
Medial Crossovers for Genetic Programming

Krzysztof Krawiec

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
krawiec@cs.put.poznan.pl

Abstract. Wepropose a class of crossover operators for genetic program-
ming that aim at making offspring programs semantically intermediate
(medial) with respect to parent programs by modifying short fragments
of code (subprograms). The approach is applicable to problems that de-
fine fitness as a distance between program output and the desired out-
put. Based on that metric, we define two measures of semantic ‘mediality’,
which we employ to design two crossover operators: one aimed at making
the semantic of offsprings geometric with respect to the semantic of par-
ents, and the other aimed at making them equidistant to parents’ seman-
tics. The operators act only on randomly selected fragments of parents’
code, which makes them computationally efficient. When compared ex-
perimentally with four other crossover operators, both operators lead to
success ratio at least as good as for the non-semantic crossovers, and the
operator based on equidistance proves superior to all others.

Keywords: Genetic programming, Program semantic, Semantic
crossover.

1 Introduction

The function of crossover in evolutionary computation is to produce new can-
didate solutions (offspring) that fuse some of the features of existing candidate
solutions (parents). This principle is typically implemented by following the bi-
ological paradigm, i.e., by recombining the genotypes of parents. An implicit
assumption hidden in this line of reasoning is that recombination effects prop-
agate to the phenotypes in an analogous way, and the offspring is expected to
behave in a way that mixes, to some extent, the behaviors of its parents.

This renders invalid if the elements of the genotype do not map one-to-one to
the elements of phenotype, which is unfortunately always the case for nontrivial
problems. Most problems considered in genetic programming (GP, [1]) belong
here too, as the interactions between the elements of genotype (instructions)
are usually strong, and influence the output of program (and subsequently its
fitness) in a complex way that is hard to predict and model. As a result, an
operator that recombines parents’ programs cannot be in general expected to
always recombine their behaviors.

Trying to circumvent this difficulty, we propose a family of operators, medial
crossovers, designed to produce programs that inherit not only parts of parents’
code, but also some elements of parents’ semantics. To this aim, we exploit the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 K. Krawiec

fact that many genetic programming tasks define fitness using a metric that
compares the actual program behavior with the desired one. In the proposed
operators, that very metric is employed to alter subprograms within parents’
code so that their outcome at certain execution stage become more similar to
each other, which indirectly affects the semantic of entire offspring programs in
a way that gives chance to exploit certain properties of the fitness landscape.

Although research on semantic in GP intensified only recently, there are a few
related contributions. McPhee et al. were probably one of the first to study the
impact of crossover on program semantics and so-called semantic building blocks
[2]. In [3], Moraglio et al. considered properties of semantic spaces for different
metrics and provided guidelines for designing semantically geometric crossovers.
The semantically-aware crossover by Quang et al. [4] swaps a pair of subtrees
in parent solutions that have similar, yet not too similar, semantics. To author’s
knowledge however, this is the first study on semantic crossovers that act in a
semantically medial way on the level of subprograms.

2 Metric-Based Crossover Operators

We consider here the class of problems for which the objective function captures
the divergence between the program output and the desired output, given as
a part of problem formulation. This class embraces the prevailing part of GP
applications, where individuals are typically tested on a set of fitness cases, and
fitness is some form of error built upon the outcome of these tests (cf. symbolic
regression and boolean function synthesis).

Formally, we assume that the (minimized) fitness of a candidate solution p is
defined as f(p) = ||p, t||, where t is the (known) desired output (target) deter-
mined by problem instance, and || || is a metric measures the distance between
t and the output produced by p. The metric imposes a structure on the set of
programs (potential solutions), turning it into a space. It is essential to empha-
size that, throughout this paper, the metric operates on the phenotypic level,
ignoring program code (syntax) and taking into account only its output, which
within this paper we identify with program semantics [2,5,6]. We call a fitness
function defined in this way metric-based fitness function.

Crossover is a search operator that produces a new search point (offspring) o
(or a pair of offspring) based on a pair of search points p1, p2 (parents). In the
following, we consider only nontrivial offspring o �= p1, p2.

The metric allows us to express some properties of the offspring in the context
of its parents. An offspring o that fulfills

||o, p1||+ ||o, p2|| = ||p1, p2||, (1)

will be referred to as geometric offspring, and a crossover operator that produces
such offspring geometric crossover (a.k.a. topological crossover [7]).

To demonstrate the potential that dwells in geometric operators, let us con-
sider a special case, a geometric crossover for which the distributions of ||o, p1||
and ||o, p2|| are uniform and the city-block distance as the metric. In such

Medial Crossovers for Genetic Programming 63

a case, the expected fitness of offspring is (f(p1) + f(p2))/2. The sketch of
proof is as follows. The metric is a norm here and we switch to vector spaces,
so let xi denote the ith coordinate of point in the space. A geometric off-
spring o has to fulfill oi = αipi1 + (1 − αipi2), where αi ∈ (0, 1). Let di(x)
denote the difference between the location of x and t on coordinate i. Then,
di(o) = ti − oi = ti − [αipi1 + (1 − αipi2)]. It is easy to show that, because for
uniform distribution E(αi) = E(1− αi) = 1

2 , it must hold:

E(di(o)) = ti − E(αi)pi1 − E(1 − αi)pi2 = ti − pi1
2

− pi2
2

=
d(p1) + d(p2)

2

Without loss of generality, we can ignore the sign of E(di(o)), in which case
it becomes the expected contribution to o’s distance from t (fitness) on the ith
dimension. The expected fitness of o for city-block fitness is then

E(f(o)) = E(
∑

i

di(o)) =
∑

i

E(di(o)) =

∑
i d

i(p1) +
∑

i d
i(p1)

2
=

f(p1) + f(p2)

2

Verification of this property for other norms is beyond the scope of this paper.
Nevertheless, under all metrics, the offspring cannot be worse than the worse of
the parents.

As another important property, let us notice that, under all metrics, the ex-
pected fitness of a geometric offspring is minimized when it fulfills also the con-
dition of equidistance:

||o, p1|| = ||o, p2|| (2)

Without providing formal proof, let us notice that, under any finite-support
distribution of targets t, given random locations p1 and p2, a point that is equidis-
tant from them is expected to be the closest to t.

Producing a geometric offspring that is simultaneously equidistant can be
difficult (not mentioning the challenge of designing a geometric crossover alone,
which we discuss later). The reason for this is twofold: (i) for discrete spaces
such a point may not exist, and (ii) a program o with the output that fulfills
(2) may not exist (an equidistant semantics cannot be expressed within the
assumed programming language). A possible solution to this problem is to relax
condition (2) and produce a geometric offspring that is as equidistant as possible.
However, a question arises: how much a program should be allowed to diverge
from equidistance to be still considered a useful offspring for a particular pair of
parents? As ||o, p1|| and ||o, p2|| diverge from each other, the offspring becomes
more and more similar to one of the parents, which makes the search less effective.
Note also that, in general, there is no guarantee of existence of even a single
nontrivial geometric offspring for a pair of programs.

An analogous problem arises when one takes an alternative path, i.e., relaxing
geometricity condition (1) while requiring perfect equidistance (2): again, a per-
fectly equidistant offspring may simply not exist at all (i.e., even if geometricity
is completely ignored), and it is hard to tell what is the acceptable divergence
from geometricity.

64 K. Krawiec

An offspring that meets even one of the above conditions may therefore not
exist. This obliges us to simultaneously relax both of them to design an operator
that works in practice. This can be formalized by defining analogous criteria:
divergence from geometricity dG and divergence from equidistance dE :

dG(o, p1, p2) = ||o, p1||+ ||o, p2|| − ||p1, p2|| (3)

dE(o, p1, p2) =
∣∣ ||o, p1|| − ||o, p2||

∣∣

In the following, we consider operators that attempt to minimize dG or dE ,
which we refer to as (semantically) medial crossovers.

An exact implementation of medial crossover is in most cases technically in-
feasible. The primary cause is the complexity (and, typically, irreversibility) of
genotype-phenotype mapping, which makes direct synthesis of an offspring that
minimizes one or both of the above criteria impossible or at least computation-
ally intractable. Apart from certain special cases [3], there is no direct way of
constructing an offspring program that exhibits intermediate behavior with re-
spect to the behaviors of parents programs (intermediate in the sense of the
assumed metric || · ||). Standard crossover operators typically ignore that fact
and produce offspring that are intermediate in purely syntactical terms, but this
does not translate into analogous intermediacy in the space of program behav-
iors. For instance, tree-swapping crossover tends to produce offspring that are
semantically very different from the parents [8].

In theory, one could consider all potential offspring (i.e., all possible pro-
grams), and pick the one that minimizes the criterion (criteria). But such proce-
dure is computationally impractical (exponential time complexity w.r.t. program
length), and can be only approximated via sampling, which we studied in past
[5]. Moreover, if all programs were to be generated and run (the latter required
to know the program output), then also the optimal solution (o = t) would be
among them. A search algorithm that has to consider all solutions to proceed
with a single iteration has limited usefulness, to say the least.

In general then, it is impossible to generate ‘mixtures’ of parents that are
optimal in the sense of dG or dE . Can we at least approximate such behavior?
We investigate this possibility in the subsequent section.

3 Partially Medial Crossover

In this section, we come up with a family of crossover operators that are based on
the introduced criteria and are technically realizable. The key idea is to port the
concepts from Section 2, where they applied to entire programs, to subprograms.
Our hypothesis is that by making programs semantically more similar to each
other (medial) at intermediate execution steps (partially), we have a chance of
making them overall more similar.

The definition of subprogram depends on the assumed program representa-
tion. For simplicity, we represent here programs as linear sequences of instruc-
tions, in which case a subprogram is a continuous subsequence of instructions.

Medial Crossovers for Genetic Programming 65

Let p[i..j], i ≤ j denote the subprogram of program p composed of instructions
from ith to jth inclusive. We also assume that concatenation of any programs
p1 and p2 is a valid program and denote it as p1p2. Finally, we limit our con-
siderations to domains with Markov property: the result of an instruction (the
memory state it produces) depends only on the current memory state. |p| is the
length of program p (number of instructions).

The standard two-point crossover for this program representation has the
natural interpretation of swapping parents’ subprograms located between two
randomly drawn loci i and j. The partially medial crossover (PMX) we propose is
also homologous, and also affects subprograms in the parent solutions, however,
the pieces of code pasted into the offspring result from analysis of semantic
properties of the corresponding parents’ subprograms. The choice of the code to
be pasted between loci i and j can follow a simple principle: paste the subprogram
that makes the resulting offspring possibly medial with respect to the parents at
locus j.

More formally, the subprogram p that replaces the instructions from i to j
(|p| = j− i+1) in the kth offspring (k = 1, 2) to be created from parents p1 and
p2 is the one that minimizes:

argmin
p

d(pk[1..i− 1]p, p1[1..j], p2[1..j]) (4)

where d is one of the divergence criteria (Eq. 3). Thus, when minimizing the
divergence, PMX takes into account only the semantic effects of the first j in-
structions. The kth offspring is a program of the form pk[1..i− 1]ppk[j +1..|pk|],
where the ‘head’ pk[1..i− 1] and the ‘tail’ pk[j + 1..|pk|] are copied from the kth

parent.
PMX considers all potential subprograms p that can be pasted between loci

i and j. As the number of such instruction sequences is exponential in function
of |p|, we limit the span of loci i and j: only i is drawn at random, and j is set
to i+ l − 1, where l is a parameter that limits the length of considered subpro-
grams. The number of instructions we need to execute in order to calculate (4)
is still exponential in function of l, but can be significantly reduced, so that the
computational overhead for small l is reasonable (see analysis of computational
complexity in Section 5).

The ties that may occur when minimizing (4) are resolved at random. In this
way, we avoid unnecessary bias, and the outcome of crossover becomes partially
indeterministic.

4 The Experiment

The objective of the experiment is to compare the partially medial crossover in
its two variants, minimizing the divergence from geometricity dG (PMXG) and
minimizing the divergence from equidistance dE (PMXE). As control approach
we use macromutation (MM), which overwrites the affected instructions with
randomly generated instructions, and two-point crossover (2PX), that swaps

66 K. Krawiec

the affected subprograms between parents. To make comparison fair, they both
affect a randomly selected continuous subsequence of instructions of length l, so
the fraction of code they are allowed to modify is the same as for PMX.

We employ also one-point crossover (1PX) that draws a locus at random, splits
each parent into head and tail, and swaps the tails, and a ‘reset’ operator RND
that produces a random offspring (the entire offspring’s code is randomized).
All operators produce two offspring when applied to a pair of parents.

We conduct two experiments, one to quantitatively characterize the semantic
impact of considered operators (Section 4.2), and one to assess the performance
of evolutionary search (Section 4.3).

4.1 The Puzzle World

We adopt the task of solving the sliding puzzle as an experimental framework.
Consider the 3×3 sliding puzzle with 8 movable pieces. The puzzle can be in
one of 9! = 362, 880 states, which can change as a result of four possible moves
L,R,U,D, where we assume the moves to shift the empty space (and thus also a
piece). Any finite sequence composed of moves can be considered as a program,
with moves playing roles of instructions, and the state of the puzzle correspond-
ing to a memory state of a virtual machine that executes the program.

We define a puzzle task as follows: given a starting state s0 and a target
state t, find a program of length m that transforms the former one into the
latter. Formally, let s(p) denote the final memory state produced by program p
that started execution from memory state s0. The puzzle task is then to find
p, |p| = m such that s(p) = t. Although insisting on finding a program of
length exactly m may sound too specific, let us note that almost every shorter
program that solves a task can be extended to length m by inserting ineffective
instructions that shift the space back and forth. Thus, a task can be solved by
a program which effective length is less than m.

To solve the sliding puzzle task with an evolutionary approach, we evolve indi-
viduals that encode programs as fixed-length sequences (vectors) of instructions.
Evolution will be driven by a (minimized) fitness function f defined as the total
city-block distance between the locations of the 8 pieces and the empty space
() in s(p) and locations of corresponding elements in t, which is always an even
number. Such definition of f is not accidental, it is used as a heuristic path cost
estimate to solve this type of problems with exact algorithms like A*.

Formally, f(p) = ||s(p), t||, and f is thus a metric-based fitness function in
the sense introduced in Section 2. For instance, if t = (1,2,3,4,5,6,7,8,), then

f

(
1 2 3
4 6
7 8 5

)
=

∥∥∥∥∥
1 2 3
4 6
7 8 5

,
1 2 3
4 5 6
7 8

∥∥∥∥∥ = 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 2 = 4

Despite apparent simplicity, sliding puzzle captures the important features of
programming task. It is contextual, i.e., the effect of an instruction depends on
the current memory state. In particular, an instruction or instruction sequence
can be ineffective when applied to a specific state (like the move R applied to

Medial Crossovers for Genetic Programming 67

Table 1. The statistics describing average spatial relationships between the semantics
of parents and offspring for different types of crossover operators

Statistics RND MM 2PX 1PX PMXE PMXG

1 ||p1, p2|| − ||o1, o2|| 0.00 0.00 0.00 0.00 0.83 0.78

2 dG(o, p1, p2) 11.53 3.83 3.76 4.61 4.91 2.83

3 dE(o, p1, p2) 3.54 7.94 7.88 5.07 5.87 7.98

4 ||p, o|| 11.52 3.83 3.83 8.71 5.51 3.31

5 Pr(dG(o, p1, p2) = 0|o �= p1, p2) 0.02 0.05 0.06 0.11 0.08 0.09

the state evaluated above). It is compositional : new programs can be created by
composing (concatenating) other programs. Finally, the memory is composed of
multiple elements and a single instruction changes only some of them.

Apart from these features, sliding puzzle exhibits also some features character-
istic for genetic programming tasks. Firstly, programs are evaluated by running
them (testing) on input data. Secondly, the performance of a program is a func-
tion of a distance between its output and the desired output.

4.2 Experiment 1: Properties of Search Operators

In this experiment, we analyze properties of the considered crossover operators
by applying them to random programs. For each operator, we repeat 1, 000, 000
times the following steps: (i) generate a random starting state s0, (ii) generate
two random parents p1, p2, (iii) apply the operator to p1 and p2, producing
offspring o1 and o2, (iv) run the parent and offspring programs, starting with
memory state s0, and (v) measure the spatial relationships between the outputs
(semantics) of parent and offspring programs. Note that this analysis abstracts
from the target t, and that all these measurements concern entire programs (the
final program outcomes).

For brevity we report the results only for program length m = 40 and l = 3,
(the number of instructions affected by the PMX, MM, and 2PX), but other
lengths led to consistent conclusions. Table 1 shows the averaged statistics ob-
tained in step (v) of the above procedure, including 1) the reduction of distance
between offspring compared to the distance between parents ||p1, p2|| − ||o1, o2||,
2) mean divergence from geometricity dG, 3) mean divergence from equidistance
dE , 4) mean distance between the parent and the offspring ||p, o||, and 5) prob-
ability of generating a perfectly geometric offspring, excluding the trivial cases,
i.e., such that the offspring is a copy of one of the parents.

We start with noting that the non-semantic operators (RND, MM, 2PX, 1PX)
are incapable to produce offspring that is more semantically similar than the
parents (row 1). The offspring of PMX operators, on the other hand, is typically
substantially more similar to each other.

Some non-semantic operators, despite their simplicity, turn out to be quite
good at producing medial solutions (rows 2 and 3). MM, 1PX, and 2PX diverge

68 K. Krawiec

from geometricity (dG) more than PMXG, which is the best in that respect, but
less than PMXE . However, considering the rate of non-trivial offspring that are
perfectly geometric (row 5), only 1PX turns out to be better than PMXG.

The offspring of PMXE is not the most equidistant from parents, yielding
to 1PX and RND. The fact that RND attains the lowest dE may be surprising
at first, but can be explained by the structure of the space. For the consid-
ered sample of programs, the maximum distance between any pair of parents
is 24, and the median of distance is 12. As the metric assumes only even val-
ues, a completely random offspring produced by RND is then quite likely to be
equidistant. However, such offspring is typically very different from the parents,
having mean parent-offspring distance almost twice as high as for PMXE (row
4), so it is unlikely to inherit much of their behavior.

The main conclusion we draw from this experiment is that, despite the fact
that our medial crossover operators are partial, i.e., affect only short subpro-
grams of parents’ code, their effects propagate to the end of program and affect
their semantic in expected way (i.e., consistent with the used criterion). Because
they also clearly produce offspring that is more similar than the parents (row
1) and semantically not too distant from them (row 4), they are quite likely to
prove useful in evolutionary search, which we verify in subsequent section.

One might argue that, from time to time, PMX happens to affect the very last
3 of 40 instructions, and the observed values of indicators are mainly due to such
cases. Such events are however rare: there are 37 possible crossover points, so less
than 3% of cases fall into this category. Also, we conducted an analogous analysis,
not reported here for brevity, where the first crossover point was constrained to
the first half of the genotype. The resulting values of indicators, though less
extreme, confirmed the above conclusions.

4.3 Experiment 2: Performance in Evolutionary Search

To evaluate usefulness of PMX operators as search tools, we carried out a evolu-
tionary experiment for different program lengths (m = 20, 40, 60, 80) and various
length of the affected code fragment (l = 3, 4, 5).

Each evolutionary run is to find a solution to a specific, randomly generated
puzzle task (s0,t), where s0 and t are random permutations of the canonical state
(1,2,3,4,5,6,7,8,). For each combination of m and l, 50 independent runs were
carried out, each solving a different puzzle task. Note that, as only half of the 9!
permutations of pieces are reachable from any given puzzle state [9], not all such
tasks are solvable, i.e., there does not exist a sequence of moves of any length
that leads from s0 to t. Moreover, as the worst configuration of 8-puzzle requires
31 moves to solve (see the OEIS integer sequence A087725, [10]), some of the
tasks are not solvable for the smallest considered program length l = 20. These
difficulties however affect equally all the considered methods, so the comparison
remains fair.

We use generational evolution driven by the fitness function defined in Section
4.1, i.e., as overall city-block distance between the locations of pieces in the state
reached by the program from the locations of pieces in the goal state t. Each run

Medial Crossovers for Genetic Programming 69

Table 2. Success ratio [%] for the 3 × 3 puzzle, for various length of code fragment
affected by crossover (l) and total program length (m)

m 20 40 60 80
l 3 4 5 3 4 5 3 4 5 3 4 5

RND 0 0 0 2 2 2 10 10 10 10 10 10
MM 2 0 0 22 30 28 40 42 48 46 50 50
2PX 0 0 0 2 4 2 6 6 6 22 16 20
1PX 0 0 0 2 8 6 0 10 10 18 18 16

PMXE 4 2 6 30 48 46 46 62 60 58 60 62
PMXG 0 0 0 6 6 6 18 10 20 40 28 34

evolves a population of 1, 000 individuals for 1, 000 generations, unless a solution
is found earlier. The solutions are selected using tournament of size 7, after which
they either undergo crossover using one of the aforementioned operators (with
probability 0.9), or one-point mutation (with probability 0.1, and probability of
affecting a single instruction 0.03).

Note that for RND evolution is effectively a random memoryless search.
Table 2 presents the success rate for different settings. Before comparing the

operators, we should notice that all of them perform better when operating on
longer programs. As the average task difficulty remains the same, this suggests
that finding a program that reaches the target state from the starting state in,
say, 40 instructions can be more difficult than finding a program that does the
same using 80 instructions.

MM performs remarkably well, especially when confronted with other non-
semantic operators. Apparently, introducing completely random modifications
in the code is on average more profitable than purely syntactic swapping of
code fragments implemented by 1PX and 2PX. However, the semantic-aware
manipulation provided by PMX clearly pays off. In particular, for all considered
parameter settings, PMXE finds the optimum more frequently than any other
operator. The efficiency of PMXG as a search tool is much worse, though almost
always not worse than 2PX and 1PX. This suggests that, at least for the con-
sidered domain of sliding puzzle, it is more important to generate solutions that
inherit roughly the same ‘fraction’ of behavior from both parents, even if that
share is low. Minimizing the divergence from geometricity is less effective, which
may be due to the slower pace at which the PMXG traverses the search space
(see row 4 of Table 1).

The high performance of MM suggests that the task we consider here is rel-
atively easy. This observation inclined us to consider the harder 4 × 4, 15-piece
puzzle. As the 4× 4 puzzle has 20,922,789,888,000 possible states, this time we
consider longer programs of length 100, 200, and 300. All other settings, includ-
ing the method of task generation, remain the same.

The results, presented in Table 3, support earlier conclusions. PMXE is again
superior, and its relative outperformance over MM is even larger than for the
3×3 puzzle: probability of finding the optimum is now often several times greater
than for MM. PMXG is much worse again, but still comparable to MM. Other
operators fail completely.

70 K. Krawiec

Table 3. Success ratio [%] for the 4 × 4 puzzle, for various length of code fragment
affected by crossover (l) and total program length (m)

m 100 200 300
l 3 4 5 3 4 5 3 4 5

RND 0 0 0 0 0 0 0 0 0
MM 0 0 0 4 2 4 10 8 4
2PX 0 0 0 0 0 0 0 0 0
1PX 0 0 0 0 0 0 0 0 0

PMXE 0 2 2 4 12 20 26 18 22
PMXG 0 0 2 0 2 2 4 4 6

5 Discussion

Good performance of PMX suggests that generating programs that share some
elements of behavior (semantic) with the earlier visited solutions is an impor-
tant and desired feature of search operator. In particular, this turns to be more
important here than inheriting the genetic material.

However, PMX is incapable to explicitly modify the semantic of programs
and operates on short subprograms only. Although, as we have shown in Table
1, such modifications tend to affect the output of entire programs in the expected
way, it is the affected loci (instructions from i to j) where the semantic effect
of PMX is the strongest. Why then generating programs that exhibit medial
semantics at intermediate stages of execution should be profitable?

Our working explanation is the modularity of the puzzle task. To solve a
task, i.e., to reach the memory state t, one has first to solve a certain subtask,
thus reach a certain intermediate memory state s′ (subgoal), which is typically
unknown prior to solving the task. The partially medial crossovers, by making
more similar the memory states visited by the parent programs, may promote
convergence to such subgoals. However, how effective this process is can depend
on many factors, including the number of solutions that exist for a given puzzle
task, the number of such subgoals for a given task, and the structure of the
fitness landscape (e.g., how does attaining such a subgoal pay off in terms of
fitness). Thus, this hypothesis remains to be verified, possibly with help of the
concept of interdependency (see, e.g., [11,12]).

An important difference between PMX and the non-semantic operators is that
the former involve partial execution of the considered program fragments. This
involves an extra computational overhead, which is not reflected in Tables 2
and 3. PMX needs to run (i) the heads of the parent programs and then (ii)
the subprograms to be pasted (Formula 4). The former part requires execution
of i − 1 instructions per parent, but this has to be done only once: we store
the result of head execution (the final memory state), and use it then as the
starting memory state for considered subprograms. For a programming language
comprising n instructions, PMX considers in the latter part nl subprograms of
length l, which apparently requires executing lml instructions. Note however
that these subprograms partially overlap and can be represented by a n-ary tree

Medial Crossovers for Genetic Programming 71

of depth l, which comprises only nl − 1 nodes (instructions). For instance, for
l = 3 and n = 4 this means reduction from 64 to 15 instructions.

The overall number of instructions executed when crossing over at locus i is
then 2(i+nl−2), where factor 2 is due to producing two offspring. The worst-case
cost, for crossing over at the very end of parents, amounts to 2(m− l+ nl − 1).
For short subprograms and small instructions sets this is a moderate computa-
tional overhead. Should this overhead become unacceptable, some form of sam-
pling from the space of subprograms may be considered. Given that evolutionary
search is stochastic anyway, exact minimization of dG or dE in (4) may be unnec-
essary, and some performance improvements should be possible to attain with
approximate approach at lower computational cost.

6 Conclusion

The overall conclusion of this study is that partially medial crossovers, search
operators that make the subprograms of parent programs semantically inter-
mediate with respect to parents, can positively contribute to effectiveness of
genetic programming algorithms. The extent of this contribution is undoubtedly
problem-dependent, and will vary with instruction set and metric definition.
Nevertheless, we hyptothesize that a significant fraction of real-world genetic
programming problems can potentially benefit from this approach. Our ratio-
nale for this claim is that real-world programming tasks tend to be modular.

The puzzle world seems to constitute a convenient demonstrator for the con-
cept of PMX for several reasons. Firstly, because the programs are intended to
solve a specific instance of puzzle task, for a single input (starting memory state
s0), the semantic of a (sub)program can be identified with the memory state
it produces. For problems that require testing a (sub)program on a set of fit-
ness cases (e.g., symbolic regression), the notion of semantic and the associated
metric would have to be adapted (cf. [2,4,5,13]). Secondly, puzzle manipulating
has the natural interpretation of sequential programs, which implies convenient
correspondence of loci in the parent programs. For less regular program repre-
sentations like trees, PMX would need some extra means to first decide which
subprograms (subtrees) to operate on. Such extensions and the above hypothesis
concerning modular problems remain to be verified in future research.

Acknowledgment. This work has been supported by NSC grant no.
DEC-2011/01/B/ST6/07318.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

2. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

72 K. Krawiec

3. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic programming.
In: Igel, C., Lehre, P.K., Witt, C. (eds.) The 5th Workshop on Theory of Random-
ized Search Heuristics, ThRaSH 2011, Copenhagen, Denmark (2011)

4. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic
Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

5. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: Raidl, G., Rothlauf, F., Squillero, G., Drechsler, R., Stuetzle, T., Birattari,
M., Congdon, C.B., Middendorf, M., Blum, C., Cotta, C., Bosman, P., Grahl,
J., Knowles, J., Corne, D., Beyer, H.G., Stanley, K., Miller, J.F., van Hemert,
J., Lenaerts, T., Ebner, M., Bacardit, J., O’Neill, M., Di Penta, M., Doerr, B.,
Jansen, T., Poli, R., Alba, E. (eds.) GECCO 2009: Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, Montreal, pp. 987–994.
ACM (2009)

6. Krawiec, K., Wieloch, B.: Analysis of semantic modularity for genetic program-
ming. Foundations of Computing and Decision Sciences 34(4), 265–285 (2009)

7. Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Poli,
R., Banzhaf, W., Beyer, H.G., Burke, E., Darwen, P., Dasgupta, D., Floreano,
D., Foster, J., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A.,
Thierens, D., Tyrrell, A. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 1377–
1388. Springer, Heidelberg (2004)

8. Johnson, C.G.: Genetic Programming Crossover: Does It Cross over? In: Vanneschi,
L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 97–108. Springer, Heidelberg (2009)

9. Archer, A.F.: A modern treatment of the 15 puzzle. American Mathematical
Monthly 106, 793–799 (1999)

10. The On-line Encyclopedia of Integer Sequences, http://oeis.org
11. Altenberg, L.: Modularity in evolution: Some low-level questions. In: Rasskin-

Gutman, D., Callebaut, W. (eds.) Modularity: Understanding the Development
and Evolution of Complex Natural Systems, pp. 99–128. MIT Press, Cambridge
(2005)

12. Watson, R.A.: Compositional Evolution: The impact of Sex, Symbiosis and Modu-
larity on the Gradualist Framework of Evolution, NA. Vienna series in theoretical
biology. MIT Press (February 2006)

13. Krawiec, K.: Semantically embedded genetic programming: automated design of
abstract program representations. In: Krasnogor, N., et al. (eds.) GECCO 2011:
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation, Dublin, Ireland, pp. 1379–1386. ACM (2011)

http://oeis.org

	Medial Crossovers for Genetic Programming
	Introduction
	Metric-Based Crossover Operators
	Partially Medial Crossover
	The Experiment
	The Puzzle World
	Experiment 1: Properties of Search Operators
	Experiment 2: Performance in Evolutionary Search

	Discussion
	Conclusion
	References

