

Lecture Notes in Computer Science 7244
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alberto Moraglio Sara Silva
Krzysztof Krawiec Penousal Machado
Carlos Cotta (Eds.)

Genetic
Programming
15th European Conference, EuroGP 2012
Málaga, Spain, April 11-13, 2012
Proceedings

13

Volume Editors

Alberto Moraglio
University of Birmingham, School of Computer Science
Edgbaston, Birmingham B15 2TT, UK
E-mail: a.moraglio@cs.bham.ac.uk

Sara Silva
INESC-ID Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
E-mail: sara@kdbio.inesc-id.pt

Krzysztof Krawiec
Poznań University of Technology, Institute of Computing Science
Piotrowo 2, 60-965, Poznań, Poland
E-mail: krawiec@cs.put.poznan.pl

Penousal Machado
University of Coimbra, Department of Informatics Engineering
Pólo II - Pinhal de Marrocos, 3030-290 Coimbra, Portugal
E-mail: machado@dei.uc.pt

Carlos Cotta
Universidad de Málaga, ETSI Informática
Campus de Teatinos, 29071 Málaga, Spain
E-mail: ccottap@lcc.uma.es

Cover illustration:
"Chair No. 17" by The Painting Fool (www.thepaintingfool.com)

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29138-8 e-ISBN 978-3-642-29139-5
DOI 10.1007/978-3-642-29139-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012934045

CR Subject Classification (1998): D.1, F.1, F.2, I.2, I.5, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 15th European Conference on Genetic Programming (EuroGP) took place
during April 11–13, 2012 in the historical city of Málaga, in southern Spain, a
delightful place for the conference. Being the only conference exclusively devoted
to genetic programming and the evolutionary generation of computer programs,
EuroGP attracts scholars from all over the world.

The unique character of genetic programming has been recognized from its
very beginning. Presently, with over 7000 articles in the online GP bibliography
maintained by Bill Langdon, it is clearly a mature form of evolutionary compu-
tation. EuroGP has had an essential impact on the success of the field, by serving
as an important forum for expressing new ideas, meeting, and starting up col-
laborations. Many are the success stories witnessed by the now 15 editions of
EuroGP. To date, genetic programming is essentially the only approach that has
demonstrated the ability to automatically generate and repair computer code
in a wide variety of problem areas. It is also one of the leading methodologies
that can be used to ‘automate’ science, helping researchers to find hidden com-
plex models behind observed phenomena. Furthermore, genetic programming
has been applied to many problems of practical significance, and has produced
human-competitive solutions.

EuroGP 2012 received 46 submissions from 21 different countries across four
continents. The papers underwent a rigorous double-blind peer-review process,
each being reviewed by at least three members of the international Program
Committee from 23 countries. The selection process resulted in this volume,
with 18 papers accepted for oral presentation (39% acceptance rate) and five for
poster presentation (50% global acceptance rate for talks and posters combined).
The wide range of topics in this volume reflects the current state of research in the
field, including different genres of genetic programming (tree-based, grammar-
based, Cartesian), theory, novel operators, and applications.

Together with four other co-located evolutionary computation conferences,
EvoCOP 2012, EvoBIO 2012, EvoMusArt 2012, and EvoApplications 2012, Eu-
roGP 2012 was part of the Evo* 2012 event. This meeting could not have taken
place without the help of many people.

First to be thanked is the great community of researchers and practitioners
who contributed to the conference by both submitting their work and reviewing
others’ as part of the Program Committee. Their hard work, in evolutionary
terms, provided both variation and selection, without which progress in the field
would not be possible!

The papers were submitted, reviewed, and selected using the MyReview con-
ference management software. We are sincerely grateful to Marc Schoenauer of
INRIA, France, for his great assistance in providing, hosting, and managing the
software.

VI Preface

We would like also to thank the local organizer Carlos Cotta and the
CAESIUM group of the University of Málaga, and the following local sponsors
of Evo*: University of Málaga, in particular the School of Computer Science and
the School of Telecommunications, and respective Directors Professor José M.
Troya and Professor Antonio Puerta, as well as the Málaga Convention Bureau.

We thank Penousal Machado of the University of Coimbra, assisted by Pedro
Miguel Cruz, for creating and maintaining the official Evo* 2012 website, and
Miguel Nicolau of University College Dublin, for refurbishing the software tools
used to produce this volume.

We especially want to express our genuine gratitude to Jennifer Willies of the
Institute for Informatics and Digital Innovation at Edinburgh Napier University,
UK. Her dedicated and continued involvement in Evo* since 1998 has been and
remains essential for building the image, status, and unique atmosphere of this
series of events.

April 2012 Alberto Moraglio
Sara Silva

Krzysztof Krawiec
Penousal Machado

Carlos Cotta

Organization

Administrative details were handled by Jennifer Willies, Edinburgh Napier
University, Institute for Informatics and Digital Innovation, Scotland, UK.

Organizing Committee

Program Co-chairs

Alberto Moraglio University of Birmingham, UK
Sara Silva INESC-ID Lisboa, Portugal

Publication Chair

Krzysztof Krawiec Poznan University of Technology, Poland

Publicity Chair

Penousal Machado University of Coimbra, Portugal

Local Chair

Carlos Cotta University of Málaga, Spain

Program Committee

Alex Agapitos University College Dublin, Ireland
Lee Altenberg University of Hawaii at Manoa, USA
Lourdes Araujo UNED, Spain
R. Muhammad Atif Azad University of Limerick, Ireland
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Mohamed Bahy Bader University of Portsmouth, UK
Helio Barbosa LNCC / UFJF, Brazil
Xavier Blasco Universidad Politecnica de Valencia, Spain
Anthony Brabazon University College Dublin, Ireland
Nicolas Bredeche Université Paris-Sud XI / INRIA / CNRS,

France
Stefano Cagnoni University of Parma, Italy
Pierre Collet LSIIT-FDBT, France
Ernesto Costa University of Coimbra, Portugal
Luis Da Costa Université Paris-Sud XI, France
Michael Defoin Platel Rothamsted Research, UK

VIII Organization

Antonio Della Cioppa University of Salerno, Italy
Ian Dempsey University College Dublin / Virtu Financial,

Ireland
Stephen Dignum University of Essex, UK
Federico Divina Pablo de Olavide University, Spain
Marc Ebner Ernst-Moritz-Arndt Universität Greifswald,

Germany
Aniko Ekart Aston University, UK
Anna Esparcia-Alcazar S2 Grupo, Spain
Daryl Essam University of New South Wales @ ADFA,

Australia
Francisco Fernandez de Vega Universidad de Extremadura, Spain
Gianluigi Folino ICAR-CNR, Italy
James A. Foster University of Idaho, USA
Steven Gustafson GE Global Research, USA
Jin-Kao Hao LERIA, University of Angers, France
Simon Harding Memorial University of Newfoundland, Canada
Inman Harvey University of Sussex, UK
Malcolm Heywood Dalhousie University, Canada
David Jackson University of Liverpool, UK
Colin Johnson University of Kent, UK
Tatiana Kalganova Brunel University, UK
Ahmed Kattan Um Alqura University, Saudi Arabia
Graham Kendall University of Nottingham, UK
Michael Korns Korns Associates, USA
Jan Koutnik IDSIA, Switzerland
Krzysztof Krawiec Poznan University of Technology, Poland
Jiri Kubalik Czech Technical University in Prague,

Czech Republic
William B. Langdon University College London, UK
Kwong Sak Leung The Chinese University of Hong Kong
John Levine University of Strathclyde, UK
Evelyne Lutton INRIA, France
James McDermott MIT, USA
Penousal Machado University of Coimbra, Portugal
Bob McKay Seoul National University, Korea
Nic McPhee University of Minnesota Morris, USA
Jorn Mehnen Cranfield University, UK
Julian Miller University of York, UK
Alberto Moraglio University of Birmingham, UK
Xuan Hoai Nguyen Hanoi University, Vietnam
Miguel Nicolau INRIA, France
Julio Cesar Nievola Pontificia Universidade Catolica do Parana,

Brazil

Organization IX

Michael O’Neill University College Dublin, Ireland
Una-May O’Reilly MIT, USA
Fernando Otero University of Kent, UK
Ender Ozcan University of Nottingham, UK
Andrew J. Parkes University of Nottingham, UK
Clara Pizzuti Institute for High Performance Computing and

Networking, Italy
Gisele Pappa Federal University of Minas Gerais, Brazil
Riccardo Poli University of Essex, UK
Thomas Ray University of Oklahoma, USA
Denis Robilliard Université Lille Nord, France
Marc Schoenauer INRIA, France
Lukas Sekanina Brno University of Technology, Czech Republic
Yin Shan Medicare Australia
Sara Silva INESC-ID Lisboa, Portugal
Moshe Sipper Ben-Gurion University, Israel
Alexei N. Skurikhin Los Alamos National Laboratory, USA
Guido Smits The Dow Chemical Company, USA
Terence Soule University of Idaho, USA
Lee Spector Hampshire College, USA
Ivan Tanev Doshisha University, Japan
Ernesto Tarantino ICAR-CNR, Italy
Jorge Tavares University of Coimbra, Portugal
Theo Theodoridis University of Essex, UK
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal, and

University of Milano-Bicocca, Italy
Sebastien Verel University of Nice-Sophia Antipolis/CNRS,

France
Katya Vladislavleva University of Antwerp, Belgium
Man Leung Wong Lingnan University, Hong Kong
Lidia Yamamoto University of Strasbourg, France
Mengjie Zhang Victoria University of Wellington, New Zealand

Table of Contents

Oral Presentations

Evolving High-Level Imperative Program Trees with Strongly Formed
Genetic Programming . 1

Tom Castle and Colin G. Johnson

Android Genetic Programming Framework . 13
Alban Cotillon, Philip Valencia, and Raja Jurdak

Genetic Programming for Generalised Helicopter Hovering Control 25
Dimitris C. Dracopoulos and Dimitrios Effraimidis

Cartesian Genetic Programming for Memristive Logic Circuits 37
Gerard David Howard, Larry Bull, and Andrew Adamatzky

A New, Node-Focused Model for Genetic Programming 49
David Jackson

Medial Crossovers for Genetic Programming . 61
Krzysztof Krawiec

Improving Face Detection . 73
Penousal Machado, João Correia, and Juan Romero

Grammar Bias and Initialisation in Grammar Based Genetic
Programming . 85

Eoin Murphy, Erik Hemberg, Miguel Nicolau, Michael O’Neill, and
Anthony Brabazon

Improving Relevance Measures Using Genetic Programming 97
Kourosh Neshatian and Mengjie Zhang

An Investigation of Fitness Sharing with Semantic and Syntactic
Distance Metrics . 109

Quang Uy Nguyen, Xuan Hoai Nguyen, Michael O’Neill, and
Alexandros Agapitos

Evolving Reusable Operation-Based Due-Date Assignment Models for
Job Shop Scheduling with Genetic Programming . 121

Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using
Grammatical Evolution . 134

Miguel Nicolau, Matthew Saunders, Michael O’Neill,
Bruce Osborne, and Anthony Brabazon

XII Table of Contents

Multi-Objective Ant Programming for Mining Classification Rules 146
Juan Luis Olmo, José Raúl Romero, and Sebastián Ventura

Matrix Analysis of Genetic Programming Mutation 158
Andrew J. Parkes, Ender Özcan, and Matthew R. Hyde

An Ecological Approach to Measuring Locality in Linear Genotype to
Phenotype Maps . 170

Tom Seaton, Julian F. Miller, and Tim Clarke

Coevolution in Cartesian Genetic Programming . 182
Michaela Šikulová and Lukáš Sekanina

Evolutionary Design of Message Efficient Secrecy Amplification
Protocols . 194

Tobiáš Smolka, Petr Švenda, Lukáš Sekanina, and Vashek Matyáš

Automatic Design of Ant Algorithms with Grammatical Evolution 206
Jorge Tavares and Francisco B. Pereira

Posters

Random Sampling Technique for Overfitting Control in Genetic
Programming . 218

Ivo Gonçalves, Sara Silva, Joana B. Melo, and João M.B. Carreiras

Evolutionary Operator Self-adaptation with Diverse Operators 230
MinHyeok Kim, Robert Ian (Bob) McKay, Dong-Kyun Kim, and
Xuan Hoai Nguyen

The Effect of Bloat on the Efficiency of Incremental Evolution of
Simulated Snake-Like Robot . 242

Ivan Tanev, Tüze Kuyucu, and Katsunori Shimohara

Bayesian Network Structure Learning from Limited Datasets through
Graph Evolution . 254

Alberto Paolo Tonda, Evelyne Lutton, Romain Reuillon,
Giovanni Squillero, and Pierre-Henri Wuillemin

Efficient Phenotype Evaluation in Cartesian Genetic Programming 266
Zdeněk Vaš́ıček and Karel Slaný

Author Index . 279

Evolving High-Level Imperative Program Trees

with Strongly Formed Genetic Programming

Tom Castle and Colin G. Johnson

School of Computing, University of Kent,
Canterbury, CT2 7NF, UK

{tc33,C.G.Johnson}@kent.ac.uk
http://www.kent.ac.uk

Abstract. We present a set of extensions to Montana’s popular Strongly
Typed Genetic Programming system that introduce constraints on the
structure of program trees. It is demonstrated that these constraints can
be used to evolve programs with a naturally imperative structure, us-
ing common high-level imperative language constructs such as loops. A
set of three problems including factorial and the general even-n-parity
problem are used to test the system. Experimental results are presented
which show success rates and required computational effort that compare
favourably against other systems on these problems, while providing sup-
port for this imperative structure.

Keywords: Genetic programming, Imperative programming, Loops.

1 Introduction

Evolving high-level imperative programs with genetic programming (GP) [1] is
challenging. Programs are required to abide by complex structural rules just
to be legal, and introducing commonly used constructs such as iteration bring
further complexities to ensure that programs terminate and can be evaluated
effectively. Because of these challenges, the GP research community has tradi-
tionally focused on the evolution of functional programs with a simple nested
structure. However, the success of recent work using GP to perform tasks such as
bug fixing commercial imperative programs [2], demonstrates the value of being
able to evolve high-level imperative code. Modern imperative languages such as
C/C++, Java and Python are widely used in the software development industry,
so the evolution of code in this form is highly relevant for any application of GP
in this area.

In this paper, we introduce Strongly Formed Genetic Programming (SFGP),
a novel approach to constraining the structure of the program trees evolved with
GP. SFGP extends previous work by Montana on Strongly Typed Genetic Pro-
gramming [3] and combines it with constraints similar to those used by Koza in
his work on constrained syntactic structures [1]. We demonstrate how the addi-
tional structural constraints of SFGP can be used to evolve high-level imperative
code within a tree representation.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 T. Castle and C.G. Johnson

The rest of this paper is organised as follows. Section 2 discusses some of the
previous work on evolving imperative programs. Section 3 then gives a detailed
description of how SFGP works. Section 4 describes the experiments that were
conducted with the results presented and discussed in section 5. Finally, we con-
clude and summarise some of the research that this work leads on to in section 6.

2 Background

Some of the earliest attempts at evolving imperative programs were with a linear
GP [4,5] approach. In linear GP, programs are comprised of a sequence of either
machine code or interpreted higher- level instructions. The instructions read from
and write to registers. The main incentive for using linear GP is faster execution
speed [6], since the instructions can often be executed directly on hardware with
little or no interpretation.

Grammar-guided GP is another area that has prompted work into imperative
GP. Grammars provide a mechanism for constraining source code that is gen-
erated within a valid predefined syntax. O’Neill and Ryan [7] evolved multi-line
C programs in their Grammatical Evolution (GE) system to solve the Santa Fe
ant trail problem. While shown to be successful at solving this problem, the use
of the standard GE algorithm in evolving more complex imperative programs
is difficult since it uses context-free grammars which lack the expressiveness
to describe semantic constraints. Other authors [8,9,10] have described exten-
sions to GE that use context-sensitive grammars, but none go as far as using
the extensions to evolve imperative programs. More recently, Langdon [11] has
demonstrated how a grammar-guided GP system can be used to evolve com-
pilable C++ CUDA kernels. Other grammar-based approaches have made use
of context-sensitive grammars such as DCTG- GP [12] and LOGENPRO [13]
which uses logic grammars to induce programs in a range of languages, includ-
ing imperative C programs.

Montana proposed Strongly Typed Genetic Programming (STGP) [3] to allow
nodes to define data-type constraints on their inputs that will be satisfied by the
algorithm. This removes the need for the nodes to satisfy the closure property [1].
STGP does not provide any explicit mechanism for restricting the structure of
program trees as grammars do, but the data-typing constraints do go some way
to providing the restrictions necessary for supporting an imperative structure.
Imperative programs are inherently composed of sequences of statements which
are to be executed in order. Koza [1] used ProgN functions to achieve something
similar. However, as McGaughran and Zhang [14] observe, this approach may
provide a sequential ordering but it does so without a control structure that
corresponds to any standard imperative constructs. They go on to present their
own system based on a method of chaining statements.

3 Strongly Formed Genetic Programming

In this section we describe our method of evolving programs with a naturally
high-level imperative structure. We refer to the method by the name Strongly

Evolving High-Level Imperative Program Trees with SFGP 3

Formed Genetic Programming (SFGP), since it extends Montana’s STGP, with
additional constraints to the structure or form of the program trees.

Let us first clarify the limitation of STGP with an example. STGP requires
all non-terminals to define the required data-type of each of their inputs. But,
no limitation can be imposed on which terminal or non-terminal will provide
that input. The child node may be any terminal or non-terminal of the correct
data-type. Consider a type of node that performs the variable assignment oper-
ation. Any non-trivial imperative program is likely to require such a node. This
Assignment node will require two inputs: a variable, and a value of the same
data-type to assign to that variable. STGP can easily constrain these two inputs
to be of the same data-type, but requires additional constraints to limit the first
child to be a Variable node, rather than any other node of that data-type. The
same problem exists with constraining code-blocks to contain only statements,
and loop constructs that require a variable to update with an index.

SFGP resolves this problem by introducing an additional requirement of non-
terminal nodes; that they define both a data-type and a node- type for each
argument. The node-type property of an argument is defined as being the re-
quired terminals or non-terminals that can be a child node at this point, which
when evaluated will return a value of the specified data- type. This therefore
provides an explicit constraint on the shape and structure of program trees. In
the case of an integer Assignment node, this can be used to state that the first
child should not only be of an integer data-type, but should also specifically be
a Variable node. These constraints must then be satisfied throughout the evo-
lutionary process with minor modifications to the initialisation, mutation and
crossover operators, as described in the following sections.

3.1 Initialisation

SFGP uses a grow initialisation procedure to construct random program trees,
where each node is selected at random from those with a compatible data-
type and node-type required by its parent (or the problem itself for the root
node). Montana’s grow initialisation operator made use of lookup tables to check
whether a data-type is valid at some depth, but the addition of a second con-
straint excessively complicates these tables. The alternative is to allow the algo-
rithm to backtrack when no valid nodes are possible for the required constraints.
At each step, if no valid nodes are possible within the available depth, then the
function returns an error, and if the construction of a subtree fails with an error
then an alternative node is chosen and a new subtree generated at that point.
The algorithm ensures that all program trees that are generated satisfy all data-
type and node-type limitations and that each tree is within the maximum-depth
parameter.

Pseudo-code for the grow initialisation algorithm is listed in Algorithm 1.
The GenerateTree function is initially called with a data type parameter that
is the required return type for the problem and a node type parameter which
defines the node-type required for the root of the program tree. On all problems
in this paper, a root node of SubRoutine is used, which is intended to model a

4 T. Castle and C.G. Johnson

Algorithm 1. Initialisation procedure, where dt, nt and depth are the required
data-type, node-type and maximum depth. The filterNodes(S, dt, nt, depth)
function is defined to return a set comprised of only those nodes in S with the
given data-type and node-type, and with non-terminals removed if depth = 0.

1: function GenerateTree(dt,nt, depth)
2: V ← filterNodes(S, dt, nt, depth)
3: while V not empty do
4: r ← removeRandom(V)
5: for i← 0 to arity(r) do
6: dti← required data-type for ith child
7: nti← required node-type for ith child
8: subtree← generateT ree(dti,nti, depth− 1)
9: if subtree �= err then
10: attach subtree as ith child
11: else
12: break and continue while
13: end if
14: end for
15: return r � Valid subtree complete
16: end while
17: return err � No valid subtrees exist
18: end function

module of code such as a function or method. This means that all programs that
are generated have the same basic imperative structure, shown in figure 1. The
SubRoutine node requires two children: a CodeBlock with a void data-type and
a Variable with the same data-type as the subroutine. Nodes with a void data-
type do not return a value. When evaluated, a subroutine’s code-block, which
is a list of some predefined number of statements, is first executed and then the
value of the variable is returned as the result of the subroutine.

3.2 Mutation

Our mutation operator employs the initialisation algorithm to grow new subtrees
of the same data-type and node-type as an existing randomly selected node in
a program tree. This node is then replaced with the newly generated subtree.
The initialisation procedure is able to generate trees within a given maximum
depth, so replacement subtrees are generated to be no deeper than the maximum
depth parameter, minus the depth of the mutation point. Assuming the set of
available nodes is unchanged, then it should always be possible to generate a legal
replacement subtree for any existing node, but it is possible that the replacement
is syntactically or semantically identical to the existing subtree. It is possible that
this could lead to a high degree of neutral mutation if the syntax contains little
variety.

Evolving High-Level Imperative Program Trees with SFGP 5

SubRoutine

Variable CodeBlock

Statement

Statement

...

Fig. 1. The imperative structure of all program trees. In this paper, CodeBlocks with
exactly 3 statement arguments were used. This was an arbitrary choice and an alter-
native size may produce different results. Evaluation executes each of the code-block’s
statements, before returning the value of the sub-routine’s variable.

3.3 Crossover

The subtree crossover operator has been modified to maintain the node-type
constraint while exchanging genetic material between two program trees. A node
is selected at random in one of the programs. A second node is chosen at random
from those nodes in the other program that are of the same data- type and node-
type as the first node. The subtrees rooted at these two selected nodes are then
exchanged. Those resultant child programs that have depths that exceed the
maximum depth parameter are discarded.

3.4 Polymorphism

When implemented with an object-oriented approach, SFGP is able to support a
simple form of polymorphism for both the data-type and node-type constraints.
In figure 1 the CodeBlock node is shown to have a sequence of children with a
Statement node-type. In an object-oriented system, this can be interpreted as
any object that is an instance of the Statement class, or any sub-class. Nodes
such as Assignment, IfStatement and ForLoop may then be implemented as
sub-classes of Statement and may all appear in this position. In fact, it makes
little sense to create a node of the type Statement itself, it is merely used
to maintain the hierarchy of node-types. We refer to such node-types as ab-
stract node-types. Expression is another abstract node-type that is used fre-
quently. Data-type constraints can make use of the same polymorphic properties.
If Integer and Float are both sub-classes of a class called Number, then either
may appear where a required data-type of Number is specified. Note that the
object-oriented approach we refer to here is a property of the implementation,
rather than of the evolved programs, which are not themselves object-oriented.

3.5 Syntax

In this section we itemise the list of nodes that are used in the rest of this paper,
along with the required data-type and node-types for their arguments.

6 T. Castle and C.G. Johnson

– SubRoutine - requires a void CodeBlock and a Variable of the same data-
type as the sub-routine. On evaluation, the code-block is evaluated and then
the value of the variable is returned as the result. In all our experiments,
SubRoutine is defined as the required root node-type.

– CodeBlock - is defined to require a fixed number of child nodes (3 used in
all cases within this paper) of a Statement node-type and a void data-type.
On evalutation, each child will be evaluated in sequence. CodeBlock has a
void data-type and so does not return a value.

The following node-types are all subtypes of the abstract Statement node-type.
All statements have a void data-type and so do not return any value.

– Loop - requires two children: an integer Expression and a CodeBlock. The
expression is evaluated to provide a number of iterations to perform, and the
code-block is evaluated the specified number of times. To maintain reason-
able evaluation times, the number of iterations is capped at 100. No variables
are manipulated by this loop construct.

– ForLoop - requires an integer Variable, which is updated with the index on
each iteration from 1 to an upper bound; an integer Expression which is
evaluated once to supply the upper bound (capped at 100 iterations) and a
CodeBlock which is evaluated once per iteration.

– ForEachLoop - requires three children: a Variable of the element data-
type, an Expression of some pre-defined array data-type and a CodeBlock.
The code-block is evaluated once for each element of the array obtained
by evaluating the expression argument. For each iteration, the value of the
element is assigned to the variable.

– IfStatement - requires one boolean Expression and one CodeBlock. The
code-block is conditionally evaluated only if the expression evaluates to true.

– Assignment - requires one Variable and one Expression input. Both in-
puts are required to have the same data- type specified on construction. On
evaluation the expression is evaluated, and the result is assigned as the value
of the variable.

The following node-types are all subtypes of the abstract Expression node-type.
All expressions have non-void data-types.

– Add, Subtract, Multiply - require two integer Expression children each,
with the integer result of the arithmetic operation returned.

– And, Or, Not - require two, two and one boolean Expression children re-
spectively, with the boolean result returned.

– Literal - holds a fixed literal value of a given data-type.

– Variable - holds a value of a given data-type which may be modified (by
assignment) throughout evaluation. The data-type of a variable is fixed at
construction.

Evolving High-Level Imperative Program Trees with SFGP 7

4 Experiments

A series of experiments were carried out to demonstrate SFGP’s ability to gen-
erate programs composed of standard programming constructs, within the im-
perative structure enfored by our constraints. All experiments were carried out
using the EpochX evolutionary framework [15], with our own extension in which
the representation and operators were implemented as described in section 3.
500 runs were performed on each of three problems: factorial, Fibonacci and
even-n-parity. These problems were chosen because they require the use of es-
sential programming constructs such as loops and arrays and have also been
used numerous times previously in the literature [16,17,18]. A maximum of 50
generations and a population of 500 were used on all problems. The subtree
crossover and subtree mutation operators were chosen from with probabilities
0.9 and 0.1 respectively and tournament selection was used with a tournament
size of 7. All other control parameters used are outlined in tables 1, 2 and 3.

4.1 Factorial

The program to be evolved here is an implementation of the factorial function.
One input is provided, which is the integer variable i, where the ith element of
the sequence is the expected result. The first 20 elements of the sequence were
used to evaluate the quality of solutions, with a normalised sum of the error used
as an individual’s fitness score. The fitness function is defined in (1), where n is
the size of the training set, i is the ith training case, f(i) is the correct result
for training case i, and g(i) is the estimated result for training case i returned
by the program under evaluation. Each individual which successfully handles all
training inputs is tested for generalisation using a test set consisting of elements
21 to 50 of the sequence.

Fitness =

n∑
i=0

|f(i)− g(i)|
|f(i)|+ |g(i)| (1)

Table 1. Parameter tableau for the factorial problem

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
Non-terminals: SubRoutine, CodeBlock, ForLoop, Assignment, Add,

Subtract, Multiply
Terminals: i, loopV ar1, 1 (integer Literal)

1 The additional input loopVar is an integer variable, provided specifically for use by
the ForLoop construct to contain the iteration index. Its initial value is 0.

8 T. Castle and C.G. Johnson

4.2 Fibonacci

The Fibonacci problem was posed in a similar form as factorial, with an integer
variable input i and an expected output which is the ith element of the Fi-
bonacci sequence. Two further inputs were also provided in the form of variables
containing the value of the first two elements of the sequence; 0 and 1. The same
function (1) was also used to determine an individual’s fitness, with the training
inputs comprised of the first 20 elements of the Fibonacci sequence. A test set
made up of elements 21 to 50 of the sequence were used to test the generalisation
of successful programs.

Table 2. Parameter tableau for the Fibonacci problem

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
Non-terminals: SubRoutine, CodeBlock, Loop, Assignment, Add, Subtract
Terminals: i, i0, i1

4.3 Even-n-Parity

The boolean parity problems are widely used as a benchmark task in the GP
literature [1,5,19]. However, they have only occasionally been tackled in the
general form; for all values of n [18,20]. A program which successfully solves the
even-n-parity problem, must receive as input an array of booleans, arr, of any
length and must return a boolean true value if an even number of the elements
are true, otherwise it must return false. All possible inputs to the 3-bit even-
parity problem were used as the training data, as used by Wong and Leung [18].
The fitness of an individual was then a simple count of how many of the 8 inputs
were incorrectly classified. A test set consisting of all possible input arrays of
lengths 4 to 10 was used to test the generalisation of solutions that successfully
solved the training cases.

Table 3. Parameter tableau for the even-n parity problem

Root data-type: Boolean
Root node-type: SubRoutine
Max. depth: 8
Non-terminals: SubRoutine, CodeBlock, ForEachLoop, IfStatement,

Assignment, And, Or, Not
Terminals: arr, boolV ar1, boolV ar22

2 boolVar1 and boolVar2 are boolean variables for use by the ForEachLoop and root
SubRoutine constructs. Their initial values were arbitrarily set as false.

Evolving High-Level Imperative Program Trees with SFGP 9

5 Results

Table 4 lists a summary of the results, with the success rates and generalis-
ability of the solutions that were discovered in the experiments. The table also
describes the computational effort that was required to solve each problem, with
the related performance curves displayed in figures 2a, 2b and 2c. The required
computational effort was calculated in the manner of Koza [1] to be the num-
ber of individuals that must be processed to guarentee a solution with 99%
confidence.

Previous attempts at evolving recursive structures that can generate the Fi-
bonacci sequence include Harding et al [16], who used Self-Modifying Cartesian
GP to generate both the first 12 and first 50 elements of the sequence with suc-
cess rates up to 90.8% and up to 94.5% of those able to generalise to 74 elements
of the sequence. In [21], a Linear GP system was used to achieve success rates up
to 92%, and which generalised in 78% of cases. Other approaches have been less
successful. Agapitos and Lucas used Object Oriented GP[17] to get success rates
up to 25% on the first 10 elements of the sequence, but required a minimum
computational effort of 2 million. Their success rates were slightly improved on
the factorial problem, on which they report a 74% success rate and a minimum
effort of 600,000. However, they note that their approach, which relies on Java’s
Reflection mechanism, is computationally expensive.

The even parity problems are considered to be difficult problems for GP to
solve [20]. Koza’s experiments required 1,276,000 individuals to be processed to
yield a solution to just the 4-bit version of the problem and was unable to solve
the problem with any higher number of bits without the use of automatic func-
tions. In contrast, SFGP produced potential solutions with just 30,500 individu-
als processed, 81.4% of which were able to solve the general form of the problem
including the 4-bit version. Other research has tackled the general even-n-parity
problem. Agapitos and Lucas[17] required 680,000 individuals to be processed,
where they used all the even-2-parity and even-3-parity problems as training
data. In [18], Wong and Leung used just the even-3-parity problems as training
inputs and reported their minimum computational effort as 220,000.

The primary reason for SFGP’s greater performance on even-n-parity is likely
to be due to the use of the ForEachLoop node, which encapsulates the necessary

Table 4. Results summary, where Train% is the proportion of runs that produced at
least one solution for all training cases and Test% is the proportion that produced a
solution that generalised to solve all test cases. The confidence interval for the com-
putational effort is calculated using the Wilson ’score’ method [22]. The Evals column
shows the number of program evaluations required to find a solution, which is a product
of the effort and number of training cases.

Train % Test % Effort 95% CI Evals

Factorial 70.8 70.6 29,400 25,800 - 33,500 588,000
Fibonacci 61.6 59.8 41,500 35,600 - 48,500 830,000

Even-n-Parity 91.6 81.4 30,500 26,400 - 35,400 244,000

10 T. Castle and C.G. Johnson

Generation
1 10 20 30 40 50

0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

8 : 29400

0

63933

127866

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(a) Factorial

Generation
1 10 20 30 40 50

0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

7 : 41500

0

86000

172000

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(b) Fibonacci

Generation
1 10 20 30 40 50

0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

6 : 30500

0

59866

119733

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(c) Even-n-parity

Fig. 2. Performance curves, where P (M, i) is the success rate and I(M, i, z) is the
number of individuals to process to find a solution with 99% confidence

behaviour of performing an operation on each element of the array. The other
studies mentioned relied on complex recursive structures developing through
evolution.

5.1 Example Solution

As an example, one typical solution to the factorial problem that was found by
SFGP is displayed below:

public long getFactorial(long i) {

loopVar = loopVar;

long x = i;

loopVar = 1L;

for (long y = 1L; y <= x; x++, loopVar = x) {

loopVar = (loopVar * i);

i = loopVar;

loopVar = loopVar;

}

i = i;

return i;

}

This example program is expressed using Java syntax, but the abstract syntax
trees generated by SFGP can be interpreted as programs in the syntax of any

Evolving High-Level Imperative Program Trees with SFGP 11

programming language that supports the imperative constructs used. This pro-
gram has not undergone any post-processing, and contains statements such as
i = i which will have no impact on the result. These could easily be identified
and removed by static analysis tools. Note that the loop structure contains the
necessary infrastructure to ensure the index variable is updated but the bounds
remain immutable, as defined by the ForLoop node that it represents.

6 Conclusions

In the course of this paper, we have introduced Strongly Formed Genetic Pro-
gramming (SFGP) and demonstrated how it can be used to constrain the struc-
ture of program trees. In particular, we have shown that it is able to constrain
evolved program trees to a more natural high-level imperative structure and
make use of some standard imperative language constructs such as loops. The
program trees that are evolved using this system may be easily expressed in the
syntax of modern imperative programming languages. The results of using this
imperative structure, that have been presented, compare very favourably with
existing systems on these problems.

One current limitation with SFGP, that we would like to address in future
work, is the lack of support for generic functions. Other possible future work
includes investigating the impact of the arbitrary settings that have been used
in this paper, such as the iteration bound on loop constructs and the fixed
number of statements in a code-block. Support for imperative concepts such as
variable declarations and recursion could also be of some value.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

2. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Fickas, S., et al. (eds.) ICSE 2009, Vancouver, pp.
364–374 (2009)

3. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3,
199–230 (1995)

4. Nordin, P.: A compiling genetic programming system that directly manipulates the
machine code. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp.
311–331. MIT Press (1994)

5. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Number XVI in Genetic
and Evolutionary Computation. Springer, Heidelberg (2007)

6. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programing.
Lulu.com (2008)

7. O’Neill, M., Ryan, C.: Evolving Multi-line Compilable C Programs. In: Langdon,
W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598,
pp. 83–92. Springer, Heidelberg (1999)

8. Cleary, R., O’Neill, M.: An Attribute Grammar Decoder for the 01 MultiCon-
strained Knapsack Problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005.
LNCS, vol. 3448, pp. 34–45. Springer, Heidelberg (2005)

12 T. Castle and C.G. Johnson

9. de la Cruz Echeand́ıa, M., de la Puente, A.O., Alfonseca, M.: Attribute Gram-
mar Evolution. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, Part II. LNCS,
vol. 3562, pp. 182–191. Springer, Heidelberg (2005)

10. Ortega, A., de la Cruz, M., Alfonseca, M.: Christiansen grammar evolution: Gram-
matical evolution with semantics. IEEE Transactions on Evolutionary Computa-
tion 11, 77–90 (2007)

11. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: Sobrevilla, P., et al. (eds.) 2010 IEEE World Congress on Computational In-
telligence, Barcelona, pp. 2376–2383. IEEE Press (2010)

12. Ross, B.J.: Logic-based genetic programming with definite clause translation gram-
mars. In: Banzhaf, W., Daida, J.M., Eiben, A.E., Garzon, M.H., Honavar, V.,
Jakiela, M.J., Smith, R.E. (eds.) GECCO 1999, Orlando, vol. 2, p. 1236. Morgan
Kaufmann (1999)

13. Wong, M.L., Leung, K.S.: Combining genetic programming and inductive logic
programming using logic grammars. In: 1995 IEEE Conference on Evolutionary
Computation, vol. 2, Perth, pp. 733–736. IEEE Press (1995)

14. McGaughran, D., Zhang, M.: Evolving more representative programs with genetic
programming. International Journal of Software Engineering and Knowledge En-
gineering 19, 1–22 (2009)

15. Castle, T., Beadle, L.: Epochx: genetic programming software for research (2007),
http://www.epochx.org

16. Harding, S., Miller, J.F., Banzhaf, W.: Self Modifying Cartesian Genetic Program-
ming: Fibonacci, Squares, Regression and Summing. In: Vanneschi, L., Gustafson,
S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481,
pp. 133–144. Springer, Heidelberg (2009)

17. Agapitos, A., Lucas, S.: Learning Recursive Functions with Object Oriented Ge-
netic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt,
A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 166–177. Springer, Heidelberg (2006)

18. Wong, M.L., Leung, K.S.: Evolving recursive functions for the even-parity problem
using genetic programming. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances
in Genetic Programming, vol. 2, pp. 221–240. MIT Press, Cambridge (1996)

19. Castle, T., Johnson, C.G.: Positional Effect of Crossover and Mutation in Gram-
matical Evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S.,
Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 26–37. Springer, Heidelberg
(2010)

20. Harding, S., Miller, J.F., Banzhaf, W.: Self modifying cartesian genetic program-
ming: Parity. In: Tyrrell, A., et al. (eds.) 2009 IEEE Congress on Evolutionary
Computation, Trondheim, pp. 285–292. IEEE Press (2009)

21. Wilson, G., Heywood, M.: Learning recursive programs with cooperative coevolu-
tion of genetic code mapping and genotype. In: Thierens, D., et al. (eds.) GECCO
2007, London, vol. 1, pp. 1053–1061. ACM Press (2007)

22. Walker, M., Edwards, H., Messom, C.: Confidence Intervals for Computational
Effort Comparisons. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 23–32. Springer, Heidelberg
(2007)

http://www.epochx.org

Android Genetic Programming Framework

Alban Cotillon, Philip Valencia, and Raja Jurdak�

Autonomous Systems Laboratory
CSIRO ICT Centre, Brisbane, Australia

alban.cotillon@insalien.org,

{philip.valencia,raja.jurdak}@csiro.au

Abstract. Personalisation in smart phones requires adaptability to dy-
namic context based on application usage and sensor inputs. Current
personalisation approaches do not provide sufficient adaptability to dy-
namic and unexpected context. This paper introduces the Android Ge-
netic Programming Framework (AGP) as a personalisation method for
smart phones. AGP considers the specific design challenges of smart
phones, such as resource limitation and constrained programming envi-
ronments. We demonstrate AGP’s utility through empirical experiments
on two applications: a news reader application and an energy efficient
localisation application. Results show that AGP successfully adapts ap-
plication behaviour to user context.

Keywords: Genetic programming, Embedded, Smartphone.

1 Introduction

Smartphones have experienced exponential growth in recent years. These phones
embed a growing diversity of sensors, such as gyroscope, accelerometer, Global
Positioning System (GPS), and cameras, with broad applicability in areas such
as urban sensing or environmental monitoring. Coupled with diverse user profiles
[1], this provides significant user personalization opportunities, such as location-
based and usage-based services, but it also involves significant challenges in
adaptation to new or unexpected context.

Most smartphone algorithms, aiming at either data-centric [4] or user-centric
personalization [2], are based on static or rule-based approaches. However, per-
sonalization increasingly depends on contextual information and user inputs [3].
Both are subject to dynamic changes, which motivates the use of methods that
can not only adapt to expected changes or behaviors, but can also learn how to
deal with unexpected changes in context.

Online learning is well-suited for smart phone personalization. In particu-
lar, online genetic programming supplies common basic constructs for a smart
phone application that can evolve over time according to individual user prefer-
ences. This paper introduces Android Genetic Programming Framework (AGP)

� Cotillon is with the Autonomous Systems Lab, CSIRO ICT Centre and also with
INSA Lyon. Valencia and Jurdak are with the Autonomous Systems Lab, CSIRO
ICT Centre, and also with the School of ITEE, University of Queensland.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 A. Cotillon, P. Valencia, and R. Jurdak

for the mobile Operating System (OS), Android. We have chosen the Android
platform as it is mainly open-source. As far as we know, this is the first ge-
netic programming solution available on smartphones. The AGP framework can
deal with dynamic fitness functions, providing a context-specific solution. Our
goal is to demonstrate the flexibility of our new platform and how it can solve
multi-objective problems in a dynamic environment.

2 Related Work

Several previous works in Genetic Programming have focused on architectural is-
sues. Whereas some solutions provide generic frameworks for Evolutionary Com-
putation problems [8,9,6], others propose application-specific solutions. Ismail et
al. [10] describe a GP framework for extracting a mathematic formula needed for
Fingerprint Matching, whereas, in Pattern Recognition [11], the authors focus on
a genetic programming framework for content-based image retrieval. In Learning
to Advertise [14], Lacerda et al. introduce a framework for associating ads with
web pages based on GP. Valencia et al. [12] study genetic programming for Wire-
less Sensor Networks and propose the In Situ Distributed Genetic Programming
(IDGP) framework. DGPF [15] brings utilities for Master/Slave, Peer-to-Peer,
and P2P/MS hybrid distributed search execution. P-Cage [22] introduces and
evaluates a complete framework for the execution of genetic programs in a P2P
environment. It shows the relevance of using P2P networks scalability to coun-
teract computation limitations. GA implementation has already been done on
portable devices such as the Nokia N73 [7]. Its reliance on Python requires the
user to install Python Runtime and various libraries whereas AGP can be used
off-the-shelf without any additional module.

Design patterns describe the interaction between groups of classes or objects.
They concentrate on specific concerns for implementing source code to support
program organization. When they are well integrated into a framework, they
ensure the goals of extensibility and reuse. Lenaerts and Manderick [13] discuss
the construction of an object-oriented Genetic Programming framework using
on design patterns to increase flexibility and reusability. McPhee et al. [8] extend
the latter to Evolutionary Computation (EC). As the problem to solve becomes
wider, it leads to a more abstract set of classes. Based on those works, Ventura
et al. introduced JCLEC [6], a Java Framework for evolutionary computation.
They present a layered architecture and provide a GUI for EC. This paper
similarly uses Java for a genetic programming framework, albeit for a more
resource constrained smart phone platform.

3 AGP: Android Genetic Programming Framework

3.1 Motivation

Mobile phone users have always tried to customise their devices, for instance
through personalised ring tones. The emergence of smartphones takes the per-
sonalization possibilities to a new level. First of all, smartphones have access to

Android Genetic Programming Framework 15

a huge diversity of Internet data which can be augmented with sensor-based con-
text information. Secondly, the higher computing performance of smart phones
enables developers to create novel applications. The combination of processing
power, content accessibility and context awareness opens new opportunities for
personalization. However, personalisation mechanisms have been slow to respond
to these opportunities, relying hugely on static or rule-based algorithms. These
approaches suffer in adaptability to unexpected changes, which requires a shift
in personalisation methods.

Online genetic programming can evolve over time and is able to gather data
from different sources. Because it continuously assesses new application configu-
rations, genetic programming can improve the user experience by incorporating
data from multiple sensors to tailor application performance to user preferences.

3.2 Design Challenges

Android is an operating system for mobile devices developed and maintained
by Google and the open-source community. It provides an API which allows
programmers to develop applications using the Java language. We used this
particular API to implement the AGP framework. Although several other GP
frameworks are available for the Java platform, none is suitable for Android
because Android replaces several subsets of Java class libraries from the JavaSE
with its own new classes. Moreover, developing a GP framework for a mobile OS
brings some challenges that are discussed in this section.

User Interaction. GP frameworks designed for desktop machines focus on
solving of complex problems offline. On the other hand, Android smartphones
provide an opportunity for online learning of user-specific context to improve
user experience. These devices provide increasingly sophisticated applications
that can be customised to user preferences. To allow the capture of this diver-
sity richness, the AGP framework directly accesses the Android API functions to
learn from the user context without requiring a dedicated scripting language. As
for security, the developer has to fill the application manifest file with the per-
missions required by the application, with Android being a privilege-separated
operating system.

Limited Resources. The small form factor of smartphones brings computation
and energy constraints, which restrict GP usage and require careful design of the
GP infrastructure. Developers must carefully use AGP as it shouldn’t contribute
to undesirable user experiences, such as quick battery depletion. For instance,
AGP can perform costly computation when energy resources are ample, and
minimise learning when the user has high demand for the phone’s resources or
when the battery is running flat.

Battery level is easy to obtain through the Android API, which uses a coarse-
grained scale from 0 to 100. However, real battery depletion can’t be assessed
from this battery level as the depletion rule differs from one device to another. We

16 A. Cotillon, P. Valencia, and R. Jurdak

Fig. 1. Interpreter package organization

recommend to track a system file used by Android to record live consumption.
This file is available on most of the devices.

To validate our framework, we demonstrate AGP with applications on two
different generations of Android devices: the early HTC Magic running Android
1.6; and the more capable Nexus S, embedding a dual-core processor with the
recent Android Gingerbread (version 2.3).

Services and Intent. GP needs long-running background operations, which
we implement using services under Android. An Android service is a component
that can run in the background even when the user is not interacting with the
device [16].

AGP implements one service for the Interpreter Shell which is used to process
the programs generated. For each program launched, a new Interpreter Shell is
created. By default, a service runs in the main thread of the application that
hosts it. In our implementation, we forced the Interpreter Shell to be launched
into a separate process in order to reduce Application Not Responding (ANR)
errors when bugged programs are pushed.

Developers never directly deal with the Interpreter Shell. Rather, they launch
it through a class called Interpreter. The latter attaches an Interpreter Context
to the Interpreter Shell, which enables saving of variables and active links to
other components during the program execution (cf. Figure 1).

The Interpreter Context is specifically needed for a GP framework running on
a mobile OS such as AGP. Unlike GP frameworks running on desktop computers,
we do not have direct access to some sensors. For example, an application may
notify the Android layer that a sensor is no longer required, however the OS must
consider others applications concurrently accessing the sensor before deciding
whether to turn it off. Since a GP developer does not have full access to the
system, they need to keep trace of the previous actions performed to provide the
state of the sensors in the program context. The Interpreter Context provides
this functionality.

Figure 2 provides a high level view of the AGP framework.The coreAGP frame-
work provides the infrastructure for writing newGPapplication for Android smart-
phones. An application using AGPwill require the developer to implement at least
two services which can easily communicate with a Communicator class.

3.3 Common Data Structures

Functions and Terminals. Functions and terminals are the primitives of any
GP system. Our framework allows reusability of functions and terminals for

Android Genetic Programming Framework 17

Fig. 2. Global architecture of AGP

all applications. With AGP, the developer has to implement our specific Java
interface for functions or terminals, respectively FunctionInterface and Termi-
nalInterface. It specifies the required methods for the GP framework such as the
primitive arity, the string representation used to serialize, the execution and the
estimated time cost.

To provide flexibility for the developer to vary the selection of primitives
for their application, we integrate the Strategy Pattern [21]. FunctionSet and
TerminalSet classes respectively store the available functions and terminals for
an application, those which respectively implement FunctionInterface and Ter-
minalInterface. The developer can easily add, remove or look for a primitive
through dedicated methods implemented in FunctionSet and TerminalSet.

Population and Programs. Programs in AGP are represented as trees, and we
define a population as a set of programs. We include the Builder Pattern [21] as
a means for flexible population and programs inclusion into AGP. AGP already
includes basic ways to get programs and populations, such as full random or
empty set. Thanks to the Builder Pattern, the application developer is able to
design their own program and population builders. For instance, to provide their
program builder requires the implementation of the ProgramBuilderInterface
(see Figure 3). It includes the getProgram() method which gets useful tools for
creating programs such as the function and terminal sets, and a helper. We
present the latter in Section 3.4.

Selectors and Genetic Operations. When the evaluation thread is running
alongside the execution thread, programs are evaluated and receive a fitness value.
In GP, the programs that perform well are chosen to breed the next generation.
Selectors are organized following the Strategy Pattern in order to provide flexibil-

18 A. Cotillon, P. Valencia, and R. Jurdak

Fig. 3. Use of Builder Pattern in AGP illustrated with Program Constructor and two
basics Program Builders. Abstract classes are shown in italic.

ity. This way, the developer can easily switch between standard selectors provided
by AGP such as the Wheel selector, or create his own selector solution.

AGP then executes genetic operators on selected programs. In this regard,
AGP currently supports two primary genetic operators widely used in GP,
crossover and mutation, although it is extendible with more operators.

Save Current States. As smartphones are subject to reboot by the user, or
undesired termination caused by battery depletion, AGP provides a safe mecha-
nism to save the current state. We included serializable classes for the programs
and the populations, which allow the developer to save these objects over reboot.

The developer is able to get program and population objects from their se-
rialized form thanks to specific program and population builders (cf. Section
3.3). Indeed, UnserializePopulationBuilder and UnserializeProgramBuilder are
builders available in AGP, able to construct, respectively, populations and pro-
grams from serialized form saved into a file.

3.4 Improvements

As GP is a stochastic process, convergence towards desired performance can
take several generations. Contrary to typical computers, which usually run GP
algorithms, smartphones have limited energy and computational capabilities. In
order to ensure that convergence time remains within reasonable limits, AGP
includes two components, namely the helper and the supervisor, which enable
the use of expert knowledge to apply constraints to AGP-generated programs.

Helper. The helper is called during the program generation process done by
any program builder. The developer can create one or several helpers for one
application by implementing the AGP HelperInterface interface. Whenever a
program is generated, AGP will refer to the helper evaluate() method to specifiy
any correctness conditions that the program has to meet. For instance, in our
geolocalization application (cf. Section 5), if a program doesn’t call any location
provider, we know that this program will be unable to locate the smartphone,
so we can reasonably discard it without losing evaluation time.

Supervisor. The supervisor runs during the program interpretation. It can
check constraints on-the-fly, and kill the Interpreter Shell if the program goes

Android Genetic Programming Framework 19

out of bounds. For instance, the supervisor can control execution time. If the
program execution is too long, the supervisor will automatically kill the program.

4 Google Reader Application

4.1 Application Purpose

Google Reader is a web-based aggregator released and maintained by Google.
It works as a RSS feed reader, allowing users to get latest news from selected
feeds. Many applications exist for consulting feeds from smartphones. However,
news you like to read on a smartphone may depend on the kind of content, and
its readability on a mobile device. For instance, it is easy to read short text
news whereas it is uncomfortable to look for long articles, comics, infograph-
ics or flash animations. Moreover, such content might quickly deplete the user
monthly capped data plan. Our Google Reader GP (GRGP) application takes
advantage of the AGP framework to learn which feeds the user likes to read
on their smartphone. Obviously, the feeds will be taken from the user Google
Reader account.

The application is kept simple for demonstration purposes: whenever the user
wants to get news, she asks for a news report which executes a GP program and
returns the latest and unread news from feeds selected by the program.

4.2 Fitness Definition

The fitness definition is based on two sub-fitness functions:

Fitness = SubF itnessNews count × SubF itnessNews clicked

SubF itnessNews count =

{
Displayed news
Desired quantity Disp. news ≤ Desired qty.

1 otherwise

SubF itnessNews clicked =

(
Clicked news

Displayed news

)

The news count refers to the minimum desired quantity of displayed news
whenever the user requests a news report. This is a setting fixed by the user in
the configuration menu. The clicked news corresponds to the quantity of news
read over the amount of news given in the report. In other terms, it evaluates
the interest of the user in the displayed news.

4.3 Results

We conducted our experiment with 7 sources from a real Google Reader sub-
scription: 4 technology news websites (TechCrunch, TechLand, Engadget and
Digital Trends), VisualLoop which gives fresh infographics, Break Videos for
funny videos, and Business Green for latest green products. Even though the

20 A. Cotillon, P. Valencia, and R. Jurdak

(a) News Distribution (b) Program fitness evolution

Fig. 4. News distribution and program fitness evolution

concerned user was interested in all those sources, he is used to read the tech-
nology news on his smartphone rather than the other sources providing longer
articles or heavy media files not optimised for reading on smartphone.

Figure 4(a) reports the average of displayed news per program over gener-
ations. In order to provide a clean graph, we grouped the news feed in two
sub-groups: the 4 technology news, and the others (VisualLoop, BreakVideos,
and Business Green). After 6 generations, our Google Reader using AGP learned
the user preference for the technology news. However, it doesn’t eliminate com-
pletely the diversity and keeps proposing some news from the other feeds yet
with a lower likelihood.

As expected, GRGP learns to provide the desired minimum quantity of news
per report, which we set to 10 for this experiment. Figure 4(a) confirms this
convergence by looking at the sum of technology and other news.

The program fitness evolution indicates that our evolution strategy does its
job, and leads to an increase of the elite program fitness. In Figure 4(b), the pool
average represents the mean pool fitness (i.e. mean fitness of the 5 programs).
Whenever the elite program gains in fitness, it subsequently leads to an increase
of the pool average fitness.

5 Context-Aware Localization

With their application programming interface, modern smartphones OS enable
programmers to develop their own solutions using available sensors on the device
to get user context [17,18]. However, frequent usage of sensors remains a problem
as it quickly depletes batteries. Thus, a key challenge is ensuring sensor sampling
provides sufficient context without affecting battery lifetime. While user motion,
sound activity or ambient light can be retrieved from one sensor, getting the
position is a more complex problem as it can be obtained from several sources:
ranging from the energy-hungry yet accurate GPS to the energy-efficient yet
inaccurate cell-based method that relies on cellular phone towers. The various
localization options on smartphones requires consideration of their availability
and their energy/accuracy trade-off [20].

As this problem depends on too many contextual constraints as position,
signal quality, device energy profile, it is unlikely to foretell which algorithm is

Android Genetic Programming Framework 21

going to fit better than others for a user in a specific environment. The dynamic
changes in constraints motivate the use of methods that can not only adapt to
expected changes but can also learn how to deal unexpected changes in context.
We introduce an application using AGP aimed to address this problem. We
focus here on AGP’s ability to achieve results for a problem depending on many
contextual constraints.

5.1 Fitness Function Definition

The fitness function used in our localization application reflects the common
trade-off between energy and accuracy in the localization field [19]. We intro-
duce two fitness metrics: the accuracy fitness and the energy fitness, which re-
spectively quantify the accuracy and energy efficiency of the provided solution.
As positions are dynamic, we evaluate fitness every second during the evalua-
tion period (n seconds). By the end of the evaluation time, we use the average
of these subfitnesses to give a fitness to the program. The overall fitness is ob-
tained by multiplying these subfitnesses. We choose this option as it discards
any solution which doesn’t provide any accuracy or could deplete the battery,
while maintaining simplicity for the demonstration purpose of this paper.

Fitness =

∑n
i=1 SubF itnessAccuracy(i)× SubF itnessEnergy(i)

n
(1)

Accuracy Fitness. In Android, localization can be achieved through several
location providers used alone or combined. Usual location providers are GPS,
Cellular Network and Wi-Fi. The developer could also brings other providers
such as a contact-logging beacon method [20], or an accelerometer assisted al-
gorithm. When the application is learning, the evaluation process keeps all the
location provider on. It automatically picks the provider giving the most favor-
able accuracy. We call the output from this provider the best available position.

We use this best available position as a reference to attribute an accuracy
fitness to the position provided by the evaluated program (cf. Figure 5(a)):
- if program position is within the accuracy of the best available position, we
attribute an accuracy fitness following a linear rule from 1 to 0.5
- if program position is outside the former, but within a circle of twice the
accuracy of the best available position (accuracy fitness threshold), we attribute
an accuracy fitness following a linear rule from 0.5 to 0.

Energy Fitness. We define energy fitness according to a basic rule: we want to
provide localization without depleting the battery by the end of the day as we as-
sume users can charge their phones at the end of each day. We consider an average
1400 mAh battery capacity for the paper. To achieve our goal, the average power
consumption should not exceed 63 mA (= 1400 / 22 hours). We define a day as 22
hours because we consider the phone as plugged for 2 hours per day.

We use the Android PowerProfile class to estimate the power consumption per
chip. We access this class through the Java reflection mechanism. This enables

22 A. Cotillon, P. Valencia, and R. Jurdak

(a) Fitness accuracy (b) Fitness evolution

Fig. 5. The localisation application with AGP

AGP to assess the power cost of the evaluated program depending on the CPU
usage and the chip used to locate the smartphone. For simplicity, we limit the
energy fitness to a linear function, ranging from 1 for a idealistic case where the
program doesn’t cost any power to 0 for a program which requires more power
than the one day energy budget.

5.2 Results

We conduct the experiment with populations of 12 programs. The program eval-
uation is limited to one minute. Our function set contains general operators such
as addition, multiplication, and other application-specific operators: functions to
switch location providers such as GPS, Wi-Fi or Cellular Network. These func-
tions need access to some Android components, which is possible with AGP’s
design. Figure 5(b) shows the framework ability to get a program localizing the
smartphone. After a rough first solution, it converges to smarter programs able
to provide more efficient and accurate solutions.

We also conduct an experiment to evaluate the benefits from the use of Helper.
Populations generated with the Helper provide a working solution in the first
generation, and quickly have satisfying programs. On the other hand, popula-
tions generated without the Helper are stuck with non-working programs (zero
fitness) for several generations. Then, they only get a slow evolution. It is mainly
due to many programs which make no sense: they don’t switch on a location
provider or don’t call any latitude nor longitude update.

6 Discussion and Conclusion

The innate inter-communication capability between mobile devices lends itself to
the Island Model implementation where each mobile device hosts a population
and evolved programs can be serialised and shared (migrated) [22]. While intu-
itively one expects the parallel resources will expedite convergence, the Island
model is also known to generate better quality solutions [23]. As the framework
currently does not implement such cooperative evolution mechanisms, our evolu-
tion is constrained by the modest computational resources of the mobile device.
As such, we have attempted only simple problems where a single small popula-
tion can converge within a reasonably short period. This configuration however
would likely require very long convergence times for more complex problems.

Android Genetic Programming Framework 23

The symbolic nature of GP means that logic can be readily seeded and is an
intuitive choice where control of device’s resources is typically performed pro-
gramatically. It should be noted, however, that adaptive behaviour may not be
desirable for all interactions. For example, the user interface should have a consis-
tent feel across applications and adhere to the device or OS recommended UI de-
sign recommendations. However, within this constraint, adaptive behaviour may
provide a method to overcome consistently undesirable application behaviour.
The current configuration employs a fixed population structure which produces
a number of likely low performing programs to be evaluated every generation
even after the system has converged. This means that there will always be some
‘annoying’ behaviour. Ideally the population generation operations over time
would change to converge the population to only desirable behaviour, however
this would also reduce the ability of the system to respond quickly to changes
in user preferences.

This paper has presented Android GP Framework (AGP) as the first genetic
programming framework for the mobile Android OS. The framework considers
the resource constraints and programming restrictions on Android smart phones
for evolving logic, and introduces special components for quicker convergence by
limiting execution to meaningful programs. We demonstrated AGP’s capabilities
with two applications and showed that it can converge to desirable performance
quickly towards objective functions with multiple constraints. We believe AGP
represents a first step towards versatile online personalisation in the growing
smart phone market.

Acknowledgements. The authors would like to thank Brano Kusy for his
valuable inputs in realising this work. This project was supported by the Sensors
and Sensor Network Transformational Capability Platform at CSIRO.

References

1. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin,
D.: Diversity in Smartphone Usage. In: MobiSys 2010 (2010)

2. Dockhorn Costa, P., Ferreira Pires, L., Sinderen, M.: Designing a configurable
services platform for mobile context-aware applications. International Journal of
Pervasive Computing and Communications 1(1), 13–25 (2008)

3. Bae, J.S., Lee, J.Y., Kim, B.C., Rye, S.: Next Generation Mobile Service Environ-
ment and Evolution of Context Aware Services. In: Sha, E., Han, S.-K., Xu, C.-Z.,
Kim, M.-H., Yang, L.T., Xiao, B. (eds.) EUC 2006. LNCS, vol. 4096, pp. 591–600.
Springer, Heidelberg (2006)

4. Miele, A., Quintarelli, E., Tanca, L.: A methodology for preference-based person-
alization of contextual data. In: EDBT 2009 (2009)

5. Koza, J.R.: Genetic Programming: on the programming of computers by means of
natural selection. In: Complex Adaptive Systems. MIT Press, Cambridge (1992)

6. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervas, C.: JCLEC: a Java
framework for evolutionary computation. Soft Comput. 12, 381–392 (2008)

7. Pyevolve, http://pyevolve.sourceforge.net/wordpress/?p=350

http://pyevolve.sourceforge.net/wordpress/?p=350

24 A. Cotillon, P. Valencia, and R. Jurdak

8. McPhee, N.F., Hopper, N.J., Reierson, M.L.: Sutherland: An extensible object-
oriented software framework for evolutionary computation. In: Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, July 22-25. University of
Wisconsin, Morgan Kaufmann, Wisconsin, San Francisco (1998)

9. Gagne, C., Parizeau, M.: Open BEAGLE: A New Versatile C++ Framework for
Evolutionary Computation. In: GECCO Late Breaking Papers, pp. 161–168 (2002)

10. Ismail, I.A., Ramly, N.A.E., Abd-ElWahid, M.A., ElKafrawy, P.M., Nasef, M.M.:
Genetic Programming Framework for Fingerprint Matching. In: CoRR (2009)

11. Torres, R.S., Falcao, A.X., Goncalves, M.A., Papa, J.P., Zhang, B., Fan, W., Fox,
E.A.: A genetic programming framework for content-based image retrieval. Pattern
Recognition 42, 283–292 (2009)

12. Valencia, P., Lindsay, P., Jurdak, R.: Distributed Genetic Evolution in WSN. In:
IPSN 2010, Stockholm, Sweden, April 12-16 (2010)

13. Lenaerts, T., Manderick, B.: Building a Genetic Programming Framework: The
Added-Value of Design Patterns. In: Banzhaf, W., Poli, R., Schoenauer, M., Foga-
rty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 196–208. Springer, Heidelberg
(1998)

14. Lacerda, A., Cristo, M., Goncalves, M.A., Fan, W., Ziviani, N., Ribeiro-Neto, B.A.:
Learning to advertise. In: SIGIR 2006, pp. 549–556 (2006)

15. Weise, T., Geihs, K.: DGPF: An Adaptable Framework for Distributed Multi-
Objective Search Algorithms Applied to the Genetic Programming of Sensor Net-
works. In: BIOMA 2006, Ljubljana, Slovenia, October 9-10, pp. 157–166 (2006)

16. Android Reference, http://developer.android.com/reference/packages.html
17. Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: SoundSense: scalable

sound sensing for people-centric applications on mobile phones. In: MobiSys, pp.
165–178 (2009)

18. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H.,
Toledo, S., Eriksson, J.: VTrack: accurate, energy-aware road traffic delay estima-
tion using mobile phones. In: SenSys, pp. 85–98 (2009)

19. Lin, K., Kansal, A., Lymberopoulos, D., Zhao, F.: Energy-accuracy trade-off for
continuous mobile device location. In: MobiSys, pp. 285–298 (2010)

20. Jurdak, R., Corke, P., Dharman, D., Salagnac, G.: Adaptive GPS duty cycling and
radio ranging for energy-efficient localization. In: SenSys, pp. 57–70 (2010)

21. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-oriented
modelling and design (1991)

22. Folino, G., Spezzano, G.: P-CAGE: An Environment for Evolutionary Computation
in Peer-to-Peer Systems. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S.,
Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 341–350. Springer, Heidelberg
(2006)

23. Martin, W.N., Lienig, J., Cohoon, J.P.: Island (Migration) Models: Evolutionary
Algorithms Based on Punctuated Equilibria. In: Handbook of Evolutionary Com-
putation, pp. C6.3:1–C6.3:16. Oxford University Press (1997)

http://developer.android.com/reference/packages.html

Genetic Programming for Generalised

Helicopter Hovering Control

Dimitris C. Dracopoulos and Dimitrios Effraimidis

School of Electronics and Computer Science
University of Westminster
London, United Kingdom

{d.dracopoulos,d.effraimidis}@wmin.ac.uk

Abstract. We show how genetic programming can be applied to heli-
copter hovering control, a nonlinear high dimensional control problem
which previously has been included in the literature in the set of bench-
marks for the derivation of new intelligent controllers . The evolved con-
trollers are compared with a neuroevolutionary approach which won the
first position in the 2008 helicopter hovering reinforcement learning com-
petition. GP performs similarly (and in some cases better) with the win-
ner of the competition, even in the case where unknown wind is added
to the dynamic system and control is based on structures evolved previ-
ously, i.e. the evolved controllers have good generalisation capability.

Keywords: Helicopter hovering, Nonlinear control, Neuroevolutionary
control, Reinforcement learning.

1 Introduction

Genetic programming (GP) can be considered as an ideal candidate for auto-
matic controller designs due to the direct mapping of its individual structures and
control laws. So far however, it has been applied to a relatively small number of
control problems. From these, only a few have been included in the literature as
challenging for modern controllers [1]. Other computational intelligence control
techniques (referred also as intelligent control approaches) such as reinforcement
learning with the use of approximate dynamic programming, are considered as
the current state of the art for the control of complex dynamic systems [2,3].

Helicopter hovering is considered as a challenging control problem for which
intelligent control techniques have been utilised, in order to overcome the limi-
tations of classical control theory. The problem refers to a helicopter attempting
to hover as close as possible to a fixed position. The dynamics of the helicopter is
nonlinear, high dimensional, complex, asymmetric and noisy [4,5]. Additionally,
there is coupling between the different state variables of the dynamic system and
an attempt to control one of them results in the destabilisation of another.

Helicopter hovering belongs to the reinforcement learning (RL) set of problems
as there is no “teacher” signal available to the controller indicating sample correct
actions. The competence of a controller is determined by the difference of the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 D.C. Dracopoulos and D. Effraimidis

desire state and the actual one, which is used to construct a reward or penalty
(the reinforcement signal) to the controller at every point in time.

The problem of helicopter hovering (together with a few other control prob-
lems) was included in recent years in reinforcement learning competitions as a
challenging benchmark used to construct new intelligent controllers [6].

Here, a genetic programming approach for generalised helicopter hovering is
presented and compared with the neuroevolutionary approach which won the
first position in the 2008 RL competition for the specific control problem [4,6].
Unlike the standard hovering problem, generalised hovering includes unknown
wind. In each generalised version (domain) of the problem, wind is added ac-
cording to some unknown probability distribution. The wind in each case in
not known to the agent (controller). Thus any approach which attempts to do
well by overfitting to a single domain, will do badly in the other domains which
include different amounts of wind.

The next section provides the background for the control problem and pro-
vides the details of the dynamic system of a helicopter. Section 3 describes the
neuroevolutionary approach which won the first position in the 2008 RL compe-
tition. Section 4 presents the GP approach to the problem and section 5 includes
the results obtained from the GP and the neuroevolutionary implementations
and a comparison between them. Finally, section 6 presents the conclusions for
this work, and outlines future research.

2 The Dynamic System

The state variables of the helicopter dynamic system and the inputs are:

q =
[
P vp Θ ωb

]T
=
[
x y z vpx vpy vpz φ θ ψ ωb

1 ωb
2 ωb

3

]
u =
[
Tm Tt a1 a2

]T
where P is the helicopter position in inertial coordinates and Θ =

[
φ θ ψ

]T
are

the helicopter Euler angles. φ, θ, ψ are the roll, pitch and yaw angles respectively.
vp is the velocity with respect to the three axes: vpx is the forward, vpy is the lateral

and vpz is the vertical velocity. ωb ∈ R3 is the vector which includes the body
angular velocities.

The forces f b and torques τb generated by the main rotor are controlled by
the main rotor thrust Tm and the longitudinal a1 and lateral a2 tilts of the tip
path plane of the main rotor with respect to the shaft. The tail rotor anti-torque
is controlled by the tail rotor thrust Tt [7].

The equations of the rigid body subject to the body force f b ∈ R3 and torque
τb ∈ R3 applied at the centre of mass and specified with respect to the body
coordinate frame are given by the Newton-Euler equations:[

mI 0
0 I
] [

v̇b

ω̇b

]
+

[
ωb ×mvb

ωb × Iωb

]
=

[
f b

τb

]

Genetic Programming for Generalised Helicopter Hovering Control 27

where m ∈ R specifies the mass, I ∈ R3×3 is an identity matrix, and I ∈ R3×3 is
the inertial matrix [8]. If R(Θ) is the rotation matrix of the body axes relative
to the inertial axes (superscript p), then by using the fact that vp = R(Θ)vb and
Θ = Ψ(Θ)ωb, the equations of motion of the rigid body can be written as:⎡

⎢⎢⎣
Ṗ
v̇b

Θ̇
ω̇b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

vp
1
mR(Θ)f b

Ψ(Θ)ωb

I−1(τb − ωb × Iωb)

⎤
⎥⎥⎦

The above system is a coupled non-linear, multivariable and under-actuated
system with fewer independent control actuators than degrees of freedom to be
controlled [7].

All the experiments described here, have been conducted with the use of an
XCell Tempest helicopter simulator [9]. The specific simulator has been created
for the RL-Competition [6]. The objective is to hover the helicopter around the
origin. The time period is comprised of 6000 steps (0.1 seconds each) and in
every step a penalty (reward) is returned to the controller from the simulator,
describing the deviation of the helicopter from the origin. The penalty (or re-
ward) constitutes the reinforcement signal and it is the only information available
to the agent for learning. The reward is calculated as the negative sum over all
state features, of the squared difference between that state feature and the fixed
target position in which the helicopter wishes to hover:

R = −
∑
i

(si − ti)
2 (1)

where si and ti are the current value and the target value, respectively, of the
ith state feature.

If the helicopter crashes during learning, a very large penalty is given. Its
magnitude is the sum of the largest penalty for every remaining step. The range
of the four controls of the helicopter has been normalised to the region [−1, 1].

3 The Neuroevolutionary Approach

The neuroevolutionary reinforcement learning approach which won the first place
in the 2008 RL Competition for helicopter hovering evolves neural network con-
trollers using the accumulated reward. The neural networks are different policies
mapping observations to actions. Starting from an initial population of 50 ran-
domly generated networks the process of optimisation is based on a steady state
evolutionary method which does not use generations. At every step, the worst
performing network is selected and its weights are modified with crossover and
mutation [4].

There are four different types of networks used in that work, which are distin-
guished based on their architecture and the initial configuration of their weights.
SLP (single layer perceptrons) and MLP (multi-layer perceptrons) are the two

28 D.C. Dracopoulos and D. Effraimidis

architectures used. The topology of the MLP was manually designed by a human
specialist specifically for the helicopter control problem. Some initial knowledge
can be applied to the neural networks by setting the weights to an equivalent
base-line controller given by the RL competition which never causes the heli-
copter to crash. The controller is naive and can not solve the problem satisfacto-
rily, as it performs poorly and does not approach the hovering point. According
to this methodology, the initial population is formed by repeatedly performing
weight mutations to the base-line controller with a predefined probability. The
process of mutation involves the random generation of weights from a Gaussian
distribution with zero mean and standard deviation of 0.8, which either replace
or add itself to the initial weight.

The full details for this neuroevolutionary approach can be found in [4].

4 Application of Genetic Programming

The action space for the helicopter hovering control is a four dimensional con-
tinuous space. The four different actions are:

α1 : longitudinal cyclic pitch (aileron)
α2 : latitudinal cyclic pitch (elevator)
α3 : main rotor collective pitch (rudder)
α4 : tail rotor collective pitch (coll)

To apply the GP paradigm, four independent trees were allocated for each in-
dividual, one for every action. The population consisted of 500 quad trees. The
initial structure of individuals were generated with the ’ramped half-and-half’
method [10], with the ’full’ method creating complete trees of length 2 to 6 and
the ’grow’ method setting the maximum length equally. Duplication was disal-
lowed for the initial structures and one of the 500 trees was the equivalent of
the default baseline controller supplied from the RL Competition described in
the previous section. The controller is capable to avoid to crash the helicopter
but it is unable to do well in the hovering problem. It has to be noted that
the same baseline controller was also included in the initial population of the
neuroevolutionary approach which won the RL Competition. Figure 1 shows the
default controller in tree structure:

GP utilises the reinforcement signal given in equation (1), by accumulating
it during every episode. The sum is used as the raw fitness. The reinforcement
signal is negative and the adjusted fitness is calculated as follows:

a(i) =
1

1 + s(i)

where s(i) is the standard fitness and defined as the negative of the accumu-
lated RL signal. i is the index of the individual in the population. Finally, the
normalised fitness was calculated:

n(i) =
a(i)∑M

k=1 a(k)

Genetic Programming for Generalised Helicopter Hovering Control 29

+

* * * 0 . 0 2

-0 .0196 y -0 .0367 v -0 .7475 phi

(a) aileron

+

* * 0 . 2 3

0 . 0 5 1 3 z 0 . 1 3 4 8 w

(b) coll

+

* * * 0 . 0

-0 .0185 x -0 .0322 u 0 . 7 9 0 4 t h e t a

(c) elevator

*

-0 .1969 omega

(d) rudder

Fig. 1. The default baseline controller in the initial GP population

Table 1. Function set for the application of GP in helicopter hovering

Function Symbol Function Symbol

Addition ADD Square SQ
Subtraction DIV Cube CUB
Multiplication MUL Greater Than GT
Division DIV Sign SIG
Absolute Value ABS Sin SIN
Square Root SQRT Cosine COS
Exponential EXP

The normalised fitness was used for the entire GP evolution.
The function set selected is shown in Table 1. From the 12 initial states of

the dynamic system only 9 are independent, as the angular velocities can be cal-
culated from the rest. Therefore, the terminal set used included the coordinates
x, y, z, the velocities u, v, w, the angles θ, φ, ω and the real number coefficients
that were essential to construct the default baseline controller.

The generalised version for the helicopter hovering problem was considered.
This version includes noise in the flight dynamics. The actual noise added, its mag-
nitude and range are unknown to the controller agent. Such generalised version of
the problem (which was the case for the RL competition and its software simu-
lator used in this work) forces the developed controllers to adapt their behaviour
in dynamic changes in environmental conditions and prevent the overfitting to a
specific control problem. The noise represents wind in the x and y dimensions.
The wind velocities vary randomly from −5m/sec to 5m/sec (this is not known
to the evolving GP controllers). The RL simulation software has 10 different wind
patterns providing 10 different modes of the simulation, i.e. 10 different sequen-
tial decision problems (SDPs). GP has been applied to all 10 of them. For every
different mode, 10 different runs were done. The aim is to derive a GP controller
which generalises well across different SDPs, including unseen cases.

30 D.C. Dracopoulos and D. Effraimidis

The evolution was carried on for 119 generations (excluding the first initial
population). The reproduction probability was 10% and the crossover probability
was 90%. The maximum depth permitted after the crossover operation was 17
and in the case that one of the offsprings had depth which was longer than the
allowed, the selected parent tree was copied without modification. The individual
selection was fitness proportionate. Permutation and mutation were not allowed.
The mutation process was tested but did not produce successful results.

During evolution, the default controller was copied to the next population
independently from the reproduction process. Although, especially in early gen-
erations, the fitness of the default controller is high compared with the other
individuals, thus it is highly probable to reproduce, the experiments showed
that it might be extinguished after some generations resulting to less good con-
trollers.

The output of a GP individual is calculated based on the following equation:

f(x) =
ex − e−x

ex + e−x

where x is the evaluation of the GP tree. This was done so that the control
inputs to the plant are in the range [−1, 1], something which is required by the
simulator.

5 Results

This work addresses the generalised version of the helicopter hovering problem.
From the RL Competition simulator only 10 different SDPs were available for
both training and testing. To optimise the process of finding the best controller
which can then be applied to other SDPs as well (besides the 10 available), the
10 SDPs need to be used for training, validation and testing.

The same optimisation procedure was followed for both the GP and the neu-
roevolutionary approach. For every mode of the wind pattern (10 modes), 10
different populations were formed. The derivation of the controllers took 120
generations for the GP and 120000 episodes for the neuroevolutionary method.

The best controller in every generation was subsequently validated to the
modes 0 to 4, and in the case the where the controller was actually evolved on
any of the modes 0 to 4, this mode was excluded from the validation. According
to the performance in the validation set, the best individual for every mode was
selected. Thus, the validation runs determined which individual performs better
(generalises) in unseen SDPs (i.e. SDPs not used for its evolution) .

Finally, the 10 best controllers (one from each mode), for both approaches (GP
and neuroevolutionary) were tested in modes 5 to 9 to compare the results of the
two approaches. Similarly with the validation runs, if the controller was evolved
(trained) in one of the modes 5 to 9, this mode was excluded from the test runs.
The best controller found by Genetic Programming is shown in in Appendix A.

Genetic Programming for Generalised Helicopter Hovering Control 31

0 50 100 150 200 250 300 350 400
−10

8

−10
7

−10
6

−10
5

−10
4

−10
3

−10
2

Episodes

R
ew

ar
d

Game Mode = 5

genetic
SLP neuro
MLP neuro
genetic initial
SLP neuro initial

Fig. 2. Best Agents of mode 5

0 50 100 150 200 250 300 350 400
−10

8

−10
7

−10
6

−10
5

−10
4

−10
3

−10
2

Episodes

R
ew

ar
d

Game Mode = 6

genetic
SLP neuro
MLP neuro
genetic initial
SLP neuro initial

Fig. 3. Best Agents of mode 6

Figures 2, 3 show the performance of the two approaches for 2 out of the 5
test modes (SDPs). From Figures 2 and 3 it can be seen that the performance
of the GP is equivalent to that of the SLP and MLP controllers evolved using
the neuroevolutionary approach. For some modes, the GP is better.

32 D.C. Dracopoulos and D. Effraimidis

50 100 150 200 250 300 350 400 450 500

−10
5

−10
4

−10
3

−10
2

Best Agents reward per episode

R
ew

ar
d

Episodes − Game Mode 5−9

SLP
genetic
MLP

Fig. 4. The performance of the best agents for the various approaches

0 50 100 150 200 250 300
−10

6

−10
5

−10
4

−10
3

−10
2

Best Agents accumulated reward

A
cc

um
ul

at
ed

 r
ew

ar
d

Episodes

genetic
SLP
MLP

Fig. 5. The performance of the best agents for the various approaches

The diagrams also illustrate the difference in performance between the initial
baseline controller in the population and the final one after the optimisation.
The GP manages to improve the initial controller by two orders of magnitude.

The comparison in performance between the best GP and the best neuroevo-
lutionary controller among all modes is shown in Figures 4, 5. Figure 4 illustrates

Genetic Programming for Generalised Helicopter Hovering Control 33

Table 2. Performance comparison for each mode between GP and SLP

Agent
Mode

Mode 5 Mode 6 Mode 7 Mode 8 Mode 9
Crh Bet Acc Crh Bet Acc Crh Bet Acc Crh Bet Acc Crh Bet Acc

0
GP 1 0 -87792 13 0 -83736 0 0 -83681 28 72 -88301 4 0 -123590
SLP 0 100 -56242 0 100 -40383 0 100 -56332 0 28 -99329 0 100 -54965

1
GP 3 34 -50547 0 3 -83438 4 2 -49350 0 0 -133935 2 0 -66411
SLP 0 66 -47000 0 97 -74001 0 98 -41285 0 100 -60516 0 100 -46266

2
GP 7 35 -47512 51 0 -73633 5 11 -45030 63 29 -92901 23 0 -61243
SLP 0 65 -45238 0 100 -36679 0 89 -40606 0 71 -98758 0 100 -48464

3
GP 0 100 -51732 0 100 -65718 3 97 -48658 0 1 -143389 0 100 -67374
SLP 0 0 -96287 1 0 -109319 0 3 -90617 0 99 -130921 30 0 -154985

4
GP 1 0 -87257 2 0 -176645 1 2 -82308 0 0 -226003 3 0 -134277
SLP 0 100 -74344 0 100 -130160 0 98 -69355 0 100 -171885 0 100 -86932

5
GP - - - 0 79 -75581 2 0 -34468 0 100 -115604 0 0 -45969
SLP - - - 0 21 -78253 0 100 -25051 0 0 -154021 0 100 -28622

6
GP 0 0 -75617 - - - 1 0 -73645 0 100 -72229 0 0 -93995
SLP 0 100 -52513 - - - 0 100 -51048 0 0 -113669 0 100 -57072

7
GP 2 97 -39566 0 98 -88398 - - - 0 99 -128574 2 97 -48604
SLP 1 3 -50939 0 2 -127104 - - - 0 1 -155043 11 3 -63450

8
GP 31 3 -178694 0 0 -75126 45 4 -174114 - - - 42 25 -203970
SLP 3 97 -80322 0 100 -45421 4 96 -78954 - - - 27 75 -100123

9
GP 3 0 -49156 0 0 -147568 1 0 -47917 0 0 -200945 - - -
SLP 0 100 -38384 0 100 -77955 0 100 -35751 0 100 -159757 - - -

Table 3. Performance comparison between GP and MLP

Agent
Mode

Mode 5 Mode 6 Mode 7 Mode 8 Mode 9
Crh Bet Acc Crh Bet Acc Crh Bet Acc Crh Bet Acc Crh Bet Acc

0
GP 1 99 -87792 13 0 -83736 0 100 -83681 28 72 -88301 4 96 -123590
MLP 0 1 -173088 0 100 -63677 1 0 -172145 0 28 -108277 2 4 -195310

1
GP 3 0 -50547 0 100 -83438 4 0 -49350 0 100 -133935 2 0 -66411
MLP 0 100 -33185 0 0 -259734 0 100 -33027 0 0 -397802 0 100 -46010

2
GP 7 93 -47512 51 31 -73633 5 95 -45030 63 37 -92901 23 77 -61243
MLP 0 7 -104444 0 69 -74733 0 5 -106599 0 63 -161663 0 23 -114475

3
GP 0 100 -51732 0 100 -65718 3 97 -48658 0 100 -143389 0 100 -67374
MLP 0 0 -110556 0 0 -106775 0 3 -106793 0 0 -187406 0 0 -150084

4
GP 1 97 -87257 2 98 -176645 1 92 -82308 0 100 -226003 3 97 -134277
MLP 0 3 -113862 0 2 -429170 0 8 -98078 0 0 -537801 0 3 -252467

5
GP - - - 0 100 -75581 2 0 -34468 0 100 -115604 0 60 -45969
MLP - - - 0 0 -139729 0 100 -25958 0 0 -214368 0 40 -46168

6
GP 0 0 -75617 - - - 1 0 -73645 0 100 -72229 0 0 -93995
MLP 0 100 -57107 - - 0 0 100 -55847 0 0 -106240 0 100 -61786

7
GP 2 0 -39566 0 100 -88398 - - - 0 100 -128574 2 98 -48604
MLP 0 100 -26953 0 0 -266833 - - - 0 0 -382199 0 2 -74924

8
GP 31 52 -178694 0 10 -75126 45 45 -174114 - - - 42 48 -203970
MLP 1 48 -188102 0 90 -68571 2 55 -188486 - - - 6 52 -221276

9
GP 3 54 -49156 0 100 -147568 1 82 -47917 100 100 -200945 - - -
MLP 0 46 -47782 0 0 -382501 0 18 -54595 0 0 -556661 - - -

that the GP stands between the two different versions of the neuroevolutionary
approaches, again with the few exceptions when it crashes the helicopter. The
interrupted lines in the diagram are due to the fact that different agents did
not participate in all test modes (the training mode was excluded from the test
cases, i.e. if a controller was trained for mode 5, then this mode was excluded
from its set of test cases to test performance)

Figure 5 demonstrates the accumulated reward of the different controllers for
modes 7, 8, 9 (as some controllers used modes 5 and 6 for training). Accumulated

34 D.C. Dracopoulos and D. Effraimidis

reward was the performance measure used in the RL competition to determine
the best approach. This diagram excludes the two crashes of GP and it can
be seen that the GP performance is very similar with the neuroevolutionary
approaches (SLP and MLP).

Tables 2 and 3 include the comparison between the GP, SLP and GP, MLP re-
spectively, for each of the 10 controllers evolved in each approach after validation.
Crh indicates the number of crashes, Bet indicates in how many episodes the ap-
proach performed better than the other and Acc is the accumulated reward over
the test episode cases. For example, the first row of Table 2 compares the best con-
trollers of GP and SLP which were derived based on training in the SDP of mode
0 (the choice of the best controller was determined after running the best of each
generation for each validationmode). These controllers are compared based on the
test modes to check their generalisation ability. In the cases of a crash, that episode
was not included in the calculation of the accumulated reward.

6 Conclusions and Future Work

GP is tested in a challenging control problem, the generalised helicopter hovering
problem which was included in the set of benchmarks in the RL competitions for
deriving new controllers. The GP approach is compared with a neuroevolutionary
approach which won the first position for helicopter hovering in the 2008 RL
competition.

It is shown that GP can successfully generate controllers for the generalised
version of the problem, in which unknown wind is added to the dynamic system
in the form of noise. The performance of the evolved controllers is tested in
versions of the dynamic system that they have not encountered during evolution
(training).

GP performs similarly with the winner of the RL competition, although in
some cases its evolved controllers leads to a crash, something which also oc-
curs with the winner of the RL competition. In certain modes (SDPs), the GP
performance is better than the neuroevolutionary approach.

Future research should include how the avoidance of crashes could be incor-
porated in the evolution of GP controllers and dual operation of GP controllers,
i.e. a different evolved controller becomes active depending on the specific region
of the current state of the dynamic system.

A Appendix

The best individual derived through GP for which all results are presented in
the paper is shown (unedited) below:

α1 - aileron:
(+ 0.02 (* -0.0367 v)(+ (+ (* (* -0.0196 y)(+ (* -0.0196 y)(+ (* -0.7475 -0.0196)(* -0.0367 v

)(+ (* -0.0196 v)(+ 0.02 (* -0.0196 v)(+ (* -0.0196 y)(* -0.0367 v)(+ (* -0.0196 (* phi v))(+

-0.0196 (* -0.0196 y)(* -0.0367 v)0.02)(* -0.7475 phi)0.02)0.02)0.02)(* -0.7475 phi)0.02)0.02

Genetic Programming for Generalised Helicopter Hovering Control 35

)(+ -0.0367 (+ (* 0.02 -0.0196)(* -0.7475 v)(* (* -0.0367 v)(* -0.0196 -0.0367))0.02)(* -0.7475

phi)0.02)0.02))(* -0.0367 (* -0.0196 y))(* -0.7475 -0.0196)0.02)(+ -0.0196 (* -0.0196 v)(+ (*

-0.7475 -0.0196)(+ (* (+ (* -0.0196 y)(* -0.0367 v)(* -0.7475 0.02)0.02)y)(* -0.0367 v)(* -0.7475

(* -0.0196 -0.0367))0.02)-0.0196 0.02)(+ (* -0.0196 y)(* -0.0367 v)(* -0.7475 (+ (* -0.0196 (*

-0.7475 phi))(* (* -0.0367 v)v)-0.0196 0.02))0.02))(+ (* (* -0.0367 -0.0196)(+ (* (* -0.0367 0.02

)y)(* -0.0367 v)(* -0.7475 (* -0.0196 -0.0367))0.02))(+ (* 0.02 y)(* -0.0367 v)(* -0.7475 (* phi

v))0.02)(* -0.7475 phi)(* -0.0196 y))(+ 0.02 (* -0.0367 -0.0196)(+ (+ (* -0.0196 -0.0196)(* 0.02

v)(* -0.7475 -0.0367)(* -0.0196 y))(* 0.02 -0.0196)(+ (* (+ (* -0.0196 y)(* (* 0.02 -0.0196)v)(*

-0.7475 -0.0196)0.02)y)(+ (* -0.7475 y)(* -0.0367 v)(* -0.7475 (* -0.0196 -0.0367))-0.0367)(* (*

(+ (* -0.0196 y)(+ 0.02 (* -0.0367 v)(+ (* -0.0196 v)v (* -0.7475 phi)(* 0.02 y))0.02)(+ (* (+ (*

0.02 -0.7475)(* -0.0367 v)(+ (* -0.0196 y)(+ (* -0.0196 y)(* -0.0196 0.02)(* phi (* (* -0.0367 v)v

))0.02)(* (* -0.7475 (* (* -0.0367 v)v))phi)0.02)0.02)y)(+ (* -0.0196 y)(* (* -0.0196 -0.0367)v

)(* (* -0.0367 v)(* -0.0196 -0.0367))0.02)(* -0.7475 phi)0.02)0.02)(* -0.0196 -0.0367))phi)0.02

)0.02)(+ (* -0.0196 v)(+ 0.02 (* -0.0367 v)(+ (* -0.0196 v)(+ 0.02 (* -0.0196 v)(+ (* -0.0196 y

)(* -0.0367 v)(+ (* -0.0196 (* (* -0.0367 v)(* -0.0367 v)))(+ (* -0.0196 y)(* -0.0367 v)(* -0.0367

v)0.02)(* -0.7475 phi)0.02)0.02)0.02)(* -0.7475 phi)0.02)0.02)(+ (* 0.02 y)(+ (* -0.0196 y

)(* 0.02 v)(* (* -0.0367 (* -0.0196 y))(* -0.0196 -0.0367))0.02)(* -0.7475 phi)(* -0.0367 y))0.02

)))(+ 0.02 (* -0.0367 y)(+ (* (* -0.7475 v)0.02)(+ 0.02 (* -0.0367 v)(* -0.7475 (* (* -0.0367 v

)-0.0367))0.02)(* -0.7475 phi)0.02)(* -0.0196 -0.0367)))

α2 - elevator:
(+ (* -0.0185 x)(* -0.0322 u)(+ (* -0.0185 (* -0.0185 (+ (* -0.0185 x)(* -0.0322 u)(* 0.7904

theta)0.0)))(+ (* -0.0322 x)(* -0.0185 x)(+ (* 0.7904 (* -0.0322 theta))(* -0.0322 -0.0185)(+ (*

-0.0185 x)(* -0.0322 u)(+ (* -0.0185 x)(+ (+ (* -0.0185 x)(* -0.0185 x)(+ (* x x)(+ (* -0.0322 x

)(* (* 0.7904 (* -0.0322 u))(* u x))(+ (* (* -0.0322 u)(* x theta))(* -0.0322 u)(+ (* -0.0185 x)(*

-0.0322 u)theta (* -0.0185 -0.0185))0.0)(+ (* -0.0185 (+ (* 0.7904 x)(* (* -0.0185 u)u)(* 0.7904

theta)(+ (* -0.0185 x)-0.0185 (* -0.0322 u)-0.0322)))(* -0.0322 u)(* 0.7904 theta)(* -0.0185 u

)))(+ (* -0.0185 (+ (* u x)(* -0.0185 u)(* 0.7904 theta)0.0))(* -0.0322 u)(* x theta)(* -0.0185 x

))(* -0.0185 x))(* x -0.0322))(* (* 0.7904 -0.0322)u)(* -0.0322 u)(* (* 0.7904 (+ (* -0.0185 x)(*

-0.0185 x)(* (+ (* (* -0.0322 (* -0.0185 u))(* -0.0322 theta))(* u u)(+ (* -0.0185 x)(* -0.0322 u

)theta (* -0.0185 x))0.0)(* (* -0.0322 u)u))(+ theta (* -0.0322 u)(* 0.7904 theta)(* (* -0.0185 x

)x))))x))(+ (* (* -0.0185 x)(+ (* -0.0185 x)(* (* -0.0185 (* -0.0185 x))-0.0185)(* -0.0185 theta

)0.0))(* -0.0322 u)(+ (* -0.0185 x)(* -0.0322 u)(* 0.7904 theta)(* -0.0185 x))(* -0.0185 x))(* (*

0.7904 (+ (* -0.0185 x)(* -0.0185 x)(* 0.7904 x)(+ (* -0.0185 x)(* -0.0322 u)(* 0.7904 theta)(*

(* -0.0185 x)x))))x))theta)(* -0.0185 x))(+ (* -0.0185 (+ (* -0.0185 x)(* -0.0322 u)(* 0.7904

theta)(+ (* -0.0185 x)(* (* -0.0322 u)(* 0.7904 u))(* x -0.0322)-0.0322)))(* -0.0322 u)(+ (*

-0.0185 x)(+ (+ (* -0.0185 x)(* -0.0185 x)(+ (* -0.0185 x)(+ (* -0.0322 x)(* (* 0.7904 (* u u))u

)(+ (* (* -0.0185 x)(* -0.0322 theta))(* -0.0322 u)(+ (* -0.0185 x)(* -0.0322 u)theta (* -0.0185

x))0.0)(+ (* -0.0185 (+ (* -0.0185 x)(* (+ (* -0.0185 x)(* -0.0322 u)(* 0.7904 theta)(* -0.0185

x))(* -0.0185 x))(* 0.7904 theta)(+ (* -0.0185 x)(* (* 0.7904 (* -0.0322 x))-0.0185)(* -0.0322 u

)-0.0322)))(* -0.0322 -0.0185)(* 0.7904 theta)(* (* -0.0322 u)-0.0322)))(+ (* -0.0185 (+ (* u x

)(* -0.0185 u)(* 0.7904 theta)0.0))(* -0.0185 x)(* x theta)(* -0.0185 x))(* x x))(* (* -0.0185

-0.0185)theta))(* u u)(* x u)(+ (* -0.0185 (* u x))(* (* x theta)u)(* 0.7904 (* (* -0.0185 theta

)u))(* -0.0185 u)))(+ (* -0.0185 theta)(* -0.0322 u)(* x x)(* 0.0 x))(* -0.0185 x))(* -0.0185

(* -0.0322 u))))(+ (* (* -0.0185 x)(+ (* -0.0185 x)(* -0.0322 u)-0.0185 0.0))(* -0.0322 u)(* x

theta)(* -0.0185 x))(* -0.0185 x))(* -0.0185 x))

36 D.C. Dracopoulos and D. Effraimidis

α3 - rudder:
(* (/ (* (CUB (ABS omega))u u u)(* (ABS x)(ABS x)theta omega))(* (CUB (ABS w))(* x

theta (CUB u))(* (ABS (/ (CUB w)(ABS x)))(ABS (CUB (ABS x)))(* u u w w))theta)u)

α4 - coll:
(+ z (* (+ (* 0.0513 (+ (+ (* 0.1348 w)(+ (+ 0.1348 (+ z (* z z)w)(+ (* (* z 0.1348)(* (+ (*

0.0513 z)(* 0.1348 w)0.1348)w))(* 0.1348 w)w))(+ (* 0.1348 z)z (+ z (* 0.1348 z)(+ (+ z (*

z w)(* w w))0.1348 (+ 0.0513 (* 0.1348 w)w))))(+ (* 0.0513 z)(* (* 0.1348 0.1348)z)(* z (+

z 0.1348 (+ z (* 0.0513 (* 0.1348 z))z)))))(+ 0.1348 0.0513 0.0513))(* z z)w))(* 0.1348 (+ (*

0.1348 z)(* 0.23 w)(* z 0.1348)))(+ 0.1348 0.1348 0.0513))w)0.23)

References

1. Dracopoulos, D.C., Piccoli, R.: Bioreactor Control by Genetic Programming. In:
Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI, Part II. LNCS,
vol. 6239, pp. 181–188. Springer, Heidelberg (2010)

2. Si, J., Barto, A.G., Powell, W.B., Wunch II, D. (eds.): Handbook of Learning and
Approximate Dynamic Programming. Wiley (2004)

3. Werbos, P.J.: Foreword - ADP: The key direction for future research in intelligent
control and understanding brain intelligence. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics 38(4), 898–900 (2008)

4. Koppejan, R., Whiteson, S.: Neuroevolutionary reinforcement learning for general-
ized helicopter control. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp. 145–152. ACM (2009)

5. Ng, A., Kim, H., Jordan, M., Sastry, S., Ballianda, S.: Autonomous helicopter
flight via reinforcement learning. In: Advances in Neural Information Processing
Systems, pp. 799–806. MIT Press (2004)

6. RLC: Reinforcement learning competition (2009),
http://www.rl-competition.org

7. Gonzalez, A., Mahtani, R., Bejar, M., Ollero, A.: Control and stability analysis of
an autonomous helicopter. In: Proceedings of World Automation Congress, vol. 15,
pp. 399–404 (June-July 2004)

8. Koo, T.J., Ma, Y., Sastry, S.S.: Nonlinear control of a helicopter based unmanned
aerial vehicle model (2001), http://citeseer.ist.psu.edu/417459.html

9. Abbeel, P., Ganapathi, V., Ng, A.: Learning vehicular dynamics, with application
to modeling helicopters. In: Advances in Neural Information Processing Systems,
vol. 18, pp. 1–8 (2006)

10. Koza, J.R.: Genetic Programming On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

http://www.rl-competition.org
http://citeseer.ist.psu.edu/417459.html

Cartesian Genetic Programming

for Memristive Logic Circuits

Gerard David Howard, Larry Bull, and Andrew Adamatzky

University of the West of England, BS16 1QY, UK
{david4.howard,larry.bull,andrew.adamatzky}@uwe.ac.uk

Abstract. In this paper memristive logic circuits are evolved using
Cartesian Genetic Programming. Graphs comprised of implication logic
(IMP) nodes are compared to more ubiquitous NAND circuitry on a
number of logic circuit problems and a robotic control task. Self-adaptive
search parameters are used to provide each graph with autonomy with re-
spect to its relative mutation rates. Results demonstrate that, although
NAND-logic graphs are easier to evolve, IMP graphs carry benefits in
terms of (i) numbers of memristors required (ii) the time required to
process the graphs.

Keywords: Cartesian genetic programming, Self-adaptation, Nanotech-
nology, Boolean logic, Memristors, Robotics.

1 Introduction

The advent of nanoscale fabrication has given rise to a need for novel manufac-
turing paradigms. One such change involves the projected adoption of memristor
(memory-resistor) technology as a processing/memory medium. The memristor
is a fundamental passive two-terminal device first theoretically characterized
by Chua [3] and manufactured at the nano scale by HP labs in 2008 [23]. A
memristors state (memristance) is nonvolative and dependent upon past ac-
tivity. Nonvolative memory [7] is perfect for low-heat, low-power storage, and
the device’s dynamic internal state facilitates information processing. These
properties make the memristor an ideal candidate for use in nanoscale archi-
tectures [13]. Moreover, when overdriven by voltage they function as a binary
latch (e.g. [22]).

Borghetti et al. [2] have recently described how memristive latches can re-
alise Boolean logic. By connecting two memristors to a load resistor, they were
able to implement two-input material implication (IMP) logic. Adding a further
memristor to the circuit allowed two-input NAND to be synthesised from two
IMP operations in serial.

Cartesian Genetic Programming (CGP) [19] is a modern derivative of Genetic
Programming (GP) [10] with its origins in evolutionary circuit design. In its
canonical form, bounded-size (bloat-free) arrangements of sequentially-executed
logical processing elements are evolved, which can then be implemented as phys-
ical circuits. In this paper we use CGP to evolve circuits of exclusively IMP or

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 37–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 G.D. Howard, L. Bull, and A. Adamatzky

exclusively NAND logic; our hypothesis is that it is advantageous to implement
directly in IMP rather than constructing NAND from IMP. Comparisons are
performed on circuit design and robotics test problems.

2 Background

2.1 Memristors

Memristors (memory-resistors) are the fourth fundamental circuit element, join-
ing the capacitor, inductor and resistor. A memristor can be defined as a re-
sistor whose current resistance value (a) depends on the previous charge that
has passed through it (b) is nonvolatile. Formally, a memristor is a passive two-
terminal electronic device that is described by the non-linear relation between
the device terminal voltage, v, terminal current, i (which is related to the charge
q transferred onto the device), and magnetic flux, ϕ, as (1) shows. Resistance
increases or decreases depending on the direction of the current.

v = M(q)i or i = W (ϕ)v (1)

The memristance (M) and memductance (W) properties are both nonlinear
functions, defined in (2) as:

M(q) = dϕ(q)/dq and W (ϕ) = dq(ϕ)/dϕ (2)

Physical applications of memristors include the manufacture of nanoscale neu-
ral crossbars [22] and memristor-transistor self-programming switching logic cir-
cuits [1], both using HP memristors [23]. In particular, [1] highlights the prospect
of reconfigurable circuits, such that the usage of various parts of the chip (e.g.
storage, processing) can be dynamically altered as required.

The state of a memristive latch can be described by its instantaneous resis-
tance value (switch open = logical 0 = high-resistance, switch closed = logical
1 = low-resistance). Switching behaviour is elicited from the memristor by over-
driving the device with a voltage of a certain polarity such that it switches from
one state to the other in a single step; applying a voltage of the opposite polarity
will switch the memristor back to its original state. This behaviour makes the
memristor amenable to use as a Boolean processing element.

Any two-input Boolean function can be implemented with memristors [12].
Material implication has been identified as the ’natural’ form of logic for memris-
tors [12]. It has recently been shown [2] that an IMP function can be created from
two overdriven memristors (p and q) and a load resistor in a single processing
step, whilst a group of three overdriven memristors (p, q and s) and a load re-
sistor is shown to use two IMP operations to perform NAND (s′′ ← pNANDq)
in two processing steps (assuming s = 0, (i)s′ ← pIMPs (ii)s′′ ← qIMPs′).
Memristive IMP operations are stateful in that the state of the latch can be
used for processing and memory; experimental details in [2].

Cartesian Genetic Programming for Memristive Logic Circuits 39

It should be highlighted that memristors can be characterised in various ways,
from dynamical continuous-valued components operating in continuous time
(e.g. for neural systems [9]) to binary latches [11]. Here we take a higher-level
view and characterise groups of memristors by the logic function they imple-
ment (IMP = 2 memristors, NAND = 3 memristors) whereby a single CGP
node implements one of the two functions.

Due to the computational completeness of NAND-based circuitry, it may be
tempting for circuit designers to generate memristive circuits based on NAND
operations. In this paper we show that IMP is an attractive alternative to NAND,
specifically for memristive implementations.

2.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a modern form of GP in which a string
of integers is used to encode a two-dimensional feedforward connected graph of
nodes with dimensions nr × nc (where nr and nc are the number of nodes in
a row / column respectively). Each node is an n-tuple specifying n − 1 inputs
and an index to a function that operates on those inputs to produce an output;
a complete genome comprises a concatentation of nodes along with a problem-
dependant number of program inputs and output indices. The ni program inputs
are assumed to be the first ni nodes of the genome, the no program outputs are
randomly selected within an upper bound of nodes that are part of the program
specification (ni + nr × nc). The number of inputs to a node (the node arity) is
set to the highest arity function in the function list.

CGP nodes always take their inputs from nodes in columns preceding their
own; a “levels-back” parameter, l, determines the maximum number of columns
that a connection can span. It should be noted that (i) program inputs may input
to any node in the graph, (ii) a program input may also be a program output,
(iii) a given node may be disconnected, in which case it does not affect the
function of the graph. An example CGP genotype-phenotype mapping is given
in Fig. 1. Execution of a graph occurs in two stages: decoding and processing.
Decoding starts from the right hand side of the graph (e.g. the final output node)
and constructs a connectivity map from each node to its predecessors to identify
which genotypic nodes are active in the phenotype. Once the active nodes are
delineated, processing applies the current problem input to each of the ni inputs
and processes the graph in a feedforward manner, reading the output from the
output nodes.

Evolution involves a Genetic Algorithm (GA) [8] combined with either hill-
climbing (as used in early Evolutionary Strategies (ES) [21]) or tournament
selection [4]. Deterministic amounts of point mutation are used to alter any al-
lelle (input, function or output index) in the genome, set to some percentage of
the total number of allelles. Inputs are constrained to connect to program inputs
or nodes in previous columns. Function mutations are limited by the number of
functions in the function list. For typical implementation details see [15].

Related CGP applications include both circuit design [16] and robot control
[6]. It has also been used in a modified form to find generalised online solutions

40 G.D. Howard, L. Bull, and A. Adamatzky

Fig. 1. Displaying a decoded CGP graph and its genotype. Parameters are ni=4, no=2,
nr=3, nc=3, l=1. Functions range from 0 to 4. Redundant nodes are shown with a faded
dashed line, functions are shown inside each node and inputs to the left of it. Indices
appear above the node; outputs are read from nodes 11 and 12.

to the parity problem [5]. GP has previously been used to evolve circuits with
NAND gates [20]. In summary, we have proposed memristors as a candidate
for implementing logic at the nano scale, and CGP as an suitable medium for
evolving memristive logic circuits.

3 Genetic Algorithm

In our steady-state GA, offspring are chosen via binary tournament selection
with a tournament size of 4. The offspring are inserted into the population and
the network with the lowest fitness deleted to respect the maximum population
size parameter.

3.1 Self-Adaptive Mutation

We utilise self-adaptive (SA) mutation rates in place of deterministic mutation
events. SA mutation is implemented as in ESs [21] to dynamically control the
frequency and magnitude of mutation events taking place in each genome, poten-
tially allowing increased structural stability in highly fit graphs whilst allowing
less fit graphs to vary more strongly per GA application. Each SA parameter is
initialized uniform-randomly in the range [0.005, 1]. During a GA application,
each SA parameter is modified as in (3), where p represents the SA parameter
value and N is a normal distribution. The offspring then adopts this new value
and applies it to its own genome, before being inserted into the population.

p → p expN(0,1) (3)

Two parameters were used, μ (controlling mutation of node inputs) and ψ (con-
trolling mutation of output indices). As each graph consists of only one function
type, function alleles were not mutated. Input mutation affected all inputs in the

Cartesian Genetic Programming for Memristive Logic Circuits 41

genome, and randomly reassigned a node input (respecting certain constraints,
see e.g. [19]) upon satisfaction of the μ parameter. Similarly, satisfaction of the
ψ parameter at any output index allele randomly reassigned the output index
to any node in the genome.

Initial investigations compared this dual-rate mutation strategy to (i) a single
rate strategy where μ controlled both input and output allele mutation with
ψ being unused and (ii) deterministic amounts of point mutation (10%). Using
the 6-multiplexer problem (results not shown) it was found that the dual-rate
strategy more frequently found solutions with optimal fitness and low phenotypic
node numbers. The dual-rate strategy was therefore employed throughout the
remainder of the experiments.

4 Experimental Setup

All experiments had a population size of 20. CGP parameters were nr=1,
nc=2000 and l=nc (as this allows the most freedom with respect to connectivity
patterns see e.g. [18]). Numbers of inputs and outputs were problem-dependent
and summarised in Sections 5 and 6. Each graph also has access to constant
0 and 1 inputs, which are treated as program inputs. As we supply a constant
0 input to the circuits, IMP graphs have the potential to be computationally
complete, as noted in [2].

A trial began with decoding a graph to delineate the active phenotype, fol-
lowed by presentation of the first problem instance to the graph. Each active
node was then sequentially processed by order of its index and its output stored
for potential use by nodes in later columns. After every active node was pro-
cessed, the value on the output node(s) was taken as the response. This was
repeated for every problem input, at the culmination of which the trial ended.
A graph that produced the correct output for every instance was said to have
solved the problem.

Fitness assignment is covered in Section 5 for circuits and Section 6 for robotic
experiments. In the event that multiple candidates possessed identical fitness
values, tournament winners were selected randomly from amongst the candidates
up to the trial in which the problem was solved. After this point, the candidate
with the lowest phenotypic size was taken. If multiple candidates possessed the
same fitness and phenotypic size, a random selection was made amongst these
tied parents.

Each experiment was repeated ten times, the statistics recorded were the aver-
ages of those ten runs. The current state of the system was stored intermittently
(intervals shown in Table 1) throughout the experiments and used to create the
results that follow. In the following tables, “Performance” is the first generation
in which all instances of the test problem are solved. If a problem was not solved
within the allocated timeframe, its performance was set to the maximum number
of trials.“High fitness” refers to the average fitness of the highest-fitness network
in each run. “Active nodes” is the average non-redundant nodes (not including
program inputs) in the population.

42 G.D. Howard, L. Bull, and A. Adamatzky

5 Logic Circuits

A number of common circuit design problems were initially used for evalua-
tion, with parameters shown in Table 1. As every problem studied represented
multiple problem instances, each graph was trialed on every instance. A graph
received a fitness increment of 1 in the event of the desired output being achieved
for that instance, 0 otherwise - the total fitness achievable by a graph equalled
the total number of problem instances. Five-, six-, and seven-bit parity problems
were trialed but not reported on as IMP circuits could not find a solution within
the trial limit with the parameters used. It should be noted that standard cir-
cuit design tools could be used to (optimally) create the circuits tested; these
problems are used to explore the basic characteristics of the approach relatively
systematically before moving to more complex tasks, such as robotics.

Table 1. Parameter values for all circuit experiments. Number of inputs does not
include constant inputs.

Problem Inputs Outputs Trials Test interval Max fitness

6 MUX 6 1 300000 1000 64
11 MUX 11 1 10000000 10000 2048
6 DEMUX 3 4 10000000 10000 8
2 PARITY 2 1 10000 100 4
3 PARITY 3 1 1000000 1000 8
4 PARITY 4 1 10000000 10000 16

5.1 Results

Evolvability. Evolvability is here defined as “the ease at which a maximally-
fit solution is evolved”. Table 2 shows NAND graphs to be more amenable to
evolution, producing 53/60 total successful experiments to 30/60 successful IMP
experiments. Similarly, NAND graphs were statistically higher performing on all
problems (t-test p=4.97×10−4 for 6 MUX, p=7.1×10−3 for 11 MUX, p=0.015
for 6 DEMUX, p=0.021 for 2 PARITY, p= 6.73×10−5 for 3 PARITY and
p=4.67×10−3 for 4 PARITY). In terms of mean highest fitess, NAND graphs
were either equal (p=1 for 6 MUX) or better (p=0.048 for 11MUX, p=1.89×10−3

for 6 DEMUX, p=0.17 for 2 PARITY, p=0.01 for 3 PARITY, p=1.11×10−3

for 4 PARITY) than their IMP counterparts. Due to the single function node
representation, comparisons with other CGP implementations were not made,
although our approach is almost certainly slower (see e.g. [17]). Lack of scala-
bility of IMP circuits could be circumvented by (i) running for an exhaustive
number of generations (ii) evolving smaller, modular circuit designs.

It is interesting to note that the SA parameters are context-sensitive and vary
depending on the logic function used in the graph, although without statistical
significance; p= 0.121 to 0.619 for μ and p= 0.231 to 0.839 for ψ. Statistically
significant differences (p<0.05) between the two rates of mutation (e.g. μ vs. ψ

Cartesian Genetic Programming for Memristive Logic Circuits 43

Table 2. Results of evolving IMP and NAND based CGP logic circuits on the test
problems. Node and SA parameter statistics taken from successful runs only.

Problem Perf Avg. fit Solved Avg. nodes Min. nodes μ ψ

6 MUX 1.27×105 64 10 13.4 12 0.01 0.047
11 MUX 6.04×106 2024 5 28 27 0.009 0.045

IMP 6 DEMUX 9.0×106 6.3 1 12 12 0.097 0.025
2 PARITY 3516 3.8 8 4.3 4 0.02 0.049
3 PARITY 7.6×105 6.5 5 10 8 0.013 0.035
4 PARITY 9.28×106 14 1 16 16 0.011 0.053

6 MUX 2.54×104 64 10 13.5 12 0.012 0.042
11 MUX 5.46×105 2048 10 29.8 26 0.008 0.044

NAND 6 DEMUX 4.3×106 7.6 6 12.5 12 0.011 0.028
2 PARITY 92.4 4 10 5.4 4 0.017 0.074
3 PARITY 1.61×104 8 10 9.1 8 0.015 0.043
4 PARITY 3.28×106 15.6 7 13.9 12 0.01 0.037

on each problem are observed except for IMP circuits solving 6 DEMUX and
2 PARITY. This disparity somewhat justifies the use of a dual-rate mutation
strategy.

Solution Size and Efficiency. IMP takes two memristors a single clock tick
to realise, whereas NAND takes three memristors and two clock ticks [2]. We
employ two methods to evaluate the circuits; cost and efficiency. Cost is defined
in (4), where n is the number of nodes in the circuit and m the number of
memristors per node.

cost = n×m (4)

T(A), defined in (5), is the time taken to process the circuit and ct is the number
of clock ticks required per node. The efficiency ratio (eff) of two circuits A and
B is then calculated (6).

T (A) = n(A) × ct(A) (5)

eff(B) = T (A)× n(A)/T (B)× n(B) (6)

Table 3 shows that IMP circuits are approximately twice as efficient when
compared the equivalent NAND circuits on all test problems, apart from 4 PAR-
ITY which is more equal yet still favours IMP. This indicates that the evolved
IMP circuits can be processed more expediently in a given hardware implemen-
tation. The minimum cost per circuit is also universally lower for IMP circuits,
meaning a smaller, potentially denser, hardware footprint.

Overall these results demonstrate that the initial difficulty of evolving highly
fit IMP-based logic circuits eventually yields designs that are both faster to pro-
cess and require fewer memristors. It should be noted that solution size and
efficiency are both more important than evolvability given prospective hardware
implementations, as such designs would typically be evolved offline before reali-
sation. An example evolved circuit is shown in Fig. 2.

44 G.D. Howard, L. Bull, and A. Adamatzky

Table 3. Cost, time taken and efficiency of the best evolved IMP and NAND based
CGP logic circuits for each test problem.

Problem Min. Cost Min. T Efficiency

6 MUX 24 12 2
11 MUX 54 27 1.925

IMP 6 DEMUX 24 12 2
2 PARITY 8 4 2
3 PARITY 16 8 2
4 PARITY 32 16 1.125

6 MUX 36 24 0.5
11 MUX 78 54 0.519

NAND 6 DEMUX 36 24 0.5
2 PARITY 12 8 0.5
3 PARITY 24 16 0.5
4 PARITY 36 24 0.89

Fig. 2. An evolved IMP phenotype that solves the 6MUX problem. Blue inputs are
constant, constant “true” is not used. The rightmost node is the output.

6 Robot Control

We now demonstrate the same approach, this time solving a multi-step control
problem in which a robot must navigate obstacles to reach a light source over a
number of time steps. The chosen robotics simulator was Webots [14].

6.1 Environmental Setup

Agent. The agent was a simulated Khepera II robot with eight light sensors and
eight IR distance sensors; three of each sensor type were used as input (sensors
at positions 0, 2 and 5 as shown in Fig. 3(a)). At each step (64ms in simulation
time), the agent sampled its light and IR sensors, whose scaled response values
ranged from 0 (no light / no object detected) to 1 (fully illuminated / object
very close). To make this continuous-valued input amenable to the CGP rep-
resentation, each of the 6 sensors was encoded as two-bit binary (sensor value

Cartesian Genetic Programming for Memristive Logic Circuits 45

<0.25 = 00, between 0.25 and 0.5 = 01, 0.5 to 0.75 = 10 and >0.75 = 11). Two
further input nodes carry constant 1 and 0 signals as before. Three actions were
possible: forward, (1,1 or 0, 0 at the two output nodes) and continuous turns to
both the left (0, 1) and right (1, 0). Additionally, two bump sensors were added
to the front-left and front-right of the agent to prevent it from becoming stuck
against an object. If either bump sensor was activated, an interrupt was sent
causing the agent to reverse 10cm and the agent to be penalised by 10 steps.

Environment. The agent was randomly located within a walled arena which it
could not leave, with coordinates ranging from [-1,1] in both x and y directions.
The agents start position was constrained so that an obstacle was initially always
between the agent and the light source (initial x+y < -1.5), forcing the agent
to learn obstacle avoidance behaviour in addition to phototaxis. Adding to the
complexity of the environment, a three-dimensional box was placed centrally in
the arena, with vertices on ground level at (x=-0.4, y=-0.4), (-0.4, 0.4), (0.4,0.4),
and (0.4, -0.4), and raised to a height of z=0.15. A light source, modelled on
a 15 Watt bulb, was placed at the top-right hand corner of the arena (x=1,
y=1), which the agent must navigate to. The environment is shown in Fig. 3(b).
When the agent reached the goal state (where x+y >1.6), the responsible graph
received a fitness bonus of 2500, which was added to the fitness function f (7).

f =
1

1.6− (|cx − cy|) ∗ 1000− ts (7)

The denominator in the equation expresses the difference between the position
of the goal state (1.6) and the current agent position (cx and cy), and st is
the number of timesteps taken to solve. The minimum value of this function is
capped so that f > 0. Optimal performance gives f=11800, which corresponds
to 700 steps from start to goal state with no collisions.

(a) (b)

Fig. 3. (a) Khepera sensory arrangement. 3 light sensors and 3 IR sensors share po-
sitions 0, 2 and 5. Bump sensors B1 and B2 are attached at 45 degree angles to the
front-left and front-right of the robot.(b) The test environment. The agent begins in the
lower-left and must reach a light source (circle) in the upper-right, circumnavigating
the central obstacle. An example agent path is shown (dotted line).

46 G.D. Howard, L. Bull, and A. Adamatzky

Table 4. Results of evolving IMP and NAND based CGP logic circuits on the robotics
problem. Node and SA parameter statistics taken from successful runs only.

Perf Avg. fit Solved Avg. nodes Min. nodes μ ψ

IMP 331.9 9288.55 8 32.25 16 0.018 0.06
NAND 118.6 11782.44 10 38.6 18 0.026 0.07

Procedure. A trial began with the placement of the agent in the arena and
ended with either (a) location of the reward or (b) a time out after 4000 steps.
Each step of the trial consisted of the receipt of the current state at the program
inputs and ended with performance of an action based on the states of the output
nodes. After all initial networks were trialed, 1000 generations of GA application
took place; the systems’ state was stored every 20 generations. Newly-generated
networks were trialed on the test problem, replacing a member of the population
as before.

6.2 Results

As the robot’s start location was tightly constrained, we were able to compare
“Performance”, defined as the first generation in which any graph in the pop-
ulation found the goal state. “High Fitness” was altered to use (7), no other
changes were made.

Evolvability. In terms of evolvability, 10/10 NAND runs and 8/10 IMP runs
solved the problem. Combined with results seen in Table 4 confirms the general
pattern seen in the previous experiments; IMP is harder to evolve than NAND.
It is interesting to note that, for the solved cases, none of the differences are
statistically significant in the robotics task (performance p=0.127, mean high
fitness p=0.143, mean average fitness p=0.142), in other words circuit perfor-
mance and fitnesses are less divergent. Low average fitness is observed for IMP
as two of the runs failed. Self-adaptive parameters do not vary between the cir-
cuits (p=0.612 for μ, p=0.74 for ψ), although statistically significant differences
are observed between the two mutation rates within the same same circuit type
(p=0.048 in IMP, p=0.034 in NAND).

Table 5. Cost, time taken and efficiency of the best evolved IMP and NAND based
CGP logic circuits for the robotics test problem

Min. Cost Min. T Efficiency

IMP 32 16 2.53
NAND 54 36 0.40

Solution Size and Efficiency. As before, we use equations 4, 5 and 6 to
calculate the efficiency and cost of the best evolved circuit of each gate type.
Table 5 shows that IMP circuits are yet again more efficient than NAND. An
efficiency ratio of 2.53 in favour of IMP is the highest observed, surpassing the

Cartesian Genetic Programming for Memristive Logic Circuits 47

previous best ratio of 2 observed in 6 MUX, 6 DEMUX and 2- and 3- PARITY.
It is worth noting that physical NAND circuits will require more processing steps
to run than their IMP counterparts.

7 Conclusions

In this paper we have compared the evolvability and efficiency of two possible
implementations for memristive logic circuits. It has been shown across all prob-
lems considered that IMP is more efficient than NAND in terms of the number of
components required to implement the best evolved circuits. The efficiency ratio
between the two types increases for the robotics problem. SA mutation allows for
circuits to be successfully evolved for two different problem types without having
to manually tune GA parameters. We also show that the GA has more difficulty
working with IMP gates, in other words NAND is more evolvable than IMP.
However, any physical implementation can be run offline for many generations
before realisation as a circuit so this shortcoming is somewhat mitigated. The
onus is therefore firmly on solution size rather than the number of generations
required to generate working solutions. Future research will focus on evolving
more complex, low-energy embedded controllers where the statefulness of the
memristive circuits can be utilised.

References

1. Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A.A., Wu, W., Stewart,
D.R., Williams, R.S.: A hybrid nanomemristor/transistor logic circuit capable of
self-programming. Proceedings of the National Academy of Sciences 106(6), 1699–
1703 (2009)

2. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.:
’Memristive’ switches enable ’stateful’ logic operations via material implication.
Nature 464(7290), 873–876 (2010)

3. Chua, L.: Memristor-the missing circuit element. IEEE Transactions on Circuit
Theory 18(5), 507–519 (1971)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

5. Harding, S., Miller, J.F., Banzhaf, W.: Self modifying cartesian genetic program-
ming: Parity. In: Tyrrell, A. (ed.) 2009 IEEE Congress on Evolutionary Compu-
tation, May 18-21, pp. 285–292. IEEE Computational Intelligence Society, IEEE
Press, Trondheim, Norway (2009)

6. Harding, S., Miller, J.F.: Evolution of Robot Controller Using Cartesian Ge-
netic Programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J.,
Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 62–73. Springer, Heidel-
berg (2005)

7. Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics
and design implications. In: Proceedings of the 2009 International Conference on
Computer-Aided Design, ICCAD 2009, pp. 485–490. ACM, New York (2009)

8. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical
Biology IV, pp. 263–293. Academic Press, New York (1976)

48 G.D. Howard, L. Bull, and A. Adamatzky

9. Howard, G.D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolution of
plastic learning in spiking networks via memristive connections. IEEE Transactions
on Evolutionary Computing (to appear)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

11. Kuekes, P.J., Stewart, D.R., Williams, R.S.: The crossbar latch: Logic value storage,
restoration, and inversion in crossbar circuits. Journal of Applied Physics 97(3),
034301 (2005)

12. Lehtonen, E., Poikonen, J., Laiho, M.: Two memristors suffice to compute all
boolean functions. Electronics Letters 46(3), 230–231 (2010)

13. Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–
1636 (1990)

14. Michel, O.: Webots: Professional mobile robot simulation. International Journal of
Advanced Robotic Systems 1(1), 39–42 (2004)

15. Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
16. Miller, J.F.: Digital filter design at gate-level using evolutionary algorithms. In:

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
1999, pp. 1127–1134. Morgan Kaufmann (1999)

17. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using
a cartesian genetic programming approach. In: Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference, July 13-17, vol. 2, pp.
1135–1142. Morgan Kaufmann, Orlando (1999)

18. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian ge-
netic programming. IEEE Transactions on Evolutionary Computation 10(2), 167–
174 (2006)

19. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

20. Rajaei, A., Houshmand, M., Rouhani, M.: Optimization of Combinational Logic
Circuits Using NAND Gates and Genetic Programming. In: Gaspar-Cunha, A.,
Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Appli-
cations. AISC, vol. 96, pp. 405–414. Springer, Heidelberg (2011)

21. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzip-
ien der biologischen evolution. Frommann-Holzboog, Stuttgart (1973)

22. Snider, G.: Computing with hysteretic resistor crossbars. Applied Physics A: Ma-
terials Science and Processing 80, 1165–1172 (2005)

23. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453, 80–83 (2008)

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 49–60, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A New, Node-Focused Model for Genetic Programming

David Jackson

Department of Computer Science, University of Liverpool
Liverpool L69 3BX, United Kingdom
djackson@liverpool.ac.uk

Abstract. We introduce Single Node Genetic Programming (SNGP), a new
graph-based model for genetic programming in which every individual in the
population consists of a single program node. Function operands are other
individuals, meaning that the graph structure is imposed externally on the popu-
lation as a whole, rather than existing within its members. Evolution is via a
hill-climbing mechanism using a single reversible operator. Experimental re-
sults indicate substantial improvements over conventional GP in terms of solu-
tion rates, efficiency and program sizes.

Keywords: Genetic programming, Graph-based representation.

1 Introduction

In genetic programming (GP), a variety of representations are available to encode the
programs representing individuals of the population. Most commonly, programs are
stored as tree structures [1], in which leaf nodes are taken from a set of terminals, and
internal nodes are drawn from a set of functions appropriate to the problem. Evolutio-
nary operators work on such representations by swapping subtrees or replacing them
with new, randomly-generated subtrees.

In linear GP [2] the representation has no such structure imposed on it. Instead,
programs are simply sequences of individual instructions. Whereas tree-based GP
takes a functional view of programs, in which calculations are passed up a tree as it is
evaluated, linear GP is more akin to conventional imperative programming, with
intermediate and final results being stored in registers or memory variables. The
representation language used can be either real or abstract: when machine code
instructions are directly manipulated, the efficiency gains can be substantial [3].

A tree is merely one form of a graph, and so it is perhaps not surprising that it is
not the only such graph structure that has been tried for GP. One of the first systems
to explore this was PADO (Parallel Algorithm Discovery and Orchestration) [4].
PADO makes use of stack memory and indexed memory, and a graph may contain
action nodes and branch-decision nodes. The system was used to evolve parallel
programs for classifying images.

Taking inspiration from the parallel processing performed in neural networks,
Poli’s PDGP (Parallel Distributed GP) [5] uses a grid representation to hold graph-
structured programs. Individuals are still subject to (suitably modified) crossover and

50 D. Jackson

mutation, but programs are more compact than tree-based equivalents, and offer
opportunities for concurrent execution. A similar grid-based approach is employed in
Cartesian Genetic Programming (CGP) [6], in which the number of rows and
columns, and the amount of feed-forward, are all parameters to the system. Originally
developed to evolve digital logic designs, the approach made use exclusively of
mutation to generate new candidates which took part in a (1+λ) evolutionary strategy,
but more recent research has explored the advantages of a new crossover operator [7].
In the GRAPE (GRAph structured Program Evolution) approach [8], graphs contain
arbitrarily directed links, and both calculations and node sequencing are determined
by a separate data set.

Other researchers have taken conventional tree-based or linear GP and augmented
them with additional structures. Often, this is done as a way of introducing modules
or other forms of hierarchy into programs [1,9-11]. In linear-tree GP [12], each node
of a tree consists of a linear program and a branching node which determines the next
node in the tree to be executed. The idea was later extended to more general graph
structures [13]. In the MIOST system [14], program trees may contain additional links
both to provide more sophisticated interaction between nodes and also to allow
multiple outputs from individuals.

In Multi-Expression Programming (MEP) [15,16], each individual has a structure
similar to that of single-row CGP, with each node of the graph having links to
operands further back in the graph. The main difference is that execution results are
computed not only for a program graph as a whole, but also for each of its sub-graphs.
The overall fitness of the individual is defined to be the fitness of the best sub-
expression. Mutation and crossover are the primary evolutionary operators.

In our own proposed approach, which we call Single Node Genetic Programming
(SNGP) we take this idea of associating a fitness with every node a stage further. In
our model, every individual in the population has just one fitness value, rather than
several as in MEP, but that is because each individual consists of only one node.
Another key difference between our approach and others is that individuals are not
entirely distinct: they are interlinked in a graph structure similar to that of MEP or
CGP, with population members acting as operands of other members. In a sense, then,
an entire SNGP population can be viewed as being very similar to a single MEP
individual, although, as we shall see, the mechanics of evolution are very different.

2 The SNGP Model

An SNGP population is a set of N members
M = {m0, m1, …, mN-1}.

Each member is a tuple of the form:
mi = < ui, ri, Si, Pi, Oi >

where:
ui ∈ {T ∪ F} is a single graph node taken from either the function set F or the

terminal set T of the problem;
ri is the rating of fitness for the individual;

 A New, Node-Focused Model for Genetic Programming 51

Si is a set of successors of this node;
Pi is a set of predecessors of the node;
Oi is a vector of outputs generated when this node is evaluated.

During initialisation, the population is partitioned in such a way that:

ui ∈ T if i < TNUM
ui ∈ F otherwise

where TNUM is the number of terminals in the terminal set. Moreover, for any ui, uj
such that i, j < TNUM and i ≠ j, we have ui ≠ uj.

In other words, the first TNUM members of the population are initialised to
represent the members of the terminal set, with each terminal appearing exactly once.
All other members contain nodes drawn from the function set. These are allocated at
random, and so may be replicated in the population.

For a population member which represents a function, the operands of that function
are drawn from other members of the population. The successor set of the node is a
list of the population members acting as operands, represented by their position in the
population. We make the restriction that for each s ∈ Si we have 0 ≤ s < i, i.e. the
operands of a function must be ‘lower down’ in the population (towards position
zero).

Similarly, the predecessors of an individual are those population members for
which the individual is used directly as an operand, i.e. they take us to the next higher
expression level. This means that for each p ∈ Pi we have i < p < N.

Note that for terminal nodes the successor sets are empty. Moreover, as these
nodes cannot change during evolution (see later), their predecessor sets are not needed
and are also left empty.

NOR

NAND

OR

D0 D1 D2 D3

AND

 0
D0
{}
{}

 1
D1
{}
{}

 2
D2
{}
{}

3
D3
{}
{}

 4
AND
{0,1}
{5,6}

 5
OR
{2,4}
{6,7}

 6
NAND
{4,5}
{}

 7
NOR
{3,5}
{}

u
S
P

Fig. 1. Small (8-member) SNGP population and corresponding graph structure

Fig. 1 shows how a population of just 8 members might be initialised, together
with the corresponding graph. The first four positions in the population are occupied

52 D. Jackson

by terminals, the remainder by functions. For ease of explanation the functions shown
here are all different, although in reality functions could be replicated, and certainly
will be with larger population sizes. Note that the AND node and the OR node both
have two predecessors, i.e. they appear as immediate operands of two other function
nodes. This form of reuse is characteristic of SNGP programs, and therefore differs
from conventional tree-based GP.

The graph shown here contains eight different expressions, one per node. The
simplest expressions are the single-node terminals: D0, D1, D2 and D3. The other
expressions are those rooted at the remaining nodes:

AND(D0, D1)
OR(AND(D0, D1), D2)
NAND(AND(D0, D1), OR(AND(D0, D1), D2))
NOR(OR(AND(D0, D1), D2), D3)

It can be seen that, even with only eight nodes, a range of reasonably complex expres-
sions can be encoded. This complexity can rise dramatically when hundreds of nodes
are used.

Key to the efficiency of SNGP is the way in which the fitness of each individual is
calculated. This is achieved using a form of dynamic programming. During
initialisation, each terminal is evaluated across all test input cases, and the outputs
generated are stored in Oi. These outputs are used to calculate the fitness values ri. As
initialisation continues, and each randomly selected function is inserted into the
population, outputs and fitnesses continue to be computed, but making use of the
values already stored for the operands forming the successor set. In this way, the
fitness calculation for an individual is highly efficient, involving the application of
only one operator or function per test case.

In SNGP there is only one evolutionary operator, called smut (successor mutate).
The way that smut works is that a member of the population is chosen at random, and
then one of its operands (i.e. a member of its successor set) is replaced by a reference
to a different member of the population (but still lower down in the position order).
Figure 2 shows how this might work for the small program graph that was given
previously in Figure 1.

NOR

NAND

OR

D0 D1 D2 D3

AND

 0
D0
{}
{}

 1
D1
{}
{}

 2
D2
{}
{}

3
D3
{}
{}

 4
AND
{0,1}
{6}

 5
OR
{1,2}
{6,7}

 6
NAND
{4,5}
{}

 7
NOR
{3,5}
{}

u
S
P

Fig. 2. Effects of the smut operator on the population

 A New, Node-Focused Model for Genetic Programming 53

Here, the first operand of the OR node is being changed from population member
number 4 (the AND node) to member number 1 (the terminal D1). Hence, the
successor set of node 5 must be changed to reflect this, and node 5 must therefore be
deleted from the predecessor set of the AND node. In this example, the new operand
is a terminal, and so nothing more needs to be done to the graph structure; when the
new operand is a function, its predecessor set must also be updated to add in the new
parent.

A modification such as this means that the individual which has been changed
must be re-evaluated to determine its new outputs and fitness rating. In our example,
the expression OR(D1, D2) must be computed for all test cases. However, this will
also have an effect on individuals higher up in the population. Exactly which
individuals are affected is determined by the predecessor sets. In Figure 2, the
predecessors of the OR node are the NAND node and the NOR node, and so these
must be re-executed. In larger graphs, it may be necessary to continue this chain of
execution by pursuing the predecessor references until all affected individuals have
been re-assessed.

The order in which evaluations proceed up the population can have a great impact
on efficiency. Returning to Figure 1, a change to the operands of the AND node might
cause the immediate predecessors NAND and OR to be evaluated next. Then, because
the OR outputs have changed, the NAND node might be invoked once again. In
general, there may be many unnecessary evaluations that take place before the
population eventually settles to its final values. To circumvent this, we implement a
mechanism in which the predecessor sets are followed to build an ordered ‘update
list’ of all affected individuals. We then execute each member of the list in turn, from
the lowest to the highest position in the population, thus ensuring that no node is
visited more than once.

Evolution of an SNGP population is driven using a hill-climbing approach. This is
based on fitness measurements across the whole population, rather than on single
individuals. More formally, and assuming that lower fitness values are better, the aim
is to minimize Σri. Whenever the smut operator is applied, this summation is
computed. If the result is worse than the value of the summation before smut was
invoked, and if no solution has been found, then the modifications made by smut are
reversed. To make this more efficient, the old outputs and fitness values of each
member of the update list are recorded by smut, so that they can be put back in place
if necessary by a single restore operation. Note that worse overall fitness will cause
the reversal to be activated even if it means discarding individuals that are fitter than
any of those previously present in the population.

3 Experimentation

In evaluating SNGP against conventional GP we have made use of three standard
benchmark problems: 6-multiplexer, even-parity, and symbolic regression.

In the 6-mux problem, the aim is to evolve a program that interprets the binary
value on two address inputs (A0 and A1) in order to select which of the four data
inputs (D0-D3) to pass onto the output. The function set is {AND, OR, NOT, IF}.
Fitness evaluation is exhaustive over all 64 combinations of input values, with an

54 D. Jackson

individual’s fitness being given in terms of the number of mismatches with expected
outputs.

In the even parity problem we search for a program which returns TRUE if the
number of inputs set to logic 1 is even, and FALSE otherwise. The function set is
{AND, OR, NAND, NOR}. In this paper, we will first consider the 4-input version of
the problem, with fitness being given in the range 0-16; later, we will discuss higher
level parity problems.

Our final problem is symbolic regression of a polynomial. In our version of this,
the polynomial we attempt to match through evolution is 4x4 – 3x3 + 2x2 – x. The only
terminal is x, and the function set is {+, -, *, /}, with the division operator being
protected to ensure that divide-by-zero does not occur. The fitness cases consist of 32
x-values in the range [0,1), starting at 0.0 and increasing in steps of 1/32, plus the
corresponding y-values. Fitness is calculated as the sum of absolute errors in the y-
values computed by an individual, whilst success is measured in terms of the number
of ‘hits’ – a hit being a y-value that differs from the expected output by no more than
0.01 in magnitude.

The problem parameters as they apply to the use of standard GP in all these
problems is given in Table 1. For SNGP there are really only two parameters. The
first is the population size (number of nodes), which we have arbitrarily set to 100,
although later we will discuss the effects of altering this. The second parameter is the
‘length’ of a run, which we will refer to as L. SNGP does not have generations as
such; we can think instead in terms of the number of evolutionary operations
performed. Since standard GP with a population size of 500 running over 50
generations generates 25,000 individuals via crossover or reproduction, we will set
the upper limit on the number of smut applications to 25,000. Again, however, we
will examine the effects of changing this parameter.

Table 1. GP system parameters common to all experiments

Population size 500
Initialisation method Ramped half-and-half
Evolutionary process Steady state

Selection 5-candidate tournament
No. generations 51 generational equivalents (initial+50)

No. runs 100
Prob. crossover 0.9

Mutation None
Prob. internal node used as

crossover point
0.9

In comparing SNGP with conventional GP we consider three factors: solution rate,

efficiency, and solution size. The solution rate is given simply in terms of the number
of solutions to the problem found in 100 runs. Comparisons of efficiency can be a
little more difficult to make fair. For example, it would be possible to compare the
number of fitness evaluations performed in each case. However, the nature of a fitness

 A New, Node-Focused Model for Genetic Programming 55

evaluation performed in standard GP is so different from that of SNGP that
comparing the two becomes meaningless. Instead, we use the more uniform measure
of standard wall-clock time. The timings we give are for a PC with an Intel Core i7
quad-core processor running at 2.8GHz. The GP systems are compiled using
Microsoft Visual Studio as single-threaded processes executing under identical load
conditions. Each timing figure is for the number of seconds required to perform 100
runs. Table 2 summarises the results for our three problems.

Table 2. Comparison of SNGP with standard GP

 Even-4 6-mux Regression
GP SNGP GP SNGP GP SNGP

Soln. rate (%) 14 95 66 100 11 43
Time 100 runs (secs) 16 7 15 7 59 21
Av. soln size 278 38 83 31 223 24
Max soln size 709 56 449 54 1011 48
Min soln size 59 22 10 15 29 12

We can see from this table that SNGP substantially out-performs conventional GP.

For the even-4 parity problem, SNGP finds almost seven times as many solutions as
standard GP, and in less than half the time. Standard GP improves on the multiplexer
problem, but now SNGP finds a solution on every run, again in less than half the time.
For the symbolic regression problem, SNGP discovers four times as many solutions in
one third of the time of standard GP. It should be pointed out that all the comparative
performance figures in this paper have been established as statistically significant
using a t-test at the 95% confidence level.

Turning our attention to the program sizes in Table 2, we see that SNGP again
comes off best. The explanation for this is of course that, with the parameters we have
used, it is impossible for the SNGP programs to grow beyond 100 nodes, whereas
standard GP is effectively unbounded. Although it could be argued that this frees
standard GP to explore a larger search space, it is clear that it does not hamper
SNGP’s ability to find solutions. Conversely, standard GP would find it very difficult
to find solutions when using such small population sizes.

The only figure that could be regarded as a victory for conventional GP in Table 2
is that of the minimum solution size found for the multiplexer problem. Standard GP
finds the following 10-node solution:

IF (A1 IF (A0 D3 IF (A0 D1 D2)) (IF (A0 D1 D0)))

whilst the best that SNGP can find is the following 15-node solution:

26: IF 5 19 7
19: IF 4 3 18
18: AND 2 16
16: IF 6 14 10
14: OR 7 5
10: OR 9 4

56 D. Jackson

9: OR 0 5
7: IF 4 1 0
6: NOT 5
5: A1
4: A0
3: D3
2: D2
1: D1
0: D0

In this linearised form of the program graph, each line represents a node, and the
number at the beginning of the line is the index number of the node in the population.
As can be seen, population members 0 to 5 represent the terminals of the problem.
The way to interpret the graph as a program is to read it in a top-down fashion. The
first node (node 26 in this example) is the one at which the solution is rooted. Hence,
the top-level function in this program is an IF construct which will test the value of
A1 (node 5); if A1 is true, execution will be directed to node 19 (another IF state-
ment), otherwise it will go to node 7 (also an IF statement, corresponding to ‘IF A0
then D1 else D0’).

That said, the sizes of the programs evolved by SNGP are constrained by the
population size. This suggests that reducing the population size might have the effect
of encouraging the evolution of smaller programs. However, the question is by how
much we can do this while still providing the evolutionary process with enough
genetic material to discover solutions. The graph of Figure 3 charts what happens
when the population size is altered for the 6-mux problem. Similar graphs are
obtained for the symbolic regression and parity problems.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Population size

Solns.

Av size

Fig. 3. 6-mux soln rate and av. soln size for varying population sizes

We can see that, as the population size is gradually reduced, we do indeed see the
desired reduction in the average solution size. As might be expected, the number of
solutions obtained also decreases, but what is surprising is that solutions continue to
be found even when the population size becomes quite small. For the 6-multiplexer
problem, we require only 10 individuals (and therefore just 10 nodes across the whole

 A New, Node-Focused Model for Genetic Programming 57

population) to discover solutions, whilst anything greater than 40 individuals is
enough to give us solution rates close to the 100% level. Similarly, 20 individuals are
sufficient to evolve solutions for the symbolic regression problem, and 30 individuals
for the even-4 parity problem.

The population size parameter therefore acts as a useful mechanism for tuning the
results we wish to obtain from evolution. Higher values give us lots of solutions;
lower values provide fewer solutions, but they are smaller in size and can be
generated much quicker. When just 10 individuals are used in the 6-mux problem, we
get a solution rate of just 3%. However, the solutions we obtain can be no bigger than
10 nodes (because they are bounded by the population size), and the complete set of
100 runs executes in only 2 seconds.

Hence, the inability of SNGP to match standard GP on minimum program size for
6-mux in our earlier experiments is easily remedied. With a population size of 10, we
obtain two solutions of size 9, and one of size 10. In general, the extensive re-use of
nodes via multiple pointers in SNGP enables much more compact solutions than the
conventional GP equivalents. For example, one 14-node SNGP solution to the 6-mux
problem takes up 59 nodes when written out as a standard expression tree such as
would be used in standard GP.

The other SNGP parameter – the maximum number of operations per run (L) –
can, of course, also be altered. In conventional GP, increasing the duration of runs
generally has little effect: populations which converge without finding a solution
usually do not recover no matter how much extra evolutionary time they are granted.
In contrast, our observations of SNGP runs suggest that many runs are still continuing
to evolve when they are terminated. The parameters we have used thus far for SNGP
have been sufficient to obtain a 100% solution rate for the 6-mux problem. Table 3
shows what happens in the even-parity and regression problems if the maximum
length of each run is increased from 25,000 to 100,000 operations.

Table 3. Effects on even-4 parity and symbolic regression problems when SNGP max run
length increased to 100,000 ops

 Even-4 Regression
Soln. Rate (%) 99 54
Time 100 runs (secs) 10 61

The results we have presented above are encouraging for these simple benchmark

problems, but suppose we increase the problem difficulty? A simple and effective
way of investigating this is to apply SNGP to the solution of higher-order parity
problems, which are known to be difficult for conventional GP to solve. Table 4
presents the results of these experiments, with N kept at 100 and L maintained at
25,000. By way of contrast, conventional GP is unable to find any solutions to the
even-5 parity problem, even when the population size is increased to 4,000
(equivalent to 200,000 evolutionary operations over 50 generations) [1].

58 D. Jackson

Table 4. Performance of SNGP for higher-order even parity problems (N=100, L=25,000)

 Even-5 Even-6 Even-7
Soln rate (%) 58 14 2
Time 100 runs (secs) 47 67 82
Av. soln size 48 52 58
Max. soln size 67 64 59
Min. soln size 31 40 58

The results presented here for even parity also compare well against those reported

for Multi-Expression Programming (MEP) [16]. For MEP populations up to size 500,
each member having 200 genes, the best success rate for even-4 parity is less than
50% (cf. SNGP’s rate of 95-99%). Similarly, MEP with a population of 1000
individuals having 600 genes each has a success rate of just 16.66% for even-5 parity.

It should also be borne in mind that the SNGP results have been obtained using our
standard parameter values. As before, these can be manipulated to tune the solution
rate, solution sizes, and speed of solution discovery. For example, halving the
population size to 50 for the even-5 parity problem provides us with only 19 solutions
in 100 runs, but execution of this set of runs is completed in just 13 seconds. At the
other end of the scale, increasing L to 100,000 operations whilst keeping N at 100
leads to a 12% solution rate for the even-7 parity problem, found in just over 11
minutes. Moving up to even-8 parity, the parameter values N=200 and L=200,000
gave us 2 solutions in the 5 runs we attempted, one with 100 nodes, the other with
110. In the other 3 runs, the best programs found had fitness values of either 2 or 3.

4 Conclusions

In this paper we have introduced a new graph-based model for genetic programming.
It has several key differences from existing representations, perhaps the most striking
being that each individual in the population consists of just a single program node.
Moreover, the graph structure to which we refer is not contained within individuals,
as it is in most other representations, but is external to them: it is imposed on the
population as a whole, linking them into a network of functions and their operands.
Indeed, it could be argued that an SNGP population is not a collection of members at
all, but merely a single individual. However, the complexity of each node, comprising
not only the function to be applied, but also its predecessor and successor sets, its
output values, and in particular its own identifiable fitness value, makes it worthy of
consideration as a distinct individual. This is really just a question of semantics; what
really matters is whether the approach has any merit.

Another important difference is the way in which evolution is carried out. We do
not use crossover, and the form of mutation we employ is non-standard in the sense
that the function or terminal held at a particular node never alters: once a population
has been randomly initialized, each node will retain its given operation for the life-
time of the run. What does change are the references to other individuals acting as
operands of a given function. In this way, we view the dynamics of SNGP evolution

 A New, Node-Focused Model for Genetic Programming 59

as a search for an optimal set of connections between functions and terminals which
are present in sufficient number to solve the problem at hand.

Evolution in SNGP is a lot more collaborative and altruistic than it is in other ap-
proaches. The hill climbing approach we use is based on the good of the whole popu-
lation, not just individuals. If a given operation does not lead to better fitness across
the whole population, then its actions are reversed, even if there exist particular indi-
viduals which would have benefited greatly from the change. The only exception to
this is when the operation leads to a solution being discovered.

Despite the simplicity of its representation, SNGP copes extraordinarily well with
the benchmark problems we have thrown at it. Its solution-finding performance is
superior in terms of both the numbers of solutions obtained and in the times taken to
discover them. It readily finds solutions to higher-order parity problems that are
beyond the reach of conventional GP and many other approaches, and it does so using
populations that are comparatively minute.

A further advantage to be gained is that these solutions are significantly smaller
than those evolved in other approaches. A key factor in this compactness is the ability
to re-use nodes as operands of numerous individuals simultaneously, effectively con-
verting them into program modules.

A serious problem in conventional GP is that of bloat – the rapid explosion in pro-
gram sizes as evolution proceeds. SNGP does not have this problem. This is partly
due, of course, to the restrictions on program growth imposed by a fixed population
size. But it is also because SNGP does not have the equivalent notion of introns,
which are often a major contributing factor in bloat. In SNGP, every node is eva-
luated, and therefore has its own intrinsic worth in addition to the value it may offer in
its role as an operand of other individuals.

All of these findings are highly encouraging. There is, however, still much research
to be done on SNGP. Some of the questions which immediately jump to mind in-
clude: What are the dynamics of SNGP, such that it is able to find solutions so readily
with such small populations? What is the potential for exploiting the parallelism inhe-
rent in both the SNGP system and in the programs it evolves? Are we using the best
evolutionary operator, or should it be modified or others introduced? Are we making
too much of randomness in the initialization phase and in the way changes are made
during evolution? How well does SNGP deal with problems in which functions have
side-effects and which are therefore not amenable to dynamic programming?

We hope to address these questions and others in future work.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection. MIT Press, Cambridge (1992)

2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, Heidelberg (2007)
3. Nordin, P., Banzhaf, W., Francone, F.D.: Efficient Evolution of Machine Code for CISC

Architectures Using Instruction Blocks and Homologous Crossover. In: Spector, L., et al.
(eds.) Advances in Genetic Programming, vol. 3, pp. 275–299. MIT Press, Cambridge
(1999)

60 D. Jackson

4. Teller, A., Veloso, M.: PADO: Learning Tree Structured Algorithms for Orchestration into
an Object Recognition System. Technical Report CS-95-101, Department of Computer
Science, Carnegie-Mellon University, USA (1995)

5. Poli, R.: Parallel Distributed Genetic Programming. In: Corne, D., et al. (eds.) New Ideas
in Optimization, pp. 779–805. McGraw-Hill Ltd., UK (1999)

6. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W.,
Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS,
vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

7. Clegg, J., Walker, J.A., Miller, J.F.: A New Crossover Technique for Cartesian Genetic
Programming. In: Thierens, D., et al. (eds.) Proc. Genetic and Evolutionary Computing
Conf (GECCO 2007), London, England, UK, pp. 1580–1587 (2007)

8. Shirakawa, S., Ogino, S., Nagao, T.: Graph Structured Program Evolution. In: Thierens,
D., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf. (GECCO 2007), London,
England, UK, pp. 1686–1693 (2007)

9. Angeline, P.J., Pollack, J.: Evolutionary Module Acquisition. In: Proc. 2nd Annual Conf.
on Evolutionary Programming, La Jolla, CA, pp. 154–163 (1993)

10. Jackson, D.: The Performance of a Selection Architecture for Genetic Programming. In:
O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della
Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 170–181. Springer,
Heidelberg (2008)

11. Rosca, J.P., Ballard, D.H.: Discovery of Subroutines in Genetic Programming. In: Ange-
line, P., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, ch. 9, pp. 177–202.
MIT Press, Cambridge (1996)

12. Kantschik, W., Banzhaf, W.: Linear-Tree GP and Its Comparison with Other GP Struc-
tures. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon,
W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 302–312. Springer, Heidelberg (2001)

13. Kantschik, W., Banzhaf, W.: Linear-Graph GP - A New GP Structure. In: Foster, J.A.,
Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278,
pp. 83–92. Springer, Heidelberg (2002)

14. Galvan-Lopez, E.: Efficient Graph-Based Genetic Programming Representation with Mul-
tiple Outputs. International Journal of Automation and Computing 5(1), 81–89 (2008)

15. Oltean, M.: Evolving Digital Circuits using Multi-Expression Programming. In: Zebulum,
R.S., et al. (eds.) Proc. 2004 NASA/DoD Conf. on Evolvable Hardware, Seattle, USA, pp.
87–97 (2004)

16. Oltean, M.: Solving Even-Parity Problems using Multi-Expression Programming. In:
Chen, C., et al. (eds.) Proc. 7th Joint Conf. on Information Sciences, North Carolina, USA,
vol. 1, pp. 295–298 (2003)

Medial Crossovers for Genetic Programming

Krzysztof Krawiec

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
krawiec@cs.put.poznan.pl

Abstract. Wepropose a class of crossover operators for genetic program-
ming that aim at making offspring programs semantically intermediate
(medial) with respect to parent programs by modifying short fragments
of code (subprograms). The approach is applicable to problems that de-
fine fitness as a distance between program output and the desired out-
put. Based on that metric, we define two measures of semantic ‘mediality’,
which we employ to design two crossover operators: one aimed at making
the semantic of offsprings geometric with respect to the semantic of par-
ents, and the other aimed at making them equidistant to parents’ seman-
tics. The operators act only on randomly selected fragments of parents’
code, which makes them computationally efficient. When compared ex-
perimentally with four other crossover operators, both operators lead to
success ratio at least as good as for the non-semantic crossovers, and the
operator based on equidistance proves superior to all others.

Keywords: Genetic programming, Program semantic, Semantic
crossover.

1 Introduction

The function of crossover in evolutionary computation is to produce new can-
didate solutions (offspring) that fuse some of the features of existing candidate
solutions (parents). This principle is typically implemented by following the bi-
ological paradigm, i.e., by recombining the genotypes of parents. An implicit
assumption hidden in this line of reasoning is that recombination effects prop-
agate to the phenotypes in an analogous way, and the offspring is expected to
behave in a way that mixes, to some extent, the behaviors of its parents.

This renders invalid if the elements of the genotype do not map one-to-one to
the elements of phenotype, which is unfortunately always the case for nontrivial
problems. Most problems considered in genetic programming (GP, [1]) belong
here too, as the interactions between the elements of genotype (instructions)
are usually strong, and influence the output of program (and subsequently its
fitness) in a complex way that is hard to predict and model. As a result, an
operator that recombines parents’ programs cannot be in general expected to
always recombine their behaviors.

Trying to circumvent this difficulty, we propose a family of operators, medial
crossovers, designed to produce programs that inherit not only parts of parents’
code, but also some elements of parents’ semantics. To this aim, we exploit the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 K. Krawiec

fact that many genetic programming tasks define fitness using a metric that
compares the actual program behavior with the desired one. In the proposed
operators, that very metric is employed to alter subprograms within parents’
code so that their outcome at certain execution stage become more similar to
each other, which indirectly affects the semantic of entire offspring programs in
a way that gives chance to exploit certain properties of the fitness landscape.

Although research on semantic in GP intensified only recently, there are a few
related contributions. McPhee et al. were probably one of the first to study the
impact of crossover on program semantics and so-called semantic building blocks
[2]. In [3], Moraglio et al. considered properties of semantic spaces for different
metrics and provided guidelines for designing semantically geometric crossovers.
The semantically-aware crossover by Quang et al. [4] swaps a pair of subtrees
in parent solutions that have similar, yet not too similar, semantics. To author’s
knowledge however, this is the first study on semantic crossovers that act in a
semantically medial way on the level of subprograms.

2 Metric-Based Crossover Operators

We consider here the class of problems for which the objective function captures
the divergence between the program output and the desired output, given as
a part of problem formulation. This class embraces the prevailing part of GP
applications, where individuals are typically tested on a set of fitness cases, and
fitness is some form of error built upon the outcome of these tests (cf. symbolic
regression and boolean function synthesis).

Formally, we assume that the (minimized) fitness of a candidate solution p is
defined as f(p) = ||p, t||, where t is the (known) desired output (target) deter-
mined by problem instance, and || || is a metric measures the distance between
t and the output produced by p. The metric imposes a structure on the set of
programs (potential solutions), turning it into a space. It is essential to empha-
size that, throughout this paper, the metric operates on the phenotypic level,
ignoring program code (syntax) and taking into account only its output, which
within this paper we identify with program semantics [2,5,6]. We call a fitness
function defined in this way metric-based fitness function.

Crossover is a search operator that produces a new search point (offspring) o
(or a pair of offspring) based on a pair of search points p1, p2 (parents). In the
following, we consider only nontrivial offspring o �= p1, p2.

The metric allows us to express some properties of the offspring in the context
of its parents. An offspring o that fulfills

||o, p1||+ ||o, p2|| = ||p1, p2||, (1)

will be referred to as geometric offspring, and a crossover operator that produces
such offspring geometric crossover (a.k.a. topological crossover [7]).

To demonstrate the potential that dwells in geometric operators, let us con-
sider a special case, a geometric crossover for which the distributions of ||o, p1||
and ||o, p2|| are uniform and the city-block distance as the metric. In such

Medial Crossovers for Genetic Programming 63

a case, the expected fitness of offspring is (f(p1) + f(p2))/2. The sketch of
proof is as follows. The metric is a norm here and we switch to vector spaces,
so let xi denote the ith coordinate of point in the space. A geometric off-
spring o has to fulfill oi = αipi1 + (1 − αipi2), where αi ∈ (0, 1). Let di(x)
denote the difference between the location of x and t on coordinate i. Then,
di(o) = ti − oi = ti − [αipi1 + (1 − αipi2)]. It is easy to show that, because for
uniform distribution E(αi) = E(1− αi) = 1

2 , it must hold:

E(di(o)) = ti − E(αi)pi1 − E(1 − αi)pi2 = ti − pi1
2

− pi2
2

=
d(p1) + d(p2)

2

Without loss of generality, we can ignore the sign of E(di(o)), in which case
it becomes the expected contribution to o’s distance from t (fitness) on the ith
dimension. The expected fitness of o for city-block fitness is then

E(f(o)) = E(
∑
i

di(o)) =
∑
i

E(di(o)) =

∑
i d

i(p1) +
∑

i d
i(p1)

2
=

f(p1) + f(p2)

2

Verification of this property for other norms is beyond the scope of this paper.
Nevertheless, under all metrics, the offspring cannot be worse than the worse of
the parents.

As another important property, let us notice that, under all metrics, the ex-
pected fitness of a geometric offspring is minimized when it fulfills also the con-
dition of equidistance:

||o, p1|| = ||o, p2|| (2)

Without providing formal proof, let us notice that, under any finite-support
distribution of targets t, given random locations p1 and p2, a point that is equidis-
tant from them is expected to be the closest to t.

Producing a geometric offspring that is simultaneously equidistant can be
difficult (not mentioning the challenge of designing a geometric crossover alone,
which we discuss later). The reason for this is twofold: (i) for discrete spaces
such a point may not exist, and (ii) a program o with the output that fulfills
(2) may not exist (an equidistant semantics cannot be expressed within the
assumed programming language). A possible solution to this problem is to relax
condition (2) and produce a geometric offspring that is as equidistant as possible.
However, a question arises: how much a program should be allowed to diverge
from equidistance to be still considered a useful offspring for a particular pair of
parents? As ||o, p1|| and ||o, p2|| diverge from each other, the offspring becomes
more and more similar to one of the parents, which makes the search less effective.
Note also that, in general, there is no guarantee of existence of even a single
nontrivial geometric offspring for a pair of programs.

An analogous problem arises when one takes an alternative path, i.e., relaxing
geometricity condition (1) while requiring perfect equidistance (2): again, a per-
fectly equidistant offspring may simply not exist at all (i.e., even if geometricity
is completely ignored), and it is hard to tell what is the acceptable divergence
from geometricity.

64 K. Krawiec

An offspring that meets even one of the above conditions may therefore not
exist. This obliges us to simultaneously relax both of them to design an operator
that works in practice. This can be formalized by defining analogous criteria:
divergence from geometricity dG and divergence from equidistance dE :

dG(o, p1, p2) = ||o, p1||+ ||o, p2|| − ||p1, p2|| (3)

dE(o, p1, p2) =
∣∣ ||o, p1|| − ||o, p2||

∣∣
In the following, we consider operators that attempt to minimize dG or dE ,

which we refer to as (semantically) medial crossovers.
An exact implementation of medial crossover is in most cases technically in-

feasible. The primary cause is the complexity (and, typically, irreversibility) of
genotype-phenotype mapping, which makes direct synthesis of an offspring that
minimizes one or both of the above criteria impossible or at least computation-
ally intractable. Apart from certain special cases [3], there is no direct way of
constructing an offspring program that exhibits intermediate behavior with re-
spect to the behaviors of parents programs (intermediate in the sense of the
assumed metric || · ||). Standard crossover operators typically ignore that fact
and produce offspring that are intermediate in purely syntactical terms, but this
does not translate into analogous intermediacy in the space of program behav-
iors. For instance, tree-swapping crossover tends to produce offspring that are
semantically very different from the parents [8].

In theory, one could consider all potential offspring (i.e., all possible pro-
grams), and pick the one that minimizes the criterion (criteria). But such proce-
dure is computationally impractical (exponential time complexity w.r.t. program
length), and can be only approximated via sampling, which we studied in past
[5]. Moreover, if all programs were to be generated and run (the latter required
to know the program output), then also the optimal solution (o = t) would be
among them. A search algorithm that has to consider all solutions to proceed
with a single iteration has limited usefulness, to say the least.

In general then, it is impossible to generate ‘mixtures’ of parents that are
optimal in the sense of dG or dE . Can we at least approximate such behavior?
We investigate this possibility in the subsequent section.

3 Partially Medial Crossover

In this section, we come up with a family of crossover operators that are based on
the introduced criteria and are technically realizable. The key idea is to port the
concepts from Section 2, where they applied to entire programs, to subprograms.
Our hypothesis is that by making programs semantically more similar to each
other (medial) at intermediate execution steps (partially), we have a chance of
making them overall more similar.

The definition of subprogram depends on the assumed program representa-
tion. For simplicity, we represent here programs as linear sequences of instruc-
tions, in which case a subprogram is a continuous subsequence of instructions.

Medial Crossovers for Genetic Programming 65

Let p[i..j], i ≤ j denote the subprogram of program p composed of instructions
from ith to jth inclusive. We also assume that concatenation of any programs
p1 and p2 is a valid program and denote it as p1p2. Finally, we limit our con-
siderations to domains with Markov property: the result of an instruction (the
memory state it produces) depends only on the current memory state. |p| is the
length of program p (number of instructions).

The standard two-point crossover for this program representation has the
natural interpretation of swapping parents’ subprograms located between two
randomly drawn loci i and j. The partially medial crossover (PMX) we propose is
also homologous, and also affects subprograms in the parent solutions, however,
the pieces of code pasted into the offspring result from analysis of semantic
properties of the corresponding parents’ subprograms. The choice of the code to
be pasted between loci i and j can follow a simple principle: paste the subprogram
that makes the resulting offspring possibly medial with respect to the parents at
locus j.

More formally, the subprogram p that replaces the instructions from i to j
(|p| = j− i+1) in the kth offspring (k = 1, 2) to be created from parents p1 and
p2 is the one that minimizes:

argmin
p

d(pk[1..i− 1]p, p1[1..j], p2[1..j]) (4)

where d is one of the divergence criteria (Eq. 3). Thus, when minimizing the
divergence, PMX takes into account only the semantic effects of the first j in-
structions. The kth offspring is a program of the form pk[1..i− 1]ppk[j +1..|pk|],
where the ‘head’ pk[1..i− 1] and the ‘tail’ pk[j + 1..|pk|] are copied from the kth

parent.
PMX considers all potential subprograms p that can be pasted between loci

i and j. As the number of such instruction sequences is exponential in function
of |p|, we limit the span of loci i and j: only i is drawn at random, and j is set
to i+ l − 1, where l is a parameter that limits the length of considered subpro-
grams. The number of instructions we need to execute in order to calculate (4)
is still exponential in function of l, but can be significantly reduced, so that the
computational overhead for small l is reasonable (see analysis of computational
complexity in Section 5).

The ties that may occur when minimizing (4) are resolved at random. In this
way, we avoid unnecessary bias, and the outcome of crossover becomes partially
indeterministic.

4 The Experiment

The objective of the experiment is to compare the partially medial crossover in
its two variants, minimizing the divergence from geometricity dG (PMXG) and
minimizing the divergence from equidistance dE (PMXE). As control approach
we use macromutation (MM), which overwrites the affected instructions with
randomly generated instructions, and two-point crossover (2PX), that swaps

66 K. Krawiec

the affected subprograms between parents. To make comparison fair, they both
affect a randomly selected continuous subsequence of instructions of length l, so
the fraction of code they are allowed to modify is the same as for PMX.

We employ also one-point crossover (1PX) that draws a locus at random, splits
each parent into head and tail, and swaps the tails, and a ‘reset’ operator RND
that produces a random offspring (the entire offspring’s code is randomized).
All operators produce two offspring when applied to a pair of parents.

We conduct two experiments, one to quantitatively characterize the semantic
impact of considered operators (Section 4.2), and one to assess the performance
of evolutionary search (Section 4.3).

4.1 The Puzzle World

We adopt the task of solving the sliding puzzle as an experimental framework.
Consider the 3×3 sliding puzzle with 8 movable pieces. The puzzle can be in
one of 9! = 362, 880 states, which can change as a result of four possible moves
L,R,U,D, where we assume the moves to shift the empty space (and thus also a
piece). Any finite sequence composed of moves can be considered as a program,
with moves playing roles of instructions, and the state of the puzzle correspond-
ing to a memory state of a virtual machine that executes the program.

We define a puzzle task as follows: given a starting state s0 and a target
state t, find a program of length m that transforms the former one into the
latter. Formally, let s(p) denote the final memory state produced by program p
that started execution from memory state s0. The puzzle task is then to find
p, |p| = m such that s(p) = t. Although insisting on finding a program of
length exactly m may sound too specific, let us note that almost every shorter
program that solves a task can be extended to length m by inserting ineffective
instructions that shift the space back and forth. Thus, a task can be solved by
a program which effective length is less than m.

To solve the sliding puzzle task with an evolutionary approach, we evolve indi-
viduals that encode programs as fixed-length sequences (vectors) of instructions.
Evolution will be driven by a (minimized) fitness function f defined as the total
city-block distance between the locations of the 8 pieces and the empty space
() in s(p) and locations of corresponding elements in t, which is always an even
number. Such definition of f is not accidental, it is used as a heuristic path cost
estimate to solve this type of problems with exact algorithms like A*.

Formally, f(p) = ||s(p), t||, and f is thus a metric-based fitness function in
the sense introduced in Section 2. For instance, if t = (1,2,3,4,5,6,7,8,), then

f

(
1 2 3
4 6
7 8 5

)
=

∥∥∥∥∥
1 2 3
4 6
7 8 5

,
1 2 3
4 5 6
7 8

∥∥∥∥∥ = 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 2 = 4

Despite apparent simplicity, sliding puzzle captures the important features of
programming task. It is contextual, i.e., the effect of an instruction depends on
the current memory state. In particular, an instruction or instruction sequence
can be ineffective when applied to a specific state (like the move R applied to

Medial Crossovers for Genetic Programming 67

Table 1. The statistics describing average spatial relationships between the semantics
of parents and offspring for different types of crossover operators

Statistics RND MM 2PX 1PX PMXE PMXG

1 ||p1, p2|| − ||o1, o2|| 0.00 0.00 0.00 0.00 0.83 0.78

2 dG(o, p1, p2) 11.53 3.83 3.76 4.61 4.91 2.83

3 dE(o, p1, p2) 3.54 7.94 7.88 5.07 5.87 7.98

4 ||p, o|| 11.52 3.83 3.83 8.71 5.51 3.31

5 Pr(dG(o, p1, p2) = 0|o �= p1, p2) 0.02 0.05 0.06 0.11 0.08 0.09

the state evaluated above). It is compositional : new programs can be created by
composing (concatenating) other programs. Finally, the memory is composed of
multiple elements and a single instruction changes only some of them.

Apart from these features, sliding puzzle exhibits also some features character-
istic for genetic programming tasks. Firstly, programs are evaluated by running
them (testing) on input data. Secondly, the performance of a program is a func-
tion of a distance between its output and the desired output.

4.2 Experiment 1: Properties of Search Operators

In this experiment, we analyze properties of the considered crossover operators
by applying them to random programs. For each operator, we repeat 1, 000, 000
times the following steps: (i) generate a random starting state s0, (ii) generate
two random parents p1, p2, (iii) apply the operator to p1 and p2, producing
offspring o1 and o2, (iv) run the parent and offspring programs, starting with
memory state s0, and (v) measure the spatial relationships between the outputs
(semantics) of parent and offspring programs. Note that this analysis abstracts
from the target t, and that all these measurements concern entire programs (the
final program outcomes).

For brevity we report the results only for program length m = 40 and l = 3,
(the number of instructions affected by the PMX, MM, and 2PX), but other
lengths led to consistent conclusions. Table 1 shows the averaged statistics ob-
tained in step (v) of the above procedure, including 1) the reduction of distance
between offspring compared to the distance between parents ||p1, p2|| − ||o1, o2||,
2) mean divergence from geometricity dG, 3) mean divergence from equidistance
dE , 4) mean distance between the parent and the offspring ||p, o||, and 5) prob-
ability of generating a perfectly geometric offspring, excluding the trivial cases,
i.e., such that the offspring is a copy of one of the parents.

We start with noting that the non-semantic operators (RND, MM, 2PX, 1PX)
are incapable to produce offspring that is more semantically similar than the
parents (row 1). The offspring of PMX operators, on the other hand, is typically
substantially more similar to each other.

Some non-semantic operators, despite their simplicity, turn out to be quite
good at producing medial solutions (rows 2 and 3). MM, 1PX, and 2PX diverge

68 K. Krawiec

from geometricity (dG) more than PMXG, which is the best in that respect, but
less than PMXE . However, considering the rate of non-trivial offspring that are
perfectly geometric (row 5), only 1PX turns out to be better than PMXG.

The offspring of PMXE is not the most equidistant from parents, yielding
to 1PX and RND. The fact that RND attains the lowest dE may be surprising
at first, but can be explained by the structure of the space. For the consid-
ered sample of programs, the maximum distance between any pair of parents
is 24, and the median of distance is 12. As the metric assumes only even val-
ues, a completely random offspring produced by RND is then quite likely to be
equidistant. However, such offspring is typically very different from the parents,
having mean parent-offspring distance almost twice as high as for PMXE (row
4), so it is unlikely to inherit much of their behavior.

The main conclusion we draw from this experiment is that, despite the fact
that our medial crossover operators are partial, i.e., affect only short subpro-
grams of parents’ code, their effects propagate to the end of program and affect
their semantic in expected way (i.e., consistent with the used criterion). Because
they also clearly produce offspring that is more similar than the parents (row
1) and semantically not too distant from them (row 4), they are quite likely to
prove useful in evolutionary search, which we verify in subsequent section.

One might argue that, from time to time, PMX happens to affect the very last
3 of 40 instructions, and the observed values of indicators are mainly due to such
cases. Such events are however rare: there are 37 possible crossover points, so less
than 3% of cases fall into this category. Also, we conducted an analogous analysis,
not reported here for brevity, where the first crossover point was constrained to
the first half of the genotype. The resulting values of indicators, though less
extreme, confirmed the above conclusions.

4.3 Experiment 2: Performance in Evolutionary Search

To evaluate usefulness of PMX operators as search tools, we carried out a evolu-
tionary experiment for different program lengths (m = 20, 40, 60, 80) and various
length of the affected code fragment (l = 3, 4, 5).

Each evolutionary run is to find a solution to a specific, randomly generated
puzzle task (s0,t), where s0 and t are random permutations of the canonical state
(1,2,3,4,5,6,7,8,). For each combination of m and l, 50 independent runs were
carried out, each solving a different puzzle task. Note that, as only half of the 9!
permutations of pieces are reachable from any given puzzle state [9], not all such
tasks are solvable, i.e., there does not exist a sequence of moves of any length
that leads from s0 to t. Moreover, as the worst configuration of 8-puzzle requires
31 moves to solve (see the OEIS integer sequence A087725, [10]), some of the
tasks are not solvable for the smallest considered program length l = 20. These
difficulties however affect equally all the considered methods, so the comparison
remains fair.

We use generational evolution driven by the fitness function defined in Section
4.1, i.e., as overall city-block distance between the locations of pieces in the state
reached by the program from the locations of pieces in the goal state t. Each run

Medial Crossovers for Genetic Programming 69

Table 2. Success ratio [%] for the 3 × 3 puzzle, for various length of code fragment
affected by crossover (l) and total program length (m)

m 20 40 60 80
l 3 4 5 3 4 5 3 4 5 3 4 5

RND 0 0 0 2 2 2 10 10 10 10 10 10
MM 2 0 0 22 30 28 40 42 48 46 50 50
2PX 0 0 0 2 4 2 6 6 6 22 16 20
1PX 0 0 0 2 8 6 0 10 10 18 18 16

PMXE 4 2 6 30 48 46 46 62 60 58 60 62
PMXG 0 0 0 6 6 6 18 10 20 40 28 34

evolves a population of 1, 000 individuals for 1, 000 generations, unless a solution
is found earlier. The solutions are selected using tournament of size 7, after which
they either undergo crossover using one of the aforementioned operators (with
probability 0.9), or one-point mutation (with probability 0.1, and probability of
affecting a single instruction 0.03).

Note that for RND evolution is effectively a random memoryless search.
Table 2 presents the success rate for different settings. Before comparing the

operators, we should notice that all of them perform better when operating on
longer programs. As the average task difficulty remains the same, this suggests
that finding a program that reaches the target state from the starting state in,
say, 40 instructions can be more difficult than finding a program that does the
same using 80 instructions.

MM performs remarkably well, especially when confronted with other non-
semantic operators. Apparently, introducing completely random modifications
in the code is on average more profitable than purely syntactic swapping of
code fragments implemented by 1PX and 2PX. However, the semantic-aware
manipulation provided by PMX clearly pays off. In particular, for all considered
parameter settings, PMXE finds the optimum more frequently than any other
operator. The efficiency of PMXG as a search tool is much worse, though almost
always not worse than 2PX and 1PX. This suggests that, at least for the con-
sidered domain of sliding puzzle, it is more important to generate solutions that
inherit roughly the same ‘fraction’ of behavior from both parents, even if that
share is low. Minimizing the divergence from geometricity is less effective, which
may be due to the slower pace at which the PMXG traverses the search space
(see row 4 of Table 1).

The high performance of MM suggests that the task we consider here is rel-
atively easy. This observation inclined us to consider the harder 4 × 4, 15-piece
puzzle. As the 4× 4 puzzle has 20,922,789,888,000 possible states, this time we
consider longer programs of length 100, 200, and 300. All other settings, includ-
ing the method of task generation, remain the same.

The results, presented in Table 3, support earlier conclusions. PMXE is again
superior, and its relative outperformance over MM is even larger than for the
3×3 puzzle: probability of finding the optimum is now often several times greater
than for MM. PMXG is much worse again, but still comparable to MM. Other
operators fail completely.

70 K. Krawiec

Table 3. Success ratio [%] for the 4 × 4 puzzle, for various length of code fragment
affected by crossover (l) and total program length (m)

m 100 200 300
l 3 4 5 3 4 5 3 4 5

RND 0 0 0 0 0 0 0 0 0
MM 0 0 0 4 2 4 10 8 4
2PX 0 0 0 0 0 0 0 0 0
1PX 0 0 0 0 0 0 0 0 0

PMXE 0 2 2 4 12 20 26 18 22
PMXG 0 0 2 0 2 2 4 4 6

5 Discussion

Good performance of PMX suggests that generating programs that share some
elements of behavior (semantic) with the earlier visited solutions is an impor-
tant and desired feature of search operator. In particular, this turns to be more
important here than inheriting the genetic material.

However, PMX is incapable to explicitly modify the semantic of programs
and operates on short subprograms only. Although, as we have shown in Table
1, such modifications tend to affect the output of entire programs in the expected
way, it is the affected loci (instructions from i to j) where the semantic effect
of PMX is the strongest. Why then generating programs that exhibit medial
semantics at intermediate stages of execution should be profitable?

Our working explanation is the modularity of the puzzle task. To solve a
task, i.e., to reach the memory state t, one has first to solve a certain subtask,
thus reach a certain intermediate memory state s′ (subgoal), which is typically
unknown prior to solving the task. The partially medial crossovers, by making
more similar the memory states visited by the parent programs, may promote
convergence to such subgoals. However, how effective this process is can depend
on many factors, including the number of solutions that exist for a given puzzle
task, the number of such subgoals for a given task, and the structure of the
fitness landscape (e.g., how does attaining such a subgoal pay off in terms of
fitness). Thus, this hypothesis remains to be verified, possibly with help of the
concept of interdependency (see, e.g., [11,12]).

An important difference between PMX and the non-semantic operators is that
the former involve partial execution of the considered program fragments. This
involves an extra computational overhead, which is not reflected in Tables 2
and 3. PMX needs to run (i) the heads of the parent programs and then (ii)
the subprograms to be pasted (Formula 4). The former part requires execution
of i − 1 instructions per parent, but this has to be done only once: we store
the result of head execution (the final memory state), and use it then as the
starting memory state for considered subprograms. For a programming language
comprising n instructions, PMX considers in the latter part nl subprograms of
length l, which apparently requires executing lml instructions. Note however
that these subprograms partially overlap and can be represented by a n-ary tree

Medial Crossovers for Genetic Programming 71

of depth l, which comprises only nl − 1 nodes (instructions). For instance, for
l = 3 and n = 4 this means reduction from 64 to 15 instructions.

The overall number of instructions executed when crossing over at locus i is
then 2(i+nl−2), where factor 2 is due to producing two offspring. The worst-case
cost, for crossing over at the very end of parents, amounts to 2(m− l+ nl − 1).
For short subprograms and small instructions sets this is a moderate computa-
tional overhead. Should this overhead become unacceptable, some form of sam-
pling from the space of subprograms may be considered. Given that evolutionary
search is stochastic anyway, exact minimization of dG or dE in (4) may be unnec-
essary, and some performance improvements should be possible to attain with
approximate approach at lower computational cost.

6 Conclusion

The overall conclusion of this study is that partially medial crossovers, search
operators that make the subprograms of parent programs semantically inter-
mediate with respect to parents, can positively contribute to effectiveness of
genetic programming algorithms. The extent of this contribution is undoubtedly
problem-dependent, and will vary with instruction set and metric definition.
Nevertheless, we hyptothesize that a significant fraction of real-world genetic
programming problems can potentially benefit from this approach. Our ratio-
nale for this claim is that real-world programming tasks tend to be modular.

The puzzle world seems to constitute a convenient demonstrator for the con-
cept of PMX for several reasons. Firstly, because the programs are intended to
solve a specific instance of puzzle task, for a single input (starting memory state
s0), the semantic of a (sub)program can be identified with the memory state
it produces. For problems that require testing a (sub)program on a set of fit-
ness cases (e.g., symbolic regression), the notion of semantic and the associated
metric would have to be adapted (cf. [2,4,5,13]). Secondly, puzzle manipulating
has the natural interpretation of sequential programs, which implies convenient
correspondence of loci in the parent programs. For less regular program repre-
sentations like trees, PMX would need some extra means to first decide which
subprograms (subtrees) to operate on. Such extensions and the above hypothesis
concerning modular problems remain to be verified in future research.

Acknowledgment. This work has been supported by NSC grant no.
DEC-2011/01/B/ST6/07318.

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

2. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

72 K. Krawiec

3. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic programming.
In: Igel, C., Lehre, P.K., Witt, C. (eds.) The 5th Workshop on Theory of Random-
ized Search Heuristics, ThRaSH 2011, Copenhagen, Denmark (2011)

4. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic
Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

5. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: Raidl, G., Rothlauf, F., Squillero, G., Drechsler, R., Stuetzle, T., Birattari,
M., Congdon, C.B., Middendorf, M., Blum, C., Cotta, C., Bosman, P., Grahl,
J., Knowles, J., Corne, D., Beyer, H.G., Stanley, K., Miller, J.F., van Hemert,
J., Lenaerts, T., Ebner, M., Bacardit, J., O’Neill, M., Di Penta, M., Doerr, B.,
Jansen, T., Poli, R., Alba, E. (eds.) GECCO 2009: Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, Montreal, pp. 987–994.
ACM (2009)

6. Krawiec, K., Wieloch, B.: Analysis of semantic modularity for genetic program-
ming. Foundations of Computing and Decision Sciences 34(4), 265–285 (2009)

7. Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Poli,
R., Banzhaf, W., Beyer, H.G., Burke, E., Darwen, P., Dasgupta, D., Floreano,
D., Foster, J., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A.,
Thierens, D., Tyrrell, A. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 1377–
1388. Springer, Heidelberg (2004)

8. Johnson, C.G.: Genetic Programming Crossover: Does It Cross over? In: Vanneschi,
L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 97–108. Springer, Heidelberg (2009)

9. Archer, A.F.: A modern treatment of the 15 puzzle. American Mathematical
Monthly 106, 793–799 (1999)

10. The On-line Encyclopedia of Integer Sequences, http://oeis.org
11. Altenberg, L.: Modularity in evolution: Some low-level questions. In: Rasskin-

Gutman, D., Callebaut, W. (eds.) Modularity: Understanding the Development
and Evolution of Complex Natural Systems, pp. 99–128. MIT Press, Cambridge
(2005)

12. Watson, R.A.: Compositional Evolution: The impact of Sex, Symbiosis and Modu-
larity on the Gradualist Framework of Evolution, NA. Vienna series in theoretical
biology. MIT Press (February 2006)

13. Krawiec, K.: Semantically embedded genetic programming: automated design of
abstract program representations. In: Krasnogor, N., et al. (eds.) GECCO 2011:
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation, Dublin, Ireland, pp. 1379–1386. ACM (2011)

http://oeis.org

Improving Face Detection

Penousal Machado1, João Correia1, and Juan Romero2

1 CISUC, Department of Informatics Engineering, University of Coimbra,
3030 Coimbra, Portugal

{machado,jncor}@dei.uc.pt
2 Faculty of Computer Science, University of A Coruña, Coruña, Spain

jj@udc.pt

Abstract. A novel Genetic Programming approach for the improvement
of the performance of classifier systems through the synthesis of new
training instances is presented. The approach relies on the ability of
the Genetic Programming engine to identify and exploit shortcomings of
classifier systems, and generate instances that are misclassified by them.
The addition of these instances to the training set has the potential
to improve classifier’s performance. The experimental results attained
with face detection classifiers are presented and discussed. Overall they
indicate the success of the approach.

Keywords: Face detection, Haar cascade.

1 Introduction

Object detection systems, in particular face detection, have become a hot topic of
research. Applications that employ this kind of systems are becoming widespread.
For instance, they can be found in search engines, social networks, incorporated
in cameras, or in applications for smart phones. Like in other example-based
learning techniques, the datasets employed are vital, not only for attaining com-
petitive performances, but also for correctly assessing the strengths and short-
comings of the classifiers. As such, developing adequate datasets for training,
testing and validation becomes a crucial and complex process.

The use of Evolutionary Computation (EC) techniques in the fields of Com-
puter Vision (CV) and Machine Learning (ML) is widespread. Among other
applications, EC has been used for digital filters tuning, parameter optimiza-
tion and image generation. In the field of ML, EC applications include evolving
classifier parameters, thresholds, feature selection for classification, the classifier
itself, etc. Works such as [17,7,1,14] combine EC, CV and ML aspects.

This paper explores the use of Genetic Programming (GP) to assess and im-
prove classifier’s performance through the synthesis of new training examples.
More specifically, the current work focus on: (i) assessing classifier’s performance,
(ii) using evolutionary algorithms to generate new examples, (iii) using the gen-
erated examples to boost the performance of the classifier.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 73–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 P. Machado, J. Correia, and J. Romero

We propose a novel generic evolutionary framework for classifier improvement
through the synthesis of new training examples. This framework is then instan-
tiated by combining a GP image generation system with a state of the art face
detector [19].

The experimental results show that GP was successful in finding shortcom-
ings of the face detector, generating hundreds of images that were incorrectly
classified. They also show that the addition of these images to the training set
reduces its shortcomings, promoting detection accuracy, and leading to better
classifier’s performance.

The paper is organized as follows: Section 2 makes a brief overview of related
work; Next, in section 3, we present the proposed framework for classifier’s per-
formance; Section 4 describes the experimental setup; The experimental results
are presented and analyzed in section 5; Finally, in section 6, overall conclusions
are drawn and future research indicated.

2 State of the Art

As previously mentioned, EC has been used in the development and improvement
of classifier systems. However, we were unable to find works that match closely
the approach proposed in this paper. In this section we make a short overview
of approaches that share common features and goals.

Ventura et al.[18] used EC to generate training samples for a Neural Network
(NN). The goal was to optimize a computer network routing system. The fitness
function was designed to achieve a pre-determined state. The individuals were
composed by vectors of control values that represented the state of the network
at some point in time. A NN was then trained with the best individuals. This
NN was submitted to a series of tests related to the aimed network state. This
work represents and attempt to evolve training samples using a GA which is one
of the common goals of our work.

The work of Mayer et al. [12] focused in the optimization of NN’s training
set. It consisted in a Genetic Algorithm Active Selection method. An Active
Sampling method generated new data patterns based on the selected training
data, in order to enhance the dataset with new information. The GA evolved
subsets of training and sampled data, which were used to train NNs. These NNs
were assessed by a testing set. The performance in the test phase determined
which subset was the best training set to be used. Related to our work, this
approach generates new training samples from the existing samples.

Chen et al. [2] proposed a self-adaptive GA to improve face detection sys-
tems. It consisted on resampling the face training dataset. The individuals of the
GA were encoded as strings containing the pixel intensity values. The individ-
uals were submitted to mutation and recombination operators. Recombination
consisted in segmenting two individuals and combining some of the segmented
parts. Mutation consisted in the probability of changing illumination, position
and angle of the selected segmented parts. The whole process starts with the face
training set being employed as an initial population to perform GA operations.

Improving Face Detection 75

�

��������	

��
���

����������	

��������	
����� ��
�	�	��

���������

�������	

���������

�������	�

�����������		�����

����������

�

�

Fig. 1. System overview

The intermediate solutions of each generation were evaluated by a Sparse Net-
work of Winnows (SNoW) classifier [20], trained with the last non face samples.
The classifier output was used to assign fitness of the individuals. The fittest in-
dividuals continued to the next generation and the weaker were discarded. The
last population was added to the face training set which was used to train a
new SNoW classifier. In this case it relates to this paper due to the usage of the
classifier output to fitness assignment.

More recently, D. Dubey [3] explored the face detection problem by using
NNs, resampling methods and a GA. The images pixel intensity values were
considered as individuals. The initial face training set examples were resampled
by using rotation and scale operations, generating and adding new samples to the
original ones. The non-face training set started with white noise images, created
by assigning random intensities to each pixel. A NN was trained to discriminate
between face and non-face image with the initial sets. The GA was used to
evolve the non-face initial set. The output of the NN was used to assign fitness.
The non-face image set was updated by randomly selecting non-face individuals
that were misclassified during fitness. In each generation a new NN was trained.
After ending the GA process, a final NN was trained with the last generation of
non-faces and existing face images. The relation to our work lays on the usage
of misclassified examples and their inclusion in the training set.

3 The Framework

The proposed framework comprises three main modules: EC engine, Classifier
and Supervisor. Figures 1 and 2 present an overview of the framework and the
interaction between the EC engine and Classifier, respectively.

The application of this approach involves the following steps:

1. Selection of a positive and negative image set;
2. A Classifier System (CS) is trained based on the positive and negative in-

stances;
3. N independent EC runs are started; The CS is used to classify the generated

individuals; Their fitness depends on the results, including intermediate ones,
of the classification task;

4. The EC runs stop when a termination criterion is met (e.g., a pre-established
number of generations, attaining a fitness value);

76 P. Machado, J. Correia, and J. Romero

���������	�

�	�����
�����

�����

������	��

������	��������	�

�������

���������	

��	�
��

�����
���

��
	���

�����	��	

��	����	�

�����
��	

�	�
������
��	

����������

Fig. 2. Evolutionary model and its interaction with the classifier

5. The set of negative images is updated by adding the evolved images for which
the CS and the Supervisor do not agree (e.g. classified as positive by the CS
and as negative by the Supervisor)

6. The process is repeated from step 2 until the boosting criterion is met;

By explaining how this framework is instantiated we will also explain the un-
derlying rationale. In the context of this paper the CS system consists in a Haar
Cascade classifier (see Viola et al. [19]) built to detect frontal faces. The code and
executables are included in the OpenCV API1. This CS approach was chosen
due to its state of the art relevance and for its fast classification. This algorithm
uses a set of small features in combination with a variant of the Ada-boost [4],
and is able to attain efficient classifiers. The classifiers assume the form of a
cascade of small and simple classifiers that use Haar features [13].

The EC engine used in this experiments is inspired by the works of Sims [15].
It is a general purpose, expression-based, GP image generation engine that al-
lows the evolution of populations of images. The genotypes are trees composed
from a lexicon of functions and terminals. The functions include mathemati-
cal and logical operations; the terminal set is composed two variables, x and
y, and random constant values. The phenotypes are images, rendered by eval-
uating the expression-trees for different values of x and y, which serve both as
terminal values and image coordinates. In other words, to determine the value
of the pixel in the (0,0) coordinates one assigns zero to x and y and evalu-
ates the expression-tree. A thorough description of the GP engine can be found
in [10].

In the context of this paper, positives are images that contain faces while
negatives are images where no face is present. The goal of the EC engine is to
evolve images that the CS classifies as faces. To create a fitness function able to
guide evolution it is necessary to convert the binary output of the face detector,
to one that can provide suitable fitness landscape. This is attained by accessing
internal results of the classification task that give an indication of the degree
of certainty in the classification. As such, images that are immediately rejected
by the classifier will have lower fitness values than those that were close to be
classified as possessing a frontal face.

1 OpenCV — http://opencv.willowgarage.com/wiki/

http://opencv.willowgarage.com/wiki/

Improving Face Detection 77

Considering the structure of the selected classifier and through trial and error
we developed the following fitness formula:

fitness(x) =

countstagesx∑
i

beststagedifferencex(i) ∗ i+ countstagesx ∗ 10 (1)

Variables countstagesx and beststagedifferencex(i) are extracted from the face
detection algorithm. Variable countstagesx, holds the number of stages that
image, x, has successfully passed in the cascade of classifiers. The rationale is
the following, an image that passes several stages is likely to be closer to being
recognized as having a face than one that passes fewer stages. In other words,
passing several stages is a pre-condition to being identified as a face image.
Variable beststagedifferencex(i) holds the maximum difference between the
threshold necessary to overcome stage ith and the value attained by the image
at the ith stage. Images that are clearly above the thresholds necessary to pass
each stage are preferred over ones that are only slightly above them. Obviously,
this fitness function is only one of the several possible ones. Although room for
improvement is likely to exist, such improvements are not necessary for the goals
of the current paper.

The proposed framework relies on the ability of EC systems to find and ex-
ploit the shortcomings of the classifiers to “artificially” increase fitness. The
propensity of EC to find “shortcuts” that exploit weaknesses of the fitness as-
signment scheme is well-known (see, e.g., [16,17,11]). Thus, the goal is to evolve
false-positives: images that are classified as faces, but that should not have been
classified as faces. By adding this false-positives to the negative training set and
re-training the CS we wish to correct exploitable flaws of the classifier.

The Supervisor for this experiment is an automatic module that is responsible
for gathering all distinct images created during the EC runs. Evolved images that
are classified as faces are added to the training set for the next boosting iteration.

4 Experimental Setup

To assess the validity of the proposed approach we performed 30 independent
runs of the framework described in the previous section. The framework proposes
the use o N independent evolutionary runs, however, we are primarily interested
in assessing the contributions that each EC run may bring. Thus, for the scope
of this paper we set N = 1 and perform 30 independent runs of the the proposed
framework. In this section we describe the experimental settings employed in
these runs.

4.1 Classifier Training

For training purposes we used the “opencv haartraining” tool of OpenCV. The
relevant classifier parameters are presented in table 1 and were chosen based on
the works of Viola [19] and Lienhart [9,8]. They reflect a compromise between

78 P. Machado, J. Correia, and J. Romero

Fig. 3. Examples of cropped positive images

attaining good classifier’s performance and manageable training time. In addi-
tion to the training parameters, there are other classifier settings that need to
be established. We chose to use the default parameters of OpenCV (see table 2).

The quality of the positive and negative datasets used in training significantly
influences the performance of a classifier. It is important to have good positive
examples of the object that we are training in order to attain good success
rates. For this experiment images from two well-known datasets were used: “The
Yale Face Database B” ([5]) and “BioID Face Database”([6]). “The Yale Face
Database B” is a dataset with a total 5850 grayscale images with the subjects
in diverse positions and light variations. The Bio-ID Face Database dataset has
1521 frontal grayscale images. Each image shows the frontal view of a face of
one out of 23 different test persons with various expressions.

We wish to test if the proposed framework contributes to improvements of
classifier’s performance. Adding different poses has no interest in this context
and would make development and analysis harder. As such, we decided to fo-
cus exclusively on frontal faces. Although it is easier to develop a good initial
classifier, it is likely to make improvements harder, since there is less room for
improvement.

Considering this constraint, the total number of available positive examples
is 2172. In order to build the ground truth file, the images have to be manu-
ally selected and cropped. These cropped images, see figure 3, are the objects
that the Haar classifier attempts to discriminate from negative samples. After
manually filtering out images that were too dark, or where only part of the face
was illuminated, a total of 1905 positive examples, and corresponding cropped
versions, was attained.

Table 1. Haar Training parameters

Parameter Setting

features ALL
Input width 20
Input height 20
Number of stages 14
Number of splits 1
Min Hit rate 0.999
Max False Alarm 0.5
Adaboost Algorithm GentleAdaboost

Table 2. Classifier parameters

Parameter Setting

Window width 20
Window height 20
Scale factor 1.2
Min face width 0.75× inputwidth
Min face height 0.75× inputheight

Improving Face Detection 79

Fig. 4. Examples of negative images

Table 3. Parameters of the GP engine

Parameter Setting

Population Size 100
Number of generations 50
Crossover probability 0.8
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, *, /, min, max, abs, sin,

cos, if, pow, mdist, warp, sqrt, sign, neg
Terminal set X, Y, scalar and vector random constants

The negative dataset influences both the training time and test performance.
Generally speaking hard and large negative datasets imply longer training times,
but also better performance. We employed the “Urtho - Negative face Dataset”2,
which consists of a total of 3019 images of landscapes, objects, drawings, etc. To
keep the carnality of the negative and positive datasets balanced we randomly
selected 1905 of the Urtho images. A sample is presented in figure 4.

4.2 Genetic Programming Engine

The settings of the GP engine are presented in table 3. The number of generations
may appear low, however, preliminary experiments indicated that 50 generations
were enough to evolve images classified as faces. Further tests showed that some
of the evolutionary runs (23% in the conducted experiments) were unable to
evolve such images, but also that increasing the number of generations was
inefficient. Therefore, we tackle this problem as follows: if after 50 generations
the evolutionary run is unable to find a minimum of 300 images, this run is
discarded, and a new evolutionary run with a different random seed is initiated.

2 Tutorial haartraining —
http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/

http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/

80 P. Machado, J. Correia, and J. Romero

Table 4. Parameters used by the performance tool

Parameter Setting

Minimum Window width 20
Minimum Window height 20
Scale factor 1.2
Maximum size difference factor 1.5
Maximum position difference factor 0.3

4.3 Assessing Classifier’s Performance

In order to test the different classifiers, a performance evaluation tool was imple-
mented. It allows loading an image test set, with a ground truth file associated,
and a classifier configuration file. The performance is measured in terms of hits
(H), misses (M), false alarms (FA), correct (C) and incorrect (I). In order to do
this, it loads the parameters and classifier of the configuration file, and perform
the face detection. Then it compares the result with the ground truth file. If
the result matches or lays within the tolerance area defined by the performance
tool parameters, it is a hit. If it lays outside the tolerance area it is counted as
a false alarm. If no face is detected and a face exists, it is counted has a miss.
A positive instance is considered correctly classified if, and only if (i) at least
one face was detected and (ii) the regions were the faces were detected match
the expected region. In other words, there must be at least one hit and no false
alarms. An example follows, if the classifier identifies 2 faces on an image, one in
the expected position and the other in an incorrect position, then the instance
is considered incorrectly classified. A negative instance is classified as correct if
the classifier detects no faces.

The parameters are defined in table 4 and are based on the default parameters
of OpenCV’s “opencv performance” tool.

5 Experimental Results

As previously mentioned we performed 30 independent runs of the framework
presented in section 3 using the experimental settings described in section 4.
As previously mentioned, although the framework proposes the use of several
parallel evolutionary runs, we in this test N = 1.

Figure 5 displays the evolution of the population average fitness and of the
best population individual across generations. In essence this chart shows that
in successful runs the GP engine finds images that are classified as faces in few
generations. Please notice that runs where the GP was unable to find images
classified as faces were discarded. These runs are useless for improving the clas-
sifier’s performance since no images would be added to the dataset.

Figure 6 presents examples of images evolved in different evolutionary runs.
All of these images have been considered faces by the classifiers. This highlights

Improving Face Detection 81

0 10 20 30 40 50

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Generation

F
it
n
e
s
s

population average

best population individual

Fig. 5. Evolution of fitness across generations. Results are averages of 30 independent
runs.

Fig. 6. Examples of evolved images that were classified as faces

the shortcomings of the classification system, based on a state of the art classi-
fication approach, and further indicates the ability of the GP engine to exploit
these shortcomings finding images that are false positives.

Once each evolutionary run ends, the images classified as faces are added
to the negative dataset and the classifier is re-trained. This process yields 30
new classifiers. Considering the goals of our research our primary interest is
the comparison of the performance of these classifiers with the initial classifier
model. For this purpose we consider two validation sets:

– Flickr – 2166 negative images;
– Feret – 902 positive images from Facial Recognition Technology Database3;

The Flickr image dataset consists in images retrieved from a search in Flickr
using the keyword “image” and excluding from the resulting set, images that
contain a frontal human face. This process results in a negative dataset composed
of landscapes, buildings, animals, computer screenshots, varied objects, etc.

The Feret validation set is a positive dataset composed by grayscale frontal
faces, one face per image with a simple background. The images were manually

3 The Feret Database – http://face.nist.gov/colorferet/colorferet.html

http://face.nist.gov/colorferet/colorferet.html

82 P. Machado, J. Correia, and J. Romero

Fig. 7. On the top row, samples of images of the Flickr dataset; On the bottom row
samples of the Feret dataset

Table 5. Results attained by the initial classifier and by the framework classifiers in
three independent validation datasets. The Flickr dataset is a negative dataset the
concept of hits and misses does not apply.

Flickr Feret

Classifier FA %C H M FA %C

Initial 861 73.45 852 50 97 85.59
Average 643.00 78.91 844.00 58.00 77.73 86.12

Classifier 14 581 80.97 852 50 63 88.47
Classifier 30 701 77.75 856 46 64 88.91

selected and cropped. The purpose of using this validation dataset is to test the
ability of the classifiers in detecting a clear frontal face.

Samples of the validation sets are presented in figure 7.
Table 5 presents a synthesis of the attained results, indicating the performance

of the: initial classifier; average performance of the 30 classifiers created using
the framework; performance of two of the best framework classifiers found.

Focusing on the comparison of the initial classifier with the average perfor-
mance of the framework classifiers: the most striking difference in performance
is the significant decrease in the number of false alarms which occurs for both
validation datasets. On average, for the two datasets, there is a decrease of 25%
in the number of false alarms. Adding false positives to the negative training
dataset results in classifiers that are more “demanding” than the initial one
when it comes to consider the presence of a face in an image. As a consequence,
it becomes more robust and precise in the identification, which leads to a de-
crease in the number of false positives.

The disadvantage is that some face images may go unnoticed. In fact a de-
crease of the number of hits occurs in the Feret validation dataset (852 vs. 844,
which represents a decrease of less than 1%) and, consequently, of the number
of misses (50 vs. 58, a 13.8% increase). More importantly, the percentage of cor-
rectly identified images (C) increases for both validation datasets. As expected,
the improvements of performance are more noticeable in the Flickr dataset,
which is composed exclusively of negative images.

It is also important to compare the performance of the best framework classi-
fiers with the performance of the initial models. Table 5 also presents the results

Improving Face Detection 83

of two of the frameworks classifiers that showed increases in performance in both
validation datasets. These results demonstrate that it is possible to increase the
percentage of correctly identified faces and decrease false alarms without sacrific-
ing the number of hits and misses. Unfortunately, unless it is possible to identify
which classifiers will show this behavior in validation sets before gathering the
validation results, the relevance of this results is limited.

Although in this paper we focus on examining the behavior of the proposed
framework, it is important to notice that from a practical perspective we do not
need 30 classifiers, we just need one. Further testing is necessary to determine if
the performance of these classifiers is generalizable to other validation datasets.

6 Conclusion and Future Work

A novel evolutionary framework for the improvement of classifier’s performance
through the synthesis of training examples is presented and discussed. The ex-
perimental results attained in two validation datasets show the potential of the
approach, demonstrating significant decreases in the number of false alarms and
small losses in the number of hits. Additionally, several of the framework classi-
fiers yield better performance in all parameters and for both validation datasets.

Although the results are promising there are several aspects that require fur-
ther testing and development. Additional testing is necessary to assess if the
results attained by the best framework classifiers are generalizable to other vali-
dation datasets. The framework anticipates the use of several parallel evolution-
ary runs and boosting iterations, but the presented results consider only one.
Gathering the evolved false positives of all EC runs, adding them all to the
negative dataset, and training a single classifier is likely to yield better overall
performance. By increasing the number of iterations one forces the EC to focus
on different shortcomings of the classifier, which may result in better overall
performance.

A final word goes to the supervisor module. Judiciously selecting which im-
ages should be added to the negative dataset is likely to contribute to better
performances and lower training times. Experiments concerning these aspects
are already taking place.

Acknowledgments. This research is partially funded by: the Portuguese Foun-
dation for Science and Technology, project PTDC/EIA–EIA/115667/2009; the
Spanish Ministry for Science and Technology, project TIN2008–06562/TIN;
Xunta de Galicia, project XUGA–PGIDIT10TIC105008PR.

References

1. Baro, X., Escalera, S., Vitria, J., Pujol, O., Radeva, P.: Traffic Sign Recognition
Using Evolutionary Adaboost Detection and Forest-ECOC Classification. IEEE
Transactions on Intelligent Transportation Systems 10(1), 113–126 (2009)

84 P. Machado, J. Correia, and J. Romero

2. Chen, J., Chen, X., Gao, W.: Resampling for face detection by self-adaptive ge-
netic algorithm. In: Proceedings of the 17th International Conference on Pattern
Recognition, ICPR 2004, vol. 3, pp. 822–825 (August 2004)

3. Dubey, D.: Face detection using genetic algorithm and neural network. Interna-
tional Journal of Science and Advanced Technology 1(6), 104–109 (2011) ISSN
2221-8386

4. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learn-
ing and an Application to Boosting (1995)

5. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

6. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using
the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS,
vol. 2091, pp. 90–95. Springer, Heidelberg (2001)

7. Krawiec, K., Howard, D., Zhang, M.: Overview of Object Detection and Image Anal-
ysis byMeans of Genetic Programming Techniques. In: Frontiers in the Convergence
of Bioscience and Information Technologies, FBIT 2007, pp. 779–784 (2007)

8. Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical Analysis of Detection Cas-
cades of Boosted Classifiers for Rapid Object Detection. In: Michaelis, B., Krell,
G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)

9. Lienhart, R., Maydt, J.: An Extended Set of Haar-Like Features for Rapid Object
Detection. In: Proceedings of the 2002 International Conference on Image Process-
ing, vol. 1, pp. 900–903 (2002)

10. Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence, Special
Issue on Creative Systems 16(2), 101–119 (2002)

11. Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics.
In: The Art of Artificial Evolution, Springer, Heidelberg (2007)

12. Mayer, H.A., Schwaiger, R.: Towards the evolution of training data sets for artificial
neural networks. In: IEEE International Conference on Evolutionary Computation,
pp. 663–666 (April 1997)

13. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection.
In: Sixth International Conference on Computer Vision, pp. 555–562 (January 1998)

14. Sha, S., Jianer, C., Ling, Q., Sanding, L.: Evolutionary mechanism and implemen-
tion for recognition of objects in dynamic vision. In: 4th International Conference
on Computer Science Education, ICCSE 2009, pp. 178–182 (2009)

15. Sims, K.: Artificial Evolution for Computer Graphics. ACM Computer Graphics 25,
319–328 (1991)

16. Spector, L., Alpern, A.: Criticism, culture, and the automatic generation of art-
works. In: Proceedings of Twelfth National Conference on Artificial Intelligence,
pp. 3–8. AAAI Press/MIT Press, Seattle, Washington (1994)

17. Teller, A., Veloso, M.: Algorithm evolution for face recognition: what makes a
picture difficult. In: IEEE International Conference on Evolutionary Computation
1995 (1995)

18. Ventura, D., Andersen, T., Martinez, T.R.: Using evolutionary computation to
generate training set data for neural networks. In: Proceedings of the International
Conference on Neural Networks and Genetic Algorithms, pp. 468–471 (1995)

19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Hawaii, vol. 1, pp. I–511–I–518 (2001)

20. Yang, M.-H., Roth, D., Ahuja, N.: A snow-based face detector. In: Advances in
Neural Information Processing Systems 12, pp. 855–861. MIT Press (2000)

Grammar Bias and Initialisation

in Grammar Based Genetic Programming

Eoin Murphy, Erik Hemberg, Miguel Nicolau,
Michael O’Neill, and Anthony Brabazon

Natural Computing Research and Applications Group,
University College Dublin, Ireland

{eoin.murphy,erik.hemberg,miguel.nicolau,m.oneill,anthony.brabazon}@ucd.ie

Abstract. Preferential language biases which are introduced when
using Tree-Adjoining Grammars in Grammatical Evolution affect the
distribution of generated derivation structures, and as such, present diffi-
culties when designing initialisation methods. Similar initial populations
allow for a fairer comparison between different GP methods. This work
proposes methods for dealing with these biases and examines their effect
on performance over four well known benchmark problems. In addition, a
comparison is performed with a previous study that did not employ sim-
ilar phenotype distributions in their initial populations. It is found that
the use of this form of initialisation has a positive effect on performance.

Keywords: Grammatical evolution, Grammar bias, Initialization.

1 Introduction

It has been shown that the form of a grammar and indeed the language bi-
ases inherent to that grammar can have a large impact on the performance of
grammar-based Genetic Programming (GP) systems [14, 2], such as Grammat-
ical Evolution (GE) [13]. Modification of the grammar, an integral part of the
GE algorithm, can cause the algorithm to behave very differently [2]. This is
due to the ease with which the language biases in the system can change by just
modifying the grammar, effecting how genotypes are mapped into phenotypes.

In a previous study by Murphy et al. [12], GE, which traditionally uses a
Context-Free Grammar (CFG), was extended to make use of Tree-Adjoining
Grammars (TAG) [6], in the form of Tree-Adjunct Grammatical Evolution
(TAGE). A preliminary comparison of the two methods was performed, testing
each method on a number of different problems, with TAGE showing improve-
ments in performance, such as finding more correct solutions, as well as finding
better solutions in fewer generations, than standard GE on those problems [12].
The transformation from CFG to TAGE modifies the existing language bias as
well as introducing new language biases into the GE algorithm. These biases
affect the algorithm’s ability to generate certain derivation structures and phe-
notypes, and hence altering the search space [11]. This can be detrimental to the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 E. Murphy et al.

generation of common initial populations, an important factor in performing a
fair comparison between any two GP systems.

The aim of this study, therefore, is to examine and address the different types
of language bias which are introduced by using the TAG representation (see
Section 4.1 in order to better align the initial populations of both setups. Biases
such as the structural biases imposed by the adjunction operation, as well as
those introduced as a result of the grammar transformation, i.e., the loss of
explicit biases imposed by the CFG. The study proposes a novel algorithm for
the elimination of the grammar transformation biases (see Section 4.3) and goes
on to perform a comparison between GE and TAGE. The study observes the
effect of these biases on performance and comparing with the results observed
by Murphy et al. [12].

In the following section a brief description of GE is given. Section 3 gives an
overview of TAGE, the transformation from CFG to TAG and concludes with
a sample TAGE derivation. Following this, Section 4 examines the problems in-
volved with creating similar initialisation methods for the two different grammar
types. The experimental setup is described in Section 5, with Section 6 outlin-
ing the results obtained, as well as providing some discussion on these results.
Section 7 concludes the study.

2 Grammatical Evolution

GE is a grammar-based approach to GP, combining aspects of Darwinian nat-
ural selection, genetics and molecular biology with the representational power
of grammar formalisms [13]. The use of a grammar enables GE to define the
legal expressions and structures of an arbitrary language, which in turn allows
the possible generated structures and syntax of solutions to be easily modified,
something that is not trivial for other forms of GP. In addition to this, the sep-
aration of the genotype from phenotype in GE allows genetic operations to be
applied to both, extending the search capabilities of GP. GE is considered to be
one of the most widely applied GP systems today [10].

Representation in GE consists of a grammar and a chromosome (see Fig. 1).
The genotype-phenotype mapping in GE uses codon values from the chromosome
to select production rules from the grammar. By performing the modulus opera-
tion on these values with the number of possible production choices, productions
are selected from the grammar to expand each non-terminal (NT) symbol. Start-
ing from the start symbol, this process, which continues in a left-right manner
until there are no more NT leaf nodes to expand, or until the end of the chro-
mosome has been reached, constructs a derivation tree. The phenotype can then
be extracted from the leaf nodes of this tree. A sample derivation tree is shown
in Fig. 1 along with the grammar and chromosome used to construct it.

3 Tree-Adjunct Grammatical Evolution

TAGE, like GE, uses a representation consisting of a grammar and a chromo-
some. However, the type of grammar used in this case is a TAG rather than a

Grammar Bias and Initialisation in Grammar Based Genetic Programming 87

CFG. A TAG is defined by a quintuple (T,N, S, I, A) where T is a finite set of
terminal symbols; N is a finite set of NT symbols: T ∩ N = ∅; S is the start
symbol: S ∈ N ; I is a finite set of finite trees called initial trees (or α trees); and
A is a finite set of finite trees called auxiliary trees (or β trees).

The root node of an initial tree is labelled with S and the interior nodes
are labelled with NT symbols. Initial tree’s leaf nodes are labelled with terminal
symbols. Similarly, the interior nodes of auxiliary trees are also labelled with NT
symbols, with their leaf nodes being labelled with terminal symbols. However,
one special leaf node called the foot node is labelled with the same NT symbol
as the root. Foot nodes are marked with * [6].

Initial trees represent the minimal non-recursive structures produced by the
grammar, i.e., they contain no repeated NT symbols. Inversely, auxiliary trees of
type X represent the minimal recursive structures, which allow recursion upon
the NT X [8]. The union of initial trees and auxiliary trees forms the set of
elementary trees, E; where I ∩ A = ∅ and I ∪A = E.

During derivation, the adjunction composition operation joins elementary
trees together. Adjunction takes an initial or derived tree a, creating a new
derived tree d, by combining a with an auxiliary tree, b. A sub-tree, c is selected
from a. The type of the sub-tree (the symbol at its root) is used to select an
auxiliary tree, b, of the same type. c is removed from a. b is then attached to a
as a sub-tree in place of c and c is attached to b at the position of b’s foot node.
An example of TAG derivation is provided in Section 3.1.

3.1 TAGE Derivation Example

TAGE generates TAGs from the CFGs used by GE. Joshi and Schabes [6] state
that for a “finitely ambiguous CFG which does not generate the empty string,
there is a lexicalised tree-adjunct grammar generating the same language and
tree set as that CFG”. An algorithm was provided by Joshi and Schabes [6] for
generating such a TAG. The TAG produced from Fig. 1 is shown in Fig. 2.

Derivation in TAGE is different to GE. Unlike GE derivation trees whose
nodes are labeled by symbols, the nodes of a TAGE derivation tree are labelled
by elementary trees. The edges between those nodes are labelled with the address
of a node in the tree labelling the parent node. It is at this address that the
auxiliary tree labelling the child is to be adjuncted. A derived tree in TAGE is
a tree of symbols, similar to GE’s derivation tree, resulting from the application
of the adjunction operations defined in the TAGE derivation tree.

Given the TAG G, where T = {X, Y, +, -}, N = {<e>,<o>,<v>}, S =<e>

and I and A are shown in Fig. 2, derivation using the chromosome from Fig. 1
operates as follows. The first codon value, 12, is read and is used to choose an
initial tree based on the number of trees in I. Using the same mapping function
as GE, 12 mod 2 = 0, the zero-th tree, α0, is chosen from I. This tree is set as
the root node of t, the derivation tree (as seen in Fig. 3(a)).

Next, a location to perform adjunction must be chosen. The vector N is created
of the adjunctable addresses available within all nodes (trees) contained within
t. An adjunctable address in a tree is the breadth first traversal index of a node

88 E. Murphy et al.

labelled with a NT symbol, of which there is an auxiliary tree of that type and
there is currently no auxiliary tree already adjoined at that index. In this case N
= {α0[0]} (the zeroth node of α0), so a codon is read and an address is selected
from N, 3 mod 1 = 0 indicating which address to choose, N[0]. Adjunction will
be performed at α0[0], or index 0 of tree α0, <e>. An auxiliary tree is now chosen
from A that is of the type T, i.e., the label of its root node is T, where T is the
label of the node where adjunction is being performed. In this case T = <e>.
There are 8 such trees in A, Reading the next codon, 7, 7 mod 8 = 7, therefore
β7 is chosen. This is added to t as a child of the tree being adjoining to, labelling
the edge with the address 0, see Fig. 3(b). The adjunctable addresses in β7 will
be added to N on the next pass of the algorithm. This process is repeated until
all remaining codons have been read. The resulting derivation and derived trees
at each stage of this process can be seen in Fig. 3.

4 Difficulties with Comparing GP Systems

Performing a fair comparison between different GP systems is difficult to achieve.
As suggested by Hoai et al. [4], it is easy to assume that the benefits observed
when testing a new modification to an algorithm are a direct consequence of the
modification in question [1], whereas in reality this can be a flawed assumption.
Unless the modification is very localised, there can be far reaching indirect effects,
and if these effects influence the starting conditions of the algorithm, performing
a comparison can be difficult. This problem is even more evident when comparing
completely different algorithms.

These difficulties can be seen when comparing standard GP algorithms with
grammar-based versions, as was shown in [4] when comparing GP and TAG3P.
The change in representation makes it difficult to create common initial condi-
tions for both algorithms in order to achieve a good comparison.

Comparing similar algorithms with different representations raises an interest-
ing question: having a common initial population (or at least initial populations
drawn from similar distributions) is good practice and helps ensure a fair com-
parison, but should these similar populations be in the genotypic or phenotypic
spaces? Search is performed in the genotypic space, whereas the fitness land-
scape lies in phenotypic space, and depending on the mapping between the two
there could be a many to one relationship between genotypes and phenotypes.
That is to say, creating initial populations of genotypes for two different repre-
sentations, e.g., GE and TAGE, would likely result in very different populations
of phenotypes. The same can be said for similar populations of phenotypes, the
populations of genotypes could be very different (see Fig. 4).

In Murphy et al. [12], a set genotype length was used; as a counter point, this
study uses an initialisation method which produces similar sets of derivation
(TAG derived) trees, and hence similar sets of phenotypes, for both GE and
TAGE. The following subsections outline and address some of the problems
faced while attempting to achieve this.

Grammar Bias and Initialisation in Grammar Based Genetic Programming 89

Grammar:

<e>:= <e><o><e> | <v>

<o>:= + | -

<v>:= X | Y

Chromosome:

12, 3, 7, 15, 9, 36, 14

<e>

<e>

 0

<o>

 0

<e>

 0

<v>

 1

-

 3

<v>

 4

Y

 2

X

 5

Fig. 1. Sample GE grammar, chromosome and resulting derivation tree (edge labels
indicating the order of expansion). <> denotes a non-terminal symbol.

<e>

<v>

X

<e>

<v>

Y

(a) I={α0, α1}

<e>

<e>* <o> <e>

+ <v>

X

<e>

<e>* <o> <e>

+ <v>

Y

<e>

<e>* <o> <e>

- <v>

X

(b) A={β0, β1, β2...}

Fig. 2. The initial tree set (I) and a subset of the auxiliary tree set (A) of the TAG
produced from the CFG in Fig. 1

0

<e>

<v>

X

(a) Initial
tree α0.

0

7

 0

<e>

<e> <o> <e>

<v> - <v>

Y X

(b) β7 adjoined to α0,
address 0.

0

7

 0

1

 1

<e>

<e> <o> <e>

<v> + <v>

XY

<e>

<o> <e>

- <v>

X

(c) β1 adjoined to β7, address 1.

0

7

 0

1

 1

6

 0

<e>

<e> <o> <e>

<v> + <e> <o> <e>

Y <e> <o> <e> - <v>

<v> + <v>

XY

X

(d) β6 adjoined to β7, address 0.

Fig. 3. The derivation tree (left) and derived tree (right) throughout TAGE derivation.
The shaded areas indicate new content added at each step.

90 E. Murphy et al.

Derivation Tree NT Size

F
re

q

0 5 10 15

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

TAGE

GE

Fig. 4. The distributions of tree size
(NT nodes) when initialising to a com-
mon genotype length

Chromosome Length

F
re

q

0 10 20 30

0
5

0
1

0
0

1
5

0
2

0
0

TAGE

GE

Fig. 5. The distributions of genotype
lengths when initialising to common
distribution of derivation tree sizes

4.1 Initialisation and Transformation Bias

While the typical method of initialisation in GP is the Ramped Half and Half
method [7], dividing the population between a minimum and maximum depth
interval with half the trees being grown randomly and the other half being grown
to be full trees, depth is not as important in GE as in GP. In GE, to ensure that
there is a good distribution of phenotypes, the distribution of the number of NT
nodes, or tree size is more important. With that in mind, a ramped tree size
with a max depth initialisation method is employed by this study (similar to the
method used by Harper [2], and PTC2 by Luke [9] without probability tables).

As mentioned in Section 3, it is possible to generate a lexicalised TAG from
a finitely ambiguous CFG. However, there are biases inherent to TAGs which
affect the probabilities of certain shapes being generated, as well as biases inher-
ent to CFGs that are not preserved by this grammar transformation. Specifically
these are an adjunction bias, biases imposed upon the language by the choice of
adjunction points, and a grammar transformation bias, introduced when trans-
forming from one grammar type to another. More detail on these is given below.

4.2 Adjunction Bias

While TAGs are said to be both weakly and strongly equivalent to the CFG used
to generate them [5], depending on the constraints imposed upon the adjunction
operation, biases appear in the shapes of randomly generated derived trees. For
example, in the initial implementation of TAGE [12] adjunction is not allowed
to be performed on foot nodes of auxiliary trees already in the derivation tree.
The result of which is that once an adjunction is performed, the tree can only
be expanded at its other adjunctable addresses, preventing the branch contained
by the foot node from being expanded. Fig. 6(a) shows the distribution of tree
shapes when using the adjunction constraints fromMurphy et al. [12]. Tree shape
is measured as the percentage of NT nodes used to build the left branch of the
tree. This figure shows that the distribution of tree shapes are heavily skewed

Grammar Bias and Initialisation in Grammar Based Genetic Programming 91

Size of Left Branch as % of Entire Tree

F
re

q

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

(a) Original adjunction

Size of Left Branch as % of Entire Tree

F
re

q

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
0
0

3
0
0

4
0
0

(b) Addition of foot node
adjunction

Size of Left Branch as % of Entire Tree

F
re

q

0.0 0.2 0.4 0.6 0.8 1.0

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

(c) Foot node with no root
node adjunction

Fig. 6. Adjunction biases affecting the shape of generated trees. The histograms plot
the frequency of the percentage of nodes used by the left side of the tree. The ini-
tialisation method described in Section 4.1 was used to generate 4000 trees for each
approach, with a maximum depth of 20, a minimum/maximum size interval of 21/220.

towards trees with either very large left or right branches, with very few full
trees. Ideally this distribution would be even across the entire spectrum of tree
shapes favouring no particular shape. Fig. 6(b) shows that the distribution of
tree shapes begins to level out once foot node adjunction is allowed.

In addition, allowing adjunction at the root nodes of auxiliary trees can have
a similar but more pronounced effect on the form of the tree shape distribution.
If at any point during derivation, an adjunction is performed on the top-most
adjunctable address, usually the root of an auxiliary tree, the derived tree below
this point of adjunction becomes the a sub-tree of the new tree’s foot node,
with the remainder of the new auxiliary tree off to one side. This causes the
shape of the tree to be heavily skewed. By eliminating the adjunction at the
root nodes of auxiliary trees, the tree shape distribution become much more
level (see Fig. 6(c)). The probability of the tree reverting to a less skewed state
depends on the ratio of adjunctable addresses available in the new auxiliary tree
(usually quite small) to the adjunctable addresses in the displaced sub tree.

4.3 Grammar Transformation Bias

The probability of a specific terminal production being selected when generat-
ing a word using a CFG not only depends on the probability of that terminal
production being selected within its own rule, but also on the probability of
selecting each preceding production in order to reach the current rule from the
start symbol. When transforming a CFG into a TAG these biases are lost and
while it can be argued that this is a feature of the TAG representation, it can
have unexpected effects for certain types of grammars.

For example, when generating a word from the balanced CFG presented in
Fig. 7, whose derivation does not contain any recursive productions, there is a
0.5 chance of selecting x or <digit>. If <digit> is chosen there is a 0.1 chance of
selecting any of the digits. From this it can be seen that even though there are 11
different words which could be generated, there is an equal probability of ending
up with either an x or any one of the digits. When the CFG is transformed into a

92 E. Murphy et al.

<code> := <value>
<value> := <value> <value> + |

<value> <value> - |
<value> <value> * |
<value> <value> / |
<digit> | <digit>
x | x

<digit> := 0 | 1 | 2 | ... | 9

Fig. 7. A sample balanced
grammar (equal probability of
recursion and termination)

<code>

<value> (1)

<code>

<value>

<digit> (10)

(a) TAGE stubs

<code>

<value> (10)

<code>

<value>

<digit> (10)

(b) PTAGE stubs

Fig. 8. TAGE tree stubs with a 0.09 chance of select-
ing x. Equivalent PTAGE stubs with a 0.5 chance.

TAG there are 11 trees to chose from, one with an x on the frontier and ten with
a digit. Consequently, there is now a 0.09 chance of generating an x, as opposed
to a 0.5 chance when using the CFG. This can make it difficult for certain words
to be generated, both during initialisation and throughout a run.

In order to correct for the problems mentioned above, a novel method was
designed which examines the probabilities contained within CFGs and applies
them to the TAG. This method, named Probabilistic Tree-Adjoining Grammat-
ical Evolution (PTAGE), is similar in theory to the structural and lexical biases
imposed using TAGs by Hoai et al. [3] with TAG3P+. Whereas TAG3P+ uses
properties of TAGs to impose language bias on the search, PTAGE’s main func-
tion is to recreate the biases imposed by the CFGs used to generate each TAG.
While this aids in generating similarly distributed initial populations, these bi-
ases affect the mapping process throughout the entire run.

In TAGE, the sets of initial and auxiliary trees are not generated at the be-
ginning of the algorithm, but rather sets of elementary tree stubs are generated.
This can greatly reduce the amount of memory needed to store the grammar.
An elementary tree stub is an almost fully expanded elementary tree, with the
terminal symbol leaf nodes excluded. In their place is a number representing the
total number of different terminal nodes (variations) that can be attached at
that point to complete the tree. For example, continuing with the sample gram-
mar from Fig. 7 above, there would be a stub with the number 1 rather than an
x and another stub with the number 10 rather than 10 different trees each with
one of the digits, 0 through 9 (see Fig. 8(a)). The process of expanding a stub
into a complete elementary tree is explained in the proceeding paragraph.

When choosing a tree in TAGE, the modulus operation is performed on the
codon value and the total number of trees to select from, resulting in a number,
c, between zero and the total number of trees minus one. If c has been used
before, the correct tree is retrieved directly from a map. Alternatively, if c has
not been seen before, each stub’s variations are summed in order until the sum
is greater than c in order to find the correct stub to expand. Then, proceeding
in a depth first manner, the stub is completed by visiting each NT leaf node and
dividing c by the product of the variations of all the NT leaves visited so far

Grammar Bias and Initialisation in Grammar Based Genetic Programming 93

while expanding that stub, performing the modulus operation on this product
and the number of possible variations at the current NT node. This results in a
number between zero and the total variations possible at that node, allowing the
selection of the correct terminal production to expand the node by. This process
continues until there are no more NT nodes to expand, storing the complete tree
in a map for later use before being returned.

PTAGE examines the CFG and updates the number of variations at each
stub’s leaf nodes to reflect the probability of reaching those terminal symbols
when expanding using the original CFG. In this example, since there should be
an equal chance of generating an x as a digit, the variations on that stub are
updated from 1 to 10 (as shown in Fig. 8(b)). The effect of this is that when
selecting a tree there are now twenty trees to chose from, ten x trees and a single
tree for each digit.

5 Experiments

The focus of this study is to improve the similarity of the initial setup of both
GE and TAGE by examining the language biases which affect this, enabling
a better comparison of performance and behaviour. As such, the experiments
run in the initial study [12] are repeated twice here. First, using only the new
method of initialisation and a second time incorporating the modified adjunction
constraints (adjunction at foot nodes and no adjunction at root nodes).

Four benchmarks are used for this study, Even Five Parity, Santa Fe Ant
Trail, Symbolic Regression and Six Multiplexer.The grammars used are identical
to those used by Murphy et al. [12] apart from those of Symbolic Regression and
Six Multiplexer, which were each given a new extra start symbol (see Fig. 9). This
grammar change does not affect the behaviour of either algorithm but enables the
disabling of root node adjunction. 100 independent runs were performed for each
of GE, TAGE and PTAGE on both setups, the first using the new initialisation
method, outlined in Sec. 4.1, with the original adjunction constraints (NI), and
a second time using the new adjunction constraints (NA), outlined in Sec. 4.2.
See Table 1 for the GE parameters.

6 Results and Discussion

6.1 Initialisation

It is clear from Table 2 that the improved initialisation of the population (using
the original adjunction addresses) has a dramatic effect on the performance of
GE. Improvements range from an increase of ∼10% (Even Parity) to almost an
increase of an order of magnitude (Santa Fe) in the success rate. The new ini-
tialisation method did not have an effect of the same magnitude on TAGE, with
improvements in success rate between ∼10% and ∼80%. As a result of this, GE’s
performance has surpassed that of TAGE on the Santa Fe Ant Trail problem,
with TAGE showing superior performance on the remaining three problems.

94 E. Murphy et al.

Table 1. GE parameters adopted for
each of the benchmark problems

Parameter Value
Generations 200

Population Size 100
Initialisation Ramped NT Size

with Max Depth
Min NT Size 21
Max NT Size 70
Max Depth 10

Max Chromosome Wraps 0
Replacement Strategy Generational

Elitism 10 Individuals
Selection Operation Tournament
Tournament Size 3

One Point Crossover Prob 0.9
Integer Mutation Prob 0.02

<prog> ::= <expr>
<expr> ::= (<op> <expr> <expr>) | <var>
<op> ::= + | - | *
<var> ::= x0 | 1.0

(a) Symbolic Regression Grammar

<prog> ::=
 ::= () && () | () "||" ()

| !() | () ? () : ()
| a0 | a1 | d0| d1 | d2 | d3

(b) Six Multiplexer Grammar

Fig. 9. Updated grammars for Symbolic
Regression and Six Multiplexer problems

Table 2. The number of successful runs out of the 100 runs performed for all setups.
GE and TAGE are the results from the original comparison (NI indicates the use
of the new initialisation method and NA indicates the use of the new adjunction
addresses).

Even 5 Santa Fe Sym. Reg. Six Multi.

GE 79 3 44 6
TAGE 88 12 76 63

GE-NI 88 28 75 18
TAGE-NI 100 22 99 72
PTAGE-NI 100 13 99 20

TAGE-NI-NA 98 23 98 78
PTAGE-NI-NA 98 14 98 34

6.2 The Effect of PTAGE

From Table. 2 it can be seen that the application of PTAGE on two of the
problems examined, Santa Fe and Six Multiplexer, has had a negative effect on
performance. By examining the grammars of these two problems it can be noted
that as a result of the transformation from CFG to TAG a bias is introduced,
causing the selection of certain structures to be favoured over others. In the case
of the Six Multiplexer problem, there is a probability of ∼ 0.81 of selecting a
tree containing ?: compared to a ∼ 0.18 chance of selecting a tree
containing either || or && or a < 0.01 chance of selecting a
tree containing !(). This bias causes the TAGE tree to grow much wider
than when using the PTAGE approach, as PTAGE balances these probabilities
to be equal since they have an equal chance of being selected when deriving
using CFGs. Similar effects are observed in the Santa Fe grammar. PTAGE
has no effect on the other problems as the grammar transformation does not
introduce any new biases.

Grammar Bias and Initialisation in Grammar Based Genetic Programming 95

6.3 New Adjunction Addresses

The inclusion of adjunction at root nodes and the exclusion of adjunction at the
foot nodes appear to have only a marginal difference on performance, whereas
they had a significant difference on the distribution of tree shapes as was seen in
Fig. 6. This might suggest that TAGE benefits less from having a more diverse
initial population than GE. This could be a result of the greater connectivity
observed in TAGE landscapes in [11].

7 Conclusions

In the process of creating an initialisation method which generates similar sets
of trees for both GE and TAGE, biases in the shape of the trees being generated
by TAGE were detected. These biases were introduced due to the constraints
placed upon the adjunction operation by TAGE as well as by the transforma-
tion algorithm used to generate TAGs from the original CFGs. New adjunction
constraints and a system to eliminate the transformation biases, PTAGE, were
described. It was noted that the transformation biases can be beneficial to the
algorithm but are dependant on the grammar and the problem in question.

Subsequently, by improving the initialisation method used for the comparison
of GE and TAGE, ensuring that similar distributions of trees sizes and shapes
were created by each setup, it was seen that while there does not appear to be a
statistically significant improvement in performance of TAGE over that of GE as
was suggested in [12], TAGE still manages to generate more successful solutions
in three of the four problems.

Interesting future work prompted as a result of this study includes examining
the trends of the distributions of derivation tree shapes and sizes over the course
of a run. Investigating these trends with both commonly distributed initial geno-
typic populations, as well as phenotypic populations, might give better insight
into why a more diverse initial population appeared to be more beneficial to GE
than TAGE.

Acknowledgements. This research is based upon work supported by the Sci-
ence Foundation Ireland under Grant No. 08/IN.1/I1868.

References

[1] Daida, J.M., Ampy, D.S., Ratanasavetavadhana, M., Li, H., Chaudhri, O.A.: Chal-
lenges with verification, repeatability, and meaningful comparison in genetic pro-
gramming: Gibson’s magic. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, vol. 2, pp. 1851–1858. Morgan Kaufmann, Orlando (1999)

[2] Harper, R.: GE, explosive grammars and the lasting legacy of bad initialisation. In:
IEEE Congress on Evolutionary Computation (CEC 2010). IEEE Press, Barcelona
(2010)

96 E. Murphy et al.

[3] Nguyen, X.H., McKay, R.I., Abbass, H.A.: Tree adjoining grammars, language
bias, and genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K.,
Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 335–344. Springer,
Heidelberg (2003)

[4] Nguyen, X.H., McKay, R., I(B.), E.D.L., Abbass, H.A.: Toward an Alternative
Comparison between Different Genetic Programming Systems. In: Keijzer, M.,
O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS,
vol. 3003, pp. 67–77. Springer, Heidelberg (2004)

[5] Joshi, A.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions, ch. 6, pp. 205–250. Cambridge Univer-
sity Press, New York (1985)

[6] Joshi, A., Schabes, Y.: Tree-Adjoining Grammars. In: Handbook of Formal Lan-
guages, Beyond Words, vol. 3, pp. 69–123 (1997)

[7] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

[8] Kroch, A., Joshi, A.: The Linguistic Relevance of Tree Adjoining Grammar, Tech-
nical Report, University Of Pennsylvania (1985)

[9] Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans-
actions on Evolutionary Computation 4(3), 274–283 (2000)

[10] McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic
programming: a survey. Genetic Programming and Evolvable Machines 11, 365–
396 (2010)

[11] Murphy, E., O’Neill, M., Brabazon, A.: Examining Mutation Landscapes In Gram-
mar Based Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado,
P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 130–141. Springer,
Heidelberg (2011)

[12] Murphy, E., O’Neill, M., Galvan-Lopez, E., Brabazon, A.: Tree-adjunct gram-
matical evolution. In: 2010 IEEE World Congress on Computational Intelligence,
pp. 4449–4456. IEEE Computational Intelligence Society, IEEE Press, Barcelona,
Spain (2010)

[13] O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic
Publishers (2003)

[14] Whigham, P.A.: Grammatical Bias for Evolutionary Learning. Ph.D. thesis, School
of Computer Science, University College, University of New South Wales, Aus-
tralian Defence Force Academy, Canberra, Australia (1996)

Improving Relevance Measures Using Genetic

Programming

Kourosh Neshatian and Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

{kourosh.neshatian,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Relevance is a central concept in many feature selection algo-
rithms. Given a relevance measure, a feature selection algorithm searches
for a subset of features that maximise the relevance between the subset
and target concepts. This paper first shows how relevance measures that
rely on the posterior estimation such as information theory measures
may fail to quantify the actual utility of subsets of features in certain
situations. The paper then proposes a solution based on Genetic Pro-
gramming which can improve the usability of these measures. The paper
is focused on classification problems with numeric features.

Keywords: Genetic programming, Relevance measure, Binary classifi-
cation, Multivariate dependency analysis.

1 Introduction

Feature selection algorithms have—in abstract terms—two main components: a
search mechanism and an evaluation mechanism. The search mechanism searches
the search space (the set of all subsets of features in a problem) and generates
candidate solutions (subsets of features). Most search mechanisms (perhaps all
except random and exhaustive search) use the information obtained by eval-
uating the subsets of features to move in the search space and generate new
candidates. The evaluation mechanism is based on a measure of utility of a
subset of features.

The most common measure of utility in the filter approach is relevance. Rel-
evance quantifies the degree of relatedness between a subset of features and
another feature (that does not exist in the subset). Features with a significant
degree of relevance to target concepts (such as class labels) are desired while
features with a considerable degree of relevance to each other are considered
redundant and thus unwanted.

Examples of commonly-used relevance measures are those based on infor-
mation theory such as mutual information and information gain ratio [6], and
statistical measures such as Pearson product-moment correlation coefficients.

Information theory measures are usually used to measure the relevance be-
tween an input feature and the decision variable (the class label variable in a
classification task). The calculation of information-theory measures depends on

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 97–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 K. Neshatian and M. Zhang

estimating probability densities. We will show how the scarcity of observations
(i.e. number of examples in a training data set) and lack of prior knowledge in
the problem domain can lead to poor density estimation which in turn causes
the relevance measure to give a wrong account of utility of the subset of features
at hand.

Genetic programming (GP) is a hyper-heuristic search algorithm that evolves
computer programs [5,9]. GP is capable of building fairly complex logical and
mathematical expressions using a set of primitive building blocks (functions and
terminals) in order to optimise an objective function. GP has been used to detect
complex redundant relationships between features [7]. This paper proposes a
method to use GP to evolve functions that can be combined with traditional
relevance measures in order to deal with circumstances that traditional relevance
measures are unable to.

2 Relevance Measures

A good subset of features must be ‘relevant’ to the response variable. The concept
of relevance has been formally investigated separately by Keynes, Carnap and
Gardenfors [1,3,4]. According to their work, relevance can be expressed using the
concepts of probability and independence: a feature X is relevant to a response
variable Y on the basis of a prior evidence (here a subset of features S that is
already available) if and only if

P{C = c|X = x,S} �= P{C = c|S} (1)

that is, the feature X is relevant if knowing the value of the feature can change
the probability distribution of the concept variable; that is, C depends on X .
While this definition gives a good logical foundation for relevance, it cannot help
with quantifying relevance. This is mainly because in real-world problems, the
conditional probability distribution of Y is unknown and depending on how one
estimates the distribution, the meaning and the quotient of relevance changes.

From an optimisation perspective, feature selection depends on relevance mea-
sures. In a supervised learning scenario where there are a number of input vari-
able (features) and one or more decision (output) variables, the goal of feature
selection is to find a subset of input features that has maximum relevance to the
target variables and the features in the subset have minimum relevance among
each other.

Information theory has a measure of purity called information entropy which is
used to measure the information content (aka uncertainty) of a communication
channel. The most common way of measuring entropy is perhaps Shannon’s
entropy. Let C be the set of all possible class labels in a classification problem
and C be a categorical response variable that takes its values from C. The
Shannon entropy of C is defined as

H(C) = −
∑
c∈C

p(c) log2 p(c) . (2)

Improving Relevance Measures Using Genetic Programming 99

When binary encoding is used, the base of the logarithm must be 2 but in the
context of measuring relevance it could essentially be any positive value. The
entropy of a variable measures its information content (number of bits required
to encode the variable). The entropy of C will be the highest if all class labels
are equally likely and it will be the lowest if the probability of one of the class
labels is 1 and the rest are 0.

The conditional entropy of C measures its information content given the value
of an input feature and is defined as

H(C|X) = −
∑
x∈X

p(x)
∑
c∈C

p(c|x) log2 p(c|x) (3)

where x is a categorical (nominal) input feature which takes its values from
X . The feature is considered relevant if the above conditional entropy is lower
than H(C)—that is, knowing the value of the feature, some classes become more
likely than others and thus the conditional entropy would drop. This notion of
relevance can be quantified by mutual information which is defined as

I(C;X) = H(C)−H(C|X) . (4)

Equations 3 is for a single categorical variable (input feature). Thus equation
4 is also for a single categorical variable. Let F be the set of all input features
in a classification problem and S ⊆ F where the cardinality |S| = m. If all the
features in subset S are categorical then the multi-variate conditional entropy
can be expressed as

H(C|S) = H(C|X1, X2, . . . , Xm) = −
∑

x1∈X1,x2∈X2,...,xm∈Xm

p(x1, x2, . . . , xm)

×
∑
c∈C

p(c|x1, x2, . . . , xm) log2 p(c|x1, x2, . . . , xm)(5)

where the joint probability density (mass) function can be estimated by comput-
ing the contingency table. Using equation 5, the mutual information of a subset
of features and the class variable is defined by

I(C;S) = H(C)−H(C|S)

When the input features are numeric the sums in equation 5 change to inte-
grals:

H(C|S) = H(C|X1, X2, . . . , Xm) =

∫
. . .

∫
p(x1, x2, . . . , xm) (6)

×
∑
c∈C

p(c|x1, x2, . . . , xm) log2 p(c|x1, x2, . . . , xm)dx1 . . . dxm . (7)

Estimating the joint density however, when the input features are numeric, is
not trivial and often not feasible. As the number of input features increases more

100 K. Neshatian and M. Zhang

and more examples (training data) are required in order to have a reasonable
estimate for the density function (the curse of dimensionality).

To avoid non-parametric estimation, two strategies are used at the same time:
i) numeric features are discretised, ii) the relevance of features are measured indi-
vidually and then added together as heuristic approximation for the relevance of
a subset of features. For example a widely-accepted heuristic measure is defined
as [8]:

D(C,S) = 1

|S|
∑
X∈S

I(C;X) . (8)

In the next of this section we discuss how these widely-used strategies can lead
to a poor judgement on relevance.

2.1 Deficiency in Handling Multi-modal Distributions

Figure 1 shows a binary classification problem with a single feature x, whose con-
ditional distribution—conditioned on the positive class—is bimodal. The condi-
tional distribution of x given the negative class is Gaussian and thus unimodal.
100 examples have been sampled from each class. The examples are plotted un-
der the distribution curves. There is very little overlap between the two class.
The feature x in this example is observably good because a near-perfect classi-
fication model can be obtained by computing over this feature. For example a
simple model could be learnt by finding an interval for the negative class (ap-
proximately from −2.5 to 2.5), and then unseen examples would be assigned to
the negative class if their x value falls in this interval, and to the positive class
otherwise.

When mutual information is used to measure the relevance of X to C in this
problem, the algorithm tries to find the best split point using which, instances
from different classes can be separated. The original entropy of examples with-
out the presence of any features, H(C), is 1 (one bit). Using one-split-point dis-
cretisation, the numeric feature, X , is converted to a discrete binary event X ′.

−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x|

c)

positive
negative

split
point

Fig. 1. A binary classification problem where the conditional distribution of x given
the positive class is bimodal (the black curve). The vertical line shows a split point on
the x axis around which partitioning yields the highest information gain.

Improving Relevance Measures Using Genetic Programming 101

The best split point (using a one-pass search) is at -2.46. Now p(C|X ′) is easy
to estimate and H(C|X ′) can be computed. After computation, the value of
I(C;X ′) turns out to be 0.327 (instead of 1.0) which incorrectly implies that the
feature is not very useful. This is because only a small proportion of instances
can be correctly described by a single-point discretisation.

For a single-feature bimodal problem like the one presented in Figure 1,
the issue can be resolved by performing multiple-point discretisation. However,
multiple-point discretisation is not always feasible because: i) determining the
optimal number of split points is not trivial; ii) the search time considerably
increases as the number of split points increases; iii) too many split points may
result in overfitting; iv) the three previous issues become exponentially more
problematic as the dimensionality of the problem increases. In general, if the
distribution of one of the classes is multi-modal, the features can easily be dis-
missed as irrelevant due to poor discretisation.

2.2 Deficiency in Handling Non-orthogonal Multi-variate
Relationships

Another deficiency of single-feature evaluation and discretisation is illustrated in
Figure 2. The figure shows a sample from a binary classification problem where
the two classes are easily separable; for example, a straight line can separate the
two classes.

The two features, X and Y , are certainly relevant as a linear model based on
the two features can completely describe (and predict) the conditional distribu-
tion of classes. However, since the class boundary (the imaginary line between
the instances of the two classes) is not orthogonal to either of the axes (features),
discretisation along X or Y individually, would not yield any information gain.
In other words, if the cloud of data is projected to either of the axes, the result-
ing conditional marginal densities will be overlapping. For this reason heuristic
measures that rely on single-feature discretisation cannot measure the relevance
of the features (together) correctly.

−10 −5 0 5 10 15 20
−5

0

5

10

15

X

Y

class +
class −

Fig. 2. A sample from a binary classification task plotted against its two input features,
x and y

102 K. Neshatian and M. Zhang

++ +
++

+
+

+ +

+

++ +
+

+

++

+

+

+

+

+

+
+

+
+

+
+

+
+ +

+

+

+

+

+

++++

+++

+
++

+

+++

+
+
++

+

+

+
+

+ ++

+

++

+ +

+
+

+

++
+

+

+

++
+

+
+

+

+
+ +

+
+

+

+

+

++
+

++

+

+

+

+

+

++

+
+

+

+

+
+ ++
+
+

+

+
+

+

+ +
+

+

+
+

+
+

+

+

+

+

+
++

+

+
+

+

++

+

+ +

+
+

+ +
++

+

+

+

+

+
+ +

++
+

+

+
+ +

+

+
+

+
+

+
+

++
+

+

+

+
+

+

+

+ ++

+
+
+

+ +
+

+

+
+

+

+
+

+
+

+
+

+

++

++

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

++

++
+ ++++

+

+

+

++
+

+
+

+
+

+

+

+
+ +

+

+
+

+

+
+
+

+

+
+

+
++ ++

+

+
+
+

+
++ +

+

+ ++
++

+

+
++

+

+

+

+

+

++
+

+
+

+

+

+

+
++

++

+

+

+

+ +

+
+

+
+

+
+

+

++

+
++

+

+

+
+

+
++

+++
+

+

+

+

+
++ + ++

+

+
+

+

+

++
+

+
+

+

+ +

+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+ +

+
+

+
+

+

+
+

+

+

+

+

+

++
+

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+ +

++

+

+
+

+

+

++

+

++
+

+

+

+
+

+

+

+

++
+

+

+

+
++

+
+

+

+
++ +

+
+

+

+

+
+

+

+++
+

+

++
+++ ++

+

++

+
+

+
++

+

+

+

++

+

+

+ +

+

++

+

+
+

+

++

+
+

+++

+
+
+++ ++ +

+

+
+

+

+
+

+

+

+

+
+

−5 0 5 10 15

−5
0

5
10

15

x1

x2

−− −
−−

−
−

− −

−

−− −
−

−

−−

−

−

−

−

−

−
−

−
−

−
−

−
− −

−

−

−

−

−

−−−−

−−−

−
−−

−

−−−

−
−
−−

−

−

−
−

− −−

−

−−

− −

−
−

−

−−
−

−

−

−−
−

−
−

−

−
− −

−
−

−

−

−

−−
−

−−

−

−

−

−

−

−−

−
−

−

−

−
− −−
−
−

−

−
−

−

− −
−

−

−
−

−
−

−

−

−

−

−
−−

−

−
−

−

−−

−

− −

−
−

− −
−−

−

−

−

−

−
− −

−−
−

−

−
− −

−

−
−

−
−

−
−

−−
−

−

−

−
−

−

−

− −−

−
−
−

− −
−

−

−
−

−

−
−

−
−

−
−

−

−−

−−

−

−

−

−

−

−

−
−

−
−

−
−

−

−
−

−

−

−
−

−

−

−

−

−

−−

−−
− −−−−

−

−

−

−−
−

−
−

−
−

−

−

−
− −

−

−
−

−

−
−
−

−

−
−

−
−− −−

−

−
−
−

−
−− −

−

− −−
−−

−

−
−−

−

−

−

−

−

−−
−

−
−

−

−

−

−
−−

−−

−

−

−

− −

−
−

−
−

−
−

−

−−

−
−−

−

−

−
−

−
−−

−−−
−

−

−

−

−
−− − −−

−

−
−

−

−

−−
−

−
−

−

− −

−
−

−
−

−

−

−

−

−

−

−
−

−
−

−

− −

−
−

−
−

−

−
−

−

−

−

−

−

−−
−

−

−

−

−
−

−

−

−

−−

−

−

−

−

−
− −

−−

−

−
−

−

−

−−

−

−−
−

−

−

−
−

−

−

−

−−
−

−

−

−
−−

−
−

−

−
−− −

−
−

−

−

−
−

−

−−−
−

−

−−
−−− −−

−

−−

−
−

−
−−

−

−

−

−−

−

−

− −

−

−−

−

−
−

−

−−

−
−

−−−

−
−
−−− −− −

−

−
−

−

−
−

−

−

−

−
−

++ +
++

+
+

+ +

+

++ +
+

+

++

+

+

+

+

+

+
+

+
+

+
+

+
+ +

+

+

+

+

+

++++

+++

+
++

+

+++

+
+
++

+

+

+
+

+ ++

+

++

+ +

+
+

+

++
+

+

+

++
+

+
+

+

+
+ +

+
+

+

+

+

++
+

++

+

+

+

+

+

++

+
+

+

+

+
+ ++
+
+

+

+
+

+

+ +
+

+

+
+

+
+

+

+

+

+

+
++

+

+
+

+

++

+

+ +

+
+

+ +
++

+

+

+

+

+
+ +

++
+

+

+
+ +

+

+
+

+
+

+
+

++
+

+

+

+
+

+

+

+ ++

+
+
+

+ +
+

+

+
+

+

+
+

+
+

+
+

+

++

++

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+

+

+

+
+

+

+

+

+

+

++

++
+ ++++

+

+

+

++
+

+
+

+
+

+

+

+
+ +

+

+
+

+

+
+
+

+

+
+

+
++ ++

+

+
+
+

+
++ +

+

+ ++
++

+

+
++

+

+

+

+

+

++
+

+
+

+

+

+

+
++

++

+

+

+

+ +

+
+

+
+

+
+

+

++

+
++

+

+

+
+

+
++

+++
+

+

+

+

+
++ + ++

+

+
+

+

+

++
+

+
+

+

+ +

+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+ +

+
+

+
+

+

+
+

+

+

+

+

+

++
+

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+ +

++

+

+
+

+

+

++

+

++
+

+

+

+
+

+

+

+

++
+

+

+

+
++

+
+

+

+
++ +

+
+

+

+

+
+

+

+++
+

+

++
+++ ++

+

++

+
+

+
++

+

+

+

++

+

+

+ +

+

++

+

+
+

+

++

+
+

+++

+
+
+++ ++ +

+

+
+

+

+
+

+

+

+

+
+−− −

−−

−
−

− −

−

−− −
−

−

−−

−

−

−

−

−

−
−

−
−

−
−

−
− −

−

−

−

−

−

−−−−

−−−

−
−−

−

−−−

−
−
−−

−

−

−
−

− −−

−

−−

− −

−
−

−

−−
−

−

−

−−
−

−
−

−

−
− −

−
−

−

−

−

−−
−

−−

−

−

−

−

−

−−

−
−

−

−

−
− −−
−
−

−

−
−

−

− −
−

−

−
−

−
−

−

−

−

−

−
−−

−

−
−

−

−−

−

− −

−
−

− −
−−

−

−

−

−

−
− −

−−
−

−

−
− −

−

−
−

−
−

−
−

−−
−

−

−

−
−

−

−

− −−

−
−
−

− −
−

−

−
−

−

−
−

−
−

−
−

−

−−

−−

−

−

−

−

−

−

−
−

−
−

−
−

−

−
−

−

−

−
−

−

−

−

−

−

−−

−−
− −−−−

−

−

−

−−
−

−
−

−
−

−

−

−
− −

−

−
−

−

−
−
−

−

−
−

−
−− −−

−

−
−
−

−
−− −

−

− −−
−−

−

−
−−

−

−

−

−

−

−−
−

−
−

−

−

−

−
−−

−−

−

−

−

− −

−
−

−
−

−
−

−

−−

−
−−

−

−

−
−

−
−−

−−−
−

−

−

−

−
−− − −−

−

−
−

−

−

−−
−

−
−

−

− −

−
−

−
−

−

−

−

−

−

−

−
−

−
−

−

− −

−
−

−
−

−

−
−

−

−

−

−

−

−−
−

−

−

−

−
−

−

−

−

−−

−

−

−

−

−
− −

−−

−

−
−

−

−

−−

−

−−
−

−

−

−
−

−

−

−

−−
−

−

−

−
−−

−
−

−

−
−− −

−
−

−

−

−
−

−

−−−
−

−

−−
−−− −−

−

−−

−
−

−
−−

−

−

−

−−

−

−

− −

−

−−

−

−
−

−

−−

−
−

−−−

−
−
−−− −− −

−

−
−

−

−
−

−

−

−

−
−

Fig. 3. A binary classification problem (‘+’ vs ‘-’) with non-linear class boundaries

For the data set in Figure 2, the original entropy (without any input fea-
tures) is 1 (one bit). The best split points along X and Y are at 7.4 and 4.6
respectively. The mutual information of the two features are I(C;X) = 0.42 and
I(C;Y) = 0.00 and thus the relevance of the subset according to equation 8 is
D(C, {X,Y }) = 0.21. This is of course far from the actual utility of the subset,
I(C; {X,Y } = 1, which can be obtained by discovering the linear relationship
between C and the two features1.

The reason for underestimating the relevance of this subset is that very little
information (separation) can be obtained by using only one of the features. The
situation might improve to some extent if one used equation 4 and estimated the
joint conditional probability p(c|x, y). However, this would not be a good/feasible
solution for two reasons: i) as the dimensionality of the problem increases, the
need for training examples increases exponentially. ii) a grid-like partitioning
does not give a smooth and realistic picture of the density necessarily. The latter
too becomes more severe as the dimensionality increases.

2.3 Deficiency in Handling Epistatic Relationships

Very often the relationship between a subset of features and the class variable is
epistatic; that is, the contribution of a feature in predicting the class label will
depend on the value of some other features. An example of such a situation is
presented in Figure 3 which shows a sample from a binary classification problem
with two input features. The dispersion of the instances of the two classes form
an XOR-like problem in a two-dimensional numeric space.

The two features in Figure 3 are both important. Partitioning the input space
into four subdivision using two straight lines can produce a complete classifica-
tion model in this problem; that is, a decision tree can completely describe the
data.

1 One might think that principle component analysis (PCA) can resolve the issue
in these types of problems. However, note that since PCA is an unsupervised
transformation—the input space is (linearly) transformed regardless of class labels—
the class boundary will not necessarily be orthogonal to any of the resulting input
axes (components).

Improving Relevance Measures Using Genetic Programming 103

Non-linear classification learning algorithms such as ANNs and SVMs can
also describe the data using the two features. On the other hand, according
to equation 4, I(C;X1) = 0 and I(C;X2) = 0; that is, neither X1 nor X2

are individually important. Thus heuristic relevance measures that reduce the
concept of relevance (utility) of a subset, to the relevance (utility) of its elements,
fail to recognise the importance of the two features in this problem2. For example
according to equation 8, D(C, {X1, X2}) = 0.

3 Using GP for Partitioning the Input Space

Estimating the conditional joint probability distribution as expressed in equa-
tions 5 and 7 is not feasible because the number of required training examples
grows exponentially with respect to the number of dimensions. On the other
hand, estimating distribution by partitioning single input features (discretisa-
tion) does not yield a good picture of relevance either. To improve the situation,
we propose a GP-based approach to partitioning the input space that does not
have the drawbacks of single feature discretisation.

We extend the traditional concept of partitioning—in which a one-dimensional
input space is divided into several segments—to a new model in which every
point in the multi-dimensional input space belongs to two complementary fuzzy
sets (partitions) A and Ac with membership functions μA and μAc . Since Ac is
the complement of A, μAc(.) = 1− μA(.). μA is function of the form μA : Rn
→
[0, 1] where n is the number of input dimensions. Given the two complementary
sets A and Ac, the conditional probabilities p(C|A) and p(C|Ac) are simply
estimated by measuring the frequency of positive and negative examples in A
and Ac partitions. After estimation, I(C;A) can be calculated. If a particular
partitioning (i.e a particular definition of μA) yields high mutual information
I(C;A), it can be concluded that the set of original features S participating
in the definition of μA are relevant to C. This is because the value of μA is
completely determined by the values of features in S.

We use untyped (uni-type) GP to evolve appropriate membership functions.
The terminals (constants) and variable terminals (input features) are all numeric
(pseudo-real numbers). The function set contains binary and unary primitive
functions that take and return numeric values. Using this configuration, the
codomain of a GP program ϕ is R. We use the following equation to map the
codomain into [0, 1] so it would be a valid membership function.

μA(x1, x2, . . . , xn) =
tanh(ϕ(x1, x2, . . . , xn)) + 1

2
(9)

2 Even learning algorithms that examine features individually cannot find a complete
solution for this problem. For example typical decision tree learners (such as C4.5)
that use a greedy search to find a proper tree cannot find the right decision tree
even though it is in their search space. The average performance (accuracy) of J48-
induced decision trees over the data in Figure 3 is 50% which is equivalent to a
random classifier.

104 K. Neshatian and M. Zhang

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

μ A

(tanh(x**2-6.25)+1)/2

-5

 0

 5

 10

 15

-5

 0

 5

 10

 15

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

μA

(tanh(x-y+5)+1)/2

x

y

μA

-5
 0

 5
 10

 15

-5

 0

 5

 10

 15

 0
 0.2
 0.4
 0.6
 0.8

 1
μA

(tanh((x-5)*(y-5))+1)/2

x1

x2

μA

Fig. 4. Partition membership according to the membership functions evolved by GP
for the problems presented in Figures 1, 2 and 3. The corresponding evolved programs
from left to right are (- (* X X) 6.25), (+ (- X Y) 5) and (* (- X1 5) (- X2 5)).

Now this can be turned to an optimisation problem in which the goal is to max-
imise I(C;A) (the fitness function). Note that unlike traditional partitioning, in
the proposed method, the resulting partitions are not necessarily connected to
each other—that is, partition A may be scattered across different regions in the
input space. The relevance of a subset S in this model is calculated by

IGP (C;S) = H(C)− p(A)H(C|A) − p(Ac)H(C|Ac)

Figure 4 shows the plot of membership functions μA evolved by GP for the
problems presented in Figures 1, 2 and 3. μAc has not been plotted as it is
simply 1 − μA(.). Notice the transition from high membership values to low
values happens in areas of the input space where there is a significant change
in the conditional density of the positive and the negative classes3. Area with
high membership values (e.g. greater than 0.5) are considered belonging to one
partition. This new way of partitioning would give a better picture of the density
function as the density of the positive and negative class in A and Ac are quite
different. In all three cases in Figure 4, I(C;S) is close to 1.

In abstract terms, we are using GP to see if there is a way of partitioning the
input space such that one of the classes (positive or negative) is more likely in A
than the other. If this happens then the conditional entropy of C decreases which
implies the set of features used in the definition of μA are relevant to C. This is
in essence similar to using GP for classification where GP evolves discriminant
functions.

4 Empirical Evaluation

Most relevance measures do intrinsically well at judging irrelevant subsets of
features; they return a zero (or close to zero) degree of relevance for such sub-
sets. This is because relevance is estimated based on the usefulness of a subset
of features in predicting the behaviour of a target variable. When a subset of
features is irrelevant to learning a concept, the relevance measure cannot find
any predictive relationship between the subset and the target concept and thus

3 This is, in a way, parallel with the concept of edge detection in signal processing

Improving Relevance Measures Using Genetic Programming 105

judges the subset as irrelevant. The only two situations in which an irrelevant
subset may seem relevant to a subset are: i) when there is a severe scarcity of
observations (training data). For example having only two observations (H,H)
and (T, T) from tossing two coins may wrongfully imply that the two coins will
always produce the same results. ii) when there is overfitting. Both situations can
be dealt with by providing more training data. The second situation can also be
dealt with by controlling the model complexity (for example by putting a limit
on the depth of GP programs or penalising lengthy descriptions of data [10]).

Discovering complex relationships between a subset of features and target
concepts is a challenging task for most relevance measures. In the previous sec-
tion we saw some example situations in which relevance measures had difficulty
in discovering the relationship between input features and the target concept
and therefore judged relevant features as not being very relevant. In this section,
we evaluate the performance of the proposed GP-based measure and see how it
compares to the conventional way of measuring relevance (density estimation by
partitioning).

As it is not known into what extent features that are measurements on natural
phenomena (such as the blood pressure of a patient) are actually relevant to
target concepts in a problem domain (e.g. the concept of illness), we focus our
studies on synthesised classification problems in which a subset of features is
completely relevant—that is, it is possible to find a function (e.g. a classifier) of
features in the subset that can correctly and completely explain the data (predict
the class labels).

4.1 Synthesising Data

To evaluate the performance of the proposed system a number of different bi-
nary classification problems are synthesised. All the synthesised classification
problems have ten numeric input features and one categorical feature for the
class label. The problems are generated by a mechanism similar to the popu-
lation initialisation in GP. For each problem a random mathematical expres-
sion ϕ is generated using the growth method of GP. The variable terminal set
is {X1, X2, . . . , X10}, the function set is {+,−,×,÷}, and set of randomly-
generated constant numeric values is also used for terminal nodes. Each ex-
pression ϕ is a mapping (function) of the form R10
→ R (even though it may
not contain all ten input variable terminals). We set the log of odds for having a
positive instance given that the instance has been observed at (x1, x2, . . . , x10)
as following:

ln
p(C = positive|X1 = x1, X2 = x2, . . . , X10 = x10)

p(C = negative|X1 = x1, X2 = x2, . . . , X10 = x10)
= ϕ(x1, x2, . . . , x10)

and thus the probability of having a positive instance at that point is

p(C = positive|X1 = x1, X2 = x2, . . . , X10 = x10) =
1

1 + e−ϕ(x1,x2,...,x10)

106 K. Neshatian and M. Zhang

and p(C = negative| . . .) = 1− p(C = positive| . . .). In other words, the output
of a genetic program—which could be anywhere in the interval (−∞,+∞)—is
mapped into the interval [0, 1] and is used as the probability of the positive class
for the corresponding point in the input domain.

Not all variable terminals are used in a randomly generated expression. Those
that have not been used are considered irrelevant. Some of the variable terminals
that have been used in an expression may also be irrelevant due to the intron
effect in GP (e.g. a clause like (- X X)). To detect such variable terminals, a
set of randomly generated number are fed to the variable while other variables
are kept fixed to detect if there is any change in the output of the program.
Problems (conditional densities) in which C is totally independent of the input
(i.e. randomly-generated expressions that do not have any variable terminals in
them) are removed. For each problem (for each generated expression ϕ) a data
set is sampled and is used for the evaluation of the system. All the data sets are
sampled in such a way that they are balanced.

4.2 GP Settings and Implementation Details

Conventional tree-based GP is used in all experiments. In this model, each pro-
gram produces a single floating-point number at its root as the result of its
evaluation (output). There is one variable terminal per input feature in the
problem. A number of randomly generated constants are also used as terminals.
The four standard arithmetic operators, {+,−,×,%}, were used to form the
function set. The division operator is protected—that is, it returns zero for di-
vision by zero. All the members of the function set are binary—they take two
parameters. The ramped half-and-half method is used for generating programs
in the initial population and for the mutation operator. The probability of the
crossover and mutation operators are adapted automatically at runtime [2]. An
elitist approach has been taken to ensure that the performance of the fittest
individual in the population never deteriorates. The population size is 1024 and
the evolution is terminated, at the latest, after the 50th generation or when
I(C;A) = H(C) —that is the maximum information gain has been reached.
The platform is implemented in Java and grid computing has been used in order
to have parallel GP runs.

4.3 Results

Table 1 shows the result of our experiments. For each data set, we use S to refer
to the relevant subset of features in that problem. The first row of the table is
for problems where the cardinality of S is one, the second row is for problems
where the cardinality is two and so forth. The number of problems in each row
is represented by n. For example, according to the third row, there are 400
different data sets (densities) with ten input features in which the cardinality of
the relevant subset of features is three.

Two average errors are presented in the table, one for the heuristic measure D
and the other one for the proposed IGP measure. The errors show the difference

Improving Relevance Measures Using Genetic Programming 107

Table 1. Average Error in Relevance Measures

|S| n errD errIGP μ̂d σ̂d p-value

1 400 0.379 0.080 0.299 0.028 0.000 � � �
2 400 0.534 0.134 0.400 0.047 0.000 � � �
3 400 0.583 0.198 0.385 0.054 0.000 � � �
4 200 0.561 0.288 0.273 0.087 0.000 � � �
5 200 0.612 0.369 0.243 0.104 0.000 � � �
6 200 0.603 0.448 0.155 0.110 0.000 � � �
7 100 0.627 0.464 0.163 0.140 0.000 � � �
8 50 0.656 0.523 0.133 0.156 0.000 � � �
9 50 0.669 0.547 0.122 0.176 0.000 � � �
10 50 0.674 0.588 0.086 0.198 0.001 � �

between the reported relevance by the corresponding method and the actual
relevance of S. The actual relevance of S denoted by I(C|S) is 1 in all the
data sets for the following two reasons: i) since all the data sets are for binary
classification and balanced (i.e. p(C = positive) = p(C = negative)), H(C) = 1;
ii) since there exists a functional form based on S that can completely and
correctly describe C, H(C|S) = 0. The average error of the heuristic measure D
is calculated by

errD =
1

n

n∑
i=1

(I(c;Si)−D(c;Si)) = 1− 1

n|Si|
n∑

i=1

∑
X∈Si

I(C;X)

and the average error of the proposed GP method is calculated by

errIGP =
1

n

n∑
i=1

(I(c;Si)− IGP (c;Si)) = 1− 1

n

n∑
i=1

I(C;ϕ(Si))

and in order to perform a paired statistical significance testing, the difference
between the errors on each data set is defined as

d =
∑
X∈S

I(C;X)− I(C;ϕ(S)) .

The estimated mean and standard deviation of d are represented by μ̂d and σ̂d

in the table. The p-value is p{X ≥ d} where X ∼ N(0, σ̂d√
n
) and is used for

statistical significance test. The stars in front of the p-values show the statistical
significance at the given levels:
 ≡ sig. at 95% confidence level,

 ≡ sig. at 99%
confidence level and

 ≡ sig. at 99.9% confidence level. It can be seen that in
all cases, the error of the proposed system in estimating relevance is significantly
lower than the D heuristic.

5 Conclusion

Relevance measures that depend on estimating a probability density function in
order to find out how a group of variables (features) help predict another variable,

108 K. Neshatian and M. Zhang

can misjudge the relevance in a variety of situations. Many of the traditional
methods deficiencies are related to the fact that estimating probabilities based
on partitioning features individually does not usually give a good picture of
relevance. The proposed GP-based approach can produce more realistic relevance
degrees by finding a proper way of partitioning the input space (estimating the
posterior). The new approach gives a better account of relevance by actually
finding the relationship between class variable and input features.

References

1. Carnap, R.: Logical foundations of probability. University of Chicago Press (1967)
2. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings

of the Third International Conference on Genetic Algorithms, pp. 61–69. Morgan
Kaufmann Publishers Inc., George Mason University, United States (1989)

3. Gärdenfors, P.: On the logic of relevance. Synthese 37(3), 351–367 (1978)
4. Keynes, J.: A treatise on probability. Macmillan & Co., Ltd. (1921)
5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)
6. Last, M., K, A., Maimon, O.: Information-theoretic algorithm for feature selection.

Pattern Recognition Letters 22, 799–811 (2001)
7. Neshatian, K., Zhang, M.: Unsupervised Elimination of Redundant Features Using

Genetic Programming. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866,
pp. 432–442. Springer, Heidelberg (2009)

8. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: cri-
teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1226–1238 (2005)

9. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (March 2008)

10. Quinlan, J.R.: Improved use of continuous attributes in C4. 5. Journal of Artificial
Intelligence Research 4, 77–90 (1996)

An Investigation of Fitness Sharing

with Semantic and Syntactic Distance Metrics

Quang Uy Nguyen1, Xuan Hoai Nguyen2,
Michael O’Neill3, and Alexandros Agapitos3

1 Faculty of Information Technology, Military Technical Academy, Vietnam
2 IT Research and Development Center, Hanoi University, Vietnam

3 Natural Computing Research & Applications Group,
University College Dublin, Ireland

{m.oneill,alexandros.agapitos}@ucd.ie,
{quanguyhn,nxhoai}@gmail.com

Abstract. This paper investigates the efficiency of using semantic and
syntactic distance metrics in fitness sharing with Genetic Programming
(GP). We modify the implementation of fitness sharing to speed up its
execution, and used two distance metrics in calculating the distance be-
tween individuals in fitness sharing: semantic distance and syntactic dis-
tance. We applied fitness sharing with these two distance metrics to a
class of real-valued symbolic regression. Experimental results show that
using semantic distance in fitness sharing helps to significantly improve
the performance of GP more frequently, and results in faster execution
times than with the syntactic distance. Moreover, we also analyse the
impact of the fitness sharing parameters on GP performance helping to
indicate appropriate values for fitness sharing using a semantic distance
metric.

Keywords: Genetic programming, Fitness sharing, Semantic,
Syntactic.

1 Introduction

Genetic Programming (GP) [1,2] is an evolutionary paradigm for automatically
finding solutions for a problem. Since its introduction, GP has been applied
to a wide range of fields [1], and routinely exhibits human-competitive perfor-
mance [3]. In GP, one of the crucial properties that strongly affects its perfor-
mance is the diversity and dispersion of the population [4,5,6,7]. The diversity
and dispersion of a population represents its ability to cover different parts of
the search space. Therefore, promoting dispersion and diversity is important for
the efficiency of search. There have been a number of methods for enhancing
diversity and dispersion [8,5,6,9,10,11], of these fitness sharing has been widely
used in Genetic Algorithms (GA) and Genetic Programming.

In Genetic Algorithms, fitness sharing was introduced as a technique for main-
taining population diversity [12,13]. The basic idea is to cluster the population

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 109–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 Q.U. Nguyen et al.

into a number of groups, based on their similarity with respect to a distance met-
ric. Members of the same group are penalized by having to share fitness, while
isolated individuals retain the full reward. In GP, Langdon is perhaps the first
person who used fitness sharing to preserve population diversity [14]. In Lang-
don’s work, the distance metric is based on the fitness of individuals. Then, Ekart
and Nemeth [15] proposed a metric for fitness sharing based on syntactic (struc-
tural) distance between two tree-based individuals. The method was applied to a
symbolic repression problem with some success. Following this McKay [16] used
implicit fitness sharing, in which the reward for each fitness case is shared by all
individuals that give the same output. However, this method is only applied to
Boolean problems and is not available to directly apply to continuous real-valued
problems.

In this paper, we propose an approach to fitness sharing based on a semantic
distance metric. We compared the performance of GP using fitness sharing with
semantic and syntactic metrics. We also analyse the impact of the parameters of
fitness sharing with semantic distance on the performance of GP. The remainder
of the paper is organised as follows. In the next section, we briefly describe
fitness sharing, the way we modify fitness sharing to speed up its execution and
two distance metrics used for implementing fitness sharing. The experimental
settings are detailed in Section 3. The results of the experiments are presented
and discussed in section 4. Section 5 concludes the paper and highlights some
potential future work.

2 Methods

This section briefly presents fitness sharing. The manner in which we modify
fitness sharing is discussed, and following this two distance metrics for imple-
menting fitness sharing are detailed.

2.1 Fitness Sharing

Fitness sharing treats fitness as a shared resource of the population, and thus
requires that similar individuals share their fitness. It lowers each population
element’s fitness by an amount equal to the number of similar individuals in the
population. Typically, the shared fitness f ′

i of an individual with the raw fitness
fi is simply calculated as follows [17].

f ′
i =

fi
mi

(1)

where mi is the niche count which measures the approximate number of similar
individuals with whom the fitness fi is shared. The niche count of individual i is
calculated by summing a sharing function over all members of the population.

mi =
N∑
j=1

sh(dij) (2)

An Investigation of Fitness Sharing 111

where N denotes the population size and dij represents the distance between the
individual i and the individual j. Hence, the sharing function sh measures the
similarity level between two population elements, it returns one if the elements
are identical, zero if their distance dij is higher than a threshold of dissimilarity,
and an intermediate value at intermediate level of dissimilarity. The most widely
used sharing function is given as follows:

sh(dij) =

{
1− (dij/σ)

α if dij<σ

0 otherwise;
(3)

where σ denotes the threshold of dissimilarity (also the niche radius) and α is
a constant parameter which regulates the shape of the sharing function. While
α is commonly set to one with the resulting sharing function referred to as the
triangular sharing function [13], in this paper, several values of σ will be tested
to find a range of suitable values for symbolic regression problems.

The distance dij between two individuals i and j is characterized by a similar-
ity metric based on either semantic or syntactic similarity. In this paper, we will
compare the efficiency of fitness sharing with two similarity metrics: semantic
versus syntactic similarity.

2.2 Modifying Fitness Sharing

In our experiments, we modify fitness sharing to speed up its execution. The
first modification is the way to calculate the shared fitness. It can be seen that
the shared fitness calculated in Equation 1 can only be used if the raw fitness
favors bigger values, meaning that the bigger value is better. Since for symbolic
regression, we use the raw fitness as the mean of the absolute error with the
condition that smaller values are better, it can not directly use Equation 1 to
calculate the shared fitness. Instead we use the following equation for quantifying
the shared fitness.

f ′
i = (fi) ∗ (mi + 1) (4)

The main drawback of fitness sharing is that the computation of the shared
fitness for the entire population in each generation can be very time-consuming
[17]. We alleviate this by calculating the niches for only a small subset of the
population that is randomly sampled from the whole population. Let P be the
number of individuals that are randomly sampled from the population for each
individual niche that is being calculated. In our experiments, we will investigate
different values of P to find the appropriate values for GP.

2.3 Syntactic Distance

To implement fitness sharing using a syntactic metric, a syntactic distance be-
tween any two trees is required. In this paper, we use an extended version of
tree distance that has been use by Ekart and Nemeth [15]. In other words, the
syntactic distance between two trees is calculated as follows:

112 Q.U. Nguyen et al.

NULL

1

*

+

*

X X

X1

+ +

X

/

X

NULL NULL 4

NULL

Fig. 1. Two trees are added the NULL nodes to have the same layout

1. Make the two trees to be compared to have the same tree-structure (adding
NULL nodes if necessary). Figure 1 gives an example of two trees which are
completed by adding NULL nodes so that they have the same structure.

2. Count the distance between any two nodes located at the same position in
the two trees. If two nodes are labeled with the same symbol, the distance
between them is 0, otherwise the distance is 1.

3. Sum the distances computed in the previous step to form the distance of the
two trees.

2.4 Semantic Distance

To calculate the semantic distance between two individuals, a way to quantify
their semantics must first be defined. In this paper, we use Sampling Semantics
that has been used in previous work on semantic based crossovers [18,19]. For-
mally, sampling semantics between two trees (subtrees) is defined as follows:

Let F be a function expressed by a (sub)tree T on a domain D. Let P be a
set of points sampled from domain D, P = {p1, p2, ..., pN}. Then the Sampling
Semantics of T on P on domain D is the set S = {s1, s2, ..., sN} where si =
F (pi), i = 1, 2, ..., N .

The value of N depends on the problem. If it is too small, the approximate
semantics might be too coarse-grained and not sufficiently accurate. If N is too
big, the approximate semantics might be more accurate, but more time consum-
ing to measure. The choice of P is also important. If the members of P are too
closely related to the GP function set (for example, π for trigonometric functions,
or e for logarithmic functions), then the semantics might be misleading. For this
reason, in this paper, the number of points for evaluating sampling semantics is
set as the number of fitness cases of the problem (20 points), and we choose the
set of fitness cases as the sample points for evaluating sampling semantics.

Based on Sampling Semantics (SS), we define a Sampling Semantics Distance
between two trees. In the previous work [19], Sampling Semantics Distance
(SSD) was defined as the sum of absolute difference of all values of SS. While
the experiments show that this kind of SSD is acceptable, it has undoubted
weakness that the value of SSD strongly depends of the number of SS points

An Investigation of Fitness Sharing 113

(N) [19]. To soften this drawback, in this paper we use the mean of absolute
distance as the SSD between trees. In other words, let U = {u1, u2, ..., uN} and
V = {v1, v2, ..., vN} be the SS of Tree1(Tr1) and Tree2(Tr2) on the same set of
evaluating values, then the SSD between Tr1 and Tr2 is defined as follows:

SSD(Tr1, T r2) =
|u1 − v1|+ |u2 − v2|++ |uN − vN |

N
(5)

Since it could be expensive to compute SS, we reduce the cost by caching.
The SS of each subtree is stored in the root node using attributes; the resulting
GP system is known as Attributes Genetic Programming (AGP). In more detail,
assume that the problem has N fitness cases; then N attributes are added to
each node in the individual’s tree. In figure 2 N is set to 3, so three attributes
A1, A2, A3 are added to every node, to cache the SS of the corresponding subtree.

Figure 2 also describes the process of evaluating attribute values in AGP. Ini-
tially (Figure 2a), the attributes are set to zero. Assume that the fitness cases
include three values 0, 0.5, and 1, then, in the second step, the attributes of the
leaves of the individual are assigned with these values (Figure 2b, attributes at
the nodes labeled with a constant are assigned with the value of that constant).
Next, the attributes at the level above the leaves are assigned with values. At
this point, the semantics of the leaves is passed upward to their parents, and
the operator at those nodes are applied to calculate the values for the attributes
(Figure 2c) at these nodes. This process is then continued until the attributes
at the root node are assigned with values (Figure 2d). It is noted that when this
process of value propagation completes, the fitness of the individual can be ob-

X

A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

X X1

(a)*

+ +

A1=0

X

A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=1
A2=1
A3=1

X X1

(b)*

+ +

A1=0

X

A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0
A3=0

A1=1
A2=1
A3=1

A1=1
A2=1.5
A3=2

A1=0
A2=1
A3=2

X X1

(c)*

+ +

A1=0

X

A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=1
A2=1
A3=1

A1=1
A2=1.5
A3=2

A1=0
A2=1
A3=2

A1=0
A2=1.5
A3=4

X X1

(d)*

+ +

A1=0

Fig. 2. An individual in AGP and the Process of Evaluating its Attributes

114 Q.U. Nguyen et al.

Table 1. Symbolic Regression Functions

Functions Training Data

F1 = x3 + x2 + x 20 random points ⊆ [-1,1]
F2 = x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F3 = x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F4 = x6 + x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F5 = (x+ 1)3 20 random points ⊆ [-1,1]
F6 = x3 − x2 − x− 1 20 random points ⊆ [-1,1]
F7 = 0.3sin(2πx) 20 random points ⊆ [-1,1]
F8 = cos(3x) 20 random points ⊆ [-1,1]

Table 2. Run and Evolutionary Parameter Values

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, log (protected version)
Terminals X, 1
Raw fitness mean absolute error on all fitness cases
Trials per treatment 100 independent runs for each value

tained by comparing the semantics of the root node with the values of the target
function on the corresponding fitness cases and the semantic distance between
two trees can be calculated by summing the attributes of their root nodes. This
helps to speed up the calculation of semantic distance between individuals in
fitness sharing.

3 Experimental Settings

To investigate the impact of using these distance metrics in fitness sharing on
GP performance, we used eight real-valued symbolic regression problems. The
problems and training data are shown in Table 1. These functions were taken
from previous work on using semantics based operators in GP [20,21].

The GP parameters used for our experiments are shown in Table 2. It should
be noted that the raw fitness is the mean of absolute error on all fitness cases.

An Investigation of Fitness Sharing 115

Therefore, the smaller values are better. For each problem and each parameter
setting, 100 runs were performed.

We divided our experiments into two sets. The first is to compare the per-
formance of fitness sharing using a semantic metric with a syntactic metric and
with standard GP, and the second set aims to investigate the impact of some
parameters (the number of the sampled individuals and the niche radius, σ) on
the performance of GP using fitness sharing with semantic metric. Hereafter,
the fitness sharing using the semantic metric is called Semantic Sharing and the
fitness sharing using the syntactic metric is called Syntactic Sharing.

4 Results and Discussion

This section first presents the comparison on the performance of GP using se-
mantic sharing with syntactic sharing and standard GP. After that the impact of
some parameters on the performance of GP using semantic sharing is discussed.

4.1 On the Performance

We tested fitness sharing using semantic and syntactic distance on the above
eight problems. For semantic sharing, we selected the niche radius, σ at 0.1. This
is the value determined to achieve the best performance with semantic sharing
(the following subsection will investigate the impact of σ on the performance
of GP using semantic sharing). Three values for the number of the individuals
that are sampled to calculate niche were tested. They are 5, 10 and 15. Semantic
sharing with these values will be shorthanded as SS5, SS10, and SS15.

For syntactic sharing, we fixed the niche radius, σ at 10. This was indicated
from experiments as the best value for GP performance. Similarly, three values
for the number of sampled individuals are 5, 10 and 15 were tested. Syntactic
sharing with these three values are referred to as SyS5, SyS10, and SyS15.

To measure the performance of GP with these approaches we use a classical
performance metric: mean of the best fitness. Table 3 shows the best fitness
found, averaged over all 100 runs of each GP system. We tested the statistical
significance of the results in Table 3 using a Wilcoxon signed-rank test with
a confidence level of 95%. In Table 3, if a run of semantic sharing or syntac-
tic sharing is significantly better than Standard GP (GP), its result is printed
bold face.

It can be seen from Table 3 that syntactic sharing barely improves the per-
formance of GP. Sometimes, syntactic sharing is even worse than standard GP.
This can be observed in some cases on Function F2, F5, F7 and F8. In fact, syn-
tactic sharing only significantly improves GP performance on three occasions,
namely on F1 (SyS10 and SyS15) and F4 (SyS15). These results are not entirely
surprising as Ekart and Nemeth [15] also showed that fitness sharing based on
structural distance provides very little advantage for GP performance.

On the contrary, semantic sharing always helps to improve the performance
of GP. It can be seen from Table 3 that the mean best fitness found by semantic
sharing is consistently smaller than the value found by standard GP. For the

116 Q.U. Nguyen et al.

Table 3. Mean best fitness of three methods. Note that the values are scaled by 102

Methods F1 F2 F3 F4 F5 F6 F7 F8

GP 1.05 1.52 2.14 2.78 2.65 3.17 4.40 1.50

SyS5 0.85 1.39 1.86 2.56 3.00 2.90 4.44 1.73
SyS10 0.78 1.73 1.94 2.57 2.52 3.01 4.58 1.37
SyS15 0.69 1.37 1.78 2.06 2.58 2.97 4.33 1.56

SS5 0.69 1.13 1.66 2.09 2.22 2.56 3.87 1.12
SS10 0.55 1.12 1.70 2.03 2.32 2.48 3.62 1.11
SS15 0.75 1.19 1.71 2.14 2.15 2.59 3.91 0.97

three values of the numbers of the individuals that are sampled for calculating
the niche, it can be seen that the performance of semantic sharing is consistent.
The table also shows that the majority of the improvement achieved by semantic
sharing over standard GP is statistically significant.

Table 4. Average time of a run (in seconds) for the two fitness sharing strategies

Methods F1 F2 F3 F4 F5 F6 F7 F8

GP 4.36 5.09 4.85 5.32 5.30 6.44 7.47 5.85

SyS5 14.2 15.5 15.8 16.8 16.8 18.7 22.7 17.9
SyS10 23.1 26.4 27.4 28.8 27.6 32,8 36.6 28.8
SyS15 33.2 36.2 38.6 39.7 36.4 41.2 45.9 39.7

SS5 5.21 5.42 5.26 5.37 5.31 6.34 7.11 5.52
SS10 5.12 5.69 5.30 5.61 5.52 6.59 7.34 5.94
SS15 4.94 5.62 5.38 5.54 5.59 6.48 7.38 5.90

As has been previously mentioned, one of the weaknesses of fitness sharing
is that it takes time to calculate the semantic or syntactic distance between
individuals in the population. To estimate the extra time of these methods,
we measured their running time. The average time of a run of these methods
compared to standard GP is shown in Table 4.

It can be seen from Table 4 that it is very time-consuming to implement
syntactic sharing. The average time of a run of syntactic sharing is much greater
than the value of standard GP. When the number of individuals that are sampled
increases, the average running time also increases. Conversely, semantic sharing
runs almost at the same speed as standard GP. The average run time of semantic
sharing is mostly equal to that of standard GP, and in some cases these values
are even smaller. This represents the effectiveness of using attributes to store
semantics in the calculation of semantic distance.

An Investigation of Fitness Sharing 117

Table 5. Mean best fitness of semantic sharing with different values of the niche radius.
Note that the values are scaled by 102

Methods F1 F2 F3 F4 F5 F6 F7 F8 Mean

GP 1.05 1.52 2.14 2.78 2.65 3.17 4.40 1.50 2.40

SSR005 0.61 1.25 1.75 2.19 2.43 2.70 3.71 1.20 1.98
SSR0075 0.52 1.11 1.66 2.23 2.31 2.56 3.61 1.14 1.89
SSR01 0.55 1.12 1.70 2.03 2.32 2.48 3.62 1.11 1.87
SSR0125 0.53 1.34 1.79 2.16 2.25 2.70 3.92 1.14 1.98
SSR015 0.61 1.35 1.74 2.07 2.45 2.82 3.92 1.13 2.01

4.2 Parameters Analysis

This section analyses the impact of some parameters on the performance of GP
using semantic sharing 1. There are two parameters that potentially impact the
performance of GP with semantic sharing: the threshold of dissimilarity (also
the niche radius), σ and the size of sampled individuals P . To investigate the
sensitivity of the niche radius on GP performance, we fixed the size of sampled
individuals at 10 and tested 5 values of σ. The five values tested are: 0.05, 0.075,
0.1, 0.125, 0.15. Five configurations of semantic sharing with these values are
referred to as SSRX with X=0.05, 0.075, 0.1, 0.125, 0.15.

To estimate the effect of changing σ, we recorded the best fitness of a run.
These values were averaged over 100 runs and are shown in Table 5. For the
purpose of comparison, the mean best fitness of standard GP is also shown in
the top row of this table.

It can be seen from Table 5 that the values of the niche radius around 0.1
are good values overall. The performance of semantic sharing with values 0.075
and 0.1 are the most consistent. When this value is too small (0.05) or too great
(0.125 and 0.15), the performance is worse.

We now examine the impact of the second parameter, the size of sampled
individuals, on the performance of GP using semantic sharing. To do this, we
fixed σ at 0.1 and 6 values of the size of sampled individuals were tested. The six
values are 5, 10, 15, 20, 40, and 80. The corresponding configurations of semantic
sharing with these six values are shorthanded as SSSX with X=5, 10, 15, 20, 40,
and 80, respectively.

To discover the effect of changing this parameter, we again recorded the best
fitness of a run. These values were averaged over 100 runs and are shown in
Table 6. For the purpose of comparison, the mean best fitness of standard GP
is also shown in the top row of this table.

Table 6 shows that the size of sampled individuals needs only relatively small
values. It can be seen that the performance of semantic sharing is best with
the values from 5 to 20 (1 to 4% of the total population size). If this value is

1 Since the performance of syntactic sharing is not as good as the performance of
semantic sharing, it is not investigated further in this paper.

118 Q.U. Nguyen et al.

Table 6. Mean best fitness of semantic sharing with different values of the size of
sampled individuals. Note that the values are scaled by 102.

Methods F1 F2 F3 F4 F5 F6 F7 F8 Mean

GP 1.05 1.52 2.14 2.78 2.65 3.17 4.40 1.50 2.40

SSS5 0.69 1.13 1.66 2.09 2.22 2.56 3.87 1.12 1.92
SSS01 0.55 1.12 1.70 2.03 2.32 2.48 3.62 1.11 1.87
SSS15 0.75 1.19 1.71 2.14 2.15 2.59 3.91 0.97 1.93
SSS20 0.58 1.23 1.65 1.99 2.41 2.69 3.72 1.17 1.93
SSS40 0.85 1.61 2.17 2.48 2.32 3.04 4.06 1.24 2.22
SSS80 1.14 1.52 2.33 2.56 2.53 2.96 4.72 1.35 2.39

too great (40 and 80) the performance is worse. This can be explained by the
fact that promoting too much diversity (when increasing the value of the size of
sampled individuals) can hinder the convergence of GP to the global optimal.

5 Conclusions and Future Work

In this paper, we investigate the efficiency of fitness sharing using semantic
and syntactic distance metrics. We propose a novel way to implement fitness
sharing using a semantic distance metric based on sampling semantics. We also
modify fitness sharing to speed up its execution. We compare the performance of
Genetic Programming using fitness sharing with semantic and syntactic distance
on a class of real-value symbolic regression problems. The experimental results
show on the tested problems that while fitness sharing with the syntactic metric
hardly improves the performance of GP, fitness sharing with the semantic metric
often significantly improves GP performance. At the same time, fitness sharing
that implements the semantic distance metric runs much faster than with the
syntactic metric. Further analysis shows the impact of the two main parameters
on the performance of fitness sharing with the semantic distance metric.

There are a number of areas for future work which arise from this paper.
First, we want to measure the change of semantic diversity and syntactic diver-
sity of fitness sharing implemented in this paper during the course of evolution
to understand its impact on GP performance. Second, we would like to combine
promoting semantic diversity with controlling semantic locality [20] to see if it
provides additional improvement in performance. Last but not least, we aim
to investigate the impact of this method on dynamic problems where mainte-
nance of population dispersion/diversity is critical for adaptation to a changing
environment.

Acknowledgements. This work was funded by The Vietnam National Foun-
dation for Science and Technology Development (NAFOSTED), under grant
number 102.01-2011.08. The third author acknowledges the support of Science
Foundation Ireland under grant number 08/IN.1/I1868. A. Agapitos is supported
by Science Foundation Ireland Grant No. 08/SRC/FM1389.

An Investigation of Fitness Sharing 119

References

1. Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming (2008),
http://lulu.com

2. Koza, J.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, MA (1992)

3. Koza, J.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3-4), 251–284 (2010)

4. Gustafson, S., Burke, E.K., Kendall, G.: Sampling of Unique Structures and Be-
haviours in Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.,
Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 279–288. Springer,
Heidelberg (2004)

5. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An
analysis of measures and correlation with fitness. IEEE Transactions on Evolu-
tionary Computation 8(1), 47–62 (2004)

6. Looks, M.: On the behavioral diversity of random programs. In: GECCO 2007: Pro-
ceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
July 7-11, vol. 2, pp. 1636–1642. ACM Press (2007)

7. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11(3-4), 339–363
(2010)

8. Gustafson, S.: An Analysis of Diversity in Genetic Programming. PhD thesis,
School of Computer Science and Information Technology, University of Notting-
ham, Nottingham, England (February 2004)

9. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in ge-
netic programming. Genetic Programming and Evolvable Machines 10(3), 307–337
(2009)

10. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Aca-
demic Publishers (2011)

11. Morrison, R.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer, Heidelberg (2004)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor (1975)

13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

14. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Program-
ming + Data Structure = Automatic Programming! Kluwer Academic, Boston
(1998)

15. Ekárt, A., Németh, S.Z.: A Metric for Genetic Programs and Fitness Sharing. In:
Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.)
EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)

16. McKay, B.: An investigation of fitness sharing in genetic programming. The Aus-
tralian Journal of Intelligent Information Processing Systems 7(1/2), 43–51 (2001)

17. Sareni, B., Kraehenbuehl, L.: Fitness sharing and niching methods revisited. IEEE-
EC 2(3), 97 (1998)

18. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic
Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

http://lulu.com

120 Q.U. Nguyen et al.

19. Nguyen, Q.U., O’Neill, M., Nguyen, X.H., Mckay, B., Galván-López, E.: Semantic
Similarity Based Crossover in GP: The Case for Real-Valued Function Regression.
In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA
2009. LNCS, vol. 5975, pp. 170–181. Springer, Heidelberg (2010)

20. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.:
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genetic Programming and Evolvable Machines, 91–119 (2011)

21. Nguyen, Q.U., Nguyen, T.H., Nguyen, X.H., O’Neill, M.: Improving the Generalisa-
tion Ability of Genetic Programming with Semantic Similarity based Crossover. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 184–195. Springer, Heidelberg (2010)

Evolving Reusable Operation-Based Due-Date

Assignment Models for Job Shop Scheduling
with Genetic Programming

Su Nguyen1, Mengjie Zhang1, Mark Johnston1, and Kay Chen Tan2

1 Victoria University of Wellington, Wellington, New Zealand
2 National University of Singapore, Singapore
{su.nguyen,mengjie.zhang}@ecs.vuw.ac.nz,

mark.johnston@msor.vuw.ac.nz,eletankc@nus.edu.sg

Abstract. Due-date assignment plays an important role in scheduling
systems and strongly influences the delivery performance of job shops.
Because of the stochastic and dynamic features of job shops, the devel-
opment of general due-date assignment models (DDAMs) is complicated.
In this study, two genetic programming (GP) methods are proposed
to evolve DDAMs for job shop environments. The experimental results
show that the evolved DDAMs can make more accurate estimates than
other existing dynamic DDAMs with promising reusability. In addition,
the evolved operation-based DDAMs show better performance than the
evolved DDAMs employing aggregate information of jobs and machines.

Keywords: Genetic programming, Job shop, Due-date assignment.

1 Introduction

Job Shop Scheduling (JSS) has been one of the most popular topics in the
scheduling literature due to its complexity and applicability in real world situ-
ations. A large number of studies on JSS have focused on sequencing decisions,
which determine the order in which waiting jobs are processed on a set of ma-
chines (or resources) in a manufacturing system (shop). However, sequencing is
only one of several steps in the scheduling process [1]. One of the other important
activities in JSS is due-date assignment (DDA), sometimes referred to as esti-
mation of job flowtimes (EJF). The objective of this activity is to determine the
due-dates for arriving jobs by estimating the job flowtimes (the time from the
arrival until the completion of the job), and therefore DDA strongly influences
the delivery performance, i.e., the ability to meet promised delivery dates, of a
job shop [4]. In addition, accurate flowtime estimates [18] are needed for better
management of the shop floor activities, evaluation of the shop performance and
leadtime comparison, etc.

Due-date assignment decisions are made whenever jobs (customer orders) are
received from customers. Due-dates can be set exogenously or endogenously
[4,17]. In the former case, due-dates are decided by some independent agency

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 121–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 S. Nguyen et al.

Table 1. Performance measures of DDAMs

Mean Absolute Percentage Error MAPE = 1
|C|

∑
j∈C

|ej |
fj

Mean Percentage Error MPE = 1
|C|

∑
j∈C

ej
fj

Mean Absolute Error MAE =
∑

j∈T
|ej |

|C|
Standard Deviation of Lateness STDL =

√
1
|C|

∑
j∈C

(ej − ē)2

Percent Tardiness %T = 100 × |T|
|C|

Mean Flowtime MF =
∑

j∈C
fj

|C|

e.g., sellers or buyers. In this study, we only focus on the second case, in which
the due-dates are internally set based on the characteristics of the jobs and
the shops [17], to improve the delivery performance of job shops. Basically, the
due-date of a new job is calculated as:

dj = rj + f̂j (1)

where dj is the due-date, rj is the release time of job j (in our study, the release
time is the arrival time of the job since the job is released to the shop imme-
diately), and f̂j is the estimated (predicted) flowtime of job j. The task of a

due-date assignment model (DDAM) is to assign a value to f̂j. In the ideal case,
we want the calculated due-date dj to be equal to the completion time of the job
Cj . The miss due-date performance is normally measured by the error (lateness)

between the completion time and due-date ej = Cj − dj = fj − f̂j , where fj is
the actual flowtime.

Some criteria to evaluate the performance of DDAMs [5,2] in the JSS literature
are shown in Table 1. In this table, C is the set of jobs collected from the
simulation runs to calculate the performance measures, ej is the lateness of job
j, ē is the mean lateness and T is the set of tardy jobs (Cj − dj > 0). MAPE
and MAE measure the accuracy of the flowtime estimation. Smaller MAPEs or MAEs
indicate that the DDAM can make better predictions. MPE measures the bias
of the DDAM. If the DDAM results in a negative (positive) MPE, it means that
the DDAM tends to overestimate (underestimate) the due-date. STDL measures
the delivery reliability of the DDAM. Smaller STDL indicates that the estimated
due-dates are more reliable. Another delivery performance measure is %T, which
shows the percentage of jobs that fail to meet the due-date. Finally, MF measures
the delivery speed of the scheduling system.

Many DDAMs have been proposed in the job shop literature. Traditional
DDAMs focus on exploiting the shop and job information to make good flow-
time estimates. Most of the early DDAMs are based on linear combinations
of different terms (variables) and the coefficients of the models are then de-
termined based on simulation results. Regression (linear and non-linear) has
been used very often in order to help find the best coefficients for the models
employed [16,7,23,22,18,19,9]. Since the early 1990s, artificial intelligence meth-
ods have also been applied to deal with due-date assignment problems such as

Evolving Reusable Operation-Based Due-Date Assignment Models 123

neural networks [15,20,14], decision trees [13], regression trees [21], and a regres-
sion based method with case-based tuning [19].

Even though experimental results with these DDAMs are promising, some
limitations are still present. First, since a job can include several operations
which represent the processing steps of that job at particular machines, the
operation-based flowtime estimation (OFE) method [18] that utilises the detailed
job, shop and route information for operations of jobs can help improve the
quality of the prediction. However, this OFE method depends strongly on the
determination of a large number of coefficients, which is not an easy task. Thus,
there is a need to create a dynamic OFE method similar to Dynamic Total Work
Content (DTWK), Dynamic Processing Plus Waiting (DPPW) [5], and ADRES
[2] to overcome this problem by replacing the coefficients with more general
aggregate terms (job characteristics and states of the system). Second, there are
no studies on the reusability of the proposed DDAMs in the JSS literature, so
it is questionable whether the proposed models can be applied when there are
changes in the shop without major revisions. Finally, various relevant factors
need to be considered in order to make a good estimation of flowtime, which
makes the design of a new DDAM a time-consuming and complicated task.

Genetic Programming (GP) [10] is an evolutionary computation method which
has been applied to evolve (train) programs that are able to solve difficult compu-
tational problems. We see that GP is also a good candidate approach to helping
overcome the three limitations discussed above because (1) the DDAMs can be
easily represented by GP, (2) DDAMs can be automatically evolved/trained on
different shop environments to provide the generality for the evolved DDAMs,
and (3) the DDAMs evolved by GP can be partially interpreted.

This paper aims to develop a new approach to the use of GP for evolving
due-date assignment models (DDAMs) for job shop environments. We expect
the evolved DDAMs to outperform the existing models in terms of mean abso-
lute percentage error and to be reusable for new (unseen) simulation scenarios.
Following are the objectives for this study:

1. Develop two GP methods to automatically evolve reusable Aggregate Due-
date Assignment Models (ADDAMs) and Operation-based Due-date Assign-
ment Models (ODDAMs) for the job shop environment.

2. Compare the evolved DDAMs with existing dynamic DDAMs.
3. Compare the performance of the two proposed GP methods.

In the next section, we provide details about the two proposed GP methods. The
experimental setting is presented in Section 3. The experimental results, the com-
parisons, and analysis of evolvedDDMAs are presented in Section 4. Section 5 gives
some conclusions from this research and directions for future studies.

2 GP for Evolving DDAMs

2.1 Representation

The purpose of the proposed GP-ADDAM and GP-ODDAM is to evolve dy-
namic ADDAMs and ODDAMs that estimate job flowtimes (i.e. due-dates by

124 S. Nguyen et al.

Table 2. Terminal sets for GP-ADDAM and GP-ODDAM (ψ is the new job, φ is the
considered operation in GP-ODDAM, and δ is the machine that process will φ)

GP-ADDAM GP-ODDAM

N Number of jobs in the shop
SAR Sampled arrival rate
Random number from 0 to 1

TAPR total average processing time of
job in queues of machines that
ψ will visit

APR average processing times of jobs
in the queue of the machine that
processes φ

TOT total processing time of ψ OT processing time of φ
TLOT average LOT for all machines

that ψ will visit
LOT time for δ to finish the leftover

job
AOTR average OTR for all queues of ma-

chines that ψ will visit
OTR percentage of jobs in queues of δ

that require less processing time
less than OT

ASOTR average SOTR for all queues of
machines that ψ will visit

SOTR percentage of sampled jobs pro-
cessed at δ that require less pro-
cessing time less than OT

TQWL total QWL for all machines that
ψ will visit

QWL total processing time of jobs in
the queue of δ

TSAPR total SAPR for all machines that
ψ will visit

SAPR sampled average processing
time of jobs processed at δ

TRWL total RWL for all machines that
ψ will visit

RWL total processing time of jobs
that need to be processed at δ

SL sampled average error ej from
previous jobs

PEF partial estimated flowtime

using equation (1)) by employing information from jobs and the shop similar to
DTWK and DPPW. In this case, we use tree-based GP [10] to create mathemat-
ical combinations of these pieces of information in each GP individual. For this
reason, the function set will include standard mathematical operators +,−,×,
and protected division %, along with a conditional function If to allow GP to
evolve sophisticated DDAMs. Function If includes three arguments and if the
value from the first argument is greater than or equal to zero, If will return
the value from the second argument; otherwise If will return the value from the
third argument. Since ADDAMs and ODDAMs need different types of informa-
tion, GP-ADDAM and GP-ODDAM will use different terminal sets as shown in
Table 2. In this table, the first three terminals are the same for the two proposed
GP methods. The next eight terminals are variables that characterise the state
of operations/machines for GP-ODDAM and their aggregate counterparts for
GP-ADDAM. The last terminal of each method provides some extra informa-
tion to estimate the flowtime. SOTR and SAPR are calculated based on the sample
of the last 20 jobs processed at machine δ. SAR, on the other hand, is calculated
based on the arrivals of the last 20 jobs.

Evolving Reusable Operation-Based Due-Date Assignment Models 125

Ns TOT

%

SAR 0.2

x

+

(a) GP-ADDAM

OT

QWL PEF

-

+

Last Operation ?

Go to the next
operation

Yes

No

(b) GP-ODDAM

Fig. 1. DDAM evaluation scheme

2.2 Evaluation

An example of how an individual in GP-ADDAM is evaluated is shown in Fig.
1(a). In this method, a GP individual represents a mathematical function and

the output of this function is the estimated flowtime f̂ of the new job. The
information used in this function is extracted from the new job and machines in
the shop.

The GP individual in GP-ODDAM aims at estimating the flowtime of each
operation of the new job. Therefore, instead of using the function obtained from
the GP individual to estimate job flowtime f̂ , the output of this function is used
to estimate the operation flowtime f̂o of each operation of the new job, starting
from the first operation. When f̂o is obtained, a condition is checked to see
whether the operation being considered is the last operation. If it is not the last
operation of the new job, f̂o will be used to update the partial estimated flowtime
(PEF), which will also be used as a terminal in the GP individual. Then, the GP
individual is applied to estimate the flowtime for the next operation. In the case
that the flowtime of the last operation has been estimated, f̂o will be added to
the current PEF to obtain the estimated flowtime f̂ . The evaluation scheme for
GP-ODDAM is shown in Fig. 1(b). The use of PEF (initially zero for the first
operation) in the terminal set of GP-ODDAM also provides DDAMs a chance
to predict the changes of the system, given that the partial estimated flowtime
is well predicted.

2.3 Genetic Operators

Traditional genetic operators are employed by the proposed GP methods. For
crossover, the GP system uses the subtree crossover [10], which creates new
individuals for the next generation by randomly recombining subtrees from two
selected parents. Meanwhile, mutation is performed by subtree mutation [10],
which randomly selects a node of a chosen individual and replaces the subtree
rooted at that node by a newly randomly-generated subtree. For reproduction,
an individual is selected from the population by the selection mechanism (e.g.
tournament selection) and copied to the population of the next generation.

126 S. Nguyen et al.

2.4 Fitness Function

As discussed in Section 1, the performance of a DDAM can be measured in many
different ways, which indicate the delivery accuracy and delivery reliability. In
this study, we will use MAPE to measure the quality of evolved DDAMs because it
is a good indicator for both delivery accuracy and delivery reliability. A discrete-
event simulation model of a job shop is built for evaluation of evolved DDAMs.
In this model, the arrivals of jobs, the processing times and route information
of jobs will follow some particular probability distributions. Upon the arrival
of a job j, the DDAM will be applied to estimate the flowtime f̂j of that job.
The error ej of this estimation is recorded when job j leaves the system and
the errors of all recorded jobs will be used to calculate MAPE as shown in Table
1. Since our objective is to evolve reusable DDAMs, the quality of the evolved
DDAMs will be measured based on their performance on a number of simulation
scenarios S = {S1,S2, . . . ,SK} which represent different shop characteristics. For
a simulation scenario Sk, the quality of a DDAM pi is indicated by MAPESk

pi
. The

fitness value of pi is calculated as followed:

fitness(pi) =
1

K

K∑
k=1

MAPESk
pi

(2)

With this design, smaller fitness(pi) indicates that the evolved DDAM pi can
make more accurate estimations of jobs across different scenarios.

2.5 Evolution of DDAMs

Algorithm 1 shows how GP can be used to evolve DDAMs in both GP-ADDAM
and GP-ODDAM. A variety of simulation scenarios will be employed in this al-
gorithm to provide the evolved (trained) DDAMs better generality but it should
be noted that a large number of scenarios also increase the computation time of
the GP systems. The evolution process will be terminated when the maximum
generation is reached and the algorithm will return the best found DDAM p∗.

3 Experimental Setting

3.1 Job Shop Simulation Environment

In this study, we use a symmetrical (balanced) job shop simulation model in
which each operation of a job has equal probability to be processed at any ma-
chine in the shop (a job visits each machine at most once). Therefore, machines
in the shop have the same level of congestion in long simulation runs. This model
has also been used very often in the JSS literature [3,5,18,11,8]. Based on the
factors discussed above, the scenarios for training and testing of DDAMs are
shown in Table 3.

In these scenarios, the mean processing time of operations is fixed to 1 and
the arrival of jobs will follow a Poisson process with the arrival rate adjusted
based on the utilisation level. For the distribution of number of operations, the

Evolving Reusable Operation-Based Due-Date Assignment Models 127

Algorithm 1. General GP algorithm for GP-ADDAM and GP-ODDAM

load simulation scenarios S← {S1,S2, . . . ,SK};
randomly initialise the population P← {p1, p2, . . . , ppopsize} ;
p∗ ← null and fitness(p∗) = +∞;
generation← 0;
while generation ≤ maxGeneration do

foreach pi ∈ P do
foreach Sk ∈ S do

calculate MAPE
Sk
pi

end
evaluate fitness(pi) by using equation (2) ;
if fitness(pi) < fitness(p∗) then

p∗ ← pi;
fitness(p∗)← fitness(pi);

end

end
P← apply reproduction, crossover, mutation to P ;
generation← generation+ 1

end
return p∗;

Table 3. Training and testing scenarios

Factor Training Testing

Number of machines 4,6 4,5,6,10,20
Utilisation 70%,80%,90% 60%,70%,80%,90%,95%
Distribution of processing time Exponential Exponential, Erlang-2, Uniform
Distribution of number of operations missing missing/full

missing setting is used to indicate that the number of operations will follow a
discrete uniform distribution from 1 to the number of machines. Meanwhile, the
full setting indicates the case that each job will have its number of operations
equal to the number of machines in the shop. In each replication of a simulation
scenario, we start with an empty shop and the interval from the beginning of
the simulation until the arrival of the 1000th job is considered as the warm-up
time and the information of the next completed 5000 jobs (set C used in Table
1) is collected to evaluate the performance of DDAMs.

In the training stage, since the simulation is very time-consuming, we only
perform one replication for each scenario. There are (2×3×1×1) = 6 simulation
scenarios used to evaluate the performance of the evolved DDAMs. For testing,
the best DDAM p∗ obtained from a run of GP is applied to (5× 5× 3× 2) = 150
simulation scenarios and 30 simulation replications are performed for each sce-
nario; therefore, we need 150 × 30 = 4500 simulation replications to test the
performance of p∗. The use of a large number of scenarios and replications in
the testing stage will help us confirm the quality and reusability of the evolved

128 S. Nguyen et al.

Table 4. Parameters of the proposed GP systems

Population Size 2000 Crossover rate 80% Mutation rate 15%
Reproduction rate 5% Generations 50 Max-depth 17

DDAMs. For the shop floor level, First-In-First-Out (FIFO) is used as the dis-
patching rule to sequence jobs in queues of machines. By using FIFO, the earliest
job that joins the queue of the machine will be processed first. We examine FIFO
in this study because it is one of the the most popular dispatching rules in the
scheduling literature.

3.2 GP Parameters

The GP system for learning DDAMs is developed based on the ECJ20 library
[12]. The parameter settings of the GP system used in the rest of this study
are shown in Table 4. The initial GP population is created using the ramped-
half-and-half method [10]. Tournament selection of size 7 is used to select an
individual for the genetic operators.

4 Results

4.1 Comparison of DDAMs

For each GP method, 30 independent runs are performed and the best ADDAM
pADDAM and ODDAM pODDAM are recorded and compared with existing dynamic
DDAMs (DTWK, DPPW, and ADRES). Table 5 and Table 6 show MAPESk

pADDAM , MAPE
Sk

pODDAM

and the t-test results between the evolved DDAMs and other DDAMs in 150
testing scenarios. In these tables, the a, b, and c are the indices to represent
DTWK, DPPW, and ADRES, respectively. The superscript of a result in these tables
shows the DDAMs that are not significantly different (by using t-tests) from
the evolved DDAMs. Meanwhile, the subscript shows the DDAMs that are sig-
nificantly better than the evolved DDAM, respectively. If an index is neither
shown in the superscript nor subscript, it means that the evolved DDAM is
significantly better than all other DDAMs. The tests are considered significant
when the obtained p-value is less than 0.05. It is easy to see that the evolved
DDAMs dominate other DDAMs in most scenarios. In a few specific cases, DPPW
and ADRES are competitive with the evolved DDAMs and DPPW can also beat
the evolved DDAMs in some scenarios with high utilisation level (95%), full set-
ting and large numbers of machines. This may be because DPPW is based on the
steady state performance of the system and can perform better in shops with
less diverse jobs when the full setting is used and with high levels of utilisation.
It is also noted that MAPESk

p∗ is better when the utilisation increases, which is
similar to that observed in [18]. When the number of machines increases, it is
also interesting to see that the performance of the evolved DDAMs deteriorates
if the missing setting is used, but the performance of these DDAMs improves if
the full setting is used.

Evolving Reusable Operation-Based Due-Date Assignment Models 129

Table 5. Comparing the evolved ADDAM with existing DDAMs

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Expon.

4 0.1645 0.1669bc 0.1550 0.1292 0.1055 0.2313 0.2279 0.2115 0.1700 0.1305
5 0.1788 0.1782 0.1638 0.1336bc 0.1067 0.2358 0.2296 0.2099 0.1675 0.1304b

6 0.1877 0.1877 0.1754 0.1444 0.1183 0.2358 0.2295 0.2088 0.1660 0.1303b

10 0.2057 0.2030 0.1881 0.1528c 0.1269 0.2170 0.2095 0.1905 0.1516b 0.1218b

20 0.2058 0.2032 0.1884 0.1549 0.1348 0.1758 0.1719 0.1585b 0.1303b 0.1110b

Erlang-2

4 0.1527 0.1567 0.1500 0.1265 0.0996 0.2115 0.2152 0.2057 0.1732 0.1362
5 0.1660 0.1681 0.1619 0.1368 0.1095 0.2118 0.2140 0.2042 0.1700 0.1371b

6 0.1724 0.1765 0.1688 0.1429 0.1169 0.2094 0.2114 0.2017 0.1701 0.1384b

10 0.1883 0.1904 0.1805 0.1499 0.1208 0.1902 0.1925 0.1833 0.1537b 0.1251b

20 0.1843 0.1872 0.1799 0.1541 0.1335 0.1524 0.1563 0.1518 0.1317b 0.1125b

Uniform

4 0.1148 0.1320 0.1421 0.1404 0.1235 0.1525 0.1747 0.1875 0.1875 0.1694
5 0.1228 0.1416 0.1515 0.1480 0.1300 0.1498 0.1700 0.1831 0.1857 0.1691
6 0.1292 0.1476 0.1576 0.1545 0.1341 0.1427 0.1626 0.1777 0.1824 0.1656
10 0.1333 0.1517 0.1653 0.1646 0.1451 0.1221 0.1402 0.1593 0.1662 0.1515
20 0.1236 0.1428 0.1594 0.1623 0.1443 0.0928 0.1109 0.1287 0.1360 0.1269b

Table 6. Comparing the evolved ODDAM with existing DDAMs

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Expon.

4 0.1418 0.1473bc 0.1404 0.1208 0.1010 0.2105 0.2114 0.1995 0.1640 0.1278
5 0.1570 0.1604 0.1514 0.1271bc 0.1034 0.2175 0.2145 0.1993 0.1620 0.1278
6 0.1672 0.1705 0.1627 0.1378 0.1149 0.2192 0.2161 0.1992 0.1607 0.1277b

10 0.1880 0.1886 0.1781 0.1481 0.1247 0.2053 0.1995 0.1832 0.1481b 0.1203b

20 0.1935 0.1941 0.1827 0.1528 0.1340 0.1695 0.1670 0.1558b 0.1294b 0.1108b

Erlang-2

4 0.1315 0.1383 0.1361 0.1178 0.0946 0.1914 0.1980 0.1929 0.1657 0.1323
5 0.1458 0.1508 0.1484 0.1293 0.1054 0.1947 0.1992 0.1925 0.1634 0.1331
6 0.1537 0.1607 0.1564 0.1361 0.1130 0.1943 0.1982 0.1906 0.1630 0.1343b

10 0.1730 0.1773 0.1705 0.1447 0.1186 0.1809 0.1831 0.1755 0.1493 0.1227b

20 0.1745 0.1793 0.1744 0.1518 0.1325 0.1483 0.1532 0.1498 0.1310b 0.1123b

Uniform

4 0.0905 0.1109 0.1261 0.1306 0.1166 0.1278 0.1527 0.1715 0.1771 0.1620
5 0.1002 0.1220 0.1374 0.1395 0.1245 0.1316 0.1550 0.1725 0.1760 0.1606
6 0.1078 0.1293 0.1448 0.1464 0.1292 0.1306 0.1530 0.1703 0.1734 0.1573
10 0.1177 0.1392 0.1559 0.1569 0.1400 0.1199 0.1402 0.1571 0.1613 0.1474
20 0.1159 0.1375 0.1554 0.1596 0.1430 0.0957 0.1133 0.1295 0.1370 0.1280b

Table 7 shows the detailed results obtained by evolved and existing DDAMs
for a particular scenario. Mean and standard deviation of each performance
measure are shown in this table to provide a general evaluation of each DDAM.
The MAPE, MAE and STDL of the evolved DDAMs are better (smaller) than those
obtained by the existing DDAM. This indicates that the evolved DDAMs pro-
vide better delivery accuracy and delivery reliability than existing DDAMs. It
is also interesting that the MPEs of evolved DDAMs are positive while those of
the existing DDAMs are negative. This means that the existing DDAMs tend
to overestimate the job flowtimes while the evolved DDAMs tend to underesti-
mate the job flowtimes but the estimations made by evolved DDAMs are better
because their MPEs are closer to zero compared to those of existing DDAMs.
Because the existing DDAMs overestimate flowtimes, %T of those DDAMs are
smaller than those of evolved DDAMs. However, with the current emphasis on
the just-in-time (JIT) [6] production concept where both earliness and tardiness

130 S. Nguyen et al.

Table 7. Performance of DDAMs (utilisation = 80%, full jobs, 4 machines, processing
times follow Exponential distribution)

DDAM MAPE MAE MPE STDL %T MF

pADDAM 0.211 ± 0.006 4.031 ± 0.313 0.005 ± 0.003 5.377± 0.452 53.296± 0.735 20.254± 2.137
pODDAM 0.199 ± 0.005 3.924 ± 0.312 0.048 ± 0.004 5.154± 0.448 59.045± 0.725 20.254± 2.137
DTWK 0.411 ± 0.008 8.417 ± 1.024−0.006± 0.018 12.232± 1.826 57.093± 1.392 20.254± 2.137
DPPW 0.259 ± 0.007 4.750 ± 0.380−0.033± 0.013 6.251± 0.526 50.074± 1.987 20.254± 2.137
ADRES 0.455 ± 0.026 6.710 ± 0.360−0.363± 0.031 7.343± 0.580 26.175± 1.456 20.254± 2.137

are undesireable and meeting the target job due date would be of significance for
the practice of JIT philosophy, smaller MAPE and STDL would be more attractive
than smaller %T.

4.2 GP-ADDAM vs. GP-ODDAM

Table 8 shows the p-values of t-tests of the average MAPESk
p∗ (from 30 simulation

replications) in the testing scenarios between GP-ADDAM and GP-ODDAM.
In this table, the highlighted values indicate that the GP-ADDAM is not sig-
nificantly different from GP-ODDAM and other values show that GP-ODDAM
is significantly better than GP-ADDAM (with p-value greater than 0.05). The
results show that GP-ODDAM is significantly better than GP-ADDAM in most
simulation scenarios, especially in the case where the missing setting for the dis-
tribution of number of operations is used. In the case that the full setting for the
distribution of number of operations is used, GP-ODDAM is also significantly
better than GP-ADDAM in most cases except for the scenarios with a high level
of utilisation (95%) and large numbers of machines. These results suggest that
the aggregate information of jobs used in ADDAMs is quite sufficient for esti-
mating the flowtime of jobs when the shop is at a high congestion level and has
a large number of machines. Also, ODDAMs may have difficulty in estimating
the operation flowtimes of later operations of jobs with a large number of opera-
tions. This observation, and that observed in section 4.1 for DPPW, indicates the
importance of aggregate information for flowtime estimation in the cases of high
utilisation levels, less diverse jobs and large numbers of machines. It suggests
that systematic incorporation of information between ADDAM and ODDAM
could enhance the accuracy of the flowtime estimation.

4.3 Typical Examples of Evolved DDAMs

In this section, we further examine the evolved DDAMs to explore useful patterns
for the development of more effective DDAMs. The best evolved ADDAM and
ODDAM in a set of evolved DDAMs obtained from independent GP runs are
shown in Fig. 2. Both evolved DDAMs include the total processing times of jobs
in queues and the processing time of the new job (QWL+ OT for ODDAM and
TQWL+ TOT for ADDAM). This term is actually a good estimate of flowtime for
a job with a small number of operations (for ADDAM) or for the first operation
of a new job (for ODDAM). Other common terms used in these two rules are

Evolving Reusable Operation-Based Due-Date Assignment Models 131

Table 8. GP-ADDAM vs. GP-ODDAM (p-values from t-tests)

Setting
missing full

%60 %70 %80 %90 %95 %60 %70 %80 %90 %95

Exponential

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0293
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0054 0.0649
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0133 0.1193
10 0.0000 0.0000 0.0000 0.0000 0.0103 0.0082 0.0372 0.0483 0.0938 0.6603
20 0.0015 0.0020 0.0027 0.0774 0.3551 0.5121 0.5499 0.3576 0.4581 0.6168

Erlang-2

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0027
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0035
10 0.0000 0.0000 0.0000 0.0000 0.0016 0.0003 0.0049 0.0167 0.0150 0.0203
20 0.0046 0.0077 0.0062 0.0137 0.5195 0.3497 0.4543 0.4203 0.1516 0.4618

Uniform

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0003 0.9032 0.0120 0.0000 0.0004 0.0025
20 0.1356 0.0114 0.0169 0.0471 0.1304 0.1054 0.6348 0.4269 0.5364 0.2944

(If(−(−N(+TQWL(−TQWL(/(+(+TQWL(+TOT TLOT))(+(/TQWL SAR)(−TRWL(∗TAPR SAR))))(/TQWL SAR)))))(+TLOT(∗TQWL TSAPR)))

(+TQWL(+TOT TLOT))

(If(−(−TQWL(/(+(+TOT TQWL)(+(/0.84095263(+(−TRWL(∗TAPR SAR))(+TOT TLOT)))(−TRWL(∗TAPR SAR))))TAPR))

(−N(+TQWL(−TQWL(/(+(+TOT TQWL)(+(/0.84095263(+(−TRWL(∗TAPR SAR))(+TOT TLOT)))(−TRWL(∗TAPR SAR))))TAPR)))))

(+TQWL TOT) (+(−(−(−TQWL ASOTR)(/TLOT(+TLOT TAPR)))ASOTR)(+TOT TLOT))))

(a) pADDAM

(If(+(−(+(−(+(−(/LOT LOT)(+QWL LOT))SAPR)PEF)SAPR)PEF)(+OT(+QWL LOT)))

(If(+(−(−LOT PEF)PEF)LOT) (+OT(+QWL LOT)) (+QWL OT))

(− (If(+(−(/(−(+(−(−RWL QWL)(+QWL LOT))SAPR)(+QWL LOT))LOT)(+QWL LOT))SAPR)

(+OT(+(+OTR QWL)LOT)) (−(+(+LOT QWL)OT) (/LOT LOT))) OTR))

(b) pODDAM

Fig. 2. Best evolved DDAMs

the leftover time of jobs in process (LOT and TLOT) and percentage of jobs in
queues that require less processing time than the processing time of the new job
(OTR and TOTR). The main difference between these two evolved DDAMs is the
use of conditional terms to decide which extra terms should be included in the
estimation. For ODDAM, PEF, QWL and LOT are used in the conditional term of
function If. This DDAM shows that PEF is an important term to provide better
flowtime estimations. It is noted that the conditional terms in ADDAM are
more complex than that in ODDAM. The detailed analysis of these conditions
is beyond the scope of this study but would be very useful for future research.

5 Conclusions

In this paper, two proposed GP methods are developed for evolving due-date
assignment models. The experimental results show that the evolved DDAMs can
outperform the existing dynamic DDAMs with MAPE as the performance measure.
Comparisons using other performance measures also confirm the effectiveness of
the evolved DDAMs. From the performance of the evolved DDAMs on a num-
ber of simulation scenarios, it can also be concluded that the evolved DDAMs

132 S. Nguyen et al.

have good reusability since they are able to make good job flowtime estimates for
unseen scenarios with different processing time distributions, utilisation, job set-
tings and numbers of machines. When comparing the two proposed GP methods,
it has been shown that GP-ODDAM is significantly better than GP-ADDAM
in most testing scenarios. Typical examples of the evolved DDAMs show that
these DDAMs are partially understandable. In future work, a detailed analysis
of these evolved rules will be performed to show how they solve DDA problems.
In addition, we would like to investigate the use of the proposed GP methods for
automatic design of DDAMs for job shops employing other dispatching rules.

References

1. Ahmed, I., Fisher, W.W.: Due date assignment, job order release, and sequencing
interaction in job shop scheduling. Decision Sciences 23(3), 633–647 (1992)

2. Baykasoglu, A., Gocken, M., Unutmaz, Z.D.: New approaches to due date assign-
ment in job shops. European Journal of Operational Research 187, 31–45 (2008)

3. Chang, F.-C.R.: A study of due-date assignment rules with constrained tightness
in a dynamic job shop. Computers & Industrial Engineering 31, 205–208 (1996)

4. Cheng, T.C.E., Gupta, M.C.: Survey of scheduling research involving due date
determination decisions. European Journal of Operational Research 38(2), 156–
166 (1989)

5. Cheng, T.C.E., Jiang, J.: Job shop scheduling for missed due-date performance.
Computers & Industrial Engineering 34, 297–307 (1998)

6. Cheng, T.C.E., Podolsky, S.: Just-in-Time Manufacturing: an Introduction. Chap-
man and Hall, London (1993)

7. Fry, T.D., Philipoom, P.R., Markland, R.E.: Due date assignment in a multistage
job shop. IIE Transactions 21(2), 153–161 (1989)

8. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: GECCO
2010: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, pp. 257–264. ACM, New York (2010)

9. Joseph, O.A., Sridharan, R.: Analysis of dynamic due-date assignment models in
a flexible manufacturing system. Journal of Manufacturing Systems 30(1), 28–40
(2011)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

11. Land, M.J.: Workload Control in Job Shops, Grasping the Tap. Ph.D. thesis, Uni-
versity of Groningen, The Netherlands (2004)

12. Luke, S.: Essentials of Metaheuristics. Lulu (2009)
13. Ozturk, A., Kayaligil, S., Ozdemirel, N.E.: Manufacturing lead time estimation

using data mining. European Journal of Operational Research 173(2), 683–700
(2006)

14. Patil, R.J.: Using ensemble and metaheuristics learning principles with artificial
neural networks to improve due date prediction performance. International Journal
of Production Research 46(21), 6009–6027 (2008)

15. Philipoom, P.R., Rees, L.P., Wiegmann, L.: Using neural networks to determine
internally-set due-date assignments for shop scheduling. Decision Sciences 25(5-6),
825–851 (1994)

Evolving Reusable Operation-Based Due-Date Assignment Models 133

16. Ragatz, G.L., Mabert, V.A.: A simulation analysis of due date assignment rules.
Journal of Operations Management 5(1), 27–39 (1984)

17. Ramasesh, R.: Dynamic job shop scheduling: A survey of simulation research.
Omega 18(1), 43–57 (1990)

18. Sabuncuoglu, I., Comlekci, A.: Operation-based flowtime estimation in a dynamic
job shop. Omega 30(6), 423–442 (2002)

19. Sha, D.Y., Storch, R.L., Liu, C.H.: Development of a regression-based method with
case-based tuning to solve the due date assignment problem. International Journal
of Production Research 45(1), 65–82 (2007)

20. Sha, D.Y., Hsu, S.Y.: Due-date assignment in wafer fabrication using artificial neu-
ral networks. The International Journal of AdvancedManufacturing Technology 23,
768–775 (2004)

21. Sha, D.Y., Liu, C.-H.: Using data mining for due date assignment in a dynamic job
shop environment. The International Journal of Advanced Manufacturing Technol-
ogy 25, 1164–1174 (2005)

22. Veral, E.A.: Computer simulation of due-date setting in multi-machine job shops.
Computers & Industrial Engineering 41, 77–94 (2001)

23. Vig, M.M., Dooley, K.J.: Mixing static and dynamic flowtime estimates for due-
date assignment. Journal of Operations Management 11(1), 67–79 (1993)

Evolving Interpolating Models of Net Ecosystem

CO2 Exchange Using Grammatical Evolution

Miguel Nicolau1, Matthew Saunders2, Michael O’Neill1, Bruce Osborne2,
and Anthony Brabazon1

1 Natural Computing Research & Applications Group
University College Dublin, Dublin, Ireland

{Miguel.Nicolau,M.ONeill,Anthony.Brabazon}@ucd.ie
2 UCD School of Biology and Evironmental Science

University College Dublin, Dublin, Ireland
{Matthew.Saunders,Bruce.Osborne}@ucd.ie

Abstract. Accurate measurements of Net Ecosystem Exchange of CO2

between atmosphere and biosphere are required in order to estimate an-
nual carbon budgets. These are typically obtained with Eddy Covari-
ance techniques. Unfortunately, these techniques are often both noisy
and incomplete, due to data loss through equipment failure and rou-
tine maintenance, and require gap-filling techniques in order to provide
accurate annual budgets. In this study, a grammar-based version of Ge-
netic Programming is employed to generate interpolating models for flux
data. The evolved models are robust, and their symbolic nature provides
further understanding of the environmental variables involved.

Keywords: Grammatical evolution, Real-world applications, Symbolic
regression.

1 Introduction

Eddy Covariance (EC) techniques are utilised globally to measure Net Ecosystem
Exchange (NEE), defined as the net flux of Carbon Dioxide (CO2) between the
atmosphere and the biosphere [9]. NEE represents the balance between photo-
synthetic carbon uptake and respiratory carbon losses, and is typically measured
over 30 minute intervals, which are then summed to give an annual carbon bud-
get. Both short-term information and annual sums are of particular interest to
scientists, land managers and policy makers. They allow for a comparison of
ecosystem carbon budgets across various land use classes, provide a better un-
derstanding of the physiological driving processes, and facilitate an assessment
of both inter and intra-annual climatic variability [4].

In order to derive the most accurate annual carbon budget, a complete data set
is required; however, average data capture using the Eddy Covariance technique
is often as low as 65% [4], due to data loss through equipment failure and routine
maintenance. Furthermore, a diurnal bias exists in EC data rejection, due to the
limitations of the EC technique at night, when low turbulence conditions occur
[1,6,10].

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 134–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using GE 135

To augment such fragmented data sets, gap-filling procedures are required
to provide a more robust annual dataset [4]. Several gap-filling methodologies
are currently employed by the global EC flux community, including linear in-
terpolation, look-up tables, non-linear (semi-empirical) models, artificial neural
networks, and multiple imputation techniques [18,9,4,1]. The utilisation of a
particular gap-filling methodology is influenced by the experimental site-specific
conditions, data availability and the particular end use of the EC data [4], how-
ever a particular effort has recently been made within the EC flux community
to standardise gap-filling methodologies in order to allow the inter-comparison
of different ecosystems, bio-climatic zones and long-term data sets [9]. There is
however, a real need to continuously evaluate the accuracy of gap-filling models,
which can be difficult to constrain, due to the multiple factors that influence EC
measurements. For example, the presence of hysteresis loops in measured day-
time NEE data can reduce the ability of semi-empirical light response functions
to accurately model daytime NEE [20].

In the work presented here, a grammar-based Genetic Programming
system was used to generate interpolating models for NEE data. The results
obtained are comparable to the best in the literature [18], and the evolved
symbolic models are fine-tunable, and also provide an insight into the effect
of different environmental variables. These results highlight once again the real
world applicability of evolutionary computation, and genetic programming in
general.

The next section introduces the evolutionary algorithm used. Section 3 de-
tails the experimental setup, and the results obtained are analysed in Section 4.
Finally, Section 5 draws some conclusions and future work directions.

2 Evolutionary Approach

Symbolic Regression is arguably one of the most successful applications of Ge-
netic Programming [12] (GP). The tree structure of GP individuals lends itself to
good functional representation and manipulation of sub-expressions, providing
solutions that are often very precise, analysable, hand-tunable, and potentially
provable.

For the purpose of evolving an EC flux gap-filling model, Grammatical Evo-
lution (GE) [17,22] was used. GE is a grammar-based form of GP [14], which
specifies the syntax of solutions in a grammar; this grammar is used to map
genotypically evolved strings to syntactically correct phenotypic solutions.

GE performs on par with GP for symbolic regression purposes [17], while
its grammar allows for extra control of the syntax of evolved programs, both in
terms of biases [16,7] and data-structures used. This allows GE to be applied to a
variety of domains, such as Financial Modelling [3], horse gait optimisation [15],
wall shear stress analysis in grafted arteries [2], and optimisation of controllers
for video-games [19], to name a few.

136 M. Nicolau et al.

<expr> ::= + <expr> <expr>

| * <expr> <expr>

| x

| <digit>.<digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 1. Example grammar for generation of prefix mathematical expressions

2.1 Mapping Process

To illustrate the mapping process employed in GE, consider the grammar shown
in Fig. 1, composed of two non-terminal symbols (<expr> and <digit>) and
14 terminal symbols (+, *, x, . and 0...9). Given an integer (genotype) string,
such as (1, 7, 4, 8, 6, 5, 9), a program (phenotype) can be constructed,
which respects the syntax specified in the grammar.

This works by using each integer to choose productions from the grammar,
mapping a given start symbol (typically, the first non-terminal symbol appearing
in the grammar) to a sequence of terminal symbols. In this example, the first
integer chooses one of the four productions of the start symbol <expr>, through
the formula 1%4 = 1, i.e. the second production is chosen (as the count starts
from 0), so the mapping string becomes * <expr> <expr>.

The following integer is then used with the leftmost unmapped symbol in the
mapping string, so through the formula 7%4 = 3 the symbol <expr> is replaced
by <digit>.<digit>, so the string becomes * <digit>.<digit> <expr>.

The mapping process continues in this fashion, so in the next step the map-
ping string becomes * 4.<digit> <expr> through the formula 4%10 = 4, and
through 8%10 = 8 it becomes * 4.8 <expr>. Finally, the remaining non-terminal
symbol is mapped with 6%4 = 2, and the final expression becomes * 4.8 x,
which can then be evaluated.

The evolved strings may not have enough values to fully map syntactic valid
programs; several options are available to address this issue, such as reusing the
same integer string (in a process called wrapping [17]), assigning the individual
the worst possible fitness, or replacing it with a legal individual. In this study,
an unmapped individual is replaced by its originating parent.

3 Experimental Setup

3.1 Quality of Data and Input Variables

The calculation of NEE represents the balance between photosynthetic carbon
assimilation or gross primary productivity (GPP) and net carbon release through
ecosystem respiration (Reco), which can be further sub-divided into autotrophic
(Ra) and heterotrophic (Rhet) components. Daytime NEE data represent the
balance between GPP and soil derived Rhet, while night time NEE data (Reco)

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using GE 137

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Measured

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Measured

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Measured

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Measured

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Measured

Fig. 2. Observed NEE flux data for the period 2002-2006. Negative NEE values indicate
diurnal flux exchanges, whereas positive NEE flux typically occurs at night time.

represent the combined Ra and Rhet CO2 efflux from the plant and soil systems
combined. The measurement of NEE in this study was made using the closed
path EC technique, where fluxes of CO2 were calculated over 30 minute intervals
and the data post-processed and assigned a quality control standard according
to the CarboEurope-IP criteria.

Daytime NEE tends to be controlled by both photosynthetic active radiation
and air temperature, while Reco is largely a temperature-dependant process.
However, even the high quality diurnal flux data show considerable “noise” due
to the multiple factors that influence NEE. Figure 2 shows the recorded NEE
data for the period 2002-2006. As the annual carbon budget is the typically used
unit, and due to annual variations (forest growth and management), each year
is treated independently.

As the data is seasonal by nature, the time of day and day of year are used
as input variables for model evolution. In order to reduce the linear cumulative
numerical weight of these variables (0 . . . 23.5 for time, and 0 . . . 365 for day),

138 M. Nicolau et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20

F
tim

e

Time

Fuzzy Time Transformation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350

F
da

y

Time

Fuzzy Day Transformation

Fig. 3. Fuzzy time and day data transformations used for model evolution

Table 1. Experimental configurations

Day & Night Day only Night only
B1 B2 B3 B4 D1 D2 D3 D4 N1 N2 N3 N4

Fday, Ftime, TEMP x x x x x x x x x x x x
PAR x x x x x x x x
sin, cos x x x x x x
TEMPmin, TEMPmax, TEMPavg x x x x x x
PARmin, PARmax, PARavg x x x x

they were transformed into two fuzzy sets, Ftime and Fday, as seen in previous
studies [18]; Fig. 3 shows the fuzzy transformations employed.

Additional meteorological measurements, traditionally used to describe eco-
system carbon flux and model NEE, included air temperature (TEMP), Photo-
synthetic Active Radiation (PAR), Relative Humidity (RH) and Precipitation
(P). Some of these can also exhibit noise in their measurement, and full year-
round data is sometimes not available; given the quality of the available data,
TEMP and PAR were chosen as meteorological input variables.

Table 1 shows the configurations tested (B1. . .N4). As diurnal and noctur-
nal NEE flux dynamics are quite different, models were evolved for either a
full dataset, or obtained by combination of separately evolved diurnal and noc-
turnal models; daytime and night time NEE data were sub-divided based on
incident PAR, with data assigned to the daytime data class when PAR >
10 μ mol m−2s−1 [13]. Also, given the somewhat regular nature of the data,
trigonometric functions were tested in half of the configurations. Finally, some
configurations were tested where historical data was used in the function set
(PARmin, PARmax and PARavg as the minimum, maximum and average PAR
data of the last 24 hours, and likewise for TEMP).

3.2 Evolutionary Setup

Grammar design. The grammars used correspond to the function sets detailed
in Tab. 1. They are balanced grammars [7], which helps to control the size of

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using GE 139

<e> ::= + <e> <e> | - <e> <e> | * <e> <e> | / <e> <e>

| + <e> <e> | - <e> <e> | * <e> <e> | / <e> <e>

| + <e> <e> | - <e> <e> | * <e> <e> | / <e> <e>

| + <e> <e> | - <e> <e> | * <e> <e> | / <e> <e>

| + <e> <e> | - <e> <e> | * <e> <e> | / <e> <e>

| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>

| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>

| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>

| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 4. Grammar used for setting B1

resulting individuals and thus delaying the onset of bloat; to do so, several equal
productions were inserted, to maintain the biases of transformations [16]. Finally,
the number of non-terminals was reduced, as this has been shown to help improve
the performance of GE [16]. Fig. 4 shows the grammar used for setting B1.

To evolve the integer strings used with GE, a variable-length genetic algorithm
was used [8]. The first generation was created using a ramped version of Sensible
Initialisation [21], resulting in a better spread of initial solutions (albeit not
perfect [7]). A “fair” tournament selection was used, where every individual
participates at least in one tournament event. Finally, genetic operators were
applied only to mapping regions of chromosomes.

Table 2 details the evolutionary parameters used. Note that, since the models
evolved for day time and night time are later combined together, the computation
effort of their runs doubles that of the runs where a single model is evolved;
taking this into account, the population size of the latter (B1. . . B4) is doubled,
resulting in a comparable computation effort per generation.

Table 2. Evolutionary Setup

Population Size 500/1000
Generations 50
Derivation-tree Max Depth (for initialisation) 5
Tail Ratio (for initialisation) 50%
Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Crossover Ratio 50%
Average Mutation Events per Individual 1

3.3 Measuring Performance

Evolved models were compared to available NEE data, and the mean squared
error between predictions and available data was used as a performance measure.
The available NEE data was divided into training and test sets, so as to ascertain

140 M. Nicolau et al.

Table 3. Mean squared error (and standard deviation) on test data

B1 B2 D1 + N1 D1 + N2 N2 + D1 D2 + N2

2002 27.58 (1.49) 26.70 (7.62) 25.32 (0.76) 25.44 (0.83) 27.28 (2.95) 27.40 (3.01)
2003 22.68 (1.50) 25.48 (1.86) 21.15 (1.14) 21.24 (1.08) 21.64 (0.99) 21.78 (0.98)
2004 16.51 (4.74) 19.43 (1.30) 17.54 (1.59) 17.56 (1.55) 19.23 (2.19) 19.00 (1.93)
2005 12.72 (5.23) 22.13 (14.39) 7.13 (2.10) 7.25 (2.09) 8.65 (2.66) 8.66 (2.76)
2006 33.76 (49.94) 25.23 (5.99) 20.15 (2.84) 20.19 (2.78) 24.85 (3.80) 24.77 (3.91)

how well the evolved models generalise to unseen data. In this study, for every
four available data points, the first three were used for training, with the fourth
used for testing. 1

4 Results and Analysis

Results using trigonometric functions were on par or worse than the equivalent
setups without these functions, and generally produced more complex expres-
sions, so in accordance with the Occam’s Razor principle, they were discarded
(they are not reported here). Table 3 reports the mean squared error on test data,
for all other configurations, averaged over 50 runs. Average minimum error at
end of evolution and standard deviation are reported.

The results obtained match the relative quality of different annual data, as
could be observed in Fig. 2 (steady improvement of data quality over the years,
apart from 2006). Evolving separate daytime and night time models generally
provides better performing models. The use of historical data seems to make no
difference to the results, but the resulting night time models are more compact
on average and were thus preferred. Also note that combined models can be
further enhanced, as models obtained in different runs can be matched.

Figure 5 plots the measured NEE flux data for 2005, and the best single (B1)
and combined (D1 + N2) models. The difference in performance, particularly for
positive NEE values (night time data) is substantial. Also note the occurrence
of asymptotes when evolving a single model (Fig. 5 top), suggesting that the
use of interval arithmetic [11] might be required to remove these. Figure 6 shows
the combined model prediction for April 2005, highlighting both the matching
of measured EC and the interpolation of regions with no data recorded.

Figure 7 plots the average training and testing performance over time, for
the (D1 + N2) configuration. It can be seen that the model does not overfit the
data. Comparison with runs using all the available data for training achieved
similar results, suggesting that the use of a 2-set methodology neither hinders nor
improves the performance of the obtained models, confirming previous results
reported in GP [5] and GE [23].

1 A more typical division, such as an initial large proportion of data for training and
the remaining for testing, is not feasible, given the seasonality of the data, and the
uniqueness nature of each year (different models are evolved for different years).

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using GE 141

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Predicted
Measured

-30

-20

-10

 0

 10

 20

 30

 50 100 150 200 250 300 350

N
E

E
 m

y
m

ol
 C

O
2

m
-2

s-1

Day

2005 NEE Flux Data

Predicted
Measured

Fig. 5. Eddy value predictions of best full data predictor (top) and combined predic-
tions of the best day time and night time models

The best (D1 + N2) model is shown in Eq. 1. The model has not been simpli-
fied; it shows a remarkably compact solution, resulting from the bloat delaying
techniques described above, and the relatively short runs (50 generations). Note
that night time data only makes use of temperature, showing that the seasonality
of this variable is sufficient to match the seasonality of the Eddy values. Similarly,
the daytime equation makes no use of Ftime, showing that daily regularity can
be modelled by PAR and TEMP . Finally, Fig. 8 shows the correlation between
test data and model prediction for this model, including a 1:1 line. The model ex-
hibits a good correlation with measured data, apart from some instances around
values close to zero (a mixture of both noisy data and incorrect predictions).

142 M. Nicolau et al.

eddy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

93.7

25.7 + TEMPmin
+ TEMP

99.9

23.6 + TEMPavg

if PAR < 10.0

13.1 + PAR
TEMP + PAR

Fday − (TEMP + 11.7)
− 21.0

otherwise

(1)

-20

-15

-10

-5

 0

 5

 10

 15

 90 95 100 105 110 115

F
tim

e

Time

Fuzzy Time Transformation

Predicted
Measured

Fig. 6. Measured Eddy value vs. best model prediction, for the month of April 2005

Fig. 7. Training and testing performance for the mean best individual per generation,
for (D1 + N2) configuration (averaged across 50 runs)

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using GE 143

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30

0.0

0.0

M
od

el
 P

re
di

ct
io

n

NEE my mol CO2 m-2s-1

2005 NEE Flux Data
Test Data Correlation for best D1 + N2 Model

Fig. 8. Correlation between (unseen) test data and model prediction

5 Conclusions

GP in its many flavours has been applied to a multitude of symbolic regres-
sion problems over the years, with outstanding results. Yet, in most research
fields, standard gap-filling methods such as look-up tables and linear interpola-
tion are still applied as standard. This work presents a collaboration between
evolutionary computation practitioners and environmental biologists, in an ef-
fort to further highlight the applicability of GP to generate gap-filling models
for measured environmental data.

Due to the unique nature of data from different forest sites, proper comparison
with other methods is hard to achieve2; however, the results obtained seem to
be on par with the best in the literature [18]. Not only that, but the use of
GP has certain advantages. By providing symbolic models, stating the required
input variables, decisions can be made about the required annual measurements,
affecting both budget and work force management.

There are plenty of future work directions. The evolved models can have a
direct impact on forest management and even policy making, and thus contin-
ued efforts to improve their accuracy are ongoing. Another exciting future work
direction involves identifying a maximum size of measured data gaps; this allows
expensive equipment to be used and rotated across different sites, thus bringing
the overall data-gathering costs down. Efforts are ongoing to achieve this.

2 The data presented here has only been analysed with the current method so far.

144 M. Nicolau et al.

Acknowledgements. The authors would like to acknowledge Alexandros
Agapitos, for sharing his insightful knowledge of GP and associated techniques.
This research is based upon works supported by Science Foundation Ireland
under Grant No. 08/IN.1/I1868.

References

1. Moffat, A., et al.: Comprehensive comparison of gap-filling techniques for eddy
covariance net carbon fluxes. Agricultural and Forest Meteorology 147, 209–232
(2007)

2. Azad, R.M.A., Ansari, A.R., Ryan, C., Walsh, M., McGloughlin, T.: An evolu-
tionary approach to wall shear stress prediction in a grafted artery. Applied Soft
Computing 4(2), 139–148 (2004)

3. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Mod-
elling. Springer, Heidelberg (2006)

4. Falge, E., et al.: Gap filling strategies for defensible annual sums of net ecosystem
exchange. Agricultural and Forest Meteorology 107, 43–69 (2001)

5. Gagné, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic Programming,
Validation Sets, and Parsimony Pressure. In: Collet, P., Tomassini, M., Ebner,
M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120.
Springer, Heidelberg (2006)

6. Goulden, M., Munger, W., Fan, S.M., Daube, B., Wofsy, S.: Measurements of
carbon sequestration by long-term eddy covariance: methods and critical evaluation
of accuracy. Global Change Biology 2, 169–182 (1996)

7. Harper, R.: GE, explosive grammars and the lasting legacy of bad initialisation.
In: Proceedings of IEEE Congress on Evolutionary Computation, CEC 2010, July
18-23, Barcelona, Spain, pp. 2602–2609. IEEE Press (2010)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

9. Hui, D., Wan, S., Su, B., Katul, G., Monson, R., Luo, Y.: Gap-filling missing
data in eddy covariance measurements using multiple imputation (mi) for annual
estimates. Agricultural and Forest Meteorology 121, 93–111 (2004)

10. Humphreys, E., Black, T.A., Morgenstern, K., Cai, T., Drewitt, G., Nesic, Z.,
Trofymow, J.: Carbon dioxide fluxes in coastal douglas-fir stands at different stages
of development after clearcut harvesting. Agricultural and Forest Meteorology 140,
6–22 (2006)

11. Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear
Scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E.
(eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

13. Reichstein, M., et al.: On the separation of net ecosystem exchange into assimi-
lation and ecosystem respiration: review and improved algorithm. Global Change
Biology 11, 1424–1439 (2005)

14. McKay, R.I., Nguyen, X.H., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-
based genetic programming - a survey. Genetic Programming and Evolvable Ma-
chines 11(3-4), 365–396 (2010)

Evolving Interpolating Models of Net Ecosystem CO2 Exchange Using GE 145

15. Murphy, J.E., O’Neill, M., Carr, H.: Exploring Grammatical Evolution for Horse
Gait Optimisation. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I.,
Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 183–194. Springer, Heidelberg
(2009)

16. Nicolau, M.: Automatic grammar complexity reduction in grammatical evolu-
tion. In: Poli, R., et al. (eds.) Genetic and Evolutionary Computation Conference
(GECCO) Workshops. AAAI (2004)

17. O’Neill, M., Ryan, C.: Grammatical Evolution - Evolutionary Automatic Program-
ming in an Arbitrary Language. Genetic Programming, vol. 4. Kluwer Academic
(2003)

18. Papale, D., Valentini, R.: A new assessment of european forests carbon exchanges
by eddy fluxes and artificial neural network spatialization. Global Change Biol-
ogy 9, 525–535 (2003)

19. Perez, D., Nicolau, M., O’Neill, M., Brabazon, A., Yannakakis, G.N.: Evolving
Behaviour Trees for the Mario AI Competition Using Grammatical Evolution. In:
Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I.,
Merelo, J.J., Neri, F., Pruess, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.)
EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 123–132. Springer, Heidelberg
(2011)

20. Pingintha, N., Leclerc, M., Beasley, J., Durden, D., Zhang, G., Senthong, C., Row-
land, D.: Hysteresis response of daytime net ecosystem exchange during drought.
Biogeosciences 7, 1159–1170 (2010)

21. Ryan, C., Azad, A.: Sensible initialisation in grammatical evolution. In: Cantú-
Paz, E., et al. (eds.) Genetic and Evolutionary Computation Conference (GECCO)
Workshops. AAAI (2003)

22. Ryan, C., Collins, J., O’Neill, M.: Grammatical Evolution: Evolving Programs for
an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)

23. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: A Preliminary Investigation
of Overfitting in Evolutionary Driven Model Induction: Implications for Financial
Modelling. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E.,
Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part
II. LNCS, vol. 6625, pp. 120–130. Springer, Heidelberg (2011)

Multi-Objective Ant Programming

for Mining Classification Rules

Juan Luis Olmo, José Raúl Romero, and Sebastián Ventura

Dept. of Computer Science and Numerical Analysis,
University of Cordoba, Rabanales Campus, Albert Einstein Building,

14071 Cordoba, Spain
{jlolmo,jrromero,sventura}@uco.es

Abstract. Ant programming (AP) is a kind of automatic programming
that generates computer programs by using the ant colony optimization
metaheuristic. It has recently demonstrated a good generalization abil-
ity when extracting classification rules. We extend the investigation on
the application of AP to classification, developing an algorithm that ad-
dresses rules’ evaluation using a novel multi-objective approach specially
devised for the classification task. The algorithm proposed also incor-
porates an evolutionary computing niching procedure to increment the
diversity of the population of programs found so far. Results obtained
by this algorithm are compared with other three genetic programming
algorithms and other industry standard algorithms from different ar-
eas, proving that multi-objective AP is a good technique at tackling
classification problems.

Keywords: Data mining, Classification, Ant programming, Genetic
programming, Multi-objective optimization.

1 Introduction

Genetic programming (GP) is an evolutionary technique that offers a great po-
tential for inducing classifiers. It is a very flexible metaheuristic that can be
adapted to adhere to the particular needs of a specific problem, as it can use
different representations, such as decision trees or classification rules.

Several GP proposals have been presented addressing the classification task.
For instance, a constrained syntax algorithm was presented by Bojarczuk et
al. [1], where one rule in disjunctive form predicting each class is induced, so
that individuals represent rule sets. Each individual looks for optimizing a scalar
aggregation of three objectives: specificity, sensitivity and complexity.

The system presented by Tan et al. [2] tackles multiclass classification per-
forming a different running for each of the classes to be distinguished. Each
individual represents a rule, but a niching mechanism and elitism are employed
in such a way that a set of rules, all of them predicting the same class, are
obtained at the end of the evolutionary process. Hence, the final classifier can
have several rules for each of the classes. An accuracy-based fitness function is
employed.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 146–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-Objective Ant Programming for Mining Classification Rules 147

The solution construction in GP is based on the combination or modification
of other solutions, by using crossover and mutator operators. Nevertheless, this
conduct presents several drawbacks, concerning the lack of information about
the distribution of the search space, its difficulty when adapting to a changing
environment, and the genotype-phenotype mapping which implies that a small
change may provoke a high impact on the phenotype [3].

On the other hand, ant colony optimization (ACO) [4] is a constructive
method that builds a solution by following a sequence of transitions guided by
certain information (heuristic and pheromones), and its application to the auto-
matic construction of programs, a.k.a. ant programming (AP), does not present
the aforementioned problems. A short review of AP and its applications can be
found in [5], where an AP algorithm for extracting rule-based classifiers is also
presented.

Multi-objective optimization appears as a natural way to assess the quality
of rules mined in classification problems. It allows to optimize simultaneously
several measures that sometimes are conflicting, which means that the increase
in the values for one may be detrimental for the other. For example, accuracy and
interpretability are conflicting goals, because simpler classifiers tend to obtain
lower results in terms of accuracy, and viceversa.

In this paper, we focus on extending the ideas presented in [5], exploring the
use of multi-objective optimization to compute the fitness of individuals gener-
ated. The contribution of this work is not only allocated to the AP field, but to
the classification in general, proposing a new Pareto-based evolutionary strat-
egy that could be adopted by any evolutionary algorithm where each individual
represents a rule. The algorithm developed also employs a niching approach
to select the rules that make up the output classifier, minimizing overlapping
between them. The performance of the proposed algorithm is compared over
several standard classification problems to other nine classification algorithms
from several paradigms, including three GP algorithms and the original mono-
objective AP algorithm proposed for this task. Regarding predictive accuracy,
the developed algorithm outperforms statistically most of the others considered,
and it also reaches a good trade-off between accuracy and comprehensibility.

The paper is structured as follows. Section 2 presents a detailed description of
the AP algorithm proposed. Section 3 explains the experimental set up, listing
the benchmark problems, and describing the configuration used for the algo-
rithms involved and how the experiments are carried out. Section 4 shows and
analyzes the results obtained. Finally, in Section 5 we present the conclusions
and propose some lines for future work.

2 The Multi-Objective Grammar Based Ant
Programming (MOGBAP) Algorithm

2.1 Environment and Individual Encoding

The MOGBAP algorithm has been devised for inducing a classifier from a learn-
ing process over a given training set, the classifier acting as a decision list.

148 J.L. Olmo, J.R. Romero, and S. Ventura

= attr1
value11

<EXP>

AND <EXP> <COND><COND>

= attr1
value12 ... = attrn

valuenm
AND AND <EXP> <COND> <COND>AND <COND> <COND>

AND AND AND <EXP>
<COND> <COND> <COND>

AND AND <COND>
<COND> <COND>

AND
= attr1 value11

<COND>

AND
= attr1 value12

<COND>
...

AND
= attrn valuenm

<COND>

der = 1

der = 2

der = 3

(= attr1 value12)

Fig. 1. Space of states generated by the grammar at a depth of three derivations

MOGBAP employs a context-free grammar, which substitutes the terminal and
function set, restricting the search space and granting that solutions found are
syntactically valid. Hence, the closure property is then guaranteed by the appli-
cation of the production rules from the start symbol of the grammar.

Any ant inspired algorithm requires an environment where ants cooperate
with each other, simulating the stigmergy process that occurs in nature. In
MOGBAP, this environment consists of all the possible expressions or programs
that can be derived from the grammar in a given number of derivations. The
environment adopts the shape of a derivation tree, as depicted in Figure 1. A
program or individual in the population will adopt the shape of a path over the
derivation tree, as shown with the sample shaded path. The last state of a path
is a final state, composed only of terminal symbols. Final states are represented
by double-line states. Although the last state of a path encodes the evaluatable
expression for the antecedent, ants have an internal memory to store the whole
path, fulfilling the properties of an artificial ant. This allow ants to perform an
offline pheromone update.

In MOGBAP, each individual or program represents an ant, and it encodes a
rule. Thus, concerning the individual encoding, it follows the individual = rule
approach [6]. The consequent assigned to a given ant corresponds to the most
frequent class among the training instances covered by its antecedent.

2.2 Heuristic Measures, Transition Rule and Pheromone
Maintenance

MOGBAP uses two complementary heuristic functions that can not be applied
simultaneously, the same used by its precursor, GBAP [5]. The former, named
cardinality probability, is used in intermediate transitions, i.e., those not involv-
ing the selection of attributes of the problem domain. This measure aims to
guide ants to select transition that may lead to a greater number of solutions.
The latter is the widely used information gain, which measures the worth of each
attribute for separating the training examples with respect to their classification

Multi-Objective Ant Programming for Mining Classification Rules 149

target. This complementary heuristic function is applied in case of transitions
that imply the selection of attributes of the problem domain.

Any ant-based algorithm follows a probabilistic stepwise solution construc-
tion method. MOGBAP generates a new individual incrementally by following
a sequence of steps or transitions. The information that biases these transitions
is given by the aforementioned two-fold heuristic function and the strength of
the pheromone trails in each transition, as shown in Equation 1:

P k
ij =

(ηij)
α · (τij)β

Σk∈allowed(ηik)α · (τik)β (1)

which represents the probability that a given ant at the state i will take the
transition to the state j, k being the number of valid subsequent states, α stand-
ing for the heuristic exponent and β for the pheromone’s, η being the value of
the heuristic function, and τ indicating the strength of the pheromone trail.

Notice that a probability value is assigned to each next state available, but the
number of transitions that can be followed is limited by number of derivations
allowed for the grammar. Thus, if moving to a given state does not permit any
solution to the problem to be found in the number of derivations remaining
available at that point, the algorithm will assign a probability of zero to this
state, so it will never be selected.

Two categories are considered for multi-objective ant-based algorithms de-
pending on how they store the pheromone information [7], those using just
one pheromone matrix, or those that use a pheromone matrix per objective.
MOGBAP belongs to the first group, which entails a benefit regarding memory
and computational time requirements.

In contrast to GP, where individuals evolve along generations combining ge-
netic material by means of the crossover, mutation and reproduction operators,
individuals in AP interact in an indirect manner by means of the reinforcement
and evaporation operations over the environment. In MOGBAP, evaporation
takes place over the complete space of states:

τij(t+ 1) = τij(t) · (1− ρ) (2)

where τij represents the amount of pheromone in the transition from state i to
state j, and ρ represents the evaporation rate.

In turn, concerning pheromone reinforcement, only non-dominated ants are
able to retrace their path to update the amount of pheromone in the transitions
followed. For a given individual, all transitions in its path are reinforced equally,
and the value of this reinforcement is based upon the length and the quality of
the solution encoded, represented by the Laplace accuracy [5]:

τij(t+ 1) = τij(t) ·Q · LaplaceAccuracy (3)

where Q is a computed measure that favors comprehensible solutions, computed
as the ratio between the maximum number of derivations in the current gener-
ation and the length of the path followed by the ant (thus shorter solutions will
receive more pheromone).

150 J.L. Olmo, J.R. Romero, and S. Ventura

At the end of each generation, a normalization process takes place, in order
to bind the pheromone level in each transition to the range [τmin, τmax]. In
addition, at the first generation of the algorithm, all transitions in the space of
states are initialized with the maximum pheromone amount allowed.

2.3 Muti-Objective Strategy and Niching Procedure

The quality of the individuals generated in MOGBAP is assessed on the basis of
three conflicting objectives: sensitivity, specificity and comprehensibility. A given
rule anti is said to dominate another rule antj , written anti � antj , if anti is
not worse than antj in two objectives and is better in at least one objective.

Sensitivity and specificity are two measures widely employed in classification
problems, even as a scalar function of them. Sensitivity indicates how well a rule
identifies positive cases. On the contrary, specificity reports the effectiveness of
a rule’s identifying negative cases or those cases that do not belong to the class
studied. If the sensitivity value of a rule is increased, it will predict a greater
number of positive examples, but sometimes at the expense of classifying as
positives some cases that actually belong to the negative class. Both objectives
are to be maximized.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
(4)

Since MOGBAP is a rule-based classification algorithm, it is intended to mine
accurate but also comprehensible rules. Assuming that a rule can have up to a
fixed number of conditions, comprehensibility can be measured as:

Comprehensibility = 1− numConditions

maxConditions
(5)

where numConditions refers to the number of conditions appearing in the rule
encoded by the individual, whereas maxConditions is the maximum number of
conditions that a rule can have [8]. The advantage of using this comprehensibility
metric lies in the fact that its values will be contained in the interval [0,1], and
the closer its value to 1, the more comprehensible the rule will be. Hence, just
as with the objectives of sensitivity and specificity, this objective, too, should be
maximized.

MOGBAP follows a multi-objective strategy that has been specially designed
for the classification task. The idea behind this scheme is to distinguish solutions
in terms of the class they predict, because certain classes are more difficult to
predict than others. Actually, if individuals from different classes are ranked ac-
cording to Pareto dominance, overlapping may occur, as illustrated in Figures 2
and 3, which show the Pareto fronts found after running MOGBAP for the
hepatitis and lymphography data sets, considering the objectives of sensitivity
and specificity.

For instance, for the hepatitis problem, if a classic Pareto approach were em-
ployed, a single front of non-dominated solutions would be found, as shown in
Figure 2(a). Hence, among the individuals represented in this figure, such a

Multi-Objective Ant Programming for Mining Classification Rules 151

(a) Classic approach (b) Proposed strategy

Fig. 2. Comparison between the proposed strategy and a classic approach for the the
two-class data set hepatitis

Pareto front would consist of all the individuals that predict the class ’LIVE’
and just one individual of the class ’DIE’ (the individual which has a specificity
of 1.0). In order for the remaining individuals of the class ’DIE’ to be consid-
ered, it would be necessary to find additional fronts, and they would have less
likelihood of becoming part of the classifier’s decision list. On the other hand,
the multi-objective approach of MOGBAP (see Figure 2(b)) guarantees that all
non-dominated solutions for each available class will be found, so it ensures the
inclusion of rules predicting each class in the final classifier.

Moreover, considering now the lymphography data set as depicted in Figure 3,
the Pareto front found with a classic approach would consist in just one point
with a sensitivity and a specificity of 1.0. In order to contemplate rules predicting
the class ’MALIGN LYMPH’ or ’METASTASES’, it would be necessary to find
more intermediate fronts.

Roughly speaking, the multi-objective approach devised for MOGBAP con-
sists in discovering a separate set of non-dominated solutions for each class in
the data set. To this end, once individuals of the current generation have been
created and evaluated for each objective considered, they are divided into k
groups, k being the number of classes in the training set, according to their con-
sequent. Then, each group of individuals is combined with the solutions kept in
the corresponding Pareto front found in the previous iteration of the algorithm,
to rank them all according to dominance, finding a new Pareto front for each
class. Hence, there will be k Pareto fronts, and only the non-dominated solutions
contained will participate in the pheromone reinforcement.

The final classifier is built from the non-dominated individuals that exist in
the k Pareto fronts once the last generation has finished. A niching procedure
executed over each one of the k fronts is in charge of making up the decision
list from these rules: the individuals of the front are sorted by the Laplace ac-
curacy [9] and then they try to capture as many instances of the training set
as they can. Each ant can capture an instance just in case it covers it and the
instance has not been seized previously by another ant. Finally, only those ants

152 J.L. Olmo, J.R. Romero, and S. Ventura

Fig. 3. Pareto fronts found by MOGBAP for the four-class data set lymphography

whose number of captured instances exceeds the percentage of coverage estab-
lished by the user are added to the list of returned ants, having an adjusted
Laplace accuracy computed as follows:

LaplaceAccuracyadj = LaplaceAccuracy · capturedInstances
idealInstances

(6)

where idealInstances is equal to the number of instances covered by the ant.
The resulting ants of carrying out the niching procedure over each Pareto

front are added to the classifier, sorted by their adjusted Laplace accuracy. A
default rule predicting the majority class in the training set is added at the
bottom of the decision list and the classifier is run over the test set to compute
its predictive accuracy.

3 Experimental Set-Up

An empirical study has been directed to conclude whether multi-objective AP
is a competitive technique at extracting comprehensible and accurate classifiers,
comparing its results with those obtained by other well-known algorithms from
several paradigms. To this end, the experimental study was directed as follows:

– Fifteen real data sets from the UCI [10] machine learning repository were
employed in the experimentation, presenting a broad range of characteristics
regarding dimensionality, type of attributes and number of classes.

– In order to perform a fair comparison, two preprocessing steps were carried
out. Firstly, missing values were replaced with the mode or the arithmetic
mean, assuming categorical and numeric attributes, respectively. Secondly,
since MOGBAP can not cope with continuous variables, a discretization
procedure has to be applied to turn all the continuous attributes into cat-
egorical. The Fayyad and Irani’s [11] algorithm was used for such purpose.
Both steps were performed using WEKA1.

1 The open source data mining workbench WEKA is available at
http://www.cs.waikato.ac.nz/ml/index.html

Multi-Objective Ant Programming for Mining Classification Rules 153

– A stratified 10-fold cross validation procedure was followed to evaluate the
performance of the algorithms. In case of non-deterministic algorithms we
have used 10 different seeds for each partition, so that for each data set we
consider the average values obtained over 100 runs.

– For comparison purposes, we considered several rule-based algorithms be-
longing to different paradigms. Two AP algorithms, the proposed algori-
htm, MOGBAP, and GBAP [5]. Three ant-based algorithms, Ant-Miner [12],
Ant-Miner+ [13] and the hybrid PSO/ACO2 algorithm [14]. Three GP algo-
rithms, a constrained syntax algorithm proposed by Bojarczuk et al. [1]; the
algorithm presented by Tan et al. [2], which implements a niching mechanism
that bears some resemblance with the niching procedure used by MOGBAP;
and the recently proposed ICRM algorithm [15], which generates very inter-
pretable classifiers in terms of number of rules and number of conditions. The
reduced error pruning JRIP algorithm [16]. And PART [17], which extracts
rules from a decision tree.
MOGBAP uses the same parameter configuration as GBAP, i.e., a popu-
lation of 20 ants, 100 iterations, 15 derivations allowed for the grammar, a
minimum coverage of 5%, an initial and maximum pheromone amount of 1.0,
a minimum pheromone amount of 0.1, an evaporation rate of 0.05, a value
of 0.4 for α and 1.0 for β . The other algorithms were executed using the
parameters suggested by their authors. The following implementations were
employed: for MOGBAP and GBAP, we used our own implementations. For
Ant-Miner, the open source code provided in the framework Myra was em-
ployed2. In case of Ant-Miner+, the code given by the authors was used. To
run PSO/ACO2, its open-source implementation was used3. The three GP
algorithms were run using the implementations available in the framework
JCLEC4. Finally, PART and JRIP were run by using the implementations
available in WEKA.

4 Experimental Results

4.1 Predictive Accuracy Analysis

A first experimental study focuses on determining whether MOGBAP obtains
an accuracy performance comparable to or better than the other algorithms
mentioned in Section 3.

Each row in the top half of Table 1 shows the average accuracy results in test
obtained by each algorithm for a given data set, with the standard deviation.
Bold type values indicate the algorithm that attains the best result for a par-
ticular data set. We can observe at a glance that MOGBAP reaches the best
results in a 40% of the data set considered.

2 Myra framework is available at http://myra.sourceforge.net/
3 PSO/ACO2 is publicly available at http://sourceforge.net/projects/psoaco2
4 JCLEC framework is available at http://jclec.sourceforge.net

154 J.L. Olmo, J.R. Romero, and S. Ventura

T
a
b
le

1
.
R
es
u
lt
s
o
f
th
e
ex

p
er
im

en
ta
l
st
u
d
y

M
O
G
B
A
P

G
B
A
P

A
n
t
M
in
e
r
A
n
t
M
in
e
r
+

P
S
O
A
C
O
2
B
o
ja

r
c
z
u
k

T
a
n

IC
R
M

J
R
IP

P
A
R
T

D
a
ta

se
t

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

A
cc

σ
A
c
c

H
ep

a
t.
8
5
.1
5

1
.5
2

8
2
.1
7
1
2
.0
4

8
3
.2
7
1
0
.3
2
8
1
.7
9

1
0
.3
0
8
4
.5
9

9
.3
3

7
1
.0
5
1
4
.4
5
8
1
.6
4
1
2
.3
4

7
4
.2
5
1
2
.3
6

8
1
.5
4
1
2
.0
5

8
4
.6
4

7
.6
6

S
o
n
a
r

7
9
.4
9
9
.2
6
8
1
.9
8

7
.4
4

7
6
.9
5

6
.8
9
7
6
.0
5

7
.2
2
7
8
.4
9

8
.0
5

7
9
.8
2

9
.2
4
7
3
.4
5

7
.7
0

6
9
.1
6

8
.6
6

8
0
.3
3

6
.6
1

7
7
.8
4

8
.1
0

B
re
a
st
-c

7
2
.0
2
9
.6
2

7
1
.4
0

7
.8
6
7
3
.4
2

7
.2
9
7
3
.0
5

6
.8
6
6
8
.6
3

6
.8
7

6
8
.6
3
1
0
.9
4
6
0
.5
9
1
0
.5
6

6
3
.6
1

8
.2
8

7
2
.0
0

6
.4
1

6
8
.4
8

7
.9
0

H
ea
rt
-c

8
3
.1
3

4
.2
4

8
2
.8
4

5
.2
4

7
8
.0
1

6
.6
9
8
2
.4
1

5
.1
0
8
2
.2
5

5
.3
6

7
0
.0
2

7
.0
8
7
7
.1
4

6
.2
0

7
3
.8
6

4
.6
9

8
2
.2
0

5
.1
2

8
0
.1
3

6
.3
9

Io
n
o
s.

9
0
.5
5
5
.6
7
9
3
.0
2

4
.0
7

8
4
.3
9

6
.7
3
9
2
.8
9

4
.0
2
8
9
.9
7

4
.9
9

7
6
.4
8

8
.1
9
8
7
.1
7

6
.1
3

8
8
.9
6

7
.4
3

9
1
.7
0

5
.1
4

8
8
.9
3

4
.0
2

H
o
rs
e-
c
8
3
.7
8

4
.6
7

8
2
.9
7

6
.3
4

8
2
.7
1

4
.7
3
8
1
.7
9

6
.0
3
8
2
.0
6

4
.9
3

8
2
.5
2

6
.0
6
8
2
.1
5

6
.7
7

8
2
.8
9

7
.2
1

8
3
.7
2

6
.3
5

8
1
.5

3
.7
2

V
o
te

9
4
.8
9
2
.9
2

9
4
.3
7

3
.5
7

9
4
.2
9

3
.2
7
9
4
.6
6

3
.7
2
9
4
.8
0

3
.8
1
9
5
.6
7

2
.7
8
9
5
.6
0

3
.6
5
9
5
.6
7

3
.6
1

9
5
.4
4

3
.5
2

9
4
.5
1

3
.0
8

A
u
st
r.
8
7
.3
8

4
.2
7

8
5
.4
7

4
.4
9

8
5
.3
0

4
.1
2
8
3
.4
8

3
.3
8
8
5
.1
9

4
.6
9

8
5
.5
2

4
.5
0
8
6
.2
1

4
.3
1

8
6
.8
4

4
.2
0

8
6
.7
0

5
.1
5

8
4
.6
6

4
.4
8

B
re
a
st
-w

9
5
.4
1
2
.3
1
9
6
.5
0

1
.6
8

9
4
.6
9

2
.0
4
9
4
.2
8

2
.8
6
9
5
.8
6

1
.9
1

8
7
.3
9

2
.7
5
9
4
.1
1

2
.7
6

8
8
.6
9

2
.6
6

9
5
.7
1

1
.8
1

9
5
.7
1

1
.8
2

C
re
d
it
-g

7
0
.8
2
3
.3
3

7
0
.7
9

4
.2
7

7
0
.5
5

3
.7
2
7
0
.8
0

3
.8
7
7
0
.3
6

3
.5
5

6
3
.0
2

7
.0
3
6
6
.7
7

6
.1
1

6
8
.9
0

4
.6
8

7
0
.7
0

3
.2
6
7
2
.7
0

3
.2
6

Ir
is

9
5
.3
3
6
.0
0
9
6
.0
0

4
.1
0

9
5
.2
0

5
.4
7
9
4
.0
0

3
.5
9
9
5
.3
3

6
.7
0

9
1
.7
3
1
0
.4
6
9
5
.0
0

2
.8
0

9
4
.0
0

5
.5
7
9
6
.0
0

5
.3
3

9
5
.3
3

6
.7
0

W
in
e
9
8
.2
4

2
.7
5

9
7
.0
1

4
.3
7

9
1
.8
6

5
.0
8
9
3
.8
6

4
.6
1
9
0
.2
0

2
.8
6

8
3
.6
9

9
.4
4
9
3
.4
4

6
.1
0

9
0
.4
3

6
.1
2

9
5
.6
1

5
.3
7

9
5
.0
3

3
.8
9

L
y
m
p
h
.
8
0
.5
5
9
.7
4
8
1
.0
0
1
0
.3
5

7
5
.5
1

9
.5
9
7
7
.2
3

1
0
.9
1
7
6
.5
9
1
2
.2
0

7
7
.7
8
1
2
.7
7
7
8
.3
5

9
.9
5

7
9
.2
9

9
.6
0

7
8
.8
4
1
1
.4
9

7
8
.4
3
1
4
.3
0

G
la
ss

7
1
.0
3
8
.4
5

6
9
.1
3

8
.6
6

6
5
.5
2

9
.2
6
6
2
.0
3

9
.8
0
7
1
.1
6
1
0
.5
4

3
9
.2
3
1
1
.3
4
6
5
.0
6
1
0
.2
9

6
7
.5
0

6
.0
0

6
9
.0
0

8
.7
0
7
3
.9
1

8
.4
3

P
ri
m
a
ry

4
2
.1
8

7
.1
9

3
7
.9
1

6
.5
5

3
7
.7
5

5
.2
7
3
7
.2
6

5
.4
3
3
7
.1
9

5
.8
8

1
6
.4
1

4
.9
6
2
6
.2
0

6
.1
3

2
2
.2
9

5
.3
0

3
8
.1
1

3
.7
5

3
8
.3
6

5
.0
9

R
a
n
k
.

2
.5
3
3
3

3
.3

6
.4
6
6
7

6
.2
3
3
3

5
.7

7
.9
3
3
3

7
.2

6
.8

3
.7
3
3
3

5
.1

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

R
C
/
R

H
ep

a
t.

9
.1

1
.9
9

8
.1

1
.8
9

4
.8

1
.9
9

3
.9

3
.2
5

7
.4

2
.2
8

3
.1

1
.2
2

6
.5

4
.3

2
.0

2
.0
0

3
.8

2
.1
5

8
.4

2
.3
0

S
o
n
a
r

1
1
.1

2
.0
4

1
2
.3

1
.8
1

5
.2

2
.0
7

4
.0

3
.4
8

6
.1

2
.9
2

3
.0

1
.0
0

7
.6

4
.2
7

2
.0

2
.0
0

4
.6

2
.2
1

1
3
.9

2
.9
8

B
re
a
st
-c

1
1
.8

1
.6
9

1
3
.2

1
.9
1

6
.0

1
.2
8

5
.4

2
.8
2

1
1
.8

1
.7
5

3
.5

1
.0
1

9
.0

4
.3
6

2
.0

2
.0
0

3
.3

1
.7
0

1
7
.1

2
.1
2

H
ea
rt
-c

9
.9

2
.2
5

1
4
.5

1
.6
7

5
.9

1
.2
0

4
.4

2
.8
2

1
1
.9

3
.8
1

3
.0

3
.0
2

6
.5

4
.3
8

5
.0

1
.1
5

5
.3

2
.3
2

1
7
.3

2
.3
5

Io
n
o
s.

6
.8

1
.4
9

1
1
.1

1
.1
8

5
.7

1
.6
1

8
.8

1
.4
1

4
.5

4
.0
3

3
.1

1
.1
4

5
.3

4
.3
2

2
.0

2
.0
0

7
.7

1
.4
8

8
.2

1
.8
3

H
o
rs
e-
c

9
.6

2
.0
3

9
.0

1
.4
6

6
.3

1
.4
9

4
.7

3
.4
1

2
0
.1

3
.3
9

3
.0

1
.0
0

6
.9

4
.2
5

2
.0

1
.9
0

3
.5

1
.7
4

1
3
.2

2
.3
8

V
o
te

6
.6

2
.1
2

1
7
.2

2
.1
9

5
.6

1
.3
6

5
.2

2
.3
4

6
.1

1
.3
3

3
.0

1
.0
0

3
.1

3
.2
1

2
.0

1
.0
0

3
.1

1
.3
8

7
.7

1
.8
4

A
u
st
r.

9
.1

2
.0
0

1
0
.1

1
.0
8

6
.5

1
.5
3

3
.3

2
.0
8

2
5
.8

6
.9
6

3
.0

1
.0
0

4
.9

4
.1

2
.0

1
.0
0

5
.2

1
.8
0

1
9
.4

2
.0
1

B
re
a
st
-w

6
.1

1
.7
7

6
.6

1
.6
5

7
.2

1
.0
4

6
.4

1
.9
2

1
0
.5

1
.1
0

3
.0

1
.0
0

3
.8

3
.8
2

2
.0

2
.0
0

6
.5

1
.7
4

1
0
.9

1
.6
3

C
re
d
it
-g

1
1
.6

1
.8
2

2
2
.9

1
.8
2

9
.1

1
.5
1

3
.3

3
.3
1

5
2
.8

4
.2
0

3
.3

1
.1
7

9
.5

4
.2
5

2
.0

2
.0
0

7
.1

2
.5
4

5
7
.8

2
.7
0

Ir
is

5
.8

1
.1
5

3
.7

1
.0
6

4
.3

1
.0
3

3
.9

1
.8
0

3
.0

1
.2
0

4
.3

1
.2
9

4
.1

2
.6
9

3
.0

1
.0
0

3
.0

1
.0
0

4
.6

1
.0
0

W
in
e

6
.1

1
.4
7

7
.2

1
.5
0

5
.1

1
.3
3

2
.5

2
.1
9

4
.0

1
.7
3

4
.1

1
.2
7

5
.6

3
.8
8

3
.0

2
.0
0

4
.2

1
.5
6

6
.3

1
.7
7

L
y
m
p
h
.

1
1
.9

1
.5
5

1
0
.2

1
.6
0

4
.7

1
.6
9

4
.6

2
.8
3

1
5
.6

2
.1
1

5
.1

1
.0
2

9
.1

3
.7
9

4
.0

1
.2
5

6
.9

1
.5
3

1
0
.2

2
.3
0

G
la
ss

1
7
.5

2
.2
2

2
1
.6

1
.7
9

8
.4

1
.7
6

1
2
.4

4
.1
0

2
4
.5

3
.1
3

8
.2

1
.4
8

1
1
.9

4
.0
7

7
.0

1
.6
7

8
.0

2
.0
3

1
3
.7

2
.3
2

P
ri
m
a
ry

3
4
.9

2
.5
3

4
5
.9

2
.6
0

1
2
.1

3
.3
5

9
.3

8
.5
0

8
6
.5

6
.0
1

2
3
.7

1
.3
7

4
6
.6

4
.1
6

2
2
.0

1
.8
8

8
.3

3
.1
3

4
8
.7

3
.2
3

R
7
.5
6
6
6

8
.1
6
6
6

5
.2
3
3
3

3
.8
3
3
3

7
.4
3
3
3

2
.9
3
3
3

5
.5
6
6
6

1
.4
6
6
6

3
.7
6
6
6

9
.0
3
3
3

C
/
R

5
.1
3
3
3

3
.7

3
.7
3
3
3

8
.3
3
3
3

7
.1
3
3
3

2
.1
3
3
3

9
.4
6
6
6

4
.4

4
.2
6
6
6

6
.7

Multi-Objective Ant Programming for Mining Classification Rules 155

Table 2. Friedman and Iman&Davenport tests for predictive accuracy results

Critical value Statistic Hypothesis

Friedman 1.954952 7.562807 Rejected
Iman&Davenport 16.918977 47.349075 Rejected

However, to analyze statistically these results, the Friedman test [18] was ap-
plied. This test computes the average rankings obtained by k algorithms over
N data sets regarding one measure, distributed according to the χ2-distribution
with (k-1) degrees of freedom, stating the null-hypothesis of equivalence among
all the algorithms. Iman&Davenport’s test considers a less conservative statistic
distributed according to the F -distribution with (k-1) and (k-1)(N -1) degrees of
freedom. Table 2 indicates that both Friedman’s and Iman&Davenport’s statis-
tics do not belong to their respective critical intervals. Hence, the null-hypothesis
that all algorithms perform equally well is rejected with a likelihood of 95%.

Table 3. Holm table for α = 0.05

i Algorithm z p α/i Hypothesis

9 Bojarczuk 4.884484 1.0370E-6 0.005556 Rejected
8 Tan 4.221159 2.4304E-5 0.00625 Rejected
7 ICRM 3.859345 1.1369E-4 0.007143 Rejected
6 Ant-Miner 3.557834 3.7393E-4 0.008333 Rejected
5 Ant-Miner+ 3.346776 8.1757E-4 0.01 Rejected
4 PSO/ACO2 2.864358 0.004179 0.0125 Rejected
3 PART 2.321637 0.020252 0.016667 Accepted
2 JRIP 1.085441 0.277726 0.025 Accepted
1 GBAP 0.693476 0.488010 0.05 Accepted

The p value is a measure of the credibility of the null hypothesis. If some-
thing is very unlikely to have occurred by chance, we say that it is statistically
significant. The Holm test [18] is a step-down posthoc procedure that tests the
hypotheses ordered by significance, comparing each pi with α

i from the most
significant p value. Table 3 captures all the possible hypotheses of compari-
son between the best ranked algorithm, MOGBAP, and the others, ordered by
their p value and associated with their level of significance α. When comparing
MOGBAP with each of the other algorithms, a p value less or equal to 0.05
means that the hypothesis is unlikely to be true, the difference between both
algorithms being statistically significant. Thus, at a significance level of α =
0.05, MOGBAP outperforms statistically the following algorithms: PSO/ACO2,
Ant-Miner+, Ant-Miner, ICRM, Tan and Bojarczuk.

4.2 Comprehensibility Analysis

This section analyzes statistically the complexity of the rule set and the rules
mined by each algorithm, which can be observed in the bottom half of Table 1,

156 J.L. Olmo, J.R. Romero, and S. Ventura

where the column R indicates the average number of rules obtained by an algo-
rithm over each data set, and C/R stands for the average number of conditions
per rule. The last but one row of this table represents the average ranking of
each algorithm with regards to the rule set length, and the last row specifies the
average rankings regarding the number of conditions per rule. However, due to
space limitations we just report on the conclusions obtained after carrying out
the same statistic tests done in the previous section.

Regarding the number of rules in the classifier, the best result would be to
extract one rule predicting each class in the data set. Nevertheless, this may
be detrimental for the accuracy of the algorithm, as occurs in Bojarczuk and
ICRM algorithms. At a significance level of α = 0.05, ICRM obtains significant
differences with respect to Ant-Miner, Tan, PSO/ACO2, MOGBAP, PART and
JRIP, in this order. Bojarczuk, JRIP and Ant-Miner+ also behaves significantly
better than MOGBAP regarding this metric.

Concerning the complexity of the rules mined, at a significance level of
α = 0.05, Bojarczuk obtains significant differences with MOGBAP, PART,
PSO/ACO2, Ant-Miner+ and Tan algorithms. Bojarczuk is the unique algo-
rithm capable of behaving statistically better than our proposal in this sense. In
addition, MOGBAP achieves significant differences with respect to Ant-Miner+
and Tan algorithms.

5 Conclusions and Future Work

We proposed a multi-objective grammar based AP algorithm to accomplish the
extraction of IF-THEN rules in multi-class data sets. It follows a novel multi-
objective strategy which avoids the overlapping problem when ranking individ-
uals that belong to different classes according to Pareto dominance. It uses a
niching approach to combine the solutions of each front found by this method.

Results prove that multi-objective evaluation in AP is more suitable for the
classification task than single-objective one, which is used in the original algo-
rithm. They also prove statistically that our proposal outperforms most of the
other algorithms regarding predictive accuracy, also obtaining a good trade-off
between accuracy and comprehensibility.

For future work, we plan to improve the fitness functions and evaluate the
behavior of AP methods when dealing with imbalanced classification.

Acknowledgments. This work has been supported by the Regional Govern-
ment of Andalusia and the Ministry of Science and Technology, projects P08-
TIC-3720 and TIN2008-06681-C06-03, TIN-2011-22408, and FEDER funds.

References

1. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., Michalkiewicz, E.L.: A constrained-
syntax genetic programming system for discovering classification rules: application
to medical data sets. Artificial Intelligence in Medicine 30, 27–48 (2004)

Multi-Objective Ant Programming for Mining Classification Rules 157

2. Tan, K.C., Tay, A., Lee, T.H., Heng, C.M.: Mining multiple comprehensible clas-
sification rules using genetic programming. In: CEC 2002, pp. 1302–1307 (2002)

3. Abbass, H.A., Hoai, X., Mckay, R.I.: AntTAG: A new method to compose computer
programs using colonies of ants. In: IEEE CEC 2002, pp. 1654–1659 (2002)

4. Dorigo, M., Stützle, T.: The Ant Colony Optimization metaheuristic: Algorithms,
Applications and Advances. Kluwer Academic Publishers (2002)

5. Olmo, J.L., Romero, J.R., Ventura, S.: Using ant programming guided by grammar
for building rule-based classifiers. IEEE Trans. on Systems, Man, and Cybernetics,
Part B: Cybernetics 41(6), 1585–1599 (2011)

6. Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic pro-
gramming to classification. IEEE Trans. on Systems, Man, and Cybernetics, Part
C: Applications and Reviews 40(2), 121–144 (2010)

7. Angus, D., Woodward, C.: Multiple objective ant colony optimisation. Swarm In-
telligence 3(1), 69–85 (2009)

8. Dehuri, S., Patnaik, S., Ghosh, A., Mall, R.: Application of elitist multi-objective
genetic algorithm for classification rule generation. Appl. Soft Comput. 8, 477–487
(2008)

9. Olmo, J.L., Romero, J.R., Ventura, S.: A grammar based ant programming al-
gorithm for mining classification rules. In: 2010 IEEE Congress on Evolutionary
Computation (CEC), pp. 225–232 (2010)

10. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
11. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-

tributes for classification learning. In: IJCAI 1993, pp. 1022–1029 (1993)
12. Parpinelli, R., Freitas, A.A., Lopes, H.S.: Data mining with an ant colony opti-

mization algorithm. IEEE Trans. on Evol. Computation 6, 321–332 (2002)
13. Martens, D., De Backer, M., Vanthienen, J., Snoeck, M., Baesens, B.: Classification

with ant colony optimization. IEEE Transactions on Evolutionary Computation 11,
651–665 (2007)

14. Holden, N., Freitas, A.A.: A hybrid PSO/ACO algorithm for discovering classifi-
cation rules in data mining. J. Artif. Evol. App, 2:1–2:11 (2008)

15. Cano, A., Zafra, A., Ventura, S.: An EP algorithm for learning highly interpretable
classifiers. In: ISDA 2011, pp. 325–330 (2011)

16. Cohen, W.: Fast Effective Rule Induction. In: ICML 1995, pp. 115–123 (1995)
17. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.

In: ICML 1998, pp. 144–151 (1998)
18. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.

Learn. Res. 7, 1–30 (2006)

Matrix Analysis of Genetic Programming

Mutation

Andrew J. Parkes, Ender Özcan, and Matthew R. Hyde

School of Computer Science
The University of Nottingham

Nottingham, NG8 1BB
United Kingdom (UK)

{ajp,exo,mvh}@cs.nott.ac.uk
http://cs.nott.ac.uk/∼{ajp,exo,mvh}

Abstract. Heuristic policies for combinatorial optimisation problems
can be found by using Genetic programming (GP) to evolve a mathe-
matical function over variables given by the current state of the problem,
and whose value is used to determine action choices (such as preferred
assignments or branches). If all variables have finite discrete domains,
then the expressions can be converted to an equivalent lookup table or
‘decision matrix’. Spaces of such matrices often have natural distance
metrics (after conversion to a standard form). As a case study, and to
support the understanding of GP as a meta-heuristic, we extend previ-
ous bin-packing work and compare the distances between matrices from
before and after a GP-driven mutation. We find that GP mutations of-
ten correspond to large moves within the space of decision matrices.
This strengthens evidence that the role of mutations within GP might
be somewhat different than their role within Genetic Algorithms.

Keywords: Genetic programming, Genotype-phenotype mapping.

1 Introduction

The effects of the genetic programming (GP) mutation operator are not often
analysed in detail. When an analysis is performed, it is often to show how suc-
cessful different levels of mutation are, or to show the effects of its interaction
with crossover. This paper presents a methodology to analyse the effect of mu-
tation on the phenotype of an individual.

In GP, the genotype and phenotype are often indistinguishable, but there are
many applications of GP where they are clearly different. One example is when
GP is used to generate heuristic functions, which give a score to a number of op-
tions at any given decision point (see [1,6,4,8,10,11] for examples on many differ-
ent problems, including job shop scheduling, cutting/packing, and SAT). This is
equivalent to an ‘index policy’ [12], because each potential option is given a score
independently of other options, and the option with the largest score is selected.
In the example we present in this paper, the evolved mathematical expressions are
used as policies for the online one-dimensional bin packing problem.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 158–169, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Matrix Analysis of Genetic Programming Mutation 159

In this domain, the choices that aremade using the expression can stay the same,
even though the expression itself has changed, along with the values it produces
for any given inputs. For example, an expressionwhose results are scaled by 2 gives
the same relative scores to each option. In this situation, it is not enough to analyse
the effects of genetic operators on only the genotype.

In this paper, we combine these issues with previous work in [16] and present a
matrix analysis tool for understanding the effects of mutation on the phenotype.
This can be used in any situation where the GP trees represent mathematical ex-
pressions with integer variables. The tool is based on the idea that a matrix can be
generated from the expression by inputting all possible integer combinations, and
storing the results. The resulting matrix will represent the expression exactly, as
the only possible inputs are integers. In this paper, we study integer variables, but
we expect this to work for at least general discrete and finite cases.

A matrix can be generated for an expression before and after the mutation op-
erator is applied, and the matrices can be compared to analyse what effect the
mutation had. We show in this paper that many mutation calls return a different
expression, but which corresponds to an equivalent matrix, and so its behaviour
as a heuristic is the same. The proportion of such ineffective mutations varies dur-
ing the run, but can be as high as 45%. When an expression’s matrix is different
after a mutation, we measure how different, and find that a high proportion of the
matrix is often modified by the mutation operator. With further analysis, this re-
search could also provide insight into the code bloat phenomenon, as mutations
become less effective as the generations increase. It also can be used as a tool for
the analysis of GP runs, to check how the mutation is performing, and modifying
its severity accordingly.

2 The Bin Packing Problem

The exact nature of the problem is a secondary concern in this paper, we are inter-
ested in analysing the mutation operator of the GP system. However, to do this,
we need a problem domain for which to evolve heuristics, and the one dimensional
bin packing problem is a highly appropriate domain to test on, given the volume
of existing literature on evolving policies for this problem.

The one-dimensional bin-packing problem involves a set of integer-size pieces
L, which must be packed into bins of a certain capacity C, using the minimum
number of bins possible. In other words, the set of integers must be divided into
the smallest number of subsets so that the sum of the sizes of the pieces in a subset
does not exceed C [14]. We will assume that all of the bins have the same capacity,
and that the pieces are drawn from a uniform distribution.

For this work we consider problem instances where 500 integer sized pieces are
uniformly distributed in the range [5,10], and the bin capacity is 20. We use the
following notation, UBP(20,5,10,500) to represent this domain. In this paper, the
‘on-line’ bin packing problem is studied. That is, we do not know in advance how
many pieces there are or the size of those pieces. Our systemmust simply pack the
pieces into the bins in the order they arrive, and the pieces cannot be moved once
they have been placed in a bin.

160 A.J. Parkes, E. Özcan, and M.R. Hyde

3 PreviousWork

GPwas used to evolve heuristics for online one-dimensional bin packing in [5,6]. In
that work, the heuristics were expressions, which provided a score to each available
bin. TheGP systemutilised the+,−, ∗, and% (protected divide, see [1]) operators,
and the three terminals available to theGPwere the piece size, the bin fullness, and
the bin capacity. The current piece is put into the bin which received the highest
score. This work was later extended to reduce the number of inputs to two [7], and
to utilise a ‘memory’ component to learn to use the distribution of piece sizes [3].

Parkes and Özcan noted that for a bin packing problem where the pieces and
bins have integer size, the possible inputs to the expression are discrete. There-
fore, the expression can be represented by a matrix. They showed that matrices
themselves can be evolved with a genetic algorithm [16]. However, in this paper,
we employ standard GP to evolve trees (mathematical expressions), and use their
matrix representation to analyse the effects of the mutation operator. The matrix
representation is explained in detail in section 4.

The key idea of this paper is that when evolving expressions with tree-based
GP, a mutation could be made on a part of the tree which represents inactive code.
While the tree would look different, the actual results returned by the tree would
be the same for any given input values. Furthermore, the values returned by the
tree are used to rank the bins by the scores that they receive, so the actual values
do notmatter. It is only the relative order of the scores that makes a difference. For
this reason, a mutation could cause a change in the tree, which does cause a change
in the results of the tree, but which does not cause a change in the behaviour of the
tree when applied to the problem. A simple example of this is a mutation which
adds 10 to the value returned by the tree. The tree would be modified, and the
values returned would be modified, but the policy that the tree represents would
not be modified. This is because the tree will always give the same bin the highest
score (and the second highest, and so on).

There is previous work on distance metrics for trees, such as Levenshtein edit
distance and more [9,2,13]. The previous studies measure the difference between
the GP trees, or in other words the genotype. However, often two very different
trees can have equivalent functionality. Indicating that in fact, the trees should
be measured as similar. This paper suggests an approach to measure the distance
between the functionality of the trees, rather than their structural differences. This
can show the magnitude of the effect of operators, such as mutation.

4 TheMatrix Representation

An example GP expression, with two inputs S and E, is S + (S/E). To choose a
bin for a given piece, this tree is evaluated once for each available bin, and the bin
with the highest score receives the piece. This system is presented in [5,6], and is
also employed in this paper.

Figure 1 shows the matrix which represents S +(S/E). The rows represent the
remaining space left in a bin. The columns represent the size of the piece that we

Matrix Analysis of Genetic Programming Mutation 161

are currently choosing a bin for. The policy matrix contains heuristic values. The
values are obtained by evaluating the expression (tree) with the remaining space
and piece size as inputs. They show the heuristic score that is given to any bin by
the tree, for any given piece size.

The dots in the matrix are positions which will never be used for an instance
of UBP(20,5,10,500), as there are no piece sizes less than 5 and greater than 10.
No bin can have a remaining space of between 16 and 19 (inclusive), because the
minimum piece size is 5. These positions in the matrix are referred to as ‘inactive’
positions.We can calculate a value for themby evaluating the treewith the relevant
inputs, but they will never be used. The other positions are referred to as ‘active’
positions.

If we add 10 to each of the values in figure 1, then it will make no difference
to which bin receives the highest score. For a piece size of 5, a bin with 5 units of
remaining space will always be chosen. For this reason, the exact values are not
important, it is the relative order of the values that is important. Figure 2 shows a
normalised version of the matrix in figure 1, where the bins are still ranked in the
same order for a given piece size. In this paper, we are interested in whether the
mutation operatormakes changes in the normalisedmatrix, as this determines the
behaviour of the heuristic.

5 6.00
6 5.83 7.00
7 5.71 6.86 8.00 . . .
8 5.63 6.75 7.88 9.00 . .
9 5.56 6.67 7.78 8.89 10.00 .
10 5.50 6.60 7.70 8.80 9.90 11.00
11 5.45 6.55 7.64 8.73 9.82 10.91

E 12 5.42 6.50 7.58 8.67 9.75 10.83
13 5.38 6.46 7.54 8.62 9.69 10.77
14 5.36 6.43 7.50 8.57 9.64 10.71
15 5.33 6.40 7.47 8.53 9.60 10.67
16
17
18
19
20 5.25 6.30 7.35 8.40 9.45 10.50

5 6 7 8 9 10
S

Fig. 1. Value matrix generated from
the expresssion: S + (S/E)

5 12
6 11 11
7 10 10 10 . . .
8 9 9 9 9 . .
9 8 8 8 8 8 .
10 7 7 7 7 7 7
11 6 6 6 6 6 6

E 12 5 5 5 5 5 5
13 4 4 4 4 4 4
14 3 3 3 3 3 3
15 2 2 2 2 2 2
16
17
18
19
20 1 1 1 1 1 1

5 6 7 8 9 10
S

Fig. 2. Normalised matrix generated
from the matrix in figure 1

To further clarify, the matrixes are used in the following manner. For any given
piece size, there will be a column of scores, which correspond to the preference of
which bin to put the piece into. For example, in figure 1, if we must pack a piece
of size 6 next, then the piece will be put into a bin with an emptiness of 6, as this

162 A.J. Parkes, E. Özcan, and M.R. Hyde

emptiness has the highest score (7.00) in that column of the matrix. However, if
no available bin has an emptiness of 6, then the piece will be put into the bin with
emptiness 7, as this has the second highest score and is therefore the second pref-
erence, and so on. One empty bin is always available.

5 Genetic Programming Parameters

In this paper, we analyse 50 runs of a GP system with the parameters shown in
table 1. We use the ECJ (Evolutionary Computation in Java) system, which is a
mature and well known toolkit for genetic algorithms.We do not make any claims
about the quality of these parameters, we chose them because we wish to analyse
the mutation operator in the standard ECJ distribution.

Table 1. The GP parameters

Population Size 10000
Generations 100

Crossover Probability 0.85
Reproduction Probability 0.05
Mutation Probability 0.1
Selection Method Tournament Size 70

Initialisation Method Ramped half-and-half
Initial Min and Max Tree Depth 2, 6
Max Tree Depth After Mutation 17

For the reader interested in technical implementationdetails, themutation anal-
yser was implemented as an extension of the ‘MutationPipeline’ class, overriding
the ‘produce’ method. The custom produce method converts the old individual
and the new individual into their matrix form, and then compares them using the
distance metrics described in section 6.

The population size is set to 10000, to ensure that there are a significant number
of mutations in each generation. The results do not include those where the mu-
tation fails and the parent is just copied (due to standard ECJ mechanisms). The
standard tournament size is set to 7, for the standard ECJ population size of 1024.
As we are using a larger population size of 10000, we increase the tournament size
to 70.

Themutation operator is subtreemutation. The selection of a node is done prob-
abilistically, with a 0.1 probability of selecting a terminal, and 0.9 probability of
selecting a non-terminal node. The subtree is replaced by the ‘Grow’ method [17].

6 DistanceMetrics

To analyse the effects of mutation on the policies, we must define a distance metric
to measure the distance between two matrices. In this paper we employ three dis-
tancemetrics, all of which operate on the normalised versions of the matrices. Only

Matrix Analysis of Genetic Programming Mutation 163

the active parts (see Section 4) of the matrices are included in the distance calcu-
lations. To illustrate the three metrics, we use the simple example of UBP(11, 4, 5,
500).With bins of 11 capacity, and pieces between 4 and 5 inclusive (For the results
section, our experiments are performed on instances of UBP(20, 5, 10, 500)). Two
policy matrices for this problem are shown in figures 3 and 4. For each column,
each heuristic value (one per emptiness value) represents a preference of where to
put the piece. The highest value represents the first preference, the second highest
represents the second preference, and so on.

4 2 .
5 4 4
6 1 3

E 7 5 2
8 . .
9 . .
10 . .
11 3 1

4 5
S

Fig. 3. Example Matrix A

4 3 .
5 4 1
6 1 2

E 7 5 3
8 . .
9 . .
10 . .
11 2 4

4 5
S

Fig. 4. Example Matrix B

6.1 Metric 1

This metric simply counts the number of preferences that are different in the nor-
malised matrices. In the example of figures 3 and 4, this metric would give the two
matrices a difference value of 6. For the problem instances we address in this paper,
the matrices are larger, and so a score of 57 means the two matrices are completely
different. A score of 0 means that the two matrices are identical.

6.2 Metric 2

Recall that for any given piece size, there will be a column of heuristic values, which
correspond to the preference of which available residual space to put the piece into.
For example, consider the first columns from both matrices in figures 3-4. These
columns represent the preference order for the piece size 4. We show the columns
here as rows (excluding the inactive positions):

Column 1 of matrix 1: 2, 4, 1, 5, 3
Column 1 of matrix 2: 3, 4, 1, 5, 2

We see that for both columns, the preference is to put the piece into a bin with
a residual capacity of 7, as this has the highest value (5). For both columns, if a
bin does not exist with 7 units of space left, the second choice of bin would have a
residual capacity of 5. We can write the preference order of residual capacities like
this:

164 A.J. Parkes, E. Özcan, and M.R. Hyde

Residual capacity preference order 1: 7, 5, 11, 4, 6
Residual capacity preference order 2: 7, 5, 4, 11, 6

To calculate metric 2 we iterate through each preference order list. We add one
point of similarity if both matrices have the same first preference. Then we move
to the second preference and add one point if that is the same, and so on. For each
column, we stop when the current preference is different, and move to the next
column. In the example, 7 and 5 are ranked in the same order in both lists, and
the next entries are different, so these columns have a similarity of 2. The columns
for the piece size 5 have no similarity, as the first preferences are different (residual
capacity 5 in the first matrix, and 11 in the second matrix). Therefore, according
to metric 2, these matrices have a similarity of 2.

In the problem instances we use in this paper, the maximum score is 57, as there
are 57 active positions to compare.We subtract the result from57 to put themetric
on the same scale as metric 1. Therefore, a score of 57 means that the two matrices
have a different first choice for every piece. A score of 0means that the twomatrices
are identical.

6.3 Metric 3

This is an ordering based metric, which involves comparing the columns of the
matrices in a similar way to metric 2. While metric 2 asks how many elements of
the preference order are the same (until the first difference), metric 3 asks how
many of the elements that follow each preference are the same, regardless of their
order. We calculate a preference order for each column, the same as we calculated
for metric 2. This is shown again here for the first column, for ease of reference.

Residual capacity preference order 1: 7, 5, 11, 4, 6
Residual capacity preference order 2: 7, 5, 4, 11, 6

We iterate through each preference from order 1, and find the identical preference
in order 2. For every value which follows that preference in both orders, we add one
point of similarity. In our example:

7 precedes 5, 11, 4 and 6 in both lists (similarity of 4).
5 precedes 11, 4, and 6 in both lists (similarity of 3).
11 precedes 6 in both lists (similarity of 1).
4 precedes 6 in both lists (similarity of 1).

The total similarity for the first column is therefore 9 (4+3+1+1). The similarity
of a column is subtracted from n(n-1)/2, as this is the maximum similarity score,
where n is the length of a column. We perform the same calculation for the other
columns. In the instances used in this paper, Metric 3 has a minimum value of 0,
representing identical matrices, and a maximum value of 251.

Matrix Analysis of Genetic Programming Mutation 165

This metric considers each preference order as a permutation, and tells us how
many swaps would be needed between any two adjacent preferences, to get from
one permutation to the other.

7 Results

This section presents our results, showing the effect of the mutation operator on
the policy matrices, over the 100 generations. The calculations are based on 50
runs of the GP algorithm. For example, the results for generation 6 are calculated
from all 50 sets of recorded values at generation 6.

In figure 5, first consider the dotted line, which represents the ‘metric 1’ differ-
ence between the matrices after mutation. In each generation, all of the mutations
aremeasuredwithmetric 1, and the averagedifference is calculated.A higher value
means that themutation operator has a larger effect on the policies. The plot shows
that in the first 3 generations, the effect of mutation increases. After generation 3,
the effect of mutation decreases gradually.

The second line in figure 5 shows the same calculation, but excluding the mu-
tations that cause absolutely no change to the normalised matrix. One can see
that when the mutation does make a change to the policy, that change is gener-
ally greater in the first few generations. That change decreases until generation 13,
after which the change caused by the mutation operator gradually increases.

Figure 6 shows the proportion of mutations which do not change the normalised
matrix at all, and therefore do not change the behaviour of the heuristic. This plot
shows that in the first generation, around 45% of mutations have no effect on the
individuals. This drops by a large amount in generation 2, to around 19%. This
shows that the effect of mutation changes dramatically in the first 2 generations,
as the population changes from a randomly generated one, to one made from the
parents of the first generation.

 0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

Generation

D
iff

er
en

ce
 b

et
w

ee
n

m
at

ric
es

 (
M

et
ric

 1
)

Average difference after mutation
Without mutations that cause no change

Fig. 5. Effect of mutation as measured
by metric 1. The two plots show the av-
erage effects, and those not including
the mutations that cause no change.

 0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Generation

P
ro

po
rt

io
n

of
 a

ll
m

ut
at

io
ns

Mutations that cause no change

Fig. 6. Proportion of mutations per
generation that cause no change in the
normalised matrix, and therefore cause
no change in the packing policy

166 A.J. Parkes, E. Özcan, and M.R. Hyde

Code bloat could be the cause of the downward trend in the effect of mutation.
As code bloat increases the proportion of the tree which has no effect (See ‘removal
bias’ theory [18] and ‘replication accuracy’ theory [15]), so the mutation operator
is more likely to mutate a subtree which has no effect anyway. Of the mutations
that do have an effect, the downward trend in the first 13 generations, followed by
the gradual increase, is an effect which requires further research. We suspect that
it involves the convergence of the population. For the one-dimensional bin packing
problem, it could be the case that the population has generally converged to a good
solution by around generation 13. If this is the case, then the results show that
the mutation operator makes smaller changes as the population is improving. We
would argue that this is a desirable quality, as it will make incremental changes to
the better policies in later generations, while not changing the core functionality
of the policy. Once the GP algorithm is generally improving the best individual
less frequently, and the population is more stagnant, code bloat becomes a larger
factor.

 0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

Generation

D
iff

er
en

ce
 b

et
w

ee
n

m
at

ric
es

 (
M

et
ric

 2
)

Average difference after mutation
Without mutations that cause no change

Fig. 7. Effect of mutation as measured
by metric 2. The two plots show the av-
erage effects, and those not including
the mutations that cause no change.

Fig. 8. Effect of mutation as measured
by metric 3. The two plots show the av-
erage effects, and those not including
the mutations that cause no change.

Figure 7 shows the results calculated with metric 2, which follow the same pat-
tern, but the difference is measured as larger thanmetric 1. This could suggest that
the mutation operator often modifies the first few choices for each piece size, but
not the lower choices (for example the 10th and 11th choice of bin).

Figure 8 shows the results calculated by metric 3. Recall that this metric con-
siders how many preferences that follow each preference are the same, regardless
of the order of the preferences. It tells us how many swaps would be needed to get
from one preference permutation to the other. This metric suggests that, in later
generations, the mutation operator changes less the relative preference order. In
the early generations, the mutation operators make very large changes in the rela-
tive ordering of the bin preferences. The effect measured by metric 3 consistently
decreases throughout the run, unlike the other two metrics.

Matrix Analysis of Genetic Programming Mutation 167

When a mutation swaps two preferences that are far apart in the preference or-
der, metric 3 measures a larger change. For example, if the 1st and 6th preferences
swap, then metric 3 measures a larger change than if the 1st and 2nd preferences
swap. In contrast, metric 1 measures the same change for both of those examples,
as only two preferences are different. From the results of metric 3, we can infer that
the changes later in the run are more localised, and that there is no significant fur-
ther reduction in the severity of mutation after generation 15.

Fig. 9. Histogram of metric 2 effect of
mutation

Fig. 10. Histogram of metric 3 effect of
mutation

Figures 5-8 show the results per generation, but it is also interesting to con-
sider the distribution of the mutation effects, rather than just the mean averages.
Figures 9 and 10 show histograms of all the mutations from all generations in all
50 runs, not including the mutations which cause no change. Figure 9 shows the
mutations measured with metric 2, and figure 10 shows the same mutations mea-
sured with metric 3. It is interesting to note that metric 2 measures the changes
as mostly high, and metric 3 measures them as mostly low. From metric 2, we can
say that the changes in the preference order mostly appear early in the preference
order, which is the most influential part. By far, the most common difference value
is 57, which represents a mutation which causes a change in the policy where, for
each piece, the first choice of bin will be modified. Even though the first choices
often change, figure 10 shows that in general the mutations represent just a few
swaps of adjacent preferences. The difference between figures 9 and 10 show that
the magnitude of the mutation depends upon which metric is used to measure it.

8 Conclusions

We have presented a method for analysing the effects of the GP mutation opera-
tor in a normal GP run. It is applicable whenever the individual is a mathemati-
cal expression, with integer variables. Because of the integer input, the expression
can be represented as a matrix of values, representing the value returned for each

168 A.J. Parkes, E. Özcan, and M.R. Hyde

possible combination of inputs. In this study, the individuals were tree-based ex-
pressions which acted as index policies for the online bin packing problem. They
gave a heuristic score to each bin, and the highest scoring bin received the next
piece. The individuals therefore acted as policies for the handling of pieces when
they arrive, depending on the bins available at the time.

The results show that the mutation operator causes large changes in the be-
haviour of the policies. It is generally not an operator that makes small changes to
improve a policy incrementally. Over the course of the run, the effect of the mu-
tation operator on the phenotype changes. Its effect was larger at the beginning
of the run, and reduces as the run progresses. These results seem to fit with the
‘replication accuracy’ theory of code bloat [15], which states that fit individuals
which are large enough to not be affected by mutation are more likely to survive in
the population, as their behaviour is unchanged from one generation to the next.
Further research could confirm this. We also plan to use the matrix analysis tool
to analyse the effects of the crossover operator on the individuals.

There are many areas where this type of analysis tool could be used. For exam-
ple, it could be used during a GP run to vary the severity of mutation depending
on the effect it is having on the population. It could be used to assess the effec-
tiveness of bloat control methods, which usually operate simply on the size of the
trees. The analysis method presented here offers the chance to measure bloat by
the effects of the mutation operator. Once developed further, this technique could
be a valuable tool for effective parameter setting of the genetic operators in GP.

References

1. Allen, S., Burke, E.K., Hyde, M.R., Kendall, G.: Evolving reusable 3D packing
heuristics with genetic programming. In: Proceedings of the ACMGenetic and Evo-
lutionary Computation Conference (GECCO 2009), Montreal, Canada, pp. 931–938
(July 2009)

2. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an anal-
ysis of measures and correlation with fitness. IEEE Transactions on Evolutionary
Computation 8(1), 47–62 (2004)

3. Burke, E.K., Hyde, M.R., Kendall, G.: Providing a memory mechanism to enhance
the evolutionary design of heuristics. In: Proceedings of the IEEE World Congress
on Computational Intelligence (WCCI 2010), Spain, pp. 3883–3890 (July 2010)

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: Explor-
ing Hyper-heuristic Methodologies with Genetic Programming. In: Mumford, C.L.,
Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201. Springer,
Heidelberg (2009)

5. Burke, E.K., Hyde,M.R., Kendall, G.: Evolving Bin Packing Heuristics with Genetic
Programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K.,Merelo-Guervós, J.J.,
Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer,
Heidelberg (2006)

6. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic genera-
tion with genetic programming: Evolving a jack-of-all-trades or a master of one. In:
Proceedings of the 9th ACM Genetic and Evolutionary Computation Conference
(GECCO 2007), London, UK, pp. 1559–1565 (July 2007)

Matrix Analysis of Genetic Programming Mutation 169

7. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: The scalability of evolved on
line bin packing heuristics. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2007), Singapore, pp. 2530–2537 (September 2007)

8. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: A genetic programming
hyper-heuristic approach for evolving two dimensional strip packing heuristics. IEEE
Transactions on Evolutionary Computation 14(6), 942–958 (2010)

9. Ekárt, A., Németh, S.Z.: A Metric for Genetic Programs and Fitness Sharing. In:
Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.)
EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)

10. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability test-
ing. Evolutionary Computation 16(1), 31–61 (2008)

11. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dis-
patching rules: An autonomous learning approach. Journal of Scheduling 9(1), 7–34
(2006)

12. Gittins, J.C.: Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society. Series B (Methodological) 41(2), 148–177 (1979)

13. Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic programming.
IEEE Transactions on Evolutionary Computation 12(4), 506–524 (2008)

14. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing
problem. Discrete Applied Mathematics 28(1), 59–70 (1990)

15. McPhee, N.F., Miller, J.D.: Accurate replication in genetic programming. In: Eshel-
man, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA 1995), July 15-19, pp. 303–309. Morgan Kaufmann, Pittsburgh (1995)

16. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In: Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2011, pp. 2011–2018. ACM, New York (2011)

17. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
lulu.com, freely available at (2008), http://www.gp-field-guide.org.uk

18. Soule, T., Foster, J.A.: Removal bias: a new cause of code growth in tree based evo-
lutionary programming. In: 1998 IEEE International Conference on Evolutionary
Computation, Anchorage, Alaska, USA, May 5-9, pp. 781–786 (1998)

http://www.gp-field-guide.org.uk

An Ecological Approach to Measuring Locality

in Linear Genotype to Phenotype Maps

Tom Seaton, Julian F. Miller, and Tim Clarke

Department of Electronics
University of York, YO10 5DD

{tas507,jfm7,tc2}@ohm.york.ac.uk

Abstract. Recent research has considered the role of locality in GP rep-
resentations. We use a modified statistical technique drawn from numer-
ical ecology, the Mantel test, to measure the locality of integer-encoded
GP. Weak locality is identified in a case study on Cartesian Genetic Pro-
gramming (CGP), a directed acyclic graph representation. A method of
varying syntactic program locality continuously through the application
of a biased mutation operator is demonstrated. The impact of varying
locality under the new measure is assessed over a randomly generated set
of polynomial symbolic regression problems. We observe that enforcing
higher levels of locality in CGP is associated with poorer performance
on the problem set and discuss implications in the context of existing
models of GP genotype-phenotype maps.

Keywords: Cartesian genetic programming, Locality.

1 Introduction

The notion of locality is a well-established property of representations in genetic
algorithms, known to have an impact on search performance [1–4]. Locality de-
scribes the design heuristic that small changes to a genotype, due to evolutionary
operators, should lead to correspondingly small changes in phenotype. The con-
cept can also be related to the assertion that the genotype to phenotype map
(GPM) should support a strong causal relationship between the evolving data
structure and its decoded expression [5]. Recently, work in genetic programming
has focused on extending the original concept of locality from binary strings to
standard, GP tree-based representations [6].

This paper considers the design of a novel method of measuring locality, with
the aim of assessing indirect, integer-encoded GPM. Our goal is to establish a
statistical approach which can then be applied to linear genotypes [7], encom-
passing methods such as Cartesian Genetic Programming (CGP) [8], Grammat-
ical Evolution [9, 10] or Linear GP [11]. Characteristically, these GP encodings
feature an intermediate level of mapping between genotype and fitness evalu-
ation not traditionally incorporated in tree-based GP. The method described
here adopts a long standing technique from the field of numerical ecology, the
Mantel test [12–18]. The purpose of the test is to provide a means of rigorously
determining the significance of measured correlations between distance matrices.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 170–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Ecological Approach to Measuring Locality 171

In Section 2, we briefly review related work on measuring locality in the GA
and GP literature and comment on previous definitions. Section 3 provides nec-
essary background on the Mantel statistic and introduces an extension to enable
the technique to address correlations in genotype-phenotype maps. Section 4
addresses selection of metrics on the genotype and phenotype space. Section
5 presents a set of preliminary experimental outcomes and analyses in a case
study on standard Cartesian GP, over a randomised set of symbolic regression
problems. We then discuss these initial results and conclude.

2 Related Work

The early work of Rothlauf is generally cited as the seminal work on locality
in the study of representations [1]. Rothlauf proposed aggregating the degree
of change in phenotype over the local neighbourhood of each genotype, defined
with respect to the particular variational operators:

L =
∑
g∈G

∑
p′∈adj∗(g)

dP (p, p
′)− d−P (1)

where L ≥ 0.0 is the level of locality (L = 0.0 is maximal). In our notation we use
G, dG, P and dP to denote the genotype space, phenotype space and respective
distance metrics over each. Equation 1 measures the locality of a map S : G → P
over all neighbouring pairs of genotypes in genotype space, where adj∗(g) denotes
the set of phenotypes which correspond to the adjacent neighbours of g in G.
Distances are summed up under the phenotype metric, relative to the minimum
distance in phenotype space, which we denote d−P . Thus, in a high locality map
under Rothlauf’s definition, L tends to 0 and genotypes which are neighbours in
genotype space also have phenotypes which are similar under the metric applied
in that space. The original expression is not normalised with respect to the size
of the search space - more recently, extensions to Rothlauf’s work on locality in
GA for binary strings were proposed by Chiam et. al [19].

Studies of locality in GP [6, 20, 21], by contrast, have considered locality as
a direct property of the mapping between genotype and corresponding fitness
value. Galvan-Lopez et. al. considered a set of three definitions of locality, derived
from Rothlauf’s work, and systematically examined each over a set of standard
GP benchmarks [6]. This approach would seem appropriate for classical tree GP,
where there is no explicit intermediate state between genotype and fitness. How-
ever, for indirect GP maps which feature distinct phenotypes, we argue that an
understanding of locality should also be sought at the intermediate level. Fur-
thermore, current measures of locality by definition do not consider any relation-
ships at genotype distances beyond the immediate neighbourhood. The method
presented in this paper explores an alternative to these aggregative approaches
and studies directly the degree of correlation between genotype distances and
phenotype distances. There exists some commonality with the method of fitness
distance correlation (FDC) extensively addressed in both the GA and GP liter-
ature [22]. However, fitness distance correlation develops a measure of problem

172 T. Seaton, J.F. Miller, and T. Clarke

difficulty, by considering distances to the generally unknown optimum in fitness
space. We are instead preoccupied with understanding locality at the syntactic
level - the changes that are introduced into program structure by variations in
integer genotype. This enables a problem-independent view, focusing on analysis
of the representation and search operators, rather than addressing performance
against a particular fitness landscape.

3 The Mantel Test

The Mantel Test is a general, non-parametric statistical resampling technique
used in the exploration of correlations between two triangular distance matri-
ces [12] Historically, the test was designed to address the analysis of spatial and
temporal data from disease clustering. It has seen considerable application in nu-
merical ecology [14–17] and on genetic and linguistic data [18]. In a mathematical
sense, the Mantel test provides a permutation-based method of determining the
statistical significance of linear or monotonic relationships. The test is applicable
in situations when we wish to determine whether a correlation exists in the dis-
tances between elements sampled between two metric spaces. Note in particular
that it is not appropriate to use standard significance tests because distances
derived from the same element cannot generally be considered independent of
each other [18]. The technique is applied between two square distance matrices
of size n, labelled X and Y. The matrices contain the pair-wise differences cal-
culated between all elements of a sample under two measures of distance dX and
dY . By way of illustration, in the ecological context X might represent the geo-
graphical distances between samples of a species and Y corresponding measured
genetic distances. Differences are assumed to adhere to the symmetry property
of a metric, so both matrices are symmetric with zeros along the diagonal. The
original, ‘standardised mantel statistic’ is then given by the expression [23]

rM =
1

s− 1

n−1∑
i=1

n∑
j=i+1

(
Xi,j − X̄

σX

)(
Yi,j − Ȳ

σY

)
(2)

where rM is the linear correlation coefficient obtained, X̄, Ȳ and σX , σY are
the mean and standard deviation calculated for X and Y respectively and s =
n(n−1)/2. This is equivalent to calculating the Pearson-product moment (linear
correlation) over the upper-half of the matrix.

3.1 Significance Testing on Genotype-Phenotype Maps

For rM to be a useful statistic under sampling, significance testing should be
carried out against the null hypothesis, H0 that the distances in X and Y are
uncorrelated. A key realisation of the Mantel test is that rows and columns of
the matrix are exchangeable under the null hypothesis. That is, we expect to
be able to freely rearrange the labels of each set of distances. By permuting the
rows (and corresponding columns) of X and recalculating rM , a permutation

An Ecological Approach to Measuring Locality 173

distribution can be constructed from which the significance of correlations in
the unpermuted data is obtained. Given that the null hypothesis is true, we
would expect that the unpermuted data should lie somewhere in the center of
this range. The test proceeds by obtaining the original unpermuted coefficient
r0M and a set of coefficients under permutation of X, denoted r = {r1M ...rNM},
where N is the total number of permutations. Let χ ⊆ r such that x ∈ χ ≥ r0M .
The probability of accepting the null hypothesis in the presence of an apparent
positive correlation is then given by the one sided test

P (H0|r) ≈ ||χ||
N

(3)

that is the number of instances in which the recalculated coefficient equals or
exceeds r0M , divided by the total number of permutations. A similar test can be
carried out for the case of negative correlation.The test does not necessarily have
to support a linear model: it may be appropriate to compute rM using an alter-
native statistic, such as Spearman rank-based correlation, using the permutation
test in exactly the same fashion. The result converges monotonically on the true
significance at large N . In practice, the number of permutations recommended
in the literature varies, but a value in the range of 1000-10000 permutations is
typically suggested [23].1

For the application of the Mantel statistic to artificial GPM, a method is
required to calculate it over particular distance intervals. This is to establish
whether a correlation exists only for closer, or more distant, genotypes. A similar
situation arises in numerical ecology, where correlations may be limited by time,
or by geographic distance. Previous derived techniques of the Mantel statistic
have consider correlation as a function of range, such as the ‘Mantel correlogram’,
which applies a model matrix to examine correlations over particular distance
classes [14]. We adopt a simplified approach, explicitly sub-dividing the distance
matrix. Let XU be the upper triangle of X. A set of distance classes are selected
such that each distance class Dp,q is a subset of the elements of XU where
p ≤ Xi,j < q. Hence, a distance class contains the elements over which rM is
computed which fall within the range (p, q). The corresponding set of distances
at the same index positions inYU are also found. The coefficient rM is calculated
seperately for each distance class and significance values derived as before, by
permuting the original matrix and recomputing rM over that interval.

4 Distance Metrics under the Mantel Statistic

To derive distances between genotypes and phenotypes, an appropriate metric
must be selected for each space. Which metrics are suitable is informed by the
choice of representation and variation operators. For this initial analysis, we
neglect crossover and focus on the mutation operator. Numerous proposals have
been put forward for appropriate metric distance measures in GA/GP genotype
spaces, see for example the review in [25]. These have included classes such as:

1 Standard methods for carrying out permutation tests are supported in numerical
ecology statistical packages such as ecodist and vegan [24], in R.

174 T. Seaton, J.F. Miller, and T. Clarke

M1. Edit distances (e.g. Hamming, Levenstein in the case of strings and tree or
graph edit distances respectively. [6, 26])

M2. Subtree distance (e.g. Tree Alignment [27], Keijzer distance. [28])
M3. Information compression (e.g. Normalised Compression Distance. [6])
M4. Probabilistic measures (e.g. Subtree Crossover Operator. [29])

Although it is typically practical to define strict metrics for the genotype space
under the assumptions made in M1, M2 and M3, those measures based directly
on probabilities usually violate one or more of the metric criteria2. Calculation
of the Mantel statistic only requires that measures adhere to the symmetry
criterion [23]. We are therefore in principle free to select from amongst each
of the above classes of metric. As noted in [6], there is no priori knowledge of
which distance measures are most appropriate to describe differences on program
spaces. The approach described here chooses distance measures of types (3)
and (4). Our justification for this is one of pragmatism: to avoid being tied to
representation specific measures in our analysis and because of the potential
complexity of computing edit distances on large graphs (the graph edit distance
problem is NP-hard in general). A convenient measure for integer genotypes is
the expected number of independent attempts that would be required to generate
one genotype from another through a single mutation. Assuming that the two
genotypes are mutually reachable (Definition 1), then this is just the inverse of
the probability of mutating between both genotypes. We refer to this semimetric
as the expected variation distance M̄ . The measure has the advantage that it
defines distance based on the actual transition probability.

Definition 1 (Mutually reachable genotypes). A pair of genotypes (g,g′)
are mutually reachable under some variation operator V , given that the proba-
bility of deriving g′ in a single operation V (g) is greater than zero.

Definition 2 (Expected variation distance). A function M̄ : (g, g′, V) → Z

on a pair of mutually reachable genotypes (g, g′) where M̄ gives the expected
number of independent single operations on g such that there is an instance
V (g) = g′. If g = g′, we define M̄(g, g, V) ≡ 0.

Derivation for CGP with Uniform Mutation Operator. We can illustrate
this approach by calculating the expected variation distance between a pair
of standard feed-forward CGP genotypes g and g′. Genotypes are assumed to
be equal sized integer strings of length n, which represent a single row with
feedforward connections (see [8] for details), where output is derived from the
right-most node. Assume there are x matching integers between g and g′ and
n− x = y different values. The genotype is split into integers corresponding to
connections and functions. From the y different integer values, we have a subset of
size yF different values corresponding to functions and yC values corresponding

2 A metric function d on metric space Q satisfies: 1. d(x, y) ≥ 0; 2. d(x, y) = 0 iff
x = y; 3. d(x, y) = d(y, x) ; 4. d(x, y) ≥ d(x, z)+ d(z, y) where x, y, z ∈ Q. We adopt
the conventional term semimetric when the triangle-inequality is relaxed.

An Ecological Approach to Measuring Locality 175

Table 1. CGP Search Parameters

Representation CGP Crossover No
Nodes 10 Selection Strategy (μ + λ) = (4 + 6)

Structure Single row feed-forward Population Size 10
Function Set {+,-,*, ÷} Fitness Samples 10 ∈ {−2 : 2}
Terminal Set {0,1} Max Generations 2000

Mutation Rate 0.15 Runs 500

to connections. Assume a mutation operator acts on all values with uniform
probability m, where a mutation changes the allele to any other feasible integer.
Then, the probability of x values remaining the same is (1−m)x. The probability
of yF values from g mutating to the same function as that in g′ is (m

F−1)
yF , where

F is the number of possible function choices. Let yC be the set of integer values
which contribute to yC . Each connection i ∈ yC has ci − 1 possible alternatives
(where ci is in general the total number of inputs, plus all previous nodes). Thus

the probability of obtaining the same set of connections is myC

∏
i∈yC

1

ci − 1
. The

total probability u of mutating from one CGP genotype to another is therefore

u(g, g′) = (1−m)x · (
m

F − 1
)yF ·myC

∏
i∈yC

1

ci − 1
(4)

Taking the inverse and collecting terms gives the expected number of indepen-
dent mutations required, M̄ = 1

u :

M̄ =
(F − 1)yF

my (1−m)x

∏
i∈yC

ci − 1 (5)

Distances between genotypes under uniform mutation can be computed in other
integer representations such as grammar GP in a similar fashion.

5 Experiment

To test our approach, 50 biarity tree samples were obtained from a representa-
tive CGP genotype space using an arithmetic function set (including the pro-
tected division operator). Table 1 summarises the parameters used to initialise
each genotype. Sample biarity trees were produced recursively under the uni-
form mutation operator to a depth of 7 mutations, generating 511 genotypes per
sample.3 The expected variation distance M̄ was obtained pair-wise for all mem-
bers of each sample. The approach provided a set of 50 corresponding matri-
ces each containing ∼150000 genotype distances. CGP phenotypes are directed
acyclic graphs. Measurements of the syntactic distance between CGP phenotypes
(dP) were derived using the Normalised Compression Distance (NCD) (Equation
6) adapting the procedure of [6] for tree GP, such that

3 Conceptually, this is a method of biased sampling similar to chain-referral sampling,
adopted extensively in sociological research [30]. Sampling via the mutation operator
generates trees which partially span the local neighbourhood for each genotype.

176 T. Seaton, J.F. Miller, and T. Clarke

dP (p, p
′) =

C(pp′)−min(C(p), C(p′))
max(C(p), C(p′)

(6)

where C is a function giving the length in bits of the string representation,
under UTF8, of the argument for a particular compressor. Each phenotype was
decoded into the prefix string representing the corresponding encoded arith-
metic expression. This expression excludes neutral nodes (junk) which do not
contribute to the phenotype. Pair-wise application of the NCD gives a measure
of similarity between phenotypes in the range of {0.0 : 1.0} + ε, using the gzip
algorithm (where ε ≈ 0.1, an error term induced because the compression is
not ideal). To provide a controllable method of exploring the impact of chang-
ing locality in a representation, an intermediary bias uαβ was introduced to the
uniform mutation operator:

uαβ(p, p
′) =
(
1 + e−α(dP (p,p′)−β)

)−1

(7)

The bias uαβ was employed to change the expected mutation distance be-
tween each pair of genotypes and is a standard sigmoid function, adjusted by a
scaling parameter α and translation β respectively. For each application of the
mutation operator to a genotype, uαβ defined the probability that a proposed
set of mutations will be accepted. The process is repeated until an acceptable
mutation is found and returned by the operator. To first order, this gives an
adjusted expected variation distance, where

M̄αβ(p, p
′)−1 ≈ uαβ(p, p

′)× u(p, p′) (8)

Hence by scaling α, the likelihood that mutations will result in phenotypes which
are syntactically similar can be defined. Varying the mutation bias equates to
scaling the locality of the mapping. The threshold value assumed in the sigmoid
function is set to an intermediate level of similarity, β = 0.2. An example (for
one CGP sample) is given in Figure 1. The graphs are scatterplots, binned into
hexagons, illustrating qualitatively the distribution observed between the log-
scaled expected variation distance M̄ and normalised compression distance dP .
The result is shown between two similar maps at low locality (α = 20, 10) and
at high locality (α = −10,−20). This directly compares the change in locality
induced by the bias. Inspecting the scatter graphs appears to indicate a weakly
positive trend, apparent over short distances. This follows from the decreasing
likelihood of making larger syntactic changes to the phenotype, under the uni-
form mutation operator. Relatively probable mutations, M̄ ∼ [0 - 20] correspond
to smaller changes in compression distance, dP ∼ [0.1 − 0.3]. The majority of
distances observed in the region M̄ ∼ [20 - 40] (between genotypes situated on
lower branches of the sample) occur with lower probability and correspond to
greater variation in syntactic change.

Using the Mantel test, we can validate these qualitative observations. Figure
2 shows the range of corresponding Mantel coefficients rM calculated over all
samples, for linear correlation, as a function of distance. It can be inferred that
an overall weak positive correlation exists in the CGP mapping, which falls off as

An Ecological Approach to Measuring Locality 177

Fig. 1. Illustration of the effect of the NCD mutation bias on genotype-phenotype
correlation. Top left: Lowest locality. Bottom right: Highest locality.

a function of genotype distance. A set of 1000 permutations was then generated
for each distance matrix to test significance at P (H0) < 0.005, for a set of 8
distance classes from M̄ = 0.0 : 40.0. The correlations found to be significant
under permutation are labelled (*). Inclusion of the Mantel test therefore gives
a firm basis from which to reject the null hypothesis and accept the correlation.
The effects of the mutation bias are also apparent (contrast positive α with
negative α).

To explore the relationship between syntactic locality and performance, a pre-
liminary experiment was carried out using a randomly generated selection of 38
symbolic regression problems. The problem instances were restricted in com-
plexity to simple 5th order polynomials with integer coefficients in the range of
{-2:2}. These are basic problems known to be solvable consistently using only
the simple CGP representation analysed, without the requirement for additional
features such as modularity. Five instances of each problem were considered,
applying the mutation bias with α = {−20,−10, 0, 10, 20} and β = 0.2. Fit-
ness was evaluated by deriving the euclidean distance over the set of uniformly
distributed sample points. Other parameters (Table 1) were informed per com-
mon previous estimates in CGP [8]. The parameters have not been optimised
to account for interaction with the mutation bias. Table 2 shows the corre-
sponding probability of success η at each locality level after 2000 generations,
estimated in each instance from the fraction of 500 runs which successfully re-
covered the expression. For the 21 polynomial problems with an average success

178 T. Seaton, J.F. Miller, and T. Clarke

Fig. 2. Measured Mantel correlation for CGP with different levels of mutation bias.
Top left: Lowest locality. Bottom right: Highest locality.

probability η̄ greater than 10% (denoted with a †), a general tendancy can be
observed towards better performance at lower levels of locality. Of this subset, in
19 of the 20 cases the probability of success was higher for α = 20 than α = −20.
In the remaining cases with success probability below 10%, no measurable trend
is observable outside of experimental error. All problems were solved successfully
over at least one set of runs.

6 Discussion

The weak correlation observed between genotype and phenotype distances in
Figures 1 and 2 is consistent with the variation in structure that small mutations
can impose in this representation. Altering a single node connection in CGP
may cause a large number of functions to be disconnected. Similarly, if the
same node is connected to many neighbours, then adjusting it will produce a
disproportionate change to the syntax of a program. There is therefore an overall
tendancy for parents to produce syntactically similar offspring, but this is offset
by the potential for large structural change. The relatively small impact of the
mutation bias also suggests this relationship is difficult to suppress, given that
it is a direct consequence of utilising a graph-based structure.

An Ecological Approach to Measuring Locality 179

Table 2. CGP success probability η with respect to locality

Polynomial Expression
α η̄ ≥ 0.1?

-20 -10 0 10 20

−1 − 2x3 + x4 0.236 0.268 0.286 0.304 0.288 †
−2 − 2x − x2 − x4 0.102 0.116 0.158 0.142 0.174 †

−2 − x3 0.254 0.314 0.386 0.404 0.450 †
−2x2 + 2x4 + 2x5 0.152 0.196 0.226 0.196 0.244 †

−2x2 − 2x3 0.556 0.570 0.594 0.616 0.676 †
−2x3 + x4 0.646 0.758 0.792 0.814 0.790 †
−2x3 + x5 0.196 0.278 0.350 0.360 0.394 †

−x2 + x3 + 2x4 0.684 0.722 0.790 0.840 0.866 †
−x − x4 0.626 0.744 0.792 0.840 0.868 †

1 − 2x2 − 2x3 0.556 0.570 0.594 0.616 0.676 †
1 − x + 2x3 + x4 0.290 0.324 0.370 0.322 0.326 †
1 − x + x2 − x3 0.766 0.840 0.878 0.894 0.924 †
1 + x3 + 2x5 0.170 0.214 0.198 0.198 0.216 †

2 + 2x − x2 − 2x3 0.228 0.226 0.260 0.248 0.272 †
2 + x2 − x3 0.422 0.486 0.516 0.516 0.572 †

2x2 − x3 + 2x4 0.382 0.446 0.492 0.524 0.522 †
2x2 − x3 + x4 − x5 0.198 0.256 0.232 0.290 0.282 †
2x2 + x3 − 2x4 − x5 0.504 0.592 0.540 0.536 0.524 †

2x + x2 − 2x3 0.202 0.216 0.206 0.230 0.276 †
x + 2x2 − 2x3 0.610 0.672 0.642 0.670 0.684 †

−2 − 2x2 − 2x5 0.034 0.042 0.038 0.014 0.028 -

−x + 2x + x4 − 2x5 0.122 0.122 0.112 0.110 0.116 †
−2 + 2x − x2 − 2x3 + 2x5 0.002 0.006 0.000 0.000 0.000 -

−2 + x − x2 − 2x4 − 2x5 0.001 0.014 0.004 0.004 0.040 -

−2x5 − 2x3 − 2x2 − 2x − 1 0.016 0.016 0.004 0.040 0.008 -

−2x + 2x3 + 2x4 + 2x5 0.064 0.050 0.040 0.048 0.040 -

−2x + 2x3 + x4 − 2x5 0.006 0.020 0.006 0.006 0.006 -

−2x + 2x − 2x2 − x4 − 2x5 0.002 0.002 0.000 0.000 0.002 -

−2x + x2 − 2x3 + 2x4 − 2x5 0.006 0.010 0.004 0.006 0.008 -

1 − 2x + x2 − x3 − x5 0.120 0.098 0.092 0.084 0.046 -

1 − x3 + 2x4 − 2x5 0.046 0.036 0.030 0.038 0.022 -

1 + 2x2 − x3 + 2x4 − 2x5 0.020 0.044 0.024 0.018 0.006 -

1 + 2x − x2 + 2x5 0.106 0.112 0.092 0.086 0.082 -

2 − 1x − 2x2 + 2x3 − x4 − x5 0.008 0.002 0.002 0.002 0.002 -

2 + 2x2 + x3 − 2x4 − x5 0.070 0.068 0.050 0.048 0.042 -

2 + x − 2x2 − 2x3 + x5 0.038 0.034 0.030 0.030 0.042 -

2 + x − x2 − x4 − x5 0.052 0.024 0.032 0.032 0.028 -

2 + x − x2 + x4 − x5 0.052 0.024 0.032 0.032 0.028 -

The trend of the symbolic regression results implies, somewhat counter-
intuitively, that higher levels of correlation between genotype and phenotype
distance tended to produce poorer performance in CGP. We consider three fea-
sible explanations. Firstly, it is likely that the constraints imposed by high lo-
cality have restricted the diversity of the search, which may render intermediary
schema difficult to reach. Secondly, in Rothlauf’s model of locality, poorer per-
formance under higher locality can be associated with fitness landscapes which
are misleading [1] or deceptive (for example, GA trap functions). Further inves-
tigation of the fitness landscapes for these specific problem instances would be
required to determine whether this is the case for this representation. Thirdly,
it is unclear how features of the CGP genotype-phenotype map not addressed
here, such as high redundancy, or structural bias [26] contribute to the trend.

In practice, using locality as a general performance predictor, or as a method
of directly tuning existing genotype-phenotype maps, is clearly a challenging is-
sue in integer encoded GP. Bypassing the intermediary stage and relating geno-
type and fitness values may lead to better outcomes on individual problems, but
provides limited guidance for improving GP representations in general. Despite
these outstanding problems, from this initial work we anticipate that the Mantel

180 T. Seaton, J.F. Miller, and T. Clarke

test will prove a useful addition to existing approaches in statistical analyses
of GP genotype-phenotype maps. It is encouraging that a technique founded in
ecology can also contribute to the study of a complex artificial system.

7 Conclusions

The Mantel test, a statistical technique from numerical ecology, was adopted to
analyse the locality of GP maps. As a case study, we examined an established in-
teger representation, CGP. It was observed that a weakly positive correlation ex-
ists for CGP over short genotype distances, when using arithmetic function sets.
We introduced a method of scaling the locality of a CGP genotype-phenotype
map, by providing a bias into the mutation operator based on the normalised
compression distance between phenotypes. To our knowledge, this is the first
instance of explicitely controlled locality explored within a graph-based repre-
sentation. The effect of varying locality on performance was measured for ran-
domly generated polynomial symbolic regression problems. Higher locality was
associated with reduced performance over 19 instances. We infer that employing
less local maps may be advantageous on these classes of problem. In the future,
we intend to test the robustness of this approach by applying it to other non-
standard genotype-phenotype maps, such as grammar GP. Direct comparisons
with alternative locality measures would also be appropriate.

Acknowledgements. Particular thanks are due to Dr. Dan Franks and other
members of the York Centre for Complex Systems Analysis for advice concerning
the Mantel statistic.

References

[1] Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, pp. 33–
96. Springer, Heidelberg (2006)

[2] Gottlieb, J.: Empirical Analysis of Locality, Heritability and Heuristic Bias in Evo-
lutionary Algorithms: A Case Study for the Multidimensional Knapsack Problem.
Evolutionary Computation 43, 441–475 (2004)

[3] Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimisation. John
Wiley and Sons, Inc. (2000)

[4] Rothlauf, F., Goldberg, D.E.: Pruefer Numbers and Genetic Algorithms: A Lesson
onHowtheLowLocality of anEncodingCanHarmthePerformanceofGAs. In:Deb,
K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 395–404. Springer, Heidelberg (2000)

[5] Droste, S., Wiesmann, D.: On Representation and Genetic Operators in Evolu-
tionary Algorithms. Technical report (SFB) 531: [249], Univ. of Dortmund (1998)

[6] Galván-López, E., McDermott, J., Brabazon, A.: Defining locality as a problem
difficulty measure in genetic programming. Genetic Programming and Evolvable
Machines, 1–37 (2011)

[7] Oltean, M., Grosnan, C., Diosan, L., Mihaila, C.: Genetic Programming with
Linear Representation: A Survey. Int. J. on Artificial Intelligence Tools, 197–238
(2008)

[8] Miller, J.F. (ed.): Cartesian Genetic Programming. Springer, Heidelberg (2011)

An Ecological Approach to Measuring Locality 181

[9] Rothlauf, F., Oetzel, M.: On the Locality of Grammatical Evolution. In: Collet, P.,
Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 320–330. Springer, Heidelberg (2006)

[10] Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An
Analysis of Genotype-Phenotype Maps in Grammatical Evolution. In: Esparcia-
Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010.
LNCS, vol. 6021, pp. 62–73. Springer, Heidelberg (2010)

[11] Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Genetic and Evolu-
tionary Computation. Springer, Heidelberg (2007)

[12] Mantel, N.: The detection of disease clustering and a generalized regression ap-
proach. Cancer Research 27, 209–220 (1967)

[13] Dietz, E.J.: Permutation tests for association between two distance matrices. Sys-
tematic Zoology 32, 21–26 (1983)

[14] Oden, N.L., Sokal, R.R.: Directional autocorrelation: an extension of spatial cor-
relograms to two dimensions. Systematic Biology 35, 608 (1986)

[15] Legendre, P., Fortin, M.-J.: Spatial pattern and ecological analysis. Vegetatio 80,
107–138 (1989)

[16] Legendre, P., Lapointe, F.J., Cagrain, P.: Modeling brain evolution from behavior:
a permutational regression approach. Evolution 48, 1487–1499 (1994)

[17] Lichstein, J.W.: Multiple regression on distance matrices: a multivariate spatial
analysis tool. Plant Ecology 188, 117–131 (2006)

[18] Legendre, P., Fortin, M.-J.: Comparison of the Mantel test and alternative ap-
proaches for detecting complex multivariate relationships in the spatial analysis
of genetic data. Molecular Ecology Resources, 831–844 (2010)

[19] Chiam, S.C., Tan, K.C., Goh, C.K., Al Mamun, A.: Improving locality in binary
representation via redundancy.. IEEE Trans. on Sys. Man. and Cybernetics (B) 38,
808–825 (2008)

[20] McDermott, J., Galván-Lopéz, E., O’Neill, M.: A Fine-Grained View of GP Lo-
cality with Binary Decision Diagrams as Ant Phenotypes. In: Schaefer, R., Cotta,
C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 164–173.
Springer, Heidelberg (2010)

[21] Krawiec, K.: Semantically Embedded Genetic Programming. In: Genetic and Evo-
lutionary Computation Conference, Dublin, Ireland, pp. 1379–1386 (2011)

[22] Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem dif-
ficulty for genetic algorithms. In: Proc. of the 6th Int. Conference on Genetic
Algorithms, vol. 129, pp. 184–192. Citeseer (1995)

[23] Legendre, P., Legendre, L.: Numerical Ecology, 2nd edn. Developments in Envi-
ronmental Modelling. Elsevier (1998)

[24] Goslee, S.C., Urban, D.L.: The ecodist Package for Dissimilarity-based Analysis
of Ecological Data. Journal Of Statistical Software 22 (2007)

[25] Hien, N.T., Hoai, N.X.: A Brief Overview of Population Diversity Measures in
Genetic Programming. In: 3rd Asian-Pacific Workshop on Genetic Programming,
pp. 128–139 (2006)

[26] Payne, A.J., Stepney, S.: Representation and Structural biases in CGP. In: IEEE
Congress on Evolutionary Computation, vol. 8, pp. 1064–1071. IEEE (2009)

[27] Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. PhD the-
sis, Univ. of Lausanne (2004)

[28] Keijzer, M.: Efficiently Representing Populations in Genetic Programming. In:
Advances in Genetic Programming, vol. 2, pp. 259–278. MIT Press (1996)

[29] Vanneschi, L.: Crossover-Based Tree Distance in Genetic Programming. IEEE
Transactions on Evolutionary Computation 12, 506–524 (2008)

[30] Biernacki, P., Waldorf, D.: Snowball Sampling: Problems, Techniques and Chain-
Referral Sampling. Socio. Methods And Research 10, 141–163 (1981)

Coevolution in Cartesian Genetic Programming

Michaela Šikulová and Lukáš Sekanina

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Božetěchova 2, 612 66 Brno, Czech Republic
{isikulova,sekanina}@fit.vutbr.cz

Abstract. Cartesian genetic programming (CGP) is a branch of genetic
programming which has been utilized in various applications. This paper
proposes to introduce coevolution to CGP in order to accelerate the task
of symbolic regression. In particular, fitness predictors which are small
subsets of the training set are coevolved with CGP programs. It is shown
using five symbolic regression problems that the (median) execution time
can be reduced 2–5 times in comparison with the standard CGP.

Keywords: Cartesian genetic programming, Coevolution, Symbolic
regression.

1 Introduction

Cartesian genetic programming (CGP) is a variant of genetic programming (GP)
that uses a specific encoding in the form of directed acyclic graph and a mutation-
based search [11, 10]. CGP has been successfully employed in many traditional
application domains of genetic programming such as symbolic regression. It has,
however, been predominantly applied in evolutionary design and optimization
of logic networks.

The fitness evaluation is typically the most time consuming part of CGP
in these applications. In the case of digital circuit evolution, it is necessary to
verify whether a candidate n-input circuit generates correct responses for all
possible input combinations (i.e., 2n assignments). It was shown that testing
just a subset of 2n test vectors does not lead to correctly working circuits [6, 9].
Recent work has indicated that this problem can partially be eliminated in real-
world applications by applying formal verification techniques [15].

In the case of symbolic regression, k fitness cases are evaluated during one
fitness function call, where k typically goes from hundreds to ten thousands.
The time needed for evaluating a single fitness case depends on a particular ap-
plication. Usually, the goal of GP system design and GP parameters’ tuning is
to obtain a solution with predefined accuracy and robustness using a minimum
number of evaluated fitness cases or fitness function calls. In order to reduce
the evaluation time, fitness approximation techniques have been employed. One
of them is fitness modeling which uses fitness models with different degrees of
sophistication to reduce the fitness calculation time [7]. It is assumed that the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Coevolution in Cartesian Genetic Programming 183

fitness model can be constructed and updated in a reasonable time. The mo-
tivation for fitness modeling can be seen not only in reducing the complexity
of fitness evaluation but also in avoiding the explicit fitness definitions, coping
with noisy data, smoothing the fitness landscape and promoting diversity [14].
Fitness modeling is typically based on machine learning methods, subsampling
of training data or partial evaluation.

Fitness prediction is a low cost adaptive procedure utilized to replace fitness
evaluation. A framework for reducing the computation requirements of symbolic
regression using fitness predictors has been introduced for standard genetic pro-
gramming by Schmidt and Lipson [14]. Their method combines fitness prediction
with coevolution to eliminate disadvantages of a classic fitness modeling, in par-
ticular the effort needed to train a fitness model and adapt the level of approx-
imation and accuracy. The method utilizes a coevolutionary algorithm which
exploits the fact that one individual can influence the relative fitness ranking
between two other individuals in the same or a separate population [5]. Coe-
volving the training samples as the method of fitness modeling in GP has been
studied in many aplication domains [2, 3, 4, 8] and in the symbolic regression
problem [1, 12, 13, 14].

The goal of this paper is to introduce coevolving fitness predictors to CGP
and show that by using them, the execution time of symbolic regression can sig-
nificantly be reduced. The proposed coevolution of CGP programs and fitness
predictors in the symbolic regression problem uses two populations evolving
concurrently. Properties of individuals in the population of candidate programs
change in response to properties of individuals in the population of fitness pre-
dictors and vice versa. It is expected that CGP which has been accelerated using
coevolution will be implemented on a chip in our future work. Hence the pro-
posed approach will also be useful for evolvable hardware purposes. Note that
hardware implementation of CGP is straightforward which is not the case of
tree-based GP [10].

The proposed coevolutionary CGP method is compared with a standard CGP
on five symbolic regression problems. A brief comparison of CGP and tree-based
GP is also performed on selected benchmark problems.

The rest of the paper is organized as follows. Section 2 introduces Cartesian
genetic programming and its application to the symbolic regression problem. In
Section 3, a new coevolutionary approach to CGP is presented. Section 4 com-
pares the proposed coevolutionary algorithm with the standard CGP on five test
problems. Experimental results are discussed in Section 5. Finally, conclusions
are given in Section 6.

2 Cartesian Genetic Programming

In standard CGP (chapter 2 of [10]), a candidate program is modeled as an array
of nc (columns) ×nr (rows) of programmable elements (nodes). The number of
primary inputs, ni, and outputs, no, of the program is fixed. Each node input
can be connected either to the output of a node placed in previous l columns or

184 M. Šikulová and L. Sekanina

Fig. 1. A candidate program in CGP, where l = 4, nc = 4, nr = 2, ni = 1, no = 1,
na = 2, Γ = {+ (1), - (2), * (3), / (4)} and chromosome is: 0, 0, 1; 0, 0, 1; 0, 0, 3; 2, 2, 2;
3, 1, 4; 3, 0, 3; 3, 6, 2; 3, 6, 1; 8

to one of the program inputs. The l-back parameter, in fact, defines the level of
connectivity and thus reduces/extends the search space. Feedback is not allowed.
Each node is programmed to perform one of na-input functions defined in the
set Γ . Each node is encoded using na + 1 integers where values 1 . . . na are the
indexes of the input connections and the last value is the function code. Every
individual is encoded using nc · nr · (na + 1) + no integers. Figure 1 shows an
example of a candidate circuit. While the primary inputs are numbered 0 . . . ni−1
the nodes are indexed ni . . . ncnr + ni − 1.

A simple (1+λ) evolutionary algorithm is used as a search mechanism. It
means that CGP operates with the population of 1 + λ individuals (typically, λ
is between 1 and 20). The initial population is constructed either randomly or
by a heuristic procedure. Every new population consists of the best individual
of the previous population (so-called parent) and its λ offspring. However, as a
new parent an offspring is always chosen if it is equally as fit or has better fitness
than the parent. The offspring individuals are created using a point mutation
operator which modifies h randomly selected genes of the chromosome, where h is
the user-defined value. The algorithm is terminated when the maximum number
of generations is exhausted or a sufficiently working solution is obtained.

For symbolic regression problems, the goal of evolution is usually to minimize
the mean absolute error of a candidate program response y and target response
t. The fitness function (taking candidate program s as its argument) is then
defined

f (s) =
1

k

k∑
j=1

|y(j)− t(j)| (1)

where k is the number of fitness cases. Alternatively, the number of hits can
represent the fitness value. The number of hits is defined

f (s) =

k∑
j=1

g (y (j)) , where (2)

g (y (j)) =

{
0 if |y (j)− t (j)| ≥ ε
1 if |y (j)− t (j)| < ε

(3)

and ε is a user-defined acceptable error.

Coevolution in Cartesian Genetic Programming 185

3 Coevolution of Fitness Predictors in CGP

The aim of coevolving fitness predictors and programs is to allow both solutions
(programs) and fitness predictors to enhance each other automatically until a
satisfactory problem solution is found. We propose to adopt Schmidt’s and Lip-
son’s approach [14] using CGP for the task of symbolic regression. Figure 2 shows
the overall scheme of the proposed method. There are two concurrently working
populations: (1) candidate programs (syntactic expressions) evolving using CGP
and (2) fitness predictors evolving using a genetic algorithm.

Fig. 2. Coevolution of candidate programs and fitness predictors

186 M. Šikulová and L. Sekanina

3.1 Population of Candidate Programs

Evolution of candidate programs is based on principles of CGP as introduced
in Section 2. The fitness function for CGP is defined as the relative number of
hits. There are, in fact, two fitness functions for candidate program s. While the
exact fitness function fexact(s) utilizes the complete training set, the predicted
fitness function fpredicted(s) employs only selected fitness cases. Formally,

fexact (s) =
1

k

k∑
j=1

g (y (j)) (4)

fpredicted (s) =
1

m

m∑
j=1

g (y (j)) (5)

where k is the number of data points in the training set and m is the number of
data points in the fitness predictor (i.e., m is the size of a subset of the training
set).

3.2 Set of Trainers

The set of trainers which contains several candidate programs is used to evaluate
fitness predictors. The proposed implementation differs from [14] in the organi-
zation and update strategy. In particular, the set of trainers is divided into two
parts. The first part is periodically updated from the population of candidate
programs (the best-scored candidate program is sent to the trainers set if its
fitness value differs from the best-scored candidate program in the previous gen-
eration) and the second part is periodically and randomly generated to ensure
genetic diversity of the set of trainers. The size of trainers set is kept constant
during evolution. For every new selected or generated trainer, the exact fitness
is calculated and the new trainer replaces the oldest one in the corresponding
part of the trainers set.

3.3 Population of Fitness Predictors

Fitness predictor is a small subset of training data. An optimal fitness predictor
is sought using a simple genetic algorithm (GA) which operates with a popula-
tion of fitness predictors. Every predictor is encoded as a constant-size array of
pointers to elements in the training data. In addition to one-point crossover and
mutation, a randomly selected predictor replacing the worst-scored predictor in
each generation has been introduced as a new genetic operator of GA. The fit-
ness value of predictor p is calculated using the mean absolute error of the exact
and predicted fitness values of trainers

f (p) =
1

u

u∑
i=1

|fexact (i)− fpredicted (i)| (6)

Coevolution in Cartesian Genetic Programming 187

where u is the number of candidate programs in the trainers set. The predictor
with the best fitness value is used to predict the fitness of candidate programs
in the population of candidate programs.

3.4 Implementation

Two threads are used. The first one is responsible for candidate programs evolu-
tion using CGP. The second thread performs evolution of fitness predictors using
a simple genetic algorithm. The coevolution is implemented as follows. The first
thread randomly initializes both populations and also randomly creates the first
individuals in the set of trainers. After the second thread is activated both pop-
ulations are evaluated.

CGP evolution loop begins with loading the fittest training data sample from
population of fitness predictors. This is performed periodically, but not in every
iteration due to a slower rate of fitness predictors evolution. This results in
a lower computational effort. It is not necessary to run the fitness predictor
evolution as fast as the candidate program evolution, because fast changes of
the best rated fitness predictor do not contribute to convergence.

The next step involves calculating the predicted fitness of all individuals in the
candidate program population. The best rated individual is then selected and
its number of hits is checked. If the predicted fitness value is not in the interval
of acceptable fitness values, CGP will create a new population, eventually new
trainer will be selected or generated. If predicted fitness value falls into the
interval of acceptable fitness values, the exact fitness of candidate program is
evaluated. If the exact fitness falls into the interval of acceptable fitness values,
a solution is found, and coevolution is terminated. Otherwise, the update of the
best rated fitness predictor is signaled and the coevolution has to continue.

The second thread performs the evolution of fitness predictors. The fitness
values of all fitness predictors are evaluated using trainers. The best rated pre-
dictor is selected and stored to shared memory. The next step involves creating of
a new generation of fitness predictors by means of GA operators. Subsequently,
the GA waits for a signal from the first thread. After receiving the signal, the
GA loop continues with the next iteration, or if a solution is discovered, GA is
terminated.

4 Results

This section presents benchmark problems, experimental setup, experimental
evaluation of the proposed coevolutionary approach to CGP and its comparison
with standard CGP.

4.1 Benchmark Problems

Five test functions (F1 – F5) were selected as data point sources for evaluation
of the proposed method:

188 M. Šikulová and L. Sekanina

(a) Training data set F1 (b) Training data set F2 (c) Training data set F3

(d) Training data set F4 (e) Training data set F5

Fig. 3. Training data sets: x values on horizontal axes, f(x) values on vertical axis

F1 : f(x) = x2 − x3, x ∈ 〈−10, 10〉 (7)

F2 : f(x) = e|x| sin(x), x ∈ 〈−10, 10〉 (8)

F3 : f(x) = x2esin(x) + x+ sin
(π

x3

)
, x ∈ 〈−10, 10〉 (9)

F4 : f(x) = e−xx3 sin (x) cos (x)
(
sin2 (x) cos (x) − 1

)
, x ∈ 〈0, 10〉 (10)

F5 : f(x) =
10

(x− 3)
2
+ 5

, x ∈ 〈−2, 8〉 (11)

In order to form a training set, 200 equidistant distributed samples were taken
from each function (see Fig. 3). Functions F1, F2 and F3 are taken from [14]
and functions F4 and F5 from [16]. Table 1 shows acceptable errors and the
acceptable number of hits.

4.2 Experimental Setup

Table 1 shows that various settings of the components involved in the proposed
coevolutionary method have been tested. Over 100,000 independent runs were
performed to find the most advantageous setting which is presented in the right-
most column and which is later used in all reported experiments.

Coevolution in Cartesian Genetic Programming 189

Programs are evolved using CGP with the following setup: l = nc, nr = 1,
ni = 1, no = 1, every node has two inputs (i1, i2) and Γ = { i1 + i2, i1 − i2,
i1 · i2, i1

i2
, sin (i1), cos (i1), e

i1 , log (i1)}. Table 1 shows various setting of nc, λ
and h considered during parameters tuning.

Fitness predictors evolution is conducted using a simple GA. Table 1 shows nu-
merous setting of the chromosome length, population size and genetic operators.

Other parameters of coevolution, such as the size of trainers set, frequency
of trainers substitutions and predictors evolution deceleration are also given in
Table 1.

4.3 Comparison of Coevolving CGP with Standard CGP

The proposed coevolutionary algorithm was compared with standard CGP us-
ing test functions F1-F5. Parameters of both algorithms were chosen according
to Table 1 and 50 independent runs were performed. Table 2 gives the result-
ing success rate (the number of runs giving a solution with predefined quality),
the number of generations, the number of data point evaluations and time to
converge calculated as median out of 50 independent runs. Figure 4 shows quar-
tile graphs of the number of generations and data point evaluations for all five
training data sets.

Figure 5 shows the progress of the best fitness value during a typical run on the
F2 data set. It can be seen that while the progress is monotonic for the standard
CGP, the coevolutionary algorithm produces very dynamic changes ending with
a significant increase of the best fitness value at the end of evolution. The changes
of the best fitness value are caused by updating of the best fitness predictor.

Table 1. Experimental setup

Parameter Tested values
Selected
values

CGP

Chromosome length nc 16, 24, 32, 64, 96, 128 32
Population size λ 4, 8, 12, 16, 20 12
Number of mutations h

1-4, 1-8, 1-12, 1-16 1-8
per individual

Trainers,
All trainers substitution 1 per 500 generations of CGP 500
Trainers set size 8, 12, 16, 24, 32 8

Coevolution Predictor evolution 1 per 10, 25, 50, 100, 150, 200
100

deceleration generations of CGP

GA-Predictors

Chromosome length 4, 8, 12, 16, 24, 32, 64 12
Population size 8, 12, 16, 24, 32, 48, 64, 96, 128 32

Offspring creation
2-tournament selection,
single point crossover

Mutation probability 0.2 0.2

Test functions
Acceptable error F1, F2: 0.5; F3: 1.5;
of data point F4, F5: 0.025
Acceptable number of hits 97% 97%

190 M. Šikulová and L. Sekanina

(a
)
T
ra

in
in
g
d
a
ta

se
t
F
1
.

(b
)
T
ra

in
in
g
d
a
ta

se
t
F
2
.

(c
)
T
ra

in
in
g
d
a
ta

se
t
F
3
.

(d
)
T
ra

in
in
g
d
a
ta

se
t
F
4
.

(e
)
T
ra

in
in
g
d
a
ta

se
t
F
5
.

(f
)
T
ra

in
in
g
d
a
ta

se
t
F
1
.

(g
)
T
ra

in
in
g
d
a
ta

se
t
F
2
.

(h
)
T
ra

in
in
g
d
a
ta

se
t
F
3
.

(i
)
T
ra

in
in
g
d
a
ta

se
t
F
4
.

(j
)
T
ra

in
in
g
d
a
ta

se
t
F
5
.

F
ig
.
4
.
C
o
m
p
a
ri
so
n

o
f
st
a
n
d
a
rd

C
G
P

a
n
d

C
G
P

w
it
h

co
ev
o
lu
ti
o
n
:
N
u
m
b
er

o
f
g
en

er
a
ti
o
n
s
a
n
d

n
u
m
b
er

o
f
d
a
ta

p
o
in
t
ev
a
lu
a
ti
o
n
s
to

co
n
v
er
g
e

Coevolution in Cartesian Genetic Programming 191

Table 2. Comparison of standard CGP and CGP with coevolution for five training
data sets

F1 F2 F3 F4 F5

Success rate
stand. CGP 100% 100% 78% 80% 24%
coevolution 100% 100% 100% 100% 100%

Generations to stand. CGP 1.11 · 103 4.46 · 103 1.76 · 105 7.15 · 105 1.36 · 106
converge (median) coevolution 2.62 · 103 2.53 · 103 1.10 · 105 1.00 · 106 1.34 · 106
Data point evaluations stand. CGP 2.68 · 106 1.08 · 107 4.24 · 108 1.72 · 109 3.28 · 109
to converge (median) coevolution 5.20 · 105 5.01 · 105 2.19 · 107 2.00 · 108 2.67 · 108
Time to converge stand. CGP 35.4611 55.1476 98.8585 44.0388 104.6826
(median) [s] coevolution 17.4588 21.1178 18.1257 17.1079 20.4529

(a) Standard CGP. (b) CGP with coevolution.

Fig. 5. Progress of the best fitness value during a typical run for the F2 data set

5 Discussion

It can be seen from Table 2 that the proposed coevolutionary method has reached
a satisfactory solution using much fewer data point evaluations than the standard
CGP. The speedup measured on the Intel R© CoreTM i5-2500 machine is between
2.03 (F1) and 5.45 (F3). Detailed analysis of execution time is shown in Fig. 6
where quartile graphs are given for 50 independent runs. However, it should be
pointed out that the standard CGP evaluates 200 fitness cases in every fitness
function call while the coevolutionary algorithm evaluates only 12 fitness cases.
The number of generations is similar for both methods. A notable observation
is that while the standard CGP was not able to produce a satisfactory solution
in 23.6% runs the proposed method reached a satisfactory solution in all cases.
Moreover, the results generated by multiple runs of coevolutionary CGP are
more stable than those produced by the standard CGP.

There is only one data set (F2) and corresponding results of the tree-based
coevolutionary GP [14] which can serve for a direct comparison with our CGP-
based coevolution. While tree-based GP requires 1 · 103 generations and 7 · 106

192 M. Šikulová and L. Sekanina

(a) Standard CGP. (b) CGP using coevolution.

Fig. 6. Time of evolution

data point evaluations to converge, the proposed CGP-based approach requires
3 · 103 generations and only 5 · 105 data point evaluations to converge. The
proposed method seems to be competitive with [14].

6 Conclusions

Symbolic regression has not been considered as a typical application domain
for CGP. We have shown in this paper that CGP equipped with coevolution of
fitness predictors can significantly be accelerated in this particular application.
The speedup obtained for five test problems is 2.03 – 5.45 over the standard
CGP. Results are also very competitive with the tree-based GP.

Our future work will be devoted to utilization of the proposed coevolutionary
algorithm in other applications domains where the standard CGP has been suc-
cessful so far. Another goal will be to implement the coevolutionary CGP on a
chip and use it in a real-world application.

Acknowledgments. This work was supported by the Czech science foun-
dation project P103/10/1517, the research programme MSM 0021630528,
the BUT project FIT-S-11-1 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

References

[1] Dolin, B., Bennett III, F.H., Reiffel, G.: Co-evolving an effective fitness sample:
Experiments in symbolic regression and distributed robot control. In: Proc. of the
2002 ACM Symp. on Applied Computing, pp. 553–559. ACM, New York (2002)

[2] Dolinsky, J.U., Jenkinson, I.D., Colquhoun, G.J.: Aplication of genetic program-
ming to the calibration of industrial robots. Computers in Industry 58(3), 255–264
(2007)

[3] Gagné, C., Parizeau, M.: Co-evolution of nearest neighbor classifiers. International
Journal of Pattern Recognition and Artificial Inteligence 21(5), 921–946 (2007)

Coevolution in Cartesian Genetic Programming 193

[4] Harrison, M.L., Foster, J.A.: Co-evolving Faults to Improve the Fault Tolerance
of Sorting Networks. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule,
T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 57–66. Springer, Heidelberg (2004)

[5] Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42(1), 228–234 (1990)

[6] Imamura, K., Foster, J.A., Krings, A.W.: The Test Vector Problem and Limita-
tions to Evolving Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on
Evolvable Hardware, pp. 75–79. IEEE Computer Society (2000)

[7] Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing Journal 9(1), 3–12 (2005)

[8] Mendes, R.R.F., de Voznika, F.B., Freitas, A.A., Nievola, J.C.: Discovering Fuzzy
Classification Rules with Genetic Programming and Co-evolution. In: Siebes, A.,
De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 314–325. Springer,
Heidelberg (2001)

[9] Miller, J.F., Thomson, P.: Aspects of Digital Evolution: Geometry and Learning.
In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478,
pp. 25–35. Springer, Heidelberg (1998)

[10] Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
[11] Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf,

W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

[12] Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolu-
tionary Computation 5(4), 401–418 (1997)

[13] Schmidt, M., Lipson, H.: Co-evolving fitness predictors for accelerating and re-
ducing evaluations. In: Genetic Prog. Theory and Practice IV, vol. 5, pp. 113–130
(2006)

[14] Schmidt, M.D., Lipson, H.: Coevolution of Fitness Predictors. IEEE Transactions
on Evolutionary Computation 12(6), 736–749 (2008)

[15] Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-
synthesis evolutionary optimization in evolvable hardware. Genetic Programming
and Evolvable Machines 12(3), 305–327 (2011)

[16] Vladislavleva, E.: Symbolic Regression: Toy Problems for Symbolic Regression
(2009-2010), http://www.vanillamodeling.com/toyproblems.html

http://www.vanillamodeling.com/toyproblems.html

Evolutionary Design of Message Efficient

Secrecy Amplification Protocols

Tobiáš Smolka1, Petr Švenda1, Lukáš Sekanina2, and Vashek Matyáš1,�

1 Masaryk University, Faculty of Informatics, Czech Republic
2 Brno University of Technology, FIT, IT4Innovations Centre, Czech Republic

{xsmolka,svenda,matyas}@fi.muni.cz, sekanina@fit.vutbr.cz

Abstract. Secrecy amplification protocols are mechanisms that can sig-
nificantly improve security of partially compromised wireless sensor net-
works (e.g., turning a half-compromised network into the 95% secure
one). The main disadvantage of existing protocols is a high communica-
tion overhead increasing exponentially with network density. We devise
a novel family of these protocols exhibiting only a linear increase of the
communication overhead. The protocols are automatically generated by
linear genetic programming (LGP) connected to a network simulator.
After a deep analysis of various characteristics of this new family of pro-
tocols, with a special focus on the tuning of LGP parameters, new and
better group-oriented protocols are discovered by LGP. A multi-criteria
optimization is then utilized to further reduce the communication over-
head down to 1/2 of the original amount while maintaining the original
fraction of secure links.

1 Introduction

Wireless sensor networks (WSNs) are networks of resource-constrained battery-
powered nodes that can communicate over short distances via wireless radio. The
applications of such networks vary from environment monitoring to battlefield
management and often require resistance against unauthorized reading, modifi-
cation or generation of monitored information. To achieve this goal, encryption
and message authentication techniques with shared symmetric keys between the
communicating parties can be used. This is, however, a challenging task, since
the nodes are usually distributed in an untrusted environment. An attacker can
extract all keys from a physically captured node and easily intercept large frac-
tion of communication in the network.

Secrecy amplification (SA) is a post-deployment technique for improving the
security of communication in partially compromised networks. It can be em-
ployed in situations, where there are keys established between the nodes in the
network, but some of them may be compromised. SA exploits the fact that
a group of neighbouring nodes can cooperate and establish a new key derived

� Final work on this paper undertaken as a Fulbright-Masaryk Visiting Scholar at
Harvard University.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 194–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolutionary Design of Message Efficient Secrecy Amplification Protocols 195

from multiple old keys. The new key will be secure in case when at least one of
the old ones was not compromised. The concept was initially introduced in [2]
and further improved in [6,8].

In this work, we present newly discovered group-oriented secrecy amplification
protocols with better performance than previously published node-oriented pro-
tocols. The protocols are automatically generated by linear genetic programming
(LGP) [4] connected to a network simulator. We chose LGP because it is suitable
for evolution of short domain-specific programs as shown by e.g. [3]. The discovery
was made possible by deeply analysing and tweaking the evolutionary search and
also by introducing another criterion for protocol optimization – a total number
of exchanged messages. The goal of this paper is to analyze the impact of LGP
parameters on the quality of evolved protocols and find better ones.

The paper is organizedas follows:The next section provides a short introduction
to secrecy amplification in WSNs and reviews previous work on automatic design
of these protocols with Evolutionary Algorithms. Section 3 analyses the impact of
different parameters such as population size, mutation and crossover rate, length
of chromosome or number of generations on the performance of LGP. Section 4
describes new protocols found in long-running experiments with tuned LGP and
analyses their performance and robustness. Section 5 introduces a multi-criteria
optimization and shows that further reduction of totally exchanged messages in
the protocols is possible. Conclusions are given in Section 6.

2 Previous Work

Secrecy amplification (SA) was initially introduced in [2] for the Key Infection
(KI) key establishment, in which the keys are exchanged between the neighbours
in plaintext. In case an attacker places an eavesdropping node close to a legit-
imate one, it is able to intercept all the keys exchanged with that node. The
concept of SA can also be used when the compromised links are distributed ran-
domly. Such a compromise pattern may result from the probabilistic distribution
scheme of Eschenauer and Gligor (EG) [7].

The protocols presented in [2] and [6] use an “absolute” identification of the
nodes (e.g., node number 1, 2, 3.) If there are k parties (nodes) in the protocol
and n neighbours of node on average then one run of the protocol must be
executed for all k-tuples of neighbours leading to

(
n
k

)
executions per single node

– a huge communication overhead. The number of totally exchanged messages
increases exponentially with the number of neighbours and is significant for
WSNs where 6-15 neighbours are usually assumed. We will denote such protocols
as node-oriented (NO).

A different approach to the design of amplification protocols was presented
in [8]. Identification of the parties in protocol is given by the relative distance
from two distinct nodes. It is assumed that each node knows the distance to its
direct neighbours. This distance can be approximated from the minimal trans-
mission power needed to communicate with a given neighbour. If the protocol
has to express the fact that two nodes Ni and Nj are exchanging a message over

196 T. Smolka et al.

the intermediate node Nk, only relative distances of such node Nk from Ni and
Nj are indicated in the protocol (e.g., N(0.3 0.7) is a node positioned 0.3 of the
maximum transmission range from Ni and 0.7 from Nj). Based on the actual
distribution of the neighbours, the node closest to the indicated distance(s) is
chosen as the node Nk for particular protocol run. There is no need to re-execute
the protocol for all k-tuples (as for NO protocols) as all neighbours can be in-
volved in a single execution, reducing communication overhead significantly. See
[8] for a detailed description of evaluation process for group-oriented protocols.

2.1 Evolution of Amplification Protocols

In order to improve the fraction of secure links and to decrease the necessary
communication overhead (the number of messages), a new method for automatic
generation of protocols was introduced in [8]. The method utilized linear genetic
programming and a network simulator for evaluation of candidate amplification
protocols with resulting fraction of secure links taken as fitness value. The use of
LGP is especially important in case of group-oriented protocols, since the design
of such a protocol is not a trivial task and to the best of our knowledge, no
human-designed group-oriented protocol was published yet.

Instruction Set: Each party (a real node in network) in the protocol is mod-
elled as a computing unit with a limited number of memory slots. Each memory
slot can contain either a random value, encryption key or message. Each candi-
date protocol is modelled as a program composed of instructions from a specific
instruction set given in Table 1. This instruction set was chosen because it en-
ables to express all previously known amplification protocols and to utilize only
operations available on real sensor nodes such as TelosB [5].

Using this set of primitive instructions, a simple plaintext exchange of new
key can be written as {RNG N1 R1; SND N1 N2 R1 R1;}, a PUSH protocol [2] as
{RNG N1 R1; SND N1 N3 R1 R1; SND N3 N2 R1 R1;}, a PULL protocol [6] as
{RNG N3 R1; SND N3 N1 R1 R1; SND N3 N2 R1 R1;} and a multi-hop version
of PULL [6] as {RNG N3 R1; SND N3 N1 R1 R1; SND N3 N4 R1 R1; SND N4

N2 R1 R1;}. All these protocols are node-oriented. Group-oriented protocols are
longer and more complicated, see [8].

Table 1. Instruction set for amplification protocols

NOP No operation is performed.
RNG Na Ri Generate a random value on node Na into slot Ri.
SND Na Nb Ri Rj Send a value from Ri on node Na to slot Rj on Nb.
CMB Na Ri Rj Rk Combine values from slots Ri and Rj on node Na and store the

result to Rk (e.g., cryptographic hash function like SHA-3).
ENC Na Ri Rj Rk Encrypt a value from Ri on node Na using the key from Rj and

store the result to Rk.
DEC Na Ri Rj Rk Decrypt a value from Ri on node Na using the key from Rj and

store the result to Rk.

Evolutionary Design of Message Efficient Secrecy Amplification Protocols 197

Previous LGP Results: LGP rediscovered previously published protocols and
also new and better performing protocols were found. The best performing node-
oriented 4-party secrecy amplification protocol found [8] consists of 10 effective
instructions with performance shown in Figure 3. Note that the LGP objective
was to optimize the number of secure links only, not the number of messages.
Additionally, only limited computing resources were available to obtain these
results. We will show in next sections that better protocols (in terms of the
number of secure links and messages needed) can be obtained with improved
LGP settings and more computational resources.

3 LGP Tuning and Exploring the Design Space

This section describes the initial version of LGP and network simulator, together
with heavily resource-consuming experiments conducted to determine the most
suitable parameters of LGP that are necessary for finding new group-oriented
protocols in Section 4. Distributed computation via BOINC (Berkeley Open
Infrastructure for Network Computing) [1] with around 250 CPU cores was used
to provide the performance necessary for all experiments1.

3.1 Experimental Setup

Basic LGP Setup: LGP operates with the instruction set given in Table 1. The
size of chromosome is 100 instructions. Every node contains 12 memory slots.
The initial population is generated randomly. The mutation operator randomly
picks an integer and generates a new value at its position. The crossover oper-
ator is applied at the level of instructions. A new population is formed using a
tournament selection. The fitness function is defined as a fraction of secure com-
munication links. The impact of various parameters of LGP on the performance
is investigated in Section 3.2.

Network Simulation: Candidate protocols are simulated in a network of 100
legitimate nodes. During the evaluation, each amplification protocol was inde-
pendently executed on 5 deployments, each of which with different placement of
the nodes. This way the candidate protocol was prevented from optimizing on
one particular network deployment and provided results usable also in networks
with a higher number of nodes (we kept the number of nodes intentionally low
so network simulation is executed fast enough). The nodes were always placed
uniformly over a square area and each node had approx. 10 legitimate neighbours
on average (over all deployments).

The fraction of initially secured links was intentionally set to 30%, so it is
reasonably difficult to increase the fraction of secure links. In the EG compromise

1 Raw data in searchable format from all experiments are available at web
page http://www.fi.muni.cz/˜xsvenda/papers/EuroGP2012/ and additional ex-
periments with examples of protocols found will be available in parallel technical
report.

198 T. Smolka et al.

10
20

30
40

50

0
0.1

0.2
0.3

0.4

55

60

65

Population size
Mutation

A
ve

ra
ge

 b
es

t f
itn

es
s

10
20

30
40

50

0

0.05

0.1

60

61

62

63

64

65

Population size
Mutation

A
ve

ra
ge

 b
es

t f
itn

es
s

Fig. 1. Average of the best fitness values calculated from 20 independent runs using
different mutation probabilities and population sizes: (a) all experiments, (b) zoomed

pattern, this number was used directly when deciding whether the link was
initially compromised or not. In the KI pattern [2], the portion of compromised
links was affected by the number of attacker’s nodes in the network. This number
was determined experimentally (30 attacker nodes), so the resulting fraction of
compromised links was close to the desired level.

3.2 LGP Performance

Population Size and Mutation Rate: First, the most suitable values of the
population size and probability of mutation were sought. We tested 10 differ-
ent combinations of the number of generations (numgen) and population size
(popsize) for 20 different mutation probabilities. The values of numgen and
popsize were chosen so that value numgen ∗ popsize and consequently also the
number of fitness evaluations remains constant (numgen ∗ popsize = 40 000).
Each combination of parameters (pmut, numgen, popsize) was instantiated in
20 independent runs and the averages of the best fitness values are shown in
Figure 1a and Figure 1b. Clearly, LGP performs better for small probability of
mutation (between 0.005 and 0.05) and smaller population sizes (between 10 and
20). Values pmut = 0.02 and popsize = 15 were used in next experiments based
on these results.

Similarly, the effect of crossover (pcross) was investigated using 20 indepen-
dent runs where pcross was between 0 and 1. This experiment showed that the
crossover has no significant impact on performance and thus crossover has not
been used in other experiments.

Chromosome Length: Long chromosomes imply large search spaces that are
usually difficult to search. They also lead to long programs that can take a con-
siderable time to be executed. Previous work utilized 200 instructions; however
only around 10 instructions were effectively used in evolved protocols [8]. In order
to find a reasonable value for the maximum length of chromosome (insmax), we
fixed all the parameters except insmax and numgen. The values for insmax and

Evolutionary Design of Message Efficient Secrecy Amplification Protocols 199

0 50 100 150 200 250 300
60

61

62

63

64

65

66

67

68

Maximum number of instructions

A
ve

ra
ge

 b
es

t f
itn

es
s

(a) Number of instructions

0 5 10 15 20 25 30
60

61

62

63

64

65

66

67

68

Maximum number of memory slots

A
ve

ra
ge

 b
es

t f
itn

es
s

(b) Memory slots

Fig. 2. Best fitness obtained from 20 independent runs for various limits in the number
of instructions (a) and memory slots (b)

numgen were chosen such that the value insmax ∗numgen remains constant and
equals to 1 200 000 (and therefore, the overall computational time is constant
for different runs).

The average fitness value computed using the best fitness values obtained
from 20 independent runs is depicted in Figure 2a. The experiment shows a
sharp drop in the achievable fitness when less than 30 instructions insmax are
available. The performance is increasing for values of insmax between 40 and 100
and slowly decreasing with bigger insmax afterwards. This result is correlated
with observed average number of effective instructions (i.e., the instructions
that actually contribute to the fitness value, usually around 30, in our case
32 instructions at maximum) in best protocols such as EGbest evolved with
insmax = 100 or more. Note that doubling the number of available instructions
insmax will roughly double the time necessary to simulate a single protocol, but
it will not impact the resulting protocol as usually only around 30 instructions
are effective and we can automatically identify them. On the basis of these
results, the following experiments were initialized to allow 50 (100 in some cases)
instructions at maximum. The evaluation time has been significantly reduced
without affecting the quality of evolved protocols.

Memory Slots: In the next experiment we analyzed the impact of limiting
the number of memory slots (slotmax) which the evolved protocols can use.
LGP parameters remain identical to the previous experiment (insmax = 100).
The average fitness values are depicted in Figure 2b for slotmax = 1 . . . 30.
The experiment revealed that the protocols require at least 10 memory slots
to achieve a reasonable performance.

Number of Generations: The fitness increases with additional generations,
but only to some extend. In order to determine the number of generations needed
for reaching a reasonably performing protocol, 20 runs were executed for 53 340
generations (insmax = 100, slotsmax = 12). In this experiment, all runs reached

200 T. Smolka et al.

60% secure links after 1 067 generations, 65% after 8 529 generations and 66%
after 15 991 generations. These 20 runs reached 67.72% on average, the worse
one stagnated at 66.8%. In comparison, 60% secure links is the level which no
random search was able to reach even after 14 000 generations (assuming the
same population size).

4 Discovering New Group-Oriented Protocols

The search for new protocols utilized the best-performing parameters found in
previous experiments. Complete setting is given in Table 2. For each of the
compromise scenarios (KI, EG), we performed 20 independent runs and allowed
a sufficient number of generations. The best performing protocol for each scenario
was then taken and further analysed.

4.1 Long-Running Experiments

The best protocols are denoted as KIbest and EGbest. Protocol KIbest was dis-
covered after 125 hours of computation in 330 641 generations (note that one
generation required 1.4 seconds on a single 3000+ MHz core). EGbest was found
after 87 hours in 165 365 generations (1.9 sec/generation on a single 3000+ MHz
core). The protocols exhibit 69.12% (KIbest) and 60.07% (EGbest) secured links
on average across 5 deployments they were trained for.

4.2 Performance of Evolved Secrecy Amplification Protocols

The protocols KIbest and EGbest performed very well in the deployment(s) they
were trained for. However, in order to get more accurate estimate of protocols’
performance, one needs to test them on different deployments. We did so by

Table 2. Parameters of LGP and network simulator used in long running experiments

KI EG

Simulator

Number of deployments 5 5
Number of legitimate nodes 100 100
Number of malicious nodes 30 -
Average number of legitimate neighbours 9.88 10.28
Average number of initially secured links 32.5% 30.7%

LGP

Probability of mutation 0.02 0.02
Probability of crossover 0.00 0.00
Size of population 15 15
Maximum number of instructions 50 100
Number of memory slots 12 12
Number of generations 1 216 000 200 000
Average time of single run on 1 CPU 467h 106h

Evolutionary Design of Message Efficient Secrecy Amplification Protocols 201

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of initially secured links

F
ra

ct
io

n
of

 s
ec

ur
ed

 li
nk

s
af

te
r

S
A

 p
ro

to
co

l

1 × KI
best

2 × KI
best

1 × EG
best

2 × EG
best

 ≅ Published NO

(a) KI compromise pattern

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of initially secured links

F
ra

ct
io

n
of

 s
ec

ur
ed

 li
nk

s
af

te
r

S
A

 p
ro

to
co

l

1 × KI
best

2 × KI
best

1 × EG
best

2 × EG
best

 ≅ Published NO

(b) EG compromise pattern

2 4 6 8 10 12 14
0

2

4

6

8

10
x 10

4

N
um

be
r

of
 m

es
sa

ge
s

Number of legitimate neighbours

1 × KI

best

2 × KI
best

1 × EG
best

2 × EG
best

Published NO

(c) Total number of messages

Fig. 3. The performance of discovered secrecy amplification protocols. 2 × EGbest

stands for two repetitions of EGbest

evaluating each of the protocols in 100 random networks for each of 9 levels of
compromise (10% . . . 90% stepped by 10%), two compromise patterns (KI, EG)
and three different average numbers of legitimate neighbours (5, 10, 15). One
additional repetition of amplification was also tested. In total, we evaluated each
of the protocols in 10 800 independent scenarios.

The comparison of average reached fraction of secured links after secrecy
amplification in networks with 10 neighbours are shown in Figure 3. Two ampli-
fication repeats of discovered protocols have almost identical performance to our
previously published node-oriented protocol [8]. Similar results were obtained
also for 5 and 15 neighbours – with higher number of neighbours the differences
between protocols’ average performance are becoming larger.

The protocol evolved for KI and then used in EG performs significantly worse
than the protocol evolved directly for EG scenario (and vice versa). This implies
that the structure of the problem solved for KI and EG is different and a separate
protocol should be evolved for different initial key distribution method. Note
that such a result is not problematic for the network owner as used scenario
(KI, EG or other) is known to him/her in advance and the owner can therefore
select/evolve a corresponding protocol.

202 T. Smolka et al.

Note that the best performing group-oriented protocols are able to increase
the fraction of secure links from 30% to almost 70% in KI or 80% in EG. In
real deployment, one would usually like to achieve 85% or more secure links
to provide a strong majority of secure links. Majority voting will then almost
always outcompete a potential attacker. Such a percentage can be achieved when
initial fraction of secure links is 40-50% in KI and 30-40% in EG scenario.

Figure 3c shows the total number of required messages for mentioned pro-
tocols. Note that the total number of messages in the group oriented protocols
is independent of compromise scenario (the number of transmitted messages is
always the same).

4.3 Robustness of Discovered Protocols

Protocol robustness against the change in underlying parameters w.r.t. parame-
ters used during evolution is examined in this section. We focused on robustness
against the change in key distribution method (KIbest used in EG scenario), the
change in initial fraction of secure links and the change in layout of nodes in a
particular deployment.

The average performance of the protocols was already shown in Figure 3.
However, from the averages one can not conclude directly whether the discovered
protocols are robust against changes in deployment. The EG scenario was chosen
for the analysis because it allows to precisely set the fraction of initially secured
links2.

The results of the analysis are depicted in Figure 4. There are 6 histograms
for each of the protocols and the average number of neighbours. Each histogram
shows the distribution of resulting fraction of secure links for a given fraction of
initially secured links (from left to right 10% . . . 60%).

For 100 evaluations the distributions are similar to the normal one. It can be
also seen that KIbest has slightly worse performance than EGbest for all tested
configurations of neighbours (note that the experiment was performed for EG
scenario). With a higher number of neighbours, the differences between protocols
and also the performance of individual protocols are increasing.

5 Multi-criteria Optimization

Results presented in [8] and extended in Section 4.2 were obtained with the
fitness function reflecting only the fraction of secure links without taking into
account the number of exchanged messages. Although the overall number of ex-
changed messages is relatively small for group-oriented protocols, natural ques-
tion is if this number can further be decreased by additional optimization.

2 The initial fraction of secured links in KI scenario depends on the number of at-
tacker’s nodes. Particular layout of nodes in deployment slightly varies between
different deployments.

Evolutionary Design of Message Efficient Secrecy Amplification Protocols 203

10 20 30 40 50 60 70 80 90 100
0

10

20

N
um

be
r

of
 r

un
s

(a) Protocol KIbest, 5 neighbours

10 20 30 40 50 60 70 80 90 100
0

10

20

N
um

be
r

of
 r

un
s

(b) Protocol EGbest, 5 neighbours

10 20 30 40 50 60 70 80 90 100
0

10

20

N
um

be
r

of
 r

un
s

(c) Protocol KIbest, 10 neighbours

10 20 30 40 50 60 70 80 90 100
0

10

20

N
um

be
r

of
 r

un
s

(d) Protocol EGbest, 10 neighbours

10 20 30 40 50 60 70 80 90 100
0

10

20

N
um

be
r

of
 r

un
s

(e) Protocol KIbest, 15 neighbours

10 20 30 40 50 60 70 80 90 100
0

10

20

N
um

be
r

of
 r

un
s

(f) Protocol EGbest, 15 neighbours

Fig. 4. Fraction of secured links reached for a given fraction of initially secured links
(histograms represent from left to right 10% . . . 60%)

5.1 Weighted Fitness

The communication overhead is measured as a counterpart to fraction of mes-
sages transmitted by the protocol (lower the better) during simulation to the
theoretical maximum of messages when every instruction in protocol would send
one message.

We propose to combine the fraction of secure links f1 and fraction of messages
f2 using two weighting coefficients w1 and w2 (fitness = w1f1+w2f2). In order
to analyze the impact of different ratios of weights, 20 independent runs were
executed for multiple different weights (90 : 10 . . . 0 : 100), always spanning
2 000 generations. We also set the lower bound for fraction of secured links to
50% so the evolution was forced to search only for meaningful protocols (50%
can be easily achieved even by a random search).

The results of experiments are shown in Figure 5. From left to right, LGP was
forced to optimize the protocols more and more for the fraction of secured links.
It can be clearly seen that with any additional increase of the security in the
network, the total number of messages is also non-trivially increased. However,
this increase is non-linear when the weight assigned to fraction of secure links is
higher than 90. Based on this result, we decided to perform another long search
for a message-optimal group-oriented protocol and compare its performance with
previously found KIbest.

5.2 Optimizing the Number of Messages

Previous experiments documented a high correlation between the number of
secured links and the number of messages used. Since we were interested in

204 T. Smolka et al.

0 20 40 60 80 100
50

60

70

Weight of secured links

F
ra

ct
io

n
of

 s
ec

ur
ed

 li
nk

s

020406080100

0

5000

10000

Weight of messages

N
um

be
r

of
 m

es
sa

ge
s

Fraction of secured links
Number of messages

Fig. 5. Impact of criteria weights on fraction of secure links and the number of
messages

protocols with a reasonable security, we decided to use the weights 90 : 10 in
favour of secured links (according to Figure 5). In order to find a message-
optimized protocol, we executed 20 independent runs and took the best per-
forming protocol (denoted as KImsg). It was found after 90 hours in 234 000
generations.

We evaluated the performance of KImsg against KIbest and previously pub-
lished node-oriented protocols in the setup that was described in Section 4.2.
Surprisingly, the evaluation over 100 different networks and different fractions of
initially compromised network showed that KImsg has comparable performance
in KI to previously found KIbest protocol. More importantly, with two ampli-
fication repeats instead of one it also exhibits almost identical performance to
previously published node-oriented protocols. However, since the protocol was
optimized not only for security but also for low total number of messages,KImsg

uses only 50% of messages to achieve similar performance.

6 Conclusions

Secrecy amplification protocols turned to be one of the most promising ways
how a WSN with a significant number of compromised links can be turned into
secure one for the price of additional messages exchanged. Human-designed and
message intensive node-oriented version [2] of these protocols were extended by
group-oriented approach in [8].

In this paper, we performed a detailed analysis of LGP in the task of evolution-
ary design of group-oriented protocols. By careful setting of LGP parameters,
suitable setting of network simulator parameters and utilization of distributed
computation, new protocols were discovered that outperform the previously pub-
lished ones. The analysis of robustness of discovered protocols in scenarios dif-
ferent from those available during evolution confirmed that group-oriented pro-
tocols are robust against the change in the initial fraction of secure links. We
have observed that these protocols are less robust against the change in selection
of initial key distribution method. However, this selection is under control of the

Evolutionary Design of Message Efficient Secrecy Amplification Protocols 205

network owner who can, therefore, select/optimize the group-oriented protocol
for preferred key distribution.

Additionally, we focused on further reduction of the communication overhead.
A multi-criterial optimization was conducted where not only secure links but also
the number of messages was optimized. It was shown that newly found group-
oriented protocols outperform the node-oriented protocols while still requiring
an order of magnitude less messages, e.g., ± 1/20 in common scenarios. Future
work will be devoted to applying truly multi-criteria optimization algorithms
such as NSGA-II and implementation of evolved protocols on real nodes.

Lukáš Sekanina was supported by the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070. Other authors were supported by the GAP202/11/0422
and Centre of Excellence GAP202/12/G061 of the Czech Science Foundation.
The experiments were supported by computational resources at Institute of Com-
puter Science, Masaryk University.

References

1. Anderson, D.: Boinc: A system for public-resource computing and storage. In: Pro-
ceedings of Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10.
IEEE (2004)

2. Anderson, R., Chan, H., Perrig, A.: Key infection: Smart trust for smart dust. In:
ICNP 2004, pp. 206–215. IEEE (2004)

3. Bernardi, P., Sánchez, E., Schillaci, M., Squillero, G., Reorda, M.S.: An effective
technique for minimizing the cost of processor software-based diagnosis in socs. In:
IEEE DATE 2006: Design, Automation and Test in Europe, pp. 412–417 (2006)

4. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, Berlin (2007)
5. CrossBow: Telosb, http://www.willow.co.uk/TelosB_Datasheet.pdf
6. Cvrcek, D., Svenda, P.: Smart dust security-key infection revisited. Electronic Notes

in Theoretical Computer Science 157(3), 11–25 (2006)
7. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor net-

works, pp. 41–47 (2002)
8. Švenda, P., Sekanina, L., Matyáš, V.: Evolutionary design of secrecy amplification

protocols for wireless sensor networks. In: Proceedings of the Second ACM Confer-
ence on Wireless Network Security, pp. 225–236. ACM (2009)

http://www.willow.co.uk/TelosB_Datasheet.pdf

Automatic Design of Ant Algorithms

with Grammatical Evolution

Jorge Tavares1 and Francisco B. Pereira1,2

1 CISUC, Department of Informatics Engineering, University of Coimbra
Polo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

2 ISEC, Quinta da Nora, 3030 Coimbra, Portugal
jorge.tavares@ieee.org, xico@dei.uc.pt

Abstract. We propose a Grammatical Evolution approach to the au-
tomatic design of Ant Colony Optimization algorithms. The grammar
adopted by this framework has the ability to guide the learning of novel
architectures, by rearranging components regularly found on human de-
signed variants. Results obtained with several TSP instances show that
the evolved algorithmic strategies are effective, exhibit a good general-
ization capability and are competitive with human designed variants.

1 Introduction

Ant Colony Optimization (ACO) identifies a class of robust population-based op-
timization algorithms, whose search behavior is loosely inspired by pheromone-
based strategies of ant foraging [1]. The first ACO algorithm, Ant System (AS),
was proposed by Dorigo in 1992. Since then, many different variants have been
presented with differences, e.g., in the way artificial ants select components to
build solutions or reinforce promising strategies. Researchers and practitioners
aiming to apply ACO algorithms to a specific optimization situation are con-
fronted with several non-trivial decisions. Selecting and tailoring the most suit-
able variant for the problem to be addressed and choosing the best parameter
setting helps to enhance search effectiveness. However, making the right decisions
is difficult and requires a deep understanding of both the algorithm’s behavior
and the properties of the problem to solve.

In recent years, several automatic ACO design techniques were proposed to
overcome this limitation. Reports in literature range from approaches to au-
tonomous/adaptive parameter settings to the configuration of specific algorith-
mic components [2]. Two examples of automatic design are the evolution of
pheromone update strategies by Genetic Programming (GP) [3,4] and the syn-
thesis of an effective ACO for multi-objective optimization [5].

In this paper we present a complete framework to evolve the architecture of a
full-fledged ACO algorithm. Grammatical Evolution (GE) [6] is adopted as the
design methodology, as it allows for a simple representation and modification of
flexible algorithmic strategies. The grammar used by the GE algorithm defines
both the potential components that can be adopted when designing an ACO al-
gorithm and also the general structure of the optimization method. We describe

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 206–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Design of Ant Algorithms with Grammatical Evolution 207

a set of experiments that deal with the discovery of ACO architectures for the
optimization of the Traveling Salesperson Problem (TSP). The analysis of results
helps to understand if the design algorithm converges to ACO architectures regu-
larly applied to the TSP, or, on the contrary, evolves novel combinations of basic
components that enhance the effectiveness of the optimization. Additionally, we
address the generalization ability of the learned architectures.

The paper is structured as follows: in section 2 we present a general descrip-
tion of ACO algorithms. Section 3 comprises a presentation of the system used to
evolve architectures, whereas section 4 contains the experimentation and analy-
sis. Finally, in section 5 we summarize the conclusions and highlight directions
for future work.

2 Ant Colony Optimization

AS was the first ACO algorithm and it was conceived to find the shortest path
for the well-known TSP, although it was soon applied to different types of com-
binatorial optimization problems [1]. To apply an ACO algorithm to a given
problem, one must first define the solution components. A connected graph is
then assembled by associating each component with a vertex and by creating
edges to link vertices. Ants build solutions by starting at a random vertex and by
stochastically selecting edges to add new components. The probability of choos-
ing an edge depends on the heuristic information and pheromone level of that
specific path. Higher pheromone levels signal components that tend to appear in
the best solutions already found by the colony. After completing a solution, ants
provide feedback by depositing pheromone in the edges they just crossed. The
amount of pheromone deposited is proportional to the quality of the solution.
To avoid stagnation, pheromone trail levels are periodically decreased by a cer-
tain factor. Following these simple rules until a termination criterion is met, a
solution to the problem will emerge from the interaction and cooperation made
by the ants.

Algorithm 1. Ant Colony Optimization
init parameters
init pheromone
while not termination do

generate solutions
pheromone update
daemon actions

end while
return best solution

Algorithm 1 presents the pseudo-code of a general ACO algorithm. Daemon
actions include a set of optional actions, e.g., the application of local search or
pheromone matrix restart.

208 J. Tavares and F.B. Pereira

3 The Evolutionary Framework

The framework used to evolve the architecture of an ACO algorithm contains
two components: a GE engine and a compiler/evaluator of ACO architectures.
GE is a GP branch that allows for an efficient evolution of complete algorithmic
structures. It relies on a grammar composed by a set of production rules in a
Backus-Naur form, defining both the components that can appear and the overall
organization of the algorithm to be evolved. The GE iterative search process is
somehow decoupled from the actual programs being evolved, since individuals
are codified as integer vectors. This allows for the application of a straightforward
evolutionary algorithm to perform optimization. Whenever a solution needs to
be evaluated, a complementary mapping process uses the grammar to decode an
integer solution into a syntactically correct program (see [6] for details).

The quality of a GE individual is directly related to its ability to find good
solutions for the TSP. In fitness assignment, the first step is to apply an ACO
compiler to assemble a decoded GE individual into a running ACO. Then, the
evolved architecture is executed and tries to solve a given TSP instance. The
result of the optimization is assigned as the fitness value of that GE individual.

3.1 Grammar Definition

The grammar creates individuals containing an initialization step followed by an
optimization cycle. The first stage consists in the initialization of the pheromone
matrix and the selection of parameters. The main loop comprises the construc-
tion of the solutions by the ants, trail evaporation, trail reinforcement and dae-
mon actions. Each component contains several alternatives to implement its
specific task. Additionally, most blocks are optional. Different values for the pa-
rameters required by an ACO algorithm are also defined in the grammar, which
allows the GE engine to automatically adapt the most suitable setting for a
given architecture. The research described in this paper focus on the relevance
assessment of existing ACO components and on the discovery of novel interac-
tions that might help to enhance optimization performance. As such, daemon
actions do not consider the possibility of applying local search, as the effect of
this operation would dilute the influence of the remaining components.

The grammar defined is constrained in the sense that production rules enforce
a global structure that is similar to existing ACO architectures. Components,
e.g., solution construction, reinforcement or evaporation, can only appear in a
pre-specified order and certain blocks cannot be used more than once. This is a
deliberate design option. With this framework, the GE system is able to generate
all main ACO algorithms: Ant System (AS), Elitist Ant System (EAS), Rank-
Based Ant System (RAS), Ant Colony System (ACS) and Max-Min Ant System
(MMAS). Additionally, the search space contains many other combinations of
blocks that define alternative ACO algorithms. The experiments described in the
next section will provide insight into the search behavior of GE in this task. We
will analyze if search converges to manually designed ACO architectures regu-
larly applied to the TSP or, on the contrary, if it discovers novel combinations of

Automatic Design of Ant Algorithms with Grammatical Evolution 209

blocks leading to the automatic design of optimization algorithms with enhanced
effectiveness. The grammar for the GE engine is:

〈aco〉 ::= (aco 〈parameters-init〉 〈optimization-cycle〉)
〈parameters-init〉 ::= (init 〈pheromone-matrix-init〉 〈choice-info-matrix-init〉)
〈pheromone-matrix-init〉 ::= (init-pheromone-matrix 〈trail-amount〉)
〈trail-amount〉 ::= 〈initial-trail〉 | (uniform-trail 〈trail-min〉 〈trail-max 〉)
〈initial-trail〉 ::= 〈trail-min〉 | 〈trail-max 〉 | (tas) | (teas 〈rate〉) | (tras 〈rate〉 〈weight〉)

| (tacs) | (tmmas 〈rate〉)
〈choice-info-matrix-init〉 ::= (init-choice-info-matrix 〈alpha〉 〈beta〉)
〈optimization-cycle〉 ::= (repeat-until 〈loop-ants〉 〈update-trails〉 〈daemon-actions〉)
〈loop-ants〉 ::= (foreach-ant make-solution-with 〈decision-policy〉

(if 〈bool〉 (local-update-trails 〈decay〉)))
〈decision-policy〉 ::= (roulette-selection) | (q-selection 〈q-value〉) | (random-selection)

〈update-trails〉 ::= (progn 〈evaporate〉 〈reinforce〉)
〈evaporate〉 ::= (do-evaporation

(if 〈bool〉 (full-evaporate 〈rate〉))
(if 〈bool〉 (partial-evaporate 〈rate〉 〈ants-subset〉)))

〈reinforce〉 ::= (do-reinforce
(if 〈bool〉 (full-reinforce))
(if 〈bool〉 (partial-reinforce 〈ants-subset〉))
(if 〈bool〉 (rank-reinforce 〈many-ants〉))
(if 〈bool〉 (elitist-reinforce 〈weight〉))

〈daemon-actions〉 ::= (do-daemon-actions
(if 〈bool〉 (update-pheromone-limits 〈update-min〉 〈update-max 〉))
(if 〈bool〉 (restart-check)))

〈ants-subset〉 ::= 〈single-ant〉 | 〈many-ants〉
〈single-ant〉 ::= (all-time-best) | (current-best) | (random-ant) | (all-or-current-best

〈probability〉)
〈many-ants〉 ::= (all-ants) | (rank-ant 〈rank〉)
〈update-min〉 ::= 〈trail-min〉 | (mmas-update-min)

〈update-max 〉 ::= 〈trail-max 〉 | (mmas-update-max 〈rate〉)
〈weight〉 ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | (n-ants) | (max-rank 〈rank〉)
〈trail-min〉 ::= 0.000001

〈trail-max 〉 ::= 1.0

〈alpha〉 ::= 1 | 2 | 3
〈beta〉 ::= 1 | 2 | 3
〈q-value〉 ::= 0.7 | 0.75 | 0.8| 0.85 | 0.9 | 0.95 | 0.98 | 0.99
〈decay〉 ::= 0.01 | 0.025 | 0.05 | 0.075 | 0.1
〈rate〉 ::= 0.01 | 0.1 | 0.25 | 0.5 | 0.75 | 0.9
〈probability〉 ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9
〈rank〉 ::= 5 | 10 | 25 | 50 |75
〈bool〉 ::= t | nil

3.2 Related Work

There are several efforts for granting bio-inspired approaches the ability to self
adapt their strategies. On-the-fly adaptation may occur just on the parameter

210 J. Tavares and F.B. Pereira

settings or be extended to the algorithmic components. Grammar-based GP and
GE have been used before to evolve complete algorithms, such as evolving data
mining algorithms [7] and local search heuristics for the bin-packing [8].

In the area of Swarm Intelligence, there are some reports describing the self-
adaptation of parameter settings (see, e.g., [9,10]). Poli et al. [11] use GP to
evolve the equation that controls particle movement in Particle Swarm Opti-
mization (PSO). Diosan and Oltean also worked on the evolution of PSO struc-
tures [12]. On the topic of ACO evolution, Runka [13] applies GP to evolve the
probabilistic rule used by an ACO variant to select the solution components in
the construction phase. Tavares et al. applied GP and Strongly Typed GP to
evolve pheromone update strategies [3,4,14]. Finally, López-Ibáñez and Stützle
synthesize existing multi-objective ACO approaches into a flexible configura-
tion framework, which is then used to automatically design novel algorithmic
strategies [5].

4 Experiments and Analysis

In this section, our purpose is to gain insight into the ability of GE to automati-
cally design effective ACO algorithms. Selected TSP instances from the TSPLIB1

are used to validate our approach. For all experiments we performed 30 inde-
pendent runs. Results are expressed as a normalized distance to the optimum.

4.1 Learning the Architectures

In the first set of experiments, we address the ability of GE to learn ACO
architectures using the previously described grammar. We adopt the strategy
proposed by [3,4] to evaluate the individuals generated by the GE engine. In
concrete, the ACO algorithm encoded in a solution is used to optimize a pre-
determined TSP instance (1 single run comprising of 100 iterations). The fitness
value of that individual is given by the best solution found. This minimal evalu-
ation methodology was adopted mainly due to efficiency reasons, since assigning
fitness to an evolved architecture is a computational intensive task.

For all tests, the GE settings are: Population size: 64; Number of generations:
25; Individual size: 128 (with wrap); One-Point crossover with rate: 0.7; Standard
Integer-Flip mutation with rate: 0.05; Tournament selection with tourney size:
3; Elitist strategy. Three distinct TSP training instances were selected to learn
ACO architectures: eil76, pr76 and gr96 (the value represents the number of
cities). Evolved individuals encode nearly all parameters required to run the
ACO algorithm in the fitness assignment step. The exceptions are the size of the
colony and the λ parameter for the branching factor. We set the number of ants
to 10% of the number of cities (rounded to the nearest integer) and λ to 0.05.

Table 1 contains the optimization results of GE using the three training in-
stances. The row Best Hits displays the number of runs where evolved architec-
tures were able to discover the optimal solution of the training instance. Row

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Automatic Design of Ant Algorithms with Grammatical Evolution 211

Table 1. Overview of GE evolution results (for 30 runs with 25 generations)

Instances eil76 pr76 gr96

Best Hits 20 4 12
Mean Best 0.0014 (±0.003) 0.0079 (±0.007) 0.0043 (±0.008)
Mean Ants 0.0725 (±0.062) 0.1171 (±0.073) 0.0941 (±0.074)
Mean Branching 8.58 11.21 11.24
Mean Generations 13.1 21.2 14.0

Mean Best contains the mean of the best solutions found, while Mean Ants gives
the mean of all solutions discovered in the last generation. These two lines also
display the standard deviation (in brackets). The last two rows contain the mean
branching factor at the end of the optimization and the average number of gen-
erations that GE needs to reach the best solution. The low values appearing
in lines Mean Best and Mean Ants confirm that evolution consistently found
architectures that were able to find the optimum or near-optimum solutions.
Moreover, there are no noteworthy variations in the outcomes obtained with
different training instances. The branching factor indicates the degree of conver-
gence of an ACO pheromone matrix. For the TSP, a value of 2.0 indicates full
convergence. In Table 1 the mean branching is low for all training instances, al-
though not close to full convergence. However, a closer inspection of the evolved
architectures reveals that those which are able to generate better quality solu-
tions for the TSP training instances, have a branching factor close to 2.0. As
expected, higher branching values are usually present in architectures that did
not perform as well.

Results from line Best Hits show that the instance selected for training im-
pacts the likelihood of evolving ACO architectures that can discover the optimal
solution in the evaluation step. With eil76, 20 runs were able to learn algorithms
that discover the training instance optimum, whereas in pr76 only 4 runs were
successful. The reason for this effect is probably related to the spatial distribu-
tion of the cities. Although all training instances have a similar dimension, the
distribution pattern is not the same. Eil76 has a uniform random distribution,
pr76 has a clustered distribution and gr96 is randomly distributed but not in a
uniform way. It is easier for GE to evolve architectures that perform better in a
uniform-random distribution than in a clustered one. The mean of generations
it takes for GE to reach the best individual also corroborates this fact.

The outcomes presented in Table 1 suggest that GE is able to learn ACO
architectures that effectively solve the training instances. However, the most
important topic in this research is to analyze the algorithmic structure of the
evolved architectures. Two questions arise: did GE discover solutions which are
replicas of standard ACO algorithms, e.g., EAS or ACS? If not, did the system
converge to a particular solution or to a set of different solutions? The answer
to the first question is obtained by inspecting the 90 best solutions generated by
the GE engine (30 best solutions for each training instance). In this set there is
not an exact copy of the standard algorithms, and only 5 individuals could be
considered as similar to manually designed ACO approaches (3 for the ACS, 1

212 J. Tavares and F.B. Pereira

Table 2. Frequency of appearance of the grammar components in best solutions
evolved for each instance and average among all training instances. Evaporation and
Reinforcement are not exclusive.

Components eil76 pr76 gr96 Avg

Tau Init Uniform Distribution 0.60 0.42 0.25 0.42
Min 0.05 0.08 0.25 0.13
Max 0.05 0.08 0.00 0.04
Ant 0.05 0.00 0.25 0.10
EAS 0.05 0.00 0.00 0.02
RAS 0.00 0.17 0.00 0.06
ACS 0.10 0.17 0.00 0.09
MMAS 0.10 0.08 0.25 0.14

Selection Roulette Selection 0.40 0.25 0.25 0.30
Q Selection 0.60 0.75 0.75 0.70
with Local Trails 0.30 0.17 0.00 0.16

Evaporation Full Evaporation 0.65 0.50 1.00 0.72
Partial Evaporation 0.50 0.33 0.25 0.36

Reinforcement Full 0.40 0.08 0.00 0.16
Partial 0.45 0.42 0.25 0.37
Rank 0.50 0.17 0.00 0.22
Elitist 0.90 0.83 1.00 0.91

Pheromone Limits 0.45 0.92 1.00 0.79

Restart 0.50 0.50 0.75 0.58

for RAS and 1 for EAS). There is then evidence that GE tends to converge to
areas in the search space of ACO algorithms containing innovative strategies.

The answer to the second question can be partially obtained in Table 2, which
contains the rate of appearance of the grammar components in the best solutions
evolved (parameter values are not included). The rows contain all components
that appear in the best solutions and are grouped by section (e.g., selection,
evaporation). Some of the components are not exclusive (e.g., reinforcement),
while others are (e.g., roulette vs. Q selection). The values are normalized to
the interval between 0.0 and 1.0. There is a column with results obtained with
each training instance and a fourth column Avg containing a weighted average of
the frequencies by the number of Best Hits. An inspection of the results reveals
that evolution did not converge to a unique solution. There are some variations
between instances, but the general trend is to have a few alternative components
appearing in the best solutions evolved by the GE in different runs. In any case,
some components are frequently used to create promising strategies (e.g., elitist
reinforcement and Q selection), while others are rarely considered (e.g., elitist
pheromone initialization). This outcome shows that GE is able to identify a
subset of components that increase the likelihood of creating effective strategies.

4.2 Validation of the Evolved Architectures

Results from the previous section show that the structure of the training instance
influences the structure of the evolved architectures. It is therefore essential to
validate the learned strategies in an optimization scenario. This will confirm, not

Automatic Design of Ant Algorithms with Grammatical Evolution 213

Table 3. Optimization results of selected best strategies, with 10000 iterations for 30
runs. Rows display the best solution found (B) and the mean best fitness (M) for every
training instance. Bold values indicate the overall M best value.

ei7612 ei7618 ei7621 pr7609 pr7626 pr7627 gr9603 gr9610 gr9622

att48 B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0024 0.0003 0.0072 0.0028 0.0069 0.0034 0.0031 0.0021 0.0020

eil51 B 0.0000 0.0000 0.0023 0.0000 0.0000 0.0023 0.0000 0.0000 0.0000
M 0.0067 0.0023 0.0174 0.0046 0.0091 0.0186 0.0020 0.0045 0.0061

berlin52 B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0043 0.0000 0.0104 0.0055 0.0207 0.0108 0.0057 0.0053 0.0095

kroA100 B 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0065 0.0000 0.0039 0.0037 0.0075 0.0044 0.0022 0.0068 0.0048

lin105 B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0043 0.0001 0.0014 0.0042 0.0081 0.0060 0.0016 0.0043 0.0027

gr137 B 0.0000 0.0017 0.0083 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000
M 0.0139 0.0071 0.0203 0.0034 0.0047 0.0053 0.0071 0.0053 0.0049

u159 B 0.0000 0.0000 0.0124 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.0034 0.0001 0.0262 0.0039 0.0116 0.0066 0.0012 0.0021 0.0038

d198 B 0.0059 0.0067 0.0094 0.0035 0.0032 0.0001 0.0350 0.0035 0.0053
M 0.0211 0.0103 0.0164 0.0125 0.0111 0.0069 0.0432 0.0082 0.0124

pr226 B 0.0000 0.0034 0.0098 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000
M 0.0042 0.0040 0.0291 0.0022 0.0040 0.0049 0.0053 0.0029 0.0030

lin318 B 0.0113 0.0139 0.0833 0.0086 0.0084 0.0052 0.1417 0.0079 0.0051
M 0.0271 0.0188 0.1034 0.0199 0.0188 0.0159 0.1589 0.0186 0.0148

only their effectiveness, but also their ability to scale and generalize. Specifically,
we aim to: i) verify how evolved architectures behave in different TSP instances;
ii) access how they perform in larger instances; iii) measure the absolute opti-
mization performance of evolved architectures, by running them as normal ACO
algorithms. To focus our analysis, we randomly selected 3 of the best evolved
strategies with each training instance. Strategies are identified with an ID: the
first two letters and the first two digits identify the training instance; the last
two digits indicate the run (e.g., architecture ei7618 was trained with instance
eil76 on run 18). Ten TSP instances were selected to access the optimization
performance of the evolved architectures: att48, eil51, berlin52, kroA100, lin105,
gr137, u159, d198, pr226 and lin318. The number of iterations is increased to
10000 to allow a correct optimization period for larger TSP instances.

Table 3 contains the optimization results of the selected strategies on the
10 instances (one strategy in each column). For every test instance, the table
displays two rows: one with the best solutions found (B) and another with the
mean best fitness (M). Bold values highlight the best M value among all evolved
strategies. In general, results show that evolved strategies perform well across
the instances, and thus, are able to generalize. In most cases, the automatically
designed algorithms found the optimal solution. The exceptions are instances
d198 and lin318, where the shortest tour was never found. Still, the normalized
distances to the optimum are small (e.g., pr7627 has distances 0.0001 and 0.0052
in d198 and lin318, respectively). The mean best fitness values confirm that

214 J. Tavares and F.B. Pereira

Table 4. Statistical differences between architectures by applying the Wilcoxon rank
sum test (α = 0.01). A capital B highlights the strategy with the best average fitness,
while a lower b indicates an architecture with an equivalent performance.

ei7612 ei7618 ei7621 pr7609 pr7626 pr7627 gr9603 gr9610 gr9622

att48 B
eil51 b B
berlin52 b B b
kroA100 B
lin105 B
gr137 B b b b b
u159 B b
d198 B b
pr226 b B b b b
lin318 b B

evolved strategies are robust and scale well. Instances range between 48 and 318
cities, but the M value rarely exceeds 0.02 and it does not grow excessively with
the size of the instances. A closer inspection of the results reveals that, despite
the overall good behavior, the performance of the evolved designs is not identical.
If we recall Table 2, this variation was likely to happen. There are differences
in the composition of strategies evolved with a specific instance and there are
differences between strategies evolved with distinct training examples. Then, it
is expectable that there are performance variations when a subset of promising
strategies is selected to an optimization task.

To confirm that performance variations are not the result of random events,
we applied a statistical test to the data of Table 3. In concrete, for each test
instance we compared the mean best fitness of the best evolved architecture
with the results obtained by each of the other strategies. Table 4 contains the
results of applying the Wilcoxon rank sum test with continuity correction and
confidence level α = 0.01. The capital B highlights the best architecture for
a given testing instance (e.g., gr9603 for eil51). A lower b indicates that no
statistically significant difference was found between the performance of two
strategies (the one in the column where the b appears and the best strategy for
the instance in that line); e.g., ei7618 is equivalent to gr9603 in eil51. Finally,
the white spaces indicate that significant differences were found. A combined
analysis of tables 3 and 4 confirms that ei7618 has the overall best performance.
It obtains the lowest mean best fitness in 5 out of 10 instances and is equivalent to
the best strategy in a sixth case. However, results also show that the performance
of ei7618 deteriorates as the instances grow in size, suggesting that it might not
scale well. On the other extreme, ei7621 exhibits a poor behavior showing that
the training instance is not the only key issue to learn effective optimization
architectures. Finally, the behavior of strategy gr9610 is worth noting. It never
achieves the absolute best mean performance, but, in 4 instances, it obtains
results statistically equivalent to the best. In the upper-half of listing 1, we
present the Lisp code for the strategy ei7618 (due to space constraints, we cannot
include the code from other evolved strategies).

Automatic Design of Ant Algorithms with Grammatical Evolution 215

Listing 1. Evolved architecture ei7618 and the hand-adjusted GE-best

(ACO-ei7618
(INIT (INIT-PHEROMONE-MATRIX (UNIFORM-TRAIL 1.e-5 1.0))

(INIT-CHOICE-INFO-MATRIX 1 3))
(REPEAT-UNTIL-TERMINATION

(FOREACH-ANT MAKE-SOLUTION-WITH (ROULETTE-SELECTION))
(UPDATE-TRAILS

(DO-EVAPORATION
(FULL-EVAPORATE 0.25)

(DO-REINFORCE
(RANK-REINFORCE (RANK-ANT 10))
(ELITIST-REINFORCE 1))))

(DAEMON-ACTIONS
(RESTART-CHECK))))

(ACO-GE-best
(INIT (INIT-PHEROMONE-MATRIX (UNIFORM-TRAIL 1.e-5 1.0))

(INIT-CHOICE-INFO-MATRIX 1 3))
(REPEAT-UNTIL-TERMINATION

(FOREACH-ANT MAKE-SOLUTION-WITH (ROULETTE-SELECTION))
(UPDATE-TRAILS

(DO-EVAPORATION
(FULL-EVAPORATE 0.45))

(DO-REINFORCE
(PARTIAL-REINFORCE (ALL-TIME-BEST))
(RANK-REINFORCE (RANK-ANT 10))
(ELITIST-REINFORCE 1)))

(DAEMON-ACTIONS
(UPDATE-PHEROMONE-LIMITS (MMAS-UPDATE-MIN)

(MMAS-UPDATE-MAX 0.01))
(RESTART-CHECK))))

4.3 Comparison with Standard ACO Algorithms

To assess the absolute optimization performance of the learned architectures,
we compare the results obtained by the two best evolved strategies (ei7618 and
gr9610) with those achieved by the most common ACO algorithms: AS, EAS,
ACS and MMAS. We include in this study two hand-adjusted architectures,
based on the best strategies obtained in the learning process: GE-avg is the

Table 5. Statistical differences between selected evolved architectures, hand-adjusted
architectures and standard algorithms, by applying the Wilcoxon rank sum test (α =
0.01). A capital B highlights the strategy with the best average fitness, while a lower
b indicates an architecture with an equivalent performance.

ei7618 gr9610 GE-avg GE-best AS EAS RAS ACS MMAS

att48 B
eil51 b B
berlin52 B B B b
kroA100 B
lin105 b B b
gr137 B b b
u159 b B b
d198 B
pr226 b B b
lin318 b B b b

216 J. Tavares and F.B. Pereira

strategy obtained by selecting the most frequent components identified in col-
umn Avg from Table 2, whereas GE-best is a hybrid of the two best evolved
architectures previously mentioned (see the bottom-half of listing 1 for the Lisp
code of GE-best). The standard algorithms and the hand-adjusted strategies are
applied to the selected 10 test instances in same conditions described in the pre-
vious section. The parameters settings for the standard approaches follow the
recommendations from [1]. The exceptions are: colony size (we keep the 10%
rule); q0 is set to 0.7; α and β are set to 1 and 2.

The Wilcoxon test was applied to perform a statistical comparison of the
mean best fitness achieved by the different methods. Results are presented in
Table 5, where the symbols B and b should be interpreted as before. Overall,
learned architectures and hand-adjusted strategies inspired by the evolved ones
are competitive with standard variants. Nearly all best results appear in the first
4 columns, which correspond to fully evolved or fine-tuned evolved strategies.
There is just a single B in the RAS column, identifying a tie with ei7618 and
GE-best. Individually, the behavior of ei7618 is remarkable, since it achieves the
best or an equivalent to the best performance in 7 instances. GE-best is also
effective, as it achieves the absolute best performance in 6 instances. The results
obtained by gr9610 are worth noting, as it achieves the best or an equivalent
to the best performance on the 3 largest test instances. These outcomes suggest
that gr9610 has a good scaling ability. Finally, when compared to the other
evolved strategies, the results of GE-avg are poor. This confirms that designing
architectures which are a linear combination of components found in successful
strategies is not a guarantee of success.

5 Conclusions

We proposed a GE framework to accomplish the automatic evolution of ACO
algorithms. The grammar adopted is mostly formed by components appearing
in human-designed variants, although the interpretation of individuals allows for
the emergence of alternative algorithmic strategies. To the best of our knowledge,
this is the first work that evolves a full-fledged ACO algorithm.

Results reveal that evolution is able to discover original architectures, differ-
ent from existing ACO algorithms. Best evolved strategies exhibit a good gen-
eralization capability and are competitive with human-designed variants. The
system uses a constrained grammar, which undermines the possibility of evolv-
ing strategies that strongly deviate from standard ACO structures. Nevertheless,
GE discovers effective novel solutions and does not converge to the standard al-
gorithms. This suggests that the human-designed variants regularly adopted in
the optimization of the TSP might be local optima in the search space of ACO
algorithms. The outcomes from the last section reveal that the hybrid archi-
tecture based on the two best evolved strategies is particularly effective. This
shows that GE can also act as a supplier of promising strategies that can be
later combined and/or fine-tuned.

The study presented here raises important research questions. There are sev-
eral design options concerning the training phase that impact the likelihood of

Automatic Design of Ant Algorithms with Grammatical Evolution 217

discovering effective and scalable strategies. In the near future we will investigate
the influence played by the training instances properties (e.g., size, structure)
on the discovery of good ACO algorithms. This will help us to gain insight on
how to select the most favorable training environment. Also, we will address
the issue of selecting the most promising strategies from the pool of best solu-
tions. Another important research topic is the development of less constrained
grammars, which might allow the evolution of ACO architectures with a higher
degree of innovation. Finally, testing the approach with other problems and do-
ing cross-problem validation will be significant steps in the effort of development
evolutionary-based Ant Systems.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
2. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary al-

gorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)
3. Tavares, J., Pereira, F.B.: Evolving Strategies for Updating Pheromone Trails: A

Case Study with the TSP. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6239, pp. 523–532. Springer, Heidelberg (2010)

4. Tavares, J., Pereira, F.B.: Designing Pheromone Update Strategies with Strongly
Typed Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P.,
Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 85–96. Springer, Heidel-
berg (2011)

5. López-Ibáñez, M., Stützle, T.: Automatic Configuration of Multi-Objective ACO
Algorithms. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht,
A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle,
T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 95–106. Springer, Heidelberg (2010)

6. O’Neill, M., Ryan, C.: Grammatical Evolution. Springer, Heidelberg (2003)
7. Pappa, G.L., Freitas, A.A.: Automatically Evolving Data Mining Algorithms. Nat-

ural Computing Series, vol. XIII. Springer, Heidelberg (2010)
8. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search

heuristics. IEEE Transactions on Evolutionary Computation (2011)
9. Botee, H., Bonabeau, E.: Evolving ant colony optimization. Advances in Complex

Systems 1, 149–159 (1998)
10. White, T., Pagurek, B., Oppacher, F.: ASGA: Improving the ant system by inte-

gration with genetic algorithms. In: Proceedings of the 3rd Genetic Programming
Conference, pp. 610–617. Morgan Kaufmann (1998)

11. Poli, R., Langdon, W.B., Holland, O.: Extending Particle Swarm Optimisation
via Genetic Programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van
Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300.
Springer, Heidelberg (2005)

12. Dioşan, L., Oltean, M.: Evolving the Structure of the Particle Swarm Optimization
Algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906,
pp. 25–36. Springer, Heidelberg (2006)

13. Runka, A.: Evolving an edge selection formula for ant colony optimization. In:
Proceedings of GECCO 2009, pp. 1075–1082 (2009)

14. Tavares, J., Pereira, F.B.: Towards the development of self-ant systems. In: Pro-
ceedings of GECCO 2011. ACM (2011)

Random Sampling Technique

for Overfitting Control in Genetic Programming

Ivo Gonçalves1, Sara Silva2,1, Joana B. Melo3, and João M.B. Carreiras3

1 ECOS/CISUC, DEI/FCTUC, University of Coimbra, Portugal
2 INESC-ID Lisboa, IST, Technical University of Lisbon, Portugal
3 GeoDES, Tropical Research Institute (IICT), Lisbon, Portugal

icpg@dei.uc.pt, sara@kdbio.inesc-id.pt,
joana.lx.bm@gmail.com, jmbcarreiras@iict.pt

Abstract. One of the areas of Genetic Programming (GP) that, in com-
parison to other Machine Learning methods, has seen fewer research ef-
forts is that of generalization. Generalization is the ability of a solution to
perform well on unseen cases. It is one of the most important goals of any
Machine Learning method, although in GP only recently has this issue
started to receive more attention. In this work we perform a comparative
analysis of a particularly interesting configuration of the Random Sam-
pling Technique (RST) against the Standard GP approach. Experiments
are conducted on three multidimensional symbolic regression real world
datasets, the first two on the pharmacokinetics domain and the third
one on the forestry domain. The results show that the RST decreases
overfitting on all datasets. This technique also improves testing fitness
on two of the three datasets. Furthermore, it does so while producing
considerably smaller and less complex solutions. We discuss the possi-
ble reasons for the good performance of the RST, as well as its possible
limitations.

Keywords: Genetic programming, Overfitting, Generalization.

1 Introduction

Genetic Programming (GP) is an evolutionary computation paradigm that auto-
matically solves problems without needing to know the structure of the solution
in advance [1]. One of the areas in GP that has been recently recognized as an
open issue that needs to be addressed in order for GP to realize its full poten-
tial is the one of generalization [2]. Generalization is the ability of a solution to
perform well on unseen cases. Achieving good generalization is one of the most
important goals of any Machine Learning (ML) method such as GP. Overfitting
is said to occur when a solution performs well on the training cases but poorly on
the testing cases. This indicates that the underlying relationships of the whole
data were not learned, and instead a set of relationships existing only on the
training cases were learned, but these have no correspondence over the whole
known cases.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 218–229, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

RST for Overfitting Control in Genetic Programming 219

Other non-evolutionary ML methods have dedicated a far larger amount of
research effort to generalization than GP, although the number of publications
dealing with overfitting in GP has been increasing in the past few years. Notably,
in Koza [3] most of the problems presented did not use separate training and
testing data sets, so performance was never evaluated on unseen cases [4]. Part
of the lack of generalization efforts can be related to another issue occurring in
GP - bloat. Bloat can be defined as an excess of code growth without a corre-
sponding improvement in fitness [5]. This phenomenon occurs in GP as in most
other progressive search techniques based on discrete variable-length represen-
tations. Bloat was one of the main areas of research in GP, not only because its
occurrence hindered the search progress but also because it was hypothesized,
in light of theories such as Occam’s razor and the Minimum Description Length,
that a reduced code size could lead to better generalization ability. Researchers
had a common agreement that these two issues were related and that counter-
acting bloat would lead to positive effects on generalization. This, however, has
been recently challenged. Contributions show that bloat free GP systems can
still overfit, while highly bloated solutions may generalize well [6]. This leads to
the conclusion that bloat and overfitting are in most part two independent phe-
nomena. In light of this finding, new approaches to improve GP generalization
ability are in need, particularly those not based on merely biasing the search
toward shorter solutions.

In this work we study the potential of a simple technique, the Random Sam-
pling Technique (RST), to control overfitting in hard real world applications.
Recently used with success on a simple benchmark problem [31], the RST is
based on the idea of never using the entire training set in any given generation
of the search process.

Section 2 reviews the state of the art of generalization in GP. Section 3 de-
scribes the RST and the experimental settings. Section 4 presents and discusses
the results, advancing ideas for future work. Section 5 concludes.

2 State of the Art

The most common approaches to reducing overfitting in GP are those based on
biasing the search toward shorter solutions. Becker and Seshadri [7] proposed
adding a complexity penalty factor to the fitness function. Mahler et al. [8]
explored to what extent Tarpeian bloat control affects GP generalization ability.
Gagné et al. [9] tested the application of parsimony pressure. Cavaretta and
Chellapilla [10] used a low-complexity-bias algorithm that uses a modification in
the fitness function meant to penalize larger individuals. Zhang et al. [11] also
addressed the relationship between size and generalization performance by using
a fitness function with two components: fitting error and size.

More recent approaches bias the search process toward less complex solutions.
In these approaches complexity is not simply defined as solution size. Vladislavl-
eva et al. [12] proposed a complexity measure called order of nonlinearity. This
measure adopts the notion of the minimal degree of the best-fit polynomial, ap-
proximating an analytical function with a certain precision. The main objective

220 I. Gonçalves et al.

behind the proposed complexity measure is to favor smooth and extrapolative
behavior of the response surface and to discourage highly nonlinear behavior,
which is unstable toward minor changes in inputs and is dangerous for extrap-
olation. Vanneschi et al. [13] proposed a functional complexity measure based
on the classic mathematical concept of curvature. Informally, the curvature of
a function can be defined as the amount by which its geometric representation
deviates from being straight. This complexity measure expresses the complexity
of a function by counting the number of different slopes.

Also recently, approaches based on similarities between solutions have started
to appear. Uy et al. [15] proposed a Semantic Similarity based Crossover ap-
proach which is based on the Sampling Semantics Distance between two trees
(or subtrees), which is calculated by choosing N random points (fitness cases)
and calculating the mean absolute difference between each corresponding points
on the two trees. The authors argue that the exchange of subtrees is most likely
to be beneficial if the two subtrees are not too similar or too dissimilar. Van-
neschi and Gustafson [16] proposed avoiding solutions similar to already known
overfitted solutions. The proposed method (repGP) keeps a list of overfitting
individuals (called repulsors) and prevents any new individual to enter the next
generation if they are similar to any of the known repulsors.

Various other approaches were proposed. A simple and elegant idea was pro-
posed by Da Costa and Landry [17]. The idea is to relax the training set by
allowing a wider definition of the desired solution which translates into consid-
ering not only the desired output y correct but allow a more broader range to
be considered, i.e. allow any output in the range [ymin, ymax]. Chan et al. [18]
proposed a statistical method called Backward Elimination that works by elim-
inating insignificant terms in polynomials models such as those produced by
GP. Nikolaev et al. [19] proposed several techniques to balance the statistical
bias and variance. In the context of financial applications, Chen and Kuo [20]
proposed a measure of degree of overfitting based on the extracted signal ra-
tio. Foreman and Evett [21] proposed Canary Functions, where the idea is to
measure overfitting during the run by using a validation set. When overfitting
starts to occur the search process is stopped. Vanneschi et al. [22] argued that
using GP with a multi-optimization approach can enhance the generalization
ability of the resulting solutions. This approach uses two other criteria besides
the traditional sum of errors. These are: the correlation between outputs and
targets (to maximize) and the diversity of pairwise distances between outputs
and targets (to minimize). Robilliard and Fonlupt [23] applied a method called
Backwarding that goes back as much as needed in the evolution process until
the point that overfitting is not yet very relevant. This is achieved by saving
two copies of the solutions: one copy for the best solution on the training set
and another copy for the best solution on the validation set. At the end of the
GP process the best saved solution for the validation set is returned. Finally, in
the context of the Compiling Genetic Programming System, Banzhaf et al. [24]
showed the positive influence of the mutation operator in generalization ability.

RST for Overfitting Control in Genetic Programming 221

Although these and a number of other works have addressed the issue of
overfitting in GP, they appear as a set of isolated efforts scattered along the
years and among different applications. Nevertheless, as GP matures and slowly
becomes a mainstreamML approach, also the overfitting issue is slowly becoming
a central research subject.

3 Experiments

This section describes the datasets used, the Random Sampling Technique and
the experimental parameters used.

3.1 Datasets

Experiments are conducted on three multidimensional symbolic regression real
world datasets, the first two on the pharmacokinetics domain and the third one
on the forestry domain.

Toxicity. The goal of this application is to predict, in the context of a drug
discovery study, the median lethal dose (LD50) of a set of candidate drug com-
pounds on the basis of their molecular structure. LD50 refers to the amount of
compound required to kill 50% of the considered test organisms (cavies). Reliably
predicting this and other pharmacokinetics parameters would permit to reduce
the risk of late stage research failures in drug discovery, and enable to decrease
the number of experiments and cavies used in pharmacological research [25]. The
LD50 dataset consists of 234 instances, where each instance is a vector of 626
molecular descriptor values identifying a drug. This dataset is freely available at
http://personal.disco.unimib.it/Vanneschi/toxicity.txt.

Plasma Protein Binding. As in the toxicity application, also here the goal is
to predict the value of a pharmacokinetics parameter of a set of candidate drug
compounds on the basis of their molecular structure, this time the plasma pro-
tein binding level (%PPB). %PPB quantifies the percentage of the initial drug
dose that reaches the blood circulation and binds to the proteins of plasma. This
measure is fundamental for good pharmacokinetics, both because blood circula-
tion is the major vehicle of drug distribution into human body and since only
free (unbound) drugs can permeate the membranes reaching their targets [25].
This dataset consists of 131 instances, where each instance is a vector of 626
molecular descriptor values identifying a drug.

Biomass. The objective of this application is to estimate forest above-ground
biomass (AGB) as a function of several metrics derived from synthetic aper-
ture radar (SAR) data acquired by sensors on orbital platforms. Mapping and
understanding the spatial distribution of forest AGB is an important and chal-
lenging task [26,27,28]. As it relates to the carbon stocks of a given ecosystem,
these maps can be used to monitor forests and capture national deforestation
processes, forest degradation, and the effects of conservation actions, sustain-
able management and enhancement of carbon stocks. The dataset is composed
of 112 field measurements of forest AGB and corresponding 8 SAR metrics used
to model AGB. This dataset has never been used in any GP studies.

http://personal.disco.unimib.it/Vanneschi/toxicity.txt

222 I. Gonçalves et al.

3.2 Random Sampling Technique

The Random Sampling Technique (RST) has been previously used to improve
the speed of a GP run [29], however in [30] it was used to reduce overfitting
in a classification task in the context of software quality assessment. In the
RST, the training set is never entirely used in the search process. Instead, at
each generation, a random subset of the training data is chosen and evolution
is performed taking into account the fitness of the solutions in this subset. This
implies that only individuals that perform well on various different subsets will
remain in the population. It is expected that, since these surviving individuals
perform reasonably well on different subsets, they have captured the underlying
relationships of the data instead of overfitting it. This work is a continuation of a
previous work [31] that was done with the RST on a simple benchmark problem.
In the mentioned work we have proposed a more flexible approach to the RST.
Firstly, the size of the random subset can be defined as any percentage of the
training set. Secondly, the rate at which a new random subset is chosen can be
defined as either being at each N generations or as a percentage of the total
number of generations. These two RST parameters are respectively labelled as
Random Subset Size (RSS) and Random Subset Reset (RSR). In this extended
approach they can be defined as any value, as opposed to their static nature
in [30]. In this paper we build upon the previous work by exploring the RST on
real world datasets with the best configuration found in that work (both RSS
and RSR set to value 1, i.e. in each generation a single new random sample is
chosen). Standard GP is used as the baseline for comparison.

3.3 Parameters and Statistical Tests

The experimental parameters used are provided in Table 3.3. Furthermore,
crossover and mutation points are selected with uniform probability. Fitness
is calculated as the Root Mean Squared Error (RMSE) between outputs and
targets.

Statistical significance of the null hypothesis of no difference was deter-
mined with pairwise Kruskal-Wallis non-parametric ANOVAs at p=0.05. A non-
parametric ANOVA was used because the data is not guaranteed to follow a
normal distribution. For the same reason, the median was preferred over the
mean in all the evolution plots shown in the next section. The median is also
more robust to outliers.

4 Results and Discussion

This section presents and discusses the results achieved. For the remainder of this
paper, the terms training and testing fitness are to be interpreted in the following
way: training fitness is the fitness of the best individual in the training set; testing
fitness is the fitness of that same individual in the testing set. For the purpose
of further comparisons we have defined a simple overfitting measure. According

RST for Overfitting Control in Genetic Programming 223

Table 1. GP parameters used in the experiments

Runs 30

Population 500

Generations 100

Training - Testing division 70% - 30%

Crossover operator Standard subtree crossover, probability 0.9

Mutation operator Standard subtree mutation, probability 0.1,

new branch maximum depth 6

Tree initialization Ramped Half-and-Half [1],

maximum depth 6

Function set +, -, *, and /, protected as in [1]

Terminal set Input variables, no constants

Selection for reproduction Lexicographic Parsimony Pressure [32],

tournaments of size 10

Elitism Replication rate 0.1,

best individual always survives

Maximum tree depth 17

to this measure, overfitting is simply calculated as the difference between testing
and training fitness. This implies that if training fitness is better than testing
fitness then overfitting is occurring, i.e. the measure retrieves a positive value.
Negative values are allowed and occur when testing fitness is better than training
fitness. This is rather uncommon but can still happen. In the evolution plots we
have chosen not to take the absolute value of the difference between both fitness
values as not to lose this potentially interesting information. For the statistical
tests we take the absolute values since what we want is overfitting as close to zero
as possible and not to have negative overfitting. This also prevents the unwanted
effect of compensation between positive and negative overfitting values. Tree size
is calculated as the number of nodes of a solution. Complexity is calculated based
on the notion of curvature of a function as in [13]. The evolution plots present the
results based on the median of the fitness, overfitting, tree size and complexity
of the best individuals at each generation over 30 runs.

4.1 Results

The fitness and overfitting plots for Standard GP and RST can be found in
Figure 1. The corresponding tree size and complexity plots can be found in Fig-
ure 2. The statistical results comparing training and testing fitness, overfitting,
tree size and complexity between both techniques can be found in Table 4.1. In
this table, s+ indicates that the RST is statistically better than Standard GP,
while s- indicates the opposite, and ∼ indicates that no statistically significant
difference was found. As we can see in the table, the RST achieves statistically
better testing fitness on LD50 and on %PPB. On AGB the difference is not sta-
tistically significant. In training fitness, Standard GP is statistically better on

224 I. Gonçalves et al.

Table 2. Statistical results

LD50 %PPB AGB

Training Fitness
s- s- s-

0.000000 0.000000 0.000000

Testing Fitness
s+ s+ ∼

0.000572 0.000058 0.208871

Overfitting
s+ s+ s+

0.000095 0.000000 0.000001

Tree Size
s+ s+ s+

0.000000 0.000002 0.000000

Complexity
s+ s+ s+

0.000000 0.000001 0.000000

all datasets. In overfitting the RST achieves statistically lower overfitting than
Standard GP on all datasets. The same statistical significance happens for tree
size and complexity also on all datasets.

Looking at the evolution plots in Figure 1 we can see, across all the datasets,
a constantly widening gap between training and testing fitness in Standard GP,
which means that overfitting is occurring. The widening of this gap is particularly
fast on the LD50 dataset. This gap is what our overfitting measure represents.
We can see that the overfitting increase is steeper on the LD50 dataset, with
AGB being the second most overfitted dataset and %PPB the least overfitted of
the three, although still with the referred widening gap present. RST, however,
can maintain a much smaller gap between training and testing fitness. This gap
is also much more constant across all generations. LD50 is the dataset where
the gap is smaller and in fact very close to zero. %PPB comes next in regard to
overfitting and ABG is comparatively the most overfitted of the datasets with
the RST.

Comparing the training fitness values of the Standard GP with the ones of the
RST, we can see that Standard GP learns the training data much faster. This
was expected, since in Standard GP each generation is allowed to see many more
fitness cases than RST, that sees only one. However, the testing fitness values
reveal that Standard GP is merely overfitting and not actually learning the
underlying relationships of the whole known instances, a fact that becomes even
clearer when looking at the corresponding overfitting plots. Despite being a slow
learner, RST compensates in terms of overfitting as it maintains considerably
lower values than Standard GP.

Besides achieving better testing fitness in two out of three datasets, and less
overfitting in all datasets, the RST does so while producing smaller and less
complex solutions. We can see from the tree size and complexity plots in Figure 2
that these present a similar behavior to the overfitting plots, i.e. RST presents
rather constant values while Standard GP presents a somewhat constant increase
in all values (overfitting, tree size and complexity). We have not yet explored

RST for Overfitting Control in Genetic Programming 225

Fig. 1. Standard GP and RST fitness and overfitting evolution plots for: LD50 a)
through c), %PPB d) through f) and AGB g) through i)

Fig. 2. Tree size and complexity evolution plots for: LD50 a) and d), %PPB b) and e)
and AGB c) and f)

the relationship between these three measurements, or between these and the
amount of bloat. At least one study has attempted it in the LD50 dataset [14] but
did not reach solid conclusions. From the practical point of view, it is sufficient
for now to state that the RST reveals clear advantages in the three real world
applications studied here.

4.2 Discussion

One important point that the RST made us realize is that, in order to overfit, a
solution does not necessarily need to find a set of relationships that occur across
most of the fitness cases in the training set. We believe that, in most cases, the
solutions that overfit are simply overfitting a few instances of the training set, but
this is enough to achieve lower error (better fitness) than a solution that learns

226 I. Gonçalves et al.

the general trend of the training data without ever learning specific fitness cases
so well. A solution that perfectly maps (i.e. has zero error) the relationship of a
small number of fitness cases can have a much better fitness, thus higher chance
of survival, than other solutions not as much overfitted. This can be one of the
roots of the problem, since these overfitted, but low error solutions will likely
remain in the population for a long time. On the other hand, RST has shown
us that by using only one fitness case at the time and changing it frequently we
can ultimately avoid this pitfall of the traditional approach.

Figure 3 exemplifies the abovementioned situation. In this figure we have
a target and three possible solutions. In both examples solutions 2 and 3 have
lower RMSE error than solution 1. However, although shifted up from the target,
solution 1 represents the pattern of the target more precisely than solutions 2 or
3 and thus is more desirable to keep in the population. We can see that solutions
2 and 3 present a much higher risk of overfitting. However, in Standard GP they
would be preferred over solution 1, consequently filling up the population with
many similar solutions presenting the same overfitting risks. In RST, solution 1
is not necessarily discarded when compared to solutions 2 and 3, as the chosen
instance for the fitness calculation in each generation can be any, and hence
an instance where solutions 2 and 3 fail to fit can be chosen. This results in
keeping solution 1 in the population and possibly allowing the search to find
other more general solutions. In fact, a preliminary exploration of the population
characteristics of both Standard GP and RST, has revealed that the genotypical
diversity is generally higher with RST (with statistical significance), in particular
among the best ranked individuals of the population. Additional observations
have also revealed that the solutions produced by the RST tend to be smoother
than the ones produced by Standard GP, much like the examples presented
in Figure 3. Further investigation of these themes may help us develop better
methods to control overfitting in the future.

Another issue that deserves further attention is that of the amount of search
that is allowed to the RST when compared to Standard GP. One of the most
interesting facts observed in the results is the evolution of the RST testing and
training fitness in all datasets. These show that the RST is able to continually
improve training fitness while not degrading the testing fitness. The improvement
of its training fitness is much smaller than the improvement achieved by Standard
GP, but the fact that the testing fitness and the overfitting values are better
compensate for this fact. These results hint that the RST is indeed learning
the underlying relationships of the whole known data (testing and training sets)
instead of simply overfitting the training data. Even in the final generations the
overfitting of the RST is close to zero. However, care must be taken when drawing
conclusions, since it is not clear whether these low overfitting values can be kept
if the runs are allowed to continue for more generations. We have not performed
such experiments yet, but these will bring further insight on the full potential of
the RST. If indeed the RST is learning the underlying relationships of the whole
data, then similar overfitting values should occur in the extended runs. If not, we
may have to conclude that the RST is only delaying the occurrence of overfitting,

RST for Overfitting Control in Genetic Programming 227

Fig. 3. A possible target and three different candidate solutions

simply because it sees very little of the training set in each generation. Note that,
in a run of only 100 generations, it is not even possible for RST (with the settings
used, RSS=1) to see all the instances of the training set in the LD50 dataset.

5 Conclusions

In this work we have studied the potential of the RST to control overfitting in
hard real world applications. In the RST, the training set is never entirely used in
the search process. Instead, at each generation, a random subset of the training
data is chosen and evolution is performed taking into account the fitness of the
solutions in this subset. In two multidimensional symbolic regression problem
from the pharmacokinetics domain and one from the forestry domain, the RST
was able to continually improve training fitness while not degrading the testing
fitness, resulting in much lower overfitting values than the ones observed for
Standard GP. Furthermore, the RST did so while producing considerably smaller
and less complex solutions. From these facts we were able to claim that the RST,
with the settings used in this work, reveals clear advantages in the three real
world applications studied here.

Generalization has only recently been recognized as an important open issue
of GP. Another contribution of this work is a brief summary of the published
literature on this subject, which until now has been made of a series of isolated
efforts scattered along the years and among different applications. While dis-
cussing the possible reasons for the good performance of the RST, as well as its
possible limitations, we have advanced a few ideas for future research that we
hope may help to build new methods to control overfitting in the future, thus
contributing to the advancement of the state of the art of this subject.

Acknowledgments. This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds. The authors ac-
knowledge projects EnviGP (PTDC/EIA-CCO/103363/2008, funded by FCT,
Portugal) and CarboVeg GB (funded by the Ministry of Environment, Portugal),
and also the Secretary of State of the Environment and Sustainable Development
(SEAD, Guinea-Bissau), and Maria José Vasconcelos, Project PI, IICT, Lisbon
(Portugal).

228 I. Gonçalves et al.

References

1. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(With contributions by J.R. Koza) (2008), http://lulu.com,
http://www.gp-field-guide.org.uk

2. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open Issues in Genetic
Programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010)

3. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

4. Kushchu, I.: An Evaluation of Evolutionary Generalisation in Genetic Program-
ming. Artificial Intelligence Review 18, 3–14 (2002)

5. Silva, S., Costa, E.: Dynamic Limits for Bloat Control in Genetic Programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141–179 (2009)

6. Vanneschi, L., Silva, S.: Using Operator Equalisation for Prediction of Drug Toxic-
ity with Genetic Programming. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M.
(eds.) EPIA 2009. LNCS, vol. 5816, pp. 65–76. Springer, Heidelberg (2009)

7. Becker, L.A., Seshadri, M.: Comprehensibility and Overfitting Avoidance in Ge-
netic Programming for Technical Trading Rules. Technical report, Worcester Poly-
technic Institute (2003)

8. Mahler, S., Robilliard, D., Fonlupt, C.: Tarpeian Bloat Control and Generaliza-
tion Accuracy. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.,
Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 203–214. Springer, Hei-
delberg (2005)

9. Gagné, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic Programming,
Validation Sets, and Parsimony Pressure. In: Collet, P., Tomassini, M., Ebner,
M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120.
Springer, Heidelberg (2006)

10. Cavaretta, M.J., Chellapilla, K.: Data Mining using Genetic Programming: The
implications of parsimony on generalization error. In: Proceedings of the 1999 IEEE
Congress on Evolutionary Computation, pp. 1330–1337. IEEE Press (1999)

11. Zhang, B.-T., Mühlenbein, H.: Balancing Accuracy and Parsimony in Genetic Pro-
gramming. Evolutionary Computation 3(1), 17–38 (1995)

12. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of Nonlinearity as a Complex-
ity Measure for Models Generated by Symbolic Regression via Pareto Genetic Pro-
gramming. IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)

13. Vanneschi, L., Castelli, M., Silva, S.: Measuring Bloat, Overfitting and Functional
Complexity in Genetic Programming. In: Proceedings of GECCO 2010, pp. 877–
884. ACM Press (2010)

14. Trujillo, L., Silva, S., Legrand, P., Vanneschi, L.: An Empirical Study of Functional
Complexity as an Indicator of Overfitting in Genetic Programming. In: Silva, S.,
Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS,
vol. 6621, pp. 262–273. Springer, Heidelberg (2011)

15. Nguyen, Q.U., Nguyen, T.H., Nguyen, X.H., O’Neill, M.: Improving the Generalisa-
tion Ability of Genetic Programming with Semantic Similarity based Crossover. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 184–195. Springer, Heidelberg (2010)

16. Vanneschi, L., Gustafson, S.: Using Crossover Based Similarity Measure to Improve
Genetic Programming Generalization Ability. In: Proceedings of GECCO 2009, pp.
1139–1146. ACM Press (2009)

17. Da Costa, L.E., Landry, J.-A.: Relaxed Genetic Programming. In: Proceedings of
GECCO 2006, pp. 937–938. ACM Press (2006)

http://lulu.com
http://www.gp-field-guide.org.uk

RST for Overfitting Control in Genetic Programming 229

18. Chan, K.Y., Kwong, C.K., Chang, E.: Reducing Overfitting in Manufacturing Pro-
cess Modeling using a Backward Elimination Based Genetic Programming. Applied
Soft Computing 11(2), 1648–1656 (2011)

19. Nikolaev, N., de Menezes, L.M., Iba, H.: Overfitting Avoidance in Genetic Program-
ming of Polynomials. In: Proceedings of the 2002 IEEE Congress on Evolutionary
Computation, pp. 1209–1214. IEEE Press (2002)

20. Chen, S.-H., Kuo, T.-W.: Overfitting or Poor Learning: A Critique of Current
Financial Applications of GP. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K.,
Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 34–46. Springer,
Heidelberg (2003)

21. Foreman, N., Evett, M.: Preventing overfitting in GP with canary functions. In:
Proceedings of GECCO 2005, pp. 1779–1780. ACM Press (2005)

22. Vanneschi, L., Rochat, D., Tomassini, M.: Multi-optimization improves genetic
programming generalization ability. In: Proceedings of GECCO 2007, p. 1759. ACM
Press (2007)

23. Robilliard, D., Fonlupt, C.: Backwarding: An Overfitting Control for Genetic Pro-
gramming in a Remote Sensing Application. In: Collet, P., Fonlupt, C., Hao, J.-K.,
Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 245–254. Springer,
Heidelberg (2002)

24. Banzhaf, W., Francone, F.D., Nordin, P.: The Effect of Extensive Use of the Muta-
tion Operator on Generalization in Genetic Programming using Sparse Data Sets.
In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996.
LNCS, vol. 1141, pp. 300–309. Springer, Heidelberg (1996)

25. Archetti, F., Messina, E., Lanzeni, S., Vanneschi, L.: Genetic programming for
computational pharmacokinetics in drug discovery and development. Genetic Pro-
gramming and Evolvable Machines 8(4), 17–26 (2007)

26. Baccini, A., Laporte, N., Goetz, S.J., Sun, M., Dong, H.: A first map of tropi-
cal Africa’s above-ground biomass derived from satellite imagery. Environmental
Research Letters 3, 045011 (2008)

27. Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kel-
ley, J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M.,
Eyre, T., Laidlaw, M., Shimada, M.: An Evaluation of the ALOS PALSAR L-Band
Backscatter-Above Ground Biomass Relationship Queensland, Australia: Impacts
of Surface Moisture Condition and Vegetation Structure. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 3(4), 576–593 (2010)

28. Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W.,
Zutta, B.R., Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman,
M., Morel, A.: Benchmark map of forest carbon stocks in tropical regions across
three continents. Proceedings of the National Academy of Sciences 108(24), 9899–
9904 (2011)

29. Gathercole, C., Ross, P.: Dynamic Training Subset Selection for Supervised Learn-
ing in Genetic Programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994)

30. Liu, Y., Khoshgoftaar, T.: Reducing Overfitting in Genetic Programming Models for
Software Quality Classification. In: Proceedings of the Eighth IEEE International
Symposium on High Assurance Systems Engineering, pp. 56–65. IEEE Press (2004)

31. Gonçalves, I., Silva, S.: Experiments on Controlling Overfitting in Genetic Pro-
gramming. In: 15th Portuguese Conference on Artificial Intelligence (to appear)

32. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO
2002, pp. 829–836. Morgan Kaufmann (2002)

Evolutionary Operator Self-adaptation

with Diverse Operators

MinHyeok Kim1, Robert Ian (Bob) McKay1, Dong-Kyun Kim2,
and Xuan Hoai Nguyen3

1 Seoul National University, Korea
2 University of Toronto, Canada

3 Hanoi University, Vietnam
{rniritz,rimsnucse,dkkim1004,nxhoai}@gmail.com

http://sc.snu.ac.kr

Abstract. Operator adaptation in evolutionary computation has previ-
ously been applied to either small numbers of operators, or larger num-
bers of fairly similar ones. This paper focuses on adaptation in algo-
rithms offering a diverse range of operators. We compare a number of
previously-developed adaptation strategies, together with two that have
been specifically designed for this situation. Probability Matching and
Adaptive Pursuit methods performed reasonably well in this scenario,
but a strategy combining aspects of both performed better. Multi-Arm
Bandit techniques performed well when parameter settings were suitably
tailored to the problem, but this tailoring was difficult, and performance
was very brittle when the parameter settings were varied.

Keywords: Adaptive operator selection, Adaptive pursuit, Probability
matching, Multi-armed bandit, Evolutionary algorithm.

1 Introduction

Operator parameters have been a focus of study from the earliest evolutionary
algorithms. While static settings were used at first, it was quickly recognised
that operator rates should vary from problem to problem, or even within a run,
so adaptive mechanisms were introduced [14]. Recently, there has been renewed
interest in mechanisms for adapting operator rates, with a flurry of significant
advances in understanding and achievements in improved performance [12,16,3].
However these studies were generally limited either to a small number – two or
three – operators, or to operators with fairly similar effects.

Meanwhile, there have been extensive studies of suitable evolutionary oper-
ators; many have been shown effective for specific problems. While there are
some rules of thumb to match operators to the fitness landscape, they require
knowledge that may not be available for a new problem. Operator rate adapta-
tion offers an alternative, where the system has many operators, selecting among
them based on effectiveness. This shifts the emphasis to adapting rates in parallel
for a diverse range of operators, the focus of this paper. We study the perfor-
mance effects of six different adaptation strategies in a Genetic Algorithm (GA)
with eight diverse operators, and in Genetic Programming (GP) with seven.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 230–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sc.snu.ac.kr

Evolutionary Operator Self-adaptation with Diverse Operators 231

In this paper, section 2 discusses previous work on operator adaptation. Sec-
tion 3 introduces some new variants and describes the experimental framework,
while section 4 shows the results. In section 5, we discuss their implications, and
we conclude in section 6 with the assumptions and limitations of the work, a
summary of the conclusions, and pointers for further work.

2 Background

2.1 Operator Parameter Adaptation

Operator adaptation has been studied from the very early days of evolutiionary
computation, beginning with Schwefel’s one-fifth success rule [14]. More recently,
other approaches have come to the fore: Probability Matching (PM [5,18,7]),
Adaptive Pursuit (AP [17,15]) and Multi-Armed Bandits (MAB [2,4,3]).

Probability Matching. PM matches the operator probabilities to their rel-
ative reward from the environment (Eq. 1). The algorithm parameters are the
number of operatorsK, a probability vector P giving the probability of applying
each operator, a quality vector Q measuring the reward R obtained from pre-
vious use of the operator, a minimum allowable probability Pmin, and a decay
parameter α determining responsiveness to changes in reward.

Pa(t+ 1) = Pmin + (1−K · Pmin)
Qa(t)∑K
i=1 Qi(t)

(1)

Q(t+ 1) = Q(t) + α(R(t) −Q(t))

Adaptive Pursuit. AP is quite similar to PM. It differs in applying a greater
probability increment to the most effective operator, correspondingly decreasing
the probability of other operators (Eq. 2). It thus provides faster response to
change in reward. There are two additional parameters, the maximum allowable
probability Pmax, and the learning rate for the best operator β.

a∗ = argmax{Qi, i = 1...K}
Pa∗(t+ 1) = Pa∗(t) + β(Pmax − Pa∗(t)) (2)

Pa(t+ 1) = Pa(t) + β(Pmin − Pa(t)) for a �= a∗

Multi-Armed Bandits. MAB chooses one operator which maximises the func-
tion in equation 3, based on the Upper Confidence Bound (UCB) algorithm [1],
which uses two terms: exploitation and exploration. The exploitation term calcu-
lates P̂i,t, the average reward of the operator up to time t, while the exploration
term measures ni,t, how often the operator is selected. Since the reward range
is unknown a priori, a scaling factor C is used to balance the two terms.

UCBi(t) = P̂i,t + C

√
log
∑

k nk,t

ni,t
(3)

232 M.H. Kim et al.

This Static MAB (S-MAB) is appropriate when reward changes slowly; how-
ever changes in the evolving population may lead to step changes in the reward.
Dynamic MAB (D-MAB) uses the Page-Hinkley (PH) test [13], with parameters
δ and λ, to determine when to reset the MAB log.

2.2 Evolutionary Algorithms

The structure of the search space may affect the relative performance of adapta-
tion mechanisms; hence we use two different evolutionary systems, real-coded
Genetic Algorithms (GA) with isotropic fixed-size neighbourhoods, and Ge-
netic Programming (GP) whose neighbourhood structure varies across the search
space. We use a specific form of GP, TAG-Grammar-Guided GP (TAG3P), which
supports a range of single- and dual-parent operators [6].

3 Methods and Experiments

3.1 New Adaptive Mechanisms

PM and AP have previously been showed to have good performance [16,2,4,3,9],
but they were not specifically designed for multiple, highly diverse operators.
We introduce some variants which may be better suited to such environments.

Power Probability Matching. (PPM) is a variant of PM. PM may not work
well when operator rewards are very similar, as often occurs when there are
many operators. PPM amplifies the differences through exponentiation (Eq. 4):

Pa(t+ 1) = Pmin + (1−K · Pmin)
Qa(t)

K∑K
i=1 Qi(t)K

(4)

Adaptive Probability Matching. (APM) combines the algorithms of AP
and PM. AP divides operators into two groups: the most effective one and the
rest; it increases the rate of the former, but decreases the rates of the others
equally. That is, it ignores the relative rewards of the other operators. APM
follows AP in increasing the rate of the most effective operator as in AP, but it
then divides the remaining operator rate amongst the other operators according
to their relative reward, as in PM (Eq. 5):

a∗ = argmax{Qi, i = 1...K}
Pa∗(t+ 1) = Pa∗(t) + β(Pmax − Pa∗(t)) (5)

Pa(t+ 1) = Pmin + (1− Pa∗(t+ 1)− (K − 1) · Pmin)
Qa(t)∑K

i=1,i�=a Qi(t)

for a �= a∗

Evolutionary Operator Self-adaptation with Diverse Operators 233

Table 1. Problem Definitions and Evolutionary Parameters

Problem ParameterFitting Quintic Sextic Trigonometric

Target Function Process Model x5 − 2x3 + x x6 − 2x4 + x cos(2x)

Fitness Cases 938 samples 50 Random Points 20 Random Points
over 12 years from [−1, 1] from [0, 2π]

Minimisation RMSE of cases MAE of cases
Objective

Error Bound ε 0.01

Success Predicate Error < ε on all fitness cases

Chromosome 15 real values Tree 2 . . . 40 nodes

Function Set +,−,×,÷ +,−,×,÷, sin
Terminal Set X X, 1

Runs 100 100

Generations 100 50

Population Size 100 1000

Tournament Size 4 3

3.2 Test Problems

To compare the different adaptive operator selection mechanisms, we applied
them to a complex real-world parameter fitting problem using a real-coded GA,
and to three symbolic regression problems [10,11] using TAG3P.

The parameter fitting problem is based on a complex time series model built
by a domain expert; parameter values for the model are unknown, and the aim of
the GA is to find a best fit for them [8]. Little is known a priori about the fitness
landscape, and the cost of running the model makes it difficult to explore. Root
Mean Square Error (RMSE) was used as the fitness metric, as is customary in
this domain. Problem details and evolutionary settings for this and the following
experiments are provided in table 1. The 100 runs for each treatment used the
same set of 100 seeds.

The GP experiments use Koza’s well-known symbolic regression quintic, sextic
and trigonometric problems [10,11]. Following Koza, we used Mean Absolute
Error (MAE) as the objective, with a solution being declared a success if its
absolute error is less than ε for all data points.

3.3 Genetic Algorithm Details

Search Space. The chromosome consists of 15 genes (one for each model
parameter), with acceptable ranges for each being determined by the domain
expert.

Initialisation. The genes were initialised uniformly randomly over their ranges.

Operators In the experiments, we used eight genetic operators:

234 M.H. Kim et al.

Fig. 1. TAG ElementaryTrees for Symbolic Regression Search Spaces

1. One-point Crossover chooses a random point in the chromosome, and
exchanges the chromosome segments beyond that point.

2. Two-point Crossover chooses two random points in the chromosome, and
exchanges the chromosome segments between them.

3. Uniform Crossover takes each value from one parent chromosome with
probability p, and from the other with probability 1− p.

4. Arithmetic Crossover takes the arithmetic average of the parents’ values.
5. Random Crossover randomly chooses a value between those of the parents.
6. Reproduction Mutation chooses two random points as in two-point

crossover, and randomly initializes the gene values between them.
7. Re-Initialisation initialises each gene value with probability p.
8. Range Mutation randomly changes each gene over a range, which is spe-

cific to the corresponding parameter. If the new value lies outside the valid
range, it is re-initialised.

3.4 TAG3P System Details

Search Space. TAG3P relies on a user-defined grammar specifying the search
space. For these problems, we used the grammar defined by the elementary trees
in figure 1. The terminal node T is substituted by {X} for quintic and sextic, and
by {X , 1} for trigonometric. β9 is not used in the quintic and sextic problems.

Initialisation. We sample tree sizes uniformly over the specified size range.
Starting from an α tree, we randomly adjoin beta trees until the specified size
is reached, then make any necessary substitutions for the terminal T.

Operators. In the experiments, we used seven TAG3P operators. Two of them
are dual pairs, with opposite size biases, so that their overall effects are unbiased.

1. Reproduction copies the parent to the child population unchanged.
2. One-point Crossover chooses random points in the parent chromosomes,

and exchanges the subtrees below them.
3. Subtree Mutation selects a random point in the chromosome, deletes the

subtree below that point, and replaces it with a new subtree generated using
the initialisation algorithm.

Evolutionary Operator Self-adaptation with Diverse Operators 235

4. Insertion and Deletion are dual operators, applied with equal probablity,
useful for fine-tuning the size. In insertion, a β tree is adjoined at a randomly-
chosen node. In deletion, a β tree is removed.

5. Duplication and Truncation are also dual operators, applied with equal
probability, but more useful for coarse adjustment. In duplication, a ran-
domly selected subtree is copied and randomly adjoined at another location
in the same individual.In truncation, a randomly selected subtree in an in-
dividual is removed.

6. Replacement randomly chooses two nodes in the parent which can adjoin
in each other’s location, and exchanges them..

7. Relocation disconnects a random subtree from the tree, then randomly
re-adjoins it at another location. It thus has no effect on size.

3.5 Adaptive Mechanisms

We compared six adaptive mechanisms: probability matching (PM), power prob-
ability matching (PPM), adaptive pursuit (AP), adaptive probability matching
(APM), static multi-armed bandit (S-MAB) and dynamic multi-armed bandit
(D-MAB). Their parameters, determined through the literature and preliminary
experiments, are shown in Table 2.

Reward Policy. Adaptive mechanisms rely on a reward, reflecting the effec-
tiveness of operators in improving the population. We used a reward function
based on the ratio of fitness values of children Fc and their corresponding par-
ents Fp. Evolutionary algorithms focus resources on the elite, so our reward is
calculated over the elite 30% of the children created by that operator (Eq. 6):

R =

∑
Fp∑
Fc

(summed over the fittest 30% of the children) (6)

4 Results

The results fall naturally into three groups, which happen to share the same
basic mechanisms: (PM, PPM), (AP, APM), (S-MAB, D-MAB). The first two
pairs show similar behaviour on most problems, but S-MAB and D-MAB differ
substantially. In all tables, the best performance is in bold; results which are
significantly worse (1% confidence, Mann-Whitney rank sum test) are in italic.

Table 2. Operator Rate Parameters for Adaptive Mechanisms

Parameter Value Parameter Value

PM, AP, Initial Rate Pinit 1/K S-MAB δ 0.15
PPM & APM Min. Rate Pmin K/4 & λ 0.5

α 0.8 D-MAB Scale Factor C 0.5

AP & APM Max. Rate Pmax 1− (K − 1) · Pmin AP & APM β 0.8

236 M.H. Kim et al.

Fig. 2. RMSE Fitness on GA Parameter Fitting Problem. Left: Mean (over all runs)
of the Best (in each population). Right: Median (over all runs) of the Mean (of each
population).

Table 3. End of run best fitness values (mean ± standard deviation)

Method Mean ± SD Method Mean ± SD

PM 22.403 ± 0.064 PPM 22.375 ± 0.052

AP 22.499 ± 0.148 APM 22.464 ± 0.074

S-MAB 22.830 ± 0.222 D-MAB 22.347± 0.041

4.1 The GA Parameter Fitting Problem

Figure 2 shows the mean value of the best fitness and the median value of the
mean fitness for the GA problem.1 Five of the six treatments show very similar
performance, S-MAB performing worse. This poor performance probably results
from S-MAB focusing all its effort on one-point crossover from generation 10 (see
subsection 4.3), and that this operator may simply not be sufficient to escape
from local optima.The median fitness is very close to the best fitness in this case,
suggesting that the S-MAB populations have almost entirely converged.

Table 3 shows the mean of the end-of-run best fitness values. D-MAB is clearly
the best performer, somewhat better than PPM and significantly better than the
others, with S-MAB giving very much the worst performance.

4.2 TAG3P Symbolic Regression Problems

Figure 3 shows the mean best fitness by generation for the three symbolic re-
gression problems. The mean error for the AP pair is larger than others on the
Quintic and Sextic problems, while all values are similar on Trigonometric. In
detail, the PM strategy gives the smallest error overall, especially on the trigono-
metric problem. The two MAB strategies give identical results – because unlike

1 Because of extreme skew in fitness, the median is more informative than the mean.

Evolutionary Operator Self-adaptation with Diverse Operators 237

Fig. 3. Mean best fitness (MAE on sample points). Left: Quintic, centre: Sextic, right:
Trigonometric.

Table 4. Proportion of runs where best individual is a hit

Method Quintic Sextic T rigonometric

PM 72.0 % 94.0 % 76.0 %

PPM 73.0 % 97.0 % 74.0 %

AP 81.0 % 96.0 % 66.0 %

APM 78.0 % 96.0 % 77.0 %

S-MAB 64.0 % 96.0 % 67.0 %

D-MAB 64.0 % 96.0 % 67.0 %

Table 5. Mean ± standard deviation of first hitting time

Method Quintic Sextic Trigonometric

PM 25.63 ± 18.36 19.27 ± 12.33 34.46 ± 12.20

PPM 25.10 ± 17.74 15.27 ± 9.89 36.04 ± 11.34

AP 24.06± 15.74 17.62 ± 11.65 38.80 ± 12.37

APM 24.29 ± 17.34 15.77 ± 11.14 34.02 ± 11.72

S-MAB 27.78 ± 18.79 19.00 ± 11.60 38.12 ± 12.04

D-MAB 27.78 ± 18.79 19.00 ± 11.60 38.12 ± 12.04

the situation in GA, the dynamic change condition was never triggered in the
GP runs, so that S-MAB and D-MAB algorithms performed identically.

GP analysis emphasises hits – finding near-exact solutions. Table 4 shows
this statistic. While AP and APM perform poorly in fitness, they have the best
success ratios. PPM and APM show good performance in all three problems.

In addition to the success ratio, we are also interested in how quickly an
algorithm finds a hit. Table 5 shows the mean and standard deviation of the
first hitting time. AP, PPM and APM are respectively the best on the Quintic,
Sextic and Trigonometric problems. Overall, first hitting time results closely
shadow success rate, and APM is either best or near best.

4.3 Operator Application Rates

Figure 4 depicts the change in rates during evolution. With PM and PPM we
don’t see a great deal of variation. In PM, we see a small kick up in the rates of

238 M.H. Kim et al.

(a) GA – PM (b) Quintic – PM (c) Sextic – PM (d) Trigo – PM

(e) GA – PPM (f) Quintic – PPM (g) Sextic – PPM (h) Trigo – PPM

(i) GA – AP (j) Quintic – AP (k) Sextic – AP (l) Trigo – AP

(m) GA – APM (n) Quintic – APM (o) Sextic – APM (p) Trigo – APM

(q) GA – S-MAB (r) Quintic – S-MAB (s) Sextic – S-MAB (t) Trigo – S-MAB

(u) GA – D-MAB (v) Quintic – D-MAB(w) Sextic – D-MAB (x) Trigo – D-MAB

Fig. 4. Change in Application Rates of Operators
(Bottom to Top of each subfigure: Operators in the Order from Subsections 3.3 and 3.4)
NB: GA (first column) uses a different operator set from GP (other three columns).

Evolutionary Operator Self-adaptation with Diverse Operators 239

1-point crossover and reproduction mutation in the first few generations, but it
rapidly settles back to near-uniform rates. Similarly in GP, crossover and subtree
mutation increase at first, but settle back to relatively uniform rates except for
a permanent drop in the rate of reproduction. All these effects are amplified, as
we might expect, in PPM, but with the same overall outline.

AP and APM behave much more dynamically, but very similarly to each
other. In GA, the clear trend is to increase the rate of one-point crossover at
the expense of all other operators. In GP, we see the same behaviour as for
PPM – transient increase in crossover and later suppression of reproduction
– but substantially amplified. Later on, we see a gradual increase in rates of
duplication and truncation.

S-MAB and D-MAB are even more dynamic, causing much more change in
operator rates. In GA runs, both entirely eliminate many operators within a few
generations – after a brief flirtation with re-initialisation and range mutation,
S-MAB eliminates all operators except one-point crossover, while D-MAB re-
tains re-initalization and range mutation. In GP, S-MAB and D-MAB showed
very similar overall behaviour to APM, but with more chaotic behaviour – MAB
strategies are more susceptible to amplifying random variations in operator suc-
cess than the other strategies.

5 Discussion

Overall, the best performer in these experiments was APM, being fairly close
to the best performance on all problems. But the differences in most cases are
relatively small – any of AP, APM, PM or PPM gives reasonable performance
with reasonable parameter settings.

MAB strategies were very different. Considerable effort was required to find
good parameter settings for D-MAB for the GA problem (the original draft of
this paper showed poor performance for both MABs strategies on all problems
– until we happened to hit on exactly the right settings for D-MAB for this GA
problem), and we were never able to find good parameter settings for S-MAB
on the GA problem, or for either MAB strategies on the GP problems.

6 Conclusions

6.1 Summary

The PM and AP strategies extend reasonably well to a scenario with multiple
diverse operators; AP generally works well, though when if fails it can fail badly
(i.e. even though it had a good success rate on GP problems, the mean best fitness
is poor). PPM and especially APM somewhat improve this performance, though
APM shares with AP the high variation in performance between runs. However
differences overall are not huge, and it remains an open question whether the
additional complexity of these adaptive mechanisms, versus a simple uniform
operator selection, is really justified for many-operator systems.

240 M.H. Kim et al.

MAB strategies can perform very well when they are properly tuned to the
problem and operators. However they are very sensitive to this tuning in the
contexts we investigated here, so may be difficult to justify for these applications.

6.2 Assumptions and Limitations

The major limitation in this work was our inability to find suitable parameter
settings for D-MAB in the GP experiments, or for S-MAB at all. It is possi-
ble that there are no good settings, but from our experience of the very high
sensitivity of these algorithms to the parameter settings, we strongly suspect
that there are good settings, we just didn’t succeed in finding them. However it
is clear that the good settings are problem specific, and cannot be transferred
willy-nilly from one problem to another.

6.3 Further Work

We plan to further investigate parameter settings for MAB strategies in these
problems, in the hope of finding more general methods for determining them. The
insights resulting from this work are also helping us to design further strategies
suited to evolutionary systems with multiple diverse operators.

Acknowledgments. Seoul National University Institute for Computer Tech-
nology provided research facilities for this study, which was supported by the
Basic Science Research Program of the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology (Project
No. 2010-0012546/2011-0004338).

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2), 235–256 (2002)

2. DaCosta, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic Multi-Armed bandits. In: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pp. 913–920. ACM, New York (2008)

3. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic Multi-Armed Ban-
dits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evo-
lutionary Algorithms. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 176–190.
Springer, Heidelberg (2009)

4. Fialho, Á., Schoenauer, M., Sebag, M.: Analysis of adaptive operator selection
techniques on the royal road and long k-path problems. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pp. 779–786.
ACM, New York (2009)

5. Goldberg, D.: Probability matching, the magnitude of reinforcement, and classifier
system bidding. Machine Learning 5(4), 407–425 (1990)

6. Hoai, N.: A Flexible Representation for Genetic Programming: Lessons from Natu-
ral Language Processing. Ph.D. thesis, University of New South Wales, Australian
Defence Force Academy (2004)

Evolutionary Operator Self-adaptation with Diverse Operators 241

7. Igel, C., Kreutz, M.: Operator adaptation in evolutionary computation and its
application to structure optimization of neural networks. Neurocomputing 55, 347–
361 (2003)

8. Kim, D., McKay, R.I., Haisoo, S., Yun-Geun, L., Xuan, N.X.: Ecological application
of evolutionary computation: Improving water quality forecasts for the nakdong
river, korea. In: World Congress on Computational Intelligence, pp. 2005–2012.
IEEE Press (2010)

9. Kim, M.H., McKay, R.I(B.), Nguyen, X.H., Kim, K.: Operator Self-adaptation in
Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Gia-
cobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 215–226. Springer, Heidelberg
(2011)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

11. Koza, J.R.: Genetic Programming II Automatic Discovery of Reusable Programs.
MIT Press (1994)

12. Lobo, F., Lima, C., Michalewicz, Z. (eds.): Parameter setting in evolutionary al-
gorithms. SCI, vol. 54. Springer, Heidelberg (2007)

13. Page, E.: Continuous inspection schemes. Biometrika 41(1), 100–115 (1954)
14. Schwefel, H.: Numerical optimization of computer models. John Wiley & Sons,

Inc., New York (1981)
15. Thathachar, M., Sastry, P.: A class of rapidly converging algorithms for learn-

ing automata. IEEE Transactions on Systems, Man and Cybernetics 15, 168–175
(1985)

16. Thierens, D.: Adaptive Strategies for Operator Allocation. In: Lobo, F.G., Lima,
C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI,
vol. 54, pp. 77–90. Springer, Heidelberg (2007)

17. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1539–1546. ACM, New York (2005)

18. Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evolutionary
Computation 6(2), 161–184 (1998)

The Effect of Bloat on the Efficiency

of Incremental Evolution
of Simulated Snake-Like Robot

Ivan Tanev, Tüze Kuyucu, and Katsunori Shimohara

Information Systems Design
Doshisha University, Kyotanabe, Japan

{itanev,tkuyucu,kshimoha}@mail.doshisha.ac.jp

Abstract. We present the effect of bloat on the efficiency of incremental
evolution of locomotion of simulated snake-like robot (Snakebot) situated
in a challenging environment. In the proposed incremental genetic pro-
gramming (IGP), the task of coevolving the locomotion gaits and sensing
of the bot in a challenging environment is decomposed into two subtasks,
implemented as two consecutive evolutionary stages. In the first stage we
use genetic programming (GP) to evolve a pool of morphologically sim-
ple, sensorless Snakebots that move fast in a smooth, open terrain. Then,
during the second stage, we use this pool to seed the initial population
of Snakebots that are further subjected to coevolution of their locomo-
tion control and sensing morphology in a challenging environment. The
empirical results suggest that the bloat no immediate effect on the effi-
ciency of the first stage of IGP. However, the bloated seed contributes
to a much faster second stage of evolution. In average, the second stage
with bloated seed reaches the best fitness values of the parsimony seeds
about five times faster. We assume that this speedup is attributed to the
neutral code that is used by IGP as an evolutionary playground to ex-
periment with developing novel sensory abilities, without damaging the
already evolved, fast locomotion of the bot.

Keywords: Incremetal genetic programming, Bloat, Neutrality.

1 Introduction

The insufficient efficiency of the genetic programming (GP), together with its
non-determinism are among the most important drawbacks that still hinder the
wide adoption of the evolutionary paradigm for solving challenging real-world
problems. The overall efficiency of GP depends on the cumulative effect of two
major, relatively independent factors: (i) the computational effort, i.e., the num-
ber of genetic programs that should be evaluated in order to achieve a given
probability of success, and (ii) the computational performance, i.e., the average
runtime, required to evaluate a single genetic program. Therefore, most of the ef-
forts of researchers and practitioners in evolutionary computing (EC) community
are aligned along the two orthogonal directions–improving the computational ef-
fort and computational performance of GP.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 242–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Effect of Bloat on the Efficiency of Incremental Evolution 243

The computational effort of GP could be improved in several ways, such
as, incorporating a domain-specific knowledge into the key attributes of GP
(e.g., genetic representation, genetic operations, etc.), imposing problem-specific
syntax constrains (i.e., grammar) on the evolved genetic programs, employing
probability-distribution models, etc. These approaches are usually intended to
steer the simulated evolution towards the most promising areas in the explored
(presumably rugged) fitness landscapes.

Another approach of improving computational effort of GP stems from the
assumption that, the main genetic operations (crossover and mutation), due to
their randomness, are often damaging the already existing building blocks of the
solution. Thus, the destructive effects of these operations could be limited if they
are occasionally allowed to operate on the genetic code that is irrelevant to the
quality of the corresponding genetic program. Moreover, such an irrelevant, or
neutral code (i.e., the code, which has no affect on the fitness), might provide
the simulated evolution with a “playground” where it can experiment with de-
veloping either novel-, or better-than-existing genotypic traits without the risk
of damaging the already evolved ones.

In biology, the constructive role of neutrality has been well recognized and
noted to be a conducive mechanism in the evolution of many successful traits in
biological organisms [1,2]. The presence of neutral genes in Nature is often asso-
ciated with smoother fitness landscapes, more robust genotypes and a support
mechanism for discovering new phenotypes [1,3,2]. Similarly, the neutrality has
also been a topic of interest and discussion in EC. In a recent article, Galvan-
lopez et al [4], provide an overview of the role of neutrality in EC. The authors
conclude their work with the open issues in this area and with their opinion
on the studies that would be beneficial to a better understanding of the role of
neutrality in EC. Due to the complex and, to some extent, unpredictable nature
of the latter, it is often difficult to achieve an in-depth theoretical analysis of the
effects of mechanisms and parameters on the performance of these algorithms.

The work of Ebner [5] suggests that the neutrality induced by the “junk code”
provides better performance for the evolution of genetic programs. It was also
reported that the neutrality contributes to a better efficiency of evolution in
Cartesian Genetic Programming (CGP) [6,7]. This conclusion remains to be a
controversial one, however, as in a follow-up study Collins reported that the latter
work is being flawed and that the effects of neutrality could in fact be degrading
the overall performance of evolution [8]. This ongoing discussion on the possible
beneficial effect of neutrality on the overall efficiency of GP is also stated by
Galvan-lopez et al [4], who note that “one needs to find ways of predicting when
the addition of neutrality can be beneficial in practical situations.” Although
neutrality has been shown to be beneficial in complex, rugged landscapes with
multiple optima [9,10,11], it also has adverse effects on the evolution of simple
problems with a small number of optima and a smooth landscape.

Despite the beneficial effects of neutrality on the computational effort of GP,
its implications on the overall performance of GP are still highly controversial.
One of the most important factors for this controversy is that neutrality often

244 I. Tanev, T. Kuyucu, and K. Shimohara

causes a degradation of computational performance of GP. Indeed, the neutral
code in GP is often associated with the resulting bloat [12], or, with a sharp
increase of the size (and complexity) of genetic programs in due course of the
simulated evolution. Often, the increased size of the evolved genetic programs
does not correlate well with the convergence of the respective fitness values.
Moreover, due to the cache memory effects, the runtime overhead of interpret-
ing the genetic programs (represented as highly fragmented parse trees) grows
faster than linear with the increase of their size. Therefore, applying a parsimony
pressure in order to limit the growth of the size of genetic programs is usually
seen as a natural way to alleviate the problem of bloat-induced degradation of
computational performance of GP [13,14].

The objective of our work is to investigate the effects of bloat on the ef-
ficiency of GP employed for simulated incremental evolution of locomotion of
sensing snake-like robot (Snakebot) in a challenging environment with obsta-
cles. The successful bots should feature the evolved (emergent) now-how about
how to clear a narrow corridor by (i) moving fast, (ii) following the walls of the
corridor, (iii) overcoming a number of randomly scattered small boxes, and (iv)
circumnavigating large obstacles. In the proposed incremental GP (IGP), the
task of coevolving the locomotion and the sensing of Snakebot in a challenging
environment is decomposed into two subtasks, implemented as two consecutive
evolutionary stages. First we employ GP to evolve a pool of simple, sensorless
bots that are able to move fast in a smooth, open terrain. Then, during the
second stage, we use this pool to seed the initial population of the bots that are
further subjected to coevolution of their locomotion control and sensing in the
challenging environment. We are especially interested on how the degree of bloat
(and, consequently, the associated neutrality), introduced during the fist stage
of the incremental evolution, effects the overall performance of IGP.

Our choice of the application of GP is motivated by two arguments that, as
we believe, are in favour of the neutrality. First, the considered problem is rather
challenging, as it features a huge and highly rugged fitness landscape [15]. Ship-
man demonstrated that neutrality helps the discovery of multiple phenotypes,
but reduces the evolutionary performance for achieving faster solutions in sim-
pler problems [16]. Within this context, we would like to investigate if, during
the second stage of IGP, the neutrality would decrease the computational effort
of evolving novel traits (e.g., the sensory abilities of the bot) in addition to the
already evolved locomotion of the bots. And second, as in the most of the tasks
in evolutionary robotics, it is the realistic simulation of the physics of moving
complex robotic artifact, rather than the parsing of the genetic programs that
consumes the most of the runtime of GP. Therefore, we anticipate no major
bloat-induced degradation of the computational performance of GP.

The remaining of this document is organized as follows. Section 2 introduces
the morphology and the moving abilities of the Snakebot. In Section 3 we discuss
the key attributes of the proposed evolutionary framework. Section 4 presents the
empirical result on the effect of bloat on the efficiency of incremental evolution
of the bot in a challenging environment. Section 5 draws a conclusion.

The Effect of Bloat on the Efficiency of Incremental Evolution 245

2 Sidewinding and Sensing Snake-Like Modular Robot

Snake-like robots feature potential robustness characteristics beyond the capa-
bilities of most wheeled and legged vehicles, such as: the ability to traverse chal-
lenging terrain and insignificant performance degradation when partial damage
is inflicted. Some useful features of snake-like robots include smaller size of the
cross-sectional areas, stability, ability to operate in difficult terrain, good trac-
tion, and complete sealing of the internal mechanisms. Moreover, due to the
modularity of their design, the snake-like robots feature high redundancy and
fault tolerance [17]. Robots with such properties can be valuable for applications
that involve exploration, reconnaissance, medicine and inspection. Designing a
controller that can achieve optimal locomotion of a modular Snakebot is a chal-
lenging task due to the large number of degrees of freedom in the movement
of segments of a Snakebot. The locomotion gait of such bots is often seen as
an emergent property; observed at a higher level of consideration of complex,
nonlinear, hierarchically organized systems, comprising many relatively simply-
defined entities (morphological segments). In such complex systems the higher-
level properties of the system and the lower-level properties of comprising entities
cannot be directly induced from each other [18]. Therefore even if an effective
incorporation of sensing information in fast and robust locomotion gaits might
emerge from intuitively defined sensing morphology and simple motion patterns
of morphological segments, neither the degree of optimality of the developed
code nor the way of how to incrementally improve this code is evident to the
human designer [19].

The previous research demonstrates that the control for a fast moving
modular robotic organism could be automatically developed through various
nature-inspired paradigms, based on models of learning and evolution. The work,
presented in [17] demonstrates the use of GP for evolution of sensorless sidewind-
ing Snakebots in various environmental conditions. Furthermore, the coevolution
of active sensing and the control of the locomotion gaits was demonstrated to be
achievable, albeit difficult [15]. The control of a modular snakebot with sensors
for navigation through a maze with obstacles was shown to be a challenging task
for canonical GP even when ADFs were used. The use of IGP was shown to be
a better approach, where initially the locomotion of the snakebot in an obsta-
cle free environment was achieved before evolving these snakebots for a second
time to utilize sensors. Furthermore, the use of a Genetic Transposition inspired
incremental GP, which utilizes the addition of neutral code into the genotype
of the seeding individuals for the second stage of the incremental GP runs had
higher success rates as well as more robust solutions [15].

In this paper we investigate the coevolution of the active sensing and locomo-
tion control of sidewinding Snakebot in the same environment presented in [15],
which features a narrow corridor with several large obstacles and many randomly
placed small obstacles constituting a rugged terrain. The sensors on the Snake-
bot used in this paper follow the same model as proposed in [20]: each segment
of the Snakebot is provided with a fixed, immobile proximity sensors (e.g., laser
range finders, LRF) with evolvable initial orientation, range and timing of firing.

246 I. Tanev, T. Kuyucu, and K. Shimohara

The most efficient locomotion gaits of Snakebot are not necessarily associated
with the forward, rectilinear motions (and sidewinding might emerge as a fast
and robust locomotion). Therefore, the eventual fusion of the readings of many
sensors mounted in all the segments of the bot would provide Snakebot with the
capability to perceive the features of surrounding environment along its whole
body. In addition to the widening of the area of the perceived surroundings,
multiple sensors offer the potential advantages of robustness to damage of some
of them, dependability of the sensory information, and an ability to perceive the
spatial features of the surrounding environment due to the motion parallax.

The evolution of both the morphology and the incorporation of the signals
from many sensors face the challenge of dealing with the uncertain sensor read-
ings as they move synchronously with the coupled segments of the snake. Figure 1
illustrates how the initial orientation of the axes of the internal coordination sys-
tems of the segments of a bot dramatically differs from a sample instant orien-
tation of these axes in a moving bot. A sensor fixed to the segment of a moving
Snakebot would constantly change its spatial orientation, and consequently it
might alternatively perceive no signal, a signal from the ground surface or from
another segment of the snake (in both cases the sensory reading should be ig-
nored), or eventually from an obstacle. Moreover, in the targeted environment
the obstacle could be either a wall (to be followed), a large box (to be circum-
navigated), or a small box (to be overcome).

The large search space of the evolution of the considered Snakebot results in
an intractable computational effort, and as it was demonstrated in [15], canonical
GP with Automatically Defined Functions (ADF) is unable to effectively explore
the emerging search space in a reasonable time frame.

3 Evolutionary Framework and the Simulation
Environment

For the experiments presented in this work we employ open dynamics engine
(ODE) as a simulation platform for the Snakebot. ODE is a free, industrial
quality software library for simulating articulated rigid body dynamics [21]. It is
fast, flexible and robust, and it has built-in collision detection. Therefore, ODE

(a) Initial Orientation. (b) Intermediate Orientation.

Fig. 1. Orientation of the axes of the internal coordination systems of the central
segment at two different Snakebot positions

The Effect of Bloat on the Efficiency of Incremental Evolution 247

Fig. 2. Morphological segments of Snakebot are linked via universal joint. Horizontal
and vertical actuators attached to the joint perform rotation of the segment #i-1 in
vertical and horizontal planes respectively. A single LRF is attached to each of the
segments in the plane of the axes of the universal joint.

is suitable for a realistic simulation of the physics of an entire Snakebot when
applying actuating forces to its segments. The main ODE related parameters of
the simulated Snakebot are same as elaborated in [17].

Snakebot is simulated in ODE as a set of 15 identical spherical morphological
segments, linked together via universal joints (Figure 2). All joints feature iden-
tical angle limits and each joint has two attached actuators (“muscles”). A single
LRF sensor, with a limited range is rigidly attached to each of the segments.

The functionality of the LRF can be defined by the values of the following set
of parameters: (i) orientation, measured as an angle between the longitudinal
axis of the sensor and the horizontal plane of the bot in its initial, standstill
position of Snakebot (as depicted in Figure 1(a)), (ii) range of the sensor (in
cm), and (iii) the timing of their activation, expressed as a threshold value of
the turning angle of the horizontal actuator. The reading of LRF is inversely
proportional to the distance between the sensor and an object (if any within the
sensor’s range), measured along the longitudinal axis of the LRF. In the initial
standstill position of Snakebot the rotation axes of the actuators are oriented
vertically (for the vertical actuator) and horizontally (horizontal actuator) and
perform rotation of the joint in the horizontal and vertical planes respectively.

Considering the representation of Snakebot, the task of designing the fastest
locomotion can be rephrased as developing temporal patterns of desired turning
angles of horizontal and vertical actuators of each segment that result in fastest
overall locomotion of Snakebot. The proposed representation of Snakebot as a
homogeneous system comprising identical morphological segments is intended to
significantly reduce the size of the search space of the GP.

For the evolution of the Snakebot, the genotype is represented as a triple
consisting of a linear chromosome containing the encoded values of the three
relevant parameters of LRF, and two parse trees corresponding to the algebraic
expressions of the temporal patterns of the desired turning angles of both the
horizontal and vertical actuators, respectively (Figure 3).

The Snakebot is genotypically homogeneous in that the same triple is applied
for the setup of the LRF and for the control of actuators of all morphological
segments. The encoding of the parameters of LRF is as elaborated in Figure 3.

248 I. Tanev, T. Kuyucu, and K. Shimohara

Fig. 3. Genotype of the Snakebot; represented as a triple containing the values of
the parameters of LRF and two algebraic expressions of the temporal patterns of the
desired turning angles of horizontal and vertical actuators, respectively. The genotype
of Snakebot is homogeneous: therefore all segments feature the same triple.

The same figure also illustrates the function set and the terminal set of the GP,
employed to evolve the control sequences of both actuators. Since the locomotion
gaits by definition are periodical, the periodic functions sine and cosine are
included in the function set of GP in addition to the basic algebraic functions.
Terminal symbols include the variables time, segment ID, an ADF, the reading of
the sensor (LRF), and two constants: pi, and a random constant within the range
[0, 2]. The incorporation of the terminal symbol segment ID (a unique index
of morphological segments of Snakebot) provides GP with an effective way to
specialize (by phase, amplitude, frequency etc.) the genetically identical motion
patterns of actuators of each of the morphological segments of the Snakebot.

The main GP (hence the EA) parameters are summarized in Table 1. We
use a DOM/XML-based implementation of GP [22], with binary tournament
selection and a single point crossover. The crossover point is randomly selected
between the three components of the genotype (as shown in Figure 3), unless
stated otherwise. The mutation randomly alters either a value of an allele in

The Effect of Bloat on the Efficiency of Incremental Evolution 249

Table 1. Main parameters of GP

Category Value

Genotype

LRF parameters (linear chromosome)

Horizontal actuator control (parse tree)

Vertical actuator control(parse tree)

Population Size 200 individuals

Selection
Binary Selection ratio: 0.1

Reproduction ratio: 0.9

Elitism 4 individuals

Mutation Rate 0.01

Trial Interval 16s (400 time steps of 40ms per step)

Termination Criteria (Fitness=120) or (Tot. No. of generations=80)

Fig. 4. The experimental scenes used

the linear chromosome representing the parameters of LRF, or a sub-tree in one
of the two parse tress that correspond to the temporal patterns of the control
sequences of actuators.

The fitness function is based on the average velocity of Snakebot, which is
estimated from the distance travelled during the trial. The real values of the raw
fitness, which are usually within the range (0, 2) are multiplied by a normalizing
coefficient in order to deal with integer fitness values within the range (0, 200).
A normalized fitness of 100 is equivalent to a velocity that displace the Snakebot
a distance equal to twice its length.

4 Experiments

The experiments are carried out in the environments shown in Figure 4. Two
stages are used for the incremental evolution of the sensing sidewinder Snakebots.
In the first stage, the sidewinding Snakebots with no sensors are evolved in an
obstacle free environment (Figure 4c) using random seeds. The target function
for these experiments is to achieve a fitness of 120 or higher in the 16 second

250 I. Tanev, T. Kuyucu, and K. Shimohara

evaluation period. Three experimental cases are created for the aforementioned
situation, which differ only in the implementation of the fitness measure used
to control bloat: (i)Penalize bloat: the fitness value is decreased by 1

10 times the
tree length, (ii)Award bloat: the fitness value is increased by 1

10 times the tree
length, (iii)No bloat: The fitness value is not altered with respect to the tree
length. Each of these cases are executed for 40 runs and their results are shown
in Figure 5.

For the second stage of IGP, there are three experimental cases as well, how-
ever for these cases identical evolutionary conditions are used i.e. all experimental
cases feature the same parsimony pressure conditions, which is a penalty to the
fitness of an individual by 1

10 times the tree length in order to control bloat.
We choose to use bloat control for all these runs, since it is the standard in
our previous works. The difference in each experimental case arises in the seeds
used. This way, the analysis of the results is solely based on the difference in
the genetic code of the best Snakebots obtained from the different experimental
cases in the first stage. In second stage, 6 of the best Snakebots from each of
the experimental cases from the first stage are used to seed the populations of 3
different experimental cases and the rest of the population (194 individuals) is
formed of randomly generated individuals.

4.1 Stage 1: Evolution of Fast Moving Snakebots from Random
Population

The results in Figure 5 and Table 2 show that parsimony control during evolution
has no effect on the performance. All three experiments demonstrate identical
performance with no difference in average fitness achieved over the course of
evolution and no difference in the number of successful runs. We also visually
inspected the successful Snakebots from each case and could confirm that each
had similar behaviour.

0 5 10 15 20 25 30 35 40
Number of Generations

0

20

40

60

80

100

F
it
n
e
ss

V
a
lu
e

favorBloat

noBloatControl

penalizeBloat

Fig. 5. The average fitness convergence plots of the results from stage 1

The Effect of Bloat on the Efficiency of Incremental Evolution 251

Table 2. Results from stage 1. The data for each experimental case is over 40 runs.

No Bloat Control Reward Bloat Penalize Bloat

Median Fitness 101 100 100.5
#ofRuns >= 120 4 3 4
#ofRuns >= 95 24 23 21
Avg. Tree Size 105.3 258.4 82.4

0 5 10 15 20 25 30 35 40
Number of Generations

0

20

40

60

80

100

F
it
n
e
ss

V
a
lu
e

favorBloat

noBloatControl

penalizeBloat

Fig. 6. The average fitness convergence plots of the results from stage 2. For the first
3 generations, the average fitness of the evolved chromosomes is same for all 3 cases.
After a few generations, the runs with bloated seeds reach a higher average fitness.

We can conclude that the use of a simple parsimony pressure, as described
earlier, has no implications on the overall performance of the first stage of IGP
- the evolution of locomotion control for sidewinding Snakebots. In fact, the use
of parsimony pressure did exactly what it is supposed to: the only significant
difference among the three experimental cases was in the average tree sizes, and
the use of parsimony pressure provided solutions with smallest tree sizes.

4.2 Stage 2: Seeded Evolution of Sensing Fast Moving Snakebots

The average fitness convergence of these seeded experiments is shown in Fig-
ure 6. Unlike the runs from first stage of IGP, there is a significant difference in
the performance of the evolutionary runs using different seeds. The best evolu-
tionary performance is obtained when seeds that were previously evolved with
no bloat control are used, and the worst performance is observed when seeds
with parsimony pressure are used. Table 3 provides more statistical information
on the experimental runs from stage 2, where a clearer distinction between the
runs using no bloat control and the other two can be seen from the number of
successful/high scoring Snakebots. In average, the bloated seed reaches the best
fitness values of the parsimony seeds about five times faster.

252 I. Tanev, T. Kuyucu, and K. Shimohara

Table 3. Results from the seeded runs. The results are out of 40 runs for each case.

No Bloat Control Reward Bloat Penalize Bloat

Median Fitness 87.3 82.5 68
#ofRuns >= 120 8 0 3
#ofRuns >= 95 12 6 5
Avg. Tree Size 197 177 122

5 Conclusions

In this work we studied the effect of bloat, and the associated genetic neutrality,
on the efficiency of incremental evolution of simulated sensing snake-like robot
in a challenging environment. As the experimental results suggest, the use of a
simple parsimony pressure has no immediate effect on the efficiency of evolution
of the first stage of IGP - evolution of fast moving sensorless bots in a smooth
terrain. However, when, during the second stage of IGP, evolved genetic pro-
grams are reused for further development under different conditions than the
first stage, the neutrality caused by the bloated genetic programs are beneficial
for the more efficient evolution of the sensing abilities of the bot. We assume that
this is due to the presence of a neutral code that can be used by IGP as an evolu-
tionary playground where the novel sensory abilities could be developed without
the risks of damaging the already evolved locomotion. The presented findings
could be applied for the domains where the implementation of the side effects,
rather than the parsing of genetic representation, is the most time-consuming
aspect of fitness evaluation.

Acknowledgments. The presented research was supported (in part) by the
Japan Society for the Promotion of Science (JSPS).

References

1. Huynen, M., Stadler, P., Fontana, W.: Smoothness within ruggedness: the role of
neutrality in adaptation. Proceedings of the National Academy of Sciences of the
United States of America 93, 397–401 (1996)

2. Wilke, C., Wang, J., Ofria, C., Lenski, R., Adami, C.: Evolution of digital organisms
at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001)

3. Wagner, A.: Robustness, evolvability, and neutrality. FEBS Letters 579(8), 1772–
1778 (2005)

4. Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in
evolutionary algorithms... what do we know? Evolving Systems 2, 145–163 (2011)

5. Ebner, M.: On the search space of genetic programming and its relation to nature’s
search space. In: Proceedings of the 1999 Congress on Evolutionary Computation,
CEC 1999, pp. 1357–1361 (1999)

6. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital
Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C.
(eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

The Effect of Bloat on the Efficiency of Incremental Evolution 253

7. Yu, T., Miller, J.F.: The role of neutral and adaptive mutation in an evolutionary
search on the onemax problem. In: GECCO Late Breaking Papers 2002, pp. 512–
519 (2002)

8. Collins, M.: Finding needles in haystacks is harder with neutrality. In: GECCO
2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computa-
tion, vol. 2, pp. 1613–1618 (2005)

9. Beaudoin, W., Verel, S., Collard, P., Escazu, C.: Deceptiveness and neutrality:
The nd family of fitness landscapes. In: GECCO 2006: Proceedings of the 2006
Conference on Genetic and Evolutionary Computation, pp. 507–514 (2006)

10. Doerr, B., Gnewuch, M., Hebbinghaus, N., Neumann, F.: A rigorous view on neu-
trality. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2591–2597
(September 2007)

11. Lobo, J., Miller, J.H., Fontana, W.: Neutrality in technological landscapes. In:
Santa Fe Working Paper (2004)

12. Brameier, M., Banzhaf, W.: Neutral Variations Cause Bloat in Linear GP. In:
Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP
2003. LNCS, vol. 2610, pp. 286–296. Springer, Heidelberg (2003)

13. Gelly, S., Teytaud, O., Bredeche, N., Schoenauer, M.: Universal Consistency and
Bloat in GP. Revue d’Intelligence Artificielle 20, 805–827 (2006)

14. Poli, R., McPhee, N.F.: Covariant parsimony pressure for genetic programming.
Technical Report CES-480, Department of Computing and Electronic Systems,
University of Essex, UK (2008)

15. Kuyucu, T., Tanev, I., Shimohara, K.: Incremental genetic programming via ge-
netic transpositions for efficient coevolution of locomotion and sensing of simulated
snake-like robot. In: European Conference on Artificial Life, pp. 439–446 (2011)

16. Shipman, R.: Genetic redundancy: Desirable or problematic for evolutionary adap-
tation. In: 4th International Conference on Artificial Neural Networks and Genetic
Algorithms (ICANNGA 1999), pp. 1–11 (1999)

17. Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness and adap-
tation of sidewinding locomotion of simulated snake-like robot. IEEE Transactions
on Robotics 21, 632–645 (2005)

18. Morowitz, H.J.: The Emergence of Everything: How the World Became Complex.
Oxford University Press (2002)

19. Koza, J., Keane, M., Yu, J., Bennett, F., Mydlowec, W.: Automatic creation of
human-competitive programs and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines 1, 121–164 (2000)

20. Tanev, I., Shimohara, K.: Co-evolution of active sensing and locomotion gaits of
simulated snake-like robot. In: Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO 2008, pp. 257–264. ACM, New York
(2008)

21. Smith, R.: Open Dynamics Engine (2004)
22. Tanev, I.T.: Dom/xml-based portable genetic representation of the morphology,

behavior and communication abilities of evolvable agents. Artificial Life and
Robotics 8, 52–56 (2004)

Bayesian Network Structure Learning

from Limited Datasets through Graph Evolution

Alberto Paolo Tonda1, Evelyne Lutton2,
Romain Reuillon1, Giovanni Squillero3, and Pierre-Henri Wuillemin4

1 Institut des Systèmes Complexes, 57-59 rue Lhomond, 75005, Paris, France
2 INRIA Saclay-Ile-de-France, AVIZ Team

LRI - Bâtiment 650, Université Paris-Sud, 91405, Orsay Cedex, France
3 Politecnico di Torino, DAUIN, Corso Duca degli Abruzzi 124, 10129, Torino, Italy

4 LIP6 - Département DÉSIR, 4, place Jussieu, 75005, Paris
{alberto.tonda,romain.reuillon}@iscpif.fr, evelyne.lutton@inria.fr,

giovanni.squillero@polito.it, pierrehenri.wuillemin@lip6.fr

Abstract. Bayesian networks are stochastic models, widely adopted to
encode knowledge in several fields. One of the most interesting fea-
tures of a Bayesian network is the possibility of learning its structure
from a set of data, and subsequently use the resulting model to per-
form new predictions. Structure learning for such models is a NP-hard
problem, for which the scientific community developed two main ap-
proaches: score-and-search metaheuristics, often evolutionary-based, and
dependency-analysis deterministic algorithms, based on stochastic tests.
State-of-the-art solutions have been presented in both domains, but all
methodologies start from the assumption of having access to large sets
of learning data available, often numbering thousands of samples. This
is not the case for many real-world applications, especially in the food
processing and research industry. This paper proposes an evolutionary
approach to the Bayesian structure learning problem, specifically tailored
for learning sets of limited size. Falling in the category of score-and-
search techniques, the methodology exploits an evolutionary algorithm
able to work directly on graph structures, previously used for assembly
language generation, and a scoring function based on the Akaike Infor-
mation Criterion, a well-studied metric of stochastic model performance.
Experimental results show that the approach is able to outperform a
state-of-the-art dependency-analysis algorithm, providing better models
for small datasets.1

Keywords: Evolutionary computation, Bayesian network structure learn-
ing, Bayesian networks, Genetic Programming, Graph representation.

1 Acknowledgments for the funding received from the European Community’s Sev-
enth Framework Programme (FP7/2009-2013) under grant agreement DREAM
n. 222654-2.

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 254–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Bayesian Network Structure Learning from Limited Datasets 255

1 Introduction

Bayesian networks are stochastic models widely used to encode knowledge in sev-
eral different fields: computational biology and bioinformatics (gene regulatory
networks, protein structure, gene expression analysis), medicine, document clas-
sification, information retrieval, image processing, data fusion, decision support
systems, engineering, gaming and law.

A particularly interesting feature of a Bayesian network is the possibility of
learning its structure from a set of data and subsequently use the obtained model
to predict new results. However, the number of possible structures is superexpo-
nential in the number of variables of the model [1] and the problem of Bayesian
network learning is proved to be NP-hard [2]. The machine learning community
answered to this challenge with a research line dating back almost 30 years,
giving birth to a class of effective deterministic algorithms that systematically
determine the skeleton of the underlying graph and proceed to orient all arcs
whose directionality is dictated by conditional independencies observed.

This interesting problem raised also the attention of the evolutionary com-
putation community: several attempts at Bayesian network structure learning
have been presented in recent years, ranging from cooperative coevolution [3] [4]
[5] to evolutionary programming [6], to hybrid solution combining evolutionary
approaches with heuristic search [7]. Both deterministic and evolutionary tech-
niques share the assumption of the availability of dataset numbering thousands
or hundreds of thousands of samples: for several real-world problems, however,
this may not be the case [8]. For example, in the field of food processing and re-
search, extremely time-consuming processes are required to get a small amount
of sparse data.

Taking inspiration from such a category of problems, this paper presents an
evolutionary-based approach to Bayesian network structure learning, working
with datasets of extremely reduced size. The proposed technique exploits a
state-of-the-art evolutionary algorithm able to directly manipulate graph-like
structures, previously used for assembly language generation, and makes use of
a fitness function based on the Akaike information criterion, a metric taking into
account both the accuracy and the complexity of a candidate model.

The rest of the paper is organized as follows. Section 2 briefly introduces the
necessary background concepts on Bayesian networks. The proposed methodol-
ogy is described in detail in section 3. Section 4 presents the case study chosen
for the experimental evaluation, an established benchmark widely used in the
Bayesian network learning field. Experimental results showing a comparison with
a state-of-the-art dependency analysis algorithm are reported in section 5, while
section 6 draws the conclusions and gives an outline for future works.

2 Background

2.1 Bayesian Networks

A Bayesian Network (BN) is a “graph-based model of a joint multivariate proba-
bility distribution that captures properties of conditional independence between

256 A.P. Tonda et al.

Node Parents Probabilities

A P(A=a1) = 0.99
P(A=a2) = 0.01

B A,E P(B=b1|A=a1,E=e1) = 0.5
P(B=b2|A=a1,E=e1) = 0.5
P(B=b1|A=a1,E=e2) = 0.1
P(B=b2|A=a1,E=e2) = 0.9
P(B=b1|A=a2,E=e1) = 0.4
P(B=b2|A=a2,E=e1) = 0.6
P(B=b1|A=a2,E=e2) = 0.2
P(B=b2|A=a2,E=e2) = 0.8

Node Parents Probabilities

C B P(C=c1|B=b1) = 0.3
P(C=c2|B=b1) = 0.7
P(C=c1|B=b2) = 0.5
P(C=c2|B=b2) = 0.5

D A P(D=d1|A=a1) = 0.8
P(D=d2|A=a1) = 0.2
P(D=d1|A=a2) = 0.7
P(D=d2|A=a2) = 0.3

E P(A=e1) = 0.75
P(A=e2) = 0.25

Fig. 1. On the left, a directed acyclic graph. On the right, the parameters it is as-
sociated with. Together they form a Bayesian network BN whose joint probability
distribution is P (BN) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

variables” [9]. For example, a Bayesian network could represent the probabilis-
tic relationships between diseases and symptoms. The network could thus be
used to compute the probabilities of the presence of various diseases, given the
symptoms.

Formally, a Bayesian network is a directed acyclic graph (DAG) whose nodes
represent variables, and whose edges encode conditional dependencies between
the variables. This graph is called the structure of the network and the nodes
containing probabilistic information are called the parameters of the network.
Figure 1 reports an example of a Bayesian network.

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian
network, the joint probability distribution of the node values can be written as
the product of the local probability distribution of each node and its parents:

P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|pa(Xi))

2.2 Akaike Information Criterion

The Akaike information criterion (AIC) is a measure of the relative goodness
of fit of a statistical model [10]. It is grounded in the concept of information
entropy, in effect offering a relative measure of the information lost when a given
model is used to describe reality. It can be said to describe the trade-off between
bias and variance in model construction, or loosely speaking, between accuracy
and dimension of the model. Given a data set, several candidate models may be
ranked according to their AIC values: thus, AIC can be exploited as a metric for
model selection.

When dealing with Bayesian networks, AIC is expressed as a composition
of the loglikelihood, a measure of how well the candidate model fits the given
dataset, and a penalty tied to the dimension of the model itself. The dimensional
penalty is included because, on the one hand, the loglikelihood of a Bayesian
network usually grows monotonically with the number of arcs, but on the other

Bayesian Network Structure Learning from Limited Datasets 257

hand, an excessively complex network cannot be validated or even interpreted by
a human expert. The loglikelihood of a model M given a dataset T is computed
as

LL(M |T) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklog2
Nijk

Nij

where n is the number of variables, ri is the number of different values that the
stochastic variable Xi can assume, qi is the total number of possible configura-
tions of its parent set pa(Xi), Nijk is the number of instances in the dataset T
where the variable Xi takes its k-th value xik and the variables in pa(Xi) take
their j-th configuration wij , and Nij is the number of instances in the dataset
T where the variables in pa(Xi) take their j-th configuration wij .

Taking for example the Bayesian network BN described in Figure 1, the
loglikelihood of a dataset composed of one sample such as T = (a1, b2, c1, d2, e2)
would be equal to

LL(BN |T) = log2(P (A = a1) · P (B = b2|A = a1, E = e2) ·
·P (C = c1|B = b2) · P (D = d2|A = a1) · P (E = e2)) =

= log2(0.99 · 0.9 · 0.5 · 0.3 · 0.25) = −4.9

It is important to notice that datasets are usually composed by multiple sam-
ples, and that the final loglikelihood is the sum of the loglikelihoods of each
sample.

Using the same formulation, the dimensional penalty of model M can be
expressed as

|M | =
n∑

i=1

(ri − 1)qi

In the example of Figure 1, it would be thus:

|BN | = (1)penaltyA + (4)penaltyB + (2)penaltyC + (2)penaltyD + (1)penaltyE = 10

In the canonical representation, the final AIC score is expressed as:

AIC = −2 · (LL− |M |)
It is interesting to notice how the decomposability of the AIC makes it par-

ticularly feasible for use in a fitness function.

2.3 Bayesian Network Structure Learning

Learning the structure of a Bayesian network starting from a dataset is a NP-
hard problem [2], that becomes more and more challenging as the size of the
learning dataset decreases. The algorithmic approaches devised to solve this
problem can be divided into two main branches: score-and-search heuristics
and deterministic algorithms that rely upon statistical considerations on the
learning set.

258 A.P. Tonda et al.

In recent years, Bayesian network structure learning gained more and more
attention from the evolutionary community. Several attempts to tackle the prob-
lem has been tested, ranging from evolutionary programming [6], to hybrid ap-
proaches [7], to cooperative coevolution [3] [4].

The underlying assumption of these works is often the availability of a con-
siderable number of samples in the dataset used for learning: under these condi-
tions, however, a class of deterministic algorithms known as dependency analysis
is able to deliver results of high quality in a fraction of the time. One of the
most performing algorithms in this category is known as Greedy Thick Thinning
(GTT)[11]. Starting from a completely connected graph, first GTT applies the
well-known PC algorithm [12], that cuts arcs on the basis of conditional inde-
pendence tests; then, it starts first adding and then removing arcs, scoring the
network after each modification and using a set of heuristics to avoid a pre-
mature convergence. GTT implementations can be found in products such as
GeNie/SMILE [13].

When the number of samples available for structure learning is small, how-
ever, dependency analysis algorithms see their performance degrade dramati-
cally, leaving a promising open area of applicability for evolutionary techniques.

3 Proposed Methodology

The proposed approach to Bayesian network structure learning belongs to the
category of score-and-search techniques: the evolutionary core is a state-of-the-
art evolutionary algorithm, while the scoring metric used is a decomposition of
the AIC.

3.1 µGP

μGP3 [14] is an evolutionary algorithm tool developed by the CAD Group of
Politecnico di Torino and available as a GPL software [15].

The main difference between μGP3 and the classical Genetic Programming
paradigm [16], is the encoding of individuals in tagged graphs instead of trees.
More precisely, the algorithm makes use of constrained tagged graphs, that is,
directed graphs where every element may own one or more tags, and that in
addition have to respect a set of constraints. A tag is a name-value pair whose
purpose is to convey additional information about the element it belongs to.
Tags are used to add semantic information to graphs, augmenting the nodes
with a number of parameters, and also to uniquely identify each element during
the evolution. The constraints may affect both the information contained in the
graph elements and its structure. Graphs are modified by genetic operators, such
as the classical mutation and recombination, but also by different operators,
as required. The activation probability and strength for every operator is an
endogenous parameter. The genotype of every individual is described by one
or more constrained tagged graphs, each of which is composed by one or more
sections. Sections allow defining a global structure for the individuals that closely
follows the structure of any candidate solution for the problem.

Bayesian Network Structure Learning from Limited Datasets 259

Constraints limit the possible productions of the evolutionary tool, and also
provide them with semantic value. A user-defined XML configuration file encodes
the constraints, which in turn provide the genotype-phenotype mapping for the
generated individuals, describe their possible structure and define which values
the existing parameters (if any) can take.

Individuals’ fitness is computed by means of an external evaluator: this is
usually a script that runs a simulation using the individual as input and collects
the results, but may be any program able to provide the evolutionary core with
proper feedback. The fitness of an individual is represented by a sequence of
floating point numbers optionally followed by a comment string. This is currently
used in a prioritized fashion: one fitness A is considered greater than another
fitness B if the nth component of A is greater than the n-th component of B and
all previous components (if any) are equal; if all components are equal then the
two fitnesses are considered equal.

Given the versatility and the ease of configuration of the tool, it is not sur-
prising that several successful applications of μGP3 appear in literature, mainly
in the area of assembly language generation [17], but also in very different fields,
such as software verification [18].

The ability of evolving directed graphs, with genetic operators already de-
signed to work on them, is particularly promising when dealing with problems
where the individual is in fact a graph, as in the case of Bayesian network
structure learning. A specific type of parameter, innerBackwardLabel, used in
assembly generation for jumps to previous lines of the code, is now exploited to
describe an oriented arc coming from a previous node. Other features of the al-
gorithm are of particular use in this situation: a simple self-adapting mechanism
avoids the need of setting fixed values for the genetic operators, increasing the
activation probability for operators that constantly produce good offspring. A
map of the individuals at genotype-level is also used to remove possible clones
before the evaluation step.

The possibility of choosing the categories of genetic operators to apply is also
advantageous: for this experience, two kinds of crossover and three mutations
have been selected, as shown in Table 1. The difference between the crossovers is
in the number of points of cut (one-point and two-point). The chosen mutations,
operating on innerBackwardLabel type parameters, can collectively perform the
addition, removal or variation of directed arcs in the graph. It is interesting to
notice how the same mutation operators, applied to parameters such as floating
point numbers, behave in a different fashion, changing the real-valued parameter
according to a Gaussian distribution. Figure 2 shows an example of the effect of
the onePointCrossover genetic operator on two individuals containing directed
arcs.

3.2 Individual Encoding

A candidate solution to the Bayesian network structure learning problem is
a directed acyclic graph. Most evolutionary approaches take into account the
possibility of generating loops, by either using repairing operators or discarding

260 A.P. Tonda et al.

1 2

3

4 5

1

2

3

4

5

1

2

3 4

5

1

2

3

4

5

one-point crossover

1

2

3

4

5

1

2

3

4

5

offspring

1 2

3

4
5

1

2

3 4

5

(a) (b) (a-b) (b-a)

Fig. 2. Example of onePointCrossover application in μGP3. When the genotype is
of fixed length, the directed arcs are reattached to corresponding parts of the new
individuals.

var_E 0.1
var_A 0.2
var_D 0.3
var_B 0.4
var_C 0.5

1

2

3

4

5

1

2

3

4

5

var_A 0.2

var_B 0.4

var_E 0.1

var_C 0.5

var_D 0.3

from:
2

from:
1

from:
2

from:
4

Section 1 Section 2

Individual Genotype

Node 1
Node 2
Node 3 -> Parents: Node 2
Node 4 -> Parents: Node 1 Node 2
Node 5 -> Parents: Node 4

var_A 0.2
var_B 0.4
var_C 0.5
var_D 0.3
var_E 0.1

Individual Phenotype

Node (var_E)
Node (var_A)
Node (var_D) -> Parents: Node (var_A)
Node (var_B) -> Parents: Node (var_A) Node (var_E)
Node (var_C) -> Parents: Node (var_B)

E A

B D

C

Structure

Parameters
Conditioned Probabilities

P(A), P(B|A,E),
P(C), P(D),P(E)

a1,b2,c2,d1,e2
a1,b1,c1,d2,e2
a2,b1,c2,d1,e1

... , ... , ... , ... , ...

Learning Set

Fig. 3. Example of individual encoding in the proposed approach. The first part of
the genome (Section 1) describes a directed acyclic graph, correct by construction.
The second part (Section 2) specifies the mapping of the variables in the dataset on
the nodes of the graph. The resulting phenotype is a graph with the structure of the
first part of the genotype and the node ordering of the second. The parameters of
the resulting Bayesian network are computed on the learning set, starting from the
conditional probabilities derived from the structure.

Bayesian Network Structure Learning from Limited Datasets 261

graphs containing cycles. Even detecting the presence of a cycle, however, is
non-trivial and computationally expensive.

Thanks to the options available in μGP3, it is in fact possible to set the
evolutionary algorithm to always generate valid structures. The nodes of the
graph, in the individual description, will appear in a given order: it is sufficient
to constraint the generation of directed arcs from one node to nodes that only
appear after it in the individual description, and loops are automatically avoided
by construction.

The mapping from the variables that appear in the learning dataset to the
directed acyclic graph is encoded in the second part of the individual. Each
variable is associated with a floating point weight ranging from 0 to 1: when
the individual is evaluated, the variables are sorted with their weight and are
subsequently mapped in-order to the graph structure described in the first part.
An example of individual is reported in Figure 3.

The maximum number of parents for a single node is set to 10, as it is common
for most search-and-score metaheuristics [3].

3.3 Fitness Function

Preliminary experiments with the canonical AIC scoring show a tendency for the
algorithm to explore prevalently local optima of very simple structures: probably,
in the AIC fitness landscape, the slope towards low complexity is much steeper
than the one towards good loglikelihood values.

To avoid premature convergences, the fitness function used in the experiments
is thus a hierarchical decomposition of the AIC. First, the loglikelihood of the
model with respect to the learning dataset is considered; if two candidate models
have the same loglikelihood, they are then compared on the penalty tied to their
respective dimension.

4 Case Study

Over the course of time, the Bayesian network structure learning community
developed a vast number of benchmarks, from simple to relatively complex. To
assess the proposed approach, the Alarm network [19] is selected. Alarm was
constructed for monitoring patients in intensive care, and it is effectively used.
It features 37 nodes and 46 edges, and its overview can be found for example at
http://www.norsys.com/netlib/alarm.htm

5 Experimental Results and Discussion

Experts usually agree that a comprehensive learning set for a Bayesian network
should include at least 10-15 samples for each parameter. In the case of Alarm,
this would mean the availability of thousands of samples: since the proposed
approach is aimed at working with limited information, datasets smaller by an
order of magnitude are selected.

262 A.P. Tonda et al.

Table 1. Parameters used for μGP3 in all the performed experiments. λ is the number
of genetic operators applied at each step. The stagnation stop condition forces the
end of the execution if the best individual in the population does not change for a
specified number of generations. For further details on the parameters, see [14].

Parameter Value

μ 1,000
λ 1,000

Selection tournamentSelection with τ = (1,4)
Diversity preservation fitnessHole (0.5)

Stop condition stagnation (100 generations)
Genetic operators singlePointCrossover, twoPointCrossover,

alteratioMutation, replacementMutation,
singleParameterAlteratioMutation

Thus, to assess the validity of the methodology, three learning sets of 100
samples each are generated starting from the Alarm network description avail-
able in literature [19]. alarm-100-a is produced using the standard methodology
of constrained probability generation; alarm-100-b contains 100 samples ran-
domly taken from a dataset of original size 5,000; and alarm-100-c contains 100
samples randomly selected from a dataset of original size 10,000. It is important
to note that, albeit randomly created, each 100-samples dataset contains all pos-
sible values for each variable in the Alarm network. In principle, all the datasets
should have the same probability of being representative of the original network.

μGP3 is set with the parameters reported in Table 1. Note that, since the
algorithm is self-adapting, it is not necessary to initially select an activation
probability for the genetic operators. The strenght of the genetic operators is
also self-adapted during the evolution, with an initial value of σ = 0.9.

For each learning set (alarm-100-a, alarm-100-b, alarm-100-c), 20 runs of
the proposed approach are executed, along with a run of Greedy Thick Thinning.
Since the latter is deterministic, it reports the same output even for repeated runs.

Results are reported in Table 2. The first four lines show the performance
of the true structure of the Alarm network, for comparison. It is interesting to
notice the significant difference in loglikelihood values between the same struc-
ture, when the parameters are learned from different datasets (lines 2-4). Even
knowing the true structure of the network, a dataset of considerable size would
be needed to learn the true values for all the parameters. Learning algorithms
of all categories can only compute an approximation of the parameters, that
degrades with the reduction in size of the learning set. The grayed cells show
the dataset the method is trained on.

The first evidence is that all solutions found by the proposed approach have
lower dimensional penalties, much closer to the true structure than the ones de-
livered by GTT. While the loglikelihood values seem to favor GTT, it becomes
evident that the greedy algorithm overfits the learning data: the networks deliv-
ered by GTT show loglikelihoods that are higher than the corresponding values
of the original structure with parameters learned from the same dataset.

Bayesian Network Structure Learning from Limited Datasets 263

Table 2. Results of the experiments. While the logliklihood of solutions obtained with
Greedy Thick Thinning is generally higher, it shows more overfitting when compared
to the loglikelihood of the true structure with parameters trained on the same dataset,
due to the higher dimension of the networks found.

Method
Dimensional Loglikelihood Loglikelihood Loglikelihood

Penalty alarm-100-a alarm-100-b alarm-100-c

Avg StDev Avg StDev Avg StDev Avg StDev

True network 509.0 - -1,571.90 - -1,476.43 - -1,470.95 -

True structure (a) 509.0 - -1,651.05 - -1,693.29 - -1,672.12 -
True structure (b) 509.0 - -1,807.32 - -1,567.74 - -1,688.81 -
True structure (c) 509.0 - -1,809.77 - -1,720.54 - -1,569.26 -

GTT-100a 796.0 - -1,641.61 - -1,808.63 - -1,801.35 -
GTT-100b 1,226.0 - -1,979.28 - -1,494.18 - -1,825.90 -
GTT-100c 1,238.0 - -1,918.89 - -1,869.84 - -1,498.90 -

μgp-100a 763.39 42.54 -1,644.68 30.39 -1,861.99 34.06 -1,848.50 31.06
μgp-100b 702.29 95.18 -1,981.79 27.47 -1,529.00 18.94 -1,850.80 23.89
μgp-100c 669.00 96.21 -1,986.72 33.40 -1,873.79 26.82 -1,554.09 10.68

When dealing with such a small amount of data, all stochastic considerations
that are at the base of the class of deterministic algorithms GTT belongs to,
simply do not hold anymore: even relatively effective statistics tests yield wrong
results. In such a difficult situation, an effective score-and-search metaheuristic
can provide better results.

For a final remark on computational times, as anticipated in Subsection 2.3, a
run of GTT lasts a few seconds. A single generation of the proposed approach, on
the same machine, takes between 1 and 2 minutes to complete, with the global
time for the whole process amounting to hours. In less than 5% of the runs, the
algorithm is also restarted, after delving deep into parts of the fitness landscape
with high dimension, thus increasing the evaluation time over an acceptable
threshold. Since the main focus of the present work is not on efficiency, it must
be noted that previous computations of conditional probability statements are
not stored and reused; the possibility of parallel evaluations of individuals in the
same generation is also not exploited.

6 Conclusions

Bayesian network structure learning from a dataset is a complex problem, espe-
cially when the learning set is small: but in many real-world problems, particu-
larly in the food processing and research industry, it is possible to have access
to limited-size datasets only.

This paper presents an approach to Bayesian network structure learning from
datasets of limited size. The methodology is based on an evolutionary algorithm
able to evolve directed graphs, that can be easily set to always produce acyclic
graphs by construction, avoiding the repairing of non-valid structures.

264 A.P. Tonda et al.

The proposed methodology is assessed on a well-known benchmark, the Alarm
network, and compared against a state-of-the-art dependency analysis algorithm,
known as Greedy Thick Thinning. The experimental results show that the ap-
proach is effective, obtaining simpler structures, for which interpretation and
validation by humans are more feasible. The proposed approach also avoids the
likelihood overfitting on the learning set of the greedy algorithm.

Future works will compare the proposed approach with other evolutionary
solutions in literature on small datasets. The effect of different metrics or combi-
nation of metrics, such as Maximum Description Length or Bayesian Information
Criterion, on the scoring of the candidate solutions will be also explored, along
with the possibility of using cooperative coevolution to split the original task in
sub-problems.

References

1. Robinson, R.: Counting unlabeled acyclic digraphs. In: Little, C. (ed.) Combinato-
rial Mathematics V. Lecture Notes in Mathematics, vol. 622, pp. 28–43. Springer,
Heidelberg (1977), doi:10.1007/BFb0069178

2. Chickering, D.M., Geiger, D., Heckerman, D.: Learning bayesian networks is np-
hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, WA, USA
(November 1994)

3. Carvalho, A.: A cooperative coevolutionary genetic algorithm for learning bayesian
network structures. In: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO 2011, pp. 1131–1138. ACM, New York (2011)

4. Wong, M.L., Lee, S.Y., Leung, K.S.: Data mining of bayesian networks using co-
operative coevolution. Decis. Support Syst. 38, 451–472 (2004)

5. Barriere, O., Lutton, E., Wuillemin, P.H.: Bayesian network structure learning
using cooperative coevolution. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2009 (2009)

6. Wong, M.L., Lam, W., Leung, K.S.: Using evolutionary programming and min-
imum description length principle for data mining of bayesian networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21(2), 174–178 (1999)

7. Fournier, F., Wu, Y., McCall, J., Petrovski, A., Barclay, P.: Application of evolu-
tionary algorithms to learning evolved bayesian network models of rig operations in
the gulf of mexico. In: 2010 UK Workshop on Computational Intelligence (UKCI),
pp. 1–6 (September 2010)

8. Barrière, O., Lutton, E., Baudrit, C., Sicard, M., Pinaud, B., Perrot, N.: Modeling
Human Expertise on a Cheese Ripening Industrial Process Using GP. In: Rudolph,
G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199,
pp. 859–868. Springer, Heidelberg (2008)

9. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to an-
alyze expression data. In: Proceedings of the Fourth Annual International Confer-
ence on Computational Molecular Biology, RECOMB 2000, pp. 127–135. ACM,
New York (2000)

10. Akaike, H.: A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6), 716–723 (1974)

11. Cheng, J., Bell, D.A., Liu, W.: An algorithm for bayesian belief network construc-
tion from data. In: Proceedings of AI & STAT 1997, pp. 83–90 (1997)

Bayesian Network Structure Learning from Limited Datasets 265

12. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn.
MIT Press Books, vol. 1. The MIT Press (2001)

13. Druzdzel, M.J.: SMILE: Structural modeling, inference, and learning engine and
GeNIe: A development environment for graphical decision-theoretic models, pp.
902–903. American Association for Artificial Intelligence (1999)

14. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the uGP
toolkit. Springer, Heidelberg (2011)

15. SourceForge: Host of μgp3, http://sourceforge.net/projects/ugp3
16. Koza, J., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search

Methodologies, pp. 127–164. Springer, US (2005), doi:10.1007/0-387-28356-0 5
17. Squillero, G.: Microgp - an evolutionary assembly program generator. Genetic Pro-

gramming and Evolvable Machines 6, 247–263 (2005)
18. Gandini, S., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: A framework

for automated detection of power-related software errors in industrial verification
processes. J. Electron. Test. 26, 689–697 (2010)

19. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM Moni-
toring System: A Case Study with Two Probabilistic Inference Techniques for Belief
Networks. In: Second European Conference on Artificial Intelligence in Medicine,
London, Great Britain, vol. 38, pp. 247–256. Springer, Berlin (1989)

http://sourceforge.net/projects/ugp3

Efficient Phenotype Evaluation in Cartesian

Genetic Programming

Zdeněk Vaš́ıček and Karel Slaný

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence, Brno, Czech Republic

{vasicek,slany}@fit.vutbr.cz

Abstract. This paper describes an efficient acceleration technique de-
signed to speedup the evaluation of candidate solutions in Cartesian
Genetic Programming (CGP). The method is based on translation of
the CGP phenotype to a binary machine code that is consequently exe-
cuted. The key feature of the presented approach is that the introduction
of the translation mechanism into common fitness evaluation procedure
requires only marginal knowledge of target CPU instruction set. The
proposed acceleration technique is evaluated using a symbolic regression
problem in floating point domain. It is shown that for a cost of small
changes in a common CGP implementation, a significant speedup can
be obtained even on a common desktop CPU. The accelerated version
of CGP implementation accompanied with performance analysis is avail-
able for free download from http://www.fit.vutbr.cz/~vasicek/cgp

Keywords: Cartesian genetic programming, Fitness evaluation, Accel-
eration, Symbolic regression.

1 Introduction

During the last two decades the evolutionary computing community has demon-
strated the evolutionary algorithms can deliver very efficient and sometimes also
patentable implementations of various design problems [1,2]. For example, John
Koza, the pioneer of the field, dealing primarily with the evolutionary design of
analog circuits, has reported tens of human-competitive results in various areas of
science and technology [3]. Although the evolutionary optimization and synthesis
has been shown to be a promising method, there exist problems that make this
approach problematic in several applications. Among others, the runtime needed
to evaluate a fitness function (i.e. calculate a fitness value for a given candidate
solution) represents a serious issue [4]. As complex candidate solutions usually
require evaluating a huge number of training vectors the evaluation represents
the main bottleneck of the whole evolutionary system.

Many techniques for accelerating the evaluation of fitness function have been
proposed including the optimization at the algorithmic level (e.g. better represen-
tation for trees in GP [5]), cluster-based accelerators [3], problem-specific hard-
ware accelerators implemented in reconfigurable programmable devices [6,7,8]

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 266–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.fit.vutbr.cz/~vasicek/cgp

Efficient Phenotype Evaluation in Cartesian Genetic Programming 267

and implementations based on general purpose Graphic Processing Unit (GPU)
architectures [9,10]. A common feature all of these approaches is the presence of
a particular degree of parallelism implemented at different levels.

Recently, GPUs that are available in common desktop computers have been
used to parallelize the fitness function evaluation [11,12,10]. According to the
published results, the hardware-based accelerators together with GPU-based ac-
celerators provide interesting speedup [13]. Although a lot of care is taken to
optimize these hardware-based accelerators, nearly no effort is given to optimize
the fitness evaluation procedure on common CPUs. The researchers usually over-
look the fact, that modern CPUs implement a very high degree of parallelism
directly at the instruction level. The general meaning is that it is very difficult to
optimize the EAs on CPU and moreover, that the time-consuming optimization
will not pay off in the end (i.e. the speedup will be only marginal). On the other
hand, common desktop CPUs are equipped with SIMD instruction sets with con-
tinuously increasing number of data bits that can be processed in parallel. While
the Multimedia Extension (MMX) instruction set introduced in 1996 uses 64-
bit operands, contemporary instruction sets such as Advanced Vector Extension
allow processing 256-bit data types. If we look at the current situation, every
64-bit desktop CPU, such as the AMD64 architecture, mandatory implements
Streaming Extensions instruction sets such as SSE/SSE2 allowing delegation of
a substantial part of generic ALU and FPU workload into specialized and highly
optimized SIMD units.

According to Poli, to go beyond the speedup provided by the language, some
drastic changes are required [14]. In this paper, we would like to show that this
statement is not necessarily true. The goal of this paper is to introduce semi-
automatic approach addressing the problem of speeding up the fitness function
evaluation on commonly available CPUs. In particular, a system for acceleration
of evaluations of candidate solutions in Cartesian Genetic Programming is pre-
sented. The method described in this paper is illustrated on the AMD64 CPU
architecture, but it is applicable on any type of CPU present in current PCs.
According to our best knowledge, there exists only one paper that addresses the
similar problem. In [15] a genome compiler addressing the problem of accelera-
tion of s-expression in GP has been proposed. In this paper, an approach suitable
for linear genetic programming and CGP is presented.

The paper is organized as follows. Section 2 deals with the Cartesian Genetic
Programming and the existing methods used for evaluation of candidate solu-
tions. Proposed approach dealing with the acceleration of evaluation in CGP is
introduced in Section 3. Results of experiments are presented in Section 4 and
discussed in Section 5. Conclusions are given in Section 6.

2 Cartesian Genetic Programming

Cartesian genetic programming [16], introduced by Julian Miller and Peter
Thomson in 2000, is a variant of genetic programming where the genotype is
represented as a list of integers that are mapped to directed oriented graphs.

268 Z. Vaš́ıček and K. Slaný

CGP encodes a candidate solution (typically a circuit or a program) using an
array consisting of C ×R configurable nodes. The C determines the number of
columns whereas R determines the number of rows. Each programmable node
has fixed number of inputs EI and outputs EO and can implement one of F pre-
defined primitive functions; in most cases EI = 2 and EO = 1. The main feature
of CGP is that all the parameters including the number of programmable nodes,
node inputs and outputs and program inputs, PI , and program outputs, PO, are
fixed. Each node input can be connected either to the output of a node placed in
the previous L columns or to one of the program inputs. The parameter L (re-
ferred to as l-back parameter) defines the level of connectivity and thus reduces
or extends the search space. For example, if L=1 only neighboring columns may
be connected. Because of the complicated evaluation, feedback is not allowed in
the standard version of CGP.

2.1 Fitness Function Evaluation

In order to evaluate the fitness function, the response for each training vector
has to be calculated. This step involves the interpretation of a CGP genotype
for each vector. One of the key features of CGP encoding is that it can directly
be used as an intermediate code that is processed by an interpreter. Two types
of interpreters are usually utilized. The interpreter based on recursion and linear
interpreter.

The interpreter based on the recursion works as follows. The encoded graph
structure is executed by recursion, starting from the output nodes down through
the functions, to the input nodes [9]. In this way, the unconnected nodes are not
processed and do not affect the performance of the evaluation. The calculated
values are stored in local stacks and propagated upwards.

The linear interpreter works in the opposite direction. The execution of the
encoded graph starts from the first node and continues according to the increas-
ing node index. This scheme represents the most efficient implementation as it
does not introduce any overhead due to function calling that have to manipulate
with stack. In contrast with the recursive approach, all the output values are
calculated in one pass. However, all the nodes are evaluated even if they are
not connected. In order to improve the performance, a simple preprocessing step
that marks the utilized nodes only can be introduced. Only the marked nodes
are subsequently evaluated.

Both of these interpreters are applicable for absolute [16] as well as relative
CGP encoding [9].

2.2 Common Linear CGP Interpreter

Let us assume that the goal is to evaluate a candidate program having PI primary
inputs that is encoded using C × R nodes. To simulate a candidate program, a
temporary array consisting of PI + CR data items is needed. In fact, this array
stores the calculated output value for each node as well as the values at the

Efficient Phenotype Evaluation in Cartesian Genetic Programming 269

primary inputs. Thus, it can be directly addressed by the indices stored in the
chromosome.

The evaluation works as follows. Firstly, the first PI items are initialized using
the input values obtained from training data. Secondly, the evaluateCGPmethod
is executed. The structure of the linear CGP interpreter for EI = 2 and EO = 1
that calculates the response for a single training vector situated in data[0] ...
data[PI -1] looks as follows.

void evaluateCGP(int ∗chromosome , datatype ∗data) {
int nodeidx = PI ;
foreach (node , chromozome) {

i f (! node used (nodeidx)) { nodeidx++; continue ; }
switch (node . func) {

case 0x0 :
F0(data , node . in1 , node . in2 , nodeidx++); break ;

case 0x1 :
F1(data , node . in1 , node . in2 , nodeidx++); break ;

. . .
}

}
}

The interpreter consists of a loop that calculates the response for each CGP
node according to the genes of the CGP chromosome. CGP encodes a candidate
solution using a triplet consisting of three integers. The first two integers (de-
noted as ‘node.in1‘ and ‘node.in2‘) determine the indices of nodes connected to
currently evaluating node; the last integer (denoted as ‘node.func‘) determines
the function of the currently evaluating node.

In order to use the CGP, a function set has to be defined. The described
approach enables to use the primitive inline functions (such as addition, sub-
traction, etc.) as well as complex functions by changing the macro definitions
F0, F1, etc. In some cases it is also suitable to replace each node function by an
indirect function call driven by an array of pointers to called functions which al-
lows a dynamic change of the function set during the code execution by rewriting
the content of the array.

The example of a fitness function required for guiding the search strategy is
shown in the following procedure. The fitness value is calculated as the sum of
absolute differences between obtained response and desired response.

datatype f i tnessCGP (int ∗chromosome) {
datatype ∗data [PI + C∗R] ;
datatype f i t n e s s = 0
for (int i =0; i<vec to r s ; i++) {

copydata (data , t r a i n i n g i npu t [i] , PI) ;
evaluateCGP(chromosome , data) ;
f i t += abs (data [chromosome [3∗C∗R]] − t r a i n i n g d e s i r e d [i]) ;

}
return f i t ;

}

270 Z. Vaš́ıček and K. Slaný

The fitness function calls the evaluateCGP procedure which, given the cal-
culated outputs by CGP and a candidate solution, evaluates the response for a
single input vector (i.e. a single fitness case stored in the array denoted as ‘train-
ing input‘). Then, according to the information about the output connections
stored in the chromosome, the fitness value of a genotype for the utilized input
vector is calculated. These steps are repeated until the last training vector is
evaluated.

It is clear that the time needed to calculate the fitness value teval increases with
the increasing number of training vectors and increasing number of evaluated
nodes, i.e. teval ∝ Nv · R · C where Nv denotes the number of training vectors.
While in case of symbolic regression problem Nv can be chosen by designer,
Nv = 2PI fitness cases have to be evaluated in a typical digital-circuit evolution.

3 Proposed Method

In order to improve the performance of the CGP system, it is important to sim-
ulate candidate solutions effectively. Intuitively, the performance of the CGP-
based evolutionary system will be significantly improved if the interpreter is
avoided and replaced by a native machine code that directly calculates the fit-
ness value. The straightforward approach is to use a compiler and compile the
procedure that calculates response for a single training vector into a high-level
language such as C. This approach was used on GPUs by Harding in [9,10]
where the generated C description supplemented with the evaluation procedure
is compiled with a common C compiler and is run just like any other program.
However, the transformation of the phenotype into C source code and the subse-
quent compilation represent the main bottleneck. In order to improve the overall
performance, Harding uses a cluster of GPUs and CPUs to overlap the time
needed to generate and compile C description with evaluation.

To maximize the overall performance, we propose a method that is able to
efficiently compile the CGP genotype to an efficient binary machine code without
necessity to call the external C compiler. Moreover, as it will be shown, the
proposed method does not require deep knowledge of the target CPU instruction
set. The CGP chromosome is compiled once when it is necessary to evaluate the
fitness function. The process of fitness function calculation consists of two phases.
In the first phase, the CGP chromosome is compiled or more precisely translated
to machine code that resides in the application’s address space. The process of
translation exhibits linear time complexity with respect to the number of CGP
nodes. The second phase involves the calculation of response for the training
vectors and fitness value. This procedure executes the obtained machine code
for each training vector.

3.1 Data Execution Prevention Handling

Although common computers store both data and instructions in the same mem-
ory, modern operating systems implement several security mechanisms that pre-
vent an application from executing code from a non-executable memory region.

Efficient Phenotype Evaluation in Cartesian Genetic Programming 271

These techniques are known as data execution prevention (DEP) and are avail-
able on all operating systems including various favors of Unix, Mac OS as well
as Windows.

Since the proposed method is based on the runtime compilation, it relies on
the presence of executable code in data memory space. In order to avoid the
raising of exception caused by DEP, the application has to request the hosting
OS to mark the desired memory pages as executable. For example, this can be
done by calling the mprotect() system function in POSIX systems.

3.2 Machine Code Generation

The code given in the following listing illustrates the principle of the proposed
method.

unsigned char ∗ code [CODE SIZE] \
a t t r i b u t e ((a l i gn ed (4 0 9 6))) ;

function i n i t i a l i z eCGP () {
mprotect (code , CODE SIZE , PROTREAD |PROTWRITE |PROT EXEC) ;

}

function compileCGP (int ∗chromozome) {
unsigned char ∗ i n s t r p t r = code ;
/∗ preserve a l l used r e g i s t e r s on s tack exc lud ing rax ∗/
∗ i n s t r p t r++ = 0x57 ; // push rd i
. . .
/∗ t r an s l a t e CGP code ∗/
. . .
/∗ r e s t o r e s tored r e g i s t e r s ∗/
. . .
∗ i n s t r p t r++ = 0x5F ; // pop rd i
/∗ return from func t ion ∗/
∗ i n s t r p t r++ = 0xC3 ; // r e t

}

function evaluateCGP () {
typedef unsigned long (∗ func) (void) ;
((func) code) () ;

}

The code consists of three procedures related to the initialization, compila-
tion and evaluation. During the initialization, several pages that are utilized for
generated machine code are allocated in data space and marked as executable.

The process of CGP genotype compilation contains three sections. Since the
generated code must take care of the C function call conventions (i.e. preserv-
ing register values, stack management and return value passing conventions),
the code that preserves the utilized registers is generated in the first section.
Then, the CGP chromosome is interpreted and corresponding machine code
is generated. The code that translates CGP chromosome to the machine code
looks nearly the same as the structure of linear CGP interpreter described in
Section 2.2. The only difference is that instead of evaluation of each node, cor-
responding machine code is generated. Finally, the instructions restoring the
values of previously stored registers are generated.

272 Z. Vaš́ıček and K. Slaný

The evaluation procedure evaluateCGP consists of a simple call. This proce-
dure represent a direct replacement of the procedure presented in Section 2.2.
Note that the phenotype is translated only once, when the first training vector
ought to be evaluated.

3.3 Translating Primitive Functions into Machine Code

Suppose one needs to generate machine code for a given primitive function. The
function may be specified in C in the following way:

void add (int ∗data , int in1 , int in2 , int out) {
data [out] = data [in1] + data [in2] ;

}

This function represents a basic building block of CGP interpreter that per-
forms an action on an array of intermediate values using indexes which have
been determined from a corresponding CGP node. Following the procedure
evaluateCGP described in Section 2.2, the given primitive function can be uti-
lized as follows:

#define F0(data , in1 , in2 , out) add (data , in1 , in2 , out)

The straightforward approach for obtaining a corresponding machine code
would be to implement such a code in assembler (i.e. according to the binary
code of the instruction, which can be found in the processor documentation,
convert the given code into binary machine code). However this represents a
tedious and time consuming manual process that may be discouraging.

In this paper, we present a more convenient approach. The main idea is to
utilize a common compiler supporting in-line assembly statements (e.g. standard
GCC compiler) to get the corresponding machine code automatically. Assume
that the goal is to obtain a machine code for the given primitive function. One
can utilize the assembly statements that tell the compiler which registers are
used for passing given parameters. Let us suppose, for example, that register r8
will be used for value of variable in1, register r9 for value of variable in2, register
r10 for output index out and index register rdi for pointer to the temporary
array data. Then, the following code can be used to generate the machine code
that evaluates the primitive function.

void add (void) {
register int ∗data asm(” r d i ”) ;
register long in1 asm(” r8 ”) , in2 asm(” r9”) , out asm(” r10 ”) ;
data [out] = data [in1] + data [in2] ;

}

If we compile the given source code with debug information, the standard
object dump tool can be used to display the corresponding binary machine code
together with the human readable instructions. The generated code is depicted
in the following listing.

Efficient Phenotype Evaluation in Cartesian Genetic Programming 273

0000000000000000 <add>:
0 : 42 8b 04 8 f mov (%rdi ,%r9 ,4) ,% eax
4 : 42 03 04 87 add (%rdi ,%r8 ,4) ,% eax
8 : 42 89 04 97 mov %eax ,(% rdi ,%r10 , 4)
c : c3 retq
d : 0 f 1 f 00 nopl (%rax)

The generated machine code can be directly applied as it contains the required
registers. These steps may be done by hand or automatically by a simple script.

The advantage of this approach is that it enables to translate simple as well as
complex functions. Another advantage is that the user can enable the compiler
optimizations that can produce even better code without affecting source or
target registers.

3.4 Translating CGP Phenotype into Machine Code

The translation procedure iterates over the nodes. For each node contributing
to the phenotype, a corresponding machine code is generated. The generated
machine code firstly passes all necessary arguments to the primitive function
machine code obtained according to the instructions in Section 3.3.

The similar approach can be utilized to prepare the code which passes the
arguments to the primitive function code. For example, the following assembly
statements can be used to obtain all the necessary assignments.

register int ∗data asm(” r d i ”) = (int ∗) 0 x1000000000000001 ;
register long in1 asm(” r8 ”) = 0x1000000000000002 ,
in2 asm(” r9 ”) = 0x1000000000000003 ,
out asm(” r10 ”) = 0x1000000000000004 ;

Then by overwriting the constant values with desired index values the machine
code may be adjusted according to the requirements of the evaluated node.

3.5 Machine Code Vectorization

To exploit the performance of modern CPUs as much as possible, additional
technique can be applied. The evaluation of training vectors can be parallelized
using a SIMD instruction set offered by the target architecture. The use of SIMD
instructions introduces another level of code optimization resulting in even higher
speedup. The same approach proposed in previous paragraph can be utilized to
obtain vectorized machine code. The only difference is that a suitable compiler
intrinsics have to be used. The following GCC SSE/SSE2 shows an example
which allows parallelization of four integer additions.

void add vec (void) {
register int ∗data asm(” r d i ”) ;
register long in1 asm(” r8 ”) , in2 asm(” r9 ”) , out asm(” r10 ”) ;
∗(m128i ∗)&data [out] =

mm add epi32 (∗ (m128i ∗)&data [in1] , ∗(m128i ∗)&data [in2]) ;
}

274 Z. Vaš́ıček and K. Slaný

4 Experimental Setup

In order to evaluate the speedup of the proposed approach, a symbolic regression
problem in floating point domain was chosen. Note that the problem to be used is
not important in this evaluation, because the time of evaluation depends mainly
on the number of training vectors, number of evaluated nodes and complexity
of primitive functions. The goal of this evaluation is to show, that it is worth to
modify the common interpreted evaluation procedure and introduce the machine
code compilation; i.e. the absolute values of speedup are not important.

We have investigated several factors affecting the performance including the
size of training set and influence of floating point precision (i.e. single and double
precision). The training set S contains 1000, 10000, and 100000 training vectors.
Each training vector consists of one input value and one desired output value,
both floating point numbers. The fitness function is calculated as an absolute
error

fitness =

|S|∑
i=1

|c(Si)− r(Si)|

where c(Si) denotes calculated response for i-th training vector and r(Si) rep-
resents desired response for i-th training vector.

The following experimental setup was utilized. Standard CGP strategy with
the population consisting of 8 individuals was used. For all experiments, the
runtime needed for execution (i.e. evaluation) of 1000 generations was measured.
Each CGP node can implement one of the six primitive functions F = {x+y, x−
y, x∗y, (x+y)/2,min(x, y),max(x, y)}. A linear CGP structure consisting of one
row (R = 1) and 25, 50 and 1000 columns (C) was used. The l-back parameter
was set to the maximum value, i.e. l = C. The experiments were performed on
the Intel Core2 CPU E8400 running at 3.00 GHz In order to evaluate the impact
of various parameters, we have arranged a set of three experiments.

Firstly, we have investigated the speedup of the proposed phenotype evalua-
tion approach based on machine code translation. The generated machine code
contains SSE/SSE2 SIMD instruction calls operating with 128-bit vectors which
may process four or two floating point numbers at once, depending on their
precision.

Then, the impact of removing unused CGP nodes (i.e. the nodes that does
not contribute to the resulting phenotype) before phenotype evaluation is also
investigated. In the first scenario, the unused nodes are removed; in the second
scenario, all CGP nodes are evaluated (compiled to machine code) regardless of
whether they contribute to the resulting value or not.

Finally, the impact of the processed data type on the speed of the evolu-
tion was measured. Two common data types were used – single precision 32-bit
floating point and double precision 64-bit floating point numbers.

Efficient Phenotype Evaluation in Cartesian Genetic Programming 275

Table 1. Average time needed to evaluate 1000 generations (shown in seconds) for the
single precision floating point data type

without removal with removal
of unused nodes of unused nodes

node training interpreted proposed speedup interpreted proposed speedup
count vectors version version version version

25 100 0.4 ± 0.01 0.02 ± 0.00 20.6 ± 2.03 0.1 ± 0.04 0.01 ± 0.00 12.7 ± 2.85

25 1000 4.2 ± 0.08 0.11 ± 0.01 38.3 ± 3.32 1.5 ± 0.65 0.09 ± 0.02 17.0 ± 5.15

25 10000 42.3 ± 0.81 0.98 ± 0.11 43.7 ± 4.80 13.1 ± 6.31 0.79 ± 0.22 15.9 ± 4.91

50 100 0.9 ± 0.01 0.04 ± 0.00 21.0 ± 2.04 0.2 ± 0.07 0.02 ± 0.00 8.3 ± 2.51

50 1000 8.8 ± 0.07 0.16 ± 0.01 54.5 ± 1.71 1.6 ± 0.70 0.09 ± 0.01 16.4 ± 5.12

50 10000 87.4 ± 0.38 1.31 ± 0.05 66.9 ± 2.50 13.0 ± 5.25 0.73 ± 0.10 17.2 ± 5.30

100 100 1.8 ± 0.12 0.09 ± 0.00 20.1 ± 1.32 0.3 ± 0.13 0.04 ± 0.01 6.3 ± 2.67

100 1000 17.3 ± 0.23 0.27 ± 0.01 64.8 ± 1.71 2.1 ± 1.18 0.11 ± 0.02 17.6 ± 6.81

100 10000 172.2 ± 1.25 2.11 ± 0.11 81.8 ± 4.41 20.3 ± 9.29 0.93 ± 0.28 21.0 ± 4.59

1000 100 18.2 ± 0.10 0.83 ± 0.01 21.7 ± 0.20 0.6 ± 0.22 0.27 ± 0.01 2.4 ± 0.74

1000 1000 178.5 ± 0.32 2.15 ± 0.01 83.1 ± 0.62 4.5 ± 2.29 0.36 ± 0.03 11.7 ± 5.19

1000 10000 1780.1 ± 3.93 15.23 ± 0.07 117.0 ± 0.33 38.6 ± 21.39 1.30 ± 0.29 27.5 ± 10.40

5 Experimental Results and Discussion

The experimental results for the single precision floating point numbers and
double precision floating point numbers are summarized in Table 1 and Table 2.
The runtimes were calculated as average from 50 independent runs (standard
deviations aslo given). According to the obtained results, the proposed approach
exhibits a significant speedup for all test cases.

Let us look at the first scenario where all nodes are evaluated (the column
denoted as ‘without removal of unused nodes‘). We can identify that for a given
size of CGP instance, the speedup increases with the increasing number of train-
ing vectors. This behavior is caused by the utilization of caches and the locality
of training data. It can be also seen that for interpreted evaluation and a certain
number of CGP nodes, the evaluation time increases linearly with the increasing
number of training vectors as it has been expected. This trend is also observable
for a given number of training vectors and increasing number of node counts.

On the other hand, we do not observe such correlation for data collected from
runs where the unused nodes were omitted from the evaluation and where the
number of nodes is relatively small. The problem is that the total number of
utilized and evaluated nodes is relatively small thus the overhead introduced by
the translation to machine code probably affects the overall performance. Nev-
ertheless, a significant speedup has been achieved in both cases. In this scenario,
the runtimes also exhibits large deviances. This behavior is also expectable be-
cause the number of utilized nodes is determined by the initial seed (which is
generated randomly) and noticeably fluctuates during the evolution.

While the interpreter-based evaluation exhibits similar runtimes regardless
of the utilized data type (i.e. float or double), the proposed evaluation method

276 Z. Vaš́ıček and K. Slaný

Table 2. Average time needed to evaluate 1000 generations (shown in seconds) for the
double precision floating point data type

without removal with removal
of unused nodes of unused nodes

node training interpreted proposed speedup interpreted proposed speedup
count vectors version version version version

25 100 0.4 ± 0.01 0.03 ± 0.00 13.6 ± 1.28 0.2 ± 0.07 0.02 ± 0.00 6.6 ± 2.43

25 1000 4.3 ± 0.19 0.19 ± 0.03 22.4 ± 2.88 1.5 ± 0.71 0.16 ± 0.04 9.0 ± 2.39

25 10000 42.3 ± 1.14 1.81 ± 0.24 23.7 ± 2.42 13.5 ± 6.38 1.46 ± 0.39 8.7 ± 2.34

50 100 0.9 ± 0.02 0.06 ± 0.00 15.0 ± 0.25 0.2 ± 0.07 0.03 ± 0.00 6.6 ± 1.99

50 1000 8.9 ± 0.10 0.28 ± 0.01 32.0 ± 1.41 1.9 ± 0.67 0.16 ± 0.02 11.1 ± 2.84

50 10000 88.8 ± 1.18 2.48 ± 0.12 35.9 ± 1.84 15.8 ± 7.21 1.47 ± 0.31 10.3 ± 3.02

100 100 1.8 ± 0.01 0.11 ± 0.00 16.1 ± 0.08 0.2 ± 0.09 0.04 ± 0.01 4.9 ± 1.78

100 1000 17.7 ± 1.11 0.46 ± 0.01 38.5 ± 2.49 2.0 ± 0.87 0.18 ± 0.03 10.4 ± 3.51

100 10000 172.9 ± 1.01 3.98 ± 0.12 43.5 ± 1.25 17.7 ± 8.36 1.56 ± 0.35 10.7 ± 3.78

1000 100 18.5 ± 1.15 1.03 ± 0.01 18.1 ± 1.18 0.6 ± 0.27 0.27 ± 0.02 2.2 ± 0.84

1000 1000 177.4 ± 1.11 3.65 ± 0.01 48.6 ± 0.40 3.7 ± 2.43 0.45 ± 0.06 7.8 ± 4.13

1000 10000 1775.7 ± 9.68 29.90 ± 0.12 59.4 ± 0.44 31.7 ± 19.19 2.17 ± 0.56 13.3 ± 5.60

utilizing the machine code exhibits two times larger runtime when dealing with
the double data type in comparison with the float data type. These results
confirm our expectations since the utilized SSE/SSE2 instructions can process
four floats or two doubles in a single instruction call.

6 Conclusion

In this paper, we have introduced a framework that shows how to improve a
classic interpreter-based phenotype evaluation in linear GP. The key feature
of the proposed method is embedded translation of the genotype into machine
code which is subsequently executed on the CPU. No external compiler is used
to translate chromosomes into executable code. The described method intro-
duces significantly lower overhead than the methods based on external compiler
invocation proposed for GPUs. The executing of the generated machine code in-
troduces no additional overhead as it is executed directly similarly to a function
call. This stands in contrast with the GPU-based accelerators that introduce a
very large overhead.

Another feature of the proposed method is that it requires only marginal
knowledge of target CPU instruction set. The process of acquiring a partial
machine code can be done mechanically and automatically.

Even if the proposed technique introduces some overhead when translating the
phenotype into the executable machine code, it exhibits a significant speedup.
As it has been demonstrated, the large problem instance the large speedup due
to the data locatity and utilization of CPU’s caching mechanism.

Note that the achieved speedup may be even larger when also the evaluation
procedure is compiled to machine code. Moreover, assuming we have a regres-
sion problem that utilizes small data types such as char or short, the evaluation

Efficient Phenotype Evaluation in Cartesian Genetic Programming 277

procedure can benefit from the wide SIMD packed types. Thus, several opera-
tions can be executed using a single instruction. The typical example of such
application is the evolutionary design of image filters.

Acknowledgments. This work was supported by the Czech science foun-
dation project P103/10/1517, the research programme MSM 0021630528,
the BUT project FIT-S-11-1 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

References

1. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3-4), 251–284 (2010)

2. Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital
Circuits – Part I. Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

4. Haddow, P., Tyrrell, A.: Challenges of evolvable hardware: past, present and the
path to a promising future. Genetic Programming and Evolvable Machines 12,
183–215 (2011)

5. Handley, S.: On the use of a directed acyclic graph to represent a population of
computer programs. In: Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp.
154–159 (1994)

6. Sekanina, L., Friedl, S.: An evolvable combinational unit for FPGAs. Computing
and Informatics 23(5), 461–486 (2004)

7. Glette, K., Torresen, J.: A Flexible On-Chip Evolution System Implemented on a
Xilinx Virtex-II Pro Device. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES
2005. LNCS, vol. 3637, pp. 66–75. Springer, Heidelberg (2005)

8. Vasicek, Z., Sekanina, L.: Hardware Accelerators for Cartesian Genetic Program-
ming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 230–241. Springer, Heidelberg (2008)

9. Harding, S.: Evolution of image filters on graphics processor units using cartesian
genetic programming. In: 2008 IEEE World Congress on Computational Intelli-
gence, Hong Kong, pp. 1921–1928. IEEE Computational Intelligence Society, IEEE
Press (2008)

10. Harding, S., Banzhaf, W.: Implementing cartesian genetic programming classifiers
on graphics processing units using GPU.NET. In: GECCO 2011: Proceedings of the
13th Annual Conference Companion on Genetic and Evolutionary Computation,
pp. 463–470. ACM, New York (2011)

11. Chitty, D.M.: A data parallel approach to genetic programming using pro-
grammable graphics hardware. In: GECCO 2007: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1566–1573. ACM
Press, London (2007)

12. Harding, S., Banzhaf, W.: Fast Genetic Programming on GPUs. In: Ebner, M.,
O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

278 Z. Vaš́ıček and K. Slaný

13. Vasicek, Z., Sekanina, L.: Hardware accelerator of cartesian genetic programming
with multiple fitness units. Computing and Informatics 29(7), 1359–1371 (2010)

14. Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In: Advances in
Genetic Programming, ch. 13, vol. 3, pp. 301–323. MIT Press (1998)

15. Fukunaga, A., Stechert, A., Mutz, D.: A genome compiler for high performance ge-
netic programming, pp. 86–94. University of Wisconsin, Morgan Kaufmann (1998)

16. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

Author Index

Adamatzky, Andrew 37
Agapitos, Alexandros 109

Brabazon, Anthony 85, 134
Bull, Larry 37

Carreiras, João M.B. 218
Castle, Tom 1
Clarke, Tim 170
Correia, João 73
Cotillon, Alban 13

Dracopoulos, Dimitris C. 25

Effraimidis, Dimitrios 25

Gonçalves, Ivo 218

Hemberg, Erik 85
Howard, Gerard David 37
Hyde, Matthew R. 158

Jackson, David 49
Johnson, Colin G. 1
Johnston, Mark 121
Jurdak, Raja 13

Kim, Dong-Kyun 230
Kim, MinHyeok 230
Krawiec, Krzysztof 61
Kuyucu, Tüze 242

Lutton, Evelyne 254

Machado, Penousal 73
Matyáš, Vashek 194
McKay, Robert Ian (Bob) 230
Melo, Joana B. 218
Miller, Julian F. 170
Murphy, Eoin 85

Neshatian, Kourosh 97
Nguyen, Quang Uy 109
Nguyen, Su 121
Nguyen, Xuan Hoai 109, 230
Nicolau, Miguel 85, 134

Olmo, Juan Luis 146
O’Neill, Michael 85, 109, 134
Osborne, Bruce 134
Özcan, Ender 158

Parkes, Andrew J. 158
Pereira, Francisco B. 206

Reuillon, Romain 254
Romero, José Raúl 146
Romero, Juan 73

Saunders, Matthew 134
Seaton, Tom 170
Sekanina, Lukáš 182, 194
Shimohara, Katsunori 242
Šikulová, Michaela 182
Silva, Sara 218
Slaný, Karel 266
Smolka, Tobiáš 194
Squillero, Giovanni 254
Švenda, Petr 194

Tan, Kay Chen 121
Tanev, Ivan 242
Tavares, Jorge 206
Tonda, Alberto Paolo 254

Valencia, Philip 13
Vaš́ıček, Zdeněk 266
Ventura, Sebastián 146

Wuillemin, Pierre-Henri 254

Zhang, Mengjie 97, 121

	7244

	Preface
	Organization
	Table of Contents
	Oral Presentations
	Evolving High-Level Imperative Program Trees
with Strongly Formed Genetic Programming
	Introduction
	Background
	Strongly Formed Genetic Programming
	Initialisation
	Mutation
	Crossover
	Polymorphism
	Syntax

	Experiments
	Factorial
	Fibonacci
	Even-n-Parity

	Results
	Example Solution

	Conclusions
	References

	Android Genetic Programming Framework
	Introduction
	Related Work
	AGP: Android Genetic Programming Framework
	Motivation
	Design Challenges
	Common Data Structures
	Improvements

	Google Reader Application
	Application Purpose
	Fitness Definition
	Results

	Context-Aware Localization
	Fitness Function Definition
	Results

	Discussion and Conclusion
	References

	Genetic Programming for Generalised
Helicopter Hovering Control
	Introduction
	The Dynamic System
	The Neuroevolutionary Approach
	Application of Genetic Programming
	Results
	Conclusions and Future Work
	References

	Cartesian Genetic Programming
for Memristive Logic Circuits
	Introduction
	Background
	Memristors
	Cartesian Genetic Programming

	Genetic Algorithm
	Self-Adaptive Mutation

	Experimental Setup
	Logic Circuits
	Results

	Robot Control
	Environmental Setup
	Results

	Conclusions
	References

	A New, Node-Focused Model for Genetic Programming
	Introduction
	The SNGP Model
	Experimentation
	Conclusions
	References

	Medial Crossovers for Genetic Programming
	Introduction
	Metric-Based Crossover Operators
	Partially Medial Crossover
	The Experiment
	The Puzzle World
	Experiment 1: Properties of Search Operators
	Experiment 2: Performance in Evolutionary Search

	Discussion
	Conclusion
	References

	Improving Face Detection
	Introduction
	State of the Art
	The Framework
	Experimental Setup
	Classifier Training
	Genetic Programming Engine
	Assessing Classifier's Performance

	Experimental Results
	Conclusion and Future Work
	References

	Grammar Bias and Initialisation
in Grammar Based Genetic Programming
	Introduction
	Grammatical Evolution
	Tree-Adjunct Grammatical Evolution
	TAGE Derivation Example

	Difficulties with Comparing GP Systems
	Initialisation and Transformation Bias
	Adjunction Bias
	Grammar Transformation Bias

	Experiments
	Results and Discussion
	Initialisation
	The Effect of PTAGE
	New Adjunction Addresses

	Conclusions
	References

	Improving Relevance Measures Using Genetic
Programming
	Introduction
	Relevance Measures
	Deficiency in Handling Multi-modal Distributions
	Deficiency in Handling Non-orthogonal Multi-variate Relationships
	Deficiency in Handling Epistatic Relationships

	Using GP for Partitioning the Input Space
	Empirical Evaluation
	Synthesising Data
	GP Settings and Implementation Details
	Results

	Conclusion
	References

	An Investigation of Fitness Sharing
with Semantic and Syntactic Distance Metrics
	Introduction
	Methods
	Fitness Sharing
	Modifying Fitness Sharing
	Syntactic Distance
	Semantic Distance

	Experimental Settings
	Results and Discussion
	On the Performance
	Parameters Analysis

	Conclusions and Future Work
	References

	Evolving Reusable Operation-Based Due-Date
Assignment Models for Job Shop Scheduling with Genetic Programming
	Introduction
	GP for Evolving DDAMs
	Representation
	Evaluation
	Genetic Operators
	Fitness Function
	Evolution of DDAMs

	Experimental Setting
	Job Shop Simulation Environment
	GP Parameters

	Results
	Comparison of DDAMs
	GP-ADDAM vs. GP-ODDAM
	Typical Examples of Evolved DDAMs

	Conclusions
	References

	Evolving Interpolating Models of Net Ecosystem
CO2 Exchange Using Grammatical Evolution
	Introduction
	Evolutionary Approach
	Mapping Process

	Experimental Setup
	Quality of Data and Input Variables
	Evolutionary Setup
	Measuring Performance

	Results and Analysis
	Conclusions
	References

	Multi-Objective Ant Programming
for Mining Classification Rules
	Introduction
	The Multi-Objective Grammar Based Ant Programming (MOGBAP) Algorithm
	Environment and Individual Encoding
	Heuristic Measures, Transition Rule and Pheromone Maintenance
	Muti-Objective Strategy and Niching Procedure

	Experimental Set-Up
	Experimental Results
	Predictive Accuracy Analysis
	Comprehensibility Analysis

	Conclusions and Future Work
	References

	Matrix Analysis of Genetic Programming
Mutation
	Introduction
	The Bin Packing Problem
	Previous Work
	The Matrix Representation
	Genetic Programming Parameters
	Distance Metrics
	Metric 1
	Metric 2
	Metric 3

	Results
	Conclusions
	References

	An Ecological Approach to Measuring Locality
in Linear Genotype to Phenotype Maps
	Introduction
	Related Work
	The Mantel Test
	Significance Testing on Genotype-Phenotype Maps

	Distance Metrics under the Mantel Statistic
	Experiment
	Discussion
	Conclusions
	References

	Coevolution in Cartesian Genetic Programming

	Introduction
	Cartesian Genetic Programming
	Coevolution of Fitness Predictors in CGP
	Population of Candidate Programs
	Set of Trainers
	Population of Fitness Predictors
	Implementation

	Results
	Benchmark Problems
	Experimental Setup
	Comparison of Coevolving CGP with Standard CGP

	Discussion
	Conclusions
	References

	Evolutionary Design of Message Efficient
Secrecy Amplification Protocols
	Introduction
	Previous Work
	Evolution of Amplification Protocols

	LGP Tuning and Exploring the Design Space
	Experimental Setup
	LGP Performance

	Discovering New Group-Oriented Protocols
	Long-Running Experiments
	Performance of Evolved Secrecy Amplification Protocols
	Robustness of Discovered Protocols

	Multi-criteria Optimization
	Weighted Fitness
	Optimizing the Number of Messages

	Conclusions
	References

	Automatic Design of Ant Algorithms
with Grammatical Evolution
	Introduction
	Ant Colony Optimization
	The Evolutionary Framework
	Grammar Definition
	Related Work

	Experiments and Analysis
	Learning the Architectures
	Validation of the Evolved Architectures
	Comparison with Standard ACO Algorithms

	Conclusions

	Posters
	Random Sampling Technique for Overfitting Control in Genetic Programming
	Introduction
	State of the Art
	Experiments
	Datasets
	Random Sampling Technique
	Parameters and Statistical Tests

	Results and Discussion
	Results
	Discussion

	Conclusions

	Evolutionary Operator Self-adaptation
with Diverse Operators
	Introduction
	Background
	Operator Parameter Adaptation
	Evolutionary Algorithms

	Methods and Experiments
	New Adaptive Mechanisms
	Test Problems
	Genetic Algorithm Details
	TAG3P System Details
	Adaptive Mechanisms

	Results
	The GA Parameter Fitting Problem
	TAG3P Symbolic Regression Problems
	Operator Application Rates

	Discussion
	Conclusions
	Summary
	Assumptions and Limitations
	Further Work

	References

	The Effect of Bloat on the Efficiency
of Incremental Evolution of Simulated Snake-Like Robot
	Introduction
	Sidewinding and Sensing Snake-Like Modular Robot
	Evolutionary Framework and the Simulation Environment
	Experiments
	Stage 1: Evolution of Fast Moving Snakebots from Random Population
	Stage 2: Seeded Evolution of Sensing Fast Moving Snakebots

	Conclusions
	References

	Bayesian Network Structure Learning
from Limited Datasets through Graph Evolution
	Introduction
	Background
	Bayesian Networks
	Akaike Information Criterion
	Bayesian Network Structure Learning

	Proposed Methodology
	GP
	Individual Encoding
	Fitness Function

	Case Study
	Experimental Results and Discussion
	Conclusions
	References

	Efficient Phenotype Evaluation in Cartesian
Genetic Programming
	Introduction
	Cartesian Genetic Programming
	Fitness Function Evaluation
	Common Linear CGP Interpreter

	Proposed Method
	Data Execution Prevention Handling
	Machine Code Generation
	Translating Primitive Functions into Machine Code
	Translating CGP Phenotype into Machine Code
	Machine Code Vectorization

	Experimental Setup
	Experimental Results and Discussion
	Conclusion
	References

	Author Index

