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Intuitionistic Fuzzy Relations (IFRs)

8.1 Cartesian Products over IFSs

First, we define six versions of another operation over IFSs – namely, Carte-
sian products of two IFSs. To introduce the concept of intuitionistic fuzzy
relation, we use these operations.

Let E1 and E2 be two universes and let

A = {〈x, μA(x), νA(x)〉|x ∈ E1},
B = {〈y, μB(y), νB(y)〉|y ∈ E2},

be two IFSs over E1 and over E2, respectively.
Now, following [39], define,

A×1 B = {〈〈x, y〉, μA(x).μB(y), νA(x).νB(y)〉|x ∈ E1&y ∈ E2}, (8.1)

A×2 B = {〈〈x, y〉, μA(x) + μB(y) − μA(x).μB(y), νA(x).νB(y)〉
|x ∈ E1&y ∈ E2}, (8.2)

A×3 B = {〈〈x, y〉, μA(x).μB(y), νA(x) + νB(y)− νA(x).νB(y)〉
|x ∈ E1&y ∈ E2}, (8.3)

A×4 B = {〈〈x, y〉,min(μA(x), μB(y)),max(νA(x), νB(y))〉
|x ∈ E1&y ∈ E2}, (8.4)

A×5 B = {〈〈x, y〉,max(μA(x), μB(y)),min(νA(x), νB(y))〉
|x ∈ E1&y ∈ E2}, (8.5)

A×6 B = {〈〈x, y〉, μA(x)+μB(y)
2 , νA(x)+νB(y)

2 )〉|x ∈ E1&y ∈ E2}. (8.6)

Operation ×6 was introduced by my student Velin Andonov in [8], who stud-
ied its properties.

From,

0 ≤ μA(x).μB(y) + νA(x).νB(y) ≤ μA(x) + νA(x) ≤ 1,
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it follows that A×1 B is an IFS over the universe E1 ×E2, where “×” is the
classical Cartesian product on ordinary sets (E1 and E2). For the five other
products the computations are analogous.

For every three universes E1, E2 and E3 and four IFSs A,B (over E1), C
(over E2) and D (over E3):

(a) (A× C) ×D = A× (C ×D), where × ∈ {×1,×2,×3,×4,×5}.

(b) (A ∪B) × C = (A× C) ∪ (B × C),

(c) (A ∩B) × C = (A× C) ∩ (B × C),

(d) C × (A ∪B) = (C ×A) ∪ (C ×B),

(e) C × (A ∩B) = (C ×A) ∩ (C ×B),

where × ∈ {×1,×2,×3,×4,×5,×6}.
For every two universes E1 and E2 and three IFSs A,B (over E1) and C

(over E2):

(a) (A+B) × C ⊆ (A× C) + (B × C),

(b) (A.B) × C ⊇ (A× C).(B × C),

(c) (A@B) × C = (A× C)@(B × C),

(d) C × (A+B) ⊆ (C ×A) + (C ×B),

(e) C × (A.B) ⊇ (C ×A).(C ×B),

(f) C × (A@B) = (C ×A)@(C ×B),

where × ∈ {×1,×2,×3,×6}.
If A is an IFS over E1 and B is an IFS over E2, then,

(a) (A×1 B) ⊆ A×1 B,

(b) ♦(A×1 B) ⊇ ♦A×1 ♦B,
(c) (A×2 B) = A×2 B,

(d) ♦(A×2 B) = ♦A×2 ♦B,
(e) (A×3 B) = A×3 B,

(f) ♦(A×3 B) = ♦A×3 ♦B,
(g) (A×4 B) = A×4 B,

(h) ♦(A×4 B) = ♦A×4 ♦B,
(i) (A×5 B) = A×5 B,

(j) ♦(A×5 B) = ♦A×5 ♦B.
(k) (A×6 B) = A×6 B,

(l) ♦(A×6 B) = ♦A×6 ♦B.
Formulae similar to De Morgan’s laws hold for the above Cartesian prod-

ucts. If A is an IFS over E1 and B is an IFS over E2, then,
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(a) A×1 B = A×1 B,

(b) A×2 B = A×3 B,

(c) A×3 B = A×2 B,

(d) A×4 B = A×5 B,

(e) A×5 B = A×4 B,

(f) A×6 B = A×6 B.

Therefore, operations ×2 and ×3; ×4 and ×5 are dual and the operations
×1 and ×6 are autodual.

The following inclusions hold for every two universes E1 and E2, and two
IFSs A (over E1) and B (over E2):

(a) A×3 B ⊆ A×1 B ⊆ A×2 B,

(b) A×3 B ⊆ A×4 B ⊆ A×6 B ⊆ A×5 B ⊆ A×2 B.

For every two universes E1 and E2, and two IFSs A (over E1) and B (over
E2) and for every α, β ∈ [0, 1],

Gα,β(A×1 B) = Gα/γ,β/δ(A) ×1 Gγ,δ(B),

for every 0 < γ ≤ 1, 0 < δ ≤ 1 for which α
γ ,
β
δ
∈ [0, 1].

For every two IFSs A and B, and for every α, β ∈ [0, 1], the following
relations hold:

(a) Dα(A×4 B) ⊆ Dα(A) ×4 Dα(B),

(b) Fα,β(A×4 B) ⊆ Fα,β(A) ×4 Fα,β(B), where α+ β ≤ 1,

(c) Gα,β(A×4 B) = Gα,β(A) ×4 Gα,β(B),

(d) Hα,β(A×4 B) ⊆ Hα,β(A) ×4 Hα,β(B),

(e) H∗
α,β(A×4 B) ⊆ H∗

α,β(A) ×4 H
∗
α,β(B),

(f) Jα,β(A×4 B) ⊆ Jα,β(A) ×4 Jα,β(B),

(g) J∗
α,β(A×4 B) ⊆ J∗

α,β(A) ×4 J
∗
α,β(B),

(h) Pα,β(A×4 B) = Pα,β(A) ×4 Pα,β(B),

(i) Qα,β(A×4 B) = Qα,β(A) ×4 Qα,β(B),

(j) • α,β,γ,δ(A×4 B) = • α,β,γ,δ(A) ×4 • α,β,γ,δ(B),

(k) Dα(A×5 B) ⊇ Dα(A) ×5 Dα(B),

(l) Fα,β(A×5 B) ⊇ Fα,β(A) ×5 Fα,β(B), where α+ β ≤ 1,

(m) Gα,β(A×5 B) = Gα,β(A) ×5 Gα,β(B),

(n) Hα,β(A×5 B) ⊇ Hα,β(A) ×5 Hα,β(B),

(o) H∗
α,β(A×5 B) ⊇ H∗

α,β(A) ×5 H
∗
α,β(B),

(p) Jα,β(A×5 B) ⊇ Jα,β(A) ×5 Jα,β(B),
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(q) J∗
α,β(A×5 B) ⊇ J∗

α,β(A) ×5 J
∗
α,β(B).

(r) Pα,β(A×5 B) = Pα,β(A) ×5 Pα,β(B),

(s) Qα,β(A×5 B) = Qα,β(A) ×5 Qα,β(B),

(t) • α,β,γ,δ(A×5 B) = • α,β,γ,δ(A) ×5 • α,β,γ,δ(B),

(u) Dα(A×6 B) = Dα(A) ×6 Dα(B),

(v) Fα,β(A×6 B) = Fα,β(A) ×6 Fα,β(B), where α+ β ≤ 1,

(w) Gα,β(A×6 B) = Gα,β(A) ×6 Gα,β(B),

(x) Hα,β(A×6 B) = Hα,β(A) ×6 Hα,β(B),

(y) H∗
α,β(A×6 B) = H∗

α,β(A) ×6 H
∗
α,β(B),

(z) Jα,β(A×6 B) = Jα,β(A) ×6 Jα,β(B),

(α) J∗
α,β(A×6 B) = J∗

α,β(A) ×6 J
∗
α,β(B),

(β) Pα,β(A×6 B) ⊆ Pα,β(A) ×6 Pα,β(B),

(γ) Qα,β(A×6 B) ⊇ Qα,β(A) ×5 Qα,β(B),

(δ) ◦ α,β,γ,δ,ε,ζ(A×6 B) = ◦ α,β,γ,δ,ε,ζ(A) ×6 ◦ α,β,γ,δ,ε,ζ(B).

8.2 Index Matrix

The concept of Index Matrix (IM) was introduced in 1984 in [12, 15]. During
the last 25 years, some of its properties were studied (see [75, 76]), but in
general it was only used as an auxiliary tool for describing the transitions of
the generalized nets (see [23, 65]), the intuitionistic fuzzy relations with finite
universes, the intuitionistic fuzzy graphs with finite set of vertrices, as well as
in some decision making algorithms based on intuitionistic fuzzy estimations.
Some authors found an application of the IMs in the area of number theory,
[337].

Following [75, 76], in Subsection 8.2.1, we give the basic definition of an
IM and the operations over two IMs, as well as some properties of IMs.
In Subsection 8.2.2, operations extending those from Subsection 8.2.1 and
essentially new ones, are introduced for the first time and their properties
has been discussed. Since the proofs of the formulated theorems are based on
the respective definitions, only one proof is given as an illustration.

8.2.1 Basic Definitions and Properties

Following [15], the basic definitions and properties related to IMs are given.
Let I be a fixed set of indices and R be the set of all real numbers. By IM

with index sets K and L (K,L ⊂ I), we mean the object,
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[K,L, {aki,lj}] ≡

l1 l2 . . . ln
k1 ak1,l1 ak1,l2 . . . ak1,ln

k2 ak2,l1 ak2,l2 . . . ak2,ln
...
km akm,l1 akm,l2 . . . akm,ln

,

where K = {k1, k2, ..., km}, L = {l1, l2, ..., ln}, for 1 ≤ i ≤ m, and 1 ≤ j ≤
n : aki,lj ∈ R.

For the IMs A = [K,L, {aki,lj}], B = [P,Q, {bpr,qs}], operations that are
analogous of the usual matrix operations of addition and multiplication are
defined, as well as other, specific ones.

(a) addition A⊕B = [K ∪ P,L ∪Q, {ctu,vw}], where

ctu,vw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K and vw = lj ∈ L−Q
or tu = ki ∈ K − P and vw = lj ∈ L;

bpr,qs , if tu = pr ∈ P and vw = qs ∈ Q− L
or tu = pr ∈ P −K and vw = qs ∈ Q;

aki,lj + bpr,qs , if tu = ki = pr ∈ K ∩ P
and vw = lj = qs ∈ L ∩Q

0, otherwise

(b) termwise multiplication A⊗B = [K ∩ P,L ∩Q, {ctu,vw}], where

ctu,vw = aki,lj .bpr ,qs , for tu = ki = pr ∈ K ∩ P and
vw = lj = qs ∈ L ∩Q;

(c) multiplication A�B = [K ∪ (P −L), Q∪ (L−P ), {ctu,vw}], where

ctu,vw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K and vw = lj ∈ L− P

bpr ,qs , if tu = pr ∈ P − L and vw = qs ∈ Q
∑

lj=pr∈L∩P
aki,lj .bpr,qs , if tu = ki ∈ K and vw = qs ∈ Q

0, otherwise

(d) structural subtraction A�B = [K − P,L−Q, {ctu,vw}],
where “–” is the set–theoretic difference operation and

ctu,vw = aki,lj , for tu = ki ∈ K − P and vw = lj ∈ L−Q.

(e) multiplication with a constant α.A = [K,L, {α.aki,lj}],
where α is a constant.
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(f) termwise subtraction A−B = A⊕ (−1).B.
For example, if we have the IMs X and Y

X =
c d e

a 1 2 3
b 4 5 6

, Y =

c r
a 10 11
p 12 13
q 14 15

,

then

X ⊕ Y =

c d e r
a 11 2 3 11
b 4 5 6 0
p 12 0 0 13
q 14 0 0 15

and

X ⊗ Y =
c

a 10

If IM Z has the form

Z =

u
c 10
d 11
s 12
t 13

,

then

X � Z =

e u
a 3 1 × 10 + 2 × 11
b 6 4 × 10 + 5 × 11
s 0 12
t 0 13

=

e u
a 3 32
b 6 95
s 0 12
t 0 13

.

Now, it is seen that when

K = P = {1, 2, ...,m},

L = Q = {1, 2, ..., n},
we obtain the definitions for standard matrix operations. In IMs, we use
different symbols as indices of the rows and columns and they, as we have
seen above, give us additional information and possibilities for description.

Let IMR be the set of all IMs with their elements being real numbers,
IM{0,1} be the set of all (0, 1)-IMs. i.e., IMs with elements only 0 or 1,
and IMP be the class of all IMs with elements – predicates1. The problem
with the “zero”-IM is more complex than in the standard matrix case. We
introduce “zero”-IM for IMR as

1 All IMs over the class of the predicates also generate a class in Neuman-Bernaus-
Gödel set theoretical sense.
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I0 = [K,L, {0}],

an IM whose elements are equal to 0 and K,L ⊂ I are arbitrary index sets,
as well as the IM

I∅ = [∅, ∅, {aki,lj}].

In the second case there are no matrix cells where the elements aki,lj

may be inserted. In both cases, for each IM A = [K,L, {bki,lj}] and for
I0 = [K,L, {0}] with the same index sets, we have,

A⊕ I0 = A = I0 ⊕A.

The situation with IM{0,1} is similar, while in the case of IMP the “zero”-
IM can be either IM

If = [K,L, {“false”}],

or the IM
I∅ = [∅, ∅, {aki,lj}]

where the elements aki,lj are arbitrary predicates.
Let

I1 = [K,L, {1}]

denote the IM, whose elements are equal to 1, and where K,L ⊂ I are
arbitrary index sets.

The operations defined above are oriented to IMs, whose elements are real
or complex numbers. Let us denote these operations, respectively, by ⊕+,
⊗×, �+,., �−.

The following properties of the IM are discussed in [15].

Theorem 8.1: (a) 〈IMR,⊕+〉 is a commutative semigroup,
(b) 〈IMR,⊗×〉 is a commutative semigroup,
(c) 〈IMR,�+,×〉 is a semigroup,
(d) 〈IMR,⊕+, I∅〉 is a commutative monoid.

8.2.2 Other Definitions and Properties

Now, a series of new operations and relations over IMs are introduced. They
have been collected by the author during the last 10-15 years, but now they
are published for the first time.

8.2.2.1. Modifications of the IM-operations
It is well-known that the (0, 1)-matrices have applications in the areas of
discrete mathematics and combinatorial analysis. When we choose to work
with this kind of matrices, the above operations have the following forms.

(a′) A⊕max B = [K ∪ P,L ∪Q, {ctu,vw}], where



154 8 Intuitionistic Fuzzy Relations (IFRs)

ctu,vw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K and vw = lj ∈ L−Q
or tu = ki ∈ K − P and vw = lj ∈ L;

bpr ,qs , if tu = pr ∈ P and vw = qs ∈ Q− L
or tu = pr ∈ P −Kand vw = qs ∈ Q;

max(aki,lj , bpr ,qs), if tu = ki = pr ∈ K ∩ P
and vw = lj = qs ∈ L ∩Q

0, otherwise

(b′) A⊗min B = [K ∩ P,L ∩Q, {ctu,vw}], where

ctu,vw = min(aki,lj , bpr,qs), for tu = ki = pr ∈ K ∩ P and
vw = lj = qs ∈ L ∩Q;

(c′) A�max,min B = [K ∪ (P − L), Q ∪ (L− P ), {ctu,vw}], where

ctu,vw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K
and vw = lj ∈ L− P

bpr,qs , if tu = pr ∈ P − L
and vw = qs ∈ Q

max
lj=pr∈L∩P

min(aki,lj , bpr,qs), if tu = ki = pr ∈ K

and vw = qs ∈ Q

0, otherwise

Operation (d) from Subsection 8.2.1 preserves its form, operation (e) is
possible only in the case when α ∈ {0, 1}, while operation (f) is impossible.

The three operations are applicable also to the IMs, whose elements are
real numbers.

Theorem 8.2: (a) 〈IM{0,1},⊕max〉 is a commutative semigroup,
(b) 〈IM{0,1},⊗min〉 is a commutative semigroup,
(c) 〈IM{0,1},�max,min〉 is a semigroup,
(d) 〈IM{0,1},⊕max, I∅〉 is a commutative monoid.

When working with matrices, whose elements are sentences or predicates,
the forms of the above operations become

(a′′) A⊕∨ B = [K ∪ P,L ∪Q, {ctu,vw}], where
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ctu,vw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K and vw = lj ∈ L−Q
or tu = ki ∈ K − P and vw = lj ∈ L;

bpr ,qs , if tu = pr ∈ P and vw = qs ∈ Q− L
or tu = pr ∈ P −K and vw = qs ∈ Q;

aki,lj ∨ bpr,qs , if tu = ki = pr ∈ K ∩ P
and vw = lj = qs ∈ L ∩Q

false, otherwise

(b′′) A⊗∧ B = [K ∩ P,L ∩Q, {ctu,vw}], where

ctu,vw = aki,lj ∧ bpr,qs , for tu = ki = pr ∈ K ∩ P and
vw = lj = qs ∈ L ∩Q;

(c′′) A�∨,∧ B = [K ∪ (P − L), Q ∪ (L− P ), {ctu,vw}], where

ctu,vw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K and vw = lj ∈ L− P

bpr ,qs , if tu = pr ∈ P − L and vw = qs ∈ Q

∨
lj=pr∈L∩P

(aki,lj ∧ bpr,qs), if tu = ki = pr ∈ K and vw = qs ∈ Q

false, otherwise

Operation (d) from Subsection 8.2.1 preserves its form, while operations
(e) and (f) are impossible.

Theorem 8.3: (a) 〈IMP ,⊕∨〉 is a commutative semigroup,
(b) 〈IMP ,⊗∧〉 is a commutative semigroup,
(c) 〈IMP ,�∨,∧〉 is a semigroup,
(d) 〈IMP ,⊕∨, I∅〉 is a commutative monoid.

8.2.2.2. Relations over IMs
Let two IMs A = [K,L, {ak,l}] and B = [P,Q, {bp,q}] be given. We introduce
the following (new) definitions where ⊂ and ⊆ denote the relations “strong
inclusion” and “weak inclusion”.

The strict relation “inclusion about dimension” is

A ⊂d B iff ((K ⊂ P )&(L ⊂ Q)) ∨ (K ⊆ P )&(L ⊂ Q) ∨ (K ⊂ P )&(L ⊆ Q))

&(∀k ∈ K)(∀l ∈ L)(ak,l = bk,l).

The non-strict relation “inclusion about dimension” is

A ⊆d B iff (K ⊆ P )&(L ⊆ Q)&(∀k ∈ K)(∀l ∈ L)(ak,l = bk,l).
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The strict relation “inclusion about value” is

A ⊂v B iff (K = P )&(L = Q)&(∀k ∈ K)(∀l ∈ L)(ak,l < bk,l).

The non-strict relation “inclusion about value” is

A ⊆v B iff (K = P )&(L = Q)&(∀k ∈ K)(∀l ∈ L)(ak,l ≤ bk,l).

The strict relation “inclusion” is

A ⊂ B iff (((K ⊂ P )&(L ⊂ Q)) ∨ ((K ⊆ P )&(L ⊂ Q)) ∨ ((K ⊂ P )

&(L ⊆ Q))) & (∀k ∈ K)(∀l ∈ L)(ak,l < bk,l).

The non-strict relation “inclusion” is

A ⊆ B iff (K ⊆ P )&(L ⊆ Q)&(∀k ∈ K)(∀l ∈ L)(ak,l ≤ bk,l).

It is obvious that for every two IMs A and B,

� if A ⊂d B, then A ⊆d B;
� if A ⊂v B, then A ⊆v B;
� if A ⊂ B, A ⊆d B, or A ⊆v B, then A ⊆ B;
� if A ⊂d B or A ⊂v B, then A ⊆ B.

8.2.2.3. Operations “Reduction” over an IM
First, we introduce operations (k, ∗)-reduction and (∗, l)-reduction of a given
IM A = [K,L, {aki,lj}],

A(k,∗) = [K − {k}, L, {ctu,vw}]

where
ctu,vw = aki,lj for tu = ki ∈ K − {k} and vw = lj ∈ L

and
A(∗,l) = [K,L− {l}, {ctu,vw}],

where
ctu,vw = aki,lj for tu = ki ∈ K and vw = lj ∈ L− {l}.

Second, we define (k, l)-reduction

A(k,l) = (A(k,∗))(∗,l) = (A(∗,l))(k,∗),

i.e.,
A(k,l) = [K − {k}, L− {l}, {ctu,vw}],

where

ctu,vw = aki,lj for tu = ki ∈ K − {k} and vw = lj ∈ L− {l}.
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For every IM A and for every k1, k2 ∈ K, l1, l2 ∈ L,

(A(k1,l1))(k2,l2) = (A(k2,l2))(k1,l1).

Third, let P = {k1, k2, ..., ks} ⊆ K and Q = {q1, q2, ..., qt} ⊆ L. Now, we
define the following three operations:

A(P,∗) = (...((A(k1,∗))(k2,∗))...)(ks,∗),

A(∗,Q) = (...((A(∗,l1))(∗,l2))...)(∗,lt),

A(P,Q) = (A(P,∗))(∗,Q) = (A(∗,Q))(P,∗).

Obviously,
A(K,L) = I∅,

A(∅,∅) = A.

For every two IMs A = [K,L, {aki,lj}] and B = [P,Q, {bpr,qs}]:

A ⊆d B iff A = B(P−K,Q−L).

Let A ⊆d B. Therefore, K ⊆ P and L ⊆ Q, and for every k ∈ K, l ∈ L:
ak,l = bk,l. From the definition,

B(P−K,Q−L) = (...((B(p1,q1))(p1,q2))...)(pr ,qs),

where p1, p2, ..., pr ∈ P −K, i.e., p1, p2, ..., pr ∈ P , and p1, p2, ..., pr �∈ K, and
q1, q2, ..., qs ∈ Q − L, i.e., q1, q2, ..., qs ∈ Q, and q1, q2, ..., qs �∈ L. Therefore,

B(P−K,Q−L) = [P − (P −K), Q− (Q − L), {bk,l}]

= [K,L, {bk,l}] = [K,L, {ak,l}] = A,

because, by definition the elements of the two IMs which are indexed by equal
symbols coincide.

Conversely, if A = B(P−K,Q−L), then

A = B(P−K,Q−L) ⊆d B∅,∅ = B.

8.2.2.4. Operation “Projection” over an IM
Let M ⊆ K and N ⊆ L. Then,

prM,NA = [M,N, {bki,lj}],

where
(∀ki ∈M)(∀lj ∈ N)(bki,lj = aki,lj ).

For every IM A, and sets M1 ⊆M2 ⊆ K and N1 ⊆ N2 ⊆ L, the equality

prM1,N1(prM2,N2A) = prM1,N1A

holds.



158 8 Intuitionistic Fuzzy Relations (IFRs)

8.2.2.5. Hierarhical Operations over IMs
Let A be an ordinary IM, and let its element akf ,eg be an IM by itself,

akf ,lg = [P,Q, {bpr,qs}],

where
K ∩ P = L ∩Q = ∅.

Here, introduce the following hierarchical operation

A|(akf ,lg ) = [(K − {kf}) ∪ P, (L − {lg}) ∪Q, {ctu,vw}],

where

ctu,vw =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K − {kf} and vw = lj ∈ L− {lg}

bpr,qs , if tu = pr ∈ P and vw = qs ∈ Q

0, otherwise

Assume that, if akf ,lg is not an element of IM A, then

A|(akf ,lg ) = A.

Therefore,
A|(akf ,lg )

=

l1 . . . lg−1 q1 . . . qu lg+1 . . . ln
k1 ak1,l1 . . . ak1,lg−1 0 . . . 0 ak1,lg+1 . . . ak1,ln
...

...
...

...
...

...
...

...
...

...
kf−1 akf−1,l1 . . . akf−1,lg−1 0 . . . 0 akf−1,lg+1 . . . akf−1,ln

p1 0 . . . 0 bp1,q1 . . . bp1,qv 0 . . . 0
...

...
...

...
...

...
...

...
...

...
pu 0 . . . 0 bpu,q1 . . . bpu,qv 0 . . . 0
kf+1 akf+1,l1 . . . akf+1,lg−1 0 . . . 0 akf+1,lg+1 . . . akf+1,ln
...

...
...

...
...

...
...

...
...

...
km akm,l1 . . . akm,lg−1 0 . . . 0 akm,lg+1 . . . akm,ln

.

From this form of the IM A|(akf ,lg ) we see that for the hierarchical oper-
ation the following equality holds.

A|(akf ,lg ) = (A� [{kf}, {lg}, {0}])⊕ akf ,lg .

We see that the elements akf ,l1 , akf ,l2 , ..., akf ,lg−1 , akf ,lg+1 , ..., akf ,ln in the
IM A now are changed with 0. Therefore, in a result of this operation infor-
mation is lost.
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Below, we modify the hierarchical operation, so, all information from the
IMs, participating in it, to be keeped. The new form of this operation, for
the above defined IM A and its fixed element akf ,lg , is

A|∗(akf ,lg )

=

l1 . . . lg−1 q1 . . . qu lg+1 . . . ln
k1 ak1,l1 . . . ak1,lg−1 ak1,lg . . . ak1,lg ak1,lg+1 . . . ak1,ln
...

...
...

...
...

...
...

...
...

...
kf−1 akf−1,l1 . . . akf−1,lg−1 akf−1,lg . . . akf−1,lg akf−1,lg+1 . . . akf−1,ln

p1 akf ,l1 . . . akf ,lg−1 bp1,q1 . . . bp1,qv akf ,lg+1 . . . akf ,ln
...

...
...

...
...

...
...

...
...

...
pu akf ,l1 . . . akf ,lg−1 bpu,q1 . . . bpu,qv akf ,lg+1 . . . akf ,ln

kf+1 akf+1,l1 . . . akf+1,lg−1 akf+1,lg . . . akf+1,lg akf+1,lg+1 . . . akf+1,ln
...

...
...

...
...

...
...

...
...

...
km akm,l1 . . . akm,lg−1 akm,lg . . . akm,lg akm,lg+1 . . . akm,ln

.

Now, the following equality is valid.

A|∗(akf ,lg) = (A� [{kf}, {lg}, {0}])⊕ akf ,lg ⊕ [P,L− {lg}, {cx,lj}]

⊕[K − {kf}Q, {dki,y}],

where for each t ∈ P and for each lj ∈ L− {lg},

cx,lj = akf ,lj

and for each ki ∈ K − {kf} and for each y ∈ Q,

dki,y = aki,lg .

Let for i = 1, 2, ..., s,

aiki,f ,li,g
= [Pi, Qi, {bipi,r,qi,s}],

where for every i, j (1 ≤ i < j ≤ s),

Pi ∩ Pj = Qi ∩Qj = ∅,

Pi ∩K = Qi ∩ L = ∅.
Then, for k1,f , k2,f , ..., ks,f ∈ K and l1,g, l2,g, ..., ls,g ∈ L,

A|(a1k1,f ,l1,g , a
2
k2,f ,l2,g , ..., a

s
ks,f ,ls,g)

= (...((A|(a1k1,f ,l1,g ))|(a2k2,f ,l2,g))...)|(asks,f ,ls,g )

and
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A|∗(a1k1,f ,l1,g , a
2
k2,f ,l2,g , ..., a

s
ks,f ,ls,g)

= (...((A|∗(a1k1,f ,l1,g
))|∗(a2k2,f ,l2,g

))...)|∗(asks,f ,ls,g
).

Let the IM A be given and let for i = 1, 2: k1,f �= k2,f and l1,g �= l2,g and

aiki,f ,li,g
= [Pi, Qi, {bipi,r,qi,s}],

where
P1 ∩ P2 = Q1 ∩Q2 = ∅,
Pi ∩K = Qi ∩ L = ∅.

Then,
A|(a1k1,f ,l1,g , a

2
k2,f ,l2,g ) = A|(a2k2,f ,l2,g , a

1
k1,f ,l1,g )

and
A|∗(a1k1,f ,l1,g , a

2
k2,f ,l2,g ) = A|∗(a2k2,f ,l2,g , a

1
k1,f ,l1,g ).

Let A and akf ,lg be as above, let bmd,ne be the element of the IM akf ,lg ,
and let

bmd,ne = [R,S, {ctu,vw}],

where

K ∩R = L ∩ S = P ∩R = Q ∩ S = K ∩ P = L ∩Q = ∅.

Then,
(A|(akf ,lg ))|(bmd,ne)

= [(K − {kf}) ∪ (P − {md}) ∪R, (L− {lg}) ∪ (Q− {ne} ∪ S {αβγ ,δε}],

where

αβγ ,δε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if βγ = ki ∈ K − {kf} and δε = lj ∈ L− {lg}

bpr,qs , if βγ = pr ∈ P − {md} and δε = qs ∈ Q− {ne}

ctu,vw , if βγ = tu ∈ R and δε = vw ∈ S

0, otherwise

For the above IMs A, akf ,lg and bmd,ne

(A|(akf ,lg))|(bmd,ne) = A|((akf ,lg )|(bmd,ne)).
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8.2.2.6. Operation “Substitution” over an IM
Let IM A = [K,L, {ak,l}] be given.

First, local substitution over the IM is defined for the couples of indices
(p, k) and/or (q, l), respectively, by

[
p

k
]A = [(K − {k}) ∪ {p}, L, {ak,l}],

[
q

l
]A = [K, (L− {l}) ∪ {q}, {ak,l}],

Secondly,

[
p

k

q

l
]A = [

p

k
][
q

l
]A,

i.e.
[
p

k

q

l
]A = [(K − {k}) ∪ {p}, (L− {l}) ∪ {q}, {ak,l}].

Obviously, for the above indices k, l, p, q,

[
k

p
]([
p

k
]A) = [

l

q
]([
q

l
]A) = [

k

p

l

q
]([
p

k

q

l
]A) = A,

Let the sets of indices P = {p1, p2, ..., pm}, Q = {q1, q2, ..., qn} be given.
Third, for them define sequentially,

[
P

K
]A = [

p1
k1

p2
k2
...
pn
kn

]A,

[
Q

L
]A = ([

q1
l1

q2
l2
...
qn
ln

]A),

[
P

K

Q

L
]A) = [

P

K
][
Q

L
]A,

i.e.,

[
P

K

Q

L
]A = [

p1
k1

p2
k2
...
pm
km

q1
l1

q2
l2
...
qn
ln

]A = [P,Q, {ak,l}]

Obviously, for the sets K,L, P,Q:

[
K

P
]([
P

K
]A) = [

L

Q
]([
Q

L
]A) = [

K

P

L

Q
]([
P

K

Q

L
]A) = A.

For every four sets of indices P1, P2, Q1, Q2

[
P2

P1

Q2

Q1
][
P1

K

Q1

L
]A = [

P2

K

Q2

L
]A.
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8.2.3 Intuitionistic Fuzzy IMs (IFIMs)

In this Section, basic definitions and properties related to IFIMs are given,
by extending the results from the previous Section.

8.2.3.1. Basic Definitions and Properties
Now, the new object – the IFIM – has the form

[K,L, {〈μki,lj , νki,lj 〉}]

≡

l1 l2 . . . ln
k1 〈μk1,l1 , νk1,l1〉 〈μk1,l2 , νk1,l2〉 . . . 〈μk1,ln , νk1,ln〉
k2 〈μk2,l1 , νk2,l1〉 〈μk2,l2 , νk2,l2〉 . . . 〈μk2,ln , νk2,ln〉
...
km 〈μkm,l1 , νkm,l1〉 〈μkm,l2 , νkm,l2〉 . . . 〈μkm,ln , νkm,ln〉

,

where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n: 0 ≤ μki,lj , νki,lj , μki,lj + νki,lj ≤ 1.
For the IFIMs A = [K,L, {〈μki,lj , νki,lj 〉}], B = [P,Q, {〈ρpr,qs , σpr ,qs〉}],

operations that are analogous of the usual matrix operations of addition and
multiplication are defined, as well as other specific ones.

(a) addition A⊕B = [K ∪ P,L ∪Q, {〈ϕtu,vw , ψtu,vw〉}], where

〈ϕtu,vw , ψtu,vw〉 =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μki,lj , νki,lj 〉, if tu = ki ∈ K and vw = lj ∈ L−Q
or tu = ki ∈ K − P and vw = lj ∈ L;

〈ρpr ,qs , σpr ,qs〉, if tu = pr ∈ P and vw = qs ∈ Q− L
or tu = pr ∈ P −K and vw = qs ∈ Q;

〈max(μki,lj , ρpr ,qs), if tu = ki = pr ∈ K ∩ P
min(νki,lj , σpr ,qs)〉, and vw = lj = qs ∈ L ∩Q

〈0, 1〉, otherwise

(b) termwise multiplication A⊗B = [K ∩P,L∩Q, 〈ϕtu,vw , ψtu,vw〉}],
where

〈ϕtu,vw , ψtu,vw〉 = 〈min(μki,lj , ρpr,qs),max(νki,lj , σpr ,qs)〉,

if tu = ki = pr ∈ K ∩ P and vw = lj = qs ∈ L ∩Q.
(c) multiplication A�B = [K∪ (P −L), Q∪ (L−P ), 〈ϕtu,vw , ψtu,vw〉}],

where
〈ϕtu,vw , ψtu,vw〉 =



8.2 Index Matrix 163

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μki,lj , νki,lj〉, if tu = ki ∈ K and vw = lj ∈ L− P

〈ρpr ,qs , σpr ,qs〉, if tu = pr ∈ P − L and vw = qs ∈ Q

〈 max
lj=pr∈L∩P

(min(μki,lj , ρpr,qs)),if tu = ki ∈ K and vw = qs ∈ Q

min
lj=pr∈L∩P

(max(νki,lj , σpr ,qs))〉,

〈0, 1〉, otherwise

(d) structural subtraction A�B = [K −P,L−Q, {〈ϕtu,vw , ψtu,vw〉}],
where “–” is the set–theoretic difference operation and

〈ϕtu,vw , ψtu,vw〉 = 〈μki,lj , νki,lj 〉, for tu = ki ∈ K − P and vw = lj ∈ L−Q.

(e) negation of an IFIM ¬A = [K,L, {¬〈μki,lj , νki,lj 〉}], where ¬ is
one of the negations, defined in Subsection 9.2.1.

(f) termwise subtraction A−B = A⊕ ¬B.
For example, consider two IFIMs X and Y

X =
c d

a 〈0.5, 0.3〉 〈0.4, 0.2〉
b 〈0.1, 0.8〉 〈0.7, 0.1〉

, Y =

c g
a 〈0.3, 0.1〉 〈0.6, 0.2〉
e 〈0.3, 0.6〉 〈0.3, 0.6〉
f 〈0.5, 0.2〉 〈0.6, 0.1〉

,

then

X ⊕ Y =

c d g
a 〈0.5, 0.1〉 〈0.4, 0.2〉 〈0.6, 0.2〉
b 〈0.1, 0.8〉 〈0.7, 0.1〉 〈0.0, 1.0〉
e 〈0.3, 0.6〉 〈0.0, 1.0〉 〈0.3, 0.6〉
f 〈0.5, 0.2〉 〈0.0, 1.0〉 〈0.6, 0.1〉

.

Obviously when
K = P = {1, 2, ...,m},
L = Q = {1, 2, ..., n}

we obtain the definitions for standard matrix operations with intuitionistic
fuzzy pairs. In the IFIM case, we use different symbols as indices of the rows
and columns and they, as we have seen above, give us additional information
and possibilities for description.

Let IMIF be the set of all IFIMs with their elements being intuitionistic
fuzzy pairs. The problem with the “zero”-IFIM is more complex than in the
standard matrix case. We introduce “zero”-IFIM for IMIF as the IFIM

I0 = [K,L, {〈0.0, 1.0〉}]

whose elements are equal to 〈0.0, 1.0〉 and K,L ⊂ I are arbitrary index sets,
as well as the IFIM
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I∅ = [∅, ∅, {aki,lj}].

In the second case, there are no matrix cells where the elements aki,lj may
be inserted. In both cases, for each IFIM A = [K,L, {bki,lj}] and for I0 with
the same index sets, we obtain

A⊕ I0 = A = I0 ⊕A.

Let I1 = [K,L, {〈1.0, 0.0〉}] denote the IFIM, whose elements are equal to
〈1.0, 0.0〉, and where K,L ⊂ I are arbitrary index sets.

The following properties of the IFIM are valid, similar from Section 8.2.1

Theorem 8.4: (a) 〈IMIF ,⊕〉 is a commutative semigroup,
(b) 〈IMIF ,⊗〉 is a commutative semigroup,
(c) 〈IMIF ,�〉 is a semigroup,
(d) 〈IMIF ,⊕, I∅〉 is a commutative monoid.

8.2.3.2. Relations over IFIMs
Let the two IFIMs A = [K,L, {〈ak,l, bk,l〉}] and B = [P,Q, {〈cp,q, dp,q〉}] be
given. We introduce the following (new) definitions where ⊂ and ⊆ denote
the relations “strong inclusion” and “weak inclusion”, respectively.

The strict relation “inclusion about dimension” is

A ⊂d B iff ((K ⊂ P )&(L ⊂ Q)) ∨ (K ⊆ P )&(L ⊂ Q) ∨ (K ⊂ P )&(L ⊆ Q))

&(∀k ∈ K)(∀l ∈ L)(〈ak,l, bk,l〉 = 〈ck,l, dk,l〉).
The non-strict relation “inclusion about dimension” is

A ⊆d B iff (K ⊆ P )&(L ⊆ Q)&(∀k ∈ K)(∀l ∈ L)(〈ak,l, bk,l〉 = 〈ck,l, dk,l〉).

The strict relation “inclusion about value” is

A ⊂v B iff (K = P )&(L = Q)&(∀k ∈ K)(∀l ∈ L)(〈ak,l, bk,l〉 < 〈ck,l, dk,l〉).

The non-strict relation “inclusion about value” is

A ⊆v B iff (K = P )&(L = Q)&(∀k ∈ K)(∀l ∈ L)(〈ak,l, bk,l〉 ≤ 〈ck,l, dk,l〉).

The strict relation “inclusion” is

A ⊂ B iff ((K ⊂ P )&(L ⊂ Q)) ∨ (K ⊆ P )&(L ⊂ Q) ∨ (K ⊂ P )&(L ⊆ Q))

&(∀k ∈ K)(∀l ∈ L)(〈ak,l, bk,l〉 < 〈ck,l, dk,l〉).
The non-strict relation “inclusion” is

A ⊆ B iff (K ⊆ P )&(L ⊆ Q)&(∀k ∈ K)(∀l ∈ L)(〈ak,l, bk,l〉 ≤ 〈ck,l, dk,l〉).
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Obviously, for every two IFIMs A and B,

� if A ⊂d B, then A ⊆d B;
� if A ⊂v B, then A ⊆v B;
� if A ⊂ B, A ⊆d B, or A ⊆v B, then A ⊆ B;
� if A ⊂d B or A ⊂v B, then A ⊆ B.

Operations “reduction”, “projection” and “substitution” coincide with the
respective operations defined over IMs, while hierarhical operations over IMs
are not applied here.

8.3 Intuitionistic Fuzzy Relations (IFRs)

The concept of Intuitionistic Fuzzy Relation (IFR) is based on the defini-
tion of the IFSs. It was introduced in different forms and approached from
different starting points, and independently, in 1984 and 1989 by the au-
thor (in two partial cases; see [13, 39]), in 1989 in [148] by Buhaescu and in
1992-1995 in [156, 154, 155, 157] by Bustince and Burillo. We must note that
the approaches in the various IFR definitions differ in the different authors’
researches. On the other hand, the author’s results were not widely known;
first he got acquainted with Stoyanova’s results and after this he learned
about Buhaescu’s (obtained earlier); then he sent parts of the above works
to Burillo and Bustince after they had obtained their own results.

Thus the idea of IFR was generated independently in four different places
(Sofia and Varna in Bulgaria, Romania and Spain). The Spanish authors’
approach is in some sense the most general. In the present form it includes
Buhaescu’s results.

First, we introduce Burillo and Bustince’s definition of the concept of IFR,
following [154, 155].

Let X and Y be arbitrary finite non-empty sets.
An ◦-IFR (or briefly, IFR, for a fixed operation ◦ ∈ {×1,×2, . . . ,×6}) will

mean an IFS R ⊆ X × Y of the form:

R = {〈〈x, y〉, μR(x, y), νR(x, y)〉|x ∈ X&y ∈ Y },

where μR : X × Y → [0, 1], νR : X × Y → [0, 1] are degrees of membership
and non-membership as in the ordinary IFSs (or degrees of truth and falsity)
of the relation R, and for all 〈x, y〉 ∈ X × Y,

0 ≤ μR(x, y) + νR(x, y) ≤ 1,

where the “×” operation is the standard Cartesian product and the form of
μR and νR is related to the form of the Cartesian product ◦.

Now, we introduce an index matrix approach of IFR.
Let IFR◦(X,Y ) be the set of all IFRs over the set X × Y , where X =

{x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are fixed finite sets (universes),
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the × operation between them is the standard Cartesian product, and ◦ ∈
{×1,×2, . . . ,×6}. Therefore, the set R ∈ IFR◦(X,Y ) can be represented in
the form [32],

y1 . . . yn
x1 〈μR(x1, y1), νR(x1, y1)〉 . . . 〈μR(x1, yn), νR(x1, yn)〉
x2 〈μR(x2, y1), νR(x2, y1)〉 . . . 〈μR(x2, yn), νR(x2, yn)〉
... . . .
xm 〈μR(xm, y1), νR(xm, y1)〉 . . . 〈μR(xm, yn), νR(xm, yn)〉

This IM-representation allows for a more pictorial description of the el-
ements of R and their degrees of membership and non-membership. Let
R ∈ IFR◦(X1, Y1) and S ∈ IFR◦(X2, Y2), where X1, Y1, X2 and Y2 are fixed
finite sets and X1∩X2∩Y1 = X1∩X2∩Y2 = X1∩Y1∩Y2 = X2∩Y1∩Y2 = ∅.

Using the definitions of the operations over IMs, we shall define three
operations over IFRs:

1. R ∪ S ∈ IFR◦(X1 ∪X2, Y1 ∪ Y2)

and has the form

y1 . . . yN
x1 〈μR∪S(x1, y1), νR∪S(x1, y1)〉 . . . 〈μR∪S(x1, yN ), νR∪S(x1, yN )〉
x2 〈μR∪S(x2, y1), νR∪S(x2, y1)〉 . . . 〈μR∪S(x2, yN ), νR∪S(x2, yN )〉
...
xM 〈μR∪S(xM , y1), νR∪S(xM , y1)〉 . . . 〈μR∪S(xM , yN ), νR∪S(xM , yN)〉

where

X1 ∪X2 = {x1, x2, . . . , xM} and Y1 ∪ Y2 = {y1, y2, . . . , yN}, and

〈μR∪S(xi, yj), νR∪S(xi, yj)〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μR(x′a, y
′
b), νR(x′a, y

′
b)〉,

if xi = x′a ∈ X1 and yj = y′b ∈ Y1 − Y2
or xi = x′a ∈ X1 −X2 and yj = y′b ∈ Y1

〈μS(x′′c , y′′d ), νS(x′′c , y′′d )〉,
if xi = x′′c ∈ X2 and yj = y′′d ∈ Y2 − Y1
or xi = x′′c ∈ X2 −X1 and yj = y′′d ∈ Y2

〈max(μR(x′, y′), μS(x′′, y′′)),
min(νR(x′, y′), νS(x′′, y′′))〉,

if xi = x′a = x′′c ∈ X1 ∩X2 and
yj = y′b = y′′d ∈ Y1 ∩ Y2x

〈0, 1〉, otherwise

2. R ∩ S ∈ IFR◦(X1 ∩X2, Y1 ∩ Y2)
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and has the form of the above IM, but with elements

〈μR∩S(xi, yj), νR∩S(xi, yj)〉

= 〈min(μR(x′, y′), μS(x′′, y′′)),max(νR(x′, y′), νS(x′′, y′′))〉,
where xi = x′a = x”c ∈ X1 ∩ X2 and yj = y′b = y”d ∈ Y1 ∩ Y2 (therefore
X1 ∩X2 = {x1, x2,..., xM} and Y1 ∩ Y2 = {y1, y2,..., yN}).

3. R • S ∈ IFR◦(X1 ∪ (X2 − Y1), Y2 ∪ (Y1 −X2))

and has the form of the above IM, but with elements

〈μR•S(xi, yj), νR•S(xi, yj)〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μR(x′a, y
′
b), νR(x′a, y

′
b)〉,

if xi = x′a ∈ X1 and yj = y′b ∈ Y1 −X2

〈μS(x′′c , y
′′
d ), νS(x′′c , y

′′
d )〉,

or xi = x′′c ∈ X2 − Y1 and yj = y′′d ∈ Y2
〈 max
y′
b=x′′

c ∈Y1∩X2

min(μR(x′a, y′b), μS(x′′c , y′′d )),

min
y′
b=x′′

c ∈Y1∩X2

max(νR(x′a, y
′
b), νS(x′′c , y

′′
d ))〉,

if xi = x′a ∈ X1 and yj = y′′d ∈ Y2
〈0, 1〉, otherwise

Therefore,
X1 ∪ (X2 − Y1) = {x1, x2, . . . , xM}

and
Y2 ∪ (Y1 −X2) = {y1, y2, . . . , yN}.

8.4 Intuitionistic Fuzzy Graphs (IFGs)

Now, we consider the applications of IFSs, IFRs and IMs to graph theory.
Following [31, 33, 45, 424, 425] the concept of an Intuitionistic Fuzzy Graph
(IFG) are introduced.

Let E1 and E2 be two sets. In this Section we assume that x ∈ E1 and
y ∈ E2 and operation × denotes the standard Cartesian product operation.
Therefore 〈x, y〉 ∈ E1 × E2. Let the operation o ∈ {×1,×2, . . . ,×6}.

The set

G∗ = {〈〈x, y〉, μG(x, y), νG(x, y)〉 〈x, y〉 ∈ E1 × E2}

is called an o-IFG (or briefly, an IFG) if the functions μG : E1 ×E2 → [0, 1]
and νG : E1 × E2 → [0, 1] define the degree of membership and the degree
of non-membership, respectively, of the element 〈x, y〉 ∈ E1 × E2 to the set
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G ⊆ E1×E2; these functions have the forms of the corresponding components
of the o-Cartesian product over IFSs; and for all 〈x, y〉 ∈ E1 × E2,

0 ≤ μG(x, y) + νG(x, y) ≤ 1.

For simplicity, we write G instead of G∗.
As in [301], we illustrate the above definition by an example of a Berge’s

graph (see Fig. 8.1; the labels of the arcs show the corresponding degrees).
Let the following two tables giving μ- and ν-values be defined for it (for
example, the data can be obtained as a result of some observations).

BC

A

0.5

0.0

1.0

0.0 1.0

0.5

0.0

0.0

1.0

Fig. 8.1

μG A B C
A 0.5 1 0
B 0 0 0.5
C 1 1 0

νG A B C
A 0.3 0 1
B 1 0.4 0.2
C 0 0 0.7

The data for μG(x, y) are taken from [301]. On the other hand, the IFG G
has the form shown in Fig. 8.2.

Let the oriented graph G = (V,A) be given, where V is a set of vertices
and A is a set of arcs. Every graph arc connects two graph vertices. Therefore,
A ⊆ V ×V and hence A can be described as a (1, 0)-IM. If the graph is fuzzy,
the IM has elements from the set [0, 1]; if the graph is an IFG, the IM has
elements from the set [0, 1]× [0, 1].

The IM of the graph G is given by
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A =

v1 v2 . . . vn
v1 a1,1 a1,2 . . . a1,n
v2 a2,1 a2,2 . . . a2,n
... . . . . . . . . . . . .
vn an,1 an,2 . . . an,n

where
ai,j = 〈μi,j , νi,j〉 ∈ [0, 1]× [0, 1](1 ≤ i, j ≤ n),

0 ≤ μG(x, y) + νG(x, y) ≤ 1,

V = {v1, v2, . . . , vn}.

BC

A

0.5,0.3

0.0,1.0

1.0,0.0

0.0,0.7 1.0,0.0

0.5,0.2

0.0,0.4

0.0,1.0

1.0,0.0

Fig. 8.2

We write briefly,
G = [V, V, {ai,j}].

It can be easily seen that the above IM can be modified to the following
form:

G = [VI ∪ V , V ∪ VO, {ai,j}],

where VI , VO and V are respectively the sets of the input, output and internal
vertices of the graph. At least one arc leaves every vertex of the first type,
but none enters; at least one arc enters each vertex of the second type but
none leaves it; every vertex of the third type has at least one arc ending in it
and at least one arc starting from it.
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Obviously, the graph matrix (in the sense of IM) now will be of a smaller
dimension than the ordinary graph matrix. Moreover, it can be nonsquare,
unlike the ordinary graph, matrices.

As in the ordinary case, the vertex vp ∈ V has a loop iff ap,p = 〈μp,p, νp,p〉
for the vertex vp and μp,p > 0 and νp,p < 1.

Let the graphs G1 and G2 be given and let Gs = [V ′
s , V

′′
s , {asi,j}], where

s = 1, 2 and V ′
s and V ′′

s are the sets of the graph vertices (input and internal,
and output and internal, respectively).

Then, using the apparatus of the IMs, we construct the graph which is a
union of the graphs G1 and G2. The new graph has the description

G = G1 ∪G2 = [V ′
1 ∪ V ′

2 , V
′′
1 ∪ V ′′

2 , {ai,j}],

where ai,j is determined by the above IM-formulae, using min-max operations
between its elements, for the case of operation “+” between IMs.

Analogously, we can construct a graph which is the intersection of the two
given graphs G1 and G2. It would have the form

G = G1 ∩G2 = [V ′
1 ∩ V ′

2 , V
′′
1 ∩ V ′′

2 , {ai,j}],

where ai,j is determined by the above IM-formulae, using min-max operations
between its elements, for the case of operation “.” between IMs.

Following the definitions from Section 6.1, for some given α, β ∈ [0, 1] and
for a given IFG G = [V, V,A], we define the following three IFGs:

G1 = Nα(G) = [V ′, V ′′, A1]

G2 = Nβ(G) = [V ′, V ′′, A2]

G3 = Nα,β(G) = [V ′, V ′′, A3]

For the first graph the arc between the vertices vi ∈ V ′ and vj ∈ V ′′ is
indexed by 〈ai,j , bi,j〉, where,

ai,j =

{
μ(vi, vj), if μ(vi, vj) ≥ α
0, otherwise

bi,j =

{
ν(vi, vj), if μ(vi, vj) ≥ α
1, otherwise

for the second graph - the same pair of numbers, but now having the values:

ai,j =

{
μ(vi, vj), if ν(vi, vj) ≤ β
0, otherwise

bi,j =

{
ν(vi, vj), if ν(vi, vj) ≤ β
1, otherwise

for the third graph - the same pair of numbers, but having the values:
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ai,j =

{
μ(vi, vj), if μ(vi, vj) ≥ α and ν(vi, vj) ≤ β
0, otherwise

bi,j =

{
ν(vi, vj), if μ(vi, vj) ≥ α and ν(vi, vj) ≤ β
1, otherwise

.

We must note that vi ∈ V ′ and vj ∈ V ′′, iff vi, vj ∈ V and in the first
and in the third cases ai,j ≥ α; in the second and in the third cases bi,j ≤ β.

Therefore, in this way we transform a given IFG to a new one whose arcs
have high enough degrees of truth and low enough degrees of falsity.

For example, if we apply the operator Nα,β for α = 0.5, β = 0.25 to the
IFG in Fig. 8.1, we obtain the IFG as in Fig. 8.3.

The following statements hold for every two IFGs A and B and every two
numbers α, β ∈ [0, 1] :

(a) Nα,β(A) = Nα(A) ∩Nβ(A),
(b) Nα,β(A ∩B) = Nα,β(A) ∩Nα,β(B),
(c) Nα,β(A ∪B) = Nα,β(A) ∪Nα,β(B).

BC

A

1.0,0.0

1.0,0.0

0.5,0.2

1.0,0.0

Fig. 8.3

Let us have a (fixed) set of vertices V . An IFTree T (over V) will be the
ordered pair T = (V ∗, A∗) (see [169, 171, 432]), where

V ⊂ V ,

V ∗ = {〈v, μV (v), νV (v)〉|v ∈ V },
A ⊂ V × V,

A∗ = {〈g, μA(g), νA(g)〉|(∃v, w ∈ V )(g = 〈v, w〉 ∈ A)},
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where μV (v) and νV (v) are degrees of membership and non-membership of
the element v ∈ V to V and

0 ≤ μV (v) + νV (v) ≤ 1.

The IFTree T = (V ∗, A∗) is:
a) weak well constructed (WWC-IFTree) if

(∀v, w ∈ V )((∃g ∈ A)(g = 〈v, w〉) → (μV (v) ≥ μV (w) & νV (v) ≤ νV (w));

b) strong well constructed (SWC-IFTree) if

(∀v, w ∈ V )((∃g ∈ A)(g = 〈v, w〉)
→ (μV (v) ≥ max(μV (w), μA(g)) & νV (v) ≤ min(νV (w), νA(g)));

c) average well constructed (AWC-IFTree) if

(∀v, w ∈ V )((∃g ∈ A)

(g = 〈v, w〉) → (μV (v) ≥ μV (w) + μA(g)

2
& νV (v) ≤ νV (w) + νA(g)

2
).

Let two IFTrees T1 = (V ∗
1 , G

∗
1) and T2 = (V ∗

2 , G
∗
2) be given. We define:

T1 ∪ T2 = (V ∗
1 , A

∗
1) ∪ (V ∗

2 , A
∗
2) = (V ∗

1 ∪ V ∗
2 , A

∗
1 ∪ A∗

2),

T1 ∩ T2 = (V ∗
1 , A

∗
1) ∩ (V ∗

2 , A
∗
2) = (V ∗

1 ∩ V ∗
2 , A

∗
1 ∩ A∗

2).

Let
P(X) = {Y |Y ⊂ X},

and let for T = (V ∗, A∗)

Tfull = (E(V ), E(A)),

Tempty = (O(V ), O(A)),

where
E(V ) = {〈v, 1, 0〉|v ∈ V},
O(V ) = {〈v, 0, 1〉|v ∈ V},

E(A) = {〈g, 1, 0〉|(∃v, w ∈ V )(g = 〈v, w〉 ∈ V × V)},
O(A) = {〈g, 0, 1〉|(∃v, w ∈ V )(g = 〈v, w〉 ∈ V × V)}.

Theorem 8.5: (P(V),∪, Tempty) and (P(V),∩, Tfull) are commutative
monoids.

Let G = (V,A) be a given IFTree. We construct its standard incidence
matrix. After this, we change the elements of the matrix with their degrees of
membership and non-membership. Finally, numbering the rows and columns
of the matrix with the identifiers of the IFTree vertices, will result an IM.

For example, if we have the IFTree as in Fig. 8.4, we can construct the IM
that corresponds to its incidence matrix:
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•

•

• •

A

B

C D

Fig. 8.4

[{A,B,C,D}, {A,B,C,D},
A B

A 〈μ(A,A), ν(A,A)〉 〈μ(A,B), ν(A,B)〉
B 〈μ(B,A), ν(B,A)〉 〈μ(B,B), ν(B,B)〉
C 〈μ(C,A), ν(C,A)〉 〈μ(C,B), ν(C,B)〉
D 〈μ(D,A), ν(D,A)〉 〈μ(D,B), ν(D,B)〉

...

...

C D
A 〈μ(A,C), ν(A,C)〉 〈μ(A,D), ν(A,D)〉
B 〈μ(B,C), ν(B,C)〉 〈μ(B,D), ν(B,D)〉
C 〈μ(C,C), ν(C,C)〉 〈μ(C,D), ν(C,D)〉
D 〈μ(D,C), ν(D,C)〉 〈μ(D,D), ν(D,D)〉

],

where here and below by “...” we note the fact that the IM from the first row
continues on the second row.

Having in mind that arcs AA,AC,AD,BB,CC,CD and DD do not exist,
we can modify the above IM to the form:

[{A,B,C,D}, {A,B,C,D},
A B C D

A 〈0, 1〉 〈μ(A,B), ν(A,B)〉 〈0, 1〉 〈0, 1〉
B 〈0, 1〉 〈0, 1〉 〈μ(B,C), ν(B,C)〉 〈μ(B,D), ν(B,D)〉
C 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
D 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉

].

Now, it is seen, that all elements of the column indexed with A and all
elements of the rows indexed with C and D are 〈0, 1〉. Therefore, we can omit
these two rows and the column and we obtain the simpler IM as

[{A,B,C,D}, {A,B,C,D},
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B C D
A 〈μ(A,B), ν(A,B)〉 〈0, 1〉 〈0, 1〉
B 〈0, 1〉 〈μ(B,C), ν(B,C)〉 〈μ(B,D), ν(B,D)〉

].

Finally, having in mind that there is no more a column indexed with A and
rows indexed with C and D, we obtain a final form of the IM as

[{A,B}, {B,C,D},
B C D

A 〈μ(A,B), ν(A,B)〉 〈0, 1〉 〈0, 1〉
B 〈0, 1〉 〈μ(B,C), ν(B,C)〉 〈μ(B,D), ν(B,D)〉

].

Let us have an IFTree G = (V,A) and let L be one of its leaves. Let F =
(W,B) be another IFTree so that

V ∩W = {L},

A ∪B = ∅.
Now, we describe the result of operation “substitution of an IFTree’s leaf L
with the IFTree F . The result will have the form of the IFTree (V ∪W,A∪B).

For example, if G is the IFTree as in Fig. 8.4 and if we substitute its leaf
D with the IFTree F as in Fig. 8.5 that has the shorter IM-representation as

•

•

• •

D

E

F G

Fig. 8.5

[{D,E}, {E,F,G},
E F G

D 〈μ(D,E), ν(D,E)〉 〈0, 1〉 〈0, 1〉
E 〈0, 1〉 〈μ(E,F ), ν(E,F )〉 〈μ(E,G), ν(E,G)〉

then, the result will be the IFTree as in Fig. 8.6 and it has the IM-
representation as

[{A,B,D,E}, {B,C,D,E, F,G},
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B C D
A 〈μ(A,B), ν(A,B)〉 〈0, 1〉 〈0, 1〉
B 〈0, 1〉 〈μ(B,C), ν(B,C)〉 〈μ(B,D), ν(B,D)〉
D 〈0, 1〉 〈0, 1〉 〈0, 1〉
E 〈0, 1〉 〈0, 1〉 〈0, 1〉

. . .

. . .

E F G
A 〈0, 1〉 〈0, 1〉 〈0, 1〉
B 〈0, 1〉 〈0, 1〉 〈0, 1〉
D 〈μ(D,E), ν(D,E)〉 〈0, 1〉 〈0, 1〉
E 〈0, 1〉 〈μ(E,F ), ν(E,F )〉 〈μ(E,G), ν(E,G)〉

= [{A,B,D,E}, {B,C,D,E, F,G},
B C D

A 〈μ(A,B), ν(A,B)〉 〈0, 1〉 〈0, 1〉
B 〈0, 1〉 〈μ(B,C), ν(B,C)〉 〈μ(B,D), ν(B,D)〉

⊕
E F G

D 〈μ(D,E), ν(D,E)〉 〈0, 1〉 〈0, 1〉
E 〈0, 1〉 〈μ(E,F ), ν(E,F )〉 〈μ(E,G), ν(E,G)〉

•

•

• •

•

• •

A

B

C D

E

F G

Fig. 8.6

Let the IFTree T = [V,A] be given, where V is the set of its vertices and
A is the set of its arcs, and let it has the following IM-form

T = [V, V, {aki,lj}].

Let its vertex w be fixed and let the subtree with source vertex w be
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U = [W,W, {bki,lj}],

where
W = {w,w1, w2, ..., ws} ⊆ V.

Let P be the new IFTree to be inserted at the vertex w of the IFTree T
and has the IM-form

P = [Q,Q, {cki,lj}],

for which w ∈ Q and {q1, q2, ..., qr} ⊂ Q are destination vertices.
Then the IM-form of the new IFTree T ∗ is

T ∗ = ([V, V, {aki,lj}]� [W,W, {aki,lj}]) ⊕ [Q,Q, {cki,lj}]

⊕ ⊕
r∑

i=1

[qi
w

] [wi,1

w1

]
...

[
wi,s

ws

]
[W,W, {bki,lj}].

We illustrate these definitions by two examples.
Let the ordered IFTree T1, in Fig. 8.7, be given, and let P (see Fig. 8.8)

be the new ordered IFTree to be inserted at vertex w of T1. The resultant
IFTree T ∗

1 is given in Fig. 8.9.

• • • •

• • •

•

v4
w1 w2

v5

v2 w v3

v1

• • •

•

q1 q2 q3

w

Fig. 8.7 Fig. 8.8

Let the two IFTrees have representations, respectively

T1 =

v1 v2 w v3 v4 w1 w2 v5
v1 αv1,v1 αv1,v2 αv1,w αv1,v3 αv1,v4 αv1,w1 αv1,w2 αv1,v5

v2 αv2,v1 αv2,v2 αv2,w αv2,v3 αv2,v4 αv2,w1 αv2,w2 αv2,v5

w αw,v1 αw,v2 αw,w αw,v3 αw,v4 αw,w1 αw,w2 αw,v5

v3 αv3,v1 αv3,v2 αv3,w αv3,v3 αv3,v4 αv3,w1 αv3,w2 αv3,v5

v4 αv4,v1 αv4,v2 αv4,w αv4,v3 αv4,v4 αv4,w1 αv4,w2 αv4,v5

w1 αw1,v1 αw1,v2 αw1,w αw1,v3 αw1,v4 αw1,w1 αw1,w2 αw1,v5

w2 αw2,v1 αw2,v2 αw2,w αw2,v3 αw2,v4 αw2,w1 αw2,w2 αw2,v5

v5 αv5,v1 αv5,v2 αv5,w αv5,v3 αv5,v4 αv5,w1 αv5,w2 αv5,v5

,
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where αa,b = 〈μa,b, νa,b〉 for a, b ∈ {v1, v2, w, v3, v4, w1, w2, v5} and

P =

w q1 q2 q3
w βw,w βw,q1 βw,q2 βw,q3

q1 βq1,w βq1,q1 βq1,q2 βq1,q3
q2 βq2,w βq2,q1 βq2,q2 βq2,q3
q3 βq3,w βq3,q1 βq3,q2 βq3,q3

,

where βa,b = 〈μa,b, νa,b〉 for a, b ∈ {w, q1, q2, q3}.

• • • • • •

• • • • •

• • •

•

w1,1 w1,2 w2,1 w2,2 w3,1 w3,2

v4 q1 q2 q3 v5

v2 w v3

v1

Fig. 8.9

Hawing in mind the above remark for reduction of the IM-representation
of a graph and the fact that the IFTree is ordered, we can rewrite the IMs
T1 and P to the (equivalent) forms

T1 =

v2 w v3 v4 w1 w2 v5

v1 αv1,v2 αv1,w αv1,v3 O O O O

v2 O O O αv2,v4 O O O
w O O O O αw,w1 αw,w2 O
v3 O O O O O O αv3,v5

and

P =
q1 q2 q3

w βw,q1 βw,q2 βw,q3
,

where O = 〈0, 1〉.
The IM-form of the IFTree T ∗

1 is

T ∗
1 = ([{v1, v2, w, v3, v4, w1, w2, v5}, {v1, v2, w, v3, v4, w1, w2, v5}, {aki,lj}]
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�[{w,w1, w2}, {w,w1, w2}, {aki,lj}])

⊕[{w, q1, q2, q3}, {w, q1, q2, q3}, {cki,lj}]

⊕ ⊕
3∑

i=1

[qi
w

] [wi,1

w1

] [
wi,2

w2

]
[{w,w1, w2}, {w,w1, w2}, {bki,lj}]

= [{v1, v2, w, v3, v4, q1, q2, q3, v5, w1,1, w1,2, w2,1, w2,2, w3,1, w3,2},
{v1, v2, w, v3, v4, q1, q2, q3, v5, w1,1, w1,2, w2,1, w2,2, w3,1, w3,2}, {da,b}]

= [{v1, v2, w, v3, q1, q2, q3},
{v2, w, v3, v4, q1, q2, q3, v5, w1,1, w1,2, w2,1, w2,2, w3,1, w3,2, }, {da,b}],

where the values of the elements da,b are determined as above.
Let the ordered IFTree T2, in Fig. 8.10, be given, and let P (see Fig. 8.8)

be the new ordered IFTree to be inserted at vertex w of T2. The resultant
IFTree T ∗

2 is given in Fig. 8.11.
The IFTree T2 has representation

T2 =

w w1 w2 w3

w βw,w βw,w1 βw,w2 βw,w3

w1 βw1,w βw1,w1 βw1,w2 βw1,w3

w2 βw2,w βw2,w1 βw2,w2 βw2,w3

w3 βw3,w βw3,w1 βw3,w2 βw3,w3

=
w1 w2 w3

w βw,w1 βw,w2 βw,w3

.

Then
T ∗
2 = ([{w,w1, w2, w3}, {w,w1, w2, w3}, {aki,lj}]

�[{w,w1, w2, w3}, {w,w1, w2, w3}, {aki,lj}])

⊕[{w, q1, q2, q3}, {w, q1, q2, q3}, {cki,lj}]

⊕ ⊕
3∑

i=1

[qi
w

] [wi,1

w1

] [
wi,2

w2

] [
wi,3

w3

]
[{w,w1, w2, w3}, {w,w1, w2, w3}, {bki,lj}]

= [{w, q1, q2, q3}, {w, q1, q2, q3}, {cki,lj}]

⊕ ⊕
3∑

i=1

[qi
w

] [wi,1

w1

] [
wi,2

w2

] [
wi,3

w3

]
[{w,w1, w2, w3}, {w,w1, w2, w3}, {bki,lj}]

= [{w, q1, q2, q3, w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3},
{w, q1, q2, q3, w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3}, {cki,lj}].

= [{w, q1, q2, q3}, {q1, q2, q3, w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3},
{cki,lj}].
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• • •

•

w1
w2

w3

w

Fig. 8.10

• • • • • • • • •

• • •

•

w1,1 w1,2 w1,3 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3

q1 q2 q3

w

Fig. 8.11

Finally, let the ordered IFTree T3, in Fig. 8.12, be given, and let P (see
Fig. 8.8) be the new ordered IFTree to be inserted at vertex w of T3. The
resultant IFTree T ∗

2 is given in Fig. 8.13.
The IFTree T3 has representation

T3 =

v1 v2 w v3
v1 βv1,v1 βv1,v2 βv1,w βv1,v3
v2 βv2,v1 βv2,v2 βv2,w βv2,v3
w βw,v1 βw,v2 βw,w βw,v3

v3 βv3,v1 βv3,v2 βv3,w βv3,v3

=
v2 w v3

v1 βv,v2 βv1,w βv1,v3
.

• • •

•

v2
w

v3

v1

Fig. 8.12

The IM-form of the IFTree T ∗
3 is

T ∗
3 = ([{v1, v2, w, v3}, {v1, v2, w, v3}, {aki,lj}]� [{w}, {w}, {0}])

⊕[{w, q1, q2, q3}, {w, q1, q2, q3}, {cki,lj}]

= [{v1, v2, w, v3, q1, q2, q3}, {v1, v2, w, v3, q1, q2, q3}, {da,b}]

= [{v1, w, }, {v2, w, v3, q1, q2, q3}, {da,b}].
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• • •

• • •

•

q1

v2 w

q3

v3

v1

q2

Fig. 8.13

8.5 Example: Intuitionistic Fuzzy Interpretations of
Multi-criteria Multi-person and
Multi-measurement Tool Decision Making

In Group Decision Making (GDM) a set of experts in a given field is involved
in a decision process concerning the selection of the best alternative(s) among
a set of predefined ones. An evaluation of the alternatives is performed inde-
pendently by each decision maker: the experts express their evaluations on
the basis of some decision scheme, which can be either implicitly assumed
or explicitly specified in the form of a set of predefined criteria [228, 284].
In both cases, the aim is to obtain an evaluation (performance judgment or
rating) of the alternatives by each expert. In the case in which a set of prede-
fined criteria is specified, a performance judgment is expressed by each expert
for each criterion; this kind of decision problem is called multi-person multi-
criteria decision making [284]. Its aim is to compute a consensual judgment
and a consensus degree for a majority of the experts on each alternative.
As the main actors in a multi-person multi-criteria decision making activity
are individuals with their inherent subjectivity, it often happens that per-
formance judgments cannot be precisely assessed; the imprecision may arise
from the nature of the characteristics of the alternatives, which can be either
unquantifiable or unavailable. It may also be derived from the inability of
the experts to formulate a precise evaluation [229, 230, 582]. Several works
in the literature have approached the problem of simplifying the experts’
formulation of evaluations. To this aim some fuzzy models of GDM have
been proposed which relieve experts from quantifying qualitative concepts
[140, 165, 230, 258, 294]. This objective has been pursued by dealing directly
with performance or preference judgments expressed linguistically.

The second phase of a group decision process is the definition of a collective
evaluation for each alternative: once the alternatives have been evaluated,
the main problem is to aggregate the experts’ performance judgments to
obtain an overall rating for each alternative. A consequent problem is to
compare the experts’ judgments to verify the consensus among them. In the



8.5 Example 181

case of unanimous consensus, the evaluation process ends with the selection
of the best alternative(s). As in real situation humans rarely come to an
unanimous agreement, in the literature some fuzzy approaches to evaluate
a “soft” degree of consensus have been proposed. It is important to notice
that full consensus (degree = 1) is not necessarily the result of an unanimous
agreement, but it can be obtained [140, 295, 294]. Each expert is asked to
evaluate at least a part of the alternatives in terms of their performance with
respect to each predefined criterion: the experts evaluations are expressed as
a pair of numeric values, interpreted in the intuitionistic fuzzy framework:
these numbers express a “positive” and a “negative” evaluations, respectively.
With each expert a pair of values is associated, which express the expert’s
reliability (confidence in her/his evaluation with respect to each criterion).
Distinct reliability values are associated with distinct criteria. The proposed
formulation is based on the assumption of alternatives’ independence.

The contents of this Section is based on paper [98] written by Gabriella
Pasi, Ronald Yager and the author.

Here, the described procedure gives the possibility to use partial orders,
i.e., orders represented by oriented graphs.

The following basic notation is adopted below:
E = {E1, E2, ..., Ee} is the set of experts involved in the decision process;
M = {M1,M2, ...,Mm} is the set of measurement tools employed in the
decision process;
A = {A1, A2, ..., Ap} is the set of considered alternatives;
C = {C1, C2, ..., Cq} is the set of criteria used for evaluating the alternatives.

Using the apparatus of the IFSs, we discuss the possibility of constructing
an overall performance judgment, related to the following distinct, although
similar, problems.

Problem 1. Let alternatives A1, ...Ap be given and let experts E1, ..., Ee have
to order the alternatives with respect to criteria C1, C2, ..., Cq. Produce an ag-
gregated order of the objects based on experts’ opinions.

Problem 2. Let alternatives A1, ...Ap be given and let us have the mea-
surement tools M1, ..., Mm, which estimate the alternatives with respect to
the criteria C1, C2, ..., Cq. The problem consists in producing an aggregated
estimation of the objects on the basis of the measurement tool estimations.

Each measurement tool can work using (at a given time) exactly one criterion,
but in distinct times it can be tuned to use different criteria. The quality of
the estimation of each measurement tool with respect to the other criteria is
subjective. The following basic assumptions are considered:

- at each moment the tools use only one criterion;
- we determine the order of criteria;
- we determine for each moment which tool and which criteria will be used.

First, the proposed method of multi-person multi-criterion decision making
will be described and then, the proposed method of multi-measurement tools
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multi-criteria decision making is given. Finally, some examples of the pro-
posed method in the context of public relation and mass communication are
discussed.

8.5.1 Experts Who Order Alternatives

Let there be m experts, E1, E2, . . . , Em, p alternatives which have to be eval-
uated by the experts A1, A2, . . . , Ap and q evaluation criteria C1, C2, . . . , Cq.
Let i-th expert have his/her own (current) reliability score 〈δi, εi〉 ∈ [0, 1]2

and his/her own (current) number of participations in expert investigations γi
(these two values correspond to her/his last evaluation). Expert’s reliability
scores can be interpreted, as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi =

q∑
j=1

δi,j

q

εi =

q∑
j=1

εi,j

q

,

where 〈δi,j , εi,j〉 are elements of the IM

T =

C1 C2 . . . Cq

E1

〈δi,j , εi,j〉
E2

(1 ≤ i ≤ m,
...

1 ≤ j ≤ q)
Em

and 〈δi,j , εi,j〉 is the rating of the i-th expert with respect to the j-th criterion
(assume that the i-th expert’s knowledge reliability may differ over different
criteria).

To illustrate the expert’s reliability score, we give the following example: a
sport journalist gave 10 prognoses for the results of 10 football matches. In 5
of the cases he/she guessed the winner, in 3 of the cases he failed and in the
rest two cases he did not engage with a final opinion about the result. That
is why, we determine his reliability score as 〈0.5, 0.3〉.

Let each of the experts show which criteria they shall use for a concrete
evaluation. We use the set of all criteria provided by the experts. For example,
each expert will obtain cards with the different criteria written on them.
Each expert ranks these criteria (or a part of them, if he/she deems some of
them unnecessary), on the vertices of a graph. The highest vertices of this
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graph corresponds to the most relevant criteria according to the respective
expert. The second top-down vertices interpret the criteria that are “an idea”
weaker than the first ones. There are no arcs between vertices which are
incomparable due to some criterion. Therefore, each of the experts not only
ranks the criteria that he/she uses (it is possible, omitting some of them),
but his/her order is not linear one. As a result, we obtain m different graphs.
Now, transform these graphs to IFGs, labelling each arc of the i-th expert’s
graph with a pair of values, corresponding to his/her expert’s reliability score.

Using operation “∪” over the IFGs, we obtain a new IFG, say G. It rep-
resents all expert opinions about the criteria ordering. Now, its arcs have
intuitionistic fuzzy weights being the disjunctions of the weights, of the same
arcs in the separate IFGs. Of course, the new graph may not be well or-
dered, while the expert graphs are well orderd. Now, we reconfigure IFG G
as follows. If there is a loop between two vertices V1 and V2, i.e., there are ver-
tices U1, U2, ..., Uu and verticesW1,W2, ...,Ww , such that V1, U1, U2, ..., Uu, V2
and V2,W1,W2, ...,Ww, V1 are simple paths in the graph, then we calculate
the weights of both paths as conjunctions of the weights of the arcs which
take part in the respective paths. The path that has smaller weight must be
cut into two, removing its arc with smallest weight. If both arcs have equal
weights, these arcs will be removed. Therefore, the new graph is already
loop-free. Now, determine the priorities of the vertices of the IFG, i.e., the
priorities of the criteria. Let them be ϕ1, ϕ2, ..., ϕq. For example, they have
values s−1

t for the vertices from the s-th level bottom-top of the IFG with
t+ 1 levels. We use these values below.

This procedure will be used in a next authors’ research, but with another
form of the algorithm for decision making, using the so constructed IFGs more
actively. Here, we use the above construction only to propose the experts’
possibility to work with non-linearly ordered criteria and to obtain priorities
of these criteria.

Having in mind that the i-th expert can use only a part of the criteria
and can estimate only a part of the alternatives, we can construct the IM of
his/her estimations in the form

Si =

Al1 Al2 . . . Alpi

Ci1

〈αi
ij ,lk

βi
ij ,lk

〉
Ci2

(1 ≤ ij ≤ qi ≤ q,
...

1 ≤ lk ≤ pi ≤ p)
Ciqi

where αi
ij ,k

, βi
ij ,k

∈ [0, 1], αi
ij ,k

+ βi
ij ,k

≤ 1 and 〈αi
j,k, β

i
j,k〉 is the i-th expert

estimation for the k-th alternative about the j-th criterion; Ci1 , ..., Ciqi
and

Al1 , ..., Alpi
are only those of the criteria and alternatives which the i-th
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expert prefers. Let us assume that in cases when pair 〈αi
j,k, β

i
j,k〉 does not

exist, we work with pair 〈0, 1〉.
Now, construct an IM containing the aggregated estimations of the form

S =

A1 A2 . . . Ap

C1

〈αj,kβj,k〉
C2

(1 ≤ j ≤ q,
...

1 ≤ k ≤ p)
Cq

where αj,k and βj,k can be calculated by different formulae, with respect to
some specific aims. For example, the formulae are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑
i=1

δi.α
i
j,k

m

βj,k =

m∑
i=1

εi.β
i
j,k

m

(here, only the average degrees of experts’ reliability participate),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑
i=1

δi,j .α
i
j,k

m

βj,k =

m∑
i=1

εi,j .β
i
j,k

m

(here estimated by the corresponding criteria, only the experts’ degrees of
reliability participate), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑
i=1

αi
j,k

m

βj,k =

m∑
i=1

β
i

j,k

m

(here only the experts’ degrees of reliability estimated by the correspond-

ing criteria participate), where αi
j,k and β

i

j,k can be calculated by various
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formulae, according to the particular goals and the experts’ knowledge. For
example, the formulae are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi
j,k = γi.

αi
j,k.δi,j + βi

j,k.εi,j
γi + 1

β
i

j,k = γi.
αi
j,k.εi,j + βi

j,k.δi,j
γi + 1

or ⎧⎪⎪⎨
⎪⎪⎩
αi
j,k = αi

j,k.
δi,j + 1 − εi,j

2

β
i

j,k = βi
j,k.

εi,j + 1 − δi,j
2

.

The first formula takes into account not only the rating of each expert by the
different criteria, but also the number of times he has made a prognosis (his
first time is neglected, for the lack of previous experience). Obviously, the so
constructed elements of the IM satisfy the inequality: αj,k + βj,k ≤ 1. This
IM contains the average experts’ estimations taking into account the experts’
ratings. As we noted above, each of the criteria Cj(1 ≤ j ≤ q) has itself a
priority, denoted by ϕj ∈ [0, 1]. For every alternative Ak, we determine the
global estimation 〈αk, βk〉, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk =

q∑
j=1

ϕj .αj,k

q

βk =

q∑
j=1

ϕj .βj,k

q

.

Let alternatives (processes) have the following (objective) values with regard
to the different criteria after the end of the expert estimations:

A1 A2 . . . Ap

C1

〈aj,kbj,k〉
C2

(1 ≤ j ≤ q,
...

1 ≤ k ≤ p)
Cq

where aj,k, bj,k ∈ [0, 1] and aj,k + bj,k ≤ 1. Then the i-th expert’s new rating,
〈δi, εi〉, and new number of participations in expert investigations, γ′i will be:

γ′i = γi + 1,
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and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ′i =
γi.δi + cM−ci

2
γ′i

,

ε′i =
γi.εi − cM−ci

2
γ′i

,

,

where

ci =

q∑
j=1

p∑
k=1

((αj,k − aj,k)2 + (βj,k − bj,k)2)1/2

p.q
,

and

cM =

n∑
i=1

ci

n
.

8.5.2 Measurement Tools That Evaluate Alternatives

Assume that we have m measurement tools M1,M2, . . . ,Mm, p alternatives
A1,A2, . . . , Ap that have to be evaluated by the m measurement tools, and
q evaluation criteria C1, C2, . . . , Cq. Also, assume that the j-th criterion has
a given preliminary score ϕj ∈ [0, 1], which denotes the importance of the
criterion in the evaluation strategy. This score can be determined, by some
experts.

Let us assume that each measurement tool has its own (current) reliability
score 〈δi, εi〉 ∈ [0, 1]2, and its own (current) number of use in the measurement
investigations γi. These two values correspond to the measurement tool’s last
using. The measurement tool reliability scores can be obtained, e.g., by the
elements of the IM

T =

C1 C2 . . . Cq

M1

〈δi,j , εi,j〉
M2

(1 ≤ i ≤ m,
...

1 ≤ j ≤ q)
Mm

where 〈δi,j , εi,j〉 is the rating of the i-th measurement tool with respect to
the j-th criterion. Here, we assume that each measurement tool can be used
to evaluate only one criterion. Hence, it is important that we must find the
most suitable measurement tool for each criterion.

The following is the procedure aimed at determining the different couples
〈δi,j , εi,j〉 with the highest values with respect to formulae:
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〈a, b〉 ≤ 〈c, d〉 iff a ≤ c and b ≥ d, (8.7)

where a, b, c, d ∈ [0, 1] and a+ b ≤ 1, c+ d ≤ 1.
1 Define the empty IM U = [∅, ∅, ∗], where “∗” denotes the lack of elements

in a matrix (i.e., a matrix with a dimension 0 × 0).
2 Choose 〈δi,j , εi,j〉 as the maximal element with respect to the order ≥

by using (8.7).
3 We construct the reduced IM T(Mi,Cj) and construct the IM

U := U + [{Mi}, {Cj}, Ai,j ],

where Ai,j is an ordinary matrix of dimension 1×1 and with a unique element
〈δi,j , εi,j〉.

4 We check whether some of the index sets of IM T(Mi,Cj) are not already
empty. If yes - end; if not - go to 1.

As a result of the above procedure, we obtain a list of measurement tool
scores. For brevity, write

〈δi,j , εi,j〉 = 〈δi, εi〉,
because for the concrete sitting the i-th measurement tool uses only these
values of its score. The procedure shows that we determine the most suitable
measurement tools for the criteria with the highest sense for the estimated
alternatives. Perhaps, a part of the criteria or a part of the measurement
tools may not be used for the current sitting. Of course, the procedure shows
that for the i-th measurement tool (if it is in the list with the most suitable
measurement tools), there exists a j-th criterion and therefore, the present
value of j is function of i, i.e., j = j(i).

Briefly, let the i-th measurement tool Mi (1 ≤ i ≤ m), that uses j = j(i)-
th criterion, have given the following estimations, which are described by the
IM

Si =
A1 A2 . . . Ap

Cj 〈αi
j,1β

i
j,1〉 〈αi

j,2β
i
j,2〉 . . . 〈αi

j,kβ
i
j,k〉 ,

where: αi
j,k, β

i
j,k ∈ [0, 1] and αi

j,k + βi
j,k ≤ 1 for 1 ≤ k ≤ p.

Then, we construct the IM

S =

A1 A2 . . . Ap

C1

〈αj,kβj,k〉
C2

(1 ≤ j ≤ q,
...

1 ≤ k ≤ p)
Cq

where αj,k and βj,k can be calculated by using
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑
i=1

δi.α
i
j,k

m

βj,k =

m∑
i=1

εi.β
i
j,k

m

(here only the average degrees of measurement tool reliability is taken),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑
i=1

δi,j .α
i
j,k

m

βj,k =

m∑
i=1

εi,j .β
i
j,k

m

(what participates here is only the measurement tool degrees of reliability,
estimated according to the corresponding criteria),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑
i=1

αi
j,k

m

βj,k =

m∑
i=1

β
i

j,k

m

,

where αi
j,k and β

i

j,k can also be calculated by various formulae, according to
particular goals and measurement tool estimations, by using the formulae

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi
j,k = γi.

αi
j,k.δi,j + βi

j,k.εi,j
γi + 1

β
i

j,k = γi.
αi
j,k.εi,j + βi

j,k.δi,j
γi + 1

or ⎧⎪⎪⎨
⎪⎪⎩
αi
j,k = αi

j,k.
δi,j + 1 − εi,j

2

β
i

j,k = βi
j,k.

εi,j + 1 − δi,j
2

.

The first formula takes into account not only the score of each measurement
tool by the different criteria, but also the number of times it has been used
so far. Obviously, the so constructed elements of the IM satisfy the inequality
αj,k + βj,k ≤ 1.
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Now, we discuss another possibility to use measurement tool estimations,
accounting our opinion about the separate tools. On the basis of the mea-
surement tool estimations and the measurement tool scores, we deform the
measurement tool estimations, as follows:
• optimistic estimation:

〈αi
j,1β

i
j,1〉 = Jδi,εi(〈αi

j,1β
i
j,1〉)

or
〈αi

j,1β
i
j,1〉 = J∗

δi,εi(〈αi
j,1β

i
j,1〉);

• optimistic estimation with restrictions:

〈αi
j,1β

i
j,1〉 = Pα,β(〈αi

j,1β
i
j,1〉),

where α, β ∈ [0, 1] are fixed levels and α+ β ≤ 1;
• pessimistic estimation:

〈αi
j,1β

i
j,1〉 = Hδi,εi(〈αi

j,1β
i
j,1〉)

or 〈αi
j,1β

i
j,1〉 = H∗

δi,εi(〈αi
j,1β

i
j,1〉);

• pessimistic estimation with restrictions:

〈αi
j,1β

i
j,1〉 = Qα,β(〈αi

j,1β
i
j,1〉),

where α, β ∈ [0, 1] are fixed levels and α+ β ≤ 1;
• estimation with decreasing uncertainty:

〈αi
j,1β

i
j,1〉 = Fδi,εi(〈αi

j,1β
i
j,1〉)

(the condition δi + εi ≤ 1 is obviously valid);
• estimation with increasing uncertainty:

〈αi
j,1β

i
j,1〉 = Gδi,εi(〈αi

j,1β
i
j,1〉).

After calculating new values of 〈αi
j,1β

i
j,1〉, they are used in the above for-

mulae.
We determine, for every alternative Ak, the global estimation 〈αk, βk〉,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk =

q∑
j=1

ϕj .αj,k

q

βk =

q∑
j=1

ϕj .βj,k

q

.

Let alternatives (processes) have the following (objective) values with regard
to the different criteria after the end of the evaluations measurement tools:
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A1 A2 . . . Ap

C1

〈aj,kbj,k〉
C2

(1 ≤ j ≤ q,
...

1 ≤ k ≤ p)
Cq

where: aj,k, bj,k ∈ [0, 1] and aj,k + bj,k ≤ 1. Then, the measurement tool’s
new score, 〈δi, εi〉, and the new number of measurement tools usage, γ′i, is
calculated similar to Section 8.5.1.

The present algorithm should be quite useful when searching for an objec-
tive answer on the basis of subjective initial data. Having in mind the experts’
reliability scores with respect to their successful prognoses hitherto (objec-
tive data), and their present evaluations (subjective data), we try to derive
an objective estimation about the current event, so that it would cover the
estimations of the widest possible circle of people involved. This formulation
of the problem implies that the areas, which will find the proposed algorithm
a suitable tool for analysis and representation of the data, are the areas in-
volving evaluation of the public opinion about currently flowing processes
and tendencies in the society, or evaluating the ratings of the politicians,
the media and other similar phenomena. If there exists some causal relation
between two of the chosen parameters in our evaluation, it seems natural to
grade them from top to bottom in the graph representation of the problem.
If both factors are indepedent but equal in weight, their place is next to one
another on the same hierarchy level in the graph. The experts themselves
must definitely be specialists in the area they are giving estimations about.

8.6 Some Ways of Determining Membership and
Non-membership Functions

In the theory of fuzzy sets, various methods are discussed for the generation
of values of the membership function (for instance, see [144, 145, 146, 301,
147, 593, 592]).

Here, we discuss a way of generation of the two degrees – of membership
and of non-membership that exist in the intuitionistic fuzzy sets (IFSs). For
other approaches of assigning membership and non-membership functions of
IFSs see [456].

Let us have k different generators G1, G2, ..., Gk of fuzzy estimations for n
different objects O1, O2, ..., On. In [144, 145, 146] these generators are called
“estimators”.

Let the estimations be collected in the IM
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O1 O2 ... Oj ... On

G1 α1,1 α1,2 ... α1,j ... α1,n

G2 α2,1 α2,2 ... α2,j ... α2,n

...
...

...
...

...
Gi αi,1 αi,2 ... αi,j ... αi,n

...
...

...
...

...
Gk αk,1 αk,2 ... αk,j ... αk,n

On the basis of the values of the IM, we can construct the following two
types of fuzzy sets:

O∗
1 = {〈Gi, αi,1〉|1 ≤ i ≤ k},

O∗
2 = {〈Gi, αi,2〉|1 ≤ i ≤ k},

. . .

O∗
n = {〈Gi, αi,n〉|1 ≤ i ≤ k},

and
G∗

1 = {〈Ojα1,j〉|1 ≤ j ≤ n},
G∗

2 = {〈Ojα2,j〉|1 ≤ j ≤ n},
. . .

G∗
k = {〈Ojαk,j〉|1 ≤ j ≤ n}.

Now, using these sets we construct new different sets, already IFSs.
First, we construct the IFSs:

OI
1 = {〈Gi, αi,1,

∑
2≤s≤n

αi,s〉|1 ≤ i ≤ k},

OI
2 = {〈Gi, αi,2,

∑
1≤s≤n; s�=2

αi,s〉|1 ≤ i ≤ k},

. . .

OI
n = {〈Gi, αi,n,

∑
1≤s≤n−1

αi,s〉|1 ≤ i ≤ k},

or
OI

j = {〈Gi, αi,j ,
∑

1≤s≤n; s�=j

αi,s〉|1 ≤ i ≤ k}, for j = 1, 2, ..., n;

and
GI

1 = {〈Oj , α1,j,
∑

2≤s≤n

αs,j〉|1 ≤ j ≤ n},

GI
2 = {〈Oj , α2,j ,

∑
1≤s≤n; s�=2

αs,j〉|1 ≤ j ≤ n},

. . .
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GI
k = {〈Oj , αk,j ,

∑
1≤s≤n−1

αj,s〉|1 ≤ j ≤ n},

or
GI

i = {〈Oj , αi,j ,
∑

1≤s≤n; s�=i

αj,s〉|1 ≤ j ≤ n}, for j = 1, 2, ..., k;

Second, we construct the IFSs:

GI
max,min = {〈Oj , max

1≤i≤n
αi,j , min

1≤i≤n
αi,j〉|1 ≤ j ≤ n},

GI
av = {〈Oj ,

1

k

k∑
i=1

αi,j ,
1

k

∑
1≤s≤n;s�=j

k∑
i=1

αi,s〉|1 ≤ j ≤ n},

GI
min,max = {〈Oj , min

1≤i≤n
αi,j , max

1≤i≤n
αi,j〉|1 ≤ j ≤ n}.

Now, we illustrate the above constructions.
Let five experts E1, E2, E3, E4 and E5 offer their evaluations of the per-

centage of votes, obtained by the political parties P1, P2 and P3:

P1 P2 P3

E1 32% 9% 37%
E2 27% 7% 39%
E3 26% 11% 35%
E4 31% 8% 39%
E5 29% 9% 41%

Now, we are able to generate the fuzzy sets

P ∗
1 = {〈E1, 0.32〉, 〈E2, 0.27〉, 〈E3, 0.26〉, 〈E4, 0.31〉, 〈E5, 0.29〉},
P ∗
2 = {〈E1, 0.09〉, 〈E2, 0.07〉, 〈E3, 0.11〉, 〈E4, 0.08〉, 〈E5, 0.09〉},
P ∗
3 = {〈E1, 0.37〉, 〈E2, 0.39〉, 〈E3, 0.35〉, 〈E4, 0.39〉, 〈E5, 0.41〉},

E∗
1 = {〈P1, 0.32〉, 〈P2, 0.09〉, 〈P3, 0.37〉},

E∗
2 = {〈P1, 0.27〉, 〈P2, 0.07〉, 〈P3, 0.39〉},

E∗
3 = {〈P1, 0.26〉, 〈P2, 0.11〉, 〈P3, 0.35〉},

E∗
4 = {〈P1, 0.31〉, 〈P2, 0.08〉, 〈P3, 0.39〉},

E∗
5 = {〈P1, 0.29〉, 〈P2, 0.09〉, 〈P3, 0.41〉}.

We can aggregate the last five sets, e.g., by operation @ and obtain the fuzzy
set

EFS = {〈P1, 0.29〉, 〈P2, 0.088〉, 〈P3, 0.382〉}.
Below, we show why we use the above information for constructing IFSs.
It is easy to figure out that if expert E1 believes that party P1 would obtain

32% of the election votes, then he deems that 68% of the voters are against
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this party. If we take for granted that all the five experts are equally compe-
tent, i.e. their opinions are of equal worth, then we may conclude that party
P1 will receive between 26% and 32% of the votes, therefore, the opposers of
this party will count between 68% and 74% of the voters. Now, an IFS can
be constructed for the universe {P1, P2, P3} that would have the form:

EIFS,1 = {〈P1, 0.26, 0.68〉, 〈P2, 0.07, 0.89〉, 〈P3, 0.35, 0.59〉}.

This shows that at least 26% of the voters would support party P1 and at
least 68% would oppose it.

Another possible IFS that we can construct on the basis of the above data,
is

EIFS,2 = {〈P1, 0.29, 0.47〉, 〈P2, 0.088, 0.672〉, 〈P3, 0.382, 0.378〉}.
The μ-components of this IFS are obtained directly from EFS , while the

ν-components are sums of the μ-components of the other two parties.
Following the above formulae, we can construct the next IFSs:

P ∗
1 = {〈E1, 0.32, 0.46〉, 〈E2, 0.27, 0.46〉, 〈E3, 0.26, 0.46〉, 〈E4, 0.31, 0.47〉,

〈E5, 0.29, 0.50〉},
P ∗
2 = {〈E1, 0.09, 0.59〉, 〈E2, 0.07, 0.66〉, 〈E3, 0.11, 0.61〉, 〈E4, 0.08, 0.70〉,

〈E5, 0.09, 0.70〉},
P ∗
3 = {〈E1, 0.37, 0.41〉, 〈E2, 0.39, 0.34〉, 〈E3, 0.35, 0.37〉, 〈E4, 0.39, 0.39〉,

〈E5, 0.41, 0.38〉},
E∗

1 = {〈P1, 0.32, 0.46〉, 〈P2, 0.09, 0.59〉, 〈P3, 0.37, 0.41〉},
E∗

2 = {〈P1, 0.27, 0.46〉, 〈P2, 0.07, 0.66〉, 〈P3, 0.39, 0.34〉},
E∗

3 = {〈P1, 0.26, 0.46〉, 〈P2, 0.11, 0.61〉, 〈P3, 0.35, 0.37〉},
E∗

4 = {〈P1, 0.31, 0.47〉, 〈P2, 0.08, 0.70〉, 〈P3, 0.39, 0.39〉},
E∗

5 = {〈P1, 0.29, 0.50〉, 〈P2, 0.09, 0.70〉, 〈P3, 0.41, 0.38〉}.
When some of the estimators are incorrect, we can use the algorithms from

Section 1.7 for correction of their estimations.
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