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Abstract. Landscape theory provides a formal framework in which com-
binatorial optimization problems can be theoretically characterized as a
sum of a special kind of landscapes called elementary landscapes. The
decomposition of the objective function of a problem into its elementary
components can be exploited to compute summary statistics. We present
closed-form expressions for the fitness-distance correlation (FDC) based
on the elementary landscape decomposition of the problems defined over
binary strings in which the objective function has one global optimum.
We present some theoretical results that raise some doubts on using FDC
as a measure of problem difficulty.
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1 Introduction

The theory of landscapes focuses on the analysis of the structure of the search
space that is induced by the combined influences of the objective function of
the optimization problem and the neighborhood operator [16]. In the field of
combinatorial optimization, this theory has been previously used to characterize
optimization problems [8], improve search algorithms [12], and obtain global
statistics of the problems [20].

A landscape for a combinatorial optimization problem (COP) is a triple
(X,N, f), where X is the set of tentative solutions of the COP, f : X �→ R

defines the objective or fitness function and N is the neighborhood operator.
There exists a special kind of landscapes, called elementary landscapes (EL),
which are of particular interest due to their properties [22]. We define and ana-
lyze the elementary landscapes in Section 2, but we can advance that they are
characterized by the Grover’s wave equation:

avg{f(y)}
y∈N(x)

=
1

d

∑

y∈N(x)

f(y) = f(x) +
λ

d

(
f̄ − f(x)

)
, (1)
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where d is the size of the neighborhood, |N(x)|, which we assume is the same
for all the solutions in the search space, f̄ is the average solution evaluation over
the entire search space and λ is a characteristic constant. For a given problem
instance whose objective function is elementary, the values f̄ and λ can be easily
computed in an efficient way, usually from the problem data. Thus, the wave
equation makes it possible to compute the average value of the fitness function
f evaluated over all of the neighbors of x using only the value f(x), without
actually evaluating any of the neighbors.

When the landscape is not elementary it is always possible to write the objec-
tive function as a sum of elementary components, called elementary landscape
decomposition (ELD) of a problem [6]. In the case of binary strings with length
n under the one-change neighborhood, the number of elementary components
is at most n. Then, Grover’s wave equation can be applied to each elementary
component and all the results are summed to give the average fitness in the
neighborhood of a solution. Furthermore, for some problems the average can-
not be limited to the neighborhood of a solution, but it can be extended to the
second-order neighrbors (neighbors of neighbors), third-order neighbors, and, in
general, to any arbitrary region around a given solution, including the whole
search space. Sutton et al. [19] show how to compute the averages over spheres
and balls of arbitrary radius around a given solution in polynomial time using
the elementary landscape decomposition of pseudoboolean functions.

Landscape theory has been proven to be quite effective computing summary
statistics of the optimization problem. Measures like the autocorrelation length
and the autocorrelation coefficient can be efficiently computed using the ELD
of a problem [8]. Recently, Chicano and Alba [5] and Sutton and Whitley [18]
have shown how the expected value of the fitness of a mutated individual can
be exactly computed using the ELD. In short, landscape theory can be applied
to any COP and thus is generally beneficial for the whole community in discrete
optimization, representing a general and usable formalism in practice.

The main contribution of the present work is an exact expression for the
Fitness-Distance Correlation (FDC) of COPs defined over a set of binary strings
(pseudoboolean functions) having one global optimum. This expression is based
on the ELD of the problem. We also analyze the expression in order to dicuss
the usefulness of the FDC as a difficulty measure for a problem.

The remainder of the paper is organized as follows. In Section 2 we present
the mathematical tools required to understand the rest of the paper. Section 3
presents the exact expression for the FDC and other theoretical results, while
Section 4 validates FDC in practice with this theoretical background. Finally,
we summarize our findings and future work in Section 5.

2 Background

In this section we present some fundamental results of landscape theory. We will
only focus on the relevant information required to understand the rest of the
paper. The interested reader can deepen on this topic in [15].
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Let (X,N, f) be a landscape, where X is a finite set of candidate solutions,
f : X → R is a real-valued function defined on X and N : X → 2X is the
neighborhood operator. The pair (X,N) is called configuration space and induces
a graph in which X is the set of nodes and an arc between (x, y) exists if
y ∈ N(x). The adjacency and degree matrices of the neighborhood N are:

Axy =

{
1 if y ∈ N(x),
0 otherwise;

Dxy =

{ |N(x)| if x = y,
0 otherwise.

(2)

We restrict our attention to regular neighborhoods, where |N(x)| = d > 0 for
a constant d, for all x ∈ X . Then, the degree matrix is D = dI, where I is
the identity matrix. The Laplacian matrix Δ associated to the neighborhood is
defined by Δ = A −D. In the case of regular neighborhoods it is Δ = A − dI.
Any discrete function, f , defined over the set of candidate solutions can be
characterized as a vector in R

|X|. Any |X | × |X | matrix can be interpreted as a
linear map that acts on vectors in R

|X|. For example, the adjacency matrix A
acts on function f as follows

A f =

⎛

⎜⎜⎜⎝

∑
y∈N(x1)

f(y)∑
y∈N(x2)

f(y)
...∑

y∈N(x|X|) f(y)

⎞

⎟⎟⎟⎠ , (A f)(x) =
∑

y∈N(x)

f(y). (3)

Thus, the component x of (A f) is the sum of the function values of all the
neighbors of x. Stadler defines the class of elementary landscapes where the
function f is an eigenvector (or eigenfunction) of the Laplacian up to an additive
constant [16].

Definition 1. Let (X,N, f) be a landscape and Δ the Laplacian matrix of the
configuration space. The landscape is said to be elementary if there exists a con-
stant b, which we call offset, and an eigenvalue λ of −Δ such that (−Δ)(f−b) =
λ(f − b). When the neighborhood is clear from the context we also say that f is
elementary.

We use −Δ instead of Δ in the definition to avoid negative eigenvalues, since Δ
is negative semidefinite. In connected neighborhoods, where the graph related
to the configuration space (X,N) is connected, the offset b is the average value
of the function over the whole search space: b = f̄ . Taking into account basic
results of linear algebra, it can be proved that if f is elementary with eigenvalue
λ, af + b is also elementary with the same eigenvalue λ. Furthermore, in regular
neighborhoods, if g is an eigenfunction of −Δ with eigenvalue λ then g is also
an eigenfunction of A, the adjacency matrix, with eigenvalue d−λ. The average
value of the fitness function in the neighborhood of a solution can be computed
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using the expression avg{f(y)}y∈N(x) =
1
d (A f)(x). If f is an elementary function

with eigenvalue λ, then the average is computed as:

avg{f(y)}
y∈N(x)

= avg
y∈N(x)

{f(y)− f̄}+ f̄ =
1

d
(A (f − f̄))(x) + f̄

=
d− λ

d
(f(x) − f̄) + f̄ = f(x) +

λ

d
(f̄ − f(x)),

and we get Grover’s wave equation. In the previous expression we used the fact
that f − f̄ is an eigenfunction of A with eigenvalue d− λ.

The previous definitions are general concepts of landscape theory. Let us fo-
cus now on the binary strings with the one-change neighborhood, which is the
representation and the neighborhood we use in the next section to compute the
fitness-distance correlation. In this case the solution set X is the set of all binary
strings of size n. Two solutions x and y are neighboring if one can be obtained
from the other by flipping a bit, that is, if the Hamming distance between the
solutions, denoted with H(x, y), is 1.

One relevant set of eigenvectors of the Laplacian in the binary representation
is that of Walsh functions (4). Furthermore, the Walsh functions form an or-
thogonal basis of eigenvectors in the configuration space. Thus, they have been
used to find the elementary landscape decomposition of problems with a binary
representation like the MAXSAT [14]. Given the space of binary strings of length
n, Bn, a (non-normalized) Walsh function with parameter w ∈ B

n is defined as:

ψw(x) =

n∏

i=1

(−1)wixi = (−1)
∑n

i=1 wixi . (4)

Two useful properties of Walsh functions are ψw · ψv = ψw+v where w + v is
the bitwise sum in Z2 of w and v; and ψ2

w = ψw · ψw = ψ2w = ψ0 = 1. We
define the order of a Walsh function ψw as the value 〈w|w〉 =

∑n
i=1 wi, that

is, the number of ones in w. A Walsh function with order p is elementary with
eigenvalue λ = 2p [16]. The average value of a Walsh function of order p > 0 is
zero, that is, ψw = 0 if w has at least one 1. The only Walsh function of order
p = 0 is ψ0 = 1, which is a constant.

Since the Walsh functions form an orthogonal basis of R
2n , any arbitrary

pseudoboolean function can be written as a weighted sum of Walsh functions
in the following way: f =

∑
w∈Bn awψw , where the values aw are called Walsh

coefficients. We can group together the Walsh functions having the same or-
der to find the elementary landscape decomposition of the function. That is:
f[p] =

∑
w∈Bn

〈w|w〉=p
awψw, where each f[p] is an eigenvector of the Laplacian with

eigenvalue 2p, also called order-p elementary component of f . The function f can
be written as a sum of the n+1 elementary components, that is: f =

∑n
p=0 f[p].

We define the sphere of radius k around a solution x as the set of all solutions
lying at Hamming distance k from x [19]. In analogy to the adjacency matrix we

define the sphere matrices of radius k as S
(k)
xy = 1 if H(x, y) = k and S

(k)
xy = 0

otherwise.
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The sphere matrix of radius one is the adjacency matrix of the one-change
neighborhood, A, and the sphere matrix of radius zero is the identity matrix,
I. Each sphere matrix S(k) can be written as a polynomial in A (the adjacency
matrix) [5]. Then, each eigenvector of A is an eigenvector of S(k), with a dif-
ferent eigenvalue. As a consequence, the eigenvectors of the Laplacian matrix Δ
are eigenvectors of the sphere matrices S(k). Furthermore, an order-p function
(having eigenvalue 2p for −Δ) is eigenvector of the sphere matrix S(k) with eigen-

value K(n)
k,p , which is the (k, p) element of the n-th Krawtchouk matrix (see [19]

for details). Krawtchouk matrices can be defined with the equation:

K(n)
k,p =

n∑

l=0

(−1)l
(
n− p
k − l

)(
p
l

)
, (5)

where n ≥ 0, 0 ≤ k, p ≤ n and we consider that

(
a
b

)
= 0 when b < 0 or b > a.

The interested reader can deepen on Krawtchouk matrices in [7], here we
only highlight their properties relevant to our mathematical derivations. One
important property of the Krawtchouk matrices is:

(1 + x)n−p(1− x)p =

n∑

k=0

xkK(n)
k,p . (6)

Proposition 1. The following identity for the Krawtchouk matrices holds:

n∑

k=0

kK(n)
k,p =

⎧
⎨

⎩

n2n−1 if p = 0,
−2n−1 if p = 1,
0 if p > 1.

(7)

Proof. Taking the derivative of the two sides of (6) we have:

(n− p)(1 + x)n−p−1(1− x)p − p(1 + x)n−p(1− x)p−1 =

n∑

k=1

xk−1kK(n)
k,p . (8)

If we set x = 1, the right hand side is the left hand side of (7). In the left hand
side of (8) we can distinguish three cases:

– Case p = 0: the derivative polynomial evaluated in x = 1 is n2n−1.
– Case p = 1: the derivative polynomial evaluated in x = 1 is −2n−1.
– Case p > 1: the derivative polynomial evaluated in x = 1 is 0.

	

Each component f[p] of the elementary landscape decomposition of f is an eigen-

vector of the sphere matrix of radius k with eigenvalue K(n)
k,p . Thus, we can com-

pute the sum of the fitness value in a sphere of radius k around x as:

∑

y∈Bn

H(x,y)=k

f(y) =

n∑

p=0

K(n)
k,pf[p](x) (9)
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3 Fitness-Distance Correlation

The Fitness-Distance Correlation (FDC) is a measure introduced by Jones and
Forrest [10] to measure problem difficulty. Given all the solutions in the search
space, it computes the correlation coefficient between the fitness values of these
solutions and the Hamming distances of the solutions to their nearest global
optimum.

Definition 2. Given a function f : Bn �→ R the fitness-distance correlation for
f is defined as

r =
Covfd
σfσd

, (10)

where Covfd is the covariance of the fitness values and the distances of the
solutions to their nearest global optimum, σf is the standard deviation of the
fitness values in the search space and σd is the standard deviation of the distances
to the nearest global optimum in the search space. Formally:

Covfd =
1

2n

∑

x∈Bn

(f(x) − f)(d(x) − d),

f =
1

2n

∑

x∈Bn

f(x), σf =

√
1

2n

∑

x∈Bn

(f(x)− f)2,

d =
1

2n

∑

x∈Bn

d(x), σd =

√
1

2n

∑

x∈Bn

(d(x) − d)2, (11)

where the function d(x) is the Hamming distance between x and its nearest global
optimum.

The FDC r is a value between −1 and 1. The lower the absolute value of r, the
more difficult the optimization problem is supposed to be. The exact compu-
tation of the FDC using the previous definition requires the evaluation of the
complete search space. It is required to determine the global optima to define
d(x) and compute the statistics for d and f . If the objective function f is a
constant function, then the FDC is not well-defined, since σf = 0.

In the following we will focus on the case in which there exists one only global
optimum x∗ and we know the elementary landscape decomposition of f . The
following lemma provides an expression for d and σd in this case.

Lemma 1. Given an optimization problem defined over Bn, if there is only one
global optimum x∗, then the distance function d(x) defined in Definition 2 is the
Hamming distance between x and x∗ and its average and standard deviation in
the whole search space are given by

d =
n

2
, σd =

√
n

2
. (12)
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Proof. Since there is only one global optimum, the function d(x) is defined as
d(x) = H(x, x∗). Given an integer number 0 ≤ k ≤ n, the number of solutions

at distance k from x∗ is

(
n
k

)
. Then we can compute the two first raw moments

of d(x) over the search space as:

α1 = d =
1

2n

n∑

k=0

(
n
k

)
k =

n2n−1

2n
=
n

2
,

α2 = d2 =
1

2n

n∑

k=0

(
n
k

)
k2 =

n(n+ 1)2n−2

2n
=
n(n+ 1)

4
.

Using these moments we can compute the standard deviation as
√
α2 − α2

1,
which yields:

σd =

√
n(n+ 1)

4
− n2

4
=

√
n

4
=

√
n

2
. (13)

	

Now we are ready to prove the main result of this work.

Theorem 1. Let f be an objective function whose elementary landscape decom-
position is f =

∑n
p=0 f[p], where f[0] is the constant function f[0](x) = f and

each f[p] with p > 0 is an order-p elementary function with zero offset. If there
exists only one global optimum in the search space x∗, the FDC can be exactly
computed as:

r =
−f[1](x∗)
σf

√
n

. (14)

Proof. Let us expand the covariance as

Covfd =
1

2n

∑

x∈Bn

f(x)d(x) − f d =
1

2n

n∑

k=0

k
∑

x∈Bn

H(x,x∗)=k

f(x)− f
n

2

=
1

2n

n∑

k=0

k
∑

x∈Bn

H(x,x∗)=k

n∑

p=0

f[p](x)− f[0]
n

2
=

1

2n

n∑

k=0

k

n∑

p=0

K(n)
k,pf[p](x

∗)− f[0]
n

2

=

n∑

p=0

(
1

2n

n∑

k=0

kK(n)
k,p

)
f[p](x

∗)− f[0]
n

2
=
n

2
f[0] − 1

2
f[1](x

∗)− f[0]
n

2

= −1

2
f[1](x

∗), (15)

where we used the result in Proposition 1. Substituting in (10) we obtain (14).
	


The previous theorem shows that the only thing we need to know on the global
optimum is the value of the first elementary component. With this information
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we can exactly compute the FDC. Some problems for which we know the ele-
mentary landscape decomposition based on the numerial data defining a problem
instance are MAX-SAT, 0-1 Unconstrained Quadratic Optimization (UQO), the
Subset Sum problem (SS), the NK-landscapes, etc. For all of them we could
provide expressions for their FDC.

The result of the previous theorem starts an interesting discussion. Some
works on landscape analysis claim that the ruggedness of a landscape is related to
its hardness [2]. The autocorrelation coefficient ξ and the autocorrelation length
� of a problem are two measures of the ruggedness of the problem proposed
to characterize an objective function in a way that allows one to estimate the
performance of a local search method: the lower their value the higher their
ruggedness. Angel and Zissimopoulos [1] have studied the relationship between
the performance of a local search and the autocorrelation coefficient. Also a rela-
tionship has been noticed between the autocorrelation length and the expected
number of local optima of a problem [8]. Furthermore, the autocorrelation length
conjecture [17] claims that the higher the value of ξ and �, the lower the number
of local optima and, as a consequence, the better could be the performance of
a local search method. In summary, empirical and theoretical results support
the hypothesis that a rugged landscape is more difficult than a problem with a
smooth landscape.

In the case of the elementary functions defined over binary strings, the func-
tions with higher order are more rugged than the ones with lower order. The
order-1 elementary landscapes are the smoothest landscapes and, in fact, they
can always be solved in polynomial time. Following this chain of reasoning, in
a general landscape, the elementary components with order p > 1 are the ones
that make the problem difficult. However, from Theorem 1 we observe that only
the order-1 elementary component of a function f is taken into account in the
computation of the FDC. This fact poses some doubts on the value of the FDC
as a measure of difficulty of a problem, since FDC is shown to neglect the rest
of information captured in the higher order components. This is true under the
assumption that one single global optimum exists in the search space. We defer
to future work the analysis of the general case. The doubts on FDC as being
a difficulty indicator have also been raised by other authors. Two examples are
the work by Tomassini et al. [21] focused on genetic programming and the one
by Bierwirth et al. [3] based on the Job Shop Scheduling.

3.1 Fitness-Distance Correlation for Elementary Landscapes

If the objective function is elementary, then the expression of the exact FDC is
specially simple, as the following corollary proves.

Corollary 1. Let f be an elementary function of order p > 0 with one only
global optimum x∗, then the fitness-distance correlation can be exactly computed
using the following expression:

r =

{
f−f(x∗)
σf

√
n

if p = 1

0 if p > 1
(16)



Exact Computation of the FDC for Pseudoboolean Functions 119

Proof. An elementary function f(x) of order p > 0 can always be written as the
sum of the two eigenvectors of the adjacency matrix: f(x) = f[0] + f[p](x) where

f[0] = f . Applying the result of Theorem 1 we obtain (16). 	

The previous corollary states that only elementary landscapes with order p = 1
have a nonzero FDC. Furthermore, the FDC does depend on the value of the
objective function in the global optimum f(x∗) and the average value f , but not
on the solution x∗ itself. We can also observe that if we are maximizing, then
f(x∗) > f and the FDC is negative, while if we are minimizing f(x∗) < f and
the FDC is positive.

Interestingly, the order-1 elementary landscapes can always be written as
linear functions and they can be optimized in polynomial time. That is, if f
is an order-1 elementary function then it can be written in the following way:

f(x) =

n∑

i=1

aixi + b. (17)

where ai and b are real values. The following proposition provides the average
and the standard deviation for this family of functions.

Proposition 2. Let f be an order-1 elementary function, which can be written
as (17). Then, the average and the standard deviation of the function values in
the whole search space are:

f = b+
1

2

n∑

i=1

ai, σf =
1

2

√√√√
n∑

i=1

a2i . (18)

Proof. Using the linearity property of the average we can write: f =
∑n

i=1 aixi+
b, and f in (18) follows from the fact that xi = 1/2. Now we can compute the
variance of f as:

V ar[f ] = (f(x) − f)2 =

(
n∑

i=1

aixi − 1

2

n∑

i=1

ai

)2

=

(
n∑

i=1

ai

(
xi − 1

2

))2

=
n∑

i,j=1

aiaj

(
xi − 1

2

)(
xj − 1

2

)
=

n∑

i,j=1

aiaj

(
xixj − 1

2
xi − 1

2
xj +

1

4

)

=

n∑

i,j=1

aiaj

(
xixj − 1

4

)
=

n∑

i,j=1

aiaj

(
δji

1

4
+

1

4
− 1

4

)
=

1

4

n∑

i=1

a2i , (19)

where we used again xi = xj = 1/2 and xixj = 1/4(δji + 1), being δji the
Kronecker delta. The expression for σf in (18) follows from (19). 	

Using Proposition 2 we can compute the FDC for the order-1 elementary land-
scapes.
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Proposition 3. Let f be an order-1 elementary function written as (17) such
that all ai �= 0. Then, it has one only global optimum and its FDC (assuming
maximization) is:

r =
−∑n

i=1 |ai|√
n
∑n

i=1 a
2
i

, (20)

which is always in the interval −1 ≤ r < 0.

Proof. The global optimum x∗ has 1 in all the positions i such that ai > 0 and
the maximum fitness value is:

f(x∗) = b +

n∑

i=1
ai>0

ai. (21)

Using Proposition 2 we can write:

f − f(x∗) =

(
b+

1

2

n∑

i=1

ai

)
−

⎛

⎜⎝b+
n∑

i=1
ai>0

ai

⎞

⎟⎠ = −1

2

n∑

i=1

|ai|. (22)

Replacing the previous expression and σf in (16) we prove the claimed result.
	


When all the values of ai are the same, the FDC computed with (20) is −1.
This happens in particular for the Onemax problem. But if there exist different
values for ai, then we can reach any arbitrary value in [−1, 0) for r. The following
theorem provides a way to do it.

Theorem 2. Let ρ be an arbitrary real value in the interval [−1, 0), then any
linear function f(x) given by (17) where n > 1/ρ2, a2 = a3 = . . . = an = 1 and
a1 is

a1 =
(n− 1) + n|ρ|√(1− ρ2)(n− 1)

nρ2 − 1
(23)

has exactly FDC r = ρ.

Proof. The expression for a1 is well-defined since nρ2 > 1. Replacing all the ai
in (20) we get r = ρ. 	

Theorem 2 provides a solid argument against the use of FDC as a measure of the
difficulty of a problem. In effect, we can always build an optimization problem
based on a linear function, which can be solved in polynomial time, with an FDC
as near as desired to 0 (but not zero), that is, as “difficult” as desired according
to the FDC. However, we have to highlight here that for a given FDC value ρ
we need at least n > 1/ρ2 variables. Thus, an FDC nearer to 0 requires more
variables.
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4 FDC, Autocorrelation Length and Local Optima

The autocorrelation length � [8] has also been used as a measure of the difficulty
of a problem. Chicano and Alba [4] found a negative correlation between � and
the number of local optima in the 0-1 Unconstrained Quadratic Optimization
problem (0-1 UQO), an NP-hard problem [9]. Kinnear [11] also studied the
use of the autocorrelation measures as problem difficulty, but the results were
inconclusive. In this section we investigate which of the two measures, � or the
absolute value of FDC, is more correlated to the number of local optima for some
random instances of the 0-1 UQO. In particular, we have randomly generated
1650 UQO instances using the Palubeckis instance generator [13]. The size of
the instances varies between n = 10 and n = 20 and the density (percentage of
nonzero elements in the coefficients matrix) varies from 10 to 90 in steps of 20. For
each n and density, 30 random instances were generated by randomly selecting
the nonzero elements of the coefficients matrix from the interval [−100, 100]. For
all the instances we computed the autocorrelation length �, the absolute value of
the FDC |r| and the number of local optima (minima) by complete enumeration
of the search space. In Table 1 we show the Spearman rank correlation coefficient
between the number of local optima and � and |r|. The correlations are computed
using all the instances with the same size n.

Table 1. Spearman correlation coefficient for the number of local optima against the
autocorrelation length (�) and the absolute value of the FDC (|r|).

n 10 11 12 13 14 15

� −0.5467 −0.5545 −0.5896 −0.4796 −0.4725 −0.5511
|r| −0.1407 −0.1843 −0.0787 −0.1203 −0.1944 −0.0538

n 16 17 18 19 20

� −0.4959 −0.5740 −0.5872 −0.5249 −0.4829
|r| −0.1251 −0.1791 −0.1339 −0.3310 −0.0338

We can observe a high inverse correlation (around −0.5) between the number
of local optima and the autocorrelation length, supporting the autocorrelation
length conjecture. However, the correlation between the number of local optima
and FDC is low, again supporting the hypothesis that FDC is not an appropriate
measure of the difficulty of a problem (this time, from an experimental point of
view).

5 Conclusion

We have applied landscape theory to exactly compute the Fitness-Distance
Correlation of combinatorial optimization problems defined over sets of binary
strings. The result is valid in the case in which one single global optimum exists
in the landscape. We defer to future work the analysis of the general case.
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The expression for the FDC takes only into account the order-1 elementary
component of the objective function, while previous work suggests that the com-
ponents making a problem difficult are the higher order elementary components.
This fact questions the use of FDC as a measure of difficulty of the problem.
We prove that there exist polynomial time solvable problems with an FDC ar-
bitrarily near to zero. An experimental study over random instances of the 0-1
UQO shows a low correlation between FDC and the number of local optima,
supporting the hypothesis that FDC fails to capture the problem difficulty.

References

1. Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assign-
ment problem. Theoretical Computer Science 263, 159–172 (2000)

2. Barnes, J.W., Dimova, B., Dokov, S.P.: The theory of elementary landscapes. Ap-
plied Mathematics Letters 16, 337–343 (2003)

3. Bierwirth, C., Mattfeld, D., Watson, J.P.: Landscape Regularity and Random
Walks for the Job-Shop Scheduling Problem. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)

4. Chicano, F., Alba, E.: Elementary landscape decomposition of the 0-1 uncon-
strained quadratic optimization. Journal of Heuristics (10.1007/s10732-011-9170-6)

5. Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip
mutation using landscapes theory. In: GECCO, pp. 2027–2034 (2011)

6. Chicano, F., Whitley, L.D., Alba, E.: A methodology to find the elementary land-
scape decomposition of combinatorial optimization problems. Evolutionary Com-
putation 19(4), 597–637 (2011)

7. Feinsilver, P., Kocik, J.: Krawtchouk polynomials and krawtchouk matrices. In:
Recent Advances in Applied Probability, pp. 115–141. Springer, US (2005)
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