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Abstract. We consider robust counterparts of integer programs and
combinatorial optimization problems (summarized as integer problems
in the following), i.e., seek solutions that stay feasible if at most Γ -many
parameters change within a given range. While there is an elaborate
machinery for continuous robust optimization problems, results on robust
integer problems are still rare and hardly general.

We show several optimization and approximation results for the ro-
bust (with respect to cost, or few constraints) counterpart of an integer
problem under the condition that one can optimize or approximate the
original integer problem with respect to a piecewise linear objective (re-
spectively piecewise linear constraints).

For example, if there is a ρ-approximation for a minimization prob-
lem with non-negative costs and non-negative and bounded variables
for piecewise linear objectives, then the cost robust counterpart can be
ρ(1 + ε)-approximated.

We demonstrate the applicability of our approach on two classes of in-
teger programs, namely, totally unimodular integer programs and integer
programs with two variables per inequality. Further, for combinatorial
optimization problems our method yields polynomial time approxima-
tions and pseudopolynomial, exact algorithms for Robust Unbounded
Knapsack Problems.

Keywords: Robust Optimization, Integer Programming, Total Unimod-
ularity, Unbounded Knapsack, Integer Programs with two variables per
inequality.

1 Introduction

Asolution to an optimization problemoften has to be good not just for one instance
but for a set of scenarios. This can either be due to uncertainty as to which of the
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scenarios will eventually occur, or because the solution shall be used several times
in different scenarios.

One solution concept for optimization over scenarios is Robust Optimization.
In the robust paradigm feasibility and cost of a solution are measured by those
scenarios in which the solution performs worst. This worst case approach con-
trasts to stochastic programming, where the cost of a solution is typically a
weighted average over all scenarios, good ones and bad ones.

As an illustration, suppose we choose a route for regularly driving to work.
We want to be on time no matter what happens, thus we have to evaluate each
route by the travel time in its worst case scenario.

Robust optimization has thriven in the past decade, partly because its appli-
cability became apparent, and partly because the resulting mathematical models
allow for strong solution methods. For continuous problems a cohesive body of
quite general methods has been developed. For combinatorial problems and in-
teger linear programs (IPs) the picture is a lot more scattered. Typically, the
results cover a specific combinatorial problem. This is of course a consequence
of the richness of combinatorial optimization and integer linear programming.
General results for all of these problems as in the continuous case are unlikely.
Therefore the following result by Bertsimas and Sim is even more remarkable:

In [7], they show that for uncertain cost coefficients, where at most Γ of them
can deviate from the nominal setting at the same time, solvability or approxima-
bility of any problem with binary decision variables extends to the robust case, as
it suffices to solve a linear number of instances of the deterministic problem.

Bertsimas and Sim explicitly note that this result is intrinsically limited to
binary variables. With the help of a new technique we get a corresponding result
for integer, not necessarily binary cost robust problems1. Further, we can extend
our method to general robust integer problems with uncertainty in one (or few)
linear constraint(s). Restricting the latter result again to binary problems gives
the exact sibling of the cost robust result in [7] for robustness in constraints.
However, new insights were needed to translate the methods from [7] to the
constraint robust setting.

Our Contribution: The main results of this paper are the following:

– The cost robust counterpart (in the same sense as in [7]) of an integer prob-
lem can be solved or approximated if the original problem can be solved for
piecewise linear convex cost functions with at most two bends.

– To solve integer problems with uncertainty in a constant number of linear
constraints, one has to solve a modified problem where the left hand sides
of the constraints are replaced by piecewise linear convex functions.

– For binary problems with uncertainty in a constant number of linear con-
straints, it suffices to solve a polynomial number of instances of the original
problem with slightly modified coefficients in the constraints.

1 We speak of integer problems to integrate IPs and combinatorial problems, where
the feasibility sets need not be given explicitly by linear constraints.
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At first sight, the requirement of solvability for piecewise linear functions seems
clumsy, and not likely to be useful. To the contrary, we exemplify its usefulness by
a number of quite different and broad applications of our results. Those general
results allow us to develop methods for cost robust counterparts of entire classes
of integer linear programs, notably, totally unimodular programs (TUM) and
integer programs with two variables per constraint (IP2). Both classes have been
studied intensely in the deterministic case, but we are not aware of any general
results on their robust counterparts. Our general result on cost robust TUM
problems broadly extends results on Robust Min Cost Flows in [7]. Further,
we apply our general results to a combinatorial problem, namely, Unbounded
Knapsack. In this case we derive an algorithm that handles cost robustness and
robustness in the constraints at the same time.

We believe that this paper will motivate the consideration of piecewise linear
cost functions and constraints for further classes of integer problems.

Let us remark that although many optimization problems with a natural
non-binary IP description can be reformulated as binary IPs, this does usually
not yield a workaround to apply results for robust binary IPs to the naturally
non-binary problem – even granted the incurred blow-up of the instance. The
hindrance is usually that the scenario sets of the robust counterparts make no
sense once the problem is transformed into an unnatural binary program.

Related Work: Modern continuous robust optimization started with [20] for con-
vex uncertainty sets and [4,5,6] for ellipsoidal uncertainty sets. Still a good
overview for the state of the art is [1]. The Γ -scenario setting from [7,8] has
found frequent application, e.g. in [9,10,16].

Robust Knapsack has so far only been considered in the binary setting. While
for Γ -scenarios for uncertain costs the result from [7] applies, for the case of
general scenarios there is no approximation algorithm at all [2,21]. Klopfenstein
and Nace [17,18] considered polyhedral aspects of the robust Knapsack Problem,
and in the context of the chance-constraint version also a weight robust Knapsack
Problem. For the latter problem they derive a pseudo-polynomial algorithm, a
result that also follows from our general result on constraint robust problems.

For integer linear programs with two variables per inequality (IP2), Hochbaum
et al. [13] and Bar-Yehuda and Rawitz [3] provide a pseudopolynomial time 2-
approximation algorithm. In case the inequalities are restricted to be monotone,
there are pseudopolynomial time exact algorithms [3,14]. All algorithms explic-
itly assume that the variables are bounded.

Our general result generalizes a result for cost robust binary IPs [7], and
our results for totally unimodular integer programs generalize results on specific
totally unimodular problems, e.g., Min Cost Flows [7].

Structure of the paper: In Section 2 and 3 we present the general results on
cost robust and constraint robust integer problems, respectively. In Section 4
we apply them to problems with a totally unimodular description and integer
programs with two variables per inequality, enabling us to solve the cost robust
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counterparts, as well as to the Unbounded Knapsack Problem, where we can
solve a robust version that features both, uncertainty in cost and weights.

2 Uncertainty in the Objective

We start with the general result on cost robust, not necessarily binary problems.
We will use [n] for the set {1, . . . , n} here and throughout. Further, let us note
that in our notation the set IN includes the zero. By TA(I) we denote the running
time of an algorithm A on an instance I.

The formal definition for the considered class of problems reads as follows:

Definition 1 (Cost Robust Optimization Problem). For the optimization
problems minx∈X{cTx} and maxx∈X{cTx}, given by P = (c,X) where X ⊆ ZZn

and c ∈ IRn, and a non-negative integer vector d ∈ INn together with Γ ∈ [n],
the minimization (maximization) (d, Γ )-Cost Robust Counterpart (CRC) of P
is defined by

min
x∈X

{
cTx+ max

S⊆[n]
|S|≤Γ

∑
j∈S

|djxj |
}

and max
x∈X

{
cTx− max

S⊆[n]
|S|≤Γ

∑
j∈S

|djxj |
}

, (1)

respectively.

Our main goal is to show that one can solve or approximate the CRC of P , if
one can solve or approximate the following variant of P :

Definition 2 (Modified Optimization Problem). For the minimization
(maximization) problem given by P = (X, c), c′ ∈ IRn

≥0 and α ≥ 0, the (c′, α)-
Modified Minimization (Maximization) Problem (MMin, MMax) of P is

min
x∈X

{∑
j∈[n]

c̃j(xj)
}

and max
x∈X

{∑
j∈[n]

c̃j(xj)
}
, (2)

where c̃j(xj) := cjxj ±max{c′jxj − α, 0} ±max{−c′jxj − α, 0} for minimization
(“+”) and maximization (“−”), respectively.

At this point minimization and maximization are fully symmetric. At a later
stage it will come in handy to have them defined separately.

Theorem 3. Consider the optimization problem of P = (c,X) with X ⊆ ZZn

and c ∈ IRn. Suppose for some ρ ≥ 1 there is a ρ-approximation algorithm A1

for the (c′, α)-MMin (MMax) of P and arbitrary c′ and α. Further suppose there
is an algorithm A2 that, for given d ∈ INn and Γ ∈ [n], computes upper bounds
uj on the absolute value of each variable xj in the optimal solution of the (d, Γ )-
CRC of P . Then there is a ρ-approximation algorithm A for the (d, Γ )-CRC
of P with running time TA(P, d, Γ ) ∈ O(

TA2(P, d, Γ ) + ϑ ·TA1(P, d, ϑ)
)
, where

ϑ := maxj{ujdj}.
We will use ϑ := maxj{ujdj} throughout the remainder of this paper without
defining it again.
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Note that for ρ = 1, i.e., if we have an exact algorithm for the modified
problem, we can solve the CRC exactly.

Proof. We only consider minimization problems, since we can transform any
maximization problem into a minimization problem by taking the negative of
the costs. Along the lines of the binary result from [7], we formulate the inner
maximization problem of (1) as an IP, dualize and eliminate all but one dual
variable to get the following reformulation of (1):

min
x∈X,ϑ≥0

{
cTx+ Γϑ+

∑
j∈[n]

(
max{djxj − ϑ, 0}+max{−djxj − ϑ, 0})}. (3)

From this point on, the methods from [7] no longer apply because the variables
are non-binary. We thus use our new technique, which utilizes the notion of the
Modified Optimization Problem: For a fixed ϑ, (3) is equivalent to the (d, ϑ)-
MMin of P . By the conditions of the Theorem, we can compute a ρ-approximate
solution to this problem.

Let (x∗, ϑ∗) be an optimal solution to (3). We know that |x∗
j | ≤ uj, so if

ϑ ≥ maxj ujdj = ϑ, for all j both maxima in (3) vanish. Hence, if we increase ϑ
beyond this number, the objective value increases. It follows that ϑ∗ ≤ ϑ.

Also, we can assume that ϑ∗ is integral: Denote by

C∗(ϑ) := Γϑ+min
x∈X

{ ∑
j∈[n]

(
cjxj +max{djxj −ϑ, 0}+max{−djxj −ϑ, 0})} (4)

the optimal cost for a fixed ϑ. Since x and d are integral, this function is linear
in ϑ within each interval [k, k+1], k ∈ IN. In such an interval the local maximum
is obtained for ϑ = k or for ϑ = k+1, and thus the global maximum is obtained
for some integral ϑ.

We can thus compute all ρ-approximate solutions corresponding to integral
values of ϑ in [0, ϑ], and choose the best among them, resulting in the claimed
running time. ��
Remark. Our model of robustness limits to deviation in at most Γ cost coef-
ficients. The resulting inner maximization problem, which we dualized in the
previous proof, is totally unimodular. Therefore a standard argument originat-
ing from [7] gives that this model is equivalent to protecting against any cost
function c+ δd with δ in the set {δ ∈ IRn :

∑
j∈[n] |δj | ≤ Γ}.

Unless maxj ujdj is polynomial in the input, in Theorem 3 one ends up with a
pseudopolynomial algorithm for the CRC, even if a polynomial algorithm for the
modified optimization problem is given. This can be overcome if ρ = 1 and C∗

as defined in (4) is convex as a function of ϑ, in which case ϑ∗ can be found via
a carefully constructed binary search (similar to the one in proof of Theorem 7
in [7]):

Theorem 4. Consider the minimization problem of P = (c,X) with X ⊆ ZZn

and c ∈ IRn. If the conditions of Theorem 3 hold, and if ρ = 1 and C∗ is a
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convex function, then there is an exact algorithm A for the (d, Γ )-CRC of P
with running time TA(P, d, Γ ) ∈ O(

TA2(P, d, Γ ) + log(ϑ) ·TA1(P, d, ϑ)
)
.

For an application of this result we refer the reader to the part on problems with
totally unimodular description in Section 4.

When ρ > 1 or C∗ is not convex, we can still restrict the number of calls
of the oracle A1 to O(log(ϑ)) in exchange for a slightly weaker approximation
guarantee. But for this result we have to consider minimization and maximiza-
tion separately and restrict to combinatorial problems with non-negative cost
coefficients and variables. Note that in this case the second maximum in both
the definition of MMin and MMax vanishes.

It requires some additional non-trivial insights to prove that if ϑ∗ is approxi-
mated, also the value of the solution will not deviate too much from the optimal
value. We present these ideas in the following two proofs.

Theorem 5 (Minimization Problem). Consider the minimization problem
of P = (c,X) with X ⊆ INn and c ∈ IRn

≥0. Under the conditions of Theorem 3,
for all ε > 0 there is a ρ(1 + ε)-approximation algorithm A for the (d, Γ )-CRC
of P with running time TA(P, d, Γ ) ∈ O(

TA2(P, d, Γ )+ 1
ε · log(ϑ) ·TA1(P, d, ϑ)

)
.

Proof. We start as in the proof of Theorem 3. To attain the claimed running
time, however, for any given ε > 0, we now solve (4) approximately for all
ϑ ∈ {0} ∪ {(1 + ε)k : k ∈ IN, (1 + ε)k−1 ≤ ϑ}, and return the best of all these
solutions. This yields a ρ(1 + ε)-approximation for the CRC:

Let (x∗, ϑ∗) be an optimal solution to (3), w.l.o.g. ϑ∗ ≤ ϑ and ϑ∗ ∈ IN. In
case ϑ∗ ∈ {0, 1}, our solution is within a factor of ρ of the optimum, since
these two values for ϑ are checked. Otherwise, let k0 ∈ IN � {0} be such that
(1 + ε)k0−1 < ϑ∗ ≤ (1 + ε)k0 =: ϑ0. Since Γ, ϑ∗, c, and x ≥ 0, we get

C∗(ϑ0)

C∗(ϑ∗)
≤ max

{
Γϑ0

Γϑ∗ ,
minx∈X

{∑
j cjxj +max{djxj − ϑ0, 0}

}
minx∈X

{∑
j cjxj +max{djxj − ϑ∗, 0}}

}
≤ 1 + ε .

Since we can compute ρ-approximations to C∗(ϑ), the best solution we find
is a ρ(1 + ε)-approximation for the CRC. Further, the oracle A1 is called
O(log(1+ε) ϑ) = O(

1
ε · log(ϑ)) times , resulting in the claimed running time. ��

For maximization, the perturbed cost in a worst scenario can be relatively close
to zero, while all numbers involved are rather large. This, roughly speaking,
spoils an approximation result for maximization similar to Theorem 5 – unless
we impose a further condition:

Theorem 6 (Maximization Problems). Consider the maximization problem
of P = (c,X) with X ⊆ INn and c ∈ IRn

≥0. Suppose the conditions of Theorem
3 hold, and suppose that the relative cost decrease in the (d, Γ )-CRC of P is
bounded from above by a constant β < 1, i.e.:

∃ β < 1 :
dj
cj

≤ β ∀ j ∈ [n] .

Then there is a 2ρ-approximation algorithm A for the (d, Γ )-CRC of P with
running time TA(P, d, Γ ) ∈ O(

TA2(P, d, Γ ) + log(ϑ) ·TA1(P, d, ϑ)
)
.
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Proof. As in the proof of Theorem 5, we solve the MMax of P for ϑ = (1 + ε)k

for some k ∈ IN and a particular ε > 0. For the choice of ε, consider an optimal
solution (x∗, ϑ∗) with value OPT. We get that

Γϑ∗ ≤ Γϑ∗ +
∑
j∈[n]

max{djx∗
j − ϑ∗, 0} = cTx∗ −OPT︸ ︷︷ ︸

(1)

(∗)
≤ dTx∗ ≤ βcTx∗ ,

where (∗) holds because (1) is the cost we lose due to the decrease of some of
the coefficients, and this cost is bounded by dTx∗.

We now set ε := (1−β)/2β (w.l.o.g. β > 0). Then

OPT ≥ (c− d)Tx∗ ≥ (1− β)cTx∗ = 2εβcTx∗ ≥ 2εΓϑ∗ .

With this, we can bound the error that arises from approximating ϑ∗:
Denote by C∗(ϑ) := −Γϑ + maxx∈X

{∑
j∈[n] cjxj − max{djxj − ϑ, 0}} the

optimal cost for a fixed ϑ. With ϑ0 as in the proof of Theorem 5 we then get

OPT

C∗(ϑ0)
≤ OPT

−Γϑ0 +maxx∈X

{∑
j∈[n]

(
cjxj −max{djxj − ϑ∗, 0})}

=
OPT

−Γϑ0 + OPT+ Γϑ∗ ≤ OPT− εΓϑ∗ + εΓϑ∗

−Γ (1 + ε)ϑ∗ +OPT+ Γϑ∗

= 1+
εΓϑ∗

OPT− εΓϑ∗ ≤ 2 .

Since we are able to approximate the optimal solution to the MMax of P within
a factor of ρ, the considerations above prove that our algorithm yields a 2ρ-
approximation. The number of calls of A1 is the same as in the proof of Theorem
5. Since ε is constant, we get the claimed overall running time. ��

3 Uncertainty in Constraints

We now turn to the case where the coefficients of a single linear constraint (or
those of a constant number of them) are uncertain. In the setting considered
here minimization and maximization are equivalent, so we restrict to one of the
two. The formal definition of the considered class of problems is as follows:

Definition 7 (Constraint Robust Maximization Problem). Consider the
problem maxx∈X{cTx}, given by P = (c,X) where c ∈ IRn and X = {x ∈
X ′ : aTx ≤ r} for some X ′ ⊆ ZZn, a ∈ IRn, r ∈ IR. For a non-negative integer
vector b ∈ INn together with Γ ∈ [n], the (b, Γ )-Constraint Robust Counterpart
(ConsRC) of P is defined by

max cTx s.t. x ∈ X ′, aTx+ max
S⊆[n]
|S|≤Γ

∑
j∈S

|bjxj | ≤ r. (5)

As in the cost robust setting, the left hand side of the constraint with uncertain
coefficients can be transformed into a sum of piecewise linear convex function
with two bends:
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Lemma 8. The (b, Γ )-Constraint Robust Counterpart of the maximization prob-
lem P = (c,X) as defined in Definition 7 is equivalent to

max
ξ≥0

max
x∈X(ξ)

cTx, with (6)

X(ξ) :=
{
x ∈ X ′ : Γξ +

∑
j∈[n]

(
ajxj +max{bjxj − ξ, 0}+max{−bjxj − ξ, 0})≤ r

}
.

Proof. With the same transformations as in the cost robust setting, we get that
(5) is equivalent to

max cTx s.t. x ∈ X ′ and

min
ξ≥0

{
Γξ +

∑
j
ajxj +max{bjxj − ξ, 0}+max{−bjxj − ξ, 0}

}
≤ r.

Thus, for all feasible solutions x of (5) there exists some ξ(x) ≥ 0 such that
x ∈ X(ξ(x)). Consequently, (5) is equivalent to maxξ≥0 maxx∈X(ξ) c

Tx. ��
For the non-binary case, the optimal ξ∗ can be found by enumeration, since it is
integral and bounded by the maximum deviation in the constraint coefficients:

Corollary 9. Consider the (b, Γ )-ConsRC of the maximization problem P =
(c,X) as defined in Definition 7. Suppose there is an algorithm A1 computing a ρ-
approximation for maxx∈X(ξ) c

Tx for any ξ ≥ 0, and an algorithm A2 that com-
putes upper bounds uj on the absolute value of each variable xj in the optimal so-
lution of (5). Then there is a ρ-approximation algorithm A for the (b, Γ )-ConsRC
of P with running time TA(P, b, Γ ) = O(

TA2(P, b, Γ )+ ξ ·TA1(P, b, Γ, ξ)
)
, where

ξ := maxj{ujbj}.
If all variables are binary, i.e. X ′ ⊆ {0, 1}n, there are only n+ 1 possibilities for
ξ∗, and for a fixed ξ the constraint of problem (6) becomes linear again. Hence,
to solve the (b, Γ )-ConsRC of P = (c,X), it suffices to solve n + 1 problems of
the type of P for slightly different coefficients in the linear constraint.

This result is an exact sibling of the result on cost robust binary problems in
[7], but it requires some new insights to translate the methods from [7] to the
constraint robust setting.

Theorem 10. If X ′ ⊆ {0, 1}n, the (b, Γ )-ConsRC of the maximization problem
P = (c,X) as defined in Definition 7 is equivalent to

max
�=1,...,n+1

(
max cTx s.t. x ∈ X ′, Γ b� + aTx+

�−1∑
j=1

(bj − b�)xj ≤ r

)
,

whereby w.l.o.g. we assume bn ≤ bn−1 ≤ . . . ≤ b1 and define bn+1 := 0.

Proof. We know that ξ∗ ∈ [0, b1]. We split up this interval at b�, 
 = n, . . . , 2,
and maximize over each subinterval, i.e. we reformulate (6) to get

max
�=1,...,n

(
max

ξ∈[b�+1,b�]

(
max

x∈X(ξ)
cTx

))
. (7)



Optimization over Integers with Robustness in Cost and Few Constraints 97

For x ∈ {0, 1}n we have max{bjxj − ξ, 0} = max{bj − ξ, 0}xj , and thus for
ξ ∈ [b�+1, b�]

X(ξ) =
{
x ∈ X ′ : Γξ +

∑
j∈[n]

(
ajxj +max{bj − ξ, 0}xj

) ≤ r
}

=
{
x ∈ X ′ : Γξ + aTx+

�∑
j=1

(bj − ξ)xj ≤ r
}
. (8)

For any fixed x, the left hand side of the constraint in (8) is a linear function in ξ
that has to be no greater than r somewhere in [b�+1, b�] for x to be feasible. Thus,
if the constraint is satisfied for any ξ in this interval, because of linearity it will
be satisfied for at least one of the values ξ = b�+1 or ξ = b�. As a consequence,

max
ξ∈[b�+1,b�]

(
max

x∈X(ξ)
cTx

)
= max

ξ=b�+1,b�

(
max

x∈X(ξ)
cTx

)
. (9)

Combining (7)–(9) yields the claimed result. ��
As a corollary from Theorem 10 we get the existence of a pseudopolynomial
exact algorithm as well as an FPTAS for the weight robust counterpart of the
binary Knapsack Problem, generalizing a result from [18].

All the results from this section hold as well if there is a constant number k of
constraints with uncertain coefficients. The problem maxx∈X(ξ) c

Tx would then

have to be solved (maxj{ujbj})k times in the setting of Corollary 9 and (n+1)k

times in the binary case.

4 Applications

The final section is devoted to applications of the general results presented above.
We first consider the cost robust setting for problems with a totally unimodular
description and IPs with two variables per inequality, and then study the Un-
bounded Knapsack Problem, both with uncertain weights and cost, integrating
our general results.

Problems with Totally Unimodular Description. The concept of totally
unimodular matrices is arguably the most successful concept for solving a large
class of integer programs. In general, robust counterparts need not inherit total
unimodularity. We show that in our setting, however, the CRC of P can be solved
exactly for those problems where the solution space of P can be described by a
totally unimodular matrix of size polynomial in the size of the input of P .

This generalizes results on specific totally unimodular problems. In particular,
it broadly generalizes the results on Robust Network Flows in [7], since the Min
Cost Flow Problem is totally unimodular.

In this section we do not require non-negativity of the cost vector, so the
minimization results we show can be used for maximization problems as well.
We do require non-negative variables. This condition can be lifted, but this yields
much less readable results that rest on similar arguments.
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Definition 11. A minimization problem P = (c,X) is said to have a bounded
TUM description (A, b, u) if the set of feasible solutions X ⊆ INn is described by
a totally unimodular matrix A ∈ IRm×n, an integral right-hand-side b, and an
integral vector of upper bounds u, i.e.

conv(X) = {x ∈ IRn : Ax ≤ b, x ≤ u}, A TUM, b ∈ ZZm, u ∈ ZZn.

To apply Theorem 4 to solve problems of this kind, we need to establish the
following two lemmas:

Lemma 12. If the minimization problem P = (c,X) is given by a bounded TUM
description (A, b, u), then the Modified Minimization Problem can be solved in
polynomial time.

Lemma 13. Let C∗(ϑ) be defined as in (4). Then for a minimization problem
P = (c,X) with a bounded TUM description (A, b, u), C∗ is convex for any
c ∈ IRn, d ∈ INn, Γ ∈ [n].

The key idea is to split up each variable into three to model the piecewise linear
cost function, and to observe that the resulting LP is still totally unimodular.
For details we refer the reader to the technical report [11].

With Theorem 4 and the two lemmas, we get that we can solve the CRC of
any problem with a bounded totally unimodular description in polynomial time:

Theorem 14. If the minimization problem P = (c,X) is given by a bounded
TUM description (A, b, u), then for any c ∈ IRn, d ∈ INn and Γ ∈ [n], there is
an exact algorithm for the (d, Γ )-CRC of P that runs in polynomial time.

Integer Programs with Two Variables per Inequality. We now apply our
main results to a second, large, and intensely studied class of integer programs,
namely integer programs with two variables per inequality (IP2).

Definition 15 (Integer Programs with Two Variables per Inequality).
A bounded integer program with two variables per inequality (bounded IP2) is
a system of the form

min {cTx : aT

i x ≥ bi for i = 1, . . . ,m, 
 ≤ x ≤ u, x integer} ,
where b ∈ ZZm, 
, u ∈ ZZn, c ∈ �n and each vector ai ∈ ZZn has two non-zero
components.

A bounded IP2 is called monotone if the non-zero coefficients of ai have op-
posite signs.

The conditions required in Section 2 allow to intensely use the existing tech-
niques for non-robust IP2, in particular [13], [14] and [3]. We obtain a pseu-
dopolynomial time 2-approximation for the CRC of bounded IP2s and an exact
pseudopolynomial time algorithm for the CRC of bounded, monotone IP2s.
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Theorem 16. The cost robust counterpart of a bounded monotone IP2 can be
solved in pseudopolynomial time.

Remark. Theorem 16 can be established by extending (to handle piecewise linear
functions) the pseudopolynomial time algorithm of Hochbaum and Naor [14] for
bounded monotone IP2, cf. [11]. In [3], Bar-Yehuda and Rawitz give an exact
pseudopolynomial algorithm for monotone cost functions but non-negative lower
bounds.

Theorem 17. There is a pseudopolynomial time 2-approximation algorithm for
the cost robust counterpart of a bounded IP2 with non-negative coefficients in the
objective function and non-negative lower bounds.

Remark. Theorem 17 is proven by extending (to handle piecewise linear func-
tions) the pseudopolynomial 2-approximation algorithm of Hochbaum et al. [13],
cf. [11]. This result is also shown in [3].

Robust Unbounded Knapsack Problems. To demonstrate how versatile
our main results are for combinatorial problems, we apply them to the Unbounded
Knapsack Problem, the non-binary extension of the classical Knapsack Problem
(KP). For this problem we will be able to handle counterparts that feature both,
cost robustness and robustness in the constraint.

Definition 18 (Unbounded Knapsack Problem). An instance of the Un-
bounded Knapsack Problem (UKP) is given by a knapsack capacity W ≥ 0 and
n types of items with weights wj ∈ IN and costs cj ∈ IR≥0, j ∈ [n]. The task is
to find a vector x ∈ INn with

∑
j wjxj ≤ W maximizing the cost

∑
j cjxj.

UKP and its extensions, in particular its robust counterparts, are NP -hard.
Intuitively, UKP seems to be more complex than the binary KP, since the input
is more compact. Still, as for KP, there is both a pseudopolynomial Dynamic
Program (DP) and an FPTAS [19,15].

We now consider the robust versions of the Unbounded Knapsack Problem.

Cost Robust UKP (CRUKP). While the result for binary cost robust pro-
grams [7] can be applied to the standard Knapsack Problem, the CRC of UKP
surpasses the reach of [7]. As argued earlier, a reformulation as a binary integer
program does not only cause a blow-up in size, but it also renders the scenario
set meaningless. Thus, to solve CRUKP, we need to be able to solve UKP for
piecewise linear concave cost functions. In [12], Hochbaum presented an FPTAS
for this problem. We give an alternative FPTAS based on a dynamic program
(DP) in our technical report [11]. With these results, by Theorem 6 it follows
that for all ε > 0, there is a (2 + ε)-approximation algorithm for CRUKP, if
the relative cost decrease is bounded away from 1 by a constant. On the other
hand, using Theorem 3 with the DP from [11], we get an exact algorithm with
pseudopolynomial running time.
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Weight Robust UKP (WRUKP). Next we turn to the Unbounded Knapsack
Problem where weights instead of costs are uncertain. In terms of Section 3 we
have uncertainty in the only constraint. We consider the (Δw,Γ )-ConsRC of
UKP, where Δwj denotes the possible increase in weight of items of type j.
From Corollary 9 we learn that we have to solve maxx∈X(ξ) c

Tx in order to get a
pseudopolynomial algorithm for WRUKP. The FPTAS from [12] could be used
for this. Alternatively, we can compute an exact solution in pseudopolynomial
time by the DP described in [11]. With uj =

W
wj

, this yields an exact algorithm

for WRUKP with running time O(maxj
Δwj

wj
· n2W 2).

General Robust UKP (RUKP). Finally, we consider a version of UKP where
both weights and costs are uncertain. At most Γw types of items can increase
their weight, and at most Γc cost coefficients decrease. This is the (Δw,Γw)-
ConsRC of CRUKP. Since the DP from [11] works for concave cost and convex
weight functions, by Theorem 3 we get an exact algorithmA1 for CRUKP on the
modified solution spaceX(ξ) with a running time ofO(maxj

dj

wj
· n2W 2), and can

thus solve RUKP exactly in a running time of O(maxj
Δwj

wj
·maxj

dj

wj
· n2W 3).
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