q′x, a′, q′y, p′, v′,+〉 or an AOA 〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x, a = a′,
v �= v′, s′ = +.

See Fig. 6 for an illustration of example VATSs that could produce a cq9-argument.

Definition 17: A cq10-argument Answers the question ‘Does doing the action have a
side effect which promotes some other value?’. It is constructed from a VATS Sx and de-
noted 〈qx, a, qy, v,+〉 s.t.: qx = qx0 ; a ∈ Acx; τx(qx, a) = qy; v ∈ Avx; δx(qx, qy, v) =
+. It challenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 or an AOA 〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x,
a = a′, v �= v′, s′ = +.

See Fig. 5 for an illustration of example VATSs that could produce a cq10-argument.

Definition 18: A cq11-argument Answers the question ‘Does doing the action pre-
clude some other action which would promote some other value?’. It is constructed
from a VATS Sx and denoted 〈qx, a, qy, v,+〉 s.t. qx = qx0 ; a ∈ Acx; τx(qx, a) = qy;
v ∈ Avx; δ(qx, qy, v) = + . It challenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 or an AOA
〈q′x, a′, q′y, v′, s′〉 iff qx ≈ q′x, a �= a′, v �= v′, s′ = +.

See Fig. 5 for an illustration of example VATS that could produce a cq11-argument.

Definition 19: A cq13-argument. Answers the question ‘Is the action possible?’. It is
constructed from a VATS Sx and denoted 〈a〉 s.t. a /∈ Acx. It challenges any AOA that
includes q′x, a

′, q′y in its definition, iff a = a′.

Fig. 7. Illustration of a cq13-argument (Definition 19). Agent 2 will assert a cq13-argument when
agent 1 asserts an AOA to achieve p. No values are shown as no values occur in the definition of
a cq13-argument.

76 L. Riley et al.

Definition 20: A cq14-argument. Answers the question ‘Are the consequences as de-
scribed possible?’. It is constructed from a VATS Sx and denoted 〈qx, a〉 s.t. qx = qx0 ;
a ∈ Acx; τx(qx, a) /∈ Qx. It challenges any AOA that includes q′x, a

′, q′y in its defini-
tion, iff qx ≈ q′x, a = a′.

Fig. 8. Illustration of a cq14-argument (Definition 21). Agent 2 will assert a cq14-argument when
agent 1 asserts an AOA to achieve p. No values are shown as no values occur in the definition of
a cq14-argument.

Definition 21: A cq15-argument. Answers the question ‘Can the desired goal be re-
alised?’. It is constructed from a VATS Sx and denoted 〈¬p〉 s.t. p ∈ Φx. It challenges
an AOA 〈q′x, a′, q′y, p′, v′, s′〉 iff p = p′ and (∀q ∈ Qx)(p /∈ π(q)) .

See Fig. 1 for an illustration of example VATS that could produce a cq15-argument.

Definition 22: A cq16-argument. Answers the question ‘Is the value indeed a legiti-
mate value?’. It is constructed from a VATS Sx and denoted 〈v,−〉 s.t. v /∈ Avx. It
challenges an AOA 〈q′x, a′, q′y, p′, v′, s′〉 or an AOA 〈q′x, a′, q′y, v′, s′〉 iff v = v′.

Fig. 9. Illustration of a cq16-Argument (Definition 22). Agent 2 will assert a cq16-argument when
agent 1 asserts an AOA to achieve p. No actions are shown as an action does not occur in the
definition of a cq16-argument.

Missing from the above list are CQ1 (are the believed circumstances true?), CQ12
(are the circumstances as described possible?) and CQ17 (is the other agent guaranteed
to execute its part of the desired joint action?); their omission is explained here.

We assume that cooperative agents all accept the outcome of the inquiry dialogues
and hence the representation issues concerning conflicting views of the initial state (as
raised by CQ1 and CQ12) will be resolved. Note that under this assumption the outcome
of the inquiry will be accepted by all agents even though it may be possible for an agent
to construct a relevant counter argument.

The actual reasons for agents accepting one b-argument over another should be ap-
plication dependant. For example in a safety critical system, the presence of one b-
argument for a safety critical proposition maybe enough to convince the agents to accept

An Implemented Dialogue System for Inquiry and Persuasion 77

that proposition over its negation. In other applications a simple majority vote could be
sufficient. Lastly CQ17 is omitted as the system is not currently concerned with joint
actions, though the use of an AATS lends itself to this, as we will explore in future
work.

3.3 Extending the pAct Protocol

The protocol this implementation uses, named the pAct protocol extends the one pre-
sented in [3] by including the extra critical questions so that the agents can use them in
a dialogue move. It returns the set of possible moves that are legal for each agent in the
dialogue when the current dialogue is of the type pAct.

The pAct protocol takes the top level dialogue from the set of all dialogues D, the
identifier of the agent from the set of all identifiers I and returns the set of legal moves
which is an element of the set of all subsets of the set of all moves M. These definitions
are the same for the inquiry protocol. Possible moves for an agent in the pAct dialogue
are: an assertion of an a-argument to achieve the dialogue goal; an assertion of a cq-
argument; a move to close the pAct dialogue or a move to open or close a nested inq
dialogue.

3.4 Defining the Inquiry Protocol

An Inquiry Protocol needs to be formally defined as the details were left out of [3]. This
protocol returns the set of possible moves that are legal for each agent in the dialogue
when the current dialogue is of the type Inq.

This protocol will not allow any proposition to become a claim of a b-argument
without supporting evidence. Supporting evidence takes the form of defeasible facts
or a fully supported defeasible rule. A defeasible rule λ is fully supported when there
is a defeasible derivation for the head of the rule that includes the rule and can be
constructed from the union of all the commitment stores.

The protocol works by firstly allowing each agent to assert all its relevant beliefs that
are not already present in the commitment store (Ξa). A belief can be either a defeasible
rule or a defeasible fact. A defeasible fact is relevant if it is an element of the dialogue
topic (Ξa (2)(ii,a)) or an element of a defeasible rule in the combined commitment store
of all the agents (Ξa (2)(ii,b)). A defeasible rule is relevant if its consequent returns a
defeasible fact that is an element of the dialogue topic (Ξa (3)(ii,a)) or an element of
another defeasible rule in the CSs (Ξa(3)(ii,b)). Secondly in Ξb the agent checks to
see if any of its asserted beliefs are now fully supported (Φ ⊆ CSs). If they are, these
beliefs get asserted as b-arguments in the form B = 〈Φ, φ〉 if they have not been already
(B /∈ CSs). Each agent only asserts a b-argument with claim φ if it asserted the belief
that included φ (φ ∈ CSt

x). This is to eliminate multiple assertions of b-arguments.
Lastly if the agents cannot assert anything new then the only move that will be returned
is the ‘close dialogue’ move.

Definition 23: The Inquiry protocol is a function Ξ : D × I �→ ℘(M). If Dt
1 is

a top-level dialogue s.t. Current(Dt
1) = Dt

r, Turn(Dt
r) = x, Participants(Dt

r) =
Λ = [x1, . . . , xn], CSs =

⋃
∀xi∈{x1,...,xn} CSt

xi , Type(D
t
r) = Inq, Topic(Dt

r) =

ΦInitiator(Dt
r) and 1 ≤ t, then Ξ(Dt

1, x) is

78 L. Riley et al.

Ξa(D
t
1, x) ∪ Ξb(D

t
1, x) ∪ {〈x, close, dialogue(Inq, ΦInitiator(Dt

r), Λ)〉}
where

Ξa(D
t
1, x) = {〈x, assert, Φ〉|

(1) Φ �= ∅ where Φ is a set of beliefs, and
(2) ∀φ ∈ Φ where φ is a defeasible fact:

(i) φ �∈ CSs, φ ∈ Σx , and
either (ii,a) φ ∈ Topic(Dt

r) ,
or (ii,b) ∃λ ∈ CSs s.t. φ ∈ DefeasibleSection(λ)

(3) ∀λ ∈ Φ where λ is a defeasible rule:
(i) λ �∈ CSs, λ ∈ Σx , and
either (ii,a) DefeasibleProp(λ) ∈ Topic(Dt

r) ,
or (ii,b) ∃λ′ ∈ CSs s.t. DefeasibleProp(λ) ∈ DefeasibleSection(λ′)

Ξb(D
t
1, x) = {〈x, assert, Υ 〉|

(1) Υ �= ∅, Υ is a set of b arguments , and
(2) ∀B ∈ Υ : B = 〈Φ, φ〉 is a b-argument, Φ ⊆ CSs, φ ∈ CSt

x and B /∈ CSs

3.5 pAct Strategy

Agents of this system use the pAct strategy. This strategy either opens a pAct dialogue
if the agent is the dialogue initiator or selects one move out of the set of legal moves
returned from the correct protocol (the pAct protocol if Type(Current(Dt

1)) == pAct,
else the inquiry protocol). The strategy is honest as agents assert only arguments that
can be constructed from their knowledge bases.

When using the pAct strategy, agents prefer a move to open an inquiry dialogue over
assert moves over close moves. This means that once the agents start asserting AOAs,
they already know the truth value of all their propositions, due to performing an open
inq dialogue move first and so all the AOAs presented in the subsequent pAct dialogue
relate to the actual world state. Also, as the close move is the least preferred no agent
will attempt to close the dialogue until it has run out of other moves and so the dialogue
is exhaustive.

4 Implementation

The implementation of the framework detailed in this paper uses the Java Agent DEvel-
opment Framework (JADE)4 to facilitate the storage, modelling and use of the agents’
epistemic and normative knowledge at runtime. The user can inspect: the initial Value-
based Argumentation Framework (VAF) that is used to evaluate the arguments produced
by the agents following the protocol; the preferred extension of the VAF; and the final
recommended action. Other elements that can be inspected include: the VATS of all the
agents in the dialogue; further details on both the b-arguments, a-arguments and critical
questions; and lastly the ability to view the complete resulting dialogue. In addition, the
user can modify the value order after the dialogue has terminated, which may result in
different recommended actions being generated.

4 http://jade.tilab.com/

An Implemented Dialogue System for Inquiry and Persuasion 79

Fig. 10. The VATS for SU . consensus represents if the majority of the student union members
are happy with the current fee level and edOnBudget represents if the educational system is
currently on budget.

Agents are modelled within a closed environment, and communicate by broadcasting
messages to other agents within the dialogue via a shared blackboard. The use of a
blackboard to record communicative acts eliminates the need for agents to individually
retain the dialogue history. Agents take turns to update the blackboard, to avoid the need
for complex coordination strategies.

All attacks between arguments in the VAF are computed after the dialogue has termi-
nated. As we assume a non-strategic approach, this allows agents to individually assert
all relevant arguments prior to the VAF determining the arguments acceptability status.
In future work we intend to investigate strategies.

Several issues were identified whilst developing a model to select a final recom-
mended action from the asserted AOAs. Since several critical questions concern prob-
lem formulation issues [1], not all arguments have an associated value (e.g. those de-
rived from CQ13, CQ15, CQ16); instead these arguments have been implemented to
automatically defeat any other argument that they attack, as they are assigned the value
‘truth’ which always ranks higher than any other value, according to [2].

Finally, scenarios can arise whereby b-arguments may claim logical contradictions
(e.g. p and ¬p). The current implementation resolves this issue by assuming that the
assertion holds (i.e. p) and the contradiction is ignored (i.e. ¬p). This conflict strategy
was selected because of time constraints but a conflict strategy should be chosen that
suits the particular application the dialogue system is deployed in.

4.1 Implementation Example

Our system has so far been evaluated through the use of examples scenarios. One such
scenario will now be detailed to show how our system works at runtime.

Consider three agents engaged in a dialogue about the recent UK tuition fee debate.
These agents represent the student union SU (Figure 10), the University College Union
UCU (Figure 11) and the governmentGOV (Figure 12). There are three values present
in this simplified version of the debate: E representing the equality of future students
when compared to previous ones; JS representing job security for public sector edu-
cational workers; and NES representing national economic security. Along with these
values, there are two possible actions: raiseTuitionFeesUpFront representing raising
the tuition fees for all new students; and graduateTax representing a tax for all workers
who hold a degree.

As shown by their respective VATS each agent has different views on this scenario.
The SU agent thinks raising tuition fees up front would unfairly affect future students

80 L. Riley et al.

Fig. 11. The VATS for UCU . cutbacks represents if budget cutbacks are needed in the majority
of universities. edOnBudget remains the same as in Fig. 11.

Fig. 12. The VATS for GOV . debate represents that there is currently a parliamentary review on
how the educational budget can be improved. edOnBudget remains the same as in Fig. 11.

and thinks that a graduate tax would be a more appropriate alternative. SU ’s belief base
is as follows:

ΣSU = {inFavourFees(X) > againstFees(Y) → consensus,
inFavourFees(80%), againstFees(20%)}

The UCU agent does not think that implementing a graduate tax is a workable alterna-
tive but on the other hand, it believes that no action will balance the educational budget.
UCU ’s belief base is as follows:

ΣUCU = {¬edOnBudget → cutbacks}

Lastly the GOV agent does not view a graduate tax as a possible action but realises that
every value will be affected if it decides to raise the tuition fees. GOV ’s belief base is
as follows:

ΣGOV = {budgetReview ∧ educationalReview → debate,
budgetReview, educationalReview,
expenditure(X)≤ estimatedReturn(Y) + acceptableLosses(Z)→ edOnBudget,
expenditure(X)> estimatedReturn(Y) + acceptableLosses(Z)→¬ edOnBudget,

expenditure(13.1), estimatedReturn(7), acceptableLosses(3)}

The GOV agent tries to resolve the issue of what action (or non-action) should be
recommended by starting a dialogue with the goal being to achieve edOnBudget i.e.
keeping education spending on budget. The value order that is used in this example is
NES � JS � E. The dialogue order is SU followed by UCU and lastly GOV . For this
example CQ16 is not asserted since it is assumed that all the values are recognised by
all the agents.

An Implemented Dialogue System for Inquiry and Persuasion 81

Firstly the agents all open inquiry dialogues to find their correct state. Agent SU
opens an inquiry dialogue to find the truth values of consensus and edOnBudget.

The beliefs and b-arguments asserted are:

B1: (a defeasible rule asserted by GOV) expenditure(X) ≤ estimatedReturn(Y)
+ acceptableLosses(Z)→ edOnBudget.
B2: (a defeasible rule asserted by SU) inFavourFees(X) > againstFees(Y) →
consensus.
B3: (a defeasible fact asserted by GOV) expenditure(13.1).
B4: (a defeasible fact asserted by GOV) estimatedReturn(7).
B5: (a defeasible fact asserted by GOV) acceptableLosses(3).
B6: (a defeasible fact asserted by SU) inFavourFees(80%).
B7: (a defeasible fact asserted by SU) againstFees(20%).
B8: (a b-argument asserted by SU) 〈{againstFees(20%), inFavourFees(80%),
inFavourFees(X) > againstFees(Y) → consensus}, consensus 〉.

With no other b-arguments possible, the conclusion of this inquiry dialogue is that
only consensus is true in the current state. As no b-arguments could be generated
for edOnBudget and our implementation operates under the closed world assumption
then edOnBudget is presumed to be false.

For the inquiry dialogues all shared propositions are only discussed once because the
agents’ protocols are exhaustive and so each shared proposition would always find the
same truth value in each discussion.

The beliefs and b-arguments asserted in UCU ’s inquiry dialogue, which has been
opened to find/confirm the truth values of cutbacks and edOnBudget are:

B9: (a defeasible rule asserted by UCU) ¬edOnBudget → cutbacks.
B10: (a defeasible rule asserted by GOV) expenditure(X) < estimatedReturn(Y)
+ acceptableLosses(Z)→ ¬ edOnBudget.
B11: (a b-argument asserted by GOV) 〈{acceptableLosses(3), estimatedReturn(7),
expenditure(13.1), expenditure(X) > estimatedReturn(Y) + acceptable
Losses(Z)→ ¬edOnBudget}, ¬edOnBudget 〉.
B12: (a b-argument asserted by UCU) 〈{acceptableLosses(3), estimatedReturn(7),
expenditure(13.1), expenditure(X) > estimatedReturn(Y) + acceptable
Losses(Z)→ ¬edOnBudget, ¬edOnBudget → cutbacks}, cutbacks〉.

The beliefs and b-arguments asserted in GOV ’s inquiry dialogue, which has been
opened to find/confirm the truth values of debate and edOnBudget are:

B13: (a defeasible rule asserted by GOV) budgetReview ∧ educationalReview →
debate.
B14: (a defeasible fact asserted by GOV) budgetReview.
B15: (a defeasible fact asserted by GOV) educationalReview.
B16: (a b-argument asserted by GOV) 〈{educationalReview, budgetReview,
budgetReview ∧ educationalReview→ debate}, debate 〉.

82 L. Riley et al.

Fig. 13. VAF for the example dialogue. The nodes and edges represent the AOAs and attacks
repectively. Each edge is labelled with its attack type.

After all the inquiry dialogues are complete, the agents will start to produce arguments
over what actions to perform using the pAct dialogue. The AOAs that are constructed
in this example are 5:

A1: (a-argument asserted by SU) As we are in state [consensus,¬edOnBudget],
we should implement a graduateTax, which will achieve edOnBudget and promote
equality.
A2: (cq11-argument asserted by UCU) As we are in state [cutbacks,¬edOnBudget],
we should raiseTuitionFeesUpFront which will promote job security.
A3: (cq13-argument asserted by UCU) A graduateTax is not a possible action.
A4: (cq15-argument asserted by UCU) Achieving edOnBudget is impossible.
A5: (cq5-argument asserted by GOV) As we are in state [debate,¬edOnBudget],
raiseTuitionFeesUpFront, would achieve the same state as A1.
A6: (cq2-argument asserted by GOV) As we are in state [debate,¬edOnBudget],
raiseTuitionFeesUpFront, would achieve different state to A2.
A7: (cq9-argument asserted by GOV) As we are in state [debate,¬edOnBudget],
raiseTuitionFeesUpFront, would demote equality.
A8: (cq-6 argument asserted by GOV) As we are in state [debate,¬edOnBudget],
we should raiseTuitionFeesUpFront which will achieve edOnBudget and promote
national economic security.

5 The formal characterisation of the dialogue is ommitted solely for reasons of space. The se-
mantic meaning of the arguments can be found in Section 3.2 and Definition 6. The full list of
attacks is visualised in Fig. 14.

An Implemented Dialogue System for Inquiry and Persuasion 83

A9: (cq10-argument asserted by gov) As we are in state [debate,¬edOnBudget],
raiseTuitionFeesUpFront will promote national economic security.

Now after argument A9 the dialogue closes as the only further arguments that can be
asserted would be repetitions of information already present in the CS. As discussed
earlier, the full set of arguments put forward during the dialogue can now be organised
into a VAF that shows the attack relations between them, as can be seen in Figure 13.

Evaluating the VAF to determine which arguments are defeated yields the preferred
extension and the final recommended action as can be seen in Figure 14.

Fig. 14. The attack of A7 on A9 has not succeeded as A9 promotes a higher value than A7
according to the audience ranking of NES � JS � E. A9 is then recommended as it is the only
argument that promotes a value.

5 Discussion and Concluding Remarks

In this paper we have taken a formal specification of a dialogue system for inquiry
and persuasion over action, extended it, and subsequently implemented it to produce a
working agent dialogue system. Our contribution is in terms of the extended formalism
and the implemented system itself, with both providing grounds for future work.

The inclusion of additional critical questions enables agents to better identify
ambiguities within their shared models, and thus construct additional arguments when
looking to find some consensus. However, the existence of these additional critical ques-
tions could also undermine the ability of agents forming some consensus. This is in
part due to the fact that in some contexts, all existing arguments could be defeated by a
carefully selected question which, when posed, may result in no recommended action.
Thus, it may be possible that the efforts of other agents to arrive at consensus may be
undermined by an agent that possesses flawed normative and/or epistemic knowledge.
Implementing the stages of practical reasoning from [1] may eliminate this problem,
as the first stage (problem formulation) would resolve representation issues, the second

84 L. Riley et al.

stage (epistemic reasoning) would be represented by the inquiry dialogue and the third
stage (action selection) would be represented by the persuasion over action dialogue.

An interesting future extension to this work would be to see how this system could
be modified to allow for each agent to have its own preference order, instead of the
currently implemented single global preference order. This modification could lead to
a multi-agent system with self-interested agents, which could be further explored by
introducing aspects of coalition formation.

Acknowledgements. Luke Riley is grateful for support from the EPSRC. Katie Atkin-
son was partially supported by the FP7-ICT-2009-4 Programme, IMPACT Project, Grant
Agreement No. 247228. Elizabeth Black is funded by the European Union Seventh Frame-
work Programme (FP7/2007-2011), grant agreement 253911. The views expressed are
those of the authors and are not necessarily representative of their project or funding
body. We also thank the anonymous referees for their constructive comments.

References

1. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumentation us-
ing action based alternating transition systems. Artificial Intelligence 171(10-15), 855–874
(2007)

2. Bench-Capon, T.J.M.: Persuasion in practical argument using value based argumentation
frameworks. J. of Logic and Computation 13(3), 429–448 (2003)

3. Black, E., Atkinson, K.: Dialogues that account for different perspectives in collaborative ar-
gumentation. In: Proceedings of the Eighth International Conference on Autonomous Agents
and Multi-Agent Systems, pp. 867–874 (2009)

4. Black, E., Hunter, A.: An inquiry dialogue system. JAAMAS 19(2), 173–209 (2009)
5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-

soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)
6. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming an argumentative approach. The-

ory and Practice of Logic Prog. 4(1-2), 95–138 (2004)
7. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dialogues be-

tween autonomous agents. J. of Logic, Language and Information 11(3), 315–334 (2002)
8. Hitchcock, D., McBurney, P., Parsons, S.: The eightfold way of deliberation dialogue. Inter-

national Journal of Intelligent Systems 22(1), 95–132 (2007)
9. Prakken, H.: Formal systems for persuasion dialogue. KER 21(2), 163–188 (2006)

10. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. KER 18(4), 343–375 (2003)

11. Reed, C.: Dialogue frames in agent communications. In: 3rd Int. Conf. on Multi-Agent Sys-
tems, pp. 246–253 (1998)

12. Walton, D., Krabbe, E.: Commitment in dialogue: Basic concepts of interpersonal reasoning.
State University of New York Press, Albany (1995)

13. Wooldridge, M., van der Hoek, W.: On obligations and normative ability: Towards a logical
analysis of the social contract. J. of Applied Logic 3, 396–420 (2005)

An Argumentation Framework for Qualitative
Multi-criteria Preferences

Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker

Man Machine Interaction Group, Delft University of Technology, The Netherlands
{Wietske.Visser,K.V.Hindriks,C.M.Jonker}@tudelft.nl

Abstract. Preferences between different alternatives (products, decisions, agree-
ments etc.) are often based on multiple criteria. Qualitative Preference Systems
(QPS) is a formal framework for the representation of qualitative multi-criteria
preferences in which a criterion’s preference is defined based on the values of
attributes or by combining multiple subcriteria in a cardinality-based or lexico-
graphic way. In this paper we present a language and reasoning mechanism to
represent and reason about such qualitative multi-criteria preferences. We take an
argumentation-based approach and show that the presented argumentation frame-
work correctly models a QPS. Then we extend this argumentation framework in
such a way that it can derive missing information from background knowledge,
which makes it more flexible in case of incomplete specifications.

1 Introduction

In the context of practical reasoning, such as decision making and negotiation, prefer-
ences between the available alternatives play a key role. A system supporting a human
user in such tasks should therefore have a representation of that user’s preferences. In
this paper we present an argumentation framework to represent and reason with quali-
tative, multi-criteria preferences. Preferences are modelled in a qualitative way because
it is hard for humans to give exact numeric utilities. We use multiple criteria because
it is a very natural thing to compare two alternatives on several criteria and base an
overall preference on those comparisons. Criteria thus represent the underlying inter-
ests, or reasons for preferences. Moreover, the outcome space may be so large that it is
infeasible to specify preference between outcomes directly.

We briefly present a framework for representing qualitative multi-criteria prefer-
ences, called Qualitative Preference Systems. In this framework, preferences between
outcomes are determined by combining multiple criteria based on cardinality and lexi-
cographic ordering. Ultimately, the criteria are based on preferences between the values
of relevant variables. QPS is a framework that provides a formal definition of qualitative
multi-criteria preferences. The aim of this paper is to provide a language and reasoning
mechanism to reason about such qualitative preference systems. In addition, we pro-
vide the means of deriving information by default from background knowledge, which
is useful when e.g. the outcomes are incompletely specified.

The approach we take is argumentation-based. Argumentation is a kind of defeasible
reasoning, which allows for reasoning with incomplete information in a common-sense
way, about things that are normally the case. Moreover, argumentation is a natural way

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 85–98, 2012.
© Springer-Verlag Berlin Heidelberg 2012

86 W. Visser, K.V. Hindriks, and C.M. Jonker

of reasoning for humans. As such, it is suitable for explaining the reasoning of a sys-
tem to a human user. Finally, argumentation can be used in a persuasion dialogue, for
example when multiple agents with different preferences have to agree on a common
action.

Note that the argumentation framework presented here is not a preference-based ar-
gumentation framework (PAF) ins the sense of [1]. In a PAF, preference between argu-
ments are used to determine the success of an attack between them. A similar approach,
that considers preferences between rules in the logical language, has been taken in the
specific context of decision making [2]. In contrast, the framework presented here aims
to reason about preferences between objects outside of the argumentation framework
(‘outcomes’) as opposed to preferences between arguments or logical rules.

The outline of the paper is as follows. In Section 2, we briefly recall qualitative
preference systems. Section 3 presents the argumentation framework that provides the
means to reason about a QPS. In Section 4 we extend the argumentation framework
with background knowledge and the means to derive information by default. Finally,
Section 5 concludes the paper.

2 Qualitative Preference Systems

In this section we briefly present qualitative preference systems. The main aim of a
QPS is to determine preferences between outcomes (or alternatives). An outcome is
represented as an assignment of values to a set of relevant variables. Every variable has
its own domain of possible values. Constraints on the assignments of values to variables
are expressed in a knowledge base. Outcomes are defined as variable assignments that
respect the constraints in the knowledge base.

The preferences between outcomes are based on multiple criteria. Every criterion
can be seen as a reason for preference, or as a preference from one particular perspec-
tive. A distinction is made between simple and compound criteria. Simple criteria are
based on a single variable. Multiple (simple) criteria can be combined in order to deter-
mine an overall preference. In a QPS, this is done with compound criteria. There are two
kinds of compound criteria: cardinality criteria and lexicographic criteria. The subcri-
teria of a cardinality criterion all have equal importance, and preference is determined
by counting the number of subcriteria that support it. In a lexicographic criterion, the
subcriteria are ordered by priority and preference is determined by the most important
subcriteria.

Definition 1. (Qualitative preference system) A qualitative preference system (QPS)
is a tuple ⟨Var,Dom,K,Ω ,C⟩. Var is a finite set of variables. Every variable X ∈ Var
has a domain Dom(X) of possible values. K is a set of constraints on the assignments
of values to the variables in Var. Ω is the set of all outcomes. An outcome α is an
assignment of a value x ∈ Dom(X) to every variable X ∈ Var, such that no constraints
in K are violated. αX denotes the value of variable X in outcome α . C = Cs ∪Cc ∪Cl is
a set of criteria, where Cs contains simple criteria, Cc contains cardinality criteria and
Cl contains lexicographic criteria. Weak preference between outcomes by a criterion
c is denoted by the relation ⪰c. ≻c denotes the strict subrelation, ≈c the indifference
subrelation.

An Argumentation Framework for Qualitative Multi-criteria Preferences 87

Definition 2. (Simple criterion) A simple criterion c is a tuple ⟨Xc,	c⟩, where Xc ∈Var
is a variable, and 	c, a preference relation on the possible values of Xc, is a preorder on
Dom(Xc). A simple criterion c = ⟨Xc,	c⟩ weakly prefers an outcome α over an outcome
β , denoted α ⪰c β , iff αXc 	c βXc .

Definition 3. (Cardinality criterion) A cardinality criterion c is a tuple ⟨Cc⟩ where
Cc is a nonempty set of criteria (the subcriteria of c). A cardinality criterion c = ⟨Cc⟩
weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff ∣{s ∈Cc ∣α ≻s β}∣ ≥
∣{s ∈Cc ∣ α /⪰s β}∣.

Definition 4. (Lexicographic criterion) A lexicographic criterion c is a tuple ⟨Cc,⊳c⟩,
where Cc is a nonempty set of criteria (the subcriteria of c) and ⊳c, a priority relation
among subcriteria, is a strict partial order (a transitive and asymmetric relation) on Cc.
A lexicographic criterion c = ⟨Cc,⊵c⟩ weakly prefers an outcome α over an outcome β ,
denoted α ⪰c β , iff ∀s ∈Cc(α ⪰s β ∨∃s′ ∈Cc(α ≻s′ β ∧ s′ ⊳c s)).

3 Argumentation Framework

In this section we present an argumentation framework for reasoning about qualitative
multi-criteria preferences as defined in qualitative preference systems. The AF provides
the logical language to represent facts about outcomes, criteria and preferences, and the
means to construct arguments that infer preferences from certain input.

3.1 Abstract Argumentation Framework

Our argumentation framework is a concrete instantiation of an abstract argumentation
framework as defined by Dung [3]. To define which arguments are justified, we use
Dung’s preferred semantics.

Definition 5. (Abstract argumentation framework) An abstract argumentation
framework (AF) is a pair ⟨A,→⟩where A is a set of arguments and→ is a defeat relation
among those arguments.

Definition 6. (Preferred semantics) A preferred extension of an AF ⟨A,→⟩ is a max-
imal (w.r.t. ⊆) set S ⊆A such that: ∀A,B ∈ S ∶ A /→ B and ∀A ∈ S: if ∃B ∈A ∶ B→ A then
∃C ∈ S ∶C→ B. An argument is credulously (resp. sceptically) justified w.r.t. preferred
semantics if it is in some (resp. all) preferred extension(s). An argument is overruled if
it is not in any extension. We also say that a formula is justified (resp. overruled) iff it
is the conclusion of a justified (resp. overruled) argument.

An abstract AF can be instantiated by specifying the structure of arguments and the
nature of the defeat relation. Prakken [4] presents such an instantiation that is itself
still abstract: his argumentation systems define arguments as inference trees formed by
applying inference rules and specify three kinds of defeat. We take the instantiation of
an argumentation framework one step further and also define the logical language and
the specific inference schemes that are used.

88 W. Visser, K.V. Hindriks, and C.M. Jonker

3.2 Arguments

Arguments are built from formulas of a logical language, that are chained together using
inference steps. Every inference step consists of premises and a conclusion. Inferences
can be chained by using the conclusion of one inference step as a premise in the fol-
lowing step. Thus a tree of chained inferences is created, which we use as the formal
definition of an argument (cf. e.g. [5,4]).

Definition 7. (Argument) An argument is a tree, where the nodes are inferences, and
an inference can be connected to a parent node if its conclusion is a premise of that
node. Leaf nodes only have a conclusion (a formula from the knowledge base), and
no premises. A subtree of an argument is also called a subargument. inf returns the
last inference of an argument (the root node), and conc returns the conclusion of an
argument, which is the same as the conclusion of the last inference.

3.3 Defeat

We define two different kinds of defeat: rebuttal and undercut (note that, unlike e.g.
[4], in the current framework there is no distinction between attack and defeat). An
argument rebuts another argument if its conclusion contradicts a conclusion of the other
argument. Which conclusions contradict each other is defined below after the language
is introduced. Defeat by rebuttal is mutual. The term undercut is used in different ways
in the literature; we use it for the same concept as e.g. [4]. An undercutter is an argument
for the inapplicability of an inference step made in another argument. Hence, it is a kind
of meta-reasoning (the conlusion of an undercutting argument is not part of the object
language). Undercut works only one way. Defeat is defined recursively, which means
that rebuttal can attack an argument on all its premises and (intermediate) conclusions,
and undercut can attack it on all its inferences.

Definition 8. (Defeat) An argument A defeats an argument B (A→ B) if conc(A) and
conc(B) are contradictory (rebuttal), or conc(A) =‘inf(B) is inapplicable’ (undercut),
or A defeats a subargument of B.

3.4 Language

The logical language provides the means to express statements about a the elements
of a QPS. For a given QPS S = ⟨Var,Dom,K,Ω ,C⟩, the domain of discourse is D =
Var∪⋃X∈Var Dom(X) ∪Ω ∪ C, i.e. variables and their possible values, outcomes and
criteria.

We make a distinction between an input and full language. A knowledge base, which
is the input for an argumentation framework, is specified in the input language. The
input language allows us to express facts about the outcomes that are considered and
details about the criteria that are used. With the full language we can also express pref-
erences. Such statements can be derived from a knowledge base with the inference rules
that will be introduced in the next section.

Basic expressions of the language (atoms) are built from predicates and terms. Let
C be a set of constants. i ∶C↦ D is an interpretation function that assigns an element

An Argumentation Framework for Qualitative Multi-criteria Preferences 89

Table 1. The predicates in Pin and their interpretation

predicate interpretation
val(o,x,y) i(o)i(x) = i(y) where i(o) ∈Ω , i(x) ∈ Var, i(y) ∈Dom(i(x))

‘the value of variable x in outcome o is y’
sc(c,x) i(c) ∈ Cs, Xi(c) = i(x) where i(x) ∈ Var,

‘c is a simple criterion on variable x’
valpref(c,y1,y2) i(y1) �i(c) i(y2) where i(c) ∈ Cs, i(y1), i(y2) ∈Dom(Xi(c))

‘simple criterion c weakly prefers value y1 over value y2’
cc(c) i(c) ∈ Cc

‘c is a cardinality criterion’
lc(c) i(c) ∈ Cl

‘c is a lexicographic criterion’
sub(c,c1) i(c1) ∈Ci(c) where i(c) ∈ Cc∪Cl , i(c1) ∈ C

‘c1 is a subcriterion of criterion c’
prior(c,c1,c2) i(c1) ⊳i(c) i(c2) where i(c) ∈ Cl , i(c1), i(c2) ∈ C

‘subcriterion c1 has higher priority than subcriterion c2
according to lexicographic criterion c’

from the domain of discourse to every constant in C. There are two sets of predicates.
Pin contains predicates that can be used in the input language. Pout contains predicates
that cannot be used in the input language and can only be derived. The predicates in Pin

and Pout and their interpretation are in Table 1 and 2.
Formulas of the input language are just atoms of the input language. Formulas of the

full language are atoms (A) or weakly negated atoms (∼ A). Weak negation is negation
as failure: ∼ A is justified if A is not. Strong negation is not needed to model qualitative
preference systems, but it will be added in the extended version of the AF presented in
Section 4 in order to reason with background knowledge.

Definition 9. (Language) The input language is defined as follows.
atomin ::= p(t1,. . .,tn) where p is an n-ary predicate ∈Pin

literalin ::= atomin

formulain ::= literalin
The full language is defined as follows.

atomout ::= p(t1,. . .,tn) where p is an n-ary predicate ∈Pout

literal ::= literalin ∣ atomout

formula ::= literal ∣ ∼ literal

Contradictory Formulas. Two arguments rebut each other if their conclusions are
contradictory. There are two ways in which two formulas can be contradictory.

– The formulas specify different values for the same variable in the same outcome:
val(o,x,y) and val(o,x,y′) contradict each other if y ≠ y′.

– prior(c,c1,c2) and prior(c,c2,c1) contradict each other, since priority is asym-
metric.

Two other candidates for contradiction are not modelled as such because they are han-
dled in a different way.

90 W. Visser, K.V. Hindriks, and C.M. Jonker

Table 2. The predicates in Pout and their interpretation

predicate interpretation
pref(c,o1,o2) i(o1) ⪰i(c) i(o2) where i(c) ∈ C, i(o1), i(o2) ∈Ω

‘criterion c weakly prefers outcome o1 over outcome o2’
spref(c,o1,o2) i(o1) ≻i(c) i(o2) where i(c) ∈ C, i(o1), i(o2) ∈Ω

‘criterion c strictly prefers outcome o1 over outcome o2’
epref(c,o1,o2) i(o1) ≈i(c) i(o2) where i(c) ∈ C, i(o1), i(o2) ∈Ω

‘criterion c equally prefers outcome o1 and outcome o2’
sp(c,o1,o2,n) ∣{s ∈Ci(c) ∣ i(o1) ≻s i(o2)}∣ = n where i(c) ∈ Cc, i(o1), i(o2) ∈Ω

‘there are n subcriteria of cardinality criterion c
that strictly prefer outcome o1 over outcome o2’

nwp(c,o1,o2,n) ∣{s ∈Ci(c) ∣ i(o1) /⪰s i(o2)}∣ = n where i(c) ∈ Cc, i(o1), i(o2) ∈Ω
‘there are n subcriteria of cardinality criterion c
that do not weakly prefer outcome o1 over outcome o2’

One might argue that ϕ and ∼ ϕ are contradictory, and hence arguments concluding
them should rebut each other. However, the status of these conclusions is not equal.
ϕ has to be derived and is grounded in facts in the knowledge base. ∼ ϕ on the other
hand is an assumption that can be made in the absence of evidence to the contrary. ϕ
is such evidence to the contrary, and that is why an argument concluding ϕ undercuts
the inference of ∼ ϕ instead of rebutting the conclusion (see the inference schemes for
weak negation and its undercutter below).

Incompatible preference statements, such as e.g. spref(c,o1,o2) and
epref(c,o1,o2) will resolve because epref(c,o1,o2) can only be derived if
pref(c,o2,o1), in which case the ∼pref(c,o2,o1) premise needed to derive
spref(c,o1,o2) will be undercut. Hence to have such arguments rebut each other
would be superfluous.

Input Knowledge Base. An input knowledge base is a set of formulas of the input
language. A knowledge base KB corresponds to a QPS S = ⟨Var,Dom,K,Ω ,C⟩ if the
following condition holds: a formula ϕ is in KB iff its interpretation holds in S. Note
that a knowledge base corresponding to a QPS is conflict-free, i.e. does not contain
contradictory formulas.

Example 1. We will use a running example throughout the paper to illustrate the de-
tails of the argumentation framework. Anne is planning to go on holiday with a friend.
Anne’s overall preference is based on three simple criteria: c1: that someone (she or
the accompanying friend) speaks the language (sl), c2: that it is sunny (su) and c3:
that she has not been there before (bb). c1 and c2 have equal priority, so they are
aggregated in a cardinality criterion c4. c3 and c4 are combined in a lexicographic
criterion c5 where c3 has higher priority than c4. This information can be represented
in the following knowledge base.

Facts about two of the possible outcomes:
val(o1,sl,true) val(o1,su,true) val(o1,bb,true)
val(o2,sl,false) val(o2,su,true) val(o2,bb,false)

An Argumentation Framework for Qualitative Multi-criteria Preferences 91

Information about the preferences:
lc(c5) cc(c4) sc(c1,sl) valpref(c1,true,false)
sub(c5,c3) sub(c4,c1) sc(c2,su) valpref(c2,true,false)
sub(c5,c4) sub(c4,c2) sc(c3,bb) valpref(c3,false,true)
prior(c5,c3,c4)

3.5 Inference Rules

In this section we present the inference rules that are used in the argumentation frame-
work to build arguments.

Weak Negation. The following two inference rules make sure that (i) a weakly negated
formula can always be derived, but (ii) this inference will be undercut if the formula
itself can be derived. So ∼ ϕ is sceptically justified iff ϕ is overruled.

∼ ϕ asm(∼ ϕ)
ϕ

asm(∼ ϕ) is inapplicable
asm(∼ ϕ)uc

Strict and Equal Preference. The following inference schemes are used to derive
strict and equal preference from weak preference according to the common definitions.

pref(c,o1,o2) ∼pref(c,o2,o1)

spref(c,o1,o2)

pref(c,o1,o2) pref(c,o2,o1)

epref(c,o1,o2)

Preference by a Simple Criterion. The following inference rule concludes that a sim-
ple criterion prefers one outcome over another if, for the variable that it is based on, it
prefers the value of the first outcome over the value of the second. This is exactly the
definition of preference by a simple criterion in a QPS.

sc(c,x) val(o1,x,y1) val(o2,x,y2) valpref(c,y1,y2)

pref(c,o1,o2)

Example 2. The following argument infers that simple criterion c1 prefers o1 over o2.
Similar arguments can be constructed for c2 and c3.

sc(c1,sl) val(o1,sl,true) val(o2,sl,false) valpref(c1,true,false)

pref(c1,o1,o2)

Preference by a Cardinality Criterion. The next inference scheme derives preference
by a cardinality criterion according to its definition in a QPS: an outcome o1 is weakly
preferred over an outcome o2 if there are at least as many subcriteria that strictly prefer
o1 over o2 as subcriteria that do not weakly prefer o1 over o2.

cc(c) sp(c,o1,o2,l) nwp(c,o1,o2,m) l ≥m

pref(c,o1,o2)

Preference by a cardinality criterion is based on (i) the number of subcriteria that strictly
prefer one outcome over the other, and (ii) the number of subcriteria that do not weakly

92 W. Visser, K.V. Hindriks, and C.M. Jonker

prefer one outcome over the other. The following inference rules provide the required
counting mechanism.

The next inference rules conclude that there are n subcriteria of c that strictly prefer
o1 over o2, resp. that there are n subcriteria of c that do not weakly prefer o1 over o2.

spref(c1,o1,o2) . . . spref(cn,o1,o2) sub(c,c1) . . . sub(c,cn)

sp(c,o1,o2,n)
SP(c,o1,o2 ,n)

∼pref(c1,o1,o2) . . . ∼pref(cn,o1,o2) sub(c,c1) . . . sub(c,cn)

nwp(c,o1,o2,n)
NWP(c,o1,o2,n)

If there are no subcriteria of c that strictly prefer o1 over o2, resp. that do not weakly
prefer o1 over o2, no premises are needed to infer this.

sp(c,o1,o2,0)
SP(c,o1,o2 ,0) nwp(c,o1,o2,0)

NWP(c,o1,o2,0)

With these inference schemes, it is possible to derive a formula sp(c,o1,o2,n) for any
n between 0 and the actual number of subcriteria of c that strictly prefer o1 over o2. We
want to make sure that only the formula that counts all subcriteria of c that strictly prefer
o1 over o2 is justified. To this end, the following inference rules provide an undercutter
for the previous schemes when they are non-maximal.

spref(c1,o1,o2) . . . spref(cn,o1,o2) sub(c,c1) . . . sub(c,cn) m < n

SP(c,o1,o2 ,m) is inapplicable
SP(c,o1,o2 ,m)uc

∼pref(c1,o1,o2) . . . ∼pref(cn,o1,o2) sub(c,c1) . . . sub(c,cn) m < n

NWP(c,o1,o2 ,m) is inapplicable
NWP(c,o1,o2,m)uc

Example 3. The following argument concludes that there is one subcriterion of c4 that
strictly prefers o1 over o2.

⋮

pref(c1,o1,o2) ∼pref(c1,o2,o1)

spref(c1,o1,o2) sub(c4,c1)

sp(c4,o1,o2,1)

It is also possible to construct an argument stating that there are two such criteria, but
it will be undercut.

⋮

pref(c1,o1,o2) ∼pref(c1,o2,o1)

spref(c1,o1,o2)

⋮

pref(c2,o1,o2) ∼pref(c2,o2,o1)
∗

spref(c2,o1,o2) sub(c4,c1) sub(c4,c2)

sp(c4,o1,o2,2)

⋮

pref(c2,o2,o1)

∗ is inapplicable

An Argumentation Framework for Qualitative Multi-criteria Preferences 93

The following argument concludes that c4 prefers o1 over o2.
⋮

sp(c4,o1,o2,1) nwp(c4,o1,o2,0) 1 ≥ 0

pref(c4,o1,o2)

Preference by a Lexicographic Criterion. The following inference rule concludes
that a lexicographic criterion c prefers an outcome o1 over an outcome o2 if o1 is pre-
ferred over o2 by a subcriterion of c. This inference is undercut by the next inference
rule if there is a subcriterion of c with higher priority that does not prefer o1 over o2.

lc(c) sub(c,c1) pref(c1,o1,o2)

pref(c,o1,o2)
LC(c,c1,o1,o2)

lc(c) sub(c,c2) ∼pref(c2,o1,o2) ∼prior(c,c1,c2)

LC(c,c1,o1 ,o2) is inapplicable
LC(c,c1,o1,o2)uc

According to its definition in a QPS, a lexicographic criterion c prefers o1 over o2

if every subcriterion either (weakly) prefers o1 over o2 or there is a higher priority
subcriterion that strictly prefers o1 over o2. So if c prefers o1 to o2, all undominated
(w.r.t. priority) subcriteria prefer o1 to o2. pref(c,o1,o2) can be derived based on any
of those subcriteria, and there will be no justified undercutter. If c does not prefer o1

to o2, it may still be possible to construct an argument for pref(c,o1,o2), but it will
be undercut because there is another subcriterion that does not prefer o1 to o2 and does
not have lower priority. So together this pair of inference schemes correctly models the
definition of preference by a lexicographic criterion in a QPS.

Example 4. The following argument concludes that c5 prefers o1 to o2 based on its
subcriterion c4.

lc(c5) sub(c5,c4)

⋮

pref(c4,o1,o2)

pref(c5,o1,o2)
∗

However, this argument is undercut by the following one stating that there is another
subcriterion, c3, that does not prefer o1 to o2 and does not have lower priority than
c4.

lc(c5) sub(c5,c3) ∼pref(c3,o1,o2) ∼sprior(c5,c4,c3)

∗ is inapplicable

The only justified argument for preference between o1 and o2 by c5 is the following
one.

lc(c5) sub(c5,c3)

sc(c3,bb) val(o2,bb,false) val(o1,bb,true) valpref(c3,false,true)

pref(c3,o2,o1)

pref(c5,o2,o1)

94 W. Visser, K.V. Hindriks, and C.M. Jonker

3.6 Correspondence between QPS and AF

Theorem 1. Let S = ⟨Var,Dom,K,Ω ,C⟩ be a QPS, KB a knowledge base that corre-
sponds to S, and AF the argumentation framework built from KB. Then ϕ is a scepti-
cally justified conclusion of AF iff its interpretation holds in S.

For every formula in KB, its interpretation holds in S (definition of correspondence).
Every formula in the input language whose interpretation holds in S is in KB (definition
of correspondence). All formulas in KB are justified since KB is conflict-free. For every
inference rule, its conclusion is justified if and only if its premises are justified and all
its undercutters (if any) are overruled. We have shown that every inference or pair of
inference and its undercutter inference models the corresponding QPS definition: the
interpretation of the conclusion holds in a QPS if and only if the interpretations of all
premises hold and and the interpretations of the premises of all undercutters do not all
hold.

4 Reasoning with Background Knowledge

The argumentation framework presented in the previous section models a QPS if the
input is a knowledge base corresponding to that QPS. In order for a knowledge base
to correspond to a QPS, it is necessary to specify the values of all variables for every
outcome. This correpsonds to the formal (abstract) concept of an outcome as an as-
signment of a value to every variable in a given set of variables, as defined in the QPS
framework.

In practice, an outcome is a concrete alternative (a decision, product, agreement etc.).
The major difference is that not all attributes may be known. In a sense, such alternatives
can be seen as partial outcomes (or sets of outcomes that share some attributes). Even
though not all attributes may be specified beforehand, it is often possible to derive the
values of some of the unspecified variables using background information. For example,
if it is not specified whether someone speaks the language for a given holiday option,
such information may be inferred if it is known that the destination is Barcelona which
is in Spain, where the language is Spanish, Juan will accompany Anne, and he speaks
Spanish.

In this section we introduce an extension of the argumentation framework in which
it is possible to reason with such background knowledge. To this end, we extend the
language and add one more inference scheme. This extension makes the system more
flexible in case of incomplete specifications. If some attributes remain unknown even
with reasoning with background knowledge, the argumentation framework still works
correctly, it will just infer less preferences.

4.1 Language

Background knowledge is expressed using a set of predicates PK which may differ
per application domain. Atoms built with these predicates may also be negated (strong
negation). Furthermore, a new construct is added to the input language: (defeasible)
rules that consist of a set of (possibly weakly negated) antecedents and a consequent
(the same kind of rules are used in [6]).

An Argumentation Framework for Qualitative Multi-criteria Preferences 95

Definition 10. (Language) The input language is defined as follows.
atomin ::= p(t1,. . .,tn) where p is an n-ary predicate ∈Pin

atomK ::= p(t1,. . .,tn) where p is an n-ary predicate ∈PK

literalin ::= atomin ∣ atomK ∣ ¬atomK

rule ::= literalin, . . ., literalin, ∼ literalin, . . ., ∼ literalin => literalin
formulain ::= literalin ∣ rule

The full language is defined as follows.
atomout ::= p(t1,. . .,tn) where p is an n-ary predicate ∈Pout

literal ::= literalin ∣ atomout

formula ::= literal ∣ ∼ literal ∣ rule

Contradictory Formulas. Adding strong negation to the language also adds an addi-
tional way in which two formulas can be contradictory.

– A and ¬A contradict each other.

Example 5. Anne’s criteria for a holiday are the same as before, but the information
that she has about her options is different. The values of the variables sl, su and bb
on which her preferences are based are not specified. Instead, for every outcome she
only knows who of her friends is going with her (fr): Juan (j) or Mario (m), and the
destination (de): Barcelona (b) or Rome (r). Besides, she has some relevant background
information. All of this is specified in the following knowledge base.

Some facts from the background knowledge:
in(b,spain) in(r,italy)
mediterranean(spain) mediterranean(italy)
language(spain,spanish) language(italy,italian)
speaks(j,spanish) speaks(m,italian)
beenTo(b)

Some rules from the background knowledge:
val(O,fr,X), val(O,de,C), in(C,Cn), language(Cn,L), speaks(X,L) => val(O,sl,true)
∼val(O,sl,true) => val(O,sl,false)
val(O,de,C), in(C,Cn), mediterranean(Cn), ∼val(O,su,false) => val(O,su,true)
val(O,de,C), beenTo(C) => val(O,bb,true)
∼val(O,bb,true) => val(O,bb,false)

Facts about some of the possible outcomes:
val(o1,fr,j) val(o2,fr,j) val(o3,fr,m) val(o4,fr,m)
val(o1,de,b) val(o2,de,r) val(o3,de,b) val(o4,de,r)

Information about the preferences:
lc(c5) cc(c4) sc(c1,sp) valpref(c1,true,false)
sub(c5,c3) sub(c4,c1) sc(c2,s) valpref(c2,true,false)
sub(c5,c4) sub(c4,c2) sc(c3,n) valpref(c3,false,true)
prior(c5,c3,c4)

4.2 Inferences

Defeasible Modus Ponens. This inference rule applies a rule L1,. . .,Lk,∼ Ll,. . .,∼ Lm

=> Ln: when all its antecedents hold, the consequent is concluded.

L1,. . .,Lk,∼ Ll,. . .,∼ Lm => Ln L1 . . . Lk ∼ Ll . . . ∼ Lm

Ln
DMP

96 W. Visser, K.V. Hindriks, and C.M. Jonker

Note the difference between a rule in the language and an inference rule. Defeasible
modus ponens is an inference rule that applies a rule from the language. We reserve in-
ference rules for domain-independent inferences, and provide the possibility to specify
domain-specific rules in the language. Instead of possible undercutters of an inference
rule, it is possible to have weakly negated antecedents for the same purpose.

Example 6. Below are some of the arguments that can be built with the knowledge base
from Example 5. The values for the variables su and bb can be derived in a similar way.

r val(o1,fr,j) val(o1,de,b) in(b,spain) lang(spain,spanish) speaks(j,spanish)

val(o1,sl,true)

where r is val(O,fr,X), val(O,de,C), in(C,Cn), lang(Cn,L), speaks(X,L) => val(O,sl,true).

∼val(O,sl,true) => val(O,sl,false) ∼val(o2,sl,true)

val(o2,sl,false)

The argument deriving a preference for o1 over o2 by criterion c5 is the same as in
Example 4, except that val(o2,bb,false) and val(o1,bb,true) are derived instead
of taken directly from the knowledge base (for reasons of space, the argument is cut in
three).

lc(c5) sub(c5,c3)

sc(c3,bb) A B valpref(c3,false,true)

pref(c3,o2,o1)

pref(c5,o2,o1)

A ∶
∼val(O,bb,true) => val(O,bb,false) ∼val(o2,bb,true)

val(o2,bb,false)

B ∶
val(O,de,C), beenTo(C) => val(O,bb,true) val(o1,de,b) beenTo(b)

val(o1,bb,true)

5 Conclusion

In this paper we presented an argumentation framework for representing and reasoning
about qualitative multi-criteria preferences. We showed that this argumentation frame-
work models the preferences as defined by qualitative preference systems. Qualitative
preference systems use both cardinality and lexicographic ordering to combine multiple
criteria, which are ultimately based on the attributes of the outcomes. In an extension
of the base argumentation framework we added the means to reason with background
knowledge, which adds expressivity and flexibility in case of incomplete specifications.

Argumentation about preferences has been studied extensively in the context of de-
cision making [7,8]. The aim of decision making is to choose an action to perform. The
quality of an action is determined by how well its consequences satisfy certain criteria.
For example, [8] present an approach in which arguments of various strengths in favour
of and against a decision are compared. However, it is a two-step process in which ar-
gumentation is used only for epistemic reasoning. Also in [9,10], preferences are based

An Argumentation Framework for Qualitative Multi-criteria Preferences 97

on arguments, but not themselves derived using argumentation. In our approach, we
combine reasoning about knowledge, criteria and preferences between outcomes in a
single argumentation framework.

Within the context of argumentation, an approach that is related to criteria is value-
based argumentation [11,12]. Values are used in the sense of ‘fundamental social or
personal goods that are desirable in themselves’ [12], and are used as the basis for
persuasive argument in practical reasoning. A value can be seen as a binary criterion
that is satisfied if the value is promoted. In value-based argumentation, arguments are
associated with values that they promote. Values are ordered according to importance
to a particular audience. An argument only defeats another argument if it attacks it
and the value promoted by the attacked argument is not more important than the value
promoted by the attacker. In this framework, every argument is associated with only one
value, while in many cases there are multiple values or interests at stake. [13] define so-
called value-specification argumentation frameworks, in which arguments can support
multiple values, and preference statements about values can be given. However, the
preference between arguments is not derived from the preference between the values
promoted by the arguments. Besides, there is no guarantee that a value-specification
argumentation framework is consistent, i.e., some sets of preference statements do not
correspond to a preference ordering on arguments.

In value-based argumentation, we cannot argue about what values are promoted by
the arguments or the ordering of values; this mapping and ordering are supposed to
be given. But these might well be the conclusion of reasoning, and might be defeasi-
ble. Therefore, it would be natural to include this information at the object level. [14]
describe some argument schemes regarding the influence of certain perspectives on val-
ues. However, for the aggregation of multiple values, they assume a given order on sets
of values, whereas we want to derive such an order from an order on individual values.

In our future work we would like to look into the possibilities that the presented
framework offers to not only derive missing information about the attributes of out-
comes, but also information about e.g. the criteria that are used and their preferences
between attribute values, or priority between subcriteria. This would be especially use-
ful when modelling other agents’ preferences, e.g. the opponent in negotiation or some-
one you have to make a joint decision with. Often, another person’s preferences are not
(completely) known, but some of them may be inferred by default.

Acknowledgements. This research is supported by the Dutch Technology Foundation
STW, applied science division of NWO and the Technology Program of the Ministry of
Economic Affairs. It is part of the Pocket Negotiator project with grant number VICI-
project 08075.

References

1. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation
frameworks. Journal of Automated Reasoning 29, 125–169 (2002)

2. Kakas, A., Moraı̈tis, P.: Argumentation based decision making for autonomous agents. In:
Autonomous Agents and Multiagent Systems (AAMAS 2003), pp. 883–890 (2003)

98 W. Visser, K.V. Hindriks, and C.M. Jonker

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

4. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
and Computation 1(2), 93–124 (2010)

5. Vreeswijk, G.A.W.: Abstract argumentation systems. Artificial Intelligence 90(1-2), 225–
279 (1997)

6. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

7. Ouerdane, W., Maudet, N., Tsoukiàs, A.: Argumentation theory and decision aiding. In:
Ehrgott, M., Figueira, J.R., Greco, S. (eds.) New Trends in Multiple Criteria Decision Anal-
ysis. Springer, Heidelberg (2010)

8. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artificial
Intelligence 173(3-4), 413–436 (2009)

9. Bonnefon, J.F., Fargier, H.: Comparing sets of positive and negative arguments: Empirical
assessment of seven qualitative rules. In: 17th European Conference on Artificial Intelligence
(ECAI 2006), pp. 16–20. IOS Press (2006)

10. Dubois, D., Fargier, H., Bonnefon, J.F.: On the qualitative comparison of decisions having
positive and negative features. Journal of Artificial Intelligence Research 32, 385–417 (2008)

11. Bench-Capon, T.J.M.: Persuasion in practical argument using value based argumentation
frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

12. Bench-Capon, T., Atkinson, K.: Abstract argumentation and values. In: Rahwan, I., Simari,
G.R. (eds.) Argumentation in Artificial Intelligence, pp. 45–64. Springer, Heidelberg (2009)

13. Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting multiple
values. International Journal of Approximate Reasoning 48(3), 730–751 (2008)

14. van der Weide, T.L., Dignum, F., Meyer, J.-J.C., Prakken, H., Vreeswijk, G.A.W.: Practical
reasoning using values. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS
2009. LNCS, vol. 6057, pp. 79–93. Springer, Heidelberg (2010)

Modeling and Solving AFs

with a Constraint-Based Tool: ConArg�

Stefano Bistarelli1,2 and Francesco Santini1,3,��

1 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
{bista,francesco.santini}@dmi.unipg.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
F.Santini@cwi.nl

Abstract. ConArg is a tool based on Constraint Programming which
is able to model and solve different problems related to Argumenta-
tion Frameworks (AFs). To practically implement the tool, we have
used JaCoP, a Java library which provides the user with a Finite Do-
main Constraint Programming paradigm. Constraint Satisfaction Prob-
lems (CSPs) offer a wide number of efficient techniques (as inference and
search algorithms) that can tackle the complexity in finding all the pos-
sible Dung’s conflict-free, admissible, complete and stable extensions in
AFs. Moreover, we can use the tool to solve some of the preference-based
problems presented in literature. ConArg is able to randomly generate
networks with small-world properties in order to find Dung’s extensions
on such interaction graphs. We present the main features of ConArg and
we report the performance in time.

1 Introduction

Interactions are a core part of all multi-party systems (e.g. multi-agent systems).
Argumentation [14] is based on the exchange and the evaluation of interacting
arguments which may represent information of various kinds, especially beliefs
or goals. Argumentation can be used for modeling some aspects of reasoning, de-
cision making, and dialogue. For instance, when an agent has conflicting beliefs
(viewed as arguments), a (nontrivial) set of plausible consequences can be de-
rived through argumentation from the most acceptable arguments for the agent.

� Research partially supported by MIUR PRIN 20089M932N project: “Innovative and
multi-disciplinary approaches for constraint and preference reasoning”, by CCOS
FLOSS project “Software open source per la gestione dell’epigrafia dei corpus di
lingue antiche”, and by INDAM GNCS project “Fairness, Equità e Linguaggi”.

�� This work was carried out during the tenure of an ERCIM ”Alain Bensoussan”
Fellowship Programme. This Programme is supported by the Marie Curie Co-funding
of Regional, National and International Programmes (COFUND) of the European
Commission.

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 99–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 S. Bistarelli and F. Santini

Argumentation has become an important subject of research in Artificial Intel-
ligence and it is also of interest in several disciplines, such as Logic, Philosophy
and Communication Theory [20].

Many theoretical and practical developments build on Dung’s seminal theory
of argumentation. A Dung Argumentation Framework (AF) is a directed graph
consisting of a set of arguments and a binary conflict based attack relation among
them. The sets of arguments to be considered are then defined under different
semantics, where the choice of semantics equates with varying degrees of scep-
ticism or credulousness. The main issue for any theory of argumentation is the
selection of acceptable sets of arguments, based on the way arguments interact.
Intuitively, an acceptable set of arguments must be in some sense coherent and
strong enough (e.g. able to defend itself against all attacking arguments).

Constraint Programming [25] (CP) is a powerful paradigm for solving combi-
natorial search problems that draws on a wide range of techniques from artificial
intelligence, computer science, databases, programming languages, and opera-
tions research. CP is currently applied with success to many domains, such as
scheduling, planning, vehicle routing, configuration, networks, and bioinformat-
ics [25]. The basic idea in constraint programming is that the user states the
constraints and a general purpose constraint solver is used to solve them. Con-
straints are just relations, and a Constraint Satisfaction Problem [25] (CSP)
states which relations should hold among the given decision variables.

Constraint solvers search the solution space either systematically, as with
backtracking or branch and bound algorithms, or use forms of local search which
may be incomplete. Systematic method often interleave search and inference,
where inference consists of propagating the information contained in one con-
straint to the neighboring constraints [25].

In this paper we present ConArg [7,9] (Argumentation with Constraints), a
tool that can practically find all Dung’s classical extensions [14] (i.e. conflict-
free, admissible, complete and stable extensions) by defining the properties of
these extensions with constraints and solving the related CSP; we program these
constraints in JaCoP [19]. To show the feasibility of such solution, in the paper
we test the tool on different randomly generated small-world networks and we
report the performance in time; since the number of these extensions, which in
practice are subsets of the Args set of arguments, may explode for largeArgs (i.e.,
the powerset of Args), it is important to use techniques to tackle this inherent
complexity, as CP. This is particularly true for conflict-free extensions, which
represent the least constrained extensions.

Moreover, ConArg can solve different hard problems in literature related to
weighted AFs (see Sec. 6), as the ones presented in [15]. We consider weighted
AFs as AFs where attacks are associated with a weight capturing their relative
strength [15,8]. For example, given a weighted argument system, a set of argu-
ments S ⊆ Args and an inconsistency budget β, to find if β is minimal w.r.t. S
represents a co-NP-complete problem [15]. This and other hard problems have
been highlighted in [15].

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 101

This paper continues the research line on connecting AFs to CP opened in
[6,8,10]. The remainder is organized as follows: in Sec. 2 we report the theory
behind Dung Argumentation (and weighted AFs [15]), while in Sec. 3 we sum-
marize the background on constraints and weighted constraints. In Sec. 4 we
show a mapping from AFs to CSPs, which is used in ConArg to find the Dung’s
extensions by representing their properties with constraints and solving the ob-
tained CSP. In Sec. 5 we show the tests on Barabasi [22,3] and Kleinberg [22]
small-world networks, which prove the feasibility of a constraint-based tool. In
Sec. 6 we show how to model hard problems related to AFs (e.g. preferred ex-
tensions or the problems presented in [15]) in JaCoP [19]. A comparison with
related work is given in Sec. 7. Finally, Sec. 8 presents conclusions and ideas
about future work.

2 Dung Argumentation

In [14], the author has proposed an abstract framework for argumentation in
which he focuses on the definition of the status of arguments. For that purpose,
it can be assumed that a set of arguments is given, as well as the different
conflicts among them. An argument is an abstract entity whose role is solely
determined by its relations to other arguments.

Definition 1. An Argumentation Framework (AF) is a pair 〈Args, R〉 of a set
Args of arguments and a binary relation R on Args called the attack relation.
∀ai, aj ∈ Args, aiRaj means that ai attacks aj. An AF may be represented by
a directed graph (the interaction graph) whose nodes are arguments and edges
represent the attack relation. A set of arguments B attacks an argument a if a is
attacked by an argument of B. A set of arguments B attacks a set of arguments
C if there is an argument b ∈ B which attacks an argument c ∈ C.

The “acceptability” of an argument [14] depends on its membership to some
sets, called extensions. These extensions characterize collective “acceptability”.

a

b

c d

Fig. 1. An example of Dung Argumentation Framework; e.g. c attacks d

In Fig. 1 we show an example of AF represented as an interaction graph: the
nodes represent the arguments and the directed arrow from c to d represents
the attack of c towards d, that is cR d. Dung [14] gave several semantics to
“acceptability”. These various semantics produce none, one or several acceptable
sets of arguments, called extensions. In Def. 2 we define the concepts of conflict-
free and stable extensions:

102 S. Bistarelli and F. Santini

Definition 2. A set B ⊆ Args is conflict-free iff no two arguments a and b in B
exist such that a attacks b. A conflict-free set B ⊆ Args is a stable extension iff
for each argument which is not in B, there exists an argument in B that attacks
it.

The other semantics for “acceptability” rely upon the concept of defense:

Definition 3. An argument b is defended by a set B ⊆ Args (or B defends b)
iff for any argument a ∈ Args, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must be a conflict-free set
which defends all its elements. Formally:

Definition 4. A conflict-free set B ⊆ Args is admissible iff each argument in B
is defended by B.

Besides the stable semantics, three semantics refining admissibility have been
introduced by Dung [14]:

Definition 5. A preferred extension is a maximal (w.r.t. set inclusion) admis-
sible subset of Args. An admissible B ⊆ Args is a complete extension iff each
argument which is defended by B is in B. The least (w.r.t. set inclusion) complete
extension is the grounded extension.

A stable extension is also a preferred extension and a preferred extension is also
a complete extension. Stable, preferred and complete semantics admit multiple
extensions whereas the grounded semantics ascribes a single extension to a given
argument system.

In the paper we want to to deal also with hard problems related to weighted
AFs [15]. Formally, a weighted AF is a triple 〈Args, R, w〉 where 〈Args, R〉 is a
Dung-style abstract argument system, and w : Args → R+ is a function assigning
real valued weights to attacks.

A key idea presented in [15] is the inconsistency budget, β ∈ R+, which the
authors use to characterise how much inconsistency they are prepared to tolerate.
The intended interpretation is that, given an inconsistency budget β, we would
be prepared to disregard attacks up to a total weight of β [15]. Conventional AFs
implicitly assume an inconsistency budget of 0. Weighted AFs have been already
modeled also in [8], by considering a semiring-based constraint programming
framework.

3 Constraint Programming

The classic definition of a Constraint Satisfaction Problem [25] (CSP) is as fol-
lows. A CSP P is a triple P = 〈X,D,C〉 where X is an n-tuple of variables X =
〈x1, x2, . . . , xn〉, D is a corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉
such that xi ∈ Di, C is a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉. A constraint

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 103

Cj is a pair 〈RSj , Sj〉 where RSj is a relation on the variables in Si = scope(Ci).
In other words, Ri is a subset of the Cartesian product of the domains of the
variables in Si. A solution to the CSP P is an n-tuple A = 〈a1, a2, . . . , an〉 where
ai ∈ Di and each Cj is satisfied in that RSj holds on the projection of A onto
the scope Sj . In a given task one may be required to find the set of all solutions,
sol(P), to determine if that set is non-empty or just to find any solution, if one
exists. If the set of solutions is empty the CSP is unsatisfiable.

This simple but powerful framework captures a wide range of significant appli-
cations in fields as diverse as artificial intelligence, operations research, schedul-
ing, supply chain management, graph algorithms, computer vision and compu-
tational linguistics [25].

Constraint solvers search the solution space either systematically, as with
backtracking or branch and bound algorithms, or use forms of local search which
may be incomplete. Systematic method often interleave search and inference,
where inference consists of propagating the information contained in one con-
straint to the neighboring constraints. Such inference (usually called constraint
propagation) is useful since it may reduce the parts of the search space that need
to be visited.

A backtracking search algorithm, used also by JaCoP [19], performs a depth-
first traversal of a search tree, where the branches out of a node represent al-
ternative choices that may have to be examined in order to find a solution, and
the constraints are used to prune subtrees containing no solutions. Backtracking
search algorithms usually come with a guarantee that a solution will be found if
one exists (i.e., it is a complete search method), and can be used to show that
a CSP does not have a solution or to find a provably optimal solution. Many
techniques for improving the efficiency of a backtracking search algorithm have
been suggested and evaluated including constraint propagation, nogood record-
ing, backjumping, heuristics for variable and value ordering, and randomization
and restart strategies [25]. In this paper we use also an incomplete backtracking
search, that is the Limited Discrepancy Search (LDS) [18] (see Sec. 5).

One of the main reasons why constraint programming quickly found its way
into applications has been the early availability of usable constraint programming
systems, as JaCoP, which we will use in this paper to find a solution for AFs [19].

Various generalizations of the classic CSP model have been developed sub-
sequently. One of the most significant is the Constraint Optimization Problem
(COP) for which there are several significantly different formulations, and the
nomenclature is not always consistent [25]. Perhaps the simplest COP formula-
tion retains the CSP limitation of allowing only hard Boolean-valued constraints
but adds a cost function over the variables, that must be minimized. A weighted
constraint 〈c, w〉 is just a classical constraint c, plus a weight w (over natural,
integer, or real numbers). The cost of an assignment t of the variable is the sum
of all w(c), for all constraints c which are violated by t [25].

In this paper we use weighted constraints to model and solve weighted AFs [8],
and also the hard problems presented in [15], which are solved in Sec. 6.

104 S. Bistarelli and F. Santini

4 Mapping AFs to CSPs in ConArg

In this section we propose a mapping from AFs to CSPs, which is used inside
ConArg [7,9] as the core of the tool. Given an AF = 〈Args, R〉, we define a
variable for each argument ai ∈ Args (V = {a1, a2, . . . , an}) and each of these
argument can be taken or not, i.e. the domain of each variable is D = {1, 0}.

In the following explanation, notice that “b attacks a” means that b is a
parent of a in the interaction graph, and “c attacks b attacks a” means that c is
a grandparent of a. To compute the extensions of Dung [14] we need to define
different sets of constraints:

1. Conflict-free constraints. In order to find conflict-free sets, if R(ai, aj) is
in the graph we need to prevent the solution to include both ai and aj in
the considered extension: ¬(ai = 1∧ aj = 1). The other possible assignment
of the variables (a = 0 ∧ b = 1), (a = 1 ∧ b = 0) and (a = 0 ∧ b = 0) are
permitted: in these cases we are choosing only one argument between the
two (or none of the two) and thus, we have no conflict.

2. Admissible constraints. For the admissibility, we need that, if child ar-
gument ai has a parent node af but ai has no grandparent node ag (parent
of af), then we must avoid to take ai in the extension because it is attacked
and cannot be defended by any ancestor: expressed with a unary constraint,
ai = 0.
Moreover, if ai has several grandparents ag1, ag2, . . . , agk and only one par-
ents af (child of ag1, ag2, . . . , agk), we need to add a k + 1-ary constraint
¬(ai = 1 ∧ ag1 = 0 ∧ · · · ∧ agk = 0). The explanation is that at least a
grandparent must be taken in the admissible set, in order to defend ai from
one of his parents af . Notice that, if a node is not attacked (i.e. he has no
parents), it can be taken or not in the admissible set.

3. Complete constraints. To compute a complete extension B, we impose
that each argument ai which is defended by B is in B, except those ai that,
in such case, would be attacked by B itself [5]. This can be enforced by
imposing that for each ai taken in the extension, also all its as1, as2, . . . , ask
grandchildren (i.e. all the arguments defended by ai), whose fathers are not
taken in the extension, must be in B. Formally, (ai = 1∧as1 = 1∧· · ·∧ask =
1) only for those asi for which it stands that (afs1 = 0∧afs2 = 0∧· · ·∧afsz =
0), where afs1 , afs2 , . . . , afsz are the fathers of asi.

4. Stable constraints. If we have a child node ai with multiple parents
af1, af2, . . . , afk, we need to add the constraint ¬(ai = 0 ∧ af1 = 0 ∧ · · · ∧
afk = 0). In words, if a node is not taken in the extension (i.e. ai = 0), then
it must be attacked by at least one of the taken nodes, that is at least a
parent of ai needs to be taken in the stable extension (that is, afj = 1).
Moreover, if a node ai has no parent in the graph, it has to be included in the
stable extension (notice ai cannot be attacked by nodes inside the extension,
since he has no parent). The corresponding unary constraint is ¬(ai = 0).

The following proposition states the equivalence between solving an AFS and its
related CSP.

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 105

Proposition 1 (Solution equivalence [6]). Given an AF = 〈Args, R〉, the
solutions of the related CSP obtained with the mapping corresponds to find over
AF all the

– conflict-free extensions by using conflict-free constraint classes.
– admissible extensions by using conflict-free and admissible constraint classes.
– complete extensions by using conflict-free, admissible and complete constraint

classes.
– stable extensions by using conflict and stable constraint classes.

Notice that the presented soft constraint framework can be easily used to solve
argumentation problems with additional constraints, as proposed in [13]. We
can find further requirements on the sets of arguments which are expected as
extensions, like “extensions must contain argument a when they contain b” or
“extensions must not contain one of c or d when they contain a but do not
contain b”.

In Fig. 2 and Fig. 3 we show two screenshots of ConArg: both the randomly
generated networks have 12 nodes (i.e. arguments) although they have different
edges (i.e., attacks among arguments); they have been created according to the
principles of Barabasi defined in [3,22] (see Sec. 5).

In Fig. 2 we show one of the 78 conflict-free extensions (i.e. in particular, the
70th solution). The arguments in the considered extension are highlighted in
gray: {a1, a3, a8}. The attacks from these arguments are associated with a ticker
edge. All the 78 solutions can be navigated by using the scrolling arrows of the
application (see Fig. 2).

In Fig. 3 we show the only stable extension that can be found over the consid-
ered interaction graph: the nodes in the stable extension are: {a4, a9, a10, a11}.

5 Testing ConArg

In this section we test the implementation with constraints of the mapping given
in Sec. 4 and we test how ConArg [7,9] is efficient in finding all the possible
conflict-free, admissible, complete and stable extensions over a randomly gen-
erated small-world network. Therefore, we show how ConArg is able to deal
with real-world cases with several arguments and attacks (e.g. discussion fora)
where the topology of interaction graphs follows the properties of a social net-
work [24,17].

For the implementation we use two Java libraries, the Java Constraint Pro-
gramming solver [19] (JaCoP) and the Java Universal Network/Graph Frame-
work (JUNG) [22]. JaCoP [19] is a Java library which provides the Java user
with Finite Domain Constraint Programming paradigm [25]. It provides different
type of constraints: most commonly used primitive constraints, such as arith-
metical constraints, equalities and inequalities, logical, reified and conditional
constraints, combinatorial (global) constraints. It provides a significant number
of (global) constraints to facilitate an efficient modeling. It also provides a mod-
ular design of search to help the user on specific characteristics of the problem
being addressed.

106 S. Bistarelli and F. Santini

Fig. 2. A screenshot of ConArg, showing the 70th conflict-free extension found over the
considered interaction graph: the arguments belonging to the extension are highlighted
in gray

To practically develop and test our model, we also adopted JUNG [22], a soft-
ware library for the modeling, generation, analysis and visualization of graphs.
We suppose that interaction graphs, where nodes are arguments and edges are
attacks (see Sec. 2), represent in this case a kind of social network and conse-
quently show the related small-world properties [24]. A practical example can
be the study of discussion fora, where the users post their arguments that can
attack other users’ arguments [24,17].

Therefore, for the following testsweuse theBarabasiAlbertGenerator class [22,3],
which is an evolving small-world randomgraph generator.At each time step, a new
vertex is created and is connected to existing vertices according to the principle
of ”preferential attachment”, whereby vertices with higher degree have a higher
probability of being selected for attachment. At a given step, the probability p of
creating an edge between an existing vertex v and the newly added vertex is p =
(degree(v)+ 1)/(|E|+ |V |). |E| and |V | are, respectively, the number of edges and
vertices currently in the network (counting neither the new vertex nor the other
edges that are being attached to it). An example of such random graphs with 40
nodes is shown in Fig. 4.

In the first tests we use a Depth First Search (DFS) algorithm [19,25]: this
algorithm searches for a possible solution by organizing the search space as a
search tree. In every node of this tree a value is assigned to a domain variable
and a decision whether the node will be extended or the search will be cut in
this node is made. The search is cut if the assignment to the selected domain

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 107

Fig. 3. A screenshot of ConArg, showing the only stable extension over an interaction
graph: the arguments in the extension are {a4, a9, a10, a11}

variable does not fulfill all constraints. Each time during the search, we select
the variable which has most constraints assigned to it and we assign to it a
random value from its current domain: we use MostConstrainedStatic() as the
variable selection method and IndomainSimpleRandom() as the value selection
method, offered by JaCoP. Moreover, we set a timeout of 180 sec. to interrupt
the search procedure and to report the number of solutions found only in that
interval; we run our experiments over 4 different sets of random graphs with 10,
40, 60 and 100 nodes. The performance in Tab. 1 reports the average results for
each set consisting in 5 different random graphs each. Each row in Tab. 1 shows
the number of nodes and edges for the graphs and the average number of found
conflict-free, admissible, complete and stable extensions; the time is measured
in milliseconds.

Table 1. The test small-world network generated with JUNG [22] and the correspond-
ing statistics; time is in milliseconds

Nodes Edges Conf-free (time) Admissible (time) Compl. (time) Stable (time)

10 23 73 (317) 32 (307) 29 (99) 1 (161)

40 142 421.697 (�3min) 30.720 (3.193) 3.108 (938) 1 (64)

60 240 320.828 (�3min) 320.466 (�3min) 3.104 (1.035) 2 (98)

100 451 219.194 (�3min) 220.528 (�3min) 377.610 (�3min) 1 (112)

108 S. Bistarelli and F. Santini

Fig. 4. A small-world network with 40 nodes generated with JUNG by using the
BarabasiAlbertGenerator class [22,3]

The implementation easily finds all the admissible extensions up to 40 nodes
and complete extensions (which do not scale between 40 and 60 nodes) up to 60
nodes. Stable extensions, due to the characteristics of this kind of small-world
network (i.e., Barabasi [3]), are very few. The main problem is represented by
finding all the conflict-free extensions, since we experienced problems already
with 40 nodes: in fact, they represent the “less” constrained extension w.r.t. the
others and, therefore, we have a large number of them. However, we remind that
an AF contains at most 2|Args| extensions, considering all the possible subsets
of Args, thus the problem explodes very quickly.

However, the constraint framework comes with different performant solving
techniques: to show how the performance can be improved, we also used a partial
method, the Limited Discrepancy Search (LDS), which is a kind of Depth First
Search procedure adopting the method proposed in [18]. If a given number of
different decisions along a search path is exhausted, then backtracking is initi-
ated [19,18]. In Tab. 2 we show the improved results only for conflict-free and
admissible extensions. With this method we can find up to five times more the
number of extensions w.r.t. DFS, except for conflict-free extensions for graphs
with 100 nodes: in this case the number of extensions is so huge that the LDS
method performs as plain DFS within 3 minutes.

In order to study our implementation on networks with distinct properties,
we have repeated the same tests over a different kind of small-world network,
the KleinbergSmallWorldGenerator [19]. In this is graph generator, the model is
an m × n (optionally toroidal) lattice. Each node u has four local connections,
one to each of its neighbors, and in addition one long range connection to some
node v, where v is chosen randomly according to probability proportional to dα

where d is the lattice distance between u and v and α is the clustering exponent.
An example of such graph with 36 nodes is shown in Fig. 5.

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 109

Table 2. The test small-world network generated with JUNG [22] and the correspond-
ing statistics by using the LDS search [18]: time is in milliseconds

Nodes LDS n Conf-free (time) Admissible (time)
40 30 2.455.079 (�3min) 30.720 (3.120)
60 40 1.716.880 (�3min) 1.562.289 (�3min)
100 451 215.362 (�3min) 843.927 (�3min)

Fig. 5. A small-world network with 36 nodes generated with JUNG by using the Klein-
bergSmallWorldGenerator class [22,3]

In Tab. 3 we report the performance collected with the same methodology as
for Tab 1. The higher number of found stable extensions w.r.t. complete ones in
case of 100 nodes can be justified with the fact that stable extensions are more
constrained and therefore they are easier to find within the timeout of the search
procedure (i.e. still 180 sec.).

The performance in this section have been collected using a MacBook with
2.4Ghz Core Duo and 4Gb 1067Mhz DDR3 of RAM. Notice that the coali-
tion structure generation problem is extremely challenging due to the number
of possible solutions that need to be examined. Other works in literature, find-
ing different kinds of constrained (and optimized according to some criteria)
coalitions are usually tested over networks of 15-30 nodes [23].

6 Hard Problems Solved with ConArg

In this section we propose some hard problems related to AFs; in particular, on
finding preferred extensions and weighted grounded extensions. Then we show
how to implement the corresponding constraints in JaCoP.

110 S. Bistarelli and F. Santini

Table 3. The test small-world network generated with JUNG [22] and the correspond-
ing statistics: time is in milliseconds

Nodes Edges Conf-free (time) Admissible (time) Compl. (time) Stable (time)

9 45 22 (83) 12 (71) 8 (80) 6 (73)

36 180 411.317 (121.371) 5.1412 (8.511) 525 (1.249) 449 (717)

64 320 290.910 (�3min) 292.480 (�3min) 92.725 (134.896) 63.878 (15.601)

100 500 219.194 (�3min) 215.273 (�3min) 49.787 (�3min) 58.728 (�3min)

Preferred Extensions. The first interesting problem is determining whether a set
of arguments is a preferred extension, which is a co-NP-complete [5] problem.
Since a preferred extension S∗ is a maximal (w.r.t. set inclusion) admissible
subset of Args (see Sec. 2), we can implement the search by finding an admissible
extension S′ such that S∗ ⊂ S′; before we check if S∗ is at least admissible. If S′

exists, then S∗ is not a preferred extension, otherwise it is. The problem can be
solved by assigning to 1 the variables representing the arguments in S∗, given
as the input of the decidability problem. This ensures that the search procedure
will try to find a superset of S∗. As we meet a S′ solution during the search
that includes the input set, then we can say that S∗ is not a preferred extension,
otherwise, it is.

Weighted Grounded Extensions. As shown in [15], while the the problem of find-
ing the weighted version of the classical extensions (e.g. stable or admissible) is
not computationally harder than the original problem, there are some important
problems related to weighted grounded extensions (wge) that are very difficult to
solve. The weighted AFs and the concept of inconsistency budget β have been
introduced in Sec. 2. In ConArg we are able to find all the β-grounded exten-
sions given a random small-world interaction graph, by selecting also the desired
amount for the β budget.

With ConArg we can also solve some hard problems proposed in [15], which
are related to β grounded extensions. We now define one of these problems in
Prop. 2, and then we describe how ConArg models β-grounded extensions and
solves the problem Prop. 2 with constraints.

Proposition 2 ([15]). Given a weighted argument system 〈X,A,w〉, an in-
consistency budget β and argument a ∈ X, the problem of checking whether
∃S ∈ wge(X,A,w, β) such that a ∈ S is NP-complete.

Implementation in ConArg. To compute all the weighted grounded extensions,
first of all we need to extend our representation to include weighted constraints,
as defined in Sec. 3. The weighted constraints represent the costs associated to
the attacks among the arguments in weighted AFs. To do so, we need to redefine
the conflict-free constraints as proposed also in [8], thus leading to a weighted
AF as defined in Sec. 2, i.e. 〈Args, R, w〉: if w(R(ai, aj)) = s is in the graph we
need assign a s consistency budget to the solution that includes both ai and aj in
the considered conflict-free extension, that is (ai = 1∧aj = 1) = s. For the other

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 111

possible assignment of the variables we have (a = 0 ∧ b = 1) = 0, (a = 1 ∧ b =
0) = 0 and (a = 0 ∧ b = 0) = 0, since these assignments are permitted with
no cost also in the classical semantics: in these cases we are choosing only one
argument between the two (or none of the two) and thus, we have no conflict.

The easy way (if memory is not an issue) is to use ExtensionalConflict con-
straints [19]. In our implementation we can specify, for example, an assignment
[1, 1, 10] for three variables: the first two values states that if we take a1 and
a2 in the same extension (i.e. a1 = 1 and a2 = 1), then the cost to be paid is
represented by the third value (i.e. 10). In our model, this cost represents the
cost associated to the attack between a1 and a2.

Since with this representation we need to specify different costs for any assign-
ment of the considered variables, in general this extensional form could cause
the system to run out of memory. However, for the weighted AF case it is easy
and not memory-consuming to express all the costs of attacks in this way, since
the variables can be assigned only to 0,1 to represent the fact an argument is
taken into the extension or not; therefore, there are only four cases to define for
each attack. In the following piece of JaCoP code we show how to fully express
a constraint that defines an attack with cost 10 between a1 and a2.

store.impose(new ExtensionalConflictVA(new IntVar[]{a1, a2, cost},
new int[][]

{{1, 1, 10},
{0, 1, 0},
{1, 0, 0},
{0, 0, 0}}));

Therefore, to check Prop. 2 we impose a = 1 (i.e. a must be present in the
extension) and we have also to constrain the sum of the β inconsistency budget
to be not worse than the given β (i.e. cost ≤ β). As soon as we find a β-grounded
extension containing a, we can (successfully) stop the search.

ConArg can also solve the following hard problems defined in [15]:

Proposition 3 ([15]). Given a weighted argument system 〈X,A,w〉, an incon-
sistency budget β and an argument a ∈ X, the problem of checking whether,
∀Y ∈ wge(X,A,w, β), we have a ∈ Y is co-NP-complete.

Proposition 4 ([15]). Given a weighted argument system 〈X,A,w〉, a set of
arguments S ⊆ X and an inconsistency budget β, checking whether β is minimal
w.r.t. 〈X,A,w〉 and S is co-NP-complete.

To check Prop. 3 we can impose a constraint on the inconsistency budget to be
not worse than the given β (i.e. cost ≤ β), and then we solve the problem with
a self-implemented solution listener [19] (a plug-in in JaCoP that is called by
search when a solution is found) that exits from the search when a �∈ X , that is
when the given a does not belong to a solution. In this case we can reply that a
does not belong to every solution with a β inconsistency budget.

112 S. Bistarelli and F. Santini

To solve the problem expressed by Prop. 4, we simply solve the CSP by
minimizing cost and then to check if the found solution(s) have a cost value
equal to (or less than) the desired β inconsistency budget. JaCoP offers methods
for finding a solution that minimizes a given cost function. A very simple way is
to find all the solutions by invoking the following method.

IntVar cost;

...

boolean result = label.labeling(store, select, cost);

In Fig. 6 we show a screenshot of the ConArg application: in this case, we
show the solution of the search of all the weighted grounded extensions [15]
over the interaction graph shown in Fig. 6. The same example with a bud-
get β of 3 is proposed also in [15]. ConArg finds 4 different β-grounded
extensions: {{∅}, {a0, a1, a3, a5}, {a2, a4, a6, a7}, {a0, a1, a3, a4, a6, a7}}, respec-
tively obtained by removing no attacks (the ∅ case) and, for the other three so-
lutions, by removing the attacks (a4, a3), (a3, a4) and both {(a4, a3), (a3, a4)}. In
particular, Fig. 6 shows the second solution, i.e. {a0, a1, a3, a5}, obtained by re-
moving the attack (a4, a3) with a weight of 2. The corresponding edge in Fig. 6 is
dotted.

Fig. 6. An example of a β-grounded extension, with β = 3, obtained by removing the
attack with cost 2 from a4 to a3. The same interaction graph is given in [15].

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 113

7 Related Work

In this work we propose ConArg, a constraint-based tool as an ideal framework
where to solve (weighted) AFs. ConArg [7,9] can find all the classical extensions
(see Sec. 4) and hard problems related to weighted AFs (as shown in Sec. 6).

In [15], one of the main inspiration sources for this work, no solving mechanism
is proposed to solve the problems presented in the paper: the focus of the authors
is mainly in defining the computationally hard problems and proposing their
complexity proofs. We considered constraint programming techniques because
they can tackle this complexity in practice.

In [5] the authors associates to each subset S of arguments a formula in
propositional logic; then, S is an extension under a given semantics if and only
if the formula is satisfiable (i.e. they solve the problem with SAT [11]). An
extensive survey of the difference between SAT and CP can be found in [11]:
summarizing, CP is more expressive for the modeling phase in order to find
more complex semantics (e.g. grounded or semi-stable [12] ones) and further
user-defined constraints on classical semantics [13]. In addition, in CP the user
has the possibility to inform the solver about problem specific information and
then to appropriately tune it, while in SAT there is usually little room and
need for this parametrization. The modeling in [5] does not include preferred,
grounded or weighted extensions [8,15]; furthermore, the encoding presented
in [5] has no practical implementation and performance tests.

In a very recent paper [2], the authors present how to encode AFs as CSPs
too; they show how to represent preferences over arguments as a (partial or to-
tal) preorder. In this work, and also in the past ones [6,8], we choose to model
quantitative preferences instead of qualitative ones, even if qualitative prefer-
ences can be clearly cast also in our semiring-based framework. Moreover, while
in [6] some of the authors of this paper model the preferences over arguments,
in this paper we associate weights with attacks instead, as proposed in [8,15]. In
addition to [2], we provide a practical implementation of the constraint modeling
(in JaCoP [19]) and performance tests.

The are some frameworks based on Logic Programming-like languages. For
example, the system ASPARTIX [16] is a tool for computing acceptable exten-
sions for a broad range of formalizations of Dung’s argumentation framework
and generalizations thereof, e.g. value-based AFs [4] or preference-based [1]. AS-
PARTIX relies on a fixed disjunctive datalog program which takes an instance
of an argumentation framework as input, and uses the answer-set solver DLV
for computing the type of extension specified by the user. However, ASPARTIX
does not solve any quantitative argumentation case, as well as other Answer
Set Programming systems [21]. As far as we know, all these implemented sys-
tems are not tested on large interaction graphs as we do in this paper, thus it
is not possible to have an idea on how these systems scale over the number of
arguments (for example).

In [6] the authors have proposed a semiring-based constraint framework to
model AFs with weights on arguments, i.e. withe the nodes of the interaction
graph. In [8] the authors have extended [6] in order to solve over-constrained

114 S. Bistarelli and F. Santini

weighted AF problems, where weights are instead associated with arcs and rep-
resent the cost of the attack between two arguments. to relax the notion of
conflict-free extensions to α-conflict-free ones (and also for the other extensions
of Dung), in order to include in the same set also attacking arguments, whose
attack costs are not worse than a threshold α.

In [10] the authors extend the classical AFs [14] in order to deal with coali-
tions of arguments. The initial set of arguments is partitioned into subsets, or
coalitions. Each coalition represents a different line of thought, but all the coali-
tions show the same property inherited by Dung, e.g. all the coalitions in the
partition are admissible (or conflict-free, complete, stable). Also in [10] JaCoP
is the tool used to find the coalitions of arguments.

8 Conclusions and Future Work

In the paper we have tested how Dung’s classical extensions (conflict-free, ad-
missible, complete and stable ones) [14] can be found by using a constraint-based
tool we named ConArg [7,9]. We have presented the mapping from AFs to CSPs
implemented in ConArg and solved the obtained CSP with JaCoP libraries [19].
We have proposed an unifying computational framework with strong mathemat-
ical foundations and solving techniques.

Moreover, we have tested ConArg over two different kinds of small-world
networks and we have reported the performance in Sec. 5. The performance show
the efficiency of our framework and the paper proposes the first computational
tests of Dung’s AFs applied to interaction graphs with small-world properties.
The generation of coalitions given a set of entities and their relationships (in this
case according to the constraints defined by Dung) is a challenging problem in
literature, due to the rapid explosion of the solutions [23]. We used small-world
networks in order to study the possible application of ConArg over real-world
cases with several arguments and attacks, as, for example, in discussion fora
or in social networks: the relationships in this kind of graphs show small-world
properties [24,17,3].

As a further result we have shown how to define and program in ConArg
the constraints to model and solve hard problems related to AFs (e.g. the pre-
ferred extension) and weighted AFs, as, for example, the problem of finding
the weighted ground extensions presented in [15]. Constraint solving techniques
prove to be able to deal with large scale problems, even if the treated problems
are difficult [25].

For the future we have many open issues. First of all, we would like to investi-
gate the properties of interaction graphs, in order to reproduce the tests we have
presented in this paper on more appropriate graphs (not randomly generated).
In particular we would like to find the small-world properties in real interaction
graphs. Moreover, we would like to compare the performance with other sys-
tems, as ASPARTIX [16]. To do so, we would like to find common benchmarks
with the same properties in order to test the two systems on the same different
problems.

Modeling and Solving AFs with a Constraint-Based Tool: ConArg 115

A further intent is to optimize the performance in order to speed up the search
of conflict-free and admissible extensions. We would like to further investigate
the search plug-ins provided by JaCoP: the search-plugin is an object, which is
informed about the current state of the search and may influence the behavior
of the search [19]. Moreover, we would like to directly program ad-hoc methods
that can improve the performance during the search in the JaCoP solver.

At last, we would like to extend ConArg in order to be able to solve other
kinds of extensions, as the semi-stable one [12], and also the coalition exten-
sion presented in [10]. Moreover, we can easily extend ConArg to include also
user-defined constraint [13], as “extensions must contain argument a when they
contain b” or “extensions must not contain one of c or d when they contain a
but do not contain b”.

Acknowledgements. We would like to thank the Davide Diosono, Valerio
Egidi and Francesco Vicino, who developed the first version of ConArg as the
final project of the exam “Constraint Systems”, for their Master’s degree in
Computer Science at the University of Perugia.

References

1. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumen-
tation frameworks. J. Autom. Reasoning 29(2), 125–169 (2002)

2. Amgoud, L., Devred, C.: Argumentation Frameworks as Constraint Satisfaction
Problems. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp.
110–122. Springer, Heidelberg (2011)

3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

4. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

5. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Work-
shop on Non-Monotonic Reasoning, pp. 59–64 (2004)

6. Bistarelli, S., Pirolandi, D., Santini, F.: Solving Weighted Argumentation Frame-
works with Soft Constraints. In: Larrosa, J., O’Sullivan, B. (eds.) CSCLP 2009.
LNCS, vol. 6384, pp. 1–18. Springer, Heidelberg (2011)

7. Bistarelli, S., Santini, F.: ConArg: ARGumentation with CONstraint,
http://www.dmi.unipg.it/francesco.santini/argumentation/conarg.zip

8. Bistarelli, S., Santini, F.: A common computational framework for semiring-based
argumentation systems. In: ECAI 2010 - 19th European Conference on Artificial
Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 131–
136. IOS Press (2010)

9. Bistarelli, S., Santini, F.: Conarg: A constraint-based computational framework
for argumentation systems. In: 23rd IEEE International Conference on Tools with
Artificial Intelligence. IEEE (to appear 2011)

10. Bistarelli, S., Campli, P., Santini, F.: Finding partitions of arguments with Dung’s
properties via SCSPs. In: ACM Symposium on Applied Computing (SAC), pp.
913–919. ACM (2011)

11. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: A comparative survey. ACM Comput. Surv., 38 (December 2006)

http://www.dmi.unipg.it/francesco.santini/argumentation/conarg.zip

116 S. Bistarelli and F. Santini

12. Caminada, M.: Semi-stable semantics. In: Computational Models of Argument:
Proceedings of COMMA 2006. Frontiers in Artificial Intelligence and Applications,
vol. 144, pp. 121–130. IOS Press (2006)

13. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frame-
works. In: Knowledge Representation and Reasoning (KR), pp. 112–122. AAAI
Press (2006)

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

15. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency
tolerance in weighted argument systems. In: Conf. on Autonomous Agents and
Multiagent Systems, pp. 851–858. IFAAMS (2009)

16. Egly, U., Alice Gaggl, S., Woltran, S.: ASPARTIX: Implementing Argumentation
Frameworks using Answer-Set Programming. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008)

17. Gordon, T.F., Karacapilidis, N.I.: The zeno argumentation framework. KI 13(3),
20–29 (1999)

18. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1), pp. 607–
615 (1995)

19. Kuchcinski, K., Szymanek, R.: Jacop - java constraint programming solver (2001),
http://jacop.osolpro.com/

20. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. In-
tell. 173(9-10), 901–934 (2009)

21. Nieves, J.C., Cortés, U., Osorio, M.: Possibilistic-based argumentation: An answer
set programming approach. In: Mexican International Conference on Computer
Science(ENC), pp. 249–260. IEEE Computer Society (2008)

22. O’Madadhain, J., Fisher, D., White, S., Boey, Y.: The JUNG (Java Universal
Network/Graph) framework. Technical report, UC Irvine (2003)

23. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algo-
rithm for optimal coalition structure generation. J. Artif. Int. Res. 34, 521–567
(2009)

24. Ravid, G., Rafaeli, S.: Asynchronous discussion groups as small world and scale
free networks. First Monday 9(9) (2004)

25. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

http://jacop.osolpro.com/

Resource Boundedness and Argumentation

Nicolás D. Rotstein, Nir Oren, and Timothy J. Norman

dot.rural Digital Economy Hub,
University of Aberdeen, United Kingdom

{nico.rotstein,n.oren,t.j.norman}@abdn.ac.uk

Abstract. In this paper we extend the traditional Dung argumentation framework
with cardinality constraints over the set of warranted arguments. This results in
a new definition for argumentation semantics wherein arguments within an ex-
tension are both in some sense consistent and compliant with the constraints im-
posed on the system. After discussing the theoretical aspects of such a resource-
bounded argumentation framework we describe its utility via an application to a
concrete application domain: the scheduling of demand responsive transport.

1 Introduction

A common subthread of recent work in argumentation has concentrated on applying
abstract argumentation semantics to problems from other domains. Examples of such
work include addressing normative conflict [15], trust [14], practical reasoning [3],
amongst others. In this paper, we follow this tradition, and apply ideas from argumen-
tation theory to the domain of demand responsive transport (DRT) [2]. This domain
(described in more detail in Section 4) can be seen as an instantiation of a more gen-
eral scheduling problem. Here, a set of passengers with certain requirements must be
allocated to a set of vehicles, with each vehicle able to contain only a fixed number of
passengers and traverse only a certain route during a single period of time. Now the se-
mantics for abstract argument frameworks might allow us to identify some alternatives,
but such semantics do not take the resource bounds (such as a vehicle being able to
hold only a certain number of passengers) of the domain into account. This limitation
suggests the possibility of enhancing Dung’s argumentation framework [11] to cater for
such resource bounds, and this paper investigates this process.

We modify Dung’s seminal argument framework (AF) with the addition of con-
straints over different properties of arguments. For example, as we discuss in more
depth in Section 4, we can associate a possible trip for a passenger with an argument.
Now, if different passengers have different weights, and different vehicles have differ-
ent maximum loads, we can constrain the legal combinations of trips based on the total
weights the vehicles would have to carry. This constraint depends on a relatively com-
plex attribute associated with an argument, which could be interpreted as consumption
of resources. Taking this into account we then place some sort of limit (e.g., less than,
equal to or greater than) over the total number of arguments that can appear within an
extension.

The remainder of this paper is structured as follows: we begin with Section 2 explain-
ing why traditional AFs are ill-suited for representing resource bounds, in Section 3 we

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 117–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 N.D. Rotstein, N. Oren, and T.J. Norman

formalise the notion of a resource-bounded argumentation framework (RAF), and then
describe two possible semantics of such argumentation frameworks. Section 4 then ex-
amines our application domain in more detail, and finally we discuss related work and
future extensions to our current approach in Section 5, before concluding in Section 6.

2 Resource Boundedness and Traditional Conflicts

Constraints and resource bounds add a new source of conflict to arguments which is
not adequately captured by standard Dung argumentation frameworks. In order to il-
lustrate this assertion, let us assume the existence of two undefeated arguments a1, a2

within some argument framework. Since both are undefeated, most semantics would
have them warranted. Now consider the situation where each of these arguments repre-
sent the use of some resource, and only a single instance of this resource is available.
This additional constraint does not make a1 or a2 any less acceptable but simply states
that both arguments cannot be warranted together. The simplest representation for this
situation is a mutual defeat. However, not every RBness1 situation can be modelled with
such simplicity.

Now consider the case of three undefeated arguments a1, a2, a3 requiring resource
r in order to be applicable. Again, any semantics would have these three arguments
warranted. Assume that there are 2 available instances (or tokens) of r, and that the
RB on r requires maximising its consumption; hence, exactly two of these arguments
should be warranted together. One possible approach to representing this scenario util-
ising the previous idea is to set a mutual defeat between every pair of arguments, as
shown in Figure 1(a). In this case, the preferred semantics would yield the follow-
ing set of extensions: {{a1}, {a2}, {a3}}. Intuitively, the desired set of extensions is
{{a1, a2}, {a2, a3}, {a1, a3}}, i.e., every combination of three arguments with no repeti-
tion, taken two at a time. This indicates that there are two problems that must be solved:
devising a framework yielding the desired set of extensions, and dealing with the com-
binatorial explosion brought about by the construction of this set. This combinatorial
explosion should be avoided both in the representation, as well as in the computation of
warranted arguments.

a1 �� �� a2��

����
��
�

a3

��

�������

a1 ∧ a2 �� �� a1 ∧ a3��

		��
��

�

a2 ∧ a3

�������

(a) (b)

Fig. 1. (a) Three arguments, two tokens (b) Clusters of arguments

A potential solution for the representation problem generates a combinatorial prob-
lem: the creation of clusters of arguments attacking one another, as depicted in

1 “RBness” will be used as the short form for “resource boundedness”.

Resource Boundedness and Argumentation 119

Figure 1(b). For n arguments competing for m (m < n) tokens of the same resource,
the amount of clusters is n!

m!(n−m)! , which grows factorially. This is applicable to every
set of arguments in the framework that is involved in RBness.

3 The Resource-Bounded Argumentation Framework

There is a need to add a new element to the argumentation framework to best repre-
sent the kind of conflicts brought by RBs, i.e., conflicts at the level of extensions. RBs
indicate that certain arguments, competing for a certain resource, cannot be warranted
together. This resource boundedness relation will be a new element in the new frame-
work we are proposing.

Definition 1 (Resource-Bounded Argumentation Framework (RAF))
A RAF is a tuple 〈A, D, R〉, where A is a set of arguments, D ⊆ A × A is the defeat
relation over arguments2, and R ⊆ 2A × f is the resource boundedness relation over
arguments, where f : 2A → {true, false} is a boolean function.

We refer to elements of R, of the form (ρ, f) as resource bounds, abbreviated as
RB. Here, ρ is a set of arguments, and f is the boolean function found in the resource
boundedness relation.

The RB relation could be also represented with a single boolean function. We have
chosen to explicitly specify each set of arguments along with its particular bounding
function for the sake of clarity. Both approaches are equivalent.

The previous example concerning three arguments competing for two tokens of the
same resource can now be represented by the RAF 〈{a1, a2, a3}, {}, {({a1, a2, a3}, Σ =
2)}〉, as illustrated in Figure 2, where the sum symbol is a shortcut for the constraint
over the amount of tokens allowed. Hence, f({a1, a2, a3}) ≡

∑
(a1, a2, a3) = 2 ≡ false

and the RB needs to be taken into account.
In order to simplify our presentation, in the remainder of the paper we will only

consider one type of resource bound, which operates over the summation of the number
of arguments appearing in the extension and referred to by the resource bound. While
we refer only to this type of RB, our results are intended to be applicable to any type of
resource bound of the form described in the definition above.

a1 a2 a3

Σ = 2

Fig. 2. Three arguments and a resource bound

Definition 2 (RB Compliance). A set of arguments E complies (or is compliant) with
an RB (ρ, f) iff f(E ∩ ρ) = true. Given a set of RBs R, if E complies with every RB in
R, we say that E complies (or is compliant) with R.

2 An argument a defeating an argument b will be written as a → b.

120 N.D. Rotstein, N. Oren, and T.J. Norman

The combinatorial explosion over the representation is now solved3, as there is no
need to explicitly state all the sets of arguments compliant with all RBs, as illustrated in
Figure 1(b). However, the semantic problem of how to compute extensions compliant
with all RBs still remains. The rest of this section is focused on this, providing two
different approaches.

RBs may not apply to all arguments found in a RAF. Arguments unaffected by RBs
are referred to as unbounded arguments.

Definition 3 (Unbounded Argument). An argument a is unbounded wrt. a set of RBs
R iff a /∈ ρ, for any (ρ, ·) ∈ R.

Before introducing the notion of a resource-bounded extension we need the definition
for an admissible set of arguments. In this article, we restrict the study to the admissi-
bility based semantics, and concentrate on the preferred semantics.

Definition 4 (Acceptable Arg., Admissible Set of Args., Preferred Extension [11]).
Given an AF (A, attacks), two arguments a, b ∈ A and S ⊆ A:

1. a is attacked by S iff there is an argument in S attacking a;
2. a is acceptable wrt. S iff for each b: if b attacks a then b is attacked by S.
3. A conflict-free set of args. S is admissible iff each arg. in S is acceptable wrt. S.
4. A maximal admissible set (wrt. ⊆) S is the preferred extension of (A, attacks).

Definition 5 (AF Extension). Given a RAF F = 〈A, D, R〉 and an argumentation
semantics S, a set of arguments Eaf ⊆ A is an AF extension of F following S iff Eaf

is an extension of the associated AF 〈A, D〉 following S.

3.1 An Approach for RB-Compliant Extensions: Partitioning

Once the set of extensions of a framework has been computed, a straightforward so-
lution for making extensions compliant with RBs is to partition them. Next, we define
how such partitioning should be performed, and what the set of extensions looks like.

Definition 6 (RB Extension by Partitioning). Let F = 〈A, D, R〉 be a RAF and Eaf ,
an AF extension of F following argumentation semantics S. An RB extension Erb ⊆
Eaf for F following S is a set of arguments such that all of the following hold:

1. Erb complies with R
2. Erb is admissible
3. if a ∈ Eaf and a is unbounded wrt. R, then a ∈ Erb

An RB extension denotes a set of arguments that is warranted in terms of the chosen
semantics while being compliant with all RBs. Note that there is no maximality require-
ment for these extensions, as we only rely on compliance with RBs. Sometimes, a set
of arguments qualifying as an RB extension could have several subsets that are also RB
extensions, which differs with traditional argumentation semantics. However, as stated

3 As long as representing f does not require an exponential amount of space wrt. the set of
arguments, e.g., by listing all the valid subsets.

Resource Boundedness and Argumentation 121

by condition (3), every unbounded argument in an AF extension Eaf must belong to an
RB extension Erb , and Erb ⊆ Eaf . This condition ensures some sort of partial max-
imality, i.e., maximality only for those arguments that are not actually constrained by
any resource limitation.

Consider the RAF depicted in Figure 2, changing the RB to Σ ≤ 2. In this case,
under the preferred semantics, every set of two arguments would be an RB extension,
but also every singleton set, and even the empty set. All of these sets are admissible
and compliant with the RB. Adding an unbounded argument a4 to the example would
make a4 appear in all the RB extensions. Choosing one of these extensions is, as always,
dependent on the application domain.

Returning to traditional AFs, an informal interpretation of their semantics is that an
extension describes a maximal set of arguments that can be believed in despite hav-
ing information in opposition. Hence, sometimes we will be interested in maximal RB
extensions, with no regard to their subsets. Again, this is totally dependent on the ap-
plication domain. Another question worth asking is whether there is a relation between
the number of AF extensions and the number of RB extensions of a given RAF. The an-
swer is that there is not. For instance, the RAF 〈{a}, {}, {({a}, Σ ≤ 1)}〉 has only one
AF extension: {a}, but two RB extensions: {{}, a}. On the other hand, if we consider
the RAF 〈{a, b}, {a → b}, {({a, b}, Σ = 2)}〉, it has one AF extension ({a}) but no
RB extensions. Furthermore, even when considering single-extension semantics (such
as the grounded semantics) the partitioning approach could yield multiple extensions.

Now it should be clear that there are some situations where no RB extension is com-
pliant with some resource bound. We refer to such a case as a resource bound truncated
RAF.

Definition 7 (RB Truncated RAF). Given a set of AF extensions X for a RAF F =
〈A, D, R〉 following argumentation semantics S and an RB ρ ∈ R, F is RB truncated
iff there is no E′ ⊆ E, E ∈ X such that E′ complies with ρ.

In other words, a RAF is RB truncated iff it has an empty set of RB extensions and a
non-empty set of AF extensions. A simple example of RB truncation is a RAF with an
argument a that is a member of all extensions and is the only one associated with an
RB wherein f = Σ ≥ 2 Such a RAF is truncated since the RB cannot be complied
with. Truncated RAFs yield no extensions, and can thus not be solved. An external
mechanism could be defined to discover the source of truncation, and even be used
as a tool to understand what constraints are preventing the framework from yielding
extensions. Dealing with truncated RAFs in this way is out of the scope of the current
paper. While RB truncated RAFs may occur, we can also guarantee the existence of
RB extensions in some cases, as formalised by the following proposition:

Proposition 1. Given a RAF F = 〈A, D, R〉 and an argum. semantics S, it holds that:

1. Eaf is both an AF extension and an RB extension for F following S iff Eaf complies
with R;

2. the set of AF extensions and RB extensions for F following S coincide iff every AF
extension for F following S complies with every R.

122 N.D. Rotstein, N. Oren, and T.J. Norman

Due to space constraints, we do not provide algorithms for computing RB extensions in
this paper. However, the following examples give some indication of this process. Here,
and in the rest of the paper, examples will utilise the preferred semantics, unless stated
otherwise.

Example 1. Consider the following RAF F1 = 〈A1, D1, R1〉, where A1 = {a, b, c},
D1 = {a → b, b → c}, and R1 = {({a, c}, Σ ≤ 1)}.

a �� b �� c

Σ ≤ 1

The only AF extension of F is {a, c}, which is not compliant with the RB Σ ≤ 1. The
subsets of this extension that verify Definition 6 are ∅ and {a}, since {c} is not defended
by its own set (i.e., is inadmissible) and thus does not meet condition (2).

Example 2. Let 〈A2, D2, R2〉 be a RAF, where A2 = {a, w, x, y, z}, D2 =
{x → y, y → x, z → w}, and R2 = {({a, z}, Σ ≤ 1), ({a, x, z}, Σ ≤ 2)}, repre-
senting that a and z require a resource whose only token has to be consumed, and a, x,
z require a resource with 2 tokens available. Figure 3 shows F2 along with the set of
preferred AF extensions {{a, x, z}, {a, y, z}}.

y
a

z
x

E1E2

∑≤2∑=1

w

Fig. 3. AF extensions and resource bounds in F2

Extension E1 = {a, x, z} cannot be taken as a whole due to RB Σ ≤ 2. Therefore,
the seven RB-compliant subsets are: E11 = {a, x}; E12 = {a, z}; E13 = {x, z}; E14 =
{a}, E15 = {x}, E16 = {z}, E17 = ∅. Note that some of these subsets are also tied
to RB Σ = 1. Those that do not contain a and/or z will not be RB extensions, namely,
E12, E15 and E17. Regarding extension E2 = {a, y, z}, the subsets complying with RB
Σ = 1 are E21 = {a, y}; E22 = {z, y}. Both comply with RB Σ ≤ 2. Finally, the set of
RB extensions is {{a}, {z}, {a, x}, {x, z}, {a, y}, {z, y}}. Maximal RB extensions wrt.
⊆ are shown in Figure 4.

The process of computing RB extensions can be seen to resemble a meta-argumenta-
tion process [5,7], up to one level. The difference between our approach and those based
on meta-argumentation is the nature of these meta-conflicts. In the RAF, these are not
traditional pairwise conflicts, but more complex structures relating sets of potentially
warranted arguments to the resources they require and their availability.

Resource Boundedness and Argumentation 123

y

a

z
x
E11E21

w
E12E22

Fig. 4. Maximal RB extensions considering resource bounds in F2

3.2 An Approach for RB-compliant Extensions: Modifying the RAF

There is an alternative for obtaining RB-compliant extensions. The previous approach
partitions an extension whenever it encounters RBs that it does not comply with. Once
every extension complies with all RBs, the process stops, and an appropriate criterion
should be used to choose which extension is taken. In this section we introduce a dif-
ferent method, which removes enough arguments in every extension in order to make
them compliant with all RBs, and we will show that this method can result in different
extensions than the approach described in Definition 6.

Now one question that arises is whether this method is intuitively correct. More
specifically, is it appropriate to remove arguments from an extension that have been
deemed as warranted by the argumentation semantics? In order to answer this question,
consider a framework with only one extension; every argument in that extension would
be sceptically warranted. Now assume that a subset of these warranted arguments is not
compliant with a certain RB, and that this situation could be resolved by removing some
of the (previously) warranted arguments. The absence of those arguments could lead to
other arguments becoming warranted. These newly warranted arguments could be seen
to be “sub-optimally warranted”. In some domains, accepting such arguments allows
one to obtain a solution where no solution would have otherwise been computable, and
we thus claim that there is a dependency on the application domain regarding whether
taking these options instead of the (discarded) best ones makes sense.

Example 3. Consider the RAF in Example 2, depicted in Figure 3. At least one ar-
gument has to be removed in order for the extensions to comply with R2. Note that
deleting z allows both RBs to be complied with. Now, since z no longer exists, argument
w becomes undefeated, thus it is included in both extensions. This is shown in Figure 5.

y
a

x E11E21
w

Fig. 5. Framework F2 after an RB-driven deletion

124 N.D. Rotstein, N. Oren, and T.J. Norman

If we compare extension E21 from Example 2 with extension E22 from Example 3, the
difference is the inclusion of argument w in E22. This occurred due to the modification
of the framework caused by withdrawing x, the sole defeater of w.

In most domains, it makes little sense to withdraw arguments at random. Instead,
some selection criteria, often based on preferences, can be used to identify which argu-
ments should be withdrawn.

Definition 8 (Selection Criterion). Given a set of arguments A, a selection criterion

 ⊂ A × A determines a total order over A. Argument a being preferred to argument
b is denoted as a
b.

Now given a resource bound that needs to be satisfied, these selection criteria can guide
us as to which arguments must be deleted in order to comply with the RB. We encapsu-
late this concept within the definition of an RB deletion, as follows.

Definition 9 (RB Deletion). Let F = 〈A, D, R〉 be a RAF and
, a selection criterion
over A. An RB deletion for a set of arguments γ wrt. an RB (ρ, f) ∈ R is a set of
arguments δ ⊆ ρ such that both of the following hold:

1. f(ρ ∩ γ \ δ) = true.
2. for every e ∈ δ and every f ∈ (ρ \ δ) it holds that f
e.

The first condition requires the set including those arguments that are both in γ and the
RB (i.e., in ρ), minus those in the RB deletion δ, to comply with the RB. The second
condition specifies that those arguments that are to be left out are the least preferred
wrt. the selection criterion. Note that unbounded arguments are never included into RB
deletions, as these are subsets of the RB set.

Since the selection criterion has to make a decision for every pair of arguments, an
RB deletion will leave out the least preferred arguments in the set in order to satisfy
some RB. However, there could be many RB deletions associated with each RB, and
thus a choice has to be made. For instance, consider the RB deletion for set {a, b} wrt.
RB ({a, b}, Σ ≤ 1), where a
b. The two valid RB deletions are {b} and {a, b}, as
both satisfy the RB. If we choose to delete the least number of arguments, we would
drop only b, the least preferred argument. The choice is up to the application domain.

We are now in a position to define how an RB extension can be computed through
RB deletions. Informally, given an extension of the underlying argument framework
wrt. some semantics, and a subset of R which this extension does not comply with, we
identify those RB deletions that, when applied to the original argument framework, will
allow all RBs to be complied with. We then compute the RB extension by creating a
new argumentation framework that does not contain those arguments found in the RB
deletions. This is formalised by the following definition.

Definition 10 (RB Extension by Deletions). Let F = 〈A, D, R〉 be a RAF. An RBD
extension Erbd for F following argumentation semantics S is an extension of the AF
〈A′, D′〉 following S, where:

1. A′ = A \ {δ | where δ is an RB deletion for an AF extension for F following S wrt.
an RB in R};

Resource Boundedness and Argumentation 125

2. D′ = {a → b ∈ D | a ∈ A′, b ∈ A′};
3. Erbd complies with R.

The process of computing RBD extensions can be seen as operating in two steps. First,
given an RB unaware solution (the AF extension), arguments that are not compliant with
the RBs are removed. Following this, the argumentation process is repeated in order to
discover new solutions. Deleting a warranted argument allows for the consideration
of those arguments that were defeated by it. Therefore, RBD extensions may include
arguments that were not present in any AF extension.

Now it is important to note that different combinations of RB deletions could yield
different RBD extensions, and our definition permits any of these combinations to be
applied. Thus a single RAF may yield multiple RBD extensions for each extension
computable from the original AF according to some semantics.

Example 4. Consider the RAF 〈{a, b}, {}, {({a, b}, Σ ≤ 2)}〉 and the selection cri-
terion a
b. The AF extension {a, b} is already compliant with the RB. However, the
possible RB deletions are: ∅, {b}, {a, b}. It is up to the application domain to choose
whether to maximise resource consumption, minimise it, or do something in between.

Example 5. Consider RAF F2 as in Example 3, with the selection criterion defined
as a
x
z. The least preferred argument in ({a, x, z}, Σ ≤ 2) is z and its deletion
renders both RB functions true. Hence, the only RB deletion is {z}. Finally, the RBD
extensions of F2 are the extensions of the AF 〈A′

2, D′
2〉, where A′

2 = {a, w, x, y} and
D′ = {y → x, x → y}.

The following example illustrates a situation where RB extensions and RBD extensions
can overlap.

Example 6. Consider the RAF 〈A6, D6, R6〉, as depicted in Figure 6. Set of arguments
{c, e} is not compliant with the RB Σ = 1. In the partitioning approach, extension
E = {b, c, e, f} should be split in two: E1 = {b, e, f} and E2 = {b, c, f}, but E2 does
not comply with the RB Σ > 1, nor does any subset, since the RB specifies a lower
bound. Hence the only RB extension is E1.

f

a

e Ed

b
c

∑≤1 ∑=1

∑>1

Fig. 6. RAF for Example 6

Regarding the approach by deletions, let assume the selection criterion establishes
that c is the least preferred argument within E. In this case, the resulting AF would
yield E1 again. On the other hand, if e were the least preferred argument and hence
removed, the resulting AF would yield the extension {b, c, d, f}.

126 N.D. Rotstein, N. Oren, and T.J. Norman

Finally, to illustrate the utility of RBD extensions, consider the following example,
which presents an RB truncated RAF that possesses a non-empty RBD extension.

Example 7. Consider the RAF F7 depicted in Figure 7. The only AF extension for
F7 is {a, c, d}. The partitioning approach would attempt to shrink that extension until
it gets RB-compliant subsets. Note that this is not possible, as there is no partition
compliant with RB Σ = 3.

a

e d

b

c∑≤1

∑=3

Fig. 7. RAF for Example 7

On the other hand, the approach by deletions would consider one of the RB deletions
{c} and {a, c}, given that both of them yield the RBD extension {b, d, e}, which is com-
pliant with both RBs. In this case, we could choose to perform a minimal RB deletion,
removing only c.

It is important to note that the application of one RB deletion, which deletes arguments
from the AF, can cause other RBs in the RAF to no longer be complied with, requiring
additional RB deletions over those previously applied in order to comply with an RB.
This suggests that the order in which RB deletions are applied is important when com-
puting extensions, and that an implemented system might have to utilise backtracking
if properties such as the maximality of an RBD extension are required.

As with the partitioning approach, there is no general relation between the cardinality
of the set of RBD extensions wrt. the set of AF extensions of a given RAF.

Proposition 2. Given a RAF F = 〈A, D, R〉 and an argum. semantics S, it holds that:

1. Eaf is both an AF extension and an RBD extension for F following S iff the empty
set is an RBD deletion for Eaf wrt. an RB in R;

2. the set of AF extensions and RBD extensions for F following S coincide iff the
empty set is an RB deletion for every AF extension for F following S wrt. every RB
in R.

Now, given a RAF, it could be the case that there is no RB deletion for one or more
members of its RB set R. We call such a RAF an RBD truncated RAF. However, a RAF
may not be truncated but still have no RBD extensions, as it is possible that a feasible
set of RB deletions does not exist.

Having formalised various concepts around the idea of resource bounded argumen-
tation, we now describe its use in the FITS project, wherein it is used to assess the
alternative solutions provided by a transport scheduler.

Resource Boundedness and Argumentation 127

4 The FITS Project: An Application for the RAF

The FITS project (standing for “flexible integrated transport services”) falls within the
Rural Digital Economy Hub (dot.rural4) agenda, funded by Research Councils UK.
FITS aims at providing a virtual transport marketplace to improve the existing connec-
tion between transport demand and supply in rural areas of the United Kingdom. The
engine of this system is argumentation-based.

Flexible transportation systems (FTS) provide services to users based on demand,
attempting to maximise ubiquitousness without compromising cost and quality. FTSs
involve several elements, namely: acquisition of data (passengers, traffic, environment,
fleet, etc.), evaluation of plausible options and journey planning. In this research the
main focus is set on assisting the decision making process of passengers when select-
ing transport mode and route, while taking into account the operators’ preferences,
who provide resources. The objective of this research is the implementation of an
argumentation-based expert system built upon a multi-agent system. Each passenger
would have an associated agent, in charge of collecting relevant data, either perma-
nently or triggered by trip requests. Similarly, agents will act on behalf of operators,
imposing their restrictions and preferences regarding the usage of vehicles.

The aim of this effort is not to emulate (or replace) already existing FTS solutions
for scheduling [2,8]. Instead, our approach looks to add value to the user’s choice,
taking the plausible options given as an output by some scheduler. We contend that the
nature of argumentation for decision making allows for a clear presentation of how the
process is carried out. Moreover, an interesting interface challenge lies in how to show
an incrementally complex argument graph backing the suggestions made by the system.

Including RBs into the system permits a more concise representation, while accu-
rately reflecting how the decision is being made. The following are the different ele-
ments that come into play in the FITS project domain:

– each possible journey for any passenger will constitute an argument;
– each sub-graph containing the alternatives for one passenger will be star-connected

with conflicts;
– defeat is determined upon conflict, relying on passengers’ preferences;
– the number of available seats in a given vehicle at a certain stop will determine a

resource bound;
– the selection criterion for arguments is designed to ensure that passengers with

fewer options get seats.

Additional RBs can also be taken into account, such as operator-side constraints con-
trolling the minimum number of seats or minimum revenue. However, these have not
yet been integrated into the system.

Our current focus involves how to determine the best journey for each passenger,
while taking into account other passengers through RBs. This means that passenger’s
choices are not always weighted in isolation; a global balance must be sought in or-
der to achieve a certain degree of fairness. We have implemented a prototype system,
which we are currently evaluating over randomly generated scenarios (maps, passengers

4 http://www.dotrural.ac.uk

http://www.dotrural.ac.uk

128 N.D. Rotstein, N. Oren, and T.J. Norman

and vehicles). The system computes possible journeys (i.e., arguments), conflicts, RBs,
and then makes a decision using the RBD approach on top of the preferred semantics.
Within FITS, individual passengers’ arguments associated with different journey op-
tions form separate subgraphs linked by RBs, and all RBs indicate a single upper bound
(representing seat availability within a vehicle). When an RB is not met, we choose to
maximise resource consumption, and therefore consider minimal RB deletions.

Figure 8 illustrates an argument graph generated by a sample scenario from our sys-
tem. Rectangles representing individual journeys (and thus arguments) contain a pas-
senger name, the journey’s total cost and distance, the sequence of stops, the sequence
of vehicles used and at which stops, and the passenger’s preferences. For example, ar-
gument (6) states that one of Ruth’s possible journeys has a cost of $52; a length of 86
kilometres; goes from s4 to s5 through s1 and s3, and is travelled by taking vehicles
v7 at s4 and then v5 at s1; finally, she has a preference for shorter trips. If distances
are equal, she looks for as few changes as possible, and if these are equal she looks to
minimise the trip’s cost. If multiple trips equally satisfy all these requirements, one of
them is randomly selected. Solid arrows within the graph indicate defeat based on pref-
erences, with two-way arrows linking equivalently preferred options. Elliptical nodes
indicate RBs due to seat restrictions; for instance, v5/s3(1) means that vehicle v5 at
stop s3 has only one seat available.

Treating Figure 8 as a standard AF, we see that trip (6) would appear in all preferred
extensions. This indicates that this trip is the most preferred one by Ruth. However, when
considering resource bounds, our system does not allow Ruth to undertake this trip. To
see why, consider, for example, the resource bound v5/s3(1), stating that vehicle 5 has
only one free seat at location s3. Utilising RBD extensions, our seat allocation strategy

4 / Ruth $53, 86km

by [s4,s1,s3,s5]

via [v1/s4,v5/s1]

prefs [dist,nchg,cost]

1 / Rob $15, 35km

by [s1,s3]

via [v2/s1]

prefs [nchg,dist,cost]

5 / Ruth $56, 86km

by [s4,s1,s3,s5]

via [v3/s4,v5/s1]

prefs [dist,nchg,cost]6 / Ruth $52, 86km

by [s4,s1,s3,s5]

via [v7/s4,v5/s1]

prefs [dist,nchg,cost] 7 / Hien $56, 173km

by [s1,s3,s5,s4]

via [v5/s1,v1/s5]

prefs [cost,nchg,dist]

2 / Rob $17, 35km

by [s1,s3]

via [v5/s1]

prefs [nchg,dist,cost]

v5/s3(1)

v5/s1(1)3 / Rob $15, 35km
by [s1,s3]
via [v7/s1]

prefs [nchg,dist,cost]

Fig. 8. Screenshot

Resource Boundedness and Argumentation 129

(allocating seats to passengers with fewer options) means that (7)
(6)5. Therefore, ar-
gument (7) will appear in the RBD extension, while argument (6) will not, meaning that
Hien will obtain this vehicle’s seat. This resource bound also means that arguments (4)
and (5) cannot appear in the RBD extension, and neither does argument (2). Since argu-
ments (1) and (3) are equally preferred, the system randomly allocates to Rob the trip
represented by argument (1). Within Figure 8, the different statuses of these arguments
is indicated by different colours and shadings.

5 Discussion and Future Work

As hinted at in Section 4, selection criteria can be used in the process of computing RBD
extensions, to provide us with certain desirable properties for those extensions. Such
properties could, for example, include minimising the number of arguments removed
from an extension, maximising the size of some (or the largest) extension, and so on.
Such properties have an analogy with the concept of minimal change in the area of
belief revision [1]. More specifically, since the RB deletion approach fundamentally
modifies the knowledge base, it is desirable to ensure that this change is performed
with the smallest possible representational impact.

One (computationally intensive) approach for minimising the representational im-
pact of RB deletions would involve considering all possible RB deletions, examining
the resultant extension/s, and selecting the one that meets our (domain specific) re-
quirements. As an example, consider yet another possible metric of minimal change:
preservation of arguments within an extension. Referring to Example 1, we see that
the AF extension {a, c} does not comply with RB Σ ≤ 1. There are three possible RB
deletions: {a, c}, {a}, {c}. The first and second options yield RBD extension {b}, while
the third one yields {a}. The latter is the one that best preserves the AF extension. By
having {c} as the least preferred extension wrt. the selection criterion, we could ensure
that the desired extension is obtained. One interesting piece of future work involves
determining the conditions required to guarantee that RBD extensions will meet some
representational impact requirements. One possible inspiration for this work might arise
from the recent interest in change over argumentation frameworks [4,6,17].

The formal properties of RAFs provide fertile ground for additional future work. For
example, it would be useful to identify the situations under which RB deletions exist
but would not yield an RBD extension. In the short term, our focus lies in investigating
whether a mapping exists between RAFs and traditional AFs. The propositions in this
paper identify some situations where such a mapping exists, and a more complex con-
version process, following the ideas of [16], has allowed us to map between RAFs and
Dung AFs in many situations. However, this mapping yields incorrect results in some
cases, and we intend to investigate this further.

Regarding related work, in [10] a constrained argumentation framework is pre-
sented. A propositional formula is added to the framework to place a constraint on
admissible sets of arguments. In contrast, we propose linking arguments directly to re-
source bounds, which is more natural and compact as a representation. They redefine
the grounded, preferred and stable semantics to make extensions compliant with the

5 The rest of the ordering determined by the selection criterion is not relevant for this example.

130 N.D. Rotstein, N. Oren, and T.J. Norman

constraint. The way in which the latter is done resembles our partitioning approach.
However, they do not present an alternative similar to our approach by deletions.

Within the argumentation domain, recent work on weighted argument frameworks
[12] bears some relation to our approach. Here, the authors define an abstract argument
framework that assigns different weights to attacks. An inconsistency budget permits
conflicts to exist within an extension only when the total weight of attacks is below this
budget. This can be viewed as a single type of constraint on attacks. In our current work
we constrain arguments, rather than attacks, and allow for arbitrary types of constraints.
We believe that there is no mapping between weighted frameworks and RAFs, unless
attacks are associated to resource consumption, but further theoretical investigation is
needed to verify this intuition. More generally, RBs within a RAF can be seen as a type
of constraint. Hence, we will study what is the relation behind RAFs and constraint
satisfaction problems [13] and constraint optimisation [9].

6 Conclusions

In this article we have presented a novel approach to formal argumentation that takes
into account limitation of resources. The introduction of resource bounds (RB) calls
for a redefinition on how to compute the set of warranted arguments. To this end, we
propose two different approaches: one of them considers partitions of pre-calculated
extensions; the other one considers the removal of those arguments that make extensions
not to be compliant with certain RBs.

Resource-bounded argumentation frameworks are based on Dung’s standard argu-
ment framework, but augment it by labelling arguments with additional parameters,
and placing constraints on the combinations of labels that are permitted to exist within
an extension. We concentrated on arguments with a single label consisting of the num-
ber 1, with our constraints requiring that the sum of these for some set of arguments to
be equal, less than, or greater than some value. Naturally, our formalism allows for the
implementation of any other constraint.

Finally, we detailed how RAFs can be used to attack an important real world prob-
lem, namely that of scheduling dynamic transport provision. We believe that RAFs are
applicable to a large variety of other domains where constraints exist, and can be used
to bring the strong reasoning processes found in argumentation theory to tackle such
problems, something which current work in argumentation has been unable to do.

Acknowledgments. The authors would like to thank Nagendra R. Velaga and John D.
Nelson (dot.rural Digital Economy Hub, University of Aberdeen) for their contribution
on the transportation domain application.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. The Journal of Symbolic Logic 50, 510–530 (1985)

2. Ambrosino, G., Nelson, J.D., Romanazzo, M.: Demand responsive transport services: To-
wards the flexible mobility agency. ENEA Publications (2004)

Resource Boundedness and Argumentation 131

3. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumentation using
action based alternating transition systems. Artif. Intell. 171(10-15), 855–874 (2007)

4. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonic-
ity results. In: COMMA, pp. 75–86 (2010)

5. Boella, G., Gabbay, D., van der Torre, L., Villata, S.: Meta-Argumentation Modelling I:
Methodology and Techniques. Studia Logica 93, 297–355 (2009)

6. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions:
Abstraction principles and the grounded extension. In: Sossai, C., Chemello, G. (eds.) EC-
SQARU 2009. LNCS, vol. 5590, pp. 107–118. Springer, Heidelberg (2009)

7. Boella, G., van der Torre, L., Villata, S.: On the acceptability of meta-arguments. In: IAT, pp.
259–262 (2009)

8. Brake, J., Mulley, C., Nelson, J.D., Wright, S.: Key lessons learned from recent experience
with flexible transport services. Transport Policy 14(6), 458–466 (2007)

9. Chua, L.O., Lin, G.N.: Non-linear optimization with constraints: A cook-book approach.
International Journal of Circuit Theory and Applications 11(2), 141–159 (1983)

10. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: KR,
pp. 112–122 (2006)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

12. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument
systems: Basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486
(2011)

13. Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag. 13, 32–44
(1992)

14. Matt, P.A., Morge, M., Toni, F.: Combining statistics and arguments to compute trust. In:
AAMAS, pp. 209–216 (2010)

15. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards a
Formalisation of Electronic Contracting Environments. In: Hübner, J.F., Matson, E., Boissier,
O., Dignum, V. (eds.) COIN@AAMAS 2008. LNCS, vol. 5428, pp. 156–171. Springer, Hei-
delberg (2009)

16. Oren, N., Reed, C., Luck, M.: Moving between argumentation frameworks. In: Computa-
tional Models of Argument, Proceedings of COMMA 2010, pp. 379–390 (2010)

17. Rotstein, N.D., Moguillansky, M., Falappa, M.A., Garcı́a, A.J., Simari, G.R.: Argument The-
ory Change: Revision Upon Warrant. In: COMMA, pp. 336–347 (2008)

An Empirical Study of a Deliberation Dialogue System

Elizabeth Black1 and Katie Bentley2

1 Intelligent Systems Group, Universiteit Utrecht, De Uithof, 3584 CC Utrecht, NL
lizblack@cs.uu.nl

2 Vascular Biology Lab, London Research Institute, Cancer Research UK, Lincoln’s Inn Fields,
WC2A 3LY, UK

katie.bentley@cancer.org.uk

Abstract. We present an empirical simulation-based study of the use of value-
based argumentation in two-party deliberation dialogues, investigating the impact
that argumentation can have on the quality of the outcome reached. Our simula-
tion allows us to vary the number of values, actions and arguments that appear in
the system; we investigate how the behaviour of the system changes as these pa-
rameters vary. This parameter sensitivity analysis tells us whether a value-based
deliberation dialogue system may be useful for a particular real-world applica-
tion. We measure the quality of the dialogue outcome (i.e. the action that the
agents agree to) against a global view of whether that action would be agreeable
to each agent if all of the agents’ knowledge were taken into account. We compare
the deliberation outcome with a simple consensus forming procedure (where no
arguments are exchanged). Our results show that the deliberation dialogue system
we present outperforms consensus forming.

ACM Category: I.2.11 Multiagent systems.

General terms: performance, experimentation.

Keywords: dialogue, value-based argumentation, simulation, agreement,
deliberation.

1 Introduction

There is little work on evaluating whether an argumentation-based approach to a prob-
lem is a good approach to take. Most works assume that the decision to use argumen-
tation has already been made and disregard the question of whether there is a better
approach to take. We present what we believe to be the first simulation-based study of
an argumentation-based deliberation dialogue system, which allows us to start address-
ing this question and allows us to investigate the effect of varying the parameters of the
system.

Simulation is an imperative next step for bridging the gap between argumentation
theory and real-world agent applications. Given the complexity of argumentation-based
dialogue systems, it is very hard to theoretically investigate their properties without
making many restrictive assumptions. In order to gain a full understanding of the be-
haviour of such systems, theoretical investigations need to be complemented with em-
pirical simulation-based studies. Simulation provides a unique opportunity to generate

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 132–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Empirical Study of a Deliberation Dialogue System 133

large, complex scenarios and analyse their results across thousands of iterations and
permutations.

There are few existing works that take a simulation approach to investigating the per-
formance of argumentation-based dialogue systems. Two notable examples are [1,2].
Each of these focus on a form of argumentation-based negotiation (ABN), where argu-
ments providing reasons for an agent’s position are shared; this exchange of information
allows the negotiation space to change. In [1], the information exchanged relates to the
influence of social commitments between roles, whilst [2] focusses on interest-based
negotiation where agents exchange information about their underlying goals and differ-
ent ways to achieve these.

In [3], ABN is used to address the distributed constraint satisfaction problem. Im-
portantly, the authors have performed experiments with their model to investigate the
performance of their argument-based approach. Agents in the system use arguments in
the sense that they put forward a proposal and provide a justification for this by giving
their local constraints, these constraints are propagated by the receiving agent.

Our deliberation context differs from ABN (which is generally concerned with the
allocation of scarce resources), as agents in our system have a shared goal and wish
to come to an agreement on how to act in order to achieve that goal. Similarly to the
systems discussed above, our agents also share arguments regarding actions to achieve
the goal and this allows the set of actions that an agent finds agreeable to change. In
our system, however, these arguments are value-based (relating to various social values
that may be promoted or demoted by performing an action) and, unlike in [1,2,3], our
agents also use argumentation as the reasoning mechanism with which they determine
which actions they find agreeable.

We specifically investigate two questions:

– Do our deliberation dialogues perform better across the entire parameter space than
a simple consensus forming approach, where agents try to find an action they each
find agreeable without sharing any arguments?

– How does the behaviour of both the dialogue system and the consensus forming
mechanism change as the number of arguments, actions and values present in the
system varies?

Our results clearly show that the deliberation dialogue system outperforms consensus
forming across all parameter combinations. Further, we have identified particular pa-
rameter settings that optimise dialogue performance in terms of quality of outcome and
length of dialogue. This detailed parameter sensitivity analysis allows a designer of an
agent system to evaluate whether value-based deliberation dialogues are useful for their
particular application domain.

2 Model

In this section we describe the model that we are simulating. We give details of the
value-based argumentation model, the dialogue system, the consensus forming mech-
anism, the evaluation metric that we use and our experimental set up. The model was
written in c++ on a standard workstation. A complete parameter sensitivity analysis of
1.8 million runs took less than an hour to complete.

134 E. Black and K. Bentley

2.1 Argumentation Model

We are investigating the performance of the system formally specified in [4], which is
based on the popular argument scheme and critical question approach [5]. Arguments
are generated by an agent instantiating a scheme for practical reasoning [6]: In the
current circumstances R, we should perform action A, which will result in new circum-
stances S, which will achieve goal G, which will promote value V.

The scheme is associated with a set of characteristic critical questions (CQs) that can
be used to identify challenges to proposals for action that instantiate the scheme. An
unfavourable answer to a CQ will identify a potential flaw in the argument. Since the
scheme makes use of what are termed as ‘values’, this caters for arguments based on
subjective preferences as well as more objective facts. Such values represent qualitative
social interests that an agent wishes to uphold by realising the goal stated [7].

An agent has a Value-based Transition System (VATS), that it uses to instantiate the
scheme for practical reasoning. This transition system represents the agent’s knowledge
about the effect of actions and the values that are promoted or demoted. (For brevity,
we omit the definition here; the reader is referred to [4].) Given its VATS, an agent can
instantiate the practical reasoning argument scheme in order to construct arguments for
(or against) actions to achieve a particular goal because they promote (or demote) a
particular value. Note that here we are focussing on the choice of action stage (as de-
fined in [6]), we assume that any discrepancies between the agents in either the problem
formulation or epistemic reasoning stages have been resolved (perhaps with some other
type of dialogue); thus, for example, agents do not need to question here whether an ac-
tion in question does achieve the desired goal or whether a certain set of circumstances
hold.

Definition 1. An argument constructed by an agent x from its VATS is a 4-tuple A =
〈a, p, v, s〉 where:
s = + iff a is an action that will achieve goal p and will promote value v;
s = − iff a is an action that will achieve goal p but will demote value v.

We define the functions: Act(A) = a; Goal(A) = p; Val(A) = v; Sign(A) = s.
If Sign(A) = +(−resp.), then we say A is a positive (negative resp.) argument for
(against resp.) action a. We denote the set of all arguments an agent x can construct
from its VATS as Argsx; we let Argsxp = {A ∈ Argsx | Goal(A) = p}. The set of
values for a set of arguments X is defined as Vals(X) = {v | A ∈ X and Val(A) = v}.

If we take a particular argument for an action, it is possible to generate attacks on that
argument by posing the various CQs related to the practical reasoning argument scheme.
The relevant CQs are used to generate a set of arguments for and against different
actions to achieve a particular goal, where each argument is associated with a motivating
value. To evaluate the status of these arguments we use a Value Based Argumentation
Framework (VAF) (introduced in [7]), an extension of the argumentation frameworks
(AF) of Dung [8]. In an AF an argument is admissible with respect to a set of arguments
S if all of its attackers are attacked by some argument in S, and no argument in S attacks
an argument in S. In a VAF an argument succeeds in defeating an argument it attacks if
its value is ranked higher than or at least as high as the value of the argument attacked;

An Empirical Study of a Deliberation Dialogue System 135

a particular ordering of the values is characterised as an audience. Arguments in a
VAF are admissible with respect to an audience A and a set of arguments S if they
are admissible with respect to S in the AF which results from removing all the attacks
which are unsuccessful given the audience A. A maximal admissible set of a VAF is
known as a preferred extension.

Although VAFs are often considered abstractly, here we give an instantiation in
which we define the attack relation between the arguments. This attack relation is de-
rived from the CQs, for details the reader is referred to [4].

Definition 2. An instantiated value-based argumentation framework (iVAF) is de-
fined by a tuple 〈X ,A〉 s.t. X is a finite set of arguments and A ⊂ X ×X is the attack
relation. A pair (Ai, Aj) ∈ A is referred to as “Ai attacks Aj” or “Aj is attacked
by Ai”. For two arguments Ai = 〈a, p, v, s〉, Aj = 〈a′, p′, v′, s′〉 ∈ X , (Ai, Aj) ∈ A
iff p = p′ and either: (1) a = a′, s = − and s′ = +; or (2) a = a′, v �= v′ and
s = s′ = +; or (3) a �= a′ and s = s′ = +.

An audience for an agent x over the values V is a binary relation Rx ⊂ V × V
that defines a total order over V where exactly one of (v, v′), (v′, v) are members of Rx

for any distinct v, v′ ∈ V . If (v, v′) ∈ Rx we say that v is preferred to v′, denoted
v �Rx v′.We say that an argument Ai is preferred to the argument Aj in the audience
Rx, denoted Ai �Rx Aj , iff Val(Ai) �Rx Val(Aj). If Rx is an audience over the
values V for the iVAF 〈X ,A〉, then Vals(X) ⊆ V .

We use the term ‘audience’ to be consistent with the literature. Note, however, audience
does not refer to the preference of a set of agents; rather, it represents a particular agent’s
preference over values.

Given an iVAF and a particular agent’s audience, we can determine acceptability
of an argument as follows. Note that (as in [4]) if an attack is symmetric, then an at-
tack only succeeds in defeat if the attacker is more preferred than the argument being
attacked; however, if an attack is asymmetric, then an attack succeeds in defeat if the at-
tacker is at least as preferred as the argument being attacked. Asymmetric attacks occur
only when an argument against an action attacks another argument for that action; in
this case, if both arguments are equally preferred then we do not wish the argument for
the action to withstand the attack. If we have a symmetric attack where the arguments
attacking one another are equally preferred, then we must have arguments for two dif-
ferent actions that promote the same value; here, the defeat is not successful, since it is
reasonable to choose either action.

Definition 3. Let Rx be an audience and let 〈X ,A〉 be an iVAF.
For (Ai, Aj) ∈ A s.t. (Aj , Ai) �∈ A, Ai defeats Aj under Rx if Aj ��Rx Ai.
For (Ai, Aj) ∈ A s.t. (Aj , Ai) ∈ A, Ai defeats Aj under Rx if Ai �Rx Aj .
An argument Ai ∈ X is acceptable w.r.t S under Rx (S ⊆ X) if: for every Aj ∈ X
that defeats Ai under Rx, there is some Ak ∈ S that defeats Aj under Rx.
A subset S of X is conflict-free under Rx if no argument Ai ∈ S defeats another
argument Aj ∈ S under Rx.
A subset S of X is admissible under Rx if: S is conflict-free in Rx and every A ∈ S is
acceptable w.r.t S under Rx.

136 E. Black and K. Bentley

A subset S of X is a preferred extension under Rx if it is a maximal admissible set
under Rx.
An argument A is acceptable in the iVAF 〈X ,A〉 under audience Rx if there is some
preferred extension containing it.

We have defined a mechanism with which an agent can determine attacks between argu-
ments for and against actions; it can then use an ordering over the values that motivate
such arguments (its audience) in order to determine their acceptability. Next, we define
our dialogue system.

2.2 Dialogue System

The dialogue system investigated here is formally defined in [4]. For readability and
brevity, we omit the formal definitions here but informally describe the dialogue sys-
tem. The communicative acts in a dialogue are called moves. We assume that there are
always exactly two agents (participants) taking part in a dialogue, each with its own
identifier taken from the set I = {Ag1, Ag2} and each with a knowledge base of ar-
guments that it knows about (those it can construct from its VATS). Each participant
takes it in turn to make a move to the other participant. We refer to participants using
the variables x and x such that: x is Ag1 if and only if x is Ag2; x is Ag2 if and only if
x is Ag1.

We assume that the participants have agreed to partake in a deliberation dialogue
whose topic is the joint goal in question. During the dialogue, agents can either:

– assert a positive argument (an argument for an action);
– assert a negative argument (an argument against an action);
– agree to an action;
– indicate that they have no arguments that they wish to assert (with a pass).

The agents take it in turn to make a single move. A dialogue terminates under one of
two conditions: failure, when two pass moves appear one immediately followed by
the other in the dialogue; success with outcome a, when two moves each agreeing to
the action a appear one immediately followed by the other in the dialogue.

In order to evaluate which actions it finds agreeable at a point in a dialogue with
topic p, an agent x considers the iVAF that it constructs from all the arguments that
it currently has available to it relating to p; this consists of the arguments from its
own VATS, as well as the arguments that the other agent has asserted thus far. We call
this agent x’s dialogue iVAF, which is the iVAF 〈X ,A〉 where X = Argsxp ∪ {A |
x has previously asserted A during the dialogue}. An action is agreeable to an agent x
if and only if there is some argument for that action that is acceptable in x’s dialogue
iVAF under the audience that represents x’s preference over values. Note that the set of
actions that are agreeable to an agent may change over the course of the dialogue, due
to its dialogue iVAF changing as arguments asserted by x are added to it.

The protocol defines which moves an agent x (whose turn it is) is allowed to make
at any point in a deliberation dialogue with topic p as follows:

– It is permissible to assert an argument A iff Goal(A) = p (i.e. the argument is
for or against an action to achieve the topic of the dialogue) and A has not been
asserted previously during the dialogue.

An Empirical Study of a Deliberation Dialogue System 137

– It is permissible to agree to an action a iff either:
• the immediately preceding move was an agree to the action a, or
• the other participant x has at some point previously in the dialogue asserted a

positive argument A for the action a.
– It is always permissible to pass.

We have thus defined a protocol that determines which moves it is permissible to make
during a dialogue; however, an agent still has considerable choice when selecting which
of these permissible moves to make. In order to select one of the permissible moves, an
agent uses a particular strategy. The strategy that our agents use is as follows:

– If it is permissible to agree to an action that the agent finds agreeable, then make
such an agree move; else

– if it is permissible to assert a positive argument for an action that the agent finds
agreeable, then assert some such argument; else

– if it is permissible to assert a negative argument against an action and the agent
finds that action not agreeable then assert some such argument; else

– make a pass move.

We have now defined how our dialogue system regulates the moves that agents may
make, and the strategy that the agents use to select one of the permissible moves to
make. (For an example of a dialogue produced by this system, please refer to [4].) Next,
we define a method with which two agents may form a consensus without exchanging
any arguments.

2.3 Consensus Forming

In order to start investigating the question of whether it is worth using argumentation-
based deliberation dialogues to decide how to act to achieve a shared goal, we compare
outcomes produced by our dialogue system with those produced by a simple consensus
forming method. For two agents x, x who are about to enter into a deliberation dialogue
with topic p, the outcome produced by consensus forming is simply the intersection of
the following two sets:

– the set of actions to achieve p that agentx finds agreeable at the start of the dialogue;
– the set of actions to achieve p that agent x finds agreeable at the start of the dialogue.

That is to say, the consensus set contains all the actions that each agent finds agreeable,
given the arguments they can construct from their VATS and without any exchange of
arguments. If consensus forming returns a non-empty set, then we say that a consensus
was found and that the consensus forming was successful.

This gives us a non-argumentative approach to which we can compare our dialogue
system. We next discuss how we compare these systems, namely on the quality of out-
come.

2.4 Measuring Quality of Outcome

Unless they exchange all arguments, agents in our system only ever have a partial view
of all of the available knowledge. We can, however, take a global view of which po-
tential outcomes are best for each of the agents. For this purpose, we define for a

138 E. Black and K. Bentley

dialogue the omniscient argumentation framework (OAF), which is the iVAF con-
structed from the union of the arguments that each participant can construct from its
VATS that relate to the topic of the dialogue. For a dialogue with participants x, x and
topic p, the associated OAF is thus the iVAF 〈X ,A〉 where X = Argsxp ∪ Argsxp .
We say that an action is globally agreeable to an agent x if and only if there is some
positive argument for that action that is acceptable in the OAF under the audience that
represents x’s value preference.

We can now measure the quality of a particular outcome (i.e. an action to achieve
the goal p) by considering whether it is globally agreeable to each agent. Such a quality
measure can be applied to both the outcome produced by a dialogue and the outcome
produced by consensus forming.

For a particular outcome a, we assign an outcome quality score as follows:

– if a is globally agreeable to both x and x, score 3;
– if a is globally agreeable to only one of x or x, score 2;
– if a is not globally agreeable to either x or x, score 1.

If there is no successful outcome (i.e. dialogue terminates in failure or consensus form-
ing returns an empty set) then the outcome quality score is 0. Where the consensus
forming returns a set of more than one action, we assign the outcome quality score to
be that of the action from the set which receives the lowest score (since this is the best
that the consensus forming method can guarantee to do, given that only one action can
be selected).

Our simple scoring metric reflects the intuition that any outcome is better than no
outcome, but an outcome that is globally agreeable to an agent is better than one that is
not. We plan to study more sophisticated scoring metrics in future work.

2.5 Experimental Set Up

The dialogue system and consensus forming mechanism were implemented as de-
scribed in the previous sections. We also implemented a random scenario generator;
this generates scenarios that initialise the agents’ knowledge bases (i.e. the arguments
known to each agent at the start of the dialogue, which all relate to the joint goal which
the agents wish to achieve) and their audiences. The generator takes three parameters
(Args,Vals,Acts), where

– Args is the number of distinct arguments to appear in the union of the agents’
knowledge bases;

– Vals is the number of distinct values that may motivate those arguments;
– Acts is the number of distinct actions that the arguments may relate to.

The generator randomly constructs without replacement (i.e. does not allow duplicate
arguments) the required number of arguments from the allowed values and actions and
the symbols {+,−} (where each combination is equally likely). For example, when
given parameters (8, 2, 2), the generator will construct the following set of arguments:

{〈a1, p, v1,+〉, 〈a1, p, v1,−〉, 〈a1, p, v2,+〉, 〈a1, p, v2,−〉,
〈a2, p, v1,+〉, 〈a2, p, v1,−〉, 〈a2, p, v2,+〉, 〈a2, p, v2,−〉}.

An Empirical Study of a Deliberation Dialogue System 139

(Note, it is not possible for the generator to construct a set of arguments from parameters
(Args,Vals,Acts) if Args > Vals× Acts× 2. For a particular number of values and a
particular number of actions, the total possible arguments is Vals× Acts× 2.)

The generator randomly assigns each agent an audience over the allowed values and
it randomly allocates exactly half of the constructed arguments to one agent, and the
other half to the other agent. Our generator is therefore simulating the construction of
arguments from the agents’ VATS. It allows us to run experiments over all possible
combinations of the parameters (Args,Vals,Acts). In the experiments reported here we
consider all possible parameter combinations where:

– Vals ∈ {2, 4, 6, 8, 10},
– Acts ∈ {2, 4, 6, 8, 10},
– 2 ≤ Args ≤ Vals× Acts× 2.

Our experiments investigate how the outcome quality scores of the dialogue system
and the consensus forming mechanism compare across the space of possible parameter
combinations. We performed 1000 runs of our simulation for each possible parameter
combination. In each run, a random scenario is generated. We first calculate the consen-
sus set of the scenario and then simulate a dialogue from the same scenario; we compare
the quality scores assigned to the outcomes produced by these two approaches.

3 Results

3.1 Dialogue Is Significantly More Likely to Be Successful Than Consensus
Forming

Figure 1 shows strikingly across all parameter combinations that the frequency of suc-
cessful consensuses is never as great as the frequency of successful dialogues. There is
a significant difference between these two frequencies: across all parameters, consensus
forming fails more than 50% of the time, whilst up to 90% of dialogues are successful.

We also found that, across all runs for each possible parameter combination (a total
of 1.8 million runs), for every run in which a consensus was found the dialogue pro-
duced was also successful. It is not immediately clear whether the converse situation
(i.e. a consensus is found but the dialogue produced is not successful) is theoretically
impossible, but this result strongly suggests that this may be the case and so identifies a
property worthy of theoretical investigation.

Consensus forming is relatively robust to the number of values present in the system;
however there is a marked difference when Vals = 2, in which case the frequency of
successful consensuses is approximately half that of when Vals ∈ {4, 6, 8, 10}.

When Acts = 2, the highest frequency of consensuses found is seen when Args
is equal to approximately 50% of the total arguments possible. A higher number of
arguments present in the system leads to a higher frequency of successful consensuses;
in contrast, the frequency of successful dialogues drops as the number of arguments
present in the system increases (although the number of successful dialogues is still
greater than the number of consensuses found).

140 E. Black and K. Bentley

F
ig

.1
.T

op
:

P
er

ce
nt

ag
e

of
di

al
og

ue
s

th
at

en
de

d
su

cc
es

sf
ul

ly
ou

t
of

10
00

ru
ns

ac
ro

ss
ea

ch
po

ss
ib

le
pa

ra
m

et
er

co
m

bi
na

ti
on

.B
ot

to
m

:
P

er
ce

nt
ag

e
of

10
00

ru
ns

ac
ro

ss
ea

ch
po

ss
ib

le
pa

ra
m

et
er

co
m

bi
na

ti
on

in
w

hi
ch

a
co

ns
en

su
s

w
as

fo
un

d.

An Empirical Study of a Deliberation Dialogue System 141

Fig. 2. Percentage of 1000 runs across each possible parameter combination where Acts ∈
{2, 6, 10} and Vals ∈ {2, 4, 8} in which: dialogue outcome quality score was higher than consen-
sus outcome quality score; consensus outcome quality score was higher than dialogue outcome
quality score; dialogue outcome quality score was the same as consensus outcome quality score

3.2 Successful Dialogues Are More Likely with Higher Numbers of Actions and
Values

Looking at the top of Figure 1 in depth, we can see how sensitive the dialogue system
is to the parameters. The dialogue system appears to be most sensitive to the parameter
settings Acts = 2 and Vals = 2.

Across all parameter settings, the frequency of successful dialogues is closely re-
lated to the percentage of the total possible arguments present in the system: if Acts ∈
{4, 6, 8, 10} and Vals ∈ {4, 6, 8, 10}, this frequency peaks when Args is around 75%
of the total possible; if Acts = 2, this frequency peaks when Args ≈ 4; if Acts ∈
{4, 6, 8, 10} and Vals = 2, this frequency peaks when Args is around 50% of the total
possible.

When Acts = 2, the highest frequency of successful dialogues seen is lower than
the highest frequencies seen for the other settings of Acts. Both the maximum and
the minimum frequency of successful dialogues recorded is greater when more actions
are under consideration, and the minimum frequency of successful dialogues is greater
when more values are present in the system.

Generalising these results, we can say that the dialogue system performs better (i.e.
reaches agreement more often) when Acts �= 2. The more values and the more actions
present in the system the better the system performs, with the frequency of successful
dialogues dependent on the percentage of the total possible arguments present in the
system.

3.3 Quality of Dialogue Outcome Is Very Rarely Worse Than Quality of
Consensus Outcome

We next consider for each run whether the dialogue system or consensus forming re-
sulted in a higher outcome quality score. We investigated this across all possible param-
eter combinations; since we found a trend that repeats across the whole parameter space,
we present in Figure 2 only the results for when Acts ∈ {2, 6, 10} and Vals ∈ {2, 4, 8}.

142 E. Black and K. Bentley

Fig. 3. Top: across all possible parameter settings where Acts ∈ {2, 6, 10} and Vals ∈ {2, 4, 8},
percentage of the dialogues that ended successfully that received each outcome quality score.
Bottom: across all possible parameter settings where Acts ∈ {2, 6, 10} and Vals ∈ {2, 4, 8},
percentage of the runs in which a consensus was found that received each outcome quality score.

Figure 2 shows clearly that only very rarely (in less than 3% of the runs across all
possible parameter settings) does consensus forming produce a higher quality outcome
than the dialogue system. However, if there are only two actions, then the two methods
produce the same quality outcome more often than the dialogue system produces a
higher quality outcome. This is a useful observation, particularly considering the higher
computational overheads associated with the dialogue system.

3.4 Successful Dialogue Outcomes Are More Likely to Be Globally Agreeable to
Both Agents Than Successful Consensus Outcomes

We now consider how the outcome quality score varies for successful outcomes pro-
duced by both the dialogue system and consensus forming across the parameter space.
We performed this analysis across all possible parameter settings and found a trend that
occurs across the entire parameter space; hence we present in Figure 3 only those results
where where Acts ∈ {2, 6, 10} and Vals ∈ {2, 4, 8}. The top of this figure shows what
percentage of the dialogues that ended in agree received which outcome quality score.
The bottom of this figure shows what percentage of the runs in which a consensus was
found received which outcome quality score. (Recall the outcome quality score metric:
3 - outcome is globally agreeable to both agents; 2 - outcome is globally agreeable to
only of the agents; 1 - outcome is not globally agreeable to either of the agents.)

As discussed earlier, Figure 1 shows that the frequency of dialogues that end suc-
cessfully is considerably higher than the frequency of consensuses found, and that each
of these frequencies vary as the parameters change; thus, it is important to bear in mind
here that the percentages denoted on the y-axes of the graphs in Figure 3 relate to differ-
ent sized sets depending on the particular parameter settings and on whether dialogue

An Empirical Study of a Deliberation Dialogue System 143

outcome or consensus outcome is being considered. Considering only the proportion of
successful dialogues and consensuses that receive the different outcome quality scores
(as seen in Figure 3) allows us to clearly see the following points.

Of the successful outcomes produced by both methods (consensus forming and the
dialogue system), a higher proportion of those produced by the dialogue system are
globally agreeable to each agent (i.e. outcome quality score = 3). The difference be-
tween the proportion of successful dialogues that receive outcome quality score 3 and
the proportion of consensuses that receive outcome quality score 3 is bigger the more
actions and the fewer values that are present in the system.

It is interesting to note that the points on the graphs in Figure 3 where the green
line (i.e. outcome quality score = 1) and the red line (i.e. outcome quality score = 2)
intersect occur at the same position on the x-axis for both the dialogue outcome and the
consensus outcome. If Vals = 2, this occurs when Args is equal to approximately 95%
of the total possible arguments, otherwise this occurs when Args is equal to approxi-
mately 80% of the total possible arguments. Thus, if a successful outcome is produced
either by consensus forming or by the dialogue system and there are more than 80% of
the total possible arguments present in the system (95% if Vals = 2), it is likely that
this outcome is not globally agreeable to either agent.

The quality of successful outcomes produced by both the dialogue system and con-
sensus forming is most sensitive to the number of arguments present in the system,
and is little affected by changes to the number of values or actions under considera-
tion. Consensus forming is more sensitive than the dialogue system to the number of
arguments.

3.5 Average Dialogue Outcome Quality Score Is Higher Than Average
Consensus Outcome Quality Score

Figure 4 shows the average outcome quality score produced by both the dialogue system
and the consensus forming mechanism across all parameter settings whereArgs = 25%,
50% and 75% of the total possible arguments. It is very clear from these results that, on
average, the dialogue system outperforms consensus forming.

Looking at Figure 4 in more depth, we see that the highest outcome quality score
averages for the dialogue system are seen when Vals = 2, whilst this parameter set-
ting produces the lowest outcome quality score averages for consensus forming. For all
settings of Acts and Vals, the smallest difference between the outcome quality score
averages of the two methods is seen when Args = 75% of the total possible arguments.
For all settings of Vals and Args, the smallest difference between the two outcome
quality score averages is seen when Acts = 2. We can conclude that if Vals = 2 and
Acts �= 2, it is likely that the outcome produced by the dialogue system will be higher
quality than that produced by consensus forming.

3.6 Dialogue Length Grows Exponentially with Increasing Arguments

Figure 5 shows that the time it takes to complete dialogues increases exponentially with
the number of arguments. However as the number of values increases this trend flattens
and increases are more linear. Indeed as values and actions increase the curve becomes

144 E. Black and K. Bentley

F
ig

.4
.A

ve
ra

ge
qu

al
ity

ou
tc

om
e

sc
or

e
ov

er
10

00
ru

ns
fo

r
bo

th
th

e
di

al
og

ue
sy

st
em

an
d

co
ns

en
su

s
fo

rm
in

g,
ac

ro
ss

ev
er

y
pa

ra
m

et
er

co
m

bi
na

tio
n

w
he

re
A
rg
s
=

25
%

,5
0%

or
75

%
of

th
e

to
ta

lp
os

si
bl

e
ar

gu
m

en
ts

.T
he

er
ro

r
ba

rs
sh

ow
th

e
st

an
da

rd
er

ro
rs

of
th

e
m

ea
ns

.

An Empirical Study of a Deliberation Dialogue System 145

Fig. 5. Average number of moves in a terminated dialogue

almost sigmoidal. This indicates that if speed is a key factor for an applied dialogue
system, deliberation dialogues are most useful when either the number of arguments is
low or the number of values and actions is high.

4 Discussion

We have presented empirical results from what we believe is the first simulation-based
study of a deliberation dialogue system, where the agents involved used value-based
argumentation to determine agreeable actions. Our results show that the dialogue sys-
tem we present outperforms a simple consensus forming mechanism. We provide an
in-depth analysis of the behaviour that can be expected from the system based on the
number of actions, values and arguments that are present. For instance, the dialogue
system reaches agreement more frequently when there is a higher number of actions
and values under consideration; the quality of a successful dialogue outcome is more
likely to be higher when there are less than 80% of the total possible arguments present.

These results take a significant step towards demonstrating the applicability of value-
based deliberation dialogue systems, as well as demonstrating the importance of com-
plementing theoretical evaluations with simulation-based studies. Our specific quanti-
tative results can be compared against the parameters derived from a particular domain
in order to determine the suitability of value-based deliberation dialogues.

Our simulation facilitates many avenues of future work, for example it is simple
to adapt it to allow multiple agents and we are particularly interested in investigating
different strategies that the agents might use and seeing how these compare with one
another. Our next step is to analyse why the system behaves as it does. We have already
begun to investigate how the topology of the OAF (which is itself determined by the
combination of parameters) affects the dialogue behaviour, and it is clear that they are
closely linked. Here, we have restricted the system so that the agents each get exactly
half of the arguments present in the system; certainly altering this split will have a
marked effect of the behaviour of the system and this is something we are keen to
investigate. We also intend to extend our dialogue model to take into account the other
stages of practical reasoning (problem formulation and epistemic reasoning [6]).

It would be very interesting to see how an argumentative agent would perform against
a non-argumentative agent, such as one that uses classical decision theory to deter-
mine the actions it finds agreeable. There is a large body of work on computational

146 E. Black and K. Bentley

social choice (see e.g. [9]), which considers mechanisms with which group decisions
can be made. Although beyond the scope of this paper, we plan to compare delibera-
tion dialogues with social choice mechanisms (more sophisticated that the simple con-
sensus forming method presented here). Such comparisons of an argumentation-based
approach with approaches from other fields are of vital importance if we are to demon-
strate the value of argumentation theory to the wider field of Artificial Intelligence.

Our investigation here takes a fundamental first step towards evaluating the potential
benefit of a value-based deliberation dialogue system; however, it is not clear whether
the scenarios that our simulation randomly generates are reflected in any real world set-
ting. For example: Are there any real applications where more than 75% of all possible
arguments are present in the system? Is it realistic that negative arguments are as likely
to appear within the system as positive arguments? In order to be sure that the results
are useful beyond a randomised setting, it is important to test argumentation-based ap-
proaches using real world data. This presents a challenge for the community, since it is
hard to get access to such data that can be represented as arguments. We plan to collab-
orate with researchers working on real applications in order to validate our approach.

This simulation has been invaluable in identifying areas of future work that have
the potential to be of benefit to real world applications, and in providing us with an
implemented framework that we can adapt to investigate these areas.

Acknowledgements. E. Black funded by the European Union Seventh Framework
Programme (FP7/2007-2011) under grant agreement 253911. K. Bentley funded by the
Fondation Leducq.

References

1. Karunatillake, N.C., Jennings, N.R., Rahwan, I., McBurney, P.: Dialogue games that agents
play within a society. Artificial Intelligence 173(9-10), 935–981 (2009)

2. Pasquier, P., Hollands, R., Rahwan, I., Dignum, F., Sonenberg, L.: An empirical study of
interest-based negotiation. Autonomous Agents and Multi-Agent Systems 22(2), 249–288
(2011)

3. Jung, H., Tambe, M.: Towards argumentation as distributed constraint satisfaction. In: Proc.
of AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems
(2001)

4. Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: Proc. of the 10th Int.
Conf. on Autonomous Agents and Multi-Agent Systems, pp. 905–912 (2011)

5. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum As-
sociates, Mahwah (1996)

6. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumentation us-
ing action based alternating transition systems. Artificial Intelligence 171(10–15), 855–874
(2007)

7. Bench-Capon, T.J.M.: Agreeing to differ: Modelling persuasive dialogue between parties
without a consensus about values. Informal Logic 22(3), 231–245 (2002)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

9. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A Short Introduction to Computational
Social Choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69. Springer, Heidelberg (2007)

Selective Revision by Deductive Argumentation

Patrick Krümpelmann1, Matthias Thimm1,
Marcelo A. Falappa2, Alejandro J. Garćıa2,

Gabriele Kern-Isberner1, and Guillermo R. Simari2

1 Technische Universität Dortmund, Germany
2 Universidad Nacional del Sur, Bah́ıa Blanca, Argentina

Abstract. The success postulate of classic belief revision theory de-
mands that after revising some beliefs with by information the new in-
formation is believed. However, this form of prioritized belief revision
is not apt under many circumstances. Research in non-prioritized be-
lief revision investigates forms of belief revision where success is not a
desirable property. Herein, selective revision uses a two step approach,
first applying a transformation function to decide if and which part of
the new information shall be accepted, and second, incorporating the
result using a prioritized revision operator. In this paper, we implement
a transformation function by employing deductive argumentation to as-
sess the value of new information. Hereby we obtain a non-prioritized
revision operator that only accepts new information if believing in the
information is justifiable with respect to the beliefs. By making use of
previous results on selective revision we prove that our revision operator
satisfies several desirable properties. We illustrate the use of the revision
operator by means of examples and compare it with related work.

1 Introduction

Belief revision [4,12] is concerned with changing beliefs in the light of new in-
formation. Usually, the beliefs of an agent are not static but change when new
information is available. In order to be able to act reasonably in a changing
environment the agent has to integrate new information and give up outdated
beliefs. In particular, if the agent learns that some beliefs have been mislead-
ingly assumed to be true its beliefs have to be revised. The research field of
belief revision distinguishes between prioritized and non-prioritized belief re-
vision. In prioritized belief revision [12] new information is always assumed to
represent the most reliable and correct information available and revising the
agent’s beliefs by the new information is expected to result in believing the new
information. This is a reasonable assumption for many imaginable situations and
there are many technical challenges in realizing prioritized belief revision, cf. e. g.
[12]. However, many circumstances demand that new information is not blindly
accepted but weighted against the current beliefs. The field of non-prioritized
belief revision [11] investigates change operations where revising some beliefs
by new information may not result in believing the new information. Imagine a

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 147–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 P. Krümpelmann et al.

multi-agent system where agents exchange information. In general, agents may
be cooperative or competitive. Information that is passed from one agent to
another may be intentionally wrong, mistakenly wrong, or correct. It is up to
the receiver of the information to evaluate whether it should be integrated into
the beliefs or not. In particular, in non-prioritized belief revision the satisfac-
tion of the success postulate—which demands that new information is believed
after revision—is not desirable. In [9] a specific class of non-prioritized belief
revision operators is investigated. A selective revision is a two-step revision that
consists of 1.) filtering new information using a transformation function and 2.)
revising the beliefs with the result of the filtering in a prioritized way. In [9],
no concrete implementations of the transformation function are given but sev-
eral results are proven that show how specific properties for the transformation
function and the inner prioritized revision translate to specific properties for the
outer non-prioritized revision.

In this paper we propose a specific implementation of a transformation func-
tion that makes use of deductive argumentation [2]. A deductive argumentation
theory is a set of propositional sentences and an argument for some sentence φ is
a minimal proof for φ. If the theory is inconsistent there may also be proofs for
the complement of a sentence ¬φ and in order to decide whether φ or ¬φ is to
be believed, an argumentative evaluation is performed that compares arguments
with counterarguments. We use the framework of [2] to implement a transfor-
mation function for selective revision that decides for each individual piece of
information whether to accept it for revision or not, based on its argumentative
evaluation. In particular, we consider the case that revision is to be performed
based on a set of pieces of information instead of just a single piece of informa-
tion. By doing so, we allow new information to contain arguments. As a result,
an agent decides whether to accept some new information on the basis of its own
evaluation of the information and the arguments that may be contained in this
information. Consider the following example.

Example 1. Imagine the agent Anna wants to spend her holidays on Hawaii. She
is aware of the fact that there has been some volcano activity on Hawaii recently
but is convinced there is no immediate danger. Anna’s boss Bob doesn’t want
Anna to go on vacation at this time of the year and tells her that she has to
do some work here and should not go to Hawaii. However, Anna wants to go
surfing and to go to Hawaii instead of staying at work. As a consequence she
rejects Bob’s argument to stay and does not revise her beliefs. Consider now
that Carl, a good friend of Anna, is a vulcanologist and tells Anna that there
is actually an immediate danger of an eruption. Anna does not have sufficient
arguments to defeat Carls information, thus accepts the new information and
revises her beliefs accordingly. �

In the previous example the decisions of the agent Anna resulted in either ac-
cepting or rejecting the new information completely. However, it may also be the
case that some of the new information is accepted and some is rejected. Consider
the following example.

Selective Revision by Deductive Argumentation 149

Example 2. Imagine Bob tells Anna that she has to stay for work because all her
colleagues are having a vacation at the same time and she has to fill in for them.
Suppose Anna knows that there is no work to do during her planned vacation as
all clients of her company are on vacation as well. Then Anna would reject the
conclusion of Bob’s argument that she has to stay, but might very well accept
that all her colleagues will be on vacation as well. �

In this paper we develop an approach for selective revision that is capable of
deciding whether to accept, reject, or partially accept some new information,
based on deductive argumentation. In order to do so we also extend the notions
of selective revision to the problem of multiple base revision, i. e., the problem
of revising a belief base (instead of a belief set) by a set of sentences.

The rest of this paper is organized as follows. In Section 2 we introduce
some necessary technical preliminaries. We go on in Section 3 with providing
an overview on the notions of belief revision and extending the approach of se-
lective revision to selective multiple base revision. We continue in Section 4 with
presenting the framework of deductive argumentation. In Section 5 we propose
our implementation of selective multiple base revision via deductive argumen-
tation and investigate its properties. In Section 6 we review some related work
and in Section 7 we conclude.

2 Preliminaries

In this paper we suppose that the beliefs of an agent are given in the form of
propositional sentences. Let At be a propositional signature, i. e. a set of propo-
sitional atoms. Let L(At) be the corresponding propositional language generated
by the atoms in At and the connectives ∧ (and), ∨ (or), ⇒ (implication), and
¬ (negation). As a notational convenience we assume some arbitrary total order
� on the elements of L(At) which is used to enumerate elements of each finite
Φ ⊆ L(At) in a unique way, cf. [2]. For a finite subset Φ ⊆ L(At) the canon-
ical enumeration of Φ is the vector 〈φ1, . . . , φn〉 such that {φ1, . . . , φn} = Φ
and φi � φj for every i < j with i, j = 1, . . . , n. As � is total the canonical
enumeration of every finite subset Φ ⊆ L(At) is uniquely defined.

We use the operator � to denote classical entailment, i. e., for sets of propo-
sitional sentences Φ1, Φ2 ⊆ L(At) we say that Φ2 follows from Φ1, denoted by
Φ1 � Φ2, if and only if Φ2 is entailed by Φ1 in the classical logical sense. For
sentences φ, φ′ ∈ L(At) we write φ � φ′ instead of {φ} � {φ′}. We define the
deductive closure Cn(·) of a set of sentences Φ as Cn(Φ) = {φ ∈ L(At) | Φ � φ}.
Two sets of sentences Φ,Φ′ ⊆ L(At) are equivalent, denoted by Φ ≡p Φ′, if and
only if it holds that Φ � Φ′ and Φ′ � Φ. We also use the equivalence relation ∼=p

which is defined as Φ ∼=p Φ′ if and only if there is a bijection σ : Φ → Φ′ such
that for every φ ∈ Φ it holds that φ ≡p σ(φ). This means that Φ ∼=p Φ′ if Φ and
Φ′ are element-wise equivalent. Note that Φ ∼=p Φ′ implies Φ ≡p Φ′ but not vice
versa. In particular, it holds that e. g {a∧ b} ≡p {a, b} but {a∧ b} �∼=p {a, b}. For
sentences φ, φ′ ∈ L(At) we write φ ≡ φ′ instead of {φ} ≡ {φ′} if ≡∈ {≡p,∼=p}.
If Φ �⊥ we say that Φ is inconsistent.

150 P. Krümpelmann et al.

For a set S let P(S) denote the power set of S, i. e. the set of all subsets of
S. For a set S let PP(S) denote the set of multi-sets of S, i. e. the set of all
subsets of S where an element may occur more than once. To distinguish sets
from multi-sets we use brackets “〈” and “〉” for the latter.

3 Selective Multiple Base Revision

The field of belief revision is concerned with the change of beliefs when more
recent or more reliable information is at hand. The most important descrip-
tion of properties of prioritized belief change operators is given by Alchourrón,
Gärdenfors and Makinson in their seminal paper [4]. The usual framework for
representing beliefs considered for belief revision is that of belief sets which are
revised by a single sentence. A belief set S is a subset of L(At) that is deductively
closed, i. e., S = Cn(S). Working with belief sets in practice is unmanageable
due to their infinite size. The more practical representation form are belief bases
which are finite sets of sentences. These also come with the advantage of making
it possible to differentiate between explicit and inferred beliefs, cf. [12]. In this
work we consider the problem of multiple base revision. That is, we employ belief
bases for knowledge representation and we consider revising a belief base by a
set of sentences, cf. the notion of multiple revision in [12].

Let K ⊆ L(At) be a belief base, Φ ⊆ L(At) be some set of sentences, and
consider the problem of changing K in order to entail Φ. If K ∪ Φ is consistent
then there is no need for contracting the existing beliefs and the problem can
be solved via expansion K + Φ which is characterized via K ∪ Φ. If K ∪ Φ is
inconsistent, conflicts arising from the addition of Φ to K have to be resolved.
In general, this means that some of the current beliefs have to be given up in
order to come up with a consistent belief base. The AGM framework [4] proposes
several basic postulates a revision operator should obey. As we consider belief
bases for knowledge representation we start with the corresponding postulates
for belief base revision [12] adapted to revision by sets of sentences [8]. Let ∗
be a multiple base revision operator—i. e., if K and Φ are sets of sentences so is
K ∗ Φ—and consider the following postulates.

Success. K ∗ Φ � Φ.
Inclusion. K ∗ Φ ⊆ K + Φ.
Vacuity. If K ∪ Φ ��⊥ then K + Φ ⊆ K ∗ Φ.
Consistency. If Φ is consistent then K ∗ Φ is consistent.
Relevance. If α ∈ (K ∪ Φ) \ (K ∗ Φ) then there is a set H such that K ∗ Φ ⊆

H ⊆ K ∪ Φ and H is consistent but H ∪ {α} is inconsistent.

Another important property for the framework of [4] is extensionality which can
be phrased for multiple base revision as follows.

Extensionality. If Φ ≡p Ψ , then K ∗ Φ ≡p K ∗ Ψ .

Selective Revision by Deductive Argumentation 151

The above property is usually not considered for the problem of base revision as
base revision is motivated by observing syntax and not (only) semantic contents.
In particular, for the problem of multiple base revision, satisfaction of extension-
ality imposes that K ∗ {a, b} ≡p K ∗ {a∧ b} as {a, b} ≡p {a ∧ b}. Identifying the
“comma”-operator with the logical “AND”-operator is not always a reasonable
thing to do, see e. g. [5] for a discussion. However, we consider the following
weakened form of extensionality.

Weak Extensionality. If Φ ∼=p Φ′ then K ∗ Φ ≡p K ∗ Φ′.

The property weak extensionality only demands that the outcomes of the revi-
sions K ∗ Φ and K ∗ Φ′ are equivalent if Φ and Φ′ are element-wise equivalent.

Definition 1. A revision operator ∗ is called a prioritized multiple base revision
operator if ∗ satisfies success, inclusion, vacuity, consistency, relevance, and
weak extensionality.

For non-prioritized multiple base revision the properties inclusion, vacuity, con-
sistency, relevance, and weak extensionality can also be regarded as desirable.
This is not the case for success is general but we can replace success by weak-
ened versions, cf. [11]. We denote with ◦ a non-prioritized belief revision operator,
i. e., K ◦Φ is the non-prioritized revision of K by Φ. Then consider the following
properties for ◦, cf. [9].

Weak Success. If K ∪ Φ ��⊥ then K ◦ Φ � Φ.
Consistent Expansion. If K �⊆ K ◦ Φ then K ∪ (K ◦ Φ) �⊥.

Note that weak success follows from vacuity, and consistent expansion follows
from vacuity and success, cf. [9].

Definition 2. A revision operator ◦ is called non-prioritized multiple base re-
vision operator if ◦ satisfies inclusion, consistency, weak extensionality, weak
success, and consistent expansion.

We do not require relevance to be satisfied by non-prioritized multiple base
revisions as it is hardly achievable in the context of selective revision, see below.
For the following, bear in mind that the main difference between a prioritized
multiple base revision operator ∗ and a non-prioritized multiple base revision
operator ◦ is that K ∗ Φ � Φ is required but K ◦ Φ � Φ is not.

A specific approach to non-prioritized belief revision is selective revision [9].
There, the problem of revising a belief set S with a single sentence α is realized
by applying a transformation function f to α, obtaining a new sentence α′, and
then revising S by α′ in a prioritized way. The transformation function f is
supposed to determine whether α should be accepted as a whole or whether it
should be somewhat weakened. We adopt the notions of [9] for the problem of
selective multiple belief base revision and still consider the problem of revising
a belief base K by some set Φ of sentences. Following the ideas of [9] we define
the selective multiple base revision K ◦ Φ via

K ◦ Φ = K ∗ fK(Φ) (1)

152 P. Krümpelmann et al.

with a transformation function fK : P(L(At)) → P(L(At)) and some (priori-
tized) multiple base revision ∗. In [9] several properties for transformation func-
tions in the context of belief set revision are discussed. We rephrase some of
them here slightly to fit the framework of multiple base revision. Let K ⊆ L(At)
be consistent and let Φ,Φ′ ⊆ L(At).

Inclusion. fK(Φ) ⊆ Φ
Weak Inclusion. If K ∪ Φ is consistent then fK(Φ) ⊆ Φ
Extensionality. If Φ ≡p Φ′ then fK(Φ) ≡p fK(Φ

′)
Consistency Preservation. If Φ is consistent then fK(Φ) is consistent
Consistency. fK(Φ) is consistent
Maximality. fK(Φ) = Φ
Weak Maximality. If K ∪ Φ is consistent then fK(Φ) = Φ

We also consider the following novel property.

Weak Extensionality. If Φ ∼=p Φ′ then fK(Φ) ∼=p fK(Φ
′)

Not all of the above properties may be desirable for a transformation function
that is to be used for selective revision. For example, the property maximality
states that fK should not modify the set Φ. Satisfaction of this property makes
(1) equivalent to K ∗ Φ. As ∗ is meant to be a prioritized revision function we
lose the possibility for non-prioritized revision.

Note that for weak extensionality we demand fK(Φ) and fK(Φ
′) to be element-

wise equivalent instead of just equivalent (in contrast to the property weak ex-
tensionality for revision). We do this because fK is supposed to be applied in
the context of base revision which is sensitive to syntactic variants. We intro-
duce the postulate weak extensionality for transformation functions with the
same motivation as we do for multiple base revision. However, for the case of
transformation functions the problem with satisfaction of extensionality is more
apparent. Consider again Φ = {a, b} and Φ′ = {a ∧ b}. It follows that Φ ≡p Φ′

and if fK satisfies extensionality this results in fK({a, b}) ≡p fK({a ∧ b}). If fK
also satisfies inclusion it follows that fK({a ∧ b}) ∈ {∅, {a ∧ b}} and therefore
fK({a, b}) ∈ {∅, {a, b}}. In general, if fK satisfies both inclusion and extension-
ality it follows that either fK(Φ) = ∅ or fK(Φ) = Φ for every Φ ⊆ L(At) (as Φ
is equivalent to a Φ′ that consists of a single formula that is the conjunction of
the formulas in Φ and fK(Φ

′) = ∅ or fK(Φ
′) = Φ′ due to inclusion). As we are

interested in a more graded approach to belief revision we want to be able to
accept or reject specific pieces of Φ and not just Φ as a whole. Consequently, we
consider weak extensionality as a desirable property instead of extensionality.
Note that extensionality implies weak extensionality as Φ ∼=p Φ′ implies Φ ≡p Φ′.

In [9] several representation theorems are given that characterize non-prior-
itized belief revision by selective revision via (1) and specific properties of ∗
and fK. In particular, it is shown that a reasonable non-prioritized belief revi-
sion operator ◦ can be characterized by an AGM revision ∗ and a transformation
function fK that satisfies extensionality, consistency preservation, and weak max-
imality. Note, however, that [9] deals with the problem of revising a belief set by

Selective Revision by Deductive Argumentation 153

a single sentence. Nonetheless, we can carry over the results of [9] to the problem
of multiple base revision and obtain the following result.

Proposition 1. Let ∗ be a prioritized multiple base revision operator and let
fK satisfy inclusion, weak extensionality, consistency preservation, and weak
maximality. Then ◦ defined via (1) is a non-prioritized multiple base revision
operator.

Proof. We have to show that ◦ satisfies inclusion, consistency, weak extension-
ality, weak success, and consistent expansion.

Inclusion. It holds that fK(Φ) ⊆ Φ as fK satisfies inclusion. Also, ∗ satisfies
inclusion and it follows K ∗ fK(Φ) ⊆ K ∪ fK(Φ) ⊆ K ∪ Φ.

Consistency. If Φ is consistent so is fK(Φ) as fK satisfies consistency preser-
vation. As ∗ satisfies consistency it follows that K ∗ fK(Φ) is consistent.

Weak Extensionality. If Φ ∼=p Φ′ then fK(Φ) ∼=p fK(Φ
′) as fK satisfies weak

extensionality. It follows that K ∗ fK(Φ) ≡p K ∗ fK(Φ
′) as ∗ satisfies weak

extensionality.
Weak Success. If K ∪ Φ is consistent it follows that fK(Φ) = Φ as fK satisfies

weak maximality. As ∗ satisfies vacuity it follows K+Φ ⊆ K∗fK(Φ). Hence,
◦ satisfies vacuity as well and therefore weak success.

Consistent Expansion. Suppose K �⊆ K∗fK(Φ). Note that ∗ satisfies consistent
expansion as ∗ satisfies vacuity and success, cf. [9]. It follows that K∪{K ∗
fK(Φ)} is inconsistent. ��

Note that relevance does not hold for K ◦ Φ defined via (1) in general. Consider
for example the transformation function f0

K defined via f0
K(Φ) = Φ if K ∪ Φ is

consistent and f0
K(Φ) = ∅ otherwise. Then f0

K satisfies all properties for trans-
formation functions except maximality. But it is easy to see that K ◦ Φ defined
via (1) using f0

K and a prioritized multiple base revision operator ∗ fails to sat-
isfy relevance. We leave it to future work to investigate further properties for
transformation functions that may enable relevance to hold in general.

In the following we aim at implementing a selective multiple base revision
using deductive argumentation and go on with introducing the latter.

4 Deductive Argumentation

Argumentation frameworks [1] allow for reasoning with inconsistent information
based on the notions of arguments, counterarguments and their relationships.
Since the seminal paper [6] interest has grown in research in computational
models for argumentation that allow for a coherent procedure for consistent
reasoning in the presence of inconsistency. In this paper we use the framework of
deductive argumentation as proposed by Besnard and Hunter [2]. This framework
bases on classical propositional logic and is therefore apt for our aim to use
argumentation to realize a transformation function f . The central notion of the
framework of deductive argumentation is that of an argument.

154 P. Krümpelmann et al.

Definition 3 (Argument). Let Φ ⊆ L(At) be a set of sentences. An argument
A for a sentence α ∈ L(At) in Φ is a tuple A = 〈Ψ, α〉 with Ψ ⊆ Φ that satisfies
1.) Ψ �⊥, 2.) Ψ � α, and 3.) there is no Ψ ′ � Ψ with Ψ ′ � α. For an argument
A = 〈Ψ, α〉 we say that α is the claim of A and Ψ is the support of A.

Hence, an argument A = 〈Ψ, α〉 for α is a minimal proof for entailing α. Given
a set Φ ⊆ L(At) of sentences there may be multiple arguments for α. As in [2]
we are interested in arguments that are most cautious.

Definition 4 (Conservativeness). An argument A = 〈Ψ, α〉 is more conser-
vative than an argument B = 〈Φ, β〉 if and only if Ψ ⊆ Φ and β � α.

In other words, an A is more conservative than an argument B if B has a smaller
support (with respect to set inclusion) and a more general conclusion. An ar-
gument A is strictly more conservative than an argument B if and only if A is
more conservative than B but B is not more conservative than A. If Φ ⊆ L(At)
is inconsistent there are arguments with contradictory claims.

Definition 5 (Undercut). An argument A = 〈Ψ, α〉 is an undercut for an
argument B = 〈Φ, β〉 if and only if α = ¬(φ1∧ . . .∧φn) for some φ1, . . . , φn ⊆ Φ.

If A is an undercut for B then we also say that A attacks B. In order to consider
only those undercuts for an argument that are most general we restrain the notion
of undercut as follows.

Definition 6 (Maximally conservative undercut). An argumentA = 〈Ψ, α〉
is a maximally conservative undercut for an argument B = 〈Φ, β〉 if and only if A
is an undercut of B and there is no undercut A′ for B that is strictly more conser-
vative than A.

Definition 7 (Canonical undercut). An argument A = 〈Ψ,¬(φ1∧. . .∧φn)〉 is
a canonical undercut for an argument B = 〈Φ, β〉 if and only if A is a maximally
conservative undercut for B and 〈φ1, . . . , φn〉 is the canonical enumeration of Φ.

It can be shown that it suffices to consider only the canonical undercuts for an
argument in order to come up with a reasonable argumentative evaluation of
some claim α [2]. Having an undercut B for an argument A there may also be an
undercut C for B which defends A. In order to give a proper evaluation of some
argument A we have to consider all undercuts for its undercuts as well, and so
on. This leads to the notion of an argument tree.

Definition 8 (Argument tree). Let α ∈ L(At) be some sentence and let Φ ⊆
L(At) be a set of sentences. An argument tree τΦ(α) for α in Φ is a tree where
the nodes are arguments and that satisfies

1. the root is an argument for α in Φ,
2. for every path [〈Φ1, α1〉, . . . , 〈Φn, αn〉] in τΦ(α) it holds that Φn � Φ1 ∪ . . . ∪

Φn−1, and

Selective Revision by Deductive Argumentation 155

3. the children B1, . . . ,Bm of a node A consist of all canonical undercuts for A
that obey 2.).

Let T (At) be the set of all argument trees.

An argument tree is a concise representation of the relationships between dif-
ferent arguments that favor or reject some argument A. In order to evaluate
whether a claim α can be justified we have to consider all argument trees for α
and all argument trees for ¬α. For an argument tree τ let root(τ) denote the
root node of τ . Furthermore, for a node A ∈ τ let chτ (A) denote the children of
A in τ and chTτ (A) denote the set of sub-trees rooted at a child of A.

Definition 9 (Argument structure). Let α ∈ L(At) be some sentence and
let Φ ⊆ L(At) be a set of sentences. The argument structure ΓΦ(α) for α with
respect to Φ is the tuple ΓΦ(α) = (P , C) such that P is the set of argument trees
for α in Φ and C is the set of arguments trees for ¬α in Φ.

The argument structure ΓΦ(α) of a α ∈ L(At) gives a complete picture of the
reasons for and against α. The argument structure has to be evaluated in order
to determine the status of sentences. We introduce the powerful evaluation mech-
anisms from [2] and give examples of how adequate and simple instantiations
can be realized.

Definition 10 (Categorizer). A categorizer γ is a function γ : T (At) → R.

A categorizer is meant to assign a value to an argument tree τ depending on how
strongly this argument tree favors the root argument. In particular, the larger
the value of γ(τ) the better justification of believing in the claim of the root
argument. For an argument structure ΓΦ(α) = ({τp1 , . . . , τpn}, {τc1 , . . . , τcm}) and
a categorizer γ we abbreviate

γ(ΓΦ(α)) = (〈γ(τp1), . . . , γ(τpn)〉, 〈γ(τc1), . . . , γ(τcm)〉) ∈ PP(R)×PP(R) .

Definition 11 (Accumulator). An accumulator κ is a function κ : PP(R)×
PP(R) → R.

An accumulator is meant to evaluate the categorization of argument trees for or
against some sentence α.

Definition 12 (Acceptance). We say that a set of sentences Φ ⊆ L(At) ac-
cepts a sentence α with respect to a categorizer γ and an accumulator κ, denoted
by

Φ |∼ κ,γα if and and only if κ(γ(ΓΦ(α))) > 0

A set of sentences Φ ⊆ L(At) rejects a sentence α with respect to a categorizer
γ and an accumulator κ, denoted by

Φ |�∼ κ,γα if and and only if κ(γ(ΓΦ(α))) < 0

If Φ neither accepts nor rejects α with respect to γ and κ we say that Φ is
undecided about α with respect to γ and κ.

156 P. Krümpelmann et al.

Some simple instances of categorizers and accumulators are as follows.

Example 3. Let τ be some argument tree. The classical evaluation of an argu-
ment tree—as e. g. employed in Defeasible Logic Programming [10]—is that each
leaf of the tree is considered “undefeated” and an inner node is “undefeated”
if all its children are “defeated” and “defeated” if there is at least one child
that is “undefeated”. This intuition can be formalized by defining the classical
categorizer γ0 recursively via

γ0(τ) =

{
1 if chτ (root(τ)) = ∅
1−max{γ0(τ ′) | τ ′ ∈ chTτ (root(τ))} otherwise

Furthermore, a simple accumulator κ0 can be defined via

κ0(〈N1, . . . , Nn〉, 〈M1, . . . ,Mm〉) = N1 + . . .+Nn −M1 − . . .−Mm .

For example, a set of sentences Φ ⊆ L(At) accepts a sentence α with respect
to γ0 and κ0 if and only if there are more argument trees for α where the root
argument is undefeated than argument trees for ¬α where the root argument is
undefeated. �

More examples of categorizers and accumulators can be found in [2]. Using those
notions we are able to state for every sentence φ ∈ Φ whether φ is accepted in Φ
or not, depending on the arguments that favor α and those that reject α.

5 Selective Revision by Deductive Argumentation

Using the deductive argumentation framework presented in the previous section
one is able to decide for each sentence α ∈ Φ whether α is justifiable with respect
to Φ. Note that the framework of deductive argumentation heavily depends on
the actual instances of categorizer and accumulator. In the following we only
consider categorizer and accumulator that comply with the following minimal
requirements.

Definition 13 (Well-behaving categorizer). A categorizer γ is called well-
behaving if γ(τ) > γ(τ ′) whenever τ consists only of one single node and τ ′

consists of at least two nodes.

In other words, a categorizer γ is well-behaving if the argument tree that has no
undercuts for its root is considered the best justification for the root.

Definition 14 (Well-behaving accumulator). An accumulator κ is called
well-behaving if and only if κ((P , C)) > 0 whenever P �= ∅ and C = ∅.

This means, that if there are no arguments against a claim α and at least one
argument for α in Φ then α should be accepted in Φ. Note that both γ0 and κ0

are well-behaving as well as all categorizers and accumulators considered in [2].

Selective Revision by Deductive Argumentation 157

Note further that if Φ is consistent then every sentence α ∈ Φ is accepted by Φ
with respect to every well-behaving categorizer and well-behaving accumulator.

Let K ⊆ L(At) be a consistent set of sentences, and let γ be some well-
behaving categorizer and κ be some well-behaving accumulator. We consider
again a selective revision ◦ of the form (1). In order to determine the outcome
of the non-prioritized revision K ◦ Φ for some Φ ⊆ L(At) we implement a trans-
formation function f that checks for every sentence α ∈ Φ whether α is ac-
cepted in K ∪ Φ. Note that although K is consistent the union K ∪ Φ is not
necessarily consistent which gives rise to an argumentative evaluation. In the
following, we consider two different transformation functions based on deductive
argumentation.

Definition 15 (Skeptical Transformation Function). We define the skep-
tical transformation function Sγ,κK via

Sγ,κK (Φ) = {α ∈ Φ | K ∪ Φ |∼ κ,γα}

for every Φ ⊆ L(At).

Definition 16 (Credulous Transformation Function). We define the cred-
ulous transformation function Cγ,κ

K via

Cγ,κ
K (Φ) = {α ∈ Φ | K ∪ Φ |�∼ κ,γ¬α}

for every Φ ⊆ L(At).

In other words, the value of Sγ,κK (Φ) consists of those sentences of Φ that are
accepted in K∪ Φ and the value of Cγ,κ

K (Φ) consists of those sentences of Φ that
are not rejected in K ∪ Φ. There is a subtle difference in the behavior of those
two transformation functions as the following example shows.

Example 4. Let K1 = {a} and Φ1 = {¬a}. Note that there is exactly one ar-
gument tree τ1 for ¬a and one argument tree τ2 for a in K1 ∪ Φ. In τ1 the
root is the argument A = 〈{¬a},¬a〉 which has the single canonical undercut
B = 〈{a}, a〉. In τ2 the situation is reversed and the root of τ2 is the argument
B which has the single canonical undercut A. Therefore, the argument structure
for ¬a is given via ΓK∪Φ(¬a) = ({τ1}, {τ2}). It follows that γ0(τ1) = γ0(τ2) = 0
and κ0(γ0(ΓK∪Φ(a))) = κ0(〈0, 0〉) = 0. It follows that K ∪ Φ is undecided about
both ¬a and a. Consequently, it follows that

Sγ0,κ0

K1
(Φ1) = ∅ Cγ0,κ0

K1
(Φ1) = {¬a} .

�

Let ∗ be some (prioritized) multiple base revision operator, γ some categorizer,
and κ some accumulator. Using the skeptical transformation function we can
define the skeptical argumentative revision ◦γ,κS following (1) via

K ◦γ,κS Φ = K ∗ Sγ,κK (Φ) (2)

158 P. Krümpelmann et al.

for every Φ ⊆ L(At) and using the credulous transformation function we can
define the credulous argumentative revision ◦γ,κC via

K ◦γ,κC Φ = K ∗ Cγ,κ
K (Φ) (3)

for every Φ ⊆ L(At).
Example 5. We continue Example 4. Let ∗ be some prioritized multiple base
revision. Then it follows that K1 ◦γ0,κ0

S Φ1 = {a} and K1 ◦γ0,κ0

C Φ1 = {¬a}. �
We now investigate the formal properties of the transformation functions Sγ,κK
and Cγ,κ

K and the resulting revision operators ◦γ,κS and ◦γ,κC .

Proposition 2. Let γ be a well-behaving categorizer and κ be a well-behaving
accumulator. Then the transformation functions Sγ,κK and Cγ,κ

K satisfy inclusion,
weak inclusion, weak extensionality, consistency preservation and weak maxi-
mality.

Proof.

Inclusion. This is satisfied by definition as for α ∈ Sγ,κK (Φ) and each α ∈
Cγ,κ
K (Φ) it follows α ∈ Φ.

Weak Inclusion. This follows directly from the satisfaction of inclusion.
Weak Extensionality. Let Φ ∼=p Φ′ and let σ : Φ → Φ′ be a bijection such that

for every φ ∈ Φ it holds that φ ≡p σ(φ). We extend σ to K via σ(ψ) = ψ for
every ψ ∈ K. If Ψ ⊆ K ∪ Φ we abbreviate

σ(Ψ) =
⋃
ψ∈Ψ

{σ(ψ)} .

Let 〈Ψ, φ〉 be an argument for some φ ∈ Φ with respect to K ∪ Φ. Then
〈σ(Ψ), σ(φ)〉 is an argument for σ(φ) in K ∪ Φ′. It follows that if τ is an
argument tree for 〈Ψ, φ〉 in K∪Φ then τ ′ is an argument tree for 〈σ(Ψ), σ(φ)〉
in K∪Φ′ where τ ′ is obtained from τ by replacing each sentence φ with σ(φ).
This generalizes also to argument structures and it follows that

κ(γ(ΓK∪Φ(φ))) = κ(γ(ΓK∪Φ′(σ(φ)))) .

Hence, φ ∈ Sγ,κK (Φ) if and only if σ(φ) ∈ Sγ,κK (Φ′) for every φ ∈ Φ. It follows
that Sγ,κK (Φ) ∼=p Sγ,κK (Φ′). The same is true for Cγ,κ

K .
Consistency Preservation. Every subset of a consistent set of sentences is con-

sistent and, due to inclusion, it holds that Sγ,κK (Φ),Cγ,κ
K (Φ) ⊆ Φ with consis-

tent Φ.
Weak Maximality. If K∪Φ is consistent then for all arguments for a sentence

α ∈ Φ there do not exist any undercuts as these would have to entail the
negation of some sentence of the argument for α which implies inconsis-
tency of K ∪ Φ. The argument structure ΓΦ(α) = (P , C) consists of one or
more single node trees P and C = ∅. As both γ and κ are well-behaving it
follows that κ(γ(ΓΦ(α))) > 0 for each α ∈ Φ and therefore Sγ,κK (Φ) = Φ and
Cγ,κ
K (Φ) = Φ. ��

In particular, note that both Sγ,κK and Cγ,κ
K do not satisfy either consistency or

maximality in general.

Selective Revision by Deductive Argumentation 159

Corollary 1. Let γ be a well-behaving categorizer and κ be a well-behaving ac-
cumulator. Then both ◦γ,κS and ◦γ,κC are non-prioritized multiple base revision
operators.

Proof. This follows directly from Propositions 1 and 2. ��

Example 6. We continue Examples 1 and 2 and consider At = {c, a, q, b, r, s}
with the following informal interprations.

c : Anna has financial problems
a : Anna travels to Hawaii
q : There is volcano activity on Hawaii
b : Anna has a lot of money
r : Anna is a surf fanatic
s : Anna takes a loan

Now consider Anna’s belief base K2 given via

K2 = {r, r ⇒ a, s, s ⇒ b, b ⇒ a, b ⇒ ¬c} .
This means that Anna believes that she is a surf fanatic (r), that a surf fanatic
should travel to Hawaii (r ⇒ a), that she takes a loan (s), that taking a loan
means that she has a lot of money (s ⇒ b), that having a lot of money implies
she should travel to Hawaii (b ⇒ a), and that having a lot of money she does
not have financial problems. Note that K � a, i. e. Anna intends to go to Hawaii.
Now consider the new information Φ2 = {c, c ⇒ ¬a, q, q ⇒ ¬a} stemming
from communication with Anna’s mother. In Φ2 the mother of Anna tells her
not to travel to Hawaii. In particular, Φ2 states that Anna has financial problems
(c), that having financial problems Anna should not travel to Hawaii (c ⇒ ¬a),
that there is also volcano activity on Hawaii (q), and that given volcano activity
Anna should not travel to Hawaii (q ⇒ ¬a).

As one can see there a several arguments for and against a in K2 ∪ Φ2, e. g.,
〈r, r ⇒ a, a〉, 〈c, c ⇒ ¬a,¬a〉. We do not go into details regarding the argumen-
tative evaluation of the sentences in Φ2. We only note that K2 ∪Φ2 is undecided
about c but accepts c ⇒ ¬a, q, and q ⇒ ¬a with respect to γ0 and κ0. Conse-
quently, the values of Sγ0,κ0

K2
(Φ2) and Cγ0,κ0

K2
(Φ2) are given via

Sγ0,κ0

K2
(Φ2) = Φ2 \ {c} and Cγ0,κ0

K2
(Φ2) = Φ2 .

Let ∗ be some prioritized multiple base revision operator and define ◦γ0,κ0

S and
◦γ0,κ0

C via (2) and (3), respectively. Then some possible revisions of K2 with Φ2

are given via

K2 ◦γ0,κ0

S Φ2 = {r, s ⇒ b, b ⇒ a, b ⇒ ¬c, c ⇒ ¬a, q ⇒ ¬a, q}
K2 ◦γ0,κ0

C Φ2 = {r, s ⇒ b, b ⇒ a, b ⇒ ¬c, c ⇒ ¬a, c, q ⇒ ¬a, q} .
Note that it holds K2 ◦γ0,κ0

S Φ2 � ¬a and K2 ◦γ0,κ0

C Φ2 � ¬a. Hence, Anna accepts
the conclusion of her mother’s arguments not to travel Hawaii. However, if she
revises her beliefs in a skeptical way she does not accept that she has financial
problems. �

160 P. Krümpelmann et al.

6 Related Work

In terms of related work there are mainly two areas that are related to the work
presented here. On the one hand, non-prioritized belief revision and on the other
hand belief revision by argumentation.

In the former area we instantiate and extended the non-prioritized revision
operator of selective revision presented in [9] towards multiple revision and to re-
vision of belief bases. Selective revision is one of the most general non-prioritized
revision operator of the type decision+revision [11]. Moreover it allows for par-
tial acceptance of the input, in contrast to most other approaches. Apart from
decision+revision approaches there are expansion+consolidation approaches to
non-prioritized belief revision. These perform a simple expansion by the new
information, i.e. K ∪ Φ, and then apply a consolidation operator ! that restores
consistency, i.e. K∗Φ = (K∪Φ)!. This approach is limited to belief bases since all
inconsistent belief sets are equal, i. e. Cn(⊥) = L(At). An instantiation of such
an operator that is similar to the setup used in this work has been presented
in [8]. The considered input to the revision consists of a set of sentences that
form an explanation of some claim in the same form as the argument definition
used here. However, as with all approaches of the type expansion+consolidation,
new and old information are completely equal to the consolidation operator. In
contrast, the approach presented here which makes use of two different mech-
anisms to first decide about if, and which part, of the input shall be accepted
just considering the new information, and then performing prioritized belief re-
vision of the old information. Also, there are integrated choice approaches that
do not feature a two step process but a single step process applying the same
technique for the selection and revision process. Mostly these approaches need
some meta information, e. g. an epistemic entrenchment relation, and thus differ
on the basic process as well as on the information needed.

While there has been some work on the revision of argumentation systems,
very little work on the application of argumentation techniques for the revi-
sion process has been done so far, cf. [7]. In fact, the work most related to the
work presented here makes use of negotiation techniques for belief revision [3,13],
without argumentation. In the general setup of [3] a symmetric merging of in-
formation from two sources is performed by means of a negotiation procedure
that determines which source has to reduce its information in each round. The
information to be given up is determined by another function. The negotiation
ends when a consistent union of information is reached. While this can be seen
as a one step process of merging or consolidation in general, the formalism also
allows to differentiate between the information given up from the first source and
the second source. In [3], this setting is then successively biased towards prior-
itizing the second source which leads to representation theorems for operations
equivalent to selective revision satisfying consistent expansion and for classic
AGM operators. While those results are interesting, the negotiation framework
used in [3] is very different from the argumentation formalism used here and also
very different from the setup of selective revision. Moreover, the functions for
the negotiation and concession are left abstract.

Selective Revision by Deductive Argumentation 161

In [13] mutual belief revision is considered where two agents revise their re-
spective belief state by information of the other agent. Both agents agree in a
negotiation on the information that is accepted by each agent. The revisions of
the agents are split into a selection function and two iterated revision functions
which leads to operators satisfying consistent expansion. The selection function
is then a negotiation function on two sets of beliefs that represent the sets of
belief that each agent is willing to accept from the other agent that might obey
game theoretic principles. This setting has a very different focus as ours and also
does not specify the selection function.

7 Conclusion

In this paper we combined the research strains of selective revision and deduc-
tive argumentation in order to implement non-prioritized multiple base revision
operators that only revise by those portions of the new information that are
justified. We only took some first steps in investigating the properties of those
revision operators but were able to show that those comply with many desir-
able properties for non-prioritized revision. We discussed the performance of our
operators by examples and briefly compared our approach to related work.

Future work includes a more in depth analysis of the revisions ◦γ,κS and ◦γ,κC

and a more thorough comparison with related work, in particular we want
to evaluate in more depth the synergetic effects of combining argumentation
and belief revision with respect to the results obtained from either framework.
Moreover introducing notions of preference seems to be natural in this setting
and we plan to extend our framework to preferences on the argumentation as
well as on the belief revision side and investigate the connections to epistemic
entrenchment.

References

1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171, 619–641 (2007)

2. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial
Intelligence 128(1-2), 203–235 (2001)

3. Booth, R.: A negotiation-style framework for non-prioritised revision. In: Proceed-
ings of TARK 2001, pp. 137–150 (2001)

4. Makinson, D., Alchourron, C.E., Gärdenfors, P.: On the logic of theory change: Par-
tial meet contraction and revision functions. The Journal of Symbolic Logic 50(2),
510–530 (1985)

5. Delgrande, J.P., Jin, Y.: Parallel belief revision. In: Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence, AAAI 2008 (2008)

6. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial In-
telligence 77(2), 321–358 (1995)

7. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Belief revision and argumenta-
tion theory. In: Argumentation in Artificial Intelligence, pp. 341–360. Springer,
Heidelberg (2009)

162 P. Krümpelmann et al.

8. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and
defeasible reasoning. Artificial Intelligence 141(1), 1–28 (2002)

9. Fermé, E., Hansson, S.O.: Selective revision. Studia Logica 63, 331–342 (1999)
10. Garćıa, A.J., Simari, G.R.: Defeasible Logic Programming: An Argumentative Ap-

proach. Theory and Practice of Logic Programming 4(1–2), 95–138 (2004)
11. Hansson, S.O.: A survey of non-prioritized belief revision. Erkenntnis 50(2-3),

413–427 (1999)
12. Hansson, S.O.: A Textbook of Belief Dynamics. Kluwer Academic Publishers, Nor-

well (2001)
13. Zhang, D., Foo, N., Meyer, T., Kwok, R.: Negotiation as mutual belief revision. In:

Proceedings of AAAI 2004, pp. 317–322 (2004)

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 163–180, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Three-Layer Argumentation Framework

Paulo Maio and Nuno Silva

GECAD – School of Engineering – Polytechnic of Porto
Rua Dr. Bernardino de Almeida 431, 4200-072 Porto, Portugal

{pam,nps}@isep.ipp.pt

Abstract. Argumentation frameworks which are abstract are suitable for the
study of independent properties of any specific aspect (e.g. arguments sceptical
and credulous admissible) that are relevant for any argumentation context.
However, its direct adoption on specific application contexts requires dealing
with questions such as the argument structure, the argument categories, the
conditions under which an attack/support is established between arguments, etc.
This paper presents a generic argumentation framework which comprehends a
conceptualization layer to capture the expressivity and semantics of the
argumentation data employed in a specific context and simplifies its adoption
by applications. The conceptualization layer together with the defined argument
structure is exploited to automatically derive the attack and support
relationships between arguments.

Keywords: Argumentation Frameworks, Argument Instantiation, Argument
Schemes, Bipolar Argumentation, Agents, MAS.

1 Introduction

A crucial problem on BDI agents as described by Wooldridge [1] concerns what
should be the agent beliefs and how those beliefs are used (i) to form new intentions,
or (ii) to redraw/revise current intentions. On this matter, contributions of the
argumentation research field may be exploited internally by BDI agents since
argumentation can be used either for reasoning about what to believe (i.e. theoretical
reasoning) and/or for deciding what to do (i.e. practical reasoning). Despite existing
differences between both, according to [2], from a standpoint of first-personal
reflection, a set of considerations for and against a particular conclusion are drawn on
both. Yet, agents in multi-agent systems (MAS) may apply argumentation externally
during interactions between agents, i.e. agents’ dialogues (cf. [3] for details). Within
this context, argumentation is seen as an activity where each participant tries to
increase (or decrease) the acceptability of a given standpoint for the other participants
by presenting arguments. Therefore, argumentation is foreseen as an adequate
modeling formalism to reduce the gap between models governing the internal and
external agent behavior.

In which concerns to argumentation, there is an abundance of relevant literature in
argumentation and argumentation systems. With regards to argumentation modeling

164 P. Maio and N. Silva

formalisms, the abstract argumentation frameworks such as the AF [4], the BAF [5]
and the VAF [6] are suitable to represent many different situations without being
committed to any domain of application. Due to their abstract nature they are also
suitable for the study of independent properties of any specific aspect (e.g. arguments
sceptical and credulous admissible) that are relevant for any argumentation context
that can be captured and formalized accordingly. On the other hand, this abstract
nature represents an expressiveness limitation to the direct adoption of specific
application contexts [7, 8]. To overcome this limitation, argumentation systems
usually adopt an abstract argumentation framework and extend it in order to get a less
abstract formalism, dealing in particular with (i) the construction of arguments and
their structure, (ii) the conditions under which argument-relations (i.e. attack and/or
support) are established, (iii) categories of arguments, etc. Nevertheless, abstract
argumentation frameworks do not provide any machinery facilitating and governing
how applications should extend or instantiate the framework. As a result, a significant
gap between abstract argumentation frameworks and applications exist.

Regarding arguments acceptability, argumentation systems (e.g. the Prakken
version of ASPIC [8]) use the abstract level as an abstraction of the overall system to
make logical inferences. That is, systems start with a knowledge base, which is used
to instantiate the adopted argumentation framework and then apply a given abstract
argumentation semantics such as the ones described in [7] to select the conclusions of
the associated sets of arguments. However, as studied in [8] and [9], in light of the
arguments’ content it is still possible that sets of arguments selected by an abstract
argumentation criterion yield to inconsistent conclusions.

This paper proposes a less abstract argumentation framework whose purpose is to
reduce existing gaps between abstract argumentation frameworks and applications,
namely which concerns with the arguments’ instantiation. For that, the proposed
framework (i) adopts a general and intuitive argument structure, (ii) includes a
conceptual layer for the specification of the semantics of argumentation data applied
in a specific domain of application (e.g. e-commerce, legal reasoning and decision
making) and (iii) defines a novel conceptual relation between argument-schemes
called arguments affectation. In addition, the proposed framework exploits the
conceptual information and the defined argument structure to automatically derive the
attack and support relationships between arguments. Despite the arguments’
acceptability issue is not directly addressed in this paper, applications still profiting
from the inherent suitability of abstract argumentation frameworks on the study of
independent properties, since information represented according to the proposed
argumentation framework is easily transformed (or converted) to BAF [5]. Despite
having these new features, the proposed argumentation framework remains general,
but less abstract than AF [4], BAF [5] and VAF [6].

The rest of the paper is organized as follows. The next section introduces
background concepts about abstract argumentation frameworks. Section 3 presents
the proposed argumentation framework. Next, in section 4, an example is provided to
illustrate the application of the proposed argumentation framework. Section 5
complements the proposed argumentation framework with a process to automatically
derive the attack and support relationships between arguments. Section 6 compares
and discusses the proposed framework with the related work. Finally, Section 7 draws
conclusions and discusses future work.

 A Three-Layer Argumentation Framework 165

2 Abstract Argumentation Frameworks

This section briefly describes the main concepts of the most referenced abstract
argumentation frameworks found in the literature: the Argumentation Framework
proposed by Dung (AF) [4], the Value Argumentation Framework (VAF) [6] and the
Bipolar Argumentation Framework (BAF) [5].

As proposed by Dung [4], the AF core entities are Argument, and a binary relation
between arguments (ܴ௔௧௧) as depicted in Fig. 1a. The ܴ௔௧௧ relation is known as the
attack relation. An AF can be defined as a tuple ܨܣ ൌ ሺܣ, ܴ௔௧௧ሻ where ܣ is a set of
arguments and ܴ௔௧௧ is a relation on ܣ such that ܴ௔௧௧ ك ܣ ൈ .ܣ

An AF instance may be represented by a directed graph whose nodes are
arguments and edges represent the attack relation. For any two arguments, say ܽଵ and ܽଶ, such that ܽଵ, ܽଶ א ,one says that ܽଵ attacks ܽଶ iif ሺܽଵ ,ܣ ܽଶሻ א ܴ௔௧௧.

Fig. 1. The main concepts of abstract argumentation frameworks

In Dung’s work attacks always succeed (i.e. it defeats the attacked arguments).
Yet, one says that an argument ݕ is attacked by a set of arguments ܵ such that ܵ ك ܣ
if ܵ contains at least one argument attacking ݕ. Grounded on that, the following
notions were defined:

• An argument ܽ א ,ሺ݈ܾܽ݁ܽݐ݌݁ܿܿܽ .is acceptable with respect to a set of arguments ܵ, i.e ܣ ܵሻ, iif ݔ׊: ݔ א ר ܣ ሺݔ, ܽሻ א ܴ௔௧௧ ՜ :ݕ׌ ݕ א ܵ ר ሺݕ, ሻݔ א ܴ௔௧௧;
• A set of arguments ܵ if conflict-free iif ݔ׍, :ݕ ,ݔ ݕ א ܵ ר ሺݔ, ሻݕ א ܴ௔௧௧;
• A conflict-free set of arguments ܵ is admissible iif ݔ׊: ݔ א ܵ ՜ ,ݔሺ݈ܾ݁ܽݐ݌݁ܿܿܽ ܵሻ;
• A set of arguments ܵ is a preferred extension iif it is maximal (with respect to set

inclusion) admissible set of ܣ.

A preferred extension represents a consistent position within an AF instance, which is
defensible against all attacks and cannot be further extended without introducing a
conflict. Yet, multiple preferred extensions can exist in an AF instance due to the
presence of cycles of even length in the graph. Given that, one considers that (i) an
argument is sceptical admissible if it belongs to any preferred extension and (ii) an
argument is credulous admissible if it belongs to at least one preferred extension.

While it is reasonable that attacks always succeed when dealing with deductive
arguments, in domains where arguments lack this coercive force, arguments provide

166 P. Maio and N. Silva

reasons which may be more or less persuasive and their persuasiveness may vary
according to their audience. Accordingly, it is necessary to distinguish between
attacks and successful attacks (i.e. defeats) prescribing different strengths to
arguments on the basis of the values they promote and/or their motivation in order to
accommodate the different interests and preferences of an audience. With that
purpose, the VAF [6] extended the AF [4] with (i) the concept of Value and (ii) the
function promotes relating an Argument with a single Value (depicted in Fig. 1b).
Therefore, a VAF can be defined as 4-uple ܸܨܣ ൌ ሺܣ, ܴ௔௧௧, ܸ, ܣ ሻ whereݏ݁ݐ݋݉݋ݎ݌
and ܴ௔௧௧ means the same as in the ܨܣ, a non-empty set of values ܸ and the function ݏ݁ݐ݋݉݋ݎ݌: ܣ ՜ ܸ to map elements from ܣ to elements of ܸ. Consequently, an
audience for a VAF instance corresponds to a binary preference relation ܲ ك ܸ ൈ ܸ
which is transitive, irreflexive and asymmetric. If a pair ሺݒଵ, ଶሻݒ א ܲ means that value ݒଵ is preferred to ݒଶ in the audience ܲ. An attack between two arguments (i.e. ሺܽଵ, ܽଶሻ א ܴ௔௧௧) where ܽଵ promotes a value ݒଵ and ܽଶ promotes a value ݒଶ succeeds
(i.e. ܽଵ defeats ܽଶ) iif the adopted audience prefers ݒଵ to ݒଶ otherwise the attack fails.
As a result, previous notions (i.e. acceptable, admissible, conflict-free and preferred
extension) were redefined accordingly (cf. [6] for details). Notice that for the same
audience multiple preferred extensions are possible and different audiences may also
lead to a unique preferred extension. In this way, different agents (each one
represented by one audience) can have different perspectives (i.e. preferred
extensions) over the same arguments.

The AF and the VAF assume that an argument ܽଵ supports an argument ܽଶ if ܽଵ
attacks and therefore defeats an argument ܽଷ that attacks argument ܽଶ. Thus, these
frameworks only explicitly represent the negative interaction (i.e. attack), while the
positive interaction (i.e. defense/support) of an argument ܽଵ to another argument ܽଶ is
implicitly represented by the attack of ܽଵ to ܽଷ. Since support and attack are related
notions, this modeling approach adopts a parsimonious strategy, which is neither a
complete nor a correct modeling of argumentation [10]. Conversely, the BAF [5]
assumes the attack relation is independent of the support relation and both have a
diametrically opposed nature and represent repellent forces. As a result, BAF [5]
extended the AF [4] with the support relation (ܴ௦௨௣) in order to be explicitly
represented (depicted in Fig. 1c). Thus, a BAF can be defined as a 3-uple ܨܣܤ ൌሺܣ, ܴ௔௧௧, ܴ௦௨௣ሻ where ܣ and ܴ௔௧௧ means the same as in the ܨܣ and ܴ௦௨௣ is a binary
relation on ܣ such that ܴ௦௨௣ ك ܣ ൈ ,Given that, for any two arguments, say ܽଵ and ܽଶ, such that ܽଵ .ܣ ܽଶ א ,one says that ܽଵ supports ܽଶ iif ሺܽଵ ,ܣ ܽଶሻ א ܴ௦௨௣.
Consequently, the notions of acceptable and conflict-free arguments as well as the
notion of a preferred extension were redefined accordingly (cf. [5] for details).

For all of these frameworks, an argument is anything that may attack/support or be
attacked/supported by another argument. The absence of an argument structure and
semantics enables the study of independent properties of any specific aspect that are
relevant for any argumentation context that can be captured and formalized
accordingly. On the other hand, this emphasizes the limited semantics for direct
adoption in specific application contexts [7, 8]. Indeed, a given application context
requires a less abstract formalism to deal with (i) the construction of arguments and
their structure, (ii) the conditions for an argument attack/support another, (iii)
categories of arguments, etc.

 A Three-Layer Argumentation Framework 167

3 Three-Layer Argumentation Framework

This section presents the proposed argumentation framework, which is denominated
as Three-Layer Argumentation Framework (TLAF). First, we give an informal
overview of the framework main concepts and their relations. Further, the framework
is formally defined.

3.1 Informal Overview

Unlike the abstract argumentation frameworks described, the TLAF features three
modeling layers as depicted in Fig. 2 (the line ending with a hollow triangle means
specialization/generalization).

Fig. 2. The three modeling layers of the proposed argumentation framework

Despite existing differences, the TLAF Meta-Model Layer and the TLAF Instance
Layer have the same purpose as those of AF [4], BAF [5] and VAF [6] layers with the
same name. The TLAF Model Layer intends to capture the semantics of
argumentation data (e.g. argument types/schemes) applied in a specific domain of
application (e.g. e-commerce, legal reasoning and decision making) and the relations
existing between them. In that sense, the model layer is important for the purpose of
enabling knowledge sharing and reuse between agents. In this context, a model is a
specification used for making model commitments. Practically, a model commitment
is an agreement to use a vocabulary in a way that is consistent (but not complete) with
respect to the theory specified by a model [11, 12]. Agents then commit to models and
models are designed so that the knowledge can be shared among these agents.
Accordingly, the content of this layer directly depends on (i) the domain of
application to be captured and (ii) the perception one (e.g. a community of agents) has
about that domain. Due to this, we adopt the vocabulary of (i) argument (or

Argument

Statement ReasoningMechanismIntentionalArgument

R, Rsup, Ratt

conflictWith

concludes

applies

A B C D Eapplies

concludes

concludes

a1 c2b1 b2

conflictWith concludes

d1

concludes

premise

R

applies

c1

concludes

premise

e1applies

applies
applies

F

f1

168 P. Maio and N. Silva

statement)-instance as an instance of an (ii) argument (or statement)-type defined at
the Model Layer. Similarly, we adopt the vocabulary of (i) relation between types,
and (ii) relationship between instances.

In TLAF, the meta-model layer defines an argument which is made of three parts:
(i) a set of premise-statements, (ii) a conclusion-statement and (iii) an inference from
premises to the conclusion enabled by a reasoning mechanism. This argument
structure is very intuitive and corresponds to the minimal definition presented by
Walton in [13]. For that, the meta-model layer defines the notion of Argument,
Statement and Reasoning Mechanism, and a set of relations between these concepts.
Following the notion of the BDI model [14, 15], an IntentionalArgument is the type of
argument whose content corresponds to an intention. Domain data and its meaning are
captured by the notion of Statement. This mandatorily includes the domain intentions,
but also the desires and beliefs. The distinction between arguments and statements
allows the application of the same domain data (i.e. statement) in and by different
means to arguments. Also the same statement can be concluded by different
arguments, and serve as the premise of several arguments. The notion of Reasoning
Mechanism captures the rules, methods, or processes applied by arguments.

At the model layer, an argument-type (or argument scheme) is characterized by the
statement-type it concludes, the applied class of reasoning mechanism (e.g.
Deductive, Inductive, Heuristic) and the set of affectation relations (i.e. ܴ) it has. The ܴ relation is a conceptual abstraction of the attack (i.e. ܴ௔௧௧) and support (i.e. ܴ௦௨௣)
relationships. The purpose of ܴ is to define at the conceptual level that argument-
instances of an argument-type may affect (either positively or negatively) instances of
another argument-type. For example, according to the model layer of Fig. 2, ሺܥ, ሻܦ may attack or may support instances of ܥ means instances of argument-type ܴא
argument-type ܦ depending on the instances content. On the other hand, if ሺܺ, ܻሻ ב ܴ
it means that instances of argument-type ܺ cannot (in any circumstance)
attack/support instances of argument-type ܻ. Yet, the ܴ relation is also used to
determine the types of statements that are admissible as premises of an argument-
instance. So, an argument-instance of type ܺ can only have as premises statements of
type ܵ iif ܵ is concluded by an argument-type ܻ and ܻ affects ܺ (i.e. ሺܻ, ܺሻ א ܴ). For
example, considering again the model layer of Fig. 2, instances of argument-type ܦ
can only have as premises statements of type ܤ because ܦ is affected by argument-
type ܥ only.

At the instance layer, an argument-instance applies a concrete reasoning
mechanism to conclude a conclusion-statement-instance from a set of premise-
statement-instances. The relation conflictWith is established between two statement-
instances only. A statement-instance ܾଵ is said to be in conflict with another
statement-instance ܾଶ when ܾଵ states something that implies or suggests that ܾଶ is not
true or do not holds. The conflictWith relation is asymmetric (in Fig. 2 ܾଶ conflicts
with ܾଵ too). In this case, for example, ܾଵ may represent the statement “Peter is an
expert on PCs.” and ܾଶ may represent the statement “Peter is not an expert on PCs”.
While the ܴ௔௧௧ and ܴ௦௨௣ relations are established between argument-instances as in
BAF [5], these relationships are automatically inferred in TLAF exploiting (i) the
argument statements (i.e. conclusion and premises), (ii) the existing conflicts between
statement-instances and (iii) based on the ܴ relations defined at the model layer

 A Three-Layer Argumentation Framework 169

(cf. section 5 for details). It is worth noticing that all instances existing in the instance
layer must have an existing type in the model layer and according to the type
characterization.

3.2 Formal Definition

The TLAF is formally described as follows.

Definition 1 (TLAF). A TLAF structure is a singleton ܶܨܣܮ ൌ ሺܧሻ, where ܧ is the
set of entities of a TLAF.

A TLAF represents a self-contained unit of structured information. Elements in a
TLAF are called argumentation entities.

Definition 2 (TLAF Model Layer). A model layer associated with a TLAF is a 6-
tuple ܮܯሺܶܨܣܮሻ ൌ ሺܣ, ,ܣܫ ܵ, ,ܯ ܴ, :ሻ whereߪ

ܣ ─ ك ;is a set of argument-types ܧ
ܣܫ ─ ك is the sub-set of argument-types whose instances claim corresponds to an ܣ

intention ([14, 15]);
─ ܵ ك ;is the a set of statement-types ܧ
ܯ ─ ك ;is the set of reasoning mechanisms ܧ
─ ܴ ك ܣ ൈ establishes a reflexive relation between two argument-types called ܣ

arguments’ affectation. If a pair ሺܽଵ, ܽଶሻ א ܴ then argument-instances of type ܽଵ
may affect (positively or negatively) argument-instances of type ܽଶ;

 is a function that assigns to every argument-type (i) the concluded statement-type ߪ ─
and (ii) the reasoning mechanism applied, such as ߪ: ܣ ՜ ܵ ൈ :where ܯ

─ function ݈ܿܿ݊݋: ܣ ՜ ܵ;
─ function ݊݋ݏܽ݁ݎ: ܣ ՜ .ܯ

Each TLAF has a model layer associated with it. Information captured within the
model layer plays an important role by conducting and governing the instantiation
process of the framework by an application, namely which concerns the construction
and semantics of instances and existing relations between them. In that sense, the
model layer can also be used to validate the TLAF Instance Layer.

Notice that argument-types do not define their statement-types used as premises.
Instead, these are derived from the ܴ relation established between arguments.

Definition 3 (TLAF Instance Layer). An instance layer associated with a TLAF is a
6-tuple ܲܫሺܶܨܣܮሻ ൌ ሺܫ, ,ܣݐݏ݊݅ ,ܵݐݏ݊݅ ,ܯݐݏ݊݅ Σ, :ሻ whereݐ݈݂ܿ݅݊݋ܿݏ

ܫ ─ ك ;is a set of instances ,ܧ
─ function ݅݊ܣݐݏ: ܣ ՜ 2ூ relates an argument-type with a set of instances.

Consequently, the set of all argument instances ܫܣ is defined according to equation
1 (see below). Furthermore, we define the inverse function as ݅݊ିܣݐݏ: ܫܣ ՜ ;ܣ

─ function ݅݊ܵݐݏ: ܵ ՜ 2ூ relates a statement-type with a set of instances.
Consequently, the set of all statement instances ܵܫ is defined according to equation
1. Furthermore, we define the inverse function as ݅݊ିܵݐݏ: ܫܵ ՜ ܵ;

170 P. Maio and N. Silva

─ function ݅݊ܯݐݏ: ܯ ՜ 2ூ relates a reasoning mechanism with a set of instances.
Consequently, the set of all reasoning mechanism instances ܫܯ is defined
according to equation 1. Furthermore, we define the inverse function as ݅݊ିܯݐݏ: ܫܯ ՜ ;ܯ

─ function Σ: ܫܣ ՜ ܫܵ ൈ ܫܯ ൈ 2ௌூ , defines for every argument-instance (i) the
statement-instance concluded, (ii) the reasoning mechanism instance used to infer
the conclusion and (iii) the set of statement-instances used as premises, where:

─ function ݈݅ܿܿ݊݋: ܫܣ ՜ defines the statement-instance that plays the role of ,ܫܵ
conclusion on an argument-instance. Indeed, an argument-instance has only
one statement-instance as conclusion while a statement-instance is concluded
by at least one argument-instance;

─ function ݅݊݋ݏܽ݁ݎ: ܫܣ ՜ defines the reasoning mechanism instance that is ,ܫܯ
used by an argument-instance.

─ function ݅݁ݏ݅݉݁ݎ݌: ܫܣ ՜ 2ௌூ, defines the statement-instances used as premises
on an argument-instance. Moreover, statement-instances used as premises are
also concluded by other arguments;

─ function ݐ݈݂ܿ݅݊݋ܿݏ: ܫܵ ՜ 2ௌூ, defines the statement-instances that are in conflict
with a statement-instance. ܫܣ ൌ ራ ஺א௫:௫׊ሻݔሺܣݐݏ݊݅ , ܫܵ ൌ ራ ௌא௫:௫׊ሻݔሺܵݐݏ݊݅ , ܫܯ ൌ ራ ெא௫:௫׊ሻݔሺܯݐݏ݊݅ ሺ1ሻ

As the reader might have noticed, the instance layer definition is concerned with the
generation of argument-instances, statement-instances and their inter-relationships (Σ
and ݐ݈݂ܿ݅݊݋ܿݏ). Despite the fact that this is a domain dependent process, it profits
from the subjacent TLAF model, namely due to the rules complementing the ݅ܿ݁ݏ݅݉݁ݎ݌݅ ,݈ܿ݊݋ (see next definition) and ݐ݈݂ܿ݅݊݋ܿݏ (see section 5), that have the ability to
conduct and simplify the process.

Definition 4 (TLAF Interpretation). An interpretation of a TLAF is a structure ॎ ൌ ሺ∆ॎ, ,ॎܣ ܵॎ, ,ॎܯ :ॎሻ whereܫ

─ Δম is the domain set;

:মܣ ─ ܣ ՜ 2୼ম
 is an argument interpretation function that maps each argument-type

to a subset of the domain set;

─ ܵম: ܵ ՜ 2୼ম
 is a statement interpretation function that maps each statement-type to

a subset of the domain set;

:মܯ ─ ܯ ՜ 2୼ম
 is a reasoning mechanism interpretation function that maps each

reasoning mechanism to a subset of the domain set;
:মܫ ─ ܫ ՜ Δম is an instance interpretation function that maps each instance to a single

element in the domain set;

An interpretation is a model of TLAF if it satisfies the following properties:

,ܽ׊ ─ ݅: ܽ א ܣ ר ݅ א ሺܽሻܣݐݏ݊݅ ֜ মሺ݅ሻܫ א ;মሺܽሻܣ
,ݏ׊ ─ ݅: ݏ א ܵ ר ݅ א ሻݏሺܵݐݏ݊݅ ֜ মሺ݅ሻܫ א ܵমሺݏሻ;
,݉׊ ─ ݅: ݉ א ܯ ר ݅ א ሺ݉ሻܯݐݏ݊݅ ֜ মሺ݅ሻܫ א ;মሺ݉ሻܯ

 A Three-Layer Argumentation Framework 171

:ܽ׊ ─ ܽ א ܣܫ ֜ ݏ݊݋݅ݐ݊݁ݐ݊݅ ݁ݎܽ মሺܽሻܣ
,ܽ׊ ─ ݅: ܽ א ܣ ר ݅ א ሺܽሻܣݐݏ݊݅ ֜ ሺ݅ሻ൯݈ܿ݊݋ম൫݅ܿܫ א ܵম൫݈ܿܿ݊݋ሺܽሻ൯ ሺ݅ሻ൯݊݋ݏܽ݁ݎম൫݅ܫ ר א ;ሺܽሻ൯݊݋ݏܽ݁ݎম൫ܯ
,ܽ׊ ─ ݅, :݌ ܽ א ܣ ר ݅ א ሺܽሻܣݐݏ݊݅ ר ݌ א ሺ݅ሻ݁ݏ݅݉݁ݎ݌݅ ,ݔ׌ ֜ :ݕ ሻݕমሺܫ א ሻݔমሺܣ ר ݌ ൌ ሻݕሺ݈ܿ݊݋ܿ݅ ר ሺݔ, ܽሻ א ܴ
,ܽ׊ ─ :ݏ ܽ א ܣ ר ݏ א ܵ ֜ মሺܽሻܣ ת ܵমሺݏሻ ൌ ;׎
,ܽ׊ ─ ݉: ܽ א ܣ ר ݉ א ܯ ֜ মሺܽሻܣ ת মሺ݉ሻܯ ൌ ;׎
,ݏ׊ ─ ݉: ݏ א ܵ ר ݉ א ܯ ֜ ܵমሺݏሻ ת মሺ݉ሻܯ ൌ .׎

Definition 5 (Argument Properties). An argument-type ܽ א -and all its argument ܣ
instances (i.e. ܽ׊௜: ܽ௜ א ܫܣ ר ܽ௜ א :ሺܽሻ) are said to beܣݐݏ݊݅

─ intentional if ܽ א ;ܣܫ
─ non-intentional if ܽ ב ;ܣܫ
─ defeasible if ݔ׌: ݔ א ܣ ר ݔ ് ܽ ר ሺݔ, ܽሻ א ܴ;
─ indefeasible if ݔ׊: ݔ א ܣ ר ݔ ് ܽ ר ሺݔ, ܽሻ ב ܴ.

Arguments may be used with two purposes: (i) to represent and communicate
intentions (i.e. intentional arguments) and (ii) to provide considerations (i.e. beliefs,
desires) for and against those intentions (i.e. non-intentional arguments). Thus, an
intentional argument may be affected by several non-intentional arguments.
Additionally, to capture dependency between intentions, intentional arguments may
be also affected (directly or indirectly) by other intentional arguments. A defeasible
argument is affected by other (sub-) arguments (i.e. the ones concluding its premises
or the ones undermining those premises) while an indefeasible argument can only be
affected by its negation since it cannot have premises. Given that, in a TLAF Model
Layer, intentional arguments should be always defeasible. On the contrary, non-
intentional arguments can be both defeasible and indefeasible.

4 A Walk-through Example

This section provides an example whose purpose is to show the application of TLAF.
For that, we decide on a common and simple scenario such as buying digital cameras.
First, for the scenario in hands a possible TLAF model is introduced and discussed.
Next, a short and somewhat contrived dialogue is used to demonstrate how the TLAF
model guides the instantiation process of TLAF.

4.1 A TLAF Model

Consider the partial TLAF model layer graphically depicted in Fig. 31, where the
rectangles denote non-intentional argument types, the rectangles with rounded corners
denote intentional argument-types and the oriented arrows denote an ܴ-relation
between two argument types.

1 Instead of a formal definition, we present a partial graphical view of the model layer because

we consider it to be more informative to the reader.

172 P. Maio and N. Silva

The intention of buying a camera is captured by the argument-type BuyCamera
which is affected by considerations about (i) the Requirement to buy a camera, (ii) the
general trend of received Reviews, (iii) the general perspective about the cameras’
Features and (iv) the PriceRelation (i.e. expensive vs. cheap). The PriceRelation
grounds on considerations about the CurrentPrice and the PastPrice. The Requirement
is affected by two types of considerations: (i) HobbyReq (i.e. a hobby requirement) or
(ii) a JobReq (i.e. job requirement). Reviews are affected by each individual opinion (i)
of friends (FriendsReview) and (ii) of experts (ExpertReview). The latter requires that
the reviewer is considered an expert (PersonExpert). The Features are affected by
considerations about the Zoom which is made based on the DigitalZoom and
OpticalZoom. Additionally, for the sake of brevity, consider that each of these
arguments concludes a statement-type with a similar name (e.g. argument OpticalZoom
concludes OpticalZoomStmt) and applies a heuristic or presumptive reasoning
mechanism. Notice that the provided conceptualization do not intends to be neither
complete nor the most accurate approach for the scenario in hands.

Fig. 3. A partial view over a TLAF model layer for buying cameras

This TLAF model has several indefeasible argument-types (e.g. PersonExpert,
CurrentPrice, PastPrice) and several defeasible argument-types (e.g. Reviews,
Requirement, PriceRelation). Regarding the former ones, agents are only able to
agree or disagree with the conclusions of those argument-instances. For example, an
agent can agree or disagree with other agent on the fact that someone is expert on
digital cameras but it cannot argue about the information behind such position (i.e.
belief). On the contrary, agents are able to argue about the information behind the
conclusions of defeasible arguments. For example, an agent that does not agree about
the general trend of reviews about a given digital camera presented by another agent
is able to present a set of individual reviews (provided by friends and/or experts)
supporting its position, which may lead the other agent to change its initial position.

Since a TLAF model captures the perception, the understanding and the rationality
that someone (e.g. an agent or a community of agents) has on a given moment about a
domain of application, it may evolve over time. For example, this model may evolve in
order to allow agents to argue about the fact of someone to be or not to be an expert.

 A Three-Layer Argumentation Framework 173

The information used for that purpose (e.g. the person’s skills) should be conceptual
analyzed and captured on the TLAF model. The resulting statement and argument types
must be connected with the already existing argument types through ܴ-relations.

4.2 Instantiating a TLAF Model

Consider the following dialogue takes place between husband (H) and wife (W). In
the light of previous TLAF model, the relevant statements (i.e. domain data) uttered
by both are marked as ݐݏ௜ (with ݅ ൐ 0).

H. I am looking forward to buy camera X (ݐݏଵ).
W. Why? We don’t need it (ݐݏଶ).
H. That is not true (ݐݏଷ). I need a camera to perform the task that Sam assigned to me
 .(ହݐݏ) Besides that, the camera received several good reviews on a website .(ସݐݏ)
W. Susan and Mary bought that camera and they told me that they regret their option
 .(଻ݐݏ ଺ andݐݏ)
H. Oh, come on Honey. Peter Noble is an expert on the matter (଼ݐݏ) and he says great
things about the camera (ݐݏଽ).
W. How much it costs? Is it expensive?
H. No! Currently, there is a great opportunity in the city mall (ݐݏଵ଴). It only costs
 .(ଵଶݐݏ) Last week, the price was 150€ .(ଵଵݐݏ) 100€
W. That camera is a discontinued product.
H. I don’t care about that.
W. I am reading in this magazine that it lacks some minimal features (ݐݏଵଷ) such as
zoom (ݐݏଵସ).
H. Nonsense! Camera X has a digital zoom of “80x” (ݐݏଵହ);
W. Yeah! But, the optical zoom is only of “4x” (ݐݏଵ଺).

It is worth noting that: (i) the information stating camera X is a discontinued product
did not give raise any statement because it was not envisioned in the TLAF model
layer being used; and (ii) despite Susan and Mary have the same opinion, two
statements (i.e. ݐݏ଺ and ݐݏ଻) were identified such that each statement corresponds to
the opinion of a single person (i.e. Susan and Mary respectively), which is consistent
with the semantics of the underlying TLAF model.

Even though this is a short dialogue, it already may be difficult to keep track of all
information used and how it is inter-related in the form of argument-instances. As the
result of an instantiation process, consider the arguments, the statements and the
relationships between arguments and statements presented in Table 1.

To make evident how the information captured in a TLAF model can be exploit
during the instantiation process, let us roughly describe the one adopted here. It
consists of three distinct and complementary steps. First step, each statement
identified in the dialogue gives raise to one argument-instance concluding that
statement. Second step, because the premises of argument-instances are not always
explicit in the dialogue, the instantiation process infers the premises through the
information captured in the model layer. Thus, it sets as premise-statements of an
argument-instance ݐଵ of type ݐ the statement-instances concluded by argument-
instances whose types affect ݐ and that show to support the idea concluded by ݐଵ. For
example, ݐݏହ is set as premise of argument ܽଵ of type BuyCamera because ݐݏହ is

174 P. Maio and N. Silva

concluded by ܽହ of type Reviews and ሺܴ݁ݏݓ݁݅ݒ, ሻܽݎ݁݉ܽܥݕݑܤ א ܴ and the idea
underlying ݐݏହ somehow contributes for the idea expressed by the conclusion of ܽଵ
which is ݐݏଵ. Third, conflicts between statement-instances are established based on
two conditions:

─ two statement instances are in mutual conflict if both statement-instances are of the
same type but they express contradictory ideas (e.g. ݐݏଶ and ݐݏଷ); or

─ a statement-instance ݏଵ is in conflict with a statement-instance ݏଶ if both are
concluded by two distinct argument-types (say ݐଵ and ݐଶ respectively) and ݐଵ
affects ݐଶ (i.e. ሺݐଵ, ଶሻݐ א ܴ) and the idea expressed by ݏଵ suggest that ݏଶ is not true
or do not holds (e.g. ݐݏଶ and ݐݏଵ).

Table 1. Instances of arguments and statements constructed and their relationships

Argument Premise
Statements

Conclusion-Statement
ID Type Statement conflictWith ܽଵ BuyCamera ݐݏଷ, ,ହݐݏ ଵ଴ݐݏ ଵݐݏ ܽଶ Requirement ݐݏଶ ݐݏଵ, ,ଵଵݐݏ ଽ ܽଵ଴ PriceRelationݐݏ ଼ݐݏ ଽ ExpertReviewܽ ଼ݐݏ ହ ଼ܽ PersonExpertݐݏ ଻ݐݏ ହ ܽ଻ FriendReviewݐݏ ଺ݐݏ ହ ܽ଺ FriendReviewݐݏ ଽݐݏ ସ ܽହ Reviewsݐݏ ଶ ܽସ JobReqݐݏ ଷݐݏ ସݐݏ ଷ ܽଷ Requirementݐݏ ଵ଺ݐݏ ଵସ ܽଵ଺ OpticalZoomݐݏ ଵହݐݏ ଵସ ܽଵହ DigitalZoomݐݏ ଵ଺ݐݏ ଵ ܽଵସ Zoomݐݏ ଵଷݐݏ ଵସݐݏ ଵଶ ܽଵଷ Featuresݐݏ ଵଵ ܽଵଶ PastPriceݐݏ ଵ଴ ܽଵଵ CurrentPriceݐݏ ଵଶݐݏ

It is envisaged that each scenario of application may require an instantiation
process able to deal with its own particularities. However, it is our conviction that
most of those processes may take advantage of the ܴ-relations in a very similar way
to the described process.

Once the instantiation process ends, support and attack relationships between
argument-instances are inferred automatically. This is the subject of next section.

5 Deriving Arguments Relationships

According to the formal definitions introduced in section 3.2, the ܴ௔௧௧ and ܴ௦௨௣
relationships between argument-instances of an ܲܫሺܶܨܣܮሻ are not explicitly defined.
Instead, these relationships are derived based on two distinct kinds of information:

─ extensional information (existing at the instance layer):

─ the premises and conclusions of the argument-instances;
─ the conflicts between statement-instances, and;

 A Three-Layer Argumentation Framework 175

─ conceptual information (existing at the model layer), namely the ܴ relations
defined between argument-types.

5.1 Deriving Support Relationships

A support relationship between two argument-instances (say ݔ and ݕ) is established
(i.e. ሺݔ, ሻݕ א ܴ௦௨௣) when the argument-type of ݔ (say ܽ) affects the argument-type of ݕ (say ܾ), i.e. ሺܽ, ܾሻ א ܴ, and either (i) the conclusion of ݔ is a premise of ݕ or (ii)
both argument-instances have the same conclusion. The following rules (graphically
depicted in Fig. 4) capture the conditions required to establish support relationships
between argument-instances:

R1. ܽ׊, ܾ, ,ݔ :ݕ ܽ, ܾ א ܣ ר ሺܽ, ܾሻ א ܴ ר ݔ א ሺܽሻܣݐݏ݊݅ ר ݕ א ሺܾሻܣݐݏ݊݅ ר ݔ ് ݕ ሻݔሺ݈ܿ݊݋ܿ݅ר א ሻݕሺ݁ݏ݅݉݁ݎ݌݅ ֜ ሺݔ, ሻݕ א ܴ௦௨௣ (Fig. 4a);
R2. ܽ׊, ܾ, ,ݔ :ݕ ܽ, ܾ א ܣ ר ሺܽ, ܾሻ א ܴ ר ݔ א ሺܽሻܣݐݏ݊݅ ר ݕ א ሺܾሻܣݐݏ݊݅ ר ݔ ് ݕ ሻݔሺ݈ܿ݊݋ܿ݅ר ൌ ሻݕሺ݈ܿ݊݋ܿ݅ ֜ ሺݔ, ሻݕ א ܴ௦௨௣ (Fig. 4b).

Fig. 4. Conditions to derive a support relationship between two argument-instances

Notice that two argument-instances might achieve the same conclusion starting
from a different set of premises and/or reasoning mechanisms. In those circumstances,
a support relation between argument-instances exists if there is a ܴ relation between
both (depicted in Fig. 4b). For a mutual support, two ܴ relationships are required: one
from ܽ to ܾ (i.e. ሺܽ, ܾሻ א ܴ) and another one from ܾ to ܽ (i.e. ሺܾ, ܽሻ א ܴ).

5.2 Deriving Attack Relationships

An attack relationship between two argument-instances (say ݔ and ݕ) is established
(i.e. ሺݔ, ሻݕ א ܴ௔௧௧) when the argument-type of ݔ (say ܽ) affects the argument-type of ݕ (say ܾ), i.e. ሺܽ, ܾሻ א ܴ, and either (i) the conclusion of ݔ is in conflict with any
premise of ݕ or (ii) the conclusion of ݔ is in conflict with the conclusion of ݕ. The
following rules (graphically depicted in Fig. 5) capture the conditions required to
establish attack relationships between argument-instances:

176 P. Maio and N. Silva

Fig. 5. Conditions to derive an attack relationship between two argument-instances

R3. ܽ׊, ܾ, ,ݔ ,ݕ :ݏ ܽ, ܾ א ܣ ר ሺܽ, ܾሻ א ܴ ר ݔ א ሺܽሻܣݐݏ݊݅ ר ݕ א ሺܾሻܣݐݏ݊݅ ר ݔ ് ݕ ݏר א ሻݕሺ݁ݏ݅݉݁ݎ݌݅ ר ݏ א ሻሻݔሺ݈ܿ݊݋ሺ݅ܿݐ݈݂ܿ݅݊݋ܿݏ ֜ ሺݔ, ሻݕ א ܴ௔௧௧ (Fig. 5a);
R4. ܽ׊, ܾ, ,ݔ :ݕ ܽ, ܾ א ܣ ר ሺܽ, ܾሻ א ܴ ר ݔ א ሺܽሻܣݐݏ݊݅ ר ݕ א ሺܾሻܣݐݏ݊݅ ר ݔ ് ݕ ሻݕሺ݈ܿ݊݋ܿ݅ר א ሻ൯ݔሺ݈ܿ݊݋൫݅ܿݐ݈݂ܿ݅݊݋ܿݏ ֜ ሺݔ, ሻݕ א ܴ௔௧௧ (Fig. 5b).

According to the rule/scenario depicted in Fig. 5b, one cannot say that argument ݕ
also attacks argument ݔ because the conflict relation between statements is
asymmetric. However, that would happen iif statement ݐݏଶ is also in conflict with
statement ݐݏଵ (i.e. ݐݏଵ א ,ଶሻ) and a ܴ relationship between ܾ and ܽ (i.e. ሺܾݐݏሺݐ݈݂ܿ݅݊݋ܿݏ ܽሻ א ܴ) exists too.

5.3 Exploiting the Derivation Process

The application process used to identify and establish conflicts between statement-
instances may exploit the knowledge embedded in rules R3 and R4 to reduce and
drive the search/combination space between statements. Indeed, it is worth
establishing a conflict relationship between two statement-instances (say ݐݏଵ and ݐݏଶ)
iif their statement-types (say ݖ and ݇ respectively) satisfy at least one of the following
conditions:

─ There is an argument-type (say ܽ) concluding ݖ that affects any other argument-
type (say ܾ), i.e. ሺܽ, ܾሻ א ܴ, where statement-instances of type ݇ can be used as
premises of argument-instances of type ܾ;

─ There is an argument-type (say ܽ) concluding ݖ that affects any other argument-
type (say ܾ), i.e. ሺܽ, ܾሻ א ܴ, where ݇ is concluded by ܾ.

Notice that, these conditions can be verified using the information captured at the
model layer only. On the other hand, if a conflict relationship is established between
two statement-instances and none of these conditions apply then it has no impact on
derived attack relationships between arguments.

Regarding the argument-instances of the example introduced in section 4, these
four rules would derive the support and attack relationships graphically depicted in
Fig. 6.

M
et

a-
M

od
el

La

ye
r

M
od

el
 L

ay
er

In
st

an
ce

La

ye
r

 A Three-Layer Argumentation Framework 177

Fig. 6. Derived support and attack relationships between argument-instances of the example

6 Related Work

In this paper the advantages of having a conceptual model layer and the consequent
adoption of a structured argumentation are exploited to reduce the existing gap
between the most referenced abstract argumentation frameworks and its adoption by
applications, namely which concerns to the instantiation process. Regarding the
conceptual model only, to the best of our knowledge the most similar work existing in
literature is the Description Logic formalizations of the Argument Interchange Format
(AIF) [16] proposed by Iyad Rahwan in [17, 18]. In common to the AIF-based work,
the TLAF has mainly two aspects:

─ the adopted argument structure suggested by Walton [13]; and
─ the possibility of the TLAF model layer being represented by means of an OWL

ontology as the reader may confirm on [19].

However, although both works adopt the same argument structure they diverge on
their purpose and consequently on the modeling approach taken. While the main
purpose of the AIF-based work is to take advantage of the powerful reasoning
capabilities of OWL to automatically classify argument types (or argument schemes)
and argument instances, the TLAF purpose is to show the advantages that applications
have with respect to the argument instantiation process by adopting an argumentation
framework which comprehends a model layer to specify the types of arguments used
and how they affect each other. Consequently, the modeling approach taken by both
works diverge on several issues too. The most evident is that TLAF explicitly
distinguishes between argument-types and the reasoning mechanisms, while in the
AIF-based work the reasoning mechanisms are implicit in the name of the argument-
scheme. However, the most relevant difference concerns the way premises of
argument-types are defined. In the AIF-based work each argument-type defines
explicitly the set of statement-types it has as premises. On the contrary, in the TLAF
the set of admissible statement-types that an argument-type has as premises is inferred
through the ܴ-relations established between argument-types. This lets you constrain
that an argument-type only accepts a given statement-type as a premise when it is
concluded by a specific reasoning mechanism. Moreover, similarly to the Carneades
framework [20], in TLAF an argument has zero or more statements as premise.

178 P. Maio and N. Silva

On the contrary, in the AIF-based work an argument has at least one statement as
premise. Another difference between the AIF-based work and TLAF is the fact that in
the former an argument-instance can be classified into several types (one or more)
while in the latter an argument-instance is classified into one type only, which must
be the most specific/representative one of that instance. While the multi-classification
of argument-instances is useful for several tasks (e.g. querying of arguments), it raises
acceptability problems that are not completely understood yet.

In the general abstract framework for rule-based argumentation described by
Prakken [8] arguments apply either a strict or a defeasible rule over a set of axioms
(i.e. premises) to conclude another axiom, such that axioms are defined in a logical
language. In TLAF, these two kinds of rules may correspond to two kinds of
reasoning mechanisms and the concrete rules may correspond to instances of those
reasoning mechanisms. However, TLAF does not constraint rules to be classified only
in two types. Yet, the three types of attack relationship between argument-instances:
(i) rebutting, (ii) undercutting and (iii) undermining described in [8] are captured by
the TLAF rules to derive such relationship. Prakken work also describes arguments as
trees of inference rules such that an argument contains other sub-arguments
concluding intermediate conclusions and so on. TLAF comprehends such trees of
arguments at the model layer (through the ܴ-relation) and also at the instance layer
such that the root of the trees are intentional arguments. Still, since TLAF allows
capturing mutual dependency between two intentional arguments, one can think on
arguments as graphs rather than trees. Contrary to the Carneades framework [20],
where it is assumed that argument graphs contain no cycles, the argument graphs of
TLAF may contain cycles since no restriction exists at the model layer level.

Finally, as claimed by Prakken, other relevant work on structured argumentation,
such as DefLog [21], is a special case of its general framework [8]. In that sense, no
additional discussion with such work is provided.

7 Conclusions and Future Work

This paper describes the Three-Layer Argumentation Framework (TLAF) that reduces
the existing gap between the most referenced abstract argumentation frameworks and
its adoption by applications. The main novelty of the proposed argumentation
framework relies on its conceptualization layer (i.e. model layer), namely the ܴ
relation. This layer captures the structure and semantics of the argumentation data
employed in a specific context constraining and conducting the modeling process of
the argumentation specific scenario. Even though, for the same scenario very different
modeling approaches are possible.

Despite being generic, TLAF is mainly targeted to be adopted by autonomous
agents. In relation to that, the TLAF adopts and follows some terminology from the
BDI model, namely by distinguishing between intentional arguments and non-
intentional arguments. Based on the conceptual relations captured by the framework
and the defined argument structure, a clear and minimal set of conditions was
established for an argument-instance to attack/support another one. Given that, the
support and attack relations between argument-instances are automatically derived
according to the subjacent TLAF model. Despite the fact that the argument-instances
generation process, and the Σ and ݐ݈݂ܿ݅݊݋ܿݏ functions are fully domain dependent,
their definition profits from the established TLAF model.

 A Three-Layer Argumentation Framework 179

While not directly addressed in this paper, the TLAF has the following advantages:
(i) when generating statements it constrains the scope in which it is valuable to
establish a conflict relationship between statements (i.e. ݐ݈݂ܿ݅݊݋ܿݏ), and therefore
simplifies the automation of the process that discovers or instantiates the ݐ݈݂ܿ݅݊݋ܿݏ
relation, by reducing and driving the search/combination space between statements;
(ii) when generating arguments upon existing statements, it constraints the type of
conclusion and premises, and the reasoning mechanism associated with an argument-
instance, therefore simplifying the automation of the process that instantiates
arguments, that establishes the premises and conclusion relationships with statements
and establishes the ܴ௔௧௧and ܴ௦௨௣ relationships between arguments.

Besides the new features provided by TLAF, it is generic enough to be adopted by
different domain applications. Moreover, a TLAF instance can be easily represented
in a more abstract formalism such BAF [5], where the ܫܣ set corresponds to the set of
arguments of BAF and the derived argument-instances relationships, i.e. ܴ௦௨௣ and ܴ௔௧௧, correspond to the BAF binary relations with the same name respectively. This is
especially relevant because TLAF does not impose any particular argument
evaluation process. Therefore, one can use this feature to apply an argument
evaluation process such as the ones proposed in [10, 22-24]. However, because none
of these processes is able to take advantage of the TLAF Model Layer we are working
to propose one as well. For that, we need to take into consideration the argumentation
abstract semantics described in literature as well the rationality postulates introduced
by Caminada and Amgoud [9] and Prakken [8].

The authors consider that no experiences would be relevant for the evaluation of
the proposed framework, as its application depends on the modeling approaches of the
domain, and less of the framework. This suggests the need for further development of
methods and methodologies for argument modeling.

In order to simplify the modeling process and profit from experience, for example,
in the software engineering and ontology development fields, the authors envisage the
need to provide modularity and extensibility modeling features to TLAF. These new
features potentially promote TLAF in the scope of heterogeneous, ill-specified,
emergent multi-agent systems as it provides the mechanisms to model private
argumentation models in respect (specializing) to other argumentation models, thus
inheriting a common model.

Acknowledgments. This work is partially supported by the Portuguese projects:
COALESCE (PTDC/EIA/74417/2006) of MCTES-FCT and World Search
(QREN11495) of FEDER. The authors would like to acknowledge Jorge Santos,
Maria João Viamonte, Jorge Coelho and Besik Dundua for their useful counsels and
Owen Gilson for his revisions of the document.

References

1. Wooldridge, M.: Reasoning about rational agents. The MIT press, Cambridge (2000)
2. Moran, R.: Authority and Estrangement: An Essay on Self-Knowledge. Princeton

University Press (2001)
3. Walton, D.N., Krabbe, E.C.W.: Commitment in dialogue. Suny Press (1995)

180 P. Maio and N. Silva

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357
(1995)

5. Cayrol, C., Lagasquie-Schiex, M.C.: On the Acceptability of Arguments in Bipolar
Argumentation Frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI),
vol. 3571, pp. 378–389. Springer, Heidelberg (2005)

6. Bench-Capon, T.J.M.: Persuasion in Practical Argument Using Value-based
Argumentation Frameworks. J. Logic Computation 13, 429–448 (2003)

7. Baroni, P., Giacomin, M.: Semantics of Abstract Argument Systems. In: Argumentation
in Artificial Intelligence, pp. 25–44 (2009)

8. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument & Computation 1, 93 (2010)

9. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial
Intelligence 171, 286–310 (2007)

10. Cayrol, C., Lagasquie-Schiex, M.C.: Gradual Valuation for Bipolar Argumentation
Frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 366–377.
Springer, Heidelberg (2005)

11. Gruber, T.R.: A translation approach to portable ontology specifications. Journal of
Knowledge Acquisition 5, 199–220 (1993)

12. Gruber, T.: What is an Ontology?,
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

13. Walton, D.N.: Fundamentals of critical argumentation. Cambridge Univ. Pr. (2006)
14. Bratman, M.: Intention, Plans and Practical Reason. Harvard University Press, Cambridge

(1987)
15. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley (2009)
16. Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,

Vreeswijk, G., Willmott, S.: Towards an Argument Interchange Format. The Knowledge
Engineering Review 21, 293–316 (2006)

17. Rahwan, I., Banihashemi, B.: Arguments in OWL: A Progress Report. In: Proceeding of
the 2008 Conference on Computational Models of Argument: Proceedings of COMMA
2008, pp. 297–310. IOS Press, Amsterdam (2008)

18. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., Abdallah, S.: Representing and
classifying arguments on the semantic web. The Knowledge Engineering Review (2011)

19. Maio, P., Silva, N.: TLAF Meta-Model Layer as an Ontology,
http://www.dei.isep.ipp.pt/~pmaio/TLAF/
Ontology/TLAF_Ontology.owl

20. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of
proof. Artif. Intell. 171, 875–896 (2007)

21. Verheij, B.: DefLog: on the Logical Interpretation of Prima Facie Justified Assumptions.
Journal of Logic and Computation 13, 319–346 (2003)

22. Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.C., Livet, P.: On bipolarity in
argumentation frameworks. Int. J. Intell. Syst. 23, 1062–1093 (2008)

23. Karacapilidis, N., Papadias, D.: Computer Supported Argumentation And Collaborative
Decision Making: The Hermes System. Information Systems 26, 259–277 (2001)

24. Verheij, B.: On the existence and multiplicity of extensions in dialectical argumentation,
cs/0207067 (2002)

Stable Extensions in Timed Argumentation Frameworks

Maria Laura Cobo, Diego C. Martinez, and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory (LIDIA)
Department of Computer Science and Engineering, Universidad Nacional del Sur

Av. Alem 1253 - (8000) Bahı́a Blanca - Bs. As. - Argentina
{mlc,dcm,grs}@cs.uns.edu.ar

http://www.cs.uns.edu.ar/lidia

Abstract. A Timed Abstract Argumentation Framework is a novel formalism
where arguments are only valid for consideration in a given period of time, which
is defined for every individual argument. Thus, the attainability of attacks and de-
fenses is related to time, and the outcome of the framework may vary accordingly.
In this work we study the notion of stable extensions applied to timed-arguments.
The framework is extended to include intermittent arguments, which are available
with some repeated interruptions in time.

1 Introduction

One of the main concerns in Argumentation Theory is the search for rationally based
positions of acceptance in a given scenario of arguments and their relationships. This
task requires some level of abstraction in order to study pure semantic notions. Abstract
argumentation systems [10,15,3,2] are formalisms for argumentation where some com-
ponents remain unspecified, being the structure of an argument the main abstraction.
In this kind of system, the emphasis is put on the semantic notion of finding the set of
accepted arguments. Most of these systems are based on the single abstract concept of
attack represented as an abstract relation, and extensions are defined as sets of possibly
accepted arguments. For two arguments A and B, if (A,B) is in the attack relation,
then the acceptance of B is conditioned by the acceptance of A, but not the other way
around. It is said that argumentA attacks B, and it implies a priority between conflicting
arguments.

The simplest abstract framework is defined by Dung in [10]. It only includes a set of
abstract arguments and a binary relation of attack between arguments. Several seman-
tics notions are defined and the Dung’s argument extensions became the foundation of
further research. Other proposals extends Dung’s framework by the addition of new
elements, such as preferences between arguments [3,6] or subarguments [13]. Other
authors use the original framework to elaborate new extensions [11,5]. All of these
proposals are based on varied abstract formalizations of arguments and attacks.

In this scenario, the combination of time and argumentation is a novel research line.
In [12] a calculus for representing temporal knowledge is proposed, and defined in terms
of propositional logic. This calculus is then considered with respect to argumentation,
where an argument is defined in the standard way: an argument is a pair constituted by
a minimally consistent subset of a database entailing its conclusion. This work is thus
related to [4].

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 181–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.uns.edu.ar/lidia

182 M.L. Cobo, D.C. Martinez, and G.R. Simari

In [7,8] a novel framework is proposed, called Timed Abstract Framework (TAF),
combining arguments and temporal notions. In this formalism, arguments are relevant
only in a period of time, called its availability interval. This framework maintains a
high abstract level in an effort to capture intuitions related with the dynamic interplay
of arguments as they become available and cease to be so. The notion of availability
interval refers to an interval of time in which the argument can be legally used for the
particular purpose of an argumentation process. Thus, this kind of timed-argument has a
limited influence in the system, given by the temporal context in which these arguments
are taken into account. For example, consider the following argument:

My client committed no crime, since he was drafted for the ongoing war

In order to argue about an alleged crime, this argument can only be used when there is
an actual war in which the defended is involved. The same argument cannot be used as a
defense for crimes committed after the soldier was discharged. Thus, this argument has
a temporal relevance. Timed abstract frameworks capture the previous argument model
by assigning arguments to an availability interval of time. In [8] a skeptical, timed
interval-based semantics is proposed, using admissibility notions. As arguments may
get attacked during a certain period of time, defense is also time-dependent, requiring
a proper adaptation of classical acceptability. In [7], algorithms for the characterization
of defenses between timed arguments are presented.

In this work we formalize a natural expansion of timed argumentation frameworks
by considering arguments with more than one availability interval. These are called
intermittent arguments. These arguments are available with (possibly) some repeated
interruptions in time. For instance, a traveling salesman may have a set of arguments to
be used in negotiations, but maybe some of them are irrelevant (or politically incorrect)
in different cultures, and then these arguments can only be used while staying in certain
cities. In some legal procedures, a lawyer can use some arguments depending on the
actual stage of the process (initial disclosure of evidence, the trial, the appeal). Some
countries apply sets of specific legal and economic rules during certain periods of time,
like financial crises, natural disasters or wartime. This has an impact on, for instance,
political argumentation. In all of these scenarios arguments may become relevant, or
cease to be so, depending on time-related factors. Using this extended timed argumen-
tation framework, we analyze the notion of stable extension. A stable extension is a
set of arguments attacking every other argument not in the same set. Since in a timed
context arguments are attacked sporadically, the characterization of a stable set of argu-
ments requires a deeper analysis. For instance, consider two laws about environmental
protection, both of them enacted in different years. Law A was created in 1960 and
states that the minimal budget for environmental protection is determined by procedure
X. Law B was created in 2000 and states that minimal budget for rainforest protection
is determined by procedure Y. Since 2000, there is a conflict between both laws when
funds for rainforest protection must be established. Hence, there are two valid positions
regarding this issue. The first one privileges Law A from 1960 until present. The second
one privileges Law B since 2000. Both positions are clearly in conflict. However, when
discussing about rainforest protection in the nation, this last position should recognizes
that there is a law that was applied between 1980 an 2000. Thus, the two positions are

Stable Extensions in Timed Argumentation Frameworks 183

– Position 1: Law A, from 1980 to 2011
– Position 2: Law A, from 1980 to 2000 and Law B from 2000 to 2011.

A stable extension captures knowledge that attacks every piece of knowledge not in the
extension. When time is relevant, it is possible for a stable extension to include con-
flictive knowledge (as in position 2 in the previous example) although this knowledge
is considered in different periods of time. This timed notion of stable extension is the
main contribution of this work.

The paper is organized as follows. In the next section we recall classic argumentation
semantic notions. Thereafter, time-intervals and the terminology used in this work are
defined, towards the presentation of our Timed Abstract Argumentation Framework
with intermittent arguments in Section 4. The notion of stable extension is presented in
Section 5. Finally, conclusions and future work are discussed.

2 Classic Abstract Argumentation

Dung defines several argument extensions that are used as a reference for many authors.
The formal definition of the classic argumentation framework follows.

Definition 1. [10] An argumentation framework is a pair AF = 〈AR, attacks〉 where
AR is a set of arguments, and attacks is a binary relation on AR, i.e. attacks ⊆
AR×AR.

Arguments are denoted by labels starting with an uppercase letter, leaving the underly-
ing logic unspecified. A set of accepted arguments is characterized in [10] using the con-
cept of acceptability, which is a central notion in argumentation, formalized by Dung
in the following definition.

Definition 2. [10] An argument A ∈ AR is acceptable with respect to a set of argu-
ments S if and only if every argument B attacking A is attacked by an argument in
S.

If an argument A is acceptable with respect to a set of arguments S then it is also said
that S defends A. Also, the attackers of the attackers of A are called defenders of A.
We will use these terms throughout this paper.

Acceptability is the main property of Dung’s semantic notions, which are summa-
rized in the following definition.

Definition 3. A set of arguments S is said to be
– conflict-free if there are no arguments A,B in S such that A attacks B.
– admissible if it is conflict-free and defends all its elements.
– a preferred extension if S is a maximal (for set inclusion) admissible set.
– a complete extension if S is admissible and it includes every acceptable argument
w.r.t. S.
– a grounded extension if and only if it is the least (for set inclusion) complete exten-
sion.
– a stable extension if S is conflict-free and it attacks each argument not belonging to S.

184 M.L. Cobo, D.C. Martinez, and G.R. Simari

The grounded extension is also the least fixpoint of a simple monotonic characteristic
function:

FAF (S) = {A : A is acceptable with respect to S}.

In [10], theorems stating conditions of existence and equivalence between these exten-
sions are also introduced.

Example 1. Consider the argumentation framework AF1 = 〈AR, attacks〉, where
AR = {A,B, C,D, E ,F ,G,H} and attacks = {(B,A), (C,B), (D,A), (E ,D),
(G,H), (H,G)}. Then
– {A, C, E} is an admissible set of arguments.
– {A, C, E ,F ,G} is a preferred extension. It is also a complete extension.
– {A, C, E ,F} is the grounded extension.

Dung’s abstract formalism is sufficient to define some basic extensions on arguments.
In this work we study the formalization of intermittent timed-arguments in an abstract
framework, and we present an argument extension inspired by the stable semantics. In
the following section we prepare the road to timed argumentation by introducing several
time-related concepts.

3 Time Representation

In order to capture a time-based model of argumentation, we enrich the classical abstract
frameworks with temporal information regarding arguments. The problem of represent-
ing temporal knowledge and temporal reasoning arises in a lot of disciplines, including
Artificial Intelligence. There are many ways of representing temporal knowledge. A
usual way to do this is to determine a primitive to represent time, and its corresponding
metric relations [1,9,14]. In this work we will use temporal intervals of discrete time
as primitives for time representation, and thus only metric relations for intervals are
applied.

Definition 4. [Temporal Interval] An interval is a pair build from a, b ∈ Z∪{−∞,∞},
in one of the following ways:

– [a, a] denotes a set of time moments formed only by moment a.
– [a,∞) denotes a set of moments formed by all the numbers in Z since a (including
a).

– (−∞, b] denotes a set of moments formed by all the numbers in Z until moment i
(including b).

– [a, b] denotes a set of moments formed by all the numbers in Z moment i until
moment j (including both a and b).

– (−∞,∞) a set of moments formed by all the numbers in Z.

The moments a, b are called endpoints.
The set of all the intervals defined over Z ∪ {−∞,∞} is denoted Υ .

For example, [5, 12] and [1, 200] are intervals. If X is an interval then X−, X+ are
the corresponding endpoints (i.e., X = [X−, X+]). And endpoint may be a point of
discrete time, identified by an integer number, or infinite.

Stable Extensions in Timed Argumentation Frameworks 185

There are thirteen possible relations between intervals [1]. Seven of them are the ba-
sics while the remaining six are defined as their inverses. In the context of this work it
is unnecessary to keep track of the difference between some of Allen relations, partic-
ularly starts, during and finishes, so we redefine the during. On Table 1 we present the
relation we are going to use in the paper. The ‘x’s and ‘y’s represents the interval X and
Y respectively. The table shows the relation between endpoints.

Table 1. Qualitative relations among arguments, based on [1]

Relation Symb Inverse e.g. Relation on Endpoints

X Before Y ©b ©bi � X �
�

Y

�
X+ < Y −

X Meets Y ©m ©mi � X �
�

Y

�
X+ = Y −

X Overlaps Y ©o ©oi � X �
�

Y

�
X− < Y −, X+ > Y −

X During Y ©d ©di � X �
�

Y

�

X− ≥ Y −, X+ < Y + or
X− > Y −, X+ ≤ Y +

X Equal Y ©e � X �
�

Y

�
X− = Y −, X+ = Y +

We will usually work with sets of intervals (as they will be somehow related to
arguments). Thus, we introduce several definitions and properties needed for semantic
elaborations.

Definition 5. Let S be a set of intervals and let i be a moment of time. The exclusion of
i from S, denoted S � i, is defined as follows:

S � i = {I : I ∈ S ∧ i �∈ I} ∪
{[I−, i− 1] : I ∈ S ∧ i ∈ I, i �= I−} ∪
{[i+ 1, I+] : I ∈ S ∧ i ∈ I, i �= I+}

The exclusion of the interval I from S, noted as S©I i, can be recursively defined as
follows:

i. S©I I = S � I− if I− = I+

ii. S©I I = (S � I−)©I [I− + 1, I+] if I− �= I+

186 M.L. Cobo, D.C. Martinez, and G.R. Simari

The needed operation is the difference among set of intervals, i.e.S1−S2 being S1 and
S2 sets of intervals. This operation can be defined recursively using ©I .

Intersection is another relevant operation on intervals. The intersection of two inter-
vals is the interval formed by all the common points of both of them. Its endpoints are
the minimal and maximal time points in common.

Definition 6. Let I1 and I2 be two intervals. The intersection is defined as: I1 ∩ I2 =
[x, y] with x, y ∈ I1 and x, y ∈ I2 such that there are no w, z : w, z ∈ I1 and w, z ∈ I2
with w < x or y < z.

Definition 7. Let S1 and S2 be two sets of intervals. The intersection of these sets,
noted as S1 � S2, is: S1 � S2 = {I : I = I1 ∩ I2 �= [], ∀I1 ∈ S1, I2 ∈ S2}
Definition 8. Let S be a set of intervals. The partition of S, denoted Part(S) is defined
as:

– Part(S) = S if ∀I1, I2 ∈ S, I1 ∩ I2 = ∅.
– Part(S) = Part(S− {I1, I2} ∪ {I1 − (I1 ∩ I2), I2 − (I1 ∩ I2), I1 ∩ I2}), with I1, I2 ∈
S and I1 ∩ I2 �= ∅

The partition of a set of argument’s availability breaks overlapped intervals in smaller
intervals. This notion simplifies semantic elaborations, since it discretizes the evolution
of the framework according to moments where arguments start or cease to be available.

Any set of intervals, either fragmented or not, has several non-fragmented subsets.
In fact, any singleton subset is trivially non-fragmented.

Although the previous definition can be given in terms of interval calculus relations
(Table 1), we use a different notation to improve their readability.

In the following section we present Timed Abstract Argumentation Frameworks with
intermittent arguments.

4 Timed Argumentation Framework

As remarked before, in Timed Argumentation Frameworks the consideration of time
restrictions for arguments is formalized through an availability function, which defines
a temporal interval for each argument in the framework. This interval states the period of
time in which an argument is available for consideration in the argumentation scenario.
The formal definition of our timed abstract argumentation framework follows.

Definition 9. A timed abstract argumentation framework (TAF) is a 3-tuple 〈Args,
Atts, Av〉 where Args is a set of arguments, Atts is a binary relation defined over
Args and Av is the availability function for timed arguments, defined as Av :
Args → ℘(Υ).

Example 2. The triplet 〈Args,Atts,Av〉, where Args = {A,B, C,D, E}, Atts =
{(B,A), (C,B), (D,A), (E ,D)} and the availability function is defined as

Args Av Args Av
A {[10, 40], [60, 75]} B {[30, 50]}
C {[20, 40], [45, 55], [60, 70]} D {[47, 65]}
E {(−∞, 44]}

is a timed abstract argumentation framework.

Stable Extensions in Timed Argumentation Frameworks 187

The framework of Example 2 can be depicted as in Figure 1, using a digraph where
nodes are arguments and arcs are attack relations. An arc from argument X to argument
Y exists if (X ,Y) ∈ Atts. Figure 1 also shows the time availability of every argument,
as a graphical reference of the Av function. It is basically the framework’s evolution
in time. Endpoints are marked with a vertical line, except for −∞ and ∞. For space
reasons, only some relevant time points are numbered in the figure. As stated before,
the availability of arguments is tied to a temporal restriction. Thus, an attack to an
argument may actually occur only if both the attacker and the attacked argument are
available. In other words, an attack between two arguments may be attainable, under
certain conditions. Attainable attacks are attacks that will eventually occur in some
period of time. In order to formalize this, we need to compare time intervals, using the
previously defined metric relations.

A �

D �

������
�

�����
B

E �

��

�

��

C

time ��

10 40 60 75� A � � A �
30 50� B �

20 40 45 55 60 70� C � � C � � C �
47 65� D �

44E �

Fig. 1. Framework of Example 2

Definition 10. Let Φ = 〈Args,Atts,Av〉 be a TAF, and let {A,B} ⊆ Args such that
(B,A) ∈ Atts. The attack (B,A) is said to be attainable if the following conditions
holds: IA R IB , where R ∈ {©d , ©di , ©o ,©oi ©e } for some IA ∈ Av(A) and IB ∈
Av(B). The attack is said to be attainable in Av(A) � Av(B). The set of intervals
where an attack (B,A) is attainable will be noted as IntSet((B,A))

Note that an attack is attainable if the availability of both the attacker and the attacked
argument eventually overlaps.

Example 3. Consider the timed argumentation framework of example 2. The attacks
(D,A) and (B,A) are both attainable in the framework. Attack (D,A) is attainable
since [47, 65]©o [60, 75]with [47, 65] ∈ Av(D) and [60, 75] ∈ Av(A). Attack (B,A) is
attainable since [30, 50]©oi [10, 40], in [30, 40]. Recall that [30, 50] ∈ Av(B), [10, 40] ∈
Av(A). The attack (C,B) is also attainable. Since Av(C) = {[20, 40], [30, 50]} and
Av(B) = {[30, 50]} then we can assure the attainability of the attack by one of the
following relations:[20, 40]©o [30, 50], [45, 55]©oi [30, 50]. The attack is then attainable
at {[30, 40], [45, 50]}, i.e.Av(C) � Av(B). The attack (E ,D) is not attainable, since
(−∞, 45]©b [47, 65]. The arguments involved in this attack are never available at the
same time.

The set of all attainable attacks in the framework Φ is denoted AttAttsΦ. It is also
possible to define the attainability of attacks at a particular timed interval, as shown
next.

188 M.L. Cobo, D.C. Martinez, and G.R. Simari

Definition 11. Let Φ = 〈Args,Atts,Av〉 be a TAF, and let {A,B} ⊆ Args such that
(B,A) ∈ Atts. The attack (B,A) is said to be attainable at I if: I ∩ Av(A) �= [] and
the following condition holds: I∩IA R IB , where R ∈ {©d , ©di , ©o , ©oi , ©e }, for some
IA ∈ Av(A) and IB ∈ Av(B).

The set of attainable attacks of Φ at interval I is denoted AttAttsIΦ.

Example 4. Consider the timed argumentation framework of Example 2. The set
AttAttsΦ is: {(D,A), (B,A), (C,B)}. The set AttAtts[35,40]Φ is {(B,A), (C,B)}. The

attack (D,A) is in AttAttsΦ but it is not in AttAtts
[35,40]
Φ , since [35, 40] ∩ [47, 65]

is the empty set. The attack (B,A) is in AttAttsΦ and is also in AttAtts
[35,40]
Φ , since

[35, 40] ∩ [10, 40] = [35, 40] and [35, 40]©d [30, 50]. Note that [10, 40] ∈ Av(A) and
[30, 50] ∈ Av(B).

The definition of attainability of attacks can be attached to particular time points too.
The set of attainable attacks of Φ at moment i is denoted AttAttsΦ(i) and is defined as

AttAttsΦ(i) = AttAtts
[i,i]
Φ .

5 Semantics for Timed Argumentation

As attacks may occur only on a period of time (that in which the participants are
available), argument defense is also occasional. In [8] a skeptical, timed interval-based
semantics is proposed, using admissibility notions. The classical definition of accept-
ability is adapted to a timed context. The complexity of this adaptation lies on the fact
that defenses may occur sporadically and hence the focus is put on finding when the
defense takes place. For example, an argument A may be defended by X in the first
half of its time interval, and later by an argument Y in the second half. Although X is
not capable of providing a full defense, argument A is defended while A is available.
In other words, defenders take turns to provide a defense.

In this paper we are mainly interested in the notion of stable set of arguments. In the
classical sense, a stable extension of an argumentation framework is a set of arguments
S that attacks each argument not belonging to S. A set of arguments S is said to attack
an argument A if at least one argument in S is an attacker of A.

In timed argumentation frameworks, an attack may be attainable only in a restricted
period of time, and so the existance of an attacker in the set is not enough now.

Definition 12. Let Φ = 〈Args,Atts,Av〉 be a TAF, and let A ∈ Args. Argument A is
a threatened argument if there is at least one argumentB, such that (B,A) ∈ AttAttsΦ.

A threat interval is a period of time in which an argument attacks another. Naturally,
it is possible for an argument to have more than one threat interval. Consider again
the framework of Example 2. Argument A has two threat intervals since there are two
attainable attacks, (B,A) and (D,A). The set of intervals τB(A) is {[30, 40]} while
τD(A) is {[60, 65]}. Notice that τX (Y) is a set in general since it is possible that X
threats Y in more than one interval, that is the case of the attack (C,B), τC(B) =
{[30, 40], [54, 50]}.

Stable Extensions in Timed Argumentation Frameworks 189

Since attacks are sporadic we need to know in which subintervals of its availability
interval an argument is threatened. We need a general structure associating arguments
and intervals. This is captured by the notion of t-profile as defined next.

Definition 13. Let Φ = 〈Args,Atts,Av〉 be a TAF. A t-profile is general structure
〈arg, set〉 where arg ∈ Args and set ∈ ℘(Υ) and for each I ∈ set, I ⊆ Iarg with
Iarg ∈ Av(arg). The set of all the t-profiles definable from Φ will be noted as P.

A t-profile is a record of an argument A associated with a set of intervals with only one
restriction: every interval in the set is a subinterval of an availability interval of A. In
other words, t-profiles reflect a particular view of the availability of an argument. The
associated set of intervals may denote moments of attacks, or moments of defense, or
any other special consideration of an argument regarding a set of intervals. In particular,
a set of t-profiles is the consideration of a set of arguments in several moments of time.
For instance, the set S = {〈A, {I1}〉, 〈B, {I2}〉} includes two arguments A and B,
but it is possible that these arguments never co-exist if I1 and I2 are not overlapping
intervals. The set S may denote a special status for arguments, and when this status is
assigned.

Remember that a stable extension attacks every single external argument. Since we
are dealing with arguments restricted to intervals, it is necessary to define what it means
for a t-profile to be attacked by a set of t-profiles. This is substantially different than in
classic frameworks. In order to figure out why, consider an argument A attacked by
two arguments B and C. Suppose that A is attacked by B and C in two different, non-
overlapping intervals I1 and I2, such that B attacks A during I1 and C attacks A during
I2. There is no moment of time in which A is free of an attainable attack, either from
B or C since both attackers take turns to attack A. Is the set S1 = {B} attacking A? In
the classical sense of stable semantics it does, since an attack finally occurs. However,
when time dimension is considered, S1 does not attack A in every moment in which A
is considered: in I2 argument A is not attacked by any argument in S1. On the other
hand, A always has an attacker in the set S2 = {B, C}.

Clearly, any further analysis of attacks between timed arguments must take intervals
into account. Thus, following definition formalizes an attack between a set of t-profiled
and a single t-profile.

Definition 14. Let Φ = 〈Args,Atts,Av〉 be a TAF, let S ⊆ P be a set of t-profiles
and let tx = 〈X ,DX 〉 be a t-profile not in S. The set of all subintervals of intervals in
tx attacked by a t-profile in S is denoted as T(S, tx) and defined as:

T(S, tx) = {τY(X) �DY : 〈Y,DY〉 ∈ S and τY(X) �DY �= ∅}

The set T(S, tx) is formed by all the intersections between an interval of a t-profile in S
and an interval in tx. It captures all of the moments in which argument X is attacked by
S in DX . Consider the framework of Figure 1, if S = {〈B, {[35, 45]}〉, 〈D, {[60, 65]}〉,
〈E , {[20, 44]}〉} and tx = 〈A, {[22, 40], [60, 65]}〉 then the set T(S, tx) = {[35, 40],
[60, 65]}. The set is the result of the union of:

τB(A) �DB = {[30, 40]}� {[35, 40]} = {[35, 40]}
τD(A) �DD = {[60, 65]}� {[60, 65]} = {[60, 65]}
τE(A) �DE = {} � {[20, 44]} = {}

190 M.L. Cobo, D.C. Martinez, and G.R. Simari

Since S is a collection of t-profiles, it is important to find whether this collection
represents a full attack on a given t-profile tx, i.e., S leaves no unattacked periods of
time in tx. This is captured in the following definition.

Definition 15. Let Φ = 〈Args,Atts,Av〉 be a TAF, let S ⊆ P be a set of t-profiles
and let X be an argument in Args. The set S attacks a t-profile tx = 〈X ,DX 〉 if
DX ⊆ T(S, tx).

In this sense tx = 〈A, {[22, 40], [60, 65]}〉 is not attacked by S since {[22, 40], [60, 65]}
�⊆ T(S, tx), being S = {〈B, {[35, 45]}〉, 〈D, {[60, 65]}〉, 〈E , {[20, 44]}〉}.

A t-profile t = 〈X ,DX 〉 is attacked by a set S of t-profiles if every interval of t
overlaps an interval of an attacker in S. In order to define a stable extension, a formal
definition of conflict-freeness for sets of t-profile is needed.

Definition 16. Let 〈Args,Atts,Av〉 be a TAF, and let S ⊆ P. The set S is said to be
conflict-free if there are not two profiles 〈A,DA〉 and 〈B,DB〉 such that

∃i ∈ DB, i ∈ DB : (A,B) ∈ AttAtts
[i,i]
Φ

Now we are in conditions to define the stable semantics. In order for a set S of t-profiles
to be considered a stable extension, two main situations must be considered. First, the
set S must attack an argument X not considered in any t-profile of S. This is consistent
with the classical notion of stable extension: if it is not in S, then it must be attacked.
Second, if an argument X has a t-profile in S, then it must be attacked by S in any
moment of time in which X is not considered in S. The formal definition follows.

Definition 17. Let Φ = 〈Args,Atts,Av〉 be a TAF and let S ⊆ P a set of t-profiles.
The set S is an stable extension if and only if:

1. S is conflict-free.
2. ∀X ∈ Args such that 〈X ,DX 〉 �∈ S, S attacks 〈X ,Av(X)〉.
3. ∀X ∈ Args such that 〈X ,DX 〉 ∈ S, S attacks 〈X ,Av(X) −DX 〉.

A �

�

�����
B

�

��

C

time ��

10 40� A �
30 50� B �

20 40� C �

Fig. 2. Framework ΦE

Example 5. Let ΦE = 〈Args,Atts,Av〉, be the TAF depicted on Figure 2. The set
S = {〈A, [10, 40]〉, 〈B, (40, 50]〉, 〈C, [20, 40]〉} is a stable extension of ΦE . The set S
is clearly conflict-free and there are no arguments in Args not considered in S. Thus,
only condition (3) of Definition 17 is relevant. In this particular case, the only argument
in such condition is B for which the availabily in ΦE is [30, 50]. However the t-profile of

Stable Extensions in Timed Argumentation Frameworks 191

B in S considers only the sub-interval (40, 50]. The rest of the original availability in-
terval is [30, 40], in which B is attacked by C. Argument C is in the set S, and according
to the corresponding profile it is associated with all the availability interval {[20, 40]}.

The set S2 = {〈A, [10, 20]〉, 〈C, [20, 40]〉} is not a stable extension, since there is
argument B, that is not included in a t-profile in S2 and it is not attacked by an t-profile
in the set. The set S2 should attack 〈B,Av(B)〉 in order to be a stable extension, but
this is not the case. It can be observed that there is a period of time, [41, 50], in which
B is not attacked by any other argument.

Finally the set S3 = {〈A, [10, 30)〉, 〈B, [30, 50]〉, 〈C, [20, 30)〉} is not stable exten-
sion. In this case the problem is related to DC = {[20, 30)}, the argument C has
{[20, 40]} as its availability period in the framework and has no attackers there. Then
the third condition fails, the t-profile 〈C,Av(C)−{[10, 30]}〉 =〈C,Av(C)−{[10, 19)}〉
is not attacked by S3.

A �

�

�����
B

D � �� ���

��

C

time ��

10 30 40 60� A � � A �
25 50� B �

15 55� C �
10 30 45 55� D � � D �

Fig. 3. Framework ΦS

Example 6. Let ΦS = 〈Args,Atts,Av〉, be the TAF depicted on Figure 3. In this
framework we have two stable extensions:

S1 = { 〈A, {[10, 24], [51, 50]}〉, S2 = { 〈A,Av(A)〉,
〈B, {[25, 30], [45, 50]}〉, 〈C,Av(C)〉,
〈C, {[31, 44]}〉, 〈D, {[10, 14]}〉 }
〈D,Av(D)〉 }

This example shows shows that the presence of cycles requires a proper consideration of
time. In non-temporal, classical frameworks whenever cycles are presente like the one
in ΦS , only one of the participant appears in the stable extension. In timed argumenta-
tion frameworks, the analysis requires an examination of the associated time intervals.
In this case both arguments C and D appear in the extension, but with different time
restrictions. Note that the set S3 = {〈A,Av(A)〉, 〈C,Av(C)〉} is not a stable extension
since it is not true that ∀X ∈ Args such that 〈X ,DX 〉 �∈ S, S attacks 〈X ,Av(X)〉,
since S3 does not attack 〈D,Av(D)〉. The condition that Av(D) = {[10, 30], [45, 55]}
must be a subset of T does not hold. Since C is the only attacker of D, the set T is
τC(D) ∩Av(C) i.e.{[15, 30], [45, 55]}� {15, 55} = {[15, 30], [45, 55]}. It is clear that
{[10, 30], [45, 55]} �⊆ {[15, 30], [45, 55]}.

A set of t-profiles is a set of arguments that are put in specific contextual time re-
strictions. Example 6 shows that a set of t-profiles may have arguments with potential

192 M.L. Cobo, D.C. Martinez, and G.R. Simari

conflicts, and this is legal as far as conflictive arguments are considered in different
intervals of time.

As shown in previous section, Dung defines the notion of admissibility. This notion
can be naturally extended to timed argumentation frameworks. Again, we use t-profiles
to associate arguments with sets of intervals. An addmissible set is a set of t-profiles
that is conlict-free and defends all of its elements.

Definition 18. Let Φ = 〈Args,Atts,Av〉 be a TAF and S ⊆ P a set of t-profiles. The
set of defense intervals for A against B, denoted δBA(S), is defined as:⋃

{IntSet((X ,B)) � IntSet((B,A)) �DX : 〈X ,DX 〉 ∈ S}

The set of defense intervals is the set of all the intervals in which an attacker is attacked
by another argument. This is obtained by intersection of availability intervals.

Example 7. Consider the timed argumentation framework of Example 2 and the set
S = {〈C, {[35, 40], [48, 52]}〉}. The set of defense intervals for A against B is

δBA(S) = {IntSet((C,B)) � IntSet((B,A)) �DX
= {[30, 40], [45, 50]}� {[30, 40]}� {[35, 40], [48, 52]}
= {[35, 40]}

The following definition considers every attainable attacks at a certain period I , in order
to grant defense. If there are multiple attackers, then the defense takes place in those
moments where the argument has defenders for all of the attainable attacks, that is, no
attack succeeds.

Definition 19. Let Φ = 〈Args,Atts,Av〉 be a TAF and S ⊆ P a set of t-profiles. Let
I ∈ Part(τΦ(A)) The set of defended intervals for A at I , denoted ΔS

A(I), is defined
as:

ΔS
A(I) = �δXA (S) � {I} : X ∈ AttAttsIΦ

A �

B �

������
�

�����
C

E �

��

�

�����
F �

��

D

time ��

0 30 60 75 80 100� A � � A � � A �
0 20 85 95� B � � B �

10 30� C �
0 15 25 40� D � � D �

12 30� E �
80 90� F �

Fig. 4. Timed Framework to ilustrate defenses

Stable Extensions in Timed Argumentation Frameworks 193

Example 8. Consider the timed argumentation framework of Figure 4. If we consider
the argument A is clear that it is threatened by B in {[0, 20], [85, 95]} and in {[10, 30]}.
The partition of the union of this sets is {[0, 9], [10, 20], [21, 30]}. This is important be-
cause in these small intervals the argument A needs defense against different attackers,
in particular in [10, 20] it requires defense against B and C.

Consider the set S = {〈D, {[10, 15], [25, 30]}〉, 〈E , {[16, 30]}〉}. The set ΔS
A([0, 9])

is the empty set since δBA(S) = {[16, 20]} but δBA(S)�{[0, 9]} = ∅. The set ΔS
A([21, 30])

is {[25, 30]} since δCA(S) = {[10, 15], [25, 30]} so δCA(S)� {[21, 30]} = {[25, 30]}. Fi-
nally ΔS

A([10, 20]) = ∅ since S fails in providing defense for both attacker at the same
time, so the intersection is empty. You can see that

δCA(S) � {[10, 20]} = {[10, 15], [25, 30]} � {[10, 20]} = {[10, 15]} and
δBA(S) � {[10, 20]} = {[16, 20]}� {[10, 20]} = {[16, 20]}.

The set ΔS
A([10, 20]) is defined as the intersection of this last sets, i.e.{[10, 15]} �

{[16, 20]}, which is clearly the empty set.

Finally the argument is defended in the union of the moments defined in every interval
of the partition of its threat-intervals.

Definition 20. Let Φ = 〈Args,Atts,Av〉 be a TAF and S ⊆ P a set of t-profiles. The
set of defended intervals for A, denoted ΔS

A, is:

Δ∅
A = Av(A) −I τΦ(A)

ΔS
A = Δ∅

A ∪
⋃

I∈Part(τΦ(A)) Δ
S
A(I) when S �= ∅.

Following the analysis made in Example 8 we can determine ΔS
A which in this case

is {[60, 75], [80, 100], [25, 30]}. The set {[60, 75], [80, 100]} represents the periods in
which A is not attacked (Δ∅

A), and the set {[25, 30]} is the union of ΔS
A(I), for all

I ∈ Part(τΦ(A)).

Definition 21. Let Φ = 〈Args,Atts,Av〉 be a TAF and S ⊆ P be a set of t-profiles.
An argument A ∈ Args is acceptable with respect to S if ΔS

A �= ∅. If A is acceptable,
then it is acceptable at ΔS

A. Its t-profile of acceptability is 〈A, ΔS
A〉

Once this point is reached we can determine if some t-profile is defended or not.

Definition 22. Let Φ = 〈Args,Atts,Av〉 be a TAF, S ⊆ P be a set of t-profiles and a
t-profile 〈X ,DX 〉. The t-profile 〈X ,DX 〉 is defended by S if DX is included in ΔS

X .

Consider the timed argumentation framework of Figure 4 and the set

S = {〈D, {[10, 15], [25, 30]}〉, 〈E , {[16, 30]}〉}.

Argument A is acceptable with respect to S and its t-profile of acceptability is

〈A, {[60, 75], [80, 100], [25, 30]}〉.

As a consequence the t-profile 〈A, {[80, 90], [28, 30]}〉 is defended by S while the t-
profile 〈A,AvA〉 is not.

194 M.L. Cobo, D.C. Martinez, and G.R. Simari

Proposition 1. If an argumentA belongs to a stable extension S with t-profile 〈C,DX 〉,
then 〈C,DX 〉 is defended by S.

Proof: If 〈X ,DX 〉 ∈ S then either

– X has no attackers in DX , and then 〈X ,DX 〉 is acceptable with respect to S.
– X has an attacker Y in DX . Clearly, since S is conflict free, then no t-profile
〈Y,DY〉 is included in S such that DX and DY have moments in common. Then,
there is a t-profile t = 〈Y,DY〉 outside S that attacks X , i.e.DX and DY have
moments in common. Since t is not in S, then S attacks t. This means that every
interval in DY has moments in common (i.e.the intersection is not empty) t-profiles
in S. But then, the same time X is attacked by Y , it is defended by another argument
in S. Thus, S defends X in DX . ��

Since arguments in a stable extension are defended by the extension, the following
proposition is induced.

Definition 23. A t-profile 〈X ,DX 〉 is said to attack another t-profile 〈Y,DY〉
if (X ,Y) ∈ Atts and at least one interval in DX overlaps an interval in DY .

The attainability of attacks is a necessary condition for attacking t-profiles. Note, how-
ever, that since t-profiles are restricted versions of the intervals of availability of an
argument, a t-profile t1 may not attack a t-profile t2 even when both arguments have an
attainable attack in the framework.

Proposition 2. A stable extension S of a timed argumentation framework is admissible.

Proof: Suppose there is a t-profile t1 = 〈A,DA〉 ∈ S such that there exists a t-profile
t2 = 〈X ,DX 〉 �∈ S attacking t1. Then there exists an interval I = IA ∩ IX with
IA ∈ DA and IX ∈ DX . Consider the set T(S, t2) of all intervals of t2 attacked by S.
Since S is a stable set and then S attacks t2. This means that I ⊆ T(S, t2) and then t1
is defended by S during I ⊆ IA. ��

It is important to preserve the rationality behind classical semantics for argumentation
frameworks and the new semantics for timed argumentation. This means that when-
ever a relation between classical semantic notions is established, the same relation is
expected to be found in a timed context. This is perhaps the most difficult aspect of the
task of elaborating semantic notions for new timed argumentation frameworks, and it
is an active part of this line of research. In the following section conclusions and future
work are discussed.

6 Conclusions and Future Work

In this work we presented an extension of previously defined Timed Argumentation
Frameworks in which arguments with more than one availability interval are consid-
ered. These arguments are called intermittent arguments, and are temporarily avail-
able with some repeated interruptions in time. Using this extended timed argumentation

Stable Extensions in Timed Argumentation Frameworks 195

framework, we studied the notion of stable extension, which requires the consideration
of time as a new dimension, leading to the definition of t-profiles of timed arguments.
Since arguments are related to time, a t-profile of an argumentX is the formal reference
of X within several frames of time, which are subintervals of the availability intervals
of X . A t-profile attacks another t-profile if an attack is formally defined between its ar-
guments and at least an interval of time of each profile is overlapping. A set of t-profiles
is a collection of arguments which are considered within different intervals of time. We
defined the timed notion of stable extension as a set S of t-profiles such that every t-
profile outside the set is attacked by a t-profile in the set according to the availability
intervals in S. Notoriously, an argument X may appear in t-profiles inside and outside
a stable set simultaneously, but with different intervals of time since an argument may
become attacked or not as time evolves. Thus, an argument may gets in and out a stable
set depending on time.

Future work has several directions. The relation between different timed semantics
needs to be addressed. In classical argumentation there are conditions for which several
semantics coincide. For instance, in well-formed argumentation frameworks [10] there
is only one extension that is grounded, preferred and stable. The notion of well-formed
applied to timed argumentation frameworks is being analyzed. We are also interested
in the evolution of the framework through time. For a given semantic notion S, such as
stable as presented in this paper, there may be intervals of time in which the extensions
induced by S do not change, even when some arguments become or cease to be avail-
able during these intervals. These are called steady periods of the framework and are
also an interesting topic. It may be used to model eras of thinking for a rational agent
or a society, and the impact of including new arguments. New semantics elaborations
based in this notion are being studied.

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the
ACM (26), 832–843 (1983)

2. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Annals of Mathematics and Artificial Intelligence

3. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumen-
tation. In: 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 1–7.
Morgan Kaufmann (1998)

4. Augusto, J.C., Simari, G.R.: Temporal defeasible reasoning. Knowl. Inf. Syst. 3(3), 287–318
(2001)

5. Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: Proc. of 2nd Inter-
national Conf. on Computational Models of Argument (COMMA 2008), pp. 25–36 (2008)

6. Bench-Capon, T.: Value-based argumentation frameworks. In: Proc. of Nonmonotonic Rea-
soning, pp. 444–453 (2002)

7. Cobo, M., Martinez, D., Simari, G.: An approach to timed abstract argumentation. In: Proc.
of Int. Workshop of Non-monotonic Reasoning 2010 (2010)

8. Cobo, M.L., Martinez, D.C., Simari, G.R.: On admissibility in timed abstract argumentation
frameworks. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial
Intelligence and Applications, vol. 215, pp. 1007–1008. IOS Press (2010)

196 M.L. Cobo, D.C. Martinez, and G.R. Simari

9. Dechter, R., Meiri, I., Pearl, J.: Temporal constaints networks. In: Proceedings KR 1989,
pp. 83–93 (1989)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358

11. Jakobovits, H.: Robust semantics for argumentation frameworks. Journal of Logic and Com-
putation 9(2), 215–261 (1999)

12. Mann, N., Hunter, A.: Argumentation using temporal knowledge. In: Proc. of 2nd Interna-
tional Conf. on Computational Models of Argument (COMMA 2008), pp. 204–215 (2008)

13. Martı́nez, D.C., Garcı́a, A.J., Simari, G.R.: Modelling well-structured argumentation lines.
In: Proc. of XX IJCAI 2007, pp. 465–470 (2007)

14. Meiri, I.: Combining qualitative and quantitative contraints in temporal reasoning. In: Pro-
ceedings of AAAI 1992, pp. 260–267 (1992)

15. Vreeswijk, G.A.W.: Abstract argumentation systems. Artificial Intelligence 90(1–2),
225–279 (1997)

Computing with Infinite Argumentation

Frameworks: The Case of AFRAs

Pietro Baroni1, Federico Cerutti1,
Paul E. Dunne2, and Massimiliano Giacomin1

1 Dipartimento di Ingegneria dell’Informazione, University of Brescia, via Branze, 38,
25123, Brescia, Italy

{pietro.baroni,federico.cerutti,massimiliano.giacomin}@ing.unibs.it
2 Department of Computer Science, Ashton Building, University of Liverpool,

Liverpool, L69 7ZF, United Kingdom
P.E.Dunne@liverpool.ac.uk

Abstract. In recent years a large corpus of studies has arisen from
Dung’s seminal abstract model of argumentation, including several ex-
tensions aimed at increasing its expressiveness. Most of these works fo-
cus on the case of finite argumentation frameworks, leaving the potential
practical applications of infinite frameworks largely unexplored. In the
context of a recently proposed extension of Dung’s framework called
AFRA (Argumentation Framework with Recursive Attacks), this paper
makes a first step to fill this gap. It is shown that, under some reason-
able restrictions, infinite frameworks admit a compact finite specification
and that, on this basis, computational problems which are tractable for
finite frameworks may preserve the same property in the infinite case.
In particular we provide a polynomial-time algorithm to compute the
finite representation of the (possibly infinite) grounded extension of an
AFRA with infinite attacks. An example concerning the representation of
a moral dilemma is introduced to illustrate and instantiate the proposal
and gives a preliminary idea of its potential applicability.

1 Introduction

Infinite argumentation frameworks, though encompassed by Dung’s theory of
abstract argumentation [6], have received relatively limited attention in the lit-
erature so that their use as a modelling tool and the relevant computational
issues are largely unexplored.

This paper provides a first step towards filling this gap, by considering the
case of existence of infinite attacks in a recently proposed extension of Dung’s
framework called afra (Argumentation Framework with Recursive Attacks) [2]
where “attacks” may themselves be attacked by arguments. The idea of encom-
passing attacks to attacks in abstract argumentation framework has been first
considered in [4], and subsequently investigated and developed, for instance, in
[2,11,13]. Computational issues in this kind of extended frameworks have been
first addressed in [8] for the finite case of eaf [13]. In this paper, we show that,

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 197–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

198 P. Baroni et al.

under some mild restrictions, an afra with infinite attacks can be represented
through a deterministic finite automaton (dfa), which provides the basis for
the efficient solution of semantics-related computational problems. To demon-
strate this, we show in particular that a dfa representing the (possibly infinite)
grounded extension of an afra with infinite attacks can be derived in polynomial
time from the dfa representing the afra itself.

From a general perspective, the ultimate aim of this paper is to provide an
enabling technique for practical applications of infinite argumentation frame-
works. While this is a largely open issue, we illustrate the theoretical concepts
developed throughout the paper using a preliminary example concerning moral
dilemma representation. Of course, the value of the methodology goes beyond
both the simple example at hand and the use of the afra framework. Indeed
the main contribution of this paper is twofold: on one hand, we address the topic
of representing an Argumentation Framework through a formal language; and,
secondly, we show that this kind of representation can be useful to compute
semantics extensions also in the case of infinite Argumentation Frameworks.

The paper is organized as follows. After recalling the preliminary background
concepts in Sect. 2, we provide an example encompassing infinite attacks in Sect.
3 and discuss specification mechanisms for afras with infinite attacks in Sect.
4. Section 5 describes the actual specification mechanism adopted in the paper,
called dfa+, and Sect. 6 provides a polynomial time algorithm to compute the
(representation of) the (possibly infinite) grounded extension of an afra starting
from its dfa+ specification. Finally Sect. 7 concludes the paper.

2 Preliminary Background

In this section we define the abstract argumentation models which are the core
focus of this article: the af model [6] with a finite set of arguments and the afra
model [2].

Definition 1. A finite argumentation framework (af) is a pair 〈X ,A〉, in which
X is a finite set of arguments and A ⊆ X ×X is the attack relationship. A pair
〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’; x ∈ X is
acceptable with respect to S ⊆ X if for every y ∈ X that attacks x there is some
z ∈ S that attacks y. The characteristic function, F : 2X → 2X is the mapping
which, given S ⊆ X , returns the set of y ∈ X for which y is acceptable w.r.t.
S. For any set S we define F0(S) = ∅ and for k ≥ 1 Fk(S) = F(Fk−1(S)).
The grounded extension is the (unique) least fixed point of F . We denote by
GE(〈X ,A〉) ⊆ X the grounded extension of 〈X ,A〉.

Definition 2. An Argumentation Framework with Recursive Attacks (afra)
is described by a pair 〈X ,R〉 where X is a (finite) set of arguments and R
consists of pairs of the form 〈x, α〉 where x ∈ X and α ∈ X ∪ R. For α =
〈x, β〉 ∈ R, the source (src) and target (trg) of α are defined by src(α) = x and
trg(α) = β. In order to avoid a surfeit of brackets, we describe elements of R
as finite length sequences of arguments, so that xk xk−1 xk−2 · · · x2 x1 ∈ R

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 199

if {x1, . . . , xk} ⊆ X (note that an argument may occur more than once in this
sequence), 〈x2, x1〉 ∈ R (i.e. x2x1 ∈ R) and 〈xj〈xj−1 〈· · · x1〉〉〉 ∈ R, with
2 < j ≤ k. Letting C = R ∪ X , for α ∈ R and β ∈ C, α is said to defeat β
(α → β) whenever any of the following hold:

1. trg(α) = β
2. trg(α) = src(β) i.e. β ∈ R, α = xy and β = yγ (y ∈ X).

Definition 3. Let 〈X ,R〉 be an afra, α, β ∈ R, V ,W ∈ X ∪ R, S ⊆ X ∪ R;
then:

– W is acceptable w.r.t. S (or, equivalently is defended by S) iff ∀α ∈ R s.t.
α → W ∃β ∈ S s.t. β → α;

– the characteristic function F〈X ,R〉 is defined as follows: F〈X ,R〉 : 2X∪R �→
2X∪R; F〈X ,R〉(S) = {V|Vis acceptable w.r.t. S};

– the grounded extension (denoted as GEafra(〈X ,R〉) is the least fixed point
of F〈X ,R〉.

By considering the (Dung) style af, 〈X̃ , R̃〉 constructed from an afra 〈X ,R〉
by X̃ = X ∪ R and R̃ = {〈α, β〉 : α → β} (for further details see [2]), a
correspondence between semantics structures (e.g. the basic notions of conflict-
free and admissible sets and the extensions of various semantics) in an afra
〈X ,R〉 and the analogous (Dung style) structures within 〈X̃ , R̃〉 is obtained.
In particular we will exploit the fact that the grounded extension of an afra
coincides with the (Dung style) grounded extension of the corresponding af, i.e.
with GE(〈X̃ , R̃〉).

3 An Example: Moral Dilemmas

The recursive form of R in an afra, 〈X ,R〉, in principle, admits the capability
of describing infinite attack structures even though X is a finite set. To exemplify
the potential utility of this kind of structures as a modelling tool we consider a
case of moral dilemma.

Fred is the network administrator of a large company and among his duties he
has to release emails, addressed to staff members, that have been accidentally
blocked by the security filters. One day he gets a helpdesk request from Eve,
a staff member and his best friend’s wife, requesting the release of an email.
As part of the procedure he has to ensure that the email is safe by scanning
its contents. He finds out that it’s actually an email addressed to Eve from her
lover. He releases the email, and his initial reaction is to call his friend up and
tell him about the affair. However, the law forbids him to reveal the information.
This is a case of conflict of obligations, and, following [5,1], we can model this
situation with abstract argumentation1.

1 A detailed comparison of alternative argumentation-based approaches to practical
reasoning is beyond the scope of this paper. The interested reader may refer to [2]
for a comparison between afra and Modgil’s eaf, or to [1] for an illustration of the
modelling approach adopted in the example.

200 P. Baroni et al.

First of all, the reasons for the alternative actions can be represented as prac-
tical arguments [14]. Indeed, since Fred wants to be a good friend, then he
should tell his friend what he knows (T), but since Fred wants to be a good citi-
zen, then he should not (D). These two arguments are obviously attacking each
other. Moreover, both D and T are related to values [5], respectively Legality
and Friendship. These values can be represented as arguments (L and F) [14,1]
which affect the evaluation of the two practical arguments. For instance, in the
case at hand, the value of Friendship would resolve the dilemma by making T
prevail over D. From an argumentation point of view, this means that F would
allow T to defeat D. This can be modelled by making ineffective the attack from
D to T (α in Fig. 1) by attacking it through an attack (β) whose source is the
value of Friendship F. This can be read as: even if the attack from D to T (α)
holds because D and T support conflicting actions, nevertheless, in the case at
hand, α is undermined by the moral commitment of F. Obviously, L states a
similar moral commitment, namely making D prevail over T. This requires L to
undermine both the attack (γ) from T to D and the attack (β) from F against
α. In turn F should make ineffective the latter attacks (δ and η) and L and F
will continue attacking each other’s attacks forever. This infinite construction
reveals an unresolved dilemma.

Finally, let us suppose that Fred chooses to pursue Legality rather than Friend-
ship. This can be represented by another argument (M) (a “must” argument in
the terminology of [1]). The argument M represents a choice between values in
the case at hand. Therefore, M will undermine any moral commitment of F over
the two actions T and D by attacking the (infinite number of) attacks whose
source is F.

Fig. 1. Fred’s dilemma

An afra representing Fred’s dilemma is shown in Fig. 1. It consists of a
finite set of arguments XF = {D,T,L,F,M} and of an infinite set of attacks
RF = {DT,TD,LTD,FDT,FLTD,LFDT,LFLTD,FLFDT, . . . ,MFDT,
MFLTD,MFLFDT, . . .}.

4 Representing R in afras

Given the potential practical interest in afras with infinite attacks, the following
question arises.

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 201

When R is infinite what characterises suitable specification mechanisms
for describing R?

In order to pursue this question, we need some terminology.

Definition 4. For X a finite set of arguments, we denote by X ∗ the set of all
finite length sequences (or words) that can be formed using arguments in X
(noting this includes ε the so-called empty sequence comprising no arguments).
Given w ∈ X ∗, |w| denotes its length, i.e. the number of arguments occurring
in its definition. Note that repetitions of the same arguments contribute to |w|
so that, e.g. |x1x2x1| = 3 (and not 2). Given w ∈ X ∗ we will denote as w̄
the sequence obtained by reversing the order of the symbols in w, namely, given
w = x1x2 . . . xn, w̄ = xn . . . x2x1.

Given u = u1u2 . . . ur and v = v1v2 . . . vk ∈ Σ∗ we denote by u · v (or simply
uv) the word w of length k + r defined by u1u2 . . . urv1v2 . . . vk. We note that
w ·ε = ε ·w = w. We say that L ⊆ X ∗ is an attack language over X if L satisfies
∀ w ∈ L w = xu with x ∈ X and either |u| = 1 or u ∈ L.

If L is an attack language over X , then the pair 〈X ,L〉 certainly describes an
afra. Classical formal language and computability theory, see e.g. [12], provides
a means of capturing the vague concept of “specification mechanism” via Formal
Grammars and their associated machine models. As well known, given a set of
symbolsΣ a formal grammar G specifies the derivation of a language L(G) ⊆ Σ∗

called language generated by G. A language, L ⊆ Σ∗, is recognisable if there is a
formal grammar G for which w ∈ L if and only if w ∈ L(G).

As a starting point for “specification mechanisms” for attack languages we
can consider descriptions which are formal grammars (so that Σ = X in such
cases).

Unsurprisingly, arbitrary attack languages have unhelpful computational
properties.

Proposition 1. Let X = {x, y}. There are attack languages, L, over X which
are not recognisable, i.e. for which there is no formal grammar G for which
L(G) = L.

Proof. In view of the correspondence from the fact that L ⊆ Σ∗ is recur-
sively enumerable if and only if there is an unrestricted grammar, G such that
L(G) = L, it suffices to show that there are attack languages which fail to be
r.e. First recall that any TM program, M , can be associated with a finite length
codeword, β(M), (over the alphabet {0, 1}) in such a way that given β(M) the
behaviour of M can be reproduced by another TM program. Furthermore, the
language corresponding to the set of valid encodings, i.e. CODE = {w ∈
{0, 1}∗ : w = β(M) for some TM program, M} is recursive.2 With such encod-
ings it is known that the language Lε

¬HALT ⊂ {0, 1}∗ given by {β(M) : The
TM program, M , fails to halt given the empty word as input} is not r.e.

2 See e.g. [7, Ch. 4] or any standard introductory text on computability, such as [12,
Ch. 8.3].

202 P. Baroni et al.

Now since CODE ⊂ {0, 1}∗ we can order the set of all TM programs simply
by ordering words3 within {0, 1}∗, so that the “first” TM program (M1) is the
first word, w1 in this ordering of {0, 1}∗ for which w1 ∈ CODE, the “second”
program (M2) the second word, w2 in the ordering for which w2 ∈ CODE, and
so on.

We are now ready to define a suitable attack language, R ⊂ {x, y}∗ estab-
lishing the proposition’s claim: R = { xyk : k ≥ 2 and Mk ∈ Lε

¬HALT } ∪
{yn : n ≥ 2} . This is easily seen to be an attack language4 and, furthermore,
cannot be r.e. For suppose, R is r.e. with AL a TM accepting exactly the words
in R then Lε

¬HALT could be shown r.e. as follows: given β(M) determine the
index k for which M is the k’th TM program. Then β(M) ∈ Lε

¬HALT if and
only if xyk is accepted by AL. ��
As a consequence of Propn. 1 there will be attack languages for which it is not
possible to present any specification (as a formal grammar). Of course the nature
of such languages is unlikely to be of practical concern: Propn. 1 merely estab-
lishes a technical limitation affecting attack languages but certainly does not
invalidate their use. In practice we would wish to consider only attack languages
that are presented in some “verifiable form”. What is the notion of “verifiable
form” intended to capture here? Presented with a formal grammar G, there are
two immediate issues which we would like to ensure can be addressed:

Q1. How easily can it be verified that L(G) does describe an attack language?
Q2. Assuming L(G) is verified as describing some attack language, R over X ,

given α ∈ X ∗ how easily can it be decided whether α is an attack in 〈X ,R〉,
i.e. whether α ∈ L(G)?

It can be easily derived from Rice’s Theorem (see, e.g. [12, pp. 185–195]) that
unrestricted grammars face problems with respect to Q1.

Proposition 2. Given an unrestricted grammar G, the problem of determining
if L(G) is an attack language is undecidable.

On the other hand the family of regular languages [12] provides the basis for a
positive result, using automata as representation mechanism.

Definition 5. A deterministic finite automaton (dfa) is defined via a 5-tuple,
M = 〈Σ,Q, q0, F, δ〉 where Σ = {σ1, . . . , σk} is a finite set of input symbols,
Q = {q0, q1, . . . , qm} a finite set of states; q0 ∈ Q the initial state; F ⊆ Q the
set of accepting states; and δ : Q×Σ → Q the state transition function. For
q ∈ Q and w ∈ Σ∗, the reachable state from q on input w is

ρ(q, w) =

⎧⎨
⎩

q if w = ε
δ(q, w) if |w| = 1
δ(ρ(q, u), x) if w = u · x

3 For example using the standard lexicographic ordering under which 0 <lex 1 and
u <lex w whenever |u| < |w|.

4 The reader concerned by the fact that this includes a self-attacking argument (y)
may note that we may use xykx and ynx (n ≥ 1) to achieve the same effect without
self-attacking arguments.

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 203

A sequence w = w1w2 . . . wn ∈ Σ∗ is accepted by the dfa 〈Σ,Q, q0, F, δ〉 if
ρ(q0, w̄) = ρ(q0, wnwn−1 . . . w1) ∈ F , i.e. the sequence of states (consistent with
the state transition function δ) which processes every symbol in w in reverse
order ends in an accepting state. For a dfa, M = 〈Σ,Q, q0, F, δ〉, L(M) is the
subset of Σ∗ accepted by M .

Fact 1. The language L ⊆ Σ is regular if and only if there is a dfa M =
〈Σ,Q, q0, F, δ〉 for which L(M) = L.

The following lemma shows that the conditions for an automaton to recognize
an attack language are relatively simple.

Lemma 1. Let M = 〈X , Q, q0, F, δ〉 be a dfa. Then L(M) is an attack language
if and only if both the following conditions hold:

C1. ∀ w ∈ {ε} ∪ X , ρ(q0, w) �∈ F .
C2. ∀ q ∈ (Q \ {q0}), ∀x ∈ X if q′ = δ(q, x) �∈ F then ∀w ∈ X ∗ it holds that

ρ(q′, w̄) �∈ F .

Proof. Suppose first that L(M) is an attack language. Since every w ∈ L(M)
satisfies |w| ≥ 2 it is immediate that M satisfies C1. To see that C2 must hold,
consider any q ∈ (Q \ {q0}) and x ∈ X such that q′ = δ(q, x) �∈ F . Furthermore
consider any u ∈ X ∗ such that q = ρ(q0, ū). Since q �= q0, |u| ≥ 1 and, since
q′ = δ(q, x) �∈ F , xu �∈ L(M) and |xu| ≥ 2. Since L(M) is an attack language
�p ∈ X ∗ such that p = vxu ∈ L(M), i.e. it is not possible to reach an accepting
state from q′ = δ(q, x).

For the converse direction, we show that if M satisfies both C1 and C2 then
L(M) is an attack language, i.e. ∀ w = xu ∈ L(M) either |u| = 1 or u ∈ L(M).
Since C1 holds, it is immediate that |w| ≥ 2 for every w ∈ L(M). Suppose
now w = yu ∈ L(M) with |u| > 1. Assume by contradiction u /∈ L(M), i.e.
letting q′ = ρ(q0, ū) it holds that q′ /∈ F . Since |u| > 1 it must be the case
that q′ = δ(q, x) for some x with q �= q0. By C2, this implies that ∀w ∈ X ∗

ρ(q′, w̄) �∈ F which contradicts w = yu ∈ L(M), as this would entail δ(q′, y) ∈ F .
��

The desired result in Theorem 1 follows directly from Fact 1 and Lemma 1.

Theorem 1. Let M = 〈X , Q, q0, F, δ〉 be a dfa defining the regular language,
L(M) ⊆ X ∗. The problem of verifying that L(M) is an attack language is poly-
nomial time decidable.

Proof. Given a dfa, M = 〈X , Q, q0, δ, F 〉 from Lemma 1, in order to verify that
L(M) is an attack language it suffices to confirm that M satisfies the conditions
C1 and C2 and that these can tested in time polynomial in |Q|.

To check that C1 holds we need only confirm that q0 �∈ F giving ε �∈ L(M) and
for each x ∈ X that δ(q0, x) �∈ F , so that x �∈ L(M). To test condition C2, for all
non-accepting states q′ for which there exists a transition from a state different
from q0, it has to be verified that for all w ∈ X ∗ ρ(q′, w̄) �∈ F . This, however,

204 P. Baroni et al.

is simply a directed path problem, i.e. verifying that there is no path from q′ to
any state in F which is easily solved in polynomial time, e.g. by carrying out a
breadth-first search of states reachable from q′. ��

Finally, as to question Q2, given M a dfa describing the attack language L(M)
and w ∈ X ∗, we can decide if w is an an attack in the afra 〈X , L(M)〉 in
polynomial time simply by confirming that ρ(q0, w̄) ∈ F .

5 The dfa+ Representation of afras

Expressing R within an afra, 〈X ,R〉 via a dfa, M for which L(M) = R turns
out to have some useful computational benefits in addition to verifiability and
deciding whether a specified attack is present. We will demonstrate these advan-
tages as far as the problem of computing the grounded extension is concerned.
To this purpose we have first to introduce a representation of a whole afra
(not just the attack relation) as an automaton and analyze its properties. Given
an afra 〈X ,R〉 where R ⊂ X ∗ is a regular language represented as a dfa
M = 〈X , QM, q0, FM, δ〉, it is easy to obtain a representation of 〈X ,R〉 as a
single dfa M+ = 〈X , QM+ , q0, FM+ , δ+〉 (indicated for the sake of brevity as
dfa+ in the following) such that for any w ∈ X ∗ it holds w ∈ L(M+) if and
only if w ∈ X ∪R. Let us notice that, in general, there are infinite dfa+s repre-
senting a single afra. This may raise the problem of defining a canonical dfa+

representation for each afra. This problem, not considered in the paper, is left
for future work. In the following we will provide some general results that hold
for any dfa+ representing an afra.

Figure 2 shows M+
F , a dfa+ which accepts all the words of the regular lan-

guage RF describing Fred’s dilemma.

Fig. 2. A dfa+ for Fred’s dilemma (double circles represent accepting states)

We introduce also some handy notation concerning neighbor states and “in-
put” symbols for a given state. For p ∈ QM+ we define state− out(p) = { q ∈
QM+ : ∃ x ∈ X for which q = δ+(p, x)}. For instance, in M+

F , state −
out(q0) = {q1, q2, q3, q4, q8}. For p ∈ FM+ we define sym − in(p) = {x ∈
X : ∃ q ∈ QM+ for which p = δ+(q, x)} and state − in(p) = { q ∈
QM+ : ∃ x ∈ X for which p = δ+(q, x)}. In M+

F , sym− in(q5) = {D,L} and
state− in(q5) = {q4, q9, q6}.

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 205

It is now useful to point out several properties of the dfa+ representation
(we will implicitly assume that each accepting state is reachable from q0, as it
should be in order to avoid useless parts in the automaton).

First we can partition the accepting states in FM+ into two sets: argument
states and attack states.

Argument states are in one-to-one correspondence with the elements of X
and are reachable in one step from the initial state q0: they represent the “ad-
ditional part” of the dfa+ w.r.t. the dfa representation. Formally ∀x ∈ X
∃q ∈ FM+ such that δ+(q0, x) = q and sym − in(q) = {x}. For each x ∈ X
we will denote the corresponding argument state as argst(x) and, conversely, if
q = argst(x) we will say that x = reparg(q). For the whole set of arguments X
in a dfa+ representation we define ArgS(M+) � {argst(x) | x ∈ X}. Hence,
ArgS(M+

F) = {q1, q2, q3, q4, q8}.
In afra an argument can receive only direct defeats from other arguments:

an argument x is defeated by an argument y if and only if 〈x, y〉 ∈ R namely
if the corresponding two-length string in X ∗ is accepted by the dfa+ (and of
course by the original dfa). Formally we can identify the set of direct defeaters
of an argument x as dirdef(x) � {y ∈ X | δ+(argst(x), y) ∈ FM+}. Of course
an argument x is unattacked in afra if and only if dirdef(x) = ∅. The set of
unattacked arguments will be denoted as unatt− args(M+). The above defini-
tions can be extended from arguments to argument states in the obvious way.

Attack states are all the accepting states which are not argument states
and are defined as AttS(M+) � FM+ \ ArgS(M+). Hence, AttS(M+

F) =
{q5, q6, q7, q9}. Every attack state q in a dfa+ (and in the original dfa) cor-
responds to a (possibly infinite) subset of R, namely to a (nonempty) set of
elements of the corresponding attack language, denoted as AttL(q). Formally,
for any q ∈ AttS(M+) AttL(q) � {r ∈ R | ρ(q0, r̄) = q}. Given r ∈ AttL(q)
we will say that q is the representative state of r, denoted as q = repst(r). Of
course, ∀r ∈ R ∃!q ∈ AttS(M+) | q = repst(r).

An element r of R can have both direct defeaters and indirect defeaters (see
1. and 2. in Def. 2). A direct defeater is any argument x which is the source of an
attack whose target is r, and then xr ∈ R. It can then be observed that given an
attack state q all elements of AttL(q) have the same direct defeaters. Formally,
for any q ∈ AttS(M+) we define dirdef(q) � {x ∈ X | δ+(q, x) ∈ FM+} and for
any r ∈ R dirdef(r) � dirdef(repst(r)).

An indirect defeater is any argument x which is the source of an attack whose
target is the source of r: indirdef(r) � dirdef(src(r)).

Given an attack state q it can be noted that the source of any attack repre-
sented by q corresponds to one of the elements of sym−in(q): in fact any element
of sym− in(q) is the first symbol of some of the elements of the attack language
accepted by q. By extension, we can hence define the indirect defeaters of any q ∈
AttS(M+): indirdef(q) �

⋃
r∈AttL(q) indirdef(r) =

⋃
x∈sym−in(q) dirdef(x).

The whole set of defeaters of an element r of R will be denoted as totdef(r) �
dirdef(r) ∪ indirdef(r). Analogously, for a state q, totdef(q) � dirdef(q) ∪
indirdef(q). We say that an attack state q is unattacked if totdef(q) = ∅.

206 P. Baroni et al.

For instance in Fig. 2 q7 is unattacked while totdef(q5) = {F,T}. In the follow-
ing we will use the term unattacked states to refer collectively to both unattacked
argument states and unattacked attack states. It can be noted that if an attack
state q is unattacked then all elements of AttL(q) are unattacked, but it does not
hold that if r ∈ R is unattacked then repst(r) is unattacked. In fact totdef(r) =
∅ implies dirdef(repst(r)) = ∅ but does not imply indirdef(repst(r)) = ∅
since repst(r) might have indirect defeaters due to other elements of AttL(q).
On the other hand it can easily be observed that totdef(r) = ∅ implies also
indirdef(repst(r)) = ∅ if |sym− in(repst(r))| = 1. Under this condition r ∈ R
is unattacked if and only if repst(r) is unattacked.

Since this is a desirable property, we need to introduce a transformation of
dfa+ aimed at ensuring the above condition while leaving unmodified the ac-
cepted language. This will be achieved by splitting some attack states of the
dfa+.

Definition 6. An attack state p is splittable if |sym − in(p)| > 1. The set of
splittable states of a dfa+ M+ will be denoted as split− states(M+).

In M+
F , q5 is splittable since sym− in(q5) = {L,D}.

As explained above we need a complete split (csplit in the following) operator
whose goal is transforming a dfa+ (without affecting the language it accepts)
so that in the resulting dfa+ there are no splittable states. This is achieved by
adding, for each splittable state p, a number |sym − in(p)| − 1 new accepting
states. Accordingly a split operation w.r.t a splittable state can be defined as
follows.

Definition 7. For M+ = 〈X , QM+ , q0, FM+ , δ+〉 let p be a splittable state
with sym − in(p) = {x1, . . . , xn}, (n > 1). The dfa+ resulting by splitting p,

split(M+, p) = 〈X , Qspl
M+ , q0, F

spl
M+ , δ

+spl〉 is obtained by:

S1. Qspl
M+ = QM+ ∪ {p2, . . . , pn} where p2, . . . , pn are new (accepting) states

hence included also in F spl
M+ .

S2. Letting p1 = p the transition function δ+spl has, for i = 1 . . . n:
δspl(q′, xi) = pi if q

′ ∈ state− in(p) ∧ δ(q′, xi) = p
δspl(pi, y) = δ(p, y)
δspl(q, y) = δ(q, y) if q ∈ QM+ \ state− in(p)

In words, a splittable state p is partitioned into several states pi each with
sym−in(pi) = {xi} and the transitions from p to other states are replicated from
each pi to them. It can be observed that the application of the split operation:

– does not affect the language accepted by the dfa+: for any splittable state
p L(M+) = L(split(M+, p));

– does not affect the cardinality of sym− in(q) for any state q �= p: in fact q
may have additional incoming transitions from the elements pi but they all
correspond to elements already present in sym− in(q);

– for each state pi, letting xi be the only element of sym−in(pi), in split(M+, p)
it holds that dirdef(pi) = dirdef(p) and indirdef(pi) = indirdef(xi).

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 207

In virtue of the second point above, it can be noted that it is possible to extend
the definition of the split operation to a set of splittable states: given a set P of
splittable states of a dfa+ M+, the result of the operation split(M+, P) is the
dfa+ resulting from the application of split(M+, p) for each p ∈ P (the order
of application of the operations split(M+, p) does not matter).

Of course the csplit operation is obtained by applying the split operation to all
splittable states of a dfa+ M+: csplit(M+) � split(M+, split− states(M+)).
It is easy to observe that the number of states of split(M+, split− states(M+))
is upper bounded by |QM+ | ∗ |X | hence the csplit operation can be carried out
in polynomial time with respect to the number of states and arguments of M+.

Figure 3 depicts the result of the application of the csplit operator to M+
F .

As we noticed before, q5 is a splittable state (and it is the only one in M+
F).

csplit(M+
F) has an additional state w.r.t. M+

F , namely q′5 with sym− in(q′5) =
{L} while, after splitting, sym − in(q5) = {D}. Moreover, as required by Def.
7, any outgoing transitions from the split state is replicated, giving rise to the
transitions from q5 to q6 and from q′5 to q6, both triggered by F .

Fig. 3. Graphical representation of csplit(M+
F)

6 Computing the Grounded Extension with the dfa+

Representation

In this section we show that the grounded extension of afras with dfa+ repre-
sentation can be computed in polynomial time. Since the grounded extension of
an afra includes both arguments and attacks, it may be infinite and therefore
will, in turn, be expressed through a dfa+, algorithmically derived from the one
of the afra.

Before illustrating the algorithm we need to consider some properties of afras
and of the grounded extension.

First recall a characterization of the grounded extension for finitary argumen-
tation frameworks [6].

Definition 8. An argumentation framework 〈X ,A〉 is finitary iff for each ar-
gument x there are only finitely many arguments in X which attack x.

Proposition 3. If an argumentation framework af is finitary then GE(af) =⋃
i=1...∞ F i(∅) where F is the characteristic function of af (Def. 1).

208 P. Baroni et al.

It is now easy to see that, for any afra, the corresponding af 〈X̃ , R̃〉 (see Sect.
2) is finitary:

– the attackers of each element x of X̃ ∩ X correspond to the direct defeaters
of x in afra, which are at most |X |;

– the attackers of each element r of X̃ ∩R correspond to the direct and indirect
defeaters of r in afra, which are at most 2 ∗ |X |.

On this basis we can now state some relatively straightforward conditions con-
cerning the membership of afra arguments and attacks to GE(〈X̃ , R̃〉) =
GEafra(〈X ,R〉), drawing relations between the characteristic function and de-
featers in the dfa+ representation.

Proposition 4. Let 〈X ,R〉 be an afra with dfa+ representation and 〈X̃ , R̃〉
be its corresponding af with characteristic function F , x be an element of X̃ ∩X ,
r be an element of X̃ ∩ R. It holds that:

1. x ∈ F1(∅) iff dirdef(x) = ∅
2. r ∈ F1(∅) iff totdef(r) = ∅
3. for i ≥ 2, x ∈ F i(∅) \ F i−1(∅) iff ∀y ∈ dirdef(x) (totdef(yx) ∩ F i−1(∅)) �=

∅ ∧ ∃y ∈ dirdef(x) | (totdef(yx) ∩ F i−2(∅)) = ∅
4. for i ≥ 2, r ∈ F i(∅) \ F i−1(∅) iff ∀y ∈ totdef(r) (totdef(yr) ∩ F i−1(∅)) �=

∅ ∧ ∃y ∈ totdef(r) | (totdef(yr) ∩ F i−2(∅)) = ∅

We can now introduce an algorithm (Alg. 1) which builds a dfa accepting the
grounded extension of 〈X ,R〉. The result of its execution on M+

F is illustrated
in Fig. 4. After splitting, in the first iteration of the repeat cycle the unattacked
states q1, q2, q3, q7 are marked in(1) (note that q7 has no indirect defeaters since
q1 is unattacked). Then, since state − in(q7) = {q6}, q6 is marked out and
removed from the set of accepting states. As a consequence, during the second
iteration, q′5 is unattacked and is marked in(2). Then, q9 is marked out at
line 9 of Alg. 1 and removed from the set of accepting states. Finally, in the third
iteration, both q5 and q8 are unattacked (note in particular that q5 is unattacked
since argst(D) = q8 is unattacked). As a consequence they are marked in(3) and
q4 is marked out at line 9 of Alg. 1. The algorithm will then terminate at the
following iteration.

From an argumentation point of view, this result means that the arguments
M, L, F and D are in the afra grounded extension, along with any attack
whose source is one of M, L, and D. Therefore, the dilemma’s solution is that
Fred should not tell his friend what he knows, because in this situation the value
of legality prevails over the value of friendship.

Turning back to technical results, correctness of Algorithm 1 follows from the
following proposition.

Proposition 5. Let M+ = 〈X , QM+ , q0, FM+ , δ+〉 with α ∈ L(M+) ⇔ α ∈
X ∪ R be a dfa+ describing the afra 〈X ,R〉, with corresponding af 〈X̃ , R̃〉,

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 209

Algorithm 1. Determining GE(〈X ,R〉) in afras

1: Input: dfa+ M+ = 〈X ,QM+ , q0, FM+ , δ+〉 with α ∈ L(M+) ⇔ α ∈ X ∪R.
2: Output: dfa MG = 〈X , QG, q0, FG, δG〉 with α ∈ L(MG) ⇔ α ∈ GE(〈X̃ , R̃〉)
3: i := 0
4: Mi := csplit(M+); with Mi = 〈X , Qi, q0, Fi, δi〉
5: repeat
6: i := i+ 1; Mi := Mi−1;
7: For each (unmarked) unattacked state q of Mi mark q as in(i).
8: for each unattacked state q and every q′ ∈ state− in(q) ∩ Fi do
9: Mark q′ as out and remove q′ from Fi.
10: end for
11: for each x ∈ X s.t. argst(x) is marked out do
12: For each state q ∈ Fi with x ∈ sym− in(q) mark q as out and remove q from

Fi.
13: end for
14: until Mi = Mi−1

15: for any q ∈ Fi which is not marked in() do
16: remove q from Fi

17: end for
18: return 〈X , Qi, q0, Fi, δi〉

Fig. 4. The dfa+ after the execution of Alg. 1 on M+
F

and Mi = 〈X , Qi, q0, Fi, δi〉 the automaton produced by Algorithm 1 at the i-th
iteration of the repeat cycle. For i ≥ 0, let Ti ⊆ Fi be the set of states

Ti =
i⋃

k=1

{ q ∈ Fi : q is labelled in(k) by Algorithm 1}

and Li = {α ∈ X ∗ : ρ(q0, ᾱ) ∈ Ti}. For every i ≥ 1 α ∈ X ∪R is in Li if and
only if α ∈ Fi(∅), i.e. α is acceptable w.r.t. Fi−1(∅) in 〈X̃ , R̃〉.

Proof. The proof proceeds by induction on i ≥ 1. For the inductive base we need
α ∈ L1 if and only if α ∈ F1(∅). Assume first that α ∈ L1: from l. 7 of Alg. 1 it
follows that q = ρ(q0, ᾱ) is unattacked after the csplit operation has been applied
to M0 = M+. If q is an argument state (not affected by the csplit operation)
it follows that dirdef(α) = ∅ both in M0 = M+ and in M1: hence, by Prop.

210 P. Baroni et al.

4, α ∈ F1(∅). If q is an attack state it either was unattacked in M0 = M+ or
it became unattacked in M1 as a consequence of the splitting of a splittable
state in M0. Taking into account the properties of the split operation discussed
in Sec. 5, in both cases it holds that α ∈ AttL(q) and totdef(α) = ∅: again by
Prop. 4, α ∈ F1(∅).

Assume now that α ∈ F1(∅). From Prop. 4 one of the following two conditions
holds: α is an argument with dirdef(α) = ∅ or α is an attack with totdef(α) = ∅.
In the first case the state q = argst(α) is unattacked in M0 = M+ (and hence
also inM1) and is marked as in(1) by l. 8, hence q ∈ T1 and α ∈ L1. In the second
case it follows that the state q = repst(α) is either unattacked or splittable in
M0 = M+. In fact q can not have direct defeaters (since α has not), and either
has not indirect defeaters (hence being unattacked) or has indirect defeaters (due
to other elements of AttL(q)) hence being splittable. As a consequence, in both
cases after the csplit operation on M0, in M1 q = repst(α) is unattacked and
is marked as in(1) by l. 7, hence q ∈ T1 and α ∈ L1.

Now inductively assume, for some k ≥ 1, that for all i ≤ k α ∈ Li if and only
if α ∈ Fi(∅). We show α ∈ Lk+1 if and only if α ∈ Fk+1(∅).

Consider any α ∈ Lk+1: without loss of generality we may assume α ∈ Lk+1 \
Lk (since Fk(∅) ⊆ Fk+1(∅) and, via induction, we have α ∈ Lk if and only if
α ∈ Fk(∅)).

If α is an argument, namely α ∈ X̃∩X , it follows that q = argst(α) ∈ Tk+1\Tk.
If α is an attack, namely α ∈ X̃ ∩ R, it follows that q = repst(α) ∈ Tk+1 \ Tk.

In both cases, it holds that q is marked as in(k + 1) by l. 7, hence q is
unattacked in Mk+1 while it is not unattacked in Mk. This means that any
p ∈ state− out(q) has already been marked as out. Moreover if α is an attack,
also any argument state t such that reparg(t) ∈ indirdef(α) has already been
marked as out.

The out marking can be carried out at l. 9 or l. 12 of Alg. 1. In the case of
l. 9 p is marked as out since a state q′ ∈ state − out(p) has been marked as
in(i) with i ≤ k. This means that for any β ∈ dirdef(α) (with βα ∈ AttL(p)
for some p ∈ state − out(q) marked as out at l. 9) ∃γ ∈ dirdef(βα) such that
repst(γβα) = q′ is marked as in(i) with i ≤ k. By the inductive hypothesis,
we have that a (direct) defeater γ of the attack βα is in Fk(∅), hence α is
defended by Fk(∅) with respect to any β ∈ dirdef(α) (with βα ∈ AttL(p) for
some p ∈ state− out(q) marked as out at l. 9). With a similar reasoning, in the
case α is an attack, we may also conclude that for any β ∈ indirdef(α) (with
β = reparg(t) for some argument state t marked as out at l. 9) ∃γ ∈ dirdef(β)
such that repst(γβ) = q′ is marked as in(i) with i ≤ k and hence α is defended
by Fk(∅) with respect to any β ∈ indirdef(α) (with β = reparg(t) for some
argument state t marked as out at l. 9).

In the case of l. 12 p is marked out since q′ = argst(β) has been marked out
with β the (only) element of sym− in(p). It can be observed that any argument
state can be marked as out only at l. 9 (to satisfy the condition for marking at
l. 12 an argument state should be already marked as out according to l. 11).
This means that ∃q′′ ∈ state−out(q′) with q′′ marked as in(i) with i ≤ k. By the

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 211

inductive hypothesis ∃γ ∈ dirdef(β) such that γβ ∈ AttL(q′′) and γβ ∈ Fk(∅).
This means that an (indirect) defeater of all elements of AttL(p) belongs to
Fk(∅), hence α is defended by Fk(∅) with respect to any attack in AttL(p).

Summing up, it follows that Fk(∅) defends α against any β ∈ dirdef(α)
(either βα is attacked, case of l. 9, or β is attacked, case of l. 12) and, if α is
an attack, Fk(∅) defends α against any β ∈ indirdef(α) (β is attacked, case of
l. 9). It ensues α ∈ Fk+1(∅).

Turning to the other side of the proof of the inductive step, assume now
α ∈ Fk+1(∅). Again, without loss of generality, we may consider only the case
α ∈ Fk+1(∅) \ Fk(∅).

If α is an argument, from case 3. of Prop. 4 it follows that ∀β ∈ dirdef(α)
(totdef(βα)∩Fk(∅)) �= ∅∧∃β ∈ dirdef(α) | (totdef(βα)∩ (Fk(∅)\Fk−1(∅))) �=
∅. This implies that ∀β ∈ dirdef(α) α is defended by Fk(∅) against β, namely
there is an argument γ such that γβα or γβ belongs to Fk(∅) (in both cases it
must also hold γ ∈ Fk(∅)). Moreover, for one of these elements γ it must hold
that either γβα or γβ belongs to Fk(∅) \ Fk−1(∅).

By the inductive hypothesis, if follows that for any such γ, argst(γ) is marked
as in(i) with i ≤ k and either repst(γβα) or repst(γβ) is marked as in(i) with
i ≤ k (again, for at least one of these elements, the mark is exactly in(k)). It
follows that ∀β ∈ dirdef(α) repst(βα) is marked out at an iteration i ≤ k and
one of these repst(βα) is marked out exactly at the iteration k. Hence argst(α)
becomes unattacked, and hence is marked in, exactly at the iteration k+ 1 and
α ∈ Lk+1 as desired.

If α is an attack, from case 4. of Prop. 4 it follows that ∀β ∈ totdef(α)
(totdef(βα)∩Fk(∅)) �= ∅∧∃β ∈ totdef(α) | (totdef(βα)∩(Fk(∅)\Fk−1(∅))) �= ∅.
This implies that:

– ∀β ∈ dirdef(α) α is defended by Fk(∅) against β, namely there is an argu-
ment γ such that γβα or γβ belongs to Fk(∅) (in both cases it must also
hold γ ∈ Fk(∅));

– letting ε = src(α), ∀β ∈ indirdef(α) = dirdef(ε) α is defended by Fk(∅)
against β, namely there is an argument γ such that γβε or γβ belongs to
Fk(∅) (in other words ε is defended by Fk(∅)).

In all cases it must also hold γ ∈ Fk(∅) and for at least one of these elements γ
it must hold that either γβα or γβε or γβ belongs to Fk(∅) \ Fk−1(∅).

By the inductive hypothesis, if follows that for any such γ, argst(γ) is marked
as in(i) with i ≤ k and either repst(γβα) or repst(γβε) or repst(γβ) is marked
as in(i) with i ≤ k (again, for at least one of these elements, the mark is exactly
in(k)). It follows that ∀β ∈ totdef(α) repst(βα) is marked out at an iteration
i ≤ k and one of these repst(βα) is marked out exactly at the iteration k. Hence
repst(α) becomes unattacked, and hence is marked in, exactly at the iteration
k + 1 and α ∈ Lk+1 as desired.

212 P. Baroni et al.

On this basis we obtain one of the main results of the paper.

Theorem 2. Let M+ = 〈X , QM+ , q0, FM+ , δ+〉 with α ∈ L(M+) ⇔ α ∈ X ∪R
be a dfa+ describing the afra, 〈X ,R〉 with corresponding af 〈X̃ , R̃〉. It is
possible to construct in polynomial time a dfa MG = 〈X , QG, q0, FG, δG〉 with
α ∈ L(MG) ⇔ α ∈ GE(〈X̃ , R̃〉)

Proof. Given Prop. 5, we have only to show that Alg. 1 terminates in polynomial
time. We have already commented that the csplit operation (l. 4) can be carried
out in polynomial time and gives rise to a total number of states #Q ≤ |QM+ | ∗
|X |. The repeat cycle terminates when Mi = Mi−1, which occurs when no
unmarked unattacked states are detected at iteration i. Identifying whether a
state q is unattacked requires the following checks (check (ii) only applies to
attack states): (i) for any state p ∈ state−out(q) is p in Fi? (ii) for any argument
x ∈ sym− in(q) is any defeater of x in Fi?

Check (i) requires at most #Q constant time operations for each state q, so
its complexity in a single iteration of the repeat cycle is O(#Q2). Check (ii)
requires at most |X |2 constant time operations for each state q, so its complexity
in a single iteration of the repeat cycle is O(#Q ∗ |X |2).

Given the identification of unattacked states for granted, in a single iteration
of the repeat cycle:

– at most #Q mark operation are executed at l. 7;
– at most #Q checks on membership to state − in(q) ∩ Fi are carried out at

l. 8 and at most the same number of marking and removal operations are
executed at l. 9;

– the for cycle at l. 11 is executed at most |X | times and for each of these
iterations at most #Q marking and removal operations are executed at l. 12.

Noting that the algorithm never adds accepting states, it follows that the number
of removals and, hence, the number of iterations of the repeat cycle is bounded
by #Q. Finally the for cycle at l. 15 is executed at most #Q times.

Summing up, the order of magnitude of the computational complexity of
Alg. 1 is determined by checks (i) and (ii) within the repeat cycle, which turn
out to be respectively O(#Q3) = O(|QM+ |3 ∗ |X |3) and O(#Q ∗#Q ∗ |X |2) =
O(|QM+ |2 ∗ |X |4). ��

7 Conclusions

This paper proposes a methodology and provides some initial results in the
largely unexplored field of computing with infinite argumentation frameworks,
using as a starting point the possible existence of infinite attacks in the recently
introduced afra formalism, exemplified by a case of moral dilemma. While other
approaches (for instance, Modgil’s eaf [13]) may provide a different formaliza-
tion of this specific example, from a general point of view it is worth noting
that the notion of unlimited recursive attacks, as in the afra formalism, may

Computing with Infinite Argumentation Frameworks: The Case of AFRAs 213

encompass infinite attack sequences even with a finite set of arguments. This
can be easily seen as a finite alphabet able to describe infinite attack structures.

In fact, the proposal is built on the main idea of drawing correspondences
between the specification of argumentation frameworks and well-known notions
and results in formal language theory. While there are cases of infinite attacks
which can not be represented with formal grammars, deterministic finite au-
tomata provide a convenient way to represent infinite attack relations with po-
tential practical use. In particular we show that, with this representation, the
problem of computing the grounded extension, which is tractable in the finite
case, preserves its tractability in the infinite case. We are already extending
this kind of analysis to other “standard” computational problems in abstract
argumentation, like checking whether a set is conflict-free, is admissible or is a
stable extension. The representation of special reasoning cases, like dilemmas, is
an example of motivation for this kind of studies. In a similar spirit, one might
consider the representation of dialogues where the repetition of previous moves
is allowed: while this is normally forbidden, in order to ensure dialogue termina-
tion, the proposed approach might be used to define a sound semantics for some
kinds of non-terminating dialogues, which represent the formal counterpart of
situations where dialogue participants decide to keep (some of) their positions
forever [10,9].

In the perspective of enlarging its applicability domain, the proposed method-
ology and techniques could also be applied to other cases of infinite frameworks,
either in the context of traditional Dung’s af or in some of its extended ver-
sions. In particular, it can be noted that the proposed approach implicitly deals
with a family of infinite Dung’s afs since any afra with infinite attacks can
be translated into a traditional af with infinite arguments (see Sect. 2). From
a more general perspective, one can consider using the DFA representation to
specify an infinite set of arguments (so that each accepted word corresponds to
an argument) complemented by a compact definition of the attack relation. Just
to give an example, one simple option is to state that if both words xw and w are
accepted (i.e. both of them represent arguments) then xw attacks w. In this way
it is possible, for instance, to represent an infinite chain of attacks with a simple
DFA, accepting the words x, xx, xxx, A more general option is to specify
the attack relations through an expression constructed by a set of operators. A
variant of Algorithm 1 could then be devised to compute the grounded extension
of this kind of frameworks. A deep investigation of these issues is the subject of
ongoing work [3].

References

1. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: An argumentation-based ap-
proach to modeling decision support contexts with what-if capabilities. In: AAAI
Fall Symposium. Technical Report SS-09-06. pp. 2–7 (2009)

2. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework
with recursive attacks. International Journal of Approximate Reasoning 51(1),
19–37 (2011)

214 P. Baroni et al.

3. Baroni, P., Cerutti, F., Dunne, P.E., Giacomin, M.: Automata for infinite argumen-
tation structures. Technical Report, Department of Computer Science, University
of Liverpool, UK (2011)

4. Barringer, H., Gabbay, D., Woods, J.: Temporal Dynamics of Support and At-
tack Networks: From Argumentation to Zoology. In: Hutter, D., Stephan, W.
(eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 59–98.
Springer, Heidelberg (2005)

5. Bench-Capon, T.J.M.: Persuasion in practical argument using value based argu-
mentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and N-person games. Artificial Intelli-
gence 77, 321–357 (1995)

7. Dunne, P.E.: Computability Theory – concepts and applications. Ellis–Horwood
(1991)

8. Dunne, P.E., Modgil, S., Bench-Capon, T.: Computation in extended argumen-
tation frameworks. In: Proceedings of 19th European Conference on Artificial In-
teligence (ECAI 2010), Lisbon, pp. 119–124 (2010)

9. Gabbay, D., Woods, J.: More on non-cooperation in dialogue logic. Logic Journal
of IGPL 9(1), 305–323 (2001)

10. Gabbay, D., Woods, J.: Non-cooperation in dialogue logic. Synthese 127, 161–186
(2001)

11. Gabbay, D.: Semantics for higher level attacks in extended argumentation frames
part 1: Overview. Studia Logica 93, 357–381 (2009)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

13. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial
Intelligence 173(9–10), 901–934 (2009)

14. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University
Press, NY (2008)

Multi-sorted Argumentation

Tjitze Rienstra1, Alan Perotti2, Serena Villata3,
Dov M. Gabbay4, and Leendert van der Torre1

1 Computer Science and Communication, University of Luxembourg
tjitze.rienstra@uni.lu, leendert@vandertorre.com

2 Dip. di Informatica, University of Turin
perotti@di.unito.it

3 Edelweiss, INRIA Sophia Antipolis
serena.villata@inria.fr

4 Dept. Computer Science, King’s College London
dov.gabbay@kcl.ac.uk

Abstract. In the theory of abstract argumentation, the acceptance sta-
tus of arguments is normally determined for the complete set of argu-
ments at once, under a single semantics. However, this is not always
desired. In this paper, we extend the notion of an argumentation frame-
work to a multi-sorted argumentation framework, and we motivate this
extension using an example which considers practical and epistemic ar-
guments. In a multi-sorted argumentation framework, the arguments are
partitioned into a number of cells, where each cell is associated with a
semantics under which its arguments are evaluated. We prove the prop-
erties of the proposed framework, and we demonstrate our theory with a
number of examples. Finally, we relate our theory to the theory of modal
fibring of argumentation networks.

1 Introduction

Abstract argumentation frameworks [10] are used to model sets of arguments and
the attacks among these arguments. Given an abstract argumentation frame-
work, we can ask the question of which arguments are acceptable, and which
arguments are not. This question is answered by what is called an acceptability
semantics. Different modes of reasoning are possible, each giving rise to a differ-
ent acceptability semantics. Well-known examples are the grounded semantics
that minimizes the number of accepted arguments, and the preferred seman-
tics, that maximizes the number of accepted arguments. The choice of which
semantics is appropriate depends on the kind of arguments, and the attitude
towards these arguments. A skeptical attitude, for example, can be modeled
with grounded semantics, whereas a credulous attitude can be modeled using
preferred semantics [8]. In most literature on acceptability semantics (see for
instance [10,3,7,9]), the assumption is made that all arguments of a framework
are evaluated under a single semantics.

In this paper, we argue for a generalization, and we answer the research ques-
tion how to define an abstract argumentation framework where the arguments

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 215–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

216 T. Rienstra et al.

can be evaluated under different semantics? We motivate this through an exam-
ple about practical and epistemic arguments, and we introduce a system called
multi-sorted argumentation. The motivating example, which now follows, is taken
from Prakken [13], and adapted to an abstract argumentation framework.

Consider a university lecturer (let us call him John) with two conflicting
desires. He wants to finish a paper on Friday, but he also promised to give a
talk in a town called Faraway on the same day. There are two ways to travel to
Faraway: by car and by bus. In neither case will he be able to finish the paper
while traveling; he cannot work while driving, and he gets sick when working in
a bus. Figure 1 shows an informal instantiation of an abstract framework for this
situation: the three arguments a, b and c represent the situation described so
far. Note that the arguments are forms of the practical syllogism. For example,
argument b is an inference consisting of John’s belief that traveling by bus (to
Faraway) allows him to give the lecture in Faraway, his desire to give a lecture
in Faraway, and the conclusion that he must therefore travel by bus. John has
more information: his friend Bob tells him that there is a train connection to
Faraway. So if John travels by train, he will be able to finish the paper (argument
d, another practical syllogism). Now, John’s other friend Mary warns him about
a railway strike, which would defeat d (argument e). On the other hand, Bob
believes there will be no strike (argument f). John has no reason to trust either
of his friends more than the other. To be on the safe side, John does not want to
act on the credulous belief that there will not be a train strike, and that there
will be a train to Faraway on Friday.

In this example, we have four arguments that pertain to actions (arguments
a, b, c, d) and two arguments expressing beliefs about the world (arguments e
and f). Prakken [13] calls them practical arguments and epistemic arguments,
and he argues that practical arguments should be evaluated credulously and
epistemic arguments skeptically. The reason is that for practical arguments, it is
rational for an agent to consider credulously all possible ‘action alternatives’ that
have skeptical support of epistemic arguments. Since a credulous attitude can be
modeled using preferred semantics, and a skeptical attitude using grounded se-
mantics, the evaluation of this framework is a combination of preferred semantics
for a, b, c and d, and grounded semantics for e and f .

This example motivates the evaluation of different parts of the same frame-
work under both preferred and grounded semantics. We believe that the point
made by this example extends to the more general case. Suppose we have a set
of frameworks {A1, . . . , An} and for each framework Ai there is an appropriate
semantics si. Then it is also possible that there is a framework A which is a
merge of the frameworks A1, . . . , An, where the n different parts of A may in-
teract mutually through additional attacks. Determining the acceptance status
of the arguments in A would amount to the application of the si semantics to
the part corresponding to Ai, for all parts 1 . . . n.

What we need, then, is a method to apply different semantics to different parts
of the same framework. To this end, we propose a system called multi-sorted
argumentation. The system is based on two elements: a regular argumentation

Multi-sorted Argumentation 217

a

b

c

Finish paper

Give lecture in Faraway,
Travel by car

Give lecture in Faraway,
Travel by bus

d

There will be a train strike

e

f

There will be no train strike

Give lecture in Faraway,
Travel by train

Fig. 1. An example of an argumentation framework with both practical and epistemic
arguments

framework and a sorting. A sorting supplements the argumentation framework
with information on how the framework is divided into cells, and which cell in
the sorting is to be evaluated under which semantics. A sorted extension is a set
of arguments that are acceptable with respect to the sorting. We prove a number
of desired properties of sorted extensions. For example, sorted extensions should
be conflict-free. Moreover, some properties of the semantics associated with each
cell are preserved, i.e., if the semantics of all cells are admissible (resp. complete),
then the sorted extensions should also be admissible (resp. complete).

Finally, we show how to formalize multi-sorted argumentation using the modal
fibring approach. Multi-sorted argumentation is expressed as a special case of the
fibring of modal argumentation frameworks. We present this kind of multi-sorted
argumentation by means of a number of examples, and we discuss the properties
which hold for this method of evaluating the cells under different semantics.

The paper is organized as follows: Section 2 provides the basic concepts of
argumentation theory; in Section 3 we introduce the notions of sortings and
sorted extension, in Section 4 we study some properties of sorted extensions,
and in Section 5 we relate our theory to the theory of modal fibring. Finally,
Sections 6 and 7 present related work, conclusions and future work.

2 Preliminaries

The following definitions set forth the basics of Dung’s well-known theory of
abstract argumentation [10].

218 T. Rienstra et al.

Definition 1 (Argumentation Framework). We assume as given a set U ,
called the universe of arguments. An argumentation framework AF is a pair
〈A,R〉 with finite A ⊆ U and a binary relation R ⊆ A × A, called the attack
relation.

Definition 2 (Conflict Free). Let AF = 〈A,R〉 be an argumentation frame-
work. A set S ⊆ A is conflict free iff there are no arguments a, b ∈ S such that
aRb. If S is conflict free, we write cf(S).

We follow Baroni & Giacomin’s [3] generalized approach, where the acceptability
of arguments is considered with respect to a designated subset of arguments. This
set, which we call the set of qualified arguments, contains the arguments that an
extension may consist of. Intuitively, it is used to filter out arguments that do
not qualify for acceptance. This is necessary when we evaluate only a subset of
arguments, but at the same time we know that some arguments in this subset
cannot be accepted due to attacks from outside the subset.

Definition 3 (Defense). Let AF = 〈A,R〉 be an argumentation framework. A
set S ⊆ A defends a from A iff ∀b ∈ A such that bRa, ∃c ∈ S such that cRb.
Let DQ(S) = {a ∈ Q | S defends a from A}, where Q ⊆ A is called a qualified
set of arguments.

We will sometimes say that S ⊆ A defends a, without mentioning the set from
which S defends a. In that case, we mean that S defends a from all arguments,
i.e. from A.

Definition 4 (Acceptance Function). An acceptance function

E : 2U × 2U×U × 2U → 22
U

is a partial function that associates each argumentation framework 〈A,R〉 and
each set of qualified arguments Q ⊆ A, with sets of subsets of A, called exten-
sions: E(〈A,R〉, Q) ⊆ 2A.

Dung [10] presents several acceptability semantics which produce zero, one,
or several sets of accepted arguments. These semantics are grounded on the
two main concepts of conflict-freeness and defense. The following definitions are
equivalent to those in Dung’s original theory, if we set Q = A.

Definition 5 (Acceptability Semantics). Let AF = 〈A,R〉 be an argumen-
tation framework and Q ⊆ A a set of qualified arguments. Acceptance functions
for conflict free (Ecf), admissible (Ead), complete (Eco), grounded (Egr) and

preferred (Epr) extensions are defined as follows:

– S ∈ Ecf(AF , Q) iff S ⊆ Q and cf(S).
– S ∈ Ead(AF , Q) iff cf(S) and S ⊆ DQ(S).

Multi-sorted Argumentation 219

– S ∈ Eco(AF , Q) iff cf(S) and S = DQ(S).
– S ∈ Egr(AF , Q) iff S is minimal in Eco(AF , Q) w.r.t. set inclusion.
– S ∈ Epr(AF , Q) iff S is maximal in Eco(AF , Q) w.r.t. set inclusion.
– S ∈ Est(AF , Q) iff S ∈ Ecf(AF , Q) and ∀a ∈ A, a �∈ S → ∃b ∈ S s.t. bRa.

The definitions above are reformulations of those proposed by Baroni & Gia-
comin [3].

Example 1 (Admissible extension). Consider the framework of Figure 1. Let Q =
{a, b, c, d}. Given Q, the set {a} is an admissible extension, i.e., it is included in
Ead (AF , Q). This can be seen as follows: we have that {a} is conflict free, and
{a} ⊆ DQ({a}) = {a}. However, the set {a, d} is not an admissible extension,
and is not included in Ead (AF , Q). The reason is that the set does not defended
itself from the attack by f : {a, d} �⊆ DQ({a, d}) = {a}.

Note, in the running example, that the arguments of an admissible set need to
be defended from all arguments in A, so not only from arguments in Q.

Example 2 (Complete extension). Consider the framework of Figure 1. Let Q =
{a, b, c, d}. Given Q, the set {b} is a complete extension, i.e., it is included in
Eco(AF , Q). This can be seen as follows: we have that {b} is conflict free, and
{b} = DQ({b}) = {b}. However, the set {a, d} is not a complete extension,
namely for the same reason that it is not an admissible extension (see above).
Now, let Q = {b, c, d, e, f}. The set {d, f} is a complete extension, because
{d, f} = DQ({d, f}). However, the set {f} is not, because {f} �= DQ({f}) =
{d, f}.

Example 3 (Grounded, preferred extensions). Consider the framework of Fig-
ure 1. Let Q = {b, c, d, e, f}. Given Q, the complete extensions are {b, e}, {b, f},
{b}, {c, e}, {c, f}, {c}, {d, f},{f} and ∅. The extensions {b, e}, {b, f}, {c, e},
{c, f} and {d, f} are preferred extensions, since they are maximal with respect
to set-inclusion. The extension ∅ is the grounded extension, since it is minimal
with respect to set-inclusion.

3 Multi-sorted Argumentation

We now define the main ingredients of our system: sortings and sorted exten-
sions. A sorting supplements the argumentation framework with information on
how the framework is divided into cells, and which cell in the sorting is to be
evaluated under which semantics. In the following definitions, we assume a fixed
argumentation framework AF = 〈A,R〉.

Definition 6 (Sorting). A sorting S is a pair 〈P, T 〉, where P is a partition
of A and T : P → {cf, ad, co, gr, pr} a function associating each cell in P to a
semantics.

220 T. Rienstra et al.

The following example demonstrates this representation, for the framework shown
in Figure 1, and discussed in the introduction.

Example 4. The situation shown in Figure 1 is formally represented by a frame-
work AF = 〈{a, b, c, d, e, f}, R〉, where aRb, bRa, aRc, cRa, bRc, cRb, bRd, dRb,
cRd, dRc, eRd, eRf , fRe and sorting S = 〈{C1, C2}, T 〉, where C1 = {a, b, c, d},
C2 = {e, f}, T (C1) = pr and T (C2) = gr , i.e., arguments a, b, c, d are evalu-
ated under the preferred semantics, and arguments e, f are evaluated under the
grounded semantics.

We will shortly give the condition, given a sorting, for a set of arguments to be
a multi-sorted extension of an argumentation framework. Before we do so, we
introduce the concepts of a subframework and of the set of qualified arguments
of a subframework. These concepts define a way of evaluating the arguments
in a cell, given an extension S. The intuition behind them is as follows. Given
a cell C and extension S, we determine whether S ∩ C is an extension for C,
by first restricting C to those arguments that are not defeated by arguments
outside C. This set, denoted by C′, makes up the arguments of what we call the
subframework for C. Next, we further restrict the arguments of C′ to those that
are defended by S from attacks outside C. This set, denoted by C′′, contains the
arguments in C that are qualified for acceptance.

Definition 7 (Subframework). Let P be a partition of A, C ∈ P a cell and
S ⊆ A an extension. The subframework for C, given S, is the argumentation
framework 〈C′, R ↓ C′〉 where C′ = {a ∈ C | �b ∈ S \C, bRa} and where R ↓ C′

is the attack relation R restricted to the arguments in C′, i.e. R ↓ C′ = {(a, b) ∈
R | a, b ∈ C′}.

Definition 8 (Qualified Arguments of a Subframework). Let 〈C′, R ↓ C′〉
be a subframework for a cell C and extension S. The qualified arguments of
〈C′, R ↓ C′〉, denoted by C′′, are defined as follows.

C′′ = {a ∈ C′ | ∀b ∈ A \ C, (bRa → ∃c ∈ S, cRb)}

Given an extension S, we can determine whether it is a sorted extension by
checking that for each C ∈ P , we have that C ∩ S is an extension of the sub-
framework for C, given the qualified arguments of the subframework for C. The
semantics under which the subframework for C is evaluated, is the semantics
associated with C.

Definition 9 (Sorted Extension). A set S ⊆ A is a sorted extension of
AF = 〈A,R〉 and S = 〈P, T 〉 iff for all C ∈ P , we have

C ∩ S ∈ ET (C)(〈C′, R ↓ C′〉, C′′)

The sorted acceptance function Esrt is defined as follows: S ∈ Esrt(AF, S) iff S
is a sorted extension of AF and S.

Multi-sorted Argumentation 221

a

b

c

Finish paper

Give lecture in Faraway,
Travel by car

Give lecture in Faraway,
Travel by bus

d

There will be a train strike

e

f

There will be no train strike

Give lecture in Faraway,
Travel by train

Preferred Grounded

Fig. 2. The multi-sorted argumentation framework of the running example about prac-
tical and epistemic arguments

The following example demonstrates the computation of the sorted extensions
for the framework used in our running example.

Example 4 (Continued). Consider the following extensions for the framework
AF shown in Figure 2: S1 = ∅, which is the grounded extension of AF ; S2 =
{a, d, f}, which is a preferred extension of AF ; and S3 = {b}, which is neither
the grounded nor a preferred extension of AF . We determine whether they are
multi-sorted extensions of AF , given the sorting S introduced earlier. That is to
say, we determine whether S1,S2,S3 ∈ Esrt (AF, S).

– Given S1, we have C′
1 = {a, b, c, d} and C′

2 = {e, f} (no argument in C1

defeats an argument in C2 or vice versa); and C′′
1 = {a, b, c} and C′′

2 = {e, f}
(d is not defended from e). We have that S1 ∩ C1 = ∅ and ∅ �∈ Epr (〈C ′

1, R ↓
C′

1〉, C′′
1) and S1 ∩ C2 = ∅ and ∅ ∈ Egr (〈C′

2, R ↓ C′
2〉, C′′

2). While S1 ∩ C2 is
the grounded extension of 〈C′

2, R ↓ C′
2〉, S1 ∩C1 is not a preferred extension

of 〈C′
1, R ↓ C′

1〉. It follows that S1 �∈ Esrt (AF, S).

– Given S2, we have C′
1 = {a, b, c, d} and C′

2 = {e, f} (no argument in C1

defeats an argument in C2 or vice versa); and C′′
1 = {a, b, c, d} and C′′

2 =
{e, f} (no argument is undefended from attacks by other cells). We have
that S2 ∩C1 = {a, d} and {a, d} ∈ Epr (〈C′

1, R ↓ C′
1〉, C′′

1) and S1 ∩C2 = {f}

222 T. Rienstra et al.

and {f} �∈ Egr (〈C′
2, R ↓ C′

2〉, C′′
2). While S1 ∩ C1 is a preferred extension

of 〈C′
1, R ↓ C′

1〉, S1 ∩ C2 is not the grounded extension of 〈C′
2, R ↓ C′

2〉. It
follows that S2 �∈ Esrt (AF, S).

– Given S3, we have C′
1 = {a, b, c, d} and C′

2 = {e, f}; and C′′
1 = {a, b, c} (d

is not defended from e) and C′′
2 = {e, f}. We have that S3 ∩ C1 = {b} and

{b} ∈ Epr (〈C′
1, R ↓ C′

1〉, C′′
1) and S3∩C2 = ∅ and ∅ ∈ Egr (〈C′

2, R ↓ C′
2〉, C′′

2).
It follows that S3 ∈ Esrt (AF, S).

In conclusion, S3 is a sorted extension, and S1 and S2 are not. The only other
sorted extensions are {a} and {c}. Switching back to the language of the running
example in the introduction, the three acceptable options are to either finish the
paper (extension {a}), to give the lecture and travel by bus (extension {b}) or to
give the lecture and travel by car (extension {c}). As desired, the option to travel
by train and both give the lecture and finish the paper, which would correspond
to the extension {a, d, f}, is not supported.

4 Properties

In this section, we present some desired properties of sorted extensions. In par-
ticular, we aim to show that the sorted extensions presented in Section 3 satisfy
conflict-freeness, admissibility, and completeness. We say that a semantics x sat-
isfies conflict-freeness (resp. admissibility, completeness) if, given any framework
〈A,R〉 and any Q ⊆ A, all extensions Ex(〈A,R〉, Q) are conflict-free (resp. ad-
missible, complete). We then have that all the semantics considered here satisfy
conflict-freeness; that all semantics except conflict-free satisfy admissibility; and
that all semantics except conflict-free and admissible satisfy completeness.

We first prove the preservation of the conflict-free, admissible and complete-
ness properties of sorted extensions, i.e., whenever the semantics associated with
all cells of the partitioning satisfy these properties, then the sorted extensions
satisfy them as well.

Proposition 1. For any AF and S = 〈P, T 〉, if ∀C ∈ P , T (C) is a conflict-free
semantics, then ∀S ∈ Esrt(AF, S), S is conflict-free.

Proof. Let AF = 〈A,R〉, S = 〈P, T 〉, and S ∈ Esrt (AF, S). We know that
∀C ∈ P, T (C) is a conflict-free semantics. Note that it follows that ∀C ∈ P ,
S ∩ C is conflict free. Now suppose the contrary, i.e. there are a, b ∈ S s.t.
bRa. Let C ∈ P be the cell s.t. a ∈ C. Because S ∩ C is conflict-free, we have
b ∈ S \ C. Then by Definition 7, a /∈ C′. Because we have that C′′ ⊆ C′ ⊆ C
and S ∩ (C \ C′′) = ∅, it follows that a /∈ S. Contradiction. ��

Note that, since all the semantics that we consider satisfy conflict-freeness, we
have that every sorted extension is conflict-free.

Proposition 2. For any AF and S = 〈P, T 〉, if ∀C ∈ P , T (C) is an admissible
semantics, then ∀S ∈ Esrt(AF, S), S is admissible.

Multi-sorted Argumentation 223

Proof. Let AF = 〈A,R〉, S = 〈P, T 〉, and S ∈ Esrt (AF, S). By Proposition 1 we
have that S is conflict-free. We also know that ∀C ∈ P, T (C) is an admissible
semantics. Note that it follows that ∀C ∈ P , S ∩ C is admissible w.r.t. the
framework 〈C ′, R ↓ C′〉. Suppose now that S is not admissible, i.e., there are
a ∈ S, b ∈ A, bRa and �c ∈ S s.t. cRb. Because S is conflict free, we know
that b /∈ S. Let C ∈ P be the cell s.t. a ∈ C. Because S ∩ C is admissible w.r.t.
the framework 〈C′, R ↓ C′〉, we have that b /∈ C′. By Definition 7 we have that
∀b′ ∈ (C \ C′), ∃c′ ∈ S s.t. c′Rb′. Therefore, b /∈ (C \ C′) and so b ∈ A \ C.
By Definition 8 it now follows that a /∈ C′′. But then, because we have that
C′′ ⊆ C′ ⊆ C and S ∩ (C \ C′′) = ∅, it follows that a /∈ S. Contradiction. ��

Proposition 3. For any AF and S = 〈P, T 〉, if ∀C ∈ P , T (C) satisfies com-
pleteness, then ∀S ∈ Esrt(AF, S), S is complete.

Proof. Let AF = 〈A,R〉, S = 〈P, T 〉, and S ∈ Esrt (AF, S). Suppose S defends
a from A. We need to show that a ∈ S (i.e. that S is complete). Let C ∈ P be
the cell s.t. a ∈ C. First we show that S ∩ C ′ defends a from C′. Let b ∈ C′ be
an argument from which S ∩ C′ needs to defend a, i.e. bRa. Because S defends
a from A, there is a c ∈ S s.t. cRb. There are two possibilities: either c ∈ C′ or
c �∈ C′. Suppose c �∈ C′. Then by definition 9, c �∈ C and by definition 7, b �∈ C′.
Contradiction. It follows that c ∈ C′, and that S ∩C′ defends a from b. Because
this holds for any b ∈ C′, we have that S ∩ C′ defends a from C′. Finally, from
definition 9, and from the assumption that T (C) is complete, it follows that (for
any C′′ ⊆ C′) a ∈ S. ��

These properties are highly desirable in a multi-sorted argumentation frame-
work, because they allow us to guarantee that the properties which hold for the
standard Dung framework, are preserved in the multi-sorted one.

Consider now the case where the sorting associates all cells with the same
semantics. We call this the uniform case. A natural question to ask is whether
the set of sorted extensions will then be equivalent to the set of extensions of the
framework evaluated under this semantics in the conventional way. We formalize
this property as follows.

Definition 10 (Uniform Case Extension Equivalence). Let AF = 〈A,R〉
and S = 〈{C1, . . . , Cn}, T 〉. Uniform case equivalence holds if and only if

T (C1) = . . . = T (Cn) = x implies Esrt(AF, S) = Ex(AF,A)

This property does not hold in all the cases. Consider the following example:

Example 5. Let AF = 〈{a, b}, R〉, where aRb, bRa; and S = 〈{C1, C2}, T 〉, where
C1 = {a}, C2 = {b} and T (C1) = T (C2) = gr . The grounded extension of AF
is ∅. We now show that ∅ /∈ Esrt (AF, S): we have C′

1 = {a}, and C′
2 = {b}

(no argument is defeated); and C′′
1 = ∅, and C′′

2 = ∅ (both arguments are
undefended). We have that S ∩ C1 = ∅ and ∅ /∈ Egr (〈C′

1, R ↓ C′
1〉, C′′

1) (the
grounded extension of 〈C′

1, R ↓ C′
1〉 is not a subset of C′′

1). It follows that ∅ /∈
Esrt (AF, S).

224 T. Rienstra et al.

a b c d

PreferredGrounded

Fig. 3. A sorted argumentation framework

The reason why the uniform case extension equivalence does not hold is the
following: every cell is evaluated separately, and the separate evaluation of a cell
C under a semantics x may lead to a result that is different from the result of
evaluating the complete framework under semantics x. Consider for instance to
adopt multi-sorted argumentation to model the merging of the argumentation
frameworks of single agents. Even if these agents adopt the same semantics,
the evaluation of their single frameworks may lead to different extensions of the
merged framework. However, if the multi-sorted framework is used in a context
where this property is required to hold, then the equivalence can be guaranteed
by replacing the cells associated with the same semantics with their union.

Finally, we underline that, given a cell associated with a certain semantics,
say grounded, a sorted extension may not represent a grounded evaluation of
the arguments in this cell, when we consider this cell in isolation. Consider the
following example.

Example 6. The framework shown in Figure 3 is formally represented by AF =
〈{a, b, c, d}, R〉, where aRb, bRa, bRc, cRb, cRd and dRc; and a sorting 〈{C1, C2},
T 〉, where C1 = {a, b}, C2 = {c, d}, and T (C1) = gr , and T (C2) = pr .

Consider the extension S = {a, c}. Note that a is accepted, while the cell
{a, b} is associated with the grounded semantics. Let us check if S satisfies the
conditions for being a sorted extension.

– Given S, we have C′
1 = {a}, and C′

2 = {c, d} (b is defeated by c); and
C′′

1 = {a}, and C′′
2 = {c, d} (no argument is undefended). We have that

S ∩ C1 = {a}, and {a} ∈ Egr (〈C′
1, R ↓ C′

1〉, C′′
1), and S ∩ C2 = {c}, and

{c} ∈ Epr (〈C′
2, R ↓ C′

2〉, C′′
2). It follows that S ∈ Esrt (AF, S).

In the example above, selecting c to be accepted accords with the preferred
evaluation of the cell {c, d}. But given this selection, the only complete extension
is {a, c}. Note also that the extension {a} is in fact a grounded extension for
the subframework 〈C′

1, R ↓ C′
1〉, where C′

1 = {a}. Consider again the informal
example concerning the merging of the single frameworks of the agents. We can
note that the merging of the single frameworks may lead to an evaluation such
that the arguments accepted under a particular semantics, are then not accepted
into the merged framework in the same semantics.

If the multi-sorted framework is used in a context where this behavior needs to
be avoided, then a possible way to deal with this behavior is to apply a selection
criteria for extensions based on a notion of preference. For example, another
sorted extension of the framework described above is {d}. If actual groundedness
for the cell C1 is important, then this extension would be preferred over {a, c}.

Multi-sorted Argumentation 225

5 The Modal Fibring Approach

A different representation for multi-sorted argumentation is to express it as
a special case of fibring of modal argumentation frameworks. In this perspec-
tive, we exploit connections with modal logic, interpreting inter-cell attacks in
terms of accessibility relations. Following Barringer and Gabbay [4], we represent
argumentation subframeworks as possible worlds in a Kripke structure; more-
over, we compute sorted extensions as models of the Kripke structure. We can
also apply semantic-based criteria to select desired extensions over the set of
possible ones.

Definition 11 (Modal Argumentation Framework). Let AF = 〈A,R〉 be
an argumentation framework. A modal argumentation framework MAF is a
tuple 〈A,R,MA,MR,S〉 where MA is a set of meta-arguments, MR ⊆ MA×
MA ∪ MA×A, and S ∈ {cf, ad, co, gr, pr}.

We enrich each sub-framework with meta-arguments, which represent some prop-
erties of the original set of arguments (such as the property of being attacked).
We will refer to the original set of arguments as actual arguments.

We adapt Kripke possible world semantics to the case where possible worlds
are argumentation frameworks related by an accessibility relation: argumenta-
tion frameworks are possible worlds in a Kripke structure, and modalities are
applied to arguments. Thus, �α in a framework/world w is interpreted as a
possible attack in the sense that there is a framework/world w′ accessible from
w, in which α is a justified argument.

Definition 12 (Distributed Argumentation Framework). A distributed
argumentation framework DAF is a tuple 〈W,AR〉 where W is a set of modal
argumentation frameworks and AR ⊆ W ×W .

The core idea here is to use modal meta-arguments [11] as pointers between
arguments in different worlds, so that we do not loose information about attacks
between arguments in different subframeworks; modal relations act as consis-
tency constraints between modal meta-arguments and actual arguments and can
be used to ensure global consistency over the justification statuses of arguments
in different worlds.

Definition 13 (Sorting-based DAF). Let AF = 〈A,R〉 and S = 〈P, T 〉, with
P = {C1, . . . , Cn}. For each i = 1 . . . n, let Mi = 〈Ci, R ↓ Ci,MAi,MRi, T (Ci)〉.
A DAF 〈W,AR〉 is a S-based DAF if and only if the following conditions are sat-
isfied:

1. W = {M1, ..,Mn}
2. For any Ci, Cj s.t. i �= j, ∃a ∈ Ci, b ∈ Cj s.t. aRb if and only if

(a) {�a, xa} ⊆ MAj, and {(�a, xa), (xa,�a), (�a, b)} ⊆ MRj, and
(b) (b, a) ∈ AR

226 T. Rienstra et al.

In the following examples, we show how to construct a sorting-based DAF
from the framework of Example 4 and we provide an example of the computation
of sorted extensions using a sorting-based DAF created from Example 6.

Example 7. LetAF = 〈A,R〉 and S = {P, T } be the framework and sorting of Ex-
ample 6 (shown in Figure 3). The corresponding sorting-basedDAF = 〈W,AR〉,
visualized inFigure 4.WehaveW = {M1,M2}withM1 = {A,R,MA1,MR1, pr},
MA1 = {a, b, c, d, xe,�e} andMR1 = {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (b, d),
(d, b), (c, d), (d, c), (xe,�e), (�e, xe), (�e, d)}.M2 = {A,R,MA2,MR2, gr},
MA2 = {e, f} and MR2 = {(e, f), (f, e)}. AR = {(M1,M2)}. Note how, in Fig-
ure 4, attacks across cells are not part of the DAF ; the fact that e attacks d is
conveyed by the modal meta-arguments�e attacking d.

b

c

e

f

a d

Finish paper

Give lecture in Faraway,
Travel by car

Give lecture in Faraway,
Travel by bus

Give lecture in Faraway,
Travel by train

There will be no train strike

There will be a train strike

◇exe

Preferred Grounded

Complete

M1 M2

Fig. 4. The sorting-based DAF corresponding to the framework in Figure 1

We now demonstrate the computation of sorted extensions using the sorting-
based DAF . Whenever there is a requirement about a subframework to have a
specific semantics-based extension we convert it into a requirement of extensions
on the actual arguments in the model world; complete extensions are computed
on the meta-arguments for the sake of generality.

Multi-sorted Argumentation 227

Every complete multi-sorted extension on the whole framework is the union
over the extensions of the subframeworks.

1. For each Mi ∈ {M1,M2} (with Mi = 〈Ci, R ↓ Ci,MAi,MRi, T (Ci)〉).
(a) Compute the complete extensions of 〈MAi,MRi〉 (i.e., of the meta-

arguments of the subframework/world)
(b) For each admissible extension, compute the possible extensions of the

actual arguments of the subframework/world according to the semantics
specified by T (Ci).

2. For each Mi, we thus obtain a set of extensions. Each union of these ex-
tensions on the condition that it satisfies the consistency check, is a sorted
extension of the modal framework. Projecting these extensions over the ac-
tual arguments (i.e., removing the meta-arguments) gives an actual sorted
extension.

The consistency check of an extension involves checking whether the informa-
tion conveyed by the modal meta-arguments is consistent with the justification
statuses of the actual arguments to which they correspond. For example, let e1
and e2 be extensions of M1 and M2, obtained as described above. We then have
that the union e1 ∪ e2 satisfies the consistency check if and only if,

�α ∈ ei ↔ α ∈ ej ∧ &β ∈ ej ↔ β ∈ ei

We now exemplify the computation of the multi-sorted extension on an easier
framework, visualized in in Figure 5.

grounded

completecomplete

preferreda b c d

xc &c &b xb

M1 M2

Fig. 5. The sorting-based DAF corresponding to the framework in Figure 3

We do the following:

– The possible complete extensions of the meta-arguments in the subframe-
work/world M1 are {∅, {xc}, {�c}}. Then, starting from each one of them,
we compute the grounded extension over the actual arguments of M1. These
extensions are: ∅, {xc} and {�c, a}.

228 T. Rienstra et al.

– Similarly, we compute the complete extensions over the meta-arguments in
the subframework/world M2 and then, for each one of them, the preferred
extensions over the actual arguments of M2: from ∅ we get {c} and {d}, from
{�b} we get {�b, d} and from {xb} we get {xb, c} and {xb, d}.

– We compute the sorted extension by computing the cartesian product over
the two sets of extensions (a set of possible extensions for each subframe-
work/world) and then selecting the ones that satisfy the consistency check.
So, for instance, the {∅} extension from the first world can not be merged
with the {c} extension from the second world since �c does not belong to the
first one. The resulting set of consistent extensions consists of {d}, {xb, d},
{xc, d}, {xc, xb, d}, {�c, a, c} and {�c, a, xb, c}. Projecting over the actual
arguments, we get {{d}, {c, a}}.

Another property is that, in uniform cases (every world is associated with the
same semantics) we can impose a preference criteria over the admissible multi-
sorted extensions in order to get the same semantics we would have by evalu-
ating the whole framework using that semantics. For instance, in Example 2,
the possible multi-sorted extensions we compute by means of modal fibring are
{∅, {a}, {b}}. Note that we do not allow {a, b} to be a multi-sorted extension:
this is because we do not have both a and �b in the possible extensions of the
first world nor we have b and �a in the possible extensions of the second world:
basically, by means of modal pointers, we know that those two arguments attack
each other and we prevent them from being part of the same multi-sorted ex-
tension. We can impose a semantics-based selection criteria: since all worlds are
associated with grounded semantics, we may select the minimal extension over
the set of multi-sorted extensions {∅, {a}, {b}}: this is ∅, which is exactly the
grounded extension of the whole framework. Selecting the maximal sets w.r.t.
set inclusion we get {{a}, {b}}, which are the preferred extensions of the whole
framework.

Modal fibring is another way to deal with multi-sorted argumentation frame-
works. Compared with the main approach discussed in this paper, the difference
is that it does not require an extension S as a parameter, but the framework has
to undergo a precise transformation process: adding meta-arguments, removing
cross-cell attacks, introducing accessibility relations. The property of uniform
case extension equivalence holds in this approach. In multi-agent systems, the
modal meta-argument is intended as a call to a remote procedure or a generic
communication process with another agent, the owner of the referenced argu-
ment whose justification status the caller wants to know.

6 Related Work

The proposal that is most related to ours comes from Prakken [13], from which
we also took our running example. He proposes an argument-based semantics
that combines grounded and preferred semantics. The motivation, as we dis-
cussed in the introduction, is that reasoning about beliefs should be skeptical,
while reasoning about actions should be credulous. Prakken’s formalism can be

Multi-sorted Argumentation 229

seen as a special case of ours: there are just two cells: a preferred cell, containing
practical arguments; and a grounded cell, containing epistemic arguments. More-
over, arguments in the preferred cell do not attack arguments in the grounded
cell. This reflects the principle that no Is should be derived from an Ought. Other
than that, the formalism takes an approach similar to ours: an extension of a
frameworkAF is the preferred extension of the framework obtained by removing
all arguments not defended by the epistemic part of the grounded extension of
AF (of course, this includes the grounded extension of AF itself).

An interesting feature of Prakken’s formalism is a dialectical proof proce-
dure which is sound and complete with respect to the 2-sorted semantics. This
proof procedure combines previously developed proof procedures for the skeptical
grounded and credulous preferred semantics (see e.g., [12]). It would be interest-
ing to see whether a generalized dialectical proof procedure could be developed
for our semantics. This would, of course, depend on the existence of dialectical
proof procedures for the semantics associated with the individual cells.

Another related formalism comes from Brewka & Eiter [6]. They propose a
framework for group argumentation, which they call argument context systems.
It allows a collection of abstract argument systems to interact via mediators,
where a mediator consists of so called bridge rules that associate arguments
from one framework with a context to another framework. A context for a frame-
work consists of a set of expressions that determine certain properties of that
framework. One framework may then decide on these properties for another
framework through the acceptance status of the arguments that appear in the
body of the bridge rules. Among the properties controlled by the context are
values and preferences, i.e., the framework supports value based and preference
based argumentation [1,5]. Another property is the acceptance status of an ar-
gument. This is effectuated through an extra argument def, that may invalidate
or validate an argument, by attacking it or attacking its attackers. The resulting
framework allows the interaction between different frameworks in the argument
context system, where one framework may decide about values, preferences and
argument acceptance status of other frameworks.

Like in our work, different frameworks may be evaluated under different se-
mantics. Moreover, the semantics under which a framework is evaluated, is also
part of the framework’s context. This means that, in addition to values, prefer-
ences and acceptance status, the semantics under which a framework is evaluated
is also a property about which another framework may decide. Of course, this
goes beyond the expressivity of our system. On the other hand, different cells of a
sorting in our system are part of the same framework, and may interact through
attacks. Brewka & Eiter’s system does not allow different frameworks in the
same argument context system to this. This may be simulated by bridge rules
that validate and invalidate arguments, but only partially. Their approach does
not account for the distinction between defeated and undefended arguments.

Other related work includes Amgoud & Prade [2], who introduce explana-
tory, rewards and threats arguments for negotiation dialogues. In practical rea-
soning, Rotstein et al. [14] propose different types of arguments to represent

230 T. Rienstra et al.

categorized domain information, like belief, goals or plans. These works, however,
do not explicitly apply different semantics to the different types of arguments
they define.

7 Conclusion and Future Work

We have presented a theory of multi-sorted argumentation, that generalizes
Dung’s theory of abstract argumentation in that it allows different parts of a
framework to be evaluated under different semantics. We have proven some basic
properties, namely the preservation of conflict-freeness, admissibility and com-
pleteness. Moreover, we have analyzed the behavior of the multi-sorted frame-
work in the cases where the same semantics is used to evaluate all the cells of
the framework, or where the arguments are not accepted in the framework using
the same semantics applied to evaluate the cells.

We justify the introduction of a multi-sorted argumentation framework by
using a running example from Prakken [13]. In this example, some arguments
pertain to actions, and some others pertain to beliefs about the world. As ar-
gued by Prakken [13] practical arguments and epistemic arguments have to be
evaluated in a different way. We propose to perform this evaluation using a
multi-sorted framework.

The modal fibring approach adds another interesting angle to our theory.
The fact that multi-sorted argumentation is expressible in modal argumentation
frameworks demonstrates the generality of modal argumentation. We expect that
modal argumentation will be a useful framework to investigate more sophisti-
cated forms of multi-sorted argumentation.

There is much work still to be done, on all the aspects described above. First of
all, a further generalization is possible if we make some of the assumptions that we
made optional. For example, instead of a strict partitioning of the framework, we
could allow overlapping subsets. This is natural, because the same argument may
be put forward by different agents, each associated with a different semantics.

Secondly, we have applied our theory only to some small examples. It will
be interesting to apply it to real-world examples, and to compare it with other
approaches to multi-agent argumentation and reasoning about trust.

Third, we are applying our theory to different challenges in multiagent systems.
One of the possible applications is bounded reasoning in multi-agent systems:
dividing a framework into different sets could facilitate a stepwise evaluation of
smaller parts of a larger framework. In addition, arguments that are not the focus
of a particular issue, could be evaluated using a computationally cheaper seman-
tics. For example, a ‘don’t care’ attitude towards a set of arguments could result in
only requiring conflict-freeness for this set. Another application is, as mentioned
in the paper, the merging of the argumentation frameworks of single agents into
a common framework, in order to allow an easier collaboration among the agents.

Forth, we aim to redefine multi-sorted argumentation in terms of argument
labelling [8], instead of argument semantics. The labelling approach is widely
adopted in the argumentation community, and it may allow a simpler represen-
tation of the sorted extension.

Multi-sorted Argumentation 231

References

1. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based
argumentation. In: Cooper, G.F., Moral, S. (eds.) UAI 1998: Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 1–7. Morgan
Kaufmann (1998)

2. Amgoud, L., Prade, H.: Handling threats, rewards, and explanatory arguments in
a unified setting. Int. J. Intell. Syst. 20(12), 1195–1218 (2005)

3. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

4. Barringer, H., Gabbay, D.M.: Modal and Temporal Argumentation Networks. In:
Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 1–25.
Springer, Heidelberg (2010)

5. Bench-Capon, T.J.M.: Value-based argumentation frameworks. In: Benferhat, S.,
Giunchiglia, E. (eds.) NMR, pp. 443–454 (2002)

6. Brewka, G., Eiter, T.: Argumentation Context Systems: A Framework for Abstract
Group Argumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 44–57. Springer, Heidelberg (2009)

7. Caminada, M.: Semi-stable semantics. In: Computational Models of Argument;
Proceedings of COMMA, pp. 121–130 (2006)

8. Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Fisher, M.,
van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 111–123. Springer, Heidelberg (2006)

9. Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation
frameworks (2005)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

11. Gabbay, D.M.: Fibring argumentation frames. Studia Logica 93(2-3), 231–295
(2009)

12. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumenta-
tion frameworks. In: Argumentation in Artificial Intelligence, pp. 105–129 (2009)

13. Prakken, H.: Combining sceptical epistemic reasoning with credulous practical rea-
soning. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) COMMA. Frontiers in Arti-
ficial Intelligence and Applications, vol. 144, pp. 311–322. IOS Press (2006)

14. Rotstein, N.D., Garćıa, A.J., Simari, G.R.: Reasoning from desires to intentions:
A dialectical framework. In: Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence (AAAI 2007), pp. 136–141. AAAI Press (2007)

Conditional Labelling

for Abstract Argumentation

Guido Boella1, Dov M. Gabbay2, Alan Perotti1,
Leendert van der Torre3, and Serena Villata4

1 Dipartimento di Informatica, Università di Torino
{guido,perotti}@di.unito.it

2 King’s College London
dov.gabbay@kcl.ac.uk

3 ICR, University of Luxembourg
leon.vandertorre@uni.lu
4 INRIA, Sophia Antipolis
serena.villata@inria.fr

Abstract. Agents engage in dialogues having as goals to make some
arguments acceptable or unacceptable. To do so they may put forward
arguments, adding them to the argumentation framework. Argumenta-
tion semantics can relate a change in the framework to the resulting
extensions but it is not clear, given an argumentation framework and a
desired acceptance state for a given set of arguments, which further ar-
guments should be added in order to achieve those justification statuses.
Our methodology, called conditional labelling, is based on argument la-
belling and assigns to each argument three propositional formulae. These
formulae describe which arguments should be attacked by the agent in
order to get a particular argument in, out, or undecided, respectively.
Given a conditional labelling, the agents have a full knowledge about
the consequences of the attacks they may raise on the acceptability of
each argument without having to recompute the overall labelling of the
framework for each possible set of attack they may raise.

1 Introduction

Agents engage in dialogues having as goals to make some arguments acceptable
or unacceptable: for instance, agent A wins the auction or agent B is proven
guilty. At each turn, an agent owns a set of possible arguments she can add to
the framework: each addition of further arguments to the framework is called
a move. Argumentation semantics allow us to relate the introduction of a new
argument (a move) to the resulting justification status of an argument (the goal):
for instance, if you defeat argument α then argument β will be labeled undec.
What is missing is a mechanism for making inferences from goals to moves:
suppose an agent wants to make an argument β undec. How can she compute
which arguments to add in order to achieve this goal? What she can do is to
try and simulate the introduction of every possible argument she owns to the

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 232–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Conditional Labelling for Abstract Argumentation 233

framework and then compute β’s resulting label, comparing it to her goal. Beside
this exhaustive approach there is no way, so far, for an agent to know which
move to make in order to achieve her goal. Since reaching a goal may require
the insertion of several arguments, the complexity of the exhaustive approach
is exponential (cardinality of the powerset) over the number of arguments an
agent can add to the framework.

The research question of the paper is:

– How to change an abstract argumentation framework, by introducing new
arguments and their associated attacks, in order to have one or more argu-
ments accepted or rejected?

Suppose that two agents, Ag1 and Ag2, initiate a dialogue. Ag1 proposes ar-
gument a, as depicted in Figure 1.1. Assume that Ag2 wants to defeat Ag1’s
argument but we have that argument a is in, and the only way to have it la-
belled out is to attack it. Thus, Ag2 attacks a with her new argument b, defeat ing
it. At this turn, as shown in Figure 1.2, it is up to Ag1 to decide how to pro-
ceed in the dialogue. She wants to have her argument a accepted, so she puts
forward argument c which attacks b, obtaining the framework in Figure 1.3. In
this basic framework, it is straightforward to see which arguments the agents
should attack in order to get their arguments accepted. In more complex argu-
mentation frameworks, where also cycles are involved, it is less simple to detect
these arguments. Consider the framework depicted in Figure 2: it contains loops
and multiple attacks. Suppose that an agent wants to defend argument i: it is
not intuitive at all to see which potential modifications of the framework allow
her to do that. Moreover, if she has a set Aag of arguments she may add to the
framework, she may have to run 2|A

ag| tests in order to find out whether she
can defend i, thus making this process’ complexity dependent on the number of
possible moves she has.

a

a b

a b c

(1)

(2)

(3)

Fig. 1. An argumentation framework with a basic reinstatement. Arguments labelled
in are depicted as grey nodes, arguments with label out are depicted as black nodes.

234 G. Boella et al.

l

a b e

g ji k

c d

h

f

Fig. 2. A more complex argumentation framework

Thus, the research question breaks down into the following subquestions:

1. What kind of information can we associate to each argument concerning
its possible justification statuses depending on the acceptability of other
arguments in the framework?

2. How to compute this information in an efficient way?

We deal with abstract argumentation frameworks [4], where the internal struc-
ture of the arguments is left unspecified. We are inspired by Caminada’s la-
belling [3], which assigns to each argument a label in, out, undec, and we extend
this idea by assigning a triple of propositional formulae, called conditional lables,
to every argument in the framework. These formulae are a guide in the dialogic
process and suggest which move should be made next. Note that these formulae
(and the algorithmic process to compute them) are in no way related to the
number of agents: our approach does not depend on the number of argument-
ing agents and we apply it to a two-agent scenario for the sake of explanation.
Consider the framework of Figure 1.3, the conditional label of a for making it
accepted is the emptyset because a is already in and no “move” is needed to
get it accepted. The conditional label, instead, for making a unaccepted is a∨ c,
because a can be defeated by defeat ing a itself or c. Depending on the further
arguments at her disposal, an agent may not be able to directly defeat an ar-
gument and therefore giving all alternatives is required. Conditional labelling
assigns a conditional label to each abstract argument in the framework, even if
the framework involves one or more cycles.

The implementation of the algorithm of conditional labelling deals with a
number of complexity issues, mostly due to loops in the argumentation frame-
works: some preprocessing techniques allow to speed up the performances dis-
played by a straightforward implementation of the conditional labels’ theoretical
definition.

In this paper, we are interested in introducing the basic ideas of the conditional
labelling and explain it using a number of examples. We do not treat belief
revision, and we restrict our examples to grounded semantics.

The paper is organized as follows: Section 2 provides the basic concepts of
argumentation theory, Section 3 introduces the conditional evaluation of argu-
ments, Section 4 discusses an algorithmical definition of the conditional labelling
and some possible optimizations for the implementation. Finally, some conclu-
sions are drawn.

Conditional Labelling for Abstract Argumentation 235

2 Background

We provide the basic concepts and insights of Dung’s abstract argumentation [4].

Definition 1. (Abstract argumentation framework) An abstract argumentation
framework is a pair 〈A,→〉. A is a set of elements called arguments and →⊆
A×A is a binary relation called attack. We say that an argument Ai attacks an
argument Aj if and only if (Ai, Aj) ∈→.

Definition 2. (Conflict-free, Defence) Let C ⊆ A. A set C is conflict-free if
and only if there exist no Ai, Aj ∈ C such that Ai → Aj. A set C defends an
argument Ai if and only if for each argument Aj ∈ A if Aj attacks Ai then there
exists Ak ∈ C such that Ak attacks Aj.

Definition 3. (Acceptability semantics) Let C be a conflict-free set of argu-
ments, and let D : 2A �→ 2A be a function such that D(C) = {A|C defends A}.
– C is admissible if and only if C ⊆ D(C).
– C is a complete extension if and only if C = D(C).
– C is a grounded extension if and only if it is the smallest (w.r.t. set inclusion)

complete extension.
– C is a preferred extension if and only if it is a maximal (w.r.t. set inclusion)

complete extension.
– C is a stable extension if and only if it is a preferred extension that attacks

all arguments in A \ C.

The concepts of admissibility, as well as those of Dung’s semantics are originally
stated in terms of sets of arguments. It is equal to express these concepts using
argument labeling. This approach has been proposed firstly by Jakobovits and
Vermeir [5] and then by Caminada [3] with the aim to provide quality postu-
lates for dealing with the reinstatement of arguments. The simplest example of
reinstatement is: argument A1 attacks argument A2 and argument A2 attacks
argument A3. We have that argument A1 reinstates argument A3, i.e., it makes
argument A3 accepted by attacking the attacker of A3. In a reinstatement la-
beling [3], an argument is labeled in if all its attackers are labeled out and it is
labeled out if it has at least an attacker which is labeled in.

Definition 4. (AF-labeling) Let 〈A,→〉 be an abstract argumentation frame-
work. An AF-labeling is a total function lab : A → {in, out, undec}. We
define in(lab) = {Ai ∈ A|lab(Ai) = in}, out(lab) = {Ai ∈ A|lab(Ai) = out},
undec(lab) = {Ai ∈ A|lab(Ai) = undec}.
Definition 5. (Reinstatement labeling) Let lab be an AF-labeling. We say that
lab is a reinstatement labeling if and only if it satisfies the following:

– ∀Ai ∈ A : (lab(Ai) = out ≡ ∃Aj ∈ A : (Aj → Ai ∧ lab(Aj) = in)) and
– ∀Ai ∈ A : (lab(Ai) = in ≡ ∀Aj ∈ A : (Aj → Ai ⊃ lab(Aj) = out)) and
– ∀Ai ∈ A : (lab(Ai) = undec ≡ ∃Aj ∈ A : (Aj → Ai ∧ ¬(lab(Aj) = out)) ∧

�Ak ∈ A : (Ak → Ai ∧ lab(Ak) = in).

236 G. Boella et al.

3 Conditional Labels

Our goal is to enrich each argument with some information about his vulner-
ability, i.e., we want to know how this argument could be successfully (even if
indirectly) attacked, defended or made undecided. We purposely restrict our at-
tention to argument defeating, due to two considerations: first of all, attacks are
not resources but consequences of the insertion of the arguments and given a
couple of arguments the existence of attacks between them is determined and not
subject to strategic moves of agents. In second place, the building of an argumen-
tation framework is a monotonic process and arguments can be defeated with
new arguments rather than removed from the framework. Hence our proposal is
to attach three formulae to each argument, meaning respectively.

– Which arguments should be attacked in order to have this argument labelled
in?

– Which arguments should be attacked in order to have this argument labelled
out?

– Which arguments should be attacked in order to have this argument labelled
undec?

Given an argumentation framework 〈A, R〉, we associate to each argument α
three formulae: α+, α−, α?. We indicate a generic formula associated to argument
α as α∗. The language of the formulae is the same:

Definition 6. (Language of conditional labels)

– if β ∈ A, β◦ is a formula.
– � and ⊥ are formulae
– if α∗

1 and α∗
2 are formulae, also α∗

1 ∧ α∗
2 and α∗

1 ∨ α∗
2 are.

We will refer to α+ (respectively: α−, α?) formulae as green (red, grey) formulae.
The interpretation of the formulae is: a green formula α+, if satisfied, guaran-

tees that the related argument α is accepted (labelled in). The same holds for
red formulae for out labels and grey formulae for undec labels respectively. The
atoms of those formulae are argument names β◦ or the special values �,⊥.

– β◦ means you have to defeat argument β (to reach your goal)
– � means you do not need to do anything (to reach your goal)
– ⊥ means you can not do anything (to reach your goal)

Figure 3 provides a simple example of a framework with conditional labels.

– Figure 3.1: There is no need to modify the framework in order to achieve
a’s acceptability (it is already labelled in) (a+ : �); to defeat a you have
to defeat a (a− : a◦), you can not make a undecidable by defeat ing any
combination of the arguments of the framework (a? :⊥).

Conditional Labelling for Abstract Argumentation 237

a

a b

a b c

(1)

(2)

(3)

a+ : ⊤
a- : a°
a? : ⊥

a+ : b°
a- : ⊤
a? : ⊥

b+ : ⊤
b- : b°
b? : ⊥

a+ : ⊤
a- : a° v c°
a? : ⊥

b+ : c°
b- : ⊤
b? : ⊥

c+ : ⊤
c- : c°
c? : ⊥

Fig. 3. An argumentation framework with a basic reinstatement and conditional labels

– Figure 3.2: a can be reinstated defeat ing b (a+ : b◦), a is already out (a− :
�); b is already in (b+ : �) and can only be defeated by being directly
defeated (b− : b◦); no argument can be made undecidable by defeat ing any
combination of the arguments of the framework (a?, b? :⊥).

– Figure 3.3: a is in (a+ : �) and can be defeated by defeat ing a itself or c
(a− : a◦ ∨ c◦); b is out (b− : �) and can be reinstated defeat ing c (b+ : c◦); c
is in (c+ : �) and can only be defeated by direct (and successful) attack (c− :
c◦); no argument can be made undecidable by defeat ing any combination of
the arguments of the framework (a?, b?, c? :⊥).

Now we can introduce a more formal definition of what conditional labels are
and what can they be used for.

Definition 7. (Disjunctive Normal Form, makeset)
Let Γ be a propositional formula. dnf(Γ) is the normalization of Γ in Disjunctive
Normal Form.
Let makeset(

∨
i

∧
j αi

j) = {{α1
1, α

1
2, .., α

1
p}, {α2

1, α
2
2, .., α

2
q}, .., {αn

1 , αn
2 , .., αn

m}}.
The makeset function translates a dnf-formula in a set of sets of atoms, where
each set corresponds to a conjunctive subformula of the dnf-formula in input. For
instance, dnf(a◦∧(b◦∨c◦)) = (a◦∧b◦)∨(a◦∧c◦) and makeset((a◦∧b◦)∨(a◦∧c◦)) =
{{a, b}, {a, c}}.

238 G. Boella et al.

Definition 8. (Label of an argument in a framework)
Let L(α, 〈A, R〉) be the label of argument α in the framework 〈A, R〉.
Definition 9. (Defeat)
Let U be the universe of arguments and A ⊂ U , let AF = 〈A, R〉 be an abstract
argumentation framework and let α ∈ U\A. defeat(α) = {β | β ∈ A,L(β, 〈A ∪
{α}, R〉) = out}.
The defeat function gives information about which arguments β of a frame-
work are defeated inserting a new argument α into it. For instance, considering
the framework in Figure 1.c with A = {a}, defeat(b)={a}, defeat(c)={∅}. The
definition of defeat can be easily extended for sets of arguments: it will point
out which arguments of a framework are defeated by inserting a set of new ar-
guments. For instance, considering the framework in Figure 1.c with A = {a},
defeat({b, c})={∅}

A move M is the insertion of a set of arguments into the framework: in
the previous example, ∅, {b}, {c} and {b, c} are (possible) moves. Applying a
move M = {α1, .., αn} to a framework AF = 〈A, R〉 transforms it into a new
framework AFM = 〈{A ∪ M}, R〉.
Definition 10. (Conditional labels’ structure)
A conditional label αi : bodyi

α (where α is an argument, i ∈ {+,−, ?} and bodyi
α

is a propositional formula) is a relation between a justification status and a set
of targets.

Let js (for justification status) be this function: js(+) : in, js(−) : out, js(?) :
undec. js maps label symbols to the acceptability of arguments. The justification
status is expressed by the head of the label: αi means that α is labelled js(i).
The set of targets is expressed by the body of the label, and it consists in a set
of sets of argument to defeat.

Definition 11. (Conditional labels’ use)
Given a framework AF = 〈A, R〉, an argument α ∈ A with label αi : bodyi

α and
a move M ,

(defeat(M) ∈ makeset(dnf(bodyi
α))) ⇒ L(α, AFM) = js(i)

This means: when we modify a framework via a move M we can defeat a set of
arguments defeat(M). If this set is one of the allowed target sets for the condi-
tional label of an argument α (that is, if this set belongs to makeset(dnf(bodyi

α))
for some α, i), then the labelling of α in the resulting framework will be the one
expressed by the head of the label αi (that is, js(i)).

In the next sections we will explain how to associate labels to arguments.
Problems arise when cycles (loops) are introduced in the framework, since they
introduce undecided labels and the same argument could be given different la-
bels according to different semantics. In this paper we focus on the grounded
semantics, since it always allows to compute one single labelling. Our approach
can be extended to deal with different semantics, but semantics with multiple or
no extensions must be handled with care, in particular when investigating about
credulous approaches to multiple extensions semantics.

Conditional Labelling for Abstract Argumentation 239

4 Creating Conditional Labels

The formal definition of conditional labels we gave is not constructive and there-
fore the issue about how to actually compute conditional labels has to be ad-
dressed. One of the key aspects of argumentation frameworks is the possibility
for arguments to influence their own justification status through loops: this is
a global property of the framework which is hard to instantiate on a single ar-
gument. A first approach could be considering the unfolding of the graph (that
is, building a tree rooted in a node of the graph such that each path in the
tree corresponds to a (possibly cyclic) path stating from the root node in the
graph), but this can not be done for two main reasons: first of all, breaking the
loops causes an irreparable loss of information (and therefore one could end up
computing conditional labels for a completely different framework); secondly,
the number of unfolding could be exponential over the number of arguments:
in this case, the overall complexity is the same of the exhaustive approach (try
all combinations of attacks and see what is the result), thus making the whole
process pointless.

Our approach consists in assigning to each argument a triple of local labels
(that is, labels created by only taking into account the attackers of the argu-
ment) and then using a substitution mechanism to generate the final labels.
The local labels correspond to:

a+ =
∧

b s.t. (b,a)∈R

b−

The meaning of this formula is: in order to ensure a’s acceptance, all of a’s
attackers must be out.

a− = a◦ ∨
∨

b s.t. (b,a)∈R

b+

The meaning of this formula is: in order to ensure a’s rejection, either a is
defeated or one of a’s attackers is accepted.

a? =

⎛
⎝ ∨

b s.t. (b,a)∈R

b?

⎞
⎠ ∧

⎛
⎝ ∧

b s.t. (b,a)∈R

b− ∨ b?

⎞
⎠

The meaning of this formula is: in order to have an argument a undecided, at
least one of a’s attackers has to be undecided and all of a’s attackers must be out
or undecided.

Note that this definition of grounded semantics mirrors Dung’s original for-
mulation.
The a◦ in the second formula means a has to be defeated and no substitution is
required; b+, b− and b? refer to other formulae and have to be substituted to the
actual formulae they refer to.

After this initial definition, the substitution process takes place. It consists in
substituting the references to other labels to those labels’ actual values.

240 G. Boella et al.

Simplifications need to be specified:

– � ∨ α � � (you either do nothing or do α: doing nothing is more convenient)

– ⊥ ∨ α � α (you can either fail or do α: in order to succeed you have to do α)

– � ∧ α � α (you have to both do nothing and α, therefore α)

– ⊥ ∧ α � ⊥ (you fail and you have to do α: you still fail)

– α ∧ α � α
– α ∨ α � α
– α ∨ (α ∧ β) � α
– α ∧ (α ∨ β) � α

Consider again the framework in Figure 1.3 (reinstatement a-b-c). The initial
conditional labels are:

– a+: �, a−: a◦, a?: ⊥
– b+: a−, b−: a+ ∨ b◦, b?: a? ∧ (a? ∨ a−)
– c+: b−, c−: b+ ∨ c◦, c?: b? ∧ (b? ∨ b−)

Substituting in b∗ we get:

– b+: a◦, b−: � ∨ b◦, b?: ⊥ ∧ (⊥ ∨ a◦)

And after simplifying:

– b+: a◦, b−: �, b?: ⊥
Doing the same for c∗ we get the conditional labels:

– a+: �, a−: a◦, a?: ⊥
– b+: a◦, b−: �, b?: ⊥
– c+: �, c−: a◦ ∨ c◦, c?: ⊥

The conditional labels give us information about the ’static’ Caminada labelling
of the arguments and also provide us information about what minimal set of
arguments we should defeat in order to assign a certain label to a certain argu-
ment.

In case of loops, new problems arise: the substitution mechanism can end
up visiting the same node multiple times, so some termination techniques have
to be addressed. Consider, for instance, the framework AF = 〈{a}, {(a, a)}〉.
Computing the conditional labels without termination techniques we obtain:

– a+ : a− = a+ ∨ a◦ = a− ∨ a◦ = a+ ∨ a◦ ∨ a◦ � a+ ∨ a◦ = ...
– a? : a? ∧ (a? ∨ a−) � a? = a? ∧ (a? ∨ a−) � ...

Simplification rules keep the size of formulae under control, but both in a+ and
a? we end up cycling among the same set of labels without termination. The
main consideration is that, according to the definition we have given so far, the
substitution process goes on until it reaches unattacked arguments (the only ones
which do not require further substitution). But if a framework’s component is
a loop with no ingoing arcs, this will never happen. Moreover, considering the
a+ label in the previous example, one could notice that both a+ and a− appear
in the label: this is, intuitively, an unsatisfiable request. Therefore, termination
rules have to be applied.

Conditional Labelling for Abstract Argumentation 241

Let i, j ∈ {+,−, ?}. If αi appears in the body of αj :

– if i = j =?, αi � �
– else, αi � ⊥

We express our termination conditions as simplification rules. The meaning is the
following: if, substituting in the body of a conditional formula for an argument
α, a conditional formula over the same argument is reached, the argument α
belongs to a loop. So in this case the a? label is satisfied while a+, a− are not: if
there is no way to give this argument an in-out label navigating the whole loop,
it is pointless to go through the whole loop again.
Applying these rules to the previous example we get:

– a+ : a− � ⊥
– a− : a+ ∨ a◦ � ⊥ ∨ a◦ � a◦

– a? : a? ∧ (a? ∨ a−) � a? � �
which is exactly what we want to obtain: there is no way to make a in (a+ : ⊥),
a can be directly defeated (a− : a◦), a is already undec so there is no need to do
anything in order to make it undec (a? : �).

We now present some examples of conditional labelling.
Consider the example visualized in Figure 4.1. The basic labels are:

a b a b c

(1) (2)

Fig. 4. Basic frameworks. As in the previous figures, plain grey nodes represent in
arguments and black nodes represent out arguments. undec arguments are depicted as
dashed grey nodes.

– a+ : b−, a− : b+ ∨ a◦, a? : b?

– b+ : a−, b− : a+ ∨ b◦, b? : a?

Solving the labels, for a we get a+ : b◦, a− : a◦, a? : �, and this is exactly what
we want to obtain.

Consider the example visualized in Figure 4.2. The basic labels are:

– a+ : �, a− : a◦, a? : ⊥
– b+ : a− ∧ c−, b− : a+ ∨ c+ ∨ b◦, b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
– c+ : b−, c− : b+ ∨ c◦, c? : b?

Consider argument b: it is out, but can be labelled in if we attack both a and c or
undec if we attack a (thus activating the b−c loop). We compute the conditional
labels in the following way:

242 G. Boella et al.

b+ : a− ∧ c−

= a ∧ (b+ ∨ c◦)
= a◦ ∧ (⊥ ∨ c◦)
� a◦ ∧ c◦ (b can be labelled in by defeating a and c)

b− : a+ ∨ c+ ∨ b◦

= � ∨ b− ∨ b◦

= � ∨⊥ ∨ b◦

� � (no move is required in order to label b out)

b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
= (⊥ ∨ b?) ∧ (a◦ ∨ ⊥) ∧ ((b+ ∨ c◦) ∨ b?)
� (b?) ∧ (a◦) ∧ ((b+ ∨ c◦) ∨ b?))
= (b?) ∧ (a◦) ∧ ((⊥ ∨ c◦) ∨ �)
� (b?) ∧ (a◦) ∧ (�)
= (�) ∧ (a◦) ∧ (�)
� a◦

(b can be labelled undec by defeating a)

Our approach can be decomposed in four phases:

1. associate each argument to three base labels,
2. compute conditional labels by substitution,
3. find target sets (for instance, by dnf-normalizing the formulae),
4. find a move such that it satisfies a target set of the goal formula.

The biggest challenge lies in step (2), because the substitution process for each
formula has the size of the framework as upper bound and the same substitutions
take place several times, especially in highly connected frameworks. A support
for implementation can be a preprocessing phase of loop detection: loops are
the main cause of complexity in label substitution, and knowing which loops an
argument belongs to can help propagating activation-deactivation conditions.
We call active a loop of arguments such that all arguments are labelled undec
under grounded semantics, not active otherwise. Attacking some argument in
order to make the arguments of the loop switch from undec to in or out is what
we call deactivating the loop; we call the opposite process activating the loop.
For instance, in the framework in Figure 5.1, the b-c-e-f loop is active.

cb h

fe i

g

ld

a

m

(1) (2)

Fig. 5. Two argumentation frameworks with even cycles

Conditional Labelling for Abstract Argumentation 243

b

c fe

d

a

Fig. 6. Frameworks with loops

Some conditional labels are:

– b+ : c◦ ∨ e◦ ∨ a◦ = f+ = c− = e−

– b− : b◦ ∨ f◦ = f− = c+ = e+

– b? : � = f? = c? = e?

According to the definition and the substitution algorithm, all those labels would
be computed sequentially. But they just mirror the possible deactivations of the
cycle, splitted in two sets according to the position (even/odd) of arguments
along the cycle. So detecting the cycle one could compute the conditional labels
of a single argument and then copy them (alternating from green to red formulae
according to even/odd path) for each argument in the loop. This also holds for
activation conditions for not active loops (like the one in Figure 5.2) and can be
easily extended to odd-length cycles.

Therefore, loop detection can be a major improvement for our algorithm’s
performances.

We developed a methodology based on computing the powers of the adjacency
matrix of the graph. Consider the framework visualized in Figure 6: there is a
single loop (a) and two bigger ones (b-c and d-e-f), plus edges which do not
belong to loops. The adjacency matrix of the framework is represented in Table
1 (let it be m1).

Table 1. Adjacency matrix for the framework in Figure 6

a b c d e f

a 1 1 1 0 0 0

b 0 0 1 0 0 0

c 0 1 0 0 0 0

d 0 0 1 0 0 1

e 0 0 0 1 0 0

f 0 0 0 0 1 0

In fact, m1 gives us information about self-loops in the framework: the argu-
ments attacking themselves correspond to the 1 on the main diagonal of m1: in
our example, a. We express this property as a ∈ diagonal(m1).

244 G. Boella et al.

But what happens if we compute m2 = m1 ∗m1? On the n-th element of the
main diagonal of m2 we will have a 1 iff the n-th argument is able to reach itself in
n steps: that is, if it belongs to a n-deep loop. This is easy to constructively prove
by showing how a multiplication between matrices is made. So, for a framework
AF = 〈A, R〉 with | A |= n we can just compute m2, m3, .. mn to detect all
loops.

Table 2. Powers of adjacency matrix

m2 a b c d e f

a 1 1 1 0 0 0

b 0 1 0 0 0 0

c 0 0 1 0 0 0

d 0 1 0 0 1 0

e 0 0 1 0 0 1

f 0 0 0 1 0 0

m3 a b c d e f

a 1 1 1 0 0 0

b 0 0 1 0 0 0

c 0 1 0 0 0 0

d 0 0 1 1 0 0

e 0 1 0 0 1 0

f 0 0 1 0 0 1

m4 a b c d e f

a 1 1 1 0 0 0

b 0 1 0 0 0 0

c 0 0 1 0 0 0

d 0 1 1 0 0 1

e 0 0 1 1 0 0

f 0 1 0 0 1 0

Note that in m1 we detect a, in m2 b and c, in m3 d,e,f and no new loop is
detected in m4. Notice that α ∈ diagonal(mp) ⇒ α ∈ diagonal(mk∗p), ∀k ∈ N.
For instance, in the previous example, a ∈ diagonal(mp)∀p > 0 and b, c ∈
diagonal(m2), diagonal(m4). This redundancy of information can be overcome
by cross-checking or by removing the elements on the diagonal of the adjacency
matrix before multiplying it again.
The number of arguments is the upper bound for loop depths but can be nar-
rowed down in several ways, for instance by detecting connected components
or pruning siphons and traps: in the first case, the deepest loop consists of the
maximal values over the number of arguments of each connected component; in
the second one, siphons and traps can not be part of loops, thus allowing the
lowering of the upper bound.

This paper mainly deals with the first two phases listed (the association of
each argument to three base labels and the computation of conditional labels by
substitution); some observations about the last two phases (finding the target
sets and evaluating and comparing the moves) need to be addressed.

Concerning phase (3), we suggested DNF-normalization as a shortcut to find
the solutions of the formulae (labels). This is basically just a working hypoth-
esis, as a DNF-normalized formula can be fed to a SAT-solver, thus allowing
us to rely on an external tool. Other approaches could be investigated, mainly
due to the particular structure of the conditional labels: they only include con-
junctions and disjunctions as connectives, and all atoms are positive. We are
currently exploring new solutions techniques, mostly based on the connections
and similarities with BDDs and AND-OR graphs.

Concerning phase (4), many evaluation criteria may be based on preferences
of the agents and could depend on their inner parameters: for instance, an agent
may not be able to attack a given argument a1, or she may prefer argument a2

over argument a3 and thus decide to attack the latter rather than the previous,
and so on.

Conditional Labelling for Abstract Argumentation 245

Although belief revision is beyond the scope of this paper, one of its main
assumption, namely minimal change, could be borrowed and used as a criteria
for evaluating and comparing possible moves. According to the minimal change
principle, the knowledge before and after the change should be as similar as
possible. This principle enforces as much information as possible to be preserved
by the change. One could wonder whether we could measure the ’impact’ of a
move, that is, how much a framework changes after a move. A target set alone
is not sufficient to provide such information: consider the framework in Figure
7.1.

a b c d e

a b c d e a b c d e

(1)

(2) (3)

Fig. 7. Reinstatement framework

Since e− : a◦ ∨ c◦ ∨ e◦, in order to defeat argument e our target sets are
{{a}, {c}, {e}}. But on the one hand, directly attacking e causes only e itself to
flip from in to out (Figure 7.2), while on the other hand (Figure 7.3) defeating
a causes all arguments to change justification status. In order to measure the
’impact’ of a target set, the first concept which has to be taken into account is
how to define the ’distance’ between two labellings: roughly speaking, we want
to compare the labelling of the framework before and after the modification
and, considering how many arguments changed justification status, measure how
’close’ the two labellings are. Intuitively, considering the example in Figure 7, the
framework obtained attacking e (Figure 7.2) is similar to the previous one (Figure
7.1, only one argument changes justification status, minimal distance) while the
framework obtained attacking a (Figure 7.3) is totally different (every argument
changed justification status, long distance). This topic has been recently analyzed
by Booth et al. [2] and we may, in fact, use their definition of distance. On the
other hand, integrating this measure with the existing definitions is not trivial:
suppose, for the sake of explanation, that we are just interested in enriching each
target set with the number of arguments that change justification status if that
target set is defeated. Considering the example in Figure 7 again, our enriched
target sets are {{a} : 5, {c} : 3, {e} : 1}: this means that defeating the target
set {a} five arguments will change justification status, and so on. We could take
into account the cardinality of the target set, but this is not relevant: in our
example, we have three target sets of one element each, and they correspond to
different distances. Consider the frameworks in Figure 8.

For each framework, let t be the only argument in the target set and h the
head of the label (that is, the argument whose justification status we want to
modify). What we want to show is how intuitive approaches do not correspond
to distances or reachability-related concepts.

246 G. Boella et al.

ba h

x

t ha

x

t ha

p x

t

(a) (b) (c)

Fig. 8. Impact and graphs

The first framework (Figure 8.a) shows that considering the distance between
t and h is not enough: in this case we are ignoring argument x because it is not
on the shortest path from t to h, but defeating t would modify x’s justification
status too.

We can relax the definition and just consider the arguments from which h is
reachable (in the substitution process, starting from h, the graph is navigated
backwards). But Figure 8.b shows that in this case we would ignore argument
x, from which h is not reachable but that would be affected defeating t.

On the other hand, considering only the arguments reachable from t is mis-
leading again: Figure 8.c shows how we would consider argument x (since it is
reachable from t), whose justification status would not change defeating t (since
it depends on p too).

Therefore simple graph-based considerations are not enough to capture the
impact of a target set, and the problem has to be analyzed in its specificity.

5 Related Work

Conditional labelling is closely related to the dialogues games [6,1]. In argu-
mentation theory, such games regulate dialogues where two parties argue about
the tenability of one or more claims or arguments, each trying to persuade the
other participant to adopt their point of view. Such dialogues are often called
persuasion dialogues. Among others, Prakken [6] presents a formal framework
for a class of argumentation dialogues, where each dialogue move either attacks
or surrenders to a preceding move of the other participant. For instance, each
claim, why and since move is viewed as an attacking reply and each concede
move is a surrendering reply.

Amgoud and Hameurlain [1] argue that a strategy is a two steps decision
process: i) to select the type of act to utter at a given step of a dialogue, and
ii) to select the content which will accompany the act. The first step consists
of selecting among all the acts allowed by the protocol, the best option which
according to some strategic beliefs of the agent will at least satisfy the most
important strategic goals of the agent. The second step consists of selecting
among different alternatives, the best one which, according to some basic beliefs
of the agent, will satisfy the functional goals of the agent.

Roth et al. [7] start from two principles: i) the outcome of a dispute depends
on the strategies actually adopted by parties, but ii) this does not mean that
the outcome can never be predicted because by using game theoretical solution

Conditional Labelling for Abstract Argumentation 247

concepts, the actions themselves can often be found. They use defeasible logic
in combination with standard probability calculus in order to prove that a de-
feasible proof holds, on the basis of the probabilities assigned to the premises.
This probability of a claim was then interpreted in the game theoretical sense
as the payoff for the proponent of the claim.

In comparison with this kind of frameworks, we share the idea that the first
step consists in choosing the next move depending on the strategies of the agents.
The differences are that we are not interested in providing a complete framework
for argumentation dialogues games, we aim at providing a tool which can be
used in those systems and which can be integrated with strategies. We do not
restrict our framework to deal with two agents, and we extend the well-known
argumentation labelling in order to provide a complete information about the
argumentation framework on which it is applied.

6 Summary

In this paper, we present a new kind of argument labelling, called conditional
labelling. Conditional labelling allows to associate to each argument the infor-
mation concerning its possible justification statuses, depending on the changes
in the framework. In particular, we express this information by means of propo-
sitional formulae which express which arguments should be attacked in order to
get the desired argument accepted, not accepted, or undecided. While it is quite
straightforward to assign those conditional labels in argumentation frameworks
without cycles and multiple attacks, it is rather complicated in the general case.
When an argumentation framework with cycles is considered, it is possible to
have in the conditional label α∗ of an argument another α∗ because the condi-
tional labelling algorithm, using substitution, looks for all the attackers of the
node until it finds the node itself. The conditional labelling allows the agents
to avoid the exhaustive search of all the possible combinations in adding new
arguments, and decreases the exponential complexity this search requires. Loop
detection via powers of the adjacency matrix is proposed as a preprocessing
mechanism to compute common labels among the arguments in a loop.

Future work addresses several issues: first of all, a deeper investigation on the
complexity results related to the computation of the new labellings is necessary.
From a purely argumentative perspective, it would be nice to find out how
conditional labels can be useful after a move: that is, if the previous information
can be used to compute new conditional labels after the framework has been
modified. Associating a cost concept to moves, our labelling lets agents link
action costs to goals’ outcomes, and can therefore be used as an underlying
mechanism to develop strategies in a game theoretical context.

References

1. Amgoud, L., Hameurlain, N.: A formal model for designing dialogue strategies. In:
Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) Autonomous Agents and
Multiagent Systems (AAMAS), pp. 414–416. ACM (2006)

248 G. Boella et al.

2. Booth, R., Caminada, M., Podlaszewski, M., Rahwan, I.: Quantifying disagreement
in argument-based reasoning. In: International Workshop on the Theory and Appli-
cations of Formal Argumentation (TAFA), Barcelona, Spain (2011)

3. Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Fisher, M., van
der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160,
pp. 111–123. Springer, Heidelberg (2006)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

5. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. J.
Log. Comput. 9(2), 215–261 (1999)

6. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. Log.
Comput. 15(6), 1009–1040 (2005)

7. Roth, B., Riveret, R., Rotolo, A., Governatori, G.: Strategic argumentation: a game
theoretical investigation. In: International Conference on AI and Law (ICAIL),
pp. 81–90. ACM (2007)

Bottom-Up Argumentation

Francesca Toni1 and Paolo Torroni2

1 Department of Computing - Imperial College London
London, UK

ft@imperial.ac.uk
2 DEIS - University of Bologna

V.le Risorgimento, 2, 40136, Bologna - Italy
paolo.torroni@unibo.it

Abstract. Online social platforms, e-commerce sites and technical fora
support the unfolding of informal exchanges, e.g. debates or discussions,
that may be topic-driven or serendipitous. We outline a methodology for
analysing these exchanges in computational argumentation terms, thus
allowing a formal assessment of the dialectical validity of the positions
debated in or emerging from the exchanges. Our methodology allows
users to be engaged in this formal analysis and the assessment, within a
dynamic process where comments, opinions, objections, as well as links
connecting them, can all be contributed by users.

1 Introduction

Online social platforms, such as Facebook1, e-commerce sites, such as Amazon2,
and technical fora, such as TechSupport Forum3 support the unfolding of infor-
mal exchanges, in the form of debates or discussions, amongst several users. Some
of these exchanges may be topic-driven (e.g. is a particular holiday destination
worth visiting? Which book by Umberto Eco is best? How can a software bug be
fixed?). Others may be serendipitous (e.g. while discussing the recent tsunami
in Japan one may end up debating pros and cons of nuclear power stations).

While it is acknowledged (e.g. in [11]) that computational argumentation
could benefit these online systems by supporting a formal analysis of the ex-
changes taking place therein, virtually all of the existing work considering online
systems and argumentation focuses on extracting argumentation frameworks of
one form or another manually or semi-automatically from these exchanges. For
example, Heras et al. [11] suggest the use of argument schemes as a way to
understand the contributions in these exchanges, while Rahwan et al. [13] sug-
gest to map these contributions onto the AIF (Argument Interchange Format),
again using argument schemes as well as semantic web technology for editing
and querying arguments. These works implicitly assume that the extraction
of argumentation frameworks is down to “argumentation engineers” external

1 http://www.facebook.com/
2 http://www.amazon.com/
3 http://www.techsupportforum.com/forums/

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 249–262, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

250 F. Toni and P. Torroni

to/passively engaged in the exchanges, and “fluent” in (one form or another of)
computational argumentation.

On the other hand, work in computational argumentation predominantly fo-
cuses on determining the dialectical validity of a set of arguments, a single ar-
gument, or a claim, supported by arguments, with respect to a given, statically
defined argumentation framework. Several notions of dialectical validity have
been defined (e.g. see [5,8,1]) and several systems, for some or several of these
notions, are available (e.g. see [10,9]).

We propose a methodology linking these two lines of work. Rather than as-
suming the intervention of “argumentation engineers” observing the exchanges,
we envisage that the active participants in the exchanges are annotating them.
In order for ordinary (rather than computational-argumentation fluent) users
to be engaged in these annotations, we keep them very simple and graphical:
annotations indicate that pieces of text in natural language are either comments
or opinions, and links can be drawn to indicate source, support or objection.
Opinions are expressed about comments, and comments and/or opinions can be
linked to links too, very freely and in natural language as in online informal ex-
changes. We then propose an automated mapping from these annotations to an
existing computational argumentation framework, Assumption-Based Argumen-
tation (ABA) [7], paving the way to the automatic computation of the dialectical
validity of comments, opinions, and links, and thus topics that these encompass.
We envisage that users will add comments, opinions and links dynamically, in
the same way exchanges grow over time in existing online systems.

We term our methodology bottom-up argumentation because it takes a grass-
root approach to the problem of deploying computational argumentation in on-
line systems:

– the argumentation frameworks are obtained bottom-up starting from the
users’ comments, opinions and suggested links;

– no top-down intervention of or interpretation by “argumentation engineers”
is required;

– our automated translation feeds building blocks of arguments and attacks
up to an argumentation system for determining computational validity;

– topics emerge, bottom-up, during the underlying process, possibly serendip-
itously.

We choose ABA as the underlying computational argumentation framework since
it is the simplest system we are aware of that i) is well suited to support practical
argumentative reasoning [4], ii) can distinguish arguments, support as well as
attack amongst them, iii) can support defeasibility of information as the system
evolves over time, iv) is equipped with a variety of well-defined semantics and
computational counterparts for assessing dialectical validity.

We will focus in this paper on social networks as these allow for the most free
kinds of exchanges, and are thus the most general setting in which to show our
methodology.

The paper is organised as follows.

Bottom-Up Argumentation 251

Darwin’s natural selection rules supreme.

If you have ever been in GB you must have experienced washing your hands with
separate taps. You know what I mean.

The picture shows a tap specimen now inhabiting Imperial College restrooms. You
can clearly see a minor, but significant, mutation in the DNA of its ancestors. In
particular, with respect to the “hardcore separate taps” variety, which used to live
there not so long ago, cold and hot water are still separate, but they seem to have
developed a form of symbiosis.

Besides, the population of “hardcore separate taps” (the only tap variety accounted
for, until recently) seems to be on its way to extinction. Even in my hotel I couldn’t
find any.

This is quite impressive, considering that we are only in 2011.

Fig. 1. Initial post on Facebook

In section 2 we provide a concrete, motivating example for our methodology,
of an exchange in a social network. We also discuss the main motivations for our
proposed methodology. In section 3 we provide our basic system of annotations,
in the context of the motivating example. In section 4 we give background on
ABA. In section 5 we define the automated mapping between exchanges as given
in section 3 and ABA, again illustrated for the motivating example. In section 6
we discuss some directions for future work and conclude.

2 Motivation

Let us consider a concrete case4, where Facebook user Paolo Rossi posts the
picture and comment shown in Figure 1.

This post does not have a precisely identified subject or purpose. There is a
picture showing two separate taps controlling the water flow of a single faucet,

4 This is a real discussion that took place in Facebook. The comments have not been
edited. We instead modified the users’ names for reasons of privacy. As a disclaimer,
this paper does not intend to take any position regarding the opinions in this illus-
tration.

252 F. Toni and P. Torroni

C1

C2

C3

C4

C5

Fig. 2. Separate Taps discussion: comments (a)

from which two separate streams of water flow. The comment is intended to be
humourous, but it does not say whether separate taps are inconvenient, or anti-
quate, although that may be implied. Then, as more Facebook users comment on
this post (see Figures 2 and 3, where comments are labelled C1, C2, . . . , C14),
some opinions start to emerge between the lines, grounded in the comments,
and people start discussing them, to express their agreement and bring addi-
tional support to comments/opinions of other users, or else to show disagreement
and bring up objections. For example, the first three comments seem to agree,

Bottom-Up Argumentation 253

C6

C7

C8

C9

C10

C11

C12

C13

C14

Fig. 3. Separate Taps discussion: comments (b)

directly or indirectly, on the opinion (let us call it O1) that “separate taps are
common in GB”. C1 also seems to convey another opinion: “separate taps are
antiquate” (O3). O1 and O3 together may support the further opinion that “GB
is a backward country” (O2), although in a somehow implicit way. These rela-
tionships between comments and emerging opinions are of a positive nature, i.e.,
comments support certain opinions. However, there are also comments represent-
ing objections to opinions or to other comments. For example, C3 may support
the opinion that “separate taps are inconvenient because they freeze/burn hands”

254 F. Toni and P. Torroni

(O4) whereas a different comment C11 supports a different, conflicting opinion,
that “separate taps are not inconvenient as the basin solves temperature problems”
(O17), hence we may read O17 as an objection to O4. A possible annotation of
the Facebook exchange in terms of opinions, objections and links is given at the
end of the paper. This annotation may be contributed by the users engaged in
the exchange or by other users, external to the exchange.

It has been often said that the Web 2.0 is a place for grassroots. Actually, this
is exactly what happens here. New contributions and ideas are produced and
shared in an exquisitely serendipitous, bottom-up approach. In general, debates
in the social Web start with no clear purpose. If the one who posts the first
comment has a purpose in mind, he or she does not usually state it. Different
is the case of structured debates, or polls in which the objective is clear, for
instance choosing one among three possible dates for a meeting. Here instead
we are looking at chains of pseudo-random posts, like we find in Facebook, in
Amazon or at the bottom of an online newspaper’s article. Sometimes such chains
of posts converge to some topic, then again they may totally diverge and focus
on some other topic. They may happen to never find a focus.

Despite these features, we can still abstract away and recognize, within these
exchanges, arguments. But, unlike arguments in the computational argumenta-
tion literature, these arguments are not structured or relevant to any predefined
topic, opinion or goal. They emerge, bottom-up, from the grassroots. From these
arguments, a few mainstream opinions may emerge as the result of many com-
ments, as if in a sort of “natural selection”.

In this form of exchange we can identify a “struggle for existence” of ar-
guments. The struggle determines what arguments will be most appreciated,
upheld, agreed upon, and influential in the definition of the forthcoming gener-
ations of arguments, if we stick to the metaphor. But what are the forces that
govern the struggle for existence of arguments in bottom-up argumentation?
The rhetoric abilities of participants, their knowledge, their logical and social
skills, all contribute greatly to the final result. But, since this is enabled by the
presence of a social Web platform, the medium is also a player.

In this paper we outline a methodology for bringing computational argu-
mentation (with its evaluative benefits) into these kinds of unstructured online
exchanges while keeping the philosophy and style (simplicity, fun, freedom of
expression) of the existing medium for social network. Indeed, we envisage that
users can add further annotations, in the form of opinions grounded in/based on
comments, objections, as well as (directed) links connecting them. The opinions
are in the same format (free text) as the comments. Links are just graphical.

3 Annotations

We will use the following terminology:

– comment stands for a “base-level” user comment, i.e. a comment posted in
an online debate by a user; comments will be denoted C1, C2, . . .;

Bottom-Up Argumentation 255

– opinion stands for a “meta-level” comment, containing information extracted
or digested from part of one or more comments or other opinions, again by
a user; opinions will be denoted O1, O2, . . .;

– links are of two types:
• continuous lines, connecting a target with one or more starting points
marked by solid circles. These circles indicate either that an item at
the starting point is the source for the information held at the end of
the connecting line, if the starting point item is a comment, or that the
starting point item provides support for the end point, if the starting
point item is not a comment. These connecting lines can be seen as
expressing a basedOn relation in the first case, and a supportedBy relation
in the second;

• dashed lines, again connecting a target with one or more starting points
marked by solid circles. These lines indicate objections from the starting
points (typically opinions) to the end point, and can be seen as expressing
an objection relation.

In our motivating example, the basedOn relation is used to model that the source
of O1 is C1; the supportedBy relation is used to model that O1, O3, together,
support O2; the objection relation is used to model that O17 disagrees with O4.
In general, basedOn, supportedBy and objection relations can also hold between
a comment or opinion and another basedOn, supportedBy or objection relation.
Indeed, in our motivating example, the objection to O4 originating from O17 is
basedOn another comment, C11.

We will see how to map comments, opinions, and links onto a computational
argumentation framework. The idea (and expected benefit) is to determine which
opinions are acceptable given the current state of the discussion, in relation with
other comments/opinions. As the exchange proceeds, different views will emerge
and become more or less acceptable.

The dialectical process we are considering is full of implicit user assumptions.
For example, if a user agrees on some opinion supported by some comments, we
could say that the user “assumes” that such comments make sense, unless there
are reasons not to do so. Likewise, if such opinion is subject to some objections,
we could say that the user does not “assume” that such objections make sense,
unless there are reasons to do so.

These considerations (as well as the reasons put forward in the introduction)
make us believe that Assumption-Based Argumentation [7] is a very natural
candidate framework for modeling bottom-up argumentation.

4 Assumption-Based Argumentation

Assumption-Based Argumentation (ABA) is a general-purpose argumentation
framework where arguments and attacks between them are built from ABA
frameworks, which are tuples 〈L, R, A, 〉 where
– (L,R) is a deductive system, with L a language and R a set of inference

rules,

256 F. Toni and P. Torroni

– A ⊆ L, referred to as the set of assumptions,
– is a (total) mapping from A into L, where x is referred to as the contrary

of x.

In this paper, we assume that inference rules have the syntax s0 ← s1, . . . , sn
(for n ≥ 0) where si ∈ L. We refer to s1, . . . , sn as the premises and to s0 as the
head of the rule. If n = 0, we represent a rule simply by its head and we call the
rule a fact. As in [6], we restrict attention to flat ABA frameworks, such that no
assumption occurs in the head of a rule.

Rules may be domain-dependent or not, and some of the premises of rules
may be assumptions. These can be used to render the rules defeasible. In this
setting, contraries of assumptions can be seen as representing “defeaters”.

An (ABA) argument in favour of a sentence c ∈ L supported by a set of
assumptionsA ⊆ A is a proof of c from A and (some of) the rules inR. This proof
can be understood as a tree (with root the claim and leaves the assumptions),
as in [7], as a backward deduction, as in [6,8], or as a forward deduction, as in
[2], equivalently. For the purposes of this paper, we will use the notation A �R c
to stand for an argument for c supported by A by means of rules R ⊆ R. When
the rules can be ignored, we write an argument A �R c simply as A � c.

An argument A � c attacks an argument A′ � c′ if and only if c = α for some
α ∈ A′.

Several “semantics” for ABA have been defined in terms of sets of assumptions
fulfilling a number of conditions. These are expressed in terms of a notion of
attack between sets of assumptions, where A ⊆ A attacks A′ ⊆ A if and only if
there is an argument B � c, with B ⊆ A, attacking and argument B′ � c′, with
B′ ⊆ A′.

In this paper we will focus on the following notions:

– A ⊆ A is conflict-free if and only if A does not attack itself;
– A ⊆ A is admissible if and only if A is conflict-free and attacks every B ⊆ A

that attacks A;
– A ⊆ A is preferred if and only if A is (subset) maximally admissible.

Note that these notions can be equivalently expressed in terms of arguments,
rather than assumptions, as shown in [8].

Given an ABA framework F=〈L, R, A, 〉 and a (conflict-free or admissi-
ble) set of assumptions A ⊆ A in F , the (conflict-free or admissible) extension
(respectively) EF(A) is the set of all sentences supported by arguments with
support a set of assumptions B ⊆ A:

EF(A) = {s ∈ L|∃B � s with B ⊆ A}.

In the remainder of this section, we will use the following conventions. Upper-
case letters denote variables that are implicitly universally quantified. Variables
O,C,L are used to represent opinions, comments and links between them, re-
spectively. Variables X,Y are used to represent items that can be either opinions

Bottom-Up Argumentation 257

or comments. Variable Z is used to represent items that can be either opin-
ions or links. The rules/assumptions/contraries are to be intended as schemata,
standing for all their ground instances over appropriate universes (for comments,
objections and links). Assumptions are always of the form asm(), where asm is
either α (for assumptions about opinions), χ (for assumptions about comments),
or λ/λa (for assumptions about continuous/dashed links). The contrary of as-
sumption asm(a) is of the form c asm(a), for any a, formally: asm(a) = c asm(a).

5 An ABA Mapping for Bottom-Up Argumentation

In this section we show how comments, opinions and links, as envisaged in sec-
tion 3, can be translated onto an ABA framework. This translation from an
annotated exchange of views on the social Web into ABA can be performed
automatically. The resulting ABA framework can then be fed into an ABA sys-
tem, such as CaSAPI [10], to determine which items (opinions, links etc) can be
accepted dialectically.

The ABA framework resulting from this translation consists of a domain-
dependent part (facts and rules), directly obtained from the annotated exchanges,
and a domain-independent part (facts, rules, assumptions and contraries) which
is generic, but to be used in conjunction with the domain-dependent part.

QUI

Domain-Dependent Facts and Rules. For each comment, the ABA model
contains a fact comment(C), where C is the comment’s label. In our illustration,
we have 14 facts: comment(c1), comment(c2), . . ., comment(c14).

For each opinion, the ABA model contains a fact opinion(O), where O is the
opinion’s label. In our illustration, we have 19 opinions: opinion(o1), opinion(o2),
. . . , opinion(o19).

For each continuous link, the ABA model contains a fact link(L, Y,X), where
L is the link’s label (chosen to determine it univocally), Y the starting point
item and X the target item. For our example, these links are listed in Table 1.

Table 1. Continuous links

link(l 1 1,o1,c1). link(m 2 1 3,o2,o1). link(m 2 1 3,o2,o3).
link(l 2 19,o2,o19). link(l 3 1,o3,c1). link(l 3 2,o3,c2).
link(l 3 3,o3,c3). link(l 4 3,o4,c3). link(l 5 4,o5,c4).
link(l 6 5,o6,c5). link(m 7 6 7,o7,c6). link(m 7 6 7,o7,c7).
link(l 8 8,o8,c8). link(l 8 9,o8,c9). link(l 9 9,o9,c9).
link(l 10 9,o10,c9). link(l 11 9,o11,c9). link(l 12 9,o12,c9).
link(l 13 11,o13,c11). link(l 14 12,o14,c12). link(l 14 18,o14,o18).
link(l 15 9,o15,c9). link(l 15 10,o15,c10). link(l 16 9,o16,c9).
link(l 17 11,o17,c11). link(l 18 12,o18,c12). link(l 19 13,o19,c13).
link(l 19 14,o19,c14). link(l l 4 17 11,l 4 17,c11).
link(l l 11 12 9,l 11 12,c9). link(l l 16 15 9,l 16 15,c9).

258 F. Toni and P. Torroni

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

O
3:

 S
ep

ar
at

e
ta

ps
 a

re
 c

om
m

on
 in

G

BO
1:

 S
ep

ar
at

e
ta

ps
 a

re
 a

nt
iq

ua
te

(
O
2:

 G
B

is
 a

 b
ac

kw
ar

d
co

un
tr

y
)

O
4:

 S
ep

ar
at

e
ta

ps
 a

re

in
co

nv
en

ie
nt

 b
ec

au
se

 th
ey

 fr
ee

ze
/

bu
rn

 h
an

ds

O
5:

 S
ep

ar
at

e
ta

ps
 a

re
 u

ns
an

ita
ry

as

 th
ey

 r
eq

ui
re

 m
ix

in
g

in
 th

e
ba

si
n

O
6:

 M
ix

er
 ta

ps
 a

re
 u

ns
an

ita
ry

 if

ho
t w

at
er

 c
om

es
 fr

om
 a

 c
is

te
rn

 (
as

ci

st
er

n
w

at
er

 n
ot

 d
rin

ka
bl

e)

O
7:

 S
ep

ar
at

e
ta

ps
 a

re
 im

pr
ac

tic
al

/
in

co
nv

en
ie

nt
 fo

r
sh

ow
er

s
...

es

pe
ci

al
ly

 if
 ta

ps
 a

t o
pp

os
ite

 e
nd

s-
it

ha
s

ha
pp

en
ed

 in
 G

B

O
8:

 G
B

is
 a

 p
ec

ul
ia

r
co

un
tr

y

O
9:

 M
ix

er
 ta

ps
 g

iv
e

pr
es

su
re

pr

ob
le

m
s

O
10

:
Pr

es
su

re
 p

ro
bl

em
s

ar
e

no
t

sc
ie

nt
ifi

ca
lly

 ju
st

ifi
ed

O
11

:
Se

pa
ra

te
 ta

ps
 a

re
 m

or
e

co
nv

en
ie

nt

O
12

:
A1

1
on

ly
 h

ol
ds

 fo
r

G
B

sk
in

s

O
13

:
Se

pa
ra

te
 ta

ps
 a

re
 m

or
e

ec
on

om
ic

al
 a

s
fa

r
as

 w
at

er

co
ns

um
pt

io
n

O
14

:
M

ix
er

 ta
ps

 a
re

 m
od

er
n

co
m

fo
rt

(
O
15

:
Co

nv
en

ie
nc

e
ar

gu
m

en
t i

s
rid

ic
ul

ou
s

)

O
18

:
M

ix
er

 ta
ps

 a
re

 m
or

e
co

nv
en

ie
nt

O
17

:
Se

pa
ra

te
 ta

ps
 a

re
 n

ot

in
co

nv
en

ie
nt

 a
s

ba
si

n
so

lv
es

te

m
pe

ra
tu

re
 p

ro
bl

em

O
16

:
Co

nv
en

ie
nc

e
ar

gu
m

en
t

ju
st

ifi
es

 s
ep

ar
at

e
ta

ps

C
13

C
14

O
19

:
Ar

gu
m

en
ts

 ju
st

ify
in

g
se

pa
ra

te
 ta

ps
 a

re
 b

ac
kw

ar
d/

ty
pi

ca
l

of
 o

ld
er

 g
en

er
at

io
n

Bottom-Up Argumentation 259

All these links are from comments to opinions or from opinions to opinions,
except for the last three that are from comments to links.

For each dashed link (objection), the ABA model contains a sentence alink(L,
O,X), where L is the link’s label, O the attacked opinion, and X the objecting
item. For our example, dashed links are listed in Table 2.

Table 2. Dashed links

alink(l 4 17,o4,o17). alink(l 9 10,o9,o10). alink(l 11 12,o11,o12).
alink(l 11 18,o11,o18). alink(l 18 11,o18,o11). alink(l 16 15,o16,o15).
alink(l 17 7,o17,o7). alink(l 17 19,o17,o19).

Opinions can be supported by comments, or by other opinions, or by both.
For each opinion, the ABA framework contains:

– one or more rules basedOn(Z) ← C, . . . , L, . . . indicating the links and
commentson which item Z is based;

– one or more rules supportedBy(Z) ← O, . . . , L, . . . indicating the links and
opinionssupporting item Z.

For our example, the basedOn relations are listed in Table 3 and the supportedBy
relations are listed in Table 4. Note that links from multiple starting points (such
as that between c6, c7 and o7) are modeled by a single rule, whereas multiple
independent links (such as that between c1 and o3, or between c2 and o3) are
modeled by multiple rules. Absence of links is modelled by rules with an empty
body (facts).

Table 3. basedOn relations

basedOn(o1) ← c1,l 1 1. basedOn(o2) ← .
basedOn(o3) ← c1,l 3 1. basedOn(o3) ← c2,l 3 2.
basedOn(o3) ← c3,l 3 3. basedOn(o4) ← c3,l 4 3.
basedOn(o5) ← c4,l 5 4. basedOn(o6) ← c5,l 6 5.
basedOn(o7) ← c6,c7,m 7 6 7. basedOn(o8) ← c8,l 8 8.
basedOn(o8) ← c9,l 8 9. basedOn(o9) ← c9,l 9 9.
basedOn(o10) ← c9,l 10 9. basedOn(o11) ← c9,l 11 9.
basedOn(o12) ← c9,l 12 9. basedOn(o13) ← c11,l 13 11.
basedOn(o14) ← c12,l 14 12. basedOn(o15) ← c9,l 15 9.
basedOn(o15) ← c10,l 15 10. basedOn(o16) ← c9,l 16 9.
basedOn(o17) ← c11,l 17 11. basedOn(o18) ← c12,l 18 12.
basedOn(o19) ← c13,l 19 13. basedOn(o19) ← c14,l 19 14.
basedOn(l 4 17) ← c11,l l 4 17 11. basedOn(l 11 12)← c9,l l 11 12 9.
basedOn(l 16 15)← c9,l l 16 15 9.

260 F. Toni and P. Torroni

Table 4. supportedBy relations

supportedBy(o1) ← . supportedBy(o2) ← o1,o3,m 2 1 3.
supportedBy(o2) ← o19,l 2 19. supportedBy(o3) ← .
supportedBy(o4) ← . supportedBy(o5) ← .
supportedBy(o6) ← . supportedBy(o7) ← .
supportedBy(o8) ← . supportedBy(o9) ← .
supportedBy(o10)← . supportedBy(o11)← .
supportedBy(o12)← . supportedBy(o13)← .
supportedBy(o14)← o18,l 14 18. supportedBy(o15)← .
supportedBy(o16)← . supportedBy(o17)← .
supportedBy(o18)← . supportedBy(o19)← .

Domain-Independent Facts, Rules, Assumptions, Contraries. Domain-
independent facts and rules are used as follows.

– We rely on an opinion O if we can rely on other comments on which O
is based (if any) and/or on opinions that support O (if any), and if it is
legitimate to assume O. Therefore the following ABA rule is used, for all
opinions O:

O ← basedOn(O), supportedBy(O), α(O), opinion(O).

The defeasibility of an opinion O is modeled by the assumption α(O).
– We rely on a comment C if it is legitimate to assume C. Therefore the

following ABA rule is used, for all comments C:

C ← χ(C), comment(C).

The defeasibility of a comment C is modeled by the assumption χ(C).
– We rely on a continuous link L if it is legitimate to assume L. Therefore the

following ABA rule is used, for all continuous links L:

L ← λ(L), link(L, ,).

The defeasibility of a continuous link L is modeled by the assumption λ(L).
– We rely on a dashed link L to provide an attack against X given Y if it is

legitimate to assume L and if the attacker Y holds. The following rule is
then used:

c α(X) ← Y, λa(L), alink(L,X, Y).

The defeasibility of a dashed link L is modeled by the assumption λa(L).
– All opinions, comments, links are in principle legitimate. Therefore the sen-

tences α(O), χ(C), λ(L), λa(L′) are possible assumptions for all O,C,L, L′

in our universe of symbols such that opinion(O), comment(C), link(L),
alink(L′) hold.

– Finally, the following contraries are given:

α(O) = c α(O). χ(C) = c χ(C). λ(L) = c λ(L). λa(L) = c λa(L).

Bottom-Up Argumentation 261

6 Conclusions

We have outlined a generic methodology to benefit exchanges of views in social
networks (but also e-commerce systems or technical fora) by deploying compu-
tational argumentation. We have taken the view to modify only minimally the
existing style for social networks, and allow users to unearth opinions and links.
We have supported our proposal by means of a concrete illustration on top of
Facebook. Our methodology consists of 1) allowing users to comment on ex-
changes, thus adding to and refining them; 2) applying a formal mapping from
these augmented exchanges onto an (assumption-based) argumentation frame-
work; 3) use standard argumentation semantics to provide an informed view to
users as to the dialectical validity of the positions debated.

There are several directions for future work. We mention just a few here.
We have ignored the possibility of feedback by users, e.g. using the Like button

in Facebook. These need to be incorporated within our methodology.
We have introduced a separation between “base-level” (the comments as in

existing social net sites) and a “meta-level” (our opinions, links etc). We envisage
that these will need to blend eventually, and that, for example, opinions may
feed back into comments.

We have proposed an annotation for enriched exchanges in social networks,
that we believe has the right level of simplicity and ease of use for ordinary
users while at the same time being easily translatable into ABA. It would be
interesting to see whether existing annotations used in sense-making tools, such
as Cohere [3], would be suitable and/or would lend themselves to be mapped
onto ABA format.

We envisage to use ABA as the underlying mechanism for computational
argumentation. A novel bottom-up tool for computing extensions will be required
for ABA to support a query-independent evaluation of arguments.

We have glossed over the choice of argumentation semantics: experimental
psychology may be able to provide us with hints as to which semantics is the most
suited. It may be possible that none of the existing semantics for argumentatin
may be appealing or suitable, as indicated, in a different setting, in [12].

We also need to design effective methods and incentives that encourage users
to annotate their discussions. For example, it will be important to understand
how bottom-up argumentation may increase users satisfaction and engagement
in online conversations. To this end, we will need to run empirical and theoretical
investigations.

The theoretical implications of bottom-up argumentation will also be subject
of further research. For example, if we asked several different users to indepen-
dently mark up the same discussion, we would obtain different results. Would
this be a problem? How would different mark-ups relate with each other?

We did not elaborate on concrete ways to exploit bottom-up argumentation
in existing or future social networks. Clearly, if we want to use it as a run-time
support for users on a large scale, some further analysis needs to be done to
understand the computational complexity of the underlying reasoning. Suitable
user testing and benchmarking tasks will also have to be designed and carried

262 F. Toni and P. Torroni

out. A more thorough study must also be done in order to make our methodology
better defined and structured. With this article we mean to describe the general
ideas that, if successful, may underlie a groundbreaking use of computational
argumentation, for the benefit of communities of non-argumentation-savvy indi-
viduals.

Acknowledgments. The realization of this work was made possible by a Short-
Term Scientific Mission grant, kindly provided by the “Agreement Technologies”
COST Action IC0801. We also thank the anonymous TAFA reviewers for valu-
able feedback and Henry Prakken for helpful comments at the workshop.

References

1. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
2. Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-

theoretic approach to default reasoning. Artif. Intell. 93(1-2), 63–101 (1997)
3. Buckingham Shum, S.: Cohere: Towards Web 2.0 argumentation. In: Hunter, A.

(ed.) Proceedings of the Second International Conference on Computational Models
of Argument (COMMA 2008). IOS Press (2008)

4. Dung, P.M., Toni, F., Mancarella, P.: Some design guidelines for practical argu-
mentation systems. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.)
Proceedings of the Third International Conference on Computational Models of
Argument (COMMA 2010), vol. 216, pp. 183–194. IOS Press (2010)

5. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

6. Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artif. Intell. 170, 114–159 (2006)

7. Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan,
I., Simari, G. (eds.) Argumentation in AI, pp. 199–218. Springer, Heidelberg (2009)

8. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif.
Intell. 171(10-15), 642–674 (2007)

9. Egly, U., Gaggl, S.A., Woltran, S.: ASPARTIX: Implementing Argumentation
Frameworks Using Answer-Set Programming. In: Garcia de la Banda, M., Pon-
telli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg
(2008)

10. Gaertner, D., Toni, F.: On computing arguments and attacks in assumption-based
argumentation. IEEE Intelligent Systems, Special Issue on Argumentation Tech-
nology 22(6), 24–33 (2007)

11. Heras, S., Atkinson, K., Botti, V., Grasso, F., Julian, V., McBurney, P.: How
argumentation can enhance dialogues in social networks. In: Baroni, P., Cerutti, F.,
Giacomin, M., Simari, G. (eds.) Proceedings of the Third International Conference
on Computational Models of Argument (COMMA 2010), vol. 216, pp. 267–274.
IOS Press (2010)

12. Rahwan, I., Madakkatel, M.I., Bonnefon, J.F., Awan, R.N., Abdallah, S.: Be-
havioural experiments for assessing the abstract argumentation semantics of re-
instatement. Cognitive Science 34(8), 1483–1502 (2010)

13. Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a world wide argument
web. Artificial Intelligence 171, 897–921 (2007)

A First Step towards Argumentation Dialogues

for Discovery

Xiuyi Fan and Francesca Toni

Imperial College London, London, SW7 2AZ, UK
{xf309,ft}@imperial.ac.uk

Abstract. We present a formal model for two-agent discovery dialogues.
The model allows agents to collectively discover a realization for a shared
goal, using argumentation dialogues to exchange information. This infor-
mation is in the form of rules, assumptions, and contraries of assumptions
as in Assumption-based Argumentation (ABA). With dialogues, agents
jointly build arguments and construct shared ABA frameworks. We de-
fine successful discovery dialogues as those giving admissible arguments
that realize the shared goal. The main novelty of this paper is the mod-
elling of the buttom-up relation between utterances. This new relation
helps building “higher level” arguments from existing “lower level” sup-
ports, which we deem essential for discovery.

1 Introduction

Argumentation dialogues have been studied by a number of researchers [1,8,12].
Walton & Krabbe [14] introduce a dialogue taxonomy that categorizes dialogues
into six types: persuasion, inquiry, information seeking, negotiation, deliberation,
and eristic. McBurney and Parsons [8] introduce discovery as an additional type
of dialogue, different from other types in that “[discovery dialogues] discover
something not previously known; the question whose truth is to be ascertained
may only emerge in the course of the dialogue.” In this paper, we present a two-
agent dialogue framework that supports a special type of discovery dialogues.

Most previous work on argumentation dialogues, e.g. [1,11], define dialogue
models as dialogues starting from a known proposition; through dialogues, the
acceptability of this proposition is examined. However, in discovery dialogues,
there may be no such known proposition to start with. Instead, the dialogue
participants face an open problem. Inour discovery dialogues, the participants
start with an abstract description of the goal of the dialogue and proceed by
putting forward information that may contribute to identify the proposition and
determine its acceptability. This abstract description is the same for the two
participating agents. We call this abstract description the goal. None of the two
agents have sufficient information to produce an acceptable concrete realization
of this goal. The agents’ task is then to discover an acceptable concrete goal
realization.

In this work, the two agents communicate to each other using Assumption-
Based Argumentation (ABA) [3]. ABA is a general-purpose, widely applicable

S. Modgil, N. Oren, and F. Toni (Eds.): TAFA 2011, LNAI 7132, pp. 263–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 X. Fan, F. Toni

form of argumentation where arguments are built from rules and supported by
assumptions, and attacks against arguments are directed at the assumptions
supporting the arguments, and are provided by arguments for the contrary of
assumptions. ABA is applicable in several settings, as discussed in [3].

During dialogues, agents communicate with ABA by putting forward rules,
assumptions, and contraries of assumptions as their utterances. In order to per-
form the joint discovery, the dialogue starts with one agent putting forward a
goal. Then the two agents can either expand this goal or some sentence in a
top-down manner to explore its supports and attacks or in a bottom-up manner
to identify any “higher level” arguments that are supported by it. Utterances
jointly form the ABA framework drawn from the dialogue. A discovery dialogue
is successful if it produces a goal realization. We justify the soundness of our ap-
proach by showing that the produced goal realization is admissible with respect
to the ABA framework drawn from the dialogue.

This work extends [6], which present a conflict resolution framework in a two-
agent system. The two agents in [6] share the same goal but each agent has its
own realization to start with. Hence, in [6] the two agents examine each realiza-
tion solely in (what we call) the top-down fashion to determine its admissibility.
Since [6] is an application of the dialogue framework in [5], this paper also ex-
tends [5]. The main novelty of our work here is the recognition of the bottom-up
relation, which we believe is essential for modelling discovery dialogues.

The rest of this paper is organized as follows. Section 2 introduces background
information on ABA and abstract dispute trees [4], that we use to prove our
results. Section 3 introduces a motivating example that we use throughout this
paper. Section 4 introduces our dialogue model. Section 5 introduces the debate
tree that we use to refine our dialogue model. Section 6 presents formal results
of our model. We describe a few related works in section 7 and conclude in
section 8.

2 Background

An ABA framework [3,4] is a tuple 〈L,R,A, C〉 where
– 〈L,R〉 is a deductive system, with L the language and R a set of rules of

the form s0 ← s1, . . . , sm(m ≥ 0);
– A ⊆ L is a (non-empty) set, referred to as assumptions;
– C is a total mapping from A into L; C(α) is referred to as the contrary of

α ∈ A.

Given a rule s0←s1, . . . , sm, s0 is referred to as the head and s1, . . . , sm as the
body. We use the following notation: Head(s0←s1, . . . ,sm) = s0 and Body(s0 ←
s1, . . . , sm) = {s1, . . . , sm}. As in [4], we enforce that ABA frameworks are flat,
namely assumptions do not occur in the head of rules. Moreover, without loss
of generality, we enforce that no two assumptions may have the same contrary.1

1 Indeed, an ABA framework 〈L,R,A, C〉 where a, b ∈ A such that C(a) = C(b) = c can
be equivalently rewritten as an ABA framework 〈L′,R′,A, C′〉 where L′ = L∪{c1, c2}
(with c1, c2 �∈ L), R′ = R∪ {c1 ← c, c2 ← c}, and C(a) = c1, C(b) = c2.

Argumentation Dialogue for Discovery 265

In ABA, arguments are deductions of claims using rules and supported by
assumptions, and attacks are directed at assumptions. Informally, following [3]:

– an argument for (the claim) c ∈ L supported by S ⊆ A (S � c in short) is a
(finite) tree with nodes labelled by sentences in L or by the symbol τ2, such
that the root is labelled by c, leaves are either τ or assumptions in S, and
non-leaves s have as many children as elements in the body of a rule with
head s, in a one-to-one correspondence with the elements of this body.

– an argument S1 � c1 attacks an argument S2 � c2 iff c1 = C(α) for α ∈ S2.

Attacks between arguments correspond in ABA to attacks between sets of as-
sumptions, where a set of assumptions A attacks a set of assumptions B iff an
argument supported by A′ ⊆ A attacks an argument supported by B′ ⊆ B.

With argument and attack defined, standard argumentation semantics can be
applied in ABA [3]. We focus on the admissibility semantics:

– a set of assumptions is admissible (w.r.t. 〈L,R,A, C〉) iff it does not attack
itself and it attacks all A ⊆ A that attack it;

– an argument S � c belongs to an admissible extension supported by Δ ⊆ A
(w.r.t. 〈L,R,A, C〉) iff S ⊆ Δ and Δ is admissible;

– a sentence is admissible iff it is the claim of an argument that belongs to an
admissible extension supported by some Δ ⊆ A.

Our main result will be proven using the abstract dispute trees of [4], with an
abstract dispute tree for an argument γ a (possibly infinite) tree T a such that:

1. every node of T a is labelled by an argument and is assigned the status of
either a proponent (P) node or an opponent (O) node, but not both;

2. the root of T a is a P node labelled by γ;
3. for every P node n labelled by an argument b, and for every argument c that

attacks b, there exists a child of n, which is an O node labelled by c;
4. for every O node n labelled by an argument b, there exists exactly one child of

n which is a P node labelled by an argument which attacks some assumption
α in the set supporting b. α is said to be the culprit in b;

5. there are no other nodes in T a except those given by 1-4 above.

The set of all assumptions in (the support of arguments of) the proponent nodes
in T a is called the defence set of T a. An abstract dispute tree is admissible iff no
culprit in the argument of an opponent node belongs to the defence set of T a.
The defence set of an admissible abstract dispute tree T a for an argument γ is
admissible (Theorem 5.1 in [4]), and thus γ belongs to an admissible extension
and the sentence supported by γ is admissible.

3 Motivating Example

Two agents, Jenny and Amy, are planning a film night. They would like to jointly
decide on a movie. Jenny wants to pick a fun movie. She finds action movies fun.

2 As in [3], τ /∈ L intuitively stands for “true”. It is used to represent the empty body
of a rule.

266 X. Fan, F. Toni

Jenny also worries about going home late so she prefers a movie that finishes
by 10 o’clock. Amy knows that Terminator is screening and is an action movie.
She also knows that Terminator finishes by 10 o’clock. Amy does not have any
preference in selecting a movie. In order to reach agreement, the two agents may
conduct a dialogue as follows3.

Jenny: Let’s find a movie to watch.
Amy: Sure, I know Terminator is an action movie.
Jenny: That’s interesting. I think action movies are pretty fun.
Amy: We can watch Terminator, as long as it has the right screening time.
Jenny: Agreed. I think Terminator starts at the right time.
Amy: Are you sure it won’t be too late?
Jenny: Why?
Amy: I don’t know. I am just afraid so.
Jenny: It won’t be too late if it finishes by 10 o’clock.
Amy: I see. Indeed Terminator finishes by 10 o’clock.
Jenny: OK.
Amy: OK.

Jenny starts the dialogue by putting forward the goal of determining some movie
to watch, but without specifying which one. Then Amy supplies one possibly
relevant fact, that Terminator is an action movie. This is just a guess, in the
sense that the agent does not know whether a goal realization can be found by
exploring information related to Terminator. From this utterance, agents reason
buttom-up until Amy’s second utterance. Then they start top-down. From the
inital guess, the dialogue constructs arguments both for and against watching
Terminator. After examining the arguments, the agents decide that Terminator
is a good movie to watch.

4 Goals and Discovery Dialogues

We define goal and goal realization w.r.t. a given ABA framework as in [6].

Definition 1. [6] A goal (w.r.t. L) is of the form ∃ X G such that

– X is a tuple of variables;
– there exists σ = {X/t} for t a tuple of terms such that Gσ ∈ L4.

A (goal) realization (w.r.t. an ABA framework 〈L,R,A, C〉) is Gσ∈ L such that
σ = {X/t} and Gσ is admissible (w.r.t. 〈L,R,A, C〉).
The (natural language) dialogue in our motivating example can be formalised as
starting with a goal watchMovie(X). The dialogue identifies watchMovie(Ter) as
a realization (for {X/Ter}, where Ter stands for Terminator) w.r.t. the ABA
framework in Figure 1.

3 A variant of this dialogue example is in [6]. There, however, the dialogue starts with
an initial concrete proposal of a movie to watch.

4 Gσ stands for G where all occurrences of (elements of) X are replaced by (the cor-
responding elements of) t. We often leave the existential quantifier of goals implicit.

Argumentation Dialogue for Discovery 267

Rδ: watchMovie(Ter) ← fun(Ter), goodScreenTime(Ter)
fun(Ter) ← actionMovie(Ter)
actionMovie(Ter) ←
finishByTen(Ter) ←

Aδ: goodScreenTime(Ter)
late(Ter)

Cδ: Cδ(goodScreenTime(Ter)) = late(Ter)
Cδ(late(Ter)) = finishByTen(Ter)

Fig. 1. ABA framework 〈L,Rδ,Aδ, Cδ〉 (L is left implicit)

In the remainder we consider two generic agents a1 and a2. In our example
these are Jenny (J) and Amy (A). We assume that a1, a2 share a language L.
We do not assume that these agents hold ABA frameworks internally. However,
they excgange information in ABA format, w.r.t. the shared L.

We define dialogues as sequences of utterances between a1 and a2. Formally:

Definition 2. An utterance from agent ai to agent aj (i, j ∈ {1, 2}, i �= j)
w.r.t. L is a tuple 〈ai, aj , T arget, C, ID,R〉, where:

– C (the content) is of one of the following forms:
(1) goal(G) for some G such that ∃XG is a goal;
(2) rl(s0 ← s1, . . . , sm) for some s0, . . . , sm ∈ L (a rule), and if m > 0 then

si �= sj for 0 ≤ i, j ≤ m, i �= j;
(3) asm(a) for some a ∈ L (an assumption);
(4) ctr(a, s) for some a, s ∈ L (a contrary);
(5) a pass sentence π, such that π /∈ L.

– ID ∈ N ∪ {0} (the identifier).
– Target ∈ N ∪ {0} (the target); Target ≤ ID.
– R is either td (top-down), bu (bottom-up) or nr (not-related).

We refer to an utterance with content π as a pass-utterance, to an utterance
with content goal(()) as a goal-utterance, and to utterances with content other
than π and goal() as regular-utterances.

Intuitively, a pass indicates that the agent does not have or want to contribute
information at that point. This definition is based on Definition 1 of [5], but
(i) this definition adds the new related field (R) to indicate different utterance
relations (td, bu or nr); and (ii) there is no “claim” used in this definition.

Definition 3. For two utterances ui �=uj, uj is top-down related to ui iff ui=
〈 , , , Ci, ID, 〉, uj=〈 , , ID,Cj , , td〉5, and one of the following holds:

1. Cj = rl(ρj), Head(ρj) = h and either Ci = rl(ρi) with h ∈ Body(ρi), or Ci

= ctr(, h);
2. Cj = asm(a) and either Ci = rl(ρ) with a ∈ Body(ρ), or Ci = ctr(, a);
3. Cj = ctr(a,) and Ci = asm(a).

5 Throughout, stands for the anonymous variable, as in Prolog.

268 X. Fan, F. Toni

This definition is based on Definition 3 of [5], but without considering claim
utterances (as these are not allowed here). Intuitively, an utterance is top-down
related to another if its target is the identifier of the latter and it contributes to
expanding an argument (cases 1), identifies an assumption in the support of an
argument (cases 2) or starts the construction of a counter-argument (case 3).

Definition 4. For two utterances ui �= uj, uj is bottom-up related to ui iff
ui=〈 , , , Ci, ID, 〉 and uj=〈 , , ID,Cj , , bu〉, and one of the following holds:

1. Ci = rl(ρi), Cj = rl(ρj), and Head(ρi) ∈ Body(ρj);
2. Ci = asm(a), Cj = rl(ρ), and a ∈ Body(ρ).

Intuitively, an utterance is buttom-up related to another if its target is the iden-
tifier of the latter and it forms a “higher level” argument (partially) supported
by its target. We say that an utterance uj is related to an utterance ui if uj

is either top-down or bottom-up related to ui. Note that an utterance may be
related to an utterance from the same agent to the same agent or not. Also,
no pass-utterance can be related to a regular-utterance and no utterance can
be related to a pass-utterance. Further, no utterance can be realted to a goal
utterance and goal utterances are not related to any utterance.

Definition 5. A dialogue Dai
aj(G) (between ai and aj, for goal G w.r.t. L), i, j∈

{1, 2}, i �= j, is a finite sequence 〈u0,. . . ,un〉, n≥ 0, where each ul, l = 0, . . . , n,
is an utterance from ai or aj (w.r.t.L), u0 is an utterance from ai, and:

1. the content of ul is goal(G) iff l = 0;
2. the content of u1 is either rl() or asm();
3. u0 and u1 are of the form 〈 , , 0, , , nr〉;
4. the target of pass-utterances is 0;
5. each regular-utterance ul, l > 1, is related to its target utterance;
6. no two consecutive utterances are pass-utterances, other than possibly the

last two utterances, un−1 and un;
7. the identifier of ui is i.

This definition requires dialogues to start with a goal (condition 1), followed by
a rule or an assumption (condition 2). Intuitively, agents make this utterance
with a “wild guess” in the hope that a goal realization can be found by exploring
around this guess. Thus, these first two utterances do not need to be related to
any utterance (condition 3). All subsequent regular-utterances must be related
to some earlier utterance in the dialogue (condition 5). We impose, for simplic-
ity, that the identifier of utterances is their position in the dialogue minus one
(condition 7), and that 0 is the target of all “unrelated” utterances (u0, u1 and
pass-utterances). This definition is a variant of Definition 3 in [5] with our di-
alogues starting with a goal rather than a claim, followed by an utterance not
related to it. An example dialogue is given in Figure 2. An informal reading of
this dialogue is the natural language dialogue given in Section 3.

Below, U and D stand for the sets, respectively, of all utterances as in Defini-
tion 2 and of all dialogues as in Definition 5.

By means of dialogues, agents exchange information and build a shared frame-
work, as defined in [5]:

Argumentation Dialogue for Discovery 269

〈J,A, 0, goal(watchMovie(X)), 0, nr〉
〈A,J, 0, rl(actionMovie(Ter) ←), 1, nr〉
〈J,A, 1, rl(fun(Ter) ← actionMovie(Ter)), 2, bu〉
〈A,J, 2, rl(watchMovie(Ter) ← fun(Ter), goodScreenTime(Ter)), 3, bu〉
〈J,A, 3, asm(goodScreenTime(Ter)), 4, td〉
〈A,J, 4, ctr(goodScreenTime(Ter), late(Ter)), 5, td〉
〈J,A, 0, π, 6, nr〉
〈A,J, 5, asm(late(Ter)), 7, td〉
〈J,A, 7, ctr(late(Ter),finishByTen(Ter)), 8, td〉
〈A,J, 8, rl(finishByTen(Ter) ←), 9, td〉
〈J,A, 0, π, 10, nr〉
〈A,J, 0, π, 11, nr〉

Fig. 2. Example dialogue between Jenny and Amy

Definition 6. [5] The framework drawn from a dialogue δ = 〈u0, . . . , un〉 is 〈L,
Rδ,Aδ, Cδ〉 where

– Rδ = {r|rl(ρ) is the content of some ui in δ};
– Aδ = {a|asm(a) is the content of some ui in δ};
– Cδ is a mapping such that, for any a ∈ Aδ, Cδ(a) = c such that ctr(a, c) is

the content of some ui in δ, if one exists, and is undefined otherwise.

The framework drawn from our earlier example dialogue in Figure 2 is Fδ =
〈L,Rδ,Aδ, Cδ〉 shown earlier in Figure 1. Note that Fδ in this example is a flat
ABA framework but in general, as discussed in [5], the framework drawn from a
dialogue may not be an ABA framework, since Cδ may not be total. We follow
[5] and impose, by using suitable legal-move functions and outcome functions,
that dialogues are such that the frameworks drawn from them are necessarily
flat ABA frameworks.

Definition 7. A legal-move function is a mapping λ : D �→ U such that, given
δ = 〈u0, . . . , un〉 ∈ D between ai, aj (for some goal), λ(δ) = 〈ai, aj , t, C, id, r〉
and

1. δ ◦ λ(δ) = 〈u0, . . . , un, λ(δ)〉 is a dialogue;
2. if C �= π, then there exists no k, 1 ≤ k ≤ n, such that uk =〈 , , t, C, k, 〉.
3. if C= ctr(a, c) then there exists no uk= 〈 , , , ctr(a, c′), k, 〉, for 1≤k ≤n,

and c′ �=c.

Given δ = 〈u0, . . . , un〉, if λ(〈u0, . . . , um〉)= um+1 for all m (0 ≤ m < n), we
say that δ is constructed with λ. We use Λ to denote the set of all legal-move
functions.

This definition is analogous to Definition 5 in [5] except for the format of ut-
terances (having here an extra field r to indicate how they are related to their
target). This definition imposes that any sequence of utterances constructed us-
ing a legal-move function forms a dialogue (condition 1); there is no repeated

270 X. Fan, F. Toni

non-pass utterance to the same target (condition 2); assumptions have a sin-
gle contrary (condition 3). However, the definition of legal-move function does
not impose any “mentalistic” requirement on agents, such as that they utter
information they hold true.

Definition 8. A flat legal-move function is such that
if λ(〈u0, . . . , un〉) = 〈ax, ay, t, C, n+ 1, r〉 then

– C = asm(a) only if there exists no ui = 〈 , , , Ci, i 〉, for 1 ≤ i ≤ n, with
Ci = rl(ρ) and Head(ρ) = a;

– C = rl(ρ) only if there exists no ui = 〈 , , , Ci, i 〉, for 1 ≤ i ≤ n, with
Ci = asm(a) and Head(ρ) = a.

This definition is analogous to Definition 6 in [5], excpet again for the formal of
utterances, with the extra r field. Trivially, the framework drawn from a dialogue
generated by a flat legal-move function, if an ABA framework, is flat, in the sense
of [2].

Definition 9. A one-way expansion legal-move function is a flat legal-move
function such that

if λ(〈u0, . . . , un〉) = 〈ax, ay, , C, n+ 1, r〉, then

– C = rl(ρ) only if there exists no ui = 〈 , , , rl(ρ′), i, 〉, for 1 ≤ i ≤ n, with
Head(ρ) = Head(ρ′).

This definition imposes that in a dialogue there is only one unique way of ex-
panding a rule. This requirement allows to keep the framework simple.

Legal-move functions provide some guidance as to what agents are allowed to
utter during dialogues. In order to guarantee that the contrary mapping in the
framework drawn from a dialogue is total, and thus that the framework is indeed
an ABA framework, as in [5], we use the notion of outcome function, checking
specific properties in a generated dialogue:

Definition 10. An outcome function is a mapping ω : D × Λ �→ {true, false}.
The ABA outcome function, ωABA, is such that given a dialogue δ and a legal-
move function λ, ωABA(δ, λ) = true iff δ is constructed with λ and the framework
〈L,Rδ,Aδ, Cδ〉 drawn from δ is such that for all α ∈ Aδ, Cδ(α) is not undefined.6

In the remainder of the paper, we focus on dialogues where each utterance results
from applying a one-way expansion legal-move function to the dialogue prior to
that utterance, and for which ωABA is true. We refer to these dialogues as ABA
dialogues.

We use debate trees, defined in the next section, to refine the notions of legal-
move and outcome functions to guarantee that dialogues compute arguments in
admissible extensions.

6 Definition 10,18, and 20 are variations of Definition 7, 13, and 15, respectively, in [5]
with the extra Λ as a domain for outcome functions, to enforce that dialogues are
properly constructed.

Argumentation Dialogue for Discovery 271

5 Debate Trees

Nodes of debate trees are labelled either proponent or opponent as in the abstruct
dispute trees in [4]. However, differently from [4], in debate trees each node (1)
contains one sentence, (2) is tagged as either unmarked (um), marked-rule (mr)
or marked-assumption (ma), and (3) has an ID to identify its corresponding
utterance in a dialogue.

When constructing a debate tree from a dialogue, we use a subset of utterances
presented in the dialogue. This extraction ignores the goal- and pass-utterances,
i.e. a debate tree is extracted from the goal-π-pruned sequence obtained from a di-
alogue, consisting of all regular-utterances. Note that, since no regular-utterance
has a goal- or pass-utterance as its target (see definition 5), the target of every
utterance in a goal-π-pruned sequence is guaranteed to be in this sequence. Fur-
thermore, by Definition 5, for all utterances u = 〈 , , , , i, R〉 in a goal-π-pruned
sequence, if i > 1, then R is either td or bu.

The sentence of each node in a debate tree represents an argument’s claim
or an element of its support. A node is tagged unmarked if its sentence is only
mentioned in the body of a rule or as contrary of an assumption, but without
any further examination, marked-rule if it is the head of a rule, and marked-
assumption if it has been explicitly declared as an assumption. Debate trees are
special cases of debate graphs, defined as follows:

Definition 11. A debate graph drawn from a dialogue δ = 〈u0, . . . , un〉 (n ≥ 0)
is a graph T (δ) whose nodes are tuples (S, F :L[U]) where

– S (the sentence) is a sentence in L,
– F (the tag) is either um (unmarked), mr (marked-rule) or ma (marked-

assumption),
– L (the label) is either P (proponent) or O (opponent),
– U ∈ N (the ID).

T (δ) is T m(δ) in the sequence T 0(δ), T 1(δ), . . . , T m(δ) constructed inductively
from the goal-π-pruned sequence δ′ = 〈u′

1 . . . , u
′
m〉 obtained from δ, as follows:

– T 0(δ) is empty;
– T 1(δ) is constructed as follows:

• if the content of u′
1 is asm(α), then T 1(δ) consists only of (α,ma :P[1]);

• if the content of u′
1 is rl(h ← b1, . . . , bl), then T 1(δ) consists of l + 1

nodes: (h,mr :P[1]) with children

(b1, um :P[1]), . . . , (bl, um :P[1]).

– Let T i(δ) be the i-th tree, for 0 < i < m, let u′
i+1 = 〈 , , t, C, id, R〉, and let

u′
t = 〈 , , , Ct, t, 〉 be the target utterance of u′

i+1; then T i+1(δ) is obtained
according to one of the following cases:
• If R = td, then

272 X. Fan, F. Toni

∗ if C=rl(h ← b1, . . . , bl) then T i+1(δ) is T i(δ) with additional l nodes:

(b1, um :L[id]), . . . , (bl, um :L[id])

as children of the existing node (h, um :L[t]), and this node is replaced
by (h,mr :L[id]);

∗ if C = asm(α) then T i+1(δ) is T i(δ) with the existing node
(α, um :L[t]) replaced by (α,ma :L[id]);

∗ if C = ctr(α, c) then T i+1(δ) is T i(δ) with an additional node:
(c, um :L[id]) child of (α,ma :L′[t]), where L,L′ ∈ {P,O}, L �= L′.

• If R = bu, then

∗ C = rl(h ← b1, . . . , bl) and T i+1(δ) is T i(δ) with l additional nodes:
· (h,mr : L[id]), added as parent of the existing node (bt, F : L[t]),
such that
if Ct = rl(h′ ← b′1, . . . , b

′
k), then bt = h′, F = mr;

if Ct = asm(α), then bt = α, F = ma;
· (b′′1 , um : L[id]), . . . , (b′′l−1, um : L[id]), added as children of the
existing node (h,mr :L[id]), where {b′′1 , . . . , b′′l−1} = {b1, . . . , bl} \
{bt}.

Figure 3 gives the construction of the debate graph drawn from the dialogue in
our example7. Note that this is a tree but in general it may not be. For example,
if the dialogue in Figure 2 is modified to δ∗ with utterances 10 and 11 replaced
by:
〈J,A, 1, rl(noisy(Ter) ← actionMovie(Ter)), 10, bu〉
〈J,A, 0, π, 11, nr〉
〈A, J, 0, π, 12, nr〉
then the debate graph T (δ∗), given in Figure 4, is not a tree. To ensure that a
debate graph is a tree, we give the following definition.

Definition 12. A debate graph T (δ) is properly-structured iff it is a tree.

This definition is needed as we need to rule out the case of related utterances
somewhat being a distraction, as in the previous example leading to the graph
in Figure 4.

We ensure that debate graphs drawn from our dialogues are properly-structured
using a legal-move function, as follows.

Definition 13. A legal-move function λ : D �→ U is a properly-structured legal-
move function iff it is a one-way expansion legal-move function and, for every
dialogue δ ∈ D such that T (δ) is properly-structured, then T (δ ◦ λ(δ)) is also
properly-structured.

7 In this figure, ↑ represents expanding a rule towards the construction of an argument,
whereas ⇑ represents the introduction of a contrary and thus the attack relation
between arguments. Here, wM, aM, gST, fBT, and T are a shorthand for watch-
Movie, actionMovie, goodScreenTime, finishByTen, and Terminator, respectively.

Argumentation Dialogue for Discovery 273

T 1(δ) T 2(δ) T 3(δ)

(wM(T),mr :P[3])

(fun(T),mr :P[2]) (fun(T),mr :P[2])

��

(gST(T), um :P[3])

		��������

(aM(T),mr :P[1]) (aM(T),mr :P[1])

��

(aM(T),mr :P[1])

��

T 4(δ) T 5(δ)

(wM(T),mr :P[3]) (wM(T),mr :P[3])

(fun(T),mr :P[2])

��

(gST(T),ma :P[4])

		��������
(fun(T),mr :P[2])

��

(gST(T),ma :P[4])

		��������

(aM(T),mr :P[1])

��

(aM(T),mr :P[1])

��

(late(T), um :O[5])

T 6(δ) T 7(δ)

(wM(T),mr :P[3]) (wM(T),mr :P[3])

(fun(T),mr :P[2])

��

(gST(T),ma :P[4])

		��������
(fun(T),mr :P[2])

��

(gST(T),ma :P[4])

		��������

(aM(T),mr :P[1])

��

(late(T),ma :O[7])

(aM(T),mr :P[1])

��

(late(T),ma :O[7])

T 8(δ) (fBT(T), um :P[8])

(wM(T),mr :P[3])

(fun(T),mr :P[2])

��

(gST(T),ma :P[4])

		��������

(aM(T),mr :P[1])

��

(late(T),ma :O[7])

(fBT(T),mr :P[9])

Fig. 3. The construction of the debate graph drawn from the dialogue in Figure 2

Thus, when an agent decides what to utter, it needs to keep the current debate
tree into account and make sure that its new utterance keeps the graph properly-
structured. As a result, the debate tree can be seen as a commitment store for
the agents. In the remainder, we assume that all dialogues are constructed with
a properly-structured legal-move function.

Definition 14. Given a debate tree T (δ),

– the defence set Def(T (δ)) is the union of all assumptions s in nodes of the
form (s,ma :P[]);

– the culprits Cul(T (δ)) are given by the set of all assumptions s in nodes
n = (s,ma :O[]) such that the child of n in T (δ) is (, :P[]).8

8 Definition 14, 15, 16, and 19 are adaptations to the case of debate trees of definitions
10, 11, 12, and 15, respectively, in [5], where they are given for the dialectical trees
defined therein.

274 X. Fan, F. Toni

(wM(T),mr :P[3])

(noisy(T),mr :P[10]) (fun(T),mr :P[2])

��

(gST(T),ma :P[4])

		���������

(aM(T),mr :P[1])

��		���������
(late(T),ma :O[7])

(fBT(T),mr :P[9])

Fig. 4. A debate graph that is not a tree

Arguments can be drawn from a debate tree, as follows:

Definition 15. An argument drawn from a debate tree T (δ) is a subtree T of
T (δ) such that:

– all nodes in T have the same label (either P or O),
– there exists no node n′ in T (δ) such that n′ is parent or a child of some node

ni in T and ni, n
′ have the same label (either P or O).

An argument T is actual if for all nodes (, F : []) in T , F is either mr or ma.
If there is at least one node of the form (, um : []) in T , then T is potential.

The sentence c in the root of T is the claim of T . The set of all sentences s
in nodes of the form (s,ma : []) is the support of T .

Actual arguments can be mapped to equivalent ABA arguments.

Proposition 1. Let T be an actual argument drawn from a debate tree T (δ)
and let c, S be the claim and support, respectively, of T . Then S � c is an ABA
argument (w.r.t. the framework drawn from δ).

This is trivially true as a node in an actual argument can be mapped to a node
in an ABA argument by dropping the tag, the label, and the ID. Then, nodes
τ need to be added as children of leaf nodes that do not hold assumptions, as
each such node represents a rule with an empty body.

The ABA arguments equivalent to the actual arguments drawn from the di-
alogue in our running example are: (1) {goodScreenTime(Ter)} � watchMovie
(Ter), (2) {late(Ter)} � late(Ter), and (3) {} � finishByTen(Ter). There is no
potential argument in our example.

We consider now restricted forms of debate trees, that we then use below to
further refine our notion of legal-move function.

Definition 16. A debate tree T (δ) is

– patient iff for all nodes n = (,ma : []) in T (δ) such that n has a child,
then n is in an actual argument drawn from T (δ).

– focused iff for all arguments Γ drawn from T (δ), if Γ contains a node (,ma :
O[]), then there is at most one node c of the form (,ma : O[]) in Γ such
that c has a child.

Argumentation Dialogue for Discovery 275

Arguments in a patient tree are fully expanded (cf. actual) before being at-
tacked. In focused trees, no alternative ways to defend claims are considered
simultaneously, i.e., an opponent argument is only attacked by a single propo-
nent argument whereas a proponent argument can be attacked in as many ways
as the number of its assumptions. The tree in Figure 3 is both patient and
focused.

The restricted form of legal-move function we consider is guaranteed to gen-
erate patient, focused trees, as follows.

Definition 17. A legal-move function λ : D �→ U is a patient and focused legal-
move function iff it is properly-structured and for every dialogue δ ∈ D such that
T (δ) is patient and focused, T (δ ◦ λ(δ)) is still patient and focused.

This definition is in the same spirit as Definition 13 presented earlier as it requires
agents to consult the debate tree before making utterances. In the remainder we
will assume that all dialogues are constructed with patient and focused legal-
move functions.

Definition 18. The exhaustive outcome function ωex is such that, given δ ∈ D,
λ ∈ Λ and 〈L,Rδ,Aδ, Cδ〉 the framework drawn from δ, ωex(δ, λ) = true iff
ωABA(δ, λ) = true and there exists no u′ = λ(δ) with content either asm(a), for
a ∈ Aδ, or rl(ρ), for ρ ∈ Rδ, or ctr(a, c), for c = Cδ(a), such that ωABA(δ ◦
u′, λ) = true.

Note that exhaustiveness does not force agents to contribute to dialogues with all
relevant information they hold. Rather, it enforces agents to make all utterances
that are compliant with the given λ.

6 Formal Results

In this section we link dialogues and the admissible argumentation semantics.
First we refine the outcome function so that if a dialogue has a true outcome
then the (fictional) proponent has the last word in the dialogue, namely all
leaves in the debate tree are proponent nodes or “dead-end” opponent nodes
(not corresponding to any actual argument). Formally:

Definition 19. The last word outcome function ωlw is such that, given δ ∈ D,
λ ∈ Λ, and the debate tree drawn from T (δ), then ωlw(δ, λ) = true iff ωex(δ, λ) =
true and one of the following two cases holds:

1. for all leaf nodes n in T (δ), n is either (,mr :P[]) or (,ma :P[]);
2. if a leaf node n is in the form (, : O[]), then n is in an argument that

contains at least one node in the form (, um :O[]).

We refer to exhaustive dialogues for which ωlw is true as positive. The dialogue
in our example is positive. Positive dialogues give debate trees corresponding to
abstract dispute tree with the same defence set and culprits. Formally:

276 X. Fan, F. Toni

Lemma 1. Given a positive dialogue δ let T (δ) be the debate tree drawn from
δ and s be the sentence in the root node of T (δ). Then there is an abstract
dispute tree T a for S � s for some S, such that Def(T (δ)) = Def(T a) and
Cul(T (δ)) = Cul(T a).

Proof. We can transform debate trees into abstract dispute trees. Given a debate
tree T (δ), its equivalent abstract dispute tree T a is constructed as follows.

1. Modify T (δ) by appending a new flag field Z = {0, 1} to each node in T (δ)
and initialize Z to 0 for all nodes, i.e., a node now looks like (, : [])[0].

2. Delete all nodes n from T (δ) where n is in a potential argument.
3. T a is T a

m in the sequence T a
1 , . . . , T a

m constructed inductively as follows:

– T a
0 is empty;

– obtain the argument Γ that contains the root of T (δ), set the flags of
all nodes in T (δ) that are also in Γ to 1; then T a

1 contains a single node
that is labelled by Γ and is a P node;

– let T a
i be the i-th tree, for 0 < i < m, then T a

i+1 is T a
i with an additional

node (Θ,L), where Θ is an argument drawn from T (δ), child of Θ′,
another argument drawn from T (δ), such that

• the flag of nodes in Θ are 0;
• the root node of Θ has a parent node p in T (δ) which has its flag
equal to 1 and p is in Θ′;

• L is P if the root node of Θ is a proponent node, otherwise L is O;
• set the flags of all nodes in T (δ) that are also in Θ to 1.

– T a
m is constructed when there is no node in T (δ) with its flag equal to 0.

Trivially, T a constructed above is an abstract dispute tree. Since T a contains
the same arguments as T (δ) and arguments have the same P/O labelling in both
T a and T (δ), we have Def(T (δ)) = Def(T a) and Cul(T (δ)) = Cul(T a).

As in the case of abstract dispute trees, the defence set of a debate tree may not
be admissible, as it may attack itself. We refine the notion of outcome function
by enforcing that this set does not attack itself, as follows:

Definition 20. The admissible outcome function ωADM is such that, given δ∈
D, λ∈Λ, ωADM (δ, λ)= true iff ωlw(δ, λ)= true and Def(T (δ))∩Cul(T (δ))={}.
If δ is positive and ωADM (δ, λ) = true, we say that δ is successful.

Theorem 1. Given a successful dialogue Dai
aj (G) = δ, let s be the sentence in

the root node of T (δ). Then, there exists an argument S � s that belongs to an
admissible extension supported by Def(T (δ)) w.r.t. the ABA framework drawn
from δ.

Proof. If δ is successful, it is positive and, by Lemma 1, there exists an abstract
dispute tree T a such that Def(T (δ)) = Def(T a) and Cul(T (δ)) = Cul(T a). By
Theorem 5.1 of [4] (see Section 2), the theorem holds.

Argumentation Dialogue for Discovery 277

Theorem 1 connects dialogues with argumentation semantics. Thus, our dia-
logues can be seen as a distributed mechanism for computing admissible exten-
sions. With this, we prove a result specifically for discovery dialogues.

Theorem 2. Given a successful dialogue δ = Dai
aj (G), if (Gσ, :P[]) is the root

node of T (δ), where σ = {X/t}, then Gσ is a goal realization for G w.r.t. to the
ABA framework drawn from δ.

Proof. If Gσ is the sentence in the root node of T (δ) and δ is successful, then
Gσ is admissible w.r.t. AFδ, the ABA framework drawn from δ, by Theorem 1.
Hence Gσ is a goal realization with respect to AFδ.

7 Related Work

McBurney and Parsons [9] give an overview of dialogue games for argumentation.
Our work can be seen as providing a novel dialogue game for ABA.

McBurney and Parsons [8] present a modelling for chance discovery dialogue.
The formal system in that work is defined with locutions and rules without link-
ing to any argumentation framework, whereas our work is based on ABA. There
is no argumentation semantics used in examining the result of their dialogues,
whereas our work makes the connection to the admissibility semantics. Moreover,
[8] focuses on chance discovery, whereas our work is applicable to any discoveries
as long as the desired outcome can be qualified, essentially, by a predicate.

Rybakov [13] presents a logic modelling of chance discovery. Our work differs
from that as is focuses on a dialogue system for discovery whereas his is mainly
concerned with constructing a modal/temporal modelling for chance discovery.

Fisher [7] presents a mechanism for concurrent theorem-proving. In his setting,
the knowledge base (a set of formulae) is distributed at different objects and
each object continuously broadcasts messages about its formulae. Upon receiving
messages, an object makes inferences, transforms its formulae and sends out
further messages. Even though similarity exists, this work is vastly different
from ours as (1) it does not focus on discovering any particular information; (2)
it is not concerned with either agents or dialogues; (3) it requires formulae to be
represented in Horn Clauses. No formal results have been shown in [7].

Fan and Toni [5] introduce a formal modelling for argumentation dialogues.
Though the modelling presented in [5] is generic, it starts a dialogue with a
claim and it only uses top-down reasoning, whereas our work here allows agents
to start the dialogue with a more generic goal and reason buttom-up. Moreover,
the result of [5] is based on the concrete dispute trees of [4] whereas our work here
uses the abstract dispute trees of [4]. Our work can be viewed as an extension
of [5], apart from the fact that the framework introduced there does not require
a dialogue to be built with (restricted) one-way expansion legal-move functions.

Black and Hunter [1] present a formal system for inquiry dialogues based on
DeLP as the underlying argumentation framework. Our work differs from theirs
as (1) our work does not start the dialogue with a claim; (2) it does not focus on
inquiry dialogues; (3) it does not force full disclosure of all relevant knowledge.

278 X. Fan, F. Toni

Prakken [11] defines a formal system for persuasion. The main differences with
our work are: (1) Prakken’s work starts the dialogue with a claim (2) proponent
and opponent roles are pre-assigned to agents before the dialogue whereas in
our work agents can play both roles within the same dialogue; (3) he considers
the grounded semantics, whereas we use admissibility; (4) his set of utterances
refer to arguments and attacks, as in the case of [10]; (5) he forces the support
of arguments to be minimal, whereas we do not.

8 Conclusion

In this paper, we introduce a formal modelling for a simple form of discovery
dialogue for two agents, in which the desired outcomes are only partially known
when dialogues start. In our setting, the two agents share the same discovery goal
but neither of the two agents is capable of discovering a justified goal realization
that fulfills the shared goal. A discovery dialogue is successful if a goal realization
is found through the dialogue.

In our model, the dialogue effectively starts by one agent putting forward
a piece of information that might be related to the goal realization. Through
dialogues, more information that is related to the initial utterance is gathered
and examined. This process is defined with various legal-move functions with
the help of constructing a debate tree. We examine the acceptability of the goal
realization with the admissibility semantics.

Future work includes investigating other forms of discovery dialogues, e.g.,
where agents can change their abstract goals with some form of buttom-up rea-
soning and studying cases in which results about completeness can be obtained,
namely, conditions of a goal realization discovery can be guaranteed. We are also
interested in allowing more than one “wild guess” in a dialogue and the possi-
bility of agents to have preferences over realizations. Finally, we plan to con-
sider less restrictive forms of legal-move functions, e.g., not requiring a one-way
expansion.

References

1. Black, E., Hunter, A.: An inquiry dialogue system. JAAMAS 19, 173–209 (2009)
2. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-

theoretic approach to default reasoning. AIJ 93(1-2), 63–101 (1997)
3. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In:

Argumentation in Artificial Intelligence, pp. 25–44. Springer, Heidelberg (2009)
4. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-

based, admissible argumentation. AIJ 170, 114–159 (2006)
5. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proc. IJCAI

(2011)
6. Fan, X., Toni, F.: Conflict resolution with argumentation dialogues – Extended

abstract. In: Proc. AAMAS (2011)
7. Fisher, M.: An open approach to concurrent theorem-proving. In: Parallel Process-

ing for Artificial Intelligence, pp. 209–230. Elsevier/North (1997)

Argumentation Dialogue for Discovery 279

8. McBurney, P., Parsons, S.: Chance Discovery Using Dialectical Argumentation.
In: Terano, T., Nishida, T., Namatame, A., Tsumoto, S., Ohsawa, Y., Washio, T.
(eds.) JSAI-WS 2001. LNCS (LNAI), vol. 2253, pp. 414–424. Springer, Heidelberg
(2001)

9. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Argumen-
tation in Artificial Intelligence, pp. 261–280. Springer, Heidelberg (2009)

10. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utter-
ances in formal inter-agent dialogues. In: Proc. AAMAS, pp. 47–62 (2007)

11. Prakken, H.: Coherence and flexibility in dialogue games for argumentation.
JLC 15, 1009–1040 (2005)

12. Prakken, H.: Formal systems for persuasion dialogue. Knowledge Eng. Re-
view 21(2), 163–188 (2006)

13. Rybakov, V.: Logic of knowledge and discovery via interacting agents - decision
algorithm for true and satisfiable statements. Inf. Science 179, 1608–1614 (2009)

14. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic concept of interpersonal
reasoning. State University of New York Press, Albany NY (1995)

Author Index

Atkinson, Katie 50, 67

Baroni, Pietro 197
Baumann, Ringo 17
Bench-Capon, Trevor 50
Bentley, Katie 132
Bistarelli, Stefano 99
Black, Elizabeth 67, 132
Boella, Guido 232
Brewka, Gerhard 17

Cerutti, Federico 197
Cobo, Maria Laura 181

Dunne, Paul E. 197
Dvořák, Wolfgang 32

Falappa, Marcelo A. 147
Fan, Xiuyi 263

Gabbay, Dov M. 215, 232
Garćıa, Alejandro J. 147
Giacomin, Massimiliano 197

Hindriks, Koen V. 85

Jonker, Catholijn M. 85

Kern-Isberner, Gabriele 147
Krümpelmann, Patrick 147

Li, Hengfei 1

Maio, Paulo 163
Martinez, Diego C. 181
McBurney, Peter 50
Medellin-Gasque, Rolando 50

Norman, Timothy J. 1, 117

Oren, Nir 1, 117

Payne, Terry 67
Perotti, Alan 215, 232

Rienstra, Tjitze 215
Riley, Luke 67
Rotstein, Nicolás D. 117

Santini, Francesco 99
Silva, Nuno 163
Simari, Guillermo R. 147, 181

Thimm, Matthias 147
Toni, Francesca 249, 263
Torroni, Paolo 249

van der Torre, Leendert 215, 232
Villata, Serena 215, 232
Visser, Wietske 85

Wong, Renata 17

	Title

	Preface
	Organization
	Table of Contents
	Theory and Applications of Formal Argumentation
	Probabilistic Argumentation Frameworks
	Introduction
	Probabilistic Argumentation Frameworks
	Formalising Probabilistic Argumentation Frameworks
	Probabilistic Justification

	Approximate Solutions in Probabilistic Argumentation Frameworks
	Evaluation
	Applying PrAFs to Coalition Formation
	Discussion and Future Work
	Conclusions
	References

	Splitting Argumentation Frameworks: An Empirical Evaluation

	Introduction
	Background
	Argumentation Frameworks
	Labelling-Based Semantics
	Splitting Results
	Splittings and Strongly Connected Components (SCC)

	Algorithms
	Labelling Algorithms
	Computation of Splitting

	Experimental Results
	Conclusions
	References

	On the Complexity of Computing the Justification Status of an Argument

	Introduction
	Preliminaries
	Justification Status of Arguments
	Complexity Analysis
	General Complexity
	The Complexity of Weak Acceptance

	Conclusion
	References

	Arguments over Co-operative Plans
	Introduction
	Action Representation and Proposal
	Action Representation
	Action Combinations
	Action-Based Alternating Transition Systems
	Proposals for Action

	Plan Proposal and Critical Questions
	Critical Questions for Plan Proposals

	Example
	Related Work
	Conclusion
	References

	An Implemented Dialogue System for Inquiry and Persuasion
	Introduction
	Background
	Extending the Formalisation of Critical Questions
	The State Comparison Definition
	The Additional Critical Questions
	Extending the pAct Protocol
	Defining the Inquiry Protocol
	pAct Strategy

	Implementation
	Implementation Example

	Discussion and Concluding Remarks
	References

	An Argumentation Framework for Qualitative Multi-criteria Preferences

	Introduction
	Qualitative Preference Systems
	Argumentation Framework
	Abstract Argumentation Framework
	Arguments
	Defeat
	Language
	Inference Rules
	Correspondence between QPS and AF

	Reasoning with Background Knowledge
	Language
	Inferences

	Conclusion
	References

	Modeling and Solving AFs with a Constraint-Based Tool: ConArg

	Introduction
	Dung Argumentation
	Constraint Programming
	Mapping AFs to CSPs in ConArg
	Testing ConArg
	Hard Problems Solved with ConArg
	Related Work
	Conclusions and Future Work
	References

	Resource Boundedness and Argumentation
	Introduction
	Resource Boundedness and Traditional Conflicts
	The Resource-Bounded Argumentation Framework
	An Approach for RB-Compliant Extensions: Partitioning
	An Approach for RB-compliant Extensions: Modifying the RAF

	TheFITS Project: An Application for the RAF
	Discussion and Future Work
	Conclusions
	References

	An Empirical Study of a Deliberation Dialogue System
	Introduction
	Model
	Argumentation Model
	Dialogue System
	Consensus Forming
	Measuring Quality of Outcome
	Experimental Set Up

	Results
	Dialogue Is Significantly More Likely to Be Successful Than Consensus Forming
	Successful Dialogues Are More Likely with Higher Numbers of Actions and Values
	Quality of Dialogue Outcome Is Very Rarely Worse Than Quality of Consensus Outcome
	Successful Dialogue Outcomes Are More Likely to Be Globally Agreeable to Both Agents Than Successful Consensus Outcomes
	Average Dialogue Outcome Quality Score Is Higher Than Average Consensus Outcome Quality Score
	Dialogue Length Grows Exponentially with Increasing Arguments

	Discussion
	References

	Selective Revision by Deductive Argumentation
	Introduction
	Preliminaries
	Selective Multiple Base Revision
	Deductive Argumentation
	Selective Revision by Deductive Argumentation
	Related Work
	Conclusion
	References

	A Three-Layer Argumentation Framework
	Introduction
	Abstract Argumentation Frameworks
	Three-Layer Argumentation Framework
	Informal Overview
	Formal Definition

	A Walk-through Example
	A TLAF Model
	Instantiating a TLAF Model

	Deriving Arguments Relationships
	Deriving Support Relationships
	Deriving Attack Relationships
	Exploiting the Derivation Process

	Related Work
	Conclusions and Future Work
	References

	Stable Extensions in Timed Argumentation Frameworks
	Introduction
	Classic Abstract Argumentation
	Time Representation
	Timed Argumentation Framework
	Semantics for Timed Argumentation
	Conclusions and Future Work
	References

	Computing with Infinite Argumentation Frameworks: The Case of AFRAs

	Introduction
	Preliminary Background
	An Example: Moral Dilemmas
	Representing R in afras
	The dfa+ Representation of afras
	Computing the Grounded Extension with the dfa+ Representation
	Conclusions
	References

	Multi-sorted Argumentation
	Introduction
	Preliminaries
	Multi-sorted Argumentation
	Properties
	The Modal Fibring Approach
	Related Work
	Conclusion and Future Work
	References

	Conditional Labelling for Abstract Argumentation

	Introduction
	Background
	Conditional Labels
	Creating Conditional Labels
	Related Work
	Summary
	References

	Bottom-Up Argumentation
	Introduction
	Motivation
	Annotations
	Assumption-Based Argumentation
	An ABA Mapping for Bottom-Up Argumentation
	Conclusions
	References

	A First Step towards Argumentation Dialogues for Discovery

	Introduction
	Background
	Motivating Example
	Goals and Discovery Dialogues
	Debate Trees
	Formal Results
	Related Work
	Conclusion
	References

	Author Index

