
Iterated Greedy Algorithms for the Maximal

Covering Location Problem

Francisco J. Rodriguez1, Christian Blum2,
Manuel Lozano1, and Carlos Garćıa-Mart́ınez3

1 Department of Computer Science and Artificial Intelligence,
University of Granada, Granada, Spain

2 ALBCOM Research Group, Technical University of Catalonia, Barcelona, Spain
3 Department of Computing and Numerical Analysis,

University of Córdoba, Córdoba, Spain
fjrodriguez@decsai.ugr.es, cblum@lsi.upc.edu,

lozano@decsai.ugr.es, cgarcia@uco.es

Abstract. The problem of allocating a set of facilities in order to max-
imise the sum of the demands of the covered clients is known as the
maximal covering location problem. In this work we tackle this problem
by means of iterated greedy algorithms. These algorithms iteratively re-
fine a solution by partial destruction and reconstruction, using a greedy
constructive procedure. Iterated greedy algorithms have been applied
successfully to solve a considerable number of problems. With the aim of
providing additional results and insights along this line of research, this
paper proposes two new iterated greedy algorithms that incorporate two
innovative components: a population of solutions optimised in parallel
by the iterated greedy algorithm, and an improvement procedure that
explores a large neighbourhood by means of an exact solver. The bene-
fits of the proposal in comparison to a recently proposed decomposition
heuristic and a standalone exact solver are experimentally shown.

Keywords: iterated greedy algorithm, large neighbourhood search,
maximal covering location problem.

1 Introduction

The maximal covering location problem MCLP [4] considers a predefined number
of facilities that have to be allocated such that the demand of the clients covered
by these facilities—given a maximum service distance—is maximal. This problem
has several real-world applications in different fields, including the planning of
service locations such us health-care centres, fire stations, and emergency centres.

More precisely, let M be the set of m potential facility locations and N the set
of n clients to be covered.D(i, j) denotes the distance between each pair of nodes
i ∈ N and j ∈ M , U is the maximum service distance, and wi is the demand of
client i. Note that a client i is covered by a facility installed at location j ∈ M
iff D(i, j) ≤ U . The objective is to maximise the sum of the demands of all the

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 172–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Iterated Greedy Algorithms for the Maximal Covering Location Problem 173

clients covered by any of the p installed facilities. The MCLP may be formulated
as the following zero-one integer programming problem [4]:

max z =
n∑

i=1

wi · xi

subject to:
∑

j∈Si

yj ≥ xi for i ∈ N

∑

j∈M

yj = p

xi ∈ {0, 1} for i ∈ N

yj ∈ {0, 1} for j ∈ M

(1)

(2)

(3)

(4)

(5)

Hereby, xi is a binary variable indicating whether client i is covered by a
facility, yj is a binary variable that attests whether location j has been chosen
to install a facility, and Si is the set composed by all potential facility locations
that cover client i, that is, Si = {j ∈ M : D(i, j) ≤ U}.

1.1 Previous Work

The MCLP is an NP-hard problem [9] that has received quite some attention
since it was presented, having resulted in a variety of proposals for tackling
the problem. The latter include exact algorithms for relaxations of the prob-
lem [4,6,7,8], greedy heuristics [4], and several metaheuristics such as genetic al-
gorithms [2,14], tabu search [14], and simulated annealing [14]). Recently, Senne
et al. [13] presented a decomposition heuristic to perform a cluster partitioning,
resulting in smaller subproblems (clusters) that can be solved independently by
exact methods (LagClus). The results obtained by this approach are compared
in terms of quality and computational time required with regards to those of
a commercial solver (CPLEX [1]), indicating that the proposed decomposition
approach can substantially reduce the time for providing good-enough solutions
to large problem instances.

1.2 Our Contribution

In this work, we propose two iterated greedy (IG) algorithms [5,11] for solving the
MCLP. IG algorithms, generally, try to iteratively refine a solution by removing
elements from this solution by means of a destructive procedure and reconstruct-
ing the resulting partial solution using a greedy constructive procedure. The first
one of the proposed IG variants extends the basic IG idea by considering a pop-
ulation of solutions that are improved in parallel by means of the standard IG
procedure. The resulting algorithm is labelled population-based iterated greedy
(PBIG). Second, we propose a hybrid algorithm that combines PBIG with an
exact solver. In particular, CPLEX is employed for this purpose. The idea con-
sists in completing the solutions provided by the destruction procedure of IG



174 F.J. Rodriguez et al.

by means of the application of CPLEX. The latter only optimises a predefined
number of components of each solution, while the remaining components of the
solution are fixed to the values of the partial solutions received as input. This
strategy is known as large neighbourhood search (LNS) [3,12]. The basic idea is
to combine the advantages of a large neighbourhood, which usually enhances the
exploration of a local search method, with an exhaustive tree-search exploration
which is faster than enumeration. Our second IG approach is labelled population
based iterated greedy with large neighbourhood search (PBIG+LNS).

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we present in
detail the two proposed IG variants for the MCLP. In Section 3, we present a
empirical study that compares the behaviour of the two proposed IG algorithms
with regards to those of the most recent proposal from the literature, LagClus,
and a standalone CPLEX procedure. Finally, in Section 4, we discuss conclusions
and further work.

2 Proposed IG Variants for the MLCP

In this section, we describe the two proposed IG variants for the MLCP. First,
let us focus on the PBIG scheme. It extends IG by working on a population
of solutions which is managed in the style of evolution strategies. The resulting
algorithm is outlined in Figure 1. It starts by initialising the population P with
t solutions generated by a probabilistic greedy constructive procedure (as out-
lined below). Inside the main loop, each solution s ∈ P is optimised by means
of a destruction/re-construction procedure, generating a new population Pn of
solutions. The destruction step consists in randomly removing nd elements from
the considered solution s, resulting in a partial solution sd. This solution is re-
constructed by means of the same probabilistic greedy constructive procedure
that was used to generate the initial population. This step results in a (possibly
new) complete solution sc which is then added to Pn. After applying this process
to all solutions from P , the new population Pn is added to P , resulting in a new
set P of size 2 ·t. The last step of each iteration consists in choosing the best t so-
lutions from P for the population of the next iteration. The proposed algorithm
iterates through these phases until a computation limit tmax is reached.

2.1 The Probabilistic Greedy Procedure

The probabilistic greedy constructive procedure used for the initialisation of the
population and the re-construction of partial solutions works as follows. At each
step, it considers placing a new facility in any of the locations that is not yet
occupied by an already installed facility. For each of these options, it calculates
the contribution to the objective function value, that is, the increase in the
function value caused by the respective option. The two options which cause the



Iterated Greedy Algorithms for the Maximal Covering Location Problem 175

Input: tmax, t, nd, prob
Output: s
P ←GenerateInitialPopulation(t);1

while computation time limit tmax not reached do2

Pn ← ∅ ;3

foreach s ∈ P do4

sd ← Destruction(s, nd);5

if PBIG() then sc ← Construction(sd, prob) // PBIG ;6

else sc ← LNS(sd) // PBIG+LNS ;7

Pn ← Pn ∪ {sc};8

end9

P ← P ∪ Pn;10

P ← SelectBestSolutions(P, t) ;11

end12

Fig. 1. PBIG and PBIG+LNS scheme

highest increase are identified. Finally, the best option is chosen with probability
prob, which is an input parameter of the algorithm. Otherwise the second-best
option is chosen. The procedure stops once p facilities are installed.

2.2 PBIG+LNS

As mentioned already in the introduction, PBIG+LNS modifies PBIG by replac-
ing the constructive step with a large neighborhood search method applied to
the solutions generated by the destructive step of PBIG (see line 7 of the algo-
rithm from Figure 1). This procedure is performed by an exact solver (CPLEX),
whereby the size of the neighbourhood is determined by fixing the components
provided by the current partial solution sd. In particular, a binary variable yj
(see the definition of the MCLP) is fixed to 1 if location j is selected as a facility
in sd. In the same way, a variable xi is fixed to 1 if client i is covered by any of the
fixed facility locations. This means that CPLEX will try to find an allocation for
the nd unallocated facilities. In this way, CPLEX—which is already very efficient
for problem instances with a small number of clients and facilities [13]—can be
used as a sub-ordinate procedure for tackling large-size problem instances. The
complete pseudocode of the LNS method is shown in Figure 2.

3 Computational Experiments

This section describes the computational experiments performed to assess the
performance of the two IG algorithms presented in the previous section. Both
PBIG and PBIG+LNS were coded in Java and the tests were conducted on a
computer with a 3.2 GHz Intel i7 processor with 12 GB of RAM running Fedora
Linux V15.



176 F.J. Rodriguez et al.

Input: sc
Output: sc
Yfixed ← ∅ ;1

Xfixed ← ∅ ;2

foreach j ∈M do3

if IsSelectedAsFacility(j, sd) then Yfixed ← Yfixed ∪ {yj} end;4

end5

foreach i ∈ N do6

if IsCovered(i, sd) then Xfixed ← Xfixed ∪ {xi} end;7

end8

sc = CPLEX(Yfixed, Xfixed) // Neighbourhood restricted to the set of9

free binary variables xi and yj ;

Fig. 2. Procedure LNS() of PBIG+LNS

3.1 Problem Instances

We have employed two different sets of problem instances:

1. Real case instances for facility location problems in Sao Jose dos Cam-
pos, Brazil (SCJ instances). These instances are available for download at
http://www.lac.inpe.br/lorena/instancias.html.

2. An instance which was created on the basis of instance PCB3038 available
from the TSPLIB [10].

3.2 Tuning Experiments

In order to perform a fine-tuning of the two proposed IG algorithms we first
conducted tuning experiments in order to find values for the following algorithm
parameters:

1. Population size t: values from {1, 2, 10, 10, 50, 100} were considered.
2. Destruction size nd: For the percentage of elements dropped from the

current solution during the destructive step values from {5%, 10%, 20%, 50%}
were considered.

3. Degree of determinism for the solution construction prob: for the
probability of accepting the option with the best contribution during the
greedy constructive procedure values from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}) were
considered. Note that prob = 1.0 corresponds to a completely deterministic
solution (re-)construction.

For each combination of values for the three parameters (full factorial design),
we applied both PBIG (and PBIG+LNS) to a subset of the real-case instances.
The computation time limits were chosen dependent on the number of clients
of the instance (50 seconds for instances with 324, respectively 500, clients and
100 seconds for those with 818 clients). A rank-based analysis was applied to
the results. The parameter combination with the best average rank over all

http://www.lac.inpe.br/∼lorena/instancias.html


Iterated Greedy Algorithms for the Maximal Covering Location Problem 177

Table 1. Parameters values

Parameter PBIG PBIG+LNS

Population size (t) 100 20
Elements dropped (nd) 20% 50%

Degree of determinism (prob) 0.8 0.8

testing instances is shown in Table 1. Although PBIG and PBIG+LNS share
core funcionality, we have performed their parameter analysis separately. The
tuning outcome shows that, interestingly, the two algorithm versions reach their
best performance with quite different values for two out of the three parameters.

3.3 Experimental Results

In the following we describe the outcome of a comparative analysis between
the results of PBIG and PBIG+LNS and those of LagClus, which is the cur-
rently best heuristic method, and the standalone CPLEX procedure. The re-
ported results for LagClus and CPLEX are the ones provided in [13]. They
were obtained on a computer with an Intel Core 2 Duo 2.0 GHz processor and
2.0 GB RAM, running Windows XP. Tables 2 and 3 show the results for the
SCJ instances, considering a service distance of 150 and 200, respectively. For
each instance—which is determined by a number of clients, n, and a number
of facilities, p—we provide the optimal solution obtained by CPLEX and the
gap = 100 · ((Result − Optimal)/Optimal) for each algorithm. Moreover, for
each algorithm we show the computational time needed to obtain the corre-
sponding result. The results reported for PBIG and PBIG+LNS correspond to
the average over 10 independent applications to each problem instance. Con-
cerning the computation time limits, we used the same ones as for the tuning
procedure.

The results of the considered algorithms as shown in Tables 2 and 3 allow us
to make the following observations:

– Comparing the results of PBIG and PBIG+LNS, we can observe that PBIG+
LNS clearly outperforms PBIG. In addition, analysing the computational
time used by the two algorithms, we can observe that PBIG+LNS reduces
the computational time requirements with respect to PBIG, especially when
larger problem instances are concerned. This indicates that the hybridisation
with LNS seems to be a decisive element to improve not only the quality of
the results but also for the reduction of the computation time requirements.

– Concerning the comparison of PBIG+LNS with LagClus, we can observe
that PBIG+LNS exceeds or equals the results of LagClus for all instances
with U = 150 and—with one exception—also for all instances with U = 200.
It is noticeable that PBIG+LNS is able to obtain optimal solutions in all 10
runs in 37 out of 46 cases, which is indicated by an average gap of 0.000. This
fact shows that—in addition to reaching high quality solutions—PBIG+LNS
is characterized by a very stable behaviour. Concerning computation time,



178 F.J. Rodriguez et al.

Table 2. Results for the SJC instances, U=150

n p Optimal LagClus PBIG PBIG+LNS
Result (time s) Gap (time s) Gap (time s) Gap (time s)

324

20 7302 (0.015) 0.000 (2.543) 0.000 (0.391) 0.000 (0.381)
30 9127 (0.047) 0.027 (24.650) 0.072 (9.633) 0.000 (5,082)
40 10443 (0.188) 0.108 (25.985) 0.000 (26.553) 0.000 (10.320)
50 11397 (0.391) 0.138 (24.452) 0.005 (20.313) 0.000 (11.164)
60 11991 (0.235) 0.024 (44.514) 0.097 (26.896) 0.000 (10.576)
80 12152 (0.031) 0.000 (8.876) 0.000 (9.181) 0.000 (3.732)
108 12152 (0.016) 0.000 (1.595) 0.000 (0.761) 0.000 (0.672)

500

40 13340 (0.047) 0.000 (3.453) 0.247 (4.560) 0.000 (3.857)
50 14773 (0.047) 0.000 (4.938) 0.093 (22.381) 0.000 (6.529)
60 15919 (0.063) 0.000 (8.233) 0.092 (31.052) 0.000 (12.073)
70 16908 (0.031) 0.000 (3.723) 0.002 (41.019) 0.000 (8.339)
80 17749 (0.015) 0.000 (5.406) 0.038 (44.786) 0.000 (10.938)
100 18912 (0.109) 0.000 (10.276) 0.310 (46.737) 0.000 (24.574)
130 19664 (0.297) 0.015 (30.827) 0.230 (47.735) 0.000 (30.642)
167 19707 (0.047) 0.003 (14.600) 0.000 (1.057) 0.000 (0.931)

818

80 23325 (0.140) 0.003 (45.564) 0.293 (94.376) 0.000 (28.637)
90 24455 (0.266) 0.041 (56.388) 0.348 (91.452) 0.000 (37.726)
100 25435 (0.344) 0.012 (87.279) 0.306 (94.742) 0.000 (40.067)
120 26982 (0.297) 0.015 (69.658) 0.446 (93.713) 0.000 (33.781)
140 28802 (0.359) 0.095 (52.966) 0.597 (94.131) 0.002 (44.736)
160 28699 (0.391) 0.107 (58.453) 0.612 (93.477) 0.004 (74.202)
200 29153 (0.234) 0.011 (61.531) 0.096 (92.225) 0.000 (40.068)
273 29168 (0.031) 0.000 (3.343) 0.000 (1.439) 0.000 (1.271)

it seems that the requirements of LagClus and PBIG+LNS are of the same
order of magnitude. All in all, this indicates that PBIG+LNS is a new state-
of-the-art method for what concerns heuristics for the MCLP.

– For what concerns the comparison to CPLEX, we must observe that CPLEX
is able to solve all problem instances in very little computation time. There-
fore, PBIG+LNS must be considered inferior to CPLEX for the SJC in-
stances.

Finally, in Table 4 we show the results of all analysed algorithms for the set of
instances derived from the TSPLIB instance PCB3038. PBIG and PBIG+LNS
consider a computation time limit of 1500 seconds for each run. It is important to
highlight that the number of clients considered in this case is much higher than
in the case of the SCJ instances, which imposes a more complicated environment
for the analysed algorithms. In fact, as shown in Table 4, CPLEX is unable to
confirm the optimality of solutions within the predefined time limit of 20000
seconds for instances with more than 18 facilities. These cases are marked by an
asterisk. Therefore, large-size instances are the ones for which PBIG+LNS is an
interesting alternative. Concerning the results of Table 4, we can conclude the
following:



Iterated Greedy Algorithms for the Maximal Covering Location Problem 179

Table 3. Results for the SJC instances, U=200

n p Optimal LagClus PBIG PBIG+LNS
Result (time s) Gap (time s) Gap (time s) Gap (time s)

324

20 9670 (0.172) 0.243 (19.293) 0.307 (9.633) 0.000 (11.064)
30 11737 (0.484) 0.060 (28.943) 0.098 (25.676) 0.000 (12.580)
40 12151 (0.094) 0.008 (31.066) 0.023 (35.910) 0.004 (19.813)
50 12152 (0.015) 0.000 (9.926) 0.000 (0.494) 0.000 (0.469)
60 12152 (0.047) 0.000 (4.575) 0.000 (0.620) 0.000 (0.506)
80 12152 (0.016) 0.000 (3.670) 0.000 (0.637) 0.000 (0.663)
108 12152 (0.031) 0.248 (11.343) 0.000 (0.643) 0.000 (0.763)

500

40 17077 (0.233) 0.387 (24.668) 0.255 (45.223) 0.012 (25.679)
50 18361 (0.109) 0.003 (39.109) 0.326 (43.199) 0.000 (24.485)
60 19153 (0.063) 0.005 (52.639) 0.352 (47.504) 0.017 (31.036)
70 19551 (1.078) 0.069 (43.946) 0.397 (46.511) 0.006 (30.314)
80 19703 (0.156) 0.008 (35.495) 0.124 (45.296) 0.001 (22.716)
100 19707 (0.078) 0.000 (16.624) 0.000 (1.050) 0.000 (0.832)
130 19707 (0.047) 0.000 (1.986) 0.000 (1.025) 0.000 (1.017)
167 19707 (0.016) 0.016 (22.379) 0.000 (0.954) 0.000 (1.026)

818

80 27945 (0.203) 0.069 (57.835) 0.858 (94.841) 0.000 (51.136)
90 28519 (1.141) 0.071 (114.145) 0.828 (95.977) 0.013 (75.486)
100 28910 (1.391) 0.036 (88.885) 0.801 (91.365) 0.000 (59.345)
120 29165 (1.234) 0.002 (55.710) 0.185 (90.345) 0.001 (56.270)
140 29168 (0.125) 0.000 (11.643) 0.000 (79.766) 0.000 (10.313)
160 29168 (0.062) 0.000 (9.738) 0.000 (1.087) 0.000 (1.087)
200 29168 (0.032) 0.000 (5.762) 0.000 (1.288) 0.000 (1.276)
273 29168 (0.031) 0.207 (24.689) 0.000 (1.491) 0.000 (1.513)

Table 4. Results for the TSPLIB instance PCB3038, U=400

n p Optimal LagClus PBIG PBIG+LNS
Result (time s) Gap (time s) Gap (time s) Gap (time s)

3038

17 125320 (802) 0.205 (844) 0.992 (354) 0.125 (357)
18 130004 (10265) 0.372 (817) 0.481 (384) 0.236 (556)
19 134262* (20000) 0.382 (1483) 0.552 (573) 0.265 (602)
20 138028* (20000) 0.698 (1712) 0.165 (941) 0.033 (518)
21 141279* (20000) 0.024 (3117) 0.085 (913) 0.000 (583)
22 143809* (20000) 0.024 (6656) 7.155 (573) 0.010 (602)

– PBIG+LNS is able to significantly improve over the gap of LagClus for all
considered instances, while requiring even less computation time.

– PBIG+LNS generates solutions close to the ones of CPLEX, while reducing
substantially—especially for instances with more than 17 facilities—the time
needed to obtain high-quality solutions.

4 Conclusions and Future Work

In this paper, we have proposed two IG algorithms for the maximum covering
location problem. The proposed algorithms add two novel components to the



180 F.J. Rodriguez et al.

basic IG technique. In the first place, PBIG incorporates a population of so-
lutions evolved in parallel by means of the classic destruction/re-construction
procedure of IG algorithms. In the second place, PBIG+LNS extends PBIG by
incorporating an exact solver to complete the solutions generated by the de-
structive procedure of IG, following the ideas of large neighborhood search. The
resulting hybrid algorithm, PBIG+LNS, has proved to be superior to a recently
proposed decomposition heuristic. Moreover, in the case of large-scale instances,
where the computation time requirements of CPLEX explode, PBIG+LNS arises
as a tool of choice to face this kind of problems.

We believe that the IG frameworks presented in this paper are an interest-
ing contribution, worthy of further study. We will mainly focus on the follow-
ing avenues of possible research: (1) study of the behaviour of the proposed
PBIG+LNS for what concerns new instances of the problem and (2) adapting
the PBIG+LNS approach for its application to other challenging optimisation
problems, especially when large-size instances are concerned.

Acknowledgements. This work was supported by grants TIN2007-66523 and
TIN2008-05854 of the Spanish government and by grant P08-TIC-4173 of the
Andalusian regional goverment. Moreover, Christian Blum acknowledges sup-
port from the Ramón y Cajal program of the Spanish Ministry of Science and
Innovation.

References

1. IBM ILOG CPLEX optimizer (November 2011),
http://www-01.ibm.com/software/

integration/optimization/cplexoptimizer/

2. Arakaki, R.G.I., Lorena, L.A.N.: A constructive genetic algorithm for the maximal
covering location problem. In: Proceedings of the 4th Metaheuristics International
Conference (MIC 2001), pp. 13–17 (2001)

3. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combina-
torial optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)

4. Church, R., Velle, C.R.: The maximal covering location problem. Papers in Re-
gional Science 32(1), 101–118 (1974)

5. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy.
Dimacs Series in Discrete Mathematics and Theoretical Computer Science, pp.
245–284. American Mathematical Society (1996)

6. Galvao, R.D., Espejo, L.G.A., Boffey, B.: A comparison of lagrangean and surro-
gate relaxations for the maximal covering location problem. European Journal of
Operational Research 124(2), 377–389 (2000)

7. Galvao, R.D., ReVelle, C.: A lagrangean heuristic for the maximal covering location
problem. European Journal of Operational Research 88(1), 114–123 (1996)

8. Lorena, L.A., Pereira, M.A.: A lagrangean/surrogate heuristic for the maximal cov-
ering location problem using hillsman’s edition. International Journal of Industrial
Engineering 9, 57–67 (2001)

9. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problem.
SIAM Journal on Algebraic and Discrete Methods 4(2), 253–261 (1983)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/


Iterated Greedy Algorithms for the Maximal Covering Location Problem 181

10. Reinelt, G.: The traveling salesman: computational solutions for TSP applications.
Springer, Heidelberg (1994)

11. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Re-
search 177(3), 2033–2049 (2007)

12. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehi-
cle Routing Problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

13. Senne, E.L.F., Pereira, M.A., Lorena, L.A.N.: A decomposition heuristic for the
maximal covering location problem. Advances in Operations Research 2010 (2010)

14. Xia, L., Xie, M., Xu, W., Shao, J., Yin, W., Dong, J.: An empirical com-
parison of five efficient heuristics for maximal covering location problems. In:
IEEE/INFORMS International Conference on Service Operations, Logistics and
Informatics (SOLI 2009), pp. 747–753 (2009)


	Iterated Greedy Algorithms for the Maximal Covering Location Problem
	Introduction
	Previous Work
	Our Contribution
	Paper Organization

	Proposed IG Variants for the MLCP
	The Probabilistic Greedy Procedure
	PBIG+LNS

	Computational Experiments
	Problem Instances
	Tuning Experiments
	Experimental Results

	Conclusions and Future Work
	References




