
Approximation Algorithms

for the Maximum Leaf Spanning Tree Problem
on Acyclic Digraphs

Nadine Schwartges, Joachim Spoerhase, and Alexander Wolff

Chair of Computer Science I, University of Würzburg
http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. We consider the problem Maximum Leaf Spanning Tree
(MLST) on digraphs, which is defined as follows. Given a digraph G,
find a directed spanning tree of G that maximizes the number of leaves.
MLST is NP-hard. Existing approximation algorithms for MLST have
ratios of O(

√
OPT) and 92.

We focus on the special case of acyclic digraphs and propose two
linear-time approximation algorithms; one with ratio 4 that uses a result
of Daligault and Thomassé and one with ratio 2 based on a 3-approxi-
mation algorithm of Lu and Ravi for the undirected version of the prob-
lem. We complement these positive results by observing that MLST is
MaxSNP-hard on acyclic digraphs. Hence, this special case does not ad-
mit a PTAS (unless P = NP).

1 Introduction

Network design deals with the problem of optimally connecting a given set of
network nodes by links. Network design problems arise for example in the plan-
ning of telecommunications networks, logistical networks or in circuit layout.
Often, network design problems are modeled as graph optimization problems.
Specifically, the goal is to find a subgraph G′ of a given graph G so that G′ meets
certain connectivity requirements and optimizes a quality measure tailored to
the respective application.

An important class of network design problems are spanning tree problems.
Here, a solution of the problem has to satisfy only a minimum connectivity
requirement. Specifically, there must be a node r—the root—such that every
node is reachable from r by some path. Spanning trees use the minimum number
of edges (links) among all subgraphs of G with this property.

A prominent spanning tree problem is Minimum Spanning Tree (MST),
where every edge of the input graph G has an associated cost. The goal is to
find a spanning tree whose total edge cost is minimum. A natural extension of
this problem is Steiner Tree, where only a given subset T of so-called terminal
nodes needs to be connected.

In contrast to MST, the quality measure of the spanning tree problem we
investigate here is associated with the nodes, not the edges. This assumption is

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 77–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 N. Schwartges, J. Spoerhase, and A. Wolff

driven by applications in which the network nodes perform a certain function. We
assume that nodes of higher degree have more sophisticated and thus also costlier
functionality. Specifically, if we distinguish only between pure receivers (leaves
of the tree) and routers (internal nodes), which are more expensive, we arrive at
the Maximum Leaf Spanning Tree problem (MLST): given a graph G with
root r, the task is to find an r-rooted spanning tree that maximizes the number
of leaves. MLST is one of the classical NP-hard problems listed by Garey and
Johnson [11].

We consider digraphs, that is, edges can only be traversed in one direction.
Directed MLST is NP-hard, too, since it is a generalization of the undirected
version. This motivates our interest in approximations. Although approximation
algorithms are known for digraphs, their performance guarantees are not sat-
isfactory. Therefore, we focus on the special case of acyclic digraphs, which is
still NP-hard [2]. It turns out that we can exploit the special structure of acyclic
digraphs to obtain guarantees that are significantly better than those known for
general digraphs.

Previous results and related work. On undirected graphs, MLST is well-investi-
gated. It is known that undirected MLST is NP-hard [11]. Galbiati et al. [10]
showed that undirected MLST is even MaxSNP-complete, that is, there is no
polynomial-time approximation scheme (PTAS) for this problem (if P �= NP).

These negative results have stimulated the development of a series of approxi-
mation algorithms for MLST. Improving on their own earlier results, Lu and
Ravi [13] developed a nearly-linear-time 3-approximation algorithm based on an
expansion strategy. Basically, this strategy consists of growing a subforestF of the
input graph by iteratively connecting nodes to a maximal set of edges so that F re-
mains a forest. The expansion idea originally goes back to Kleitman andWest [12]
who considered graphs with bounded minimum degree and derived lower bounds
for the maximum number of leaves of spanning trees in such graphs.

Solis-Oba [14] later proposed a linear-time algorithm based on the ideas of
Kleitman and West [12] and Lu and Ravi [13]. By means of a clever analysis
he showed that his algorithm is not only faster than the algorithm of Lu and
Ravi but also gives a 2-approximation. So far, better results have been obtained
only for special graph classes such as cubic graphs, the currently best being a
3/2-approximation algorithm [4].

Recently, there has been a lot of interest in the directed version of MLST. As
often in network design, the directed case seems to be much harder than the
undirected one. Drescher and Vetta [9] pointed out that the techniques that are
successful for undirected graphs—namely, edge-swapping and expansion—fail for
digraphs. They end up giving an algorithm for directed MLST with a ratio of
O(

√
OPT), which is considerably worse than the ratio 2 known for undirected

graphs [14]. Daligault and Thomassé [8] improved upon this result by providing
a 92-approximation algorithm. The techniques employed in both of the above
algorithms differ completely from the approaches for the undirected case.

A large portion of the research on directed MLST has focused on the de-
velopment of fixed-parameter tractable algorithms. The parameterized version

The Maximum Leaf Spanning Tree Problem 79

of MLST includes an additional parameter k. The goal is to decide whether a
given graph has a spanning tree with at least k leaves. The currently fastest
fixed-parameter tractable algorithm is due to Gutin et al. [7] and has a running
time of 3.72k · nO(1) where n is the number of nodes in the input graph. There
are also specialized fixed-parameter results for acyclic digraphs [1,2], that is, for
the graph class considered in this work.

The currently fastest (unparameterized) exact algorithm was given by Binkele-
Raible and Fernau [3]. It runs in O∗(1.9043n) time, where the O∗-notation ne-
glects polynomial factors.

Our contribution. In this paper, we give two linear-time approximation algo-
rithms for MLST on acyclic digraphs.

Our first result is a 4-approximation algorithm that makes use of a result of
Daligault and Thomassé [8] who gave a lower bound on the number of leaves in
a special class of digraphs.

In our second and main result we investigate the expansion approach, which
has already led to several positive results for undirected MLST [12,13,14]. Ap-
plying the expansion idea to acyclic digraphs we obtain a 2-approximation algo-
rithm. So we improve significantly upon the 92-approximation algorithm known
for general digraphs and close up to the undirected case.

Our positive results are complemented by the observation that MLST in
acyclic digraphs is MaxSNP-hard, that is, there is no PTAS for this problem
(unless P=NP). That justifies the development of constant-factor approxima-
tion algorithms for MLST in acyclic digraphs.

To stress the relevance of our main result, let us compare MLST to Steiner
Tree (ST), which can be considered paradigmatic among the tree-based network
design problems. The best known algorithm for undirected ST has a ratio of
roughly 1.39 [5]. This has to be compared to the best known algorithm for the
directed case, which has a performance guarantee of O(nε) [6], for any ε > 0.
There is a specialized approximation algorithm solving ST in acyclic digraphs
but it yields the same result [15]. It can even be shown that for the acyclic case
the approximation ratio is lower-bounded by Ω(logn) [15]. To sum up, even the
acyclic directed case of ST is significantly harder than the undirected one.

In terms of general graphs, ST and MLST behave similarly. In both cases, the
results for undirected graphs are much better than the results for digraphs w.r.t.
approximation. For acyclic digraphs, however, the problems exhibit significant
difference. For ST, the acyclic case is provably harder than the undirected one
and no improvement upon the general case has been obtained so far. In this
paper, we provide an example of a tree-based network design problem (namely
MLST) for which acyclicity can be exploited very well. It turns out that both
algorithm and proof are a lot simpler in the acyclic than in the undirected case.

Since both our algorithms have the same (linear) asymptotic running time,
the expansion algorithm supersedes the 4-approximation algorithm. Neverthe-
less, we think it is worth describing both algorithms since they are based on
two conceptually different existing approaches that yield strong results. Finally,

80 N. Schwartges, J. Spoerhase, and A. Wolff

the analysis of the 4-approximation algorithm is considerably simpler than the
analysis of the expansion algorithm.

We use n and m as shorthand for the numbers of nodes and edges of the given
acyclic digraph G with root r. We denote an optimum spanning tree of G by T ∗

and the number of its leaves by OPT. Given an arbitrary spanning tree T of G,
we denote the set of leaves of T by L(T).

2 Indegree-Based Algorithm

In this section, we develop a 4-approximation algorithm based on (an extension
of) a lemma by Daligault and Thomassé [8]. Let V=1 be the set of nodes of
indegree 1 in the given digraph G, and let V≥2 be the set of nodes of indegree
at least 2 in G.

Lemma 1 ([8]). Any rooted acyclic digraph G has a spanning tree with at least
|V≥2|/3 leaves. Such a spanning tree can be computed in O(m) time.

Proof (Sketch). Daligault and Thomassé [8] prove the existence of a spanning
tree with at least (|V≥2|+ deg(r) + 2)/3 ≥ |V≥2|/3 leaves.

The proof of Daligault and Thomassé is constructive, and it is not hard to
verify that the construction can be carried out in linear time. ��
Our approximation algorithm is based on the following observation. Lemma 1
gives us already a good approximation in the case that |V≥2| is large enough
in comparison to OPT. On the other hand, if |V≥2| is small then |V=1| is large.
Since each of the nodes in V=1 has exactly one incoming edge, every spanning
tree (including the optimum one) must use these incoming edges. In other words,
a large fraction of the edges are fixed, which leaves less freedom for the choice of
the remaining edges. Intuitively we expect that even an arbitrary spanning tree
gives us a good approximation.

Theorem 1. The algorithm of Lemma 1 is a 4-approximation algorithm for
MLST on acyclic digraphs.

Proof. Let α := |V≥2|/OPT and let T be the spanning tree output by the algo-
rithm of Lemma 1. We now prove the following two bounds

|L(T)| ≥ α

3
OPT (1)

|L(T)| ≥ (1− α)OPT . (2)

Bound (1) is an immediate consequence of the definition of α and Lemma 1.
For proving bound (2), we consider the graph F = (V,E′) with E′ = { (u, v) |

v ∈ V=1 }. The subgraph F of G is a forest containing only edges that are part
of every spanning tree of G. Let L′ be the set of leaves and isolated nodes of F ,
that is, the set of nodes with outdegree 0.

Consider an optimum spanning tree T ∗ of G. As argued above, F is a subforest
of T ∗ and F has the same node set as T ∗. Every leaf of T ∗ has outdegree 0 in T ∗

The Maximum Leaf Spanning Tree Problem 81

and therefore also in F . Hence, L′ contains the set of leaves of T ∗ as a subset.
This yields |L′| ≥ OPT.

As F contains all edges ending in a node of V=1, there are exactly |V=1| edges
in F . The output tree T contains F as a subforest. Let us reconstruct T from F .
To this end, we need n− 1 − |V=1| = |V≥2| additional edges that are part of T
but do not lie in F . By adding these edges to F , at most |V≥2| nodes in L′ get
connected with an outgoing edge. Hence, T contains at least |L′| − |V≥2| leaves.
Using |L′| ≥ OPT and the definition of α, we can conclude that

|L(T)| ≥ |L′| − |V≥2| ≥ OPT− αOPT = (1− α)OPT .

This proves bound (2).
Now we balance bounds (1) and (2) to prove the approximation ratio 4. If α ≥

3/4 then bound (1) yields |L(T)| ≥ OPT/4. On the other hand, if α ≤ 3/4 then
bound (2) yields |L(T)| ≥ OPT/4. ��

3 Expansion Algorithm

In this section, we present a linear-time 2-approximation algorithm for acyclic
digraphs. Our algorithm and its analysis bear resemblances with the 3-approxi-
mation algorithm of Lu and Ravi [13] for undirected graphs. Therefore, we start
with a brief outline of their algorithm.

3.1 Expansion Algorithm for Undirected Graphs

The algorithm of Lu an Ravi is based on a two-stage expansion strategy that
works roughly as follows.

Stage I constructs a leafy subforest F of the input graph G. A forest is leafy
if and only if any degree-2 node is adjacent to two nodes of degree at least 3.
The leafy subforest F is constructed by processing the nodes of G iteratively in
an arbitrary order. Processing a node u means to expand u if u has degree at
least 3 after the expansion. The expansion of u adds to F a maximal set Eu of
edges (u, v) ∈ E(G) such that F remains a forest.

Stage II connects the subtrees created in stage I to a spanning tree of G in
an arbitrary manner.

The total running time of the algorithm is O(mα(m,n)), where α(· , ·) is the
inverse Ackermann function.

The 2-approximation algorithm of Solis-Oba [14] can be understood as a spe-
cial case of the algorithm of Lu and Ravi, in which the nodes are processed in
a particular order. More precisely, only leaves of F or singletons are expanded.
Also, the connected components of F grow one by one rather than simultane-
ously. The particular node order does not only yield the better performance
guarantee but also linear running time.

Our 2-approximation algorithm for acyclic digraphs closes up to the result of
Solis-Oba for undirected graphs. Our analysis, however, is a lot simpler than that
of Solis-Oba. In fact, our algorithm and its analysis are closer to the work of Lu

82 N. Schwartges, J. Spoerhase, and A. Wolff

and Ravi. We remark that a (straightforward) adaption of Solis-Oba’s algorithm
to DAGs does not yield better results (confer Section 3.4).

3.2 Expansion Algorithm for Acyclic Digraphs

Similar to the algorithm of Lu and Ravi, our expansion algorithm for acyclic
digraphs consists of an expansion stage in which a subforest F of G is created
and a connection stage where this forest F is completed to a spanning tree.

A detailed description of our algorithm can be found in Algorithm 1 and in
the procedures expansion and connection that implement the expansion and the
connection stage. We use a node-marking technique. If a node is marked in these
stages it indicates that the node already has an incoming edge belonging to F
or is the root of F .

The connection stage is similar to the undirected case. Basically, the connected
components of F are connected to each other in an arbitrary manner.

The expansion stage, however, has to be adapted to digraphs appropriately.
Instead of requiring degree at least 3 as in the undirected case, we expand a
node if it obtains outdegree at least 2. Also the implementation of the expansion
operation simplifies. Whenever an edge (u, v) is added to F , we only have to
make sure that v has indegree 0 in F . We accomplish this by means of node
markings. The algorithm of Lu and Ravi has to check whether u and v lie in
different connected components. This is why we can improve the running time
from O(mα(m,n)) to O(m).

Algorithm 1. MaxLeafTwoApprox(G)

Input: acyclic digraph G with root r
Output: spanning tree T
mark r
F ← expansion(G)
T ← connection(G,F)
return T

Lemma 2. Given an acyclic digraph G, MaxLeafTwoApprox(G) computes, in
O(m) time, a spanning tree of G.

Proof. Recall that a node u is marked if and only if it has (exactly) one incoming
edge or if u = r. No marked node can get further incoming edges. Hence, when
the algorithm terminates, each node has either indegree 0 or 1 depending on
whether it is marked or not. Since the connection stage marks all yet unmarked
nodes, the result of the algorithm, F , is a subgraph ofG that is acyclic (becauseG
is) and in which every node except r has exactly one incoming edge. Thus, F is
a spanning tree of G.

The linear running time can be achieved if the graph is represented by an
adjacency list. Determining, for every v ∈ V , the set Uv of unmarked neighbors
in procedure expansion takes O(

∑
v outdeg(v)) = O(m) time in total.

The Maximum Leaf Spanning Tree Problem 83

Procedure expansion(G)

F ← ∅ { empty forest }
foreach node v in G do

if v /∈ F then
F ← F + v

Uv ← unmarked endpoints of outgoing edges of v in G
if |Uv | ≥ 2 then

F ← F + Uv

foreach u ∈ Uv do
F ← F + (v, u)
mark u

return F

Procedure connection(G,F)

foreach unmarked node v do
choose an arbitrary incoming edge e of v in G
F ← F + e
mark v

return F

In procedure connection, connecting all yet unmarked nodes with an arbitrary
incoming edge takes O(n) time. ��

3.3 Performance Guarantee

The expansion stage (procedure expansion) of our algorithm creates a forest F
that possibly contains isolated nodes. Let F̄ be the forest obtained by removing
all isolated nodes from F . The forest F̄ consists of a set {T0, . . . , Tk} of node
disjoint, non-trivial subtrees Ti = (Vi, Ei), i = 0, . . . , k. Let ri be the root of
subtree Ti.

Since procedure expansion expands only nodes of outdegree at least 2, none
of the trees Ti, i = 0, . . . , k contains an interior node of outdegree 1. In other
words, F̄ contains only leaves and nodes of outdegree at least 2. This implies
that at least half of the nodes in F̄ are leaves as we show now.

Lemma 3. For i = 0, . . . , k, any subtree Ti ∈ F̄ has at least (|Vi|+ 1)/2 leaves.

Proof. It is well known that a binary tree on n nodes has at least (n + 1)/2
leaves. Internal nodes of outdegree greater than 2 can only increase the number
of leaves. ��
We first consider only the leaves of an optimal spanning tree T ∗ that lie in V (F̄). A
trivial upper bound on the number of these leaves is |V (F̄)|. The forest F̄ , in turn,
has at least (|V (F̄)| + k + 1)/2 leaves (because of Lemma 3) and is thus a good
intermediate step in obtaining our desired 2-approximation algorithm for MLST.

84 N. Schwartges, J. Spoerhase, and A. Wolff

To prove the overall performance guarantee we face, however, the following two
problems. The first problem is that the procedure connection may connect leaves
of F̄ with outgoing edges thereby “killing” those leaves. The second problem is
that the optimum T ∗ may well have additional leaves outside of F̄ . Concerning
the first problem, we now show that connection kills at most k leaves of F̄ .

Lemma 4. Procedure connection creates a tree with at least |L(F̄)| − k leaves.

Proof. Let n0 denote the number of outdegree-0 nodes in F (that is, leaves
and isolated nodes) at the beginning of an iteration of procedure connection,
and let ncc denote the current number of (possibly trivial) connected compo-
nents of F . Note that ncc drops by 1 and n0 increases by 1 in each iteration of
connection. This means that the value of n0 − ncc remains constant during the
execution of the procedure.

This implies the claim since n0−ncc = |L(F̄)|− (k+1) holds at the beginning
of the procedure and, hence, also at the end when we have that n0 equals the
number of tree leaves and ncc = 1. ��
The following lemma resolves the second above-mentioned problem—leaves out-
side of F̄ cannot effectively increase the total number of leaves—and shows that
the optimum kills at least k leaves in V (F̄).

Lemma 5. It holds that OPT ≤ |V (F̄)| − k.

Proof. Let T ∗ be an optimum spanning tree, and let R be the set of all roots
r0, . . . , rk of F̄ that are different from the “global” root r. Our proof works as
follows. We identify a unique node for each root ri ∈ R, its witness q(ri). We
will make sure that each witness is an internal node of T ∗ that lies in V̄ :=
V (F̄)∪ {r}. This shows that T ∗ has at most |V (F̄)| − k leaves in V̄ . It does not
rule out, however, that T ∗ has additional leaves outside of V̄ . To this end, we
will additionally identify, for each leaf l of T ∗ outside of V̄ , a witness q(l), that
is, a unique internal node in T ∗ that lies in V̄ . We will then show that the map q
is injective. This proves the claim: if T ∗ has � leaves outside of V̄ , then T ∗ can
have at most |V (F̄)| − k − � leaves inside of V̄ .

To define the map q, consider a node z that is either a leaf of T ∗ not contained
in V̄ or a root in R. We define the node q(z) to be the closest ancestor of z in T ∗

(excluding z itself) that lies in V̄ . Since the root r lies in V̄ such a witness q(z)
always exists.

Let z and z′ be distinct nodes in the domain of q. It remains to show that q(z) �=
q(z′). Assume to the contrary that q(z) = q(z′). Let P and P ′ be the paths in
T ∗ from s := q(z) = q(z′) to z and to z′, respectively. We distinguish two cases.

First, we consider the case that s, z and z′ lie on a common path in T ∗.
Then we can assume without loss of generality that z is an internal node on the
path P ′, which implies that z is not a leaf in T ∗. Since z lies in the domain of q,
z must be the root of some subtree Ti in F̄ . In particular, z ∈ V̄ . Thus, z is
an ancestor of z′ in T ∗ that lies in V̄ and is closer to z′ than q(z′) = s. This
contradicts the choice of q(z′).

The Maximum Leaf Spanning Tree Problem 85

Now, we consider the case that s, z and z′ do not lie on a common path. Then
there is a node u at which the paths P and P ′ split; see Fig. 1. Let v and v′ be
the successors of u on paths P and P ′, respectively. Either v or v′ is marked by
procedure expansion. For, if v and v′ are still unmarked when node u is processed
then u will be expanded thereby marking v and v′. We assume without loss of
generality that v is the node marked by procedure expansion.

We claim that z �= v. If z is a leaf of T ∗ that lies outside of V̄ , then z �= v
because v—being marked—lies in V̄ . If z is the root of a subtree Ti for any
i ∈ {0, . . . , k}, then the claim follows because v has an incoming edge belonging
to F̄ . Therefore, v is an ancestor of z in T ∗ that lies in V̄ and is closer to z
than q(z). Again, this is a contradiction.

Both cases yield the desired contradiction. This completes the proof. ��

s = q(z) = q(z′)

u

v v′

z z′

P P ′

Fig. 1. Illustration of the case where s, z and z′ do not lie on a common path

From Lemmas 2 to 5, we can deduce the main result of this paper.

Theorem 2. The expansion algorithm for acyclic digraphs is a 2-approximation
algorithm. It runs in linear time.

Proof. Let T be the tree created by the expansion algorithm. Then we have

OPT

|L(T)| ≤
|V (F̄)| − k

|L(F̄)| − k
≤ |V (F̄)| − k

(
∑k

i=0(|Vi|+ 1)/2)− k
=

2(|V (F̄)| − k)

|V (F̄)| − k + 1
≤ 2,

where the first inequality is due to Lemmas 4 and 5, the second inequality is due
to Lemma 3, and the equality follows from the fact that

∑k
i=0 |Vi| = |V (F̄)|. ��

3.4 Tight Example

We construct an infinite sequence G1, G2, . . . of rooted acyclic digraphs such
that the performance ratio of Algorithm 1 on this sequence tends to 2.

For any positive integer k, let the root r of Gk have k+1 successors s0, . . . , sk,
see Fig. 2. The node s0 is the root of a perfect binary tree Bk with k + 1 levels
L0 = {s0}, L1, . . . , Lk. For i = 1, . . . , k, there is an edge from si to each node in
level Li. This completes the description of Gk.

Since the order in which our algorithm expands the nodes is not specified,
we can assume that the algorithm first expands the root r and then the perfect

86 N. Schwartges, J. Spoerhase, and A. Wolff

r

s0

T

s1
sk

(a) result T of our algorithm applied to Gk

T ∗

(b) optimum spanning tree T ∗ of Gk

Fig. 2. Tight example Gk (drawn for k = 3) with two different spanning trees; solid
edges represent tree edges, dotted edges represent non-tree edges

binary tree Bk. Then the spanning tree that our algorithm outputs has 2k + k
leaves in total; 2k leaves in Bk plus the k leaves s1, . . . , sk.

On the other hand, in the optimum solution T ∗ every node of Bk is a leaf.
Thus, OPT = 2k+1 − 1. Clearly, the performance ratio (2k+1 − 1)/(2k + k) of
our algorithm approaches 2.

Note that the above suboptimal spanning tree can also be obtained when we
apply (a straightforward adaption of) Solis-Oba’s algorithm [14] to Gk, that is,
if we expand always at the leaves of the current subtree. This demonstrates that
Solis-Oba’s algorithm, too, does not yield better results for DAGs. Finally, this
example remains valid even if the algorithm expands the nodes in topological
order (which appears most natural).

4 MaxSNP-Hardness

Galbiati et al. [10] prove that the undirected MLST problem is MaxSNP-hard,
which implies that there is no PTAS for undirected MLST (unless P = NP).
Their hardness proof consists of a so-called L-reduction in which they use a
special class of instances for undirected MLST. We now show that, for this
special class, the undirected and the acyclic directed case are equivalent.

The undirected graphs that Galbiati et al. use in their proof have the structure
depicted in Fig. 3 (a). These graphs consist of three levels of nodes. Each level
has the same cardinality. Each node in level 1 is connected to the root r and
each node in level 3 is connected to its counterpart in level 2. Additional edges
connect only nodes between level 1 and level 2. Let G be an undirected graph
with such a structure. Galbiati et al. show, that for any spanning tree T in G
there is a spanning tree T ′ with the same number of leaves such that any node
in level 1 is directly connected to the root r. We call the tree T ′ valid. Confer
Fig. 3 (b) for a valid spanning tree. Galbiati et al. only use valid spanning trees
in their L-reduction.

Given G, we construct an acyclic digraph D by orienting the edges of G so
that r is the root of D and each edge starting in level i ends in level i + 1,
where i = 1, 2. The remaining edges emanate from r; see Fig. 3 (c).

The Maximum Leaf Spanning Tree Problem 87

1

2

3

r

(a) (b) (c) (d)

Fig. 3. Example of a graph used in the MaxSNP-hardness proof of Galbiati et al. [10]

We observe that there is a one-to-one correspondence between valid spanning
trees of G and spanning trees of D. The unique orientation of any valid spanning
tree of G yields a spanning tree of D with the same number of leaves. Conversely,
each spanning tree T of D must contain all edges between r and level 1 and all
edges between level 2 and level 3 since nodes in levels 1 and 3 have indegree one.
Hence, the undirected tree corresponding to T is a valid spanning tree of G with
the same number of leaves.

To sum up, the above equivalence shows that MLST on acyclic digraphs is
MaxSNP-hard.

5 Concluding Remarks

Summarizing, we have given two linear-time approximation algorithms for solv-
ing the acyclic directed MLST problem with ratios of 4 and 2, respectively.
The 4-approximation algorithm uses a result of Daligault and Thomassé [8] for
MLST in acyclic digraphs. The 2-approximation algorithm is inspired by Lu and
Ravi’s 3-approximation algorithm for MLST in undirected graphs. Our result
provides an example of a tree-based network design problem where acyclicity in
digraphs can be exploited very well. Finally, we observed that MLST in acyclic
digraphs is MaxSNP-hard.

References

1. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized
Algorithms for Directed Maximum Leaf Problems. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362.
Springer, Heidelberg (2007)

2. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed
trees with many leaves. SIAM J. Discrete Math. 23(1), 466–476 (2009)

3. Binkele-Raible, D., Fernau, H.: A Faster Exact Algorithm for the Directed Maxi-
mum Leaf Spanning Tree Problem. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010.
LNCS, vol. 6072, pp. 328–339. Springer, Heidelberg (2010)

4. Bonsma, P.S., Zickfeld, F.: A 3/2-Approximation Algorithm for Finding Spanning
Trees with Many Leaves in Cubic Graphs. SIAM J. Disc. Math. 25(4), 1652–1666
(2011)

88 N. Schwartges, J. Spoerhase, and A. Wolff

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approxi-
mation for Steiner tree. In: Proc. 42nd ACM Symp. Theory Comput. (STOC), pp.
583–592 (2010)

6. Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.:
Approximation algorithms for directed Steiner problems. In: Proc. 9th Annu. ACM-
SIAM Symp. Discrete Algorithms (SODA), pp. 192–200 (1998)

7. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the
directed k-leaf problem. J. Comput. Syst. Sci. 76(2), 144–152 (2010)

8. Daligault, J., Thomassé, S.: On Finding Directed Trees with Many Leaves. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 86–97. Springer,
Heidelberg (2009)

9. Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf span-
ning arborescence problem. ACM Trans. Algorithms 6(3), 1–18 (2010)

10. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the
maximum leaves spanning tree problem. Inform. Process. Lett. 52(1), 45–49 (1994)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York (1979)

12. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete
Math. 4(1), 99–106 (1991)

13. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear
time. J. Algorithms 29(1), 132–141 (1998)

14. Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning Tree with Max-
imum Number of Leaves. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

15. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18(1), 99–110 (1997)

	Approximation Algorithms for the Maximum Leaf Spanning Tree Problem on Acyclic Digraphs
	Introduction
	Indegree-Based Algorithm
	Expansion Algorithm
	Expansion Algorithm for Undirected Graphs
	Expansion Algorithm for Acyclic Digraphs
	Performance Guarantee
	Tight Example

	MaxSNP-Hardness
	Concluding Remarks
	References

