Christian Stary (Ed.)

S-BPM ONE -
Scientific Research

4th International Conference, S-BPM ONE 2012
Vienna, Austria, April 2012
Proceedings

LNBIP 104

@ Springer

Lecture Notes
in Business Information Processing 104

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands
John Mylopoulos
University of Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia
Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Christian Stary (Ed.)

S-BPM ONE —
Scientific Research

4th International Conference, S-BPM ONE 2012
Vienna, Austria, April 4-5, 2012
Proceedings

@ Springer

Volume Editor

Christian Stary

Johannes Kepler University Linz

Department of Business Information Systems
Communications Engineering

Linz, Austria

E-mail: christian.stary @jku.at

ISSN 1865-1348 e-ISSN 1865-1356

ISBN 978-3-642-29132-6 e-ISBN 978-3-642-29133-3
DOI 10.1007/978-3-642-29133-3

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933873

ACM Computing Classification (1998): H.3.5, H.4, D.2, H.5

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

“Enabling Transition” was the theme of the 2012 S-BPM ONE conference. In
the tradition of previous S-BPM ONE events, starting in 2009, it provided a
lively interaction platform for (S-)BPM researchers, developers, educators, and
practitioners. S-BPM as a discipline is characterized by a seamless approach
toward the analysis, modeling, implementation, execution, and management of
business processes with an explicit stakeholder focus (see also the S-BPM primer
we have provided at the end of these proceedings). This year’s event not only
intensified the discourse of S-BPM protagonists on other BPM paradigms, it also
marked the starting point toward scientifically grounded BPM transformations.
According to the results of the rigorous peer-review process, 12 contributions
were selected out of 36 submissions, and included in these proceedings.

Egon Borger’s keynote demonstrates the benefits of a theoretically grounded
approach to BPM, in particular when linking the concept of S-BPM to the
abstract state machines (ASM) method. The contribution reveals the influence
of high-level interpreting S-BPM-defined business processes on representation
and model execution. Besides such grounding, researchers and developers target
a variety of topics:

Stakeholder-oriented business process management
Enterprise modeling and cross-organizational engineering
Role and communication management

Information structure architecting

Activity and agency

Active knowledge modeling

Formal BP semantics for modeling and processing

Work flow design and management

Control-driven BPM suite development and tool applications

The contributions address most of the life-cycle activities, in particular an-
alyzing business objectives, subject behavior design and integration, and au-
tomating complex work procedures. Some tendencies enabling transitions seem
to be significant for further research and development:

1. S-BPM triggers contextual design of processes and corresponding semantic
processing. As such, the more general concept of System Thinking, as origi-
nally proposed by Peter Senge, influences all BPM life-cycle activities. It also
allows BPM paradigms to interface alternative approaches beyond BPEL —
a worthwhile transition in planning, designing, and operating business pro-
cesses.

2. The development of the S-BPM modeling language reflects the trend toward
contextual specification and semantic processing, as the approaches captur-
ing BPM objectives and access issues demonstrate. Hence, related areas,

VI

Preface

such as change management, can be addressed via S-BPM in a seamless but
still structured way.

S-BPM can be understood as scalable and domain-independent approach
when applied in practice. The scope of S-BPM applications and application
domains can be widened in a seamless way, as demonstrated for complex
service industries, such as hospital management (while capturing inherent
peculiarities) and for industrial process control systems (when coupled with
high-level business processes).

Economically plausible, but sophisticated architectures and infrastructures
becoming common use, such as Web services and cloud computing, increas-
ingly follow a choreographic approach. By utilizing S-BPM, not only can
heterogeneous BPM approaches become part of integrated business settings,
but also adapting business processes to novel settings and access facilities
on-the-fly can be resolved effectively.

Experiencing the active engagement of BPM activists facilitates hosting this

conference. However, the success of such an event relies on creative and con-
structive hands, most notably:

e The authors of the various contributions sharing their expertise
e The members of the international Program Committee reviewing each of the

contributions thoroughly

e The Chair of the sessions handling the highly interactive presentation

formats

Moreover, we need to thank the many persons running the conference facilities,

and guiding us through the social program of S-BPM ONE 2012. Their efforts
allowed us to elaborate ideas and network in rewarding settings. Special thanks
go to the Institute of Innovative Process Management (I2PM, www.i2pm.net),
serving as umbrella to a variety of S-BPM activities. It ensures continuity as well
as adjustments of research and development.

Finally, we cordially thank Ralf Gerstner and Viktoria Meyer from Springer

for their assistance and support in publishing these proceedings in the LNBIP
series.

April 2012 Christian Stary

Executive Committee

Conference Chair
Christian Stary
Organizing Chair
Stefan Oppl

Organizing Committee

Stefan Oppl (Chair)
Dominik Wachholder

Werner Schmidt

Program Committee

Christian Stary (Chair)
Franz Barachini
Thomas Bahlinger
Reza Barkhi
Noureddine Belkhatir
Freimut Bodendorf
Yeong-Long Chen
Anke Dittmar

Peter Forbrig
Alexander Gromoff

Lutz Heuser
Ebba Thora Hvannberg
John Krogstie

Florian Lautenbacher
Juhnyoung Lee
Christopher Lueg
Tansel Ozyer

Carlos Pedrinaci
Stefan Reinheimer
Gustavo Rossi

Organization

Johannes Kepler University Linz, Austria

Johannes Kepler University Linz, Austria

Johannes Kepler University Linz, Austria

Institute of Innovative Process Management,
Germany

Ingolstadt University of Applied Sciences,
Germany

Johannes Kepler University Linz, Austria

BIC-Austria, Austria

FH Niirnberg, Germany

Virginia Tech, USA

University of Grenoble-LIG France, France

University of Erlangen-Niirnberg, Germany

National Chiao Tung University, Taiwan

University of Rostock, Germany

University of Rostock, Germany

Moscow National Research University, Higher
School of Economics (HSE), Russia

AGT Group (R&D) GmbH, Germany

University of Iceland, Iceland

Norwegian University of Science and
Technology, Norway

SysTec-CAx GmbH, Germany

IBM T.J. Watson Research Center, USA

University of Tasmania, Australia

Ekonomi ve Teknoloji Universitesi, Turkey

The Open University, UK

BIK GmbH, Germany

LIFIA. F. Informatica, UNLP, Argentina

VIII Organization
Gabriele Saueressig
Werner Schmidt

Detlef Seese
Robert Singer
Renate Strazdina
Alexandra Totter
Eric Tsui

Gerrit van der Veer
Nikolas Vidakis

James Weber
Cornelia Zehbold

Erwin Zinser

Sponsoring Institutions

University of Applied Science
Wiirzburg-Schweinfurt, Germany

Ingolstadt University of Applied Sciences,
Germany

Karlsruhe Institute of Technology, Germany

FH Joanneum Graz, Austria

Ernst& Young Baltic SIA, Latvia

ByElement GmbH, Switzerland

The Hong Kong Polytechnic University, China

Open University Netherlands, The Netherlands

Technological Education Institution of Crete,
Greece

St. Cloud State University, USA

Ingolstadt University of Applied Sciences,
Germany

FH Joanneum Graz, Austria

Metasonic AG, Pfaffenhofen-Hettenshausen, Germany

VALIAL Solution GmbH, Ilmmiinster, Germany

Infomedia Services G.m.b.H., Vienna, Austria

Competence Center on Knowledge Management, JKU, Linz, Austria

TANES (Interactive Acquisition, Negotiation and Enactment of Subject-Oriented
Business Process Knowledge) — EU FP 7 Marie Curie IAPP

Reiner ConsSys, Cham, Switzerland

Format Werk GmbH, Gunskirchen, Austria

Organization

Q

SONIC

process. In tune.

SVALIALES

Solution

www.valial-solution.com

4sima rt/lsense Jact.com

Reiner ConsSys

CONSULTING MIT SYSTEM
lanes

Ursus =

more than simple paper

£

U MANAGEMENT

WISSEN

IX

Table of Contents

Keynote

The Subject-Oriented Approach to Software Design and the Abstract
State Machines Method
FEgon Borger

Contributions

Ad-Hoc Adaption of Subject-Oriented Business Processes at Runtime
to Support Organizational Learning
Thomas Rothschadl

An Approach towards Subject-Oriented Access Control
Alexander Lawall, Thomas Schaller, and Dominik Reichelt

Building a Conceptual Roadmap for Systemic Change — A Novel

Approach to Change Management in Expert Organizations in Health

L7 < T O
Martina Augl

E-Learning Support for Business Process Modeling: Linking Modeling
Language Concepts to General Modeling Concepts and Vice Versa
Matthias Neubauer

From Subject-Phase Model Based Process Specifications to an
Executable Workflow
Albert Fleischmann

ModelAsYouGo: (Re-) Design of S-BPM Process Models during
Execution Time.
Robert Gottanka and Nils Meyer

Modeling Business Objectives for Business Process Management
Matthias Lohrmann and Manfred Reichert

PCA-C: A Process-Centric Approach for Integrating and Managing
Cloud ServiCes v.vut it
Matthias Kurz, Gunnar Billing, Karl Hettling, and
Holger von Jouanne-Diedrich

Stakeholder-Driven Collaborative Modeling of Subject-Oriented
Business Processes e
Dominik Wachholder and Stefan Oppl

XII Table of Contents

Subjects vs. Objects — A Top-Down Approach
Clemens Krauthausen

Using S-BPM for PLC Code Generation and Extension of
Subject-Oriented Methodology to All Layers of Modern Control

SYSEEINS . .ot
Harald Mdller

Using Social Network Analysis and Derivatives to Develop the S-BPM
Approach and Community of Practice
James E. Weber, Werner Schmidt, and Paula S. Weber

Tutorial

A Primer to Subject-Oriented Business Process Modeling
Albert Fleischmann, Werner Schmidt, and Christian Stary

Author Index

The Subject-Oriented Approach to Software
Design and the Abstract State Machines
Method*

Egon Borger

Universita di Pisa, Dipartimento di Informatica,
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
boerger@di.unipi.it

Abstract. In [33] Appendix] we have shown that the system which im-
plements the Subject-oriented approach to Business Process Modeling
(S-BPM) has a precise semantical foundation in terms of Abstract State
Machines (ASMs). The construction of an ASM model for the basic
S-BPM concepts revealed a strong relation between S-BPM and the ASM
method for software design and analysis. In this paper we investigate this
relation more closely. We use the analysis to evaluate S-BPM as an ap-
proach to business process modeling and to suggest some challenging
practical extension of the S-BPM system.

1 Introduction

The recent book [33] on the Subject-oriented approach to Business Process
Modeling (S-BPM) contains a precise high-level definition, namely in terms of
Abstract State Machines (ASMs), of the semantics of business process models
developed using the S-BPM tool environment[] The construction of an ASM
which rigorously describes the basic S-BPM concepts revealed an intimate re-
lation between on the one side S-BPM, whose conceptual origins go back to
Fleischmann’s software engineering book [31), Part II], and on the other side the
ASM method [27], a systems engineering method which too has been developed
in the 90’ies of the last century by a community effort building upon Gurevich’s
discovery of the notion of ASM [41] (at the time called by various names, in 1994
‘evolving algebras’, for the historical details see [12] or [27, Ch.9]).

* The paper has been originally published in Diisterhoft, A., Klettke, M., Schewe,
K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations. LNCS, vol.
7260, pp. 52-72. Springer, Heidelberg (2012).

! In the appendix, which is written in English, an ASM interpreter is defined for the
behavior of such business process models. The software used to transform the pdf-file
generated from latex sources into a Word document and printer-control-compatible
format produced a certain number of partly annoying, partly misleading mistakes
in the printed text. The interested reader can download the pdf-file for the correct
text from [63].

C. Stary (Ed.): S-BPM ONE 2012, LNBIP 104, pp. 1-EI] 2012.
© Springer-Verlag Berlin Heidelberg 2012

2 E. Borger

In this paper we investigate the striking methodological and conceptual simi-
larities (Sect.[2l) and some differences (Sect.[3)) of these two independent develop-
ments. We propose to enhance the current S-BPM system by offering the modeler
tool support for the use of the full ASM-refinement method which generalizes
the refinement scheme S-BPM provides the software engineer with.

We use this analysis to evaluate S-BPM in terms of six well-known princi-
ples for reliable software development (Sect. M), an evaluation which shows that
S-BPM provides practitioners with suitable means to precisely and faithfully
capture business scenarios and analyze, communicate and manage the resulting
models 3

What nowadays is called S-BPM is really a version tailored for the develop-
ment of business processes (BPs) of a more general subject-oriented software
engineering method and environment for the development of concurrent systems
proposed in [3T, Part II] and called there SAPP/PASS: ‘Structured Analysis
of Parallel Programs’ with a subject-oriented modelling language named ‘Par-
allel Activities Specification Scheme’. We use invariably the today apparently
prevailing term S-BPM to refer to Fleischmann’s approach.

We assume the reader to have some knowledge of the basic concepts of at
least one of the S-BPM [33] or the ASM methods [27].

2 Common Features of S-BPM and the ASM Method

The S-BPM and ASM methods share their main goal, namely to reliably link
the human understanding of real-life processes to their execution by machines
via some implementing software. In fact the ASM method is introduced in
[27, p.1] by stating that

‘The method bridges the gap between the human understanding and for-
mulation of real-world problems and the deployment of their algorithmic
solutions by code-executing machines on changing platforms.’

Similarly, a recent presentation of the S-BPM approach states for the ‘trans-
formation process of model descriptions to executable ones’ [34, Sect.2, p.3-4]
that:

‘end-to-end control is what business stakeholders need to build process-
managed enterprise’ and that
‘Any mapping scheme should allow propagating the information from
a value chain perspective to a software-development perspective in a
coherent and consistent way’.

We explain in this section that as a consequence both methods share three major
methodological concerns for descriptions of (concurrent) processes:

> In [16] we showed that the OMG standard BPMN [50], the workflow patterns of
the Workflow Pattern Initiative [I] and their (academic) reference implementation
YAWL [45] fail to achieve this.

S-BPM and the Abstract State Machines Method 3

— the ground model concern (Sect. 2]),

— the refinement concern (Sect. 22]),

— the subject-orientation concern to make the executing agents and their dis-
tinct internal and external (communication) actions explicit (Sect. [Z3)).

Also both come with ‘a simple scientific foundation, which adds precision to the
method’s practicality [27), p.1]’.

Although the two methods realize these three concerns differently, due to the
more focussed BPM target of the (current incarnation of the) S-BPM method
and the different definitions in the two methods of what constitutes agent behav-
ior (described by Subject Behavior Diagrams (SBDs) resp. ASMs, see Sect. 23)),
and although their scientific foundation comes from different sources, the sim-
ilarities of the two approaches to software engineering are remarkable because
‘the ground model method for requirements capture, and the refinement method
for turning ground models by incremental steps into executable code’ form to-
gether with the concept of ASMs ‘the three constituents of the ASM method for
system design and analysis’ |27, p.13] through which the method

“improves current industrial practice in two directions:

— On the one hand by accurate high-level modeling at the level of
abstraction determined by the application domain ...

— On the other hand by linking the descriptions at the successive stages
of the system development cycle in an organic and effectively main-
tainable chain of rigorous and coherent system models at stepwise
refined abstraction levels.” [27], p.1]

2.1 Ground Model Concern

In the S-BPM literature there is no mention of the name ‘ground model’ (or
‘golden model” as they are called in the semiconductor industry [57]) but the
ground model concern is present. The ASM ground model method [SI9TTIT3T5]
is about constructing prior to code development, as specification for the code,
models which are

‘blueprints that describe the required application-content of programs
.. in an abstract and precise form’ and are ‘formulated in terms of the
application domain and at a level of detailing that is determined by the
application domain’ [I5, Sect.1].

Thus ground models satisfy needs of different stakeholders, in particular the do-
main experts and the software designers. First of all the domain experts (e.g.
analysts or users of BPs) need ground models for a ‘correct development and
understanding by humans of models and their relation to the application view of

4 E. Borger

the to-be-modeled BP’ [16] Sect.5] B Correctness as used here (together with its
companion concept completeness) is intrinsically not a mathematical notion, but
an epistemological relation between a model and the piece of reality the model is
intended to capture, a relation the application experts have to understand and
only they (not the software technologists) can judge.

But then also the software designers need ground models, namely as a com-
plete specification, where the completeness—every behaviorally relevant feature
is stated—makes a correct implementation of the specification reliable. The re-
liability property links these two roles of ground models. It ‘means that the
appropriateness of the models can be checked by the application domain ex-
perts, the persons who are responsible for the requirements, and can be used by
the system developers for a stepwise detailing (by provably controllable ASM
refinement steps) to executable code.” [23] p.1923]

Therefore an approach for building satisfactory (i.e. correct, complete and
consistent) ground models requires to have solved before ‘a language and com-
munication problem between the software designers and the domain experts or
customers ... the parties who prior to coding have to come to a common under-
standing of “what to build”’ [I5, Sect.2.1.1]:

‘The language in which the ground model is formulated must be appro-
priate to naturally yet accurately express the relevant features of the
given application domain and to be easily understandable by the two
parties involved | This includes the capability to calibrate the degree of
precision of the language to the given problem, so as to support the con-
centration on domain issues instead of issues of notation.’(ibid.)(See also
the ‘language conditions for defining ground models’ formulated ibid.,
Sect.2.3.)

To solve this problem S-BPM starts from two observations of language the-
ory [34) Sect.3, p.5]:

— ‘When structuring reality, humans use subjects, predicates and objects.’
— ‘humans use natural language structures as primary means to ensure mutual
understanding’.

Consequently S-BPM aligns BP descriptions to those three constituents of ele-
mentary sentences in natural languages and to the coordination role of

3 The request in [34] Sect.1,p.1] of a minimal ‘semantic distance to human understand-
ing’ for S-BPM corresponds to the request for satisfactory ground model ASMs
of a ‘direct’, coding-free relation between the basic domain elements (agents, ob-
jects, functions, properties, operations) and the corresponding ASM ground model
items [9 Sect.6.2]. The ASM ground model method satisfies this request by offering
‘The freedom to choose how to represent the basic objects and operations of the
sytem under consideration’ and by its attention to ‘distinguish between concepts
(mathematical modelling) and notation (formalization)’ [9, Sect.5].

4 The S-BPM literature speaks about ‘duality of expressiveness’ which is needed for
the description language [34, Sect.2, p.4].

S-BPM and the Abstract State Machines Method 5

communication between sub jectsﬁ To stay close to natural language, where do-
main experts formulate process requirements, BP descriptions in S-BPM express
the behavior of each subject involved in the BP (read: the agents which perform
the described behaviors) as a sequence of possibly guarded basic (‘internal’)
computation or (‘external’) communication actions of the following form (their
content is discussed in Sect. 23)):

SBPMACTION(Condition, subject, action, object) =
if Condition(subject) then subject PERFORMS(action) on object

These basic S-BPM actions mutatis mutandis correspond to basic ASM tran-
sitions, even if the two methods have a different view on what is allowed, in
general, to constitute an action and on their parallel resp. sequential execu-
tion (see Sect. 23 and B)). In fact in the S-BPM interpreter the ASM rule
BEHAVIOR(subj, state)—which formalizes the execution by the subject of the ac-
tion (called service(state)) associated with its SID-state—has exactly the above
form, as the reader can check in [33], p.351].

In this way in S-BPM BPs are modeled using a precise language which is
understandable by both parties, domain experts (analysts/managers/users) and
software developers: it is constituted by elementary sentences which can be un-
derstood as (not formalized) natural language sentences, but nevertheless have a
precise operational meaning (modulo a precise meaning of the constituent parts).
The resulting BP ground models are as close to the intended real-world pro-
cesses (read: their intuitive application-domain-views) as are the subjects, their
actions and the objects which are chosen by the analyst (as BP model designers
are called) to appear in the ground models. Thus the S-BPM approach offers for
BPs an interesting solution to a challenge listed in [23] p.1924], namely ‘support-
ing the extraction of ground model elements from natural language descriptions
of requirements’.

The ‘abstract operational’ character of ASM ground models, which makes
them directly executable, mentally by definition as well as mechanically by ap-
propriate execution engines, has been recognized in [9, Sect.7] as crucial for
the needed ‘experimental validation of the application-domain-based semantical
correctness for ground models’ [15, p.226]. It is a key criterion also for S-BPM,
expressed as follows in [34] Sect.1, p.2]:

‘The novelty of the approach can be summarized by two key benefits,
resulting for stakeholders and organization developers:
1. Stakeholders need only to be familiar with natural language ... to
express their work behavior .8
2. Stakeholder specifications can be processed directly without further
transformations, and thus, experienced as described’.

® Notably communication and coordination appear as two of the seven categories of
the Great Principles of Computing [29].

5 Obviously such a natural language expression of the work behavior has to be suffi-
ciently precise, in particular to avoid misunderstandings that may arise from cultural
differences among the stakeholders.

6 E. Bérger

The ASM ground model method realizes the ground model concern in a simi-
lar way, but tailored for a more general system engineering setting, using the
more comprehensive notion of ASM compared to S-BPM’s SBDs as they are
used to describe the behavior of BP subjects, see below. Not to repeat for an
explanation of this difference what has been described in various articles on the
theme [SQUTTIT3ITE] we invite the reader to read the systematic epistemological
discussion of the method in [I5]. We limit ourselves here to point to a typical
ASM ground model ‘at work’ S-BPM experts may be interested in, namely the
interpreter model for SBDs in [33, Ch.12 and Appendix] (see also [63]). It il-
lustrates the characteristic properties of ASM ground models by exhibiting the
direct, strikingly simple and easy to grasp correspondence between the S-BPM
concepts and their mathematical, operational formalization by ASMs.

Scientific Foundation. The just mentioned ASM ground model for an SBD-
interpreter constitutes the mathematical part of the scientific foundation of S-
BPM. The epistemological part of its foundation is rooted in language theory.
The ASM method has its simple scientific foundation directly in mathematical
logic and its epistemological roots in a generalized Church-Turing thesis (see

Sect. 23).

2.2 Refinement Concern

In S-BPM the specification of the processes which constitute a BP model is
done in two steps. For each process its SBD (also called PASS graph) describes
only the sequence in which the executing subject performs its basic actions. The
detailed content of these actions is specified by refinements which describe ‘the
local variables of a process and the operations and functions defined on the local
variables’ [31], p.206].

Four types of operations and functions are considered, reflecting the classifi-
cation of actions described in more detail in Sect. Two types of communica-
tion are specified by describing a) the parameters of the communicated messages
and b):

— for to-be-received messages the state change they yield, i.e. their ‘effect ...
on the values of the local variables, depending on the values of the message
parameters and the current values of the loca variables’ (ibid.)ﬂ

— for to-be-sent messages the definition of their content depending on the cur-
rent state, i.e. ‘how the values of the message parameters are obtained from
the values of the local variables’ (ibid.ﬁ

So-called internal operations are specified by describing their update effect on
the current state (here the values of the local variables), where one is allowed

" This is described in the S-BPM interpreter model by the RECORDLOCALLY subma-
chine of ASYNC(Receive) and SYNC(Receive) [33], p.367-368].

8 This is described in the S-BPM interpreter model by the functions composeMsg and
msgData of the PREPAREMSGgenq submachine |33, p.361].

S-BPM and the Abstract State Machines Method 7

to use so-called internal functions (whose applications in the current version
of S-BPM are not distinguished any more as separate kind of operations), that
is mathematical (side-effect-free), in ASM terminology dynamic functions (i.e.
functions whose result for given arguments depends on the current state).

To define these specifications and their implementation in S-BPM the ap-
proach ‘is open for the integration of existing and proved development meth-
ods’ [BI), p.199] and in particular ‘all the object oriented concepts can be ap-
plied’ (ibid., p.206). These two programming-practice inspired refinement types
in S-BPM (Pass graph refinement and its implementation) are instances of the
concept of ASM refinement.

The ASM refinement method was conceived in the context of modelling the
semantics of ISO Prolog by ASMs [BI6I7TIT8] (surveyed in [§]), when I was chal-
lenged by Michael Hanus to also develop an ASM for the Warren Abstract Ma-
chine (WAM)—an early virtual machine whose optimization techniques changed
the performance of Prolog to a degree that made practical applications feasible—
and to prove the compilation of ISO Prolog to WAM code to be correct. The
challenge was solved by refining the Prolog interpreter model in 12 proven to be
correct refinement steps to a WAM interpreter model [2425126]. The adopted
refinement concept (which has been implemented in KIV for a machine verifica-
tion of the WAM correctness proof [o56I52I53/54]) is described in detail in [14].
It

— supports sequences of refinement steps whose length depends on the com-
plexity of the to be described system, and

— links the refinement steps in a documented and precise way so that their
correctness can be objectively verified [

Since the ASM refinement notion is in essence more general than the
programming-focussed one used in S-BPM, we discuss the details in Sect.

2.3 Subject-Orientation Concern

In this section we elucidate for the S-BPM and ASM methods the feature which
gave the name to S-BPM and is emphasized in the comparative analysis in [31]
Ch.5], [33 Ch.14],[34, Sect.4] as distinctive with respect to traditional system
description methods, namely the primary role of agents (called subjects) which
execute step by step two distinct kinds of actions following the ‘program’ (be-
havioral description) each agent is associated with: communications (‘external’
actions) and ‘internal’ actions on corresponding objects.

Agents. Subjects are placed into the center of S-BPM process descriptions as
the ‘active elements’ of a process which ‘execute functions offered by the passive
elements’ (i.e. objects of abstract data types) [31, p.199] and have to be identified

9 It is an important aspect for certifiability that these verifications are documented
to become repeatable by mathematical ‘experiment’ (read: proof checking). See

Sect. 331

8 E. Bérger

as first elements of any process description: ‘start with identifying the involved
subjects and after that define the behaviour specifications of acting parties’ [34]
Sect.3, p.8]. The ASM method shares this view: in the list of the six ‘Fundamental
Questions to be Asked’ when during requirements capture one starts to construct
an ASM ground model the first question is:

Who are the system agents and what are their relations? [27, p.88]

This corresponds to the fact that by its very definition an ASM is a family
of pairs (a, Pgm(a)) of different agents, belonging to a set (that may change
at runtime), and the (possibly dynamically associated) programs Pgm(a) each
agent executes [27, Def.6.1.1]19 S-BPM has the same definition: ‘An S-BPM
process ... is defined by a set of subjects each equipped with a diagram, called
the subject behavior diagram (SBD) and describing the behavior of its subject
in the process.” [33, p.348] In both definitions we see multiple agents whose
behavior is to execute the (sequential) program currently associated with them.
Since this happens in a concurrent context, S-BPM and the ASM method both
classify the basic ‘actions’ an agent can perform in a program step by their role
for information exchange among the agents, as we are going to explain now.

Classification of Agent Actions. In S-BPM the ‘actions’ agents perform
when executing their program are of two kinds, to ‘exchange information and
invoke operations’ [31, p.372]. Information exchange is understood as sending
or receiving messages. The information exchange actions are named ‘external’
because they involve besides the executing subject also other, ‘external’ sub-
jects. The invoked other operations are understood as agent-‘internal’ (read:
communication-free) computations on given objects [31, p.205].

Similarly the ASM method explicitly separates agent-internal operations from
external data exchange operations (communication) with other cooperating
agents, namely through the so-called classification of locations (i.e. containers of
abstract data). Agent-internal operations come in the form of read/writes of so-
called controlled locations which are performed under the complete and exclusive
control of the executing agent. Data exchange (communication with cooperating
agents) comes in the two forms of a) reading so-called monitored locations that
are written by the cooperating agents (an abstract form of receiving messages
sent by other agents) and b) writing so-called output locations to be read by the
cooperating agents (an abstract form of sending messages to other agents).

In the interaction view of an S-BPM subject behavior diagram each internal
or communication action counts as one step of the corresponding subject, namely
to perform what is called the service associated with the subject in the given
state. In the detailed (refined) interpreter view of the subject as defined in [33]
Appendix, Sect.3] this ‘abstract’ interaction-view-step usually is rather complex

10 To name the agent can be omitted (only) in the special case where a single ASM is
contemplated (which may interact with an environment that is considered as run by
one other agent).

S-BPM and the Abstract State Machines Method 9

since it is constituted by the sequence of ‘detailed-view-steps’ performed by the
subject to execute the underlying internal or communication action— more pre-
cisely in the S-BPM interpreter it is the sequence of the START and all PERFORM
steps made by the subject to execute its BEHAVIOR(subject, SID state), otherwise
stated the sequence of detailed steps subject performs from the moment when it
enters the SID state corresponding to the action (read: the associated service)
until the moment when it exits that state to enter the SID state’ corresponding
to the next action, see [33], p.351].

The ASM method started out to provide in full generality the means to ab-
stract into one single-agent step an entire internal computation which may be
needed to perform an action in a given state. Therefore one has to separately de-
scribe the interaction the considered agent may have with the cooperating agents
in its environment to perform the action, namely receiving data from cooperating
agents before it starts the abstract step and sending data to cooperating agents
after (probably as a result of) the abstract step. The agent’s sending interac-
tions are collectively incorporated into its one abstract step, namely as updates
of all corresponding output locations; this is without loss of generality given the
parallel nature of a single ASM step which performs simultaneously an entire
set of location updates. Analogously the agent’s receiving interactions directly
preceding (and probably influencing) its abstract step are collectively described
by a separate so-called ‘environment’ step which precedes the agent’s abstract
step and is assumed to be executed by another agent representing the environ-
ment of the considered agent; this environment step performs simultaneously all
the relevant updates of the corresponding monitored locations, thus completing
the definition of the state in which the considered agent performs (the internal
part of) its abstract step (see the formal definition in [27], Def.2.4.22, p.75]).

The difference in the technical S-BPM/ASM realization of the identical con-
cept of distinguishing internal and external ‘actions’ is a result of the different
origins of the two methods. The motivating target of S-BPM was to incorpo-
rate in an explicit and practically feasible way into the software engineering
techniques of the time the missing high-level concept of communication between
process agents, in particular for developing BPs where communication is funda-
mental to control the actions of the cooperating agents. Therefore it was nat-
ural to develop an orthogonal communication concept (inspired by CCS [49)]
and CSP [44]) which is compatible with the principal (at the time prevailingly
object-oriented) programming concepts and their implementation so that it can
be integrated in a modular way into any practical software engineering method.
This led to the interesting input-pool-based S-BPM notion of a synchronous or
asynchronous communication (send or receive) ‘step’ as pendant to and a la pari
with any internal computation ‘step’. The notion of an ASM the development of
the ASM method started from grew out of an epistemological concern, namely to
sharpen the Church-Turing thesis for ‘an alternative computation model which
explicitly recognizes finiteness of computers’ [39/40] (see [12],[27, Ch.9] for the
historical details). Therefore it was natural to abstract for the definition of what
constitutes an ASM step from any particular form of communication mechanism

10 E. Bérger

and to represent a communication (receive or send) action abstractly the same
way as any other basic computational action, namely as reading the value of an
abstract ‘memory location’ resp. as updating (writing) it—clearly at the price of
having to define an appropriate practical communication model where needed,
a task Fleischmann accomplished for S-BPM with his input-pool concept. This
concept provides an interesting contribution to the challenge listed in [23, p.1923]
to develop ‘practically useful patterns for communication and synchronization
of multi-agent ASMs, in particular supporting omnipresent calling structures
(like RPC, RMI and related middleware constructs) and web service interaction

patterns.

Behavior of Agents. In S-BPM the behavior of a single agent is represented
by a graph of the Finite State Machine (FSM) flowchart type (called SBD or
PASS graph) which ‘describes the sequences in which a process sends messages,
receives messages and executes functions and operations’ [31) p.207]. This cor-
responds exactly to the so-called control-state ASMs [27), Sect.2.2.6] and their
FSM-flowchart like graphical displa so that not surprisingly the high-level S-
BPM interpreter in [33], Appendix, Sect.7] for the execution of SBDs is defined
as a control-state ASM.

3 Differences between S-BPM and the ASM Method

In this section we discuss three major differences between the S-BPM and the
ASM method. They concern the notion of state and state change (update) by
actions of agents (Sect. Bl), the notion of refinement of models (Sect. B.2)) and
the werification concern which helps in the ASM method to increase the sys-
tem reliability and to reduce the amount of experimental system validations
(Sect. Hl). Through these features the ASM method offers the practitioner ad-
ditional possibilities for certifiably correct design of software-intensive systems,
although we see no reason why they could not be included into S-BPM, as we
are going to suggest, to increase the degree of reliability of S-BPM-designed BPs
by certifiable correctness.

3.1 Notion of State and State Change

State. As we have seen in Sect.[Z2, S-BPM shares the traditional programming
view of states: ‘the values of all local variables define ... the local state of a

' The various theoretical communication concepts surveyed in [42] appear to have
been defined to suit parallel and so-called interactive forms of the ASM thesis and
seem to have had no practical impact.

2 Control-state ASMs have been introduced in [I1] as ‘a particularly frequent class
of ASMs which represent a normal form for UML activity diagrams and allow the
designer to define machines which below the main control structure of finite state
machines provide synchronous parallelism and the possibility of manipulating data
structures.” |27, p.44]

S-BPM and the Abstract State Machines Method 11

process’ [31, p.206]. In contrast, ‘the notion of ASM states is the classical notion
of mathematical structures where data come as abstract objects, i.e. as elements
of sets (also called domains or universes, one for each category of data) which
are equipped with basic operations (partial functions in the mathematical sense)
and predicates (attributes or relations).’[27, p.29] In logic these structures, which
have been formulated as a concept by Tarski [60] to define the semantics of first
order logic formulae, are also called Tarski structures [The relevant fact for the
modelling activity is that the sets and functions which form the state of an ASM
can be chosen in direct correspondence with the to-be-modelled items of the
application domain, tailored with ‘the greatest possible freedom of language’ [9,
Sect. 5] to the intended level of abstraction of the model and ‘avoiding the formal
system straitjacket’ (ibid.). Thus ASM states realize an advice from a great
authority: ‘Data in the first instance represent abstractions of real phenomena
and are preferably formulated as abstract structures not necessarily realized in
common programming languages.’ [62], p.10]

To provide a characteristic example we can refer to the abstract elements
and functions which appear in the ASM model for S-BPM [33, Appendix] as
part of the interpreter state, like all the SBD-graph structure related items, the
services associated with SID-states and their completion predicate Completed,
inputPool with its related functions, the different sets providing Alternatives
together with their selection functions, message related functions to composeMsg
from msgData, etc.

Also the object oriented slightly more complex version of the programming
view of states as defined above, which comes with the suggestion to use object
oriented techniques for the specification of PASS graph refinements [31, p.210],
is an instance of the ASM notion of state since ‘the instantiation of a relation or
function to an object o can be described by the process of parameterization of
say, f to the function o.f, which to each z assigns the value f (o, z).’[27, p.29]

State Change. The most general kind of a basic action to change a structure
or algebra (i.e. a set of functions) appears to be that of a function update, i.e.
change the value of a function at given arguments, which has the following form:

f(tlv"'7tn) =1

Such updates, executed by an agent (denoted b