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Abstract. We address the classical uniformly related machine schedul-
ing problem with minsum objective. The problem is solvable in poly-
nomial time by the algorithm of Horowitz and Sahni. In that solution,
each machine sequences its jobs shortest first. However when jobs may
choose the machine on which they are processed, while keeping the same
sequencing rule per machine, the resulting Nash equilibria are in gen-
eral not optimal. The price of anarchy measures this optimality gap. By
means of a new characterization of the optimal solution, we show that
the price of anarchy in this setting is bounded from above by 2. We also
give a lower bound of e/(e− 1) ≈ 1.58. This complements recent results
on the price of anarchy for the more general unrelated machine schedul-
ing problem, where the price of anarchy equals 4. Interestingly, as Nash
equilibria coincide with shortest processing time first (SPT) schedules,
the same bounds hold for SPT schedules. Thereby, our work also fills a
gap in the literature.

1 Introduction

The minsum related machine scheduling problem is one of the classical models
in the area of scheduling. It has been solved already in the 1960s [5]. Given are n
jobs with non-preemptive processing requirements, a set of m parallel machines
with different processing speeds, the goal is to find a schedule that minimizes
the sum of job completion times. In the 3-field notation of Graham et al. [8]
the problem is denoted Q||∑Cj . The problem is a special case of the more
general unrelated machine scheduling problem R||∑Cj , where the processing
times of jobs on machines are represented by an arbitrary n × m matrix. The
related machine problem is solved in O(n lognm) computation time by the MFT
algorithm of Horowitz and Sahni [10]. The MFT algorithm is a refinement of
the simple matching solution presented earlier by Conway et al. [5, pp. 78-79].
The MFT algorithm computes the optimal assignment of jobs to machines by
considering them in the order longest processing time first (LPT), and the jobs
eventually assigned to a given machine are then sequenced in the order shortest
processing time first (SPT).

In this paper we are interested in the same problem, but in a decentral-
ized setting where there is no central authority that assigns jobs to machines.
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Instead, jobs themselves choose the machine on which they want to be processed.
Any job j seeks to minimize its own completion time Cj , and does not care about
the central objective function

∑
Cj . This results in an n-agent strategic game

where the strategy space of any job-agent is the set of machines. This game is
well-defined once we determine how jobs are locally sequenced on each machine.
Here we only consider the local sequencing rule that is locally optimal for the
global objective

∑
Cj , that is, the jobs on each machine are processed in order of

shortest processing time first (SPT). In spite of doing the optimal thing locally,
Nash equilibria of the resulting game do not necessarily lead to globally optimal
solutions for the objective

∑
Cj . This optimality gap is what we are interested

in. Notice that the problem that we have described so far is an example of a
coordination mechanism as defined by Christodoulou et al. [3], who suggested
to use local sequencing rules per machine in order to influence the dynamics of
the game and thereby the quality of the corresponding equilibrium outcomes.

The price of anarchy is being used since about a decade to measure the
deterioration of system performance caused by the lack of central coordination
[13,16]. It is defined by relating the quality of the worst possible Nash equilibrium
to the quality of the globally optimal solution. Here, the metric for the quality of
a solution is in terms of the central objective function, in our case

∑
Cj . In the

economic literature the central objective function is rather called social choice
function [15]. In our case it is utilitarian, which means that the social choice
function

∑
Cj is simply the sum of the valuation functions of the agents Cj .

For games with utilitarian social choice function, Roughgarden [17] recently
introduced the concept of smoothness of games and its consequences for robust
price of anarchy bounds. He points out that many of the existing price of
anarchy bounds can actually be deduced from smoothness of the underlying
games, and he shows that the corresponding bounds not only hold for pure Nash
equilibria, but extend to mixed Nash equilibria, correlated equilibria as defined
by Aumann [1], and even beyond.

The contribution of this paper is an analysis of the price of anarchy for the
minsum related machine scheduling game as described above. More specifically,
our main result is a proof that the pice of anarchy is at most 2. This analysis also
extends beyond pure Nash equilibria in the same way as in [17], even though it
is not exactly a smoothness argument in the sense of Roughgarden’s definition
in [17]. We also give a parametric example to show that the price of anarchy
cannot be less than e/(e− 1) ≈ 1.58.

An interesting aspect of our work is that also the pure Nash equilibria can
easily be computed in polynomial time through SPT schedules. In fact, it is
well known that Nash equilibria are obtained as solutions of the Ibarra and Kim
algorithm [11] when machines sequence jobs in SPT order. This is even true for
the more general unrelated machine scheduling problem [9,12]. When applied to
the related machine scheduling problem considered here, this means scheduling
the jobs in SPT order, and when a job is scheduled it is placed on the machine
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that minimizes its completion time Cj
1. This results in a pure Nash equilibrium

of the game, as no job has the possibility to improve its completion time by
changing to another machine. Hence, we only need to compare optimum and
Nash equilibrium solutions, none of which is blemished by NP-completeness. In
a first instant we therefore thought the problem was trivial. Yet we first needed
a new characterization of the optimal solution to get the job done. In any case,
our results also show that SPT schedules can miss the optimum by no more than
a factor 2, and can be as bad as e/(e− 1) times the optimum.

It is also worth mentioning that the literature related to analyzing the price
of anarchy for scheduling problems has almost exclusively concentrated on the
egalitarian2 makespan objective Cmax(= maxj Cj) as social choice function
[2,3,7,12,13,18]. The fact that most of the literature focusses on the makspan has
potentially two reasons. First, this is the model that has been originally proposed
by Koutsoupias and Papadimitriou [13]. Second, makespan scheduling is akin to
load balancing, with applications for example in internet routing protocols [16].
Yet it is surprising that utilitarian social choice functions have hardly received
any attention from the algorithms community, given that the model is certainly
not less attractive from an application perspective.

We are aware of only two references that are very closely related to our
work, these are the recent papers by Correa and Queyranne [6] and Cole et al.
[4]. Both papers address the same problem as we do, but with additional job
weights wj and in the more general context of unrelated machine scheduling,
R||∑wjCj . Their objective is thus weighted utilitarian. One of the main results
in both papers is the proof that the price of anarchy equals 4 when machines
sequence their jobs locally optimal, that is, according to nonincreasing ratios of
weight over processing time. Cole et al. [4] also give an instance which establishes
a lower bound of 4 for the price of anarchy, even in the unweighted case, R||∑Cj .
Our results nicely fit into that context.

The organization of the paper is as follows. In Section 2 we briefly recap
the algorithm of Horowitz and Sahni [10]. We then present a new characterization
of optimal solutions, which is crucial for the subsequent analysis. In Section 4 we
show that the price of anarchy is not greater than 2. The basic proof idea is akin
to the arguments for showing (2, 0)-smoothness of the game, but we crucially
need the characterization of optimal solutions. Hence it is at best a relaxed sort
of smoothness. Section 5 describes a parametric instance, for which we show

1 This is not the same as the “SPT schedules” as discussed by Horowitz and Sahni
[10, p. 321], as they assign jobs in SPT order in a greedy list scheduling fashion,
that is, to the machine that minimizes the jobs starting time. When doing that,
the resulting SPT schedule can be arbitrarily far away from the optimum. When we
refer to SPT schedules we refer to greedy list scheduling in SPT order, but jobs are
placed on the machine that minimizes the completion time Cj .

2 See Myerson [14] for a discussion of utilitarian and egalitarian social choice functions.
The interpretation of Cmax as egalitarian indeed makes sense in models where the
objectives of the job-agents is the total load of the machine they are processed on,
as for example in [13].
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that it’s price of anarchy is equal to e/(e− 1) > 1.5819. We conclude with some
further remarks in Section 6.

2 Characterization of Optimal Solutions

In this section we briefly recap the MFT algorithm of Horowitz and Sahni [10]
and establish a new characterization for optimal solutions for minsum related
machine scheduling. This characterization is crucial to our analysis in Section 4.

Throughout this paper we denote by J the set of n jobs and by M the set of
m machines. Each job j has a length pj and each machine i has a speed si. The
processing requirement of job j on machine i is equal to pij = pj/si. W.l.og.
assume that p1 ≤ p2 ≤ · · · ≤ pn and s1 ≤ s2 ≤ · · · ≤ sm. We assume ties on the
ordering are broken consistently and that this is done based on index.

For the single machine case it is clear that the contribution of a job can
be measured by its position in the schedule and its processing time. This fol-
lows from rewriting the objective function as follows. Let ϕ be an ordering of
the jobs and let ϕ(k) denote the k-th job in this ordering, then

∑n
k=1 Cϕ(k) =

∑n
k=1

∑k
l=1 pϕ(l) =

∑n
k=1(n− k+1)pϕ(k). Hence the only optimal schedules are

schedules that schedule the jobs in order of nondecreasing processing time, as
these match large pj to small values (n− k+1). The same idea can be extended
to the case of parallel machines, even with speeds, resulting in the following
Minimum Mean Flow Time (MFT) algorithm [10].

Algorithm 1. MFT Algorithm for problem Q||∑Cj

For each machine i set hi = 0
while Not all jobs are placed do

Take from the unscheduled jobs the longest job j
Assign job j to the machine with the smallest value of (hi + 1)/si
For that machine update hi = hi + 1

Sort the jobs on each machine in SPT order

Similar to the single machine case, the different values (hi + 1)/si are the val-
ues for a job’s possible positions in the schedule, as in general, the x-th last job on
a machine contributes to the objective value x times its processing time divided
by the machine speed. The algorithm assigns the currently longest unscheduled
job to the machine with the currently smallest position value.

Theorem 1 ([10]). Any optimal schedule for Q||∑Cj can be computed by the
MFT algorithm with the proper tie breaking rule.

Since any optimal solution has the jobs on each machine sequenced in SPT
order, we can identify a schedule by denoting for each job on which machine it is
scheduled. Therefore we identify a schedule with an n-vector σ where σj is the
machine on which job j is scheduled.
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Next, let hσ(j) be the vector such that hσ
i (j) = |{k > j|σk = i}|, indicating

the number of jobs on machine i in schedule σ that have higher index than j.
Now any schedule σ is optimal if and only if

hσ
σj
(j) + 1

sσj

≤ hσ
i (j) + 1

si
for all jobs j and all machines i . (1)

This because, for all machines i, (hσ
i (j) + 1)/si is the position value of i upon

placement of job j in the MFT algorithm. This needs to be minimized for all j by
any optimal schedule σ. The following lemma provides our new characterization
of optimal solutions.

Lemma 1. A schedule σ is optimal for Q||∑Cj if and only if

hσ
i (j) + 1

si
≥ hσ

� (j)

s�
for all machines i and � . (2)

Proof. We show that (2) is true if and only if (1) is true. Let σ be an optimal
schedule. Note that hσ

i (j) ≥ hσ
i (k) for all machines i and all jobs k ≥ j. We

therefore get from (1) that

hσ
i (j) + 1

si
≥ hσ

i (k) + 1

si
≥ hσ

σk
(k) + 1

sσk

for all machines i and all jobs k ≥ j. Since for any machine � either hσ
� (j) = 0,

or there is a job k > j such that σk = � and hσ
� (j) = hσ

σk
(j) = hσ

σk
(k) + 1, it

follows that
hσ
i (j) + 1

si
≥ hσ

� (j)

s�
for all machines i and � .

Now let σ be a schedule that satisfies (2) and suppose it does not satisfy (1).
Then there exist j ∈ J and i ∈ M such that

hσ
σj
(j) + 1

sσj

>
hσ
i (j) + 1

si
,

but then we get for job j − 1 that

hσ
σj
(j − 1)

sσj

=
hσ
σj
(j) + 1

sσj

>
hσ
i (j) + 1

si
=

hσ
i (j − 1) + 1

si
,

which contradicts (2). ��

A intuitive interpretation for (2) is that, when applying the MFT algorithm,
a job that is placed on a machine can not get a better position than the jobs
already placed on a machine. While it is intuitive that this is indeed a necessary
condition for the optimal solution, the intuition that it is also sufficient is not
that clear. In that sense, it is indeed a nontrivial reformulation of (1).
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3 Coordination Mechanism and Nash Equilibria

For the remainder of this paper we compare the optimal solution from Section 2
to outcomes of the scheduling game for Q||∑Cj where each job can individually
choose on which machine it will be scheduled and machines sequence jobs in SPT
order. The jobs act selfishly, each trying to minimize its own completion time.
Nash equilibria are considered the natural outcomes of the resulting strategic
game. The price of anarchy, defined in [13], compares the objective value of an
optimal schedule to the objective value of a worst possible Nash equilibrium
schedule. The resulting game for Q||∑Cj is a coordination mechanism in the
sense of Christodolou et al. [3], where using SPT locally per machine proposes
itself because it is locally optimal.

We denote schedules in the same way as in Section 2, but with respect to
Nash equilibria, σ represents the strategy profile of the job-agents such that σj

is the machine chosen by job j. Furthermore, σ−j denotes the (n − 1)-vector
obtained from σ by deleting σj , so that σ = (σj , σ−j). For the problem Q||∑Cj

with SPT as local scheduling rule, Nash equilibria are defined as follows.

Definition 1 (Nash equilibrium). A strategy profile σ = (σj , σ−j) is a Nash
equilibrium if and only if for all jobs j,

∑

k≤j
σk=σj

pk
sσj

≤
∑

k<j
σk=i

pk
si

+
pj
si

for all machines i . (3)

It is well known [9] that the Ibarra-Kim algorithm [11] constructs all Nash equi-
libria depending on the way ties are broken. For uniformly related machines the
algorithm is described as follows.

Algorithm 2. Ibarra-Kim Algorithm for problem Q||∑Cj

while Not all jobs are placed do
Take from the unscheduled jobs the shortest job k
Let machine l be the machine where job k has minimal completion time
Schedule job k directly after the jobs already scheduled on machine l

The Ibarra-Kim algorithm was originally designed as an approximation algo-
rithm for unrelated machine scheduling [11]. To the best of our knowledge the
performance of the resulting schedules for the related machine problem Q||∑Cj

has not yet been analyzed, most probably because the problem to find optimal
solutions was settled long before in [5].

4 Upper Bound on the Price of Anarchy

In this Section we establish an upper bound on the price of anarchy for minsum
related machine scheduling. Our proof is (in retrospect) akin to a smoothness
argument for cost-minimization (=utilitarian) games, as introduced by Rough-
garden [17].
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Definition 2 ([17] Smooth Games). A cost-minimization game is (λ, μ)-
smooth if for every two outcomes ν and σ,

n∑

j=1

Cj(σj , ν−j) ≤ λ ·
n∑

j=1

Cj(σ) + μ ·
n∑

j=1

Cj(ν) . (4)

If a utilitarian game is (λ, μ)-smooth with λ ≥ 0 and μ < 1, it follows that for
any Nash equilibrium ν and optimal solution σ

n∑

j=1

Cj(ν) ≤
n∑

j=1

Cj(σj , ν−j) ≤ λ ·
n∑

j=1

Cj(σ) + μ ·
n∑

j=1

Cj(ν) . (5)

From (5) it follows directly that λ
1−μ is an upper bound on the price of anarchy for

any (λ, μ)-smooth game. Roughgarden [17] defines the robust price of anarchy
as the least upper bound on the price of anarchy that is provable through a
smoothness argument.

Definition 3 ([17] Robust PoA). The robust price of anarchy of a cost-
minimization game is

inf

{
λ

1− μ

∣
∣
∣
∣ the game is (λ, μ)-smooth

}

.

Instead of proving (4) for any two outcomes ν and σ, we crucially need the
characterization of the optimal solution from Lemma 1 and therefore will prove
(4) with σ restricted to be an optimal solution. However, note that the resulting
bound on the price of anarchy also extends to (mixed) Nash equilibria, correlated
equilibria or no-regret sequences (see [17]) when (4) only holds for arbitrary
strategy profiles ν and an optimal solution σ.

In the following, let therefore σ be an optimal schedule resulting from the
MFT algorithm, and recall that for the objective value in the optimal solution
σ we have

n∑

j=1

Cj(σ) =
n∑

j=1

(
hσ
σj
(j) + 1

) pj
sσj

.

The next Theorem is the main result of this paper.

Theorem 2. The price of anarchy for the minsum related machine scheduling
problem Q||∑Cj with SPT as local sequencing rule is no greater than 2.

Proof. We show that the game is “(2, 0)-smooth”, by showing that

n∑

j=1

Cj(σj , ν−j) ≤ 2
n∑

j=1

Cj(σ) (6)

for an optimal schedule σ and any strategy profile ν.
Let Ji(σ) = {j|σj = i} be the set of jobs scheduled on machine i in the optimal

solution σ, likewise let Ji(ν) = {j|νj = i} be the set of jobs scheduled on machine
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i in schedule ν. For any job j in Ji(σ), its completion time Cj(σj , ν−j) consists
of the processing times of all jobs that are on machine i in ν and that have
smaller index than j, plus its own processing time on machine i. Summing the
completion times of all jobs that are on machine i in the optimal solution gives
us

∑

j∈Ji(σ)

Cj(σj , ν−j) =
∑

j∈Ji(σ)

⎛

⎜
⎜
⎝
pj
si

+
∑

k∈Ji(ν)
k<j

pk
si

⎞

⎟
⎟
⎠

=
∑

j∈Ji(σ)

pj
si

+
∑

j∈Ji(σ)

∑

k∈Ji(ν)
k<j

pk
si

. (7)

Note that the number of times that a job k is counted on the right hand side
of (7) equals the number of jobs with higher index than j on machine i in the
optimal solution, times 1

si
. In other words, the second part of (7) can be rewritten

as ∑

j∈Ji(σ)

∑

k∈Ji(ν)
k<j

pk
si

=
∑

k∈Ji(ν)

hσ
i (k) ·

pk
si

.

This gives us

∑

j∈Ji(σ)

Cj(σj , ν−j) =
∑

j∈Ji(σ)

pj
si

+
∑

k∈Ji(ν)

hσ
i (k) ·

pk
si

.

Now, note that by definition σj = νk = i, so

∑

j∈Ji(σ)

Cj(σj , ν−j) =
∑

j∈Ji(σ)

pj
sσj

+
∑

k∈Ji(ν)

hσ
νk(k) ·

pk
sνk

.

Summing over all i leads to

n∑

j=1

Cj(σj , ν−j) =

m∑

i=1

∑

j∈Ji(σ)

Cj(σj , ν−j)

=
m∑

i=1

∑

j∈Ji(σ)

pj
sσj

+
m∑

i=1

∑

k∈Ji(ν)

hσ
νk
(k) · pk

sνk

=

n∑

j=1

pj
sσj

+

n∑

j=1

hσ
νj (j) ·

pj
sνj

.

From Lemma 1 we know

n∑

j=1

hσ
νj (j) ·

pj
sνj

≤
n∑

j=1

(
hσ
σj
(j) + 1

)
· pj
sσj

=
n∑

j=1

Cj(σ) . (8)
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Also, the completion time of any job is at least its processing time on the machine
it is scheduled on, so

n∑

j=1

pj
sσj

≤
n∑

j=1

Cj(σ) . (9)

Combining the above, we get

n∑

j=1

Cj(σj , ν−j) ≤ 2

n∑

j=1

Cj(σ) for all strategy profiles ν .

��

5 Lower Bound on the Price of Anarchy

In this Section we describe a parametric instance which has price of anarchy
equal to e/(e− 1). The Nash equilibrium is the schedule with all jobs on the
fastest machine (which is easily shown to be an upper bound on the quality of
Nash equilibria in general, so in that sense, this is a worst case scenario).

Instance 1. Let I be the parametric group of instances I(s) that satisfy the
following. I(s) has m machines, one of which has speed s > 1 and all the other
machines have speed 1. All speeds are integer. Furthermore, I(s) has n = m+s−1
jobs, with length equal to

pj =

{
1 if 1 ≤ j ≤ s
xj−s if s+ 1 ≤ j ≤ n

,

where x = s/(s− 1).

Lemma 2. Instances from I have a Nash equilibrium with all jobs on the fastest
machine.

Proof. In the schedule with all jobs in SPT order on the fastest machine, the
completion time of a job j < s is equal to

Cj =

j∑

k=1

pk
s

=

j∑

k=1

1

s
=

j

s
≤ 1 . (10)

For a job j ≥ s, the completion time is equal to

Cj =

j∑

k=1

pk
s

=
s− 1

s
+

j∑

k=s

(
s

s−1

)k−s

s
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=
1

s

(

s− 1 +

j−s∑

k=0

(
s

s− 1

)k
)

=
1

s

⎛

⎜
⎝s− 1 +

(
s

s−1

)j−s+1

− 1
(

s
s−1

)
− 1

⎞

⎟
⎠

=
1

s

(

s− 1 + (s− 1)

(
s

s− 1

)j−s+1

− (s− 1)

)

=

(
s

s− 1

)j−s

= pj . (11)

So the Nash equilibrium condition (3) holds, as all other machines have speed 1.

We use this to compute a lower bound on the price of anarchy.

Theorem 3. The price of anarchy for the minsum related machine scheduling
problem Q||∑Cj with SPT local scheduling rule is no less than e/(e− 1) ≈ 1.58.

Proof. Consider instances I(s) from I as defined above. In the optimal solution
the s longest jobs are on the fastest machine. All other jobs are on a slow machine.
So the objective value in the optimal solution is equal to

OPT(I(s)) =

s−1∑

j=1

pj +

n−s∑

j=s

pj +

n∑

j=n−s+1

j∑

k=n−s+1

pk
s

=

s−1∑

j=1

pj +

n−s∑

j=s

xj−s +

n∑

j=n−s+1

j∑

k=n−s+1

xk−s

s

=
s−1∑

j=1

1 +
n−2s∑

j=0

xj +
n∑

j=n−s+1

1

s

(
j−s∑

k=0

xk −
n−2s∑

k=0

xk

)

= s− 1 + (s− 1)xn−2s+1 − (s− 1) +
n∑

j=n−s+1

(
xj−s − xn−2s

)

= (s− 1)xn−2s+1 +

n−s∑

j=n−2s+1

xj −
n∑

j=n−s+1

xn−2s

= (s− 1)xn−2s+1 + (s− 1)xn−s+1 − (s− 1)xn−2s+1 − sxn−2s

= (s− 1)xn−s+1 − (s− 1)xn−2s+1 . (12)

From Lemma 2 we know that the schedule with all jobs on the fastest machine
is a Nash equilibrium. From (10) and (11) we know that the completion time of
the jobs in this schedule is equal to

Cj =

⎧
⎨

⎩

j
s if j ≤ s− 1
(

s
s−1

)j−s

otherwise
.

From this we compute the objective value in the Nash equilibrium
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NE(I(s)) =
s−1∑

j=1

j

s
+

n∑

j=s

xj−s

=
s(s− 1)

2s
+

n−s∑

j=0

xj

=
(s− 1)

2
+ (s− 1)xn−s+1 − (s− 1)

= (s− 1)xn−s+1 − (s− 1)

2
. (13)

Combining (12) and (13) gives us the price of anarchy:

PoA(I(s)) =
(s− 1)xn−s+1 − (s−1)

2

(s− 1)xn−s+1 − (s− 1)xn−2s+1

=
xn−s+1 − 1

2

xn−s+1 − xn−2s+1

=
xs − 1

2x
−(n−2s+1)

xs − 1

=

(
s

s−1

)s
− 1

2

(
s

s−1

)−(n−2s+1)

(
s

s−1

)s
− 1

. (14)

Now, if we let n go to infinity, (14) becomes:

lim
n→∞PoA(I(s)) =

(
s

s−1

)s

(
s

s−1

)s
− 1

, (15)

and letting also s go to infinity, (15) goes to e/(e− 1) ≈ 1.58. ��

6 Concluding Remarks

Of course, the question remains what the truth is concerning the price of anar-
chy for the considered problem, which we could bound in the interval [1.58, 2].
This gap may be due to the fact that the upper bound holds for more general
equilibria than only pure Nash equilibria. While for the parametric instances
from Theorem 3, scheduling all jobs on the fastest machine is even a dominant
strategy equilibrium.

Note that it is indeed possible for mixed Nash equilibria to induce (signifi-
cantly) worse price of anarchy than pure Nash equilibria. This can be seen by
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the simple example of two identical machines with two identical jobs. For such
an instance pure Nash equilibria are optimal solutions. However, the randomized
schedule where each job choses each machine with equal probability of 1/2 is a
mixed Nash equilibrium, and yields an expected objective value 5/4 times the
optimal value.

All this leaves open the possibility that indeed 2 would be the true value of
the robust price of anarchy, while the true value for the (pure) price of anarchy
is e/(e−1). We believe however that an improvement on the upper bound of 2 is
possible, because either of the two terms that appears in our analysis in (8) and
(9) can be equal to the optimum value, but we have not been able to construct
instances where both inequalities are tight. Neither have we been able (so far)
to offset the two terms against each other, which might be a feasible approach
for improving our analysis for the upper bound.
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