
Simpler 3/4-Approximation Algorithms

for MAX SAT

Anke van Zuylen

Max Planck Institute for Informatics,
66123, Saarbücken, Germany

anke@mpi-inf.mpg.de

Abstract. We consider the recent randomized 3
4
-algorithm for MAX

SAT of Poloczek and Schnitger. We give a much simpler set of proba-
bilities for setting the variables to true or false, which achieve the same
expected performance guarantee. Our algorithm suggests a conceptually
simple way to get a deterministic algorithm: rather than comparing to an
unknown optimal solution, we instead compare the algorithm’s output
to the optimal solution of an LP relaxation. This gives rise to a new LP
rounding algorithm, which also achieves a performance guarantee of 3

4
.

1 Introduction

The maximum satisfiability problem (MAX SAT) is a fundamental NP-hard
problem. Given a set of variables, x1, . . . , xn, and a set of weighted disjunctive
clauses C1, . . . , Cm of literals, where a literal is either a variable xi or its negation
x̄i, we want to find a truth assignment to the variables that maximizes the weight
of the satisfied clauses.

Let W be the weight of all clauses. A simple approximation algorithm for
MAX SAT sets each variable to true with probability 1

2 ; by linearity of expec-
tation, the expected weight of the satisfied clauses is at least 1

2W , and, hence,
this is a randomized 1

2 -approximation algorithm. This algorithm can be deran-
domized using the method of conditional expectation, which gives rise to the
following algorithm: Consider the variables one at a time. For a clause Cj with
weight wj that is not yet satisfied by the assignment of the variables consid-
ered so far, let cj be the number of variables occurring in Cj for which the
truth assignment has not yet determined. Define the modified weight of Cj as
μ(Cj) = wj

(
1
2

)cj
. Note that this is the expected weight of clause Cj that is not

satisfied, if the remaining variables are set to true with probability 1
2 . We now

set the next variable xi to true if the modified weight of the clauses containing
xi is greater than or equal to the modified weight of the clauses containing x̄i,
and to false otherwise. This deterministic algorithm is due to Johnson [6] and
is known as Johnson’s algorithm. The fact that it can be interpreted as the de-
randomization of the randomized algorithm that sets each variable to true with
probability 1

2 was noted by Yannakakis [9]. Chen, Friesen and Zhang [2] showed
that the approximation ratio of the derandomized algorithm is in fact 2

3 ; see also
Engebretsen [4] for a simplified analysis.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 188–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simpler 3/4-Approximation Algorithms for MAX SAT 189

Better approximation algorithms are known, both for the general case and for
certain special cases, but until recently, all of these used the optimal solution to
a linear program or semidefinite program. See for example Yannakakis [9] and
Goemans and Williamson [5]. The best known approximation algorithm is due
to Avidor, Berkovitch and Zwick [1] and achieves a guarantee of 0.7968.

Very recently, Poloczek and Schnitger [8] gave the first approximation algo-
rithm with performance guarantee 3

4 that is purely combinatorial. They define a
randomized variant of Johnson’s algorithm, which sets variable xi to true or false
with probability proportional to the modified weight of the clauses containing xi

and x̄i respectively. They then show how to slightly modify these probabilities
so that the expected weight of the clauses satisfied by the algorithm is at least
3
4 of the weight of the optimal solution.

The probabilities determined by the algorithm are rather complicated, and
they depend on previous decisions by the algorithm. Derandomization of this
algorithm seems therefore highly non-trivial. In fact, Poloczek [7] shows that,
under certain assumptions, no deterministic variant of the algorithm of Poloczek
and Schnitger [8] can achieve the same guarantee: Poloczek shows that no de-
terministic adaptive priority algorithm can achieve an approximation ratio of 3

4 .
Priority algorithms are a formalization of greedy algorithms, and need to make
an irrevocable decision when a data item is revealed. In the setting considered
by Poloczek, a data item is the name of a variable, say x; the set of clauses that
contain the variable x; and for each such clause, the data item contains the sign
of x in the clause, the weight, and the other variables appearing in the clause
(but not whether these appear negated or not). Based on this information, the
algorithm has to decide whether to set x to true or false. In an adaptive priority
algorithm, the algorithm may adaptively change the order in which it considers
the data items, but when the data item corresponding to variable x is revealed,
it still needs to irrevocably determine the value of x.

It may however still be the case that a deterministic variant, which is not
an (adaptive) priority algorithm, achieves a guarantee of 3

4 . In this paper, we
give a simple expression for the probability with which to set the next variable
to true or false, which gives the same performance guarantee as the algorithm
of Poloczek and Schnitger [8]. Our probabilities are not necessarily the same as
those given by Poloczek and Schnitger [8], but they do satisfy the inequalities
that are required for their analysis (and, by extension, our version of the analysis)
to hold. Although the expression of the probabilities is simple, the probabilities
still depend on the past decisions made by the algorithm, and, hence, the question
whether this algorithm can be derandomized remains non-trivial. However, if
we allow our algorithm to use linear programming, derandomization becomes
relatively straightforward. Our second result is therefore a new deterministic LP
rounding algorithm, which achieves an approximation ratio of 3

4 .
The remainder of this paper is structured as follows: we begin in Section 2

by introducing the notion of a potential function, which is implicitly used in
the analysis of Poloczek and Schnitger. We summarize some key ideas of their
analysis in terms of the potential function. We then give a new randomized

190 A. van Zuylen

algorithm which has very simple probabilities of setting the next variable to true
or false, and we prove that it satisfies the conditions derived in Section 2. Our new
algorithm suggests a conceptually simple way to get a deterministic algorithm:
rather than comparing to an unknown optimal solution, we can instead compare
the algorithm’s output to the optimal solution of an LP relaxation. This gives
rise to the new rounding algorithm described in Section 4.

2 Analysis with a Potential Function

Let the input be a set of variables x1, . . . , xn, and a set of disjunctive clauses
C1, . . . , Cm with weights w1, . . . , wm ≥ 0, where the literals in the clauses are
variables or their negation. Let W =

∑m
j=1 wj . The algorithms we consider

iteratively determine the value (either 1 (true) or 0 (false)) to which we set
variables x1, . . . , xn, and our aim is to prove that the expected weight of the
satisfied clauses is at least 3

4 times the weight of the optimal assignment.
For a given index i, let SAT (i) be the weight of the clauses that are satisfied

by the algorithm’s values for x1, . . . , xi, and let UNSAT (i) be the weight of
the clauses which contain only x1, . . . , xi, or their negations, and that are not
satisfied by the chosen values. Suppose we have already determined the assign-
ment for x1, . . . , xi−1, and the algorithm now fixes the assignment for xi. Then
SAT (i)− SAT (i − 1) is the weight of the clauses that become satisfied by the
algorithm’s assignment for xi (and that were not already satisfied by the assign-
ment for x1, . . . , xi−1), and UNSAT (i) − UNSAT (i − 1) is the weight of the
clauses that become unsatisfiable by the assignment to xi. If for all i, we could
determine an assignment such that

(SAT (i)− SAT (i− 1))− 3(UNSAT (i)− UNSAT (i− 1)) ≥ 0, (1)

then this would imply a 3
4 -approximation algorithm: Note that

∑m
i=1

(
(SAT (i)−

SAT (i−1))−3(UNSAT (i)−UNSAT (i−1))
)
= SAT (n)−3UNSAT (n), where

SAT (n) is the weight of the clauses satisfied by the algorithm’s solution, and
UNSAT (n) is the weight of the clauses that the algorithm does not satisfy, i.e.
UNSAT (N) = W −SAT (n). So we would get that SAT (n)−3(W −SAT (n)) ≥
0, or SAT (n) ≥ 3

4W .
There does not always exist an assignment to i such that (1) holds, but

note that we only need the inequality to hold, summed over all i. We there-
fore introduce the idea of a potential function Φ. This idea is implicit in the
analysis of Poloczek and Schnitger [8]. One can think of Φ as a “bank ac-
count” for the algorithm. In the course of the algorithm, we may add or re-
move some amount to the potential function to allow us to satisfy the inequality
(SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1)) ≥ 0.

More precisely, let Φ(i) be the value of the potential function after determining
the truth assignment of variable xi (where Φ(0) is the potential function at the
start of the algorithm). Let OPT be the weight of the satisfied clauses in an

Simpler 3/4-Approximation Algorithms for MAX SAT 191

optimal solution. The potential function Φ, combined with the algorithm, must
satisfy the following three properties:

(i) Φ(0) ≤ 3(W −OPT);
(ii) Φ(n) ≥ 0;
(iii) For each variable xi, the algorithm (randomly) determines a truth assign-

ment to xi such that

E
[
SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1))

]

≥ E
[
Φ(i)− Φ(i − 1)

]
.

If we have a potential function Φ with an algorithm that together satisfy these
three properties, then E

[
SAT (n)− 3(W − SAT (n))

] ≥ Φ(n)−Φ(0) ≥ −Φ(0) ≥
3(OPT −W), which gives E

[
SAT (n)

] ≥ 3
4OPT .

We remark that the potential functions in this paper will in fact have Φ(0) =
2(W −OPT), which is less than what is allowed by (i), but that increasing it to
3(W −OPT) does not help in our analysis.

2.1 Poloczek and Schnitger’s Potential Function

Poloczek and Schnitger [8] do not explicitly define the idea of a potential func-
tion, but their analysis implicitly uses the following potential function. Let
xi = x∗

i for i = 1, . . . , n be an optimal solution, where each x∗
i is either 1 (true)

or 0 (false). Let xa
i be the truth assignment to xi by the algorithm’s solution, if

xi has already been determined. Let “time i” be the time when the algorithm
has determined the truth assignment to x1, . . . , xi. We’ll say a clause is alive at
time i if it contains some literal from {xi+1, . . . , xn}, and it is not (yet) satisfied
by setting x1 = xa

1 , . . . , xi = xa
i . We’ll say a live clause is contradictory at time i

if it is not satisfied by setting x1 = xa
1 , . . . , xi = xa

i according to the algorithm’s
solution, and xi+1 = x∗

i+1, . . . , x
∗
n. We will make sure that at any point in time

Φ(i) is (at least) twice the weight of the clauses that are alive and contradictory
at time i. Note that we thus have the Φ(0) = 2(W −OPT).

Let Wi,W i be the weight of the clauses that are alive at time i − 1 and
contain xi and x̄i respectively, but do not contain xi+1, . . . , xn. Let Fi, F i be the
weight of the remaining clauses that are alive at time i− 1 and that contain xi

and x̄i respectively. We note that Wi,W i, Fi, F i are random variables that are
determined by the algorithm’s decisions for x1, . . . , xi−1. Let 1A be the indicator
function that is 1 if A holds and 0 otherwise. A contradictory clause at time
i − 1 is not contradictory at time i when it is no longer alive at time i because
either it becomes satisfied or it has no literals in xi+1, . . . , xn. We can thus lower
bound the weight of the contradictory clauses that are alive at time i − 1 and
not alive at time i by Wi1{x∗

i =0} +W i1{x∗
i=1}.

On the other hand, the only clauses that can become contradictory when going
from time i−1 to time i are clauses that are alive at time i−1 and at time i, that
contain either xi or x̄i, and for which the algorithm’s setting for xi is not the same
as the setting in the optimal solution. Hence we can upper bound the weight of
the clauses that become contradictory by 1{x∗

i=0}1{xi=1}F i+1{x∗
i =1}1{xi=0}Fi.

192 A. van Zuylen

We thus have that

Φ(i)− Φ(i− 1) ≤ 2
(−Wi + 1{xi=1}F i

)
1{x∗

i=0} + 2
(−W i + 1{xi=0}Fi

)
1{x∗

i=1}.

We note that the expression E
[
c′ − c

]
in the analysis of Poloczek and Schnitger

[8] is equal to E
[
Φ(i)− Φ(i − 1)

]
, and that a similar inequality is given in their

Lemma 2.2.
On the other hand,

SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1))

= 1{xi=1}(Wi + Fi − 3W i) + 1{xi=0}(W i + F i − 3Wi)

Let p be the probability that the algorithm set xi to 1. Then, in order to satisfy
property (iii), we need:

p(Wi + Fi − 3W i) + (1− p)(W i + F i − 3Wi)

− 2
(−Wi + pF i

)
1{x∗

i=0} − 2
(−W i + (1− p)Fi

)
1{x∗

i=1} ≥ 0. (2)

3 A New Combinatorial Randomized Algorithm

In the following lemma and its proof, we will define c
0 = ∞ if c ≥ 0 and c

0 = −∞
if c < 0.

Lemma 1. Consider the randomized algorithm that iteratively determines the
assignment to x1, . . . , xn as follows: Given the assignment of x1, . . . , xi−1, let
Wi,W i be the weight of the clauses that are not yet satisfied and contain xi

and x̄i respectively, but do not contain xi+1, . . . , xn. Let Fi, F i be the weight
of the remaining clauses that are not yet satisfied and that contain xi and x̄i

respectively. Let α = Wi+Fi−W i

Fi+F i
, and let xi be set to 1 with probability

p =

⎧
⎨

⎩

0 if α ≤ 0,
α if α ∈ (0, 1),
1 if α ≥ 1.

Then the expected weight of the clauses satisfied by the algorithm is at least
3
4OPT .

Proof. We will show that inequality (2) holds, by giving a lower bound B on

2
(
Wi − pF i

)
1{x∗

i =0} + 2
(
W i − (1− p)Fi

)
1{x∗

i=1}, (3)

in the case when α ≤ 0, α ≥ 1 and α ∈ (0, 1), and showing that for each of these
cases, p(Wi + Fi − 3W i) + (1 − p)(W i + F i − 3Wi) +B ≥ 0.

We first consider the case when α ≤ 0, i.e., when Wi + Fi ≤ W i. Then p = 0
andWi−pF i = Wi ≤ W i−Fi = W i−(1−p)Fi, so (3) is at least 2Wi−pF i = 2Wi.
Therefore, the lefthand side of (2) is at leastW i+F i−3Wi+2Wi = W i+F i−Wi.

Simpler 3/4-Approximation Algorithms for MAX SAT 193

Note that this cannot be negative, since combined with Wi + Fi −W i ≤ 0 this
would give Fi + F i < 0.

If α ≥ 1, then Wi+Fi−W i ≥ Fi+F i, i.e., Wi−F i ≥ W i. Since p = 1, (3) is
at least 2W i. So the lefthand side of (2) is at least Wi+Fi−W i and this cannot
be negative, as this would imply Fi+F i < 0 by the fact that W i+F i−Wi ≤ 0.

Finally, if α ∈ (0, 1), then we have that p = α and, by definition of α, −Wi +
pF i = −W i +(1− p)Fi. Hence, the quantity in (3) does not depend on whether
x∗
i is zero or one, since it is either 2Wi − 2pF i or 2W i − 2(1 − p)Fi which are

equal. Thus (3) is also equal to p(2Wi − 2pF i) + (1 − p)(2W i − 2(1 − p)Fi).
Plugging this into (2) gives

p(Wi + Fi − 3W i) + (1 − p)(W i + F i − 3Wi)+

2p(Wi − pF i) + 2(1− p)(W i − (1− p)Fi)

=(6p− 3)Wi − (6p− 3)W i + (5p− 2p2 − 2)Fi − (2p2 + p− 1)F i

=(2p− 1)(3Wi + (1− p)Fi − 3W i − pF i + Fi − F i)

=(2p− 1)(2Wi + Fi − 2W i − F i),

where the first two equalities follow by rearranging terms, and the last equality
uses the fact that Wi + (1− p)Fi = W i + pF i. Now, either p ≥ 1

2 in which case

2p − 1 ≥ 0 and 2Wi + Fi ≥ 2Wi + 2(1 − p)Fi = 2W i + 2pF i ≥ 2W i + F i, so
2Wi + Fi − 2W i − F i ≥ 0. Otherwise, p < 1

2 , in which case 2p− 1 < 0 and also

2W̄i + F i > 2Wi + Fi. Hence in either case the inequality (2) holds. ��
Remark 2. Let α be defined as in Lemma 1. If we let

p =

⎧
⎨

⎩

0 if α ≤ 1
3 ,

α if α ∈ (13 ,
2
3),

1 if α ≥ 2
3 ,

then the expected weight of the clauses satisfied by the algorithm is also at least
3
4OPT .

Proof. We only need to verify that inequality (2) holds for this choice of p, if
α ∈ (0, 13] or if α ∈ [23 , 1). If α ∈ (0, 13] then p = 0, and we note that Wi − pF i ≥
Wi−αF i = W i−(1−α)Fi ≥ W i−(1−p)Fi. Hence (3) is at least 2W i−2(1−p)Fi,
and therefore the lefthand side of (2) is at least

W i + F i − 3Wi + 2W i − 2Fi.

Now, note that 3W i+F i ≥ 3W i+3αF i = 3Wi+3(1−α)Fi ≥ 3Wi+2Fi hence
(2) holds.

Similarly, if 2
3 ≤ α < 1, then setting p = 1 will give that (3) is at least

2Wi − 2F i, and hence the lefthand side of (2) is at least 3Wi + Fi − 3W i − 2F i

and this is nonnegative by the fact that α ≥ 2
3 . ��

Note that one way to view an iteration of the algorithm is as a 2-player-zero-sum
game. We get to choose p, our probability of playing xi = 1, and the opponent

194 A. van Zuylen

gets to choose q, which is the optimum’s probability of playing xi = 1. We are
trying to maximize

p(Wi+Fi−3W i)+(1−p)(W i+F i−3Wi)+2(1−q)(Wi−pF i)+2q(W i−(1−p)Fi)

and the opponent is trying to minimize this quantity. We show that the value
of this game is nonnegative by showing that there exists a randomized strategy
p such that for any strategy q the outcome is nonnegative. When Wi + Fi <
W i then W i − (1 − p)Fi ≥ Wi − pF i for any p ≥ 0, and hence q = 0 is an
optimal strategy for the opponent. It is easily verified that, given q = 0, p = 0
is an optimal strategy for the algorithm. Similarly, when W i + F i < Wi, then
q = 1, p = 1 are a pair of optimal strategies. In all other cases, the proof of
Lemma 1 shows that q = (1− p) is an optimal strategy for the opponent, given
our strategy.

Note that we thus achieve an expected non-negative value even if we allow
fractional values q ∈ [0, 1]. Hence, our algorithm achieves at least 3

4 of the weight
of any fractional assignment as well; something that was recently shown by
Poloczek [7] for the algorithm in [8].

In fact, allowing the opponent to use fractional assignments makes it easy
to derandomize the algorithm: we can compute the optimum’s probability q
of playing xi = 1 by solving a linear program. Given this information, there
exists a pure strategy p that achieves a nonnegative value. This gives rise to the
deterministic algorithm in the next section.

4 A New Deterministic LP Rounding Algorithm

Let qi be the variable in the linear program corresponding to the decision xi = 1,
and let zj be a variable corresponding to the j-th clause, and let wj be the weight
of the j-th clause. We let Pj be the indices of the literals i such that xi appears
in the clause, and Nj the indices of the literals such that x̄i appears in the clause.
Then the linear programming relaxation is:

min
∑

j

wjzj

s.t.
∑

i∈Pj

qi +
∑

i∈Nj

(1 − qi) ≥ zj for j = 1, . . . ,m

0 ≤ zj ≤ 1 for j = 1, . . . ,m

0 ≤ qi ≤ 1 for i = 1, . . . , n

For ease of notation, we again define c
0 = ∞ if c ≥ 0 and c

0 = −∞ if c < 0.

Lemma 3. Let q∗ be an optimal LP solution, with objective value OPTLP . Us-

ing the parameters defined in Lemma 1, let α again be defined as Wi+Fi−W i

Fi+F i
,

and let xi be set to 1 with probability

p =

{
0 if α ≤ 0, or if α ∈ (0, 1) and q∗i < (1− α)/2α
1 if α ≥ 1, or if α ∈ (0, 1) and q∗i ≥ (1− α)/2α.

Simpler 3/4-Approximation Algorithms for MAX SAT 195

Then the weight of the clauses satisfied by the algorithm is at least 3
4OPTLP .

Proof. We’ll again say a clause is alive at time i if it contains some literal from
{xi+1, . . . , xn}, and it is not satisfied yet by the algorithm’s solution on x1, . . . , xi.
We will say the contradictory weight of a live clause j at time i is wj(1 −
min

{
1,
∑

i′∈Pj :i′≥i q
∗
i′ +

∑
i′∈Nj:i′≥i(1 − q∗i′)

}
).

We define the potential function Φ(i) to be twice the contradictory weight
of the live clauses. Initially, Φ(0) = 2(W − OPTLP) ≤ 2(W − OPT), since all
clauses are alive at time 0, and the contradictory weight of clause j at time 0 is
wj(1 − zj).

We now consider Φ(i) − Φ(i − 1). Note that Φ(i) does not contain any con-
tradictory weight for clauses that are alive at time i − 1 that are not alive at
time i. Hence Φ drops by at least 2Wi(1− q∗i) + 2W iq

∗
i . On the other hand, the

contradictory weight for any clause that is still alive at time i will increase only if
the clause contains xi or x̄i (i.e. the clause is contained in Fi or F i respectively)
and it is not satisfied by the algorithm’s setting (i.e. if we set xi = 0 or xi = 1
respectively). The increase in the contradictory weight is thus at most 2q∗i Fi if
we set xi = 0, and 2(1− q∗i)F i if we set xi = 1.

Hence we get that

Φ(i)− Φ(i− 1) ≤ 2
(−Wi + 1{xi=1}F i

)
(1− q∗i) + 2

(−W i + 1{xi=0}Fi

)
q∗i .

At time n, there are no live clauses, and hence the contradictory weight of the
live clauses is zero, or, Φ(n) ≥ 0.

As before,

SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1))

= 1{xi=1}(Wi + Fi − 3W i) + 1{xi=0}(W i + F i − 3Wi)

Let p be the probability with which we set xi to 1 (which is 1 if α ≥ 1 or if
α ∈ (0, 1) and q∗i ≥ (1− α)/(2α) and 0 otherwise). Then, we need to show that
p satisfies

p(Wi + Fi − 3W i) + (1− p)(W i + F i − 3Wi)

− 2
(−Wi + pF i

)
(1 − q∗i)− 2

(−W i + (1− p)Fi

)
q∗i ≥ 0. (4)

This is the same as (2), except that we replaced 1{x∗
i=1} by q∗i and 1{x∗

i=0} by
(1− q∗i). Note that the proof of Lemma 1 shows that if α ≤ 0 or α ≥ 1, then (4)
holds for our choice of p, for any q∗i ∈ [0, 1]. Hence, we only need to check the
case when α ∈ (0, 1).

If we set p = 0 then the lefthand side of (4) becomes

W i + F i − 3Wi + 2Wi(1− q∗i) + 2W iq
∗
i − 2Fiq

∗
i

= (1 + 2q∗i)
(
W i +

1

1 + 2q∗i
F i −Wi − 2q∗i

1 + 2q∗i
Fi

)
.

196 A. van Zuylen

To see that this is non-negative, note that, since p = 0, and α ∈ (0, 1), we

have that q∗i < 1−α
2α . Therefore, 1

1+2q∗i
> α, and

2q∗i
1+2q∗i

< 1−α. So, (4) is at least

(1+2q∗i)
(
W i + αF i −Wi − αFi

)
. Finally, note that W i+αF i−Wi−(1−α)Fi =

0, by the definition of α.
Similary, if we set p = 1 then the lefthand side of (4) becomes

Wi + Fi − 3W i + 2Wi(1− q∗i) + 2W iq
∗
i − 2F i(1− q∗i)

= (3− 2q∗i)
(
Wi +

1

3− 2q∗i
Fi −W i − 2− 2q∗i

3− 2q∗i
F i

)
.

We claim that for any α ∈ (0, 1)

2− 3α

2− 2α
≤ 1− α

2α
.

This can be seen by noting that (2α−1)2

α(1−α) ≥ 0, and

(2α− 1)2

α(1 − α)
=

4α2 − 4α+ 1

α(1 − α)
= −2α− 3α2

α(1 − α)
+

α2 − 2α+ 1

α(1 − α)
= −2− 3α

1− α
+

1− α

α
.

Hence, since p = 1 implies that q∗i ≥ 1−α
2α , we also have q∗i ≥ 2−3α

2−2α . Therefore,
1

3−2q∗i
≥ 1− α. So, we get that

(3− 2q∗i)
(
Wi +

1

3− 2q∗i
Fi −W i − 2− 2q∗i

3− 2q∗i
F i

)

≥ (3 − 2q∗i)
(
Wi + αFi −W i − (1− α)F i

)

≥ 0.

where the final inequality follows from the fact that 3− 2q∗i ≥ 1 and Wi+αFi−
W i − (1− α)F i = 0. ��

5 Conclusion and Future Directions

The question remains whether there exists a deterministic algorithm that achieves
an approximation ratio of 3

4 , which does not use sophisticated techniques such
as linear programming. Poloczek and Schnitger [8] gave the first randomized al-
gorithm that achieves this, and our simplified analysis makes it easier to see the
need for randomization in their algorithm to “foil an adversarial optimum”. We
also show that it is possible to derandomize (our version of) their algorithm if
one has an optimal solution to a linear programming relaxation. The upcoming
paper of Poloczek [7] shows that no adaptive priority algorithm can achieve a
guarantee of 3

4 , but this does not completely exclude the existence of a deter-
ministic combinatorial 3

4 -approximation algorithm. For instance, an algorithm
that looks at all data items and then chooses the next variable to be determined
is not an adaptive priority algorithm, and the upper bound of Poloczek [7] does

Simpler 3/4-Approximation Algorithms for MAX SAT 197

not apply. Moreover, there seems to be some evidence that carefully choosing
the next variable to be determined could lead to improved results by a recent
result of Costello, Shapira and Tetali [3]: They showed that Johnson’s algorithm
has a guarantee strictly better than 2

3 if the variables are considered in a random
order, whereas the best possible guarantee is 2

3 if the variables are considered in
a fixed order.

Acknowledgements. The author thanks David Williamson for pointing her to
the question whether a deterministic variant of the algorithm of Poloczek and
Schnitger exists.

References

1. Avidor, A., Berkovitch, I., Zwick, U.: Improved Approximation Algorithms for
MAX NAE-SAT and MAX SAT. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005.
LNCS, vol. 3879, pp. 27–40. Springer, Heidelberg (2006)

2. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maxi-
mum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)

3. Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some
classic approximation algorithms. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 647–655. SIAM (2011)

4. Engebretsen, L.: Simplified tight analysis of Johnson’s algorithm. Inf. Process.
Lett. 92(4), 207–210 (2004)

5. Goemans, M.X., Williamson, D.P.: New 3
4
-approximation algorithms for the max-

imum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)
6. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.

System Sci. 9, 256–278 (1974); Fifth Annual ACM Symposium on the Theory of
Computing, Austin, Tex. (1973)

7. Poloczek, M.: Bounds on Greedy Algorithms for MAX SAT. In: Demetrescu, C.,
Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidel-
berg (2011)

8. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 656–663. SIAM (2011)

9. Yannakakis, M.: On the approximation of maximum satisfiability. Journal of Algo-
rithms 17, 475–502 (1994)

	Simpler 3/4-Approximation Algorithms
for MAX SAT
	Introduction
	Analysis with a Potential Function
	Poloczek and Schnitger's Potential Function

	A New Combinatorial Randomized Algorithm
	A New Deterministic LP Rounding Algorithm
	Conclusion and Future Directions
	References

