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Preface

Metaheuristics continue to demonstrate their effectiveness for an ever-broadening
range of difficult combinatorial optimization problems appearing in a wide va-
riety of industrial, economic, and scientific domains. Prominent examples of
metaheuristics are evolutionary algorithms, tabu search, simulated annealing,
scatter search, memetic algorithms, variable neighborhood search, iterated local
search, greedy randomized adaptive search procedures, ant colony optimization
and estimation of distribution algorithms. Problems solved successfully include
scheduling, timetabling, network design, transportation and distribution, vehicle
routing, the travelling salesman problem, packing and cutting, satisfiability and
general mixed integer programming.

EvoCOP began in 2001 and has been held annually since then. It is the first
event specifically dedicated to the application of evolutionary computation and
related methods to combinatorial optimization problems. Originally held as a
workshop, EvoCOP became a conference in 2004. The events gave researchers an
excellent opportunity to present their latest research and to discuss current de-
velopments and applications. Following the general trend of hybrid metaheuris-
tics and diminishing boundaries between the different classes of metaheuristics,
EvoCOP has broadened its scope in recent years and invited submissions on any
kind of metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2012, the 12th European
Conference on Evolutionary Computation in Combinatorial Optimization. It was
held in Málaga, Spain, during April 11–13, 2012, jointly with EuroGP 2012,
the 15th European Conference on Genetic Programming, EvoBIO 2012, the
10th European Conference on Evolutionary Computation, Machine Learning
and Data Mining in Bioinformatics, EvoMUSART, the First International Con-
ference and the 10th European Event on Evolutionary and Biologically Inspired
Music, Sound, Art and Design, and EvoApplications 2012 (formerly EvoWork-
shops), which consisted of the following 11 individual tracks: 9th European
event on the Application of Nature-Inspired Techniques for Telecommunication
Networks and Other Parallel and Distributed Systems (EvoCOMNET), Third
European event on Evolutionary Algorithms and Complex Systems (EvoCOM-
PLEX), 6th European event on Evolutionary and Natural Computation in Fi-
nance and Economics (EvoFIN), 4th European event on Bio-inspired Algorithms
in Games (EvoGAMES), 7th European event on Bio-inspired Heuristics for De-
sign Automation (EvoHOT), 14th European event on Evolutionary Computa-
tion in Image Analysis and Signal Processing (EvoIASP), 5th European event
on Bio-inspired Algorithms for Continuous Parameter Optimization (EvoNUM),
First European event on Parallel Implementation of Evolutionary Algorithms
(EvoPAR), First European event on Computational Intelligence for Risk Man-
agement, Security and Defence Applications (EvoRISK), 7th European event
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on Nature-Inspired Techniques in Scheduling, Planning and Timetabling (EvoS-
TIM), and 9th European event on Evolutionary Algorithms in Stochastic and
Dynamic Environments (EvoSTOC). Since 2007, all these events are grouped
under the collective name EvoStar, and constitute Europe’s premier co-located
meetings on evolutionary computation.

Accepted papers of previous EvoCOP editions were published by Springer
in the series Lecture Notes in Computer Science (LNCS – Volumes 2037, 2279,
2611, 3004, 3448, 3906, 4446, 4972, 5482, 6022, 6622). Below we report statistics
for each conference:

EvoCOP Submitted Accepted Acceptance ratio
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%
2007 81 21 25.9%
2008 69 24 34.8%
2009 53 21 39.6%
2010 69 24 34.8%
2011 42 22 52.4%
2012 48 22 45.8%

The rigorous, double-blind reviewing process of EvoCOP 2012 resulted in
the selection of 22 out of 48 submitted papers; the acceptance rate was 45.8%.
The number of submissions was higher compared to the previous event. Each
paper was reviewed by at least three members of the international Program
Committee. All accepted papers were presented orally at the conference and are
included in this proceedings volume. We would like to acknowledge the members
of our Program Committee and external reviewers: we are very grateful for
their thorough work. We also thank all the authors for submitting their work to
this EvoCOP edition. EvoCOP 2012 contributions consist of novel algorithms
together with important new insights into how well these algorithms can solve
prominent test problems from the literature or real-world problems.

The success of the conference resulted from the input of many people to
whom we would like to express our appreciation. First of all, we like to thank
the local Chair of EvoStar 2012, Carlos Cotta from the University of Málaga. He
and his team did an extraordinary job for which we are very grateful. We thank
Marc Schoenauer from INRIA in France for his support with the MyReview
conference management system. We thank Penousal Machado of the University
of Coimbra for an excellent web site and publicity material. Thanks are also
due to Jennifer Willies and the Institute for Informatics and Digital Innovation
at Napier University in Edinburgh, UK, for administrative support and event
coordination. We gratefully acknowledge the University of Málaga for its support
of EvoStar, and in particular the School of Computer Science and the School of



Preface VII

Telecommunications and their respective directors, José M. Troya and Antonio
Puerta. We also thank the Málaga Convention Bureau.

Last, but not least, we would like to thank Carlos Cotta, Peter Cowling,
Jens Gottlieb, Jano van Hemert, Peter Merz, and Günther Raidl for their hard
work and dedication in past editions of EvoCOP, which contributed to making
this conference one of the reference events in evolutionary computation and
metaheuristics.

April 2012 Jin-Kao Hao
Martin Middendorf
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Thomas Stützle Université Libre de Bruxelles, Belgium
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A Methodology for Comparing

the Execution Time of Metaheuristics
Running on Different Hardware

Julián Domı́nguez and Enrique Alba

Universidad de Málaga, ETSII,
Campus de Teatinos. 29071 Málaga, Spain

{julian,eat}@lcc.uma.es
http://neo.lcc.uma.es

Abstract. In optimization, search, and learning, it is very common to
compare our new results with previous works but, sometimes, we can
find some troubles: it is not easy to reproduce the results or to obtain an
exact implementation of the original work, or we do not have access to
the same processor where the original algorithm was tested for running
our own algorithm. With the present work we try to provide the basis
for a methodology to characterize the execution time of an algorithm in
a processor, given its execution time in another one, so that we could
fairly compare algorithms running in different processors. In this paper,
we present a proposal for such a methodology, as well as an example of
its use applied to two well-known algorithms (Genetic Algorithms and
Simulated Annealing) and solving the MAXSAT problem.

Keywords: Comparisons, metaheuristics, performance, CPU, run time.

1 Introduction

It is fairly common in research to perform a comparison of algorithms running
in different hardware (in fact, comparisons are a must in modern research). It is
common to compare the results of our algorithms with previous state-of-the-art
works, and it is not always easy to exactly implement or reproduce these previous
works or to get access to the same hardware for running our experiments. As a
consequence, several researchers purely dismiss this issue, while others try to get
a quick idea on how many times their hardware is faster than the previous one
and make a too simplistic (and, as we will show, wrong) factorial comparison of
times. From this problem it arises the motivation of our work. Our aim in this
article is to obtain a methodology for being capable of making a fair comparison
between algorithms running in different hardware.

A first approach to the problem could be the use of a scientific benchmark
program for obtaining a quantitative measure for the speed of the different pro-
cessors involved and assume that this speedup can be translated into the execu-
tion time speedup. Although this is an intuitively good approach, in this work

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://neo.lcc.uma.es


2 J. Domı́nguez and E. Alba

we will show that is not valid. Having a processor with good integer operations
performance does not mean at all that it is a good processor in floating point
operations, thus, as we will see, a better score running a benchmark could not
be reflected in a better time executing a metaheuristic because of the specific
operations used in each software.

In this paper we try to provide a different approach for developing a method-
ology for comparing algorithms running in different hardware, taking as a basis
a scientific benchmark software. For our study we are going to use six different
hardware configurations and two different algorithms. We are also going to an-
alyze several different benchmark programs, widely used in the literature, being
Whetstone, Dhrystone, Livermore Loops, Linpack and CPUBenchmark. Here
we introduce the methodology followed:

– Obtaining the data: the first step is running the benchmarks and the
algorithms on all the hardware platforms, and obtain their running times
and scores (Section 4).

– Choosing a benchmark: Once obtained the data, we study the relationship
between running times and benchmark scores, and choose the benchmark
whose score best describes the behavior of the algorithms (Section 5).

– Fitting the Data: With this data we perform a regression analysis to ob-
tain a set of equations for predicting the running time of the algorithms
in different hardware configurations, depending on the score of the chosen
benchmark and the running time in a baseline processor (Section 6)

The proposed methodology could be also useful for other different tasks, like
approaching the time it will take to run an experiment - useful in a shared
environment or with time restrictions - or choosing the best of our processors
for running our algorithms.

This paper is organized as follows. The next section (Section 2) provides a
brief review about benchmark programs and a first approach to our problem.
Section 3 exposes the algorithms, problem and hardware used for our work, as
well as describes the methodology we have followed. In Section 4 we show the
data that we have obtained for the analysis. Section 5 contains the analysis of
the benchmarks and their suitability for our task. How we have obtained the
equations and how to use them is explained in Sections 6 and 7. Eventually,
concluding remarks and future research lines are shown in Section 8.

2 Background

Let us suppose that we have developed a new algorithm and we want to com-
pare our results with the ones obtained by another researcher some years ago.
We might have to face some problems: perhaps we do not have access to the same
hardware in which the past results were obtained or, although we get access to
this platform, there is not enough information in the paper to exactly reproduce
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the algorithm. What could we do to make a fair comparison between algorithms
running on different CPUs? Can we characterize the speed of the CPU to help
us with this task?

An important characteristic of computers used for scientific work is the speed
of their CPU. From the ’70s the scientific community has developed several tests
for quantitatively compare the performance of different CPUs, what is usually
know as benchmark programs. Such benchmark programs are designed to mimic
a type of workload, usually integer and floating point mathematical operations.

As we have mentioned above, a common sense approach could be to use an
inverse cross multiplication: if the algorithm A takes n seconds on processor
P1 which has a score of S1 MFLOPS in a given benchmark program, in the
processor P2 with score S2, the time will be n ∗ S1/S2 seconds. Intuitively, we
can think that this would give us a good approximation, but the problem is not
so easy. The reason is that, when running a program, the access to memory, the
input/output operations, the bus transferences of data and any specific feature
of the run software (like the kind of loops typical in metaheuristics) can make
a huge difference between two processors that look similar from their processor
point of view. Also, in general, synthetic benchmarks are designed for running
a set of operations that could not be representative of the operations performed
in metaheuristics.

We have analyzed different benchmarks and concluded that this direct ap-
proach is not valid for none of the studied benchmarks (Section 5). For facing
our problem it is necessary to define a more complex methodology, so we are
going to try to provide the starting point of such a methodology, with a mathe-
matic approach constructed with the basis of one of the studied benchmarks. In
the next subsections we are going to introduce some of the most used scientific
benchmark programs, which we will later analyze.

2.1 Classic Benchmarks

In this subsection we include two classic benchmarks, widely used in the sci-
entific community, which were among the first programs that set standards of
performance for computers. Although there exist some other classic benchmarks,
we have chosen only two of them, which probably are the most popular in the
literature: Whetstone and Dhrystone.

Whetstone. The Whetstone benchmark was written by Harold Curnow of
CCTA [2], the British government computer procurement agency, based on work
by Brian Wichmann of the National Physical Laboratory. An Algol version of
the benchmark was released in 1972 and Fortran single and double precision
versions were released in 1973. Fortran versions became the first general purpose
benchmarks that set industry standards of performance; nowadays we can find
“C” implementations. The benchmark produces a score in terms of Thousands
of Whetstone Instructions Per Second (KWIPS).
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Dhrystone. The Dhrystone “C” benchmark was released as an integer bench-
mark for UNIX systems, a sort of Whetstone benchmark without floating point
operations. It became a standard benchmark, from 1984, with the growth of Unix
systems. The first version was produced by Reinhold P. Weicker in ADA [9] and
later translated to “C”. Two versions of Dhrystone are available (versions 1.1
and 2.1). The 2.1 version was produced to avoid over-optimization problems en-
countered with version 1. Original versions of the benchmark gave performance
ratings in terms of Dhrystones per second. This was later changed to VAX MIPS
by dividing Dhrystones per second by 1757, the DEC VAX 11/780 result.

2.2 High Performance Benchmarks

In this subsection we present two classic benchmarks which were originally de-
signed for assessing the performance of supercomputers, although they are nowa-
days also used for desktop computers. We have chosen the Livermore Loops

benchmark and the Linpack benchmark because of their extended use.

Livermore Loops. This supercomputer numeric benchmark was introduced
in 1970, initially comprising 14 kernels of numerical application, written in For-
tran. The number of kernels was increased to 24 in the 1980’s [8]. Performance
measures are in terms of MFLOPS. The program also checks the results for
computational accuracy. One main aim was to avoid producing single number
performance comparisons, the 24 kernels being executed three times at different
Do-loop spans to produce short, medium, and long vector performance measures.

Linpack. This benchmark was produced by Jack Dongarra [3] from the “LIN-
PACK” package of linear algebra routines. It became the primary benchmark
for scientific applications from the mid 1980’s with a slant towards supercom-
puter performance. The original version was produced in Fortran but a “C”
version appeared later. The standard “C” version operates on 100×100 matri-
ces in double precision with rolled/unrolled and single/double precision options.
Other versions are available with different sizes of matrices. Performance rating
is in terms of MFLOPS.

2.3 Modern Benchmarks

In the last two decades, the rising of the PCs has fostered the development of
non-scientific benchmarks. These benchmarks are focused in assessing the day-
to-day use performance for desktop computers, so they include specific tests for
tasks like compression, encryption and graphics. Among the vast amount of such
benchmarking software, we have chosen CPUBenchmark as a popular one in this
category because of its extended use and variety of aspects tested, as well as the
existence of a huge and public database of results maintained by its developers.
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CPUBenchmark. CPUBenchmark is a program provided by a software de-
velopment group specialized in the development of performance benchmarking
solutions. They also maintain one of the world largest CPU benchmark web-
sites, cpubenchmark.net1, which gives users access to CPUBenchmark results
for over 350,000 systems covering more than 1,200 different models of CPUs.
CPUBenchmark conducts eight different tests and averages its results to deter-
mine the CPU mark for a system. The tests cover different applications: integer
math, compression, prime number calculation, encryption, floating point math,
SSE/3D Now, image rotation and string sorting test. The software runs one si-
multaneous CPU test for every logical CPU (Hyper-threaded), physical CPU
core (multi-core) or physical CPU package (multiple CPUs).

3 Experimental Context

In the present study we are going to focus in two representative algorithms
of the two big families of metaheuristics: Evolutionary Algorithms (EAs) and
Local Search Methods (LSMs). We have chosen a Genetic Algorithm and a
Simulated Annealing as paradigmatic algorithms in search, optimization, and
machine learning, because methods of both families are very similar to these
algorithms and the results obtained could be easily extended to other algorithms.
We are going to focus in combinatorial problems and binary representation, so
the results might be not useful for other kind of problems or representation. Since
we need to solve a problem, we have chosen for this first paper on benchmarking
metaheuristics the well-known MAXSAT problem as it is a basic problem for
combinatorial optimization. In the next subsections we are going to introduce
the used algorithms, problem, and the used hardware, as well as describe the
methodology followed for the study.

3.1 Algorithms and Problem

For our study we have used two representative and well-known algorithms, a
Genetic Algotihm (GA) [5] and a Simulated Annealing (SA) [6].

GAs are one of the more popular EAs present in the literature. In Algorithm 1
we can see an outline of a panmictic GA. A GA starts by randomly generating an
initial population P (0), with each individual encoding a candidate solution for
the problem and its associated fitness value. At each iteration, a new population
P ′′′(t) is generated using simple stochastic operators, leading the population
towards regions with better fitness values.

SA has become one of the most popular LSMs. It is widely extended in the
industry, and it could be presented as the representative trajectory method. SA
is a stochastic algorithm which explores the search space using a hill-climbing
process. A panmictic SA is outlined in Algorithm 2. SA starts with a randomly
generated solution S. At each step, a new candidate solution S′ is generated.

1 http://www.cpubenchmark.net/
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Algorithm 1. Standard Genetic Algorithm

Generation(P (0));
Evaluation(P (0));
t := 0;
while not stop condition(P (t)) do

P ′(t) := Selection(P (t));
P ′′(t) := Recombination(P ′(t));
P ′′′(t) := Mutation(P ′′(t));
Evaluation(P ′′′(t));
P (t+ 1) := Replacement(P (t),P ′′′(t));
t := t+1;

end while

If the fitness value of S′ is better or equal than the old value, S′ is accepted
and replaces S. As the temperature Tk decreases, the probability of accepting
a lower quality solution S′ decays exponentially towards zero according to the
Boltzmann probability distribution. The temperature is progressively reduced
following an annealing schedule.

Algorithm 2. Standard Simulated Annealing

Generate(S);
Evaluate(S);
Initialize(T0);
k := 0;
while not stop condition(S) do

S′ := Generate(S,Tk);
if Accept(S,S′,Tk) then

S := S′;
end if
Tk+1:= Update(Tk);
k := k+1;

end while

For our study, we have used a well-known problem, the maximum logical
clauses satisfiability problem, MAXSAT [4]. MAXSAT is the most representative
problem of combinatorial optimization, and using this problem we can reproduce
the main characteristics of combinatorial problems.

Formally, theMAXSATproblem is formulated as follows.BeingU = {u1, ..., un}
a set of n logical variables, an assignment for u is a function t : U → {true, false}.
The literal u (or ¬u) is true conditioned by an assignment of values t if and only
if t(u) = true (or t(¬u) = false). A clause is defined as a set C of literals that
are connected by the disjunction. The set of clauses is called a formula. A formula
f consists of the conjunction of its clauses (conjunctive normal form). An assign-
ment t satisfies a formula f if and only if t satisfies all the clauses in f . Each clause
C is satisfied if there exists, at least, a literal u ∈ C which is true conditioned by
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assignment t. TheMAXSAT problem consists in finding an assignment t thatmax-
imizes the number of satisfied clauses of a formula f .

We have used three different instances of MAXSAT, consisting of 43 clauses
with 10 variables (MS43), 430 clauses with 100 variables (MS430) and 4300
clauses with 1000 variables (MS4300) respectively. These are instances from
the phase transition region [1] of the Random-3-SAT problem, the ones whose
resolution in research is meaningful.

3.2 Hardware Platforms

We have obtained data from a wide range of different CPUs, including single
and multicore, single and multithreaded, single and multiprocessor, 32 and 64
bits, and different families of processors. The used CPUs and their specifications
are listed in Table 1.

Table 1. List of used CPUs and their main specifications

Alias CPU Name #Cores Clock Multithread Year

CPU1 Intel Pentium 4 2.4GHz 1 2.40 GHz No 2002
CPU2 Intel Pentium 4 2.8GHz 1 2.80 GHz No 2002
CPU3 Intel Pentium D 2.8GHz 2 2.80 GHz No 2005
CPU4 Intel Core2 Quad Q9400 4 2.66 GHz No 2008
CPU5 2 × Intel Xeon E5405 2 × 4 2 × 2.00 GHz No 2007
CPU6 Intel Core i7 920 4 2.67 GHz Yes 2008

3.3 Methodology

The algorithms have been implemented in C++, and the stop condition is to
achieve a fixed number of generations, being 10000 for GA and 20000 for SA.
Due to the stochastic nature of the algorithms, the final running times are ob-
tained averaging the running times of 30 independent runs. The classic and high
performance benchmarks were written in C, and the source code can be obtained
in Roy Longbottom’s PC Benchmark Collection2. The score for CPUBenchmark
was obtained from the public database. Both, algorithms and benchmarks, where
compiled with gcc using ‘-o3’ optimization. All the computers are managed by
a GNU/Linux OS. All the computed results are shown in Section 4.

4 Obtaining the Data

The first phase in our work is to run the algorithms and benchmarks in every
processor and obtain the run time and benchmark scores. In this section we show
all the data we will use in the rest of the paper. Table 2 shows the execution time
for each algorithm and problem size. In Table 3 we can see the scores obtained
for each benchmark. As we mentioned above, the metrics used in the benchmarks
are not always the same.

2 http://www.roylongbottom.org.uk/
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Table 2. Running time (ms) for each algorithm and problem size

Algorithm/Problem CPU1 CPU2 CPU3 CPU4 CPU5 CPU6

GA MS43 5212624 4524800 3788930 1817040 1187610 850194
GA MS430 22335980 20356130 21500000 12515498 11065430 10600700
GA MS4300 245730200 211729000 230456500 139558000 141758000 115942800

SA MS43 282868 230458 189655 90377 74296 42523
SA MS430 666934 548548 587401 336423 309566 199641
SA MS4300 4901484 4156282 4150450 2853240 3098920 2396406

Table 3. Scores for each benchmark and CPU

Benchmark CPU1 CPU2 CPU3 CPU4 CPU5 CPU6

Dhrystone 1 (VMIPS) 2139 2403 4271 13979 12642 20614
Dhrystone 2 (VMIPS) 1978 2286 2562 6006 7830 13764
Whetstone (MWIPS) 829 943 1360 2698 2382 3202
Livermore Loops (MFLOPS) 516 534 583 1184 935 1366
Linpack (MFLOPS) 864 1035 796 1327 1234 1984
CPUBenchmark score 315 415 736 3797 6195 5564

5 Choosing a Benchmark

For both running times and benchmark scores we have obtained the speedup with
respect to the slowest processor - baseline processor - as a way of normalizing the
obtained data. With this baseline results the comparison between runtime and
benchmark and between different benchmarks can be easily carried out without
caring about different problem instances or algorithms. We have presented the
results in Table 4, and a graphical representation can be found in Figure 1.

Table 4. Speedup with respect to the baseline processor

Benchmark/Algorithm CPU1 CPU2 CPU3 CPU4 CPU5 CPU6

Dhrystone 1 1.00 1.12 2.00 6.54 5.91 9.64
Dhrystone 2 1.00 1.16 1.30 3.04 3.96 6.96
Whetstone 1.00 1.14 1.64 3.26 2.87 3.86
Livermore Loops 1.00 1.03 1.13 2.29 1.81 2.64
Linpack 1.00 1.20 0.92 1.53 1.43 2.30
CPUBenchmark 1.00 1.32 2.34 12.05 19.67 17.66

GA MS43 1.00 1.15 1.38 2.87 4.39 6.13
GA MS430 1.00 1.10 1.04 1.78 2.02 2.11
GA MS4300 1.00 1.16 1.07 1.76 1.73 2.12
SA MS43 1.00 1.23 1.49 3.13 3.81 6.65
SA MS430 1.00 1.22 1.14 1.98 2.15 3.34
SA MS4300 1.00 1.18 1.18 1.72 1.58 2.05
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(b) Dhrystone 1 (c) Dhrystone 2

(d) Whetstone (e) Livermore loops

(f) Linpack (g) CPUBenchmark

Fig. 1. Benchmark baseline results vs. real time baseline results

One of the first facts we realize is that the cross multiplication approach is not
valid for any of the studied benchmark and is not valid for any benchmark using
a single score. For this approach to be valid, all the rows for GA and SA in Table
4 would be equal, and the lines in all the graphs of Figure 1 would be overlapped
with the ‘Cross Multiplication’ line. However, the graphic representation clearly
shows that the performance of a processor running a metaheuristics depends
on the type of the algorithm as well as on the problem size, and not only in a
performance index. Another fact is that only Dhrystone 2 was able to rank the
processors in the same order than the running time ranking does. We can see
how the score of the rest of the benchmarks do not reflect the behavior of the
algorithms. At this point, we have to dismiss the rest of the benchmarks, so from
now on we are going to use Dhrystone 2 as our base benchmark.
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6 Fitting the Data

As we have noted before, the execution times depend on the type of algorithm,
problem size, and CPU performance, and is not linearly related with Dhrystone

score. Thereby, we have tried to fit the running times and the Dhrystone score
into a 3D surface, and we have obtained an equation for each algorithm.

For the task of surface fitting we have used the Open Source project Py-
thonequations3. Pythonequations is a collection of Python equations that can
fit themselves to both 2D and 3D data sets (curve fitting and surface fitting),
output source code in several computing languages, and run a genetic algorithm
for initial parameter estimation.

With Pythonequations we have obtained a ranking of more than 2500 equa-
tions fitting our data. Among the best fitting ones, we have chosen a Reciprocal
Mixed Inhibition equation. We have made this election because it was the best
fitting equation that was consistent with the expected behavior of the processors,
with a reasonable number of coefficients. The equation is outlined in Equation 1.
After the surface fitting for each algorithms, we obtained the coefficients for GA
and SA that are shown in Table 5a. In Table 5b we can see the error statistics
of the regression.

f(x, y) =
1.0

ax

b

(
1 +

y

c

)+ x

(
1 +

y

d

) (1)

Table 5. Surface fitting coefficients and errors

(a) Coefficients

Coeff. GA SA

a 0.1401 12.54
b -4632 -189100
c -27.6 -14.26
d 18 0.1843

(b) Error statistics

Metric GA SA

Sum of squared errors 6.5424e+08 2.6444e+05
R2 0.9951 0.9945
Adjusted R2 0.9940 0.9934
Root mean squared error 6836.0 137.4346

In Figure 2 we can see the representation of the equations obtained in the fit-
ting, as well as the real data obtained in our tests. With respect to the Dhrystone
score (x) we can see how, as we could expect, the value for the time (f(x, y))
decreases when the score increases, and dramatically increases when x tends to
0. With respect to the size of the problem or base time, we can see how the time
grows almost linearly with it. In the next section we are going to explain how to
use the equations for the prediction of running time in a given hardware.

3 http://code.google.com/p/pythonequations/
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(b) GA back view
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(c) SA front view
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(d) SA back view

Fig. 2. GA and SA fitting (front and back views)

7 Predicting Running Times and Limitations

Let us suppose that a researcher has made a experiment in which he has run a
GA algorithm A1 in a processor P1, and it has taken 30000ms. The first thing we
need to know is the Dhrystone score for the processor P1; we can find a table with
results for Dhrystone 2 in [7]. Let us assume that the score for P1 = 1000. Once
known these two values and the kind of algorithm we can obtain the baseline
value for our prediction: in Equation 6, we only have to substitute x by the
Dhrystone value for P1, and f(x, y) by the value of the run time in P1. Solving
the resulting equation we obtain a value for y; this value will be the baseline for
predicting the running time on another processor P2, in this case y = 18836

For predicting the time in an arbitrary processor P2 we only have to calculate
f(x, y) where x is the score for the new processor and y is fixed to the previously
obtained baseline value. Fixing y value is like obatining a slice of the 3D graph,
so that now, the running time only depends on the Dhrystone score. In our
example, for a processor P2 with a Dhrystone index of 3000, the value for the
predicted running time is f(3000, 18836) = 14983ms. Now we can compare the
obtained time with our algorithm A2 running in P2 without disposing the P1

processor nor the implementation of the A1 algorithm.
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While the quality of the prediction is good for a given implementation and
problem, this first approach is limited and further research is necessary to un-
derstand the effects of several factors as the language of the implementation or
solution encoding. Also an analysis of the frequency of instructions for each fam-
ily of algorithms (EAs and LSMs) could rely in a more general model, perhaps
covering many algorithms of the same family.

8 Conclusions and Further Work

In this paper we have tried to provide a first approach for developing a methodol-
ogy to fairly compare algorithms running in different hardware, using a scientific
benchmark software as a basis for our model. We have analyzed several different
options and build a method over the Dhrystone 2 benchmark. We have obtained
an equation for each one of the studied problems, and have shown an example
of their use for the prediction of the execution time.

As we noted before, the method needs to be enhanced, reducing its limitations.
Further research is necessary to enhance the model. A next step for future work
is the analysis of the frequency of the instructions on different metaheuristics,
trying to generalize the method, as well as the study of the effects of the coding
and language in the performance differences among different processors.
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Abstract. We consider the two-echelon location-routing problem (2E-
LRP), a well-known problem in freight distribution arising when estab-
lishing a two-level transport system with limited capacities. The problem
is a generalization of the NP-hard location routing problem (LRP), in-
volving strategic (location), tactical (allocation) and operational (rout-
ing) decisions at the same time. We present a variable neighborhood
search (VNS) based on a previous successful VNS for the LRP, accord-
ingly adapted as well as extended. The proposed algorithm provides so-
lutions of high quality in short time, making use of seven different basic
neighborhood structures parameterized with different perturbation size
leading to a total of 21 specific neighborhood structures. For intensi-
fication, two consecutive local search methods are applied, optimizing
the transport costs efficiently by considering only recently changed solu-
tion parts. Experimental results clearly show that our method is at least
competitive regarding runtime and solution quality to other leading ap-
proaches, also improving upon several best known solutions.

1 Introduction

We focus on a problem in the field of freight transportation, the Two-Echelon
Location Routing Problem (2E-LRP)[1]. This problem is a generalization of the
classical Location Routing Problem (LRP), dealing with a two-level distribution
system to deliver goods from suppliers to customers as this is beneficial (and
sometimes even mandatory) for many real world applications. Basically, the
2E-LRP includes components of classical NP-hard problems like the Facility
Location Problem (FLP) and the Vehicle Routing Problem (VRP), in combina-
tion with the requirements of an additional echelon. The 2E-LRP arises when
selecting locations for two types of facilities (platforms and satellites) through
which goods may be transported to final customers. This includes placing two
types of facilities at given locations, assigning customers to satellites, satellites
to platforms, and to serve these bipartite supply chain by two fleets of vehicles.
Additionally, the vehicles as well as the facilities may impose capacity constraints
representing e.g. load limits. Possible extensions of the problem may deal with
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direct routes from the platform to customers, either by a first-level vehicle or by
locating vehicles of the second-level fleet at the platforms. In contrast to the FLP,
where simple out-and-back routes are used, the 2E-LRP generally allows multi-
ple stops per route. Similar to the LRP, efficiently solving the 2E-LRP usually
requires strategic (platform and satellite location), tactical (allocation) as well
as operational (routing) planning decisions at the same time. Considering these
aspects in a subsequent way might seem beneficial in terms of complexity but
unfortunately tends to result in suboptimal solutions compared to all-embracing,
nested approaches [2].

From now on, we will refer to the echelon platform/satellite part of the prob-
lem as first level and to the satellite/customer part as second level, respectively.

The 2E-LRP can be defined on a complete, undirected, weighted graph G =
(V,E), with V = VC ∪ VS ∪ VP being the set of nodes consisting of n customers
VC = {0, . . . , n− 1}, m potential satellites VS = {n, . . . , n+m− 1} and o poten-
tial platforms VP = {n+m, . . . , n+m+ o− 1}, and E = {{i, j} | i, j ∈ VC , i �=
j}∪{{i, j} | i ∈ VC , j ∈ VS}∪{{i, j} | i ∈ VS , j ∈ VP } being the set of edges. For
any pair of nodes i, j ∈ V cij ≥ 0 represents the given travel cost. Each facility
i ∈ VD ∪ VP has an associated maximal capacity Wi and opening costs Oi. Fur-
thermore, two homogeneous fleets F1 and F2 ofK1 (K2) vehicles, each having ca-
pacity Q1 > 0 (Q2 > 0), are available at the platforms (satellites). The fixed cost
of using a single vehicle of F1 (F2) is given by f1 > 0 (f2 > 0), and each vehicle is
limited to perform one single route. Further, each customer j ∈ VC has defined a
demand dj > 0 which has to be satisfied. Additionally, we assume that the total
capacity of the satellites as well as of the platforms can satisfy the whole demand.

The 2E-LRP then deals with finding a setting of platforms and satellites to
be opened as well as determining efficient vehicle routes from the platform to
the satellites and from satellites to customers on G such that:

– Each route starts and ends at the same opened facility,
– each customer j is visited exactly once by a vehicle of F2, satisfying its

demand dj ,
– each satellite is visited exactly once by a vehicle of F1, satisfying its demand

dsatellite which is the sum of the demands of the assigned customers,
– the total number of vehicle routes of the first (second) level N1 (N2) is less

than or equal to K1 (K2),
– the total load of each route transported by a vehicle of the first (second)

fleet does not exceed the vehicle capacity limit Q1 (Q2),
– for each opened platform or satellite i the total load of each route assigned

to it does not exceed the facility capacity limit Wi,
– and the total costs of opening platforms and satellites, fixed costs for used

vehicles, and corresponding travel costs are minimized.

In this work we adapt and extend a a successful Variable Neighborhood Search
(VNS) for the LRP [3] in order to account for the additional echelon in the
2E-LRP by modifying existing neighborhood structures, introducing new ones,
adapting the local search procedures, and applying some additional improve-
ments.
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The remainder is organized as follows. Related work is presented in the next
section, the VNS is the topic of Section 3 and experimental results are given in
Section 4. Section 5 finishes the work with concluding remarks.

2 Related Work

The 2E-LRP is a special case of the Multi-Echelon Location-Routing Problem
(MELRP) having only one level of satellites between platforms and customers.
In [4] Gonzalez-Feliu defines a unified notation and a general model for the
MELRP and gives a literature review on diverse variants, including the 2E-LRP.
A literature research on the 2E-LRP itself only reveals a rather sparse number of
publications, most of them appeared in recent years although the problem itself
was already described in the 80s by Jacobsen and Madsen [1] in the context of
newspaper delivery. Boccia et al. [5] introduce three mixed integer programming
models for the 2E-LRP and present corresponding results. The same authors
further proposed a tabu search using an iterative-nested approach, splitting the
problem in two LRPs and solving them in a bottom-up manner [6]. A different
heuristic has been proposed by Nguyen et al. [7], considering a slightly modified
version of the problem using only a single platform. Their approach is based on a
Greedy Randomized Adaptive Search (GRASP) using four different construction
heuristics, a learning process and path relinking. In [8] the same authors suggest
a multi-start iterated local search with a tabu list and path relinking, which,
according to their evaluations, clearly outperforms the former approach. Among
these algorithms, one of the currently most effective method has been proposed
by Contardo et al. in [9]. It is an Adaptive Large Neighborhood Search (ALNS)
applying eight destroy and four repair operations and an embedded local search.
An interesting aspect is that none of these present-day heuristics is a population-
based approach. To the best of our knowledge, only the contribution by Jin et
al. [10] is based on evolutionary principles using a hybrid genetic algorithm with
a tabu search, which, however, tackles a two-layer LRP having infinite platform
capacities. Unfortunately the authors did not provide results on available or
common instances making a meaningful comparison difficult.

As the 2E-LRP consists of locating and routing components, it is closely
related to various other problems in freight distribution. For example, the Two-
Echelon Vehicle Routing Problem (2E-VRP), which deals with a two-level rout-
ing of vehicles, can be seen as a special case of the 2E-LRP, containing no opening
costs, always opened satellites and no facility capacities. For the 2E-VRP, Crainic
et al. [11] proposed a multi-start heuristic by separately solving the platform-to-
satellite and satellite-to-customer subproblems. A different approach by Hem-
melmayr et al. uses an ALNS [12] with destroy and repair components and
embedded local search methods. Another related problem is the Two-Echelon
Single-sourced Capacitated Facility Location Problem, considering two-level fa-
cility location and allocation similar to the 2E-LRP, for which Tragantalerngsak
et al. proposed six heuristics based on Lagrangian relaxation [13]. A further re-
lated problem is the Two-Echelon Uncapacitated Facility Location Problem, in
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which satellites and customers can be supplied by multiple sources. Gao and
Robinson [14] introduce a dual-based branch and bound algorithm for it. For
more details about two-echelon freight transport optimization we refer to [15].

Finally, we remark that the classical LRP can be considered a special case of
the 2E-LRP in which the first level is removed, e.g. by using only one platform
and zero transport costs to the satellites; two recents works are reported in [3,16].
In fact, the current work is methodically based on the former approach [3], also
a VNS, sharing some features with it. Therefore we omit to give details here but
refer to the next section.

3 Variable Neighborhood Search for the 2E-LRP

Variable Neighborhood Search [17] is a well-known metaheuristic exploiting a
set of (not necessary disjunct) neighborhood structures. Essentially, it applies
random steps in neighborhoods of growing size as diversification mechanism,
called shaking, each followed by an application of an embedded local search for
intensification.

As many other problems in the field of freight distribution, the 2E-LRP is par-
ticularly challenging due to some strict constraints resulting in a rugged search
space and limiting the amount of possible (legal) solutions for many neighbor-
hoods. Hence to smooth the search space, our VNS relaxes the vehicle load as
well as the facility load restrictions by allowing infeasible solutions in combi-
nation with penalties for excesses of these constraints. As the same (constant)
weightings might be inefficient for the whole search process, we use an adaptive
penalty function which gradually adjusts both values. Depending on whether
the search is in a feasible or infeasible region regarding a constraint, it decreases
or increases the corresponding penalty, respectively. We observed that useful
weights and initial values often depend on the problem instance. After some ex-
periments, we decided to use the average traveling costs cavg of the second fleet
as initial value with cavg/5 (cavg · 5) as lower (upper) bound for the penalty.

Initially, our VNS creates a set of candidate solutions by the following con-
struction heuristic, finally picking the best one for further improvement.

1. Sum up the customer demands to get a lower bound for the accumulated
facility capacities of each echelon WLB =

∑
j∈VC

dj .
2. Select satellites to be opened at random one by one until their combined

capacity is greater than or equal to WLB.
3. Select platforms to be opened at random one by one until their combined

capacity is greater than or equal to WLB (as the satellite demand never
exceeds the customer demand).

4. Assign each customer to be visited by a vehicle of its nearest opened satellite,
thereby considering the penalties for satellite load violations.

5. Apply the well-known Clarke and Wright savings algorithm [18] until no
more routes can be feasibly merged due to the vehicle load restriction.

6. If we end up with more than K2 second-level routes, least customer routes
are selected and customers contained therein are re-added in a greedy way,
allowing (penalized) excess of vehicle load.
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7. Assign each opened satellite with at least one route to be visited by a first-
level vehicle of its nearest opened platform, considering penalties for platform
load violations.

8. Apply step 5 in an analogous way on the first-level routes.
9. Similar to the second-level fleet, in case of ending up with more than K1

first-level routes, least satellite routes are selected and satellites contained
therein are re-added in a greedy way.

The reader may notice that our initialization method is rather simple in contrast
to others like those suggested in [8,7]. However, a better initial solution does not
necessarily lead to a better final result, in fact it might even be counterproductive
for the subsequent heuristic search. For example also [9], one of the so far leading
approaches, uses a comparable initialization procedure, and similar observations
hold for problems like the LRP [3].

For shaking we define seven different types of neighborhood structures via pos-
sible moves on a current solution. These are used with several perturbation sizes,
denoted by δ, providing a total of 21 shaking neighborhoods (i.e. kmax = 21).
Note however, that not all of them are always useful. Some of our benchmark
instances deal with a single, fixed platform, which renders some neighborhoods
rather useless. Our implementation detects such cases automatically and skips
the corresponding neighborhoods. In the following these seven basic neighbor-
hood structures are described.

Exchange-Segments. Exchange two random segments of variable length be-
tween two routes at the same facility (platform or satellite). This includes also
a customer (or satellite) relocation, as one of the segments might be empty. The
facility is selected at random with a probability directly (i.e. in a one to one
fashion) according to the number of supplied customers or satellites. Since satel-
lites usually serve more customers than platforms serve satellites, the former are
selected more often, leading to the desired focus on second-level routes.

Exchange-Segments-Two-Facilities. Exchange two random segments of
variable length where both segments are located at two distinct facilities in the
same echelon. The selection criterion for the first facility, and hence the type of
echelon, is as for exchange-segments, whereas the second facility of the same type
is then determined using equal probabilities. In case of only one opened plat-
form, always two satellites are selected (if possible) and if only a single satellite
is opened, exchange-segments is applied. This neighborhood structure facilitates
the (re-)assignment of customers (satellites) to the opened satellites (platforms).

Change-Two-Satellites. Opens a currently closed satellite and closes an
opened satellite, ensuring that the actual lower bound regarding the satellite
capacity WLB is still satisfied. After opening the selected new satellite a reloca-
tion procedure is applied which tries to relocate routes in a cost saving manner by
removing the old satellite of a route, connecting the first and last customer and
placing the new satellite at minimum cost between two consecutive customers. In
case no route is relocated, a more investigative method is used, trying to reduce
costs by relocating single customers. Afterwards the routes of the satellite to be
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Table 1. Order and parametrization of the shaking neighborhoods as used by the VNS

k Nk

1–5 Exchange-segments of maximal length δ = k
6 Exchange-segments of maximal lengths bounded by correspond-

ing route size
7–11 Exchange-segments-two-facilities of maximal length δ = k − 6

12 Exchange-segments-two-facilities of maximal lengths bounded
by corresponding route size

13–15 Change-two-satellites is applied up to δ = k − 12 times
16–18 Change-satellite is applied up to δ = k − 15 times
19–20 Change-two-platforms is applied up to δ = k − 18 times

21 Change-platform is applied once

closed are relocated to an opened satellite one by one in the least expensive way,
taking potential penalties into account. After such a neighborhood move the
number of opened/closed satellites stays the same. In case all available satellites
are already opened, the following change-satellite is applied instead.

Change-Satellite. This neighborhood deals with opening/closing a single satel-
lite. A satellite is selected at random for changing its status (opened to closed or
vice versa), thereby taking care of maintaining the required lower bound regard-
ing the satellite capacity WLB. As for change-two-satellites, it is tried to relocate
customers to a newly opened satellite and shift routes from a closed satellite.
This neighborhood move allows to alter the number of opened/closed satellites.

Change-Two-Platforms. Similar to change-two-satellites, in this move a closed
platform is opened and subsequently a different opened platform is closed, en-
suring that the actual lower bound regarding the platform capacity WLB is still
satisfied. Again, after opening a platform it is tried to minimize total costs by
rerouting complete routes to it. In a subsequent step, the routes of the closed
platform are relocated to open platforms one by one in a greedy way, allowing
but penalizing excesses of platform capacities. After such a move, the number
of opened/closed platforms stays the same. In case all available platforms are
already opened, the following change-platform is applied instead.

Change-Platform. The platform-specific counterpart of change-satellite selects
a platform at random and changes its status from opened to closed or vice versa.
In case of opening, existing first-level routes are relocated to the newly opened
platform in a cost-saving manner while in case of closing, the assigned routes
are relocated to other opened platforms. Also here it is ensured that the sum
of platform capacities is equal to or greater than WLB by restricting the search
space to valid moves, which also may result in infeasible neighboring solutions.

In this work we consider a fixed shaking neighborhood order, detailed in
Table 1. A greater focus is laid on exchanging segments and selecting optimal
satellites, as these two parts play a major role for obtaining good solutions, while
rather drastic changes involving whole platforms occur less often.
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For intensification, each newly derived solution is subject to the well-known 3-
opt intra-route exchange method, considering only recently changed routes. As a
second method, we propose a 2-opt∗ [19] inter-route exchange local search, which
tests for each pair of routes if exchanging their end segments would lead to a
better solution. Both methods are applied in a best improvement manner until a
local optimum is encountered. Since 2-opt∗ is considerably more demanding than
3-opt it is primarily applied on new incumbent solutions, but additionally with
a probability of 0.2 on newly derived solutions lying within 3% to the current
incumbent.

Although this basic VNS already performs relatively well, it seems that be-
sides always accepting better solutions as usual, also considering solutions having
worse costs sometimes can boost efficiency. This is done in a systematic way us-
ing the Metropolis criterion as was previously done in [20,3], originating from
simulated annealing [21]. Similar to the penalty weights we use an instance spe-
cific value for the initial temperature T0 = cavg/10 and apply a linear cooling
scheme, decreasing the value after every 100 iterations by T0 · 100/i, with i it-
erations in total as a limit. In addition, we further enhance this method with a
reheating procedure which resets the temperature to its initial value in case no
improvements occurred over a longer period, taking i/8 iterations for it.

4 Experimental Results

Our algorithm has been implemented in C++, compiled with GCC 4.6 and
performed on a single core of an Intel Xenon E5540 with 2.53GHz. For the
evaluation we took three benchmark data sets already used in previous work,
comprising 147 instances in total. Two sets were proposed by Nguyen [8] and are
provided by Prodhon [22]: the first set Prodhon is an extension of 30 instances
originally created for the LRP by adding a single platform at coordinates (0, 0).
The instances are named n-m-#clusters[b][BIS], containing 20 to 200 customers
n, either 5 or 10 satellites m, up to three customer clusters, and having different
vehicle capacities (‘b’ denotes high) as well as separated clusters (denoted by
‘BIS’). The second set Nguyen, with a naming schema n-m-{N,NM}), consists
of 24 instances having also only one platform, between 25 and 200 customers and
5 or 10 satellites; ‘N’ denotes a normal distribution while ‘NM’ a multi-normal
distribution. Finally, the third set Sterle was generated according to [6] and
provided by Sterle [23]. It consists of three (sub-)sets of instances, called I1, I2
and I3, containing different distributions of the satellites. These instances have
multiple platforms with restricted capacities and contain 8 to 200 customers, 3
to 20 satellites and 2 to 5 platforms; they are denoted as I[1|2|3] -o-m-n.

Our VNS is run for i = 5 · 106 iterations for sets Prodhon and Nguyen, and
for i = 7.5 · 106 iterations for set Sterle; the difference is due to obtaining com-
parable runtimes to previous methods to perform a fairer comparison. Initially
we create 10 candidate solutions and pick the best one as start solution of the
VNS. Penalty weights are adapted by multiplying or dividing them by 1.000005
depending on whether or not the solution at hand is feasible with respect to the
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Table 2. Results of the VNS on Prodhon’s instances

Instance BKS
best of 20 runs average over 20 runs overall best
costs %-gap costs CV [%] %-gap t [s] tmin [s] costs %-gap

20-5-1 89075 89075 0.00 89075.00 0.00 0.00 63.46 1.54 89075 0.00
20-5-1b 61863 61863 0.00 61863.00 0.00 0.00 82.84 0.27 61863 0.00
20-5-2 84478 84478 0.00 84489.50 0.06 0.01 62.22 11.33 84478 0.00
20-5-2b 60838 60838 0.00 61033.80 0.68 0.32 125.43 0.00 60838 0.00
50-5-1 130843 130843 0.00 130859.30 0.04 0.01 80.10 15.85 130843 0.00
50-5-1b 101530 101530 0.00 101548.80 0.06 0.02 127.87 34.87 101530 0.00
50-5-2 131825 131825 0.00 131825.00 0.00 0.00 96.71 11.28 131825 0.00
50-5-2b 110332 110332 0.00 110332.00 0.00 0.00 198.21 11.95 110332 0.00
50-5-2BIS 122599 122599 0.00 122599.00 0.00 0.00 111.58 90.66 122599 0.00
50-5-2bBIS 105696 105696 0.00 105935.50 0.14 0.23 197.73 155.29 105696 0.00
50-5-3 128379 128379 0.00 128436.00 0.10 0.04 79.75 9.03 128379 0.00
50-5-3b 104006 104006 0.00 104006.00 0.00 0.00 131.25 6.34 104006 0.00
100-5-1 319137 318225 -0.29 318667.10 0.10 -0.15 225.73 153.13 318134 -0.31
100-5-1b 257349 256991 -0.14 257436.35 0.11 0.03 301.11 219.65 256878 -0.18
100-5-2 231305 231305 0.00 231340.00 0.02 0.02 203.70 131.04 231305 0.00
100-5-2b 194729 194763 0.02 194812.70 0.02 0.04 240.39 202.27 194729 0.00
100-5-3 244194 244470 0.11 245334.90 0.12 0.47 174.10 123.70 244071 -0.05
100-5-3b 194110 195381 0.65 195586.20 0.11 0.76 180.41 111.35 195381 0.65
100-10-1 358068 352694 -1.50 357381.40 1.02 -0.19 233.37 166.94 351243 -1.91
100-10-1b 297167 298186 0.34 300239.15 0.43 1.03 299.03 194.47 297907 0.25
100-10-2 305402 304507 -0.29 304931.20 0.11 -0.15 247.66 193.78 304438 -0.32
100-10-2b 264389 264092 -0.11 264592.00 0.12 0.08 307.05 207.54 263873 -0.20
100-10-3 313249 311447 -0.58 312701.25 0.21 -0.17 226.64 141.31 310312 -0.94
100-10-3b 264096 260516 -1.36 261577.90 0.22 -0.95 302.85 217.89 260328 -1.43
200-10-1 552816 548730 -0.74 552488.90 0.45 -0.06 1009.49 748.05 548703 -0.74
200-10-1b 448236 445791 -0.55 448095.45 0.43 -0.03 634.59 575.87 445301 -0.65
200-10-2 498199 497451 -0.15 513673.40 3.34 3.11 1158.23 832.45 497451 -0.15
200-10-2b 423048 422668 -0.09 432487.00 2.12 2.23 730.12 695.92 422668 -0.09
200-10-3 533732 527162 -1.23 529578.00 0.30 -0.78 970.42 903.46 527162 -1.23
200-10-3b 404284 402117 -0.54 404431.25 0.30 0.04 591.90 556.91 401672 -0.65

Average -0.21 0.35 0.20 313.13 224.14 -0.26

corresponding constraint, respectively. This factor might seem quite small, but
we opted for a smooth adaptation, which was also confirmed to work well by
preliminary test results.

The results for the different instance sets are shown in Tables 2–4. To obtain
meaningful results we performed the VNS 20 times per instance. Column BKS
states so far best known solution values from [9,8], For our VNS we list minimal
costs (best of 20 runs), and following average values over 20 runs: costs, cor-
responding coefficients of variation (i.e. standard deviations divided by average
values) in percent (CV [%]), average CPU-times in seconds (t [s]) and average
times for obtaining the best solutions in the corresponding runs (tmin [s]). Due
to limited space we, on the one hand, give in these tables also the costs of the
overall best solutions we obtained, i.e. also including further, differently param-
eterized test runs, and, on the other hand, state for Sterle’s instances in Table 4
only those having ≥ 50 customers or where a new BKS could be obtained; full
details are provided via an online supplementary 1. Results printed bold improve
upon the BKS. Furthermore, best, minimum and average costs are also expressed
as percentage gaps w.r.t. BKS.

1 see at http://www.ads.tuwien.ac.at/w/Research/2E-LRP

http://www.ads.tuwien.ac.at/w/Research/2E-LRP
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Table 3. Results of the VNS on Nguyen’s instances.

Instance BKS
best of 20 runs average over 20 runs overall best
costs %-gap costs CV [%] %-gap t [s] tmin [s] costs %-gap

25-5N 80370 80370 0.00 80370.00 0.00 0.00 75.60 2.61 80370 0.00
25-5Nb 64562 64562 0.00 64562.00 0.00 0.00 90.51 0.10 64562 0.00
25-5MN 78947 78947 0.00 78947.00 0.00 0.00 61.15 0.96 78947 0.00
25-5MNb 64438 64438 0.00 64438.00 0.00 0.00 88.52 0.04 64438 0.00
50-5N 137815 137815 0.00 137815.00 0.00 0.00 116.30 35.07 137815 0.00
50-5Nb 110094 110094 0.00 110204.40 0.21 0.10 131.91 51.24 110094 0.00
50-5MN 123484 123484 0.00 123484.00 0.00 0.00 124.94 40.64 123484 0.00
50-5MNb 105401 105401 0.00 105687.00 0.38 0.27 201.51 47.57 105401 0.00
50-10N 115725 115725 0.00 115725.00 0.00 0.00 143.31 23.65 115725 0.00
50-10Nb 87315 87315 0.00 87345.40 0.10 0.03 175.86 66.35 87315 0.00
50-10MN 135519 135519 0.00 135519.00 0.00 0.00 144.06 10.33 135519 0.00
50-10MNb 110613 110613 0.00 110613.00 0.00 0.00 217.73 13.24 110613 0.00
100-5N 193228 193228 0.00 200685.05 3.18 3.86 168.12 101.32 193228 0.00
100-5Nb 158927 164156 3.29 164508.10 0.17 3.51 257.59 144.08 159429 0.32
100-5MN 204682 204682 0.00 206567.40 1.09 0.92 183.99 158.99 204682 0.00
100-5MNb 165744 165744 0.00 166357.35 0.25 0.37 314.87 246.88 165744 0.00
100-10N 212847 212729 -0.06 214585.60 0.62 0.82 222.99 167.17 209952 -1.36
100-10Nb 155489 155489 0.00 155790.60 0.17 0.19 352.13 251.36 155489 0.00
100-10MN 201275 201275 0.00 203798.05 0.88 1.25 229.30 162.90 201275 0.00
100-10MNb 170625 170625 0.00 170791.25 0.16 0.10 347.26 282.88 170625 0.00
200-10N 347395 346181 -0.35 349584.15 0.74 0.63 640.67 525.01 345267 -0.61
200-10Nb 256171 256759 0.23 264228.90 1.66 3.15 906.96 790.98 256759 0.23
200-10MN 326454 325747 -0.22 332207.50 1.04 1.76 453.32 440.96 323801 -0.81
200-10MNb 289742 289239 -0.17 292036.65 0.89 0.79 944.14 842.69 287802 -0.67

Average 0.11 0.48 0.74 274.70 183.63 -0.12

The results indicate that the VNS performs very well in general, reaching on
small instances almost every time the optimal or best known solution (for a list
of proven optimal solutions, we refer to [9]). In detail, our approach was able
to reach the BKS in all 71 instances with less than 50 customers at least once
and could even improve two of them. On the 76 larger instances with n ≥ 50
customers, the VNS was able to find 35 of the previous BKS and even 30 new,
improved solutions. Concerning the average results of our 20 runs per instance,
the solution quality is only 0.45% worse than the previously known BKS with an
average coefficient of variation of 0.40%. Since larger instances are harder to solve
and contain more local optima in general, it is not surprising that solution values
vary in these cases to a larger extent. However, it can be observed that the run-
time of the VNS increases only moderately with increasing instance size, making
the approach attractive for solving larger instances in relatively short time.

Table 5 displays a comparison of the VNS with other state-of-the-art ap-
proaches from literature: GRASP+PR [7], MS-ILS+PR [8], and ALNS [9]. As
common reference, we now use the currently best known solutions, i.e. includ-
ing those found by our method. Comparisons among runtimes must be done
with care, especially Nguyen et al. used a notably slower machine (Intel Pen-
tium 4 with 3.4GHz), whereas those utilized by Contardo et al. is slightly faster
than ours (Intel Xeon E5472 with 3.0GHz). Note that for GRASP+PR and
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Table 4. Results of the VNS on Sterles’s instances; note that here we can only present
results for a subset of all instances, but the averaged values are stated for the whole
subsets each (lines “Average” and “Total Average”).

Instance BKS
best of 20 runs average over 20 runs overall best
costs %-gap costs CV [%] %-gap t [s] tmin [s] costs %-gap

I1-4-10-25 1607.94 1559.36 -3.02 1565.92 0.31 -2.61 139.52 12.43 1559.36 -3.02
I1-5-8-50 1162.44 1162.44 0.00 1175.67 0.95 1.14 168.54 47.88 1162.44 0.00
I1-5-10-50 1132.63 1132.63 0.00 1139.37 0.54 0.60 189.48 23.10 1132.63 0.00
I1-5-10-75 1540.23 1540.23 0.00 1554.63 0.41 0.94 237.73 135.45 1540.23 0.00
I1-5-15-75 1686.21 1686.21 0.00 1709.52 1.28 1.38 265.80 151.73 1686.21 0.00
I1-5-10-100 2124.09 2123.44 -0.03 2152.04 1.34 1.32 353.37 222.23 2123.44 -0.03
I1-5-20-100 1973.08 1971.09 -0.10 1981.38 0.59 0.42 491.68 287.53 1971.09 -0.10
I1-5-10-150 1883.44 1886.9 0.18 1908.02 0.76 1.31 1241.05 1020.53 1882.6 -0.04
I1-5-20-150 1869.53 1841.51 -1.50 1870.66 1.11 0.06 1358.06 930.26 1835.30 -1.83
I1-5-10-200 2443.8 2461.55 0.73 2488.20 0.68 1.82 1994.27 1706.85 2461.55 0.73
I1-5-20-200 2219.54 2180.01 -1.78 2217.33 0.96 -0.10 1932.42 1586.05 2180.01 -1.78

Average -0.18 0.48 0.36 334.56 212.67 -0.20

I2-5-8-50 1121.13 1121.13 0.00 1122.13 0.27 0.09 175.83 83.10 1121.13 0.00
I2-5-10-50 1256.44 1256.44 0.00 1257.02 0.15 0.05 184.16 53.00 1256.44 0.00
I2-5-10-75 1691.15 1691.15 0.00 1702.61 0.45 0.68 240.27 83.72 1691.15 0.00
I2-5-15-75 1644.79 1743.46 6.00 1760.23 0.51 7.02 281.80 154.31 1743.46 6.00
I2-5-10-100 2231.21 2242.67 0.51 2281.94 0.57 2.27 332.43 232.81 2242.67 0.51
I2-5-20-100 1996.34 1999.61 0.16 2016.66 0.52 1.02 465.89 332.72 1999.61 0.16
I2-5-10-150 1728.05 1728.23 0.01 1746.83 0.90 1.09 951.50 774.49 1728.23 0.01
I2-5-20-150 1630.29 1615.26 -0.92 1636.21 0.95 0.36 1106.31 740.71 1615.26 -0.92
I2-5-10-200 2147.51 2155.78 0.39 2184.76 1.37 1.73 1522.63 1224.11 2155.78 0.39
I2-5-20-200 2049.01 2039.67 -0.46 2086.87 1.26 1.85 1807.87 1537.49 2035.6 -0.65

Average 0.18 0.40 0.66 304.07 179.94 -0.06

I3-2-8-25 951.59 951.56 0.00 951.56 0.00 0.00 120.65 23.55 951.56 0.00
I3-5-8-50 1162.44 1162.44 0.00 1174.18 1.03 1.01 163.75 47.81 1162.44 0.00
I3-5-10-50 1207.31 1207.31 0.00 1210.20 0.29 0.24 190.60 55.88 1207.31 0.00
I3-5-10-75 1721.47 1721.47 0.00 1727.94 0.31 0.38 245.00 117.26 1721.47 0.00
I3-5-15-75 1483.14 1478.92 -0.28 1486.39 0.62 0.22 256.56 152.54 1478.92 -0.28
I3-5-10-100 2178.35 2177.86 -0.02 2203.79 1.07 1.17 345.54 250.82 2177.86 -0.02
I3-5-20-100 2035.37 2022.55 -0.63 2037.09 0.67 0.08 480.41 336.27 2022.55 -0.63
I3-5-10-150 1274.44 1284 0.75 1293.43 0.64 1.49 904.36 611.32 1276.2 0.14
I3-5-20-150 1235.86 1240.77 0.40 1253.21 0.92 1.40 984.91 779.43 1235.86 0.00
I3-5-10-200 1766.46 1768.35 0.11 1788.41 0.79 1.24 1441.66 1213.78 1765.33 -0.06
I3-5-20-200 2531.21 2515.8 -0.61 2554.57 0.76 0.92 1944.09 1589.40 2514.28 -0.67

Average -0.01 0.27 0.29 287.63 171.57 -0.05

Total Average 0.0 0.39 0.44 308.75 188.06 -0.11

MS-ILS+PR, the authors present only the best solutions, and results on Sterle’s
set are limited to instances having at least 50 customers (marked by an asterisk in
the table). It is clearly shown that the VNS outperforms both, GRASP+PR and
MS-ILS+PR, although the comparisons concerning only best solutions should
be done with care. Compared to ALNS our VNS seems to be at least competitive
with only marginal differences between the best and average values. Especially
on Prodhon’s instances the VNS provides better results on average while on the
other instance sets ALNS achieves slightly better results. Also the last line of
Table 5, stating how often the (new) BKS could be obtained by the corresponding
method, emphasizes the good performance of the VNS.
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Table 5. Comparison of leading approaches for the 2E-LRP; an asterisk marks the
limited sets of Sterle (and corresponding results) considered by Nguyen et al.

Set
GRASP+PR MS-ILS+PR ALNS VNS

%-gapmin tavg %-gapmin tavg %-gapmin %-gapavg tavg %-gapmin %-gapavg tavg

Prodhon 1.79 14.20 0.94 178.30 0.32 0.83 465.82 0.08 0.50 313.13
Nguyen 1.52 19.70 0.71 112.20 0.15 0.48 191.98 0.26 0.89 274.70
I1 - - - - 0.24 0.41 306.76 0.05 0.60 334.56
I2 - - - - 0.25 0.45 331.01 0.25 0.72 304.07
I3 - - - - 0.05 0.22 329.86 0.04 0.35 287.63
I1* 6.24 - 3.39 917.10 0.42 0.96 839.60 0.16 1.31 835.43
I2* 5.84 - 3.06 928.00 0.79 1.39 913.70 0.76 1.81 745.16
I3* 6.42 - 1.76 935.10 0.17 0.66 909.85 0.14 0.98 698.53

Average - - - - 0.20 0.48 330.03 0.14 0.61 302.82
Average* 3.36 - 1.60 426.73 0.37 0.86 538.26 0.28 1.10 461.64
No. BKS 8* 14* 111 136

5 Conclusions

In this work, we extended and adapted a previous variable neighborhood search
(VNS) initially proposed for the location-routing problem to tackle the two-
echelon location-routing problem (2E-LRP) with capacitated vehicles and facil-
ities. Two new types of neighborhood structures were introduced dealing with
the additional echelon by opening and closing platforms including vehicle route
relocations. Existing neighborhood structures were modified by also considering
first-level routes from platforms to satellites. For smoothing the search space,
violations of capacity constraints are allowed but penalized in the objective
function; corresponding penalty weights are automatically adapted. The VNS
sometimes also accepts worse solutions in a simulated annealing fashion, apply-
ing reheating if no improvement occurs over some time. Thorough experimental
results on available benchmark sets reveal the very promising performance of our
method, achieving results that are at least competitive to leading approaches for
this problem, both in terms of solution quality and required runtime. Moreover,
we were able to improve upon 32 of 147 (21.8%) of the best known solutions.

It might be promising to augment the presented method with further local
search heuristics or even suitably combine it with exact, possibly mixed integer
programming based approaches in order to achieve further improvements.
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Abstract. In this paper we propose a metaheuristic algorithm for the
Stacker Crane Problem. This is an NP-hard arc routing problem whose
name derives from the practical problem of operating a crane. Here we
present a formulation and a lower bound for this problem and propose a
metaheuristic algorithm based on the combination of a Multi-start and
an Iterated Local Search procedures. Computational results on a large
set of instances are presented.

Keywords: combinatorial optimization, metaheuristics, directed rural
postman problem.

1 Introduction

The Stacker Crane Problem (SCP) basically consists of finding a tour that starts
and ends at a given vertex and traverses a set of arcs of a mixed graph with
minimum cost. Its name refers to the practical problem of operating a crane.
The crane must start from an initial position, perform a set of movements, and
return to the initial position. The objective is to schedule the movements of the
crane so as to minimize the total tour cost. This problem can be considered an
arc routing problem, particularly a special case of the Directed Rural Postman
Problem, a Pickup and Delivery Problem, or a special case of the Asymmetric
Traveling Salesman Problem (ATSP).

The SCP was proposed by Frederickson, Hecht, and Kim [7]. They defined
the SCP as an arc routing problem on a mixed graph G = (V,E,A), where V is
the set of vertices, E the set of edges, and A the set of arcs. Vertex vs represents
the depot, i.e. the initial and final position of the crane. Each link (arc or edge)
of the graph has an associated non-negative cost. The goal is to find a minimum
cost tour, starting and finishing at vs, which traverses all the arcs in A.

Arc routing problems are routing problems where the service that must be
performed is located at the arcs or edges of the graph, unlike vehicle routing
problems, where the service is located at the vertices. The most well-known arc
routing problems with a single vehicle are the Chinese Postman Problem (CPP)
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and the Rural Postman Problem (RPP). The CPP was proposed by Guan [8] and
its goal is to find a minimum cost tour traversing all the links of a given graph.
This problem can be solved in polynomial time if G is a directed or undirected
graph, while it is NP -hard if G is a mixed or windy graph. The RPP, proposed
by Orloff [15], is a generalization of the CPP in which only a subset of links
are required to be traversed. This is an NP -hard problem for any type of graph
(Lenstra and Rinooy-Kan [12]). It is a very important problem because it has
many real-life applications and it is the arc routing counterpart of the famous
TSP.

The SCP can be considered a special case of the RPP defined on a mixed
graph in which all the arcs must be traversed, while the traversal of the edges
is optional. Frederickson et al. [7] showed that the SCP is NP -hard, by proving
that any instance of the TSP can be transformed into an SCP one. They also
proposed a heuristic algorithm with a worst-case performance ratio of 9/5 and
O(n3) complexity. This procedure consists of two algorithms, “LARGEARCS”,
which works better if the cost of the arcs is large compared to the cost of the
edges of an optimal solution, and “SMALLARCS”, which works better in the
opposite situation. The first one computes a minimum-cost matching and then a
minimum-cost spanning tree. The second one is based on the transformation of
the SCP instance into a TSP one and then using Christofides’ algorithm ([4]) for
the TSP. Both procedures need the costs of the instances to satisfy the triangle
inequality.

Berbeglia et al. [3] presented the SCP as a pickup and delivery problem. This
is an important class of vehicle routing problems in which commodities or people
have to be transported from origins to destinations. They have been the object of
study in recent years because of their many applications in logistics, ambulatory
services, and robotics. Berbeglia et al. [3] defined the SCP as follows: single
objects have to be transported from their origin to their destination using a unit
capacity vehicle.

Other papers dealing with the SCP can be found in the literature. Eiselt et al.
[6] presented a survey on the RPP and devote a section to the SCP. Zhang [18]
proposed a simplification of Frederickson’s algorithm with a worst-case ratio of 2
and O(n2) complexity. Zhang and Zheng [19] solved the SCP as an Asymmetric
Traveling Problem (ATSP) using previously known algorithms for this problem.
Hassin and Khuller [9] proposed a 1

2 z-approximation algorithm for the directed
TSP that can also be used for the SCP. Recently, Srour and van de Velde [17]
have presented a statistical study comparing the difficulty of the resolution of
SCP instances with that of general ATSP instances. The motivation for this
study is that some authors claim that, although the SCP and the ATSP are
known to be NP -hard, the SCP can be easily solved when transformed into an
ATSP (Laporte [11]). Their conclusion is that SCPs are not necessarily easier
than other ATSPs, but a special subset of SCPs, termed drayage problems, are
more readily solved. Cirasella et al. [5] present a study about ATSP heuristics
on eleven types of instances, one of which corresponds to the SCP.
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The rest of the paper is organized as follows. In Section 2 we define the
problem and introduce the notation used. A formulation and a lower bound
for the SCP are proposed in Section 3. In Section 4 we present a metaheuristic
algorithm based on the combination of a Multi-start and an Iterated Local Search
algorithms. Computational results on a large set of instances from the Literature
are reported in Section 5. Finally, some conclusions are drawn in Section 6.

2 SCP Definition and Notation

Let G = (V,E,A) be a mixed graph, where V is the set of vertices, E is the set
of edges, and A is the set of arcs. Associated with each arc and edge there is a
nonnegative cost cij , and for every arc there is a parallel edge of no greater cost.
The Stacker Crane Problem consists of finding a tour starting and finishing at
the depot, vertex vs, traversing each arc in A, and such that the cost of the tour
is minimum.

The heuristic algorithms proposed by Frederickson et al. [7] require that each
vertex is incident to at least one arc of A, and the edge costs satisfy the triangle
inequality. As it was pointed out in [6], note that if G does not satisfy these
two properties, it can be transformed into an equivalent graph G′ that satisfies
them. The problem is then solved on G′ and the solution transformed into an
equivalent solution in G. In what follows we will also assume that G satisfy these
conditions.

We use the following notation:

– hi and ti represent the initial and final vertices of arc ai.
– The vertices of the graph are denoted by vi, while the arcs and edges are

represented by ai =< ti, hi > and e = (vi, vj), respectively.
– The cost of the shortest path from arc ai to arc aj is represented by d(ai, aj)

and is calculated as the shortest path from hi to tj . Note that d(ai, aj) and
d(aj , ai) can be different.

– p denotes the number of connected components induced by the arcs. V1, . . . , Vp

are the corresponding vertex sets (R-sets), where V1 ∪ ... ∪ Vp = V .
– Given a subset of vertices S ⊂ V , we define x+(S) =

∑
vi∈S,vj∈V \S xij and

x−(S) =
∑

vi∈S,vj∈V \S xji.

– For any vertex vi ∈ V , d+(vi) and d−(vi) represent the number of arcs
leaving and entering vi, respectively.

A tour for the SCP is a closed walk starting and ending at vs that traverses
exactly once each arc in A. A semitour for the SCP is the subset of edges
obtained after removing the arcs from any tour for the SCP. Figure 1 shows a
feasible solution for the SCP, where black arrows represent the arcs in A.

3 A Lower Bound to the SCP

In this section we present a formulation for the Stacker Crane Problem. We as-
sociate two variables xij and xji with each edge e = (vi, vj), representing the
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Fig. 1. A SCP solution

number of times edge e = (vi, vj) is traversed from vi to vj and from vj to vi,
respectively. Note that a tour for the SCP corresponds to a connected Eulerian
graph. Then, the SCP can be formulated as follows:

Minimize
∑

(vi,vj)∈E

cij(xij + xji)

s.t.:

x+(S) ≥ 1, ∀S =
⋃
i∈Q

Vi, Q ⊂ {1, 2, ...., p} (1)

x+(vi) + d+(vi) = x−(vi) + d−(vi), ∀vi ∈ V (2)

xij , xji ≥ 0, ∀(vi, vj) ∈ E (3)

xij , xji integer, ∀(vi, vj) ∈ E (4)

Given that the R-sets are connected subgraphs, constraints (1), which guarantee
the connectivity between them, force the solution to be connected. Constraints
(2) are the symmetry conditions on the vertices and, together with (1), guarantee
that the graph associated with any feasible solution will be strongly connected.
Vectors x ∈ R2|E| satisfying (1) to (4) correspond to the semitours for the SCP.

Note that the number of constraints of type (1) is exponential. Although they
can be exactly separated in polynomial time, the separation algorithm requires
max-flow computations. In order to obtain a lower bound easily, we have decided
to relax the above formulation by including only one connectivity constraint
associated with each R-set:

x+(Vi) ≥ 1, ∀i ∈ {1, . . . , p}.
The optimal integer solution to the above relaxation gives a lower bound for the
SCP.

4 A Metaheuristic Algorithm for the SCP

In this section we present an algorithm for the SCP. The components of this
procedure are a Multi-Start algorithm (MS), a Variable Neighborhood Descent
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(VND), and an Iterated Local Search (ILS). It is based on the algorithms pro-
posed by Belenguer et al. [1] for the Split Delivery Capacitated Arc Routing
Problem and by Benavent et al. [2] for the Min-Max k-Vehicles Windy Rural
Postman Problem. The basic structure of the procedure is as follows. The MS
algorithm generates a feasible solution for the SCP and the VND improves it.
The improved solution, if it is different from the previously generated solutions,
will be considered as the initial solution for the ILS algorithm. This last algo-
rithm disrupts a solution and then repairs it, generating a new solution that
is improved by means of the VND. The best solution found is used as starting
solution for the next iteration of the ILS. The output of the algorithm is the
best solution found.

In what follows we briefly describe the main components of the proposed
procedure.

4.1 Multi-start Algorithm

Basically, multi-start algorithms consist of the execution of a number of global
iterations until some stopping criterium is satisfied. Each global iteration gener-
ates a solution with a constructive algorithm and then improves it with a local
search method.

We have implemented a simple constructive algorithm to obtain SCP solutions
whose details are shown in Algorithm 1. First an arc is randomly chosen. Let a
be the last arc added to the partial tour. We randomly choose an arc from the
set consisting of the nclose arcs closest to a, according to distance d defined in
Section 2, which have not yet been inserted in the partial solution. The selected
arc is inserted at the end of the partial solution. The algorithm ends when all the
arcs have been inserted. After some preliminary computational testing we fixed
nclose to five. From the ordering of the arcs obtained, we build an SCP tour by
adding the edges in the shortest paths joining consecutive arcs (see Figure 2).
Note that, since we are assuming that each vertex is incident with at least one
arc, the constructed tour will visit the depot.

The random elements of this constructive algorithm allow us to generate dif-
ferent feasible solutions that will be used as starting solutions.

ti hi tj hj
ai ajd(ai, aj)

Fig. 2. Tour completion

4.2 Variable Neighborhood Descent Algorithm

The Variable Neighborhood Descent (VND), introduced by Mladenovic and
Hansen [14], is an enhanced local improvement strategy based on a sequence
(N1, ..., NK) of K neighborhoods with growing cardinals. Starting from k = 1,
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Algorithm 1. SCPSolGenerator

Input: A mixed graph G = (V,E,A).
Output: A tour T for the SCP.
1: Choose a random arc a0 in A.
2: T := {a0} and A := A \ {a0}.
3: while A �= ∅ do
4: Calculate S(a0), the set containing the nclose arcs closest to a0.
5: Choose a random arc aj in S(a0).
6: T := T ∪ {aj} and A := A \ {aj}.
7: a0 := aj .
8: end while
9: Complete T with the shortest paths between arcs.
10: return T

each VND iteration searches the neighborhood Nk. If one improving move is de-
tected, it is executed and k is reset to 1, otherwise k is incremented. The method
stops when k = K and the exploration of NK brings no improvement.

In our algorithm, we use K = 3 neighborhoods, associated with the three
procedures described below.

Let T be a given sequence of arcs corresponding to a feasible solution that
will be improved by the VND. The movements defining the neighborhoods of
the VND are:

1-opt: For each arc in T , we try to insert it in a different position in T , so
that the cost of the solution associated with the new sequence is improved. This
procedure is applied until no further improvement is obtained.

2-opt: Given a couple of consecutive arcs in T , we try to insert it in a different
position in T , so that the cost of the solution associated with the new sequence
is improved. This procedure is applied until no further improvement is obtained.

3-opt: Same as 2-opt but with subsets of three consecutive arcs in T .

4.3 Iterated Local Search

ILS (Lourenço et al. [13]) is a metaheuristic that uses an initial solution, a local
search and a perturbation procedure. Its structure is as follows. Given an initial
solution, it is improved by local search. Then, the algorithm performs niterILS
iterations. At each iteration, a copy of the current best solution, called BestSol
is randomly modified using a perturbation procedure. The resulting solution is
also improved by local search and the best solution is updated.

The sameVND described above is used as local search procedure. The proposed
perturbation algorithm works as follows. Again, let T be a given sequence of arcs
corresponding to a feasible solution. First, ndel random arcs are removed from T .
Each one of these arcs is reinserted in T in the best possible position making sure
that the obtained solution is different from the previous one. Preliminary compu-
tational experiments with several values of ndel lead us to fix its value to five. A
detailed description of this algorithm is shown in Algorithm 2. The pseudo-code
of the whole metaheuristic algorithm is presented in Algorithm 3.



An ILS-Based Metaheuristic for the Stacker Crane Problem 31

Algorithm 2. Perturbation

Input: T = {ai1 , ...., ain}.
Output: T ′, a different sequence of arcs.
1: Let S ⊂ T be a set of ndel random arcs.
2: T ′ := T \ S.
3: while S �= ∅ do
4: Choose ak ∈ S at random.
5: Choose aij = argmin

aij
∈T ′

{d(aij , ak) + d(ak, aij+1)}, so that ak was not between aij

and aij+1 in T .
6: Insert ak in T ′ between aij and aij+1 . S := S \ {ak}.
7: end while
8: return T ′

Algorithm 3. Metaheuristic

Input: A mixed graph G = (V,E,A) where A is the set of required arcs.
Output: A tour T for the SCP.
1: for iterMS = 1 to nsol do
2: SCPSolGenerator(SCPsol)
3: VND(SCPsol)
4: BestSol :=SCPsol
5: for iterILS = 1 to niterILS do
6: ILSsol := Perturbation(BestSol)
7: VND(ILSsol)
8: UpdateBestSolution(ILSsol,BestSol)
9: end for
10: UpdateBestSolution(BestSol,GlobalBestSol)
11: end for
12: return GlobalBestSol

5 Computational Results

In order to study the behavior of the proposed metaheuristic, it has been applied
to several SCP instances generated from 92 instances for the Rural Postman
Problem (RPP) proposed in Hertz et al. [10]. In these RPP instances, vertices
are points in the Euclidean plane and edge costs are defined by the Euclidean
distances. The set of edges E is defined according to three different methods.
The first method is used in 20 instances (Hertzr class), where E is generated
randomly in the plane. The second method is used in 36 instances (Hertzg class),
where E defines a uniform grid. Finally, in the other 36 instances (Hertzd class),
E defines a graph where all the vertices have degree 4. From these RPP instances,
we have generated instances for the SCP. The original RPP instances have been
modified in the following way. A random direction has been assigned to the
required edges to define the set A of required arcs. Moreover, the instances have
been transformed so that all its vertices are incident with required arcs. The
transformation consists of removing all the vertices not incident with required
arcs and adding edges corresponding to the shortest paths between the remaining
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vertices. The obtained SCP instances correspond to mixed graphs where 5 �
|V | � 100 , 3 � |A| � 116, and 5 � |E| � 423. The algorithm has been coded in
C++ and run on an Intel Core 2 Duo computer at 2.4 GHz.

Tables 1 and 2 show the characteristics of the instances and the computational
results, respectively. Columns |V |, |E|, and |A| show, respectively, the average
number of vertices, edges and arcs in each instance class. Column “# of inst.”
gives the number of instances in each class, while “p” shows the average number
of R-sets induced by the required arcs.

The metaheuristic has been run with different values of parameters nsol,
number of global iterations, and niterILS, number of ILS iterations. We have
tried the combinations {100, 0}, {50, 15}, {25, 25}, and {10, 70}, as different
values for parameters {nsol, niterILS}. The obtained results are shown in Table
2. In this table, “# of Best” shows the number of times a given combination of
parameters gets the best solution found. “Gap(Best)” and “Gap(LB)” show the
average gaps of the results obtained with any combination of the parameters
with respect to the best solution found and to the lower bound, respectively.
Finally, average computing times (in seconds) are given in “Time”. The results
have been grouped depending on the number of arcs, |A|, of the instance.

It can be seen from Table 2 that the best combinations for parameters {nsol,
niterILS} are {50, 15} and {25, 25} for the large size instances, while in the small
and medium size instances, the behavior of all the variants is indistinguishable.
The version with {50, 15} is slightly better for the Hertzd class instances, while
{25, 25} seems to be the better one in the Hertzg class ones. We can observe
that the deviations from the lower bound, except for the instances of the Hertzr
class, where the costs of the arcs and edges are very large, are small, specially
considering that these lower bounds may still be far from the optimal values.

In order to compare our algorithm with previously published methods, we
have tested it on two sets of SCP instances presented in [17]. The first set of in-
stances, named PK, were derived from a drayage problem from a Dutch Logistics
Service Provider at the Port of Rotterdam. These instances were used in [16] and
[17], where they were transformed into Asymmetric Traveling Salesman Prob-
lem instances and solved to optimality by means of specific exact algorithms.

Table 1. Characteristics of the instances

# of inst. |V | |A| |E| p

Hertzd class |A| ≤ 20 13 14.9 10.8 36.7 5.1
20 < |A| ≤ 40 8 35.5 30.0 124.6 8,3

|A| > 40 15 74.2 74.4 298.6 11.8

Hertzg class |A| ≤ 20 12 13.5 8.6 19.6 5.2
20 < |A| ≤ 50 15 44.0 35.2 82.2 10.6

|A| > 50 9 82.4 84.0 160.1 8.4

Hertzr class |A| ≤ 10 10 10.7 6.6 28.1 4.1
|A| > 10 10 22.9 15.7 106.7 7.6
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Table 2. Computational results on Hertz instances

Hertzd class Hertzg class Hertzr class

|A| [3, 20] (20, 40] (40, 121] [3, 20] (20, 50] (50, 109] [3, 10] (10, 19]

{100, 0} # of Best 13 7 7 12 9 2 9 10
Gap(Best) 0.00 0.01 0.44 0.00 0.00 2.39 0.00 0.00
Gap(LB) 8.73 2.48 4.92 2.19 1.29 5.36 7.92 14.26

Time 0.26 2.94 76.32 0.08 1.55 37.38 0.04 0.47

{50, 15} # of Best 13 8 10 12 9 10 9 10
Gap(Best) 0.00 0.00 0.25 0.00 0.00 0.37 0.00 0.00
Gap(LB) 8.73 2.47 4.72 2.19 1.29 3.29 7.92 14.26

Time 0.78 8.68 110.61 0.32 5.80 71.75 0.06 1.54

{25, 25} # of Best 13 8 6 12 9 12 9 10
Gap(Best) 0.00 0.00 0.63 0.00 0.00 0.28 0.00 0.00
Gap(LB) 8.73 2.47 5.12 2.19 1.29 3.18 7.92 14.26

Time 0.56 6.53 78.24 0.23 4.46 53.00 0.04 1.25

{10, 70} # of Best 13 8 1 12 9 7 9 10
Gap(Best) 0.00 0.00 0.90 0.00 0.00 1.12 0.00 0.00
Gap(LB) 8.73 2.47 5.39 2.19 1.29 4.05 7.92 14.26

Time 0.59 6.74 73.27 0.26 4.75 52.76 0.05 1.42

All these instances have 131 arcs, but their exact characteristics are unknown
to us, since we have directly worked with the ATSP transformed ones. The sec-
ond set of instances, named Crane, was used in [5] and [17]. The instances were
randomly generated by using a generator with a single parameter u ≥ 1 that con-
structs each source-destination pair as follows. The source is chosen randomly
in a 106 by 106 square. Then two integers x and y are chosen in the interval
[−106/u, 106/u] at random and the destination is determined adding the vector
(x, y) to the source. Ten instances with |A| = 100, named crane0 to crane9, and
ten with |A| = 316, crane10 to crane19, were generated using parameter u = 10.

Tables 3 and 4 show the results obtained with our metaheuristic on PK and
Crane instances respectively, using the combination of parameters {50, 15} and
a time limit of 900 seconds. Column Heuristic reports the cost of the solution
provided by the proposed algorithm, while Optimum gives the optimal cost.
The computing times, in seconds, of the metaheuristic procedure are given in
column T ime. Finally, column Gap presents the percentage deviation of the
metaheuristic solution from the optimal one. We can observe that the behavior
of our algorithm is good in the PK set of instances, finding nine out of 33 optimal
solutions. The average gap for all the PK instances is 1.24%, with an average
time of 240.2 seconds. On the other hand, the Crane instances, as previously
stated in [17], are considerably more difficult than the PK ones. Moreover, there
is a clear difference between those instances with 100 arcs and those with 316
in what refers to the behavior of our algorithm. While in the first subset the
average gap and time are 4.19% and 231.47 seconds, respectively, for the second
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Table 3. Computational results on PK instances

Name Heuristic Time Optimum Gap Name Heuristic Time Optimum Gap

PK1 65005 239.30 63484 2.40 PK18 72336 234.76 69367 4.28
PK2 64786 229.13 63843 1.48 PK19 48981 264.48 48981 0.00
PK3 52015 233.78 50139 3.74 PK20 51145 245.79 51145 0.00
PK4 51712 236.84 51712 0.00 PK21 51477 243.64 50474 1.99
PK5 51092 217.43 50967 0.25 PK22 70582 245.93 68288 3.36
PK6 60349 237.90 57822 4.37 PK23 50282 266.71 49345 1.90
PK7 63222 256.30 62497 1.16 PK24 68105 248.22 67556 0,81
PK8 48602 214.23 48601 0.00 PK25 56265 259.36 56153 0.20
PK9 60329 229.47 59742 0.98 PK26 52480 237.82 52062 0.80
PK10 58983 249.42 58046 1.61 PK27 68756 239.32 68260 0.73
PK11 63007 227.57 62010 1.61 PK28 80588 251.09 80499 0.11
PK12 67247 232.86 67247 0.00 PK29 54009 244.56 52175 3.52
PK13 51027 230.19 51027 0.00 PK30 48807 215.40 48807 0.00
PK14 67180 250.64 66937 0.36 PK31 38164 263.73 37893 0.72
PK15 52720 253.11 51943 1.50 PK32 72517 244.03 72517 0.00
PK16 52798 222.19 51729 2.07 PK33 47331 223.82 47331 0.00
PK17 64580 237.43 64051 0.83

Table 4. Computational results on Crane instances

Name Heuristic Time Optimum Gap Name Heuristic Time Optimum Gap

crane0 8110760 234.39 7777997 4.28 crane10 15716000 900 13132907 19.67
crane1 7893750 242.15 7615069 3.66 crane11 14931500 900 13194492 13.16
crane2 8288450 237.46 8062054 2.81 crane12 14714300 900 12968098 13.47
crane3 7402210 242.53 7018782 5.46 crane13 14520000 900 12350138 17.57
crane4 8074990 242.47 7786309 3.71 crane14 14575400 900 12744226 14.37
crane5 8233300 235.59 7933180 3.78 crane15 15606200 900 13120938 18.94
crane6 7718400 241.78 7208062 7.08 crane16 15464800 900 12900450 19.88
crane7 7658470 239.29 7474720 2.46 crane17 15373200 900 13145193 16.95
crane8 8021430 232.68 7676198 4.50 crane18 15063100 900 13289851 13.34
crane9 7974160 237.83 7561872 5.45 crane19 15372400 900 13164800 16.77

subset the time limit is always reached and we obtain an average gap of 12.93%.
Overall, we think the results obtained by our algorithm in medium-size instances
are encouraging, while it seems that there is still room for improvement regarding
its behavior in larger and more difficult instances.

6 Conclusions

In this paper we have studied the Stacker Crane Problem, which is an NP-
hard arc routing problem with practical applications. For this problem we have
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proposed an Integer Linear Programming formulation from which a lower bound
can be obtained. Moreover, we have presented a metaheuristic algorithm based
on the combination of a Multi-start and an Iterated Local Search procedures.
The computational results obtained on a large set of instances from the literature
show that, although the behavior of this algorithm is promising in medium-size
instances, there is still room for improvement regarding the resolution of larger
and more difficult ones.
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Abstract. In this paper, we present and define the bi-objective Green
Vehicle Routing Problem GVRP in the context of green logistics. The
bi-objective GVRP states for the problem of finding routes for vehicles to
serve a set of customers while minimizing the total traveled distance and
the co2 emissions. We review emission factors and techniques employed to
estimate co2 emissions and integrate them into the GVRP definition and
model. We apply the NSGA-II evolutionary algorithm to solve GVRP
benchmarks and perform statistical analysis to evaluate and validate
the obtained results. The results show that the algorithm obtain good
results and prove the explicit interest grant to emission minimization
objective.

Keywords: Green vehicle routing, Multi-objective optimization, Evo-
lutionary algorithms, NSGA-II.

1 Introduction

A supply chain is a network [1] of suppliers, manufacturers, warehouses and
distribution channels organized to acquire materials, convert them into finished
products and distribute them to clients. The Supply Chain Management (SCM)
consists of finding best practices, policies and strategies to solve efficiently all
encountered problems. That is by employing the available resources with re-
spect to different constraints and while optimizing many different and generally
conflicting objectives. One of the most important SCM phases is the logistics
and transportation processes that allow the moving of different materials from
and to different nodes in the supply chain network. Generally, the objective of
the logistics process is to optimize transportation related costs like traveled dis-
tance, time, routes flexibility and reliability. Recently, the concept of greenness
for sustainable development has emerged to represent a human concern for the
undesirable effect of the industrial processes on the environment. This environ-
mental awareness intend to show the effect of toxic emissions on the environment
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and to call governments and industrials to seriously consider this concern. Sev-
eral industries started enhancing their procedures to show an explicit interest
to minimize the volumes of their missions. In transportation, the aim is to con-
struct low cost routes for vehicles, trucks, planes and ships to transport goods.
However, while moving theses engines generate huge quantities of co2 that affect
directly the quality of breathed air particularly in large cities. The major con-
cern, for transportation firms, is the materiel benefit without reviewing vehicle
emissions and their effect on the environment. Recently, and for many reasons,
transportation companies start taking explicitly into account the emissions re-
duction objective in definition of their working plans. This trend was encouraged
by governmental regulations and customer preference to consume environment
friendly products. Then, the generated working plans must minimize costs and
co2 emissions. These two objective are not necessarily positively correlated and
for some cases they are completely conflicting.

The basic transportation model generally used to represent the problem of
finding routes for vehicles to serve a set of customers is the Vehicle Routing
Problem (VRP) [27]. In the basic VRP and also in many other variants the
objective to optimize is unique and it is to minimize the overall transportation
costs in term of distance, time, number of vehicles, etc. Here, the literature is
really huge where several single objective VRP was studied and solved efficiently.
However, like other optimization problems, the objectives may be multiple and
conflicting. Then, the multi-objective VRP was defined to represent a class of
multi-objective optimization problem.

In this paper, the scope is the study and the definition of the bi-objective
Green Vehicle Routing Problem (GVRP). The bi-objective GVRP asks for
designing vehicle routes to serve set of customers while minimizing the total
traveled distance and the total co2 emissions with respect to classical rout-
ing constraints mainly capacity constraints. consequently, we will implement
the NSGA-II evolutionary algorithm to solve the bi-objective GVRP model via
solving some well known benchmarks. The NSGA-II is a non-dominating sorting
genetic algorithm that solves non-convex and non-smooth multi-objective opti-
mization problems. The objective of the paper is to show the effectiveness of
explicitly considering emissions minimization as separate objective to optimize
and to prove that short routes are not necessarily less pollutant.

The paper is organized as follow. In the next section, we present the con-
cept of green logistics, enumerate all emission factors and how co2 emissions
could be estimated and then integrated into quantitative models. Section 3 is
devoted to define the vehicle routing problem with emissions, review the cor-
responding literature and propose a mathematical model for the bi-objective
GVRP. In the section 4, we present the evolutionary solving approach based
on the NSGA-II algorithm. Section 5 will report the NSGA-II implementation
details and computational results. Statistical analysis will be performed to mea-
sure the effectiveness of the model and the obtained results. Finally, we present
the conclusions of this project and state some perspectives for future work.
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2 Green Logistics

Traditional logistics ensure the movement of materials between all actors in the
supply chain starting from raw materials locations to final customers via firms
factories. These transportation tasks should be completed efficiently to report
more benefit to the company. The efficiency is usually measured in terms of
money, time and reliability. Recently, the concept of green logistics for sustain-
able development has soared due to governmental regulations and customers
preference for green products. Consequently, transportation companies are re-
viewing their processes to take into account such concern. The revision consider
all the steps in the production process including the choice of raw materials,
factoring, packaging, alternative fuels, etc. In some cases transforming the tradi-
tional logistics systems to be environmentally friendly will give a cutting down
in costs and then it will meet classic logistics objectives. However, in many other
situations such review may cost more and come into conflict with traditional
logistics.

For transportation companies, green logistics mean transporting goods with
lower effect on the environment. Basically, the effect of transporting materials on
the environment comes from gazes emissions generated from moving engines like
trucks, planes and ships. Then, greener transportation yields to low co2 emission
routes. But, those routes are generally determined using analytical model that
consider only saving money as primer objective. Then, the aim of considering the
environmental effect will be transformed into a revision of the analytical tools
used to generates routing policies and strategies. That, could be completed by
determining emission factors and quantifying trucks emissions to integrate them
into logistics systems.

2.1 Emission Factors

There are a number of factors that could affect vehicle fuel economy in real
world:

1. Vehicle weight:a vehicle carrying more weight requires more energy to run,
thus directly affect in fuel economy [4].

2. Vehicle speed and acceleration:fuel consumption and the rate of co2 per mile
traveled decrease as vehicle operating speed increase up to approximately 55
to 65 mph and then begin to increase again[1]. Moreover, the co2 emission
double on a per mile basis when speed drops from 30 mph to 12.5 mph or
when speed drops from 12.5 to 5 mph [3]. The relationships between these
factors and fuel economy are not simple. For example, the implication of
vehicle operating speeds on fuel consumption is not linear and depends on
vehicle type and size. It also varies on the model year and age of the vehicle.
For instance, studies of vehicle fuel economy taken during the 1990s show
less of a drop off in vehicle fuel economy above 55 miles per hours than
similar studies of vehicles during the 1970s and 1980s, due to vehicle design
changes and engine operating efficiency [14].
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3. Weather conditions: weather condition affect vehicle fuel economy. For in-
stance, head-winds reduce vehicle fuel economy as the vehicle needs addi-
tional power from the engine to combat the wind drag. Hot weather induces
the use of air conditioning, which places accessory load require on the engine.

4. Congestion level: It is commonly known that as traffic congestion increases,
co2 emission (and in parallel fuel consumption) also increase. In general,
co2 emission and fuel consumption are very sensitive to the type of driving
that occurs. In fact, traveling at a steady-state velocity will give much lower
emissions and fuel consumption compared to a stop-and-go movement. Thus,
by decreasing stop-and-go driving, co2 emissions can be reduced [4].

2.2 Emission Estimation Techniques

To examine the environmental impact of the Vehicle Routing, it is necessary to
weigh the environmental impacts of co2 emission. It is difficult to do an exact
estimation because of the uncertain effects of climate change and the setting
of a price tag on human health. The DEFRA estimated in 2007 the cost of
emitting a tone of co2 at 25.5. Furthermore, the IPCC [15] published estimates
range between 5 and 25. Emissions are estimated using average grams of co2
per kilometer. The study of Mc Kinnon [25] shows that the load carried is an
important parameter to estimate emissions. Thus, we can estimates co2 from
the distance traveled by vehicles and the quantity of goods carried. There are
other methods to estimate co2 emission for vehicle. We can cite for example the
fuel-based approach and the distance-based method.

1. The fuel-based approach: In the fuel-based approach [11], the fuel consump-
tion is multiplied by the co2 emission factor for each fuel. The emission factor
is developed based on the fuels heat content, the fraction of carbon in the
fuel that is oxidized and the carbon content coefficient. The fraction of gaso-
line oxidized depends on the transportation equipments used. Therefore, this
variability is minimal. In the US inventory, this fraction is assumed to be 99
percent. In the case of road transportation, companies and other entities have
the option to override these defaults if they have appropriate data of fuel
used. In most case, default emission factors will be used based on generic fuel
type categories( e.g., unleaded gasoline, diesel, etc) The fuel-based approach
requires essentially two main steps:

(a) Gather fuel consumption data by fuel type: Fuel use data can be obtained
from several different sources. We can cite for example fuel receipts, fi-
nancial records on fuel expenditures or direct measurements of fuel use.
When the amount of fuel is not known, it can be calculated based on dis-
tance traveled and an efficiency factor of fuel-per-distance.The distance
traveled basically come in three forms:

– distance(e.g., Kilometers)
– passenger-distance(e.g.,passenger-kilometers)
– freight-distance (e.g., ton-miles)
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The fuel economy factors depend on the type, age and operating practice
of the vehicle in question. Thus, we obtain the following equation:

fuel consumption = distance ∗ fuel economy factor

(b) Convert fuel estimate to co2 emissions by multiplying results from step
1 by fuel-specific factors; The recommended approach is to first convert
fuel use data into an energy value using the heating value of the fuel.
The next step is to multiply by the emission factor of the fuel.

The fuel-based approach is the same for the different mode of transportation.
The following equation outlines the recommended approach to calculating
co2 emissions based on fuel use. Thus, we obtain the following equation:

co2 emissions = fuel used ∗ heating value ∗ emission factor

2. The distance-based method :The distance-based method [11] is another
method to estimate the carbon dioxide emissions can be calculated by using
distance-based emission factor. This method can be used when vehicle activ-
ity data is in the form of distance traveled but fuel economy data is not avail-
able. It is obvious to formulate our problem using a distance-based method
for calculating co2 emissions. Calculating emissions requires two main steps:

(a) Collect data on distance traveled by vehicle type and fuel type.
(b) Convert distance estimate to co2 emissions by multiplying results from

step 1 by distance based emission factors. Thus, we obtain:

co2 emissions = traveled distance ∗ emission factor

The estimation of emission factor is carried out following two main steps.
The first one consists on estimate the fuel conversion factor ( 2.61kg.co2/
liter of diesel). The second step is to estimate the emission factor consists
on finding a function taking into account data related to the average fuel
consumption which depends on load factor.

3 The Vehicle Routing Problem with Emissions

3.1 Literature Review

In recent years, many research works about variants of the VRP in order to
reduce the cost and the emission of co2 was conducted. The Vehicle Routing
and Scheduling Problem (VRSP) is an extension of the VRP. Its purpose is to
determine the routes and schedules for a fleet of vehicle to satisfy the demand
of a set of customers. Thus, it aims to minimize cost which is usually related to
the number of vehicles and distance. The reduction in total distance will provide
environmental benefits due to the reduction in fuel consumption.

The Time Dependent Vehicle Routing Problem (TDVRP) represents a
method which should indirectly produce less pollution and achieve environmental
benefits in congested area. The TDVRP is a variant of the VRP and has received
less attention. It was originally formulated by Malandrakiand et al. Daskin [7]
as mixed linear program. It consists of finding the solution that minimizes the
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number of tours by considering traffic conditions. The TDVRP provide environ-
mental benefits, but in an indirect way. Consequently, less pollution is created
when vehicle are traveling at the best speeds and for shorter time. The Time De-
pendent Vehicle Routing and Scheduling Problem (TDVRSP) consists of finding
the solution that minimizes the number of tours and the total traveling time. It is
motivated by the fact that traffic conditions cannot be ignored, because at peak
time, traffic congestion on popular routes will causes delays. The TDVRSP pro-
vides also environmental benefits in indirect way. There is an extensive literature
related to vehicle emission.Turkay et al. [20] and Soylu et al. [18] demonstrated a
collaborative supply chain management for mended business and for decreasing
environmentally harmful chemicals, while satisfying local regulation and Kyoto
protocol for greenhouse gas emissions. The study of Halicioglu [12] tried to em-
pirically treat the dynamic causal relationship between carbon emissions, energy
consumption, income and foreign trade in the case of Turkay [20]. Recently, Van
Woensel et al. [21] considered a vehicle routing problem with dynamic travel
time due to the traffic congestion. The approach developed introduced the traf-
fic congestion component based on queuing theory in order to determine travel
speed. A tabu search method was used to solve the model. Results showed that
the total travel time can be improved significantly when explicitly taking into
account congestion during the optimization phase. The study of Figliozzi et al.
[8] proposed a new methodology for integrating real-world network status and
travel date to TDVRP. It developed efficient algorithms TDVRP solution meth-
ods to actual road networks using historical traffic data with a limited increase
in computational time and memory. The results shows the dramatic impacts of
congestion on carriers fleet sizes and distance traveled.

Figliozzi [9] also created a new type of VRP which is denoted the Emission
Vehicle Routing Problem(EVRP). The research presented a formulation and so-
lutions approaches for the EVRP where the minimization of emission and fuel
consumption is the primary objectives or is part of a generalized cost function.
A heuristic is proposed to reduce the level of emission given a number of feasi-
ble routes for the TDVRP. Search results indicated that they may be significant
emissions saving if commercial vehicles are routed taking emissions into consider-
ation. Moreover, congestion impacts on emission levels are not uniform. Bauer et
al. [2] identified and addressed some environmental consideration in the context
of intermodal freight transportation and proposed ways to introduce environmen-
tal costs into planning model for transportation. They proposed a formulation
for scheduled service network design problem with fleet management, it is an
integer program in the form of a linear cost multi commodity and capacitated
network design formulation that minimize the amount of green house gas emis-
sion for transportation activities. The formulation has been implemented on a
real life intermodal rail network data.

3.2 The Bi-objective Green Vehicle Routing Problem

The green vehicle routing problem is an answer for the recent environmental
awareness in the field of transportation and logistics. The objective is to find
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routing and transportation policies that give the best compromise between trav-
eling costs and co2 emissions. The literature on transportation problems espe-
cially vehicle routing problems had considered this environmental interest. Later
studies show and implicit interest to handle the objective of gazes minimization
But, without viewing it as a major distinct objective like distance and time. We
can cite the TDVRP, VRSP and the emissions VRP. In this paper, we consider
the the emissions minimization as a separate major objective in addition to the
distance minimization objective. Therefor, we define a bi-objective combinatorial
optimization problem named the bi-objective green vehicle routing problem.

The bi-objective GVRP [28] could be defined as follow: Giving a set of N
customers located in a transportation network and a distance matrix Dij repre-
senting the costs of moving between customers i and j and a set of M vehicles
hosted in a central depot. A solution of the bi-objective GVRP is composed by a
set of routes with minimum traveled distance and the minimum volume of emit-
ted co2 while visiting each customer once and with respect to vehicles capacity
constraints. It is clear that the bi-objective GVRP is an NP-hard problem due
to the fact that it is an extension of the standard VRP which is NP-hard.

4 NSGA-II Algorithms for the Bi-objective GVRP

Genetic Algorithms (GA) are stochastic and evolutionary optimization algo-
rithms based on mechanisms of natural selection and genetics. GAs attempt to
solve hard non-convex single and multiobjective optimization problems. Multi-
objective GAs are based on the concept of Pareto dominance, which emphasizes
a research satisfying all objectives. They are well suited for the search of Pareto
front through their implicit parallelism to reach optimal solutions more effi-
ciently than an exhaustive method. Many multiobjective genetic algorithms can
be cited [6].

The NSGA-II is more efficient than its previous version NSGA [5]. This algo-
rithm tends to spread quickly and appropriately when a certain non dominated
region is found. The main advantage is that the strategy of preserving of diver-
sity used in NSGA-II requires no parameters to fix. For these reasons, we choose
to resolve our problem using this approach. In NSGA-II, the child population
Q(t) is first created from the parent population P (t)(randomly filled). They are
then met into a set R(t) = P (t)

⋃
Q(t) that is sorted according to the princi-

ple of dominance: all non-dominated solutions of the population are assigned
a fitness value 1 (first front), then they are removed from the population. All
non-dominated solutions of the population are assigned a fitness value 2 (second
front), then they are removed from the population. And so on. This process is
iterated until all solutions whose fitness value is upon to evaluate is empty [6].
To select subsets that will be placed in the population, a measure of the density
of solutions in the space of criteria called crowding distance is used.

5 Implementation and Computational Results

In order to evaluate the effectiveness of the proposed model and to prove the ef-
fect of considering explicitly the emissions minimization objective, the NSGA-II
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algorithm was implemented to solve bi-objective GVRP instances. The proposed
algorithm was implemented using the ParadisEO-MOEO library [26]. The per-
formance of the metaheuristic has been tested on different instances taken from
the VRPLIB [23]. These instances involve between 16 and 500 nodes. The num-
ber at the end of an instances name represents the number of vehicles while
the number at the first is the number of customers. The stopping condition of
all tests is based on the number of generation (100 generation). Computational
runs were performed on an Intel Core 2 Duo CPU (2.00 GHz) machine with 2G∅
RAM. The results presented below are based on the following GA parameters:

– Chromosome encoding: a solution chromosome is represented by an integer
string. A gene is a customer number, while a sequence of genes dictates
a group of customers assigned to a vehicle. For instance, the chromosome
(0,3,6,1,0,2,4,0,5,0) contains three routes (0 :: 3 :: 6 :: 1 :: 0), (0 :: 2 :: 4 :: 0)
and (0 :: 5 :: 0). The population size is set to 100 chromosomes.

– Crossover: We utilized the standard crossover operator Partially-Mapped-
Crossover (PMX). The first step is to Select a substring uniformly in two
parents at random. The next step is to exchange these two substrings to pro-
duce proto-offspring. The third step is to determine the mapping relationship
according to these two substrings. The last step is to legalize proto-offspring
with the mapping relationship. The crossover probability is 0.25.

– Mutation: In the mutation stage, two customers are selected from different
routes randomly. They are going to be swapped only if constraints are met
after this operation. After swap, insertion is done in which we select randomly
a customer from a route and try to insert rest of any one route if it satisfies
all the constraints.The mutation probability is fixed to 0.35.

5.1 Computational Results

To demonstrate the efficiency of the metaheuristic implementation, measures
related the computation time are computed and reported in Table.1. We can
remark that the computation time of the implemented algorithm increases pro-
portionally to the size of the instance due to algorithm complexity and especially
the complexity of the computation of the crowding distance O(MNlogN). It is
important to observe that the cardinality of the pareto fronts is small. This fact
can be explained by the correlation between our two objectives; for instance the
emissions objectives was written as a function of the distance objective. From
another side, we can see for four instances, that obtaining solutions with minimal
distance does not imply minimal emissions.

5.2 Statistical Analysis

To evaluate the quality of the obtained solutions and measure the performance of
the algorithm, metric measurements have been selected and calculated. We use
three metrics: the first is the Generational Distance (GD) which measures how far
from the Front Pareto is located a set of solutions, the second is the Spacing (S)
metric which measures the distribution uniformity of points of the set of solution
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Table 1. The obtained Pareto fronts and the needed computation time

Instance Pareto front CTime (s)

Obj1(km) Obj2(kg.co2)

E101-08e 83.413
1946 1411
1961 1398
1977 1349

E301-28k 99.621
2352 1598
2298 1643
2357 1597
2277 1683
2349 1602
2360 1592
2303 1631
2302 1641
2302 1596

E421-41k 126.547
4163 2982
4153 2998
4168 2971
4071 3094

E484-19k 135.330
2307 1365
2306 1361
2325 1348

in the plan (obj1, obj2), the third indicator of performance is the Entropy (E)
metric that uses the concept of niche to evaluate the distribution of solutions
on the front. The NSGA-II algorithm give different approximations for each
execution. Thus, to empirically analyze the performance of our algorithms, we
first run the same algorithm several times on the same instance of the problem.
We get then a sample of approximation. We run the algorithm ten times for each
instances. Table 2 presents averages of metrics GD, S and E over ten runs of the
four instances.

Table 2. Averages of metrics GD, S and E for the algorithm NSGA-II

Instances GD S E

E101-08e 3.931 4.632 0.227
E301-28k 4.063 6.878 0.422
E421-41k 3.009 6.515 0.095
E484-19k 5.396 2.570 0.371
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The values obtained by the GD metric are small and vary between 0.6282 and
6.250 so are not large enough. We can then conclude that the set of solutions are
near of the Pareto front. For the S metric, the results obtained for variants E101-
08e and E421-41k and E484-19k are close to 0, so the points are well distributed
in the set Parto front. For the instance E301-28k, the mean value is equal to
6.878, therefore the worse. By exploiting the solutions obtained by the Entropy
metric, we note that the value found in the instance E421-41k is the closer to 1,
thus the distribution of solutions for this instance on the front is better than the
three other instances. To evaluate the metaheuristic rigorously and to estimate
the confidence of the results to be scientifically valid, statistical tests are per-
formed on the indicators of performance. Experiments are performed on the four
instances E101-08e, E301-28k, E421-41k and E484-19k. The three algorithms are
executed ten times for each instance and calculations of metrics GD, S and E are
made. In order to determine whether the mean of the experiments are different
or not at a statically significant level, an analysis of variance is done. By applying
a Shapiro-test on the distribution, we found that this one follow a normal low.
Consequently, we used a one factor analysis of variance (ANOVA) test which is
based on the central assumption of normally data distribution to check whether
a factor has a significant effect on the performance of the algorithm. In our case,
the experiments are taken as factor and the metrics are taken as dependents
variables. The hypothesis is:

H0 : μ1 = μ2 = μ3 = μ4 Versus H1 : μi �= μj

with i, j = 1, 2, 3, 4 and i �= j

Table.3 shows the ANOVA for metrics GD, S and E. The first ANOVA for met-
ric GD don’t found significant differences for the different experiments. Hence,
the effect of the factor experiment does not influence the variables of measures
of performance. The second ANOVA for metric S found significant differences.
Consequently, there is an effect of the factor on the variable of measures of
performance. The third ANOVA for metric E found also significant differences.

Table 3. ANOVA table for metrics GD, S and E

Sum sq DF Mean sq F-value Prob > F

GD
Factor 7.352 3 2.4508 0.7742 0.517
Residual 3.1728 36

S
Factor 137.09 3 45.696 10.977 2.9 exp−5

Residual 149.86 36 4.163

E
Factor 0.3981 3 0.1327 10.759 3.428 exp−5

Residual 0.4441 36 0.0123



An NSGA-II Algorithm for the Green Vehicle Routing Problem 47

6 Conclusions

The green vehicle routing problem consists of designing a set of routes for a set of
vehicles to serve customers over a transportation network. We model the GVRP
as bi-objective optimization problem where the first objective is to minimize the
overall traveled distance and the second objective is to minimize the volume
of emitted co2. Many solving approaches and algorithms are envisaged. In this
paper, we choose evolutionary algorithms to find better pareto fronts for the
GVRP. This choice is explained by the performance of evolutionary algorithms
especially elitist algorithm like NSGA-II, SPEA-II and the IBEA algorithms
for solving multi-objective combinatorial optimization problems. Hence, we im-
plement the NSGA-II algorithm for solving GVRP benchmarks. The obtained
results show and prove the effectiveness of considering the emissions minimiza-
tion as a separate objective. Performed statistical tests confirm the quality of the
generated pareto fronts and then the performance of the NSGA-II algorithm.

References

1. Aronsson, H., Brodin, M.H.: The environmental impact of changing logistics struc-
tures. Int. J. Logist. Manag. 17(3), 394–415 (2006)

2. Bauer, J., Bektas, T., Crainic, T.G.: Minimizing greenhouse gas emissions in in-
termodal freight transport: an application to rail service design. Journal of the
Operational Research Society 61, 530–542 (2010), doi:10.1057/jors.2009.102

3. Bickel, P., Friedrich, R., Link, H., Stewart, L., Nash, C.: Introducing environmen-
tal externalities into transport pricing: Measurement and implications. Transp.
Rev. 26(4), 389–415 (2006)

4. Boriboonsomsin, K., Vu, A., Barth, M.: CoEco-Driving: Pilot Evaluation of Driving
Behavior Changes among U.S. Drivers. University of California, Riverside (August
2010)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 181–197 (2002)

6. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007) ISBN 978-
0-387-33254-3

7. Malandraki, C., Daskin, M.S.: Time-Dependent Vehicle-Routing Problems - For-
mulations, Properties And Heuristic Algorithms. Transportation Science 26(3),
185–200 (1992)

8. Figliozzi, M.A.: A Route Improvement Algorithm for the Vehicle Routing Problem
with Time Dependent Travel Times. In: Proceeding of the 88th Transportation
Research Board Annual Meeting CD rom (2009)

9. Figliozzi, M.A.: Vehicle Routing Problem for Emissions Minimization. Transporta-
tion Research Record 2197, 1–7 (2010)

10. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimiza-
tion: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings
of the Fifth International Conference on Genetic Algorithms, San Mateo, Califor-
nia, pp. 416–423. University of Illinois at Urbana- Champaign, Morgan Kaufmann
Publishers (1993)



48 J. Jemai, M. Zekri, and K. Mellouli

11. The Greenhouse Gas Protocol Initiative: Calculating CO2 emissions from mobile
sources. Guidance to calculation worksheets (2005),
http://www.ghgprotocol.org/standard/mobile.doc

12. Halicioglu, F.: An econometric study of CO2 emissions, energy consumption, in-
come and foreign trade in Turkey. Energy Policy 37, 1156–1164 (2009)

13. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for
Multiobjective Optimization. In: Proceedings of the First IEEE Conference on
Evolutionary Computation, IEEE World Congress on Computational Intelligence,
Piscataway, New Jersey, vol. 1, pp. 82–87. IEEE Service Center (June 1994)

14. ICF Consulting: Assessment of Greenhouse Gas Analysis Techniques for Trans-
portation Projects. 9300 Lee Highway, Fairfax, Virginia 22031 (May 2006)

15. http://www.ipcc.ch

16. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172
(2000)

17. David Scheffer, J., Grefenstette, J.J.: Multiobjective Learning via Genetic Algo-
rithms. In: Proceedings of the 9th International joint Conference on Articial Intel-
ligence(IJCAI 1985), Los Angeles, California, pp. 593–595. AAAI (1985)

18. Soylu, A., Oruc, C., Turkay, M., Fujita, K., Asakura, T.: Synergy Analysis of
Collabo- rative Supply Chain Management in Energy Systems Using Multi-Period
MILP. Eur. J. Oper. Res. 174(1), 387–403 (2006)

19. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

20. Turkay, M., Oruc, C., Fujita, K., Asakura, T.: Multi-Company Collaborative Sup-
ply Chain Management with Economical and Environmental Considerations. Com-
put. Chem. Eng. 28(6-7), 985–992 (2004)

21. Van Woensel, T., Kerbache, L., Peremans, H., Vandaele, N.: Vehicle routing with
dynamic travel times: a queueing approach. European Journal of Operational Re-
search 186, 990–1007 (2008)

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou,
P., Fogarty, T. (eds.) Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems, EUROGEN 2001, Athens, Greece, pp.
95–100 (2001)

23. http://www.or.deis.unibo.it/research pages/

ORinstances/VRPLIB/VRPLIB.html

24. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. dissertation, University of Michigan, USA (1975)

25. Mckinnon, A., Cullinan, S., Browne, M.: Green logistics: Improving the environ-
mental sustainability of logistics. Kogan Page, limited (2010)

26. Liefooghe, A., Jourdan, L., Talbi, E.: A software framework based on a conceptual
unified model for evolutionary multiobjective optimization: ParadisEO-MOEO.
European Journal of Operational Research 209(2), 104–112 (2011)

27. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM, Philadelphia (2001) ISBN
0898715792

28. Jozefowiez, N., Semet, F., Talbi, E.: Multi-objective vehicle routing problems. Eu-
ropean Journal of Operational Research 189(2), 293–309 (2008)

http://www.ghgprotocol.org/standard/mobile.doc
http://www.ipcc.ch
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html


Clustering Search Heuristic for Solving

a Continuous Berth Allocation Problem

Rudinei Martins de Oliveira1, Geraldo Regis Mauri2,
and Luiz Antonio Nogueira Lorena3

1 National Institute for Space Research - INPE, São José dos Campos - SP, Brazil
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Abstract. Due to the increasing demand for ships carrying containers,
the Berth Allocation Problem (BAP) can be considered as a major op-
timization problem in marine terminals. In this context, we propose a
heuristic to solve a continuous case of the BAP. This heuristic is based
on the application of the Clustering Search (CS) method with the Sim-
ulated Annealing (SA) metaheuristic. The results obtained by CS are
compared to other methods found in the literature and its competitive-
ness is verified.

Keywords: Continuous Berth Allocation Problem, Clustering Search,
Simulated Annealing, Metaheuristics.

1 Introduction

The marine transport of goods increased in the last years due to the increase of
the trade and of the international economic growth [9]. In January of 2010, the
worldmerchant fleet reached 1.276million tons increasing by 84 million compared
to the previous year [26]. Due to the growth of the international trade, the ports
must be modernized to produce workmanship and technology capable to supply
the increasing demand on the transport of goods. In that context, the need for
good logistic planning for accommodating ships in berths induce the appearance
of a problem known in the literature as Berth Allocation Problem (BAP).

The BAP consists in allocating ships to positions of mooring using the max-
imum space of the quay and minimizing the service time of the ships. The de-
cisions to be made are concerning the position and time that the ship should
moor [10].

The BAP can be modeled as discrete or continuous [12]. In the discrete case,
the quay is divided into several berths and only one ship is serviced at a time in
each berth, regardless of their size. In the continuous case, there is no division
of the quay and thus the ships can moor at any position. Usually, the model of
continuous berth allocation is used in large ports. Moreover, if we consider the
arrival of ships, the problem can be treated as static or dynamic [10]. The static
case assumes all ships already in port for the handling, while the dynamic case
allows ships to arrive at any time (known in advance) [3].

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 49–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



50 R.M. de Oliveira, G.R. Mauri, and L.A.N. Lorena

In this paper the BAP is considered as continuous and dynamic, adopting
the model reported in [6] that divides the quay in sequences of fixed lengths,
where a big ship can occupy more than one berth and a small ship can lend
its unused space. In general, the BAP search for a better distribution of the
quay space minimizing the service time of the ships in the port. In that context,
this work presents an alternative to solve the continuous BAP. We proposed an
application of a hybrid method known as Clustering Search - CS [22] using a
Simulated Annealing (SA) algorithm to generate solutions. The remainder of the
paper is organized as follows. Section 2 presents a brief literature review about
the BAP. Section 3 describes our approach for the problem. The proposed CS
are presented in Section 4 and the computational results are reported in Section
5. Finally, our conclusions are summarized in Section 6.

2 Literature Review

Initial works about the BAP appeared when Thurman [25] proposed an opti-
mization model for planning berth in Norfolk Naval Station (USA).

Imai et al. [10] studied the discrete case of BAP considering the dynamic ar-
rival of ships in the port. The authors presented a method based on a Lagrangian
Relaxation for the original problem. In the same year, Nishimura et al. [21] de-
veloped a Genetic Algorithm to solve the dynamic and discrete BAP. Two years
later, Imai et al. [11] upgraded their approach considering different service prior-
ities between the ships. Furthermore, the authors proposed a Genetic Algorithm
to solve the BAP. Imai et al. [13] considered physical restrictions for the port,
represented by the diversity of the ships (length). The results were also obtained
through a Genetic Algorithm. Cheong et al. [5] presented an application of the
Multiobjective Evolutionary Algorithm (MOEA) to solve the BAP.

Mauri et al. [18] dealt with the BAP with a hybrid method called PTA/LP,
which uses an evolutionary algorithm with a linear programming model using
the technique of column generation. Buhrkal et al. [3] treated the discrete case of
BAP using a model based on the Vehicle Routing Problem with Time Windows
and Multiple Depot (VRPTWMD), following the approach reported by Cordeau
et al. [6].

Xu et al. [27] modeled the BAP as a Parallel-Machine Scheduling Problem in
which the assignment of vessels to berths is limited by water depth and tidal
condition. Tidal conditions were also considered in Barros et al. [1], which pro-
pose an integer linear programming model based on the transportation problem
to represent the BAP in tidal bulk ports with stock level conditions.

Today, most studies address the discrete case of the BAP, but the continuous
case has gained emphasis in recent years. In the paper of Lim [17], the continuous
BAP was modeled as a restricted form of the packing problem in two dimensions
and he showed that the problem is NP-Hard. In the same year, Li et al. [16]
studied the problem of minimizing the makespan in the schedule of ships. The
BAP can be also formulated as a Machine Scheduling Problem in which the ships
are represented by jobs and processors by cranes [7].
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In Park and Kim [23], a method with two phases was suggested to solve a
mathematical model. The first stage determines the position of the berth and
the service time of each ship. A subgradient technique was applied to solve
the problem. In the second phase, the model uses the solution obtained in the
first phase and the cranes are assigned to the ships by dynamic programming.
Kim and Moon [14] formulated a mixed integer linear programming model to
the berth scheduling problem and the results were compared with a Simulated
Annealing algorithm. The similarity of the BAP with the cutting stock problem
was demonstrated by Imai et al. [12]. In this paper, a heuristic algorithm was
developed to solve it. The algorithm is composed of two stages: a solution is
obtained; and a procedure reallocates ships that are overlapping or are separated
by a space.

Cordeau and Laporte [6] proposed two formulations and two heuristics based
on Tabu Search for solving the BAP. The authors presented tests for the port
of Gioia Tauro (Italy). Another continuous approach was proposed by Mauri et
al. [19], which used a Memetic Algorithm improving the solutions reported in
[6]. Lee et al. [15] researched the continuous BAP and developed two versions
of the Greedy Randomized Adaptive Search procedure, seeking to minimize the
total flow time of the ships with a penalty. Finally, Seyedalizadeh Ganji et al.
[24] applied a Genetic Algorithm to solve the model proposed by Imai et al. [12].

3 Problem Approach

The PAB can be classified as one of the main optimization problems in marine
terminals. This is because of the growing demand for ships that reduce the cost
of transportation and carry thousands of tons of goods. It consists in allocating
ships to positions of mooring using the maximum space in the quay while min-
imizing the service time of the ships. The decisions to be made are: where and
when the ships should moor [10].

Restrictions on the maximum water depth and the distance from the more
favorable location along the quay must be considered to determine the position of
mooring. The time needed to load or unload one ship is defined by the capacity of
the berth where it will be allocated. In general, the handling time is determined
by the number of cranes available, and the distance between the berth and the
location of the containers on the yard [20], but a deterministic time can be also
considered [2]. The service time is the waiting time plus handling time for each
ship. In the dynamic case, the service time is usually accomplished within a time
window.

In this paper, the continuous BAP (BAP-C) was solved seeking to minimize
the sum of the service time, i.e., the time from arrival to departure of the ships
in port. Figure 1 illustrates the time intervals used by each ship, where the ships
are considered rectangles on a cartesian plane. The horizontal axis represents
the physical space of the quay, and the vertical axis indicates the different types
of time used by the ship in the port.

Considering N as the number of ships, n = |N |, and M as the set of berths,
m = |M |, the variables used in Figure 1 are described in the following: ai is the
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Fig. 1. Berths and time variables [19]

arrival time for the ship i; bi is the end of time window for the ship i; tki is the
service time for the ship i in berth k; zi is the length of the ship i; sk is the
opening hour of the berth k and ek is the closing time of the berth k; Pi indicates
the position for each ship i and P s

k is related to the start position for the berth

k; P f
k is the final position for the berth k; Rk and Lk are the neighbors at right

and left side for the berth k.
An important fact to be considered in the model presented in [6] are the

discontinuities along the quay, represented in Figure 2 by the lines with an
asterisk. This figure shows solutions of the discrete (a) and continuous (b) BAP
for the first instance of the test set used in this paper (see Section 5). The solid
lines are the separations of the berths and the dotted lines indicate the divisions
of the berths on two sides (right and left). Note that there are berths that do
not divide (berths 1, 7, 8, 9 and 13). The rectangles are the ships and the gray
and black colors are for easy viewing.

0

50

100

150

200

250

300

SPACE

T
IM

E

 B1

 B1

 B2

 B2

 B3

 B3

 B4

 B4

 B5

 B5

 B6

 B6

 B7

 B7

 B8

 B8

 B9

 B9

 B10

 B10

 B11

 B11

 B12

 B12

 B13

 B13

0

50

100

150

200

250

300

SPACE

T
IM

E

 B1

 B1

 B2

 B2

 B3

 B3

 B4

 B4

 B5

 B5

 B6

 B6

 B7

 B7

 B8

 B8

 B9

 B9

 B10

 B10

 B11

 B11

 B12

 B12

 B13

 B13

Fig. 2. Solutions for the discrete (a) and the continuous (b) case of the BAP [19]

The spatial dimensions are ignored for the case of discrete BAP (Figure 2a),
causing overlap of ships. For the continuous case (Figure 2b), overlapping ships
must be removed. Note that there is no overlap of ships (that is a feasible solu-
tion). As reported by Cordeau et al. [6], the discrete case is a relaxation of the
continuous one.
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4 Clustering Search (CS)

According to [4], the CS consists basically of three main components: a meta-
heuristic to generate the solutions; the clustering process; and a local search
heuristic. At each iteration, a solution S is generated by the metaheuristic and
sent to the clustering process. This solution is then grouped to the most similar
cluster Cj and the center of this cluster cj is updated with new information
contained in the solution, making the center to move in the search space.

The volume vj of the cluster j is then analyzed and, if this volume reaches
a limit λ (νj ≥ λ), we realize that some solution pattern is predominantly gen-
erated by the metaheuristic. Therefore, this cluster may be a promising region
of search. Finally, we analyze the inefficiency index rj , and if the local search
heuristic does not improve the solution for rmax (rj ≥ rmax) consecutive times, a
random perturbation is then applied to the center cj , aiming to escape of a pos-
sible local optimum. On the other hand, if rj < rmax, the local search heuristic
is applied at the center cj analyzing the neighborhood of the cluster j. Ending
this process, the metaheuristic will generate a new solution.

The stopping criterion of CS is generally defined by the chosen metaheuristic.
Figure 3 shows the flowchart of CS. More details about this method are presented
in [4] and [22].

Following the flowchart of CS (Figure 3), the initial clusters are created. For
each cluster, a solution (cluster’s center cj) is created by using the distribution
(Figure 4), scheduling (Figure 5) and update (Figure 6) heuristics presented

Local Search

Create Clusters

Generate a solution S
by metaheuristic

Group S in the most
similar cluster ( Cj )

Update the cluster
center cj

volume vj ?

Clustering Process

no

yes

yes

noinefficacy rate 
rj rmax ?

Perturb cj
rj 0

Update cj , rj

Apply local
search on cj

Termination
condition is
satisfied?

STOPyesno

START

Fig. 3. Flowchart of CS [4]
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in [18] and [19]. So, for some iterations, another solutions generated by the
metaheuristic are sent to the clustering process and so on.

The Distribution Heuristic is a simple and balanced heuristic. Initially, the
ships are organized by incoming order on port (ai) and distributed to the berths
in a random way. In this process, the selected berth must always be able to
assist the selected ship. This procedure ensures that each ship will be assigned
to a berth that must be able to attend it, i.e., the berth length is sufficient to
receive the ship and the berth’s equipments are suitable to operate the type of
cargo into the ship. This procedure does not guarantee that the berthing time
(Ti) and position (Pi) for the ship i present no overlapping on time and space
dimensions.

 

1. MAKE (m empty berths); 
2. MAKE (a list L with all ships); 
3. ORDER ( list L by time arrival of  ships to port); 
4. FOR (each ship j in L, j = 1,2,...,n) DO 
5. CHOOSE ( a berth i, i = 1,2,...,m); 
6. IF (the berth i can not attend  the ship j) 
7. BACK (to step 5); 
8. ELSE 
9. ASSIGN (the ship j the berth i); 
10. END-IF; 
11. END-FOR; 
 

Fig. 4. Distribution Heuristic [18]

After applying the Distribution Heuristic, we must define the berthing time
and position for all of ships. Berthing time and position for all of ships assigned
to a specific berth are set to initial values according to Figure 5. At this moment,
the berthing times are set to equal the arrival times of the ships, if the berth is
available. The berthing positions are set to equal the start position of the berth,
so we have initial values for Pi and Ti.

In the Update Heuristic (Figure 6), the spatial distribution for the ships to the
berths are updated and improved. This procedure updates the berthing times and
positions considering a simple idea: if some overlap is detected for each ship, its
berthing time is delayed until eliminate all of them. If a berth has no neighbor
at the left side, all of ships assigned to it have the berthing position set to equal
the start position of the berth, i.e., all of ships (rectangles) are aligned at left. If a

1. FOR (each berth k, k = 1,2,...,m) DO
2. FOR (each ship i assigned to k) DO

3.
1),max(

1),max(
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5. END-FOR;

6. END-FOR;

Fig. 5. Programming Heuristic [18]
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berth has no neighbor at the right side, all of ships assigned to it have the berthing
position set to equal the final position of the berth minus the ship length, i.e., all
of ships are aligned at right. Finally, if a berth has neighbors on both sides, we try
to fit the ships among the ones assigned to the two neighbor berths.

To compute the objective function (Equation 1) for the solutions generated
by the previous heuristics, we looked for minimizing the service times multiplied
by an associated cost (νi), the violations of the time windows of the ships and
the violations in the time windows of the berths. The omegas (ω0,ω1,ω2) in each
term of the expression are the penalties factors which guarantee the elimination
of infeasible solutions. T k

i , ∀k ∈ M, i ∈ N is the time when the ship moored in
the berth k; T k

o(k), ∀k ∈ M , is the time when the first ship moored at beth k;

T k
d(k), ∀k ∈ M , is the time when the last ship leaves the berth k; d(k) is the last

1. INPUT: berth k,
2. FOR (each ship i assigned to k) DO
3.                IF Lk=0 THEN

4.                         Pi =
s

kP

5.                         FOR (each ship j assigned to k+1) DO
6.                                             IF i overlaps j THEN

7.                                                      Ti = max(Ti, Tj+ t )1k
j

8.                                         END-IF;
9.                              END-FOR;
10.             ELSE
11.                            IF Rk=0 THEN

12.                                     Pi = i
j

k zP

13.                                   FOR (each ship j assigned to k-1) DO
14.                                                     IF i overlaps j THEN

15.                                                              Ti = max(Ti, Tj+ )1k
jt

16.                                                   END-IF;
17.                                    END-FOR;
18.                            ELSE

19.                                            Pi =
s

kP

20.                                         WHILE j assigned to k-1 overlapping i DO

21.                                                                   IF (Pj +zj ) and (Pj +zj +zi )s
kP f

kP THEN

22.                                                                         Pi = Pj +zj

23.                                                                   ELSE

24.                                                                                 Ti = max(Ti, Tj+ )1k
jt

25.                                                                            Pi =  – zi
f

kP

26.                                                                   END-IF;
27.                                           END-WHILE;
28.                                           WHILE j assigned to k+1 overlapping i DO

29.                                                                   Ti = max(Ti, Tj+ )1k
jt

30.                                                                WHILE l assigned to k-1 overlapping i DO

31.                                                                                         Ti = max(Ti, Tl+ )1k
jt

32.                                                                END-WHILE;
33.                                           END-WHILE;
34.                            END-IF;
35.              END-IF;
36.    END-FOR;

Fig. 6. Update Heuristic [19]
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ship leaving the berth k and o(k) is the first ship moored in the berth k; νi is the
value (cost) of the service time of ship i; xk

ij ∈ {0, 1} , ∀k ∈ M ; i, j ∈ N, xk
ij = 1

if ship j is serviced by berth k after the ship i, and xk
ij = 0 otherwise.

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω0

∑

i∈N

∑

k∈M

νi

(

Tk
i − ai + tki

∑

j∈N∪{d(k)}
xk
ij

)

+

ω1

(
∑

i∈N

∑

k∈M

[

max
(
0, ai − Tk

i

)
+ max

(

0, Tk
i + tki

∑

j∈N∪{d(k)}
xk
ij − bi

)])

+

ω2

(
∑

i∈N

∑

k∈M

[
max

(
0, sk − Tk

o(k)

)
+ max

(
0, Tk

d(k) − ek
)]
)

(1)

The SA runs and at each temperature, the current solution (not the best) is
sent to CS. Figure 7 presents a pseudo-code of the implemented SA. It may be
noted that CS is called in line 20 of this algorithm, i.e., at each temperature.
The neighborhood structure in SA (line 10) uses three different moves presented
in [18]: Reorder Ships, Reallocate Ships and Swap Ships.

1. GIVEN ( , SAmax, T0 e TC) DO 
2. GENERATE (a solution S through distribution heuristic); 
3. EVALUATE (a solution S through programming heuristic); 
4. S*  S;   { Best solution obtained so far } 
5. IterT  0;  { Number of iterations in temperature T} 
6. T  T0;  { Current temperature } 
7. WHILE(T > TC) DO 
8.     WHILE (IterT < SAmax) DO 
9.        IterT  IterT + 1;       
10.        GENERATE (any neighbor S’ through a exchange move); 
11.        APPLY (programming heuristic on all berths in S’); 
12.          f(S’) – f(S); 
13.        IF (  < 0)   S  S’; 
14.            IF (f(S’) < f(S*))    S*  S’;   END-IF; 
15.        ELSE 
16.           TAKE (x  [0,1]); 
17.           IF (x < e- /T)    S  S’;   END-IF; 
18.        END-IF; 
19.     END-WHILE; 
20. EXECUTE-CS (current solution S);
21.     T   * T;    IterT  0; 
22. END-WHILE; 
23. S  S*; 
24. RETURN (S); 

Fig. 7. Simulated Annealing algorithm used in CS [18]

After the execution of each movement, the programming and update heuristics
are applied to eliminate overlaps and compute the value of the objective function
for the new solution. Each solution in the SAneighborhood (line 10) is generated by
one of thesemovements, and its choice is made at randomenabling a good diversity
among the generated intermediate solutions and a good exploration of the search
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space. After executing the SA, i.e., the method CS-SA as a whole, the best solution
is taken as the final solution to the problem. The flowchart of CS (Figure 3) after
generating a solution by the SA, i.e., line 20 in Figure 7, is detailed in Figure 8.

1. GIVEN (the solution S); 
2. FIND (the cluster center Cj more similar to S); 
3. vj  vj + 1; 
4. UPDATE (the center Cj); 
5. IF vj   THEN 
6. vj  1; 
7. IF rj  rmax THEN 
8. APPLY (perturbation in cj) 
9. rj  0; 
10. ELSE 
11. APPLY (local search – find cj’); 
12. IF f(cj’) < f(cj) THEN 
13. cj  cj’; 
14. rj  0; 
15. ELSE 
16. rj  rj + 1; 
17. END-IF; 
18. END-IF; 
19. END-IF; 

Fig. 8. EXECUTE-CS algorithm

The smallest Hamming distance [8] is used to determine the most similar
cluster (line 2 in Figure 8). A path-relinking between the solution S and cj is
applied to update the center of the cluster (line 4 in Figure 8). The idea of this
algorithm is simple, and it consists in performing the necessary movements to
transform the solution S in the solution cj. From these movements, the best
solution is taken as a new center of the cluster Cj .

The perturbation shown in line 8 (Figure 8) is given by a simple application
of the movement Swap Ships. Finally, a simple local search (line 11 in Figure 8)
is used to intensify the search in the promising clusters.

5 Computational Tests

We used 30 different instances with 60 ships and 13 berths. These instances are
based on data from the port of Gioia Tauro (Italy) and they were randomly
generated by Cordeau et al. [6]. All experiments were performed on a PC Intel
core 2 duo with 1.66 GHz and 2 GB of RAM memory. The whole implementation
was developed in C++.

5.1 Tuning Parameters

To tune the parameters of CS, we have used our previous experience and some
computational tests. To set the main CS parameters (number of clusters, λ and
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rmax), we have adopted several values for each parameter while the others were
kept fixed. So, CS ran three times for each parameter setting, and the setting
yielding the best average results was chosen. The number of clusters, λ and rmax

were tested on the ranges [5, 15], [3, 10] and [3, 5], respectively, with a step size
of 1. The values used by the SA parameters was the same adopted in a previous
work [19] (T0 = 15000, Tc = 0.01, SAmax = 1000 and α = 0.975). The omegas
(ω0, ω1, ω2) = (1, 10, 10) was also defined according to [19].

5.2 Results

This section presents the computational results for the proposed CS compared to
a Tabu Search - TS [6] and a Memetic Algorithm - MA [19] reported in previous
works. A statistical analysis based on the average, deviation, differences and
improvements among all the methods are reported in the next tables.

Table 1 shows a comparison between TS, MA and CS. The first three columns
show the instances, the optimum value for the BAP-D (OPT DISC) and the
best known solution (BKS) between the three methods (TS, MA and CS). The
results of each method are presented in the columns (4-17), where: BST FO and
AVG FO are the best and the average solutions; AVG BKS is the average time
to find the best known solution reported in [6]; and AVG BST is the average
time to find the best solution (BST FO). The running times are reported in
seconds.

The columns DEV and DEV BKS are related to the deviations between the
average and best solutions. DEV is computed between the average (AVG FO)
solution over the best solution (BST FO) for each method (DEV = 100×(AVG
FO - BST FO)/BST FO)) and DEV BKS is computed between the the best
solution (BST FO) over the best known solution for all the methods (DEV BKS
= 100×(BST FO - BKS∗)/BKS∗)).

In general, the values of the solutions in Table 1 (BAP-C) are greater than
those of BAP-D (column OPT DISC), which is correct because the discrete case
is a relaxation of the continuous one [6].

Comparing all the methods, we can observe that CS achieved the best results
for all the instances. Moreover, CS was faster than MA to find the best solutions
(AVG BST), and it provides the lowest values for the deviations DEV = 1.17%
and DEV BKS = 0.00%.

Table 2 shows the crossing over all methods showing the improvements over
the solutions achieved for all the instances. We can note that both MA and CS
obtained improvements over TS, and the CS reports average improvements of
1.7% and 6.8% when compared to MA (CSxMA) and TS (CSxTS), respectively.
Table 2 also shows the differences between the BAP-D and the BAP-C, and
CS got the lowest levels of difference in all the cases, with an average of 8%.
It is interesting to note that the solutions obtained by our CS were close to
the optimal values for the discrete case, indicating good upper bounds for the
continuous BAP.
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Table 2. Improvements and comparison with the discrete case

IMPROVEMENTS CONT × DISC
Inst. MAxTS CSxMA CSxTS TS MA CS
i01 5.5 1.9 7.2 21.08 14.48 12.35
i02 2.1 0.8 3.0 7.45 5.15 4.28
i03 4.0 2.2 6.1 13.91 9.30 6.91
i04 3.3 0.9 4.2 10.60 6.91 5.99
i05 5.0 1.8 6.7 12.01 6.46 4.56
i06 6.6 3.4 9.7 24.11 15.86 12.05
i07 4.0 0.7 4.7 8.60 4.22 3.52
i08 6.2 3.2 9.1 16.94 9.70 6.31
i09 3.6 1.1 4.7 18.63 14.34 13.09
i10 2.8 2.9 5.5 16.32 13.03 9.89
i11 8.2 2.0 10.0 23.98 13.82 11.62
i12 5.6 2.1 7.6 22.94 16.00 13.58
i13 4.6 1.8 6.3 11.69 6.54 4.71
i14 6.0 1.1 7.0 11.03 4.38 3.24
i15 6.4 1.3 7.6 12.36 5.17 3.86
i16 12.1 1.1 13.1 25.73 10.56 9.31
i17 0.3 1.2 1.5 3.04 2.73 1.48
i18 4.7 0.1 4.8 18.51 12.94 12.86
i19 6.0 3.7 9.3 22.38 15.07 10.97
i20 1.5 1.6 3.0 9.19 7.53 5.87
i21 5.4 1.4 6.6 16.70 10.44 8.95
i22 8.3 3.3 11.2 22.02 11.92 8.37
i23 7.4 2.2 9.4 21.56 12.56 10.19
i24 4.6 0.6 5.2 13.10 7.86 7.22
i25 2.8 2.2 4.8 15.55 12.35 9.96
i26 5.9 1.9 7.6 18.89 11.91 9.86
i27 7.0 0.5 7.5 15.62 7.53 6.98
i28 4.1 1.7 5.7 14.05 9.35 7.51
i29 5.4 1.1 6.5 10.55 4.53 3.36
i30 6.7 1.7 8.3 20.61 12.50 10.64
AVG 5.2 1.7 6.8 16.0 9.8 8.0

6 Conclusions

This work aimed to study the continuous BAP. Within this context, we sought to
contribute to the improvement of logistics in the distribution of the quay space
by minimizing the total service time of ships.

To solve the continuous BAP, we have proposed an application of the hybrid
method known as Clustering Search (CS) with the Simulated Annealing meta-
heuristic. The CS shown to be effective and appropriate to locate promising
regions in the search space by the clusters exploration. Thus, we believe that
CS is useful as an alternative to find good solutions for the continuous BAP.
This fact becomes evident when the results are compared directly with the TS
reported in [6] and the MA presented in [19].

Overall, the results showed that CS was able to generate good quality solu-
tions for all the instances in low computational times. These results were also
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compared against other recent approaches in the literature and the solutions
were more favorable in all the cases.
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Abstract. The vehicle routing problem with pickups, deliveries and
time windows (PDPTW) is an important member in the class of ve-
hicle routing problems. In this paper a general heuristic to construct an
initial feasible solution is proposed and compared with other construction
methods. New route reconstruction heuristics are then shown to improve
on this. These reconstruction heuristics look to reorder individual routes
and recombine multiple routes to decrease the number of vehicles used
in the solution. A tabu search scheme where the attribute to be recorded
has been specifically adapted to the PDPTW is proposed. A new method
based on branch and bound optimisation attempts to optimise the final
ordering of requests in routes to further improve the solutions. Results
are analysed for a standard set of benchmark instances and are shown
to be competitive with the state of the art.

Keywords: Vehicle Routing, pickup and delivery and tabu search.

1 Introduction

The Vehicle Routing Problem (VRP) plays a central role in distribution manage-
ment. It can be described as the problem of designing a set of routes that start at
a depot and visit a set of geographically scattered customer locations, subject to
a variety of side constraints. The VRP is known to be NP -hard due to it being an
extension of the well known Travelling Salesman Problem (TSP), which is itself
NP -hard. A helpful survey paper on the VRP is that of Laporte & Osman [1].

The Pickup and Delivery Problem with Time Windows (PDPTW) was first
formulated by Savelsbergh and Sol [2]. The constraints are as follows: (1) each
vehicle must start at the depot and return to the depot before the end of its oper-
ating interval; (2) a request’s pickup must be scheduled before its corresponding
delivery; (3) loads present within a vehicle at any one time must not exceed the
maximum capacity of that vehicle; and (4) requests’ pickup and delivery time
windows must be adhered to. Note that a vehicle may wait at a location if some
waiting time is expected at the vehicle’s next destination and the problem is one
where all requests are known in advance and no uncertainty exists.

Early research surrounding the PDPTW was concerned with the transporta-
tion of people instead of goods and is sometimes known as the dial a ride problem
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(DARP) [3,4,5]. The first metaheuristic proposed to solve the PDPTW was the
reactive tabu search approach of Nanry and Barnes [6]. A two phase method pro-
posed by Lau and Liang [7] developed this, where a construction heuristic was
followed by tabu search. Another approach is that of Li and Lim [8] who have
applied a tabu-embedded simulating annealing algorithm to solve the problem.
They also produced benchmark instances for the PDPTW which are generated
from Solomon’s 56 benchmark instances [9]. These have since been used as the
main basis for comparison of algorithms to solve the problem. Alternatively a
two-stage hybrid algorithm has been presented by Bent [10] where the first stage
uses a simple simulated annealing algorithm to decrease the number of routes,
while the second stage uses large neighbourhood search to decrease the total
travel cost. An adaptive large neighbourhood search heuristic has also been pro-
posed by Ropke [11]. Another approach to this problem is by Pankratz [12], who
use a grouping genetic algorithm (GGA) and this is extended to a multi-strategy
grouping genetic algorithm (MSGGA) by Ding et al. [13]. In addition Dergis and
Döhmer [14] show that the approach of indirect local search with greedy decod-
ing gives results which are competitive with both [8] and [12]. Metaheuristics
that apply learning mechanisms have been proposed by Lim et al. [15], specif-
ically a squeaky wheel optimisation and more recently ant colony System was
applied by Carabetti et al. [16].

In the design of our algorithm we first examine methods previously discussed
in the literature, such as initial construction heuristics, neighbourhood search
operators and tabu search. We will examine reconstruction heuristics previously
applied to the TSP and VRP and look to adapt and evolve these to the PDPTW.
Finally we augment our algorithm with a branch and bound method in order to
improve the results.

The rest of the paper is organised as follows. The problem is formulated in
Section 2. Section 3 provides details on the operators used in our algorithm
including the construction of initial feasible solutions, route reconstructions and
the branch and bound method. Section 4 provides information on the tabu search
heuristic and our algorithmic framework. Finally Section 5 gives computational
results and Section 6 provides a conclusion and directions for future research.

2 Problem Formulation

To define the PDPTW, let V = {v0, v1, . . . vn} be a set of geographically dis-
persed locations where v0 denotes the depot and n is even. The set N = V \{v0}
defines the set of pickup and delivery requests and is partitioned into two sub-
sets of equal size. The subset N+ denotes the set of pickup locations and N−

the set of delivery locations. Therefore, N+ ∪ N− = N , N+ ∩ N− = ∅ and
|N+| = |N−| = n

2 = number of pickup and delivery requests. In this problem
each location vi ∈ V has an associated demand qi, (q0 = 0), a service time si,
(s0 = 0) and a service time window [ei, li], (e0 = l0 = 0), where ei, is the earliest
time that service at location i can begin and li, the latest time that service at
location i can begin. With regards to the demand, qi > 0 for vi ∈ N+ and qi < 0
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for vi ∈ N−. For each pair of nodes (vi, vj) (0 ≤ i �= j ≤ n) a non-negative
distance dij is known, dij = dji, where distance is equal to time. If a vehicle
reaches node vi before time ei, it needs to wait until ei before the service can
take place. Let Ai be the arrival time, Di be the departure time and Wi the
waiting time at location i. Then Di = max{Ai, ei} + si. If Ai < ei, then the
vehicle has to wait at location i and Wi = ei − Ai. Let M be the number of
vehicles, C be the maximum length of operating interval and Q the maximum
capacity of each vehicle.

To formulate the PDPTW, two variables are introduced:

xk
ij =

{
1, if vehicle k goes from node i to node j

0, otherwise.

yj = load of the vehicle at node j, after service at j

and a constant:

zij =

⎧⎪⎨⎪⎩
1, if node i and node j are the corresponding pickup and

delivery nodes of a single request

0, otherwise.

The constraints are as follows:

M∑
k=1

n∑
j=1

xk
ij = 1, ∀i ∈ V (1)

n∑
i=1

xk
i0 = 1, k ∈ [M ] (2)

n∑
j=1

xk
0j = 1, k ∈ [M ] (3)

n∑
i=1

xk
ih −

n∑
j=1

xk
hj = 0, ∀h ∈ V, k ∈ [M ] (4)

zij = 1 ⇒
n∑

l=1

xk
li −

n∑
p=1

xk
pj = 0, ∀i, j ∈ V, k ∈ [M ] (5)

yj ≤ Q, ∀j ∈ V (6)

xk
ij = 1 ⇒ yi + qi = yj , ∀i, j ∈ V, k ∈ [M ] (7)

xk
ij = 1 ⇒ Di + di,j ≤ Aj ⇒ Aj ≤ Dj ⇒ Di ≤ Dj ,

D0 = 0, ∀i, j ∈ V, k ∈ [M ] (8)
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zij = 1 ⇒ Ai ≤ Aj , ∀i, j ∈ V (9)

A0 ≤ C (10)

In the above, constraint 1 ensures that each location is visited exactly once,
while constraints 2 and 3 ensure that each vehicle departs from and arrives at
the depot. Constraint 4 ensures that if a vehicle arrives at a location then it
must also depart from that location. Constraint 5 ensures that the pickup and
delivery of a request is carried out by exactly one vehicle. Constraints 6 and 7
together form the capacity constraints. Finally, the time window and precedence
constraints are ensured by 2 and 9 and the constraint on the maximum operating
interval is ensured by 10. The objective function is:

Minimise

M∑
k=1

∑
i,j∈N :i�=j

dijx
k
ij (11)

3 Algorithm Operators

3.1 Construction Methods

To construct an initial feasible solution a combination of random and greedy
heuristics are applied. The algorithm builds a feasible solution by inserting, at
each iteration, a random un-routed request into a current partial route or into
a new route using a greedy method. All feasible insertions of both the pickup
and delivery request are examined. The insertion which provides the minimal
increase in cost to the solution is accepted. This includes the option of inserting
the request into a new route. A similar method is also used in [12] and [14],
where it is shown that adding an element of randomness generates varied initial
solutions which are beneficial when applying neighbourhood operators as a larger
search space is examined.

Preliminary results have shown that this method outperforms the simple
greedy heuristic of Nanry and Barnes [6], which at each iteration inserts the
request from all remaining requests that involves the lowest additional cost to
the objective function. It also outperforms the method used by Li and Lim [8],
which first initialises a route with a request using criteria based on the maxi-
mum increase to the objective function with routes then being completed using
a greedy method.

3.2 Route Reconstruction Heuristics

To attempt to improve on the initial solutions constructed we first examine 2
neighbourhood operators of Li and Lim [8]. The first of these is a shift operator.
This denotes a reassignment of a request from one route to another. Secondly
an exchange operator swaps a request from one route with a request of another.
In both cases infeasible exchanges are forbidden and the operators attempt to
insert a request into a route without making any change to the current ordering
of that route. Naturally a higher proportion of neighbourhood moves will be
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(a) Before reconstruction (b) After reconstruction

Fig. 1. Example of applying the single move within a route reconstruction

seen to retain feasibility if the existing ordering in a route can also be changed,
though of course this will also bring additional overheads. To achieve this we
suggest three different reconstruction heuristics.

The single move within a route heuristic randomly selects a request and
removes its pickup and delivery location from its route. It then attempts to insert
the pickup and delivery locations in all other feasible positions within that route.
If one exists, the insertion position which amounts to the largest reduction in
distance is accepted. An example is shown in Figure 1. This method is based on
that of Or -opt exchanges, see Or [17] but is adapted to the PDPTW.

The single route reconstruction attempts to reorder an entire route by
first removing all requests from that route and re-inserting them based on three
different methods. These are as follows: (1) by allocating at each iteration the
location at which the next service can begin first, (this is the maximum of the
time the vehicle can arrive at a location and the opening of the time window at
that location); (2) by allocating the first pickup location to the route at random
and each of the remaining pickup or delivery locations greedily; and (3) by
allocating the first pickup whose location is the maximum distance from the
depot first and then each of the remaining pickup or delivery locations greedily.
Each location (pickup or delivery) is inserted separately. An example of this
is shown in Figure 2. The single route reconstruction also attempts to reform
a route whilst inserting a request from another. It attempts to find a feasible
solution that includes the insertion of this request whilst also minimsing the
overall total distanced travelled over all routes.

(a) Before reconstruction (b) After reconstruction

Fig. 2. Example of applying the single route reconstruction to a route
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(a) Before reconstruction (b) After reconstruction

Fig. 3. Example of applying the multiple route reconstruction to two routes

Finally the multiple route reconstruction attempts to form multiple
routes simultaneously. This is carried out for two routes with the aim of re-
ducing to one or three routes with the aim of reducing to two. All requests are
removed from the routes and the first route is initialised with the pickup whose
location is the maximum distance from the depot. For the case of the second
route, if one is used, the pickup which is maximum distance from the first is cho-
sen. The routes are then reconstructed simultaneously using a greedy heuristic.
For the second case this is only applied on a combination of routes, if at least
one of the routes is an outlier with regards to the number of requests present.
An example of this is shown in Figure 3.

3.3 Branch and Bound Method

To further improve our algorithm a method based on the large neighbourhood
search (LNS) of [10] for the PDPTW is incorporated. The main idea is to take
a part of a solution (in this case a single route or subset of that route) and find
the optimal solution for this sub-problem via a branch and bound routine.

The process starts with a set of currently adjacent locations. According to the
constraints of the problem, partly constructed solutions can be discarded: (a) if
the delivery location of a request is inserted before the corresponding pickup;
(b) if there remains a location still to be inserted that can no longer be feasibly
serviced within its time window; (c) if a location cannot be feasibly serviced
within its time window when placed after another location; (d) if the current
total distance travelled exceeds the minimum recorded so far; and (e) if the
minimum distance still to travel plus the current distance exceeds the minimum
found. The limit of the initial bound is the total distance travelled of the route
before the locations are removed. Branches are searched in the order of location
where service can begin first. The search terminates once a complete exploration
has taken place and the best solution is returned.

As this method is an exact approach it can be computationally expensive.
Our results suggest it can be applied to routes with up to 14 locations. In cases
where there are more than this, our approach is to apply branch and bound to
successive overlapping sub-sections. This ensures locations located closely to one
another are optimised in the same sub-section. In cases where n > 14 locations,
the route is split into 2

⌈
n
14

⌉ − 1 sub-sections. For example, if a route consists
of 28 locations it is split into 3 sub-sections containing locations 1-14, 7-21 and
14-28 respectively.
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4 Overall Algorithm

To further improve the algorithm a tabu search heuristic is to be added to the
shift operator defined in Section 3.2. Within the the shift operator the request to
be reassigned is selected at random and all feasible insertion positions of both the
pickup and delivery are examined. If one is found, the insertion which provides
the largest reduction in total travel distance is accepted. It is found that adding
the exchange operator, both increased computational times and did not provide
an improvement to the results when used in conjunction with the reconstruction
heuristics.

From the literature, a tabu length and cycle length proportional to the number
of requests to be serviced generally yields the most positive results, see [6] who
present a reactive tabu search approach to solve the PDPTW. Our tabu search
heuristic follows the general guidelines provided in [18] and a tabu tenure equal to
the number of requests, |N |, and a cycle length equal to the number of locations
to be visited, |2N | are found to be most promising. The stopping condition is
based on achieving a given number of iterations without improvement to the
objective function or there being no more feasible moves.

Fig. 4. Example of the tabu attributes added to the tabu list during a move by the
Shift operator

The attribute to be stored within the tabu list follows the approach of [19]
where edges removed and inserted within a solution are recorded for the VRP
with simultaneous pick-up and delivery. In our case this is adapted to the
PDPTW where the edges inserted into a solution are classed as the direct edges.
These are the locations either side of the new insertions i.e. the locations be-
fore and after the insertion of the pickup location and the delivery location of
a request. The edges removed from the solution are the indirect edges, i.e. the
the locations before and after the pickup and delivery location that has been
removed. The attribute to be recorded in the tabu list consists of both the in-
serted and removed pickup and delivery edges. If the arrangement of locations
in a route after the insertion results in both the pickup and delivery edge being
either directly or indirectly tabu then the move is disallowed. An example of the
attribute to be stored in this tabu list is shown in Figure 4.

Preliminary results suggest that applying the branch and bound method as
a final phase to the algorithm and not within the improvement phase yields
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promising results. The branch and bound method optimises both routes and
sub-sections of routes therefore if intertwined within the improvement phase it
limits the number of successful tabu moves and reconstructions as routes and
sub-sections of routes are at a local minima. Applying the tabu search heuristic
and the branch and bound method are computationally expensive. Investigations
are performed to determine if each method may be performed on a subset of the
most promising solutions and still achieve competitive results. Figure 5 contains
a plot of the cost after the initial construction phase compared to the cost after
applying the tabu search heuristic, and a plot of the the cost after the tabu search
phase compared to the cost after applying the branch and bound method. Both
for 100 random trials with the instance lc204. There is no correlation between
achieving a lower cost for an initial solution and achieving a lower cost for the
final solution after the tabu search heuristic. Therefore it will not be possible to
select a proportion of initial solutions with a certain initial cost to apply the tabu
search heuristic to achieve the most promising results. However there is a direct
correlation between achieving a lower cost after the tabu search heuristic and
achieving a lower cost after the branch and bound method. Therefore it seems
reasonable to select a small subset of of low cost solutions after application of
the tabu search heuristic which can then be improved via our branch and bound
method.

(a) Tabu Search heuristic (b) Branch and bound method

Fig. 5. Scatter plot showing the before and after costs of each heuristic for 100 random
trials with instance lc204

Our overall algorithm consists of first constructing an initial feasible solution
which is passed to the improvement phase consisting of the tabu search and
reconstruction heuristics outlined in Section 3.2 and above. These methods are
carried out until no further improvement can be made. This process is repeated
for a given number of iterations and the best 10% of solutions are passed to
the branch and bound procedure outlined in Section 3.3. This method differs
from others in the literature as a single run involves multiple restarts and only
a portion of the best found solutions are passed to the final improvement phase.
Preliminary results suggest that applying 300 iterations of the initial construc-
tion and improvement phase before passing 30 of the best found solutions to the
branch and bound method yields run times that improve on [12] and are similar
to that of [13]. This comparison is made using the average run time provided
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and multiplying by the 30 trials that were required to achieve their best found
solutions. Only computational times for 10 runs of the algorithm of [14] are pro-
vided in the literature and are a significant improvement on the others stated,
however applying this figure to the case of 30 runs, these would also be com-
parable to our algorithm. The computational times of [8] will not be compared
as their description does not indicate whether these are average values. Caution
is needed when making a direct comparison between these computational times
due to differences in computer specification.

5 Experimental Results

For our experiments we used instances derived by [8], which are based on Solomo-
n’s 56 VRPTW 100-customer instances [9]. Each has 100-106 nodes, (i.e. 50-
53 requests) and they are organised into 6 classes; lc1 and lc2 are clustered
instances; lrc1 and lrc2 are those where requests are partially clustered and
partially random; and lr1 and lr2 have randomly distributed requests. Instances
ending in a 1 have a short scheduling horizon and those with a 2 have a longer
scheduling horizon. Table 1 compares the results of our algorithm with those of
Li and Lim [8], Pankratz [12], Dergis & Döhmer [14] and Ding et al. [13].

Caution is needed when making a direct comparisons with these results as
our objective function is to minimise the total travel distance which is compa-
rable to that of [12]. Li and Lim [8] however use a prioritised objective function
with the order being: (1) minimise number of vehicles; (2) minimise total travel
distance; (3) minimise total schedule duration; and (4) minimise total waiting
time. The objective of Ding et al. [13] is similar to this although it does not
include minimising the total schedule duration. The objective of [14] is to min-
imise the number of vehicles followed by minimising the total travel distance.
For the approach of [8] the overall number of independent runs per instance is
not reported and the average solution quality is not discussed. The best results
of [12] and [13] are reported after 30 runs of their algorithm and for [14] best
results are reported after 10 runs. Our algorithms are implemented using C++
and executed on a PC under Windows XP with a 3.10GHz processor.

Considering the results in Table 1 our algorithm achieves the best known
solutions for 51 of the problem instances and with a total travel distance of
57662.02 are competitive with the state of the art. For [8] 40 of the best known
solutions are achieved with a total travel distance of 58184.91, [14] achieve 42
with a total travel distance of 57678.4 and [13] achieve 51 with a total travel
distance of 57652.05. The minimal total travel distance of 57638.48 is achieved
by [12], however with only 42 of the best known solutions found.

The initial improvement phase of our algorithm achieves an average total
travel distance for the 56 instances of 61162.92. This is a 40% improvement
from 101883.30 for the construction phase alone. This is reduced by the branch
and bound method to 58302.08, a further decrease of 4.7%. For the branch
and bound method the average decrease in cost for the instances with a longer
scheduling horizon is 6.8 % with a 10.0% decrease in the lr2 instances. For the
instances with a longer scheduling horizon, the number of vehicles is dramatically
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Table 1. Summary of results
Holborn et al. Li & Lim

[8]
Pankratz
[12]

Dergis &
Döhmer[14]

Ding et
al.[13]

Instance TD1 NV2 TDI 3 TDB4 CT5 TD1 TD1 TD1 TD1

lc101 828.94 10 828.94 828.94 92 828.94 828.94 828.94 828.94
lc102 828.94 10 828.94 828.94 367 828.94 828.94 828.94 828.94
lc103 827.86 10 830.58 827.87 679 827.86 827.86 827.86 827.86
lc104 818.60 9 828.17 818.60 1135 861.95 818.60 860.01 860.01
lc105 828.94 10 828.94 828.94 131 828.94 828.94 828.94 828.94
lc106 828.94 10 829.76 828.94 102 828.94 828.94 828.94 828.94
lc107 828.94 10 828.94 828.94 99 828.94 828.94 828.94 828.94
lc108 826.44 10 827.05 826.44 232 826.44 826.44 826.44 826.44
lc109 827.82 10 837.66 827.82 714 827.82 827.82 827.82 827.82
Total lc1 7445.41 89 7468.96 7445.41 3550 7488.77 7445.42 7486.83 7486.83
lr101 1650.80 20 1658.69 1650.80 44 1650.78 1650.80 1650.80 1650.80
lr102 1487.57 19 1515.57 1487.57 459 1487.57 1487.57 1487.57 1487.57
lr103 1292.68 14 1322.47 1292.68 391 1292.68 1292.68 1292.68 1292.68
lr104 1013.39 12 1095.19 1026.02 867 1013.39 1013.99 1013.99 1013.39
lr105 1377.11 16 1383.94 1377.11 142 1377.11 1377.11 1377.11 1377.11
lr106 1252.62 13 1261.18 1252.62 215 1252.62 1252.62 1252.62 1252.62
lr107 1111.31 12 1146.91 1111.31 475 1111.31 1111.31 1111.31 1111.31
lr108 968.97 11 989.88 968.97 438 968.97 968.97 968.97 968.97
lr109 1208.96 15 1271.37 1208.96 317 1239.96 1208.96 1208.96 1208.96
lr110 1165.83 14 1206.88 1166.90 696 1159.35 1165.83 1159.35 1159.35
lr111 1108.90 14 1144.68 1108.90 640 1108.90 1108.90 1108.90 1108.90
lr112 1003.77 12 1059.20 1021.80 929 1003.77 1003.77 1003.77 1003.77
Total lr1 14641.91 172 15055.96 14673.64 5614 14666.41 14642.51 14636.03 14635.43
lrc101 1703.21 14 1731.58 1703.21 98 1708.80 1703.21 1708.80 1708.80
lrc102 1558.07 12 1612.43 1558.07 300 1563.55 1558.07 1558.07 1558.07
lrc103 1258.74 11 1294.23 1258.74 417 1258.74 1258.74 1258.74 1258.74
lrc104 1128.40 10 1141.07 1128.40 481 1128.40 1128.40 1128.40 1128.40
lrc105 1637.62 13 1670.72 1640.15 290 1637.62 1637.62 1637.62 1637.62
lrc106 1424.73 11 1510.12 1439.66 242 1425.53 1424.73 1424.73 1424.73
lrc107 1230.14 11 1265.43 1230.14 357 1230.15 1230.14 1230.14 1230.15
lrc108 1147.43 10 1203.62 1147.43 369 1147.97 1147.43 1147.96 1147.43
Total lrc1 11088.34 92 11429.20 11105.80 2555 11100.76 11088.34 11094.46 11093.94
lc201 591.56 3 591.56 591.56 284 591.56 591.56 591.56 591.56
lc202 591.56 3 598.88 591.56 1416 591.56 591.56 591.56 591.56
lc203 591.17 3 625.56 591.17 1776 585.56 591.17 591.17 591.17
lc204 590.60 3 664.14 635.01 2835 591.17 590.60 590.60 590.60
lc205 588.88 3 603.78 588.88 1127 588.88 588.88 588.88 588.88
lc206 588.49 3 618.24 602.06 2316 588.49 588.49 588.49 588.49
lc207 588.29 3 598.08 588.29 1125 588.29 588.29 588.29 588.29
lc208 588.32 3 606.66 588.32 1237 588.32 588.32 588.32 588.32
Total lc2 4718.87 24 4906.89 4776.84 12116 4713.83 4718.87 4718.87 4718.87
lr201 1253.23 4 1297.60 1254.29 1756 1263.84 1253.23 1253.23 1253.23
lr202 1197.67 3 1355.43 1261.68 2602 1197.67 1197.67 1197.67 1197.67
lr203 949.40 3 1128.34 970.32 3809 949.40 952.29 949.40 949.40
lr204 849.05 2 1042.35 904.49 6153 849.05 849.05 849.05 849.05
lr205 1054.02 3 1168.50 1073.66 3327 1054.02 1054.02 1054.02 1054.02
lr206 931.63 3 1083.69 935.75 3800 931.63 931.63 931.63 931.63
lr207 905.45 2 1094.37 972.03 5471 903.06 903.60 903.06 903.05
lr208 734.85 2 882.29 752.46 7266 734.85 736.00 734.85 734.85
lr209 930.59 3 1049.56 947.17 3657 937.05 932.43 930.59 930.59
lr210 964.22 3 1108.68 988.93 3650 964.22 964.22 964.22 964.22
lr211 884.29 3 978.92 905.68 4976 927.80 888.15 896.76 884.29
Total lr2 10654.39 31 12189.72 10966.46 46467 10712.59 10662.29 10664.48 10652.00
lrc201 1406.94 4 1491.96 1436.85 1705 1468.96 1407.21 1406.94 1406.94
lrc202 1374.27 3 1508.18 1403.33 2600 1374.27 1385.25 1374.27 1374.27
lrc203 1089.07 3 1231.43 1127.13 3502 1089.07 1093.89 1089.07 1089.07
lrc204 818.66 3 920.82 826.70 4415 827.78 818.66 818.66 818.66
lrc205 1302.20 4 1423.97 1326.12 1989 1302.20 1302.20 1302.20 1302.20
lrc206 1159.03 3 1253.95 1185.97 3000 1162.91 1159.03 1159.03 1159.03
lrc207 1062.05 3 1241.62 1091.31 3311 1424.60 1062.05 1062.05 1062.05
lrc208 900.89 3 1040.26 936.53 4274 852.76 852.76 865.51 852.76
Total lrc2 9113.12 26 10112.19 9333.94 24797 9502.55 9081.05 9077.73 9064.98
Total 57662.02 434 61162.92 58302.08 95099 58184.91 57638.48 57678.40 57652.05

1 Total travel distance of best found solution.

2 Number of vehicles required for best found solution.

3 Average total distance travelled for 300 runs of the initial improvement phase.

4 Average total distance travelled for 30 runs of the branch and bound method using the best found solutions from
the improvement phase.

5 Total computational time in seconds for one run of the algorithm including 300 runs of the initial improvement
phase and 30 runs of the branch and bound method on the 30 best found solutions.
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reduced compared to the instances with a shorter scheduling horizon, resulting
in significantly more requests allocated to each vehicle. Therefore the problem
now becomes one of finding the best ordering of requests to a route rather than
the allocation of requests to routes. In the case of the lr2 instances this becomes
increasingly difficult as locations are randomly dispersed, hence the success of
a method which specifically focuses on optimising large portions of locations in
routes such as our branch and bound method. Due to this our algorithm performs
consistently well across the varying instance types whereas [8] and [12] struggle
with the instances of a longer scheduling horizon, in particular lr2 and lrc2. The
average coefficient of variation across each of the 6 classes of instances ranges
from 1% to 7% for the results after the initial improvement phase and is reduced
to less than 2% for all results after the branch and bound method.

For the instances lc104 and lrc101, a solution has been found by both [14] and
[13] (and by [8] for the case of lrc101), that uses one less vehicle by increasing
the total travel distance in the solution. This is the best found solution when
the objective is to first minimise the number of vehicles, however these are the
only two cases which do not share an identical best found solution. This shows
the robustness of our algorithm to changes in the objective function as it also
achieved the two solutions stated above but they were disregarded due to the
increase in distance. Finally it should be noted that for [8] and [12] Euclidean
distances calculated directly from the instances were rounded to 2 decimal places
and this could account for some small discrepancies when comparing the total
distance travelled.

6 Conclusions

We have shown that the methods applied in this paper generate results which are
competitive with the state of the art results found in the literature. Our results
obtain the best known solutions in 51 out of a possible 56 instances with the
algorithm appearing to perform consistently well over all types of instance. One
of the main advantages of our approach is the speed of individual constructions.
In this case it has allowed us to produce large samples of solutions in times that
are consistent with other approaches and by reducing the number of runs of the
initial improvement phase still achieves promising results. This advantage can be
exploited when applying these methods to the dynamic PDPTW (DPDPTW)
where our algorithm will be repeatedly restarted over a rolling horizon framework
to incorporate the arrival of new requests and decisions will need to be made in
real time. The DPDPTW has received much less interest in the literature, hence
this will be the area for future research. For a recent survey on dynamic pickup
and delivery problems see [20].
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Abstract. D2MOPSO is a multi-objective particle swarm optimizer
that incorporates the dominance concept with the decomposition ap-
proach. Whilst decomposition simplifies the multi-objective problem
(MOP) by rewriting it as a set of aggregation problems, solving these
problems simultaneously, within the PSO framework, might lead to pre-
mature convergence because of the leader selection process which uses the
aggregation value as a criterion. Dominance plays a major role in building
the leader’s archive allowing the selected leaders to cover less dense re-
gions avoiding local optima and resulting in a more diverse approximated
Pareto front. Results from 10 standard MOPs show D2MOPSO outper-
forms two state-of-the-art decomposition based evolutionary methods.

1 Introduction

Real-life optimisation problems may have several conflicting objectives. This
leads to an irregular multi-objective space where the optimisation method must
be able to find trade-off solutions among these objectives.

MOEA/D [1,2] introduced a novel approach to discover Pareto optimal so-
lutions. The original MOP is rewritten as an aggregation of single objective
problems. These problems are then solved using Genetic Algorithms (GA). The
advantages of this approach in terms of mathematical soundness, algorithmic
structure and computational cost are explained in [2]. MOEA/D has been ap-
plied successfully on several real-life MOPs [3].

Particle Swarm Optimisation (PSO) is an efficient optimisation method that
is capable of providing competitive solutions in many application domains [4,5,6].
Multi-Objective variants of PSO (MOPSO) have recently been developed [7,8].
The authors in [9] argued that although PSO and GA on average yield the
same effectiveness (solution quality), PSO is more computationally efficient and
uses fewer evaluations. This claim was supported by two statistical tests, which
confirmed similar effectiveness of the methods but superior efficiency of PSO
over GA. In addition, PSO requires less subjective tuning making it much easier
to implement [9].
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SDMOPSO [10] uses the decomposition approach proposed in MOEA/D. The
global best set of each particle is defined by all the solutions located within a
certain neighborhood. In SDMOPSO the particle uses the aggregation value as
a leader selection criterion; in addition, the updated position is only adopted if
its aggregation value is enhanced. As a result, when the particles are unable to
find better positions, the swarm falls into a local optima.

dMOPSO [11] uses decomposition to update the leaders’ archive and select the
leader corresponding to each particle. To maintain the diversity of the swarm,
dMOPSO uses memory re-initialization process based on a Gaussian distribu-
tion. One drawback of dMOPSO is that the particles re-initialize their memory
when they exceed a pre-defined age losing all the experience gained throughout
the process and adding more complexity to the algorithm. Besides, it uses de-
composition as a way to substitute dominance. With the absence of dominance,
the decomposition is left to lead the swarm into a limited number of destinations
equal to the swarm size. With complicated Pareto fronts (i.e. disconnected) and
due to the limited size of the swarm, dMOPSO might fail to cover the entire PF.

D2MOPSO utilizes the dominance concept [12] along with decomposition.
It uses bounded crowding leaders’ archive to store the non-dominated particles.
The leader selection is then applied to the archive using the aggregation value
as the selection criterion. The particle personal movement trajectory is updated
using decomposition. All objectives are normalized in order to give them equal
priorities when decomposition is applied. Towards the end of the optimisation
process the size of the leaders’ archive is substantially reduced to contain only
non-dominated particles with the lowest crowding distance aiming at increasing
the diversity and covering low dense regions.

2 Multi-objective Particle Swarm Optimisation

The difficulty of multi-objective optimisation is that an improvement in one
objective often happens at the expense of deteriorating the performance with
respect to other objectives. The optimisation challenge therefore is to find the
entire set of trade-off solutions that satisfy the conflicting objectives. The objec-
tives are represented as a vector F in a solution space Ω ⊂ Rn.

F (x) = {f1(x), f2(x), . . . , fm(x)} (1)

where x ∈ Ω, and m is the number of objectives.
When minimizing F (x), a domination relationship is defined between the

solutions as follows: let x, y ∈ Ω, x � y if and only if fi(x) ≤ fi(y) for all
i = {1, 2, .....,m}, and there is at least one j for which fj(x) < fj(y). X is a
Pareto optimal solution if there is no other solution y ∈ Ω such that y � x.

Pareto optimality of a solution guarantees that any enhancement of one objec-
tive would results in worsening of at least one other objective. The image of the
Pareto optimal set in the objective space (i.e. F (x∗)) is called the Pareto Front
(PF)[7]. MOPSO can be used to find the Pareto optimal solutions or to approx-
imate the PF. Each particle in the swarm represents a potential solution in the
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solution space and exchanges positional information with the global leader(s) or
best local neighbour(s), as well as consulting its own personal memory. These
information are then used to move the particle around the search space [7,13]. A
particle is characterized by its position and velocity. The position is the location
in the solution space, whereas the velocity is a vector representing the positional
change. The particle uses the position of the selected leader and its personal
movement trajectory to update the velocity and position values.

3 D2MOPSO Approach

Decomposition transforms the MOP into a set of distinct aggregation problems.
The transformed problem then is to solve the aggregated problems. Each par-
ticle solves the corresponding problem by assigning a priority to each objective
according to a weight vector (λ). This assists the optimisation process to find
potential solutions that are evenly distributed along the PF. By associating each
particle with a distinct aggregation problem (i.e. λ value), the exploration ac-
tivity of each particle is focused on a specific region in the objective space and
aimed at reducing the distance to the reference point.

Substituting entirely the dominance approach in MOPSO with decomposition
(i.e. using the aggregation value instead of dominance as the leaders’ selection
criterion) might lead to premature convergence as each particle is strictly di-
rected to one destination [2]. At some point during optimisation, the particles
would be unable to update their positions and personal best memory as the
global best and neighborhood information are not changing. In addition to this,
solving a MOP with complicated PF raises a serious challenge as some λ vectors
direct the related particles to unpromising areas. In this case, part of the swarm is
wasting a large number of evaluations investigating undesirable regions. Another
drawback of decomposition is that while solving MOP with high dimensional ob-
jective space, it fails to produce a sufficient number of non-dominated solutions
that cover the entire PF as the space required to be covered by the swarm using
λ vectors grows exponentially with the number of dimensions. To cope with this
growth, decomposition based approaches need to use a large swarm to be able
to offer a good PF coverage, which increases the number of necessary function
evaluations. The number of evaluations any evolutionary method needs to cover
the PF is an important features as large number of evaluations counts as a big
disadvantage for any EA and especially in real-life problem where evaluation can
be very expensive.

To overcome these drawbacks, D2MOPSO integrates both dominance and
decomposition approaches. The bounded crowding leaders’ archive [12], where
the leaders of the swarm are selected from, is based on the dominance approach
where only non-dominated particles are stored. When the archive is full, the
none-dominated particles are only added at the low dense regions replacing those
ones at the high dense regions. The personal best values are updated and the
leaders are selected based on the decomposition’s aggregation function.
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Decomposition requires an aggregation function to decompose the MOP into
several aggregation problems. Many functions have been proposed in the litera-
ture (e.g., wighted sum, Tchebycheff, weighted Tchebycheff and Penalty based
boundary intersection (PBI)). Recently the weighted PBI method is reported to
be of interest [11] and is used in this paper. PBI is originally proposed in [2] by
modifying Normal Boundary Intersections (NBI). PBI uses a weighted vector λ
and a penalty value θ for minimizing the distance to the utopia vector (i.e. a
hypothetical vector between the reference point (z∗ = min{fi(x)|x ∈ Ω}) and
the center of the PF) d1 and the direction error to the weighted vector d2 from
the solution F (x) in the objective space. PBI is then defined in [1]:

minimize g(x|λ, z∗) = d1 + θd2 (2)

where

d1 = ‖ (F (x) − z∗)Tλ ‖/‖ λ ‖, d2 =‖ (F (x)− z∗)− d1λ/‖ λ ‖ ‖ (3)

D2MOPSO uses the PBI approach to decompose the optimisation objective
defined by Eq. 1 into N scalar optimisation problems, where N is the swarm’s
size. By changing the weights and using the reference point defined above, any
Pareto optimal solution could be reached [1].

In addition to combining dominance and decomposition, D2MOPSO nor-
malizes the MOP objectives. As the ranges of the objectives’ values can differ
considerably and are rarely known a priori for the majority of real life prob-
lems, objectives needed to be normalized before aggregation. This ensures equal
priorities for all objectives, thereby preventing one objective from dominating
the others when the aggregation is applied. The objective values are normalized
using a sigmoid limiting transformation function defined in Eq.4. The Sigmoid
limiting transformation is chosen as it does not need any prior knowledge of the
objectives’ ranges.

S(fi(x)) = 1/(1 + e−fi(x)) (4)

In Eq. 3 the normalized value of each objective is used instead of the objective
values: S(F (x)) = (S(f1(x), f2(x), . . . , fm(x)) instead of F (x).

Towards the end of the optimisation process the swarm is likely to be con-
verged but the particles are still evaluated till the termination of the algorithm.
At the last α% of the iterations, D2MOPSO reduces the leaders archive size to
β% of its original size. 100 − β% of the particles in the original archive are re-
moved according to their crowding distance leaving the particles with the lowest
crowding distance in the archive (i.e. particles at the low dense regions in the ob-
jective space). The particles then select their leaders from the new archive. This
directs all the particles at the end of the optimisation towards the low dense re-
gions enhancing thereby the coverage and diversity. α and β are set based on the
convergence of the leaders’ archive, i.e. the leaders’ archive is no more updated
with new none-dominated particles. The following steps summarizeD2MOPSO:
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– Initialization :
D2MOPSO starts by initializing the swarm with N particles and initializing
N vectors: λ = {λ1, λ2, . . . , λm}, where m is the number of objectives and
N is the swarm size. λ vectors are uniformly distributed in [0, 1]m subject
to
∑m

i=1 λi = 1. Every particle is assigned a unique λ vector. A λ vector is
selected so that it gives the best aggregated fitness value for the initialized
particle. For example, in the case of minimization problems the particle is
assigned to the λ vector that minimizes the aggregated fitness, taking into
account that each λ is unique and is assigned to only one particle in the
swarm. The initial value of the particle’s memory pbest is its own information
as it lacks any experience at the beginning of the process. The initial velocity
of the particle is set to zero. The leaders crowding archive is set to a fixed
size equal to the swarm size (N), and is initialized using the non-dominated
particles in the swarm. The reference point z∗ is the vector in the objective
space with the best objective values found so far.

– Evolution :
In this phase D2MOPSO goes through a pre-defined number of iterations.
In each iteration each particle defines a local view in the objective space.
The particle determines the next move by finding the new velocity and new
position using Eq. 5. The new velocity is calculated using pbest and the
information of one global leader selected from the leaders’ archive.

Vit = w ∗ Vit−1 + C1 ∗ r1 ∗ (xpbesti − xit−1 ) + C2 ∗ r2 ∗ (xgbesti − xit−1 )
xit = xit−1 + Vit

(5)
where pbesti is the personal best performance of particlei, gbest is the global
best position of the leader selected from the archive, r1, r2 ∈ [0, 1] are ran-
dom values, w ∈ [0.1, 0.5] is the inertia weight, and C1, C2 ∈ [1.5, 2.0] are the
learning factors that take uniformly distributed random values in their pre-
defined ranges. The process of leader selection uses a uniformly distributed
random variable r ∈ [0, 1] to decide whether to select the leaders randomly
or using their aggregation values (i.e. each particle selects the leader that
gives the best aggregation value using the particle’s λ) depending on a 0.5
threshold. As discussed before this is done to avoid premature convergence.
The aggregation is calculated after normalizing the objectives’ values using
Eq. 2. After the particle updates its position and velocity, it has to update its
pbest as well. pbest is replaced with the new position only if the new position
aggregation value is better than the aggregation value of the current pbest.
The leaders crowding archive is then updated with new non-dominated par-
ticles, if found, subject to the crowding restriction. The reference point is
updated if needed. Finally the external archive is updated to contain the
new none-dominated particles.

– Finalization :
When the swarm starts to converge, at the last α% of the iterations,
D2MOPSO reduces the size of the leaders’ archive to β%. The unwanted
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particles are removed from the high dense regions of the archive (i.e. they
have the high crowding distance). The leaders are then selected randomly,
using a uniformly distributed random variable, from the new archive. The
goal is to improve the PF coverage and increase the diversity of the none-
dominated particles found. pbest positions, new leaders crowding archive,
and the external archive are updated as in the previous step. When the al-
gorithm terminates, the content of the external archive is the approximated
PF. The pseudo-code of D2MOPSO is listed in Algorithm 1.

Algorithm 1. D2MOPSO

1: Initialize the swarm with N particles and N λ vectors
2: for i = 1 to N do
3: assign the particle i to the λ vector that produces the best aggregation
4: initialize velocities V = {v1, . . . , vN} and pbesti
5: Initialize leaders’ archive, external archive and z∗

6: end for
7: Crowding(leader archive)
8: for i = 1 to MaxIteration do
9: if i == 0.9 ∗MaxIteration then
10: reduce leaders archive size
11: end if
12: for j = 1 to N do
13: update Velocity, vj(t+ 1)
14: update position, xj(t+ 1)
15: evaluate the new position
16: normalize objectives and calculate aggregate function for j
17: update pbestj, leaders archive, external archive, and z∗

18: end for
19: end for
20: Return the final result in the external archive

4 Experiments and Results

4.1 Experimental Setup

D2MOPSO is tested on several standard problems defined in the test suite
[14]. 10 problems were chosen (Schaffer, Fonseca, Kursawe, Poloni, Viennet2-3,
DTLZ4-6 and DTLZ7) which cover diverse MOPs with convex, concave, con-
nected and disconnected PFs. The method is then compared to MOEA/D [2]
and dMOPSO [11]. Each algorithm is run 30 times for each test problem. For
the bi-objective problems 100 iterations per run, and 100 particles per genera-
tion are used for all methods. For the three-objective problems, 300 iterations
and 300 individuals were used. All compared algorithms adopt real encoding,
perform the same number of objective evaluations and use the same aggregation
function (NBI) with θ = 5. MOEA/D uses differential evolution crossover (DE)
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(a) Schaffer: D2MOPSO (b) dMOPSO (c) MOEA/D

(d) Fonseca: D2MOPSO (e) dMOPSO (f) MOEA/D

Fig. 1. The PFapproximation of Schaffer and Fonseca using the three methods. Grey
represents PFtrue.

(a) Kursawe: D2MOPSO (b) dMOPSO (c) MOEA/D

(d) Poloni: D2MOPSO (e) dMOPSO (f) MOEA/D

Fig. 2. The PFapproximation of Kursawe and Poloni using the three methods
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(a) Viennet2: D2MOPSO (b) dMOPSO (c) MOEA/D

(d) Viennet3: D2MOPSO (e) dMOPSO (f) MOEA/D

Fig. 3. The PFapproximation of Viennet2 and Viennet3 using the three methods. In (e)
dMOPSO generates outliers affecting the scale of the figure.

(probability = 1.0 and differential weight = 0.5) polynomial mutation (probabil-
ity = 1/number of decision variables), the mutation distribution index is equal
to 20, and the neighbourhood size is set to 30. dMOPSO sets the age threshold
to 2, C1, C2, w ≥ 0, and r1, r2 are set to a random value in [0, 1]. These values
where chosen according to recommendations by the authors of MOEA/D and
dMOPSO. D2MOPSO uses the parameters explained in the previous section
with α = 10% and β = 10%.

4.2 Quality Measures

To validate our approach, four indicators [15] which estimate the convergence
and diversity of the solutions are used. Hypervolume indicator (IHypervolume)
measures the volume of the objective space that is weakly dominated by a PF
approximation (A). IHypervolume uses a reference point v∗ which denotes an
upper bound over all objectives. v∗ is defined as the worst objective values found
in A (i.e. v∗ is dominated by all solutions in A). Using the Lebesgue measure
(Λ), IHypervolume is defined as:

IHypervolume(A) = Λ
( ⋃

a∈A

{x |a ≺ x ≺ v∗|}
)
. (6)

Inverted generational distance (IIGD) measures the uniformity of distribution of
the obtained solutions in terms of dispersion and extension. The average distance
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(a) DTLZ4: D2MOPSO (b) dMOPSO (c) MOEA/D

(d) DTLZ5: D2MOPSO (e) dMOPSO (f) MOEA/D

(g) DTLZ6: D2MOPSO (h) dMOPSO (i) MOEA/D

(j) DTLZ7: D2MOPSO (k) dMOPSO (l) MOEA/D

Fig. 4. The PFapproximation of DTLZ4-7 using the three methods. In (h), dMOPSO
generates outliers affecting the scale of the figure.
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Table 1. The Results of Applying IHypervolume and IIGD Measures

IHypervolume IIGD

D2MOPSO dMOPSO MOEA/D D2MOPSO dMOPSO MOEA/D

Fonseca 0.314240 0.310809 0.312262 0.000212 0.000498 0.000430

Schaffer 0.833229 0.822686 0.810658 0.000014 0.006258 0.002140

Kursawe 0.404477 0.398544 0.399500 0.000024 0.000141 0.001232

Poloni 0.913954 0.899036 0.891183 0.000181 0.017408 0.018043

Viennet2 0.931879 0.926400 0.846134 0.000017 0.000590 0.002226

Viennet3 0.841510 0.830819 0.817380 0.000012 0.001402 0.004968

DTLZ4 0.456455 0.437521 0.453703 0.000283 0.000492 0.000382

DTLZ5 0.095629 0.093547 0.084997 0.000004 0.000070 0.000250

DTLZ6 0.095855 0.093257 0.084517 0.000000 0.000089 0.000257

DTLZ7 0.331488 0.270847 0.312294 0.000055 0.000816 0.000698

p-value 0.0368 0.0256 0.1513 0.1169

is calculated for each point of the actual PF (PFTrue) A and the nearest point
of the approximation PF (PFapprox) B.

IIGD(A,B) = (
∑
a∈A

(min
b∈B

‖ F (a)− F (b) ‖2))1/2/|A| (7)

ε-Indicator (Iε) measures the minimum distance which a PF approximation (A)
has to be translated in the objective space to weakly dominate the actual PF B.
ε-Indicator is defined as:

Iε(A,B) = min
ε∈R

{∀b ∈ B, ∃b′i − ε ≤ bi, ∀1 ≤ i ≤ n} (8)

Cardinality measure (Icardinality(A,B)), calculates the percentage of solutions in
A that belongs to B, where A is an approximation of the PF and B is a reference

Table 2. The Results of Applying Iε and Icardinality Measures

Iε Icardinality

D2MOPSO dMOPSO MOEA/D D2MOPSO dMOPSO MOEA/D

Fonseca 0.00079 0.00517 0.00384 60% 6% 34%

Schaffer 0.00120 0.09028 0.22934 92% 7% 1%

Kursawe 0.01858 0.08431 0.28084 52% 2% 46%

Poloni 0.03026 1.06964 1.07510 80% 2% 18%

Viennet2 0.00212 0.01119 0.05978 93% 3% 4%

Viennet3 0.00105 0.06098 0.10490 86% 3% 11%

DTLZ4 0.03068 0.06889 0.04765 34% 11% 55%

DTLZ5 0.00044 0.00983 0.02307 72% 5.6% 22.4%

DTLZ6 0.00005 0.03202 0.02324 98.6% 1.2% 0.2%

DTLZ7 0.01370 0.16680 0.07199 65% 5% 30%

p-value 0.1672 0.1019 4.67E-005 0.0116
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set. For fair comparison, B is a bounded set of the none-dominated solutions
produced by all algorithms under comparison. For bi-objective problems the size
of B is 100 and 10,000 for 3-objective problems where all solutions are equally
distributed along the PF.

Icardinality(A,B) = |A ∩B|/|B| (9)

Table 1 shows the results of applying IHypervolume and IIGD. Table 2 shows
the results obtained using Iε and Icardinality . The last row presents the p-value
of two tailed paired t-test between the D2MOPSO and the other two meth-
ods where bold font indicates a statistically significant difference. Fig.1, Fig.2,
Fig.3 and Fig.4 depict PFtrue and PFapproximated for the three algorithms under
investigation.

5 Discussion and Conclusions

In this paper, a multi-objective particle swarm optimisation method combining
decomposition and dominance is presented. The method works by dividing the
MOP into scalar aggregation problems which are solved simultaneously using
PSO. In order to maintain the diversity of the final solutions, D2MOPSO uses
a crowding archive that assures the low density regions are covered as much as
the higher density ones. Unlike other decomposition based evolutionary methods,
D2MOPSO does not use any genetic operators or parametric probability density
function. D2MOPSO takes advantages of both decomposition and dominance
while maintaining the simplicity and efficiency of MOPSO.

The results presented in this paper show that D2MOPSO outperforms
dMOPSO, MOEA/D on all test problems.Paired t-test results (p-value in Table1
and Table2) show D2MOPSO performing significantly better in terms of hy-
pervolume and cardinality indicators suggesting better spread and more diverse
coverage of PF.

Sigmoid limiting transformation might not be necessary in all standard MOPs,
but it is essential for real life data where different objectives’ ranges can vary
considerably and hence once objective might overshadow the other objectives
in the aggregation function. Some of the used problems do not have normalized
objectives by definition (e.g. Kursawe, Viennet2, and Viennet3). The results ob-
tained demonstrates the advantage of normalizing the objectives. The finalizing
step, which shrinks the leaders’ archive, is an efficient and effective step to main-
tain the diversity of the approximated PF. This is a general approach that can
be easily used in other methods.

Decomposition based evolutionary algorithms have advantage in problems
where a linear structure exists in the objective space as the λ values are uniformly
distributed. When, however, a non-linear structure exists or is confounded by the
interplay of several competing objectives, dominance helps to direct the particles
to better exploration of the objective space. This can explain the advantage of
the D2MOPSO method as shown in the results of our experiments.
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Abstract. This paper proposes a new strategy to reduce the combi-
natorial search space of a mixed integer linear programming (MILP)
problem. The construction phase of greedy randomized adaptive search
procedure (GRASP-CP) is employed to reduce the domain of the inte-
ger variables of the transportation model of the transmission expansion
planning (TM-TEP) problem. This problem is a MILP and very diffi-
cult to solve specially for large scale systems. The branch and bound
(BB) algorithm is used to solve the problem in both full and the reduced
search space. The proposed method might be useful to reduce the search
space of those kinds of MILP problems that a fast heuristic algorithm is
available for finding local optimal solutions. The obtained results using
some real test systems show the efficiency of the proposed method.

Keywords: GRASP-CP, MILP, TM-TEP.

1 Introduction

The mathematical model for the transmission expansion planning (TEP) prob-
lem is a mixed integer, non-linear, non-convex optimization problem, which is
very complex and computationally demanding [1], [2]. This problem presents
a large number of local optimal solutions and when the size of system becomes
large, the number of solutions grows exponentially. Various approaches have been
proposed to obtain a high quality solution for this problem, some examples are;
classical methods [3], [4] heuristics algorithm [5], [6], meta-heuristic strategies
[7], [8], relaxed models [9], [10] and hybrid methods [11]. A comprehensive review
of these strategies is given in [12], [13].

Significant progress has been made in the direction of exact methods for com-
binatorial optimization, such as branch and bound, branch and cut, and dynamic
programming. However, these methods suffer from the curse of dimensionality,
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i.e. they tend to break down as the size of the problem, specially the integer vari-
ables, increases [14], [15]. Therefore the reduction of the search space becomes
necessary. This paper proposes a methodology to reduce combinatorial search
space of a MILP problem. In order to present the performance of the proposed
methodology for large scale systems we use transportation model of the TEP
problem [10] which is a MILP problem, however the proposed method can be
also applied to reduce the search space of other TEP models. The construction
phase of greedy randomized adoptive search optimization (GRASP) [16] is used
in the first phase to reduce the search space of the problem, and in the second
phase the branch and bound algorithm is employed to find the optimum solution
on the reduced search space. GRASP [7], [14] and [16] is a multi-start procedures
which apply local search to a set of starting solutions generated with a greedy
randomized algorithm or semi-greedy method. The best local optimum found
over the iterations is returned as the heuristic solution. This paper only benefits
from GRASP construction phase to reduce the search space of the integer vari-
ables. The local search of the GRASP is not used in the paper and will not be
discussed. This work is organized as follows. Section 2 presents the mathemat-
ical model of the TM-TEP and it proposes a new sensitivity index to be used
in GRASP-CP, the novel strategy of reducing search space using GRASP-CP is
provided in section 3. The results of some tests and real systems are analyzed in
section 4. And finally, in section 5, conclusions are drawn.

2 Transportation Model of the Transmission Expansion
Planning Problem

The main objective of transmission expansion planning (TEP) problem, in an
electric power system (EPS), is to define where, how many and when new trans-
mission lines must be added to the EPS in order to provide forecasted power
demand and to make its operation viable for a pre-defined planning horizon at
minimum cost [1], [4], [5], [6], [10].

There are several models for TEP problem, the AC model [6], DC model,
Hybrid model and transportation model [10]. The proposed domain reduction
method can be used to reduce the search space of all models. This paper uses
the transportation model of the TEP problem. The TM was originally suggested
by Garver [17]. This model is presented in the following equations (1)-(6).

min v =
∑

km∈Ω

ckmnkm (1)

s.t. ∑
mk∈Ω

fmk −
∑

km∈Ω

fkm = dk − gk ∀k ∈ β (2)

|fkm| ≤ (n0
km + nkm)f̄km ∀km ∈ Ω (3)

0 ≤ nkm ≤ n̄km ∀km ∈ Ω (4)

nkm integer ∀km ∈ Ω (5)
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where:
ckm cost of a circuit that can be added to branch k-m,( constant), (US$),
nkm number of circuits added to branch k-m, (variable),
fkm power flows in branch k-m, (variable), (MW),
dk demand in bus k, (constant), (MW),
gk power generation at k-th bus, (variable), (MW),
n0
km number of circuits in the base case in branch k-m, (constant),

f̄km maximum power flow in branch k-m, (constant), (MW),
n̄km maximum number of the candidate lines in branch k-m, (constant),
Ω set of all transmission lines,
β set of all buses.

In transportation model, (1) stands for investment in transmission lines; (2) rep-
resents the power flow balance constraint; (3) present the power flow limitation
for each transmission lines and (4) denotes the limits of each transmission lines
in a branch.

In the proposed domain reduction methodology, which will be explained in
section 3, several solutions are needed to be constructed based on the sensitivity
index. There are various sensitivity indexes (SI) for an integer decision variable
in a MILP problem. SI’s are supposed to assess the impact of any integer variable
that affects the performance of the problem. There are a couple of sensitivity
index in the TM-TEP problem. The first SI is proposed by Garver [17] in which
it directly calculated from integer variables. Although this index is considered
to be the best in terms of finding the closest solution to the optimum [5], it is
not very suitable to be used alone for the GRASP-CP, since this index is too
greedy and it assess the best lines, and considers the other lines to have zero
value in the construction process, while this is in contradiction with the fact that
every line may affect the performance of the optimum solution after addition.
There are other indexes proposed in [18] that calculated from the dual value
of the LP problem at the optimum solution. One of these indexes is based on
the maximum flow limit and the other in circuit susceptance. However it is not
possible to use the second index since in TM-TEP problem the susceptance of
the lines are not considered. Although the index based on maximum power flow
has some limitations in disconnected networks, we use it together with Garver
index to overcome this problem. This paper uses the following indices:

1 Garver sensitivity index (SIG): this index is obtained after solving the LP
problem of the TM-TEP when the integrality of the integer variables is
relaxed. The SIG for each transmission line is calculated in (6);

SIGkm = nkmf̄km ∀km ∈ Ω (6)

2 SI with respect to maximum flow limit (SIF): This index is obtained using
dual variables related to equation 3, at the optimum solution of the LP
problem and is calculated as:

SIFkm =
∂v

∂fkm
= π

fkm
∀km ∈ Ω (7)
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where v is the objective function of the TM-TEP and π
fkm

is the dual variables
associated to constraints (3). In conclusion the sensitivity index to allocate the
lines in an iterative process for each line is calculated in (8), where, The SIG and
SIF are normalized in order to have equal effects in the total sensitivity index
(SI).

SIkm =
SIGkm

max(SIGij∈Ω)
+

SIFkm

max(SIFij∈Ω)
∀km ∈ Ω (8)

3 Domain Reduction Using GRASP Construction Phase

GRASP is a heuristic iterative sampling technique composed by two phases, a
construction phase and a local search phase. A complete description of GRASP
can be found in [16]. However, in this paper, only the construction phase of
the GRASP is used. The generic pseudo code of the GRASP-CP procedure for
creating a feasible solution for a MILP problem is shown in Procedure 1. Several
calls to the GRASP-CP will create several feasible high-quality solutions. It
should be noted that there are some MILP problems that even finding a feasible
solution is not easy. Therefore the proposed method may not be useful for this
kind of problems.

Procedure 1. GRASP-CP for creating high quality integer solution for a MILP
problem

solution = ∅ ;
repeat

Solve relaxed problem of the MILP model;
Evaluate the Greedy Function;
Build the RCL;
η= Element selected randomly from RCL;
solution =∪ η ;

until a feasible solution is obtained
return with feasible solution

In GRASP-CP each solution is obtained through an iterative algorithm in
which an LP is solved and the restricted candidate list (RCL) is constructed from
candidate elements with a greedy function value above a specified threshold. The
greedy function value of an element is evaluated by measuring the local benefit
of including that element in the constructed solution. The next element to be
included in the solution is selected at random from the RCL. Its inclusion in
the solution alters the greedy functions and the set of candidate elements used
to determine the next RCL [19]. The construction procedure terminates when a
feasible solution is obtained. Eq. (9) gives the RCL set for TM-TEP.

RCL = {nkm∈Ω|SIkm∈Ω ≥ SImin + α(SImax − SImin) (9)
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where SIkm is the sensitivity index for each candidate variable and obtained
by solving an LP problem, as explained in section 2. The SImax and SIminare
the maximum and minimum value of the sensitivity index (SIkm∈Ω) over all
candidate variables. α is an experimental parameter in the range 0 to 1 and
defines the greediness or randomness of the RCL set. If α = 1, then the semi-
greedy construction phase reduces to a greedy algorithm, and if α = 0, it changes
to a random algorithm.

The pseudo code of domain reduction of an MILP problem using the GRASP-
CP is proposed in Procedure 2, such that the best solution over all GRASP-
CP iterations is considered to be the incumbent solution of branch and bound
algorithm, and the maximum number of lines over all GRASP-CP iterations
in each branch is considered as the candidate line limit in that branch. As a
result, the search space is reduced significantly. To ensure that the reduced search
space contains the optimum solution, or at least very high-quality solutions, the
randomness of GRAP-CP must be set to high, i.e., a small value for α and/or
enough iterations of the GRASP-CP must be implemented. We can also add
some noise to the cost of transmission lines [20] to obtain a more diverse search
space, bearing in mind that the computational time increases.

Procedure 2. Domain reduction of a MILP problem using GRASP-CP. This
code defines an upper bound (x) for integer variables and an incumbent solution
(x∗) for the BB algorithm

Input: Number of iterations imax ;
X = ∅ ;
for i = 1, . . . , imax do

x ← GRASP-CP;
X = X ∪ x;
if f(x) ≤ f∗ then

f∗ ← f(x)
x∗ ← x

end if
end for
return x = max(X) and x∗

4 Tests and Results

In this section three test systems have been analyzed to show the efficiency
of the domain reduction using GRASP-CP. The Garver system, the Southern
Brazilian system and the Brazilian North-Northeast system are considered for
tests. The solutions of Garver system and Southern Brazilian system is reported
in various papers [10], [21]. We also make tests on these systems for performance
comparison of the proposed method. The optimum solution for Brazilian North-
North system is still unknown and it is a benchmark for transmission expansion
planning problem. This paper proposes the best solutions for North-Northeast
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Brazilian system. The AMPL/CPLEX 12.1 [22], [23] solver is used to solve the
TM-TEP problem. All the tests are carried out using a 2.93 GHZ, 8 cores CPU
with 4 GB memory RAM and 300 GB hard memory. The CPLEX is able to
utilize all the processors in parallel for solving the problems.

In all tests systems firstly we try to obtain the optimum solution in full space
of the problem using BB. Following some tests using various GRASP-CP pa-
rameters are carried to reduce the search space and BB again is used to obtain
the solution in the reduced space. α and imax are two important parameters in
domain reduction using GRASP-CP. As it mentioned earlier these parameters
are empirical. In TM-TEP problems the size of the problem is very important to
define these parameters. For small size problems small number of iteration and
high value of α may lead us to optimum solution while in large scale problems
a large number of iteration and a low value of α are selected. However in this
paper different amounts for these parameters are selected in order give a deeper
sight of the method.

4.1 Garver System

For the illustrative examples, the Garver 6-bus system (Fig. 1) is used. This
system has 6 buses and 15 candidate lines with a total demand of 760 MW and
a maximum of 5 lines can be added to each branch.

Fig. 1. Garver system containing base line and optimum solution, the solid lines are
existence and the dashed ones are new lines. The ball shaped objects are representing
generators and the arrow ones are for demands.

The Garver system data is given in [10]. The tests can be carried out for
both planning with generation rescheduling and without generation reschedul-
ing. However, since our main goal in this test is to show the process of the domain
reduction we only show the results of planning without generation reschedul-
ing and with base topology proposed by Garver. The optimum solution without
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generation rescheduling is reported in [10], with US$ 200 investment on seven new
transmission lines with following topology: n1−5 = 1, n2−6 = 3 and n4−6 = 3.

The GRASP-CP is employed to reduce the domain of integer variables. Five
GRASP-CP iteration with α = 0.6 are implemented. The black bars in Fig. 2
show the reduced space of the problem. The CPLEX branch and bound solver
is then applied to obtain the best solution over reduced space. The gray bars
in Fig. 2 show this solution. This figure shows the domain of integer variables
is reduced without losing the optimum solution. As it mentioned the maximum
number of lines in each branch in the Garver system is 5, multiplying this number
with the number of candidate lines, gives 75 as the total bounds of integer
variables, while using GRASP-CP this number is 16, showing that the upper
bounds of integer variables is reduced by 78 %.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6

4

5

3

2

1

0

GRSP-CP Domain

Optimum solution

N
u

m
e

r
o

f
lin

e
s

Candidate Transmission lines

Fig. 2. GRASP-CP for reducing the domain of integer variables in Garver system.
The integer variables are limited by black bars while the gray ones are their value in
optimum solution.

4.2 Southern Brazilian System

This systemhas 46 buses, 79 circuits and 6880MWof demand and has been studied
inmany references [6], [10], [20], [21]. It is possible to execute the planning with and
without generation rescheduling and also with and without base topology. Three
tests are performed for each planning to evaluate the behavior of the algorithm.

Planning with Generation Rescheduling. Table 1 shows the results of the
tests in which tests 1-3 are provided for planning with base topology and tests
4-7 for planning without base topology. In tests 1 and 4, the branch and bound
algorithm is applied on the full space of the problems to obtain the optimum so-
lution, while in tests 2, 3, 5 and 6, with different parameters, GRASP-CP along
with branch and bound is applied to solve the problem. The number of LP solved,
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Table 1. Southern Brazilian system with generation rescheduling

With Base Topology Without Base Topology

Test-1 Test-2 Test-3 Test-4 Test-5 Test-6

BB
GRASP-
CP&BB

GRASP-
CP&BB

BB GRASP-CP&BB GRASP-CP&BB

α —– 0.8 0.6 —– 0.8 0.6

GCI1 —– 10 10 —– 20 20

No. LP 16 0 11 11298 1558 3491

SUBINV2 237 15 23 237 89 102

Time (sec) 0.2 0.02 0.02 2.65 0.61 1.17

RSP3 (%) —– 93 90 —– 62 56

gap (%) 0 6.43 0 0 0.87 0

Cost (US$) 53334∗ 57005 53334∗ 402748∗ 406288 402748∗

Installed
Lines in
Optimum
Solution

n33−34 = 1, n20−21 = 2,
n42−43 = 1, n5−11 = 2,

n46−11 = 1

n5−8 = 1, n4−5 = 2, n2−5 = 2, n12−14 = 2,
n13−20 = 1, n19−21 = 1, n14−22 = 1, n22−26 = 1,
n20−23 = 1, n23−24 = 1, n26−27 = 1, n24−34 = 1,
n33−34 = 1, n27−36 = 1, n34−35 = 1, n37−40 = 1,
n39−42 = 3, n38−42 = 1, n32−43 = 1, n42−44 = 1,
n44−45 = 1, n46−16 = 1, n20−21 = 3, n42−43 = 3,
n46−6 = 1, n25−32 = 1, n31−32 = 1, n28−31 = 1,

n24−25 = 1, n5−6 = 2
1 GCI: GRASP-CP Iteration 2 SUBINV: Summation of upper bound of integer variables
3 Reduction in search space ∗ Optimum solution

Table 2. Southern Brazilian system without generation rescheduling

With Base Topology Without Base Topology

Test-7 Test-8 Test-9 Test-10 Test-11 Test-12

BB
GRASP-
CP&BB

GRASP-
CP&BB

BB GRASP-CP&BB GRASP-CP&BB

α —– 0.8 0.6 —– 0.8 0.6

GCI1 —– 50 50 —– 50 50

No. LP 455 404 155 96466 7052 15026

SUBINV2 237 41 51 237 96 113

Time (sec) 0.33 0.05 0.06 9.17 2.13 5.56

RSP3 (%) —– 82 78 —– 59 52

gap (%) 0 2.8 0 0 0 0

Cost (US$) 127272∗ 130943 127272∗ 473246∗ 473246∗ 473246∗

Installed
Lines in
Optimum
Solution

n14−22 = 1, n20−21 = 2,
n42−43 = 2, n5−11 = 2,
n25−32 = 1, n31−32 = 1,
n28−31 = 1, n46−11 = 1,

n24−25 = 2

n5−8 = 1, n4−5 = 2, n2−5 = 2, n12−14 = 2,
n13−20 = 1, n19−21 = 1, n16−17 = 1, n17−19 = 1,
n14−26 = 1, n14−22 = 1, n22−26 = 1, n20−23 = 1,
n23−24 = 1, n26−27 = 1, n24−34 = 1, n24−33 = 1,
n27−36 = 1, n27−38 = 1, n34−35 = 2, n35−38 = 1,
n37−39 = 1, n37−40 = 1, n39−42 = 1, n38−42 = 1,
n42−44 = 1, n44−45 = 1, n46−16 = 1, n20−21 = 3,
n42−43 = 3, n14−15 = 1, n46−6 = 1, n19−25 = 1,
n31−32 = 1, n28−31 = 1, n31−41 = 1, n41−43 = 1,

n15−16 = 1, n24−25 = 2, n5−6 = 2
1 GCI: GRASP-CP Iteration 2 SUBINV: Summation of upper bound of integer variables
3 Reduction in search space ∗ Optimum solution

the upper bound of integer variables, the processing time and the investment cost
are given for all in addition the degree of randomness or greediness (α), the reduc-
tion in search space in percent and the number of GRASP-CP iteration are also
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provided for tests 2, 3, 5 and 6. In all the tests the gap between current solutions
with respect to the optimum solution is also provided. In test 2 and 5 the optimum
solution is not achieved since the GRASP-CP is considered too greedy (α = 0.8).
In tests 3 and 6 the optimum solutions are obtained with much less effort than
BB algorithm when applied in full space. The summation of upper bound of vari-
ables in tests 3 and 6 are decreased by 90% and 56% respectively without losing
the optimum solution of the problem. The installed transmission lines in optimum
solution for both planning scheme are also provide in this table.

Planning without Generation Rescheduling. Similar to the planning with
generation rescheduling several tests have been implemented for both planning
with and without base topology. Table 2 shows the results of the tests in which
the domain of search space, the processing time and number of iterations in
tests 8, 9 11 and 12 are reduced significantly. In all tests except test-8, which is
too greedy, the optimum solutions are obtained with little effort which can be
confirmed from processing time and number of LP solved for each test.

Table 3. North-Northeast Brazilian system without generation rescheduling Plan 2002

With Base Topology Without Base Topology

Test-13 Test-14 Test-15 Test-16 Test-17 Test-18

BB
GRASP-
CP&BB

GRASP-
CP&BB

BB
GRASP-
CP&BB

GRASP-
CP&BB

α —– 0.6 0.1 —– 0.6 0.1

GCI1 —– 100 100 —– 100 100

No. LP 179156 28619 74173 1.51×10 9 7.61×10 7 1.2×10 8

SUBINV2 2700 203 360 2700 331 432

Time (sec) 23.57 8.46 14.06 365400 16694 31585

RSP3 (%) — 99.14 86.66 — 87.74 84.00

gap (%) 0 3.58 0 0.73 0.53 0.49

Cost (US$) 1194561∗ 1238944 ∗ 2344023� 2356727 2355601

Installed
Lines in
Optimum
Solution

n2−60 = 2, n5−58 = 2,
n5−60 = 2, n5−68 = 1,
n8−17 = 1, n8−62 = 2,
n9−10 = 1, n10−11 = 1,
n11−17 = 1, n13−15 = 2,
n14−59 = 1, n15−16 = 2,
n16−44 = 3, n17−18 = 2,
n18−50 = 6, n20−21 = 1,
n20−38 = 1, n24−43 = 1,
n25−55 = 1, n30−63 = 1,
n35−51 = 1, n40−45 = 1,
n41−64 = 3, n42−44 = 2,
n42−85 = 1, n43−55 = 1,
n43−58 = 1, n48−49 = 3,
n54−58 = 1, n54−63 = 1,
n62−67 = 2, n63−64 = 1,
n67−69 = 1, n69−87 = 1

n1−2 = 2, n2−4 = 1, n2−60 = 2, n4−5 = 1,
n4−69 = 1, n5−56 = 1, n5−58 = 3, n5−60 = 2,
n5−68 = 1, n7−8 = 1, n7−62 = 1, n8−17 = 2,
n8−53 = 1, n8−62 = 1, n9−10 = 1, n10−11 = 2,

n11−15 = 2, n11−17 = 1, n12−17 = 3,
n12−35 = 2, n13−15 = 3, n13−45 = 1,
n14−59 = 1, n15−16 = 4, n15−46 = 1,
n16−44 = 7, n16−61 = 1, n17−18 = 6,
n18−50 = 11, n19−20 = 1, n20−21 = 2,
n20−21 = 1, n20−56 = 2, n22−23 = 1,
n22−37 = 1, n22−58 = 1, n24−43 = 1,
n25−26 = 1, n25−55 = 3, n26−29 = 1,

n27−28 = 2, n27−53 = 1, n30−3 = 1, n30−63 = 1,
n34−39 = 1, n34−41 = 1, n35−51 = 3,
n36−39 = 1, n36−46 = 2, n39−42 = 1,
n40−45 = 2, n40−46 = 1, n41−64 = 3,
n42−44 = 1, n42−85 = 1, n43−55 = 2,
n43−58 = 2, n48−49 = 1, n48−50 = 3,
n49−50 = 4, n51−52 = 1, n52−59 = 1,
n54−58 = 1, n54−63 = 1, n61−85 = 2,
n62−67 = 2, n63−64 = 1, n67−69 = 1

1 GCI: GRASP-CP Iteration 2 SUBINV: Summation of upper bound of integer variables
3 Reduction in search space ∗ Optimum solution � Best solution
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4.3 North-Northeast Brazilian System

The North-Northeast Brazilian System is used as another case study. This system
consists of 87 buses and 183 circuits. The system data is available in [1] and from
the authors. This system represents a benchmark in the transmission planning
problem, due to its high complexity and the unknown global optimal solution.
There are two levels of demand, one considered for 2002 (P1) with level of 20316
MW and the other for 2008 (P2) with level of 29748 MW. In this section several
test of domain reduction, for both plans P1 and P2, with different parameters
have been implemented. The tests are carried out with fixed generator levels,
i.e. without generation rescheduling but with and without base topology. Tables
3 and 4 show the result of tests.

When the plans are carried out with the base topology, the tests 13-15 for P1
and 19-21 for P2, the optimum solutions or near optimal solutions are obtained.

Table 4. North-Northeast Brazilian system without generation rescheduling Plan 2008

With Base Topology Without Base Topology

Test-19 Test-20 Test-21 Test-22 Test-23 Test-24

BB
GRASP-
CP&BB

GRASP-
CP&BB

BB
GRASP-
CP&BB

GRASP-
CP&BB

α —– 0.6 0.1 —– 0.6 0.1

GCI1 —– 100 100 —– 100 100

No. LP 1.42×10 8 1.32×10 6 3.26×10 6 1.24×10 9 1.01×10 6 7.10×10 7

SUBINV2 2700 305 518 2700 436 596

Time (sec) 1299 193 419 249794 11238 20750

RSP3 (%) 0 88.73 80.81 0 83.85 77.92

gap (%) 0 1.14 0.74 1.73 0.04 1.03

Cost (US$) 2370680 ∗ 2398025 2388359 3534832 3536290 3533929 �

Installed
Lines in
Optimum
Solution

n1−2 = 1, n2−60 = 1,
n4−5 = 2, n4−6 = 1,
n4−68 = 1,n4−81 = 3,
n5−58 = 3, n5−60 = 1,
n13−15 = 4, n14−45 = 1,
n15−16 = 4, n16−44 = 6,
n16−61 = 1, n18−50 = 11,
n18−74 = 6, n20−21 = 2,
n20−38 = 2, n22−23 = 1,
n22−58 = 2, n24−43 = 1,
n25−55 = 3, n26−29 = 2,
n29−30 = 2, n39−86 = 4,
n40−45 = 2, n41−64 = 2,
n42−44 = 1, n43−55 = 2,
n43−58 = 2, n48−49 = 2,
n49−50 = 3, n52−59 = 1,
n53−86 = 1, n61−64 = 1,
n61−85 = 2, n67−68 = 1,
n67−69 = 1, n67−71 = 3,
n71−72 = 1, n72−73 = 1,
n73−74 = 2, n73−75 = 1,

n75−81 = 1

n1−2 = 3, n2−60 = 2, n4−6 = 2, n4−60 = 1,
n4−68 = 1, n4−81 = 3, n5−56 = 1, n5−58 = 3,
n5−60 = 2, n5−68 = 2, n6−70 = 2, n7−53 = 1,
n7−62 = 1, n8−9 = 1, n8−62 = 1, n9−10 = 2,

n10−11 = 2, n11−12 = 1, n11−15 = 1,
n11−17 = 2, n12−15 = 2, n12−17 = 3,
n12−35 = 2, n13−15 = 3, n13−45 = 1,
n13−59 = 1, n14−45 = 1, n15−16 = 5,
n15−46 = 2, n16−44 = 10, n17−1 = 5,
n18−50 = 16, n18−74 = 3, n19−20 = 1,
n19−22 = 1, n20−21 = 1, n20−66 = 2,
n21−57 = 2, n22−23 = 1, n22−37 = 1,
n22−58 = 2, n24−43 = 1, n25−55 = 4,

n26−27 = 2, n26−2 = 2, n27−28 = 1, n27−53 = 2,
n28−35 = 1, n29−30 = 2, n30−31 = 1,
n30−63 = 1, n31−34 = 1, n34−39 = 1,
n35−51 = 2, n36−39 = 1, n36−46 = 3,
n39−86 = 1, n40−45 = 3, n41−64 = 3,
n42−44 = 3, n43−55 = 3, n43−58 = 3,
n44−46 = 2, n48−50 = 3, n49−50 = 7,
n51−52 = 1, n52−59 = 2, n53−70 = 1,
n53−86 = 1, n54−63 = 1, n54−70 = 1,
n56−57 = 1, n60−66 = 1, n61−85 = 3,

n61−86 = 1, n62−67 = 2, n63−64 = 1,n67−69 = 1,
n68−69 = 1, n73−74 = 1, n73−75 = 1, n75−81 = 1

1 GCI: GRASP-CP Iteration 2 SUBINV: Summation of upper bound of integer variables
3 Reduction in search space ∗ Optimum solution � Best solution
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In tests 13 and 19 the BB solver is applied in the full space and optimum solution
for P1 and the best solution for P2 are obtained. In tests 14-15 and 20-21 the
GRASP-CP is used for domain reduction, where, over 80% of the domain has
been decreased resulting in less processing time and less number of LP. When the
plans are made without base lines, tests 16-18 for P1 and 22-24 for P2, we have
to deal with a highly complex problem, in which after several days of processing
time of the BB solver on the full space of the problem, the optimum solutions are
not obtained and the process stops due to the lack of memory. However the given
solutions are the best proposed so far, and are very near to the optimum solution
since they have very little gap with respect to the best relaxed node of the branch
and bound three. The results of the domain reduction using GRASP-CP in tests
17-18 and 23-24 shows very high quality solutions obtained with respect to the
best solution. These solutions are achieved in a few hours instead of several days
when full space is considered.

The performance of the method is revealed in test-24 when the GRASP-CP
along with BB finds better solution than the BB applied in the full space of the
problem. The former solution is obtained in about 6 hours while the later one
obtained in about 70 hours.

5 Conclusions

In this paper the GRASP construction phase is used to reduce the search space
of integer variables in a challenging MILP problem. The transportation model of
the transmission expansion planning problem as a MILP problem is considered
to show the performance of the proposed methodology. The branch and bound
method is employed to obtain the optimum solution of the problem in the full
space as well as on the reduced space of the problem. The proposed method can
be used for domain reduction of any optimization problem with integer variables.
Several real test sys-tems have been considered to show the performance of
the problem. The best solu-tions for the most challenging problem of the TEP
problem are proposed in this paper.

References

1. Escobar, A.H., Gallego, R.A., Romero, R.: Multistage and coordinated planning
of the expansion of transmission systems. IEEE Trans. Power Syst. 19(2), 735–744
(2004)

2. Verma, A., Panigrahi, B.K., Bijwe, P.R.: Harmony search algorithm for trans-
mission network expansion planning. Generation, Transmission & Distribution,
IET 4(6), 663–673 (2010)

3. Binato, S., Pereira, M.V.F., Granville, S.: A new Benders decomposition approach
to solve power transmission network design problems. IEEE Transactions on Power
Systems 16(2), 235–240 (2001)

4. Rider, M.J., Garcia, A.V., Romero, R.: Transmission system expansion plan-
ning by a branch-and-bound algorithm. Generation, Transmission & Distribution,
IET 2(1), 90–99 (2008)



98 M. Rahmani et al.

5. Romero, R., Asada, E.N., Carreno, E., Rocha, C.: Constructive heuristic algo-
rithm in branch-and-bound structure applied to transmission network expansion
planning. Generation, Transmission & Distribution, IET 1(2), 318–323 (2007)

6. Rahmani, M., Rshidienjad, M., Carreno, E.M., Romero, R.: Efficient method
for AC transmission network expansion planning. Electric Power Systems Re-
search 80(9), 1056–1064 (2010)

7. Faria Jr., H., Binato, S., Resende, M.G.C., Falcao, D.M.: Power transmission net-
work design by greedy randomized adaptive path relinking. IEEE Transactions on
Power Systems 20(1), 43–49 (2005)

8. Leite da Silva, A.M., Rezende, L.S., Honório, L.M., Manso, L.A.F.: Performance
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Abstract. In this paper, we focus on a real world scenario of energy
management of a smart home. External variable signals, reflecting the
low voltage grid’s state, are used to address the challenge of balancing
energy demand and supply. The problem is formulated as a nonlinear
integer programming problem and a load management system, based on
a customized evolutionary algorithm with local search, is proposed to
control intelligent appliances, decentralized power plants and electrical
storages in an optimized way with respect to the given external signals.
The nonlinearities present in the integer programming problem makes it
difficult for exact solvers. The results of this paper show the efficacy of
evolutionary algorithms for solving such combinatorial problems.

Keywords: Nonlinear Integer Program, Energy Management, Evolu-
tionary Algorithms.

1 Introduction

The climate protection targets of the German government aim to cover 35 per-
cent of the electricity consumption from renewable sources by 2020. This growing
share of renewable energy sources will cause a higher demand for flexible power
suppliers and consumers. So here we present an energy management system that
has been developed in response to the challenge of balancing supply and demand
in the electric grid in spite of volatile, widely uncontrollable power production.
This approach has been investigated using a real smart home built with about
60 m2 of living area. This smart home is equipped with decentralized power
plants, intelligent appliances, and an electrical car. External signals, reflecting
the state of the low voltage grid, are sent to the smart home, which is able to
adapt its energy demand and production automatically without constraining the
end consumer. Complying with constraints specified by the household appliance
itself or by the user, the load of appliances is shifted within the specified degrees
of freedom.

This paper is divided into seven sections of which this is the first. In Sect.
2 some technical aspects of the real smart home setup are shortly introduced,

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 99–110, 2012.
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whereby Sect. 3 focuses on the description of the given optimization problem.
The modeling of this problem is pointed out in Sect. 4. A solver for the specific
problem based on an evolutionary algorithm is presented in Sect. 5. After some
experimental results (including comparison with an exact solver) in Sect. 6 the
paper concludes with a summary and a discussion of future work in Sect. 7.

2 In-House Energy Management

The complexity of technical systems is constantly increasing. Breakdowns and
fatal errors are occurring quite often, respectively. To achieve the goals of de-
signing and controlling complex systems, adequate methods, techniques, and
system architectures are needed. Therefore, a regulatory feedback mechanism is
proposed, the so called generic observer/controller (o/c) architecture [10], which
constitutes one way to achieve controlled self-organization in technical systems.
The o/c uses a set of sensors and actuators to measure system variables and
to influence the system. Together with the system under observation and con-
trol (SuOC), the o/c forms the so called organic system. An o/c loop activates
adequate reactions to control the emerging global behavior resulting from inter-
actions between local agents. The observer monitors certain (raw) attributes of
the system and aggregates them to situation parameters, which concisely char-
acterize the observed situation from a global point of view, and passes them to
the controller. The controller acts according to an evaluation of the observation.
The energy management system for the smart home presented here is based on
a hierarchical o/c architecture as shown in Fig. 1. Between the real hardware
components of the household and the energy management system, represented
as o/c architecture, a hardware abstraction layer (HAL) is implemented to make
an abstraction from the manufacture specific protocols of the components. The
HAL is more closely described in [2]. In the local o/c units the observed data

HAL
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Fig. 1. o/c Architecture in the smart Home
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of the hardware components are filtered and communicated to the global com-
ponent, where the current state of the complete household is aggregated and a
prediction for the next optimization horizon can be calculated [3]. Based on the
prediction, the global controller calculates an optimized schedule for the com-
ponents in the household. This schedule is communicated to the local o/c-units,
where the local controllers have the final decision to change the state of the
hardware components based on the more precise information given from the lo-
cal observers. The present paper is now focused on the global controller part in
Fig. 1 where the optimization is done.

There are quite a few other approaches to autonomous systems for energy
management based on optimization techniques for the low voltage grid. Mainly,
they discuss electrical or economical dispatch problems in the low voltage grid.
On the other hand, some approaches are based on the in-house scenario as the
organic computing [10] inspired approach in the present paper. An approach
with a multi-agent model by Shadi Abras et al. [1] handles a load limitation
scenario with a fix load limit on the one hand, and on the other hand a two step
price-signal is proposed: a high rate tariff for daytime and a low rate tariff at
night, as it is common in France and Germany, for example. The optimization
problem is described as a Resource Constrained Project Scheduling Problem
(RCPSP), a tabu search algorithm is provided for solving it. Since electrical
heating devices are included in the considered scenario, the optimization process
is also influenced by the current weather data.

3 Problem Description

As already discussed, external signals are sent periodically to the households
reflecting the current grid state. As shown in Fig. 2 these signals may be a
variable price rate over the day and a load limitation curve. The household
appliances have a specific load profile (the gray boxes in Fig. 2) and temporal
degree of freedom (tDoF). The tDoF is the span between the release time rj and
the deadline dj in which the user defines when the appliance j may run. (For
instance: the user fills up his washing machine with laundry before work in the
morning and defines that it has to be done eight hours later after work.) The
challenge of the household energy management is now to minimize the electrical
energy costs for the consumer and to minimize the violation of the load limitation
curve. So, the energy management has to calculate the optimal starting point
for the different appliances.

The given problem can be seen as similar to the Time Constrained Project
Scheduling Problem (TCPSP) as introduced in [6]. The TCPSP is derived from
the Resource Constrained Project Scheduling Problem (RCPSP) with the dif-
ference that the resource limit is not a hard deadline and a penalty function for
the violation of the limited resources is proposed. In the smart home scenario
the limited resources are equivalent to the load limitation curve. The work item
of a washing machine for example can be defined as a job with the tDoF of the
appliance as constraint.
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Fig. 3. Typical dish washer profile
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Fig. 4. Typical washing machine (left) and tumble dryer (right) profiles

The main difference between the problem described in [6] and the problem
in the present paper is, that the cost caused by one job are not constant. For
instance in the TCPSP formulation a job has a constant demand on manpower
during the job. But a dishwasher for example has a characteristically variable
and nonlinear electrical demand function as it can be seen in Fig. 3. Similar is
the case for a washing machine and a tumble dryer (see Fig. 4). Due to these
difficulties, the present problem cannot be modeled as an Integer Linear Program
(ILP) (as opposed to the TCPSP formulation in [6]). This fact will be discussed
in the next section.

4 Modeling the Problem

In this section, we model the electrical load management problem as nonlinear
integer programming (NIP) problem. For this, as it is common practice in project
scheduling, we assume to have a discrete time horizon with t ∈ {0, ..., T } [6].
Every appliance respectively appliance program will be represented by one job.
Thus with N jobs we get a set of jobs, J := {j1, j2, ..., jN}. The starting time
of every job j is constrained by the release time rj which represents the earliest
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starting time and the deadline dj which represents the point in time when j has
to be already finished. Together with rj and dj the processing time pj of j defines
the tDoF with tDoFj = dj − rj − pj . Furthermore, let the vector qj,t represents
the amount of power job j requires in time slot t after its starting time. So, t in
this case is relative to the starting time of job j making qj,t independent of tj .

With this set of jobs a schedule for the appliances can be built. Let tj denote

the starting time of j. A schedule is represented by the two matrices Ŝ = (sj,t)

and X̂ = (xj,t) with sj,t = 1 respectively xj,t = 1 if job j starts respectively is
active in t or sj,t = 0 respectively xj,t = 0 if not. For an easier calculation of the
total costs a schedule also contains the vector Ht for the aggregated power load
with Ht =

∑
j xj,t · qj,t−tj . The price per kWh can be resolved by the discrete

function P (t). The electrical load management problem can be modeled as the
following (NIP):

min
∑
t∈T

P (t)

⎛⎝∑
j∈J

xj,tqj,t−tj

⎞⎠ + δPf

∑
t∈T

P (t)

⎛⎝∑
j∈J

xj,t · qj,t−tj − L(t)

⎞⎠
subject to

dj−1∑
t=rj

xj,t = pj, ∀j ∈ J ; (1)

dj−pj∑
t=rj

sj,t = 1, ∀j ∈ J ; (2)

xj,rj = sj,rj , ∀j ∈ J (3)

xj,tj+l−1 + sj,tj+l ≥ xj,tj+l, ∀l ∈ {1, 2, . . . , dj − pj}, ∀j ∈ J (4)

sj,t = 0, ∀t /∈ {rj , ..., dj − pj} ; (5)

xj,t = 0, ∀t /∈ {rj , ..., dj − 1} ; (6)∑
j∈J

xj,tqj,t−tj − L(t) ≤ Mδ, ∀t ∈ T ; (7)

∑
j∈J

xj,tqj,t−tj − L(t) ≥ δ − 1 ∀t ∈ T (8)

sj,t ∈ {0, 1} ∀j ∈ J, ∀t ∈ T (9)

xj,t ∈ {0, 1} ∀j ∈ J, ∀t ∈ T (10)

δ ∈ {0, 1}, (11)

where L(t) is the discrete load limitation function (for all t ∈ T ), Pf is a penalty
factor for the violation of the load limitation, and M is a large number. M is
a constant coefficient representing an upper bound on

∑
j∈J xj,t · qj,t−tj − L(t)

and can be easily taken as: M := N maxj∈J,t∈T qj,t.

As the values xj,t in the matrix X̂ depend on the value of tj , it can be seen that
the objective function of the above program is a nonlinear function. The objective
function represents the main goal, i.e., to minimize the total costs. The first term
in the objective function is the price for energy consumption and the second term
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(together with a penalty factor Pf ) describes the extra costs as a result of the
violation of the load curve. Constraint 1 ensures that the processing time for each
job will be exactly as long as its program duration, while constraint 2 ensures the
jobs to be started exactly once between their release time and deadline. Constraint
3 ensures that job is active in first possible time slot if it also starts in the same
time slot. Constraint 4 ensures that in a particular time slot, the job can only be
active if it starts in that slot or was active in the previous time slot. To fulfill the
time restrictions of each job constraints 5 and 6 ensure that every sj,t and xj,t

outside of the possible tDoFj respectively tDoFj + pj is set to Zero. Constraints
7 and 8 impose the logical condition that ensures that δ is one whenever there the
load limitation curve is violated (see the discussion in [11]). Constraints 9, 10 and
11 finally define the domain for the variables used.

The above problem is a nonlinear integer program and in principle could be
solved using an exact mixed integer nonlinear program (MINLP) solver (see
[7]). However, as we will see in Sec. 6, the lack of convexity, nonlinearities in the
objective function, and a large number of variables makes this problem quite
difficult to be solved to global optimality. Even the simpler problem consider
in [6], where the cost caused by one job are assumed to be constant (in our
problem the cost is variable and nonlinear), is NP-hard.

We will now show that the problem formulation presented above isn’t re-
stricted to periodically used household appliances (timed services) like washing
machines or dryers. Even though a permanently running service (permanent ser-
vices) like a deep freezer or an air conditioning seems to require more variables
than the tuple (rj , pj , dj , qj,t), even these appliance types can be included in
the model. A more detailed definition of timed services and permanent services
is done in [2]. Every power curve for each of these permanent services has the
same structure: The appliance will require a relevant amount of electrical en-
ergy only periodically. Therefore these appliances will be represented by one job
for each start. The fridge in the aforementioned real smart home for example
started periodically about 32 times a day for 10 minutes. So, in this case the
time horizon will be split into 32 even intervals each containing 45 minutes. In
general a permanently running appliance with N starts per day, a permanent
processing time p and consumption vector qt for each start will be represented
by N tuples,

(
T
N (k − 1); p; T

N · k) with k ∈ {1, ..., N}. An appliance which is
more dependent on the time of day like the already mentioned air conditioning
may also adapt each single job. Fig. 5(a) shows the possibility of extending the
processing time with the same power consumption at high noon to compensate
the stronger insulation. As an alternative Fig. 5(b) illustrates the possibility of
increasing the cooling capacity as far as the appliance is capable of this feature.
Of course, a combination of both adaptations is also possible. Another type of
appliance which is included in the model is the electric vehicle with a variable
power consumption. This variable power consumption is needed to respond flex-
ibly on imbalances in the energy grid. Therefore, we assume that this kind of
appliance can vary its power consumption in linearly increasing discrete steps.
The total power consumption will be divided by the number of these steps.
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Fig. 5. Power curve air of an conditioning device with 12 time-segments

Every appliance is then again represented by multiple jobs having the exactly
same tuple (r, p, d, qt). Fig. 6 shows a possible behavior for the loading process of
an electric vehicle. The total power consumption is known, in this case 20 kWh
and it is assumed that the power can only be increased by 1 kW for each step.
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Fig. 6. Power curve of an electric car with 5 power steps

5 An Evolutionary Algorithm with Local Search

Evolutionary algorithms (EA) have already proven to efficiently solve similar
scheduling problems like for example [9]. One elementary advantage of EAs is
their memory and time requirements which are basically independent of the
number of jobs even though the search space increases exponentially as it is in
the present case.

5.1 Solution Representation

As we will not allow interrupts in each job program, the only variable that can

be directly manipulated is the starting point represented in the matrix Ŝ. With

Ŝ and all job information it is possible to construct X̂ as well as the vector
Ht. The fitness function will be defined as the total costs which are caused by

Ht ∀ t ∈ {0, ..., T }. Hence, the matrix Ŝ will be used as the genetic representation

of the solution domain. The matrix Ŝ is of size N×T and every row of the matrix

has exactly one nonzero element. For example, if we consider 4 jobs, Ŝ may have
the following structure:

̂S =

⎛

⎜

⎜

⎝

0 0 0 1 0 0 0 0 0 0 · · · 0 0
0 0 0 0 0 0 0 0 0 0 · · · 1 0
0 0 0 0 0 0 0 0 1 0 · · · 0 0
0 0 0 0 0 1 0 0 0 0 · · · 0 0

⎞

⎟

⎟

⎠

.
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5.2 Selection and Reproduction Scheme

Based on the lack of necessity for numeric scale and usually good overall perfor-
mance, a rank-based selection procedure is used. All individuals of the current
population will be ranked by their fitness value. The probability of choosing one
individual with rank k is defined by P (k) = N−k+1∑N

i=1 i
. This method is used for

the selection of parents to reproduce new individuals and for the selection of
individuals which will build the next generation.

Several combinations of evolution strategies have been tested (see Fig.8). The
results have shown that for this case a (μ, μ+λ)-strategy shows a slightly faster
convergence than a (μ, λ)-strategy while reaching equivalent or partially better
solutions. The number of offspring is set to 2 for every parent individual. This
parameter has shown a good overall performance especially when computing
time is considered.

5.3 Customized Search Operators

Because the order of the inserted jobs is random, a uniform crossover operator
is used as the recombination procedure. The method used in this case decides
for every job whether the child will adopt the starting point from the first or the
second parent. Therefore the starting points for all jobs in the first child-schedule
are represented in the matrix Ŝc =

(
scj,t
)
with

scj,t = αj · sp1j,t + (1− αj) · sp2j,t, ∀ j ∈ {1, ..., N}, ∀ t ∈ {0, ..., T }, αj ∈ {0, 1} .
The variable αj has to be randomly chosen for every job j. For this purpose we
have chosen a uniform distribution between both jobs, therefore none of them is
preferred to the other. The second child-schedule will contain all starting times
which were not chosen for the first child-schedule, so none of the information
of either parent will be lost through this operation. This recombination proce-
dure even ensures that every newly generated schedule generated by two feasible
schedules will also be feasible.
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A mutating individual will randomly change a certain fraction of starting
times. First the jobs whose variables will be changed are randomly selected. For
each of these jobs the starting time will be randomly set to any point in time
with respect to its tDoF: tj ∈ {t|rj ≤ t ≤ dj − pj , sj,t = 1} . With this method
it is once more ensured that newly generated individuals always satisfy the time
constraints for each job.

Fig. 7 shows the relation between the mutation probability and the fraction of
mutating jobs per mutation. With these results, the lowest costs where achieved
with the mutation probability set to 0.5 and the fraction of mutating jobs set to
0.1.

5.4 Local Search

The EA will be combined with a local search technique to further optimize the
best solution found. Therefore the local search algorithm will shift the starting
point by 1 and by -1 for every job in the schedule. Only these shifts will be
tested that will create a feasible schedule. Cost improvements of each single
change will be stored. Finally, the single change of the starting time gaining
the highest cost decrease will be performed. This procedure will be repeated
until no cost improvements can be realized by changing a single starting time
autonomously.
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Fig. 8. Several combinations of evolutions strategies

6 Simulation Results

For the evaluation of the presented optimization methods 4000 problem instances
based on the data from past living periods has been created. We have assumed
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T = 1440 based on a one minute discretization of a day. Moreover, we have
tested 32 jobs corresponding to each of the 4000 instance. The instances have
been generated by changing the release time and the deadlines for every job.

The price curve was differentiated between summer and winter while the load
limitation curve follows the H0 standard load profile of VDEW [8] for German
households in the cyclic version and shows a contrary course of the curve in the
anti-cyclic version. The latter is likely to animate residents to shift their electrical
load to daytimes with lower overall load. The penalty factor for exceeding the
power limit has been set to 5 to ensure noticeable extra costs but without the
character of a hard limit. To a ensure replicability the same instances has been
tested with three different solvers witch had to find a solution for the same
problem.

The first simple solver optimizes each single job on its own by testing and
evaluating every possibility. In doing so, the procedure won’t consider coherence
between two jobs and the probability that a job will be executed parallel to
another one is relatively high. Therefore this solver will be called the individual
solver. This procedure ignores the load limitation curve.

The EA has been tested in two configurations each with a population of 50
individuals: The short one with only 20 generations and a calculation time of
1 second and the long one with 1600 generations and a calculation time of 60
seconds. Both run times refer to an Intel Core i7 M 620 with 8 GB of memory.
It should be noticed, that in practice a small energy saving computer system is
proposed. So the duration for the optimization might increase to some minutes
but this will be still feasible for solving the present problem.

We have also used a mixed-integer nonlinear programming (MINLP) opti-
mizer that uses a branch-and bound search scheme. This solver is from the
TomLab optimization suite (the function minlpBB in Tomlab)1 and was devel-
oped by Roger Fletcher and Sven Leyffer. Due to the nonlinearities present in
the objective function, we were not able to use standard mixed-integer linear
programming solvers like Cplex, Gurobi, and Xpress.

Table 1 shows the results of the simulation. For the parameter tests every
pass used the same seed to be able to compare the results. Based on these in-
stances an ”individual solver”, an exact solver (MINLP) and two configuration
of an evolutionary algorithm has been evaluated. The solvers have been com-
pared between each other and a reference value. This reference value in this case
represents the costs which will occur when no optimization is performed and all
appliances are started at their release time rj . This procedure reflects the be-
havior in classical households because the release time represents the time when
the appliance would be turned on.

The results show that the EA could decrease the costs reached by the other
solvers in the short run. In the long run the EA found much better results. Above
all the EA reached a much lower standard deviation especially in the anti-cyclic
case. Even the results reached in one second of calculation are much more stable
than those of the other methods while this stability can still be increased by

1 http://tomopt.com/tomlab/optimization/minlp.php
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passing more generations and thus prolonging the calculation time. The MINLP
solver faced difficulties and was not able to find the global optima. The results
of the MINLP solver were found to depend heavily on the starting point.

Table 1. Simulation results for the 4000 instances. The values are in cents.

(a) (Summer, cyclic)

Reference Individ. MINLP Sol.
EA

short long
Best 1059.90 642.15 587.50 482.48 474.02

Median 1280.86 721.42 631.20 530.14 515.37
Std.-dev. 176.40 43.83 52.03 20.85 19.89
Worst 1839,08 883.68 709.42 594.26 576.36

(b) (Summer, anti-cyclic)

Reference Individ. MINLP Sol.
EA

short long
Best 2371.96 428.69 589.12 406.51 399.95

Median 2616.17 512.03 614.56 454.77 448.57
Std-dev. 163.61 35.92 29.60 18.20 17.50
Worst 3119.75 660.39 670.20 552.50 531.05

(c) (Winter, cyclic)

Reference Individ. MINLP Sol.
EA

short long
Best 1148.50 584.49 536.20 453.90 446.50

Median 1398.41 669.07 560.26 514.46 502.42
Std-dev. 200.27 40.16 26.83 23.19 21.34
Worst 2040.26 812.55 605.60 572.94 556.90

(d) (Winter, anti-cyclic)

Reference Individ. MINLP Sol.
EA

short long
Best 2628.17 404.35 505.40 381.17 379.07

Median 2878.74 473.98 529.20 433.47 427.19
Std-dev. 189.51 34.97 38.04 18.20 17.45
Worst 3480.72 634.92 587.30 538.42 531.92

7 Conclusions and Outlook

In this paper a modeling approach for commonly used household appliances
including electrical vehicles is presented. With the objective of reducing load
peaks and supporting the integration of fluctuating renewable energy resources
by the given external signals, an Evolutionary Algorithm is introduced to solve
the energy management problem for private households. For comparison, the EA
has been tested against the reference value and an exact optimization strategy.
The performance of the EA even exceeded the other two even in the short run.
Especially, the EA managed to gain a much lower standard deviation over all
results. This implies that the results gained by the EA are much more stable.

To extend the current scenario there are further appliances that could be
added. Analogously to the air conditioning a fridge and a deep freezer could be
appended. It has been observed that the fridge in the smart home has an average
of 32 starts per day, even more than the already implemented air conditioning.
This would double the number of jobs used in the evaluation and it is likely
that this leads to an increasing advance for the EA. Moreover, a combined heat
and power plant should be considered. This again makes it necessary to consider
thermal components. That makes it possible to simultaneously examine electrical
and thermal energy. Besides the combined heat and power plant, there are also
other appliances that are able to produce electrical energy. In the smart home,
these are for example the photovoltaic panels and the electrical vehicle which is
also able to feed back electrical energy into the energy grid or the smart home.

Besides extending the test set, the algorithm should be implemented in a real
world scenario. Therefore, the simulation environment in the smart home can
be easily exchanged with the real smart home [2]. In this way, the results gained
by the simulation presented above could be verified by using real appliances
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and time restrictions. As a future work, we plan to consider the multi-objective
version of the electrical load management problem. It would be interesting to see
trade-offs that occur due to the violation of the load curve. Another interesting
idea would be to smoothen the load profiles and use exact algorithms [4,7,5].
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Abstract. Landscape theory provides a formal framework in which com-
binatorial optimization problems can be theoretically characterized as a
sum of a special kind of landscapes called elementary landscapes. The
decomposition of the objective function of a problem into its elementary
components can be exploited to compute summary statistics. We present
closed-form expressions for the fitness-distance correlation (FDC) based
on the elementary landscape decomposition of the problems defined over
binary strings in which the objective function has one global optimum.
We present some theoretical results that raise some doubts on using FDC
as a measure of problem difficulty.

Keywords: Landscape theory, fitness landscapes, fitness-distance cor-
relation.

1 Introduction

The theory of landscapes focuses on the analysis of the structure of the search
space that is induced by the combined influences of the objective function of
the optimization problem and the neighborhood operator [16]. In the field of
combinatorial optimization, this theory has been previously used to characterize
optimization problems [8], improve search algorithms [12], and obtain global
statistics of the problems [20].

A landscape for a combinatorial optimization problem (COP) is a triple
(X,N, f), where X is the set of tentative solutions of the COP, f : X �→ R
defines the objective or fitness function and N is the neighborhood operator.
There exists a special kind of landscapes, called elementary landscapes (EL),
which are of particular interest due to their properties [22]. We define and ana-
lyze the elementary landscapes in Section 2, but we can advance that they are
characterized by the Grover’s wave equation:

avg{f(y)}
y∈N(x)

=
1

d

∑
y∈N(x)

f(y) = f(x) +
λ

d

(
f̄ − f(x)

)
, (1)
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where d is the size of the neighborhood, |N(x)|, which we assume is the same
for all the solutions in the search space, f̄ is the average solution evaluation over
the entire search space and λ is a characteristic constant. For a given problem
instance whose objective function is elementary, the values f̄ and λ can be easily
computed in an efficient way, usually from the problem data. Thus, the wave
equation makes it possible to compute the average value of the fitness function
f evaluated over all of the neighbors of x using only the value f(x), without
actually evaluating any of the neighbors.

When the landscape is not elementary it is always possible to write the objec-
tive function as a sum of elementary components, called elementary landscape
decomposition (ELD) of a problem [6]. In the case of binary strings with length
n under the one-change neighborhood, the number of elementary components
is at most n. Then, Grover’s wave equation can be applied to each elementary
component and all the results are summed to give the average fitness in the
neighborhood of a solution. Furthermore, for some problems the average can-
not be limited to the neighborhood of a solution, but it can be extended to the
second-order neighrbors (neighbors of neighbors), third-order neighbors, and, in
general, to any arbitrary region around a given solution, including the whole
search space. Sutton et al. [19] show how to compute the averages over spheres
and balls of arbitrary radius around a given solution in polynomial time using
the elementary landscape decomposition of pseudoboolean functions.

Landscape theory has been proven to be quite effective computing summary
statistics of the optimization problem. Measures like the autocorrelation length
and the autocorrelation coefficient can be efficiently computed using the ELD
of a problem [8]. Recently, Chicano and Alba [5] and Sutton and Whitley [18]
have shown how the expected value of the fitness of a mutated individual can
be exactly computed using the ELD. In short, landscape theory can be applied
to any COP and thus is generally beneficial for the whole community in discrete
optimization, representing a general and usable formalism in practice.

The main contribution of the present work is an exact expression for the
Fitness-Distance Correlation (FDC) of COPs defined over a set of binary strings
(pseudoboolean functions) having one global optimum. This expression is based
on the ELD of the problem. We also analyze the expression in order to dicuss
the usefulness of the FDC as a difficulty measure for a problem.

The remainder of the paper is organized as follows. In Section 2 we present
the mathematical tools required to understand the rest of the paper. Section 3
presents the exact expression for the FDC and other theoretical results, while
Section 4 validates FDC in practice with this theoretical background. Finally,
we summarize our findings and future work in Section 5.

2 Background

In this section we present some fundamental results of landscape theory. We will
only focus on the relevant information required to understand the rest of the
paper. The interested reader can deepen on this topic in [15].
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Let (X,N, f) be a landscape, where X is a finite set of candidate solutions,
f : X → R is a real-valued function defined on X and N : X → 2X is the
neighborhood operator. The pair (X,N) is called configuration space and induces
a graph in which X is the set of nodes and an arc between (x, y) exists if
y ∈ N(x). The adjacency and degree matrices of the neighborhood N are:

Axy =

{
1 if y ∈ N(x),
0 otherwise;

Dxy =

{ |N(x)| if x = y,
0 otherwise.

(2)

We restrict our attention to regular neighborhoods, where |N(x)| = d > 0 for
a constant d, for all x ∈ X . Then, the degree matrix is D = dI, where I is
the identity matrix. The Laplacian matrix Δ associated to the neighborhood is
defined by Δ = A −D. In the case of regular neighborhoods it is Δ = A − dI.
Any discrete function, f , defined over the set of candidate solutions can be
characterized as a vector in R|X|. Any |X | × |X | matrix can be interpreted as a
linear map that acts on vectors in R|X|. For example, the adjacency matrix A
acts on function f as follows

A f =

⎛⎜⎜⎜⎝
∑

y∈N(x1)
f(y)∑

y∈N(x2)
f(y)

...∑
y∈N(x|X|) f(y)

⎞⎟⎟⎟⎠ , (A f)(x) =
∑

y∈N(x)

f(y). (3)

Thus, the component x of (A f) is the sum of the function values of all the
neighbors of x. Stadler defines the class of elementary landscapes where the
function f is an eigenvector (or eigenfunction) of the Laplacian up to an additive
constant [16].

Definition 1. Let (X,N, f) be a landscape and Δ the Laplacian matrix of the
configuration space. The landscape is said to be elementary if there exists a con-
stant b, which we call offset, and an eigenvalue λ of −Δ such that (−Δ)(f−b) =
λ(f − b). When the neighborhood is clear from the context we also say that f is
elementary.

We use −Δ instead of Δ in the definition to avoid negative eigenvalues, since Δ
is negative semidefinite. In connected neighborhoods, where the graph related
to the configuration space (X,N) is connected, the offset b is the average value
of the function over the whole search space: b = f̄ . Taking into account basic
results of linear algebra, it can be proved that if f is elementary with eigenvalue
λ, af + b is also elementary with the same eigenvalue λ. Furthermore, in regular
neighborhoods, if g is an eigenfunction of −Δ with eigenvalue λ then g is also
an eigenfunction of A, the adjacency matrix, with eigenvalue d−λ. The average
value of the fitness function in the neighborhood of a solution can be computed
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using the expression avg{f(y)}y∈N(x) =
1
d (A f)(x). If f is an elementary function

with eigenvalue λ, then the average is computed as:

avg{f(y)}
y∈N(x)

= avg
y∈N(x)

{f(y)− f̄}+ f̄ =
1

d
(A (f − f̄))(x) + f̄

=
d− λ

d
(f(x) − f̄) + f̄ = f(x) +

λ

d
(f̄ − f(x)),

and we get Grover’s wave equation. In the previous expression we used the fact
that f − f̄ is an eigenfunction of A with eigenvalue d− λ.

The previous definitions are general concepts of landscape theory. Let us fo-
cus now on the binary strings with the one-change neighborhood, which is the
representation and the neighborhood we use in the next section to compute the
fitness-distance correlation. In this case the solution set X is the set of all binary
strings of size n. Two solutions x and y are neighboring if one can be obtained
from the other by flipping a bit, that is, if the Hamming distance between the
solutions, denoted with H(x, y), is 1.

One relevant set of eigenvectors of the Laplacian in the binary representation
is that of Walsh functions (4). Furthermore, the Walsh functions form an or-
thogonal basis of eigenvectors in the configuration space. Thus, they have been
used to find the elementary landscape decomposition of problems with a binary
representation like the MAXSAT [14]. Given the space of binary strings of length
n, Bn, a (non-normalized) Walsh function with parameter w ∈ Bn is defined as:

ψw(x) =

n∏
i=1

(−1)wixi = (−1)
∑n

i=1 wixi . (4)

Two useful properties of Walsh functions are ψw · ψv = ψw+v where w + v is
the bitwise sum in Z2 of w and v; and ψ2

w = ψw · ψw = ψ2w = ψ0 = 1. We
define the order of a Walsh function ψw as the value 〈w|w〉 =

∑n
i=1 wi, that

is, the number of ones in w. A Walsh function with order p is elementary with
eigenvalue λ = 2p [16]. The average value of a Walsh function of order p > 0 is
zero, that is, ψw = 0 if w has at least one 1. The only Walsh function of order
p = 0 is ψ0 = 1, which is a constant.

Since the Walsh functions form an orthogonal basis of R2n , any arbitrary
pseudoboolean function can be written as a weighted sum of Walsh functions
in the following way: f =

∑
w∈Bn awψw , where the values aw are called Walsh

coefficients. We can group together the Walsh functions having the same or-
der to find the elementary landscape decomposition of the function. That is:
f[p] =

∑
w∈Bn

〈w|w〉=p
awψw, where each f[p] is an eigenvector of the Laplacian with

eigenvalue 2p, also called order-p elementary component of f . The function f can
be written as a sum of the n+1 elementary components, that is: f =

∑n
p=0 f[p].

We define the sphere of radius k around a solution x as the set of all solutions
lying at Hamming distance k from x [19]. In analogy to the adjacency matrix we

define the sphere matrices of radius k as S
(k)
xy = 1 if H(x, y) = k and S

(k)
xy = 0

otherwise.
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The sphere matrix of radius one is the adjacency matrix of the one-change
neighborhood, A, and the sphere matrix of radius zero is the identity matrix,
I. Each sphere matrix S(k) can be written as a polynomial in A (the adjacency
matrix) [5]. Then, each eigenvector of A is an eigenvector of S(k), with a dif-
ferent eigenvalue. As a consequence, the eigenvectors of the Laplacian matrix Δ
are eigenvectors of the sphere matrices S(k). Furthermore, an order-p function
(having eigenvalue 2p for −Δ) is eigenvector of the sphere matrix S(k) with eigen-

value K(n)
k,p , which is the (k, p) element of the n-th Krawtchouk matrix (see [19]

for details). Krawtchouk matrices can be defined with the equation:

K(n)
k,p =

n∑
l=0

(−1)l
(
n− p
k − l

)(
p
l

)
, (5)

where n ≥ 0, 0 ≤ k, p ≤ n and we consider that

(
a
b

)
= 0 when b < 0 or b > a.

The interested reader can deepen on Krawtchouk matrices in [7], here we
only highlight their properties relevant to our mathematical derivations. One
important property of the Krawtchouk matrices is:

(1 + x)n−p(1− x)p =

n∑
k=0

xkK(n)
k,p . (6)

Proposition 1. The following identity for the Krawtchouk matrices holds:

n∑
k=0

kK(n)
k,p =

⎧⎨⎩n2n−1 if p = 0,
−2n−1 if p = 1,
0 if p > 1.

(7)

Proof. Taking the derivative of the two sides of (6) we have:

(n− p)(1 + x)n−p−1(1− x)p − p(1 + x)n−p(1− x)p−1 =

n∑
k=1

xk−1kK(n)
k,p . (8)

If we set x = 1, the right hand side is the left hand side of (7). In the left hand
side of (8) we can distinguish three cases:

– Case p = 0: the derivative polynomial evaluated in x = 1 is n2n−1.
– Case p = 1: the derivative polynomial evaluated in x = 1 is −2n−1.
– Case p > 1: the derivative polynomial evaluated in x = 1 is 0.

��
Each component f[p] of the elementary landscape decomposition of f is an eigen-

vector of the sphere matrix of radius k with eigenvalue K(n)
k,p . Thus, we can com-

pute the sum of the fitness value in a sphere of radius k around x as:∑
y∈Bn

H(x,y)=k

f(y) =

n∑
p=0

K(n)
k,pf[p](x) (9)
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3 Fitness-Distance Correlation

The Fitness-Distance Correlation (FDC) is a measure introduced by Jones and
Forrest [10] to measure problem difficulty. Given all the solutions in the search
space, it computes the correlation coefficient between the fitness values of these
solutions and the Hamming distances of the solutions to their nearest global
optimum.

Definition 2. Given a function f : Bn �→ R the fitness-distance correlation for
f is defined as

r =
Covfd
σfσd

, (10)

where Covfd is the covariance of the fitness values and the distances of the
solutions to their nearest global optimum, σf is the standard deviation of the
fitness values in the search space and σd is the standard deviation of the distances
to the nearest global optimum in the search space. Formally:

Covfd =
1

2n

∑
x∈Bn

(f(x) − f)(d(x) − d),

f =
1

2n

∑
x∈Bn

f(x), σf =

√
1

2n

∑
x∈Bn

(f(x)− f)2,

d =
1

2n

∑
x∈Bn

d(x), σd =

√
1

2n

∑
x∈Bn

(d(x) − d)2, (11)

where the function d(x) is the Hamming distance between x and its nearest global
optimum.

The FDC r is a value between −1 and 1. The lower the absolute value of r, the
more difficult the optimization problem is supposed to be. The exact compu-
tation of the FDC using the previous definition requires the evaluation of the
complete search space. It is required to determine the global optima to define
d(x) and compute the statistics for d and f . If the objective function f is a
constant function, then the FDC is not well-defined, since σf = 0.

In the following we will focus on the case in which there exists one only global
optimum x∗ and we know the elementary landscape decomposition of f . The
following lemma provides an expression for d and σd in this case.

Lemma 1. Given an optimization problem defined over Bn, if there is only one
global optimum x∗, then the distance function d(x) defined in Definition 2 is the
Hamming distance between x and x∗ and its average and standard deviation in
the whole search space are given by

d =
n

2
, σd =

√
n

2
. (12)
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Proof. Since there is only one global optimum, the function d(x) is defined as
d(x) = H(x, x∗). Given an integer number 0 ≤ k ≤ n, the number of solutions

at distance k from x∗ is

(
n
k

)
. Then we can compute the two first raw moments

of d(x) over the search space as:

α1 = d =
1

2n

n∑
k=0

(
n
k

)
k =

n2n−1

2n
=

n

2
,

α2 = d2 =
1

2n

n∑
k=0

(
n
k

)
k2 =

n(n+ 1)2n−2

2n
=

n(n+ 1)

4
.

Using these moments we can compute the standard deviation as
√
α2 − α2

1,
which yields:

σd =

√
n(n+ 1)

4
− n2

4
=

√
n

4
=

√
n

2
. (13)

��
Now we are ready to prove the main result of this work.

Theorem 1. Let f be an objective function whose elementary landscape decom-
position is f =

∑n
p=0 f[p], where f[0] is the constant function f[0](x) = f and

each f[p] with p > 0 is an order-p elementary function with zero offset. If there
exists only one global optimum in the search space x∗, the FDC can be exactly
computed as:

r =
−f[1](x

∗)
σf

√
n

. (14)

Proof. Let us expand the covariance as

Covfd =
1

2n

∑
x∈Bn

f(x)d(x) − f d =
1

2n

n∑
k=0

k
∑
x∈Bn

H(x,x∗)=k

f(x)− f
n

2

=
1

2n

n∑
k=0

k
∑
x∈Bn

H(x,x∗)=k

n∑
p=0

f[p](x)− f[0]
n

2
=

1

2n

n∑
k=0

k

n∑
p=0

K(n)
k,pf[p](x

∗)− f[0]
n

2

=

n∑
p=0

(
1

2n

n∑
k=0

kK(n)
k,p

)
f[p](x

∗)− f[0]
n

2
=

n

2
f[0] − 1

2
f[1](x

∗)− f[0]
n

2

= −1

2
f[1](x

∗), (15)

where we used the result in Proposition 1. Substituting in (10) we obtain (14).
��

The previous theorem shows that the only thing we need to know on the global
optimum is the value of the first elementary component. With this information
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we can exactly compute the FDC. Some problems for which we know the ele-
mentary landscape decomposition based on the numerial data defining a problem
instance are MAX-SAT, 0-1 Unconstrained Quadratic Optimization (UQO), the
Subset Sum problem (SS), the NK-landscapes, etc. For all of them we could
provide expressions for their FDC.

The result of the previous theorem starts an interesting discussion. Some
works on landscape analysis claim that the ruggedness of a landscape is related to
its hardness [2]. The autocorrelation coefficient ξ and the autocorrelation length
� of a problem are two measures of the ruggedness of the problem proposed
to characterize an objective function in a way that allows one to estimate the
performance of a local search method: the lower their value the higher their
ruggedness. Angel and Zissimopoulos [1] have studied the relationship between
the performance of a local search and the autocorrelation coefficient. Also a rela-
tionship has been noticed between the autocorrelation length and the expected
number of local optima of a problem [8]. Furthermore, the autocorrelation length
conjecture [17] claims that the higher the value of ξ and �, the lower the number
of local optima and, as a consequence, the better could be the performance of
a local search method. In summary, empirical and theoretical results support
the hypothesis that a rugged landscape is more difficult than a problem with a
smooth landscape.

In the case of the elementary functions defined over binary strings, the func-
tions with higher order are more rugged than the ones with lower order. The
order-1 elementary landscapes are the smoothest landscapes and, in fact, they
can always be solved in polynomial time. Following this chain of reasoning, in
a general landscape, the elementary components with order p > 1 are the ones
that make the problem difficult. However, from Theorem 1 we observe that only
the order-1 elementary component of a function f is taken into account in the
computation of the FDC. This fact poses some doubts on the value of the FDC
as a measure of difficulty of a problem, since FDC is shown to neglect the rest
of information captured in the higher order components. This is true under the
assumption that one single global optimum exists in the search space. We defer
to future work the analysis of the general case. The doubts on FDC as being
a difficulty indicator have also been raised by other authors. Two examples are
the work by Tomassini et al. [21] focused on genetic programming and the one
by Bierwirth et al. [3] based on the Job Shop Scheduling.

3.1 Fitness-Distance Correlation for Elementary Landscapes

If the objective function is elementary, then the expression of the exact FDC is
specially simple, as the following corollary proves.

Corollary 1. Let f be an elementary function of order p > 0 with one only
global optimum x∗, then the fitness-distance correlation can be exactly computed
using the following expression:

r =

{
f−f(x∗)
σf

√
n

if p = 1

0 if p > 1
(16)
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Proof. An elementary function f(x) of order p > 0 can always be written as the
sum of the two eigenvectors of the adjacency matrix: f(x) = f[0] + f[p](x) where

f[0] = f . Applying the result of Theorem 1 we obtain (16). ��
The previous corollary states that only elementary landscapes with order p = 1
have a nonzero FDC. Furthermore, the FDC does depend on the value of the
objective function in the global optimum f(x∗) and the average value f , but not
on the solution x∗ itself. We can also observe that if we are maximizing, then
f(x∗) > f and the FDC is negative, while if we are minimizing f(x∗) < f and
the FDC is positive.

Interestingly, the order-1 elementary landscapes can always be written as
linear functions and they can be optimized in polynomial time. That is, if f
is an order-1 elementary function then it can be written in the following way:

f(x) =

n∑
i=1

aixi + b. (17)

where ai and b are real values. The following proposition provides the average
and the standard deviation for this family of functions.

Proposition 2. Let f be an order-1 elementary function, which can be written
as (17). Then, the average and the standard deviation of the function values in
the whole search space are:

f = b+
1

2

n∑
i=1

ai, σf =
1

2

√√√√ n∑
i=1

a2i . (18)

Proof. Using the linearity property of the average we can write: f =
∑n

i=1 aixi+
b, and f in (18) follows from the fact that xi = 1/2. Now we can compute the
variance of f as:

V ar[f ] = (f(x) − f)2 =

(
n∑

i=1

aixi − 1

2

n∑
i=1

ai

)2

=

(
n∑

i=1

ai

(
xi − 1

2

))2

=
n∑

i,j=1

aiaj

(
xi − 1

2

)(
xj − 1

2

)
=

n∑
i,j=1

aiaj

(
xixj − 1

2
xi − 1

2
xj +

1

4

)

=

n∑
i,j=1

aiaj

(
xixj − 1

4

)
=

n∑
i,j=1

aiaj

(
δji

1

4
+

1

4
− 1

4

)
=

1

4

n∑
i=1

a2i , (19)

where we used again xi = xj = 1/2 and xixj = 1/4(δji + 1), being δji the
Kronecker delta. The expression for σf in (18) follows from (19). ��
Using Proposition 2 we can compute the FDC for the order-1 elementary land-
scapes.
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Proposition 3. Let f be an order-1 elementary function written as (17) such
that all ai �= 0. Then, it has one only global optimum and its FDC (assuming
maximization) is:

r =
−∑n

i=1 |ai|√
n
∑n

i=1 a
2
i

, (20)

which is always in the interval −1 ≤ r < 0.

Proof. The global optimum x∗ has 1 in all the positions i such that ai > 0 and
the maximum fitness value is:

f(x∗) = b +

n∑
i=1
ai>0

ai. (21)

Using Proposition 2 we can write:

f − f(x∗) =

(
b+

1

2

n∑
i=1

ai

)
−

⎛⎜⎝b+ n∑
i=1
ai>0

ai

⎞⎟⎠ = −1

2

n∑
i=1

|ai|. (22)

Replacing the previous expression and σf in (16) we prove the claimed result.
��

When all the values of ai are the same, the FDC computed with (20) is −1.
This happens in particular for the Onemax problem. But if there exist different
values for ai, then we can reach any arbitrary value in [−1, 0) for r. The following
theorem provides a way to do it.

Theorem 2. Let ρ be an arbitrary real value in the interval [−1, 0), then any
linear function f(x) given by (17) where n > 1/ρ2, a2 = a3 = . . . = an = 1 and
a1 is

a1 =
(n− 1) + n|ρ|√(1− ρ2)(n− 1)

nρ2 − 1
(23)

has exactly FDC r = ρ.

Proof. The expression for a1 is well-defined since nρ2 > 1. Replacing all the ai
in (20) we get r = ρ. ��
Theorem 2 provides a solid argument against the use of FDC as a measure of the
difficulty of a problem. In effect, we can always build an optimization problem
based on a linear function, which can be solved in polynomial time, with an FDC
as near as desired to 0 (but not zero), that is, as “difficult” as desired according
to the FDC. However, we have to highlight here that for a given FDC value ρ
we need at least n > 1/ρ2 variables. Thus, an FDC nearer to 0 requires more
variables.
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4 FDC, Autocorrelation Length and Local Optima

The autocorrelation length � [8] has also been used as a measure of the difficulty
of a problem. Chicano and Alba [4] found a negative correlation between � and
the number of local optima in the 0-1 Unconstrained Quadratic Optimization
problem (0-1 UQO), an NP-hard problem [9]. Kinnear [11] also studied the
use of the autocorrelation measures as problem difficulty, but the results were
inconclusive. In this section we investigate which of the two measures, � or the
absolute value of FDC, is more correlated to the number of local optima for some
random instances of the 0-1 UQO. In particular, we have randomly generated
1650 UQO instances using the Palubeckis instance generator [13]. The size of
the instances varies between n = 10 and n = 20 and the density (percentage of
nonzero elements in the coefficients matrix) varies from 10 to 90 in steps of 20. For
each n and density, 30 random instances were generated by randomly selecting
the nonzero elements of the coefficients matrix from the interval [−100, 100]. For
all the instances we computed the autocorrelation length �, the absolute value of
the FDC |r| and the number of local optima (minima) by complete enumeration
of the search space. In Table 1 we show the Spearman rank correlation coefficient
between the number of local optima and � and |r|. The correlations are computed
using all the instances with the same size n.

Table 1. Spearman correlation coefficient for the number of local optima against the
autocorrelation length (�) and the absolute value of the FDC (|r|).

n 10 11 12 13 14 15

� −0.5467 −0.5545 −0.5896 −0.4796 −0.4725 −0.5511
|r| −0.1407 −0.1843 −0.0787 −0.1203 −0.1944 −0.0538

n 16 17 18 19 20

� −0.4959 −0.5740 −0.5872 −0.5249 −0.4829
|r| −0.1251 −0.1791 −0.1339 −0.3310 −0.0338

We can observe a high inverse correlation (around −0.5) between the number
of local optima and the autocorrelation length, supporting the autocorrelation
length conjecture. However, the correlation between the number of local optima
and FDC is low, again supporting the hypothesis that FDC is not an appropriate
measure of the difficulty of a problem (this time, from an experimental point of
view).

5 Conclusion

We have applied landscape theory to exactly compute the Fitness-Distance
Correlation of combinatorial optimization problems defined over sets of binary
strings. The result is valid in the case in which one single global optimum exists
in the landscape. We defer to future work the analysis of the general case.
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The expression for the FDC takes only into account the order-1 elementary
component of the objective function, while previous work suggests that the com-
ponents making a problem difficult are the higher order elementary components.
This fact questions the use of FDC as a measure of difficulty of the problem.
We prove that there exist polynomial time solvable problems with an FDC ar-
bitrarily near to zero. An experimental study over random instances of the 0-1
UQO shows a low correlation between FDC and the number of local optima,
supporting the hypothesis that FDC fails to capture the problem difficulty.

References

1. Angel, E., Zissimopoulos, V.: On the landscape ruggedness of the quadratic assign-
ment problem. Theoretical Computer Science 263, 159–172 (2000)

2. Barnes, J.W., Dimova, B., Dokov, S.P.: The theory of elementary landscapes. Ap-
plied Mathematics Letters 16, 337–343 (2003)

3. Bierwirth, C., Mattfeld, D., Watson, J.P.: Landscape Regularity and Random
Walks for the Job-Shop Scheduling Problem. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)

4. Chicano, F., Alba, E.: Elementary landscape decomposition of the 0-1 uncon-
strained quadratic optimization. Journal of Heuristics (10.1007/s10732-011-9170-6)

5. Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip
mutation using landscapes theory. In: GECCO, pp. 2027–2034 (2011)

6. Chicano, F., Whitley, L.D., Alba, E.: A methodology to find the elementary land-
scape decomposition of combinatorial optimization problems. Evolutionary Com-
putation 19(4), 597–637 (2011)

7. Feinsilver, P., Kocik, J.: Krawtchouk polynomials and krawtchouk matrices. In:
Recent Advances in Applied Probability, pp. 115–141. Springer, US (2005)
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Abstract. This paper heuristically tackles a challenging scheduling problem aris-
ing in the field of hydraulic distribution systems in case of a contamination event,
that is, optimizing the scheduling of a set of tasks so that the consumed volume
of contaminated water is minimized. Each task consists of manually activating a
given device, located on the hydraulic network of the water distribution system.
In practice, once contamination has been detected, a given number of response
teams move along the network to operate each device on site. The consumed vol-
ume of contaminated water depends on the time at which each device is operated,
according to complex hydraulic laws, so that the value associated to each schedule
must be evaluated by a hydraulic simulation.

We explore the potentials of Genetic Algorithms as a viable tool for tackling
this optimization-simulation problem. We compare different encodings and pro-
pose ad hoc crossover operators that exploit the combinatorial structure of the
feasible region, featuring hybridization with Mixed Integer Linear Programming.

Computational results are provided for a real life hydraulic network of average
size, showing the effectiveness of the approach. Indeed, we greatly improve upon
common sense inspired solutions which are commonly adopted in practice.

Keywords: Hybrid Genetic Algorithms, Simulation-Optimization, Scheduling.

1 Problem Description

The geo-political scenario arising from 9/11 has spurred research concerning infrastruc-
tures protection policies and recovery procedures from intentionally induced service
disruptions, e.g., because of a terrorist attack. Water distribution systems are among
the most vulnerable infrastructures, due to the distributed physical layout of their net-
works, and to how critical is the commodity they supply: drinking water. People rely on
water quality for a number of crucial activities, such as cooking, washing and bathing
in private households, while clear water is essential in operating restaurants, hospi-
tals, and some manufacturing. Adding deadly contaminant into a hydraulic network
can rapidly cause huge damage in terms of human losses, since contaminant quickly
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spreads through the network and is consumed by the users. In this framework, monitor-
ing and promptly recovering is more viable than securing the whole water distribution
system, which often has a vast planimetric extent, e.g., a small city network may reach
200km and a thousand of pipes and nodes. The common policy followed in the deploy-
ment of contamination warning systems consists of installing several sensors along the
network, strategically located according to optimization procedures [10], and period-
ically checking water quality. As soon as a sensor has detected a contaminant, an ad
hoc recovery procedure is started, in order to mitigate the impact on the population.
Besides population alerting, two kinds of operations can be performed on network de-
vices: opening hydrants in order to expel contaminated water, and isolating pipes by
closing their isolation valves in order to prevent contaminated water to flow toward
densely populated areas. The objective is to minimize the impact on the population,
usually measured as the volume of contaminated water consumed by the users dur-
ing a given period after contamination. This value, which heavily depends on devices
activation times, can neither be computed nor approximated by simple analytical cal-
culus, whereas it can be simulated. A simulator such as EPANET [11] takes as input
the network configuration, the open/closed status of devices, and the time at which each
device is operated, and returns the volume of consumed contaminated water. For real
world networks, each simulation may take various seconds of computing time on a
modern computer, (5′′ for a network of about 800 nodes and 1100 main pipes) so that
the total number of simulations cannot exceed some threshold to be practically usable,
even in an off line procedure such as ours. In most networks, devices can only be oper-
ated manually, so teams of workers are dispatched on the network to open hydrants and
close valves on site. This introduces significant delays and forbids to operate a large
number of devices. The hydraulic engineering literature provides several approaches to
select the most suitable subset of devices, given the location of the first alerted sensor:
both [1] and [8] propose a multi-objective approach minimizing the number n of oper-
ated devices as well as the impact on the population. However, the next major decision
concerning the actual schedule of devices activations has never been fully addressed.
Indeed, [1] supposes to activate all the selected devices instantaneously and simulta-
neously, while [8] builds a schedule heuristically according to common sense criteria.
However, there is no assurance that this approach gives a (near) optimum scheduling,
i.e., a scheduling that minimizes the volume of consumed contaminated water.

This problem has some similarities with the multiple Traveling Salesman Problem
(mTSP), where m salesmen visit the nodes of a graph minimizing total traveled dis-
tance. However, while the mTSP objective function is easily computed, being the sum
of traveled distances, ours requires an expensive simulation. Moreover, while mTSP’s
good quality solutions tend to visit the nodes as soon as possible, in our problem, the
early closure of a valve may divert contaminant towards high consumption/demand ar-
eas, so that a delay in the schedule sometimes improves the objective function value.

In this work, that extends [2], we propose a genetic algorithm that addresses explic-
itly the problem of assigning devices to teams (for a given number m of teams) and
scheduling the teams operations, in order to minimize the volume of contaminated wa-
ter consumed by the users. Let us call this problem Response to Contamination Problem
(RCP). The genetic algorithm is coupled with a hydraulic simulator, that computes the
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objective function. We implemented three different chromosome representations and
corresponding genetic operators. One representation is original and it is built on the
mathematical models developed for the mT SP and for vehicle routing problems (VRP)
[12], while the other two come from the literature on the mT SP, namely the Two Chro-
mosome and the Two Part representations [5]. The latter has been extended to insert
pauses in the schedules while the new one encompasses pauses naturally. We experi-
mentally compare all these representations on the real instance of a medium sized city.

2 Genetic Algorithms for the Scheduling of Operations

Defining a Genetic Algorithm (GA) basically amounts to define the structure of chro-
mosomes, the selection operator, the recombination operators (crossover and mutation),
besides fitness measures and termination conditions. In RCP, the evaluation of an indi-
vidual fitness requires a long hydraulic simulation, so the main obstacle to obtaining
good solutions is limited computing time. Therefore, our termination condition is a
fixed number of invocations to the hydraulic simulator. Since each call is expensive, we
store the input/output data of each call in a sort of caching mechanism with respect to
a unique coding of the solution, the activation times vector tF . If the objective func-
tion has been invoked before with the same arguments, its value is not re-computed
but retrieved from the cache. Thus, the number of invocations is not proportional to the
number of generations. Other features common to all the GA families further introduced
are: a classical roulette wheel procedure for parent selection, an elitist generational re-
placement scheme, mutation of clones, and random generation of the initial population.

2.1 A Genetic Algorithm Based on Sequences

As mentioned, RCP shares the feasibility structure of an mTSP defined on a graph
where the mobilization point corresponds to the depot d and each client node to one of
the n devices to operate. Then we can borrow from the encodings used for the mT SP.
One of the first TSP encodings representing the sequence of the visited nodes in a vector
extends to the case of m teams by adding a second row, the team identifiers.

3 4 1 2 8 5 7 6
1 2 1 3 2 3 2 2

(1)

In the chromosome shown in (1), team number 1 visits nodes 3 and 1 (in this order);
team 2 visits 4, 8, 7, and 6, while team 3 visits 2 and 5. This representation is named two
chromosome technique, we call the related GA 2C, and the size of its solution space is
n!mn [5]. This encoding, as all those based on permutations, is affected by redundancy
which slows down GA’s convergence. In fact, the first row of the 2C encoding describes
a total order on the nodes but it gets decoded into a partial order, which is total only
within each route. So, any total order complying with this partial order yields the same
activation sequence. So far with the cons. Regarding the pros, this encoding supports
simple crossover operators, thanks to the representation into a linear data structure. For
example, one can use the one-point ordered crossover [7]. Given two parents, f and m,
for each integer i in the interval [1,n] two offsprings are generated as follows: the first
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child inherits the first i columns from f and fills the other columns with the remaining
elements taken from m in that order. In the example depicted in (2), i is equal to 4 so the
first 4 columns of the child are inherited from f , while the remaining devices, namely
7, 3, 8, and 5, are taken from m in such order, together with the team information.

f =
6 4 1 2 8 5 7 3
1 2 1 3 2 1 2 2

m =
2 7 3 8 4 6 1 5
2 1 3 3 1 2 1 2

⇒ 6 4 1 2
1 2 1 3︸ ︷︷ ︸

f

7 3 8 5
1 3 3 2︸ ︷︷ ︸

m

(2)

The idea behind this operator is the following. The aim of a good crossover operator is
having offspring inherit those features that made its ancestors successful. We have no
information about what influences the value of our objective function, lacking a simple
analytic formulation: we can only make reasonable assumptions. A possible assump-
tion is that the sequence of activations could influence such value. So, if a sequence
is successful, keeping parts of this sequence could make the offspring successful as
well. Note that, using a single point crossover, the offspring always inherits the first i
elements from one of its parents. This is done on purpose, since devices operated as
first strongly influence contaminant spreading, and the first i elements of the sequence
are likely to determine which devices are operated first, at least for one team. Figure 1
shows the tree representation of the offspring in (2): in the child tree, the rooted subtree
in bold, Td , comes from f , while the routes of m, after the shrink due to the deletion of
the already selected nodes, are randomly appended to Td according to the team nam-
ing adopted in m. Symmetrically, the second child is generated by inheriting the first i
columns from m while the remaining devices are activated in the order and by the teams
as in f . Each solution (each tree) is associated with an equivalence class of individu-
als, each with a different chromosome representation, and this representation impacts
on the crossover results. In order to reduce this impact, before crossover we shuffle the
columns of each parent while preserving the partial order. In other words, we randomly
pick another representative for the same tree in the equivalence class. A further level of
redundancy comes from team names; by renaming teams we get different representa-
tions of the same solution. To deal with this symmetry, that may generate very different
offspring from very similar parents, we adopt a standard team naming approach: the
team operating device 1 takes name 1; the team that operates the device with smallest
identifier amongst the remaining devices takes name 2, and so on.

d
�� ��
6

1

5

4

8

7

3

2
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d
�� ��
7

4

1

2

6

5

3

8
=⇒

d
�� ��
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3

8

parent f parent m offspring

Fig. 1. An example of the tree representation of a crossover
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2.2 Two-Part Chromosome

In [5] a so called two-part chromosome is proposed, with lower redundancy with respect
to the other encodings so far proposed in the literature. The permutation part of the
chromosome, Cdev, made of n integers as usual, is followed by a second part, Cpart ,
being a string of m integers summing up to n. Its kth value tells how many elements are
part of the kth tour. For example, the same solution depicted in (1) would become (3).

2︷︸︸︷
3 1

4︷ ︸︸ ︷
4 8 7 6

2︷︸︸︷
2 5︸ ︷︷ ︸

Cdev

2 4 2︸ ︷︷ ︸
Cpart

(3)

This way, the size of the representation space is lowered to the order of n!
(n−1

m−1

)
. As in

[5], we adopt the above mentioned one-point ordered crossover for the first chromosome
part Cdev, and a single point asexual crossover (a random rotation) for the second one
Cpart . Both are closed with respect to this encoding and yield feasible solutions.

As already mentioned, in RCP introducing delays in the schedule may improve the
objective function value. To this purpose, a vector Cpause is added to the chromosome
assigning a pause to each device, ranging from 0 to an upper bound U . This can be
equivalently thought of as the teams moving at Variable Speed. For this reason the
related GA is named 2PVS, as opposed to the constant speed version called 2PCS. In case
of variable speed, also the third part Cpause is handled by one-point ordered crossover.

While this encoding has a lower redundancy if compared to traditional permutation
based encodings, redundancy can not be completely avoided. Indeed, redundancy is in-
herent into this kind of representation, since the encoding distinguishes among salesmen
in the representation space, while they are all identical in the solution space.

In 2CCS (i.e., the basic 2C), 2PCS and 2PVS GAs, we adopt the same mutation op-
erator, i.e., swapping two columns of the chromosome, applied randomly with given
probability. Such probability has a base value of 2%, it is increased of 1% in case of
no improvement for 3 consecutive generations, and reset to the base value in case of
improvement.

2.3 A Genetic Algorithm Based on Activation Times

The previous encodings support schedule feasibility since they encode mT SP solutions,
and any such solution identifies a feasible schedule. However, they do not allow to di-
rectly propagate the activation time of a device, that is, the basic piece of information
in our problem, which can not be transmitted unless the whole sequence is inherited. A
straightforward encoding, which emphasizes the scheduling information, encodes ac-
tivation times directly in the chromosome, with gene ith modeling activation time of
device i. Such encoding, being the direct representation of the solution, is redundancy
free. The absence of redundancy, however, goes to the detriment of feasibility, which is
no longer guaranteed and must be explicitly restored after crossover and mutation. In-
deed, a generic vector of activation times does not carry along with it any knowledge of
the tours followed in the graph, nor the number of teams, therefore there is no straight-
forward crossover operator which can preserve feasibility since the encoding itself lacks
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the necessary information. Consider for example the well known uniform crossover op-
erator (UX), which selects genes from the two parents based on a randomly generated
binary mask. A time-based GA based on UX may yield vectors spanning the whole
space Rn (the most obvious relaxation of the feasible region) but the returned solution
may not only be infeasible but also quite different from the closest feasible one. Thus,
restoring feasibility after the application of each genetic operator ensures that each indi-
vidual during the search represents a feasible scheduling, and only feasible schedulings
are allowed to reproduce (Algorithm 1). In the following, we introduce a Mixed In-
teger Linear Programming (MILP) model mapping any vector of activation times to
its closest feasible point. It will be used to restore feasibility at every step after the
UX crossover, and this approach will be denoted as UX with a posteriori feasibility re-
store (UXPF). Furthermore, we extend this idea and integrate the MILP model directly
within the genetic operator, giving raise to a second approach denoted as MILPX .

Algorithm 1. A genetic algorithm that restores feasibility through a MILP solver
Pop ←generate initial population;
while not(termination condition) do

for Npop/2 times do
Select a pair ( f ,m) of population individuals;
Temp1 ← Crossover(f,m);
Child1 ←call MILP solver(Temp1);
Temp2 ← Crossover(m,f);
Child2 ←call MILP solver(Temp2);
randomly apply mutation to individual I;
I ← call MILP solver(I);

Pop ←{Child1, ...,ChildN pop} ;

return best;

An Integer Programming Model to Restore Feasibility. Let t be a generic vector of
activation times. If t is not feasible, i.e., it cannot be obtained by any scheduling of the
teams, we propose to repair it by turning it into the feasible point tF closest to t by
norm L1. As an example, consider a small network with 4 devices plus the mobilization
point d, 2 teams and the following traveling time matrix τ:

τ =

⎛⎜⎜⎜⎜⎝

d 1 2 3 4

d − 1 1 1 1
1 1 − 1 3 1
2 1 1 − 4 7
3 1 3 4 − 3
4 1 1 7 3 −

⎞⎟⎟⎟⎟⎠
Vectors m = [1,1,4,8] and f = [2,5,1,1] model feasible schedules but the UX operator,
by using the binary mask [1,1,0,0], yields the infeasible child t = [1,1,1,1]; the restoring
procedure returns tF = [2,1,1,3] as the closest feasible vector, which is indeed at 3
units distance from t by L1.
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Several MILP models can be adopted to find tF , building on those developed for the
mT SP [4] and routing problems in general, among which the following 2-index flow-
based formulation [12]. The constraints extend the mT SP model with traveling times
information, the objective function minimizes the distance from t. The unknowns are:

X a matrix (n+ 1)× (n+ 1) of 0-1 variables. xi j = 1 iff j is activated right after i by
the same team; i is activated first by its team iff xdi = 1; xii = 0∀i (no self loop arcs).

tF a vector of n+ 1 activation times; tFi is the time at which device i is activated, and
tFd is the departure time from the depot d.

δ a vector of n differences: it is defined as δi = ti − tFi .

The input parameters are:

t a vector of n ideal activation times.
τ a matrix (n+ 1)× (n+ 1); τi j represents the time that a team takes to move at a

given constant speed from the location of device i to that of device j.

The constraints:

∀i ∈ {1..n} tFi ≥ τdi (4)

∀i ∈ {1..n} δi = ti − tFi (5)

tFd = 0 (6)

∑
i∈{1..n}

xdi = m (7)

∀i ∈ {1..n} ∑
j∈{1..n}∪d

xi j = ∑
h∈{1..n}∪d

xhi (8)

∀i ∈ {1..n} ∑
j∈{1..n}∪d

xi j = 1 (9)

∀i ∈ {1..n} tFi ≤ M+ xdi(τdi +U −M) (10)

∀i, j ∈ {1..n} tFi + τi j ≤ tFj +(1− xi j)M+ x ji(τi j + τ ji +U −M) (11)

Constraint (4) says that device i can be activated no earlier than the time it takes to reach
it from d. Eq. (5) is the definition of δ . Teams leave the depot at time 0 (6). All teams
depart from the depot (Eq. (7)). For each node i, the total number of teams arriving to i
is equal to the number of teams leaving i, (8), the so called flow balance constraints. All
nodes except d are visited exactly once (9). Constraint (10) is the linearization of the
implication xdi = 1 =⇒ tFi ≤ τdi +U (where M is a sufficiently large positive number
and U the upper bound for the potential pause before each activation), so that, together
with (4), it imposes that the starting time of the first devices be equal to their traveling
time from d plus a potential pause. Constraint (11) links the activation times tF to the
ordering between devices given by matrix X ; indeed, (11) linearises the implications:

xi j = 1 =⇒ tFi + τi j ≤ tFj xi j = 1 =⇒ tFi + τi j +U ≥ tFj .

If U = 0 then (11) imposes that the arrival time at device j equals the starting time from
i plus the traveling time from i to j, thus implementing the constant speed variant of the
time-based GA. Conversely, if U > 0 the same constraint allows for a maximum pause of
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U , thus implementing the variable speed variant of the algorithm. The objective function
associated to problem (4-11) is the minimization of ||δ ||1, i.e. min

(
∑i∈{1..n} |δi|

)
. To

linearise this function, we introduce new unknowns δ+ that represent the absolute value
of δ , and minimize their sum.

Tighter Integration GA-MILP. Restoring feasibility after crossover may yield chil-
dren quite different from their parents, since feasibility restoring could disrupt those
patterns responsible for parents’ fitness. For this reason, we moved the call to the MILP
solver inside the crossover operator, giving raise to a new operator that we call MILPX .
In this way, MILPX generates directly a new individual proven to be feasible and, at
the same time, resembling the most to its parents among all their feasible children.

More precisely, given the chromosomes of the mating individuals f ≡ ( f1, . . . , fn)
and m ≡ (m1, . . . ,mn), we generate the child c that minimizes the quantity

n

∑
i=1

min(|ci − fi|, |ci −mi|).

Stated otherwise, we can consider each chromosome as a point in a n-dimensional
space. The two chromosomes f and m of the mating individuals define a hyper-par-
allelepiped that has m and f as two verteces, and with sides parallel to the coordinate
axes (Figure 2). The MILP solver selects the feasible point in the n-space closest to
any vertex of the hyper-parallelepiped. In this way, if there exists a feasible point in the
n-space that inherits each coordinate from one of the two parents, it will be generated
(or, if there exist more points with such feature, one of them is definitely generated as
a spawn). Otherwise, the feasible point closest to one of such points is the spawned
individual. This is implemented by slightly modifying the MILP model (4-11), by in-
troducing a vector of unknowns W to range on the verteces of the hyper-parallelepiped;
wi = 1 iff the i-th coordinate of child c is inherited from f (i.e., ci = fi) and wi = 0
otherwise (if ci = mi). The definition (5) of the displacement δ becomes (12)

∀i ∈ {1..n} δi = fiwi +mi(1−wi)− tFi (12)

f

mδ

c

(f1, f2, m3)

Fig. 2. Graphic representation of the crossover in a 3D space. Crosses represent feasible points,
m and f are the mating individuals; c is the closest feasible point (at distance δ ) to a vertex of the
parallelepiped.
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Summing up, for the GA based on activation times, we propose two crossovers, UXPF
and MILPX , which can be used within the same algorithm, being invoked with different
probability, yielding the so called time-based Hybrid GAs. Finally, mutation is applied
when a generated offspring already belongs the current population (a clone), and con-
sists of swapping the activation time of two devices, restoring feasibility if necessary.

3 Computational Results

We applied the presented GAs to the water distribution network of Ferrara, Italy, pop-
ulation 130,000. A previous work on the same network [8], selected the set of devices
to be operated after contamination detection by way of a multi-criteria GA, targeting
both minimal number of devices and minimal volume of consumed contaminated wa-
ter, supposing to have as many teams as devices, all departing at the same time. From
the Pareto front provided in [8], a point associated with a good trade-off was selected,
yielding the n = 13 devices to be operated. Commonly, the response procedure starts
as soon as a sensor raises the alarm. As stated in [8], an alarm event detects a danger-
ous toxicity plausibly due to several contamination’s locations and times; in our case,
42 contamination scenarios exist which can be simulated and then optimized. Among
those, we selected the 5 the most equally spread w.r.t. to the objective function value
associated to the scheduling computed according to the as soon as possible criterion
(ASAP). This scheduling, in turn, is obtained by solving a MILP model for the mT SP
with constraints (4), (6-11), and U = 0, minimizing the maximum among the devices
activation times {tFi , i ∈ 1..n}, which is also called the makespan.

CBC COIN-OR [6] is the MILP Solver used to tackle the optimization problems in
the Hybrid GAs and to compute the makespan. The hydraulic simulations were per-
formed by EPANET [11], an open-source software developed by the U.S. Environmen-
tal Protection Agency (EPA). Each simulation requires on average about 5 seconds.
Since we use a cutoff of 500 invocations to the hydraulic simulator, the average com-
putational time of each GA is 5× 500 seconds. Other parameters are the population
size Npop = 20, and the team number m = 3 (a value set by the managers of the utility
company operating the Ferrara network). With these parameters, CBC running time is
negligible w.r.t. EPANET.

Overall, we ran 13 GAs. The first 10 belong to the time-based Hybrid GAs family
(section 2.3) and differ from each other regarding speed configuration, i.e. constant
speed (CS) and variable speed (VS), and the chance of using the MILPX method rather
than UXPF as the crossover operator at the current iteration. More specifically, we
tested five MILPX probability values, namely {0,25,50,75,100}%. The other three
GAs belong to the sequence-based family (section 2.1), namely, 2CCS, 2PCS, and 2PVS

GAs. For each scenario, we run each GA 10 times. Each GA at each run shares the same
initial population as the other GAs. Fig. 3 shows, for each GA in ascending order, the
average of the objective function values achieved in the 5× 10 runs.

All the time-based Hybrid GAs rank first, preceding all the sequence-based ones.
The last stack, at the far right of the histogram, represents the average cost of the five
solutions returned by the ASAP policy computed on the 5 chosen scenarios.
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Fig. 3. Average of all the optimal candidates for each GA configurations and of the A.S.A.P.
known solution

The histogram in Figure 3 allows us for several important considerations:

(a) the ASAP policy neither provides a lower bound for RCP nor a near-optimal solu-
tion, since its average volume of consumed contaminated water is much higher than any
proposed GAs.
(b) Time-based encodings find better solutions than those based on sequences; this is
probably due to the fact that the time-based Hybrid GAs work in the same solution space
of the hydraulic simulator.
(c) Constant speed encodings find better solutions than variable speed encodings; this
may be due to the fact that the search space of the variable speed encodings is quite
larger due to pauses. Nevertheless, all variable speed Hybrid GAs outperform the con-
stant speed sequence-based GAs.
(d) For both variable speed and constant speed, a mixed UXPF and MILPX policy for
the Hybrid GAs finds, on average, better solutions than totally unbalanced policies.

The histogram in Figure 3 shows that hybrid MILP-GAs based on a time representa-
tion have on average a better performance with respect to the encodings known in the
literature. However, in principle this result could be due to luck: indeed, we can only
experiment on a limited number of instances and all algorithms are based on some ran-
domness. For this reason there exists a probability that the new time-based algorithm
is worse than the others, despite of its better performance in the finite number of the
performed experiments. In order to disprove such conjecture, one should use a signifi-
cance test [3]. We apply it to the five algorithms described earlier, namely the HCS, HVS,
2CCS, 2PCS and 2PVS. For the first two, we selected the best configuration with respect
to the percentage of the two crossovers, i.e., 50% for the HCS and 75% for the HVS. A
common test used to compare multiple algorithms is the Friedman test [9]. In our case it
affirms, with a confidence less than 10−4, that there are some algorithms which perform
significantly differently. In order to find the significantly different pairs, one should use
the so-called post-hoc analysis; we adopted the Nemenyi procedure [9], that consists
of pair-wise tests within the whole set of groups. For each pair of algorithms, Table 4
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HCS HV S 2CCS 2PV S 2PCS

HCS 1 0.0193 < 0.0001 < 0.0001 < 0.0001
HV S 0.0193 1 0.0499 < 0.0001 < 0.0001
2CCS < 0.0001 0.0499 1 0.0054 0.0016
2PV S < 0.0001 < 0.0001 0.0054 1 0.7043
2PCS < 0.0001 < 0.0001 0.0016 0.7043 1

Fig. 4. The p−value for each pair-wise Nemenyi test. The bold
p−values are less than α∗.

2C (CS)

2P (CS)

2P (VS)

H (CS) H (VS)

Fig. 5. The dominance graph

reports the confidence level (the so-called p-value) when assuming the two algorithms
have different behaviour. As we can see, such confidence is very low, and in many cases
below 10−4.

However, although single confidence levels are low, the probability of having at least
one error increases with the number of comparisons (i.e., Ncomp =

5×4
2 = 10). Conven-

tionally, p-values are considered significant when they are below α = 5%. In order to
ensure that the whole table contains no errors with p-value below α , Bonferroni [9]
suggests to take as significant in Table 4 only those pairs for which the significance is
below α∗ = α/Ncomp = 0.05/10 = 0.005.

Results in Fig. 4 are graphically depicted in Fig. 5, where an arrow from algorithm
A to B means that algorithm A dominates B with a p-value below 0.5%. Accordingly
with the histogram in Fig. 3, the dominance graph in Fig. 5 confirms that the Hybrid
time-based GA, with a very little margin of error, achieves lower volumes of consumed
contaminated water with respect to all sequence-based GAs.

4 Conclusions

In this study, we addressed an important problem in the security of water distribution
systems: the near-optimal planning of the response to an event of contamination.

We tackled the problem by way of genetic algorithms which optimize the value of a
black-box objective function, computed through a hydraulic simulator. We implemented
two crossover operators taken from the literature on multiple traveling salesman prob-
lem, then we proposed and implemented two new crossover operators that exploit a
mixed-integer linear programming solver, obtaining a hybrid GA-MILP algorithm.

We ran an extensive experimentation, in which we compared 13 variants of the var-
ious algorithms on 5 scenarios for 10 runs each. Considering that each invocation of
the black-box function takes about 5 seconds on a modern computer and that we used a
cutoff of 500 invocations, we have a total computing time of about 19 days.

All the proposed GAs improve on the common sense inspired solution. This confirms
that the actual scheduling times impact on the solution value and should be explicitly
taken into account by any recovery procedure. Comparing their average behaviour, we
observed that the new, hybrid, algorithms outperform all the others. A significance test
confirms this result, with a confidence level below 5%.

In future work, we plan to experiment on other scenarios and additional devices, and
to test the effect of variable speed in 2C GA.
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Abstract. This paper presents HyFlex, a software framework for the
development of cross-domain search methodologies. The framework fea-
tures a common software interface for dealing with different combinato-
rial optimisation problems and provides the algorithm components that
are problem specific. In this way, the algorithm designer does not require
a detailed knowledge of the problem domains and thus can concentrate
his/her efforts on designing adaptive general-purpose optimisation algo-
rithms. Six hard combinatorial problems are fully implemented: maxi-
mum satisfiability, one dimensional bin packing, permutation flow shop,
personnel scheduling, traveling salesman and vehicle routing. Each do-
main contains a varied set of instances, including real-world industrial
data and an extensive set of state-of-the-art problem specific heuristics
and search operators. HyFlex represents a valuable new benchmark of
heuristic search generality, with which adaptive cross-domain algorithms
are being easily developed and reliably compared.This article serves both
as a tutorial and a as survey of the research achievements and publica-
tions so far using HyFlex.

1 Introduction

There is a renewed and growing research interest in techniques for automating
the design of heuristic search methods. The goal is to reduce the need for a hu-
man expert in the process of designing an effective algorithm to solve a search
problem and consequently raise the level of generality at which search method-
ologies can operate. Evolutionary algorithms and metaheuristics have been suc-
cessfully applied to solve a variety of real-world complex optimisation problems.
Their design, however, has become increasingly complex. In order to make these
methodologies widely applicable, it is important to provide self-managed systems
that can configure themselves ‘on the fly’; adapting to the changing problem (or
search space) conditions, based on general high-level guidelines provided by their
users.

Researchers pursuing these goals within combinatorial optimisation, are often
limited by the number of problem domains available to them for testing their
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adaptive methodologies. This can be explained by the difficulty and effort re-
quired to implement state-of-the-art software components, such as the problem
model, solution representation, objective function evaluation and search opera-
tors; for many different combinatorial optimisation problems. Although several
benchmark problems in combinatorial optimisation are available; they contain
mainly the data of a set of instances and their best known solutions. They gen-
erally do not incorporate the software necessary to encode the solutions and
calculate the objective function, let alone existing search operators for the given
problem. It is the researcher who needs to provide these in order to later test
their high-level adaptive search method. To overcome such limitations, we pro-
pose HyFlex, a modular and flexible Java class library for designing and testing
iterative heuristic search algorithms. It provides a number of problem domain
modules, each of which encapsulates the problem-specific algorithm components.
Importantly, only the high-level control strategy needs to be implemented by the
user, as HyFlex provides an easy-to-use interface with which the problem domain
modules can be linked.

A number of research themes within operational research, computer science
and artificial intelligence would benefit (and are already benefiting) from the
proposed framework. Among them: hyper-heuristics [6,20], adaptive memetic al-
gorithms [17,21], adaptive operator selection [11], reactive search [1], variable
neighborhood search and its adaptive variants [19]; and generally the develop-
ment of adaptive parameter control strategies in evolutionary algorithms [10].
HyFlex can be seen as a unifying and extended benchmark for combinatorial
optimisation, with which the performance of different cross-domain adaptive
techniques can be reliably assessed and compared. Practitioners can also gain
even if they are only interested in one specific domain, because they could have
available a large range of hyper-heuristics. A simple test process could determine
the hyper-heuristic that best exploits the underlying domain and so allows prac-
titioners to quickly and easily obtain their results without having to implement
a complex search control process themselves.

HyFlex was used to support an international research competition: the first
Cross-Domain Heuristic Search Challenge [16]. The challenge is analogous to
the athletics Decathlon event, where the goal is not to excel in one event at the
expense of others, but to have a good general performance on each. Competitors
submitted one Java class file using HyFlex representing their hyper-heuristic
or high-level search strategy. This ensures that the competition is fair, because
all of the competitors must use the same problem representation and search
operators. Moreover, due to the common interface, the competition considered
not only hidden instances, but also two hidden domains.

The purpose of this article is to describe the HyFlex framework as a bench-
mark tool for research in hyper-heuristics and adaptive/autonomous heuristic
search. A detailed analysis of the 2011 CHeSC competition is beyond the scope
of this article and will be discussed elsewhere. The next section describes the an-
tecedents and architecture of the HyFlex framework. It also includes a detailed
account of how to implement and run hyper-heuristics within the framework
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and a brief summary of the problem domains currently implemented. Section 3
presents a survey of published research and achievements made possible by the
framework so far. Finally, section 4 summarises our contribution and suggests
directions for future research.

2 The HyFlex Framework

HyFlex (Hyper-heuristics Flexible framework) is a software framework designed
to enable the development, testing and comparison of iterative general-purpose
heuristic search algorithms (such as hyper-heuristics). To achieve these goals it
uses modularity and the concept of decomposing a heuristic search algorithm
into two main parts:

1. A general-purpose part: the algorithm or hyper-heuristic.
2. The problem-specific part: provided by the HyFlex framework.

In the hyper-heuristics literature, this idea is also referred to as the domain bar-
rier between the problem-specific heuristics and the hyper-heuristic [5,8]. HyFlex
extends the conceptual domain-barrier framework by maintaining a population
(instead of a single incumbent solution) in the problem domain layer. Moreover,
it provides a richer variety of problem specific heuristics and search operators (i.e.
it includes crossover and ‘ruin-recreate’ heuristics). Another relevant antecedent
to HyFlex is PISA [2], a text-based software interface for multi-objective evo-
lutionary algorithms. PISA provides a division between the application-specific
and the algorithm-specific parts of a multi-objective evolutionary algorithm. In
HyFlex, the interface is given by an abstract Java class. This allows a more
tight coupling between the modules and overcomes some of the speed limita-
tions encountered in PISA. Moreover, HyFlex provides a richer variety of fully
implemented combinatorial optimisation problems including real-world instance
data.

The framework is written in Java which is familiar to and commonly used
by many researchers. It also benefits from object orientation, platform indepen-
dence and automatic memory management. At the highest level, the framework
consists of just two abstract classes: ProblemDomain and HyperHeuristic. The
structure of these classes is shown in the class diagram of figure 1. In the dia-
gram, the signatures adjacent to circles are public methods and fields and the
signatures adjacent to diamonds are protected. Abstract methods are denoted
by italics and the implementations of these methods are necessarily different for
each instantiation of problem domain or hyper-heuristic.

2.1 The ProblemDomain Class

As shown in figure 1, an implementation of the ProblemDomain class provides
the following elements, each of which is easily accessed and managed with one
or more methods.
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1. A user-configurable memory (a population) of solutions, which can be man-
aged by the hyper-heuristic through methods such as setMemorySize and
copySolution.

2. A routine to randomly initialise solutions, initialiseSolution(i), where
i is the index of the solution array in the memory.

3. A set of problem specific heuristics, which are used to modify solutions.
These are called with the applyHeuristic(i, j, k) method, where i is the
index of the heuristic to call, j is the index of the solution in memory to
modify and k is the index in memory where the resulting solution should be
placed. Solution j is not changed by this operation. Each problem-specific
heuristic in each problem domain is classified into one of four groups, shown
below. The heuristics belonging to a specific group can be accessed by calling
getHeuristicsOfType(type).
– Mutational or perturbation heuristics: perform a small change on the

solution, by swapping, changing, removing, adding or deleting solution
components.

– Ruin-recreate (destruction-construction) heuristics: partly destroy the
solution and rebuild or recreate it afterwards. These heuristics can be
considered as large neighbourhood structures. They are, however, differ-
ent from the mutational heuristics in that they can incorporate problem
specific construction heuristics to rebuild the solutions

– Hill-climbing or local search heuristics: iteratively make small changes
to the solution, only accepting non-deteriorating solutions, until a local
optimum is found or a stopping condition is met. These heuristics differ
from mutational heuristics in that they incorporate an iterative improve-
ment process and they guarantee that a non-deteriorating solution will
be produced.

– Crossover heuristics: take two solutions, combine them and return a new
solution.

4. A varied set of instances that can be easily loaded using the method:
loadInstance(a), where a is the index of the instance to be loaded.

5. Afitness function,which canbe calledwith thegetFunctionValue(i)method,
where i is the index of the required solution in the memory. HyFlex problem
domains are always implemented as minimisation problems, so a lower fitness
is always better. The fitness of the best solution found so far in the run can be
obtained with the getBestSolutionValue()method.

6. Two parameters: α and β, (0 <= [α, β] <= 1), which are the ‘intensity’ of
mutation and ‘depth of search’, respectively, that control the behaviour of
some search operators.

2.2 The HyperHeuristic Class

The HyperHeuristic class is designed to allow algorithms which implement this
class to be compared and benchmarked across one or more of the problem
domains available (for example, in a competition). Users create cross-domain
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Fig. 1. Class diagram for the HyFlex framework

heuristic algorithms by creating implementations of this abstract class. Each
class must contain a toString() method, to give the methodology a name. It
must also contain a solve()method, in which the functionality of the particular
methodology is written.

The solve() method would normally contain a loop, which continues while
the time limit (defined by the user) has not been exceeded. In the loop, the code
should provide a mechanism for selecting between the available problem-specific
heuristics and choose to which solutions in memory to apply the heuristics. This
class could choose to work with a memory size of 1 for a single point search,
or a large memory could be maintained for a population based approach. The
memory can be easily defined and maintained through calling methods of the
ProblemDomain class, where the memory is stored. A hyper-heuristic class auto-
matically records the length of time for which it has been running and this can be
monitored through methods such as hasTimeExpired()and getElapsedTime().

The solve method is the only method which must be implemented. All other
common functionality is provided by the HyFlex software, such as the timing
function and the recording of the best solution.
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2.3 Running a Hyper-heuristic

Algorithm 1 shows the ease with which a hyper-heuristic can be run on a problem
domain. An object is created for the problem domain (in this example MAX-
SAT) and for the hyper-heuristic, each with a random seed. Then a problem
instance is loaded from the selection available in the problem domain object. In
this example we choose the instance with index 0. The problem domain is now
set up for the hyper-heuristic.

We set the time for which the hyper-heuristic will run, in milliseconds. Then
the hyper-heuristic object is given a reference to the problem domain object.
Now that the setup is complete, the run() method of the hyper-heuristic is
called to start the search process. The hyper-heuristic will run for 60 seconds
in this example and the best solution found during that time is retrievable with
the getBestSolutionValue()method, as shown in Algorithm 1. This (or indeed
any) hyper-heuristic can be run on the 5 other problem domains by changing
just one line of code.

Algorithm 1. Java code for running a hyper-heuristic on a problem domain

ProblemDomain problem = new SAT(seed1);
HyperHeuristic HHObject = new ExampleHyperHeuristic1(seed2);
problem.loadInstance(0);
HHObject.setTimeLimit(60000);
HHObject.loadProblemDomain(problem);
HHObject.run();
System.out.println(HHObject.getBestSolutionValue());

2.4 An Example Hyper-heuristic

This section provides an example hyper-heuristic, to illustrate the ease with
which a hyper-heuristic can be created. This is done by extending the Hyper-
Heuristic abstract class and implementing only one method. All of the common
functionality is provided by the HyFlex software, such as the timing function
and the recording of the best solution. This example demonstrates exactly how
to use certain elements of HyFlex functionality, including the solution memory.

After the run() method of the hyper-heuristic is called (see section 2.3), the
hyper-heuristic abstract class performs some housekeeping tasks, such as initial-
ising the timer and then calls the solve method of the chosen hyper-heuristic.
In Algorithm 1, this is an object of the class ExampleHyperHeuristic1. Algo-
rithm 2 shows the code for the solve() method in ExampleHyperHeuristic1.
It shows that very few lines of code are necessary in order to implement a
hyper-heuristic method with the HyFlex framework. Algorithm 2 is written in
pseudocode, but each line corresponds to no more than one line of actual Java
code. The solve() method is the only substantial method which needs to be
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implemented. Indeed the only other necessary method is toString(), which
requires one line to give the hyper-heuristic a name.

From Algorithm 2, we can see that the solve() method takes the problem
domain object as an argument and checks for the number of search operators
available within it. We also initialise a value to store the current objective func-
tion value. It is also necessary to initialise at least one solution in the memory.
The default memory size is 2 and we initialise the solution at index 0, which
means we build an initial solution with the method specified in the problem do-
main (generally a fast randomised constructive heuristic). The solution at index
1 remains uninitialised and therefore has a value of null.

An implemented hyper-heuristic must always contain a while loop which
checks if the time limit has expired. The code within the loop specifies the
main functionality of the hyper-heuristic. In this example, we choose a random
operator and then apply it to the solution at index 0. The modified solution is
put in the memory at index 1 (previously not initialised). Note that a random
number generator rng is provided by the HyperHeuristic abstract class. This is
created when the hyper-heuristic object’s constructor is called and is the reason
why that constructor requires a random seed.

If the new solution is superior to the old solution, it is accepted and the new
solution overwrites the old one in memory. The copySolution method of the
problem domain class is employed to manage this. If the new solution is not
superior, then the new solution is accepted with 0.5 probability.

Algorithm 2. Pseudocode for the solve method of ExampleHyperHeuristic1.
This is called when the run() method of the hyper-heuristic is called (see Algo-
rithm 1).

Require: A ProblemDomain object, problem
int numberOfHeuristics = problem.getNumberOfHeuristics
double currentObjValue = Double.POSITIVE-INFINITY
problem.initialiseSolution(0)
while hasTimeExpired = FALSE do
int h = rng.nextInt(numberOfHeuristics)
double newObjValue = problem.applyHeuristic(h, 0, 1)
double delta = currentObjValue - newObjValue
if delta > 0 then
problem.copySolution(1, 0)
currentObjValue = newObjValue;

else
if rng.nextBoolean = TRUE then
problem.copySolution(1, 0)
currentObjValue = newObjValue;

end if
end if

end while
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2.5 HyFlex Problem Domains

Currently, six problemdomainmodules are implemented. From these, 4 were given
as test domains for the CHeSC competition: maximum satisfiability (MAX-SAT),
one-dimensional bin packing, permutation flow shop and personnel scheduling.
Two additional domains, namely, the traveling salesman and the capacitated ve-
hicle routing problem [22], were later implemented and used as hidden domains in
the competition. Each domain includes 10 training instances fromdifferent sources
and a number of problem-specific heuristics of the types discussed in section 2.1.
The six domains together with technical reports describing them in detail, includ-
ing the problem formulation, solution initialisation, instance date and low-level
heuristics, can be found on the competition site [16]. Due to space constraints we
only present a summary describing the solution initialisation, the total number of
low-level heuristics and the number of heuristics of each type (Table 1).

Table 1. HyFlex problem domains, indicating initialisation, the total number of low-
level heuristics and the number of heuristics per type

Domain Initialisation Total Mut. R&R Xover. LS.
Max-SAT Random bit-string 9 4 1 2 2

Bin Packing Randomised first-fit heuristic [13] 8 3 2 1 2
Flow Shop Randomised NEH procedure [15] 15 5 2 3 4
Pers. Sched. Randomised hill climbing heuristic 12 1 3 3 4

TSP Random permutation 15 5 1 3 6
VRP Randomised constructive heuristic 12 4 2 2 4

3 HyFlex Achievements

HyFlex was made available in August 2010 when the CHeSC competition was
launched at the International Conference on the Practice and Theory of Au-
tomated Timetabling (PATAT 2010)1. In May 2011, a web statistics counter
was added to the website and since then, up to January 30th 2012, it has
recorded 4,721 visits and 9,451 page views. This section briefly surveys the re-
search achievements and publications made possible with HyFlex so far.

The first article implementing hyper-heuristics using HyFlex was published in
2010 [3], where several hyper-heuristics combining two heuristic selection mech-
anisms and three acceptance criteria were compared. A multiple neighbourhood
iterated local search was also implemented and found to outperform the other
approaches as a general optimiser. This iterated local search hyper-heuristic
contains a perturbation stage, during which a neighborhood move is selected
uniformly at random (from the available pool of mutation and ruin-recreate
heuristics) and applied to the incumbent solution; followed by a greedy improve-
ment stage (using all the local search heuristics). The approach is extended in

1 http://www.cs.qub.ac.uk/~B.McCollum/patat10/

http://www.cs.qub.ac.uk/~B.McCollum/patat10/
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[4] by substituting the uniform random selection of neighbourhoods in the per-
turbation stage, by online learning strategies. Two strategies were implemented:
choice function [8] (from the hyper-heuristics literature) and extreme value based
adaptive operator selection [11] (from the evolutionary computation literature),
with the latter producing better overall results. This last implementation was
the best performing hyper-heuristic before the competition started.

In [12], the authors used reinforcement learning for heuristic selection and
explored several variants for the rewards, policy and learning functions. Different
ways of modeling the agents’ states and actions were also explored. The results
reported are preliminary and do not compare well with those generated by other
HyFlex hyper-heuristics.

In [18], the authors implement a multi-stage hyper-heuristic, combining a
greedy stage with a random descent stage, followed by a simple solution accep-
tance mechanism. During the greedy stage, all the available low-level heuristics
are applied during a number of steps and a subset of the best performing heuris-
tics (active set) is constructed using a dominance-based strategy. The subsequent
random descent stage, randomly selects a heuristic from the active set and applies
it repeatedly until no improvement is achieved. The transition between stages is
controlled by a probability parameter. This relatively simple approach produces
very good results when compared with previous HyFlex hyper-heuristics.

HyFlex was used to support the CHeSC 2011 competition. The event suc-
cessfully attracted the interest and participation of universities and academic
institutions across the six continents; 43 registrations and 20 submissions were
received. We received several positive and encouraging comments regarding both
HyFlex and the competition, from the registered participants. The competition
results and brief technical reports describing the participant entries can be found
in the website [16]. Here, we briefly summarise the top 4 hyper-heuristics:

1. AdapHH: Mustafa Misir, University KaHo Sint-Lieven, Belgium.
A ‘traditional’ selective hyper-heuristic that includes two stages: heuristic
selection and solution acceptance. Heuristic selection is done by learning
dynamic heuristic sets and effective pairs of heuristics. The algorithm also
incorporates adaptation of the heuristic parameters and an adaptive thresh-
old acceptance. This approach was presented in [14].

2. VNS-TW: Ping-Che Hsiao, National Taiwan University, Taiwan.
A variable neighborhood search algorithm that orders perturbation heuristics
according to strength. It includes two stages: diversification and intensifica-
tion and incorporates an adaptive technique to adjust the strength of the
local search heuristics.

3. ML: Mathieu Larose, Montreal University,Canada.
An adaptive iterated local search algorithm with three stages: diversifica-
tion, intensification and a simple adaptive move acceptance. Reinforcement
learning is used for selecting heuristics.

4. PHUNTER: Fan Xue, Hong Kong Polytechnic University, Hong Kong.
A hyper-heuristic that can assemble different iterated local search algo-
rithms. The authors use the metaphor of pearl hunting; there is a diver-
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sification stage (surface and change target area) and an intensification stage
(dive and find pearl oysters). The algorithm also uses offline learning to
identify search modes. This approach was presented in [7].

Several new best-known solutions have been found for personnel scheduling in-
stances [9] using HyFlex (see Table 2). This is an interesting result, considering
that HyFlex was designed to implement general-purpose search heuristics.

Table 2. Personnel scheduling best-known solutions obtained by the PHUNTER
HyFlex hyper-heuristic

Instance HyFlex Previous Shift
name best-known best-known staff types days

CHILD-A2 1095 1111 41 5 42
ERRVH-A 2142 2197 51 8 42
ERRVH-B 3121 6859 51 8 42
MER-A 9017 9915 54 12 42

A special session on Cross-domain Heuristic Search was held as part of the
Learning and Intelligent OptimizatioN conference (LION 2012)2. Seven papers
were accepted and presented using HyFlex for implementing cross-domain hyper-
heuristics. HyFlex is also being used as a tool for teaching modules in meta-
heuristics and evolutionary algorithms. Finally, HyFlex is potentially useful from
the point of view of practitioners. If they provide their problem-specific software
components following the interface, they will have at their disposal a growing
number of hyper-heuristics and adaptive search controllers ready to use.

4 Discussion and Future Work

HyFlex is a software framework which enables cross-domain algorithms to be eas-
ily developed and reliably compared. It currently provides 6 problem domains,
each containing a set of problem instances and search operators to apply. There-
fore, it represents a novel extension of the notion of benchmark for combinatorial
optimisation. Researchers from different communities and themes within com-
puter science, artificial intelligence and operational research, can benefit from
HyFlex, as it provides a common benchmark in which to test the performance
and behavior of single-point and population-based self-configuring search heuris-
tics. When using HyFlex, researchers can concentrate their efforts on designing
their adaptive methodologies, rather than implementing the required set of prob-
lem domains. There is currently ample evidence that HyFlex is being used by
the research community for both research and teaching.

Different algorithm design ideas have been implemented and tested using
HyFlex. Some successful design principles start to emerge such as the use of

2 http://intelligent-optimization.org/LION6

http://intelligent-optimization.org/LION6
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diversification and intensification phases, the use of reinforcement learning for
heuristic selection, adaptation of the heuristic parameters and the use of adap-
tive acceptance criteria. Interesting emerging ideas are the use of co-evolution
and evolution of heuristic sequences. The use of a population is starting to be val-
ued within selective hyper-heuristic research, which has traditionally focused on
single-point search algorithms. It is our vision that the HyFlex framework will
continue to facilitate and increase international interest in developing hyper-
heuristics and adaptive heuristic search methodologies that can find wider ap-
plication in practice.

HyFlex can be extended to include new domains, additional instances and
operators in existing domains and multi-objective and dynamic problems. The
current software interface can also be extended to incorporate additional feed-
back information from the domains to guide the adaptive search controllers.
In particular, parameterised low-level heuristics and diversity metrics can be
included. We plan to host a new edition of the competition and maintain a
repository of results and updates to the HyFlex framework.

Acknowledgements. The authors wish to thank Dr. Ender Özcan for inter-
esting discussions and his contagious enthusiasm for hyper-heuristic research.
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Abstract. This paper proposes an evolutionary-based iterative local
search hyper-heuristic approach called Iterated Search Driven by Evo-
lutionary Algorithm Hyper-Heuristic (ISEA). Two versions of this algo-
rithm, ISEA-chesc and ISEA-adaptive, that differ in the re-initialization
scheme are presented. The performance of the two algorithms was exper-
imentally evaluated on six hard optimization problems using the HyFlex
experimental framework and the algorithms were compared with algo-
rithms that took part in the CHeSC 2011 challenge. Achieved results
are very promising, the ISEA-adaptive would take the second place in
the competition. It shows how important for good performance of this
iterated local search hyper-heuristic is the re-initialization strategy.

Keywords: hyper-heuristic, optimization, evolutionary algorithm.

1 Introduction

Hard optimization problems cannot be solved to optimality for large instance
sizes due to extreme computational demands. Hence, either approximation or
metaheuristic algorithms [9] are often used to find if not optimal solutions then
at least solutions of good quality in reasonable time. Recently, hyper-heuristics1,
described as ”heuristics to choose heuristics”, that are search methods or learning
mechanisms for selecting or generating heuristics to solve computational search
problems were proposed [2].

1.1 Hyper-Heuristics

There are two main classes of hyper-heuristic approaches – heuristic selection
and heuristic generation. Heuristic selection approaches, for given particular
problem instance and a set of problem-specific low-level heuristics (LLHs), se-
lect and apply the most suitable LLH at each problem solving state. Heuristic
generation methods are used to automatically generate new heuristics, suited for
the given problem, from components of pre-existing heuristics [1].

1 Comprehensive bibliography of Hyper-heuristics:
http://www.cs.nott.ac.uk/˜gxo/hhbibliography.html

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 148–159, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The heuristic selection methods can be divided into constructive and local
search hyper-heuristics based on the type of used LLHs. Constructive hyper-
heuristics start with an empty solution and gradually build a complete solution,
by iteratively selecting appropriate low-level construction heuristic (chosen from
a pool of LLHs proposed for the problem at hand) and using it to enhance
the developed solution. Local search heuristics start from a complete solution,
then they try to iteratively improve the current solution by selecting appropri-
ate neighborhood structure and/or simple local searcher and applying it to the
current solution.

Typically, the heuristic selection methods operate on sequences of LLHs where
an optimal sequence that produces the best solution (in case of constructive
methods) or improves the most the initial solution (in case of local search meth-
ods) is sought. Since the construction of the optimal sequence of LLHs is not a
trivial task, high-level heuristic or meta-heuristic techniques such as ILS, VNS,
simulated annealing, tabu search or EAs are often used as search strategies across
the search space of heuristics [2]. Some methods make use of information learned
through the problem solving process, such as performance of individual LLHs,
for selecting particular heuristic at given decision point. An association of LLHs
to characteristic problem solving states can also be used. For example, at some
point local search and mutation heuristics can be very effective while in other
problem solving state more disturbing ruin-recreate heuristics can be the only
way to escape from current local optimum solution [3].

Recent analysis show that the heuristic search space is likely to contain large
plateaus, i.e. regions of many heuristic sequences producing solutions of the same
quality. On the other hand, the heuristics search space have in a great picture
a globally convex structure with the optimal solution surrounded by many local
optima [2]. In this work we propose hyper-heuristic approach based on iterative
local search algorithm called POEMS [6] that might be well suited for searching
this kind of search space since it can make use of structured improving moves
when trying to improve the current solution.

According to the classification provided in Section 1.1, the proposed hyper-
heuristic belongs to the heuristic selection approaches. Specifically, to the local
search hyper-heuristics as the goal of the hyper-heuristic is to iteratively improve
starting complete solution by iteratively selecting and applying local search,
mutation and ruin-recreate low level heuristics to it.

1.2 Proposed Hyper-Heuristic

Iterated Search Driven by Evolutionary Algorithm Hyper-Heuristic (ISEA) pre-
sented in this paper is based on an evolutionary-based iterative local search
algorithm called POEMS [6,7,8]. POEMS is an optimization algorithm that
operates on a single candidate solution called a prototype and tries to im-
prove it in an iterative process. In each iteration, it runs an evolutionary al-
gorithm (EA) that seeks for the most valuable modification to the prototype. The
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modifications are represented as fixed length sequences of elementary actions,
i.e. sequences of problem-specific variation or mutation operators. Such action
sequences, produced by the EA, can be viewed as evolved structured mutations.
Action sequences are assessed based on how well/badly they modify the current
prototype, which is passed as an input parameter to the evolutionary algorithm.
Besides actions that truly modify the prototype, there is also a special type
of action called nop (no operation). The nop actions are interpreted as void
actions with no effect on the prototype. Action sequences can contain one or
more nop actions. This way a variable effective length of action sequences is
realized. After the EA finishes, the best evolved action sequence is checked for
whether it worsens the current prototype or not. If an improvement is achieved or
the modified prototype is at least as good as the current one, then the modified
prototype is considered as a new prototype for the next iteration. Otherwise,
the current prototype remains unchanged. The iterative process stops after a
specified number of iterations.

POEMS takes the best of the two worlds of the single-state and population-
based metaheuristics. It iteratively improves the current solution, but contrary to
the single-state metaheuristics it searches much bigger neighborhood structure
defined by fixed length sequence of elementary actions (not just a single variation
operator). Such a neighborhood structure is effectively searched by means of the
EA, where the EA is capable of finding both the local fine-tuning move as well
as the perturbation move.

Therefore, the exploration capability of POEMS should be better than the
standard single-state techniques. Moreover, the EA run in each iteration searches
a limited space of the current prototype’s modifications instead of the whole
space of all candidate solutions to the given problem that is searched by the
traditional EAs. Thus, minimal resources (i.e. small population size and small
number of generations) can be sufficient to effectively search the space of struc-
tured mutations.

Two versions of the ISEA hyper-heuristic were implemented and tested with
the use of the HyFlex framework [4]. The two ISEA versions were evaluated
and compared with the algorithms that took place in the competition of the
Cross-domain Heuristic Search Challenge CHeSC 20112. The performance of
the algorithms was assessed based on the point scoring system used for the
competition. The competition results and the program for calculating the hyper-
heuristics’ score being kindly provided by the organizers of the CHeSC 2011. The
presented analysis shows how important for good performance of the iterated
local search ISEA hyper-heuristic is the re-initialization strategy.

Map of the paper: In Section 2 an original ISEA version is proposed in the
form that took part in CHeSC 2011 challenge. Section 3 presents the version with
an adaptive re-initialization rate. Section 4 presents experimental evaluation of
the two ISEA algorithms. Last section concludes the paper and proposes future
work directions.

2 http://www.asap.cs.nott.ac.uk/chesc2011/index.html
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2 Original ISEA Algorithm

The general-purpose ISEA hyper-heuristic is based on the POEMS approach,
but differs in several aspects. In the following paragraphs the main structure of
the ISEA algorithm and its key components will be described.

Memory Solutions. Generally, the ISEA maintains a set of three solutions to
the given problem via methods provided by the HyFlex abstract class
ProblemDomain. The meaning of the three solutions is as follows:

– Evaluation solution is used for evaluating candidate sequences of low level
heuristics (LLHs) defined for the problem at hand.

– Working solution stores intermediate solutions and the final solution that
are successively generated from the starting evaluation solution by applying
individual LLHs of the evaluated candidate sequence of LLHs. Thus, at the
beginning of the candidate sequence of LLHs evaluation process the working
solution is set to the evaluation solution and then it is modified step-by-step
as the LLHs are applied to it one by one.

– Best-so-far solution is the best solution found so far in the whole ISEA run.

Low Level Heuristics and the Prototype. Unlike other traditional applica-
tions of POEMS, ISEA operates on a prototype that does not directly represent
a solution to the given problem. Instead, the prototype is a fixed-length sequence
of LLHs that is to be modified by evolved action sequences. Despite the HyFlex
framework provides four types of LLHs, the ISEA considers only local search,
mutation and ruin-recreate heuristics for the generated sequences of LLHs. When
initialized, LLHs are initially assigned to conform with the following schema:

– At the first position of the prototype, only local search LLH can be generated.
– All of the remaining positions but the last one can be initialized with any

type of LLH, where all of the three types of LLH have equal probability to
be chosen.

– Only local search LLH can be assigned to the last position of the prototype.

The idea behind this scheme is that when looking for better solution in the
neighborhood of the working solution, one might try to locally optimize it first,
then any type of LLH can be chosen multiple times and finally some local search
heuristics can be used to finalize the new solution.

Actions. Note, that the prototype is to be modified by evolved action sequences.
Following three simple actions are proposed for the ISEA:

– addLLH(position, type, parameters) – adds a new LLH of certain type
with specified parameters to the prototype at given position.

– removeLLH(position) – removes the LLH that is at given position in the
prototype.

– changeLLH(position, parameters) – modifies the LLH at given position in
the prototype according to the new parameters. It can change either the type
of the LLH (mutation / local search / ruin-recreate) and/or its parameters.
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Obviously, the length of the prototype can vary as some LLH can be added to
or removed from it. At the beginning of the EA, the prototype’s length is set
to p (that is one of the user defined parameters of the algorithm).

The task for the EA is to permanently evolve modifications to the current
prototype that will, if possible, produce sequences of LLHs capable of improving
the evaluation solution at any moment of the optimization process. Thus, it is
assumed that at some stages the evolved action sequences will be able to ad-
just the prototype to realize rather disturbing moves (in order to escape a local
optimum of the solved problem instance represented by the current evaluation
solution) while at other stages the action sequences can transform the prototype
so as to realize fine-tuning moves (in case there is still some room for improve-
ment of the evaluation solution that can be effectively attained just by using the
local search heuristics). In other words, the EA realizes the adaptation of the
optimization process to the current status of the evaluation solution.

Assessing Quality of Action Sequences. In order to assess the performance
of an action sequence, the resulting sequence of LLHs, obtained by modifying
the prototype with the action sequence, is applied to the evaluation solution and
the quality of the best solution generated through successive applying the LLHs
of the sequence is taken as the quality of the candidate action sequence.

Perturbation. The evaluation solution is re-initialized from time to time so that
it is assigned a solution that is created by perturbing the best-so-far solution.
The perturbation is realized by mutation and ruin-recreate heuristics. This re-
initialization operation is invoked as soon as the following two conditions are
fulfilled

1. more than T1 seconds has elapsed since the last perturbation action, and
2. there has been no improvement of the evaluation solution observed for T2

seconds,

indicating that there was no progress observed for considerable amount of time.
The parameters T1 and T2 are static in a sense that they stay constant during the
whole ISEA run. The question is how to set the parameters in order to provide
the ISEA procedure with an efficient re-initialization scheme.

2.1 ISEA Pseudo Code

At the beginning of the ISEA run, the prototype, evaluation solution, best-so-
far solution, and starting population of action sequences are initialized. Also the
counter of calculated fitness evaluations and the variables storing the time of the
last improvement of the evaluation solution and the time of the last perturbation
action are reset.

Then the algorithm repeats steps of the main loop until the maximal specified
time has expired (steps 8-18 in Fig. 1). In the first step of this block one genera-
tion of the EA is carried out. This means that a pair of new action sequences is
generated either by means of crossover and/or mutation. The newly generated
action sequences are evaluated on the evaluation solution. Whenever the new
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input: set of local search, mutation and ruin-recreate heuristics

output: best solution found

1 lastPerturbationTime ← currentTime

2 lastImprovementTime ← currentTime

3 evaluations ← 0 // the number of evaluations calculated in one EA

4 initialize(evaluation solution)

5 best so far solution ← evaluation solution

6 initialize(prototype)

7 initialize(populationAS) // initialize population of action sequences

8 while (!hasTimeExpired())

9 calculateGenerationEA() // calculates one generation of the EA

10 evaluations ← evaluations+ 2 // two new solutions are generated

11 if(((currentT ime− lastPerturbationT ime) > T1) and

((currentT ime− lastImprovementT ime) > T2))

12 evaluation solution ← perturb(best so far solution)

13 lastPerturbationTime ← currentTime

14 if((evaluations) > N) // start new EA

15 evaluations ← 0

16 initialize(prototype)

17 initialize(populationAS)

18 end while

19 return best so far solution // return best-so-far solution

Fig. 1. Pseudo code of ISEA hyper-heuristic

solution is at least as good as the evaluation solution the new solution replaces
the evaluation solution. Similarly, when the new solution outperforms the best-
so-far solution, the best-so-far solution is updated as well (all these operations
are done in step 9 in Fig. 1). If the conditions for perturbation are fulfilled, the
perturbation is carried out and the lastPerturbationT ime variable is updated
accordingly (steps 11-13 in Fig. 1).

If the number of fitness evaluations exceeds the specified number of fitness
evaluations allocated for one EA, the prototype and the population of action
sequences are re-initialized (steps 14-17 in Fig. 1). Once the time allocated for
the whole run has expired the best so far solution is returned as the final solution.

2.2 ISEA Control Parameters’ Setting

Before the main procedure of the ISEA starts, it is checked whether low time
demand or high time demand executions of the LLHs are expected for the prob-
lem instance at hand. This is estimated by applying several LLHs (five LLHs
were used in this work) on the initial evaluation solution. Based on the estimate
one of two possible configurations is chosen. The configuration for instances with
low time demand LLHs uses longer prototypes, longer action sequences, bigger
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Fig. 2. Mapping the estimated total number of non-improving LLH sequences to the
Texp and Tmin

population of action sequences and larger number of fitness evaluations calcu-
lated in one EA. The configuration for instances with high time demand LLHs
uses shorter prototype, shorter action sequences, smaller population of action
sequences and smaller number of fitness evaluations in one EA. Note, that just
the time complexity of the LLHs for the problem instance at hand is estimated.
There is no attempt to disclose the type of the problem at hand.

3 ISEA with Adapted Re-initialization Rate

A variant of ISEA algorithm described in this section does not use the hard-
wired re-initialization strategy based on the rule, where the perturbation action
takes place if and only if the two crisp time-based conditions for the action are
fulfilled. Here, a time interval, (Tmin, Texp), is determined within which the re-
initialization of the evaluation solution can take place with certain probability,
Preinit. Both, the boundaries of the time interval and the probability Preinit are
recalculated anew after each re-initialization action. Then, if a new solution is
generated such that it is not better than the current evaluation solution (i.e. the
candidate sequence of LLHs did not improve the evaluation solution) and one
of the two following conditions is fulfilled

1. at least Texp seconds has elapsed since the last re-initialization action,
2. at least Tmin seconds has elapsed since the last re-initialization action and

a random number from the interval (0.0, 1.0) smaller than Preinit has been
generated,

the new evaluation solution is calculated by perturbing the best-so-far solution.
Clearly, the parameters Tmin, Texp and Preinit are crucial for proper function-

ing of the re-initialization strategy. Their values are derived from the estimated
total number of non-improving LLH sequences generated during the whole ISEA
run. The idea behind setting Tmin and Preinit is such that when solving less
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time-demanding problem instance, for which we can evaluate large number of
candidate LLH sequences per time unit, the re-initialization frequency can be
quite high since the algorithm can converge to some local optimum in short
time-period. On the other hand, when solving heavy time-demanding problem
instance, for which we can evaluate only very small number of candidate LLH
sequences per time unit, the re-initialization frequency should be rather low since
the algorithm might not be able to converge to a local optimum fast enough.

This idea is realized by an adaptation procedure, which is invoked repeatedly
during the ISEA run, consisting of the following steps:

1. A total number of non-improving LLH sequences generated within the whole
run, Nnon−imp, is estimated based on the number of non-improving LLH
sequences observed so far.

2. Log-linear transformation is used to map Nnon−imp to the expected time-
interval between two consecutive re-initialization actions, Texp, see the red
line in Fig. 2. The figure shows that for ”easy” instances (i.e. instances for
which the heuristics are less time-demanding) the ISEA is allowed to re-
initialize the evaluation solution in shorter time, Texp, while for ”hard” in-
stances the expected time interval between two re-initializations gets longer.
There are two boundary values of the Nnon−imp considered for the transfor-
mation – the lower boundary of 100 and the upper boundary of 5 × 105. If
the value of Nnon−imp smaller than 100 is estimated then the Texp is set to
60s. For any value of Nnon−imp greater than 5× 105 the Texp is set to 20s.

3. Given the values of Texp and Nnon−imp determined in steps 1. and 2., a
number of non-improving LLHs, NTexp, expected within time interval of
Texp seconds is estimated.

4. The probability of realizing the re-initialization action is Preinit = 1/NTexp.
In order to eliminate rapid re-initialization of the evaluation solution, a min-
imal time-interval between two consecutive re-initializations, Tmin, is set to
Texp/2, see Fig. 2.

Note, the adaptation procedure is hardware-oriented as it relies on absolute
time constants, Tmin and Texp, in seconds. These can easily be replaced with
hardware-independent time values given as fractions of the total running time.

4 Experiments

This section presents experiments carried out with the two versions of the hyper-
heuristic approach ISEA

– ISEA-chesc – this version, described in Section 2, took part in the final
competition CHeSC 2011.

– ISEA-adaptive – this is the version with adapted re-initialization rate.

The two versions of the ISEA hyper-heuristic were implemented and tested with
the use of the HyFlex framework [4]. The framework provides experimental en-
vironment with the following six hard optimization problems implemented:
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– Max-SAT problem (MSAT),
– Bin packing problem (BP),
– Personnel scheduling problem (PS),
– Flow shop problem (FS),
– Traveling salesman problem (TSP),
– Vehicle routing problem (VRP).

The two ISEA algorithms were compared with the algorithms that took place in
the competition of the Cross-domain Heuristic Search Challenge CHeSC 20113.
Likewise in the CHeSC 2011 competition, 31 runs per instance were conducted
with each of the two ISEA algorithm variants. The two ISEA algorithms were
compared in an indirect way so that each of them was added separately to the set
of CHeSC 2011 competition algorithms and the following performance indicators
were used for their mutual comparison:

– The final rank of each algorithm and total number of points received in the
competition.

– Individual scores of each algorithm per domain.
– Median of the best objective values calculated for each instance from the set

of 31 runs.

The competition results and the program for calculating the hyper-heuristics’
score being kindly provided by the organizers of the CHeSC 2011 competition.

4.1 Experimental Setup

ISEA-chesc configuration for easy and hard instances, see Section 2.2:

– common parameters:

• total running time: 600 [s]
• probability of crossover: 75%
• probability of mutation: 25%
• tournament size: 2

– parameters for easy instances:

• initial prototype length (i.e. a length of the LLHs sequence): 5
• population size:50
• action sequence length: 5
• max. number of evaluations in one EA: 200
• T1 = 45 [s]; T2 = 10 [s]

– parameters for hard instances:

• initial prototype length: 3
• population size: 30
• action sequence length: 3
• max. number of evaluations in one EA: 50
• T1 = 60 [s]; T2 = 10 [s]

3 http://www.asap.cs.nott.ac.uk/chesc2011/index.html
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Table 1. Comparisons of ISEA-chesc and ISEA-adaptive on CHeSC 2011 test suite

algorithm Total SAT BP PS FS TSP VRP

ISEA-
chesc

rank 8 9 2 5 11 7 13
points 71.0 6.0 30.0 14.5 3.5 12.0 5.0

ISEA-
adaptive

rank 2 14 1 4 2-3 3 3
points 145.75 0.25 42.0 22.5 34.0 24.0 23.0

The same configuration was used for the ISEA-adaptive with one difference –
parameters T1 and T2 were replaced with the parameters used for adapting the
probability Preinit, see Fig. 2 and accompanying text.

4.2 Results

Results are summarized in Table 1 and Table 2. The main observation is that
ISEA-adaptive significantly improved the final score over ISEA-chesc. ISEA-
adaptive was ranked as the second best hyper-heuristic with the total score of
141 points among all competition hyper-heuristics while ISEA-chesc placed at
eighth position with the total number of 71 points, see Table 14. We can see that
ISEA-adaptive outperformed ISEA-chesc on all problems but the Max-SAT one.

Table 2. Results obtained by ISEA-chesc and ISEA-adaptive on CHeSC 2011 test
suite. Median values from 31 final objective values per instance are presented. Statis-
tically significant improvements of the ISEA-adaptive over the ISEA-chesc are empha-
sized in bold as confirmed by the Wilcoxon rank sum test at the 1% level.

instance
problem algorithm 1 2 3 4 5

SAT
ISEA-chesc 5 11 4 9 11
ISEA-adaptive 7 12 5 11 10

BP
ISEA-chesc 0.034223 0.003284 0.003655 0.108625 0.006400
ISEA-adaptive 0.034025 0.002936 0.001669 0.108386 0.002487

PS
ISEA-chesc 20 9966 3308 1660 315
ISEA-adaptive 20 9841 3274 1587 315

FS
ISEA-chesc 6262 26844 6366 11419 26663
ISEA-adaptive 6242 26811 6325 11364 26636

TSP
ISEA-chesc 48194.9 20868203.1 6832.6 67282.1 54129.2
ISEA-adaptive 48194.9 20827231.2 6832.8 66983.3 55248.6

VRP
ISEA-chesc 70471.7 13339.8 149149.6 20657.2 150474.0
ISEA-adaptive 67582.3 13338.1 145280.0 20653.8 148476.1

4 Recall, that the results presented in Table 1 come from two separate competitions.
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The same trend can be seen in Table 2, where ISEA-adaptive outperformed
ISEA-chesc on most of the competition instances with exception of the Max-
SAT ones. On BP, PS, FS, TSP and VRP problems we can observe significant
improvement of the median best value and corresponding score gain.

The results are very promising and indicate that a proper re-initialization
scheme is crucial for optimal performance of the algorithm. It shows that the
scheme with adapted re-initialization probability is better suited for this kind
of iterated local search algorithm than the rather hard-wired re-initialization
strategy that is dependent on properly set user-defined parameters T1 and T2.

The question is why ISEA-adaptive performed almost consistently worse than
ISEA-chesc on SAT instances. One reason for this observation could be that the
time-intervals Texp and Tmin (and subsequently the Paccept), derived based on the
expected number of non-improving LLH sequences, were too short so that there
was not enough time to converge to a local optimum before new re-initialization
was carried out.

5 Conclusions

This paper presented two versions of an evolutionary-based iterative local search
hyper-heuristic called Iterated Search Driven by Evolutionary Algorithm Hyper-
Heuristic (ISEA). The two versions differ in the re-initialization scheme. The first
one, ISEA-chesc, relies on strictly defined time-based conditions that if fulfilled
than the re-initialization of the current evaluation solution takes place. The
second one, ISEA-adaptive, uses a probability Preinit to determine whether the
evaluation solution will be re-initialized or not.

The performance of the two algorithms was experimentally evaluated on six
hard optimization problems using the HyFlex experimental framework [4] and
the two algorithms were compared using the results of the algorithms that took
part in the CHeSC 2011 challenge [10].

The achieved results are very promising, the ISEA-adaptive variant would
place second in the CHeSC 2011 final competition. It also shows that the re-
initialization scheme used in ISEA-adaptive is better suited for this optimiza-
tion algorithm as the ISEA-chesc placed on eighth place and attained almost
consistently worse results than ISEA-adaptive.

There are several directions for future research:

– In order to avoid cycles in the search process we plan to incorporate a Tabu
list containing several recent evaluation solutions. Any newly generated solu-
tion that appears in the Tabu list must not be accepted as the new evaluation
solution.

– Another subject of research is how to implement the perturb operator so
that it enables sampling regions of attraction of local optima in the vicinity
of the current local optimum. We would like to investigate a potential of
adaptive perturb operators.

– Third main direction of our research is towards utilization of information
gathered during the optimization process such as which low level heuristics
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or their combinations appeared frequently in improving LLH sequences and
in which situations. Such information can be used for example in biased
sampling of low level heuristics to the LLH sequences.
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Université de Caen Basse-Normandie,
UMR 6072 GREYC, F-14032 Caen, France

Abstract. This paper presents an extension of the ILS algorithm, called
ID-ILS, by introducing new local search devices that enforce an efficient
tradeoff of intensification and diversification. Experiments performed on
the DIMACS benchmarks show that our method is competitive with the
best coloring algorithms.

1 Introduction

The Graph Coloring Problem (GCP) is to find the minimum number of colors
required to color the vertices of a graph so that no edge has both endpoints with
the same color. The GCP has received much attention in the literature, not only
for its direct applications to many other real world problems [1,2], but also for its
difficulty from complexity point of view. In fact, although many exact algorithms
have been proposed for this problem (see [3]), such algorithms can only be used
to solve small instances (up to 100 vertices). Therefore, heuristic algorithms are
needed for larger instances. The best performing heuristic algorithms are local
search methods (e.g., [4,5,6,7]) and hybrid algorithms that combines a local
search with a population based method (e.g. [8,9,10,11]).

Iterated local search (ILS) [12] is a simple and effective type of metaheuristic
that has been successfully applied on a wide range of problems. The basic princi-
ple of ILS consists in successively applying perturbations and local search to the
current solution. The perturbation step plays a primary role because it drives
ILS to explore different regions of the search space, in order to escape from the
basin of attraction of the most recently visited local optima (diversification ef-
fort), while the goal of local search step is to focus more intensively within each
promising region to converge towards a local optimum (intensification effort).
However, as explained in [13], most LS algorithms handle diversity and intensity
as two opposite objectives : as one gets more intensity, one can lose diversity. So,
more coordination/balance is required between these two main objectives. The
Aspiration Plus CLS (Candidate List Strategy) [14,15] is a promising mech-
anism proposed for the Tabu Search. It restricts the number of neighbors to
examine for the next move, in order to control the intensification effort.

The goal of this work is to propose a new extension of the ILS algorithm,
noted ID-ILS, by introducing in both steps of ILS new local search devices that
enforce an efficient tradeoff of intensification and diversification. We performed

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 160–171, 2012.
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experiments on a set of challenging DIMACS graphs [16], and we have compared
our results to six local search methods, as well as to three hybrid evolutionary
algorithms HCA [9], MACOL [10] and MMT [11]. These results show that, our method
clearly dominates the local search approaches and is competitive compared to
the hybrid ones. Section 2 gives a synthetic overview of the GCP and presents
the best performing algorithms for solving it. Section 3 describes our resolution
approach ID-ILS and details their main components. Section 4 is devoted to
experimentations. Finally, we conclude and draw some perspectives.

2 Graph Coloring Problem

2.1 Definitions and Notations

Given a graph G = (V,E) with vertex set V and edge set E, and given an integer
k, a k-coloring of G is a function c : V → {1, . . . k}. The value c(u) of a vertex
u is called the color of u. An edge (u, v) ∈ E is said conflicting if its vertices u
and v have the same color. A k-coloring without conflicting edges is said legal,
otherwise it is illegal. Let s = [c(1), . . . , c(|V |)] be a legal k-coloring, s can be
represented by a partition of V into k disjoint subsets V 1, . . ., V k. We say that
V r is the color class r induced by s (i.e., the set of vertices having a color r in
s). The objective function f counts the number of conflicting edges induced by
s. The GCP is to determine the chromatic number χ(G) of G, i.e. the minimum
value of k for which there is a k-coloring s of G such that f(s) = 0.

2.2 Metaheuristic Approaches to the GCP

TABUCOL [5] is one of the most famous local search algorithms proposed for
the GCP. Morgenstern [7] proposed a complex algorithm, called MOR, based on
partial k-colorings. A solution is a partition of vertices of G into k disjoint color
classes {V 1, . . ., V k}. A specific class (i.e., V k+1) is used to represent the set
of uncolored vertices. A neighbor solution is obtained by moving an uncolored
vertex u from V k+1 to a pre-existing color class V h, and by moving to V k+1 all
vertices in V h that are adjacent to u. The complete legal k-coloring is obtained
by emptying V k+1.

In [9], an evolutionary algorithm, called HCA, combining an improved version of
TABUCOL with a Greedy Partitioning Crossover operator (GPX) was proposed.
GPX builds a partial legal k-coloring {V 1, . . . , V k} by alternatively selecting
from two parent solutions the class of maximum size to become color class V i of
the offspring. All vertices in this color class are then deleted from the parents.
The remaining vertices are then assigned to a class randomly chosen. In [10], a
similar approach was proposed, called MACOL, which extends GPX to use more
than two parents for generating color classes of the offspring.

In [4], twoTSmethods (DYN-P.COLandFOO-P.COL), basedonpartialk-colorings
were proposed. Finally,Hertz et al. [6] proposed an extension of theVNSalgorithm,
called Variable Search Space (VSS). The idea of VSS is to completely change the
search space and to consider different objective functions for each space. They pro-
posed VSS-Col, which moves between three different search spaces.
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Algorithm 1. Pseudo-code algorithm for ID-ILS

function ID-ILS(maxIter, maxneigh, maxMoves, nextneigh) ;
begin

s ← genRandomSol(), i ← 1, b ← bmax;1

while (i ≤ maxIter) do2

i ← i+ 1;3

s′ ← Perturbation(s, b) ;4

s′ ← LS(s′,maxneigh,maxMoves, nextneigh) ;5

if f(s′) < f(s) then6

s ← s′, i ← 1;7

b ← bmax;8

else b ← updatePertubationSize(i);9

return s;10

end

3 Intensification/Diversification-Driven ILS

3.1 Main Scheme of ID-ILS

ID-ILS extends ILS [12] by introducing new local search devices that enforce an
efficient tradeoff of intensification and diversification. To achieve this goal, we
first define an adaptive scheme to control the size for the perturbation (cf. Sect
3.2). Second, we make use a candidate list strategy, endowed with a diversification
mechanism to exit from local minima (cf. Sect. 3.3). Algorithm 1 presents its
pseudo-code. We denote by bmax the maximum perturbation size. It starts from
an initial solution s which is randomly generated. The loop in lines 2 to 9 is
performed until i number of consecutive iterations performed without improving
s reaches maxIter. A new local optimum s′ is obtained by the combination of a
perturbation move of size b applied to the current solution s (line 4) with a local
search procedure applied to the so obtained perturbed solution (line 5). If s′ is
better than s, it becomes the new current solution and i is reset to 1 (line 7);

3.2 Perturbation Step

Adaptive Perturbation. As explained in [12], the perturbation is just a col-
lection of moves that complement those carried out by the local search. A weak
perturbation is likely to get rapidly stuck in a deep local optima, whereas a
strong perturbation is prone to be slow in convergence and similar to a random-
ized search. Achieving such a delicate balance is a challenge and certainly it is the
key to success in ILS. We propose to exploit the search history to determine the
perturbation size (i.e., b). In our approach, b proportionally decreases according
to the value of i (see Algorithm 1). The main idea is to perform large perturba-
tions each time the current solution s is improved, and to favor gradually small
perturbations when s has not been improved for a long time. In fact, in our
experiments we observed that the space of solutions has very distant solutions



Intensification/Diversification-Driven ILS for GCP 163

that are nearly as good as the optimum. So, after getting a best coloring in one’s
neighbor solution by the local search procedure (i.e., intensification effort), one
must go explore other regions of locally optimal solutions. This is achieved by
using large perturbations (i.e., diversification effort). Initially, b is set to bmax.
During the search, each time s is improved b is reset to bmax (line 8); otherwise
it is decreased whenever i is increased, until reaching the value bmin (line 9).

Perturbation Schemes. Our perturbation operator consists of changing the
color of some conflicting vertices in s. Let us note by neighbors(u) the set of
all vertices adjacent to u and by X (s) the set of conflicting vertices in s. We
randomly select a first vertex vO in X (s) and move its original color to the best
possible other one (i.e. the new color is chosen among those producing the small-
est number of conflicts). Let s1 be the new perturbed solution. If s1 increases
the number of conflicts, we randomly select a new vertex among conflicted ones
in X (s1) \ X (s) and assign to it the best possible new color. This process is
repeated until a non-deteriorating move (i.e., that does not increase the num-
ber of conflicts) is found. In this way, we only accept moves that deacrese as
small as possible the solution quality. To favor the diversification capability, we
prevent changing the color of a vertex more than once. This sequence of moves
are successively applied with b different vO. This perturbation operator is noted
ConflictVar (P1). This operator, which is based on random choices, will change
the current solution in an unpredictable way. The result will be, most likely, a
worse solution, and many times, much worse. We propose to exploit information
from the topology of the constraints graph to guide the perturbation operator
towards more promising regions [17,18]. We propose new perturbations :

a) ConflictVar Chain (P2): We first randomly select an initial vertex vinit in
X (s) and move it into the best possible other color class V i. Let s1 be the new
perturbed solution. If s1 increases the number of conflicts, we randomly select a
new vertex u among conflicted ones in (X (s1) \ X (s)) ∩ V i and assign to it the
best possible new color class V j . This sequence of moves is achieved until a non-
deteriorating move is found. This process is repeated by successively applying
such sequences of changes with b different vinit.

b) ConflictVar Connected Centers (P3): We randomly select a first vertex vcc
noted “connected center” in X (s) and move it into the best possible other color
class V i. Then, for each conflicting vertex vc in neighbors(vcc)∩ V i, we move it
into the best possible other color class V j , and we assign the best possible color
to every new conflicting vertex in neighbors(vc) ∩ V j . This sequence of moves
are successively applied with b different vcc.

c)Conflict ColorClass (P4):We first select a color classV i having the highest num-
ber of conflicting vertices (ties are randomly broken) and move each of its vertices
into the best possible other color class. Let s1 be the new perturbed solution. Then,
we select randomly b new conflicting vertices from X (s1) \ X (s) and move each
of them into a best possible other color. A tabu list is used to forbid selecting the
color class V i for the next l iterations of ID-ILS, with l = 0.6×|X (s)|+rand(0, 9)
[9], where rand(0, 9) is a function providing a random number in {0, . . . , 9}.
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3.3 Local Search Step

Our local search procedure is an extension of TABUCOL. Algorithm 2 shows its
pseudo-code. We use a neighborhood defined by the 1-flip move, which consists
of changing the original color class V c(v) of a single conflicting vertex v to its best
possible new color class V i (c(v) �= i). (s, v, i) will denote this move (lines 7 to 8).
Once a move is performed, vertex v is forbidden to move back to its previous color
c(v) for the next T iterations (line 19). After preliminary experiments, the tabu
tenure T was fixed to 20. At each iteration, it determines the best neighbor s′ of
the current solution s such that either s′ is a non-tabu solution or f(s′) < f(s∗),
where s∗ is the best solution found so. Our stopping condition is based on a total
number of iterations (stopIter). Initially, stopIter = maxMoves (line 1). Each
time a best solution is found, stopIter is increased by the current number of
iterations performed (lines 20 to 21).

The most critical part for local search methods concerns the neighborhood
exploration, and more exactly: (i) the number of candidate neighbors to visit,
and (ii) the way of selecting the next move among these candidates. Indeed,
the number of candidates should be large enough to focus more intensively on
regions found to be good. However, it should be small enough to prevent ex-
amining a large set of candidates and thus to allow the search to exit from
local optima more quickly. Moreover, the way of selecting the next move should
drive the search towards unexplored regions in the solution space. To address
these issues, we make use a candidate list strategy (CLS) to manage the neigh-
borhood exploration. Two parameters are defined : (a) maxneigh which is the
maximum number of candidate neighbors studied in every move. This CLS man-
ages the maxneigh candidates so as to obtain a good tradeoff between intensi-
fication and diversification efforts; and (b) nextneigh which is a diversification
devise to jump out of local minima. Two variants perform this diversification
process. In the first variant, ID-ILS(first), where nextneigh is set to first,
the first neighbor among the maxneigh non-accepted candidates is selected (i.e.,
s first). In the second variant, ID-ILS(best), where nextneigh is set to best,
the best neighbor with a lowest cost among the maxneigh non-accepted candi-
dates is selected (i.e., s best). The loop in lines 6 to 16 is performed until a
better solution s′ which improves s∗ is obtained or no improvement has been
made after maxneigh iterations. According to the value of nextneigh, the next
neighbor solution is selected in lines 17 and 18 from the rejected candidates.

4 Experimental Results

In this section, we report experimental results over different graph types from
the DIMACS benchmarks. For some very difficult graphs, we considered a set of
k-coloring instances for different values of k. As experiments have been run on
various machines, we will report (when it is possible), normalized1 CPU times.

1 For a machine κ times slower than ours, reported CPU times will be divided by κ.
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Algorithm 2. Pseudo-code algorithm for LS

function LS (s, maxneigh, maxMoves, nextneigh) ;
begin

stopIter ← maxMoves;1

s first ← ∅, s best ← ∅, f(s best) ← 
, i ← 1, s∗ ← s;2

while (i ≤ stopIter) do3

i ← i+ 1, nbtries ← 1;4

firstfound ← false, done ← false;5

while (nbtries ≤ maxneigh) and not(done) do6

v ← randomConflictVertex(s);7

s′ ← getNeighbor(s, v);8

if not(firstfound) then9

firstfound ← true, s first ← s′;10

if (not(done) and (v, s′[v]) /∈ tabulist) or (f(s′) < f(s∗)) then11

s ← s′, done ← true;12

else13

if not(done) and (nextneigh = best) and (f(s′) < f(s best))14

then
s best ← s′ ;15

nbtries ← nbtries+ 1;16

if not(done) and (nextneigh = first) then s ← s first ;17

if not(done) and (nextneigh = best) then s ← s best ;18

insert (v, c(v)) in tabulist and make (v, c(v)) tabu for T iterations;19

if f(s) < f(s∗) then20

stopIter ← i+maxMoves, s∗ ← s;21

return s∗22

end

4.1 Problem Instances and Experimental Protocol

We experimented our algorithm on the following difficult graphs [16]:

– 8 DSJCn.y graphs: DSJCs are random graphs with n vertices and a density
equal to 0.y. We selected those with n ∈ {250, 500, 1000} and y ∈ {1, 5, 9}.

– 2 DSJRn.r graphs: DSJRs are geometric random graphs.We selected those
with n = 500 and r ∈ {1, 5}.

– 5 flatn x 0 graphs: flat graphs are quasi-random graphs. We selected the
flat300 x 0, with x ∈ {26, 28} and the flat1000 x 0, with x ∈ {50, 60, 76}.

– 4 len x graphs: the Leighton graphs are derived from scheduling, and have
450 vertices. We selected instances c and d, with x ∈ {15, 25}.

– one latin square graph (latin square 10).

Based on preliminary testing, we used the following parameter settings:
maxIter=2∗n, maxMoves=200, 000,maxneigh∈{50, 100, 150, 175, 200}, bmin=20,
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and bmax=50 (except for P1, where bmax=100). A set of 20 (or 10) runs per k-
coloring instance has been performed on a 2GHz Intel Core 2 DUO with 2GB
of RAM. We report the value of k for which a k-coloring was found, the number
of successful runs (”succ. runs/total runs”), the average CPU time in seconds
for successful runs and the average cost over the total runs. ID-ILS has been
implemented in C++.

Table 1. Comparing the different perturbation schemes. The best results are in bold.

Instance k Pi MaxN. Succ. Time Avg

DSJC250.5

28

P1 200 18/20 113.5 0.1
n=250 P2 175 18/20 148.1 0.1
m=15668 P3 150 20/20 118.9 0
k∗=28 P4 150 20/20 76.4 0

DSJC250.9

72

P1 50 20/20 8.5 0
n=250 P2 100 20/20 9.8 0
m=27897 P3 50 20/20 8.4 0
k∗=72 P4 50 20/20 10.86 0

DSJC500.1

12

P1 175 17/20 142.4 0.15
n=500 P2 175 17/20 448.9 0.2
m=24916 P3 100 13/20 303.4 0.5
k∗=12 P4 200 20/20 121.9 0

DSJC500.5

48

P1 200 1/10 2077.6 1.5
n=500 P2 100 2/10 4762.6 1.2
m=125248 P3 100 2/10 6445.6 1.6
k∗=48 P4 50 1/10 2820.6 2.1

DSJC500.9

126

P1 150 18/20 2451 0.15
n=500 P2 50 11/20 3513 0.45
m=224874 P3 175 14/20 5348.8 0.3
k∗=126 P4 175 12/20 6093.4 0.4

DSJR500.1c

85

P1 150 0/10 - 2
n=500 P2 200 0/10 - 2
m=121275 P3 50 1/10 152.2 1.8
k∗=85 P4 50 10/10 1713.5 0

DSJR500.5
125

P1 150 0/10 - 2.7

n=500

P2 100 0/10 - 3.1

m=58862

P3 100 0/10 - 1.4

k∗=122

P4 100 9/10 2702.6 0.15

124

P1 175 0/10 - 3.6
P2 100 0/10 - 3.9
P3 175 0/10 - 1.8
P4 175 1/10 297.1 1.4

DSJC1000.1

21

P1 50 20/20 3.67 0
n=1000 P2 50 20/20 3.1 0
m=49629 P3 50 20/20 3.3 0
k∗=20 P4 50 20/20 3.08 0

DSJC1000.5 88

P1 150 20/20 1546.4 0

n=1000

P2 50 20/20 1322.9 0

m=499652

P3 100 20/20 852.6 0

k∗=83

P4 50 20/20 1116.1 0

86

P1 150 0/10 - 5.5
P2 100 2/10 4998.6 1.7
P3 50 0/10 - 19.3
P4 175 2/10 27,071.2 4.8

le450 15c

15

P1 25 20/20 0.6 0
n=450 P2 25 20/20 0.6 0
m=16680 P3 25 20/20 0.4 0
k∗=15 P4 25 20/20 0.3 0

Instance k Pi MaxN. Succ. Time Avg

le450 15d

15

P1 150 20/20 2.9 0
n=450 P2 50 20/20 6.4 0
m=16750 P3 150 19/20 6.7 0.05
k∗=15 P4 50 20/20 3.2 0

le450 25c

26

P1 100 7/25 19.9 0.8
n=450 P2 100 25/25 10 0
m=17343 P3 150 18/25 12 0.32
k∗=25 P4 100 12/25 19.4 0.68

le450 25d

26

P1 100 11/20 61 0.56
n=450 P2 100 20/20 11.3 0
m=17425 P3 100 17/20 9 0.4
k∗=25 P4 150 7/20 17.2 0.88

flat300 26 0

26

P1 50 20/20 4.6 0
n=300 P2 50 20/20 4.2 0
m=21633 P3 50 20/20 3.2 0
k∗=26 P4 50 20/20 10.3 0

Flat300 28 0

31

P1 150 15/20 192 0.25

n=300

P2 150 17/20 160.9 0.15

m=21695

P3 175 17/20 239.1 0.15

k∗=28

P4 200 20/20 185 0

30

P1 150 10/20 1399.43 1.7
P2 100 10/20 1273.6 2
P3 150 9/20 1932.9 2
P4 150 8/20 1344.8 2.2

29

P1 50 2/20 547.3 9.35
P2 200 4/20 2075.8 8.3
P3 200 4/20 1612.7 8.2
P4 200 3/20 1190.9 8.75

flat1000 50

50

P1 50 0/20 2379.8 -
n=1000 P2 50 0/20 2305.1 -
m=224874 P3 50 0/20 1977.4 -
k∗=50 P4 50 20/20 2858.1 0

flat1000 60

60

P1 50 0/20 - -
n=1000 P2 50 0/20 - -
m=245830 P3 50 0/20 - -
k∗=60 P4 50 20/20 13,854 0

flat1000 76 0

86

P1 100 2/20 5750.6 1.77
n=1000 P2 100 1/20 29,765 2.8
m=246708 P3 150 0/20 - 9.88
k∗=82 P4 100 17/20 20,579 0.15

DSJC1000.9

224

P1 175 8/10 31,461 0.2
n=1000 P2 50 5/10 13,384 0.7
m=449449 P3 50 3/10 20,671 1.2
k∗=223 P4 150 9/10 32,598 0.1

latin square

100

P1 50 0/20 - 3.35
n=900 P2 50 0/20 - 3.35
m=307350 P3 50 0/20 - 3.75
k∗=98 P4 100 15/20 12,812.1 0.3

4.2 Comparing the Different Perturbation Schemes

Our first experiment aims to evaluate the effectiveness of our perturbation
schemes. Table 1 reports the detailed results of ID-ILS(first). Column 1 gives
the features of each instance: its name, the number of vertices (n), the num-
ber of edges (m) and the value of the best known coloring (k∗) (in bold when
it is the proven optimal value). Column 3 denotes the different perturbations
(Pi). Column 4 reports the best setting for maxneigh. A score (b-s-w) is as-
signed to each Pi, corresponding to the number of k-colorings for which Pi gets
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Table 2. Comparison among ID/TS and VSS-Col. Best results are in bold. Column P2
(resp. P4) refers to the results obtained by ID-ILS(first) with P2 (resp. P4).

Instance k∗ k ID-ILS(first+P4) ID-ILS(first+P2) VSS-Col ID/TS

Succ. Time Succ. Time Succ. Time kbest Time Avg.

DSJC250.5 28 28 20/20 76 18/20 148 - - 28 (1) 1241 0.8
DSJC250.9 72 72 20/20 11 20/20 10 - - 72 (5) 15 0

DSJC500.1 12 12 20/20 122 17/20 449 10/10 97 12 (5) 1465 0

DSJC500.5 48
48 1/10 2820 2/10 4762 3/10 1331

50 (3) 2378 0.4
49 12/20 1894 14/20 889 10/10 162

DSJC500.9 126
126 12/20 6094 11/20 3513 8/10 1686

127 (1) 3435 1
127 20/20 194 20/20 173 10/10 169

DSJR500.1c 85 85 10/10 1713 0/10 - 9/10 736 85 (0) - 1.4

DSJR500.5 122
124 1/10 297 0/10 - 0/10 -

125 (0) - 3.4
125 9/10 2702 0/10 - 0/10 -

DSJC1000.1 20
20 0/20 - 0/20 - 3/10 2396

21 (5) 4 0
21 20/20 3 20/20 3 10/10 11

DSJC1000.5 83
86 2/10 27,071 2/10 4998 0/10 -

90 (1) 2711 1.2
88 20/20 1116 20/20 1323 8/10 2028

DSJC1000.9 223
224 9/10 32,598 5/10 13,384 1/10 3326

228 (1) 5707 1.2
225 20/20 20,816 20/20 1546 5/10 1484

le450 15c 15 15 20/20 0 20/20 0 10/10 6 15 (5) 3 0
le450 15d 15 15 20/20 3 20/20 6 10/10 44 15 (5) 5 0

le450 25c 25 26 12/25 19 25/25 10 10/10 1 26 (3) 6 0.4
le450 25d 25 26 7/20 17 20/20 11 10/10 1 26 (1) 279 0.8

flat300 28 0 28
29 3/20 1191 4/20 2075 1/10 867

31 (1) 486 1.430 8/20 1344 10/20 1273 2/10 2666
31 20/20 185 17/20 160 10/10 39

flat1000 50 0 50 50 20/20 2858 0/20 - 10/10 318 60 (0) - 484.4
flat1000 60 0 60 60 20/20 13,854 0/20 - 10/10 694 70 (0) - 223.8

flat1000 76 0 82
86 17/20 20,579 1/20 29,765 0/10 -

90 (5) 1190 087 20/20 1204 20/20 1780 4/6 1689
88 NA NA NA NA 10/10 1155

P2 P4 P4 P2 P4 P2
Better 4 0 3 2 10 8
Equal 14 14 12 9 8 8
Worse 0 4 1 4 0 0

respectively better (2nd better in parentheses), equal (100%) and worse success
rates than the other perturbations. From Table 1, the following remarks are
drown :

– Perturbations based on the topology of the constraints graph (except P3)
are clearly more relevant. Both P1 (score: 2(5)-6-10) and P3 (score: 3(6)-6-9)
perform similarly, with a slight advantage to P3. This can be explained by
the fact that P3 performs perturbations only on a very limited part of the
graph, whereas the random character of P1 allows more diversification in the
perturbation step, which helps to find better solutions.

– P2 (score: 6(3)-6-7) and P4 (score: 12(2)-6-4) outperform P3. Both pertur-
bations find solutions with better success rates respectively for 6 and 12
coloring instances among 24, whereas P3 obtains best success rates for 3 col-
oring instances. Indeed, perturbations P2 and P4 allow a more “aggressive”
diversification by performing perturbations on different connected subparts
of the graph.

– Finally, P4 clearly dominates P2: P2 obtains better success rates on 5 k-
coloring instances while P4 outperforms P2 on 11 k-coloring instances.

4.3 Comparison with Two Local Search Methods

We have compared ID-ILS(first) using the two best perturbations P2 and P4,
with two local search methods:
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(i) ID/TS, a variant of TS endowed with our CLS. We made experiments with
nextneigh set to first and maxneigh ∈ {50, 100, 150, 175, 200}. For
each value of k, and each trial, ID/TS is run 20 times with maxMoves set
to 1, 500, 000. If no legal k-coloring is found, then it is run 10 times with
maxMoves equal to 5, 000, 000. A set of 5 trials per k-coloring is performed.

(ii) VSS-Col which is one of the most performing among local search coloring
algorithms [6]. The reason for comparing ID-ILS with VSS-Col is that both
methods are very close. However, VSS-Col considers different search spaces,
each one being associated with a set of neighborhoods.

Table 2 compares performances of the four methods. Results for VSS-Col are
taken from [6] and correspond to those obtained with a time limit of 1h on a 2
GHz Pentium 4, with 512 MB of RAM. For ID/TS, we report the best value of k
(kbest) found, the number of successful runs (in parentheses), the average CPU
time in seconds for successful runs and the average cost among the five trials.
The last three rows show the summary of the comparisons. The rows better,
equal and worse gives respectively the number of graphs for which our method
gets better, equal and worse colorings than the other algorithms.

ID-ILS(first+P4) is clearly the best one. From these results, we observe
that the two variant of ID-ILS(first) outperform ID/TS, particularly on large
graphs, where better colorings have been found on at least eight large graphs.
For the two flat1000 50&60, ID/TS was not able to find a legal coloring even for
high values of k. On the eight remaining graphs, the two methods find solutions
of the same quality, but ID-ILS(first) provides better success rates.

When comparing with the results of VSS-Col, ID-ILS(first+P4) gets better
solutions on three graphs, with colorings using respectively 2, 2 and 1 less colors,
and it is worse on one graph. Both methods obtain the same colorings on 12
graphs. However, if we compare the success rates, ID-ILS(first+P4) performs
better than VSS-Col on three graphs. Both algorithms find the same colorings,
with the same success rate on five graphs, but VSS-Col is generally faster, except
for le450 15c&15d, where ID-ILS(first+P4) find optimal colorings very quickly.
So, ID-ILS(first+P4) can be considered as more effective than VSS-Col.

4.4 Comparison with the Most Effective Algorithms

In this section we compare our method with the most performing algorithms for
the GCP: four local search algorithms (MOR [7], ILS [19] and DYN/FOO-P.COL [4])
and three hybrid evolutionary methods (HCA [9], MACOL [10] and MMT [11]). How-
ever, we do not report the CPU times because the conditions of experimentation
are not equivalent. So, comparisons must be done with care. Results are given
so that the reader may have a baseline by which he may evaluate ID-ILS.

If we compare the results of ID-ILS(first+P4) with those of local search
methods, one easily observes that our method clearly dominates these local
search algorithms (see last three rows of Table 3). Indeed, our method obtains
worse results for at most three graphs while better results are obtained for
at least six graphs, except for ILS, where our approach obtains better results
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Table 3. Comparison with the state-of-the-art algorithms

Instance MOR ILS HCA FOO-P.COL DYN-P.COL MACOL MMT ID-ILS

kbest kbest Succ. k Succ. k Succ. k Succ. k kbest Succ. k

DSJC250.5 28 28 9/10 28 20/20 8 28 20/20 28
DSJC250.9 - - 10/10 72 72 20/20 72
DSJC500.1 12 12 23/50 12 50/50 12 20/20 12 12 20/20 12
DSJC500.5 49 49 5/10 48 50/50 50 1/50 49 20/20 48 48 1/10 48
DSJC500.9 128 126 48/50 128 1/50 127 20/20 126 127 12/20 126
DSJR500.1c 85 - 50/50 85 3/50 85 20/20 85 85 10/10 85
DSJR500.5 123 124 24/50 128 28/50 126 11/20 122 122 1/10 124
DSJC1000.1 21 - - 20 50/50 21 3/50 20 20/20 20 20 20/20 21
DSJC1000.5 88 89 - 83 5/50 89 6/50 89 20/20 83 84 2/10 86
DSJC1000.9 226 - - 224 30/50 228 30/50 228 18/20 223 225 9/10 224
le450 15c 15 15 6/10 15 50/50 15 50/50 15 20/20 15 15 20/20 15
le450 15d 15 15 50/50 15 50/50 15 20/20 15 15 20/20 15
le450 25c 25 26 10/10 26 50/50 27 50/50 27 20/20 25 25 12/20 26
le450 25d 25 26 50/50 27 50/50 27 20/20 25 25 7/20 26
flat300 26 0 26 26 20/20 26 26 20/20 26
flat300 28 0 31 31 6/10 31 35/50 28 13/50 28 15/20 29 31 3/20 29
flat1000 50 0 50 - 50/50 50 50/50 50 20/20 50 50 20/20 50
flat1000 60 0 60 - 50/50 60 50/50 60 20/20 60 60 20/20 60
flat1000 76 0 89 - 4/5 83 10/50 88 9/50 88 20/20 82 83 17/20 86
latin square - 99 5/20 99 101 15/20 100

Better 6 3 1 8 8 0 4
Equal 9 9 5 7 6 12 10
Worse 3 1 3 1 2 8 6

for three graphs. For DSJC500.9 (resp. DSJC1000.9), ID-ILS(first+P4), ILS
and VSS-Col are the only algorithms that can reach 126-coloring. Detailed com-
parisons are given bellow:

– ID-ILS(first+P4) is better than MOR on six graphs and worse on three
graphs (DSJR500.5, le450 25c and le450 25d).

– ID-ILS(first+P4) is better than ILS on three graphs and worse on one
graph (latin square). This comparison is very informative as well and shows
the importance of our perturbation scheme P4 as well as of the CLS.

– ID-ILS(first+P4) is better than DYN/FOO-P.COL on eight graphs and worse
on two/one graphs. For flat300 28, there are only few algorithms in the
literature that can reach 28-coloring.

– ID-ILS(first+P4) is better than VSS-Col on three graphs (six graphs if we
consider the success rates) and worse on two graphs.

When comparing with the results of the two hybrid evolutionary algorithms
HCA and MMT, one observes that ID-ILS(first+P4) is competitive. Indeed, our
method is better than HCA on flat300 28 0 and worse on three graphs, better than
MMT on four graphs (DSJC500.9, DSJC1000.9, flat300 28 0 and latin square) and
worse on six graphs. If we compare with the results of MACOL, one easily observes
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Table 4. Impact of the CLS and the nextneigh parameter on the performance of
ID-ILS. We report in parentheses the best cost for the unsuccessful runs.

Instance k Pi ID-ILS(first) ID-ILS(best) ILS/TS

Succ. Time Avg. Succ. Time Avg. Succ. Time Avg.

le450 15c 15
P2 20/20 0.6 0 10/20 9.1 2.15 5/20 286 7.5
P4 20/20 0.3 0 7/20 17.4 3.1 0/20 - 24.7(2)

le450 15d 15
P2 20/20 6.4 0 11/20 76.4 1.05 2/20 468.5 11.7
P4 20/20 3.2 0 5/20 43.6 2.7 0/20 - 31.5(13)

le450 25c 26
P2 25/25 10 0 0/20 - 6.1(4) 5/20 295.6 2.2
P4 12/25 19.4 0.68 0/20 - 6.6(5) 0/20 - 6.6(2)

le450 25d 26
P2 20/20 11.3 0 0/20 - 5.4(3) 7/20 233 2.2
P4 7/20 17.2 0.88 0/20 - 6.6(5) 2/20 79.5 5.6

DSJC250.5 28
P2 18/20 148.1 0.1 0/20 - 3.9(2) 3/20 1436 2.7
P4 20/20 76.4 0 0/20 - 5(4) 1/20 149 5.5

DSJC500.9 127
P2 20/20 173.3 0 0/20 - 3.95(2) 1/20 5523 3.85
P4 19/20 194.2 0.05 0/20 - 5.05(3) 1/20 687 5.3

that MACOL clearly outperforms ID-ILS(first+P4). However, our method should
be considered as a simple local search method which uses very simple diversi-
fication devices, while HCA, MMT and MACOL are much more complex algorithms,
with sophisticated ingredients finely tuned.

4.5 Analysis of the Parameters of ID-ILS

The aim of this section is to study the impact of the two local search devices,
on the performance of ID-ILS.

(a) Impact of nextneigh. Table 4 compares the results of the two variants of
ID-ILS. The impact of setting nextneigh to first has a strong influence on
the effectiveness of ID-ILS, particularly on le450 25 and DSJC500.9, for which
several orders of magnitude are gained. The poor results of ID-ILS(best) are
probably due to the fact that selecting the best neighbor among the maxneigh

non-accepted candidates leads ID-ILS to get stuck in a deep local optimum
looping between already visited areas. This surprising result shows that setting
nextneigh to first clearly favors diversification.

(b) Impact of the CLS. In this study, we compared ID-ILS with a version
of ILS using TABUCOL without any CLS (noted ILS/TS). As showed in Table 4,
ID-ILS(first) is clearly more relevant. We can observe that the impact of the
CLS when nextneigh = best is not systematic. Indeed, compared to ILS/TS,
ID-ILS(best) performs very well on le450 15c&d, but on the other instances,
ILS/TS is very effective. These results highlight the importance of the CLS device
for enforcing a tradeoff between intensification and diversification.

5 Conclusions

In this paper, we have proposed a new extension of the ILS algorithm, noted
ID-ILS, by introducing new devices that enforce an efficient tradeoff between in-
tensification and diversification. For the graph coloring problem, we have defined
new perturbation schemes that exploit information from the topology of the con-
straints graph. Experimentations, carried out on a set of DIMACS graphs show
that our method is very competitive with the current best hybrid approaches. Let
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us mention that our approach is generic (with some adaptations for perturba-
tion schemes) and could be applied to other difficult optimization problems. We
are currently investigating such a direction on Radio link frequency assignment
(RLFAP), and Car Sequencing problems. We also intend to study the impact of
the perturbation size on intensification/diversification.
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Abstract. The problem of allocating a set of facilities in order to max-
imise the sum of the demands of the covered clients is known as the
maximal covering location problem. In this work we tackle this problem
by means of iterated greedy algorithms. These algorithms iteratively re-
fine a solution by partial destruction and reconstruction, using a greedy
constructive procedure. Iterated greedy algorithms have been applied
successfully to solve a considerable number of problems. With the aim of
providing additional results and insights along this line of research, this
paper proposes two new iterated greedy algorithms that incorporate two
innovative components: a population of solutions optimised in parallel
by the iterated greedy algorithm, and an improvement procedure that
explores a large neighbourhood by means of an exact solver. The bene-
fits of the proposal in comparison to a recently proposed decomposition
heuristic and a standalone exact solver are experimentally shown.

Keywords: iterated greedy algorithm, large neighbourhood search,
maximal covering location problem.

1 Introduction

The maximal covering location problem MCLP [4] considers a predefined number
of facilities that have to be allocated such that the demand of the clients covered
by these facilities—given a maximum service distance—is maximal. This problem
has several real-world applications in different fields, including the planning of
service locations such us health-care centres, fire stations, and emergency centres.

More precisely, let M be the set of m potential facility locations and N the set
of n clients to be covered.D(i, j) denotes the distance between each pair of nodes
i ∈ N and j ∈ M , U is the maximum service distance, and wi is the demand of
client i. Note that a client i is covered by a facility installed at location j ∈ M
iff D(i, j) ≤ U . The objective is to maximise the sum of the demands of all the
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clients covered by any of the p installed facilities. The MCLP may be formulated
as the following zero-one integer programming problem [4]:

max z =
n∑

i=1

wi · xi

subject to:
∑
j∈Si

yj ≥ xi for i ∈ N

∑
j∈M

yj = p

xi ∈ {0, 1} for i ∈ N

yj ∈ {0, 1} for j ∈ M

(1)

(2)

(3)

(4)

(5)

Hereby, xi is a binary variable indicating whether client i is covered by a
facility, yj is a binary variable that attests whether location j has been chosen
to install a facility, and Si is the set composed by all potential facility locations
that cover client i, that is, Si = {j ∈ M : D(i, j) ≤ U}.

1.1 Previous Work

The MCLP is an NP-hard problem [9] that has received quite some attention
since it was presented, having resulted in a variety of proposals for tackling
the problem. The latter include exact algorithms for relaxations of the prob-
lem [4,6,7,8], greedy heuristics [4], and several metaheuristics such as genetic al-
gorithms [2,14], tabu search [14], and simulated annealing [14]). Recently, Senne
et al. [13] presented a decomposition heuristic to perform a cluster partitioning,
resulting in smaller subproblems (clusters) that can be solved independently by
exact methods (LagClus). The results obtained by this approach are compared
in terms of quality and computational time required with regards to those of
a commercial solver (CPLEX [1]), indicating that the proposed decomposition
approach can substantially reduce the time for providing good-enough solutions
to large problem instances.

1.2 Our Contribution

In this work, we propose two iterated greedy (IG) algorithms [5,11] for solving the
MCLP. IG algorithms, generally, try to iteratively refine a solution by removing
elements from this solution by means of a destructive procedure and reconstruct-
ing the resulting partial solution using a greedy constructive procedure. The first
one of the proposed IG variants extends the basic IG idea by considering a pop-
ulation of solutions that are improved in parallel by means of the standard IG
procedure. The resulting algorithm is labelled population-based iterated greedy
(PBIG). Second, we propose a hybrid algorithm that combines PBIG with an
exact solver. In particular, CPLEX is employed for this purpose. The idea con-
sists in completing the solutions provided by the destruction procedure of IG
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by means of the application of CPLEX. The latter only optimises a predefined
number of components of each solution, while the remaining components of the
solution are fixed to the values of the partial solutions received as input. This
strategy is known as large neighbourhood search (LNS) [3,12]. The basic idea is
to combine the advantages of a large neighbourhood, which usually enhances the
exploration of a local search method, with an exhaustive tree-search exploration
which is faster than enumeration. Our second IG approach is labelled population
based iterated greedy with large neighbourhood search (PBIG+LNS).

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we present in
detail the two proposed IG variants for the MCLP. In Section 3, we present a
empirical study that compares the behaviour of the two proposed IG algorithms
with regards to those of the most recent proposal from the literature, LagClus,
and a standalone CPLEX procedure. Finally, in Section 4, we discuss conclusions
and further work.

2 Proposed IG Variants for the MLCP

In this section, we describe the two proposed IG variants for the MLCP. First,
let us focus on the PBIG scheme. It extends IG by working on a population
of solutions which is managed in the style of evolution strategies. The resulting
algorithm is outlined in Figure 1. It starts by initialising the population P with
t solutions generated by a probabilistic greedy constructive procedure (as out-
lined below). Inside the main loop, each solution s ∈ P is optimised by means
of a destruction/re-construction procedure, generating a new population Pn of
solutions. The destruction step consists in randomly removing nd elements from
the considered solution s, resulting in a partial solution sd. This solution is re-
constructed by means of the same probabilistic greedy constructive procedure
that was used to generate the initial population. This step results in a (possibly
new) complete solution sc which is then added to Pn. After applying this process
to all solutions from P , the new population Pn is added to P , resulting in a new
set P of size 2 ·t. The last step of each iteration consists in choosing the best t so-
lutions from P for the population of the next iteration. The proposed algorithm
iterates through these phases until a computation limit tmax is reached.

2.1 The Probabilistic Greedy Procedure

The probabilistic greedy constructive procedure used for the initialisation of the
population and the re-construction of partial solutions works as follows. At each
step, it considers placing a new facility in any of the locations that is not yet
occupied by an already installed facility. For each of these options, it calculates
the contribution to the objective function value, that is, the increase in the
function value caused by the respective option. The two options which cause the
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Input: tmax, t, nd, prob
Output: s
P ←GenerateInitialPopulation(t);1

while computation time limit tmax not reached do2

Pn ← ∅ ;3

foreach s ∈ P do4

sd ← Destruction(s, nd);5

if PBIG() then sc ← Construction(sd, prob) // PBIG ;6

else sc ← LNS(sd) // PBIG+LNS ;7

Pn ← Pn ∪ {sc};8

end9

P ← P ∪ Pn;10

P ← SelectBestSolutions(P, t) ;11

end12

Fig. 1. PBIG and PBIG+LNS scheme

highest increase are identified. Finally, the best option is chosen with probability
prob, which is an input parameter of the algorithm. Otherwise the second-best
option is chosen. The procedure stops once p facilities are installed.

2.2 PBIG+LNS

As mentioned already in the introduction, PBIG+LNS modifies PBIG by replac-
ing the constructive step with a large neighborhood search method applied to
the solutions generated by the destructive step of PBIG (see line 7 of the algo-
rithm from Figure 1). This procedure is performed by an exact solver (CPLEX),
whereby the size of the neighbourhood is determined by fixing the components
provided by the current partial solution sd. In particular, a binary variable yj
(see the definition of the MCLP) is fixed to 1 if location j is selected as a facility
in sd. In the same way, a variable xi is fixed to 1 if client i is covered by any of the
fixed facility locations. This means that CPLEX will try to find an allocation for
the nd unallocated facilities. In this way, CPLEX—which is already very efficient
for problem instances with a small number of clients and facilities [13]—can be
used as a sub-ordinate procedure for tackling large-size problem instances. The
complete pseudocode of the LNS method is shown in Figure 2.

3 Computational Experiments

This section describes the computational experiments performed to assess the
performance of the two IG algorithms presented in the previous section. Both
PBIG and PBIG+LNS were coded in Java and the tests were conducted on a
computer with a 3.2 GHz Intel i7 processor with 12 GB of RAM running Fedora
Linux V15.
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Input: sc
Output: sc
Yfixed ← ∅ ;1

Xfixed ← ∅ ;2

foreach j ∈ M do3

if IsSelectedAsFacility(j, sd) then Yfixed ← Yfixed ∪ {yj} end;4

end5

foreach i ∈ N do6

if IsCovered(i, sd) then Xfixed ← Xfixed ∪ {xi} end;7

end8

sc = CPLEX(Yfixed, Xfixed) // Neighbourhood restricted to the set of9

free binary variables xi and yj ;

Fig. 2. Procedure LNS() of PBIG+LNS

3.1 Problem Instances

We have employed two different sets of problem instances:

1. Real case instances for facility location problems in Sao Jose dos Cam-
pos, Brazil (SCJ instances). These instances are available for download at
http://www.lac.inpe.br/lorena/instancias.html.

2. An instance which was created on the basis of instance PCB3038 available
from the TSPLIB [10].

3.2 Tuning Experiments

In order to perform a fine-tuning of the two proposed IG algorithms we first
conducted tuning experiments in order to find values for the following algorithm
parameters:

1. Population size t: values from {1, 2, 10, 10, 50, 100} were considered.
2. Destruction size nd: For the percentage of elements dropped from the

current solution during the destructive step values from {5%, 10%, 20%, 50%}
were considered.

3. Degree of determinism for the solution construction prob: for the
probability of accepting the option with the best contribution during the
greedy constructive procedure values from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}) were
considered. Note that prob = 1.0 corresponds to a completely deterministic
solution (re-)construction.

For each combination of values for the three parameters (full factorial design),
we applied both PBIG (and PBIG+LNS) to a subset of the real-case instances.
The computation time limits were chosen dependent on the number of clients
of the instance (50 seconds for instances with 324, respectively 500, clients and
100 seconds for those with 818 clients). A rank-based analysis was applied to
the results. The parameter combination with the best average rank over all

http://www.lac.inpe.br/∼lorena/instancias.html
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Table 1. Parameters values

Parameter PBIG PBIG+LNS

Population size (t) 100 20
Elements dropped (nd) 20% 50%

Degree of determinism (prob) 0.8 0.8

testing instances is shown in Table 1. Although PBIG and PBIG+LNS share
core funcionality, we have performed their parameter analysis separately. The
tuning outcome shows that, interestingly, the two algorithm versions reach their
best performance with quite different values for two out of the three parameters.

3.3 Experimental Results

In the following we describe the outcome of a comparative analysis between
the results of PBIG and PBIG+LNS and those of LagClus, which is the cur-
rently best heuristic method, and the standalone CPLEX procedure. The re-
ported results for LagClus and CPLEX are the ones provided in [13]. They
were obtained on a computer with an Intel Core 2 Duo 2.0 GHz processor and
2.0 GB RAM, running Windows XP. Tables 2 and 3 show the results for the
SCJ instances, considering a service distance of 150 and 200, respectively. For
each instance—which is determined by a number of clients, n, and a number
of facilities, p—we provide the optimal solution obtained by CPLEX and the
gap = 100 · ((Result − Optimal)/Optimal) for each algorithm. Moreover, for
each algorithm we show the computational time needed to obtain the corre-
sponding result. The results reported for PBIG and PBIG+LNS correspond to
the average over 10 independent applications to each problem instance. Con-
cerning the computation time limits, we used the same ones as for the tuning
procedure.

The results of the considered algorithms as shown in Tables 2 and 3 allow us
to make the following observations:

– Comparing the results of PBIG and PBIG+LNS, we can observe that PBIG+
LNS clearly outperforms PBIG. In addition, analysing the computational
time used by the two algorithms, we can observe that PBIG+LNS reduces
the computational time requirements with respect to PBIG, especially when
larger problem instances are concerned. This indicates that the hybridisation
with LNS seems to be a decisive element to improve not only the quality of
the results but also for the reduction of the computation time requirements.

– Concerning the comparison of PBIG+LNS with LagClus, we can observe
that PBIG+LNS exceeds or equals the results of LagClus for all instances
with U = 150 and—with one exception—also for all instances with U = 200.
It is noticeable that PBIG+LNS is able to obtain optimal solutions in all 10
runs in 37 out of 46 cases, which is indicated by an average gap of 0.000. This
fact shows that—in addition to reaching high quality solutions—PBIG+LNS
is characterized by a very stable behaviour. Concerning computation time,
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Table 2. Results for the SJC instances, U=150

n p Optimal LagClus PBIG PBIG+LNS
Result (time s) Gap (time s) Gap (time s) Gap (time s)

324

20 7302 (0.015) 0.000 (2.543) 0.000 (0.391) 0.000 (0.381)
30 9127 (0.047) 0.027 (24.650) 0.072 (9.633) 0.000 (5,082)
40 10443 (0.188) 0.108 (25.985) 0.000 (26.553) 0.000 (10.320)
50 11397 (0.391) 0.138 (24.452) 0.005 (20.313) 0.000 (11.164)
60 11991 (0.235) 0.024 (44.514) 0.097 (26.896) 0.000 (10.576)
80 12152 (0.031) 0.000 (8.876) 0.000 (9.181) 0.000 (3.732)
108 12152 (0.016) 0.000 (1.595) 0.000 (0.761) 0.000 (0.672)

500

40 13340 (0.047) 0.000 (3.453) 0.247 (4.560) 0.000 (3.857)
50 14773 (0.047) 0.000 (4.938) 0.093 (22.381) 0.000 (6.529)
60 15919 (0.063) 0.000 (8.233) 0.092 (31.052) 0.000 (12.073)
70 16908 (0.031) 0.000 (3.723) 0.002 (41.019) 0.000 (8.339)
80 17749 (0.015) 0.000 (5.406) 0.038 (44.786) 0.000 (10.938)
100 18912 (0.109) 0.000 (10.276) 0.310 (46.737) 0.000 (24.574)
130 19664 (0.297) 0.015 (30.827) 0.230 (47.735) 0.000 (30.642)
167 19707 (0.047) 0.003 (14.600) 0.000 (1.057) 0.000 (0.931)

818

80 23325 (0.140) 0.003 (45.564) 0.293 (94.376) 0.000 (28.637)
90 24455 (0.266) 0.041 (56.388) 0.348 (91.452) 0.000 (37.726)
100 25435 (0.344) 0.012 (87.279) 0.306 (94.742) 0.000 (40.067)
120 26982 (0.297) 0.015 (69.658) 0.446 (93.713) 0.000 (33.781)
140 28802 (0.359) 0.095 (52.966) 0.597 (94.131) 0.002 (44.736)
160 28699 (0.391) 0.107 (58.453) 0.612 (93.477) 0.004 (74.202)
200 29153 (0.234) 0.011 (61.531) 0.096 (92.225) 0.000 (40.068)
273 29168 (0.031) 0.000 (3.343) 0.000 (1.439) 0.000 (1.271)

it seems that the requirements of LagClus and PBIG+LNS are of the same
order of magnitude. All in all, this indicates that PBIG+LNS is a new state-
of-the-art method for what concerns heuristics for the MCLP.

– For what concerns the comparison to CPLEX, we must observe that CPLEX
is able to solve all problem instances in very little computation time. There-
fore, PBIG+LNS must be considered inferior to CPLEX for the SJC in-
stances.

Finally, in Table 4 we show the results of all analysed algorithms for the set of
instances derived from the TSPLIB instance PCB3038. PBIG and PBIG+LNS
consider a computation time limit of 1500 seconds for each run. It is important to
highlight that the number of clients considered in this case is much higher than
in the case of the SCJ instances, which imposes a more complicated environment
for the analysed algorithms. In fact, as shown in Table 4, CPLEX is unable to
confirm the optimality of solutions within the predefined time limit of 20000
seconds for instances with more than 18 facilities. These cases are marked by an
asterisk. Therefore, large-size instances are the ones for which PBIG+LNS is an
interesting alternative. Concerning the results of Table 4, we can conclude the
following:
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Table 3. Results for the SJC instances, U=200

n p Optimal LagClus PBIG PBIG+LNS
Result (time s) Gap (time s) Gap (time s) Gap (time s)

324

20 9670 (0.172) 0.243 (19.293) 0.307 (9.633) 0.000 (11.064)
30 11737 (0.484) 0.060 (28.943) 0.098 (25.676) 0.000 (12.580)
40 12151 (0.094) 0.008 (31.066) 0.023 (35.910) 0.004 (19.813)
50 12152 (0.015) 0.000 (9.926) 0.000 (0.494) 0.000 (0.469)
60 12152 (0.047) 0.000 (4.575) 0.000 (0.620) 0.000 (0.506)
80 12152 (0.016) 0.000 (3.670) 0.000 (0.637) 0.000 (0.663)
108 12152 (0.031) 0.248 (11.343) 0.000 (0.643) 0.000 (0.763)

500

40 17077 (0.233) 0.387 (24.668) 0.255 (45.223) 0.012 (25.679)
50 18361 (0.109) 0.003 (39.109) 0.326 (43.199) 0.000 (24.485)
60 19153 (0.063) 0.005 (52.639) 0.352 (47.504) 0.017 (31.036)
70 19551 (1.078) 0.069 (43.946) 0.397 (46.511) 0.006 (30.314)
80 19703 (0.156) 0.008 (35.495) 0.124 (45.296) 0.001 (22.716)
100 19707 (0.078) 0.000 (16.624) 0.000 (1.050) 0.000 (0.832)
130 19707 (0.047) 0.000 (1.986) 0.000 (1.025) 0.000 (1.017)
167 19707 (0.016) 0.016 (22.379) 0.000 (0.954) 0.000 (1.026)

818

80 27945 (0.203) 0.069 (57.835) 0.858 (94.841) 0.000 (51.136)
90 28519 (1.141) 0.071 (114.145) 0.828 (95.977) 0.013 (75.486)
100 28910 (1.391) 0.036 (88.885) 0.801 (91.365) 0.000 (59.345)
120 29165 (1.234) 0.002 (55.710) 0.185 (90.345) 0.001 (56.270)
140 29168 (0.125) 0.000 (11.643) 0.000 (79.766) 0.000 (10.313)
160 29168 (0.062) 0.000 (9.738) 0.000 (1.087) 0.000 (1.087)
200 29168 (0.032) 0.000 (5.762) 0.000 (1.288) 0.000 (1.276)
273 29168 (0.031) 0.207 (24.689) 0.000 (1.491) 0.000 (1.513)

Table 4. Results for the TSPLIB instance PCB3038, U=400

n p Optimal LagClus PBIG PBIG+LNS
Result (time s) Gap (time s) Gap (time s) Gap (time s)

3038

17 125320 (802) 0.205 (844) 0.992 (354) 0.125 (357)
18 130004 (10265) 0.372 (817) 0.481 (384) 0.236 (556)
19 134262* (20000) 0.382 (1483) 0.552 (573) 0.265 (602)
20 138028* (20000) 0.698 (1712) 0.165 (941) 0.033 (518)
21 141279* (20000) 0.024 (3117) 0.085 (913) 0.000 (583)
22 143809* (20000) 0.024 (6656) 7.155 (573) 0.010 (602)

– PBIG+LNS is able to significantly improve over the gap of LagClus for all
considered instances, while requiring even less computation time.

– PBIG+LNS generates solutions close to the ones of CPLEX, while reducing
substantially—especially for instances with more than 17 facilities—the time
needed to obtain high-quality solutions.

4 Conclusions and Future Work

In this paper, we have proposed two IG algorithms for the maximum covering
location problem. The proposed algorithms add two novel components to the



180 F.J. Rodriguez et al.

basic IG technique. In the first place, PBIG incorporates a population of so-
lutions evolved in parallel by means of the classic destruction/re-construction
procedure of IG algorithms. In the second place, PBIG+LNS extends PBIG by
incorporating an exact solver to complete the solutions generated by the de-
structive procedure of IG, following the ideas of large neighborhood search. The
resulting hybrid algorithm, PBIG+LNS, has proved to be superior to a recently
proposed decomposition heuristic. Moreover, in the case of large-scale instances,
where the computation time requirements of CPLEX explode, PBIG+LNS arises
as a tool of choice to face this kind of problems.

We believe that the IG frameworks presented in this paper are an interest-
ing contribution, worthy of further study. We will mainly focus on the follow-
ing avenues of possible research: (1) study of the behaviour of the proposed
PBIG+LNS for what concerns new instances of the problem and (2) adapting
the PBIG+LNS approach for its application to other challenging optimisation
problems, especially when large-size instances are concerned.

Acknowledgements. This work was supported by grants TIN2007-66523 and
TIN2008-05854 of the Spanish government and by grant P08-TIC-4173 of the
Andalusian regional goverment. Moreover, Christian Blum acknowledges sup-
port from the Ramón y Cajal program of the Spanish Ministry of Science and
Innovation.

References

1. IBM ILOG CPLEX optimizer (November 2011),
http://www-01.ibm.com/software/

integration/optimization/cplexoptimizer/

2. Arakaki, R.G.I., Lorena, L.A.N.: A constructive genetic algorithm for the maximal
covering location problem. In: Proceedings of the 4th Metaheuristics International
Conference (MIC 2001), pp. 13–17 (2001)

3. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combina-
torial optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)

4. Church, R., Velle, C.R.: The maximal covering location problem. Papers in Re-
gional Science 32(1), 101–118 (1974)

5. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy.
Dimacs Series in Discrete Mathematics and Theoretical Computer Science, pp.
245–284. American Mathematical Society (1996)

6. Galvao, R.D., Espejo, L.G.A., Boffey, B.: A comparison of lagrangean and surro-
gate relaxations for the maximal covering location problem. European Journal of
Operational Research 124(2), 377–389 (2000)

7. Galvao, R.D., ReVelle, C.: A lagrangean heuristic for the maximal covering location
problem. European Journal of Operational Research 88(1), 114–123 (1996)

8. Lorena, L.A., Pereira, M.A.: A lagrangean/surrogate heuristic for the maximal cov-
ering location problem using hillsman’s edition. International Journal of Industrial
Engineering 9, 57–67 (2001)

9. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problem.
SIAM Journal on Algebraic and Discrete Methods 4(2), 253–261 (1983)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/


Iterated Greedy Algorithms for the Maximal Covering Location Problem 181

10. Reinelt, G.: The traveling salesman: computational solutions for TSP applications.
Springer, Heidelberg (1994)
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Abstract. The hydrophobic-polar (HP) model for protein structure pre-
diction abstracts the fact that hydrophobic interactions are a dominant
force in the protein folding process. This model represents a hard com-
binatorial optimization problem, which has been widely addressed us-
ing evolutionary algorithms and other metaheuristics. In this paper, the
multiobjectivization of the HP model is proposed. This originally single-
objective problem is restated as a multiobjective one by decomposing the
conventional objective function into two independent objectives. By us-
ing different evolutionary algorithms and a large set of test cases, the new
alternative formulation was compared against the conventional single-
objective problem formulation. As a result, the proposed formulation
increased the search performance of the implemented algorithms in most
of the cases. Both two- and three-dimensional lattices are considered. To
the best of authors’ knowledge, this is the first study where multiobjec-
tive optimization methods are used for solving the HP model.

Keywords: Multiobjectivization, protein structure prediction,
HP model.

1 Introduction

Proteins, the working molecules of the cell, are linear chains composed from
up to 20 different building blocks called amino acids. The specific sequence of
amino acids determines how proteins fold into unique three-dimensional struc-
tures which allow them to carry out their biological functions [1]. The protein
structure prediction problem (PSP) can be defined as the problem of finding the
functional conformation for a protein given only its amino acid sequence.

The hydrophobic-polar (HP) model [12] is an abstraction of the PSP. This
model captures the fact that hydrophobicity is one of the main driving forces
in protein folding. The prediction of protein structures using the HP model is
a hard combinatorial optimization problem which has been demonstrated to be
NP-complete [3, 7]. A variety of metaheuristic approaches have been applied
to this problem, including genetic algorithms [16, 31], memetic and hybrid algo-
rithms [6, 17], ant colony optimization [29], immune-based algorithms [9], particle
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swarm optimization [5], differential evolution [25] and estimation of distribution
algorithms [24]. Some of the work in this regard is reviewed in [22, 33].

Multiobjectivization concerns the reformulation of single-objective optimiza-
tion problems in terms of two or more objective functions [20]. This transforma-
tion introduces fundamental changes in the search landscape, potentially allowing
algorithms to perform a more efficient exploration [4, 15]. Multiobjectivization
has been successfully used to deal with difficult optimization problems. Among
them, there can be mentioned well-known combinatorial problems such as the
traveling salesman problem [18–20], shortest path and minimum spanning tree
problems [23], job-shop scheduling [19, 21] and bin packing problems [28], as well
as important problems in the fields of mobile communications [26, 27] and com-
puter vision [32]. Multiobjectivization approaches have also been proposed for the
PSP [2, 8, 10, 14, 30]. However, it was not until the present study that this concept
is applied to the particular HP model of this problem.

In this paper, the multiobjectivization for the HP model is proposed. The con-
ventional HP model’s energy function is decomposed into two separate objectives
based on the parity of amino acid positions in the protein sequence. The suit-
ability of this approach is investigated by comparing it with respect to the con-
ventional single-objective formulation. Different evolutionary algorithms (EAs)
and a large set of test cases were adopted for this sake. Results are provided for
both the two-dimensional square lattice and the three-dimensional cubic lattice.

This paper is organized as follows. Background concepts are given in Section 2.
In Section 3, the proposed multiobjectivization is described. Section 4 details the
implemented EAs and the performance assessment methodology. Results are pre-
sented in Section 5. Finally, Section 6 provides the conclusions of this study.

2 Background and Notation

2.1 The HP Model for Protein Structure Prediction

Amino acids can be classified either as hydrophobic (H) or polar (P ) on the basis
of their affinity for water. In the hydrophobic-polar (HP) model [12], proteins are
abstracted as chains ofH and P beads. Protein sequences, originally defined over
a 20-letters alphabet, are thus of the form S ∈ {H,P}L, where L is the number of
amino acids. Valid conformations are modeled as Self-Avoiding Walks of the HP
chain on a lattice. That is, each lattice node can be assigned to at most one amino
acid and consecutive amino acids in S are to be also adjacent in the lattice.

By emulating the hydrophobic effect, the HP model aims to maximize the in-
teraction among H amino acids. Two H amino acids si, sj ∈ S are said to form
a hydrophobic topological contact, denoted by htc(si, sj), if they are nonconsecu-
tive in S (i.e., |j − i| ≥ 2) but adjacent in the lattice. Following the notation of
the field, an energy minimization function E : C → R is defined as the negative
of the total number of hydrophobic topological contacts; C is the set of all valid
protein conformations. Formally, the energy of a conformation c ∈ C is given by:

E(c) =
∑

si,sj∈S|i<j

e(si, sj) (1)



184 M. Garza-Fabre, E. Rodriguez-Tello, and G. Toscano-Pulido

where

e(si, sj) =

{−1 if htc(si, sj)
0 otherwise

The protein structure prediction problem using the HP model can be formally
stated as the problem of finding the conformation c∗ ∈ C such that E(c∗) =
min{E(c) | c ∈ C}. An example conformation for an HP chain of length L = 20
on the two-dimensional square lattice is shown in Figure 1.

Fig. 1. Black and white beads denote H and P amino acids, respectively. Hydrophobic
topological contacts have been numbered. The energy is E(c) = −9.

2.2 Single-objective and Multiobjective Optimization

Without loss of generality, a single-objective optimization problem can be stated
as the problem of minimizing an objective function f : F → R, where F denotes
the set of all feasible solutions. The aim is to find the solution(s) x∗ ∈ F yielding
the optimum value for the objective function; that is, f(x∗) = min{f(x) | x ∈ F}.

Similarly, a multiobjective optimization problem is the problem of minimizing
an objective vector f(x) = [f1(x), f2(x), . . . , fk(x)]

T , where fi : F → R is the
i-th objective function, i ∈ {1, . . . , k}. Rather than searching for a single optimal
solution, the task in multiobjective optimization is to identify a set of trade-offs
among the, usually conflicting, objectives. More formally, the goal is to find a set
of Pareto-optimal solutions P∗ ⊂ F , such that P∗ = {x∗ ∈ F | �x ∈ F : x ≺ x∗}.
The symbol “≺” denotes the Pareto-dominance relation, which is given by:

x ≺ y ⇔ ∀i ∈ {1, . . . , k} : fi(x) ≤ fi(y) ∧ (2)

∃j ∈ {1, . . . , k} : fj(x) < fj(y)

If x ≺ y, x is said to dominate y. Otherwise (x ⊀ y), y is said to be nondominated
by x. The image of P∗ in the objective space is called the Pareto-optimal front.

2.3 Multiobjectivization

Multiobjectivization refers to the process of reformulating a single-objective op-
timization problem as a multiobjective one [20]. Two different approaches are
possible. On the one hand, additional information can be incorporated and used
as supplementary (also called artificial or helper) objectives [4, 19]. On the other
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hand, in the decomposition approach the original objective is fragmented into
several different components, each to be treated as an objective function under
the new alternative formulation [15, 20]. In either approach, the idea is to alter
the search landscape in order to enable a more efficient exploration, but the goal
remains to solve the original problem. Therefore, the original optima are to be
also Pareto-optimal with regard to the multiobjectivized version of the problem.

This work is based on the decomposition approach. More formally, a single-
objective problem, with a given objective function f : F → R, is restated in terms
of k ≥ 2 objectives fi : F → R, i ∈ {1, . . . , k} such that for all x ∈ F it holds that

f(x) =
∑k

i=1 fi(x). As the only possible effect [15], plateaus may be introduced
in the search landscape. That is, originally comparable solutions may become
incomparable (mutually nondominated) with regard to the decomposed formula-
tion. This can be seen as a potential strategy to escape from local optima [15, 20].

3 Multiobjectivization Proposal:
The Parity Decomposition

In the two-dimensional square and the three-dimensional cubic lattices, adjacen-
cies (topological contacts) are only possible between amino acids whose sequence
positions are of opposite parity. Based on this fact and following the multiobjec-
tivization by decomposition approach (Section 2.3), a two-objective formulation
f(c) = [f1(c), f2(c)]

T is defined over the set of feasible conformations c ∈ C:

f1(c) =
∑

si,sj∈S|i<j

ep(si, sj , 0) (3)

f2(c) =
∑

si,sj∈S|i<j

ep(si, sj , 1) (4)

where both f1(c) and f2(c) are to be minimized and

ep(si, sj , ρ) =

{−1 if htc(si, sj) ∧ i ≡ ρ (mod 2)
0 otherwise

That is, the objective function f1 accounts only for hydrophobic topological
contacts htc(si, sj) where i, the sequence position of amino acid si, is even. On
the contrary, f2 is defined for those cases where such the i-th sequence position
is odd. Note that the sum of the two proposed objectives equals the conventional
energy function defined in Section 2.1 (i.e., E(c) = f1(c) + f2(c) for all c ∈ C),
which is in accordance with the decomposition approach for multiobjectivization.

4 Experimental Setup

4.1 Algorithms

Several evolutionary algorithms (EAs) are used to investigate the suitability of the
proposed multiobjectivization. The so-called (1+1) EA is described in
Algorithm 1. First, an initial individual c is generated at random. At each
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generation, a new individual c′ is created by means of mutation. If c′ is at least
as good as c, then c′ is accepted as the starting point for the next generation. De-
pending on the problem formulation, this acceptance criterion is to be based either
on the conventional energy evaluation or on the Pareto-dominance relation.

Algorithm 1. Basic (1+1) evolutionary algorithm

1: choose c ∈ C uniformly at random
2: repeat
3: c′ ← mutate(c)
4: if c′ not worse than c then
5: c ← c′

6: end if
7: until < stop condition >

A variant of the above described (1+1) EA is presented in Algorithm 2. An
external archive stores the nondominated solutions found along the evolutionary
process. The archive influences the behavior of the algorithm in such a way that
the mutant c′ is only accepted if it is not dominated by any archived individual.
If accepted, c′ is included in the archive and all individuals dominated by c′, and
those mapping to the same objective vector f(c′), are removed. Note that the use
of this external archive makes only sense for the multiobjectivized formulation.

Algorithm 2. Archiving (1+1) evolutionary algorithm

1: choose c ∈ C uniformly at random
2: A ← {c}
3: repeat
4: c′ ← mutate(c)
5: if �ĉ ∈ A : ĉ ≺ c′ then
6: A ← {ĉ ∈ A : c′ ⊀ ĉ ∧ f(ĉ) �= f(c′)} ∪ {c′}
7: c ← c′

8: end if
9: until < stop condition >

It was also considered a genetic algorithm (GA) whose general structure is
given in Algorithm 3. First, an initial parent population P of size N is randomly
generated. At each generation, the fittest individuals in P are selected for mating
(selection-for-variation). Then, a children population P ′ is created by applying
the genetic operators. Finally, parents and children compete for a place in the
new population (selection-for-survival). When applied to the single-objective
formulation, selection is driven by the conventional energy value of the candidate
conformations. For the multiobjective formulation, the discrimination among
individuals is to be based on nondominated sorting and crowding distance [11].

Algorithm 3. Genetic algorithm
1: choose P ⊂ C : |P | = N uniformly at random
2: while < stop condition > do
3: P̂ ← selection-for-variation(P )

4: P ′ ← variation(P̂ )
5: P ← selection-for-survival(P ∪ P ′)
6: end while
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An internal coordinates representation with absolute moves was adopted in all
cases. Conformations are encoded as sequences in {U,D,L,R, F,B}L−1,
denoting the up, down, left, right, forward and backward possible lattice
locations for an amino acid with regard to the preceding one (the position of
the first amino acid is fixed). Only directions {U,D,L,R} hold for the two-
dimensional lattice. The implemented genetic operators are as follows. One-point
crossover (only for the GA) is applied with a given probability pc. In mutation,
each encoding position is randomly and independently perturbed with probabil-
ity pm. In all cases, only valid solutions are accepted during the search process.

4.2 Test Cases and Performance Assessment

A total of 30 HP benchmark sequences were used (15 for the two-dimensional
square lattice and 15 for the three-dimensional case). Due to space limitations,
details of these instances are not provided here, but they are available online.1

For all the experiments, 100 independent executions were performed. Results
are evaluated in terms of the best obtained energy value (β), the number of times
this solution was found (f) and the arithmetic mean (μ). Additionally, the overall
average performance (OAP) measure [13] was defined as the average ratio of the

obtained mean values to the optimum (E∗). Formally, OAP = 100
|T |
(∑

t∈T
μ(t)
E∗(t)

)
,

where T denotes the set of all test cases. OAP is expressed as a percentage. Thus,
a value of OAP = 100% suggests the ideal situation where the optimum solution
for each benchmark was reached during all the performed executions.

Statistical significance analysis was performed for all the experiments. First,
D’Agostino-Pearson’s omnibus K2 test was used to evaluate the normality of
data distributions. For normally distributed data, either ANOVA or theWelch’s t
parametric tests were used depending on whether the variances across the sam-
ples were homogeneous (homoskedasticity) or not. This was investigated using
the Bartlett’s test. For non-normal data, the nonparametric Kruskal-Wallis test
was adopted. A significance level of α = 0.05 has been considered.

Most of the results are presented in tables, where values marked � high-
light a statistically significant increase in performance achieved by the proposed
formulation with regard to the conventional one. Conversely, values marked �
indicate that a statistically significant performance decrease was obtained as
a consequence of using the new alternative formulation. Additionally, the best
average performance (μ) for each test instance has been shaded in these tables.

5 Results

5.1 Results for the (1+1) Evolutionary Algorithm

In this section, the (1+1) EA is used for comparing the conventional single-
objective HP model formulation with respect to the proposed parity decompo-
sition. Results are also provided for the archiving (1+1) EA, which applies only
for the proposed formulation. A fixed mutation probability of pm = 1

L−1 and a

1 http://www.tamps.cinvestav.mx/∼mgarza/HPmodel/

http://www.tamps.cinvestav.mx/
mgarza/HPmodel/
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Table 1. Results for the (1+1) EA on two-dimensional benchmarks

Single-objective Parity decomposition Parity dec. - archive
Seq. L E∗ β (f) μ β (f) μ β (f) μ
2d1 18 -4 -4 (4) -2.70 -4 (6) -2.71 -4 (5) -2.69
2d2 18 -8 -8 (18) -6.81 -8 (24) -7.04 -8 (21) -7.00
2d3 18 -9 -8 (11) -7.00 -8 (48) -7.45 � -8 (24) -7.12
2d4 20 -9 -9 (8) -6.84 -9 (4) -6.95 -9 (6) -6.88
2d5 20 -10 -9 (3) -6.92 -10 (2) -7.08 -9 (1) -6.99
2d6 24 -9 -8 (14) -6.81 -9 (1) -6.87 -9 (1) -6.89
2d7 25 -8 -7 (26) -5.79 -8 (6) -5.90 -8 (5) -5.80
2d8 36 -14 -13 (1) -9.97 -13 (1) -10.23 -13 (1) -10.12
2d9 48 -23 -18 (5) -14.23 -19 (2) -15.20 � -18 (5) -15.02 �
2d10 50 -21 -18 (2) -13.79 -18 (1) -14.06 -17 (4) -13.76
2d11 60 -36 -30 (2) -24.39 -30 (7) -25.43 � -31 (1) -25.32 �
2d12 64 -42 -29 (1) -23.82 -30 (1) -25.12 � -30 (1) -24.63 �
2d13 85 -53 -41 (1) -33.81 -41 (1) -34.54 -42 (1) -34.18
2d14 100 -48 -41 (1) -30.80 -39 (3) -32.18 � -41 (1) -31.72 �
2d15 100 -50 -40 (1) -31.71 -40 (3) -32.70 � -40 (1) -32.57

OAP 69.22% 71.39% 70.47%

Table 2. Results for the (1+1) EA on three-dimensional benchmarks

Single-objective Parity decomposition Parity dec. - archive
Seq. L E∗ β (f) μ β (f) μ β (f) μ
3d1 20 -11 -11 (57) -10.48 -11 (69) -10.64 -11 (64) -10.51
3d2 24 -13 -13 (23) -11.30 -13 (34) -11.70 � -13 (27) -11.59
3d3 25 -9 -9 (57) -8.48 -9 (70) -8.65 � -9 (62) -8.51
3d4 36 -18 -18 (10) -15.19 -18 (13) -15.74 � -18 (8) -15.30
3d5 46 -32 -30 (2) -23.87 -30 (1) -25.38 � -30 (1) -24.56
3d6 48 -31 -29 (1) -22.79 -29 (2) -24.42 � -28 (3) -23.64 �
3d7 50 -32 -25 (6) -20.64 -27 (1) -22.07 � -27 (1) -21.22
3d8 58 -44 -35 (1) -27.34 -36 (1) -29.02 � -35 (1) -27.96
3d9 60 -52 -46 (1) -37.20 -47 (1) -40.03 � -47 (1) -38.81 �
3d10 64 -55 -45 (1) -35.59 -46 (1) -37.69 � -43 (2) -36.51
3d11 67 -56 -38 (2) -30.17 -39 (2) -32.65 � -38 (2) -31.17
3d12 88 -72 -47 (1) -36.22 -49 (1) -39.85 � -48 (1) -38.09 �
3d13 103 -56 -40 (1) -29.97 -41 (1) -31.31 � -38 (1) -29.94
3d14 124 -71 -43 (4) -34.51 -48 (1) -36.97 � -47 (1) -35.04
3d15 136 -80 -51 (1) -37.26 -52 (1) -42.11 � -50 (1) -40.43 �

OAP 68.31% 72.20% 70.00%

stopping condition of 100, 000 evaluations were adopted. Tables 1 and 2 present
the obtained results for the two- and three-dimensional test cases, respectively.

Without using the archiving strategy, the parity decomposition improved the
average performance of the algorithm in all the 15 two-dimensional test cases (see
Table 1). For 6 out of them, such an improvement was statistically significant
with regard to the conventional formulation, leading to an OAP increase of
(71.39− 69.22) = 2.17%. The use of the nondominated solutions archive seems
not to be favorable for the proposed multiobjectivization. However, even in this
case it was possible to score better results than the conventional single-objective
formulation for most of the instances, with a statistically important difference in
4 of them. Also, an increase of 1.25% for the OAP measure has been obtained.

As shown in Table 2, the proposed decomposition reached the lowest aver-
age energy for all the three-dimensional instances when using the basic, non-
archiving, (1+1) EA. Statistical analysis indicates a significant outperformance
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over the conventional single-objective formulation in all but one of the test cases.
This was also reflected as an OAP increase of 3.89%. Again, the advantages of
the multiobjective formulation were not as impressive when using the archiving
(1+1) EA. Even so, the results were improved in most cases with regard to the
conventional formulation. This performance increase was found to be statistically
significant in 4 of the instances. The OAP measure was improved by 1.69%.

5.2 Results for the Genetic Algorithm

In this section, the obtained results regarding the implemented genetic algorithm
(GA) are analyzed. The behavior of this algorithm is sensitive to several param-
eters. Therefore, different parameter settings have been considered in order to
identify the most convenient adjustment for the compared approaches.

Three different recombination and mutation probabilities were considered:
pc = {0.8, 0.9, 1.0} and pm = { 1

L−1 , 0.01, 0.05}. Also, the effects of preventing
duplicate individuals (clones) from the population are analyzed. This leads to
a total of 18 different parameter configurations for the GA. The population
size was fixed to N = 100 in all cases, and the algorithm was allowed to run
until a maximum number of 100, 000 function evaluations was reached. Figure 2
presents the overall average performance (OAP) for both the conventional and
the proposed formulations when using the different GA parameter settings.

From this figure, it is possible to note that there was a performance difference
in favor of the proposed decomposition, in all the cases. On the one hand, the
algorithm seemed not to be seriously affected when varying the recombination
probability (pc). On the other hand, it responded positively to the increased
mutation rate, being pm = 0.05 the fixed value which provided the best perfor-
mance in all the cases. Finally, it can be seen that an important performance
increase was achieved in all cases when duplicates avoidance was enabled.

In order to provide a more detailed analysis, the parameters adjustment which
allowed each of the approaches to reach the highest OAP value has been selected.
For the two-dimensional instances, a recombination probability of pc = 0.8 was
chosen for the conventional formulation and pc = 1.0 for the proposed one. For
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the three-dimensional test cases, pc = 1.0 and pc = 0.9 were respectively selected.
A mutation probability of pm = 0.05 and enabled duplicates avoidance hold for
all cases. The obtained results are presented in Tables 3 and 4.

Table 3. Results for the GA on two-dimensional benchmarks (best settings)

Single-objective Parity decomposition
Seq. L E∗ β (f) μ β (f) μ
2d1 18 -4 -4 (69) -3.69 -4 (78) -3.78
2d2 18 -8 -8 (92) -7.92 -8 (91) -7.91
2d3 18 -9 -9 (68) -8.68 -9 (73) -8.73
2d4 20 -9 -9 (99) -8.99 -9 (93) -8.93 �
2d5 20 -10 -10 (87) -9.75 -10 (94) -9.89
2d6 24 -9 -9 (62) -8.60 -9 (69) -8.69
2d7 25 -8 -8 (47) -7.40 -8 (49) -7.47
2d8 36 -14 -13 (12) -11.45 -14 (2) -11.49
2d9 48 -23 -21 (2) -17.85 -23 (1) -18.30
2d10 50 -21 -21 (4) -18.27 -21 (1) -18.54
2d11 60 -36 -34 (1) -30.27 -34 (1) -30.54
2d12 64 -42 -36 (2) -30.94 -35 (3) -30.75
2d13 85 -53 -49 (1) -41.75 -48 (1) -42.57 �
2d14 100 -48 -44 (1) -36.74 -43 (1) -37.74 �
2d15 100 -50 -43 (2) -37.14 -43 (1) -38.28 �

OAP 87.13% 88.13%

As shown in Table 3, the parity decomposition increased the average per-
formance of the algorithm for 12 out of the 15 two-dimensional test cases. Such
an increase was statistically significant for the three largest sequences. The single-
objective formulation performed best for the remaining three instances, with a
statistically important difference in one of them. An increase of (88.13−87.13) =
1% in the OAP measure was obtained by using the proposed formulation.

Table 4. Results for the GA on three-dimensional benchmarks (best settings)

Single-objective Parity decomposition
Seq. L E∗ β (f) μ β (f) μ
3d1 20 -11 -11 (100) -11.00 -11 (100) -11.00
3d2 24 -13 -13 (95) -12.94 -13 (97) -12.94
3d3 25 -9 -9 (72) -8.71 -9 (87) -8.87 �
3d4 36 -18 -18 (12) -15.91 -18 (31) -16.54 �
3d5 46 -32 -32 (1) -27.72 -32 (1) -28.12
3d6 48 -31 -31 (1) -26.59 -30 (3) -26.89
3d7 50 -32 -30 (1) -26.43 -29 (12) -26.70
3d8 58 -44 -37 (1) -32.39 -37 (3) -33.03 �
3d9 60 -52 -50 (1) -43.46 -50 (1) -44.56 �
3d10 64 -55 -52 (1) -46.12 -53 (1) -46.15
3d11 67 -56 -41 (1) -36.39 -43 (1) -37.36 �
3d12 88 -72 -50 (5) -44.02 -54 (1) -44.85 �
3d13 103 -56 -41 (1) -34.99 -43 (1) -35.78 �
3d14 124 -71 -51 (1) -41.83 -50 (1) -42.80 �
3d15 136 -80 -52 (2) -45.51 -56 (2) -46.43

OAP 79.01% 80.26%

Regarding the three-dimensional instances, it can be seen from Table 4 that
the best average performance of the algorithm was obtained in all cases when
using the proposed multiobjectivization. Statistical analysis has shown that for
8 out of the 15 test cases, the achieved improvement was significant with regard
to the conventional formulation. The OAP measure was increased by 1.25%.
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6 Conclusions and Future Work

The multiobjectivization of the HP model for protein structure prediction was
proposed. An alternative two-objective formulation for this problem was defined
by means of the decomposition of the original objective function. This approach,
called the parity decomposition, is based on the fact that hydrophobic interac-
tions in the lattice are only possible between amino acids of opposite parity.

Experiments were conducted using different evolutionary algorithms and a
total of 30 HP instances. Both two- and three-dimensional lattices were explored.
As the main finding, the proposed parity decomposition increased the average
performance of the implemented algorithms in most of the cases. Thus, the
suitability of this approach was demonstrated. The obtained results support
previous evidence regarding the effectiveness of multiobjectivization to overcome
search difficulties such as that of becoming trapped in local optima [15, 20].

Although still competitive, the proposed multiobjectivization was negatively
affected by the use of the nondominated solutions archive within the (1+1) EA.
This is contrary to what is expected in multiobjective optimization, where it is
the goal to converge towards different trade-offs among the problem objectives.
Nevertheless, the addressed problem of this study is actually a single-objective
problem, so that maintaining an approximation set of nondominated solutions
becomes not as important. In addition, the archiving strategy influences the
acceptance criterion, restricting the exploration behavior of the algorithm.

Even when the performance of the GA was increased in most cases by using the
proposed formulation, such an increase was not as remarkable as that achieved
for the (1+1) EA. This can be explained by the fact that population-based
approaches are inherently less susceptible to get stuck in local optima. On the
other hand, the multiobjectivized formulation enabled diversity promotion in the
objective space, thus enhancing the exploration capabilities of the algorithm.

To the best of authors’ knowledge, this is the first study on the application
of multiobjective optimization techniques to the HP model for protein struc-
ture prediction. It is important to remark that the aim was not to improve the
state-of-the-art results, but rather to evaluate the impact of using the proposed
multiobjectivization on the resolution of this problem. The findings of this study
motivate further research in this direction. An important issue would be to inves-
tigate whether the proposed parity decomposition can be incorporated in order
to improve the performance of established state-of-the-art algorithms. Also, the
conflicting relationship between the objectives of the proposed formulation needs
to be analyzed. Finally, the multiobjectivization of the HP model by means of
the addition of supplementary objectives has not been addressed yet.
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H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 512–519. Springer, Heidel-
berg (2010)

6. Chira, C.: A Hybrid Evolutionary Approach to Protein Structure Prediction with
Lattice Models. In: IEEE Congress on Evolutionary Computation, New Orleans,
LA, USA, pp. 2300–2306 (2011)

7. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On
the Complexity of Protein Folding. In: ACM Symposium on Theory of Computing,
pp. 597–603. ACM, Dallas (1998)

8. Cutello, V., Narzisi, G., Nicosia, G.: A Multi-Objective Evolutionary Approach
to the Protein Structure Prediction Problem. Journal of The Royal Society Inter-
face 3(6), 139–151 (2006)

9. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Pro-
tein Structure Prediction on Lattice Models. IEEE Transactions on Evolutionary
Computation 11(1), 101–117 (2007)

10. Day, R., Zydallis, J., Lamont, G.: Solving the Protein structure Prediction Problem
Through a Multi-Objective Genetic Algorithm. In: IEEE/DARPA International
Conference on Computational Nanoscience, pp. 32–35 (2002)

11. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb,
K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao,
X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

12. Dill, K.: Theory for the Folding and Stability of Globular Proteins. Biochem-
istry 24(6), 1501–1509 (1985)

13. Garza-Fabre, M., Rodriguez-Tello, E., Toscano-Pulido, G.: Comparing Alternative
Energy Functions for the HP Model of Protein Structure Prediction. In: IEEE
Congress on Evolutionary Computation, New Orleans, LA, USA, pp. 2307–2314
(2011)

14. Handl, J., Lovell, S.C., Knowles, J.: Investigations into the Effect of Multiobjec-
tivization in Protein Structure Prediction. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 702–711. Springer,
Heidelberg (2008)

15. Handl, J., Lovell, S.C., Knowles, J.: Multiobjectivization by Decomposition of
Scalar Cost Functions. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume,
N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008)

16. Hoque, M., Chetty, M., Lewis, A., Sattar, A.: Twin Removal in Genetic Algo-
rithms for Protein Structure Prediction Using Low-Resolution Model. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 8(1), 234–245 (2011)

17. Islam, M., Chetty, M., Murshed, M.: Novel Local Improvement Techniques in Clus-
tered Memetic Algorithm for Protein Structure Prediction. In: IEEE Congress on
Evolutionary Computation, New Orleans, LA, USA, pp. 1003–1011 (2011)



Multiobjectivizing the HP Model for Protein Structure Prediction 193

18. Jähne, M., Li, X., Branke, J.: Evolutionary Algorithms and Multi-Objectivization
for the Travelling Salesman Problem. In: Genetic and Evolutionary Computation
Conference, pp. 595–602. ACM, Montreal (2009)

19. Jensen, M.: Helper-Objectives: Using Multi-Objective Evolutionary Algorithms
for Single-Objective Optimisation. Journal of Mathematical Modelling and Algo-
rithms 3, 323–347 (2004)

20. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-
Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001)

21. Lochtefeld, D., Ciarallo, F.: Helper-Objective Optimization Strategies for the Job-
Shop Scheduling Problem. Applied Soft Computing 11(6), 4161–4174 (2011)

22. Lopes, H.S.: Evolutionary Algorithms for the Protein Folding Problem: A Review
and Current Trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.-E. (eds.)
Comp. Intel. in Biomed. and Bioinform. SCI, vol. 151, pp. 297–315. Springer, Hei-
delberg (2008)

23. Neumann, F., Wegener, I.: Can Single-Objective Optimization Profit from Multi-
objective Optimization? In: Multiobjective Problem Solving from Nature. Natural
Computing Series, pp. 115–130. Springer, Heidelberg (2008)

24. Santana, R., Larranaga, P., Lozano, J.: Protein Folding in Simplified Models With
Estimation of Distribution Algorithms. IEEE Transactions on Evolutionary Com-
putation 12(4), 418–438 (2008)

25. Santos, J., Diéguez, M.: Differential Evolution for Protein Structure Prediction
Using the HP Model. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F.,
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Abstract. This paper proposes a new multi-objective genetic algorithm,
called GAME, to solve constrained optimization problems. GAME uses
an elitist archive, but it ranks the population in several Pareto fronts.
Then, three types of fitness assignment methods are defined: the fitness
of individuals depends on the front they belong to. The crowding dis-
tance is also used to preserve diversity. Selection is based on two steps:
a Pareto front is first selected, before choosing an individual among the
solutions it contains. The probability to choose a given front is computed
using three parameters which are tuned using the design of experiments.
The influence of the number of Pareto fronts is studied experimentally.
Finally GAME’s performance is assessed and compared with three other
algorithms according to the conditions of the CEC 2009 competition.

Keywords: Multiobjective optimization, genetic algorithm, Pareto
ranking, multiple fronts.

1 Introduction

Many multi-objective evolutionary algorithms (MOEAs) use an elitist archive
based on Pareto domination. The main difficulty of these MOEAs often lies in
maintaining diversity. Thus, various solutions have been proposed as the crowd-
ing distance [6], metrics based on diversity [18] or specific definitions of fitness [8].
In the same way, the algorithm proposed in this paper, named Genetic Algorithm
with Multiple parEto sets (GAME), rests on the concept of Pareto ranking. But
it uses several Pareto fronts to rank individuals. Besides, the formula used to
compute the fitness of individuals varies according to the set they belong to.
Finally selection operators (for reproduction and for replacement) work in two
steps: selecting one of the Pareto sets and selecting one individual in this set.
The probability that each Pareto set is selected both depends on its rank and
its size. Individuals belonging to the selected Pareto set are then compared us-
ing a fitness-based tournament. Defining various kinds of fitness depending on
the non-domination rank preserves both quality and diversity. Section 2 quickly
describes previous work related to this subject : some classical MOEAs based
on Pareto archives, tuning parameters and managing constraints in such algo-
rithms. Section 3 details the proposed algorithm itself. Section 4 first explains
how the parameters used to define the selection probability of each Pareto front
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are tuned using the design of experiments. This section then experimentally
studies the benefit obtained by using several Pareto fronts. Finally that sec-
tion presents the experiments performed to validate this approach, particularly
the algorithms compared with it in accordance with the CEC2009 competition
conditions, and the assessment of GAME efficiency. Section 5 concludes by high-
lighting and gives the main prospects of this work.

2 Multi-Objective Evolutionary Algorithms (MOEAs) in
Literature

2.1 Pareto-Based MOEAs

Among several evolutionary algorithms which archive non-dominated solutions,
we can cite Strength Pareto Evolutionary Algorithm 2 (SPEA2) [18] or a newer
method such as the Fast Pareto Genetic Algorithm (FastPGA) [8].

SPEA2 is an elitist multi-objective evolutionary algorithm that relies on
Pareto-based and archiving techniques. SPEA2 assigns a strength to each S
solution of the current population and the archive. This strength represents the
number of solutions dominated by S. The fitness of each solution equals the sum-
mation of the strength of solutions that it is dominated by. When two solutions
have the same fitness value, they are discriminated according to a metric based
on the density (an adaptation of the k-th nearest neighbor method) [13].

FastPGA divides the solutions of the current population into two fronts (non-
dominated and dominated sets) using the Pareto dominance principles. The
fitness of non-dominated solutions is calculated using the crowding distance pro-
posed by Deb et al. [5]. For solutions in the dominated front, FastPGA uses
an extension of SPEA2’s fitness assignment method. Indeed, the fitness of each
dominated solution equals the summation of the strength values of all the solu-
tions it dominates minus the summation of the strength values of all the solutions
by which it is dominated. This reduces the chances that two solutions may have
the same value of fitness. FastPGA also uses a specific mechanism to regulate
population size over generations.

2.2 Tuning of MOEA Parameters

Evolutionary algorithms include several parameters the tuning of which is gen-
erally difficult. Their values might significantly impact the quality of the solu-
tions provided by the algorithm. A high mutation probability for instance would
favor diversity and limit the exploitation of zones where good solutions may
have been found. The algorithm would then nearly behave like a random search
strategy. Such parameters are often tuned empirically. But it is difficult to find
values which are both suitable and robust (i.e. achieving good enough perfor-
mance without being too sensitive to the tackled optimization problems). This
approach often requires a great number of executions and the knowledge of a
human decision-maker to select appropriate values. That is why, in recent years,
several approaches have been proposed to design and/or tune EAs statistically
in order to better guarantee their performance and/or robustness [9] [2].
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2.3 Constraint-Handling in MOEAs

Some optimization problems include constraints associated with the search space
(set of variables) or the objective space (set of objective functions). Only points
that satisfy these constraints are considered as feasible solutions of the optimiza-
tion problem. Michalewicz and Schoenauer [12] define the types of approaches
to handle such constraints in EAs. There are methods that preserve solution
feasibility whenever possible. They use some operators (crossover and muta-
tion) which only create solutions belonging to the set of feasible solutions. There
also exists methods that include a penalty function in the calculation of the
fitness of each solution. This allows to weaken the fitness of solutions that vio-
late constraints. Another approach to handle constraints combine evolutionary
algorithms and other optimization methods. They may repeatly use EAs. For
instance, Surry et al. [15] rank individuals according to both objective values and
constraint violations, which amounts to adding some objectives to the problem.

The genetic algorithm proposed in this paper uses a penalty-based approach
to manage the constraints (see section 3.1). In addition, this algorithm uses
both the computation of several Pareto fronts like NSGA-II and a definition
of fitness which is different for each front like SPEA 2. The proposed solution
combines the advantages of these two famous algorithms. Nevertheless contrary
to NSGA-II structuring the population in several Pareto fronts is not only used
for the replacement selection, it also impacts the recombination process. These
characteristics have led to the implementation of a new selection strategy that
takes into account the multiplicity of fronts and the fitness functions that depend
on rank of the front. The benefit related to the number of fronts and the tuning
of this new selection process parameters have been studied statistically.

The following section describes the proposed algorithm while particularly de-
tailing its main characteristics.

3 A Multiple-Pareto-Ranking Genetic Algorithm

The proposed algorithm includes a wide-ranking process and a specific method
of fitness assignment. The main goal of these operations is both to ensure a good
exploration of the space search and the convergence toward the optimal solu-
tion(s). This algorithm is named Genetic Algorithm with Multiple parEto sets
(GAME). It rests on a classical global scheme and is quite like other MOEAs
developed in literature. Initial population is generated randomly. Individuals rep-
resent solutions which are made of several integer or float variables, using binary
simulated encoding. This representation is quite classical [14]: each variable is
represented as a binary chain. The chain length (number of bits) depends on the
wished precision. For instance, when representing a variable that takes values in
the interval [0; 10], with a precision equals to 10−2, requires 10 bits. The chains
0000000000 and 1111111111 will respectively represent 0 and 10. 1,23 will be
encoded as 0001111110.
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Crossover and mutation operators are also commonly used in this kind of
representation. They are 2-point crossover and bitflip mutation [5]. GAME also
uses parallel , based on master-slave model [4].

Besides, GAME differs from well-known MOEAs in several ways. These differ-
ences deal with the following steps: the ranking of individuals, based on Pareto
dominance (3.1), fitness assignment (3.2), and the associated selection strategies
for both recombination and replacement (3.3).

3.1 Ranking

GAME uses the objective values computed at the evaluation step to rank indi-
viduals. This ranking is based on the principle of non-dominated sorting (Pareto
dominance). Pareto solutions are those for which improvement in one objective
implies the worsening of at least one other objective. All the non-dominated
individuals are added to the first Pareto front PF1. This process is repeated
successively three times with the remaining subset of individuals to build the
second, the third and the fourth Pareto fronts (PF2, PF3 and PF4). Finally, the
remaining subset solutions are gathered in the set of dominated solutions PF5.

When the problem has some constraints, they are handled during the con-
struction of the Pareto fronts. GAME uses a penality-based method to take
constraints intoaccount. In order to preserve the primacy of solutions which re-
spect the limits, those which violate them are banned in the first Pareto front.
However, when PF1 is empty, solutions that do not satisfy the constraints can
be accepted. This situation often occurs in the first generations. But it is quickly
corrected as the solutions which respect the constraints have a higher probability
of reproduction and thus transmit their characters to their offspring.

3.2 Fitness Assignment

Since it is not obvious to compare two solutions in the same Pareto front (im-
provement in an objective is always to the detriment of at least one other), a
fitness value is assigned to each solution.

The computation of the value of fitness depends on the Pareto rank of the
solution. GAME distinguishes three types of fitness: one for the best solutions
(the archive of non-dominated solutions and the first Pareto front), the second for
the solutions of the second Pareto front and the third one for the other fronts.
These fitness values are only used within the same front. The fitness of two
individuals of different fronts cannot be compared. In this case, the comparison
will only focus on the ranks of their respective fronts.

Fitness for the Archive and the First Pareto Front Solutions. During the
execution of GAME, the first Pareto front (PF1) contains the best solutions of
the current population. The archive of non-dominated solutions contains all the
best solutions evaluated since the first generation. Note that a solution of PF1

can dominate some solutions in the archive. These two sets represent solutions
that are closest to the optimal solutions (PF ∗). While trying to get closer to
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PF ∗, the algorithm must preserve diversity in the best solutions set. GAME
assigns to the archived solutions and PF1 a fitness based on the crowding
distance [6] which is a diversity indicator. This indicator provides information
on the distribution of solutions in the front. To avoid bias due to the sizes of
ranges of the objective functions, GAME uses a normalized crowding distance.

Fitness for the Second Pareto Front Solutions. The solutions of the second
Pareto front (PF2) are the second best set of solutions in a population. GAME
favors solutions of the PF2 that are closest to PF1. The convergence indicator
used to measure the proximity of solutions of the two fronts is the Generational
distance. Using this indicator as fitness enables the solutions of PF2 that are
closest to PF1 to have a greater probability to be selected for recombination
and/or replacement.

Fitness for the Remaining Solutions. For solutions that do not belong to
any of the three previous sets (archive of non-dominated solutions, first and
second Pareto fronts), a new indicator is used to calculate the values of fitness.
This is the gain (see Equation 1).

The gain of an −→xi solution with respect to −→xj in accordance with the fk ob-
jective function is called gain(−→xi ,−→xj , k). It expresses the improvement provided
by −→xi in comparison to −→xj in the selected function. The gain varies from -1 to 1.
A negative value indicates that the first solution is worse than the second one
according to fk. A null gain means that both solutions are equivalent.

gain(−→xi ,−→xj , k) =
λ(fk(−→xi)− fk(−→xj))

Max(fk(−→xi), fk(−→xj))
(1)

where λ is a coefficient: 1 for a maximization problem; -1 for a minimization.
The fitness of each individual is the sum of gains (for all objectives) compared

to other solutions in the same front (see Equation 2).

fitness(−→xi) =

|PF |∑
j=1

m∑
k=1

gain(−→xi ,−→xj , k) (2)

where |PF | is the Pareto front size and m the number of objectives functions.

3.3 Selection Operator

To ensure both exploration and exploitation, a kind of fitness is associated to
each Pareto front. This is actually a selection probability of the front. Indeed,
GAME selects individuals in two steps. The first one consist in selecting a Pareto
front within the five built. Then, a solution is chosen from those belonging to
the front using a binary tournament selection.

The selection of Pareto fronts is based on a biased roulette wheel where the
part of each front depends on both its rank and its cardinality. The probability
of selection associated with each front is given by equation 3.
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P (PFi) =
δ(PFi) ∗ |PFi|∑n

i=1[δ(PFi) ∗ |PFi|] (3)

where:
P (PFi) is the probability of selection associated with the ith Pareto front.
|PFi| is the cardinality of PFi.
n is the total number of Pareto fronts. δ(PFi) indicates a priority level associated
with each front (see Equation 4).

δ(PFi) = a(n− i) + b (4)

The coefficients a and b must be carefully chosen to preserve diversity within
the sets of solutions (successive populations and archive), while improving in-
dividuals over generations. These parameters may differ for recombination and
replacement. Therefore, the coefficients associated with recombination selection
are named a and b, whereas those used in replacement selection are a′ and b′

(see Section 4.1).
Using both δ(PFi) and the cardinality ensures the selection of the best solu-

tions, prevents the dominated solutions from having very low values of fitness
and preserves the diversity of the successive populations.

The utility and the efficiency of the proposed ranking mode and selection pro-
cess were experimentally validated. This experimentation first studied the tuning
of a, b, a′ and b′ for a given number of Pareto fronts. Secondly, a preliminary
test phase focused on the sensitivity of GAME to the used number of Pareto
Fronts, for the tuned values of δ(PFi).

It is worth noting that besides its specific characteristics, presented in this sec-
tion, GAME uses a parallel evaluation process based on a master-slave model [4].
The parallelization allows GAME to tackle problems with complex objective
functions or with objective functions requiring simulation to assess their values.
A variant of GAME, named ESBEA, has been applied, for instance, to a con-
strained optimization problem containing four objective functions evaluated by
simulation, in the field of ad hoc mobile communication networks [1].

In this paper, the performance of GAME was assessed by comparison with
previous results in literature. The following sections describe experimental con-
ditions and summarize the main results.

4 Validation and Experimental Results

The experiments described in the following subsections aim at:

– tuning the probabilities associated with Pareto sets;

– validating the interest to have multiple Pareto fronts;

– assessing the performance of GAME compared with other methods presented
in literature.
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All experiments were performed on the optimization problems proposed in the
CEC 2009 [17] competition, more particularly bi-objective constrained problems,
according to the experimental conditions defined in this competition. These prob-
lems are detailed in [17].

GAME has been implemented using jMetal [7], a platform for the develop-
ment, experimentation and study of metaheuristics. A population size equals
to 100 and 300 generations were used to perform the 30,000 evaluations re-
quired for each execution in the CEC 2009 competition. Crossover rate and mu-
tation rate were respectively equal to values recommended in literature: 0.8 and

1
Number of variables (in order to limit the number of parameters in the parameter

study and focus on those involved in the proposed mechanisms).

4.1 Tuning GAME’s Parameters

A parametric study based on the design of experiments (DOEs) has been per-
formed to tune the priority assigned to each Pareto front built by GAME. DOEs
permit to get a lot of information on parameters1 and study their influence,
while carrying out a minimum of tests [3].

The whole campain of tests has been based on JMP (9 Pro version)2, a statisti-
cal software for expert data analysis, to create DOE and to analyze the provided
results. This software has been used to create some test tables, in which each
line corresponds to a given combination of the factors (in this case, a, b, a′ and
b′ presented in Section 3.3) defining a given test. For each of these tests, two in-
dicators (IGD and Maximum Spread [5]) have been used to measure the quality
of the studied combination of parameters3.

This parameter tuning was performed with a number of Pareto fronts set at 5,
by varying a, b, a′ and b′ between 0 and 10 (integer values). JMP has generated
a partial DOE table consisting of 44 tests to be performed. The benchmark used
for these tests was Constrained Problem 1.

Figure 1 shows the results returned by JMP. For IGD and Maximum Spread
indicators, the first four curves show the variations of these indicators based on
the values taken by each factor. The last column gives a desirability function (for
each indicator) with values between 0 and 1. A desirability value of 1 indicates
that the used parameter values enable to get the optimal level for the considered
indicator. In this parameter tuning, the desirability according to the IGD de-
creases when the IGD reaches high values. That is the inverse of the Maximum
Spread. The last row of curves shows the levels of desirability with respect to
both the IGD and Maximum Spread indicators.

Based on these results, the best value of desirability is achieved when a = 6,
b = 5, a′ = 5 and b′ = 4.

1 In DOEs these parameters are called factors.
2 http://www.jmp.com
3 The measured values are also called responses.
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Fig. 1. Tuning the selection coefficients

4.2 Influence of Multiple Pareto Fronts

To measure the benefits of multiple Pareto fronts, four versions of GAME are
compared, using the values of δ(PFi) tuned with JMP. The first version builds
two Pareto fronts (like classical algorithms). This version will serve as a reference.
The other three versions build 3, 4 and 5 fronts. These values were chosen to
study a steady increase of the number of fronts while limiting the duration of
experimentations. They are compared to the “2 front” version in the constrained
problem 1 of the CEC 2009 competition. The comparison focuses on convergence
(IGD) and diversity (Maximum Spread) indicators.

Since the generation of the initial population of GAME does not use specific
heuristics, individuals are created randomly. Therefore, the best of them often
are of fair quality. This results in a relatively high value of the IGD in the first
generations (see Figure 2). Fast enough, solutions that are better suited to the
problem are produced (by recombination) and eliminate the worst individuals
in the archive. This explains the sharp decrease in the IGD in the first 25 gener-
ations. Thereafter, the curves of the IGD continue to decline steadily but with
a much lower slope. Beyond this behavior common to all scenarios, these results
allow us to observe that the increase in the number of fronts improves the quality
of final solutions in terms of proximity to the optimum.

During the first few generations, the Maximum Spread has relatively high
values (see Figure 3). This can be explained by the fact that the archive contains
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Fig. 2. IGD

Fig. 3. Maximum spread

solutions that do not meet constraints. Indeed, the inclusion of such solutions
stretches the front beyond the boundaries that are set by the constraints of
the problem. The archive built by GAME is then refined, when solutions which
respect the constraints and have good values of objective functions are found.
This explains the drop in the Maximum Spread in the early generations. After
the fall phase, the Maximum Spread is growing slightly. In addition, the slight
variations in the curves of Maximum Spread over generations indicates that the
archive is updated regularly. New non-dominated solutions are continually being
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discovered. If initially all scenarios have the same behavior, one can observe that
after a few dozen generations, the impact of multiple fronts becomes substantial.

4.3 Performance Assessment

The performance of GAME was assessed as if it had taken part in the CEC 2009
competition, in the ”Constrained problems” category. This category includes bi-
objective problems where the two objectives are to be minimized. Each problem
includes 10 real-valued decision variables. GAME was compared to the three al-
gorithms which got the best results in this category, using the same experimental
conditions and the same performance criterion:

– for each constrained problem, 30 independent executions limited to 30,000
evaluations must be performed for each algorithm;

– then the mean value of IGD indicator (computed in the sets of final solutions
for the 30 independent executions) must be used as comparison criterion. The
IGD is to be minimized.

Table 1 provides, for the exhaustive list of bi-objective problems of the competi-
tion, the average of the IGD values obtained by the three compared algorithms:
DMOEA-DD [11], LiuLi [10] and MTS [16]. These results permitted these algo-
rithms to respectively reach the first rank, the second rank and the third rank
during the CEC 2009 competition.

DMOEAD-DD (Dynamical Multiobjective Evolutionary Algorithm - Domain
Decomposition) improves DMOEA [19] that used an aggregated fitness function
including the notion of Pareto dominance, entropy and density (based on crowd-
ing distance). In the improved variant, authors split the search space into several
subsets. DMOEA computes Pareto fronts for each of them. Genetic operators
permit information exchange between these subsets.

LiuLi (concatenation of the authors’name : Hai-Lin Liu and Xueqiang Li)
splits the search space into sub-areas in order to reduce algorithm complexity.
Genetic operations, particularly reproduction, are performed in a single sub-area.
Information exchange between areas is based on children, because they may be
assigned to other areas.

Table 1. Mean values of IGD returned by GAME and the algorithms which partici-
pated to CEC2009 competition

Problem GAME DMOEADD LiuLi MTS

Constrained Problem 1 0.01489 0.01131 0.00085 0.01918

Constrained Problem 2 0.00042 0.0021 0.004203 0.02677

Constrained Problem 3 0.03462 0.056305 0.182905 0.10446

Constrained Problem 4 0.00742 0.00699 0.014232 0.01109

Constrained Problem 5 0.01227 0.01577 0.10973 0.02077

Constrained Problem 6 0.00181 0.01502 0.013948 0.01616

Constrained Problem 7 0.00545 0.01905 0.10446 0.02469
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MTS (Multiple Trajectory Search) is an algorithm based on three local search
methods. For each solution, MTS determines the method which corresponds
to its neighborhood. This algorithm begins with a large search. The size of
neighborhood is progressively reduced until it reaches a given minimal size. Then
its size is set to its initial value and the regression re-starts.

Besides, GAME has been tested in the same conditions and the results it
provided were added in table 1. This study shows that, globally, GAME reaches
solutions which are quite close to the reference front. This results in low IGD
values in table 1. Moreover, in a large majority of cases, GAME provides better
results than those returned by the three best algorithms in the competition (in
the “constrained problems” category).

5 Conclusion

To sum up, GAME is an elitist multi-objective genetic algorithm, based on the
building of multiple Pareto fronts. This ranking strategy and the associated 2-
step selection provided gains both in terms of proximity with optimal solutions
and in terms of diversity in the set of final solutions returned by GAME. Finally,
using the experimental conditions of the CEC 2009 competition showed that
it would have been quite well ranked in this competition, which constitutes
a promising result. In addition, GAME uses a parallel evaluation procedure
based on a master-slave model. Although this model allowed the reduction in
terms of the duration of the experimentations in previous work in the field of
mobile networks [1]. Nevertheless, designing an asynchronous version of GAME
would be very interesting. Such a version would no longer rely on an architecture
where the master must wait until all the slaves have finished their task before
building the next generation. Two other prospects are planned for this work.
First, GAME should be applied in various real-life fields to test its sensitivity
to the tackled problems more widely. This would permit to prove the genericity
of the results provided in this paper. Besides, the authors are working on an
adaptive version of GAME. This aims at making it more robust with regards to
problem characteristics, rather than using statistically tuned parameters without
varying the algorithm behavior during execution.
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Abstract. Pareto local search (PLS) is an extension of iterative im-
provement methods for multi-objective combinatorial optimization prob-
lems and an important part of several state-of-the-art multi-objective
optimizers. PLS stops when all neighbors of the solutions in its solution
archive are dominated. If terminated before completion, it may produce
a poor approximation to the Pareto front. This paper proposes variants
of PLS that improve its anytime behavior, that is, they aim to maximize
the quality of the Pareto front at each time step. Experimental results on
the bi-objective traveling salesman problem show a large improvement
of the proposed anytime PLS algorithm over the classical one.

1 Introduction

Multi-objective optimization deals with problems for which solutions are evalu-
ated according to multiple criteria. These criteria are often in conflict and, hence,
different solutions can show different possible trade-offs between the objectives
that must be optimized. If there is no a priori knowledge about the preferences
of the decision maker, multi-objective problems are usually tackled by determin-
ing the set of all Pareto optimal solutions from which the decision maker can
select, a posteriori, one solution or extract some conclusions.

Pareto local search (PLS) is an extension of iterative improvement algorithms
for single-objective problems to the multi-objective case [13]. PLS produces high-
quality results when used as a stand-alone algorithm [13], and even better results
when used as a component of hybrid algorithms, where PLS starts from a good
set of initial solutions. In fact, PLS is a crucial component of the best algorithms
known for the multi-objective traveling salesman problem [12] with two and three
objectives, various bi-objective permutation flowshop problems [4], and the bi-
objective multi-dimensional knapsack problem [11].

Even when starting from a good approximation to the Pareto front, PLS can
require a long time to terminate [13,4]. Hence, many applications define an addi-
tional termination criterion, either in terms of a maximum number of solutions to
be explored or computation time. In many real-life situations, however, the avail-
able computation time may be unknown, and it is therefore desirable to obtain
the best possible output whenever the algorithm is stopped. Unfortunately, PLS
was originally designed without taking into account its anytime behavior [15].
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Although there is much work on anytime algorithms for single-objective op-
timization problems [15,9], there is little research on anytime multi-objective
optimization algorithms [5]. Some papers on multi-objective evolutionary algo-
rithms report the quality obtained along time among other evaluations of the
performance, to show the convergence ability of the algorithms, but their goal is
not to obtain a good anytime behavior. By focusing on improving the anytime
behavior of PLS, similarly to [5], our aim is also to better formalize the notion
of anytime behavior for multi-objective algorithms.

In this paper, we study alternatives to the algorithmic components of the
classical PLS with the goal of improving its anytime behavior. In particular,
we propose variants that switch strategies during the run of the algorithm. We
consider the bi-objective traveling salesman problem (bTSP) as a case study.
The traveling salesman problem (TSP) is a well-known NP-hard combinatorial
problem widely used to assess the performance of optimization algorithms and
meta-heuristics. In its bi-objective variant, two cost values are assigned to each
edge of a graph, and each of the two objective functions is computed with respect
to the corresponding cost value. The bTSP is a prominent benchmark problem
in the study of multi-objective optimization algorithms [7,14,5].

2 Anytime Pareto Local Search

PLS is an iterative improvement method for solving multi-objective combinato-
rial optimization problems. The acceptance criterion in PLS is based on Pareto
dominance. Given two vectors u,v ∈ R2, we say that u dominates v (u ≺ v) iff
u �= v and ui ≤ vi, i = 1, 2, assuming, without loss of generality, that both ob-
jectives must be minimized. Algorithm 1 illustrates the PLS framework. Given
is an initial set of mutually nondominated solutions, called archive. The solu-
tions are initially marked as unexplored (line 2). PLS then iteratively applies
the following steps. First, a solution s is chosen randomly among all unexplored
ones (selection step, line 5). Then, the neighborhood of s, N (s), is fully ex-
plored and all neighbors that are nondominated w.r.t. s and any solution in the
archive A are added to A (lines 6 to 11). Solutions in A that are dominated
by the newly added solutions are removed (procedure Update in line 9). Once
the neighborhood of s has been fully explored, s is marked as explored (line 10).
When all solutions have been explored, and no more nondominated solutions can
be discovered, the algorithm stops. Next we discuss the three main algorithmic
components of PLS.

Selection Step. In many combinatorial optimization problems, solutions that
are close to each other in the solution space are also close in the objective space.
Transferring this fact to multi-objective problems, we may expect to fill existing
“gaps” around the image of a solution in the Pareto front by exploring the
neighborhood of it. In the original PLS, the next solution to be explored is
selected randomly among the ones not explored, without considering possibly
existing “gaps”. Instead, PLS could select the solution whose neighborhood has
the largest potential of improving the current Pareto front approximation.
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Algorithm 1. Pareto Local Search

1: Input: An initial set of nondominated solutions A0

2: explored(s) := false ∀s ∈ A0

3: A := A0

4: repeat
5: s := select randomly a solution from A0 // Selection step
6: for each s′ ∈ N (s) do // Neighborhood exploration
7: if s ⊀ s′ then // Acceptance criterion
8: explored(s′) := false
9: A := Update(A, s′)
10: explored(s) := true
11: A0 := {s ∈ A | explored(s) = false}
12: until A0 = ∅
13: Output: A

A measure of the quality of a single solution is given by its hypervolume con-
tribution. The hypervolume measures the volume of the objective space weakly
dominated by a set of solutions [17]. The larger the hypervolume, the better the
quality of the set. The hypervolume contribution of a single solution measures
how much a solution contributes to the total hypervolume of a set. However, in
the selection step of PLS we are not concerned about the hypervolume contri-
bution of the solutions in the current archive, but on the potential hypervolume
contribution of solutions that are generated by exploring the neighborhood of
solutions in the archive. Since the actual hypervolume contribution that can
be generated by neighborhood exploration is unknown, we “optimistically” es-
timate it. Given two solutions s and s′ (in the biobjective case), we define the
optimistic hypervolume contribution (ohvc) as the hypervolume contribution of
the local ideal point defined by s and s′ in the objective space:

ohvc(s, s′) = (f1(s)− f1(s
′)) · (f2(s′)− f2(s)), (1)

where f1(·) and f2(·) are the normalized objective values for the first and second
objective, respectively.

We expect to find new nondominated solutions in the region between the
current solution and its closest neighbors in the objective space, and, thus, we
define the optimistic hypervolume improvement (OHVI) of a solution s as

OHVI(s) =

⎧⎪⎨⎪⎩
2 · ohvc(s, ssup) if �sinf,

2 · ohvc(sinf, s) if �ssup,

ohvc(s, ssup) + ohvc(sinf, s) otherwise,

(2)

where ssup and sinf are the closest neighbors of s in the objective space from the
current archive A0 defined as

ssup = argmin
si∈A0

{f2(si) | f2(si) > f2(s)}

sinf = argmax
si∈A0

{f2(si) | f2(si) < f2(s)}.
(3)
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Fig. 1. Representation of the normalized objective space. The optimistic hypervolume
improvement (OHVI) of a solution s is the sum of the two areas between s and its
closest neighbors in the objective space, sinf and ssup.

Either ssup or sinf may not exist if s is the best solutions for f2() or f1(),
respectively. In such a case, we define the OHVI to be two times the existing ohvc,
in order to avoid a strong bias against extreme solutions. Figure 1 graphically
illustrates the computation of the OHVI of a solution.

When using OHVI for selection, the unexplored solution with the maximum
OHVI value is chosen. It is, however, important to note that the above definition
of OHVI makes some implicit assumptions. First, it assumes that by exploring
the neighborhood of a solution new solutions are obtained only between the
selected solution and the closest solutions in the objective space. This may not
be necessarily the case and if the correlation between the distance of solutions
in the solution space and the distance in the objective space is small, OHVI may
not work better than random selection. Second, the above definition does not
consider the area that dominates the current solution, and, hence, it assumes
that no solutions are found that dominate the current solution. Again, this is
not necessarily true, but given a good enough initial set, it is more common to
find nondominated solutions than dominating ones.

Although the proposed OHVI selection is specifically designed for PLS, the
concept of ohvc was previously proposed for improving the anytime behavior
of Two-Phase Local Search [5]. Moreover, ohvc is related, but different to the
hypervolume contribution used in some multi-objective evolutionary algorithms
(MOEAs), e.g. in [1] where the hypervolume contribution of each solution with
respect to the current archive is used to select or discard solutions. By contrast,
ohvc estimates the potential contribution of solutions that could be found by
the algorithm in the next iteration. The proposed OHVI selection is related to
diversity measures used in other MOEAs, such as crowding distance [3] and the
distance to the k-nearest neighbor [16], since it favors the exploration of the less
crowded regions of the objective space.

Acceptance Criterion. The original PLS accepts any new nondominated solu-
tion into its archive. This nondominating acceptance criterion favors exploration
but it also leads to a fast archive growth, which in turn slows down the algorithm
and makes it more difficult to select the best solutions for further exploration.
By contrast, a dominating acceptance criterion, that is, accepting only neighbors
that dominate the currently explored solution, may allow PLS to reach faster the
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optimal Pareto front. There are two reasons for this. First, the size of the archive
stays more limited; second, the search becomes more focused on moving the cur-
rent archive closer to the optimal Pareto front. The downside of a dominating
acceptance criterion is that exploration is limited: nondominated solutions that
may fill gaps between other solutions are not accepted and possible paths to
other dominating or nondominated solutions are cut.

To avoid poor quality solutions caused by early termination of PLS when
using the dominating acceptance criterion, we propose to change between the
two acceptance criteria in the following manner. Initially, the dominating accep-
tance criterion is used as described above. If no dominating neighbor is found,
the neighborhood of the current solution is explored again, this time accept-
ing nondominated solutions. In this way, a switch from the dominating to the
nondominated acceptance criterion happens on an adaptive, per-solution basis.

Neighborhood Exploration. The neighborhood exploration component de-
cides when to stop exploring the neighborhood of the current solution. In the
original PLS, the neighborhood of a solution is always fully explored. Alter-
natively, the exploration of the neighborhood may be stopped as soon as an
“improved” solution is found, where the meaning of “improved” is defined by
the acceptance criterion (see above) as being either a dominating or a nondom-
inated solution. Different levels of neighborhood exploration may be defined by
allowing a partial exploration of the neighborhood beyond finding a first accept-
able solution. Here, we focus on the two extreme cases of either a full exploration
(as in the original PLS) or a first-accepted exploration. By first-accepted explo-
ration one cannot find as many solutions around the current one as with full
exploration, but it terminates earlier and, thus, may allow to move close to the
Pareto front faster. Independent of which of the two rules is applied, in PLS a
solution becomes marked as explored, as soon as its exploration is stopped.

When using first-accepted exploration, one may find improving solutions by
completing the neighborhood exploration of solutions in the archive, even if
they are marked as explored. To account for this possibility, we propose the
following combination of the two rules: When all solutions in the archive have
been explored using the first-acceptance rule, the whole archive is marked as
unexplored and the algorithm switches to full neighborhood exploration.

Related Work. To the best of our knowledge, there has been no study of
the anytime behavior of PLS subject to some algorithmic variations. Liefooghe
et al. [8] study the effect on the quality of restricting the overall exploration by
limiting the number of solutions to be selected for exploration, and by limiting
the neighborhood exploration itself. Nonetheless, there are significant differences
with our proposals here. First, they do not distinguish between acceptance crite-
rion and neighborhood exploration. In particular, they do not examine the com-
bination of the dominating acceptance criterion and full exploration. Second,
when using the dominating acceptance criterion and the first-accepted neigh-
borhood exploration, they propose to also add all nondominated solutions found
during exploration to the current archive. Our dominating acceptance criterion
is more aggressive, keeps a smaller archive size, and focuses the search on getting
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closer to the Pareto front. Third, different from us they do not consider variants
proposed here that switch strategies during a single run of PLS, such as from
dominating to nondominated acceptance criterion.

3 Experimental Analysis

3.1 Experimental Setup and Performance Assessment

We test the proposed PLS variants on the bTSP. We generate 10 bTSP instances
of size 200, 300, and 500. The two distance matrices of each instance are gener-
ated independently of each other and correspond to symmetric, Euclidean TSP
instances [5]. Due to the stochasticity of the algorithms, we repeat each experi-
ment 10 times using a different random seed leading to different initial sets for
PLS. The algorithms are implemented in C++, compiled with gcc 4.4, and the ex-
periments were run on a single core of Intel XeonE5410CPUs, running at 2.33Ghz
with a 6MB cache under Cluster Rocks Linux version 4.2.1/CentOS 4. We use
the hypervolume unary indicator as a measure of the quality of the Pareto front
approximations. As the upper bounds used for normalization of the objective val-
ues, we sample 10 000 random solutions, and we record the worst objective value
produced from this sampling. Note that we also check that the upper bounds are
never attained in any result we obtained. The lower bounds are the optimal so-
lutions for each distance matrix obtained from the exact Concorde solver, release
03.12.19. In order to study the anytime behavior of the algorithms, we store the
approximation of the Pareto front at 100 steps during the run of each algorithm,
where each step is the CPU time in seconds at the following points in time: ti =
exp(i · ln(1001)/100)− 1, i ∈ 1, . . . , 100. We examine the anytime behavior of
each variant by plotting the hypervolume of its archive at each time step as follows.
First, we normalize all the objectives values to the range [1, 2], using the bounds
as described above. Next, we compute the hypervolume of each Pareto front ap-
proximation using the reference point [2.1, 2.1]. Finally, for each strategy, each
instance and each time step, we plot the hypervolume averaged over the 10 inde-
pendent runs of each variant and the 95% confidence intervals around the mean
as a gray area.

PLS starts from a given set of solutions, and this set has a large impact on
PLS’ final results. We consider three common alternatives for this initial set:

1. One random solution, corresponds to use PLS as a stand-alone algorithm.
2. Two solutions, each of high quality for one objective. This corresponds to a

scenario where high-performing single-objective algorithms are available for
each objective. Here, each solution is generated by running the iterated local
search (ILS) algorithm using a 3-opt neighborhood for 2 seconds.

3. A nondominated set of high-quality solutions. This setting corresponds to a
scenario where we have an algorithm for generating a high-quality approx-
imation to the Pareto front and PLS further improves this approximation.
Here, we generate a set of 5 high-quality solutions by running the anytime
two-phase local search (TPLS) algorithm [5]. Each weighted sum aggregation
of the objective functions is tackled by the ILS algorithm during 2 seconds.
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Fig. 2. PLS〈RND〉 vs PLS〈OHVI〉, starting from a random seed (left), 2 solutions (mid-
dle), and a set of solutions (right), respectively. Note the different ranges on the y-axis.

3.2 Experimental Results

First, we graphically explore the impact of one component at a time. Later, we
compare the best combinations on larger instances. For reasons of space, we only
provide results on one instance for each comparison; other instances show very
similar behavior, and their plots are available as supplementary material [6]. As
a last step, we carry out a statistical analysis over all instances.

Selection Step.We call the variant of PLS using a random selection PLS〈RND〉,
and the variant using the OHVI for selection PLS〈OHVI〉. We compare in Fig. 2
these two variants. When starting from a random solution (left) the two variants
show a very similar evolution; no curve clearly dominates the other. When the
initial set is either two (middle) or a set of high-quality solutions (right), the
curve corresponding to PLS〈OHVI〉 is most of the time above the one correspond-
ing to PLS〈RND〉, which shows that PLS〈OHVI〉 generates a significantly better
approximation set during most of the run time. Therefore, we choose OHVI as
the selection step in the remainder of the paper.

Acceptance Criterion.We call the nondominated acceptance criterion PLS〈⊀〉,
the dominating one PLS〈�〉, and the combination of both PLS〈�⊀〉. All vari-
ants use OHVI as the selection step. We compare these three variants in Fig. 3.
When the initial set is a random solution (left), PLS〈�〉 improves the quality of
the archive in a very short time, after which it stops because the whole archive
has been explored. On the other hand, PLS〈⊀〉 improves its archive at a slower
rate, but it does not stop prematurely and it yields much better final results.
Interestingly, the combination of the two strategies for the acceptance criterion
used by PLS〈�⊀〉 outperforms both individual strategies clearly: it combines
the fast initial improvement of PLS〈�〉 with the much better final performance
of PLS〈⊀〉. When starting from two (middle) or a set of high-quality solutions
(right), the behavior of PLS〈�〉 is particularly bad: it is not able to improve the
initial set at all, which results in the flat line at the bottom of the plots. On
the other hand, PLS〈⊀〉 is able to significantly improve the initial solutions. The
fact that the anytime behavior of PLS〈�⊀〉 is better than the one of PLS〈⊀〉
shows that the adaptive switching of the acceptance criteria on a per solution
basis in PLS〈�⊀〉 is highly beneficial.
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Fig. 3. PLS〈OHVI,�〉 vs PLS〈OHVI,⊀〉 vs PLS〈OHVI,�⊀〉, starting from a random
seed (left), 2 solutions (middle), and a set of solutions (right), respectively. Note the
different ranges on the y-axis.
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Fig. 4. PLS〈∗〉 vs PLS〈1〉 vs PLS〈1∗〉, starting from a random seed (left), 2 solutions
(middle), and a set of solutions (right). Note the different ranges on the y-axis.

Neighborhood Exploration. In the following, PLS〈∗〉 denotes the full neigh-
borhood exploration in PLS, PLS〈1〉 the first-accepted neighborhood explo-
ration, and PLS〈1∗〉 the PLS variant that switches from the first-accepted to
the full neighborhood exploration. All variants use OHVI selection and nondom-
inating acceptance criterion. Fig. 4 shows that the anytime behavior of these
three variants is very consistent, independently of the kind of initial set. PLS〈1〉
improves quickly the quality of the current archive in the first ten seconds, but
then it terminates. PLS〈∗〉 requires more than ten seconds to reach the same
quality as PLS〈1〉, but then improves further until the computation time limit.
Finally, PLS〈1∗〉 initially matches the behavior of PLS〈1〉 (being actually the
same algorithm) but then continues to progress due to the switch in the rule
of the neighborhood exploration. Hence, PLS〈1∗〉 has a much better anytime
behavior than each individual strategy for exploring the neighborhood.

Interactions between PLS Components.We now compare PLS variants that
differ inmore than one component in order to explore interactions between compo-
nents. PLS〈RND,⊀, ∗〉 denotes the classical PLS using random selection, nondom-
inated acceptance criterion and full neighborhood exploration; PLS〈OHVI,�⊀
, ∗〉 denotes the best variant obtained above when analyzing the acceptance crite-
rion; PLS〈OHVI,⊀, 1∗〉 the best variant obtained above when analyzing the neigh-
borhood exploration rule; and PLS〈OHVI,�⊀, 1∗〉 the variant that combines the
PLS〈�⊀〉 and PLS〈1∗〉 strategies. These four PLS variants are compared in Fig. 5.
The results obtained by PLS〈OHVI,�⊀, ∗〉 and PLS〈OHVI,⊀, 1∗〉 confirm that
the newly proposed algorithms improve the anytime behavior of PLS w.r.t. to the
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Fig. 5. PLS〈RND,⊀, ∗〉 vs PLS〈OHVI,⊀, 1∗〉 vs PLS〈OHVI,�⊀, ∗〉 and PLS〈OHVI,�⊀

, 1∗〉, starting from a random seed (left), 2 solutions (middle), a set of solutions (right)
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Fig. 6. PLS〈RND,⊀, ∗〉 vs PLS〈OHVI,⊀, 1∗〉 vs PLS〈OHVI,�⊀, ∗〉 and PLS〈OHVI,�⊀

, 1∗〉, starting from a random seed (left), 2 solutions (middle), a set of solutions (right),
and for two instance sizes: 300 (top) and 500 cities (bottom)

classical PLS〈RND,⊀, ∗〉. However, there is a somewhat surprising interaction be-
tween the components of PLS〈OHVI,�⊀, 1∗〉, since its anytime behavior is worse
than that of PLS〈OHVI,⊀, 1∗〉 in general, and also worse than PLS〈OHVI,�⊀, ∗〉
for a high-quality initial set (right plot). Further work would be necessary to com-
pletely understand this behavior.

We also compare these four variants on larger bTSP instances, 10 instances
of sizes 300 and 500, respectively. For tackling these larger instances, we use
candidate lists obtained by Pareto-ranking of the edges to speed-up the neigh-
borhood exploration [10]. We tested candidate lists of size 25, 50 and 100; they
resulted in similar trends, and, here we only present results with size 50. The
results provided by Fig. 6 do not allow us to declare an overall winner. When the
initial solution is random (left plots), PLS〈OHVI,�⊀, 1∗〉 progresses much faster
than other variants, but it is eventually outperformed by other variants. When
the initial set are two or more high-quality solutions, PLS〈OHVI,⊀, 1∗〉 obtains
the best hypervolume in the earlier and final stages. However, there is a range
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Table 1. Statistical analysis of the best variants of PLS at different time steps. We
chose 10.2 and 101.4 as they are the closest time steps from 10 and 100 seconds,
respectively. For each time, PLS variants are ordered according to the sum of ranks
obtained across all instances. The numbers in parenthesis are the differences of the sum
of ranks relative to the best variant. PLS variants that are statistically significantly
better than the best one are indicated in bold face. ΔRα gives the difference of the
sum of ranks that is significant.

Time ΔRα Strategies (ΔR)

Instance size 200, initial set: random solution.
1.0 12.1 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (34), 〈OHVI,�⊀,1*〉 (161), 〈RND,⊀,*〉 (265)

10.2 13.2 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (116), 〈RND,⊀,*〉 (192), 〈OHVI,�⊀,1*〉 (284)
101.4 13.5 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (145), 〈OHVI,�⊀,1*〉 (158), 〈RND,⊀,*〉 (293)

1000.0 19.5 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (81.5), 〈OHVI,�⊀,*〉 (97), 〈RND,⊀,*〉 (259.5)
Instance size 200, initial set: two high-quality solutions.

1.0 3.9 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (103), 〈OHVI,�⊀,*〉 (197), 〈RND,⊀,*〉 (300)
10.2 11.6 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (139), 〈OHVI,�⊀,*〉 (158), 〈RND,⊀,*〉 (299)

101.4 10.6 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (131), 〈OHVI,�⊀,*〉 (169), 〈RND,⊀,*〉 (300)
1000.0 13.1 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (115.5), 〈OHVI,�⊀,*〉 (157.5), 〈RND,⊀,*〉 (291)

Instance size 200, initial set: high-quality set.
1.0 17.2 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (117), 〈OHVI,�⊀,1*〉 (138), 〈RND,⊀,*〉 (277)

10.2 10.7 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (76), 〈OHVI,�⊀,1*〉 (194), 〈RND,⊀,*〉 (278)
101.4 15.1 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (130), 〈OHVI,�⊀,1*〉 (191), 〈RND,⊀,*〉 (279)

1000.0 16.1 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (111.5), 〈OHVI,�⊀,*〉 (125.5), 〈RND,⊀,*〉 (279)
Instance size 300, initial set: random solution.

1.0 7.1 〈OHVI,�⊀,*〉, 〈OHVI,�⊀,1*〉 (78), 〈OHVI,⊀,1*〉 (189), 〈RND,⊀,*〉 (289)
10.2 14.2 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (84), 〈RND,⊀,*〉 (171), 〈OHVI,�⊀,1*〉 (277)

101.4 16.9 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (122), 〈OHVI,�⊀,1*〉 (220), 〈RND,⊀,*〉 (254)
1000.0 12.7 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (142), 〈OHVI,�⊀,*〉 (146), 〈RND,⊀,*〉 (296)

Instance size 300, initial set: two high-quality solutions.
1.0 12.4 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (102), 〈OHVI,�⊀,*〉 (169), 〈RND,⊀,*〉 (289)

10.2 11.5 〈OHVI,�⊀,*〉, 〈OHVI,⊀,1*〉 (137), 〈OHVI,�⊀,1*〉 (160), 〈RND,⊀,*〉 (299)
101.4 3.2 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (102), 〈OHVI,�⊀,1*〉 (198), 〈RND,⊀,*〉 (300)

1000.0 10.4 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (129.5), 〈OHVI,�⊀,*〉 (170.5), 〈RND,⊀,*〉 (300)
Instance size 300, initial set: high-quality set.

1.0 22.3 〈OHVI,�⊀,*〉, 〈OHVI,⊀,1*〉 (35), 〈OHVI,�⊀,1*〉 (37), 〈RND,⊀,*〉 (224)
10.2 13.4 〈OHVI,�⊀,*〉, 〈OHVI,⊀,1*〉 (101), 〈OHVI,�⊀,1*〉 (175), 〈RND,⊀,*〉 (284)

101.4 9.9 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (100), 〈RND,⊀,*〉 (225), 〈OHVI,�⊀,1*〉 (275)
1000.0 10.9 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (135.5), 〈OHVI,�⊀,1*〉 (164.5), 〈RND,⊀,*〉 (300)

Instance size 500, initial set: random solution.
1.0 0 〈OHVI,�⊀,1*〉, 〈OHVI,⊀,1*〉 (100), 〈OHVI,�⊀,*〉 (200), 〈RND,⊀,*〉 (300)

10.2 12 〈OHVI,�⊀,*〉, 〈OHVI,�⊀,1*〉 (106), 〈OHVI,⊀,1*〉 (193), 〈RND,⊀,*〉 (285)
101.4 6.4 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (103), 〈RND,⊀,*〉 (196), 〈OHVI,�⊀,1*〉 (297)

1000.0 16 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (120), 〈OHVI,�⊀,1*〉 (223), 〈RND,⊀,*〉 (257)
Instance size 500, initial set: two high-quality solutions.

1.0 9.1 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (71), 〈OHVI,�⊀,*〉 (186), 〈RND,⊀,*〉 (283)
10.2 22.4 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (18), 〈OHVI,�⊀,1*〉 (46), 〈RND,⊀,*〉 (220)

101.4 13.8 〈OHVI,�⊀,*〉, 〈OHVI,⊀,1*〉 (101), 〈OHVI,�⊀,1*〉 (157), 〈RND,⊀,*〉 (286)
1000.0 0 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (100), 〈OHVI,�⊀,1*〉 (200), 〈RND,⊀,*〉 (300)

Instance size 500, initial set: high-quality set.
1.0 14.5 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,1*〉 (65), 〈OHVI,�⊀,*〉 (154), 〈RND,⊀,*〉 (273)

10.2 19.4 〈OHVI,�⊀,*〉, 〈OHVI,�⊀,1*〉 (63), 〈OHVI,⊀,1*〉 (105), 〈RND,⊀,*〉 (256)
101.4 11.7 〈OHVI,�⊀,*〉, 〈OHVI,⊀,1*〉 (59), 〈OHVI,�⊀,1*〉 (169), 〈RND,⊀,*〉 (276)

1000.0 8.4 〈OHVI,⊀,1*〉, 〈OHVI,�⊀,*〉 (100), 〈OHVI,�⊀,1*〉 (216), 〈RND,⊀,*〉 (284)
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of time where other variants, in particular PLS〈OHVI,�⊀, ∗〉, perform better.
Nonetheless, the plots clearly show that the proposed PLS variants consistently
outperform the classical PLS〈RND,⊀, ∗〉.
Statistical Tests. We perform statistical tests to assess the behavior over the
whole set of 10 instances of each size. We apply the Friedman test for analyzing
non-parametric, unreplicated, complete block designs. Each block is a run using
a particular seed (out of ten) on a single instance, and the different PLS variants
are the treatment factors. Next, we rank the PLS variants per block according to
the hypervolume, the lower the rank the better, and we calculate the difference
(ΔR) between the sum of ranks of each variant and the best ranked one (with
the lowest sum of ranks). Finally, we calculate the minimum difference between
the sum of ranks of two variants that is statistically significant (ΔRα), given a
significance level of α = 0.05, using the Friedman post-test for multiple compar-
isons [2]. We perform this test on the output of the algorithms at various time
steps, for each instance size and for each type of initial set. Table 1 summarizes
the result of one independent test in each row. We indicate in bold face the
best variant (the one having the lowest sum of ranks) and those that are not
significantly different from the best one. The tests confirm our conclusions that
PLS〈OHVI,⊀, 1∗〉 is the best strategy overall for size 200. It is also often the
best for sizes 300 and 500, but not always. Moreover, it shows that the classical
PLS〈RND,⊀, ∗〉 performs quite poorly when compared with the anytime PLS
variants proposed here, being in some cases completely outranked (with a sum
of ranks close to 300) by the other variants.

4 Conclusions

In this paper, we proposed alternative choices for algorithmic components of PLS
that improve substantially its anytime behavior. In addition, we have proposed
novel approaches that are based on switching strategies for the neighborhood
exploration and the acceptance criterion; these switching strategies have proven
to be essential for improving the anytime behavior. As a result, replacing the
original PLS with one of our proposed variants in hybrid algorithms is likely to
further improve the current state of the art in multi-objective optimization. How-
ever, none of the variants is clearly superior to all others, and further research
is needed to understand in more detail the behavior of the proposed variants.
In the future, we will extend the analysis to problems with more than 2 objec-
tives, to other problems such as MKP [11] and permutation flowshop [4], and
investigate other possibilities to improve anytime behavior.
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for bi-objective flow-shop scheduling problems. Computers & Operations Re-
search 38(8), 1219–1236 (2011)
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13. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Gandibleux, X., et
al. (eds.) Metaheuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp.
177–200. Springer (2004)
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Abstract. Mixed strategy evolutionary algorithms (EAs) aim at inte-
grating several mutation operators into a single algorithm. However no
analysis has been made to answer the theoretical question: whether and
when is the performance of mixed strategy EAs better than that of pure
strategy EAs? In this paper, asymptotic convergence rate and asymp-
totic hitting time are proposed to measure the performance of EAs. It is
proven that the asymptotic convergence rate and asymptotic hitting time
of any mixed strategy (1+1) EA consisting of several mutation operators
is not worse than that of the worst pure strategy (1+1) EA using only
one mutation operator. Furthermore it is proven that if these mutation
operators are mutually complementary, then it is possible to design a
mixed strategy (1+1) EA whose performance is better than that of any
pure strategy (1+1) EA using only one mutation operator.

Keywords: Mixed Strategy, Pure Strategy, Asymptotic Convergence
Rate, Asymptotic Hitting Time, Hybrid Evolutionary Algorithms.

1 Introduction

Different search operators have been proposed and applied in EAs [1]. Each
search operator has its own advantage. Therefore an interesting research issue is
to combine the advantages of variant operators together and then design more
efficient hybrid EAs. Currently hybridization of evolutionary algorithms becomes
popular due to their capabilities in handling some real world problems [2].

Mixed strategy EAs, inspired from strategies and games [3], aims at integrat-
ing several mutation operators into a single algorithm [4]. At each generation, an
individual will choose one mutation operator according to a strategy probability
distribution. Mixed strategy evolutionary programming has been implemented
for continuous optimization and experimental results show it performs better
than its rival, i.e., pure strategy evolutionary programming which utilizes a sin-
gle mutation operator [5,6].
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However no analysis has been made to answer the theoretical question: whether
and when is the performance of mixed strategy EAs better than that of pure
strategy EAs? This paper aims at providing an initial answer. In theory, many of
EAs can be regarded as a matrix iteration procedure. Following matrix iteration
analysis [7], the performance of EAs is measured by the asymptotic convergence
rate, i.e., the spectral radius of a probability transition sub-matrix associated
with an EA. Alternatively the performance of EAs can be measured by the
asymptotic hitting time [8], which approximatively equals the reciprocal of the
asymptotic convergence rate. Then a theoretical analysis is made to compare
the performance of mixed strategy and pure strategy EAs.

The rest of this paper is organized as follows. Section 2 describes pure strategy
and mixed strategy EAs. Section 3 defines asymptotic convergence rate and
asymptotic hitting time. Section 4 makes a comparison of pure strategy and
mixed strategy EAs. Section 5 concludes the paper.

2 Pure Strategy and Mixed Strategy EAs

Before starting a theoretical analysis of mixed strategy EAs, we first demonstrate
the result of a computational experiment.

Example 1. Let’s see an instance of the average capacity 0-1 knapsack prob-
lem [9,10]:

maximize
∑10

i=1 vibi, bi ∈ {0, 1},
subject to

∑10
i=1 wibi ≤ C,

(1)

where v1 = 10 and vi = 1 for i = 2, · · · , 10; w1 = 9 and wi = 1 for i = 2, · · · , 10;
C = 9.

The fitness function is that for x = (b1, · · · , b10)

f(x) =

{ ∑10
i=1 vibi, if

∑10
i=1 wibi ≤ C,

0, if
∑10

i=1 wibi > C.

We consider two types of mutation operators:

– s1: flip each bit bi with a probability 0.1;
– s2: flip each bit bi with a probability 0.9;

The selection operator is to accept a better offspring only.
Three (1+1) EAs are compared in the computation experiment: (1) EA(s1)

which adopts s1 only, (2) EA(s2) with s2 only, and (3) EA(s1,s2) which chooses
either s1 or s2 with a probability 0.5 at each generation.

Each of these three EAs runs 100 times independently. The computational
experiment shows that EA(s1, s2) always finds the optimal solution more quickly
than other twos.

This is a simple case study that shows a mixed strategy EA performs better
than a pure strategy EA. In general, we need to answer the following theoretical
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question: whether or when do a mixed strategy EAs are better than pure strategy
EAs?

Consider an instance of the discrete optimization problem which is to maxi-
mize an objective function f(x):

max{f(x);x ∈ S}, (2)

where S a finite set. For the analysis convenience, suppose that all constraints
have been removed through an appropriate penalty function method. Under
this scenario, all points in S are viewed as feasible solutions. In evolutionary
computation, f(x) is called a fitness function.

The following notation is used in the algorithm and text thereafter.

– x, y, z ∈ S are called points in S, or individuals in EAs or states in Markov
chains.

– The optimal set Sopt ⊆ S is the set consisting of all optimal solutions to
Problem (2) and non-optimal set Snon := S \ Sopt.

– t is the generation counter. A random variable Φt represents the state of
the t-th generation parent; Φt+1/2 the state of the child which is generated
through mutation.

The mutation and selection operators are defined as follows:

– A mutation operator is a probability transition from S to S. It is defined by
a mutation probability transition matrix Pm whose entries are given by

Pm(x, y), x, y ∈ S. (3)

– A strict elitist selection operator is a mapping from S × S to S, that is for
x ∈ S and y ∈ S,

z =

{
x, if f(y) ≤ f(x),
y, if f(y) > f(x).

(4)

A pure strategy (1+1) EA, which utilizes only one mutation operator, is described
in Algorithm 1.

Algorithm 1. Pure Strategy Evolutionary Algorithm EA(s)

1: input: fitness function;
2: generation counter t ← 0;
3: initialize Φ0;
4: while stopping criterion is not satisfied do
5: Φt+1/2 ← mutate Φt by mutation operator s;
6: evaluate the fitness of Φt+1/2;
7: Φt+1 ← select one individual from {Φt, Φt+1/2} by strict elitist selection;
8: t ← t+ 1;
9: end while
10: output: the maximal value of the fitness function.
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The stopping criterion is that the running stops once an optimal solution is
found. If an EA cannot find an optimal solution, then it will not stop and the
running time is infinite. This is common in the theoretical analysis of EAs.

Let s1, ..., sκ be κ mutation operators (called strategies). Algorithm 2 de-
scribes the procedure of a mixed strategy (1+1) EA. At the t-th generation,
one mutation operator is chosen from the κ strategies according to a strategy
probability distribution

qs1(x), · · · , qsκ(x), (5)

subject to 0 ≤ qs(x) ≤ 1 and
∑

s qs(x) = 1.
Write this probability distribution in short by a vector q(x) = [qs(x)].

Algorithm 2. Mixed Strategy Evolutionary Algorithm EA(s1, ..., sκ)

1: input: fitness function;
2: generation counter t ← 0;
3: initialize Φ0;
4: while stopping criterion is not satisfied do
5: choose a mutation operator sk from s1, ..., sκ;
6: Φt+1/2 ← mutate Φt by mutation operator sk;
7: evaluate Φt+1/2;
8: Φt+1 ← select one individual from {Φt, Φt+1/2} by strict elitist selection;
9: t ← t+ 1;
10: end while
11: output: the maximal value of the fitness function.

Pure strategy EAs can be regarded a special case of mixed strategy EAs with
only one strategy.

EAs can be classified into two types:

– A homogeneous EA is an EA which applies the same mutation operators and
same strategy probability distribution for all generations.

– An inhomogeneous EA is an EA which doesn’t apply the same mutation
operators or same strategy probability distribution for all generations.

This paper will only discuss homogeneous EAs mainly due to the following rea-
son:

– The probability transition matrices of an inhomogeneous EA may be chosen
to be totally different at different generations. This makes the theoretical
analysis of an inhomogeneous EA extremely hard.

3 Asymptotic Convergence Rate and Asymptotic Hitting
Time

Suppose that a homogeneous EA is applied to maximize a fitness function
f(x), then the population sequence {Φt, t = 0, 1, · · · } can be modelled by a
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homogeneous Markov chain [11,12]. Let P be the probability transition matrix,
whose entries are given by

P (x, y) = P (Φt+1 = y | Φt = x), x, y ∈ S.

Starting from an initial state x, the mean number m(x) of generations to find
an optimal solution is called the hitting time to the set Sopt [13].

τ(x) := min{t;Φt ∈ Sopt | Φ0 = x},
m(x) := E[τ(x)] =

+∞∑
t=0

tP (τ(x) = t).

Let’s arrange all individuals in the order of their fitness from high to low:
x1, x2, · · · , then their hitting times are:

m(x1),m(x2), · · · .
Denote it in short by a vector m = [m(x)].

Write the transition matrix P in the canonical form [14],

P =

(
I 0
∗ T

)
, (6)

where I is a unit matrix and 0 a zero matrix. T denotes the probability transition
sub-matrix among non-optimal states, whose entries are given by

P (x, y), x ∈ Snon, y ∈ Snon.

The part ∗ plays no role in the analysis.
Since ∀x ∈ Sopt,m(x) = 0, it is sufficient to consider m(x) on non-optimal

states x ∈ Snon. For the simplicity of notation, the vector m will also denote the
hitting times for all non-optimal states: [m(x)], x ∈ Snon.

The Markov chain associated with an EA can be viewed as a matrix iterative
procedure, where the iterative matrix is the probability transition sub-matrix T.
Let p0 be the vector [p0(x)] which represents the probability distribution of the
initial individual:

p0(x) := P (Φ0 = x), x ∈ Snon,

and pt the vector [pt(x)] which represents the probability distribution of the
t-generation individual:

pt(x) := P (Φt = x), x ∈ Snon.

If the spectral radius ρ(T) of the matrix T satisfies: ρ(T) < 1, then we know [7]

lim
t→∞ ‖ pt ‖= 0.

Following matrix iterative analysis [7], the asymptotic convergence rate of an
EA is defined as below.
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Definition 1. The asymptotic convergence rate of an EA for maximizing f(x)
is

R(T) := − ln ρ(T) (7)

where T is the probability transition sub-matrix restricted to non-optimal states
and ρ(T) its spectral radius.

Asymptotic convergence rate is different from previous definitions of convergence
rate based on matrix norms or probability distribution [12].

Note: Asymptotic convergence rate depends on both the probability transi-
tion sub-matrix T and fitness function f(x). Because the spectral radius of the
probability transition matrix ρ(P) = 1, thus ρ(P) cannot be used to measure
the performance of EAs. Becaue the mutation probability transition matrix is
the same for all functions f(x), and ρ(Pm) = 1, so ρ(Pm) cannot be used to
measure the performance of EAs too.

If ρ(T) < 1, then the hitting time vector satisfies (see Theorem 3.2 in [14]),

m = (I−T)−11. (8)

The matrixN := (I−T)−1 is called the fundamental matrix of the Markov chain,
where T is the probability transition sub-matrix restricted to non-optimal states.

The spectral radius ρ(N) of the fundamental matrix can be used to measure
the performance of EAs too.

Definition 2. The asymptotic hitting time of an EA for maximizing f(x) is

T (T) =

{
ρ(N) = ρ((I−T)−1), if ρ(T) < 1,
+∞, if ρ(T) = 1.

where T is the probability transition sub-matrix restricted to non-optimal states
and N is the fundamental matrix.

From Lemma 5 in [8], we know the asymptotic hitting time is between the best
and worst case hitting times, i.e.,

min{m(x);x ∈ Snon} ≤ T (T) ≤ max{m(x);x ∈ Snon}. (9)

From Lemma 3 in [8], we know

Lemma 1. For any homogeneous (1+1)-EA using strictly elitist selection, it
holds

ρ(T) = max{P (x, x);x ∈ Snon},
ρ(N) =

1

1− ρ(T)
, if ρ(T) < 1.

From Lemma 1 and Taylor series, we get that

R(T)T (T) =
∞∑
k=1

1

k

(
1

T (T)

)k−1

.

If we make a mild assumption T (T) ≥ 2, (i.e., the asymptotic hitting time is at
least two generations), then the asymptotic hitting time approximatively equals
the reciprocal of the asymptotic convergence rate (see Figure 1).
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Fig. 1. The relationship between the asymptotic hitting time and asymptotic conver-
gence rate: 1/R(T) < T (T) < 1.5/R(T) if ρ(T) ≥ 0.5

Example 2. Consider the problem of maximizing the One-Max function:

f(x) =| x |,
where x = (b1 · · · bn) a binary string, n the string length and | x |:= ∑n

i=1 bi.
The mutation operator used in the (1+1) EA is to choose one bit randomly and
then flip it.

Then asymptotic convergence rate and asymptotic hitting time are

1/n < R(T) < 1/(n− 1),
T (T) = n.

4 A Comparison of Pure Strategy and Mixed Strategy

In this section, subscripts q and s are added to distinguish between a mixed
strategy EA using a strategy probability distribution q and a pure strategy EA
using a pure strategy s. For example, Tq denotes the probability transition sub-
matrix of a mixed strategy EA; Ts the transition sub-matrix of a pure strategy
EA.

Theorem 1. Let s1, · · · sκ be κ mutation operators.

1. The asymptotic convergence rate of any mixed strategy EA consisting of these
κ mutation operators is not smaller than the worst pure strategy EA using
only one of these mutation operator;

2. and the asymptotic hitting time of any mixed strategy EA is not larger than
the worst pure strategy EA using one only of these mutation operator.

Proof. (1) From Lemma 1 we know

ρ(Tq) = max{ 1
κ

κ∑
k=1

Psk(x, x);x ∈ Snon}

≤ 1

κ

κ∑
k=1

ρ(Tsk)

≤ max{ρ(Tsk); k = 1, · · · , κ}.
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Thus we get that

R(Tq) := − ln ρ(Tq) ≥ max{− ln ρ(Tsk); k = 1, · · · , κ}.
(2) From Lemma 1, we know

ρ(N) =
1

1− ρ(T)
,

then we get ρ(Nq) ≤ max{ρ(Nsk); k = 1, · · · , κ}. ��
In the following we investigate whether and when the performance of a mixed
strategy EA is better than a pure strategy EA.

Definition 3. A mutation operator s1 is called complementary to another mu-
tation operator s2 on a fitness function f(x) if for any x such that

Ps1(x, x) = ρ(Ts1), (10)

it holds
Ps2(x, x) < ρ(Ts1). (11)

Theorem 2. Let f(x) be a fitness function and EA(s1) a pure strategy EA. If
a mutation operator s2 is complementary to s1, then it is possible to design a
mixed strategy EA(s1,s2) which satisfies

1. its asymptotic convergence rate is larger than that of EA(s1);
2. and its asymptotic hitting time is shorter than that of EA(s1).

Proof. (1) Design a mixed strategy EA(s1, s2) as follows. For any x such that

Ps1(x, x) = ρ(Ts1),

let the strategy probability distribution satisfy

qs2(x) = 1.

For any other x, let the strategy probability distribution satisfy

qs1(x) = 1.

Because s2 is complementary to s1, we get that

ρ(Tq) < ρ(Ts1),

and then
− ln ρ(Tq) > − ln ρ(Ts1),

which proves the first conclusion in the theorem.
(2) From Lemma 1

ρ(N) =
1

1− ρ(T)

we get that
ρ(Nq) < ρ(Nsk), ∀k = 1, · · · , κ,

which proves the second conclusion in the theorem. ��
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Definition 4. κ mutation operators s1, · · · , sκ are called mutually complemen-
tary on a fitness function f(x) if for any x ∈ Snon and sl ∈ {s1, · · · , sκ} such
that

Psl(x, x) ≥ min{ρ(Ts1), · · · , ρ(Tsκ)}, (12)

it holds: ∃sk �= sl,

Psk(x, x) < min{ρ(Ts1), · · · , ρ(Tsκ)}. (13)

Theorem 3. Let f(x) be a fitness function and s1, · · · , sκ be κ mutation opera-
tors. If these mutation operators are mutually complementary, then it is possible
to design a mixed strategy EA which satisfies

1. its asymptotic convergence rate is larger than that of any pure strategy EA
using one mutation operator;

2. and its asymptotic hitting time is shorter than that of any pure strategy EA
using one mutation operator.

Proof. (1) We design a mixed strategy EA(s1, ..., sκ) as follows. For any x and
any strategy sl ∈ {s1, · · · , sκ} such that

Psl(x, x) ≥ min{ρ(Ts1), · · · , ρ(Tsκ)},

from the mutually complementary condition, we know ∃sk �= sl, it holds

Psk(x, x) < min{ρ(Ts1), · · · , ρ(Tsκ)}.

Let the strategy probability distribution satisfy

qsk(x) = 1.

For any other x, we assign a strategy probability distribution in any way.
Because the mutation operators are mutually complementary, we get that

ρ(Tq) < min{ρ(Ts1), · · · , ρ(Tsκ)},

and then

− ln ρ(Tq) > min{− ln ρ(Ts1), · · · ,− ln ρ(Tsκ)},
which proves the first conclusion in the theorem.
(2) From Lemma 1

ρ(N) =
1

1− ρ(T)
,

we get that

ρ(Nq) < ρ(Nsk), ∀k = 1, · · · , κ,
which proves the second conclusion in the theorem. ��
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Fig. 2. The shape of the function f(x) in Example 3 when n = 16

Example 3. Consider the problem of maximizing the following fitness function
f(x) (see Figure 2):

f(x) =

⎧⎨⎩
| x |, if | x |< 0.5n and | x | is even;
| x | +2, if | x |< 0.5n and | x | is odd;
| x |, if | x |≥ 0.5n.

where x = (b1 · · · bn) is a binary string, n the string length and | x |:=∑n
i=1 bi.

Consider two common mutation operators:

– s1: to choose one bit randomly and then flip it;
– s2: to flip each bit independently with a probability 1/n.

EA(s1) uses the mutation operator s1 only. Then ρ(Ts1) = 1, and then the
asymptotic convergence rate is R(Ts1) = 0.

EA(s2) utilizes the mutation operator s2 only. Then

ρ(Ts2) = 1− 1

n

(
1− 1

n

)n−1

.

We have

min{ρ(Ts1), ρ(Ts2)} = 1− 1

n

(
1− 1

n

)n−1

.

(1) For any x such that

Ps1(x, x) ≥ 1− 1

n

(
1− 1

n

)n−1

,

we have
Ps1(x, x) = 1,

and we know that

Ps2(x, x) < 1− 1

n

(
1− 1

n

)n−1

.
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(2) For any x such that

Ps2(x, x) = ρ(Ts2) = 1− 1

n

(
1− 1

n

)n−1

,

we know that

Ps1(x, x) = 1− 1

n
< ρ(Ts2) = 1− 1

n

(
1− 1

n

)n−1

.

Hence these two mutation operators are mutually complementary.
We design a mixed strategy EA(s1,s2) as follows: let the strategy probability

distribution satisfy

qs1(x) =

{
0, if | x |≤ 0.5n;
1, if | x |> 0.5n.

According to Theorem 3, the asymptotic convergence rate of this mixed strategy
EA(s1,s2) is larger than that of either EA(s1) or EA(s2).

5 Conclusion and Discussion

The result of this paper is summarized in three points.

– Asymptotic convergence rate and asymptotic hitting time are proposed to
measure the performance of EAs. They are seldom used in evaluating the
performance of EAs before.

– It is proven that the asymptotic convergence rate and asymptotic hitting
time of any mixed strategy (1+1) EA consisting of several mutation opera-
tors is not worse than that of the worst pure strategy (1+1) EA using only
one of these mutation operators.

– Furthermore, if these mutation operators are mutually complementary, then
it is possible to design a mixed strategy EA whose performance (asymptotic
convergence rate and asymptotic hitting time) is better than that of any
pure strategy EA using one mutation operator.

An argument is that several mutation operators can be applied simultaneously,
e.g., in a population-based EA, different individuals adopt different mutation
operators. However in this case, the number of fitness evaluations at each gener-
ation is larger than that of a (1+1) EA. Therefore a fair comparison should be a
population-based mixed strategy EA against a population-based pure strategy
EA. Due to the length restriction, this issue will not be discussed in the paper.
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Abstract. This paper proposes a new paradigm, referred to as Recur-
rent Genetic Algorithms (RGA), to sustain Genetic Algorithm (GA)
evolvability and effectively improves its ability to find superior solu-
tions. RGA attempts to continually recover evolvability loss caused by
the canonical GA iteration process. It borrows the term Recurrent from
the taxonomy of Neural Networks (NN), in which a Recurrent NN (RNN)
is a special type of network that uses a feedback loop, usually to account
for temporal information embedded in the sequence of data points pre-
sented to the network. Unlike RNN, the temporal dimension in our al-
gorithm pertains to the sequential nature of the evolution process itself;
and not to the data sampled from the problem solution space. Empirical
evidence shows that the new algorithm better preserves the population’s
diversity, higher number of constructive crossovers and mutations. Fur-
thermore, evidence shows that the RGA outperforms the standard GA
on two NP problems and does the same on three continuous optimisation
problems when aided by problem encoding information.

1 Introduction

The notion of “evolvability” is defined as “the ability of a population to produce
variants fitter than any yet existing” [1]. Hence, the choice of selection, search
operator and representation is vital to the performance of GA because they con-
trol the creation of new individuals throughout the evolutionary process. One
aim of researchers in the Evolutionary Computation (EC) field is to discover new
methods for increasing evolvability of evolutionary systems. The term evolvabil-
ity does not only refer to how often offspring are fitter than their parents but also
to the entire distribution of fitness values among offspring produced by a group
of parents [1]. It should noted that even a random search can generate offspring
that are fitter than their parents. Thus, to prove that a GA’s performance is
superior we need to show that the fitness distribution of the entire population is
higher than that produced by a random search process. Obviously, for a success-
ful evolvable search process not all parents in the population need to produce
fitter offspring. It is usually those parents with higher than average fitness who
carry the responsibility of making the search rewarding. This is because selection
is naturally biased toward this slice of the population.

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 230–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To increase evolvability of individuals means to implicitly encourage search
operators to produce a high correlation between parents and offspring fitness
values in the next generation. This correlation has been explained by building
block hypothesis in [4] as the correlation between parents and offspring fitnesses
under the crossover operator. The building block is a sequence of genetic ma-
terials in a fit parent that is likely to produce fitter offspring upon joining a
crossover process with other individuals.

In the standard form of GA, the fundamental idea that moves the search pro-
cess is gleaned from the famous Darwinian theory of the “survival of the fittest” in
which individuals that have superior fitness value (in relation to the problem to be
solved) are considered fitter than inferior individuals and thus have a better chance
to pass their good genetic materials (or more precisely, potentially good genetic
materials) into the next generation. In this work, we consider another way of look-
ing at the term “fittest” in which we ascribe this description to those individuals
who are able to produce fitter offspring. Naturally, these individuals may not nec-
essarily be the fittest in relation to solving the given problem. To this end, we pro-
pose a modification to the canonical GA where we evaluate individuals based on
their parental abilities (more on this in Section 3). Evolvability refers to the poten-
tiality of evolvement; rather than immediate improvements in fitness. Therefore,
our algorithm works best when allowed to evolve for significantly higher number
of generations.

2 Related Works

The concept of evolvability has been an active research area in both evolutionary
biology and computer science for the past several decades. Hu and Banzhaf in
[6] have argued that adopting new knowledge about natural evolution generated
in areas such as molecular genetics, cell biology, developmental biology, and
evolutionary biology would benefit the field of evolutionary computation. The
authors discussed evolvability and methods for accelerating artificial evolution by
introducing notions from biology and their potential in designing new algorithms
in EC.

It has been recorded that the evolvability property has good effect on the
search process. For example, in [2], the authors suggested that evolvability can
effectively reduce the bloat in evolutionary algorithms that use variable length
representations. In their work, the authors noted the similarity of bloat causes
and evolvability theory, thus, they argue that reproductive operators with high
evolvability will be less likely to cause bloat.

With the importance of evolvability as a research topic, several measurements
have been proposed to quantify it. Wang and Wineberg [11], suggested two mea-
sures of evolvability one based on fitness improvement and the other based on the
amount of genotypic change. The authors divided the population into three sub-
populations, where the size of each sub-population is determined dynamically.
The first sub-population uses selection based on fitness directly; the second sub-
population is based on the fitness-improvement-ratio; finally, selection for the
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third sub-population is based on genotypic change. Each sub-population is filled
by selecting chromosomes from the parent’s generation under its own selection
functions. Thereafter, the three sub-populations are merged, and the GA genetic
standard operators are applied to form the next generation.

Unlike other works, in this paper, we propose a new paradigm for the evo-
lutionary process to sustain population’s evolvability and effectively improves
its ability to find superior solutions. The main idea is based on rewarding the
parents the fitness of their offspring. This is implemented by introducing an
intermediate population (a feedback loop) to measure the ability of parents to
reproduce. Upon re-evaluating parents’ fitnesses, the algorithm proceeds as a
standard GA; until next evaluation is due. (more details in Section 3).

3 Recurrent Genetic Algorithms

The proposed paradigm is broadly outlined in figure1. Firstly, as in standard GA
procedures, we randomly generate an initial population ti where i ∈ {0, 1, . . .
max generation} and rank its individuals based on their fitness values. Using
standard selection and genetic operators, the system generates population t̂i from
population ti. Here, population t̂i is used as feedback intermediate population
(between population ti and ti+1) where it allows the system to discover the ability
of individuals to produce fitter offspring. Once t̂i is available, the algorithm uses
its fitness values to reward parents in population ti, thus, this intermediate
population is used to evaluate individuals considering how much they effectively
managed to push the search process forward, which, of course, may not coincide
with the standard evaluation of individuals based on their fitness values.

Here t̂i is used as a feedback loop as in the Recurrent Neural Networks (RNN)
[5] where connections between units form a directed cycle used to allow it to ex-
hibit dynamic temporal behaviour. Unlike feedforward Neural Networks, RNNs
can use their internal memory to process arbitrary sequences of inputs. Although
GA applications, in general, do not have temporal dimension as the basic focus
lies in finding the best solution in a static “spacial” solution space, we use the
the recurrencey concept in the intermediate population t̂i to capture the tem-
poral effects that the GA undergoes during the process of evolution. In other
words, we use the recurrency notion to account for the evolvability of GA from
one generation to the next.

Preliminary experiments show that an evaluation of individuals that is solely
based on the fitness value of their offspring may not appropriately enhance the
evolvability. This may be explained by several factors controlling the creation
of any offspring; such as crossover/mutation point, original fitness value of the
parent, selection pressure and the fitness value of the other parent in case of
crossover. Therefore, if we simply allocate offspring fitness to parents, we would
be neglecting all these important factors that contribute to creating the offspring.
Also, this raises the question of which offspring to use when rewarding parents?.
In [11] the authors used fittest offspring (i.e., the one with the highest fitness
value) to measure the evolvability of an individual (assuming that it gives an
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Fig. 1. RGA process outline

indication of the potential fitness upper limit that an individual can produce).
This is not, however, entirely accurate estimation because the circumstances
that resulted in creating this offspring are not necessarily to be repeated in
future generations. For these reason, in this research, we opted for rewarding the
parents based on the average fitness values of their offspring and the amount
of genetic materials they passed onto their offspring. Here, we used a Fitness
Reward Function (FRF) that rewards parents in population ti based on their
offspring’s fitness values in the intermediate population t̂i.

For each crossover operator that parents Px and Py joined, where x, y ∈
{1, 2, . . . , population size}, we use the following FRF :

FRF (ParentxFitness) = Offspring F itness× Parentx contribution

FRF (ParentyFitness) = Offspring F itness× Parenty contribution (1)

where, Offspring Fitness is the fitness value of the generated offspring, Parent

x contribution and Parenty contribution are real numbers from the interval
(0, 1) to represent the proportion of genetic materials that each parent con-
tributed when generating the offspring. Note that Parentx contribution +
Parenty contribution = 1.

For each mutation operator that parent Px joined, we use the following FRF :

FRF (ParentxFitness) = (Offspring F itness× Parent contributionx) (2)

Here, because the mutation operator is based on single parent, Parentx
contribution is calculated as the amount of genetic materials that passed from
the parent into the offspring.
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The final rewarded fitness value is calculated as follows:

Parentx Fitness =

∑
FRF (Parentx Fitenss)

Number of offspring
(3)

where,
∑

FRF (Parentx Fitenss) is the summation of the FRF s for Parentx
as shown in Equations 1 & 2 (whether it joined crossover and/or mutation op-
erators) and Number of offspring is the total number of offspring produced by
Parentx in population t̂i.

Note that once the RGA re-evaluates population ti, it does not consider the
original fitness of the parent any longer. Instead, all individuals are ranked based
on their ability to produce offspring in relation to the amount of genetic materials
they passed onto those offspring.

Naturally, the selection process may decides to leave some individuals uns-
elected. Usually, those individuals have the most inferior fitness values of the
whole population and therefore the selection process decides that they are not
worthy to be allowed to be part of the next generation. We experimented with
several alternatives as to how to evaluate parents that have not produced any
offspring. One was to assign them the mean fitness value of the whole popula-
tion, which resulted in poor performance. The best empirically based treatment
was found to be allocating such parents “the least” fitness value allocated to
individuals in the same population.

Despite the success of RGA (as will be shown in the experiments section),
it suffers from an obvious disadvantage which is the extra computational cost
introduced by producing and evaluating the intermediate population. Thus, it is
fair to say that RGA has a slower convergence rate than standard GA. However,
when comparing the performance of the two algorithms to each others, this
disadvantage is mitigated by allowing RGA to evolve for only half the number
of generations iterated by the standard GA.

3.1 Elitism

As explained previously, RGA uses FRF to reward parents based on the average
fitness values of their offspring; and the amount of genetic materials they passed
onto their offspring. Thus, for two parents who joined a crossover operator, the
evaluation of their fitness values is dependant on the amount of chromosomes
they passed to their offspring. This is both a strength and a weakness, though.
On one hand, it is a strength in that the parent who passed more chromosomes
into its offspring is more likely to pass a golden building-block of chromosomes
that contributes in creating a fitter offspring therefore it receives bigger reward
than the second parent. On the other hand, it is a weakness because if this
golden building-block of chromosomes is a mixture of both parents (e.g., tail
of the first parent concatenated with the head of the second parent) then our
reward mechanism will not be fair. This unfairness of reward may divert the
algorithm from pursing optimality by discarding already highly fit solutions.
There is no practical way of knowing this information unless we have an explicit
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knowledge about the problem. Therefore, since RGA has already invested in
evaluating population t̂i (the intermediate stage to measure the evolvability of
population ti) we copy the elite individuals from t̂i into ti. This has proven to
improve the performance in some problems.

4 Experiments

The experiments have been designed to see whether RGA can sustain evolvabil-
ity, and to see how diversity is closely related its behaviour. Our experiments
covered three different problems, namely, NK-Landscape [8] (unimodal problem),
Hamming Centres [3], (multimodal problem), and three different continuous op-
timisation problems.

4.1 NK Landscape

NK-Landscape was established by Stuart Kauffman in [8]. We investigated the
performance of RGA under different values ofN . Namely, we usedN = 20, 30, 40
and 50. For each N value we tested three different K values. Thus, K = N

5 (easy

problem), N
2 (hard problem), and N

2 + 5 (very hard problem).1 For each N,K
combination we tested the system using 20 independent runs. Results have been
compared to the standard GA. As stated earlier, to allow fair comparison, we
used exactly the same number of evaluations in both systems. Thus, we counted
the number of evaluations in the intermediate generations and gave exactly the
same to the standard GA. For both RGA and standard GA we used population
of 100 individuals and evolved them through 500 generation (this includes the
intermediate generations in RGA), crossover rate was 0.9 and mutation 0.1,
tournament selection was of size 2. In RGA we applied 5% elitism (defined in
sec. 3.1) and 5% standard elitism for the standard GA.

Table 1 summarises the results of 480 independent runs. As can be seen in the
table, when the NK problems are easy (as in NK(20, 5), NK(30, 6), NK(40, 8)
and NK(50, 10)) both RGA and standard GA are even on average (where each
system has better average in two out of four cases). Also, in these four easy
problems the best solutions (across the 20 runs) achieved by standard GA are
better than those achieved by RGA. This is because the problem’s landscape
is relatively smooth so standard GA search had a good chance to hit solutions
near the global optima. Now, if we look at the hard and very hard problems,
it is clear that RGA comes on the first place both in terms of average (i.e.,
average of best solutions in the 20 runs) and best (i.e., best achieved solution
across the entire 20 runs). Thanks to the feedback loop, introduced through the
intermediate populations RGA has higher evolvability than standard GA search.

To further compare the behaviour of RGA against its competitor, we mea-
sured the average of four different criteria for each system under each N,K

1 In [7] the authors provided an indication of NK-landscape hardness under different
settings.
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Table 1. Summary of 480 independent runs (20 runs for each N,K combination with
each system)

RGA GA
Mean Best Std Mean Best Std

N20

K=5 0.76 0.77 0.01 0.75 0.77 0.02
K=10 0.76 0.78 0.02 0.74 0.77 0.02
K=15 0.75 0.79 0.02 0.74 0.77 0.02

N30

K=6 0.76 0.80 0.03 0.78 0.80 0.02
K=15 0.72 0.77 0.02 0.71 0.74 0.01
K=20 0.71 0.74 0.01 0.70 0.73 0.02

N40

K=8 0.74 0.78 0.02 0.74 0.79 0.02
K=20 0.70 0.72 0.01 0.69 0.70 0.01
K=25 0.69 0.71 0.01 0.68 0.69 0.01

N50

K=10 0.72 0.75 0.02 0.72 0.75 0.01
K=25 0.69 0.74 0.02 0.67 0.69 0.01
K=30 0.67 0.72 0.02 0.67 0.70 0.01
*Bold numbers are the highest.

combination across the 20 runs. As can be seen in Figure 3, we compared first
the average of best solution (generation by generation) for each system. Note
that when the problems are easy both RGA and standard GA have almost the
same performance. However, as the problem gets harder RGA gets better as
its performance goes beyond the standard GA. What is impressive about these
fitness curves is that they maintain an almost linear fitness increase for a pro-
longed period, and do so in a gradualistic manner, whilst standard GA reaches
a plateau and no further improvement in the fitness is observed. Secondly, we
compared the diversity of population (diversity was measured as the entropy of
the population’s fitness). RGA remarkably has higher diversity than standard
GA in all experiments. It is worth noticing, though, that the diversity becomes
higher as the problem gets harder. Finally, we compared the number of con-
structive crossovers, and mutations, by ‘constructive’ we refer to the crossover
or mutation operator that resulted in a fitter offspring than its parents. It is
clear that RGA has significantly a higher number of constructive crossovers and
mutations than its competitor in all runs.

To compare the parents-offspring fitnesses across all generations we used the
fitness cloud graph introduced by Vanneschi et al. in [10] to get a visual rendering
of evolvability. Figure 2 illustrates the parent-offspring fitnesses in one of the
runs versus their number of occurrence in all generations. As can be seen in
standard GA fit parents are not able of producing fitter offspring all times. This
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Fig. 2. Fitness Cloud: RGA vs. Standard GA NK(30,15)

is probably due to the destructive nature of the search operators (as it has been
illustrated in figure 3 by the declining number of successful (i.e., constructive)
crossover/mutations operators). We also noticed that in standard GA the search
converges to a single solution dominating the whole population. This is clearly
illustrated by the peak appearing in the figure, where a single parents-offspring
fitness has high dominating number of occurrences. However, RGA shows that
fit parents are able of producing fitter offspring most of the times. Also, the
search does not allow a single individual to dominate the whole population as
in standard GA, due to the diversity sustained by the RGA.

4.2 Hamming Centres

Hamming Centers is an NP-complete problem defined in [3] as follows. Lets a set
S of ki binary strings, where i ∈ {1, 2...I}, each of length n, and r is a positive
integer. The objective is to find n−bits string y such that for every string ki in
S, the Hamming distance, H(ki, y) ≤ r.

We investigated the performance of RGA under different values of n−bits (n =
20, 40, 60, 80, 100 and 120). For each n value we performed 20 independent runs.
The size of the set S was 20 in all experiments. The fitness value was measured
as the number of cases that string y satisfied the condition of H(ki, y) ≤ r. Thus,
the optimal solution is equal to the size of S (which is 20 in our case). We used
the same setting as in Section 4.1, except that the population’s size was 500 and
the number of generations was set to 1000 for each system.

Table 2 summarises the results of 240 independent runs. As can be seen in
the table, RGA performance improves as the problem gets harder. To further
compare the behaviour of RGA against its competitor, we measured the average
of the four criteria (similar to the NK experiments in Section 4.1) for each system
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Table 2. Summary of 240 independent runs (20 runs for each n value)

RGA GA

Mean Best Std Mean Best Std
n=20 3 3 0.00 2.75 3 0.43
n=40 7.1 8 0.71 6.95 8 0.70
n=60 9.75 11 0.73 8.7 10 0.69
n=80 11.45 13 1.00 10.9 12 0.84
n=100 12.65 15 1.20 12.1 14 0.90
n=120 12.6 14 0.94 12.65 13 0.56
*Bold numbers are the highest.

under each n value across the 20 runs.2 Looking at the average best solutions
in each generation, we noticed that RGA behaves the same way it did in the
NK problem. For n = 20 and 40 RGA and GA have almost similar performance.
The performance gap increases in favour of the RGA in the remaining n values.
Also, RGA has a higher diversity and higher number of constructive operators
in all runs. Moreover, we noticed that these measures show better values as the
problem gets harder. Despite the remarkable results obtained by the RGA it
is fair to note that the difference in average best solutions in each generation
between it and the standard GA is not as large in this problem as it was in the
NK experiments, which may indicate that the RGA does not perform as well in
multimodal problems as it does in unimodal ones.

4.3 Continuous Optimisation

We investigated RGA’s performance in continuous optimisation problems. Three
benchmark functions have been used in our experiments. Namely, Rastrigin func-
tion, Dixson & Price function, and Michalewics function. Functions’ notations
are defined in [9].

Here, we used the same setting as in 4.1, except that the number of generations
was set to 5000 and population size was set to 500 for each system. Unlike the
other two problems (i.e., NK-landscape and Hamming Centres), here individuals
are coded as real numbers from the interval (0, 5]. Thus, each function receives n
number of parameters and the RGA tries to optimise these parameters in such
a way that maximises the function’s output. In our experimentation we tried
to maximise the test functions using RGA and GA under different number of
parameters. Thus, we explored the systems performance at n = 15, 20, 25, and
30 for each function. For each n value we tested the systems using 20 indepen-
dent runs. Table 3 summarises the results. As can be seen in the table, RGA has
been outperformed by standard GA in most of the runs. We also noticed that
averages of best solutions in each generation, diversity and the number of con-
structive crossovers/mutations have dropped drastically similar to the standard

2 Due to the restriction on number of pages we are not able to present the full figures
in this paper.
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Table 3. Summary of 480 independent runs (20 runs for each n value) using original
FRF

RGA GA

Mean Best Std Mean Best Std

DixonPrice function

n = 15 8227.37 8704.30 303.86 8524.99 9078.43 408.09
n = 20 14157.76 15211.50 591.62 14954.73 16054.00 779.36
n = 25 21715.74 23024.50 1051.07 22759.18 25005.10 1125.48
n = 30 30109.90 34750.80 2117.33 31761.24 35665.00 1835.55

Michalewics function

n = 15 8.94 10.27 0.75 9.30 10.87 0.85
n = 20 10.57 12.95 1.08 11.86 14.01 1.16
n = 25 12.28 14.10 1.06 13.77 16.22 1.43
n = 30 13.97 16.30 1.19 15.09 18.46 1.72

Rrastrigin function

n = 15 543.68 548.53 2.88 545.95 554.09 4.53
n = 20 725.72 732.41 3.34 729.53 743.96 6.28
n = 25 905.09 916.32 5.21 907.34 915.27 5.16
n = 30 1087.16 1096.39 4.80 1090.50 1106.41 7.84
*Bold numbers are the highest.

GA (unlike the other two problems). However, RGA still maintaining slightly
better diversity. These results were surprising given the superior performance
by RGA in the previous two problems. We believe that the reason for this per-
formance is largely attributed to the selection of the FRF , which needs to be
defined differently for this type of problems. The standard FRF did not manage
to reward parents in a favourable manner.

In an attempt to verify our assumption (i.e., degradation of performance in
this problem is largely attributed to the selection of the FRF ) we have intro-
duced a slight modification in the FRF used for solving continuous optimisation
problems. The FRF (defined in Section 3) assumes a linear dependency between
impact on fitness and quantity of genetic material passed to the offspring, thus
the fitness of the parent has been estimated as the weighted average of the fit-
ness of the offspring with weights the chromosomes proportions of the offspring
inherited from the parent. This assumption coincides with the building block
hypothesis [4]. In other words, beneficial properties of parents are aggregated in
(relatively) small code blocks at various locations within the genome.

This, however, and unlike the previous two test problems, does not work well
in continuous optimisation problems where chromosomes are real numbers and
not binary digits that can be summed up to represent the parents contribution
to the formation of a specific offspring. To account for the different nature of
the problem under investigation, we modified the FRF to consider the values
contained in the chromosomes contributed by the parents rather than the mere
number of chromosomes. So, the contribution of Parentx now is the sum of
the values contained in the chromosomes contributed into the offspring. This
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Table 4. Summary of 240 independent runs (20 runs for each n value) using modified
FRF

RGA
Mean Best Std

DixonPrice function

n = 15 8944.85 9509.38 272.66
n = 20 15645.78 16321.30 475.21
n = 25 23859.73 25401.10 975.31
n = 30 34229.60 36340.1 1184.77

Michalewics function

n = 15 12.13 12.73 0.44
n = 20 16.29 17.42 0.65
n = 25 17.67 19.22 0.93
n = 30 20.19 23.16 1.39

Rrastrigin function

n = 15 552.36 569.30 6.51
n = 20 732.04 742.12 5.12
n = 25 910.80 925.45 5.16
n = 30 1090.55 1100.94 5.00
*Bold numbers are the higher than standard GA.

modification did the trick, and the performance of the RGA was again superior
to that of the GA in all test problems (see Table 4).

This modification confirmed our assumption, that the low performance in
Table 3 was indeed due to the unsuitability of the FRF . Off course it can be
argued that this enhancement is obtained by using additional knowledge about
the problem under consideration. This is absolutely true, but it should also be
remembered that the issue of “parent contribution” is in the heart of the RGA
algorithm. In contrary to standard GA, this allows RGA to benefit from such
problem “encoding” knowledge in a very simple and straightforward manner. So,
although it is not fair to compare the performance of RGA to that of GA when
the former benefits form problem encoding information, while the later does not;
it is also unfair to deprive the former form so doing just because the later does
not have the means to employ such useful information. In future research we will
concentrate on this aspect of the algorithm.

5 Conclusions

This paper proposes a new paradigm, referred to as Recurrent Genetic Algo-
rithms (RGA), that attempts to sustain Genetic Algorithm (GA) evolvability
and effectively improves its ability to find superior solutions. The main idea
is formalised by simply introducing an intermediate population between subse-
quent generations. This intermediate population serves as a feedback loop where
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the system reward individuals based on their abilities to produce better off-
spring. The idea of the feedback loop accounts for the temporal effects that the
GA undergoes during the process of evolution.

As an experimental validation of the new paradigm on a non-trivial space
and structured representation, we have considered two well-known NP bench-
mark problems: the NK-landscape problem, to show the RGA behaviour under
unimodal problems and the Hamming Centres, to show RGA behaviour under
mutlimodal problems. Moreover, we tested RGA using three continuous optimi-
sation problems. Experimental evidence shows that RGA remarkably maintains
higher diversity and increase the population’s ability to produce fitter offspring
in comparison to standard GA. Furthermore, empirical evidence shows that the
new paradigm has outperformed standard GA on two NP problems and does
the same on three continuous optimisation problems when aided by problem
encoding information. This, indeed, shows that RGA has the potential to work
well on real-world problems.

In future work we will test RGA on multi-objective optimisation problems.
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Abstract. In this paper, we present a novel stochastic optimization al-
gorithm based on the rare events simulation framework for sensors de-
ployment in underwater systems. More precisely, we focus on finding the
best spatio-temporal deployment of a set of sensors in order to maxi-
mize the detection probability of an intelligent and randomly moving
target in an area under surveillance. Based on generalized splitting tech-
nique with a dedicated Gibbs sampler, our approach does not require
any state-space discretization and rely on the evolutionary framework.

Key words: Evolutionary algorithm, Stochastic optimization, General-
ized splitting, Genetic algorithm, Gibbs sampler.

1 Introduction

Consider a randomly moving target that tries to cross a closed area or to run
away from a known position. We want to compute the best spatial and tempo-
ral deployment of sensors in order to maximize the detection probability of this
intelligent and randomly moving target. Until recently, these types of problems
were solved using operational research algorithms [8,12,14,19], which commonly
model the constraints in both discrete time and space. In order conduct a con-
tinuous optimization, we have decided to use a novel probabilistic optimization
algorithm based on the rare events simulation framework.

Probabilistic optimization algorithms are based on natural evolution processes
of a population of individuals. Each of them represent a direction in the space
of solutions to a problem. These algorithms have been developed by mimicking
natural evolution and simplifying biological knowledge. All of them follow a sim-
ple scheme: (i) first, initialize arbitrarily a population and rate the fitness of each
individual with a scoring function; (ii) using the individuals’ fitness select a pro-
portion of the population for reproduction. The selection process can be deter-
ministic (for example select the best solutions) or completely random; (iii) then,
generate a new population of solutions, from those selected previously, through
a modification process that is often used to include recombination and/or mu-
tation [1,13]. The new individual obviously shares many characteristics of its
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parents; (iv) we repeat the fitness-selection-reproduction process until certain
stopping criteria are reached. Genetic algorithms have proven their efficiency for
complex optimization problems. When the optimization is unconstrained or de-
pends on “simple” or linear constraints, we can also use parametric methods such
as covariance matrix adaptation [11] and its evolutions [6] or the cross entropy
method [3,5] which is a parametric method based on the rare events simulation
framework. However, when we are faced with a strongly constrained optimization
problem, parametric optimization methods and other classic genetic algorithms
cannot always handle the consistency of the solutions.

The goal of this paper is to present the method we have used to solve our real-
world problem. This method is similar to the non-parametric genetic algorithms,
but it is based on the generalized splitting method. This approach helped us to
conduct a continuous optimization under a heterogeneous set of constraints.
The splitting method mainly differs from a genetic algorithm in that a solution
can remain in the pool for iterations before it is modified or excluded, while in
most of evolutionary algorithms, the parents are ousted from the new generation.
Moreover, in the reproduction step, we use a dedicated Gibbs sampler as a special
mutation operator.

Along this paper, we will try to point out the commonalities and the differ-
ences between the two approaches. We will also try to justify why the splitting
method may better suit these kind of problems.

Our article is organized as follows. The first section is devoted to the pre-
sentation of the real-world spatio-temporal scheduling problem. In the next two
sections, we present our method in order to solve our optimization problem. We
then apply and illustrate the splitting algorithm with the flaming datum [17,18]
problem and offer some conclusions.

2 Problem Presentation: Spatio-temporal Search Efforts
Planning

This section deals with the presentation of our real-world problem and its asso-
ciated constraints.

Our goal is to maximize the detection probability of an intelligent and ran-
domly moving target in an area Ω under surveillance. This can be achieved by
optimizing the spatio-temporal deployment of a set of limited sensors during a
period T . A spatio-temporal deployment consists of a list of sensors activations
and a set of their associated position.

The target that we consider is not only smart but also reactive and its tra-
jectory is unknown (and depends in practice on random variables).

2.1 The Solution Constraints

We have a set of P sensors si that we may spatially and temporally deploy in
our operational theatre Ω× [0, T ] in order to detect a smart and reactive target.
Let X ∈ X a solution. So we can define

X � {si(τi)}i=1,...,P with τi = {ti,1, . . . , ti,j}j=1,...,npi . (1)
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si corresponds to the sensor i (i ∈ {1 . . . P}) position, while τi is a vector
containing its npi (npi ≤ Emax) instants of activation (in [0, T ]). We also denote
by C all the spatial and temporal constraints on the feasible solutions. As soon as
a sensor is deployed (for example: dropped and set up), it is powered on and starts
consuming energy; it becomes out of service when its battery is empty. Until that
moment, it can send a limited number of pings (Emax times maximum).

Also, we assume that the sensors are only active and do not cooperate. In
other words, they can only detect a target when they send a signal. Since they
are not autonomous, they only ping when they are in the radio range of a moving
commanding station that requests it. This constraint is denoted by the “operator”
visibility parameter until time t ≤ T , ϕt(X).

2.2 The Target Constraints

A feasible trajectory of duration T is denoted by the random variable YT ∈ Y.
We are only given an a priori on the starting point of the target trajectory. This
a priori is weak if the starting point is randomly sampled in the search space
Ω. On the contrary, a strong a priori means its initial position is sampled from
a Gaussian pdf centred on the last seen position.

y0

yT

1

2

3

(a)

y0

yT

1

2

3

(b)

Fig. 1. (a) The target starts from y0. After a while, it is detected by an active sensor
(sensor 1) and immediately escapes by following a radial course. (b) The target starts
from y0. After a while, it detects an active sensor (sensor 2) and avoids it.

If the target detects a signal originating from a sensor, but is too far from it,
it is able to avoid it before being detected while simultaneously memorizing its
position. In our model, we define the target as detected if it enters the sensor’s
detection range (delimited by the red circle in figure 1). However, since the target
is smart, if it comes close enough to a sensor which has just sent a signal (in the
zone delimited by the red and orange circles in figure 1), it detects this sensor
and learns all of its specifications. Thus, it may decide to avoid this threat or to
come closer and start an avoidance later. In all cases, when the target is notified
of the existence of a sensor, it changes its course before it enters the detection
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range. The target trajectory controls (for the avoidance of a sensor) are then
directly influenced by the partial visibility (or knowledge) of the target on the
deployed search efforts μt(X).

3 The Generalized Splitting Framework

The purpose of this section is to discuss the generalized splitting framework in
the context of unconstrained (or simple constrained) optimization. This will be
used in the next section.

Consider a random object X (vector, random variable, etc.) that takes values
in some set X and is distributed according to a pdf f . Also consider a real-valued
function S on X , a threshold level γ ∈ R and assume that sampling from f is
easy. Let γ� = S(X�). Most optimization problems involve finding X�, defined
by

X� � arg max
X∈X

{S(X)}. (2)

Splitting theory is based on the observation that maximizing S(X) is similar to
estimating probabilities of the form

�(γ) = P(S(X) ≥ γ) =

∫
X
1{S(X )≥γ} f(X) dX , (3)

given that this probability reaches zero when γ converges toward the optimal
score S(X�). Maximizing S(X) is also similar to sampling the set

Xγ = {X ∈ X : S(X) ≥ γ} ⊂ X . (4)

with the idea that this set decreases toward X� when γ increases toward the
unknown value γ�. However, when γ goes to γ�, the event {S(X) ≥ γ} becomes
more rare, and consequently the CMC estimator

�(γ) =
1

C

C∑
i=1

1{S(Xi)≥γ} where Xi ∼ f(X) (5)

has a relative error

RECMC(�(γ)) =

√
1 − �(γ)√
C�(γ)

(6)

that increases to infinity. In order to reduce this relative error, we should in-
crease the sample size C, but then, we would be faced with a computationally
intractable problem. Moreover, when γ goes to γ�, it becomes increasingly more
difficult to produce samples from f(X) that would be close to X�.

To address this problem, a technique called generalized splitting [4] and de-
rived from Diaconis, Holmes and Ross researches [9] on MCMC (Markov chain
Monte Carlo) allows us to compute �(γ) in an easier and more precise way. For
an optimization problem, we will find at least one solution that maximizes our
criteria among all the solutions sampled to compute our probability of interest.
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If we define a sequence of increasing thresholds γ, such that γ0 ≥ γ1 ≥ . . . ≥ γL

(with γL ≤ γ�), we can rewrite �(γ) as the following product of conditional
probabilities:

�(γ) = Pf (S(X) ≥ γ0)
L∏

l=1

Pf (S(X) ≥ γl|S(X) ≥ γl−1) = c0

L∏
l=1

cl . (7)

where
cl = Pg�

l−1
(S(X) ≥ γl) . (8)

and where the importance sampling density [16]

g�
l−1(X ; γl−1) =

1{S(X)≥γl−1}f(X)
�(γl−1)

(9)

is precisely the conditional density of X, given that S(X) ≥ γl−1. It is worth
noting that the support of this density g�

l−1(X; γl−1) is precisely the set {X ∈
X : S(X) ≥ γl−1}.

If we know how to draw independent and identically distributed random vari-
ables Xi over Xl−1 ∈ X from this importance sampling function, �(γ) can be
rewritten:

�(γ) = Pf (S(X) ≥ γ0)
L∏

l=1

Pg�
l−1

(S(X) ≥ γl) . (10)

With a judicious choice or a fair estimation of the {γl} sequence, the event
{S(X) ≥ γl} is no longer a rare event (generally, cl ∈

[
10−3, 10−2

]
) under the

distribution g�
l−1(X, γl−1, C) and therefore the cl quantities can now be well

approximated through a CMC estimator. Hence, a CMC estimator of �(γ) is:

�̂(γ) =
L∏

l=0

ĉl, (11)

where ĉl = 1
C

∑C
i=1 1{S(Xi)≥γl} and where Xi ∼ g�

l−1(X; γl−1).

4 Solving Our Real-World Problem

4.1 Evaluating the Detection Probability

According to what we have explained in the first part of the article, we want
to maximize the detection probability of a target until time T . This quantity is
denoted by ST (X) and is given by the following equation:

ST (X) �
∫

YT ∈Y
f (YT |ϕT (X); C) p (YT |μT (X); C) dYT . (12)

Here, f (YT |ϕT (X); C) is a cookie-cutter cost function that takes the value 1 if
the studied trajectory YT satisfies some defined criteria (such as a number of
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detections and a number of avoidances) and 0 otherwise, i.e. f (YT |ϕT (X); C) =
1{YT ∈A(X,C)} where A(X, C) is the set of trajectories which are detected by the
solution X and which respect the constraints C. It depends on the visibility of
the solution ϕT (X). p (YT |μT (X); C) is the conditional pdf used to generate
the target trajectories and depends on the target intelligence μT (X). As this
is not the goal of this article, we do not give any more information on how
we have implemented this cost function. Unfortunately, ST (X) is an integral
with respect to the probability distribution of the (random, solution-dependant)
target trajectory Y and its analytical expression is not available. A first approach
should be to use the crude Monte Carlo method to obtain an unbiased estimator
of ST (X), ŜT (X):

ŜT (X) =
1

N

N∑
i=1

f(Y i
T |ϕT (X); C), where Y i

T ∼ p(YT |μT (X);C). (13)

The trajectories Y i
T are recursively generated using a first order motion state

equation [15] as defined in [7]. To be concrete, we generate a large number of
feasible trajectories Y i

T , i = 1, . . . , N and evaluate f
(
Y i

T |ϕT (X); C).
Note that the relative error associated with ŜT (X) given by the CMC esti-

mator is

RECMC(ŜT (X)) =

√
1 − ST (X)√
NST (X)

. (14)

Also remark that the smaller the probability to estimate, the larger the relative
error. To reduce this error, we have to increase the number of trajectories N .
Knowing the probability we are meeting is above 10−3 (if they were below,
planning would be useless), we have chosen N ≥ 50000.

4.2 The Splitting Algorithm

To solve our problem, a customized version of the splitting method is used. The
algorithm we apply is called generalized splitting for research efforts scheduling
and is detailed below. For the sequel, we define the function q(., C) which plays
the role of f(.) in the simple case. To begin the computation, we generate an
initial pool of feasible solutions with q(.; C). Since a solution and the carrier
trajectory are closely linked, we use our trajectory generator to obtain a pool of
initial solutions that respect the whole constraints set C.

To ensure our algorithm will not converge and stay into a local extremum,
we developed a simple heuristic. If the current maximum score and the current
threshold do not increase for a chosen number of times, we automatically re-
duce the value of the threshold. Through the decrease of the threshold, we start
again to accept the feasible solutions generated by the moves and therefore, we
reintroduce some diversity in the pool of solutions.
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Algorithm 1. The GSRES algorithm
Given parameter ρ, sample number C and number of burn-in iterations bl of the Gibbs
sampler, follow the forthcoming steps:
1: Initialization. Set a counter l = 1. Generate C feasible solutions {Xi}, i =

1, . . . , C and denote X0 the set containing them. Note that Xi ∼ q(X ; C). Evalu-
ate scores S0 = {ŜT (Xi)} and sort in decreasing order S0 such that ŜT (Xj(1)) ≥
ŜT (Xj(2)) ≥ . . . ≥ ŜT (Xj(C)). We obtain γ̂0 = ŜT (Xj(C0)) with C0 = �ρC�. Define
X̃0 = X̂0:0 = Xj(1), γ̃l = γ̂0:0 = ŜT (Xj(1)).

2: Selection. Let X̃l−1 = {X̃1, ..., X̃Cl−1} be the subset of the population
{X1, ..., XC} for which ŜT (X̃i) ≥ γ̂l−1. X̃l−1 contains ρ% of the population. Notice
that X̃i ∼ g�

l−1(X ;γl−1, C) for i = 1, . . . , Cl−1.
3: Repopulation. Apply one of these methods:

– Bootstrapping: sample uniformly with replacement C times from the popula-
tion X̃l−1 to define the temporary set of C solutions X boot

l−1 .
– ADAM Cloning: make

⌊
C
Cl

⌋
+ Bi(i = 1, . . . , Cl) copies of each population

sample X̃l−1. Here each B1, . . . , BCl are Ber(1/2) random variables conditional
on

∑Cl
i=1 Bi = C mod Cl. We then define the temporary set of C solutions

X clon
l−1 .

4: Gibbs sampler. Apply a random Gibbs sampler πl−1(X |X̃l−1; C) =
1

Cl−1

∑Cl−1
i=1 κl−1(X |X̃i; C) with bl burn-in iterations and the transition density

κl−1 to each sample of X boot/clon
l−1 (see section 4.3) to obtain Xl = {Xi} such that

Xi ∼ g�
l−1(X ; γ̂l−1, C) for i = 1, . . . , C. Notice that the Xi, i = 1, . . . , C should be

approximately iid.
5: Estimation. Evaluate scores Sl = {ŜT (Xi)}, Xi ∈ Xl. Sort in decreasing order Sl

such that ŜT (Xj(1)) ≥ ŜT (Xj(2)) ≥ . . . ≥ ŜT (Xj(C)). We obtain γ̂l = ŜT (Xj(Cl))

with Cl = �ρC�. Deduct that X̃l = Xj(1), γ̃l = ŜT (Xj(1)), X̂0:l = X̃l if γ̃l > γ̂0:l−1,
else X̂0:l = X̂0:l−1 and γ̂0:l = max{γ̃l, γ̂0:l−1}.

6: Stopping condition. If one of the stopping condition is reached, stop the algo-
rithm and give X̂0:l as an estimator of the optimal solution. Else l = l + 1 and go
back to step 2.

4.3 The Dedicated Gibbs Sampler

For our problem, we use a random Gibbs sampler πl−1(X|X̃l−1) =
1

Cl−1

∑Cl−1
i=1 κl−1(X|X̃i) with the transition density κl−1 defined by:

κl−1

(
X |X̃i

)
=

6∑
j=1

λj

bl∏
r=1

mj

(
Xr

i |X̃−r
i

)
, (15)

Here, Xr
i denotes the component r of a solution and X−r

i , all the components
of X̃i excluding r. The λj are the probabilities of updating one component at a
time, given that

∑
j λj = 1 and the mj are the conditional pdf associated to the

6 moves defined in [7].
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The random Gibbs sampler will randomly update bl times the components of
a solution X̃i. bl varies during the simulation in this way: bl = b0 + αl where
α ∈ R�

+. For the first iterations, bl < P and therefore this approach is faster
than a systematic Gibbs sampler. On the contrary, when l is close to L, bl ≥ P .
Thus, we do more updates than a systematic Gibbs sampler would do but we
maintain more diversity in our solutions.

Since we do not know how to update a solution in a way that still satisfies the
constraints C, we first recursively propagate the modifications starting from the
sensor/activation we have modified in the sequence of activations. Then we check
its feasibility, that is, if it respects all the spatial and temporal constraints C.
We apply acceptance–rejection (for a limited amount of times) to each updated
component until we find a feasible solution. Considering that the cost function S

also verifies the consistency of a solution, an updated solution Xi from X̃ boot/clon
i,l−1

is then accepted with probability 1{S(Xi)≥γ̂l−1}.
Before we proceed further, let us introduce and recall a few notations. si �

[six ; siy ]T denotes the ith sensor position (and more generally the ith sensor), P
is the number of sensors in the current solution, Pmax is the maximum number of
sensors, npi stands for the activations’ number for sensor i while ti,{1,...,npi} and
τi respectively are the instants of activation of sensor i and the set of activation
times associated with sensor i. Also denote by tsi the set up duration of the
sensor si. Remark that a sensor whose instants of activation are negative is
considered as disabled. Consequently, deleting an instant of activation consists
of assigning a negative value to this instant. Removing a sensor is then equivalent
to deleting all of its instants of activation and ignoring it. Below are the details
of the six moves.

1. Add a sensor. Sample a position s′
P+1 from U(Ω; C) for the new sensor.

Then draw its first instant of activation t′P+1,1 ∼ U([tsP+1 , T ]).
2. Add an instant of activation. First, choose a sensor randomly i.e. draw

j uniformly in {1, . . . , P}. If npj < npmax then draw t′j,npj+1 ∼ U([tj,1, T ]).
3. Remove a sensor. To apply the move m3, we apply the following steps :

choose a sensor randomly, i.e. draw j uniformly in {1, . . . , P}. Then delete
all of its instants of activation and mark it as disabled

4. Remove an instant of activation. Choose a sensor randomly i.e. draw
j uniformly in {1, . . . , P}. We assume that npj > 1. Choose an instant of
activation tj,k, i.e., draw k uniformly in {2, . . . , npj}. Delete t′j,k.

5. Move a sensor. Select a sensor sj randomly, i.e. draw j uniformly in
{1, . . . , P}. Then, draw s′

j ∼
∑2

k=1 wk N (sj , Σ
2
k) with

∑2
k=1 wk = 1. Notice

that the weights wk may evolve during the optimization in order to promote
one of the move versus the other. For this mixture of two Gaussian pdf the
covariance of the first Gaussian defines a small move while the covariance of
the second Gaussian defines a larger move.

6. Swap two sensors. If we assume there are at least 2 active sensors, select
two sensors sk and sr with k uniformly drawn in {1, . . . , P} and r uniformly
drawn in {1, . . . , P} \ {k}. For all k = 2, . . . , npk, delete t′k,j and t′r,j for all
r = 2, . . . , npr. Swap their first instant of activation: t′k,1 and t′r,1.
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5 Illustrative Example: The Flaming Datum Search
Problem

The first result we present here concerns a scenario in which a target is running
away from the position where it has just been detected. Its initial position is
drawn from a Gaussian law centred on Ω/2 and with a variance σ2

target. More-
over, the target is supposed to be smart and reactive and therefore, while it is
running away, it tries to avoid being detected another time. Considering that
the search starts with a delay of taoz

c which represents the time of arrival of the
hunter, we aim to maximize the chances to detect the target during the time T .
We use Pmax = 10 sensors that are able to ping only once. For this simulation,
we use C = 800 solutions, N = 70000 trajectories, b0 = 2, bl = b0 + 0.2 l and
decide to keep 10% of elites (ρ = 0.1). We also let the algorithm perform up
to 50 iterations. Because our algorithm is not able yet to adjust the number of
sensors considering the cost of their deployment, we have chosen to work with a
constant number of sensors. However, we have allowed the removal of a sensor
if it is directly followed by an addition of a new sensor. We have used two of the
six moves we have defined above : move a sensor and a combination of removing
a sensor followed by the addition of a new sensor. The probability of each move
to occur is 0.5.

6
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4

2
8

7

9

10

Fig. 2. Graphic of X†: position and activation order of the 10 sensors. The red circles
delimit the sensors’ detection range.

In the best solution we obtain, the sensors position and activation describe a
spiral. This result, illustrated in figure 2, is related to the studies of Washburn
[12,18] and Son [17] for an only-spatial optimization case, i.e., when the target
is not able to avoid the sensor (“myopic” case). In this context, the best spatial
sensor deployment designs an Archimedean spiral. Note that as the algorithm
reaches the 30th iteration, it has almost converged and the solution resembles
a spiral. Figure 3 shows 3 steps of the simulation for the best solution found.
The green crosses (+) represent non detected targets, the orange stars represent
warned/avoiding targets and the red crosses (x) represent detected targets. The
red circles delimit the sensors’ detection range and the orange circles delimit the
target avoidance zone.
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Fig. 3. 3 steps of the simulation for the best solution found. (a) Beginning of the
simulation, the targets are not detected. (b) Activating of the first sensor. (c) Activation
of the fourth sensor.

Continuing, we plot the optimization evolution behaviour versus iterations
γ̂0:l = ŜT (X̂0:l) and E[ŜT (X̂l)] which represents the mean score of the current
population (figure 4). Both are smoothly increasing in a logarithmic way. On
figure 5 we see that the support of scores pdf is large at the beginning (l = 0)
but becomes thinner and converges towards a Dirac pdf as the optimization
is conducted. Moreover, γ̂0:l increases and the standard deviation of the distri-
bution decreases. Once the optimization is over, we observe that the detection
probability reaches 0.9406 whereas when l = 0, the best score is below 0.25 and
the mean scores E

[
ŜT (X)

]
is equal to 0.0187 with a large standard deviation.

This gap illustrates the efficiency of our approach, which also gives us good
results with other types of scenarii [14].
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ŜT (X̂0:l)

E[ŜT (X̂l)]

Fig. 4. In blue ŜT (X̂0:l) and in red E[ŜT (X̂l)] with C = 800, N = 70000, L = 50
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Fig. 5. Scores densities support versus iterations GSRES. In black l = 0, in green l = 5,
in red l = 10 and in blue l = 50.

6 Conclusion and Prospects

In this work, we have presented an approach based on the rare events simulation
framework and the generalized splitting algorithm. We have shown that this
method is very similar to non-parametric genetic algorithms. This method has
been applied to a strongly constrained optimization problem and tested with the
flaming datum scenario.

The next step is to take the cost of each solution into account in order to ex-
tend our algorithm to the multi-objective case. To achieve this, we shall develop
a method based on a Pareto-ranking algorithm. Although using a Choquet inte-
gral [10] may also be a good choice, it requires much more information from the
decision maker. Furthermore, the Pareto-ranking method [2] has already been
used with evolutionary algorithm with success.
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Abstract. In the Vehicle Routing Problem with Backhauls there are
linehaul customers, who demand products, and backhaul customers, who
supply products, and there is a fleet of vehicles available for servicing
customers. The problem consists in finding a set of routes with the min-
imum cost, such that all customers are serviced. A generalization of this
problem considers the collection from the backhaul customers optional.
If the number of vehicles, the cost, and the uncollected demand are as-
sumed to be equally important objectives, the problem can be tackled
as a multi-objective optimization problem. In this paper, we solve these
as multi-objective problems with an adapted previously proposed evolu-
tionary algorithm and evaluate its performance with proper tools.

Keywords: Multi-objective optimization, vehicle routing problem.

1 Introduction

Since the Vehicle Routing Problem (VRP) was introduced more than 50 years
ago, it has been a subject of extensive research and has become one of the most
studied combinatorial optimization problems. The VRP’s main objective is to
obtain the lowest-cost set of routes to deliver demand to customers. Several
variants of the problem exist because of the diversity of operating rules and
constraints encountered in real-life applications. Thus the VRP should perhaps
be viewed as a class of problems [9].

One of these variants is the VRP with Backhauls (VRPB) [8], which considers
delivery and collection points. Linehaul customers are sites which have a demand
of goods, thus a delivery has to be made from the depot. Backhaul customers
are points where a quantity of goods has to be collected and taken to the depot.
A practical example of this customer partition is that of the grocery industry,
where supermarkets and shops are the linehaul customers and grocery suppliers
are the backhaul customers [12].

An instance of the VRPB can be formally defined as follows [12]. There is a
set V = {0, . . . , NL, NL + 1, . . . , NL + NB} of N + 1 vertices, N = NL + NB,
representing the geographical location of the depot and N customers. Cus-
tomers are represented by the vertices in subset V ′ = V \ {0} = {1, . . . , NL,

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 255–266, 2012.
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NL + 1, . . . , NL + NB}. Subset VL = {1, . . . , NL} corresponds to linehaul cus-
tomers, while subset VB = {NL +1, . . . , NL +NB} represents the backhaul cus-
tomers. Each customer i ∈ V ′ is geographically located at coordinates (xi, yi).
Each customer i ∈ VL has a demand of goods di > 0 to be delivered, while
each customer i ∈ VB has a supply si > 0 to be collected. There is a ho-
mogeneous fleet of K vehicles available to deliver and collect goods to and
from customers, departing from and arriving at the depot, and having capacity
Q ≥ max { max {di : i = 1, . . . , NL}, max {si : i = NL + 1, . . . , NL +NB}}.

Hence one aims at finding a set of exactly K routes while minimizing the total
cost, subject to the following constraints: (i) each vehicle services exactly one
route, (ii) each customer is visited exactly once by one vehicle, (iii) a route is
not allowed to consist entirely of backhaul customers, (iv) backhaul customers
in a route, if any, must be served after the linehaul customers, and (v) for each
route, the total load associated with linehaul and backhaul customers must not
exceed the vehicle capacity Q. The fourth constraint is justified by the fact that
many vehicles are rear-loaded and rearrangement of the loads on the trucks at
the delivery points is not deemed feasible [8]. The constraint is also justified
by the fact that the linehaul customers frequently prefer early deliveries, while
backhaul customers prefer late collection [11].

An interesting generalization of this problem is the VRP with Selective Back-
hauls (VRPSB) [1], where each customer i ∈ VB has an associated profit pi,
consequently

P =
∑

i ∈ VB
pi (1)

is the total possible profit. The VRPSB consists in determining a set of K routes
with minimum net cost (cost minus collected profit), and the second constraint
above is relaxed so that visiting backhaul customers is optional. If we do not
restrict the cardinality of the set of routes to K, the study of the VRPSB will
allow us, in fact, to consider this problem as a multi-objective problem.

Let R = {r1, . . . , rK} be the designed set of routes and rk = 〈u(1, k), . . . ,
u(Nk, k)〉 the sequence of Nk customers serviced in the k-th route, where u(i, k)
is the i-th customer to be visited in that route, and u(0, k) = u(Nk + 1, k) = 0
is the depot. Then, the cost Ck and the profit Pk of that route are

Ck =
∑Nk

i = 0 cu(i,k)u(i+1,k) , (2)

Pk =
∑Nk

i = 1 pu(i,k) , (3)

where pu(i,k) = 0 if u(i, k) ∈ VL. Having defined the VRPB and VRPSB, there
are three objective functions that we shall concentrate on minimizing in this
paper, namely the number of routes (f1), the total cost (f2), and the total
uncollected profit (f3):

f1(R) = |R| = K , (4)

f2(R) =
∑K

k=1 Ck , (5)

f3(R) = P − ∑K
k=1 Pk , (6)

subject to the constraints explained earlier.
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Many approaches for solving VRPB have been proposed, from which a con-
siderable number have presented heuristic methods. For example, Toth and Vigo
[12] proposed a cluster-first route-second heuristic which may also be used for
solving problems with asymmetric cost matrix. The approach exploits the infor-
mation of the normally infeasible VRPB solutions associated with a lower bound.
The bound used is a Lagrangian relaxation previously proposed by the authors.
The final set of feasible routes is built through a modified Traveling Salesman
Problem heuristic, and inter-route and intra-route arc exchanges. Ropke and
Pisinger [11] surveyed the models of the backhaul constraints and a unified model
that is capable of handling a number of VRP variants. The unified model can be
seen as a Rich Pickup and Delivery Problem with Time Windows, which can be
solved through an improved version of the large neighborhood search heuristic
previously proposed by the authors.

Metaheuristic approaches have also been used for solving the problem. For
example, Osman and Wassan [10] proposed two route-construction heuristics
to generate initial solutions that are improved by a reactive Tabu Search. The
reactive concept is used in a way to trigger the switch between different neighbor-
hood structures for the intensification and diversification phases of the search.
Brandão [2] presented a tabu search algorithm that starts from pseudo-lower
bounds. Three different procedures were applied to generate the initial solution.
The tabu search sequentially applies three phases using neighborhoods defined
by insert, swap and interchange moves. An intra-route repair operator is applied
if the precedence constraint is violated. Finally, Gajpal and Abad [5] used a
multi-ant colony system for solving the VRPB: the first colony is used to assign
customers to vehicles and the second is used to construct a route for a vehicle
given the assigned customers, i.e. to solve the underlying Traveling Salesman
Problem. After routes are constructed, they apply three local search procedures.

In all these studies, VRPB has been solved considering the minimization of
the total cost only, since the number of routes is fixed to K. As far as we are
concerned, there are no previous studies regarding the solution of the VRPB
under multiple objectives. Furthermore, to the best of our knowledge, VRPSB
has not been subject of study.

The remainder of this paper is organized as follows: The next section reviews
the main concepts of multi-objective optimization and explains the performance
metric that is used here to compare algorithms. Our proposed approach for solv-
ing the VRPB and VRPSB as multi-objective problems is described in Section 3.
Then, Section 4 presents and evaluates the results from our algorithm. Finally,
we present our conclusions in Section 5.

2 Multi-objective Combinatorial Optimization

Any multi-objective combinatorial optimization problem can, without loss of
generality, be defined as a minimization problem of the form

minimize f(x) = (f1(x), . . . , fF (x)) (7)
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subject to the constraints

gi(x) ≤ 0 ∀ i = 1, . . . , p , (8)

hj(x) = 0 ∀ j = 1, . . . , q , (9)

where x ∈ X is a solution to the problem, X is the solution space, and fi :
X → R, for i = 1, . . . , F , are F objective functions. The constraint functions
gi, hj : X → R in (8) and (9) restrict x to a feasible region X ′ ⊆ X .

Let X be the domain of solutions to a multi-objective optimization problem.
We say that solution x ∈ X weakly dominates (or covers) solution y ∈ X , written
as x � y, if x is at least as good as y. Solution x dominates solution y, written
as x ≺ y, if and only if x � y and x is strictly better than y in at least one
objective. Consequently, one says that a solution x ∈ S ⊆ X is non-dominated
with respect to S if there is no solution y ∈ S such that y ≺ x.

A solution x ∈ X is said to be Pareto optimal if it is non-dominated with
respect to X , and the Pareto optimal set is defined as Ps = {x ∈ X | x is Pareto
optimal}. Finally, the Pareto front is defined as Pf = {f(x) ∈ RF | x ∈ Ps}.

For multi-objective problems, we have to compare whole sets of solutions
in order to evaluate performance, since the task of approximating the Pareto
optimal set involves: minimizing the distance of the generated solutions (the
approximation set) to the Pareto optimal set, and maximizing the diversity of
the achieved approximation set, because it is desirable to avoid identical solutions
in the resulting set [13].

One indicator that is commonly used for optimizer comparison is the hypervol-
ume metric MH(A, z), which concerns the size of the objective space defined by
the approximation set A, which is limited by setting a suitable reference point z.
When using this metric to compare the performance of two or more algorithms,
the one providing solutions with the largest delimited hypervolume is regarded to
be the best. Formally, for a two-dimensional objective space (f1(x), f2(x)), each
solution xi ∈ A delimits a rectangle defined by its coordinates (f1(xi), f2(xi))
and the reference point z = (z1, z2), and the size of the union of all such rect-
angles is used as the measure. This concept can be extended to any number of
dimensions F to give the general hypervolume metric [13]:

MH(A, z) = λ
(⋃

xi ∈ A{[f1(xi), z1]× · · · × [fF (xi), zF ]}
)

(10)

where λ(·) is the standard Lebesgue measure [4].

3 Multi-objective EA for Solving VRPB and VRPSB

We explain in this section the adaptation of a previously proposed Multi-objec-
tive Evolutionary Algorithm (MOEA) for solving both VRPB and VRPSB as
multi-objective problems. The description below emphasizes the modifications
to the original approach, which are the initial population, the mutation process
and the solutions repair, and we ask the interested reader to refer to the work of
Garcia-Najera and Bullinaria [7] for more details in the unchanged procedures.
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Solution encoding. Since solutions to VRPB and VRPSB are lists of routes,
which are themselves lists of customers, the proposed encoding is a list of lists. A
solution encoding simply lists the list of customer in the order they are serviced.

Initial population. As is standard practice, the initial population is chosen
randomly with the aim of covering the entire search space. Thus the MOEA
starts with a set of popSize solutions, each being a randomly generated route
constructed as follows. Since in VRPSB the uncollected profit, i.e. f3 in (6), is to
be minimized, we need solutions with different numbers of backhaul customers.
Hence, we first choose a random number nB in the interval [0, |VB|] (in the case
of the VRPB, nB = |VB|). Then, nB backhaul customers are randomly selected
and a permutation of these customers is generated. Then, since the problem
requires solutions with exactly K routes, these are created serving exactly one
backhaul customer. Thus, K customers are taken from the previous permutation
in the order they appear. The remaining backhaul customers are assigned to
the first route. If a backhaul customer cannot be assigned to the first route
due to the capacity constraint, it and the remaining backhaul customers are
assigned to the second route, and so on. If after assigning backhaul customers
to the K-th route there are still unassigned backhaul customers, new routes
are created. Afterwards, a random permutation is generated with the linehaul
customers identifiers. One linehaul customer is allocated to each of the previously
generated routes. The remaining linehaul customers are assigned to the existing
routes using the same procedure explained above.

Fitness assignment. Fitness is assigned by means of the non-dominance sort-
ing criterion [3], where the population is divided into non-dominated fronts, and
their depth specifies the fitness of the individuals belonging to them. In this case,
the lower the front, the fitter the solution.

Solution similarity measure. For multi-objective algorithms, it is important
that the final population contains solutions that represent the full Pareto front,
rather than just a small portion of it. Diversity here not only refers to the number
of distinct solutions in the population, but also to how different they are. To
accomplish this, we use the similarity measure proposed by Garcia-Najera and
Bullinaria [6], which considers each solution R as the union of the set of arcs
(u(i, k), u(i+1, k)), and the similarity of two solutions equals the ratio between
the number of arcs that are common to both solutions and the total number of
arcs used by them. For the purposes of the proposed MOEA, a measure of how
similar a given solution is to the rest of the population is also required. If P is
the population of solutions, the similarity SR of solution R ∈ P with the rest of
the solutions in P will be given by the average similarity of R with every other
solution Q ∈ P. Consequently, one minus the average solution similarity defines
the diversity Δ of the population P.

Parent selection. The standard tournament method size Tsize is used in our
algorithm for parent selection. A crucial difference is that, in addition to using
fitness to select good parents, it also uses the similarity measure to maintain



260 A. Garcia-Najera

population diversity. The first of two parents is chosen on the basis of fitness
and the second on the basis of similarity.

Recombination. The MOEA here is designed to randomly select and preserve
routes from both parents. First, a random number of routes is chosen from
the first parent and copied into the offspring. Then all those routes from the
second parent which are not in conflict with customers already copied from
the first, are copied into the offspring. Finally, if there remain any unassigned
customers, these are allocated, in the order they appear in the second parent, to
the route where the lowest cost is achieved. If there is no way to insert such a
remaining customer without violating a constraint, a new route is created. The
recombination procedure is carried out with probability γ.

Mutation. Changes to a solution of any VRP variant are limited to the cus-
tomer sequence and the customer assignment to routes. Having this in mind,
mutation involves three basic functions:

selectRoute. Stochastically selects a route according to the ratio of the cost
to the number of customers, i.e. routes with a larger cost and fewer customers
are more likely to be selected.

selectCustomer. Stochastically selects one customer from a specific route ac-
cording to the average length of its inbound and outbound arcs, i.e. customers
with longer associated costs are more likely to be chosen. A special case exists
for the first and last customers in a route, where only the outbound and inbound
arcs, respectively, are taken into account.

insertCustomers. Tries to insert, one at a time, a set of customers into a
specific route where the lowest cost is obtained.

These functions are used by the following mutation operators:

Reallocation. Takes a number of customers from a given route and allocates
them to another. First, selectCustomer is used to choose two customers from
the route. These are removed from the route, along with all those customers
in between them. Then, insertCustomers attempts to reallocate the removed
customers into any of the existing routes.

Exchange. Swaps customers between two given routes. This operator uses
selectCustomer to choose two customers from each route. The sequences of cus-
tomers between them are then removed from their route, and insertCustomers

attempts to reallocate them into the other route. If one or more customers cannot
be inserted into the other route, the original routes are preserved.

Modify nB. Randomly chooses whether to insert or remove one backhaul cus-
tomer, except when nB = 0 or nB = |VB|, in which case one backhaul customer
is added and removed, respectively. If a customer is to be removed, one route
is selected with selectRoute and from this, one backhaul customer is chosen
selectCustomer. If a customer is to be inserted into the solution, one of the
backhaul customers which are not present in the solution is randomly chosen.
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Then, insertCustomers is called to insert that customer into the route where
the lowest cost is obtained.

Reposition. Uses selectCustomer and insertCustomers respectively to select
one customer from a specific route and to reinsert it into the same route.

The mutation process proceeds as follows: selectRoute is used to chose two
routes. If they are the same route, the Reallocation operation is performed and
then Modify nB is called, otherwise the Exchange operator is executed. Then
selectRoute selects another route and the Reposition operator is carried out.

Solution Repair. The result of the recombination and mutation processes
could be an infeasible solution, specifically, one solution which is formed by one
or more infeasible routes serving backhaul customers only. If such a solution exist,
it is submitted to a repair process. This process consists, first, in identifying those
infeasible routes. Then, one linehaul customer is randomly chosen and removed
from the feasible routes and taking care that, after its removal, that route is still
feasible. Finally, this customer is inserted in one of the infeasible routes. This
process is repeated as many times as the number of infeasible routes.

Survival. In order to select individuals to form the next generation, the off-
spring and parent populations are combined and individual fitness is determined
as described earlier. Those solutions having the highest fitness, i.e. falling in the
outermost fronts, are taken to survive and form the next generation. When the
population size is exceeded in the last selected front, similarity is computed for
the solutions in that front, and the least similar are chosen.

Repetition. The whole process described above is repeated for a fixed number
noGen of generations or until the diversity of solutions in the Pareto approxi-
mation has not changed during a number noChange of generations.

4 Experimental Study

The main purpose of our study is to solve the multi-objective VRPB and VRPSB
and evaluate our MOEA performance, first, by comparing our results with those
from previous approaches, and second, by means of using the hypervolume and
diversity metrics and compare it with NSGA-II [3]. To accomplish this, both
algorithms were set, first, to optimize the total cost and the number of routes
simultaneously for solving the VRPB, and then, additionally to both objectives,
to optimize the total profit for solving the VRPSB.

We tested our algorithm on the benchmark set of Goetschalckx [8] that in-
cludes 68 instances of sizes N = 25 to 200, which are grouped into 14 categories.
We ran our algorithm and NSGA-II 30 times for each problem instance. The
parameters of our algorithm were set to values that have proved to work well in
preliminary testing: popSize = 100, noGen = 5000, noChange = 300, Tsize = 5,
γ = 1.0, and μ = 0.9. For a fair comparison, all parameter values, processes and
operators set in our MOEA were also set in NSGA-II, with the exception of the
diversity mechanism due to NSGA-II using its crowding distance and MOEA its
solution similarity measure.
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Table 1. Best-known results, averaged over instance category, and results from MOEA
set to minimize the number of routes and total cost for solving VRPB

IC #I NL NB Best-known Best %Gap #BK Avg. Best Std. Dev. %Gap Gen. Time

A 4 25 20 182299.75 182301.65 0.00 4 182788.56 33067.35 0.27 435.00 7.65
B 3 30 20 202163.33 202166.75 0.00 3 202194.12 35031.21 0.02 431.11 8.94
C 4 40 20 214794.00 215072.40 0.13 4 217134.64 26190.28 1.09 450.83 13.80
D 4 38 30 271137.36 271137.36 0.00 4 271828.03 57992.27 0.25 565.00 17.78
E 3 45 30 219266.53 219267.30 0.00 3 221062.99 18179.07 0.82 558.89 25.83
F 4 60 30 250841.75 252354.91 0.60 1 256015.18 17719.40 2.06 571.67 30.26
G 6 57 45 241493.50 241493.86 0.00 6 245810.83 34314.80 1.79 753.33 35.15
H 6 68 45 252537.30 252561.63 0.01 5 257861.93 7330.34 2.11 672.78 40.44
I 5 90 45 310381.86 311032.83 0.21 3 318160.98 22667.54 2.51 804.00 78.06
J 4 95 75 305293.75 306185.30 0.29 1 314142.74 24236.86 2.90 1337.50 134.40
K 4 113 75 367710.89 368185.22 0.13 0 379343.21 20166.37 3.16 1454.17 215.82
L 5 150 75 398800.66 404593.50 1.45 0 418893.39 15338.23 5.04 1366.00 334.93
M 4 125 100 379836.39 383665.75 1.01 0 393012.72 26469.49 3.47 2009.17 284.75
N 6 150 100 392087.87 399218.85 1.82 0 410687.50 16309.52 4.74 1764.45 373.02
O 6 200 100 469946.24 485325.71 19885.53 1827.22 834.99

Average 284903.21 286374.09 0.40 292066.91 2.16 940.99 114.34

4.1 Comparison with Previous Approaches

The first series of experiments were conducted in order to optimize the bi-
objective VRPB. For every benchmark instance, the solution with K routes
and the lowest cost was taken after each of the 30 repetitions. Then, the mean
lowest cost was computed for each instance and these were averaged over in-
stance category. The percentage gap and the average percentage gap between
our best results and the best-known results were calculated. Table 1 presents
these results. This table shows, in the first four columns, the name of the instance
category, the number of instances, and the number of linehaul and backhaul cus-
tomers. The next column presents the average of the best-known results, taken
from the studies reviewed earlier, for the instances in that category. The best
result from MOEA, the percentage gap between this and the best-known result,
and the number of instances for which MOEA found the best-known result are
presented, respectively, in the following three columns. The next three columns
show the average of the best result obtained by MOEA after the 30 repetitions,
its corresponding standard deviation, and the per cent gap between the average
best result and the best-known. The last two columns are the average number
of generations when MOEA stopped and the average execution time in seconds.

We can observe that MOEAwas able to find the best-known solution for 34 out
of 62 instances. Our best results for instances of size N ≥ 125 are slightly higher
than 1.0% above the best-known. In fact, the average percentage gap between
the best results from MOEA and the best-known results is 0.4%. Regarding the
average of the best results obtained after 30 repetitions, we can say that the
average of the results for the instances in four categories is less than 1.0% above
the best-known results, and, on average, the gap is 2.16% above the best-known.
We can also observe that MOEA performed nearly 941 generations on average,
which took approximately 115 seconds.
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We would like to point out that, as far as we are concerned, no previous study
has considered the solution of instances size N = 200, which means that the
results presented in Table 1 are, up to now, the best-known. Furthermore, we
would like to remind the reader that the main purpose of this study is the multi-
objective performance analysis of MOEA while solving VRPB and VRPSB, and
that the investigation presented above was carried out in order to know if MOEA
is able to find the best-known solutions to VRPB instances, which is true for
many of the Goetschalckx instances.

4.2 Multi-objective Performance

In order to compute the hypervolume covered by a non-dominated set, we require
an appropriate reference point. For each instance, there is a solution, though
not feasible, with maximal objective function evaluation, which is formed by N
routes, i.e. one customer allocated to each route. This solution has a maximal
cost Cmax, which is the double of the cost from the depot to every customer.
Thus, our reference point is z = (N,Cmax). To calculate the hypervolume, for
each instance and repetition, we took the non-dominated set and computed the
hypervolume covered by those solutions. Then, we applied a two-sample, two-
tailed, unequal variance t-test to the two vectors of 30 hypervolume values, from
MOEA and NSGA-II, to test if there is a difference at the 5% significance level.
We also computed the diversity Δ of the non-dominated solutions from MOEA
ans NSGA-II as described in Section 3 and the results were also submitted to a
t-test. These results, averaged over instance category, are shown in Table 2. This
Table is divided into five main columns. The first presents the instance category
and the number of instances comprising that category. The next corresponds
to the hypervolume performance metric, showing, for each algorithm, the mean
hypervolume, the number of instances for which there is significant difference,
and the algorithm which solutions delimit a significantly larger hypervolume
(M = MOEA, N = NSGA-II). The following main column corresponds to the
population diversity measure, which is structured in the same manner as that
of the hypervolume. The last two show the average number of generations each
algorithm ran and the average execution time, respectively, for each algorithm.

In this case, we observe that the difference in the hypervolume covered by the
non-dominated solutions from both algorithms is statistically significant in only
three instances, one in each of the categories D, I, and N, where non-dominated
solutions found by MOEA cover a slightly larger hypervolume than those from
NSGA-II. The hypervolume for the remaining 65 instances does not present a
significant difference. Considering the diversity measure, there is a significant
difference in only one of the instances in category O, where solutions found
by NSGA-II are significantly more diverse. Regarding the average number of
generations and execution time, we see that MOEA ran, on average, for nearly
18% more generations, which correspond to approximately 20% more time.

Overall, considering the previous analysis, we can say that, for the bi-objec-
tive optimization of the VRPB, both algorithms perform equally well, since, for
the vast majority of the benchmark instances, there is no significant difference
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Table 2. Mean results of the performance metrics for the non-dominated solutions
found by MOEA and NSGA-II while solving VRPB as a bi-objective problem

Inst. Hypervolume Diversity Generations Time (s)

C # MOEA NSGA tt Alg. MOEA NSGA tt Alg. MOEA NSGA MOEA NSGA

A 4 0.5488 0.5484 0 0.8960 0.8955 0 435.00 427.50 7.65 7.34
B 3 0.5776 0.5774 0 0.8478 0.8464 0 431.11 416.67 8.94 8.86
C 4 0.6602 0.6600 0 0.5638 0.5709 0 450.83 447.50 13.80 13.51
D 4 0.5353 0.5353 1 M 0.9800 0.9733 0 565.00 497.50 17.78 13.71
E 3 0.6680 0.6676 0 1.0000 1.0000 0 558.89 517.78 25.83 17.72
F 4 0.7265 0.7259 0 0.6401 0.6212 0 571.67 545.00 30.26 28.66
G 6 0.7203 0.7199 0 0.9513 0.9326 0 753.33 641.11 35.15 28.51
H 6 0.7611 0.7612 0 0.8991 0.8890 0 672.78 618.33 40.44 37.25
I 5 0.7650 0.7644 1 M 0.8375 0.8396 0 804.00 717.33 78.06 79.05
J 4 0.7628 0.7628 0 0.9833 0.9800 0 1337.50 1102.50 134.40 114.31
K 4 0.7816 0.7812 0 0.9884 0.9896 0 1454.17 1115.00 215.82 157.06
L 5 0.8201 0.8198 0 0.8259 0.8132 0 1366.00 1150.00 334.93 296.58
M 4 0.7853 0.7848 0 0.9283 0.9369 0 2009.17 1499.17 284.75 258.74
N 6 0.8156 0.8151 1 M 0.9895 0.9640 0 1764.45 1488.89 373.02 347.22
O 6 0.8430 0.8426 0 0.8134 0.8597 1 N 1827.22 1533.33 834.99 630.31

Avg. 0.7181 0.7178 0.8763 0.8741 1000.07 847.84 162.39 135.92

between the hypervolume and diversity of the non-dominated solutions found by
MOEA and NSGA-II.

We then ran both algorithms for solving the tri-objective VRPSB, minimizing
the number of routes, the total cost and the uncollected profit. Since the VRPB
benchmark instances we are using do not provide profit information, we consider
the backhaul customer supply as unitary profit. Thus, for each instance, we have
a maximal profit P defined in (1). Hence, the reference point to be considered
for computing the hypervolume performance metric is now z = (N,Cmax, P ).

After every run of each algorithm, we recorded the non-dominated set and
computed the hypervolume metric and diversity measure, and submitted these
values to a t-test as we did in the bi-objective case. Results are presented in
Table 3, which has the same structure as Table 2. Regarding the hypervolume
performance metric, we can see that there is a significant difference between
the hypervolume covered by the solutions from MOEA and that covered by the
solutions from NSGA-II in 21 instances, being significantly larger that covered
by solutions from MOEA in eight instances and in 13 that covered by solutions
from NSGA-II. Let us now concentrate on solution diversity. In this respect,
we observe that solutions from MOEA present a significantly higher diversity
than those from NSGA-II in 49 instances and there is no instance for which the
solution diversity from NSGA-II is significantly larger than that from MOEA.
These results suggest that, despite both algorithms finding solutions that do not
delimit a significantly different hypervolume to more than half of the instances,
MOEA does find solutions significantly more diverse than those found by NSGA-
II for the majority of the instances. This may be due to MOEA’s parent selection,
since one of the parent is chosen according to the similarity measure. We can
also see that, for instances I, K, L, M, N and O, both algorithms performed
5000 generations, which is the maximum number of generations (noGen). This
means that there were no 300 consecutive generations (noChange) in which the
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Table 3. Mean results of the performance metrics for the non-dominated solutions
found by MOEA and NSGA-II while solving VRPSB as a tri-objective problem.

Inst. Hypervolume Diversity Generations Time (s)

C # MOEA NSGA tt Alg. MOEA NSGA tt Alg. MOEA NSGA MOEA NSGA

A 4 0.5670 0.5660 0 0.5360 0.5209 0 1798.33 1714.17 41.51 32.25
B 3 0.6092 0.6101 1 M 0.4870 0.4599 2 M 925.56 928.89 29.30 24.20
C 4 0.6865 0.6581 1 M 0.5701 0.5404 2 M 3767.50 3986.67 238.13 170.95
D 4 0.5515 0.5519 0 0.3785 0.3446 3 M 1835.00 1761.67 71.25 55.23
E 3 0.6569 0.6800 1 M 0.4909 0.4658 2 M 1813.33 1787.78 129.34 84.90
F 4 0.7506 0.7652 3 N 0.5569 0.4559 4 M 4632.50 5000.00 598.49 472.86
G 6 0.7266 0.7244 0 0.3918 0.3768 0 2891.11 2892.22 228.08 185.23
H 6 0.7838 0.7568 3 M 0.4481 0.3958 5 M 4142.22 4577.22 617.13 451.72
I 5 0.7933 0.7847 1 M 0.4997 0.3816 5 M 5000.00 5000.00 1097.37 739.08
J 4 0.7617 0.7713 1 N 0.3449 0.3175 1 M 4216.67 4127.50 669.00 555.01
K 4 0.7941 0.7977 1 N 0.4084 0.2286 4 M 5000.00 5000.00 1130.00 1037.00
L 5 0.8116 0.8324 2 N 0.4449 0.2650 5 M 5000.00 5000.00 2057.49 2030.21
M 4 0.7799 0.7895 1 M 0.3770 0.3055 4 M 5000.00 5000.00 1230.79 1046.73
N 6 0.7832 0.8117 1 N 0.3009 0.1961 6 M 5000.00 5000.00 1705.96 1734.13
O 6 0.8169 0.8536 5 N 0.4473 0.2228 6 M 5000.00 5000.00 3602.91 2985.93

Avg. 0.7248 0.7302 0.4455 0.3652 3734.81 3785.07 896.45 773.69

solution diversity remained unchanged. On average, NSGA-II ran slightly more
generations than MOEA. Finally, we can observe that MOEA’s execution time
was always higher than that of NSGA-II, except for instance category N. On
average, MOEA takes approximately 16% more time to finish than NSGA-II.

5 Conclusions

We have analyzed the performance of a recently proposed Multi-objective Evolu-
tionary Algorithm (MOEA) which has been modified for solving the bi-objective
VRPB and the tri-objective VRPSB. This MOEA introduced a similarity-based
selection to enhance solution diversity. We have proposed modified initial solu-
tion generation and mutation procedures and tested the adapted MOEA on 68
well-known VRPB benchmark instances.

Since VRPB concentrates on minimizing the total cost given a fixed number
of vehicles, we compare the best solutions from MOEA with those from previous
approaches. The analysis made here demonstrated that, despite the average of
the best results from MOEA is approximately 2% above the best-known, MOEA
was able to find the best-known solutions to many of the instances, specifically,
to instances in which size N ≤ 100.

Considering the bi-objective VRPB, we compared the performance of MOEA
and NSGA-II by means of using the hypervolume performance metric and the
diversity measure over the non-dominated solutions found by the algorithms.
After applying a t-test over the hypervolume and diversity values, we did not
find a significant difference, hence we concluded that both MOEA and NSGA-II
performed equally well on the bi-objective problem.

Regarding the tri-objective VRPSB, we use the same tools for comparing
the non-dominated solutions found by each algorithm. The t-test applied on



266 A. Garcia-Najera

the hypervolume values showed us that there was a significant difference in 21
instances, in eight of which MOEA solutions have a higher hypervolume and
in 13 NSGA-II solutions cover a larger hypervolume. The t-test applied on the
diversity values demonstrated the significantly higher solution diversity on the
non-dominated sets found by MOEA. These results suggest that, despite both
algorithms finding solutions which do not cover significantly different hypervol-
umes for more than half of the instances, the non-dominated solutions found by
MOEA do have a significantly higher diversity.

We have demonstrated that considering solution similarity in the optimization
process result in an improved performance of MOEA, leading to finding best-
known solutions and, in many cases, this performance is comparable to the
popular and successful NSGA-II.

We now look forward to take advantage of this similarity and diversity infor-
mation, for example, testing MOEA on stochastic and dynamic variants of the
VRP. We are also focusing on reducing the execution time of MOEA in order to
have a clear benefit over other approaches.
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Ávila, Thais 25

Bloch, Christelle 194
Blum, Christian 172
Burke, Edmund K. 136

Charlet, Damien 194
Chicano, Francisco 111
Chouchane, Mathieu 243
Corberán, Ángel 25
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Stützle, Thomas 206

Thompson, Jonathan M. 63
Toscano-Pulido, Gregorio 182

Vazquez-Rodriguez, Jose A. 136

Walker, James 136

Zekri, Manel 37


	Title
	Preface
	Organization
	Table of Contents
	A Methodology for Comparing the Execution Time of Metaheuristics Running on Different Hardware
	Introduction
	Background
	Classic Benchmarks
	High Performance Benchmarks
	Modern Benchmarks

	Experimental Context
	Algorithms and Problem
	Hardware Platforms
	Methodology

	Obtaining the Data
	Choosing a Benchmark
	Fitting the Data
	Predicting Running Times and Limitations
	Conclusions and Further Work
	References

	A Variable Neighborhood Search Approach for the Two-Echelon Location-Routing Problem
	Introduction
	Related Work
	Variable Neighborhood Search for the 2E-LRP
	Experimental Results
	Conclusions
	References

	An ILS-Based Metaheuristic for the Stacker Crane Problem
	Introduction
	SCP Definition and Notation
	A Lower Bound to the SCP
	A Metaheuristic Algorithm for the SCP
	Multi-start Algorithm
	Variable Neighborhood Descent Algorithm
	Iterated Local Search

	Computational Results
	Conclusions
	References

	An NSGA-II Algorithm for the Green Vehicle Routing Problem
	Introduction
	Green Logistics
	Emission Factors
	Emission Estimation Techniques

	The Vehicle Routing Problem with Emissions
	Literature Review
	The Bi-objective Green Vehicle Routing Problem

	NSGA-II Algorithms for the Bi-objective GVRP
	Implementation and Computational Results
	Computational Results
	Statistical Analysis

	Conclusions
	References

	Clustering Search Heuristic for Solving a Continuous Berth Allocation Problem
	Introduction
	Literature Review
	Problem Approach
	Clustering Search (CS)
	Computational Tests
	Tuning Parameters
	Results

	Conclusions
	References

	Combining Heuristic and Exact Methods to Solve the Vehicle Routing Problem with Pickups, Deliveries and Time Windows
	Introduction
	Problem Formulation
	Algorithm Operators
	Construction Methods
	Route Reconstruction Heuristics
	Branch and Bound Method

	Overall Algorithm
	Experimental Results
	Conclusions
	References

	D2MOPSO: Multi-Objective Particle Swarm Optimizer Based on Decomposition and Dominance
	Introduction
	Multi-objective Particle Swarm Optimisation
	D2MOPSO Approach
	Experiments and Results
	Experimental Setup
	Quality Measures

	Discussion and Conclusions
	References

	Domain Reduction Using GRASP Construction Phase for Transmission Expansion Planning Problem
	Introduction
	Transportation Model of the Transmission Expansion Planning Problem
	Domain Reduction Using GRASP Construction Phase 
	Tests and Results
	Garver System
	Southern Brazilian System
	North-Northeast Brazilian System

	Conclusions
	References

	Electrical Load Management in Smart Homes Using Evolutionary Algorithms
	Introduction
	In-House Energy Management
	Problem Description
	Modeling the Problem
	An Evolutionary Algorithm with Local Search
	Solution Representation
	Selection and Reproduction Scheme
	Customized Search Operators
	Local Search

	Simulation Results
	Conclusions and Outlook
	References

	Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum
	Introduction
	Background
	Fitness-Distance Correlation
	Fitness-Distance Correlation for Elementary Landscapes

	FDC, Autocorrelation Length and Local Optima
	Conclusion
	References

	Genetic Algorithms for Scheduling Devices Operation in aWater Distribution System in Response to Contamination Events
	Problem Description
	Genetic Algorithms for the Scheduling of Operations
	A Genetic Algorithm Based on Sequences
	Two-Part Chromosome
	A Genetic Algorithm Based on Activation Times

	Computational Results
	Conclusions
	References

	HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search
	Introduction
	The HyFlex Framework
	The ProblemDomain Class
	The HyperHeuristic Class
	Running a Hyper-heuristic
	An Example Hyper-heuristic
	HyFlex Problem Domains

	HyFlex Achievements
	Discussion and Future Work
	References

	Hyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm
	Introduction
	Hyper-Heuristics
	Proposed Hyper-Heuristic

	Original ISEA Algorithm
	ISEA Pseudo Code
	ISEA Control Parameters' Setting

	ISEA with Adapted Re-initialization Rate
	Experiments
	Experimental Setup
	Results

	Conclusions
	References

	Intensification/Diversification-Driven ILS for a Graph Coloring Problem
	Introduction
	Graph Coloring Problem
	Definitions and Notations
	Metaheuristic Approaches to the GCP

	Intensification/Diversification-Driven ILS
	Main Scheme of ID-ILS
	Perturbation Step
	Local Search Step

	Experimental Results
	Problem Instances and Experimental Protocol
	Comparing the Different Perturbation Schemes
	Comparison with Two Local Search Methods
	Comparison with the Most Effective Algorithms
	Analysis of the Parameters of ID-ILS

	Conclusions
	References

	Iterated Greedy Algorithms for the Maximal Covering Location Problem
	Introduction
	Previous Work
	Our Contribution
	Paper Organization

	Proposed IG Variants for the MLCP
	The Probabilistic Greedy Procedure
	PBIG+LNS

	Computational Experiments
	Problem Instances
	Tuning Experiments
	Experimental Results

	Conclusions and Future Work
	References

	Multiobjectivizing the HP Model for Protein Structure Prediction
	Introduction
	Background and Notation
	The HP Model for Protein Structure Prediction
	Single-objective and Multiobjective Optimization
	Multiobjectivization

	Multiobjectivization Proposal: The Parity Decomposition
	Experimental Setup
	Algorithms
	Test Cases and Performance Assessment

	Results
	Results for the (1+1) Evolutionary Algorithm
	Results for the Genetic Algorithm

	Conclusions and Future Work
	References

	Multi-Pareto-Ranking Evolutionary Algorithm
	Introduction
	Multi-Objective Evolutionary Algorithms (MOEAs) in Literature
	Pareto-Based MOEAs
	Tuning of MOEA Parameters
	Constraint-Handling in MOEAs

	A Multiple-Pareto-Ranking Genetic Algorithm
	Ranking
	Fitness Assignment
	Selection Operator

	Validation and Experimental Results
	Tuning GAME's Parameters
	Influence of Multiple Pareto Fronts
	Performance Assessment

	Conclusion
	References

	Pareto Local Search Algorithms for Anytime Bi-objective Optimization
	Introduction
	Anytime Pareto Local Search
	Experimental Analysis
	Experimental Setup and Performance Assessment
	Experimental Results

	Conclusions
	References

	Pure Strategy or Mixed Strategy? An Initial Comparison of Their Asymptotic Convergence Rate and Asymptotic Hitting Time
	Introduction
	Pure Strategy and Mixed Strategy EAs
	Asymptotic Convergence Rate and Asymptotic Hitting Time
	A Comparison of Pure Strategy and Mixed Strategy
	Conclusion and Discussion
	References

	Recurrent Genetic Algorithms: Sustaining Evolvability
	Introduction
	Related Works
	Recurrent Genetic Algorithms
	Elitism

	Experiments
	NK Landscape
	Hamming Centres
	Continuous Optimisation

	Conclusions 
	References

	Splitting Method for Spatio-temporal Sensors Deployment in Underwater Systems
	Introduction
	Problem Presentation: Spatio-temporal Search Efforts Planning
	The Solution Constraints
	The Target Constraints

	The Generalized Splitting Framework
	Solving Our Real-World Problem
	Evaluating the Detection Probability
	The Splitting Algorithm
	The Dedicated Gibbs Sampler

	Illustrative Example: The Flaming Datum Search Problem
	Conclusion and Prospects
	References

	The Vehicle Routing Problem with Backhauls: A Multi-objective Evolutionary Approach
	Introduction
	Multi-objective Combinatorial Optimization
	Multi-objective EA for Solving VRPB and VRPSB
	Experimental Study
	Comparison with Previous Approaches
	Multi-objective Performance

	Conclusions
	References

	Author Index



