
An Online Algorithm Optimally Self-tuning

to Congestion for Power Management Problems

Wolfgang Bein1, Naoki Hatta2, Nelson Hernandez-Cons3, Hiro Ito2,
Shoji Kasahara3, and Jun Kawahara4

1 Center for Information Technology and Algorithms, School of Computer Science,
University of Nevada, Las Vegas

beinw@unlv.nevada.edu
2 Department of Communications and Computer Engineering,

Graduate School of Informatics, Kyoto University
{nhatta,itohiro}@kuis.kyoto-u.ac.jp

3 Department of Systems Science, Graduate School of Informatics, Kyoto University
{shoji,nelson}@i.kyoto-u.ac.jp
4 JST ERATO MINATO Project

jkawahara@erato.ist.hokudai.ac.jp

Abstract. We consider the classical power management problem: There
is a device which has two states ON and OFF and one has to develop
a control algorithm for changing between these states as to minimize
(energy) cost when given a sequence of service requests. Although an
optimal 2-competitive algorithm exists, that algorithm does not have
good performance in many practical situations, especially in case the
device is not used frequently. To take the frequency of device usage into
account, we construct an algorithm based on the concept of “slackness
degree.” Then by relaxing the worst case competitive ratio of our online
algorithm to 2 + ε, where ε is an arbitrary small constant, we make
the algorithm flexible to slackness. The algorithm thus automatically
tunes itself to slackness degree and gives better performance than the
optimal 2-competitive algorithm for real world inputs. In addition to
worst case competitive ratio analysis, a queueing model analysis is given
and computer simulations are reported, confirming that the performance
of the algorithm is high.

1 Introduction

Consider an electric light which is turned on automatically when someone passes
by, say, for example at the entrance of a building. Or consider a device which
can enter a “sleep mode” – a state for energy saving when not used for a certain
period of time (e.g. a server or a copy machine). We abstract such a situation
to the automatic operation of a two-state device, which has an ON-state and
an OFF-state. In this paper we equate the sleep mode with the OFF-state,
which consumes no power. If a user utilizes the device, the state of it must be
ON during usage. When the user has finished, if another user needs it almost
immediately, it is wasteful to turn it off, because additional power consumption

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 35–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

36 W. Bein et al.

occurs when switching the state. For example, a copy machine consumes extra
electrical power when it comes back from the sleep mode. In the case of a compact
fluorescent light, switching states frequently shortens the life of the bulb and
although the switching cost may be negligible one can amortize the shorter
lifespan appropriately.

It is, of course, not known in advance when and how many users will request
service. Since we have to control switching the states of the device without knowl-
edge of future requests, the situation can be formulated as an online optimization
problem. More formally, there is a two-state device. Users request the device one
after another and use it for an arbitrary period of time. When it is used, the de-
vice must be kept in the ON-state. Once it is not used it can be turned off at an
arbitrary time. In the ON-state the device uses an amount of power proportional
to usage time, one unit of cost per unit of time. We call this the running cost.
There is no cost in the OFF-state. There is also a constant switching cost a > 0
for turning the device on and no cost for turning it off. An optimal online algo-
rithm is well known for this problem in the context of the worst case competitive
analysis [7,11,12]. We call this the optimal worst case competitive ratio algorithm,
or OWCR, for short. OWCR turns it on when a user requests service. After use
OWCR waits for the next service request for time a. If another user requests ser-
vice within the period, OWCR does not turn it off; otherwise, OWCR turns it off
after time a. The OWCR is 2-competitive, which is optimal.

However, OWCR does not perform well in various natural situations. If the
arrival interval of users is spaced long enough,OWCR keeps the device in the ON-
state for an extra a units for each user. This action seems to be quite wasteful. If
the device usage time is infinitesimal the cost for OWCR is 2a (the switching cost
and running cost are both a). On the other hand, the behavior of the optimal
offline algorithm “OPT” is to turn off immediately after the user has finished.
OPT pays only switching cost a (and the infinitesimal running cost). Therefore,
the competitive ratio for such a request sequence is 2. The fact is that although
OWCR does not seem clever at all, under worst case competitive analysis this
algorithm has the best performance.

Basic Concept of Our Algorithm. Since OWCR is optimal it appears as if
there is not much hope for improvement. However, if we allow the worst case
competitive ratio to increase by only a small positive constant ε from 2 (say,
for example, by 0.01), we can design various algorithms that have lower cost
than OWCR for real world inputs. For example, we can decrease the duration
of keeping the ON-state (“standby time”) gradually when the frequency of the
device usage becomes low: If the waiting time – the time from the preceding
user leaving to the latest user arriving – was more than a (something like an
“off-peak” situation), the system may be slack and the algorithm may elect to
make the standby time shorter. On the other hand, if the preceding waiting time
was less than or equal to a (similar to a “rush hour”), the algorithm may reset
the standby time.

In other words, standby time may decrease as a sequence x1 > x2 > · · ·
while off-peak arrivals continue. Such an algorithm may have better performance.

An Online Algorithm Optimally Self-tuning to Congestion 37

However we cannot evaluate this easily in the context standard competitive anal-
ysis. On the other hand, we are not satisfied only with heuristics or experimental
analysis and we seek a rigorous theoretical analysis.

For the above aim, we introduce a parameter called “slackness degree,” which
represents the frequency of arrivals. We set the parameters x1, x2, . . . to opti-
mize the competitive ratio for each slackness degree. The proposed algorithm
adaptively reacts to fluctuation of inputs and works optimally in the sense of
the competitive ratio according to slackness degrees. Moreover, an important
property of our algorithm is that it need not know the actual slackness degree.
Its worst case competitive ratio is at most 2 + ε and it is close to the optimal
offline algorithm for real world inputs. E.g., if we set ε = 0.01 and if the slackness
degree of an input is 10, 20, 50 and 100, then the competitive ratio is 1.58, 1.29,
1.12 and 1.06, respectively.

Related Work. As mentioned above it is well known that the optimal compet-
itive ratio of this problem is 2 [9,11,12,17]. In the randomized model where the
algorithm uses a probability distribution the best competitive ratio improves to
e/(e − 1) ≈ 1.582 (the expected cost of the algorithm for all inputs is within
a factor of e/(e − 1) of the optimal cost). Furthermore, it is known that this
bound is tight [9,10,11]. Systems with multiple power saving states have also
been studied, and it is clear that the additive model, where costs at any states
are cumulative, is reduced to the two state model. Thus, it is sufficient to consider
the two state model [1,8,15,18].

Strategies for this problem are categorized into two groups: adaptive and non-
adaptive. Non-adaptive strategies set a threshold only once at first on the idle
time interval for switching from the active state to the sleep state [8]. Adaptive
strategies use the history of idle periods to make the decisions for future inputs
[6,8].

There are several lines of investigation for evaluating algorithms more ade-
quately by considering alternatives to the competitive ratio or analysis. In sub-
stitution for the competitive ratio, the accommodation ratio [4], the Max/Max
ratio [2] and the random order ratio [13] were proposed. To analyze more real-
istic situations, competitive analysis with restriction to the adversary or using
parameters have also been considered. In the access graph model [3] and the
diffuse adversary model [14], the competitive ratio is evaluated by using weak
adversaries whose action is restricted (see the survey [5]). Panagiotou et. al. [16]
analyzed the LRU algorithm for paging by introducing parameters α and β which
characterize the degree of the locality of reference. They showed the competitive
ratio is bounded by a function of α and β.

Organization. Section 2 gives the basic statement of the problem. Section 3
presents our algorithm and gives the concept of slackness degree and competitive
ratio analysis under this concept. Section 4 gives an analysis using queueing
theory with computer simulations. Conclusions are given in Section 5.

38 W. Bein et al.

2 Problem Statement

In this paper we consider a device with infinite capacity that has two states,
an ON-state and an OFF-state (simply ON and OFF), for which we design a
control algorithm for changing between ON and OFF. Let ts1, . . . , t

s
n, t

e
1, . . . , t

e
n be

non-negative real values that represent the service times t s and end-of-service
times t e for n requests and which satisfy 0 ≤ ts1 < te1 < ts2 < te2 < · · · < tsn < ten.
The input for this problem is given as σ = 〈(ts1, te1), (ts2, te2), . . . , (tsn, ten)〉. For
this input, the device must be kept ON between times tsi and tei for each i =
1, . . . , n.

The state of the device can be switched at an arbitrary time. There is no
cost for switching from ON to OFF, while there is a switching cost a (> 0) when
switching from OFF to ON. For keeping the ON-state, it takes running cost of
one unit per unit time.

The strategy of the optimal offline algorithm (OPT) for this problem is clear:
If the period between the current request and next one is less than a, the device is
kept ON. Otherwise, it is turned off immediately. Therefore OPT’s total cost for
the input σ = 〈(ts1, te1), (ts2, te2), . . . , (tsn, ten)〉 is a+

∑n
i=1(t

e
i−tsi)+

∑n−1
i=1 min{tsi+1−

tei , a}.
For some i-th request (tsi , t

e
i), we consider the sum of the i-th running cost

and the next (i+ 1)-th switching cost. Let ALG be any algorithm. Let u be the
period between the end of the request and the start of the next request (i.e.,
u = tsi+1 − tei). Then the optimal offline algorithm pays tei − tsi + min{u, a}. If
ALG turns the device off after v (< u) standby time, the cost is tei − tsi + v + a.
Otherwise, it must pay tei − tsi + u. In each case, the smaller tei − tsi is, the worse
the competitive ratio becomes. Therefore, from the standpoint of competitive
analysis, it is enough to consider that usage times of the device (i.e., tei − tsi for
each i) are tiny. On the basis of the above discussion, we redefine this problem
as follows.

Let t1, . . . , tn be non-negative real values satisfying 0 ≤ t1 < · · · < tn rep-
resenting the time of service of the device for n requests. An input is given
as σ = 〈t1, t2, . . . , tn〉. We do nothing if the state is ON at ti (i = 1, . . . , n),
and should turn a device ON if it is OFF at that time. For a given input
σ = 〈t1, t2, . . . , tn〉 (n may be ∞), the action of an algorithm is determined
by a sequence 〈w1, w2, . . . , wn〉, where wi is standby time after ith request is
leaving. In other words, the problem is how to determine wi from 〈t1, t2, . . . , ti〉.
For each i = 2, . . . , n, let ui = ti − ti−1 be an idle period. OPT’s cost for
this redefined problem is OPT(σ) = a +

∑n−1
i=1 min{ti+1 − ti, a}. We denote

ALG’s cost for input σ by ALG(σ) and the competitive ratio of ALG for σ
by RALG(σ) = ALG(σ)/OPT(σ). Let Σ be the set of whole inputs σ. For
a subset Σ′ ⊆ Σ, we define RALG(Σ

′) = supσ∈Σ′ RALG(σ). And we repre-
sent RALG = RALG(Σ), which is the (worst case) competitive ratio
of ALG.

An Online Algorithm Optimally Self-tuning to Congestion 39

3 Our Algorithm

3.1 Decrease and Reset Algorithm (DRA)

We propose an algorithm which decreases the standby time gradually when the
frequency of the device usage becomes low.

Decrease and Reset Algorithm (DRA).
Let x1, x2, . . . , be an infinite non-increasing sequence of non-negative values. In
DRA, wi = xf(i) such that

f(i) =

{
f(i− 1) + 1 if ui ≥ a and i 	= 1,
1 otherwise.

If xi = a for all i, DRA is equivalent to OWCR. Setting xi be larger than a is
clearly wasteful, and hence we consider cases such that xi ≤ a for all i = 1, 2,
From a simple observation we see that x1 gives a lower bound of RDRA:

Observation 1. RDRA ≥ 1 + a/x1.

Proof. Let m be an integer. For an input σ = 〈x1, 2x1, . . . ,mx1〉, OPT’s total
cost is a+ (m− 1)x1 and DRA’s total cost is m(a+ x1). Thus the competitive
ratio of them is the following:

RDRA ≥ RDRA(σ) =
m(a+ x1)

a+ (m− 1)x1

(m→∞)→ 1 +
a

x1
.

�

From this observation, it follows that x1 cannot be much smaller than a, other-
wise RDRA becomes very large. In other words, if the difference between a and
x1 is small, the effect to RDRA is not so large. Thus we relax the worst case
competitive ratio from 2 to 2 + ε for small ε > 0, i.e., we let x1 = a/(1 + ε).

The above observation is easily extended to the other values x2, x3, . . . , as
follows.

Observation 2. For any integer k,

RDRA ≥ ka+
∑k

i=1 xi

(k − 1)a+ xk
.

Proof. Let m be an integer and t1, t2, . . . , tmk be a sequence such that t1 = a
and if i = 1 mod k then ti = ti−1 + xk, otherwise ti = ti−1 + a. For input
σ = 〈t1, t2, . . . , tmk〉, DRA sets wi = xg(i) for all i, where g(i) = ((i−1) mod k)+
1. OPT’s total cost is a + m(k − 1)a + (m − 1)xk and DRA’s total cost is

mka+m
∑k

i=1 xi. Thus the competitive ratio of them is the following:

RDRA ≥ RDRA(σ) =
mka+m

∑k
i=1 xi

a+m(k − 1)a+ (m− 1)xk

(m→∞)→ ka+
∑k

i=1 xi

(k − 1)a+ xk
.

So this observation is satisfied. �

40 W. Bein et al.

Our upper bound of the competitive ratio is 2 + ε, and thus, the following
inequalities must be satisfied for every k = 1, 2, . . .:

ka+
∑k

i=1 xi

(k − 1)a+ xk
≤ 2 + ε.

Solving this equation for xk, we have

xk ≥ 1

1 + ε

(

(2 + ε)a+

k−1∑

i=1

xi

)

− ka.

By elementary induction, we obtain

xk ≥ −ε

(
2 + ε

1 + ε

)k

a+ (1 + ε)a. (1)

This is a necessary condition for keeping the competitive ratio less than or equal
to 2 + ε. But this condition is not sufficient to guarantee optimality within the
ε bound. We propose next an algorithm that sets exact values for x2, x3, . . . , to
guarantee optimality within the ε bound.

3.2 How to Set the Coefficients for “Optimality”

Before turning to this problem, we need to define what “optimal” means here.
Our motivation is to give a better algorithm for slack systems. Thus we introduce
a measure, “slackness degree” for representing the slackness of input sequences.
For an input sequence σ = 〈t1, t2, . . . , tn〉, request i is called a busy request if
ui ≤ a or a slack request, otherwise. The first request is neither busy nor slack
one. We denote the number of slack requests in σ by s(σ), and that of busy
requests in σ by b(σ).

Definition 1. For an input σ, if s(σ)/b(σ) ≥ d (b(σ) 	= 0) for a real number
d ≥ 0, σ is called d-slack. The slackness degree d(σ) is defined as the maximum
d such that σ is d-slack.

The slackness degree describes how busy the inputs are. Clearly if d(σ) is larger,
σ has more slack. We will optimize DRA under the assumption that an input is
d-slack without knowing the value of d.

We consider asymptotic performance, and assume that σ is large enough.
In other words σ has a sufficient number of busy requests, i.e., b(σ) = ω(1) if
b(σ) 	= 0.

Note that for b(σ) = 0 (i.e., all arrivals are slack), we can easily get the upper

bound of the competitive ratio of 1+
∑|σ|

i=1 xi

|σ|a , which is close to 1 when |σ| is large
and limi→∞ xi = 0. This case is so particular that we ignore it in the following.

We will show that it is sufficient to consider inputs which end with a busy
request:

An Online Algorithm Optimally Self-tuning to Congestion 41

For a detailed analysis, let us separate an input σ = 〈t1, t2, . . . , tn〉 into some
(b(σ) or b(σ) + 1) blocks as follows. Assume that tb1 , tb2 , . . . , tbb(σ)

(0 ≤ b1 <
b2 < · · · < bb(σ) ≤ n) are the busy requests in σ. The blocks are defined as
B1 = {t1, . . . , tb1}, B2 = {tb1+1, . . . , tb2}, . . . , Bb(σ) = {tbb(σ)−1+1, . . . , tbb(σ)

}. If
bb(σ) < n, then Bb(σ)+1 = {tbb(σ)+1, . . . , tn} also exists. For analyzing the worst
case competitive ratio we will show that the final block Bb(σ)+1 can be ignored
even if it exists. Let β(σ) be the number of blocks in σ. (Then β(σ) = b(σ) or
b(σ) + 1.) Let s(Bi) be the number of slack requests in block Bi.

Lemma 1. If s(Bb(σ)) ≤ s(Bb(σ)+1) − 2 holds, then RDRA(σ) ≤ RDRA(σ
′),

where σ′ is obtained from σ by exchanging tbb(σ)
with tbb(σ)+1, i.e., σ

′ = 〈t1, . . . ,
tbb(σ)−1, tbb(σ)+1, tbb(σ)

, tbb(σ)+2, . . . , tn〉. (Note that tbb(σ)+1 is a slack request from
s(Bb(σ)) (≥ 2).)

Proof. The competitive ratio of DRA for σ′ is

RDRA(σ
′) =

DRA(σ)− xs(Bb(σ)+1) + xs(Bb(σ))+2

OPT (σ)− xs(Bb(σ))+1 + xs(Bb(σ))+2
.

Since x1, x2, . . . is a non-increasing sequence and s(Bb(σ)) ≤ s(Bb(σ)+1) − 2,
xs(Bb(σ))+2 ≥ xs(Bb(σ)+1) and xs(Bb(σ))+1 ≥ xs(Bb(σ))+2 hold. Thus we get

RDRA(σ
′) =

DRA(σ)− xs(Bb(σ)+1) + xs(Bb(σ))+2

OPT (σ)− xs(Bb(σ))+1 + xs(Bb(σ))+2
≥ DRA(σ)

OPT (σ)
= RDRA(σ).

�

Lemma 2. For any d ≥ 0 and sufficiently long inputs, there exists an input
which finishes with a busy request and gives the worst competitive ratio in the
same slackness degree d.

Proof. By Lemma 1 for a d-slack input σ we can shift the last busy request
later as long as the last two blocks satisfy s(Bb(σ)) ≤ s(Bb(σ)+1) − 2 without
decreasing the competitive ratio (Operation 1). We can clearly exchange the two
subsequences in σ which begin with a slack request and end with a busy request
without changing the competitive ratio (Operation 2).

When we apply Operation 1 and Operation 2 for a sufficiently long input
σ repeatedly and let the result be σ∗, which is d-slack and gives the worst
competitive ratio, approximately we can assume that σ∗ finishes with a busy
request. �

Lemma 3. For any input σ, if each xi satisfies inequality (1) then RDRA(σ) ≤
2 + ε.

Proof. In Observations 1 and 2, the given input is clearly the worst for the
competitive ratio among one-block input σ (i.e., σ includes one busy requests at
the end) and the slackness degree is fixed. This means RDRA ≤ 2 + ε for any
one-block input. From Lemma 2, RDRA ≤ 2 + ε for any long enough input. �

42 W. Bein et al.

Lemma 4. For a sufficiently long input σ, if σ is d-slack (d > 0) and x1, x2, . . .
(xi ≤ a) satisfy inequality (1), the following inequality holds:

RDRA(σ) ≤ 1 +
1

d
+

∑∞
i=1 xi

ad
. (2)

And the equality holds for d ≥ h− 1 where h = min{i |xi = 0}.
Proof. To analyze the worst case input, we define σ(k) as an input in which one
busy request arrives after (k−1) slack requests, where k = 1, 2, . . . , is any positive
integer. Then we find that all the worst case input instances are described as the
combination of σ(k) by Lemma 2. Let the combination of them be σw, which
can be represented by a sequence of σ(·), i.e., σw = σ(f(1))σ(f(2)) · · ·σ(f(n))
where n = b(σw), and each f(i) is a positive integer (i = 1, . . . , n).

Against this input, DRA must pay the switching cost for all the requests. The

cost of DRA for σw is a+
∑n

i=1

{∑f(i)
j=1(xj + a)

}
+x1. OPT keeps the ON-state

during xf(i) for the last input in each σ(f(i)) and switches to OFF immediately
for the other inputs. The cost is a+

∑n
i=1 xf(i)+

∑n
i=1(f(i)− 1)a. Therefore the

competitive ratio is

RDRA(σw) =
a+

∑n
i=1(

∑f(i)
j=1(xj + a)) + x1

a+
∑n

i=1 xf(i) +
∑n

i=1(f(i)− 1)a

≤ a+
∑n

i=1

∑f(i)−1
j=1 xj +

∑n
i=1 f(i)a+ x1

a+
∑n

i=1(f(i)− 1)a

≤ a+ n
∑∞

i=1 xi +
∑n

i=1(f(i)− 1)a+ an+ x1

a+
∑n

i=1(f(i)− 1)a
.

Since
∑n

i=1(f(i)− 1)/n = s(σw)/b(σw) ≥ d and σw is d-slack, we have

RDRA(σ) ≤ RDRA(σw) ≤ 1 +

∑∞
i=1 xi + a+ x1/n

a/n+ ad

(n→∞)→ 1 +
1

d
+

∑∞
i=1 xi

ad
.

The inequalities are tight when
∑n

i=1 xf(i) = 0 and the slackness degree of σw is
just d, and such input exists only when

∑n
i=1 f(i)/n ≥ h. Thus for a sufficiently

long input when d ≥ h− 1, we find that the bound is tight. �

Note that even for 0-slack inputs (s(σ) = 0), if x1, x2, . . . satisfy (1), the
competitive ratio is guaranteed to be 2 + ε according to Observation 1.

We get the upper bound of the worst competitive ratio with parameter d. To
minimize it, we should minimize each xi such that they satisfy (1).

Theorem 1. We set the coefficients xi as xi = max{−ε ((2 + ε)/(1 + ε))
i
a +

(1+ ε)a, 0}. Then for any sufficiently long d-slack input σ, DRA guarantees the
following competitive ratio:

RDRA(Σd) = min

{

1 +
1

d
+

∑h−1
i=1 xi

ad
, 2 + ε

}

, (3)

An Online Algorithm Optimally Self-tuning to Congestion 43

where Σd is the set of sufficiently long d-slack inputs, and h = �(log(1+ε)−log ε)/
(log(2 + ε)− log(1 + ε))�+ 1.

Proof. Let h be defined as in Lemma 4. Then the value of h is obtained as
shown above. From Lemmas 4 and 3 we get

RDRA(Σd) ≤ min

{

1 +
1

d
+

∑∞
i=1 xi

ad
, 2 + ε

}

.

To optimize the competitive ratio we should minimize each xi in range of satis-
fying inequality (1). So we get

xi =

⎧
⎨

⎩
−ε

(
2 + ε

1 + ε

)i

a+ (1 + ε)a if i < h,

0 otherwise.

(4)

This means
∑∞

i=1 xi =
∑h−1

i=1 xi.
Furthermore, from Lemma 4, when d ≥ h− 1 there are inputs which hold the

equation in (2) tightly. On the other hand, from Lemma 3, when d < h−1, there
are inputs such that DRA uses only x1, . . . , xd (i.e., they satisfy (1) tightly.) and
then achieve 2 + ε-competitive ratio tightly. Therefore we obtain the desired
equation (3). �

From this, we will call the DRA satisfying the condition of Theorem 1 the
optimal DRA (ODRA).

Corollary 1. For the value that 0 < ε < 0.2,

RODRA ≤ min

{

1 +
(1 + ε)2 + 2(1 + ε) log 1

ε

d
, 2 + ε

}

.

We also get such a heuristic bound, but skip the details of proof. If d → ∞ then
RODRA → 1. Therefore we confirm that the competitive ratio is close to 1 when
the frequency of requests within any time period is small enough.

Note that this algorithm works certainly without information of the input σ.
Since we can define the d-slackness from some period from the entire input, we
can evaluate the competitive ratio considering a part when the slackness degree
changes.

4 Queueing Analysis

4.1 Analysis

In this section, we analyze the cost performance of DRA using queueing theory.
We assume that customers arrive at the system according to a Poisson process
with rate λ. The sojourn time of a customer is independently and identically
distributed (i.i.d.) with a general distribution with mean 1/μ. As we mentioned
before, the system capacity is infinity. Then the system we consider here is an
M/G/∞ queueing model.

44 W. Bein et al.

In the M/G/∞ model, the busy period is defined as the time interval during
which the number of customers in the system is greater than zero, while in the
idle period, no customers are in the system. For analytical simplicity, we assume
that the system is in equilibrium at time 0, and that the first busy period starts
at time 0. Let Bn and In denote the nth busy period of the system and the nth
idle period, respectively. Note that both busy periods and idle periods are i.i.d.,
and hence independent of n. The mean busy period and the mean idle period of
the M/G/∞ system are given by

E[Bn] =
eρ − 1

λ
(≡ E[B]), E[In] =

1

λ
(≡ E[I]), (5)

respectively, where ρ = λ/μ. We define the nth cycle as the time interval con-
sisting of Bn and In.

The power control process under DRA with coefficients given by (4) evolves as
follows. When the first busy period B1 starts, the initial power cost a is required.
During the busy period, the power cost per unit time is one. When B1 ends, the
system is kept in the ON-state for the standby time of x1. Note that x1 is the
power cost of the first idle period I1. If I1 > a, the next standby time for I2 is
set to x2. If I1 ≤ a, then the standby time for I2 is initialized to x1. Similarly, if
I1 > a and I2 > a, then the standby time for I3 is set to x3, while if I1 > a and
I2 ≤ a, the standby time for I3 is initialized to x1, and so on. In the following,
the time interval from the beginning of the busy period with x1 standby time
to the end of the idle period which is smaller than a is referred to as the reset
interval.

Let L (≥ 1) denote the number of cycles in a reset interval. Consider the
amount of power consumption during a reset interval. When the number of
cycles in the reset interval is L = k, the amount of power consumption is given
by the power consumption for k busy periods and k standby times. Let Tk denote
the total amount of power consumption of standby times in the reset interval
consisting of k cycles. We obtain

Tk =

{∑k−1
i=1 xi + Ik · 1{Ik≤xk}, k = 1, 2, . . . , h− 1,

∑h−1
i=1 xi, k ≥ h,

where 1χ is the indicator function of event χ. Then we have the following lemma.

Lemma 5. The mean of the total amount of power consumption of standby
times in a reset interval E[TL] is given by

E[TL] = εa(2 + ε)e−λa(1− e−λa)h−2

−εa(2 + ε)(1− e−λa)
(2 + ε)e−λa

1 + ε− (2 + ε)e−λa

{

1−
(
2 + ε

1 + ε
· e−λa

)h−2
}

+(1 + ε)a · e−λa

1− e−λa

{
1− (h− 1)e−λa(h−2) + (h− 2)e−λa(h−1)

}

+
1

λ
· 1− e−λa(h−1)

1− e−λa
−

h−1∑

k=1

e−λa(k−1)

(
1

λ
+ xk

)

e−λxk

An Online Algorithm Optimally Self-tuning to Congestion 45

+

[

εa(2 + ε)

{

1−
(
2 + ε

1 + ε

)h−1
}

+ (1 + ε)a(h− 1)

]

· e−λa(h−1). (6)

From the Poisson arrival assumption we can obtain this formula, however, we
skip the details of proof.

Let QODRA denote the mean power-consumption cost per unit time. Then we
obtain the following theorem.

Theorem 2. QODRA is given by

QODRA =
1

eρ

[

λa

{

(1− e−λa) ·
h−1∑

k=1

e−λ{a(k−1)+xk} + e−λa(h−1)

}

+eρ − 1 + λ(1 − e−λa)E[TL]

]

, (7)

where E[TL] is given by (6).

Proof. Let R denote the reset interval. Using L, the number of cycles in a reset
interval, we obtain R =

∑L
n=1(Bn + In). We skip the details of analysis, but we

can obtain the mean reset interval E[R] as follows.

E[R] = E

[
L∑

n=1

Bn

]

+ E

[
L∑

n=1

In

]

=
eρ

λ(1 − e−λa)
.

Let W (k) denote the total amount of power consumption for a reset interval
which consists of k cycles. W (k) is given by W (k) = (k− 1)a+ a · 1{xk<Ik≤a} +
∑k

i=1 Bi + Tk. Taking the mean of W (L) yields

E[W (L)] = a(E[L]− 1) + aE[1{xk<Ik≤a}] + E[L]E[B] + E[TL].

Note that reset intervals are i.i.d. and that the amount of power consumption
during the reset interval is also i.i.d. Therefore, we haveQODRA = E[W (L)]/E[R]
from the renewal-reward theorem [19]. �

4.2 Numerical Examples

In this section, we present some numerical examples using the analysis shown
in the previous section. In order to validate the analysis, we also perform some
simulations with the algorithms and compare the results obtained with the ones
from the analysis.

Algorithms Compared to ODRA. For comparing with ODRA we consider
the following algorithm, which is a simple variant of DRA.

Given parameter k let ALG(k) be the DRA algorithm where x1 = x2 = . . . =
xk = a, xk+1 = xk+2 = . . . = 0.

46 W. Bein et al.

Table 1. Basic parameters

Parameter Value

Value of a 1, 3, 10 [unit]
ALG(10) parameter k 10
Value of ε 0.1, 0.01, 0.001
Consuming cost while in ON-state 1 [unit]
Customer arrival rate λ 0.001, 0.01, 0.1, 0.5, 0.99
Mean sojourn time 1/μ 1
Number of events 100000
Number of simulations 100

The worst case competitive ratio of ALG(k) is 2+ 1
k , which can be obtained eas-

ily. We consider three cases: ALG(∞) (all xi are equal to a), ALG(1), ALG(10).
Note that ALG(∞) is equal to OWCR. Let Qξ denote the mean of the power-
consumption cost per unit time when the algorithm of ξ ∈ {OPT,ALG(∞),
ALG(1), ALG(10)} is employed. Qξ’s can be derived in a straightforward man-
ner, and we obtain

QOPT = 1− e−(aλ+ρ),

QALG(∞) = 1 + (aλ− 1)e−(aλ+ρ),

QALG(1) = 1 + 2(aλ− 1)e−(aλ+ρ) − (aλ− 1)e−(2aλ+ρ),

QALG(10) = 1 + (aλ− 1)e−(aλ+ρ) + (aλ− 1)e−(kaλ+ρ) − (aλ− 1)e−((k+1)aλ+ρ).

We omit detailed derivations of the above equations due to the page limitation.

Competitive Ratios. We calculated the average power consumption per unit
time of each algorithm and the competitive ratio with Qopt. We use the basic set
of parameters shown in Table 1. The analytical results are shown in Table 2. We
also conducted experiments with Monte Carlo simulation, in order to validate
the results obtained through the analysis. (Skipping the details of simulation
results.) The analytical results exhibit good agreement with simulation, and this
validates the analytical derivations for Qξ’s.

We can observe that the performance of these algorithms is almost the same
when the system is congested, e.g., ρ ≥ 0.5. The reason is clearly that it
never be OFF. The difference appears when the system becomes slack. Espe-
cially ALG(∞), which must be the optimal worst competitive ratio algorithm
(OWCR), shows very bad average competitive ratio (e.g., it is around 1.9 for
ρ = 0.01, a = 10). ALG(1) shows the best average competitive ratio in every
case. However it’s worst competitive ratio is 3, i.e., it may perform badly for ad-
versary inputs. Our algorithm ODRA performs almost the same as ALG(1) in
every case. From these results, we can observe that ODRA has good performance
not only in the worst case but also in average case.

An Online Algorithm Optimally Self-tuning to Congestion 47

Table 2. Analytical results of competitive ratios

ρ a QALG(∞)/QOPT QALG(1)/QOPT QALG(10)/QOPT
QODRA/QOPT

ε = 0.1 ε = 0.01 ε = 0.001

CRworst 2 3 2.1 2.1 2.01 2.001

0.001 1 1.49950 1.00075 1.00052 1.001271 1.002656 1.004223
0.001 3 1.74850 1.00336 1.00232 1.005697 1.011871 1.018820
0.001 10 1.90410 1.01350 1.09015 1.022692 1.046865 1.073527

0.01 1 1.49501 1.00739 1.04936 1.012424 1.025660 1.040258
0.01 3 1.73510 1.03264 1.19886 1.053683 1.108154 1.164850
0.01 10 1.86001 1.12344 1.15605 1.188589 1.350484 1.488426

0.1 1 1.45167 1.06483 1.29439 1.099045 1.184070 1.256516
0.1 3 1.60997 1.24109 1.58518 1.304441 1.472030 1.555845
0.1 10 1.49896 1.49896 1.49896 1.400979 1.479744 1.496660

0.5 1 1.29099 1.17649 1.28972 1.189663 1.260917 1.284193
0.5 3 1.23478 1.29557 1.24777 1.200283 1.228261 1.234040
0.5 10 1.02052 1.03682 1.02052 1.019213 1.020304 1.020495

0.99 1 1.15672 1.15662 1.15672 1.127199 1.152416 1.157843
0.99 3 1.05614 1.09169 1.05614 1.052462 1.056840 1.057616
0.99 10 1.00017 1.00032 1.00017 1.000182 1.000183 1.000184

5 Conclusions

We have introduced the concept of slackness degree, which reflects the frequency
of requests, and developed the “optimal” online algorithm under this concept.
We strongly believe that it is important to consider inputs of problems based
on the real world and to design more practical algorithms in online problems.
In future work, we plan to consider the randomized version and the multi-state
version of this problem.

Acknowledgments. This researchhas been carried out in collaborationwith the
“Consumer Electronics Network Eco Management” project sponsored by Pana-
sonic Corporation. We would like to thank the project members, Mr. Toshiya
Naka, Mr. Hideyuki Yoshida and Mr. Kazuhiro Aizu. We also would like to thank
Prof. Hiroshi Fujiwara of ToyohashiUniversity of Technology for his valuable com-
ments on power consumption problems and helpful discussions.

References

1. Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. In: Proc. 45th
Symp. Foundations of Computer Science (FOCS), pp. 530–539. IEEE (2004)

2. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

3. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. J. Comput. Systems Sci. 50, 244–258 (1995)

48 W. Bein et al.

4. Boyar, J., Krarup, S., Nielsen, M.N.: Seat reservation allowing seat changes. J.
Algorithms 52, 169–192 (2004)

5. Chrobak, M.: Sigact news online algorithms column 8. SIGACT News 36, 67–81
(2005)

6. Chung, E., Benini, L., Bogliolo, A.: Dynamic power management for non-stationary
service requests. In: Proceedings of the Design and Automation and Test in Europe
Conference and Exhibition, pp. 77–81 (1999)

7. Eggers, S.J., Katz, R.H.: Evaluating the performance of four snooping cache co-
herency protocols. In: Proc. 16th International Symp. on Computer Architecture
(ISCA). IEEE (1989)

8. Irani, S., Gupta, R., Shukla, S.: Competitive analysis of dynamic power manage-
ment strategies for systems with multiple power savings states. In: DATE 2002:
Proceedings of the Conference on Design, Automation and Test in Europe, p. 117.
IEEE Computer Society, Washington, DC, USA (2002)

9. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM SIGACT
News (2005)

10. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic tcp acknowledgement and other
stories about e/(e− 1). In: Proc. 33rd STOC, pp. 502–509. ACM (2001)

11. Karlin, A., Manasse, M., McGeoch, L., Owicki, S.: Competitive randomized algo-
rithms for nonuniform problems. Algorithmica 11, 542–571 (1994)

12. Karlin, A., Manasse, M., Rudolph, L., Sleator, D.: Competitive snoopy caching.
Algorithmica 3, 79–119 (1988)

13. Kenyon, C.: Best-fit bin-packing with random order. In: Proc. 7th Symp. on Dis-
crete Algorithms (SODA), pp. 359–364. ACM/SIAM (1996)

14. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. SIAM J. Com-
put. 30, 300–317 (2000)

15. Lotker, Z., Patt-Shamir, B., Rawitz, D.: Rent, lease or buy: Randomized algo-
rithms for multislope ski rental. In: Albers, S., Weil, P. (eds.) 25th International
Symposium on Theoretical Aspects of Computer Science (STACS 2008). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 1, pp. 503–514. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008)

16. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In: Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 2006, pp. 487–496. ACM, New York (2006)

17. Phillips, S., Westbrook, J.: Competitive analysis and beyond. In: Algorithms and
Theory of Computation Handbook, ch.10. CRC Press (1999)

18. Ramanathan, D., Irani, S., Gupta, R.: Latency effects of system level power man-
agement algorithms. In: Proceedings of the IEEE International Conference on Com-
puter Aided Design (2000)

19. Wolff, R.W.: Stochastic modeling and the theory of queues. Prentice-Hall (1989)

	An Online Algorithm Optimally Self-tuning to Congestion for Power Management Problems
	Introduction
	Problem Statement
	Our Algorithm
	Decrease and Reset Algorithm (DRA)
	How to Set the Coefficients for ``Optimality"

	Queueing Analysis
	Analysis
	Numerical Examples

	Conclusions
	References

