

Lecture Notes in Computer Science 7248
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Cecilia Di Chio et al. (Eds.)

Applications
of Evolutionary
Computation
EvoApplications 2012: EvoCOMNET, EvoCOMPLEX,
EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM,
EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC
Málaga, Spain, April 11-13, 2012, Proceedings

13

Volume Editors

see next page

Cover illustration:
"Chair No. 17" by The Painting Fool (www.thepaintingfool.com)

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29177-7 e-ISBN 978-3-642-29178-4
DOI 10.1007/978-3-642-29178-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012934050

CR Subject Classification (1998): F.1, D.2, C.2, I.4, I.2.6, J.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Volume Editors

Cecilia Di Chio
cdichio@gmail.com

Alexandros Agapitos
University College Dublin, Ireland
alexandros.agapitos@ucd.ie

Stefano Cagnoni
Dept. of Computer Engineering
University of Parma, Italy
cagnoni@ce.unipr.it

Carlos Cotta
Dept. Lenguajes y Ciencias
de la Computación
University of Málaga, Spain
ccottap@lcc.uma.es

F. Fernández de Vega
University of Extremadura, Spain
fcofdez@unex.es

Gianni A. Di Caro
“Dalle Molle” Institute for
Artificial Intelligence (IDSIA)
Lugano, Switzerland
gianni@idsia.ch

Rolf Drechsler
Cyber-Physical Systems
DFKI Bremen, Germany
rolf.drechsler@dfki.de

Anikó Ekárt
Computer Science
Aston University, Birmingham, UK
ekarta@aston.ac.uk

Anna I. Esparcia-Alcázar
S2 Grupo, Spain
aesparcia@s2grupo.es

Muddassar Farooq
National University of Computer
and Emerging Sciences
Islamabad, Pakistan
muddassar.farooq@nu.edu.pk

William B. Landgon
University College London, UK
w.langdon@cs.ucl.ac.uk

Juan-J. Merelo-Guervós
Departamento de Arquitectura
y Tecnoloǵıa de Computadores
Universidad de Granada, Spain
jmerelo@geneura.ugr.es

Mike Preuss
TU Dortmund University, Germany
mike.preuss@tu-dortmund.de

Hendrik Richter
Faculty of Electrical Engineering
and Information Technology
HTWK Leipzig University of Applied
Sciences, Germany
richter@eit.htwk-leipzig.de

Sara Silva
INESC-ID Lisboa, Portugal
sara@kdbio.inesc-id.pt

Anabela Simões
Coimbra Institute of Engineering,
Coimbra Polytechnic
Coimbra, Portugal
abs@isec.pt

Giovanni Squillero
Politecnico di Torino, Italy
giovanni.squillero@polito.it

VI Volume Editors

Ernesto Tarantino
Institute for High Performance
Computing and Networking, Italy
ernesto.tarantino@na.icar.cnr.it

Andrea G. B. Tettamanzi
Università degli Studi di Milano, Italy
andrea.tettamanzi@unimi.it

Julian Togelius
Center for Computer Games Research
IT University of Copenhagen
Denmark
juto@itu.dk

Neil Urquhart
Centre for Emergent Computing
Edinburgh Napier University, UK
n.urquhart@napier.ac.uk

A. Şima Uyar
Dept. of Computer Engineering
Istanbul Technical University, Turkey
etaner@itu.edu.tr

Georgios N. Yannakakis
Center for Computer Games Research
IT University of Copenhagen
Denmark
yannakakis@itu.dk

Preface

The field of evolutionary computation (EC) brings together researchers who aim
to solve a wide range of problems using nature-inspired techniques and methods.
The essential operators of natural evolution and genetics (namely, reproduction,
variation and selection) are used to tackle problems in many areas, ranging
from optimization to planning, from design to classification, from simulation to
control.

All the papers in this volume represent carefully chosen, state-of-the-art ex-
amples of applications of EC. They are intended to provide inspiration and
guideline to researchers and professionals willing to use an EC approach to an-
swer their own questions.

This was the 15th year that the EvoApplications conference, as one of the
main events of the Evo* family (it originally started in 1998 as EvoWorkshops),
provided a professional (and social) platform to researchers willing to discuss
the varied aspects of applications of EC.

EvoApplications, year after year, evolves and adapts itself in order to accom-
modate newly emergent topics. Moreover, in this 2012 edition of Evo*, we saw
the EvoMusArt event become a conference in its own right, joining EuroGP (a
conference since 2000), EvoCOP (2004), EvoBIO (2007) and EvoApplications
(2010) in what is described as “Europe’s premier co-located events in the field
of EC.”

EVO* was held during April 11–13, 2012 in the beautiful city of Málaga,
Spain. Evo* 2012 included in addition to EvoApplications: EuroGP, the main
European event dedicated to genetic programming; EvoCOP, the main European
conference on EC in combinatorial optimization; EvoBIO, the main European
conference on EC and related techniques in bioinformatics and computational
biology; EvoMusArt, the main European conference on evolutionary and bio-
logically inspired music, sound, art and design. The proceedings for all of these
events are also available in the LNCS series (volumes 7244, 7245, 7246 and 7247).

The central aim of the EVO* events is to provide researchers, as well as
people from industry, students, and interested newcomers, with an opportunity
to present new results, discuss current developments and applications, or just
become acquainted with the world of EC. Moreover, it encourages and reinforces
possible synergies and interactions between members of all scientific communities
that may benefit from EC techniques.

EvoApplications 2012 consisted of the following 11 tracks:

– EvoCOMNET, track on nature-inspired techniques for telecommunication
networks and other parallel and distributed systems

– EvoCOMPLEX, track on algorithms and complex systems
– EvoFIN, track on evolutionary and natural computation in finance and

economics

VIII Preface

– EvoGAMES, track on bio-inspired algorithms in games
– EvoHOT, track on bio-inspired heuristics for design automation
– EvoIASP, track on EC in image analysis and signal processing
– EvoNUM, track on bio-inspired algorithms for continuous parameter

optimization
– EvoPAR, track on parallel implementation of evolutionary algorithms
– EvoRISK, track on computational intelligence for risk management, security

and defence applications
– EvoSTIM, track on nature-inspired techniques in scheduling, planning and

timetabling
– EvoSTOC, track on evolutionary algorithms in stochastic and dynamic

environments

EvoCOMNET addresses the application of EC techniques to problems in dis-
tributed and connected systems such as telecommunication and computer net-
works, distribution and logistic networks, interpersonal and interorganizational
networks, etc. To address the challenges of these systems, this track promotes the
study and the application of strategies inspired by the observation of biological
and evolutionary processes, that usually show the highly desirable characteristics
of being distributed, adaptive, scalable, and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algo-
rithms (and metaheuristics in general) with complex systems. Complex sys-
tems are ubiquitous in physics, economics, sociology, biology, computer science,
and many other scientific areas. Typically, a complex system is composed of
smaller aggregated components, whose interaction and interconnectedness are
non-trivial. This leads to emergent properties of the system, not anticipated by
its isolated components. Furthermore, when the system behavior is studied from
a temporal perspective, self-organization patterns typically arise.

EvoFIN is the only European event specifically dedicated to the applications
of EC, and related natural computing methodologies, to finance and economics.
Financial environments are typically hard, being dynamic, high-dimensional,
noisy and co-evolutionary. These environments serve as an interesting test bed
for novel evolutionary methodologies.

EvoGAMES aims to focus the scientific developments in computational in-
telligence techniques that may be of practical value for utilization in existing or
future games. Recently, games, and especially video games, have become an im-
portant commercial factor within the software industry, providing an excellent
test bed for application of a wide range of computational intelligence methods.

EvoHOT focuses on all bio-inspired heuristics applied to electronic design
automation. The track’s goal is to show the latest developments, industrial ex-
periences, and successful attempts to evolve rather than design new solutions.
EvoHOT 2012 allows one both to peek into the problems that will be faced in
the next generation of electronics, and to demonstrate innovative solutions to
classical CAD problems, such as fault tolerance and test.

EvoIASP, the longest-running of all EvoApplications which celebrated its
14th edition this year, has been the first international event solely dedicated

Preface IX

to the applications of EC to image analysis and signal processing in complex
domains of high industrial and social relevance.

EvoNUM aims at applications of bio-inspired algorithms, and cross-fertiliza-
tion between these and more classical numerical optimization algorithms, to con-
tinuous optimization problems in engineering. It deals with theoretical aspects
and engineering applications where continuous parameters or functions have to
be optimized, in fields such as control, chemistry, agriculture, electricity, building
and construction, energy, aerospace engineering, and design optimization.

EvoPAR covers all aspects of the application of parallel and distributed sys-
tems to EC as well as the application of evolutionary algorithms for improving
parallel architectures and distributed computing infrastructures. EvoPAR fo-
cuses on the application and improvement of distributed infrastructures, such as
grid and cloud computing, peer-to-peer (P2P) system, as well as parallel archi-
tectures, GPUs, manycores, etc. in cooperation with evolutionary algorithms.

Recent events involving both natural disasters and man-made attacks have
emphasized the importance of solving challenging problems in risk management,
security and defence. EvoRISK seeks both theoretical developments and appli-
cations of computational intelligence to subjects such as cyber crime, IT secu-
rity, resilient and self-healing systems, risk management, critical infrastructure
protection (CIP), military, counter-terrorism and other defence-related aspects,
disaster relief and humanitarian logistics, and real-world applications of these
subjects.

EvoSTIM presents an opportunity for EC researchers in the inter-related
areas of planning, scheduling and timetabling to come together, present their
latest research and discuss current developments and applications.

EvoSTOC addresses the application of EC in stochastic and dynamic en-
vironments. This includes optimization problems with changing, noisy, and/or
approximated fitness functions and optimization problems that require robust
solutions. These topics recently gained increasing attention in the EC commu-
nity and EvoSTOC was the first event that provided a platform to present and
discuss the latest research in this field.

Continuing in the tradition of adapting the list of events to the needs and
demands of the researchers working in the field of EC, two new tracks were intro-
duced: EvoPAR (track on parallel implementation of evolutionary algorithms)
and EvoRISK (track on computational intelligence for risk management, security
and defence applications).

The number of submissions to EvoApplications 2012 was again fairly high,
accumulating 90 entries (compared to 162 in 2011 and 191 in 2010 – bearing in
mind that these numbers included submissions for EvoMusArt). The following
table shows relevant statistics for EvoApplications 2012, where the statistics for
the 2011 edition are also reported.

X Preface

2012 Previous edition
Submissions Accept Ratio Submissions Accept Ratio

EvoCOMNET 6 4 67% 15 8 53%
EvoCOMPLEX 13 9 69% 11 5 45%
EvoFIN 9 6 67% 8 6 75%
EvoGAMES 13 9 69% 17 11 65%
EvoHOT 2 1 50% 7 5 71%
EvoIASP 13 7 54% 19 7 37%
EvoMUSART - - - 43 24 56%
EvoNUM 12 4 33% 9 5 56%
EvoPAR 10 8 80% - - -
EvoRISK 2 1 50% - - -
EvoSTIM 3 2 67% 9 4 44%
EvoSTOC 7 3 43% 8 5 63%
Total 90 54 60% 162 87 54%

As for previous years, accepted papers were split into oral presentations and
posters. And similarly to last year, the paper length for these two categories
was the same for all the tracks. The low acceptance rate of 60% for EvoAppli-
cations 2012 is an indicator of the high quality of the articles presented at the
events, showing the liveliness of the scientific movement in the corresponding
fields.

Many people helped make EvoApplications a success. We would like to thank
the following institutions:

– The University of Málaga, and particularly the School of Computer Science
with its director Prof. José M. Troya, and the School of Telecommunications
with its director Prof. Antonio Puerta

– The Málaga Convention Bureau
– The Institute for Informatics and Digital Innovation at Edinburgh Napier

University, UK, for administrative help and event coordination

Even with an excellent support and location, an event like EVO* would not
have been feasible without authors submitting their work, members of the Pro-
gram Committees dedicating energy in reviewing those papers, and an audience.
All these people deserve our gratitude.

Finally, we are grateful to all those involved in the preparation of the event,
especially Jennifer Willies for her unfaltering dedication to the coordination of
the event over the years. Without her support, running such a type of confer-
ence with a large number of different organizers and different opinions would
be unmanageable. Further thanks to the local organizer Carlos Cotta (Univer-
sity of Málaga, Spain) for making the organization of such an event possible and

Preface XI

successful. Last but surely not least, we want to specially acknowledge Penousal
Machado (University of Coimbra, Portugal) for his hard work as Publicity Chair
and Webmaster, and Marc Schoenauer (INRIA, France) for his continuous help
in setting up and maintaining the MyReview management software.

April 2012 Cecilia Di Chio Mike Preuss
Alexandros Agapitos Hendrik Richter

Stefano Cagnoni Sara Silva
Carlos Cotta Anabela Simões

F. Fernández de Vega Giovanni Squillero
Gianni Di Caro Ernesto Tarantino
Rolf Drechsler Andrea G.B. Tettamanzi

Anikó Ekárt Julian Togelius
Anna I Esparcia-Alcázar Neil Urqhart

Muddassar Farooq A. Şima Uyar
William B. Langdon Georgios N. Yannakakis

Juan-J Merelo-Guervós

Organization

EvoApplications 2012 was part of EVO* 2012, Europe’s premier co-located
events in the field of evolutionary computing, that included the conferences
EuroGP 2012, EvoCOP 2012, EvoBIO 2012 and EvoMusArt 2012.

Organizing Committee

EvoApplications Chair

Cecilia Di Chio UK

Local Chair

Carlos Cotta University of Málaga, Spain

Publicity Chair

Penousal Machado University of Coimbra, Portugal

EvoCOMNET Co-chairs
Gianni A. Di Caro IDSIA, Switzerland
Muddassar Farooq National University of Computer and Emerging

Sciences, Pakistan
Ernesto Tarantino Institute for High Performance Computing and

Networking, Italy

EvoCOMPLEX Co-chairs
Carlos Cotta University of Málaga, Spain
Juan-J. Merelo-Guervós Universidad de Granada, Spain

EvoFIN Co-chairs
Andrea G.B. Tettamanzi Università degli Studi di Milano, Italy
Alexandros Agapitos University College Dublin, Ireland

EvoGAMES Co-chairs
Mike Preuss TU Dortmund University, Germany
Julian Togelius IT University of Copenhagen, Denmark
Georgios N. Yannakakis IT University of Copenhagen, Denmark

EvoHOT Co-chairs
Giovanni Squillero Politecnico di Torino, Italy
Rolf Drechsler Cyber-Physical Systems, DFKI Bremen,

Germany

XIV Organization

EvoIASP Chair

Stefano Cagnoni University of Parma, Italy

EvoNUM Co-chairs
Anna I Esparcia-Alcázar S2 Grupo, Spain
Anikó Ekárt Aston University, UK

EvoPAR Co-chairs
F. Fernández de Vega University of Extremadura, Spain
William B. Langdon University College London, UK

EvoRISK Co-chairs
Anna I Esparcia-Alcázar S2 Grupo, Spain
Sara Silva INESC-ID Lisboa, Portugal

EvoSTIM Co-chairs
A. Şima Uyar Istanbul Technical University, Turkey
Neil Urquhart Edinburgh Napier University, UK

EvoSTOC Co-chairs
Hendrik Richter HTWK Leipzig University of Applied Sciences,

Germany
Anabela Simões Coimbra Institute of Engineering,

Coimbra Polytechnic, Portugal

Program Committees

EvoCOMNET Program Committee

Özgür B. Akan Middle East Technical University, Turkey
Qing Anyong National University of Singapore, Singapore
Payman Arabshahi University of Washington, USA
Mehmet E. Aydin University of Bedfordshire, UK
Alexandre Caminada University of Technology Belfort-Montbéliard,

France
Iacopo Carreras CREATE-NET, Italy
Frederick Ducatelle IDSIA, Switzerland
Luca Gambardella IDSIA, Switzerland
Kenji Leibnitz Osaka University, Japan
Domenico Maisto ICAR CNR, Italy
Roberto Montemanni IDSIA, Switzerland
Enrico Natalizio INRIA Lille, France
Conor Ryan University of Limerick, Ireland
Muhammad Saleem National University of Computer and Emerging

Technologies, Pakistan
Chien-Chung Shen University of Delaware, USA

Organization XV

Jun Suzuki University of Massachusetts, USA
Tony White Carleton University, Canada
Lidia Yamamoto University of Basel, Switzerland
Nur Zincir-Heywood Dalhousie University, Canada

EvoCOMPLEX Program Committee

Antonio Córdoba Universidad de Sevilla, Spain
Carlos Cotta Universidad de Málaga, Spain
Jordi Delgado Universitat Politècnica de Catalunya, Spain
Albert Dı́az-Guilera University of Barcelona, Spain
Marc Ebner University of Tübingen, Germany
Carlos Fernandes University of Granada, Spain
José E. Gallardo Universidad de Málaga, Spain
Maŕıa Isabel Garćıa Arenas University of Granada, Spain
Carlos Gershenson UNAM, Mexico
Anca Gog Babes-Bolyai University, Romania
Márk Jelasity University of Szeged, Hungary
Juan Luis Jiménez University of Luxembourg, Luxembourg
Antonio J. Fernández-Leiva University of Málaga, Spain
Juan-J Merelo-Guervós Universidad de Granada, Spain
Antonio Nebro University of Málaga, Spain
Joshua L. Payne University of Vermont, USA
Katya Rodŕıguez-Vázquez UNAM, Mexico
Robert Schaefer AGH University of Science and Technology,

Poland
Marco Tomassini Université de Lausanne, Switzerland
Alberto Tonda Politecnico di Torino, Italy
Leonardo Vanneschi University of Milano-Bicocca, Italy

EvoFIN Program Committee

Alexandros Agapitos University College Dublin, Ireland
Jonathan Arriaga Instituto Tecnológico y de Estudios Superiores

de Monterrey, Mexico
Antonia Azzini Università degli Studi di Milano, Italy
Carlos Cotta Universidad de Málaga, Spain
Wei Cui University College Dublin, Ireland
Mauro Dragoni Fondazione Bruno Kessler, Italy
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Ronald Hochreiter Vienna University of Economics and Business,

Austria
Serafin Martinez Jaramillo Bank of Mexico, Mexico
Piotr Lipinski University of Wroclaw, Poland
Michael Mayo University of Waikato, New Zealand
José Pinto Instituto Superior Técnico, Portugal
Andrea Tettamanzi Università degli Studi di Milano, Italy
Nikolaos Thomaidis University of the Aegean, Greece

XVI Organization

EvoGAMES Program Committee

Phillipa Avery University of Nevada, USA
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Luigi Barone University of Western Australia, Australia
Robin Baumgarten Imperial College London, UK
Paolo Burelli IT-Universitetet i København, Denmark
Simon Colton Imperial College London, UK
Ernesto Costa Universidade de Coimbra, Portugal
Marc Ebner University of Tübingen, Germany
Anna Esparcia Alcázar S2 Grupo, Spain
F. Fernández de Vega Universidad de Extremadura, Spain
Antonio J. Fernández-Leiva Universidad de Málaga, Spain
Edgar Galvan-Lopes University College Dublin, Ireland
Leo Galway University of Ulster, UK
Johan Hagelbäck Blekinge Tekniska Högskola, Sweden
John Hallam University of Southern Denmark
Erin Hastings University of Central Florida, USA
Philip Hingston Edith Cowan University, Australia
Stefan Johansson Blekinge Tekniska Högskola, Sweden
Rilla Khaled IT-Universitetet i København, Denmark
Krzysztof Krawiec Poznan University of Technology, Poland
Pier Luca Lanzi Politecnico di Milano, Italy
Simon Lucas University of Essex, UK
Rodica Ioana Lung Babes Bolyai University, Cluj Napoca,

Romania
Penousal Machado Universidade de Coimbra, Portugal
Tobias Mahlmann IT-Universitetet i København, Denmark
Hector P. Martinez IT-Universitetet i København, Denmark
Juan-J Merelo-Guervós Universidad de Granada, Spain
Risto Miikkulainen University of Texas at Austin, USA
Antonio Mora Universidad de Granada, Spain
Miguel Nicolau University College Dublin, Ireland
Steffen Priesterjahn Wincor Nixdorf, Germany
Jan Quadflieg TU Dortmund, Germany
Jacob Schrum University of Texas at Austin, USA
Noor Shaker IT-Universitetet i København, Denmark
Moshe Sipper Ben-Gurion University, Israel
Terence Soule University of Idaho, USA

EvoHOT Program Committee

Varun Aggarwal Aspiring Minds, Haryana, India
Angan Das Intel Corporation, USA
Stefano Di Carlo Politecnico di Torino, Italy
Rolf Drechsler Cyber-Physical Systems, DFKI Bremen,

Germany

Organization XVII

Carlos Gershenson Universidad Nacional Autónoma de México,
Mexico

Gregor Papa Jozef Stefan Institute, Slovenia
E.J. Solteiro Pires Universidade de Trás-os-Montes e Alto Douro,

Portugal
Ernesto Sanchez Politecnico di Torino, Italy
Lukas Sekanina Brno University of Technology, Czech Republic
Massimo Schillaci Dora Tech, Italy
Giovanni Squillero Politecnico di Torino, Italy
Alberto Tonda Insitut des Systémes Complexes - Paris

Île-de-France (ISC-PIF), France

EvoIASP Program Committee

Antonia Azzini Università degli Studi di Milano, Italy
Lucia Ballerini University of Edinburgh, UK
Leonardo Bocchi University of Florence, Italy
Stefano Cagnoni University of Parma, Italy
Oscar Cordon European Center for Soft Computing, Spain
Sergio Damas European Center for Soft Computing, Spain
Ivanoe De Falco ICAR - CNR, Italy
Antonio Della Cioppa University of Salerno, Italy
Laura Dipietro MIT, USA
Marc Ebner University of Tübingen, Germany
Francesco Fontanella University of Cassino, Italy
Şpela Ivekoviç University of Glasgow, UK
Mario Koeppen Kyushu Institute of Technology, Japan
Krisztof Krawiec Poznan University of Technology, Poland
Jean Louchet INRIA, France
Evelyne Lutton INRIA, France
Luca Mussi Henesis srl, Italy
Ferrante Neri University of Jyväskylä, Finland
Gustavo Olague CICESE, Mexico
Riccardo Poli University of Essex, UK
Stephen Smith University of York, UK
Giovanni Squillero Politecnico di Torino, Italy
Kiyoshi Tanaka Shinshu University, Japan
Andy Tyrrell University of York, UK
Leonardo Vanneschi University of Milano-Bicocca, Italy
Mengjie Zhang Victoria University of Wellington, New Zealand

EvoNUM Program Committee

Anne Auger INRIA, France
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria
Ying-ping Chen National Chiao Tung University, Taiwan

XVIII Organization

Marc Ebner Ernst-Moritz-Universität Greifswald, Germany
F. Fernández de Vega Universidad de Extremadura, Spain
Nikolaus Hansen INRIA, France
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Andras Joo Aston University, UK
William B. Langdon University College London, UK
Boris Naujoks Log!n GmbH, Germany
Ferrante Neri University of Jyväskylä, Finland
Mike Preuss TU Dortmund University, Germany
Gabriela Ochoa University of Nottingham, UK
Petr Poš́ık Czech Technical University, Czech Republic
Günter Rudolph University of Dortmund, Germany
Ivo F. Sbalzarini ETH Zurich, Switzerland
Marc Schoenauer INRIA, France
P.N. Suganthan Nanyang Technological University, Singapore
Olivier Teytaud INRIA, France
A. Şima Uyar Istanbul Technical University, Turkey
Darrell Whitley Colorado State University, USA

EvoPAR Program Committee

Pierre Collet Strasbourg University, France
Gianluigi Folino L’ICAR-CNR, Cosenza, Italy
Stephane Gobron EPFL, Switzerland
Simon Harding IDSIA, Switzerland
Malcolm Heywood Dalhousie University, Canada
José Ignacio Hidalgo University Complutense Madrid, Spain
Ogier Maitre Strasbourg University, France
Juan-J Merelo-Guervós University of Granada, Spain
Jose Carlos Ribeiro Polytechnic Institute of Leiria, Portugal
Denis Robilliard l’Universite du Littoral-Cote d’Opale, France
Marco Tomassini Lausanne University, Switzerland
Shigeyoshi Tsutsui Hannan University, Japan
Leonardo Vanneschi University of Milano-Bicocca, Italy
Garnett Wilson Afinin Labs, Inc., Canada
Tien-Tsin Wong The Chinese University of Hong Kong, China
Qizhi Yu INRIA, France

EvoRISK Program Committee

Hussein Abbass UNSW@Australian Defence Force Academy,
Australia

Robert K. Abercrombie Oak Ridge National Laboratory, USA
Rami Abielmona University of Ottawa, Canada
Anas Abou El Kalam IRIT-INP Toulouse, France
Marco Carvalho IHMC, USA
Nabendu Chaki University of Calcutta, India
Sudip Chakraborty Valdosta State University, USA

Organization XIX

Mario Cococcioni Applied Research Department, NATO
Undersea Research Centre, Italy

Dipankar Dasgupta University of Memphis, USA
Josep Domingo-Ferrer Rovira i Virgili University, Spain
Josep Llúıs Ferrer Universitat de les Illes Balears, Spain
Solange Ghernaouti-Hélie University of Lausanne, Switzerland
Yi Gu University of Tennessee, USA
Malcolm Heywood Dalhousie University, Canada
Miguel Juan S2 Grupo, Spain
Gunes Kayacik Nominum, USA
Javier Lopez Universidad de Málaga, Spain
Rabinarayan Mahapatra Texas A&M, USA
Antonio Manzalini Telecom Italia, Italy
Owen McCusker Sonalysts, USA
David Meǵıas UOC, Spain
Javier Montero Universidad Complutense de Madrid, Spain
Frank W. Moore University of Alaska Anchorage, USA
Srinivas Mukkamala New Mexico Tech, USA
Akira Namatame National Defense Academy, Japan
Srini Ramaswamy ABB Corporate Research Center, Bangalore,

India
Martin Rehak Czech Technical University, Czech Republic
J. Tinguaro Rodŕıguez Universidad Complutense de Madrid, Spain
Kouichi Sakurai Kyushu University, Japan
Guillermo Suarez de Tangil Universidad Carlos III de Madrid, Spain
Shamik Sural Indian Institute of Technology, Kharagpur,

India
Kay Chen Tan National University of Singapore, Singapore
Gregorio Tirado Universidad Complutense de Madrid, Spain
Vicenç Torra CSIC, Spain
Shambhu Upadhyaya State University of New York at Buffalo, USA
Antonio Villalón S2 Grupo, Spain
Xinyuan Wang George Mason University, USA
Xin Yao University of Birmingham, UK
Nur Zincir-Heywood Dalhousie University, Canada

EvoSTIM Program Committee

Emma Hart Edinburgh Napier University, UK
John Levine Strathclyde University, UK
Ryhd Lewis Cardiff University, UK
Daniel Merkle University of Southern Denmark, Denmark
Martin Middendorf University of Leipzig, Germany
Ender Ozcan Nottingham University, UK
Sanja Petrovic Nottingham University, UK
Nelishia Pillay University of KwaZulu-Natal, South Africa
Rong Qu Nottingham University, UK

XX Organization

Sanem Sariel Istanbul Technical University, Turkey
Greet Vanden Berghe Universiteit Brussel, Belgium
Shengxiang Yang University of Leicester, UK

EvoSTOC Program Committee

Enrique Alba University of Málaga, Spain
Peter Bosman Centre for Mathematics and Computer Science,

The Netherlands
Juergen Branke University of Warwick, UK
Tan Kay Chen National University of Singapore, Singapore
Ernesto Costa University of Coimbra, Portugal
Kalyanmoy Deb Indian Institute of Technology Kanpur, India
Andries Engelbrecht University of Pretoria, South Africa
A. Şima Uyar Istanbul Technical University, Turkey
Ferrante Neri University of Jyväskylä, Finland
Hendrik Richter Leipzig University of Applied Sciences,

Germany
Philipp Rohlfshagen University of Essex, UK
Briseida Sarasola University of Málaga, Spain
Anabela Simões Coimbra Institute of Engineering,

Coimbra Polytechnic, Coimbra, Portugal
Ke Tang University of Science and Technology of China,

China
Renato Tinós Universidade de São Paulo, Brazil
Krzysztof Trojanowski Polish Academy of Science, Poland
Shengxiang Yang Brunel University, UK

Sponsoring Institutions

– University of Málaga – the School of Computer Science and the School of
Telecommunications, Málaga, Spain

– The Málaga Convention Bureau
– The Institute for Informatics and Digital Innovation at Edinburgh Napier

University, UK

Table of Contents

EvoCOMNET Contributions

Optimizing Energy Consumption in Heterogeneous Wireless Sensor
Networks by Means of Evolutionary Algorithms . 1

José Manuel Lanza-Gutiérrez, Juan Antonio Gómez-Pulido,
Miguel A. Vega-Rodŕıguez, and Juan Manuel Sánchez-Pérez

Network Protocol Discovery and Analysis via Live Interaction 11
Patrick LaRoche, A. Nur Zincir-Heywood, and Malcolm I. Heywood

Evolutionary Design of Active Free Space Optical Networks Based on
Digital Mirror Devices . 21

Steffen Limmer, Dietmar Fey, Ulrich Lohmann, and Jürgen Jahns

Frequency Robustness Optimization with Respect to Traffic
Distribution for LTE System . 31

Nourredine Tabia, Alexandre Gondran, Oumaya Baala, and
Alexandre Caminada

EvoCOMPLEX Contributions

Small-World Optimization Applied to Job Scheduling on Grid
Environments from a Multi-Objective Perspective . 42

Maŕıa Arsuaga-Rı́os, Francisco Prieto-Castrillo, and
Miguel A. Vega-Rodŕıguez

Testing Diversity-Enhancing Migration Policies for Hybrid On-Line
Evolution of Robot Controllers . 52

Pablo Garćıa-Sánchez, A.E. Eiben, Evert Haasdijk,
Berend Weel, and Juan-Julián Merelo-Guervós

Evolutionary Optimization of Pheromone-Based Stigmergic
Communication . 63

Tüze Kuyucu, Ivan Tanev, and Katsunori Shimohara

Hyperparameter Tuning in Bandit-Based Adaptive Operator
Selection . 73

Maciej Pacula, Jason Ansel, Saman Amarasinghe, and
Una-May O’Reilly

Analyzing Dynamic Fitness Landscapes of the Targeting Problem of
Chaotic Systems . 83

Hendrik Richter

XXII Table of Contents

Self-organization and Specialization in Multiagent Systems through
Open-Ended Natural Evolution . 93

Pedro Trueba, Abraham Prieto, Francisco Bellas,
Pilar Caamaño, and Richard J. Duro

An Empirical Tool for Analysing the Collective Behaviour of
Population-Based Algorithms . 103

Mikdam Turkey and Riccardo Poli

Sales Potential Optimization on Directed Social Networks:
A Quasi-parallel Genetic Algorithm Approach . 114

Crown Guan Wang and Kwok Yip Szeto

The Emergence of Multi-cellular Robot Organisms through On-Line
On-Board Evolution . 124

Berend Weel, Evert Haasdijk, and A.E. Eiben

EvoFIN Contributions

Evolving Seasonal Forecasting Models with Genetic Programming in
the Context of Pricing Weather-Derivatives . 135

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Steepest Ascent Hill Climbing for Portfolio Selection 145
Jonathan Arriaga and Manuel Valenzuela-Rendón

A Neuro-evolutionary Approach to Intraday Financial Modeling 155
Antonia Azzini, Mauro Dragoni, and Andrea G.B. Tettamanzi

A Comparative Study of Multi-objective Evolutionary Algorithms
to Optimize the Selection of Investment Portfolios with Cardinality
Constraints . 165

Feijoo E. Colomine Duran, Carlos Cotta, and
Antonio J. Fernández-Leiva

A GA Combining Technical and Fundamental Analysis for Trading the
Stock Market . 174

Iván Contreras, José Ignacio Hidalgo, and Laura Núñez-Letamendia

Evolutionary Data Selection for Enhancing Models of Intraday Forex
Time Series . 184

Michael Mayo

EvoGAMES Contributions

Initial Results from Co-operative Co-evolution for Automated
Platformer Design . 194

Michael Cook, Simon Colton, and Jeremy Gow

Table of Contents XXIII

Evolving Third-Person Shooter Enemies to Optimize Player Satisfaction
in Real-Time . 204

José M. Font

Why Simulate? Hybrid Biological-Digital Games . 214
Maarten H. Lamers and Wim van Eck

Spicing Up Map Generation . 224
Tobias Mahlmann, Julian Togelius, and Georgios N. Yannakakis

Dealing with Noisy Fitness in the Design of a RTS Game Bot 234
Antonio M. Mora, Antonio Fernández-Ares,
Juan-Julián Merelo-Guervós, and Pablo Garćıa-Sánchez

On Modeling, Evaluating and Increasing Players’ Satisfaction
Quantitatively: Steps towards a Taxonomy . 245

Mariela Nogueira, Carlos Cotta, and Antonio J. Fernández-Leiva

Monte-Carlo Tree Search for the Physical Travelling Salesman
Problem . 255

Diego Perez, Philipp Rohlfshagen, and Simon M. Lucas

Diversified Virtual Camera Composition . 265
Mike Preuss, Paolo Burelli, and Georgios N. Yannakakis

Digging Deeper into Platform Game Level Design: Session Size and
Sequential Features . 275

Noor Shaker, Georgios N. Yannakakis, and Julian Togelius

EvoHOT Contributions

Robot Base Disturbance Optimization with Compact Differential
Evolution Light . 285

Giovanni Iacca, Fabio Caraffini, Ferrante Neri, and Ernesto Mininno

EvoIASP Contributions

Electrocardiographic Signal Classification with Evolutionary Artificial
Neural Networks . 295

Antonia Azzini, Mauro Dragoni, and Andrea G.B. Tettamanzi

A Genetic Fuzzy Rules Learning Approach for Unseeded Segmentation
in Echography . 305

Leonardo Bocchi and Francesco Rogai

Object Recognition with an Optimized Ventral Stream Model Using
Genetic Programming . 315

Eddie Clemente, Gustavo Olague, León Dozal, and Mart́ın Mancilla

XXIV Table of Contents

Evolving Visual Attention Programs through EVO Features 326
León Dozal, Gustavo Olague, Eddie Clemente, and Marco Sánchez

Evolutionary Purposive or Behavioral Vision for Camera Trajectory
Estimation . 336

Daniel Hernández, Gustavo Olague, Eddie Clemente, and León Dozal

On Evolutionary Approaches to Unsupervised Nearest Neighbor
Regression . 346

Oliver Kramer

Evolutionary Regression Machines for Precision Agriculture 356
Heikki Salo, Ville Tirronen, and Ferrante Neri

EvoNUM Contributions

A Generic Approach to Parameter Control . 366
Giorgos Karafotias, S.K. Smit, and A.E. Eiben

Applying (Hybrid) Metaheuristics to Fuel Consumption Optimization
of Hybrid Electric Vehicles . 376

Thorsten Krenek, Mario Ruthmair, Günther R. Raidl, and
Michael Planer

Improved Topological Niching for Real-Valued Global Optimization 386
Mike Preuss

Towards a Deeper Understanding of Trade-offs Using Multi-objective
Evolutionary Algorithms . 396

Pradyumn Kumar Shukla, Christian Hirsch, and Hartmut Schmeck

EvoPAR Contributions

OpenCL Implementation of Particle Swarm Optimization:
A Comparison between Multi-core CPU and GPU Performances 406

Stefano Cagnoni, Alessandro Bacchini, and Luca Mussi

A Library to Run Evolutionary Algorithms in the Cloud Using
MapReduce . 416

Pedro Fazenda, James McDermott, and Una-May O’Reilly

A Fair Comparison of Modern CPUs and GPUs Running the Genetic
Algorithm under the Knapsack Benchmark . 426

Jiri Jaros and Petr Pospichal

Validating a Peer-to-Peer Evolutionary Algorithm . 436
Juan Luis Jiménez Laredo, Pascal Bouvry, Sanaz Mostaghim, and
Juan-Julián Merelo-Guervós

Table of Contents XXV

Pool-Based Distributed Evolutionary Algorithms Using an Object
Database . 446

Juan-Julián Merelo-Guervós, Antonio M. Mora, J. Albert Cruz, and
Anna I. Esparcia

Migration and Replacement Policies for Preserving Diversity in
Dynamic Environments . 456

David Millán-Ruiz and José Ignacio Hidalgo

Distributed Simulated Annealing with MapReduce 466
Atanas Radenski

Flex-GP: Genetic Programming on the Cloud . 477
Dylan Sherry, Kalyan Veeramachaneni, James McDermott, and
Una-May O’Reilly

EvoRISK Contributions

Customized Normalcy Profiles for the Detection of Targeted Attacks . . . 487
Victor Skormin, Tomas Nykodym, Andrey Dolgikh, and
James Antonakos

EvoSTIM Contributions

A Novel Multiobjective Formulation of the Robust Software Project
Scheduling Problem . 497

Francisco Chicano, Alejandro Cervantes, Francisco Luna, and
Gustavo Recio

Optimizing the Unlimited Shift Generation Problem 508
Nico Kyngäs, Dries Goossens, Kimmo Nurmi, and Jari Kyngäs

EvoSTOC Contributions

Ant Colony Optimization with Immigrants Schemes for the Dynamic
Vehicle Routing Problem . 519

Michalis Mavrovouniotis and Shengxiang Yang

Evolving Communication in Robotic Swarms Using On-Line, On-Board,
Distributed Evolutionary Algorithms . 529

Luis E. Pineda, A.E. Eiben, and Marteen van Steen

Virtual Loser Genetic Algorithm for Dynamic Environments 539
Anabela Simões and Ernesto Costa

Author Index . 549

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 1–10, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Optimizing Energy Consumption in Heterogeneous
Wireless Sensor Networks by Means of Evolutionary

Algorithms

José Manuel Lanza-Gutiérrez, Juan Antonio Gómez-Pulido,
Miguel A. Vega-Rodríguez, and Juan Manuel Sánchez-Pérez

Dep. of Technologies of Computers and Communications, University of Extremadura,
Polytechnic School, Campus Universitario s/n, 10003 Cáceres, Spain

{jmlanza,jangomez,mavega,sanperez}@unex.es

Abstract. The use of wireless sensor networks has been increased substantially.
One of the main inconveniences of this kind of networks is the energy
efficiency; for this reason, there are some works trying to solve it. Traditionally,
these networks were only composed by sensors, but now auxiliary elements
called routers have been included to facilitate communications and reduce
energy consumption. In this work, we have studied the inclusion of routers in a
previously established traditional wireless sensor network in order to increase
its energy efficiency, optimizing lifetime and average energy effort. For this
purpose, we have used two multi-objective evolutionary algorithms: NSGA-II
and SPEA-2. We have done experiments over various sceneries, checking by
means of statically techniques that SPEA-2 offers better results for more
complex instances.

Keywords: Heterogeneous wireless sensor networks, multi-objective
optimization, evolutionary algorithms, NSGA-II, SPEA-2, energy consumption,
lifetime, average energy effort.

1 Introduction

The use of wireless sensor networks (WSNs) has increased substantially in the last
years [1-4]. Both, boom of this technology and its versatility, have favored the
appearance of applications in civil areas (industrial control, environmental monitoring,
intensive agriculture, fire protection systems, and so) and military areas (rescue
operations, surveillance, etc.).

An important aspect in the use of WSNs is the energy efficient. Usually, this kind of
networks are powered by batteries (both lack of cabling and freedom of positioning are
one of its attractions), thus network lifetime depends on amount of information
transmitted by sensors, as well as its scope, among others.

The design of an energy-efficient WSN has been established as a NP-hard [5]
optimization problem by some authors [6, 7], so it is a suitable problem for being
solved by several strategies. Beginning with heuristics, we can cite the contributions of
Xiuzhen Cheng et al. [8] (to optimize network lifetime on WSNs, by means of the

2 J.M. Lanza-Gutiérrez et al.

assignment of transmission powers to sensors) and Huang et al. [9] (to minimize power
consumption of sensors, using for this purpose various estimation schemes). In
addition to heuristics, there are other works that use genetic algorithms for single-
objective optimization. For example Ferentinos et al. [10] propose to optimize
energetic consumption based on several factors (connectivity, transmission powers,
etc.), but using a unique objective function.

Genetic algorithms for multi-objective optimization have been used too. For
example, Konstantinidis et al. [11] propose a new multi-objective evolutionary
algorithm (MOEA) to optimize coverage and power consumption; and He et al. [12] to
optimize reliability coverage and network lifetime.

Nowadays, WSNs are more complex due to the fact that auxiliary elements (routers)
have been included in order to minimize communication among sensors [13, 14],
increasing both network speed and lifetime of sensors. We can find some references
about this topic. Thus, M. Cardei et al. [15] studied sensor position on a pre-established
network of routers to optimize both coverage and energetic cost; and Duarte-Melo et
al. [16] to optimize lifetime and energy consumption.

In this work, we have studied the inclusion of routers in a previously established
homogeneous WSN in order to increase its energy efficiency, optimizing lifetime and
average energy effort. As we have said previously, this is a multi-objective NP-hard
problem, so we need to use certain techniques to facilitate its resolution, like
evolutionary algorithms [17]. We have used two well-known MOEAs: NSGA-II (Non-
dominated Sorting Genetic Algorithm II) [18] and SPEA-2 (Strength Pareto
Evolutionary Algorithm II) [19]. In summary, our work shows the following
contributions:

1) The problem has been solved by means of evolutionary techniques.
2) We have optimized over two objectives that have not been considered jointly in

any paper found: lifetime and average energy effort. In addition, a third non-
simultaneous objective was considered: number of routers.

3) The results obtained of both MOEAs have been analyzed in depth using
statistical procedures, comparing both heterogeneous and homogeneous WSN for the
same instances. Demonstrating both, this conception allows increasing energy
efficiency substantially and SPEA-2 provides betters results for more complex
instances.

The rest of this paper is organized as follow. In the second section we provide a brief
introduction on heterogeneous WSN design. The methodology followed to solve this
problem appears in section 3. In the fourth section, we present an evaluation of results
using statistical techniques. A comparative with other approaches appear in section 5.
Finally, conclusions and future work are left for section 7.

2 Heterogeneous Wireless Sensor Network

In this work, we study the deployment of a heterogeneous WSN as an alternative to
traditional homogeneous WSN. This section provides basic design aspects in WSN:
first, definition of elements involved in this problem, below fitness functions to
determine goodness of solutions obtained (topologies), finally restrictions on
topologies.

 Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks 3

2.1 Problem Instance Definition

A particular problem instance will be defined by several elements:

• M terminals or sensors that capture physical information about their environment.
• A collector or sink node (C) that collects information provided by routers or

sensors.
• N routers that establish network communications and collect information about

sensors in its communication radius.
• Width (Dx) and height (Dy) of the scenery (space where network will be placed).
• Communication radius (Rc). It is the capacity of a network element (router, sensor

or collector) to establish communications with other elements.
• Sensitivity radius (Rs) of a sensor. It is the terrain portion over which a sensor can

obtain information.
• Initial energy (IE). It is the amount of maximum initial energy that each sensor

have initially.
• Information packet size (K). It is the packet size send by sensors.
• α is the path lost exponent [11].
• β is the transmission quality parameter [11].
• amp is the power amplifier’s energy consumption per bit[11].

The definition of this problem is similar to [15]. We can observe in Fig. 1 a
representation of the definition of a problem instance.

Fig. 1. Definition of a problem instance

2.2 Fitness Functions

The most important energetic factors have been used to deploy the network: lifetime
(to maximize) and average energy effort (to minimize). These objectives are
simultaneously optimized using the MOEAs. As secondary objective, we define the
number of routers (to minimize). This value will be modified along several executions
for the same scenery.

Some fitness functions are necessary in order to quantifying the goodness of a
solution. Next, we define the fitness functions in detail.

4 J.M. Lanza-Gutiérrez et al.

• Lifetime (LT): It is the amount of time units (t.u) that network can provide
information of its environment; usually a coverage threshold is used in order to
determine whether among of information obtained is enough for the initial size of
the network. Initially, all sensors have the same maximum energy charge (IE).
Each time unit sensors obtain a measure of its environment and they send it to
collector node, whether distance between a sensor and collector is less than Rc,
sensor sends the measure to collector node directly, otherwise sensor sends it to
other network element (sensor or router) using for this purpose Dijsktra’s
minimum path [20]. Each time a sensor sends an information packet to other
network element consumes an amount of energy proportional to distance between
them (2), this amount will be subtracted from its initial energy (IE). When the
energy of a sensor is equal to zero, it not will be used again, and then its coverage
not will be taken into account. This definition is similar to show in [11, 21].

• Average energy effort (2): It is the average energy consumption in the network lifetime.
Whether this value is high, sensors will have greater energy consumption along its
lifetime, and the network performance will be decreased faster after crossing the fixed
threshold. This definition is based on energy model presented in [11]

 · 1 · , · (1) ∑ ∑ ⁄ (2)

 ∑ ∑ , · (3)

Note that Ri(t) is the number of incoming packets in sensor i at instance t. d(i,e) is the
distance between sensor i and element e (router or sensor), following Dijkstra’s
formulation to collector node.

In order to obtain lifetime fitness function, we use the sensor coverage measure. It is the
terrain percentage covered by sensor nodes. There are two possible options [21]. The first
one considers that the coverage provided by a sensor is a circumference of radius Rs, so
the global coverage will be the intersection of all of them. The second one consists of the
use of a boolean matrix of Dx*Dy points over scenery, so for each sensor, the points within
its radius will be activated; finally, we have to count the activated points. We have selected
the second option, because although the first one is more exact, it is harder. In (3), R
represents the boolean matrix and Rx,y its position (x,y).

3 Problem Resolution

The design of a heterogeneous WSN is a NP-hard problem as we have mentioned
above, so it is necessary to use non-conventional techniques to facilitate its resolution.
In this work, we use MOEAs. When a problem is solved by MOEAs, there are some
important aspects to tackle: encoding of individuals, crossover and mutation strategies,
generation of initial population and description of MOEAs used.

 Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks 5

A. Encoding of Individuals
The codification of the individuals is easy. A chromosome is a coordinate list (two
dimensions, x and y) of routers.

B. Generation of Initial Population
The initial population is randomly generated only with one restriction: routers must be
accessible to collector node. The objective is to start with an adequate population in
order to facilitate convergence of MOEAs used.

C. Evaluation of Individuals
In order to evaluate the goodness of an individual, we first study the connectivity
among routers, and visibility among sensors and routers. It is possible that there are
routers not linked. With this topological information, we obtain all fitness values.
Finally, we check whether there are already the same individual into the population; in
such case, we will remove it.

D. Crossover and Mutation Strategies
Crossover allows generating new individuals by means of recombination of two
previously selected. Mutation allows incorporating random changes in an individual,
avoiding local minimums and increasing diversity.

For crossover, we select a crossover point randomly and then, we copy routers from
individual 1 until this point, next we copy from individual 2 until the end of the
chromosome.

For the mutation of a chromosome, we perform random changes over coordinates of
routers. Every time the coordinates of an element are changed, the individual will be
evaluated. If this change causes better fitness values will be accepted; in the negative
case change will be discarded, back to previous coordinates. The objective is to avoid
getting a worse individual than token originally.

The performance of both algorithms is determined by crossover and mutation
probabilities. For the crossover, if a randomly generated value is greater than crossover
probability, the resulting individual will be a complete-copy of the dominant
individual; in other words, crossover will not be performed. For mutation, mutation
probability determines that elements will be modified.

E. Multi-objective Evolutionary Algorithms Used
We have used two well-known MOEAs: NSGA-II and SPEA-2.

NSGA-II is characterized by use a methodology which allows sorting the population
basing on its dominance (Pareto fronts division), and by using crowding distance to
elements in the same front. For more details see [18].

The second one is based on the file concept, an auxiliary population that saves better
solutions over generations. Using in this case a strategy that considers for each
individual, the number of individual that dominates and which dominates. Also it uses
the density concept as a method of fine assignment. For more details see [19].

In both algorithms, we have used the habitual binary tournament [22] to apply the
crossover operator. In addition, we have allowed that this selection is not elitist (best
individuals do not always win) by means of elitist probability.

6 J.M. Lanza-Gutiérrez et al.

4 Experimental Results

The instance data used in this work (Table1) can be obtained in [23]. The instances
represent a couple of scenarios of 100x100 and 200x200 meters, in which are placed a
set of sensors and a collector node, that we need to study in order to reduce its energy
consumption. Both Rc and Rs values are from commercial device MICA2 (Fig. 2) [24],
30 and 15 respectively (in meters). Energy values (α=2, β=1 and amp=100pJ/bit/m2)
are from [11]. The used information packet size is 128kB. Collector node is placed in
the scenery center. The coverage threshold used for lifetime is 70%.

Fig. 2. MICA2 wireless sensor device

The number of sensors for both instances is the minimum value to cover all terrain:
the area covered for a sensor is π· Rs

2 and the area of the scenery is Dx· Dy, so it is
necessary · ·⁄ sensors. Sensor coordinates for both instances have
been fixed through a mono-objective evolutionary algorithm that optimizes the
coverage. The number of routers used for both instances are variable; this will allow us
to observe the different energy performances.

Table 1. Instance data used

Instance A(m2) M Homogeneous

lifetime (t.u)

Homogeneous average

energy effort (J)

Inst1 100x100 15 34 0.109

Inst2 200x200 57 9 0.262

For both instances, we have got lifetime and average energy effort (AEE) following
homogeneous conception [11, 24]. The use of non-duplicated sensors damages these
measures (see table 1), as sensors close to collector node suffer more energy
consumption. For this reason, we use routers in order to reduce it.

The strategy for solving the problem by both algorithms (NSGA-II and SPEA-2) is
simple. First, we determine the settings that provide the best results. Then, we study if
any of them provides a higher performance, using for this purpose statistical tools. To
define the best settings, we have set the most common parameters, always over 30
independent runs: crossover, mutation and elitist probabilities, number of evaluations
and population size. This methodology is similar to other one proven before [25]:

 Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks 7

stating on a default configuration, parameters are adjusted one by one in its optimal
value, until all parameters have been adjusted.

To determine the goodness of solutions (Pareto fronts [17]), we have considered the
hypervolume metric [26]. This usual metric in MOEAs needs a couple of reference
points called ideal and nadir; these values are maximum and minimum values for
tuples {lifetime, AEE}. Maximum values are been defined experimentally for each
instance and number of router used (see tables 2 and 3, fields reference lifetime and
reference AEE), minimum values are zero for both.

Table 2. Instance 1. Obtained hypervolumes.

 20.000 evaluations 50.000 evaluations

Routers NSGA-II SPEA-II NSGA-II SPEA-2 Reference
lifetime

Reference
AEE

Statistical
study

(winner)

4 0.6539 0.6464 0.7095 0.7011 130 3 =

6 0.7856 0.7795 0.7166 0.8310 190 3 S

8 0.7229 0.7193 0.8004 0.7798 270 3 N

10 0.8346 0.8354 0.8310 0.8378 314 3 =

Table 3. Instance 2. Obtained hypervolumes.

 20.000 evaluations 50.000 evaluations

Routers NSGA-II SPEA-II NSGA-II SPEA-2 Reference
lifetime

Reference
AEE

Statistical
study

(winner)

10 0.7462 0.7462 0.7594 0.7719 75 160 S

20 0.7289 0.7453 0.7263 0.7545 120 160 S

30 0.8634 0.8702 0.8570 0.8772 150 160 S

40 0.7481 0.7528 0.7845 0.8300 220 160 S

In tables 3 and 4, we can observe average hypervolume for each instance and

routers used; they have been obtained in two different evaluation numbers to see their
progressions. In addition, we can see a statistical study in order to determine what
algorithm provides better results in each case (field statistical study, N means NSGA-II
provides better results than SPEA-2, S means the opposite and = both algorithms
provide similar results). In this study, we observe that both algorithms provide similar
results in the first instance, but SPEA- 2 obtains better results when we use more
complex instances (instance 2).

In order to carry out the statistical study for each instance and router used. We have
followed procedure shown in Fig. 3 [27]. The first step was to determine if data
obtained from these instances (each of them with 30 runs) follow a normal distribution.
For this purpose, we used both Shapiro-Wilk [28] and Kolmogorov-Smirnov-Lilliefors
[29], obtaining that data did not come from a normal model. To check what algorithm

8 J.M. Lanza-Gutiérrez et al.

provides betters results, and since we cannot assume a normal distribution, we have
used a non-parametric test: Wilcoxon test [30].

If we analyze energy consumption obtained by means of using routers, we can note
that network lifetime is increased substantially in comparison with homogeneous
conception, for example: in instance 1, with only 4 routers, we have obtained a
lifetime above 130 u.t (3 times more). In instance 2, with 20 routers, we have obtained
a value above 110 u.t (13 times more). In Fig. 4 we can find relation coverage/lifetime
for this second case in comparison with homogeneous conception.

Fig. 3. Statistical procedure

Fig. 4. Coverage/lifetime homogeneous vs. heterogeneous

With these experiment results we can affirm that to use this conception allows to
increase lifetime network substantially, without having to increase the number of
sensors needlessly.

 Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks 9

5 Comparisons with Other Authors

Comparisons with other authors are a complex task, as there are not works with which
we can compare our results directly. On the one hand, we can found results from
resolution of traditional WSN for energy efficiency [10, 11, 24], but we cannot compare
our fitness values with theirs. In these works, redundant sensors are used in order to
increase network lifetime, but we use routers to do this task. The main difference is that
routers do not have energy limits, and we can use them in order to realize harder
communication task, increasing lifetime. On the other hand, we can found works in
heterogeneous WSN [15, 16], but their approaches are different from ours.

6 Conclusions and Future Work

In this work, we have tackled the deployment of a heterogeneous WSN optimizing
some important energy factors: lifetime and average energy effort. We have used two
well-known EAs, NSGA-II and SPEA-2, proving as SPEA-2 provides better results
for more complex instances.

As future work, we propose to use more instances and other EAs. In addition, we
think that to introduce parallelism would be interesting in order to reduce execution
times of algorithms, allowing the use of more complex instances, as well as to study
algorithm convergence using a larger number of evaluations.

Acknowledgment. This work has been partially funded by the Ministry of Education
and Science and the ERDF (European Regional Development Fund) under the project
TIN2008-06491-C04-04 (MSTAR project), and Junta de Extremadura through
GR10025 grant provided to group TIC015.

References

[1] Akyildiz, G.I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine, 102–114 (2002)

[2] Vieira, M.A.M., Coelh, C.N., da Silva Jr., D.C.: Survey on wireless sensor network
devices. In: Proceedings of IEEE Conference on Emerging Technologies and Factory
Automation, ETFA (2003)

[3] Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5),
51–58 (2000)

[4] Mukherjee, B., Yick, J., Ghosal, D.: Wireless sensor network survey. Comput.
Netw. 52(12), 2292–2330 (2008)

[5] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco (1979)

[6] Cheng, X., Narahari, B., Simha, R., Cheng, M., Liu, D.: Strong minimum energy
topology in wireless sensor networks: Np-completeness and heuristics. IEEE
Transactions on Mobile Computing 2(3), 248–256 (2003)

[7] Clementi, A.E.F., Penna, P., Silvestri, R.: Hardness results for the power range assignmet
problem in packet radio networks. In: Proceedings of the International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, pp. 197–208.
Springer, Heidelberg (1999)

10 J.M. Lanza-Gutiérrez et al.

[8] Cheng, X., Narahari, B., Simha, R., Cheng, M.X., Liu, D.: Strong minimum energy
topology in wireless sensor networks: np-completeness and heuristics. IEEE Transactions
on Mobile Computing 2, 248–256 (2003)

[9] Huang, Y., Hua, Y.: Energy cost for estimation in multihop wireless sensor networks,
pp. 2586–2589 (2010)

[10] Ferentinos, K.P., Tsiligiridis, T.A.: Evolutionary energy management and design of
wireless sensor networks, pp. 406–417 (2005)

[11] Konstantinidis, A., Yang, K.: Multi-objective energy-efficient dense deployment in
Wireless Sensor Networks using a hybrid problem-specific MOEA/D. Applied Soft
Computing 11, 4117–4134 (2011)

[12] He J., Xiong, N., Xiao, Y., Pan Y.: A Reliable Energy Efficient Algorithm for Target
Coverage in Wireless Sensor Networks, pp. 180–188 (2010)

[13] Heterogeneous Networks with Intel XScale,
http://www.intel.com/research/exploratory/heterogeneous.htm

[14] Yarvis, M.: Exploiting Heterogeneity in Sensor Networks. In: IEEE INFOCOM (2005)
[15] Cardei, M., Pervaiz, M.O., Cardei, I.: Energy-Efficient Range Assignment in

Heterogeneous Wireless Sensor Networks, p. 11 (2006)
[16] Duarte-Melo, E.J., Liu, M.: Analysis of energy consumption and lifetime of

heterogeneous wireless sensor networks 1, 21–25 (2002)
[17] Deb, K.: Multiobjective optimization using evolutionary algorithms, New York (2001)
[18] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting

Genetic Al-gorithm for Multi-objective Optimization: NSGA-II (2000)
[19] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary

algorithm. In: EUROGEN (2001)
[20] Cormen, T.: Introduction to algorithms, Cambridge Mass (2001)
[21] Younis, M., Akkaya, K.: Strategies and techniques for node placement in wireless sensor

networks: A survey. Ad Hoc Networks 6, 621–655 (2008)
[22] Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)
[23] Instance sets for optimization in wireless sensor networks (2011),

http://arco.unex.es/wsnopt
[24] Martins, F.V.C., Carrano, E.G., Wanner, E.F., Takahashi, R.H.C., Mateus, G.R.: A

Hybrid Multiob-jective Evolutionary Approach for Improving the Performance of
Wireless Sensor Networks. IEEE Sensors Journal 11, 545–554 (2011)

[25] Lanza-Gutiérrez, J.M., Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Sánchez, J.M.: A
Multi-objective Network Design for Real Traffic Models of the Internet by Means of a
Parallel Framework for Solving NP-hard Problems. In: NABIC IEEE Conference (2011)

[26] Fonseca, C., Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance
Assessment of Stochastic Multiobjective Optimizers. In: EMO (2005)

[27] Ott, L., Longnecker, M.: An introduction to statistical methods and data analysis, Cole
Cengage Learning (2008)

[28] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Bio-metrika 52(3 & 4), 591–611 (1965)

[29] Laha, C.: Handbook of Methods of Applied Statistics, pp. 392–394. Wiley J. and Sons
(1967)

[30] Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics 1, 80–83 (1967)

Network Protocol Discovery and Analysis

via Live Interaction

Patrick LaRoche, A. Nur Zincir-Heywood, and Malcolm I. Heywood

Faculty of Computer Science
Dalhousie University

Halifax, Nova Scotia, Canada
{plaroche,zincir,mheywood}@cs.dal.ca

http://www.cs.dal.ca

Abstract. In this work, we explore the use of evolutionary computing
toward protocol analysis. The ability to discover, analyse, and exper-
iment with unknown protocols is paramount within the realm of net-
work security; our approach to this crucial analysis is to interact with
a network service, discovering sequences of commands that do not re-
sult in error messages. In so doing, our work investigates the real-life
responses of a service, allowing for exploration and analysis of the proto-
col in question. Our system initiates sequences of commands randomly,
interacts with and learns from the responses, and modifies its next set of
sequences accordingly. Such an exploration results in a set of command
sequences that reflect correct uses of the service in testing. These discov-
ered sequences can then be used to identify the service, unforeseen uses
of the service, and, most importantly, potential weaknesses.

1 Introduction

In this paper we focus on the analysis of network protocols, presenting a novel
approach to do so, by applying an Evolutionary Computing (EC) techniques to
study the allowed sequences of a targeted protocol. Our work discovers viable
command sequences that represent allowable operations on the protocol imple-
mentation under testing (IUT). In exploring these, we then have the ability to
analyse the protocol as well as determine specifics to the implementation, gain-
ing insight into the tested service. Our proposed system will identify sequences
that are allowable by the specific IUT, not simply what is documented. As such,
it will help reveal not only sequences of commands which should be allowable,
but also which should not exist that could potentially lead to undesirable con-
sequences. This differs from other work in the field in that we requires only a
live interaction with the IUT, no “in hand” binary or detailed knowledge of the
targeted implementation. Our system interacts with a live service, adjusts given
the responses received, and improves its understanding of the IUT.

This work continues of the principals of previous work in which EC techniques
[4,15] were applied to build variations of known vulnerabilities at the host level
[7] as well as network level [11]. By harnessing the exploratory nature of EC

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 11–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.dal.ca

12 P. LaRoche, A.N. Zincir-Heywood, M.I. Heywood

techniques, our proposed system will explore command sequences of an FTP
server in order to investigate the possibility of “learning to communicate with
an (un)known protocol”. To this end, we performed two sets of experiments,
the first giving the proposed system only the correct command set for the FTP
protocol. In the second, a larger command set is used (both FTP and SMTP).
The second experiment tests our system’s ability to not only explore correct
sequences of FTP commands, but also its ability to recognize commands that
do not belong to the tested protocol, or possibly, find a protocol compliant way
to use them.

2 Background

The background work we present in this paper is focused on the analysis of
network protocols using learning systems. As such we present related fields,
reverse engineering of protocols, evolving communication, syntax based testing
as well as the fundamentals of FTP itself.

2.1 Reverse Engineering of Protocols

This work aims to discover the sequences that result in minimal error messages as
feedback from a given protocol. Indeed such a system can also be seen as reverse
engineering the targeted protocol, albeit requiring limited a priori knowledge.
This form of protocol analysis is an important tool in network security and
protocol verification.

Polygot, a system that uses program binaries for extracting application-level
analysis is described in [1]. Unlike Polygot, our only requirement is the ability
to interact with the implementation, not the binary itself. This allows our work
to be used in situations where the tester does not have an actual instance of the
IUT locally.

Also using the binary, Wondracek et al. use observations to create a grammar
that describe the possible combinations for the commands of the protocol [18].
The authors input messages into the server binary via a client binary, mark the
input as it enters the memory stack of the server and track how that information
is used. The client / server relationship is similar to our approach, however,
rather than monitoring the internal behaviour directly, we interact with it and
observe the output. Hence, we remove the requirement of having the binary of
the targeted server.

2.2 Evolving Communication

Application / network protocols are analogous to communication languages be-
tween machines. As such, work in the related field of evolving generic agent com-
munication is relevant and forms the basis for our selection of EC towards the
domain of protocol analysis. In [3], Froese describes a Genetic Algorithm (GA)
that investigates communication in a multi-agent system. In his work, agents are

Network Protocol Discovery and Analysis via Live Interaction 13

modelled as a neural network with connection weights that are evolved using a
GA, where these weights represent the communication between agents (nodes
in the neural net). Similarly, Khasteh et al. propose an algorithm that evolves
the relationships between agents and elements. In [9] and [10], the authors de-
scribe an algorithm that uses a confidence matrix that relates a specific word to
a specific element or concept.

In general, the work evolving communication between agents shows promise,
but, in most cases, use models where the agents represent some “real world”
object trying to communicate with similar objects. In our work, we focus on a
less simplistic model where our agents are computer systems, and the language
is a network / application protocol where a variety of correct (and incorrect)
interactions are possible.

2.3 Syntax Based Testing

In Syntax Based Testing one employs a system specifically designed to test the
security of a network protocol or application by focusing on modifications of
its protocol syntax, hence directly related to our work. In this type of work,
Protocol Data Units (PDUs), are defined by a “frame” of data of a particular
length with regards to the IUT [17]. These frames are very protocol specific and
require complete knowledge of the protocol in testing. As an example, Tal et
al. focus on the OSPF (Open Shortest Path First) routing protocol, a frame
in that case being the “Hello” packet, starting at byte 13 and being two bytes
long [17]. This level of testing is shown to be successful, however, requires an
amount of a priori knowledge that our work aims to avoid, as it is not always
possible to obtain such knowledge (i.e. we may not know which protocol a botnet
is employing).

Another work, Protos [6], specifies a grammar for numerous protocols (HTTP,
LDAP, WAP and SNMP), variations are then applied to the PDUs. They con-
sidered the IUT to have passed testing if it rejected the anomalous input without
any undesired effects, such as illegal memory access or crashing. This approach
inspired our work, where we seek to remove a priori assumptions made towards
finding the variations of the sequence of commands (hence grammar), removing
any biases or shortcomings unknowingly introduced by the designer.

Building off of Protos, [17] and [14] gather the protocol information not from
knowing the grammar ahead of time and modifying, but from a live network
connection. Their system then processes the packets, parses and mutates them in
a user-specified manner. The resulting packet is then re-injected into the network
stream, measuring the response of the IUT. Similar work with modifying PDUs
is demonstrated in [19].

In typical syntax-based testing, one either starts with a defined grammar that
one modifies and applies (as in [17]), or one gathers the PDU data from a network
stream, modifies and applies (as in [17,14,6,19]). In our work the modifications
are motivated by the feedback our system automatically derives from the IUT.
By using this real − time feedback from the IUT, we seek to gain intelligence
in how to modify the inputs to be able to communicate to the IUT based on

14 P. LaRoche, A.N. Zincir-Heywood, M.I. Heywood

the actual implementation, not a theoretical or claimed implementation, hence,
unique to this field.

2.4 FTP

In this paper, we explore the protocol state of the FTP service for the purpose
of selecting and exploring correct sequences of commands. The “correctness” of
these sequences are defined in RFC 959 ([16]). In its most basic form, FTP
is defined as a communication and file exchange service between a client and a
server. FTP was chosen due to its well defined command and response structure,
as well as prevalence in today’s networks. Our system will interact with an actual
FTP server in order to evaluate the “correctness” of any given solution. This
“correctness” will be based on the response messages the server will send to our
system during live interaction and influences how our system will vary future
interactions. The commands that we implement are:

1. RETR - Retrieve a file from the server, store on the client
2. STOR - Store a file from the client, store on the server
3. STOU - Same as store, but name is generated unique to the transfer directory
4. CWD - Change the working directory
5. ABOR - Abort the previous command
6. DELE - Delete a file on the server side
7. RMD - Remove a directory
8. MKD - Make a directory
9. PWD - Print the working directory
10. LIST - List the directory contents
11. QUIT - Disconnect from the server

3 The Model

In this work the evolutionary process is driven by discovering legitimate com-
mand sequences. How well a given individual is performing is based on the
feedback received from the FTP server using FTP’s documented response code
system, described in RFC [16]. Our system is based on an EC technique, namely
genetic programming (specifically linear GP), as such it evolves a population
of individuals, each representing a series of commands. The evaluation of each
individual is done by executing these commands against an active FTP server
with the response from each contributing to the overall performance (fitness).
We are not only interested in finding solutions that discover sequences of com-
mands, but also in promoting “unique” solutions - that is different sequences.
As such, we examine an archive of individuals (solutions) [2]. The inclusion of
an individual in the archive is based on its uniqueness when compared to others
and as such, represents a selection of the best performers that are as unique as
possible from each other.

The fitness evaluation is similar to that described in [12,11], where the overall
fitness is evaluated based on the proper sequencing of given opcodes. In this work,

Network Protocol Discovery and Analysis via Live Interaction 15

however, the fitness is directly related to proper sequences of commands, mini-
mizing illegal sequences. Here the fitness metric is a percentage, 100% indicating
that a solution has achieved no error messages. Moreover, a command can result
in no return code; in such a case, the individual’s fitness will not be improved
nor diminished as we consider this as a “neutral” response. Furthermore, a sec-
ondary metric, “uniqueness”, is also used in evaluating an individual. In order
to calculate the uniqueness of an individual, we augment the representation of
each individual with what we call an individual’s fingerprint. This fingerprint
is defined as a vector that is the size of the number of opcodes present in the
protocol being targeted, where each entry of the vector represents a counter of
how many times that specific opcode was seen in the individual. This fingerprint
can then be used to measure the uniqueness of an individual by calculating the
euclidean distance between its own fingerprint and other individuals.

3.1 The Archive

Not only are we interested in sequences of commands that result in no error mes-
sages, but also in finding a subset of sequences that do so in a variety of methods.
To archive this, we implement an archive of solutions based on the work pre-
sented in [2]. For an individual to be in the archive, they must be sufficiently
unique when compared to individuals already present. The archive is populated
with random individuals in the onset of the evolutionary process, at each gen-
eration, the individuals selected for the tournament are then compared to the
archive; if they are more unique than an individual in the archive, they replace
this individual. The result is a subset of the entire population that represents a
diverse set of methods for achieving the desired goal.

3.2 Evolutionary Model

The work in this paper employs a page-based linear genetic programming learn-
ing model [13]. A population of individual solutions are randomly initialized in
both size (number of commands) and content (command sequences) in a lin-
ear sequence [4, 5, 15]. At each generational stage, a small subset of the current
population is randomly selected (the tournament), search operators are then ap-
plied; the best resulting individuals of the tournament then replace the worst
and are placed back in the population. At this stage, the best individuals in the
tournament are also examined for inclusion into the archive. Table 1 lists the
specific model parameters used during the experiments. Similar to [8], the search
operators employed in this work are:

– Crossover, Single Point: Single page from parent is swapped with child.
– Swap Selector: Two instructions are selected and swapped; individual length

remains fixed.
– Instruction-Wise Mutation: Test for application of mutation for each instruc-

tion, if it is to be applied, another instruction from the complete set is chosen
with uniform probability and used.

16 P. LaRoche, A.N. Zincir-Heywood, M.I. Heywood

Table 1. Parameters for the Evolutionary Model

Parameter Value Parameter Value

Population 1000 Mutation 0.5 with linear decay

Page Count 100 Swap 0.5

Page Size 6 Crossover 0.9

Tournament Size 4 Stop Criteria 10 000 Tournaments

Archive Size 100

4 Experiments and Results

Two sets of experiments were performed towards the goal of exploring correct
command sequences. The first set of experiments focuses on the FTP command
set, rewarding the presence of positive response messages for a given sequence.
The second set uses a larger set of commands by augmenting the first with
those from SMTP. These experiments are designed to test our hypothesis that
the system will be able to learn the relevant commands as was as where the
non-protocol specific commands, in this case SMTP commands, can be used, or
perhaps not use them at all.

4.1 Results

We present our findings for both sets of experiments, each having been run 30
times, each with different randomly selected initial seeds. Upon completion of
10 000 generations we report both our population and archive fitness (mean and
best values). Figures 1 and 2 show all metrics at 1000 generation intervals for
the duration of the experiments. In both figures the fitness level of the archive
increases as the population does, but not necessarily at the same rate due to the
fitness not being directly related to inclusion in the the archive. Table 2 lists the
mean and the best fitness for the population and the archive for both sets of
experiments. The fitness percentage is based on number of commands and the
returned responses from the server in testing, 100% being no negative responses
were received, 0% all commands resulted in negative responses from the server.

Table 2. Results

FTP Only Commands FTP and SMTP Commands
Mean Fitness Best Fitness Mean Fitness Best Fitness

Population 96.642% 97.918% 96.359% 97.436%

Archive 93.755% 97.344% 93.601% 96.783%

Network Protocol Discovery and Analysis via Live Interaction 17

Fig. 1. FTP only Experiment Fig. 2. FTP + SMTP Experiment

4.2 Discussion

Our experiments succeed at accomplishing high performance rates, as well as
diverse sets of solutions in the archive. The learning curves of both sets of ex-
periments are consistent, indicating a relatively similar increase in performance
over each generation of evaluation. In both cases a few instances in the archive
already have achieved a greater fitness then the average population individual at
early stages, indicating that some individuals do relatively well early on in the
evolutionary process. We can also see, however, that these initial “good individ-
uals” do not represent a “best case” scenario, as the fitness for these do improve
over each generation.

Individual Example 1 (from Archive)

1: put RNTO:
2: ls
3: delete MAIL FROM:
4: cd
5: rename FILENAME FILENAME2
6: cd ..
7: cd ..
8: status
9: status
10: mkdir DIR
11: status
12: system
13: ls
14: QUIT

We also remark that at approx-
imately the 6000th generation the
general populations fitness surpasses
that of the mean archive fitness. This
indicates that although the popula-
tion’s mean fitness is improving, it
is doing so with a set of individuals
that are becoming less diverse. This
demonstrates that past 6000 genera-
tions the solutions are converging to-
wards a smaller set of representations
to achieve high performance.

Given the added complexity of hav-
ing the larger command set in the sec-
ond set of experiments, yet still a sim-
ilar learning curve as the first set, it is
worth exploring solutions. In Example
1, we list a sample solution (shortened
for brevity). Here we see the individ-

ual does have non FTP commands remaining, however, they are placed in loca-
tions that are interpreted as arguments to the FTP commands (lines 1 and 3,
for example). This results in an FTP server having numerous directories and file
names that match SMTP opcode names, demonstrating an important artifact
of our learning mechanism; the system learns where it can use non FTP com-
mands such that they do not lower the fitness value, i.e do not produce error

18 P. LaRoche, A.N. Zincir-Heywood, M.I. Heywood

messages. The system is demonstrating its ability to minimize error feedback
from the server under testing, hence learning to place non compliant commands
as arguments.This example solution demonstrates two key features of our work:

1. The solution is human readable, hence execution can be tested by simply
executing the individual verbatim on an FTP server.

2. The solution contains FTP commands primarily, SMTP commands (not the
protocol of the server being tested) can be seen to exist mainly as arguments
to the correct protocol commands.

Both these features are desired, even if the second was not predicted by our
initial hypothesis, it nonetheless allows us to determine the IUT by looking at
the commands that only exist in the first position per line (i.e not the argument
list). Our system also helps identify commands that exist in multiple protocols
(such as the case of “QUIT” in the above example, line 14 above), which could
be useful in identifying similarities in protocols.

Table 3. Precence of specific commands in
the archive, per individual

Command Percentage Average Count

STOR 5.15% 6.51
RETR 5.03% 6.35
CWD 5.52% 6.98
DEL 5.27% 6.66
RNFR 4.98% 6.29

Relevance to our work towards
achieving a variety of solutions is the
makeup of the archive solutions them-
selves. In order to aid in this analysis
we will focus on 5 common “tasks” of
an FTP server (and the related com-
mand): 1) store a file (STOR); 2) re-
trieve a file (RETR); 3) change the
working directory (CWD); 4) delete
a file (DEL) and 5) rename a file
(RNFR). In Table 3 we list the per-
centages, on average, per individual
that these commands appear (as well as the average count), note that the re-
maining commands make up the remaining percentages. Given these findings, we
determine that our solutions are indeed discovering how to perform these tasks
against the server, fairly evenly as well. In order to look at the diversity of how
these tasks have been accomplished we looked at the “lead in” commands, i.e the
commands in the individual directly before the above listed ones. In this case,
we show in examples 2 and 3 the two commands directly before the first instance
of DEL (delete) from different solution individuals. These examples show how
our system is discovering a variety of methods to achieve goals on the server.

Example 2 (from Archive)

1: rmd HELO
2: rmd DIRNAME
3: delete FILENAME1

Example 3 (from Archive)

1: cd
2: status
3: delete FILENAME

Network Protocol Discovery and Analysis via Live Interaction 19

5 Conclusion and Future Work

In this work, we present a novel approach to network protocol testing. By using
a machine learning based system in order to interact with an IUT, our system
learns what commands (and sequences) are applicable with minimal a priori
information. To test our system, we conducted two sets of experiments, the
first with protocol specific commands, focusing on discovering valid sequences,
the second with an augmented command set, testing the ability to discover
which commands are applicable. Both achieve successful fitness levels, 97.918%
in the first set, 97.426% in the second. Moreover, our system discovers diverse
solutions, as seen by commands for common tasks having similar representation
in the archive. Our system also demonstrated the additional ability to discover
the correct use of non protocol appropriate commands as arguments to correct
commands in an effort to reduce negative feedback from the IUT, as well as
identifying commands that exist in multiple protocols.

Our proposed system reduces a priori information required in protocol testing
by showing its ability to discover the relevant commands via live interaction over
a network connection. This removes the requirement of having direct access to
the binary of the IUT, of knowing the specific command syntax of the IUT, or for
that matter, a complex understanding of the IUT before testing commences. For
the purpose of testing this work, we focused on FTP as the IUT, and augmented
the command set with SMTP. For future work, we plan to test against other
network protocols with larger command sets. We hypothesize our system will
remain successful in such cases, however, potentially taking more generations
of evolution to achieve similar results. Further experiments will also be made
comparing varying implementations of the same protocol towards identifying the
differences in design, which will lead to further detailed analysis of the archive
of solutions. It is our belief that a system of this manner would not only be
valuable in protocol analysis but also in protocol testing and verification.

References

1. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: Automatic extraction of pro-
tocol message format using dynamic binary analysis. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, p. 329. ACM (2007)

2. Doucette, J., Heywood, M.I.: Novelty-Based Fitness: An Evaluation under the
Santa Fe Trail. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar,
A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 50–61. Springer, Heidelberg (2010)

3. Froese, T.: Steps toward the evolution of communication in a multi-agent system.
In: Symposium for Cybernetics Annual Research Projects, SCARP 2003. Citeseer
(2003)

4. Heywood, M.I., Nur Zincir-Heywood, A.: Dynamic page based crossover in linear
genetic programming. IEEE Transactions on Systems, Man, and Cybernetics: Part
B - Cybernetics 32(3), 380–388 (2002)

5. Huelsbergen, L.: Toward simulated evolution of machine language iteration. In:
Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Proceedings of the
First Annual Conference on Genetic Programming 1996, July 28-31, pp. 315–320.
Stanford University, MIT Press, CA, USA (1996)

20 P. LaRoche, A.N. Zincir-Heywood, M.I. Heywood

6. Kaksonen, R., Laasko, M., Takanen, A.: Vulnerability analysis of software through
syntax testing. University of Oulu, Finland, Tech. Rep. (2000)

7. Gunes Kayacik, H., Heywood, M.I., Nur Zincir-Heywood, A.: Evolving Buffer Over-
flow Attacks with Detector Feedback. In: Giacobini, M. (ed.) EvoWorkshops 2007.
LNCS, vol. 4448, pp. 11–20. Springer, Heidelberg (2007)

8. Gunes Kayacyk, H., Nur Zincir-Heywood, A., Heywood, M.: Evolving successful
stack overflow attacks for vulnerability testing. In: 21st Annual Computer Secu-
rity Applications Conference, ACSAC 2005, pp. 225–234. IEEE Computer Society
(December 2005)

9. Khasteh, S.H., Shouraki, S.B., Halavati, R., Khameneh, E.: Evolution of a com-
munication protocol between a group of intelligent agents. In: World Automation
Congress, WAC 2006, pp. 1–6. Citeseer (2006)

10. Khasteh, S.H., Shouraki, S.B., Halavati, R., Lesani, M.: Communication Protocol
Evolution by Natural Selection. In: 2006 and International Conference on Intel-
ligent Agents, Web Technologies and Internet Commerce, Computational Intelli-
gence for Modelling, Control and Automation, p. 152 (2006)

11. LaRoche, P., Nur Zincir-Heywood, A., Heywood, M.I.: Evolving tcp/ip packets:
A case study of port scans. In: CDROM: IEEE Symposium on Computational
Intelligence for Security and Defense Applications (2009)

12. LaRoche, P., Nur Zincir-Heywood, A., Heywood, M.I.: Using Code Bloat to Ob-
fuscate Evolved Network Traffic. In: Di Chio, C., Brabazon, A., Di Caro, G.A.,
Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill,
M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp.
101–110. Springer, Heidelberg (2010)

13. LaRoche, P., Nur Zincir-Heywood, A., Heywood, M.I.: Exploring the state space
of an application protocol: A case study of smtp. In: 2011 IEEE Symposium on
Computational Intelligence in Cyber Security (CICS 2011), pp. 152–159 (April
2011)

14. Marquis, S., Dean, T.R., Knight, S.: Scl: a language for security testing of network
applications. In: CASCON 2005: Proceedings of the 2005 Conference of the Centre
for Advanced Studies on Collaborative Research, pp. 155–164. IBM Press (2005)

15. Nordin, P.: A compiling genetic programming system that directly manipulates the
machine code. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch.
14, pp. 311–331. MIT Press (1994)

16. Postel, J., Reynolds, J.: File Transfer Protocol. RFC 959 (Standard), Updated by
RFCs 2228, 2640, 2773, 3659, 5797 (October 1985)

17. Tal, O., Knight, S., Dean, T.: Syntax-based vulnerability testing of frame-based
network protocols. In: Proc. 2nd Annual Conference on Privacy, Security and Trust
(2004)

18. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E., Anna, S.S.S.: Auto-
matic network protocol analysis. In: Proceedings of the 15th Annual Network and
Distributed System Security Symposium, NDSS 2008. Citeseer (2008)

19. Xiao, S., Deng, L., Li, S., Wang, X.: Integrated tcp/ip protocol software testing for
vulnerability detection. In: 2003 International Conference on Computer Networks
and Mobile Computing, ICCNMC 2003, pp. 311–319. IEEE (2003)

Evolutionary Design of Active Free Space

Optical Networks Based on Digital Mirror
Devices

Steffen Limmer1, Dietmar Fey1, Ulrich Lohmann2, and Jürgen Jahns2

1 University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, Germany
{steffen.limmer,dietmar.fey}@informatik.uni-erlangen.de

2 University of Hagen, Universitätsstr. 27/PRG, 58097 Hagen, Germany
{ulrich.lohmann,jahns}@fernuni-hagen.de

Abstract. Optical connections have several advantages compared to
conventional electrical connections, especially a higher attainable band-
width. While long distance optical connections are already established,
optical board- and chip-level connections are still a subject of current
research. In this paper we describe a new setup for optical board-level
connections which is based on free space optics and allows the switch-
ing of signals within the optical domain. We describe the evolutionary
optimization of design parameters for the proposed setup, done with a
memetic evolutionary algorithm and present the optimization results.

Keywords: Evolutionary algorithm, digital mirror device, PIFSO,
optical connection, CMA-ES.

1 Introduction

The data rates, required for future internet applications, like streaming video
or HD-TV on web, currently drive the research activities in the field of optical
communication, because optical technology promises much higher bandwidth
than conventional copper based interconnections. A further advantage of optical
interconnect technology is the possibility of 3D-interconnections, that means,
“light” enables a full three dimensional interconnection scheme, which can help
to solve the interconnection bottleneck of complex topologies, like high dimen-
sional crossbar architectures with up to 32 channels.

Industrial realizations of complex optical interconnection schemes as an inte-
grated system are still missing, so this work shows a possible design to build up
a robust planar integrated free space optical (PIFSO) [1] approach for a high
parallel crossbar interconnection. Based on a combination between free space
optics, micro-electro-mechanical systems (MEMS) and a new multi-fiber optical
interface device (called fibermatrix), the described system represents a 16×16
optical crossbar-connection with a total data rate of up to 160 Gb/s. Yeow et al.
already demonstrated the ability of MEMS-based components for switching [2].

In [3] we described the evolutionary design of interconnects for Clos networks
in PIFSO technology. We were able to find a layout, allowing the connection

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 21–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 S. Limmer et al.

of 256 inputs with 256 outputs. But these optical connections are passive - the
switching must be done in the electronic domain. Thus, in a multi stage network
there must be a conversion between the optical and electronic medium for every
stage. This leads to a high power consumption.

Now we focus on the design of an active optical network respectively crossbar
connection. The idea is to combine the PIFSO approach with digital mirror
devices (DMDs) (Figure 1(a)). In- and outputs for light beams are brought onto
the surface of a substrate, like SiO2, with help of so called fibermatrix connectors
(Figure 1(b)) which allow an individual positioning. With help of fibers, light
is transported to the inputs where it is split up into several beams with the
help of splitting devices, like diffractive gratings or refractive microlens arrays
(Figure 1(c)). The beams enter the substrate and hit a DMD that is located
at the bottom of the substrate. The DMD is a 1 cm2 sized array of 1000×1000
small mirrors. The mirrors can be set independently in two different positions
(respectively two different tilt angles). The objective is to switch incoming beams
to outputs by switching the mirrors of the DMD. This requires on one side that
the beams of one input can be reflected to the outputs by mirrors with certain
tilt angles. On the other side, these beams must not hit any output if the mirrors
are set to the opposite tilt angle.

(a) (b) (c)

Fig. 1. (a) A digital mirror device. An array of mirrors is located on its surface. These
mirrors can be switches independently in two different positions with help of electro-
static fields. (b) Fibermatrix connectors with 16 fibers. It is possible to position the
fibers in another layout, than the shown one. (c) Microlens arrays which can be used
for beam splitting.

The advantages of this approach is that the PIFSO technology is very robust
and well to integrate and to produce [4]. Unlike the conventional electronically
solutions, the free space optical approach is free of any crossing problems at
such high number of channels. Additionally, DMDs are low-cost mass products
(for example used in beamers). Thus, the setup is well suited for the practical
implementation.

The question is how to place the in- and outputs and how to split the light
beams exactly in order to make it possible to switch as many inputs to as many
outputs as possible. This is a difficult task that we were not able to solve analyt-
ically. For that reason, we decided to employ an evolutionary algorithm (EA).

Evolutionary Design of Active Free Space Optical Networks Based on DMDs 23

2 Optimization Problem

Figure 2 shows one beam of the network. The beam enters the substrate at a
point P1 with the entrance angles β1 in the x-z plane and γ1 in the x-y plane.
At the point P2 located at the bottom of the substrate it is reflected by a mirror
with a tilt angle α (-12◦ or +12◦) in the y-z plane. This results in new angles β2

and γ2. At the point P3 the beam leaves the substrate.

Fig. 2. One beam of the network from three different perspectives. It enters the sub-
strate at point P1, at P2 it is reflected by a mirror with tilt angle α and leaves the
substrate at point P3. The gray planes are just indicated for the purpose of illustrating
the different angles.

For given P1 (x1,y1,z1), β1 and γ1, the coordinates x2 and y2 of P2 can be
calculated as follows:

x2 = x1 −
H

tan (β1)
(1)

y2 = y1 −
H

tan(β1)
· tan(γ1) (2)

Where H is the height of the substrate (z1 = z3 = H and z2 = 0). Depending
on α, the new angles β2 and γ2 are calculated as follows:

β2 = arctan(tan(β1) · (− cos(2α)) + tan(γ1) · (− sin(2α))) (3)

γ2 = arctan(tan(β1) · (− sin(2α)) + tan(γ1) · (cos(2α))) (4)

The coordinates x3 and y3 of P3 arise from the following equations:

x3 = x2 +
H

tan(β2)
(5)

24 S. Limmer et al.

y3 = y2 +
H

tan(β2)
· tan(γ2) (6)

The given equations can be rearranged to compute β1 and γ1 for given in- and
output points P1 and P3 and a given tilt angle α. For one tilt angle and one in-
and output combination there is only one possible beam that is reflected by a
mirror with the specified tilt angle and thereby connects the in- with the output.
Or to put it differently: for given P1, P3, and α the point P2 is uniquely defined.
Since there are only two possible tilt angles (-12◦ and +12◦), there are always
only two possible beams that can connect an in-/output pair. That means, for a
given in-/output pair there exist only two valid combinations of entrance angles
β1 and γ1.

To make the splitting of an incoming beam into the multiple beams within
the network technically possible, the entrance angles have to meet the following
condition: The step sizes between the angles β1 of the beams of one input have
to be as equal as possible. The same holds for the angles γ1.

That means, if there are n beams b1, . . . , bn to connect a certain input with all
the outputs and (β1

1 , . . . , β
n
1) and (γ1

1 , . . . , γ
n
1) are the sequences of the entrance

angles with βi
1 and γi

1 belonging to beam bi and βi
1 ≤ βj

1 for i ≤ j, then the
following equations should hold:

(β2
1 − β1

1) = (β3
1 − β2

1) = . . . = (βn
1 − βn−1

1) (7)

(γ2
1 − γ1

1) = (γ3
1 − γ2

1) = . . . = (γn
1 − γn−1

1) (8)

Besides this condition, it is necessary to regard some geometrical constraints:
Since a beam has a certain diameter, it hits up to 10×10 mirrors (allocating
an area of about 0.1 · 0.1 mm2). One mirror should not be hit by two beams,
otherwise it would not be possible to switch the two beams independently from
each other. So if the points P i

2 and P j
2 on the bottom of the substrate belong to

two beams bi and bj of the system, then there should be a distance of at least
0.1 mm between these points. Furthermore, it is required for the realization that
there is a distance of at least 0.25 mm between all the in-/output positions (this
requirement follows from the characteristics of the fibermatrix connectors which
are intended to be used).

Hence, the problem is to find a layout of the network that fulfills all the stated
conditions. The idea is to find suitable in-/output positions (with distances of at
least 0.25 mm among them) that make it possible to connect them with beams
that fulfill the restrictions on the entrance angles and the positions P2. As already
mentioned, we were not able to solve this task analytically. Instead, we used an
evolutionary algorithm (EA) to search such points. This EA is described in the
following section.

3 Optimization Algorithm

An individual of the EA represents a placement of all in- and outputs. The place-
ment of one in- respectively output is encoded as two real numbers specifying

Evolutionary Design of Active Free Space Optical Networks Based on DMDs 25

the x and y position of the in-/output. For the implementation double precision
variables are used for the real values. Thus, an individual for an n×n network
consists of 4n double variables.

Before a fitness is assigned to an individual, all beams for the encoded in-
/output placement are computed. There are at most two viable beams for a
connection of an input with an output: a beam reflected by a mirror with +12◦

and a beam reflected by a mirror with -12◦. For each in-/output combination the
two possible beams are computed and one of them is selected for the connection.
Of course, if one of the two beams does not hit the mirror array, then it is invalid
and will not be selected. If both beams for an in-/output combination are invalid,
the combination is marked as invalid - there is no possibility to connect it with
a beam. If both beams are valid, the connecting beam is chosen randomly (see
Figure 3).

(a) (b) (c)

Fig. 3. Illustration of the three possible relations between an in- and an output position.
(a) Both beams that can be used to connect the in- with the output do not hit the
DMD. Thus, both beams can not be realized and the input can not be connected with
the output - the in-/output pair is invalid. (b) The input can be connected with the
output by only one beam hitting the DMD (the beam reflected by α = −12◦). The
other beam, reflected by α = +12◦ does not hit the DMD. (c) The in-/output pair can
be connected by two beams hitting the DMD.

The result of the beam computation is used for the fitness assignment: Let I
be an individual encoding the input positions

I1, ..., In = (x1
i , y

1
i), . . . , (x

n
i , y

n
i)

and the output positions

O1, ..., On = (x1
o, y

1
o), . . . , (x

n
o , y

n
o)

of an n×n network. For each in-/output pair (Ik, Ol) a connecting beam bkl with
the corresponding entrance angles βkl

1 and γkl
1 and the point P kl

2 = (xkl
2 , ykl2)

on the bottom of the substrate is computed in the way described above. For
the Individual I we define the partial fitness value f1(I) as the number of pairs
of in- respectively output positions with a distance less than 0.25 mm between
them and the partial fitness value f2(I) as the number of pairs of points P kl

2

with a distance less than 0.1 mm between them. Furthermore we define the third

26 S. Limmer et al.

partial fitness value f3(I) as ten times the number of invalid in-/output pairs.
An in-/output pair that can not be connected, can be seen as worst case. That
is the reason why we use a penalty of 10 in f3, instead of 1 like in f1 and f2.
Without loss of generality let us assume that for all inputs Ik, k = 1, .., n, the
sequence of angles βk1

1 ,...,βkn
1 is ordered in increasing order. Then we can define

the last partial fitness f4(I) as

Definition 1

f4(I) =

n∑
k=1

n−1∑
l=1

(|Δβ(k)− (β
k(l+1)
1 − βkl

1)|+ |Δγ(k)− (γ
k(l+1)
1 − γkl

1)|)

with

Δβ(k) =

∑n−1
l=1 (β

k(l+1)
1 − βkl

1)

n− 1
and

Δγ(k) =

∑n−1
l=1 (γ

k(l+1)
1 − γkl

1)

n− 1

Δβ(k) and Δγ(k) are the average pitches between the entrance angles of the
beams of input k. So the smaller f4(I), the better equations 7 and 8 are fulfilled.
The total fitness is set to the sum of all partial fitnesses:

Definition 2

fit(I) = f1(I) + f2(I) + f3(I) + f4(I)

The smaller the fitness value, the better is the individual. The best achievable
fitness is zero. A fitness value smaller than one, indicates that the partial fitness
values f1, f2 and f3 are zero. That means, the in- and outputs can be connected
with valid beams and there are no geometrical conflicts.

The evolutionary operators we have used, are derived from the memetic al-
gorithm MA-LSCh-CMA proposed by Molina et al. [6]. For selection, negative
assortative mating [7] is used: The first parent individual is selected randomly.
Then five other individuals of the population are chosen randomly and from
these individuals that one with the highest euclidean distance to the first parent
is selected as second parent. As variation operators BLX-0.5 crossover [8] and
the mutation operator from the Breeder Genetic Algorithm [5] are used.

The replacement is done in a μ+1 scheme. In every generation PopSize times
crossover and mutation is done iteratively, leading to one pair of offspring in each
iteration. The best of the two produced offspring in terms of fitness replaces the
so far worst individual in the population if it is better than that.

After each generation one individual of the generation is improved by local
search. CMA-ES (Evolution Strategy with Covariance Matrix Adaptation) [9] is
used as the local search strategy.

CMA-ES is an efficient local search algorithm for optimization problems in
continuous domains. In 2004, Hansen and Kern demonstrated its competitive

Evolutionary Design of Active Free Space Optical Networks Based on DMDs 27

performance on eight multimodal test functions [10]. It was employed in a multi-
start EA with increasing population size, called G-CMA-ES [11], which yielded
the best results in the real-parameter optimization competition at the Congress
of Evolutionary Computation 2005 [12]. In our optimization a (μ,λ)-CMA-ES
is used. It iteratively creates λ individuals by sampling a multivariate normal
distribution with mean value m, global step size σ and covariance matrix C:

xi ∼ N(m,σ2C) for i = 1, ..., λ

After each iteration the new individuals are evaluated and m, σ and C are
updated in order to guide the search in a better direction. The initial mean
value m is the individual that should be improved by local search. The new
m after each iteration is created from the λ current individuals by a weighted
recombination of the μ best ones.

Algorithm 1. Overview Optimization Algorithm

Input: G (number of generations)
P (population size)

Input: Pop (population)

1 Initialization:
1.1 Initialize and evaluate Pop. Set g = 1.
2 Global optimization:
2.1 If g = G then stop, otherwise set k = 1.
2.2 Select two parents p1, p2 from Pop with negative assortative mating.
2.3 Create offspring o1 and o2 from p1 and p2 using BLX-crossover and mutation

from Breeder Genetic Algorithm.
2.4 Evaluate o1 and o2 with fitness function.
2.5 Insert best individual from {o1,o2} in Pop if it is better than the worst indi-

vidual in Pop.
2.6 If k < P then set k = k + 1 and go to 2.2.
3 Local improvement:
3.1 Pick the best individual b from Pop to which CMA-ES was applied less then

30 times or which was improved at least once during the last 30 applications of
CMA-ES to it.

3.2 Apply 2 · P/λ iterations of (μ,λ)-CMA-ES to b.
3.3 Set g = g + 1 and go to 2.1.

For the internal parameters of the CMA-ES, like μ and λ, we used values
as recommended by Hansen and Kern [10]. In each generation of the used EA
CMA-ES is applied to the best individual in the population that fulfills one of
the following two conditions:

(a) CMA-ES was applied to the individual less than 30 times.
(b) From the last 30 applications of CMA-ES to the individual, at least one led

to an improvement.

28 S. Limmer et al.

In each application 2 · PopSize/λ iterations of the local search are performed
(thus, in the CMA-ES the same number of evaluations is performed like in the
rest of the algorithm) and at the end the internal state of the CMA-ES (the
step size σ and the covariance matrix C) is stored and reused for the next
application of the CMA-ES to the individual, leading to a so called LS-chain
according to Molina. An overview over the complete optimization algorithm is
given in Algorithm 1

We also tried an EA without local search. It was able to find adequate solutions
for networks of small dimensions (like 4×4) but not for higher ones. Figure 4
shows how the fitness changes when the position of the first inputs of random
initialized individuals for the dimensions 4×4, 8×8 and 16×16 change. One can
not only see that the average fitness increases (and so becomes worse) with
increasing dimension, but also that the fitness landscape becomes more complex.

(a) (b) (c)

Fig. 4. Fitness as a function of the x and y position of the first input of a random
initialized individual. The fitness is indicated by the intensity. (a) Dimension of 4×4.
(b) Dimension of 8×8. (c) Dimension of 16×16.

4 Optimization Results

In order to get good optimization results we did 120 runs of the algorithm in
parallel on a cluster consisting of 56 AMD Opteron 2.2 GHz Dual-Cores and
four AMD Opteron 2.4 GHz Six-Cores. Then the best results of these runs are
used as initial populations for further 120 runs and so on, until the results did
not further improve. For one run of the algorithm we used a population size
of 1000 and computed between 1000 and 4000 generations dependent on the
intended dimension of the optical network. For all runs a mutation rate of 0.125
and a crossover rate of 0.9 was used.

Table 1 shows the best found fitness values for the dimensions from 8×8 to
16×16.

Although the results are not perfect in terms of fitness (that means a fitness
of 0), they are still satisfying for the realization. For the dimension of 16×16 the
maximum variation of a step size between entrance angles of two beams of an

Evolutionary Design of Active Free Space Optical Networks Based on DMDs 29

Table 1. Fitness values of the best found individuals for the dimensions from 8×8 to
16×16

Dimension 8×8 9×9 10×10 11×11 12×12 13×13 14×14 15×15 16×16

Fitness 0.00005 0.00011 0.00093 0.00134 0.00775 0.00592 0.00401 0.02286 0.03364

Fig. 5. The evolved setup for dimension 16×16 from two different perspectives. All
beams from the inputs to the outputs are drawn in the figure. The inputs are located
in the front and the outputs in the rear from the given view point. The specifically
marked area at the bottom of the substrate represents the DMD.

input to the average step size for that input is 0.000763◦.This is still acceptable.
But it is unlikely that the dimension can be increased much more under the
given conditions. The geometrical limits are nearly reached. Figure 5 shows a
plot of the evaluated system for the dimension of 16×16.

5 Conclusion

Due to the small area of the DMD it was foreseeable that the possible dimension
is comparatively small. But it is also possible to use the evolved system as a
switch instead as a whole network or stage in a multi stage network. Further-
more, it is conceivable that the reachable dimension can be increased with other
preconditions like larger DMDs. This is part of further work. It is important

30 S. Limmer et al.

that it could be shown that it is theoretically possible to switch multiple inputs
to multiple outputs with the proposed setup. The next step is to verify if it is
also practically viable by implementing a prototype under consideration of the
achieved optimization results. Furthermore it has to be investigated what is the
best way to do the routing.

References

1. Jahns, J., Huang, A.: Planar Integration of Free-Space Optical Components. Ap-
plied Optics 28, 1602–1605 (1989)

2. Yeow, T.-W., Law, E., Goldenberg, A.: MEMS Optical Switches. IEEE Communi-
cations Magazine 39, 158–163 (2001)

3. Limmer, S., Fey, D., Lohmann, U., Jahns, J.: Evolutionary Optimization of Lay-
outs for High Density Free Space Optical Network Links. In: GECCO 2011,
pp. 1635–1642. ACM (2011)

4. Gruber, M.: Multichip Module with Planar-Integrated Free-Space Optical Vector-
Matrix-Type Interconnects. Applied Optics 43(2), 463–470 (2004)

5. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Ge-
netic Algorithm: I. Continuous Parameter Optimization. Evolutionary Computa-
tion 1(1), 25–49 (1993)

6. Molina, D., Lozano, M., Garćıa Mart́ınez, C., Herrera, F.: Memetic Algorithms for
Continuous Optimization Based on Local Search Chains. Evolutionary Computa-
tion 18, 27–63 (2010)

7. Fernandes, C., Rosa, A.: A Study on Non-Random Mating and Varying Population
Size in Genetic Algorithms Using a Royal Road Function. In: Proceedings of the
2001 Congress on Evolutionary Computation, pp. 60–66. IEEE Press (2001)

8. Eshelman, L.J., Schaffer, J.D.: Real-coded Genetic Algorithms and Interval-
chemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms, vol. 2,
pp. 187–202. Morgan Kaufmann, San Mateo (1993)

9. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation 9, 159–195 (2001)

10. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test
Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J.,
Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII
2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

11. Auger, A., Hansen, N.: Performance Evaluation of an Advanced Local Search Evo-
lutionary Algorithm. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, CEC 2005, pp. 1777–1784 (2005)

12. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms behaviour: a case study
on the CEC 2005 Special Session on Real Parameter Optimization. Journal of
Heuristics 15(6), 617–644 (2009)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 31–41, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Frequency Robustness Optimization with Respect
to Traffic Distribution for LTE System

Nourredine Tabia1, Alexandre Gondran2, Oumaya Baala1, and Alexandre Caminada1

1 UTBM, SeT, Thierry Mieg, 90010 Belfort, France
2 ENAC, Edouard Belin, 31055 Toulouse, France

{nourredine.tabia,oumaya.baala,alexandre.caminada}@utbm.fr,
alexandre.gondran@enac.fr

Abstract. The Long Term Evolution (LTE) cellular network is based on
Orthogonal Frequency Division Multiple Access (OFDMA) to meet several
services and performance requirement. This paper shows the interest of
robustness approach due to the uncertainty of traffic distribution while
evaluating some antenna parameters. We use a greedy algorithm with different
variants to show how a frequency parameter setting can impact the coverage
performance indicator based on the SINR metric. The well-known frequency
reuse schemes 1x3x3, whereby the entire bandwidth is divided into 3 non-
overlapping groups and assigned to 3 co-site sectors within each cell, have been
used in our model. Further work must be done on algorithmic approach.

Keywords: LTE, Robustness, SINR, Interference, Frequency, Optimization.

1 Introduction

The Long Term Evolution is a new air-interface designed by the Third Generation
Partnership Project (3GPP) [6]. Its goal is to achieve additional substantial leaps in
terms of service provisioning and cost reduction. OFDMA has been widely accepted
as a promising technology for new generations [9]. This technique provides
orthogonality between the channels [7]; it reduces interference and improves the
network Quality of Service (QoS). Resource allocation in radio networks essentially
depends on the quality of some reference signals received by the user equipment
(UE). In LTE, they are the Reference Signal Received Power (RSRP) and the
Reference Signal Received Quality (RSRQ) corresponding respectively to Received
Signal Code Power (RSCP) and Ec/No in (UMTS Universal Mobile
Telecommunications System). Each user is assigned a portion of the spectrum
depending on RSRP and RSRQ. The more complex optimization of reference signal
is the RSRQ which is based on SINR [8] [12]. SINR is an important performance
indicator to estimate the achievable throughput from the interference received by the
neighboring cluster of first-tier cells. The estimation and optimization of the SINR are
well-known problems in radio communication systems such as 802.11, Global System
for Mobile Communications (GSM) or UMTS [4], [1], and LTE needs also a good
estimation and control of SINR.

32 N. Tabia et al.

Optimizing antenna parameters configuration is one of main targets. It can
significantly improve the coverage and the capacity of the network dealing with the
lack of available bandwidth in eNB (evolved Node Base). Several studies have been
done in this direction to understand the impact of parameters on antennal QoS offered
by the network [12], [10] and [3]. In [3] the authors study the impact of azimuth and
tilt inaccuracies on network performance considering three main quality parameters:
service coverage, soft handover and the ratio of chip energy to interference Ec/No.
The approach of simulated annealing or evolutionary computation is used in [10] [1]
to study network configuration parameters (CPICH power, down tilt and antenna
azimuth) effects toward coverage service in UMTS network. Other approaches for
frequency assignment are available at http://fap.zib.de/biblio/. In LTE various
combinations of antenna have been studied in term of SINR and throughput
performance [12] [2]. However, there is no work on robust optimization for LTE. In
this paper, we study the influence of the frequency as preliminary study on some
performance metrics (e.g. SINR, coverage) and also, the interest of robust
optimization for LTE network. The choice of the robust approach is mainly due to the
uncertainty of the traffic distribution and its advantage is to tackle this uncertainty
among several traffic scenarios. For this aim, the paper is structured as follows.
Section 2 introduces the system model and basic assumptions. Section 3 extends this
work and shows the performance metrics and test assumptions. Section 4 presents
some results to highlight utility of robust optimization toward the uncertainty of the
traffic demands with LTE online optimization. Conclusions are drawn in section 5.

2 Case Study and System Model

2.1 Case Study

The considered network for this study consists of tri-sectors sites in one real city. The
service area is a 40kmx20km area with industrial zones. For our model the service
area is divided into a grid of equally sized test points. A test point is a 25x25 meters.
Due to the very small size of the test point, we assume the same signal propagation
conditions within a test point. It is characterized by its number of users and the
category of required services for each user (e.g., voice, data). Each sector in the
network is equipped with one directive antenna and each antenna is characterized by
its parameters: radiation pattern, azimuth, tilt, frequency and output power in
downlink. Due to the dynamic aspect of the network and changes in traffic demand,
we use the concept of traffic scenarios. A scenario is a given distribution and load of
the traffic demand at a given time for each test point. Then the scenarios allow us to
compute different situations of network performance to study the robustness problem.

2.2 Basic Assumptions

In this paper, we consider the downlink transmission and illustrate the interference
schemes using a theoretical model of seven-cell hexagonal layout as shown in Fig. 1.
Three sectors are considered in each site with three eNBs. In Fig. 1 we see the
frequency reuse 1x3x3 pattern where one site with three sectors uses three frequency

Frequency Robustness Optimization with Respect to Traffic Distribution for LTE System 33

sets. In our real network, cells are not hexagons; the sub-band assignment depends on
the azimuth orientation of the sectors. The features of our computational model are
the following: 1) Intra-frequency interference is avoided due to the use of OFDMA
technique in downlink transmission. In LTE the orthogonality between subcarriers
insures that the interference inside the cell can be ignored. 2) The basic resource
element in OFDMA is the physical resource block (PRB) which spans both frequency
and time dimensions. Here, we do not take into account PRB to estimate the inter-cell
interference because it needs huge simulation; we only focus on the frequency sub-
band reuse scheme. Two adjacent cells are scrambling each other if they are using the
same sub-band to transmit data. It gives a worst but fast estimation of SINR.

 Fig. 1. Reuse 1x3x3 seven-cell hexagonal layout Fig. 2. Online optimization process

2.3 Problem Formulation

The global objective of this study is to propose a methodology to change
automatically some antenna parameters settings (power output, tilts, frequency
allocation) so that the network will be more responsive to changes in traffic and the
environment. The online optimization process is depicted on Fig. 2, where the overall
optimization process is presented. The system operator acts on it via the antenna
parameters. These parameters are called decision variables of the problem. From the
input data, the network model provides an assessment of service quality using
endpoints such as the level of interference and the bandwidth required to absorb the
flow required by the users. The calculation in this level needs to know the real state of
the traffic. Thus the decision variables depend on the considered traffic scenario. The
proposed global objective of robust optimization is to minimize the lack of bandwidth
of the network for all traffic flow requested. For the deployment of the network, each
test point is associated with the eNB according to the quality of the received SINR.
The interference model based on SINR is thus calculated as defined in Eq. (1). The
detail on the production of this Eq. is given in [11].

0
,'

,',,'

,
,,

MIN

ffbb
sbsbb

R
tb

b
R

tb
stb wnfp

fp

bb

γ
δδ

γ >
+

=
∑

′=≠
′

(1)

 Network model

Parameter settings: frequency
power, tilts…

Robust
Optimization

Evaluation metrics: SINR,
throughput…

34 N. Tabia et al.

Where, stb ,,γ is the SINR received by the test point t and issued from the eNB b in

scenario s; bf and bf ′ are the frequencies used by eNB b and b’ respectively; sb,δ and

sb ,′δ are the load factors corresponding to eNBs b and b’ in scenario s. The term w

represents the total bandwidth used by all eNBs and n0 is the thermal noise over the

considered bandwidth. The terms R
tbp , and R

tbp ,′ are the end power received by UE

located in test point t from respectively b and b’. The right part of Eq. (1) MINγ is the

SINR threshold required for the test point to establish a communication; below this
value, the users within the given test point are considered as non-covered users. The
full problem formulation is given by the following sets of data, parameters and

functions. Let: B={1,…,nB} the set of Bn eNBs of the network; T={1,…,nTP} the set

of test points of the map; and stc , the number of users located on the test point t in

scenario s. We need to use the network return to determine the values of the following
decision variables.

Decision Variables (parameter settings)
E
bp is the output power of the eNB b : b

E
b Pp ∈ ; E

bt is the electrical tilt of the eNB b :

b
E
b Tt ∈ ; nbf , is the variable for carrier assignment to eNB : { }1;0, ∈nbf

Where, bP and bT the sets of possible values of the power output and tilt

respectively.

Fitness Functions for Robustness: We aim at minimizing one of the following:

Mean: ∑
∈

Δ×
Ss

ssp)(
Standard deviation:

2

/∑ ∑
∈ ∈′

′ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ Δ−Δ
Ss Ss

s
s

ss np

Absolute robustness: ()∑
∈

Δ×
Ss

ssp Absolute deviation: ()()sss
Ss

p Δ−Δ
∈

*max

Where, *
sΔ is the optimum of sΔ in the scenario s. This measure therefore requires

solving ns problems in advance. sp is the probability of using the scenario s.

Where, sΔ is the lack of bandwidth expressed in Hz required by the network to

drain all traffic flow in scenario s.

)),0(max(max ,sb
Sb

s Δ=Δ
∈

(2)

Where, sb ,Δ is the difference between the necessary bandwidth of the eNB b to drain

the requested flow of data in the scenario s, and the total available bandwidth w.

,, wwS
sbsb −=Δ

(3)

Frequency Robustness Optimization with Respect to Traffic Distribution for LTE System 35

The term S
sbw , is the necessary bandwidth to satisfy all the users in scenario s. and w

is the total available bandwidth in each eNB. If 0, <Δ sb
, then all users associated to

the eNB b are satisfied. If 0, >=Δ sb , some users are not satisfied (lack on bandwidth).

Constraints: The main constraints of our model are:

(C1) CC
s nnSs 0,0, ≤∈∀ : the number of non covered users in scenario s should not

exceed the threshold Cn0

(C2) MAX
bb

MIN
b vvvBb ≤≤∈∀ , : minimum and maximum of neighbourhood cells for b.

(C3) 1, , ≤∈∀ ∑
∈Bb

tbuTt : a test point is associated with exactly one eNB.

Where,
⎩
⎨
⎧

=
otherwise

beNBthewithassociatedistif
u tb 0

1
,

(C4) 1, , ≤∈∀ ∑
∈Nn

nbfBb : one eNB b can use only one carrier n.

In the current work, we will not consider all the parameter settings of the antenna. We
limit our study to the impact of the frequency parameter on the number of clients not
covered by the network in the service area. Other parameters will be added later. The
robust approach uses the mean robustness over three different demand scenarios in a
traffic day. The proposed evaluation methodology aims to show the effect of the
antenna frequency parameter on non covered users with respect to traffic distribution.
For the study presented in this paper, the overall problem is reduced to the following.

Decision Variable (frequency assignment): nbf , : frequency assignment of the

carrier n to the eNB : }{ 3,2,1,1,0, =∈ nf nb

Constraints: We keep the constraints (C3) and (C4).

Fitness Function: Let C
sn ,0
be the number of non covered users in scenario s where

C
stn , is the number of non-covered users in test point t for scenario s.

0

,,0 ∑
∈

=
CTt

C
st

C
s nn

(4)

Robustness Function:
,0∑

∈

=
Ss

C
s

Rob nf

(5)

Where, Robf is the sum of non-covered users in all scenarios.

3 Assumptions and Performance Metrics

We aim at evaluating the SINR model to identify where the assigned frequency
presents a remarkable increase of covered users with respect to traffic distribution.

36 N. Tabia et al.

The main parameters and assumptions we used are those selected by 3GPP for LTE as
shown in Table1. Evaluations are performed by a static snapshot of the network level.
In addition to Table 1, we assume that the antennas are grouped by site and stored on
the basis of an index in ascending order of the x-axis. Two intermediate performance
metrics are used for the deployment of the network:

Table 1. Test assumptions for LTE downlink

Parameters Simulation setting Parameters Simulation setting
Network layout 35 sites 88 sectors TX power range [36 dBm, 46 dBm]
System frequency 1800 Mhz Mechanical tilt range [0°,-6°]
System bandwidth 20 Mhz Electrical tilt range [0°,-10°]
Required service/user 2 Mbps Azimuth range [0°,360°]
Frequency reuse factor 1x3x3 Horizontal HPBW +70°
eNB heights range [17m, 46m] Vertical HPBW +10°
UE height 1.5 m Antenna gain range [14dBi , 18.9dBi]
Propagation loss model Hata model [5] Traffic distribution Distribution in proportion

to UMTS traffic load

Signal-to-Interference Plus Noise Ratio: The SINR, expressed in Eq. (1), is an
important indicator to evaluate cellular networks. It is motivated by the fact that it
takes into account all the parameters of the antenna, it depends on the traffic
distribution of the network, resizes the network and determines which eNB controls
each user and also, allows us to estimate the total throughput of the network.

Load Factor: The Load Factor of the sector/cell is the ratio between the total
allocated bandwidth to the cell and the maximum bandwidth available in the cell. Let

sb,δ be the load factor, then: wwS
sbsb /,, =δ where, S

sbw ,
is the total allocated bandwidth

to the eNB b in the reference scenario s, and w is its maximum available bandwidth. It
is worthwhile to mention that load factor is one of the main key indicators. The
downlink cell load for a stable network should not exceed 70% [10].

4 Simulation Results and Analysis

The basic network is the city of Belfort described in section 2. The UE are randomly
dropped in each cell in proportion to the existing UMTS traffic load. We present a
methodology to evaluate robustness taking into account traffic data of the network. A
cell is defined as a set of test points of the map which are assigned to the same eNB; a
test point is assigned to the eNB which provides the best SINR. The collected traffic
data come from a real UMTS network. The tests consider three different scenarios
originating from the traffic of one day, as shown in Fig. 3. Three scenarios were selected
at different times of the day as follows: : a first scenario at 8am with low traffic and 482
users dropped randomly in the network; a second scenario at 3pm with medium traffic
and 1,019 users; and a third scenario at 6pm with high traffic and 1,471 users. We are
considering that all users are accessing the network at the same time (saturated traffic
condition). Fig. 4.a) and 4.b) show the concentration of the traffic in the 1st and 3rd
scenario at 8am and 6pm respectively. The traffic is represented by a colour gradient.
The light colour shows a low traffic, while the dark colour shows higher traffic.As we
can see, there is more dense traffic at 6pm than at 8am.

Frequency Robustness Optimization with Respect to Traffic Distribution for LTE System 37

Fig. 3. Example of day traffic with three chosen scenarios

The objective is to test different traffic loads in the day. The program
implementing our model is developed in C++. We run the program 10 times to get
stable results; different tests are presented in the following to show the interest of
robustness in a real network design and traffic load.

Fig. 4. Example of traffic concentration at: a) 8am. b) 6pm

Our study focuses on the interest of robust optimization for LTE online
optimization and shows that optimizing a number of network configurations helps
considerably to meet variant services respective to traffic uncertainty. Furthermore,
we use a greedy algorithm on frequency assignment where sites and sectors are
explored firstly one by one ranked from the input file and secondly randomly. The
reuse scheme used here is the 1x3x3 knowing that it presents better results with
respect to the number of covered users [11]. We look how the solution of the antenna
configuration, especially the frequency parameter, behaves under realistic scenarios.

4.1 Algorithm Description

It can be proved that this problem is NP-hard as it is a graph-colouring problem. For
such problems, guaranteeing optimum requires, in the worst case, an enumeration of
all possible configurations. The number of possibilities is enormous; for 35 cells, 88
antennas and 3 frequency groups, the number of possibilities is 635= 1.71 * 1027. In
order to show the interest of robust optimization, we present an algorithm able to
quickly find a good solution. An iterative algorithm is used; the purpose is not to find
an optimal solution but to get the benefit of robust optimization for 3 scenarios in
comparison with local solution based on single scenario. The algorithm with several
variants is proposed and measures the performance toward the network coverage.

0

1000

2000

3000

4000

5000

6000

7000

8000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time

N
o

m
b

er
 o

f u
se

rs

traffic

38 N. Tabia et al.

The robust optimization function takes into account the three scenarios considered
above. We run the optimization with different conditions varying: the scenarios of
traffic; the initial frequency assignment to the eNBs (deterministic or stochastic per
sector from the same site); the sites neighbourhood search to test the permutation of
frequency: sites ranked from the input file or randomly chosen during optimization.
The algorithm starts with one solution using the scheme 1x3x3. The optimization
algorithm is run for each scenario to show the best configuration of the frequency
parameter setting with respect to the performance metric given by the Eq. (4). For
each explored site, we evaluate the 6 (3! =6) possibilities of permutations for each
sector of the site. The algorithm evaluates 6x88 permutations at each iteration. If a
frequency permutation improves the evaluation function of the current solution, the
algorithm keeps the last modification and goes through the next sector configuration.
It stops once the current iteration brings no improvement. This is achieved by the
following algorithm which was used for all cases.

Algorithm
Input parameters: Set B of nB eNBs; Set T of nT test points; Set S of
scenarios: s1=8am, s2=3pm, s3=6pm; Frequency reuse scheme 1x3x3 (3
groups of frequency to assign to eNB)

Variables: Frequency assignment to eNBs

Fitness function: Fitness(F) = Number of outage users for the
frequency plan F with)()(,0 FnFFitness C

s= in s for non robust

optimization and)()(FfFFitness Rob= in s1, s2 and s3 for robust
optimization.

Algorithm:
Initialize F // F is the initial frequency plan
F*:= F // F* is the current best frequency plan

Repeat
 Improve:=False

 For each site b of the network // Testing all the sites

 For each permutation j:=1..6//Testing all the permutations on b
 Generate the new frequency plan F from F*

 If)()(*FFitnessFFitness < //Evaluation of the current configuration

 F*:= F // Store the new best solution of frequency plan

 Improve:=True

 End IF
 End For

 End For

Until Improve=False // Stopping criteria if there is no improvement.

Frequency Robustness Optimization with Respect to Traffic Distribution for LTE System 39

4.2 Results with Non Robust and Robust Optimization

The results of optimization are shown in the Fig. 5. We emphasize that for the non
robust (each scenario tackled alone) and for the robust optimization (the 3 scenarios
together) we use the same algorithm but in case of robustness the evaluation function
is the Eq. (5) and takes into account the configuration of the frequency considering all
the scenarios simultaneously. It means that, for each frequency of the network, we
evaluate the non-covered users in the three scenarios. So, we run the same algorithm 4
times (one run for each optimization), we use the evaluation function Eq. (4) to
optimize the 3 scenarios separately; then we use the evaluation function Eq. (5) for
the robust optimization using the 3 scenarios at the same time. The x-axis represents
the starting solution and the optimization of scenarios 1, 2 and 3 separately and the
robust optimization at the end. The y-axis shows the number of users in outage for
scenarios 1, 2, 3 and totally. We can note that scenario1 optimization has the smallest
number of non-covered users when evaluating s1 (4 users) comparing to the other
cases (8, 7, 9). The same analysis can be done for the scenario s3 and it is a different
for s2 but not far away from the best one. After 20mn runs there is no guarantee on the
solution quality. We observe that the result of the robust optimization is a trade off
between the three scenarios, the best for s1 and s2 but not the best for s3. Finally, the
fitness function value 22=Robf of non-covered users for all cases corresponds to the

global best solution, while in other situations, starting solution and non robust cases,
the global function values are 43, 25, 27 and 29 respectively from left to right part of
the Fig. 5a. The robust optimization does a better compromise between all scenarios.
This result shows how the robust approach is important for our study.

0

5

10

15

20

25

30

35

40

45

50

Starting
solution

opt S1 opt S2 opt S3 Robust
optimisation

N
u

m
b

er
 o

f
n

o
n

 c
o

ve
re

d
 u

se
rs

Global function

S1:8am

S2:3pm

S3:6pm

0

10

20

30

40

50

60

70

Starting
solution

opt S1 opt S2 opt S3 Robust
optimization

N
u
m

b
er

 o
f
n
o
n
 c

o
ve

re
d
 u

se
rs

Global function

S1:8am

S2:3pm

S3:6pm

Fig. 5. The non robust and robust optimization. (a) Test 1 with deterministic initial frequency
plan and site ranked from input file. (b) Test 3 with random initial frequency plan and sites
randomly processed.

Different variants of the algorithm have been tested by varying several parameters.
We run the program 20 minutes for each optimization in Test 2 and Test 3, and keep
the best solution for the considered fitness function. In Test 1 (Fig. 5a), the initial
frequency plan is deterministically assigned and the sites are processed from their
rank in the input file. In Test 2, the initial frequency plan is deterministically assigned
and the sites are randomly processed during optimization. The results are similar to
the test 1 so we do not plot it. In Test 3 (Fig. 5b) the initial frequency plan is
randomly assigned to the co-site sectors and the sites are randomly processed during

40 N. Tabia et al.

optimization. The Fig. 5 plots one execution but the ten executions provide results
that are in the same direction, the robust optimization gives the best trade off between
the different scenarios and this is the requirement for LTE online optimization.

5 Conclusion and Perspectives

In this paper, the impact of frequency parameter setting and the interest of robust
approach with respect of traffic distribution in LTE downlink system have been
discussed and simulations were presented. The analysis has been carried out using
model radiation pattern 1x3x3 and simple model of system performance. With respect
to coverage, our case study demonstrates the benefit of the robustness approach and
how the frequency parameter setting affects the coverage of the macro-cellular
scenario. We aim in further studies at analyzing the influence of the load factor
throughout the capacity performance metric to show the overloaded cells which
represent the bottlenecks of the network and the impact of other antenna parameters
like tilts. Variable Neighbourhood Search and Tabu Search are under development for
robust optimization. Thanks to Orange Labs for the cooperation on this work.

References

1. Altman, Z., Picard, J.M., Ben Jamaa, S., Fourestie, B., Caminada, A., Dony, T., Morlier,
J.F., Mourniac, S.: New challenges in automatic cell planning of UMTS networks. In: 56th
IEEE Vehicular Technology Conference, pp. 951–954 (2002)

2. Athley, F., Johansson, M.: Impact of electrical and mechanical antenna tilt on LTE
downlink system performance. In: IEEE Vehicular Technology Conference, Ericsson Res.,
Ericsson AB, Goteborg, Sweden (2010)

3. Didan, I., Kurochkin, A.: The impacts of antenna azimuth and tilt installation accuracy on
UMTS network performance. Bechtel Corporation (2006)

4. Gondran, A., Baala, O., Caminada, A., Mabed, H.: Interference management in IEEE
802.11 frequency assignment. In: IEEE Vehicular Technology Conference (VTC Spring),
Singapore, pp. 2238–2242 (2008)

5. Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE
Transactions on Vehicular Technology 29(3) (1980)

6. Holma, H., Toskala, A.: LTE for UMTS OFDMA and SC-FDMA based radio access. John
Wiley & sons Ltd. Edition (2009)

7. Mao, X., Maaref, A., Teo, K.: Adaptive soft frequency reuse for inter-cell interference
coordination in SC-FDMA based 3GPP LTE uplinks. In: IEEE Global
Telecommunications Conference (GlobeCom), New Orleans LO, USA (2008)

8. Rahman, M., Yanikomeroglu, H.: Enhancing cell edge performance: A downlink dynamic
interference avoidance scheme with inter-cell coordination. IEEE Transaction on Wireless
Telecommunication 9(4), 1414–1425 (2010)

9. Rahman, M., Yanikomeroglu, H.: Interference avoidance with dynamic inter-cell
coordination for downlink LTE system. In: IEEE Wireless Communication and
Networking Conference, WCNC (2009)

Frequency Robustness Optimization with Respect to Traffic Distribution for LTE System 41

10. Siomina, I., Varbrand, P., Yuan, D.: Automated optimization of service coverage and base
station antenna configuration in UMTS networks. IEEE Wireless Communications 13(6),
16–25 (2006)

11. Tabia, N., Gondran, A., Baala, B., Caminada, A.: Interference model and evaluation in
LTE networks. In: IFIP&IEEE Wireless and Mobile Networking Conference, Toulouse,
France (2011)

12. Yilmaz, O.N.C., Hamalainen, S., Hamalainen, J.: System level analysis of vertical
sectorisation for 3GPP LTE. In: IEEE 6th International Symposium on Wireless
Communication System, CSWCS (2009)

13. Yilmaz, O.N.C., Hamalainen, S.: Comparison of remote electrical and mechanical antenna
downtilt performance for 3GPP LTE. In: IEEE 70th Vehicular Conference Fall, VTC 2009
FALL (2009)

Small-World Optimization Applied

to Job Scheduling on Grid Environments
from a Multi-Objective Perspective

Maŕıa Arsuaga-Rı́os1, Francisco Prieto-Castrillo1,
and Miguel A. Vega-Rodŕıguez2

1 Extremadura Research Center for Advanced Technologies (CETA-CIEMAT),
Trujillo, Spain

{maria.arsuaga,francisco.prieto}@ciemat.es
http://www.ceta-ciemat.es/

2 ARCO Research Group, University of Extremadura, Dept. Technologies of
Computers and Communications, Escuela Politecnica,

Campus Universitario s/n, 10003, Cáceres, Spain
mavega@unex.es

http://arco.unex.es/

Abstract. Grid scheduling techniques are widely studied in the re-
lated literature to fulfill scientist requirements of deadline or budget for
their experiments. Due to the conflictive nature of these requirements -
minimum response time usually implies expensive resources - a multi-
objective approach is implemented to solve this problem. In this paper,
we present the Multi-Objective Small World Optimization (MOSWO) as
a multi-objective adaptation from algorithms based on the small world
phenomenon. This novel algorithm exploits the so-called small-world ef-
fect from complex networks, to optimize the job scheduling on Grid
environments. Our algorithm has been compared with the well-known
multi-objective algorithm Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) to evaluate the multi-objective properties and prove its re-
liability. Moreover, MOSWO has been compared with real schedulers,
the Workload Management System (WMS) from gLite and the Deadline
Budget Constraint (DBC) from Nimrod-G, improving their results.

Keywords: Grid computing, scheduling, multi-objective, small world
phenomenon.

1 Introduction

Grid computing is a distributed computation paradigm build upon the Internet
infrastructure. Its aim is to share distributed resources for processing and stor-
ing data from different types of users in a transparent way. The scheduling of
experiments is normally composed for a set of jobs and their owners usually need
to ensure a maximum execution time or cost in order to fulfill the deadlines and
budgets for their projects.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 42–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Small-World Optimization Applied to Job Scheduling on Grid Environments 43

Real Grid schedulers such as theWorkload Management System (WMS)1 from
the most used European middleware Lightweight Middleware for Grid Comput-
ing (gLite)2, implemented during the Enabling Grids for E-sciencE (EGEE)3

project, does not take into account these requirements. However, the scheduler
Deadline Budget Constraint (DBC) from the Nimrod-G [1] tries to keep the
deadline and budget for an experiment but it does not ensure that all the jobs
will execute successfully. Currently, new algorithms are emerging to consider not
just one of these requirements; time or cost, but also both of them at the same
time with the same importance([11], [15], [16], [17]). Usually, these algorithms
are based on genetic algorithms. Genetic algorithms are inspired by biological
phenomena and they have reported a good performance in multi-objective ap-
proaches as it is the case of the well-known Non-dominated Sorting Genetic
Algorithm-II (NSGA-II)[2]. But, the test environments used for the cited studies
lack of real data and their experiments do not exhibit complex dependencies
between jobs and transferred data process.

In this research, we have considered a novel optimization algorithm based on
the small world phenomenon. Milgram found this phenomenon during sociolog-
ical research consisting on tracking the shortest paths in EEUU social networks
through a simple experiment [8]. Milgram’s experiment originated the famous
term ”six degrees of separation”. Lately, Watts and Strogatz ([14][9]) reported
a mathematical model of small world fostering research on the small world by
computer scientist. Small-world phenomenon became an active field in complex
problems due to its interdisciplinary combining sociology, mathematics and com-
puter science ([3], [13], [6]). The key of the small world phenomenon depends
on local connections and few long-range connections to find the shortest paths
in the network, which offers an efficient searching strategy [5]. Resource distri-
bution of Grid computing is sometimes compared with the Internet network or
social networks due to its scale-free complex topology. Therefore, we develop
research of the small world phenomenon to optimize the job-scheduling prob-
lem on Grid environments due to the good results found by currently emerging
optimization algorithms based on this phenomenon. The approach of this work
is the modification of the Tabu Small World Optimization (TSWO) [7] algo-
rithm to support multi-objective optimization and its application to solve the
job-scheduling problem to optimize execution time and cost. This proposed algo-
rithm is called Multi-Objective Small World Optimization (MOSWO) and it is
compared with the standard multi-objective and also genetic algorithm (NSGA-
II). Moreover, a comparison with real-schedulers such as the WMS and DBC is
carried out to prove the improvement offered by the MOSWO approach.

This paper is structured as follows. Section 2 defines the problem statement.
Section 3 presents the MOSWO algorithm approach. Section 4 describes briefly
the NSGA-II applied to this problem. Section 5 shows the experimental results.
Finally, Section 6 summarizes the conclusions.

1 http://web.infn.it/gLiteWMS/
2 http://glite.cern.ch/
3 http://www.eu-egee.org/

http://web.infn.it/gLiteWMS/
http://glite.cern.ch/
http://www.eu-egee.org/

44 M. Arsuaga-Ŕıos, F. Prieto-Castrillo, and M.A. Vega-Rodŕıguez

2 Problem Statement

Job scheduling in Grid environments is a challenging task due to their complexity
topology from heterogeneous and distributed resources. Desirably,
jobs are managed in order to sent themselves to the most suitable resources
satisfying the user needs. We have considered two critical and conflictive re-
quirements often demanded by the scientists, the execution time and cost of
an experiment (set of jobs). These requirements are conflictive each other be-
cause faster resources are often more expensive than the slower ones. By this
reason a multi-objective approach is required to tackle this problem. A general
multi-objective optimization problem (MOP) [4] includes a set of n parameters
(decision variables) and a set of k objective functions. The objective functions
are functions from the decision variables. Hence, a MOP could be defined as:
Optimize y = f(x) = (f1(x), f2(x), ..., fk(x)), where x = (x1, x1, ..., xn) ∈ X is
the decision vector and y = (y1, y2, ..., yn) ∈ Y the objective vector. The decision
space is denoted by X and the space objective is defined by Y. A multi-objective
problem does not return one solution but also a set of them. The set of optimum
solutions is called Pareto optimal set and the point set, defined by the Pareto
optimal set in the value space of the objective functions, is known as Pareto
front. For a given MOP and Pareto optimal set P*, the Pareto front (PF) is
defined as: PF ∗ := f = (f1(x), f2(x), ..., fk)|xεP ∗. The solutions included in the
same Pareto front dominates all the points not matched in all the objectives
by other solution. By this reason Pareto front consists just in non-dominated
solutions. A solution dominates other if and only if, it is at least as good as the
other in all the objectives and it is better in at least one of them. Our problem
needs to minimize two objectives (time and cost). Given a set of jobs J = {Ji},
i = 1,..,m and a set of grid resources R = {Rj}, j = 1,..,n the fitness functions
are defined as:

Min F = (F1, F2) (1)

F1 = max time (Ji, fj(Ji)) (2)

F2 =
∑

cost (Ji, fj(Ji)) (3)

where fj(Ji) denotes the job Ji allocation on the resource Rj . The objective
function F1 renders the completion time for the experiment (set of jobs) and
the object function F2 returns the resource cost for processing the experiment.
Complex workflows that follow a DAG model have been considered, the experi-
ments used are composed of dependent jobs. Dependent jobs have direct relation
to the requirements that are going to be optimized (time and cost) since an ex-
periment (or workflow) is modeled by a weighted directed acyclic graph (DAG)
JG = (V,E, l, d), where V is a set of nodes and E is a set of edges. On one hand,
each node j ∈ V represents a job and has assigned a constant length measured
in MI (Million of instructions), this length is denoted by l(j). On the other hand,
each edge (j → j′) ∈ E from j to j′ denotes the dependency between the job j′

regarding the job j. Job j′ could not be executed until job j has been executed
successfully. The data transferred length d(j → j′) between the jobs is specified
and measured in bytes.

Small-World Optimization Applied to Job Scheduling on Grid Environments 45

3 MOSWO: Multi-Objective Small World Optimization

MOSWO is an adaptation of the novel Tabu Small World Optimization (TSWO)
[7] algorithm to optimize more than one objective. TSWO is also based on
the Small World Algorithm (SWA) [3] but using a Tabu search for the local
search operator. SWA implements the solution space of optimization problem
as a small world network and takes the optimization procedure as finding the
shortest path from a candidate solution to an optimal solution. In the research
of TSWO, a good performance for decimal encoding in contrast with the bi-
nary used by SWA is showed. Moreover, TSWO and SWA have demonstrated
respectively their goodness in comparison with genetic algorithms (GAs) ([3],
[6], [7]). MOSWO algorithm is inspired by the Small World phenomenon and it
applied the Tabu search as a local search operator with a multi-objective per-
spective. The main steps of MOSWO are shown in Algorithm 1. This algorithm

Algorithm 1. MOSWO pseudocode

INPUT: Population Size, Mutation Probability
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost);
3: while not time limit (2 minutes) do
4: Multi-Objective Random Long-Range Operator;
5: Multi-Objective Local Shortcuts Search Operator;
6: Select Set of Best Solutions (Pareto Front);
7: Generate New Population;
8: end while

requires two parameters: population size and mutation probability. MOSWO
considers the population size as the size set of nodes, which represents the can-
didate solutions. Two vectors define the nodes: allocation and order vector. On
one hand, the allocation vector indicates the assignment between jobs and re-
sources meaning, in which resources the jobs will be executed. On the other
hand, order vector denotes the order of execution of the jobs that compound the
workflow. Execution time and cost are also attributes of each node according to
previous vectors. This representation is based on the work [11]. The algorithm
starts with a random initialization of the nodes and their evaluation using two
well-known operators for multi-objective problems: Classification of Pareto front
and Crowding distance[2]. Then, main operators in small world optimization al-
gorithms are executed per node: a random long-range search operator Γ and
local search operator Ψ.

Multi-objective Γ operator is applied to the node Ni according to mutation
probability and if and only if the node is not in the set of best solutions. Next,
allocation and order vectors are modified to obtain N ′

i . The process of Γ op-
erator applied to allocation and order vectors is similar. For allocation vector,
μ and ν jobs (assigned previously to a resource) are selected randomly, 1 ≤ μ

46 M. Arsuaga-Ŕıos, F. Prieto-Castrillo, and M.A. Vega-Rodŕıguez

< ν ≤ m, where m is the number of jobs that compound the experiment and
hence, it is also the length of the allocation and order vectors. The corresponding
resources from μ and ν jobs are substituted. In order vector are also substituted
if this change does not fail to fulfill the dependency constraint between jobs.
When N ′

i is calculated, multi-objective Ψ operator is executed to obtain the
best set of neighbours Best (ξ(N ′

i)) using the Tabu search. Tabu search updates
a list, called Tabu list, using the Least Recent Used (LRU) strategy, to store the
studied nodes in order to not repeat their study again. Therefore, the operator
checks if the node N ′

i are in the Tabu list before generating its neighbours. Then,
multi-objective Ψ operator generates the set of neighbours from N ′

i modifying
allocation and order vector. Due to performance, the algorithm generates a lim-
ited number of neighbours; this size is the total number of jobs. Hence, allocation
vector is across modifying one resource assignation sequentially. This modifica-
tion consists on increasing the resource identification by one. Order vector uses
the same technique but always considering the dependencies among jobs. Once
the neighbours are generated, multi-objective Ψ obtains the First Pareto Front
from the neighbours set using the Classification of Pareto front operator. Then,
the front is crossed in order to check if its nodes are in the Tabu list. If one node
is in the list it is delete from the front. Otherwise, it is included into the Tabu
list in order to not study so far.

Finally, the resulting front is built from all first fronts calculated per node
in the current iteration. These fronts are joined with the current population.
The Classification of Pareto front and also the Crowding distance operator sort
this new node set. Next, an improvement is applied to this algorithm in order
to add further diversity and to avoid the stagnation: The worst node of the
set is modified using heuristics from the problem. Two different heuristics are
applied per vector for each node. The heuristic for the order vector consists of
modifying the vector comparing it with another order vector calculated from a
greedy algorithm. This greedy algorithm provides the best order of execution for
the workflow according to the number of dependencies. Top positions of these
vectors are assigned to the jobs that have more jobs depending on them without
forgetting the precedence constraint. Allocation vector heuristic calculates its
processing timeMI/MIPS per each job, whereMI (Million Instructions) denotes
the job length (in instructions) and MIPS (Million Instructions per Second)
indicates the speed of the execution job in the resource assigned in the allocation
vector. Also, the total time execution of the workflow is calculated considering
the dependencies between jobs that, assuming those that have not dependencies
between them can be executed in parallel. Therefore, each job is assigned to the
resource that reduces the total execution time calculated previously. Moreover,
resources are sorted following the value of processing speed/cost. The overhead
time is also taken into account by the competitive jobs (without dependencies
between them) that run sequentially in the same resource. Before finalizing the
iteration, population is reduced to its previous size choosing the best nodes that
compose the set (old population and neighbours) to obtain the new population
and also the set best nodes from it (First Pareto Front).

Small-World Optimization Applied to Job Scheduling on Grid Environments 47

4 NSGA-II: Non-dominated Sort Genetic Algorithm

NSGA-II [2](Non-dominated Sorting Genetic Algorithm) is a well-known multi-
objective algorithm that is usually compared with novel multi-objective ap-
proaches. The main steps of NSGA-II are showed in Algorithm 2. NSGA-II

Algorithm 2. NSGA-II pseudocode

INPUT: Population Size, Crossover and Mutation Probability
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost);
3: while not time limit (2 minutes) do
4: Binary Tournament Selection;
5: Crossover;
6: Mutation;
7: Select Set of Best Solutions (Pareto Front);
8: Generate New Population;
9: end while

requires the typical parameters of a genetic algorithm (GA): population size,
crossover probability and mutation probability. In case of genetic algorithms,
a candidate solution is usually called individual. These individuals are codified
through the same way that the nodes from MOSWO and the initial population
is generated with the same process. Multi-objective operators are applied during
the execution of this algorithm: Classification of Pareto fronts and Crowding dis-
tance to sort, select and compare the individuals. Binary Tournament Selection
process selects the parents that will be crossing. Two tournaments are executed,
one per parent, selecting the individual located in the first front. In case that
individuals are in the same front, the individual with high Crowding distance is
used to break the tie.

Typical Crossover and Mutation operators in genetic algorithms are dupli-
cated in this problem due to the concurrency of vectors in each individual: al-
location and order vector. Therefore, this algorithm has two crossover and two
mutation operators. Crossover operators are based on the work [11]. The allo-
cation crossover swaps the parent vectors from a random position to create two
individuals. A similar crossover uses the order vector but keeping the precedent
constraints. To do this, a method checks if the new individuals have duplicated
order positions of the jobs, the duplicated positions remain at the missing po-
sitions. Next, Mutation operators are applied per vector using the mutation
probability. Each job from the allocation vector is mutated assigning a new re-
source from the available resource list. The order allocation vector is different
due to the constraints from the DAG model. Although each position of job is mu-
tated regarding the probability mutation, the operator identifies the latest order
position from its parents of the current job. Also, the first order position from
its child jobs is identified. Therefore, the new position will be selected randomly

48 M. Arsuaga-Ŕıos, F. Prieto-Castrillo, and M.A. Vega-Rodŕıguez

between the latest position parent and the first position child. Finally, new pop-
ulation is made up from the individuals located in the first Pareto fronts until
its original size is achieved, and the resulting set of solutions for that iteration
is the one composed by the first Pareto front.

5 Test Environment and Experiments

The test environment is configured and implemented in GridSim4 to simulate real
grid behaviour. On one hand, a grid topology is constructed from two testbeds to
complete all the information from a real grid. EU Data Grid [10] testbed provides
the topology connections and WWG [1] testbed a complete and real resource
data. On the other hand, three different and parallel numerical computation
workflows are launched such as Parallel Gaussian Algorithm, Parallel Gauss-
Jordan Algorithm and Parallel LU decomposition [12]. All of these workflows
follow a DAG Model with their respective lengths in MI (Million of Instructions)
and the input/output sizes in bytes. The experiments have been divided in two
studies to enforce the feasibility of the proposed algorithm (MOSWO). Due to the
stochastic nature of multi-objective metaheuristics, each experiment performed
in our study includes 30 independent executions. The parameter settings for each
multi-objective algorithm are: for MOSWO (population size = 100, mutation
probability = 0.25) and for NSGAII (population size = 100, crossover probability
= 0.9, mutation probability = 0.1).

The first study evaluates the multi-objective properties of MOSWO and
NSGA-II in order to compare them. Hypervolume indicator [18] is showed in
Table 1 and Table 2 for each algorithm. The obtained results demonstrate that
MOSWO hypervolume is always better than the NSGA-II and also, the fact of
obtaining more than 50% of hypervolume is a good point taking into account
the volume covered by its founded solutions. Moreover, the standard deviation of
MOSWO has better values than NSGA-II giving therefore more reliability than
this last one algorithm. Set coveragemetrics [18] is used to determine the percent-
age of solution dominance of each algorithm regarding the other. Each cell gives
the fraction of non-dominated solutions evolved by algorithm B, which are cov-
ered by the non-dominated points achieved by algorithm A [18]. Table 3 shows
that MOSWO solutions dominate almost all the solutions found by NSGA-II
with more than 80%. Furthermore, Pareto fronts returned by MOSWO (Figure
1) contain more solutions than NSGA-II, giving to the user more alternatives
inside its requirements (budget and deadline).

The second study is related to the comparison between MOSWO with the
real schedulers: WMS and DBC. These schedulers have been implemented in
the GridSim simulator. WMS has been executed using two options applying two
different scheduling strategies. The option 1 sorts the resources according to their
time response and the option 2 sorts the resources regarding their number of free
CPUs. Results show that MOSWO always executes successfully all the jobs that
compound the workflows within the indicated deadline. However, the schedulers

4 http://www.buyya.com/gridsim/

http://www.buyya.com/gridsim/

Small-World Optimization Applied to Job Scheduling on Grid Environments 49

Table 1. MOSWO properties per each workflow

Workflows Average Hypervolume % Standard Deviation Reference Point
of the Hypervolume (Time, Cost)

Gaussian 53.18 0.71 (1000, 10000)
Gauss-Jordan 54.45 0.34 (1200, 22000)

LU 52.71 0.70 (1200, 22000)

Table 2. NSGA-II properties per each workflow

Workflows Average Hypervolume % Standard Deviation Reference Point
of the Hypervolume (Time, Cost)

Gaussian 46.40 1.09 (1000, 10000)
Gauss-Jordan 47.17 0.71 (1200, 22000)

LU 48.03 0.93 (1200, 22000)

Table 3. Set coverage comparison of MOSWO and NSGA-II per each workflow

Coverage A ≥ B

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU

NSGA-II MOSWO 88.88% 83.33% 88.88% 87.03%

MOSWO NSGA-II 0% 16.66% 0% 5.55%

Fig. 1. Pareto fronts per worklow and algorithm

50 M. Arsuaga-Ŕıos, F. Prieto-Castrillo, and M.A. Vega-Rodŕıguez

Table 4. Deadline Restriction to check the jobs executed successfully

Workflows Constraint WMS (Option 1) WMS (Option 2) DBC MOSWO

Deadline Time Cost Jobs Time Cost Jobs Time Cost Jobs Time Cost Jobs

500 482.68 3434.82 12 442.46 3931.93 12 480.82 850.00 12 479.12 850.00 12

Gaussian 450 401.03 2998.46 9 442.46 3931.93 12 450.58 942.87 10 433.38 2611.49 12

400 400.01 2566.17 7 417.00 3683.08 10 400.77 903.61 9 400.65 3477.20 12

600 534.70 6405.24 15 492.18 7366.07 15 533.41 1593.74 15 531.71 1593.74 15

Gauss-Jordan 550 534.70 6405.24 15 492.18 7366.07 15 533.41 1593.74 15 531.71 1593.74 15

500 427.57 5552.48 13 492.18 7366.07 15 500.08 1487.48 14 496.08 5682.85 15

650 612.29 4684.63 14 561.46 5367.45 14 610.46 1164.00 14 608.76 1164.00 14

LU 600 585.78 4468.43 13 561.46 5367.45 14 596.66 1422.98 14 591.16 3117.85 14

550 504.12 3925.96 10 537.14 5123.55 13 550.00 1689.82 12 549.22 4028.32 14

WMS with its two options and DBC do not always achieve the total execution
(see Table 4). In fact, in the cases that real schedulers (WMS and DBC) achieve
the total execution, MOSWO usually offers better values of execution time or
cost than the others schedulers.

6 Conclusions

In this research a new multi-objective optimization algorithm is proposed based
on the small world phenomenon. MOSWO allows the optimization of two objec-
tives (time and cost execution) of workflows with dependent jobs on a Grid envi-
ronment. MOSWO is compared with real schedulers as DBC and WMS and also
with a well-known multi-objective algorithm, NSGA-II. In all the cases MOSWO
shows better results due to its multi-objective qualities and it also offers a good
range of solutions for decision support. In future works, this algorithm will be
compared with other multi-objective approaches.

Acknowledgment. CETA-CIEMAT acknowledges the support received from
the European Regional Development Fund through its Operational Program,
Knowledge-based Economy.

References

1. Buyya, R., Murshed, M., Abramson, D.: A deadline and budget constrained cost-
time optimisation algorithm for scheduling task farming applications on global
grids. In: Int. Conf. on Parallel and Distributed Processing Techniques and Appli-
cations, Las Vegas, Nevada, USA, pp. 2183–2189 (2002)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

3. Du, H., Wu, X., Zhuang, J.: Small-World Optimization Algorithm for Function
Optimization. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006.
LNCS, vol. 4222, pp. 264–273. Springer, Heidelberg (2006)

Small-World Optimization Applied to Job Scheduling on Grid Environments 51

4. Khare, V., Yao, X., Deb, K.: Evolutionary Multi-Criterion Optimization, vol. 2632.
Springer, Heidelberg (2003)

5. Kleinberg, J.: The small-world phenomenon: an algorithm perspective. In: Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
STOC 2000, pp. 163–170. ACM, New York (2000)

6. Li, X., Zhang, J., Wang, S., Li, M., Li, K.: A small world algorithm for high-
dimensional function optimization. In: Proceedings of the 8th IEEE International
Conference on Computational Intelligence in Robotics and Automation, CIRA
2009, pp. 55–59. IEEE Press, Piscataway (2009)

7. Mao, W., Yan, G., Dong, L., Hu, D.: Model selection for least squares support
vector regressions based on small-world strategy. Expert Syst. Appl. 38, 3227–3237
(2011)

8. Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)
9. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

10. Sulistio, A., Poduval, G., Buyya, R., Tham, C.: On incorporating differentiated
levels of network service into gridsim. Future Gener. Comput. Syst. 23(4), 606–615
(2007)

11. Talukder, A.K.M.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution
for scheduling workflow applications on global grids. Concurr. Comput.: Pract.
Exper. 21(13), 1742–1756 (2009)

12. Tsuchiya, T., Osada, T., Kikuno, T.: Genetics-based multiprocessor scheduling
using task duplication. Microprocessors and Microsystems 22(3-4), 197–207 (1998)

13. Wang, X., Cai, S., Huang, M.: A Small-World Optimization Algorithm Based and
ABC Supported QoS Unicast Routing Scheme. In: Li, K., Jesshope, C., Jin, H.,
Gaudiot, J.-L. (eds.) NPC 2007. LNCS, vol. 4672, pp. 242–249. Springer, Heidelberg
(2007)

14. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

15. Ye, G., Rao, R., Li, M.: A multiobjective resources scheduling approach based on
genetic algorithms in grid environment. In: International Conference on Grid and
Cooperative Computing Workshops, pp. 504–509 (2006)

16. Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on
grids. In: GRID 2007: Proceedings of the 8th IEEE/ACM International Conference
on Grid Computing, pp. 10–17. IEEE Computer Society, Washington, DC, USA
(2007)

17. Zeng, B., Wei, J., Wang, W., Wang, P.: Cooperative Grid Jobs Scheduling with
Multi-objective Genetic Algorithm. In: Stojmenovic, I., Thulasiram, R.K., Yang,
L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp.
545–555. Springer, Heidelberg (2007)

18. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

Testing Diversity-Enhancing Migration Policies

for Hybrid On-Line Evolution of Robot
Controllers�

Pablo Garćıa-Sánchez1, A.E. Eiben2, Evert Haasdijk2,
Berend Weel2, and Juan-Julián Merelo-Guervós1

1 Dept. of Computer Architecture and Technology, University of Granada, Spain
2 Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

pgarcia@atc.ugr.es

Abstract. We investigate on-line on-board evolution of robot controllers
based on the so-called hybrid approach (island-based). Inherently to this
approach each robot hosts a population (island) of evolving controllers
and exchanges controllers with other robots at certain times. We compare
different exchange (migration) policies in order to optimize this evolu-
tionary system and compare the best hybrid setup with the encapsulated
and distributed alternatives. We conclude that adding a difference-based
migrant selection scheme increases the performance.

1 Introduction

Evolutionary robotics concerns itself with evolutionary algorithms to optimise
robot controllers [7]. Traditionally, robot controllers evolve in an off-line fashion,
through an evolutionary algorithm running on some computer searching through
the space of controllers and only calling on the actual robots when a fitness
evaluation is required. To distinguish various options regarding the evolutionary
system Eiben et al. proposed a naming scheme based on when, where and how
this evolution occurs [3]. The resulting taxonomy distinguishes between design
time and run-time evolution (off-line vs. on-line) as well as between evolution
inside or outside the robots themselves (on-board vs. off-board). In a system
comprising of multiple robots, there are three options regarding the ‘how’:

Encapsulated: A population of genotypes encoding controllers evolves inside
each robot independently, without communication with other robots.

Distributed: Each robot carries a single genotype and reproduction requires
the exchange of genotypes with other robots. The evolving population is formed
by the combined genotypes of all the robots.

� This work was supported in part by Spanish Projects EvOrq (TIC-3903), CEI
BioTIC GENIL (CEB09-0010), MICINN CEI Program (PYR-2010-13) and FPU
research grant AP2009-2942 and the European Union FET Proactive Initiative: Per-
vasive Adaptation funding the SYMBRION project under grant agreement 216342.
The authors wish to thank Selmar Smit and Luis Pineda for their help and fruitful
discussions.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 52–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Testing Diversity-Enhancing Migration Policies 53

Hybrid: Each robot has its own locally evolving population and there is ex-
change of genotypes between robots. In terms of parallel evolutionary algorithms,
this can be seen as an island-model evolutionary algorithm with migration.

In this paper we investigate aspects of the hybrid approach: we test the effects
of the migration policy (migration of the best, random, or most different indi-
vidual), the admission policy (always accept the migrant, or accept only after
re-evaluation) and the island topology (ring vs. fully connected). Furthermore,
we look into these effects for different numbers of robots (4, 16 or 36).

Specifically, our research questions are:

– Using the hybrid approach (island model), which is the best combination of
migration policy, admission policy, and island topology?

– Is this combination better than the encapsulated and distributed alterna-
tives?

The rest of the work is structured as follows: after the state of the art, we
present the developed algorithms and experimental setting. Then, the results of
the experiments are shown (Section 4), followed by conclusions and suggestions
for future work.

2 State of the Art

Migration among otherwise reproductively isolated populations has been proven
to leverage the inherent parallelism in evolutionary algorithms, not only by ob-
taining speed-ups, but also by increasing the quality of results, since the repro-
duction restrictions inherent in the division of the population into islands is a
good mechanism to preserve population diversity, as shown in, for instance, [2].

To improve population diversity in an island model evolutionary algorithm,
the MultiKulti algorithm [1] takes the genotypic differences of individuals when
selecting migrants into account. It is based in the idea that the inflow of migrants
that differ from the rest of an island’s population increases diversity and thus
improves performance. An island requests a migrant from one of its neighbours
by sending a genotype that represents the population. This can either be the
the best individual (based in the assumption that when a population tends to
converge after a few generations, the best is a fair representation of the whole
population) or a consensus sequence (the most frequent allele in each position
of the genotype using binary genomes). In answer, an island selects the most
different genotype in either its whole population or the top individuals (the
elite). In their experiments, the islands were connected in a ring topology, with
migration taking place asynchronously. Results of the experiments performed in
[1] show that MultiKulti policies outperform classic migration policies (send the
best or random individuals from the population), especially with a low number
of individuals but larger number of islands. It is shown to be better to send
the consensus as a representation and that sending the most different of a well-
chosen elite (those with the best fitness) is better than sending the most different
overall.

54 P. Garćıa-Sánchez et al.

On-line evolutionary robotics has been studied in works like [8], where genetic
programming was used to evolve a robot in real time, and [11], where several
robots evolve at the same time, exchanging parts of their genotypes when within
communication range. [5] compares an encapsulated and a distributed version;
the latter is implemented as a variant of EVAG [6], where each robot has one
active solution (genotype) a cache of genotypes that are active in neighbouring
robots. Parents are selected through a binary tournament in each robot’s cache.
If the new solution (candidate) is better than the active, it replaces the active
solution. The work compares this algorithm with a panmictic version, where
parents are selected (again using binary tournament) from the combined active
solutions of all robots.

One of the peculiarities of evolutionary robotics, particularly on-line, is that
the fitness evaluations are very noisy [4]. The conclusions in [1], however, are
based on experiments with noiseless fitness functions, so we cannot take these
conclusions for granted in on-line evolutionary robotics and we have to test the
MultiKulti algorithm in our particular setting.

3 Algorithms and Experimental Setup

We carried out our experiments with e-puck like robots simulated in the RoboRobo
simulator1. The robot is controlled by an artificial neural net with 9 inputs (cor-
responding to the robot’s distance sensors and a bias node), 2 outputs (wheel
speeds). Genetically, this was represented as a vector coding the network’s 18
weights. All algorithms were evaluated using the Fast Forward task and next
fitness function:

f =

τ∑
t=0

(vt · (1 − vr)) (1)

where vt and vr are the translational and the rotational speed, respectively. vt
is normalised between −1 (full speed reverse) and 1 (full speed forward), vr
between 0 (movement in a straight line) and 1 (maximum rotation). Whenever
a robot touches an obstacle, vt = 0, so the fitness increment during collisions
is 0. There is more information about this function in [5]. This fitness is noisy:
a controller configuration can produce different fitness values depending on the
robot’s position in the arena when evaluation starts. The robots are placed in
a small maze-like arena (Fig. 2). To ensure a fair comparison across different
numbers of robots, each robot is placed in a separate instance of the arena
to avoid physical interaction between robots. Robots can communicate across
arenas instances.

In our experiments, we compare three algorithms:

Encapsulated Evolutionary Algorithm. The encapsulated algorithm we use
is the μ+1 on-line algorithm presented in [4]. Here, each robot runs a stand-alone
evolutionary algorithm with a local population of μ individuals. In each cycle,
one new solution (controller) is created and evaluated. This solution replaces

1 http://www.lri.fr/~bredeche/roborobo/

http://www.lri.fr/~bredeche/roborobo/

Testing Diversity-Enhancing Migration Policies 55

Fig. 1. Migration mechanism: each robot has a local population and in each migration
cycle request a different type individual from others robots’ populations. If MultiKulti
is used, then a message is sent (gray genotype) to receive the most different (black
genotype).

the worst individual of the population if it has higher fitness. To combat the
effects of noisy evaluations, an existing solution can be re-evaluated, instead of
generating and testing a new one, depending on the re-evaluation rate ρ.

Distributed Evolutionary Algorithm. As a benchmark distributed algo-
rithm we use the panmictic algorithm presented in [5]. Here, a single controller
is present in each robot. New controllers are created using the controllers of
two robots as parents. In each iteration, a robot randomly selects two others to
create a new chromosome by crossover and mutation. If the new chromosome is
better, it replaces the actual one.

Hybrid Evolutionary Algorithm. This algorithm is an adaptation of the μ+1
on-line algorithm that includes a migration mechanism to exchange genotypes
among robots (every robot is an island) as shown in Fig. 1. We test two migrant
acceptance mechanisms: a migrant can be added to the local population either
regardless of its fitness (to give it a chance to be selected) or only if it is better
than the worst.2

Each experiment lasts for 50,000 evaluation steps. In on-line evolution, the
robots train on the job: this means that the robot’s performance is not (only)
determined by the best individual it stores at any one time, but by the joint
performance of all the candidate controllers it considers over a period. There-
fore, we assess the algorithms’ performance using the average of the last 10%
evaluations over all robots.

2 Source code of the presented algorithms is available in
http://atc.ugr.es/~pgarcia, under a GNU/GPL license.

http://atc.ugr.es/~pgarcia

56 P. Garćıa-Sánchez et al.

As stated in [9], an algorithm’s parameters should be tuned to obtain (approx-
imately) the best possible parameter settings and so ensure a fair comparison
between the best possible instances of the algorithms. We used Bonesa [10] to
tune the parameters for the algorithms we investigate in the following configu-
rations:

– Number of robots: executions with 4, 16 and 36 robots have been performed.
– Migrant selection: select the Best, random or most different (MultiKulti)

individual as a migrant.
– Admission policy: when a new migrant arrives, it is evaluated and accepted

only if is better than the worst (no-replacement) or accepted regardless,
always replacing the worst of the population (replacement).

– Topology: migration can move between neighbours and the islands are ar-
ranged in a ring or in a random topology, which is rewired after every eval-
uation.

We conducted Bonesa runs for each possible combination of these configurations
to tune the settings for canonical parameters (e.g., mutation step size, crossover
rate) and the following more specific parameters:

Along the canonical GA parameters (like mutation or crossover rate) the
MultiKulti parameters to study are the next:

– Migration rate: likelihood of migration occurring per evaluation cycle.
– Best rate: probability of representing the population with the best individual

or with a consensus sequence (average of genes). This parameter applies only
for MultiKulti instances.

– Elite percentage: the size of the elite group to select the migrant from (if 1,
receive the most different of all the population). This parameter applies only
for MultiKulti instances.

Population size μ was fixed to 10 individuals to isolate the interactions between
the other parameters. Figure 3 lists all tuned parameters and their ranges. For
the final analysis, we ran 50 iterations of each configuration with the parameters
set to those reported as optimal by Bonesa.

4 Results and Analysis

4.1 Comparing Migration Configurations

The first question we asked ourselves was “which is the best combination of
migration policy, admission policy, and island topology?” To answer this ques-
tion, we analyse the results as reported by Bonesa for each of the configurations
we considered. Table 1 shows the best parameters obtained for all configurations
with 4, 16 and 36 robots. We discuss the results in the following four paragraphs,
each discussing the results for one combination of admission policy and island
topology.

Testing Diversity-Enhancing Migration Policies 57

Fig. 2. Arena used in the experiments

Parameter Name Range

Evaluation steps 300-600

Mutation step size 0.1-10

μ 10

Re-evaluation rate 0-1

Crossover rate 0-1

mutation rate 0-1

migration rate 0-1

elite percentage 0-1

best Rate 0-1

Fig. 3. Parameters to tune

Replacement Admission Policy and Panmictic Topology. In all cases, the re-
evaluation, crossover, mutation and migration rates are very high. Also, EliteSize
is almost 1 everywhere: the migrant is selected from almost the whole population.
It also turns out that is better to send a consensus sequence rather than the best
individual as a representative of the population (bestRate has low values). There
is no clear trend for migration rate.

Replacement Admission Policy and Ring Topology. Changing the island topology
to a ring arrangement, three settings change materially: as can be see in Table
1 for MultiKulti with 4 and 16 robots, the migration rate is much lower, but for
36 robots it remains very high. Also, but only for 4 robots, BestRate is higher
(send the best individual as representative, not the consensus sequence).

No-replacement Admission Policy and Panmictic Topology. When changing the
replacement policy a remarkable decrease can be seen in the migration rate
and, more importantly, the re-evaluation rate across the board. For 4 robots,
EliteSize is much lower than in all three other combinations of admission policy
and topology.

No-replacement Admission Policy and Ring Topology. Apart from lower migra-
tion rates for most of the policies and a drop in EliteSize for 16 robots, Bonesa
reports similar values for this combination of admission policy and topology and
the previous one. For 4 robots, EliteSize again has a high value.

Comparing Performance. Figures 4a, 4b and 4c show box plots summarising
50 repeats of each configuration, grouped by number of robots.

Although in terms of performance levels there is no clear trend it is clear
that the admission policy does have an appreciable impact: choosing the no-
replacement admission policy always leads to a marked decrease in performance
variation, with an increase of minimum performance. So we can conclude that
evaluating an immigrant and only admitting it if it outperforms the worst indi-
vidual in the population leads to more consistent performance with fewer very
poor results.

58 P. Garćıa-Sánchez et al.

Table 1. Parameters obtained with Bonesa for all admission policies and topology
configurations

Replacement admission policy and panmictic topology

4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST

evolutionSteps 345 310 312 310 306 425 538 561 584

stepSize 9.038 9.874 5.38 8.804 8.786 9.199 4.842 8.096 9.684

reEvaluation 0.868 0.72 0.739 0.619 0.812 0.949 0.964 0.751 0.777

Crossover 0.926 0.816 0.929 0.017 0.879 0.917 0.963 0.915 0.941

Mutation 0.943 0.977 0.936 0.98 0.839 0.909 0.937 0.923 0.938

Migration 0.809 0.989 0.958 0.987 0.499 0.993 0.956 0.988 0.567

EliteSize 0.849 - - 0.988 - - 0.995 -

BestRate 0.04 - - 0.192 - - 0.181 -

Replacement admission policy and ring topology

4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST

evolutionSteps 304 319 312 304 311 372 554 589 573

stepSize 9.29 8.149 8.769 7.008 7.37 9.953 9.465 9.307 9.94

reEvaluation 0.868 0.749 0.792 0.953 0.721 0.861 0.935 0.705 0.939

Crossover 0.999 0.983 0.96 0.83 0.955 0.455 0.996 0.848 0.991

Mutation 0.986 0.952 0.691 0.914 0.809 0.889 0.971 0.777 0.98

Migration 0.597 0.892 0.974 0.559 0.624 0.996 0.988 0.816 0.955

EliteSize 0.49 - - 0.93 - - 0.827 -

BestRate 0.862 - - 0.172 - - 0.145 -

No-replacement admission policy and panmictic topology

4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST

evolutionSteps 305 304 308 302 304 306 567 362 516

stepSize 9.895 4.04 9.547 9.731 9.146 9.8 8.832 7.526 9.988

reEvaluation 0.385 0.039 0.489 0.449 0.291 0.692 0.048 0.344 0.528

Crossover 0.828 1 0.934 0.847 0.945 0.671 0.31 0.822 0.963

Mutation 0.976 0.927 0.899 0.849 0.958 0.969 0.921 0.986 0.879

Migration 0.577 0.788 0.72 0.658 0.757 0.577 0.835 0.753 0.7

EliteSize 0.279 - - 0.716 - - 0.911 - -

BestRate 0.198 - - 0.703 - - 0.013 - -

No-replacement admission policy and ring topology

4 ROBOTS 16 ROBOTS 36 ROBOTS

MK RANDOM BEST MK RANDOM BEST MK RANDOM BEST

evolutionSteps 325 302 323 314 303 306 600 375 581

stepSize 9.821 9.726 9.731 9.925 8.44 9.329 9.661 9.686 9.493

reEvaluation 0.045 0.007 0.53 0.044 0.332 0.505 0.752 0.317 0.396

Crossover 0.311 0.51 0.933 0.286 0.986 0.867 0.963 0.992 0.952

Mutation 0.983 0.805 0.873 0.751 0.964 0.889 0.93 0.869 0.913

Migration 0.533 0.517 0.554 0.662 0.706 0.685 0.59 0.71 0.698

EliteSize 0.772 - - 0.952 - - 0.413 - -

BestRate 0.018 - - 0.624 - - 0.061 - -

Testing Diversity-Enhancing Migration Policies 59

Table 2. Parameters obtained with Bonesa for the encapsulated, distributed and
hybrid algorithms

4 ROBOTS 16 ROBOTS 36 ROBOTS

μ+1 Distr MK μ+1 Distr MK μ+1 Distr MK

evolutionSteps 308 303 305 308 301 302 308 583 567

stepSize 9.615 4.306 9.895 9.615 5.621 9.731 9.615 8.197 8.832

reEvaluation 0.091 0.647 0.385 0.091 0.558 0.449 0.091 0.002 0.048

Crossosver 0.19 0.399 0.828 0.19 0.122 0.847 0.19 0.1 0.31

Mutation 0.978 0.908 0.976 0.978 0.86 0.849 0.978 0.606 0.921

Migration - - 0.577 - - 0.658 - - 0.835

EliteSize - - 0.279 - - 0.716 - - 0.911

BestRate - - 0.198 - - 0.703 - - 0.013

Combined with the no-replacement admission policy, MultiKulti is either the
best or at a par with the best migrant selection scheme, especially as the number
of robots increases.

Finally, the ring topology shows a slight, but not always significant, drop in
performance. This may be explained by the fact that in a ring topology, good
solutions spread over the islands at a much slower rate than in a randomly
connected topology.

Selecting migrants randomly seems always to lead to a smaller spread in
performance than either selecting the best or the most different. Vis a vis the
MultiKulti algorithm at least, this makes sense because this specifically aims
at increasing population diversity, so a larger variation in performance is to be
expected.

To conclude, we select a configuration with no-replacement admission policy,
MultiKulti migrant selection and a random island topology to compare with the
encapsulated and distributed algorithms.

4.2 Comparing Encapsulated, Distributed and Hybrid On-Line
Evolution

The second question we asked ourselves is whether the optimal hybrid instance
we selected in the previous section outperforms its encapsulated and distributed
counterparts. Table 2 shows the settings that Bonesa reported as optimal for the
three algorithms that we compare for groups of 4, 16 and 36 robots. Note that
the optimal parameters for μ+ 1 have only been calculated once: since there is
no interaction between robots, μ+1’s performance and settings are independent
of the number of robots. Running 50 repeats with these settings resulted in
performances as reported in Figure 4d.

Even for as small a number of robots as 4, the distributed and hybrid algo-
rithms both significantly outperform the encapsulated algorithm. The difference
between the algorithms that share the population across robots is only significant
for 36 robots, but even there not material. The difference with the encapsulated
algorithm may lie in the exploitation of evolution’s inherent parallelism, but we

60 P. Garćıa-Sánchez et al.

(a) Box plot of all hybrid configurations
with 4 robots.

(b) Box plot of all hybrid configurations
with 16 robots.

(c) Box plot of all hybrid configurations
with 36 robots.

(d) Box plot comparing μ+1, distributed
and multikulti migration with replace-
ment for 4, 16 and 36 robots.

Fig. 4. Box plots of executing each algorithm with the best parameters obtained with
Bonesa 50 times

think this is also due to the increased diversity that stems from dividing the total
population across islands. This would explain the large benefit of communication
even for small numbers of robots, where the distributed algorithm actually has
a smaller total population than the individual robots with μ+ 1.

Set to the best found parameters, the hybrid algorithm causes much less
communication overhead than the distributed algorithm: the latter shares geno-
types among all robots at every evaluation, while the hybrid algorithm has
comparatively low migration rates (0.577, 0.658 and 0.835). This reduction of

Testing Diversity-Enhancing Migration Policies 61

communication cost comes at no significant loss of performance, and even a
significant gain for 36 robots.

5 Conclusions and Future Work

In this paper, we compared combinations of migrant selection schemes, migrant
admission policies and island topologies in a hybrid algorithm for on-line, on-
board Evolutionary Robotics. Results show that the migrant admission policy
–which determines when a migrant is admitted into the population– is more
important in performance than migrant selection or the island topology. But
the most important finding is that adding migration between robots signifi-
cantly and materially increases performance. We have demonstrated that adding
a difference-based migrant selection scheme (MultiKulti) leads to optimal or
at least near-optimal performance compared to another migration mechanisms.
This migration mechanism can compete with the on-line distributed algorithm,
where only an individual per robot exist, even with a lower number of data trans-
missions. Our aim is to continue exploring other techniques, like a self-adaptative
migration mechanism to ask for new migrants when the population stagnates and
perform new tests for new tasks other than the Fast-Forward. New experiments
with different number of individuals in the local population also will be carried
out. Also, further investigation will be performed in swarming and cooperation
techniques among robots, with different communication mechanisms.

References

1. Araujo, L., Merelo, J.J.: Diversity through multiculturality: Assessing migrant
choice policies in an island model. IEEE Trans. Evolutionary Computation 15(4),
456–469 (2011)

2. Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics 7(4), 311–334 (2001)

3. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution
for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot
Organisms: Reliability, Adaptability, Evolution, vol. 10, pp. 361–382. Springer,
Heidelberg (2010)

4. Haasdijk, E., Eiben, A.E., Karafotias, G.: On-line evolution of robot controllers by
an encapsulated evolution strategy. In: Proceedings of the 2010 IEEE Congress on
Evolutionary Computation. IEEE Computational Intelligence Society, IEEE Press,
Barcelona, Spain (2010)

5. Huijsman, R.-J., Haasdijk, E., Eiben, A.E.: An on-line, on-board distributed al-
gorithm for evolutionary robotics. In: Proceedings of the Biennial International
Conference on Artificial Evolution, EA 2011 (2011) (to appear)

6. Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: Evag: a scalable peer-to-
peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11(2),
227–246 (2010)

7. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT (2000)

62 P. Garćıa-Sánchez et al.

8. Nordin, P., Banzhaf, W.: An on-line method to evolve behavior and to control a
miniature robot in real time with genetic programming. Adaptive Behavior 5(2),
107–140 (1997)

9. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary
algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 399–
406. IEEE (2009)

10. Smit, S.K., Eiben, A.E.: Multi-problem parameter tuning. In: Proceedings of the
Biennial International Conference on Artificial Evolution, EA 2011 (2011) (to ap-
pear)

11. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. Robotics and Autonomous Sys-
tems 39(1), 1–18 (2002)

Evolutionary Optimization of Pheromone-Based
Stigmergic Communication

Tüze Kuyucu, Ivan Tanev, and Katsunori Shimohara

Information Systems Design
Doshisha University, Kyotanabe, Japan

{tkuyucu,itanev,kshimoha}@mail.doshisha.ac.jp

Abstract. Pheromone-based stigmergic communication is well suited for the
coordination of swarm of robots in the exploration of unknown areas. We
introduce a guided probabilistic exploration of an unknown environment by com-
bining random movement and stigmergic guidance. Pheromone-based stigmer-
gic communication among simple entities features various complexities that have
significant effects on the overall swarm coordination, but are poorly understood.
We propose a genetic algorithm for the optimization of parameters related to
pheromone-based stigmergic communication. As a result, we achieve human-
competitive tuning and obtain a better understanding of these parameters.

1 Introduction

Members of the animal phyla utilize pheromones as a form of communication; from
bacteria to mammals, no matter how capable an organism is of achieving direct commu-
nication and complex behaviours, pheromones play an important role in establishing an
indirect communication mechanism for a variety of purposes [13]. Pheromones serve
a number of functions for living organisms, including aggregation, attraction, alarm
propagation, territorial marking and group decision making [13].

Pheromones provide a stigmergic medium of communication, which influence the
future actions of a single or a group of individuals via changes made to the environment.
Stigmergy allows the history of an individual’s actions to be tracked without the need to
construct a model of the environment within the individual’s own memory; giving rise
to the emergence of higher complexity behaviours from a group of simple individuals.

In this work, we are interested in achieving optimum exploratory behaviour via a
large number of real robots in unknown environments. Such environments include ar-
eas of high devastation (e.g. earthquake or tsunami stricken areas) or distant and dan-
gerous missions. Exploring an unknown area quickly is a mission-critical objective in
rescue operations. Such operations can face a list of limitations, such as the lack of a
terrain map, the failure of previously established communication networks and lack of
reliable GPS tracking. In such missions, the first task is to search the area in question
as quickly as possible and locate targets. The robots would be required to be capable of
various functionalities other than area exploration, therefore it is desired that the inte-
gration to a swarm and the ability to search are seamless and do not consume a large
amount of the robot’s resources. Utilizing a real stigmergic communication would be an

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 63–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 T. Kuyucu, I. Tanev, and K. Shimohara

efficient method of achieving such emergent behaviour with low overhead. Robots that
utilize stigmergic trails for communication have been shown to effectively coordinate
and quickly explore a given terrain [1,12].

Beckers et al. successfully built a group of mobile robots that operate with a very
simple algorithm and work collectively to achieve a foraging behaviour by using the
objects gathered as sources of stigmergic information [1]. Russell developed short-lived
navigational markers for small robots where heat trails were used to replace pheromone
trails [10]. Svennebring and Koenig studied terrain-covering robots that used a black
marker to form trails on the floor [12]. Ferranti et al demonstrated the use of the ex-
ploration of unknown environments via agents that make use of “tags” (such as motes
or RFIDs) as stigmergic markers [3]. Purnamadjaja and Russel showed that aggrega-
tion with real robots using real chemicals is possible [8], who also later on use real
chemicals to establish two way communication between robots [9].

Given that the hardware implementation of stigmergic coordination of robots is still
in its early stages, it makes sense to investigate and improve pheromone-based algo-
rithms in simulations. By understanding the optimal conditions required for pheromone-
based coordination, the hardware implementations can then also be better directed.
There are various works that utilize simulations and report notable improvements in
pheromone-based exploration algorithms. However, most of these works focus on im-
proving the overall performance of a given algorithm via design changes [4] or the
optimization of a customized algorithm-specific parameters [11]. Due to the lack of a
solid understanding of how parameters (such as diffusion rate, sampling frequency, etc.)
that relate to the shaping of the stigmergic information via individual agents, there is
no known formalization that can guide the optimal tuning of a stigmergy-based robot
exploration algorithm. Consequently, it has been reported in many cases that optimis-
ing the various aspects of the stigmergy-based algorithms via artificial evolution creates
human competitive results [2,6,11].

Furthermore, it is common to make some unrealistic assumptions in order to simplify
the simulation environment; such as the ability of the individual robots to execute per-
fect discreet movements of fixed distances, and the ability to divide a given environment
into a grid to allow discreet movement of robots [2,3].

The work presented here aims to demonstrate the use of pheromone-based communi-
cation in achieving efficient exploration of unknown environments via realistic robots.
We utilize a simulation environment (Webots) that closely models the physics of two
wheel differential robots and their interactions with the real world. In this work we also
propose a Genetic Algorithm (GA) for the optimization of the parameters related to
the characteristics of stigmergic markers (pheromones) and their sampling in order to
achieve the best possible performance of the exploration. Our goal is not only to opti-
mize the performance of the algorithm used but also to obtain an insight into the effects
of parameters related to the sharing and storage of stigmergic information, and to the
systematic and probabilistic guidance of robots in unknown environments.

We design an algorithm that is similar to the “trail avoidance” algorithm described
in [12], but in our case the goal is to achieve a quick “survey” of an area by visiting
key locations as quickly as possible, instead of visiting all the physical locations in the
environment. In Section 2, we will first describe the pheromone-based algorithm we

Evolutionary Optimization of Pheromone-Based Stigmergic Communication 65

use in our experiments. We then detail the simulation experiments we have executed to
demonstrate the performance of our algorithm in Section 3.1, followed by experiments
with the optimization of these parameters with a GA in Section 3.2. We then conclude
our work and provide some future directions in Section 4.

2 Pheromone-Based Stigmergic Coordination

As in biology, our model uses the environment as a medium of communication by leav-
ing traces of pheromones. These pheromones are deposited by the robots and are also
detected by them when they are within the proximity of the pheromone. Our objective
is to develop a simple algorithm that can utilize pheromones to benefit from the exist-
ing physical properties of a real environment in achieving complex collective behaviour
within a large group of simple homogeneous robots.

The aim of the pheromone-based control is to provide an indirect communication
mechanism among a group of homogeneous robots. With the availability of various sen-
sors, a range of environmental markers (such as chemicals, metals, heat sources, elec-
tronic tags) can be used as a way of encoding information in the environment. We use
a three-layered subsumption architecture for the controllers of the robots: random walk
(“exploration”) is the lowest priority layer in this architecture, while the pheromone-
based coordination is the middle layer, and the higher priority layer implements the
wall avoidance behaviour (see Figure 1(a) for an illustration of the architecture). The
adopted subsumption architecture provides us with a modular and scalable design that
leaves the possibility to add higher-level control mechanisms for future development.

The algorithm used for the pheromone-based control is similar to the “trail avoidance
behaviour” in [12], and it is detailed in Algorithm 1. Key differences in the algorithms
include the ability of the algorithm presented here to use variable concentrations in de-
positing pheromones, ignoring pheromones below a certain concentration, evaporation
and diffusion of pheromones, and a bias towards forward movement. In our case we
have a bias towards making smaller turns when there are same levels of pheromone
concentrations in more than one direction. There is even a stronger bias towards mov-
ing straight, and the robots choose to go straight even if the pheromone concentration
in the forward facing direction is higher (than the lowest pheromone concentration) by
an amount less than 1%. It is already shown that a biased movement can be more ef-
ficient for some exploration scenarios [4]. In our algorithm, the robots only check for
the pheromone levels in 5 directions (NORTH, NORTH EAST, NORTH WEST, EAST,
WEST; NORTH being the face forward direction), instead of all 8 directions in order to
encourage forward movement.

The layer of the pheromone-based behaviour is used to take guiding decisions for a
robot during exploration. On the other hand, the wall avoidance layer is always executed
by default during the movement of a robot. The wall avoiding is accomplished accord-
ing to the equations 1 and 2 (when an obstacle is detected by the sensors) for controlling
the rotational speed (radians) of the left and right wheels (vle f tW heel and vrightW heel).

vle f tW heel =
MS
2
∗ (s4 +

MS
2
∗ s3− s1−

MS
2
∗ s2) (1)

66 T. Kuyucu, I. Tanev, and K. Shimohara

vrighttW heel =
MS
2
∗ (s1 +

MS
2
∗ s2− s4−

MS
2
∗ s3) (2)

The robot has four infra-red sensors: the values s1,s2,s3 and s4 range from 0.0 to 1.0,
and the corresponding bearings of the sensors are 46.3o,17.2o,−17.2o,−46.3o with
respect to the forward facing direction of the robot. The constant MS in equations 1 and
2 denotes the maximum speed. The MS in our experiments is 2π radians per second,
which is around 7cm/s. The robot used in simulations is a differential wheeled robot
that is roughly spherical in shape, and 7cm in diameter (occupies an area of 38.5cm2 ,
similar to a commercially available e-puck robot).

Algorithm 1 provides the pseudo-code for the pheromone-based control, which is
executed periodically, and the frequency of its execution can be adjusted by the experi-
menter. The pheromone deposition is carried out every time the algorithm is executed,
after the robot has moved an arbitrary distance. The actual distance travelled by the
robot is not regulated in order to provide a realistic simulation environment: we assume
that depositing chemicals in precise intervals in a real environment is impractical.

In order to simulate both the presence and the diffusion of pheromones, we aug-
mented the separately encoded diffusion layer over the simulated environment. This
layer actively communicates with the robots in order to carry out the updates of levels
of the pheromones. The diffusion of pheromones is carried out in three dimensions, i.e.
the diffusion pattern from a source of pheromone is in the shape of a dome. By modify-
ing the value of the diffusion constant we can model the markers that diffuse at different
rates, including those markers that never diffuse (as proposed in [12]).

ΔYpa = (Ypaq−Yqa)/DC (3)

ΔYpa = Ypa/(DC ∗EC) (4)

The amount of chemical that diffuses in the x-y plane is described by Equation 3: the
flow (ΔYpaq) of chemical a from position p to position q is calculated as a difference
in their concentrations Y . DC denotes the diffusion constant. In order to simulate the
diffusion of chemicals, we partitioned the map into a grid of cells in the x-y plane
and modelled the diffusion of chemicals from one cell to another every second using
the Equation 3. The amount of chemical that evaporates into the air is described by
Equation 4: the flow (ΔYpa) of chemical a from position p to air is calculated by using
the diffusion constant as well as another constant EC; the evaporation constant.

Algorithm 1. The Pheromone-based robot control.

1: LPC = Lowest pheromone concentration
2: NPC = Pheromone concentration in front of the robot
3: HPC = Highest pheromone concentration
4: Deposit pheromone
5: if(HPC< DetectableConcentration) then Go straight
6: else if(LPC > 0.99×NPC) then Go straight
7: else Turn towards the LPC

Evolutionary Optimization of Pheromone-Based Stigmergic Communication 67

(a) The subsumption architecture. (b) Map size; 82cmx82cm.

Fig. 1. The subsumption architecture utilized in this paper (a), and the experimental map with two
robots to scale (b), respectively

Other than the parameters that determine the density of the chemicals (i.e. diffu-
sion constant and evaporation constant), there are few other parameters that determine
both the presence of chemicals in the explored map and consequently the behaviour of
the robots. These parameters are: (i) Production Rate: the amount of pheromone, de-
posited every time a robot decides to leave a marker in the environment, (ii) Detectable
concentration: the minimum amount of pheromone level required to trigger a decision
based on nearby pheromone levels (as detailed in Algorithm 1), (iii) Rate of sampling:
defines the frequency of execution of the control algorithm of the robots (in between
robot movements), (iv) Wall avoiding distance: the threshold of the distance to a wall, at
which the wall avoiding behaviour of the robots is engaged (as elaborated in equations
1 and 2). (v) Resolution of the diffusion simulation map: determines the grid size of the
virtual map used for the diffusion of chemicals.

In the first set of experiments we set these parameters manually by using a common
sense on how they relate to each other and via trial-and-error-correcting runs.

3 Experiments

For all the experiments presented in this section, except when stated otherwise, we use
the manually set values for the parameters mentioned in Section 2. The values of these
parameters are shown in Table 1. Travel time, which determines the “rate of sampling”
listed in Section 2, has a minimum value of 32

1000 since this is the time required (in
seconds) for all the physics calculations required by each time step in Webots simulator.

Table 1. The manually set parameters that control the emergent pheromone communication, and
the accepted range of each parameter during optimization runs

Travel Time(s) Detec. Conc. Prod. Rate Diff. Const Evap. Const Wall avoid dist(cm)
Man. Set Val. 1.0 2.0 10.0 100.0 8.0 4
Range 32

1000 → 8 0.1→ 100 1→ 255 1→ ∞ 0.1→ 100 0→ ∞

68 T. Kuyucu, I. Tanev, and K. Shimohara

3.1 Exploration of Environment with Obstacles

Obstacle-free environments are commonly used in the experiments for the exploration
of unknown environments by realistically simulated or real robots [7,12]. However, as
demonstrated in [3], often the robot control algorithms do not perform well even when
simple unconnected obstacles are introduced in the environment.

In this section, we consider a simple map that was initially modelled in the work
on exploration of unknown environments, conducted by Kuremoto et al. [5]. This map
(shown in Figure 1(b)) is referred to as “complicated” by the authors; due to the orien-
tation of the featured obstacles, which create traps for robots that can easily get stuck
at narrow corridors or small rooms, and unconnected obstacles. Here we present the
results of our experiments on the same map in order to verify the performance of the
proposed pheromone-based algorithm. Furthermore, in the next subsection we employ
the same map of the environment in order to optimize the values of the parameters of
the control algorithms of the robots (as listed in Table 1), and to attempt to understand
their effects in the overall behaviour of the robots.

We study three experimental cases in this map as follows: (i) No pheromones: two
robots with controllers featuring a wall avoiding (as detailed in Section 2) and a ran-
dom walk (exploring) behaviours, (ii) Pheromones without diffusion: two robots with
controllers featuring a pheromone-based behaviour. No diffusions of pheromones are
simulated in this case (i.e. the diffusion constant is ∞), (iii) Pheromones with diffusion:
two robots with the same controllers as considered in the previous case, with the only
difference that the diffusion of the pheromones is modelled in the environment.

Each experimental case is tested for 10 runs until 7 key points on the map are visited
by at least one robot (shown in Figure 1(b)). The considered experimental task differs
slightly from the task described by Kuremoto et al. In the latter case, (i) the robots are
aware about the target locations that have to be visited and (ii) there are only three key
locations that need to be visited (locations marked as 1, 2 and 5 in Figure 1(b)).

Table 2. The results of runs exploring the environment shown in Figure 1(b)

Pheromones with Diff. Pheromones No Diff. No Pheromones
Avg. time (s) 126 305 2690
Success Rate 100% 100% 50%

The experimental results are summarised in Table 2. The time to finish a run is aver-
aged over 10 runs for each experimental case. The lack of pheromones in the first of the
considered cases implies an unguided exploration. However, even in this simple case
the robots still managed to complete the task of exploring the whole map 50% of the
time. On the other hand, the use of pheromones as well as their diffusion, significantly
improved the performance of the team of robots, with the latter being able to explore
the key locations in a reasonable amount of time. Kuremoto et al report that an earlier
model, which they present improvements on, is unable to explore this map due to the
earlier model’s inability to circumvent the obstacles efficiently [5]. We can not directly
compare our model with the “improved model” due to a lack of quantitative data.

Evolutionary Optimization of Pheromone-Based Stigmergic Communication 69

3.2 Optimizing the Parameters

The pheromone-based stigmergic communication among simple entities for coordina-
tion and cooperation of their group-wise actions features various complexities that are
directly affected by the pheromones. Often, the emergent behaviour might be greatly
altered by small changes to the parameters responsible of pheromone-based commu-
nication. The complexities, involved in the design of the various aspects of both the
morphology and the behaviour of the entities, motivated a number of researchers to use
simulated evolution as a heuristic approach for the design of the optimized conduct of
agents that results in a desired group-wise, emergent behaviour. For example, Sauter
et al. used GA to tune the control-specific parameters to achieve an efficient use of
pheromones in guiding a team of robots to locate targets and paths [11]. The authors
stated that the evolved parameters, “consistently outperformed the best hand-tuned pa-
rameters that took skilled programmers over a month to develop.” Panait and Luke
evolved genetic programs to control agents in foraging tasks in an obstacle-free envi-
ronment [6]. Similar to the ant-colonies in nature, their approach used pheromones as
trails between the food sources and the nest. The authors reported that the ability to de-
posit the maximum amount of pheromone provides a quicker foraging behaviour among
agents. Recently, Connelly et al. [2], also showed that utilizing simulated evolution to
optimize the cooperative use of pheromones results in a better agent-based behaviour
in locating targets. We can generalize that the use of evolutionary approaches offer a
fast, automated optimization of the exploration algorithms utilizing pheromone-based
communication. In this section we propose GA for automated evolution of the optimal
values of control parameters of robots. In addition, by analyzing the evolved optimal
behaviour of robots exploring an unknown area, we will try to understand the emergent
use of pheromone-based communication.

It is recognized that there is no established formal model that describes adequately
the influence of the control parameters of the robots on the overall performance of
the team. Therefore, we set the values of these parameters (listed in Table 1) via in-
formed guessing and trial-and-error correcting runs. For example, we choose a travel
time of 1second as a good solution to the exploration-exploitation dilemma: indeed, it
allows the robot to have some occasional probabilistic movements (exploration), rather
than being completely obsessed by the pheromone-based guidance (exploitation), de-
termined by eventual lower values. On the other hand, using a longer travel time usually
makes the movement random, resulting in a worsened overall performance of the team
of robots. This is consonant with the observations, reported by Svennebring and Koen-
ing [12]. Some of the remaining parameters in our initial experiments, set by the same
trial-and-error approach, are the diffusion constant (set to 100), the evaporation constant
(set to 8), and the wall avoiding distance (4cm).

While well-performing team of robots did emerge for the selected values of control
parameters, neither the degree of optimality of these values nor the way to incrementally
improve them is evident. Thus, an automated mechanism for evaluation of these values
of parameters, and corresponding rules for incremental optimization of the intermediate
values of parameters (e.g. based on various models of learning or evolution of species
in the nature) are needed. The proposed approach of employing GA implies that the sets
of values of all six control parameters (Table 1), that govern the behaviour of robots

70 T. Kuyucu, I. Tanev, and K. Shimohara

communicating via pheromones, are represented as linear chromosomes and automati-
cally tuned by a computer system via simulated evolution through selection and survival
of the fittest, in a way similar to the evolution of species in the nature. The main attributes
of the utilized GA are as follows: population size is 200 chromosomes, 4 chromosomes
are picked every generation as elite individuals, a mutation rate of 4% is used, selection
process involves 10% binary tournament selection and 90% crossover, an evaluation run
lasts a maximum of 200 seconds, and the termination criteria is reaching the total number
of generations of 40. We have chosen to set the aforementioned parameters as described
relying on our experience with previous experimental runs.

Fitness = Nogoals×Timemax−NogoalsReached× (Timemax−Timetermination + 1) (5)

The experimental environment is as described in Section 3.1; Figure 1(b) is also used
for the runs here. The fitness values assigned to each parameter set after a run is calcu-
lated as shown in Equation 5. Timemax is the maximum evaluation period (which is 200
seconds), and Timetermination is the amount of time required for the bots to reach all the
goals (this value is set to Timemax if the robots are unable to reach all the goals). We
evolved the values of the six control parameters in 10 independent runs of GA, and as
a result obtained various well-performing combinations of these values. The results are
shown in Figure 2(a).

From 10 evolutionary runs of GA, 7 runs evolved parameter settings that result in
a performance of the robots that is superior to the manually adjusted parameters. The
correspondence of two of the evolved optimal parameters and the manually set param-
eters are shown in Table 3. As Table 3 illustrates, the pheromone production rate is set
to higher values and the diffusion constants are set to lower values (i.e. high diffusion
rates) in the evolved parameters. These settings make sure that the released pheromones
diffuse out covering as much space as possible and forming pheromone gradients all
over the environment. Using these evolved parameters for multiple reruns, we could
observe that the diffusing pheromones would actually provide a better guidance for the
robots with ambiguous cases (i.e. areas with same pheromone concentrations) for the
robots encountering pheromones. The obstacle distance for engaging the wall avoid-
ance behaviour is also significantly lower for the evolved parameters than the manually
adjusted. When manually adjusting this value, we were cautious not to set it too low
because otherwise the robots could run into obstacles or worse get stuck in the corners,
as it happened in some of the evolved cases. However, setting this value high prevents
the robots getting close to walls, and entering narrow corridors. Evolution was able to
adjust it better, and the quick formation of pheromone gradients due to high pheromone
production rates and diffusion rates also meant that robots getting too close to corners
would easily find their way out with the help of the pheromone-based control.

Table 3. The best two evolved sets of parameters and the corresponding manually adjusted values

Travel Time(s) Detec. Conc. Prod. Rate Diff. Const Evap. Const Wall avoid dist(cm)
Manually Set Value 1.0 2.0 10.0 100.0 8.0 4
Evolved 1 1.19 36.6 94.0 86.5 45.9 0.53
Evolved 1 2.0 0.5 227.0 20.9 4.7 0.61

Evolutionary Optimization of Pheromone-Based Stigmergic Communication 71

(a)

Manual Params

Evolved Params 1

Evolved Params 2

0

100

200

300

400

500

600

T
im

e
 R

e
q
u
ir

e
d
 t

o
 E

x
p
lo

r
e

(b)

Fig. 2. The fitness convergence characteristics of 10 independent evolutionary runs of GA are
plotted in Figure 2(a): the fitness value is proportional to the trial time required for the robots
explore the experimental map. The actual corresponding time of the trial is shown in the right
hand ordinate.The box and whisker plots of the results from runs utilizing the parameters shown
in Table 3 in the exploration of the environment shown in Figure 1(b) is displayed above in Figure
2(b): the data for each case represents 10 runs.

4 Conclusions

In this work we provided a simple algorithm that is aimed at providing real robots with
quick and effective exploration capabilities of completely unknown environments via
stigmergic communication. We experimentally show that in an environment with mul-
tiple obstacles, the proposed pheromone-based exploration algorithm performs well.

Also, we demonstrated that by using GA to automatically tune the values of parame-
ters of pheromone-based communication in a multi-robot system, we could obtain such
values of parameters that compared to the manually tuned values of parameters, yield a
much better performance of the team of robots exploring an unknown environment. By
using simulated evolution, we showed that higher diffusion rate of pheromones as well
as a larger amount of deposited pheromone result in significantly improved exploration
capabilities. Even obtained in a different context, these findings are consonant with the
results reported in [6], and [4]. From the optimized parameters, it was also observed that
a robot movement of ≈ 1.5 seconds in between pheromone-based guidance is optimal
in balancing exploration vs exploitation behaviours. Finally, the obtained results indi-
cate that using too cautious, manually tuned wall avoiding behaviour that is engaged
too far away from the walls might be detrimental to the overall performance. Using GA
to optimise the sensitivity of the wall avoiding behaviour provided a better tuning than
we could have manually done.

The future directions of this work include: (i) investigating the optimal values of
evolved parameters for different maps (different complexity, size, and layout) and
larger number of robots, (ii) expanding the model described here by using attractive
pheromones in order to achieve different behaviours such as foraging and collective
retrieval of oversized objects is one of the future goals, (iii) improving the pheromone-
based algorithm in order to achieve a well-scalable coordination in teams comprising

72 T. Kuyucu, I. Tanev, and K. Shimohara

very large number of robots, and (iv) symbolic regression (via genetic programming)
of the multiple sets of evolved optimal values of parameters in order to infer the math-
ematical model (if any) that describes their relationship.

The presented research was supported (in part) by the Japan Society for the Promo-
tion of Science (JSPS)

References

1. Beckers, R., Holl, O.E., Deneubourg, J.L.: From local actions to global tasks: Stigmergy and
collective robotics. In: Artificial Life IV (1996), pp. 181–189. MIT Press (1994)

2. Connelly, B.D., McKinley, P.K., Beckmann, B.E.: Evolving cooperative pheromone usage
in digital organisms. In: IEEE Symposium on Artificial Life, ALife 2009, March 3-April 2,
pp. 184–191 (2009)

3. Ferranti, E., Trigoni, N., Levene, M.: Rapid exploration of unknown areas through dynamic
deployment of mobile and stationary sensor nodes. Autonomous Agents and Multi-Agent
Systems 19, 210–243 (2009)

4. Fu, J.G.M., Ang, M.H.: Probabilistic ants (pants) in multi-agent patrolling. In: IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, AIM 2009 (July 2009)

5. Kuremoto, T., Obayashi, M., Kobayashi, K., Feng, L.B.: An improved internal model of
autonomous robots by a psychological approach. Cognitive Computation, 1–9 (2011)

6. Panait, L.A., Luke, S.: Learning ant foraging behaviors. In: Proceedings of the Ninth Inter-
national Conference on the Simulation and Synthesis of Living Systems ALIFE9 (2004)

7. Payton, D., Estkowski, R., Howard, M.: Pheromone Robotics and the Logic of Virtual
Pheromones. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 45–57. Springer, Heidelberg (2005)

8. Purnamadjaja, A.H., Russel, R.A.: Congregation behaviour in a robot swarm using
pheromone communication. In: Australasian Conference on Robotics and Automation
(2005)

9. Purnamadjaja, A.H., Russel, R.A.: Bi-directional pheromone communication between
robots. Robotica 28, 69–79 (2010)

10. Russell, R.A.: Heat trails as short-lived navigational markers for mobile robots. In: Proceed-
ings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3534–3539
(April 1997)

11. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.: Evolving adaptive pheromone
path planning mechanisms. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1, AAMAS 2002, pp. 434–440. ACM,
New York (2002)

12. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: A feasibility study. Auton.
Robots 16, 313–332 (2004)

13. Wyatt, T.D.: Pheromones and Animal Behaviour: Communication by Smell and Taste. Cam-
bridge University Press (2003)

Hyperparameter Tuning in Bandit-Based

Adaptive Operator Selection

Maciej Pacula, Jason Ansel, Saman Amarasinghe, and Una-May O’Reilly

CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{mpacula,jansel,saman,unamay}@csail.mit.edu

Abstract. We are using bandit-based adaptive operator selection while
autotuning parallel computer programs. The autotuning, which uses
evolutionary algorithm-based stochastic sampling, takes place over an
extended duration and occurs in situ as programs execute. The envi-
ronment or context during tuning is either largely static in one scenario
or dynamic in another. We rely upon adaptive operator selection to dy-
namically generate worthy test configurations of the program. In this
paper, we study how the choice of hyperparameters, which control the
trade-off between exploration and exploitation, affects the effectiveness
of adaptive operator selection which in turn affects the performance of
the autotuner. We show that while the optimal assignment of hyper-
parameters varies greatly between different benchmarks, there exists a
single assignment, for a context, of hyperparameters that performs well
regardless of the program being tuned.

1 Introduction

We are developing an autotuning technique, called SiblingRivalry, based upon an
evolutionary algorithm (EA) which tunes poly-algorithms to run efficiently when
written in a new programming language we have designed. The autotuner runs in
two different kinds of computing environments: static or dynamic. In either envi-
ronment, multiple execution times and accuracy of results will vary to different
degrees. Using special software infrastructure, the online technique, embedded
and running in the run-time system, is able to continuously test candidate poly-
algorithm configurations in parallel with the best configuration to date whenever
a program is invoked. The technique generates a candidate configuration by se-
lecting one of a set of specific mutation operators that have been derived for it
during the program’s compilation. If it finds a better configuration, it makes a
substitution and continues. We call this process “racing”. The technique needs
to generate candidate configurations that both explore poly-algorithm space and
exploit its knowledge of its best configuration.

The choice of which mutation operator to use is vital in optimizing the over-
all performance of the autotuner, both in time to converge to efficient programs
and their answer quality. Some mutation operators will have large effects on
program performance, while others will have little or no effect. If the evolu-
tionary algorithm spends too much time exploring different mutation operators,

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 73–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 M. Pacula et al.

convergence will be slow. If the evolutionary algorithm spends too much time
trying to exploit mutation operators that have yielded performance gains in the
past, it may not find configurations that can only be reached through mutation
operators that are not sufficiently tested. Noise in program performance due to
execution complicates the picture and make optimal mutation operator selection
imperative.

To address this challenge, SiblingRivalry uses what we call “bandit-based
adaptive operator selection”. Its underlying algorithm is the Upper Confidence
Bound (UCB) algorithm, which is a technique inspired by a provably optimal
solution to the Multi-Armed Bandit (MAB) problem. This technique introduces
two hyperparameters: W - the length of the history window, and C - the bal-
ance point between exploration and exploitation. UCB is only optimal if these
hyperparamters are set by an oracle or through some other search technique. In
practice, a user of this technique must either use a fixed, non-optimal assignment
of these hyperparameters, or perform a search over hyperparameters whenever
the search space changes. Unfortunately, in practice, finding good values of these
hyperparameters may be more expensive that the actual search itself. While [5]
addresses the robustness of hyperparameters in empirical academic study, in this
paper, we present a practically motivated, real world study on setting hyperpa-
rameters. We define evaluation metrics that can be used in score functions that
appropriately gauge the autotuner’s performance in either a static or dynamic
environment and use them to ask:

– How much does the optimal assignment of hyperparameters vary when tun-
ing different programs in two classes of environments - static or dynamic?

– Does there exist a single “robust” assignment of hyperparameters for a con-
text that performs close to optimal across all benchmarks?

The paper proceeds as follows: in Section 2 we provide a necessarily brief de-
scription of our programming language and its autotuner. Section 3 reviews
related work. Section 4 describes the UCB algorithm and the hyper parameters.
Section 5 describes our evaluation metrics and scoring functions for tuning the
hyperparameters. Section 6 provides experimental results. Section 7 concludes.

2 PetaBricks and Its Autotuner

PetaBricks is a language designed specifically to allow the programmer to ex-
pose both explicit and implicit choices to an integrated autotuning system [1,2].
The goal of the PetaBricks autotuner is to, on each machine, find a program
that satisfies the user’s accuracy requirements while minimizing execution time.
Accuracy is a programmer-defined metric, while execution time is measured by
running the program on the given hardware. Given a program, execution plat-
form and input size, the autotuner must identify an ideal configuration which
is a set of algorithmic choice and cutoff selectors, synthetic functions for input
size transforms and a set of discrete tunable parameters. The autotuner is an
evolutionary algorithm which uses a program-specific set of mutation operators.

Hyperparameter Tuning in Bandit-Based Adaptive Operator Selection 75

These mutation operators, generated by the compiler, each target a specific sin-
gle or a set of tunable variables of the program that collectively form the genome.
For example, one mutation operator can randomly change the scheduling policy
for a specific parallel region of code. Another set of mutation operators can ran-
domly add, remove, or change nodes (one mutation operator for each action) in
a decision tree used to dynamically switch between entirely different algorithms
provided by the user.

3 Related Work and Discussion

In the context of methods in evolutionary algorithms that provide parameter
adjustment or configuration, the taxonomy of Eiben [4] distinguishes between
offline “parameter tuning” and online “parameter control”. Operator selection is
similar to parameter control because it is online. However, it differs from param-
eter control because the means of choosing among a set of operators contrasts
to refining a scalar parameter value.

Adaptive methods, in contrast to self-adaptive methods, explicitly use iso-
lated feedback about past performance of an operator to guide how a parameter
is updated. An adaptive operator strategy has two components: operator credit
assignment and an operator selection rule. The credit assignment component
assigns a weight to an operator based on its past performance. An operator’s
performance is generally measured in terms related to the objective quality of
the candidate solutions it has generated. The operator selection rule is a pro-
cedure for choosing one operator among the eligible set based upon the weight
of each. There are three popular adaptive methods: probability matching, adap-
tive pursuit and multi-armed bandit. Fialho has authored (in collaboration with
assorted others) a large body of work on adaptive operation selection, see, for ex-
ample, [5,6]. The strategy we implement is multi-armed bandit with AUC credit
assignment. This strategy is comparison-based and hence invariant to the scale
of the fitness function which can vary significantly between PetaBricks programs.
The invariance is important to the feasibility of hyperparameter selection on a
general, rather than a per-program, basis.

There is one evolutionary algorithm, differential evolution [10], that takes a
comparison-based approach to search like our autotuner. However, differential
evolution compares a parent to its offspring, while our algorithm is not always
competing parent and offspring. The current best solution is one contestant in
the competition and its competitor is not necessarily its offspring. Differential
evolution also uses a method different from applying program-dependent muta-
tion operators to generate its offspring.

4 Adaptive Operator Selection

Selecting optimal mutators online, while a program executes numerous times
over an extended duration, can be viewed as an instance of the Multi-Armed
Bandit problem (MAB), with the caveats described in [8]. We would like to

76 M. Pacula et al.

explore the efficacy of all mutators so that we can make an informed selection of
one of them. The MAB resolves the need to optimally balance exploration and
exploitation in a way that maximizes the cumulative outcome of the system.

In the general case, each variation operator corresponds to one of N arms,
where selecting i-th arm results in a reward with probability pi, and no reward
with probability 1 − pi. A MAB algorithm decides when to select each arm
in order to maximize the cumulative reward over time [8]. A simple and prov-
ably optimal MAB algorithm is the Upper Confidence Bound (UCB) algorithm,
originally proposed by Auer et al. [3]. The empirical performance of the UCB
algorithm has been evaluated on a number of standard GA benchmarks, and has
been shown to be superior to alternative adaptive operator selection techniques
such as Probability Matching [8].

The UCB algorithm selects operators according to the following formula:

Select argmax
i

(
q̂i,t + C

√
2 log

∑
k nk,t

ni,t

)
(1)

where q̂i,t denotes the empirical quality of the i-th operator at time t (exploita-
tion term), ni,t the number of times the operator has been used so far during
a sliding time window of length W (the right term corresponding to the explo-
ration term), and C is a user defined constant that controls the balance between
exploration and exploitation [3,8]. To avoid dividing by zero in the denominator,
we initially cycle through and apply each operator once before using the UCB
formula, ensuring ni,t ≥ 1.

Our PetaBricks autotuner uses the Area Under the Receiving Operator Curve
(AUC) to compute the empirical quality of an operator. AUC is a comparison-
based credit assignment strategy devised by Fialho et al. in [7]. Instead of relying
on absolute average delta fitness, this method ranks candidates generated by a
mutator i, and uses the rankings to define the mutator’s Receiving Operator
Curve, the area under which is used as the empirical quality term q̂i,t (Equa-
tion 1). To extend this method to variable accuracy, we use the following strategy:
If the last candidate’s accuracy is below the target, candidates are ranked by
accuracy. Otherwise, candidates are ranked by throughput (inverse of time).

5 Tuning the Tuner

The hyperparameters C (exploration/exploitation trade-off) and W (window
size) can have a significant impact on the efficacy of SiblingRivalry. For example,
if C is set too high, it might dominate the exploitation term and all operators
will be applied approximately uniformly, regardless of their past performance.
If, on the other hand, C is set too low, it will be dominated by the exploitation
term q̂i,t and new, possibly better operators will rarely be applied in favor of
operators which made only marginal improvements in the past.

The problem is further complicated by the fact that the optimal balance
between exploration and exploitation is highly problem-dependent [5]. For ex-
ample, programs with a lot of algorithmic choices are likely to benefit from a

Hyperparameter Tuning in Bandit-Based Adaptive Operator Selection 77

high exploration rate. This is because algorithmic changes create discontinu-
ities in the program’s fitness, and operator weights calculated for a given set of
algorithms will not be accurate when those algorithms suddenly change. When
such changes occur, exploration should become the dominant behavior. For other
programs, e.g. those where only a few mutators improve performance, sacrificing
exploration in favor of exploitation might be optimal. This is especially true for
programs with few algorithmic choices - once the optimal algorithmic choices
have been made, the autotuner should focus on adjusting cutoffs and tunables
using an exploitative strategy with a comparatively low C.

The optimal value of C is also closely tied to the optimal value of W , which
controls the size of the history window. The autotuner looks at operator applica-
tions in the past W races, and uses the outcome of those applications to assign
a quality score to each operator. This is based on the assumption that an oper-
ator’s past performance is a predictor of its future performance, which may not
always be true. For example, changes in algorithms can create discontinuities
in the fitness landscape, making past operator performance largely irrelevant.
However, if W is large, this past performance will still be taken into account for
quite some time. In such situations, a small W might be preferred.

Furthermore, optimal values of C and W are not independent. Due to the
way q̂i,t is computed, the value of the exploitation term grows with W . Thus by
changingW , which superficially controls only the size of the history window, one
might accidentally alter the exploration/exploitation balance. For this reason, C
and W should be tuned together.

5.1 Evaluation Metrics

Because there is no single metric that will suffice to evaluate performance un-
der different hyperparameter values, we use three separate metrics to evaluate
SiblingRivalry on a given benchmark program with different hyperparameters:

1. Mean throughput: the number of requests processed per second, averaged
over the entire duration of the run. Equal to the average number of races
per second.

2. Best candidate throughput: inverse of the runtime of the fastest candi-
date found during the duration of the run. For variable accuracy benchmarks,
only candidates that met the accuracy target are considered.

3. Time to convergence: number of races until a candidate has been found
that has a throughput within 5% of the best candidate for the given run.
For variable accuracy benchmarks, only candidates that met the accuracy
target are considered.

To enable a fair comparison between SiblingRivalry’s performance under differ-
ent hyperparameter values, we define a single objective metric for each scenario
that combines one or more of the metrics outlined above. We call this metric the
score function fb for each benchmark b, and its output the score.

We consider two classes of execution contexts: static and dynamic. In the
static context, the program’s execution environment is mostly unchanging. In

78 M. Pacula et al.

this setting, the user cares mostly about the quality of the best candidate. Con-
vergence time is of little concern, as the autotuner only has to learn once and
then adapt very infrequently. For the sake of comparison, we assume in this
scenario the user assigns a weight of 80% to the best candidate’s throughput,
and only 20% to the convergence time. Hence the score function for the static
context:

fb(C,W) = 0.8× best throughputb(C,W) + 0.2× convergence time−1
b (C,W)

In the dynamic context, the user cares both about average throughput and the
convergence time. The convergence time is a major consideration since execution
conditions change often in a dynamic system and necessitate frequent adapta-
tion. Ideally, the autotuner would converge very quickly to a very fast config-
uration. However, the user is willing sacrifice some of the speed for improved
convergence time. We can capture this notion using the following score function:

fb(C,W) = 0.5×mean throughputb(C,W) + 0.5× convergence time−1
b (C,W)

We normalize throughput and convergence time with respect to their best mea-
sured values for the benchmark, so that the computed scores assume values in
the range [0, 1], from worst to best. Note that those are theoretical bounds: in
practice it is often impossible to simultaneously maximize both throughput and
convergence time.

6 Experimental Results

We evaluated the hyperparameter sensitivity of SiblingRivalry by running the
autotuner on a set of four benchmarks: Sort, Bin Packing, Image Compression and
Poisson. We used twenty different combinations of C and W for each benchmark:
(C,W) = [0.01, 0.1, 0.5, 5, 50]× [5, 50, 100, 500].

For each run, we measured the metrics described in Section 5.1 and used
them to compute score function values. Due to space constraints, we focus on
the resulting scores rather than individual metrics (we refer the curious reader
to [9] for an in-depth analysis of the latter). We performed all tests on the Xeon8
and AMD48 systems (see Table 1). The reported numbers for Xeon8 have been
averaged over 30 runs, and the numbers for AMD48 over 20 runs. The benchmarks
are described in more detail in [2].

Table 1. Specifications of the test systems used

Acronym Processor Type Operating System Processors

Xeon8 Intel Xeon X5460 3.16GHz Debian 5.0 2 (×4 cores)

AMD48 AMD Opteron 6168 1.9GHz Debian 5.0 4 (×12 cores)

Hyperparameter Tuning in Bandit-Based Adaptive Operator Selection 79

static context dynamic context
Xeon8 AMD48 Xeon8 AMD48

C W C W C W C W

Sort 50.00 5 5.00 5 5.00 5 5.00 5

Bin Packing 0.01 5 0.10 5 5.00 500 5.00 500

Poisson 50.00 500 50.00 500 0.01 500 5.00 5

Image Compression 0.10 100 50.00 50 0.01 100 50.00 50

(a) Best performing values of the hyperparameters C and W over an empirical
sample.

static context dynamic context
Xeon8 AMD48 Xeon8 AMD48

Sort 0.8921 0.8453 0.9039 0.9173

Bin Packing 0.8368 0.8470 0.9002 0.9137

Poisson 0.8002 0.8039 0.8792 0.6285

Image Compression 0.9538 0.9897 0.9403 0.9778

(b) Scores of the best performing hyperparameters.

Fig. 1. Best performing hyperparameters and associated score function values under
static and dynamic autotuning scenarios

Figures 2 and 3 show select scores as a function of C and W on the Xeon8

amd AMD48 systems for benchmarks in both static and dynamic scenarios. All
benchmarks except Image Compression show moderate to high sensitivity to hy-
perparameter values, with Bin Packing performance ranging from as low as 0.1028
at (C,W) = (0.01, 5) to as high as 0.9002 at (C,W) = (5, 500) in the dynamic
scenario on the Xeon8. On average, the dynamic context was harder to autotune
with a mean score of 0.6181 as opposed to static system’s 0.6919 (Figure 4).
This result confirms the intuition that maintaining a high average throughput
while minimizing convergence time is generally more difficult than finding a very
high-throughput candidate after a longer autotuning process.

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(a) Sort on Xeon8

Fig. 2. Scores for the Sort benchmark as a function of C and W . The colored rectangle
is a plane projection of the 3D surface and is shown for clarity.

80 M. Pacula et al.

The optimal hyperparameter values for each benchmark ranged considerably
and depended on both the scenario and the architecture (Table 1). Sort tended
to perform best with a moderate C and a low W , underlining the importance
of exploration in the autotuning process of this benchmark. Bin Packing in the
static context favored a balance between exploration and exploitation of a small
number of recently tried operators. In the dynamic context Bin Packing per-
formed best with much longer history windows (optimal W = 500) and with
only a moderate exploration term C = 5. This is expected as Bin Packing in the
dynamic context is comparatively difficult to autotune and hence benefits from
a long history of operator performance. Poisson was another “difficult” bench-
mark, and as a result performed better with long histories (W = 500 for almost
all architecures and contexts). In the static scenario it performed best with a
high C = 50, confirming the authors’ intuition that exploration is favorable if
we are given more time to converge. In the dynamic context exploration was
favored less (optimal C = 0.01 for the Xeon8 and C = 5 for the AMD48). In the
case of Image Compression, many hyperparameters performed close to optimum
suggesting that it is an easy benchmark to tune. Medium W were preferred
across architectures and scenarios, with W = 100 and W = 50 for the static and
dynamic contexts, respectively. Image Compression on AMD48 favored a higher
C = 50 for both scenarios, as opposed to the low C = 0.1 and C = 0.01 for
the static and dynamic contexts on the Xeon8. This result suggests exploitation
of a limited number of well-performing operators on the Xeon8, as opposed to
a more explorative behavior on the AMD48. We suspect this is due to a much
higher parallelism of the AMD48 architecture, where as parallelism increases dif-
ferent operators become effective.

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(a) Poisson on Xeon8 (left) and AMD48 (right)

Fig. 3. Measured scores for the Poisson benchmark on each architecture

6.1 Hyperparameter Robustness

Our results demonstrate that autotuning performance can vary significantly de-
pending on the selection of hyperparameter values. However, in a real-world
setting the user cannot afford to run expensive experiments to determine which
values work best for their particular program and architecture. For this reason,

Hyperparameter Tuning in Bandit-Based Adaptive Operator Selection 81

Table 2. Benchmark scores for the globally optimal values of hyperparameters normal-
ized with respect to the best score for the given benchmark and scenario. The optimal
hyperparameters were C = 5, W = 5 for the static context, and C = 5, W = 100 for
the dynamic context. Mean normalized scores were 88.32% and 82.45% for the static
and dynamic contexts, respectively.

static context dynamic context
Xeon8 AMD48 Xeon8 AMD48

Sort 95.71% 100% 74.16% 61.12%

Bin Packing 85.61% 94.72% 67.42% 88.74%

Poisson 70.64% 71.09% 90.77% 96.07%

Image Compression 92.44% 96.35% 89.92% 91.42%

we performed an empirical investigation whether there exists a single assignment
of C and W that works well across programs and architectures.

We used the score functions from Section 5.1 to find hyperparameters that
maximized the mean score on all the benchmarks. We found that the hyperpa-
rameters (C,W) = (5, 5) for the static context and (C,W) = (5, 100) for the
dynamic context maximized this score. The results are shown in Table 2. For
the sake of illustration, we normalized each score with respect to the optimum
for the given benchmark and scenario (Table 1(b)).

Despite fixing hyperparameter values across benchmarks, we measured a mean
normalized score of 88.32% for the static and 82.45% for the dynamic context,
which means that we only sacrificed less than 20% of the performance by not
tuning hyperparameters on a per-benchmark and per-architecture basis. This
result shows that the hyperparameters we found are likely to generalize to other
benchmarks, thus providing sensible defaults and removing the need to optimize
them on a per-program basis. They also align with our results for individual
benchmarks (Figure 1), where we found that exploration (moderate to high C,
low W) is beneficial if we can afford the extra convergence time (static con-
text), whereas exploitation (low to moderate C, high W) is preferred if average
throughput and low convergence time are of interest (dynamic context).

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

Fig. 4. Scores for the static and dynamic scenarios averaged over the Sort, Bin Packing,
Poisson and Image Compression benchmarks and the Xeon8 and AMD48 architectures.
The mean scores across all benchmarks, architectures and hyperparameter values were
0.6919 for the static and 0.6181 for the dynamic contexts.

82 M. Pacula et al.

7 Conclusions

We performed a detailed experimental investigation of hyperparameter effect on
the performance of the PetaBricks autotuner, a real-world online evolutionary al-
gorithm that uses adaptive operator selection.We evaluated four benchmarkswith
respect to three metrics which we combined into a performance indicator called
the score function, and demonstrated that optimal hyperparameter values differ
significantly between benchmarks. We also showed how two possible autotuning
scenarios can affect the optimal hyperparameter values. We further demonstrated
that a single choice of hyperparameters across many benchmarks is possible, with
only a small performance degradation. Such a choice provides sensible defaults for
autotuning, removing the need for the user to tune hyperparameters per-program,
and thus making our approach feasible in a real-world setting.

References

1. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: Petabricks: A language and compiler for algorithmic choice. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Dublin, Ireland (June 2009)

2. Ansel, J., Wong, Y.L., Chan, C., Olszewski, M., Edelman, A., Amarasinghe,
S.: Language and compiler support for auto-tuning variable-accuracy algorithms.
In: International Symposium on Code Generation and Optimization, Chamonix,
France (April 2011)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47, 235–256 (2002)

4. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

5. Fialho, Á.: Adaptive Operator Selection for Optimization. PhD thesis, Université
Paris-Sud XI, Orsay, France (December 2010)

6. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Annals of Mathematics and Artificial Intelli-
gence – Special Issue on Learning and Intelligent Optimization (2010)

7. Fialho, Á., Ros, R., Schoenauer, M., Sebag, M.: Comparison-Based Adaptive Strat-
egy Selection with Bandits in Differential Evolution. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 194–203. Springer,
Heidelberg (2010)

8. Maturana, J., Fialho, Á., Saubion, F., Schoenauer, M., Sebag, M.: Extreme
com-pass and dynamic multi-armed bandits for adaptive operator selection. In:
CEC 2009: Proc. IEEE International Conference on Evolutionary Computation,
pp. 365–372. IEEE Press (May 2009)

9. Pacula, M.: Evolutionary algorithms for compiler-enabled program autotuning.
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA (2011)

10. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Ap-
proach to Global Optimization. Natural Computing Series. Springer-Verlag New
York, Inc., Secaucus (2005)

Analyzing Dynamic Fitness Landscapes

of the Targeting Problem of Chaotic Systems

Hendrik Richter

HTWK Leipzig University of Applied Sciences
Faculty of Electrical Engineering & Information Technology

Postfach 30 11 66, D–04251 Leipzig, Germany
richter@eit.htwk-leipzig.de

Abstract. Targeting is a control concept using fundamental properties
of chaotic systems. Calculating the targeting control can be related to
solving a dynamic optimization problem for which a dynamic fitness
landscape can be formulated. We define the dynamic fitness landscape
for the targeting problem and analyze numerically its properties. In par-
ticular, we are interested in the modality of the landscape and its fractal
characteristics.

1 Introduction

Chaotic behavior is defined by time evolutions that depend highly sensitively
on tiny perturbations to the initial conditions and/or parameter values. This
poses fundamental limits to the long–term prediction of the trajectory. Tar-
geting is a control concept for chaotic systems that explicitly takes advantage
of this property [20,21]. It allows to steer the system towards a target on the
chaotic attractor by using a small control input only [11,4,17]. Because of the
sensitivity of chaotic dynamics, calculating the control input that actually drives
the system closest to the target requires solving an dynamic optimization prob-
lem. A popular choice for providing such a solution are methods of evolutionary
computation [5,13,7], which in turn can be based on the theoretical concept of
fitness landscapes [12,22,23]. A fitness landscape gives a model of the optimiza-
tion problem and allows to describe how the evolutionary algorithm interacts
with it. Hence, the concept permits conclusions on how difficult the problem is
for an evolutionary algorithm and what solution behavior can be expected.

In the paper we consider dynamic fitness landscapes for the targeting problem.
We first describe the connection between the targeting problem and optimal
control. In the Sec. 3, we briefly review dynamic fitness landscapes and show
how the targeting problem can be formulated as a dynamic fitness landscape.
Following this, we define, calculate and analyze the landscapes numerically in
Sec. 4. The paper closes with concluding remarks and a discussion about open
question.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 83–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

84 H. Richter

2 Optimal Control and Targeting

An optimal control problem can be formulated as to consist of a discrete–time
dynamical system

x(k + 1) = f(x(k), u(k)) (1)

with the state variable x(k) ∈ Rn, the control input u(k) ∈ Rm, the discrete
time variable k of a time set N0, and an equation describing how the next
state x(k + 1) is generated from the current state x(k) and current input u(k),
f : Rn × Rm → Rn . We intend to find a control input u(k) that drives the
system (1) from an initial state x(0) to a final state x(T). Moreover, amongst
all control input sequences

u = (u(0), u(1), u(2), . . . , u(T − 1)) (2)

that actually drive the system from x(0) to x(T), we are supposed to find the
one uS that minimizes a cost function J , that is we are looking for the control
input with minimal cost

JS = min
u(0),u(1),...,u(T−1)

J (x(0), u(0), u(1), . . . , u(T − 1)) (3)

and hence uS = arg JS is the actual solution.
Optimal control problems arise in a huge variety of engineering problems [1,2].

We here consider a special kind of optimal control problems, the so–called target-
ing problem of chaotic systems. An interesting property of a nonlinear dynamical
system (1) is that it may exhibit chaotic behavior for certain initial states x(0)
and constant control inputs u(k) = ū = const. Chaotic behavior means that
the system trajectory is highly sensitive against tiny perturbations of the initial
state x(0) and/or the control input ū. Applying such tiny perturbations results
in exponential divergence of nearby trajectories. In other words, chaos implies
that the system is locally instable (in the sense of Lyapunov), but globally settles
on a bounded and closed subset of the state space Rn. No trajectory starting
from this subset escapes towards infinity. The subspace built by the chaotic tra-
jectory is the chaotic attractor AR, which has but for exceptional cases a fractal
dimension. This is linked with orbit density in such a sense that the trajectory
comes arbitrarily close to all points embedded in the chaotic attractor.

Targeting addresses and employs these properties of chaotic systems, which
is why it can only be applied here. The targeting problem poses the following
question: Is it possible to steer a chaotic system by a bounded control input

U = {u ∈ Rm|‖u(k)− ū‖ ≤ η} (4)

with η > 0 being small from any initial state x(0) on the chaotic attractor AR

within T time steps to the neighborhood of any target point x̄ on the chaotic
attractor. That is we intend to achieve ‖x(T)− x̄‖ ≤ ε with ε > 0 being a small
constant.

Analyzing Dynamic Fitness Landscapes of the Targeting Problem 85

To specify and restrict the control sequence (2) even more, targeting of chaotic
systems can be achieved by only using the control input at the initial time k = 0:

u = (u(0), ū, . . . , ū). (5)

Observing (5), we denote the multiple application of (1) by f (f(x(0), u(0), ū) =
f2(x(0), u(0)) and so on, and can write the cost function of the targeting problem
and the corresponding optimization problem

JS = min
u(0)∈U

∥∥fT (x(0), u(0))− x̄
∥∥ . (6)

We interpret this cost function of the targeting problem as a fitness function
over the search space U . Hence, the function (6) in connection with the state
equation (1) and the control input (5) also defines an optimal control problem
and consequently the optimization problem to be solved. We show next that it
also constitutes a dynamic fitness landscape.

3 Dynamic Fitness Landscapes

In the following we draw a connection between the targeting problem (6) and
dynamic fitness landscapes. We start with asking what the essence of a dynamic
optimization problem is. Therefore, in turn, we first look at a static optimization
problem. It consists of an objective function (frequently equated with a fitness
function in evolutionary computation) F (s) defined over a search space S with
s ∈ S. The search space might need a neighborhood structure n(s) that gives
every s ∈ S a set of neighbors, if it is not intrinsic to S. Optimization means to
find the lowest (or highest) value of F (s) and its coordinates among all s ∈ S:

FS = min
s∈S

F (s), (7)

with the location sS = arg FS . A fitness function together with a search space
and a neighborhood structure builds a static fitness landscape [12,23].

The static optimization problem (7) can be thought of as becoming dynamic
by solving it not just once, but somehow modified for a second time. The mod-
ification might be an alteration of the fitness function, or the search space, or
the neighborhood structure, or a combination of them. If we restrict ourselves
to a modified fitness function F ∗(s) (for the other modifications the following
applies likewise), we may write the modified problem as

F ∗
S = min

s∈S
F ∗(s). (8)

To rewrite the two static problems (7) and (8) as one dynamic problem, we
introduce the time variable i ∈ N0 and define the dynamic fitness function
F (s, i) where we set

F (s, 0) = F (s), F (s, 1) = F ∗(s).

86 H. Richter

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

Fig. 1. Chaotic attractors and fixed points of: a) the Hénon map (11) and b) the
Holmes map (12)

We may carry on with doing so for the next modification of F (s) to obtain
F (s, 2), and so on. Hence, a dynamic optimization problem is

FS(i) = min
s∈S

F (s, i), ∀ i ≥ 0 (9)

with the solution trajectory sS(i) = arg FS(i). A dynamic fitness function (9)
together with a search space, a neighborhood structure and an evolution law
describing how F (s, i+1) is generated builds a dynamic fitness landscape [18,19].

Looking at the cost function of the targeting problem (6), we see that in our
interpretation it equates with the fitness function (7), which is clearly static.
This is in line with evolutionary approaches to solve optimal control problems,
see for instance [16,3,6,14], which have essentially in common to tackle static
cost functions. Of course, the term fT (x(0), u(0)) depends on the discrete time
variable k of the dynamical system (1), but in which way this time variable is in
relation to the time variable i of the dynamic problem (9) needs to be specified.
One way to do so is to ask how the problem (6) evolves if we were to vary the
final target time T . Note that by varying T a problem is addressed that has some
similarity to questions asked and principles involved in dynamic programming.
In both cases one thing we want to know is how the optimal control policy looks
like if we were to wait for one more time step.

In summary, the dynamic fitness landscape of the targeting problem is

J(u(0), i) =
∥∥f i(x(0), u(0))− x̄

∥∥ (10)

with search space U according to (4) (and hence an inherent neighborhood struc-
ture) and J(u(0), i+ 1) =

∥∥f i+1(x(0), u(0))− x̄
∥∥.

4 Numerical Studies

For studying the dynamic fitness landscapes for the targeting problem numer-
ically, we consider two discrete–time dynamical system according to (1), the

Analyzing Dynamic Fitness Landscapes of the Targeting Problem 87

Hénon map [8]

x(k + 1) =
(
u(k)− x1(k)

2 + 0.3x2(k), x1(k)
)T

(11)

and the Holmes map [9]

x(k + 1) =
(
x2(k), −0.2x1(k) + u(k)x2(k)− x2(k)

3
)T

. (12)

Both systems show chaotic behavior, map (11) for u(k) = ū = 1.4 and map
(12) for u(k) = ū = 2.77. The systems have slightly different chaoticity with
Lyapunov exponent λ = 0.38 for (11) and λ = 0.59 for (12). Both Lyapunov
exponents are positive, indicating first and foremost that the dynamics is chaotic,
but also that the behavior is locally instable. As target points we use the systems’
fixed points, which are

x̄(1,2) =
1

2

(
−0.7±

√
0.49 + 4ū,−0.7±

√
0.49 + 4ū

)T
for the Hénon map and

x̄(1,2) = ±
(√

ū− 1.2,
√
ū− 1.2

)T
, x̄(3) = (0, 0)T .

for the Holmes map. Fig. 1 shows the chaotic attractors of both systems and the
location of the fixed points. We notice that for the Hénon map the fixed points
are asymmetric and only the point x̄(1) is embedded in the chaotic attractor. The
other point lays outside of it and is hence not generally accessible by targeting.
For the Holmes map all three fixed points are embedded and x̄(1,2) are symmetric
to the line x2 = x1.

As result of a first experiment, we depict the dynamic fitness landscape for
the targeting problem using the Hénon system (11) with x̄(1). As in this case
the search space is one–dimensional, we can view its dynamics in a 2D plot,
see Fig. 2. On the horizontal dimension the timely evolution of the landscape is
shown, in the vertical dimension is the spatial evolution. The values of the fitness
(10) are given as a color code according to the colorbar next to the graph. Fig
2a shows the landscape for the relevant parameter range 1.36 ≤ u(0) ≤ 1.44,
which is η = 0.04 according to (4). Outside of this parameter range, targeting
is not robustly observable. For larger values, the Hénon map tends to become
instable, for smaller values it is not chaotic. For the numerical study, the search
space with the given parameter range is divided into par = 3200 partitions.
We vary the target time for 1 ≤ i ≤ 40. It can be seen that targeting is not
generally possible for small target times. Of course, for i = 4 we get close to
the target, but this is mainly due to the initial state used x(0) = (−1.0, 1.5)T
for the given example that the system’s trajectory reaches the vicinity of the
target point. Also, this happens for a large range of control inputs u(0). The real
targeting effect (control that is sensitive to the initial state and allows to reach
the target) can be observed for approximately i > 15. Values of u(0) that create
trajectories that come close to the target point are next to values with contrary

88 H. Richter

(a) (b)

(c) (d)

Fig. 2. Dynamic fitness landscapes for the Hénon map with fixed point x̄(1)

results. This also has effect on the dynamic fitness landscape. For small values
of i it has a small modality or is even unimodal. Also the spatial ruggedness is
low. Moreover, also temporal ruggedness (that is how does the landscape at i
predicts the landscape at i + 1) appears to be lower compared to higher values
of i. For these values the landscape has an increased modality and also spatial
and temporal ruggedness. For increasing i further, this becomes more prominent.
For about i > 25, the targeting effect is clearly visible. Input values have a very
sensitive effect on fitness.

At the first glance, the landscape appear to be fractal, which is a charac-
teristics reported for static fitness landscapes [10,24]. Fractal here means that
the fitness landscape has self–similar structures on all spatial scales. It also has
the consequence that the number of local mimima increases as we go from one
scale to the next smaller one. To study if it is fractal, we look at the small scale
structure of the landscape and zoom into it, see Fig. 2b,c,d. Fig 2b enlarges the
region within white lines in Fig. 1a, Fig. 2c is the same for Fig. 2b, and so on.
The number of partitions is kept. We notice that for the scale 1.36 ≤ u(0) ≤ 1.44,
see Fig. 2a, the graph suggests a self–similar structure for approximately i > 25,
indicating that no regular color pattern are visible. All colors and hence all levels

Analyzing Dynamic Fitness Landscapes of the Targeting Problem 89

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

i

#
L
M

/p
a
r

Henon

Holmes 1

Holmes 2

Holmes 3

Fig. 3. Modality of the dynamic fitness landscapes for the Hénon map with fixed point
x̄(1) and the Holmes map with fixed points x̄(1) (Holmes 1), x̄(2) (Holmes 2), and x̄(3)

(Holmes 3)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

i

#
L
M

/p
a
r

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

i

#
L
M

/p
a
r

(a) (b)

Fig. 4. Modality of the dynamic fitness landscapes and the 95% confidence intervals
for 100 samples of x(0). a) Hénon map with x̄(1), b) Holmes map with x̄(3).

of fitness can appear next to each other. In a second experiment we look at how
the number of local optima depends on the landscape dynamics. We consider
both systems, and all fixed points reachable by targeting. The results are shown
in the Figs. 3 and 4. The number of local minima is calculated numerically. As in
the example the search space is one–dimensional, and because of the numerical
approach considered here, the search space consist of a connected set of parti-
tions. We can sort the u(0) according to their size by uj(0) < uj+1(0) < uj+2(0),
with j = 1, 2, . . . , par−2. Here, par is the number of partitions, with par = 3200
in the given experiment. A uj+1(0) is a local minimum if the condition

J(uj(0), i) ≥ J(uj+1(0), i) ≤ J(uj+2(0), i) (13)

is met. For a given x(0) we denote the number by #LM (x(0)). As the actual
number of local minima might vary for different initial conditions x(0), we

90 H. Richter

0
10

20
30

40

10
2

10
4

10
6
0

0.1

0.2

0.3

0.4

ilog par

#
L
M

/p
a
r

0
10

20
30

40

10
2

10
4

10
6
0

0.1

0.2

0.3

0.4

ilog par

#
L
M

/p
a
r

(a) (b)

10
20

30
40

50
60

10
2

10
4

10
6

10
0

10
2

10
4

10
6

ilog par

lo
g
 #

L
M

10
20

30
40

50
60

10
2

10
4

10
6

10
0

10
2

10
4

10
6

ilog par

lo
g
 #

L
M

(c) (d)

Fig. 5. The normalized and absolute modality over logarithmic number of partitions
and targeting time i. a) and c) Hénon map with x̄(1), b) and d) Holmes map with x̄(3)

calculate the mean value #LM = 〈#LM (x(0))〉 over 500 samples of x(0) on
the chaotic attractor. Fig. 3 shows the normalized value #LM

par . It can bee seen
that for approximately i > 10 the number of local minima increases. This hap-
pens for the Holmes map for smaller value of i that for the Hénon map. This
is most likely because the Holmes map is slightly more chaotic than the Hénon
map, indicated by the difference in the Lyapunov exponent. For the Holmes
map, the three fixed points show similar results, with the point x̄(3) = (0, 0)T

slightly before the other two symmetric points. Fig. 4 gives the 95% confidence
intervals over the 500 samples of initial states. We see that not only the average
number of local minima increase for i becoming larger, but also the variance,
which underlines the stochastic aspects in chaotic dynamics. The variance for
the Holmes map is slightly larger than for the Hénon map, which is again to be
attributed to the effect of the former being slightly more chaotic that the latter.

Next, we further analyze the small scale structure of the landscape. We there-
fore vary the number of partitions par and note the normalized number of local
minima #LM

par we obtain, see Fig 5 a,b. It can be seen that for the number of
partitions getting larger the increase in the normalized number of minima is

Analyzing Dynamic Fitness Landscapes of the Targeting Problem 91

slightly postponed, compare to Fig. 3. But the final value that we obtain is the
same. This strongly hints at a fractal relationship between #LM and par.

A fractal relationship would require to establish a fractal dimensionality D
where there should apply

log(#LM) = −D log(par) (14)

with D > 0, see e.g. [15]. In Fig. 5 c,d the number of local minima #LM and
numer of partitions par are given on logarithmic scale over the target time i. In
the logarithmic plots we notice a linear relationship for larger values of i that
support the characteristics (14). Again, for Holmes map chaos this happens for
smaller values of i than for Hénon map chaos. In conclusion, the results suggest
fractality for the dynamic fitness landscape of the targeting problem.

5 Conclusion

Targeting is a control concept for chaotic systems that explicitly takes advan-
tage of fundamental properties of deterministic chaos, namely orbit density and
sensitive dependence on initial conditions and parameter values. Calculation
the control input requires solving a dynamic optimization problem. Recently,
several approaches using methods of evolutionary computation have been sug-
gested [5,13,7]. In the paper, we defined, calculated and analyzed the dynamic
fitness landscape underlying the targeting problem. In particular, we have shown
evidence that the landscape has fractal characteristics, and modality of the land-
scape depends on the target time. Based on the preliminary results presented
here, further experiments with larger target times and a wider and finer range
of the control input should be conducted. Also, the spatial distribution of the
fractal and granular subspaces of the dynamic fitness landscape should be ex-
amined.

References

1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Sci-
entific, Belmont (2005)

2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 2. Athena Sci-
entific, Belmont (2007)

3. Bobbin, J., Yao, X.: Solving optimal control problems with a cost on changing
control by evolutionary algorithms. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.)
Proc. 1997 IEEE International Conference on Evolutionary Computation (ICEC
1997), pp. 331–336. IEEE Press, Piscataway (1997)

4. Bollt, E.M.: Targeting control of chaotic systems. In: Chen, G., Yu, X., Hill,
D.J. (eds.) Chaos and Bifurcations Control: Theory and Applications, pp. 1–25.
Springer, Berlin (2003)

5. Cai, X., Cui, Z.: Using stochastic dynamic step length particle swarm optimization
to direct orbits of chaotic systems. In: Sun, F., Wang, Y., Lu, J., Zhang, B., Kinsner,
W., Zadeh, L.A. (eds.) Proc. 9th IEEE Int. Conf. on Cognitive Informatics (ICCI
2010), pp. 194–198. IEEE Press (2010)

92 H. Richter

6. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engi-
neering: A survey. Control Engineering Practice 10, 1223–1241 (2002)

7. Gao, W.F., Liu, S.Y., Jiang, F.: An improved artificial bee colony algorithm for
directing orbits of chaotic systems. Applied Mathematics and Computation 218,
3868–3879 (2011)

8. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math.
Phys. 50, 69–77 (1976)

9. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc.
London A 292, 419–448 (1979)

10. Hoshino, T., Mitsumoto, D., Nagano, T.: Fractal fitness landscape and loss of
robustness in evolutionary robot navigation. Autonomous Robots 5, 199–213 (1998)

11. Iplikci, S., Denizhan, Y.: Targeting in dissipative chaotic systems: A survey.
Chaos 12, 995–1005 (2002)

12. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search
landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of
Evolutionary Computing, pp. 177–208. Springer, Heidelberg (2001)

13. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Directing orbits of chaotic
systems by particle swarm optimization. Chaos, Solitons & Fractals 29, 454–461
(2006)

14. Lopez Cruz, I.L., Van Willigenburg, L.G., Van Straten, G.: Efficient Differential
Evolution algorithms for multimodal optimal control problems. Applied Soft Com-
puting 3, 97–122 (2003)

15. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)
16. Michalewicz, Z., Janikow, C.Z., Krawczyk, J.B.: A modified genetic algorithm

for optimal control problems. Computers and Mathematics with Applications 23,
83–94 (1992)

17. Paskota, M., Mees, A.I., Teo, K.L.: Geometry of targeting of chaotic systems. Int.
J. Bifurcation and Chaos 5, 1167–1173 (1995)

18. Richter, H.: Coupled map lattices as spatio–temporal fitness functions: Landscape
measures and evolutionary optimization. Physica D237, 167–186 (2008)

19. Richter, H.: Evolutionary Optimization and Dynamic Fitness Landscapes: From
Reaction–Diffusion Systems to Chaotic CML. In: Zelinka, I., Celikovsky, S.,
Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI,
vol. 267, pp. 409–446. Springer, Heidelberg (2010)

20. Shinbrot, T., Grebogi, C., Ott, E., Yorke, J.A.: Using chaos to direct trajectories
to targets. Phys. Rev. Lett. 65, 3215–3218 (1990)

21. Shinbrot, T., Grebogi, C., Ott, E., Yorke, J.A.: Using small perturbations to control
chaos. Nature 363, 411–417 (1993)

22. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolv-
ability. Evolut. Comput. 10, 1–34 (2002)

23. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor.
Biol. 8, 389–431 (2003)

24. Weinberger, E.D., Stadler, P.F.: Why some fitness landscapes are fractal. J. Theor.
Biol. 163, 255–275 (1993)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 93–102, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Self-organization and Specialization in Multiagent
Systems through Open-Ended Natural Evolution

Pedro Trueba, Abraham Prieto, Francisco Bellas, Pilar Caamaño, and Richard J. Duro

Integrated Group for Engineering Research, Universidade da Coruña, Spain
{pedro.trueba,abprieto,fran,pcsobrino,richard}@udc.es

http://www.gii.udc.es

Abstract. This paper deals with the problem of autonomously organizing the
behavior of a multiagent system through a distributed approach based on open-
ended natural evolution. We computationally simulate life-like dynamics and
their evolution from the definition of local and low level interactions, as used in
Artificial Life simulations, in a distributed evolutionary algorithm called ASiCo
(Asynchronous Situated Coevolution). In this algorithm, the agents that make
up the population are situated in the environment and interact in an open-ended
fashion, leading to emergent states or solutions. The aim of this paper is to
analyze the capabilities of ASiCo for obtaining specialization in the multiagent
system if required by the task. Furthermore, we want to study such
specialization under changing conditions to show the intrinsic self-organization
of this type of algorithm. The particular task selected here is multi-robot
collective gathering, due to the suitability of ASiCo for its application to real
robotic systems.

1 Open-Ended Natural Evolution

An open-ended natural evolution strategy is a complex system made up of a set of
elements, both active (agents) and passive, that interact in the environment either
physically or in some other more information intensive manner (i.e. communications).
This interaction is not driven by a preset synchronization mechanism as in other
algorithms, but by the result of the behaviors of the active agents in the environment
and their interactions with other active and passive elements within it. The key
parameter in these systems is energy, which is used to regulate the population
dynamics and the efficiency of the individuals through the association of the success
of their performance of tasks and the variations in their energy levels.

The evolution process in this strategy is clearly asynchronous as agents mate as a
result of their individual behaviors, for instance when they meet and have a high
enough energy level, and not all of the agents mate at the same time. It is also local, as
the mating or information transfer process only depends on the agents that are
interacting and not on the whole population as in traditional evolution. It is situated
and embodied as the agents are the individuals that make up the population and
evolve while “living” within the environment. Finally, it takes place in an open-ended
fashion without and explicit stopping criterion. Intrinsic to this type of strategy are
self-organization and adaptation to the environment where the agents “live” as usual
in complex systems.

94 P. Trueba et al.

Open-ended natural evol
the main objective of analy
the establishment of an ade
towards a fixed objective
agents to achieve such obje

A few years ago [2],
algorithm called ASiCo (A
case of distributed optimiz
approach. It has provided
routing [2], cleaning [3] or
approach. For a detailed e
next section we will briefly
objective.

1.1 ASiCo

Asynchronous Situated Co
where the individuals are si
duction, are local and dep
algorithm intrinsically dec
distributed and dynamic pro
itself instead of the usual
evolutionary algorithms, w
population makes up the s
algorithm.

lution has been mainly used in a bottom-up approach, w
sing the properties of the emergent system [1]. But throu

equate energetic regulation it is possible to guide evolut
and let the evolution process obtain the behavior of
ctive in a collective manner.
we implemented such an open-ended natural evolut

Asynchronous Situated Coevolution) to be applied in
zation problems that could be solved with a multiag

successful results in different application domains l
shipping freight [4] problems, showing the validity of

explanation of ASiCo working we recommend [3], bu
y present its main elements and working to clarify the pa

o-evolution (ASiCo) performs a coevolutionary proc
ituated in a scenario and their interactions, including rep
pend on spatial and/or temporal coincidence, making
centralized. Consequently, ASiCo is highly suitable
oblems. In this algorithm the scenario must be the probl
l representation of it. Furthermore, unlike in traditio
where each individual represents a solution, the wh
solution in ASiCo. Fig. 1 displays the pseudocode of

Fig. 1. ASiCo pseudocode

with
ugh
tion
the

tion
the

gent
like

f the
ut in
aper

cess
pro-
the
for

lem
onal
hole
the

 Self-organization and Specialization in Multiagent Systems 95

The rules that define the interactions among elements (individuals and
Environment components) and between elements and the scenario are called the
Interaction Set and, as usual in complex systems, they imply cost in terms of energy
and sometimes may result in an energetic gain. The energy flow strategy represents
the rules that regulate energy variations and transmission between the individuals and
the scenario and vice versa. ASiCo uses the principled evaluation function selection
procedure developed by Agogino and Tumer [5], a formal procedure to obtain the
individual utility function from the global function, in order to define the energy flow
strategy towards the desired task objective. This way, we are able to use open-ended
natural evolution in a top-down fashion.

A very important element of ASiCo is the reproductive strategy. In the case of
using fixed size populations it has been named Embryo Based Reproduction (EBR).
The background idea in EBR is that each agent carries, in addition to its own
parameters, another set of parameters corresponding to its embryo and an associated
pre-utility value for the embryo that estimates its utility. Thus, when a new robot is
introduced, its embryo is generated as a mutation of the parent genotype with half of
its energy. During the life of an agent, the embryo is modified whenever the robot
meets another robot and evaluates it positively (accepted candidate), meaning that the
average of the utility of the two parents is higher than the pre-utility of the current
embryo and the affinity criteria are met. Finally, when the parent dies because it ran
out of energy or time or for whatever other reason, the embryo substitutes the parent.
This way, it is ensured that the size of the population remains constant and that the
process takes place in an asynchronous and decentralized manner.

1.2 Problem Definition

After presenting the open-ended natural evolution particularized to multiagent
systems through the ASiCo algorithm, in this section we are going to define the
specific problem we have faced in this paper.

Self-organization is an intrinsic property of open-ended natural systems. In fact,
once a stable state is achieved, if something changes in the environment or in the task
definition, the population will adapt to the new conditions or become extinct. An
important aspect of self-organization in multiagent systems is specialization, that is,
the emergence of heterogeneous individuals if required by the task. It has been shown
that heterogeneous systems are more appropriate in those tasks that can be naturally
decomposed into a set of complementary sub-tasks like collective gathering,
collective communication or multi-agent computer games [6].

Evolution in ASiCo is situated, so genetic exchange depends on the spatial
coincidence of individuals. Consequently, if a task is divided into subtasks that are
spatially separated, species can emerge easily. But if the subtasks do not imply such a
spatial separation, the reproduction operators must be carefully implemented because
it could easily appear a bias towards homogeneous populations, limiting the
emergence of specialization.

In ASiCo, EBR uses a Bipolar Crossover to exchange genetic information between
individuals. To avoid the aforementioned bias, it is based on the idea that an offspring
must have a larger probability of being similar to one of its parents than of being a
50% crossover between them. Consequently, once the two parent chromosomes have

96 P. Trueba et al.

been selected (CA[gA1, gA2, gA3,. . .,gAM], CB[gB1, gB2, gB3 ,. . .,gBM]), one of them is
chosen randomly as the base chromosome. Each gene of the offspring is then
generated using a Gaussian-like probability function centered on the corresponding
gene of the base chromosome and with an amplitude based on the deviation (Di =
|gAj-gBj|) between the value of the corresponding genes in both parents:

gNj = N(gAj,|gAj −gBj|)

where N() is a normal distribution. 
Mutation also follows a Gaussian-like function but, in this case, it is not Di

dependent. With this, when the population has converged to a stable state, Di tends to
zero and there is almost no change on the genetic code of new generations. Only
mutation makes some slight variations that allow a “fine tuning” of the solution.

Thus, the objective of this paper is to analyze if Bipolar Crossover and EBR allow
for emergent specialization in ASiCo and under which conditions. To do it, we will
study a problem where the cooperation among different species or types of agents is
necessary to achieve the goal. Specifically, we have designed a multi-robot
experiment due to the suitability of this type of approach to the robotics field, as will
be explained in the next sub-section.

1.3 Evolution in Multi-robot Systems

Obtaining coordinated behaviors in multi-robot systems is a complex problem that has
been faced using evolutionary algorithms for decades [7][8]. The typical approach
consists on evolving the robot controller offline using a simulator and then transfer
the best result to the real platforms. This approach is easy to implement, the
computational cost is not a restriction and implies a low risk of robot damage. But its
main drawback is that, if one seeks for real autonomous robots, it is not affordable to
contemplate all the possible environmental conditions and tasks. Thus, it is necessary
to carry out the evolution in real time, and here is where it is highly suitable an open-
ended strategy.

This approach is not new, and Watson et al. proposed in 2002 [9] the Embodied
Evolution (EE) methodology, where each real robot embodies an individual of the
population and an open-ended evolution is carried out in real time until a solution is
achieved. Different authors have continued the EE approach in robotics, although
with two clearly different perspectives. In the original EE methodology, each robot
executed a single controller and the genetic exchange was performed in a local and
asynchronous manner depending on the robots encounters in the space. This is what
has been named distributed evolution [10], and ASiCo follows this approach. It has
been demonstrated in several examples that auto-organization and adaptation to
dynamic environments is possible using this strategy [3][11][12]. The other
perspective starts from the premise that distributed evolution requires a large number
of robots in the team to avoid premature convergence of the solution due to the fact
that the team size is the population size, and consequently it cannot be applied in
small robot teams. As a consequence, the authors in [13][14] propose an EE variation
where each robot carries a whole population of controllers and an independent
evolutionary algorithm runs on it. This approach has been called encapsulated
evolution [10] and it has provided successful results in tasks with a small number of

 Sel

real robots [13][14] (even w
of this paper because ASi
agents or robots must be si
among them, so a small num

None of the previous wo
studied the emergence of s
strategies in multi-robot sys
multi-robot tasks without
which, as commented in th
As a consequence, in the
carried out to study specia
commented in detail.

Fig. 2. ASiCo scenario for the
represent robots. Black robots
are hybrid.

2 Self-organizatio

2.1 Task Description

The experiment consists i
simulated autonomous rob
and blocks, is displayed in
divided in two smaller sub
robots must activate some b

f-organization and Specialization in Multiagent Systems

with only one). Encapsulated evolution is out of the sc
Co is an intrinsically distributed algorithm in which
imple elements and the power comes from the interacti
mber of robots is counterproductive.
orks belonging to the distributed evolution approach h
specialization of this type of open-ended natural evolut
stems. That is, different authors have obtained solution
any consideration about the heterogeneity of the te

he previous sub-section, is very a relevant practical asp
next section we will present the particular experim

alization in ASiCo and the main results obtained will

specialization experiment. Squares represent blocks and trian
are explorers, dark blue robots are gatherers and light blue rob

on and Specialization Analysis

in a collective gathering task carried out by a team
ots. The ASiCo scenario with the basic elements, rob
Fig. 2. The team size is fixed to 20 robots. The task can
btasks that must be accomplished sequentially. First,
blocks (grey blocks in Fig. 2) that come up randomly in

97

ope
the

ions

have
tion

ns to
am,

pect.
ment
l be

ngles
bots

m of
bots
n be
the
the

98 P. Trueba et al.

scenario. The activation occurs if a robot touches a grey block. Once a block is
activated (blue blocks in Fig. 2) it is ready for its gathering. The robots have to
pair activated blocks. The only condition for this pairing is that both blocks must be
activated. When two activated blocks are paired, they are automatically transported to
a collection area outside the scenario. When this happens, two new deactivated blocks
appear randomly in the arena so, consequently, the number of blocks in the scenario is
a constant. As we can see, this experiment implies two clear species, explorer and
gatherer robots, besides other hybrid combinations of them that could emerge.

To perform the two subtasks, the robots are endowed with a set of sensors and
actuators, namely: a block sensor that provides the distance and angle to their closest
block, a movement actuator to move through the scenario, an activation device to
activate grey blocks and a gripper to grab the activated blocks. For the sake of
simplicity, the robots have the low-level behaviors innate on them, so they know how
to reach one block or another. The ASiCo objective is to adjust the optimum number
of robots for each subtask according to the energetic conditions established, as we
will explain later.

Consequently, the genotype of the robots is very simple, and it consists in a single
continuous parameter that represents the probability of being an explorer, a gatherer
or a hybrid robot. As usual in robotic applications, hybrid configurations can execute
several subtasks but it can also be associated to an efficiency penalty motivated by a
higher hardware complexity. In this experiment, we have implemented this penalty by
applying a reduction in the detection range of the block sensor. Specifically, we have
introduced a c coefficient that ranges from hybrid configurations with no penalty at all
(c=0), which allow for “super-robots” able to accomplish both tasks in the same way,
to a highly penalized hybrid configuration (c=100), leading to a robot with poor
performance in both (it has to be extremely near of the block to detect it). In the
middle, we have several combinations of hybrid robots, but in this paper they will not
be considered.

The block detection sensor ranges are calculated using the following expressions,
for the detection of single blocks:

 , with 1,
1 2 , 1 0, 1

For the detection of activated blocks:

 , with 1, 11 21 2 , 1 0,
Being: , : vision range of the single and activated blocks respectively for

the i-th robot.
: maximum detection distance of the sensors.

 Self-organization and Specialization in Multiagent Systems 99

: gene responsible of the task activation for the i-th robot

c: hybridization penalty coefficient
L: portion of the range of the gene used to activate the behavior associated
to each subtask.

Regarding the energy flow strategy in ASiCo, the individual utility is associated to
each of the particular steps required to perform the whole task, and it is introduced in
the population as an energy reward. Specifically, when a robot activates a single
block, it receives one energy unit, when a robot moves an activated block towards
another activated block that is isolated in the scenario, it receives two energy units,
and when a robot moves an activated block to another activated block that is being
transported by another robot, each of the involved robots receives one energy unit. As
in every implementation of ASico, every time step the robots lose a specific amount
of energy which makes efficient robots live longer and, consequently, their genetic
code can be transmitted with a higher probability.

2.2 Self-organized Specialization

In a basic initial configuration both tasks are balanced so, ideally, they will require
half of the population each. Additionally, the energy used to reward the actions of the
robots is equally distributed for both subtasks. For testing the specialization and the
adaptability of ASiCo, we modify some conditions during the period of evolution,
which affects the optimal solution. In this particular case, we present the results
obtained when modifying the penalty parameter of the hybrid configuration during
evolution, from a high value (c = 100) in the first 700.000 iterations, which makes
hybrid configurations very inefficient, to a low value (c = 0) from 700.000 to 900.000
iterations, where hybrid genotypes imply “super-robots”, and returning to a high
penalization phase again up to the final iteration 1.600.000. We must clarify here that
100.000 iterations in this experiment took about 1 minute of real time to complete.

Fig. 3 shows the evolution of the global utility of the population in this case (dark
line). It corresponds to the time elapsed between consecutive collected blocks, the
lower the better, and it was obtained as the average value of 30 independent runs of
ASiCo. To have a reference value of a successful utility level, in Fig. 3 we have
included a dotted line that corresponds to the utility level reached by a “manual”
solution (10 explorers/10 gatherers for c=100 and 20 hybrids/0 explorers/0 gatherers
for c=0). This figure must be analyzed together with Fig. 4 that corresponds to the
same runs and that displays the average number of individuals of each species
throughout evolution.

In these two figures we can observe that, after an initial period of 100.000
iterations where the species balance is inadequate and the utility value is high, ASiCo
obtains a stable utility value near the reference value in the phase with c=100, while it
reaches a species configuration with almost no hybrid robots and with a balanced
number of explorer and gatherer robots, as expected.

100 P. Trueba et al.

Fig.

Fig. 3. Global utility evolution

4. Species distribution during evolution

 Self-organization and Specialization in Multiagent Systems 101

During the second phase (c=0) between iterations 700.000 and 900.000, the global
utility displayed in Fig. 3 slightly improves and, what is more significant, the
distribution of species in the population changes completely. Now, most of the robots
are hybrid as expected (see Fig. 4). Anyway, there are a few explorers that remain in
the population. Analyzing the simulation in detail, we have noticed that hybrid robots
are mainly performing the gathering task, so there is a chance for explorer robots
without influence in the global utility. But as hybrid ones can accomplish both tasks,
the number of explorers is smaller than in the previous phase. In this case, gatherer
robots are basically unnecessary. This type of unexpected equilibrium state is one of
the most interesting properties of an open-ended evolutionary approach like ASiCo,
mainly due to the knowledge of the problem features it provides to researchers.

Finally, we set c=100 again penalizing the hybrid robots until the evolution
finishes. At this point the genetic code of the individuals is not randomly spread
throughout its range, but it is concentrated in the range that corresponds to hybrid
configurations. Therefore there is a low genetic diversity and the readjustment of the
groups is much more difficult as we notice in the utility evolution of Fig. 3. The
utility worsens quickly and it takes 300.000 iterations to start improving again, but it
finally reaches the reference value. Regarding the species in this last phase, Fig. 4
shows how the original balance with a low number of hybrid robots and a higher and
similar value of explorer and gatherer robots is achieved.

3 Conclusions

In this work we have studied the emergence of specialization in multi-agent systems
that are coordinated using open-ended natural evolution strategies. This type of
strategies involves a situated evolution, which could have a bias towards
homogeneous populations if the mating policy is not regulated properly. Specifically,
here we have focused our study in the Asynchronous Situated Coevolution (ASiCo)
algorithm, to conclude that the Embryo Based Reproduction and the Bipolar
Crossover that make up the algorithm mating strategy, do not introduce the
commented bias in the emergence of specialization. A high level task of multi-robot
collective gathering was employed to carry out this analysis. The task was defined so
as to be regulated in order to require or not the division of labor within the ideal
population. We have studied variations in the employment of hybrid configurations,
which can be penalized as is found in real robotic situations, that change the optimal
group of individuals. With this, we aimed to show that the algorithm is not enforced
to create species in every case but it adapts the final population, which represents the
solution to the task, to its requirements.

Acknowledgements. This work was partially funded by the Xunta de Galicia and
European Regional Development Funds through projects 09DPI012166PR and
10DPI005CT.

102 P. Trueba et al.

References

1. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and
Technologies. MIT Press (2008)

2. Prieto, A., Bellas, F., Caamaño, P., Duro, R.J.: A Complex Systems Based Tool for
Collective Robot Behavior Emergence and Analysis. In: Corchado, E., Abraham, A.,
Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 633–640. Springer,
Heidelberg (2008)

3. Duro, R.J., Bellas, F., Prieto, A., Paz-López, A.: Social Learning for Collaboration through
ASiCo based Neuroevolution. Journal of Intelligent and Fuzzy Systems 22, 125–139
(2011)

4. Prieto, A., Bellas, F., Caamaño, P., Duro, R.J.: Solving a Heterogeneous Fleet Vehicle
Routing Problem with Time Windows through the Asynchronous Situated Coevolution
Algorithm. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS,
vol. 5778, pp. 200–207. Springer, Heidelberg (2011)

5. Agogino, A., Tumer, K.: Efficient evaluation functions for evolving coordination.
Evolutionary Computation 16(2), 257–288 (2008)

6. Nitschke, G., Schut, M., Eiben, A.: Collective Neuro-Evolution for Evolving Specialized
Sensor Resolutions in a Multi-Rover Task. Evolutionary Intelligence 3(1), 13–29 (2010)

7. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective
behavior. Artificial Life 9(1), 255–267 (2003)

8. Bryant, B., Miikkulainen, R.: Neuro-evolution for adaptive teams. In: Proceedings of the
Congress on Evolutionary Computation, pp. 2194–2201 (2003)

9. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: Distributing an evolutionary
algorithm in a population of robots. Robot. and Auton. Syst. 39(1), 1–18 (2002)

10. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, On-line, On-board Evolution for
Autonomous Robotics. In: Symbiotic Multi-Robot Organisms: Reliability, Adaptability,
Evolution, pp. 361–382. Springer, Heidelberg (2010)

11. Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line, on-board
evolutionary robotics. In: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation (2011)

12. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.: Environment-driven Distributed
Evolutionary Adaptation in a Population of Autonomous Robotic Agents. Mathematical
and Computer Modelling of Dynamical Systems (2011)

13. Elfwing, S., Uchibe, E., Doya, K., Christensen, H.: Darwinian embodied evolution of the
learning ability for survival. Adaptive Behavior - Animals, Animats, Software Agents,
Robots, Adaptive Systems 19(2), 101–120 (2011)

14. Montanier, J.-M., Bredeche, N.: Embedded Evolutionary Robotics: The (1+1)-Restart-
Online Adaptation Algorithm. In: Doncieux, S., Bredèche, N., Mouret, J.-B. (eds.) New
Horizons in Evolutionary Robotics. SCI, vol. 341, pp. 155–169. Springer, Heidelberg
(2011)

15. Knudson, M., Tumer, K.: Coevolution of heterogeneous multi-robot teams. In:
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,
pp. 127–134. ACM, New York (2010)

An Empirical Tool for Analysing the Collective

Behaviour of Population-Based Algorithms

Mikdam Turkey and Riccardo Poli

School of Computer Science & Electronic Engineering
University of Essex
Wivenhoe Park

Colchester, Essex, CO4 3SQ
{mturkey,rpoli}@essex.ac.uk

Abstract. Understanding the emergent collective behaviour (and the
properties associated with it) of population-based algorithms is an im-
portant prerequisite for making technically sound choices of algorithms
and also for designing new algorithms for specific applications. In this
paper, we present an empirical approach to analyse and quantify the col-
lective emergent behaviour of populations. In particular, our long term
objective is to understand and characterise the notions of exploration and
exploitation and to make it possible to characterise and compare algo-
rithms based on such notions. The proposed approach uses self-organising
maps as a tool to track the population dynamics and extract features that
describe a population “functionality” and “structure”.

Keywords: Collective behaviour analysis, population dynamics,
population-based algorithms, exploration, exploitation, emergent
properties.

1 Introduction

A population-based search algorithm operates on a set of interacting individuals
— the population. The algorithm uses interaction mechanisms to control the
movement of individuals around the search space and redistribute the density of
the population in different regions according to information obtained via individ-
uals previously generated in such regions. This bias in directing the movement
of the population leads the algorithm to explore promising areas of the search
space with more intensity and/or to acquire information about new regions.
As the interaction mechanisms operate on moving, creating and/or eliminating
individuals, the algorithm shows an emergent behaviour which represents the
collective behaviour of the population as a whole and describes its dynamics.

Understanding the emergent collective behaviour of population-based algo-
rithms is important. For example, identifying collective properties related to
an algorithm’s dynamics allows the comparison of algorithms in terms of be-
haviours, not just performance (e.g., number of fitness evaluations to reach an
optimum). So, this is also a prerequisite for making technically sound choices of
algorithms and also for designing new algorithms for specific applications.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 103–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

104 M. Turkey and R. Poli

Various approaches have aimed at developing a better understanding of
the collective behaviour of population-based algorithms. Some of them attacked
the issue by theoretically modelling the dynamics of the algorithm. For exam-
ple, within evolutionary computation theory, approaches include: the schema
theory [5], which was one of the first and, today, best developed theories of
the dynamics of search algorithms (e.g., see [11,10] for some recent results),
Markov chain formulations [12], Walsh-function-based analyses [2] and
statistical-mechanical formulations [9]. All of these have seen some successes
at mathematically modelling evolutionary algorithms.

An alternative approach to theory is to practically study the dynamic be-
haviour of an algorithm with respect to a specific problem by defining and
analysing suitable empirical measures. A number of empirical measures have
been proposed to assess the performance of evolutionary algorithms. For exam-
ple, semi-empirical measures of problem difficulty, such as the fitness-distance
correlation [6] and the negative slope coefficient [8], have been proposed to char-
acterised what makes a problem easy or hard for evolutionary algorithms. How-
ever, much less has been done to empirically assess properties of an algorithm’s
emergent/collective behaviour. This is a major gap, since the quantification of
such proprieties of the dynamic behaviour of algorithms would have numerous
benefits. It would help, for example, develop a better understanding about the
population evolutionary phenomena. It would also make it possible to compare
search algorithms based on high-level aspects of functionality and structure.

Looking at what has been done in this area, we find that researchers have
concentrated on two emergent features of search algorithms: exploration and ex-
ploitation. Exploration refers to behaviour resulting in the discovery of new good
regions in the search space, while exploitation refers to the behaviour of explor-
ing previously discovered good regions [5,4]. Existing approaches have focused
on controlling the explorative/exploitative behaviour by tuning the parameters
of search algorithm prior to a run or changing them dynamically throughout the
run based on features of the the population such as fitness or diversity . However,
there is no precise definition in the literature of the notions of exploration and
exploitation, no precise characterisation of the distinction between them, and no
numerical quantification of them.

In this paper we present an algorithm-independent approach to analyse the
collective dynamic behaviour of a population. Our approach uses Self-Organising
Maps (SOMs) [7] to track population movement and to mine information about
the emergent collective behaviour of the algorithm as it operates in solving a
problem. Our aim is to use the information to calculate measures that are related
(and may eventually lead to quantifying) exploration and exploitation.1

In related work [3], an approach was proposed to measure exploration and
exploitation of an evolutionary algorithm. The approach uses an ancestry tree
as a data structure for recording information about the process of creating indi-
viduals by different genetic operators. The information is recorded throughout

1 SOMs had previously been used in evolutionary algorithm to improve their perfor-
mance by enhancing the search strategy and avoiding genetic drift [1].

An Empirical Tool for Analysing the Collective Behaviour 105

the run and used to calculate the exploration/exploitation rate of the algorithm
based on the number of ancestry trees resulting after splitting them into small
trees based on a distance threshold. While this approach depends on mutual
distance between individuals in quantifying exploration and exploitation, other
approaches use fitness growth to assess the evolvability of genetic operators, or
fitness distributions to predict the distribution of successive generation (e.g.,
[8,9]). Both fitness and distances can be useful to represent explorative and ex-
ploitative search. This is why, to assess emergent properties, in this paper we
use a variety measures involving distances, fitnesses or both.

The paper is organised as follows. Sec. 2 introduces self-organising maps and
provides details about how our approach makes use of them. Sec. 3 introduces
the proposed measures of emergent properties of collective behaviour, while Sec.
4 presents experimental results obtained applying these measures to different
evolutionary algorithms. We conclude with discussion and future work.

2 Self-Organising Maps and Population Dynamics

A Self-Organising Map [7] is an artificial neural network that can be trained using
unsupervised learning. After training, SOMs can be used for mapping (classi-
fying) or visualising high dimensional data. SOMs consist of a set of nodes (or
neurons) arranged, usually, in a two-dimensional grid. A node, i, has an associ-
ated vector, mi, of the same dimension of the input space and is connected to its
nearest neighbours. The training is done by feeding a SOM with a large number
of training samples drawn from the data space. Each time a sample, x, is fed into
a SOM, the best matching node (BMN) is identified as the node whose vector
has the smallest distance from the input sample, i.e., bmn = argmini ‖x−mi‖.
Then mBMN is updated by moving it slightly in the direction of x. The change
to the BMN’s vector results in changing the vectors of its neighbours as well.

In this work, we use SOMs in two stages. The first one is the training stage.
In each training iteration the SOM is fed individuals randomly selected from the
initial population. In this phase the learning rate and the neighbourhood radius
are decreased over time as standard in SOMs. The resulting SOM provides a
2–D representation of the search space (as represented by the initial random
population). The second stage is where we use the SOM for tracking the pop-
ulation dynamics. In this stage, which is effectively another training stage, we
use a fixed learning rate and neighbourhood radius, and the SOM is trained by
the newly create individuals produced in a run of the algorithm. In addition to
the change that new individuals bring to the node vectors of the SOM, more
information about those individuals is recorded.

In the proposed approach, the node grid is viewed as a matrix of centroids
representing the population distribution, where the collective dynamic behaviour
is captured by the analysing changes introduced to the node vectors by new
individuals as the population moves in the search space. We use a grid of n × n
nodes. Each node is represented by the following tuple

106 M. Turkey and R. Poli

Ct
r = 〈mCt

r , dC
t
r , fCt

r , f
Ct

r

best, f
Ct

r

best-so-far, h
Ct

r〉

where in Ct
r, t is time and r ∈ {1 . . . n}2 is the position in the grid.

The elements of the tuple are as follows:mCt
r ∈ RD represents the node vector,

D being the search space dimension; dC
t
r is the sum of the distances between

mCt
r and input individuals for which Ct

r is identified as BMN for the period

between two sampling points t − 1 and t (hit distance); fCt
r is the sum of the

fitnesses of all the individuals for which Ct
r is identified as BMN (in the period

between two sampling points t − 1 and t); f
Ct

r

best is the best fitness value of an
individual for which Ct

r is identified as BMN between sampling points t− 1 and

t; f
Ct

r

best-so-far is the best fitness value of an individual for which Ct
r is identified

as BMN since time t = 0; hCt
r (hits counter) is the number of individuals where

Ct
r is identified as a BMN between sampling points t − 1 and t. A node vector,

mCr

, is updated using the following function:

l(Cr, α, σ, x) = mCr

+ αe

(
− ‖r−rbmn‖2

2σ2

)(
x−mCr

)
where x is the input individual vector, α is the learning rate, σ is the neighbour-
hood radius and rbmn is the index of the BMN.

During the training stage, the learning rate is set to α = 0.07 and the neigh-
bourhood radius is set to σ = n/2. Each learning iteration consists of feeding
the SOM with N (typically the size of population) individuals selected ran-
domly form the initial population. For iteration c, the learning rate is computed
as αc = α exp (−c/#iterations) and the neighbourhood radius is computed as
σc = σ exp

(
− c

#iterations/log(σ)

)
. The purpose of the training stage is to capture

the distribution of the initial population and to create a topologically consistent
grid. After the training stage we use fixed values for learning rate and neigh-
bourhood radius, such that α = 0.07 and σ = 1.

3 Extracting Properties of Collective Behaviour

After randomly generating initial SOM vectors, the SOM is trained using the
initial population. During this stage we only update the node vectors without
recording any information about individuals. The task of the second stage is
to track the dynamic collective behaviour of population by detecting changes
introduced by newly created individuals and to record information about them.
Every time the search algorithm creates τ individuals, we send them as input
to the SOM. Information about the collective behaviour is then extracted and
analysed. In the proposed approach we use τ = 100, that means the analysis
process work on detecting the collective dynamic behaviour every 100 new points
in the search space have been examined by the algorithm. The first step in the
second stage is to identify activity regions in SOM.

An Empirical Tool for Analysing the Collective Behaviour 107

Fig. 1. SOM’s Activity Regions and Fitness Landscape

An activity region can be defined as any set of adjacent grid nodes that have
been hit by (matched) at least one individual between two sampling points. For-

mally that is defined as ActiveN t = {Ct
r|hCt

r > 0}. Furthermore, let Neigh(Ct
r)

be a function that returns a set of all immediate neighbours of a node that is a
member of ActiveN t. Formally:

Neigh(Ct
r) =

{
Ct

r′ ∈ ActiveN t | 0 < ‖r − r′‖ <
√
2 and ‖mCt

r −mCt
r′‖ < ω

}
where ω = 0.05 × SearchSpaceD is a distance threshold, where SearchSpaceD
is the largest distance between any two points in search space. The function
above returns the empty set ∅ in case Ct

r has no neighbours. An activity region,
Region(Ct

r) for Ct
r ∈ ActiveN t, is the set of all the nodes that are either direct

neighbours of node Cr or are neighbours of its neighbours. If Cr has no connected
neighbour, then Region(Ct

r) = {Ct
r}.

Then the set of all activity regions (set of sets) is defined as follows:

ActivityRegionst =
⋃

x∈ActiveN t

Region(x)

Figure 1 depicts the distribution of node vectors in the fitness landscape and the
identification of activity regions based on neighbour definition. Then the activity
regions are divided into GrowthRegionst and NonGrowthRegionst, as follows:

GrowthRegionst =
{
R | Xt ∈ R and fXt

best-so-far > fXt−1

best-so-far where

fXt

best-so-far = max
w∈R

fw
best-so-far

}

NonGrowthRegionst = ActivityRegionst \ GrowthRegionst

We need also to define the best region BestRegiont ∈ ActivityRegionst,

BestRegiont = arg max
x∈ActivityRegionst

fx
best-so-far

108 M. Turkey and R. Poli

Monitoring changes that occurred on the regions above and analysing the infor-
mation recorded by nodes belonging to them reveals details of the dynamics and
the collective behaviour of an algorithm. Many features that describe aspects
of the emergent behaviour can be extracted from the SOM by looking at re-
gion changes over two sampling points and analysing the recorded information.
The features of emergent collective behaviour can be classified into four types
of features as follows: i) Fitness-related features: fitness averages or growth in
different SOM regions provide an insight about the level of achievement of each
region. Furthermore, regions are actually divided according to current or past
fitness values; ii) Distance-related features: two distance measures can be cal-
culated from the SOM: the sum of the distances between the node’s vector and
input individuals (dC

t
r) and the displacement distance for each node vector. The

former can provide information on local search properties, while the later gives
information on the population search bias and direction; iii) Activity-related
features: the number of individuals that have been associated with a certain
node (hits counter), the number of nodes in one region and the number of re-
gions. All of these can give indications of the extent of population activities; and
iv) Correlated features: they analyse the correlation between two different types
of features over time, such as the change of fitness and node vector displace-
ment, or the amount of activity. In the paper we explore some measures for the
emergent collective behaviour using some of the features outlined above.

In table 1, regions are categorised based on change in regions status over two
sampling point t− 1 and t.

Table 1. Categorising regions based on status change

Description Regions Sets Definition

Activity led
to Activity

AAt =
{
R | R ∈ NonGrowthRegionst−1 and R ∈ NonGrowthRegionst

}

Activity led
to Growth

AGt =
{
R | R ∈ NonGrowthRegionst−1 and R ∈ GrowthRegionst

}

Activity led
to Nothing

AN t =
{
R | R ∈ NonGrowthRegionst−1 and R /∈ ActivityRegionst

}

Growth led to
Activity

GAt =
{
R | R ∈ NonGrowthRegionst−1 and R ∈ GrowthRegionst

}

Growth led to
Growth

GGt =
{
R | R ∈ GrowthRegionst−1 and R ∈ GrowthRegionst

}

Growth led to
Nothing

GN t =
{
R | R ∈ GrowthRegionst−1 and R /∈ ActivityRegionst

}

New Regions Newt =
{
R | R /∈ ActivityRegionst−1 and R ∈ ActivityRegionst

}

Then the ratios of each region can be calculated as follows:

AARatiot = |AAt|/|NonGrowthRegionst−1|

AGRatiot = |AGt|/|NonGrowthRegionst−1|

An Empirical Tool for Analysing the Collective Behaviour 109

ANRatiot = |AN t|/|NonGrowthRegionst−1|

GGRatiot = |AGt|/|GrowthRegionst−1|

GARatiot = |AGt|/|GrowthRegionst−1|

GNRatiot = |AGt|/|GrowthRegionst−1|

NewRatiot = |Newt|/|ActivityRegionst|
The activity rate in set of regions St is calculated as the number of hits a set of
regions receives at time t and defined as:

ActivityRate(St) =
1

τ

(∑
C∈u(St)

hC
)

where u(St) = ∪λ∈Stλ represents all the nodes within the set of regions St. The
previous equation can be applied to any region and it is used to measure the
amount of focus an algorithm gives to region(s) or to direct the search to new
areas. This can also be used to find the rate of the activities in the best region,
interpreted a set, i.e., ActivityRate({BestRegiont}).

The change in node vector positions (vector displacement) reveals information
about the bias of algorithm and studying this change over time for different
regions along with the hit distance can help clarify the collective behaviour of
populations in local areas of the search space. Vector displacements and hit
distances are defined as follows:

Displacement(St) =
1

|u(St)|

(∑
Ct∈u(St)

‖mCt −mCt−1‖
)

HitDistance(St) =
(∑

Ct∈u(St)

dC
t
)
/
(∑

C∈u(St)

hC
)

Vector displacement and hit distance of the best region can be calculated as
Displacement({BestRegiont}) and HitDistance({BestRegiont}), respectively.

Finally, the size ratio of a region, the number of active nodes of a certain
region relative to the total number of active nodes, can be defined as follows:

SizeRatio(St) =
(∑

Rt∈St

|Rt|
)
/|ActiveN t| (1)

4 Experimental Results

To practically test the approach outlined above, we used a basic EA of 100 real-
valued individuals using uniform mutation with 0.2 mutation probability and 1.0
mutation step size. The algorithm uses a intermediate arithmetic recombination
with 0.75 probability. We used tournament selection for both mating and sur-
vival selections with tournament sizes 4 and 2, respectively. In addition to the

110 M. Turkey and R. Poli

0

0.5

1

0

0.5

0

0

0.5

0 25 50 75
0

0.5

0

0 25 50 75

0 25 50 75

0 25 50 75

0 25 50 75

0 25 50 75

0 25 50 75

Fitness
Sharing
EA

Deterministic
Crowding
EA

GA Ratios GN Ratios AA Ratios AG Ratios AN Ratios New Ratios
Standard
EA

GG Ratios

Random
Immigrant
EA

Fig. 2. Ratios of Regions Categories

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

Standard EA Fitness Sharing EA Crowded EA Random Immigrant EA

(C) Activity average in New regions

(B) Activity average in Nongrowth regions

(D) Activity average in Best region

(A) Activity average in Growth regions

Fig. 3. Activity rates in different population regions

standard form the EA, three different techniques have been used: fitness sharing,
deterministic crowding and random immigrants. We applied these algorithms on
a 5-dimensional problem consisting of the sum of 100 Sphere, Ranstrigin and
Griewank functions. These function were randomly generated, shifted, rotated
and combined. In our experiments, we conducted 100 runs for each of the four
algorithms on a single randomly generated fitness landscape.

The measures that we have designed above are aimed at mining emergent
properties of the collective behaviour by extracting features that describe the
structure and the functionality of population as it moves around the search space.
Figure 2 gives indications on how the algorithms handle different regions of the
search space and how they respond to discovering new useful information. The
plots also illustrate how the algorithms distribute their “attention”. GGRatio
and GARatio give information on how often the algorithm follows promising
information which, of course, gives an indication on the exploitation behaviour,
while AGRatio gives an indication of how successful are activities that led to
local growth in fitness. On the other hand, ANRatio shows the rate of the
activities that have resulted in discovering nothing and have not been followed.
The two previous ratios plus NewRatio give indication on explorative behaviour.

Standard EA tends to exploit the search space, while fitness sharing and de-
terministic crowding EAs give less focus on exploitation. The random immigrant
EA tries to exploit useful information but the phase of generating random im-
migrants (individuals) distracts this activity and pushes the algorithm toward
more exploration.

An Empirical Tool for Analysing the Collective Behaviour 111

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90
0

1

2

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 100

Standard EA Fitness Sharing EA Crowded EA Random Immigrant EA

(F) Hit distance in Best region(D) Hit distance in Growth regions

(A) Unit vectors displacement in
Growth regions

(E) Hit distance in
Nongrowth regions

(C) Unit vectors displacement in
Best region

(B) Unit vectors displacement in
Nongrowth regions

Fig. 4. Displacement and hit distance of unit vectors

Figure 3 shows how each algorithm distributes its activity as measured by the
number of individuals created in each region. While Standard and random im-
migrant EAs concentrate most of their individuals in growth regions or the best
region discovered so far and give less attention to non-growth regions and new
regions, fitness sharing and deterministic crowding EAs do exactly the opposite.
However, they all, more and less, converge to the same fashion of behaviour.

Another aspect of collective behaviour can be noticed by tracking the change
caused by the population moving the SOM vectors. Significant change signifies
concentration and bias in search. The less these changes, the less explorative
the population becomes. This is because when the population concentrates on a
specific region of the search space for some time, the SOM comes to equilibrium
and that indicates that the population has stopped moving. The hit distance
conveys, more and less, the same message. If the hit distance is high, that indi-
cates that the population is exploring and not working on the same area of the
search space. The less the distance, the less the population explores. The random
immigrant EA has the highest rates of displacement and hit distance because of
the unbiased nature of generating random individuals. The deterministic crowd-
ing EA shows high rates of hit distance, although it has the same displacement
as fitness sharing EA. That means a deterministic crowding EA tends to explore
more. The standard EA starts with the highest displacement and drops down to
the lowest value due to the exploitative nature of the algorithm.

Figure 5 describes the structural features of population in terms of the size
of regions as defined by Eqn. 1. It gives an indication on how the population
distributes itself among the regions. From the figure we can notice that growth
regions in algorithms using a niching technique occupy less area than for other
algorithms that tend initially to use large areas of activities for growth regions

0 10 20 30 40 50 60 70 80 900 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Standard EA Fitness Sharing EA Crowded EA Random Immigrant EA

(C) Size ratio of Best region(B) Size ratio of New regions(A) Size ratio of Growth regions

Fig. 5. Size rations of different regions of population

112 M. Turkey and R. Poli

and shrink down as they converge. The larger an area an algorithm allocates for
the best region, the more exploitative the behaviour it exhibits.

5 Discussion and Future Work

In this paper, we presented an algorithm-independent approach to evaluate the
collective behaviour of population-based search algorithm. The approach uses
self-organising maps to track population dynamics and extract properties char-
acterising the collective behaviour. Our aim is to develop measurements to iden-
tify emergent properties attributed to functionality and structure of population
in real-time as it explores the search space.The proposed approach can help in
the characterisation of algorithms and in the production on taxonomies based
on features related to population dynamic.

In the paper we applied our proposed measures to the issue of understand-
ing the exploitation and exploration behaviour of algorithms. We hope in future
work to be able to develop measures to quantify these behaviours based on the
properties presented here. More features and measures can be mined by using
the proposed approach, such as the correlation between fitness and displacement
or hit distance. Also, the proposed approach can be applied to different types of
algorithm such as dynamic optimisation, multi-objective, or multi-modal algo-
rithms, and it can be used to identify preferred behavioural features.

Further work is required to explore the relation between SOM grid size and
the population size and/or search space size, and how the size of SOM grid
effects the quality of tracking the population dynamics.

Acknowledgement. This work was supported by EPSRC Doctoral Training
Account (DTA) Research Studentship.

References

1. Amor, H., Rettinger, A.: Intelligent exploration for genetic algorithms: using self-
organizing maps in evolutionary computation. In: Proceedings of the 2005 Genetic
and Evolutionary Computation Conference (GECCO 2005), pp. 1531–1538. ACM
(2005)

2. Bethke, A.: Genetic algorithms as function optimizers. Doctoral dissertation, Un-
versity of Michigan (1981)

3. Crepinsek, M., Mernik, M., Liu, S.: Analysis of exploration and exploitation in evo-
lutionary algorithms by ancestry trees. International Journal of Innovative Com-
puting and Applications 3(1), 11–19 (2011)

4. Eiben, A., Schippers, C.: On evolutionary exploration and exploitation. Funda-
menta Informaticae 35(1), 35–50 (1998)

5. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analy-
sis with applications to biology, control, and artificial intelligence. The MIT Press
(1992)

6. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In: Eshelman, L.J. (ed.) ICGA, pp. 184–192. Morgan
Kaufmann (1995)

An Empirical Tool for Analysing the Collective Behaviour 113

7. Kohonen, T.: Self-organizing maps. Springer series in information sciences.
Springer, Heidelberg (2001)

8. Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hard-
ness measure for genetic algorithms. In: Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2007, pp. 1335–1342. ACM
(2007)

9. Shapiro, J., Prügel-Bennett, A., Rattray, M.: A Statistical Mechanical Formulation
of the Dynamics of Genetic Algorithms. In: Fogarty, T.C. (ed.) AISB-WS 1994.
LNCS, vol. 865, pp. 17–27. Springer, Heidelberg (1994)

10. Stephens, C., Poli, R.: Coarse graining in an evolutionary algorithm with recom-
bination, duplication and inversion. In: The 2005 IEEE Congress on Evolutionary
Computation, vol. 2, pp. 1683–1690. IEEE (2005)

11. Stephens, C., Poli, R.: Coarse-grained dynamics for generalized recombination.
IEEE Transactions on Evolutionary Computation 11, 541–557 (2007)

12. Vose, M., Liepins, G.: Punctuated equilibria in genetic search. Complex Systems 5,
31–44 (1991)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 114–123, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Sales Potential Optimization on Directed Social
Networks: A Quasi-Parallel Genetic Algorithm Approach

Crown Guan Wang and Kwok Yip Szeto*

Department of Physics, The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong, HKSAR, China

phszeto@ust.hk

Abstract. New node centrality measurement for directed networks called the
Sales Potential is introduced with the property that nodes with high Sales
Potential have small in-degree and high second-shell in-degree. Such nodes are
of great importance in online marketing strategies for sales agents and IT
security in social networks. We propose an optimization problem that aims at
finding a finite set of nodes, so that their collective Sales Potential is
maximized. This problem can be efficiently solved with a Quasi-parallel
Genetic Algorithm defined on a given topology of sub-populations. We find
that the algorithm with a small number of sub-populations gives results with
higher quality than one with a large number of sub-populations, though at the
price of slower convergence.

Keywords: Multi-Agent marketing, Social Networks, Security of networks,
Parallel Genetic Algorithm.

1 Introduction

There are many complex systems that can be studied from the point of view of
complex networks, with examples ranging from biological systems and
communication to social networks. In complex networks, objects are represented by
nodes and the interactions or the relationships between the objects are represented by
edges. Recent research on complex networks has revealed many interesting properties
such as the power law distribution and the preferential attachment rule [1]. One
popular topic of research concerns the importance of a vertex within a complex
network. This importance is often formulated as some measures on the “centrality” of
the vertex. Four common measures of centrality used include degree centrality,
betweenness, closeness and eigenvector centrality [2].

We propose a new measurement of centrality in directed networks called the Sales
Potential of a node. In this paper, we focus on the in-degree for the definition of Sales
Potential, but the generalization to out-degree or mixed case can be made similarly.
Nodes with high Sales Potential have small in-degree and high second-shell in-
degree. The importance of such nodes is often underestimated, because of their low

* Corresponding author.

 Sales Potential Optimization on Directed Social Networks 115

in-degree (small number of followers); they are considered easier to reach than nodes
with larger degrees. However they have great potential for information propagation,
since one can get easy access to many higher degree nodes in the second or higher
shells, once one reaches these nodes with high Sales potential. We can now pose an
interesting question on the collective Sales Potential of a set of nodes as follow: how
should we select the nodes so that the combined Sales Potential is maximized?

This turns out to be an excellent optimization problem solvable by genetic
algorithms. One can find many successful applications of genetic algorithms [3,4],
such as in the solution of the crypto-arithmetic problem [5], time series forecasting
[6], traveling salesman problem [7], function optimization [8], adaptive agents in
stock markets [9,10], and airport scheduling [11,12]. While genetic algorithm has
been used in many industrial applications, recent developments see the importance of
parallel computing with multiple CPUs in computer science. Evolution in parallel
sub-populations is a natural extension of the idea of “divide and conquer” to the idea
of “divide and search in respective subspace”. Our previous work [13,14] has
investigated the Quasi-parallel Genetic Algorithm (QPGA) performance relationship
with different topologies and chromosome exchange rates. Here, we will employ this
new framework of QPGA to solve the optimization problem of collective Sales
Potential for a fixed number of nodes selected in the network. We also investigate the
relation between its performance and the number of sub-populations in QPGA.

Our paper is constructed in the following way. In Section 2 we define Sales
Potential on Directed Social Networks. In Section 3 we review the Mutation Only
Genetic Algorithm (MOGA) which we will use for each sub-population in the QPGA.
Section 4 introduces the Quasi-parallel Genetic Algorithm we use for solving the
optimization problem. Section 5 contains the experiment set-up and results. We
finally give some discussion and conclusion in Section 6.

2 Sales Potential on Directed Social Networks

The concept of Sales Potential is inspired from the observation in directed social
networks like Twitter that some famous people with massive followers follow some
“unknown” individuals with few followers. These “unknown” individuals live with a
low profile, but have great influence to some popular individuals. Thus, despite their
obscurity in society, they provide great potential for marketing strategists because the
barriers to contact them are much lower than those protecting famous people. If one is
interested in marketing in a social network, convincing these low profile people with
strong influence on their famous friends will be very effective. As a simple example,
convincing the classmates of a movie star’s daughter to use a certain kind of mobile
device may be an effective way to market the product. It can also happen that a node
with many edges directed to it acts as the source of information for its neighbor which
has a small in-degree. This small in-degree neighbor may actually be the real hidden
commander and is of great importance. In Fig.1, we illustrate a directed network and
the Sales Potential of the node 0.

We define the Sales Potential (SP) of a single node i as the following

116 C.G. Wang and K.Y. Szeto

()
()

1

1

1

()
() ()

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑
in

in

K i

in i
mK i

SP i K j m (1)

where ()inK i is the in-degree of node i and 1()ij m is the m-th nearest (1st shell) in-

neighbor of node i. From this definition, we see that a node with high Sales Potential
will have a small in-degree but large second-shell in-degree. Generalization of this
definition to the out-degree version will be meaningful for information transmitting in
a different context. Also, one can extend the above definition to the higher n-th shell

with
n ()ij m .

Fig. 1. The Sales Potential in directed network.
Node 0 has three nearest in-neighbors: Node 1, 2
and 7, so that the in-degree of Node 0 is 3. There
are six second-shell in-neighbors of Node 0:
Nodes 3, 4, 5, 6, 8, and 9. Thus, the second shell
in-degree of Node 0 is 6. Note that Node 7 has
been counted as the nearest in-neighbors and
thus we do not count it again in the second shell.
The Sales Potential for Node 0 is 6/3=2.

From the perspective of marketing, one can pose the following optimization

problem: given a directed complex network, find N nodes that will maximize their
combined Sales Potential. We limit ourselves to the task of targeting N nodes because
of the limitation in marketing resource. Now, for any two nodes taken at random,
there is a possibility that they share some common neighbors. In marketing, we do not
want to find a pair of targets that have overlap neighbors, since a similar pair of
targets without overlap neighbors will likely have a higher combined Sales Potential.
To generalize this observation to many nodes, we define the combined Sales Potential
of M nodes as

1

1
1()

1
(...)

=

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∑

∪M

in k

k

kM

M

i
kK i

S i i Size σ (2)

where
ki

σ is the set of second shell in-neighbors of the node ki . The size function,

Size(A), returns the cardinality of the set A. In exhaustive search, if we are to select M
nodes out of a total of N>M nodes, the number of times we have to calculate Sales

Potential in Eq.(2) will be
N
MC . From our experience, this is a very difficult task in

computation. However, we may use some topological features of networks to simplify
this task. With few exceptions, most real networks obey a generalized Aboav-Weaire
law[15,16], which states that the first shell degree of node i is expressible as a linear
function in the degree of node i. This law on the degree of the nearest neighbors of a

 Sales Potential Optimization on Directed Social Networks 117

given node in a complex network has recently been generalized and computed for the
case of random network, small world network and Barabasi-Albert network [17] and
to higher shell of two-dimensional spatial networks [18]. We generalize this notion to
directed networks so that we can replace the numerator in Eq.(1) with a linear
function of the in-degree.

()
()

() ()
in

i nn i

aK i b b
SP i a

K i K i

+
= = + (3)

Now, if we assume that the Aboav-Weaire law holds for the network, then in our
selection process for nodes with highest sales potential, the maximum SP(i) for the
node i obviously occurs at those nodes with small in-degree. This will reduce greatly
the number of nodes that we need to investigate, thereby reducing the complexity of
the problem. In fact, our problem involves the search of a set of M nodes from a large
social network with N nodes, so that the Sales Potential 1(...)MS i i is maximized. This

can be greatly facilitated by starting on the subset of nodes with small SP(i).
Therefore, we begin by checking if the given social network obeys the Aboav-Weaire
law. If it does, like most cases, we can focus on the subset of nodes with small ()inK i .

This set will be much smaller than the original network. This effectively reduces the
N greatly so that the search space for the optimization problem of finding a set of M
nodes is greatly reduced. Despite the reduction in the dimension of the search space
by using Aboav-Weaire law, we still have a huge task in finding the M nodes with
maximum Sales Potential 1(...)MS i i . To handle this search problem, we will employ

our Quasi-Parallel Genetic Algorithm, which has been shown to be very efficient
compared to other standard search methods in solving these kind of problems
[11-14,19-21].

3 Mutation Matrix

Before we discuss parallel genetic algorithm, we have to state the algorithm used by
individual computing node. Traditionally, simple genetic algorithm (SGA) is used,
but in this paper we will use a generalization of SGA which permits parameter free
adaptation of the mutation and crossover rate. This generalization of SGA is called
Mutation Only Genetic Algorithm or MOGA in our publications [19-21] (not to be
confused with multi-objective GA). The rational for choosing MOGA instead of SGA
is that SGA is a special case of MOGA without adaptive parameter control and in all
cases we have investigated so far [11-14,19-21] MOGA is more efficient than SGA.
Here we briefly review MOGA. In simple genetic algorithm, we consider a
population of N chromosomes, each of length L and binary encoded. We describe the
population by a N L× matrix, with entry (), 1,..., ; 1,...,ijA t i N j L= = denoting the value

of the j-th locus of the i-th chromosome. The convention is to order the rows of A by
the fitness of the chromosomes, () ()i kf t f t for i k≤ ≥ . Traditionally we divide the

population of N chromosomes into three groups: (1) Survivors who are the fit ones.
They form the first 1N rows of the population matrix A(t+1). Here 1 1N c N= with the

survival selection ratio 10 1.c< < (2) The number of children is 2 2N c N= and is

118 C.G. Wang and K.Y. Szeto

generated from the fit chromosomes by genetic operators such as mutation. Here

2 10 1c c< < − is the second parameter of the model. We replace the next 2N rows in

the population matrix A(t+1). (3) The remaining 3 1 2N N N N= − − rows are the

randomly generated chromosomes to ensure the diversity of the population so that the
genetic algorithm continuously explores the solution space. In MOGA, we use a

mutation matrix with elements () () (), 1,..., ; 1,..., ; 0 (), () 1ij i j i jM t a t b t i N j L a t b t≡ = = ≤ ≤

where ()ia t and ()jb t are called the row mutation probability and column mutation

probability. A MOGA that corresponds to SGA with mutation as the only genetic
operator will have a time independent mutation matrix with elements () 0ijM t ≡ for

11,...,i N= , () (0,1)ijM t m≡ ∈ for 1 21,..., ,i N N= + and finally we have () 1ijM t ≡ for

2 1,...,i N N= + . Here m is the time independent mutation rate. Thus, SGA with

mutation as the only genetic operator requires at least three parameters: 1 2, , and N N m .

In a general MOGA formalism, we will compute the mutation matrix element by the
statistics of the fitness and ranking of the chromosome to determine the row mutation
probability ()ia t and the statistics of the loci to determine the column mutation

probability ()jb t . Various ingenious methods have been developed to exploit the time

dependent statistics on the population matrix A to compute a time dependent mutation
matrix M. Generalization to crossover operators under the mutation matrix formalism
has also been developed [20]. Here our focus is not on the efficiency of variants of
MOGA, but just to use it as an efficient and simple replacement for SGA for
individual computation node. We aim at using the parallel implementation of this
form of Genetic Algorithms to solve the optimization problem of sales potential for a
directed social network.

4 Quasi-Parallel Genetic Algorithms

Difficult computation problems can be solved by addressing the scalability of the
algorithm or hardware for the system [22]. One way is to add more power on one
machine by upgrading the CPU, which progress has been described well by Moore’s
law [23] and limited by the physics of the hardware. An alternative approach is to add
more computers to existing system, forming a computer cluster. In either approach,
we have to address the practical issue of connecting a large number of CPUs in order
to handle the increased workload and system demands. Therefore, an efficient parallel
computing algorithm should be investigated so that each computing node runs
simultaneously to address a specific problem of a generally much more complex task.
For parallel genetic algorithm, the population of chromosomes is divided into sub-
population consisting equal number of chromosomes and each sub-population evolves
on a computing node. The nodes are linked according to a given topology defined by
a network. Population on each node can communicate by exchanging information
with each other along links on the network. The exchange of information is achieved
through the migration of chromosomes among the nodes [24]. The topology of the
network of computer nodes is an important feature of parallel genetic algorithms. The
links in the network define the how information of solution will be communicated.

 Sales Potential Optimization on Directed Social Networks 119

Given cN chromosomes, we divide them into n sub-populations, each with

(/)cN n chromosomes. The rule of communication is defined by a simple model

where a sub-population i on node i will gets the best M chromosomes from each of its

iK neighbors in the network, so that a total of M K⋅ chromosomes will replace the

worst iN M K≡ ⋅ chromosomes in sub-population i. We find that both the topology

of the network and the rule of communication contribute to the performance of the
parallel genetic algorithms and both affect the exchange rate /X cR nMK N= between

sub-populations. In practice, the total number cN of chromosomes is restricted by

the computational resource and can be considered a constant here. Thus, there are
only three parameters determining the exchange rate XR . The first one is the degree

K, which is determined by the topology of the network. The second one is M, which
represents the information flow capacity on each link. In our previous publications
[13,14] we have investigated the performance based on the topology and the
information flow. Here we address the effect of the third parameter, n, the number of
sub-populations. We study the performance based on different number of computing
nodes while cN and XR are fixed.

5 Experiments

We use the Slashdot0902 from Stanford Large Network Dataset Collection [25,26] as
the data set for our experiment on social network. Slashdot is a technology-related
news website and has a specific user community. In 2002 they introduced the
Slashdot Zoo feature which allows users to tag each other as friends or foes. The
Slashdor0902 database contains friend/foe links between the users of Slashdot for the
period up to February 2009. It is a directed social network and is suitable for our
study on the Sales Potential. We have 82168 nodes in this network. An edge from A
to B represents that A tags B as a friend. Our goal is to find the best combination of
M(=5) target nodes from the data that gives us the highest combined Sales Potential
according to Eq.(2). The choice of M=5 is for computational purpose, as our aim is to
illustrate the importance concept of Sales Potential and a method of solving the
optimization problem. We leave the engineering application specific to the Slashdot
data for future research. To begin, we calculate the Sales Potential of each node
according to Eq.(1) and plot the distribution of Sales Potential in Fig.2. We see that
many nodes with large potential deviates from the power law obeyed by nodes with
smaller potential. This can be a very nice sales list for the salesman and protection list
for the department in charge of network security. We also plot the average Sales
Potential for each in-degree in Fig.2. For small in-degree the average Sales Potential
is quite large, which confirms our previous conjecture resulting from the Aboav-
Weaire law. In a separate paper we will report our investigation that verifies the
validity of the Aboav-Weaire Law for the in-degree of Slashdot0902 data and many
other real social networks. In the present work which concerns the problem of
optimization of Sales Potential, we need only to pay attention to the searching
problem for a much smaller set of nodes with in-degree less than or equal to 3. This
simplification using the Aboav-Weaire law for Slashdot0902 data reduces the original
set of 82168 nodes to only 44102 nodes.

120 C.G. Wang and K.Y. Szeto

100 1000 10000 100000

1

10

100

1000

10000

N
um

be
r

of
 N

od
es

Sales Potential

Nodes with High SP

1 10 100 1000
1E-3

0.1

10

1000

100000

1E7

A
ve

ra
ge

 S
al

es
 P

ot
en

ti
al

In Degree
(a) (b)

Fig. 2. Sales Potential Distribution for Slashdot0902. (a) shows the number of nodes for each
Sales Potential value, and (b) shows the average Sales Potential for each in-degree.

Now, we can use QPGA to search for the optimal set. Without loss of generality,
we choose the first 32768 of those nodes according to their original index to define
the subspace for the search of M(=5) targeted nodes. The number 32768 is chosen so
that we can encode the range of node index into a 15-bit binary string. The
chromosome for the 5 targeted nodes is thus the combination of 5 such 15-bit binary
numbers, making up a total length of 75-bits. Before the real search we preprocess the
dataset of the list of index of the second shell in-neighbors for each one of these
32768 nodes. This greatly reduces the time for the computation of the size of the
union in Eq.2 for the combined Sales Potential.

In our previous work [13,14] we have studied the performance of QPGA under
different topologies and exchange rates. Here, we expand our investigation to the
performance of QPGA as a function of the number of sub-populations. For each sub-
population we run the ordinary Mutation Only Genetic Algorithms (MOGA), and the
communication topologies are shown in Fig.3.

Fig. 3. Topologies for Quasi-parallel Genetic Algorithms Sub-populations

To properly compare the performance for different number of sub-populations, we
fix the total number of chromosomes and the exchange rate and perform five sets of
experiments listed in Table 1. The band and pair structures are defined in [13] and
illustrated in Fig.3. The band structure for the 4-node QPGA cannot be periodic so the
number of exchanged chromosome is 8 to ensure the same exchange rate of 0.4. The
2-node QPGA is a pair structure so we exchange 32 chromosomes for each sub-
population to fix the exchange rate to be 0.4. In this way we have the same total
number of chromosomes and the same exchange rate for all versions of QPGA, so

 Sales Potential Optimization on Directed Social Networks 121

that we have the same time-complexity. Communications are made every five
generations and we run each experiment for a total of 500 generations, while each
experiment is repeated 100 times, with the average results shown in Fig.4.

Table 1. Experiments of QPGA with a population of cN chromosomes divided into n sub-
populations, each containing /cN n chromosomes. The topology of QPGA is defined by the
degree K of the sub-population. The number of exchange chromosomes is M for each pair of
linked sub-populations, while XR is the exchange rate.

Form n /cN n cN Structure K M XR

MOGA 1 160 160 N/A 0 N/A N/A

QPGA 16 10 160 Periodic Band 4 1 4*1/10=0.4

QPGA 8 20 160 Periodic Band 4 2 4*2/20=0.4

QPGA 4 40 160 Band 2 8 2*8/40=0.4

QPGA 2 80 160 Pair 1 32 1*32/80=0.4

0 100 200 300 400 500
5000

6000

7000

8000

9000

10000

A
ve

ra
ge

 S
al

es
 P

ot
en

ti
al

Generation Number

 MOGA
 QPGA 16 Nodes
 QPGA 8 Nodes
 QPGA 4 Nodes
 QPGA 2 Nodes

Fig. 4. Average Sales Potential Optimization Results by MOGA and QPGA

We can see that QPGA outperforms the ordinary MOGA. It’s interesting to note
that if we choose a large number of sub-populations, such as 16, QPGA can get its
optimal result in a very short time. If we choose a relatively small number of sub-
populations, such as 4, then it takes longer time to get the optimal result, but with
higher quality. Depending on the desirable quality of solution and computational
resources available, one can choose the appropriate number of sub-populations. We
see from these experiments that QPGA is an effective method for solving the
combined sales potential problem. Although our objective does not include a detailed
analysis of its efficiency on Sales Potential optimization, we nevertheless arrive at a
similar conclusion about its performance for other similar optimization problem, such
as the knapsack and the Weierstrass function [13].

122 C.G. Wang and K.Y. Szeto

6 Conclusion

Inspired by the marketing potential of a customer (node) in a complex network such
as online sales, we propose a new measurement of centrality through the concept of
the Sales Potential of a node. This concept is of special interest for directed networks,
as it is relevant for direct marketing as well as protective protocols to safeguard the
system against malicious attack. We pose a problem of searching for the best
combination of targeted nodes for marketing that gives the maximum combined Sales
Potential. This is a well-defined optimization problem and can be efficiently solved
by our Quasi-parallel genetic algorithm. We confirm the advantage of using QPGA
over ordinary genetic algorithms with a single population. Our study also shows the
relationship between performance and the number of sub-populations in QPGA. We
can conclude that QPGA with small number of sub-populations gives a slower
optimization process but better results than QPGA with large number of sub-
populations. This helps us in choosing the population size based on our specific need:
to achieve high quality result or fast optimization. We will extend this search through
adaptively changing the number of sub-population: begin with a large number of sub-
populations to speed up the searching process, and later merge some sub-populations
to improve the quality of the results. This hybrid approach may give us a fast QPGA
algorithm with results of high quality. At present, the study of Quasi-parallel genetic
algorithms is still in the stage of numerical experiments. We expect further theoretical
investigation on the relation between QPGA performance and the number of sub-
populations, as well as the communication topology and the exchange rate between
sub-populations. Finally, we will generalize the concept of Sales Potential to higher
shells. We know from the research on small world that essentially the whole network
can be reached within roughly six steps, our generalized Sales Potential to a
sufficiently high shell number will be similar to searching over the entire network.
Thus, there should be an interesting balanced point between the number of shell and
the variance of the Sales Potential.

References

1. Barabasi, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science (5439),
509–511 (1999)

2. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
4. Goldberg, D.E.: Genetic algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading (1989)
5. Li, S.P., Szeto, K.Y.: Crytoarithmetic problem using parallel Genetic algorithms. In:

Mendl 1999, Brno, Czech (1999)
6. Szeto, K.Y., Cheung, K.H.: Multiple time series prediction using genetic algorithms

optimizer. In: Proceedings of the International Symposium on Intelligent Data Engineering
and Learning, IDEAL 1998, Hong Kong, pp. 127–133 (1998)

7. Jiang, R., Szeto, K.Y., Luo, Y.P., Hu, D.C.: Distributed parallel genetic algorithms with
path splitting scheme for the large traveling salesman problems. In: Shi, Z., Faltings, B.,
Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing, 16th
World Computer Congress 2000, Beijing, August 21-25, pp. 478–485. Publishing House
of Electronic Industry (2000)

 Sales Potential Optimization on Directed Social Networks 123

8. Szeto, K.Y., Cheung, K.H., Li, S.P.: Effects of dimensionality on parallel genetic
algorithms. In: Proceedings of the 4th International Conference on Information System,
Analysis and Synthesis, Orlando, Florida, USA, vol. 2, pp. 322–325 (1998)

9. Szeto, K.Y., Fong, L.Y.: How Adaptive Agents in Stock Market Perform in the Presence
of Random News: A Genetic Algorithm Approach. In: Leung, K.-S., Chan, L., Meng, H.
(eds.) IDEAL 2000. LNCS (LNAI), vol. 1983, pp. 505–510. Springer, Heidelberg (2000)

10. Fong, A.L.Y., Szeto, K.Y.: Rule Extraction in Short Memory Time Series using Genetic
algorithms. European Physical Journal B 20, 569–572 (2001)

11. Shiu, K.L., Szeto, K.Y.: Self-adaptive Mutation Only Genetic Algorithm: An Application
on the Optimization of Airport Capacity Utilization. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin,
H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 428–435. Springer, Heidelberg (2008)

12. Chen, C., Guan, W., Szeto, K.Y.: Markov Chains Genetic algorithms for Airport
Scheduling. In: Proceedings of the 9th International FLINS Conference on Foundations
and Applications of Computational Intelligence (FLINS 2010), pp. 905–910 (August
2010)

13. Wang, G., Wu, D., Szeto, K.Y.: Quasi-Parallel Genetic Algorithms with Different
Communication Topologies. In: 2011 IEEE Congress on Evolutionary Computation
(CEC), June 5-8, pp. 721–727 (2011)

14. Wang, G., Wu, D., Chen, W., Szeto, K.Y.: Importance of Information Exchange in Quasi-
Parallel Genetic Algorithms. In: Krasnogor, N. (ed.) Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO 2011),
pp. 127–128. ACM, New York (2011)

15. Aboav, D.A.: Metallography V.3, 383 (1970); ibid, V.13, 43 (1980)
16. Weaire, D.: Metallography. 7, 157 (1974)
17. Ma, C.W., Szeto, K.Y.: Phys. Rev. E 73, 047101 (2006)
18. Szeto, K.Y., Fu, X., Tam, W.Y.: Universal Topological Properties of Two-dimensional

Cellular Patterns. Phys. Rev. Lett., 138302-1–138302-3 (2002)
19. Ma, C.W., Szeto, K.Y.: Locus Oriented Adaptive Genetic algorithms: Application to the

Zero/One Knapsack Problem. In: Proceeding of the 5th International Conference on
Recent Advances in Soft Computing, RASC 2004, Nottingham, UK, pp. 410–415 (2004)

20. Law, N.L., Szeto, K.Y.: Adaptive Genetic algorithms with Mutation and Crossover
Matrices. In: Proceeding of the 12th International Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, January 6-12. Theme: Al and Its Benefits to
Society, vol. II, pp. 2330–2333 (2007)

21. Szeto, K.Y., Zhang, J.: Adaptive Genetic Algorithm and Quasi-parallel Genetic Algorithm:
Application to Knapsack Problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.)
LSSC 2005. LNCS, vol. 3743, pp. 189–196. Springer, Heidelberg (2006)

22. Bondi, A.B.: Characteristics of scalability and their impact on performance. In:
Proceedings of the 2nd International Workshop on Software and Performance,
pp. 195–203 (2000)

23. Moore, G.E.: Cramming more components onto integrated circuits. Electronics Magazine,
4 (1965)

24. Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms, pp. 16, 17, 22. Kluwer
Academic, USA (2000)

25. http://snap.stanford.edu/data/soc-Slashdot0902.html
26. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community Structure in Large

Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet
Mathematics 6(1), 29–123 (2009)

The Emergence of Multi-cellular Robot

Organisms through On-Line On-Board Evolution

Berend Weel, Evert Haasdijk, and A.E. Eiben

Vrije Universiteit Amsterdam, The Netherlands
{b.weel,e.haasdijk}@vu.nl, gusz@cs.vu.nl

Abstract. We investigate whether a swarm of robots can evolve con-
trollers that cause aggregation into ‘multi-cellular’ robot organisms with-
out a specific reward to do so. To this end, we create a world where
aggregated robots receive more energy than individual ones and enable
robots to evolve their controllers on-the-fly, during their lifetime. We
perform experiments in six different implementations of the basic idea
distinguished by the system of energy distribution and the level of ad-
vantage aggregated robots have over individual ones. The results show
that ‘multi-cellular’ robot organisms emerge in all of these cases.

1 Introduction

Swarm-robot systems and (self-)reconfigurable modular robot systems paradigms
have been invented to facilitate multi-purpose robot design. Swarm-robot sys-
tems use large numbers of autonomous robots which cooperate to perform a task
[12]. Similarly, self-reconfigurable modular robot systems use many modules to
form a larger, reconfigurable, robot that can tailor its shape to suit a particular
task [17]. These two subjects have largely been studied separately, with swarm
robotics focusing on cooperating robots which do not assemble into an organism.
Research in reconfigurable modular robotics focuses on creating actual modules,
finding suitable morphologies for a task, and reconfiguring from one morphology
to another.

Recently, a new kind of self-reconfigurable robots has been proposed based on
modules that are also capable of autonomous locomotion [9]. In such a system,
the modules can form a swarm of autonomous units as well as a ‘multi-cellular’
robot organism consisting of several physically aggregated units. To date, there
has been very little research on self-assembly – the transition from swarm to
organism – as emergent, not pre-programmed, behaviour.

The main subject of this paper is emergent self-assembly through evolution.
We are interested in the emergence of robot organisms from swarms as a re-
sponse to environmental circumstances. To this end, we design environments
where organisms have an advantage over individual modules and make the robots
evolvable. In particular, we implement an on-line and on-board evolutionary
mechanism where robot controllers undergo evolution on-the-fly: selection and
reproduction of controllers is not performed by an outer entity in an off-line

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 124–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Emergence of Multi-cellular Robot Organisms 125

fashion (e.g. a genetic algorithm running on an external computer), but by the
robots themselves [7]. One of the premises of our study is that we do not include
a specific fitness measure to favour organisms. Rather, we build a system with an
implicit environmental pressure towards aggregation by awarding more energy
to robots in an aggregated state. The environmental advantage is scalable and
we compare the effects of low, medium and high values.

The research questions we seek to answer are the following:

1. Will organisms evolve purely because the environment favours modules that
are part of an organism? Or, does the system need a specific user defined
fitness to promote aggregation?

2. How does system behavior depend on the level of environmental benefit?
Will organisms evolve even if the extra advantage is low?

3. What are the characteristics of the evolved organisms? How large and how
old do organisms become?

2 Related Work

Swarm Robotics. As mentioned, our work is situated between swarm robotics
and self-reconfigurable modular robot systems. Swarm Robotics [12] is a field
that stems from Swarm Intelligence [2], where swarm-robots often have the abil-
ity for physical self-assembly. Swarm-bots were created in order to provide a
system which was robust towards hardware failures, versatile in performing dif-
ferent tasks, and navigating different environments.

In [3], Şahin categorizes tasks for which to use swarm robots as: tasks that
cover a region, tasks that are too dangerous, tasks that scale up or down in time,
and tasks that require redundancy. In [12], the self-assembly of s-bots allows for
the navigation of crevices and objects too large for a single robot, as well as the
transport of objects which are too heavy to be transported by a single robot.

Self-reconfigurable Modular Robot Systems. Self-reconfigurable modular
robot systems (SMRSs) were designed with three key motivations: versatility,
robustness and low cost. The first two are identical to motivations for swarm-
robots, while low cost can be achieved through economy of scales and mass
production as these systems use many identical modules. The main advantage
advocated is the adaptability of these systems to different tasks, however most of
the research in this field is still exploring the basics: module design, locomotion
and reconfiguration.

Yim gives an overview of self-reconfigurable modular robot systems in [17],
the research is mainly on creation of modules in hardware and showcasing their
abilities to reconfigure and lift other modules. Most of these self-reconfigurable
modular robot systems are incapable of locomotion as independent modules.
In recent years however, a number of SMRSs were developed that incorporate
independent mobility as a feature [16], [10], [9].

The SYMBRION/REPLICATOR projects, of which this research is part, de-
velops its own SMRS, exploring two alternatives for hardware, as presented in

126 B. Weel, E. Haasdijk, and A.E. Eiben

[9]. Both versions are independently mobile and so can operate as a swarm, both
also have a mechanical docking mechanism allowing the modules to form and
control a multi-robot organism.

Self-assembly. The task of multiple robots connecting autonomously is usually
called self-assembly, and has been demonstrated in several cases: [5], [18], [14],
[16]. Most of these however, are limited to pre-programmed control sequences
without any evolution. In self-reconfigurable robots, self-assembly is restricted
to the docking of two modules as demonstrated in [16], [10].

The work in this paper is most closely related to that of Groß, Nolfi, Dorigo,
and Tuci: [1], [5], [6], in which they explore self-assembly of swarm robots. They
evolved Recurrent Neural Networks for the control of s-bots to be capable of
Self-Assembly in simulation, they then took the best controllers evolved in this
manner and tested them in real s-bots. This research shows it is possible to
evolve controllers which create organisms. As it is difficult to evolve controllers
in a situation where either robot can grip the other, they use a target robot
in most of their research. This target robot, also called a seed, bootstraps the
problem of who grips who, by showing which robot should be gripped by the
other robot. Furthermore they assign fitness to the s-bots based on whether they
succeeded in forming an organism, or if failed the distance between the robots.

On-Line On-Board Evolutionary Algorithms. We use an evolutionary
algorithm (EA) as a heuristic optimiser for our robot controller, as do many
robotics projects. The field of evolutionary robotics in general is described by
Nolfi and Floreano in [13]. Eiben et al. describe a classification system for evolu-
tionary algorithms used in evolutionary robotics [4]. They distinguish evolution
based on when evolution takes place: off-line or design time vs. on-line or run
time. Where evolution takes place: on-board or intrinsic vs. off-board or extrin-
sic. And how evolution takes place: encapsulated or centralized vs. distributed.

Whereas most evolutionary robotics research uses offline and extrinsic ap-
proaches to evolving controllers. We use an on-line on-board (or intrinsic) hy-
brid approach, based on EVAG [11] and (μ + 1) ON-LINE [7]. It is described
in detail in [8]. Each robot maintains a population of μ individuals locally, and
performs cross-over and mutation to produce offspring. These individuals can
be exchanged between robots as part of the parent selection mechanism. The
offspring is then instantiated as the controller for evaluation.

We do not include a task in our system other than gathering energy. Nor do
we include any type of morphology engineering, or purposeful reconfiguration
of an organism. Our goal is to investigate only the very first step: forming an
organism under environmental pressure.

3 System Description and Experiments

Simulator. We conduct our experiments with simulated e-puck robots in a
simple 2D simulator: RoboRobo1. The robots can steer by setting their desired

1 http://www.lri.fr/~bredeche/roborobo/

http://www.lri.fr/~bredeche/roborobo/

The Emergence of Multi-cellular Robot Organisms 127

left and right wheel speeds. Each robot has 8 sensors to detect obstacles (static
obstacles as well as other robots), indicated by the lines protruding from their
circular bodies in Fig. 1. While a such a simple 2D simulation ignores a lot of the
intricacies of robots in the real world, it is still complex enough that creating
intentional, meaningful, and effective organisms is not trivial and serves our
purpose of investigating organism creation under environmental pressure.

Connections. In our experiments robots can create new organisms, join an
already existing organism, and two existing organisms can merge into a larger
organism. When working with real robots, creating a physical connection be-
tween two robots can be challenging, and movements of joints are noisy because
of actuator idiosyncrasies, flexibility of materials used, and sensor noise. We
choose to disregard these issues and create a very simple connection mechanism
which is rigid the moment a connection is made. The connection is modelled as
a magnetic slip-ring, which a robot can set to ‘positive’, ‘negative’ or ‘neutral’.
When robots are close enough, they automatically create a rigid connection if
neither of them has the slip-ring on ‘negative’ and at least one of them has it
on the ‘positive’ setting. The connection remains in place as long as these con-
ditions hold (i.e., neither sets its slip-ring to ‘negative’ and at least one is set to
‘positive’).

Fig. 1. 10 robots in an arena with
a feeding ground which is also a
scale, the scale regularly changes
position

Environment. The robots start each eval-
uation cycle with a fixed amount of energy
and lose energy at regular intervals to simu-
late power consumption by actuators. When a
robots energy reaches 0 it is deactivated, and
is unable to move for the rest of the evalua-
tion cycle. The environment provides energy
through a ‘feeding ground’ from which robots
can gather energy by standing on top. The
amount of energy gathered during evaluation
is the fitness measure for on-line evolution.

There are two ways in which the environ-
ment provides an advantage to organisms over single robots. The first is that the
amount of energy awarded depends on whether or not the robots are part of an
organism as described below. The second advantage is that organisms can move
faster, by driving in the same direction, although manoeuvring is slightly more
complicated. It is important to note that there is no direct reward for being part
of an organism; the benefit is indirectly defined by the environment. We have
implemented the advantages for organisms in two different scenarios: one based
on a scale metaphor, and one on a riverbed. We compare these with a separate
baseline experiment, where organisms have no benefit.

Power Scale. In a rectangular arena without stationary obstacles, there is a
single feeding ground (the circle in Fig. 1); the environment awards energy to
robots in this feeding ground. This feeding ground acts as a scale: the envi-
ronment supplies more energy to modules belonging to an organism. For each

128 B. Weel, E. Haasdijk, and A.E. Eiben

Table 1. Power gain formulas for power scale (left) and riverbed (right) scenarios

Logarithmic log (|O|+ 1) ∗ 2
Linear (|O|+ 1) ∗ 2
Exponential exp (|O|+ 1) ∗ 2

Logarithmic log
(

P
W

∗ 2 ∗ |O|)
Linear P

W
∗ 2 ∗ |O|

Exponential exp
(

P
W

∗ 2 ∗ |O|)

organism on the scale, the gain in awarded energy increases with the organism’s
size |O|. This gain can depend linearly, logarithmically or exponentially on |O|
as shown in Table 1. Robots on the scale but not part of the organism do not
affect the amount of energy received by the organism.

Riverbed. In this scenario the arena is analogous to a river which pushes the
robots downstream. Again, there are no obstacles. Now, the entire arena is a
feeding ground, but there is an upstream gradient: the amount of energy awarded
increases as a robot finds itself more upstream. To counteract the current that
pushes robots down the energy gradient, robots can aggregate into an organism:
together they are faster and able to move or stay upriver, and so receive more
energy. Again, this gain can increase linearly, logarithmically or exponentially as
shown in Table 1. In the formulas used W is the width of the arena and P the
position of the centre of the organism.

Baseline. As a baseline, we use an experiment in which being part of an organ-
ism holds no benefit. We set up an empty environment where the robots receive
a fixed amount of energy at every time-step, regardless of their position in the
arena or whether they were part of an organism. There is no current driving
the organisms anywhere, and organisms are not able to move faster either. The
baseline can be viewed as an extension of either experiment: the power scale the
scale now extends to the entire arena and no longer takes the number of robots
on it into account. For the riverbed scenario, the current is reduced to 0 and the
feeding ground has no gradient.

Controller. The controller consists of a feed-forward artificial neural network
that selects one of 4 pre-programmed strategies based on sensory inputs. The
neural net has 13 inputs (cf. Table 2), 5 outputs and no hidden nodes. It uses a
tanh activation function.

Table 2. Neural Network inputs (left) and outputs (right)

8 Distance sensors
1 Size of the organism
1 Angle to nearest feeding ground
1 Distance to nearest feeding ground
1 Energy Level
1 Bias node.

Vote for Random Walk
Vote for Wall Avoidance
Vote for Go to feeding ground
Vote for Create organism
Magnetic ring setting.

The Emergence of Multi-cellular Robot Organisms 129

The inputs are normalised: Distance sensors, Organism Size, Distance to near-
est feeding ground, and Energy level are normalised between 0 and 1, angle to
nearest feeding ground is normalised between -1 and 1.

The output of the neural network, as described in Table 2, is interpreted as
follows: the first four outputs each vote for an action, the action with the highest
activation level is selected. The fifth output governs the magnetic ring setting:
‘negative’ if the output is smaller than −0.33, ‘positive’ if it is bigger than 0.33
and ‘neutral’ otherwise.

Evolutionary Algorithm and Runs. We use a genome which directly en-
codes the weights of the neural net using a real-valued vector. It also includes N
mutation step sizes for N genes.

Each controller is evaluated for 800 time steps, followed by a ‘free’ phase of
200 time steps to allow it to get out of bad situations. Each 1000 time steps
therefore constitutes 1 generation. At the end of the evaluation cycle the active
controller is compared to the local population, and added if it is better than the
worst one. A new controller is created using either mutation or crossover.

Mutation is a Gaussian perturbation using self-adaptation. The algorithm
uses averaging crossover and parents are selected using a binary tournament on
the entire population across all robots (panmictic layout) as described in [8].

At the start of the new generation, control is switched to the new controller,
which potentially has a completely different setting for the magnet than the
previous one, potentially destroying an organism. We ran the experiments with
different reward functions described above using 10 robots. We used this number
of robots as we expect to have a similar number of real robots to repeat the
experiment with available from the project this research is part of. To ensure
good parameter settings, we used the BONESA toolbox2 [15] to optimise settings
for crossover rate, mutation rate, initial mutation step size, re-evaluation rate,
and population size. Using the best parameters found, as shown in Table 3, we
repeated each experiment 40 times, each run lasting 1000 generations.

Table 3. Parameters of the EA for the Riverbed (R.B.) and Power Scale (P.S.) exper-
iments

Scaling re-evaluation rate crossover rate population size mutation rate

R
.B

. logarithmic 0.62385 0.03602 3 0.57369
linear 0.44908 0.04369 4 0.00509

exponential 0.40806 0.03411 3 0.21407

P
.S
. logarithmic 0.50294 0.93562 3 0.07154

linear 0.54149 0.46759 3 0.06662
exponential 0.56736 0.99323 3 0.05807

baseline 0.62385 0.03602 3 0.57369

2 http://sourceforge.net/projects/tuning/

http://sourceforge.net/projects/tuning/

130 B. Weel, E. Haasdijk, and A.E. Eiben

Fig. 2. Sizes (top) and Ages (bottom) of organisms for Power Scale (left) and Riverbed
(right) scenarios

4 Results and Analysis

The results we obtained are shown in Fig. 2.3 They show that random interac-
tions already lead to some organisms, however, under influence of environmen-
tal pressure the organisms become much larger and older than without. The
amount of pressure did not result in large differences in either organism size
or longevity. Even a small amount of environmental advantage suffices to cause
significantly bigger and older organisms – the logarithmic reward function that
implements the least pressure in our comparison may not even represent the
minimum amount of pressure needed.

Comparing results for the two scenarios, the riverbed scenario leads to bigger
and older organisms than the power scale scenario – a markedly larger difference
than that between logarithmic, linear and exponential benefit. This indicates
that the environmental pressure is determined by more than only the reward
functions we tested: since there is no quantitative difference between the reward
functions in each scenario, the difference in organism longevity and size can only
be caused by other, qualitative, differences between the scenarios. This shows
that the design of the environment itself can be more important than the specific
function that determines the environmental benefit of being in an organism.

3 We used a beta distribution as a basis for the 95% confidence interval for our graphs.

The Emergence of Multi-cellular Robot Organisms 131

Organism Size. Figure 2 shows the mean organism size of a generation aver-
aged over 40 runs for the power scale experiment on the left and the riverbed
experiment on the right. The x-axis is the time measured in generations. The
y-axis displays the mean number of robots in an organism. The raw data is plot-
ted as a grey line for each fitness scaling, for each we also show a second order
exponential trend line. The bottom line is that of the baseline experiment.

The baseline experiment results in organisms that are not very large, on aver-
age approximately 2.3. The other experiments produce much larger organisms:
averages between 7 and 9 for power scale, between 8 and 10 for riverbed. These
are significantly higher than the baseline, at 99% confidence, as seen by the dis-
joint confidence intervals between the baseline and other plots. The difference
in averages between the logarithmic, linear and exponential experiments are not
significant at 99% confidence (overlapping confidence intervals).

In both experiments, environmental benefit positively influences the emer-
gence of organisms, but the level of influence does not seem to differ between
the tested reward functions. With logarithmic being the lowest reward tested
we can conclude that the minimum pressure lies somewhere between no advan-
tage and logarithmic. Note that in both scenarios the linear reward leads to the
highest average. This suggests that there is a sweet-spot somewhere between
logarithmic and exponential scaling.

Organism Age. Figure 2 shows the mean organism age for each generation
averaged over 40 runs for the power scale experiment on the left and the riverbed
experiment on the right. The x-axis is the time measured in generations. The
y-axis displays the mean age of an organism in number of 105 ticks. The raw
data is plotted as a grey line for each fitness scaling, for each we also show a
trend line based on the fifth Fourier series. The baseline experiment’s results are
included in both graphs.

The lines for the three reward functions rise rapidly to values significantly
higher than the baseline in both scenarios. In the power scale scenario, the
average organism age reaches more than 400.000 ticks, or 400 generations. In
the riverbed scenario this goes up to almost 700.000 ticks, or 700 generations for
the linear reward.

The lines are rising rapidly and almost monotonously, suggesting that the or-
ganisms do not ’die’ between generations. The age values in the riverbed scenario
are higher than those in the power scale scenario, notable is also that the incline
of the plots for riverbed are steeper than the ones for power scale.

These graphs support our earlier conclusion that the reward positively influ-
ences the size, and the age of organisms. The steeper and higher graphs of the
riverbed scenario lead us to conclude that the environmental pressure is deter-
mined by more than just the reward function. It also shows that the reward has
a different impact on the size of organisms than it does on the age of organisms.
Overall we conclude that, when designing experiments, more effort should go
into creating an appropriate environment than into designing the reward.

132 B. Weel, E. Haasdijk, and A.E. Eiben

We also observe that organisms do not disintegrate when switching from one
controller to another, fromwhich we can conclude that the evolutionary algorithm
converges very quickly (within 50 generations) to values for a positive ring setting.

5 Conclusion and Further Research

We have shown that large organisms emerge in an environment which favours
modules that are part of an organism, without the need for a specific fitness
function to promote aggregation. Organisms emerge even without environmental
pressure by chance, but these are significantly smaller and have a significantly
shorter life span.

We tested three reward functions in two separate scenarios. The amount of
pressure from the reward functions did not result in large differences. Even the
lowest amount of pressure, – logarithmic with respect to organism size – leads
to significantly bigger and older organisms. We notice a trend: the linear reward
performs slightly better than both logarithmic and exponential, suggesting an
optimal setting between logarithmic and exponential. The differences between
the scenarios did result in different sizes and organisms. In other words, the
environmental pressure is more than just a reward function: our results also
show that the design of the environment is more important when designing an
experiment than the reward function.

We only used 10 robots for the experiments, this raises the questionwhether the
same results would be obtained when using more robots. More robots would also
imply a larger arena, so care should be taken to correctly scale the experiments.
Furthermore, we used a controllerwhich had pre-programmedparts that were very
solution specific. To alleviate this specificity, further experiments can be executed
in which the control is at a lower level, and hence the problem more difficult. Here
the use of different controllers, which are more powerful, can be investigated. We
observed evidence that the reward function may have an optimum, this could be
further investigated to answer questions like:where is the optimum?Is it the same in
different scenarios?Does finding the optimum lead to significantly bigger or longer
lasting organisms?

Wenoted evidence that differences in qualitative environmental pressuremaybe
more important than differences in quantitative pressure in their influence on the
emergence of organisms, and therefore should be investigated. This research could
be part of the upcoming discipline of complexity-engineering: harnessing emer-
gent phenomena to create interesting or useful characteristics in complex systems.
Lastly we would like to investigate the ‘unlearning’ of organism forming behaviour
by letting controllers evolve in a changing environment which first favours organ-
isms and over time puts organisms at a disadvantage.

Acknowledgements. This work was made possible by the European Union
FET Proactive Initiative: Pervasive Adaptation funding the SYMBRION project
under grant agreement 216342. The authors would like to thank Selmar Smit and
our partners in the SYMBRION consortium for many inspirational discussions
on the topics presented here.

The Emergence of Multi-cellular Robot Organisms 133

References

1. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving ele-
mentary robotic units able to self-assemble and self-reproduce. Connection Sci-
ence 16(4), 227–248 (2004)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press (1999)

3. Şahin, E.: Swarm robotics: From sources of inspiration to domains of application.
Swarm Robotics, 10–20 (2005)

4. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution
for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot
Organisms: Reliability, Adaptability, Evolution, vol. ch. 5.2, pp. 361–382. Springer,
Heidelberg (2010)

5. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in
swarm-bots. IEEE Transactions on Robotics 22, 1115–1130 (2006)

6. Groß, R., Dorigo, M.: Evolution of solitary and group transport behaviors for
autonomous robots capable of self-assembling. Adaptive Behavior 16(5), 285 (2008)

7. Haasdijk, E., Eiben, A.E., Karafotias, G.: On-line evolution of robot controllers by
an encapsulated evolution strategy. In: Proceedings of the 2010 IEEE Congress on
Evolutionary Computation. IEEE Press (2010)

8. Huijsman, R.J., Haasdijk, E., Eiben, A.: An on-line on-board distributed algo-
rithm for evolutionary robotics. In: Hao, J., Legrand, P., Collet, P., Monmarch,
N., Lutton, E., Schoenauer, M. (eds.) Proceedings of Artificial Evolution, 10th
International Conference on Evolution Artificielle, EA 2011 (2011)

9. Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Rico, L., Jemai, J.,
Havlik, J., Liu, W.: Evolutionary robotics: The next-generation-platform for on-
line and on-board artificial evolution. In: 2009 IEEE Congress on Evolutionary
Computation, pp. 1079–1086 (2009)

10. Kutzer, M.D.M., Moses, M.S., Brown, C.Y., Scheidt, D.H., Chirikjian, G.S., Ar-
mand, M.: Design of a new independently-mobile reconfigurable modular robot.
In: 2010 IEEE International Conference on Robotics and Automation (ICRA),
pp. 2758–2764. IEEE (2010)

11. Laredo, J.L.J., Eiben, A.E., Steen, M., Merelo, J.J.: EvAg: a scalable peer-to-
peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11(2),
227–246 (2009)

12. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D.,
Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: A new
distributed robotic concept. Autonomous Robots 17(2/3), 193–221 (2004)

13. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge (2000)

14. O’Grady, R., Christensen, A.L., Dorigo, M.: Autonomous Reconfiguration in a Self-
assembling Multi-robot System. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M.,
Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 259–266.
Springer, Heidelberg (2008)

15. Smit, S.K., Eiben, A.E.: Multi-problem parameter tuning using BONESA. In: Hao,
J., Legrand, P., Collet, P., Monmarch, N., Lutton, E., Schoenauer, M. (eds.) Pro-
ceedings of Artificial Evolution, 10th International Conference on Evolution Arti-
ficielle (EA 2011), pp. 222–233 (2011)

134 B. Weel, E. Haasdijk, and A.E. Eiben

16. Wei, H., Cai, Y., Li, H., Li, D., Wang, T.: Sambot: A self-assembly modular robot
for swarm robot. In: 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 66–71. IEEE (2010)

17. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robotics & Automation Magazine 14(1), 43–52 (2007)

18. Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.: To-
wards robotic self-reassembly after explosion. In: 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2767–2772. IEEE (2007)

Evolving Seasonal Forecasting Models

with Genetic Programming in the Context
of Pricing Weather-Derivatives

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Financial Mathematics and Computation Research Cluster
Natural Computing Research and Applications Group

Complex and Adaptive Systems Laboratory
University College Dublin, Ireland

{alexandros.agapitos,m.oneill,anthony.brabazon}@ucd.ie

Abstract. In this study we evolve seasonal forecasting temperature
models, using Genetic Programming (GP), in order to provide an ac-
curate, localised, long-term forecast of a temperature profile as part
of the broader process of determining appropriate pricing model for
weather-derivatives, financial instruments that allow organisations to
protect themselves against the commercial risks posed by weather fluctu-
ations. Two different approaches for time-series modelling are
adopted. The first is based on a simple system identification approach
whereby the temporal index of the time-series is used as the sole regres-
sor of the evolved model. The second is based on iterated single-step
prediction that resembles autoregressive and moving average models in
statistical time-series modelling. Empirical results suggest that GP is
able to successfully induce seasonal forecasting models, and that autore-
gressive models compose a more stable unit of evolution in terms of
generalisation performance for the three datasets investigated.

1 Introduction

Weather conditions affect the cash flows and profits of businesses in a multitude
of ways. For example, energy companies (gas or electric) may sell fewer supplies
if a winter is warmer than usual, leisure industry firms such as ski resorts, theme
parks, hotels are affected by weather metrics such as temperature, snowfall or
rainfall, construction firms can be affected by rainfall, temperatures and wind
levels, and agricultural firms can be impacted by weather conditions during the
growing or harvesting seasons [3]. Firms in the retail, manufacturing, insurance,
transport, and brewing sectors will also have weather “exposure”. Less obvious
weather exposures include the correlation of events such as the occurrence of
plant disease with certain weather conditions (i.e. blight in potatoes and in
wheat) [9]. Another interesting example of weather risk is provided by the use of
“Frost Day” cover by some of the UK town/county councils whereby a payout
is obtained by them if a certain number of frost days (when roads would require
gritting - with an associated cost) are exceeded. Putting the above into context,

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 135–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

136 A. Agapitos, M. O’Neill, and A. Brabazon

it is estimated that in excess of $1 trillion of activity in the US economy is
weather-sensitive [5]. In response to the existence of weather risk, a series of
financial products have been developed in order to help organisations manage
these risks. Weather derivatives are financial products that provide a payout
which is related to the occurrence of pre-defined weather events [7].

A key component of the accurate pricing of a weather derivative are fore-
casts of the expected value of the underlying weather variable and its associated
volatility. The goal of this study is to produce predictive models by the means of
Genetic Programming [4] (GP) of the stochastic process that describes temper-
ature. Section 2 introduces weather derivatives, motivates the need for seasonal
temperature forecasting, and reviews the major statistical and heuristic time-
series modelling methods. Section 3 describes the experiment design, Section 4
discusses the empirical findings, and finally Section 5 draws our conclusions.

2 Background

2.1 OTC Weather Derivatives

The earliest weather derivatives were traded over-the-counter (OTC) as individ-
ually negotiated contracts. In OTC contracts, one party usually wishes to hedge
a weather exposure in order to reduce cash flow volatility. The payout of the
contract may be linked to the value of a weather index on the Chicago Mer-
cantile Exchange (CME) or may be custom-designed. The contract will specify
the weather metric chosen, the period (a month, a season) over which it will be
measured, where it will be measured (often a major weather station at a large
airport), the scale of payoffs depending on the actual value of the weather metric
and the cost of the contract. The contract may be a simple “swap” where one
party agrees to pay the other if the metric exceeds a pre-determined level while
the other party agrees to pay if the metric falls below that level.

In the US, many OTC (and all exchange-traded) contracts are based on the
concept of a ‘degree-day’. A degree-day is the deviation of a day’s average tem-
perature from a reference temperature. Degree days are usually defined as either
‘Heating Degree Days’ (HDDs) or ‘Cooling Degree Days’ (CDDs). The origin
of these terms lies in the energy sector which historically (in the US) used 65
degrees Fahrenheit as a baseline, as this was considered to be the temperature
below which heating furnaces would be switched on (a heating day) and above
which air-conditioners would be switched on (a cooling day). As a result HDDs
and CDDs are defined as

HDD = Max (0, 65oF - average daily temperature) (1)

CDD = Max (0, average daily temperature - 65oF) (2)

For example, if the average daily temperature for December 20th is 36oF , then
this corresponds to 29 HDDs (65 - 36 = 29). The payoff of a weather future is
usually linked to the aggregate number of these in a chosen time period (one HDD

Evolving Seasonal Forecasting Models with GP 137

or CDD is typically worth $20 per contract). Hence, the payoff to a December
contract for HDDs which (for example) trades at 1025 HDDs on 1st December
- assuming that there was a total of 1080 HDDs during December - would be
$1,100 ($20 * (1080-1025). A comprehensive introduction to weather derivatives
is provided by [7].

2.2 Seasonal Forecasting for Pricing a Weather Derivative

A substantial literature exists concerning the pricing of financial derivatives.
However, models from this literature cannot be simply applied for pricing of
weather derivatives as there are a number of important differences between the
two domains. The underlying (variable) in a weather derivative (a weather met-
ric) is non-traded and has no intrinsic value in itself (unlike the underlying in a
traditional derivative which is typically a traded financial asset such as a share
or a bond). It is also notable that changes in weather metrics do not follow a
pure random walk as values will typically be quite bounded at specific loca-
tions. Standard (arbitrage-free) approaches to derivatives pricing (such as the
Black-Scholes option pricing model) are inappropriate as there is no easy way to
construct a portfolio of financial assets which replicates the payoff to a weather
derivative [6].

One method that is used to price weather risk is index modelling. This ap-
proach attempts to build a model of the distribution of the underlying weather
metric (for example, the number of seasonal cumulative heating degree days),
typically using historical data. A wide variety of forecasting approaches such as
time-series models, of differing granularity and accuracy, can be employed.

In considering the use of weather forecast information for derivatives pricing,
we can distinguish between a number of possible scenarios. In this paper we are
focusing on weather derivatives that are traded long before the start of the rele-
vant weather period. In this case we can only use seasonal forecasting methods
as current short run weather forecasts have no useful information content in pre-
dicting the weather than will arise during the weather period. Seasonal forecasts
are long-term forecasts having a time horizon beyond one month [10]. There
are a plethora of methods for producing these forecasts ranging from the use of
statistical time-series models based on historic data to the use of complex, course-
grained, simulation models which incorporate ocean and atmospheric data. The
following sections briefly review some of the major techniques that fall into the
two families of statistical and heuristic approaches to time-series forecasting.

2.3 Statistical Time-Series Forecasting Methods

Statistical time-series forecasting methods fall into the following five categories:
(a) exponential smoothing methods ; (b) regression methods ; (c) autoregressive
integrated moving average methods (ARIMA); (d) threshold methods ; (e) gener-
alised autoregressive conditionally heteroskedastic methods (GARCH). The first
three categories can be considered as linear, whereas the last two as non-linear
methods.

138 A. Agapitos, M. O’Neill, and A. Brabazon

In exponential smoothing, a forecast is given as a weighted moving average of
recent time-series observations. The weights assigned decrease exponentially as
the observations get older. In regression, a forecast is given as a linear combina-
tion of one or more explanatory variables. ARIMA models give a forecast as a
linear function of past observations and error values between the time-series it-
self and past observations of explanatory variables. These models are essentially
based on a composition of autoregressive models (linear prediction formulas that
attempt to predict an output of a system based on the previous outputs), and
moving average models (linear prediction model based on a white noise station-
ary time-series). For a discussion on smoothing, regression and ARIMA methods
see [8]. Linear models cannot capture some featured that commonly occur in
real-world data such as asymmetric cycles and outliers.

Threshold methods [8] assume that extant asymmetric cycles are cause by dis-
tinct underlying phases of the time-series, and that there is a transition period
between these phases. Commonly, the individual phases are given a linear func-
tional form, and the transition period is modelled as an exponential or logistic
function. GARCH methods [2] are used to deal with time-series that display
non-constant variance of residuals (error values). In these methods, the variance
of error values is modelled as a quadratic function of past variance values and
past error values.

2.4 Genetic Programming for Time-Series Modelling

In GP-based time-series prediction [1] the task is to induce a model that consists
of the best possible approximation of the stochastic process that could have
generated an observed time-series. Given delayed vectors v, the aim is to induce
a model f that maps the vector v to the value xt+1. That is,

xt+1 = f(v) = f(xt−(m−1)τ , xt−(m−2)τ , . . . , xt) (3)

where m is embedding dimension and τ is delay time. The embedding specifies
on which historical data in the series the current time value depends. These
models are known as single-step predictors, and are used to predict to predict one
value xt+1 of the time series when all inputs xt−m, . . . , xt−2, xt−1, xt are given.
For long-term forecasts, iterated single-step prediction models are employed to
forecast further than one step in the future. Each predicted output is fed back
as input for the next prediction while all other inputs are shifted back one place.
The input consists partially of predicted values as opposed to observables from
the original time-series. That is,

x′
t+1 = f(xt−m, . . . , xt−1, xt);m < t

x′
t+2 = f(xt−m+1, . . . , xt, x

′
t+1);m < t

.

.

.

x
′
t+k = f(xt−m+k−1, . . . , x

′
t+k−2, x

′
t+k−1);m < t, k ≥ 1

(4)

where k is the prediction step.

Evolving Seasonal Forecasting Models with GP 139

2.5 Scope of Research

The goal of this study is to produce predictive models of the stochastic process
that describes temperature. More specifically, we are interested in modelling ag-
gregate monthly HDDs. The incorporation of this model into a complete pricing
model for weather derivatives is left for future work. We also restrict attention
to the case where the contract period for the derivative has not yet commenced.
Hence, we ignore short-run weather forecasts, and concentrate on seasonal fore-
casting.

We investigate two families of program representations for time-series mod-
elling. The first is the standard GP technique, genetic symbolic regression (GSR),
applied to the forecasting problem in the same way that is applied to sym-
bolic regression problems. The task is to approximate a periodic function, where
temperature (HDDs) is the dependent variable, and time is the sole regressor
variable. The second representation allows the induction of iterated single-step
predictors that can resemble autoregressive (GP-AR) and autoregressive moving
average (GP-ARMA) time-series models as described in Section 2.3.

3 Experiment Design

3.1 Model Data

Three US weather stations were selected: (a) Atlanta (ATL); (b) Dallas, Fort
Worth (DEN); (c) La Guardia, New York (DFW). All the weather stations
were based at major domestic airports and the information collected included
date, maximum daily temperature, minimum daily temperature, and the as-
sociated HDDs and CDDs for the day. This data was preprocessed to create
new time-series of monthly aggregate HDDs and CDDs for each weather station
respectively.

There is generally no agreement on the appropriate length of the time-series
which should be used in attempts to predict future temperatures. Prior studies
have used lengths of twenty to fifty years, and as a compromise this study uses
data for each location for the period 01/01/1979 - 31/12/2002. The monthly
HDDs data for each location is divided into a training set (15 years) that mea-
sures the performance during the learning phase, and a test set (9 years) that
quantifies model generalisation.

3.2 Forecasting Model Representations and Run Parameters

This study investigates the use of two families of seasonal forecast model repre-
sentations, where the forecasting horizon is set to 6 months. The first is based
on standard GP-based symbolic regression (GSR), where time serves as the re-
gressor variable (corresponding to a month of a year), and monthly HDDs is
the regressand variable. Assuming that time t is the start of the forecast, we can
obtain a 6-month forecast by executing the program with inputs {t+1, . . . , t+6}.

140 A. Agapitos, M. O’Neill, and A. Brabazon

Table 1. Learning algorithm parameters

EA panmictic, generational, elitist GP with an expression-tree representation
No. of generations 51
Population size 1,000
Tournament size 4
Tree creation ramped half-and-half (depths of 2 to 6)
Max. tree depth 17
Subtree crossover 30%
Subtree mutation 40%
Point mutation 30%
Fitness function Root Mean Squared Error (RMSE)

The second representation for evolving seasonal forecasting models is based
on the iterated single-step prediction that can emulate autoregressive models,
as described in Section 2.3. This method requires that delayed vectors from the
monthly HDDs time-series are given as input to the model, with each consecutive
model output being added at the end of the delayed input vector, while all other
inputs are shifted back one place.

Table 2. Forecasting model representation languages

Forecasting model Function set Terminal set

GSR

add, sub, mul, div, exp, index t corresponding to a month
log, sqrt, sin, cos 10 rand. constants in -1.0, . . . , 1.0

10 rand. constants in -10.0, . . . , 10.0

GP-AR(12)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−12

GP-AR(24)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−24

GP-AR(36)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−36

GP-ARMA(36)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−36

M(HDDt−1,. . ., HDDt−6), SD(HDDt−1,. . ., HDDt−6)
M(HDDt−1,. . ., HDDt−12), SD(HDDt−1,. . ., HDDt−12)
M(HDDt−1,. . ., HDDt−18), SD(HDDt−1,. . ., HDDt−18)
M(HDDt−1,. . ., HDDt−24), SD(HDDt−1,. . ., HDDt−24)
M(HDDt−1,. . ., HDDt−30), SD(HDDt−1,. . ., HDDt−30)
M(HDDt−1,. . ., HDDt−36), SD(HDDt−1,. . ., HDDt−36)

Table 2 shows the primitive single-type language elements that are being used
for forecasting model representation in different experiment configurations. For
GSR, the function set contains standard arithmetic operators (protected divi-
sion) along with ex, log(x),

√
x, and finally the trigonometric functions of sine

and cosine. The terminal set is composed of the index t representing a month,
and random constants within specified ranges. GP-AR(12), GP-AR(24), GP-
AR(36), all correspond to standard autoregressive models that are implemented
as iterated single-step prediction models. The argument in the parentheses spec-
ifies the number of past time-series values that are available as input to the
model. The function set in this case is similar to that of GSR excluding the
trigonometric functions, whereas the terminal set is augmented with histori-
cal monthly HDD values. For the final model configuration, GP-ARMA(36),

Evolving Seasonal Forecasting Models with GP 141

the function set is identical to the one used in the other autoregressive models
configurations, however the terminal set contains moving averages, denoted by
M(HDDt−1, . . . , HDDt−λ), where λ is the time-lag and HDDt−1 and HDDt−λ

represent the bounds of the moving average period. For every moving average,
the associated standard deviation for that period is also given as model input,
and is denoted by SD(HDDt−1, . . . , HDDt−λ). Finally, Table 1 presents the
parameters of our learning algorithm.

4 Results

Table 3. Comparison of training and testing RMSE obtained by different forecast-
ing configurations, each experiment was ran for 50 times. Standard error for mean in
parentheses. Bold face indicates best performance on test data.

Dataset
Mean Best Mean Best

Forecasting Training Training Testing Testing
configuration RMSE RMSE RMSE RMSE

ATL

GSR 140.52 (9.55) 68.82 149.53 (8.53) 72.73
GP-AR(12) 92.44 (0.54) 81.78 111.87 (0.41) 103.60
GP-AR(24) 91.33 (0.68) 83.33 96.15 (0.51) 91.26
GP-AR(36) 88.96 (0.81) 77.30 90.38 (0.81) 79.44
GP-ARMA 85.20 (0.86) 75.84 85.71 (0.82) 74.31

DEN

GSR 165.76 (11.46) 103.09 180.46 (11.74) 95.23
GP-AR(12) 133.18 (0.43) 121.38 126.78 (0.25) 117.19
GP-AR(24) 130.41 (0.73) 111.48 124.36 (0.66) 110.31
GP-AR(36) 131.13 (1.08) 114.86 111.41 (0.57) 103.73
GP-ARMA 126.46 (1.29) 106.18 108.90 (0.64) 101.57

DFW

GSR 118.96 (8.02) 66.49 118.69 (7.20) 66.12
GP-AR(12) 88.75 (0.66) 80.64 90.37 (0.26) 86.57
GP-AR(24) 96.14 (0.95) 83.55 85.36 (0.42) 78.24
GP-AR(36) 89.52 (0.69) 81.12 62.11 (0.43) 55.84
GP-ARMA 87.09 (0.82) 75.41 60.92 (0.52) 55.10

We performed 50 independent evolutionary runs for each forecasting model con-
figuration presented in Table 2. A summary of average and best training and
test results obtained by different models is presented in Table 3. The distribu-
tions of training and test errors obtained at the end of the evolutionary runs are
depicted in Figure 1 for the DFW time-series. Graphs for the other time-series
exhibited a similar trend and were omitted due to lack of space. Results sug-
gest that the family of autoregressive moving average models perform better on
average than those obtained with standard symbolic regression. A statistical sig-
nificance difference (unpaired t-test, two-tailed, p < 0.0001, degrees of freedom
df = 98) was found between the average test RMSE for GSR and GP-ARMA in
all three datasets. Despite the fact that the ARMA representation space offers
a more stable unit for evolution than the essentially free-of-domain-knowledge
GSR space, best testing RMSE results indicated that GSR models are better
performers in ATL and DEN datasets, as opposed to the DFW dataset, where
the best-of-50-runs GP-ARMA model appeared superior.

142 A. Agapitos, M. O’Neill, and A. Brabazon

Given that in time-series modelling it is often practical to assume a determin-
istic and a stochastic part in a series’ dynamics, this result can well corroborate
on the ability of standard symbolic regression models to effectively capture the
deterministic aspect of a time-series, and successfully forecast future values in
the case of time-series with a weak stochastic or volatile part. Another inter-
esting observation is that there is a difference in the generalisation performance
between GP-AR models of different order, suggesting that the higher the order
of the AR process the better its performance on seasonal forecasting. Statistical
significant differences (unpaired t-test, p < 0.0001, df = 98) were found in mean
test RMSE between GP-AR models of order 12 and those of order 36, in all
three datasets.

During the learning process, we monitored the generalisation performance of
the best-of-generation individual, and we adopted a model selection strategy
whereby the best-generalising individual is designated as the outcome of the
run. In the context of early stopping for counteracting the marked tendency
of model overtraining, Figures 1(g), (h), (i) illustrate the distributions of the
generation number where model selection was performed, for the three datasets.
It can be seen that GSR models are less prone to overtraining, then follows

60

80

100

120

140

160

180

200

220

240

1 2 3 4 5

Forecasting Configurations

T
ra

in
in

g
R

M
S

E

(a)

60

80

100

120

140

160

180

200

220

1 2 3 4 5

Forecasting Configurations

T
es

tin
g

R
M

S
E

(b)

0

10

20

30

40

50

1 2 3 4 5

Forecasting Configurations

G
en

er
at

io
n

of
 b

es
t−

of
−

ru
 te

st
 p

er
fo

rm
an

c

(c)

0

10

20

30

40

50

1 2 3 4 5

Forecasting Configurations

G
en

er
at

io
n

of
 b

es
t−

of
−

ru
 te

st
 p

er
fo

rm
an

c

(d)

0

10

20

30

40

50

1 2 3 4 5

Forecasting Configurations

G
en

er
at

io
n

of
 b

es
t−

of
−

ru
 te

st
 p

er
fo

rm
an

c

(e)

Fig. 1. Distribution of best-of-run training and test RMSE accrued from 50 indepen-
dent runs. Figures (a), (b) for DFW. Figures (c), (d), (e) show the distribution of
generation number where each best-of-run individual on test data was discovered for
the cases of ATL, DEN, and DFW respectively.

Evolving Seasonal Forecasting Models with GP 143

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

Target
GSR
ARMA−GP

(a)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

Months

A
gg

re
ga

te
 m

on
th

ly
 H

D
D

s

Target
GSR
ARMA−GP

(b)

Fig. 2. Target vs. Prediction for best-performing models of GSR and GP-ARMA for
the DFW dataset. (a) training data; (b) test data.

GP-ARMA, and finally it can be noted that GP-AR models of high order are
the most sensitive to overfitting the training data. Interestingly is the fact that
this observation is consistent in all three datasets.

Finally, Figures 2(a), (b) show the target and predicted values from best-
performing GSR and GP-ARMA models for the DWF dataset, for training and
testing data respectively. Both models achieved a good fit for most of the out-
of-sample range. Equation 5 illustrates the parabolic GP-ARMA model that
generated the predictions in Figure 2.

f(t) =

√√√√HDDt−12 ∗
(
HDDt−36 +

√
HDDt−12 ∗

(
HDDt−26

−0.92 + (HDDt−7 ∗ log(HDDt−21))

))

(5)

5 Conclusion

This paper adopted a time-series modelling approach to the production of a sea-
sonal weather metric forecast, as part of a general method for pricing weather
derivatives. Two GP-based methods for time series modelling were used; the
first one is based on standard symbolic regression; the second one is based
on autoregressive time-series modelling that is realised via an iterated single-
step prediction process and a specially crafted terminal set of past time-series
information.

Results are very encouraging, suggesting that GP is able to successfully evolve
accurate seasonal forecasting models. More specifically, for two of the three time-
series considered in this study, standard symbolic regression was able to capture
the deterministic aspect of the modelled data and attained the best test perfor-
mance, however its overall performance was marked as unstable, producing some
very poor-generalising models. On the other hand, the performance of search-
based autoregressive moving average models was deemed on average the most

144 A. Agapitos, M. O’Neill, and A. Brabazon

stable in out-of-sample data. On a more general note, experiments also revealed
a marked tendency of the GP-AR models to overfit the most, with GSR being
the most resilient program representation in this problem domain. Whether this
is due to a slower learning curve in the case of GSR, or to a very sensitive to
overfitting representation in the case on GP-AR models is left to be seen in
future work. B

Acknowledgement. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/SRC/FM1389.

References

1. Agapitos, A., Dyson, M., Kovalchuk, J., Lucas, S.M.: On the genetic programming
of time-series predictors for supply chain management. In: GECCO 2008: Proceed-
ings of the 10th Annual Conference on Genetic and Evolutionary Computation
(2008)

2. Bollerslev, T.: Generalised autoregressive conditional heteroskedasticity. Journal
of Econometrics 31, 307–327 (1986)

3. Garcia, A., Sturzenegger, F.: Hedging Corporate Revenues with Weather Deriva-
tives: A case study. Master’s thesis, Universite de Lausanne (2001)

4. Koza, J.: Genetic Programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge (1992)

5. Cao, M., Wei, J.: Equilibrium valuation of weather derivatives, working paper.
School of Business, York University, Toronto (2002)

6. Campbell, S., Diebold, F.: Weather forecasting for weather derivatives. Journal of
the American Statistical Association 100(469), 6–16 (2005)

7. Jewson, S., Brix, A., Ziehman, C.: Weather Derivative Valuation: The Meteorolog-
ical, Statistical, Financial and Mathematical Foundations. Cambridge University
Press (2005)

8. Makridakis, S., Wheelwright, S., Hyndman, R.: Forcasting: Methods and Applica-
tions. Willey, New York (1998)

9. Sprundel, V.: Using weather derivatives for the financial risk management of plant
diseases: A study on Phytophthora infestans and Fusarium head blight. Ph.D.
thesis, Wageningen University (2011)

10. Weigel, A., Baggenstos, D., Liniger, M.: Probabilistic verification of monthly tem-
perature forecasts. Monthly Weather Review 136, 5162–5182 (2008)

Steepest Ascent Hill Climbing

for Portfolio Selection

Jonathan Arriaga and Manuel Valenzuela-Rendón

Tecnológico de Monterrey, Campus Monterrey,
Av. Eugenio Garza Sada 2501 C.P. 64849 Monterrey, N.L. México
jonathan.arriaga@exatec.itesm.mx, valenzuela@itesm.mx

Abstract. The construction of a portfolio in the financial field is a prob-
lem faced by individuals and institutions worldwide. In this paper we
present an approach to solve the portfolio selection problem with the
Steepest Ascent Hill Climbing algorithm. There are many works reported
in the literature that attempt to solve this problem using evolutionary
methods. We analyze the quality of the solutions found by a simpler
algorithm and show that its performance is similar to a Genetic Algo-
rithm, a more complex method. Real world restrictions such as portfolio
value and rounded lots are considered to give a realistic approach to the
problem.

Keywords: Portfolio optimization, Hill Climbing.

1 Introduction

The Markowitz mean-variance model was the first approach to solve the portfo-
lio optimization problem, it is a powerful framework for asset allocation under
uncertainty. This model defines the optimal portfolios as those that maximize
return while minimizing risk; the solution is an efficient frontier, a smooth non-
decreasing curve representing the set of Pareto-optimal non-dominated portfo-
lios. Quadratic Programming (QP) optimization has been widely extended and
used as a benchmark to compare different approaches to solve the problem. QP
solves this model in an efficient and optimal way if all the restrictions given are
linear. However, no analytic method exist that solves the problem when consid-
ering non-linear constraints present in the real world such as asset cardinality,
transaction costs, minimum and maximum weights, among others.

Metaheuristic methods can overcome the limitations of the QP approach since
they are not affected by the underlying dynamics of the problem. Some exam-
ples of metaheuristic search methods which have been used to solve the portfolio
selection problem are genetic algorithms (GA) [1], memetic algorithms [2], sim-
ulated annealing, particle swarm optimization [6], differential evolution [11] and
tabu search [4,15]. New metaheuristic methods have been developed to solve this
problem such as the hybrid local search algorithm introduced in [10] and the Ve-
locity Limited Particle Swarm Optimization presented in [16]. Other approaches
have been reported in the literature as the Bayesian portfolio selection [8].

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 145–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

146 J. Arriaga and M. Valenzuela-Rendón

An overview of the use of heuristic optimization for the portfolio selection prob-
lem can be found in [9].

Different ways to measure risk are widely used such as in [14], where a memetic
algorithm is used for the portfolio selection problem while considering Value at
Risk (VaR) as the risk measure. The Markowitz mean-variance model assumes a
normal distribution, in [12] theoretical return distribution assumptions are com-
pared against empirical distributions using memetic algorithms as the portfolio
selection method.

As the problem involves finding an Pareto-optimal frontier, multiobjective
(MO) evolutionary algorithms have also been reported in the literature. MO
evolutionary algorithm are employed in [5,7] to optimize the Pareto frontier; in [7]
robustness of the portfolio is part of the evaluation. A review of MO evolutionary
algorithms in economics and finance applications can be found in [3].

All these methods can obtain good approximations to the global optimum so-
lution of the portfolio selection problem. We studied the performance of Steepest
Ascent Hill Climbing (SAHC), a local search algorithm and found that can also
provide good solutions in spite of its simplicity. Simpler algorithms are preferred
over more complex ones due to the ease of implementation, are less prone to raise
errors while running, are faster and consume less computer memory if properly
coded. It is very efficient regarding memory usage because only one solution is
saved through the run; different from population-based methods that load many
solutions.

The rest of the paper is organized as follows: Section 2 describes the model
for portfolio optimization. Section 3 presents the SAHC algorithm. The setup
used for experiments, and how the proposed approach will be compared with
a Genetic Algorithm (GA), is presented in section 4. Finally, in section 5 the
results of this paper are discussed in conclusion.

2 The Optimization Model

To solve the portfolio optimization problem by means of metaheuristics, we first
present the optimization model for the unconstrained and constrained problem.

2.1 Unconstrained Problem

The Markowitz portfolio selection model to find the Unconstrained Efficient
Frontier (UEF) is given by:

minσ2
P (1)

maxμP (2)

subject to

σ2
P =

N∑
i=1

N∑
j=1

wiwjσij (3)

Steepest Ascent Hill Climbing for Portfolio Selection 147

μP =

N∑
i=1

μiwi (4)

N∑
i=1

wi = 1 (5)

where wi ∈ R+
0 ∀i, μP is the portfolio expected return, N is the total number of

assets considered, μi is the mean historical return of asset i, σij is the covariance
between historical returns of assets i and j, and wi is the weight of asset i in the
portfolio.

With this framework, the identification of the optimal portfolio structure can
be defined as the quadratic optimization problem of finding the weights wi that
assure the least portfolio risk σ2

P for an expected portfolio return μP . This model
assumes a market where assets can be traded in any fraction, without taxes or
transaction costs and no short sales.

2.2 Constrained Problem

As pointed out in [4] the formulation for the Constrained Efficient Frontier (CEF)
problem can formulated by the introduction of zero-one decision variables as:

zi =

{
1 if any of asset i is held
0 otherwise

(6)

where (i = 1, . . . , N). The objective and constraints are given by:

min

N∑
i=1

N∑
j=1

wiwjσij (7)

subject to the same constraints as for the UEF plus

N∑
i=1

zi = K (8)

εizi ≤ wi ≤ δizi, i = 1, . . . , N (9)

zi ∈ {0, 1}, i = 1, . . . , N (10)

where εi and δi are the minimum and maximum weights allowed in the portfolio
for asset i.

Rounded Lots. When purchasing shares, commissions fees are usually charged
per transaction and often a percentage of the total price is also considered. To
reduce the average commission cost, shares are bought in groups commonly
known as lots. A group of 100 shares is known as a rounded lot, an odd lot is
a group of less than 100 shares even as small as 1 share. We introduce this
restriction to the portfolio optimization problem as follows:

148 J. Arriaga and M. Valenzuela-Rendón

li =
wiA

piL
(11)

where li ∈ Z+, A is the portfolio value in cash with no stock holdings, L is the
lot size, pi and li are the price and number of equivalent rounded lots of asset i
respectively. The number of shares is given by qi = wi/pi.

Thus, we incorporate this restriction in the portfolio selection problem by re-
interpreting the weights of the assets in the portfolio. In order to do so, we first
calculate the quantity of integer lots that can be bought with the proportion of
cash destined to asset i in the portfolio, see Eq. 11. Then the actual weight of
the asset in the portfolio is determined with the following equation

w′
i = li

piL

A
. (12)

where w′
i is the weight of asset i after being rounded down to the nearest lot.

The remaining cash not invested in any asset is assumed to be risk-free. With
the reinterpreted weights of the assets in the portfolio, we proceed to obtain the
respective portfolio expected return μP and risk σ2

P .

2.3 Efficient Frontier

With the QP equations 1–5 we can find the efficient frontier by solving them
repeatedly, varying the objective μP ; this efficient frontier represents the set of
Pareto-optimal portfolios. Another approach is to trace out the efficient frontier
by optimizing the weighted sum of the portfolio’s risk and expected return:

max

[
(1− λ)μP − λ

√
σ2
P

]
(13)

where λ (0 ≤ λ ≤ 1) is the weighting parameter. Values for the λ parameter
can be increased gradually or be selected at random. The resulting portfolio’s
return and risk have an inverse non-linear relationship with this parameter, so
a better selection criteria is needed. We take an adaptive approach to populate
the efficient frontier by selecting λ so that the resulting portfolios have risks and
expected returns distributed along their respective axes.

First, portfolios are optimized for 10 equally spaced intervals of λ in the range
0-1, always measuring the resulting portfolio risk and expected return. Any of
the expected return or risk axes of the efficient frontier plot is selected randomly
and the most distant points from each other in that axis are searched; the next
value is selected as the mid-point of the corresponding λ values for these points.

This procedure relies on the portfolio optimization algorithm to decide the
next λ value. If optimization is not perfect, the distribution of portfolios may
be enclosed in a small region of the efficient frontier; with a small probability a
random λ value is chosen to overcome this pitfall.

Steepest Ascent Hill Climbing for Portfolio Selection 149

3 Steepest Ascent Hill Climbing for Portfolio Selection

Steepest Ascent Hill Climbing (SAHC) is a subset of metaheuristic optimization
methods. SAHC starts off with a random solution and generates new solutions
by moving randomly within the current solution’s neighborhood. Unlike Hill
Climbing, SAHC examines various moves in the neighborhood of a single node.
A single solution is handled all the time, so memory usage is minimal and its
implementation becomes easier.

Before the algorithm starts the solution structure must be defined, which is
composed by s nodes and each of a certain type. For each type, the set of possible
values must be defined beforehand. The neighborhood of a node is defined by
the values in the set of its type; the algorithm makes moves in a discrete-space
neighborhood. The solution nodes can be optimized in random or sequential
order; for the experiments we carried out, this setting meant no significant change
in the performance. Once the solution structure is defined, the algorithm starts
evaluating a number of random solutions, and the best found so far is saved.
Then, for each of the nodes, the solution is evaluated with a range of size V
of different values from the set defined for the node type. If some of the values
enhances the solution fitness, the new solution remains with this change. This
process is repeated for G iterations. Below are listed the steps of SAHC:

Define set of values for every type of node

Evaluate initial random solutions

for iterations in range(G):

for node in solution:

for neighbor in neighbors(node): # Select V neighbors

neighbor_fitness = eval(neighbor)

if neighbor_fitness > best_fitness:

best_fitness = neighbor_fitness

best_solution = neighbor

For the CEF, K assets compose the portfolio. In this case the solution to be
optimized by the heuristic algorithm is composed of K assets and K weights as
[4], thus the length of the solution is s = 2K nodes. In order to obtain portfolios
with K assets, we specify in the algorithm not to consider the same asset when
selecting values for V on the nodes that represent the assets. A minimum weight
εi is set for each asset i in the solution, with the constraint

∑K
i εi < 1. The

remaining fraction of the portfolio is left for the algorithm to be optimized, so
weights are normalized to 1 −

∑K
i εi. This solution structure is similar to the

approaches reported in [4,15].
The way SAHC algorithm moves in the solution space is very similar to the

hybrid local search algorithm introduced in [10], which consists of a population
of solutions evolving with the simulated annealing method. Instead of evaluating
a single change on multiple solutions, SAHC evaluates multiple changes on the
same solution; leading to a wider neighborhood exploration and more chances
to find or get close to the global optimum.

150 J. Arriaga and M. Valenzuela-Rendón

4 Experimental Setup

We compare the described SAHC with a Genetic Algorithm (GA) to demonstrate
the performance of the proposed method. GAs have been widely used in the
financial field to solve the portfolio selection problem, see [4,13,15]. Since the
portfolio optimization problem is NP-hard following the Markowitz model [10]
and no global optimum can be found in a reasonable time, we take the QP
approach as the benchmark for both algorithms. Using the solutions derived
by QP we take the equivalent number of assets from the weights using Eq. 11
and round down to the nearest integer to obtain rounded lots; actual weights in
the portfolio are generated using Eq. 12 we will refer to these solutions as QP
rounded.

4.1 Data and Parameters

Three stocks sets were considered: the components of the NASDAQ-100 index
(100 assets), the FTSE-100 index (100 assets) and the DAX index (30 assets).
Data was obtained from the yahoo.finance.historicaldata datatable using
the Yahoo! Query Language (YQL). Returns were taken in 4-week intervals, 20
samples were considered. The date for the portfolio creation was 1-Nov-2011 with
the first date being as for 4-Apr-2010. We assume a lot size of L = 100 for all the
problems. In order to populate the efficient frontier, we performed optimization
with SAHC and GA 1,000 times, selecting a different value for λ each run. All
the reported experiments were coded in Python and run in a workstation with
Intel Core i5-760 processor @ 2.80GHz and 3.8GB memory.

To perform a fair comparison of SAHC with the GA and QP approaches, we
relax the cardinality constraint by taking K as the upper limit of the quantity
of assets in the portfolio. As we have no preference or restriction for a certain
asset, the εi and δi values are set to 0 and 1 respectively for all assets, so its
allowed weight in the portfolio is wi ∈ [0, 1]. Assets are allowed to be repeated
in the solution, weights for the same asset are added; the total of weights are
normalized such that

∑K
i wi = 1. With this modification, solutions in SAHC

and GA will represent portfolios composed from 1 to at most K assets. For
SAHC and GA K ≤ 10 assets in a portfolio is a realistic number, QP rounded
portfolios may have more assets.

Settings for the SAHC algorithm were G = 15, V = 10 and 100 initial eval-
uations. Values for the selection of assets in the solution were the components
of each index and for weights were set 20 evenly spaced values in the range 0-1.
For the GA we used 150 generations and 200 individuals, crossover probability
was set to pc = 1.0, mutation probability for an individual was pm = 10%. The
solution was coded with 7 bits for the assets and 5 bits for weights in the range
0-1; the solution string for each of the three problems was 120 bits long.

Portfolio Value. With the rounded lots restriction, the A parameter and the
stock prices change the difficulty of the problem. To select a proper value for A,
we performed experiments using the QP rounded approach. Figure 1 shows the

Steepest Ascent Hill Climbing for Portfolio Selection 151

Fig. 1. QP rounded non-dominated portfolios by self with increasing values of A

effect of A on the number of non-dominated portfolios obtained when increased
logarithmically from 1,000 to 10,000,000,000 currency units.

When there is a sufficiently large amount of money, rounded lots of different
assets are easy to combine; there are more dominated portfolios because the
rounding operation means almost no change in the actual weight of assets in
the portfolio. Limited cash makes some rounded lots not feasible fewer possible
combinations of assets. The worst case is the FTSE problem, its percentage of
non-dominated portfolios starts to increase when A > 100,000 currency units,
below this point rounded lots are not feasible; we selected A =1,000,000 currency
units for each market. With the chosen value the FTSE problem is solvable,
though hard.

4.2 Results

In figure 2 are shown the non-dominated portfolios of each of the methods con-
sidered for each problem. Although no global optimum can be computed for the
CEF considering rounded lots, the efficient frontier plots show that the portfolios
found by SAHC and GA are very close to the UEF, see figures 2a, 2b and 2c.

Table 1 summarizes the results obtained by using the SAHC and GA ap-
proaches to solve the portfolio optimization problem and the performance of
QP rounded. FTSE was the hardest problem for both algorithms, even for QP
rounded. The reason is because the mean price of its components is 1010.43 GBP,
while for the NASDAQ 62.27 USD and for the DAX 52.78 EUR. On the other
hand, the DAX was the easiest problem to optimize because is composed by 30
stocks and due to the low prices of its components; only in this problem the GA
was able to beat the SAHC, with minor differences. SAHC showed almost the
same performance for the NASDAQ and DAX, while performing much better in
the FTSE problem, with nearly the double of portfolios generated.

Both methods, the GA and SAHC found portfolios with at most 7 different
assets for the NASDAQ and the FTSE problems, while 8 for the DAX; the K ≤
10 cardinality limit is a proper value. From these results we can determine that
the SAHC did not have major problems while solving the proposed problems.

152 J. Arriaga and M. Valenzuela-Rendón

Fig. 2. Pareto front obtained by QP, SAHC and GA for the three problems considered:
NASDAQ (top), FTSE (middle) and DAX (bottom)

Steepest Ascent Hill Climbing for Portfolio Selection 153

Table 1. Performance comparison of the SAHC and the GA for the NASDAQ, FTSE
and DAX problems. Non-dominated portfolios by self is the number of portfolios in
the pareto frontier, more is better when compared with other methods.

NASDAQ FTSE DAX

QP Non-dominated by self 148 41 201
Non-dominated by SAHC 44 13 82
Non-dominated by GA 77 21 90
Time 8 7 2

SAHC Non-dominated by self 233 108 241
Non-dominated by QP 226 107 240
Non-dominated by GA 189 104 225
Evaluations 3,010,989 3,009,437 2,957,817
Time 343 341 236

GA Non-dominated by self 233 64 246
Non-dominated by QP 199 63 246
Non-dominated by SAHC 127 37 159
Evaluations 30,000,000 30,000,000 30,000,000
Time 7,521 7,680 6,975

5 Conclusions

Throughout this paper we have presented a SAHC approach to solve the port-
folio optimization problem with real-world constraints, such as portfolio value,
cardinality constraints, rounded lots and maximum and minimum weights. The
SAHC implementation is very simple, is fast and its performance is similar to a
more complex approach, the GA. Because of its execution time lower than the
GA and fewer evaluations needed to find good and even better solutions, the
SAHC approach can be used as a method to quickly find practical solutions.
The comparison was only with respect to a GA, as future work other algorithms
can be considered such as simulated annealing and particle swarm optimization.

Acknowledgments. This work was supported in part by the Tecnológico de
Monterrey Evolutionary Computation Research Chair CAT-044.

References

1. Aranha, C.C., Iba, H.: A tree-based ga representation for the portfolio optimization
problem. In: Proceedings of the 10th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO 2008, pp. 873–880. ACM, New York (2008)

2. Aranha, C.d.C., Iba, H.: Using memetic algorithms to improve portfolio per-
formance in static and dynamic trading scenarios. In: Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2009,
pp. 1427–1434. ACM, New York (2009)

3. Castillo Tapia, M., Coello, C.: Applications of multi-objective evolutionary algo-
rithms in economics and finance: A survey. In: IEEE Congress on Evolutionary
Computation, CEC 2007, pp. 532–539 (September 2007)

154 J. Arriaga and M. Valenzuela-Rendón

4. Chang, T.J., Meade, N., Beasley, J., Sharaiha, Y.: Heuristics for cardinality con-
strained portfolio optimisation. Computers and Operations Research 27, 1271–1302
(2000)

5. Chiam, S., Al Mamun, A., Low, Y.: A realistic approach to evolutionary multiob-
jective portfolio optimization. In: IEEE Congress on Evolutionary Computation,
CEC 2007, pp. 204–211 (September 2007)

6. Gao, J., Chu, Z.: An improved particle swarm optimization for the constrained
portfolio selection problem. In: International Conference on Computational Intel-
ligence and Natural Computing, CINC 2009, vol. 1, pp. 518–522 (June 2009)

7. Hassan, G., Clack, C.D.: Multiobjective robustness for portfolio optimization in
volatile environments. In: Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2008, pp. 1507–1514. ACM, New York
(2008)

8. Lu, J., Liechty, M.: An empirical comparison between nonlinear programming
optimization and simulated annealing (sa) algorithm under a higher moments
bayesian portfolio selection framework. In: Simulation Conference, Winter 2007,
pp. 1021–1027 (December 2007)

9. Maringer, D.: Heuristic optimization for portfolio management [application notes].
IEEE Computational Intelligence Magazine 3(4), 31–34 (2008)

10. Maringer, D., Kellerer, H.: Optimization of cardinality constrained portfo-
lios with a hybrid local search algorithm. OR Spectrum 25, 481–495 (2003),
doi:10.1007/s00291-003-0139-1

11. Maringer, D., Parpas, P.: Global optimization of higher order moments in portfolio
selection. Journal of Global Optimization 43, 219–230 (2009), doi:10.1007/s10898-
007-9224-3

12. Maringer, D.G.: Distribution assumptions and risk constraints in portfo-
lio optimization. Computational Management Science 2, 139–153 (2005),
doi:10.1007/s10287-004-0031-8

13. Orito, Y., Yamamoto, H.: Index fund optimization using a genetic algorithm and
a heuristic local search algorithm on scatter diagrams. In: IEEE Congress on Evo-
lutionary Computation, CEC 2007, pp. 2562–2568 (September 2007)

14. Winker, P., Maringer, D.: The hidden risks of optimizing bond portfolios under
var. Journal of Risk 9(4), 1–19 (2007)

15. Woodside-Oriakhi, M., Lucas, C., Beasley, J.: Heuristic algorithms for the cardinal-
ity constrained efficient frontier. European Journal of Operational Research 213(3),
538–550 (2011)

16. Xu, F., Chen, W.: Stochastic portfolio selection based on velocity limited particle
swarm optimization. In: The Sixth World Congress on Intelligent Control and
Automation, WCICA 2006, vol. 1, pp. 3599–3603 (2006)

A Neuro-evolutionary Approach to Intraday

Financial Modeling

Antonia Azzini1, Mauro Dragoni2, and Andrea G.B. Tettamanzi1

1 Università degli Studi di Milano
Dipartimento di Tecnologie dell’Informazione
via Bramante, 65 - 26013 Crema (CR) Italy

{antonia.azzini,andrea.tettamanzi}@unimi.it
2 Fondazione Bruno Kessler (FBK-IRST)
Via Sommarive 18, Povo (Trento), Italy

dragoni@fbk.eu

Abstract. We investigate the correlations among the intraday prices
of the major stocks of the Milan Stock Exchange by means of a neuro-
evolutionary modeling method. In particular, the method used to ap-
proach such problem is to apply a very powerful natural computing
analysis tool, namely evolutionary neural networks, based on the joint
evolution of the topology and the connection weights together with a
novel similarity-based crossover, to the analysis of a financial intraday
time series expressing the stock quote variations of the FTSE MIB com-
ponents. We show that it is possible to obtain extremely accurate models
of the variations of the price of one stock based on the price variations of
the other components of the stock list, which may be used for statistical
arbitrage.

Keywords: Evolutionary Algorithms, Neural Networks, Intraday Trad-
ing, Statistical Arbitrage.

1 Introduction

Many successful applications of natural computing techniques to the modeling
and prediction of financial time series have been reported in the literature [5,6,7].

To our knowledge, the vast majority of such approaches consider only the
time series of daily closing prices only, or at most the opening and closing prices
of each security, without considering what happens during the real-time market,
i.e., the intraday prices.

However, recently, different authors [4,9,10] explored the direction of analyzing
the behavior of the intraday stock prices in order to discover correlations between
the behaviors of different stock prices.

In particular, Bi’s work [4], which takes into account the Chinese stock mar-
ket, highlights that it is possible to infer serial correlations between components,

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 155–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

156 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

while the work presented in [10] discusses the application of data mining tech-
niques to the detection of stock price manipulations by incorporating the
analysis of intraday trade prices, in addition to closing prices, for the inves-
tigation of intraday variations.

Another interesting direction early explored is related to the study of the
impact of financial news on the intraday prices. In this sense, Mittermayer [14]
describes a system implemented to predict stock price trends based on the publi-
cation of press releases. Its system mainly consists of three components: a crawler
of relevant information from press releases, a press release categorizer, and a rea-
soner that is able to derive appropriate trading strategies. The results that he
obtained is that, with an effective categorization of press releases and with an
adequate trading strategy, additional information, useful to forecast stock price
trends, can be easily provided. Two alternatives have been discussed also in [8]
and [11]. In the former, the author focuses on the use of rough set theory for
transforming the unstructured information into structured data; while in the
latter, the author applies four different machine learning techniques in order to
detect patterns in the textual data that could explain increased risk exposure of
some stocks with respect to financial press releases.

The idea proposed in this work follows the first direction. We claim that
the analysis of intraday variations could lead to the discovery of patterns that
permit to improve the accuracy of the predictions of stock variations. In par-
ticular, in this work, we perform a preliminary investigation focusing on the
components of the FTSE MIB index of the Milan Stock Exchange. We use an
evolutionary algorithm to jointly evolve the structure and connection weights of
feed-forward multilayer neural networks that predict the intraday price varia-
tions of one component of the index based on the price variations of the other
components recorded at the same time. The resulting neural networks may be
regarded as non-linear factor models of one security with respect to the others.

The rest of the paper is organized as follows: Section 2 presents the problem
and the dataset, while a brief description of the evolutionary approach considered
in this work is reported in Section 3. The experiments carried out by applying
the evolutionary algorithm are presented in Section 4, together with a discussion
of the results obtained. Finally, Section 5 provides some concluding remarks.

2 Problem Description

The object of our investigation may be formulated as a modeling problem,
whereby we are seeking for a non-linear factor model that expresses the re-
turns of one security as a function of the returns of a set of other securities at
the same instant [12].

In particular, we use feed-forward multilayer neural networks to represent
such non-linear factor models and we exploit a well-tested neuro-evolutionary
algorithm [3] to optimize both the structure (number of hidden layers, number of
neurons in each hidden layer) and the connection weights of the neural networks.

A Neuro-evolutionary Approach to Intraday Financial Modeling 157

Factor models are used primarily for statistical arbitrage. A statistical arbi-
trageur builds a hedged portfolio consisting of one or more long positions and
one or more short positions in various correlated instruments. When the price
of one of the instruments diverges from the value predicted by the model, the
arbitrageur puts on the arbitrage, by going long that instrument and short the
others, if the price is lower than predicted, or short that instrument and long
the others, if the price is higher. If the model is correct, the price will tend to
revert to the value predicted by the model, and the arbitrageur will profit.

The simplest case of statistical arbitrage is pair trading, whereby the financial
instruments considered for constructing the hedged portfolio are just two. The
non-linear factor models that we obtain with our approach may be used for the
more general case where the opportunity set is constituted by all the components
of the index. However, the same models might also be used for pair trading of
each individual stock against the index future, which is generally regarded as an
accurate proxy of the index itself, at least at the time scales involved in intraday
trading.

3 The Neuro Genetic Algorithm

The neuro-evolutionary algorithm that we use is based on the evolution of a
population of individuals, each representing a feed-forward multilayer neural
network, also known as a multilayer perceptron (MLP), through the joint opti-
mization of their structures and weights, here briefly summarized; a more com-
plete and detailed description can be found in the literature [3]. In this work, the
algorithm uses the Scaled Conjugate Gradient method (SCG) [13] instead of the
more traditional error back-propagation (BP) algorithm to decode a genotype
into a phenotype NN, in order to speed up the convergence of such a conven-
tional training algorithm. Accordingly, it is the genotype which undergoes the
genetic operators and which reproduces itself, whereas the phenotype is used only
for calculating the genotype’s fitness. The rationale for this choice is that the
alternative of applying SCG to the genotype as a kind of ‘intelligent’ mutation
operator, would boost exploitation while impairing exploration, thus making the
algorithm too prone to getting trapped in local optima.

The population is initialized with different hidden layer sizes and different
numbers of neurons for each individual according to two exponential distribu-
tions, in order to maintain diversity among all of them in the new population.
Such dimensions are not bounded in advance, even though the fitness function
may penalize large networks. The number of neurons in each hidden layer is
constrained to be greater than or equal to the number of network outputs, in or-
der to avoid hourglass structures, whose performance tends to be poor. Indeed,
a layer with fewer neurons than the outputs destroys information which later
cannot be recovered.

158 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

3.1 Evolutionary Process

The initial population is randomly created and the genetic operators are then
applied to each network until the termination conditions are not satisfied.

At each generation, the first half of the population corresponds to the best
�n/2� individuals selected by truncation from a population of size n, while the
second half of the population is replaced by the offsprings generated through
the crossover operator. Crossover is then applied to two individuals selected
from the best half of the population (parents), with a probability parameter
pcross, defined by the user together with all the other genetic parameters, and
maintained unchanged during the entire evolutionary process.

It is worth noting that the pcross parameter refers to a ‘desired’ crossover prob-
ability, set at the beginning of the evolutionary process. However, the ‘actual’
probability during a run will usually be lower, because the application of the
crossover operator is subject to the condition of similarity between the parents.

Elitism allows the survival of the best individual unchanged into the next
generation and the solutions to get better over time. Then, the algorithmmutates
the weights and the topology of the offsprings, trains the resulting network,
calculates fitness over the validation set, and finally saves the best individual
and statistics about the entire evolutionary process.

The application of the genetic operators to each network is described by the
following pseudo-code:

1. Select from the population (of size n) �n/2� individuals by truncation and
create a new population of size n with copies of the selected individuals.

2. For all individuals in the population:
(a) Randomly choose two individuals as possible parents.
(b) Check their local similarity and apply crossover according to the crossover

probability.
(c) Mutate the weights and the topology of the offspring according to the

mutation probabilities.
(d) Train the resulting network using the training set.
(e) Calculate the fitness f over the validation set.
(f) Save the individual with lowest f as the best-so-far individual if the f

of the previously saved best-so-far individual is higher (worse).
3. Save statistics.

The SimBa crossover starts by looking for a ‘local similarity’ between two indi-
viduals selected from the population. If such a condition is satisfied the layers
involved in the crossover operator are defined. The contribution of each neuron
of the layer selected for the crossover is computed, and the neurons of each layer
are reordered according to their contribution. Then, each neuron of the layer
in the first selected individual is associated with the most ‘similar’ neuron of
the layer in the other individual, and the neurons of the layer of the second
individual are re-ranked by considering the associations with the neurons of the
first one. Finally a cut-point is randomly selected and the neurons above the
cut-point are swapped by generating the offspring of the selected individuals.

A Neuro-evolutionary Approach to Intraday Financial Modeling 159

Weights mutation perturbs the weights of the neurons before performing any
structural mutation and applying SCG to train the network. All the weights
and the corresponding biases are updated by using variance matrices and evo-
lutionary strategies applied to the synapses of each NN, in order to allow a
control parameter, like mutation variance, to self-adapt rather than changing
their values by some deterministic algorithms. Finally, the topology mutation
is implemented with four types of mutation by considering neurons and layer
addition and elimination. The addition and the elimination of a layer and the
insertion of a neuron are applied with three independent probabilities, indicated
as p+layer, p

−
layer and p+neuron, while the elimination of a neuron is carried out only if

the contribution of that neuron is negligible with respect to the overall network
output.

For each generation of the population, all the information of the best individ-
ual is saved.

As previously considered [1,2], the evolutionary process adopts the convention
that a lower fitness means a better NN, mapping the objective function into
an error minimization problem. Therefore, the fitness used for evaluating each
individual in the population is proportional to the mean square error (mse) and
to the computational cost of the considered network. This latter term induces a
selective pressure favoring individuals with reduced-dimension topologies.

The fitness function is calculated, after the training and the evaluation pro-
cesses, by the Equation 1

f = λkc+ (1− λ) ∗mse, (1)

where λ corresponds to the desired tradeoff between network cost and accuracy,
and it has been set experimentally to 0.2 to place more emphasis on accuracy,
since the NN cost increase is also checked by the entire evolutionary algorithm. k
is a scaling constant set experimentally to 10−6, and c models the computational
cost of a neural network, proportional to the number of hidden neurons and
synapses of the neural network.

Following the commonly accepted practice of machine learning, the problem
data is partitioned into training, validation and test sets, used, respectively for net-
work training, to stop learning avoiding overfitting, and to test the generalization
capabilities of a network. The fitness is calculated over the validation set.

4 Experiments and Results

In this section, we present the intraday dataset that has been created for perform-
ing our experiments and the discussion about the results that we have obtained.

4.1 Dataset and Experiment Set-Up

We created the dataset starting from raw data representing the intraday stock
quotes of the FTSE MIB components in the period beginning on August the

160 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

1st, 2011 and ending on November the 20th, 2011, observed every 5 minutes.
For each observation, we have computed the price variation (technically, a log-
return) between the quote of the observation at instant t and the quote of the
previous observation, at instant t− 1,

r(t) = log
x(t)

x(t− 1)
. (2)

We discarded the observations for which t was the first observation of each day
(i.e., the opening price). Therefore, knowing that the trading hours of the Milan
Stock Exchange are from 9:00 am to 5.30 pm, we did not consider for our dataset
any of the observations available whose time label is 9:00 am. The rationale
behind this choice is that while markets are closed, perturbing events (economics,
politics, etc.) that may strongly alter the opening quote of a stock may occur
and, in that case, the variation between the first observation of the current day
and the last observation of the day before could be orders of magnitude larger
than the other stock quotes variations. As a matter of fact, that particular price
variation is anyway of little or no interest to a day trader, who will typically
refrain from maintaining open positions overnight, because of the risks doing
that would involve.

Starting from the data thus obtained, we constructed a distinct dataset for
each component stock of the list. In the case of FTSE MIB, we have 40 stocks,
resulting in the construction of 40 datasets. In each dataset Di, where i is the
stock for which we want to build a model, for each instant t, we used all the
log-returns rk(t), with k �= i as inputs, and we considered the log-return ri(t) as
the desired output of the model. In other words, we are seeking for a model Mi

such that, for all times t,

ri(t) ∼M(r1(t), . . . , ri−1(t), ri+1(t), . . . r40(t)). (3)

In compliance with the usual practice in machine learning, each dataset has been
split into three subsets:

– training set: used for training the neural networks, it takes into account the
stock quotes in the period between August 23rd, 2010 and October 31st,
2010;,

– validation set: used for selecting the best individuals returned by the neuro-
evolutionary algorithm, it takes into account the stock quotes in the period
between August 1st, 2010 and August 13th, 2010;

– test set: used for the final evaluation of the performance of the models ob-
tained, it takes into account the stock quotes in the period between November
1st, 2010 and November 20th, 2010.

The experiments have been carried out by setting the parameters of the algo-
rithm to the values obtained from a first round of experiments aimed at identi-
fying the best parameter setting. These parameter values are reported in Table 1.

A Neuro-evolutionary Approach to Intraday Financial Modeling 161

Table 1. Parameters of the Algorithm

Symbol Meaning Value

n Population size 60

p+
layer

Probability of inserting a hidden
layer

0.05

p−
layer Probability of deleting a hidden

layer
0.05

p+
neuron Probability of inserting a neuron

in a hidden layer
0.05

pcross ‘Desired’ probability of applying
crossover

0.7

δ Crossover similarity cut-off value 0.9
Nin Number of network inputs 39
Nout Number of network outputs 1
α Cost of a neuron 2
β Cost of a synapsis 4
λ Desired tradeoff between net-

work cost and accuracy
0.2

For each modeling task, i.e., for each component of the FTSE MIB index, 40
runs were performed, with 40 generations and 60 individuals for each run. The
number of maximum epochs used to train the neural network represented by
each individual was 250.

4.2 Results and Discussion

In this subsection we report the results obtained by applying the
neuro/evolutionary algorithm to the 40 FTSE MIB intraday datasets. Table 2
shows the average, over the 40 models returned by independent runs of the al-
gorithm, of the mean square error for each of the 40 component of the FTSE
MIB index, along with the standard deviation of the mean square errors. The
average MSE are very small: in practice, the price variations are predicted by
the model with an error between 2% and 3% of the log-return.

In addition, Table 2 reports, for each stock, the 5-minute volatility (computed
as the square of the 5-minute log-returns over the entire period of observation)
is reported, to allow for a comparison of the relative volatilites of the securities
considered—of course, one would expect the most volatile stocks to be harder
to model, and vice versa.

From the results, we can infer some patterns in the performance of the
models discovered by the algorithm. The first aspect is that on stocks of the
financial sector (for instance, BP.MI, BPE.MI, FSA.MI, ISP.MI, and UCG.MI)
the approach obtains higher error values than on stocks related to the energy
sector (ENEL.MI, ENI.MI, and SRG.MI). Related to the former set of stocks,
the results suggest that the task of finding correlations between financial stocks
and the other components of the index is harder; a possible reason is almost
certainty related with the speculative nature that, especially in the last months,

162 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

Table 2. Summary of results obtained on the FTSE MIB intraday dataset

Ticker Stock Name 5-min Volatility Avg. MSE St. Dev
(×10−5) (×10−4) (×10−5)

A2A.MI A2A 2.37 4.227 4.3

AGL.MI AUTOGRILL 0.944 4.641 4.9

ATL.MI ATLANTIA 0.788 3.783 5.1

AZM.MI AZIMUT HOLDING 2.47 6.442 2.2

BMPS.MI BANCA MPS 6.38 5.748 1.9

BP.MI BANCO POPOLARE 3.14 6.367 6.4

BPE.MI BCA POP. EMILIA R. 2.35 6.307 4.5

BZU.MI BUZZI UNICEM 1.70 5.504 6.3

CPR.MI CAMPARI 0.725 3.409 0.7

DIA.MI DIASORIN 1.04 4.728 9.4

EGPW.MI ENEL GREEN POWER 1.33 4.464 8.8

ENEL.MI ENEL 0.913 3.841 6.6

ENI.MI ENI 0.643 3.544 0.9

EXO.MI EXOR 1.99 5.968 5.3

F.MI FIAT 2.60 6.147 8.1

FI.MI FIAT INDUSTRIAL 2.41 6.208 1.0

FNC.MI FINMECCANICA 1.51 5.922 7.6

FSA.MI FONDIARIA-SAI 3.64 7.322 4.7

G.MI GENERALI 1.25 5.068 4.2

IPG.MI IMPREGILO 2.03 5.764 3.1

ISP.MI INTESA SANPAOLO 4.01 6.766 6.1

LTO.MI LOTTOMATICA 1.54 5.665 2.6

LUX.MI LUXOTTICA GROUP 0.723 3.647 0.3

MB.MI MEDIOBANCA 1.52 4.964 7.9

MED.MI MEDIOLANUM 2.51 6.544 4.4

MS.MI MEDIASET 1.36 4.445 9.5

PC.MI PIRELLI & C. 1.78 5.767 1.1

PLT.MI PARMALAT 1.63 4.703 6.8

PMI.MI BCA POP. MILANO 20.7 6.861 4.9

PRY.MI PRYSMIAN 1.38 5.924 2.3

SPM.MI SAIPEM 1.16 4.662 9.4

SRG.MI SNAM RETE GAS 0.842 3.768 0.6

STM.MI STMICROELECTRONICS 1.70 5.345 6.5

STS.MI ANSALDO STS 1.95 5.464 7.1

TEN.MI TENARIS 1.36 4.789 8.0

TIT.MI TELECOM ITALIA 2.60 4.927 7.4

TOD.MI TOD’S 1.45 5.968 9.3

TRN.MI TERNA 1.01 3.907 0.5

UBI.MI UBI BANCA 2.30 5.982 4.7

UCG.MI UNICREDIT 4.93 7.083 5.5

A Neuro-evolutionary Approach to Intraday Financial Modeling 163

characterizes these stocks categories. This is confirmed by the observation that
the stocks of the financial sector are, on average, more volatile than stocks of
the other sectors (4.6× 10−5 vs. 1.2× 10−5). On the contrary, cyclic stocks like
the ones of the energy sector, appear to be easier to model.

The second aspect is related to the set of manufacturing stocks (like F.MI,
FI.MI, FNC.MI, and LUX.MI). By observing their MSE values, we can notice
that the model performances vary widely. Our interpretation of these different
behaviors is related to the very different contingent situations the companies are
facing. Take, for instance, FIAT, who was facing financial tensions and a crisis
of the automotive market during the period under investigation.

Anyway, Figure 1 shows that there is a clear correlation between the volatility
of a security and the average MSE obtained by the neuro-evolutionary algorithm,
as expected.

1 2 5 10 20

4
5

6
7

Volatility

A
vg

. M
S

E

Fig. 1. Plot of the average MSE of evolved models against the 5-minute volatility of
the security modeled

5 Conclusions

In this work we presented an approach whose aim is to discover correlations be-
tween stocks in the intraday market. We performed experiments by considering
the components of the FTSE MIB index of the Milan Stock Exchange and our
results suggest that it is possible to obtain a high prediction accuracy for a time
scale of a few minutes. In general, we found that the accuracy of the evolved
models is higher the less volatile is the stock under investigation, although
even the accuracies of the models for the most volatile stocks are very good.
Future work in this direction will aim at improving the approach by introducing

164 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

a features selection module in order to refine input data by excluding those
features that introduce noise into the learning process. Moreover, further exper-
iments will be performed on several European and non-European stock markets
in order to verify the existence of correlations both on the same or on different
indexes.

References

1. Azzini, A., Dragoni, M., Tettamanzi, A.: A Novel Similarity-Based Crossover for
Artificial Neural Network Evolution. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg
(2010)

2. Azzini, A., Tettamanzi, A.: Evolving neural networks for static single-position au-
tomated trading. Journal of Artificial Evolution and Applications 2008 (Article ID
184286), 1–17 (2008)

3. Azzini, A., Tettamanzi, A.: A new genetic approach for neural network design. In:
Engineering Evolutionary Intelligent Systems. SCI, vol. 82. Springer, Heidelberg
(2008)

4. Bi, T., Zhang, B., Xu, R.: Dynamics of intraday serial correlation in china’s
stock market. Communications in Statistics - Simulation and Computation 40(10),
1637–1650 (2011)

5. Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance.
SCI, vol. 1. Springer, Heidelberg (2008)

6. Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance.
SCI, vol. 2. Springer, Heidelberg (2009)

7. Brabazon, A., O’Neill, M., Maringer, D. (eds.): Natural Computing in Computa-
tional Finance. SCI, vol. 3. Springer, Heidelberg (2010)

8. Cheng, S.H.: Forecasting the change of intraday stock price by using text mining
news of stock. In: ICMLC, pp. 2605–2609. IEEE (2010)

9. Chicco, D., Resta, M.: An intraday trading model based on artificial immune sys-
tems. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F. (eds.) WIRN. Frontiers
in Artificial Intelligence and Applications, vol. 226, pp. 62–68. IOS Press (2010)

10. Diaz, D., Theodoulidis, B., Sampaio, P.: Analysis of stock market manipulations
using knowledge discovery techniques applied to intraday trade prices. Expert Syst.
Appl. 38(10), 12757–12771 (2011)

11. Groth, S., Muntermann, J.: An intraday market risk management approach based
on textual analysis. Decision Support Systems 50(4), 680–691 (2011)

12. Harris, L.: Trading and exchanges: market microstructure for practitioners. Oxford
University Press (2003)

13. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards 49(6) (1952)

14. Mittermayer, M.A.: Forecasting intraday stock price trends with text mining tech-
niques. In: HICSS (2004)

A Comparative Study of Multi-objective

Evolutionary Algorithms to Optimize
the Selection of Investment Portfolios

with Cardinality Constraints

Feijoo E. Colomine Duran1, Carlos Cotta2, and Antonio J. Fernández-Leiva2

1 Universidad Nacional Experimental del Táchira (UNET)
Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela

fcolomin@unet.edu.ve
2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain

{ccottap,afdez}@lcc.uma.es

Abstract. We consider the problem of selecting investment components
according to two partially opposed measures: the portfolio performance
and its risk. We approach this within Markowitz’s model, considering
the case of mutual funds market in Europe until July 2010. Comparisons
were made on three multi-objective evolutionary algorithms, namely
NSGA-II, SPEA2 and IBEA. Two well-known performance measures are
considered for this purpose: hypervolume and R2 indicator. The com-
parative analysis also includes an assessment of the financial efficiency
of the investment portfolio selected according to Sharpe’s index, which
is a measure of performance/risk. The experimental results hint at the
superiority of the indicator-based evolutionary algorithm.

1 Introduction

There are several theoretical studies related to risk-return interaction. The po-
tential loss of performance or investment is not static, but it always depends on
market developments. In the literature, we can find several proposals that model
this scenario. For example, Markowitz’s model [14] has become a key theoretical
framework for the selection of investment portfolios. However, its application in
practice has not been as extensive, mainly due to the mathematical complexity
of the method.

Markowitz’s model with multiple objectives is expressed as:

min σ2(Rp) =

n∑
i=1

n∑
j=1

wiwjσij , maxE(Rp) =

n∑
i=1

wiE(Ri) (1)

subject to:
n∑

i=1

wi = 1, and wi � 0 (i = 1, · · · , n) (2)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 165–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

166 F.E. Colomine Duran, C. Cotta, and A.J. Fernández-Leiva

where wi is the investor’s share of the budget for the financial asset i (to be
found), σ2(Rp) is the variance of the portfolio p, and σij is the covariance between
the returns of the values i and j. E(Rp) is the expected return or portfolio p,
which are the set of proportions that minimize the risk of the portfolio and and
its corresponding value. The set of pairs [E(Rp), σ

2(Rp)] or combinations of all
risk-return efficient portfolios is called the efficient frontier. Once known, the
investor chooses according to his preferences the optimal portfolio. In this model
some other restrictions can be added, such as cardinality (a maximum of K is
non-zero weights) or limits on the percentage of an asset allocation. In this paper
we focus on the constraints of the first type:∑

wi>0

1 = K (3)

The research considers a comparative study between different multi-objective
evolutionary algorithms. More specifically the comparative study considers three
algorithms: SPEA2 [24], NSGA-II [5], and IBEA [23]. We also address the selec-
tion of a point in the Pareto front using Sharpe’s index [19] whose expression is:

Sp =
E(Rp)−R0

σp
(4)

This index is a risk-return ratio. The numerator is the excess return defined
by the difference between the yield on the portfolio (E(Rp)) and the risk free
rate (R0) in the same period of assessment. The portfolio risk is measured by
the standard deviation of this (σp). That is, indicates the yield premium offered
by a portfolio per unit of total risk of the same. It follows that the higher the
risk-reward ratio, the greater the success of fund management.

The objective of this goal is to assess comparatively the performance of several
multi-objective EAs on this problem scenario. For this purpose, we will firstly
overview some related work in next section.

2 Related Work

There is a plethora of works in the literature dealing with the use of MOEAs
in the area of investment portfolio optimization. Without being exhaustive, we
can firstly cite the work by Diosan [6], who makes a comparison between PESA
[4], NSGA II and SPEA2, and through empirical results suggests the adequate-
ness of PESA. See also [1] for a comparison of these techniques in this context.
Chang et al. [3] compare the use of different meta-heuristics (both evolution-
ary and local-search ones) for finding the efficient frontier by adding cardinal-
ity constraints. Perez et al. [15] make in turn a comparison between MOGA
[9], NPGA [11] and NGGA [16] concluding the superiority of NGGA. On the
other hand, Doerner et al. [7] make a comparison between Pareto Optimization

A Comparative Study of Multi-objective Evolutionary Algorithms 167

Using Ant Colony (PACO), simulated annealing and NSGA [21] in terms of both
quality and computational cost, suggesting the superiority of PACO. Ehrgott et
al. [8] propose an interesting variation of Markowitz’s model adding additional
objective functions to consider the individual preferences of the investor, and
find genetic algorithms to perform better than local-search techniques. Skol-
padungket et al. [20] perform a comparison between VEGA [17], MOGA, NSGA
II and SPEA2 in the context of financial portfolio optimization, and find that
SPEA2 provide the best performance.

3 Material and Methods

In the following we will address the data and algorithms used in the experimenta-
tion, as well as the performance measures considered for evaluating performance.

3.1 Data Analyzed

We consider data corresponding to mutual funds in Europe. More precisely,
these data comprise the stock value of the funds, sampled on a monthly basis for
five years. This period of time is long enough to span a full market cycle, with
rises and falls, but not large enough to comprise profound changes in the reality
of each of the fund shares, thus making past information little representative
for foreseeing future performance. Based on this analysis we take a sample at
the discretion of choosing funds that are no older than five years and are still
available on the market. Table 1 shows the various funds used. The risk-free
return R0 is referenced is 0.04.

Table 1. Mutual funds considered [22]

Mutual Fund Europe

1 DFA United Kingdom Small Compan
2 Eastern European Equity A (VEEE)
3 Eastern European Equity C (VEEC)
4 Henderson European Focus A (HFE)
5 Henderson European Focus B (HFE)
6 ING Russia A (LETRX)
7 JPMorgan Russia A (JRUAX)
8 JPMorgan Russia Select (JRUSX)
9 Metzler Payden European Emergin
10 Mutual European A (TEMIX)
11 Mutual European B (TEUBX)
12 Mutual European C (TEURX)
13 Mutual European Z (MEURX)
14 Royce European Smaller Companie
15 Third Millennium Russia I (TMRI)

168 F.E. Colomine Duran, C. Cotta, and A.J. Fernández-Leiva

3.2 Algorithmic Methods

The optimization of investment portfolios according to a variety of performance-
risk profiles lends itself very well to multi-objective optimization techniques in
general, and multi-objective evolutionary algorithms (MOEAs). Aiming to com-
pare the performance of three different MOEAs on the same problem setting and
using the same experimental data, we have considered the following techniques:

1. Second-generation Pareto-based MOEAs: NSGA-II (Non-dominated Sorting
Genetic Algorithm II) [5] and SPEA2 (Strength Pareto Evolutionary Algo-
rithm 2) [24]. These MOEAs are based on the notion of Pareto-dominance,
used for determining the solutions that will breed and/or the solutions that
will be replaced. furthermore, as second-generation techniques they exploit
elitism (an external archive of non-dominated solutions in the case of SPEA2,
and a plus-replacement strategy in the case of NSGA-II). More precisely,
NSGA-II sorts the population in non-domination levels (performing binary
tournament on the so-obtained ranks for selection purposes), and uses crowd-
ing for performing replacement and spreading the Pareto front. As to SPEA2,
it features an external archive of solutions which is used to calculate the
“strength” of each individual i (the number of solutions dominated by or
equal to i, divided by the population size plus one). This is used for selec-
tion purposes (aiming to minimize the strength of solutions which are non-
dominated by tentative parents). SPEA2 also includes a nearest-neighbor
density estimation technique to spread the front, and a sophisticated archive
update strategy to preserve boundary conditions.

2. Indicator-based MOEAs: IBEA (Indicator-Based Evolutionary Algorithm)
[23] attempts to incorporate practical decision-making and privileged infor-
mation when searching for Pareto solutions. The question that arises is how
to concentrate the search in regions of the Pareto front that are of interest
to the person responsible for taking the decision. This is done in IBEA by
maximizing (or minimizing) some performance indicator. By doing so, IBEA
can be considered a collective approach, where selective pressure is exerted
to maximize the performance of the whole population. In this work, we have
considered an IBEA based on the ε-indicator [26].

As to the parameters considered, these are described in Table 2.

3.3 Performance Indicators

The evaluation of the performance of a MOEA is in itself a multi-objective
problem, that can be approached in multiple ways. We have considered two
well-known performance indicators: the hypervolume indicator [25] and the R2

indicator [10]. The first one provides an indication of the region in the fitness
space that is dominated by the front, and which must be maximized for bet-
ter performance. As to the second indicator, it estimates the extent to which a
certain front approximates another one (the Pareto-optimal front or a reference
front if the former is unknown). We have considered the unary version of this

A Comparative Study of Multi-objective Evolutionary Algorithms 169

Table 2. Parameterization considered in the experimentation

Parameter Value

representation binary
number of genes 15

gene size 10 bits
size of chromosome 150
population size 300
generations 100

selection type tournament/elitist
crossover operator 2-Point Crossover

crossover probability 0.8
mutation operator bitflip

mutation probability 0.0666

indicator, taking the combined NSGA-II/SPEA2/IBEA Pareto front as a refer-
ence set. Being a measure of distance to the reference set, R2 must be minimized
for better performance

4 Experimental Results

Experimentation has been done before the three algorithms described, namely,
NSGA-II, SPEA2 and IBEA, using the PISA library [2], the parameters de-
scribed in Table 2, and the data described in Table 1. Four different values of
the cardinality constraint K have been considered, namely K ∈ {2, 4, 7, 15}. For
each algorithm and value of K, thirty runs have been done.

4.1 Analysis of the Pareto Front

The first part of the experimentation focused on the analysis of the obtained
Pareto front. The three algorithms behave very similarly, with slight differences
is the high-risk end of the fronts. To analyze in more detail these results we
have applied the two performance indicators mentioned in Sect. 3.3, namely
hypervolume and R2. In the first case we have used as reference a point of
maximum risk and minimum benefit. As to the latter, distance is measured
against the best-known front (the combined front front the three algorithms).
Figures 1–2 shows the distribution of values of the indicators for each algorithm
for the two extreme cardinality values (K = 2 and K = 15).

Inspection of these figures indicates that SPEA2 provides better performance
for a low value ofK. In this constrained scenario, SPEA2 provides a broader domi-
nance of the performance-risk fitness space, and is globally closer to the best-known
Pareto front. However, in the other end of the spectrum (high value ofK, and hence
less constrained portfolios) IBEA stands out as a more effective algorithm. This
is also the case for the intermediate values K = 4 and K = 7. In all cases, these
performance differences can be shown to be statistically significant (at α = 0.05)
via the use of a non-parametric Wilcoxon test [13].

170 F.E. Colomine Duran, C. Cotta, and A.J. Fernández-Leiva

NSGA−II SPEA2 IBEA

1.552

1.554

1.556

1.558

1.56
x 10

−3 Index Hypervolumen K=2

hy
pe

rv
ol

um
en

 NSGA−II SPEA2 IBEA
1.5645

1.5646

1.5646

1.5647
x 10

−3

hy
pe

rv
ol

um
e

(C
om

bi
ne

d
F

ro
nt

ie
r)

Europa

NSGA−II SPEA2 IBEA

2

2.2

2.4

2.6

2.8
x 10

−4 R2 index K=2

R
2

NSGA−II SPEA2 IBEA
0.8

1

1.2

1.4

1.6

1.8

2
x 10

−5

R
2 (

C
om

bi
ne

d
F

ro
nt

ie
r)

Europa

Fig. 1. Hypervolume and R2 indicator for K = 2

NSGA−II SPEA2 IBEA

1.3

1.35

1.4

1.45
x 10

−3 Index Hypervolumen K=15

hy
pe

rv
ol

um
en

 NSGA−II SPEA2 IBEA

1.44

1.445

1.45

1.455

x 10
−3

hy
pe

rv
ol

um
e

(C
om

bi
ne

d
F

ro
nt

ie
r)

Europa

NSGA−II SPEA2 IBEA
0

1

2

3

4

5

6

7

x 10
−3 R2 index K=15

R
2

NSGA−II SPEA2 IBEA
0

1

2
x 10

−4

R
2 (

C
om

bi
ne

d
F

ro
nt

ie
r)

Europa

Fig. 2. Hypervolume and R2 indicator for K = 15

4.2 Analysis through Sharpe’s Ratio

Sharpe’s index is used for decision-making once a front is obtained; it allows
picking a single solution out of the whole efficient front, trying to maximize
excess profit per risk unit. Geometrically, this can be interpreted as finding
the straight line with highest slope that is tangent to the front and passes
through the risk-free point (0, R0). This is obviously influence by the shape of the
front; the analysis of the results through this index can thus be used how effi-
cient are the MOEAs in terms of the performance-risk profile arising from this
decision-making procedure. Figure 3 shows the distribution of Sharpe’s index
values for the different cardinality values.

Visual inspection of these results indicate a substantial advantage for IBEA.
This advantage is again shown to be statistically significant via the use of a
Wilcoxon ranksum test (α = 0.05). We can also make an analysis of how different

A Comparative Study of Multi-objective Evolutionary Algorithms 171

NSGA−II SPEA2 IBEA

1.5426

1.5428

1.543

1.5432

1.5434

1.5436

1.5438

1.544

1.5442

1.5444

Mutual Funds Europe

S
ha

rp
e

In
de

x

NSGA−II SPEA2 IBEA

1.515

1.52

1.525

1.53

1.535

1.54

1.545

Mutual Funds Europe

S
ha

rp
e

In
de

x

NSGA−II SPEA2 IBEA

1.44

1.46

1.48

1.5

1.52

1.54

Mutual Funds Europe

S
ha

rp
e

In
de

x

NSGA−II SPEA2 IBEA
1.4

1.42

1.44

1.46

1.48

1.5

1.52

Mutual Funds Europe

S
ha

rp
e

In
de

x

Fig. 3. Sharpe’s index distribution for MOEAs under Markowitz’s model. Top row:
K = 2 (left) and K = 4 (right). Bottom row: K = 7 (left) and K = 15 (right).

algorithms behave when varying the risk-free return component (R0). In this
case, it can be observed that as the cardinality rises, IBEA returns slightly
better results for increasing risk-free values.

5 Conclusions

The problem of portfolio optimization is a natural scenario for the use of
multiobjective evolutionary algorithms, in which their power and flexibility can
be readily exploited. In this sense this paper has analyzed three different
state-of-the-art MOEAs, namely NSGA II, SPEA2 and IBEA under a common
experimental framework centered in mutual funds in Europe. While the three
algorithms provide a variety of solution profiles that can be considered optimal
in a Pareto sense, a performance analysis conducted under two specific indica-
tors (hypervolume and R2) indicate that IBEA performs significantly better, in
particular when the cardinality constraint K does not take an extremely low
value. This can be interpreted in terms of the exploration capabilities of the
multi-objective optimizer for the richer (less-constrained) fitness landscapes. As
an additional means of comparison among the MOEAs, we have considered the

172 F.E. Colomine Duran, C. Cotta, and A.J. Fernández-Leiva

outcome of a decision-making process based on the use of Sharpe’s index. Again,
IBEA stands out, indicating that it provides a better exploration capability in
the area of fitness space around the knee of the front.

In future work we intend to explore other variants of the optimization problem
by adding, e.g., maximum and minimum rates of investment. We also intend to
study other model variations such as Jensen’s alpha [12] under a market model
such as CAPM (Capital Asset Pricing Model [18]).

Acknowledgements. This work is partially supported by Spanish MICINN un-
der projects NEMESIS (TIN2008-05941) and ANYSELF (TIN2011-28627-C04-
01), and by Junta de Andalućıa under project TIC-6083.

References

1. Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three
objectives and discrete variables. Comput. Oper. Res. 37, 1285–1297 (2010)

2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Program-
ming Language Independent Interface for Search Algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

3. Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinal-
ity constrained portfolio optimisation. Computers and Operations Research 27,
1271–1302 (2000)

4. Corne, D., Knowles, J., Oates, M.: The Pareto Envelope Based Selection Algorithm
for Multiobjective Optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J.,
Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI 2000. LNCS, vol. 1917,
pp. 839–848. Springer, Heidelberg (2000)

5. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb,
K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN VI 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

6. Diosan, L.: A multi-objective evolutionary approach to the portfolio optimization
problem. In: Proceedings of the International Conference on Computational Intel-
ligence for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC
2006, vol. 2, pp. 183–187. IEEE, Washington, DC, USA (2005)

7. Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., Stummer, C.: Pareto ant colony
optimization: A metaheuristic approach to multiobjective portfolio selection. An-
nals of Operations Research 131, 79–99 (2004)

8. Ehrgott, M., Klamroth, K., Schwehm, C.: An MCDM approach to portfolio opti-
mization. European Journal of Operational Research 155(3), 752–770 (2004)

9. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the
Fifth International Conference Genetic Algorithms, pp. 416–423. University of Illi-
nois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California
(1993)

10. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the
nondominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical
Modelling Technical University of Denmark (1998)

A Comparative Study of Multi-objective Evolutionary Algorithms 173

11. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for mul-
tiobjective optimization. In: First IEEE Conference on Evolutionary Computation,
pp. 82–87. IEEE (1994)

12. Jensen, M.C.: The performance of mutual funds in the period 1945 - 1964. Journal
of Finance 23, 383–417 (1968)

13. Lehmann, E.L., D’Abrera, H.J.M.: Nonparametrics: Statistical Methods Based on
Ranks. Prentice-Hall, Englewood Cliffs (1998)

14. Markowitz, H.M.: Portfolio selection. Journal of Finance 7, 77–91 (1952)
15. Pérez, M.E., del Olmo, R., Herrera, F.: The formation of efficient portfolios us-

ing multiobjective genetic algorithms. Technical Report DECSAI-00-01-26, Dept.
CCIA, Universidad de Granada (2000)

16. Valenzuela Rendón, M., Uresti Charre, E.: A non-generational genetic algorithm for
multiobjective optimization. In: Bäck, T. (ed.) Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms, pp. 658–665. Michigan State University,
Morgan Kaufmann, San Mateo, California (1997)

17. David Schaffer, J.: Multiple objective optimization with vector evaluated genet-
icalgorithms. In: Grefenstette, J.J. (ed.) Proceedings of the First International
Conference on Genetic Algorithms and their Applications, pp. 93–100. Lawrence
Erlbaum, Hillsdale NJ (1985)

18. Sharpe, W.F.: Capital assets prices: A theory of market equilibrium under condi-
tions of risk. Journal of Finance 19, 425–442 (1964)

19. Sharpe, W.F.: Mutual fund performance. Journal of Business 39, 119–138 (1966)
20. Skolpadungket, P., Keshav, D., Napat, H.: Portfolio optimization using multi

objective genetic algorithms. In: IEEE Congress on Evolutionary Computation,
pp. 516–523 (2007)

21. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2, 221–248 (1994)

22. Yahoo Finance. Mutual funds center (2011)
23. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao,

X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

24. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolu-
tionary algorithm. In: Giannakoglou, K., et al. (eds.) EUROGEN 2001. Evolution-
ary Methods for Design, Optimization and Control with Applications to Industrial
Problems, Athens, Greece, pp. 95–100 (2002)

25. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

A GA Combining Technical and Fundamental

Analysis for Trading the Stock Market

Iván Contreras1, José Ignacio Hidalgo1, and Laura Núñez-Letamendia2

1 Facultad de Informática, Universidad Complutense de Madrid, Spain
ivancontrerasfd@gmail.com, hidalgo@dacya.ucm.es

2 IE Business School, Madrid, Spain
Laura.Nunez@ie.edu

Abstract. Nowadays, there are two types of financial analysis oriented
to design trading systems: fundamental and technical. Fundamental anal-
ysis consists in the study of all information (both financial and nonfi-
nancial) available on the market, with the aim of carrying out efficient
investments. By contrast, technical analysis works under the assumption
that when we analyze the price action in a specific market, we are (in-
directly) analyzing all the factors related to the market. In this paper
we propose the use of an Evolutionary Algorithm to optimize the para-
meters of a trading system which combines Fundamental and Technical
analysis (indicators). The algorithm takes advantage of a new operator
called Filling Operator which avoids problems of premature convergence
and reduce the number of evaluations needed. The experimental results
are promising, since when the methodology is applied to values of 100
companies in a year, they show a possible return of 830% compared with
a 180% of the Buy and Hold strategy.

1 Introduction

Investors and analysts have been using for the last few years several techniques
to predict the value of the securities, indexes and market prices. Roughly speak-
ing, there are two distinct (but not exclusive) streams, depending on the type
of information they handle: Technical Analysis (TA) and Fundamental Analysis
(FA). FA is based on the assumption that the value of a share is the discounted
stream of future profits of the company. This analysis attempts to determine
what those future benefits will be, and tries to know all possible information
of the company (news and information that concern them, potential corporate
moves, strategies, competitors, new products, etc..). The more information that
can be obtained, the better. Any microeconomic information that is related to
the company will have an impact on these future cash flows. Macroeconomic
data is also important. Aspects to consider are the evolution of the overall busi-
ness environment, regulatory and political environments, etc... FA attempts to
transfer this information to the accounts of preliminary results, which can be
deduced to find the present and actual value of the action. On the other hand,
TA is based on the fact that the value of a share in the future is strongly related

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 174–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A GA Combining TA & FA for Trading the Stock Market 175

to the previous trajectory of this share. This analysis find patterns (in finance
called up-trends and down-trends) and thresholds where the value of a share will
bounce. Ultimately, TA uses mathematical models of different complexity that
aim to predict the value of a share by studying historical patterns.

As mentioned above, the use of both types of analysis is not necessarily ex-
clusive, i.e., an analyst can use fundamental and technical information together
to make his operations. During the last years the investment systems have en-
volved into more complex models. The reasons for this change are mainly due
to the large amount of information available as well as the use of sophisticated
computer systems to make predictions and to set buy and sell orders. In this
sense, Evolutionary Algorithms (EAs) provide a very useful tool to adjust all
the parameters involved in the investment process. Thus, we can find different
proposals on how to use EAs on this field. For example Allen and Karjalaein
[1] proposed to use one of the first works on using Genetic Algorithms (GAs)
to find technical trading Rules (this is precisely the title of the work). They ap-
plied a GA to obtain technical trading rules and compare the results with other
models and the Buy and Hold (B&H) Strategy. In [14] Nuñez designed four GAs
models incorporating different factors (e.g. risk, transaction costs, etc.) to obtain
financial investment strategies. It is showed that all four GA models generate
superior daily returns of long positions with lower risk than B&H strategy for
1987-1996 share price data from the Madrid Stock Exchange (Spain). Bodas et
al. ([10] [4]) applied a MOEASI (Multi Objetive Evolutionary Algorithm with
Super Individual), approach for obtaining the best parameters to apply MACD
(Moving Average Convergence Divergence) and RSI (Relative Strength Index)
technical indicators and show that this technique could work well on stock in-
dex trending comparing with a B&H strategy. In [11] the authors describe a
trading system designed with GAs that uses different kind of rules with market
and companies information. The system is applied to trade, on a daily base, to
companies belonging to the S&P 500 index. They propose to apply the method-
ology to TA and FA separately and the authors claim that the main problem
is the computational time required for training the trading system with daily
data of stocks prices. This restriction is partially solved in [7] with the imple-
mentation on a parallel computer architecture to speed up the functioning of a
GA-based trading system to invest in stocks: a GPU-CPU architecture. There
are also other approaches that use Genetic Programming (GP) for obtaining a
set of rules and signals for investing [12] [13].

In this paper we propose the use of EAs to optimize jointly the parame-
ters of FA and TA. We have implemented two GA versions: a classical simple
one (sGA) and a GA with a new operator, namely Filling Operator (GAwFO).
This implementation helps to preserve the diversity of the population and solves
the problem of premature convergence found when applying sGA. In addition
GAwFO uses a particular structure of the population specifically designed to
facilitate the implementation on GPUs and to reduce the number of evaluations.
Experimental results indicate that the proposal is positive both in terms of qual-
ity of the solutions, and in terms of the convergence of the algorithm. The rest of

176 I. Contreras, J. Ignacio Hidalgo, and L. Núñez-Letamendia

the paper is organized as follows. Section 2 describes the implementation details
of GAwFO, explains the GA encoding and other details of the GA. Section 3
presents the experimental results when applying the proposed methodology to
a set of companies during 2004. We also analyse the evolution of the best indi-
viduals for GA and GAwFO. Finally, we conclude the paper and outline some
future research lines in Section 4.

2 Genetic Algorithm and Trading System

In this paper we propose the use of an EA for optimizing the trading system. The
objective is to obtain a set of trading signals indicating buy or sell. An individual
represents a set of parameters and threshold values that are used by a trading
system in order to obtain buy, maintain or sell signals. First we describe the
details of the GAs, then we explain the encoding and the trading system.

2.1 GA Implementation

We have implemented two versions of a GA: a simple GA and an improved
version called GA with Filling Operator (GAwFO). First we implemented a
classic version of the genetic algorithm. Although the results are acceptable, in
certain situations sGA suffers from problems of premature convergence, one of
the first problems that we can found in a GA run. The problem is a fast lost
in the diversity of the population when a single solution tends to transfer its
genetic code to the entire population in a few generations. This would not be
a problem if the solution was good enough. However, as the algorithm has not
been left to evolve sufficiently, the solution obtained is usually a local optimum.
Different techniques exist to prevent this. The most common is to increase the
size of the population, but it has a high computational cost in our case. There
are also strategies for regeneration, a mating strategy called incest prevention, to
increase the value of the probability of mutation, etc In order to preserve the
diversity of the population we propose a GA with a Filling operator (GAwFO).
Basically, the GAwFO approach consists of a sGA with a modification of the
selection and crossover operators, and as a consequence of this change it applies
an operator driven to the generation of new random individuals.

Figure 1 shows the basic flow of GAwFO. We start from a population of n
individuals obtained in the previous generation. As a first step, we retain the
best individual which can not be changed with the implementation of other
genetic operators but participate in the process of creating new individuals.
We then select s = (n/2) − 1 individuals who participate in creating the rest
of the population. This selection process is done by tournament among two
individuals. With this s individuals we apply an uniform crossover operator,
with a crossover probability (pc), generating m new individuals. Since pc < 1,
in most generations we will get m < (n/2). In order to preserve the size of the
population (n individuals) we will need to generate k = n − s−m individuals.
This is done by the Filling Operator, which generates k random individuals in

A GA Combining TA & FA for Trading the Stock Market 177

each generation (note that k is not a constant value for all generations, as it
depends on the number of crossings made by the crossover operator). On this
new population of n = 1 + s+m+ k individuals we apply a classical mutation
operator with probability pm only to the offspring ofm individuals. The crossover
operator follows a Uniform Point Crossover (UPX) strategy [16]. This election
was made after testing other possibilities (results are not presented here due to
the lack of space). We use a classic mutation operator which replaces the value
of a random gene with another random value. For each gene the values of the
bounds are represented in the Range column of Table 1.

As can be deduced from the previous explanation, this implementation does
not use effectively the entire size of the population, since there are s individu-
als which do not vary for a generation. However, individuals do transmit their
information to the next generation because they are precisely those involved in
the crossover. Given the nature of the problem this can be useful to get several
solutions, on the other hand it reduces the computation time, (it is not necessary
to evaluate n/2 of the population in each generation) and it is also interesting
for future implementations on GPU architectures that allow for faster execution.

Fig. 1. General pattern of GAwFO operating in a cycle

2.2 Trading System

One solution is given by a set of values, which indicate weights and parameters
or thresholds for a selected set of technical and fundamental indicators. The
trading system works as follows:

1. The investor selects a set of Technical Indicators for TA
2. The investor selects a set of Fundamental Indicators for FA
3. Establish Thresholdbuy and Thresholdsell ranges and Weights ranges
4. For each company i

178 I. Contreras, J. Ignacio Hidalgo, and L. Núñez-Letamendia

(a) Apply GAwFO over a period of years to obtain a solution
(b) Apply TA and FA using the parameters given by (a) to the target year

i. For each indicator Ij generate the indicator signal Ijs (Buy = 1, Sell
= −1 or Neutral = 0) as follows:
A. if Ij > or < Thresholdbuy on a day Buy Ijs = 1
B. elseif Ij > or < Thresholdsell on a day Sell Ijs =-1
C. else Neutral Ijs=0

ii. Compute the Raw Trading System Signal by adding the indicators
signals weighted by their weights RTSs =

∑n
j=1 Ijs ·Wj

iii. Compute the Net Trading System Signal choosing values for X and
Y as follows:
A. If RTSs = or > X then TSs = 1
B. elseif RTSs = or < −Y then TSs = −1
C. else TSs = 0

iv. Compute the profit given by the Trading System

TA is formulated by four Technical Indicators (TI) selected by the investor and
four weights corresponding to each indicator (W1, W2, W3 and W4) . In this
work the selected TIs are Moving Average(MA), market Volume (V), Relative
Strength Index Divergences (RSI) and Support and Resistances (SR). Each one
of these technical indicators gives us a signal of buy, sell or neutral. The values
of W1, W2, W3 and W4 weigh the importance of each indicator in obtaining buy
or sell signals. FA uses also four Fundamental Indicators (FIs) and four weights
corresponding to each indicator (W5, W6, W7 and W8). We use Price Earning
Ratio (PER), Price Book Value (PBV), Return On Assets (ROA) and, Sales
Growth (SG) as FIs. Those indicators have been selected following the historical
usefulness in the literature on investments and it’s out of the scope of this paper
to go into details about their interpretation and logic (we refer the interested
reader to [2],[3],[5],[6],[9],[8] and [15]).

2.3 Genetic Encoding

The chromosome has a total of 23 positions or genes separated into two parts.
The first 11 genes represent values that are interpreted by TA and the remain-
der (12 genes) affect FA indicators. Using the set of technical and fundamental
indicators (previously selected by the investor) with the encoded values, we get
a signal to buy, sell or remain inactive for each of the companies. With all the
indicators (TA and FA) we obtain a value Si for buying and selling (for example
if we obtain 3 buying an 4 selling signals, the value will be Si = 3−4 = −1. Once
we have the sum of all trading signals, we use a determinate range for buy, sell
or do nothing (Thresholdbuy and Thresholdsell). The higher the module of the
thresholds are, the more conservative the trading system will be (less movements
of trading). Then we compute the benefit of buying and selling following the sig-
nals indicated by the chromosome. Figure 2 represents an example of a member
of the population. The meaning of the genes is explained on Table 1. It shows
the indicator affected by each gene and the meaning (Long) of the acronyms

A GA Combining TA & FA for Trading the Stock Market 179

Table 1. Genetic Encoding. ∗1 means Upper threshold and ∗2 means Lower Threshold

Gene Name Range Example

Short Long Lower Upper Jumps Coded Decoded

1 MAS Short Moving Average 1 50 1 14 15

2 MAL Long Moving Average 51 150 1 49 100

3 RSIM Relative Strength Index 1 50 1 3 4

4 RSID Relative Strength Index 1 50 1 21 22

5 V Volumen 1 50 1 38 39

6 S Supports 1 100 1 89 90

7 R Resistances 1 100 1 75 76

8 W1 Weight MA 0 4 1 1 1

9 W2 Weight RSI 0 4 1 1 1

10 W3 Weight V 0 4 1 2 2

11 W4 Weight SR 0 4 1 0 0

12 PERU Price Earning Ratio∗1 9 18 0.5 18 18

13 PERL Price Earning Ratio∗2 20 29 0.5 10 25

14 PBVU Price Book Value∗1 1.5 3 0.1 15 3

15 PBVL Price Book Value∗2 3.25 4.75 0.1 0 3.25

16 ROAU Return on Assets∗1 6 10 0.1 40 10

17 ROAL Return on Assets∗2 1 5 0.1 11 2.1

18 SGU Sales Growth∗1 6 10 0.1 18 7.8

19 SGL Sales Growth∗2 1 5 0.1 6 1.6

20 W5 Weight PER 0 4 1 4 4

21 W6 Weight PBV 0 4 1 1 1

22 W7 Weight ROA 0 4 1 1 1

23 W8 Weight SG 0 4 1 0 0

Fig. 2. Genetic Encoding

(Short). A gene can get a value on [Upper, Lower] with steps indicated on the
Jump column. As we are using an integer encoding the encoded value differs
from the actual (Decoded) value.

2.4 Fitness Function

The best way to evaluate an individual is calculating a the accumulated re-
turn obtained when applying the trading systems to the sample data computed
as described by equations 1 and 2. ARf is the accumulated return at the end
of the trading period and DRi is the daily return. Pi denotes the stock price
at day “i”, while RFDRi is the risk-free daily return given by the US Treasury

180 I. Contreras, J. Ignacio Hidalgo, and L. Núñez-Letamendia

Bills, and TS stands for Trading System. We also compute the transaction costs
(CostTrans) on each buying/selling operation as a commission fee of 0.1% in
RFR strategy and a 0.5% in the B&H strategy.

ARf =

i=1∏
f

(1 +DRi)− CostTrans (1)

DRi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pi−Pi−1

Pi−1
if the TS gives a long signal

−(Pi−Pi−1)
Pi−1

if the TS signal is short selling

RFDRi if the TS signal is neutral

(2)

3 Experimental Results

The experimental results has been obtained on a Intel i5 processor running at
2,67 GHz under Windows7 and with 4GB RAM. The data in the graphs rep-
resents the arithmetic average of 20 runs. sGA and GAwFO were run with a
sample of 100 companies included in the S&P 500 Index Constituent List during
the period January 1994 to December 2003. We apply FA and TA with the so-
lutions during the year (2004). The data provides around 35000 observations for
quarterly fundamental data and 41000 observations for monthly technical data.
The source of the data is Compustat and CRSP databases. Table 2 shows the
financial results for our trading system. We achieved a profit of the 830% using
the GAwFO application, while the profit with Buy&Hold is 180%. Regarding the
convergence of the GAs, as we have mentioned one of the objectives of GAwFO
is to preserve the diversity of the population and improve the convergence of
the GA. Figure 3 represents results for GA and GAwFO for 100 and 500 gen-
erations and for 10, 50, 100, 500, 1000, 5000 and 10000 indivuals (n). The Y axis
represents the average profit reached by our trading system, i.e. the quality of
the best solution found by the algorithm. X axis represents the number of in-
dividuals in the population. As we can see, GAwFO obtains better results than
GA for all the configurations. Here we can also observe a better convergence of
GAwFO since the final value of the fitness is different for 100 generations and
500 generations, indicating that the algorithm is preserving the diversity along
the generations.

Figure 4 represents the average execution time versus the population size (n),
and shows that sGA needs more time than GAwFO (getting worse solutions).
This fact is due to the reduction in the number of fitness evaluations. As we men-
tioned we are reducing to n/2 the evaluations on each generation, thus achieving
an approximate speed-up of 2 when comparing GA and GAwFO.

A GA Combining TA & FA for Trading the Stock Market 181

Table 2. Experimental Results for 100 companies (ID #). Accumulated return: 180.62
for Buy and Hold and 830.09 if we apply TA and FA using the solution given by GAwFO
(average of 20 runs).

ID B&H GAwFO ID B&H GAwFO
Return Return (Avg.) # Return Return (Avg.)

1075 2.3991511 12.3095 3062 8.1966836 1.593483333
1078 18.7309602 9.471933333 3105 3.364995 -23.85003333
1161 3.7459 32.4946 3144 8.9026145 1.6268
1239 5.5369252 15.35606667 3170 8.8040119 1.6268
1279 4.0752351 42.82246667 3226 6.7905122 1.584183333
1300 -7.8202282 -6.080666667 3310 6.1251708 6.739133333
1318 -0.8569234 7.958883333 3336 3.2463518 18.5658
1356 2.5187882 -9.12545 3413 -2.1345836 -6.2236
1380 -13.3380317 27.41228333 3439 -0.6006628 6.3544
1408 0.2179087 1.316366667 3497 5.1964884 2.7564
1478 10.355741 4.6542 3505 0.2437237 14.1769
1567 0.6502365 5.502733333 3532 -30.3122337 -5.07805
1581 8.2909365 14.0832 3650 1.5798377 40.26825
1602 2.2006719 1.6268 3734 -7.3576148 9.36405
1632 -4.9004679 -22.8423 3813 2.5320106 30.9393
1651 -51.9001932 -30.6242 3851 18.4093679 5.22795
1661 -7.389481 4.327066667 3897 -0.9477856 6.16345
1678 -1.350981 13.3393 3964 3.6740088 54.7245
1690 -9.5208284 3.6859 4016 -0.6953763 1.6268
1704 6.1066691 1.529983333 4029 2.9502386 5.91695
1722 2.3449161 11.48945 4060 -2.8162409 9.8528
1794 -6.4084227 1.6268 4062 1.4673729 0.034616667
1878 11.5214366 73.56563333 4066 9.744019 4.134816667
1988 -6.712819 21.79263333 4087 12.5668186 0.19165
1995 -2.7094967 10.60435 4194 -12.0802362 11.7651
2044 -9.1449379 33.72938333 4242 -4.1682456 -0.90245
2085 5.912355 1.6268 4321 6.2214513 12.6339
2086 13.6199814 18.4906 4503 0.5317073 25.6679
2111 -5.8409623 8.095016667 4517 5.7802251 8.57505
2136 -6.8204425 1.8547 4560 10.042995 -21.96596667
2146 0.3304849 3.011516667 4598 3.9668814 46.3882
2154 7.5499425 14.4935 4611 4.7135776 3.424066667
2230 -16.0952894 1.6268 4843 -5.4197902 -37.82211667
2255 1.1289969 8.462733333 4988 2.9117564 -3.41645
2269 -1.8980754 -12.57478333 4990 16.607337 2.8008
2290 4.9147146 -3.539433333 5046 -4.6204849 2.36215
2312 8.2363498 1.6268 5071 8.9897884 1.585416667
2403 10.9443535 -6.4183 5074 5.2588111 3.007933333
2435 1.40653 2.075316667 5125 2.2202424 11.9096
2444 -8.0950327 2.27745 5134 10.7559239 11.42828333
2490 5.7200263 -5.585866667 5169 4.2730328 1.6268
2504 -4.5998717 3.1442 5256 6.1121823 34.32501667
2574 17.3010617 27.91153333 5439 -21.0643196 1.6268
2663 6.5206433 9.4525 5518 9.0290509 2.519233333
2710 2.1968028 2.8162 5597 9.1424048 39.5595
2783 4.0894619 1.899433333 5680 2.4276114 6.354983333
2817 12.4002508 19.67333333 5723 13.4362941 12.806
2884 26.8141074 29.3046 5860 -1.2318081 13.2949
2991 -3.7815371 1.6268 5878 5.2791739 12.44675
3054 -5.3061325 29.66486667 6008 9.286749 -3.271083333

Total Accum. 180.62 830.09

182 I. Contreras, J. Ignacio Hidalgo, and L. Núñez-Letamendia

Fig. 3. Profit (Y axis is the return) for GA and GAwFO for 100 and 500 generations
and for 10, 50, 100, 500, 1000, 5000 and 10000 individuals

Fig. 4. Execution time (Y axis in sec.) analysis when running 100 and 500 generations
of sGA and GAwFO for n = 10, ...10000 ind.

4 Conclusions

In this paper we have implemented a GA to obtain a trading system which
combines Fundamental and Technical analysis. The algorithm (GAwFO) applies
a new operator called Filling Operator which avoids problems of premature
convergence and reduces the number of needed evaluations. Experimental results
obtained when the methodology is applied to values of random 100 companies
in the year 2004, show a possible return of 830% compared with a 180% of the
Buy and Hold strategy, improving the outcome in a 65% of the companies. A
more exhaustive analysis of the results should be done in order to improve the
methodology and to include/exclude companies and other finantial information.

Acknowledgements. This work has been partially supported by Spanish
Government grants Avanza Competitividad I+D+i TSI-020100-2010-962,
INNPACTO IPT-2011-1198-430000, and TIN 2008-00508.

A GA Combining TA & FA for Trading the Stock Market 183

References

1. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules.
Journal of Financial Economics 51(2), 245–271 (1999)

2. Bali, T.G., Demirtas, O., Tehranian, H.: Aggregate earnings, firm-level earnings,
and expected stock returns. JFQA 43(3), 657–684 (2008)

3. Basu, S.: The investment performance of common stocks in relation to their price-
earnings ratios: A test of the efficient market hypothesis. Journal of Finance 32,
663–682 (1977)

4. Bodas-Sagi, D.J., Fernández, P., Hidalgo, J.I., Soltero, F.J., Risco-Mart́ın, J.L.:
Multiobjective optimization of technical market indicators. In: Proceedings of the
GECCO 2009 Conference (Companion), pp. 1999–2004. ACM, New York (2009)

5. Campbell, Yogo: Efficient tests of stock return predictability. Journal of Financial
Economics 81, 27–60 (2006)

6. Chan, L.K.C., Hamao, Y., Lakonishok, R.: Journal of finance. Fundamentals and
Stock Returns in Japan, 1739–1764 (December 1991)

7. Contreras, I., Jiang, Y., Hidalgo, J., Núñez-Letamendia, L.: Using a gpu-cpu ar-
chitecture to speed up a ga-based real-time system for trading the stock market.
In: Soft Computing - A Fusion of Foundations, Methodologies and Applications,
pp. 1–13 (2011)

8. Fama, E., French: The cross-section of expected stock returns. Journal of Fi-
nance 47(2), 427–465 (1992)

9. Fama, E.F., French, K.R.: Business conditions and expected returns on stocks and
bonds. Journal of Financial Economics 25, 23–49 (1989)

10. Fernández, P., Bodas-Sagi, D.J., Soltero, F.J., Hidalgo, J.I.: Technical market indi-
cators optimization using evolutionary algorithms. In: Proceedings of the GECCO
2008 Conference (Companion), pp. 1851–1858. ACM, New York (2008)

11. Jiang, Y., Núñez, L.: Efficient market hypothesis or adaptive market hypothesis? a
test with the combination of technical and fundamental analysis. In: Proceedings
of the 15th International Conference on Computing in Economics and Finance,
University of Technology, Sydney, Australia, The Society for Computational Eco-
nomics (July 2009)

12. Lohpetch, D., Corne, D.: Discovering effective technical trading rules with genetic
programming: Towards robustly outperforming buy-and-hold. In: NaBIC, pp. 439–
444. IEEE (2009)

13. Lohpetch, D., Corne, D.: Multiobjective algorithms for financial trading: Multiob-
jective out-trades single-objective. In: IEEE Congress on Evolutionary Computa-
tion, pp. 192–199. IEEE (2011)

14. Núñez, L.: Trading systems designed by genetic algorithms. Managerial Finance 28,
87–106 (2002)

15. Reinganum, M.: Selecting superior securities charlottesville. the tesearch founda-
tion of the institute of chartered financial analysts. Technical report, The Research
foundation of the institute of Chartered Financial Analysts (1988)

16. Sywerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the Third
International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1989)

Evolutionary Data Selection for Enhancing

Models of Intraday Forex Time Series

Michael Mayo

University of Waikato, Hamilton, New Zealand
mmayo@waikato.ac.nz

http://www.cs.waikato.ac.nz/˜mmayo/

Abstract. The hypothesis in this paper is that a significant amount of
intraday market data is either noise or redundant, and that if it is elim-
inated, then predictive models built using the remaining intraday data
will be more accurate. To test this hypothesis, we use an evolutionary
method (called Evolutionary Data Selection, EDS) to selectively remove
out portions of training data that is to be made available to an intraday
market predictor. After performing experiments in which data-selected
and non-data-selected versions of the same predictive models are com-
pared, it is shown that EDS is effective and does indeed boost predictor
accuracy. It is also shown in the paper that building multiple models
using EDS and placing them into an ensemble further increases perfor-
mance. The datasets for evaluation are large intraday forex time series,
specifically series from the EUR/USD, the USD/JPY and the EUR/JPY
markets, and predictive models for two primary tasks per market are
built: intraday return prediction and intraday volatility prediction.

Keywords: intraday, forex, steady state, genetic algorithm, instance
selection, data mining, return prediction, volatility prediction.

1 Introduction

This paper is concerned with using evolutionary algorithms to strengthen pre-
dictive models of market behaviour, in order to make them more robust to the
noise typical in financial time series (especially intraday series). A new algorithm,
Evolutionary Data Selection (EDS), is introduced, that uses a model building
algorithm in conjunction with the available training data to find an optimal
subset of that data. The search for the optimal subset is evolutionary, and the
fitness measure used is the performance of the model built from the subset when
tested against all the training data not included in the subset (which does not,
of course, include the final testing data). At the conclusion of the search, the ul-
timate best subset is used to build the final predictive model. It is hypothesised
that this method is helpful in eliminating noise and repetition from the training
data that would otherwise confound the prediction models.

To test the algorithm, we have focussed on intraday (specifically, hourly) time
series. The choice of intraday rather than daily series was made primarily because

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 184–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Data Selection for Intraday Forex 185

smaller time frames increase the number of samples with which to test predic-
tions; therefore the statistics should have greater confidence, and also smaller
predictive gains (from a trader’s point of view) become much more significant
intraday when there are multiple opportunities to trade compared to a daily
time frame where there would be only a single opportunity to trade per day. It
is also known that intraday series often exhibit non-zero autocorrelations (see,
for example, Sewell [9] who gives an overview and Breedon [1] who has studied
start and end of day effects in the forex markets). The aim of this research is
to build models that attempt to capture these small but repeatedly measurable
effects, as well as other more general intraday trends.

The evaluation of the approach is carried out against three different forex
datasets. The markets used are the Eurodollar (EUR/USD), the Japenese Yen
market (USD/JPY), and the Euro/Yen cross (EUR/JPY), with intraday price
data ranging from 2002 to 2011. There are two prediction tasks per market:
return prediction, which attempts to model the direction of the market over the
near hour, and volatility prediction, which models the square of the return. Both
tasks are important for understanding the markets.

It should be noted that the concept of subset selection from the training data
is not new; in fact, there are several methods that use a mixture of nearest neigh-
bour and evolutionary techniques to achieve this (and Cano [3] gives an overview
in the context of general data mining). Most recently, in the financial modelling
field, Larkin and Ryan [5] proposed a method that uses one evolutionary com-
putation method (specifically, a genetic algorithm) for subset selection from the
training data, and a second different method (genetic programming) for build-
ing the actual prediction model given the optimal subset. The work described
here differs from that work in two main ways. Firstly, evolutionary methods are
used here only for selecting the training data, wheras a machine learning tech-
niques are utilized for making the predictions. This leverages the strength of
disparate approaches with a single system and should increase robustness. Sec-
ondly, Larkin and Ryan’s approach also extends the selection of cases to the test
set; this results in a considerable variation in the number of trades for different
strategies (from a lower limit of 30 to in the order of thousands of trades). In
contrast, the models developed here are used to predict every data point in the
test set and therefore we expect that whilst the overall average accuracy may
be lower, the results should be more significant and comparable due to a much
higher number of samples.

A third and final main point of difference between this work and others is
that besides the basic EDS method described here, we also propose an ensemble
method in which multiple runs of EDS are combined to a produce a single
predictor. This is shown to further enhance accuracy.

2 Evolutionary Data Selection Algorithm

The EDS algorithm described here is derived from the well known steady-state
genetic algorithm [6] in which a fixed population P of individuals is evolved. Each

186 M. Mayo

individual p ∈ P has a fitness value F (p), and the aim is to find the individual
p∗ that maximises F .

In the steady-state approach, each time step involves two “tournaments” in
which T random individuals from P are selected. In each tournament, one winner
is selected, the winner being the individual in the tournament with the highest
fitness. Because two tournaments are performed per time step, there will be two
winners, p1 and p2, which are then crossed-over to produce a new offspring o.
This offspring may also be mutated with probability M .

After an offspring is generated, its fitness value is computed. If F (o) exceeds
either F (p1) or F (p2), then o replaces the parent with lowest fitness. In this
way, evolution proceeds stochastically towards a population of higher fitness
individuals. If no global improvements are made after N time steps, then the
search finishes and the individual p∗ with the highest fitness F (p∗) is returned.

Clearly, the selection pressure can be adjusted by increasing or decreasing the
T parameter: a smaller value of T will give weaker-fitness individuals a greater
probability of producing offspring, whereas a higher T will result in only the
strongest individuals being consistently selected. The choice of T needs to be
made carefully, as too high a value may result in a greater chance of the GA
converging on a local rather than a global or near-global maxima, and too low
a value may unnecessarily prolong the search.

The specifics of how the individuals are represented, along with the fitness
function, the crossover and the mutation operators, are now described.

Individual Representation. Each individual is represented as a dataset of
instances, where an instance is defined as a vector of features that includes a
single class value to predict. In this work, the datasets are subsets of the training
data that is being used to build a predictive model. When the GA is initialised,
the initial individuals are simply random subsets of the training data.

An additional parameter I is furthermore defined that governs the size of
the initial subsets: each instance from the training data is included in an initial
individual with probability I. Thus, the smaller the value of I, the smaller the
size of the initial subsets/individuals; conversely the larger the value of I, the
greater the size of the starting subsets/individuals.

Canonically speaking, this representation corresponds to a bit string of length
equal to the number of instances in the data, where a “1” indicates the presence
of an instance in the set, and a “0” the absence. (It was not efficient, however,
to use this representation directly in the implementation.)

Section 3.1 discusses the exact datasets and instances that were generated in
the experiments.

Fitness Function. Once an individual is defined, a model can then be built
using only the instances in the subset as training data. The fitness of the indi-
vidual is therefore defined as the model’s accuracy, once the model is built, on
those instances not included in the subset of selected instances. In other words,
the unselected instances from the training data are used as proxy test data.

Data Selection for Intraday Forex 187

Crossover Operator. A very simple crossover operator is implemented. Since
both parents are defined as sets of instances, we assign to the offspring each
instance (excluding duplicates) from the parents with probability 50%. This
ensures that, on average, offspring will be about the same size as the parents.

Mutation Operator. Mutation, if activated with probability M after an off-
spring is generated, removes a random 1% of the instances from the set. This
method of mutation was designed because we were interested minimising the
quantity of data used to train the model. Minimal data has several benefits,
including simpler models and faster training times.

Other approaches allow subsets to grow as well as reduce in size, but include
a term biasing for small subset sizes in the fitness function. This leads to a
more complex fitness function with multiple components (i.e. accuracy as well as
subset size) which must somehow then be combined, usually via the introduction
of yet another parameter. In contrast, the opposite approach taken here starts
with subsets as large as possible (defined by the I parameter) and gradually
reduces their size via mutations. Thus, maximum subset size is strictly controlled.

Another reason for this approach is that it is important to keep the test
sets large: if the test sets become too small (which can happen if an individual
becomes too large), then random variations in the test instances will have greater
impact on the accuracy and therefore the fitness, leading to weak individuals
being scored unjustly highly.

Note that both crossover and mutation will never remove all the instances
from an individual; subsets have a hard-coded minimum size of one.

3 Evaluation

In this section, an evaluation of the EDS method is described. We used data
from three forex markets in this evaluation: EUR/USD, the USD/JPY and the
EUR/JPY markets, and there were two basic prediction tasks: hourly return
forecasts, and hourly volatility forecasts. In all the experiments, the EDS pa-
rameters are population size P = 20, no improvement limit N = 200, mutation
rate M of 5%, tournament size T = 2 and initial subset size I = 0.5.

3.1 Data Preparation

The raw data for our evaluations are cleaned intraday forex time series for the
three markets obtained from the Pi Trading Corporation [8]. Each series consists
of open, high, low and closing prices for each minute that the given market was
open where the price changed (i.e. there are no records where price did not
change for the current minute), from 21 October 2002, 2am (EST), through to
18 March 2011, 5pm (EST). The total dataset sizes, therefore, are: 2,880,844
records for the EUR/USD market; 2,903,531 records for the USD/JPY market;
and 3,009,328 records for the EUR/JPY market.

188 M. Mayo

This minute time-scale data was then processed into hourly data series, by
combining all records from the same hour into a single record giving the open,
high, low and closing prices of a market for the entire hour. Again, hours where
there was no change in price (and therefore no minute records) were excluded.
This reduced the number of records by a factor of about 60, making the data
much more wieldy for further investigation.

The hourly time series was then converted into a series of instances. One in-
stance was produced for every hourly record in our processed series. The features
used for every instance are defined as follows:

– the 24 previous hourly returns rtnh−23..rtnh

– the 24 previous hourly volatilities volh−23..volh
– the nominal day of week (a value from 0. . . 6)
– the nominal hour of the day, (a value from 0. . . 23)
– a class value to predict

The return and volatility values are defined by Equations 1 and 2. Return is
normalized against the opening price for the hour in order to account for dif-
ferent price scales, and the scaling factor of 100.0 is applied to turn the values
into percentages. Note that rtnh is directional and can be positive or negative,
whereas volh is never negative.

rtnh = 100.0× closeh − openh

openh
(1)

volh = (rtnh)
2 (2)

The class value to predict was defined dependent on the prediction task. Recall
that there are two prediction tasks: return prediction and volatility prediction.
In the case of return prediction, that aim is to predict the sign of the return
(positive or negative) of the market over the next hour; in the case of volatility
prediction, the purpose is to predict whether volatility will increase or decrease
over the next hour.

Let rtnh+1 and volh+1 be the return and volatility of the next hour. Then
the class variable for the prediction classes can be defined by Equations 3 and 4
respectively.

classh,rtn =

{
1 if rtnh+1 ≥ 0
−1 otherwise

(3)

classh,vol =

{
1 if volh+1 > volh
−1 otherwise

(4)

There are no instances generated for any hour where the price does not change.
That is, if the open, high, low and close price for an hour are all equal, then
that hour is skipped, and the next instance will represent the next hour in which
there is a price change.

After following this process, three datasets consisting of 52,092; 52,071; and
52,102 instances for the EUR/USD, USD/JPY and EUR/JPY markets respec-
tively were generated. Each dataset comprised 50 features and a class variable,

Data Selection for Intraday Forex 189

Table 1. Predictive models used in the experiments

Model Description

0R Simple majority class classifier
RT-1 Single node decision tree, built using the REPTree algorithm [4] with

depth limited to 1
RT Full decision tree, built using the REPTree algorithm [4]
SMO Sequential Minimal Optimization algorithm [7], a support vector ma-

chine learner with a linear kernel
RF Random Forest algorithm [2] with an ensemble size of 10 random trees

and two versions were generated for each market, one for each of the prediction
classes. This resulted in six different versions of the three datasets.

The next step in data preparation was to split the data into training and
testing portions. Because financial time series are known to be non-stationary, it
cannot be expected that the distribution of features and the relationship between
the features and the class should be uniform over the entire period (from 2002 to
2011) covered by the data. To account for this, each dataset was divided into five
10,000 instance “segments”, with the final 2,000 or so instances being discarded.
The segments were maintained in chronological order, and it was decided that
models should be evaluated in not one but four “sliding window” experiments.
That is, rather than training a model on the first 50% of the data and testing on
the following 50% of data, the better approach of training the model on the first
segment (in chronological order) then testing on the second segment; training the
model on the second segment and testing on the third; and so on, was utilized.
This allowed four evaluations per prediction algorithm, and the resulting four
accuracies could then be averaged to produce a more reliable overall estimate.

To summarise, six datasets were produced (two per market, for two different
prediction tasks), and each dataset was divided into four train/test experiments.
This meant that there would be 6× 4 = 24 experiments per predictive model.

3.2 Base Classifiers

We considered a number of predictive models in our experiments, ranging from
the very simple to the state-of-the-art. Two versions of each predictive model
were considered: one version without the EDS algorithm (the control version);
and another version with the EDS algorithm (the experimental condition).

The specific predictive models we chose are shown in Table 1. We used imple-
mentations of these models from WEKA version 3.7.3 [4], and all settings other
than those specified in the Table are WEKA defaults.

The choices of the models can be explained as follows. The 0R model is simple
and ignores the features in the datasets; instead, it simply predicts the majority
class from the training data. This was chosen as a baseline with which to compare
the other classifiers: any model should in theory perform better than 0R if the
features are informative.

190 M. Mayo

Table 2. Performance of models with and without EDS for the return prediction task,
by dataset

EUR/USD USD/JPY EUR/JPY Average

0R 51.41 50.68 50.20 50.76

RT-1 51.57 50.58 50.50 50.88
EDS+RT-1 51.95 50.75 50.72 51.14

RT 51.61 50.41 50.29 50.77
EDS+RT 51.97 51.06 50.64 51.22

SMO 52.09 50.74 50.32 51.05
EDS+SMO 52.15 51.04 50.32 51.17

RF 51.40 50.79 50.20 50.80
EDS+RF 51.12 50.49 50.60 50.74

The RT-1 model is a single level decision tree, otherwise known as a stump,
because it selects only a single feature with which to make a prediction. If RT-1
turns out to be the best model for any prediction task, then this finding implies
that only one feature (e.g. hour of the day, or previous hour’s return) is in fact
relevant and the other features are noise. Thus, the performance of RT-1 can be
thought of as a second, stronger, baseline for comparison. On the other hand,
the RT model is a full decision tree: if RT performs better than RT-1, it implies
that more than one feature is important, and that patterns in the data exist.

Decision tree models like RT and RT-1 are important because they are in-
terpretable models, which means that humans can inspect them and determine
the rules being used to make the predictions. This is important for traders and
scientists interested in understanding markets.

The remaining algorithms in the Table, namely RF and SMO, however, are
not interpretable: the former is an ensemble of decision trees, and the latter
is a mathematical function based on the “support vectors” that it finds in the
training data. These algorithms represent two of the state-of-the-art methods
in machine learning and are included in our experiments because they should,
empirically speaking, give the most accurate results.

3.3 Experiment 1: EDS Prediction

In this experiment, the performance of each prediction model described in Table
1 was compared with and without the EDS algorithm. Recall that each dataset
was divided into five 10,000 hour segments, and each model was trained and
tested four times. Thus, the results shown in Tables 2 and 3 represent an average
over all four experiments.

Starting with results of the return prediction task (Table 2), a number of
observations can be made.

Firstly, the EDS algorithm boosts the performance of every model in nearly
every case. This is an encouraging result showing that the inituition behind the
method is suitable for intraday financial data.

Data Selection for Intraday Forex 191

Table 3. Performance of models with and without EDS for the volatility prediction
task, by dataset

EUR/USD USD/JPY EUR/JPY Average

0R 50.78 50.48 50.20 50.49

RT-1 70.30 71.86 70.55 70.90
EDS+RT-1 70.32 71.89 70.69 70.97

RT 70.21 70.47 69.90 70.19
EDS+RT 70.14 71.94 70.64 70.91

SMO 56.09 64.41 56.96 59.15
EDS+SMO 61.46 55.37 63.50 60.11

RF 68.26 68.49 67.81 68.18
EDS+RF 68.46 69.44 67.91 68.60

Secondly, return prediction on a “next hour” basis is very difficult; most of the
models achieve only a very small excess over 50%, which would be expected by
random guessing. However, they do consistently achieve more than 50%, which
does imply that there is at least some kind of pattern to learn.

It should be noted at this point that it is very unlikely that higher probability
patterns exist; if they did, they would have been exploited by traders already.
Also note that a very small excess accuracy (e.g. 1%) can translate into a very
significant “edge” if the number of samples is very high, as they are in these
experiments. That is, across 40,000 tests, an accuracy of 51% implies that there
were 400 more correct predictions than incorrect predictions.

In terms of which market predictability on an intraday basis, it appears that
EUR/USD is the most predictable with accuracies achieving 52.15%. On the
other hand, the EUR/JPY market is the least predictable, with no model accu-
racy exceeding 50.72%.

The performances of the different classifiers are also interesting. In both the
EUR/USD and USD/JPY cases, classifiers other than 0R and RT-1 achieve the
best performance. This implies that patterns encompassing more than a single
feature exist in the data. In the case of EUR/USD, SMO performs the best,
whilst for USD/JPY, the decision tree is the best performer. The decision tree
RT also happens to be the best overall average performer.

For the volatility prediction task, the results shown in Table 3 are quite differ-
ent. Although the frequency of the classes are balanced (0R achieves little over
50%), the typical classifier can achieve approximately 65-70% accuracy. How-
ever, unlike the previous case, the stronger classifiers perform no better than
the weaker classifier RT-1 in two out of the three cases. This implies that only
a single feature may be needed for volatility prediction, at least for those two
markets.

Despite this, the Table shows that EDS again boosts every model’s perfor-
mance most of the time. In fact,EDS+RT-1 is the overall best model for volatility
prediction in every case.

192 M. Mayo

Table 4. Performance of ensembles of EDS-learned models for the return prediction
task, by dataset

EUR/USD USD/JPY EUR/JPY Average

Ens(EDS+RT) 51.48 51.23 50.73 51.15
Ens(EDS+SMO) 52.57 51.23 50.58 51.46
Ens(EDS+RF) 52.01 51.06 50.77 51.28

Table 5. Performance of ensembles of EDS-learned models for the volatility prediction
task, by dataset

EUR/USD USD/JPY EUR/JPY Average

Ens(EDS+RT) 71.48 72.31 71.03 71.61
Ens(EDS+SMO) 62.61 65.67 64.61 64.30
Ens(EDS+RF) 71.89 72.79 71.85 72.18

3.4 Experiment 2: Ensemble Prediction

One well-known drawback of randomized algorithms such as the steady state
genetic algorithm is its dependence on the random initial conditions: on some
runs, a highly accurate model may be built because the random initial solutions
were good, but on other runs, only weaker models may be found because the
initial population was largely poor. In other words, randomized algorithms have
a performance variance dependent on the random number seed.

One method proposed here to reduce this variance is to build multiple models
using EDS, and then combine them together into a single model by averaging
their predictions. This should, in theory, produce more reliable estimates because
the weaker and stronger classifiers will average out in the final results. However,
this method does turn models that were originally interpretable (such as the
decision tree model, RT) into black-box classifiers, because now each ensemble
consists of multiple models whose predictions are now being combined in a new
“second stage” of the prediction process.

To investigate this idea, EDS was applied to each base model (RT, SMO, and
RF) not once but ten times, producing ten prediction models. These models were
then combined into an averaging ensemble, and the ensemble was used to make
the predictions. We applied this to both the return and volatility prediction tasks,
with exactly the same experimental train/test setup as previously described. The
results are shown in Tables 4 and 5.

The first point to note from these Tables (specifically comparing Table 2 to
Table 4 and Table 3 to Table 5) is that uniformly, an ensemble of EDS-filtered
classifiers outperforms a single equivalent EDS classifier by itself. For example,
the accuracy of SMO on the EUR/USD return prediction task is increased by
approximately 0.5% giving a new best accuracy. The best accuracies on the other
markets are also increased, albeit not as much as in the case of EUR/USD.
EUR/JPY still remains the most difficult market to predict with the ensemble
only increasing the accuracy of the RF classifier to 50.77% from 50.72%.

Data Selection for Intraday Forex 193

An interesting point to note is that the best classifier for EUR/JPY is now RF,
rather than the stump, which was the best performer in the previous experiment.
This implies that the ensemble is able to detect a pattern involving more than
a single attribute whereas the single EDS-tuned model by itself was unable to.

This observation is also true for the second volatility prediction experiment
show in Table 5. In the previous experiment, no pattern beyond a single attribute
was discovered for volatility prediction, and all the other models appeared to
over-fit the data: hence, RT-1 uniformly performed with the highest accuracy.
In the second experiment, however, the results are quite different: both the RT
and RF models outperform RT-1, and the best accuracies are approximately 1%
at least above the best results from that experiment.

4 Conclusion

To summarise, extensive experiments have shown that firstly, the EDS approach
typically boosts the accuracy of the tested predictive models; and secondly, fur-
ther accuracy increases are possible by using EDS to construct a diverse ensemble
of models.

References

[1] Breedon, F., Ranaldo, A.: Intraday Patterns in FX Returns and Order Flow. Swiss
National Bank Working Papers 2011-4 (2010)

[2] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
[3] Cano, J., Herrera, F., Lozano, M.: Using Evolutionary Algorithms as Instance Se-

lection for Data Reduction in KDD: An Experimental Study. IEEE Transactions
on Evolutionary Computation 7(6), 561–575 (2003)

[4] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

[5] Larkin, F., Ryan, C.: Modesty Is the Best Policy: Automatic Discovery of Viable
Forecasting Goals in Financial Data. In: Di Chio, C., Brabazon, A., Di Caro, G.A.,
Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M.,
Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025,
pp. 202–211. Springer, Heidelberg (2010)

[6] Luke, S.: Essentials of Metaheuristics, Lulu (2009),
http://cs.gmu.edu/˜sean/book/metaheuristics/

[7] Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods – Support Vector Learning. MIT Press (1998)

[8] Pi Trading Corporation, http://pitrading.com/
[9] Sewell, M.: Characterization of Financial Time Series. Research Note RN/11/01,

Dept. of Computer Science UCL (2011)

http://cs.gmu.edu/~sean/book/metaheuristics/
http://pitrading.com/

Initial Results from Co-operative Co-evolution
for Automated Platformer Design

Michael Cook, Simon Colton, and Jeremy Gow

Computational Creativity Group, Imperial College, London
http://ccg.doc.ic.ac.uk

Abstract. We present initial results from ACCME, A Co-operative Co-
evolutionary Metroidvania Engine, which uses co-operative co-evolution to au-
tomatically evolve simple platform games. We describe the system in detail and
justify the use of co-operative co-evolution. We then address two fundamental
questions about the use of this method in automated game design, both in terms of
its ability to maximise fitness functions, and whether our choice of fitness function
produces scores which correlate with player preference in the resulting games.

Keywords: automated game design, procedural generation, co-operative co-
evolution.

1 Introduction

Procedural content generation (PCG) is a highly active area of research that offers effec-
tive methods for generating a wide variety of game content. PCG systems tend to work
in isolation, often as a supplement to a human-designed system, designing aspects of the
game’s world [1,4,10,12]; generating items or abilities suited to the individual currently
playing [6,7]; or generating quests or tasks for the player to undertake [2,8,11]. How-
ever, automating design as a whole – that is, the design of a game solely by a system
and without direct human judgement – remains largely uninvestigated.

The problem of automated game design is an attractive one to address, because it
not only provides us with a basis to build stronger, more capable procedural content
generation systems, but also allows for more intelligent design systems, representing
a move away from merely creating content and towards co-operating with a human
designer on a shared creative task. We have shown in [5] that automated game design
systems can help complete partially-specified designs – further work building systems
such as this will drive the development of assistive design tools.

The remainder of this paper is organised as follows: in section 2, we introduce co-
operative co-evolution, prior work in this area, and related work in automated game
design. In section 3, we present ACCME, a system which employs co-operative co-
evolution to automatically design 2D platform games. We give details of experiments
conducted using ACCME to investigate the effectiveness of computational co-evolution
as an automated design technique. In section 4, we present conclusions and look at
future work in the area.

2 Background

A co-operative co-evolutionary (CCE) system solves a problem by decomposing it
into several subtasks called species. These are represented as independent evolutionary

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 194–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://ccg.doc.ic.ac.uk

Initial Results from Co-operative Co-evolution for Automated Platformer Design 195

processes that are evaluated by recomposing members from each population into so-
lutions to the original problem, and evaluating the quality of the complete solution. A
CCE system decomposes a problem, P , into n subtasks, P1, . . . , Pn, where a solution
for P is a set {p1, . . . , pn} with pi ∈ Pi.

A fitness function for such a system evaluates a solution to the larger supertask P ,
rather than evaluating members of a subtask’s population. Therefore, to evaluate a mem-
ber, px, of the subtask Px’s population, we extract the most fit member of every other
subtask’s population, compose this set to form a solution to P , and apply the fitness
function to this hybrid solution. The notion of ‘co-operative’ evolution refers to the
way in which the fitness of the solution is directly related to how well px co-operates
with the other components of the solution. Since these other n − 1 components do not
change during the evaluation of the population Px, the fitness represents how well a
member of the population of Px contributes to the overall solution.

Co-operative co-evolution was proposed in [9] by Potter and De Jong, in the context
of function optimisation problems. They state that “in order to evolve more complex
structures, explicit notions of modularity need to be introduced in order to provide rea-
sonable opportunities for complex solutions to evolve”. We hold that for creative tasks
such as game design, a similar level of modularity is desirable.

The ANGELINA System

In [5], we presented ANGELINA, a system that designs arcade games using co-operative
co-evolution. We decomposed the task of designing such games into several species,
each of which is responsible for a certain aspect of the design. The three species gen-
erate maps, two-dimensional arrays that describe passable and impassable areas in the
game’s level; layouts, which specify the arrangement of red, green and blue entities in
the game world as well as the play character; and rulesets, which describe the way in
which the non-player entities moved, and also define one or more rules that describe the
effects of certain types of entity, player or obstacle colliding with one another. A combi-
nation of a map, layout and ruleset defined a game. We performed several experiments
to support the claim that CCE is able to rediscover existing games in the target domain,
such as PacMan, as well as games that were novel. In [5] we describe a demonstration
of the software running independently to design games, and an assistive task where
ANGELINA is given hand-designed maps and produces suitable rulesets and layouts.

Related Work

Although we are not aware of any other work which addresses the problem of automat-
ing whole game design, there are other related projects. In [11], the authors evolve
rulesets for arcade games. The system uses a neural network to learn rulesets. The fit-
ness of games is based on how hard or easy they were for the network to learn. This
work inspired the design of our domain in [5]. In [8], Nelson and Mateas evolve sim-
ple ‘minigames’ by interpreting terms that describe actions or subjects. The work is
interesting in terms of higher-level design tasks relating to the interpretation of themes
and their relation to game mechanics, although the work does not specifically tackle
interrelated or co-operating design tasks.

In [2], Browne and Maire present a system for automatically designing board games.
The underlying task of designing a set of rules that govern ludic interactions is common

196 M. Cook, S. Colton, and J. Gow

to both projects. The work is primarily involved in both identifying ‘indicators of game
quality’ and subsequently applying these as heuristics in an evolutionary process for
generating games. The work culminated in major successes in the area, including the
publishing of some computer-generated game designs as commercial board games.

3 ACCME

Metroidvania is a subgenre of 2D platform games. The term, a portmanteau of two
games that popularised the genre, was coined by Sharkey [14]. Metroidvania games are
“based... on exploration with areas that [can] only be reached after attaining items in
other areas” [15]. Contemporary examples vary from casual to more challenging games
[16,17]. The subgenre’s core concepts lend themselves well to fitness functions.

ACCME is a system we have developed that designs such games using CCE, built on
an evolutionary framework derived from [5]. ACCME is comprised of a Map species, a
Layout species and a Powerset species. We first show how ACCME represents a game,
then examine the species making up the CCE process and how playouts were imple-
mented. We also detail some evaluative work which investigates the usefulness of CCE
and the relationship between our definition of fitness and game quality.

3.1 Representation

A game is represented as a 3-tuple consisting of a Map, a Layout and a list of powerups
called a Powerset. A map is a two-dimensional array of integers, where each integer in
the array maps to an 8x8 pixel tile within the finished game. An zero value in the array
describes an empty space, and any value greater than zero represents some tile texture
(such as grass, or water). A collision index, i, is chosen such that any integer less than or
equal to i is non-solid in the game world. This is used to define which integers describe
solid platforms and walls, and which describe scenery. The collision index allows for
tiles to change at runtime, allowing the representation of locked and unlockable doors.

A layout defines what we call archetypes, a description of a class of enemy. An
archetype consists of one or more actions and a movement behaviour. Movement be-
haviours describe how the enemy moves through the game, selected from one ofSTATIC,
where the enemy does not move, PATROLS, where the enemy moves horizontally until
it meets an obstruction or there is no solid ground to walk on, and FLIES, which is sim-
ilar to patrolling but does not require solid ground. Actions describe things that enemies
can do during the game that provide a challenge to the player or somehow differentiate
their behaviour from other enemies. An archetype has zero or more actions, selected from
TURRET, which fires a projectile at the player whenever they are within a certain sight
range, POUNCE, which causes the enemy to leap towards the player when they have an
unbroken line of sight, and MISSILE, which fires a slower projectile that follows the
player. A layout also contains a list of enemies, which are described by an (x, y) starting
co-ordinate in the map, and an archetype number. The layout also describes the player’s
starting location and the location of the exit to the game.

A powerset is a list of powerups. A powerup is described by a co-ordinate repre-
senting its location in the map, as well as a target variable and a target value. When
the player touches the powerup, the target variable is changed within the game code so

Initial Results from Co-operative Co-evolution for Automated Platformer Design 197

(a) (b)

Fig. 1. Screenshots showing map templates (left) and regions (right)

that its value becomes that of the target value. There are three target variables avail-
able to ACCME - jumpVelocity, which describes the velocity applied to the player
when the jump key is pressed, globalAccelerationY, which describes the effect
of gravity applied to game objects, and collisionIndex which defines the integer
value above which map tiles are considered solid. Target values are chosen from an
integer range defined appropriately for each powerup.

3.2 CCE Species

Maps are constructed out of smaller two-dimensional arrays of fixed width and height
called Map Tiles. The specific layout of a map tile is selected from one of 13 outer tem-
plates (defining the border around the tile). These outer templates define tile borders as
blocked or unblocked - for instance, Figure 1(a) shows an outer template where the lower
side of the tile is blocked. We provide all possible permutations, with the exception of the
case where all sides are blocked. A map tile also selects one of 12 inner templates, which
were hand-made. An example of such a hand-crafted template is provided in Figure 1a.
Hand-designed templates were used to ensure some logical order to each tile, but with
enough compositional variation that ACCME is responsible for the overall arrangement.
A Map, therefore, is a two-dimensional array of map tiles, and the CCE process operates
at no more detailed a level than map tiles when performing operations such as crossover.

The fitness function scores highly those maps which do not allow the player to leave
the map bounds. It also heavily relies on playouts, assigning a higher fitness to those
maps which have initially small reachable fractions, but whose maximal reachable
fraction (having collected all relevant powerups) is high. We discount the fitness for
contributions made to reachability early on in the game and towards the end. The inten-
tion here is to encourage steady progress throughout the game, where powerups make
an increasing contribution to the player’s abilities, and then after the game’s midpoint,
the player makes progressively smaller advances towards the exit. To describe the fit-
ness function, first consider the game as a list of ‘stages’, beginning with the player
start (ps), culminating with the exit (pe), and with intermediate stages representing the
collection of a powerup. We represent the list of stages as: [ps, pup1, . . . , pupn, pe].

198 M. Cook, S. Colton, and J. Gow

Let rch(x) be a function that returns the percentage of the map that is reachable at
stage x of the game (but not reachable in the previous state). Then this list of stages con-
tributes to the overall fitness proportionally, using fractional variables di as discounting
factors to reduce the contributions made by each stage:

d1×rch(ps)+d2×rch(pup1)+. . . dx×rch(pupm)+. . . d2×rch(pupn)+d1×rch(pe)

where ∀x∀y x < y =⇒ dx < dy . The fitness function also assigns higher fitness to
maps with longer paths between the start and the exit. In many games, it is considered
poor practice to arbitrarily extend the player’s path; however, due to the large state
spaces inherent in ACCME, it is important to keep the maps small, while utilising as
much of the space available as possible. Our intention was to generate games in which
the optimal path through the map passes through as many map tiles as possible, to
maximise the utilisation of the space available.

Crossover of two maps produces child amps that inherit either alternating rows or
columns of the two parent maps. Mutation of a map replaces a number of randomly
selected map tiles with newly generated ones, with a maximum of four replacements
per map per mutation.

Powersets. The fitness function for a powerset assigns fitness proportional to the amount
of increase in reachability each powerup provides. Playout data is used to calculate this,
and to calculate which powerups are reachable (and whether powerups can be collected
in multiple orders, or whether there is a linear progression through the game). We em-
ploy the notion of a trace object which describes all possible routes through the game,
recording the order in which powerups are collected, as well as if the exit is reach-
able. This is expressed as an ordering on the set of powerups, P . We are interested in
traces where this ordering is partial, rather than total, as player choice is a desirable
factor in the design of Metroidvania games. We define a trace T as a list of powerups,
{p1, . . . , pn} ⊆ P , where P is the set of all powerups in the game. We denote that the
predicate term(T) holds if, after executing the trace T, the player is able to reach the
exit. We increase the fitness of a powerset relative to the number of legitimate traces it
has in its trace object, where T is legitimate ⇐⇒ ∀T ′ ∈ (P(T) \ {T }) . ¬ term(T ′).

Note that P(T) is the power set of the set of powerups T . The above states that
any sequence of powerups smaller than T would not permit the player to reach the
exit. Preliminary experimentation showed this to be a useful balancing factor which
encourages multiple traces through a game, but penalises designs in which the player is
able to bypass a section of the game and ignore some powerups entirely. We also add
value to a powerset’s fitness relative to the average distance between each powerup. We
calculate distance between objects by performing an A* search on the reachability map.

Powersets are crossed over by creating child powersets that randomly select powerups
from the two parents, with a small chance to generate an entirely new powerup in-
stead of inheriting from either. Mutation of a powerup randomises the magnitude of the
change the powerup makes to its target variable.

Layouts. The layout species is concerned with designing the enemy types present in
the game and placing them within the map along with the player’s starting location and
the level’s exit location. The task of enemy design is similar to the design of entities in
the experiment described in [5]. We initially give very low fitnesses to any illegal or in-
valid placements. For ACCME, this involves penalising for enemies, player character or

Initial Results from Co-operative Co-evolution for Automated Platformer Design 199

exit locations that are placed in walls. We penalise heavily for layouts that do not allow
the player to reach the exit. To evaluate this, we use the same reachability calculations
as present in the powerset evaluation described above.

Figure 1(b) shows a subsection of a game design. The player begins in section A, in
which there is a powerup that allows access to section B. We identify these sections by
calculating the player’s reachability potential after picking up powerups in the game.
We then reward layouts that introduce archetypes gradually, so that sections that are
explored later in the game are more likely to have the full selection of archetypes,
whereas sections explored early in the game may only have a subset.

Layouts are crossed over by exchanging locations of enemy archetypes, exit and
player locations, and designs for archetypes themselves. Crossover can also switch the
enemies of map tiles, in much the same way that map crossover exchanges map tiles,
that is either by row, column or single tile. Mutation is applied to make small changes
to the location of enemies, player start location and game exit. Mutation can also ran-
domly change features in an enemy archetype, altering the movement type or adding
and removing behaviours.

3.3 Playouts and Reachability

ACCME performs playouts in order to take a game state and establish which regions of
its map are currently reachable. The system can apply powerups to change variables that
affect reachability. Calculation of the reachable area is computationally expensive given
the number of games assessed in a run of the system (although an individual reachability
check merely tests each reachable tile for nearby reachable tiles, a sample run described
in section 3.5 evaluates over 240,000 games). ACCME maintains an open list of map
locations that are known to be reachable, initialised with the starting location. Upon
removing a new location from the open list, it checks three possible scenarios:

Jumping. If the player is standing on solid ground, they are capable of jumping. The
formula used to calculate the potential height of the jump is Vstart

2/2g, where g is grav-
ity, expressed in pixels per second per second, and Vstart is the upward force applied
by the jump operation, also expressed in pixels per second.

The formula for jump height, combined with the knowledge that horizontal force can
be applied regardless of the player’s position, allows us to calculate the space in which the
player has a positive vertical velocity (the rising area) by simply applying the maximum
horizontal force in both directions for the duration of the jump. We then traverse the map
locations in this area, and for each location we test to see if there are obstructions between
the starting location and the target. If there is not, the area is reachable, and is added to
the open list. We found that using line-of-sight as a check for accessibility is a cheap but
effective method for deciding whether or not an area was reachable.

Walking. If the player is on solid ground, we perform a Walking check. If a contiguous
area of solid ground extends left or right of the current location, then the locations above
this solid ground are also considered reachable. This helps cover some map areas that
would otherwise take a longer time to detect using only jumping and falling.

Falling. If the player is not on solid ground, then they are falling. This may be because
they have walked off the edge of a platform, or are jumping. In this case, we calculate

200 M. Cook, S. Colton, and J. Gow

the horizontal extent of a jump to simulate the player’s descent and label areas that are
reachable during the fall. Because the player can apply horizontal velocity during a fall,
this is different to a real-world physics simulation.

Quality and Accuracy of Reachability Estimations. The above cases provide an
estimate of reachability, allowing ACCME to assess levels and infer where the player
can and cannot reach without having to simulate a full game playout. By avoiding such
extensive simulation, we are able to greatly reduce the complexity of evaluating a game
without much loss in reachability data; however, extensions to ACCME’s domain that
allow for other kinds of obstacles (such as enemies which cannot be destroyed) would,
we think, require a full simulation in order to fully assess runtime reachability.

In deciding how best to estimate reachability, we opted for a system which, at worst,
underestimates the amount of reachable map space. Overestimating in this case would
produce games that were potentially unsolvable, but by underestimating we merely al-
low for the fact that through application of skill the player may be able to bypass certain
sections of the game level (by reaching areas which ACCME had flagged as unreach-
able). Such situations are not uncommon for games, and give rise to speed runs, where
players use such design flaws to complete a game in the fastest possible time[18].

A pilot study outlined in section 3.5 showed that, since reachability was not bidi-
rectional, ACCME was unable to differentiate between areas that were reachable, and
areas that could be reached and then returned from. This caused ACCME to design
games with one-way jumps and inescapable pits. We modified the software to use a
single additional check per reachable map tile to detect if it can be exited as well as
entered. We proportionally reduce the fitness of maps that contain dead ends – this still
allows for situations where a player is able to escape a dead end by obtaining a powerup.

3.4 Evolutionary Setup

A typical execution of the software is composed of 400 generations, undertaken with
each species maintaining a population of 200 solutions. We utilise a steady-state, elitist
selection method, with the fittest 10% comprising the parents of the next generation.
The parents are also included for another generation of evolution; this is to allow trends
to emerge more readily from the co-operating species, as existing progress towards
co-operation is not lost between generations. We experimented with the application of
some other selection techniques such as roulette-based approaches, but found them to
be considerably less reliable. We plan to explore other such techniques in future work.

3.5 Evaluation

Effectiveness of CCE. To compare the results of CCE with selecting from a compa-
rable population of randomly-generated games, we generated 240,000 game designs at
random and evaluated them using the same fitness functions that ACCME uses. The
fitness of the highest-scoring game is shown as a dashed line in Figure 2. On the same
graph, the line shows the fitness change over 400 generations for ACCME running as a
co-operative co-evolutionary process with three species, each with a population of 200
members. Each species evaluates against only the fittest members of the other species,
hence ACCME evaluated 600 games per generation. The graph shows a clear improve-
ment over random generation after only a handful of generations, and also highlights the

Initial Results from Co-operative Co-evolution for Automated Platformer Design 201

Fig. 2. A standard run of ACCME against a comparable random search

fast convergence of ACCME. The strength of the convergence may point to a weakness
in the CCE system, a matter which we discuss in section 4.

The early spike seen in figure 2 highlights a game with higher fitness than those of
the final generations. We select our output from the final generation run, because we
posit that these games exhibit the strongest co-operative traits, so a spike of this nature
is, we believe, caused by one of the three species presenting a very high-fitness solution
that counterbalances lower-fitness solutions in other species. CCE processes fluctuate
wildly during the early stages of generation. At these stages, the species are far from
co-operative, which means that the change between generations is often very large as
they try to compensate for the lack of co-operation. We plan to examine such spikes
in further work, as it may indicate that our fitness functions are not balanced in their
evaluation of co-operative fitness, or that our method of synthesising fitness evaluations
from the co-operating processes is not the best way of evaluating overall fitness.

Pilot Study. We performed a pilot study to assess player response to the games produced,
and to highlight issues in player evaluation of the games. 180 players played the same
game and rated it between 1 and 5. Qualitative feedback was also sought to gain insight
into player reactions. From the responses, we made several improvements to ACCME,
including developing its understanding of reachability to include dead end detection (de-
scribed in section 3.3). We noted that players’ responses frequently highlighted areas of
the game that were not ACCME’s responsibility – such as control schemes or art direc-
tion. We discuss this in section 4 in the context of future work.

Comparative Study. Following the pilot study, we performed a second smaller study
in which 35 participants, responding to a call sent out to the 180 pilot study partici-
pants, were asked to play three games designed by ACCME. We chose three games
with fitness valuations of 436, 310 and 183, labelled high, medium and low fitness re-
spectively, to represent a range of game fitnesses. The unlabelled games were presented
to each participant in a randomly-selected order, and the participants were asked to rank
the games in terms of perceived quality after playing all three. Our hypothesis was that
higher-fitness games should be preferable to players than low-fitness games. For our
study data, we found a greater proportion of high fitness games were ranked highest:
49% compared to 25% for low/medium fitness games. However, the effect was not sig-
nificant (chi-squared, p=0.15). We found a very weak but insignificant rank correlation

202 M. Cook, S. Colton, and J. Gow

Best Rank Middle Rank Worst Rank
HighFitnessGame 19 9 11
MedFitnessGame 9 15 15
LowFitnessGame 11 15 13

Fig. 3. Data showing frequencies of ranks for the comparative study

between fitness and player preference, (Kendall’s τ = 0.11, p = 0.17). In both tests, we
were unable to reject the null hypothesis. Although these results are inconclusive, the
data suggests to us that there may be some effect of fitness on preference, but further
study is required to investigate the relationship.

One key piece of written feedback we received was that some players felt the games
were too similar. This is partly down to commonality in features not designed by AC-
CME. However, the repeated nature of the goals and the restrictive set of powerups from
which ACCME chooses from also contributed to this. In a creative task such as game
design, the ability to create novelty is crucial, and ACCME does not appear capable
of this in its current state. The brevity of the three games was also mentioned in some
written feedback as a negative quality. The games in the study were restricted to 3x3
map tiles; given that a key element in Metroidvania games is gradual exploration, it is
conceivable that the games did not last long enough for the players to experience this
sense of gradual exploration. Hence, larger game sizes might improve future studies.

4 Conclusions and Further Work

We have introduced co-operative co-evolution in the context of automated game design,
and presented ACCME, a system for designing simple Metroidvania platform games
using CCE, reachability analysis and a flexible powerup system. We have shown CCE
to be effective at developing high-fitness solutions, but a comparative study shows a gap
between ACCME’s concept of fitness and player preference.

Thepilot study highlighted many difficulties in theevaluation ofautomatically-designed
games by humans. The task of distinguishing decisions made by the automated designer,
and decisions made by the authors in constructing the framework, is difficult. We received
comments on aspects of the design that ACCME was responsible for, as well as things in-
herent in the template game supplied to ACCME. This shows a need for more forethought
in presenting automatically designed games to players in future.

Our later comparative study highlighted the similarities in games produced by AC-
CME, even when the system considers there to be large differences in fitness. This leads
us to two areas of further work. Firstly, we plan to reconsider the fitness valuations used,
in order to strengthen some areas of evaluation, and add in new valuations to emphasise
some areas that playtesters perceived as lacking, such as difficulty. One approach might
be to simulate simplified combat, reducing the game to a turn-based simulation, thereby
discretising and simplifying the evaluation. Secondly, it may be necessary to focus our
surveys in future to avoid general concepts such as preference or fun. Designing exper-
iments to evaluate specific parts of a design, such as level layout or powerup design,
may provide a better way of estimating the impact of a system such as ACCME.

Initial Results from Co-operative Co-evolution for Automated Platformer Design 203

We noted earlier that ACCME converges on a solution very quickly. CCE has unique
problems associated with it that affects its ability to locate global optima, which we are
yet to investigate in ACCME. Such problems are discussed in [13] and some solutions
proposed in [3]. We aim to apply these ideas to ACCME in the hope that it will improve
the process. We also wish to investigate alternative selection methods for the evolution.
All of the games listed in this paper can be played online at http://bit.ly/gbangelina.

Acknowledgements. The authors would like to thank Zack Johnson, Kevin Simmons
and Riff Conner for their insight into Metroidvania design. We also thank the anony-
mous reviewers for their helpful comments and suggestions which have helped improve
the paper.

References

1. Ashlock, D., Lee, C., McGuinness, C.: Search based procedural generation of maze-like
levels. IEEE Transactions on Computational Intelligence and AI in Games 3(3), 260–273
(2011)

2. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Computational In-
telligence in AI and Games 2(1) (2010)

3. Bucci, A., Pollack, J.B.: On identifying global optima in cooperative coevolution. In: Proc.
of the 2005 Conf. on Genetic and Evolutionary Computation (2005)

4. Cardamone, L., Yannakakis, G.N., Togelius, J., Lanzi, P.L.: Evolving Interesting Maps for a
First Person Shooter. In: Di Chio, C. (ed.) EvoApplications 2011, Part I. LNCS, vol. 6624,
pp. 63–72. Springer, Heidelberg (2011)

5. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: Proc. of 2011
IEEE Conference on Computational Intelligence and Games (2011)

6. Hastings, E.J., Guha, R.K., Stanley, K.O.: Evolving content in the galactic arms race video
game. In: Proc. of 2009 IEEE Conf. on Computational Intelligence and Games (2009)

7. Liapis, A., Yannakakis, G., Togelius, J.: Neuroevolutionary constrained optimization for con-
tent creation. In: Proc. of 2011 IEEE Conf. on Computational Intelligence and Games (2011)

8. Nelson, M., Mateas, M.: Towards automated game design. In: Artificial Intelligence and
Human-Oriented Computing, pp. 626–637 (2007)

9. Potter, M., de Jong, K.: A Cooperative Coevolutionary approach to Function Optimiza-
tion. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III 1994. LNCS, vol. 866,
pp. 249–257. Springer, Heidelberg (1994)

10. Smith, G., Treanor, M., Whitehead, J., Mateas, M.: Rhythm-based level generation for 2D
platformers. In: Proc. of the 4th International Conf. on Foundations of Digital Games (2009)

11. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: Proceedings of
2008 IEEE Conference on Computational Intelligence and Games (2008)

12. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.: Multiobjec-
tive exploration of the Starcraft map space. In: Proc. of 2010 IEEE Conf. on Computational
Intelligence and Games (2010)

13. Wiegand, R.: An analysis of cooperative coevolutionary algorithms. Ph.D. dissertation,
George Mason University, USA (2004)

14. Sharkey, S., Parish, J.: Debunking Metroidvania, http://www.bit.ly/wiredmv/
15. Metroidvania, Gaming Wikia, http://gaming.wikia.com/wiki/Metroidvania
16. Knytt Stories, Nifflas Games (2007), http://nifflas.ni2.se/
17. Spelunky, Mossmouth Games (2009), http://www.spelunkyworld.com
18. Portal Done Pro - Speedrun, DemonStrate (2010), http://www.j.mp/ygoJLh

http://www.bit.ly/wiredmv/
http://gaming.wikia.com/wiki/Metroidvania
http://nifflas.ni2.se/
http://www.spelunkyworld.com
http://www.j.mp/ygoJLh

Evolving Third-Person Shooter Enemies
to Optimize Player Satisfaction in Real-Time

José M. Font

Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus
de Montegancedo, 28660, Boadilla del Monte, Spain

jm.font@upm.es

Abstract. A grammar-guided genetic program is presented to auto-
matically build and evolve populations of AI controlled enemies in a 2D
third-person shooter called Genes of War. This evolutionary system con-
stantly adapts enemy behaviour, encoded by a multi-layered fuzzy control
system, while the game is being played. Thus the enemy behaviour fits a
target challenge level for the purpose of maximizing player satisfaction.
Two different methods to calculate this challenge level are presented:
“hardwired” that allows the desired difficulty level to be programed at ev-
ery stage of the gameplay, and “adaptive” that automatically determines
difficulty by analyzing several features extracted from the player’s game-
play. Results show that the genetic program successfully adapts armies
of ten enemies to different kinds of players and difficulty distributions.

Keywords: Evolutionary computation, fuzzy rule based system,
grammar-guided genetic programming, player satisfaction.

1 Introduction

Game development is a complex and multidisciplinary task that involves char-
acter design, environment modeling, level planning, story writing, music compo-
sition and, finally, programming [15]. Procedural content generation (PCG) is
a research field that studies the application of algorithmic methods from many
areas, such as computational intelligence, computer graphics, modeling and dis-
crete mathematics, to the automatic generation of game content. Having access
to these tools helps game developers to reduce the design costs when creating
games that include huge amounts of content [4].

Search-based PCG is a research area in which evolutionary computation tech-
niques are used to automatically generate game content [16]. Some examples in
this area include the on-line generation of weapons for the space shooter Galac-
tic Arms Race based on player preferences [8], the off-line creation of tracks for
racing games focusing on diversity and driving experience [9] or personalization
to player driving style [14], and the level and game mechanics customization for
platform games [11].

Evolution of AI controlled characters in games enhances the creation of in-
telligent behaviors that raise player interest during gameplay [10]. For example,
the NERO video game involves players training non-player characters to learn
to target tactical directives by using a neuro-evolution approach [13]. Genetic

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 204–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolving TPS Enemies to Optimize Player Satisfaction 205

programming has been applied to the generation of challenging opponents in
several competitive games [1,2,12].

Nowadays, shooters are one of the most popular as well as worldwide best-
selling game genres1. A grammar-guided genetic programming (GGGP) system
is proposed here to automatically generate and evolve enemy behavior in a 2D
shooter called Genes of War. GGGP has been successfully applied to the genera-
tion of both symbolic and sub-symbolic self-adapting intelligent systems [7,6,5].
GGGP enhances search space exploration because of the usage of the grammat-
ical crossover operator [3], which does not generate invalid individuals during
the evolutionary process.

Enemies in Genes of War are controlled by a multi-layered fuzzy ruled-based
system. A population of these systems is constantly evolved in real-time in order
to maximize player satisfaction at each stage of the gameplay. Satisfaction is
measured from an implicit perspective [17] by matching the challenge preferred
by the player with the one offered by the game. Two methods are proposed to
measure this challenge level: one “adaptive” that fits the enemy population to
player skills, and one “hardwired” to match it with programmers preferences.

Results show that the proposed GGGP system adapts the enemy population
to two kinds of players, one beginner and one experienced, as well as to two fixed
challenge distributions. Modularity and flexibility of the proposed system make
it suitable to be exported to other competitive game genres.

2 The Genes of War Game

Genes of War is a 2D scrolling shooter with top down perspective (Figure 1)
specifically developed for this research as a test-bed application. In Genes of
War, a human player takes the role of a soldier that must defeat an unlimited
supply of AI controlled enemies. The player controls the soldier with a simple
point and click system, which allows the soldier to move along a fixed size map.
The soldier can aim in 360 degrees around itself and right clicking fires the
soldier’s weapon, even when the soldier is moving. The player can also make
the soldier crouch by pushing the left control button in the keypad. Crouching
allows the soldier to dodge enemy attacks, but prevents it from moving.

Enemies are AI controlled robots that can move along the map, crouch, and
shoot in 360 degrees as the soldier does. Unlike the soldier, enemies are not
allowed to shoot while they are moving. The player kills enemies by shooting
them until their health points are depleted. Analogously, enemies defeat the
player by shooting the soldier until it has no health points left. Friendly fire
between enemies does not affect health points. When the soldier or an enemy is
killed, it is respawned in a fixed map location with full health points and the
default weapon.

Both soldier and enemies start the game equipped with their basic weapons:
a machine gun and a cannon respectively. They can upgrade them to more pow-
1 Walton, B.: Video game chartz (Last accessed in November, 2011),
http://www.vgchartz.com

http://www. vgchartz.com

206 J.M. Font

Fig. 1. A snapshot from Genes of War

erful weapons by picking up power-ups that are spawned over the game map.
These powerful weapons are classified into short-range (shotgun, laser gun and
flamethrower) and long-range weapons (rifle and missile launcher). Each has its
own identifying power-up icon and unique values for the following characteristics:
power, range, rate of fire, recoil, and ammunition. When the soldier runs out of
ammunition, its weapon is automatically downgraded to the basic machine gun
that has infinite ammunition. Unlike the soldier, enemies have unlimited ammu-
nition for all weapons. There is a sixth power-up that heals a character (soldier
or enemy) by increasing its health points. Power-ups can also be destroyed by
firing at them, which causes an explosion that damages any character located
close to it.

2.1 Multi-layered Enemy Control System

Enemies are fully controlled by the computer AI. Each enemy has a multi-layered
control system composed by two modules. The upper module, called the strategy
layer, holds a fuzzy rule-based system (FRBS) that processes a set of environmental
variables whose values are extracted from the gameplay. As a result of its inference
process, the FRBS determines the strategy that the enemy must follow. A strategy
is composed by a destination, the location in the game map where the enemy is
heading for, and a target, the location where the enemy aims at.

The lower module, called the action layer, holds a finite state machine com-
posed by five states that represent the five basic actions that an enemy can do
during gameplay. These states names are: “move”, “fire”, “cfire”, “stop” and “die”.
The action layer takes both destination and target variables as input, performing
the set of basic actions needed to follow strategy given by the upper layer.

The strategy layer is explained in detail in Figure 2a. The input of the FRBS
is a set of seven environmental variables: δsoldier, δshortRange, δlongRange, δhealth,
life, weapon and soldier weapon. The first four of them make reference to the
distance (in pixels) from the enemy to the soldier, to a short range weapon power-
up, to a long range weapon power-up, and to a health power-up respectively.
The linguistic labels close, med, and far have been defined for these four input
variables, making reference to the three fuzzy sets in which they can take values.

Evolving TPS Enemies to Optimize Player Satisfaction 207

Fig. 2. a) Description of the strategy layer in the multi-layered enemy control system.
b) Sample fuzzy rule set.

The membership of each variable to the fuzzy sets represented by these labels is
defined by the membership functions μclose (δ), μmed (δ), and μfar (δ).

Variable life contains the enemy’s health points. This variable can take values
in three fuzzy sets represented by the linguistic labels low, med and high. The
membership functions related to these fuzzy sets are μlow (life), μmed (life), and
μhigh (life). Variables weapon and soldier weapon describe the kind of weapon
that the enemy and the soldier hold, respectively. These are non-fuzzy variables,
so the only values they can take are long range and short range.

The set of input variables together with a fuzzy rule set are processed by the
FRBS inference system, producing values for the output variables destination and
target. These values are valid game map locations expressed in Cartesian coordi-
nates, such as the location of the soldier or the location of a power-up. A sample
fuzzy rule set is displayed in Figure 2b. Fuzzy rules may contain any input vari-
able as an antecedent as well as any output variable as a consequent. Two different
clauses can be linked in the consequent by means of the AND operator.

Figure 3a represents the finite state machine (FSM) in the action layer as a
graph. During gameplay, a FSM can be placed only in one state (node) at a
time. If a fixed transition condition (arc) is verified, the control system jumps
from its actual state to another one that is connected to it. The basic action
that an enemy performs is given by the state in which its control system is
placed: “move” towards the destination specified by the strategy layer, “fire” to
the target specified by the strategy layer, “stop”, and “die”, the final state only
reached when an enemy has no health points. The “cfire” behaves like the “fire”
state but makes the enemy shoot in a crouched position.

208 J.M. Font

Fig. 3. a) Description of the finite state machine in the action layer. b) The set of
transition conditions between states.

Figure 3b shows the set of transitions between the states of the FSM writ-
ten in conditional rule form, in which the antecedent is the condition and the
consequent is the arrival state. Every condition matches at least one arc in the
graph. The input variables for the FSM are: the distance between the enemy
and its destination (Δdestination), the distance between the enemy and its target
(Δtarget), the status of the target (crouched or stand up) and the enemy’s life
measured in health points.

3 The Evolutionary System

The action layer is common to every enemy control system. Unlike this, every
strategy layer has its own unique fuzzy rule set, making every enemy control
system, and therefore, every enemy in the game behave differently under the
same environmental conditions. Since fuzzy logic uses a human-like knowledge
representation, hand coding different fuzzy rule sets for every enemy in the game
seems a feasible task. Nevertheless, the automatic generation of fuzzy rule sets
from scratch seems to be a more interesting goal to achieve.

For this purpose, a grammar-guided genetic program has been included in
Genes of War. A grammar-guided genetic program is a system that is able to
find solutions to any problem whose syntactic restrictions can be formally defined
by a context-free grammar. The context-free grammar GFRBS has been designed
to generate the language composed by all the valid fuzzy rule sets that match
the features required by Genes of War enemy control system. Using GFRBS , a
grammar-guided genetic program is able to automatically generate a population
of fuzzy rule sets, and thus, a population of enemy control systems, being able to
evolve them during the gameplay to create a set of enemies that autonomously
adapt themselves to maximize player satisfaction. For more information about
encoding FRBS in context-free grammars, please refer to [7].

At the beginning of the gameplay, an army of ten enemies is created. During
the initialization step of the genetic program, a population composed by ten
individuals is randomly generated. Each of them is assigned to only one enemy
in the army. Each individual’s genotype is a derivation tree belonging to GFRBS ,

Evolving TPS Enemies to Optimize Player Satisfaction 209

which codifies a fuzzy rule set. Every enemy decodes its assigned fuzzy rule set
and stores it in the FRBS of its strategy layer, creating a control system that is
different from any other else in the army.

3.1 Fitness Evaluation

A generation is defined as the time period that starts when the soldier is spawned
in the game and ends when the soldier has died l times, that is, when the player
has lost l lives. When a generation ends, every enemy in the army is assigned a
score that measures the performance of its control system. This score is based
on several values gathered from the gameplay during that generation. Given
an enemy Ei, this score is calculated as enemyScore (Ei) = e1 · Killsi + e2 ·
Damagei + e3 ·Destroyi + lifepointsi, where Killsi is the number of times that
the soldier was beaten by Ei, Damagei is the damage dealt by Ei, Destroyi

is the number of items destroyed by Ei, lifepointsi are the remaining health
points of Ei, and e1, e2 and e3 are adjustment constants.

An implicit approach to player satisfaction has been implemented, so it is
assumed that satisfaction is achieved by matching the challenge preferred by
the player with the one offered by the game. Due to this, the fitness of Ei is
calculated as Fitness (Ei) = |σchallenge − enemyScore (Ei)|, where σchallenge is
a parameter whose value reflects a target challenge level. The grammar-guided
genetic program in Genes of War offers two different methods to set the value
of this parameter.

The first, called the “adaptive method”, is based on the score obtained by the
player during the generation. This score is calculated analogously to an enemy’s
score: playerScore = s1 ·Kills+s2 ·Damage+s3 ·T ime+s4 ·Life, where Kills
is the number of enemies beaten by the soldier, Damage is the damage dealt by
the soldier measured in health points, T ime is the duration of the generation
in milliseconds, Life is the number of health points recovered by the soldier by
picking up health power-ups, and s1, s2, s3 and s4 are adjustment constants.
The value of σchallenge is equal to the average player’s score obtained in the last
five generations.

When using the “adaptive method”, individuals in the population of the ge-
netic program (and thus, the enemies in the army) are evolved to minimize
the distance between their scores and the score obtained by the player at each
generation.

The second method is called the “hardwired method” and allows the shape
of the learning curve, that the player must face during gameplay, to be directly
programed. This curve is defined by a function C : N → Q, defined in such a
way that, given the number of the actual generation g, C (g) returns the value
for σchallenge in that generation.

By using this method, enemies evolve to minimize the distance between their
scores and the target score programmed in C (g) for each generation.

210 J.M. Font

3.2 Crossover and Replacement

After fitness evaluation, the ten enemies are sorted by fitness. The enemies
ranked second to ninth are stored in a mating pool. Each member of the mating
pool is then submitted to a crossover operation with the fittest enemy.

During a crossover operation, the genotype of both enemies is combined by
means of the grammar-based crossover operator [3], creating one new genotype
that encodes a new fuzzy rule set. The genotype of the non-fittest enemy is
replaced by this new one.

The genotype of the tenth (the last) fittest enemy in the army is replaced by
a randomly generated genotype in order to increase the exploration capability of
the genetic program. The genotype of the fittest individual remains unchanged.

After crossover and replacement operations, the soldier is respawned with
renewed health points and the next generation starts. All values used to calculate
player’s and enemies’ scores are reset, as well as all scores and fitness measures.

4 Experimental Results

Two experiments have been run using Genes of War. In the first, the “adaptive
method” is used to calculate the target challenge level. Two players, one experi-
enced and one beginner, have been asked to play the game during 30 generations
(g) with l = 1, that is, one generation lasts one player’s life. Based on previous
experimental analyses, the following values for the adjustment constants have
been chosen: e1 = 100, e2 = 8, e3 = 30, s1 = 100, s2 = 0.125, s3 = 0.001, and
s4 = 0.5.

Figure 4a shows the results obtained from this first experiment by the ex-
perienced player. The bold line displays the values taken by σchallenge and the
dotted line shows the evolution of the score obtained by the fittest enemy in the
army during 30 generations. This score evolves accordingly to σchallenge in a way
similar to a predator-prey system, in which the fittest enemy chases the player
generation by generation.

The value of σchallenge increases until generation 12 because the experienced
player can easily handle their task (beating enemies). Then, the genetic program
evolves the population to produce smarter enemies that obtain higher scores. In
generation twelve the enemies are very smart, and thus harder to beat, so the
player’s score decreases until generation 26. This causes the genetic program to
remove smart enemies from the population and produce easier ones. After gen-
eration 26 the player is skilled enough to overtake the enemies. Consequently,
σchallenge increases again and the genetic program starts producing smart ene-
mies that raise the difficulty level.

Figure 4b shows the results obtained by the beginner player. Here, σchallenge

takes low values because of player’s lack of experience. Initial enemies are too
smart, so the genetic program evolves the population to obtain easy-to-beat
enemies that better fit player’s capability. After generation 9 the player is skilled
enough to overtake the enemies. This leads to an increase in σchallenge that is

Evolving TPS Enemies to Optimize Player Satisfaction 211

(a) (b)

Fig. 4. Evolution of the fittest enemy using the “adaptive method” with a) an experi-
enced player and b) a beginner player

(a) (b)

Fig. 5. Evolution of the fittest enemy using the hardwired method a) with function
C1 (g) b) and C2 (g)

followed by a predator-prey behavior like the one shown in Figure 4a, but with
a smaller amplitude in this case.

In the second experiment, the hardwired method has been used to calculate
the challenge level. Two different functions, C1 (g) = 300 ·arctan (g/2,5 − 5)+750
and C2 (g) = 400 · cos (g/2 + 600)+ 700 have been programmed to determine the
values taken by σchallenge given the generation number (g).

Figure 5a shows the results obtained from the application of C1 (g). As it is
shown by the bold line, this function shapes an ideal learning curve in which the
challenge level increases slowly during the first stages of the gameplay, then it
raises quickly by the middle game to finally return to a slow growth by the end
of the game. The dotted line shows how the score of the fittest enemy closely
evolves to the values assigned to σchallenge by this function.

Figure 5b shows the results obtained fromtheapplicationof functionC2 (g), that
represents an oscillatory behavior.This experiment shows how the genetic program

212 J.M. Font

is able to adapt the army of enemies to a variable environment, in which the target
challenge level in constantly oscillating between two scores: 300 and 1100.

5 Conclusions and Future Work

The grammar-guided genetic program in Genes of War generates and evolves
populations of enemies that match different target challenge levels to optimize
player satisfaction. The difficulty in Genes of War can be adapted in real time
to fit player skills, when using the “adaptive method”, or to match programmers
preferences, when using the “hardwired method”.

By using this genetic program, no artificial behavior has to be implemented.
If using the “hardwired method”, programmers only have to set the target dif-
ficulty level desired at every stage of the gameplay, and armies of enemies are
automatically generated to fit them. Using the “adaptive method” is even easier
since the game is capable of finding the challenge level that better fits to every
player at every moment. This is a key advantage because it lets programmers
focus on any other aspects of game development.

In both cases, changes in game difficulty are only achieved by getting more
or less intelligent enemies. Enemies “physical” attributes, like health, speed, en-
durance or strength, are never modified for this purpose. Smarter enemies de-
velop intelligent behaviors that make them harder to beat. These behaviors in-
clude equipping different weapons depending on the situation, looking for health
power-ups when an enemy is running low on health points, and running away
from the soldier when it is too close.

Insofar as evolution is implemented as a continuous and unending task, the
genetic program can operate during the whole gameplay without requiring to
stop or restart the game.

The grammar-guided genetic program is a very flexible tool that can be easily
modified to include any change made in later development phases. Changing
the used context-free grammar makes the system capable of generating more
complex fuzzy rule-based systems that deal with more environmental variables,
fuzzy sets or membership functions.

The layered design of the presented control system provides it with modularity,
granting that any changes performed at the strategy level will not prevent the
whole system to work properly.

Due to its flexibility and modularity, it seems feasible to export the presented
evolutionary system to other competitive game genres, like 3D third-person and
first-person shooters, fighting and racing games.

References

1. Azaria, Y., Sipper, M.: Gp-gammon: Using genetic programming to evolve
backgammon players. Genetic Programming, pp. 143–143 (2005)

2. Benbassat, A., Sipper, M.: Evolving board-game players with genetic program-
ming. In: Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary Computation, pp. 739–742. ACM (2011)

Evolving TPS Enemies to Optimize Player Satisfaction 213

3. Couchet, J., Manrique, D., Ríos, J., Rodríguez-Patón, A.: Crossover and mutation
operators for grammar-guided genetic programming. Soft Computing: A Fusion of
Foundations, Methodologies and Applications 11(10), 943–955 (2007)

4. Doull, A.: The death of the level designer,
http://roguelikedeveloper.blogspot.com/2008/01/death-of-level
-designer-procedural.html (last accessed November 2011)

5. Font, J.M., Manrique, D., Pascua, E.: Grammar-Guided Evolutionary Construction
of Bayesian Networks. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F.,
Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 60–69. Springer,
Heidelberg (2011)

6. Font, J.M., Manrique, D.: Grammar-guided evolutionary automatic system for au-
tonomously building biological oscillators. In: 2010 IEEE Congress on Evolutionary
Computation, pp. 1–7 (July 2010)

7. Font, J.M., Manrique, D., Ríos, J.: Evolutionary construction and adaptation of
intelligent systems. Expert Systems with Applications 37, 7711–7720 (2010)

8. Hastings, E., Guha, R., Stanley, K.: Evolving content in the galactic arms race
video game. In: IEEE Symposium on Computational Intelligence and Games, CIG
2009, pp. 241–248. IEEE (2009)

9. Loiacono, D., Cardamone, L., Lanzi, P.: Automatic track generation for high-end
racing games using evolutionary computation. IEEE Transactions on Computa-
tional Intelligence and AI in Games 3(3), 245–259 (2011)

10. Lucas, S.: Computational intelligence and games: Challenges and opportunities.
International Journal of Automation and Computing 5(1), 45–57 (2008)

11. Pedersen, C., Togelius, J., Yannakakis, G.: Modeling player experience in super
mario bros. In: IEEE Symposium on Computational Intelligence and Games, CIG
2009, pp. 132–139. IEEE (2009)

12. Shichel, Y., Ziserman, E., Sipper, M.: Gp-robocode: Using genetic programming to
evolve robocode players. Genetic Programming, pp. 143–143 (2005)

13. Stanley, K., Bryant, B., Miikkulainen, R.: Real-time neuroevolution in the nero
video game. IEEE Transactions on Evolutionary Computation 9(6), 653–668 (2005)

14. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content cre-
ation for racing games. In: IEEE Symposium on Computational Intelligence and
Games, CIG 2007, pp. 252–259. IEEE (2007)

15. Togelius, J., Whitehead, J., Bidarra, R.: Guest editorial: Procedural content gen-
eration in games. IEEE Transactions on Computational Intelligence and AI in
Games 3, 169–171 (2011)

16. Togelius, J., Yannakakis, G., Stanley, K., Browne, C.: Search-Based Procedural
Content Generation. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt,
A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 141–150.
Springer, Heidelberg (2010)

17. Yannakakis, G., Hallam, J.: Real-time game adaptation for optimizing player sat-
isfaction. IEEE Transactions on Computational Intelligence and AI in Games 1(2),
121–133 (2009)

http://roguelikedeveloper.blogspot.com/2008/01/death-of-level-designer-procedural.html
http://roguelikedeveloper.blogspot.com/2008/01/death-of-level-designer-procedural.html

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 214–223, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Why Simulate? Hybrid Biological-Digital Games

Maarten H. Lamers1 and Wim van Eck1,2

1 Media Technology Research Group, Leiden Institute of Advanced Computer Science,
Leiden University, The Netherlands

2 AR Lab, Royal Academy of Art, The Hague, The Netherlands
lamers@liacs.nl, mail@wimeck.com

Abstract. Biologically inspired algorithms (neural networks, evolutionary
computation, swarm intelligence, etcetera) are commonly applied in develop-
ment of digital games. We argue that there are opportunities and possibilities
for integrating real biological organisms inside computer games, with potential
added value to the game’s player, developer and integrated organism. In this
approach, live organisms are an integral part of digital gaming technology or
player experience.

To spark further thought and research into the concept of hybrid biological-
digital games, we present an overview of its opportunities for creating computer
games. Opportunities are categorized by their mainly affected stakeholder:
game player, game designer, and bio-digital integrated organism. We clarify the
categorization via numerous examples of existing hybrid bio-digital games.
Based on our review work we present conclusions about the current state and
future outlook for hybrid bio-digital games.

Keywords: Hybrid, bio-digital, computer games, animals, biological organ-
isms, biotic games, bio-art.

1 Introduction

We have become used to applying biologically inspired algorithms in the develop-
ment and design of computer games. Neural and evolutionary computation, swarm
systems and other forms of self-organization, and various other biologically inspired
techniques are now fairly commonplace in both science and computer games.

In a way, such techniques are simulations of biological processes, either abstracted,
altered or enhanced to fit a particular purpose within the process of game design and
development. We argue, however, that there are opportunities and possibilities for
integrating real biological systems inside computer games, with potential added value
to the game player, game developer and organism. With real biological systems we
refer to plants, microorganisms, animals, and even complete ecosystems.

Using biological systems and components as part of (digital) technological solu-
tions is applied in practice already. Particularly within the realms of robotics (e.g. [4],
[13], [14], [15]) and artistic- and entertainment computing (e.g. [5], [9], [12]), but also
more general engineering (e.g. [1], [19], [20], [23]) examples exist of biological sys-
tems that are intricately entwined within mainly technological systems. Perhaps the

 Why Simulate? Hybrid Biological-Digital Games 215

most famous example of such interactions is the Second World War project by fam-
ous behaviorist B.F. Skinner [26], in which he successfully trained real pigeons to
guide missiles to strategic targets, for lack of an equally reliable technological solu-
tion for this task. Although this famous endeavor does not relate to computer games,
it demonstrates how integration of a biological system solves a problem to which no
technological solution is yet available.

More recently animal-computer interaction has appeared on the scientific agenda, a
field analogous to that of human-computer interaction. It places the animal perspec-
tive at the heart technological development aimed at animals [17].

Naturally, very real disadvantages exist for integrating biological components into
digital computer games. Practical issues arise in game maintenance, shipping, sales,
and more. Dealing with microorganisms and cells may require a well-balanced bio-
chemical environment. Games requiring exotic or trained animals are naturally com-
mercially unattractive, and possibly illegal due to endangered animal protection laws.

Perhaps most importantly, animal welfare must be respected at all times. Ethical
treatment of animals is a major concern within the bio-digital approach to systems
design. Several commercial arcade crane-games exist1 that challenge players to catch
a live lobster from an aquarium with the aid of an electrically operated claw. Such
games were criticized for causing harm to animals [22].

Legal restrictions have been implemented in many countries to fight maltreatment
of animals for purposes of science, commerce, entertainment and otherwise. We
strongly support and respect such restrictions. Moreover, we point out that within the
emerging and dynamic realm of bio-digital systems particular concern is in place
regarding the ethical treatment of animals and other organisms.

Despite obvious disadvantages, let us view the opportunities of this approach. To
spark further investigation and creativity around the topic of hybrid bio-digital com-
puter games, we discuss these opportunities for the three major stakeholders of this
approach to computer game design:

1. the player,
2. the developer,
3. the organism integrated into the computer game system.

As the developer, we mean anyone with an interest in designing and developing
games for any purpose (e.g. commercial gain or scientific data gathering). Interests of
player and developer may overlap, since what is good for the player should be at least
appealing to developers. Similarly, interests of organisms and players may overlap.

We clarify the proposed opportunities with examples of existing integrations of
real biological systems within computer games. For the sake of brevity we do not
discuss examples from the realm of artistic computing, unless they take the form of a
computer game. Bio-art, the artistic discipline that works with real biological systems,

1 E.g. “The Lobster Zone” (Lobster Zone Inc., USA), “Love Maine Lobster Claw” (Marine

Ecological Habitats Inc., USA), and “Sub Marine Catcher” (unknown manufacturer, Japan).

216 M.H. Lamers and W. van Eck

is currently receiving much attention2. Overlap exists between bio-art and hybrid bio-
digital computer games, and concerns regarding ethics of working with organisms are
shared between disciplines.

Also, games exist that integrate real plants into their digital systems (e.g. [29],
[32]). Although these are highly interesting and involve biological components, they
are not discussed here. We choose to focus on more active biological entities, such as
animals, microorganisms, and neurons.

Moreover, our attention is directed towards the integration of organisms within
digital games only. Outside this scope falls for example “BioPong” [25], a Pong-style
arcade cabinet game in which the pixelated ball is in fact a cardboard square attached
to a real cockroach. Players must prevent the cockroach from passing their physical
Pong-paddle. Although BioPong emulates a classic computer game, it is in fact not a
digital game itself.

For a more widely scoped overview of organisms integrated in digital artistic and
entertainment systems we refer to another publication by the authors [10]. This study
focuses on opportunities for hybrid bio-digital computer games.

2 Opportunities for Players

2.1 Interspecies Awareness

For the benefit of the player, an important distinction that can be made is whether or
not one is aware of the biological organism’s role within the game. In particular with
real-time integration of animal behavior in the game, the realization that one plays
against (or with) an animal may change the player’s view. In a sense this distinction is
comparable to that between playing against a simulated or a live opponent, in that it
may affect aspects of competition, willingness to collaborate, and even endurance.

Stephen Wilson’s “Protozoa Games” [30] is a series of digital games that let hu-
mans compete against a variety of protozoa, single-celled parasitic organisms. Human
players are tracked with a camera; the protozoa are recorded inside a petri dish via a
microscope. In several games humans and protozoa can compete in agility. With
lights and audio picked up via microphones, players can attempt to influence the pro-
tozoa as part of the gameplay. Similarly, in Wilson’s “IntroSpection” installation [31],
players can play games with projections of cells taken directly from their own mouths
and placed under a microscope.

2.2 Enabling Care

The care-relationship that exists between a pet and its owner was extensively ex-
ploited in computer games. Tamagotchi (Bandai Co. Ltd., Japan, 1996), Nintendogs
(Nintendo Co. Ltd., Japan, 2005), and many similar games offer the enjoyment of

2 For a list and discussions of various bio-artworks, we recommend the following webpage:

http://www.we-make-money-not-art.com/archives/bioart/

 Why Simulate? Hybrid Biological-Digital Games 217

caring for a virtual pet. Similarly, digital games can mediate between caregiver and
real pet. In situations where physically interacting with a real pet is not possible, digi-
tal interaction may be a useful alternative. Moreover, such interaction makes multiple
caregivers and a more transient pet-caregiver relationship possible.

In analogy of the once popular Tamagotchi digital pet game, the “Tardigotchi”
artwork [16] houses a living tardigrade organism inside a brass sphere. While
the organism can be seen through a viewing hole, its digital caricature is visualized on
an LED screen. Buttons feed both the digital and real creature, and players can acti-
vate a heating lamp for the tardigrade by sending the digital creature an e-mail
message.

The “Cat Cat Revolution” [21] interspecies computer game (cat-human) attempts
to include pets into their owner’s digital gaming experience. The cat owner controls a
virtual mouse via his/her smartphone. The virtual mouse appears on a tablet-
computer, where it can be chased by the cat. The game detects when the cat’s paw
hits the virtual mouse. Users expressed positive feelings towards the game’s role in
pet-owner daily activities and the pet’s well-being and freedom to play.

2.3 Education

Traditionally, games (both digital and non-digital) have been widely applied as educa-
tional tools. By extension, dealing with real biological systems via digital games can
educate about biology, offering realizations and interactions that would not be availa-
ble through simulation.

The only projects that mention educating the player as a specific purpose are Ste-
phen Wilson’s aforementioned “Protozoa Games” [30] and “IntroSpection” [31] in-
stallations. However, it holds true for many other existing projects that through
awareness and curiosity about the biological component, informal learning may be
expected to occur.

2.4 Behavioral Variability

Even when a player is unaware of the interaction with biological organisms, its effects
may nonetheless be relevant. For example, the behavior of virtual characters may be
steered by real-time behavior of organisms. In this way behavioral models can be
surpassed, potentially leading to more natural and unpredictable behavior.

In our earlier study entitled “Animal Controlled Computer Games: Playing Pac-
Man against Real Crickets” [11] we researched the possible use of live animals for
real-time behavior generation in computer games. In a Pac-Man style video game, the
behavior of virtual opponent characters (ghosts) was derived from that of live crickets
inside a real maze (Figure 1). The location of the player-controlled Pac-Man character
within the virtual game was translated to the real maze via vibrations. Use of real
crickets led to unexpected and interesting behavior of the virtual game characters.

218 M.H. Lamers and W. van Eck

Fig. 1. Screenshot of Pac-Man style game (left) with four “ghost” opponent characters, and
camera capture of the physical facsimile maze (right) containing four live crickets (Images
from [11]). The crickets control the ghosts in real-time. The position of the player-controlled
“Pac-Man” character is translated into vibrations within the physical maze.

3 Opportunities for Developers

3.1 Perception and Processing

As demonstrated in B.F. Skinner’s “Project Pigeon” [26], complex control issues can
be solved by using natural sensing and processing capabilities of organisms. The same
concept was demonstrated in a digital environment by Garnet Hertz’s “Cockroach
Controlled Mobile Robot” artistic project [13]. Similarly, designing complex (beha-
vioral) control models in games could be avoided by stimulation and sensing of real
organisms in a suitable environment.

Using a grid of 60 electrodes, DeMarse and Dockendorf [8] stimulated and record-
ed the activity from a network of 25.000 rat neurons. This network was connected to a
consumer flight simulator, and successfully trained to act as an autopilot. By stimulat-
ing the neurons with information about deviation from level flight, they slowly
learned to control the flight simulator’s pitch and roll, until they were able to maintain
straight and level flight.

3.2 Crowdsourcing and Gamification

Given the ongoing scientific interest in biological systems, it is not surprising that
interest has been expressed to apply hybrid bio-digital games for scientific data
gathering. Moreover gaming can offer a platform and community for crowdsourcing
projects. Applying games for crowdsourcing is closely linked to the strongly

 Why Simulate? Hybrid Biological-Digital Games 219

emerging paradigm of gamification, the use of gaming elements to engage potential
audiences in various tasks [18], such as problem solving, data collection, and
learning.

Riedel-Kruse et al. [24] incorporated biological processes of real microorganisms
(not simulations) into several variations of classic game titles as Pac-Man, Pong and
pinball. To achieve their game-tasks, players control in real-time microscopically
observed paramecium organisms by way of electrical fields or chemicals released
from a micro-needle. As such, biological processes are an integral part of the gamep-
lay – a concept they term “biotic games”.

Based on their successful implementations, the authors propose to realize complex
bio-engineering tasks by applying crowdsourcing mechanics to biotic games [24,
p.19]. Essentially, by playing the biotic games players would perform experiments on
actual living biological matter, and thus contribute to solving scientific problems.
Unfortunately, no concrete bio-digital crowdsourcing was yet realized.

3.3 Organic Design

Perhaps slightly more experimental are efforts to employ organisms for level-design
of games. Through the process of self-organization, groups of microorganisms and
cells (and even larger organisms) can collaboratively create structured spatial patterns
[7]. Think of honeycomb patterns in a beehive, and zebra skin stripes generated by
collaborating pigment cells. Such evolving structures and patterns could be used to
create or dynamically grow intricate landscapes, structures and levels for digital
games.

In a recently started project, Wim van Eck aims to derive virtual worlds in real-
time from microscopically observed living materials, such as growing cellular cul-
tures or fungi. Visitors of these virtual worlds are confronted with their constantly
changing and transient nature, reflecting the process of organic growth. By concur-
rently changing the conditions to which the organism is subjected, its growth dynam-
ics can be affected, and consequently the virtual landscape. The virtual worlds and
interactions designed in this project will be applied to gaming applications, yielding
organic and transient level design.3

4 Opportunities for Animals

4.1 Welfare and New Forms of Care

As mentioned earlier, the animal-caregiver relation can be focus of bio-integrated
computer games. Although animal welfare should come naturally for those providing
care, computer games can aid in several ways. Firstly, mutual games that are typically
shared between pet and owner can be played over greater distance via tele-operating
methods. This makes it possible to maintain levels of care in physical absence. Se-
condly, via hosted games multiple players can act as caregiver for a single animal.

3 For information about this project, contact author Wim van Eck.

220 M.H. Lamers and W. van Eck

Remote pet-owner interaction is exactly what the “Metazoa Ludens” project [27]
[28] pursues. The position of a hamster or other small pet inside a closed environment
is tracked, and represented as an avatar inside the player’s computer game. Simulta-
neously, the pet is tempted to chase moving bait inside its enclosure – the bait’s
movement representing the movement of the player’s avatar inside the game. Even
the terrain inside the pet’s enclosure is manipulated by actuators to mimic the virtual
terrain of the computer game.

According to the creators, their setup enables human-pet interaction “on an equal
level in the virtual world (which is impossible in the physical world)” [28, p.308].
From studies using hamsters, it was furthermore reported that regular play in Metazoa
Ludens increased overall body fitness in the hamsters and that over the study period
they increasingly chose to play, which indicates a positive desire to play the game.

4.2 Fighting Stereotypy

A special case for animal welfare deserves attention here, since interspecies computer
games are a very real solution to the problem of animal stereotypy: repetitive beha-
viors in captive animals caused by inadequate mental stimulation [6]. Computer
games that let human players interact with captive animals have been proposed, and
are currently researched, as a method to enhance mental stimulation for the animal.
Naturally, actions directed towards the animal must be bound along multiple parame-
ters, such as type of interaction, intensity and time.

In the Netherlands captive pigs have the legal right to be provided with a toy.
However, in practice the toys provided are insufficient for adequate mental stimula-
tion. In April 2011, the Dutch Cultural Media Fund awarded a grant to the “Playing
with Pigs” project [2]. This research project plans to develop a tablet-computer based
game entitled “Pig Chase” [3] that lets users play with captive pigs in an effort to
provide pigs with more fitting mental stimulation (Figure 2). Further goals are to de-
sign new forms of human-pig interaction, to study opportunities for new human-pig
relations, and to let both species experience the cognitive capabilities of each other.

5 Discussion and Future Outlook

We have presented an overview of opportunities of the hybrid bio-digital approach to
creating computer games. In this approach, live organisms are an integral part of digi-
tal gaming technology or player experience. The overview categorizes opportunities
by their mainly affected stakeholder: game player, game designer, and bio-integrated
animal. Overlap in these categories exists, and perhaps further opportunities were
overlooked. Also, project examples that were mentioned to illustrate a particular op-
portunity, may have well applied to other opportunities also. Nonetheless we view
this endeavor as a successful attempt to organize what hybrid bio-digital work is rele-
vant to the domain of computer games.

 Why Simulate? Hybrid Biological-Digital Games 221

Fig. 2. Interaction modes within the inter-species game “Pig Chase”: pig interacting with vir-
tual object on a large touch sensitive display (left), and human interacting with tablet-computer
(right) to control the virtual object and view the pig interaction (Images from [3]). The game
objective for the human is to guide the pig’s snout to an on-screen target, whereas successful
actions by the pig trigger colorful visual projections on the large display.

Overseeing the reviewed projects, several observations arise. Firstly, without ex-
ception, all projects can be classified as experimental, exploratory and often artful
endeavors. No truly commercial applications in computer game design were realized,
nor were indications given for any commercial use.

Secondly, the applications of biological components in digital games have thus far
been very diverse with respect to their aims. From controlling part of a flight simula-
tor to growing virtual gaming environments, organic components have been applied
for a plethora of purposes. No single “killer app”, or highly desirable use of biological
systems in digital gaming, stands out from the overview.

Thirdly, no paradigms have been put forward that offer handlebars to hybrid bio-
digital games design. The number of working methods and working hypotheses in the
reviewed projects seems to rival the number of projects itself. None of the proposed
working methods was developed to the extent that it can be named a possible para-
digm.

Fourthly, it is yet to be discovered which of the proposed bio-digital solutions (be
it neurons to solve a multivariate control task, or growing cell cultures to design game
worlds) will outperform their fully technological counterparts. In other words, when
do we need organisms, and when does technology suffice? With regards to this ques-
tion, we present the reviewed projects with an open mind, but acknowledge that mod-
ern technology is not only more practical, but often sufficiently potent.

Fifthly, given the above observation, it appears that most interesting opportunities
benefit players and animals, and to a lesser extent game engineering. Therefore, we
expect future advances in hybrid bio-digital game development to be stronger on the
game-conceptual front, than in terms of engineering success.

All this is not to say that the bio-digital approach to computer gaming has a limited
future outlook. Perhaps some proposed ideas will not advance to become wider ap-
plied, while others may open doors to gaming concepts that are yet to be envisioned.

222 M.H. Lamers and W. van Eck

Perhaps behavioral variability of in-game characters cannot be simulated to the extent
desired by players, necessitating use of real organisms. Perhaps inter-species gaming
will develop to become popular in its own right. One approach that in our view stands
out in terms of future applicability and potential benefit to both animal welfare and
innovative gameplay, is exemplified in the project “Playing with Pigs” [3].

Finally, we trust that our contribution, in the form of this combined position paper
and short review, sparks further thought and research into the concept of hybrid bio-
logical-digital games.

References

1. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific
Books (2010)

2. Alfrink, K., van Peer, I., Rengen, W.J.: Spelen met Varkens. Dutch Cultural Media Fund
E-Culture grant #83178 (2011),
http://www.mediafonds.nl/toekenning/83178/

3. Alfrink, K., van Peer, I., Lagerweij, H., Driessen, C., Bracke, M.: Playing with Pigs
(2012), http://www.playingwithpigs.nl

4. Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., Gamblen, P., DeMarse, T.B., Potter, S.M.:
Removing Some ‘A’ from AI: Embodied Cultured Networks. In: Iida, F., Pfeifer,
R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI),
vol. 3139, pp. 130–145. Springer, Heidelberg (2004)

5. Bakkum, D.J., Gamblen, P.M., Ben-Ary, G., Chao, Z.C., Potter, S.M.: MEART: The
Semi-living Artist. Frontiers in NeuroRobotics 1(5), 1–10 (2007)

6. Bolhuis, J.J., Giraldeau, L.-A.: The Behavior of Animals: Mechanisms, Function, and Evo-
lution. Wiley-Blackwell (2005)

7. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press (2003)

8. DeMarse, T., Dockendorf, K.P.: Adaptive Flight Control with Living Neuronal Networks
on Microelectrode Arrays. In: Proceedings of the International Joint Conference on Neural
Networks, pp. 1548–1551 (2005)

9. Easterly, D.: Bio-Fi: Inverse Biotelemetry Projects. In: 12th ACM International Confe-
rence on Multimedia, pp. 182–183 (2004)

10. van Eck, W., Lamers, M.H.: Hybrid Biological-Digital Systems in Artistic and Entertain-
ment Computing. To appear in Leonardo, vol. 45. MIT Press (2012)

11. van Eck, W., Lamers, M.H.: Animal Controlled Computer Games: Playing Pac-Man
Against Real Crickets. In: Harper, R., Rauterberg, M., Combetto, M. (eds.) ICEC 2006.
LNCS, vol. 4161, pp. 31–36. Springer, Heidelberg (2006)

12. Studio EDHV: Debug (2009), http://www.edhv.nl
13. Hertz, G.: Control and Communication in the Animal and the Machine. Master’s Thesis,

University of California Irvine (2004)
14. Holzer, R., Shimoyama, I.: Locomotion Control of a Bio-robotic System via Electric Sti-

mulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
1997), pp. 1514–1519 (1997)

15. Jones, J., Tsuda, S., Adamatzky, A.: Towards Physarum Robots. In: Meng, Y., Jin, Y.
(eds.) Bio-Inspired Self-Organizing Robotic Systems. SCI, vol. 355, pp. 215–251.
Springer, Heidelberg (2011)

 Why Simulate? Hybrid Biological-Digital Games 223

16. Kenyon, M., Easterly, D., Rorke, T.: Tardigotchi (2009),
http://www.tardigotchi.com

17. Mancini, C.: Animal-Computer Interaction: a Manifesto. Interactions 18(4), 69–73 (2011)
18. McGonigal, J.: Reality Is Broken: Why Games Make Us Better and How They Can

Change the World. The Penguin Press, New York (2011)
19. Moar, P., Guthrie, P.: Biocomponents – Bringing Life to Engineering. Ingenia 27, 24–30

(2006)
20. Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an Amoeboid Organism.

Nature 407, 470 (2000)
21. Noz, F., An, J.: Cat Cat Revolution: An Interspecies Gaming Experience. In: proceedings

of ACM Conference on Computer Human Interaction, Vancouver, pp. 2661–2664 (2011)
22. PETA: Lobster Zone ‘Games’ Cause Pain and Suffering (2010),

http://www.peta.org/features/Lobster-Zone.aspx
23. Pickering, A.: Beyond Design: Cybernetics, Biological Computers and Hylozoism. Syn-

these 168, 469–491 (2009)
24. Riedel-Kruse, I.H., Chung, A.M., Dura, B., Hamilton, A.L., Lee, B.C.: Design, Engineer-

ing and Utility of Biotic Games. Lab on a Chip 11, 14–22 (2011)
25. Savičić, G.: BioPong (2005),

http://www.yugo.at/processing/?what=biopong
26. Skinner, B.F.: Pigeons in a Pelican. American Psychologist 15, 28–37 (1960)
27. Tan, R.K.C., Cheok, A.D., James, K.S.: The: Mixed Reality Environment for Playing

Computer Games with Pets. International Journal of Virtual Reality 5(3), 53–58 (2006)
28. Tan, R.K.C., et al.: MetazoaLudens: Mixed Reality Interactions and Play for Small Pets

and Humans. Leonardo 41(3), 308–309 (2008)
29. Vermeulen, A.: Biomodd (2007), http://www.biomodd.net
30. Wilson, S.: Protozoa Games (2003),

http://userwww.sfsu.edu/~wilson/art/protozoagames/protogames
10.html

31. Wilson, S.: IntroSpection (2005),
http://userwww.sfsu.edu/~swilson/art/guests/guests.html

32. Young, D.: Lumberjacked (2005),
http://www.newdigitalart.co.uk/lumberjacked

Spicing Up Map Generation

Tobias Mahlmann, Julian Togelius, and Georgios N. Yannakakis

IT University of Copenhagen, Rued Langaards Vej 7, 2300 Copenhagen, Denmark
{tmah,juto,yannakakis}@itu.dk

Abstract. We describe a search-based map generator for the classic
real-time strategy game Dune 2. The generator is capable of creating
playable maps in seconds, which can be used with a partial recreation of
Dune 2 that has been implemented using the Strategy Game Description
Language. Map genotypes are represented as low-resolution matrices,
which are then converted to higher-resolution maps through a stochastic
process involving cellular automata. Map phenotypes are evaluated using
a set of heuristics based on the gameplay requirements of Dune 2.

1 Introduction

Procedural Content Generation (PCG) for Games is a field of growing inter-
est among game developers and academic game researchers alike. It addresses
the algorithmic creation of new game content. Game content normally refers to
weapons, textures, levels or stories etc. and may — to distinguish PCG from
other fields of research — exclude any aspect connected to agent behaviour,
although generating behavioural policies might be considered PCG in some con-
texts. One particular approach to PCG which has gained traction in recent years
is the search-based paradigm, where evolutionary algorithms or other stochastic
optimisation algorithms are used to search spaces of game content for content
artefacts that satisfy gameplay criteria [14]. In search-based PCG, two of the
main concerns are how this content is represented and how it is evaluated (the
fitness function). The key to effective content generation is largely to find a
combination of representation and evaluation such that the search mechanism
quickly zooms in on regions of interesting, suitable and diverse content.

We are addressing the problem of map generation, in particular the generation
of maps for a strategy game. A “map” is here taken to mean a two-dimensional
spatial structure (though maps for some other types of games might be three-
dimensional) on which objects or features of some kind (e.g. trees, tanks, moun-
tains, oil wells, bases) are placed and on which gameplay takes place. While the
generation of terrains without particular reference to gameplay properties is a
fairly well-studied problem [13,5,6,3,2], a smaller body of work has addressed the
problem of generating maps such that the maps support the game mechanics of
a particular game or game genre.

One example of the latter is the cave generator by Johnson et al. [8], which gen-
erates smooth two-dimensional cave layouts, that support the particular design
needs of a two-dimensional abusive endless dungeon crawler game. This basic

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 224–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Spicing Up Map Generation 225

principle of that generator is to randomly sprinkle “rock” and “ground” on an
open arena, and then use cellular automata (CA) to “smelt the rock together”
in several steps, after which another heuristic ensures that rooms are connected
to each other. While the resulting generator is fast enough for on-the-fly gen-
eration and generates natural-looking and adequately functional structures, the
CA-based method lacks controllability and could not easily be adapted to gen-
erate maps that satisfy other functional constraints (e.g. reachability).

Another example is the search-based map generator for the real-time strategy
game StarCraft by Togelius et al. [15]. Recognising that devising a single good
evaluation function for something as complex as a strategy game map is anything
but easy, the authors defined a handful of functions, mostly based on distance
and path calculations, and used multi-objective evolutionary algorithms to study
the interplay and partial conflict between these evaluation dimensions. While
providing insight into the complex design choices for such maps, it resulted in
a computationally expensive map generation process and problems with finding
maps that are “good enough” in all relevant dimensions. The map representation
is a combination of direct (positions of bases and resources) and indirect (a turtle-
graphics-like representation for rock formations), with mixed results in terms of
evolvability.

We propose a new search-based method for generating maps that draws heav-
ily on the two very different approaches described above. Like in the StarCraft
example, we use an evolutionary algorithm to search for maps and a collection
of heuristics derived from an analysis of the game’s mechanics to evaluate them.
The embryogeny is borrowed from the cave generator. The transformation from
genotype (which is evolved) to phenotype (which is evaluated) is happening
through a process of sprinkling and smelting trough cellular automata. These
steps will be described in some detail below. Our results show that this process
effectively generates maps that look good and satisfy the specifications. The tar-
get game in this paper is Dune 2, which has the advantage of being in several
respects simpler than StarCraft, which makes it easier to craft heuristic evalua-
tion functions based on its mechanics, and also makes it easier to re-implement
it in our own strategy game modelling framework for validating the results.

This paper is an integral part of the Strategy Games Description Language
(SGDL) project at IT University of Copenhagen. SGDL is an initiative to model
game mechanics of strategy games. Our previous work consisted of evolving
heterogeneous unit sets [10], different approximations of game play quality [9],
and general purpose agents for strategy games [12]. The re-creation of Dune 2 as
a turn-based strategy game is a continuation of this research. An example map,
created by the generator described in this paper, loaded into the SGDL game
engine can be seen in Figure 2.

2 Background

Dune 2 (Westwood 1992) is one of the earliest examples of real-time strategy
games, and came to strongly influence this nascent genre. The game is loosely

226 T. Mahlmann, J. Togelius, and G.N. Yannakakis

based on Frank Herbert’s Dune [7] but introduces new plots and acting parties.
The player takes the role of a commander of one of three dynasties competing
in the production of “spice”, a substance that can only be gathered on the
desert planet “Arrakis”, also known as “Dune”. In the dune universe, spice is
required for inter-stellar travel, making it one of the most valuable substance in
the universe. Dune 2 simplifies this relation slightly, treating spice as a resource
which can be used to build new units and buildings. The only way to gain spice is
sending harvester units to the sand parts of the map, where the spice is located.
Apart from opposing parties that try to harvest the same fields, the sand parts
are also habited by the native animals of the planets: the sandworms. Menace
and important resource alike, these non-controllable units are involved in the
generation of new spice on the map, but also occasionally swallowing units of
the player - or his enemies if he uses the sand as a tactical element.

The main objective of the player on each map is to harvest spice and use
the gathered resources to build new buildings and produce military units to
ultimately destroying one or two enemies’ bases. As mentioned, compared to
modern real-time strategy games the game is rather simple: there is only one
resource, two terrain types and no goals beside eliminating the enemies’ forces.
The two terrain types are “rocky terrain” and “sand”, and both can be passed
by all units. Two game mechanics involve the terrain types: buildings can only
be constructed on rocky terrain, and spice and sandworms can only exist on
sand. For completeness it should be mentioned that the game also contains cliffs
that are only passable by infantry, but those have negligible effect on gameplay.
Although the game does not contain any mechanics to model research, buildings
and units are ordered in tiers. As the single player campaign progresses, the
game simply unlocks additional tiers as the story progresses. This removes the
necessity to model additional mechanics. An exemplary screenshot of the original
game can be seen in Figure 1.

3 Map Generator

The map generator consists of two parts: the genotype-to-phenotype mapping
and the search-based framework that evolves the maps. The genotypes are vec-
tors of real numbers, which serve as inputs for a process that converts them
to phenotypes, i.e. complete maps, before they are evaluated. The genotype-
to-phenotype mapping can also be seen as, and used as, a (constructive) map
generator in its own right. (The relationship between content generators at dif-
ferent levels, where one content generator can be used as a component of another,
is discussed further in [14].)

The genotype-to-phenotype mapping is a constructive algorithm that takes an
input as described in the following and produces an output matrix o. Based
on tile types of the original Dune 2, the elements of o can assume the value
0 = SAND, 1 = ROCK, and 2 = SPICE. The matrix o is then later interpreted
by a game engine into an actual game map. Our current implementation contains
only an SGDL backend, but using an open source remake of the game and its

Spicing Up Map Generation 227

Fig. 1. Screenshot from the original Dune 2 showing the player’s base with several
buildings, units, and two spice fields in direct proximity

Fig. 2. A Dune 2 map loaded into the SGDL Game Engine. Terrain and unit textures
are taken from the original asset set, but actors are, due to the lack of 3D models,
placed as billboards into the game world.

228 T. Mahlmann, J. Togelius, and G.N. Yannakakis

tools (e.g. Dune II The Maker [1]) should make creating maps for the original
Dune 2 easy.

The input vector is structured as followed (mapSize refers to the map’s edge
length):

– n the size of the Moore-neighbourhood [1, mapSize
2]

– nt the Moore-neighbourhood threshold [2,mapSize]
– i the number of iterations for the CA [1, 5]
– w00..w99 members the weight matrix w for the initial noise map [0, 1]
– s the number of spice blooms to be placed on the map [1, 10]

The generator starts with creating the initial map based on the values w. The
10x10 matrix is scaled to the actual map size and used as an overlay to determine
the probability of a map tile starting as rock or sand. For each iteration in a CA
is invoked for each map tile to determine its new type. If the number of rock
tiles in the n-Moore-Neighbourhood is greater or equal than nt the tile is set to
Rock in the next iteration.

The next step is the determination of the start zones, where the players’ first
building will be placed. We always use the largest rock area available as the
starting zones. The selection is done by invoking a 2D variant of Kadane’s algo-
rithm [4] on o to find the largest sub-matrix containing ones. To prevent players
from spawning too close to each other, we invoke Kadane’s algorithm on a sub-
matrix of o that only represents the i top rows of o for one player, and only the i
bottom rows for the other player. We let i run from 8 to 2 until suitable positions
for both players are found. This operation ensures that one player starts in the
upper half of the map and one in the lower. It also restricts us to maps that are
played vertically, but this could be changed very easily. At this step we don’t
assert that the start positions are valid in terms of gameplay. Broken maps are
eliminated through the fitness functions and the selection mechanism.

The last step is the placement of the spice blooms and filling their surrounding
areas. Since Kadane’s algorithm finds sub-matrices of ones, we simply clone o
and negate its elements with onm = 1− onm; whereas onm is the m-th member
of the n-th row of o. We use the computed coordinates to fill the corresponding
elements in o with spice. In order to make the fields look a bit more organic, we
use a simple quadratic falloff function: a tile is marked as spice if its distance d
from the center of the spice field (the bloom) fulfils the condition 1

d2 ≥ t. Where
t is the width of the spice field multiplied by 0.001. We created a simple frontend
application to test the generator. A screenshot with a basic description can be
seen in Figure 3.

The genetic algorithm optimises a genome in the shape of a vector of real-
numbers, using a fitness function we created. Since a desert is very flat, there
exists almost no impassable terrain, hence choke points (as introduced in [15]) is
not a useful fitness measure. The challenge of choke points was instead replaced
by the assumption that passing sand terrain can be rather dangerous due to
sandworms. Furthermore, it should be ensured that both players have an equally
sized starting (rock) zone and the distance to the nearest spice bloom should be

Spicing Up Map Generation 229

Fig. 3. Screenshot of the generator application. The right pane lets the user input a
seed matrix directly, or observe the result of the evolution. The middle pane can be used
to either invoke the generator directly (“Iterate”) or start the non-interactive evolution
(“Evolve”). The other buttons allow the user to go through the map generation step-
by-step. The left pane shows a preview of the last map generated: yellow = sand, gray
= rock, red = spice. The blue and green dot symbolise the start positions.

equal. All values were normalised to [0, 1]. To summarise, the following features
were part of the fitness function:

– the overall percentage of sand in the map s
– the euclidean distance between the two starting points dAB

– the difference of the starting zones’ sizes ΔAB (to minimise)
– the difference of the distance from each starting position to the nearest spice

bloom Δds (to minimise)

Apart from these criteria a map was rejected with a fitness of 0 if one of the
following conditions was met:

– There was a direct path (using A∗) between both starting positions, only
traversing rock tiles. (Condition c1)

– One or both start positions’ size was smaller than a neighbourhood of eight.
(Condition c2)

The resulting fitness function was:

fmap =

{
0 if c0 ∨ c1,
s+dAB+(1−ΔAB)+(1−Δds)

3 else

In other words: the average of the components if the map passed the criteria, 0
otherwise.

We ran the genetic algorithm over 150 generations with a population size of
200. Each generation took between three and ten seconds on a modern 3.2GHz

230 T. Mahlmann, J. Togelius, and G.N. Yannakakis

desktop PC to compute. The genetic algorithm was an off-the-shelf implementa-
tion (using the JGAP library) [11] using a uniform random distribution for the
genome creation and fitness driven selection probability (40% of the top scoring
genomes preserved each generation).

4 Results

We present the result of an example run of the GA in Figure 4. The graph
shows the average fitness value for each component and the overall fitness. The
increasing rock coverage slightly influences the start zone size differences, as
there is less rocky terrain in the map and therefore chances are higher that it is
unequally distributed. There is a steady increase of the distance between the two
starting zones, but this doesn’t seem to have an impact on distance to the nearest
spice bloom. The development of the overall fitness shows that the excluding case
(where the fitness is set to zero if the map fails one or two conditions) has a high
impact on the average overall score in the first 80 generations. In the same
interval, the average component scores seem steady, although eliminated maps
are not removed from the average component score calculations. This suggests
that these maps might be enjoyable to play despite having a continuous path
between starting zones.

Instead, we ran into an interesting problem with setting the elitism threshold
too low (thus preserving too many genomes unaltered every generation): on rare
occasions each genome in the start population would score as zero. The GA
then converged quickly towards two pathological cases, which can be seen in
Figure 5(a) and 5(b). The first one only consist of sand and one spice field, and
the second map only consists of rock. While the second one might not be very
interesting to play, it is actually playable, given that both players start with
a sufficient amount of money to build units. The sand-only map on the other
hand makes it impossible to win the game, since there is no space to build any
buildings.

Table 1. Aggregated results of 30 runs: the minimal maximum fitness, the maximal
maximum fitness, the average maximum fitness, and the standard deviation of the
maximum fitness in each the first and last generation

Generation minMax maxMax avgMax stdMax

first 0 0.82 0.38 0.39

last 0.86 0.92 0.89 0.02

5 Discussion

With appropriate parameters, we were able to generate several maps that re-
sembled the style of the original Dune 2 maps. The GA was able to adapt to our
fitness function and produced “good” maps on every single run (see Table 1).

Spicing Up Map Generation 231

(a) The development of the component scores and the overall fitness, displayed as the
population average per generation.

(b) The overall score of the fittest genome of each generation and the maximum compo-
nent value encountered in each generation. The component values are tracked individu-
ally and might come from a different individual than the fittest genome.

Fig. 4. Results from an exemplary run of the genetic algorithm

232 T. Mahlmann, J. Togelius, and G.N. Yannakakis

(a) Only Sand (b) Only Rock

Fig. 5. Two pathological, non-functional, generated maps

(a) 0.76 (b) 0.79 (c) 0.83

Fig. 6. The evolution of a map over three generations with slightly improving overall
fitness

Our fitness was based on heuristic created from expert knowledge. If this ac-
tually resembles players’ preferences is clearly something that requires further
examination. From an aesthetic point of view, the maps look interesting enough
to not bore the player and remind them of the original Dune 2 maps, while still
presenting fresh challenges.

We are currently working on modelling the complete mechanics of the original
Dune 2 game in SGDL, so that both humans and AIs can play full games. We will
then load the maps generated through methods described in this paper into the
game and gather gameplay information and player preference reports in order
to test the validity of our fitness function.

6 Conclusion

We have presented a fast search-based map generator that reliably generates
playable and good-looking maps for Dune 2. By using a cellular automata-based
genotype-to-phenotype mapping we have avoided some problems associated with
other map phenotype representations, and by using a search-based mechanism
with direct evaluation functions built on game mechanics we have retained con-
trollability. We believe this method, with minor modifications, can be used to
generate maps for a large variety of games.

Spicing Up Map Generation 233

References

1. Dune II: The Maker, http://d2tm.duneii.com/
2. Ashlock, D.: Automatic generation of game elements via evolution. In: 2010 IEEE

Symposium on Computational Intelligence and Games (CIG), pp. 289–296 (August
2010)

3. Ashlock, D., Gent, S., Bryden, K.: Embryogenesis of artificial landscapes. In:
Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds.) Design by Evolution. Nat-
ural Computing Series, pp. 203–221. Springer, Heidelberg (2008)

4. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM 27,
865–873 (1984)

5. Doran, J., Parberry, I.: Controlled procedural terrain generation using software
agents. IEEE Transactions on Computational Intelligence and AI in Games 2(2),
111–119 (2010)

6. Frade, M., de Vega, F., Cotta, C.: Evolution of Artificial Terrains for Video Games
Based on Accessibility. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt,
A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 90–99.
Springer, Heidelberg (2010)

7. Herbert, F.: Dune. New English Library (1966)
8. Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular automata for real-time gen-

eration of infinite cave levels. In: Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, PCGames 2010, pp. 10:1–10:4. ACM, New York
(2010)

9. Mahlmann, T., Togelius, J., Yannakakis, G.: Modelling and evaluation of com-
plex scenarios with the strategy game description language. In: Proceedings of the
Conference for Computational Intelligence, CIG 2011, KR 2011, Seoul (2011)

10. Mahlmann, T., Togelius, J., Yannakakis, G.: Towards Procedural Strategy Game
Generation: Evolving Complementary Unit Types. In: Di Chio, C., Cagnoni, S.,
Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F.,
Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011,
Part I. LNCS, vol. 6624, pp. 93–102. Springer, Heidelberg (2011)

11. Meffert, K., Rotstan, N., Knowles, C., Sangiorgi, U.: Jgap-java genetic algorithms
and genetic programming package (2008), http://jgap.sf.net

12. Nielsen, J.L., Jensen, B.F.: Artificial Agents for the Strategy Game Description
Language. Master’s thesis, ITU Copenhagen (2011)

13. Smelik, R.M., Kraker, K.J.D., Groenewegen, S.A., Tutenel, T., Bidarra, R.: A sur-
vey of procedural methods for terrain modelling. In: Proc. of the CASA Workshop
on 3D Advanced Media In Gaming And Simulation (3AMIGAS) (2009)

14. Togelius, J., Yannakakis, G., Stanley, K., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3), 172–186 (2011)

15. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.:
Multiobjective exploration of the starcraft map space. In: 2010 IEEE Conference
on Computational Intelligence and Games, CIG (2010)

http://d2tm.duneii.com/
http://jgap.sf.net

Dealing with Noisy Fitness in the Design

of a RTS Game Bot�

Antonio M. Mora, Antonio Fernández-Ares,
Juan-Julián Merelo-Guervós, and Pablo Garćıa-Sánchez

Departamento de Arquitectura y Tecnoloǵıa de Computadores,
Universidad de Granada, Spain

{amorag,antares,jmerelo,pgarcia}@geneura.ugr.es

Abstract. This work describes an evolutionary algorithm (EA) for
evolving the constants, weights and probabilities of a rule-based decision
engine of a bot designed to play the Planet Wars game. The evaluation
of the individuals is based on the result of some non-deterministic com-
bats, whose outcome depends on random draws as well as the enemy
action, and is thus noisy. This noisy fitness is addressed in the EA and
then, its effects are deeply analysed in the experimental section. The
conclusions shows that reducing randomness via repeated combats and
re-evaluations reduces the effect of the noisy fitness, making then the EA
an effective approach for solving the problem.

1 Introduction

Bots are autonomous agents that interact with a human user within a computer-
based framework. In the games environment they run automated tasks for com-
peting or cooperating with the human player in order to increase the challenge
of the game, thus making their intelligence one of the fundamental parameters
in the video game design. In this paper we will deal with real-time strategy
(RTS) games, which are a sub-genre of strategy-based video games in which the
contenders control a set of units and structures distributed in a playing area.
A proper control of these units is essential for winning the game, after a battle.
Command and Conquer�, Starcraft�, Warcraft� and Age of Empires� are
some examples of these type of games.

RTS games often employ two levels of AI: the first one, makes decisions on the
set of units (workers, soldiers, machines, vehicles or even buildings); the second
level is devoted to every one of these small units. These two level of actions,
which can be considered strategical and tactical, make them inherently difficult;
but they are made even more so due to their real-time nature (usually addressed
by constraining the time that can be used to make a decision) and also for the
huge search space (plenty of possible behaviours) that is implicit in its action.
Such difficulties are probably one of the reasons why Google chose this kind of

� This work has been supported in part by project P07-TIC-03044, awarded by the
Andalusian Regional Government.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 234–244, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Dealing with Noisy Fitness in a RTS Bot 235

games for their AI Challenge 2010. In this contest, real time is sliced in one
second turns, with players receiving the chance to play sequentially. However,
actions happen at the simulated same time.

This paper describes an evolutionary approach for generating the decision
engine of a bot that plays Planet Wars, the RTS game that was chosen for the
commented competition. The decision engine was implemented in two steps: first,
a set of parametrised rules that models the behaviour of the bot was defined by
means of human players testing; the second step of the process applied a Genetic
Algorithm (GA) for evolving these parameters offline (i.e., not during the match,
but prior to the game battles).

The evaluation of the quality (fitness) of each set of rules in the population is
made by playing the bot against predefined opponents, being a pseudo-stochastic
or noisy function, since the results for the same individual evaluation may change
from time to time, yielding good or bad values depending on the battle events
and on the opponent’s actions.

In the experiments, we will show that the set of rules evolve towards better
bots, and finally an efficient player is returned by the GA. In addition, several
experiments have been conducted to analyse the issue of the cited noisy fitness
in this problem. The experiments show its presence, but also the good behaviour
of the chosen fitness function to deal with it and yield good individuals even in
these conditions.

2 State of the Art

Video games have become one of the biggest sectors in the entertainment indus-
try; after the previous phase of searching for the graphical quality perfection, the
players now request opponents exhibiting intelligent behaviour, or just human-
like behaviours [1].

Most of the researches have been done on relatively simple games such as
Super Mario [2], Pac-Man [3] or Car Racing Games [4], being many bots com-
petitions involving them.

RTS games show an emergent component [5] as a consequence of the cited two
level AI, since the units behave in many different (and sometimes unpredictable)
ways. This feature can make a RTS game more entertaining for a player, and
maybe more interesting for a researcher. There are many research problems
with regard to the AI for RTSs, including planning in an uncertain world with
incomplete information; learning; opponent modelling and spatial and temporal
reasoning [6].

However, the reality in the industry is that in most of the RTS games, the bot
is basically controlled by a fixed script that has been previously programmed
(following a finite state machines or a decision tree, for instance). Once the user
has learnt how such a game will react, the game becomes less interesting to
play. In order to improve the users’ gaming experience, some authors such as
Falke et al. [7] proposed a learning classifier system that can be used to equip
the computer with dynamically-changing strategies that respond to the user’s
strategies, thus greatly extending the games playability.

236 A.M. Mora et al.

In addition, in many RTS games, traditional artificial intelligence techniques
fail to play at a human level because of the vast search spaces that they entail
[8]. In this sense, Ontano et at. [9] proposed to extract behavioural knowledge
from expert demonstrations in form of individual cases. This knowledge could be
reused via a case-based behaviour generator that proposed advanced behaviours
to achieve specific goals.

Evolutionary algorithms have been widely used in this field, but they involve
considerable computational cost and thus are not frequently used in on-line
games. In fact, the most successful proposals for using EAs in games correspond
to off-line applications [10], that is, the EA works (for instance, to improve
the operational rules that guide the bot’s actions) while the game is not being
played, and the results or improvements can be used later during the game.
Through offline evolutionary learning, the quality of bots’ intelligence in com-
mercial games can be improved, and this has been proven to be more effective
than opponent-based scripts.

This way, in the present work, an offline GA is applied to a parametrised tactic
(set of behaviour model rules) inside the Planet Wars game (a basic RTS), in
order to build the decision engine of a bot for that game, which will be considered
later in the online matches.

3 The Planet Wars Game

It is a simplified version of the game Galcon, aimed at performing bot’s fights
which was used as base for the Google AI Challenge 2010 (GAIC)1.

A Planet Wars match takes place on a map (see Figure 1) that contains several
planets (neutral or owned), each one of them with a number assigned to it that
represents the quantity of starships that the planet is currently hosting. The
objective of the game is to defeat all the starships in the opponent’s planets.
Although Planet Wars is a RTS game, this implementation has transformed it
into a turn-based game, in which each player has a maximum number of turns to
accomplish the objective. At the end of the match (after 200 actions, in Google’s
Challenge), the winner is the player owning more starships.

There are two strong constraints (set by the competition rules) which deter-
mine the possible methods to apply to design a bot: a simulated turn takes just
one second, and the bot is not allowed to store any kind of information about
its former actions, about the opponent’s actions or about the state of the game
(i.e., the game’s map). Therefore, the goal in this paper is to design a function
that, according to the state of the map in each simulated turn (input) returns a
set of actions to perform in order to fight the enemy, conquer its resources, and,
ultimately, win the game.

For more details, the reader is invited to revise the cited webs and our previous
work [11].

1 http://ai-contest.com

http://ai-contest.com

Dealing with Noisy Fitness in a RTS Bot 237

Fig. 1. Simulated screen shot of an early stage of a run in Planet Wars. White planets
belong to the player (blue colour in the game), dark grey belong to the opponent (red
in the game), and light grey planets belong to no player. The triangles are fleets, and
the numbers (in planets and triangles) represent the starships. The planet size means
growth rate of the amount of starships in it (the bigger, the higher).

4 Genetic Approach for the Planet Wars Game

The competition restrictions strongly limit the design and implementation pos-
sibilities for a bot, since many algorithms are based on a memory of solutions
or on the assignment of payoffs to previous actions in order to improve future
behaviour. Moreover most of them are quite expensive in running time. Due to
these reasons, there was defined a set of rules which models the on-line (during
the game) bot’s AI. The rules have been formulated through exhaustive exper-
imentation, and are strongly dependent on some parameters, which ultimately
determine the behaviour of the bot.

Anyway, there is only one type of action: move starships from one planet to
another; but the nature of this movement will be different depending on whether
the target planet belongs to oneself or the enemy. As the action itself is very
simple, the difficulty lies in choosing which planet creates a fleet to send forth,
how many starships will be included in it and what will the target be.

Three type of bots are going to be tested in this paper, all of them previously
introduced in our previous work [11]2.

The first one is GoogleBot, the basic bot provided by Google for testing our
own. It is quite simple, since it has been designed for working well independently
of the map configuration, so it may be able to defeat bots that are optimised for
a particular kind of map. It just choose a planet as a base (the one with most of
its starships) and a target chosen by calculating the ratio between the growth
rate and the number of ships for all enemy and neutral planets. It wastes the
rest of time until the attack has finished.

The second bot is known as AresBot, and it was defined as the first approach
for solving the problem. It models a new hand-coded strategy better than the

2 The source code of all these bots can be found at:
forja.rediris.es/svn/geneura/Google-Ai2010

forja.rediris.es/svn/geneura/Google-Ai2010

238 A.M. Mora et al.

one scripted in the GoogleBot. So, several rules were created based on the ex-
perience of a human player. As a summary, this bot tries to firstly find a base
planet depending on a score function, the rest of its planets are considered as
colonies. Then, it determines which target planet to attack or to reinforce, if
it already belongs to it in the next turns (since it can take some turns to get
to that planet). The base planet is also reinforced with starships coming from
colonies; this action is called tithe. Furthermore, colonies that are closer to the
target than to the base also send fleets to attack the target instead of reinforcing
the base. The internal flow of AresBot’s behaviour with these states is shown in
Figure 2. It can be seen in that figure a set of seven parameters (weights, prob-
abilities and amounts to add or subtract) which has been included in the rules
that model the bot’s behaviour. These parameters have been adjusted by hand,
and they totally determine the behaviour of the bot. Their values and meaning
can be consulted in the previous work [11]. As stated in that paper, their values
are applied in expressions used by the bot to take decisions. For instance, the
function considered to select the target planet.

Fig. 2. Diagram of states governing the behaviour of AresBot and GeneBot. The pa-
rameters that will be evolved are highlighted.

This bot already had a behaviour more complex than GoogleBot, and was able
to beat it in 99 out of 100 maps; however, it needed lots of turns to do that; this
means that faster bots or those that developed a strategy quite fast would be able
to beat it quite easily. That is why we decided to perform a systematic exploration
of the values for the parameters shown above, in order to find a bot that is able to
compete successfully (to a certain point) in the google AI challenge.

The third bot is an evolutionary approach, called GeneBot, and it performs
an offline AresBot’s parameter set optimisation (by means of a GA). The ob-
jective is to find the parameter values that maximise the efficiency of the bot’s
behaviour. The proposed GA uses a floating point array to codify the param-
eters, and follows a generational scheme with elitism (the best solution always
survives). The genetic operators include a BLX-α crossover [12], very common
in this kind of chromosome codification to maintain the diversity, and a gene

Dealing with Noisy Fitness in a RTS Bot 239

mutator which mutates the value of a random gene by adding or subtracting a
random quantity in the [0, 1] interval. The selection mechanism implements a
2-tournament. Some other mechanisms were considered (such as roulette wheel),
but eventually the best results were obtained for this one, which represents the
lowest selective pressure. The elitism has been implemented by replacing a ran-
dom individual in the next population with the global best at the moment. The
worst is not replaced in order to preserve diversity in the population.

The evaluation of one individual is performed by setting the correspondent
values in the chromosome as the parameters for GeneBot’s behaviour, and plac-
ing the bot inside five different maps to fight against a GoogleBot. These maps
were chosen for its significance and represent a wide range of situations: bases
in the middle and planets close to them, few and spread planets, planets in the
corners, bases in the corners, both planets and bases in the corners. The aim is
to explore several possibilities in the optimisation process so, if the bot is able
to beat GoogleBot in all of them, it would have a high probability of succeeding
in the majority of ‘real’ battles. The bots then fight five matches (one in each
map). The result of every match is non-deterministic, since it depends on the
opponent’s actions and the map configuration, conforming a noisy fitness func-
tion, so the main objective of using these different maps is dealing with it, i.e.
we try to test the bot in several situations, searching for a good behaviour in
all of them, but including the possibility of yielding bad results in any map (by
chance). In addition, there is a reevaluation of all the individuals every genera-
tion, including those who remain from the previous one, i.e. the elite. These are
mechanisms implemented in order to avoid in part the noisy nature of the fitness
function, trying to obtain a real (or reliable) evaluation of every individual.

The performance of the bot is reflected in two values: the number of turns
that the bot has needed to win in each arena, and the second is the number of
games that the bot has lost. In every generation the bots are ranked considering
this last value; in case of coincidence, then the number of turns value is also
considered, so the best bot is the one that has won every single game or the one
that needs less turns to win. Thus the fitness associated to an individual (or bot
in this case) could be considered as the minimum aggregated number of turns
needed for winning the five battles.

5 Experiments and Results

In order to test the GA proposed in previous section, several experiments and
studies have been conducted. These are different from those performed in the
previous work [11], being more complete in the first step (parameter optimisa-
tion), and analysing the pseudo-stochastic fitness function, and the value of the
dealing mechanisms for avoiding it.

First of all, the (heuristically found) parameter values used in the algorithm
can be seen in Table 1. 15 runs have been performed in the optimisation of the
AresBot’s behaviour parameter, in order to calculate average results with a cer-
tain statistical confidence. Due to the high computational cost of the evaluation
of one individual (around 40 seconds each battle), a single run of the GA takes

240 A.M. Mora et al.

Table 1. Parameter setting considered in the Genetic Algorithm

Num. Generations Num. Individuals Crossover prob. α Mutation prob. Replacement policy
100 200 0.6 0.5 0.02 2-elitism

around two days with this configuration. The previously commented evaluation
is performed by playing in 5 representativemaps, but besides, Google provides 100
example/test maps to check the bots, so they will be used to evaluate the value of
the bots once they (their parameters) have been evolved. The following sections
describe each one of the studies developed for demonstrating the value of the pre-
sented method and also the correct performance of the noisy fitness function.

5.1 Parameter Optimisation

In the first experiment, the parameters which determine the bot’s behaviour have
been evolved (or improved) by means of a GA, obtaining the so-called GeneBot.
The algorithm yields the evolved values shown in Table 2.

Table 2. Initial behaviour parameter values of the original bot (AresBot), and the
optimised values (evolved by a GA) for the best bot and the average obtained using
the evolutionary algorithm (GeneBot)

titheperc titheprob ωNS−DIS ωGR poolperc supportperc supportprob
AresBot 0.1 0.5 1 1 0.25 0.5 0.9
GeneBot (Best) 0.018 0.008 0.509 0.233 0.733 0.589 0.974
GeneBot (Average) 0.174 0.097 0.472 0.364 0.657 0.524 0.599

±0.168 ±0.079 ±0.218 ±0.177 ±0.179 ±0.258 ±0.178

Looking at Table 2 the evolution of the parameters can be seen. If we analyse
the new values for the best bot of all the 15 executions, yielded in run number 8,
it can be seen that the best results are obtained by strategies where colonies have
a low probability of sending tithe, titheprob, to the base planet (only 0.008 or 0.09
in average value). In addition, those tithes send (titheperc) just a few of the hosted
starships, which probably implies that colonies should be left on its own to defend
themselves, instead of supplying the base planet. On the other hand, the proba-
bility for a planet to send starships to attack another planet, supportprob, is quite
high (0.97 or 0.59 in average), and the proportion of units sent, supportperc, is also
elevated, showing that it is more important to attack with all the available star-
ships than wait for reinforcements. Related to this property is the fact that, when
attacking a target planet, the base also sends (poolperc) a large number of extra
starships (73.3% or 65.7% in average of the hosted ships). Finally, to define the
target planet to attack, the number of starships hosted in the planet, ωNS−DIS ,
is much more important than the growth range ωGR, but also considering the dis-
tance as an important value to take into account.

In order to analyse the value of these bots, a massive battle against AresBot
has been conducted. The best bot in every run is confronted against it in 100
battles (one in each of the example maps provided by Google in the competition
pack). Table 3 shows the percentage of battles won by each bot. It can be seen
that the best individual is the one of execution 8, i.e. the one considered as

Dealing with Noisy Fitness in a RTS Bot 241

the best in the previous experiment (meaning a robust result). In addition, the
improvement of the best bots with regard to AresBot can be noticed, since all
of them win at least 82 out of 100 matches.

Table 3. Winning percentage of the best individuals against AresBot in 100 battles

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15
Winning Percentage 90 82 87 83 98 85 98 99 98 94 91 89 90 98 84

One fact to take into account in this work is that even as this solution looks
like a simple GA (since it just evolves seven parameters) for a simple problem, it
becomes more complicated due to the noisiness and complex fitness landscape;
that is, small variations in parameter values may imply completely different
behaviours, and thus, big changes in the battle outcome. This fitness nature is
studied in the next section.

5.2 Noisy Fitness Study

A good design of the fitness function is a key factor in any EA for getting
success. It has to model the value of every individual. In a pseudo-stochastic
environment (the victory or defeat depends on the opponent’s actions) as is this,
it is important to test the stability of the evaluation function, i.e. check if the
fitness value is representative of the individual quality, or if it has been yielded
by chance. In order to avoid this random factor a re-evaluation of the fittest
individuals has been implemented, even if they survive for the next generation,
testing continuously them in combat. In addition (and as previously commented),
the fitness function performs 5 matches in 5 representative maps for calculating
an aggregated number of turns, which ensures (in part) strongly penalising an
individual if it gets a bad results.

The first study in this line is the evolution of fitness along the generations.
Since the algorithm is a GA, it would be expected that the fitness is improved
(on average) in every generation. It is shown in Figure 3, where it can be seen
that as the evolution progresses (number of generations increases), the aggregate
number of turns needed to win on five maps decreases (on average) on the three
cases; however, since the result of every combat, and thus the fitness is pseudo-
stochastic, it can increase from one generation to the next (it oscillates more
than usual in GAs).

The second study tries to show the fitness tendency or stability, that is, if
a bot is considered as a good one (low aggregated number of turns), it would
be desirable that its associated fitness remains being good in almost all the
battles, and the other way round if the bot is considered as a bad one (high
aggregated number of turns). We are interested in knowing whether the fitness
we are considering actually reflects the ability of the bot in beating other bots.
It could be considered as a measure to determine if the algorithm is robust.

Figure 4 shows the fitness associated to two different GeneBots when fighting
against the GoogleBot 100 times (battles) in the 5 representative maps. Both of

242 A.M. Mora et al.

Fig. 3. The graphs show the complete execution of the best bot (best execution), the
distribution of the best individuals in every run (best of all executions), and the average
of the best bots in 15 runs

Fig. 4. Fitness tendency of two different and random individuals (bots) in 100 different
battles (evaluations), everyone composed by 5 matches in the representative maps,
against the GoogleBot

them have been chosen randomly among all the bots in the 15 runs, selecting
one with a good fitness value (578 turns), called Promising Bot, and another bot
with a bad fitness value (2057 turns), called Unpromising Bot.

As it can be seen, both bots maintain their level of fitness in almost every
battle, winning most of them in the first case, and losing the majority in the
second case. In addition, both of them win and lose battles in the expected
frequency, appearing some outlier results due to the pseudo-stochastic nature of
the fights.

5.3 GeneBots Fighting

Finally, a study concerning the behaviour of several GeneBots (the best in every
execution) has been conducted to establish the validity of the fitness choice
(better fitness means better bot). To do this, battles of 5 matches (in the 5
representative maps) have been performed. The winner in each battle is the bot
who wins 3 out of 5 combats. Figure 5 shows the results, along with the fitness
value for each bot.

Dealing with Noisy Fitness in a RTS Bot 243

Fig. 5. Battles results between each pair of bots (the best in every execution). The
winner in 3 out of 5 matches is marked (black for B1 victory and grey for B2 victory).
The associated fitness to each bot (in its corresponding execution) is shown on the left
graph.

The results demonstrate that individuals with lower fitness can hardly win to
the fittest ones and the other way round, as it is desirable. However, it also proves
the noisy nature of fitness, with a non-zero chance of the worst bot beating the
best one.

6 Conclusions and Future Work

This paper shows how Genetic Algorithms (GAs) can be applied to the de-
sign of one autonomous player (bot) for playing Planet Wars game, which held
the Google AI Challenge 2010. It have been proved that Genetic Algorithms
(GeneBot) can improve the efficiency of a hand-coded bot (AresBot), winning
more battles in a lower number of turns.

Besides, from looking at the parameters that have been evolved, we can draw
some conclusions to improve overall strategy of hand-designed bots; results show
that it is important to attack planets with almost all available starships, instead
of keeping them for future attacks, or that the number of ships in a planet and
its distance to it, are two criteria to decide the next target planet, much more
important than the growing rate.

In addition, the presence of noisy fitness (the evaluation of one individual may
strongly vary from one generation to the next) has been addressed by perform-
ing several battles in each evaluation, in addition to a re-evaluation of all the
individuals in each generation. This subject has been studied in several experi-
ments, concluding that the proposed algorithm yields results which have a good
deal with it, being quite robust.

As future work, we intend apply some other techniques (such as Genetic Pro-
gramming or Learning Classifier Systems) for defining the initial set of rules
which limit the improving range of the bot by means of GAs. In the evolution-
ary algorithm front, several improvements might be attempted. For the time

244 A.M. Mora et al.

being, the bot is optimised against a single opponent; instead, several opponents
might be tried, or even other individuals from the same population, in a co-
evolutionary approach. Another option will be to change the bot from a single
optimised strategy to a set of strategies and rules that can be chosen also using
an evolutionary algorithm. Finally, a multi-objective EA will be able to explore
the search space more efficiently, although in fact the most important factor is
the overall number of turns needed to win.

References

1. Lidén, L.: Artificial stupidity: The art of intentional mistakes. In: AI Game Pro-
gramming Wisdom 2, pp. 41–48. Charles River Media, Inc. (2004)

2. Togelius, J., Karakovskiy, S., Koutnik, J., Schmidhuber, J.: Super mario evolution.
In: Proceedings of the 5th IEEE Symposium on Computational Intelligence and
Games (CIG 2009). IEEE Press, Piscataway (2009)

3. Mart́ın, E., Mart́ınez, M., Recio, G., Saez, Y.: Pac-mant: Optimization based on
ant colonies applied to developing an agent for ms. pac-man. In: Yannakakis, G.N.,
Togelius, J. (eds.) IEEE Symposium on Computational Intelligence and Games,
CIG 2010, pp. 458–464 (2010)

4. Onieva, E., Pelta, D.A., Alonso, J., Milanés, V., Pérez, J.: A modular parametric
architecture for the torcs racing engine. In: Proceedings of the 5th IEEE Sympo-
sium on Computational Intelligence and Games (CIG 2009), pp. 256–262. IEEE
Press, Piscataway (2009)

5. Sweetser, P.: Emergence in Games. Game Development. Charles River Media,
Boston (2008)

6. Hong, J.H., Cho, S.B.: Evolving reactive NPCs for the real-time simulation game.
In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence and
Games, CIG 2005 (2005)

7. Falke-II, W., Ross, P.: Dynamic Strategies in a Real-Time Strategy Game. In:
Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer,
H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter,
M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.)
GECCO 2003. LNCS, vol. 2724, pp. 1920–1921. Springer, Heidelberg (2003)

8. Aha, D.W., Molineaux, M., Ponsen, M.: Learning to Win: Case-Based Plan Selec-
tion in a Real-Time Strategy Game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR
2005. LNCS (LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

9. Ontanon, S., Mishra, K., Sugandh, N., Ram, A.: Case-Based Planning and Execu-
tion for Real-Time Strategy Games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

10. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.: Improving opponent intelligence
through offline evolutionary learning. International Journal of Intelligent Games &
Simulation 2(1), 20–27 (2003)

11. Fernández-Ares, A., Mora, A.M., Merelo, J.J., Garćıa-Sánchez, P., Fernandes, C.:
Optimizing player behavior in a real-time strategy game using evolutionary al-
gorithms. In: IEEE Congress on Evolutionary Computation, CEC 2011 (2011)
(accepted for publication)

12. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study. International Journal of
Intelligent Systems 18, 309–338 (2003)

On Modeling, Evaluating and Increasing Players’

Satisfaction Quantitatively: Steps towards
a Taxonomy

Mariela Nogueira1, Carlos Cotta2, and Antonio J. Fernández-Leiva2

1 University of Informatics Sciences, La Habana, Cuba
mnogueira@uci.cu

2 University of Málaga, Málaga, Spain
{ccottap,afdez}@lcc.uma.es

Abstract. This paper shows the results of a review about modeling,
evaluating and increasing players’ satisfaction in computer games. The
paper starts discussing the main stages of development of quantitative so-
lutions, and then it tries to propose a taxonomy that represents the most
common trends. In the first part of this paper we take as base some a-
pproaches that were already described in the literature for quantitatively
capturing and increasing the real-time entertainment value in computer
games. In a second part we analyze the stage in which the game’s envi-
ronment is adapted in response to player needs, and the main trends on
this theme are discussed.

Keywords: player satisfaction, player modeling, adaptive game,
taxonomy.

1 Introduction

Most of the games’ genres assume as an important goal the entertainment of the
players, which can be different for distinct player (e.g., players may not enjoy the
same challenges). If the preferences of the player could be modeled, we might be
able to adapt the gameplay to each player [1] and try to increase players’ satis-
faction during the play. The IEEE Task Force on Player Satisfaction Modeling
[2] was created with the primary focus on the use of Computational Intelligence
for modeling and optimizing the player’s perceived satisfaction during gameplay,
and grouped many of the most relevant events and results on this topic.

In [1], a new taxonomy is defined about the player modeling, in which models
are distinguished according to their purpose: satisfaction, knowledge, position
and strategy. Some of the most common models’ applications can be: the classi-
fication of players according to their skills or preferences; the training of bots to
simulate human’s behavior [3]; the analysis of physical and emotional states of
the player, and the prediction of behaviors, among others. For the specific topic
of modeling focused on measuring the level of player satisfaction two main trends
were categorized in [4]. One of them approaches the subject from a qualitative

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 245–254, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

246 M. Nogueira, C. Cotta, and A.J. Fernández-Leiva

point of view, closer to psychology, whereas the another proposes alternatives to
measure fun quantitatively.

With respect to qualitative approaches, we can mention a number of works
that can be considered pioneer; for instance, the theory of the intrinsic motiva-
tion of Thomas W. Malone [5] or the theory of Flow defined by Czikszentmihalyi
[6]. Also, a very influential work is the adaptation of this latter theory to the
game’s field (made by Penelope Sweetser and Peta Wyeth in [7]), and also the
contributions in the understanding of the entertainment in games proposed by
Lazzaro [8] and Calleja [9]. The research on qualitative approaches is often useful
in conceptualization of a modeling process, because some of them allow the clas-
sification of different types of players, their preferences, and trends in behavior
[10]. In this aspect, two interesting studies were addressed in [11] and [12], both
works focused on identifying behaviors that distinguish the human players from
the bots, in the game of Pong and in a strategy game respectively.

All these works based on the qualitative approach have limitations that de-
crease the robustness of the result, since most of the studies are based on em-
pirical observations or linear correlations established between the provided in-
formation in the player’s profile and reported emotions [13].

On the other hand, quantitative contributions are focused on the attempt
to formally model the behavior of the player based on her preferences, skills,
emotions, and other elements that influence the decision-making process. These
models are then used in conjunction with the online information that is being
received from the user, to define a measure of the level of fun that the player is
obtaining in the game.

The work presented here focuses on the quantitative approach and tries to
identify the main stages of development of quantitative solutions with the aim
of easing the definition of a taxonomy that represents the most common trends
used in each of them.

This paper is organized as follows. Section 2 shows a taxonomy which includes
the main trends in the process of modeling and quantifying player’s satisfaction.
In the third section we analyze the stage in which the game’s environment is
adapted in response to player’s needs, and we discuss a taxonomy for this theme.
Finally, Section 4 provides some conclusions and gives some indications for future
work.

2 Players’ Satisfaction Approaches

It is not an easy task to determine the satisfaction an activity causes to a person,
since the mechanisms to manage the human emotional states are complex. Many
factors influence a change in mood, and seeking for a generality is not simple
because each person has her own characteristics as well as particular preferences.
In the following we discuss different attempts to formally model the fun that a
player obtains during the game; this analysis allows to identify the fundamental
stages of this process and distinguishes taxonomies between most used trends.
Each of them is explained below.

On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively 247

2.1 Selection of Relevant Information

This task represents a basic process that should be done as initial stage; its goal
is to identify the elements that will influence the amount of players’ fun; to do
so, researchers usually base their analysis on the qualitative studies mentioned
in the introduction. It is thus necessary to have a broad knowledge of the game
functions in order to establish a direct projection of the psychological elements
in real variables (that are assumed to be measurable) to describe the behavior
of the user.

The information obtained in this process can be classified according to its
nature under different points of views: for example, offline and online [14], ob-
servational and in-game [15], and subjective, objective and gameplay-based, [16].
In general all of them can be summarized in three categories with respect to the
nature of the information: reported, in-game, and sensorial.

Reported Information. It represents the information that is requested di-
rectly from the user, for example, when the player has to create a game-profile,
or answer a questionnaire designed to know her predilections (for instance, [16]
proposed to adapt the game not only to the skills of players, but also to their
preferences. To do so, a model of the player experience can be created from
the answers provided by the player, after a gameplay session, to specifically de-
signed preference questionnaires). The main goal is to identify the player via her
preferences. The reliability of the information collected is completely dependent
on the consistency of the responses provided by the players. This information
is usually employed to validate players’ models. Also [17] proposed the use of
questionnaires that should be filled by the players to measure their satisfaction.

In-game Information. It comprises the data that are generated and processed
within the game engine (and during the game); this task usually involves the
gathering of numerical data describing players’ performance. For example, in a
combat game, we may consider kill counts, death counts, and use of sophisticated
weapons.

Sensorial Information. Here, physical sensing of the player during play is ob-
tained from one or more specialized devices; it is representative of emotional
reactions in players. Sensors measure players’ attributes including: galvanic skin
response, facial reactions, heart-rate, and temperature, among others. The objec-
tive here is to increase the amount of information that can be obtained during a
game session and that can be complementary to that obtained as in-game infor-
mation (in the sense explained above). By doing so the game designer can have
more arguments to manage fun in the game with more assurance, and might try
the adaptation of the play to the player, with the goal for instance to improve
her ’immersion’ in the game [9].

In fact, the design of game interfaces is nowadays one of the most interesting
topics in game development and there is a growing tendency to use multi-sensory
(e.g., visual, auditory and haptic) interfaces to broaden the game experience (i.e.,
sensation) of the player. Precisely [18] analyzed if by displaying different infor-
mation to different senses, it is possible to increase the amount of information

248 M. Nogueira, C. Cotta, and A.J. Fernández-Leiva

available to players and so assist their performance; in general, the conclusions
obtained in this analysis shown that players had improved not only ’immer-
sion’ but also ’confidence’ and ’satisfaction’ when additional sensory cues were
included.

2.2 Capture Players’ Fun

In this stage the aim is to determine how the value of fun can be defined. Two
main approaches, explained by Yannakakis and Hallam in [19], are usually con-
sidered., and in this section we try to refine their classifications. The first one
proposes to find an scalar value of fun, and the second focuses in the creation of
a model which defines the relation between variables and entertainment’s level
(i.e., a model of players’ fun).

2.2.1 Scalar Value of Fun
This approach proposes the empirical definition of a mathematical formula to
quantify players’ fun, according to their behavior. This way allows a fast path to
know the player’s status during the game, and further to employ this information
for assisting her with the aim of increasing her entertainment. An example of this
approach is described in [19] where a quantitative metric of the interestingness
of opponent behaviors is designed on the basis of qualitative considerations of
what is enjoyable in predator/prey games. A mathematical formulation of those
considerations, based upon observable data that are taken into account during
game sesions, is derived. This metric is validated successfully when it is compared
with the human notion of entertainment in the context of the well-known Pac-
Man computer game [19].

2.2.2 Model of Players’ Fun
Here it is necessary to quantify the variables that influence the fun in order
to have notion of its evolution in every moment of the game; these values will
be use as inputs to the model construction process. The main difference with
the previous approach is that the relationships between variables and the level
of entertainment will be defined through machine learning techniques. We can
mention here the two main approaches that have been proposed in the literature
and that are discussed below:

Empirical evaluation
In this case the model is obtained from any metaheuristics algorithm (or soft
computing technique in general), and the objective function defined to guide the
optimization process is derived from the author’s appreciation. An example of
this approach was presented in [20] where authors consider that some change
in the rules of the game Commons Game would make it much more exciting,
in this way, game players are modeled with Artificial Neural Networks (ANNs).
The weights of the neural network based model are evolved by a multi-Objective
evolutionary algorithm [21]. In order to evaluate each individual they defined

On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively 249

two objective functions: the variance of the total number of each card chosen in
each game run, and the efficiency of played cards, respectively.

Relative evaluation
This variant has been the most widely used in the literature. Here, the metric
that guides the process of models’ optimization is directly based on the results
that the learning mechanism shows, and this represents precisely the primary
distinction with the approach previously discussed where the metric is defined by
authors. The basic process is carried out by a training of models that is followed
by a supervised approach, so that one can identify when a generated model is
correct. Then, the function is defined on the basis of analyzing the balance be-
tween correct and incorrect models, which depends on the effectiveness of the
learning’s mechanism. For example, in [22] an artificial neural network (ANN)
representing the user’s preference model is constructed using a preference learn-
ing approach in which a fully-connected ANN of fixed topology is evolved by
a generational genetic algorithm which uses a fitness function that measures
the difference between the preferences of entertainment (treported by a group
of children) and the output value of fun returned by the model. Another in-
stance than can be catalogued in this category was presented in [23]; here the
authors do not use neuronal techniques but a different linear model obtained
with Linear Discriminant Analysis; this model follows a supervised approach in
search of a correlation between physiological features and the reported subject
enjoyment. Also, [17] proposed a combination of ANNs with the technique of
preference learning to assist in the prediction of player preferences; here players
are requested to explicitly report their preferences on variants of the game via
questionnaires, and computational models are built on the preference data.

3 Game’s Adjustment

This will be the final stage of an attempt to optimize the players’s satisfaction.
After having obtained the models that identify the player, and having a measure
of her entertainment, it is the moment to use that information and adapt or
adjust the game to the characteristics of the user with the aim of providing
a personalized match according to her preferences, resulting in an entertaining
experience that at the same time meets her expectations.

The processes of modeling and satisfaction evaluation are closely related to
the implemented adjustment mechanism. The indicators that were considered
for the evaluation of satisfaction must match up with the adjustable elements of
the game, in a way that manipulating them will influence the level of satisfaction.
Some of these elements could be: aesthetic aspects, auxiliary contents that can
serve as a guide to the player, the drama, the level of difficulty of the terrain
and opponents, among others; but selection of these elements is not a trivial
task; this is precisely the goal of Procedural Content Generation for games [24]
that represents one of the most exciting lines of research inside the community
of computational intelligence applied to videogames. Moreover, it is also true
that it is not clear the impact of game difficulty and player performance on

250 M. Nogueira, C. Cotta, and A.J. Fernández-Leiva

game enjoyment. This was precisely the analysis conducted in [25] although the
authors could not give concrete conclusions.

From the conceptualization of the game, the script and the design should be
developed with a generic approach that allows the flexibility in each game be
adaptable to the wide range of preferences imposed by any group of users. The
previous issue is also important to reduce the probability that the new game
variants might be not well accepted. For example: causing a dramatic change in
the rules might frustrate the player, or conducting the game towards unknown
status, which is indeed possible when machine learning techniques are used.

With regard to the scope of the game settings we can categorize two ap-
proaches that comprise many works described in the literature and that are
discussed in the following.

3.1 Circumstantial Adjustment

Let’s call the first one circumstantial adjustment which embraces only the action
of changing the specific game elements according to the needs of the player; for
example, the difficulty of the opponents - i.e., the game artificial intelligence
(AI) - is often decreased because we have previously identified that the level of
challenge goes beyond the users’ skills. This approach focuses on managing the
elements that will directly influence the level of satisfaction of the player. The
change it will cause to the game is something particular to that play, which do
not lead to a persistent change in the player’s model, or in the decision making
rules, because online learning don’t occurred.

A successful application of this approach can be found in the experiment
described in [26] and [22] where the aim was to increase, in real time, the sat-
isfaction of the player in a game with physiological devices. Here, the authors,
starting from collected data from several studies conducted with children, con-
structed a model of the user preferences using ANNs which proved to have a
high precision. They implemented a mechanism of adaptation which allows to
customize the game to the individual needs of each user. The logic of the used
game was based on well-established rules, which allowed the authors to identify
the specific parameters that handled the level of challenge and curiosity of the
player, and to obtain an adaptive version of the game turned out to be preferred
by the majority of users in the validation tests.

3.2 Constructive Adjustment

This approach refers to the constructive adjustment, and the difference with the
approach previously mentioned is that here not only the elements that determine
the level of entertainment vary but also a transformation (or reconstruction)
in the operation of the AI mechanism is carried out as a result of the online
learning; an example of this transformation could be to adapt the game strategy
that rules the decision-making of the non-player characters (NPCs); another
example might be to vary the model that identifies the player taking into account
the information is being received online (i.e., during the game session).

On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively 251

In [14], this latter issue is called dynamic modeling and has a corrective na-
ture because the player’s skill (as the game progresses) tends to improve and
thus the player progressively polished her technique as part of her own adap-
tation, and these changes have a direct impact on her preferences. This line of
research represents a very interesting field that promises to get a more reliable
representation of the human player preferences.

The constructive approach offers advantages over the circumstantial one as
regards the customization of models with the use of machine learning techniques
but it is also more complex to implement; as a consequence we cannot affirm
that one is better or worse than the another. In the following we discuss some
examples where good results were obtained with this approach.

In a recent proposal made in [27] an evolutionary algorithm to adapt the AI
strategy governing the opponent army not controlled by the player (in a strategy
game in real time) to the ability of each player is developed; the objective was
to catch the interest of the player in every game with the hope of increasing,
as a result, her satisfaction. The idea is developed in two processes: the first
one takes place during the game execution and consists of extracting a formal
model to imitate the behavior of the player (i.e., the way that the player plays
and the decisions that she takes during the game); in the second step authors
try to generate automatically, through an evolutionary algorithm, an optimized
AI adequate to the player’s level (i.e., player’s skill) in correspondence with the
model previously obtained. These two processes are repeated indefinitely during
the game, the first one is conducted on-line during the game whereas the second
one is executed in-between games. The interesting fact of this proposal is that
the AI level depends specifically on the player and is adapted to her with the
aim of increasing player’s satisfaction by engaging the player to play the game
again.

Another example of the application of this paradigm is debated in [14], where
authors described a framework for dealing with this issue and providing more
adaptable games, and in particular approaches for dealing with two particu-
larly current issues: that of monitoring the effectiveness of adaptation through
affective and statistical computing approaches, and the dynamic remodeling of
players based on ideas from concept drift. This article also discussed the use of
ANN with supervised and non-supervised learning which are feasible to imple-
ment similar applications.

3.3 Who Makes the Adjustment?

In the majority of the works that have been focused in the topic of the adaptive
games, the adjustment is started by the own game, as part of the software’s
adaptation, without the player noticing that this is happening, as we have seen
in the examples previously analyzed. In this case we can name auto-adaptation
to this approach. Nevertheless, the attempt of personalizing the game can be
seen from another perspective where the player is the protagonist of managing
the adjustable elements of the game. This seems to be evident, but it marks a
difference from the design of the game. It is thus a question of giving the player

252 M. Nogueira, C. Cotta, and A.J. Fernández-Leiva

at all time the control so that she can plan her own way towards the satisfaction.
Let us say they are games with controllable adaptation.

An illustrative example of controllable adaptation in games is proposed by
Jenova Chen in [28] as an implementation of the Theory of Flow from Czik-
szentmihalyi. Here, the author uses the concept of Dynamic Adjustment of the
Difficulty. His aim was to design an adaptive game that would show the user
the way to her zone of flow. One of the games implemented for this design was
Flow and proved to have a great acceptance. In Flow the players use the cursor
to sail, simulating an organism inside a virtual biosphere, where they can eat
other organisms, evolve, and advance. Twenty levels were designed; every level
introduces new creatures that symbolize new challenges. Unlike the traditional
games in which the player finishes a level and advances progressively towards
upper levels, Flow offers to the user the total control of the progress in the game.
In every moment of the game the player is continuously being informed about
the possible organisms that she can eat, and according to her choice she will be
able to advance towards top levels or to return to a lower one. The fact of offering
the total control on the difficulty of the game, allows the own managing of the
balance among the challenges and the skills which at the same time control the
immersion in the zone of flow. Doing so, Czikszentmihalyi makes possible that
a very simple game become adaptive to every player, without getting into the
intrinsic complications that have the processes of modeling and auto adjustment
previously analyzed.

4 Conclusions

Nowadays, increasing player’s satisfaction in (video)games is an exciting (and
sometimes a very hard to achieve) challenge. This paper has discussed a number
of different approaches that try to intensify the diversion of the player from
a quantitative point of view, and can be considered a first (and preliminary)
attempt to extract a taxonomy of this issue.

Most of the proposed approaches whose primary objective leads to increment
quantitatively player’s satisfaction can be catalogued in two main categories:
one that tries to quantify user’s entertainment in a game, and another which
focuses in adapting the game in response to player’s needs. Several proffers have
been proposed in both themes, and some of them have been validated and shown
interesting results.

However, as the investigation continues, there are several open research ques-
tions, and further attempts will be developed for obtaining more accurately mod-
els that represent player’s preferences, more complete metrics of entertainment,
and more powerful adaptation mechanisms to personalize the games. For these
reasons, any proposal of taxonomy, will be temporal, and should be extended
in a near future. Future work will be focused on enriching this initial taxon-
omy, refining its classifications and embracing other aspects of the modeling and
increasing player satisfaction issue.

On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively 253

Acknowledgements. This work is partially supported by Spanish MICINN
under project ANYSELF (TIN2011-28627-C04-01), and by Junta de Andalućıa
under project TIC-6083.

References

1. Machado, M.C., Fantini, E.P.C., Chaimowicz, L.: Player modeling: Towards
a common taxonomy. In: 16th International Conference on Computer Games
(CGAMES), pp. 50–57 (July 2011)

2. Official wiki of IEEE Task Force on Player Satisfaction Modeling (2011),
http://gameai.itu.dk/psm

3. Fernández-Leiva, A.J., Barragán, J.L.O.: Decision Tree-Based Algorithms for Im-
plementing Bot AI in UT2004. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la
Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 383–392.
Springer, Heidelberg (2011)

4. Yannakakis, G.: How to model and augment player satisfaction: A review. In:
Proceedings of the 1st Workshop on Child, Computer and Interaction, WOCCI
2008. ACM Press (2008)

5. Malone, T.: What makes things fun to learn? Heuristics for designing instructional
computer games. In: Proceedings of the 3rd ACM SIGSMALL Symposium and the
First SIGPC Symposium on Small Systems, vol. 162, pp. 162–169. ACM (1980)

6. Czikszentmihalyi, M.: Flow: The psychology of optimal experience. Harper & Row,
New York (1990)

7. Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in
games. Computers in Entertainment (3), 3 (2005)

8. Lazzaro, N.: Why we play games: Four keys to more emotion without story. Tech-
nical report, XEODesign, Inc. (2005)

9. Calleja, G.: Revising immersion: A conceptual model for the analysis of digital
game involvement. In: Akira, B. (ed.) Situated Play: Proceedings of the 2007 Dig-
ital Games Research Association Conference, pp. 83–90. The University of Tokyo,
Tokyo (2007)

10. Aarseth, E.: Playing research: Methodological approaches to game analysis. In:
Digital Games Research Conference 2003. University of Utrecht, The Netherlands
(November 2003)

11. Livingstone, D.: Turing’s test and believable ai in games. Computers in Entertain-
ment 4(1) (2006)

12. Hagelbäck, J., Johansson, S.J.: A study on human like characteristics in real time
strategy games. In: [29], pp. 139–145

13. Yannakakis, G., Togelius, J.: Tutorial on measuring and optimizing player satisfac-
tion. In: IEEE Symposium on Computational Intelligence and Games, CIG 2008,
pp. xiv –xvi. IEEE Press (2008)

14. Charles, D., Black, M.: Dynamic player modeling: A framework for player-centered
digital games. In: Mehdi, Q., Gough, N., Natkin, S., Al-Dabass, D. (eds.) Proc. of
5th Game-on International Conference on Computer Games: Artificial Intelligence,
Design and Education, CGAIDE 2004, pp. 29–35. University of Wolverhampton
School of Computing (2004)

15. Cowley, B., Charles, D., Black, M., Hickey, R.: Using decision theory for player anal-
ysis in pacman. In: Proceedings of SAB 2006 Workshop on Adaptive Approaches
for Optimizing Player Satisfaction in Computer and Physical Games, Rome, Italy,
pp. 41–50 (2006)

http://gameai.itu.dk/psm

254 M. Nogueira, C. Cotta, and A.J. Fernández-Leiva

16. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation.
T. Affective Computing 2(3), 147–161 (2011)

17. Mart́ınez, H.P., Hullett, K., Yannakakis, G.N.: Extending neuro-evolutionary pref-
erence learning through player modeling. In: [29], 313–320

18. Nesbitt, K.V., Hoskens, I.: Multi-sensory game interface improves player satisfac-
tion but not performance. In: Proceedings of the Ninth Conference on Australasian
User Interface, AUIC 2008, pp. 13–18. Australian Computer Society, Inc., Dar-
linghurst (2008)

19. Yannakakis, G.N., Hallam, J.: Capturing player enjoyment in computer games. In:
Baba, N., Jain, L.C., Handa, H. (eds.) Advanced Intelligent Paradigms in Computer
Games. SCI, vol. 71, pp. 175–201. Springer, Heidelberg (2007)

20. Baba, N., Handa, H., Kusaka, M., Takeda, M., Yoshihara, Y., Kogawa, K.: Uti-
lization of Evolutionary Algorithms for Making COMMONS GAME Much More
Exciting. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010.
LNCS, vol. 6278, pp. 555–561. Springer, Heidelberg (2010)

21. Coello, C.A.C.: Evolutionary multi-objective optimization: Current state and fu-
ture challenges. In: Nedjah, N., de Macedo Mourelle, L., Abraham, A., Köppen,
M. (eds.) 5th International Conference on Hybrid Intelligent Systems (HIS 2005),
p. 5. IEEE Computer Society, Rio de Janeiro (2005)

22. Yannakakis, G.N., Hallam, J.: Real-time game adaptation for optimizing player
satisfaction. IEEE Trans. Comput. Intellig. and AI in Games 1(2), 121–133 (2009)

23. Tognetti, S., Garbarino, M., Bonarini, A., Matteucci, M.: Modeling enjoyment
preference from physiological responses in a car racing game. In: [29], 321–328

24. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Trans. Comput. Intellig. and
AI in Games 3(3), 172–186 (2011)

25. Klimmt, C., Blake, C., Hefner, D., Vorderer, P., Roth, C.: Player Performance,
Satisfaction, and Video Game Enjoyment. In: Natkin, S., Dupire, J. (eds.) ICEC
2009. LNCS, vol. 5709, pp. 1–12. Springer, Heidelberg (2009)

26. Yannakakis, G.N., Hallam, J.: Real-time adaptation of augmented-reality games
for optimizing player satisfaction. In: Hingston, P., Barone, L. (eds.) 2008 IEEE
Symposium on Computational Intelligence and Games (CIG 2008), pp. 103–110.
IEEE, Perth (2008)

27. Garćıa, J.A., Cotta, C., Fernández-Leiva, A.J.: Design of Emergent and Adaptive
Virtual Players in a War RTS Game. In: Ferrández, J.M., Álvarez Sánchez, J.R., de
la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 372–382.
Springer, Heidelberg (2011)

28. Chen, J.: Flow in games (and everything else). Commun. ACM 50(4), 31–34 (2007)
29. Yannakakis, G.N., Togelius, J. (eds.): Proceedings of the 2010 IEEE Conference on

Computational Intelligence and Games, CIG 2010, Copenhagen, Denmark, August
18-21. IEEE (2010)

Monte-Carlo Tree Search
for the Physical Travelling Salesman Problem

Diego Perez, Philipp Rohlfshagen, and Simon M. Lucas

School of Computer Science and Electronic Engineering,
University of Essex, Colchester CO4 3SQ, United Kingdom

{dperez,prohlf,sml}@essex.ac.uk

Abstract. The significant success of MCTS in recent years, particularly in the
game Go, has led to the application of MCTS to numerous other domains. In an
ongoing effort to better understand the performance of MCTS in open-ended real-
time video games, we apply MCTS to the Physical Travelling Salesman Prob-
lem (PTSP). We discuss different approaches to tailor MCTS to this particular
problem domain and subsequently identify and attempt to overcome some of the
apparent shortcomings. Results show that suitable heuristics can boost the per-
formance of MCTS significantly in this domain. However, visualisations of the
search indicate that MCTS is currently seeking solutions in a rather greedy man-
ner, and coercing it to balance short term and long term constraints for the PTSP
remains an open problem.

1 Introduction

Games such as Chess have always been a popular testbed in the field of Artificial In-
telligence to prototype, evaluate and compare novel techniques. The majority of games
considered in the literature are two-player turn-taking zero-sum games of perfect infor-
mation, though in recent years the study of AI for video game agents has seen a sharp
increase. The standard approach to the former type of game is minimax with αβ prun-
ing which consistently chooses moves that maximise minimum gain by assuming the
best possible opponent. This technique is optimal given a complete game tree, but in
practice needs to be approximated given time and memory constraints: a value func-
tion may be used to evaluate nodes at depth d. The overall performance of αβ depends
strictly on the quality of the value function used. This poses problems in games such
as Go where a reliable state value function has been impossible to derive to date. It is
possible to approximate the minimax tree, without the need for a heuristic, using Monte
Carlo Tree Search (MCTS), though in practice MCTS still benefits significantly from
good heuristics in most games.

MCTS is a best-first tree search algorithm that incrementally builds an asymmetric
tree by adding a single node at a time, estimating its game-theoretic value by using self-
play from the state of the node to the end of the game: each iteration starts from the root
and descends the tree using a tree policy until a leaf node has been reached. The simu-
lated game is then continued along a previously unvisited state, which is subsequently
added to the tree, using the default policy until the end of the game. The actual outcome
of the game is then back-propagated and used by the tree policy in subsequent roll-outs.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 255–264, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

256 D. Perez, P. Rohlfshagen, and S.M. Lucas

The most popular tree policy πT is UCB1, based on upper confidence bounds for bandit
problems [7]:

πT (si) = argmax
ai∈A(st)

{
Q(st, ai) +K

√
logN(st)

N(st, ai)

}
(1)

where N(st) is the number of times node st has been visited, N(st, ai) the number of
times child i of node st has been visited and Q(st, ai) is the expected reward of that
state. K is a constant that balances between exploitation (left-hand term of the equation)
and exploration (right-hand term). MCTS using UCB1 is generally known as UCT. In
the simplest case, the default policy πD is uniformly random: πD(st) = rand(A(st)).

In this paper we study the performance of MCTS on the single-player real-time Phys-
ical Travelling Salesman Problem (PTSP). This study is part of an ongoing effort that
explores the applicability of MCTS in the domain of real-time video games: the PTSP,
where one has to visit n cities as quickly as possible by driving a simple point-mass,
provides an excellent case study to better understand the strengths and weaknesses of
MCTS in open-ended1 and time-constrained domains. The PTSP also has the feature
that the best possible score for a map is usually unknown. Hence, even assigning a
value to a roll-out that does terminate (cause the salesman to visit all cities) raises inter-
esting issues. The experimental studies presented in this paper offer new insights into
the behaviour of MCTS in light of these attributes and may be used to create stronger
AI players for more complex video games in the future, or perhaps more importantly,
create intelligent players with very little game-specific programming required.

2 Literature Review

MCTS was first proposed in 2006 (see [3,4]) and rapidly became popular due to its signifi-
cant success in computer Go [6], where traditional approaches had been failing to outplay
experienced human players. MCTS has since been applied to numerous other games, in-
cluding games of uncertain information and general game playing. In this section we
review applications of MCTS to domains most closely related to the PTSP, including
optimisation problems, single-player games (puzzles) and real-time strategy games.

MCTS and other Monte Carlo (MC) methods have been applied to numerous com-
binatorial optimisation problems, including variations of the classical Travelling Sales-
man Problem (TSP). For instance, Rimmel et al. [9] used a nested MC algorithm to
solve the TSP with time windows, reaching state of the art solutions in problems with
no more than 29 cities. Bnaya et al. [2] obtained near-optimal results using UCT to
solve the Canadian Traveller Problem, a variation of the TSP where some edges of the
graph might be blocked with some probability.

Related to optimisation problems are single player games, also known as puzzles. The
Single-Player MCTS (SP-MCTS) was introduced by Shadd et al. [13], where a modifi-
cation of UCT was proposed in order to include the effect of not having an opponent to
play against. The authors found that restarting the seed of the random simulations pe-
riodically, while saving the best solution found so far, increases the performance of the

1 Open-ended in this context means that many lines of play will never terminate.

Monte-Carlo Tree Search for the Physical Travelling Salesman Problem 257

algorithm for single player games. Another puzzle, SameGame, has also been addressed
by many researchers, including Schadd et al. [13]. They used SP-MCTS with modified
back propagation, parameter tuning and a meta-search extension, to obtain the highest
score ever obtained by any AI player so far. Matsumoto et al. [8] incorporated domain
knowledge to guide the MC roll-outs, obtaining better results with a little more computa-
tional effort. Similarly, Björnsson and Finnsson [1] proposed a modification of standard
UCT in order to include the best results of the simulations (in addition to average results)
to drive the search towards the most promising regions. They also stored good lines of
play found during the search which may be used effectively in single-player games.

MCTS has also been applied widely to real-time games. The game Tron has been a
benchmark for MCTS in several studies. Samothrakis et al. [11] apply a standard imple-
mentation of MCTS, including knowledge to avoid self-entrapment in the MC roll-outs.
The authors found that although MCTS works well a significant number of random roll-
outs produce meaningless outcomes due to ineffective play. Den Teuling [5] applied
UCT to Tron with some modifications, such as progressive bias, simultaneous moves,
game-specific simulation policies and heuristics to predict the score of the game with-
out running a complete simulation. The enhancements proposed produce better results
only in certain situations, depending on the board layout. Another real-time game that
has frequently been considered by researchers is Ms. Pac-Man. Robles et al. [10] ex-
pand a tree with the possible moves that Ms. Pac-Man can perform, evaluating the best
moves with hand-coded heuristics, and a flat MC approach for the end game prediction.
Finally, Samothrakis et al. [12] used MCTS with a 5-player maxn game tree, where
each ghost is treated as an individual player. The authors show how domain knowledge
produced smaller trees and more accurate predictions during the simulations.

3 The Physical Travelling Salesman Problem

The Physical Travelling Salesman Problem (PTSP) is an extension of the Travelling
Salesman Problem (TSP). The TSP is a very well known combinatorial optimisation
problem in which a salesperson has to visit n cities exactly once using the shortest route
possible, returning to the starting point at the end. The PTSP converts the TSP into a
single-player game and was first introduced as a competition at the Genetic and Evo-
lutionary Computation Conference (GECCO) in 2005. In the PTSP, the player always
starts in the centre of the map and cities are usually distributed uniformly at random
within some rectangular area; the map itself is unbounded.

Although the original PTSP challenge was not time constrained, the goal of the cur-
rent PTSP is to find the best solution in real-time. At each game tick the agent selects
one of five force vectors to be applied to accelerate a point mass around the map with
the aim of visiting all cities. The optimality of the route is the time taken to traverse it
which differs from its distance as the point-mass may travel at different speeds. At any
moment in time, a total of 5 actions may be taken: forward, backward, left, right and
neutral. At each time step, the position and velocity of the point-mass is updated using
Newton’s equations for movement: v = vi + aΔt and s = si + viΔt+ 1

2a(Δt)2 with
Δt =

√
0.1.

258 D. Perez, P. Rohlfshagen, and S.M. Lucas

Fig. 1. Example of a 6 city problem where the optimal TSP route differs from the optimal PTSP
route: (a) the six cities and starting point (black circle); (b) the optimal TSP solution to this
problem without returning to the start; (c) optimal PTSP route and (d) equivalent TSP route
which is worse than the route shown in (b)

There are at least two high-level approaches to confront this problem: one possibility
is to address the order of cities and the navigation (steering) of the point mass indepen-
dently. However, it is important to keep in mind that the physics of the game make the
PTSP quite different from the TSP. In particular, the optimal order of cities for a given
map which solves the TSP does not usually correspond to the optimal set of forces that
can be followed by an agent in the PTSP. This is illustrated in Figure 1. Another possi-
ble approach to tackle the PTSP is thus to attempt to determine the optimal set of forces
and order of cities simultaneously.

The PTSP can be seen as an abstract representation of video games characterised
by two game elements: order selection, and steering. Examples of such games include
CrystalQuest, XQuest and Crazy Taxi. In particular, the PTSP has numerous interesting
attributes that are commonly found in these games: players are required to act quickly
as the game progresses at every time step. Furthermore, the game is open-ended as
the point-mass may travel across an unbounded map – it is thus highly unlikely that
MCTS with a uniform random default policy would be able to reach a terminal state.
This requires the algorithm to (a) limit the number of actions to take on each roll-out
(depth); and (b) implement a value function that scores each state. Finally, it is important
to note that there is no win/lose outcome which affects the value of K for the UCB1
policy (see Equation 1).

4 Preliminary Experimental Study

The application of MCTS to the PTSP requires a well-defined set of states, a set of
actions to take for each of those states and a value function that indicates the quality of
each state. Each state is uniquely described by the position of the point-mass, its veloc-
ity, and the minimum distance ever obtained to all cities. The actions to take are identical
across all states (forward, backward, left, right and neutral). Finally, the value (fitness)
function used is the summation of the values vi, based on the minimum distances ever
obtained to all cities, plus some penalty due to travelling outside the boundaries of the
map. The number of steps is also considered. The value vi is calculated for each city as
follows:

Monte-Carlo Tree Search for the Physical Travelling Salesman Problem 259

vi =

{
0 if di < cr
fm − fm

di−cr+2 otherwise
(2)

where di represents the distance between the point-mass and the city i, cr is the radius
of each city and fm is the maximum value estimated for the fitness. This equation
forces the algorithm to place more emphasis on the positions in the map that are very
close to the cities. The score associated with each state is normalised: the maximum
fitness is equivalent to the number of cities multiplied by fm, plus the penalties for
travelling outside the boundaries of the map and the number of steps performed so far.
The normalisation is very important to identify useful values of K which has been set
to 0.25 in this study following systematic trial and error.

Two default policies have been tested. The first uses uniform random action selection
while the second, DRIVEHEURISTIC, includes some domain knowledge to bias move
selection: it penalises actions that do not take the agent closer to any of the unvisited
cities. This implies that actions which minimise the fitness value are more likely to be
selected. Four algorithms are considered in this preliminary experiment: the simplest is
1-ply MC Search which uses uniform random action selection for each of the actions
available from the current state, selecting the best one greedily. A slight modification of
this is Heuristic MC which biases the simulations using the DRIVEHEURISTIC. The first
MCTS variant is using UCB1 as tree policy and uniform random rollouts. The heuristic
MCTS implementation also uses UCB1 as its tree policy, but biases the rollouts using
the DRIVEHEURISTIC.

To compare the different configurations, the following experiments have been carried
out on 30 different maps that have been constructed uniformly at random. A minimum
distance between cities prevents overlap. The same set of 30 maps has been used for all
experiments and configurations were tested over a total of 300 runs (10 runs per map).
Finally, the time to make a decision at each stage of the problem has been set to 10
milliseconds.

The results are shown in Table 1.2 It is evident that MCTS outperforms, with respect
to the number of best solutions found, both 1-ply MC Search and MCTS with a heuristic
in the roll-outs. The differences in the average scores are, however, insignificant. The
observation that 1-ply MC Search is achieving similar results to MCTS suggests that
the information obtained by the roll-outs is either not utilised efficiently or is simply
not informative enough. If this is the case, the action selection and/or tree selection
mechanism cannot be effective.

Figures 2 and 3 depict a visualisation of the MCTS tree at a particular iteration: each
position, represented in the figure as a pixel on the map, is drawn using a grey scale
that represents how often this position has been occupied by the point-mass during
the MC simulations. Lighter colours indicate more presence of those positions in the
simulations, while darker ones represent positions less utilised. Figure 3 is of a special
interest: the simulations are taking the point-mass to positions where no cities can be
found. This happens because no other portion of the map (where cities are located) is
explored and thus MCTS is unable to steer the point-mass towards regions of higher
fitness.

2 The experiments were executed on an Intel Core i5 PC, with 2.90GHz and 4GB of memory.

260 D. Perez, P. Rohlfshagen, and S.M. Lucas

Table 1. Results for 10 city maps compared in terms of the number of time steps required to solve
the problem. The Best count indicates how often the algorithm produced the overall best solution,
while Not solved shows the number of trials where the algorithm was unable to find a solution.
Finally, Average simulations indicates how many simulations were performed, on average, in
each execution step.

Algorithm Average
Standard

Error
Best count Not solved

Average
simulations

1-ply Monte Carlo Search 539.65 3.295 0 1 816
Heuristic MC 532.63 3.302 3 0 726
MCTS UCB1 531.25 3.522 10 2 878

Heuristic MCTS UCB1 528.77 3.672 2 0 652

Fig. 2. Tree exploration at the start Fig. 3. No cities close to tree exploration

5 Extended Experimental Study

The objective of the extended experimental study is to analyse the impact of additional
domain knowledge on the performances of the algorithms. In particular, we exploit the
concept of a centroid, calculated as the centre of all unvisited cities (and the centre of
the map). The idea is to prevent the selection of actions that take the point-mass away
from that point. However, this penalty cannot be used all the time, because otherwise
the point-mass would always be drawn towards the centroid, not visiting any cities. In
order to decide when this heuristic is to be enabled, we define a circle with a certain
radius r, centred on the centroid, to be the centroid’s influence.

The maps depicted in Figures 4 and 5 show a set of cities, the centroid (located near
the center of the map) and the centroid’s area of influence.3 The value of r used is the
distance to the farthest city from the centroid, multiplied by a factor e; the value of e
can be used to modulate how far the point-mass is allowed to go from the centroid. In
this study the value is set to 1.05.

We define the following new algorithms using the CENTROIDHEURISTIC: the Cen-
troid Heuristic MC is identical to the Heuristic MC but the heuristic used to guide the
MC simulations ignores actions that do not take the point-mass towards the centroid

3 Videos of the tree and the CentroidHeuristic may be found at
www.youtube.com/user/MonteCarloTreeSearch.

www.youtube.com/user/MonteCarloTreeSearch

Monte-Carlo Tree Search for the Physical Travelling Salesman Problem 261

Fig. 4. Centroid and influence Fig. 5. Centroid and influence update

Table 2. 10 city result comparison, 10ms limit

Algorithm Average
Standard

Error
Best count Not solved

Average
simulations

1-ply Monte Carlo Search 539.65 3.295 1 1 816
Heuristic MC 532.63 3.302 1 0 726
MCTS UCB1 531.25 3.522 2 2 878

Heuristic MCTS UCB1 528.77 3.672 1 0 652
Centroid Heuristic MC 552.87 4.158 2 0 915

Centroid Heuristic MCTS 524.13 3.443 2 0 854
Centroid MCTS only UCT 599.38 10.680 6 76 1009

Centroid MCTS & UCT 481.85 6.524 12 0 659

(if within the centroid influence). Likewise, the Centroid Heuristic MCTS is similar
to the Heuristic MCTS but uses the CentroidHeuristic during the default policy. The
Centroid MCTS only UCT is identical to the standard MCTS algorithm but uses the
CentroidHeuristic in the tree policy, by not allowing the selection of those actions that
do not take the point-mass towards the centroid (if within the centroid influence). Fi-
nally, the Centroid MCTS & UCT is similar to the Centroid Heuristic MCTS only UCT
using the CentroidHeuristic also in the default policy.

5.1 Random Maps of 10 Cities

The results for random maps of 10 cities are shown in Table 2. It is evident that solu-
tion quality was improved by the CENTROIDHEURISTIC. The average solution quality,
using the centroid heuristic for both the tree selection and MC roll-outs, is 481.85,
with a low standard error and a very good count of best solutions found: both Cen-
troid MCTS only UCT and Centroid MCTS & UCT, with K = 0.05, achieve more than
the 50% of the best scores. The Kolmogorov-Smirnov test confirms that these results are

262 D. Perez, P. Rohlfshagen, and S.M. Lucas

significant. The test provides a p-value of 1.98 × 10−22 when comparing 1-ply MC
Search and Centroid MCTS only UCT, and 1.98× 10−22 for 1-ply Monte Carlo Search
against Centroid MCTS & UCT.

Similar results have been obtained for time steps of 50 milliseconds. In this case,
the 1-ply Monte Carlo Search algorithm achieves an average time of 514.31, while
MCTS UCB1, Centroid MCTS only UCT and Centroid MCTS & UCT obtain 511.87,
556.53 and 469.72 respectively. Several things are worth noting from these results:
first, the algorithms perform better when the time for simulations is increased. Second,
it is interesting to see how the different MCTS configurations (specially MCTS UCB1
and Centroid MCTS only UCT) improve more than the MC techniques when going
from 10 to 50ms. The third MCTS configuration, which obtains the best results for
both time limits, does not improve its solution quality as much as the other algorithms
when increasing the simulation time. However, it is important to note that the results
obtained by this configuration given 10ms are better than the best solution found by any
other algorithm given 50ms. It is highly significant that the solutions obtained by this
algorithm are the best ones found for this problem, showing an impressive performance
even when the available time is very limited. This makes the approach very suitable for
time-constrained real-time games.

5.2 Random Maps of 30 Cities

To check if the results of the previous section are consistent, some experiments were
performed with 30 cities. Table 3 shows the results of these algorithms for a time limit
of 10ms. The results are similar to the ones recorded in the 10 cities experiments, al-
though in this case Centroid MCTS only UCT with K = 0.05 is the algorithm that
solves the problem in the least number of time steps. Figure 6 shows the performance
of some of the configurations tested for the different time limits considered. Comparing
1-ply Monte Carlo Search with the Centroid MCTS only UCT using the Kolmogorov-
Smirnov test gives the following p-values for 10ms, 20ms and 50ms respectively: 0.349,
0.0005 and 1.831×10−7. This confirms significance in the case of 20ms and 50ms, but
not in the case of 10ms.

Table 3. 30 city result comparison, 10ms limit

Algorithm Average
Standard

Error
Best count Not solved

Average
simulations

1-ply Monte Carlo Search 1057.01 6.449 2 0 562
Heuristic MC 1133.10 6.581 0 11 319
MCTS UCB1 1049.16 6.246 6 0 501

Heuristic MCTS UCB1 1105.46 5.727 2 3 302
Centroid Heuristic MC 1119.93 6.862 0 1 441

Centroid Heuristic MCTS 1078.51 5.976 1 0 428
Centroid MCTS only UCT 1032.94 6.365 7 14 481

Centroid MCTS & UCT 1070.86 6.684 7 0 418

Monte-Carlo Tree Search for the Physical Travelling Salesman Problem 263

Fig. 6. Performance of the algorithms when time limit changes (30 cities)

6 Conclusions

This paper analyses the performance of Monte Carlo Tree Search (MCTS) on the Phys-
ical Travelling Salesman Problem (PTSP), a real-time single player game. The two
experimental studies outlined in this paper focus on the impact of domain knowledge
on the performance of the algorithms investigated and highlight how a good heuristic
can significantly impact the success rate of an algorithm when the time to select a move
is very limited.

The results show that the CentroidHeuristic helps the algorithm to find better solu-
tions, especially when the time allowed is very small (10ms). As shown in the results,
when the time limit is 10ms, some approaches (like MCTS without domain knowledge)
are not able to provide significantly better results than 1-ply Monte Carlo Search. They
are, however, able to produce superior results when the time limit is increased. The
main contribution of this research is evidence to show that it is possible to effectively
utilise simple domain knowledge to produce acceptable solutions, even when the time
to compute the next move is heavily constrained.

The off-line version of the problem has also been solved with evolutionary algo-
rithms, notably in the GECCO 2005 PTSP Competition. In fact, the winner of that
competition utilised a genetic algorithm, using a string with the five available forces
as a genome for the individuals (results and algorithms employed can be found at
cswww.essex.ac.uk/staff/sml/gecco/ptsp/Results.html). This
PTSP solution format, a string of forces, is a suitable representation for evolutionary
algorithms that may be applied to this problem. A thorough comparison of evolution
versus MCTS for this problem would be interesting future work.

Other ongoing work includes the use of more interesting maps (by introducing obsta-
cles, for instance), modified game-physics to steer a vehicle rather than a point-mass,
and the inclusion of more players that compete for the cities. Competitions based on
these variations are already in preparation. The results of these should provide further

cswww.essex.ac.uk/staff/sml/gecco/ptsp/Results.html

264 D. Perez, P. Rohlfshagen, and S.M. Lucas

insight into how best to apply MCTS to the PTSP, as well as its strengths and weak-
nesses compared to evolutionary and other optimisation methods.

Finally, a particular challenge for MCTS applied to the PTSP is how to persuade it
to make more meaningful simulations that consider the long-term plan of the order in
which to visit the cities, together with the short term plan of how best to steer to the
next city or two.

Acknowledgements. This work was supported by EPSRC grant EP / H048588 / 1.

References

1. Björnsson, Y., Finnsson, H.: CadiaPlayer: A Simulation-Based General Game Player. IEEE
Trans. on Computational Intelligence and AI in Games 1(1), 4–15 (2009)

2. Bnaya, Z., Felner, A., Shimony, S.E., Fried, D., Maksin, O.: Repeated-task Canadian traveler
problem. In: Proceedings of the International Symposium on Combinatorial Search, pp. 24–
30 (2011)

3. Chaslot, G.M.J.-B., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo Tree Search: A New
Framework for Game AI. In: Proc. of the Artificial Intelligence for Interactive Digital Enter-
tainment Conference, pp. 216–217 (2006)

4. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In: van
den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp.
72–83. Springer, Heidelberg (2007)

5. Den Teuling, N.G.P.: Monte-Carlo Tree Search for the Simultaneous Move Game Tron. Univ.
Maastricht, Tech. Rep. (2011)

6. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in computer
Go. Artificial Intelligence 175(11), 1856–1875 (2011)

7. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

8. Matsumoto, S., Hirosue, N., Itonaga, K., Yokoo, K., Futahashi, H.: Evaluation of Simula-
tion Strategy on Single-Player Monte-Carlo Tree Search and its Discussion for a Practical
Scheduling Problem. In: Proc. of the International Multi Conference of Engineers and Com-
puter Scientists, vol. 3, pp. 2086–2091 (2010)

9. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo Algorithm
on the Traveling Salesman Problem with Time Windows. In: Di Chio, C., Brabazon, A.,
Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero,
J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.)
EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 501–510. Springer, Heidelberg (2011)

10. Robles, D., Lucas, S.M.: A Simple Tree Search Method for Playing Ms. Pac-Man. In: Proc.
of the IEEE Conference on Computational Intelligence and Games, pp. 249–255 (2009)

11. Samothrakis, S., Robles, D., Lucas, S.M.: A UCT Agent for Tron: Initial Investigations. In:
Proc. of IEEE Conference on Computational Intelligence and Games, pp. 365–371 (2010)

12. Samothrakis, S., Robles, D., Lucas, S.M.: Fast Approximate Max-n Monte-Carlo Tree Search
for Ms Pac-Man. IEEE Trans. on Computational Intelligence and AI in Games 3(2), 142–154
(2011)

13. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.-B., Uiterwijk,
J.W.H.M.: Single-Player Monte-Carlo Tree Search. In: van den Herik, H.J., Xu, X., Ma, Z.,
Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 1–12. Springer, Heidelberg (2008)

Diversified Virtual Camera Composition

Mike Preuss, Paolo Burelli, and Georgios N. Yannakakis

Computational Intelligence Group, Dept. of Computer Science,
Technische Universität Dortmund, Germany and

Center for Computer Games Research, IT University of Copenhagen, Denmark
mike.preuss@tu-dortmund.de, {pabu,yannakakis}@itu.dk

Abstract. The expressive use of virtual cameras and the automatic generation of
cinematics within 3D environments shows potential to extend the communicative
power of films into games and virtual worlds. In this paper we present a novel so-
lution to the problem of virtual camera composition based on niching and restart
evolutionary algorithms that addresses the problem of diversity in shot generation
by simultaneously identifying multiple valid camera camera configurations. We
asses the performance of the proposed solution against a set of state-of-the-art
algorithms in virtual camera optimisation.

1 Introduction

In computer games, as well as in most 3D applications, effective camera placement is
fundamental for the user to understand the virtual environment and be able to interact.
Camera settings for games are usually directly controlled by the player or statically
predefined by designers. Direct control of the camera by the player increases the com-
plexity of the interaction and reduces the designer’s ability to control game storytelling
(e.g. the player might manually look at an object revealing an unwanted information).
Statically defined cameras, on the other hand, release the player from the burden of
controlling the point of view, but often fail to correctly frame the game actions. More-
over, when the game content is procedurally generated, the designer might not have the
necessary information to define, a priori, the camera positions and movements.

Automatic camera control aims to define an abstraction layer that permits the de-
signers to instruct the camera with high-level and environment-independent rules. The
camera controller should dynamically and effectively translate these rules into camera
movements. Most researchers model this problem as an optimisation problem [8] in
which the search space is the space of all the possible camera configurations and high
level properties are modelled as an objective function to be optimised.

Although the space of possible camera configurations is relatively low dimensional
(at least 5 dimensions to define position and orientation), automatic camera control is a
complex optimisation problem for two reasons: the evaluation functions corresponding
to frame properties often generate landscapes that are very rough for a search algorithm
to explore [7] and the evaluation of such properties is computationally expensive with
respect to the time available for computation (16ms for real time applications), signifi-
cantly reducing the number of evaluations available for the search process. In general,
these problems seem to be highly multimodal, but the degree of ruggedness and the
number of basins may vary a lot across different instances [7].

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 265–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

266 M. Preuss, P. Burelli, and G.N. Yannakakis

To the authors knowledge, all the research carried out to solve this optimisation prob-
lem focuses on providing more accurate, robust and efficient algorithms to find the best
possible camera configuration given the objective function defined by the designer’s
requirements. However, as pointed out by Thawonmas et al. [22], one single best so-
lution is often unsatisfactory. When filming a scene with little movement, such as a
dialogue, selecting always the same solution will lead to a repetitive direction. While
this might be the explicit will of the designer, it is often an issue for media such as films
and comics. Thawonmas et al. address this problem by randomizing the shot definition;
such a solution, however, acts on the design of the shot rather than on the implementa-
tion, potentially disrupting the intended message. We consider the problem of providing
multiple alternative good solutions as largely unsolved, and it naturally calls for applica-
tion of niching methods because they are designed for providing more than one solution.
However, as the black box optimization benchmark (BBOB) competitions1 at GECCO
2009 and 2010 conferences have shown (see [2] for data and [13] for a comprehensive
analysis and summary), the CMA-ES also copes well with multimodal functions due to
its clever restart mechanisms and naturally, each restart delivers an approximation for a
local optimum. Consequently, we intend to pursue the following tasks in this work:

a) Assess if modern evolutionary algorithm approaches as niching and restart based
variants of the CMA-ES [10] are capable of reliably providing multiple diverse
good solutions to the problem quickly;

b) investigate the trade-off between diversity and quality (in solutions) by setting up
specific performance criteria and comparing our suggested methods with different
state-of-the-art ones;

c) collect some (experimentally based) knowledge about the landscape structure, fol-
lowing the idea of exploratory landscape analysis (ELA) [14], in order to allow for
even faster future algorithm implementations.

Our approaches exploit the multi-modal nature of the camera optimisation problem and
identify multiple alternative solutions basins, thereby also revealing much information
about the fitness landscape of the problem. Each basin contains potentially optimal
camera configurations that have comparable fitness, but different visual aspect; such
configurations can be used to diversify the shots while maintaining the designers re-
quirements. However, in order to correctly estimate the suitability of the different algo-
rithms, we make several simplifications that have to be rethought when applying them
under real-time conditions:

a) We relax the runtime limit by allowing longer runs than would be possible in 16ms.
This follows the make it run first, then make it run fast principle. Once good meth-
ods are found, they can be further adjusted to the problem to increase performance.

b) For now, we ignore the multi-objective nature of the problem as this will most likely
make it even harder. This must be considered later on when already challenging
single-objective formulation is solved sufficiently.

1 http://coco.gforge.inria.fr/doku.php

http://coco.gforge.inria.fr/doku.php

Diversified Virtual Camera Composition 267

In the remaining of the paper we describe the current state-of-the-art in virtual camera
composition, we present our algorithmic approaches and showcase their capabilities
and performance in a set of test environments.

2 Related Work

Since the introduction of virtual reality, virtual camera control attracted the attention
of a large number of researchers [8]. Early studies on virtual camera [23] investigated
manual camera control metaphors for exploration of virtual environments and manip-
ulation of virtual objects. However, direct control of the several degrees of freedom
of the camera showed often to be problematic for the user [9] leading researchers to
investigate for the automation of camera control.

In 1988, Blinn [4] showcased one of the first examples of an automatic camera con-
trol system. Blinn designed a system to automatically generate views of planets in a
NASA space simulator. Although limited in its expressiveness and flexibility, Blinn’s
work inspired many other researchers trying to investigate efficient solutions and more
flexible mathematical models able to handle more complex aspects such as camera mo-
tion and frame composition [1].

More generic approaches model camera control as an optimisation problem by re-
quiring the designer to define a set of targetted frame properties which are then put
into an objective function. These properties describe how the frame should look like in
terms of object size, visibility and positioning. Olivier et al. [15] first formalised the
camera control problem as an optimisation problem and introduced detailed definition
of these properties. Since then, numerous search strategies have been applied to solve
the problem, including population based algorithms, local search algorithms and com-
binations of the two [8]. These approaches offer different performances with respect to
computational cost, robustness and accuracy; however, none of them regards diversity
of solutions as a key characteristic.

Thawonmas et al. [22] identify variety of shots as a major problem in automatic gen-
eration of cinematics and they introduce a roulette-wheel selection mechanism to force
variety in shot descriptions. However, by altering the shot properties, this approach does
not only vary the shot visual aspect but potentially changes the shot meaning.

We propose the application of niching and restart evolutionary algorithms based on
the real-valued blackbox optimization method CMA-ES to the virtual camera composi-
tion problem, to find multiple alternative solutions during the optimisation process and
we showcase its performance with respect of a selection of state-of-the-art algorithms.

3 Virtual Camera Composition

An optimal camera configuration is defined as the combination of camera settings which
maximises the satisfaction of the requirements imposed on the camera, known as cam-
era profile. A camera profile describes the characteristics of the image that the camera
should generate in terms of composition properties. Based on the author’s previous
work on automatic camera control [6], the properties that can be imposed are: Ob-
ject Visibility, Object Projection Size, Object View Angle and Object Frame Position.

268 M. Preuss, P. Burelli, and G.N. Yannakakis

(a) Eavesdropping (b) Ambush (c) Chat

Fig. 1. Test problems’ virtual environments

The first property defines whether an object (or a part of it) should be visible in the
frame, the second defines the size an object should have in the frame, the third one
defines the angle from which the camera should frame the object and the fourth one
defines the position that the projected image of the object should have in the frame.

Each composition property corresponds to an objective function which describes
the satisfaction of such property. The complete virtual camera composition objective
function F is a linear combination of the objective functions corresponding to each
property included in the camera profile.

3.1 Test Problems

In order to assess the performance of the proposed solutions we compare their con-
vergence behaviour with a set of state-of-the-art algorithms across three test problems.
Each test problem requires the camera to frame a common game situation (e.g. a dia-
logue between virtual characters) according to a set of standard cinematographic visual
properties. The problems are set in a virtual 3D environment including a large variety of
geometrical features of modern computer games such as closed rooms, walls or trees.
The set of properties of the desired camera configuration and the virtual environments
are designed to include alls the typical optimisation challenges of the virtual camera
composition problem such as lack of gradient or multi-modality.

In the first problem (Fig. 1a) the environment includes three characters, with two
of them facing each other and ideally chatting, while the third one eavesdropping. The
properties for this problem include full visibility of all characters and a projection size
equal to one third of the screen for all characters. In the second problem (Fig. 1b) the
environment includes two characters on two sides of a wall. The properties for this
problem include full visibility of all characters and a projection size equal to half of
the screen for all characters and an horizontal angle of 90 degrees to the right of each
character. The last problem is based on the chat scene by Thawonmas et al. [22] and it
includes three characters with one ideally chatting to the other two. The visibility and
projection size properties are equal to the ones in the first problem but the camera is
also expected to be on the back of the listening characters.

The first and the second problems are set in an indoor environment with closed spaces
separated by solid walls. As described in [7], walls act as large occluders inducing large
areas of the objective function landscape to have little or no gradient. Figures 2a and
2b display the aforementioned characteristic which are smoothed by the presence of
other properties besides visibility in the problem description. The third problem is set

Diversified Virtual Camera Composition 269

(a) Eavesdropping (b) Ambush (c) Chat

Fig. 2. Maximum value of the problems’ objective function sampled across the X and Z axis of
the virtual test environments

in an outdoor environment composed by a cluster of trees. As displayed in Fig 2c, such
environment influences the objective function landscape by increasing the modality.

4 Niching and Restart CMA-ES Variants under Test

Niching in evolutionary optimization dates back at least to the 1970s with the sugges-
tion of Sharing and Crowding. Its general idea is that by organizing the search process
and keeping several populations/local searches separate from each other we can obtain
multiple good solutions at once, which is not that far from the scheme of modern real-
valued memetic seach algorithms. In the biological protoype (Earth), niching works
well because the surface on which most lifeforms move around is only 2 dimensional.
However, in optimization, we usually have a larger number of dimensions, so that hu-
man intuition can get very wrong about distances, relative positions and volume sizes
and the principles of geometry get less and less applicable. The test case we have here
is interesting, as its 5 dimensions place it somewhere between ’well suited’ (2D) and
’not applicable’ (> 20D) with respect to niching algorithms. The number of available
niching algorithms is quite large, recent suggestions include e.g. [19], [20], [16], and
we by no means claim that we are able to select the most appropriate niching EA (this
would hardly be possible without knowing much more about the problem properties).

We therefore resolve to an algorithm that is a further development of [16] which is to
date the only niching method with documented results on the BBOB test set. We call the
original version (also labelled as NBC-CMA) niching evolutionary algorithm 1 (NEA1)
here to differentiate it from the newer version we term NEA2. NEA1 highly relies on
the CMA-ES as local searcher, but uses a much larger starting population (40×D) on
which the nearest-better clustering method is run to separate it into populations repre-
senting different basins of attraction [18]. This topological clustering method connects
every search point in the population to the nearest one that is better and cuts the con-
nections that are longer than 2× the average connection. The remaining connections
determine the found clusters by computing the weakly connected components. This
works very well for a reasonably large population in two dimensions, but increasingly
fails if the number of dimensions increases. Therefore, in NEA2, a second additional
cutting rule has been implemented: For all search points that have at least 3 incoming
connections (it is the nearest better point for at least 3 others), we divide the length of

270 M. Preuss, P. Burelli, and G.N. Yannakakis

its own nearest-better connection (in case it has none it is the best point and has surely
been treated by the old rule) by the median of its incoming connections. If this is larger
than a precomputed correction factor, the outgoing connection is cut (and we have one
additional cluster). The correction factor cf has been experimentally derived and de-
pends on D and the population size #elems. This works astonishingly well for up to
around 20D and not too complex landscapes.

cf = −4.69 ∗ 10−4 ∗D2 + 0.0263 ∗D + 3.66/D− 0.457 ∗ log10(#elems)

+7.51e− 4 ∗D2 − 0.0421 ∗D − 2.26/D+ 1.83 (1)

As both cutting rules are heuristics that work well in many cases but come without guar-
antee, the number of resulting clusters had to be limited in NEA1, as it processes all clus-
ters as separate CMA-ES populations in parallel. This can result in very long runtimes
in cases where the clustering was not very accurate. NEA2 overcomes this problem by
switching from a BFS-like to a DFS-like search in which the clusters are treated sequen-
tially sorted according to their best members (best first, see [17] for details). Should the
problem be less multimodal then detected, (e.g. unimodal), NEA2 would perform very
similar to the CMA-ES as every start point leads to the same optimum. Although these
niching methods are still much simpler than many other ones suggested in literature, they
are arguably still much more complex than a restart CMA-ES.

However, there is a much simpler way to cope with organizing the search, and that
is by just randomly chosing a new starting position as soon as stagnation is detected.
Of course, this does not require to compare positions in search space and should work
especially well in higher dimensions, when the geometry-based niching must fail. The
CMA-ES does just that and is currently one of the leading algorithms in real-valued
black-box optimization. We therefore add it to the algorithm test set, as a reference and
reliable default solution. As the problem is highly time-critical and thus only very few
evaluations are allowed, the CMA-ES is run without heuristic population enlargement
as e.g. proposed with the IPOP- [3] and BIPOP-CMA variants. All parameters are left at
their default values with the exception of the TolFun stopping criterion which is highly
connected to the desired accuracy [11]. This is set to a value of 10−3 which is still below
the needed accuracy. The effect of this setting is that fruitless searches in local optima
are stopped earlier, thus more restarts can be done. As the NEA2 internally also heavily
relies on the CMA and its stopping criteria, it is also affected by this change.

5 Experimental Analysis

5.1 Measures

Next to the raw performance (best obtained objective value over time), we measure
the diversity target by first defining the properties of one/multiple suitable solutions. A
solution is considered good enough if its fitness value is ≤ 0.05 (fitness values range
from 0 to 1). This is an ad-hoc definition, but the first test runs told us that this quality
can be achieved for all 3 problem instances. The motivation for 0.05 is that for a human,
it will be hard to discriminate these solutions from the one with 0 values, thus they can
be considered good enough for the practical application.

Diversified Virtual Camera Composition 271

It is somewhat harder to determine when several good solutions are useful (this
would not be the case if they are too similar). For discriminating useful alternatives,
we demand a minimal Euclidean distance of at least 1 in the three spatial coordinates,
regardless of the camera angles. The expected time to reach the desired quality is com-
puted over several repeated runs after the expected runtime (ERT)2 definition suggested
in [3], with #fevals being the sum of all evaluations that were spend before reaching
the target value ftarget = 0.05, and #succ standing for the number of successful runs:

ERT =
#fevals > ftarget

#succ
(2)

As we desire several good solutions, we denote the ERT for the first one by ERT1, and
the running times for the next ones (that have to fulfill the distance criterion concerning
all the already detected ones) as ERT2 and ERT3, respectively. The diversity of the
attained solutions is also of interest and it is measured by taking the average over the
distance sums from the first solution to every other solution per run.

5.2 Experiment

With the following experiment we want to find out which of the suggested algorithms,
CMA-ES, NEA2, Particle Swarm Optimisation (PSO) [12], Differential Evolution (DE)
[21], or Sliding Octree (SO) [5] is capable of reliably delivering multiple, diverse and
good solutions quickly, and to pursue the goals named in the introduction. NEA1 is only
added for a performance comparison to NEA2. Standard variants of DE, PSO and SO
methods have been included as representatives of previous approaches to the problem.

Pre-experimental planning. During the first test runs, we found that a run length of
5000 evaluations is usually enough for the algorithms to converge to (best) solutions of
around 0.05 or better.

Setup. We run each algorithm on each of the three problem instances (scenarios) 20
times for 5000 evaluations. Performance is measured as given in sec. 5.1. All parameters
are kept at default values, except for the TolFun stopping criterion (applying to CMA-
ES, NEA2 and NEA1) which is set to 10−3. Default values for NEA2 resemble the ones
of NEA1, given in [16]. The start population is determined randomly for the CMA-ES
based methods and the stepsize start value is set to 0.15 in the normalized parameter
space [0, 1].

Task. We do not dare to declare a clearly winning algorithm, instead we demand that
the methods find at least 2 sufficiently good and diverse solutions reliably and call
these algorithms ’suitable’ to the problem, to be considered for further work. However,
we take out Wilcoxon rank-sum tests between the time needed to the first optimum as
measured in each run (together resembling ERT1), between the different algorithms.

Results/Visualization. Figure 3 shows the table of the diversity measures and depicts
the median best solutions over the number of spent evaluations for all three instances.

2 The term may be misleading as it is defined in evaluations, for absolute times it has to be
multiplied with 16 ms.

272 M. Preuss, P. Burelli, and G.N. Yannakakis

divers. ERT1 ERT2 ERT3 sd1 alg inst.

0.151 1580 4710 - 417 pso 1
5.458 5868 7503 8250 1313 de 1

- - - - - so 1
7.370 740 1437 2018 524 cma-es 1
2.237 4266 5881 11314 1047 nea1 1
8.968 1031 1444 2286 599 nea2 1

4.568 1095 3004 8509 806 pso 2
44.755 989 1238 1395 526 de 2

0.131 95290 95501 - - so 2
15.286 851 1266 2020 917 cma-es 2

7.351 3807 6094 10809 1226 nea1 2
10.648 1338 2509 5276 1051 nea2 2

0.150 5752 8203 - 750 pso 3
4.018 18566 19596 49899 414 de 3
0.141 95354 96265 - - so 3
4.650 2433 3937 11109 1069 cma-es 3
0.745 10252 11902 99635 718 nea1 3
4.501 1587 3564 10687 1013 nea2 3

Fig. 3. Table: Diversity based measures for all 6 algorithms on all 3 test problem instances,
sd1 resembles the standard deviation over the successful detections of the first solution. Figures:
Empirical attainment surface plots of the best obtained solutions over time (only 50% attainment
surface), for the three problem instances (first in the upper row). The red line marks the required
quality for an applicable solution. Logarithmic scaling on both axes.

Observations. As the variances in the ERT values are quite high (see e.g. the sd1 value),
it is dangerous to read too much out of the obtained result. However, from the pictured
median performance values, we can clearly see that the third scenario is the hardest,
followed by the first one, and the second scenario is the easiest. Concerning the different
algorithms, SO does not solve any test case, DE does not solve instance 3 and is very
slow on instance 1, and NEA1 is not much better. It is noteworthy that DE is the fastest
method to obtain at least 2 or 3 diverse solutions for instance 2. PSO mostly converges
quickly to the first solution but needs a lot of time to provide the second one. CMA-ES
and NEA2 are both reliable in detecting several solutions, where CMA-ES looks clearly
favourable for the simple and the medium instance, and NEA2 a bit better on the hard

Diversified Virtual Camera Composition 273

one. With the noteable exception of DE on instance 2, the diversity values obtained by
the best algorithms are comparable. We review the results of our speed based statistical
tests only for the leading algorithms: in scenario 1, PSO is significantly worse than
CMA-ES and NEA2, but CMA-ES and NEA2 cannot be differentiated. In scenario 2,
the leading three (DE, PSO, CMA-ES) are not distinguishable, only between CMA-ES
and NEA2 we get significance (at the 5%-level). For scenario 3, the difference of CMA-
ES and NEA2 is just significant, while the CMA-ES itself is significantly faster than all
others.

Discussion. Why DE fails to solve medium or hard instances cannot be easily seen,
possibly this is due to premature convergence to a bad local optimum. PSO clearly
needs a better restart mechanism as the convergence is often fast but no second best
solution can be obtained. However, we would not recommend to use both algorithms
for these kind of problems in their current form. More instances would be needed to
collect better evidence on the relationship between problem hardness and algorithm
performance, but it seems that as a default method, one should employ a CMA-ES
unless it is known that the problem is very hard, then niching methods as NEA2 can
pay off. At least in the case of given quality and distance requirements, it seems that
concentrating on the diversity instead of convergence speeds does not change much, the
good algorithms are still the same. This may of course change if no concrete quality and
distance tasks are provided.

6 Summary and Conclusions

This paper proposed the application of niching and restart evolutionary algorithms to the
problem of diversity of shot generation in virtual camera composition. The suggested
algorithms are compared against state-of-the-art algorithms for optimisation of virtual
camera composition and have been evaluated in their ability to find up to three differ-
ent valid solutions on three different problems with varying complexity. Both NEA2
and CMA-ES show at least comparable performance to the standard optimisation al-
gorithms in terms of number of evaluations required to find the first solution; however,
for the second and third solution, these two algorithms demonstrated a clear advantage
compared to all others included in the experiment.

The actual analysis has been performed using the Euclidean distance as a diversity
measure between the solutions. Even though it is effective, this solution does not eval-
uate accurately how different are the shots generated by two solutions. In the future it
is advisable to investigate different objectives next to visibility and also new diversity
measurements such as the Euclidean distance in the multi-objective (target) space.

References

1. Arijon, D.: Grammar of the Film Language. Silman-James Press, LA (1991)
2. Auger, A., Finck, S., Hansen, N., Ros, R.: BBOB 2010: Comparison Tables of All Algorithms

on All Noiseless Functions. Technical Report RT-388, INRIA (September 2010)

274 M. Preuss, P. Burelli, and G.N. Yannakakis

3. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In:
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, Edinburgh,
UK, September 2-4, pp. 1769–1776. IEEE Press (2005)

4. Blinn, J.: Where Am I? What Am I Looking At? IEEE Computer Graphics and Applica-
tions 8(4), 76–81 (1988)

5. Bourne, O., Sattar, A., Goodwin, S.: A Constraint-Based Autonomous 3D Camera System.
Journal of Constraints 13(1-2), 180–205 (2008)

6. Burelli, P., Yannakakis, G.N.: Combining Local and Global Optimisation for Virtual Camera
Control. In: IEEE Conference on Computational Intelligence and Games, p. 403 (2010)

7. Burelli, P., Yannakakis, G.N.: Global Search for Occlusion Minimisation in Virtual Camera
Control. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE, Barcelona (2010)

8. Christie, M., Olivier, P., Normand, J.M.: Camera Control in Computer Graphics. Computer
Graphics Forum 27, 2197–2218 (2008)

9. Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In: Graphics
Interface, pp. 190–199 (1994)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation 9(2), 159–195 (2001)

11. Hansen, N.: The cma evolution strategy: A tutorial,
http://www.lri.fr/˜hansen/cmatutorial.pdf (version of June 28, 2011)

12. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE Conference on Neural
Networks, pp. 1942–1948 (1995)

13. Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., Weihs, C.: Analyzing the bbob results
by means of benchmarking concepts. Evolutionary Computation (accepted, 2012)

14. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory
landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO 2011, pp. 829–836. ACM, New York (2011)

15. Olivier, P., Halper, N., Pickering, J., Luna, P.: Visual Composition as Optimisation. In:
Artificial Intelligence and Simulation of Behaviour (1999)

16. Preuss, M.: Niching the cma-es via nearest-better clustering. In: Proceedings of the 12th
Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2010,
pp. 1711–1718. ACM (2010)

17. Preuss, M.: Improved Topological Niching for Real-Valued Global Optimization. In: Di
Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 386–395. Springer, Hei-
delberg (2012)

18. Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive re-
combination in (μ+ /, λ)-EA on multimodal fitness landscapes. In: Proc. Genetic and Evo-
lutionary Computation Conf. (GECCO 2005), vol. 1, pp. 865–872. ACM Press (2005)

19. Shir, O.M., Emmerich, M., Bäck, T.: Adaptive niche radii and niche shapes approaches for
niching with the cma-es. Evolutionary Computation 18(1), 97–126 (2010)

20. Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by means of
a topological species conservation algorithm. IEEE Transactions on Evolutionary Computa-
tion 14(6), 842–864 (2010)

21. Storn, R., Price, K.: Differential Evolution A Simple and Efficient Heuristic for global Opti-
mization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)

22. Thawonmas, R., Oda, K., Shuda, T.: Rule-Based Camerawork Controller for Automatic
Comic Generation from Game Log. In: Yang, H.S., Malaka, R., Hoshino, J., Han, J.H. (eds.)
ICEC 2010. LNCS, vol. 6243, pp. 326–333. Springer, Heidelberg (2010)

23. Ware, C., Osborne, S.: Exploration and virtual camera control in virtual three dimensional
environments. ACM SIGGRAPH 24(2), 175–183 (1990)

http://www.lri.fr/~hansen/cmatutorial.pdf

Digging Deeper into Platform Game Level Design:
Session Size and Sequential Features

Noor Shaker, Georgios N. Yannakakis, and Julian Togelius

IT University of Copenhagen, Rued Langaards Vej 7, 2300 Copenhagen, Denmark
{nosh,yannakakis,juto}@itu.dk

Abstract. A recent trend within computational intelligence and games research
is to investigate how to affect video game players’ in-game experience by de-
signing and/or modifying aspects of game content. Analysing the relationship
between game content, player behaviour and self-reported affective states consti-
tutes an important step towards understanding game experience and constructing
effective game adaptation mechanisms. This papers reports on further refinement
of a method to understand this relationship by analysing data collected from play-
ers, building models that predict player experience and analysing what features
of game and player data predict player affect best. We analyse data from players
playing 780 pairs of short game sessions of the platform game Super Mario Bros,
investigate the impact of the session size and what part of the level that has the
major affect on player experience. Several types of features are explored, includ-
ing item frequencies and patterns extracted through frequent sequence mining.

1 Introduction

What makes a good computer game? What features should be presented in the game,
where in the game should they be presented, how often and in which order? What fea-
tures should be manipulated to alter specific player experience? And what is the mini-
mum length of time a player need to play in order to elicit a particular affective state?
We describe a method that we believe can be used to help answer these questions, and
exemplify it with an investigation based on data from hundreds of players playing Super
Mario Bros. In the process, we arrive at tentative partial answers to these questions in
the context of Super Mario Bros levels.

Many analyses of computer games can be found in the literature, both in terms of
game mechanics and from a player perspective based on how the player can interact
with the game. For example, some researchers have analysed game content into its con-
stituent parts, or “design patterns” [1], [5], [17]; others have tried to state general facts
about what makes games enjoyable [9], [8]. Most of this research, however, tackles this
problem from a top-down perspective, creating theories of player experience based on
qualitative methods. Some attempts have been made to construct computational models
form qualitative theories [23], [26].

Another direction that is related to this work is the procedural generation of game
content (PCG) with no or limited human designer input. PCG has recently received
increasing attention with the use of artificial and computational intelligence methods
to generate different aspects of game content such as maps [3], [21], levels [18], [11]

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 275–284, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

276 N. Shaker, G.N. Yannakakis, and J. Togelius

Fig. 1. Snapshot from Infinite Mario Bros, showing Mario standing on horizontally placed boxes
surrounded by different types of enemies

and racing tracks [4], [20]. One interesting direction in PCG is the online generation
of personalized game content [6], [7], [16]. One approach towards achieving this goal
is first to model the relationship between player experience and game content. This re-
quires the construction of data-driven models based on data collected about the game,
the player behaviour and correlating this data with data annotated with player experi-
ence tags [25] .

This paper continues our previous work on player experience modeling in a version
of Super Mario Bros [10], [12], [14]. The main focus of those experiments was on
modelling the relationship between direct features of game content, players’ playing
styles and reported players experience by using features extracted from the full game
sessions. The dataset used for those studies constitutes of 480 game pairs constructed
using four different controllable features. In a recent paper [15] we reported preliminary
explorations of predicting player experience of engagement based only on level features
and introduced the use of sequence mining to extract simple patterns from game content,
using an incomplete version of a larger and more detailed dataset. We also explored
constructing models from parts of levels in order to find the minimum segment length
which would allow us to perform meaningful adaptation.

In this paper, we explore the full dataset of 780 game pairs played by hundreds
of players. We draw upon the approach proposed in [15] and we extend it in through
(1) investigating the three emotional states; engagement frustration and challenge; (2)
constructing player experience models based on game content, player behaviour and
reported player experience; (3) investigating the impact of the size of game session on
the accuracy of predicting players’ reported emotion; (4) analysing the importance of
the features for each emotional state with respect to their relative placement within the
game and (5) exploring direct and sequential feature representations.

The testbed platform game we are using for this study is a modified version of
Markus “Notch” Persson’s Infinite Mario Bros. The game is well known and the bench-
mark software has been used relatively extensively as a testbed for research [22], [12],
[13], [2], [14] and for the Mario AI Championship [16]. Please refer to [22] for details
about the game and the gameplay experience it provides.

The paper is organized as follows. Section 2 explains the process followed to collect
data from players. Section 3 presents the two forms that have been used to represent
the collected data. A method that has been used to mine sequential data is presented in

Digging Deeper into Platform Game Level Design 277

Section 4. Section 5 describes player experience modeling via preference learning. The
process of segmenting the levels into smaller chucks and constructing models based
on the segments is discussed in Section 6, while Section 7 presents the experiments
conducted and the analysis of the results. Finally, Section 8 presents our conclusions.

2 Experiment Design

The following section describes the level generation process, the survey that has been
designed to collect the data and the types of data that were extracted. The level gen-
erator of the game has been modified to generate levels according to the following six
controllable features

– The number of gaps in the level, G and the average with of gaps, Ḡw.
– The number of enemies, E.
– Enemies placement,Ep. The way enemies are placed around the level is determined

by three probabilities which sum to one; on or under a set of horizontal blocks, Px;
within a close distance to the edge of a gap, Pg and randomly placed on a flat space
on the ground, Pr.

– The number of powerups, Nw.
– The number of boxes, B. We define one variable to specify the number of the

different types of boxes that exist; blocks and rocks. Blocks (which look like squares
with question marks) contain hidden elements such as coins or powerups. Rocks
(which look like squares of bricks) may hide a coin, a powerup or simply be empty.
The generator randomly select one of these two types for each box generated.

The selection of these particular controllable features was done with the intent to cover
the features that have the most impact on the investigated affective states. The placement
of gaps, powerups and boxes is approximately uniformly random. Two states (low and
high) are set for each of the controllable parameters above except for enemies placement
which has been assigned three different states allowing more control over the difficulty
and diversity of the generated levels. For example, setting Pgto 80% results in a level
with a majority of enemies placed around gaps, increasing the level difficulty. Other
features of the level have been assigned fixed values. For example, the number of gaps
in the level can be either two or six, while the number of free coins is fixed to seven in
all generated levels. The level generator constructs level by exploring the total number
of pairwise combinations of these states (96). This number can be reduced to 40 by
analysing the dependencies between these features and eliminating the combinations
that contain independent variables.

2.1 Data Collection

The game survey study [15] has been designed to collect subjective affective reports
expressed as pairwise preferences of subjects playing the different levels of the game
by following the experimental protocol proposed in [28]. The game sessions have been
constructed using a level width of 100 Super Mario Bros units (blocks) based on all

278 N. Shaker, G.N. Yannakakis, and J. Togelius

Table 1. Gameplay features extracted from data recorded during gameplay

Category Feature Description
Time tcomp Completion time

tlastLift Playing duration of last life over total time spent on the level
tduck Time spent ducking (%)
tjump Time spent jumping (%)
tleft Time spent moving left (%)
tright Time spent moving right (%)
trun Time spent running (%)
tsmall Time spent in Small Mario mode (%)
tbig Time spent in Big Mario mode (%)

Interaction ncoins Free coins collected (%)
with items ncoinBlocks Coin blocks pressed or coin rocks destroyed (%)

npowerups Powerups pressed (%)
nboxes Sum of all blocks and rocks pressed or destroyed (%)

Interaction kcannonFlower Times the player kills a cannonball or a flower (%)
with enemies kgoombaKoopa Times the player kills a goomba or a koopa (%)

kstomp Opponents died from stomping (%)
kunleash Opponents died from unleashing a turtle shell (%)

Death dtotal Total number of deaths
dcause Cause of the last death

Miscellaneous nmode Number of times the player shifted the mode (Small, Big, Fire)
njump Number of times the jump button was pressed
ngJump Difference between the number of gaps and the number of jumps
nduck Number of times the duck button was pressed
nstate Number of times the player changed the state between:

standing still, run, jump, moving left, and moving right

combinations of the controllable features. 780 pairs of games (exhausting the space of
controllable features) were played by hundreds of players. Participants’ age covers a
range between 16 and 64 years from different origins. Complete games were logged
enabling complete replays. The following types of data were extracted.

– Gameplay Data: All player actions and interactions with game items and their cor-
responding time-stamps have been recorded with the full trajectory of Mario.

– Reported Player Experience: A 4-alternative forced choice questionnaire is pre-
sented to the players after playing each pair asking them to report their emotional
preferences across three user states: engagement, challenge and frustration. The se-
lection of these states is based on earlier game survey studies [12] and our intention
to capture both affective and cognitive components of gameplay experience [25].

3 Data Representation

3.1 Direct Features

Several features have been directly extracted from the data recorded during gameplay.
Most of these features appear in our previous studies [10], [14] and the choice of them
is made in order to be able to represent the difference between a large variety of Super
Mario Bros playing styles. These features are presented in Table 1.

3.2 Sequential Features

We investigate another form of data representation that allows including features based
on ordering in space or time by means of sequences. Sequences of game content and

Digging Deeper into Platform Game Level Design 279

players’ behaviour yields patterns that might be directly linked to player experience.
These patterns provide a mean for an in-depth analyses of the relationship between the
player and the game. There are several possible approaches to generate sequences from
interaction logs. In this paper we concentrate on two types of sequences:

– Content corresponding to gameplay events: Game content at the specific player po-
sition is recorded whenever the player performs an action or interacts with game
items. Different content events are used: increase/decrease in platform height,
P ↑/P ↓; existence of an enemy, Pe; existence of a coin, block or rock, Pd; exis-
tence of a coin, block or rock with an enemy, Ped; and the beginning/ending of a
gap Pgs/Pge.

– Sequential Gameplay Features: Sequences representing different players’ behaviour
have been generated by recording key pressed/released events (action event). The
list of events that have been considered includes: pressing an arrow key to move
right, left, or duck (�, �, �); pressing the jump key, ⇑; pressing the jump key in
combination with right or left key (⇑�, ⇑�); pressing the run key in combination
with right or left key (R�, R�); pressing the run and jump keys in combination
with right/left (R�⇑, R�⇑); and not pressing any key, S.

4 Sequence Mining

Sequence mining techniques have been applied to extract useful information from the
different types of the sequences generated. Generalised Sequential Pattern (GSP) algo-
rithm [19] has been used to mine the sequences and find frequent patterns within the
dataset of sequences. The GSP algorithm has been chosen because of its advantages
over other apriori-based sequence mining algorithms. Using GSP, we can discover pat-
terns with a predefined minimum support, minsup (the minimum number of times a
pattern has to occur in the data-sequences to be considered frequent), and specify a time
constraints within which adjacent events can be considered elements of the same pat-
tern, maxgap. Different minsup values have been explored to obtain a reasonable trade
off between considering patterns that are generalised over all players and more specific
patterns. For the experiments presented in this paper, we use a minsup of 500 which
forces a sequence pattern to occur in at least 31.8% of the samples to be considered
frequent. The maxgap has a great impact on the number of frequent patterns that can
be extracted. By assigning a large value to this parameter, we allow more generalised
patterns to be taken into account. The experiments conducted for tuning the value of
this parameter showed that a maxgap of 1 second provides a good trade off between the
number of patterns extracted and their expressiveness value. Different sequence length
values have been explored, the experiments showed that the number of extracted subse-
quences is quite large for sequences containing information about players’ behaviour. In
order to lower the feature space dimensionality and the computational cost of searching
for relevant features we chose to use only frequent sequences of length three.

5 Preference Learning for Modelling Playing Experience

Neuroevolutionary preference learning has been used in order to construct models that
approximate the function between gameplay features, controllable features, and

280 N. Shaker, G.N. Yannakakis, and J. Togelius

reported affective preferences. We start the models’ constructing procedure by selecting
the relevant subset of features for predicting each emotional state, this is done by using
Sequential Forward Selection (SFS) to generate the input vector of single-layer percep-
trons (SLPs) [27]. The feature subset derived from SFS using SLP is then used as the
input to small multi-layer perceptron (MLP) models containing one hidden layer of two
neurons. The quality of a feature subset and the performance of each MLP is obtained
through the average classification accuracy in three independent runs using 3-fold cross
validation across five runs. Parameter tuning tests have been conducted to set up the
parameters’ values for neuroevolutionary user preference learning that yield the highest
accuracy and minimise computational effort. A population of 100 individuals is used,
and evolution run for 20 generations. A probabilistic rank-based selection scheme is
used, with higher ranked individuals having higher probability of being chosen as par-
ents. Finally, reproduction was performed via uniform crossover, followed by Gaussian
mutation of 1% probability.

6 Level Segmentation

The purpose of segmenting the level is to draw a picture of the importance of the fea-
tures with respect to player experience; different features correlated with player ex-
perience for each emotional state could be extracted from each segment of the game
pointing out to positions in the games where these features play a role in triggering par-
ticular affective state. By segmenting the levels we can also identify the size of the level
segment that generates the best prediction accuracy of the three emotional states. That
segment size can then potentially be used to set the frequency of a real-time adaptation
mechanism for maximising particular player experience (as in [24], [14]).

We follow the same process presented in [15] for segmenting the level into half and
one-third width segments but instead of using the same feature set and calculating each
feature value across all segments, we run SFS to select the most relevant feature subset
from all direct and sequential features for each segment across all emotional states.

7 Experiments and Analysis

We ran a number of experiments to select features from the full levels and from differ-
ent segments into which the levels have been divided. Player experience models were
constructed based on the different subset of features selected from direct and sequential
features for each segment across the three emotional states. Table 2 presents the selected
features and the models’ accuracies.

The networks found vary in the number of selected features and performance. The
most accurate model is the one for predicting challenge (91.23%) with a large subset
of 13 features selected from the full levels. Engagement comes next with a best model
accuracy of 86.43% obtained from features extracted from the first segment out of two
followed by frustration which can be predicted with an accuracy up to 85.88% from a
subset of ten features extracted from the full level.

Segmenting the sessions resulted in a performance increase for the models of pre-
dicting engagement while a performance decrease has been observed for the experience

Digging Deeper into Platform Game Level Design 281

Table 2. The features selected from the set of direct and sequential features for predicting en-
gagement, frustration and challenge using sequential feature selection with SLP and simple MLP
models and the corresponding models’ performance

Full level 1st seg/2 2nd seg/2 1stseg/3 2nd seg/3 3rd seg/3
Engagement

Selected tcomp nstate B ngJump tright B
features ncoins tbig dcause tleft E G

dcause dcause Nw nboxes ngJump tjump
tsmall tright E B dcause dcause
tjump E nboxes Ḡw tduck kunleash

E S ⇑⇑� �S � dcause G
ncoinBlocks ��� �R�S Ep

tbig ⇑⇑�⇑ �⇑ S ncoins

trun ⇑� �� �R�S
njump S �S

P ↓PgsPge�⇑� S
MLPperf 75.21% 86.43% 72.03% 72.19% 71.69% 72.86%

Frustration
Selected tright ngJump G njump G Ep
features dtotal G ngJump tsmall B kgoombaKoopa

dcause ncoins Ḡw tleft tsmall B
tlastLift E dcause S ⇑� S G

Ḡw tleft kstomp ngJump

G R� �� tleft
njump R�R�⇑� tright
PdPdP

↑ SS �
⇑� �� R�R�⇑S
⇑� S�

MLPperf 85.88% 81.73% 79.85% 78.72% 78.15% 73.45%
Challenge

Selected tlastLift tright G ngJump G Ep
features njump ngJump B nboxes E kstomp

dtotal nstate dcause npowerups kcannonFlower B
ncoins G ngJump tright njump E
tright tsmall nmode kunleash kunleash

Ḡw B tleft ⇑ S � �SS
Ep �⇑ S tbig
tleft
kstomp
PdPdPd

P ↓PgsPge⇑�S
P ↑P ↓P ↓

MLPPerf 91.23% 75.6% 77.19% 72.41% 73.52% 69.38%

models of frustration and challenge. The model constructed based on features selected
from the first half of the session for predicting engagement significantly (significant ef-
fect is determined by p < 0.01 over 10 runs in this paper) outperforms all other models
constructed on full and other partial information. A significant performance decrease
was found for predicting frustration when constructing the models based on features
extracted from segments with one third of the full size. Using features from the full ses-
sions, we were able to predict challenge with high accuracy that is significantly better
than all other models constructed on partial information.

The results suggest that different sizes of game session are needed to elicit differ-
ent affective states. While challenge can be predicted with high accuracy from the full

282 N. Shaker, G.N. Yannakakis, and J. Togelius

sessions, smaller session size somewhat count-intuitively appears to give better results
for predicting engagement, and frustration can be predicted with high accuracy from
full and half size sessions.

The different subsets of features selected from each segment draw a picture of the
importance of the positioning of the features within the game and the different impacts
this has on the different emotional states under investigation. Some content features
have been selected from the full sessions and also appear in the subset of features se-
lected from the parts, such as the number of enemies (E) and the number of gaps (G)
for predicting engagement and frustration respectively. This suggests the importance of
these features for eliciting a particular emotional state regardless of their specific posi-
tioning within the game. Other features like the number of powerups (Nw) appears to
have an impact on engagement when presented in the second half of the game. This can
be explained by the fact that powerups are more important to the players towards the end
of the game since this increases their chance of winning, the selection of cause of death
feature in all segments also supports this assumption. It’s worth noting that only one
controllable feature has been selected for the best model for predicting engagement and
the rest of the features relate to the particular playing style for each player. Most aspects
of level design appear to have a large impact on challenge since five content features
(direct and sequential) have been selected for the best model of predicting challenge.

8 Discussion and Conclusion

In this paper, we reported on the creation of data-driven computational models that pre-
dict three players’ reported affective states based on level design and gameplay features.
We investigated direct and sequential features of both game content and gameplay, as
well as the impact of session sizes. We were able to predict players’ reported levels of
engagement, frustration and challenge with high accuracy.

Our previous study [15] concluded that segmenting the levels yields a performance
decrease when constructing models based only on game content features. The results
presented in this paper show that different session sizes should be considered for inves-
tigating the different emotional states when gameplay data is also considered as input
to the models. Challenge can be best predicted with longer sessions’ size than the ones
needed for predicting frustration or engagement. The results indicate that the models
performance in general significantly decreases when segmenting the session into more
than two segments. This suggests that segmenting the data into more than two segments
causes information loss. Another possible explanation is that the session size should be
longer than a particular length to elicit a specific emotional state, and it appears that one
third of the level size is too small to consider the reported player experience valid while
the gameplay experience and the reported affects can still be considered valid for one
half of the session size for engagement and frustration.

The different subsets of features selected for predicting affective states suggest dif-
fering relative importance of design elements for different aspects of player experience.
This has the potential to partly decouple dissimilar aspects of player adaptation.

The results presented here will feed into our ongoing research on modelling player
affect and preferences in Super Mario Bros, with the ultimate goal of producing an
effectively player-adaptive version of the game, but could also inform separate studies.

Digging Deeper into Platform Game Level Design 283

Acknowledgments. The research was supported in part by the Danish Research
Agency, Ministry of Science, Technology and Innovation; project “AGameComIn”
(274-09-0083).

References

1. Björk, S., Holopainen, J.: Patterns in game design. Cengage Learning (2005)
2. Bojarski, S., Congdon, C.: Realm: A rule-based evolutionary computation agent that learns

to play mario. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG),
pp. 83–90 (2010)

3. Cardamone, L., Yannakakis, G.N., Togelius, J., Lanzi, P.L.: Evolving Interesting Maps
for a First Person Shooter. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A.,
Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J.,
Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 63–72. Springer,
Heidelberg (2011)

4. Cardamone, L., Loiacono, D., Lanzi, P.L.: Interactive evolution for the procedural generation
of tracks in a high-end racing game. Interface, 395–402 (2011)

5. Hullett, K., Whitehead, J.: Design patterns in fps levels. In: FDG 2010: Proceedings of the
Fifth International Conference on the Foundations of Digital Games, pp. 78–85. ACM, New
York (2010)

6. Jennings-Teats, M., Smith, G., Wardrip-Fruin, N.: Polymorph: dynamic difficulty adjustment
through level generation. In: Proceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games, PCGames 2010, pp. pp. 11:1–11:4. ACM, New York (2010)

7. Kazmi, S., Palmer, I.: Action recognition for support of adaptive gameplay: A case study of
a first person shooter. International Journal of Computer Games Technology 1 (2010)

8. Koster, R.: A theory of fun for game design. Paraglyph Press (2004)
9. Malone, T.: What makes computer games fun (abstract only). In: Proceedings of the Joint

Conference on Easier and More Productive use of Computer Systems (Part - II): Human
Interface and the user Interface, CHI 1981, vol. 1981, p. 143. ACM, New York (1981)

10. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience in super mario
bros. In: CIG 2009: Proceedings of the 5th International Conference on Computational In-
telligence and Games, pp. 132–139. IEEE Press, Piscataway (2009)

11. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience for content cre-
ation. IEEE Transactions on Computational Intelligence and AI in Games 2(1), 54–67 (2010)

12. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience for content cre-
ation. IEEE Transactions on Computational Intelligence and AI in Games 2(1), 54–67 (2010)

13. Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving Behaviour Trees for the Mario
AI Competition Using Grammatical Evolution. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 123–132.
Springer, Heidelberg (2011)

14. Shaker, N., Yannakakis, G.N., Togelius, J.: Towards Automatic Personalized Content Gener-
ation for Platform Games. In: Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE). AAAI Press (2010)

15. Shaker, N., Yannakakis, G.N., Togelius, J.: Feature Analysis for Modeling Game Content
Quality. IEEE Transactions on Computational Intelligence and AI in Games, CIG (2011)

16. Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B., Shimizu, T., Hashiyama, T., Sorenson,
N., Pasquier, P., Mawhorter, P., Takahashi, G., Smith, G., Baumgarten, R.: The 2010 Mario
AI championship: Level generation track. IEEE Transactions on Computational Intelligence
and Games (2011)

284 N. Shaker, G.N. Yannakakis, and J. Togelius

17. Smith, G., Cha, M., Whitehead, J.: A framework for analysis of 2d platformer levels. In:
Sandbox 2008: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games,
pp. 75–80. ACM, New York (2008)

18. Smith, G., Whitehead, J., Mateas, M.: Tanagra: A mixed-initiative level design tool. In: Pro-
ceedings of the International Conference on the Foundations of Digital Games (2010)

19. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Im-
provements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 1–17. Springer, Heidelberg (1996)

20. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content creation for
racing games. In: IEEE Symposium on Computational Intelligence and Games, CIC 2007,
pp. 252–259. IEEE (2007)

21. Togelius, J., Preuss, M., Yannakakis, G.: Towards multiobjective procedural map generation.
In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, p. 3.
ACM (2010)

22. Togelius, J., Karakovskiy, S., Koutnı́k, J., Schmidhuber, J.: Super mario evolution. In: Pro-
ceedings of the 5th International Conference on Computational Intelligence and Games, CIG
2009, pp. 156–161. IEEE Press, Piscataway (2009),
http://dl.acm.org/citation.cfm?id=1719293.1719326

23. Tognetti, S., Garbarino, M., Bonanno, A., Matteucci, M.: Modeling enjoyment preference
from physiological responses in a car racing game. IEEE Transactions on Computational
Intelligence and AI in Games (2010)

24. Yannakakis, G.N., Hallam, J.: Real-time Game Adaptation for Optimizing Player Satisfac-
tion. IEEE Transactions on Computational Intelligence and AI in Games 1(2), 121–133
(2009)

25. Yannakakis, G.N., Togelius, J.: Experience-Driven Procedural Content Generation. IEEE
Transactions on Affective Computing (2011)

26. Yannakakis, G., Hallam, J.: A generic approach for generating interesting interactive pac-
man opponents. In: Proceedings of the IEEE Symposium on Computational Intelligence and
Games, pp. 94–101 (2005)

27. Yannakakis, G.N., Hallam, J.: Entertainment modeling through physiology in physical play.
Int. J. Hum.-Comput. Stud. 66, 741–755 (2008),
http://dl.acm.org/citation.cfm?id=1410473.1410682

28. Yannakakis, G.N., Maragoudakis, M., Hallam, J.: Preference learning for cognitive model-
ing: a case study on entertainment preferences. Trans. Sys. Man Cyber. Part A 39, 1165–1175
(2009), http://dx.doi.org/10.1109/TSMCA.2009.2028152

http://dl.acm.org/citation.cfm?id=1719293.1719326
http://dl.acm.org/citation.cfm?id=1410473.1410682
http://dx.doi.org/10.1109/TSMCA.2009.2028152

Robot Base Disturbance Optimization

with Compact Differential Evolution Light�

Giovanni Iacca, Fabio Caraffini, Ferrante Neri, and Ernesto Mininno

Department of Mathematical Information Technology,
P.O. Box 35 (Agora), 40014 University of Jyväskylä, Finland

{giovanni.iacca,fabio.caraffini,ferrante.neri,ernesto.mininno}@jyu.fi

Abstract. Despite the constant growth of the computational power in
consumer electronics, very simple hardware is still used in space applica-
tions. In order to obtain the highest possible reliability, in space systems
limited-power but fully tested and certified hardware is used, thus reduc-
ing fault risks. Some space applications require the solution of an opti-
mization problem, often plagued by real-time and memory constraints.
In this paper, the disturbance to the base of a robotic arm mounted
on a spacecraft is modeled, and it is used as a cost function for an on-
line trajectory optimization process. In order to tackle this problem in a
computationally efficient manner, addressing not only the memory sav-
ing necessities but also real-time requirements, we propose a novel com-
pact algorithm, namely compact Differential Evolution light (cDElight).
cDElight belongs to the class of Estimation of Distribution Algorithms
(EDAs), which mimic the behavior of population-based algorithms by
means of a probabilistic model of the population of candidate solutions.
This model has a more limited memory footprint than the actual popula-
tion. Compared to a selected set of memory-saving algorithms, cDElight
is able to obtain the best results, despite a lower computational overhead.

1 Introduction

Some real-world problems, due to real-time, space, and cost requirements, impose
the solution of an optimization problem, sometimes even complex, on a device
with limited memory and computational resources. This situation is typical, for
instance, in mobile robots and real-time control systems, where all the compu-
tation is performed on board of an embedded system. Some examples of this
class of problems can be found in home automation, mobile TLC devices, smart
sensors and biomedical devices. Among these applications, space control systems
represent an interesting exception. Despite the constant growth of the computa-
tional power in consumer electronics, very simple and dated hardware is indeed
still used on spacecrafts. It must be remarked that the computational devices
on board of a spaceship should reliably work without any kind of rebooting for

� This research is supported by the Academy of Finland, Akatemiatutkija 130600,
Algorithmic Design Issues in Memetic Computing and Tutkijatohtori 140487, Algo-
rithmic Design and Software Implementation: a Novel Optimization Platform.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 285–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

286 G. Iacca et al.

months or, in some cases, even for years. In this sense, the use of tremendously
simple but fully tested and certified hardware allows a high reliability of the
computational cores, thus reducing fault risks. For example, since over twenty
years, National Aeronautics and Space Administration (NASA) employs, within
the space shuttles, IBM AP-101S computers [12]. These computers constitute an
embedded system for performing the control operations. The memory of compu-
tational devices is only 1 Mb, i.e. much less capacious than any modern device.
Thus, the necessity of having an efficient control notwithstanding the hardware
limitations arises.

In these cases, an optimization algorithm should perform the task without
limited requirements of memory and computational resources. Unfortunately,
high performance algorithms are usually fairly complex structures which make
use of a population of candidate solutions (requiring a high memory footprint)
and other components such as learning systems or classifiers, see e.g. [13,18].

In order to address problems characterized by a limited hardware, compact
Evolutionary Algorithms (cEAs) have been designed. A cEA is an EA belong-
ing to the class of Estimation of Distribution Algorithms (EDAs) [7]. Compact
algorithms mimic the behavior of population-based algorithms but, instead of
storing and processing an entire population, make use of a probabilistic rep-
resentation of the population. In this way, the algorithm saves at least a part
of the advantages of population-based algorithms but requires a much smaller
memory with respect to their corresponding population-based versions. Thus, a
run of these algorithms requires a small amount of memory compared to their
correspondent standard EAs. Recently, a compact algorithm based on Differ-
ential Evolution, called cDE, has been proposed in [9]. This algorithm encodes
the population within a probabilistic distribution and employs the standard DE
logic for generating new trial solutions and selecting the most promising search
directions. The cDE algorithm showed a performance superior to other compact
algorithms for a large set of test problems. Some work has been performed to
enhance the performance of the cDE algorithm, for example embedding it in a
memetic framework [10,11], or combining multiple cDE core [5,6].

In this work we propose a modified cDE scheme for minimizing the disturbance
to the base of a robotic arm working in a non-gravitational environment on
board of a spacecraft. The proposed algorithm, namely compact Differential
Evolution light (cDElight), includes a light mutation, which allows a unique
solution sampling instead of the multiple sampling typical of cDE frameworks,
and a light crossover, which allows to save on the random number generation.
Simulation results show that the proposed algorithm has the same performance
as the original cDE but with a lower computational overhead, thus leading to
important advantages for real-time online optimization.

The remainder of this paper is organized as follows. Section 2 describes the
mechanical model of the robotic arm and the fitness function. Section 3 describes
the proposed cDElight. Section 4 shows the simulation results. Section 5 gives
the conclusion of this work.

Robot Trajectory Optimization with cDElight 287

2 Base Disturbance Optimization in Space Robotic Arms

Space robots are crucially important in current space operations as they can
prevent humans from having to perform extremely risky operations, e.g. extra-
vehicular activities such as reparations outside the spacecraft. Due to the enor-
mous distances, the robot cannot be fully remotely controlled manually from the
Earth because the communication delay between the command and the execu-
tion of the robot operation can likely be unacceptable in several cases. For this
reason an efficient real-time control system is essential. The absence of gravity
plays an important role in the dynamics of the robot and must be taken into
account when the control system is designed. In this case of study, a robotic arm
connected to a base, e.g. a spacecraft or a satellite, is considered. In a nutshell,
the control system aims to perform the robot movements in order to minimize
the disturbances, i.e. inertial movements, on the base. More specifically, each new
trajectory step is optimized online using the look-ahead optimized algorithm for
trajectory planning proposed in [14].

Space robots are highly nonlinear, coupled multi-body systems with nonlinear
constraints. Moreover, the dynamic coupling between the manipulator (robotic
arm) and the base usually affects the performance of the manipulator. The dy-
namic coupling is important to understand the relationship between the robot
joint motion and the resultant base motion, and it is useful in minimizing fuel
consumption for base attitude control. The measure of dynamic coupling has
been formulated in [17].

Let us consider a manipulator composed of nb links (bodies) interconnected by
joints and connected by means of an external joint to the base. With reference to
Fig. 1, let Vi and Ωi be linear and angular velocities of the ith body of the manip-
ulator arm with respect to the inertial reference system ΣI , and let vi and ωi be
linear and angular velocities of the ith body of the manipulator arm with respect
to the base ΣB. Thus, we can obtain that the velocities of the ith body are:

Vi = vi + V0 +Ω0 × ri
Ωi = ωi +Ω0

(1)

Fig. 1. Space robotic arm scheme

288 G. Iacca et al.

where the operator × represents the outer product of R3 vectors. V0 and Ω0

are, respectively, linear and angular velocities of the centroid of the base with
respect to ΣI . The variable ri represents the position vector related to the ith

body pointing towards the center of the base with reference to ΣB, see [17] for
details. The velocities in the base of the coordinates of the reference system ΣB

can be calculated as: [
vi
ωi

]
= Ji(q)q̇ (2)

where q is the vector of the angular positions of each joint of the manipulator
arm (see q1, q2, and q3 in Fig. 1) and Ji(q) is thus the Jacobian of the ith body of
manipulator arm. The Jacobian can be then decomposed into two sub-matrices
related to its translational and rotational movements [17]:

Ji(q) =

[
JTi(q)
JRi(q)

]
(3)

The total linear (P) and angular (L) momenta of the entire robotic arm can be
expressed as:

P = m0V0 +

nb∑
i=1

(mivi) (4)

L = I0Ω0 +m0RB × V0 +

nb∑
i=1

(Iiωi +miri × vi) (5)

where Ii and mi are the inertia momentum and mass of each body composing the
robot manipulator, and RB is a positioning vector pointing towards the centroid
of the base with reference to ΣI . Equations (4) and (5) can then be combined:[

P
L

]
= HB

[
V0

Ω0

]
+Hmq̇. (6)

The details about the structures of the matrices HB and Hm are given in [4]. In
a free-floating situation (due to the fact that both robot and base are in outer
space), there are no external forces or momenta. If we consider the gravitational
force to be negligible, linear and angular momenta are conserved. We assume that
the initial state of the system is stationary, so that the total linear and angular
momenta are zero. Hence, from Eq. (6), the mapping relationship between the
manipulator joint motion and the base motion is thus given by:[

V0

Ω0

]
= −HB

−1Hmq̇. (7)

For a given trajectory that must be followed by the robot, the optimization
problem under investigation consists of detecting the angular positions qi, an-
gular velocities q̇i, and angular accelerations q̈i of each joint i in each knot k
identifying the trajectory such that the disturbance on the base is minimized.
The fitness to be minimized is, in our study, the integral over time of the norm

Robot Trajectory Optimization with cDElight 289

of the acceleration vector on the base. The acceleration values can be derived
by Eq. (7). Since the trajectory must be continuous, the function describing the
position of the joints over time must also be continuous. In order to satisfy this
condition, we modeled each function qi (t) (where t is the time) as a set of 5th

polynomial splines and imposed the continuity of qi (t), q̇i (t), and q̈i (t). Each
spline is a polynomial of the 5th order because six conditions are imposed by
the physics of the phenomenon (continuity of the function, its first and second
derivative in the knots). With reference to Fig. 1, considering that the robot ma-
nipulator contains three joints, the trajectory is marked by two knots, and for
each joint it is necessary to control angular position, velocity and acceleration,
our fitness function depends on 3 · 2 · 3 = 18 variables.

3 Compact Differential Evolution Light

In order to solve the online trajectory optimization problem described in the pre-
vious section, we considered a compact algorithm which proved to be successful
in a wide range of landscapes, namely the compact Differential Evolution (cDE)
[9]. More specifically, we introduced two minor modifications into the original
cDE framework, in order to make the algorithm computationally less expensive
without compromising its efficiency. Most importantly, these modifications allow
to use cDE in real-time environments.

The resulting algorithm, named compact Differential Evolution light (cDE-
light), see Algorithm 1, consists of the following steps. Without loss of generality,
let us assume that the decision variables are normalized so that each search in-
terval is [−1, 1]. At the beginning of the optimization, a 2 × n matrix, where n
is the problem dimension, is generated. This matrix PV = [μ, σ] is called proba-
bility vector. The initial values of μ and σ are set equal to 0 and 10, respectively.
The value of σ is empirically set large enough to simulate a uniform distribution.

A solution xe, called elite, is then sampled from PV . More specifically, the
sampling mechanism of a design variable xr [i] associated to a generic candidate
solution x from PV consists of the following steps. For each i-th design variable
indexed, i = 1, · · · , n, a truncated Gaussian Probability Distribution Function
(PDF) characterized by a mean value μ [i] and a standard deviation σ [i] is
associated. The formula of the PDF is:

PDF (truncNorm (x)) =
e
− (x−μ[i])2

2σ[i]2

√
2
π

σ [i]
(
erf
(

μ[i]+1√
2σ[i]

)
− erf

(
μ[i]−1√
2σ[i]

)) (8)

where erf is the error function [3]. From the PDF, the corresponding Cumulative
Distribution Function (CDF) is constructed by means of Chebyshev polynomi-
als according to the procedure described in [2]. It must be observed that the
codomain of CDF is [0, 1]. In order to sample the normalized design variable x[i]
from PV , a random number r = rand(0, 1) is sampled from a uniform distribu-
tion. Finally, the inverse function of CDF, representing x[i] in correspondence of
r, is then calculated and scaled in the original decision space.

290 G. Iacca et al.

counter t = 0
{** PV initialization **}
initialize μ = 0̄ and σ = 1̄ · 10
sample elite from PV
while budget condition do

{** Mutation Light**}
generate x′

off from a modified PV : PV ′ = [μ,
√

(1 + 2F 2)σ2]

{** Crossover Light**}
xoff = elite
generate istart = round (n · rand (0, 1))
xoff [istart] = x′

off [istart] {** Deterministic Copy**}
xoverL = round

(
log(rand(0,1))

log(Cr)

)

i = istart + 1
j = 1
while i �= istart AND j ≤ xoverL + 1 do

xoff [i] = x′
off [i]

i = i + 1
j = j + 1
if i == n then

i = 1
end if

end while
{** Elite Selection **}
[winner, loser] = compete (xoff , elite)
if xoff == winner then

elite = xoff

end if
{** PV Update **}
update μ and σ according to Eq. 12
t = t + 1

end while

Algorithm 1. cDElight pseudo-code

At each step t, cDElight generates an offspring by means of two operators
called mutation light and crossover light, which represent two modifications of
the original cDE framework. Mutation light consists of the following steps. Ac-
cording to a DE/rand/1 mutation scheme, three individuals xr, xs, and xt are
needed to generate a provisional offspring x′

off computing x′
off = xt+F (xr − xs).

Instead of sampling three separate individuals, like the original cDE algorithm
does, the light mutation generates x′

off by performing only one sampling. In order
to do that, we intentionally confuse Gaussian and truncated Gaussian PDF, and
we apply the properties of the algebraic sum of normally distributed variables.
In this way, given that {xr , xs, xt} ∼ N

(
μ, σ2

)
, and considering the DE/rand/1

scheme, it is possible to sample directly the x′
off from the following modified

Gaussian distribution:

x′
off ∼ N

(
μ, σ2

)
+ F

(
N
(
μ, σ2

)
−N

(
μ, σ2

))
=

= N
(
μ+ F (μ− μ) , σ2 + F 2

(
σ2 + σ2

))
= N

(
μ, (1 + 2F 2)σ2

) (9)

It must be remarked that this operation is not fully equivalent to sampling three
solutions from a truncated Gaussian distribution but it is an approximation
which neglects the tails of the distribution outside the interval [−1, 1].

Similarly to mutation light, crossover light is a computationally light version
of the exponential crossover used in the cDE schemes, described in [10]. Instead

Robot Trajectory Optimization with cDElight 291

of generating a set of random numbers until the condition rand (0, 1) ≤ Cr is no
longer satisfied, only the length of the section of solutions to be inherited, i.e. how
many genes should be swapped, is randomly generated. Obviously, since only one
random number is generated, this light exponential crossover has a lighter com-
putational overhead with respect to a traditional exponential crossover. When
crossover is applied, the offspring xoff is initialized to the current elite, and one
randomly selected decision variable is deterministically copied from x′

off to the
corresponding position in xoff . In order to simplify the notation let us consider
the deterministic copy of the first gene and the probabilistic copy of the other
genes as independent events. The probability that m genes, on the top of the
first one, are copied from x′

off to xoff is Crm. More formally the discrete proba-
bility Pr that the crossover length xoverL is equal to m is known as geometric
distribution and is given by:

Pr (xoverL = m) = Crm (10)

where m = 1, 2, . . . , n − 1. In order to extract the number of genes m to be
copied, it is enough to apply the inverse formulas and obtain:

xoverL ∼ round (logCr (rand (0, 1))) = round

(
log (rand (0, 1))

log (Cr)

)
(11)

where the last equality is due to the change of base of a logarithm. In other words,
crossover light consists of performing the deterministic copy and subsequently
the copy of xoverL genes, where xoverL is determined by formula (11). To
further control the crossover effect, cDElight makes use of parameter, namely
the proportion of genes undergoing exponential crossover αm, so that, for a
chosen αm, the crossover rate can be set as Cr = 1

nαm
√
2
, as proposed in [10]. In

this way, it is possible to estimate the proportion of genes to be inherited from
the provisional offspring independently on problem dimension.

Finally, when xoff is generated, its fitness is computed and compared with
the fitness of the elite (see the function compete() in Alg. 1). On the basis of
this comparison, a winner solution (solution displaying the best fitness) and a
loser solution (solution displaying the worst fitness) are detected. The winner
solution biases the virtual population by affecting the PV values, according to
the following update rules:

μt+1 = μt + 1
Np

(winner − loser)

σt+1 =
√
(σt)

2
+ (μt)

2 − (μt+1)
2
+ 1

Np
(winner2 − loser2)

(12)

where Np is a parameter, namely virtual population size. Details for constructing
Eg. 12 are given in [8]. In addition to the PV values, also the elite is updated,
according to a persistent elitism scheme [1].

4 Simulation Results

In order to minimize the fitness function described in Section 2, the following
memory saving algorithms have been implemented and compared:

292 G. Iacca et al.

− Simplified Intelligence Single Particle Optimization: ISPO [19], with accel-
eration A = 1, acceleration power factor P = 10, learning coefficient B = 2,
learning factor reduction ratio S = 4, minimum threshold on learning factor
E = 1e− 5, and particle learning steps PartLoop = 30;

− Non uniform Simulated Annealing (nuSA) [16] with mutation exponent B =
5, temperature reduction ratio α = 0.9, temperature reduction period Lk =
3, and initialSolutions= 10;

− compact Differential Evolution (cDE) [9] with rand/1 mutation, exponen-
tial crossover and persistent elitism. The cDE algorithm has been run with
virtual population size Np = 300, scale factor F = 0.5, and αm = 0.25;

− compact Differential Evolution light (cDElight), as described above, with
Np = 300, scale factor F = 0.5, and αm = 0.25.

We decided to compare the proposed cDElight to ISPO and nuSA because these
two methods employ a completely different logic. On the other hand, cDE has
been included in the experiments because it represents the original version of
cDElight. For each competing algorithm, the parameter setting suggested in
the original paper was used. It must be remarked that, in order to perform a
fair comparison, cDE and cDElight employ the same parameter setting. All the
algorithms can be considered memory saving heuristics, as they require a fixed
amount of memory slots which does not depend on the problem dimension. In
other words, if one of these algorithms is used to tackle a large scale problem,
although the slot length is proportional to the dimension of the problem, these
slots do not increase in number. More specifically, ISPO and nuSA are typical
single solution algorithms, requiring only two memory slots, one for the current
best solution and the other for a trial candidate solution. On the other hand, the
cDE schemes are memory-wise slightly more expensive as they require, on the
top of the two slots for single solution algorithms, two extra slots for the virtual
population PV . This compromise is made in order to have the advantages of a
population-based search and a still low memory usage.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Fitness function call

F
itn

es
s

va
lu

e

6000 7000 8000 9000 10000
140

150

160

170

180

190

200

210

cDE
ISPO
cDElight
nuSA

Fig. 2. Average performance trend of the algorithms for the space robot application.
The inset figure shows a close-up of the fitness trend after 6000 fitness evaluations.

Robot Trajectory Optimization with cDElight 293

For each algorithm, 30 independent runs have been performed. The bud-
get of each single run has been fixed equal to 10000 fitness evaluations. In
Fig. 2, the average performance trend of the algorithms considered in this study
is represented. Table 1 shows the obtained numerical results. Average final fitness
values are computed for each algorithm over the 30 runs available. The best re-
sult is highlighted in bold face. In order to strengthen the statistical significance
of the results, the Wilcoxon Rank-Sum test has also been applied according to
the description given in [15], where the confidence level has been fixed to 0.95.
With respect to Table 1, the results of the Wilcoxon test for cDElight against the
other algorithms are displayed. The symbol ”+” indicates that cDElight statis-
tically outperforms both ISPO and nuSA, while the symbol ”=” indicates that,
on the basis of the Wilcoxon Rank-Sum test, the null hypothesis is accepted, i.e.
cDE and cDElight have similar performance. However, as we have seen in the
previous section, the computational overhead of cDElight is definitely lower.

Table 1. Compared results on the space robot application

cDE W ISPO W nuSA W cDElight

1.480e+02 ± 5.55e+00 = 1.959e+02 ± 1.08e+02 + 1.709e+02 ± 7.19e+00 + 1.440e+02 ± 1.08e+00

5 Conclusion

In this paper we modeled the disturbance to the base of a robotic arm mounted
on a spacecraft, and we used a measure of the acceleration at the base as cost
function to be minimized. In order to avoid waste of fuel and disturbances to the
spacecraft orbit, an online optimization of the robot trajectory is proposed. A
specifically designed compact algorithm, namely compact Differential Evolution
light (cDElight), was used to tackle this problem in a computationally efficient
manner. Using cDElight, it was possible to address not only the memory saving
necessities of the hardware typically used in space applications, but also the real-
time requirements of the specific application. Compared to the other memory
saving meta-heuristics considered in this study, cDElight proved to obtain the
best results, still having a limited computational overhead and a reduced memory
footprint. In our view, the proposed cDElight algorithm represents an interesting
optimization solution when a limited hardware (memory and CPU) is available
and a fast response of the system is required.

References

1. Ahn, C.W., Ramakrishna, R.S.: Elitism based compact genetic algorithms. IEEE
Transactions on Evolutionary Computation 7(4), 367–385 (2003)

2. Cody, W.J.: Rational chebyshev approximations for the error function 23(107),
631–637 (1969)

3. Gautschi, W.: Error function and fresnel integrals. In: Abramowitz, M., Stegun, I.A.
(eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables, ch.7, pp. 297–309 (1972)

294 G. Iacca et al.

4. Huang, P., Chen, K., Xu, S.: Optimal path planning for minimizing disturbance of
space robot. In: Proceedings of the IEEE International Conference on on Control,
Automation, Robotics, and Vision (2006)

5. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.: Global supervision
for compact differential evolution. In: Proceedings IEEE Symposium on Differential
Evolution, pp. 25–32 (2011)

6. Iacca, G., Mininno, E., Neri, F.: Composed compact differential evolution. Evolu-
tionary Intelligence 4(1), 17–29 (2011)

7. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer (2001)

8. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for
embedded microcontroller optimization. IEEE Transactions on Evolutionary Com-
putation 12(2), 203–219 (2008)

9. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution.
IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)

10. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evo-
lution for limited memory optimization problems. Information Sciences 181(12),
2469–2487 (2011)

11. Neri, F., Mininno, E.: Memetic compact differential evolution for cartesian robot
control. IEEE Computational Intelligence Magazine 5(2), 54–65 (2010)

12. Norman, P.G.: The new AP101S general-purpose computer (gpc) for the space
shuttle. IEEE Proceedings 75, 308–319 (1987)

13. Qin, A.K., Huang, V.L., Suganthan, P.: Differential evolution algorithm with strat-
egy adaptation for global numerical optimization. IEEE Transactions on Evolution-
ary Computation 13, 398–417 (2009)

14. Ren, K., Fu, J.Z., Chen, Z.C.: A new linear interpolation method with lookahead for
high speed machining. In: Technology and Innovation Conference, pp. 1056–1059
(2006)

15. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6), 80–83 (1945)

16. Xinchao, Z.: Simulated annealing algorithm with adaptive neighborhood. Applied
Soft Computing 11(2), 1827–1836 (2011)

17. Xu, Y.: The measure of dynamic coupling of space robot system. In: Proceedings
of the IEEE Conference on Robotics and Automation, pp. 615–620 (1993)

18. Zhang, J., Sanderson, A.C.: Jade: Adaptive differential evolution with optional
external archive. IEEE Transactions on Evolutionary Computation 13(5), 945–958
(2009)

19. Zhou, J., Ji, Z., Shen, L.: Simplified intelligence single particle optimization based
neural network for digit recognition. In: Proceedings of the Chinese Conference on
Pattern Recognition (2008)

Electrocardiographic Signal Classification

with Evolutionary Artificial Neural Networks

Antonia Azzini1, Mauro Dragoni2, and Andrea G.B. Tettamanzi1

1 Università degli Studi di Milano
Dipartimento di Tecnologie dell’Informazione
via Bramante, 65 - 26013 Crema (CR) Italy

{antonia.azzini,andrea.tettamanzi}@unimi.it
2 Fondazione Bruno Kessler (FBK-IRST)
Via Sommarive 18, Povo (Trento), Italy

dragoni@fbk.eu

Abstract. This work presents an evolutionary ANN classifier system as
an heart beat classification algorithm suitable for implementation on the
PhysioNet/Computing in Cardiology Challenge 2011 [14], whose aim is
to develop an efficient algorithm able to run within a mobile phone, that
can provide useful feedback in the process of acquiring a diagnostically
useful 12-lead Electrocardiography (ECG) recording.

The method used in such a problem is to apply a very powerful natural
computing analysis tool, namely evolutionary neural networks, based on
the joint evolution of the topology and the connection weights together
with a novel similarity-based crossover.

The work focuses on discerning between usable and unusable elec-
trocardiograms tele-medically acquired from mobile embedded devices.
A prepropcessing algorithm based on the Discrete Fourier Trasform has
been applied before the evolutionary approach in order to extract the
ECG feature dataset in the frequency domain. Finally, a series of tests
has been carried out in order to evaluate the performance and the accu-
racy of the classifier system for such a challenge.

Keywords: Signal Processing, Heartbeat Classification, Evolutionary
Algorithms, Neural Networks.

1 Introduction

In the last decades, cardiovascular diseases have represented one of the most
important causes of death in the world [11] and the necessity of a trustworthy
heart state evaluation is increasing. Electrocardiography (ECG) is one of the
most useful and well-known methods for heart state evaluation. Indeed, ECG
analysis is still one of the most common and robust solutions in the heart diseases
diagnostic domain, also due to the fact that it is one of the simplest non-invasive
diagnostic methods for various heart diseases [10].

In such a research field, one of the most important critical aspects regards the
quality of such heart state evaluations, since, often, the lack of medically trained

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 295–304, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

296 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

experts, working from the acquisition process to the discernment between usable
and unusable medical information, increases the need of easy and efficient mea-
suring devices, which can send measured data to a specialist. Furthermore, the
volume of the data that have to be recorded is huge and, very often, the ECG
records are non-stationary signals, and critical information may occur at random
in the time scale. In this situation, the disease symptoms may not come across all
the time, but would show up at certain irregular intervals during the day.

In this sense, the Physionet Challenge [14], on which this work focuses, aims
at reducing, if not eliminating, all the fallacies that currently plague usable medi-
cal information tele-medically provided, by obtaining efficient measuring systems
through smart phones.

In this challenge, several approaches were explored; in particular, in order
to inform inexperienced user about the quality of measured ECGs, artificial-
intelligence-based (AI-based) systems have been considered, by reducing the
quantum of worst quality ECGs sent to a specialist, this contributing to a more
effective use of her time.

Moody and colleagues [16] reported that some of the top competitors in this
challenge employed a variety of techniques, using a wide range of features in-
cluding entropy, higher order moments, intra-lead information, etc, while the
classification methods also included Decision Trees, Support Vector Machines
(SVMs), Fuzzy Logic, and heuristic rules.

An example of SVM-based approach is reported in [11], where the authors de-
veloped a decision support system based on an algorithm that combines simple
rules in order to discard recordings of obviously low quality and a more sophisti-
cated classification technique for improving quality of AI-based decision system
for mobile phones, showing the fine tuning of sensitivity and specificity of detec-
tion. Another example has been also given in [17], where a rule-based classification
method that mimics the SVM has been implemented, by using a modified version
of a real time QRS-Complex algorithm and a T-Wave detection approach.

Anyway, according to [16], Artificial Neural Networks (ANNs) have been ex-
tensively employed in computer aided diagnosis because of their remarkable
qualities: capacity of adapting to various problems, training from examples, and
generalization capabilities with reduced noise effects. Also Jiang and colleague
confirmed the usefulness of ANNs as heartbeat classifiers, emphasizing in par-
ticular evolvable ANNs, due to their ability to change the network structure and
internal configurations as well as the parameters to cope with dynamic operating
environments. In particular, the authors developed an evolutionary approach for
the structure and weights optimization of block-based neural network (BbNN)
models [8] for a personalized ECG heartbeat pattern classification.

We approach the heartbeat classification problems with another evolutionary
algorithm for the joint structure and weights optimization of ANNs [3], which
exploits an improved version of a novel similarity-based crossover operator [4],
based on the conjunction of topology and connection weight optimization.

This paper is organized as follows: Section 2 briefly presents the problem,
while a summary description of the evolutionary approach considered in this

ECG Signal Classification with Evolutionary Artificial Neural Networks 297

work is reported in Section 3. The results obtained from the experiments carried
out are presented in Section 4, together with a discussion of the performances
obtained. Finally, Section 5 provides some concluding remarks.

2 Problem Description

As previously reported, the ECG is a bio-electric signal that records the electri-
cal activities of the heart. It provides helpful information about the functional
aspects of the heart and cardiovascular system, and the state of cardiac health
is generally reflected in the shape of ECG waveform, that is a critical informa-
tion. For this reason, computer-based analysis and classification and automatic
interpretation of the ECG signals can be very helpful to assure a continuous
surveillance of the patients and to prepare the work of the cardiologist in the
analysis of long recordings.

Moreover, as indicated by the main documentation of Physionet, according to
the World Health Organization, cardiovascular diseases (CVD) are the number
one cause of death worldwide. Of these deaths, 82% take place in low- and
middle-income countries. Given their computing power and pervasiveness, the
most important question is to check the possibility, for mobile phones, to aid
in delivery of quality health care, particularly to rural populations distant from
physicians with the expertise needed to diagnose CVD.

Advances in mobile phone technology have resulted in global availability of
portable computing devices capable of performing many of the functions tradi-
tionally requiring desktop and larger computers. In addition to their technologi-
cal features, mobile phones have a large cultural impact. They are user-friendly
and are among the most efficient and most widely used means of communication.
With the recent progress of mobile-platforms, and the increasing number of mo-
bile phones, a solution to the problem can be the recording of ECGs by untrained
professionals, and subsequently transmitting them to a human specialist.

The aim of the PhysioNet/Computing in Cardiology Challenge 2011 [15] is
to develop an efficient algorithm able to run in near real-time within a mobile
phone, that can provide useful feedback to a layperson in the process of acquiring
a diagnostically useful ECG recording. In addition to the approaches already
cited in Section 1, referring to such a challenge, Table 2 reports other solutions
already presented in the literature, capable of quantifying the quality of the
ECG looking at leads individually and combined, which can be implemented on
a mobile-platform. As reported later, all such approaches are used to compare
their results with those obtained in this work.

3 The Neuro-evolutionary Algorithm

The overall algorithm is based on the evolution of a population of individu-
als, represented by Multilayer Perceptrons neural networks (MLPs), through
a joint optimization of their structures and weights, here briefly summarized;
a more complete and detailed description can be found in the literature [3].

298 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

In this work the algorithm uses the Scaled Conjugate Gradient method (SCG)
[7] instead of the more traditional error back-propagation (BP) algorithm to
decode a genotype into a phenotype NN, in order to speed up the convergence
of such a conventional training algorithm. Accordingly, it is the genotype which
undergoes the genetic operators and which reproduces itself, whereas the phe-
notype is used only for calculating the genotype’s fitness. The rationale for this
choice is that the alternative of applying SCG to the genotype as a kind of ‘intel-
ligent’ mutation operator, would boost exploitation while impairing exploration,
thus making the algorithm too prone to being trapped in local optima.

The population is initialized with different hidden layer sizes and different
numbers of neurons for each individual according to two exponential distribu-
tions, in order to maintain diversity among all of them in the new population.
Such dimensions are not bounded in advance, even though the fitness function
may penalize large networks. The number of neurons in each hidden layer is
constrained to be greater than or equal to the number of network outputs, in or-
der to avoid hourglass structures, whose performance tends to be poor. Indeed,
a layer with fewer neurons than the outputs destroys information which later
cannot be recovered.

3.1 Evolutionary Process

The initial population is randomly created and the genetic operators are then
applied to each network until the termination conditions are not satisfied.

At each generation, the first half of the population corresponds to the best
�n/2� individuals selected by truncation from a population of size n, while the
second half of the population is replaced by the offsprings generated through
the crossover operator. Crossover is then applied to two individuals selected
from the best half of the population (parents), with a probability parameter
pcross, defined by the user together with all the other genetic parameters, and
maintained unchanged during the entire evolutionary process.

It is worth noting that the pcross parameter refers to a ‘desired’ crossover prob-
ability, set at the beginning of the evolutionary process. However, the ‘actual’
probability during a run will usually be lower, because the application of the
crossover operator is subject to the condition of similarity between the parents.

Elitism allows the survival of the best individual unchanged into the next
generation and the solutions to get better over time. Following the commonly
accepted practice of machine learning, the problem data is partitioned into train-
ing, validation and test sets, used, respectively for network training, to stop learn-
ing avoiding overfitting, and to test the generalization capabilities of a network.
Then, the algorithm mutates the weights and the topology of the offsprings,
trains the resulting network, calculates fitness on the validation set, and finally
saves the best individual and statistics about the entire evolutionary process.

The application of the genetic operators to each network is described by the
following pseudo-code:

ECG Signal Classification with Evolutionary Artificial Neural Networks 299

1. Select from the population (of size n) �n/2� individuals by truncation and
create a new population of size n with copies of the selected individuals.

2. For all individuals in the population:
(a) Randomly choose two individuals as possible parents.
(b) Check their local similarity and apply crossover according to the crossover

probability.
(c) Mutate the weights and the topology of the offspring according to the

mutation probabilities.
(d) Train the resulting network using the training set.
(e) Calculate the fitness f on the validation set.
(f) Save the individual with lowest f as the best-so-far individual if the f

of the previously saved best-so-far individual is higher (worse).
3. Save statistics.

The SimBa crossover starts by looking for a ‘local similarity’ between two indi-
viduals selected from the population. If such a condition is satisfied the layers
involved in the crossover operator are defined. The contribution of each neuron
of the layer selected for the crossover is computed, and the neurons of each layer
are reordered according to their contribution. Then, each neuron of the layer
in the first selected individual is associated with the most ‘similar’ neuron of
the layer in the other individual, and the neurons of the layer of the second
individual are re-ranked by considering the associations with the neurons of the
first one. Finally a cut-point is randomly selected and the neurons above the
cut-point are swapped by generating the offspring of the selected individuals.

Weights mutation perturbs the weights of the neurons before performing any
structural mutation and applying SCG to train the network. All the weights
and the corresponding biases are updated by using variance matrices and evo-
lutionary strategies applied to the synapses of each NN, in order to allow a
control parameter, like mutation variance, to self-adapt rather than changing
their values by some deterministic algorithms. Finally, the topology mutation
is implemented with four types of mutation by considering neurons and layer
addition and elimination. The addition and the elimination of a layer and the
insertion of a neuron are applied with three independent probabilities, indicated
as p+layer, p

−
layer and p+neuron, while the elimination of a neuron is carried out only if

the contribution of that neuron is negligible with respect to the overall network
output.

For each generation of the population, all the information of the best individ-
ual is saved.

As previously considered [2,1], the evolutionary process adopts the convention
that a lower fitness means a better NN, mapping the objective function into
an error minimization problem. Therefore, the fitness used for evaluating each
individual in the population is proportional to the mean square error (mse) and
to the computational cost of the considered network. This latter term induces a
selective pressure favoring individuals with reduced-dimension topologies.

The fitness function is calculated, after the training and the evaluation pro-
cesses, by the Equation 1 and it is defined as a function of the confusion matrix
M obtained by that individual:

300 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

fmulticlass(M) = Noutputs − Trace(M), (1)

where Noutputs is the number of output neurons and Trace(M) is the sum of the
diagonal elements of the row-wise normalized confusion matrix, which represent
the conditional probabilities of the predicted outputs given the actual ones.

4 Experiments and Results

The data used for the PhysioNet/CINC 2011 Challenge consist of 2,000 twelve-
lead ECGs (I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5, and V6), each 10
second long, with a standard diagnostic bandwidth defined in the range (0.05–
100 Hz). The twelve leads are simultaneously recorded for a minimum of 10
seconds; each lead is sampled at 500 Hz with 16-bit resolution (i.e., 16 bits per
sample).

The proposed approach has been evaluated by using the dataset provided by
the challenge organizers. This dataset, described above in Section 2, is public
and has been distributed in two different parts:

– Set A: this dataset has to be used to train the approach. It is composed of
998 instances provided with reference quality assessments;

– Set B: this dataset has to be used for testing the approach. It is composed
of 500 instances and the reference quality assessments are not distributed
to the participants. The reports generated by the approach have to be sent
to the submission system in order to directly receive the results from the
system used for the challenge.

We split the Set A in two parts: a training set composed of the 75% of the
instances contained in the Set A, and a validation set, used to stop the training
algorithm, composed of the remaining 25%. While the Set B is used as test set
for the final evaluation of the approach.

Each instance of the dataset represents an ECG signal composed of 12 series
(one for each lead) of 5,000 values representing the number of recordings per-
formed for each lead. These data have been preprocessed in order to extract the
features that we used to create the datasets given in input to the algorithm. We
have applied to each lead the fast Fourier transform function in order to trans-
form each lead to the frequency domain. After the transformation, we summed
the 5,000 values by groups of 500 in order to obtain 10 features for each lead.
Finally, The input attributes of all datasets have been rescaled, before being fed
as inputs to the population of ANNs, through a Gaussian distribution with zero
mean and standard deviation equal to 1.

The experiments have been carried out by setting the parameters of the algo-
rithm to the values obtained from a first round of experiments aimed at identify-
ing the best parameter setting. These parameter values are reported in Table 1.
We performed 40 runs, with 40 generations and 60 individuals for each run,
while the number of epochs used to train the neural network implemented in
each individual has been set to 250.

ECG Signal Classification with Evolutionary Artificial Neural Networks 301

Table 1. Parameters of the Algorithm

Symbol Meaning Default Value

n Population size 60

p+
layer Probability of inserting a hidden

layer
0.05

p−
layer

Probability of deleting a hidden
layer

0.05

p+
neuron Probability of inserting a neuron

in a hidden layer
0.05

pcross ‘Desired’ probability of applying
crossover

0.7

δ Crossover similarity cut-off value 0.9
Nin Number of network inputs 120
Nout Number of network outputs 1
α Cost of a neuron 2
β Cost of a synapsis 4
λ Desired tradeoff between net-

work cost and accuracy
0.2

k Constant for scaling cost and
MSE in the same range

10−6

The challenge has been organized in two different events: a closed event and
an open one. While in the close event it is possible to develop the classification
algorithm in any language, in the open event it is mandatory to develop the
algorithm by using the Java language. For this reason, by considering that the
proposed approach has been developed in Java too, we compared the obtained
results with the results obtained by the other systems that participated to the
challenge in the open event. It is important to highlight that we do not claim to
obtain the best performance. Our goal was to show that, even if our system is
trained with a training set that exploits very little information, the performance
obtained by our approach does not lag too much behind the one obtained by the
best state-of-the-art systems.

Table 2 shows the results obtained by the other participants compared with the
results obtained by the proposed approach.We have inserted both the best and the
average performance obtained by the proposed approach. It is possible to observe
that, if we consider the best performance, we obtained the second best accuracy;
while the average accuracy, computed over the 40 runs, obtained the fourth perfor-
mance. The robustness of the approach is also proved by observing the low value
of the standard deviation that, in the performed experiments, was 0.011.

Table 2. Results of the open event challenge

Participant Score

Xiaopeng Zhao [18] 0.914

Proposed Approach (Best) 0.902

Benjamin Moody [13] 0.896

Proposed Approach (Average) 0.892

Lars Johannesen [9] 0.880

Philip Langley [12] 0.868

Dieter Hayn [6] 0.834

Vclav Chudcek [5] 0.833

302 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

Besides the evaluation on the test set, we performed also a ten-fold cross
validation on the training set. We split the training set in ten fold Fi and we
performed ten different set of 10 runs in order to observe which is the behavior of
the algorithm when training, validation, and test data change. Table 3 shows the
results of the ten-fold cross validation. By observing the results we can observe
the robustness of the algorithm. In fact, the accuracies obtained by changing
the folds used for training, validation, and test are very close; moreover, the
standard deviation of the results is very low.

Table 3. Results of the ten-fold cross validation

Training Set Validation Set Test Set Average Accuracy Standard Deviation

F1...F7 F8, F9 F10 0.8984 0.0035

F2...F8 F9, F10 F1 0.8988 0.0067

F3...F9 F10, F1 F2 0.9002 0.0075

F4...F10 F1, F2 F3 0.9022 0.0107

F5...F10, F1 F2, F3 F4 0.9040 0.0071

F6...F10, F1, F2 F3, F4 F5 0.9002 0.0029

F7...F10, F1...F3 F4, F5 F6 0.9002 0.0018

F8...F10, F1...F4 F5, F6 F7 0.8976 0.0054

F9, F10, F1...F5 F6, F7 F8 0.9032 0.0090

F10, F1...F6 F7, F8 F9 0.8986 0.0047

5 Conclusions

In this study, we have proposed an ECG classification scheme based on a neuro-
evolutionary approach, based on the joint evolution of the topology and the
connection weights together with a novel similarity-based crossover, to aid clas-
sification of ECG recordings. The signals were first preprocessed into the fre-
quence domain by using a Fast Fourier Trasform algorithm, and then they were
normalized through a gaussian distribution with 0 mean and standard deviation
equal to 1. The present system was validated on real ECG records taken from
the PhysioNet/Computing in Cardiology Challenge 2011.

A series of tests has been carried out in order to evaluate the capability of the
neuro-evolutionary approach to discern between usable and unusable electrocar-
diograms tele-medically acquired frommobile embedded devices. The obtained re-
sults show an overall satisfactory accuracy and performances in comparison with
other approaches carried out in this challenge and presented in the literature.

It is important to stress the fact that the proposed method was able to achieve
top-ranking classification accuracy despite the use of a quite standard prepro-
cessing step and a very small number of input features. No attempt was made
yet to fine tune the signal pre-processing and the feature selection steps. On the
other hand, it is well known that these two steps are often critical for the success
of a signal classification methods. For this reason, we believe that the proposed
neuro-evolutionary approach has a tremendous improvement potential.

ECG Signal Classification with Evolutionary Artificial Neural Networks 303

Future works will involve the adoption of more sophisticated preprocessing
techniques, by working, for example, on a multi-scales basis, where each scale
represents a particular feature of the signal under study. Other ideas could re-
gard the study and the implementation of feature selection algorithms in order
to provide an optimized selection of the signal given as inputs to the neural
networks.

References

1. Azzini, A., Dragoni, M., Tettamanzi, A.: A Novel Similarity-Based Crossover for
Artificial Neural Network Evolution. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg
(2010)

2. Azzini, A., Tettamanzi, A.: Evolving neural networks for static single-position au-
tomated trading. Journal of Artificial Evolution and Applications 2008 (Article ID
184286), 1–17 (2008)

3. Azzini, A., Tettamanzi, A.: A new genetic approach for neural network design. In:
Engineering Evolutionary Intelligent Systems. SCI, vol. 82. Springer, Heidelberg
(2008)

4. Azzini, A., Tettamanzi, A., Dragoni, M.: SimBa-2: Improving a Novel Similarity-
Based Crossover for the Evolution of Artificial Neural Networks. In: 11th Inter-
national Conference on Intelligent Systems Design and Applications (ISDA 2011),
pp. 374–379. IEEE (2011)

5. Chudácek, V., Zach, L., Kuž́ılek, J., Spilka, J., Lhotská, L.: Simple Scoring System
for ECG Signal Quality Assessment on Android Platform. Contribution sent to the
38th Physionet Cardiology Challenge (2011)

6. Hayn, D., Jammerbund, B., Schreier, G.: Real-time Visualization of Signal Quality
during Mobile ECG Recording. Contribution sent to the 38th Physionet Cardiology
Challenge (2011)

7. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards 49(6) (1952)

8. Jiang, W., Kong, S.G.: Block-Based Neural Networks for Personalized ECG Signal
Classification. IEEE Transactions on Neural Networks 18(6) (2007)

9. Johannesen, L.: Assessment of ECG Quality on an Android Platform. Contribution
sent to the 38th Physionet Cardiology Challenge (2011)

10. Jokic, S., Krco, S., Delic, V., Sakac, D., Jokic, I., Lukic, Z.: An Efficient ECG Mod-
eling for Heartbeat Classification. In: IEEE 10th Symposium on Neural Network
Applications on Electrical Engineering, NEUREL 2010, Belgrade, Serbia, Septem-
ber 23-25 (2010)

11. Kuzilek, J., Huptych, M., Chudacek, V., Spilka, J., Lhotska, L.: Data Driven Ap-
proach to ECG Signal Quality Assessment using Multistep SVM Classification.
Contribution sent to the 38th Physionet Cardiology Challenge (2011)

12. Langley, P., Di Marco, L., King, S., Di Maria, C., Duan, W., Bojarnejad, M.,
Wang, K., Zheng, D., Allen, J., Murray, A.: An Algorithm for Assessment of ECG
Quality Acquired Via Mobile Telephone. Contribution sent to the 38th Physionet
Cardiology Challenge (2011)

13. Moody, B.E.: A Rule-Based Method for ECG Quality Control. Contribution sent
to the 38th Physionet Cardiology Challenge (2011)

304 A. Azzini, M. Dragoni, and A.G.B. Tettamanzi

14. Moody, G.B.: Improving the quality of ECGs collected using mobile phones: The
12th Annual Physionet/Computing in Cardiology Challenge. Computing in Car-
diology Challenge 38 (2011)

15. PhysioNet: Research Resource for Complex Physiologic Signals,
http://www.physionet.org

16. Silva, K., Moody, G.B., Celi, L.: Improving the Quality of ECGs Collected Using
Mobile Phones: The PhysioNet/Computing in Cardiology Challenge 2011. Contri-
bution sent to the 38th Physionet Cardiology Challenge (2011)

17. Tat, T.H.C., Chen Xiang, C., Thiam, L.E.: Physionet Challenge 2011: Improving
the Quality of Electrocardiography Data Collected Using Real Time QRS-Complex
and T-Wave Detection. Contribution sent to the 38th Physionet Cardiology Chal-
lenge (2011)

18. Xia, H., McBride, J., Sullivan, A., De Bock, T., Bains, J., Wortham, D., Zhao,
X.: A Multistage Computer Test Algorithm for Improving the Quality of ECGs.
Contribution sent to the 38th Physionet Cardiology Challenge (2011)

http://www.physionet.org

A Genetic Fuzzy Rules Learning Approach
for Unseeded Segmentation in Echography

Leonardo Bocchi and Francesco Rogai

Università degli Studi di Firenze, Dipartimento di Elettronica e Telecomunicazioni

Abstract. Clinical practice in echotomography often requires effective
and time-efficient procedures for segmenting anatomical structures to
take medical decisions for therapy and diagnosis. In this work we present
a methodology for image segmentation in echography with the aim to
assist the clinician in these delicate tasks. A generic segmentation al-
gorithm, based on region evaluation by means of a fuzzy rules based
inference system (FRBS), is refined in a fully unseeded segmentation
algorithm. Rules composing knowledge base are learned with a genetic
algorithm, by comparing computed segmentation with human expert seg-
mentation. Generalization capabilities of the approach are assessed with
a larger test set and over different applications: breast lesions, ovarian
follicles and anesthetic detection during brachial anesthesia.

1 Introduction

Segmentation in echo-tomography imaging is an important task for the clini-
cian to speed up his work and improving phases of measurement and diagnosis.
Several algorithms have been proposed for this purpose, tailored for applica-
tions spanning, among others, from neoplastic lesions assessment in oncology,
to ventricle volume determination and myocardial efficiency in cardiology and
to therapy planning in ovarian follicles measurements for assisted fecundation.
Different applications and the intrinsic artifacts of ultrasound images make dif-
ficult the definition of a general approach to the segmentation problem. Low
resolution, speckle noise, shadowing/enhancement artifacts make the contour of
anatomic structures difficult to discriminate [9].

The following considerations where taken into account to describe the frame-
work on which the proposed segmentation system is designed. Assuming an
image I as a map defined on an ordered grid of coordinates (x, y) in a planar
domain D of the image:

I (x, y) , (x, y) ∈ D = M × N (1)

It is possible to consider a generic partitioning of D as a mapping that generates
different Boolean mask for each value of a choice parameter θ:

Pθ {D} = {(x, y) ∈ D | mθ (x , y) =TRUE} (2)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 305–314, 2012.
© Springer-Verlag Berlin Heidelberg 2012

306 L. Bocchi and F. Rogai

We define as a generic or totipotent segmentation function - borrowing the term
from cell biology - a partitioning function which is capable to generate all pos-
sible partitions for an image I varying the choice parameter θ in a finite set.
The cardinality of the set of all possible partitions of an image of size X × Y
increases exponentially with image size. However, common segmentation algo-
rithms work on a very restrictive subclass of the partition set. Thus they can be
referred as quasi-generic or multipotent segmentation functions and their use is
licit assuming that the correct segmentation is part of the set of possible regions
generated by the method (which has a very lower cardinality respect that of a
true generic segmentation function). In this work, we will evolve a specialized,
or unipotent, algorithm - tailored for a particular purpose - by simple introduc-
tion of a selection procedure which selects the correct connected components
among all partitions produced by a quasi-generic segmentation function. A soft
computing approach is proposed to define a function to operate this choice.

2 Unseeded Segmentation

Proposed system is composed of a three-stage procedure: preprocessing, primary
segmentation and fine segmentation. The preprocessing step enhances image
quality, by removing speckle noise, for improving the subsequent segmentation.
Several techniques have been proposed for attenuation of speckle noise, and one
of the most recent ones is wavelet denoising [12]. In this work it is used a cellular
automata approach proposed for image enhancement in [7] and shown to be
feasible for the particular purpose in [2].

The proposed approach is based on a primary segmentation algorithm which
can be implemented using any algorithm satisfying the only requirement of be-
ing capable to generate a set of image partitions containing the correct segmen-
tation. The correctness is evaluated by minimizing a function of discrepancy of
each partition against the segmentation performed by a human radiology expert,
representing the segmentation error. The choice of the primary segmentation al-
gorithm has been guided considering the cardinality of the image partitions set
feasible by the candidate algorithm - through which the best solution has to
be searched - which can be up to 2XY − 2 for an image of size X × Y pixel.
An additional constraint on the algorithm requires the partitions chosen de-
pend on a partition choice parameter, possibly with a smooth behavior (small
variation in the parameter implies small variation in the partitions). Several
different quasi-generic segmentation methods were experimented (such as wa-
tershed and k-means clustering), and we selected an algorithm based on a sort
of filtered thresholding for the efficiency and smoothness of dependence of its
choice parameter (threshold level) versus the generated partitions and for its
computational efficiency.

The preprocessed image is filtered with a combined Gaussian and Laplacian
of Gaussian kernel to regularize the image and enhance the contrast on blob-like
regions. Filtered image is subject to thresholding, at a generic level θ, and a
connected-component labeling algorithm determines each hypothetical region of

A Genetic Fuzzy Rules Learning Approach for Unseeded Segmentation 307

Fig. 1. Overall representation of the segmentation system

interest. Searching space is constituted by all regions individuated by all values of
θ. A regions fitness score function (following referred as ρ) evaluates each region
and assigns a score value. The function ρ is computed by means of a fuzzy
inference system (FIS) whose inference rules are defined by a genetic approach
against an objective function constituted by the mean error on a set of manually
segmented images.

Coarse defined regions from the previous step can be regularized with morpho-
logical operations and utilized as proper initialization for the use in an instance
of GrowCut algorithm [13,10] as described in [2].

3 Method

The core of the proposed method consists of a fuzzy inference system which
selects the optimal region, among all the regions generated by the segmentation
algorithm. Each region is characterized by a set of features, which are chosen as a
trade off between representation (features should be similar to region properties
used in standard medical practice) and parsimony (too many features can make
the algorithm too slow or unstable). The selected feature set is composed of
N = 7 features, including: coordinates of the center of mass, mean and standard
deviation of gray level, solidity, eccentricity and orientation.

Solidity is defined as the ratio between the number of pixels in the region and
the number of pixel in its convex hull which can also be defined as the region
with lesser area in the set of convex regions containing the area, or, equivalently,
the intersection between all convex sets containing the region (the intersection
of convex sets is a convex set). Eccentricity is defined as the ratio between major
and minor axis of an ellipse with the same second order moment of surface

308 L. Bocchi and F. Rogai

Fig. 2. Principal steps in the fuzzy inference system used

(polar barycentric). Orientation is the angle in radians of the major axis of the
ellipse with respect to the horizontal axis.

Fuzzy inference systems where introduced by considerations of Zadeh in [14]
and used in the seminal paper [11]. Nowadays their use is spread in many fields
and they are employed in many different applications spanning from industrial
control[6] to advanced image processing [15]. Fuzzy inference systems are charac-
terized by the ability of handling the uncertainty and the inference based on ap-
proximate reasoning is more robust than in classical rule systems. In particular,
Mamdani type FRBSs provide a highly flexible means to formulate knowledge,
while at the same time remain interpretable.

The fuzzy inference system methodology used for this work is based on
the so called Mamdani inference. Although this approach does not scale well
as the dimensionality and complexity of the input-output relations increases,
it has the major advantage of being well interpretable [5] and this requisite is
important for acceptability in a medical context.

Accordingly to the Mamdami approach, the proposed implementation consists
of an algorithm based on the following steps:

1. Fuzzyfication: Every input range is partitioned on M = 5 equally spaced
membership functions, which are triangular shaped (triangular degenerated
at borders) as shown in 2. Every crisp input (region feature) Ip, p = 1..N ,
is represented by means of the corresponding value of membership function
(MF) of each fuzzy partitions the input range is subdivided in. The output
of this stage is an array of membership values for each input, i.e. N arrays
of M elements (each input is partitioned with the same number of MF).

2. Rules matching: Every rule in the rule knowledge base which refers to a
partition whose current membership value for the current inputs is not null
contributes to the matching degree of the rule itself which is calculated as-
suming the conventions of fuzzy logic algebra. Fuzzy rule set is an aggregate
of Q rules expressed as follows:

Rq = IF

〈
N∧

i=1

Ii ISAij

〉
THEN 〈O IS Bl〉 (3)

A Genetic Fuzzy Rules Learning Approach for Unseeded Segmentation 309

Fig. 3. Genetic algorithm for fuzzy rules learning

3. Rules implication: The matching degree of the antecedent is passed to the
consequent. Every partition of the output variable is subject to the effect of
the min t-norm implication operator, corresponding to the chopping off of
each MF at the corresponding matching degree.

4. Aggregation: The output partitions are aggregated using the max operator.
5. Defuzzification: The center of gravity is calculate on the aggregation to

achieve a crisp value for the output.

The fuzzy inference system assesses the region fitness score ρp for each region
p determined by the multipotent segmentation method. All candidate regions
are sorted accordingly to their score ρp from min to max, and the cumulative
score R =

∑
ρp is evaluated. The algorithm selects the k regions with higher

score, where k is the largest integer satisfying
∑k

p=1 ρp < 0.05R. This appar-
ently simple assumption is sufficient to discern regions of medical interest from
others by means of the capabilities of scoring algorithm itself wich determines
a frequency distribution of region score that is always notch-shaped and practi-
cally bimodal with the interest regions laying in the second modal group (higher
score) which generally covers not more than 5% of the entire cumulative score
and well separated from the other group.

Each selected region is used to evaluate a single region accuracy (SRA):

SRAp =
∑

ĉp ∧ ĥp∑
ĉp ⊕ ĥp

(4)

where ĉp is the computed segmentation mask and ĥp is the correspondent region
in human expert segmentation mask, operators⊕and ∧ are bitwise XOR and
AND respectively. We also defined a multi-regions accuracy function (MRA) as
the ratio between number of matched regions (when overlapping area is greater
than 80%) and total number of regions (RTN) marked by the human expert.

Many approaches to fuzzy rules learning have been proposed in the genetic
framework. Knowledge base (KB) of FIS is constituted by two different informa-
tion levels. The first one is the data base (DB) containing the sets of linguistic

310 L. Bocchi and F. Rogai

terms considered in the linguistic rules and the membership functions defining
the semantics of the linguistics labels . The second one is the rule base (RB) that
comprises a collection of linguistic rules that are joined by the also operator so
multiple rules can fire for the same input. A genetic algorithm can compose the
rule set with fixed DB, the data base with fixed rules or both.

Genetic learning of rule base, is generally achieved by two approaches. The
first one is referred as Pittsburg approach and consists on a representation of
the entire RB with a single chromosome whereas the latter considers a single
rule for each chromosome. Methods assuming chromosome as single rule are
conversely referred as Michigan approach, many others were developed from
that such as iterative learning (ITL) and cooperative competitive methods[5].
this mechanism, A pure Pittsburg approach is choosen for this work for avoiding
the complexity required by the systems based on Michigan method, obtaining a
simpler and easily implementable algorithm. We also assumed a predefined set of
membership functions, considering an input range represented with 5 partitions
is sufficiently descriptive for the considered features

The algorithm is articulated as shown in fig.3. Each locus in the chromosome
is codified with an integer between 0 and 5, inclusive. The values from 1 to
5 are used to represent the corresponding fuzzy partition labels for the current
input in the rule, number 0 is used as “wild card” symbol, representing all possible
membership labels in that input, therefore effectively ignoring that input feature.
Thus chromosome is composed by Q × 8 genes, as each rule has 7 input genes
and one output value. A stochastic universal sampling algorithm is chosen for
the fitness evaluation for the characteristics of this method which fulfill zero
bias and minimum spread[1]. For analogous reasons a shuffle crossover operator
is used[3] with a per gene mutation rate of 0.01.

The fitness of each individual χ is evaluated as the sum of SRA on all the Ns

images of the training set TS:

Φ (χ) =
1

Ns

N∑
p=1

SRAp (5)

Best individuals are selected in accordance to an universal stochastic sampling
with a generation gap (value 0.75) and deferred to the reproduction phase. The
best individuals are selected to replace worst ones using an elitist strategy. A
population of 60 rule sets is used in all the experiments. Stopping criterion is
max iteration reached defined with a trial and error process.

4 Experiments and Results

The algorithm has been tested on three data-set of different origin. The first one
(BreastDS) is composed by 35 images (Fig. 4) collected during standard screen-
ing protocols of the mammary glands executed by expert radiological operators
at Senologic Unit - Azienda Ospedaliero Universitaria Careggi (AOUC), Firenze,
Italy with 8 MHz linear probes from MyLab™ 50 (Esaote S.p.A., Firenze).

A Genetic Fuzzy Rules Learning Approach for Unseeded Segmentation 311

Fig. 4. Breast neoplastic lesion. a) Original bioimage. b) Partitions generated and
deferred to the evaluation and selection stage. c) Resulting selected region.

Fig. 5. Segmentation of follicles. a) Original bioimage. b) Partitions generated and
deferred to the evaluation and selection stage. c) Resulting selected region. Particular
image of PCOS from [4].

The second (FolliclesDS) is composed of a set of transvaginal ultrasound im-
ages (Fig. 5) of ovarian follicles in different conditions, 18 images extracted from
databases of PCOS [4] for use in human in-vitro fertilization assisted ultrasonog-
raphy and a 50 images set of different medical institutions origins and ultrasound
equipments. The third (NerveDS) is composed of 100 images from ultrasound
videos (Fig. 6) employed in ultrasound-guided axillary brachial plexus block in
Centro Traumatologico Ortopedico, AOUC. Used apparatus is a MyLab™ 50
with a 13 MHz probe. Each dataset has been manually segmented by an expert
radiologist with an image editing software and mouse or pen tablet.

Training sets are set of images extracted from each datasets. They were
choosen representing the different morphologies of structures to be identified with
the aid of medical experts. They contains 15, 10 and 15 images from BreastDS,
FolliclesDS and NerceDS respectively. The optimal number of rules has been
evaluated by examining the total error rate with different values of Q. Results,
reported in Fig. 7, show a decrease of the error rate with the increase of Q, until
we obtain a substantial stabilization of the error with rule sets greater than an
optimal number of rules and a slow down of the convergence performance of the
learning process. The value of Q is, respectively for the BreastDS, FollicleDS
and NerveDS, 11 rules, 8 rules and 9 rules.

312 L. Bocchi and F. Rogai

Fig. 6. Brachial nerve during brachial plexus block anesthetic injection. a) Original
image. b) Partitions generated and deferred to the evaluation and selection stage. c)
Resulting selected region.

2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

BreastDS
FolliclesDS
NerveDS

Fig. 7. Total segmentation error with different values of Q for the three sets

The MRA index is high for all data sets, its maximum assessed over the
entire data-sets is respectively 0.99, 0.97 and 0.98. Mean values of SRA index
are 0.97, 0.98, 0.98, respectively, while its minimum values are 0.89, 0.88, 0.87,
respectively. Convergence is always reached in less than 80 generations during
learning in the three datasets (Fig. 8).

0 20 40 60 80 100
0

50

100

150

200

250

300

0 20 40 60 80 100
0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Fig. 8. Total segmentation error, mean on population, 30 runs of the learning algo-
rithm with selected number of compact-form fuzzy rules. From left to right: BreastDS,
FolliclesDS, NerveDS.

A Genetic Fuzzy Rules Learning Approach for Unseeded Segmentation 313

Fig. 9. Different segmentation attempts of ovarian follicles[4] segmentation. a) Active
contours as shown in [8] with same parameters for all follicular regions. b) Simple
thresholding with manually fixed level. c) Proposed algorithm.

5 Conclusions

Reported results show the proposed approach is able to correctly adapt to dif-
ferent segmentation tasks in ultrasound imaging. The application of a fuzzy
inference system is shown to be useful to refine behavior of a generalist method
of segmentation.The use of a FIS representation is shown to be efficent for the
purpose of region selection. Selection of connected components by means of a
scoring function avoids the issues, typical of other segmentation algorithms such
as active contours, where contours can be highly dependent on the choice of the
seeding points and the parameters of the model so they necessitate an ad-hoc
tuning for each region. Under-segmentation such as regions containing part of
adjacent follicles as shown in fig. 9 is quite improbable with proposed method
wich discards contours with attributes of shape unlikely for a human follicle.
Mandani rules assures a complete understandability of automatically generated
rules which is agreable for clinicians. The learning phase for the generation of
the taylored RB for each of the particular medical applications required less
than 45 minutes in every described data set. Current implementation is based
on interpreted code executed on a 32 bit OS desktop computer with a standard
dual core processor at 2.81 GHz. The processing time required by the final seg-
mentation algorithm (with learned rules) is under 500 ms for each image, thus
reasonably low, while the accuracy of the obtained segmentation is high.

Acknowledgments. We wish to thank the medical operators of the radiol-
ogy and anesthesiology departments of AOUC - University Hospital of Careggi,
Florence, for their support in providing the images and the necessary medical
expertise, and in particular Dr. J. Nori, Dr. R. Deodati, and Dr. A. Di Filippo.

References

1. Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In:
Proceedings of the Second International Conference on Genetic Algorithms and
their Application, pp. 14–21. Lawrence Erlbaum, Hillsdale (1987)

314 L. Bocchi and F. Rogai

2. Bocchi, L., Rogai, F.: Segmentation of Ultrasound Breast Images: Optimization of
Algorithm Parameters. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt,
A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp.
163–172. Springer, Heidelberg (2011)

3. Caruana, R., Eshelman, L.: Representation and hidden bias II: Eliminating defin-
ing length bias in genetic search via shuffle crossover. In: Ridharan, N.S. (ed.)
Proceedings of the 11th International Joint Conference on AI, pp. 750–755.
Morgan Kaufmann (1989)

4. Chizen, D., Pierson, R.: Global library of women’s medicine (2010)
5. Cordón, O.: Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy

knowledge bases, vol. 19. World Scientific Pub. Co. Inc. (2001)
6. Driankov, D., Hellendoorn, H., Reinfrank, M., Ljung, L., Palm, R., Graham, B.,

Ollero, A.: An Introduction to Fuzzy Control. Springer, Heidelberg (1996)
7. Hernandez, G., Herrmann, H.J.: Cellular Automata for Elementary Image En-

hancement. Graphical Models and Image Processing 58(1), 82–89 (1995)
8. Gritti, F., Giannotti, E., Nori, J., Bocchi, L.: Active contour segmentation for

breast cancer detection using ultrasound images. In: II Congresso Nazionale di
Bioingegneria (2010)

9. Huang, Y.L., Chen, D.R.: Watershed segmentation for breast tumor in 2-D sonog-
raphy. Ultrasound in Medicine & Biology 30(5), 625–632 (2004)

10. Konouchine, V., Vezhnevets, V.: Interactive image colorization and recoloring based
on coupled map lattices. Computer, 231–234 (2006)

11. Mamdani, E., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

12. Nicolae, M., Moraru, L., Onose, L.: Comparative approach for speckle reduction
in medical ultrasound images. Romanian J. Biophys. 20(1), 13–21 (2010)

13. Vezhnevets, V., Konouchine, V.: GrowCut: Interactive multi-label ND image seg-
mentation by cellular automata. In: Proc. of Graphicon, pp. 150–156. Citeseer
(2005)

14. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and
Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics SMC-3
(January 1973)

15. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Pro-
cessing and Pattern Recognition. World Scientific (1996)

Object Recognition with an Optimized Ventral

Stream Model Using Genetic Programming

Eddie Clemente1,2, Gustavo Olague1, León Dozal1, and Mart́ın Mancilla1

1 Proyecto EvoVision,
Departamento de Ciencias de la Computación, División de F́ısica Aplicada,
Centro de Investigación Cient́ıfica y de Estudios Superiores de Ensenada,

Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, 22860, B.C., México
{eclemen,ldozal,olague}@cicese.edu.mx

http://cienciascomp.cicese.mx/evovision/
2 Tecnológico de Estudios Superiores de Ecatepec. Avenida Tecnológico S/N,

Esq. Av. Carlos Hank González, Valle de Anáhuac, Ecatepec de Morelos

Abstract. Computational neuroscience is a discipline devoted to the
study of brain function from an information processing standpoint. The
ventral stream, also known as the “what” pathway, is widely accepted as
the model for processing the visual information related to object identi-
fication. This paper proposes to evolve a mathematical description of the
ventral stream where key features are identified in order to simplify the
whole information processing. The idea is to create an artificial ventral
stream by evolving the structure through an evolutionary computing ap-
proach. In previous research, the “what” pathway is described as being
composed of two main stages: the interest region detection and feature
description. For both stages a set of operations were identified with the
aim of simplifying the total computational cost by avoiding a number of
costly operations that are normally executed in the template matching
and bag of feature approaches. Therefore, instead of applying a set of pre-
viously learned patches, product of an off-line training process, the idea
is to enforce a functional approach. Experiments were carried out with a
standard database and the results show that instead of 1200 operations,
the new model needs about 200 operations.

Keywords: Evolutionary Artificial Ventral Stream, Complex Designing
System, Heterogeneous and Hierarchical Genetic Programming.

1 Introduction

The human brain is the best example of a purposeful system that transforms
numerous complex signals into a set of complex actions. Today, the exact way
in which the brain organizes and controls its actions remains a mystery. The
endeavour of understanding the inner working of the brain is challenged by
several communities grouped into the field of neuroscience that includes the
following disciplines: psychology, neurology, psychiatry, cognitive science, cyber-
netics, computer science, and philosophy, to mention but a few. The advent of

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 315–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://cienciascomp.cicese.mx/evovision/

316 E. Clemente et al.

computer technology starts a new age in which the brain is modeled as an infor-
mation processing system giving raise to a field known as computational neuro-
science. Although the complexity of the brain is recognized within the domain
of evolutionary computation; there is no meaningful work on the development
of algorithms modeling the ventral stream and their application to the solu-
tion of complex problems [5]. The research described in the present paper aims
to develop a new research area in which evolutionary computing is combined
with previous proposals from computational neuroscience to assess the validity
of algorithmic representations for problem solving. In particular, the goal of the
present paper is to illustrate the necessary steps for evolving an artificial ventral
stream applied to the problem of object recognition.

Scale Invariant
Feature Detection

(S1)

Interest Region Detection Stage Feature Descriptor Stage

SVM

V1

V2
V4

IT

Position Invariant
Feature Detection

(C1)
Feature

Description

(S2)

Image Descriptor

(C2)

Fig. 1. Analogy between the ventral stream and the proposed computational model

Figure 1 depicts the classical model of the ventral stream that is known as
the standard model for object recognition. In this model, the ventral stream
begins with the primary visual cortex, V 1, goes through visual area, V 2, then
through visual area, V 4, and finally to the inferior temporal cortex. Therefore,
the ventral stream is said to be organized as a hierarchical and functionality
specialized processing pathway [6]. The idea exposed in this paper is to evolve
an artificial occipitoparietal pathway in such a way of defining an interest region
stage; as well as, a feature description stage. The proposed model starts with
a color image that is decomposed into a set of alternating “S” and “C” layers,
which are named after the discovery of Hubel and Wiesel of the simple and
complex cells [7]. This idea was originally implemented by Fukushima in the
neocognitron system [4]. This system was further enhanced by other authors
including the convolutional networks [8] and the HMAX model by Riesenhuber
and Poggio [9]. In all these models the simple layers apply local filters in order
to compute higher-order features and the complex layers increase invariance by
combining units of the same type.

Object Recognition with an Optimized Ventral Stream Model Using GP 317

1.1 Problem Statement

Despite powerful paradigms for object recognition developed in the last decades;
it is acknowledged that a solution remains elusive. The problem studied in this
paper is the recognition of object categories and this is solved with a biological
inspired model that is optimized through an evolutionary algorithm. The goal is
to search for the best expressions that are grouped into a hierarchical structure
by emulating the functionality of the ventral stream using genetic programming.
The major result that is presented in this work is the simplification of the com-
putational process that brings a significant economy in the final algorithm.

The remainder of the paper is organised as follows: section 2 describes the
artificial ventral stream divided in two parts known as detection and descrip-
tion; section 3 presents the hierarchical and heterogeneous genetic programming
that is used as a way of solving the computational problem; section 4 provides
experimental results, and section 5 draws the conclusions and discusses possible
future work.

2 An Artificial Ventral Stream

The aim of this section is to describe an artificial ventral stream (AVS) with the
goal of solving the problem of object class recognition. In this way, an artificial
ventral stream is defined as a computational system, which mimics the function-
ality of the visual ventral pathway by replicating the main characteristics that
are normally found in the natural system. In this sense, previous research devel-
oped by computer scientists and neuroscientists such as: [4,1,12,11,10] follow a
line of research where the natural and artificial systems are explained through a
data-driven scenario. Thus, the idea is to extract a set of features from an image
database using a hierarchical representation. The ventral stream is modeled as
a process that replicates the functionality of the primary visual cortex V 1, the
over extrastriate visual areas V 2 and V 4, and the inferotemporal cortex IT .
Thus, the image is transformed into a new representation where: bars, edges,
and gratings, are outlined and the whole information is combined into an output
vector that represents the original image. This process is characterized by the
application of a priori information in the form of image patches, which are nor-
mally used during the training of the proposed model. In this way, the artificial
ventral stream is evaluated by a classification system that is implemented with
a support vector machine.

Contrary to previous research, the idea developed in this paper is to propose
a function driven scenario based on the genetic programming paradigm. This
section proposes a way in which an artificial ventral stream could be evolved
in order to emulate key functions that are used to describe the human ventral
stream; specifically the standard model. These functions, called Evolutionary
Visual Operators (EVO), are optimized in order to render an improved design
of the whole visual stream. In particular, the aim is to recognize the building

318 E. Clemente et al.

blocks that are used in the solution of a multi-class object recognition problem.
Thus, the search functions highlight the set of suitable features that point out the
properties of the object such as: color, form, and orientation. The main advantage
of the proposed system is reflected on the lower amount of computations that
provided a significant economy without sacrificing the overall quality. Next, we
describe both detection and description stages following the hierarchical model
of the ventral stream.

2.1 Interest Region Detection

The interest region detection stage is depicted in Figure 2. The input color
image I(R,G,B, x, y) is decomposed into a pyramid of 12 scales (Iσ1 , ..., Iσ12),

each being smaller than the last one within a factor of 2
1
4 ; while maintaining

its aspect ratio and the information of the corresponding color bands (R,G,B).
In this way, the pyramid could be seen as a multidimensional structure that is
used to introduce scale invariance information along the multiple bands and at
the same time integrating the multiple color bands R,G,B. In this stage, the
idea is to apply an EVO to the image pyramid in order to simplify the amount
of information. The EVO should be understood as a general concept that is
applied to the artificial ventral stream; in such a way, that for each step of the
information processing there are specialized programs that fit the problem in an
optimal way.

For example, during the stage devoted to the scale invariant feature detection,
an interest region operator (IRO) is evolved in order to be adapted to this specific
function, see Figure 2. Hence, the IRO can be seen as an specialized operator
designed with a GP process that extract special or unique features such as:
borders, lines at different orientations, corners; and finally, others that do not
need to be human readable. Moreover, one property of genetic programming is
the characteristic of being a white box, which is something of great value in
the approach that is presented here. In this work, the IRO’s domain is defined
by the color and orientation at 12 scales Iσ1 , ..., Iσ12 and its codomain is the

Evolved

IRO

Scale Invariant Features Detection (S1) Position Invariant Feature Detection (C1)

local maximum

12 scales 12 scales

image
Input

If1,n = f1(Iσn)

n = 1, ..., 12

If1,12

If1,11

If1,1

If1,2

If1,3
max(If1,2, If1,3)

Imax2,6

Imax2,2

Imax2,1

Iσ12

Iσ1

Iσ2

Iσ3

Iσ11

n = 1, ..., 6

max(Imax1,n(k + i, l + j))

6 bands6 bands

I(R, G, B, x, y)

Imax1,6

Imax1,2

Imax1,1max(If1,1, If1,2)

max(If1,11, If1,12)

Fig. 2. Flowchart of the interest region detection stage

Object Recognition with an Optimized Ventral Stream Model Using GP 319

resulting pyramid of images If1,1, ..., If1,12 that are obtained after applying a
suitable IRO. These steps have the functionality of replicating the layer V1 that
consists of a set of simple cells. Note, that the structure of the IRO is built from
the terminals and functions provided in Table 1. Here, the terminals not only
include the RGB color space; but also, the C,M, Y,H, S, I,K that are obtained
from the corresponding transformation between color spaces.

Next, in order to enhance the data a maximum operation is applied over
the local regions, max(I(f1,2n−1), I(f1,2n)) with n = 1, .., 6, between each pair of
consecutive images of the 12 scale pyramid. Then, another maximum filter is
applied in order to substitute each sample of the 6 bands (Imax1,1, ..., Imax1,6)
by the maximum within an interval around a region ε of size i × j around the
sample’s position (k, l):

Imax2,n = max[Imax1,n(k + i, l + j)] (1)

In this particular case, i = j = 9 and k and l move at steps of 5 elements
for each band. These two operations improve the position and scale invariance
within a larger region and it also reduces the information into fewer bands:
(I(max2,1), ..., I(max2,6)).

This process emulates the first stage of a simple feedforward hierarchical archi-
tecture that is composed of a set of simple cells, modeled here with the IRO, and
the cortical complex cells which bring some tolerance respect to small changes
in position and scale. Therefore, in the proposed model, the layers S1 and C1
have the purpose of detecting features that are invariant to scale and position.
The next section explains how to describe image regions containing the detected
features.

Table 1. Set of terminals and functions

Terminals IRO: R,G,B,C,M, Y,H, S, I,K,Dx(R),Dx(G), Dx(B),
Dx(C), Dx(M), Dx(Y), Dx(H),Dx(S), Dx(I),Dx(K), Dy(R),
Dy(G), Dy(B),Dy(C), Dy(M), Dy(Y), Dy(H),Dy(S), Dy(I),
Dy(K), Dxx(R), Dxx(G), Dxx(B),Dxx(C), Dxx(M), Dxx(Y),
Dxx(H), Dxx(S), Dxx(I),Dxx(K), Dyy(R), Dyy(G), Dyy(B),
Dyy(C), Dyy(M), Dyy(Y), Dyy(H), Dyy(S), Dyy(I),Dyy(K)

Functions IRO: +,−, /, ∗, | − |, |+ |, (·)2, log(·), Dx(·), Dy(·), Dxx(·), Dxy(·)
Dyy(·), Gaussσ=1(·), Gaussσ=2(·), 0.05(·)

Terminals IDO: C1, Dx(C1), Dxx(C1), Dy(C1), Dyy(C1), Dxy(C1)

Functions IDO: +,−, /, ∗, | − |, |+ |,√·, (·)2, log(·), Dx(·), Dy(·), Dxx(·)
Dxy(·), Dyy(·), Gaussσ1(·), Gaussσ2(·), 0.05(·)

2.2 Feature Description

Once that all regions have been highlighted the next step is to describe such
important regions. The typical approach is based on template matching between
the information obtained in the previous section and a number of prototype
patches. The goal is to learn a set of prototypes that are known as a universal

320 E. Clemente et al.

dictionary of features and which are used by all object categories. Hopefully,
the SVM can recognize the prototypes that correspond to a specific image of a
single category. On the other hand, in this paper the functionality of layer S2 is
evolved in order to enhance the set of prominent features that was highlighted
by the interest region detector. It should be noted that each evolved function is
a composite function that is capable of substituting several prototype features;
thus, reducing significantly the total number of operations needed to define all
object features that are used to describe and classify the input images. According
to Figure 3, the information provided by C1 is feedforward to k−1 operators that
emulate a set of lower order hypercomplex cells. In other words, for each input
image Imax2,n with n = 1, ..., 6, a set of functions fi(Imax2,n) with i = 2, ..., k,
are applied in order to highlight the necessary characteristics that recognize each
object class. Note, that each of these functions is an EVO built by the GP from
the terminals and functions shown in Table 1, and which performs the patch
information descriptive operation (IDO) during this second stage. Hence, this
set of functions replaces the universal dictionary proposed by [12,10,11] and it
could be said that it corresponds to a function driven approach.

200 Global maximum

∑k
i=2 fi(Imax2,1)

∑k
i=2 fi(Imax2,2)

∑k
i=2 fi(Imax2,6) IΣ,6

f3(Imax2,2)

fk(Imax2,2)

f3(Imax2,6)

fk(Imax2,6)

f2(Imax2,6)

k − 1 functions

f3(Imax2,1)

fk(Imax2,1)

f2(Imax2,1)

f2(Imax2,2)

Imax2,6

IΣ,2

IΣ,1

max(IΣ,1, ..., IΣ,6)

Input 6 bands
6 bands

Feature description (S2) Image Description (C2)

Imax2,2

Imax2,1

6 × (k − 1) bands

Fig. 3. Flowchart of the feature description stage

Finally, the methodology includes a layer C2 for which the outputs of the
k− 1 EVOs are combined and feedforwarded into IΣ,n =

∑k
i=2 fi(Imax2,n) with

n = 1, ..., 6, resulting into a new pyramid of 6 bands. This step is different to
the traditional layer C2 where an Euclidean norm is applied to identify the best
patches. In this way, the approach proposed here requires only to add the k − 1
functions’ responses. Thus, the image description vector is built by selecting the
200th highest values from the image pyramid that is sort out of the C2 layer.

Object Recognition with an Optimized Ventral Stream Model Using GP 321

3 Heterogeneous and Hierarchical GP

This section describes the heterogeneous and hierarchical genetic programming
(HHGP) that was implemented to optimize the artificial ventral stream.
Figure 4 depicts the main steps in the search of an optimal AVS using a mixture
of tree-based representations organized similarly to a linear genetic program-
ming structure. The representation that is proposed ensures the development of
complex functions, while freely increasing the number of programs. In this way,
the structure can growth in number and size of its elements. It is important
to remark that each individual should be understood as the whole AVS and
it is therefore not only a list of tree-based programs but the whole processing
depicted in Figures 2 and 3. Thus, the algorithm executes the following steps.
First, it randomly creates an initial population of 30 AVS, where each one is
represented as a string of heterogeneous and hierarchical functions called chro-
mosome. In this way, each function corresponds to a gene and is represented as a
tree with a maximum depth of 7 levels. Also, each string has a maximum length
of 10 genes or functions. Thus, the initial population is initialized with a ramped
half and half technique for each gene and the size of the whole chromosome is
randomly created. The variation is performed with four different operators that
work at the chromosome and gene levels and all operations are selected based
on fitness following the scheme proposed by Koza in which the probability of
selecting all genetic operations sum to one. Hence, the probability of crossover
at chromosome and gene levels is 0.4 respectively and the mutation at chromo-
some and gene levels is 0.1 for each operation. In this way, the evolutionary loop
start the execution of each AVS by computing its fitness using a SVM that is

Individual mutation

Data base

Color Image

IRO

f2 fk1f1

f2 fk2f1

f2 fknf1

f1A

f1B

f2B

fk1Af3Af1B fk2B

f(k2−1)B fk2Bfk1A f1Bf2A

Mutation point

f2B

f2Bf1B f(k1−1)Bf2A

Individual crossover pointIndividual crossover point

Position n = 2 Position m = k2 − 1

Crossover point Crossover point

ParentA Parent B

length child A =n + (k2 − m) length child B=m + (k1 − n)

f1B

f2

fk

max(
∑k

i=2 fi)

f2 fkf1

SVM

Evaluation Crossover and mutation

Mate selection

f1

Image Descriptor

Individual

max(f1)

Fig. 4. General flowchart of the methodology to synthesize an artificial ventral stream

322 E. Clemente et al.

used to calculate the accuracy for solving a multiclass recognition problem. The
algorithm considers 10 classes and 30 images per class and it uses the Caltech
101 database with the following objects: cars, brains, airplanes, bonsai, chairs,
faces, leaves, schooner, motorcycles, and stop signals. Next, an AVS is selected
from the population with a probability based on fitness using a roulette-wheel
selection to participate in the genetic recombination; while, the best AVS is re-
tained for further processing. In this way, a new population is created from the
selected AVS by applying only one genetic operator; for example, the crossover
or mutation operation at chromosome or gene levels. As in genetic algorithms
our HHGP program executes the crossover between two selected AVS at the
chromosome level by applying a “cut and splice” crossover. Each parent string
has a separate choice of crossover point; for example, in Figure 4 the position
n = 2 of Parent A with length k1 and the position m = k2 − 1 from Parent B
with length k2. Thus, all data beyond the selected crossover point in either AVS
string is swapped between both parents A and B. Hence, the resulting child A
has a length of n+ (k2 −m) genes that in this case is 3; and the child B has a
length of m+(k1−n) genes. Moreover, The result of applying a crossover at the
gene level is performed by randomly selecting two parent AVS based on fitness
in order to execute a subtree crossover between both selected genes. Note, that
the IRO can only be selected for a subtree crossover between two parents f1A
and f1B. Thus, the f1A’s subtree is replaced with the f1B’s subtree and vice
versa to create two new AVS genes. On the other hand, the mutation at the
chromosome level leads the selection of a random gene of a given parent to re-
place such function by a new randomly mutated gene; for example, the position
k2 − 1 at parent B; see Figure 4. Moreover, the mutation at the gene level is
calculated over an AVS by applying a subtree mutation to a probabilistically
selected gene; in other words, a mutation point is chosen at a selected gene and
the subtree up to that point is removed and replaced with a new subtree as is
illustrated in Figure 4, where the tree f2B is mutated. Finally, the evolutionary
loop is terminated until an acceptable classification is reached; i.e., the accuracy
is equal to 100% or the total number of generations N = 50 is reached.

4 Experimental Results

This section describes the results of evolving the AVS with the multi-class prob-
lem in a Dell Precision T7500 Workstation, Intel Xeon 8 Core, NVIDIA Quadro
FX 3800 and running Linux OpenSUSE 11.1. The SVM implementation was de-
veloped with the libSVM [2]. The best result of the HHGP gives a classification
accuracy of 78% in training. In order to compare and validate the performance
of the evolved AVS a test against the original HMAX implementation written
in Matlab [9]; as well as, the CUDA version of the HMAX model is provided
here. The test consists on the comparison of the number of convolutions, speed
and performance. Tables 2 and 3 provide the classification results for testing the
HMAX and the evolved AVS using 15 images per class. Note, that the HMAX
implementations use gray scale images, while the evolved AVS was programmed

Object Recognition with an Optimized Ventral Stream Model Using GP 323

Table 2. This table shows the confusion matrix obtained during the testing of the
HMAX and its classification accuracy = 71.33% (107/150 images)

Airplanes Bonsai Brains Cars Chairs Faces Leaves Motorcycle Schooner Stop Signal

Airplanes 11 1 0 1 0 0 0 2 0 0

Bonsai 0 10 3 1 0 1 0 0 0 0

Brains 0 1 10 0 1 0 1 1 0 1

Cars 1 1 0 11 0 1 0 0 1 0

Chairs 0 0 1 1 11 0 0 1 1 0

Faces 0 2 1 0 0 10 1 0 0 1

Leaves 0 0 1 0 0 1 12 0 0 0

Motorcycle 2 0 0 2 0 0 0 11 1 0

Schooner 0 0 1 0 0 2 0 2 10 0

Stop Signal 0 0 1 0 0 2 1 0 0 11

Table 3. This table shows the confusion matrix obtained during the testing of the
AVS and its classification accuracy = 80% (120/150 images)

Airplanes Bonsai Brains Cars Chairs Faces Leaves Motorcycle Schooner Stop Signal

Airplanes 3 1 0 6 0 1 0 3 1 0

Bonsai 0 13 0 0 0 0 0 0 2 0

Brains 1 0 13 0 0 0 0 1 0 0

Cars 0 0 0 14 0 0 0 1 0 0

Chairs 0 2 0 0 10 3 0 0 0 0

Faces 0 0 0 0 0 15 0 0 0 0

Leaves 0 0 0 0 0 0 15 0 0 0

Motorcycle 0 0 0 3 0 0 0 12 0 0

Schooner 0 1 0 0 0 1 0 1 12 0

Stop Signal 0 0 0 0 0 1 0 0 1 13

using the color space. Table 5 shows the number of convolutions per function to
illustrate that a significant number of computations was reduced with our pro-
posal, even considering the application of color space. Hence, the AVS applies
216 convolutions while the HMAX model uses 1248 convolutions using a uni-
versal dictionary of 200 patches. Therefore, the performance of the AVS process
was improved significantly since the total number of convolutions is reflected on
a lower computational time, see Table 4.

Table 4. This table shows the total running time

Image size HMAX HMAX Artificial

MATLAB CUDA V. S.

896 × 592 34s 3.5s 2.6s

601× 401 24s 2.7s 1.25s

180× 113 9s 1s 0.23s

324 E. Clemente et al.

Table 5. Number of convolutions (NC) for each function of the best individual

f1 = 0.05Dx(f2 =
log(Dxx(C1))

log(Dx(Dx(C1)−C1))
f3 = (|Dxx(C1) − Dx(f4 = log(Dxx(C1)) f5 = Dyy(C1)

Dy(I)) Dyy(C1))|)(|Dy (C1)|) +Dx(Dy(C1))

NC = 24 NC = 24 NC = 36 NC = 12 NC = 24

f6 = Dyyy(C1) f7 = (log(Dx(Dy(C1)))) f8 = |Dy(C1) f9 = Dy(Dx(Dy(f10 = 0.05(Dyy (C1)

(C1 · Gaussσ=2(C1)) −Dy(C1)| C1))) − log(Dy(C1)) −Dx(Dy(C1)))

NC = 18 NC = 18 NC = 12 NC = 24 NC = 24

5 Conclusions

The goal of this paper was to develop an approach based on GP to solve an
object recognition problem using as model the ventral stream. The proposal
follows a functional approach with several genetic programs being evolved in a
hierarchical structure. All programs use different elements within the terminal
and function sets according to the particular stage of the artificial ventral stream.
The main result is a simplification of the overall structure that provides a lower
computational cost. In future work we would like to explore other models.

Acknowledgments. This research was founded by CONACyT, Project 155045
- “Evolución de Cerebros Artificiales en Visión por Computadora”.

References

1. Bartlet, W.: SEEMORE: Combining Color, Shape, and Texture Histogramming
in a Neurally Inspired Approach to Visual Object Recognition. Neural Computa-
tion 9, 777–804 (1997)

2. Chih-Chung, C., Chih-Jen, L.: LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology 2(27), 1–27 (2011) Soft-
ware available at, http://www.csie.ntu.edu.tw/~cjlin/libsvm

3. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental Bayesian approach tested on 101 object cate-
gories. In: IEEE Workshop on Generative-Model Based Vision, CVPR 2004 (2004)

4. Fukushima, K.: Necognitron: A Self-Organizing Neural Network Model for a Mech-
anism of Pattern Recognition Unaffected by Shift in Position. Biological Cyber-
netics 36, 193–202 (1980)

5. Holland, J.H.: Complex Adaptive Systems. A New Era in Computation 121(1),
17–30 (1993)

6. Hubel, D., Wiesel, T.: Receptive Fields of Single Neurones in the Cat Striate Cor-
tex. J. Physiol. 148, 574–591 (1959)

7. Hubel, D.: Exploration of the Primary Visual Cortex. Nature 299, 515–524 (1982)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based Learning applied
to Document Recognition. Proceedings of the IEEE (1998)

9. Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex.
Nature Neuroscience 2(11), 1019–1025 (1999)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Object Recognition with an Optimized Ventral Stream Model Using GP 325

10. Mutch, J., Lowe, D.: Object Class Recognition and Localization Using Sparse Fea-
tures with Limited Receptive Fields. International Journal of Computer Vision,
IJCV (2008)

11. Serre, T., Wolf, L., Bilechi, S., Riesenhuber, M., Poggio, T.: Robust Object Recog-
nition with Cortex-Like Mechanisms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29(3), 411–426 (2007)

12. Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity
and their use in classification. Nature Neurosciencie 5(7), 682–687 (2002)

13. Ungerleider, L., Haxby, J.: “’What’ and ’where’ in the Human Brain”. Current
Opinion in Neurobiology 4, 157–165 (1994)

Evolving Visual Attention Programs

through EVO Features

León Dozal1, Gustavo Olague1, Eddie Clemente1,2, and Marco Sánchez1

1 Proyecto EvoVision,
Departamento de Ciencias de la Computación, División de F́ısica Aplicada,
Centro de Investigación Cient́ıfica y de Estudios Superiores de Ensenada,

Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, 22860, B.C., México
{eclemen,ldozal,olague}@cicese.edu.mx

http://cienciascomp.cicese.mx/evovision/
2 Tecnológico de Estudios Superiores de Ecatepec. Avenida Tecnológico S/N,

Esq. Av. Carlos Hank González, Valle de Anáhuac, Ecatepec de Morelos

Abstract. Brain informatics (BI) is a field of interdisciplinary study
covering topics such as attention, memory, language, computation, learn-
ing and creativity, just to say a few. The BI is responsible for studying
the mechanisms of human information processing. The dorsal stream, or
“where”stream, is intimately related to the processing of visual attention.
This paper proposes to evolve VAPs that learn to attend a given object
within a scene. Visual attention is usually divided in two stages: feature
acquisition and feature integration. In both phases there are specialized
operators in the acquisition of a specific feature, called EVOs, and on the
fusion of these features, called EFI. In previous research, those referred
operators were established without considering the goal to be achieved.
Instead of using established operators the idea is to learn and optimize
them for the visual attention task. During the experiments we used a
standard database of images for visual attention. The results provided
in this paper show that our approach achieves impressive performance in
the problem of focus visual attention over complex objects in challenging
real world images on the first try.

Keywords: Evolutionary visual attention, organic genetic program,
evolved visual operators, evolved feature integration, artificial dorsal
stream.

1 Introduction

Until recently, it was widely believed that humans construct a complete repre-
sentation of the visual field [5]. This has been amply refuted by a large amount
of vison research. Visual attention is one of the most important mechanisms in
the visual system, since the brain or visual cortical areas are unable to process
all the information within the entire visual field. Thus, there are two basic phe-
nomena that define the problem of visual attention. The first basic phenomenon
is the limited capacity of information processing. At any given time, only a small

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 326–335, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://cienciascomp.cicese.mx/evovision/

Evolving Visual Attention Programs through EVO Features 327

Fig. 1. Dorsal stream and visual attention computational model

amount of information, available on the retina, can be processed and used in the
control of visual behavior. The second basic phenomenon is selectivity or the
ability to filter unwanted information [4].

In this way, it is said that visual attention is controled by both cognitive, or
top-down, factors, such as knowledge, expectation and current goals; bottom-
up factors that reflect sensory stimulation [3]. The low level mechanisms for
feature extraction act in parallel on the entire visual field to provide the “bottom-
up”signals that highlights the image. Finally, it is said that attention is focused
sequentially on those highlight regions of the image to analyze them in more
detail ([12], [9]).

1.1 Problem Statement

Visual attention is a skill, which allows the creature, living or artificial, to direct
their gaze rapidly towards the objects of interest in the visual environment [9].
The objects of interest refers to those objects or regions in the environment,
which contain important information at a given time. Since the late 19th century
the visual attention mechanism has been studied by researchers from different
scientific disciplines; such as: neurologists, physiologists, psichologists, and in the
last three-decades by people working on computer vision. This last community
has studied the problem of visual attention as a feasible way to reduce the
complexity of visual information processing. In this paper we address the “top-
down”visual attention problem with a biologically inspired model that is evolved
and optimized through evolutionary computation. The main goal is to obtain a
set of visual attention programs that are trained to attend a given object in
a scene. This is achived through the implementation of what we call organic
genetic programming, which is a modified version of classic GPs that consists of
individuals with several tree structures, each tree with a different set of functions
and terminals. The results show that our methodology performs training process
with excellent performance.

328 L. Dozal et al.

The remainder of this paper is organized as follows: Section 2 describes the
visual attention program aproach that is divided in two parts: acquisition of
early visual features and feature-integration for attention; Section 3 presents the
organic genetic programming that is used as a way of solving the complex opti-
mization of visual attention programs for visual task solution; Section 4 provides
experimental results and their analysis, and Section 5 draws the conclusions and
discusses possible future work.

2 Evolving Visual Attention Programs

There is a growing interest in applying evolutionary computation within com-
puter vision to solve difficult problems and to improve the traditional vision
algorithms; as well as, to propose new ones. On the other hand, from a bio-
logical perspective, it has been found that the development of specific visual
mechanisms in the primate brain is product of evolution, specifically this is
linked to natural selection [2] as explained in the evolutionary theory. The main
idea explained in this paper is to derive the necessary steps in the search of a
computer vision methodology by evolving visual attention programs.

2.1 Visual Attention Programming

The visual attention program (VAP) is a function driven approach that consider
the biological visual process from the standpoint of its functionality, paying
special attention to its aim, rather than considering the particular visual char-
acteristics and the manner in which they are obtained; an approach that some
authors refer as data driven. The brain and visual system can be extremely com-
plex and despite rapid scientific progress, much about how they work remains a
mistery. However, we know that vision is useful for accomplishing certain tasks,
although very little is known on how vision performs such tasks. VAP exploits
the knowledge about a given task and the intrinsic characteristics of the scene, to
create complex programs based on functions, called visual operators, specialized
in the extraction of physical visual features from the observed scene, such as:
color, borders, and intensity. This paper explores a new way about, how these
features are combined, inhibited or excited, to highlight the necessary visual in-
formation for the task at hand. In particular, we claim that genetic programming
provides suitable tools necessary to implement this approach in highly creative
ways. Next, we list some useful concepts.

Definition 1. Let f be a function f : U ⊂ R2 → R. The graph or image I of f
is the subset of R3 that consist of the points (x, y, f(x, y)), in which the ordered
pair (x, y) is a point in U and f(x, y) is the value at that point. Symbolically,
the image I = {(x, y, f(x, y)) ∈ R3|(x, y) ∈ U}.

Evolving Visual Attention Programs through EVO Features 329

Color digital images are composed of three images at different wavelengths of
light that are red, green and blue. Note that it is possible to convert an image
that is represented in RGB into another color space. In this way, we say that a
color image is the set of images named Icolor = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}.

Therefore, the input of aVAP is an Icolor. Moreover, it is said that the outcome
of a VAP is an optimized saliency map, OSM. An OSM is an image whose pixel
values represent the prominence of the visual features being considered. Thus,
given the representation of the scene and the outcome of a VAP, we can define
the above concepts in a more formal way as follows:

Definition 2 (Visual Attention Program). Let v be the function v : Icolor →
OSM that represents a VAP. The domain Icolor consist of a set of images that
characterise a real scene, and the codomain is the OSM. We may say that v

induces an OSM over Icolor, written as v
Icolor⇒ OSM.

Therefore we can distinguish two different feature processing stages within the
VAP known as: acquisition and integration. In the same vein, it is necessary
to say that a conspicuity map (CM) is an intermediate representation of the
prominence of each separate visual feature, as shown in Figure 2. In this sense,
we specify the VAP as an evolved feature composition (EFC) function as follows.

Definition 3 (Evolved Feature Composition). The function v is repre-
sented as a composite function v = FI ◦ FA : Icolor → OSM. The function
FA : Icolor → CM is known as the feature acquisition stage; and the function
FI : CM → OSM is known as the feature integration stage. Here, CM repre-
sents the set of conspicuity maps.

The output of a VAP is an OSM that is characterized by a set of prominent
regions that indicate the position of objects in scene where attention will be
directed. Our proposed system is based on the psychological model for visual
attention introduced by Treisman[12]; as well as, the evolutionary algorithms
that are inspired by biological evolution. In the following two subsections, the
functions that conform VAP are explained in detail.

Fig. 2. Visual attention program

330 L. Dozal et al.

2.2 Acquisition of Early Visual Features

Three visual operators are applied in a separated way to emphasize: intensity,
color, and orientation attributes. In biologically plausible models as [8], these
operators are established according to the knowledge in neuroscience about how
these features are obtained in the visual cortex of the brain, the explanation
follows a data driven approach. The operation of the dorsal stream, is a product
of the evolutionary process. For this reason we decided to use evolutionary com-
putation to obtain these evolved visual operators (EVO) as depicted on Figure
2. Below, the EVO features used in the VAP are defined.

FeatureOrientation. A feature orientation is a funtionEV OO : Icolor → VMO

that is evolved to optimize the extraction or rejection of edges present in the image
based on a top-down process. The result of this operation is a visual map VMO in
which the pixel value represents the feature prominence, in such a way, that the
larger the pixel value, the greater the prominence of the feature. Then, VMO can
be seen as a function VMO : Icolor → I, that is obtained with a high level visual
operation, VMO = EV OO(Icolor). The evolutionarymethod uses a set of funtions
and terminals that allows an EV OO to cooperate with the VAP to accomplish a
purpose; such functions and terminal are provided in Table 1. The notation used
is as follows. ITO can be any of the terminals in TO; as well as, the output of any
of the functions in FO; Du symbolizes the image derivatives along direction u ∈
{x, y, xx, yy, xy};Gσ are Gausssian smoothing filters with σ = 1 or 2.

Table 1. Set of functions and terminals used by EVOO

FO = {+, −,×, ÷, |+|, |−|,√ITO , I2TO
, log2(ITO),Gσ=1,Gσ=2,

|ITO |, ITO

2
, Dx, Dy}

TO = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Gσ=1(Ir), Gσ=2(Ir),
Dx(Ir), Dy(Ir), Dxx(Ir), Dyy(Ir), Dxy(Ir), ... }

Table 2. Set of functions and terminals used by EV OC

FC = {+, −, ×, ÷, |+ |, | − |, √ITC , I2TC
, log2(ITC), Exp(ITC ,

Complement(ITC) }
TC = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv }

Feature Color. A feature color is a function EV OC : Icolor → VMC that is
evolved to optimize the extraction or rejection of colors, which are presented, in
the objects that appear in the image. The result is a visual map VMC con-
taining the prominence of the feature. Then, VMC can be seen as a func-
tion VMC : Icolor → I, that is obtained with a high level visual operation,
VMC = EV OC(Icolor). In the same way, as in EV OO, the evolutionary process
uses a set of functions and terminals provided in Table 2. The notation is sum-
marized as follows, ITC can be any of the terminals in TC , as well as the output
of any of the functions in FC ; function Complement(ITC) symbolizes a negative
image that is represented as the total inversion of an image.

Evolving Visual Attention Programs through EVO Features 331

Finally, as in previous work, to obtain the intensity of an input image Icolor,
the red, green and blue values of each pixel are averaged. The formula is devel-
oped as a function VMI : Icolor → I, that is obtained with the following formula
VMI =

Ir+Ig+Ib
3 .

Conspicuity Maps. The conspicuity maps (CMs) are obtained by means of a
center-surround function CM : VM → I, that is applied in order to simulate the
center-surround receptive fields. This natural structure allows the ganglion cells
to measure the differences between firing rates in center (c) and surroundings (s)
of ganglion cells. First, a pyramid VMl(α) of nine spatial scales S = {1, 2, ..., 9}
is created for each of the three resulting VMs. Afterwards, an across-scale sub-
straction � is performed, resulting in a center-surrond map VMl(ω) in which the
value of the pixel is augmented as the contrast along their neighbors at differ-
ent scales is higher. Finally, the VMl(ω) maps are added using an across-scale
addition ⊕ in order to obtain conspicuity maps CMl. At this point, we have
three CMs, one for each feature, as shown in Figure 2. The CM is obtained by
performing as in Walther and Koch model [13]. Immediately, CMs are combined
to obtain a single saliency map as shown below.

2.3 Feature-Integration for Visual Attention

The following step is the fusion of conspicuity maps CMs into a single map of
salience. This is a difficult problem because the CMs belong to different and unre-
lated visual modalities. In neuroscience, an exact description about how the brain
makes this integration or where is located the saliencymap in the brain is unknown.
In this work, the problem statement considers that the problemmust be addressed
regarding the task to be performed. In other words, since the task needs to accom-
plish a purpose; then the main criterion should be the one that guides the suitable
combination of characteristics. In this sense, genetic programming is very useful
since it provides a methodology to address the problem. Therefore, we decided to
evolve the integration ofCMs and we called this function, evolved feature integra-
tion (EFI). As a result of the EFI, the structure of the VAPs becomes dynamic
since the fusion considers different combinations of the CMs throughout the pro-
cess.The definition of the EFI function is as follows:

Definition 4 (Evolved Feature Integration). Let EFI be a function EFI :
CMl → OMS. The domain CMl, with l ∈ {O,C, I}, consists of a set of images
or conspicuity maps, and the codomain is the OSM, then

EFI : CMl → I, and the OSM is obtained with an image operation,
OSM = EFI(CMl) ∴ OSM = I

The evolutionary method uses the set of funtions and terminals listed in
Table 3 in order to create a fusion operator that highlights the features of the
object of interest.

Hence, an OSM is characterized through a proto-object Pt or a secuence of
proto-objects {P1, P2, . . . , Pi, . . . , Pt} [11]. This structures provide local descrip-
tions of scene.

332 L. Dozal et al.

Table 3. Set of functions and terminals used by EFI

Ffi = {+, −, ×, ÷, | + |, | − |, √
ITfi , I2Tfi

, Exp(ITfi),
Gσ=1,Gσ=2, |ITfi |, Dx, Dy}

Tfi = {CMI , CMO, CMC , Dx(CMI), Dy(CMI), Dxx(CMI),
Dyy(CMI), Dxy(CMI), ... }

Definition 5 (Proto-Object). A Pt is defined as a proto-object or salient
region of the OSM, which is being attended at time t.

In the next section we explain the evolutionary process used to obtain the VAPs.

3 Organic Genetic Programming

In this section, we describe the main aspects for the evolution of VAPs through
the use of what we called the organic genetic programming (OGP). All changes
introduced in the OGP embody an organic motivation, in a sense of describing an
organ or tissue of a living organism and their complexity. We tried to introduce
this changes in order to deal with the evolution of complex structures. These
changes are explained below.

Thefirst phase of theOGP is the training. In this phase theOGP learns to focus a
prominent object using an image database for training. Algorithm 1, list the steps
that the OGP performs in order to obtain the VAPs. In this work, we propose a
VAPs genotype that is robust because it is capable of encoding in a better way
the phenotype of the dorsal stream. More specifically, the genotype consists of a
triplet of trees representation; each having a different and specialized operation.
Hence, each tree has its own independent set of functions and terminals. Unlike
the classic GP that only has one tree representation using a unique set of functions
and terminals. In this way, the functions and terminals sets are listed in Tables 1, 2,
and 3 for orientation, color and feature integration, respectively.VAPs genotype is
conformedas follows: the 1st tree is anEVOO; the 2nd tree is anEV OC , and the3rd
tree is anEFI; each onewith amaximumdepth of 9 levels. The first one encodes the
orientation, or the operation of the orientation-sensitive cells in V1 [7]. The second
one encodes the color, or operation of photoreceptor cells and color-sensitive cells
present in the layers V1 and V4 of the visual cortex. Finally, the third one encodes
theway inwhich the features are combined to obtain the saliencymap, or operation
of the posterior parietal cortex [6]. The algorithm initialize the population of 50
VAPs with a ramped half-and-half technique.

After initialization, the OGP needs a well-posed fitness function. In this work,
we propose to use the F-measure as the fitness function in order to compare and se-
lect among severalVAPs. This measure has already been used in previous works as
evaluation in applications related to computer vision such as [10] and [1]. The cal-
culation ofVAPs’s fitness can be explained as a comparison between a Pt attended
by theVAPs and a manual location, attention and segmentation of an object, con-
sidered as an ideal visual attention criterion. A target is considered attended if a

Evolving Visual Attention Programs through EVO Features 333

Algorithm 1. Organic Genetic Programming Algorithm

Randomly create an initial population of VAPs.
repeat

Execute each VAPs, using the training images database, and compute its fitness.
Select one or two V AP (s) from the population with a probability proportional to
their fitness to participate in genetic recombination.
Create new V AP (s) by applying genetic operations with specific probabilities.

until An acceptable solution is found or some other stopping condition is met (e.g.,
a maximum number of generations is reached).
return The best VAPs up to this point.

subset, not empty, of pixels that conform the object intersect the proto-object Pt.
Another difference arises from the existence of two-level complexity in the struc-
ture of the genotype. Consequently, the gene level, as in classic GP, considers the
tree as the unit where the genetic operation is performed. In addition, the OGP
manages the chromosome level that recognize the whole genotype, composed of
a tripet of trees, as a unit where it have to work. Therefore, the OGP allows the
creation of new genetic operators inspired by gene and chromosomalbiologicalmu-
tations, each one operating at a different level. These genetic operators are selected
based on a probability that is set following the scheme proposed byKoza, for which
each operation is computed independently and their addition of probabilities is
one. Hence, the probability of crossover at gene and chromosome levels is 0.4 and
the mutation probability at both levels is 0.1.

The next step is concentrated on the selection of one or two VAPs using the
roulete-wheel approach. Thus, the best VAP is kept in the following generation
and the genetic recombination is repeated until a new population is created.
Finally, the evolutionary loop finish until a total number of generations, N=50,
is reached. Therefore, once the training stage ends and the VAP with the best
fitness is obtained; then, the testing stage starts. Hence, the fittest VAP is tested
using a different image database, known as the testing database.

4 Experiments and Results

This section is an overview about the specific details of the experiments; also,
the results of evolving the VAPs are showed and discussed. Experiments were
performed in a Dell Precision T7500 Workstation, Intel Xeon 8 Core, NVIDIA
Quadro FX 3800 and Linux OpenSUSE 11.1 operating system. Next, the ob-
tained VAPs and their performance are presented considering one for each target
object that are: red can and triangle sign. The first evolved V APCan, was ob-
tained at generation 5 and it was the individual number 27. The Figure 3 shows
the final structure surrounded by a red-dotted line. Note, that the EFI employs
the EV OO as the unique relevant information. Therefore, intensity and EV OC

were not used for the V APCan. Also, in the upper left corner of the same figure
are listed the percentage of images where the red can was successfully focused
using the V APCan. The EV Os and EFI of the V APCan are shown below.

334 L. Dozal et al.

Visual attention results

TestingTraining

CMO

CMO
Dx

+

94.91%84.74%100%

R+G+B
3

EV OO

EV OC

Dy

−

EFI

CMI

CMO

CMC

P2P1P1

V APcan

Fig. 3. Evolved structure of V APCan obtained through the OGP to attend the red can
in the images

EV OO = Im −Dy(Iy), EV OC = Ig, EFI = Dx(CMO) + CMO

The second example is named V APTriangle, which was achived at generation 2
and it was the individual number 24. The Figure 4 shows the final structure sur-
rounded by a red-dotted line. Note, that the EFI employs the EV OO and EV OC

as relevant information. Therefore, intensity was not used for the V APCan. Also,
in the upper left corner of the same figure are listed the percentage of images
where the triangle signal was successfully focused using the V APTriangle. The
EV Os and EFI of the V APTriangle are shown below.

EV OO = (Dy(Im))2, EV OC = exp(Ib), EFI = Dx(CMO)
CMC

Visual attention results

TestingTraining

CMO

R+G+B
3

EV OO

EV OC

(Dy)
2

exp

96.88%96.88% 100%93.75%

CMI

CMC

CMO

V APtriangle

EFI

/

CMC

Dx

P3P1 P2P1

Fig. 4. This figure shows the VAP obtained through the GP to attend the signal in
the images

Evolving Visual Attention Programs through EVO Features 335

5 Conclusions

The aim of our researchwas to show that the OGP is a powerful methodology that
is capable of obtaining VAPss that can be seen as “top-down”models of the visual
attention system that is capable of solving the visual attention problem. This work
follows a function driven approach that leads to the creation of different programs
that optimize the use of available resources in order to solve a particular task. As
a conclusion, for some task it’s not necessary to compute all features; thus, simpli-
fying theVAPs final structure. In the future, we would like to integrate new EVOs
on the evolution as well as the “bottom-up”models of visual attention.

Acknowledgments. This research was founded by CONACyT through the
Project 155045 - “Evolución de Cerebros Artificiales en Visión por
Computadora”.

References

1. Atmosukarto, I., Shapiro, L.G., Heike, C.: The use of genetic programming for
learning 3D craniofacial shape quantifications. In: Proceedings of the 2010 20th
International Conference on Pattern Recognition, ICPR 2010 pp. 2444–2447 (2010)

2. Barton, R.A.: Visual Specialization and Brain Evolution in Primates. Proceedings of
theRoyalSociety ofLondonSariesB-Biological Sciences 265(1409), 1933–1937 (1998)

3. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven atten-
tion in the brain. Nature Reviews Neuroscience 3, 201–215 (2002)

4. Desimone, R., Duncan, J.: Neural Mechanisms of Selective Visual Attention.
Annual Reviews 18, 193–222 (1995)

5. Feldman, J.A.: Four frames suffice: A provisional model of vision and space.
Behavioral and Brain Sciences 8, 265–289 (1985)

6. Gottlieb, J.: From thought to action: the parietal cortex as a bridge between
perception, action, and cognition. Neuron 53, 9–16 (2007)

7. Hubel, D., Wiesel, T.: Receptive Fields of Single Neurones in the Cat Striate
Cortex. J. Physiol. 148, 574–591 (1959)

8. Itti, L., Koch, C.: Feature Combination Strategies for Saliency-Based Visual At-
tention Systems. Journal of Electronic Imaging 10(1), 161–169 (2001)

9. Kosh, C., Ullman, S.: Shifts in selective visual attention: towards the underlying
neural circuitry. Human Neurobiology 4, 219–227 (1985)

10. Perez, C.B., Olague, G.: Learning Invariant Region Descriptor Operators with
Genetic Programming and the F-Measure. In: 19th International Conference on
Pattern Recognition, ICPR 2008 (2008)

11. Rensink, R.A.: Seeing, sensing, and scrutinizing. Vision Research 40, 1469–1487
(2000)

12. Treisman, A.M., Gelade, G.: A Feature-Integration Theory of Attention. Cognitive
Psichology 12(1), 97–136 (1980)

13. Walther, D., Kosh, C.: Modeling Attention to Salient Proto-Objects. Neural Net-
works 19, 1395–1407 (2006)

Evolutionary Purposive or Behavioral Vision

for Camera Trajectory Estimation

Daniel Hernández1, Gustavo Olague1,, Eddie Clemente1,2, and León Dozal1

1 Proyecto EvoVision,
Departamento de Ciencias de la Computación, División de F́ısica Aplicada,
Centro de Investigación Cient́ıfica y de Estudios Superiores de Ensenada,

Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, 22860, B.C., México
{dahernan,olague,eclemen,ldozal}@cicese.edu.mx

http://cienciascomp.cicese.mx/evovision/
2 Tecnológico de Estudios Superiores de Ecatepec. Avenida Tecnológico S/N,

Esq. Av. Carlos Hank González, Valle de Anáhuac, Ecatepec de Morelos

Abstract. Active, animate, purposive or behavioral vision are all under-
stood as a research area where a seeing system interacts with the world
in such a way of creating a balance between perception and action. In
particular, it is said that a selective perception process in combination
with a specific motion-action works as a unique complex system that
accomplishes a visuomotor task. In the present work, this is understood
as a visual behavior. This work describes a real-working system com-
posed of a camera mounted on a robotic manipulator that is used as a
research platform for evolving a visual routine specially designed in the
estimation of specific motion-actions. The idea is to evolve an interest
point detector with the goal of simplifying a well-known simultaneous
localization and map building system. Experimental results shows as a
proof-of-concept that the proposed system is able to design a specific
interest point detector for the case of a straight-line displacement with
the advantage of eliminating a number of heuristics.

Keywords: Evolutionary Visual Behavior, Multiobjective Evolution,
Purposive Vision, SLAM.

1 Introduction

Active vision is a research area where perception meets action, in such a way
that the processes of visual information adapt their behavior to the task; as a re-
sult, of the interaction between the camera and the given scenario. For example,
in active vision a robotic system is able to manipulate the attitude of a camera
to achieve some task or purpose related to the observation of the environment
where the robot acts [3]. A distinctive characteristic of active vision is the idea
that the observer is capable of engaging into some kind of activity whose purpose
is to change the visual parameters according to the environmental conditions [7].

� Corresponding author.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 336–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://cienciascomp.cicese.mx/evovision/

Evolutionary Purposive or Behavioral Vision 337

In this way, purposive vision as an information process does not function in iso-
lation but as a part of a bigger system that interacts with the world in highly
specific ways ([1],[2]). The idea studied in this work is related to the fact that
a purposive visual system is part of a complex system whose interaction with
the world is developed not generally but in specific ways. Therefore, the aim
of purposive or behavioral vision is to evolve a visual routine via an evolution-
ary algorithm, whose overall goal is to adapt the visual program to a specific
purposeful task.

Figure 1 illustrates the problem that we would like to approach using a camera
mounted at the end of a robotic manipulator. The idea is that a visual behavior
requires specific information related to the task that is being confronted. On the
left-side of the figure, the visual behavior performed by a person is related to the
extraction of visual information that is needed in order to be able to read a map;
as well as, the mental activity that is applied to extract the information needed
to find an object within a scene. In this way, the person performs a set of actions
including a visual behavior that needs to accomplish a number of aspects such as:
visual perception and self-localization, in order to solve the problem of being lost.
The figure on the right-side, describes the necessary steps in a self-localization
and map building (SLAM) process. This process is normally modeled through
an estimation process where the visual perception executes an action in order to
achieve the purpose of auto-localization. Here, the visual process is carried out
by an interest point detector that is applied to the input image sequence, and
the action is realized by an SLAM method. Thus, the idea is to adapt the visual
routine to accomplish an specific movement evaluated by the SLAM system;
in order to achieve a desired task. Therefore, the goal of this paper is to show
that it is possible to evolve a visual routine with respect to an specific camera
displacement in such a way to avoid the use of a number of explicit heuristics
that are normally incorporated to the SLAM system.

This paper is organized as follows: first the evolutionary purposive vision system
is described in three parts including the interest point detection, the simultaneous
localization andmap building, and the camera trajectory estimation using genetic

Visual perception

Images

Feature mapSLAM

Self localization

Interest point detector

Visual
perception

Self localization

I am lost
Visual behavior

Action

Purpose

t1 ti tn

Landmark

Landmark

ti tnt1

Visual behavior

Action

Fig. 1. Visual behavior is characterized by the sequence of actions that an organism
performs in response to the environment where is located

338 D. Hernández et al.

programming.Then, themultiobjective visual behavior algorithm is explained. Fi-
nally, results of a real working system are presented followed by a conclusion.

2 Evolutionary Purposive Vision

The main idea of this paper is the evolution of a visual behavior through a visual
routine. The instance of this visual routine is an interest point detector, which
will be employed inside an SLAM system in order to solve the camera pose
estimation problem, leading to the trajectory estimation. Therefore, this section
we described the three main aspects of the work, the definition of interest point
detection, the description of the SLAM system and the relationship through
evolution of theses two concepts.

2.1 Interest Point Detection

An interest point is a small region on an image which contains visually prominent
information. The right side of Figure 1 depicts a robotic system in a hand-eye
configuration that was used to evaluate the evolved interest point detectors. The
idea is to create a visual behavior in which the visual routine is able to extract
the most relevant visual information for the development of an specific task;
like the evaluation of a straight line in the pose estimation approach of SLAM.
In particular, the value of importance of a pixel in an image is the result of
a mapping K : R+ → R, this transformation is known as the operator, which
should not be confused by the detector. The first one is applied to an image to
obtain the importance of each pixel, and the latter is an algorithm that extract
all the interest points or regions in an image. In this way, most interest point
detectors work as follows:

1. Apply the operator K to the input image in order to obtain the interest
image I∗.

2. Perform a non-maximum suppression operation.
3. Establish a threshold to determine if a given maximum should be considered

an interest point.

It has been shown that it is possible to evolve a general purpose interest point
detector through genetic programing [10]. The idea in this work is to evolve a
visual behavior, in such a way of maintaining general purpose characteristics,
such as: repeatability and dispersion; while adapting the visual information ac-
cording to an specific trajectory. In summary, the following properties are the
desired characteristics for the evolved detectors:

1. Repeatability, the expected interest points should be robust to environmental
conditions and geometric transformations.

2. Dispersion, the detector should be able to find points over the whole image.
3. Trajectory estimation, the detector must find useful information that simpli-

fies the camera pose estimation computed through an SLAM system.

Evolutionary Purposive or Behavioral Vision 339

2.2 Simultaneous Localization and Map Building

The SLAM implementation used to test the visual behaviors was the one pre-
sented by [4], an schematic representation of this system can be seen in Figure
2, it presents the SLAM problem as an estate estimation process, done through
Kalman filtering, and using the concept of interest point detection to find vi-
sual landmarks in the environment, in order to build a feature based map for
the SLAM problem [8]. The SLAM system is divided into three main stages:
initialization stage, the state propagation (done through Kalman filtering) and
the map update.

Initialization stage. In order to estimate the trajectory of the camera, it
is necessary to calculate its position over time; hence, the state of the cam-
era is defined by the camera’s pose and its displacement with respect to time.
This is calculated through a Kalman filtering process, where the attitude of
the camera x̂v is given by its position r and orientation q, and the information
about its motion, is defined by the linear and angular speeds, v and ω. On the
other hand, it is also necessary to maintain a map of the environment; a task
performed in this case through a sparse set of visual landmarks. Therefore, the
system must also track the spacial position for each feature yi. Thus, the state
that the system needs to estimate is st which is composed of the information
about the camera and the features. The state estimation known as ŝt is coupled
with the estimation uncertainty St. This system is calibrated meaning it has a
known initial state; in other words the camera position is known along with a
starting map, composed of four landmarks. The state st and its covariance St

have the following structure

st =

(
x̂v
ŷ1

ŷ2

:

)
St =

⎡
⎢⎣

Sxx Sxy1 Sxy2 . . .
Sy1x Sy1y1 Sy1y2 . . .
Sy2x Sy2y1 Sy2y2 . . .

.

.

.
.
.
.

⎤
⎥⎦

State Propagation. The state is estimated using a Kalman filtering method,
which is divided in two stages, prediction and measurement. The future states
of the camera are assumed to change according to a dynamic model of the form

st = Ast−1 +wt

where A is called the state transition matrix, and wt represents the process
noise. At each step, the Kalman filter makes a prediction of the current state

Feature Map Particle
Filter

EVO
IP
Detection

s

s

S S

S

Kalmans t̂

t̂

t t

t

Prediction Measurement

new

new

Map UpdateState PropagationInitialization Stage

t

Fig. 2. The stages of the SLAM system along the evolutionary method integrated in
the map update stage

340 D. Hernández et al.

denoted as s−t , also known as a priori state, along with its error covariance
matrix S−

t . This step is known as prediction stage, and it is normally calculated
using the dynamic model

s−t = Ast−1

S−
t = ASt−1A

T +Λw

where Λw is the process covariance noise, which is assumed to be a white Gaus-
sian noise. The measurement stage consists in using the information captured
by the sensor to ameliorate the state estimation. In this way, the measurements
zt, about the image location at time t of some visual landmarks, are assumed to
be related to the current state as follows

zt = Cst + vt

where vt is the measurement noise, and C relates the camera pose to the con-
sidered image features. This stage is tackled from an active search approach,
using the predicted camera position s−t to determine the visible landmarks yi
and their possible image position z−t defined as

z−t = Cs−t

along with the corresponding uncertainty Λz as follows

Λz = CS−
t C

T +Λv

these predictions are useful to restrict the search for visual landmarks to a region
of the image. The measurement model is then used to calculate an a posteriori
state estimate ŝt and its covariance matrix St by incorporating the measurements
zt as follows

ŝt = s−t +Gt(zt −Cs−t)

St = S−
t −GtCS−

t

where Gt is the Kalman gain, computed as

Gt = S−
t C

T (CS−
t C

T +Λv)
−1

with Λv being the measurement covariance. In this way, the a posteriori state,
the estimation at time t is complete; thus, the state ŝt together with its uncer-
tainty St will be used on the next cycle.

Map Update. After having a good estimation of the camera position, the
system must extend the feature map. Thus, in this step the system employs
the interest point detector to find information in the environment that may
improve future state estimations. In the original system, it used the Shi-Tomasi
[9] detector, along with some heuristics such as:

– Selection of interest regions. The system would only look for interest points
in regions of the image where there are no known landmarks; while, trying
to keep the feature map dispersion.

Evolutionary Purposive or Behavioral Vision 341

– Elimination of bad features. This process would delete landmarks that are
unstable, meaning visual features that did not appear in the predicted image
region z−t ; on the other hand, eliminating landmarks whose depth could not
be easily estimated, even though these points were considered as ”interest-
ing” by the detector.

An specialized detector should be able to cope with those problems. In this way,
the designed detector bring implicitly these characteristics on the interest points,
by highlighting stable landmarks that are dispersed all over the environment. The
final step for the map update calculates the depth of the visual landmarks. Since,
the system uses monocular vision, it is said that it is impossible to calculate the
depth of a point using a single image; therefore, the system uses a particle filter
to find the depth of a visual landmark. Once, the depth is know for a certain
point, the corresponding feature is added to the map for further estimations.

2.3 Camera Trajectory Estimation Using Genetic Programming

The main idea of this paper is to describe the adaptation of the visual behav-
ior, through the evolution of visual routines as interest point detectors. Such a
detector is used inside the SLAM system, see section 2.2. The scenario can be
seen in Figure 3, where the camera is moving on a straight line, parallel to a
wall. The SLAM system estimates the camera position while it moves, using the
evolved detector within the feature map building. Then, the position estimations
are applied to evaluate the detector using a trajectory adjustment. The evolved
detectors should have the properties mentioned in section 2.1. Due to the amount
of work required for the evolutionary algorithm, a camera motion sequence was
captured in order to be use in the offline evaluation of the evolved detectors.
The hypothesis for this work is that a good detector for the camera’s trajectory
estimation is one with high repeatability and high point dispersion. Which lead
to stable landmarks and a disperse feature map. The following functions were
use to evaluate the evolved detectors, seeking to minimize them:

Repeatability. The average repeatability rK(ε) is calculated for the opera-
tor K by evaluating the repeatability between two consecutive images, using a

zt0

zt1

zt2

st1

st2

st0

yt0
yt1

yt2

ŝt1

ŝt2

ŝt0

Fig. 3. Testing environment for the visual routines

342 D. Hernández et al.

neighborhood of size ε. It is important to note that the repeatability is calcu-
lated using the position of the camera produced by the highly-accurate robot
movement, instead of using the homographies between the images [11].

rIi(ε) =
|RIi(ε)|

min(γi−1, γi)

where γi−1 =
∣∣{xc

i−1}
∣∣ and γi = |{xc

i}| are the number of points detected in
images Ii−1 and Ii. RIi(ε) is a set of pairs of points (xc

i−1, x
c
i) that were found

in two consecutive images within a region of radius ε:

f1 =
1

rK(ε) + c1

where c1 is a constant to avoid invalid division.

Dispersion. Dp(K) is the average dispersion of the located points within the
image sequence using operator K; where c2 = 10 is a normalization constant.

f2 =
1

eDp(K)−c2

The point dispersion in image Ii is calculated using the points’ entropyD(I,X) =
−
∑

Pj · log2(Pj) where X is the set of detected points and Pj is approximated
using a histogram.

Trajectory Adjustment. This fitness is measured using the χ2 adjustment of
the estimated trajectory using a real straight-line trajectory.

f3 =

M∑
i=1

[yi − f(xi; p1, p2, ..., pM)]2

σi

3 Multiobjective Visual Behavior Algorithm

AMultiobjective (MO) approach allows us to incorporate several optimization cri-
teria [5]. An important characteristic of aMO algorithm is that it searches for a set
of Pareto optimal solutions, instead of a single best solution [6]. In our problem,
each individual represents an operator to be used inside an interest point detector
within the SLAM system, which is built using the functions and terminals detailed
in Table 2. The evolutionary process was executed using a Unibrain Fire-i camera
mounted on a Stäubli RX-60 robot with six degrees of freedom. The camera cap-
tures monochromatic images with a resolution of 320× 240 pixels. The trajectory
used for the experiments was a straight-line, parallel to a wall rich in visual infor-
mation, the length of the path is 70 centimeters, the camera moves at a speed of 7
cm/second, with a shutter speed of 15 images/second. This results on an average
of 150 sequence of images for the trajectory run. The parameters for the evolution-
ary algorithm can be found in Table 1. Thus, each individual is evaluated within
the SLAM system. The resulting image sequence is employed to evaluate the indi-
vidual’s repeatability and dispersion. Follow by the population operations, using
the SPEA2 [12] algorithm for parent selection, one-point crossover and sub-tree
mutation for creating the offspring.

Evolutionary Purposive or Behavioral Vision 343

Table 1. Parameters used in the Multi-objective GP for synthesis of image operators
for interest point detectors

Parameters Description

Population 30 individuals

Generations 30 iterations

Initial population Ramped Half-and-Half

Genetic operations probabilities Crossover pc = 0.85, Mutation pμ = 0.15

Max three depth 6 levels

File size (SPEA2) 15

Parent selection 15

Table 2. Functions and terminals used to built the population

Functions F = {+, |+ |,−, | − |, |Iout|, ∗,÷, I2out,
√
Iout, log2(Iout),

EQ(Iout), k · Iout, δ
δx
GσD , δ

δy
GσD , Gσ=1, Gσ=2}

Terminals T = {I, Lx, Lxx, Lxy, Lyy, Ly}

4 Experiments

The resulting Pareto front can be seen in Figure 4, which shows the distribution
of the individuals along the fitness space. The Table 3 lists eight non-dominated
individuals produced with the system just described. The resulting operators are
called Interest Point operators specialized in the SLAM problem, IPSLAM.

Pareto Front

Fit
Dispersion

R
ep

ea
ta

bi
lit

y

Fit

D
is

pe
rs

io
n

Dispersion

R
ep

ea
ta

bi
lit

y

R
ep

ea
ta

bi
lit

y

FitBest Individual
G1 ∗ G1 ∗ G1((δ

δy
G1(δ

δy
G1(I)))/2)

Fig. 4. Resulting Pareto front for the evolutionary process

344 D. Hernández et al.

Table 3. Best individuals found after the evolutionary process. We chose individuals
from different areas of the Pareto front.

Name Operator Fitness

IPSLAM1 G1 ∗ | δ
δxG1(

δ
δxG1(I)) − δ

δyG1(I)|
f1 = 9.76
f2 = 1.26
f3 = 24.14

IPSLAM2 ||||G1 ∗ I − I|2 + I||+ I2

δ
δx

G1(I)

I

|
f1 = 3.93
f2 = 1.22
f3 = 90.68

IPSLAM3 G1 ∗ G1 ∗ (δ
δxG1(

δ
δy G1(I)) − G1(I))

f1 = 8.68
f2 = 1.19
f3 = 27.81

IPSLAM5 G1 ∗ G2 ∗ δ
δyG1(

δ
δy G1(I))

f1 = 4.33
f2 = 1.21
f3 = 32.02

IPSLAM6 G1 ∗ | δ
δxG1(

δ
δyG1(I)) − δ

δyG1(
δ
δyG1(I))|

f1 = 4.30
f2 = 1.24
f3 = 34.02

IPSLAM11 δ
δy G1(

δ
δyG1(I)) × (G − 1 ∗ I − G1 ∗ G2(

δ
δxG1(

δ
δyG1(I)) − G1 ∗ I))

f1 = 5.77
f2 = 1.27
f3 = 19.13

IPSLAM19 G1 ∗ G1 ∗ G1((
δ
δyG1(

δ
δy G1(I)))/2)

f1 = 30.30
f2 = 1.24
f3 = 16.62

IPSLAM25 δ
δy G1(

δ
δyG1(I))

f1 = 35.86
f2 = 1.27
f3 = 16.57

IPSLAM27 Log((δ
δyG1(I) × δ

δy G1(
δ
δyG1(I))) + |G2 ∗ G1(I) +

δ
δyG1(

δ
δy G1(I))|)

f1 = 7.79
f2 = 1.27
f3 = 23.56

Note, that the most used operation in these functions is the image derivate
in the y direction. The use of this operation is related to the selected movement
applied for the evolutionary process. Since, the camera is moving horizontally,
the vertical features should be more stable. Once, we had several good solutions,
we made a comparison of the individuals being used within the SLAM system.
Figure 5 shows the result for the individual IPSLAM19 that achieves the better
results. The sequence on the left corresponds to the images captured by the

−0.2 −0.15 −0.1 −0.05 0 0.05
−0.1

−0.05

0

0.05

0.1

0.15

x1

y

Grafica de Ajuste

−0.2 −0.15 −0.1 −0.05 0 0.05
−5

0

5

x1

R
es

id
uo

Residuo Ponderado

−0.2 −0.15 −0.1 −0.05 0 0.05
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

x1

y

Grafica de Ajuste

−0.2 −0.15 −0.1 −0.05 0 0.05
−5

0

5

x1

R
es

id
uo

Residuo Ponderado

−0.2 −0.15 −0.1 −0.05 0 0.05
−0.1

−0.05

0

0.05

0.1

0.15

x1

y

Fit graph

−0.2 −0.15 −0.1 −0.05 0 0.05
−5

0

5

x1

R
e
s
id

u
e

Fit error

−0.2 −0.15 −0.1 −0.05 0 0.05
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

x1

z

Fit graph

−0.2 −0.15 −0.1 −0.05 0 0.05
−5

0

5

x1

R
e

s
id

u
e

Fit error

Fig. 5. System execution using the IPSLAM19 individual

Evolutionary Purposive or Behavioral Vision 345

camera, where the ellipses on the images represent the computed landmarks on
the map. The right side of the figure shows the error graph for the XY and XZ
planes of the estimated trajectory.

5 Conclusion

The aim of this paper was to adapt a visual behavior in a purposive way through
a multiobjective evolutionary computation approach. The specialized behavior
is based on solving a specific task that was able to simplify a real-world SLAM
system by eliminating two heuristics around the interest point detector applied in
the map building. This paper illustrates that it is coherent to see an evolutionary
algorithm as a purposive process.

Acknowledgments. This research was founded by CONACyT through the
Project 155045 - “Evolución de Cerebros Artificiales en Visión por
Computadora”. First author supported by scholarship 267339/220773 from
CONACyT. This research was also supported by TESE through the project
DIMI-MCIM-004/08.

References

1. Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. In: Proceedings of the
First International Conference on Computer Vision, pp. 35–54 (1987)

2. Aloimonos, Y.: Active Perception, p. 292. Lawrence Erlbaum Associates (1993)
3. Ballard, D.: Animate vision. Artificial Intelligence Journal 48, 57–86 (1991)
4. Davison, A.J.: Real-time simultaneous localisation and mapping with a single cam-

era. In: Proceedings of the Ninth IEEE International Conference on Computer Vi-
sion, vol. 2, pp. 1403–1410. IEEE Computer Society, Washington, DC, USA (2003)

5. Dunn, E., Olague, G.: Pareto optimal camera placement for automated visual
inspection. In: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (2005)

6. Dunn, E., Olague, G., Lutton, E., Schoenauer, M.: Pareto optimal sensing strategies
for an active vision system. In: Proceedings of IEEE Congress on Evolutionary
Computation, vol. 1, pp. 457–463 (2004)

7. Fermüller, C., Aloimonos, Y.: The Synthesis of Vision and Action. In: Landy, et al.
(eds.) Exploratory Vision: The Active Eye, ch. 9, pp. 205–240. Springer, Heidelberg
(1995)

8. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: A survey.
In: Foundations and Trends in Computer Graphics and Vision, vol. 1, pp. 1–89
(2005)

9. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of Computer Vision
and Pattern Recognition, pp. 593–600 (1994)

10. Trujillo, L., Olague, G.: Automated design of image operators that detect interest
points. Evolutionary Computation 16, 483–507 (2008)

11. Trujillo, L., Olague, G., Lutton, E., Fernández, F.: Multiobjective design of op-
erators that detect points of interest in images. In: Proceedings of Genetic and
Evolutionary Computation Conference, pp. 1299–1306 (2008)

12. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength Pareto evo-
lutionary algorithm. Tech. rep., Evolutionary Methods for Design (2001)

On Evolutionary Approaches to Unsupervised

Nearest Neighbor Regression

Oliver Kramer

Fakultät II, Department for Computer Science,
Carl von Ossietzky Universität Oldenburg,

26211 Oldenburg, Germany
oliver.kramer@uni-oldenburg.de

Abstract. The detection of structures in high-dimensional data has an
important part to play in machine learning. Recently, we proposed a fast
iterative strategy for non-linear dimensionality reduction based on the
unsupervised formulation of K-nearest neighbor regression. As the unsu-
pervised nearest neighbor (UNN) optimization problem does not allow
the computation of derivatives, the employment of direct search meth-
ods is reasonable. In this paper we introduce evolutionary optimization
approaches for learning UNN embeddings. Two continuous variants are
based on the CMA-ES employing regularization with domain restric-
tion, and penalizing extension in latent space. A combinatorial variant
is based on embedding the latent variables on a grid, and performing
stochastic swaps. We compare the results on artificial dimensionality re-
duction problems.

1 Introduction

In many scientific disciplines structures in high-dimensional data have to be de-
tected, e.g., in face and speech recognition, gesture recognition, and in genome
data processing tasks. Dimensionality reduction methods reduce the dimension-
ality of the data to make them easier to process, e.g., for visualization, and for
post-processing with other machine learning techniques that may suffer from the
curse of dimensionality effect [3].

Given a set of N high-dimensional patterns y1, . . . ,yN ∈ Rd in the
d-dimensional data space Rd, many dimensionality reduction methods compute
low-dimensional representations x1, . . . ,xN ∈ Rq with q < d of the corres-
ponding high-dimensional patterns. The variables xi are called latent points,
latent variables, or embeddings in the latent space Rq.

The low-dimensional representations should capture the most important cha-
racteristics of their high-dimensional pendants, e.g., they should maintain neigh-
borhood relations and distances (neighbored points in data space should be
neighbored in latent space). This is sometimes referred to as intrinsic struc-
ture of the data. In this paper we concentrate on unsupervised nearest neighbor
regression, a method we recently proposed [6]. UNN is based on unsupervised
regression, a framework for dimensionality reduction, which has originally been

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 346–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression 347

introduced by Meinicke [9]. The idea is to reverse the regression formulation such
that low-dimensional data samples in latent space optimally reconstruct high-
dimensional output data. UNN regression fits nearest neighbor regression into
this unsupervised setting. The spatial formation of the low-dimensional vectors
during training is induced by the regression method, and is supposed to represent
important information about the high-dimensional space. In [6] we argued that
the UNN optimization problem (see Section 3) is difficult to solve. Although the
two proposed iterative strategies allow the construction of a fast solution, some
open questions remain: how close do the UNN heuristics come to the optimal so-
lution, and is an evolutionary treatment of the problem a reasonable alternative
to the UNN heuristics. How close can stochastic variants come to the iterative
heuristics, and how many dimensions can be managed.

Section 2 reviews related work. In Section 3 we revisit the UNN optimization
problem, and a constructive heuristic. Section 4 concentrates on the continuous
perspective with two regularization variants. Section 5 introduces the combinato-
rial variant, while Section 6 presents an experimental comparison of the proposed
methods. The paper closes with a summary of the main results in Section 7.

2 Related Work

Perhaps the most famous dimensionality reduction method is the principal com-
ponent analysis (PCA), which assumes linearity of the manifold [4,12]. Fur-
ther famous approaches are Isomap by Tenenbaum et al. [15], and locally linear
embedding (LLE) by Roweis and Saul [13]. The work on unsupervised regres-
sion for dimensionality reduction starts with Meinicke [9], who introduced the
algorithmic framework for the first time. In this line of research early work
concentrated on non-parametric kernel density regression, i.e., the counterpart
of the Nadaraya-Watson estimator [10] denoted as unsupervised kernel regres-
sion (UKR). Klanke and Ritter [5] introduced an optimization scheme based
on LLE, PCA, and leave-one-out cross-validation (LOO-CV) for UKR. Kramer
and Gieseke [7] employed the CMA-ES to replace the complicated optimization
scheme of UKR by a simple stochastic one. Carreira-Perpiñán and Lu [2] ar-
gue that training of non-parametric unsupervised regression approaches is quite
expensive, i.e., O(N3) in time and O(N2) in memory. Parametric methods can
accelerate learning. In this line of research unsupervised regression approaches
were introduced, e.g., based on radial basis function networks (RBFs) [14], and
Gaussian processes [8].

3 Unsupervised KNN Regression

An UNN regression manifold is defined by N latent variables x ∈ Rq organized
in an N × q matrix X with the unsupervised formulation:

348 O. Kramer

fUNN (x;X) =
1

K

∑
i∈NK(x,X)

yi (1)

for a K that defines the neighborhood size of KNN regression. The matrix X
contains the latent points x that define the manifold, i.e., the low-dimensional
representation of the data Y. Parameter x is the location where the function
is evaluated. With the help of Equation (1) we can define the UNN regression
optimization problem. An optimal UNN regression manifold minimizes the data
space reconstruction error (DSRE), i.e., the function:

E(X) =
1

N
‖Y− fUNN (x;X)‖2F (2)

that measures the differences between the KNN-mapping from latent space, and
the target patterns in data space1. An optimal UNN manifold is a set of latent
points X that minimizes the reconstruction of the data points Y employing
KNN regression. Minimizing Equation (2) is a hard optimization problem. First,
the problem dimensionality scales with size N of the data set. Second, without
further constraints on the latent space, the search space of the optimization
problem is very large. In [6] we introduced iterative strategies based on one-
dimensional fixed latent point topologies (topological sorting). The first iterative
strategy UNN 1 tests all intermediate latent positions, and places the latent
points at locations that achieve the lowest DSRE:

1. Choose one element y ∈ Y,
2. test all N̂ + 1 intermediate positions of the N̂ embedded points Ŷ in latent

space,
3. choose the latent position that minimizes E(X), and embed y,

4. remove y from Y, add y to Ŷ, and repeat from Step 1 until all elements
have been embedded.

Figure 1(a) illustrates the N̂ + 1 possible embeddings of a data sample into an
existing order of points in latent space (yellow/bright circles). The position of
element x3 results in a lower DSRE with K = 2 than the position of x5, as the
mean of the two nearest neighbors of x3 is closer to y than the mean of the
two nearest neighbors of x5. Figure 1(b) shows an example of a UNN 1 embed-
ding of the 3D-S (upper part shows unsorted S, lower part shows colorization
w.r.t. the embedding), similar colors correspond to neighbored positions in latent
space, i.e., a meaningful neighborhood preserving embedding took place. UNN 2
searches for the closest embedded pattern y∗ and places the latent points on the
site of the neighborhood that achieves the lowest DSRE.

1 with Frobenius norm

‖A‖F =

√√√√
d∑

i=1

N∑
j=1

|aij |2 (3)

with matrix elements aij of A.

On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression 349

x

y

y

1

2

latent space

data space

x x x x x1 2 3 4 5 6

f(x)3

f(x)5y

(a) (b)

Fig. 1. Left: Illustration of UNN 1 embedding of a low-dimensional point to a fixed
latent space topology w.r.t. the DSRE testing all N̂ + 1 positions [6]. Right: Example
of UNN 1 result of a 3D-S before (upper right) and after embedding (lower right) with
UNN 1 and K = 10.

4 Continuous Perspective

In the following, we employ a continuous optimization perspective on UNN. For
this sake we allow optimization of neighborhood topologies in (a subset of) Rq.
We choose the following representation: A candidate solution X ∈ Rq×N is the
matrix of latent vectors x ∈ Rq, i.e., a vector of scalars for q = 1. For one fitness
evaluation f(x) the overall DSRE of the whole embedding is computed. Similar
to UKR we have to regularize the continuous UNN model. An unconstrained
UNN regression formulation would allow the latent points to move infinitely
apart from each other, which may complicate the optimization process. Two
kinds of regularization approaches will be compared: restriction of latent space
to a hypercube [0, 1]q, and penalizing extension with a summand λ‖X‖.

4.1 CMA-ES

As optimization approach we employ the CMA-ES by Hansen and Ostermeier
[11]. The CMA-ES belongs to the class of evolution strategies (ES) [1]. In each
generation t, a population of λ points Xt

i, i = 1, . . . , λ is produced with the
multivariate normal distribution:

Xt
i = mt + σtNi(0,C

t), for i = 1, . . . , λ. (4)

350 O. Kramer

with t ∈ N. The variables define sequences, i.e., mt with t ∈ N defines the
sequences of mean values of the Gaussian distribution generated by the CMA-
ES (corresponding to the estimate of the optimum), while σt, t ∈ N defines
the sequence of step sizes, and Ct, t ∈ N of covariance matrices, respectively.
Individuals are ranked according to their fitness f :

f(xt
1:λ) ≤ . . . ≤ f(xt

μ:λ) ≤ . . . f(xt
λ:λ), (5)

following the notation that xt
i:λ is the i-th best individual. The mean mt is

updated with the μ best solutions in each generation:

mt+1 =

μ∑
i=1

ωix
t
i:λ (6)

with positive and normalized weights ωi. Core of the CMA-ES is the update of
the covariance matrix Ct, which is adapted to the local fitness conditions. The
update rule forCt, mt, and σt can be found in Hansen et al. [11]. The population
sizes are chosen as λ = 4N , and μ = λ/2.

4.2 Restriction of Latent Space to [0, 1]q

Regularization is a technique in machine learning to avoid complex models and
over-fitting. In our optimization process it is undesirable to let the latent vari-
ables move infinitely apart from each other. All neighborhood relations can be
instantiated within a restricted part of latent space. First, we restrict the latent
space to the unit hypercube x ∈ [0, 1]q:

minE(X)r subject to xij ∈ [0, 1] (7)

The constraint forces the latent points to stay in the unit hypercube in latent
space. To handle the interval constraint, we penalize deviations from the interval
employing a quadratic penalty:

p(X) =
∑
i,j

εij with ε =

⎧⎨
⎩

(xij − 1)2 if xij > 1
x2
ij if xij < 0
0 else

. (8)

In Section 6 the latent space restriction approach will be compared to the penalty
approach experimentally.

4.3 Penalizing Extension in Latent Space with λ‖X‖
The second variant for regularization of UNN that we employ is penalizing ex-
tensions in latent space:

minE(X)p := min (E(X) + λ‖X‖) (9)

On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression 351

Also this technique has been applied to regularize UKR models, and is a more
frequent way to regularize models in machine learning. The penalty limits the
sum of lengths of all latent variables.

To understand the influence of the parameter λ we test various assignments
for regularization parameter λ, and different neighborhood sizes K for the 3D-
S data set2. We repeat each experiment 25 times. Table 1 shows the median
DSRE of the experiments. The CMA-ES terminates after 1, 000 generations. It
can be observed that the DSRE can be reduced significantly in comparison to
the initial state with the CMA-ES for small settings of λ. For large settings the
optimization process first primarily concentrates on reduction of the extension,
and neglects optimization of the DSRE in the 1, 000 generations we employ.
Hence, we set λ = 10−2 in the remainder of this work.

Table 1. Analysis of regularization parameter λ for two neighborhood sizes K = 2, 10
on the 3D-S data set with two data set sizes N = 30, 50

N K init 10−2 10−1 100 101 102

30 2 34.82 18.64 21.76 32.06 36.23 36.25
30 10 51.39 36.99 38.95 51.33 51.14 50.33

50 2 60.50 39.516 52.01 56.01 63.63 58.08
50 10 86.17 67.44 75.14 81.19 84.91 82.10

5 Combinatorial Perspective on UNN Regression

The continuous perspective allows an infinite number of positions for latent
points, only the regularization approach restricts the number of possible solu-
tions. However, the number of possible K-nearest neighborhoods, and conse-
quently of different fitness values is much lower, i.e.

(
N
K

)
. For large N this is still

an intractable number of solutions, and makes it impractical to test all possi-
ble latent variable neighborhoods. Techniques are required to reduce the search
space like the iterative embedding strategies UNN 1 and 2, see Section 3. In the
following, we propose an evolutionary discrete search strategy that randomly
selects two points in latent space, and swaps their positions, see Algorithm 1 for
the corresponding pseudocode.

Let X = (x1, . . . ,xN) be a solution, i.e., an (initially random) order of the
high-dimensional patterns yi, while xi specifies the position of pattern yi. The
(1+1)-EA randomly selects two positions p1, p2 ∈ N+, swaps the corresponding
patterns xp1 and xp2 , and accepts the new order, iff the DSRE is decreased.
This process is repeated until a termination condition is fulfilled (e.g., no DSRE
change for a defined number of generations).

The swap is accepted, if the DSRE can be reduced (Line 4). Otherwise, it is
rejected and the latent points are reset to their original position. It is reasonable

2 The 3D-S data set consists of d = 3 dimensional patterns arranged to an S with and
without hole, see [6].

352 O. Kramer

Algorithm 1. (1 + 1)-EA for UNN

Require: data set Y, Request: embedding X
1: initialization: random order of X = (x1, . . .xN).
2: repeat
3: choose two points p1, p2 ∈ N
4: change X to X′ by swapping xp1 and xp2

5: replace X by X′ if f(X′) ≤ f(X)
6: until termination condition
7: return embedding X

to let the stochastic process terminate, if the DSRE does not change for κ ∈
N+ iterations. Figure 2 shows a 1-dimensional example grid. Assume the left
blue (dark) latent point x1, and the right yellow (bright) latent point x2 have
randomly been selected to swap their positions. The DSRE is computed for their
old and the novel neighborhood. The swap is accepted, as their own colors are
more similar to colors of the novel neighborhoods than the colors of the previous
neighborhoods.

x

latent space before swap

x1 2 x

latent space after swap

x1 2

Fig. 2. Linear latent space (grid with q = 1) before (left), and after a swap (right) that
leads to a lower DSRE for K = 2. Similar colors correspond to low distances in latent
space.

6 Experimental Analysis

In the following, we analyze the evolutionary variants experimentally.

6.1 Comparison

Table 2 shows the experimental results of 25 CMA-ES runs for the data sets
3D-S and 3D-S with hole, each with N = 30 patterns. The figures show the
resulting DSRE at the beginning (init), in comparison to UNN 2 [6], the CMA-
ES with both regularization strategies, and the (1 + 1)-EA that works on the
grid representations. To allow a comparison to one of the state-of-the-art meth-
ods in dimensionality reduction, we also compare to locally linear embedding
(LLE) [13].

First, the experimental results show that UNN 2 achieves a lower DSRE than
LLE forK ≥ 5. This result shows the strength of the iterative heuristic. Concern-
ing the evolutionary optimization approaches we can observe that the (1+1)-EA
achieves a lower DSRE than UNN 2. The continuous approaches and UNN 2
achieve similar results: On 3D-S for K = 2 the penalized variant, for K = 5 the

On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression 353

Table 2. Comparison of DSRE for initial data set, embedding of UNN 2, the evolu-
tionary approaches, and LLE for q = 1

3D-S 3D-S hole
K 2 5 10 2 5 10

init 34.8 ±0 46.8 ±0 51.3 ±0 28.3 ±0 40.5 ±0 41.2 ±0
UNN 2 23.4 ±0 31.3 ±0 43.3 ±0 15.6 ±0 20.8 ±0 28.3 ±0
CMA, [0, 1]q 24.5 ±11.6 27.6 ±8.4 36.3 ±15.0 24.0 ±11.7 20.4 ±20.4 29.1 ±15.4
CMA, λ‖X‖ 22.2 ± 6.1 31.6± 10.8 41.4± 8.3 14.7± 10.9 24.5± 11.8 33.8 ± 21.3
(1 + 1)-EA 13.3± 1.3 24.4± 2.5 31.1± 1.7 10.8 ± 0.4 17.6± 1.4 24.7± 0.4
LLE 13.7 ±0.0 34.1 ±0.0 49.6 ±0.0 10.4 ±0.0 23.6 ±0.0 31.2 ±0.0

constrained variant, and for K = 10 both variants achieve a lower DSRE than
UNN 2. On 3D-S with hole UNN 2 and the continuous variants achieve similar
results. We want to point out that the evolutionary variants have a budget of
1, 000 fitness evaluations (computing the overall DSRE), i.e., 1, 000 ·N complete
DSRE computations (30, 000 for N = 30), while UNN 2 solves the problem with
a budget of 0.5 ·N · (N +1) DSRE computations (465 for N = 30). At the same
time the (1 + 1)-EA shows better results than the CMA-ES. On both data sets
the restricted CMA-ES shows better results than the penalized CMA-ES in two
of the three cases. But due to the high standard deviations, a statistical signifi-
cance cannot be reported. In contrast, the (1 + 1)-EA is quite robust with small
standard deviations, and consequently statistically significant improvements.

6.2 Curse of Dimensionality

The number of patterns defines the dimensionality of the UNN optimization
problem. The question arises: How does the dimensionality influence the success
of the evolutionary optimizers, i.e., the DSRE? We try to answer this question
in the following by showing the DSRE achieved depending on the number of
patterns. Figure 3(a) shows the DSRE for UNN 1, UNN 2, both CMA variants,
and the (1 + 1)-EA on the 3D-S data set (without hole). We can observe that
the stochastic variants are slightly better at the beginning of the optimization
process, but fail for higher dimensions. The continuous variants do not scale
well, while the (1 + 1)-EA is still able to approximate the optimum. But the
heuristics UNN 1 and UNN 2 scale much better, in particular UNN 1 turns
out to be the best optimizer for larger problem sizes. Figure 3(b) shows the
corresponding outcome of the experiments for the 3D-S data set with hole, where
similar observations can be made. Here, it is interesting that the two continuous
variants show a very similar behavior.

For these two cases we show the relative fitness improvement with variances
in the following. For the 3D-S data set with hole, Figure 4 shows the mean rel-
ative DSRE improvement Es/Ee, with Es being the DSRE at the start (ini-
tialization), and Ee the DSRE in the end (after termination). The relative
error is plotted with variance for the constrained (left), and the continuous
(right) CMA-ES-based optimization. The relative improvement gets worse with

354 O. Kramer

0

20

40

60

80

100

120

140

20 30 40 50 60 70 80 90 100

D
SR

E

Number of Patterns

UNN 1
UNN 2

(1+1)-EA
CMA-ES cons

CMA-ES lambda

0
10
20
30
40
50
60
70
80
90
100
110

20 30 40 50 60 70 80 90 100

D
SR

E

Number of Patterns

110
UNN 1
UNN 2

(1+1)-EA
CMA-ES cons

CMA-ES lambda

Fig. 3. Curse of dimensionality for evolutionary UNN variants on (a) 3D-S, and (b)
3D-S with hole

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

20 30 40 50 60 70 80 90 100

D
SR

E

Number of Patterns

Constrained CMA-ES

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

20 30 40 50 60 70 80 90 100

D
SR

E

Number of Patterns

Lambda CMA-ES

Fig. 4. Relative error Es/Ee depending on the number of patterns for the 3D-S data
set with hole for the constrained CMA-ES ([0, 1]q , left), and the regularized (λ‖X‖,
right)

increasing problem size. We can observe that the worst runs on larger problem
sizes (as of N = 50) show very bad results, with almost no improvement. The
constrained variant shows higher variances for small data sets.

7 Conclusions

In this work we have introduced evolutionary variants to compute UNN re-
gression embeddings. It turns out that the evolutionary variants achieve higher
accuracies than their heuristic pendants on small data sets. However, the high
accuracy has to be paid with a slow approximation speed. But for data sets
with N >> 50 the optimization problem becomes difficult to solve, in particu-
lar for the continuous variants with the CMA-ES. The (1 + 1)-EA scales better
w.r.t. the data set sizes, as the restriction to a grid decreases the solution space.
In comparison, the UNN heuristics are much faster, in particular for high di-
mensions, as they can compute a solution in O(N2) (or O(N logN) employing
k-d-trees). As a conclusion we can recommend a stochastic approach for small
data sets, but recommend to employ the iterative heuristics for data set sizes
larger than 50.

On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression 355

References

1. Beyer, H.G., Schwefel, H.P.: Evolution strategies - A comprehensive introduction.
Natural Computing 1, 3–52 (2002)

2. Carreira-Perpiñán, M.Á., Lu, Z.: Parametric dimensionality reduction by unsu-
pervised regression. In: Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1895–1902 (2010)

3. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer, Berlin (2009)

4. Jolliffe, I.: Principal component analysis. Springer Series in Statistics. Springer,
New York (1986)

5. Klanke, S., Ritter, H.: Variants of unsupervised kernel regression: General cost
functions. Neurocomputing 70(7-9), 1289–1303 (2007)

6. Kramer, O.: Dimensionality reduction by unsupervised k-nearest neighbor regres-
sion. In: Proceedings of the International Conference on Machine Learning and
Applications (ICMLA), pp. 275–278. IEEE Computer Society Press (2011)

7. Kramer, O., Gieseke, F.: A stochastic optimization approach for unsupervised ker-
nel regression. In: Genetic and Evolutionary Methods (GEM), pp. 156–161 (2011)

8. Lawrence, N.D.: Probabilistic non-linear principal component analysis with gaus-
sian process latent variable models. Journal of Machine Learning Research 6, 1783–
1816 (2005)

9. Meinicke, P.: Unsupervised Learning in a Generalized Regression Framework.
Ph.D. thesis, University of Bielefeld (2000)

10. Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal surfaces from unsuper-
vised kernel regression. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1379–1391
(2005)

11. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self adap-
tation of evolution strategies. Evolutionary Computation 2(4), 369–380 (1994)

12. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine 2(6), 559–572 (1901)

13. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290, 2323–2326 (2000)

14. Smola, A.J., Mika, S., Schölkopf, B., Williamson, R.C.: Regularized principal man-
ifolds. J. Mach. Learn. Res. 1, 179–209 (2001)

15. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

Evolutionary Regression Machines

for Precision Agriculture�

Heikki Salo, Ville Tirronen, and Ferrante Neri

Department of Mathematical Information Technology,
P.O. Box 35 (Agora), 40014 University of Jyväskylä, Finland
{heikki.salo,ville.tirronen,ferrante.neri}@jyu.fi

Abstract. This paper proposes an image processing/machine learning
system for estimating the amount of biomass in a field. This piece of
information is precious in agriculture as it would allow a controlled ad-
justment of water and fertilizer. This system consists of a flying robot
device which captures multiple images of the area under interest. Subse-
quently, this set of images is processed by means of a combined action of
digital elevation models and multispectral images in order to reconstruct
a three-dimensional model of the area. This model is then processed by
a machine learning device, i.e. a support vector regressor with multiple
kernel functions, for estimating the biomass present in the area. The
training of the system has been performed by means of three modern
meta-heuristics representing the state-of-the-art in computational intel-
ligence optimization. These three algorithms are based on differential
evolution, particle swarm optimization, and evolution strategy frame-
works, respectively. Numerical Results derived by empirical simulations
show that the proposed approach can be of a great support in precision
agriculture. In addition, the most promising results have been attained
by means of an algorithm based on the differential evolution framework.

1 Introduction

Food production and agriculture have been transformed from a solar based in-
dustry into one relying on fuel, chemicals, sensors and technology. The use of
chemicals and fuel increased dramatically in 60s and 70s and several concerns
were stated about the effect of this increase to our health and the health of our
environment. This concern and the advances in imaging technology resulted in
the development of the Precision Agriculture (PA), see [10]. PA is a farming
technique based on observing and responding to intra-field variations. Clearly,
the observation of variations in the field is crucially important to promptly apply
a countermeasure.

A fundamentally important entity to monitor within a field is the produced
biomass since an accurate map of field biomass is necessary for crop yield esti-
mation and optimal field management, see [13]. If an exact inventory of plant

� This research is supported by the Academy of Finland, Akatemiatutkija 130600,
Algorithmic Design Issues in Memetic Computing. A special thank to Antti-Juhani
Kaijanaho for the useful discussions.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 356–365, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolutionary Precision Agriculture 357

mass is known, more careful economical planning can be done. Furthermore,
if some parts of the field fall behind in growth, intervention methods, such as
fertilization or additional irrigation, can be used.

Field biomass mapping systems are often image based, where spectral or false
color images are acquired from satellites, aeroplanes, and devices mounted on
tractors and other field equipment. Field map creation is based on machine vi-
sion techniques that include a wide variety of machine learning elements where
the biomass estimation is based on features and models built from the images.
For example, in [14], an estimation scheme using several different vegetation in-
dices based on relationships of multispectral images is proposed. In [6], biomass
estimation is performed by means of stereoscopic vision techniques used to con-
struct the so called Digital Elevation Models (DEM), i.e. 3-D representations of
the terrain surface, from sets of ordinary aerial photographs. In [17], the com-
bination of both multispectral images and digital elevation based measurements
of the biomass is successfully proposed.

In order to estimate the biomass in a field, multiple images and measurements
must be taken and the images must be processed. Thus, the problem can be
presented as a non-parametric regression, which is further complicated by the
large variability in images.

In this paper, we propose a chain of operations that extracts suitable informa-
tion from image data and creates a non-parametric estimator for biomass using
a machine learning technique for performing the non-parametric regression. This
technique, is based on Support Vector Regression (SVR) (see [3]). and ensemble
learning (see [11] and [1,2]).

The training of the SVM ensemble is obtained by means of three modern
computational intelligence optimization algorithms, based on Evolution Strate-
gies (ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO),
respectively.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the chain of operations and the support vector regression and ensemble
learning techniques. Section 3 shows the performance comparison of the three
meta-heuristics considered in this study. Finally, Section 4 gives the conclusions
of this work.

2 Intelligent System for Biomass Estimation

The proposed chain is schematically represented in Fig. 1. A set of images is
taken by an Unmanned Aerial Vehicle (UAV). These images are processed into
of DEM and multispectral images, as shown in [17], thus producing a set of data
which is processed by a machine learning technique to associate to each portion
of land (patch) with a biomass value.

The first step in the chain (1) is collating the images acquired by an unmanned
aerial vehicle into a digital elevation model (see Figure 2) and an orthographic
map of the field. In our case this is done by the UAV operator using image
correlation and stereoscopic vision techniques (see [12] for a survey of this topic).
This phase is not parametrised in this paper.

358 H. Salo, V. Tirronen, and F. Neri

Fig. 1.General workflow of an biomass estimation
system

Fig. 2. A Digital Elevation
Model (DEM) of a field

In the second step of the process (2), the field area is divided into test patches.
Each patch contains a specific sample with a different biomass. For each patch we
calculate the following features, which are used to train the estimation system:

1. A cumulative histogram of the elevation values: cdfDEM
i =

∑i
j=0

nj

n , where
0 < i/leq5, and nj is number of elevation samples where the elevation is
between min+j(min−max) and m+(j+1)(min−max), n is the number of
elevation samples within the patch and min and max and are the minimum
and the maximum elevations in the patch respectively.

2. The average (μ) of the elevations measured in the patch.
3. The variance (s2DEM) of the elevations measured in the patch.
4. The variance (s2NIR) of the NIR channel responses measured in the patch.

5. A Cumulative histogram of the NIR channel responses: cdfNIR
i =

∑i
j=0

nj

n ,
where 0 < i/leq2, and nj is number of NIR channel responses in range
min+j/(min−max) and m + (j + 1)/(min−max), n is the number of re-
sponses within the patch and min and max and are the minimum and the
maximum responses in the patch respectively.

These features must be preprocessed to equalize features with different ranges. In
this paper, we consider preprocessing with both simple scaling and the principal
component analysis (PCA), which can be used to reduce the feature vector
dimensionality. In the case of PCA a proper ratio of dimension reduction Tpca

must be selected properly.
These features are paired with the physically measured dry-biomass values in

the step (3) to produce the training set from which we build the biomass esti-
mator using regression analysis in the step (4). Regression analysis is the science
of determining the relationship between dependent and independent variables
and it is used in devising automatic prediction and forecasting tools. When the
relationship between the parameters is unknown, the problem is named non-
parametric regression. SVM, following the example given in [3], are used here to

Evolutionary Precision Agriculture 359

perform the non-parametric regression tasks. In order to construct a SVR from
a set of point and value pairs, {(xi, yi)} ⊂ Rn × R, we must find a function
f : Rn → R such that f deviates at most an ε amount from the training points:

|yi − f(xi)| ≤ ε (1)

(2)

while f should be as simple as possible.
In our case, the points xi represent the features of the terrain acquired by

the imaging system and the values yi represent the biomass measures associated
with the corresponding terrain features. The resulting function f will be the
biomass estimator for the non-measured parts of the terrain. In order to model
this problem, it is enough to consider a linear function f(x) = w · x + b and
equate simplicity to flat slope, which can later on be generalized to a non-linear
estimator by using a non-linear mapping of the data points. This results in the
following optimization problem:

minimize ‖w‖2 + C

l∑
i=1

(ξi + ξ∗i) (3)

subject to yi − w · x+ b ≤ ε+ ξi (4)

w · x+ b− yi ≤ ε+ ξ∗i . (5)

Many datasets contain noise and other deviations that make it impossible to meet
this constraint at all or without giving up the simplicity requirement. To properly
handle these cases, the slack variables ξi and ξ∗i are added to the constraint for
additional flexibility and the fitness in penalized according to the parameter C.
The latter parameter determines the trade-off between flatness of the function
and the deviations from the estimate. By transforming inequality into equality
constraints, the optimization problem is reformulated in the following way:

maximize
1

2

l∑
i,j=1

(αi − α∗
i)(αj − α∗

j)(xi · xj)

− ε

l∑
i=1

(αi − α∗
i) +

l∑
i=1

yi(αi − α∗
i)

subject to
l∑

i=1

(αi − α∗
i) = 0

and αi, α
∗
i ∈ [0, C[,

where αi and α∗
i are Lagrangemultipliers. It can be observed thatw =

∑l
i=1(αi−

α∗
i)xi and f(x) =

∑l
i=1(αi −α∗

i)xi · x+ b. Thus, the function f is entirely charac-
terized by the scalar product between the training points. Then, this optimization
problem can be efficiently solved using quadratic programming techniques [16].

360 H. Salo, V. Tirronen, and F. Neri

In addition, this characterization via scalar products allows an easy extension
from the linear case to the non-linear one by applying a suitable non-linear
mapping θ to the data prior to training the model. Although such mappings
can be computationally demanding, for some θ there exist such functions k that
k(x, y) = θ(x) · θ(y), which allow the efficient calculation of scalar products in
the codomain of θ. These functions k are called kernel functions. Three popular
kernel functions are considered in this paper: 1) Linear k(x, y) = x · y; 2)Radial
Basis k(x, y) = e−σ||x−y||2 ; 3) Sigmoid k(x, y) = tanh (γx · y + c0).

In order to build up an efficient intelligent system it is fundamental to properly
select the parameters ε, C, to design the preprocessing scheme and the related
parameters as well as the kernel function k with its corresponding parameters.
In this study, we propose an alternative for finding the proper estimator by
combining the outputs of several, differently modelled, weaker estimators as an
ensemble. Such ensemble methods have been found to be very effective tools for
various machine learning tasks in a survey in [8]. In this study we model the se-
lection of each of the regression tasks sub-components, scaling, feature reduction,
and regressor kernel selection by assigning them weights. Each weight represents
the selection probability of the component whose weight is associated. Thus, our
problem consists of finding the optimal weights for each sub-component along
with their related parameters.

Ensembles are constructed according to the optimization based scheme in
Fig. 3. First, Bagging (bootstrap aggregation) is done to avoid overfitting esti-
mators to fitness dataset and subset of 20 samples are selected from the over-
all training set for each regressor. Then, the components for the regressors
are selected according to weights given by the optimization process and their
respective parameters are picked according to Table 1. The trained regressors

Fig. 3. General overview of the proposed system

Evolutionary Precision Agriculture 361

are then tested with the test set samples and their average error is passed to the
optimizer, which then proceeds to search for better set of parameters.

The parameters to be selected and their respective range of variability are
listed in Table 1.

The related goal is to find the set of parameters listed in Table 1 such that
the median error from the actual biomass values of the samples is minimized.
A training set is used to perform the machine learning while test set is used to
calculate the fitness.

Table 1. Parameters for the optimization problem

Variable effect range

x1 C
[
2−5, 215

]
x2 ε

[
2−15, 23

]
x3 γ for RBF kernel

[
2−15, 23

]
x4 σ for Sigmoid kernel

[
2−15, 23

]
x5 coefficient for Sigmoid kernel [0, 1]
x6 Tpca [0.0000001, 0.5]
x7 Weight for Linear SVR kernel)0, 1]
x8 Weight for RBF SVR kernel)0, 1]
x9 Weight for Sigmoid SVR kernel)0, 1]
x10 Weight for using no reduction)0, 1]
x11 Weight for using PCA reduction)0, 1]

3 Numerical Results

This study was conducted in Agrifood Research Finland (MTT)’s experimental
Hovi crop field, which is situated in Vihti, Finland. For this study, MTT arranged
a test season where growth between plots were varied using different seed and
pesticide amounts during sowing.

The data consists of 91 test plots which were imaged using NIR capable
UAV drone. The images were then postprocessed into an ortophotograph and a
Digital Elevation Model, which describes the terrain height. DEMs are commonly
used as basis for building maps and geographic information systems and can be
constructed from sets of plain 2D images using image correlation and stereoscopic
vision techniques (see, [12] for survey of this topic). For our application we have
acquired a DEM of the target field using the stereoscopic vision techniques.
The test plot locations and reference points for DEM calculation were measured
using Real Time Kinematic GPS. Currently, our spectral data consists of of the
DEM and near-infrared part of the spectrum, due to our UAVs occasional and
catastrophic ineptitude in being aerial.

The test plots, which were randomly divided in the training and test sets, used
in the training of the estimator, plus the validation set, which is used to evaluate
the resulting ensembles. Each set consists of 30 samples. The target attribute in
this study is the total dry biomass of the test plots and the reference values were
acquired by manually collecting samples from the test plots and oven drying and
weighting them.

The proposed model of the ensemble learner is trained using the three follow-
ing optimization algorithms:

362 H. Salo, V. Tirronen, and F. Neri

1. Proximity based Differential Evolution (Prox-DE) [4]
2. Frankenstein-Particle Swarm Optimization (F-PSO) [9]
3. Covariance Matrix Adaptation Evolution Strategy CMA-ES) according the

implementation given in [7]

The Prox-DE algorithm is a Differential Evolution scheme which, instead of
randomly (with uniform distribution) selecting the individuals undergoing mu-
tation, employs a probabilistic set of rules for preferring the selection of solutions
closely located to each other. The F-PSO algorithm employs a Particle Swarm
Optimization structure and a set of combined modifications, previously proposed
in literature in order to enhance the performance of the original paradigm. The
CMA-ES is a well-known algorithm based on Evolution Strategy employing the
so called maximum likelihood principle, i.e. it attempts to increase the prob-
ability of successful candidate solutions and search steps. The distribution of
the solution and their potential moves tend to progressively adapt to the fitness
landscape and take its shape.

For each algorithm, 75 simulation runs were run with a budget of 55 000
fitness evaluations. The parameters of the optimization algorithms are taken
from the original articles in literature and are: for the Prox-DE F= 0.7, Cr= 0.3,
Spop = 60; for F-PSO vmax = 1, wmin = 0.4, wmax = 0.9, wtmax = 360,
Spop = 60, topologyk = 2000, topology update period = 11; for CMA-ES σ = 0.5.

Table 2 shows the performance of each algorithm. The first three columns
give numerical values for average, standard deviation and the best value of dis-
tribution over 75 simulations for each algorithm. The last column visualizes the
distribution using sparkline histograms [15]. The distribution shows that Proxim-
ity Based Differential Evolution is both the most stable and the best performing
of the algorithms in this problem. The algorithm seems to produce a good av-
erage result but is lucky in finding few extraordinarily good values during the
test. The CMA-ES produces the second best values for this problem, but is less
stable than the other algorithms, while the Frankenstein-PSO fails to produce
a competitive result. This observed ordering of the algorithms is statistically
significant (Mann-Whitney U-test,p ≤ 0.005, see [5]). The experiment was not
repeated in order to achieve the significance.

A short analysis of the convergence speed and required iterations can be made
in Figure 4, which shows that CMA-ES converges slightly faster than the other
algorithms.

The trained regressor ensemble is tested on the validation data not present
during the training and the results are summarized in the Table 3. The table
shows the average prediction error on the validation set and the sparkline his-
togram of the estimation error.

Table 2. Fitness values achieved with 75 runs.

Algorithm Average±Std.Dev Best Histogram

Prox-DE 2.546±0.248 1.401 � � �

F-PSO 3.400±0.230 2.989 � � �

CMA-ES 3.020±0.314 2.546 � � �

1.401 3.568

Evolutionary Precision Agriculture 363

Table 3. Estimation errors on the training data

Algorithm Average±Std.Dev Histogram

Prox-DE 5.482±4.600 � � �

F-PSO 7.863±6.159 � � �

CMA-ES 5.883±4.516 � � �

1.430e-02 1.903e+01

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10000 20000 30000 40000 50000

F
itn

es
s

Fitness Evaluation

Prox-DE
FPSO

CMA-ES

Fig. 4. Convergence of the algorithms

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30

B
io

m
as

s

Plot number

True Biomass
Prox-DE

FPSO
CMA-ES

Fig. 5. Performance of the estimators with the validation dataset

Discarding the failure of the F-PSO based ensemble, the result values are
within 500g, which makes the effective difference between the training methods
minor. Also, the convergence behaviour suggests that if more computational
resources were at hand, it could be beneficial to allow Prox-DE to run for a longer
time in hope of improving the solution. When contrasting the performance to
the complexity of the algorithm, it is clear that the very simple Prox-DE is the
most cost efficient choice for the task. In the practical side of things, the achieved
accuracy is enough to control a tractor towed fertilizer dispensers, which have
relatively few dispensation settings.

4 Conclusions

A biomass estimation system based on image analysis and machine learning has
been proposed in order to support precision agriculture. This system collects
multiple images taken by a UAV, reconstructs a 3-D model of the field, and ex-
tracts biomass information by means of a support vector regressor. The machine

364 H. Salo, V. Tirronen, and F. Neri

learning structure coordinates an ensemble of components and related parame-
ters using the weights representing the activation probability of the correspond-
ing components. The training has been performed by means of Prox-DE, F-PSO,
and CMA-ES showed that the proposed machine learning system is realiably ca-
pable to detect the biomass present in the field by subsequent operations on
the images. Amongst the three optimization algorithms considered in this study
for performing the learning of the support vector regressor, Prox-DE appears
to be the most reliable choice as the other two meta-heuristics seem to detect,
on average, solutions characterized by a mediocre performance and then to be
unable to improve upon them.

Possibilities of remote sensing applications for precision agriculture have been
studied before. However, the presented estimation results in this paper are hard
to compare since the premises and the target attributes in the studies differ.

Interesting areas for future studies would be to compare results with dif-
ferently produced orthophotographs and Digital Elevation Model. Also, with a
larger set of extracted features it would be interesting to shift the focus partic-
ularly to optimizing methods for dimension reduction.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
2. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
3. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector

regression machines. In: Advances in Neural Information Processing Systems, pp.
155–161 (1997)

4. Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis,
M.N.: Enhancing differential evolution utilizing proximity-based mutation oper-
ators. IEEE Transactions on Evolutionary Computation 15(1), 99–119 (2011)

5. Fay, M.P., Proschan, M.A., et al.: Wilcoxon-Mann-Whitney or t-test? On assump-
tions for hypothesis tests and multiple interpretations of decision rules. Statistics
Surveys 4, 1–39 (2010)

6. Gimelfarb, G.L., Haralick, R.: Terrain reconstruction from multiple views. Com-
puter Analysis of Images and Patterns (1997)

7. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

8. Maclin, R., Opitz, D.: Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research 1(11), 169–198 (1999)

9. Montes De Oca, M., Stutzle, T., Birattari, M., Dorigo, M.: Frankenstein’s PSO: A
Composite Particle Swarm Optimization Algorithm. IEEE Transactions on Evolu-
tionary Computation 13(5), 1120–1132 (2009)

10. Moran, M.S., Inoue, Y., Barnes, E.M.: Opportunities and limitations for image-
based remote sensing in precision crop management. Remote Sensing of Environ-
ment 61(3), 319–346 (1997)

11. Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227
(1990)

12. Scharstein, D.: A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms. International Journal of Computer Vision 47(1), 131–140 (2002)

Evolutionary Precision Agriculture 365

13. Serrano, L., Filella, I.: Remote sensing of biomass and yield of winter wheat under
different nitrogen supplies. Crop Science 40(3), 723–731 (2000)

14. Thenkabail, P.S., Smith, R.B., De Pauw, E.: Hyperspectral vegetation indices and
their relationships with agricultural crop characteristics. Remote Sensing of Envi-
ronment 71(2), 158–182 (2000)

15. Tirronen, V., Weber, M.: Sparkline Histograms for Comparing Evolutionary Opti-
mization Methods. In: Proceedings of 2nd International Joint Conference on Com-
putational Intelligence. pp. 269–274 (2010)

16. Vapnik, V.N.: The Nature of Statistical Learning Theory, Statistics for Engineering
and Information Science, vol. 8. Springer, Heidelberg (1995)

17. Zebedin, L., Klaus, A., Grubergeymayer, B., Karner, K.: Towards 3D map gener-
ation from digital aerial images. ISPRS Journal of Photogrammetry and Remote
Sensing 60(6), 413–427 (2006)

A Generic Approach to Parameter Control

Giorgos Karafotias, S.K. Smit, and A.E. Eiben

Vrije Universiteit, Amsterdam, Netherlands
g.karafotias@vu.nl, {sksmit,gusz}@cs.vu.nl

Abstract. On-line control of EA parameters is an approach to parameter set-
ting that offers the advantage of values changing during the run. In this paper,
we investigate parameter control from a generic and parameter-independent per-
spective. We propose a generic control mechanism that is targeted to repetitive
applications, can be applied to any numeric parameter and is tailored to specific
types of problems through an off-line calibration process. We present proof-of-
concept experiments using this mechanism to control the mutation step size of an
Evolutionary Strategy (ES). Results show that our method is viable and performs
very well, compared to the tuning approach and traditional control methods.

1 Introduction

When defining an evolutionary algorithm (EA) one needs to configure various set-
tings: choose components (such as variation and selection mechanisms) and set numeric
values (e.g. the probability of mutation or the tournament size). These configurations
largely influence performance making them an important aspect of algorithm design.

The field of evolutionary computing (EC) traditionally distinguishes two approaches
for setting parameter values[4]:

– Parameter tuning, where parameter values are fixed in the initialization stage and
do not change while the EA is running.

– Parameter control, where parameter values are given an initial value when starting
the EA and undergo changes while the EA is running.

Fig. 1. Tuning vs control

The capability of parameter control to use ad-
equate parameter values in different stages of
the search is an advantage, because the run of
an EA is an intrinsically dynamic process. It
is intuitively clear –and for some EA param-
eters theoretically proven– that different val-
ues may be optimal at different stages of the
evolution. This implies that the use of static
parameters is inherently inferior to changing
parameter values on-the-fly.

The conceptual distinction between tuning
and control can be lifted if we consider the
control mechanism as an integral part of the EA. In this case the EA and its parameter
control mechanism (that may be absent) are considered as one entity. Furthermore, this

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 366–375, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Generic Approach to Parameter Control 367

composed entity may or may not be tuned before being applied to a new problem. The
resulting matrix of four options is shown in Figure 1.

The combinations in the top row have the advantage of enhanced performance at the
cost of the tuning effort [11]. The options in the left column offer the benefits of time
varying parameter values mentioned above with a tradeoff of increased complexity.

In this paper we introduce a generic control mechanism that is located in the top-left
corner of the matrix, i.e. it combines on-line parameter adjustment (control) and off-
line configuration (tuning). This means that the evolutionary algorithm incorporates a
parameter control mechanism (seen as a black box for the moment) but this controller
itself has certain parameters that can be configured for a problem through an off-line
tuning process. Such a method has both the advantage of enhanced performance, and
the possibility to be tuned to a specific problem (and is therefore most appropriate for
repetitive problems). On the other hand, this mechanism also has the disadvantages of
being complex, and the need for computational time dedicated to problem tailoring.
Hence, the questions we want to address in this paper are:

– Is such an approach viable?
– What is the added value of this approach, when compared to traditional approaches

such as static parameter-values, the 1/5th rule and self-adaptation?
– On what kind of feedback from the search process should such a parameter control

mechanism base its decisions?

2 Related Work

Parameter control is an increasingly popular topic in the field of evolutionary
algorithms[5]. The outline of the most commonly used methods is quite similar: one of
the parameter values is altered based on some specific evidence. Most often these meth-
ods are designed for specific parameters. The most popular parameter-specific control
methods focuses on mutation probability [6], mutation step size [12] and operator selec-
tion [17] but methods also exist for the selection pressure [18], the population-size[16],
the fitness function [9] and the encoding [13].

Some generic control methods for numeric parameters also exist. In [19] an adaptive
mechanism is proposed that works in alternating epochs, first evaluating parameter val-
ues in a limited set and then applying them probabilistically. In the end of every such
pair of epochs the set of possible parameter values is updated according to some heuris-
tic rule. In Lee and Takagi [8] an adaptive control mechanism based on fuzzy logic is
proposed. Instantiation of the rule set of the controller is achieved through an off-line
calibration process using a GA. Lee and Takagi concluded that such an approach was
very beneficial, and led to a much better performance than using the fixed parameter
values. However, the fixed values used in this study were the ones commonly used at
that time, based on the early work of DeJong, rather than found using parameter tuning.

A two-layer approach to control is presented in [3] and [10]: the lower layer adap-
tively controls EA parameters driven by an upper level that enforces a user-defined
schedule of diversity or exploration-exploitation balance (though these are not parame-
ters per se). The algorithm in [10] includes a built-in learning phase that calibrates the

368 G. Karafotias, S.K. Smit, and A.E. Eiben

controller to the EA and problem at hand by associating parameter values to diversity
and mean fitness using random samples. In [3], the lower control level is an adaptive op-
erator selection method that scores operators according to the diversity-fitness balance
they achieve as compared to a balance dictated by the upper level user defined schedule.
However, neither of the two make a comparison against static parameter-values found
using parameter tuning.

Extensive literature reviews on parameter control can be found in [5] and [2].

3 Parameter Control Roadmap

In this section we present a simple framework for parameter control mechanisms. The
purpose of this framework is not to provide any theoretical grounding or proofs but to
serve as a roadmap that helps in designing and positioning one’s mechanism.

We define a parameter control mechanism as a combination of three components:

1. A choice of parameters (i.e. what is to be controlled).
2. A set of observables that will be the input to the control mechanism (i.e. what

evidence is used).
3. An algorithm/technique that will map observables to parameter values (i.e. how the

control is performed).

These components are briefly described in the following paragraphs. However, they are
based on the definition of the state of an evolutionary algorithm, which is therefore
introduced first.

EA State. We define the state SEA of an evolutionary algorithm as:

SEA = {G, p̄,F} (1)

where G is the set of all the genomes in the population, p̄ is the vector of current
parameter values, and F is the fitness function.

A triple SEA uniquely specifies the state of the search process for a given evolution-
ary algorithm (the design and specific components of the EA need not be included in
the state since they are the same during the whole run) in the sense that SEA fully de-
fines the search results so far and is the only observable factor that influences the search
process from this point on (though not fully defining it, given the stochastic nature of
EA operators). Time is not part of SEA as it is irrelevant to the state itself; it introduces
an artificial uniqueness and a property that is unrelated to the evolution. Of course, state
transitions are not deterministic.

3.1 Parameters

The starting point when designing a control mechanism is the parameter to be con-
trolled (as well as choices such as when and how often the parameter is updated). The
importance of various parameters and the effect or merit of controlling each of them
are subjects that will not be treated here (we refer to [2]). Instead, here we will only
distinguish between numeric (e.g. population size, crossover probability) and symbolic
(e.g. recombination operator) parameters.

A Generic Approach to Parameter Control 369

3.2 Observables

The observables are the values that serve as inputs to the controller’s algorithm. Each
observable must originate from the current state SEA of the EA since, as defined above,
it is the only observable factor defining how the search will proceed from this point on.

However, the raw data in the state itself are unwieldy: if we were to control based
on state SEA directly, that would imply that the control algorithm should be able to
map every possible SEA to proper parameter values. Consequently, preprocessing is
necessary to derive some useful abstraction, similar to the practise of dataset prepro-
cessing in the field of data mining. We define such an observable derivation process as
the following pipeline:

Source→ (Digest)→ (Derivative)→ (History)

Parentheses denote that steps can be bypassed.

i. Source: As stated above, the source of all observables is the current state of the EA,
i.e. the set of all genomes, the current parameter values and the fitness function.

ii. Digest: A function D(SEA) = v that maps an EA state to a value, e.g. best fitness
or population diversity.

iii. Derivative: Instead of using directly a value v we might be more interested in its
speed or acceleration (e.g. to make the observable independent to the absolute val-
ues of v or to determine the effect of the previous update as the change observed in
the most recent cycle).

iv. History: The last step in defining an observable is maintaining a history of size W
of the value received from the previous step. This step includes a decision on the
sliding window size W and the definition of a function FH(v1, v2, ..., vW)1 that,
given the last W values, provides a final value or vector (e.g. the minimum value,
the maximum increase between two consecutive steps, the whole history as is etc.).

The above observable derivation is meant to be a conceptual framework and not an
implementation methodology. For example, the current success ratio (in the context
of Rechenberg’s 1/5 rule) can in theory be derived from a state SEA by applying the
selection and variation operators to G and calculating the fitnesses of the results though
obviously that would be a senseless implementation.

3.3 Algorithm

Any technique that maps a vector of observable values to a vector of parameter val-
ues can be used as an algorithm for the control mechanism, e.g. a rule set, an ANN or
a function are all valid candidates. The choice of the proper algorithm seems to bear
some resemblance to choosing an appropriate machine learning technique given a spe-
cific task or dataset. Whether EA observables display specific characteristics that make
certain biases and representations more suitable is a question that needs to be investi-
gated. In any case, it is obvious that given the type of parameter controlled (i.e. numeric
or nominal) different techniques are applicable.

1 Notice that indices have no relation to time but merely indicate a sequence of W elements.

370 G. Karafotias, S.K. Smit, and A.E. Eiben

Here we distinguish between two main categories of control techniques, regardless
the algorithm and representation used, based on a fundamental characteristic of the
controller: whether it is static or it adapts itself to the evolutionary process.

i. Static: A static controller remains fixed during the run, i.e. given the same observ-
ables input it will always produce the same parameter values output. In other words,
the values produced only depend on the current observables input:

p = c(o) and o1 = o2 ⇒ c(o1) = c(o2)

where o ∈ O, p ∈ P are the vectors of observables and parameter values respec-
tively and c : O �→ P is the mapping of the controller.

ii. Dynamic: A dynamic controller changes during the run, i.e. the same observables
input can produce different parameter values output at different times. This im-
plies that the controller is stateful and that the values produced depend on both the
current observables input and the controller’s current state:

p = cp(o, SC) and St+1
C = cS(ot, S

t
C)

where o ∈ O, p ∈ P are the vectors of observables and parameter values respec-
tively, SC ∈ S is the state of the controller and cp : O × S �→ P , cS : O × S �→ S
are the mappings of the controller.

According to this classification, a time-scheduled mechanism is a trivial case of a dy-
namic controller; it maintains a changing state (a simple counter) but is “blind” to the
evolutionary process since it does not use any observables. It should be noted that we do
not consider control mechanisms necessarily as separate and distinct components, e.g.
we classify self-adaptation in ES as a dynamic controller since it implicitly maintains a
state influenced by the evolutionary process.

4 Experimental Setup

The experiments presented here are designed as a proof of concept for the viability
of a generic, EA-independent and parameter-independent control mechanism that is
instantiated through an off-line tuning process and targeted to repetitive applications.
That means that the present configuration belongs in the upper left square of Fig 1, i.e.
it combines on-line control of the EA parameters and off-line tuning of the controller to
a specific kind of problem.

The parameter we chose for our initial control experiments is the mutation step size
σ in evolution strategies. The specific parameter may seem a trivial choice given the
number and efficiency of existing control techniques but its simplicity and the existence
of related theory and practical experience make σ a parameter suitable for analysis.

4.1 Evolutionary Algorithm

The EA used, is a (10 + λ) ES with Gaussian mutation. It has no recombination and
uses uniform random parent selection.

A Generic Approach to Parameter Control 371

4.2 Parameter

As stated above, the controlled parameter is the mutation step size σ. In this experiment,
σ will be updated in every generation from the start of the run.

4.3 Observables

The observables that act as input to the controller, are based on the current parameter
values, diversity and fitness. The first input, the current σ, is input directly without go-
ing through the digest, derivative and history stages of the pipeline. The second input
is the diversity, using the Population Diversity Index (PDI) [15] as the digest function
and bypassing derivatives and history. Finally, we use two different fitness-based ob-
servables: (i) fN uses a digest of the best fitness normalized in [0, 1] and no history, (ii)
Δf uses a best fitness digest (fB) and a history with length W and the history function

FH(f1
B, ..., f

W
B) =

fW
B − f

W/2
B

fW
B − f1

B

We choose to use this formula to measure change instead of a derivative to make the
controller robust to shifting and stretching of the fitness landscape.

We compare the two fitness-based observables on their own as well as paired with
the diversity observable. The Δf observable is combined with the current σ observable
following the intuition that if changes in fitness are observed then changes in the pa-
rameter value should be output, thus the old value must be available. This yields four
sets of observables: {fN}, {fN , PDI}, {Δf , σ} and {Δf , PDI , σ}.

4.4 Control Method

As a control method we chose a neural network (NN) as a generic method for mapping
real valued inputs to real valued outputs. We use a simple feed-forward network without
a hidden layer. The structure of the nodes is fixed and the weights remain static during
an EA run and are set by the off-line tuning process. All inputs are, by definition, in the
range [0, 1]. The weights are tuned w ∈ [−1, 1]. We tested three different activation
functions (Table 1) with the output o ∈ [0, 1]. We also tested limiting the range of σ by
multiplying the output with 0.1 (testing traditional practise of keeping σ < 0.1).

All six activations were combined with all four observable sets. These combinations
were tested against six standard test problems[1]: Sphere, Corridor, Rosenbrock, Ack-
ley, Rastrigin and Fletcher & Powell . This setup was repeated for two generation gaps:
λ = 70 as a standard in numeric optimization and λ = 1 motivated by robotics appli-
cations [7]. The total number of control-problem instances is 288, see Table 1.

In all cases, the search for good controllers (NN weights) was performed using
Bonesa [14]. Bonesa is an iterative model-based search procedure based on an inter-
twined searching and learning loop. The search loop is a generate-and-test procedure
that iteratively generates new vectors, pre-assesses their quality using a surrogate model
of the performance landscape, and finally tests the most promising vectors by execut-
ing an algorithm run with these specific values. In its turn, the learning loop uses the

372 G. Karafotias, S.K. Smit, and A.E. Eiben

information obtained about the quality of the tested vectors to update the model of the
performance surface. Furthermore, it uses a kernel filter to reduce the noise caused by
the stochasticity of the algorithm.

For each combination of problem, observables set and activation, a good set of
weights was found with an off-line tuning using Bonesa. After this tuning session, the
EA using the best found controller instance was run 100 times to validate its perfor-
mance. These performances are then compared to outcomes of 100 runs with:

– a static σ, that is also tuned using Bonesa, using the same computational budget as
for finding the controller instance

– the Rechenberg’s 1/5 rule applied to a global σ using the success ratio of all muta-
tions in the population

– a self-adaptation approach using a single σ
– the theoretical optimum derived by Rechenberg [12] (applicable only to the Sphere

and Corridor functions)

Table 1. Experimental Setup

λ 1, 70
Observables {fN},

{fN , PDI},
{Δf , σ},
{Δf , PDI, σ}

Activations a1(x) = x
a2(x) = 1/(1 + e−6x)
a3(x) = tanh 3x

Problems Sphere, Corridor, Ackley, Rosenbrock, Rastrigin, Fletcher& Powell

EA (10 + λ)-ES with: Gaussian mutation, no recombination
and uniform random parent selection, limit of 10000 evaluations

Instantiation Bonesa with a budget of 3000 tests to calibrate weights wi ∈ [−1, 1]

5 Results

The performance results of the calibrated control mechanisms and the benchmarks are
presented in Table 2.

First, we consider the performance of control over the test problems by examining
the results column-wise. We can observe that the calibrated control mechanisms are
able to perform well (or comparably to the benchmarks) on all problems. Comparing
our control to the tuned static approach, we find that on all problems except F&P, there
are multiple control settings that are significantly better. For the F&P function there are
control settings with no significant difference in average. Compared to self-adaptation,
our control mechanism is overwhelmingly better on the Corridor, Ackley and Rastrigin
problems while, for the other test functions, there are several settings that result in a tie.
Control is always able to outperform the theoretical optimum (notice that this optimum
was derived for a (1 + 1)ES).

Second, we consider control settings separately (by examining the results row-wise)
to determine what observables and activation functions are better, and if there is a com-
bination that consistently performs well. From this perspective, using a hypertangent

A Generic Approach to Parameter Control 373

Table 2. Performances results. For each problem, we mark the control mechanisms that are sig-
nificantly better than static (underlined), significantly better than self-adaptation (bold) and not
significantly different than self-adaptation (italic). All problems are to be minimized.

λ = 1 λ = 70
Sphere Corridor Rsnbk Ackley Rsgn FletchP Sphere Corridor Rsnbk Ackley Rsgn FletchP

{fN ,PDI}
lin 0.01504 3.174 7.906 1.639 35.35 9355 0.01525 3.175 7.898 1.004 36.36 9141

lin.1 0.0326 9.124 5.001 14.25 61.08 1.008e+04 0.04045 9.133 11.62 16.18 57.73 1.251e+04
sig 0.0963 1.694 6.626 2.081 34.73 9880 0.1009 1.696 7.219 2.104 35.28 1.09e+04

sig.1 0.0126 9.124 5.969 5.634 61.41 8969 0.04751 8.938 6.666 7.454 59.9 1.002e+04
tanh 0.03605 1.682 4.709 0.07069 35.79 8618 0.04408 1.684 7.129 0.3 35.09 1.013e+04

tanh.1 0.07144 9.124 5.56 4.755 57.09 8538 0.07844 8.938 6.698 7.758 57.16 1.054e+04
{fN}

lin 9.704e-07 1.514 57.22 9.114e-07 46.62 8481 9.003e-06 1.638 181.8 8.978e-07 49.22 1.589e+04
lin.1 0.01152 9.22 371.5 7.964 60.97 2.704e+04 1.438 9.135 869.5 11.7 59.86 7.54e+04

sig 0.538 1.593 11.18 4.908 36.21 7669 0.472 1.701 11.45 13.52 36.25 6675
sig.1 0.05019 9.124 5.27 9.725 60.87 1.016e+04 0.05714 8.938 7.228 7.091 58.87 1.087e+04
tanh 9.223e-07 1.512 18.75 9.156e-07 20.93 7714 8.889e-07 1.602 74.1 8.789e-07 23.64 1.026e+04

tanh.1 9.903e-07 9.13 150.9 2.573 57.89 1.572e+04 0.09544 8.864 469.4 4.896 59.55 3.421e+04
{Δf , PDI, σ}

lin 0.003837 6.519 6.283 2.608 35.2 7992 0.02674 6.519 8.136 3.467 46.99 8631
lin.1 0.02484 9.124 5.382 18.48 61.07 9401 0.04189 9.217 19.49 18.43 58.27 1.276e+04

sig 0.1092 1.787 7.007 7.269 35.46 9850 0.1147 1.792 7.022 5.597 36.75 8892
sig.1 0.01506 9.124 6.031 8.065 61.02 1.104e+04 0.03794 9.218 6.706 10.7 58.4 9969
tanh 0.007184 2.147 6.834 0.4822 34.35 6159 0.003973 2.15 7.499 0.8447 38.72 8217

tanh.1 0.009213 9.124 5.645 9.314 58.3 8622 0.06944 8.938 6.86 14.35 60.08 1.008e+04
{Δf , σ}

lin 0.0027 6.24 5.379 1.4 49.95 8757 0.002984 6.24 8.11 7.87 36 7489
lin.1 0.01787 9.129 5.369 18.51 60.48 1.081e+04 0.04558 9.22 12.19 18.45 58.82 1.182e+04

sig 0.06929 1.79 7.485 6.75 32.44 9914 0.06655 1.792 7.895 8.002 37.46 8917
sig.1 0.01255 8.938 5.966 6.929 61.2 9806 0.04192 9.217 6.651 11.44 59.57 1.032e+04
tanh 0.002631 1.963 5.715 0.762 32.2 6467 0.0008254 1.964 6.282 0.9197 36.67 6759

tanh.1 0.002881 8.938 5.726 8.473 57.99 8137 0.05975 8.938 6.8 11.41 59.08 1.006e+04

static 0.01721 4.659 6.721 9.383 39.31 1.073e+04 0.06903 3.378 7.254 9.234 37.07 9313
15rule 6.414 9.221 1212 18.44 85.84 1.85e+05 0.5263 9.124 34.34 18.28 56.29 1.828e+04

sssa 9.256e-07 8.938 7.203 15.04 57.65 8740 8.887e-07 8.938 7.458 15.65 55.34 6781
rechopt 0.002939 4.659 21.49 7.887 39.2 8712 1.027 4.659 21.73 7.863 39.2 8631

activation is always the best option: performance is always significantly better than
static for most problems, while it is significantly better than self-adaptation in three out
of six problems and at least as good in four. The best choice of observables is either
{fN} or {Δf , σ}.

Though choosing between fN orΔf is mostly a matter of feasibility (calculating nor-
malized fitness is not possible if the bounds of the fitness values are not known), using
diversity as an observable or not, is a more fundamental question. Contrary to our initial
expectations, adding diversity to the input does not always offer an advantage even for
multimodal problems (including the irregular and asymmetric Fletcher&Powell). Keep-
ing all other factors fixed, using diversity as an input produces a significant improvement
in 23.6% of all cases and only in 8.3% of the cases that are using the hypertangent acti-
vation. This advantage of using diversity combined with the hypertangent activation is
only observed for the Rosenbrock problem that is asymmetric but still unimodal. Our
assumption is that the ineffectiveness of observing diversity is due to the survivor selec-
tion mechanism. Diversity could be useful as feedback if σ control aimed at maintaining
a diverse population. However, (μ+ λ) selection negates such an effort since any new

374 G. Karafotias, S.K. Smit, and A.E. Eiben

“explorative” individuals will have inferior fitness and will be immediately discarded.
Thus, a strong selective pressure could be the reason observing diversity is ineffective.

6 Conclusions and Future Work

Based on our results, the questions stated in the introduction can be answered. The
main conclusion that can be drawn is that the generic approach taken in this paper is vi-
able and fruitful. In contrast to previous work, we were able to find a problem-tailored
control mechanism that outperforms the tuned (but static) parameter values for each
of the problems. More specific, the combination of {fN}, or {Δf , σ}, as observables
and a hypertangent function of the neural network, outperforms the tuned parameter
values in most problems. Even more promising is the fact that this combination per-
formed equally well or better than traditional methods for controlling a single σ, such
as the 1/5th rule and self-adaptation. However, in contrast to these methods, our generic
approach has the possibility to be extended to other parameters, possibly leading to
increased performance. Although this comes with the added cost of specific problem-
tailoring, the benefits, especially in case of repetitive problems, can be significant.

Inevitably, this conclusion depends on the experimenters design decisions. In our
case, the most important factors (beyond the underlying algorithm itself) are:

– The observables chosen as inputs to the control strategy.
– The parameters to be controlled
– The technique that maps a vector of observable values to a vector of parameter

values

Changing either of these can, in principle, lead to a different conclusion. With respect to
the observables chosen, we can conclude that these indeed highly influence the results.
Remarkably, adding diversity as an input appears to have hardly any added value for
controlling σ, possibly due to the selection mechanism used. The normalized fitness and
{Δf , σ} appear to be the best choices for input. Note that calculating the normalized
fitness is not always possible, and is most probably the less robust choice.

Regarding the future, we expect more studies along these ideas, exploring the other
possible implementations of the most important factors. Most enticing is the possibil-
ity of applying it to the other parameters of the evolutionary algorithm. This has the
prospect of delivering high quality control methods that can adapt the underlying algo-
rithm to the different stages of the search process.

References

1. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford
(1996)

2. De Jong, K.: Parameter Setting in EAs: a 30 Year Perspective. In: Lobo, F., Lima, C.,
Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 1–18.
Springer, Heidelberg (2007)

3. di Tollo, G., Lardeux, F., Maturana, J., Saubion, F.: From Adaptive to More Dynamic Control
in Evolutionary Algorithms. In: Hao, J.-K. (ed.) EvoCOP 2011. LNCS, vol. 6622, pp. 130–
141. Springer, Heidelberg (2011)

A Generic Approach to Parameter Control 375

4. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

5. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in Evolution-
ary Algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolu-
tionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg (2007)

6. Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: Proceedings of
the Third International Conference on Genetic Algorithms, pp. 104–109. Morgan Kaufmann
Publishers Inc., San Francisco (1989)

7. Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line, on-board
evolutionary robotics. In: Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2011, pp. 171–178. ACM (2011)

8. Lee, M.A., Takagi, H.: Dynamic control of genetic algorithms using fuzzy logic techniques.
In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 76–83.
Morgan Kaufmann (1993)

9. Majig, M., Fukushima, M.: Adaptive fitness function for evolutionary algorithm and its ap-
plications. In: International Conference on Informatics Research for Development of Knowl-
edge Society Infrastructure, pp. 119–124 (2008)

10. Maturana, J., Saubion, F.: On the Design of Adaptive Control Strategies for Evolutionary
Algorithms. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.)
EA 2007. LNCS, vol. 4926, pp. 303–315. Springer, Heidelberg (2008)

11. Nannen, V., Smit, S., Eiben, A.E.: Costs and Benefits of Tuning Parameters of Evolutionary
Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008.
LNCS, vol. 5199, pp. 528–538. Springer, Heidelberg (2008)

12. Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des
Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart (1973)

13. Schraudolph, N.N., Belew, R.K.: Dynamic parameter encoding for genetic algorithms. Ma-
chine Learning 9, 9–21 (1992)

14. Smit, S., Eiben, A.E.: Multi-problem parameter tuning using bonesa. In: Hao, J., Legrand,
P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, pp.
222–233 (2011)

15. Smit, S.K., Szláavik, Z., Eiben, A.E.: Population diversity index: a new measure for popula-
tion diversity. In: GECCO (Companion), pp. 269–270 (2011)

16. Smith, R., Smuda, E.: Adaptively resizing populations: Algorithm, analysis and first results.
Complex Systems 9(1), 47–72 (1995)

17. Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceedings of the Fourth
Annual Conference on Evolutionary Programming, pp. 367–384. MIT Press (1995)

18. Vajda, P., Eiben, A.E., Hordijk, W.: Parameter Control Methods for Selection Operators in
Genetic Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.)
PPSN X 2008. LNCS, vol. 5199, pp. 620–630. Springer, Heidelberg (2008)

19. Wong, Y.-Y., Lee, K.-H., Leung, K.-S., Ho, C.-W.: A novel approach in parameter adaptation
and diversity maintenance for genetic algorithms. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 7, 506–515 (2003)

Applying (Hybrid) Metaheuristics

to Fuel Consumption Optimization
of Hybrid Electric Vehicles

Thorsten Krenek1, Mario Ruthmair2, Günther R. Raidl2, and Michael Planer1

1 Institute for Powertrains and Automotive Technology,
Vienna University of Technology, Vienna, Austria

{thorsten.krenek,michael.planer}@ifa.tuwien.ac.at
2 Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria

{ruthmair,raidl}@ads.tuwien.ac.at

Abstract. This work deals with the application of metaheuristics to
the fuel consumption minimization problem of hybrid electric vehicles
(HEV) considering exactly specified driving cycles. A genetic algorithm,
a downhill-simplex method and an algorithm based on swarm intelligence
are used to find appropriate parameter values aiming at fuel consumption
minimization. Finally, the individual metaheuristics are combined to a
hybrid optimization algorithm taking into account the strengths and
weaknesses of the single procedures. Due to the required time-consuming
simulations it is crucial to keep the number of candidate solutions to be
evaluated low. This is partly achieved by starting the heuristic search
with already meaningful solutions identified by a Monte-Carlo procedure.
Experimental results indicate that the implemented hybrid algorithm
achieves better results than previously existing optimization methods on
a simplified HEV model.

Keywords: hybrid metaheuristic, genetic algorithm, downhill-simplex,
particle-swarm-optimization, hybrid electric vehicles, driving cycles.

1 Introduction

Due to the requirement of lower fuel consumption and emissions it is necessary
that the automotive industry comes up with new approaches. One of these are
hybrid electric vehicles (HEV) which have a much higher flexibility concerning
operation strategies and components compared to conventional vehicles utilizing
only a combustion engine. The propulsion system of HEVs consists of a conven-
tional combustion engine and electric machines. With the assistance of electric
machines it is possible to achieve higher efficiency, in particular by providing
energy recuperation in deceleration phases.

Nowadays engines and vehicles can be numerically simulated with high accu-
racy, which makes it easier to analyze different operation strategies and the con-
sequences of their modification. Our aim is to minimize the fuel consumption in

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 376–385, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

(Hybrid) Metaheuristics for Fuel Consumption Optimization of HEVs 377

exactly specified driving cycles of suchHEV computermodels. The vehicle is simu-
lated by the software GT-SUITE1 using physics-based one-dimensional modeling
thus being able to calculate the fuel consumption and the battery state of charge
(SOC) for a specific driving cycle. Depending on the duration of the driving cy-
cle, this can take several minutes on current hardware. In general, the fuel con-
sumption is influenced by a large number of adjustable parameters from which we
preselected a meaningful subset for optimization: velocities at which the vehicle
switches from parallel to series hybrid mode and vice versa, the SOC operating
limits and the gear shifting strategy. In parallel mode the internal combustion en-
gine (ICE) and/or the electric machines are used for propulsion while in series
mode only electric propulsion is provided utilizing the ICE to power the electric
generator. A detailed parameter description is given in Section 5. All n parame-
ters p = (p1, . . . , pn) of the HEV model are real-valued and have individual lower
and upper bounds [pmin

i , pmax
i], ∀i = 1 . . . n. The battery SOC is required to be

nearly identical at the beginning and the end of a driving cycle in order to guaran-
tee a fair comparison to other vehicles. So we considered the quadratic deviation
between the SOC at the beginning (SOC begin) and at the end (SOC end) of the
driving cycle. The objective function to be minimized is:

f(p) = wcons · cons(p) + wsdev · (SOC begin(p)− SOC end(p))
2

The fuel consumption is denoted by cons(p) and constants wcons ≥ 0 and
wsdev ≥ 0 are used for weighting the individual terms appropriately. A solution
p∗ is optimal if f(p∗) is minimal, so f(p∗) ≤ f(p), ∀ p. A direct determination
of proven optimal parameter settings is practically impossible due to the high
complexity of f , even obtaining the objective for one set of parameters by simu-
lation is quite time-consuming. So the goal was to find a heuristic optimization
strategy making it possible to reliably find a solution that is close to optimal only
requiring a limited number of simulations. Beginning with standard optimiza-
tion techniques diverse in most cases more efficient algorithms than Design Of
Experiments (DOE) [11], which is included in GT-SUITE, have been developed
by considering special properties of the problem. A genetic algorithm (GA) [9],
a downhill-simplex method [12], and an algorithm based on swarm intelligence
(PSO) [5] provided, after some specific tailoring, in preliminary experiments the
best results. Major features are: Starting solutions are not initialized randomly
but by a Monte Carlo search procedure to reduce the number of required it-
erations. In the GA’s recombination operator the choice which value is passed
on depends on the deviation of the parameter values from the two parent so-
lutions to the best solutions in the population. The simplex reduction in the
downhill simplex method is not applied here because it re-calculates all points
of the new simplex and this mostly ends up in worse objective function values
due to possibly unbalanced SOCs. The best solution from the PSO algorithm
is additionally improved by a surface-fitting algorithm. Finally, the individual
metaheuristics are combined to a hybrid optimization approach taking into ac-
count the strengths and weaknesses of the single procedures.

1 GT-SUITE is a software by Gamma Technologies, Inc., http://www.gtisoft.com

378 T. Krenek et al.

For a model of an existing HEV with complex operation strategy a fuel sav-
ing of about 33% compared to a related conventionally powered vehicle could be
achieved. The part our hybrid optimization algorithm contributes is about five
percent in comparison to setting the parameters by the methods implemented
in GT-SUITE. These standard optimization methods in particular have prob-
lems with the high number of parameters. Furthermore, we are able to show
that our proposed algorithm achieves better results on another simplified HEV
benchmark model too, see Section 5.

The following Section discusses related work, Section 3 presents the individual
metaheuristics which are then combined in Section 4 to a hybrid algorithm,
Section 5 shows experimental results, and Section 6 concludes the article.

2 Related Work

In GT-SUITE a Design of Experiments optimization method is implemented.
Here the search space is typically approximated by a quadratic or cubic polyno-
mial function based on a large number of simulated parameter sets distributed
in the search space. The minimum of this function is then derived analytically.
In [7] and [14] several optimization algorithms are applied to HEV models and
the authors state that the considered search space is highly non-linear with
non-continuous areas. Similarly to our problem, the goal is to minimize the fuel
consumption for a given driving cycle. As additional constraint they consider a
minimum requirement on vehicle dynamics. As simulation software ADVISOR2

is used and the applied optimization algorithms are taken from iSIGHT3,
VisualDOC4 and MATLAB5. As optimization procedures fmincon from MAT-
LAB, VisualDOC’s DGO and RSA, as well as the search strategies Sequential
Quadratic Programming (SQP) [13], DIviding RECTangle (DIRECT) [1] and a
GA are applied. Unfortunately, there is no information given about the imple-
mentation and configuration of the used algorithms, in particular concerning the
GA. The best result is achieved by the DIRECT method, the gradient strategies
can only find rather poor local optima.

In [2] and [3] among others the simulation software PSAT6 and its DIRECT
optimization algorithms, a GA, Simulated Annealing (SA) and PSO are applied
to a HEV model whereas SA and DIRECT are the most successful approaches.
The objective is the same as in [7] and [14].

Furthermore, in [3] a hybrid algorithm combining SQP with DIRECT is pre-
sented but only applied on a simpler test function. However, in few iterations
the global optimum is found in most cases. In [4] and [10] a multi-objective GA

2 ADVISOR (Advanced Vehicle Simulator) is a software from AVL,
http://www.avl.com

3 iSIGHT is a software from Simulia, http://www.simulia.com
4 VisualDOC is a software from VR & D, http://www.vrand.com
5 MATLAB is a software from MathWorks http://www.mathworks.de
6 PSAT (Powertrain System Analysis Toolkit) was developed by Argonne National
Laboratory, http://www.transportation.anl.gov/modeling simulation/PSAT

(Hybrid) Metaheuristics for Fuel Consumption Optimization of HEVs 379

is successfully applied to a HEV model, considering fuel consumption and emis-
sions minimization. Comparisons with other methods are not presented. In [15]
and [16] a PSO algorithm was proposed for a HEV model for improving a given
operation strategy. ADVISOR is used as simulation software. The SOC devia-
tion on the defined driving cycles is integrated in the objective function. Given
the characteristics of the vehicle the operation strategy is optimized resulting in
an improvement compared to the strategy before. How the original strategy has
already been optimized before is not stated. Compared to GT-SUITE parts of
the objective function can be calculated much faster in ADVISOR and PSAT by
directly solving mathematical functions. As a consequence, such models can be
simulated significantly faster and gradient strategies can be applied. However,
the benefit of using GT-SUITE is the much higher accuracy of the HEV model.
In the mentioned related work not only the operation strategy but also other
criteria, e.g. the battery capacity and the number of battery cells, are optimized.
The requirement of a balanced SOC is either considered as a side constraint or
by adding the difference to a balanced SOC as a penalty term to the objective
function. In the first case a large number of infeasible solutions are possibly
calculated, mainly by methods like DOE [11].

Most previous works use standard optimization methods from existing li-
braries without problem-specific adaptations, and different articles report differ-
ent optimization methods to work best. Unfortunately, a direct comparison of
these approaches is hardly possible since only few algorithmic details are avail-
able. Thus, it is difficult to draw general conclusions about appropriate methods
for the optimization of HEVs. GT-SUITE provides a DOE-based optimization
method too, however, in our studies we recognized that DOE can only handle
up to five parameters in reasonable time for our HEV models.

3 Metaheuristics

We now describe the new metaheuristic approaches we developed. For more de-
tails, in particular also deeper studies of the individual algorithms’ performances
and influences of strategy parameters, we refer to the first author’s master the-
sis [6], on which this article is based.

Monte-Carlo Search Method. The Monte-Carlo method [8] is primarily used
to generate manifold initial solutions for the other algorithms. The initial range
of values for each parameter is set to the entire range of possible values. Conse-
quently, in a first step only random solutions are generated. After each iteration
the parameter range is reduced by a factor and moved towards the best known
solution. Due to the fact that the algorithm mainly generates initial solutions
subject to further improvement we choose a factor between 0.8 and 0.9 and keep
the number of computed solutions constant.

Downhill-Simplex Method. This method [12], also known as Nelder-Mead
method, is based on a v-simplex, which is a polytope of dimension v defined by
v + 1 points spanning the convex hull. Each point corresponds to a particular

380 T. Krenek et al.

set of parameters together with its objective function value. By comparing the
different function values the tendency of the values and gradient directions are
approximated. In each iteration, the point with the worst value is replaced by a
newly derived one. In our implementation we omit the otherwise usual shrinking
of the whole simplex because it would be very time-consuming to re-calculate
the objective values of all points of the simplex. Furthermore, these new points
are likely to have an unbalanced SOC.

Genetic Algorithm (GA). In our GA [9] each individual is directly repre-
sented by a vector of real parameter values. The selection of solutions from the
population for pairwise recombination occurs uniformly at random. To recom-
bine two solutions p1, p2, for each parameter i = 1 . . . n, either p1i or p2i is
adopted. The choice which value is passed on considers the average deviation to
the d best solutions qj , j = 1 . . . d, in the population:

devi(p
k) =

1

d

d∑
j=1

|qji − pki | ∀k ∈ {1, 2}, ∀i = 1 . . . n

The probability of adopting the i-th parameter from parent pk is then defined as
P comb
i (pk) = 1− devi (p

k)/(devi(p
1)+ devi(p

2)). Furthermore, each parameter is
mutated with a small probability Pmut by assigning it a new random value within
its bounds. Once an offspring solution p′ has been generated and its objective
value f(p′) determined via simulation, a solution r is randomly selected from the
population and replaced with probability P rep = (f(r)− c)/(f(p′) + f(r)− 2c).
The correction value c ∈ [0,min{f(p′), f(r)}) is used to control the influence of
the objective values: the higher c the higher the probability of a new solution
with better objective value being chosen as new member of the population.

Particle-Swarm-Optimization (PSO). This optimization method was orig-
inally derived from the behavior of birds and shoals of fish [5]. Each solution
pj , j = 1 . . .m, corresponds to an individual of a swarm of size m moving within
the search space. The motion depends both on the best known solution of the
individual and the best solution of the entire swarm. First, m solutions are ran-
domly selected from the solution set of the Monte-Carlo search procedure to
form the initial population. For each individual j the so-far best “local” solution
pL,j encountered on its path is stored. Moreover, pG denotes the overall best
known solution. In each iteration the parameter set of each individual is modi-
fied depending on both the local and global best solutions. For each individual
sj a velocity vector vj ∈ [−1, 1]n is defined and updated as follows:

vji ← vji + αL · pL,ji − pji
pmax
i − pmin

i

+ αG · pGi − pji
pmax
i − pmin

i

+ rand
∀j = 1 . . .m,

∀i = 1 . . . n.

Constants αL, αG ≥ 0, with αL + αG = 1, control the influence of the local
and global best solutions, respectively, and rand is a random value uniformly
distributed in [−0.1, 0.1]. The positions (solutions) of the individuals are then

(Hybrid) Metaheuristics for Fuel Consumption Optimization of HEVs 381

updated by pji ← pji + vji · (pmax
i − pmin

i)/δ, where δ ≥ 1 controls the step size. If
a parameter steps out of its corresponding range, it is set to the corresponding
limit. The algorithm terminates after a specified number of iterations.

Surface-Fitting. We use surface-fitting to improve the best solution obtained
by the PSO algorithm in our hybrid metaheuristic approach, see Section 4. In
each iteration e ≥ 6 solutions are derived from the so far best solution by varying
two randomly selected parameters p1, p2 slightly. The range of the variation is
limited by the following factors: factor area is initialized with 1 and increases by
1 after every fourth solution. The factors (fit1,fit2) are continuously assigned the
values (−1,−1), (1,−1), (−1, 1) and (1, 1). The constant rad denotes the step size
relative to the range of feasible parameter values. For the chosen parameters i =
1 . . . 2 the parameter values are calculated by pi = pi+area ·fit i·rad ·(pmax

i −pmin
i).

The new solutions are evaluated and the objective function is approximated by
function c1 + c2 · p1 + c3 · p2 + c4 · p21 + c5 · p22 + c6 · p1 · p2. Coefficients c1 . . . c6
and the minimum of the approximation function are calculated using the GNU
Scientific Library and finally evaluated by simulation.

4 Hybrid Meta-heuristic (PSAGADO)

Each presented method has its own strenghts and weaknesses. On average the
GA was able to achieve the best results since by mutation it was possible to es-
cape from unpromising areas of the search space. However, rather good solutions
often could not be further improved. The results of the PSO and the downhill
simplex method are highly dependent on the chosen initial solutions. If only the
PSO is applied, the solutions have to be broader distributed in the search space
and should have nearly a balanced SOC. Our hybrid approach (Particle-Swarm
And Genetic Algorithm with Downhill-simplex Optimization, PSAGADO) com-
bines the previously presented algorithms trying to exploit their strengths. Initial
solutions are determined by the Monte-Carlo search method and stored in a so-
lution pool. As not much is known about the search space the PSO is well suited
to be the central algorithm, since it is a robust method considering solutions
with high diversity. After a certain number of iterations the best solution of the
PSO is improved by the surface-fitting procedure if possible. Surface-fitting is
only applied to the best solution because of runtime considerations. The GA is
applied next using the final swarm of the PSO as initial population. If most of
the individuals are similar, the GA still can lead to new best solutions by in-
creasing diversity by mutation. If the solutions are well distributed in the search
space recombination is frequently able to combine two good parameter sets to
a better one. After recombination two solutions are randomly chosen from the
population. If the new solution is better than both selected, one solution is re-
placed by the new solution and the other one by a random solution from the
initial solution pool to restrict similar solutions in the pool. Otherwise only the
chosen solution with the lower objective value will be replaced by the new solu-
tion. If the GA is able to find a new best solution, half of the solutions closest

382 T. Krenek et al.

Algorithm 1. PSAGADO

execute Monte-Carlo search and store all solutions as initial pool1
while termination criterion not met do2

execute PSO3
apply surface-fitting on the best solution of PSO4
execute GA5
if new best solution found then replace half of the solutions closest to best6
else7

execute downhill-simplex8
if no new best solution found then replace all solutions9

Table 1. Algorithm settings

Monte-Carlo resize = 0.89
SIMPLEX v = 15
SURFACE-FITTING e = 12, rad = 0.02

PSO αL = 0.3, αG = 0.7, m = 30, δ = 10
GA c = min{f(p′), f(r)} − 2, d = 10, Pmut = 10%

to the best solution are replaced by random solutions from the pool to increase
diversity and prevent too much focus on the best solution. The distance D(p) of
parameter set p to the best solution pbest is calculated by

D(p) =

n∑
i=1

(
|pi − pbesti |
pmax
i − pmin

i

)2

.

If the GA is not able to achieve any improvement, the simplex method is applied.
This usually occurs when most of the PSO solutions are very similar. Although
this could mean that most solutions are near the global optimum bad solutions
may still exist possibly resulting in a shift of the simplex and leading to a new
best solution. If the simplex method leads to an improvement, the process con-
tinues with the PSO. However, if most solutions are quite similar and the PSO
and GA cannot achieve new best solutions then the simplex method usually re-
sults in no improvement, too. In this case a restart is performed by replacing all
solutions but the so-far best with solutions from the initial pool and continuing
with the PSO. Algorithm 1 shows the implementation of PSAGADO.

5 Experimental Results

We applied PSAGADO to a complex real-world and a simplified benchmark
HEV model. Unfortunately we are not allowed to publish details for the real-
world model due to a non-disclosure agreement with the manufacturer. Overall,
a fuel saving of about 33% compared to a related conventionally powered vehi-
cle could be achieved, and the remarkable part PSAGADO contributes is about
five percent in comparison to the parameter setting found by DOE integrated in
GT-SUITE. As simplified benchmark HEV model we used the “parallel-series”
example supplied by GT-SUITE and compare PSAGADO to the integrated DOE
and the individual metaheuristics. To further reduce simulation times a shorter

(Hybrid) Metaheuristics for Fuel Consumption Optimization of HEVs 383

Table 2. Final objective values of PSAGADO, DOE, GA, SIMPLEX and DOE

Runs Sol. p. Run Worst Best Average Std.Dev.

PSAGADO 10 3600 207.52 206.69 206.92 0.23

PSO 10 3600 229.93 207.22 212.43 12.85
GA 10 3600 208.64 206.98 207.23 0.25
SIMPLEX 10 3600 230.57 207.94 215.93 14.10

DOE 10 3600 210.87 210.19 210.40 0.23

driving-cycle is used here altogether leading to an evaluation time for one param-
eter set of about 30 seconds. Thus, the runtime of the optimization algorithms
can be neglected compared to the simulation times. Important algorithm specific
settings are shown in Table 1. The Monte-Carlo search method calculates 35 so-
lutions at each of 15 total iterations. The population size for the PSO and GA is
25. In each optimization cycle the PSO is iterated ten times, the surface-fitting
method is applied five times and in the GA 60 new solutions are derived. In
case of no improvement, the simplex will be updated 15 times. The constants
in the objective function are set to wcons = 3.6 and wsdev = 9. All parameter
values have been determined in preliminary tests to fit the limited number of
simulations. The fuel consumption cons is measured in mg, the SOC in percent.
The parameters to be optimized are the gearshift strategy defined by gear1up to
gear4up, the charging limits of the battery SOCmin, SOCmax and hybrid mode
thresholds hev1 , hev2 specifying the velocities switching from parallel to series
mode and vice versa. DOE uses the latin-hypercube method to select the pa-
rameter sets and approximates the mathematical model by a cubic replacement
function. Results obtained from 10 runs with 3600 evaluated solutions per run
for each considered algorithm are summarized in Table 2.

In the optimization progress we observed several local optima from which one
cannot escape by changing only one parameter. If theMonte-Carlomethod leads to
a poor local optimum it may take some time until PSAGADO gets out of it mainly
because of the low diversity of the initial solution pool. To prevent this the range
reduction factor could be increased or the number of iterations in theMonte-Carlo
search procedure could be reduced. Another possibility would be to entirely skip
the Monte-Carlo method and use only random solutions. However, since the num-
ber of simulations is strictly limited we decided to initially restrict the search space
even if there is a risk of getting stuck in a local optimum. DOE often fails because
of an inaccurate model approximation in the relevant areas containing good solu-
tionswhich canbe explainedby the rather naive uniform sampling strategy.Table 3
shows the best solutions obtained by the individual algorithms; notable are the re-
markably strong differences in the parameter values. Among PSO, SIMPLEX and
the GA, the GA performed best, using mutation to escape from unfavorable areas
of the search space. The results of the PSO strongly depend on the diversity and
the SOC balance of the initial solutions. In the downhill-simplex method it is nec-
essary to start with solutions with almost balanced SOC otherwise it is difficult
to find good solutions. Characteristic optimization progresses of all methods are
shown in Fig. 1, where worst-case scenarios of downhill-simplex method and PSO
are shown together in one curve.

384 T. Krenek et al.

Table 3. Obtained best parameter sets of PSAGADO, PSO, SIMPLEX, GA and DOE

Parameter Boundaries PSAGADO PSO SIMPLEX GA DOE

hev1 [km/h] 65–100 65.00 65.00 65.04 65.02 100.00
hev2 [km/h] 10–60 60.00 60.00 59.95 59.82 60.00
SOCmax 0.7–0.9 0.79 0.70 0.78 0.73 0.90
SOCmin 0.1–0.7 0.50 0.57 0.47 0.55 0.10
gear1up [km/h] 12–30 29.93 12.93 27.08 29.62 25.87
gear2up [km/h] 32–50 47.84 42.01 38.45 47.19 44.69
gear3up [km/h] 52–70 57.53 57.87 59.11 57.52 53.72
gear4up [km/h] 72–100 72.00 72.10 87.63 72.00 76.13

Fig. 1. Characteristic optimization progresses

6 Conclusions and Future Work

We considered the problem of optimizing diverse control strategy parameters of
hybrid vehicles in order to minimize fuel consumption over a given driving-cycle.
This problem is characterizedby the relatively large number of real-valuedparame-
ters, themulti-modality and discontinuity of the search space, and in particular the
expensive simulations required for evaluating solutions. Consequently, we investi-
gated diverse heuristic strategies includingMonteCarlo andDownhill-Simplex ap-
proaches, a specifically adaptedGA,andaPSO.Considering the individual proper-
ties of these methods, we finally combined them in the hybrid PSAGADO. Results
ona complex real-world scenariowere remarkable,withPSAGADO’s solution lead-
ing to a reduction of the fuel consumption of about five percent in comparison to a
standard optimization strategy provided by the GT-SUITE simulator. As we are
not allowed to givemore details here on these results, a simplifiedbenchmarkmodel
was further used for comparison, also indicating the superiority of PSAGADOover
the individual metaheuristics and GT-SUITE’s DOE.

In futureworkmore testing is necessary and the search space shouldbe studied in
more detail in order to possibly exploit certain features in the optimization inbetter
ways. A promising idea seems to be to approximate the objective function with a
neural network which is refined at the same time as the optimization is performed.

(Hybrid) Metaheuristics for Fuel Consumption Optimization of HEVs 385

References

1. Finkel, D.: Direct optimization algorithm user guide. North Carolina State Uni-
versity, Center for Research in Scientific Computation 2 (2003)

2. Gao, D., Mi, C., Emadi, A.: Modeling and simulation of electric and hybrid vehicles.
Proceedings of the IEEE 95(4), 729–745 (2007)

3. Gao, W., Porandla, S.: Design optimization of a parallel hybrid electric powertrain.
In: IEEE Conference on Vehicle Power and Propulsion, pp. 6–12. IEEE (2005)

4. Huang, B., Wang, Z., Xu, Y.: Multi-objective genetic algorithm for hybrid elec-
tric vehicle parameter optimization. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, pp. 5177–5182 (2006)

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

6. Krenek, T.: Verbrauchsminimierung eines Hybridfahrzeuges im Neuen Eu-
ropäischen Fahrzyklus. Master’s thesis, Vienna University of Technology, Institute
of Computer Graphics and Algorithms, Vienna, Austria (2011)

7. Markel, T., Wipke, K.: Optimization techniques for hybrid electric vehicle analysis
using advisor. In: Proceedings of the ASME International Mechanical Engineering
Congress and Exposition, New York, USA, pp. 11–16 (2001)

8. Meywerk, M.: CAE-Methoden in der Fahrzeugtechnik. Springer, Heidelberg (2007)
9. Michalewicz, Z.: Heuristic methods for evolutionary computation techniques. Jour-

nal of Heuristics 1(2), 177–206 (1996)
10. Montazeri-Gh, M., Poursamad, A., Ghalichi, B.: Application of genetic algorithm

for optimization of control strategy in parallel hybrid electric vehicles. Journal of
the Franklin Institute 343(4-5), 420–435 (2006)

11. Myers, R., Montgomery, D., Anderson-Cook, C.: Response surface methodology:
process and product optimization using designed experiments. Wiley (2009)

12. Nelder, J., Mead, R.: A Simplex Method for Function Minimization. Oxford Jour-
nals - The Computer Journal, British Computer Society 7(4), 308–313 (1965)

13. Nocedal, J., Wright, S.: Numerical optimization. Springer, Heidelberg (2006)
14. Wipke, K., Markel, T., Nelson, D.: Optimizing energy management strategy and

degree of hybridization for a hydrogen fuel cell SUV. In: Proceedings of 18th Elec-
tric Vehicle Symposium, Berlin (2001)

15. Wu, J., Zhang, C., Cui, N.: PSO algorithm-based parameter optimization for HEV
powertrain and its control strategy. International Journal of Automotive Technol-
ogy 9(1), 53–59 (2008)

16. Wu, X., Cao, B., Wen, J., Bian, Y.: Particle swarm optimization for plug-in hybrid
electric vehicle control strategy parameter. In: IEEE Conference on Vehicle Power
and Propulsion, Harbin, China, pp. 1–5 (2008)

Improved Topological Niching

for Real-Valued Global Optimization

Mike Preuss

Chair of Algorithm Engineering, Computational Intelligence Group,
Dept. of Computer Science, Technische Universität Dortmund, Germany

mike.preuss@tu-dortmund.de

Abstract. We show how nearest-better clustering, the core component
of the NBC-CMA niching evolutionary algorithm, is improved by ap-
pyling a second heuristic rule. This leads to enhanced basin identification
for higher dimensional (5D to 20D) optimization problems, where the
NBC-CMA has previously shown only mediocre performance compared
to other niching and global optimization algorithms. The new method is
integrated into a niching algorithm (NEA2) and compared to NBC-CMA
and BIPOP-CMA-ES via the BBOB benchmarking suite. It performs
very well on problems that enable recognizing basins at all with reason-
able effort (number of basins not too high, e.g. the Gallagher problems),
as expected. Beyond that point, niching is obviously not applicable any
more and random restarts as done by the CMA-ES are the method of
choice.

1 Introduction

The idea to apply niching in evolutionary optimization (EC) is almost as old as
EC itself, starting with Sharing and Crowding in the 1970s. The general scheme
is to host multiple explicitly or implicitly separated populations in one optimiza-
tion run and by driving these into the better regions of a multimodal problem
landscape, provide more than one good solution at once. However, they can also
be considered global optimizers as on complex landscapes, it is necessary to re-
trieve as many good local optima as possible to determine the global one (or
at least a very good one). Premature convergence has never been completely
ruled out and probably will never be, otherwise one would have to safely rec-
ognize where the global optimum is before actually approaching it. We believe
that while it is possible to identify some basins of attraction before too many
function evaluations are spent, trying to detect which of these would host the
global optimum with some safety is impossible without actually applying several
restricted (or local) searches.

Generally, niching relies on geometrical properties of the populations (as dis-
tances), which makes it less and less applicable if the number of search space
dimensions rises. Most methods are experimentally tested in 2D and maybe 3 to
5D, rarely on 10 or more dimensions. [9] gives a good overview over the ”clas-
sical” niching strategies and some of their newer variants, also taking different

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 386–395, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Topological Niching for Real-Valued Global Optimization 387

Clearing procedures into account. Today, there are still new works in the niching
context every year, some of the most recent being [8], [10], and [5]. And we can
assess some development from fixed niche radii towards either adaptive radii
or even shapes [8], while the topological methods do completely without radii,
with [10] and without [7] employing additional evaluations. An interesting re-
lated approach that follows more the parallelization ideas of island models [3] is
the Particle Swarm CMA-ES [4]. It is especially designed for multi-funnel land-
scapes (arguably second-order multimodal problems) and shows good results on
the CEC 2005 test set even for 10 to 50 dimensions.

As documented in [10], many niching methods perform quite well for the
lower dimensional classical test problems as 6-hump camel back, but extensive
testing on recent benchmarks as the BBOB 2009/2010 test set1 is rarely seen.
To our knowledge, the nearest-better clustering cumulative matrix adaptation
evolution strategy (NBC-CMA-ES) [5] is the only niching algorithm which has
been investigated on this benchmark yet. In this work, we enhance the NBC-
CMA by two strong modifications:

a) We add a second heuristic rule to the basin identification mechanism that
is known as nearest-better clustering that is especially tasked at higher di-
mensional search spaces.

b) We change the local search scheme of the NBC-CMA from a parallel one
to a more sequential one that is more robust against basin identification
mismatches.

The resulting algorithm is termed NEA2 and we experimentally investigate how
each of the modifications increases performance either concerning basin identi-
fication or by comparing to the NBC-CMA on the BBOB problem collection.
However, we start with giving a very rough general picture of the functioning of
the NBC-CMA in order to enable understanding the changes.

2 NBC-CMA General Scheme

The algorithm starts with setting out a larger start population (the default size
is 40D) as evenly as possible in the search space. This can be done by employing
a space-filling method as Latin Hypercube Sampling (LHS) but in principle, a
uniform random distribution may also be used, this just lowers the basin identi-
fication quality gradually. On this sample, the NBC (see next section) is run and
returns a split into separate populations. These are set up as separate CMA-ES
runs, respecting the default population size of the CMA-ES according to the
search space dimensionality: λ = 4+ �3ln(D)� (CMA-ES default parameters are
collected nicely here [2]). These separate CMA-ES instances are then run for
one generation, the resulting individuals collected, and the basin identification
mechanism applied again as described above, starting the loop again. Learned
step-sizes and covariance-matrices are stored also in the individuals and after

1 http://coco.gforge.inria.fr/doku.php

http://coco.gforge.inria.fr/doku.php

388 M. Preuss

clustering and redistributing individuals into populations, each population uses
the values found in the best individual (otherwise these values could not be
adapted over time). The CMA-ES restart conditions are also applied, so that in
case of stagnation the whole algorithm is started over.

As the NBC returns a previously unknown number of basins, and taking into
account that it is a heuristic and can fail (if so often by recognizing several basins
where there is only one), it is necessary to limit the maximum number of niches
pursued at the same time. Of the identified niches, only the best nichmax ones
are considered, where nichmax has a default value of 20. This is connected to
a major problem for the NBC-CMA: If too many basins have been erroneously
detected, many evaluations are wasted because several populations follow the
same peak and eventually progress to the same optimum. This downgrades the
performance enormously on very simple functions (e.g. the sphere function).
Thus, we clearly have a strong motivation to increase the reliability of NBC, the
basin identification method.

3 Nearest Better Clustering with Rule2

This basin identification method has been introduced in [6]. It works by connect-
ing every search point in the population to the nearest one that is better and
cutting the connections that are longer than 2× the average connection. The
remaining connections determine the found clusters by computing the weakly
connected components. The reasoning behind cutting the longest connection is
that they are very likely to reach out into another basin; these points seem to
be locally optimal, at least considering the given sample. The scheme has huge
advantages compared to other clustering methods as no additional evaluations
beside the initial scan are needed, and neither shape nor size of the basins is
predefined but recognized from the sample. It works very well for a reasonably
large populations in two or three dimensions, but increasingly fails if the number
of dimensions increases.

Therefore, we now add a second additional cutting rule: For all search points
that have at least 3 incoming connections (it is the nearest better point for at
least 3 others), we divide the length of its own nearest-better connection by
the median of its incoming connections. If this is larger than a precomputed
correction factor b, the outgoing connection is cut (and we have one additional
cluster). Both rules are applied in parallel, that is, the edges to cut due to
rule 2 must be computed before actually cutting due to rule 1. Edges cannot
be cut more than once, so if both rules apply, this is not specially treated.
Algorithm 1 presents the updated NBC method containing both rules. As the
basin identification capability of rule 1 in 2D seems to be sufficient, rule 2 is only
applied in at least 3 dimensions.

The motivation for rule 2 was that in a sufficiently large samples (at least
around 40×D), often points with several incoming connections are found whose
outgoing edge is not cut with rule 1 because it is longer than all the incoming
ones but not one of the longest of the the whole sample. However, determination

Improved Topological Niching for Real-Valued Global Optimization 389

Algorithm 1. Nearest-better clustering (NBC) with rule2

compute all search points mutual distances;1

create an empty graph with num(search points) nodes;2

// make spanning tree:

forall the search points do3

find nearest search point that is better; create edge to it;4

// cut spanning tree into clusters:

RULE1: delete edges of length > φ ·mean(lengths of all edges);5

RULE2: forall the search points with at least 3 incoming and 1 outgoing edge6

do
if length(outgoing edge)/median(length(incoming edges)) > b then7

cut outgoing edge;8

// find clusters:

find connected components;9

of the correction factor b for rule 2 is not as trivial as setting the cutting factor to
2 for rule 1. It is experimentally derived and presumed to depend on D and the
sample size S. As we want to recognize only one cluster on unimodal problems
and ideally two or more on multimodal problems, we employ two extreme test
functions, namely the sphere (2) and a deceptive function (1) with 2D optima,
located in the corners of the hypercube, restricting the search space to [0, 1]D.

dec(x) =

D∑
i=1

1− 2 ∗ abs(0.5− xi) (1)

sphere(x) =
D∑
i=1

(xi − 0.5)2 (2)

Figure 1 shows the recognized number of clusters on our two problems while
varying b for up to 20D and sample sizes of 300. This already provides a good
idea how to set b in order to prevent obtaining more than 1.1 clusters on average
for the sphere, and it also shows that with these values of b, we can still expect
to obtain at least 2 clusters on average on the deceptive function (white areas).
However, the corridor is shrinking for higher dimensions. By applying a simple
interval search method for finding the right b for every combination of (S,D),
using at least 100 repeats for every measurement, we obtain a sequence of points
we can use for a linear regression over log10(S) . This makes sense as the figure
already shows a near linear structure (in logarithmic scaling). The resulting
formula is given in (3).

b(S,D) = (−4.69 ∗ 10−4 ∗D2 + 0.0263 ∗D + 3.66/D− 0.457) ∗ log10(S)
+7.51e− 4 ∗D2 − 0.0421 ∗D − 2.26/D+ 1.83 (3)

390 M. Preuss

b

lo
g1

0(
el

em
en

ts
)

1.6

1.8

2.0

2.2

2.4

2.6

1.5 2.0 2.5

 : dims { 3 } : dims { 4 }

1.5 2.0 2.5

 : dims { 5 }

 : dims { 6 } : dims { 8 }

1.6

1.8

2.0

2.2

2.4

2.6
 : dims { 10 }

1.6

1.8

2.0

2.2

2.4

2.6
 : dims { 12 }

1.5 2.0 2.5

 : dims { 15 } : dims { 20 }

1.0

1.2

1.4

1.6

1.8

2.0

b
lo

g1
0(

el
em

en
ts

)

1.6

1.8

2.0

2.2

2.4

2.6

1.5 2.0 2.5

 : dims { 3 } : dims { 4 }

1.5 2.0 2.5

 : dims { 5 }

 : dims { 6 } : dims { 8 }

1.6

1.8

2.0

2.2

2.4

2.6
 : dims { 10 }

1.6

1.8

2.0

2.2

2.4

2.6
 : dims { 12 }

1.5 2.0 2.5

 : dims { 15 } : dims { 20 }

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 1. Number of clusters found over up to 300 elements in dimensions 3 to 20, by
applying different values for correction factor b. Left: Sphere (we must not obtain more
than 1 cluster here), right: Deceptive test function with 2D basins. b has been chosen
to result in at most 1.1 clusters on the sphere. The gap to the corresponding value for
the deceptive function shows that still at least 2 clusters can be found reliably here up
to around 20D.

3.1 Experiment: Effectiveness of Rule 2

In order to assess if rule 2 helps to identify more (meaningful) clusters than be-
fore especially in higher dimensions we compare the average number of obtained
clusters and the pairwise accuracy of all points on the sphere and the deceptive
problem with and without applying rule 2. The pairwise accuracy (pa) counts
the fraction of the points belonging to the same basin of attraction of all pairs
of points (without ordering) that have been put into the same cluster by the
clustering method. Note that the pa measure gets very small rapidly if the num-
ber of clusters is much lower than the one of the existing basins (some clusters
cover several basins), but it may still be a good first orientation concerning the
quality of a clustering.

Setup. We run the clustering with and without rule 2 in 3,4,5,6,8,10,12,15,20 di-
mensions, on the sphere and the deceptive function, respectively, with 50 repeats.
The sample sizes are always 40×D.

Task. To assess a successful improvement (due to rule 2), we demand that a)
the average number of obtained clusters on the deceptive function is signifi-
cantly higher (Wilcoxon rank-sum test at 5%) than the number of clusters with
rule 1 alone, b) the cluster numbers on the sphere function do not surpass 1.1
on average, and b) that the pairwise accuracy for the case with rule 2 is sig-
nificantly (same test) better than the one without at least up to 10 dimensions

Improved Topological Niching for Real-Valued Global Optimization 391

(10 dimensions means 1024 optima, as the pa has quadratic nature, the values
will become nearly 0 quickly if D increases).

Results/Visualization. The mean numbers of clusters and pairwise accuracies on
the deceptive function are given on the right side of fig. 2 (the left side gives an
example in 3D), on the sphere function themethod always returns 1without rule 2,
themean cluster numbers with rule 2 are: 1.06, 1, 1.1, 1.08, 1.1, 1.08, 1.16, 1.14, 1.18
in dimensions 3, 4, 5, 6, 8, 10, 12, 15, 20. The difference in cluster numbers on the
deceptive function is significant for all dimensions, and for the accuracies up to
dimension 15.

Observations. Cluster numbers recognized with rule 2 increase up to around 6
for ten dimensions, then fall again. Without rule 2, values are practically 1 for
D > 3. The accuracy values for rule 2 are always around double the size than
without.

Discussion. It is clear that the deceptive function resembles a more or less ideal
case, real problems may be much more difficult. Nevertheless, it is important
that the improved clustering method at least works well under these conditions.
It clearly does so, as seen from the figures, for D > 3 the difference is enormous.
Required statistical significance has also been achieved, so that we can expect to
improve also the performance of a niching method built on the improved basin
identification method we deliver. However, the pa measure is a bit difficult to
handle as its values get very small with increasing number of basins. One may
think of an alternative.

dim

m
ea

n(
#c

lu
st

er
s)

1

2

3

4

5

6

5 10 15 20

●

● ● ● ● ● ● ● ●

●
●

●

● ●

●

●
●

●

dim

lo
g1

0(
m

ea
n(

pa
))

−6

−5

−4

−3

−2

−1

5 10 15 20

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

Fig. 2. Left: Example clustering on the 3D deceptive test function, the 120 points are
colored per cluster, gray lines are the nearest better edges, blue lines represent the
edges cut due to rule 1, red lines the ones cut due to rule 2. Right: Average number of
recognized clusters (top) and pairwise accuracies (bottom) for 40×D points, with rule
2 (red) and without (blue). Note the logarithmic scaling in the lower figure, Absolute
values for red are constantly about factor 2 higher.

392 M. Preuss

4 NEA2: Parallel Niching and Sequential Local
Optimization

The NBC-CMA as suggested in [5] had its difficulties with performing ade-
quately on unimodal functions. The reason is that as the NBC basin identifi-
cation mechanism is a heuristic, it is prone to erroneously building more than
one cluster where this is unnecessary. The new variant of the algorithm we sug-
gest here, NEA2, overcomes this problem by switching from a BFS-like to a
DFS-like search in which the clusters are treated sequentially sorted according
to their best members (best first). Should the problem be less multimodal then
detected, (e.g. unimodal), NEA2 would perform very similar to the CMA-ES
(without heuristic population enlargement as e.g. implemented by the IPOP- [1]
and BIPOP-CMA) as every start point leads to the same optimum.

Another advantage of a sequential method is that it is much easier to detect
if we approach an already found local optimum again because we already know
the local optimum approximations resulting from the previous ”local searches”.
However, this is currently not exploited. We have to admit that changing from
parallel to sequential searches is unavoidable because many more clusters are
now found also in higher dimensions, where NBC-CMA detected only one. Sum-
marizing, the whole NEA2 method works as given in algorithm 2.

Algorithm 2. NEA2 (with updated NBC)

distribute an evenly spread sample over the search space;1

apply the NBC to separate the sample into populations according to detected2

basins;
forall the populations do3

run a CMA-ES until restart criterion is hit;4

// start all over:

if !termination then5

goto step 16

5 Experimental Comparison

It is clear that the BBOB test set of 24 functions does not resemble the ideal test
bed for niching methods as one would never employ one if it is highly likely that
the treated problem is unimodal. However, we compare the new variant NEA2 to
its ancestor NBC-CMA and also to the BIPOP-CMA-ES (winner of the BBOB
2009 competition) on this benchmark suite because a) there is a considerable
amount of data and knowledge on the performance of different algorithm types
generated during the last two BBOB competitions, and b) there are at least

Improved Topological Niching for Real-Valued Global Optimization 393

some multimodal functions without strong global structure (which would be the
setting niching algorithms are targetted at). These functions are the one in the
last group, f20 (Schwefel), f21 (Gallagher 1), f22 (Gallagher 2), f23 (Katsuuras),
and f24 (Lunacek). While f20 can be considered a deceptive problem, f21/f22 are
moderately multimodal, f23/f24 are very highly multimodal and f24 additionally
possesses a funnel structure.

Setup. NEA2 is run with a maximum of 300, 000 function evaluations as was
done with NBC-CMA in [5]. This may not enough for a full picture, but enables
a first comparison. NEA2 employs an initial sample of 40 × D that is spread
over the search space by means of an LHS (Latin Hypercube Sampling). All
CMA-ES specific parameters (used inside the NEA2) are set to their defaults,
the initial step size is 1.5. NBC-CMA had used an initial sample of 100, a fixed
population size of μ = 5, λ = 10, and a maximum of 20 concurrent populations.
Runs are immediately stopped if the BBOB frameworks signals hitting the global
optimum. We run over the dimensions 2, 3, 5, 10, 20, all 15 instances provided by
the BBOB set.

Task. We require that we see improvement of NEA2 in comparison to the NBC-
CMA in many cases, and few performance losses (over the 5 functions and 5
different dimensions. This is not a very formal criterion, but the benchmark set
is a bit too small to do final decisions anyway.

Results/Visualization. Performance pictures as generated by the BBOB tools
are provided in figure 3. Counting the number of improvements (over problems
and dimensions, together 25) results in 11 improvements, 3 losses, and 11 cases
of equal (or no) performance. The log files indicate that the number of basins
identified is usually much higher for the NEA2 than for the NBC-CMA, espe-
cially in 5D and up. Note that small differences should not be over-interpreted
as we have only 15 repeats on different instances, so a considerable amount of
noise in the result can be expected.

Observations. On the Schwefel problem, not much difference between NBC-CMA
and NEA2 is visbible, even on the Gallagher problems, the difference is small.
However, on f23 and f24, NEA2 is clearly better than NBC-CMA (although only
in small dimensions).

Discussion. The very similar behavior of NBC-CMA and NEA2 (while still
being better than the BIPOP-CMA-ES) on the Gallagher problems is a bit
disappointing. Obviously, a better clustering did not help to speed up search
here. However, on f24 and especially f23, there is an unexpected clear difference.
As these functions are highly multimodal, better clustering should be of limited
importance. We are currently not able to give a good explanation for this, but
it seems clear that the basin identification plays some role because in D > 3,
especially on f23, it obviously gets unproportionally more difficult to obtain the
global optimum for NEA2.

394 M. Preuss

2 3 5 10 20 40

0

1

2

3

4

5

6
20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6
21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6
22 Gallagher 21 peaks

2 3 5 10 20 40

0

1

2

3

4

5

6

7
23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7
24 Lunacek bi-Rastrigin

BIPOP-CMA-ES

NBC-CMA

NEA2

Fig. 3. Performance comparison of NEA2, NBC-CMA and BIPOP-CMA-ES on the
5 multimodal problems without strong global structure the BBOB test set provides.
X-axis: problem dimension, y-axis: evaluations in log10-scale. Note that NEA2 and
NBC-CMA have been allowed a maximum of 3× 105 evaluations only.

6 Summary and Conclusions

We have shown that by adding a second heuristic rule to the nearest-better
clustering algorithm (NBC), its performance in basin identification is greatly
improved. However, more data on multimodal test functions with known basins
or at least local optima is needed to see how large this improvement is on
functions that have not been taken into account while designing the heuristic.

Improved Topological Niching for Real-Valued Global Optimization 395

As found in sec. 3.1, it may also make sense to think of another accuracy measure
to rate different clusterings when the true basins are known.

Concerning the comparison of the proposed NEA2 algorithm to the NBC-
CMA, we can attest slight improvements, and at the same time we obtain many
more clusters to start with, which could be interesting for deriving some knowl-
edge about the treated problem quickly (e.g. its degree of multimodality). How-
ever, on the BBOB set it is currently not possible to check the accuracy of the
obtained clustering easily. This deserves some further testing, also employing
different problem generators which provide more support in this respect (but
unfortunately much less in others as automated visualization).

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, Edinburgh, UK, September 2-4, pp. 1769–1776. IEEE Press (2005)

2. Hansen, N.: The CMA Evolution Strategy: A Tutorial,
http://www.lri.fr/~hansen/cmatutorial.pdf (version of June 28, 2011)

3. Martin, W.N., Lienig, J., Cohoon, J.P.: Island (migration) models: evolutionary
algorithms based on punctuated equilibria. In: Handbook of Evolutionary Compu-
tation, pp. pp. C6.3:1–C6.3:16. Institute of Physics Publishing, Bristol (1997)

4. Müller, C.L., Baumgartner, B., Sbalzarini, I.F.: Particle swarm CMA evolution
strategy for the optimization of multi-funnel landscapes. In: Proceedings of the
Eleventh Congress on Evolutionary Computation, CEC 2009, pp. 2685–2692. IEEE
Press (2009), http://dl.acm.org/citation.cfm?id=1689599.1689956

5. Preuss, M.: Niching the CMA-ES via nearest-better clustering. In: Proceedings of
the 12th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO 2010, pp. 1711–1718. ACM (2010)

6. Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and
disruptive recombination in (μ + /, λ)-EA on multimodal fitness landscapes.
In: Beyer, H.G., et al. (eds.) Proc. Genetic and Evolutionary Computation
Conf. (GECCO 2005), Washington D.C, vol. 1, pp. 865–872. ACM Press, New
York (2005)

7. Preuss, M., Stoean, C., Stoean, R.: Niching foundations: basin identification on
fixed-property generated landscapes. In: Proceedings of the 13th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO 2011, pp. 837–844. ACM
(2011)

8. Shir, O.M., Emmerich, M., Bäck, T.: Adaptive Niche Radii and Niche Shapes
Approaches for Niching with the CMA-ES. Evolutionary Computation 18(1), 97–
126 (2010)

9. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on
evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2006, pp. 1305–1312. ACM (2006)

10. Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by
means of a topological species conservation algorithm. IEEE Transactions on Evo-
lutionary Computation 14(6), 842–864 (2010)

http://www.lri.fr/~hansen/cmatutorial.pdf
http://dl.acm.org/citation.cfm?id=1689599.1689956

Towards a Deeper Understanding of Trade-offs

Using Multi-objective Evolutionary Algorithms

Pradyumn Kumar Shukla, Christian Hirsch, and Hartmut Schmeck

Karlsruhe Institute of Technology – Institute AIFB
76128 Karlsruhe, Germany

Abstract. A multi-objective optimization problem is characterized by
multiple and conflicting objective functions. The conflicting nature of the
objectives gives rise to the notion of trade-offs. A trade-off represents the
ratio of change in the objective function values, when one of the objective
function values increases and the value of some other objective function
decreases. Various notions of trade-offs have been present in the classi-
cal multiple criteria decision making community and many scalarization
approaches have been proposed in the literature to find a solution satis-
fying some given trade-off requirements. Almost all of these approaches
are point-by-point algorithms. On the other hand, multi-objective evo-
lutionary algorithms work with a population and, if properly designed,
are able to find the complete preferred subset of the Pareto-optimal set
satisfying an a priori given bound on trade-offs. In this paper, we analyze
and put together various notions of trade-offs that we find in the classi-
cal literature, classifying them into two groups. We then go on to pro-
pose multi-objective evolutionary algorithms to find solutions belonging
to the two classified groups. This is done by modifying a state-of-the-
art evolutionary algorithm NSGA-II. An extensive computational study
substantiates the claims of the paper.

Keywords: Multi-objective optimization, NSGA-II, Trade-offs.

1 Introduction

Many real-world, mathematical and economical problems are characterized by
the presence of several objective functions which are (at least partially) conflict-
ing (see [3,12]). These problems are called multi-objective optimization problems
(MOPs). Solving a problem results in a set of Pareto-optimal solutions, where,
without loss of generality, we consider minimization of all the objective functions.
A solution is termed as Pareto-optimal if a decrease in one of the objective func-
tions can only happen at the expense of an increase in another objective function.
Trade-offs are a basic tool in decision making and we find various notions in the
classical multiple criteria decision making (MCDM) community (see [12]).

Many scalarization approaches ([5,16]) have been proposed in the literature
to find a solution satisfying some given trade-off requirements. Almost all of
these approaches are point-by-point algorithms and one solution is obtained at
the end of the algorithm [5,12]. On the other hand, evolutionary multi-objective

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 396–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards a Deeper Understanding 397

algorithms work with a population and, if properly designed, are able to find
the complete preferred subset of the Pareto-optimal set satisfying an a priori
given bound on trade-offs. Although over the last decades evolutionary multi-
objective optimization algorithms have been successfully applied in finding the
complete set (or a representative subset, in case of continuous problems) of
Pareto-optimal solutions, we find quite less work in designing evolutionary multi-
objective algorithms for finding the complete preferred subset of Pareto-optimal
solutions. Among the many reasons for this is a proper lack of understanding of
the various trade-off concepts that have been prevalent in the MCDM literature.
Trade-offs require comparison between two points, and hence population based
algorithms, like evolutionary algorithms, are a natural choice for finding solutions
that satisfy a priori bounds on the trade-offs.

In this paper, we analyze and put together various notions of trade-offs that
we find in the classical literature, classifying them into two groups. This classi-
fication is based on domination ideas. We then go on to propose multi-objective
evolutionary algorithms to find solutions belonging to the two classified groups.
This is done by modifying a state-of-the-art evolutionary algorithm NSGA-II.
Moreover, an extensive computational study is used to test the proposed algo-
rithms on a large variety of difficult test problems.

This paper is divided into five sections of which this is the first. The next
section presents (an inexhaustive list of) various notions of trade-offs that we
find in literature. These are classified into two groups in the same section. Section
3 discusses some (existing and new) multi-objective evolutionary algorithms for
finding solutions belonging to the two groups. These algorithms are tested on
a variety of test-problems in Section 4. Finally, conclusions and outlook are
presented in the last section.

2 Trade-offs and Their Classification

Let F1, . . . , Fm : Rn → R and X ⊆ Rn be given. Consider the following multi-
objective optimization problem (MOP):

minF(x) := (F1(x), F2(x), . . . , Fm(x)) s.t. x ∈ X.

A central optimality notion for the above problem is that of Pareto-optimality. A
point x∗ ∈ X is called Pareto-optimal if no x ∈ X exists so that Fi(x) ≤ Fi(x

∗)
for all i = 1, . . . ,m with strict inequality for at least one index i. Let Xp(F, X)
denote the set of Pareto-optimal points of the above MOP. A criticism of Pareto-
optimality is that it allows unbounded trade-offs. To avoid this, starting with
the classical work of Geoffrion [7], various stronger optimality notions, known as
proper Pareto-optimality, have been defined. Different classes of properly Pareto-
optimal exist [12], and the notion of trade-off in them is inherent.

Definition 1 (Geoffrion M-proper Pareto-optimality [15]). Let M > 0
be given. Then, a point x∗ ∈ X is M -proper Pareto-optimal if x∗ ∈ Xp(F, X)
and if for all i and x ∈ X satisfying Fi(x) < Fi(x

∗), there exists an index j such
that Fj(x

∗) < Fj(x) and moreover (Fi(x
∗)− Fi(x))/(Fj(x)− Fj(x

∗)) ≤M.

398 P.K. Shukla, C. Hirsch, and H. Schmeck

This definition of proper Pareto-optimal solutions can be practically modified in
a number of ways (see details in [9]):

1. The constant M could in general be a function M of both x and x∗ [12]. It
could also depend on the objective functions Fi and Fj .

2. Based on a (not necessarily disjoint) partition of the index set I := {1, . . . ,m}
into two sets I1 and I2, we could require that the indices i and j in Defini-
tion 1 belong to the sets I1 and I2, respectively.

3. The requirement that there exists an index j such that Fj(x
∗) < Fj(x) could

be modified to that we restrict ourselves only to those indices j for which
Fj(x

∗) +Δ < Fj(x), where Δ > 0 is a given threshold.

Definition 2 (Marginal rate of substitution [12]). The marginal rate of
substitution tij = tij(x

∗) at the point x∗ represents the amount of gain in the
i-th objective that compensates a loss of one unit of the j-th objective, while the
other objectives remain unaltered.

Definition 3 (Allowable trade-off [17]). An allowable trade-off between cri-
teria i and j, with i, j = 1, . . . ,m, denoted by aij, is the largest amount of decay
in criterion i considered allowable to the decision maker to gain one unit of
improvement in criterion j. Also, aij ≥ 0 for all i and j, i �= j.

If aij = 0, then the decision maker’s preference model is based on the classical
Pareto-cone domination structure [12]. A trade-off between two criteria incurred
along a direction d is called directional trade-off.

Definition 4 (Directional trade-off [17]). A directional trade-off between
criteria i and j, with i, j = 1, . . . ,m, i �= j, denoted by tij(d), is defined as
follows:

tij(d) = 0, if di ≤ 0 and dj ≤ 0

tij(d) =
di
−dj

, if di > 0 and dj < 0

tij(d) =∞, if di ≥ 0 and dj ≥ 0, d �= 0.

A direction d ∈ Rm is an attractive direction if tij(d) ≤ aij for every pair of
criteria i, j = 1, . . . ,m, i �= j.

Based on the above definition, Wiecek et al. [17] construct a model where they
assume that the decision maker allows one criterion i to decay only if all the
other criteria j �= i improve. The values aij come from the decision maker. It
may be of interest to repeat the process with more than one selection of criteria
and the model includes that. Let Pi, for a given criterion i, be the set of all
attractive directions. All the attractive directions are appended with −Rm

≥ so as
to obtain a set (which is a cone) of attractive directions given by

P :=
⋃
i

Pi ∪ (−Rm
≥). (1)

Towards a Deeper Understanding 399

Here, we consider the MOP with a domination structure given by the cone P . For
an m-dimensional problem, P can be represented with the help of an m(m− 1)
by m matrix A (see [17]). Since P is the union of all Pi’s, in general the cone P1

might be non-convex.
Engineering applications of many of the above trade-offs can be found in

[2,3,10]. Corresponding to an arbitrary but fixed trade-off notion T , letXT (F, X)
denote the set of those Pareto-optimal solutions that satisfy the trade-off bounds
specified by T . The trade-off bounds can have different forms depending on
the definitions involved. For example, the bound is M for T corresponding to
Definition 1 and it is aij for all i, j corresponding to Definitions 3 and 4.

Definition 5. A trade-off notion T will be called Pareto compatible if there
exists a k ×m matrix A, for some k ∈ N, such that XT (F, X) = Xp(AF, X),
otherwise we call T to be Pareto incompatible.

The distinction above is not only for a better understanding of the various trade-
off notions but has also great algorithmic and computational implications. These
issues will be further discussed in the next two sections.

Lemma 1. The bounds T corresponding to Definition 1 and all their practical
modifications are Pareto incompatible. The bounds T corresponding to Defini-
tions 2, 3, and 4 are Pareto compatible.

Proof: We provide a brief sketch of the proof as a rigorous mathematical proof
is outside the scope of this paper. A closer look at Definitions 2, 3, and 4 will
reveal that the bounds on the trade-off are pairwise, without consideration of the
other objectives. Based on this, we can construct an appropriate matrix A in a
way similar to the matrix A. For a description of the structure of A, please refer
to [17]. Definition 1 and the practical modifications are Pareto incompatible as
the existence of a conflicting objective (j) is assumed and it could be any such
objective. This will not provide the elements of the matrix A. !

3 Algorithms

In this section, we introduce algorithms for finding a representative subset of the
complete preferred front XT (F, X) corresponding to a given trade-off notion T .
For this, we take a state-of-the-art algorithm, the non-dominated sorting genetic
algorithm NSGA-II [3], and we tailor it for finding the solutions from the set
XT (F, X). The idea of non-dominated sorting is to sort the entire population
into different fronts (set of solutions), such that the solutions in the first front
are not dominated by any other solution, the solutions in the second front are
only dominated by solutions in the first front and so on.

In the recent years, evolutionary algorithms have shown their potential in
including user preferences directly in their search mechanism (see [1] and the
references therein). Trade-off based preferences have been incorporated in multi-
objective evolutionary algorithms for some Pareto compatible [1] and some
Pareto incompatible [15] notions.

400 P.K. Shukla, C. Hirsch, and H. Schmeck

One way to develop algorithms for Pareto compatible notions is to change the
objective function from F to AF (see Definition 5). A special feature of this class
of algorithms is that they work on a k-dimensional objective function instead
of the original m dimensions (as F changes to AF ∈ Rk). Usually, k can be
(much) larger than m. Although the approach is simple, in the sense that any
existing algorithm could be used and the modification is just in the objective
function, the increase in the number of objectives also causes an increase in the
non-dominated sorting complexity (see [4,11]).

The situation is more difficult for the case of Pareto incompatible notions
as the problem cannot be simply changed, rather the algorithms have to be
redesigned. One such approach uses a general framework for finding properly
Pareto-optimal points [14]. It finds M -proper solutions among the set of non-
dominated solutions and uses these solutions to change the ranking of the pop-
ulation. Another approach [15] is to introduce additional constraints that take
into account the amount of violation of M -proper Pareto optimality.

On the basis of the discussion in the above two paragraphs, we propose the
following NSGA-II based algorithms for finding the set XT (F, X) corresponding
to Pareto-compatible trade-off notions.

���������: This algorithm uses the general framework from [14]. Tnsga-iir
finds the set of solutions that satisfy the bound specified by T from among
the non-dominated solutions. This set found is given a better rank in the
population.

���������: This algorithm modifies the objective function to AF and runs the
original NSGA-II on this modified objective function. This is the extension
of the standard guided domination based NSGA-II [3] to general Pareto
compatible T ′s.

When T is Pareto incompatibe, we can think of the following three algorithms.

	��������: This algorithm again uses the general framework from [14] in order
to find the set of solutions that satisfy the bound specified by T from among
the non-dominated solutions. Like in Tnsga-iir, this set found is given a
better rank in the population.

	�������
: This algorithm uses the constraint formulation to penalize those
solutions that violate the trade-off bound specified by T . Although there
could be many ways to introduce the constraints, here we generalize the
formulation from [15].

	�������
�: This algorithm uses both the ranking as in Mnsga-iir and also
the constraint formulation of Mnsga-iic.

It is easy to see that Tnsga-iigr will be the same as Tnsga-iig. The algorithms
presented above can be used for general T ’s and cover a wide spectrum of pos-
sibilities that could be used to find the set XT (F, X). That includes changing
the problem to take into account the matrix A, changing the ranking to favor
good solutions, introducing constraints to penalize bad solutions, or a combina-
tion of these. Working with a population is a great advantage of evolutionary
algorithms (in terms of using the trade-off information efficiently), and we will
show the computational efficacy of these algorithms in the next section.

Towards a Deeper Understanding 401

4 Simulation Results

We test the five algorithms on a number of test problems of varying complex-
ity. The test problems are taken from various test suits proposed in the multi-
objective community. Specifically, we include two problems from the CEC-2007
competition (SZDT1, SZDT2), two from the ZDT suite (ZDT3, ZDT4) [3], one
from the DTLZ family (DTLZ4-3D) [8], four from the WFG suite (WFG1,
WFG2, with both 2 and 3 objectives) [8] and one from the CTP family [3].
For all problems solved, we use a population of size 100 and set the maximum
number of function evaluations to 20,000 (i.e., 200 generations). Moreover, we use
a standard real-parameter SBX and polynomial mutation operator with ηc = 15
and ηm = 20, respectively [3].

For Pareto incompatible notions, we use Definition 1 together with M = 1.5
and 5.0. In the case of Pareto compatible notions, we use the matrix A = (aij),
with a11 = a22 = 1.0 and a12 = a21 = 0.5. Note that these values restrict the
efficient front. This is the preferred efficient front that needs to be found. For all
problems, we compute a well-distributed approximation of the preferred front
as follows. Corresponding to the problem, first we generate 10,000 well-diverse
points on the efficient front. Then, we calculate the preferred points, i.e., the
points that satisfy the T requirement (with M -proper Pareto-optimality criteria
or values from the matrix). We use the Inverted generational distance (IGD)
and Generational distance (GD) metrics in order to evaluate the results. For
statistical evaluation, we use the attainment surface based statistical metric [6].
We run each algorithm for 101 times and the median (50%) attainment surface
(51st) is plotted. The source code of all the algorithms is made available1, and
the data files for all the 101 runs of all the problems are available on request.

Fig. 1 shows the attainment surfaces of Mnsga-iir, Mnsga-iic, and Mnsga-
iicr on ZDT3. It can be seen that Mnsga-iir performs the best in this case.
Although the constraint based algorithm Mnsga-iic is able to come close to
the preferred front on ZDT3, we find that on the multi-modal test problem
ZDT4 this algorithm performs poorly (see Fig. 2). Mnsga-iic and Mnsga-
iicr penalize the whole population, and in this case we see that the population
converges prematurely to a local front. Mnsga-iir on the other hand, splits only
the non-dominated set, and this approach seems to work well for multi-modal
problems. Figs. 3, 4, and 6 show similar results on three dimensional problems.
Nevertheless, all the approaches work well on the nonlinearly constrained test
problem CTP7 (see Fig 5).

Figs. 7 and 8 show simulation runs of Tnsga-iir and Tnsga-iig on the test
problem WFG1-3D. The black points are the preferred front, and in this case we
see that both algorithms seem to be away from the preferred front. As WFG1-3D
is a very difficult problem, convergence to the front is not possible after 20,000
function evaluations. Nevertheless, we see that both algorithms approach the
preferred front in a focused way so as not to explore the entire feasible region in

1 http://www.aifb.kit.edu/web/TNSGA-II/en

http://www.aifb.kit.edu/web/TNSGA-II/en

402 P.K. Shukla, C. Hirsch, and H. Schmeck

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

2

F1

F
2

Efficient front
Preferred region, M = 5
50% attainment surface, MNSGA-IIR

50% attainment surface, MNSGA-IIC

50% attainment surface, MNSGA-IICR

Fig. 1. Attainment surface plot of the
algorithms on ZDT3 (M = 5.0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

F1

F
2

Efficient front
Preferred region, M = 1.5
50% attainment surface, MNSGA-IIR

50% attainment surface, MNSGA-IIC

50% attainment surface, MNSGA-IICR

Fig. 2. Attainment surface plot of the
algorithms on ZDT4 (M = 1.5)

0
0.5

1
1.5

2 0

1

2

3

4

0

1

2

3

4

5

6

F2

F1

F
3

Efficient front
Preferred region, M = 5

Sample simulation run, MNSGA-IIR
Sample simulation run, MNSGA-IIC
Sample simulation run, MNSGA-IICR

Fig. 3. Preferred front and sample run
of the algorithms on WFG2-3D (M =
5.0)

0
0.5

1
1.5

2 0

1

2

3

4

0

1

2

3

4

5

6

F2

F1

F
3

Efficient front
Preferred region, M = 5

50% attainment surface, MNSGA-IIR

50% attainment surface, MNSGA-IIC

50% attainment surface, MNSGA-IICR

Fig. 4. Attainment surface plot of the
algorithms on WFG2-3D (M = 5.0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

F1

F
2

Efficient front
Preferred region, M = 1.5
50% attainment surface, MNSGA-IIR

50% attainment surface, MNSGA-IIC

50% attainment surface, MNSGA-IICR

Fig. 5. Attainment surface plot of the
algorithms on CTP7 (M = 1.5)

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1
F2

F
3

Efficient front
Preferred region, M = 5

Sample simulation run, MNSGA-IIR
Sample simulation run, MNSGA-IIC
Sample simulation run, MNSGA-IICR

Fig. 6. Preferred front and sample run
of the algorithms on DTLZ4 (M = 5.0)

Towards a Deeper Understanding 403

0
0.5

1
1.5

2
2.5 0

1

2

3

4

−1

0

1

2

3

4

5

6

F2

F1

F
3

Efficient front
Preferred region

Sample simulation run, TNSGA-IIR
Sample simulation run, TNSGA-IIG

Fig. 7. Preferred front and sample run
of the algorithms on WFG1-3D (t =
0.5)

0
0.5

1
1.5

2
2.5 0

1

2

3

4

−1

0

1

2

3

4

5

6

F2

F1

F
3

Efficient front
Preferred region

50% attainment surface, TNSGA-IIR

50% attainment surface, TNSGA-IIG

Fig. 8. Attainment surface plot of the
algorithms on WFG1-3D (t = 0.5)

the objective space. This is important for higher dimensional problems as then
the search effort is not wasted in the entire space.

Looking at Tables 1 and 2, we see that R algorithms perform very well for
finding a representative subset of XT (F, X) for Pareto incompatible notions but
not for Pareto compatible notions. This is interesting and shows that modifying
the entire population (either by using constraints or by using guided approaches)
is beneficial only for Pareto compatible trade-offs. Pareto compatibility is an ad-
ditional information that is global in the sense of a problem being changed com-
pletely (to AF). Hence, for these notions, R algorithms are not a good choice. In
this case, an algorithm like G is useful as it works with a modified problem (that
is also equivalent to using a different domination concept, see [3] for details). R

Table 1. Median and interquartile range for Pareto incompatible notions

IGD (M = 1.5) MNSGA-IIR MNSGA-IIC MNSGA-IICR

SZDT1 0.0007620.000304 0.0016510.000560 0.0016470.000464
SZDT2 0.0283430.691251 0.8317940.061160 0.8330840.048942
ZDT3 0.0011380.000484 0.1062420.043848 0.0850410.042644
ZDT4 0.0003680.000327 0.0135820.013215 0.0109920.010310
WFG1-2D 0.2396950.016413 0.3302080.005360 0.3321370.005831
WFG1-3D 0.7168290.011457 0.7098120.032873 0.6914620.032658
WFG2-2D 0.1862460.001344 0.1903890.004472 0.1915180.005499
WFG2-3D 0.0411080.138842 0.2240280.193395 0.2256100.191548
DTLZ4 0.0000370.000103 0.0000090.000007 0.0000090.000010
CTP7 0.0000310.000002 0.0000330.000003 0.0000310.000004

GD (M = 5.0) MNSGA-IIR MNSGA-IIC MNSGA-IICR

SZDT1 0.0010680.000247 0.0026020.002424 0.0012890.000196
SZDT2 0.0015540.000356 0.0161760.042619 0.1449430.260740
ZDT3 0.0001160.000016 0.0056470.005665 0.0001530.000040
ZDT4 0.0004930.000353 0.0027990.012020 0.0016980.003546
WFG1-2D 0.0933320.013041 0.0909010.004792 0.0943420.014087
WFG1-3D 0.1196940.002628 0.1352770.003272 0.1195460.003465
WFG2-2D 0.0030640.001949 0.0054970.003660 0.0052790.004595
WFG2-3D 0.0072980.012241 0.0136970.001827 0.0083440.011168
DTLZ4 0.0063250.000955 0.0112980.000618 0.0070000.001151
CTP7 0.0000130.000013 0.0000110.002246 0.0000100.000001

404 P.K. Shukla, C. Hirsch, and H. Schmeck

Table 2. Median and interquartile range for Pareto compatible notions

TNSGA-IIR (GD) TNSGA-IIG (GD) TNSGA-IIR (IGD) TNSGA-IIG (IGD)
SZDT1 0.0006950.000165 0.0006790.000149 0.0004910.000194 0.0004700.000164
SZDT2 0.0074130.002875 0.0008480.000233 0.0621270.000094 0.0621380.000092
ZDT3 0.0000480.000003 0.0000490.000002 0.0577710.000150 0.0577570.057667
ZDT4 0.0003730.000299 0.0003880.000336 0.0002820.000198 0.0002640.000239
WFG1-2D 0.1941690.065272 0.0773830.006835 0.2173520.003753 0.2135990.004660
WFG1-3D 0.1183670.003043 0.1171670.003405 0.0930490.002028 0.0922570.002960
WFG2-2D 0.0111090.009349 0.0061930.004448 0.1058640.005186 0.1053760.004505
WFG2-3D 0.0160940.012247 0.0163760.009669 0.0647900.021157 0.0485270.034876
DTLZ4 0.0060100.000517 0.0059980.000632 0.0102730.000900 0.0100090.001633
CTP7 0.0000070.000000 0.0000100.000001 0.0000210.000001 0.0000460.000003

algorithms only change the ranking based on the non-dominated set (or the
best front), and this methodology is useful for Pareto incompatible trade-offs.
For these trade-offs, there is not a modified problem, and hence, together with
the theoretical results from [14], changing the ranks based on splitting the non-
dominated solutions might be a viable way to compute XT (F, X). Moreover, as
the simulation results show, C and CR algorithms are not a good option for
Pareto incompatible notions. The constraints in the C and CR algorithms are
very restrictive and lead to premature convergence, especially on multi-modal
and difficult problems.

5 Conclusions

This study is towards a deeper understanding of various trade-off notions that are
present in the multi-objective community. Trade-offs are a basic tool in decision
making and have been a subject of active research since the late sixties, starting
with the seminal work of Geoffrion [7]. Multi-objective evolutionary algorithms
have been used to find a representative subset of the complete efficient front and
could be properly designed to find a preferred region of the efficient front as well.
This is due to the population based advantage that they have (see [13] for more on
this interesting aspect). Trade-offs compare solutions with conflicting objectives
from among the solutions in a population and in this way are ideally suited for a
population based algorithm. With this idea in mind, we characterized the various
notions of trade-offs that we find in literature. Based on this characterization,
we investigated various algorithms for finding the solutions that satisfy a given
trade-off bound (depending on the notion). We found that Pareto compatible
notions require an algorithm that works on a modified problem or works with
a global change of domination. Pareto incompatible notions, on the other hand,
are best handled by algorithms that only change the ranking of a subset of
the entire population, that is, of the non-dominated solutions. This paper sheds
adequate light on the notion of trade-offs and we hope to see more population
based algorithms for this task.

Acknowledgements. This work was supported by the German Federal Min-
istry of Economics and Technology (MeRegio - Minimum Emission Regions,
Grant 01ME08001A).

Towards a Deeper Understanding 405

References

1. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective Optimiza-
tion, Interactive and Evolutionary Approaches [outcome of Dagstuhl seminars].
LNCS, vol. 5252. Springer, Heidelberg (2008)

2. Coello, C.A.C., Christiansen, A.D.: Multiobjective optimization of trusses using
genetic algorithms. Computers and Structures 75(6), 647–660 (2000)

3. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley (2001)
4. Fang, H., Wang, Q., Tu, Y., Horstemeyer, M.F.: An efficient non-dominated sorting

method for evolutionary algorithms. Evol. Comput. 16, 355–384 (2008)
5. Fischer, A., Shukla, P.K.: A Levenberg-Marquardt algorithm for unconstrained

multicriteria optimization. Oper. Res. Lett. 36(5), 643–646 (2008)
6. Fonesca, C.M., Fleming, P.J.: On the Performance Assessment and Comparison

of Stochastic Multiobjective Optimizers. In: Ebeling, W., Rechenberg, I., Voigt,
H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer,
Heidelberg (1996)

7. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. Journal
of Mathematical Analysis and Applications 22, 618–630 (1968)

8. Huband, S., Hingston, P., Barone, L., White, L.: A review of multi-objective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 280–294 (2005)

9. Kaliszewski, I.: Soft computing for complex multiple criteria decision making.
Springer, New York (2006)

10. Kalsi, M., Hacker, K., Lewis, K.: A comprehensive robust design approach for
decision trade-offs in complex systems design. Journal of Mechanical Design 123(1),
1–10 (2001)

11. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
Journal of the Association for Computing Machinery 22(4), 469–476 (1975)

12. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
13. Prügel-Bennett, A.: Benefits of a population: Five mechanisms that advan-

tage population-based algorithms. IEEE Transactions on Evolutionary Compu-
tation 14(4), 500–517 (2010)

14. Shukla, P.K., Hirsch, C., Schmeck, H.: A Framework for Incorporating Trade-
Off Information Using Multi-Objective Evolutionary Algorithms. In: Schaefer, R.,
Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 131–
140. Springer, Heidelberg (2010)

15. Shukla, P.K.: In Search of Proper Pareto-optimal Solutions Using Multi-objective
Evolutionary Algorithms. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 1013–1020. Springer, Heidelberg
(2007)

16. Shukla, P.K.: On the Normal Boundary Intersection Method for Generation of
Efficient Front. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2007. LNCS, vol. 4487, pp. 310–317. Springer, Heidelberg (2007)

17. Wiecek, M.M.: Advances in cone-based preference modeling for decision making
with multiple criteria. Decis. Mak. Manuf. Serv. 1(1-2), 153–173 (2007)

OpenCL Implementation of Particle Swarm

Optimization: A Comparison between Multi-core
CPU and GPU Performances

Stefano Cagnoni1, Alessandro Bacchini1, and Luca Mussi2

1 Dept. of Information Engineering, University of Parma, Italy
cagnoni@ce.unipr.it, alessandro.bacchini@studenti.unipr.it

2 Henesis s.r.l., Parma, Italy
luca.mussi@henesis.eu

Abstract. GPU-based parallel implementations of algorithms are usu-
ally compared against the corresponding sequential versions compiled
for a single-core CPU machine, without taking advantage of the multi-
core and SIMD capabilities of modern processors. This leads to unfair
comparisons, where speed-up figures are much larger than what could
actually be obtained if the CPU-based version were properly parallelized
and optimized.

The availability of OpenCL, which compiles parallel code for both
GPUs and multi-core CPUs, has made it much easier to compare execu-
tion speed of different architectures fully exploiting each architecture’s
best features.

We tested our latest parallel implementations of Particle Swarm Opti-
mization (PSO), compiled under OpenCL for both GPUs and multi-core
CPUs, and separately optimized for the two hardware architectures.

Our results show that, for PSO, a GPU-based parallelization is still
generally more efficient than a multi-core CPU-based one. However, the
speed-up obtained by the GPU-based with respect to the CPU-based
version is by far lower than the orders-of-magnitude figures reported by
the papers which compare GPU-based parallel implementations to basic
single-thread CPU code.

Keywords: Parallel computing, GPU computing, Particle Swarm
Optimization.

1 Introduction

Particle Swarm Optimization (PSO), the simple but powerful algorithm intro-
duced by Kennedy and Eberhart [4], is intrinsically parallel, even more than
other evolutionary, swarm intelligence or, more in general, population-based op-
timization algorithms.

Because of this, several parallel PSO implementations have been proposed,
the latest of which are mainly based on GPUs [2,3,8,9]. It is very hard to fairly
compare the results of different implementations, on different architectures or

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 406–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

OpenCL-Based PSO: CPU-GPU Comparison 407

compilers, or even of the same programs run on different releases of software-
compatible hardware. Execution time is generally the only direct objective quan-
titative parameter on which comparisons can be based. Therefore, this is the
approach that most authors are presently adopting. After all, obtaining a sig-
nificant speed-up in the algorithm’s execution time is obviously the main reason
for developing parallel versions of the algorithm, considering also that PSO is
also intrinsically one of the most efficient stochastic search algorithm, for the
simplicity and compactness of the equations on which it is based.

Undoubtedly, the GPU-based parallelization of PSO has produced impressive
results. Most papers on the topic report speed-ups of orders of magnitude with
respect to single-core CPU-based versions, especially when large-size problems
or large swarms are taken into consideration. This may lead to a misinterpre-
tation of the results, suggesting that CPUs1 are overwhelmingly outperformed
by GPUs on this task. However, most comparisons have actually been made
between accurately-tuned GPU-based parallel versions and a sequential version
compiled for a single-processor machine. Thus, while being absolutely objective
and informative, they do not reflect the actual disparity in the top performances
which can be offered by the two computational architectures. In fact, they totally
ignore the parallel computation capabilities of modern CPUs, both in terms of
number of cores embedded by the CPU architecture and of CPU’s SIMD (Single
Instruction Multiple Data) computation capabilities.

Papers comparing GPUs and CPUs “at their best” have started being pub-
lished only recently [5]. This has been mainly justified by the lack of a handy
environment for developing parallel programs on CPUs. As new environments or
libraries for parallel computing supporting both GPUs and CPUs, like OpenCL
and Microsoft Accelerator, have been released, this gap has been filled. In par-
ticular, OpenCL allows one to develop parallel programs for both architectures,
offering the chance to either compile the same code for execution on both CPUs
and GPUs, or, more importantly, to develop parallel implementations of the
same algorithm, specifically otpimized for either computing architecture.

We have previously presented two GPU implementations of PSO [6,7], a syn-
chronous and an asynchronous version, developed both on CUDA, nVIDIA’s
environment for GPU computing using its cards. Our implementations were
aimed at maximizing execution speed, disregarding other limitations, such as
the maximum number of particles of which a swarm could be composed. Thus,
our best-performing GPU-based parallel implementation could only manage up
to 64 particles, depending on hardware capabilities. In such a work, we also
have made a comparison with the single-thread sequential implementation of a
standard PSO (SPSO2006 [1]), mainly to allow for a comparison with other,
previously published, results.

In this paper we try to make the fairest possible comparison between comput-
ing performances which can be obtained by GPU-based and CPU-based paral-
lelized versions of PSO, developed within the OpenCL environment. On the one

1 From here onwards, the term CPU will refer to a multi-core CPU, if not differently
specified.

408 S. Cagnoni, A. Bacchini, and L. Mussi

hand, we have slightly modified our most efficient GPU-based PSO algorithm,
allowing for swarms of virtually any size to be run, at the price of a slight re-
duction in performances. On the other hand, we have also developed a parallel
OpenCL version of PSO, whose structure and parameters are optimized for run-
ning on a CPU. This way, we have obtained two implementations having similar
limitations, usable for a fair comparison between the actual performances which
can be obtained by the two different architectures.

We report results obtained on a set of classical functions used for testing
stochastic optimization algorithms, by five different GPUs and CPUs which are
presently offered in typical medium/high-end desktop and laptop configurations.

In the following sections, we first describe our parallel algorithm and the
slight differences between the CPU-oriented and GPU-oriented versions.We then
report results obtained in the extensive set of tests we have performed to compare
their performances. Finally, we close the paper with a discussion of the results
we obtained, and draw some conclusions about the efficiency and applicability
of the two implementations.

2 PSO Parallelization

The parallel versions of PSO developed in our previous work are quite simi-
lar, both being fine-grained parallelizations down to the dimension level, i.e.,
we allocate one thread per particle’s dimension in implementing the PSO up-
date equations. As long as enough resources are available, this means that it is
virtually possible to perform a full update in a single step. The other common
feature is the use of a ring topology of radius equal to one for the particles’
neighborhoods, which minimizes data dependencies between the executions of
the update cycles of each particle.

The main difference between the two implementations is related with the
update of the particles’ social attractors, i.e., the best-performing particle in
each particle’s neighborhood or in the whole swarm, depending on whether
a “local-best” or “global-best” PSO is being implemented, respectively. Our
earlier-developed version [6] implements the most natural way of parallelizing
PSO, as regards both task separation and synchronization between particles:
thus, it was implemented as three separate kernels: i. position/velocity update;
ii. fitness evaluation; iii. local/global best(s) computation. Each kernel also rep-
resented a synchronization point, so the implementation corresponded to the so-
called “synchronous PSO”, in which the algorithmwaits for all fitness evaluations
to be over before computing the best particles in the swarm or in each particle’s
neighborhood. In a later-developed version [7] we relaxed this synchronization
constraint, obtaining an “asynchronous PSO” by letting a particle’s position and
velocity be updated independently of the computation of its neighbors’ fitness
values. This allowed us to implement the whole algorithm as a single kernel,
minimizing the overhead related to both context switching and data exchange
via global memory, as the whole process, from the first to the last generation,
is scheduled as a single kernel call. Therefore, while, in the synchronous version,

OpenCL-Based PSO: CPU-GPU Comparison 409

the status of each particle needed to be saved/loaded after each kernel, in the
asynchronous version the parallelization occurs task-wise, with no data exchange
in global memory before the whole process terminates. While this feature is opti-
mal for speed, it introduces a severe drawback related with resource availability.
No partial inter-generation results can be saved during it to allow another batch
of particles to be run within the same generation; therefore, a swarm can only
comprise up to Nmax particles, Nmax being the number of particles which the
resources available in the GPU permit to be managed at the same time.

To allow for a virtually unlimited size of the swarm, we have turned back to
a synchronous version, which saves the partial results of each generation back to
the global memory, while still using a single kernel for running a generation of a
swarm of up to Nmax particles. Therefore, if a swarm of N > Nmax is to be run,
a full update of the swarm can be obtained by running a batch of "N/Nmax#
instances of the kernel sequentially.

The three stages of the previous synchronous version of PSO have been merged
and synchronization between stages removed: the only synchronization occurs at
the end of a generation. This avoids some accesses to the global memory because
each particle loads its state at the beginning of each generation and writes it
back to memory only at the end of it. While this, obviously, has a price in terms
of execution speed, it has the advantage of limiting the delay between the times
of update between particles to no more than one generation.

3 Open Computing Language

The evolution both of parallel processors and of the corresponding programming
environments has been extremely intense but, until recently, far from any stan-
dardization. The Open Computing Language, OpenCLTM, released at the end of
2008, is the first open standard framework for cross-platform and heterogeneous
resources programming. It permits to easily write parallel code for modern pro-
cessors and obtain major improvements in speed and responsiveness for a very
wide range of applications, from gaming to scientific computing.

On the one hand, to cope with modern computers which often includes one or
more processors and one or more GPUs (and possibly also DSP processors and
other devices), the OpenCL PlatformModel definition (see Figure 1) includes one
“host device” controlling one or more “compute devices”. Each compute device
is composed of one or more “compute units” each of which is further divided
into one or more “processing elements”. Usually host and compute devices are
mapped onto different processors, but may also be mapped onto the same one.
This is the case for the Intel OpenCL implementation where host and device can
be the very CPU.

On the other hand, the OpenCL Execution Model defines the structure of
an OpenCL application which runs on a host using classical sequential code to
submit work to the available compute devices. The basic unit of work for an
OpenCL device is referred to as “work item” (something like a thread) and its
code is called “kernel” (something similar to a plain C function). Work items

410 S. Cagnoni, A. Bacchini, and L. Mussi

Fig. 1. OpenCL definition for the Platform Model (left) and the Memory Hierarchy
(right)

are grouped under many “work groups”: all the work items belonging to the
same work group actually run in parallel, while different work groups can be
scheduled sequentially based on the available resources. To achieve the best
performances, each device has its own memory hierarchy: the global memory is
shared across all work groups, the local memory is shared across all work items
within a work group, and private memory is only visible to a single work item.
Local and private memory usage usually greatly improve performances for the
so called memory-bounded kernels. Finally, in addition to the memory hierarchy,
OpenCL defines some barriers to synchronize all the work items within a work
group: work items belonging to different work groups cannot be synchronized
while a kernel is running.

The OpenCL standard also permits the compilation of OpenCL code at ex-
ecution time, so the code can be optimized on place to execute the requested
operation as fast as possible. Despite this, to achieve best performances on dif-
ferent kinds of devices, it is still necessary to write slightly different versions of
the same kernel to achieve top performances: for example, a kernel must explic-
itly use vector types (float4, float8, . . .) to fully exploit the SIMD instructions
of modern CPUs.

Fig. 2. Workflow organization for the GPU version (left) and the GPU version (right)
of PSO

OpenCL-Based PSO: CPU-GPU Comparison 411

4 PSO Implementation within OpenCL

This new OpenCL implementation of PSO roughly inherits the same structure
of our previous versions developed for CUDA [7]. The three main steps of PSO
are implemented as a single kernel scheduled many times in a row to simulate the
generational loop. This organization introduces a fixed synchronization point for
all particles at the end of every generation, realizing a synchronous PSO variant.

Each particle is simulated by a work group comprising a work item for each
dimension of the problem to optimize. At the beginning of the kernel, the par-
ticles’ positions, velocities and best positions are read from the memory: this
step severely limits the kernel performances because of the accesses to the global
memory, the slowest operation for an OpenCL device. Then velocities and po-
sitions are updated, but no bottlenecks are present here because only simple
arithmetic operations are required. Fitness evaluation comes next and is usu-
ally the most complex stage of the kernel because of the possible presence of
transcendental functions and parallel reductions used to compute the sum of the
many addends calculated by each work item. The last stage updates the parti-
cles’ best fitness values, positions, best positions and velocities and stores them
into the global memory: some further waste of time occurs here, due to the high
latency of global memory write operations.

The OpenCL standard allows for the compilation of OpenCL kernels at ex-
ecution time, so it is actually possible to define preprocessor constants to save
some parameter passing. This feature is used to embed all PSO parameters into
the kernel code, still allowing the user to specify everything when launching the
application. This technique is especially advantageous when dealing with parallel
reductions: in our case knowing in advance the number of problem dimensions
(i.e., the number of work items inside each work group) allows us to minimize the
number of synchronization barriers inside each work group and improve overall
performances. Another way to reduce the execution time of the kernel is using
the native transcendental functions (“fast math” enabled) which are usually im-
plemented in hardware and are an order of magnitude faster than non-native
ones. As already mentioned, to obtain the best performances, it is obviously
necessary to write the code taking into account which device will run the kernel,
in order to exploit its peculiar parallel instructions. Accordingly, we developed
two versions of the same kernel for the two architectures under consideration.

4.1 GPU-Based Implementation

This version is oriented to massively parallel architectures, like GPUs, for whom
each work item maps to a single thread. Indeed, nVidia GPUs have hundreds
of simple ALU that process only a single instruction at a time: in this case it
is usually better to run thousands of light threads instead of hundreds of heavy
ones. Moreover, global and local memory on GPU devices are located in distinct
areas and have different performances: local memory is usually one order of
magnitude faster than global memory. The best practice is hence to use local
memory as much as possible and minimize the number of accesses to global

412 S. Cagnoni, A. Bacchini, and L. Mussi

memory. Finally, the OpenCL implementation by AMD and nVidia ensure that
work items are scheduled in groups of at least 32 threads at a time which, in
some cases, makes it possible to avoid the use of synchronization barriers. For
example, this is the case for the final steps of parallel reductions.

4.2 CPU-Based Implementation

CPUs2 are architecturally different from GPUs and the above-mentioned opti-
mizations are not always the best option for this kind of devices. CPUs have a
very small number of cores compared to GPUs, but each core includes a large
amount of cache and a complex processing unit: branch prediction, conditional
instructions and misaligned memory accesses are usually more efficient on CPUs
than on GPUs. The problem of having a limited number of cores is also overcome
by SIMD (Single Instruction, Multiple Data) instructions, an extension to the
standard x86 instruction set that allows each ALU to perform parallel operations
over a set of 4 or 8 homogeneous values. SSE-SIMD instructions allow for parallel
operations on 4 floats/ints or 2 doubles at the same time, while new AVX-SIMD
instructions allow for parallel operations on 8 floats or 4 doubles. The OpenCL
standard natively supports SIMD instructions via vector data type: int4, int8,
float4, float8, . . . For these reasons our version of the PSO kernel was rewritten
for CPUs, grouping the work items four by four or eight by eight so that each
work item takes care of four or eight dimension of the problem under optimiza-
tion. It is easy to see how this introduces big improvements, considering that the
OpenCL standard requires that all the work items belonging to the same work
group be executed on the same compute unit (one CPU core) sequentially.

5 Test and Results

We compared the performance of our parallel CPU-based and GPU-based PSO
implementation on a set of “classical” functions used to evaluate stochastic op-
timization algorithms.

Our goal was to fairly compare the performances of our GPU and CPU imple-
mentations in terms of speed. We also verified the correctness of our implemen-
tations (results not reported, see [7] for the tests on the previously developed
algorithms) by checking that the minima found by the parallel algorithms did
not differ significantly from the results of the sequential SPSO [1]. We kept all
algorithm parameters equal in all tests, setting them to the standard values sug-
gested for SPSO: w = 0.72134 and C1 = C2 = 1.19315. The test were performed
on different processors: two Intel CPUs (i7-2630M and i7-2600K) having 4 phys-
ical and 8 logical cores; two nVidia GPUs (GT-540M and GTX-560Ti) having
96 and 384 cores, respectively; and an ATI Radeon HD6950 GPU (1408 cores).
These can be considered typical examples of the processors and GPUs which
presently equip medium/high-end laptop and desktop computers.

Table 1 lists the functions used as benchmark with the corresponding ranges
within which the search was constrained.
2 We consider typical x86 CPUs here.

OpenCL-Based PSO: CPU-GPU Comparison 413

S
p
h
e
r
e

R
a
s
t
r
ig
in

R
o
s
e
n
b
r
o
c
k

Time(ms)-32Dims.

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

Time(ms)-64Dims.

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

Time(ms)-128Dims.

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

 1
0
0

 1
0
0
0

 1
0
0
0
0

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

 2
0
4
8

 4
0
9
6

 8
1
9
2

N
v
id

ia
 G

T
X

5
6
0
T

i
N

v
id

ia
 G

T
5
4
0
M

A
T

I
R

a
d
e
o
n
6
9
5
0

In
te

l
i7

-2
6
0
0
K

In
te

l
i7

-2
6
3
0
M

N
u
m

b
e
r

o
f
P
a
r
t
i
c
l
e
s

F
ig
.
3
.
E
x
ec
u
ti
o
n
ti
m
es

fo
r
d
iff
er
en

t
fu
n
ct
io
n
s,

p
ro
b
le
m

d
im

en
si
o
n
s
a
n
d
sw

a
rm

si
ze
s

414 S. Cagnoni, A. Bacchini, and L. Mussi

Table 1. Function set used for the test and corresponding search ranges

Function Search Range

Sphere [−100,+100]N

Elliptic [−100,+100]N

Rastrigin [−5.12,+5.12]N

Rosenbrock [−30,+30]N

Griewank [−600,+600]N

For each function, we tested the scaling properties with respect to problem
dimension and swarm size by running 20 repetitions of each test. Figure 3 re-
ports the graphs of the average results obtained in all tests for three out of the
five functions we considered. Similar results were obtained for the other two
functions.

The relative performances of the five processors are quite regular and repeat-
able, with the GPUs outperforming CPUs by a speed gain ranging from about
1 to no more than 5-6 for the largest swarm sizes. For the smallest swarm sizes,
depending on the resources available on each processor, and therefore more evi-
dently for the most powerful processors, after a flat segment, a “knee” appears
when the resources avaiable are no more sufficient for running the algorithm at
the same time, after which the graph (in log-log scale) becomes smoothly linear.
Only some minor peculiarities can be observed. One is the apparently surprising
performances of the nVidia GT540M (a GPU dedicated to mobile systems, with
a limited number of resources) with small swarm sizes. In some tests, for swarms
of 32 particles, it has even exhibited the top performances. This can be eas-
ily explained, considering that the processor clock frequency of the GT540M is
slightly higher than the corresponding frequency in the GTX560Ti so it can per-
form better than the latter if the function is not too memory-intensive (memory
bandwidth is much lower in the GT540M). Another peculiarity is the relative
performance of the desktop processor by Intel with respect to the mobile version,
which shows a narrowing of the performance gap between the two processors in
“extreme” conditions (large swarms and high-dimensional functions). We have
no explanation for this, except for the possible influence of other components of
the PC which may affect its global performances.

6 Final Remarks

We have assessed the performances of basically the same version of PSO imple-
mented on a set of five CPUs and GPUs, taking advantage of the opportunity,
offered by OpenCL, to develop, and optimize, the code for different architectures
within the same environment.

The main goal of our work was to compare GPU and CPU performances
using PSO code which had been optimized for both computing architectures,
going beyond the usual comparison between parallel GPU code and single-thread
sequential CPU code, where GPUs outperform CPUs by orders of magnitude.

OpenCL-Based PSO: CPU-GPU Comparison 415

From this point of view, we showed that, while GPUs still outperform CPUs in
this task, the performance gap is not so large as the usual “unfair” comparison
tends to suggest, as the speed gain within processors belonging to comparable
market segments never gets even close to the order of magnitude. One should also
consider that PSO, as well as the target functions used in the test, is probably one
of the algorithms that is most suitable for parallelization on massively parallel
architectures.

From the practical point of view of the development cost, however, one should
consider that the comparison has been fair also in this regard. In fact, develop-
ing the parallel PSO using OpenCL from scratch has the same cost for both
architectures. So, especially for larger optimization problems to be tackled by
PSO, it makes little sense to use the CPU, if a well-performing GPU is avail-
able, unless, of course, one needs to produce graphics at the same time. What
this work mainly suggests is that the range of problems in which a GPU clearly
outperforms a CPU is possibly much smaller than a superficial interpretation of
the results usually available on the topic might induce one to imagine.

References

1. (2006), http://www.particleswarm.info/Standard_PSO_2006.c
2. Cadenas-Montes, M., Vega-Rodriguez, M.A., Rodriguez-Vazquez, J.J., Gomez-

Iglesias, A.: Accelerating particle swarm algorithm with GPGPU. In: 19th Euromi-
cro International Conference on Parallel, Distributed and Network-based Processing
(PDP), pp. 560–564. IEEE (2011)

3. de P. Veronese, L., Krohling, R.A.: Swarm’s flight: Accelerating the particles using
C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2009), pp.
3264–3270. IEEE (2009)

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Interna-
tional Conference on Neural Networks, vol. IV, pp. 1942–1948. IEEE (1995)

5. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: De-
bunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU. In: Proc. 37th International Symposium on Computer Architecture
(ISCA), pp. 451–460. ACM (2010)

6. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization
algorithms within the CUDA architecture. Inf. Sciences 181(20), 4642–4657 (2011)

7. Mussi, L., Nashed, Y.S.G., Cagnoni, S.: GPU-based asynchronous Particle Swarm
Optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pp. 1555–1562. ACM (2011)

8. Papadakis, S.E., Bakrtzis, A.G.: A GPU accelerated PSO with application to Eco-
nomic Dispatch problem. In: 16th International Conference on Intelligent System
Application to Power Systems (ISAP 2011), pp. 1–6. IEEE (2011)

9. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proc. IEEE
Congress on Evolutionary Computation, CEC 2009, pp. 1493–1500. IEEE (2009)

http://www.particleswarm.info/Standard_PSO_2006.c

A Library to Run Evolutionary Algorithms

in the Cloud Using MapReduce

Pedro Fazenda1,2, James McDermott2, and Una-May O’Reilly2

1 Institute for Systems and Robotics, IST, Lisbon, Portugal
2 Evolutionary Design and Optimization Group, CSAIL, MIT

Abstract. We discuss ongoing development of an evolutionary algo-
rithm library to run on the cloud. We relate how we have used the
Hadoop open-source MapReduce distributed data processing framework
to implement a single “island” with a potentially very large population.
The design generalizes beyond the current, one-off kind of MapReduce
implementations. It is in preparation for the library becoming a modeling
or optimization service in a service oriented architecture or a develop-
ment tool for designing new evolutionary algorithms.

Keywords: MapReduce, cloud computing, Hadoop, evolutionary
algorithms.

1 Introduction

We think that the cloud may allow avoiding potential edge conditions arising
from inadequate population sizes. It could also prompt the evolutionary com-
putation community to return to natural evolution for another round of inspi-
ration where there are fewer limitations imposed by the scale of an algorithm’s
computing resources. In this paper we relate our progress in designing an evolu-
tionary algorithm (EA) library to run on the cloud. To date we use the Hadoop
open-source MapReduce style distributed data processing framework [1] and im-
plement genetic programming (GP) with a single island.

The library has capabilities that are not presently addressed in evolution-
ary computation precedents. There are no MapReduce GP precedents to our
knowledge. Pushing beyond the one-off kind of MapReduce implementations of
genetic algorithms (GAs) and Differential evolution algorithms that hard code
their fitness evaluation and representation-based operators into mappers and re-
ducers, its use of serialization allows these elements to be plugged in like they
usually are in EA implementations. The library also provides the programmer
with an abstraction of GP which hides the distributed implementation (which
uses MapReduce). Specificly:

– An evolve method runs evolution on the island. The programmer does not
have to be concerned that, within this method, fitness evaluation, selection,
and variation occur on different computation partitions known as mappers
and reducers.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 416–425, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Library to Run Evolutionary Algorithms in the Cloud 417

– The programmer can introduce alternate genome representations, fitness
functions and variation operators which can be called by the evolve method,
without having to be concerned that MapReduce distributes them.

– We provide the programmer with an abstraction for collecting statistics for
an island which hides the underlying MapReduce implementation.

Implicit in our goals is execution efficiency. We also want an extensively vali-
dated and extended version of our library to eventually operate as a modeling
or optimization service in a service oriented architecture. For this we are design-
ing for eventually supporting “application customization” which would allow
a representation, fitness function and set of genetic operators to be passed to
the library for use. The library would eventually inter-operate with a browser-
based application (or, eventually, iPad or mobile phone application). We will
eventually support the uploading of software files with problem-specific fitness
function, representation and operators plus training data from the browser. Our
vision extends to the application providing online execution monitoring plug-
ins which access data flowing from the cloud execution. For this, library data
stream and storage formats will have to be cloud-standard so that off-the shelf
visualization tools can be used.

We intend to make best use of Hadoop open software libraries and software
infrastructure to eliminate reinventing the wheel. We intend to release a public
version of our library once it is sufficiently mature.

In this paper, our contributions are: to describe aspects of the library’s design
to date, to preliminarily evaluate the library’s GP module’s scaling properties
and to explore efficient cluster configurations using the Amazon Elastic Compute
Cloud (EC2).

We proceed as follows: in Section 2, we discuss our motivation for a cloud-scale
EA library: it is a prerequisite to fulfilling our vision for a research project we
alternately call FlexEA (sometimes also called FlexGP). This section includes
related work. In Section 3 we describe our library design. In Section 4 we present
a very preliminary investigation. In Section 5 we consider the design advantages
and disadvantages of using MapReduce. Section 6 concludes and lists future
work.

2 Motivations and Precedents

Motivation: Evolution is an overwhelmingly complex process. Yet today’s EA
designs are motivated mostly by its fundamentals: populations, selection and
genetic inheritance, not its complexities. Our project, FlexEA, is influenced by
our impatience to transfer, for regular use, more of the complex mechanisms and
phenomena of natural evolution, such as speciation, complex migration and phe-
notype development to our algorithms. Because we believe massive computing
power will be required, we are in the process of examining how well cloud com-
puting will serve our purposes. We also aspire to a set of scalable, on-demand,
application-customizable competencies, e.g. optimization and modeling, fulfilled

418 P. Fazenda, J. McDermott, and U.-M. O’Reilly

by evolutionary computation, available as a utility, cloud-based software service
component in a service oriented architecture (SOA).

FlexEA is currently focused on advances in genetic programming but our
agenda will eventually also include discrete and continuous evolutionary opti-
mization. We are also committed to solving real world applications. For these
uses, we need a general purpose, cloud-scale, EA library which can support the
introduction of different representations, operators and selection mechanisms
with eventual transition to becoming a SOA component.

As a cloud programming framework we are pursuing using Hadoop MapRe-
duce because of its general advantages. Hadoop is an open-source MapReduce
distributed data processing framework which offers a set of cloud infrastructure
services. Its distributed file system is fault tolerant through distributed data
replication and presented to the software engineer via an API with a single file
system abstraction. It optimizes data communication by scheduling computa-
tions near the data. Its master node-client worker architecture naturally load
balances because it uses a global task queue for task scheduling. It reduces data
transfer overheads by overlapping data communication with computations when
map and reduce steps are involved. It offers fault tolerance features, scalability
and is claimed to be easy to use. It duplicates executions of slower tasks and
handles failures by rerunning the failed tasks using different workers. These fea-
tures allow it to offer automatic parallelization and an efficient implementation
of MapReduce [2].

Precedents: There are precedents for using MapReduce in machine learning,
e.g. the Apache MAHOUT project [3]. Precedents in evolutionary computation
include [4, 5, 6, 7, 8, 9]. A first result concurred with the intuition that a non-
iterative framework such as MapReduce is ill suited to the iterative nature of
EAs [4]. However, this was later refuted by [5](pg 9) whose approach is to “ham-
mer the GAs to fit into the MapReduce model” [5](pg 9). Each generation is
configured as a MapReduce job and the algorithm runs in non-overlapping gen-
erations (see Figure 1). Keys of mappers are randomized to ensure a randomized
shuffle staging to reducers. A sliding window-based selection algorithm design
which allows reducers to approximate how tournament solution selects the best
of a tournament is described. Job overhead is incurred but in [10] a means
of breaking the MapReduce stage barrier has a constant 15% benefit with in-
creasing dataset size. The authors of [7] demonstrate a simple (OneMax) GA
MapReduce implementation scaling well with large dimensions (104...105) and
population sizes up to 16 million.

In [9] the same MapReduce design is used for a GA that substitutes a do-
main specific representation, fitness evaluation and crossover to competently
solve real world problems from the domain of job shop scheduling problems. A
co-evolutionary approach in [8] which requires a local fitness evaluation for each
candidate solution plus population-relative fitness evaluation also uses MapRe-
duce. The local fitness evaluation is partitioned to mappers then reducers com-
pute the population-relative fitness.

A Library to Run Evolutionary Algorithms in the Cloud 419

3 Library Design

Packages, Class Hierarchy: Our library, called EDO-Lib, has a core package
named evodesign.core. It has general classes to support EAs. It has a Reporter

class and an IslandModel class. Sub-packages include core.individual,
core.fitness, and core.operator. These are appropriately specialized to a set of
general purpose sub-packages used in most GA and GP design such as: ga.fitness,
ga.individual, ga.operator and gp.fitness, gp.fitness.casefeeder, gp.individual, plus
gp.operator. Specialized packages extend evodesign.core to execute core function-
ality on different platforms. For example, flexea.mapreduce is a package with our
implementation of a cloud-based EA using the Hadoop MapReduce framework.

The islandmodel package is a sub-package of evodesign.core and contains an
Island class and a means of initializing multiple islands with migration. An
island’s central method is evolve(nbrGenerations). The class HIsland spe-
cializes it for a HadoopMapReduce island. The evolve method of HIsland starts
by writing serialized versions of the Initialize, FitnessEvaluator, Crossover
and Mutation objects to the Hadoop Distributed File System (HDFS) for map-
pers and reducers to retrieve them. It initializes the sequence of jobs (one per
generation) by setting up the map and reduce classes. It then dispatches the jobs
for execution and waits for them to terminate. The HIsland evolve method can
invoke the classes and methods of the evodesign.core package and inherit their
specializations. Thus we are able to design the GP and GA classes and methods
at an algorithmic abstraction which is isolated from the MapReduce framework
wherever the design is general. When an implementation is specific to MapRe-
duce, such as a monitoring component that extends Reporter to write to the
HDFS or a FitnessCaseFeeder that reads from it to access fitness cases for GP
symbolic regression, we develop in a specialized package flexea.mapreduce.

EA Design: For our actual implementation with MapReduce, we make a num-
ber of design decisions which follow [5] and others. Specifically, we set up a
MapReduce job to run for each generation. Each generation, multiple mappers
execute fitness evaluation of the population. Each sends the fitness result for a
candidate solution to a random reducer. Each reducer runs a tournament and
creates offspring with genetic operators before writing batches of the new gen-
eration to HDFS. See Figure 1. To initialize the population, we first execute
another MapReduce job with identity reducers. It leaves data optimally placed
for the subsequent generations like [9]. We randomize the keys of mappers to en-
sure a randomize shuffle staging to reducers per the example of [5]. We also use
the sliding window-based selection algorithm design of [5] which allows reducers
to approximate how tournament solution selects the best of a tournament.
Other library design decisions involved novel considerations:

Fitness Function Serialization: The fitness function FitnessEvaluator is
procedural and also a first class object. It needs to be compiled and dispatched to
the cluster before the algorithm executes. In a non-Hadoop context, i.e. when us-
ing evodesign.core package, this is not necessary because the FitnessEvaluator
can be set by injection, e.g. island.setFitnessEvaluator(fitnessEvaluator).

420 P. Fazenda, J. McDermott, and U.-M. O’Reilly

gen
n

Selection
Crossover
Mutation gen

n+1

Fitness
Evaluation

MAP REDUCE

Fitness
Evaluation

Fitness
Evaluation

Fitness
Evaluation

Selection
Crossover
Mutation

Fig. 1. Precedent-based mapping of EA generation to MapReduce framework

Then it can be used by the evolve method. In Hadoop, injection will not work be-
cause mappers and reducers are already defined and initialized across the Hadoop
cluster and an injection only would have affect on the Master node. The library
therefore serializesFitnessEvaluatorandother functionswhichare alsofirst class
objects such as Initialize,Crossoverand Mutateof the Island, i.e. writes them
to HDFS so they can be retrieved when needed. For example, Initialize is re-
trieved by the initializationmappers, FitnessEvaluatorby the EAMapClassmap-
pers that will perform fitness evaluation and Crossover by the EAReduceClass
reducers that will perform crossover.

Reporters:A core reporter allows any component to publish data to a sink such
as MySQL database, web service, HDFS or Amazon S3. To aggregate distributed
execution monitoring data, we specialize this core class. A specialized Reporter

injected into the Island or one of its operators, e.g. FitnessEvaluator, sends to
the sink providing a single point abstraction for data writing. A Reporter is seri-
alized with its associated object through the HDFS. Thus, while the EA is execut-
ing, Reporter sinks can be accessed for monitoring at the browser. If the data is
a MySQL database, the database can also be queried via a MySQL client. At the
moment we are visualizing the data streams in real time using a MySQL database
connector fromMatlab.

Island Model and Migration: The library currently supports only one island.
Later, to support multiple islands, it will have a channel class so that an island
will be able to write emigrants to a channel and these can be read by multiple
islands to pick up immigrants. The library implementation will initially imple-
ment a channel with the HDFS because its API provides a convenient single file
system abstraction. This mechanism assures asynchronous island evolution and
requires a minimal exchange of mailbox addresses. Conceptually the design is
simple and efficient.

4 Library in Use

We develop our library on a single node Hadoop cluster and can unit test and
debug with a small number of in-house 8 core servers. The results of this paper
use Hadoop clusters we configured on Amazon EC2 [11]. We assign our Hadoop
task master to one node and use each node as two mappers and reducers. Each

A Library to Run Evolutionary Algorithms in the Cloud 421

node is a dual core Amazon large instance [11]. The large instance, costing
$0.34/hr makes a large cluster relatively expensive. For example, given our initial
timings, to solve this problem once on a 32 node cluster with a population size of
16384 running 100 generations will take approximately one hour, implying a set
of 30 runs will cost $350. The cost of 30 runs with a population size of 1Million
on 256 nodes would cost $8600! We expect to find optimizations to our setup to
improve this by examining precisely why we need a large instance and hopefully
only making just the task master a large instance. We also configure one node
as a MySQL server to receive run data.

We consider a GP symbolic regression problem from [12] of dimensionality
two:

f(x1, x2) =
e−(x1−1)2

1.2 + (x2 − 2.5)2
(1)

The fitness objective is to minimize the mean prediction error on 100 fitness
cases. It executes in 4.0 × 10−3 seconds with essentially zero variance. Each
mapper generates a random set of fitness cases at initialization.

To obtain the results in Table 1 for each cell we executed a single run of only
3 generations. We timed the initialization and final generation overhead for that
run and added them to the averaged execution time of the three generations
multiplied by 100 to estimate the time to execute 100 generations.

The function set is x, y,+, ∗,−,%,, exponent, square, cos, sin, where % sym-
bolizes protected division. The library has an implementation of standard GP
tree crossover and biases internal node selection with a 90:10 ratio and uses
maximum tree height of 17. Crossover probability is 1.0. Subtree mutation rate
is 0.001. Candidate solutions in the initial population are generated with stan-
dard GP ramped half and half with a minimum tree depth of 2 and a maximum
tree depth of 6. Tournament size (i.e. the moving window of the MapReduce
approximation of tournament selection) is 7.

We estimate scaling in two dimensions: population size and cluster size. For a
population size, we can examine the execution time of different cluster sizes. A
cluster size trades off potential parallelism with communication overhead. Table 1
shows that while a 64 node cluster is ideal for population sizes 1024 and 4096, for
some reason a 32 node cluster is fastest when population size increases to 16384.
This result could be an artifact of our cursory estimation. When population
size further increases, larger clusters become faster as would be expected: 128
nodes for population sizes 65536 and 262144, then 256 nodes for a population of
approximately 1Million. Figure 2-right shows that allocating more resources to
the problem at the same rate as increasing the population size provides a constant
expected time for the run to complete. As well, for a cluster configuration, we
can examine how execution time scales with increasing population sizes. See
Figure 2, right. The result for a 256 node cluster for population size 1024 is
probably due to some communication glitch within the cluster.

422 P. Fazenda, J. McDermott, and U.-M. O’Reilly

Table 1. Estimated Execution times for 100 generations of the benchmark on a Ama-
zon EC2 cluster where the number of nodes doubles up from 2 to 256. Asterisk identifies
cluster size offering shortest execution time.

Nodes/Cluster 2 4 8 16 32 64 128 256

Population Size

1024 3654 3104 3152 3159 2903 2750* 2952 47309

4096 4822 4215 3864 3257 2956 2909* 3112 11866

16384 9721 4296 5474 4463 3913* 4569 6459 11724

65536 27916 17562 11090 7452 5887 7279 3903* 12603

262144 58184 34338 18792 11817 8432 6124* 10706

1048576 64567 34180 21284 13321 12130*

0 50 100 150
1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Nodes in Cluster

s
e
c
o
n
d
s

10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7
x 10

4

16 Node Cluster
32 Node Cluster
64 Node Cluster
 128 Node Cluster
256 Node Cluster

Fig. 2. Left: As population size is doubled concurrent with number of nodes in the clus-
ter, estimated time to execute 100 generations is essentially constant. Right: Execution
time scaling with increasing population size for different cluster sizes.

5 Design Discussion

Design Abstraction: An ideal library completely hides the MapReduce level
and allows the programmer to focus upon EA design without spending too much
effort considering the distributed implementations. We believe packaging and
class hierarchy manage to fulfill this objective to a large extent. The true test
will occur over the next year as more programmers in our group use the library.
We will be able to observe how much they need to know about the MapRe-
duce implementation and how much this influences their designs. When their
design adds core functionality they will have to assure it can be implemented by
MapReduce.

Design Scaling: The automatic scaling and parallelization of MapReduce is
very compelling. The library is able to support much larger population sizes
on an island than conventional MPI or socket implementations which map an

A Library to Run Evolutionary Algorithms in the Cloud 423

island to a compute node. In MapReduce an island’s population is distributed
on as many nodes as desired. This implies the MapReduce could support the
largest population sizes ever computed for a single island, even surpassing GPU
implementations.

Design Complexity: A potential design complication is that the island level
abstraction encourages the programmer to assume access to global knowledge
of the population. However, it is not available because the MapReduce layer
partitions out the computation. Consider tournament selection which can be
thought of as global at the island abstraction but which we implement in the
MapReduce layer in a partitioned manner. The MapReduce tournament selection
design of [5], at large scale, faithfully emulates global tournament selection. It
remains to be determined if other selection algorithms can support an underlying
partitioning. One key unresolved example is multi-objective optimization where
a pareto front of the population is used for selection.

Another potential complication is the assumption that fitness of each member
of the population can be evaluated independently. This is not an assumption that
holds for co-evolutionary dynamics where an individuals are compared pairwise
or in bigger aggregations.

Job Overhead: MapReduce adds the overhead of job management to a EA
run. We expect the overhead cost is best mitigated by using the MapReduce im-
plementation for applications with computationally expensive fitness evaluation
costs and/or which require large population sizes. Fitness functions with highly
variable evaluation time may also be well suited to the Hadoop MapReduce
implementation because Hadoop naturally load balances.

Performance Control: By using a programming framework like
Hadoop MapReduce, we lose some transparency. In this situation, how can we
tune for performance? We are concerned about the virtualization aspect of the
cloud. Virtual host resource sharing will impact the consistency of resource avail-
ability. For example, Amazon uses XEN1 and it offers only a small set of container
types so that it can commission XEN hosts appropriately. However, we never
know what VMs are active and sharing our resources when tuning. Ultimately
Amazon, not our service, controls resource levels.

We will need to tune the population size with respect to generations and evalu-
ation budget for a cluster configuration because the number of nodes can impact
the performance. Sweeping the node size introduces a combinatorial problems.
We are hopeful that we will find a configuration that is efficient for a span of
population size to fitness evaluation cost ratios but we have not as yet had time
to do so. We expect that we will have to eventually build a preliminary scaling
investigation capability into the library. The EA service could be configured to
run this automatically.

Development Effort: We estimate that it takes much longer to design a
MapReduce implementation than it would to develop a socket or MPI model.

1 http://xen.org/

http://xen.org/

424 P. Fazenda, J. McDermott, and U.-M. O’Reilly

There is a lot of software engineering overhead required to develop with Hadoop
MapReduce libraries. In terms of ease of fit between the MapReduce program-
ming framework and an EA control flow, there is no doubt that MapReduce’s
data flow, non-iterative model adds software engineering overhead in a sort of
“square peg, round-hole” scenario. It has been somewhat complicated to map an
iterative algorithm with an island level model to a non-iterative paradigm with
parallelism inside the island. It also results in a code base which requires more
effort to support and maintain which impacts research agility.

A mature, meticulous and conscientious software engineer has developed our
library to date over the last 8 months working approximately 3 days weekly.
Much of the time was spent understanding libraries and debugging. We think
that the same island model implemented with sockets or MPI on the cloud
would have taken much less time to develop because they involve much less li-
brary and infrastructure. However, this extra time, to us, is well invested because
Hadoop MapReduce takes all responsibility for node failures and node resump-
tion whereas we would have to look after this ourselves with MPI or sockets. As
well, Hadoop MapReduce naturally load balances. It took us a week to engineer
the Amazon EC2 and Hadoop infrastructure to set up a cluster that we can
simply extend in terms of nodes. This has already brought great convenience.
We obtain the sort of the automatic parallelization MapReduce offers. So, at the
moment it seems that start up expense will be discounted well against these fu-
ture benefits. We will have to see whether this infrastructure is easy to maintain,
robust and stable.

6 Conclusions and Future Work

In summary, this paper described, from a practical software engineering vantage,
using Hadoop MapReduce when providing a library or “service”, not just an
EA for one problem. It provided preliminary evaluation of using MapReduce
programming framework for genetic programming.

Future performance analysis of the library will proceed hand in hand with per-
formance optimization. We intend to use compression to improve effective data
communication bandwidth. We also will revise our initialization to use mappers
more efficiently. We intend to dig further into Hadoop to understand further per-
formance tuning potential. We envision adding an auto-tuning component to the
library which will, for a specific fitness function, investigate population size, node
and mapper allocation to recommend an efficient setting for subsequent runs.

Acknowledgements. This material is based on work supported under a
Portuguese National Science and Technology Foundation Graduate Research
Fellowship, by FCT grant number SFRH/BD/60481/2009. The authors ac-
knowledge the generous support of General Electric Global Research. Any opin-
ions, findings, conclusions, or recommendations expressed in this publication are
those of the author and do not necessarily reflect the views of the National
Science and Technology Foundation, or the Portuguese government or General
Electric Global Research.

A Library to Run Evolutionary Algorithms in the Cloud 425

References

1. Web resource: ApacheHadoop, http://hadoop.apache.org/core
2. Gunarathne, T., Wu, T.L., Qiu, J., Fox, G.: MapReduce in the clouds for science.

In: 2010 IEEE Second International Conference on Cloud Computing Technology
and Science, CloudCom (2010)

3. Web resource: MAHOUT, http://mahout.apache.org/
4. Jin, C., Vecchiola, C., Buyya, R.: MRPGA: An extension of MapReduce for paral-

lelizing genetic algorithms. In: IEEE Fourth International Conference on eScience
2008, pp. 214–221. IEEE (2008)

5. Verma, A., Llora, X., Campbell, R., Goldberg, D.: Scaling genetic algorithms using
MapReduce. Technical report, Illigal TR 2009007

6. Verma, A., Llora, X., Venkataraman, S., Goldberg, D., Campbell, R.: Scaling
ECGA model building via data-intensive computing. In: 2010 IEEE Congress on
Evolutionary Computation, CEC (2010)

7. Verma, A., Llora, X., Goldberg, D., Campbell, R.: Scaling genetic algorithms using
MapReduce. In: Ninth International Conference on Intelligent Systems Design and
Applications, ISDA 2009 (2009)

8. Wang, S., Gao, B.J., Wang, K., Lauw, H.W.: Parallel learning to rank for informa-
tion retrieval. In: Proceedings of the 34th International ACM SIGIR Conference
on Research and Development in Information, SIGIR 2011, pp. 1083–1084. ACM,
New York (2011)

9. Huang, D.W., Lin, J.: Scaling populations of a genetic algorithm for job shop
scheduling problems using MapReduce. In: 2010 IEEE Second International Con-
ference on Cloud Computing Technology and Science, CloudCom (2010)

10. Verma, A., Zea, N., Cho, B., Gupta, I., Campbell, R.: Breaking the MapRe-
duce stage barrier. In: 2010 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 235–244. IEEE (2010)

11. Web resource: Amazon EC2, http://aws.amazon.com/ec2/
12. Vladislavleva, E., Smits, G., Den Hertog, D.: Order of nonlinearity as a complexity

measure for models generated by symbolic regression via pareto genetic program-
ming. IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)

http://hadoop.apache.org/core
http://mahout.apache.org/
http://aws.amazon.com/ec2/

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 426–435, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Fair Comparison of Modern CPUs and GPUs Running
the Genetic Algorithm under the Knapsack Benchmark

Jiri Jaros1 and Petr Pospichal2

1 The Australian National University, ANU College of Engineering and Computer Science,
Canberra, ACT 0200, Australia
jiri.jaros@anu.edu.au

2 Brno University of Technology, Faculty of Information Technology,
Bozetechova 2, 612 66 Brno, Czech Republic

ipospichal@fit.vutbr.cz

Abstract. The paper introduces an optimized multicore CPU implementation of
the genetic algorithm and compares its performance with a fine-tuned GPU ver-
sion. The main goal is to show the true performance relation between modern
CPUs and GPUs and eradicate some of myths surrounding GPU performance. It
is essential for the evolutionary community to provide the same conditions and
designer effort to both implementations when benchmarking CPUs and GPUs.
Here we show the performance comparison supported by architecture characte-
ristics narrowing the performance gain of GPUs.

Keywords: GPU, multicore CPU, knapsack, performance comparison, CUDA.

1 Introduction

The Genetic Algorithms (GAs) have become a widely applied optimization tool since
developed by Holland in 1975 [4]. Many researchers have shown GA abilities in real-
world problems such as optimization, decomposition, scheduling and design. As the
genetic algorithms are population based stochastic search algorithms, they often re-
quire hundreds of thousands test solutions to be created and evaluated.

One of the advantages of the genetic algorithms is their ability to be easily paralle-
lized. During the last two decades, plenty of different parallel implementations have
been proposed, such as island based or spatially structured GAs [19].

The trend over last few years has been to utilize Graphics Processing Units (GPUs)
as general purpose co-processors. Although originally designed for rasterization and
the game industry, their raw arithmetic power has attracted a lot of research [6], [15].

The evolutionary community has adopted this trend relatively quickly and a lot of
papers have been presented in this area, collected e.g. at www.gpgpgpu.com. Howev-
er, a developer experienced in computer architectures can shortly see that there is
something amiss in the state of GA. Most of the papers compare the speedup of the
GPU implementation against a sequential version, moreover, mostly implemented in
the simplest possible way [8], [13], [16]. This is an exact contradiction with the way

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 427

the speedup of the parallel processing is defined. G.A. Amdahl in 1967 stated the
speedup as the performance of the parallel (GPU) version against the performance of
the best known sequential version (an SSE/AVX multi-thread CPU one in the 21st
century) [1]. What meaning would it make to accelerate the BubbleSort algorithm on
GPUs and compare it with a sequential CPU one both with O(n2) when a parallel
QuickSort with O(n log n) could be employed?

The main goal of this paper is to show a proper CPU and GPU implementation of
the GA, written the ground up taking into account each the architectures features. This
paper puts the reached speedups into relation with the architecture performance and
discusses the validity of the results. We will simply convince ourselves that there is
no way to reach speedups in order of 100 and beyond [7].

The well-known single-objective 0/1 knapsack problem is used as a benchmark. It
is defined as follows: given a set of items (L), each with a weight w[i] and a price p[i],
with i = 1,..,L. The goal is to pick such items that maximize the price of the knapsack
and do not excess the weight limit (C) [18]. The solutions that break this limit are
penalized according to amount of overweight and the peak price-weight item ratio.

As target architectures we have chosen the leading GPU and CPU on the market,
namely the NVIDIA GTX 580 and the Intel Xeon X5650. It does not make any sense
for the high performance computing community to compare with desktop CPUs pro-
viding that real-word problems require to be run on servers for a long time period.

2 Memory Layout of the GA

The section describes the memory layouts of the population, statistics and global data
structures. It is crucial to allocate all host structures intended for host-device transfers
by CUDA pinned memory routines. This makes it possible to use the Direct Memory
Access (DMA) and reach the peak PCI-Express performance [11]. On the other hand,
the host memory should be allocated using the memalign routine with 16B align-
ment when implementing the CPU only version. This helps CPU vector units to load
chunks of data much faster and the compiler to produce more efficient code.

2.1 Population Organization

The population of GA has been implemented as a C structure consisting of two one-
dimensional arrays. The first array represents the genotype while the second one
represents fitness values. Assuming the size of the chromosome is L and the size of
the population is N, the genotype is defined as an array[N*L/32]. As the knapsack
chromosomes are based on the binary encoding, 32 items are packed into a single
integer. This rapidly reduces the memory requirements as well as accelerates genetic
manipulations employing logical bitwise operations. The fitness value array has the
size of N.

Two different layouts of genotype can be found in literature [16]. The first one, re-
ferred to as chromosome-based, represents chromosomes as rows of a hypothetical

428 J. Jaros and P. Pospichal

2D matrix implemented as a 1D array whilst the second one, referred to as gene-
based, is a transposed version storing all genes with the same index in one row.

The chromosome-based layout simplifies the chromosome transfers in the selection
and replacement phases as well as the host-device transfers necessary for displaying
the best solution during the evolutionary process and in more advanced island-base
models. In this case, multiple CUDA threads work on one chromosome to evaluate its
fitness value. This layout should be preferred also for the CPU implementation in
order to preserve data locality and enable the CPU to store chromosomes in the L1
cache and exploit modern prefetch techniques.

On the other hand, the gene-based representation allows working with multiple
chromosomes at a time utilizing the SIMD/SIMT nature of CPUs and GPUs assuming
there are no dependencies between chromosomes. However, evaluating multiple
chromosomes at a time tends to run out of other resources such as registers, cache,
shared memories, etc.

Taking into account architecture characteristics, the only thing that matters is to al-
low threads inside a warp to work on neighbor elements. Different warps can access
different memory areas with only a small or no penalization. The chromosome-based
layout seems to be the most promising layout enabling the warp to work with the
genes of one chromosome, especially, if it is necessary for the fitness evaluation to
read genes multiple times. The different warps can simply operate on different chro-
mosomes. This reaches the best SIMD (SSE, CUDA) performance while reducing
registers, share memory, and cache requirements. For this reason, the chromosome-
based layout is used for both CPU and GPU.

2.2 GA Parameters Storage

A C data structure has been created to accommodate all the control parameters of the
GA. Such parameters include the population and chromosome size, the crossover and
mutation ratio, the statistics collecting interval, the total number of evaluated genera-
tions etc. Once filled in with command line parameters, the structure is copied to the
GPU constant memory. This simplifies CUDA kernel invocations and saves memory
bandwidth according to the CUDA C best practice guide [11].

2.3 Knapsack Global Data Storage

The knapsack global data structure describes the benchmark listing the price and
weight for all items possible included in the knapsack. The structure also maintains
the capacity of the knapsack and the item with the maximum price/weight rate. The
prices and weights are stored in two separate 1D arrays. The benefit over an array of
structures is data locality as all the threads first read prices and only then the weights.

The best memory area where to place this structure may seem to be the constant
memory. Unfortunately, this area is too small to accommodate real-world bench-
marks. Its capacity of 64KB allows solving problems up to 4K items. On the other
hand, introducing L2 caches and a load uniform (LDU) instruction in Fermi cards [11]
makes the benefits of constant memory negligible supposing all threads within a warp

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 429

accesses the same memory location. As the result, the global data are stored in main
GPU memory. The problem size (the chromosome size in bits) is always padded to
a multiple of 1024 to prevent uncoalesced accesses.

3 Genetic Algorithm Routines

This section goes through the evolution process and comments on the genetic manipu-
lation phase, fitness function evaluation, replacement mechanism and statistics collec-
tion. Each phase is implemented as an independent CUDA kernel to put global
synchronization between each phase. The source codes can be downloaded from [5].

All the kernels of the GA has been carefully designed and optimized to exploit the
hidden potential of modern GPUs and CPUs. It is essential for a good GPU imple-
mentation to avoid the thread divergence and to coalesce all memory accesses to mi-
nimize the required memory bandwidth. Thus, the key terms here are the warp and
the warp size [11] . In order to write a good CPU implementation, we have to meet
exactly the same restrictions. The warp size is now reduced to SSE or AVX width and
coalescing corresponds to L1 (L2, L3) cache line accesses while GPU shared memory
can be directly seen as the L1 cache.

As the main principles are the same, the CPU implementation follows the GPU one
adding only an outer-most for cycle and the OpenMP pragma omp parallel
for sections [2] to utilize all available CPU cores and simulate GPU execution.

3.1 Random Number Generation

As genetic algorithms are stochastic search processes, random numbers are extensive-
ly used throughout them. CUDA does not provide any support for on the fly genera-
tion of a random number by a thread because of many associated synchronization
issues. The only way is to generate a predefined number of random numbers in a sep-
arate kernel [10]. Fortunately, a stateless pseudo-random number generator has re-
cently been published based on hash functions [14]. This generator is implemented in
C++, CUDA and OpenCL. The generator has been proven to be crush resistant with
the period of 2128. The generator is three times faster than the standard C rand func-
tion and more than 10x faster than the CUDA cuRand generator [12], [14].

3.2 Genetic Manipulation Phase

The genetic manipulation phase creates new individuals performing the binary tour-
nament selection on the parent population and exchanging genetic material of two
parents using uniform crossover with a predefined probability. Every gene of the
offspring is mutated by the bit-flip mutation and stored in the offspring population.

The key for the efficient implementation of the genetic manipulation kernel is
a low divergence and enough data to utilize all the CUDA cores. Each CUDA block is
organized as two dimensional. The x dimension corresponds to the genes of a single
chromosome while the y dimension corresponds to different chromosomes. The size

430 J. Jaros and P. Pospichal

of the x dimension meets the warp size of 32 to prevent lots of divergence within
a warp. The size of y dimension of 8 is chosen based on the assumption that 256
threads per block is enough [15].

The entire grid is organized in 2D with the x size of 1, and the y size corresponding
to the offspring population size divided by the double of the y block size (two
offspring are produced at once). Since the x grid dimension is exactly the 1, the warps
process the individuals in multiple rounds.

The selection is performed by a single thread in a warp. Based on the fitness val-
ues, two parents are selected by the tournament and their indices within the parent
population are stored in shared memory.

Now, each warp reads two parents in chunks of 32 integer components (one integer
per thread). As binary encoding enables 32 genes to be packed into a single integer,
the warp effectively reads 1024 binary genes at once. Since this GA implementation
is intended for use with very large knapsack instances, uniform crossover is imple-
mented to allow better mixing of genetic material. Each thread first generates a 32b
random number serving as the crossover mask. Next, logic bitwise operations are
used to crossover the 32b genes. This removes all conditional code from the crossover
except testing of the condition whether or not to do the crossover at all. This condition
does not introduce any thread divergence as it is evaluated in the same way for the
whole warp.

Mutation is performed in a similar way. Each thread generates 32 random numbers
and sets the bit of the mask to 1 if the random number falls into the mutation probabil-
ity interval. After that, the bitwise xor operation is performed on the mask and the
offspring. This is done for both the offspring. Finally the warp writes the chromosome
chunk to the offspring population and starts reading the next chunk.

3.3 Fitness Function Evaluation

The fitness function evaluation kernel follows the same grid and block decomposition
as the genetic manipulation kernel. Evaluating more chromosomes at a time allows
the GPU to reuse the matching chunk of global data and saves memory bandwidth.

Every warp processes one chromosome in multiple rounds handling a single 32b
chunk at a time. In every round, the first warp of the block transfers the prices and
weights of 32 items into shared memory employing coalesced memory accesses. Af-
ter the barrier synchronization, every warp can read the knapsack data directly from
shared memory. Now, every warp loads a single 32b chunk into shared memory. As
all the threads within a warp access the same memory location (one integer), the L2
GPU cache is exploited. Every thread masks out an appropriate bit of the 32b chunk,
multiplies it with the item price and weight, and stores the partial results into shared
memory. When the entire chromosome has been processed, the partial prices and
weights of the items placed in the knapsack have to be reduced to a single value.
Since the chromosome is treated by a single warp a barrier-free parallel reduction can
be employed. Finally, a single warp thread checks the total capacity of all the items
and if the capacity has been exceeded, the fitness is penalized. Finally, the fitness
value is stored in the global memory.

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 431

The CPU implementation evaluates chromosomes one by one provided that the
global data can be easily stored in L3 cache. The evaluation process is distributed
over multiple cores using OpenMP. The evaluation can be carried out immediately
after a new offspring has been created which results in the chromosome being eva-
luated stored in L1 cache. This might also be possible for the GPU implementation,
however, the kernel would run out of registers and shared memory resulting in poor
GPU occupation and low performance.

3.4 Replacement Phase

The replacement phase employs the binary tournament over the parents and offspring
to create the new parent population. The kernel and block decompositions are the
same as in the previous phases. The only modification is that the kernel dimensions
are derived from the parent population size.

Every warp compares a randomly picked offspring with the parent laying on the
index calculated from the y index of the warp in the grid. If the offspring fitness value
is higher than the parent one, the entire warp is used to replace the parent by the
offspring. This restricts the thread divergence to the random number generation phase.

3.5 Statistics Collection

The last component of the genetic algorithm is the class collecting necessary statistics
about the evolutionary process. It maintains the best solution found so far, and hand-
ing them over the CPU for saving into a log file.

The statistics collection consists of a kernel and statistics structure initialization.
The GPU statistic structure maintains the highest and lowest fitness values over the
population as well as the sum and the sum-of-squares over of fitness values. The last
two values are necessary for calculating the average fitness value and the standard
deviation. The last value is the index of the best individual.

The kernel is divided into twice as many blocks as the GPU has stream processors.
Each block is decomposed into 256 threads based on the practice published in [15].
After the kernel invocation, the chunks of fitness values are distributed over the
blocks. Each thread processes as many fitness values as necessary and stores the par-
tial results into shared memory. After the barrier synchronization, the reductions over
highest, lowest and two sum values are carried out. Finally, the first thread of each
block uses a global memory lock to modify the global statistics.

After completion, the statistics structure is downloaded to host memory to compute
average value and the standard deviation over the fitness values. Finally, the best
solution is downloaded from GPU based on the index stored in the statistics structure.

The CPU implementation of the statistics collection has been left in a sequential
form because the overhead of parallel execution would exceed the execution time
provided by parallel processing.

432 J. Jaros and P. Pospichal

4 Experimental Comparison of CPU and GPU Implementations

The goal of the experiments is to compare an optimized multicore CPU implementa-
tion with a well-designed GPU version and provide some insight into realistically
achievable speedups. All the experiments were carried out on a dual Intel Xeon
X5650 server equipped with a single NVIDIA GTX 580 running Ubuntu 10.04 LTS.

The knapsack benchmark with 10,000 items and a population size of 12,000 indi-
viduals were used. We chose such a big benchmark and large population to show the
most optimistic results. The smaller the benchmark and population are, the slower
a GPU will be compared to a multicore CPU. This is given by the massively parallel
architecture of modern GPUs. Six thousand new individuals are created and evaluated
every generation. The genetic algorithm works with tournament selections and re-
placement, a crossover ratio of 0.7, and a mutation ratio of 0.01. The statistics are
collected after every generation. All the proposed codes were compiled using GNU
C++ with the highest optimization level, SSE 4.2 support, the OpenMP library [2] and
the CUDA 4.0 developer kit [11].

As the reference, we chose the GALib library [20] adopted by a lot of scientists.
GALib is a comprehensive rapid prototyping library for evolutionary algorithms,
however, the last version comes from 1997. Because of its age, the library cannot
benefit from vector units (SSE/AVX) or multiple cores.

In order to validate the optimization abilities of the proposed implementations, we
carried out 30 independent runs. The average highest fitness values reached after 100
generations as well as the standard deviation are plotted in Fig. 1. Although there is
a statistically significant difference among the implementations, the practical impact
on the result quality is negligible (lower than 0.1%).

The performance results are revealing. As a lot of researchers do not pay enough
attention to the CPU implementation, the GALib is often compiled under default con-
ditions without any optimization and with debugging support enabled. This degrades
the performance (GALib-D) to 375 times slower than the GTX 580. Just a trivial
modification of the GALib makefile (turning on appropriate compiler optimizations)
can bring a huge performance gain for free. The GALib-O (Optimized) version is 221
times slower than the GPU (see Fig. 2).

Implementing the CPU version carefully rapidly decreases the execution time. The
single thread (1T) implementation is 68 times slower than the GPU. This is similar to
the speedup reported in many other studies, e.g. [17]. However, parallelization of the
1T version is trivial. It is only necessary to put three OpenMP pragmas in the entire
code. The impact on the performance is significant! Running the GA on a single six-
core processor reduces the speedup to 11.82 (5.78 faster than 1T). As common HPC
servers are equipped with multiple CPU sockets, the dual Xeon5650 server takes only
6 times longer time to perform the task. This is appreciably different to the results
reported speedups to 800x, 1000x, 2072x in [13], [16], [8], respectively.

The reason for such a big difference in the CPU codes is shown in Table 1. Three
different CPU implementations were investigated using the PAPI performance coun-
ter library [9]. The key to the fast CPU code is to utilize cache memories properly.

 A Fair Comparison of M

Fig. 1. Solution fitness v
generations achieved
implementations

The first line of the tabl
problem lays in the way g
number of copy construct
number of L2 cache acces
(caused by accesses with s
custom CPU implementatio
thread implementation). T
distribution over multiple L
better in the case of GALib
by 3 orders which leads to
interpreting the number of
spends more than 99.99% o

All these inefficiencies a
1,099 MIPS (Million Instru
Xeon running the optimize
can touch up to 67,248 M
floating point FLOPs here
prices and weights being en

Given that fixed-point S
floating-point instructions
code. The dual Intel Xeon 5
LINPACK benchmark. Th
which is pretty good. As th
attacks 405 GFLOPS. Altho
formance of the GTX580,
can never approach the pea
fitness function evaluation
thread operations inside th
store statistics, and many o
CUDA cores working in ev

Modern CPUs and GPUs Running the Genetic Algorithm

value after 100
by different

Fig. 2. Speedup comparisons of GP
against different CPU implementations

le clearly shows an awful L2 cache hit of the GALib. T
genotype and phenotype are organized, and the imme
ors employed virtually everywhere. Moreover, from
sses we can deduce, the L1 cache is also not exploi

stride, e.g., when calculating the statistics in GALib). T
on reduces L2 access by factor of 26 (in case of the sin
he 12 thread implementation further benefits from d
L2 caches. In contrast, the L3 cache hit ratio seems to
b. However, the number of L3 accesses of GALib is hig
o an enormous number of ALU stalls. On the other ha
f cache accesses in the table, the optimized CPU vers
of time working within the L1 cache.
are projected to the CPU performance. GALib only reac
uctions Per Second). On the other hand, the same six c
ed code reaches about 33,600 MIPS and the entire ser
IPS. We have measured fixed point arithmetic instead
because of the nature of GA encoding and the knaps

ncoded as integers.
SIMD instructions are nearly as fast as single precis
on the CPU, we can calculate the efficiency of the C
5650 server reaches of 118 GFLOPs in the Intel optimi
e overall efficiency of the CPU code is thus about 56

he GPU is about 6 times faster, the peak GPU performa
ough this is roughly one fourth of the theoretical peak p
it represents a very good result [7]. It should be clear

ak performance because of many parallel reductions in
and statistics kernel, necessary synchronization and sin

he genetic manipulation, handing data over to the CPU
other issues. The peak performance would require all

very clock cycle, which is not possible for such operation

433

PU

The
ense

the
ited
The
ngle
data
o be
gher
and,
sion

ches
core
rver
d of
sack

sion
CPU
ized
6%,

ance
per-
we
the

ngle
U to

the
ns.

434 J. Jaros and P. Pospichal

Table 1. PAPI performance counters profililng data of 100k knapack and 100 generations using
GALib and the custom implementation on dual Intel Xeon X5650

 GALib-O CPU-1T 2xCPU-6T
L2 cache hit 18.01% 98.81% 96.82%
L2 accesses 21 267M 800M 24M
L3 cache hit 99.04% 57.07% 81.3%
L3 accesses 17 278M 8M 12M
MIPS 1 099 5 392 67 248
Execution time 165.25s 48.52s 3.81s

In order to compare the 405 GFLOPs of this implementation with other CUDA ap-

plications, consider these values measured by SHOC benchmark [3] in single preci-
sion: FFT = 213 GFLOPS, GEMM = 529 GFLOPS, parallel reduction = 93 GFLOPS,
parallel sort = 2 GFLOPS.

5 Conclusions

This paper points out the way many authors presents the speedups of the GPU imple-
mentation of the genetic algorithm against the CPU version. A lot of papers have used
only a single thread implementation, [8], [13], [16], [17]. Such authors should have
immediately divided their speedups by the factor of 6 at least. Do not forget there is
nothing like a single thread CPU on the market any more. As we always need to per-
form multiple trials to produce good results, we can run as many trials as physical
cores with negligible impact on the performance. The trials are embarrassingly paral-
lel. The reason why some authors did not do so might lie in a foolish hunt for the
highest speedup, or an attempt to hide the fact the performance gain by a GPU would
have been so low that it would not have justified the amount of effort put it into.

The best GPU on the market has the peak performance of 1.5 TFLOPS while a typ-
ical server processor reaches the peak of 60 GFLOPs. Confronted with these architec-
ture limits, it is not possible to report speedups of more than 100. Such speed-ups only
show that CPU implementation is not well optimized. Fair comparison is to say how
fast the implementation is in terms of GFLOPS, and what fraction of the peak perfor-
mance has been achieved.

Modern GPUs have amazing computational power, and it is worth it porting
computationally expensive applications such as evolutionary algorithms onto them.
However, we must be careful about making the performance comparisons. We have
clearly shown that a carefully implemented CPU version can be up to 30 times faster
than a single thread default-compiled GALib. We have also shown that realistically a
single NVIDIA GTX580 can outperform an Intel Xeon X5650 by a factor of around 12
while reaching an execution efficiency of 26% and performance of 405 GFLOPS. The
proposed CPU and GPU implementations have been released as open source at [5].

Acknowledgement. This research has been partially supported by the research grant
"Natural Computing on Unconventional Platforms", GP103/10/1517, Czech Science
Foundation (2010-13), and the research plan "Security-oriented research in informa-
tion technology", MSM 0021630528 (2007-13).

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 435

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale compu-
ting capabilities. In: Proceedings of the April 1820 1967 Spring Joint Computer Confe-
rence, vol. 23(4), pp. 483–485 (1967)

2. Chandra, R., Dagum, L., Kohr, D., et al.: Parallel programming in OpenMP. Morgan
Kaufmann (2001)

3. Danalis, A., Marin, G., et al.: The Scalable HeterOgeneous Computing (SHOC) Bench-
mark Suite Categories and Subject Descriptors. In: Proceedings of the Third Workshop on
General-Purpose Computation on Graphics Processors, GPGPU 2010 (2010)

4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press
(1975)

5. Jaros, J.: Jiri Jaros’s software website,
http://www.fit.vutbr.cz/~jarosjir/prods.php.en

6. Kirk, D.B., Hwu, W.-M.: Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann (2010)

7. Lee, V.W., Hammarlund, P., Singhal, R., et al.: Debunking the 100X GPU vs. CPU myth.
In: Proceedings of the 37th Annual International Symposium on Computer Architecture,
ISCA 2010, p. 451. ACM Press, New York (2010)

8. Luong, T.V.: GPU-based Island Model for Evolutionary Algorithms. Evaluation,
1089–1096 (2010)

9. Malony, A.D., Biersdorff, S., Shende, S., et al.: Parallel Performance Measurement of He-
terogeneous Parallel Systems with GPUs. Performance Computing

10. NVIDIA: CUDA Toolkit 4. 0 CURAND Guide (2011)
11. NVIDIA: Cuda c best practices guide (2011)
12. NVIDIA: Math Library Performance CUDA Math Libraries (2011)
13. Pospichal, P., Schwarz, J., Jaros, J.: Parallel genetic algorithm solving 0/1 knapsack prob-

lem running on the gpu. In: 16th International Conference on Soft Computing MENDEL,
pp. 64–70. Brno University of Technology, Brno (2010)

14. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel Random Numbers: As Easy
as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Compu-
ting, Networking, Storage and Analysis, SC 2011, pp. 16:1–16:12. ACM Press, New York
(2011)

15. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley (2010)

16. Shah, R., Narayanan, P., Kothapalli, K.: GPU-Accelerated Genetic Algorithms,
cvit.iiit.ac.in

17. Simonsen, M., Pedersen, C.N.S., Christensen, M.H.: GPU-Accelerated High-Accuracy
Molecular Docking using Guided Differential Evolution. In: Proceedings of the Genetic
and Evolutionary Computation Confernce GECCO 2011. ACM Press (2011)

18. Simões, A., Costa, E.: An Evolutionary Approach to the Zero / One Knapsack Problem
Testing Ideas from Biology. In: The Fifth International Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA 2001), April 22-25 (2001)

19. Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, Heidelberg (2005)
20. Wall, M.: GAlib: A C ++ Library of Genetic Algorithm Components. Statistics (August

1996)

Validating a Peer-to-Peer Evolutionary

Algorithm

Juan Luis Jiménez Laredo1, Pascal Bouvry1,
Sanaz Mostaghim2, and Juan-Julián Merelo-Guervós3

1 Faculty of Sciences, Technology and Communication,
University of Luxembourg, Luxembourg City L-1359, Luxembourg

{juan.jimenez,pascal.bouvry}@uni.lu
2 Karlsruhe Institute of Technologie

Kaiserstrasse 89, Karlsruhe D-76133, Germany
sanaz.mostaghim@kit.edu

3 University of Granada. ATC-ETSIIT
Periodista Daniel Saucedo Aranda s/n 18071, Granada, Spain

jmerelo@geneura.ugr.es

Abstract. This paper proposes a simple experiment for validating a
Peer-to-Peer Evolutionary Algorithm in a real computing infrastructure
in order to verify that results meet those obtained by simulations. The
validation method consists of conducting a well-characterized experiment
in a large computer cluster of up to a number of processors equal to the
population estimated by the simulator. We argue that the validation
stage is usually missing in the design of large-scale distributed meta-
heuristics given the difficulty of harnessing a large number of comput-
ing resources. That way, most of the approaches in the literature focus
on studying the model viability throughout a simulation-driven exper-
imentation. However, simulations assume idealistic conditions that can
influence the algorithmic performance and bias results when conducted
in a real platform. Therefore, we aim at validating simulations by running
a real version of the algorithm. Results show that the algorithmic
performance is rather accurate to the predicted one whilst times-to-
solutions can be drastically decreased when compared to the estimation
of a sequential run.

1 Introduction

Given that most computer devices nowadays are connected to the Internet con-
tinuously, volunteer computing systems [2] have arisen as an alternative to su-
percomputers or wide-area grid systems. Volunteer computing systems usually
behave in a centralized fashion which might be a problem when huge numbers
of clients are simultaneously connected, posing a challenge to the server, or con-
verting it into a bottleneck in the case the systems become especially large.
Peer-to-Peer (P2P) systems, where no node has any special role, do take advan-
tage of the nature of the Internet and take more advantage of the bandwidth
each node is connected with [14].

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 436–445, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Validating a Peer-to-Peer Evolutionary Algorithm 437

These systems have received much attention from the scientific community
within the last decade. In this context and under the term of P2P optimization,
many optimization heuristics such as Evolutionary Algorithms (EAs), Parti-
cle Swarm (PSO) or Branch-and-bound have been re-designed in order to take
advantage of such computing platforms [16,13,5,3]. The key issue here is that
gathering a large amount of computational devices pose a whole set of practical
problems. Therefore, and to the best of our knowledge, most of the approaches
to P2P optimization –if not all– have been analyzed in simulators rather than
in real environments. That way, this paper aims to go an step further and val-
idate a P2P EA in a real large-scale infrastructure running up to 3008 parallel
individuals.

To that aim, we consider the results published in [8] on the scalability of the
Evolvable Agent model (i.e. a P2P EA model) in a simulated based environment.
Such results are validated using an equally parametrized parallel version of the
algorithm in a real environment1. In order to simplify the experimentation, the
real platform consists of a cluster of homogeneous nodes. This allows the trace
of computer failures and the minimization of asynchronous effects on the perfor-
mance so that the characterization of the real environment mirrors the simulator
settings.

In a first set of experiments, the algorithmic accuracy of the simulations is
tested by running a medium size instance of trap functions [1]. We focus then
on the fine-tuning of the population size and adjust both, simulation-based and
parallel versions to their optimal sizes. Given that both approaches are equally
parametrized, our validation proof relies on showing that the simulations require
the same population size than the parallel version to induce the same progress
in fitness. On the basis of previous results, a second set of experiments is con-
ducted in order to prove the massive scalability of the approach. In this case, the
computational performance of the model is assessed by tackling a larger problem
instance for which the simulator points out large population size requirements.
Here, results show that the parallel version is able to find the problem optimum
in two and half hours in contrast with the estimation of hundred days of the
sequential run.

The rest of the paper is organized as follow. Section 2 provides an overall
description of the Evolvable Agent model. Section 3 explains the setup of the
experiments. Results are analyzed in Section 4. Finally, we reach some conclu-
sions and propose some future lines of work in Section 5.

2 Description of the Model

The Evolvable Agent (EvAg) model (proposed by Laredo et al. in [7]) is a fine-
grained spatially structured EA in which every agent schedules the evolution

1 In order to reproduce experiments, all the source-code –either the simulator or the
parallel version of the algorithm– is available from our Subversion repository at
http://forja.rediris.es/svn/geneura published under GNU public license.

http://forja.rediris.es/svn/geneura

438 J.L.J. Laredo et al.

process of a single individual and self-organizes its neighborhood via the news-
cast protocol. As explained by Jelasity and van Steen in [6], newscast runs on
every node and defines the self-organizing graph that dynamically maintains
some constant graphs properties at a virtual level such as a low average path
length or a high clustering coefficient from which a small-world behavior emerges
[15]. This makes the algorithm inherently suited for parallel execution in a P2P
system which, in turn, offers great advantages when dealing with computation-
ally expensive problems at the expected speedup of the algorithm.

Every agent acts at two different levels; the evolutionary level for carrying out
the main steps of evolutionary computation (selection, variation and evaluation
of individuals [4]) and the network level which defines P2P population structure.

The evolutionary level is depicted in Algorithm 1. It shows the pseudo-code of
an EvAgi ∈ [EvAg1 . . . EvAgn] where i ∈ [1 . . . n] and n is the population size.
Despite the model not having a population in the canonical sense, neighbors
EvAgs provide each other with the genetic material that individuals require to
evolve.

Algorithm 1. Pseudo-code of an Evolvable Agent (EvAgi)

Evolutionary level

Indcurrenti
⇐ Initialize Agent

while not termination condition do
Pooli ⇐ Local Selection(NeighborsEvAgi

)
Indnewi

⇐ Recombination(Pooli,Pc)
Evaluate(Indnewi

)
if Indnewi

better than Indcurrenti
then

Indcurrenti
⇐ Indnewi

end if
end while

Local Selection(NeighborsEvAgi
)

[Indcurrenth
∈ EvAgh, Indcurrentk

∈ EvAgk] ⇐ Random selected nodes from the newscast
neighborhood

The key element at this level is the locally executable selection. Crossover and
mutation never involve many individuals, but selection in EAs usually requires a
comparison among all individuals in the population. In the EvAgmodel, the mate
selection takes place locally within a given neighborhood where each agent selects
the current individuals from other agents (e.g. Indcurrenth and Indcurrentk in
Algorithm 1).

Selected individuals are stored in Pooli ready to be used by the recombina-
tion (and eventually mutation) operator. Within this process a new individual
Indnewi is generated.

In the current implementation, the replacement policy adopts a replace if
worst scheme, that is, if the newly generated individual Indnewi is better than
the current one Indcurrenti , Indcurrenti becomes Indnewi , otherwise, Indcurrenti
remains the same for the next generation. Finally, every EvAg iterates until a
termination condition is met.

As previously mentioned, newscast is the canonical underlying P2P protocol
in the EvAg model. It represents the network level of the model that conforms

Validating a Peer-to-Peer Evolutionary Algorithm 439

the population structure. Algorithm 2 shows the newscast protocol in an agent
EvAgi. There are two different tasks that the algorithm carries out within each
node. The active thread which pro-actively initiates a cache exchange once every
cycle and the passive thread that waits for data-exchange requests (the cache
consists in a routing table pointing to neighbor nodes of EvAgi).

Algorithm 2. Newscast protocol in EvAgi

Active Thread
loop

wait one cycle
EvAgj ⇐ Random selected node from Cachei
send Cachei to EvAgj
receive Cachej from EvAgj
Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

Passive Thread
loop

wait Cachej from EvAgj
send Cachei to EvAgj
Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

Every cycle each EvAgi initiates a cache exchange. It uniformly selects at
random a neighbor EvAgj from its Cachei. Then EvAgi and EvAgj exchange
their caches and merge them following an aggregation function. In this case, the
aggregation consists of picking the freshest c items (i.e. c is the maximum degree
of a node. In this paper c = 40) from Cachei ∪ Cachej and merging them into
a single cache that will be replicated in EvAgi and EvAgj .

Within this process, every EvAg behaves as a virtual node whose neighborhood
is self-organized at a virtual level with independence of the physical network.
In this paper, we conduct experiments following the ideal case in which every
computing core hosts a single EvAg.

3 Experimental Setup

The experimental setup in this paper is based on the simulations performed in
[8] on the scalability of the Evolvable Agent model when tackling trap functions
[1]. In order to validate the model, we will try to reproduce such results in a
parallel infrastructure.

3.1 Simulation settings

A trap function is a piecewise-linear function defined on unitation (the number
of ones in a binary string). There are two distinct regions in search space, one
leading to a global optimum and the other leading to the local optimum (see
Figure 1). In general, a trap function is defined by the following equation:

440 J.L.J. Laredo et al.

trap(u(−→x)) =

⎧⎨
⎩

a
z (z − u(−→x)), if u(−→x) ≤ z

b
l−z (u(

−→x)− z), otherwise
(1)

where u(−→x) is the unitation function, a is the local optimum, b is the global
optimum, l is the problem size and z is a slope-change location separating the
attraction basin of the two optima.

Fig. 1. Generalized l-trap function

For the following experiments, a 3-trap function was designed with the fol-
lowing parameter values: a = l − 1; b = l; z = l − 1. With these settings, 3-trap
lies in the region between deception and non-deception. Scalability tests were
then performed by juxtaposing m trap functions and summing the fitness of
each sub-function to obtain the total fitness.

The bisection method [12] was used for each size m to determine the opti-
mal population size P , that is, the lowest P for which 98% of the runs solve the

Fig. 2. Simulator estimated scalability of the Peer-to-Peer Evolutionary Algorithm
[8] tackling different instances of the 3-trap problem [1]. On the left the estimated
population sizes and the number of evaluations to solution on the right. Results are
obtained for a selectorecombinative version of the algorithm (i.e. no mutation) and
depicted as a function of the length of the chromosome, L.

Validating a Peer-to-Peer Evolutionary Algorithm 441

traps functions. To find it, mutation rate is set to 0, so as to search a minimum
population size such that using random initialization it is able to provide enough
building blocks to converge to the optimum without other mechanism besides
recombination and selection.

Figure 2 depicts the simulation-based results for increasing problem instances
of the 3-trap problem (lengths of the chromosomes are L = 12, 24, 36, 48, 60, 150).
As the problem scales, the P2P EA requires of both, a larger population size and
a larger number of evaluations, to guarantee that the optimal solution is found
with a probability of 0.98.

3.2 Parallel Version Settings

In order to run parallel experiments, we are going to consider two of the problem
instances from previous simulations. The first instance of a medium size, i.e.
L = 48 bits, and the second with L = 150 bits. Table 1 provides the simulator-
based results for both instances that will be used as parameter inputs in the
parallel runs. They characterize the settings of the algorithm to find the optimum
98 out of 100 times, e.g. in order to find the optimum in the L = 48 instance,
the algorithm requires a population size of 390 individuals and a maximum of
140 generations.

Table 1. Simulator-based results for the population size and the respective number of
generations in order to find the problem optimum

Instance Population Size Avg. n. of generations Max. n. of generation

L = 48 390 85 140

L = 150 3000 173 250

The rest of parameter settings are summarized in Table 2.

Table 2. Parameters of the experiments

Trap instances

Size of sub-function (k) 3
Individual length (L) 48, 150

GA settings

Selection of Parents Binary Tournament
Recombination Uniform crossover, pc = 1.0

Mutation No mutation, pm = 0.0

All experiments in this paper were conducted in the NEC Nehalem cluster
at the HPC center of the University of Stuttgart (see http://www.hlrs.de/

systems/platforms/nec-nehalem-cluster for further details on the

http://www.hlrs.de/systems/platforms/nec-nehalem-cluster
http://www.hlrs.de/systems/platforms/nec-nehalem-cluster

442 J.L.J. Laredo et al.

architecture). Here, it should be noted that P2P overlay networks behave in-
dependently of the underlying infrastructure they are running in, therefore, a
cluster of homogeneous nodes can be consider a P2P system whenever it runs a
P2P engine in every node. In that sense, using a cluster of homogeneous nodes
has the advantage of simplifying the validation process. First, the side effects of
asynchrony are minimized since every agent is scheduled by a single processor
core running at the same frequency than the rest, and second, the lifetime and
load of computers can be monitored so that we can ensure that there are no
failures. Both effects, asynchrony and fault-tolerance to computer failures are
left, therefore, as a future line of research.

4 Analysis of Results

In this section, we conduct two different sets of experiments. The first one focuses
on verifying the results of the simulator in a real parallel platform. To that aim, a
medium size instance of length L = 48 is considered. In a second experiment, we
try to prove the massive scalability of the approach in terms of time speedups.
Given that the goal of parallel Evolutionary Algorithms is to reduce times-to-
solutions of expensive optimization problems, experiments were conducted on
the largest problem instance of length L = 150.

4.1 Test-Case 1: Validating Results of the Simulator

In order to validate the results obtained by the simulator for the L = 48 in-
stance, the P2P Evolutionary Algorithm was distributed in the NEC Nehalem
cluster using a fine-grained parallelization in which every agent was scheduled in
an independent thread, each running in its own processor. As described in [9],
such settings stand for a worst-case scenario in which the fitness evaluations are
computationally heavy. In advance, there are no restrictions limiting the number
of agents per processor. Both algorithms (i.e. simulator-based algorithm and the
parallel version) were equally parametrized and only differ on the population
sizes P tested for the parallel approach.

Figure 3 depicts the average progress of the fitness convergence of the parallel
runs for different population sizes P = 50, 100, 200, 300, 400. Given that the
simulator predicts an optimal population size of P = 390, we aim at investigating
the improvements on the fitness as the population size increases from P = 50
to P = 400. Results show that the smaller population sizes are not able to find
the problem optimum (set to 48). However, for P = 400 the algorithm is able to
track the optimal solution 8 times out of 10 as roughly estimated by the simulator
(i.e. simulator actually predicts a success rate of 0.98 for P = 390). Taking into
account the side effects of asynchrony and communications in the parallel version,
we can conclude that the simulator-based results can be considered as a good
estimate of the parallel performance of the algorithm.

Validating a Peer-to-Peer Evolutionary Algorithm 443

Fig. 3. Test-case 1. Best fitness convergence for the L = 48 instance using different
population sizes (P). Results are averaged from 10 independent runs.

4.2 Test-Case 2: Testing the Massive Scalability of the Approach

In this experiment, we tackle the largest problem instance with a length of
L = 150. The complexity of the instance is so high that the simulator estimates
a population size of P = 3000 for the problem to be solved. However, and de-
spite trap functions being algorithmically-complex problems (i.e. NP-hard), they
are computationally lightweight. To emulate realistic time-consuming problems
(e.g. the simulation guided optimization proposed by Ruiz et al. in [11] where
the fitness function takes 6.5 seconds), we add a delay routine in every fitness
evaluation that takes 16 seconds. Adding a delay routine aims reproducing heavy-
loaded scenarios in which the ratio between communications and computation
decreases. With these settings and according to the results in the simulator, the
algorithm will require that 3000 individuals evolve during an average number of
173 generations to reach the optimum. In terms of time, that would translates
into 100 days of sequential computation.

With the aim of reducing the time of convergence, the algorithm was paral-
lelized using 3008 agents, each one running in a thread. The entire population was
deployed in 188 computers, having 8 cores each and implementing hyper-threading
with 2 threads per core. Note that the 8 extra individuals to the estimated 3000
are due to the composition of the architecture in which the parallelism extends
to the microprocessor level –as McNairy and Bhatia describe in [10]– by adding
several cores per processor and through hyper-threading technology.

Figure 4 depicts the convergence of the algorithm as a function of time. It
shows how the algorithm is able to find optimality –the problem optimum is set
to 150– after 2.5 hours of parallel processing which demonstrates that way the
massive scalability of the approach.

444 J.L.J. Laredo et al.

Fig. 4. Test-case 2. Fitness convergence for 3008 agents (P = 3008) in the L = 150
instance. The problem optimum is set to 150 and is found after 8900 seconds.

5 Conclusions

In this paper, we have conducted experiments for the validation of a Peer-to-Peer
Evolutionary Algorithm in a cluster of homogeneous nodes. A common approach
for designing such a kind of models is to use a simulation-driven experimentation
given the difficulties of accessing a large amount of computers for testing. There-
fore, model characterizations remain valid only under certain set of assumptions
and the viability of the approaches is subject to the scope of the simulator.

In order to validate a model, we propose to reproduce results from simulations
in a real-world system so that they can approach the predicted values. In that
context, two simple experiments were conducted in a real infrastructure using a
parallel version of the Peer-to-Peer Evolutionary Algorithm. The first experiment
shows that the parallel version performs roughly the same than an equally-
parametrized simulator-based run from which the validation of the model can
be drawn. Specifically, the population size of the parallel version is adjusted to
the same values of the simulations having an equivalent performance in fitness
convergence. The second experiment focuses on determining the scalability of
the parallel approach for large problem instances which, additionally, require of
large population sizes. In this case, a massively parallel run is conducted in 3008
computing cores, each hosting an individual. The problem optimum is found
after two and half hours of parallel execution in contrast to the estimate of one
hundred days run if computed sequentially.

As future lines of work, we aim at investigating the parallel approach in a
bigger set of scenarios taking into account the effects of heterogeneous comput-
ers on the algorithmic performance. We find that asynchrony, communication
latencies and computer failures are the main issues to circumvent in order to
deploy the algorithm in ad-hoc networks as they are Internet-based volunteer
systems.

Validating a Peer-to-Peer Evolutionary Algorithm 445

Acknowledgments. This work was supported by the Luxembourg FNR
GreenIT Project (C09/IS/05), Spanish Ministry of Science Projects TIN2008-
05941 and TIN2011-28627-C04 and Andalusian Regional Project P08-TIC-03903.

References

1. Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Norwell (1987)

2. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)

3. Biazzini, M., Montresor, A.: Gossiping de: A decentralized heuristic for function
optimization in p2p networks. In: ICPADS 2010, pp. 468–475 (2010)

4. Eibenand, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer,
Heidelberg (2003)

5. Guo, Y., Cheng, J., Cao, Y., Lin, Y.: A novel multi-population cultural algorithm
adopting knowledge migration. Soft Comput. 15(5), 897–905 (2011)

6. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Tech-
nical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Sci-
ence, Amsterdam, The Netherlands (October 2002)

7. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J.: Exploring population struc-
tures for locally concurrent and massively parallel evolutionary algorithms. In: Pro-
ceedings of IEEE Congress on Evolutionary Computation (CEC2008), WCCI 2008,
pp. 2610–2617. IEEE Press, Hong Kong (2008)

8. Laredo, J.L.J., Eiben, A.E., van Steen, M., Julián Merelo Guervós, J.: Evag: a
scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable
Machines 11(2), 227–246 (2010)

9. Laredo, J.L.J., Lombraña, D., de Vega, F.F., Arenas, M.G., Merelo, J.J.: A Peer-
to-Peer Approach to Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M.,
Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 108–117.
Springer, Heidelberg (2011)

10. McNairy, C., Bhatia, R.: Montecito: a dual-core, dual-thread itanium processor.
IEEE Micro. 25(2), 10–20 (2005)

11. Ruiz, P., Dorronsoro, B., Valentini, G., Pinel, F., Bouvry, P.: Optimisation of the
enhanced distance based broadcasting protocol for manets. J. of Supercomputing.
Special Issue on Green Networks, 1–28 (February 23, 2011), Online FirstTM

12. Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms.
Technical Report 2002004, University of Illinois at Urbana-Champaign, Urbana,
IL (2001)

13. Scriven, I., Ireland, D., Lewis, A., Mostaghim, S., Branke, J.: Asynchronous mul-
tiple objective particle swarm optimisation in unreliable distributed environments.
In: IEEE Congress on Evolutionary Computation, CEC 2008 (2008)

14. Steinmetz, R., Wehrle, K.: What is this Peer-to-Peer About? In: Steinmetz,
R., Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485,
pp. 9–16. Springer, Heidelberg (2005)

15. Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Na-
ture 393, 440–442 (1998)

16. Wickramasinghe, W.R.M.U.K., van Steen, M., Eiben, A.E.: Peer-to-peer evo-
lutionary algorithms with adaptive autonomous selection. In: GECCO 2007,
pp. 1460–1467. ACM Press, New York (2007)

Pool-Based Distributed Evolutionary Algorithms

Using an Object Database

Juan-Julián Merelo-Guervós1, Antonio Mora1, J. Albert Cruz2,
and Anna I. Esparcia3

1 Departamento de Arquitectura y Tecnoloǵıa de Computadores,
Universidad de Granada

{jmerelo,amorag}@geneura.ugr.es
http://geneura.wordpress.com

2 Universidad de Ciencias Informáticas,
La Habana, Cuba
jalbert@uci.cu

3 S2 Grupo, Valencia
aesparcia@s2grupo.es

Abstract. This work presents the mapping of an evolutionary algo-
rithm to the CouchDB object store. This mapping decouples the pop-
ulation from the evolutionary algorithm, and allows a distributed and
asynchronous operation of clients written in different languages. In this
paper we present initial tests which prove that the novel algorithm design
still performs as an evolutionary algorithm and try to find out what are
the main issues concerning it, what kind of speedups should we expect,
and how all this affects the fundamentals of the evolutionary algorithm.

1 Introduction

Algorithms have traditionally been written with a single memory and CPU in
mind, current technological infrastructure includes a high variety of frameworks
and devices that make this paradigm be twisted and shifted in many differ-
ent directions. Particularly in distributed evolutionary computation, traditional
notions of asynchronous, homogeneous and static computing systems have been
superseded by others in which one or all of these features are not present [1,10,2],
thus making the traditional distinction between master-slave and island based
models [13] fade by making them just two of all the possibilities that are created
along the different feature axes.

Using these new foundations for Evolutionary Algorithms (EAs) allows one to
take full advantage of the performance of modern CPUs and operating systems,
and, in some cases, opens up the possibility of using new devices for distributed
computing system, by making the participation in a distributed computation
experiment as easy as visiting a website [11].

This change in the computing framework might, and usually does, imply
changes in the algorithms themselves. A feature as common as threads makes
EAs escape the “sequential cage”, and make us rethink how the biologically
inspired art of these algorithms [8] can be mapped to this new substrate.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 446–455, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://geneura.wordpress.com

Pool-Based Distributed Evolutionary Algorithms Using an Object Database 447

For instance, database management systems are one pervasive technology in
business computing, but it was not until 1999 that they were used as a base for
persistent evolutionary algorithms by Bollini et al. [4]. They mention the fact
that a database allows the simultaneous actuation of several clients, and change
fundamentally the design of the EA from an ab initio strategy to an incremental
one that makes use of the chromosomes that have been already created and
evaluated, are stored, and can be efficiently retrieved, from the database.

Even database management systems change, and the last few years have seen
the appearance of the so-called NoSQL, object or Key-Value stores [3]. These sys-
tems, beyond the obvious fact that they do not use the SQL language for accessing
data stores, are characterized by the feature that they are key-value stores where
the value is any kind of loosely structured document; in general, documents can
include any data structure, although some of them (like, for instance, sets) might
be present in only some cases. XML or JSON (JavaScript Object Notation,[6]) are
commonly used as data description languages,while JavaScript has emerged as the
most common data processing language. The languages are enhanced by functions
that in some cases include map/reduce [17,7], which is an efficient way of working
on large amounts of data without needing large amounts of memory. Map/reduce
requests are structured in a map function that is applied to every element within
the selection, creating a couple of data structures that are reduced by performing
some operation on them. Amap operation, for instance, might create an arraywith
the values of a certain field; a reduce operation will create a hash that records how
many times each value appears.

These features are usually accessed through a REST API, a lightweight way
of interacting with HTTP based servers which uses the semantics and syntax of
this protocol. Since in order to create a wrapper around a REST API the only
requirement for a language is to be able to make web requests and build strings,
NoSQL databases can be accessed either easily from the command line, from
the address bar of a browser, or from libraries built in many different computer
languages; in either case, it does not add much overhead to the raw request. Most
of the overhead lies in the conversion from the native NoSQL format (usually
JSON) to the data structures in the native language.

All these features make NoSQL databases an ideal candidate for creating the
backoffice for a distributed computation experiment; even more so whenmost sys-
tems allow replication, so that amulti-star (that is,multiple and linked serverswith
clients hanging from each one) infrastructure can be created and single-points of
failure avoided. This is what we have done in this paper: we have usedCouchDB (a
NoSQL DBMS) to set up a distributed evolutionary computing framework; after
explaining how the EA was designed, we prove that first, those changes do not af-
fect the essence of the algorithmby finding a solutionusing a number of evaluations
comparable to a canonical EA; and then we measure how the system behaves in a
distributed computation environmentwith several heterogeneous clients, trying to
find out how many clients can be added in parallel.

The rest of the paper is organized as follows: next we will present
the state of the art in similar systems; next, section 3 presents SofEA, the

448 J.-J. Merelo-Guervós et al.

CouchDB-based evolutionary algorithm and how evolution and the first proofs
of concept; section 4 is devoted to show the results in more taxing environments,
including certain speed-up measures, and finally we present the conclusions and
future lines of work in section 5.

2 State of the Art

It is not usual to find pool-based implementations of EAs. In these methods,
several nodes or islands share a pool where the common information is written
and read. To work against a single pool of solutions is an idea that has been
considered almost from the beginning of research in distributed evolutionary
algorithms. Asynchronous Teams or A-Teams [15] were proposed in the early
nineties as a cooperative scheme for autonomous agents. The basic idea is to
create a work-flow on a set of solutions and apply several heuristic techniques to
improve them, possibly including humans working on them. This technique is not
constrained to EAs, since it can be applied to any population based technique,
but in the context of EAs, it would mean creating different single-generation
algorithms, with possibly several techniques, that would create a new generation
from the existing pool.

The A-Team method does not rely on a single implementation, focusing on the
algorithmic and data-flow aspects, in the same way as the Meandre [9] system,
which creates a data flow framework, with its own language (called ZigZag),
which can be applied, in particular, to EAs.

While algorithm design is extremely important, implementation issues always
matter, and some (relatively) recent papers have concentrated on dealing with
pool architectures in a single environment: Roy et al. [14] propose a shared mem-
ory multi-threaded architecture, in which several threads work independently on
a single shared memory, having read access to the whole pool, but write access
to just a part of it. That way, interlock problems can be avoided, and, taking
advantage of the multiple thread-optimized architecture of today’s processors,
they can obtain very efficient solutions in terms of running time, with the added
algorithmic advantage of working on a distributed environment. Although they
do not publish scaling results, they discuss the trade off of working with a pool
whose size will have a bigger effect on performance than the population size on
single-processor or distributed EAs. The same issues are considered by Bollini
and Piastra in [4], who present a design pattern for persistent and distributed
EAs; although their emphasis is on persistence, and not performance, they try to
present several alternatives to decouple population storage from evolution itself
(traditional evolutionary algorithms are applied directly on storage) and achieve
that kind of persistence, for which they propose an object-oriented database
management system accessed from a Java client. In this sense, this approach is
similar to AGAJAJ [11], since it uses for persistence a small database accessed
through a web interface, but only for the purpose of interchanging individuals
among the different nodes, not as storage for the whole population.

In fact, the efforts mentioned above have not had much continuity, prob-
ably due to the fact that there have been, until now, few (if any) publicly

Pool-Based Distributed Evolutionary Algorithms Using an Object Database 449

accessible online databases. However, given the rise of cloud computing plat-
forms over the last few years, interest in this kind of algorithms has rebounded,
with implementations using the public FluidDB platform [12] having been re-
cently published. This implementation combines evolution with (possible) stig-
mergy (communication through the environment), the same as is proposed in
this paper, since population is persistent, evolution is carried incrementally and
the interaction among islands is only performed through the environment, in
this case, the CouchDB DBMS. What we present here is similar; however, since
it is a local database instead of a single copy of a global database accessed by
all users, latency problems can be avoided, thus avoiding the scale problems we
found in [12]. However, the results obtained in that work regarding packet size,
and, in general, asynchronous organization of the algorithm, can also be applied
to the present work.

This paper advances the state of the art by introducing a novel, more fine-
grained parallelization technique, and also by testing it on a distributed and real
world environment.

3 SofEA, a CouchDB-Based Evolutionary Algorithm

The first question is why choose CouchDB over other similar products, such
as MongoDB or Redis. There have been several reasons for doing so: It is an
open source product, which is available in most Linux distribution repositories.
This means that it is very easy to create the infrastructure; second, it uses
JavaScript as its query language, which makes learning to use it very easy, and
it is introducing a new query language, UnQL1, which is an hybrid between SQL
and JSON. MongoDB can also be queried using JavaScript, but Redis cannot,
using its own language instead; third, it uses persistent storage, which means
stored procedures and data can be reused after reboot. Redis, on the other hand,
handles everything in memory, which also implies a RAM consumption that is
directly proportional to the amount of data you deal with, and finally, in the
shape of DesktopCouch, CouchDB is a default install in most Linux desktops that
include Gnome, although this does not imply CouchDB does not work in other
operating systems. This means that the system can work out of the box (at least
in Linux), without needing additional installs in most cases. Besides, CouchDB
has as an advantage over MongoDB: a grater adherence to web standards (the
primary interface to the data is through RESTful HTTP) which grant it an
advantage for use in the Internet [16], and the possibility of using it in mobile
platforms.

Mapping an EA to this system has to take into account its peculiar features
and go with its grain to achieve maximum performance, locally in the server and
globally on the system composed of server+clients.

The first step is to decouple population from the rest of the evolutionary
algorithm. Usual EAs include population as a variable that is passed around
together with operators and the rest of the algorithm; even distributed EAs

1 http://www.unqlspec.org/display/UnQL/Home

http://www.unqlspec.org/display/UnQL/Home

450 J.-J. Merelo-Guervós et al.

encapsulate the population and the rest of the algorithm in a single problem. In
this case, and following Bellini et al. [4], we decouple population storage and its
processing. Population will be stored in CouchDB. A document will include a
chromosome, a random number and the fitness value. Besides, CouchDB includes
two other pieces of data into each document: the key (which will coincide with
the chromosome) and a version number.

This version number, or revision, will be used to characterize the state of a
chromosome in the population:

– Revision 1: newly created chromosome, no fitness computed yet
– Revision 2: chromosome with fitness
– Revision 3: dead chromosome.

Revisions are updated naturally by CouchDB; when a chromosome is updated
with its fitness it is moved from revision 1 to 2; any further operation will take
it to revision 3.

Since one of the strong points of CouchDB is its ability to cope with a high
number of simultaneous requests, the EA itself has been divided into four dif-
ferent programs, which will operate independently and asynchronously.

– Initialization: will create a set of chromosomes in revision 1.
– Evaluation: will take packets of chromosomes in revision 1, compute their

fitness, upgrading them to revision 2 (in traditional EA parlance, they would
be part of the population).

– Reproduction: packets of chromosomes in revision 2 will be crossed over and
mutated; newly generated chromosomes are obviously in revision 1.

– Elimination: the population (chromosomes in revision 2) is reduced down to a
fixed number of chromosomes so that the less fit are progressively eliminated
from it.

These last three components are run at the same time, although they can be
started asynchronously. In fact, they can be run in any sequence. Since the pop-
ulation is out there any part, or all of them, can be run in different languages,
operating systems, processes or machines. This allows also to optimize the im-
plementation of each one of them by using the language that suits them better.
This horizontal division of labor has been used before in papers by Castillo et
al. [5], in this case to take computational load off a central server, which is used
mainly as a clearinghouse for distributing the population; the full GA, however,
is run on one of the clients, and there is a provision, in principle, for a single GA
client, with possibly several evaluators.

The main problem with this configuration is the starving of the algorithms,
that is, the lack of chromosomes for performing its task. Since operation is asyn-
chronous, if reproduction is not fast enough the evaluator will run out of chromo-
somes to evaluate; if evaluator is not fast enough, the reproducer will not have a
significant population to act on. The elimination phase is not so critical, but if
it is not run frequently the reproductive population will grow out of proportion,
thus reducing the exploitative ability of the whole algorithm. This is fixed, in

Pool-Based Distributed Evolutionary Algorithms Using an Object Database 451

part, by making components wait one second if there is not enough material to
act on; however, this increases the number of useless requests to the server or
servers we are using. The main handle we can use to act on this is introducing
a slight delay when starting them and packet size. However, ultimately the key
is to have enough chromosomes to evaluate, since the reproduction phase can
create new ones (maybe with less efficiency) even with a few.

One of the main advantages of this configuration is the fact that every chro-
mosome is evaluated just once. Since we use the chromosome string as a key, if
the reproduction attempts to reintroduce a chromosome it will return an already
existing error. This means that the reproduction phase (and, in fact, also the
evaluation phase) becomes increasingly less successful with the ongoing algo-
rithm, but also that every individual in revision 2 is unique and thus diversity
is always kept, no matter what kind of algorithm we introduce.

Since several evaluators and reproducers can act concurrently, we should issue
them different chromosomes to work on. One of the possibilities would be to keep
tabs on the server of the last one issued, but this is a problem since there is no
guarantee that the result will be returned, and then it would also cause starvation
if a slow client takes the last chromosomes to evaluate. So we included a random
number in the document, which is used to sort the population and retrieve all
the chromosomes after that first random number. There are two problems with
this: if this number is too high, less chromosomes than the established packet will
be returned. This could be avoided by issuing another request for the remaining
number of chromosomes, however this is cumbersome and it is not really a big
problem to have less chromosomes to operate on; the second one is that there is
small probability (which increases with decreasing population size) that the same
chromosome is returned twice to two different clients. This is not a problem with
the reproduction phase, but it could be with the evaluation, causing a conflict.
However, this only impacts on performance (some wasted CPU cycles) and in
fact has been observed only a few times in experiments.

All these changes imply that whatever was proved for the old tried and trusted
evolutionary algorithm no longer holds, so we will have to check whether, in fact,
evolution proceeds and, in time, a solution is found. This is shown in Figure 3,
applied to the classical ONEMAX problem with 128 bits. Block size, that is,
the number of chromosomes requested in each step, for reproduction and eval-
uation was 64, and the base population was 128, after an initial non-evaluated
population of 512. Since there is no generation here, in this figure we plot the
fitness versus the number of evaluations. It can be seen that evaluation proceeds
in more or less the same way in the five runs that we have plotted in this graph,
reaching the maximum around 7000 evaluations. There are no big differences
between them, and the time they take is also similar: around 150 seconds. In or-
der to check what would the equivalent be in a generational algorithm, we run a
simple evolutionary algorithm with the same code (when possible) and different
population size (Figure 3, right); 100 runs were made for each population size; as
it can be seen, that number of evaluations roughly corresponds to a population
between 64 and 128, showing that, algorithmically, this evolutionary algorithm is

452 J.-J. Merelo-Guervós et al.

0 2000 4000 6000

0
20

40
60

80
10

0
12

0

Evolution of fitness

MaxOnes problem
Evaluations

fit
ne

ss

32 64 128

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

Evaluations

MaxOnes
Population

ev
al

ua
tio

ns

Fig. 1. Graph showing the evolution of fitness for 5 runs of the SofEA algorithm (left)
and Boxplot of number of evaluations needed for the same problem in a canonical GA
with different population sizes (right)

equivalent to the canonical GA with roughly the same population. However, Fig-
ure 2 shows the other problem these algorithms present: overpopulation. When
the algorithm finishes, the number of non-evaluated chromosomes is close to
1000; since evaluation is slower than reproduction the gap only increases in
time. In the next section we will see how parallelization avoids that problem.
In this experiment we run the algorithm until 5000 evaluations were reached;
packet size for evaluators and reproducers were set to 64 and base population
size was 128.

1000 2000 3000 4000 5000

0
20

0
40

0
60

0
80

0

Evolution of population

Rev 3 size

po
pu

la
tio

n

1000 2000 3000 4000 5000

0
20

0
40

0
60

0
80

0

Evolution of population

Parallel evaluation
Rev 3 size

po
pu

la
tio

n

1000 2000 3000 4000

0
10

0
20

0
30

0
40

0
50

0
60

0

Evolution of population

Parallel evaluation
Rev 3 size

po
pu

la
tio

n

Fig. 2. Evolution or population in different states, plotted against the number of dead
elements. Red represents the number of newly generated chromosomes, black those in
revision 2 (left) and two parallel evaluators. Blue takes a block size of 32, red (bottom)
64 (middle); and finally, 3 and 4 parallel evaluators (dotted and dashed lines) and 3
evals + 1 reproducer (solid) (right).

Pool-Based Distributed Evolutionary Algorithms Using an Object Database 453

4 Experiments and Results

Since the algorithm is separated in several modules, there are as many options to
paralellize it by just multiplying its number, changing, if needed, the block size;
the main factor, as in the sequential algorithm (that is, the single copy version
shown above) is to avoid starvation, or lack of supply of individuals to work
on, as well as the opposite effect, the glut or oversupply of chromosomes which
wastes time by arriving to the end of the simulation with lots of chromosomes
still to be evaluated.

We carried out several experiments in which we used two evaluators. To check
whether an increment of speed was obtained just by the parallel evaluation or to
the management of the oversupply of chromosomes,two packet sizes were tested:
32 and 64 for the evaluator. The first one got almost no time improvement,
while the other obtained almost a 25% improvement in time. Since the number
of evaluated chromosomes is independent of the block size, this improvement is
simply due to the fact that the overall number of chromosomes created is less,
as can be seen in Figure 2 (right). The number of non-evaluated chromosomes
for block-size 32 is more or less the same as before (Figure 2, left). However,
doubling the number of evaluations done in parallel effectively decreases the
oversupply of chromosomes, resulting in a smaller number of total chromosomes
generated and a better leveraging of the parallel evaluation.

To further improve solutions, another evaluator was added; within the same
computer, a Javascript + JQuery evaluator running within the browser with
block size equal to 32 was included. Having so many processes (all clients +
server) running within the same computer did not result in a big overload, since
it is an AMD 6-core computer with 8 GB of memory. We even managed to reduce
approximately 1/6 the running time of the overall system. Effectively, looking at
the solid red line in Figure 2 (right) we see that the oversupply of chromosomes is
further reduced, which means that less effort is wasted generating chromosomes;
besides, having more processes run in parallel improves the overall speed.

To see whether further improvement could be achieved we added another com-
puter, which was running either an evaluator or an reproducer in the browser.
In the first case, as shown by the black dotted line in 2 (right), we went from
oversupply to starvation, and most of the time the evaluator did not have any
chromosomes to work on; trying to avoid this by using another reproducer in-
stead gave rise to the situation shown in 2 (right) with a dashed blue line: once
again, the supply of chromosomes was not too high (compare it with Figure 2
– left), but neither of them resulted in an improvement in the time needed to
perform 5000 evaluations, as was desired.

This implies that, for this particular configuration, the number of clients has
reached a plateau and no more speedup is possible. However, the fact that we
have achieved good speedups just by adding clients within the same computer
encourages us to continue developing this system further.

454 J.-J. Merelo-Guervós et al.

5 Conclusions and Future Work

This paper describes the first experiments done with a CouchDB-based evolu-
tionary algorithm, which experiments with a new form of parallelization and a
new representation of the evolutionary algorithm that detaches storage from the
process that work on them; this detachment is carried further by making a differ-
ent process of every phase in an evolutionary algorithm: evaluation, reproduction
and selection.

We have proved that the algorithm is able to work in this asynchronous and
detached mode; further, that it is able to work in many different platforms by
testing it with Perl and JQuery clients, all working on the same population
asynchronously. Experiments have also shown firstly that one of the problems of
this system is striking a balance with the supply of chromosomes to be evaluated
and secondly, that clients cannot be added indefinitely. However, this is mainly
related to the method we use for checking termination, and not to the algorithm
itself: a rather expensive map/reduce request is done to the system involving
retrieving all documents and checking their revision. The more clients are added
the more requests are made; every packet evaluation or reproduction needs at
least one of them. This is definitely a path for improvement: we could evaluate
this only once by the reaper and store it in the database; this would save many
requests and extend the number of possible clients.

Besides this improvement, currently the type of the client is decided before-
hand; since the clients are served from the database, some intelligence could be
added to it so that it was able to decide which clients were needed the most, even
during the execution of the algorithm. If too many non-evaluated chromosomes
were present, an evaluator could be served; else, a reproducer. The type of the
client could even be changed at run time.

There is also some room for optimization of the CouchDB server by reducing
the number of heavy-duty requests. Eventually, we expect to achieve speeds for
the single clients system that are competitive with those achieved by a sequential
system.

Acknowledgments. This work is supported by projects NEMESIS (TIN2008-
05941) awarded by the Spanish Ministry of Science and Innovation and P08-
TIC-03903 awarded by the Andalusian Regional Government.

References

1. Atienza, J., Castillo, P.A., Garćıa, M., González, J., Merelo, J.: Jenetic: a dis-
tributed, fine-grained, asynchronous evolutionary algorithm using Jini. In: Wang,
P.P. (ed.) Proc. JCIS 2000 (Joint Conference on Information Sciences), vol. I,
pp. 1087–1089 (2000); ISBN: 0-9643456-9-2

2. Bánhelyi, B., Biazzini, M., Montresor, A., Jelasity, M.: Peer-to-Peer Optimization
in Large Unreliable Networks with Branch-and-Bound and Particle Swarms. In:
Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-
Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 87–92. Springer, Heidelberg (2009)

Pool-Based Distributed Evolutionary Algorithms Using an Object Database 455

3. Bartholomew, D.: SQL vs. NoSQL. Linux Journal 195, 4 (2010)
4. Bollini, A., Piastra, M.: Distributed and Persistent Evolutionary Algorithms: A De-

sign Pattern. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP
1999. LNCS, vol. 1598, pp. 173–183. Springer, Heidelberg (1999)

5. Castillo, P.A., Garćıa-Arenas, M., Mora, A.M., Jiménez-Laredo, J.L., Romero, G.,
Rivas, V.M., Merelo-Guervós, J.J.: Distributed Evolutionary Computation using
REST. CoRR abs/1105.4971 (2011)

6. Crockford, D.: JavaScript Object Notation (JSON) (July 2006),
http://www.ietf.org/rfc/rfc4627

7. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM 51(1), 107 (2008)

8. Goldberg, D.E.: Zen and the art of genetic algorithms. In: Schaffer, J.D. (ed.)
ICGA 1995, June 4-7, pp. 80–85. George Mason University, Morgan Kaufmann,
San Mateo, California (1989)

9. Llorà, X., Ács, B., Auvil, L., Capitanu, B., Welge, M., Goldberg, D.: Meandre:
Semantic-driven data-intensive flows in the clouds. Tech. Rep. 2008103, Illinois
Genetic Algorithms Laboratory (2008)

10. Gorges-Schleuter, M.: ASPARAGOS: An asynchronous parallel genetic optimiza-
tion strategy. In: Schaffer, J.D. (ed.) Proceedings of the Third International Con-
ference on Genetic Algorithms. Morgan Kaufmann Publishers (1989)

11. Merelo, J.J., Castillo, P., Laredo, J., Mora, A., Prieto, A.: Asyn-
chronous distributed genetic algorithms with Javascript and JSON.
In: Proceedings of WCCI 2008, pp. 1372–1379. IEEE Press (2008),
http://atc.ugr.es/I+D+i/congresos/2008/CEC_2008_1372.pdf

12. Merelo, J.J.: Fluid evolutionary algorithms. In: IEEE Congress on Evolutionary
Computation, pp. 1–8. IEEE (2010)

13. Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: Third Inter-
national Conference on Knowledge-Based Intelligent Information Engineering Sys-
tems, pp. 88–92. IEEE (1999)

14. Roy, G., Lee, H., Welch, J., Zhao, Y., Pandey, V., Thurston, D.: A distributed pool
architecture for genetic algorithms. In: IEEE Congress on Evolutionary Computa-
tion, CEC 2009, pp. 1177–1184 (May 2009)

15. Talukdar, S., Murthy, S., Akkiraju, R.: Asynchronous teams. International Series
in Operations Research and Management Science, pp. 537–556 (2003)

16. Tiwari, S.: Professional NoSQL. John Wiley & Sons, Inc. (2011)
17. Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified rela-

tional data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, pp. 1029–1040. ACM (2007)

http://www.ietf.org/rfc/rfc4627
http://atc.ugr.es/I+D+i/congresos/2008/CEC_2008_1372.pdf

Migration and Replacement Policies for

Preserving Diversity in Dynamic Environments

David Millán-Ruiz1 and José Ignacio Hidalgo2

1 Telefónica Digital, Distrito Telefónica, 28050, Madrid, Spain
2 Complutense University of Madrid, Profesor José Garćıa Santesmases, 28040,

Madrid, Spain

Abstract. This paper seeks to resolve the difficulties arising from the
configuration and fine-tuning of a Parallel Genetic Algorithm (PGA)
based on the Island Model, when the application domain is highly dy-
namic. This way, the reader will find a number of useful guidelines for
setting up a PGA in a real, representative dynamic environment. To
achieve this purpose, we examine different (existing and new) migration
and replacement policies for three different topologies. Of course, there
are many other factors that affect the performance of a PGA such as the
topology, migrant selection, migration frequency, amount of migrants,
replacement policy, number of processing nodes, synchronism type, con-
figuration in the isolated islands, diversity of policies in different islands,
etc which are also considered as a part of this study. The pivotal point of
all the experiments conducted is the preservation of diversity by means
of an appropriate balance between exploration and exploitation in the
PGA’s search process when the application domain is highly dynamic and
strong time constraints arise. The experimental phase is performed over
two problem instances from a real-world dynamic environment which is
the multi-skill call centre.

Keywords: parallel genetic algorithms, migration policies, replacement
policies, diversity maintenance, dynamic environments.

1 Yet Another Paper on Migration and Replacement
Policies for PGAs?

Over the last years, an increasingly-growing interest in parallel and distributed
computing has arisen in computer science. Specifically, this concern has recently
guided most research activities on evolutionary computation towards areas such
as parallel and distributed computational intelligence or parallel and distributed
architectures and infrastructure. Truthfully, there exists a vast bibliography on
parallel and distributed evolutionary approaches (see Section 2) although there
are still paths to explore.

Additionally, we perceive a tendency to tackle gradually more complex prob-
lems and application domains which frequently entail the processing of extremely

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 456–465, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Migration and Replacement Policies for Preserving Diversity 457

dynamic data flows. These demanding environments are usually hard to be ef-
ficiently handled by most of the existing, sequential techniques. In this con-
text, parallel and distributed evolutionary algorithms do not only mitigate this
drawback but also present several noteworthy characteristics such as robustness,
traceability, problem simplification, adaptivity, scalability and speed-up.

Nevertheless, it is not always straightforward to control the internal dynam-
ics of a PGA based on the island model, especially whether we seek to ensure a
fair balance between exploration and exploitation in the search process within
a dynamic environment. Too much exploration (high diversity in the popula-
tion) can cause very slow convergence towards the optimum whereas an intense
exploitation (low diversity) at the beginning can lead us to a premature conver-
gence. Many authors have addressed this complex problem from many angles,
producing a rich set of proposals (see Section 2).

This paper does not attempt to be the philosopher’s stone for PGAs’ config-
uration but to provide researchers and industrial professionals with some addi-
tional, useful guidelines on how to properly fine-tune the configuration of your
parallel implementation when facing highly dynamic application domains (e.g.
call centre management, datagrams routing, detection of mobility patterns, etc).

The main contribution of this work lies in the determination of the right
setting-up for a PGA when it is applied to highly dynamic environments. We also
propose new policies, which are inspired in other domain’s solutions, to preserve
a fair balance between exploration and exploitation in the search process. We
also test out those policies in three different topologies in order to analyse their
impact under two different scenarios which correspond to real data extracted
from a multi-skill call centre.

The rest of this paper is organised as follows: Section 2 presents a survey of
existing work from different points of view, considering commonalities with other
problem domains. Section 3 describes the basic configuration of our PGA and
all the parameters involved that can affect the maintenance of diversity during
the experimental phase. Section 4 presents and analyses the experimental results
derived from applying different policies for preserving diversity. Finally, Section
5 draws the main conclusions and provides some guidelines as future work.

2 State of the Art: Brief Survey of Existing Work

Determining the right configuration for a PGA is not truly a new issue as many
authors have already worked on finding an appropriate setting-up as we are going
to see along this section.

Roughly speaking, parallel versions of genetic algorithms can be categorised
into coarse grained and fine-grained implementations (Cantú-Paz, 1998) [9].
Coarse-grained approaches maintain a population on each node where indi-
viduals are migrated according to a given policy. In contrast, fine-grained im-
plementations keep an individual on each processing node which operates as
a neighbour for selection and reproduction. As we have already introduced,
we will investigate migration and replacement policies for PGAs based on the

458 D. Millán-Ruiz and J.I. Hidalgo

island model (coarse-grained approach) with special focus on those appropriate
configurations for highly dynamic environments.

In 1987, Pettey (1987) [1] put forward a distributed model in which the best-
fitted individuals of each node were migrated to each neighbour node in each
generation, fully replacing the worst-fitted individuals of those neighbours. At
the same time, Tanese (1987) [2] proposed a parallel implementation where each
population was broken into a small number of subpopulations. Afterwards, each
subpopulation was assigned to (and processed in) a different processing node
within the system. The island model proposed in Cohoon (1987) [3] is an imple-
mentation of a distributed scheme where the idea of random migrant selection
and replacement was put forward. In this proposal, each island was an isolated
entity which was capable of selecting individuals, crossing them and evaluating
their fitness value.

After that, Gordon (1992) [4] as well as Adamidis (1994) [5] reinforced the
term of island model in their parallel proposals, while Collins (1992) [6] launched
a grid model where individuals were placed in a node and interacted with their
neighbours. In 1995, some authors went into the migrants selection in greater
depth. This way, Belding (1995) [7] established an approach where the first n
individuals were selected as migrants in relation to a predefined order.

Whitley (1997) [8] underlined that migration in parallel implementations
caused additional selective pressure whereas Nowostawski (1999) [20] proposed
a new taxonomy for PGAs based on a dynamic demes model. Special mention
for Cantú-Paz (1998-2000) [9-11] who provided the most complete review of the
state of the art on PGAs. Then, Alba (2001) [12] highlighted the importance
of using asynchronous policies. In all the experiments conducted, asynchronous
algorithms outperformed their equivalent synchronous counterparts in real time.
Hu (2002) [13] described a model which is inspired by the stratified compe-
tition frequently seen in society and biology. The proposal defined stratified
levels with fitness value limits. Individuals moved from low-fitness subpopula-
tions to higher-fitness subpopulations whether they surpassed the fitness-based
admission threshold of the receiving subpopulation. Higher fitness levels implied
higher selection pressure (exploitation).

More recently, Lozano (2008) [14] put forward an explicit measure of diver-
sity which entailed the replacement of existing individuals with lower values for
the features being measured. The authors claimed to outperform existing re-
placement strategies presented to date, maintaining high levels of diversity. In
contrast, Ruciński (2010) [15] examined the impact of the migration topology on
the island model. This study compared different topologies and migration strate-
gies in large networks. The authors concluded that the migration topology was
a key factor to enhance the performance of a parallel global optimisation algo-
rithm. Particularly, they recommended the use of ring topologies and suggested
avoiding fully-connected and Barabasi-Albert topologies where a fast informa-
tion spread over the entire network was allowed.

The most recent work on this topic, which went one step further, is Araujo
(2011) [16]. The authors investigated, on a real parallel setup, a new strategy

Migration and Replacement Policies for Preserving Diversity 459

to enhance diversity in the island model. The proposal focused on the migrant
selection phase of a genetic algorithm, taking into consideration the genotypic
differences of the immigrant individual which was incorporated in a receiving
subpopulation.

The key contribution of this paper is the determination of the right setting-up
for a PGA, preserving a fair balance between exploration and exploitation in the
search process, when the PGA is applied to a highly dynamic environment.

3 Setting-Up of the PGA

Same parameters of the PGA’s configuration have been fixed (migration fre-
quency, amount of migrants, synchronism type, number of processing nodes,
same configuration in the isolated islands, and stopping condition) while others
have been varied (topology and migration and replacement policies) in order to
understand what policies perform best in dynamic environments.

3.1 Configuration of Each Island

All the islands have been set-up in the same way. Having a different configuration
on each island obviously has an impact on the global performance as well as on
the maintenance of diversity. Even more, the configuration of each island itself
also makes high impact on the bottom line.

Bear in mind that the encoding and the fitness function as well as some genetic
operators (due to problem constraints) are problem dependent. The setting of
the simple GA existing in each island has been adapted to the problem being
studied: the multi-skill call centre. The reader can find further information about
the problem definition in Millán-Hidalgo (2010) [17].

The configuration of each island (steady-state GA) is similar to the one pro-
posed in [17] although, in this study, we do not consider memetic algorithms,
just simple genetic algorithms (Whitley, 1997) [19], and work over a different
dataset. The exact configuration of our PGA is the following:

1. Encoding: We encode every solution as an array of integers whose indexes
represent the available agents at a given instant and the array contents refer
to the profile assigned to each agent.

2. Fitness function: We measure the service level resulting from the configura-
tion of agents and incoming calls (see [17]).

3. Population size: The population of each island contains 30 different individ-
uals encoded as hinted above.

4. Initialisation: The initial population is randomly generated.
5. Selection: Since the population needs to be bred each successive generation,

we have chosen a binary tournament selection.
6. Crossover : The offspring inherits the common points in their parents and

randomly receives the rest of genes from them.
7. Mutation: We apply a perturbation over each gene of the chromosome with

a probability of 0.03.

460 D. Millán-Ruiz and J.I. Hidalgo

8. Replacement policy: We consider elitism with a probability of 0.93 to replace
the worst-fitted individuals of the population in next generation. And, with
a probability of 0.07, a worse-fitted individual may be captured. Note that
our basic GA relies on a steady-state scheme.

3.2 Common Framework

The following parameters have invariably been fixed in this study in order to
analyse the impact of the migration and replacement policies, depending on the
topology in which each configuration is studied.

1. Migration frequency: Each 60 seconds, all the islands are blocked for se-
lection, migration and evaluation. If a generation is in process during the
blockade in any of the islands, we take the previous stable population and
go on with the process once the migrations have been carried out.

2. Amount of migrants : Each island sends a set of migrants according to the
migration policy which represents the 10% of the size of the population (in
practice, 3 individuals).

3. Synchronism: We have applied a synchronous scheme in which every island
waits for every incoming set of migrants they have to evaluate.

4. Number of processing nodes : We consider 5 islands for every topology as this
is the number of available processors which are fully utilised by the CPUs.

5. Stopping condition: The size of the time-frame considered is 300 seconds.

3.3 Topology

As previously mentioned, we have employed an island model in which every
processing node is a steady-state GA. The topologies we have analysed are the
following ones (see Figure 1 for a better understanding):

1. Star topology: We consider 4 subordinate islands which correspond to simple
steady-state GAs. These islands are connected to a master island (another
simple steady-state GA) which coordinates and synchronises the rest of sub-
ordinate islands (see Figure 1.A).

2. Bidirectional ring topology: each island sends and receives individuals from
only other 2 islands, the previous one and the following one (see Figure 1.B).

3. All-to-all topology: every island is fully connected to the rest of islands (see
Figure 1.C).

3.4 Migration and Replacement Policies

This section proposes different policies to define what individuals should be
transferred to the neighbouring islands and which ones should be replaced in
the receiving populations. The combinations of policies are listed below:

Migration and Replacement Policies for Preserving Diversity 461

Fig. 1. Topologies being analysed: A) Star Topology, B) Bidirectional Ring Topology,
C) All-to-all Topology

1. Best-fitted individuals by worst-fitted individuals (BFI-WFI): The best-fitted
individuals from the source population replace the worst-fitted individuals
from the receiving population. We substitute individuals who are ”further”
in terms of fitness value to the source ones.

2. Best-fitted individuals by random individuals (BFI-RI): The best-fitted in-
dividuals from the source population randomly replace individuals from the
receiving population.

3. Best-fitted individuals by best-fitted individuals (BFI-BFI): The best-fitted
individuals from the source population replace the best-fitted individuals
from the receiving population. We replace individuals who are ”closer” in
terms of fitness value to the source ones.

4. Best-fitted individuals by most different individuals (BFI-MDI): The best-
fitted individuals from the source population replace the most different in-
dividuals (according to the number of different genes) to them, existing in
the receiving population.

5. Best-fitted individual + ”Annealing” by worst-fitted individuals (BFIA-WFI):
We select the best-fitted individual from the source population and a set of
the following best-fitted individuals with probability η, proportional to the
number of generations spent (the more generations are executed, the higher
the probability is). This proposal is inspired by the simulated annealing
approach which was pioneered by Kirkpatrick (1983) [18]. This way, the
probability of not choosing the best-fitted individuals for migration is 1− η
(in this case, we randomly select another individual from the source popula-
tion). Afterwards, the best-fitted individual from the source population and
the set of ”annealing” individuals replace the worst-fitted individuals from

462 D. Millán-Ruiz and J.I. Hidalgo

the receiving population. Bear in mind that we always select the best-fitted
individual of the source population to ensure a minimum of fast convergence
as dynamic environments require prompt responses while also preserving
diversity. Finally, we substitute individuals who are ”further” in terms of
fitness to the source ones.

4 Experiments

We now detail and analyse the experiments conducted over two different problem
instances (medium and high difficulty, respectively).

4.1 Dataset Employed

This subsection describes the two problem instances (medium and high difficulty)
that we have created to test out the configurations being studied. These two
problem instances are composed by real data taken from our call centre during
two different days at the same hour: a one-day campaign and a normal day. The
size of each snapshot where each configuration has been executed is 300 seconds
(5 minutes). Note that around 800 incoming calls (n) simultaneously arrive
during a normal day in such a time interval, whereas up to 2450 simultaneous
incoming calls may arrive during this interval during a commercial campaign.
The number of agents (m), for each time interval, oscillates between 700 and
2100, having 16 different skills for each agent on average, grouped in skill profiles
of 7 skills on average. The total number of call types considered for this study
is 167. When the workload (n/m) is really high, finding the right assignment
among agents and incoming calls becomes fundamental.

4.2 Results of the Experimental Phase

For a fair comparison, every configuration has been run over the same problem
instance 30 times. Table 1 shows the results obtained from the experimental
phase for the medium-difficulty problem instance while Table 2 illustrates the
respective ones for the high-difficulty problem instance. These tables show the
best, worst and mean solution (and its standard deviation) out of the 30 execu-
tions performed. Ranking refers to the relative comparison between configura-
tions, considering that the best setting-up represents the highest performance.
We analyse the impact of each configuration of policies over the global perfor-
mance of the PGA with regards to the topologies being studied in next section.

4.3 Discussion

We perceive that the bidirectional ring seems to be the most appropriate topol-
ogy for dynamic environments, most likely because this topology allows for op-
portune convergence while preserving the required diversity. The star topology
also entails high-quality outcomes but quickly gets stagnated. The reason is
that the master island receives many migrants from the subordinate islands af-
ter some migrations (and it is even worse when there are many subordinate

Migration and Replacement Policies for Preserving Diversity 463

Table 1. Results of each PGA configuration for each island topology in 30 executions
(medium-difficulty problem instance). Values refer to the fitness values obtained by each
combination of migration & replacement policies. The caption of each combination of
policies is: Best-fitted individuals by worst-fitted individuals (BFI-WFI), Best-fitted
individuals by random individuals (BFI-RI), Best-fitted individuals by best-fitted in-
dividuals (BFI-BFI), Best-fitted individuals by most different individuals (BFI-MDI)
and Best-fitted individual + ”Annealing” by worst-fitted individuals (BFIA-WFI).

Policy Topology Min Max Mean SD Ranking

BFI-WFI Star 0.846698 0.847310 0.847092 0.0003 9

BFI-RI Star 0.846744 0.847361 0.847102 0.0003 8

BFI-BFI Star 0.846195 0.847068 0.846511 0.0004 12

BFI-MDI Star 0.847119 0.847742 0.847471 0.0003 5

BFIA-WFI Star 0.847119 0.847742 0.847489 0.0003 4

BFI-WFI Ring 0.847141 0.848006 0.847535 0.0004 3

BFI-RI Ring 0.846933 0.847908 0.847290 0.0004 7

BFI-BFI Ring 0.847119 0.847742 0.847364 0.0003 6

BFI-MDI Ring 0.853954 0.860611 0.858281 0.0031 2

BFIA-WFI Ring 0.857322 0.861109 0.859702 0.0017 1

BFI-WFI Hub 0.846149 0.847488 0.846856 0.0005 10

BFI-RI Hub 0.846654 0.847201 0.846848 0.0002 11

BFI-BFI Hub 0.834190 0.835465 0.834838 0.0005 14

BFI-MDI Hub 0.831358 0.831984 0.831603 0.0003 15

BFIA-WFI Hub 0.845520 0.846874 0.846378 0.0006 13

islands), implying that populations eventually become very similar. This intu-
itively involves a lack of diversity so that the gain of fitness gets fatally damaged.
This phenomenon affects much more strongly to the hub topology as, being all
the islands interconnected to each other, the diversity diminishes too much after
one or two migrations.

A second key conclusion is that the replacement of individuals is another
important feature to set-up. In this manner, replacing the worst-fitted individuals
in the receiving population by the best-fitted individuals of the source population
does not always behave better than taking the most different individuals. The
process of analysing differences in the chromosomes in contrast implies that
the PGA can run fewer generations (as it is a costly operation) but entails
better fitness values in the end. The underlying principle may be that fitness-
based comparisons can occasionally be misleading or deceptive, leading to the
situation in which two close individuals in terms of genes in common may have
associated very different fitness values, whereas two far chromosomes in terms of
genes in common may have assigned close fitness values (Whitley, 1991). Another
consequence of measuring gene differences as compared to gauging fitness values
is that the lift of the fitness curve has a smoother slope in the first generations.
Naturally, replacing the best-fitted individuals of the receiving population by the
best-fitted ones of the source population implies a slower convergence in each
processing node as we will find a larger percentage of less fitted individuals.

464 D. Millán-Ruiz and J.I. Hidalgo

Table 2. Same as Table 1 but results now refer to the highly-difficult problem instance

Policy Topology Min Max Mean SD Ranking

BFI-WFI Star 0.793660 0.793941 0.793796 0.0001 8

BFI-RI Star 0.794102 0.794197 0.793561 0.0008 9

BFI-BFI Star 0.791377 0.792888 0.792280 0.0007 12

BFI-MDI Star 0.794265 0.794932 0.794693 0.0003 5

BFIA-WFI Star 0.794288 0.795012 0.794688 0.0003 6

BFI-WFI Ring 0.794610 0.795595 0.795223 0.0004 3

BFI-RI Ring 0.794677 0.795216 0.794978 0.0002 4

BFI-BFI Ring 0.794313 0.795221 0.794654 0.0004 7

BFI-MDI Ring 0.792158 0.798497 0.796137 0.0028 2

BFIA-WFI Ring 0.795679 0.798864 0.797696 0.0014 1

BFI-WFI Hub 0.792373 0.792873 0.792669 0.0002 11

BFI-RI Hub 0.791816 0.793589 0.792864 0.0008 10

BFI-BFI Hub 0.790809 0.791874 0.791324 0.0004 14

BFI-MDI Hub 0.790148 0.791492 0.790646 0.0006 15

BFIA-WFI Hub 0.791097 0.791840 0.791566 0.0003 13

5 Conclusions and Future Work

We have seen that PGAs can deal with complex, real-world application domains
although they require specific tuning, depending on the nature of the problem be-
ing faced. This way, we have presented a basic configuration for PGAs based on
the island model and then performed several experiments over this initial setting-
up for two representative problem instances extracted from a real-world produc-
tion environment. Same parameters were fixed (migration frequency, amount of
migrants, synchronism, number of processing nodes and stopping condition) while
others were changed (topology and migration and replacement policies) in order
to understand what policies perform best in dynamic environments. We have also
proved that the bidirectional ring topology seems to be themost suitable configura-
tion for dynamic environments,mostprobablybecause this topologyallows for con-
vergence while maintaining diversity when it is required. Another key conclusion
has been that swapping the worst-fitted individuals in the receiving population by
the best-fitted individuals of the source population does not always perform better
than replacing the most different individuals in terms of gene differences, specially
when the migrants are not always the best-fitted ones (policy BFIA-WFI). The
best migration policy has been sending the best fitted-individual with some non-
necessarily best-fitted individuals (annealing set) as it provides diversity. As future
work, we propose to analyse in depthmoremigration and replacement policies and
more combinations of features as we have fixed many important ”regulators” of di-
versity. We also plan to study other representative problem domains to generalise
the present conclusions.

Acknowledgements. We would like to thank José L. Vélez for his valuable
contribution to the optimisation and debugging of the parallel implementation.
This work has been partially supported by Spanish Government grants TIN
2008-00508 and Consolider CSD00C-07-20811.

Migration and Replacement Policies for Preserving Diversity 465

References

[1] Pettey, C., Leuze, M., Grefenstette, J.: A parallel genetic algorithm. In: Proceed-
ings of the Second International Conference on Genetic Algorithms and Their
Applications. Lawrence Erlbaum Associates, Hillsdale (1987)

[2] Tanese, R.: Parallel genetic algorithms for a hypercube. In: Proceedings of the
Second International Conference on Genetic Algorithms, pp. 177–183 (1987)

[3] Cohoon, J., Hegde, S., Martin, W., Richards, D.: Punctuated equilibria: a paral-
lel genetic algorithm. In: Proceedings of the Second International Conference on
Genetic Algorithms, Hillsdale, NJ, USA, pp. 148–154 (1987)

[4] Gordon, V.S., Whitley, D., Böhn, A.: Dataflow parallelism in genetic algorithms.
Parallel Problem Solving from Nature 2, 533–542 (1992)

[5] Adamidis, P.: Review of Parallel Genetic Algorithms. Technical Report, Depart-
ment of Electrical and Computer Engineering, Aristotle University, Thessalonik
(1994)

[6] Collins, R.: Studies in Artificial Evolution. Ph.D. dissertation, Department of
Computer Science, University of California at Los Angeles (1992)

[7] Belding, T.: The distributed genetic algorithm revisited. In: Proceedings of the
Sixth International Conference on Genetic Algorithms, pp. 114–121 (1995)

[8] Whitley, D., Rana, S., Heckendorn, R.: Island Model Genetic Algorithms and Lin-
early Separable Problems. In: Corne, D.W. (ed.) AISB-WS 1997. LNCS, vol. 1305,
pp. 109–125. Springer, Heidelberg (1997)

[9] Cantú-Paz, E.: A Survey of Parallel Genetic Algorithms. Calc. Parallelles (1998)
[10] Cantú-Paz, E.: Topologies, migration rates, and multi-population parallel genetic

algorithms. In: Proceedings of GECCO, pp. 91–98 (1999)
[11] Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-

demic Press (2000); ISBN: 0792372212
[12] Alba, E., Troya, J.M.: Analyzing synchronous and asynchronous parallel dis-

tributed genetic algorithms. Future Generation Comp. Syst., 451–465 (2001)
[13] Hu, J., Goodman, E.: The hierarchical fair competition (HFC) model for parallel

evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Com-
putation, pp. 49–54. IEEE Press, Honolulu (2002)

[14] Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful
diversity in steady-state genetic algorithms. Inf. Sci. 178, 4421–4433 (2008)

[15] Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on
the Island Model. Parallel Computing 36, 555–571 (2010)

[16] Araujo, L., Merelo, J.J.: Diversity Through Multiculturality: Assessing Migrant
Choice Policies in an Island Model. IEEE Transactions on Evolutionary Compu-
tation 15(4) (2011)

[17] Millán-Ruiz, D., Hidalgo, J.I.: A Memetic Algorithm for Workforce Distribution in
Dynamic Multi-Skil Call Centres. In: Proceedings of the 10th European Conference
on Evolutionary Computation in Combinatorial Optimisation, pp. 178–189 (2010)

[18] Kirkpatrick, S., Gelatt, C., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220(4598), 671–680 (1983)

[19] Whitley, L.D.: Fundamental Principles of Deception in Genetic Search. Founda-
tions of Genetic Algorithms 1, 221–241 (1991)

[20] Nowostawski, M., Poli, R.: Parallel Genetic Algorithm Taxonomy. In: Proceedings
of KES (May 1999)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 466–476, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Distributed Simulated Annealing with MapReduce

Atanas Radenski

Chapman University, Orange 92865, USA
Radenski@Chapman.edu

Abstract. Simulated annealing’s high computational intensity has stimulated
researchers to experiment with various parallel and distributed simulated
annealing algorithms for shared memory, message-passing, and hybrid-parallel
platforms. MapReduce is an emerging distributed computing framework for
large-scale data processing on clusters of commodity servers; to our knowledge,
MapReduce has not been used for simulated annealing yet. In this paper, we
investigate the applicability of MapReduce to distributed simulated annealing in
general, and to the TSP in particular. We (i) design six algorithmic patterns of
distributed simulated annealing with MapReduce, (ii) instantiate the patterns
into MR implementations to solve a sample TSP problem, and (iii) evaluate the
solution quality and the speedup of the implementations on a cloud computing
platform, Amazon’s Elastic MapReduce. Some of our patterns integrate
simulated annealing with genetic algorithms. The paper can be beneficial for
those interested in the potential of MapReduce in computationally intensive
nature-inspired methods in general and simulated annealing in particular.

Keywords: simulated annealing, MapReduce, traveling salesperson (TSP).

1 Introduction

Simulated annealing is a metaheuristic that is used to find near-optimal solutions for
various hard combinatorial optimization problems; it does so by imitating the physical
process by which melted metal is cooling slowly to form a frozen structure with
minimal energy. Simulated annealing is computationally intensive and this has
stimulated the exploration of a variety of high-performance simulated annealing
algorithms based on popular paradigms: shared memory [9], message-passing [6], and
hybrid-parallel [2, 4].

MapReduce (MR) is an increasingly popular distributed computing framework for
large-scale data processing that is amenable to a variety of data intensive tasks. Users
specify serial-only computation in terms of a map method and a reduce method, and
the underlying implementation automatically parallelizes the computation, tends to
machine failures, and schedules efficient inter-machine communication [3]. MR was
first implemented as a proprietary platform by Google. Soon afterwards, Apache
offered Hadoop MR [15] as open source, and cloud computing providers offer MR
platforms on a cost-effective pay-per-use basis.

By design, MR supports fault-tolerance, load-balancing, and scalability. This is in
contrast to well understood but lower level high-performance frameworks, such as

 Distributed Simulated Annealing with MapReduce 467

MPI and OpenMP, in which users - rather than the frameworks - need to tend to
machine failures and scheduling. Such advantages of MR to more traditional
frameworks have motivated us to explore its suitability for high-performance
simulated annealing and to our knowledge, this is the first study of its kind. MR is
known to work well on large datasets. MR’s applicability to computationally
intensive problem domains with smaller datasets - such as simulated annealing and
TSP - poses challenges, primarily because of the lack of direct control over tasks and
data allocation. This paper makes contributions towards better understanding of MR’s
potential in computationally intensive problem domains with smaller datasets in
general, and simulated annealing and TSP in particular.

The remainder of the paper is organized as follows. Section 2 introduces MR and
then specifies algorithmic patterns for simulated annealing with MR. Section 3
describes a conversion of the patterns into MR implementations for the TSP; it also
evaluates the solution quality and performance (execution time and speedup) in the
Amazon cloud. Section 4 reviews related work and Section 5 offers conclusions.

2 Placing Simulated Annealing on MapReduce

The MapReduce Framework. Excellent general introductions of the MR framework
[3, 8] and its implementation within the Hadoop platform [15] are available to the
interested reader. In this paper, we offer only a brief description of MR features
needed for the understanding of our simulated annealing algorithm design.

Fig. 1. A simplified representation of an MR job. The size of the output dataset can be different
from the size of the input data set. An MR cluster consists of a number of tasks nodes and a
single main node that controls tasks nodes. All mappers and reducers run on task nodes.

The MR framework consists of a programming model and runtime behavior. In the
programming model, users specify serial map and reduce methods (one of each kind)
that transform key-value records into new key-value records. The run-time
environment transforms an input set of records into an output sets in two principal

input dataset

reducer

mapper mapper mapper task nodes

output dataset

task nodes

intermediate dataset
partitioned onto reducers

reducer reducer

468 A. Radenski

stages. First, a user-defined map method is applied over all records from the input
dataset - in parallel, in a number of separate map tasks, or simply mappers – to
produce intermediate outputs from all map methods. All intermediate records are then
shuffled, sorted, and submitted for final processing by a user-defined reduce method.
In general, the reduce method can be executed in parallel in several reducer tasks, or
simply reducers, to produce several output sets of records. MR uses intermediate
records’ keys to partition records between reducers. In that, all intermediate records
with the same key are always assigned to the same reducer; yet the same reducer may
possibly handle a number of different keys. The MR framework assigns records to
mappers and reducers, guided by record keys and without direct user participation.

The map and reduce stages form a single MR job (Fig. 1). It is possible to pipeline
several MR jobs so that the output from one job is used as the input for the next one
(Fig. 2). Input and output data sets for MR jobs are stored in a distributed file system.

Fig. 2. An MR job pipeline. The output of job k becomes the input of job k+1. In some MR
implementations, such pipelines are referred to as job flows.

We use the following notation for MR pipelines in this paper:

 A1 + A2 +… + Am is the pipeline of jobs A1, A2,… Am
 mA is an abbreviation for a pipeline A + A +… + A of length m

In addition to the primary map and reduce methods, the MR framework includes two
methods that can be optionally used to initialize and finalize mappers and/or reducers.
Initialization can create objects that persist during map (reduce) invocations within
the same mapper (reducer); these objects are also available in finalization.

Pure and Hybrid Annealing Patterns. The rest of this section introduces two MR
algorithmic patterns for pure simulated annealing and four algorithmic patterns for
hybrid simulated annealing. Hybrid simulated annealing patterns use genetic
operations, such as crossover, to enhance the annealing process, as opposed to pure
patterns which employ simulated annealing alone. For readability, we present all
patterns in Python-like pseudo code, instead of our actual Java implementations.

Data Representation and MR Tasks. Recall that logically, MR input and output
datasets are collections of records. In the general case, an MR record is a key-value
pair: record = <key, value>. Empty keys can be used to make records equivalent to
values; this option is employed in our simulated annealing algorithmic patterns. Each
value represents, in textual form, a possible solution to a problem (such as a TSP
route, for example). An input/output dataset defines a population of candidate-
solutions. Our simulated annealing patterns transform input populations of candidate-
solutions into output populations of possibly better candidate solutions.

map0
reduce0

dataset0 dataset1
map1

reduce1
… datasetn

 Distributed Simulated Annealing with MapReduce 469

At the file system level, MR datasets are collections of one or more files. The MR
framework uses the number and size of files in the input dataset to determine the
number of spawned mappers, without direct user control. In general, each file from a
multi-file dataset will be assigned to at least one mapper, with larger files being split
by MR and assigned to multiple mappers for the same large file. In particular, a
relatively small single-file dataset (such as an input population of candidate solutions
for the TSP for example) will be assigned to a single mapper, regardless of the
number of available task nodes in the MR cluster; other nodes will remain idle. In
contrast to mappers, the number of reducers can be explicitly defined by the user. In
particular, it is possible to define a MR job with zero reducers, in which case the
output dataset is produced by the mappers alone. Without user specification, a default
number of reducers are spawned uniformly on each task node.

Single-Job Simulated Annealing Patterns: SA0 & SA. In practice, it is often
difficult to assess the accuracy obtained with a single simulated annealing run. In
order to find a better solution, a frequently used strategy is to run simulated annealing
a number of times and select the best solution from the independent runs [16, 6]. We
have adopted this idea in two single-job MR patterns: a special simulated annealing
pattern, SA0, and a general-purpose simulated annealing pattern, SA.

With the special pattern, SA0, annealing runs are performed by distributed
mappers in a single MR job with zero reducers, in which mappers simply invoke an
annealing algorithm over their assigned candidate-solutions (Fig. 3). The SA0 pattern
is termed special because it works well only in the special case of single-record input
files. Recall that the number of mappers is implicitly determined by MR as a function
of the number and sizes of input files. For good SA0 performance, each candidate-
solution must be preloaded in its own file; in this case, each candidate-solution will be
assigned by MR to a dedicated mapper. Grouping all candidate-solution in a single
file would be detrimental to SA0’s performance because all solutions will most likely
be assigned by MR to a single mapper and in fact annealed serially.

class Mapper:

 method map(key, value):
 solution = parse(value)
 annealer.anneal(solution)
 emit(empty, solution)

Fig. 3. Mapper for the SA0 algorithmic pattern. MR splits the input set of candidate-solutions
between mappers and feeds candidate-solutions as “values” into map method invocations. Each
map invocation anneals its assigned candidate-solutions then emits the annealed solution with
an empty key in the output population. The number of mappers – and the level of parallelism –
is determined by MR based on the number and the sizes of input files with candidate-solutions.

With the general-purpose pattern, SA, annealing runs are simultaneously
performed on distributed reducers rather than on mappers (Fig. 4). The mappers
themselves are only used to replace default input keys with new uniformly distributed

470 A. Radenski

random keys; even a single mapper can be efficient enough in this process. The
updated records are then further submitted by MR to available reducers. Note that the
initial default MR key for each record is simply the position in the record in its
corresponding file. Such default keys may cause MR to partition records onto a small
number of reducers and therefore result in non-uniform reducer workloads. By using
uniformly distributed random keys, SA provides uniform distribution of records onto
mappers. This approach provides good performance regardless of the physical
representation of the input set of candidate-solution - either as a single file or as a
collection of multiple files.

class Mapper:

 method map(key, value):
 randomKey = random();
 emit(randomKey, value)

class Reducer:
 method reduce(key, values):
 for value in values:
 solution = parse(value)
 annealer.anneal(solution)
 emit(empty, solution)

Fig. 4. Mapper and reducer for the SA algorithmic pattern. MR splits mappers’ output onto
reducers based on keys emitted by mappers; in this pattern mappers emit random keys to
provide uniform distribution onto available reducers and more balanced reducer load. Each
reduce invocation anneals all candidate-solutions with the same random key and emits possibly
improved solutions in the output population.

Genetic Annealing Pattern: GA+SA. It has been recognized that enhanced initial
candidate-solutions for simulated annealing can improve both the quality of the final
solution and also the annealing execution time [12]. Such enhanced solutions can be
obtained by first applying a genetic algorithm, GA (Fig. 5) on a randomly generated
initial population of candidate-solutions and then applying simulated annealing, SA
(Fig. 4) on the genetically evolved population.

class Mapper [or Reducer]:
 method initialize: subpopulation = ∅
 method map [or reduce] (key, value):
 subpopulation.add(parse(value))

 method finalize():
 genetic.evolve(subpopulation)
 for solution in subpopulation:
 emit(empty,solution)

Fig. 5. Mapper and reducer for GA, the genetic algorithmic pattern incorporated in the GA+SA
algorithmic pattern. The GA’s mapper and reducer are nearly the same. The initial population of
candidate-solutions is split by MR in sub-populations among distributed mappers. Each mapper
runs a genetic algorithm on its own subpopulation. All evolved subpopulations are then merged
by MR onto a single reducer (in contrast to mappers, the number of reducers can be explicitly
controlled programmatically). The reducer then runs the same genetic algorithm to further
evolve the entire population. The map/reduce method invocations simply accumulate sub-
populations, while the actual genetic computation occurs during finalization.

 Distributed Simulated Annealing with MapReduce 471

Thus, GA+ SA is a two-job MR pipeline (Fig. 2) in which the first job, GA is a basic
multi-population genetic algorithm [1]. The second job in GA+SA is the general
purpose simulated annealing, SA (Fig. 4). Note that SA0, the special purpose
simulated annealing (Fig. 3) must not be used after GA because GA uses a single
reducer and produces a single-file output dataset; recall that SA0 degrades to serial
execution for a single-file input dataset.

Genetic Annealing Pipeline Pattern: m(GA+SA). After a genetic algorithm is
trapped in a local minimum, the application of simulated annealing can generate
uphill jumps to higher costs solutions thus avoiding premature convergence to a local
minimum [5]. This computation can be defined as an MR job pipeline m(GA+SA) of
2m jobs, which consecutive applies GA+SA over the dataset produced by the previous
application. Again, all intermediate datasets are available, together with the final
dataset for the selection of the best solution.

Annealing Genetic Pattern: SA+GA. A genetic algorithm can be used to recombine
and possibly improve solutions produced by individual simulated annealing processes
[11]. With MR, such computation can be defined in the MR framework as a two-job
pipeline in which the first job, SA is simulated annealing (Fig. 4) and the second job,
GA is multi-population genetic evolution (Fig. 5).

Annealing Genetic Pipeline Pattern: m(SA+GA). Genetic recombination can
enhance the annealing process by running “simulated annealing followed by genetic
recombination” a number of times to gradually obtain a better solution [16]. Such
iterative computation can be defined as an MR job pipeline similar to the previously
discussed m(GA+SA) pipeline, but with SA executing before GA.

Pipelines in MR. Job pipelines cannot be expressed in the pure MR model proper;
such pipelines are often implemented as applications that schedule and run sequences
of individual MR jobs. Section 3 contains details on our implementation of pipelines.

3 Implementation and Experimental Evaluation

Annealing the TSP on Amazon’s Elastic MapReduce Cloud. The simulated
annealing pure and hybrid algorithmic patterns defined in Section 2 can be
instantiated to solve specific problems. To instantiate the algorithmic patterns, it
suffices to develop serial-only domain-specific annealing and genetic algorithms,
with no direct involvement of the MR API.

We illustrate this instantiation process with the traveling salesperson problem. We
chose TSP because (i) it is known to be computationally intensive for larger problem
sizes and because (ii) it is arguably the most popular combinatorial optimization
problem that is well studied and well-applied to various specific tasks.

We developed TSP annealing implementations for the Amazon’s Elastic MR cloud
- a member of Amazon Web Services (AWS). We chose AWS because (i) it is a large
and versatile cloud computing platform and because (ii) Amazon supports research
through special grants, within its cost-effective pay-per-use business model.

472 A. Radenski

The principal Elastic MR API is for Java. The goal of our proof-of-concept
implementation was more to illustrate and evaluate our generic MR algorithmic
patterns (Section 2) rather than develop new TSP algorithms. This is why we adopted
some features of known serial TSP algorithms to fit the MR Java API.

The TSP aims to find the shortest way to visit each of n points once and return to
the initial point. A candidate-solution is an array of different points, referred to as a
tour. The length of a tour is the sum of the Euclidean distances between its points. In
the special case of a square city grids of n = s2 points, where s is even, an optimal
tour of length n is known to exist [6]. This special case of the TSP problem offers an
opportunity to directly assess the solution quality of annealing algorithms.

To instantiate MR algorithmic patterns into TSP implementations, we adapted in
Java a proven serial annealing method, originally described by Hansen in SuperPascal
[6]. We developed an Annealer class with an anneal method (Fig. 6) which we
plugged into our SA0 and SA map and reduce methods (Fig. 3 and Fig. 4).

class Annealer:

 method anneal(tour):
 temp = tempMax
 for k = 1, 2, …, reductions:
 search(tour, temp)
 temp = alpha * temp

method search(tour, temp):
 na = 0; nc = 0
 while (na < attempts && nc < changes):
 tour1 = swap2RandomPoints(tour)
 if tour1.length() – tour.length < temp:
 tour = tour1

Fig. 6. Simulated annealing for the TSP problem. Annealing is implemented by swapping two
randomly chosen tour points, p and q and reversing the tour path between p and q. The search
method uses a simple deterministic tour acceptance criterion that has been proven to work just
as well as the standard stochastic criterion [10].

For our hybrid annealing TSP implementations, we developed in Java a genetic
algorithm with a proven serial crossover method, originally described by Sengoku and
Yoshihara [13]. We developed a Genetic class with an evolve method (Fig. 7) which
we plugged into the GA’s genetic map/reduce methods (Fig. 5).

class Genetic:

 method evolve(population):
 for k = 1, 2, …, generations:
 select(population, m)
 mutate(population, mutatProb)
 cross(population, m)

method cross(population, m):
 parents = roulette(population, m)
 for i = 1, 3, 5, …, m:
 tour1 = crossover(population, i, i+1)
 population.add(tour1)

Fig. 7. Basic genetic algorithm for the TSP problem. Proof-of-concept evolutionary computation
involves deleting m tours from the current population, applying mutation stochastically on the
remaining tours, selecting 2*m parents to crossover, producing a single offspring form every pair of
parents, and adding the offspring to the population. The crossover method is based on the longest
sub-tour crossover operator [13]. Our mutate method swaps two random tour points like in simulated
annealing.

 Distributed Simulated Annealing with MapReduce 473

Pipeline Implementation. AWS’s Elastic MR cloud permits the direct
implementation of MR job pipelines (Fig. 2) in the form of the so called job flows. At
present, to define a job flow in Elastic MR the user must employ Amazon’s
proprietary lower-level API. We preferred to follow a platform-independent approach,
for which we implemented MR job pipelines in Java proper, using reflection: we
developed a Java MR utility that reads all classes to be pipelined as command-line
arguments then uses a loop to configure and run MR jobs accordingly. In addition,
another Java MR utility of ours extracts and sorts all intermediate and final solutions
produced by a pipeline and identifies the best solution.

Experimental Evaluation of Solution Quality. We tested experimentally the
solution quality of our TSP implementations by means a serial model program;
submission and evaluation of Elastic MR jobs is time-consuming and the use of a
serial model program helped simplify the evaluation. (We did, however, measure
execution times/performance by actually running programs on the Amazon’s Elastic
MR cloud, as discussed later in this section.) For simulated annealing, we used the
same control parameters as in [6]. For genetic computations, we performed
25*sqrt(tour-size) generations with crossover probability of 50% and mutation
probability of 20%. The population size for these experiments was 16.

Table 1. Pure simulated annealing SA/SA0 solution quality

Tour Size 100 400 900 1600
Solution 100 405.30 918.72 1648.48
Error 0% 1.33% 2.08% 3.03%
Min error 0% 0.82% 1.84% 2.80%
Max error 0% 1.66% 2.30% 3.31

We tested TSP solution quality with pure simulated annealing, SA over square city

grids of n points with known optimal tour length of n [6]. Table 1 shows averages of
all best solutions obtained in 10 trials over tours of various sizes. The solution quality
of SA0 is the same as the solution quality of SA because the two methods differ only
in the way they distribute the same annealing process between mappers and reducers.
The highest average solution error is about 3% for larger tours.

Table 2. Solution quality of hybrid simulated annealing

Algorithm SA/SA0 GA+SA 4(GA+SA) SA+GA 4(SA+GA)
Improvement Base 0.28% 0.61% 0.06% 0.94%
Min improv. Base 0% 0% 0.01% 0.05%
Max improv. Base 1.30% 2.01% 0.15% 1.89%

We also tested TSP solution quality with hybrid simulated annealing over random

grids for which no optimal tours are known a priori. Table 2 shows average solution
improvements by each of the hybrid methods, GA+SA, 4(GA+SA), SA+GA, and
4(SA+GA), relatively to the best solution obtained by pure annealing methods,
SA/SA0. Solution improvements were measured in 10 trials over various randomly

474 A. Radenski

generated tours of 900 cities and populations of size 16. The hybrid 4(SA+GA)
pipeline (Table 2) provides nearly 1% of improvement compared to pure SA/SA0 and
therefore can reduce almost in half the estimated 2% error of SA (Table 1).

Experimental Evaluation of Performance on Elastic MR. On the Elastic MR
cloud, we tested experimentally TSP solution performance with pure and hybrid
simulated annealing: SA, SA+GA, 4(SA+GA), and SA0. We did not test performance
of GA+SA and 4(GA+SA) because they are comparable performance-wise to SA+GA
and 4(SA+GA) correspondingly. Table 3 shows average execution times T(p) and
speedups S(p) on p task nodes as obtained in 3 trials over a randomly generated tour
of size 900 and populations of sizes 16 and 32. (In Table 3 population sizes are
appended in brackets to algorithm designators.) As nodes, we used AWS 32-bit small
instances with 1.7 GB memory, 1 virtual core, and moderate I/O performance.

Table 3 shows that special simulated annealing, SA0 achieves better speedup than
general purpose simulated annealing, SA. However, SA0 achieves this speedup for
special single-record input files only, as explained in Section 2. It is an advantage of
general purpose SA that it can be combined with GA to form hybrid pipelines that
achieve better quality solutions, while SA0 cannot be combined with GA.

Table 3. Elastic MR execution times (in minutes) and speedup

Algorithm SA[16] SA[32] SA0[16] SA+GA[16] 4(SA+GA)[16]
Nodes (n) T(n) S(n) T(n) S(n) T(n) S(n) T(n) S(n) T(n) S(n)
1 11.7 1.0 22.6 1.0 11.6 1.0 13.8 1.0 52.0 1.0
8 3.0 3.9 5.1 4.4 2.3 5.0 5.3 2.6 20.1 2.6
16 2.5 4.7 3.7 6.1 1.5 7.7 4.9 2.8 16.9 3.1

Despite of the use of random keys in SA’s mappers, some reducers are assigned by

MR more work than others; such imbalances result in relatively moderate speedups
when the population size is equal to the number of task nodes (16 nodes in Table 3).
Load imbalances can be reduced by using populations of size k*nodes with k ≥ 2. In
general, the scalability of standalone and pipelined SA is limited by the population
size.

4 Related Work

The serial components of our implementations are based on work from others [6, 13],
as already discussed in the preceding section. To our knowledge, we are the first to
parallelize simulated annealing with MR, but there are numerous non-MR parallel
simulated annealing algorithms, such as, for example, message passing [6], shared
memory [9], message passing combined with shared memory [4], and GPGPU-based
[2]. Others have proposed self-contained MR-based genetic algorithms [14, 7] and
MR has been used for fitness function calculation in evolutionary algorithms [17]; in
contrast, our MR genetic algorithm is not intended as standalone but to be
incorporated as a job in hybrid annealing pipelines.

 Distributed Simulated Annealing with MapReduce 475

5 Conclusions

In this paper, we investigate the applicability of MapReduce to distributed simulated
annealing in general, and to the TSP in particular. The specific technical contributions
of this paper are as follows: (i) we propose six MR algorithmic patterns for distributed
simulated annealing; (ii) we instantiate the MR patterns into TSP implementations;
(iii) we evaluate the MR implementations in cloud computing environment.

A significant advantage of our MR simulated annealing patterns to traditional
parallel algorithms is that these patterns provide fault-tolerant MR parallelism
without user intervention. With the use of MR, we trade some speedup for fault-
tolerance and robustness. The lack of direct user control on parallelism however can
also be a limitation when the programmer wants to explicitly declare some MR
parameters, such as the total number of mappers. A benefit from our annealing MR
patterns is that they can be instantiated into MR applications with the addition of
serial-only domain code, such as code to represent, anneal, and evolve the TSP for
example. Our hybrid annealing patters are slower than the pure annealing patterns but
are more precise. In future work, the genetic component of hybrid patterns can be
fine-tuned to make then even more precise. The Amazon’s Elastic MR cloud offers
the advantages of instant cluster provisioning and pay-per-use cost efficiency for
users who do not have access to dedicated MR clusters on the premises.

Acknowledgement. This work was supported by an AWS in Education 2011 research
grant award from Amazon.

References

[1] Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston
(2000)

[2] Choong, A., Beidas, R., Zhu, J.: Parallelizing Simulated Annealing-Based Placement
using GPGPU. In: Field Programmable Logic and Applications, pp. 31–34. IEEE, New
York (2010)

[3] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
CACM 51(1), 107–113 (2008)

[4] Debudaj-Grabysz, A., Rabenseifner, R.: Nesting OpenMP in MPI to Implement a Hybrid
Communication Method of Parallel Simulated Annealing on a Cluster of SMP Nodes. In:
Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS,
vol. 3666, pp. 18–27. Springer, Heidelberg (2005)

[5] Elhaddad, Y., Sallabi, O.: A New Hybrid Genetic and Simulated Annealing Algorithm to
Solve the Traveling Salesman Problem. In: World Congress on Engineering (WCE 2010),
vol. 1, pp. 11–14. International Association of Engineers, Taipei (2010)

[6] Hansen, P.-B.: Studies in Computational Science. Prentice Hall, Englewood Cliffs (1995)
[7] Huang, D.-W., Lin, J.: Scaling Populations of a Genetic Algorithm for Job Shop

Scheduling Problems Using MapReduce. In: 2010 IEEE 2nd International Conference on
Cloud Computing Technology and Science, pp. 78–85. IEEE, New York (2010)

[8] Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool, San Francisco Bay Area (2010)

476 A. Radenski

[9] Ma, J., Li, K., Zhang, L.: The Adaptive Parallel Simulated Annealing Algorithm Based
on TBB. In: 2nd International Conference on Advanced Computer Control, pp. 611–615.
IEEE, New York (2010)

[10] Moscato, P., Fontanari, J.: Stochastic versus Deterministic Update in Simulated
Annealing. Physics Letters A 146(4), 204–208 (1990)

[11] Ohlídal, M., Schwarz, J.: Hybrid Parallel Simulated Annealing Using Genetic Operations.
In: 10th International Conference on Soft Computing, Mendel 2004, pp. 89–94.
University of Technology, Brno (2004)

[12] Ram, J.D., Sreenevas, T.T., Subramaniam, K.G.: Parallel Simulated Annealing
Algorithms. J. Par. Distr. Computing 37, 207–212 (1996)

[13] Sengoku, H., Yoshihara, I.: A Fast TSP Solver Using GA on Java. In: 3rd Int. Symp.
Artif. Life and Robot., pp. 283–288. Springer, Japan (1998)

[14] Verma, A., Llorà, X., Goldberg, D.E., Campbell, R.H.: Scaling Genetic Algorithms Using
MapReduce. In: 9th International Conference on Intelligent Systems Design and
Applications, pp. 13–18. IEEE, New York (2009)

[15] White, T.: Hadoop: The Definitive Guide, 2nd edn. O’Reilly Media, Sebastopol (2009)
[16] Yao, X.: Optimization by Genetic Annealing. In: 2nd Australian Conf. Neural Networks,

pp. 94–97. Sidney University, Sidney (1991)
[17] Zhou, C.: Fast Parallelization of Differential Evolution Algorithm Using MapReduce. In:

12th Annual Conference on Genetic and Evolutionary Computation, pp. 1113–1114.
ACM, New York (2010)

Flex-GP: Genetic Programming on the Cloud

Dylan Sherry, Kalyan Veeramachaneni,
James McDermott, and Una-May O’Reilly

Massachusetts Institute of Technology, USA
{dsherry,kalyan,jmmcd,unamay}@csail.mit.edu

Abstract. We describe Flex-GP, which we believe to be the first large-
scale genetic programming cloud computing system. We took advantage
of existing software and selected a socket-based, client-server architecture
and an island-based distribution model. We developed core components
required for deployment on Amazon’s EC2. Scaling the system to hun-
dreds of nodes presented several unexpected challenges and required the
development of software for automatically managing deployment, report-
ing, and error handling. The system’s performance was evaluated on two
metrics, performance and speed, on a difficult symbolic regression prob-
lem. Our largest successful Flex-GP runs reached 350 nodes and taught
us valuable lessons for the next phase of scaling.

1 Introduction

Cloud computing has emerged as a new paradigm for commercial, scientific, and
engineering computation. A cloud allows an organization to own or rent efficient,
pooled computer systems instead of acquiring multiple, isolated, large computer
systems each commissioned and assigned to particular internal projects [1, 6].

Cloud computing has substantial advantages. First, it offers elasticity. Elas-
ticity allows a software application to use as much computational resources as it
needs, when it wants. A cloud also offers redundancy. If a server fails, a replace-
ment is swiftly available from the resource pool. However it cannot be automat-
ically incorporated into a long-running computation unless the computation is
designed to allow this. A cloud also offers higher utilization. Utilization refers to
the amount of time a pool of resources is in use rather than idle.

For evolutionary algorithms (EA) researchers, the cloud represents both a
huge opportunity and a great challenge. Parallelization has been well-studied
in the context of EAs, and has been shown to affect population dynamics and
diversity, and to improve performance. With the cloud we can aim to run parallel
evolutionary algorithms at a scale never before seen, but we must first make our
algorithms and implementations cloud-ready.

In the long term we envisage novel refactoring and rethinking of genetic pro-
gramming (GP) as the cornerstone of a massively scalable cloud-based evolu-
tionary machine learning system. Our immediate goal is to design, implement,
deploy and test a cloud-based GP system, which we call Flex-GP.

In this paper, we adopt an island based parallelization model with commu-
nication via sockets, and choose Amazon’s EC2 as a computational substrate.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 477–486, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

478 D. Sherry et al.

We choose symbolic regression as an application. We start modestly with a few
nodes and scale to tens and then hundreds of nodes. We encounter some unex-
pected challanges but achieve parallelization of GP up to 350 islands.

In Sect. 2, we begin with a discussion of related work on the parallelization
and scaling of EAs. Sect. 3 briefly describes the elastic compute resource pro-
vided by Amazon. In Sect. 4 we present the strategies we employed to scale the
algorithm and the challenges that arose. We then present a benchmark problem
and experimental results in Sect. 5. We present our conclusions and future work
in Sect. 6.

2 Related Work

The simplest EC parallelization models are the independent parallel runs
model and the master-slave fitness evaluation model. Both are useful in some
circumstances. Our research interest is in a different model, the island model.
Multiple populations or islands run independently and asynchronously, with in-
frequent migration of good individuals between islands. The island model has
been studied extensively, with surveys by Cantú-Paz [2] and Tomassini [8].

The topology of an island model may be visualised as a network of nodes
(each representing a population) and directed edges (representing migration).
Island models typically depend on a centralised algorithm to impose the desired
neighbourhood structure. Decentralised algorithms have also been studied, where
the network structure emerges in a peer-to-peer or bottom-up fashion [4].

Island models may be expected to deliver performance benefits over single-
machine EC, due to their larger total populations. As demonstrated by
Tomassini [8], island models can in fact do even better. This happens chiefly
because a structured population can avoid premature convergence on just one
area of the search space. Vanneschi [9] (p. 199) notes that for each problem there
is a population size limit beyond which increases are not beneficial. Tomassini
found that isolated populations have an advantage in performance over single
large populations, where total population size is 2500, and that communicating
islands have an advantage over multiple isolated ones.

A key opportunity in cloud computing is its massive scale. Most existing
research in island model evolutionary algorithms has not used very large numbers
of nodes. A typical value in previous experiments is between 5 and 10 nodes [8,9].
Although we note that each of these projects are now quite old, few specific node-
counts are available in the recent literature. The most important exception is
the 1000-node cluster used by Koza [7] (p. 95).

The Hadoop implementation [http://hadoop.apache.org/] of the MapRe-
duce framework [3] has been used for genetic algorithms [10]. We started from
ECJ [5] which is a EC system written in Java. It includes an island model frame-
work which uses sockets for communication in a master-slave arrangement. ECJ
is more flexible than MapReduce and can avoid its requirement for a master
node which represents a single point of failure and a synchronisation bottleneck;
it is actively maintained; and it offers an easy-to-use, but limited, island model.
Therefore ECJ was selected for our work.

http://hadoop.apache.org/

Flex-GP: Genetic Programming on the Cloud 479

3 Deploying Flex-GP

We chose to use the Amazon Elastic Compute Cloud (EC2), a versatile cloud
computing service. EC2 provides a simple abstraction: the user is granted as
many instances (VMs) as needed, but no access to the underlying host machines.
Instances can vary in size, with the smallest costing as little as $0.02 per hour.
Users can request instances immediately, reserve instances for a set time period,
or bid against the current spot price. An instance’s software is specified by a VM
image called an Amazon Machine Image (AMI). Amazon provides a selection of
off-the-shelf AMIs and also allows the definition of custom images. We found
the default Amazon Linux AMI to be a suitable platform for our system. We
initially chose to use the cheapest instance size, micro, on an immediate-request
basis. However, micro instances are intermittently allocated more processing
power for short periods. To more clearly analyze the performance of our system,
we transitioned to small sized instances, which are granted a fixed amount of
processing power.

Table 1. Notations

Name Notation

Island q Iq
Number of Neighbors Nn

Number of islands Q

Number of instances n

IP address of the node i IPi

Neighbor Destinations Ndn

Time out for replacing instance To

As described in Sect. 2, we chose to use ECJ’s island model. It uses a client-
server architecture, where each client hosts one island, and a sole server is re-
sponsible for setting up the topology, starting and halting computation. In ECJ’s
off-the-shelf island models, one of the clients doubles up as the server. We chose
to configure a separate server with an eye to scaling. Algorithm 1 presents the
pseudocode for the n-island model. Parameters like migration size, Ms, rate, Fm,
start generation SG are provided by the user.

Each island consists of two Java threads, as shown in Fig. 1. The first is the
main thread, which performs evolutionary computation and periodically sends
packets of emigrants to neighboring islands. The second acts as a mailbox, and
is responsible for receiving packets of incoming immigrants. The main thread
periodically fetches newly arrived individuals from the mailbox and mixes them
into the population. Note that this architecture implies that if a node crashes,
those nodes to which it sends will not be affected, nor will those which send to
it. Although the topology of the network will be damaged, all other nodes will
continue calculations. This is a limited form of robustness.

480 D. Sherry et al.

Algorithm 1. The socket based n-island model

1. Pre-process: Create the necessary params files
2. Initialization
for d = 0 to n do

Initialize Id
if d = 0 then

IPs ← IPd

end if
if d
= 0 then

Recv Id(IPs)
Send I0(IPd)

end if
end for
3. Set up communications
if d = 0 then

for d = 1 to n do
Send neighborhood information: Send Id(Nn, Ndn, N

id
dn, IPdn).

Send Migration parameters: Send Id(Ms, Fm, SG).
Send GP parameters: Send Id(psize, ngens).

end for
end if
4. Start computation
if d = 0 then

for d = 1 to n do
Instructs Id to start computation

end for
end if
5. Stopping computation
if d
= 0 then

while Id did not receive stop signal do
Send I0(Oi) where Oi is the fitness at the end of ith generation.

end while
end if
if d = 0 then

Recv(Oi)
if Oi ≥ Od then

for d = 1 to n do
Send Id(stop signal)

end for
end if

end if
The server and all islands have exited

Flex-GP: Genetic Programming on the Cloud 481

Fig. 1. An ECJ island consists of multiple processes (left). The three-island model on
EC2 (right).

4 Scaling Flex-GP

As we proceeded from an initial run towards large numbers of islands, new issues
emerged. We present our progress as a series of milestones: Q = 3, Q = 20,
Q = 100 and finally Q = 350 islands. In this section our aim is only to consider
scaling, and so the details of the problem and the fitness values are achieved are
not reported. For completeness, we note that the experimental setup was the
same as that in Sect. 5.

Milestone 1: Three Islands. Our initial goal was a proof of concept. We
manually constructed a three-island ring topology on three EC2 instances, with
the server hosted on a fourth. This enabled us to understand the steps involved
in launching, starting and running a basic island-based GP system on EC2. We
found that three key ECJ components were easy to use and ready to run on
EC2: socket based communication, an evolutionary loop, and experiment setup.
The three-island model ran successfully.

Milestone 2: 20 Islands. As soon as more than three islands were required, the
overhead required to manually start each island as above became unachievable.
We automated the instance requests using EC2’s Python API, boto. We avoided
the transfer of files by creating a custom AMI containing our code-base. With
this setup we achieved the 20-island milestone.

Milestone 3: 100 Islands. During the next phase of scaling, several more
issues became apparent.

Instance boot was both unreliable (about 1 in 250 requested nodes simply fails
to start) and highly variable in the time required (from 15 seconds to several min-
utes). The time required for instance network connection was also variable, up to
30 seconds. Since the ECJ island computation does not begin until all islands have
reported successful startup, it was therefore essential to providemonitoring and
dynamic control of instance startup. In Algorithm 2 we present a dynamic
launch monitor and control process. It has two parameters, the wait time α and
the time for timeout, To. All EC2 interfaces have latency of a few seconds, so α

482 D. Sherry et al.

must be long enough to allow for that. We set To as the mean time required for
an instance to launch and connect. Its main function is to make instance requests
and take account of requests which are apparently failing.

Algorithm 2. Dynamic logic for instance startup

Generate a cloneable image C
d ← 0
while d ≤ n do

Request an instance of C via Boto
while To
= γ do

if Instance is running according to API then
if Instance is connected then

d ← d+ 1
To ← γ

else
wait for α
To ← To + α

end if
else

wait for α
To ← To + α

end if
end while

end while

Even after an instance is correctly created, a variety of problems can occur
at runtime, including software and configuration bugs, network problems, and
other unknown errors. Error tolerance and reporting is essential. To better
handle debugging and post-run analysis we first coded these messages. Once we
resorted to a coded catalogue/dictionary for errors, it enabled us to incorporate
more log messages throughout our code-base. The coding of messages helped to
reduce the bandwidth when transferring logs from the islands.

Milestone 4: 350 Islands. Amazon limits new EC2 users to 20 concurrent
instances. Requests for increases may be placed and are usually fulfilled incre-
mentally some days later. After several requests our limit stands at 400 instances.
Our next goal was to approach this limit. The main questions to be considered
were: would the socket-based model withstand communication among hundreds
of islands? Would the fact that the server is a single point of failure prove prob-
lematic?

At this level, two major augmentations were required. We added an addi-
tional dedicated instance as a monitoring/log server. To do so, we added a
LogServer, supported by the Twisted open source Python networking engine.
The LogServer’s role was to aggregate and display information about the current
status of computation across the network. Two types of information were trans-
mitted to the LogServer : performance and migration tracking. In our larger tests

Flex-GP: Genetic Programming on the Cloud 483

we inadvertently “stress tested” the capacity of this server. During benchmarks
with 350 islands, the LogServer received and recorded almost 100, 000 lines of
text over several minutes, successfully receiving 100% of incoming messages.

Fig. 2. The 350-Island System

We also wished to take advantage of our large limit of 400 instances by running
multiple tests simultaneously, for example almost the entirety of the 1, 2, 4,
16, 128 and 256 island runs mentioned in the next section. We introduce the
concept of a bucket, that is a set of nodes allocated to a single task. We added a
ResourceManager to manage instances and buckets, consisting of the following
components: a Connection class which communicates with EC2; a list of free
instances ; and a set of buckets to which the free instances can be allocated. Each
test run requires one bucket. Managing multiple buckets in the ResourceManager
means that multiple tests can be run simultaneously. The ResourceManager
favoured the serial re-use of buckets to minimise setup time.

5 Experimental Setup

Our next goal was to evaluate our system. The benchmark was a two-variable
symbolic regression problem taken from [11]. The aim is to match training data
produced from a known target function,

f(x, y) =
e−(x−1)2

1.2 + (y − 2.5)2

The training data was 100 points randomly generated in the interval (x, y) ∈
[0.3, 4], with a different set of points being generated for each island. No sep-
arate testing phase was run. Fitness was defined as the mean error over the

484 D. Sherry et al.

training points. The function set was {x, y,+, ∗,−,%, pow, exp, square}, where
% indicates protected division (if the denominator is zero, 1 is returned).

The population was initialised using the ramped half-and-half algorithm, with
minimum depth 2 and maximum depth 6. Tournament selection was used with
tournament size 7. Subtree crossover, biased 90/10 in favour of internal nodes,
was used with probability 0.9, and reproduction with probability 0.1. No muta-
tion was used, nor was elitism. The maximum tree depth was 17. The population
size at each island was 3000 and the number of generations was 100. The island
topology used was a non-toroidal four-neighbor grid. Each island was configured
to send 40 emigrants to its destination neighbors every four generations. We
ran the benchmark on 1, 2, 4, 16, 64, 128 and 256 islands. For each of these
cases we conducted at least 10 runs.We evaluated benchmark performance on
two metrics, accuracy and time.

Accuracy is the best fitness achieved, i.e. 1/(1 + e) where e is the mean
squared error on our benchmark problem. In Fig. 3 we show the improvement in
accuracy of the system as a function of number of islands. We plot the average
fitness achieved at the end of each generation. We average this number over 10
independent runs. This is shown in Figure 3(right). Fitness generally improves
as we add more resources. However, as we add more resources the gain in fitness
achieved at the end of 100 generations reduces. For example, the biggest gain
in fitness is achieved when we go from 1-island model to 4-islands and the least
gain is achieved when we use 256 instead of 128 islands. In the experiment only
the number of islands was varied, and all other parameters left fixed. The larger
trials thus had a lower relative degree of information flow between islands, which
may have impaired performance. Finally it is possible that this result reflects
Vanneschi’s finding that for any problem, there is a limit to total population
size beyond which performance does not increase and can even be impaired [9]
(p. 199). We also show the variance in the best fitness at the hundred generations
for multiple runs as a box plot in Figure 3(left). It is interesting to note that
the variance in the best fitness achieved significantly reduces as we add more
resources.

1 4 16 64 128 256

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
it
n
e
s
s

Fig. 3. Results achieved on a benchmark symbolic regression problem

Flex-GP: Genetic Programming on the Cloud 485

Time is measured as achieving this higher accuracy in the same amount of
time that would be used on a single machine. We measure both communications
and infrastructure setup time and total compute time, with results as shown
in Fig. 4. We plot four different times. First one is the initialization of the
LogServer. The second is the time taken by our system to set up monitors, and
the third is the time taken by the evolutionary server to set up islands and the
communications. Both these times see an increase in time from 1̃0 seconds to
1̃80 seconds. Finally we show the actual computation time of the islands. Even
though we add 255 nodes the compute time only increases by a factor of 3̃.

Fig. 4. Time taken by the server to set up island infrastructure and topology for
communications

6 Conclusions and Future Work

In this paper we have described development of Flex-GP, which we believe to
be the first large-scale cloud GP implementation. This is timely and is made
possible by the advances made in virtualization and cloud infrastructure. We
chose the Amazon EC2 cloud service. From several pre-existing software pack-
ages, we chose ECJ which provides a simple off-the-shelf island model with socket
communication. We made each island a separate EC2 instance.

In order to scale up to 350 islands we had to develop many additional software
features including cloning, dynamic launch, and a LogServer. We made use of
some publicly available open source tools like twisted, boto, nmap. We encoun-
tered and overcame several problems during scaling. We were able to identify
when certain features become critical: for example, automatic launch via cloning
becomes necessary for island numbers above 5.

486 D. Sherry et al.

Our success is demonstrated through Flex-GP performance on a benchmark
problem. Increased resources improve performance, with some cost in time.

Our next goal is to scale Flex-GP to at least 1000 islands. From experience
in scaling to 350, we expect to require a number of additional infrastructural
features such as distributed startup, visualization tools and no single point of
failure. We also aim to modify the Flex-GP island model to introduce features
of elasticity (add or remove instances when needed) resiliency (gracefully han-
dle node failures). After achieving these we aim to examine other distribution
models.

Acknowledgements. This work was supported by the GE Global Research
center. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views
of General Electric Company.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28 (2009)

2. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralle-
les 10(2) (1998)

3. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of ACM 51(1), 107–113 (2008)

4. Laredo, J.L.J., Castillo, P.A., Paechter, B., Mora, A.M., Alfaro-Cid, E., Esparcia-
Alcázar, A.I., Merelo, J.J.: Empirical Validation of a Gossiping Communication
Mechanism for Parallel EAs. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 129–136. Springer, Heidelberg (2007)

5. Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Bassett, J., Hubley, R.,
Chircop, A.: ECJ: A Java-based evolutionary computation research system (2007),
http://cs.gmu.edu/~eclab/projects/ecj/

6. Ograph, B., Morgens, Y.: Cloud computing. Communications of the ACM 51(7)
(2008)

7. Poli, R., Langdon, W., McPhee, N.: A field guide to genetic programming. Lulu
Enterprises UK Ltd. (2008)

8. Tomassini, M.: Spatially structured evolutionary algorithms. Springer, Heidelberg
(2005)

9. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. the-
sis, Université de Lausanne (2004)

10. Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms
using MapReduce. In: Proceedings of Intelligent Systems Design and Applications,
pp. 13–18 (2009)

11. Vladislavleva, E., Smits, G., Den Hertog, D.: Order of nonlinearity as a complexity
measure for models generated by symbolic regression via Pareto genetic program-
ming. IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)

http://cs.gmu.edu/~eclab/projects/ecj/

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 487–496, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Customized Normalcy Profiles
for the Detection of Targeted Attacks

Victor Skormin1, Tomas Nykodym1, Andrey Dolgikh1, and James Antonakos2

1 Binghamton Univeristy, Binghamton, NY, USA
{vskormin,tnykody1,adolgik1}@binghamton.edu

2 Broome Community College, Binghamton, NY, USA
antonakos_j@sunybroome.edu

Abstract. Functionality is the highest semantic level of the software behavior
pyramid that reflects goals of the software rather than its specific implementa-
tion. Detection of malicious functionalities presents an effective way to detect
malware in behavior-based IDS. A technology for mining system call data, dis-
cussed herein, results in the detection of functionalities representing operation
of legitimate software within a closed network environment. The set of such
functionalities combined with the frequencies of their execution constitutes a
normalcy profile typical for this environment. Detection of deviations from this
normalcy profile, new functionalities and/or changes in the execution frequen-
cies, provides evidence of abnormal activity in the network caused by malware.
This approach could be especially valuable for the detection of targeted zero-
day attacks. The paper presents the results of the implementation and testing of
the described technology on the computer network testbed.

Keywords: Behavior Based Intrusion Detection, Functionalities, Colored Petri
Net, Targeted Attacks.

1 Introduction

The warfare in the cyberspace today is manifested primarily by the deployment of
advanced malware and novel IDS technologies. Nevertheless, malware presents a
significant threat to national infrastructures. Modern malware demonstrates features
of both “carpet bombing” and high precision weapons: information attacks perpe-
trated by malicious codes are widespread and are commonly used to inflict costly
massive disruptions, conduct espionage, and as in the case of the Stuxnet worm, even
industrial sabotage [1], [2]. Consequently, Intrusion Detection is a very active area of
research that continues evolving as the malware techniques improve to overcome
existing defenses. However, the most popular malware detection schemes are still
dominated by the binary signature-based approach. Although it has many practical
advantages, this technology can be evaded by using automatic tools like code packers
and metamorphic engines, and leads to a dead end due to exponentially growing data-
base of binary signatures. In addition, it is inherently incapable of addressing targeted,
zero-day malware attacks not represented by a binary sample in a database.

488 V. Skormin et al.

Behavioral analysis offers a more promising approach to malware detection since
behavioral signatures are more obfuscation resilient than the binary ones. Indeed,
changing behavior while preserving the desired (malicious) functions of a program is
much harder than changing only the binary structure. More importantly, to achieve its
goal, malware usually has to perform some system operations (e.g. registry manipula-
tion). Since system operations can be easily observed and they are difficult to obfus-
cate or hide, malicious programs are more likely to expose themselves to behavioral
detection. Consequently, while database of specific behavioral signatures is still to be
utilized, its size and rate of increase are incomparably lower than those in the case of
binary signatures. However, the behavioral detector has to be able to distinguish mali-
cious operations from benign (executed by benign program) ones which is often diffi-
cult. Moreover, maliciousness of an executed functionality can often be determined
only by its context or environment. Therefore the challenge of behavioral detection is
in devising a good model of behavior which is descriptive enough to allow for dis-
crimination of benign versus malicious programs and which can be tuned to the target
environment.

In principle, there are two kinds of behavior detection mechanisms: misuse detec-
tion and anomaly detection. Misuse detection looks for specific behavioral patterns
known to be malicious, while the anomaly based approach responds to unusual (un-
expected) behavior. The advantage of anomaly based detection is in its ability to pro-
tect against previously unseen threats; however, it usually suffers from a high false
positive rate. Misuse detection is usually more reliable in terms of detection perfor-
mance (fewer false positives and often no false negatives) but it has two major draw-
backs. First, defining a set of malicious patterns (signatures) is a time consuming and
error prone task that calls for periodic updating, similarly to how binary signatures are
used today. Second, it cannot detect any malicious code that does not expose known
malicious behavior patterns and thus its capabilities to detect a zero day attack are
limited. Consequently, it seems logical to combine both detection mechanisms thus
resulting in a highly dependable IDS technology.

This paper presents a technology centered on the concept of functionality, i.e. such
a combination of computer operations that is defined not by its specific implementa-
tion but by the result of its realization reflecting the intent (goal) of the developer.
First, we discuss the formalization aspects of behavioral signatures representing func-
tionalities, either benign or malicious, in the inclusive and obfuscation resilient form.
Then we address the approach enabling the functionality extraction from a Kernel
Object Access Graph capturing how kernel objects (objects managed by operating
system, e.g. files, processes) are manipulated. Then we discuss the formation of a
database containing the functionalities pertaining to the particular network environ-
ment that in combination with their frequencies of execution constitutes a customized
normalcy profile. The resultant IDS would perform an ongoing task of functionality
detection and assess the deviation of the observed network behavior from the earlier
established normalcy profile. Finally, the implementation results of the particular
components of the described system will be presented.

The described technology is expected to be instrumental in the detection of tar-
geted information attacks against high value targets such as banks, power plants,

 Customized Normalcy Profiles for the Detection of Targeted Attacks 489

government installations, etc. Indeed, Stuxnet-type malware is highly tuned to the
particular network environment, and execution of its functionalities at the early stage
of the attack would cause an anomaly in the network behavior undetectable by tradi-
tional means.

2 Modeling Behavior

Behavior analysis can be performed on the basis of system call data. System calls
represent the lowest level of behavior semantics. Mere aggregation of system calls has
inherent limitations in terms of behavior analysis. Instrumental behavior analysis must
involve all levels of the semantics, from its foundation at system call level to API
functions and to its highest level – functionalities. Functionality is described as a se-
quence of operations achieving well recognized results in the programs environment.
Being defined not by its specific implementation but by the result of its realization,
functionality is the only level of behavior semantics where maliciousness could be
recognized. Indeed, there is no such thing as a malicious system call or a malicious
API function; however the following is a partial list of commonly recognized mali-
cious functionalities: Self code injection, Self mailing, Download and Execute, Re-
mote shell, Dll/Thread injection, Self manage cmd script create and execute, Remote
hook, Password stealing.

One can realize that malware inherently implements at least one malicious functio-
nality, otherwise it cannot be qualified as malware. A technology for discovering
known functionalities by monitoring computer behavior offers a dependable tool for
software classification. It includes the off-line task of representing functionalities by
appropriate behavioral signatures defined in the system call domain. At the run time,
these pre-defined signatures could be extracted from system call data thus manifesting
a benign operation or malware attack. To implement this approach, the following
challenges were addressed [3]:

• Expressiveness of behavioral signatures. It is crucial for the success of IDS in
detecting new realizations of the same malware. Since most malware incidents are
derivatives of some original code, a successful signature must capture invariant ge-
neric features of the entire malware family, i.e. the signature should be expressive
enough to reflect the most possible malware realizations.

• Behavioral obfuscation. Malicious software might writers might attempt to hide
the malicious behavior of software. It may be implemented through the multipartite
attacks perpetrated by coordinated operation of several individually benign codes.
This is an emerging threat that, given the extensive development of behavior-based
detection, is expected to become a common feature of future information attacks.

• Run-time signature matching efficiency. Efficiency determines the share of
computer resources consumed by its security systems by the utilization of Colored
Petri nets (CPN). Development of the enabling technology for this approach, a
general purpose CPN tool, e.g. a unique software module that could be pro-
grammed to implement various CPN.

490 V. Skormin et al.

Ideally, malicious functionalities such as infection of executable files as performed by
classical viruses are never executed by legitimate programs. However, most functio-
nalities cannot be declared as strictly malicious. For example, code injection is usual-
ly a strong sign of malicious behavior, but it can be also used by legitimate programs
for debugging or profiling purposes. Similarly, some functionalities such as user inte-
raction are seldom executed by malicious software. Although some of the malware
(e.g. rogue antiviruses) can interact with the user, most malicious programs try to stay
hidden. Consequently, according to testing results of [3] the detection of pre-defined,
either malicious or benign, functionalities shows 100% success rate. The functionali-
ty-based attack detection presents a more complex task. It can be accomplished only
by the detection of multiple functionalities. One can base this detection on conditional
probabilities of occurrence of particular functionalities subject to the execution of
malicious and legitimate programs.

3 Dealing with Functionalities

In [3] the functionality specification domain (abstract OS objects) is separated from
the detection domain (system calls). Abstract specification domain allows an expert to
concentrate on the conceptual realization of a functionality omitting certain imple-
mentation details. To achieve higher signature expressiveness, the functionalities of
interest (for example, those indicative of malware attack) can be specified by activity
diagrams (AD) in terms of both standard system objects and abstract behavioral con-
structs named functional operations [3].

In the detection domain pre-specified functionalities are to be reconstructed from
the system call flow. This computational task can be very efficiently performed by
executing respective Colored Petri nets (CPN) obtained from the generalized AD
specification [3, 5].

It was found that CPN provide sufficient expressive power and are highly depend-
able and efficient for recognizing specified functionalities in the flow of system calls
as well as utilized data [4, 5]. Depending on the AD specification, the technology
results in a coarse-grained detector or fine grained detector. Coarse-grained detectors
trace only system call execution discarding information dependencies. Some functio-
nalities are to be specified by AD with informational dependency between the opera-
tion attributes. In these cases fine-grained detectors trace information flows using
dynamic data tracing techniques such as taint propagation thus potentially providing
additional discriminative power.

It could be seen that CPN is the enabling technology for the proposed IDS: it is
used to define the functionalities of interests as behavior signatures, and at the same
time it provides the mechanism for the signature detection (matching). The authors
have developed and offered to the user community a generic CPN simulator suitable
for specifying any complex event (such as functionality of interest) as a unique com-
bination of interrelated low-level events. This software presents an effective hand-
shake mechanism for matching/identification of complex structures [6].

 Customized Normalcy Profiles for the Detection of Targeted Attacks 491

Most aspects of the technology described herein were implemented in a prototype
IDS [6] and validated on dozens of malware and hundreds of legitimate programs by
successful detection of pre-defined malicious functionalities employed by network
worms and bots, including self-replication engines and various malicious payloads. A
series of experiments performed to estimate run-time overhead due to IDS implemen-
tation (except taint propagation engine that could be performed by dedicated hardware
module) showed only 4% run time increase.

4 Automatic Functionality Extraction

One of the drawbacks of the above technology is the presence of an expert who will
be engaged each time the set of functionalities is to be expanded. Automatic functio-
nality extraction would eliminate this drawback, and being enacted on a continuous
basis, has a potential for the development of novel computer security mechanisms that
is the main target of this paper.

Functionality could be observed as a frequently occurring pattern in kernel object
access graphs. Kernel objects such as files or processes represent important objects in
the operating system. They are managed by the operating system kernel and so they
can be accessed and manipulated only through system calls. Programs access kernel
objects via handles, which are identifiers unique in the context of each process. Since
all important data structures and resources in the operating system are represented by
a kernel object, programs cannot do much without manipulating at least some of
them. Kernel object dependencies are difficult to hide and since we ignore any other
data dependencies, this model provides a robust, obfuscation resilient tool for mal-
ware analysis [6].

The simplest possible functionality is just a single system call. More complex func-
tionalities can have constraints on their arguments and contain several system calls
and dependency relations between them. Significant functionalities are those which
provide good descriptive power for program classification.

Kernel Object Access Graph Dependencies between kernel objects can be
represented by a directed graph, where each vertex represents an access (by system
call) of a particular kernel object and edges represent dependency on (or modification
of) the object state. Every vertex is labeled by system call number and edges are la-
beled by the type of access. Being directed and acyclic, the graph defines partial or-
dering on the system calls observed in the trace. Kernel Objects are tracked by their
handles if they are not named, or by their names if they are available.

The following operations are monitored resulting in a kernel object dependency
graph [7]: Object Creation, Obtaining a Handle to an Object, Read access,
Write/modify access

4.1 Access Graph Compression

Since programs can easily execute several thousand system calls in less than a minute
and each system call is represented by a vertex, the size of graphs built from

492 V. Skormin et al.

execution traces quickly becomes unmanageable. Moreover, graphs often contain
redundant information which obfuscates the graph rather than carries useful informa-
tion. Therefore, constructed graphs must be compressed by removing redundant in-
formation and condensing frequently appearing subgraphs into single vertices.

There are three basic types of repetition: Sequence, Parallel Sequence, and Loop.
Repetitions can be composed of subgraphs which are isomorphic to each other. Se-

quence and loop repetitions are replaced by the first member of the component
while absorbing the outgoing edges from the last component and introducing a back-
wards edge, creating a loop. The parallel sequence is simply replaced by only one
occurrence.

The reuse of the code and executing the same functionality in multiple contexts re-
sults in virtually identical structures appearing in traces of the same or several different
programs. This is typical of API functions composed from more than one system call
that inherently show up as a frequent subgraph structure. Since they always represent
the same function there is no need to keep several copies of them and each instance can
be replaced by a single node. This operation further reduces the data size and thus re-
duces the cost of subsequent processing. Since API functions are executed frequently
and some of them translate into relatively large subgraphs, this size reduction can often
be significant. Moreover, it also identifies structures which should always remain the
same. Any deviation in standard API functions is by itself suspicious.

4.2 Functionality Extraction

Functionalities can be identified as frequent subgraphs of the kernel object access
graph. However, subgraph mining is computationally expensive and the graphs,
though considerably reduced, are still large in size. Moreover, manual inspection of
the obtained graphs indicates that most of the frequent structures seem to be contained
together. This is because functionality is usually executed at one time without many
additional system calls related to the same Kernel Object. These reasons justify the
use of a heuristic technique which first converts graph components into a string and
then performs a search for repeated factors [8]. While graphs cannot be expressed as
strings without losing information, the string search algorithm cannot be fully relied
on to find all functionalities. However, the heuristics [8] works well and computing
common string factors is a much more efficient operation than frequent subgraph
mining. While the described approach may not work should behavioral obfuscation
techniques be applied, a proper subgraph mining algorithm might be required.

4.3 Evaluation of the Functionality Extraction Procedure

The described scheme was evaluated on execution traces obtained from several be-
nign and malicious programs running on Windows XP. System call traces were rec-
orded from our driver which intercepted system calls with their arguments by hooking
into the SSDT table. Since we wanted to evaluate our approach in general conditions
without any prior knowledge about importance of individual system calls for security,
we intercepted all of the calls referenced by the service table, except a few for which

 Customized Normalcy Profiles for the Detection of Targeted Attacks 493

we could not find the correct specification of input arguments. We used our driver to
obtain execution traces from several malicious and benign applications.

Malicious programs were obtained from the Offensive Computing website [9] and
include malware samples of different types and from several families. Benign pro-
grams were selected to represent a typical user setup. We joined the obtained samples
into three testing traces so that each trace consisted of several malware types and
several benign programs.

Table 1. Testing/validation of the functionality extraction procedure

Trace

Number of
system calls

Number of unique graph
components

Number of detected
functionalities

Number of malicious func-
tionalities detected

1 6927937 1047 341 23

2 3704217 862 307 21

3 20719 217 49 9

Since we monitored all of the system calls, the size of execution traces grew rapid-

ly with time, quickly exceeding 10GB for large traces. Therefore we used traces ob-
tained only for a limited amount of time, ranging from 1 minute to 20 minutes in the
case of longest execution trace. Currently, the compression was applied to the entire
graph that could have over ten thousand nodes. In the future, some incremental, real
time compression schemes could be used allowing the processing of much longer
traces. The results could be seen in Table 1. Figure 1 illustrates the functionality ex-
traction process. Numbers in circles correspond to different system calls issued during
execution of a process.

5 Customized Normalcy Profile and Its Utilization in an IDS

Proliferation of targeted information attack expected in the nearest future calls
for novel IDS approaches capable of protecting "high value targets". Such a target is
visualized as one or several networked machines operating in a closed network envi-
ronment executing a fixed set of approved programs that service industrial
systems/processes and/or government facilities. It is known that StuxNet worm, per-
petrating such an attack, employs several techniques to conceal its activity and to
keep low activity profile. Such techniques include [2], [10]:

• Controlled self-propagation that is achieved by limiting the number of generation
of the worm

• Uses multiple attack vectors to self-propagate via USB removable drives and local
network

• Uses rootkits digitally signed with stolen valid certificates that hide the worm binaries
• Uses centralized and decentralized mechanisms to update itself on infected machines
• Employs various techniques to precisely identify the target of its attack

494 V. Skormin et al.

Fig. 1. Functionality extraction

To further our understanding of StuxNet type malware, we evaluated the robustness
of modern antiviruses for detecting StuxNet. The following simple experiment was
performed on worm W32/Stuxnet.A downloaded from a public malware repository
(md5- 74ddc49a7c121a61b8d06c03f92d0c13) [9].

1. We uploaded the malware binary to Virus Total website [11] that utilizes most
common anti-viruses to detect the malware. It was found that almost all, 42 out of
43, anti-viruses detected the worm.

2. We modified the original worm by changing the code section without affecting the
behavior of the worm. We should point out that OllyDbg dumper added additional
sections to the binary, but the executable section of the code remained intact.

3. The modified worm was submitted to the Virus Total website. The scanning results
showed that 25 out of 43 anti-viruses, including NOD32, Avast and Kaspersky,
failed to detect the modified worm.

Such fragile performance of anti-viruses could be attributed to the nature of the cur-
rent anti-virus technology utilizing binary patterns that are highly bound to rarely
changed portions of the code. Our experiment demonstrates that targeted StuxNet-
type attacks can easily overcome current computer defense mechanisms.

The utilization of the earlier described functionality extraction methodology offers
a new perspectives to the development of a much more dependable IDS. Such an IDS
would utilize a customized normalcy profile representing the normal operation of a
network and a generic abnormal behavior profile comprising known malicious func-
tionalities. Both profiles are to be represented by CPN models and implemented on
the basis of the CPN tool [6].

 Customized Normalcy Profiles for the Detection of Targeted Attacks 495

The customized normalcy profile is perceived as a set of automatically extracted
functionalities, subjected to generalization and augmentation, and accompanied by the
frequencies of their execution. Unlike a public network providing services to a wide
community of users, network of a "high value facility" is expected to demonstrate a
very rigid set of functionalities and their frequencies. The abnormal behavior profile
represents typical malicious functionalities by CPN-based behavioral signatures as in
[3] and will be expanded as new malicious functionalities be detected.

The initial deployment of the proposed IDS will result in the extraction of the func-
tionalities routinely executed within the network. However, the functionality extrac-
tion/recognition will be an on-going task. The detection of one or more malicious
functionalities will indicate an attack. The detection of unseen earlier, not necessarily
malicious functionalities, and/or changes in the execution frequencies of the functio-
nalities would also indicate an attack. The alarm would prompt the necessary attack
mitigation measures. Figure 2 illustrates the described IDS concept. The implementa-
tion of the described approach includes the development and periodic updating of the
normalcy profile, and the on-going tasks of the functionality extraction, detection of
known malicious functionalities, and the anomaly detection in network operation.

networked computers implementing
a fixed set of legitimate programs

Sy
st

em
 ca

ll
da

ta

Functionality extraction

Frequency,
executions/minute

A B C D E
Extracted functionalities

Frequency,
executions/minute

A B D E
Extracted functionalities

XC

Customized normalcy profile Abnormal profile indicative
of attack

Fig. 2. IDS utilizing a customized normalcy profile

6 Related Work

This paper is a continuation of previous work on malicious functionality specification
using CPN technology [3]. The utilization of CPN [4] enables automation of the defi-
nition process. An approach to behavioral matching based on dependencies of system
call arguments is presented in [12]. Authors in [13] developed a method for construct-
ing near-optimal behavior signatures from the behavior graph and use behavior graphs
following data dependencies which capture even complex semantic relationships. As
per [14], malware employing advanced behavior obfuscation such as using covert
channels to pass the information could escape detection. A system-centric model of
benign programs observing sequences of executed system calls is built in [15].

496 V. Skormin et al.

Acknowledgments. This research has been funded by the Air Force Office of Scien-
tific Research (AFOSR). The authors are grateful to Dr. Robert Herklotz of AFOSR
for supporting this effort and to Dr. A. Tokhtabayev of George Mason University for
valuable suggestions and friendly discussions.

References

1. Percoco, N., Ilyas, J.: Malware Freakshow 2010., White paper for Black Hat USA (2010)
2. Falliere, N., Murchu, L., Chien, E.: W32.Stuxnet Dossier. version 1.4. Symantec Security

Response (April 2011)
3. Tokhtabayev, A.G., Skormin, V.A., Dolgikh, A.M.: Expressive, Efficient and Obfuscation

Resilient Behavior Based IDS. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 698–715. Springer, Heidelberg (2010)

4. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical use, 2nd
edn., vol. 1. Springer, Berlin (1996)

5. Dolgikh, A., Nykodym, T., Skormin, V., Antonakos, J.: Colored Petri Nets as the Enabling
Technology in Intrusion Detection Systems. In: MILCOM 2011, Baltimore, VA (2011)

6. http://apimon.codeplex.com
7. Nykodym, T., Skormin, V., Dolgikh, A., Antonakos, J.: Automatic Functionality Detection

in Behavior-Based IDS. In: MILCOM 2011, Baltimore, VA (2011)
8. Melichar, B., Holub, J., Polcar, T.: Text Searching Algorithms. Czech Technical Universi-

ty in Prague Faculty of Electrical Engineering, Department of Computer Science and
Engineering (November 2005)

9. http://offensivecomputing.net/ (accessed in April 2011)
10. Matrosov, A., Rodionov, E., Harley, D., Malcho, J.: Stuxnet under the microscope. ESET

LLC (September 2010)
11. http://www.virustotal.com/
12. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and

efficient malware detection at the end host. In: Proceedings of the 18th USENIX Security
Symposium (Security 2009) (August 2009)

13. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing Near-
Optimal Malware Specifications from Suspicious Behaviors. In: 2010 IEEE Symposium
on Security and Privacy (2010)

14. Cavallaro, L., Saxena, P., Sekar, R.: On the Limits of Information Flow Techniques for
Malware Analysis and Containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008)

15. Lanzi, A., Christodorescu, M., Balzarotti, D., Kirda, E., Kruegel, C.: AccessMiner: Using
System-Centric Models for Malware Protection. In: Proceedings of the 17th ACM CCS

A Novel Multiobjective Formulation of the

Robust Software Project Scheduling Problem

Francisco Chicano1, Alejandro Cervantes2,
Francisco Luna1, and Gustavo Recio2,�

1 University of Málaga, Spain
{chicano,flv}@lcc.uma.es

2 University Carlos III of Madrid, Spain
{acervant,grecio}@inf.uc3m.es

Abstract. The Software Project Scheduling (SPS) problem refers to
the distribution of tasks during a software project lifetime. Software de-
velopment involves managing human resources and a total budget in an
optimal way for a successful project which, in turn, demonstrates the
importance of the SPS problem for software companies. This paper pro-
poses a novel formulation for the SPS problem which takes into account
actual issues such as the productivity of the employees at performing dif-
ferent tasks. The formulation also provides project managers with robust
solutions arising from an analysis of the inaccuracies in task-cost estima-
tions. An experimental study is presented which compares the resulting
project plans and analyses the performance of four different well-know
evolutionary algorithms over two sets of realistic instances representing
the problem. Statistical parameters are also provided in order to help
the project manager in the decision process.

Keywords: Software Project Scheduling, Robustness, Multi-objective
Optimisation, Evolutionary Algorithms.

1 Introduction

As software projects become larger, the need to control people and processes, and
to efficiently allocate resources turn out to be increasingly important. Managing
such projects usually involves scheduling, planning, and monitoring tasks. This
paper focuses on minimising both, the project cost and its make-span, during the
assignment of employees to particular tasks in the context of a software project.
The problem studied here is known in the literature as the Software Project
Scheduling (SPS) problem [2].

In general, the solution of a multi-objective problem, such as SPS, consists of
a set of non-dominated solutions known as the Pareto optimal set, which is often
called Pareto border or Pareto front when plotted in the objective space [3].

� This work has been partially funded by the Spanish Ministry of Science and Inno-
vation and FEDER under contract TIN2008-06491-C04. It has also been partially
funded by the Andalusian Government under contract P07-TIC-03044.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 497–507, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

498 F. Chicano et al.

Solutions within this set are optimal in the sense that there are not solutions
which are better with regards to one of the objectives without achieving a worse
value in at least another one. Particularly, in the context of the SPS problem, it
is not possible to reduce the project cost without increasing its make-span (or
vice versa). Previous works in the literature have addressed the SPS problem
using single-objective and multi-objective formulation with meta-heuristics [2].
The contribution of this research differs from previous works in three ways. First,
a new formulation of the problem is presented which involves more realistic as-
sumptions than the previous ones [2], e.g. the need of taking into account several
constraints was removed simplifying then the optimisation process. Second, the
concept of robustness of a solution was introduced into the formulation of the
problem in order to deal with inaccuracies in task-cost estimations. Third, the ex-
perimental study carried out here consists on applying four multi-objective evo-
lutionary algorithms to the problem using three different robustness approaches
over two different instances derived from a realistic software project. The result-
ing solutions were analysed using correlation measures between solution features
and objective function values.

This paper is organised as follows. The new formulation of the SPS problem
and the way robustness is considered are described in Section 2. The experi-
mentation carried out with the corresponding analysis of results is detailed in
Section 3. Finally, Section 4 deals with discussion of the main findings and con-
tributions of this research.

2 The SPS Problem

Consider the set of people potentially involved in a software project E, where
each person is denoted as ei ∈ E, with i varying from 1 to |E| (the number
of employees), and esi being the salary of an employee. The set of tasks to be
performed in the project and each individual task are referred to as T and
tj ∈ T respectively (with j varying between 1 and |T |). The cost in person-hour
of task tj is denoted with tcj . The tasks must be performed according to a Task
Precedence Graph (TPG) that indicates which tasks must be completed before a
new task is started. The TPG is an acyclic directed graph G(T,A) which nodes
represent the tasks and an arc (ti, tj) ∈ A exists if task ti must be completed,
with no other intervening tasks, before task tj can start. Each instance of the
problem includes a productivity matrix P of size |E| × |T | in which element
P i,j ∈ [0, 1] is a positive real value which describes the productivity of employee
ei in task tj . This productivity value is related to the time required by the
employee to finalise the task. If employee ei is working alone in task tj then
tcj/P i,j hours are required to complete the task.

A solution to this problem x = (d, r, q) consists of a real valued vector of
employee dedication d ∈ R|E|, an integer valued vector of task delays r ∈ N|T |

and an integer valued matrix of priorities q ∈ N|E|×|T |. Each component di
of the dedication vector refers to the percentage of a full working day that
employee ei spends in tasks related to the project. Thus, di = 0.5 means that

Novel MO Formulation of the Robust SPS Problem 499

half working day is spent in the project by employee ei. If working alone in task
tj with productivity P i,j = 1 then the task takes 2tcj hours for completion. The
component rj within the vector of task delays refers to the number of hours that
task tj is delayed with respect to the earliest possible starting time, e.g. if task
tj can start at time h, then, applying task delays it will start at time h + rj .
Task delays where introduced in the formulation as under certain circumstances
they are needed in order to represent optimal solutions in terms of make-span.
Without considering delays, the model can only generate solutions with as many
tasks as possible processed in parallel, i.e. tasks are started as soon as the TPG
allows it. If some of those paralleled tasks are in the critical path (that is, their
make-span highly influences the total make-span), a better total make-span can
be achieved if the critical tasks are completed as soon as possible. The use
of task delays allow the model to represent such solutions: non-critical tasks
can start later than allowed by the TPG, so they have less parallelisation than
critical tasks. Critical tasks get as much dedication as possible minimising their
contribution to the total make-span. The priority matrix q specifies which task is
performed by each employee. In the case in which an employee is simultaneously
working in several tasks, the matrix also specifies the distribution of employee
time between parallel tasks. An employee ei works in task tj when qi,j > 0 and
P i,j > 0. If employee ei is working at a given time τ in tasks tj1 , tj2 , . . . , tjl
then the amount of time dedicated to task tjm is given by qi,jm/(

∑l
k=1 qi,jk).

Optimising the cost and the make-span of the proposed scheduling of the
software project is the aim behind this research. Therefore, the evaluation of
cost and make-span becomes highly important. Consider a discrete time where
the time variable is represented by τ . The working hours in the software company
in which the project is begin developed are represented as finite values of the
time variable τ = 0, 1, 2, . . . (being τ = 0 the starting time of the project).

Since the employee dedication to a task is time dependent (due to simul-
taneous tasks), computing the make-span of the project involves an auxiliary
time-dependent real valued vector of manpower for each task. Such vector will
be denoted as π, where πj refers to the manpower of the team at performing
task tj , e.g. if πj(7) = 2 then at time τ = 7 the remaining cost of task tj is
reduced in 2 persons-hour. The set of finalised and active tasks at time τ based
on the values of π(τ ′) for τ ′ < τ are defined as

done(τ) =

{
tj ∈ T

∣∣∣∣∣
τ−1∑
τ ′=0

πj(τ
′) ≥ tcj

}
, (1)

active(τ) = {tj ∈ T |∀ti, (ti, tj) ∈ A : ti ∈ done(τ − rj)} − done(τ), (2)

where A stands for the arc set of the TPG. Notice that the computation of both,
the active(τ) and done(τ) sets only depends on the values of π(τ ′) for τ ′ < τ .
In particular, done(0) and active(0) do not depend on π, as done(0) = ∅ and
active(0) is the set of initial tasks: active(0) = {tj ∈ T |�ti ∈ T, (ti, tj) ∈ A}.

500 F. Chicano et al.

The vector π(τ) can be computed for each time step τ = 0, 1, . . . in an iterative
manner as follows:

πj(τ) =

⎧⎨
⎩

∑
ei∈E:qi,j>0

di·P i,j ·qi,j∑
tk∈active(τ) qi,k

if tj ∈ active(τ),

0 otherwise.
(3)

The project make-span is: makespan(x) = min{τ ∈ N|done(τ) = T }, that is,
the make-span refers to the amount of time required to complete all the tasks in
the project. A well defined make-span involves that all tasks must be performed
by at least one employee with non-zero productivity in the corresponding task.
This is the only constraint imposed to the solutions.

The cost is computed by multiplying the salary per hour of each employee,
the dedication of the employee and the number of hours dedicated to tasks in
the project. Then the salaries for all employees are sum together to compute the
total cost of the project, that is:

cost(x) =
∑
ei∈E

esi · di · |{τ ∈ N|∃tj ∈ active(τ) : qi,j · P i,j > 0}| . (4)

Considering the expressions for the makespan and the cost, the SPS problem
can be modelled as a bi-objective optimisation problem with objective function
f(x) = (cost(x),makespan(x)).

2.1 Adding Robustness to the Solutions

In a real scenario, task costs are usually estimations made on the basis of previous
experiences and they are not accurate. Indeed, a review of studies in estimation
accuracy points out that software projects overspend on average 30-40% more
effort than estimated [10]. Taking into account these uncertainties in the problem
statement allows search algorithms to propose not only good solutions accord-
ing to the main objectives (cost and make-span), but also to provide robust
solutions whose cost and make-span are not sensitive to changes in the the cost
of individual tasks due to inaccuracies of the initial estimations. These distur-
bances in task costs can be modelled by using a multivariate random variable
T c = {tc1, . . . , tc|T |} following a probability distribution C. Given a solution x, the
project cost and make-span are now defined by a bivariate random variable S
that can be computed as S(x) = (makespan(x), cost(x)) = f(x, T c) where T c

was explicitly introduced in the notation to clarify that the solution evaluation
depends on the varying estimated cost of the tasks (represented here with its
random variable).

The average and the standard deviation of each component of S(x) are used
as a measure of the quality and the robustness of each objective for a given
solution, respectively. These values are computed by sampling over a number
of H simulations of T c. The bi-objective formulation of the problem is, thus,
transformed into a four-objective one:

f(x) = (makespanavg(x),makespansd(x), costavg(x), costsd(x)), (5)

Novel MO Formulation of the Robust SPS Problem 501

where sub-indices in the original objective functions were used to denote the
average and the standard deviation of the sampling performed to compute the
robustness. As before, these four objectives are expected to be minimised.

Three different robustness scenarios are being considered. The first one, de-
noted as NR, assumes perfect knowledge on the task cost. The second one as-
sumes that only one task has been miss-estimated (noted as OTR). The third
one assumes that all tasks could have been miss-estimated (noted as STR). The
probability distribution used to generate the perturbation in the cost of a task
in the two last scenarios is such as that each tcj is multiplied by a value uniformly
drawn from the interval [0.5, 2.0]. That is, each task can be carried out from half
to double of its original estimated cost.

2.2 Comparison against Other Scheduling Problems

An analogy can be established between the shop scheduling [6] and SPS prob-
lems. The tasks would be the same in both problems, employees in SPS would
be analogous to machines in shop scheduling problems, the productivity P i,j of
employee ei in task tj when considering SPS would be related to the length of
task j in machine i for shop scheduling problems. However, in shop scheduling
only one machine can perform a task, while in SPS problems tasks are performed
by working teams of employees. In addition, the decision variables in SPS deter-
mine the dedication of an employee to a software project whereas in the case of
shop scheduling the “dedication” or efficiency of a machine cannot be modified.

Another problem related to SPS is the Resource-Constrained Project Schedul-
ing (RCPS) [12]. In RCPS there are several kinds of resources while SPS involves
only one: the human resource. Each activity in RCPS requires different amounts
of each resource while SPS does not imposes a minimum or maximum number
of employees in a working team developing a task.

Two important works that also use modelling of software project scheduling
were presented in Gutjahr et al. [7] and Chang et al. [1]. The former includes
a model of learning capabilities of employees and a portfolio selection. In the
second, a solution accounts for the time variation of the assignment of employees
to tasks. The drawback of complex formulations, like the previous ones, is the
large number of parameters that the project manager must configure to provide
a complete instance of the problem, which in turn increases the chances of miss-
estimating such parameters. Hence, the improved accuracy obtained using a more
realistic formulation of the problem turns out to be limited by a larger inaccuracy
of the problem instance parameters. Then, a new formulation which is a trade-
off between realistic (but complex) and simple (and unrealistic) formulations is
proposed in this work.

3 Experimental Study

Four meta-heuristics have been used to carry out the experimental study: NSGA-
II [5], SPEA2 [14], PAES [9], and MOCell [11]. They all use evolutionary com-
putation which is by far the most popular meta-heuristic technique for solving

502 F. Chicano et al.

MOPs due to their ability in finding a set of trade-off solutions in one single run
[3,4]. Binary tournament selection, two-point crossover and a random mutation
that randomly chooses a value within the range defined for each variable were
used in NSGA-II, SPEA2 and MOCell. On the other hand, the PAES execution
sequence consisted of a single individual population which is iteratively modified
by using only random mutation (no crossover operator was used), pareto front
solutions in this case are obtained by using an external archive where all non-
dominated solutions are stored. Population sizes of 100 individuals were used for
NSGA-II, SPEA2, and MOCell, whereas the pareto front size was limited to 100
solutions in the four approaches. Crossover and mutation rates were pc = 0.9
and pm = 1/L respectively, where L refers to the length of the tentative solution.
Aiming at performing a fair comparison between different algorithms, the stop-
ping criterion for them all consisted in computing 1000000 function evaluations.
Finally, the size of the Monte Carlo sampling used to evaluate the solutions of
the robust SPS versions was set to a neighbourhood of H = 100.

Two quality indicators have been used to measure the performance of the
multi-objective algorithms: the hyper-volume (HV) [15] and the attainment sur-
faces [8]. The HV is considered as one of the more suitable indicators by the
EMO community since it provides a measure that takes into account both the
convergence and diversity of the obtained approximation set. The empirical at-
tainment surfaces have been defined to be a kind of “average” Pareto front of a
randomised multi-objective algorithm. For each pair of algorithm vs test prob-
lem instance, 100 independent runs were carried out. The HV indicator and the
attainment surfaces were then computed. In the case of HV computations, a
multiple comparison test was carried out in order to check if the differences were
statistically significant or not. All the statistical tests were performed with a
confidence level of 95%.

Two realistic instances that are variations of a project scheduling which is
available at the online repository of the MS Project tool will be solved in this
research. The same TPG (see Fig. 1), tasks cost and number of employees as in
the original instance will be used and the values for the employees salary and
the productivity matrix will also be provided. Table 1 summarises the above
information.

T1 T2 T3 T4

T5

T6

T7

T11

T12

T8

T9

T10

T14

T13 T16

T15

T24

T25

T17

T18

T19

T20

T21

T22

T23

T26

T27 T28 T29

Fig. 1. Task Precedence Graph for the two instances of the SPS problem being solved

Novel MO Formulation of the Robust SPS Problem 503

Both instances, denoted with ms1 and ms2, differ in the definition of their
productivity matrix. In ms1 all the values in the productivity matrix are 0 or 1
and are based on the original assignment of employees to tasks in the sample
project (denoted as “base solution”). On the other hand, instance ms2 contains a
more flexible resource productivity table, with larger overlap between resources’
abilities, and also fractional (not 1.0) productivity in tasks.

Table 1. Productivity matrices P i,j , task cost tcj and employee salary esi

Emp. Task (tj)

ei esi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

e1 50
ms1 1 0 0 0 1 1 0
ms2 1 0 0 0 1 1 0

e2 40
ms1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1
ms2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 .5 0 0 1 1

e3 10
ms1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
ms2 0 0 0 0 0 0 0 .3 .3 .3 0 0 .5 0 0 0 0 .5 0 .5 0 0 0 .5 0 .5 0 0 0

e4 15
ms1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0
ms2 0 0 0 0 0 0 0 1 1 1 .5 .5 .5 0 0 0 0 0 .8 0 .8 0 0 .8 .8 .8 .8 .8 0

e5 20
ms1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0
ms2 0 .5 .5 .5 .5 .5 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0

e6 30
ms1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
ms2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 .8 0 0 .8 0

e7 30
ms1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0
ms2 0 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 0 0 0 0 0 0 0 0 1 1 1 1 1 0

tcj 6 6
8
0

4
0
8

8 1
0

1
0

3
7
8

1
0

1
0

1
0

1
6
2

4
8
.6

8
.8

7
2
0

6 1
9
8

1
8
0

6 1
0
8

6 3
0

3
6

3
6

1
8

5
4
0

1
2
0

1
8
0

4
5
0

3

3.1 Performance of the Algorithms

A comparison of the performance of the four multi-objective algorithms within
the three robustness scenarios is carried out in this Section. The performances
have been evaluated using the HV indicator which values are summarised in Ta-
ble 2. The best performances are highlighted in a dark grey background whereas
second to best are shown in light grey. We also mark with ∗ the results hav-
ing statistically significant differences with the best result. Several conclusions
can be drawn from these values. Both NSGA-II and MOCell obtained the best
(largest) values for the two instances (as well as many of the second to best
values). NSGA-II resulted in the best performance when tackling the robust
versions of the instances (in 3 out of the 4 scenarios the approximated Pareto
front with best HV indicator was returned). On the other hand, MOCell seems
to be specially well suited for the non-robust setting, yielding the higher HV in-
dicator for the two instances. PAES seems to be clearly the worst algorithm
with respect to this indicator, specially for the robust versions. The uncer-
tainty in the objective functions could be the main reason behind this fact.
Regarding the runtime, all the algorithms require between 2.5 and 5 minutes in
the NR scenario, while they require around 5 hours in the OTR and STR
scenarios.

504 F. Chicano et al.

Table 2. Median and IQR of the HV value for the two instances

NSGAII SPEA2 PAES MOCell NSGAII SPEA2 PAES MOCell
Rob. ms1 ms2

NR 0.943∗0.000 0.943∗0.000 0.518∗0.065 0.9440.000 0.904∗±0.000 0.905∗±0.001 0.543∗±0.031 0.905±0.000

OTR 0.829∗0.027 0.807∗0.030 0.328∗0.039 0.8160.032 0.738±0.025 0.730±0.018 0.287∗±0.020 0.695∗±0.043

STR 0.7460.028 0.688∗0.063 0.345∗0.036 0.7420.025 0.764±0.025 0.717∗±0.030 0.387∗±0.032 0.769±0.022

3.2 Analysis of Solutions

This section focuses on analysing the solutions obtained using the multi-objective
algorithms. Figure 2 (left) shows the result of an NSGA-II execution over both
instances using the NR approach. The base solution for instance ms1 is close
to a minimum-make-span solution, as all available employees are committed to
tasks for which they have non-zero productivities. None the less, the algorithm
is able to improve this minimum make-span. The Pareto front includes solutions
with smaller cost which were obtained by reducing the dedication of the most
expensive resources when developing their tasks. In instance ms2 improvements
in both, cost and make-span, using NSGA-II with respect to the base solution
were also observed.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 95000 100000 105000 110000 115000 120000 125000 130000 135000 140000 145000 150000

M
ak

es
pa

n

Cost

Sample solutions

Instance ms1
Instance ms2

Base Solution ms1
Base Solution ms2

 0

 5000

 10000

 15000

 20000

 25000

 115000 120000 125000 130000 135000 140000 145000 150000 155000 160000 165000

M
ak

es
pa

n

Cost

NSGA-II

Fig. 2. Pareto front sample and base solution for the two instances (left). 50%-
attainment surface for ms1 in the STR robust approach (right). The position of the
boxes is determined by the average value and the size by the standard deviation.

Fig. 2 (right) shows the 50%-attainment surface of NSGA-II for ms1 within
the STR scenario. A four objective problem requires 4D data to be represented
in order to visually inspect the resulting Pareto fronts. In order to show both the
quality (average) and the robustness (standard deviation) in the cost and make-
span of a project scheduling problem, the approach taken consists on displaying
boxes such that the position of the center of a box is defined by the two aver-
age values (costavg(x) and makespanavg(x)), whereas the width and the height
are proportional to costsd(x) and makespansd(x). It is worth mentioning that
when the average values of cost and make-span are reduced (bottom left corner of
the plot), the standard deviation is increased (larger boxes). It was also observed

Novel MO Formulation of the Robust SPS Problem 505

that high-cost solutions show a low make-span and are quite robust in make-
span, whereas low-cost solutions are not robust in make-span or cost. This can
be explained by the larger need of average parallelism required by low make-
spam solutions, thus, task deviations are distributed among several employees
working in the same task.

Consider now the features of the solutions x in the approximated Pareto
front. In particular, a detail analysis must be done accounting for the number of
employees performing each task tj (denoted as tej(x)) and the average number
of tasks that each employee ei performs in parallel (denoted as epi (x)).

Only results from MOCell over the ms2 instance will be analysed due to space
constraints. All solutions of the approximated Pareto front obtained in different
independent runs of MOCell are being considered. The epi (x) and tej(x) val-
ues have been computed for each employee and each task in all the solutions
and the Spearman rank correlation coefficients [13] between all the epi (x), t

e
j(x),

makespan(x) and cost(x) have been calculated. The correlation coefficients are
shown in Fig. 3. An arrow pointing up means positive correlation whereas an
arrow pointing down means negative correlation. The absolute value of the cor-
relation is shown in grey scale (the darker the higher).

mak
e1
e2
e3
e4
e5
e6
e7
t1
t2
t3
t4
t5
t6
t7
t8
t9

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29

co
st

m
ak

e1 e2 e3 e4 e5 e6 e7 t1 t2 t3 t4 t5 t6 t7 t8 t9 t1
0

t1
1

t1
2

t1
3

t1
4

t1
5

t1
6

t1
7

t1
8

t1
9

t2
0

t2
1

t2
2

t2
3

t2
4

t2
5

t2
6

t2
7

t2
8

mak
e1
e2
e3
e4
e5
e6
e7
t1
t2
t3
t4
t5
t6
t7
t8
t9

t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29

co
st

m
ak

e1 e2 e3 e4 e5 e6 e7 t1 t2 t3 t4 t5 t6 t7 t8 t9 t1
0

t1
1

t1
2

t1
3

t1
4

t1
5

t1
6

t1
7

t1
8

t1
9

t2
0

t2
1

t2
2

t2
3

t2
4

t2
5

t2
6

t2
7

t2
8

Fig. 3. Correlations between cost, duration, the number of average parallel tasks per-
formed by the employees and the number of employees per task for the NR approach
(left) and the STR approach (right) using MOCell. Solutions for ms2 in the approxi-
mated Pareto front of all the independent runs.

Regarding the current values of epi (x) and tej(x) in all the solutions of all the
independent runs of MOCell, epi (x) ranges between 1.00 and 1.61 with average
values around 1.04. On the other hand, tej(x) ranges between 1 and 6 with
average values around 1.56. This means that it is not common to have large
working teams or a large number of parallel tasks per employee, therefore the
communication overhead or the reduction of productivity due to parallel tasks
is not high.

506 F. Chicano et al.

Focusing on the correlation between the make-span and the number of parallel
tasks performed by the employees, a negative correlation with the exception of
e3 (and e2 using the STR approach) can be observed. A negative correlation
means that in order to reduce the make-span of the project, the employees will
have to work in several tasks simultaneously. This seems to agree with common
sense. Then, why does a positive correlation between make-span and employee
e3 appear? This employee is the only one able to do some tasks in the critical
path of the project. Therefore, such critical tasks are assigned to this employee
by the algorithm in order to reduce the execution time of the tasks. The above
also explains the negative correlation between the size of the working teams
tej(x) and ep3(x). It is expected that in order to reduce the make-span the size of
working teams must be increased, which also implies an increase in the number of
parallel tasks each employee has to develop. This explains the positive correlation
between epi (x) and tej(x) for the remaining employees.

Considering now the correlations between the make-span and the number of
employees in each task, it is noticed, with no surprise, that reducing the make-
span implies that more employees have to work on the tasks. However, some
blank cells can be observed for which no correlation is detected. This happens in
the tasks of the project for which only one employee has the required skills (non-
zero productivity), like task t1. This is just an illustration on how the analysis
of solutions can provide some interesting information for the project manager.

4 Conclusions and Future Work

A new formulation of the Software Project Scheduling problem taking into ac-
count the productivity of the employees in developing different tasks of a software
project and considering the inaccuracies of task cost estimations was presented.
Experimental studies were carried out in order to analyse the performance of
four multi-objective algorithms on real-like instances for this problem. Solutions
were analysed to illustrate the way project managers can use this tool to improve
their decision making. Results show that MOCell is the best algorithm in solving
this formulation of the problem, improving even the original solutions proposed
by a project manager to the instances used in the experimental section. The
analysis of the solutions reveals that the algorithms have been able to identify
the tasks in the critical path and the most important employees for the project.

This work can be extended in several ways. An empirical study using real
projects and their corresponding scheduling can be done with the help of data
provided by software companies. Second, different robustness approaches can be
used to take into account the inaccuracies in the productivity values. Third, new
operators or search methods can be developed to improve the solutions or the
required computational effort.

Novel MO Formulation of the Robust SPS Problem 507

References

1. Chang, C.K., Yi Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for soft-
ware project scheduling with genetic algorithms. Information and Software Tech-
nology 50(11), 1142–1154 (2008)

2. Chicano, F., Luna, F., Nebro, A.J., Alba, E.: Using multi-objective metaheuris-
tics to solve the software project scheduling problem. In: Proceedings of GECCO,
pp. 1915–1922 (2011)

3. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

4. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Ev. Comp. 6(2), 182–197 (2002)

6. Garey, M.R., Johson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

7. Gutjahr, W., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Competence-
driven project portfolio selection, scheduling and staff assignment. Central Euro-
pean Journal of Operations Research 16(3), 281–306 (2008)

8. Knowles, J.: A summary-attainment-surface plotting method for visualizing the
performance of stochastic multiobjective optimizers. In: ISDA, pp. 552–557 (2005)

9. Knowles, J., Corne, D.: Approximating the nondominated front using the pareto
archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

10. Moløkken, K., Jørgensen, M.: A review of surveys on software effort estimation.
In: 2003 Int. Symp. on Empirical Software Engineering, pp. 223–231 (2003)

11. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic
algorithm for multiobjective optimization. In: NICSO 2006, pp. 25–36 (2006)

12. Palpant, M., Artigues, C., Michelon, P.: LSSPER: Solving the resource-constrained
project scheduling problem with large neighbourhood search. Annals of Operations
Research 131, 237–257 (2004)

13. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
4th edn. Chapman & Hall/CRC (2007)

14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithms. In: EUROGEN 2001, pp. 95–100 (2002)

15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE TEC 3(4), 257–271 (1999)

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 508–518, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Optimizing the Unlimited Shift Generation Problem

Nico Kyngäs1, Dries Goossens2, Kimmo Nurmi1, and Jari Kyngäs1

1 Satakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland
{nico.kyngas,jari.kyngas,cimmo.nurmi}@samk.fi

2 KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
dries.goossens@econ.kuleuven.be

Abstract. Good rosters have many benefits for an organization, such as lower
costs, more effective utilization of resources and fairer workloads. This paper
introduces the unlimited shift generation problem. The problem is to construct a
set of shifts such that the staff demand at each timeslot is covered by a suitable
number of employees. A set of real-world instances derived from the actual
problems solved for various companies is presented, along with our results.
This research has contributed to better systems for our industry partners.

Keywords: Shift Generation Problem, Workforce Scheduling, Staff Rostering,
Real-World Scheduling, Computational Intelligence.

1 Introduction

Workforce scheduling is a difficult and time consuming problem that every company
or institution that has employees working in shifts or on irregular working days must
solve. The workforce scheduling problem has a fairly broad definition. Most of the
studies focus on assigning employees to shifts, determining working days and rest
days or constructing flexible shifts and their starting times. Different variations of the
problem are NP-hard and NP-complete [1]-[5]. The first mathematical formulation of
the workforce scheduling problem based on a generalized set covering model was
proposed by Dantzig [6]. Good overviews of staff scheduling are published by Alfares
[7], Ernst et al. [8] and Meisels and Schaerf [9].

Shift generation, an important part of the workforce scheduling process, has only
received limited attention in the literature. The problem is to construct an optimal
shift structure from the staff demand. To the best of our knowledge, there are only a
few academic publications concentrating on the shift generation problem [5,10,11]
and its applications, such as airport ground [12,13], bank [14] and retail store [15,16].
Furthermore, there are very few cases (such as [5]) where academic researchers have
been able to close a contract with such a problem owner.

The aim of this paper is to solve the unlimited shift generation problem as it occurs
in various lines of business and industry. Section 2 introduces the workforce
scheduling process and necessary terminology. In Section 3 we describe the unlimited
shift generation problem. Section 4 gives an outline of our solution method. Section 5
presents a set of real-world instances and our computational results.

 Optimizing the Unlimited Shift Generation Problem 509

2 Workforce Scheduling

Workforce scheduling consists of assigning employees to tasks and shifts over a
period of time according to a given timetable. The planning horizon is the time
interval over which the employees have to be scheduled. Each employee has
competences (qualifications and skills) that enable him or her to carry out certain
tasks. Days are divided into working days (days-on) and rest days (days-off). Each
day is divided into timeslots. A timeslot is the smallest unit of time. A shift is a
contiguous set of working hours and is defined by a day and a starting timeslot on that
day along with a shift length (the number of occupied timeslots). Each shift may be
composed of a number of tasks. A work schedule for an employee over the planning
horizon is called a roster. A roster is a combination of shifts and days-off assignments
that covers a fixed period of time.

Fig. 1. The real-world workforce scheduling process as described in [17]

We classify the real-world workforce scheduling process as given in Figure 1.
Workload prediction, also referred to as demand forecasting or demand modeling, is
the process of determining the staffing levels - that is, how many employees are
needed for each timeslot of the planning horizon. In this presentation, workload
prediction also includes determination of planning horizons, competence structures,
regulatory requirements and other constraints. Shift generation is the process of
determining the shift structure, the tasks to be carried out in particular shifts and the
competence needed in different shifts. The shifts generated from a solution to the shift
generation problem form the input for subsequent phases in workforce scheduling.
Another important goal for shift generation is to determine the size of the workforce
required to solve the demand. Shifts are created anonymously, so there is no direct
link to the employee that will eventually be assigned to the shift.

It is essential to find an accurate match between the predicted workload and the
scheduled workforce. Scheduling too few employees can lead to reduced productivity,
low-quality service levels, customer dissatisfaction and employee dissatisfaction. On
the other hand scheduling more employees than necessary leads to increased costs due
to employee salaries.

Workload
prediction

Shift
generation

Preference
scheduling

Days-off
scheduling

Staff
rostering

Rescheduling

Evaluation Working
schedule

510 N. Kyngäs et al.

3 The Unlimited Shift Generation Problem

In workforce scheduling in airlines, railways and buses the demand for employees is
quite straightforward because the timetables are known beforehand. In other
applications of scheduling, such as call-centers, retail stores and emergency
polyclinics, the demand fluctuates. The random arrivals of customers should be
forecast using models based on techniques such as queueing theory, simulation and
statistics. The result is the number of employees required at each competence level for
each timeslot over the planning horizon. It should be noted that sick leaves and other
no-shows should be considered when calculating the staff demand.

The unlimited shift generation problem is to create a set of shifts that cover the
demand as well as possible, while satisfying the large number of constraints arising
from regulatory and operational requirements and operational and employees’
preferences. The most important goal is to minimize understaffing (shortage on shifts)
and overstaffing (surplus on shifts). Low-quality rosters can lead either to an
undersupply of employees with a need to hire part-time employees or an oversupply
of employees with too much idle time. We define the strict version of the problem
such as each timeslot should be exactly covered by the correct number of employees.
Furthermore, it is important to have as few shifts as possible. Fewer shifts make
schedules easier to read and manage, and this helps to keep teams of people together.

We next give an outline of the optimization criteria of the unlimited shift
generation problem. We make no strict distinction between hard and soft constraints;
that will be given by the instances themselves. The goal for an instance is to find a
feasible solution that is the most acceptable for the problem owner. That is, a solution
that has no hard constraint violations and that minimizes the weighted sum of the soft
constraint violations. The weights will also be given by the instances themselves.
Still, one should bear in mind that an instance is usually just an approximation of
practice. In reality, hard constraints can turn out to be soft, if necessary, while giving
weights to the soft constraints can be difficult. We classify the criteria into coverage,
volume and placement criteria:

Coverage

(C1) The number of employees at each timeslot over the planning horizon must
be exactly as given (strict version).

(C2) The sum of the excesses of employees at each timeslot over the planning
horizon must be minimized.

(C3) The sum of the shortages of employees at each timeslot over the planning
horizon must be minimized.

Volume

(V1) The number of shifts must be minimized.
(V2) Shifts of exactly k1 timeslots in length must be maximized.
(V3) Shifts of less than k2 and over k3 in length must be minimized.
(V4) The average shift length should be as close to k4 timeslots as possible.

 Optimizing the Unlimited Shift Generation Problem 511

Placement
(P1) Shifts that start between timeslots k4 and k5 must be minimized.
(P2) Shifts that end between timeslots k6 and k7 must be minimized.
(P3) Shifts of at least k8 timeslots in length must include a break (e.g. a lunch) of

k9 timeslots in length, which must be located between k10% from the
beginning of the shift and k11% from the end of the shift.

The unlimited shift generation problem is related to the minimum shift design
problem as discussed in [5] and [11]. In the minimum shift design problem, shifts are
limited to a number of types, for which the length and the starting time of the shifts
have to be within certain ranges. In our problem, length and starting time of a shift are
not strictly limited. Furthermore, each shift corresponds to one worker, whereas in the
minimum shift design problem, the number of workers per shift is part of the
optimization. Thus, the unlimited shift generation minimizes the number of workers
(V1), whereas the minimum shift design problem minimizes the number of different
shifts. The minimum shift design problem can be modeled as a network flow problem,
namely as the cyclic multi-commodity capacitated fixed-charge min-cost max-flow
problem. Di Gaspero et al. [5] show that the minimum shift design problem is NP-
hard. Alternatively, the problem can be formulated as the bin-packing problem [12],
which is also an NP-hard problem [1].

Some other papers on shift generation (see section 1) also handle the competences
required in each timeslot in the shift generation phase. We, on the other hand,
consider competences in the days-off scheduling and staff rostering phases.

For academics, publications are usually more important than making business. This
has a consequence that the scope of the models academics create seems to be
relatively small. Although the workforce scheduling models developed by academics
solve the problem instance at hand, they may fall short of meeting the complex needs
of the customers. Academic solutions are often not only computer and platform
dependent, but also use commercial mathematical programming solvers. This
approach, however, may not be able to cope with the size or the complexity of a real-
world problem. We believe that the best action plan in order to get the research results
implemented into commercial systems is to use computational intelligence heuristics.
The next section describes our solution method.

4 Solution Method

Our PEAST algorithm is a population-based local search method. Population-based
methods use a population of solutions in each iteration. The outcome of each iteration
is also a population of solutions. Population-based methods are a good way to escape
from local optima. Our algorithm is based on the cooperative local search method.
In a cooperative local search scheme, each individual carries out its own local search,
in our case the GHCM heuristic [22]. The pseudo-code of the algorithm is given in
Figure 2. The PEAST algorithm has been used to solve real-world school timetabling
problems [18], real-world sports scheduling problems [19] and real-world workforce
scheduling problems [20].

512 N. Kyngäs et al.

The reproduction phase of the algorithm is, to a certain extent, based on steady-
state reproduction: the new schedule replaces the old one if it has a better or equal
objective function value. Furthermore, the least fit is replaced with the best one when
n better schedules have been found, where n is the size of the population. Marriage
selection is used to select a schedule from the population of schedules for a single
GHCM operation. In the marriage selection we randomly pick a schedule, S, and then
we try at most k – 1 times to randomly pick a better one. We choose the first better
schedule, or, if none is found, we choose S.

Set the time limit t, no_change limit m and the population size n
Generate a random initial population of schedules
Set no_change = 0 and better_found = 0
WHILE elapsed_time < t

REPEAT n times
 Select a schedule S by using a marriage selection with k = 3
 (explore promising areas in the search space)
 Apply GHCM to S to get a new schedule S’
 Calculate the change Δ in objective function value

 IF Δ < = 0 THEN
 Replace S with S’

 IF Δ < 0 THEN
 better_found = better_found + 1

 no_change = 0
 END IF
 ELSE
 no_change = no_change + 1

 END IF
END REPEAT
IF better_found > n THEN
 Replace the worst schedule with the best schedule
 Set better_found = 0
END IF
IF no_change > m THEN
 (escape from the local optimum)
 Apply shuffling operators
 Set no_change = 0
END IF

 (avoid staying stuck in the promising search areas too long)
Update simulated annealing framework
Update the dynamic weights of the hard constraints (ADAGEN)

END WHILE
Choose the best schedule from the population

Fig. 2. The pseudo-code of the population-based PEAST algorithm

The heart of the GHCM heuristic is based on similar ideas to the Lin-Kernighan
procedures [23] and ejection chains [24]. The basic hill-climbing step is extended to
generate a sequence of moves in one step, leading from one solution candidate to

 Optimizing the Unlimited Shift Generation Problem 513

another. The GHCM heuristic moves an object, o1, from its old position, p1, to a new
position, p2, and then moves another object, o2, from position p2 to a new position, p3,
and so on, ending up with a sequence of moves.

Picture the positions as cells, as shown in Figure 3. The initial cell selection is
random. The cell that receives an object is selected by considering all the possible
cells and selecting the one that causes the least increase in the objective function
when only considering the relocation cost. Then, another object from that cell is
selected by considering all the objects in that cell and picking the one for which the
removal causes the biggest decrease in the objective function when only considering
the removal cost. Next, a new cell for that object is selected, and so on. The sequence
of moves stops if the last move causes an increase in the objective function value and
if the value is larger than that of the previous non-improving move. Then, a new
sequence of moves is started. The initial solution is randomly generated.

Fig. 3. A sequence of moves in the GHCM heuristic

In the unlimited shift generation problem, each row corresponds to a shift, and
each column to a timeslot. An object is a block of a shift that is as long as a timeslot
(e.g. if we have 24 timeslots per day, an object is an hour-long piece of a shift). A
move involves removing an object from a certain timeslot in one shift and inserting it
in another shift at the same timeslot. Hence, only vertical moves are allowed.

The decision whether or not to commit to a sequence of moves in the GHCM
heuristic is determined by a simulated annealing refinement [21]. This is useful to
avoid staying stuck in the promising search areas for too long. The initial temperature
T0 is calculated by

T0 = 1 / log(1/X0) . (1)

where X0 is the degree to which we want to accept an increase in the cost function (we
use a value of 0.75). The exponential cooling scheme is used to decrement the
temperature:

Tk = αTk-1 , (2)

where α is usually chosen between 0.8 and 0.995. We stop the cooling at some
predefined temperature. Therefore, after a certain number of iterations, m, we
continued to accept an increase in the cost function with some constant probability, p.
Using the initial temperature given above and the exponential cooling scheme, we can
calculate the value:

514 N. Kyngäs et al.

α = (–1/(T0 log p))–m . (3)

We choose m equal to the maximum number of iterations with no improvement to the
cost function and p equal to 0.0015.

A hyperheuristic [25] is a mechanism that chooses a heuristic from a set of simple
heuristics, applies it to the current solution, then chooses another heuristic and applies
it, and continues this iterative cycle until the termination criterion is satisfied. We use
the same idea, but the other way around. We apply shuffling operators to escape from
the local optimum. We introduce a number of simple heuristics that are normally used
to improve the current solution but, instead, we use them to shuffle the current
solution - that is, we allow worse solution candidates to replace better ones in the
current population. In the unlimited shift generation problem the PEAST algorithm
uses three shuffling operations:

1) Make a random move from a random shift to another random shift and repeat

this l1 times.
2) Pick a pair of random shifts and make a random move from the first to the

second and a random move from the second to the first and repeat this l2
times.

3) Pick a random shift, S. Shift S consists of little pieces, each of which are the
same length as a timeslot. For each such piece in S, move the piece to
another random shift with probability p1.

A random shuffling operation is selected in every k/20th iteration of the algorithm,
where k equals the maximum number of iterations with no improvement to the cost
function. The best results were obtained using the values l1 = 8, l2 = 4 and p1 = 0.3.

We use the weighted-sum approach for multi-objective optimization. A traditional
penalty method assigns positive weights (penalties) to the soft constraints and sums
the violation scores to the hard constraint values to get a single value to be optimized.
We use the ADAGEN method (as described in [21]) which assigns dynamic weights
to the hard constraints. The weights are updated in every kth generation using the
somewhat complicated formula given in [21].

5 Computational Results

Researchers quite often only solve some special artificial cases or one real-world case.
The strength of artificial and random test instances is the ability to produce many
problems with many different properties. Still, they should be sufficiently simple for
each researcher to be able to use them in their test environment. The strength of real-
world instances is self-explanatory. Solving real-world cases is our ultimate goal.
However, an algorithm that performs well in one practical instance may not perform
well in another practical instance, which is why we present a collection of test
instances for both artificial and real-world cases. Both the artificial and the real-world

 Optimizing the Unlimited Shift Generation Problem 515

instances can be requested by email from the authors. The artificial instances can be
requested by email from the authors along with the detailed data for the real-world
instances.

The four real-world instances introduced in this section are based on cases we have
solved for our business partner, Numeron. The instances are derived from various
lines of business and industry in Finland.

The following hard constraint is used in all the benchmark cases:

 V3. Shifts of less than k2 and over k3 in length must not exist.

The soft constraint violations are calculated as follows:

C1. For each timeslot s, let ds be the difference between the number of
shifts in s and the staff demand for s. The total number of C1
violations is given as ∑s=1,n(ds

2), where n is the number of timeslots.
V1. One violation for each shift.
V2. One violation for each shift whose length is not 8 hours.
V4. One violation for each minute that the average shift length differs

from 6 hours. The difference is calculated as an absolute value and
rounded down.

P3. One violation for each shift that is at least 6 hours long and either
contains no lunch break or the lunch break starts before 30% of the
shift length or after 70% of the shift length.

Fig. 4. The staff demand for the instances, from left to right and from top to bottom in
numerical order

516 N. Kyngäs et al.

Table 1. Four unlimited shift generation real-world instances (Staff demand = the maximum
and average number of employees needed per timeslot over the planning horizon, V3 = every
shift must be between 4 and 8 hours in length, C1 = attempt to fulfill the staff demand exactly,
V1 = minimize the number of shifts, V2 = maximize the number of shifts of certain length, V4 =
the average shift length should be as close to a certain length as possible, P3 = minimum shift
length to grant a lunch break; length of said lunch break; the limits of the position of the break
within the shift)

ID Staff
demand

V3 C1 V1 V2 V4 P3

R1
Max 126;

avg 78
4h – 8h Yes No No 6h No

R2
Max 21;
avg 12.7

5h – 7h Yes Yes No No No

R3
Max 36;
avg 16.7

4h – 8h Yes Yes 8h No 6h; 30 min; 30%-70%

R4
Max 53;
avg 19.3

4h – 8h Yes Yes 8h No 6h; 30 min; 30%-70%

Table 1 shows four unlimited shift-generation instances based on real-world cases.

The staff demand for each instance is visualized in Figure 4. Cases R3 and R4 are
essentially different from the other two as employees are not needed during the night.
That makes their shift structures independent of the adjacent days. They also have two
additional constraints compared to the other cases. First, the number of shifts of
maximum length (8 hours) is to be maximized. Second, each shift that is at least 6
hours long must have a 30-minute lunch break at some time between 30% and 70% of
the shift length.

For cases R1 and R2, in which employees are required 24 hours per day, we
assume a contiguous sequence of similar days, so that for all instances the optimal
shift structure is only dependent on the data shown in Figure 4. In R2 the shift length
is five to seven hours. In R1, the number of shifts is not minimized. Instead, the
average shift length should be as close to 6 hours as possible.

Our results are shown in Table 2. The lengths of all the shifts are acceptable (hard
constraint V3). The number of employees at each timeslot over the planning horizon
is exactly as given for instances R1, R2 and R3 (soft constraint C1). Each shift in
instances R3 and R4 includes an acceptable lunch break (soft constraint P3). Instance
R4 is interesting in that at least 70 shifts are required to fulfill constraints V3 (shift
length) and C1 (staff demand) exactly. However, due to the extreme peak in the
morning, it proves beneficial to have significantly fewer shifts than that (soft
constraint V1). This is the main reason we use the quadratic violation function
for C1.

 Optimizing the Unlimited Shift Generation Problem 517

Table 2. Our results for the instances (V3 = number of shifts whose length is not between 4 and
8 hours, C1 = total sum of workforce excess and shortage over all the timeslots, V2 = number
of 8-hour shifts, V4 = the absolute difference between the sought average shift length and the
actual average shift length, P3 = number of misplaced lunch breaks, sol = value of the objective
function, Running Time = the approximate time our algorithm ran on a machine with Intel Core
i7-980X Extreme Edition 3.33GHz and 6GB of RAM running Windows 7 Professional Edition)

ID
Avg length

of shift
V3 C1

V1 (# of
shifts)

V2 (# of 8-
hour shifts)

V4 P3 sol
Running

Time

R1 359 min 0 0 313 0 0 40h

R2 398 min 0 0 46 46 1h

R3 327 min 0 0 46 17 0 75 7h

R4 314 min 0 34 57 12 0 260 7h

Our business partner was satisfied with the results for the artificial and real-world
instances. They are seeking to integrate our algorithm into their workforce
management software, which is the market leader in Finland. The software will

1) allow users to specify the importance of the optimization criteria,
2) minimize the scheduling time required by personal managers,
3) run on virtually any modern desktop computer,
4) generate different solutions to choose from, and
5) be helpful as a planning tool for future scenarios.

6 Conclusions

We have introduced the unlimited shift generation problem. We believe that a
considerable number of real-world scenarios can be modeled using the model
presented in this paper. This research has contributed to better systems for our
industry partner Numeron. A set of real-world instances derived from the actual
problems solved for various companies were presented. We have published the best
solutions we have found. We invite the workforce scheduling community to challenge
our results. We believe that the instances will help researchers to test the
implementation value of their solution methods.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman (1979)

2. Tien, J., Kamiyama, A.: On Manpower Scheduling Algorithms. SIAM Rev. 24(3),
275–287 (1982)

3. Lau, H.C.: On the Complexity of Manpower Shift Scheduling. Computers and Operations
Research 23(1), 93–102 (1996)

4. Marx, D.: Graph coloring problems and their applications in scheduling. Periodica
Polytechnica Ser. El. Eng. 48, 5–10 (2004)

5. Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The
minimum shift design problem. Annals of Operations Research 155(1), 79–105 (2007)

518 N. Kyngäs et al.

6. Dantzig, G.B.: A comment on Edie’s traffic delays at toll booths. Operations Research 2,
339–341 (1954)

7. Alfares, H.K.: Survey, categorization and comparison of recent tour scheduling literature.
Annals of Operations Research 127, 145–175 (2004)

8. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational
Research 153(1), 3–27 (2004)

9. Meisels, A., Schaerf, A.: Modelling and solving employee timetabling problems. Annals of
Mathematics and Artificial Intelligence 39, 41–59 (2003)

10. Herbers, J.: Models and Algorithms for Ground Staff Scheduling On Airports,
Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, Faculty of
Mathematics, Computer Science and Natural Sciences (2005)

11. Musliu, N., Schaerf, A., Slany, W.: Local search for shift design. European Journal of
Operational Research 153(1), 51–64 (2004)

12. Draghici, C., Hennet, J.C.: Generation of shift schedules - a time slot approach. In: International
Conference on Industrial Engineering and Systems Management, pp.653–672 (2005)

13. Clausen, T.: Airport Ground Staff Scheduling, Dissertation, Technical University of
Denmark (2011)

14. Demassey, S., Pesant, G., Rousseau, L.-M.: A Cost-Regular Based Hybrid Column
Generation Approach. Constraints 11(4), 315–333 (2006)

15. Zolfaghari, S., El-Bouri, A., Namiranian, B., Quan, V.: Heuristics for Large Scale Labour
Scheduling Problems in Retail Sector. INFOR 45(3), 111–122 (2007)

16. Chapados, N., Joliveau, M., Rousseau, L.-M.: Retail Store Workforce Scheduling by
Expected Operating Income Maximization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR
2011. LNCS, vol. 6697, pp. 53–58. Springer, Heidelberg (2011)

17. Ásgeirsson, E.I., Kyngäs, J., Nurmi, K., Stølevik, M.: A Framework for Implementation-
Oriented Staff Scheduling. In: Proc of the 5th Multidisciplinary Int. Scheduling Conf.:
Theory and Applications (MISTA), Phoenix, USA (2011) (submitted for publication)

18. Nurmi, K., Kyngäs, J.: A Framework for School Timetabling Problem. In: Proc. of the 3rd
Multidisciplinary Int. Scheduling Conf.: Theory and Applications (MISTA), Paris, France,
pp. 386–393 (2007)

19. Kyngäs, J., Nurmi, K.: Scheduling the Finnish Major Ice Hockey League. In: Proc. of the IEEE
Symposium on Computational Intelligence in Scheduling (CISCHED), Nashville, USA (2009)

20. Kyngäs, J., Nurmi, K.: Shift Scheduling for a Large Haulage Company. In: Proc. of the
2011 International Conference on Network and Computational Intelligence (ICNCI),
Zhengzhou, China (2011)

21. Nurmi, K.: Genetic Algorithms for Timetabling and Traveling Salesman Problems,
Dissertation, Dept. of Applied Math., University of Turku, Finland, (1998),
http://www.bit.spt.fi/cimmo.nurmi/

22. Ross, P., Ballinger, G.H.: PGA - Parallel Genetic Algorithm Testbed, Department of
Articial Intelligence, University of Edinburgh, England (1993)

23. Lin, S., Kernighan, B.W.: An effective heuristic for the traveling salesman problem.
Operations Research 21, 498–516 (1973)

24. Glover, F.: New ejection chain and alternating path methods for traveling salesman
problems. In: Sharda, Balci, Zenios (eds.) Computer Science and Operations Research:
New Developments in Their Interfaces, pp. 449–509. Elsevier (1992)

25. Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales
Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190.
Springer, Heidelberg (2001)

Ant Colony Optimization

with Immigrants Schemes
for the Dynamic Vehicle Routing Problem

Michalis Mavrovouniotis1 and Shengxiang Yang2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom

mm251@mcs.le.ac.uk
2 Department of Information Systems and Computing, Brunel University

Uxbridge, Middlesex UB8 3PH, United Kingdom
shengxiang.yang@brunel.ac.uk

Abstract. Ant colony optimization (ACO) algorithms have proved to
be able to adapt to dynamic optimization problems (DOPs) when they
are enhanced to maintain diversity and transfer knowledge. Several ap-
proaches have been integrated with ACO to improve its performance
for DOPs. Among these integrations, the ACO algorithm with immi-
grants schemes has shown good results on the dynamic travelling sales-
man problem. In this paper, we investigate ACO algorithms to solve a
more realistic DOP, the dynamic vehicle routing problem (DVRP) with
traffic factors. Random immigrants and elitism-based immigrants are ap-
plied to ACO algorithms, which are then investigated on different DVRP
test cases. The results show that the proposed ACO algorithms achieve
promising results, especially when elitism-based immigrants are used.

1 Introduction

In the vehicle routing problem (VRP), a number of vehicles with limited capacity
are routed in order to satisfy the demand of all customers at a minimum cost
(usually the total travel time). Ant colony optimization (ACO) algorithms have
shown good performance for the VRP, where a population of ants cooperate and
construct vehicle routes [5]. The cooperation mechanism of ants is achieved via
their pheromone trails, where each ant deposits pheromone to its trails and the
remaining ants can exploit it [2].

The dynamic VRP (DVRP) is closer to a real-world application since the
traffic jams in the road system are considered. As a result, the travel time be-
tween customers may change depending on the time of the day. In dynamic
optimization problems (DOPs) the moving optimum needs to be tracked over
time. ACO algorithms can adapt to dynamic changes since they are inspired
from nature, which is a continuous adaptation process [9]. In practice, they can
adapt by transferring knowledge from past environments [1]. The challenge of
such algorithms is how quickly they can react to dynamic changes in order to
maintain the high quality of output instead of premature convergence.

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 519–528, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

520 M. Mavrovouniotis and S. Yang

Developing strategies for ACO algorithms to deal with premature conver-
gence and address DOPs has attracted a lot of attention, which includes local
and global restart strategies [7], memory-based approaches [6], pheromone ma-
nipulation schemes to maintain diversity [4], and immigrants schemes to increase
diversity [11,12]. These approaches have been applied to the dynamic travelling
salesman problem (DTSP), which is the simplest case of a DVRP, i.e., only
one vehicle is used. The ACO algorithms that are integrated with immigrants
schemes have shown promising results on the DTSP where immigrant ants re-
place the worst ants in the population every iteration [11].

In this paper, we integrate two immigrants schemes, i.e., random immigrants
and elitism-based immigrants, to ACO algorithms and apply them to the DVRP
with traffic factor. The aim of random immigrants ACO (RIACO) is to increase
the diversity in order to adapt well in DOPs, and the aim of elitism-based im-
migrants ACO (EIACO) is to generate guided diversity to avoid randomization.

The rest of the paper is organized as follows. Section 2 describes the problem
we try to solve, i.e., the DVRP with traffic factors. Section 3 describes the
ant colony system (ACS), which is one of the best performing algorithms for
the VRP. Section 4 describes our proposed approaches where we incorporate
immigrants schemes with ACO. Section 5 describes the experiments carried out
by comparing RIACO and EIACO with ACS. Finally, Section 6 concludes this
paper with directions for future work.

2 The DVRP with Traffic Jams

The VRP has become one of the most popular combinatorial optimization prob-
lems, due to its similarities with many real-world applications. The VRP is
classified as NP -hard [10]. The basic VRP can be described as follows: a number
of vehicles with a fixed capacity need to satisfy the demand of all the customers,
starting from and returning to the depot.

Usually, the VRP is represented by a complete weighted graph G = (V,E),
with n + 1 nodes, where V = {u0, . . . , un} is a set of vertices corresponding
to the customers (or delivery points) ui (i = 1, · · · , n) and the depot u0 and
E = {(ui, uj) : i �= j} is a set of edges. Each edge (ui, uj) is associated with a
non-negative dij which represents the distance (or travel time) between ui and
uj. For each customer ui, a non-negative demand Di is given. For the depot u0,
a zero demand is associated, i.e., D0 = 0.

The aim of the VRP is to find the route (or a set of routes) with the lowest cost
without violating the following constraints: (1) every customer is visited exactly
once by only one vehicle; (2) every vehicle starts and finishes at the depot; and
(3) the total demand of every vehicle route must not exceed the vehicle capacity
Q. The number of routes identifies the corresponding number of vehicles used to
generate one VRP solution, which is not fixed but chosen by the algorithm.

The VRP becomes more challenging if it is subject to a dynamic environment.
There are many variations of the DVRP, such as the DVRP with dynamic de-
mand [14]. In this paper, we generate a DVRP with traffic factors, where each

Ant Colony Optimization with Immigrants Schemes for the DVRP 521

edge (ui, uj) is associated with a traffic factor tij . Therefore, the cost to travel
from ui to uj is cij = dij × tij . Furthermore, the cost to travel from uj to ui

may differ due to different traffic factor. For example, one road may have more
traffic in one direction and less traffic in the opposite direction.

Every f iterations a random number R ∈ [FL, FU] is generated to represent
potential traffic jams, where FL and FU are the lower and upper bounds of the
traffic factor, respectively. Each edge has a probability m to have a traffic factor,
by generating a different R to represent high and low traffic jams on different
roads, i.e., tij = 1+R, where the traffic factor of the remaining edges is set to 1
(indicates no traffic). Note that f and m represent the frequency and magnitude
of changes in the DVRP, respectively.

3 ACO for the DVRP

The ACO metaheuristic consists of a population of μ ants where they construct
solutions and share their information with the others via their pheromone trails.
The first ACO algorithm developed is the Ant System (AS) [2]. Many variations
of the AS have been developed over the years and applied to difficult optimization
problems [3].

The best performing ACO algorithm for the DVRP is the ACS [13]. There
is a multi-colony variation of this algorithm applied to the VRP with time win-
dows [5]. However, in this paper we consider the single colony which has been
applied to the DVRP [13]. Initially, all the ants are placed on the depot and all
pheromone trails are initialized with an equal amount. With a probability 1−q0,
where 0 ≤ q0 ≤ 1 is a parameter of the pseudo-random proportional decision
rule (usually 0.9 for ACS), an ant k chooses the next customer j from customer
i, as follows:

pkij =

⎧⎨
⎩

[τij]
α[ηij]

β

∑
l∈Nk

i
[τil]

α[ηil]
β , if j ∈ Nk

i ,

0, otherwise,
(1)

where τij is the existing pheromone trail between customers i and j, ηij is the
heuristic information available a priori, which is defined as 1/cij, where cij is
the distance travelled (as calculated in Section 2) between customers i and j,
Nk

i denotes the neighbourhood of unvisited customers of ant k when its current
customer is i, and α and β are the two parameters that determine the relative
influence of pheromone trail and heuristic information, respectively. With the
probability q0, the ant k chooses the next customer with the maximum proba-
bility, i.e., [τ]α[η]β , and not probabilistically as in Eq. (1). However, if the choice
of the next customer leads to an infeasible solution, i.e., exceed the maximum
capacity Q of the vehicle, the depot is chosen and a new vehicle route starts.

When all ants construct their solutions, the best ant retraces the solution and
deposits pheromone globally according to its solution quality on the correspond-
ing trails, as follows:

τij ← (1− ρ)τij + ρΔτbestij , ∀(i, j) ∈ T best, (2)

522 M. Mavrovouniotis and S. Yang

where 0 < ρ ≤ 1 is the pheromone evaporation rate and Δτbestij = 1/Cbest, where

Cbest is the total cost of the T best tour. Moreover, a local pheromone update is
performed every time an ant chooses another customer j from customer i as
follows:

τij ← (1− ρ)τij + ρτ0, (3)

where ρ is defined as in Eq. (2) and τ0 is the initial pheromone value.
The pheromone evaporation is the mechanism that eliminates the areas with

high intensity of pheromones that are generate by ants, due to stagnation be-
haviour1, in order to adapt well to the new environment. The recovery time
depends on the size of the problem and magnitude of change.

4 ACO with Immigrants Schemes for the DVRP

4.1 Framework

The framework of the proposed algorithms is based on the ACO algorithms that
were used for the DTSP [11,12]. It will be interesting to observe if the framework
based on immigrants schemes is beneficial for more realistic problems, such as
the DVRP with traffic factors, as described in Section 2.

The initial phase of the algorithm and the solution construction of the ants are
the same with the ACS; see Eq. (1). The difference of the proposed framework
is that it uses a short-term memory every iteration t, denoted as kshort(t), of
limited size, i.e., Ks, which is associated with the pheromone matrix. Initially,
kshort(0) is empty where at the end of the iteration the Ks best ants will be
added to kshort(t). Each ant k that enters kshort(t) deposits a constant amount
of pheromone to the corresponding trails, as follows:

τij ← τij +Δτkij , ∀ (i, j) ∈ T k, (4)

where Δτkij = (τmax− τ0)/Ks and T k is the tour of ant k. Here, τmax and τ0 are
the maximum and initial pheromone value, respectively.

Every iteration the ants from kshort(t− 1) are replaced with the Ks best ants
from iteration t, a negative update is performed to their pheromone trails, as
follows:

τij ← τij −Δτkij , ∀ (i, j) ∈ T k, (5)

where Δτij and T k are defined as in Eq. (4). This is because no ants can survive
in more than one iteration because of the dynamic environment.

In addition, immigrant ants replace the worst ants in kshort(t) every iteration
and further adjustments are performed to the pheromone trails since kshort(t)
changes. The main concern when dealing with immigrants schemes is how to
generate immigrant ants, that represent feasible solutions.

1 A term used when all ants follow the same path and construct the same solution.

Ant Colony Optimization with Immigrants Schemes for the DVRP 523

4.2 Random Immigrants ACO (RIACO)

Traditionally, the immigrants are randomly generated and replace other ants
in the population to increase the diversity. A random immigrant ant for the
DVRP is generated as follows. First, the depot is added as the starting point;
then, an unvisited customer is randomly selected as the next point. This process
is repeated until the first segment (starting from the most recent visit to the
depot) of customers do not violate the capacity constraint. When the capacity
constraint is violated the depot is added and another segment of customers
starts. When all customers are visited the solution will represent one feasible
VRP solution.

Considering the proposed framework described above, before the pheromone
trails are updated, a set Sri of r ×Ks immigrants are generated to replace the
worst ants in kshort(t), where r is the replacement rate.

RIACO has been found to perform better in fast and significantly changing
environments for the DTSP [11]. This is because when the changing environ-
ments are not similar it is better to randomly increase the diversity instead of
knowledge transfer. Moreover, when the environmental changes are fast the time
is not enough to gain useful knowledge in order to transfer it. However, there
is a high risk of randomization with RIACO that may disturb the optimization
process. A similar behaviour is expected for the DVRP.

4.3 Elitism-Based Immigrants ACO (EIACO)

Differently from RIACO, which generates diversity randomly with the immi-
grants, EIACO generates guided diversity by the knowledge transferred from
the best ant of the previous environment. An elitism-based immigrant ant for
the DVRP is generated as follows. The best ant of the previous environment is
selected in order to use it as the base to generate elitism-based immigrants. The
depots of the best ant are removed and adaptive inversion is performed based
on the inver-over operator [8]. When the inversion operator finishes, the depots
are added so that the capacity constraint is satisfied in order to represent one
feasible VRP solution.

Considering the proposed framework above, on iteration t, the elite ant from
kshort(t−1) is used as the base to generate a set Sei of r×Ks immigrants, where
r is the replacement rate. The elitism-based immigrants replace the worst ants
in kshort(t) before the pheromone trails are updated.

The EIACO has been found to perform better in slowly and slightly changing
environments for the DTSP [11]. This is because the knowledge transferred when
the changing environments are similar will be more useful. However, there is a
risk to transfer too much knowledge and start the optimization process from
a local optimum and get stuck there. A similar behaviour is expected for the
DVRP.

524 M. Mavrovouniotis and S. Yang

5 Simulation Experiments

5.1 Experimental Setup

In the experiments, we compare the proposed RIACO and EIACO with the
existing ACS, described in Section 3. All the algorithms have been applied to
the vrp45, vrp72, and vrp135 problem instances2.

To achieve a good balance between exploration and exploitation, most of the
parameters have been obtained from our preliminary experiments where others
have been inspired from literature [11]. For all algorithms, μ = 50 ants are used,
α = 1, β = 5, and τ0 = 1/n. For ACS, q0 = 0.9, and ρ = 0.7. Note that a
lower evaporation rate has been used for ACS, i.e. ρ = 0.1, with similar or worse
results. For the proposed algorithms, q0 = 0.0, Ks = 10, τmax = 1.0 and r = 0.4.

For each algorithm on a DVRP instance, N = 30 independent runs were
executed on the same environmental changes. The algorithms were executed for
G = 1000 iterations and the overall offline performance is calculated as follows:

P offline =
1

G

G∑
i=1

⎛
⎝ 1

N

N∑
j=1

P ∗
ij

⎞
⎠ (6)

where P ∗
ij defines the tour cost of the best ant since the last dynamic change of

iteration i of run j [9].
The value of f was set to 10 and 100, which indicate fast and slowly changing

environments, respectively. The value of m was set to 0.1, 0.25, 0.5, and 0.75,
which indicate the degree of environmental changes from small, to medium, to
large, respectively. The bounds of the traffic factor are set as FL = 0 and FU = 5.
As a result, eight dynamic environments, i.e., 2 values of f × 4 values of m,
were generated from each stationary VRP instance, as described in Section 2, to
systematically analyze the adaptation and searching capability of each algorithm
on the DVRP.

5.2 Experimental Results and Analysis

The experimental results regarding the offline performance of the algorithms are
presented in Table 1 and the corresponding statistical results of Wilcoxon rank-
sum test, at the 0.05 level of significance are presented in Table 2. Moreover, to
better understand the dynamic behaviour of the algorithms, the results of the
largest problem instance, i.e., vrp135, are plotted in Fig. 1 with f = 10, m = 0.1
and m = 0.75, and f = 100, m = 0.1 and m = 0.75, for the first 500 iterations.
From the experimental results, several observations can be made by comparing
the behaviour of the algorithms.

First, RIACO outperforms ACS in all the dynamic test cases; see the results
of RIACO ⇔ ACS in Table 2. This validates our expectation that ACS need

2 Taken from the Fisher benchmark instances available at
http://neo.lcc.uma.es/radi-aeb/WebVRP/

http://neo.lcc.uma.es/radi-aeb/WebVRP/

Ant Colony Optimization with Immigrants Schemes for the DVRP 525

Table 1. Comparison of algorithms regarding the results of the offline performance

f = 10 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Alg. & Inst. vrp45

ACS 897.5 972.5 1205.6 1648.0 883.4 929.1 1120.2 1536.9
RIACO 841.2 902.4 1089.5 1482.9 834.9 867.5 1016.1 1375.1
EIACO 840.1 899.8 1083.8 1473.5 839.8 860.6 1009.1 1355.5

Alg. & Inst. vrp72

ACS 305.3 338.6 426.2 596.2 297.3 324.6 412.7 547.9
RIACO 294.4 322.8 401.7 562.5 280.6 303.5 375.2 489.6
EIACO 289.9 319.4 397.8 557.0 276.2 298.5 366.7 476.5

Alg. & Inst. vrp135

ACS 1427.7 1567.3 1967.4 2745.7 1383.7 1519.4 1820.5 2536.2
RIACO 1417.8 1554.2 1922.1 2676.0 1353.1 1457.2 1698.6 2358.4
EIACO 1401.3 1542.1 1907.6 2663.1 1329.1 1444.3 1668.5 2293.8

Table 2. Statistical tests of comparing algorithms regarding the offline performance,
where “+” or “−” means that the first algorithm is significantly better or the second
algorithm is significantly better

Alg. & Inst. vrp45 vrp72 vrp135

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO ⇔ ACS + + + + + + + + + + + +
EIACO ⇔ ACS + + + + + + + + + + + +
EIACO ⇔ RIACO + + + + + + + + + + + +

f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO ⇔ ACS + + + + + + + + + + + +
EIACO ⇔ ACS + + + + + + + + + + + +
EIACO ⇔ RIACO − + + + + + + + + + + +

sufficient time to recover when a dynamic change occurs, which can be also
observed from Fig. 1 in the environmental case with f = 100. This is because
the pheromone evaporation is the only mechanism used to eliminate pheromone
trails that are not useful to the new environment, and may bias the population
to areas that are not near the new optimum. On the other hand, RIACO uses
the proposed framework where the pheromone trails exist only in one iteration.

Second, EIACO outperforms ACS in all the dynamic test cases as the RI-
ACO; see the results EIACO⇔ ACS in Table 2. This is due to the same reasons
RIACO outperforms the traditional ACS. However, EIACO outperforms RI-
ACO in almost all dynamic test cases; see the results of EIACO ⇔ RIACO in
Table 2. In slowly and slightly changing environments EIACO has sufficient time
to gain knowledge from the previous environment, and the knowledge transferred
has more chances to help when the changing environments are similar. However,
on the smallest problem instance, i.e., vrp45, with f = 100 and m = 0.1 RIACO
performs better than EIACO. This validates our expectation where too much

526 M. Mavrovouniotis and S. Yang

 1300

 1350

 1400

 1450

 1500

 1550

 1600

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

vrp135 - f = 10, m = 0.1

ACS
RIACO
EIACO

 2200

 2400

 2600

 2800

 3000

 3200

 3400

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

vrp135 - f = 10, m = 0.75

ACS
RIACO
EIACO

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

vrp135 - f = 100, m = 0.1

ACS
RIACO
EIACO

 2200

 2400

 2600

 2800

 3000

 3200

 3400

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

vrp135 - f = 100, m = 0.75

ACS
RIACO
EIACO

Fig. 1. Offline performance of algorithms for different dynamic test problems

 1300

 1350

 1400

 1450

 1500

0.0 0.2 0.4 0.6 0.8 1.0

O
ff

lin
e

Pe
rf

or
m

an
ce

r

vrp135, f = 100, m = 0.1

RIACO
EIACO

ACS

 2200

 2300

 2400

 2500

 2600

 2700

0.0 0.2 0.4 0.6 0.8 1.0

O
ff

lin
e

Pe
rf

or
m

an
ce

r

vrp135, f = 100, m = 0.75

RIACO
EIACO

ACS

Fig. 2. Offline performance of RIACO and EIACO with different replacement rates
against the performance of ACS in slowly changing environments

knowledge transferred does not always mean better results in dynamic environ-
ments. On the other hand RIACO, was expected to perform better than EIACO
in fast and significantly changing environments, since the random immigrants
only increase the diversity, but that it is not the case. This may be possibly
because of too much randomization that may disturb the optimization process
and requires further investigation regarding the effect of the immigrant ants.

Ant Colony Optimization with Immigrants Schemes for the DVRP 527

Third, in order to investigate the effectiveness of the immigrants schemes, fur-
ther experiments have been performed on the same problem instances with the
same parameters used before but with different immigrant replacement rates,
i.e., r ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. In Fig. 2 the offline performance of RIACO
and EIACO with the varying replacement rates are presented3, against the ACS
performance, where r = 0.0 means that no immigrants are generated to re-
place ants in the kshort(t). The results confirm our expectation above, where the
random immigrants in RIACO sometimes may disturb the optimization and de-
grade the performance. On the other hand, elitism-based immigrants in EIACO
improve the performance, especially in slightly changing environments.

Finally, the proposed framework performs better than ACS, even if no immi-
grants are generated; see Fig. 2. The RIACOwith r = 1.0 performs worse than the
ACS, whereas the EIACO with r = 1.0 better than ACS. This is because RIACO
destroys all the knowledge transferred to the kshort(t) from the ants of the previous
iteration with random immigrants, whereas EIACO destroys that knowledge but
transfers new knowledge using the best ant from the previous iteration.

6 Conclusions

Different immigrants schemes have been successfully applied to evolutionary al-
gorithms and ACO algorithms to address different DOPs [11,16]. ACO-based
algorithms with immigrants, i.e., RIACO and EIACO, have shown good perfor-
mance on different variations of the DTSP [11,12]. In this paper, we modify and
apply such algorithms to address the DVRP with traffic factors, which is closer
to a real-world application. The immigrant ants are generated either randomly
or using the previous best ant as the base and replace the worst ones in the pop-
ulation. The aim is to maintain the diversity of solutions and transfer knowledge
from previous environments in order to adapt well in DOPs.

Comparing RIACO and EIACO with ACS, one of the best performing ACO al-
gorithms for VRP, on different test cases of DVRPs, the following concluding re-
marks can be drawn. First, the proposed framework used to integrate ACO with
immigrants schemes, performs better than the traditional framework, even when
immigrant ants are not generated. Second, EIACO is significantly better than RI-
ACO andACS in almost all dynamic test cases. Third, RIACO is significantly bet-
ter thanACS in all dynamic test cases. Finally, the random immigrantsmaydisturb
the optimizationprocesswith a result to degrade the performance,whereas elitism-
based immigrants transfers knowledge with a result to improves the performance
for the DVRP with traffic factor.

An obvious direction for future work is to hybridize the two immigrants
schemes. However, from our preliminary results the performance of the hybrid
scheme is better than RIACO but worse than EIACO in all dynamic test cases.
Therefore, to find another way to achieve a good balance between the knowledge

3 The experimental results of the remaining problem instances and dynamic test cases
are similar for EIACO, whereas for RIACO there is an improvement when r > 0.0
on the smallest problem instance.

528 M. Mavrovouniotis and S. Yang

transferred and the diversity generated would be interesting for future work. An-
other future work is to integrate memory-based immigrants with ACO, which
have also performed well on the DTSP [12], to the DVRP with traffic factors.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. on Syst. Man and Cybern. Part B: Cybern. 26(1),
29–41 (1996)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, London (2004)
4. Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: ANTS 2002:

Proc. of the 3rd Int. Workshop on Ant Algorithms, pp. 88–99 (2002)
5. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple ant

colony system for vehicle routing problems with time windows. In: Corne, D., et
al. (eds.) New Ideas in Optimization, pp. 63–76 (1999)

6. Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Op-
timization Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algo-
rithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

7. Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algo-
rithms Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith,
R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWork-
shops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001.
LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

8. Tao, G., Michalewicz, Z.: Inver-over Operator for the TSP. In: Eiben, A.E.,
Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498,
pp. 803–812. Springer, Heidelberg (1998)

9. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. on Evol. Comput. 9(3), 303–317 (2005)

10. Labbe, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper-
ations Research 39(4), 616–622 (1991)

11. Mavrovouniotis, M., Yang, S.: Ant Colony Optimization with Immigrants Schemes
in Dynamic Environments. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)

12. Mavrovouniotis, M., Yang, S.: Memory-Based Immigrants for Ant Colony Opti-
mization in Changing Environments. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter,
H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS,
vol. 6624, pp. 324–333. Springer, Heidelberg (2011)

13. Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: Ant colony system for
a dynamic vehicle routing problem. Journal of Combinatorial Optimization 10(4),
327–343 (2005)

14. Psaraftis, H.: Dynamic vehicle routing: status and prospects. Annals of Operations
Research 61, 143–164 (1995)

15. Rizzoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.: Ant colony op-
timization for real-world vehicle routing problems - from theory to applications.
Swarm Intelli. 1(2), 135–151 (2007)

16. Yang, S.: Genetic algorithms with memory and elitism based immigrants in dy-
namic environments. Evol. Comput. 16(3), 385–416 (2008)

Evolving Communication in Robotic Swarms
Using On-Line, On-Board, Distributed

Evolutionary Algorithms

Luis E. Pineda1, A.E. Eiben2, and Marteen van Steen2

1 Instituto de Cálculo Aplicado, Universidad del Zulia, Maracaibo, Venezuela
2 Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

lpineda@ica.luz.edu.ve

Abstract. Robotic swarms offer flexibility, robustness, and scalability. For suc-
cessful operation they need appropriate communication strategies that should be
dynamically adaptable to possibly changing environmental requirements. In this
paper we try to achieve this through evolving communication on-the-fly. As a
test case we use a scenario where robots need to cooperate to gather energy
and the necessity to cooperate is scalable. We implement an evolutionary al-
gorithm that works during the actual operation of the robots (on-line), where
evolutionary operators are performed by the robots themselves (on-board) and
robots exchange genomes with other robots for reproduction (distributed). We
perform experiments with different cooperation pressures and observe that com-
munication strategies can be successfully adapted to the particular demands of the
environment.

Keywords: swarm robotics, communication, on-line, on-board, distributed.

1 Introduction

Swarm robotics has emerged in recent years as an important field of research. Drawing
inspiration from the behavior of social insects, the main idea behind swarm robotics is
that a group of simple robots, by means of cooperation, are able to perform tasks beyond
the capabilities of a single individual. The motivations for this approach are increased
robustness, flexibility, and scalability [5].

For robotic swarms to be successful, a key component is the development of appro-
priate communication strategies, particularly due to the requirement that robots operate
in a decentralized manner. Furthermore, robotic swarms are expected to operate in dy-
namic environments for which a high degree of flexibility and adaptation is required.
Thus, instead of using fixed communication policies, it is better to equip robots with the
ability to adapt their communication strategies to environmental requirements.

A promising way to achieve this is through the use of an evolutionary robotics (ER)
approach, i.e., using evolutionary algorithms to evolve the robots’ controllers [12]. ER
techniques have been applied to diverse problems such as gait control for legged robots
[16], and navigation for aerial vehicles [2]. The taxonomy offered by Eiben et al. clas-
sifies ER techniques according to when evolution happens (off-line vs. on-line), where

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 529–538, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

530 L.E. Pineda, A.E. Eiben, and M. van Steen

it takes place (on-board vs. off-board), and how it happens (encapsulated/centralized,
distributed, or a hybrid of these two) [7]. The huge majority of work in ER is based on
off-line, off-board evolution, assuming the presence of an omniscient master.

In this work we study the evolution of communication in robotic swarms using on-
line, on-board, and distributed evolutionary algorithms. This means that evolution takes
place during the actual operation of the robots (on-line), evolutionary operators are per-
formed exclusively inside each robot (on-board), and robots exchange genomes with
other robots instead of maintaining purely local pools of genomes (distributed). In par-
ticular, the evolutionary algorithm (EA) used in this work, Hybrid EvAg, is a hybrid
between a purely distributed evolutionary algorithm and a purely local one [10]. In Hy-
brid EvAg, each robot maintains both a local pool of genomes and a cache of robot
neighbors for periodical exchange of genomes.

We study a group of robots that require cooperation to gather energy sources ran-
domly distributed in a rectangular arena. Our experiments draw ideas from the work of
Buzing et al. [4], the main one being that communication arises as a means to facilitate
cooperation, and thus no fitness is explicitly given to robots for communicating. We
study the effect of different cooperation pressures in the communication preferences
evolved and, as in [4], we draw a distinction between talking and listening behaviors.

2 Related Work

Many authors have used computer simulations to study the environmental and evolu-
tionary conditions conducive to communication. According to Perfors [14], work in
this area can be divided in two categories: the evolution of syntax [3,17,15] and the
evolution of communication and coordination [13,4,9].

One key difference between this and other existing work is that we do not intend to
establish conclusions about the emergence of communication as an evolutionary con-
struct. Our question is more practical: can we use on-line, on-board, distributed EAs as
a tool to allow robotic swarms to develop appropriate communication strategies on their
own? While several previous works have studied solutions to the problem of evolving
appropriate communication strategies for swarms of robots (e.g., [1,9,11,6]), to the best
of our knowledge, no on-line, on-board solutions have been proposed. Nevertheless, the
work of Buzing et al. [4] and Floreano et al. [9] are particularly relevant to our research.
Our experimental setting, as well as the idea of varying degrees of environmental pres-
sure, is directly based on [4]. On the other hand, our neural network-based controllers
are similar to those used in [9]. A comparison between the present work, [4], and [9] is
shown in Table 1, and a more detailed description of their work is discussed next.

Buzing et al. [4] studied the evolution of communication within what they named
the VUSCAPE model. This model, based on SUGARSCAPE [8], consists of a discrete
landscape in which sugar seeds are periodically redistributed and agents need to collect
them in order to survive. In addition, pressure towards cooperation is introduced in
the form of a limit to the amount of sugar agents can collect on their own. In order to
facilitate cooperation, agents have a hard-wired ability to communicate (using messages
with fixed syntax and semantics), but their attitude towards using communication is not
fixed and evolves over time. The authors used this model to study how communication

Evolving Communication in Robotic Swarms 531

Table 1. Comparison between Buzing et al.[4] , Floreano et al.[9], and the present work

Buzing et al. [4] Floreano et al. [9] This work
Dynamic Environment YES (energy redis-

tributed)
NO YES (energy redis-

tributed)
Hard-wired semantics YES NO YES
Varying cooperation
pressure

YES NO YES

Means of communica-
tion

Message board. Mes-
sages only travel paral-
lel to the axes

Emitting blue light Broadcasting within a
certain circular range

2 agents on 1 location YES NO NO
Agents die YES NO NO
Controller Rule set Neural network Neural network
Actions 2 behavior macros: go

to largest sugar seed
or random move. Talk
/ Listen with a certain
probability

Spin left/right wheel.
Turn on/off blue light

3 behavior macros: ran-
dom move, avoid ob-
stacle, go to largest en-
ergy source. Talk / Lis-
ten with a probability

Fitness function Environmental fitness
based on energy

Number of cycles step-
ping on the energy
source minus number
of cycles stepping on
the poison source

Energy gained

On-line YES NO YES
On-board YES NO YES
Distributed YES NO YES
Selection No parent selection.

Agents mate when at
the same location. En-
vironmental survivor
selection (agents that
run out of sugar die)

Individual and colony-
level

Global parent selec-
tion, local survivor se-
lection

evolves under different levels of cooperation pressure, and concluded that higher levels
of cooperation pressure translate into increased attitudes towards communication.

On the other hand, Floreano et al. [9] studied the evolutionary conditions that fa-
cilitate the emergence of communication. Their setting investigated colonies of robots
that could forage in an environment with food and poison sources (one of each), and
in which robots could use a blue light to (possibly) signal about the location of the
food/poison sources. In contrast to Buzing et al., the semantics of the messages were
not hard-wired into the system, and they found that different communication strategies
evolved depending on the kin structure and selection level of the population (individual-
versus colony-level).

532 L.E. Pineda, A.E. Eiben, and M. van Steen

3 Problem Description

The test scenario proposed is directly based on the VUSCAPE model developed by
Buzing et al. [4]. Our scenario consists of a number of robots set in a rectangular arena
in which several energy sources (corresponding to sugar in VUSCAPE) are randomly
distributed (according to a uniform distribution). Each robot’s fitness is determined by
how much energy it is able to collect over a certain period of time. However, collecting
energy is made difficult by the following factors:

– Robots constantly lose energy over time. Whenever a robot’s energy counter reaches
zero, the robot is immediately switched off for the rest of an evaluation period, thus
receiving minimal fitness.

– The environment requires that robots cooperate in order to successfully collect en-
ergy. In order to study different levels of cooperation pressure, we add an experi-
mental parameter, the cooperation threshold (CT), specifying how much energy a
robot can collect from a single source on its own. Specifically, a source carrying an
amount of energy higher than the CT must be collected by two or more robots, in
which case the energy is distributed equally among the collecting robots.

– The only way for a robot to gather knowledge (on its own) about the location of an
energy source is through a fixed set of sensors of limited range.

– Energy sources are relocated once they are collected, thus increasing the need
for robots to have an exploratory behavior. Whenever a robot collects an energy
source, this source is instantly relocated to a randomly drawn position (uniform
distribution).

In order to surmount these difficulties, robots are able to facilitate cooperation and ex-
ploration through a hardwired ability to communicate. In particular, robots can use (with
a certain probability) information given by other robots about the location and size of
energy sources (i.e., listening), and multicast (with a certain probability) the size and
location of energy sources they are not able to collect on their own (i.e., talking). No-
tice that while robots possess an innate ability to communicate, the extent to which they
are willing to do so is not fixed; we deliberately leave it subject to adaptation through
evolution.

Note that the problem described is not dynamic from the evolutionary algorithm’s per-
spective (once the proper behavior is learned it remains valid throughout a robot’s opera-
tion). Nevertheless, the problem is dynamic from the point of view of the robots, since the
environment is constantly changing in a way that is unpredictable to them. Furthermore,
from the evolutionary algorithm’s perspective, the fitness function is stochastic.

3.1 Controller

Each robot is controlled through a neural network that decides between different pre-
programmed control policies. The twelve (12) inputs of the neural network are: mea-
surements from eight (8) distance sensors that detect obstacles and other robots in the

Evolving Communication in Robotic Swarms 533

vicinity, angle to the largest energy source the robot has knowledge of, distance to the
largest energy source the robot has knowledge of, current energy level, and bias node.

The five (5) outputs of the neural network are: three (3) outputs corresponding to
different actions (the highest valued output determines the next action of the robot), talk
preference, (i.e., the probability that the robot multicasts information about an energy
source when it needs to cooperate), and listen preference, (i.e., the probability that the
robot incorporates knowledge about energy sources seen by other robots).

The robots’ actions are implemented as follows:

Random Walk. The robot chooses a random direction and moves as far as it can in a
straight line in the chosen direction.

Avoid Obstacles. The robot moves straight in the direction it is currently facing until
its sensors detect an obstacle. It then rotates away from the obstacle and moves in
a straight line again.

Go to Largest Energy Source. The robot rotates so that it faces the largest energy
source it is aware of and moves towards this source as fast as it can.

3.2 Evolutionary Algorithm

The controllers in our experiments (i.e., neural networks) were adapted using Hybrid
EvAg, a variant of the on-line, on-board, distributed evolutionary algorithm for robotics
described in [10]. In Hybrid EvAg, in addition to a local cache of neighbors (other
robots) for genome exchange, each robot maintains a local pool of μ+1 genomes (μ
stored in the internal population plus one active controller). Parental selection is per-
formed by selecting two neighbors from the cache (i.e., the external population) and
using their current genomes (active controllers) as parents. If, after evaluation, the new
genome turns out to be better than the worst one in the local pool of μ genomes, the
worst one is replaced by the new. This local pool of genomes is used to randomly
choose genomes for reevaluation. Thus, in Hybrid EvAg survival selection is local while
parental selection is (approximately) global.

The cache of neighbors in Hybrid EvAg is maintained using the Newscast gossiping
protocol as explained in [10]. We compared the performance of the Newscast-based
Hybrid EvAg with that of a panmictic variant in which each agent has access to the
local pools of all the other agents for parent selection. This allows us to study the effect
that the lack of information about the true global genome pool has on gossiping-based
distributed evolutionary algorithms.

The genome representation of the neural network was a real-valued vector consisting
of the neural network’s weights and a mutation step size for every weight. Mutation was
performed using Gaussian perturbation, and the recombination operator was standard
two-parent arithmetic crossover. Binary tournament was used for parent selection. The
following evolutionary parameters were used in our experiments:μ=10 (size of the local
pool of genomes), σ=1 (initial mutation step size), crossover rate = 0.5, re-evaluation
rate = 0.2, mutation rate = 1, and Newscast cache size = 20.

534 L.E. Pineda, A.E. Eiben, and M. van Steen

4 Experiments

4.1 Experimental Details and Performance Measures

Our experiments were run using the RoboRobo simulator developed by Nicholas Bre-
deche, a fast and simple 2D robot simulator built in C++. We used a group of 20 robots
and performed 56 different simulations to account for the stochasticity in the evolution-
ary algorithms. Each simulation ran for 2,000,000 steps, with a new generation of con-
trollers being evaluated each 1,000 steps. After each evaluation period, the controller’s
fitness was calculated and the evolutionary algorithm described in Sec. 3.2 was carried
to select a new controller. Each robot’s energy counter was then reset to its initial value
and the robot was allowed to move randomly for 250 steps in order to avoid difficult
conditions inherited from the previous evaluation.

The performance of the evolutionary algorithms was evaluated in terms of the per-
formance metrics described next. Note that the values reported in Sec. 4.2 correspond
to these measures averaged over the 56 experiments.

– Fitness: the median fitness of the group of robots for each generation.
– Talk/listen preferences: the median average talk/listen preference during 250 con-

troller steps (i.e., not counting the random relocation steps).
– Frequency of controller actions: the median frequency of controller actions during

250 controller steps.

As we are interested in assessing whether robots can develop appropriate strategies for
different environmental demands, we study the effect of the cooperation threshold (CT),
and thus environmental pressure, on the evolved strategies; for this, two values of the
CT were considered (CT = 1 and CT = 5). In one case (LOWCT) the CT was set so
that robots needed cooperation to collect any of the energy points in the arena; in the
other (HIGHCT), cooperation was not required for any of the energy points. While in
our experiments the CT remained fixed throughout the simulation, these settings allow
us to evaluate how well the robots adapt to unforeseen environments of different nature.

4.2 Experimental Results

For the two CT values considered, both the Newscast-based and panmictic variants of
Hybrid EvAg were able to improve (Wilcoxon rank-sum test, p<0.00001 for both CT
values) the average fitness of the robots over time (see Figs. 1a and 1b). Interestingly,
although the mating pool for each robot was smaller in the Newscast-based variant, it
showed much quicker convergence than the panmictic variant. For the HIGHCT case
this resulted in the Newscast-based variant having a somewhat better fitness at the end
of the simulation (not statistically significant - Wilcoxon rank-sum test, p=0.064). How-
ever, the panmictic variant showed a better final performance (not statistically signifi-
cant - Wilcoxon rank-sum test, p=0.104) in the LOWCT case (see Table 2).

Evolved talking and listening preferences were very high in the LOWCT case (see
Table 2), which indicates that communication evolved as a response to the environmen-
tal pressure to cooperate (see Fig. 2a). With the panmictic variant of Hybrid EvAg, the

Evolving Communication in Robotic Swarms 535

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

Generation

F
itn

es
s

Newscast−based variant

Panmictic variant

(a) LOWCT case

0 200 400 600 800 1000 1200 1400 1600
3000

4000

5000

6000

7000

8000

9000

Generation

F
itn

es
s

Newscast−based variant

Panmictic variant

(b) HIGHCT case

Fig. 1. Fitness vs. Number of generations for CT = 1 (LOWCT implying high pressure to cooper-
ate) and CT = 5 (HIGHCT implying low pressure to cooperate). Mind the different scales on the
Fitness axes.

average talking and listening probabilities converged to close to 100% after approx-
imately 600,000 controller steps (600 generations). On the other hand, although the
Newscast-based variant quickly reached high talking/listening probabilities (approxi-
mately 90% in less than 200 generations), the final values were considerable lower
(Wilcoxon rank-sum test, p<0.0001 both for talking and listening) than those obtained
with the panmictic variant (see Table 2); in fact, talk/listen probabilities show a decreas-
ing trend over time. This partially explains why the fitness was lower for the Newscast-
based variant in the LOWCT case, as a lower preference for communication was detri-
mental to the robots’ capacity to cooperate.

In the HIGHCT case the talk/listen preferences were considerably lower (Wilcoxon
rank-sum test, p<0.007 both for panmictic and Newscast-based variants) than in the
LOWCT case (see Fig. 2b and Table 2). This is not surprising since cooperation was not
required in order for robots to succeed in this arena and, due to cooperation involving
a split of the resources among cooperating robots, it would have only resulted in less
fitness overall. However, one interesting observation is the different talking/listening
evolution trends obtained with the Newscast-based and the panmictic variants. The
Newscast-based variant’s evolution history was highly irregular and showed no sign
of convergence, in contrast to the typical evolution pattern observed with the panmictic
variant; the reason for these differences requires further investigation. Nevertheless, it
is worth noting that the difference in the final talking/listening probabilities between the
Newscast-based and the panmictic variants was not statistically significant (Wilcoxon
rank-sum test, p=0.27 and p=0.12 for talking and listening, respectively).

Finally, regarding the frequency of controller actions, there are significant differ-
ences between the strategies evolved using the panmictic and Newscast-based variants
of Hybrid EvAg. Both in the LOWCT and HIGHCT cases the controllers evolved using
the Newscast-based variant showed a much higher preference for the ”Avoid Obstacles”
action than those evolved using the panmictic variant (see Figs. 3 and 4). Significant dif-
ferences can also be observed in the preferences for the ”Go to Largest Energy Source”
action in the LOWCT case (see Fig. 3), with the panmictic variant converging to a
higher value than the Newscast-based variant.

536 L.E. Pineda, A.E. Eiben, and M. van Steen

0 2 4 6 8 10 12 14 16

x 10
5

0.4

0.6

0.8

1

Controller steps

Li
st

en
in

g
pr

ob
ab

ili
ty

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

Li
st

en
in

g
pr

ob
ab

ili
ty

(a) LOWCT case

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

T
al

ki
ng

 p
ro

ba
bi

lit
y

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Li
st

en
in

g
pr

ob
ab

ili
ty

Controller steps

(b) HIGHCT case

Fig. 2. Talking (upper) and Listening (lower) probabilities vs. Controller steps. Dark line:
Newscast-based variant. Light line: Panmictic variant.

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

F
re

qu
en

cy

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

F
re

qu
en

cy

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

F
re

qu
en

cy

P 0.658
NC 0.385

NC 0.249
P 0.143

P 0
NC 0.044

Fig. 3. Frequency of controller actions: Random (upper), Avoid Obstacles (middle), and Go to
Largest Energy Source (lower). Dark line: Newscast-based variant. Light line: Panmictic variant
(LOWCT case).

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

F
re

qu
en

cy

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

F
re

qu
en

cy

0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

Controller steps

F
re

qu
en

cy

P 0.746

P 0.405

P 0.154
NC 0.134

P 0.032
NC 0.026

Fig. 4. Frequency of controller actions: Random (upper), Avoid Obstacles (middle), and Go to
Largest Energy Source (lower). Dark line: Newscast-based variant. Light line: Panmictic variant
(HIGHCT case).

Evolving Communication in Robotic Swarms 537

Table 2. Performance (mean and standard deviation) of the Newscast-based (NC) and panmictic
(P) variants at the end of the simulation (LOWCT and HIGHCT cases)

LOWCT HIGHCT
NC P NC P

Fitness 786.6(740.3) 937.1(676.3) 7489.6(1858.8) 7030.5(1482.5)
Talk preference 0.81(0.32) 0.99(0.01) 0.59(0.41) 0.72(0.33)
Listen preference 0.83(0.35) 1.00(0) 0.56(0.43) 0.70(0.35)

5 Conclusions and Future Work

In this paper we presented an initial study on the applicability of on-line, on-board,
distributed evolutionary algorithms (e.g., Hybrid EvAg) for evolving communication in
robotic swarms. For this first study we assumed robots possessed the ability to commu-
nicate using messages with fixed semantics, and focused on studying the communica-
tion strategies evolved under different degrees of cooperation pressure. We also draw
a distinction between the preference for sending messages (i.e., talking) and that for
receiving messages (i.e., listening).

The results show that our on-line, on-board, distributed evolutionary mechanism en-
abled robots to develop appropriate communication attitudes: a high communication
preference when the environmental pressure to cooperate is large, and a low prefer-
ence when the environmental pressure to cooperate is low. However, we observed a
distinction between the communication preferences evolved using a distributed algo-
rithm with full information of the global genome pool (panmictic variant), versus one
in which each robot only has a local approximation of the genome pool (Newscast-
based variant). The reason for these differences require further investigation, but it is
probably related to the information loss inherent to the Newscast-based variant. Note
that in some cases (e.g, HIGHCT case) the Newscast-based variant can offer a higher
performance than the panmictic variant.

In future work we aim to study the evolution of communication on groups of robots
having a lesser degree of hard-wired abilities (such as the current fixed controller ac-
tions and semantics). Also, we are currently studying larger groups of robots (e.g., 500
robots) since the computational advantages of the Hybrid EvAg algorithm are more
relevant in such a context, and different types of communication behavior may emerge.

References

1. Ampatzis, C., Tuci, E., Trianni, V., Dorigo, M.: Evolution of signaling in a multi-robot sys-
tem: Categorization and communication. Adaptive Behavior 16(1), 5–26 (2008)

2. Barlow, G.J.: Autonomous controller design for unmanned aerial vehicles using multi-
objective genetic programming. In: Proceedings of the Graduate Student Workshop at the
2004 Genetic and Evolutionary Computation Conference (GECCO 2004, Seattle, WA (June
2004); Winner of Best Paper award at the Graduate Student Workshop at the 2004 Genetic
and Evolutionary Computation Conference (GECCO 2004)

538 L.E. Pineda, A.E. Eiben, and M. van Steen

3. Briscoe, E.J.: Grammatical acquisition and linguistic selection. In: Linguistic Evolution
through Language Acquisition: Formal and Computational Models, ch. 9. Cambridge Uni-
versity Press (2002)

4. Buzing, P.C., Eiben, A.E., Schut, M.C.: Emerging communication and cooperation in evolv-
ing agent societies. Journal of Artificial Societies and Social Simulation 8(1), 1–16 (2005)

5. Şahin, E.: Swarm robotics: From sources of inspiration to domains of application. Techni-
cal Report METU-CENG-TR-2005-01, Department of Computer Engineering, Middle East
Technical University (January 2005)

6. de Greeff, J., Nolfi, S.: Evolution of implicit and explicit communication in mobile robots.
In: Evolution of Communication and Language in Embodied Agents, pp. 179–214. Springer,
Heidelberg (2010)

7. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for au-
tonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Re-
liability, Adaptability, Evolution, ch. 5.2, pp. 361–382. Springer, Heidelberg (2010)

8. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Sciences from Bottom Up.
Brooking Institution Press and The MIT Press (1996)

9. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the emergence
of communication in robots. Current Biology: CB 17(6), 514–519 (2007)

10. Huijsman, R., Haasdijk, E., Eiben, A.E.: An On-line On-board Distributed Algorithm for
Evolutionary Robotics (2011)

11. Montes-Gonzalez, F., Aldana-Franco, F.: The Evolution of Signal Communication for the
e-puck Robot. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094,
pp. 466–477. Springer, Heidelberg (2011)

12. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines. MIT Press, Cambridge (2000)

13. Oliphant, M., Batali, J.: Learning and the emergence of coordinated communication. The
Newsletter of the Center for Research in Language 11(1) (1997)

14. Perfors, A.: Simulated evolution of language: a review of the field. Journal of Artificial So-
cieties and Social Simulation 5(2), 1–62 (2002)

15. Steels, L.: Modeling the formation of language: Embodied experiments. In: Nolfi, S., Mirolli,
M. (eds.) Evolution of Communication and Language in Embodied Agents, pp. 235–262.
Springer, Berlin (2010)

16. Teo, J.: Darwin + robots=evolutionary robotics: Challenges in automatic robot synthesis.
In: 2nd International Conference on Artificial Intelligence in Engineering and Technology
(ICAIET 2004), Kota Kinabalu, Sabah, Malaysia, pp. 7–13 (August 2004)

17. Vogt, P.: The emergence of compositional structures in perceptually grounded language
games. Artificial Intelligence 167(1-2), 206–242 (2005); Connecting Language to the World

Virtual Loser Genetic Algorithm

for Dynamic Environments

Anabela Simões1,2 and Ernesto Costa2

1 Coimbra Institute of Engineering, Polytechnic Institute of Coimbra
2 Centre for Informatics and Systems of the University of Coimbra

abs@isec.pt, ernesto@dei.uc.pt

Abstract. Memory-based Evolutionary Algorithms in Dynamic Opti-
mization Problems (DOPs) store the best solutions in order to reuse
them in future situations. The memorization of the best solutions can
be direct (the best individual of the current population is stored) or
associative (additional information from the current population is also
stored). This paper explores a different type of associative memory to
use in Evolutionary Algorithms for DOPs. The memory stores the cur-
rent best individual and a vector of inhibitions that reflect past errors
performed during the evolutionary process. When a change is detected
in the environment the best solution is retrieved from memory and the
vector of inhibitions associated to this individual is used to create new
solutions avoiding the repetition of past errors. This algorithm is called
Virtual Loser Genetic Algorithm and was tested in different dynamic
environments created using the XOR DOP generator. The results show
that the proposed memory scheme significantly enhances the Evolution-
ary Algorithms in cyclic dynamic environments.

1 Introduction

The use of Evolutionary Algorithms (EA) in dynamic optimization problems
(DOPs) has been widely explored in the last decades. In order to make EAs
robust to dynamic problems, several enhancements have been proposed: mecha-
nisms to promote diversity when a change is detected [1], methods to maintain
the diversity through the entire run [2], the incorporation of memory [3], [4], the
use of multi-populations [5] or the anticipation of the change [6].

Memory-based EAs are beneficial when past situations reappear in the fu-
ture. This way, memorized solutions can help the EA to readapt to the new
conditions [5]. Different types of memory have been investigated: direct memory
approaches, associative memory and also memory schemes using immigrants.
This paper is centered in associative memory, which stores the best individ-
ual from the population and additional information about the environment.
This information is used to create new individuals every time a change occurs
[4]. Different types of associative memory have been investigated in the past:
Trojanowski et al. [7] introduced an EA which memorizes information associ-
ated to the individual’s ancestors. Yang [4] introduced an associative memory

C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 539–548, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

540 A. Simões and E. Costa

scheme inspired in Baluja’s population-based incremental learning (PBIL) algo-
rithms. In this memory scheme, the best solution in the population together with
the probability vector, which represents the current environment, is stored in the
memory. When a change is detected, the probability vector associated with the
best memory sample is used to create new individuals. Other PBIL’s inspired
associative memory scheme were investigated in [8] and [9]. Barlow [10] inves-
tigated a memory-enhanced EA to the dynamic job shop scheduling problem.
This memory-based EA uses a classifier-based memory for abstracting and stor-
ing information about schedules, that is used to build similar schedules at future
times.

This paper studies a new form of associative memory. The main idea is to
create a vector of inhibitions during the evolutionary process, which contains
knowledge about errors that were performed. The stored vector, called the virtual
loser, is a template of the unfit individuals of the population evolved between two
consecutive changes. This knowledge about previous errors is used when a change
is detected to create new individuals to reintroduce into the population. The
underlying metaphor is that the new solutions should be as different as possible
from the virtual loser, in order to avoid repetition of past errors. The virtual
loser scheme was proposed by Sebag et al. [11] and was tested in static function
optimization, using a (μ+ λ)-ES, assuming that the fitness landscape was fixed
and that the fitness of an individual was independent from the other individuals
in the population. The knowledge stored in the virtual loser vector was used by a
mutation operator, called flee-mutation, that created offspring derived from the
parents. The virtual loser was used to compute different mutation probabilities
to a selected number of bits in such a way that the ’bad’ mutations performed
in the past were avoided.

As far as we know this idea of memorizing errors was never explored in the
context of dynamic optimization. This paper investigates the potentialities of
an associative memory that stores the best individual and the virtual loser in
EAs for dynamic optimization. The proposed algorithm is called Virtual Loser
Genetic Algorithm (VLGA) and is tested in three different problems using several
instances of cyclic and random environments.

The rest of the paper is organized as follows: the next section describes the
Virtual Loser Genetic Algorithm for DOPs. Section 3 details the experimental
setup used in this work. The experimental results and analysis are presented
in Section 4. Section 5 concludes the paper and some considerations are made
about future work.

2 Virtual Loser Genetic Algorithm

The VLGA is a standard GA using a different type of associative memory. The
proposed mechanism is denoted by the virtual loser and is based on the mem-
orization of past errors of evolution in order to avoid (inhibit) their future oc-
currence. This idea resembles to Tabu Search, but instead of memorizing a list
of past individuals to avoid, which would only reflect a small part of the search

Virtual Loser Genetic Algorithm for Dynamic Environments 541

space, uses a tractable and general description of past errors. The virtual loser
vector (VL) is initialized at the beginning of the run (or whenever a change
happens) and is updated at every generation until a change is detected in the
environment. The virtual loser is initialized by analyzing the bits of the best
individual of the population and the corresponding bits in the worst individuals
of the population. For instance, in Table 1, A is the best individual, B, C and D,
the worst individuals (adapted from [11]). The VL calculates, for each position,
the percentage of bits of the worst individuals that differ from the corresponding
bit in the best individual. For instance, bit 1 was always different in the unfit
solutions when compared with the best one. This means that the high fitness
of A can be due to bit 1 = 1 and this value should be preserved. Contrariwise,
nothing can be said about the influence of bit 3 in the fitness of A, since this bit
has the same value for all individuals. In the future, when applying mutation to
solution A, bit 3 should be more affected than bit 1. So, for the first bit the mu-
tation should be strongly inhibited and the opposite for the third bit. At every
generation, the VL is updated by relaxation from a fraction η of the worst indi-
viduals in the current population. The relaxation factor γ is used to update VL
as follows (eq. 1): VL(t+1) = (1−γ)VL(t)+γ×dVL, where dVL is the average
of the η worst individuals. The memory is updated whenever a change occurs.
The relevant information stored in memory refers to the population before the
change. This information consists of the pair < Bp−1,VLp−1 >, where Bp−1 is
the best individual of the population before change and VLp−1 is the VL vector
evolved until the generation before change. When the environment changes, the
memory is reevaluated according to the new environment and the best memory
point < Bm,VLm > is retrieved. The solution Bm and the associated VLm vec-
tor are used to create a set of α× n new individuals, that will replace the worst
individuals in the population. The parameter α ∈ [0, 1] is called associative fac-
tor and determines the number of individuals created from the memory when
a change happens. To create those new individuals, each bit of Bm is mutated
according to a certain probability, calculated using VLm and the value of the
gene. The probability to mutate a bit Bm

i is given by: Pi = |VLi −Bm
i | (eq. 2).

Two mechanisms for creating the new individuals I from Bm are investigated:
probabilistically and tournament-based. Let X be the number of potential bits
to mutate in Bm. In the probabilistic VLGA (VLGAp), X bits are randomly

Table 1. Creating the virtual loser

bit 1 2 3 4 5 6 Fitness

A 1 1 1 1 1 1 high

B 0 0 1 0 0 1 low
C 0 0 1 1 1 1 low
D 0 1 1 0 0 0 low

VL 1.00 0.67 0.00 0.67 0.67 0.33

542 A. Simões and E. Costa

selected and each bit i (i = k1, k2, ..., kX) is mutated according the value of Pi,
and using the ith allele from Bm: if rand(0, 1) < Pi then Ii = 1 − Bm

i . In the
tournament-based VLGA (VLGAt), three bits are randomly selected and the
one with the highest value of Pi is the winner of the tournament. The winner bit
is always mutated. This process is repeated X times. Moreover, after a change,
the VL is reinitialized using the procedure illustrated in Table 1. Then, at every
evolutionary step, after selection, crossover and mutation, the VL is updated
using eq. 1 until the occurrence of the next change. Fig. 1 presents the pseudo
code of VLGA.

Function V LGA
L : chromosome length p : popu lat ion s i z e
m : memory s i z e n : n . o f i n d i v i d u a l s
X : n . o f b i t s to mutate α : a s s o c i a t i v e f a c t o r
γ : r e l ax a t i on f a c t o r η : f r a c t i o n o f worst

t = 0 ;
I n i t i a l i z e and Evaluate(P (0))
I n i t i a l i z e and Evaluate(M(0))
V L(t) = initV L(P (t))
r epeat

Preserve best i nd i v i dua l from P (t− 1)
i f change i s de t ec t ed then

//Update Memory
B′ = best from P (t− 1)
V L′ = updateV L(V Lp(t− 1), P (t− 1), γ, η)
M(t) = UpdateMemory(B′, V L′)
// Ret r i ev e Memory
Ret r i eve Bm(t) and V Lm(t) from memory
I(t) = CreateIndividuals(Bm(t), V Lm(t),X, α)
P (t) = ReplaceWorst(P (t), I(t), α)
// R e i n i t i a l i z e VL
V Lp(t) = initV L(P (t))

P ′(t) = Selection(P (t))
Crossover(P ′(t))
Mutation(P ′(t))
P (t+ 1) = P ′(t)
Evaluate(P (t+ 1))
Evaluate(M(t+ 1))
V Lp(t+ 1) = updateV L(V Lp(t), P (t+ 1), γ, η) // eq . 1
t = t+ 1

un t i l s t op cond i t i on

Fig. 1. Pseudo code for VLGA

Virtual Loser Genetic Algorithm for Dynamic Environments 543

3 Experimental Design

3.1 Dynamic Test Environments

The dynamic environments to carry out our experimentation were created using
Yang’s Dynamic Optimization Problems (DOP) generator [4]. This generator
allows constructing different dynamic environments from any binary-encoded
stationary function using the bitwise exclusive-or (XOR) operator. The char-
acteristics of the change are controlled by two parameters: the speed of the
change, r, which is the number of function evaluations between two changes,
and the magnitude of the change, ρ, that controls how different is the new envi-
ronment from the previous one. The DOP generator can construct three types
of dynamic environments: cyclic, cyclic with noise and random. In this work
we constructed two types of environments: cyclic and random. For each type
of DOP, the parameter r was used with 1000 and 5000. The ratio ρ was set to
different values in order to test different levels of change: 0.1 (a light shifting)
0.2, 0.5 and 1.0 (severe change). A random change was also tested concerning
severity. For this case, the new environment has no relation with the previous
one. Three binary-encoded problems were selected as the stationary functions:
the 0-1 knapsack , the Royal Road F1 [12] and the Onemax function. Those
benchmark problems were transformed from static to dynamic using the DOP
generator, described before.

3.2 Parameters Setting

In the experiments, four GAs were investigated using the above constructed
DOPs: the standard GA (SGA), the Hypermutation GA (HGA) proposed by
[1], the Associative Memory Genetic Algorithm (AMGA) investigated in [4] and
the two versions of the Virtual Loser Genetic Algorithm (VLGAp and VLGAt)
detailed in the previous section. Standard parameters were used for all GAs:
generational replacement with elitism of size one, tournament selection with
tournament of size two, uniform crossover, with probability pc = 0.7 and flip
mutation with probability pm = 0.01. Binary representation was used with chro-
mosomes of size 100 for the Knapsack, 64 for the Royal Road F1 and 300 for
the Onemax. The associative factor α for AMGA, VLGAp and VLGAt was set
to 0.5. The hypermutation rate used in HMGA was 0.2. All algorithms used a
global number of individuals n = 100. The memory size for AMGA and VLGA
was set to m = 0.2 × n. For VLGA, the relaxation factor μ was set to 0.02,
the fraction η of the worst individuals was 0.5 and the number of potential mu-
tations per individual was M = L (L is the chromosome length). The similar
replacing strategy proposed by [5] was used to replace a memory solution when
the maximum capacity for the memory is attained. A change in the environment
was detected if at least one individual in the memory changed its fitness. For
each experiment of an algorithm, 50 runs were executed. Each algorithm was run
for a number of generations corresponding to 200 environmental changes. The
overall performance used to compare the algorithms was the offline performance
[5] averaged over 50 independent runs, executed with the same random seeds.

544 A. Simões and E. Costa

4 Experimental Results

4.1 Analysis of the Results

Fig. 2 and Table 2 show the results obtained for the Knapsack problem in cyclic
and random environments. Fig. 3 and Table. 3 present the results obtained for
the Royal Road F1 problem. The statistical validation was made using the non-
parametric Friedman’s ANOVA test at a 0.01 level of significance. After this
test, the multiple pair wised comparisons were performed using the Nemenyi
procedure with Bonferroni correction. The notation used in the statistical re-
sults tables is s+, s− and ∼, when the first algorithm is significantly better
than, significantly worse than, or without statistical evidence with the second
algorithm, respectively. The statistical results refer only to the comparison of the
proposed method with the peer algorithms. No comparisons between SGA, HGA
and AMGA are presented. From the plots and statistical analysis result that,
for cyclic environments, the performance of VLGA is significantly better than
SGA, HGA and AMGA. The few exceptions occur in the Knapsack problem, in
environments with light severity of change (ρ = 0.1). This is understandable, as
for light changes, keeping individuals from previous environments can be advan-
tageous. Comparing the two versions of VLGA, the results show that, in cyclic
environments, VLGAt outperforms VLGAp. The justification for this may be
related to the number of genes mutated when a new individual is created. In
VLGAt the bits to mutate are selected using tournaments of size three and the
same gene can be selected in different tournaments. This can have an effect in
the total number of mutated bits that can be lower than X . If the same bit is
mutated an odd number of times, it returns to its initial value (no mutation).
Inversely, if it is selected an even number of times, the process of mutation is
repeated X times, but the effective number of mutations is below X . This indi-
cates that mutating the bits with higher P can be more effective than randomly
selection the bits, as used in VLGAp. For random environments, as expected, the
use of memory is not beneficial. The performance of VLGA is better than SGA,
HGA and AMGA when ρ = 1.0 and for some ρ = rnd, and similar or worse in
the remaining cases. It is important to observe that the random environment is
cyclic for ρ = 1 (as every bit is changed in each period, i.e., the environment is
repeated every two periods), what explains the obtained results.The differences
in the performances are more related to the diversity of the population promoted
by the algorithms than the use of memory. The results for the Onemax problem
were similar to the ones obtained for the Knapsack and the Royal Road F1.

4.2 Analysis of the Effect of α

In this work the influence of the associative factor α is also analyzed. Besides
α = 0.5, AMGA and VLGA were run using α = 1.0. This means that when a
change happens all the individuals of the population are replaced by new ones.
Table 4 compares the results for AMGA, VLGAp and VLGAt using α = 0.5 and
α = 1.0. The results marked in bold indicate that, for that value of α, the results

Virtual Loser Genetic Algorithm for Dynamic Environments 545

Table 2. Statistical Results for the Dynamic Knapsack

α = 0.5 Cyclic Random

r = 1000 r = 5000 r = 1000 r = 5000

ρ ⇒ 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd

VLGAp - SGA s+ s+ s+ s+ s+ ∼ s+ s+ s+ s+ s− ∼ ∼ ∼ s+ s− s− s+ s+ s+
VLGAp - HGA ∼ ∼ s+ s+ s+ s+ s+ s+ s+ s+ ∼ s− s− s+ ∼ ∼ ∼ ∼ s+ ∼
VLGAp - AMGA ∼ s+ s+ s+ s+ ∼ s+ s+ s+ s+ s− ∼ ∼ s+ s+ ∼ ∼ ∼ s+ s+
VLGAp - VLGAt s− s− s− s− s− s− s− s− s− s− ∼ ∼ ∼ s+ ∼ s+ s+ s+ ∼ ∼
VLGAt - SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s+ s+ s+ s− s− ∼ s+ s+
VLGAt - HGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s+ ∼ ∼ s− s− s+ ∼
VLGAt - AMGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− s− s+ s+ s− s− ∼ s+ ∼

Fig. 2. Offline performance for the dynamic Knapsack

are significantly better. The results refer to the Knapsack problem, but the same
conclusions were obtained for Royal Road F1 and Onemax. From the analysis of
the results we conclude that, for cyclic environments, the performance of AMGA
is significantly decreased for α = 1.0. Contrarily, for VLGAp and VLGAt, in
general, α = 1.0 improves the algorithms’ performance. The exception occurs for
light shifts in the environment, where the performances are, in general, similar.
Analyzing the diversity of the population in cyclic environments, for α = 0.5
and α = 1.0, we see that the diversity decreases when α is higher. This means

546 A. Simões and E. Costa

Table 3. Statistical Results for the Dynamic Royal Road F1

α = 0.5 Cyclic Random

r = 1000 r = 5000 r = 1000 r = 5000

ρ ⇒ 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd 0.1 0.2 0.5 1.0 rnd

VLGAp - SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− ∼ ∼ s+ ∼ s− ∼ s+ s+ s+
VLGAp - HGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ ∼ ∼ ∼ s+ ∼ ∼ ∼ ∼ s+ ∼
VLGAp - AMGA s+ s+ s+ s+ s+ ∼ s+ s+ s+ s+ ∼ ∼ ∼ s+ ∼ ∼ ∼ ∼ s+ ∼
VLGAp - VLGAt s− s− s− s− s− ∼ s− s− s− s− s− ∼ ∼ s− ∼ ∼ ∼ ∼ s− ∼
VLGAt - SGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− ∼ s+ ∼ ∼ s− ∼ s+ ∼
VLGAt - HGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s− s− ∼ s+ s− ∼ s− ∼ s+ s−
VLGAt - AMGA s+ s+ s+ s+ s+ ∼ s+ s+ s+ s+ s− ∼ ∼ s+ ∼ ∼ ∼ ∼ s+ ∼

Fig. 3. Offline performance for the dynamic Royal Road F1

that, although a larger number of new individuals is being created, they are
more similar with each other. This indicates that the new individuals created
in AMGA are unfit to the new environments, and the new individuals formed
using the proposed VL mechanism are fitter than the individuals preserved from
the previous population. These results show that, for cyclic environments, the
memorization of information about the errors performed in the evolutionary
process can successfully be used to guide the creation of new individuals suitable
to the new environment. For random environments, the loss of diversity observed

Virtual Loser Genetic Algorithm for Dynamic Environments 547

when α = 1.0 is detrimental. As before, the memory doesn’t help the GA when
the environment changes and the performance is better if the GA is able to
promote a higher diversity.

Table 4. Effect of α in the Dynamic Knapsack

r ρ AMGA0.5 AMGA1.0 VLGAp0.5 VLGAp1.0 VLGAt0.5 VLGAt1.0

CYCLIC

0.1 1766.16 1585.24 1766.55 1759.20 1773.98 1763.32
0.2 1756.29 1590.01 1761.62 1770.77 1772.26 1778.29

1000 0.5 1740.01 1596.44 1758.85 1776.52 1769.69 1792.93
1.0 1729.74 1600.50 1778.40 1784.90 1799.92 1803.80
rnd 1729.05 1601.25 1776.88 1782.75 1800.76 1803.55
0.1 1789.32 1753.07 1789.21 1789.34 1791.29 1790.96
0.2 1781.93 1760.83 1785.54 1803.00 1790.94 1804.92

5000 0.5 1771.78 1766.31 1785.68 1810.59 1794.65 1813.22
1.0 1772.06 1768.37 1811.73 1814.59 1815.79 1817.58
rnd 1772.76 1769.00 1811.96 1814.69 1816.60 1816.90

RANDOM

0.1 1769.91 1582.15 1767.09 1748.42 1764.45 1746.99
0.2 1762.71 1580.04 1760.93 1749.53 1758.99 1744.37

1000 0.5 1751.22 1579.46 1752.03 1747.77 1750.96 1744.78
1.0 1729.22 1601.71 1777.64 1785.82 1799.05 1803.20
rnd 1748.57 1579.43 1752.85 1748.88 1751.59 1744.47
0.1 1790.80 1742.98 1788.54 1775.94 1786.68 1776.52
0.2 1781.93 1738.15 1781.23 1772.95 1777.90 1770.38

5000 0.5 1769.35 1735.32 1770.66 1770.91 1769.67 1766.38
1.0 1773.08 1770.04 1811.70 1814.81 1815.97 1817.27
rnd 1770.61 1736.74 1772.54 1771.97 1772.72 1768.37

5 Conclusions and Future Work

This paper proposes a different type of associative memory for GAs addressing
DOPs. The new mechanism, denoted by the virtual loser, memorizes the best
individual and additional knowledge about the ’bad’ mutations performed dur-
ing the evolutionary process. The memorized information is used to create new
individuals when a change is detected. The proposed algorithm, called VLGA,
creates new solutions by mutating the best memory solution, avoiding the bad
mutations applied in the past. Two mechanisms of generating new individu-
als were investigated: probabilistic (VLGAp) and tournament-based (VLGAt).
Moreover, the influence of the number of new individuals to create (α) was ana-
lyzed. From the experimental results on a series of dynamic benchmark problems,
the following conclusions can be drawn. First, VLGA outperforms the peer al-
gorithms for almost all cyclic dynamic environments. For random environments,
the memory is, in general, detrimental to the performance of the GA. Second,
for cyclic environments, the proposed VLGAt obtains better performances than
VLGAp, indicating that the choosing the bits with higher VL values is better
than a random choice. Third, in cyclic environments, the associative factor α
significantly influences the performance of VLGA. For higher values of α the
performance is better in VLGA and worse in AMGA. As the diversity decreases
with α = 1.0, the improvement on the performance of VLGA proves that the

548 A. Simões and E. Costa

proposed VL mechanism, although creating more similar individuals, they have
higher fitnesses than the individuals from the previous population. The same
does not happen with the new individuals created using the AMGA mechanism.
For future work we intend to study and analyze the influence of the other param-
eters used in VLGA - X , μ and η. Moreover, for X , instead of using a fixed value,
it would be interesting to analyze the benefits of a mechanism for adjusting the
value of X during the run.

References

1. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical Report TR AIC-90-001, Naval Research Laboratory (1990)

2. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Männer, R.,
Manderick, B. (eds.) Proceedings of PPSN II, pp. 137–144 (1992)

3. Simões, A., Costa, E.: Variable-Size Memory Evolutionary Algorithm to Deal
with Dynamic Environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 617–626. Springer, Heidelberg (2007)

4. Yang, S.: Explicit memory schemes for evolutionary algorithms in dynamic en-
vironments. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in
Dynamic and Uncertain Environments. SCI, vol. 51, pp. 3–28. Springer, Heidelberg
(2007)

5. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers (2002)

6. Simões, A., Costa, E.: Prediction in evolutionary algorithms for dynamic environ-
ments using markov chains and nonlinear regression. In: Proceedings of GECCO
2009, pp. 883–890. ACM Press (2009)

7. Trojanowski, K., Michalewicz, Z.: Searching for optima in nonstationary environ-
ments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
1999), pp. 1843–1850. IEEE Press (1999)

8. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Transactions on Evolutionary Computation 5(12),
542–561 (2008)

9. Yang, S., Richter, H.: Hyper-learning for population-based incremental learning
in dynamic environments. In: IEEE Congress on Evolutionary Computation, CEC
2009, pp. 682–689 (May 2009)

10. Barlow, G.J., Smith, S.F.: A Memory Enhanced Evolutionary Algorithm for Dy-
namic Scheduling Problems. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro,
G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Mc-
Cormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang,
S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 606–615. Springer, Heidelberg
(2008)

11. Sebag, M., Schoenauer, M., Ravisé, C.: Toward civilized evolution: Developing
inhibitions. In: Bäck, T. (ed.) Proceedings of the 7th Int. Conference on Genetic
Algorithms (ICGA 1997), pp. 291–298. Morgan Kaufmann, San Francisco (1997)

12. Mitchell, M., Forrest, S., Holland, J.: The royal road for genetic algorithms: fitness
landscape and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Proceedings
of the First European Conference on Artificial Life, pp. 245–254. MIT Press (1992)

Author Index

Agapitos, Alexandros 135
Amarasinghe, Saman 73
Ansel, Jason 73
Antonakos, James 487
Arriaga, Jonathan 145
Arsuaga-Ŕıos, Maŕıa 42
Azzini, Antonia 155, 295

Baala, Oumaya 31
Bacchini, Alessandro 406
Bellas, Francisco 93
Bocchi, Leonardo 305
Bouvry, Pascal 436
Brabazon, Anthony 135
Burelli, Paolo 265

Caamaño, Pilar 93
Cagnoni, Stefano 406
Caminada, Alexandre 31
Caraffini, Fabio 285
Cervantes, Alejandro 497
Chicano, Francisco 497
Clemente, Eddie 315, 326, 336
Colomine Duran, Feijoo E. 165
Colton, Simon 194
Contreras, Iván 174
Cook, Michael 194
Costa, Ernesto 539
Cotta, Carlos 165, 245
Cruz, J. Albert 446

Dolgikh, Andrey 487
Dozal, León 315, 326, 336
Dragoni, Mauro 155, 295
Duro, Richard J. 93

Eiben, A.E. 52, 124, 366, 529
Esparcia, Anna I. 446

Fazenda, Pedro 416
Fernández-Ares, Antonio 234
Fernández-Leiva, Antonio J. 165, 245
Fey, Dietmar 21
Font, José M. 204

Garćıa-Sánchez, Pablo 52, 234
Gómez-Pulido, Juan Antonio 1
Gondran, Alexandre 31
Goossens, Dries 508
Gow, Jeremy 194

Haasdijk, Evert 52, 124
Hernández, Daniel 336
Heywood, Malcolm I. 11
Hidalgo, José Ignacio 174, 456
Hirsch, Christian 396

Iacca, Giovanni 285

Jahns, Jürgen 21
Jaros, Jiri 426

Karafotias, Giorgos 366
Kramer, Oliver 346
Krenek, Thorsten 376
Kuyucu, Tüze 63
Kyngäs, Jari 508
Kyngäs, Nico 508

Lamers, Maarten H. 214
Lanza-Gutiérrez, José Manuel 1
Laredo, Juan Luis Jiménez 436
LaRoche, Patrick 11
Limmer, Steffen 21
Lohmann, Ulrich 21
Lucas, Simon M. 255
Luna, Francisco 497

Mahlmann, Tobias 224
Mancilla, Mart́ın 315
Mavrovouniotis, Michalis 519
Mayo, Michael 184
McDermott, James 416, 477
Merelo-Guervós, Juan-Julián 52, 234,

436, 446
Millán-Ruiz, David 456
Mininno, Ernesto 285
Mora, Antonio M. 234, 446
Mostaghim, Sanaz 436
Mussi, Luca 406

550 Author Index

Neri, Ferrante 285, 356
Nogueira, Mariela 245
Núñez-Letamendia, Laura 174
Nurmi, Kimmo 508
Nykodym, Tomas 487

Olague, Gustavo 315, 326, 336
O’Neill, Michael 135
O’Reilly, Una-May 73, 416, 477

Pacula, Maciej 73
Perez, Diego 255
Pineda, Luis E. 529
Planer, Michael 376
Poli, Riccardo 103
Pospichal, Petr 426
Preuss, Mike 265, 386
Prieto, Abraham 93
Prieto-Castrillo, Francisco 42

Radenski, Atanas 466
Raidl, Günther R. 376
Recio, Gustavo 497
Richter, Hendrik 83
Rogai, Francesco 305
Rohlfshagen, Philipp 255
Ruthmair, Mario 376

Salo, Heikki 356
Sánchez, Marco 326
Sánchez-Pérez, Juan Manuel 1

Schmeck, Hartmut 396
Shaker, Noor 275
Sherry, Dylan 477
Shimohara, Katsunori 63
Shukla, Pradyumn Kumar 396
Simões, Anabela 539
Skormin, Victor 487
Smit, S.K. 366
Szeto, Kwok Yip 114

Tabia, Nourredine 31
Tanev, Ivan 63
Tettamanzi, Andrea G.B. 155, 295
Tirronen, Ville 356
Togelius, Julian 224, 275
Trueba, Pedro 93
Turkey, Mikdam 103

Valenzuela-Rendón, Manuel 145
van Eck, Wim 214
van Steen, Marteen 529
Veeramachaneni, Kalyan 477
Vega-Rodŕıguez, Miguel A. 1, 42

Wang, Crown Guan 114
Weel, Berend 52, 124

Yang, Shengxiang 519
Yannakakis, Georgios N. 224, 265, 275

Zincir-Heywood, A. Nur 11

	Title
	Preface
	Organization
	Table of Contents
	EvoCOMNET Contributions
	Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks by Means of Evolutionary Algorithms
	Introduction
	Heterogeneous Wireless Sensor Network
	Problem Instance Definition
	Fitness Functions

	Problem Resolution
	Experimental Results
	Comparisons with Other Authors
	Conclusions and Future Work
	References

	Network Protocol Discovery and Analysis via Live Interaction
	Introduction
	Background
	Reverse Engineering of Protocols
	Evolving Communication
	Syntax Based Testing
	FTP

	The Model
	The Archive
	Evolutionary Model

	Experiments and Results
	Results
	Discussion

	Conclusion and Future Work
	References

	Evolutionary Design of Active Free Space Optical Networks Based on Digital Mirror Devices
	Introduction
	Optimization Problem
	Optimization Algorithm
	Optimization Results
	Conclusion
	References

	Frequency Robustness Optimization with Respect to Traffic Distribution for LTE System
	Introduction
	Case Study and System Model
	Case Study
	Basic Assumptions
	Problem Formulation

	Assumptions and Performance Metrics
	Simulation Results and Analysis
	Algorithm Description
	Results with Non Robust and Robust Optimization

	Conclusion and Perspectives
	References

	EvoCOMPLEX Contributions
	Small-World Optimization Applied to Job Scheduling on Grid Environments from a Multi-Objective Perspective
	Introduction
	Problem Statement
	MOSWO: Multi-Objective Small World Optimization
	NSGA-II: Non-dominated Sort Genetic Algorithm
	Test Environment and Experiments
	Conclusions
	References

	Testing Diversity-Enhancing Migration Policies for Hybrid On-Line Evolution of Robot Controllers
	Introduction
	State of the Art
	Algorithms and Experimental Setup
	Results and Analysis
	Comparing Migration Configurations
	Comparing Encapsulated, Distributed and Hybrid On-Line Evolution

	Conclusions and Future Work
	References

	Evolutionary Optimization of Pheromone-Based Stigmergic Communication
	Introduction
	Pheromone-Based Stigmergic Coordination
	Experiments
	Exploration of Environment with Obstacles
	Optimizing the Parameters

	Conclusions
	References

	Hyperparameter Tuning in Bandit-Based Adaptive Operator Selection
	Introduction
	PetaBricks and Its Autotuner
	Related Work and Discussion
	Adaptive Operator Selection
	Tuning the Tuner
	Evaluation Metrics

	Experimental Results
	Hyperparameter Robustness

	Conclusions
	References

	Analyzing Dynamic Fitness Landscapes of the Targeting Problem of Chaotic Systems
	Introduction
	Optimal Control and Targeting
	Dynamic Fitness Landscapes
	Numerical Studies
	Conclusion
	References

	Self-organization and Specialization in Multiagent Systems through Open-Ended Natural Evolution
	Open-Ended Natural Evolution
	ASiCo
	Problem Definition
	Evolution in Multi-robot Systems

	Self-organization and Specialization Analysis
	Task Description
	Self-organized Specialization

	Conclusions
	References

	An Empirical Tool for Analysing the Collective Behaviour of Population-Based Algorithms
	Introduction
	Self-Organising Maps and Population Dynamics
	Extracting Properties of Collective Behaviour
	Experimental Results
	Discussion and Future Work
	References

	Sales Potential Optimization on Directed Social Networks: A Quasi-Parallel Genetic Algorithm Approach
	Introduction
	Sales Potential on Directed Social Networks
	Mutation Matrix
	Quasi-Parallel Genetic Algorithms
	Experiments
	Conclusion
	References

	The Emergence of Multi-cellular Robot Organisms through On-Line On-Board Evolution
	Introduction
	Related Work
	System Description and Experiments
	Results and Analysis
	Conclusion and Further Research
	References

	EvoFIN Contributions
	Evolving Seasonal Forecasting Models with Genetic Programming in the Context of Pricing Weather-Derivatives
	Introduction
	Background
	OTC Weather Derivatives
	Seasonal Forecasting for Pricing a Weather Derivative
	Statistical Time-Series Forecasting Methods
	Genetic Programming for Time-Series Modelling
	Scope of Research

	Experiment Design
	Model Data
	Forecasting Model Representations and Run Parameters

	Results
	Conclusion
	References

	Steepest Ascent Hill Climbing for Portfolio Selection
	Introduction
	The Optimization Model
	Unconstrained Problem
	Constrained Problem
	Efficient Frontier

	Steepest Ascent Hill Climbing for Portfolio Selection
	Experimental Setup
	Data and Parameters
	Results

	Conclusions
	References

	A Neuro-evolutionary Approach to Intraday Financial Modeling
	Introduction
	Problem Description
	The Neuro Genetic Algorithm
	Evolutionary Process

	Experiments and Results
	Dataset and Experiment Set-Up
	Results and Discussion

	Conclusions
	References

	A Comparative Study of Multi-objective Evolutionary Algorithms to Optimize the Selection of Investment Portfolios with Cardinality Constraints
	Introduction
	Related Work
	Material and Methods
	Data Analyzed
	Algorithmic Methods
	Performance Indicators

	Experimental Results
	Analysis of the Pareto Front
	Analysis through Sharpe's Ratio

	Conclusions
	References

	A GA Combining Technical and Fundamental Analysis for Trading the Stock Market
	Introduction
	Genetic Algorithm and Trading System
	GA Implementation
	Trading System
	Genetic Encoding
	Fitness Function

	Experimental Results
	Conclusions
	References

	Evolutionary Data Selection for Enhancing Models of Intraday Forex Time Series
	Introduction
	Evolutionary Data Selection Algorithm
	Evaluation
	Data Preparation
	Base Classifiers
	Experiment 1: EDS Prediction
	Experiment 2: Ensemble Prediction

	Conclusion
	References

	EvoGAMES Contributions
	Initial Results from Co-operative Co-evolution for Automated Platformer Design
	Introduction
	Background
	ACCME
	Representation
	CCE Species
	Playouts and Reachability
	Evolutionary Setup
	Evaluation

	Conclusions and Further Work
	References

	Evolving Third-Person Shooter Enemies to Optimize Player Satisfaction in Real-Time
	Introduction
	The Genes of War Game
	Multi-layered Enemy Control System

	The Evolutionary System
	Fitness Evaluation
	Crossover and Replacement

	Experimental Results
	Conclusions and Future Work
	References

	Why Simulate? Hybrid Biological-Digital Games
	Introduction
	Opportunities for Players
	Interspecies Awareness
	Enabling Care
	Education
	Behavioral Variability

	Opportunities for Developers
	Perception and Processing
	Crowdsourcing and Gamification
	Organic Design

	Opportunities for Animals
	Welfare and New Forms of Care
	Fighting Stereotypy

	Discussion and Future Outlook
	References

	Spicing Up Map Generation
	Introduction
	Background
	Map Generator
	Results
	Discussion
	Conclusion
	References

	Dealing with Noisy Fitness in the Design of a RTS Game Bot
	Introduction
	State of the Art
	The Planet Wars Game
	Genetic Approach for the Planet Wars Game
	Experiments and Results
	Parameter Optimisation
	Noisy Fitness Study
	GeneBots Fighting

	Conclusions and Future Work
	References

	On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively: Steps towards a Taxonomy
	Introduction
	Players' Satisfaction Approaches
	Selection of Relevant Information
	Capture Players' Fun

	Game's Adjustment
	Circumstantial Adjustment
	Constructive Adjustment
	Who Makes the Adjustment?

	Conclusions
	References

	Monte-Carlo Tree Search for the Physical Travelling Salesman Problem
	Introduction
	Literature Review
	The Physical Travelling Salesman Problem
	Preliminary Experimental Study
	Extended Experimental Study
	Random Maps of 10 Cities
	Random Maps of 30 Cities

	Conclusions
	References

	Diversified Virtual Camera Composition
	Introduction
	Related Work
	Virtual Camera Composition
	Test Problems

	Niching and Restart CMA-ES Variants under Test
	Experimental Analysis
	Measures
	Experiment

	Summary and Conclusions
	References

	Digging Deeper into Platform Game Level Design: Session Size and Sequential Features
	Introduction
	Experiment Design
	Data Collection

	Data Representation
	Direct Features
	Sequential Features

	Sequence Mining
	Preference Learning for Modelling Playing Experience
	Level Segmentation
	Experiments and Analysis
	Discussion and Conclusion
	References

	EvoHOT Contributions
	Robot Base Disturbance Optimization with Compact Differential Evolution Light
	Introduction
	Base Disturbance Optimization in Space Robotic Arms
	Compact Differential Evolution Light
	Simulation Results
	Conclusion
	References

	EvoIASP Contributions
	Electrocardiographic Signal Classification with Evolutionary Artificial Neural Networks
	Introduction
	Problem Description
	The Neuro-evolutionary Algorithm
	Evolutionary Process

	Experiments and Results
	Conclusions
	References

	A Genetic Fuzzy Rules Learning Approach for Unseeded Segmentation in Echography
	Introduction
	Unseeded Segmentation
	Method
	Experiments and Results
	Conclusions
	References

	Object Recognition with an Optimized Ventral Stream Model Using Genetic Programming
	Introduction
	Problem Statement

	An Artificial Ventral Stream
	Interest Region Detection
	Feature Description

	Heterogeneous and Hierarchical GP
	Experimental Results
	Conclusions
	References

	Evolving Visual Attention Programs through EVO Features
	Introduction
	Problem Statement

	Evolving Visual Attention Programs
	Visual Attention Programming
	Acquisition of Early Visual Features
	Feature-Integration for Visual Attention

	Organic Genetic Programming
	Experiments and Results
	Conclusions
	References

	Evolutionary Purposive or Behavioral Vision for Camera Trajectory Estimation
	Introduction
	Evolutionary Purposive Vision
	Interest Point Detection
	Simultaneous Localization and Map Building
	Camera Trajectory Estimation Using Genetic Programming

	Multiobjective Visual Behavior Algorithm
	Experiments
	Conclusion
	References

	On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression
	Introduction
	Related Work
	Unsupervised KNN Regression
	Continuous Perspective
	CMA-ES
	Restriction of Latent Space to [0,1]q
	Penalizing Extension in Latent Space with λ||X||

	Combinatorial Perspective on UNN Regression
	Experimental Analysis
	Comparison
	Curse of Dimensionality

	Conclusions
	References

	Evolutionary Regression Machines for Precision Agriculture
	Introduction
	Intelligent System for Biomass Estimation
	Numerical Results
	Conclusions
	References

	EvoNUM Contributions
	A Generic Approach to Parameter Control
	Introduction
	Related Work
	Parameter Control Roadmap
	Parameters
	Observables
	Algorithm

	Experimental Setup
	Evolutionary Algorithm
	Parameter
	Observables
	Control Method

	Results
	Conclusions and Future Work
	References

	Applying (Hybrid) Metaheuristics to Fuel Consumption Optimization of Hybrid Electric Vehicles
	Introduction
	Related Work
	Metaheuristics
	Hybrid Meta-heuristic (PSAGADO)
	Experimental Results
	Conclusions and Future Work
	References

	Improved Topological Niching for Real-Valued Global Optimization
	Introduction
	NBC-CMA General Scheme
	Nearest Better Clustering with Rule2
	Experiment: Effectiveness of Rule 2

	NEA2: Parallel Niching and Sequential Local Optimization
	Experimental Comparison
	Summary and Conclusions
	References

	Towards a Deeper Understanding of Trade-offs Using Multi-objective Evolutionary Algorithms
	Introduction
	Trade-offs and Their Classification
	Algorithms
	Simulation Results
	Conclusions
	References

	EvoPAR Contributions
	OpenCL Implementation of Particle Swarm Optimization: A Comparison between Multi-core CPU and GPU Performances
	Introduction
	PSO Parallelization
	Open Computing Language
	PSO Implementation within OpenCL
	GPU-Based Implementation
	CPU-Based Implementation

	Test and Results
	Final Remarks
	References

	A Library to Run Evolutionary Algorithms in the Cloud Using MapReduce
	Introduction
	Motivations and Precedents
	Library Design
	Library in Use
	Design Discussion
	Conclusions and Future Work
	References

	A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm under the Knapsack Benchmark
	Introduction
	Memory Layout of the GA
	Population Organization
	GA Parameters Storage
	Knapsack Global Data Storage

	Genetic Algorithm Routines
	Random Number Generation
	Genetic Manipulation Phase
	Fitness Function Evaluation
	Replacement Phase
	Statistics Collection

	Experimental Comparison of CPU and GPU Implementations
	Conclusions
	References

	Validating a Peer-to-Peer Evolutionary Algorithm
	Introduction
	Description of the Model
	Experimental Setup
	Simulation settings
	Parallel Version Settings

	Analysis of Results
	Test-Case 1: Validating Results of the Simulator
	Test-Case 2: Testing the Massive Scalability of the Approach

	Conclusions
	References

	Pool-Based Distributed Evolutionary Algorithms Using an Object Database
	Introduction
	State of the Art
	SofEA, a CouchDB-Based Evolutionary Algorithm
	Experiments and Results
	Conclusions and Future Work
	References

	Migration and Replacement Policies for Preserving Diversity in Dynamic Environments
	Yet Another Paper on Migration and Replacement Policies for PGAs?
	State of the Art: Brief Survey of Existing Work
	Setting-Up of the PGA
	Configuration of Each Island
	Common Framework
	Topology
	Migration and Replacement Policies

	Experiments
	Dataset Employed
	Results of the Experimental Phase
	Discussion

	Conclusions and Future Work
	References

	Distributed Simulated Annealing with MapReduce
	Introduction
	Placing Simulated Annealing on MapReduce
	Implementation and Experimental Evaluation
	Related Work
	Conclusions
	References

	Flex-GP: Genetic Programming on the Cloud
	Introduction
	Related Work
	Deploying Flex-GP
	Scaling Flex-GP
	Experimental Setup
	Conclusions and Future Work
	References

	EvoRISK Contributions
	Customized Normalcy Profiles for the Detection of Targeted Attacks
	Introduction
	Modeling Behavior
	Dealing with Functionalities
	Automatic Functionality Extraction
	Access Graph Compression
	Functionality Extraction
	Evaluation of the Functionality Extraction Procedure

	Customized Normalcy Profile and Its Utilization in an IDS
	Related Work
	References

	EvoSTIM Contributions
	A Novel Multiobjective Formulation of the Robust Software Project Scheduling Problem
	Introduction
	The SPS Problem
	Adding Robustness to the Solutions
	Comparison against Other Scheduling Problems

	Experimental Study
	Performance of the Algorithms
	Analysis of Solutions

	Conclusions and Future Work
	References

	Optimizing the Unlimited Shift Generation Problem
	Introduction
	Workforce Scheduling
	The Unlimited Shift Generation Problem
	Solution Method
	Computational Results
	Conclusions
	References

	EvoSTOC Contributions
	Ant Colony Optimization with Immigrants Schemes for the Dynamic Vehicle Routing Problem
	Introduction
	The DVRP with Traffic Jams
	ACO for the DVRP
	ACO with Immigrants Schemes for the DVRP
	Framework
	Random Immigrants ACO (RIACO)
	Elitism-Based Immigrants ACO (EIACO)

	Simulation Experiments
	Experimental Setup
	Experimental Results and Analysis

	Conclusions
	References

	Evolving Communication in Robotic Swarms Using On-Line, On-Board, Distributed Evolutionary Algorithms
	Introduction
	Related Work
	Problem Description
	Controller
	Evolutionary Algorithm

	Experiments
	Experimental Details and Performance Measures
	Experimental Results

	Conclusions and Future Work
	References

	Virtual Loser Genetic Algorithm for Dynamic Environments
	Introduction
	Virtual Loser Genetic Algorithm
	Experimental Design
	Dynamic Test Environments
	Parameters Setting

	Experimental Results
	Analysis of the Results
	Analysis of the Effect of

	Conclusions and Future Work
	References

	Author Index

