
Learning in Stochastic Machine Scheduling

Sebastián Marbán, Cyriel Rutten, and Tjark Vredeveld

Department of Quantitative Economics, Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands

{s.marban,c.rutten,t.vredeveld}@maastrichtuniversity.nl

Abstract. We consider a scheduling problem in which two classes of
independent jobs have to be processed non-preemptively by a single ma-
chine. The processing times of the jobs are assumed to be exponentially
distributed with parameters depending on the class of each job. The ob-
jective is to minimize the sum of expected completion times. We adopt a
Bayesian framework in which both job class parameters are assumed to
be unknown. However, by processing jobs from the corresponding class,
the scheduler can gradually learn about the value of these parameters,
thereby enhancing the decision making in the future.

For the traditional stochastic scheduling variant, in which the param-
eters are known, the policy that always processes a job with Shortest
Expected Processing Time (SEPT) is an optimal policy. In this paper,
we show that in the Bayesian framework the performance of SEPT is at
most a factor 2 away from the performance of an optimal policy. Fur-
thermore, we introduce a second policy learning-SEPT (�-SEPT), which
is an adaptive variant of SEPT. We show that �-SEPT is no worse than
SEPT and empirically outperforms SEPT. However, both policies have
the same worst-case performance, that is, the bound of 2 is tight for both
policies.

1 Introduction

In this paper, we consider the classical non-preemptive single machine scheduling
problem to minimize the total completion time. In deterministic and traditional
stochastic scheduling, this problem is well understood and can be solved to opti-
mality by the Shortest (Expected) Processing Time (SPT or SEPT) policy: pro-
cess the jobs in non-decreasing order of their (expected) processing time [19,22].
In traditional stochastic scheduling, it is assumed that the jobs’ processing times
are independent random variables of which the parameters, such as the expected
value, are fully known. We relax this assumption by introducing parameter un-
certainty. Like in [2,8,10,11,12], we adopt a Bayesian viewpoint in which we
have prior distributions for the uncertain parameters. These priors represent our
beliefs on the values of the parameters. Furthermore, the Bayesian framework
allows us to learn about the value of the parameters by processing jobs and
observing their realized processing times. However, experimenting with differ-
ent jobs to learn about the value of the corresponding parameters can be costly
in terms of the waiting times of the still to be processed jobs. Hence, learning
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should be conducted carefully in order to minimize the sum of completion times
in expectation.

Problem definition. There are two classes of independent jobs that have to be
processed by a single machine. Each class Ji consists of ni jobs (i = 1, 2). All
jobs are available for processing from the beginning and preemption of jobs
is not allowed, that is, once a job has been initiated it must remain on the
machine until completion. The processing time of a job in class Ji is a random
variable, which is independently and exponentially distributed with parameter
ϑi. Distinguishing from traditional stochastic scheduling, in the scheduling model
under consideration the value of ϑi is unknown. The goal is to minimize the total
completion time in expectation,

∑
j E [Cj ].

We introduce a random variableΘi describing the scheduler’s beliefs regarding
the value ofϑi. In theBayesian approach,ϑi canbe considered as a realization of the
random variableΘi. The initial distribution ofΘi, that is, before any job has been
processed, is called the prior. As in [11,12], we assume that the prior is a gamma
distribution with parameters ωi > 0 and αi > 1. Depending on the confidence in
his beliefs about ϑi, the scheduler can choose the values of ωi and αi such that the
prior is very peaked (the scheduler is very certain about his beliefs) or relatively
flat (the scheduler is not certain about his beliefs) or anywhere in between.

After a job of class Ji is processed, we observe this job’s processing time x.
Since the gamma distribution is a conjugate prior for the exponential distribu-
tion, the posterior distribution of Θi, representing the beliefs of ϑi after having
observed processing time realization x, is a gamma distribution with parameters
ωi+x and αi+1. This result is stated in a.o. Section 9.4 of [5] and is also derived
from Bayes’ theorem for probability density functions. In this way, the scheduler
gradually learns about the unknown parameter, thereby enhancing his decision
making in the future.

A solution to a stochastic scheduling problem is not merely a simple schedule,
but a so-called scheduling policy. We follow the notion of scheduling policies as
proposed by Möhring, Radermacher, and Weiss [17]. A scheduling policy makes
decisions on which job to schedule at certain decision times. We require a policy
to be non-anticipatory: at any time, it may not utilize the actual processing
times of jobs that have not yet been completed. A scheduling policy may, of
course, at any decision time, use the information that it has gathered up to this
time. An optimal scheduling policy is defined as a non-anticipatory scheduling
policy that minimizes the objective value in expectation. Note hereby that an
optimal scheduling policy underlies the uncertainty about processing times as
well as the uncertainty about the parameters.

Burnetas and Katehakis [2] and Hamada and Glazebrook [11] present optimal
policies for different number of job classes. Even for the case of two job classes,
one of which has known parameter, these policies require solving extensive dy-
namic programs. This is in contrast to the traditional stochastic scheduling vari-
ant of the problem in which the optimal scheduling policy is SEPT [19]. The
reason why SEPT is not an optimal policy in the Bayesian setting lies in the
fact that when the expected processing times of the job classes are close to each
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other and the parameter of the class with higher expected value is more uncer-
tain it may be beneficial to learn about the value of the underlying parameter
of this class. As SEPT is a very simple policy that is optimal for the traditional
stochastic scheduling problem under consideration, it is interesting to know how
well it performs in the setting with parameter uncertainty.

In the Bayesian setting, there are two natural versions of SEPT. The first
one, which we keep calling SEPT, determines the order in which the jobs will
be processed at the beginning based on its initial beliefs. The second version,
which we denote by learning-SEPT or �-SEPT, updates its beliefs on ϑi every
time a job of class Ji is completed. After each completion of a job, �-SEPT
will schedule the job with shortest expected processing time with respect to its
current beliefs. In this paper, we investigate the quality of the solution value
obtained by both policies. Adopting the definition of [18], we define a policy Π
to be a ρ-approximative policy when E [Π(I)] ≤ ρE [OPT(I)] on any scheduling
instance I. Here E [Π(I)] is the expected total completion time of policy Π on
instance I and OPT is the optimal non-anticipatory policy. The value ρ is called
the (worst case) performance guarantee.

Related work. In traditional stochastic scheduling, the processing times of jobs
are random variables for which the parameters of the underlying distribution are
known. Rothkopf [19] shows that WSEPT (Weighted Shortest Expected Process-
ing Time) is an optimal policy for the stochastic single machine scheduling prob-
lem, where the objective is to minimize the sum of weighted expected completion
times. Weiss [23,24] analyzes the performance of WSEPT for the stochastic par-
allel machine scheduling problem. He shows asymptotic optimality of WSEPT
for a certain class of processing time distributions. The first guarantee on the
quality of an approximative policy was given by Möhring, Schulz, and Uetz [18].
Other approximative policies have been considered in [4,15,16,21].

This paper contributes to the field by applying a Bayesian framework to the sin-
gle machine scheduling problem. Examples of papers that apply the same frame-
work to scheduling problems are limited. In the pioneering paper of Gittins and
Glazebrook [8], the distributions of processing times of jobs depend all upon the
same unknown parameter. The optimal schedule is obtained by calculating appro-
priate dynamic allocation indices, first proposed by Gittins and Jones [9]. Hamada
and Glazebrook [11] present another example studying the Bayesian scheduling
problem with multiple weighted job classes. Optimal policies are derived using
dynamic allocation indices similar to the ones in [7]. Burnetas and Katehakis [2]
derive optimality conditions for the same problem with two job classes: one with
known and one with unknown underlying parameter. Glazebrook and Owen [10]
quantify the difference between adaptive scheduling policies based on Bayesian
methodology and non-adaptive classical stochastic scheduling policies.

Bayesian methodology is widely applied in research fields related to schedul-
ing. In inventory management for example, there is a large body of literature
dealing with uncertain demand distributions and Bayesian learning. Pioneered
by [20], some recent papers are given by [3,13]. The majority of these papers
assumes that prices are exogenous and studies the problem of making optimal
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inventory decisions. Bayesian demand learning has also received a great deal of
attention within the field of pricing, see [1,14]. All these papers are experimental
in that they focus on developing heuristics and studying their computational
aspects. The first, and so far only, paper to analyze the theoretical worst-case
performance of a Bayesian pricing heuristic is [6].

Our results. In Section 3, we first show that �-SEPT is in expectation better
than the non-adaptive version SEPT. Furthermore, we show that the perfor-
mance guarantee for both SEPT and �-SEPT is a function depending on the
number of jobs in both classes and that this function can be arbitrarily close
to, but is bounded by, 2. If one of the two job classes has a constant number
of jobs and the number of jobs of the other class tends to infinity, then SEPT
and linebreak �-SEPT are asymptotically optimal. In Section 4, we show that
the bound for SEPT as well as the bound for �-SEPT is tight. To the best of
our knowledge, this is one of the first tight performance guarantees in stochas-
tic scheduling, where the tightness follows from non-degenerate processing time
distributions. Section 5 complements our theoretical findings with some prelim-
inary computational results, showing that �-SEPT in practice outperforms the
non-adaptive variant, although the worst-case performance guarantees are the
same. Finally, we conclude with some remarks on the case of m job classes.

2 Preliminaries and Scheduling Policies

In this section, we introduce the Bayesian scheduling framework and policies
SEPT, �-SEPT, and OPT. Additionally, we give useful bounds on the perfor-
mance of these policies.

2.1 Bayesian Methodology

Bayesian methodology offers a method to formally recognize the uncertainty
regarding parameter ϑi. A random variable Θi is introduced which describes the
scheduler’s beliefs regarding the value of ϑi. In the Bayesian approach, ϑi can
be considered as a realization of the random variable Θi. For some θ > 0, let
gi(θ) :=

∂
∂θ Pr [Θi ≤ θ] denote a (prior) probability density function. Intuitively,

the probability expresses how strongly we believe that the value of ϑi is less than
or equal to θ, prior to seeing any realization of processing times of jobs of class Ji.
We assume gi(θ) to be a gamma distribution with parameters ωi > 0 and αi > 1.
Once k jobs of class Ji have been completed with processing time realizations
x1 up to xk, the beliefs with respect to the unknown value of ϑi will be updated
and expressed by the (posterior) probability density function

gi(θ|x1, . . . , xk) :=
∂

∂θ
Pr [Θi ≤ θ|X1 = x1, . . . , Xk = xk] .

Since the gamma distribution provides a conjugate prior for the exponential
distribution, the posterior gi(θ|x1, . . . , xk) is also a gamma distribution with

parameters ω′
i := ωi +

∑k
j=1 xj and α′

i := αi + k (see e.g. Section 9.4 of [5]).
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Updating beliefs toward ϑi results in updated beliefs regarding the processing
times of uncompleted jobs in class Ji. The probability density function expressing
these latter beliefs, after having completed k jobs of class Ji, is denoted by

fi,k+1(xk+1) :=
∂

∂xk+1
Pr [Xk+1 ≤ xk+1|X1 = x1, . . . , Xk = xk] ,

which is equal to

fi,k+1(xk+1) =

∫ ∞

0

f(xk+1|θ)gi(θ|x1, . . . , xk)∂θ (1)

=

∫ ∞

0

θe−θxk+1
ω′
i
α′

i

Γ (α′
i)
θα

′
i−1e−θω′

i∂θ =
α′
i ω

′
i
α′

i

(ω′
i + xk+1)α

′
i+1

,

where f(xk+1|θ) is an exponential probability density function with parameter
θ. Furthermore, straightforward integration yields the first moment of Xk+1:

E [Xk+1|x1, . . . , xk] =

∫ ∞

0

xk+1 fi,k+1(xk+1)∂xk+1 =
ωi +

∑k
j=1 xj

αi + k − 1
. (2)

The more jobs of job class i have been processed, the more accurate the sched-
uler’s beliefs regarding ϑi will be. First, the expected value of (Θi|x1, . . . , xk)
will converge to ϑi by the law of large numbers. Secondly, the variance of
(Θi|x1, . . . , xk) will decrease since ωi and αi will be increased with every new
observation. Hence, the more jobs we process, the more peaked and the more
centered around ϑi the distribution of (Θi|x1, . . . , xk) will become, i. e., the more
we learn about the value of ϑi.

2.2 Bayesian Scheduling Policies

An optimal policy for the Bayesian scheduling problem at hand, OPT, minimizes
total completion time in expectation, thereby taking into account the uncertainty
regarding the job class parameters. That is, the values of the parameters ϑi are
unknown to OPT, but the policy will anticipate and act in its decision making
upon the additional information to be revealed when processing a job of a certain
class. In order to characterize OPT, we formulate the problem as a dynamic
program, introduced by [11].

Let n = (n1, n2), ω = (ω1, ω2), and α = (α1, α2). Then, (n,ω,α) =
(n1, n2,ω,α) ∈ Z

2
+×R

2
>0×R

2
>1 denotes a state vector encompassing all relevant

information of the state the system is in. It consists of the number of jobs in
each class Ji as well as the parameters of the current belief for ϑi. Let ei be the
ith unit vector. If in state (n,ω,α), a job of class Ji is processed and completed
having realization x, then the state changes to (n − ei,ω + xei,α + ei). Let
E [Π∗(n,ω,α)] denote the expected sum of completion times when the optimal
policy is adopted from state (n,ω,α) onwards. Further, let E [Π∗

i (n,ω,α)] de-
note the sum of the expected completion times of a policy which first processes
a job of class Ji (assuming ni ≥ 1) and follows an optimal policy afterwards.
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An optimal policy can then be modeled by the following dynamic program:

E [Π∗(n,ω,α)] = min {E [Π∗
1(n,ω,α)],E [Π∗

2(n,ω,α)]} ∀ n ≥ 1 (3)

and

E [Π∗(n1, 0,ω,α)] =

(
n1∑

i=1

i

)
ω1

α1 − 1
=

n1(n1 + 1)

2

ω1

α1 − 1
∀ n1 ≥ 0,

E [Π∗(0, n2,ω,α)] =

(
n2∑

i=1

i

)
ω2

α2 − 1
=

n2(n2 + 1)

2

ω2

α2 − 1
∀ n2 ≥ 0.

As the length of the first job to be processed by a policy influences the completion
time of all jobs, straightforward calculations show that

E [Π∗
i (n,ω,α)] = (n1 + n2)

ωi

αi − 1
+

∫ ∞

0

E [Π∗(n− ei,ω + xei,α+ ei)] fi1(x)dx,

(4)

for all ni ≥ 1.
In the traditional stochastic scheduling variant, in which the parameters ϑi

are known, the policy SEPT processes jobs in non-decreasing order of expected
processing times. In the Bayesian scheduling problem at hand, SEPT processes
the jobs of each job class en bloc, starting with the class having the shortest
expected processing time. Formally, SEPT starts processing all jobs of class J1
in case ω1

α1−1 < ω1

α1−1 followed by all jobs of class J2, and vice versa otherwise.
The random variable for the sum of completion times of SEPT is denoted by
Πs, and its expected value can be written as

E [Πs(n1, n2,ω,α)] =
n1(n1 + 1)

2

ω1

α1 − 1
+

n2(n2 + 1)

2

ω2

α2 − 1

+ n1n2 min

{
ω1

α1 − 1
,

ω2

α2 − 1

}

. (5)

The non-adaptive character of SEPT could result in performance loss in compar-
ison to a policy which makes use of additional information being revealed when
processing the jobs. This shortcoming of SEPT is illustrated by the following
example.

Example 1. Consider the Bayesian scheduling problem with two job classes. Let
ω1 = 10, α1−1 = 90, ω2 = 0.2 and α2−1 = 2 such thatE [X1] =

ω1

α1−1 = 10
90 > 0.1

and E [X2] =
ω2

α2−1 = 0.2
2 = 0.1, where Xi denotes the processing time of the first

job to be processed of class Ji. Since E [X1] > E [X2], SEPT will first process
all jobs of class J2 and afterward all jobs of class J1. However, we picked our
values in such a way that the distribution of Θ1 is peaked, i. e., we are relatively
sure about the value of ϑ1, whereas the distribution of Θ2 is flat, i. e., we are
relatively unsure about the value of ϑ2 (see Figure 1). Consequently, it might be
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that actually ϑ2 < ϑ1, such that, in contrast to SEPT, it would be best to first
start processing all jobs of class J1. Just like SEPT, OPT will start processing
the jobs of class J2 since E [X2] < E [X1] and the beliefs regarding ϑ2 are not
that strong. However, in case ϑ2 < ϑ1, OPT will observe high processing times
for the first few jobs of job class J2 and realize his mistake. After processing a
few jobs of job class J2, OPT will therefore switch to processing jobs of class J1,
whereas SEPT continues with processing all jobs of job class J2. By choosing
appropriate values for the parameters ω and α the probability that ϑ2 < ϑ1 can
be made even larger. Hence, the performance of SEPT can be far away from
that of OPT.

Fig. 1. Gamma distributions describing the beliefs with respect to the unknown param-
eters ϑ1 and ϑ2. Since the distribution corresponding to job class J1 (J2) is relatively
peaked (flat), we are quite sure (unsure) about the value of ϑ1 (ϑ2).

To overcome the shortcoming discussed in the example above, we propose
an adaptive policy learning-SEPT (�-SEPT). Whenever the machine is idle, this
policy starts processing the job with shortest expected processing time. Thereby,
it updates the expected processing time of jobs in a class every time a job of this
specific class has been completed. Formally, after k1 jobs of class J1 and k2 jobs
of class J2 have been finished, �-SEPT starts processing a job of class J1 in case
ω1+

∑k1
j=1 xj

α1+k1−1 <
ω2+

∑k2
j=1 yj

α2+k2−1 , and a job of class J2 otherwise, where xi denotes the
observed value of the processing time of the ith job of class J1 and yj denotes
the realized value of the processing time of the jth job of class J2. Note that
in Example 1, �-SEPT also starts processing jobs of class J2. However, in case
ϑ2 < ϑ1, just like OPT, �-SEPT will realize his mistake after having processed
a few jobs of class J2 and continue with processing jobs of class J1. In what
follows, Π� denotes the random variable for the sum of completion times when
policy �-SEPT is used.

To summarize, we observe that �-SEPT uses more information than SEPT
whereas OPT uses all available information, although none of the three policies
know the values of ϑi. All three policies know the values of ωi and αi which
are derived from the scheduler’s beliefs about ϑi. Based on these values SEPT
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processes first all jobs of the job class with minimal expected processing time
for the first job to be processed. OPT and �-SEPT are more intelligent in the
sense that they make use of the underlying distribution of Θi and update this
distribution in light of new realizations. OPT in particular uses gi(θ|x1, . . . , xk)
through equations (1), (3), and (4). �-SEPT actually only uses the first moment
of the updated distribution of (Θi|x1, . . . , xk) to determine that the expected
processing time of the next job of job class Ji equals (2), once k jobs of job class
Ji have been processed.

In terms of decision making, one could thus interpret OPT as having a long-
term view whereas SEPT and �-SEPT both have a short-term view. Both policies
process a job of class Ji only if the expected processing time of the next job in
this class is minimal. OPT, however, might choose to process a job of class Ji
for which the expected processing time is not necessarily minimal. As a trade-
off, OPT benefits from the additional information which is acquired regarding
the uncertain parameter ϑi. This information could then lead to better future
decision making and a lower sum of completion times.

2.3 Bounds on Scheduling Policies

A trivial lower bound on the performance of an arbitrary policy is based on the
fact that in any policy jobs of a class have to wait for other jobs of the same
class. Hence, in constructing the lower bound we neglect waiting times caused
by jobs having to wait for jobs of a different class.

Lemma 1. Let Π be an arbitrary scheduling policy. Then, for any n1, n2 ≥ 0,
ω > 0, and α > 1,

E [Π(n1, n2,ω,α)] ≥ E [Π(n1, 0,ω,α)] +E [Π(0, n2,ω,α)]

=
(n1 + 1)n1

2

ω1

α1 − 1
+

(n2 + 1)n2

2

ω2

α2 − 1
.

As the expected completion time of each job is delayed by the expected process-
ing time of the first job to be processed by the optimal policy, we can bound the
value of the optimal policy as in the following lemma.

Lemma 2. For any n1, n2 ≥ 0, ω > 0, and α > 1,

E [Π∗(n1, n2,ω,α)] ≥ n1(n1 + 1)

2

ω1

α1 − 1
+

n2(n2 + 1)

2

ω2

α2 − 1

+ min {n1, n2}min

{
ω1

α1 − 1
,

ω2

α2 − 1

}

.

3 Upper Bound on Performance Guarantees

In this section, we prove that both SEPT and �-SEPT have a performance guar-
antee less than 2. First, we show that the adaptive policy is indeed better than
sequencing the jobs a priori. The proof of this theorem is postponed to the full
version.
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Theorem 1. For any n ≥ 0, ω > 0, and α > 1,

E
[
Π�(n,ω,α)

] ≤ E [Πs(n,ω,α)] .

Given the relation between SEPT and �-SEPT, we can prove the performance
guarantee on both SEPT and �-SEPT.

Theorem 2. For any n1, n2 ≥ 0, ω > 0, and α > 1,

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
≤ n2

1 + n2
2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + n1 + n2 + 2min {n1, n2} < 2.

Proof. The first inequality follows directly from Theorem 1. To prove the second
and last inequality, let n1, n2 ≥ 0, ω > 0, and α > 1. Combining (5) and Lemma
2, we obtain

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
≤

n1(n1 + 1)
ω1

α1−1 + n2(n2 + 1)
ω2

α2−1 + 2n1n2 min
{

ω1
α1−1 ,

ω2
α2−1

}

n1(n1 + 1)
ω1

α1−1 + n2(n2 + 1)
ω2

α2−1 + 2min {n1, n2}min
{

ω1
α1−1 ,

ω2
α2−1

}

observing that for any 0 < c ≤ b and 0 < d ≤ a, it holds that a+b
a+c ≤ d+b

d+c and
replacing ω1

α1−1 and ω2

α2−1 by the minimum of the two, we can bound this by

≤ n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + n1 + n2 + 2min {n1, n2}
≤ 4n2

max + 2nmax

2n2
max + 2nmax

< 2,

where nmax = max {n1, n2}.
Note that it follows from Theorem 2 that the performance guarantee will be
close to one in case the number of jobs in one class is of a different order than
the number of jobs in the second class. To be more explicit, when the number
of jobs in one class is fixed while the number of jobs in the second class tends
to infinity, then the performance guarantee will go to one, yielding asymptotic
optimality of SEPT and �-SEPT.

4 Tightness of the Performance Guarantees

In this section, we show that the performance guarantee shown in the previous
section is tight for SEPT as well as �-SEPT. Although by Theorem 1, it suffices
to show that the guarantee of �-SEPT is tight, we first give a lower bound on
the performance guarantee of SEPT, as this one is more intuitive, whereas the
lower bound for �-SEPT is rather technical.

4.1 Lower Bound on the Performance Guarantee of SEPT

We show that for any ε > 0 there exists an instance for which the ratio of
the value of SEPT to the value of OPT is only an additive ε away from the
performance guarantee of Theorem 2. In order to obtain this result, we make
use of the following two facts.
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Fact 1. For any ω > 0 and α > 1,

∫ ∞

0

min

{
ω + x

α
, 1

}

f11(x)dx =
ω

α− 1
− 1

α− 1

(ω

α

)α

.

Fact 2. For any α > 1,

lim
α↓1

1

α− 1

(
α− 1

α

)α

= 1

Additionally, we need a lower bound on SEPT and an upper bound on OPT.

Lemma 3. For any n1, n2 ≥ 0, there exist parameter settings ω > 0, and α > 1
such that ω1

α1−1 < ω2

α2−1 = 1 and

E [Πs(n1, n2,ω,α)] >
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ n1n2 − ε,

for any ε > 0.

Proof. For all ε′ > 0 and arbitrary α1 > 1, let ω1 = (1− ε′)(α1 − 1). By (5), we
have

E [Πs(n1, n2,ω,α)] =
n1(n1 + 1)

2
(1− ε′) +

n2(n2 + 1)

2
+ n1n2(1− ε′).

Hence, for any ε > 0, there exists an ε′ > 0 for which the lemma holds.

Lemma 4. For any n1, n2 ≥ 0, there exist parameter settings ω > 0, and α > 1
such that ω1

α1−1 < ω2

α2−1 = 1 and

E [Π∗(n1, n2,ω,α)] < n1 +
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ ε,

for any ε > 0.

Proof. Consider the following policyΠ : first process one job of class J2, observing
realization y, and schedule all remaining jobs according to SEPT. That is, if
ω1

α1−1 ≤ ω2+y
α2

then process first all jobs of class J1 and then the remaining jobs
of class J2 and otherwise first process the remaining jobs of class J2 and then all
jobs of class J1. Using y to denote the observed value of the first job of class J2,
we have that for any n1, n2 ≥ 0, ω > 0, and α > 1 such that ω1

α1−1 < ω2

α2−1 = 1,

E
[
Π∗(n1, n2,ω,α)

] ≤ E [Π(n1, n2,ω,α)]

= (n1 + n2)
ω2

α2 − 1
+

∫ ∞

0

E
[
Π

s
(n1, n2 − 1,ω + ye2,α + e2)

]
f21(y)dy

(5)
= n1 +n2 +

n1(n1 + 1)

2

ω1

α1 − 1
+

n2(n2 − 1)

2
+ n1(n2 − 1)

∫ ∞

0

min

{
ω1

α1 − 1
,
ω2 + y

α2

}

f21(y)dy

< n1 +
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ n1(n2 − 1)

∫ ∞

0

min

{

1,
ω2 + y1

α2

}

f21(y)dy

Fact 1
= n1 +

n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ n1(n2 − 1)

[
ω2

α2 − 1
− 1

α2 − 1

(
ω2

α2

)α2
]

. (6)
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Recall that by assumption ω2 = α2 − 1. Combining (6) and Fact 2, and letting
α2 tend to 1 from above, we find

lim
α2↓1

E [Π∗(n1, n2,ω,α)] < n1 +
n1(n1 + 1)

2
+

(n2 + 1)n2

2
.

Hence, it follows that for any n1, n2, ω1 < α1 − 1, there exists for any ε > 0 an
α∗ > 1 such that for all 1 < α2 = ω2 + 1 < α∗

E [Π∗(n1, n2,ω,α)] < n1 +
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ ε.

As a straightforward consequence of Lemmata 3 and 4, we obtain the following
theorem.

Theorem 3. For any n1 and n2, there exist parameter settings ω > 0 and
α > 1, such that, for any ε > 0

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
>

n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + 3n1 + n2
− ε.

Furthermore, there exist parameter settings n1, n2 ≥ 0, ω > 0 and α > 1, such
that for any ε > 0,

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
> 2− ε.

Proof. The restrictions imposed on the values α1 and α2 in Lemmas 3 and 4
can be satisfied simultaneously. Therefore, the first part of the theorem follows
directly from these lemmas. To see the second part, we set n1 = n2 = n and let
n tend to infinity.

lim
n→∞

E [Πs(n, n,ω,α)]

E [Π∗(n, n,ω,α)]
> lim

n→∞
2n2 + n

n2 + 2n
− ε = lim

n→∞
2n+ 1

n+ 2
− ε = 2− ε.

4.2 Lower Bound on the Performance Guarantee of �-SEPT

Similarly to the previous section, we show that for any ε > 0 there exists an
instance for which the ratio of the value of �-SEPT to the value of OPT is only
an additive ε away from the performance guarantee of Theorem 2.

Theorem 4. There exist parameter settings n1, n2 ≥ 0, ω > 0, α > 1 such that

E
[
Π�(n1, n2,ω,α)

]

E [Π∗(n1, n2,ω,α)]
>

n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + 3n1 + n2
− ε

for any ε > 0.
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A formal proof of this theorem is given in the full version of the paper. In order
to give this proof, we need a lower bound on the performance of �-SEPT. To
obtain this bound, we adjust the worst case instance of SEPT, given in Lemma 3.
In that instance, we set our parameters in such a way that E [X1] is slightly less
than E [X2]. Hence, SEPT starts processing all jobs of class J1, followed by the
jobs of class J2. OPT however, starts processing a job from class J2, since the
distribution of Θ2 is flat, making it is beneficial to process a few jobs of the
second class to get a better idea about the value of ϑ2.

To create a bad instance for �-SEPT, we would like to keep the same structure.
Therefore, we need to make sure �-SEPT does not switch to processing jobs from
the second class after it processed a few jobs of the first class. This is done by
setting the values of ω1 and α1 extremely large such that we are almost certain
about the value of ϑ1. Consequently, the realizations of processing times of jobs
from class J1 barely affect the expected processing time for the next job to be
processed, i. e., when ω1 and α1 are big enough we have

ω1 +
∑k

j=1 xk

α1 + k − 1
≈ ω1

α1 − 1
= 1− ε < 1 =

ω2

α2 − 1

after k observations on the first job class.

5 Computational Results

In this section, we present preliminary computational results to investigate the
performance of SEPT and �-SEPTwith respect to the optimal value in a Bayesian
setting. That is, for several job class settings, we compare the values of SEPT and
�-SEPT with the optimal Bayesian solution. All computations are performed in
MATLAB. In order to compute the values of OPT, we used the algorithm pre-
sented in Section 4 of the paper of Hamada and Glazebrook [11].

The Bayesian scheduling instances studied are as follows: the number of
jobs in both job classes is set to 15, since the theoretical worst-case perfor-
mance is reached for equal number of jobs in both classes. Furthermore, the
gamma prior settings are set such that ωi and (αi − 1) are both an element of
{0.5 ; 1.0 ; 5.0 ; 25.0} for each job class Ji. This results in 100 different compu-
tations covering the majority of interesting job class settings, i.e., the cases in
which both job classes have high or low parameter uncertainty, and the mixed
case in which one class has high and the other one low parameter uncertainty.
Moreover, these computations could still be performed in a reasonable amount
of time. Choosing our settings in a more extreme fashion immediately results in
difficulties with the precision in calculating OPT, and also significantly increases
the computation time of this optimal policy.

In our computations, 50.000 simulations are run for each Bayesian scheduling
instance. In each of those simulations, we draw for each job class a parameter
realization from a gamma distribution. This realization is subsequently used to
draw 15 processing time realizations from an exponential distribution. Using
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these realizations the sum of completion times for each of the policies is calcu-
lated. Performance of the policies SEPT and �-SEPT is measured by average
objective value of the policy over the average objective value of OPT.

The preliminary computational results indicate that in case both job classes
have high parameter uncertainty �-SEPT is only about 1% away from the optimal
value, while for SEPT the deviation is more than 13%. On the other hand, when
the parameter uncertainty is low, we find that SEPT performs already better (1%
away from OPT), but �-SEPT obtains exactly the same value as OPT. In case
both job classes have the same expected processing time, SEPT has the worst
performance ratio among the instances tested: for high parameter uncertainty
SEPT is about 30% above OPT, and for medium parameter uncertainty it is still
7% away from the optimal value. Intuitively, this was to be expected, because in
these cases SEPTwill just randomly choose a job class to start with. Also �-SEPT
performs the worst when both job classes have the same expected processing
time, and in addition one job class has high parameter uncertainty, whereas
the other one has low parameter uncertainty. This is explained by the fact that
�-SEPT makes its decisions based only on the first moment of the distribution
and disregards further moments. Still in these cases, �-SEPT outperforms SEPT,
and it has a maximum deviation from OPT of only 9%. To conclude, on all
instances �-SEPT clearly outperforms the non-adaptive variant SEPT, thereby
emphasizing the impact of learning on the performance of the algorithm. Finally,
we remark that when averaging over the 50.000 trials, SEPT has a much higher
variance than the other two policies. Again this is explained by the fact that
SEPT, in case that the two job classes have the same expected processing time,
randomly picks a job class to start with.

6 Concluding Remarks

In this paper, we studied the performance guarantee of two natural extensions
of the traditional stochastic scheduling policy SEPT to the setting of Bayesian
scheduling. We only considered the case in which there are 2 job classes and gave
tight performance guarantees for both policies. An interesting extension will be
the case of m job classes. For this case, we can prove a performance guarantee
of m on both SEPT and �-SEPT. For the non-adaptive policy SEPT this bound
is tight, whereas for the adaptive policy �-SEPT, we have a lower bound of
1 +

√
m− 1 and we conjecture that this is the right performance guarantee.

Acknowledgments. We thank three anonymous reviewers for their helpful
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