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Abstract In this research, regional climate models’ (RCMs) simulation data set of

PRUDENCE project is used to analyze the uncertainties, direction and magnitude

of the expected changes of precipitation, temperature, maximum and minimum air

temperature with two different scenarios (B2 and A2) in the period 2070–2100 and

1960–1990 for three different sub-regions of Europe (1.75�–15.75� East and

47.75�–55.75� North; 15.75�–25.75� East and 45.75�–55.75� North; 5.75�–13.75�

East and 45.75�–47.75� North). SVM (support vector machine) is used to classify

the models in order to choose the most appropriate ensembles with weighted

coefficients from the multi model ensemble. The results are checked with

ensemble-mean approach. In this study, we propose a new approach to multi-

model ensemble. In general, the performance of our methodology is better than

ensemble-mean approach. SVM can eliminate the models which have big amounts

of absolute error and select the best ones that have small amounts of absolute error,

with big coefficients. Moreover, our proposed methodology gives better results than

ensemble-mean approach nearly in all cases.

1 Introduction

There are various statistical approaches to predict past and future temperature,

precipitation and other climatological variables. Taylor Diagram (Gleckler et al.

2008), probability density functions (Ruosteenoja et al. 2007; Boberg et al. 2010),

and weighted averages (Coppola and Giorgi 2010) are most common ones that have

been enforced to find the best representative sample among multi-ensemble clima-

tological data. SVM has been recently used in climatological studies for downscaling

climatological variables (Tripathi et al. 2006; Chen et al. 2010; Anandhi et al. 2008),
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runoff modeling (Behzad et al. 2009), soil moisture data assimilation (Kashif Gill

et al. 2007) etc. The genuine part of our work stems from the fact that SVM is used

as a classification tool instead of other statistical methods (e.g. PDF, Taylor

diagram, ensemble-mean, ANN etc.) and usage of SVM in other climatological

studies. More detailed explanation and theory can be found in Vapnik (1995, 1998),

Cortes and Vapnik (1995).

2 Data

In this study, PRUDENCE (Prediction of Regional scenarios and Uncertainties for

Defining EuropeaN Climate change risks and Effects, EVK2-CT2001-00132), Fifth

Framework European programme project (2002–2005), European research project

(Christensen and Christensen 2007; Christensen et al. 2002) simulation results of

22 regional climate models and CRU data set are used to propose a new methodol-

ogy for the multi-model ensemble researches. SVM (Support Vector Machine) is

used with its classification option for three different sub-domains in Europe

(AL:1.75�–15.75� East and 47.75�–55.75� North; EA:15.75�–25.75� East and

45.75�–55.75� North; ME:5.75�–13.75� East and 45.75�–47.75� North).

3 Methodology

There are two main procedures in the usage of SVM. In the first step, SVM

determines the classification regions and the hyperplane (multidimensional linear

decision surfaces) which separates the regions by using the train data. While it

determines the discriminant function of the hyperplane, f(xi) ¼ 0, it assumes that

one region satisfies f(xi) < 0 and the other satisfies f(xi) > 0. To simplify the

constraint of the hyperplane we label regions with y ¼ +1 and y ¼ �1 so the

constraint becomes yf ð~xiÞ<0. Then, it calculates the perpendicular distance between

hyperplane and the closest points of both regions and determines the most efficient

f(xi) by maximizing the sum of these distances. In the second step, it uses the test

data, chooses the suitable region and it determines the coefficients with a hyper-

plane function.

In our study, we used seasonal spatial averages of climatic variables (as shown in

Table 1) of the CRU (Climatic Research Unit) for 1961–1990 period as train data.

We use all the combinations of 40 and 60 percentile values as accepted region

(y ¼ +1) and all the combinations of 10 and 90 percentile values as rejected region

(y ¼ �1). We try various percentile values for accepted and rejected regions as

shown in Table 1 and obtain three different hyperplanes which separate the space in

two main regions. In second step, test data sets are used to determine the classes of

each data points. Thirty year averages of the same period (1961–1990) of Regional

Climate Model (RCM) results of PRUDENCE project are used as data points of the
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test data sets. The result of SVM shows the strength of each model by assigning

positive and negative coefficients. These coefficients then determine the classes of

each model. The models with positive or negative coefficients are respectively in

the accepted or rejected region. We claim that models in the accepted region can

represent the climatological specialties more accurately because their spatial

averages are closer to observation (CRU) data set. Precipitation, air temperature,

maximum and minimum air temperature are climatological variables that we

observed for three selected regions (AL, EA and ME). By this way, we obtained

the best representative models for each domain with respect to different variables.

Moreover, the positive or negative coefficients of the models represent how

correlated they are to the observation data set.

The main purpose of using SVM is to classify the models in two groups. After

the classification, we try three simple methods by using the results and coefficients

of the program. First of all, we calculate weighted averages of all models in the

accepted region with respect to their coefficients (described in Table 1 as SVM-10,

SVM-5, SVM-1). Secondly, equally weighted averages of these models are calcu-

lated. (Ens-10, Ens-5 and Ens-1) Then, we repeated the same process by using the

models that have greater coefficients (greater than 0.8) and named them as SVM-

Best-1 (SVM-Best-5 and SVM-Best-10) At last, we take the averages of all models

in two regions to compare the efficiency of these new methodologies with a

classical approach. We take the differences between the results that we obtained

and the spatial averages of observation (CRU) data set for selected period and

variable over each domain to determine the biases as shown in Table 2 for spring

Table 1 The definitions of SVM train data set

Accepted region

boundaries

Rejected region

boundaries

Definition

SVM-1 49 and 51 percentiles 1 and 99 percentiles Weighted averages of models in

the accepted region with

respect to their coefficients
SVM-5 45 and 55 percentiles 5 and 95 percentiles

SVM-10 40 and 60 percentiles 10 and 90 percentiles

SVM-BEST-1 49 and 51 percentiles 1 and 99 percentiles Weighted averages of models

that have coefficients bigger

than 0.8
SVM-BEST-5 45 and 55 percentiles 5 and 95 percentiles

SVM-BEST-10 40 and 60 percentiles 10 and 90 percentiles

ENS-1 49 and 51 percentiles 1 and 99 percentiles Equally weighted averages of

models in the accepted regionENS-5 45 and 55 percentiles 5 and 95 percentiles

ENS-10 40 and 60 percentiles 10 and 90 percentiles

ENS – – Equally weighted averages of all

models

Table 2 Biases of different methods over AL region for Spring (MAM) season

AL ENS ENS-1 ENS-5 ENS-10 SVM-1 SVM-5 SVM-10 SVM-

BEST-1

SVM-

BEST-5

SVM-

BEST-10

PRE �0.365 �0.333 �0.314 �0.660 0.469 0.557 0.434 0.487 �0.819 0.289

TMN 0.537 0.458 0.298 0.552 �0.553 �0.728 �0.507 0.260 0.250 0.153

TMP 0.981 1.310 1.185 0.675 �0.268 �0.978 0.016 �0.249 0.079 0.064

TMX �0.714 0.213 0.417 1.087 �0.081 �0.914 0.250 �0.260 0.223 0.237
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season. Although the biases of the new methodologies are lower than the classical

approach (ENS) results, this doesn’t mean that using SVM gives more accurate

results than the ENS method. The main reason behind this fact is taking spatial

averages and positive and negative biases on different grids over a selected domain

can cancel each other. Therefore, we calculated the absolute errors of each grid and

took the spatial averages of the absolute errors.

As an example, SVM-10 and SVM-1 have the least mean biases of spring air

temperature (e.g. 0.016) and maximum air temperature (e.g. �0.081) over AL

domain, respectively. However, SVM-BEST-10 has the least absolute error of

spring air temperature and absolute error of SVM-5 of maximum air temperature

of the same season is the lowest one. The spatial means of absolute errors have to be

small in contrast to the other methodologies to find the most appropriate method.

Hence, the results in Table 3 are essential to claim the accuracy and success of SVM

usage in this sort of studies. In most of the samples, the differences between the

errors of proposed methods and ENS are not very significant. It stems from the fact

that the distributions of absolute errors of RCM data in PRUDENCE project are

very close to each other.

Finally, we choose the SVM method that has the minimum absolute error for

each domain and then calculate its differences between the absolute errors of the

ENS method. We can show only the spring season results of precipitation percent-

age and maximum air temperature results due to lack of space.

4 Results

We obtained significant correction in precipitation percentage amounts by using the

best representative SVM as shown in the Fig. 1. The correction amount increases to

20–25% over Germany, Poland and East-Netherlands. In the northern part of the

domain, ENS method can estimate the precipitation pattern over some parts such as

Bosnia-Herzegovina. However, spatial average of the whole domain is positive

(6.69%). The correction in the air temperature results and minimum air temperature

results are not as much as the correction in maximum air temperature results. ENS

method gives better results over the Western Poland, Northern Germany, Northern

Slovenia and Netherlands. On the other hand, the most suitable SVM methodology

(has minimum absolute error) corrects the maximum air temperature by 0–1.5�C
over the rest of the domain.

Table 3 Absolute errors of precipitation (PRE) and max air temperature (TMX) of different

methods over AL region for Spring (MAM) season

AL ENS ENS-1 ENS-5 ENS-10 SVM-1 SVM-5 SVM-

10

SVM-

BEST-1

SVM-

BEST-5

SVM-

BEST-10

PRE 0.693 0.672 0.712 0.673 0.678 0.656 0.659 0.650 1.007 0.616

TMX 0.691 0.760 0.959 0.672 0.832 0.671 0.694 1.012 1.216 1.279
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Fig. 1 The difference of absolute precipitation percentage and max air temperature error between
ENS method and the SVM method over three (AL, EA, ME) domain
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5 Conclusions

We have proposed a new methodology for representing the selected climatological

variable over a specific domain in a more precise way. In general, the performance

of our methodology is better than ENS approach. SVM effectively optimizes the

model results by the usage of coefficients representing the level of correspondence

with the observational data. With the analysis of the coefficients, the best model can

easily be picked for different regions and/or seasons. The correction amount of

absolute error changes in parallel with selected climatological variable, region and

season. For some circumstances, there is a very small correction in selected region,

because absolute errors of models are very close to each other. In order to increase

the correction amounts, more Regional or Global Climate model results can be

used. This type of methodology can be used to make further analysis of projections

of the climatological variables.
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