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Abstract. Motivated by issues in allocating limited preventative re-
sources to protect a landscape against the spread of a wildfire from a
stochastic ignition point, we give approximation algorithms for a new
family of stochastic optimization problems.

1 Introduction

Increasing frequency of catastrophically-damaging wildfire events has stimulated
interest among foresters and land managers in effective use of preventative fuel
reductions. Traditional fire suppression policy has focused almost exclusively on
realtime firefighting (once the fire has broken out), but preventative fuel reduc-
tions such as dead-brush removal, small-scale controlled burns, and crown raising
can be applied in advance to slow or stop the spread of wildfires. Recent wildfire
modeling literature has used historical and scientific information to estimate a
distribution of wildfire occurrence in which both the ignition site and the wind
direction can vary [3],[8].

The planning problem of how to allocate limited resources across preventative
and realtime stages, and where to distribute preventative resources using proba-
bilistic information motivates a natural new family of budgeted stochastic opti-
mization problems that fragment (or cut) a landscape graph to isolate a
stochastically occurring ignition point. A key feature is the tradeoff between spend-
ing preventively when only distributional knowledge is available and spending at
increased cost once a fire has broken out. We explore a number of model vari-
ants. Studying this family of problems through the lens of efficient approxima-
tion, we give constant bicriteria approximations in trees, and a budget-balanced
constant approximation for the limiting case in which real-time actions become
prohibitively expensive. Our techniques also yield new approximation results for
multistage stochastic extensions of the budgeted Maximum Coverage problem.
The theme of our models (protecting a network from the spread of a stochastic
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outbreak of a harmful diffusive process) has other important environmental ap-
plications (e.g., containing invasive species over land or through water systems).

Results. In trees, the problem is (weakly) NP hard even when there is a sin-
gle ignition point that is known deterministically [4] (the Knapsack Problem
is a special case). An existing PTAS in graphs of bounded treewidth for the
deterministic ignition-point case extends immediately to a PTAS in graphs of
bounded treewidth for the deterministic ignition-set case. Applying some careful
partial-enumeration then allows a PTAS in trees for the stochastic case in which
the number of scenarios is constant.

The Graph Protection Problem: Summary of Main Results
restricted graph classes general graphs (via Räcke)[5]

2-stage
stochastic, single source trees: (1− (1 − 1/2δ)2δ, 2) constant number of scenarios ⇒

Via pipage rounding. (1 − (1− 1/2n)2n, O(log n))
Alternative: (0.387, 1)

stochastic, single source trees: (1− (1 − 1/2δ)2δ, 1, 2) constant number of scenarios ⇒
with (B1, B2) Via pipage rounding. (1 − (1− 1/2n)2n, O(log n), O(log n))
k-stage
stochastic, single source trees, restricted partition hierarchy: constant number of scenarios

(1− (1 − 1/kδ)kδ, 2 + ε) and restricted partition hierarchy ⇒
Via pipage rounding. (1 − (1− 1/kn)kn, O(log n))

1-stage
stochastic, single source trees: (1− 1/e, 1) open
with probabilistic edges Due to submodularity.

stochastic, single source trees: (1− (1 − 1/δ)δ, 1) (1 − (1− 1/n)n, O(log n))
Reduce to MCKP, apply [1].

stochastic with trees: (1 + ε, 1) (1 + ε, O(log n))
constant support and
constant source size

deterministic with bounded tree width: (1 + ε, O(log n))
arbitrary source size (1 + ε, 1)

deterministic with bounded tree width: (1 + ε, O(log n)) [4]
single source (1 + ε, 1) [4]

For the 2-stage stochastic model in which actions may either be taken in
advance of the ignition based on probabilistic information, or after the single ig-
nition point is known at inflated cost, we give a (1−(1−1/2δ)2δ)-approximation
in trees which violates the budget by a factor of at most 2 (δ is the tree di-
ameter). Notably, the inflation in the second stage can vary across scenarios
and edges. For the limiting stochastic case in which no realtime action is possi-
ble, we give a (1 − (1 − 1/δ)δ)-approximation algorithm in trees for the case of
probabilistic ignition from a single source. We also give a 0.387-approximation
which is budget-balanced for the 2-stage stochastic model, and some results
for a k-stage extension. In some cases we can extend to general graphs with an
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additional O(log n) loss in budget-balancedness via the probabilistic cut-capacity
approximation result of Räcke [5] as in Engelberg, et al. [2].

For an extension in which transmission on edges is probabilistic and depends
on the level of investment in removing the edge (assuming independence of edge
realizations), we give a (1− 1/e)-approximation algorithm in trees.

Our multistage and probabilistic-transmission results in trees also hold for
analogous generalizations of the Maximum Coverage with Knapsack Constraint
problem (MCKP) in which elements may fail independently with probability
that depends on the level at which we invest in them, and the objective is
to maximize the expected weight of the sets covered by the realized elements.
For probabilistic element-failure MCKP, our guarantee matches the asymptotic
guarantee for the deterministic element case from Ageev & Sviridenko [1].

Related Literature. The placement of preventative fuel treatments has been
addressed in the recent forestry literature. Finney [3] prioritizes spatial fire
spread dynamics, limits probabilistic model components, and aims to reduce the
rate of spread of the head of fire. Wei et al. [8] considers the objective of reducing
expected value lost across a grid-cell landscape by reducing burn probabilities
(probabilities computed through simulation); however their IP-based approach
is based on a questionable linearity assumption. These approaches produce di-
vergent solution forms: the development of additional mathematical tools and
techniques that simultaneously address stochastic and spatial aspects would be
useful to decision-makers faced with this important planning problem.

The problems we study have ties to the existing computer science litera-
ture. The special case in which the ignition point is known deterministically and
there is a single decision stage has been studied as the Minimum-Size Bounded-
Capacity Cut problem by Hayrapetyan et al. [4]. They show that the problem
is weakly NP-hard in trees by reduction from the Knapsack problem. In general
graphs they give two different ( 1

1−λ ,
1
λ ) bicriteria-approximations for the (ex-

pected value burned, budget), and they give a PTAS in graphs of bounded tree
width. Engelberg, et al. [2] study a number of budgeted cut problems in graphs
including the weighted Budgeted Separating Multiway Cut Problem (wBSMC),
which the single-stage (aka, no realtime action) stochastic version of our problem
reduces to. They apply Räcke’s probabilistic cut-capacity-preserving approxima-
tion to reduce to the case of trees, then observe submodularity in trees, and apply
[7] to get a ((1 − 1/e), O(log n)) bicriteria result. Our LP-based result for the
single-stage stochastic version of our problem in trees generalizes to wBSMC in
trees giving a slightly stronger (1− (1− 1/n)n, O(log n)) bicriteria result.

Techniques. For the deterministic case, a psuedopolynomial-time exact dy-
namic programming method is converted to an efficient scheme by rounding
the input (as in [4]): our extension to general ignition sets is by demonstrating
bounded treewidth of a modified input. For the extension with probabilistic-
edge transmission, proving submodularity in tree graphs allows application of
Sviridenko’s [7] result on budgeted maximization of submodular functions. In
the multistage-stochastic case, we solve a natural LP with a more complex
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feasible region than that considered by Ageev & Sviridenko [1], but we are able
to extend their pipage-rounding analysis to reduce the number of fractional
variables: this requires additional specifications about which pairs of fractional
decision variables may be rounded against each other and a careful treatment
of the larger number of fractional variables that remain at the end of the pi-
page stage. All extensions from trees to general graphs employ the probabilistic
capacity-preserving mapping of Räcke in the standard way (see [2]): approximate
the costs by a distribution over trees, solve a suitably modified instance in each
tree, translate solutions back to the original graph, select the best solution. Our
techniques also yield similar results for stochastic multistage and probabilistic
item-failure extensions of the constrained Maximum Coverage problem.

2 2-Stage Stochastic Graph Protection Problem in Trees

The spread of wild fires can be prevented both through advance fuel treatments
and through real-time fire-fighting. Our model captures the tradeoff between
using resources in advance vs. waiting until the realization of the ignition point
is known but operations are more costly.

The input is a connected tree T = (V,E), a non-negative value function
v : V → Z, a non-negative cost function c : E → Z, and a budget B. A
distribution Π over source nodes i is specified. In the first stage Π is known,
and it costs ce to remove edge e from T , in the second phase a realization from
Π is specified (say the source is i), and edge e may be removed from T at cost
M iece. That is: edges purchased in the second stage, once the source is known,
have increased cost by a multiplicative inflation factor that may depend both
on the scenario realized and on the edge.

The total spending on removing edges from T over both phases must be at
most B. The objective is to specify a set of edges to buy in the first stage, and
then a set of edges to buy in the second stage (depending on the realized source
node from Π), such that the expected value not reachable from the realized
source node is maximized. We aim to maximize the expected value protected
from the source. We can contract all edges with costs strictly greater than B
since they will not be in any optimal solution.

Special Case 0.Consider the limiting case when all second-stage actions are pro-
hibitively expensive and alsoΠ has support of size 1: this case is theMinimum-Size
Bounded-Capacity Cut problem of Hayrapetyan, et al. [4]. They give a PTAS in
graphs of bounded tree width and show that this deterministic problem with a
single ignition node is NP-hard in trees.

Suppose in this deterministic single-stage case we replace the single ignition
point s with a ignition set S. Now the objective is to maximize the expected value
protected from every node in S by removing a budget-balanced set of edges.

Theorem 1. There exists a PTAS in graphs of bounded tree width for the single-
stage deterministic Graph Protection Problem (GPP) with a general ignition set.
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Fig. 1. Leftmost graph: The two dashed edges are removed in stage 1. Second graph:
The (bolded) ignition node is realized. Third Graph: After ignition, additional edges can
be removed in stage 2. Fourth Graph: Fire spreads through the connected component
containing the ignition node: Non-ignition nodes lost to fire are shown circled.

A modified graph with a single source also has bounded tree width, so the
existing PTAS can be applied. The PTAS asserted in Theorem 1 for trees can
be produced directly by extending the classic dynamic programming framework
for Knapsack. (see full paper [6]).

Applying [4] with an enumeration scheme over a polynomial number of divi-
sions of the tree into source-containing components which can each be modified
to act as a single-source deterministic problem, we get (details in [6]):

Theorem 2. There exists a PTAS for the stochastic single-stage GPP in trees
provided that the size of the support of the distribution Π and the size of each
ignition set given positive weight by Π are bounded by a constant.

Theorems 1 and 2 can be extended to bicriteria approximations for general
graphs as in Engelberg, et. al [2]: the guarantees on value protected (expected
value protected) are identical (though δ may be as much as n), and the bud-
get is violated by a O(log n)-factor (applying Räcke’s result [5] on cut-capacity
approximation). We mention this method briefly at the end of the paper.

Theorem 3. There exists a bicriteria (1−(1− 1
2δ )

2δ, 2)-approximation algorithm
for the 2-stage stochastic Graph Protection Problem in trees provided that each
scenario has a single ignition node (δ denotes the tree diameter).

In general graphs, for the case of a constant number of scenarios, Theorem 3 can
be extended to a (1− (1− 1

2n )
2n, O(log n))-bicriteria approximation (the multi-

stage case requires an application of the Markov inequality to ensure O(log n)-
capacity distortion for each scenario under the cut-capacity approximation, de-
tails are at the end of the paper).

The following proof of Theorem 3 does not require that the node values are uni-
form across scenarios, but for notational convenience we will ignore this. This flex-
ibility (and creative use of scenario-dependent edge costs) allows the input form to
describe spatial properties of certain types of diffusive processes so that fragment-
ing the graph has more subtle process-specific implications for value protection
than is immediately obvious when considering connectivity (details in [6]).
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Roughly, the key ideas of the proof follow: the optimal fractional solution to
a natural LP for 2-stage GPP acts as a starting point for a rounding algorithm.
The rounding algorithm (carefully) chooses two fractional variables and rounds
the LP solution along a vector that maintains their weighted sum (in order to
retain feasibility of the budget constraints) while increasing a proxy function
that matches the LP objective on integer points and remains boundedly close
to the LP objective on fractional points. This is repeated until at most a few
fractional variables remain. The effect of some final required roundings can be
bounded against the value of an initial partial-enumeration phase. Since the final
solution is obtained by a series of increasing steps for the proxy function, it will
have high value compared to the original LP solution (for the correct partially-
enumerated set). A technical point for the analysis is that a series of such integer
solutions must be produced so that the effect of the final required roundings are
small. Some simple alterations of this analysis will also yield results for single
and k-stage versions as well as for a version in which the first and second stage
budgets are specified in the input.

Proof. We formulate the following natural LP: max
∑

(i,v)(pivv)xiv such that
∑

e∈P (i,v) ye+
∑

e∈P (i,v) z
i
e ≥ xiv for all (i, v) pairs,

∑
e yece+

∑
e z

i
e(M

iece) ≤ B

for all i, and xiv ≤ 1 for all (i, v) pairs.
Here, pi denotes the probability that node i is the ignition point under Π

(the scenario where i is the ignition point is scenario i). In the associated IP,
xiv is 1 if node v is protected in scenario i, and 0 otherwise. Also, ye is 1 if edge
e is bought in the first stage, and 0 otherwise, and zie is 1 if edge e is bought
in the second stage for scenario i, and 0 otherwise. Constraints of the first form
capture that if node v is protected in scenario i then it must be that some edge
on the path from i to v is purchased either in the first stage or in the second
stage for scenario i. Constraints of the second form capture that at most B can
be spent buying edges in scenario i over the first and second stages combined.
Preprocess by setting ye to 0 if ce > B, and zie to 0 if M iece > B: the optimal
solution can not use these options. Let δ denote the diameter of the tree.

Notice that in this LP, given a set of ye and zie, we can automatically determine
the best xiv . Following [1] we rewrite the problem as the following nonlinear
optimization problem:

maxL(x) =
∑

(i,v)

(pivv)min{1,
∑

e∈P (i,v)

ye +
∑

e∈P (i,v)

zie}

s.t.
∑

e

yece +
∑

e

zie(M
iece) ≤ B ∀i, and xiv ≤ 1 ∀(i, v).

Consider the function: F (x)=
∑

(i,v)

(pivv)
[
1−

( ∏

e∈P (i,v)

(1−ye)
)( ∏

e∈P (i,v)

(1−zie)
)]

.
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Lemma 1. F (x) has the following key properties:

1. F (x) coincides with L(x) when all the ye and zie are integral.
2. On non-integral (ye, z

i
e) vectors, F (x) is at least (1− (1− 1

2δ )
2δ)L(x).

3. F (x) is concave in the direction of a vector that changes at most 2 ye values
at a time and changes no zie′ values. F (x) is concave in the direction of
a vector that changes at most 2 zie values for a common i at a time and
changes no ye values, and changes no zi

′
e values for i′ �= i. Based on the

budget constraint coefficients of the changing variables, vectors of this type
can be found through appropriate scaling that maintain all budget constraints.

4. Let Y , Z denote sets corresponding to the ye, z
i
e decision variables being set

to 1. F (X) defined on subsets of Y ∪ Z is a submodular set function.

Properties 1, 2 and 4 hold just as in [1] since the function F (x) has the same
form (though now there is a formal distinction between first and second stage
variables). For property 3: the number of terms in F ’s product which change for
any particular (i, v) is at most 2: concavity results as in [1], but unlike in [1], not
any set of two fractional decision variables will maintain budget feasibility).

Denote by LP[I0, I1] the original LP (post preprocessing) subject to the addi-
tional constraints that decision variables in I1 are set to 1 and decision variables
in I0 are set to 0. We use an auxiliary algorithm A identical to [1] except for a
key additional point. First, A computes the optimal solution xLP to LP[I0, I1]
by some known polynomial-time algorithm, then A transforms this solution into
xA by a series of pipage steps. Each pipage step is as follows. If there exists only
a single fractional variable among the ye, and for every i there is at most a single
fractional variable among the zie, stop. Otherwise, select either two fractional ye
or two fractional zie for a common i and consider the vector that maintains all
budget constraints as one is increased while the other is decreased: this vector
intersects the boundary of the feasibility polytope at two points. At one point
the first decision variable has become 0 and the second has become 1, at the
other point the second decision variable has become 0 and the first has become
1. Both points are feasible since all budget constraints are maintained, and one
has F (X) at least as great as the previous solution due to the concavity of F
along the vector. We replace the current solution with this higher-F (X) solution
that has a greater number of integral variables.

Each pipage step of A reduces the number of fractional components of the
current vector. Finally A outputs an almost-integral feasible vector xA which
has at most one fractional first-stage variable, and at most one fractional second-
stage variable for each scenario i.

As in [1], this rounding procedure gives F (A) ≥ F (xLP ). Defining J1 =
{(i, v) : i is separated from v by I1}, and from property 2 of the lemma:

F (x
LP

) ≥
∑

(i,v)∈J1

pivv +
(
1 − (1 − 1

2δ
)
)2δ ∑

(i,v)∈J\J1

(pivv)min{1,
∑

e∈P (i,v)

(ye)
LP

+
∑

e∈P (i,v)

(z
i
e)

LP }

Main Algorithm. For each set of at most three ye, set them to 1, then find the
PTAS 2nd stage decision that can be made in each scenario (no additional first
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stage edges purchased), and evaluate the objective of each such solution. Take
the best such solution and call it q∗.
1. For each I1 ⊆ Y such that |I1| = 4 and

∑
i∈I1

ci ≤ B:

– Set I0 = ∅.
– Set t = 0.
– While t = 0: apply A to LP[I0, I1].

1. If all the xA
i (decision variables in either stage) are integral, then set t

to 1 and set x̂ to xA
i .

2. Else, if xA
i has no fractional ye, then round up any fractional zie, set t to

1 and set x̂ to xA
i with the rounded up second stage variables.

3. Else, if neither of these conditions holds, round down the single fractional
ye and round up all fractional zie, set x̂ to xA

i with the rounded variables.
Also, add the index of the ye that was rounded down to I0.

4. If F (x̂) > F (x̄), then set x̄ to x̂. (Since x̂ and x̄ are integral, this chooses
the highest L-value among all the x̂ considered by the algorithm).

Now we prove that this algorithm meets claim of Theorem 3. First observe
that the algorithm spends at most 2B for scenario i: pipage rounding maintains
budget feasibility for every scenario and the final roundings used to achieve
integrality round up at most a single fractional decision variable per scenario. Our
preprocessing guarantees that this single round up costs at most B in addition
to the cost of the fractional solution returned by A.

Let X∗ be the optimal set of decision variables, let Y ∗ denote the first stage
variables in X∗. If |Y ∗| ≤ 3, then step 0. finds a (1 + ε) approximation to OPT.
So, we address the case when |Y ∗| ≥ 4. W.l.o.g. we can assume that the set of
decision variables is ordered such that Y ∗ = {1, ..., |Y ∗|} and for each i ∈ Y ∗,
among the elements {i, ..., |Y ∗|} the element i protects the maximum total weight
of (i, v) pairs which are not already protected by the set {1, ..., i− 1}.

For the iteration in which I1 = {1, 2, 3, 4}, let q denote the number of runs of
the while loop. Since each run of the while loop either terminates the iteration
or sets a first stage variable to 0, q is at most n − 4. During the iteration the
algorithm finds a series of q feasible solutions to the LP. Let Ij0 denote I0 in the

jth run of the while loop. The jth feasible solution X̂j has X̂j ∩Ij0 = ∅ (from the
form of the algorithm). Index the elements of Iq0 in the order that the algorithm

adds them to I0, that is, Ij0 = {i1, ..., ij} where il is the index of the lth first
stage variable added to I0 for this iteration.

Assume first that Iq0 ∩ Y ∗ = ∅. That is, when the iteration terminates, no
first stage variables used by OPT have been forced to 0: OPT is a feasible
solution for LP[I1, I

q
0 ]. Since this is the last run of the while loop, it must have

ended in an if statement of one of the first 2 types. In the first case: all the
xA
i (decision variables in either stage) are integral and xA

i is the outcome of
pipage rounding of the fractional optimal of LP[I1, I

q
0 ]. In particular: since x̂ is

integral, L(x̂) = F (x̂) = F (xA
i ) ≥ F (xLP ). For the second case, rounding up the

second-stage variables only increases the value of F , and after the rounding we
have an integral solution, so L(x̂) = F (x̂) ≥ F (xA

i ) ≥ F (xLP ). Either way, the
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following inequality derived from property 2 and the fact that OPT is feasible for
LP[I1, I

q
0 ] now gives that x̂ is a budget-balanced (1− (1− 1

2δ )
2δ)-approximation:

F (x
LP

) ≥
∑

(i,v)∈J1

pivv +
(
1 − (1 − 1

2δ
)
)2δ ∑

(i,v)∈J\J1

(pivv)min{1,
∑

e∈P (i,v)

(ye)
LP

+
∑

e∈P (i,v)

(z
i
e)

LP }

≥
(
1 − (1 − 1

2δ
)
)2δ

OPT.

Now, assume that Iq0 ∩ Y ∗ �= ∅. Let Is+1
0 be the first I0 in the series I10 , ..., I

q
0

that has nonempty intersection with Y ∗: the sth run of the while loop is the first
run of the while loop for this iteration in which the algorithm adds a first stage
variable from Y ∗ to I0 (call that variable is). The algorithm adds is to I0 after
considering a solution x̂ in which is was the single fractional first stage variable
was rounded down (this is the third type of if statement in the while loop).
We claim that the x̂ that resulted when is was rounded down (and fractional
second stage variables were rounded up) was a (1− (1−1/2δ)2δ)-approximation.
Proving this claim will be establish Theorem 3.

As in [1], F (X) defined on subsets of Y ∪Z is a submodular set function. Thus,
we have the diminishing-returns property: for any subsets R and G of Y ∪ Z
and any element i ∈ Y ∪Z, we get F (R∪ i)−F (R) ≥ F (R∪G∪ i)−F (R∪G).
Now, letting h denote a member of Y ∗ which is not in {1, 2, 3, 4}, and letting H
denote any superset of {1, 2, 3, 4}:
1/4F (I1) = 1/4F (1, 2, 3, 4)

=1/4[F ({1, 2, 3, 4})− F ({1, 2, 3}) + F ({1, 2, 3})− F ({1, 2}) + F ({1, 2}) − F ({1}) + F ({1})− F (∅)]
≥ 1/4[F ({1, 2, 3, h})− F ({1, 2, 3})+ F ({1, 2, h})−F ({1, 2})+F ({1, h})−F ({1}) + F ({h}) − F (∅)]
≥ F (H ∪ {h}) − F (H).

The first equality results from a collapsing sum where we remove the final +F (∅)
since it is 0 (since the tree is connected and every scenario has a source). By
the labeling of the decision variables in Y ∗: since h is not in {1, 2, 3, 4}, the
additional marginal value h protects beyond what is protected by any prefix of
{1, 2, 3, 4} is at most the additional value that the index which does follow the
prefix protects. Finally, we apply the diminishing-returns property 4 times to
get the final inequality.

Also, as in [1], rounding up a fractional solution produced by A only increases
the value of F . Let xA denote the unrounded solution returned by A. Let I(xA)
be the integral positive elements of xA, let {j1, ..., ji} denote the set of fractional
second stage variables in xA, and is denote the fractional first stage variable in
xA from Y ∗. Then x̂ is I(xA) ∪ {j1, ..., ji}, so we can use the integrality of x̂ to
bound its LP value as follows:

L(x̂) = L(I(xA) ∪ {j1, ..., ji}) = F (I(xA) ∪ {j1, ..., ji})
Adding and subtracting a common quantity:

= F (I(xA) ∪ {j1, ..., ji} ∪ {is}) −
(
F (I(xA) ∪ {j1, ..., ji} ∪ {is}) − F (I(xA) ∪ {j1, ..., ji}︸ ︷︷ ︸

)
)
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Applying our bound to bracketed quantity since I(xA) contains {1, 2, 3, 4}
and is ∈ Y ∗:

≥ F (I(xA) ∪ {j1, ..., ji} ∪ {is})− 1/4F (I1) ≥ F (xA)− 1/4F (I1)

The second inequality holds because F increases when its argument is rounded
up, and I(xA)∪ {j1, ..., ji} ∪ {is} is just xA rounded up. Now write out F (xA):

=
∑

(i,v)∈J1

pivv +
∑

(i,v)∈J\J1

(pivv)
[
1 −

( ∏

e∈P (i,v)

(1 − (ye)
A)

)( ∏

e∈P (i,v)

(1 − (zi
e)

A)
)]

− 1/4F (I1)

= 3/4
∑

(i,v)∈J1

pivv +
∑

(i,v)∈J\J1

(pivv)
[
1 −

( ∏

e∈P (i,v)

(1 − (ye)
A)

)( ∏

e∈P(i,v)

(1 − (zi
e)

A)
)]

Pipage rounding produces xA from xLP while increasing F :

≥ 3/4
∑

(i,v)∈J1

pivv +
∑

(i,v)∈J\J1

(pivv)
[
1 −

( ∏

e∈P (i,v)

(1 − (ye)
LP

)
)( ∏

e∈P (i,v)

(1 − (z
i
e)

LP
)
)]

Apply the well-known inequality which holds for all fractional solutions:

≥ 3/4
∑

(i,v)∈J1

pivv + (1 − (1 − 1/2δ)
2δ

)
∑

(i,v)∈J\J1

(pivv)min{1,
∑

e∈P(i,v)

(ye)
LP

+
∑

e∈P (i,v)

(z
i
e)

LP }

Notice that 3/4 ≥ (1 − (1 − 1/2δ)2δ). Also, xLP is the optimal solution for
LP[I1, I

s
0 ] and X∗ is feasible for LP[I1, I

s
0 ]. Thus, the last quantity is bounded

below by (1 − (1− 1/2δ)2δ)L(X∗) = (1− (1− 1/2δ)2δ)OPT.

Suppose that the division of the budget between first and second stages is spec-
ified in the input as (B1, B2). Adding the additional constraints

∑
e yece ≤ B1

and
∑

e z
i
e(M

iece) ≤ B2 for all i to the LP alters our analysis only slightly: pre-
process to eliminate decision variables that are too expensive to fully buy in their
corresponding stages, the algorithm now enumerates over four-member sets of
first-stage decision variables, at the conclusion of the pipage phase the remaining
fractional first-stage variable is rounded down (so B1 is respected) and at most
one second-stage variable per scenario is rounded up (B2 is overspent by at most
a factor of 2), first stage variables which are rounded down are excluded one by
one in the iterations of the while loop. Thus, we get:

Theorem 4. Given a specific first-stage budget B1 and second-stage budget B2,
there exists a (1− (1− 1

2δ )
2δ)-approximation algorithm for the 2-stage stochastic

GPP in trees that respects B1 and violates B2 by a factor of at most 2 (each
ignition set has size 1, δ denotes the diameter of the tree).

Stochastic Single-Stage and k-Stage Results. In the limiting single-stage
stochastic case (where second-stage action is prohibitively expensive) there is
only a single budget constraint: the proof of Theorem 3 can be simplified so that
it directly follows [1] to get:

Theorem 5. There exists a (1 − (1 − 1
δ )

δ)-approximation algorithm for the
single-stage stochastic GPP in trees provided that each ignition set has size 1
(δ denotes the diameter of the tree).
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For the 2-stage stochastic GPP in trees with single ignition node, consider the
algorithm that chooses the better performance between spending all of B in stage
1 vs. spending all of B in stage 2: apply Theorem 5 for stage 1 and the PTAS for
deterministic single-source GPP for stage 2 assuming that the optimal solution
earns α(OPT) in the first stage, and minimize over α ∈ (0, 1) to get a worst case
guarantee of (0.387, 1). For a constant number of scenarios, use Theorem 2 in
the place of Theorem 5 to get a (.5(1− ε), 1)- approximation.

The k-stage stochastic graph protection problem in trees (for constant k)
has k stages in which information is revealed and decisions about edge removal
are made (rather than one or two stages). This information can be considered as
updates that arrive at k specific times which condition the distribution on where
the ignition will occur (by specifying that the ignition will occur among some
particular subset of the nodes). For each stage the input includes a partition of
the node set, and the partition for stage i refines the partition for stage i− 1. In
each stage the planner has the option to remove additional edges from the graph
at some (stage, partition piece)-specific cost. A solution specifies which edges
will be removed for each partition piece realization at each stage. The total cost
incurred for each realized sequence of k partition pieces should be B.

Theorem 6. For a restricted class of information revelation hierarchies, there
exists a bicriteria (1− (1− 1

kδ )
kδ), 2+ ε)-approximation algorithm for the k-stage

stochastic GPP in trees provided that each ignition set has size 1 (k is a constant,
δ denotes the diameter of the tree).

Theorem 6 requires that the number of partition pieces added over all stages
excluding the last stage (in which any of n points may be realized) is bounded
by a constant: guessing the optimal division of the budget to ε/k-precision for
each possible information realization takes polynomial time. As in the (B1, B2)
case: impose additional constraints based on the guess of optimal budget division,
reject too-expensive decision variables, pipage round (now roundings take place
between pairs of fractional variables that correspond to a common partition piece
within a stage). Last, round up all fractional variables (see [6] for details).

If there is a specified budget for each of the k stages, then the guessing (enu-
meration) may be dropped: with no requirements on the information revelation
hierarchy the same analysis gives a (1− (1 − 1

kδ )
kδ) value-protection guarantee

which violates each stage’s budget by a factor of at most 2.

Reductions, Results for Stochastic Multistage MCKP. A looser (1− 1
e )

guarantee which matches Theorem 5 asymptotically may be obtained by reduc-
ing single-stage stochastic GPP in trees to the weighted Budgeted Separating
Minimum Cut Problem in trees for which the analysis of Engelberg, et. al [2]
applies: submodularity of the objective allows application of the result of Sviri-
denko [7]). The tighter result in Theorem 5 can alternately be proved by a more
subtle reduction to MCKP addressed in [1] (reducing wBSMC in trees to MCKP
gives the tighter result for wBSMC as well). Full Reductions in [6].
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Maximum Coverage with a Knapsack Constraint (MCKP): Given a family F =
{Sj : j ∈ J} of subsets of a set I = {1, 2, ..., n} with associated nonnegative
weights wj and costs cj of the elements, and positive integer B, find a subset
X ⊆ I with

∑
j∈X cj ≤ B so as to maximize the total weight of the sets in F

having nonnegative intersections with X .

– Stochastic MCKP: There is also a distribution Π : each scenario specifies
how much value will be received for covering the subset Sj for each j. The
objective is to maximize the expected weight of subsets covered.

– Multistage MCKP: Elements may be purchased in different stages at a cost
that is stage-, scenario-, and element-dependent (costs are specified in the
input). Stochastic multistage versions of wBSMC in trees reduce to these
MCKP problems.

The features of the LP we analyzed (objective function and budget constraints)
also hold for the natural LPs for these problems: the analysis proving theorems
3, 4, 5, and 6 can be extended with identical guarantees to the corresponding
multistage stochastic MCKP generalizations.

3 1-Stage Extension to Probabilistic Edge Transmission

In ecological fact, fuel-treated areas are not 100% burn resistant (e.g. they may
burn if extreme weather arises). Also, different types of treatments (with different
costs) may reduce the probability of fire passing between adjacent parcels by
different amounts. These considerations motivate a version of GPP in which the
input specifies a more complicated relationship between spending on each edge
and the resulting transmission probability across that edge. Previously we had
two options: pay 100% of the edge cost to get probability of transmission 0, or
pay 0% of the edge cost to get probability of transmission 1.

To single-stage stochastic GPP where each ignition set has size 1, we add
the feature that each edge has (as part of the input) a specified monotonically-
decreasing step function that gives the probability of transmission across that
edge as a function of the spending level (the spending level may range from 0%
to 100% of the edge cost, the events of transmissions across edges are assumed
to be independent). We give an approximation result assuming that the running
time of the algorithm is allowed to depend polynomially on the number of steps
in each step function. The objective remains to maximize the expected value
protected from the ignition point, only now this expectation is over realization
of both the scenario and the individual edge-transmission events that arise.

The analogous notion for MCKP is of probabilistic element failure: for each
element there is a step function that represents the probability that the element
will fail to cover the subsets which contain it (generalizing that an element e fails
to cover subsets which contain it with probability 1 if we do nothing, and with
probability 0 if we pay ce). The objective is to maximize the expected weight
of subsets covered, where this expectation is over both element and scenario
realization. The generalization of wBSMC in trees to a case with probabilistic
edge occurrence reduces to MCKP with probabilistic element failure.
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Theorem 7. There exists a (1− 1
e )-approximation algorithm for the single-stage

stochastic GPP in trees with probabilistic edge transmission (provided that each
ignition set has size 1). For MCKP with probabilistic element failure: there exists
a (1− 1

e )-approximation algorithm.

Proof (GPP). Each (spending level, edge) pair is an element the solution can
buy with cost corresponding to the spending level times the edge cost (we only
have elements corresponding to critical spending levels at which the transmis-
sion probability instantaneously drops). Let X denote the set of such elements.
The expected value protected is a set function over these elements. Denote this
function by E. We wish to maximize this set function by buying elements sub-
ject to a knapsack constraint: if we show that this set function is submodular,
[7] will immediately yield a (1− 1

e )-approximation that is budget-balanced (pro-
vided that we can compute in polynomial time the element which gives largest
improvement). To prove submodularity we will establish the law of diminishing
returns: for an arbitrary (spending level, edge) pair denoted by a, if A ⊆ B ⊆ X ,
then E(A ∪ a)− E(A) ≥ E(B ∪ a)− E(B).

Let the edge of the (spending level, edge) pair a be denoted by e. According
to the step function for e, buying a results in some probability of transmis-
sion αi. Before a is added, A contains some set of elements which affect the
transmission probability on e, and B contains a superset of these elements.
Thus the probability of transmission on e is (weakly) larger for the set A
than for the set B. In both cases, when a is added to a set, the new prob-
ability of transmission on e is the minimum of αi and the current probabil-
ity of transmission on e. The gap is larger for A than for B. Let ℘e(·) de-
note the probability of transmission on e as a function of the set of elements:
℘e(A) ≥ ℘e(B) ⇒ ℘e(A)− ℘e(A ∪ a) ≥ ℘e(B)− ℘e(B ∪ a).

Next, focus on a particular (ignition point, node) pair (i, v). If the path from
i to v does not contain e, then adding e does not change the (i, v)th term in the
expression for expected value protected. If the path from i to v does contain e, for
each non-e edge on this i to v path, the probability of transmission under A is at
least the probability of transmission under B. Let P (Q) denote the probability
that every edge on the i to v path (excluding e) transmits under Q:

P (A) ≥ P (B) ⇒ P (A)(℘e(A) − ℘e(A ∪ a)) ≥ P (B)(℘e(B) − ℘e(B ∪ a)) ⇒
⇒ P (A)℘e(A) − P (A)℘e(A ∪ a) ≥ P (B)℘e(B) − P (B)℘e(B ∪ a).

⇒ (1 − P (A)℘e(A ∪ a)) − (1 − P (A)℘e(A)) ≥ (1 − P (B)℘e(B ∪ a)) − (1 − P (B)℘e(B)).

⇒ E(A ∪ a) − E(A) ≥ E(B ∪ a) − E(B).

The third line compares the changes in probability that v is protected from i
which result when a is added to A and when a is added to B. The final inequality
follows from summing change in expected valued protected over (ignition point,
node) pairs (including pairs for which the addition of e caused no change). This
establishes submodularity. Computing the change in E resulting from the addi-
tion of a single element simply requires computing the product along the (ignition
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point, node) path twice for each (i, v) pair. This takes polynomial time for each
of polynomially-many elements.�.(Similar MCKP analysis in [6]).

Extensions to General Graphs

Single-Stage. Theorems 1, 2, 5 can be extended to bicriteria approximations for
general graphs: the guarantees on value protected (expected value protected) are
identical, and the budget is violated by a O(log n)-factor. As in Engelberg, et. al
[2] we apply the result of Räcke [5] on cut-capacity approximation: approximate
the costs graph by a distribution over tree graphs (whose maximum diameter is
n), solve a suitably modified instance in each tree, translate solutions back to
the original graph, select the best solution.

Multi-stage. If the number of scenarios is bounded by a constant, then Theo-
rems 3, 4, and 6 can be extended to general graphs: the guarantees on expected
value protected are identical, but the budget(s) is violated by a O(log n)-factor.
To apply the result of Räcke [5] to the multistage case we need that some tree
produced by the cut-capacity approximation has O(log n)-distortion for the op-
timal solution in every scenario (not just for a single set of edges purchased in
the first stage). Details in [6].
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