

Lecture Notes in Computer Science 7164
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Roberto Solis-Oba Giuseppe Persiano (Eds.)

Approximation
and OnlineAlgorithms

9th International Workshop, WAOA 2011
Saarbrücken, Germany, September 8-9, 2011
Revised Selected Papers

13

Volume Editors

Roberto Solis-Oba
The University of Western Ontario
Department of Computer Science
London, ON, N6A 5B7, Canada
E-mail: solis@csd.uwo.ca

Giuseppe Persiano
Università di Salerno
Dipartimento di Informatica "Renato M. Capocelli"
Via Ponte Don Melillo, 84081 Fisciano (SA), Italy
E-mail: giuper@dia.unisa.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29115-9 e-ISBN 978-3-642-29116-6
DOI 10.1007/978-3-642-29116-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012934372

CR Subject Classification (1998): F.2.2, G.2.1-2, G.1.2, G.1.6, I.3.5, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 9th Workshop on Approximation and Online Algorithms (WAOA 2011) took
place in Saarbrücken, Germany, September 8–9, 2011. The workshop was part
of the ALGO 2011 event that also hosted ESA 2011, WABI 2011, IPEC 2011,
ALGOSENSORS 2011, and ATMOS 2011. The previous WAOA workshops were
held in Budapest (2003), Rome (2004), Palma de Mallorca (2005), Zurich (2006),
Eilat (2007), Karlsruhe (2008), Copenhagen (2009), and Liverpool (2010). The
proceedings of these previous WAOA workshops have appeared as LNCS volumes
2909, 3351, 3879, 4368, 4927, 5426, 5893, and 6534, respectively.

The Workshop on Approximation and Online Algorithms focuses on the de-
sign and analysis of algorithms for online and computationally hard problems.
Both kinds of problems have a large number of applications in a wide variety of
fields. Topics of interest for WAOA 2011 were: algorithmic game theory, approx-
imation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, packing and covering, paradigms for design
and analysis of approximation and online algorithms, parameterized complexity,
randomization techniques and scheduling problems.

In response to the call for papers, we received 48 submissions. Each submis-
sion was reviewed by at least three referees. The submissions were mainly judged
on originality, technical quality, and relevance to the topics of the conference.
Based on the reviews, the Program Committee selected 21 papers. In addition to
the presentations of the 21 accepted papers, Klaus Jansen from the University
of Kiel gave an invited talk on “Approximation Algorithms for Scheduling and
Packing Problems.”

We are grateful to Andrei Voronkov for providing the EasyChair conference
system, which was used to manage the electronic submissions and the review
process. It made our task much easier. We would also like to thank all the
authors who submitted papers to WAOA 2011 as well as the local organizers of
ALGO 2011.

November 2011 Roberto Solis-Oba
Giuseppe Persiano

Organization

Program Co-chairs

Roberto Solis-Oba University of Western Ontario, Canada
Giuseppe Persiano Università di Salerno, Italy

Program Committee

Vincenzo Auletta Università di Salerno, Italy
Evripidis Bampis University of Evry, France
Ioannis Caragiannis University of Patras, Greece
Jose Correa Universidad de Chile, Chile
Khaled Elbassioni Max Planck Institut für Informatik, Germany
Rudolf Fleischer Fudan University, China
Thomas Erlebach University of Leicester, UK
Klaus Jansen University of Kiel, Germany
Christos Kaklamanis University of Patras, Greece
Jochen Könemann University of Waterloo, Canada
Alejandro López-Ortiz University of Waterloo, Canada
Monaldo Mastrolilli IDSIA Lugano, Switzerland
Julian Mestre University of Sydney, Australia
Giuseppe Persiano (Co-chair), Università di Salerno, Italy
Hadas Shachnai Technion, Israel
Roberto Solis-Oba (Co-chair), University of Western Ontario, Canada
Clifford Stein Columbia University, USA
Denis Trystram Grenoble Institute of Technology, France
Carmine Ventre University of Liverpool, UK

Additional Referees

Markus Bläser
Marin Bougeret
Stefan Canzar
Johanne Cohen
Reza Dorrigiv
Ioannis Emiris
Leah Epstein
Cristina Fernandes
Diodato Ferraioli
Robert Fraser
Konstantinos Georgiou

Masud Hasan
Chien-Chung Huang
Sungjin Im
Shahin Kamali
Panagiotis Kanellopoulos
Nikos Karanikolas
Kim Klein
Ephraim Korach
Stefan Kraft
Ariel Kulik
Maria Kyropoulou

VIII Organization

Bundit Laekhanukit
Dimitris Letsios
Giorgio Lucarelli
Hamid Mahini
Bodo Manthey
Nicole Megow
Nikolaus Mutsanas
Rajiv Raman
Aris Pagourtzis
Konstantinos Panagiotou
Paolo Penna
Matthias Poloczek
Lars Prädel
Kirk Pruhs
Claude-Guy Quimper

Dror Rawitz
David Rizzuto
Christina Robenek
Alejandro Salinger
Guido Schaefer
Ilka Schnoor
Martin Skutella
Gwen Spencer
Ola Svensson
Chaitanya Swamy
Tami Tamir
Marc Uetz
Anke Van Zuylen
Jose Verschae
Haifeng Xu Lisa Zhang

Table of Contents

Approximation Algorithms for Scheduling and Packing Problems 1
Klaus Jansen

Approximating Subset k-Connectivity Problems . 9
Zeev Nutov

Learning in Stochastic Machine Scheduling . 21
Sebastián Marbán, Cyriel Rutten, and Tjark Vredeveld

An Online Algorithm Optimally Self-tuning to Congestion for Power
Management Problems . 35

Wolfgang Bein, Naoki Hatta, Nelson Hernandez-Cons, Hiro Ito,
Shoji Kasahara, and Jun Kawahara

Single Approximation for Biobjective Max TSP . 49
Cristina Bazgan, Laurent Gourvès, Jérôme Monnot, and
Fanny Pascual

Parameterized Approximation Algorithms for Hitting Set 63
Ljiljana Brankovic and Henning Fernau

Approximation Algorithms for the Maximum Leaf Spanning Tree
Problem on Acyclic Digraphs . 77

Nadine Schwartges, Joachim Spoerhase, and Alexander Wolff

Optimization over Integers with Robustness in Cost and Few
Constraints . 89

Kai-Simon Goetzmann, Sebastian Stiller, and Claudio Telha

A Lower Bound on Deterministic Online Algorithms for Scheduling on
Related Machines without Preemption . 102

Tomáš Ebenlendr and Jǐŕı Sgall

Scheduling Jobs on Identical and Uniform Processors Revisited 109
Klaus Jansen and Christina Robenek

Approximation Algorithms for Fragmenting a Graph against a
Stochastically-Located Threat . 123

David B. Shmoys and Gwen Spencer

Non-clairvoyant Weighted Flow Time Scheduling on Different
Multi-processor Models . 137

Jianqiao Zhu, Ho-Leung Chan, and Tak-Wah Lam

X Table of Contents

A New Perspective on List Update: Probabilistic Locality and Working
Set . 150

Reza Dorrigiv and Alejandro López-Ortiz

OnlineMin: A Fast Strongly Competitive Randomized Paging
Algorithm . 164

Gerth Stølting Brodal, Gabriel Moruz, and Andrei Negoescu

Faster and Simpler Approximation of Stable Matchings 176
Katarzyna Paluch

Simpler 3/4-Approximation Algorithms for MAX SAT 188
Anke van Zuylen

On Online Algorithms with Advice for the k-Server Problem 198
Marc P. Renault and Adi Rosén

Improved Lower Bound for Online Strip Packing
(Extended Abstract) . 211

Rolf Harren and Walter Kern

Competitive Router Scheduling with Structured Data 219
Yishay Mansour, Boaz Patt-Shamir, and Dror Rawitz

Approximation with a Fixed Number of Solutions of Some Biobjective
Maximization Problems . 233

Cristina Bazgan, Laurent Gourvès, and Jérôme Monnot

Generalized Maximum Flows over Time . 247
Martin Groß and Martin Skutella

The Price of Anarchy for Minsum Related Machine Scheduling 261
Ruben Hoeksma and Marc Uetz

Author Index . 275

Approximation Algorithms for Scheduling

and Packing Problems

Klaus Jansen�

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
kj@informatik.uni-kiel.de

Abstract. In this paper we present an overview about new approxima-
tion results for several optimization problems. During the last years we
have worked on the design of approximation algorithms with a smaller
approximation ratio and on the design of efficient polynomial time ap-
proximation schemes with a faster running time. We presented approxi-
mation algorithms with a smaller ratio for scheduling with fixed jobs and
for two dimensional strip packing. On the other hand, we developed effi-
cient approximation schemes with an improved running time for multiple
knapsack and scheduling independent jobs on uniform processors.

1 Introduction

In the first part of the paper we focus on approximation algorithms with good
performance guarantees. Let A(I) be the objective value (e.g. the schedule length
or total profit) generated by a polynomial time algorithm A, and OPT (I) be the

optimal value for an instance I. The approximation ratio RA of A is supI
A(I)

OPT (I)

and supI
OPT (I)
A(I) for a minimization problem and maximization problem, respec-

tively. The goal in both cases is to find an algorithm with minimum ratio RA.
In the second part we focus on the running time of approximation schemes.

A problem admits a polynomial-time approximation scheme (PTAS) if there is
a family of algorithms {Aε | ε > 0} such that for any ε > 0 and any instance I,
Aε produces a (1+ ε)-approximate solution in time polynomial in the size of the
input. Two important restricted classes of approximation schemes were defined
to reduce the running time. An efficient polynomial-time approximation scheme
(EPTAS) is a PTAS with running time of the form f(1/ε)poly(|I|), while a fully
time polynomial time approximation scheme (FPTAS) runs in time poly(|I|, 1/ε).

There is an interesting connection to parameterized complexity, i.e. to fixed
parameter tractable (FPT) algorithms and to the complexity class W[1]. In fact,
if the standard parametrization of an optimization problem is W[1]-hard, then
the optimization problem does not have an EPTAS, unless FPT=W[1] [2,4]. For
a survey on the connection between approximation algorithms and parameterized
complexity we refer to [31].

� Research supported by the Deutsche Forschungsgemeinschaft (DFG).

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 K. Jansen

2 Scheduling with Fixed Jobs

In parallel machine scheduling, an important issue is the scenario where either
some jobs are already fixed in the system [33] or intervals of non-availability
of some machines must be taken into account [21]. The first problem occurs
when high-priority jobs are already scheduled in the system while the latter
problem is due to regular maintenance of machines. Both models are relevant
for turnaround scheduling [32] and distributed computing where machines are
donated on a volunteer basis.

The problem can be defined as follows: an instance consists of a set M =
{M1, . . . ,Mm} of m identical machines and a set J = {J1, . . . , Jn} of n jobs
with non-negative processing times p1, . . . , pn ∈ N. The first k jobs are fixed via
a list (m1, s1), . . . , (mk, sk) giving a machine index mj ∈ M and starting time
sj ≥ 0 for the corresponding job Jj , for j = 1, . . . , k. We suppose that these
fixed jobs do not overlap. A schedule is a non-preemptive assignment of the jobs
to machines and starting times such that the first k jobs are assigned as encoded
in the instance and all jobs do not intersect.

For the problem with fixed jobs, the objective is to minimize the makespan
(the maximum completion time Cj = sj + pj) among all jobs including the
fixed ones; i.e. Cmax = maxj=1,...,n Cj . In the setting with non-availability,
our goal is to find a schedule with minimum makespan among all non-fixed
jobs; i.e. Cmax = maxj=k+1,...,n Cj . Both problems generalize the well-known
problem P ||Cmax (scheduling jobs on parallel identical machines to minimize
makespan) [18] and hence are strongly NP-hard. Interestingly, the second vari-
ant is harder to approximate.

2.1 Related Results

Scheduling with fixed jobs was studied by Scharbrodt, Steger andWeisser [34,33].
They mainly studied the problem for a constant number m of processors. For
this strongly NP -hard problem (which consequently does not admit an FPTAS)
they presented a polynomial time approximation scheme (PTAS). They also
found approximation algorithms for an arbitrary number m of processors with
ratios 3 [34] and 2 + ε [33]. Furthermore, they [33] proved that there is no
approximation algorithm with ratio 3/2 − ε for scheduling with fixed jobs for
any ε ∈ (0, 1/2], unless P = NP.

2.2 New Results

Diedrich and Jansen [9] presented a 3/2 + ε-approximation for both variants.
However, the algorithm used on a large number of enumeration steps and in-

volved up tom1/ε1/ε
2

calls to a subroutine that approximately solves a maximiza-
tion problem, the Multiple Subset Sum Problem (MSSP), for a fixed accuracy
ε > 0. Let TMSSP (n, ε) be the running time of this subroutine.

Recently, we presented improved algorithms for scheduling with fixed jobs and
scheduling with non-availability constraints. These algorithms achieve exactly

Scheduling and Packing 3

the bound of 3/2 and are both faster and conceptually simpler than the previous
algorithms in [9]. Formally stated our results are the following:

Theorem 1. [25] Scheduling with fixed jobs admits an approximation algorithm
with ratio 3/2 and running time

O(n log n+ log((n/m) max
j=1,...,n

pj)(n+ TMSSP (n, 1/8))).

For scheduling with non-availability, the result is slightly weaker for technical
reasons:

Theorem 2. [25] Scheduling with non-availability, as long as a constant frac-
tion ρm of machines is always available with ρ ∈ (0, 1), admits an approximation
algorithm with ratio 3/2 and running time

O(n logn+ log((n/ρm) max
j=1,...,n

pj)(n+ TMSSP (n, ρ/8))).

3 2D Strip Packing

Two-dimensional packing problems are classical combinatorial optimization prob-
lems. One of the most important ones is the 2D strip packing problem: Given a set
of n rectangles I = {R1, . . . , Rn} of specified widths wi ≤ 1 and heights hi ≤ 1,
the problem is to find a feasible packing for I (i.e. an orthogonal arrangement
where rectangles do not overlap and are not rotated) into a strip of width 1 and
minimum height. The 2D strip packing problem hasmany practical applications in
manufacturing, logistics, VLSI design, and parallel computing. In many manufac-
turing settings, rectangular pieces need to be cut out of some sheet of rawmaterial
(e.g. textile, glass, or wood), while minimizing the usage or the waste. Scheduling
independent tasks on parallel processors, each requiring a certain number of con-
tiguous processors or memory allocation during a certain time interval, can also
be modeled as a 2D strip packing problem. Since 2D strip packing includes bin
packing as a special case (where each rectangle has height hi = 1), the problem is
strongly NP -hard. Therefore, there is no efficient algorithm for constructing an
optimal packing, unless P = NP.

3.1 Related Work

Coffman et al. [8] provided the first algorithms Next Fit Decreasing Height
(NFDH) and First Fit Decreasing Height (FFDH) with absolute approximation
ratios of 3 and 2.7, respectively. The approximation algorithm found by Sleator
[37] generates a strip packing of height at most 2.5OPT (I). This was indepen-
dently improved by Schiermeyer [36] and Steinberg [38]. They both presented
approximation algorithms with ratio 2. Furthermore, there is no approximation
algorithm with absolute ratio better than 1.5, unless P = NP; otherwise we could
solve the PARTITION problem in polynomial time.

4 K. Jansen

3.2 New Results

After the work by Steinberg and Schiermeyer, there was no improvement on
the best known approximation ratio for more than 14 years. Jansen and Thöle
[27] presented an approximation algorithm with approximation ratio 1.5 + ε for
restricted instances where the widths have the form i

m for i ∈ {1, . . . ,m} and
m is polynomially bounded in the number of rectangles or the input size. Notice
that the general version appears to be considerably more difficult. Recently,
Harren and van Stee [16] broke the barrier of 2 for the general 2D strip packing
problem and presented an approximation algorithm with a ratio of 1.9396. Our
main new result is the following significant improvement.

Theorem 3. [15] For any ε > 0, there is an approximation algorithm A which
produces a packing of a list I of n rectangles in a strip of width 1 and height
A(I) such that

A(I) ≤
(5
3
+ ε

)
OPT (I).

The running time of A is polynomial in n for any fixed ε.

4 Multiple Knapsack Problem

The knapsack problem is a fundamental problem in combinatorial optimization.
One interesting generalization is the multiple knapsack problem (MKP), in which
an instance I is given by a set A of n items and a set B of m bins or knapsacks.
Each item a ∈ A has a size size(a) ∈ Q′ + and a profit profit(a) ∈ Q′ +, and each
bin b ∈ B has a capacity or size c(b) ∈ Q′ +. The goal of MKP is to find a subset
S ⊆ A that can be packed into B without exceeding the capacities of the bins
and has maximum total profit profit(S) =

∑
a∈S profit(a). The maximum total

profit among all feasible subsets S ⊆ A that can be packed into B is denoted by
OPT (I). MKP has many applications in computer science, operations research,
and related disciplines; see also the book by Kellerer, Pferschy, and Pisinger [28].
An interesting application is the scheduling problem with fixed jobs described
above.

4.1 Known Results

In contrast to the classical knapsack problem, MKP even with two bins with
the same capacity does not have a fully polynomial time approximation scheme
(FPTAS), unless P=NP [3,5]. Chekuri and Khanna [5] gave a polynomial-time
approximation scheme (PTAS) for MKP with general capacities. The running

time of their PTAS is nO(1/ε8 log(1/ε)). Furthermore, they [5] posed the question
of whether there is a PTAS with an improved running time and conjectured that
an efficient polynomial time approximation scheme (EPTAS) with running time
f(1/ε)poly(n) for some function f might be possible. Fellows [11] considered it as
a significant open problem to determine whether MKP admits a fixed parameter
tractable (FPT) algorithm or it is W[1]-hard.

Scheduling and Packing 5

4.2 New Results

We [22] found an EPTAS for MKP with running time 2O(1/ε5 log(1/ε))poly(n)

(that can be bounded also by 2O(1/ε5 log(1/ε)) + poly(n)) answering the open
question posed by Chekuri and Khanna in the affirmative. Recently we improved
the running time above and obtained the following main result:

Theorem 4. [24] There is an efficient polynomial-time approximation scheme
(EPTAS) for the multiple knapsack problem with running time

2O(1/ε log4(1/ε)) + poly(n).

If the integrality gap between the ILP and LP objective values for the bin packing
problem with different bin sizes is bounded by a constant C, similar to the
modified round-up conjecture by Scheithauer and Terno [35] (i.e. that ILP (I) ≤
�LP (I)�+1 for the ILP and LP formulations for each instance I of the classical
bin packing problem), then we can reduce the above running time to

2O(1/ε log2(1/ε)) + poly(n).

5 Scheduling on Uniform Processors

Another fundamental problem in scheduling theory is the following. Suppose
that we are given a set J of n independent jobs Jj with processing time pj and
a set P of m non-identical processors Pi that run at different speeds si. If job Jj
is executed on processor Pi, the machine needs pj/si time units to complete the
job. The problem is to find an assignment a : J → P for the jobs to the pro-
cessors that minimizes the total execution time maxi=1,...,m

∑
Jj :a(Jj)=Pi

pj/si.
This is the minimum time needed to complete the execution of all jobs on the
processors. The problem is denoted by Q||Cmax and it is also called the minimum
makespan problem on uniform parallel processors. The problem for uniform (and
also identical) processors has been demonstrated to be NP-hard [13], and the
existence of a polynomial time algorithm for it would imply P = NP .

5.1 Known Results

Most of the work on this fundamental scheduling problem has been done already
more than 20 years ago. Horowitz and Sahni [20] proposed an approximation
scheme for scheduling on a fixed number m of uniform processors with running
time (n/ε)O(m). Gonzales, Ibara, and Sahni [14] analyzed list schedules for uni-
form processors based on the LPT (longest processing time) rule. They proved
that LPT produces a schedule of length between 1.5 and 2 times the optimum.
Friesen and Langston [12] analyzed a variant of the MULTIFIT algorithm de-
rived from bin packing and proved that its worst-case performance bound is
within 1.4 of the optimum value. The upper bound has been improved to 1.38
by Chen [6].

6 K. Jansen

Hochbaum and Shmoys [18] introduced the dual approximation approach for
identical and uniform processors and used the relationship between the schedul-
ing and the bin packing problem. This relationship for scheduling on identical
processors had been exploited already by Coffman, Garey, and Johnson [7]. Us-
ing the dual approximation approach, Hochbaum and Shmoys [18] proposed a

PTAS for scheduling jobs on identical processors with running time (n/ε)O(1/ε2).
Leung [30] found a PTAS for scheduling on identical processors with improved

running time (n/ε)O(1/ε log(1/ε)). Hochbaum and Shmoys (see [17]) and Alon et
al. [1] both achieved an improvement by using an integer linear program (ILP)
formulation of the bin packing problem for the large items and a result on integer
linear programming with a fixed number of variables by Lenstra [29]. This gives
an EPTAS for identical processors with running time f(1/ε) +O(n) where f is
doubly exponential in 1/ε.

For uniform processors, the decision problem for the scheduling problem with
makespan at most T can be interpreted as a bin packing problem with different
bin sizes. Using an ε-relaxed version of this bin packing problem, Hochbaum and
Shmoys [19] were able to obtain a PTAS for scheduling jobs on uniform pro-

cessors with running time (n/ε)O(1/ε2). The existence of an EPTAS for uniform
processors was mentioned as an open problem by Epstein and Sgall [10].

5.2 New Results

Our first result, which uses an ILP and MILP formulation with a constant num-
ber of integral variables, is the following:

Theorem 5. [23] There is an EPTAS which, given an instance I of Q||Cmax

with n jobs and m processors and a positive number ε > 0, produces a schedule
for the jobs of length Aε(I) ≤ (1 + ε)OPT (I). The running time of Aε is

2O(1/ε2 log(1/ε)3) + poly(n).

Interestingly, the running time of the EPTAS is only single exponential in 1/ε.
Recently, we found an EPTAS for scheduling on uniform processors that avoids
the use of an ILP or MILP solver. Furthermore, under the assumption that the
distance between an arbitrary LP and closest ILP solution is bounded, we are
also able to improve the running time.

Theorem 6. [26] There is an EPTAS which, given an instance of Q||Cmax with
n jobs and m processors and a positive number ε > 0, produces a schedule for
the jobs of length Aε(I) ≤ (1 + ε)OPT (I). If the maximum distance between an
arbitrary LP and closest ILP solution is bounded by poly(1/ε), then the running
time of Aε is bounded by

2O(1/ε log2(1/ε)) + poly(n).

Scheduling and Packing 7

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. Journal on Scheduling 1, 55–66 (1998)

2. Bazgan, C.: Schémas d’approximation et complexité paramétrée. Technical Report,
Université Paris-Sud (1995)

3. Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. SIAM
Journal of Optimization 11, 308–319 (2000)

4. Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation
schemes. Information Processing Letters 64, 165–171 (1997)

5. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. SIAM Jour-
nal on Computing 35, 713–728 (2006)

6. Chen, B.: Tighter bounds for MULTIFIT scheduling on uniform processors. Dis-
crete Applied Mathematics 31, 227–260 (1991)

7. Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin packing to mul-
tiprocessor scheduling. SIAM Journal on Computing 7, 1–17 (1978)

8. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance Bounds for
Level-Oriented Two-Dimensional Packing Algorithms. SIAM Journal on Comput-
ing 4, 808–826 (1980)

9. Diedrich, F., Jansen, K.: Improved approximation algorithms for scheduling
with fixed jobs. In: Proceedings of Symposium on Discrete Algorithms, SODA,
pp. 675–684 (2009)

10. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related
and identical parallel machines. Algorithmica 39, 43–57 (2004)

11. Fellows, M.R.: Blow-Ups, Win/Win’s, and Crown Rules: Some New Directions in
FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer,
Heidelberg (2003)

12. Friesen, D.K., Langston, M.A.: Bounds for multifit scheduling on uniform proces-
sors. SIAM Journal on Computing 12, 60–70 (1983)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco (1979)

14. Gonzales, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform pro-
cessors. SIAM Journal on Computing 6, 155–166 (1977)

15. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-Approximation for
Strip Packing. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 475–487. Springer, Heidelberg (2011)

16. Harren, R., van Stee, R.: Improved Absolute Approximation Ratios for Two-
Dimensional Packing Problems. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.)
APPROX 2009. LNCS, vol. 5687, pp. 177–189. Springer, Heidelberg (2009)

17. Hochbaum, D.S.: Various notions of approximations: good, better, best, and more.
In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, Ch.
9, pp. 346–398. Prentice Hall (1997)

18. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: practical and theoretical results. Journal of the ACM 34, 144–162
(1987)

19. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM Journal
on Computing 17, 539–551 (1988)

20. Horowitz, R., Sahni, S.: Exact and approximate algorithms for scheduling non-
identical processors. Journal of the ACM 23, 317–327 (1976)

8 K. Jansen

21. Hwang, H.-C., Lee, K., Chang, S.Y.: The effect of machine availability on the
worst-case performance of LPT. Discrete Applied Mathematics 148, 49–61 (2005)

22. Jansen, K.: Parameterized approximation scheme for the multiple knapsack prob-
lem. SIAM Journal on Computing 39, 1392–1412 (2009)

23. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM Journal on Discrete
Mathematics 24, 457–485 (2010)

24. Jansen, K.: A fast approximation scheme for the multiple knapsack problem. In:
Proceedings of Conference on Current Trends in Theory and Practice of Computer
Science, SOFSEM 2012 (to appear, 2012)

25. Jansen, K., Prädel, L., Schwarz, U.M., Svensson, O.: Faster approximation algo-
rithms for scheduling with fixed jobs. In: Proceedings of Conference of Computing:
the Australasian Theory Symposium, CATS 2011, pp. 3–9 (2011)

26. Jansen, K., Robenek, C.: Scheduling Jobs on Identical and Uniform Processors
Revisited. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
109–122. Springer, Heidelberg (2012)

27. Jansen, K., Thöle, R.: Approximation algorithms for scheduling parallel jobs. SIAM
Journal on Computing 39, 3571–3615 (2010)

28. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
29. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics

of Operations Research 8, 538–548 (1983)
30. Leung, J.: Bin packing with restricted piece sizes. Information Processing Let-

ters 31, 145–149 (1989)
31. Marx, D.: Parameterized complexity and approximation algorithms. The Computer

Journal 51, 60–78 (2008)
32. Megow, N., Möhring, R.H., Schulz, J.: Decision Support and Optimization in Shut-

down and Turnaround Scheduling. Informs Journal on Computing 23, 189–204
(2011)

33. Scharbrodt, M., Steger, A., Weisser, H.: Approximability of scheduling with fixed
jobs. Journal of Scheduling 2, 267–284 (1999)

34. Scharbrodt, M.: Produktionsplanung in der Prozessindustrie: Modelle, effiziente
Algorithmen und Umsetzung, Dissertation, Fakultät für Informatik, Technische
Universität München (2000)

35. Scheithauer, G., Terno, J.: Theoretical investigations on the modified integer round-
up property for the one-dimensional cutting stock problem. European Journal of
Operational Research 20, 93–100 (1997)

36. Schiermeyer, I.: Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

37. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Infor-
mation Processing Letters 10, 37–40 (1980)

38. Steinberg, A.: A Strip-Packing Algorithm with Absolute Performance Bound 2.
SIAM Journal on Computing 2, 401–409 (1997)

Approximating Subset k-Connectivity Problems

Zeev Nutov

The Open University of Israel
nutov@openu.ac.il

Abstract. A subset T ⊆ V of terminals is k-connected to a root s in
a directed/undirected graph J if J has k internally-disjoint vs-paths for
every v ∈ T ; T is k-connected in J if T is k-connected to every s ∈ T . We
consider the Subset k-Connectivity Augmentation problem: given a graph
G = (V,E) with edge/node-costs, a node subset T ⊆ V , and a subgraph
J = (V,EJ) of G such that T is (k−1)-connected in J , find a minimum-
cost augmenting edge-set F ⊆ E\EJ such that T is k-connected in J∪F .
The problem admits trivial ratio O(|T |2). We consider the case |T | > k
and prove that for directed/undirected graphs and edge/node-costs, a
ρ-approximation algorithm for Rooted Subset k-Connectivity Augmenta-
tion implies the following approximation ratios for Subset k-Connectivity
Augmentation:

(i) b(ρ+ k) +
(

|T |
|T |−k

)2

O
(
log |T |

|T |−k

)
and

(ii) ρ ·O
(

|T |
|T |−k

log k
)
,

where b = 1 for undirected graphs and b = 2 for directed graphs. The best
known values of ρ on undirected graphs are min{|T |, O(k)} for edge-costs
and min{|T |, O(k log |T |)} for node-costs; for directed graphs ρ = |T | for
both versions. Our results imply that unless k = |T | − o(|T |), Subset
k-Connectivity Augmentation admits the same ratios as the best known
ones for the rooted version. This improves the ratios in [19,14].

1 Introduction

In the Survivable Network problem we are given a graph G = (V,E) with
edge/node-costs and pairwise connectivity requirements {r(u, v) : u, v ∈ T ⊆ V }
on a node subset T of terminals. The goal is to find a minimum-cost subgraph of
G that contains r(u, v) internally-disjoint uv-paths for all u, v ∈ T . In the node-
costs version of Survivable Network, we seek a min-cost node subset U ⊆ V \ T
such that the graph induced by T∪U in G satisfies the connectivity requirements.

In the Rooted Subset k-Connectivity problem there is s ∈ T such that r(s, t) =
k for all t ∈ T \ {s} and r(u, v) = 0 otherwise. In the Subset k-Connectivity prob-
lem r(u, v) = k for all u, v ∈ T and r(u, v) = 0 otherwise. In the augmentation
versions, G contains a subgraph J of cost zero with r(u, v)−1 internally disjoint
paths for all u, v ∈ T . A subset T ⊆ V of terminals is k-connected to a root s in
a directed/undirected graph J if J has k internally-disjoint vs-paths for every
v ∈ T ; T is k-connected in J if T is k-connected to every s ∈ T . Formally, the
versions of Survivable Network we consider are as follows.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 9–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

10 Z. Nutov

Rooted Subset k-Connectivity Augmentation
Instance: A graphG = (V,E) with edge/node-costs, a set T ⊆ V of terminals,

a root s ∈ T , and a subgraph J = (V,EJ) of G such that T \ {s}
is (k − 1)-connected to s in J .

Objective: Find a minimum-cost edge-set F ⊆ E \ EJ such that T \ {s} is
k-connected to s in J ∪ F .

Subset k-Connectivity Augmentation
Instance: A graphG = (V,E) with edge/node-costs, a set T ⊆ V of terminals,

and a subgraph J = (V,EJ) of G such that T is (k− 1)-connected
in J .

Objective: Find a minimum-cost edge-set F ⊆ E \ EJ such that T is k-
connected in J ∪ F .

Subset k-Connectivity Augmentation is Label-Cover hard to approximate [9],
and Rooted k-Connectivity Augmentation is harder than the Directed Steiner Tree
problem [15]; hence obtaining a polylogarithmic approximation ratio for these
problems is unlikely. It is known and easy to see that for both edge-costs and
node-costs, if Subset k-Connectivity Augmentation admits approximation ratio
ρ(k) such that ρ(k) is a monotone increasing function, then Subset k-Connectivity
admits ratio k · ρ(k). Moreover, for edge costs, if in addition the approxima-
tion ratio ρ(k) is w.r.t. a standard setpair/biset LP-relaxation to the problem,
then Subset k-Connectivity admits ratio H(k) · ρ(k), where H(k) denotes the
kth harmonic number; see [19,14] for details. For edge-costs, a standard setpair
LP-relaxation for Survivable Network (due to Frank and Jordán [5]) is:

min

⎧⎨⎩∑
e∈E

cexe :
∑

e∈E(X,X∗)

xe ≥ r(X,X∗), X,X∗ ⊆ V,X ∩X∗ = ∅, 0 ≤ xe ≤ 1

⎫⎬⎭
where r(X,X∗) = max{r(u, v) : u ∈ X, v ∈ X∗}− |V \ (X ∪X∗)| and E(X,X∗)
is the set of edges in E from X to X∗.

Subset k-Connectivity admits trivial ratios O(|T |2) for both edge-costs and
node-costs, by computing for every u, v ∈ V an optimal edge-set of k internally-
disjoint uv-paths (this is essentially a Min-Cost k-Flow problem, that can be
solved in polynomial time), and taking the union of the computed edge-sets.
For metric edge-costs the problem admits an O(1) ratio [2]. For |T | ≥ k + 1 the
problem can also be decomposed into k instances of Rooted Subset k-Connectivity
problems, c.f. [11] for the case T = V , where it is also shown that for T = V the
number of Rooted Subset k-Connectivity Augmentation instances can be reduced

to O
(

|T |
|T |−k log k

)
, which is O(log k) unless k = |T | − o(|T |).

Recently, Laekhanukit [14] made an important observation that the method
of [11] can be extended for the case of arbitrary T ⊆ V . Specifically, he proved
that if |T | ≥ 2k, then O(log k) instances of Rooted Subset k-Connectivity Aug-
mentation will suffice. Thus for |T | ≥ 2k, the O(k)-approximation algorithm of

Approximating Subset k-Connectivity Problems 11

[19] for Rooted Subset k-Connectivity Augmentation leads to the ratio O(k log k)
for Rooted Subset k-Connectivity. By exploiting additional properties of the al-
gorithm of [19], he reduced the ratio to O(k) in the case |T | ≥ k2.

Using a different approach, we will show by a much simpler proof, that
for both directed and undirected graphs and edge-costs and node-costs, Subset
k-Connectivity Augmentation can be reduced to solving one instance (or two in-
stances, in the case of directed graphs) of Rooted Subset k-Connectivity Augmen-

tation and O(k)+
(

3|T |
|T |−k

)2

H
(

3|T |
|T |−k

)
instances of the Min-Cost k-Flow problem.

This leads to a much simpler algorithm, improves the result of Laekhanukit [14]
for |T | < k2, and applies also for node-costs and directed graphs. In addition,
we give a more natural and much simpler extension of the algorithm of [11] for

T = V , that also enables the same bound O
(

|T |
|T |−k log k

)
as in [11] for arbitrary

T with |T | ≥ k + 1, and in addition applies also for directed graphs, for node-
costs, and for an arbitrary type of edge-costs, e.g., metric costs, or uniform costs,
or 0, 1-costs. When we say “0, 1-edge-costs” we mean that the input graph G is
complete, and the goal is to add to the subgraph J of G formed by the zero-cost
edges a minimum size edge-set F (any edge is allowed) such that J ∪F satisfies
the connectivity requirements. Formally, our result is the following.

Theorem 1. For both directed and undirected graphs, and edge-costs and node-
costs the following holds. If Rooted Subset k-Connectivity Augmentation admits
approximation ratio ρ = ρ(k, |T |), then for |T | ≥ k + 1 Subset k-Connectivity
Augmentation admits the following approximation ratios:

(i) b(ρ + k) +
(

|T |
|T |−k

)2

O
(
log |T |

|T |−k

)
, where b = 1 for undirected graphs and

b = 2 for directed graphs.

(ii) ρ · O
(

|T |
|T |−k logmin{k, |T | − k}

)
, and this is so also for 0, 1-edge-costs.

Furthermore, for edge-costs, if the approximation ratio ρ is w.r.t. the setpair
LP-relaxation for the problem, then so are the ratios in (i) and (ii).

For |T | > k, the best known values of ρ on undirected graphs are O(k) for edge-
costs and min{O(k log |T |), |T |} for node-costs [19]; for directed graphs ρ = |T |
for both versions. For 0, 1-edge-costs ρ = O(log k) for undirected graphs [20] and
ρ = O(log |T |) for directed graphs [18]. For edge-costs, these ratios are w.r.t. a
standard LP-relaxation. Thus Theorem 1 implies the following.

Corollary 1. For |T | ≥ k + 1, Subset k-Connectivity Augmentation admits the
following approximation ratios.

– For undirected graphs, the ratios are O(k) +
(

|T |
|T |−k

)2

O
(
log |T |

|T |−k

)
for

edge-costs, O(k log |T |) +
(

|T |
|T |−k

)2

O
(
log |T |

|T |−k

)
for node-costs, and |T |

|T |−k ·
O
(
log2 k

)
for 0, 1-edge-costs.

12 Z. Nutov

– For directed graphs, the ratio is 2(|T |+ k) +
(

|T |
|T |−k

)2

O
(
log |T |

|T |−k

)
for both

edge-costs and node-costs, and |T |
|T |−k · O (log |T | log k) for 0, 1 edge-costs.

For Subset k-Connectivity, the ratios are larger by a factor of O(log k) for edge-
costs, and by a factor of k for node-costs.

Note that except the case of 0, 1-edge-costs, Corollary 1 is deduced from part (i)
of Theorem 1. However, part (ii) of Theorem 1 might become relevant if Rooted
Subset k-Connectivity Augmentation admits ratio better than O(k). In addition,
part (ii) applies for any type of edge-costs, e.g. metric or 0, 1-edge-costs.

We conclude this section by mentioning some additional related work. The
case T = V of Rooted Subset k-Connectivity problem is the k-Outconnected Sub-
graph problem; this problem admits a polynomial time algorithm for directed
graphs [6], which implies ratio 2 for undirected graphs. For arbitrary T , the
problem is at least as hard as the Directed Steiner Tree problem [15]. The case
T = V of Subset k-Connectivity problem is the k-Connected Subgraph problem.

This problem is NP-hard, and the best known ratio for it is O
(
log k log n

n−k

)
for both directed and undirected graphs [17]; for the augmentation version of

increasing the connectivity by one the ratio in [17] is O
(
log n

n−k

)
. For met-

ric costs the problem admits ratios 2 + k−1
n for undirected graphs and 2 + k

n
for directed graphs [10]. For 0, 1-edge-costs the problem is solvable for directed
graphs [5], which implies ratio 2 for undirected graphs. The Survivable Network
problem is Label-Cover hard [9], and the currently best known non-trivial ra-
tios for it on undirected graphs are: O(k3 log |T |) for arbitrary edge-costs by
Chuzhoy and Khanna [3], O(log k) for metric costs due to Cheriyan and Vetta
[2], O(k) · min

{
log2 k, log |T |

}
for 0, 1-edge-costs [20,13], and O(k4 log2 |T |) for

node-costs [19].

2 Proof of Theorem 1

We start by proving the following essentially known statement.

Proposition 1. For both directed and undirected graphs, and edge-costs and
node-costs the following holds. Suppose that Rooted Subset k-Connectivity Aug-
mentation admits an approximation ratio ρ. If for an instance of Subset k-
Connectivity Augmentation we are given a set of q edges (when any edge is al-
lowed) and p stars (may be directed to or from the root, in the case of directed
graphs) on T whose addition to G makes T k-connected, then we can compute a
(ρp+q)-approximate solution F to this instance in polynomial time. Furthermore,
for edge-costs, if the ρ-approximation is w.r.t. a standard setpair LP-relaxation,
then c(F) ≤ (ρp + q)τ∗, where τ∗ is an optimal setpair LP-relaxation value for
Subset k-Connectivity Augmentation.

Proof. For every edge uv among the q edges, compute a min-cost edge-set Fuv ⊆
E \ EJ such that J ∪ Fuv contains k internally-disjoint uv-paths. This can be

Approximating Subset k-Connectivity Problems 13

done in polynomial time for both edge and node costs, using a Min-Cost k-Flow
algorithm. For edge-costs, it is known that c(Fuv) ≤ τ∗. Then replace uv by Fuv,
and note that T remains k-connected. Similarly, for every star S with center s
and leaf-set T ′, compute a ρ-approximate augmenting edge-set FS ⊆ E\EJ such
that J ∪ FS contains k internally-disjoint sv-paths (or vs-paths, in the case of
directed graphs and S being directed towards the root) for every v ∈ T ′. Then
replace S by FS , and note that T remains k-connected. For edge-costs, it is
known that if the ρ-approximation for the rooted version is w.r.t. the standard
setpair LP-relaxation, then c(FS) ≤ (ρp+ q)τ∗. The statement follows. �

Motivated by Proposition 1, we consider the following question:

Given a (k − 1)-connected subset T in a graph J , how many edges and/or
stars on T one needs to add to J such that T will become k-connected?

We emphasize that we are interested in obtaining absolute bounds on the
number of edges in the question, expressed in certain parameters of the graph;
namely we consider the extremal graph theory question and not the algorithmic
problem. Indeed, the algorithmic problem of adding the minimum number of
edges on T such that T will become k-connected can be shown to admit a
polynomial-time algorithm for directed graphs using the result of Frank and
Jordán [5]; this also implies a 2-approximation algorithm for undirected graphs
(for T = V , the undirected problem admits a polynomial time algorithm by
Vegh [21]). However, in terms of the parameters |T |, k, the result in [5] implies
only the trivial bound O(|T |2) on the the number of edges one needs to add to
J such that T will become k-connected.

Our bounds will be derived in terms of the family of the “deficient” sets of
the graph J . We need some definitions to state our results.

Definition 1. An ordered pair X̂ = (X,X+) of subsets of a groundset V is
called a biset if X ⊆ X+; X is the inner part and X+ is the outer part of X̂,
Γ (X̂) = X+ \X is the boundary of X̂, and X∗ = V \X+ is the complementary
set of X̂.

Given an instance of directed/undirected Subset k-Connectivity Augmentation
we may assume that T is an independent set in J . Otherwise, we obtain an
equivalent instance by subdividing every edge uv ∈ J with u, v ∈ T by a new
node, c.f. [19].

Definition 2. Given a (k−1)-connected independent set T in a directed/undirec-
ted graph J = (V,EJ) let us say that a biset X̂ on V is is tight in J , if the following
holds: X ∩ T,X∗ ∩ T �= ∅, X+ is the union of X and the set of neighbors of X in
J , and |Γ (X̂)| = k − 1.

A directed/undirected edge covers a biset X̂ if it goes fromX toX∗. By Menger’s
Theorem, F is a feasible solution to Subset k-Connectivity Augmentation if, and
only if, F covers the biset-family F of tight bisets; see [5,12,20]. Thus denoting
� = k − 1, our question can be reformulated as follows.

14 Z. Nutov

Given an �-connected independent set T in a directed/undirected graph J , how
many edges and/or stars on T are needed to cover the family F of tight bisets?

Definition 3. The intersection and the union of two bisets X̂, Ŷ is defined by
X̂ ∩ Ŷ = (X ∩ Y,X+ ∩ Y +) and X̂ ∪ Ŷ = (X ∪ Y,X+ ∪ Y +). Two bisets X̂, Ŷ
intersect if X ∩Y �= ∅; if in addition X∗ ∩Y ∗ �= ∅ then X̂, Ŷ cross. We say that
a biset-family F on T is:

– crossing if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F that cross.
– �-regular if |Γ (X̂)| ≤ � for every X̂ ∈ F , and if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any

intersecting X̂, Ŷ ∈ F with |X ∪ Y | ≤ |T | − �− 1.

The following statement is essentially known.

Lemma 1. Let T be an �-connected independent set in a directed/undirected
graph J , and let X̂, Ŷ be tight bisets. If the bisets (X∩T,X+∩T), (Y ∩T, Y +∩T)
cross, or if |(X ∪ Y) ∩ T | ≤ |T | − �− 1, then X̂ ∩ Ŷ , X̂ ∪ Ŷ are both tight.

Proof. The case when (X ∩T,X+ ∩T), (Y ∩T, Y + ∩T) cross was proved in [20]
and in [14]. The proof of the case |(X ∪ Y) ∩ T | ≤ |T | − �− 1 is identical to the
proof of [7, Lemma 1.2] where the case T = V is considered. �

Corollary 2. Let T be an �-connected independent set in a directed/undirected
graph J = (V,EJ). Then the biset-family

F = {(X ∩ T,X+ ∩ T) : (X,X+) is a tight biset in J}

is crossing and �-regular, and the reverse family F̄ = {(T \X+, T \X) : X̂ ∈ F}
of F is also crossing and k-regular. Furthermore, if J is undirected then F is
symmetric, namely, F = F̄ .

Given two bisets X̂, Ŷ we write X̂ ⊆ Ŷ and say that Ŷ contains X̂ if X ⊆ Y
or if X = Y and X+ ⊆ Y +; X̂ ⊂ Ŷ and Ŷ properly contains X̂ if X ⊂ Y or if
X = Y and X+ ⊂ Y +.

Definition 4. A biset Ĉ is a core of a biset-family F if Ĉ ∈ F and Ĉ contains
no biset in F \{Ĉ}; namely, a core is an inclusion-minimal biset in F . Let C(F)
be the family of cores of F .

Given a biset-family F and an edge-set I on T , the residual biset-family FI of
F consists of the members of F uncovered by I. We will assume that for any
I, the cores of FI and of F̄I can be computed in polynomial time. For F being
the family of tight bisets this can be implemented in polynomial time using the
Ford-Fulkerson Max-Flow Min-Cut algorithm, c.f. [20]. It is known and easy to
see (c.f. [17]), that if F is crossing and/or �-regular, so is FI , for any edge-set I.

Definition 5. For a biset-family F on T let ν(F) denote the maximum number
of bisets in F which inner parts are pairwise-disjoint. For an integer � let F� =
{X̂ ∈ F : |X | ≤ (|T | − �)/2}.

Approximating Subset k-Connectivity Problems 15

Lemma 2. Let F be an �-regular biset-family on T and let X̂, Ŷ ∈ F� intersect.
Then X̂ ∩ Ŷ ∈ F� and X̂ ∪ Ŷ ∈ F .

Proof. Since |X |, |Y | ≤ |T |−�
2 , we have |X∪Y | = |X |+ |Y |−|X∩Y | ≤ |T |−�−1.

Thus X̂ ∩ Ŷ , X̂ ∩ Ŷ ∈ F , by the �-regularity of F . Moreover, X̂ ∩ Ŷ ∈ F�, since

|X ∩ Y | ≤ |X | ≤ |T |−�
2 . �

LetH(k) denote the kth Harmonic number. We prove the following two theorems
that imply Theorem 1.

Theorem 2. Let F be a biset-family on T such that both F , F̄ are crossing and
�-regular. Then there exists a polynomial-time algorithm that computes an edge-

cover I of F of size |I| = ν
(
F�

)
+ ν

(
F̄�

)
+
(

3|T |
|T |−�

)2

H
(

3|T |
|T |−�

)
. Furthermore,

if F is symmetric then |I| = ν
(
F�

)
+
(

3|T |
|T |−�

)2

H
(

3|T |
|T |−�

)
.

Theorem 3. Let F be a biset-family on T such that both F and F̄ are �-regular.

Then there exists a collection of O
(

|T |
|T |−� lg min{ν, |T | − �}

)
stars on T which

union covers F , and such a collection can be computed in polynomial time. Fur-
thermore, the total number of edges in the stars is at most ν

(
F�

)
+ ν

(
F̄�

)
+(

|T |
|T |−�

)2

·O
(
log |T |

|T |−�

)
.

Note that the second statement in Theorem 3 implies (up to constants) the
bound in Theorem 2. However, the proof of Theorem 2 is much simpler than the
proof of Theorem 3, and the proof of Theorem 2 is a part of the proof of the
second statement in Theorem 3.

Let us show that Theorems 2 and 3 imply Theorem 1. For that, all we need is to
show that by applying b times the ρ-approximation algorithm for the Rooted Sub-
set k-Connectivity Augmentation, we obtain an instance with ν

(
F�

)
, ν

(
F̄�

)
≤ k,

where F is the family of tight sets and � = k− 1. This is achieved by the follow-
ing procedure due to Khuller and Raghavachari [8] that originally considered the
case T = V , see also [1,4,10]; the same procedure is also used by Laekhanukit
in [14]. Choose an arbitrary subset T ′ ⊆ T of k nodes, add a new node s (the
root) and all edges between s and T ′ of cost zero each, both to G and to J .
Then, using the ρ-approximation algorithm for the Rooted Subset k-Connectivity
Augmentation problem, compute an augmenting edge set F such that J ∪F con-
tains k internally disjoint vs-paths and sv-paths for every v ∈ T ′. Now, add F
to J and remove s from J . It is a routine to show that c(F) ≤ bopt, and that for
edge-costs c(F) ≤ bτ∗. It is also known that if X̂ is a tight biset of the obtained
graph J , then X∩T ′, X∗∩T ′ �= ∅, c.f. [1,14]. Combined with Lemma 2 we obtain
that ν

(
F�

)
, ν

(
F̄�

)
≤ |T ′| ≤ k for the obtained instance, as claimed.

3 Proof of Theorem 2

Definition 6. Given a biset-family F on T , let Δ(F) denote the maximum
degree in the hypergraph F in = {X : X̂ ∈ F} of the inner parts of the bisets in

16 Z. Nutov

F . We say that T ′ ⊆ T is a transversal of F if T ′ ∩X �= ∅ for every X ∈ F in;
a function t : T → [0, 1] is a fractional transversal of F if

∑
v∈X t(v) ≥ 1 for

every X ∈ F in.

Lemma 3. Let F be a crossing biset-family. Then Δ(C(F)) ≤ ν
(
F̄
)
.

Proof. Since F is crossing, the members of C(F) are pairwise non-crossing. Thus
if H is a subfamily of C(F) such that the intersection of the inner parts of the
bisets in H is non-empty, then H̄ is a subfamily of F̄ such that the inner parts
of the bisets in H̄ are pairwise disjoint, so |H̄| ≤ ν

(
F̄
)
. �

Lemma 4. Let T ′ be a transversal of a biset-family F ′ on T and let I ′ be an
edge-set on T obtained by picking for every s ∈ T ′ an edge from s to every
inclusion-minimal member of the set-family {X∗ : X̂ ∈ F ′, s ∈ X}. Then I ′

covers F ′. Moreover, if F ′ is crossing then |I ′| ≤ |T ′| · ν(F̄ ′).

Proof. The statement that I ′ coversF ′ is obvious. If F ′ is crossing, then for every
s ∈ T the inclusion-minimal members of {X∗ : X̂ ∈ F ′, s ∈ X} are pairwise-
disjoint, hence their number is at most ν(F̄ ′). The statement follows. �

Lemma 5. Let F be an �-regular biset-family on T . Then the following holds.

(i) ν(F) ≤ ν
(
F�

)
+ 2|T |

|T |−� .

(ii) If ν
(
F�

{e}

)
= ν

(
F�

)
holds for every edge e on T then ν

(
F�

)
≤ |T |

|T |−� .

(iii) There exists a polynomial time algorithm that finds a transversal T ′ of C(F)
of size at most |T ′| ≤

(
ν
(
F�

)
+ 2|T |

|T |−�

)
·H(Δ(C(F))).

Proof. Part (i) is immediate.
We prove (ii). Let Ĉ ∈ C

(
F�

)
and let ÛC be the union of the bisets in F�

that contain Ĉ and contain no other member of C
(
F�

)
. If |UC | ≤ |T | − � − 1

then ÛC ∈ F , by the �-regularity of F . In this case ν
(
F�

{e}

)
≤ ν

(
F�

)
− 1 for

any edge e from C to U∗
C . Hence |UC | ≥ |T | − � must hold for every Ĉ ∈ C(F).

By Lemma 2, the sets in the set-family {UC : Ĉ ∈ C(F)} are pairwise disjoint.
The statement follows.

We prove (iii). Let T � be an inclusion-minimal transversal of F�. By Lemma 2,∣∣T �
∣∣ = ν

(
F�

)
. Setting t(v) = 1 if v ∈ T � and t(v) = 2

|T |−� otherwise, we obtain

a fractional transversal of C(F) of value at most ν
(
F�

)
+ 2|T |

|T |−� . Consequently,

the greedy algorithm of Lovász [16] finds a transversal T ′ as claimed. �

The algorithm for computing I as in Theorem 2 starts with I = ∅ and then
continues as follows.

Phase 1
While there exists an edge e on T such that ν

(
F�

I∪{e}

)
≤ ν

(
F�

I

)
− 1, or such

that ν
(
F̄�

I∪{e}

)
≤ ν

(
F̄�

I

)
− 1, add e to I.

Approximating Subset k-Connectivity Problems 17

Phase 2
Find a transversal T ′ of C(F ′) as in Lemma 5(iii), where F ′ = FI . Then find an
edge-cover I ′ of F ′ as in Lemma 4 and add I ′ to I.

The edge-set I computed covers F by Lemma 4. Clearly, the number of edges
in I at the end of Phase 1 is at most ν

(
F�

)
+ ν

(
F̄�

)
, and is at most ν

(
F�

)
if

F is symmetric. Now we bound the size of I ′. Note that at the end of Phase 1

we have ν
(
F�

I

)
, ν

(
F̄�

I

)
≤ |T |

|T |−� (by Lemma 5(ii)) and thus ν
(
F̄I

)
≤ 3|T |

|T |−� (by

Lemma 5(i)) and Δ(C(FI)) ≤ ν
(
F̄I

)
≤ ν

(
F̄�

I

)
+ 2|T |

|T |−� ≤
3|T |
|T |−� (by Lemma 3).

Consequently, |T ′| ≤
(
ν
(
F�

I

)
+ 2|T |

|T |−�

)
·H(Δ(C(FI))) ≤ 3|T |

|T |−� ·H
(

3|T |
|T |−�

)
. From

this we get |I ′| ≤ |T ′| · ν
(
F̄I

)
≤
(

3|T |
|T |−�

)2

·H
(

3|T |
|T |−�

)
.

The proof of Theorem 2 is now complete.

4 Proof of Theorem 3

We start by analyzing the performance of a natural Greedy Algorithm for covering
ν
(
F�

)
, that starts with I = ∅ and while ν(F�

I) ≥ 1 adds to I a star S for which
ν(F�

I∪S) is minimal. It is easy to see that the algorithm terminates since any star
with center s in the inner part of some core of F�

I and edge set {vs : v ∈ T \{s}}
reduces the number of cores by one. The proof of the following statement is
similar to the proof of the main result of [11].

Lemma 6. Let F be a k-regular biset-family and let S be the collection of stars
computed by the Greedy Algorithm. Then

|S| = O

(
|T |
|T | − �

logmin
{
ν
(
F�

)
, |T | − �

})
.

Recall that given Ĉ ∈ C
(
F�

I

)
we denote by ÛC the union of the bisets in F�

I that

contain Ĉ and contain no other member of C
(
F�

I

)
, and that by Lemma 2, the

inner parts of the bisets in {ÛC : Ĉ ∈ C(F)} are pairwise disjoint.

Definition 7 ([11]). Let us say that s ∈ V out-covers Ĉ ∈ C
(
F �

)
if s ∈ U∗

C.

Lemma 7. Let F be an �-regular biset-family and let ν = ν
(
F�

)
.

(i) There is s ∈ T that out-covers at least ν
(
1− �

|T |

)
− 1 members of C

(
F�

)
.

(ii) If s out-covers Ĉ ∈ C
(
F�

)
then any edge from C to s covers all the bisets

in F� that contain Ĉ and contain no other member of C
(
F�

)
.

(iii) Let s out-cover the members of C ⊆ C
(
F�

)
and let S be a star with one edge

from the inner part of each member of C to s. Then ν(F�) ≤ ν(F�
S)−|C|/2.

Consequently, there exists a star S on T such that

ν(F�
S) ≤

1

2

(
1 +

�

|T |

)
· ν +

1

2
= α · ν + β . (1)

18 Z. Nutov

Proof. We prove (i). Consider the hypergraph H =
{
T \ Γ

(
ÛC

)
: Ĉ ∈ C

(
F�

)}
.

Note that the number of members of C
(
F�

)
out-covered by any v ∈ T is at least

the degree of s in H minus 1. Thus all we need to prove is that there is a node

s ∈ T whose degree in H is at least ν
(
1− �

|T |

)
. For every Ĉ ∈ C

(
F�

)
we have∣∣∣T \ Γ (

ÛC

)∣∣∣ ≥ |T | − �, by the �-regularity of F . Hence the bipartite incidence

graph of H has at least ν(|T | − �) edges, and thus has a node s ∈ T of degree at

least ν
(
1− �

|T |

)
, which equals the degree of s in H. Part (i) follows.

Part (ii) follows from the simple observation that any biset in F�, that contains
Ĉ and contains no other member of C

(
F�

)
, is contained in ÛC .

We prove (iii). It is sufficient to show that every Ĉ ∈ C
(
F�

S

)
contains some

Ĉ′ ∈ C
(
F�

)
\ C or contains at least two members in C. Clearly, Ĉ contains some

Ĉ′ ∈ C
(
F�

)
. We claim that if Ĉ′ ∈ C then Ĉ must contain some Ĉ′′ ∈ C

(
F�

)
distinct from Ĉ′. This is so since Ĉ ∈ C

(
F�

S

)
and since S covers all bisets in F�

that contain Ĉ and contain no other member of C
(
F�

)
, by part (ii). Part (iii)

follows. �

Let us use parameters α, β, γ, δ and j set to

α =
1

2

(
1 +

�

|T |

)
, β =

1

2
, γ = 1− �

|T | = 2(1− α), δ = 1 .

Note that α < 1 and that β
1−α = |T |

|T |−� . Let j be the minimum integer satisfying

αj
(
ν − β

1−α

)
≤ 2

1−α , namely,

j =

⌈
ln 1

2 (ν(1− α) − β)

ln(1/α)

⌉
≤
⌈
ln 1

2ν(1− α)

ln(1/α)

⌉
. (2)

We assume that ν ≥ 2+β
1−α to have j ≥ 0 (otherwise Lemma 6 follows).

Lemma 8. Let 0 ≤ α < 1, β ≥ 0, ν0 = ν, and for i ≥ 1 let

νi+1 ≤ ανi + β si = γνi−1 − δ .

Then νi ≤ αi
(
ν − β

1−α

)
+ β

1−α and
j∑

i=1

si ≤ 1−αj

1−α · γ
(
ν − β

1−α

)
+ j

(
γβ
1−α − δ

)
.

Moreover, for j given by (2)

νj ≤
2 + β

1− α
=

5|T |
|T | − �

and

j∑
i=1

si ≤ 2

(
ν − |T |
|T | − �

)
.

Proof. Unraveling the recursive inequality νi+1 ≤ ανi + β in the lemma we get:

νi ≤ αiν + β
(
1 + α+ · · ·+ αi−1

)
= αiν+ β

1− αi

1− α
= αi

(
ν − β

1− α

)
+

β

1− α
.

Approximating Subset k-Connectivity Problems 19

This implies si ≤ γ
(
ν − β

1−α

)
αi−1 + γβ

1−α − δ, and thus

j∑
i=1

si ≤ γ

(
ν − β

1− α

) j∑
i=1

αi−1 + j

(
γβ

1− α
− δ

)
= γ

(
ν − β

1− α

)
· 1− αj

1− α
+ j

(
γβ

1− α
− δ

)
For j given by (2) we have νj ≤ αj

(
ν − β

1−α

)
+ β

1−α ≤
2

1−α + β
1−α = 2+β

1−α , and

j∑
i=1

si ≤
1− αj

1− α
· γ

(
ν − β

1− α

)
+ j

(
γβ

1− α
− δ

)
≤ 2

(
ν − β

1− α

)
= 2

(
ν − |T |
|T | − �

)
.

�
We now finish the proof of Lemma 6. At each one of the first j iterations we out-

cover at least ν
(
Fk

I

) (
1− �

|T |

)
−1 members of C

(
F�

I

)
, by Lemmas 7. In each one

of the consequent iterations, we can reduce ν
(
F�

I

)
by at least one, if we choose

the center of the star in C for some Ĉ ∈ C
(
F�

I

)
. Thus using Lemma 8, performing

the necessary computations, and substituting the values of the parameters, we
obtain that the number of stars in S is bounded by

j + νj ≤
⌈
ln 1

2ν(1− α)

ln(1/α)

⌉
+

5|T |
|T | − �

= O

(
|T |
|T | − �

logmin{ν, |T | − �}
)

.

Now we discuss a variation of this algorithm that produces S with a small
number of leaves. Here at each one of the first j iterations we out-cover exactly

ν
(
1− �

|T |

)
− 1 cores. For that, we need to be able to compute the bisets ÛC ,

and such a procedure can be found in [14]. The number of edges in the stars

at the end of this phase is at most 2
(
ν − |T |

|T |−�

)
and νj ≤ 5|T |

|T |−� . In the case

of non-symmetric F and/or directed edges, we apply the same algorithm on
F̄�. At this point, we apply Phase 2 of the algorithm from the previous section.

Since the number of cores of each one of F�
I , F̄�

I is now O
(

|T |
|T |−�

)
, the size of

the transversal T ′ computed is bounded by |T ′| = O
(

|T |
|T |−� · log

|T |
|T |−�

)
. The

number of stars is at most |T ′|, while the number of edges in the stars is at most

|T ′| · ν
(
F̄I

)
=
(

|T |
|T |−�

)2

· O
(
log |T |

|T |−�

)
.

This concludes the proof of Theorem 3.

References

1. Auletta, V., Dinitz, Y., Nutov, Z., Parente, D.: A 2-approximation algorithm for
finding an optimum 3-vertex-connected spanning subgraph. J. Algorithms 32(1),
21–30 (1999)

20 Z. Nutov

2. Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric
costs. SIAM J. Discrete Mathematics 21(3), 612–636 (2007)

3. Chuzhoy, J., Khanna, S.: An O(k3 log n)-approximation algorithm for vertex-
connectivity survivable network design. In: FOCS, pp. 437–441 (2009)

4. Dinitz, Y., Nutov, Z.: A 3-approximation algorithm for finding optimum 4,5-vertex-
connected spanning subgraphs. J. Algorithms 32(1), 31–40 (1999)

5. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. Combinatorial
Theory, Ser. B 65(1), 73–110 (1995)

6. Frank, A., Tardos, E.: An application of submodular flows. Linear Algebra and its
Applications 114/115, 329–348 (1989)

7. Jordán, T.: On the optimal vertex-connectivity augmentation. J. Combinatorial
Theory, Ser. B 63(1), 8–20 (1995)

8. Khuller, S., Raghavachari, B.: Improved approximation algorithms for uniform con-
nectivity problems. J. Algorithms 21(2), 434–450 (1996)

9. Kortsarz, G., Krauthgamer, R., Lee, J.: Hardness of approximation for vertex-
connectivity network design problems. SIAM J. Computing 33(3), 704–720 (2004)

10. Kortsarz, G., Nutov, Z.: Approximating node-connectivity problems via set covers.
Algorithmica 37, 75–92 (2003)

11. Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical
graphs. SIAM J. on Computing 35(1), 247–257 (2005)

12. Kortsarz, G., Nutov, Z.: Approximating minimum-cost connectivity problems. In:
Gonzalez, T.F. (ed.) Approximation algorithms and Metaheuristics, Ch. 58. Chap-
man & Hall/CRC (2007)

13. Kortsarz, G., Nutov, Z.: Tight approximation algorithm for connectivity augmen-
tation problems. J. Computer and System Sciences 74(5), 662–670 (2008)

14. Laekhanukit, B.: An Improved Approximation Algorithm for Minimum-Cost
Subset k-Connectivity. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 13–24. Springer, Heidelberg (2011)

15. Lando, Y., Nutov, Z.: Inapproximability of survivable networks. Theoretical Com-
puter Science 410(21-23), 2122–2125 (2009)

16. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math-
ematics 13, 383–390 (1975)

17. Nutov, Z.: Approximating minimum-cost edge-covers of crossing biset families.
In: Manuscript. Preliminary version: An almost O(log k)-approximation for k-
connected subgraphs, SODA 2009, pp. 912–921 (2009)

18. Nutov, Z.: Approximating rooted connectivity augmentation problems. Algorith-
mica 44, 213–231 (2006)

19. Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable
bifamilies and spider-cover decompositions. In: FOCS, pp. 417–426 (2009)

20. Nutov, Z.: Approximating Node-Connectivity Augmentation Problems. In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687,
pp. 286–297. Springer, Heidelberg (2009)

21. Végh, L.: Augmenting undirected node-connectivity by one. SIAM J. Discrete
Mathematics 25(2), 695–718 (2011)

Learning in Stochastic Machine Scheduling

Sebastián Marbán, Cyriel Rutten, and Tjark Vredeveld

Department of Quantitative Economics, Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands

{s.marban,c.rutten,t.vredeveld}@maastrichtuniversity.nl

Abstract. We consider a scheduling problem in which two classes of
independent jobs have to be processed non-preemptively by a single ma-
chine. The processing times of the jobs are assumed to be exponentially
distributed with parameters depending on the class of each job. The ob-
jective is to minimize the sum of expected completion times. We adopt a
Bayesian framework in which both job class parameters are assumed to
be unknown. However, by processing jobs from the corresponding class,
the scheduler can gradually learn about the value of these parameters,
thereby enhancing the decision making in the future.

For the traditional stochastic scheduling variant, in which the param-
eters are known, the policy that always processes a job with Shortest
Expected Processing Time (SEPT) is an optimal policy. In this paper,
we show that in the Bayesian framework the performance of SEPT is at
most a factor 2 away from the performance of an optimal policy. Fur-
thermore, we introduce a second policy learning-SEPT (�-SEPT), which
is an adaptive variant of SEPT. We show that �-SEPT is no worse than
SEPT and empirically outperforms SEPT. However, both policies have
the same worst-case performance, that is, the bound of 2 is tight for both
policies.

1 Introduction

In this paper, we consider the classical non-preemptive single machine scheduling
problem to minimize the total completion time. In deterministic and traditional
stochastic scheduling, this problem is well understood and can be solved to opti-
mality by the Shortest (Expected) Processing Time (SPT or SEPT) policy: pro-
cess the jobs in non-decreasing order of their (expected) processing time [19,22].
In traditional stochastic scheduling, it is assumed that the jobs’ processing times
are independent random variables of which the parameters, such as the expected
value, are fully known. We relax this assumption by introducing parameter un-
certainty. Like in [2,8,10,11,12], we adopt a Bayesian viewpoint in which we
have prior distributions for the uncertain parameters. These priors represent our
beliefs on the values of the parameters. Furthermore, the Bayesian framework
allows us to learn about the value of the parameters by processing jobs and
observing their realized processing times. However, experimenting with differ-
ent jobs to learn about the value of the corresponding parameters can be costly
in terms of the waiting times of the still to be processed jobs. Hence, learning

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 21–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 S. Marbán, C. Rutten, and T. Vredeveld

should be conducted carefully in order to minimize the sum of completion times
in expectation.

Problem definition. There are two classes of independent jobs that have to be
processed by a single machine. Each class Ji consists of ni jobs (i = 1, 2). All
jobs are available for processing from the beginning and preemption of jobs
is not allowed, that is, once a job has been initiated it must remain on the
machine until completion. The processing time of a job in class Ji is a random
variable, which is independently and exponentially distributed with parameter
ϑi. Distinguishing from traditional stochastic scheduling, in the scheduling model
under consideration the value of ϑi is unknown. The goal is to minimize the total
completion time in expectation,

∑
j E [Cj].

We introduce a random variableΘi describing the scheduler’s beliefs regarding
the value ofϑi. In theBayesian approach,ϑi canbe considered as a realization of the
random variableΘi. The initial distribution ofΘi, that is, before any job has been
processed, is called the prior. As in [11,12], we assume that the prior is a gamma
distribution with parameters ωi > 0 and αi > 1. Depending on the confidence in
his beliefs about ϑi, the scheduler can choose the values of ωi and αi such that the
prior is very peaked (the scheduler is very certain about his beliefs) or relatively
flat (the scheduler is not certain about his beliefs) or anywhere in between.

After a job of class Ji is processed, we observe this job’s processing time x.
Since the gamma distribution is a conjugate prior for the exponential distribu-
tion, the posterior distribution of Θi, representing the beliefs of ϑi after having
observed processing time realization x, is a gamma distribution with parameters
ωi+x and αi+1. This result is stated in a.o. Section 9.4 of [5] and is also derived
from Bayes’ theorem for probability density functions. In this way, the scheduler
gradually learns about the unknown parameter, thereby enhancing his decision
making in the future.

A solution to a stochastic scheduling problem is not merely a simple schedule,
but a so-called scheduling policy. We follow the notion of scheduling policies as
proposed by Möhring, Radermacher, and Weiss [17]. A scheduling policy makes
decisions on which job to schedule at certain decision times. We require a policy
to be non-anticipatory: at any time, it may not utilize the actual processing
times of jobs that have not yet been completed. A scheduling policy may, of
course, at any decision time, use the information that it has gathered up to this
time. An optimal scheduling policy is defined as a non-anticipatory scheduling
policy that minimizes the objective value in expectation. Note hereby that an
optimal scheduling policy underlies the uncertainty about processing times as
well as the uncertainty about the parameters.

Burnetas and Katehakis [2] and Hamada and Glazebrook [11] present optimal
policies for different number of job classes. Even for the case of two job classes,
one of which has known parameter, these policies require solving extensive dy-
namic programs. This is in contrast to the traditional stochastic scheduling vari-
ant of the problem in which the optimal scheduling policy is SEPT [19]. The
reason why SEPT is not an optimal policy in the Bayesian setting lies in the
fact that when the expected processing times of the job classes are close to each

Learning in Stochastic Machine Scheduling 23

other and the parameter of the class with higher expected value is more uncer-
tain it may be beneficial to learn about the value of the underlying parameter
of this class. As SEPT is a very simple policy that is optimal for the traditional
stochastic scheduling problem under consideration, it is interesting to know how
well it performs in the setting with parameter uncertainty.

In the Bayesian setting, there are two natural versions of SEPT. The first
one, which we keep calling SEPT, determines the order in which the jobs will
be processed at the beginning based on its initial beliefs. The second version,
which we denote by learning-SEPT or �-SEPT, updates its beliefs on ϑi every
time a job of class Ji is completed. After each completion of a job, �-SEPT
will schedule the job with shortest expected processing time with respect to its
current beliefs. In this paper, we investigate the quality of the solution value
obtained by both policies. Adopting the definition of [18], we define a policy Π
to be a ρ-approximative policy when E [Π(I)] ≤ ρE [OPT(I)] on any scheduling
instance I. Here E [Π(I)] is the expected total completion time of policy Π on
instance I and OPT is the optimal non-anticipatory policy. The value ρ is called
the (worst case) performance guarantee.

Related work. In traditional stochastic scheduling, the processing times of jobs
are random variables for which the parameters of the underlying distribution are
known. Rothkopf [19] shows that WSEPT (Weighted Shortest Expected Process-
ing Time) is an optimal policy for the stochastic single machine scheduling prob-
lem, where the objective is to minimize the sum of weighted expected completion
times. Weiss [23,24] analyzes the performance of WSEPT for the stochastic par-
allel machine scheduling problem. He shows asymptotic optimality of WSEPT
for a certain class of processing time distributions. The first guarantee on the
quality of an approximative policy was given by Möhring, Schulz, and Uetz [18].
Other approximative policies have been considered in [4,15,16,21].

This paper contributes to the field by applying a Bayesian framework to the sin-
gle machine scheduling problem. Examples of papers that apply the same frame-
work to scheduling problems are limited. In the pioneering paper of Gittins and
Glazebrook [8], the distributions of processing times of jobs depend all upon the
same unknown parameter. The optimal schedule is obtained by calculating appro-
priate dynamic allocation indices, first proposed by Gittins and Jones [9]. Hamada
and Glazebrook [11] present another example studying the Bayesian scheduling
problem with multiple weighted job classes. Optimal policies are derived using
dynamic allocation indices similar to the ones in [7]. Burnetas and Katehakis [2]
derive optimality conditions for the same problem with two job classes: one with
known and one with unknown underlying parameter. Glazebrook and Owen [10]
quantify the difference between adaptive scheduling policies based on Bayesian
methodology and non-adaptive classical stochastic scheduling policies.

Bayesian methodology is widely applied in research fields related to schedul-
ing. In inventory management for example, there is a large body of literature
dealing with uncertain demand distributions and Bayesian learning. Pioneered
by [20], some recent papers are given by [3,13]. The majority of these papers
assumes that prices are exogenous and studies the problem of making optimal

24 S. Marbán, C. Rutten, and T. Vredeveld

inventory decisions. Bayesian demand learning has also received a great deal of
attention within the field of pricing, see [1,14]. All these papers are experimental
in that they focus on developing heuristics and studying their computational
aspects. The first, and so far only, paper to analyze the theoretical worst-case
performance of a Bayesian pricing heuristic is [6].

Our results. In Section 3, we first show that �-SEPT is in expectation better
than the non-adaptive version SEPT. Furthermore, we show that the perfor-
mance guarantee for both SEPT and �-SEPT is a function depending on the
number of jobs in both classes and that this function can be arbitrarily close
to, but is bounded by, 2. If one of the two job classes has a constant number
of jobs and the number of jobs of the other class tends to infinity, then SEPT
and linebreak �-SEPT are asymptotically optimal. In Section 4, we show that
the bound for SEPT as well as the bound for �-SEPT is tight. To the best of
our knowledge, this is one of the first tight performance guarantees in stochas-
tic scheduling, where the tightness follows from non-degenerate processing time
distributions. Section 5 complements our theoretical findings with some prelim-
inary computational results, showing that �-SEPT in practice outperforms the
non-adaptive variant, although the worst-case performance guarantees are the
same. Finally, we conclude with some remarks on the case of m job classes.

2 Preliminaries and Scheduling Policies

In this section, we introduce the Bayesian scheduling framework and policies
SEPT, �-SEPT, and OPT. Additionally, we give useful bounds on the perfor-
mance of these policies.

2.1 Bayesian Methodology

Bayesian methodology offers a method to formally recognize the uncertainty
regarding parameter ϑi. A random variable Θi is introduced which describes the
scheduler’s beliefs regarding the value of ϑi. In the Bayesian approach, ϑi can
be considered as a realization of the random variable Θi. For some θ > 0, let
gi(θ) :=

∂
∂θ Pr [Θi ≤ θ] denote a (prior) probability density function. Intuitively,

the probability expresses how strongly we believe that the value of ϑi is less than
or equal to θ, prior to seeing any realization of processing times of jobs of class Ji.
We assume gi(θ) to be a gamma distribution with parameters ωi > 0 and αi > 1.
Once k jobs of class Ji have been completed with processing time realizations
x1 up to xk, the beliefs with respect to the unknown value of ϑi will be updated
and expressed by the (posterior) probability density function

gi(θ|x1, . . . , xk) :=
∂

∂θ
Pr [Θi ≤ θ|X1 = x1, . . . , Xk = xk] .

Since the gamma distribution provides a conjugate prior for the exponential
distribution, the posterior gi(θ|x1, . . . , xk) is also a gamma distribution with

parameters ω′
i := ωi +

∑k
j=1 xj and α′

i := αi + k (see e.g. Section 9.4 of [5]).

Learning in Stochastic Machine Scheduling 25

Updating beliefs toward ϑi results in updated beliefs regarding the processing
times of uncompleted jobs in class Ji. The probability density function expressing
these latter beliefs, after having completed k jobs of class Ji, is denoted by

fi,k+1(xk+1) :=
∂

∂xk+1
Pr [Xk+1 ≤ xk+1|X1 = x1, . . . , Xk = xk] ,

which is equal to

fi,k+1(xk+1) =

∫ ∞

0

f(xk+1|θ)gi(θ|x1, . . . , xk)∂θ (1)

=

∫ ∞

0

θe−θxk+1
ω′
i
α′

i

Γ (α′
i)
θα

′
i−1e−θω′

i∂θ =
α′
i ω

′
i
α′

i

(ω′
i + xk+1)α

′
i+1

,

where f(xk+1|θ) is an exponential probability density function with parameter
θ. Furthermore, straightforward integration yields the first moment of Xk+1:

E [Xk+1|x1, . . . , xk] =

∫ ∞

0

xk+1 fi,k+1(xk+1)∂xk+1 =
ωi +

∑k
j=1 xj

αi + k − 1
. (2)

The more jobs of job class i have been processed, the more accurate the sched-
uler’s beliefs regarding ϑi will be. First, the expected value of (Θi|x1, . . . , xk)
will converge to ϑi by the law of large numbers. Secondly, the variance of
(Θi|x1, . . . , xk) will decrease since ωi and αi will be increased with every new
observation. Hence, the more jobs we process, the more peaked and the more
centered around ϑi the distribution of (Θi|x1, . . . , xk) will become, i. e., the more
we learn about the value of ϑi.

2.2 Bayesian Scheduling Policies

An optimal policy for the Bayesian scheduling problem at hand, OPT, minimizes
total completion time in expectation, thereby taking into account the uncertainty
regarding the job class parameters. That is, the values of the parameters ϑi are
unknown to OPT, but the policy will anticipate and act in its decision making
upon the additional information to be revealed when processing a job of a certain
class. In order to characterize OPT, we formulate the problem as a dynamic
program, introduced by [11].

Let n = (n1, n2), ω = (ω1, ω2), and α = (α1, α2). Then, (n,ω,α) =
(n1, n2,ω,α) ∈ Z

2
+×R

2
>0×R

2
>1 denotes a state vector encompassing all relevant

information of the state the system is in. It consists of the number of jobs in
each class Ji as well as the parameters of the current belief for ϑi. Let ei be the
ith unit vector. If in state (n,ω,α), a job of class Ji is processed and completed
having realization x, then the state changes to (n − ei,ω + xei,α + ei). Let
E [Π∗(n,ω,α)] denote the expected sum of completion times when the optimal
policy is adopted from state (n,ω,α) onwards. Further, let E [Π∗

i (n,ω,α)] de-
note the sum of the expected completion times of a policy which first processes
a job of class Ji (assuming ni ≥ 1) and follows an optimal policy afterwards.

26 S. Marbán, C. Rutten, and T. Vredeveld

An optimal policy can then be modeled by the following dynamic program:

E [Π∗(n,ω,α)] = min {E [Π∗
1(n,ω,α)],E [Π∗

2(n,ω,α)]} ∀ n ≥ 1 (3)

and

E [Π∗(n1, 0,ω,α)] =

(
n1∑
i=1

i

)
ω1

α1 − 1
=

n1(n1 + 1)

2

ω1

α1 − 1
∀ n1 ≥ 0,

E [Π∗(0, n2,ω,α)] =

(
n2∑
i=1

i

)
ω2

α2 − 1
=

n2(n2 + 1)

2

ω2

α2 − 1
∀ n2 ≥ 0.

As the length of the first job to be processed by a policy influences the completion
time of all jobs, straightforward calculations show that

E [Π∗
i (n,ω,α)] = (n1 + n2)

ωi

αi − 1
+

∫ ∞

0

E [Π∗(n− ei,ω + xei,α+ ei)] fi1(x)dx,

(4)

for all ni ≥ 1.
In the traditional stochastic scheduling variant, in which the parameters ϑi

are known, the policy SEPT processes jobs in non-decreasing order of expected
processing times. In the Bayesian scheduling problem at hand, SEPT processes
the jobs of each job class en bloc, starting with the class having the shortest
expected processing time. Formally, SEPT starts processing all jobs of class J1
in case ω1

α1−1 < ω1

α1−1 followed by all jobs of class J2, and vice versa otherwise.
The random variable for the sum of completion times of SEPT is denoted by
Πs, and its expected value can be written as

E [Πs(n1, n2,ω,α)] =
n1(n1 + 1)

2

ω1

α1 − 1
+

n2(n2 + 1)

2

ω2

α2 − 1

+ n1n2 min

{
ω1

α1 − 1
,

ω2

α2 − 1

}
. (5)

The non-adaptive character of SEPT could result in performance loss in compar-
ison to a policy which makes use of additional information being revealed when
processing the jobs. This shortcoming of SEPT is illustrated by the following
example.

Example 1. Consider the Bayesian scheduling problem with two job classes. Let
ω1 = 10, α1−1 = 90, ω2 = 0.2 and α2−1 = 2 such thatE [X1] =

ω1

α1−1 = 10
90 > 0.1

and E [X2] =
ω2

α2−1 = 0.2
2 = 0.1, where Xi denotes the processing time of the first

job to be processed of class Ji. Since E [X1] > E [X2], SEPT will first process
all jobs of class J2 and afterward all jobs of class J1. However, we picked our
values in such a way that the distribution of Θ1 is peaked, i. e., we are relatively
sure about the value of ϑ1, whereas the distribution of Θ2 is flat, i. e., we are
relatively unsure about the value of ϑ2 (see Figure 1). Consequently, it might be

Learning in Stochastic Machine Scheduling 27

that actually ϑ2 < ϑ1, such that, in contrast to SEPT, it would be best to first
start processing all jobs of class J1. Just like SEPT, OPT will start processing
the jobs of class J2 since E [X2] < E [X1] and the beliefs regarding ϑ2 are not
that strong. However, in case ϑ2 < ϑ1, OPT will observe high processing times
for the first few jobs of job class J2 and realize his mistake. After processing a
few jobs of job class J2, OPT will therefore switch to processing jobs of class J1,
whereas SEPT continues with processing all jobs of job class J2. By choosing
appropriate values for the parameters ω and α the probability that ϑ2 < ϑ1 can
be made even larger. Hence, the performance of SEPT can be far away from
that of OPT.

Fig. 1. Gamma distributions describing the beliefs with respect to the unknown param-
eters ϑ1 and ϑ2. Since the distribution corresponding to job class J1 (J2) is relatively
peaked (flat), we are quite sure (unsure) about the value of ϑ1 (ϑ2).

To overcome the shortcoming discussed in the example above, we propose
an adaptive policy learning-SEPT (�-SEPT). Whenever the machine is idle, this
policy starts processing the job with shortest expected processing time. Thereby,
it updates the expected processing time of jobs in a class every time a job of this
specific class has been completed. Formally, after k1 jobs of class J1 and k2 jobs
of class J2 have been finished, �-SEPT starts processing a job of class J1 in case
ω1+

∑k1
j=1 xj

α1+k1−1 <
ω2+

∑k2
j=1 yj

α2+k2−1 , and a job of class J2 otherwise, where xi denotes the
observed value of the processing time of the ith job of class J1 and yj denotes
the realized value of the processing time of the jth job of class J2. Note that
in Example 1, �-SEPT also starts processing jobs of class J2. However, in case
ϑ2 < ϑ1, just like OPT, �-SEPT will realize his mistake after having processed
a few jobs of class J2 and continue with processing jobs of class J1. In what
follows, Π� denotes the random variable for the sum of completion times when
policy �-SEPT is used.

To summarize, we observe that �-SEPT uses more information than SEPT
whereas OPT uses all available information, although none of the three policies
know the values of ϑi. All three policies know the values of ωi and αi which
are derived from the scheduler’s beliefs about ϑi. Based on these values SEPT

28 S. Marbán, C. Rutten, and T. Vredeveld

processes first all jobs of the job class with minimal expected processing time
for the first job to be processed. OPT and �-SEPT are more intelligent in the
sense that they make use of the underlying distribution of Θi and update this
distribution in light of new realizations. OPT in particular uses gi(θ|x1, . . . , xk)
through equations (1), (3), and (4). �-SEPT actually only uses the first moment
of the updated distribution of (Θi|x1, . . . , xk) to determine that the expected
processing time of the next job of job class Ji equals (2), once k jobs of job class
Ji have been processed.

In terms of decision making, one could thus interpret OPT as having a long-
term view whereas SEPT and �-SEPT both have a short-term view. Both policies
process a job of class Ji only if the expected processing time of the next job in
this class is minimal. OPT, however, might choose to process a job of class Ji
for which the expected processing time is not necessarily minimal. As a trade-
off, OPT benefits from the additional information which is acquired regarding
the uncertain parameter ϑi. This information could then lead to better future
decision making and a lower sum of completion times.

2.3 Bounds on Scheduling Policies

A trivial lower bound on the performance of an arbitrary policy is based on the
fact that in any policy jobs of a class have to wait for other jobs of the same
class. Hence, in constructing the lower bound we neglect waiting times caused
by jobs having to wait for jobs of a different class.

Lemma 1. Let Π be an arbitrary scheduling policy. Then, for any n1, n2 ≥ 0,
ω > 0, and α > 1,

E [Π(n1, n2,ω,α)] ≥ E [Π(n1, 0,ω,α)] +E [Π(0, n2,ω,α)]

=
(n1 + 1)n1

2

ω1

α1 − 1
+

(n2 + 1)n2

2

ω2

α2 − 1
.

As the expected completion time of each job is delayed by the expected process-
ing time of the first job to be processed by the optimal policy, we can bound the
value of the optimal policy as in the following lemma.

Lemma 2. For any n1, n2 ≥ 0, ω > 0, and α > 1,

E [Π∗(n1, n2,ω,α)] ≥ n1(n1 + 1)

2

ω1

α1 − 1
+

n2(n2 + 1)

2

ω2

α2 − 1

+ min {n1, n2}min

{
ω1

α1 − 1
,

ω2

α2 − 1

}
.

3 Upper Bound on Performance Guarantees

In this section, we prove that both SEPT and �-SEPT have a performance guar-
antee less than 2. First, we show that the adaptive policy is indeed better than
sequencing the jobs a priori. The proof of this theorem is postponed to the full
version.

Learning in Stochastic Machine Scheduling 29

Theorem 1. For any n ≥ 0, ω > 0, and α > 1,

E
[
Π�(n,ω,α)

]
≤ E [Πs(n,ω,α)] .

Given the relation between SEPT and �-SEPT, we can prove the performance
guarantee on both SEPT and �-SEPT.

Theorem 2. For any n1, n2 ≥ 0, ω > 0, and α > 1,

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
≤ n2

1 + n2
2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + n1 + n2 + 2min {n1, n2}
< 2.

Proof. The first inequality follows directly from Theorem 1. To prove the second
and last inequality, let n1, n2 ≥ 0, ω > 0, and α > 1. Combining (5) and Lemma
2, we obtain

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
≤

n1(n1 + 1)
ω1

α1−1 + n2(n2 + 1)
ω2

α2−1 + 2n1n2 min
{

ω1
α1−1 ,

ω2
α2−1

}

n1(n1 + 1)
ω1

α1−1 + n2(n2 + 1)
ω2

α2−1 + 2min {n1, n2}min
{

ω1
α1−1 ,

ω2
α2−1

}

observing that for any 0 < c ≤ b and 0 < d ≤ a, it holds that a+b
a+c ≤

d+b
d+c and

replacing ω1

α1−1 and ω2

α2−1 by the minimum of the two, we can bound this by

≤
n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + n1 + n2 + 2min {n1, n2}
≤

4n2
max + 2nmax

2n2
max + 2nmax

< 2,

where nmax = max {n1, n2}.

Note that it follows from Theorem 2 that the performance guarantee will be
close to one in case the number of jobs in one class is of a different order than
the number of jobs in the second class. To be more explicit, when the number
of jobs in one class is fixed while the number of jobs in the second class tends
to infinity, then the performance guarantee will go to one, yielding asymptotic
optimality of SEPT and �-SEPT.

4 Tightness of the Performance Guarantees

In this section, we show that the performance guarantee shown in the previous
section is tight for SEPT as well as �-SEPT. Although by Theorem 1, it suffices
to show that the guarantee of �-SEPT is tight, we first give a lower bound on
the performance guarantee of SEPT, as this one is more intuitive, whereas the
lower bound for �-SEPT is rather technical.

4.1 Lower Bound on the Performance Guarantee of SEPT

We show that for any ε > 0 there exists an instance for which the ratio of
the value of SEPT to the value of OPT is only an additive ε away from the
performance guarantee of Theorem 2. In order to obtain this result, we make
use of the following two facts.

30 S. Marbán, C. Rutten, and T. Vredeveld

Fact 1. For any ω > 0 and α > 1,∫ ∞

0

min

{
ω + x

α
, 1

}
f11(x)dx =

ω

α− 1
− 1

α− 1

(ω
α

)α

.

Fact 2. For any α > 1,

lim
α↓1

1

α− 1

(
α− 1

α

)α

= 1

Additionally, we need a lower bound on SEPT and an upper bound on OPT.

Lemma 3. For any n1, n2 ≥ 0, there exist parameter settings ω > 0, and α > 1
such that ω1

α1−1 < ω2

α2−1 = 1 and

E [Πs(n1, n2,ω,α)] >
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ n1n2 − ε,

for any ε > 0.

Proof. For all ε′ > 0 and arbitrary α1 > 1, let ω1 = (1− ε′)(α1 − 1). By (5), we
have

E [Πs(n1, n2,ω,α)] =
n1(n1 + 1)

2
(1− ε′) +

n2(n2 + 1)

2
+ n1n2(1− ε′).

Hence, for any ε > 0, there exists an ε′ > 0 for which the lemma holds.

Lemma 4. For any n1, n2 ≥ 0, there exist parameter settings ω > 0, and α > 1
such that ω1

α1−1 < ω2

α2−1 = 1 and

E [Π∗(n1, n2,ω,α)] < n1 +
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ ε,

for any ε > 0.

Proof. Consider the following policyΠ : first process one job of class J2, observing
realization y, and schedule all remaining jobs according to SEPT. That is, if
ω1

α1−1 ≤
ω2+y
α2

then process first all jobs of class J1 and then the remaining jobs
of class J2 and otherwise first process the remaining jobs of class J2 and then all
jobs of class J1. Using y to denote the observed value of the first job of class J2,
we have that for any n1, n2 ≥ 0, ω > 0, and α > 1 such that ω1

α1−1 < ω2

α2−1 = 1,

E
[
Π∗(n1, n2,ω,α)

]
≤ E [Π(n1, n2,ω,α)]

= (n1 + n2)
ω2

α2 − 1
+

∫ ∞

0

E
[
Π

s
(n1, n2 − 1,ω + ye2,α + e2)

]
f21(y)dy

(5)
= n1 +n2 +

n1(n1 + 1)

2

ω1

α1 − 1
+

n2(n2 − 1)

2
+ n1(n2 − 1)

∫ ∞

0

min

{
ω1

α1 − 1
,
ω2 + y

α2

}
f21(y)dy

< n1 +
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ n1(n2 − 1)

∫ ∞

0

min

{
1,

ω2 + y1

α2

}
f21(y)dy

Fact 1
= n1 +

n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ n1(n2 − 1)

[
ω2

α2 − 1
−

1

α2 − 1

(
ω2

α2

)α2
]
. (6)

Learning in Stochastic Machine Scheduling 31

Recall that by assumption ω2 = α2 − 1. Combining (6) and Fact 2, and letting
α2 tend to 1 from above, we find

lim
α2↓1

E [Π∗(n1, n2,ω,α)] < n1 +
n1(n1 + 1)

2
+

(n2 + 1)n2

2
.

Hence, it follows that for any n1, n2, ω1 < α1 − 1, there exists for any ε > 0 an
α∗ > 1 such that for all 1 < α2 = ω2 + 1 < α∗

E [Π∗(n1, n2,ω,α)] < n1 +
n1(n1 + 1)

2
+

n2(n2 + 1)

2
+ ε.

As a straightforward consequence of Lemmata 3 and 4, we obtain the following
theorem.

Theorem 3. For any n1 and n2, there exist parameter settings ω > 0 and
α > 1, such that, for any ε > 0

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
>

n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + 3n1 + n2
− ε.

Furthermore, there exist parameter settings n1, n2 ≥ 0, ω > 0 and α > 1, such
that for any ε > 0,

E [Πs(n1, n2,ω,α)]

E [Π∗(n1, n2,ω,α)]
> 2− ε.

Proof. The restrictions imposed on the values α1 and α2 in Lemmas 3 and 4
can be satisfied simultaneously. Therefore, the first part of the theorem follows
directly from these lemmas. To see the second part, we set n1 = n2 = n and let
n tend to infinity.

lim
n→∞

E [Πs(n, n,ω,α)]

E [Π∗(n, n,ω,α)]
> lim

n→∞

2n2 + n

n2 + 2n
− ε = lim

n→∞

2n+ 1

n+ 2
− ε = 2− ε.

4.2 Lower Bound on the Performance Guarantee of �-SEPT

Similarly to the previous section, we show that for any ε > 0 there exists an
instance for which the ratio of the value of �-SEPT to the value of OPT is only
an additive ε away from the performance guarantee of Theorem 2.

Theorem 4. There exist parameter settings n1, n2 ≥ 0, ω > 0, α > 1 such that

E
[
Π�(n1, n2,ω,α)

]
E [Π∗(n1, n2,ω,α)]

>
n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + 3n1 + n2
− ε

for any ε > 0.

32 S. Marbán, C. Rutten, and T. Vredeveld

A formal proof of this theorem is given in the full version of the paper. In order
to give this proof, we need a lower bound on the performance of �-SEPT. To
obtain this bound, we adjust the worst case instance of SEPT, given in Lemma 3.
In that instance, we set our parameters in such a way that E [X1] is slightly less
than E [X2]. Hence, SEPT starts processing all jobs of class J1, followed by the
jobs of class J2. OPT however, starts processing a job from class J2, since the
distribution of Θ2 is flat, making it is beneficial to process a few jobs of the
second class to get a better idea about the value of ϑ2.

To create a bad instance for �-SEPT, we would like to keep the same structure.
Therefore, we need to make sure �-SEPT does not switch to processing jobs from
the second class after it processed a few jobs of the first class. This is done by
setting the values of ω1 and α1 extremely large such that we are almost certain
about the value of ϑ1. Consequently, the realizations of processing times of jobs
from class J1 barely affect the expected processing time for the next job to be
processed, i. e., when ω1 and α1 are big enough we have

ω1 +
∑k

j=1 xk

α1 + k − 1
≈ ω1

α1 − 1
= 1− ε < 1 =

ω2

α2 − 1

after k observations on the first job class.

5 Computational Results

In this section, we present preliminary computational results to investigate the
performance of SEPT and �-SEPTwith respect to the optimal value in a Bayesian
setting. That is, for several job class settings, we compare the values of SEPT and
�-SEPT with the optimal Bayesian solution. All computations are performed in
MATLAB. In order to compute the values of OPT, we used the algorithm pre-
sented in Section 4 of the paper of Hamada and Glazebrook [11].

The Bayesian scheduling instances studied are as follows: the number of
jobs in both job classes is set to 15, since the theoretical worst-case perfor-
mance is reached for equal number of jobs in both classes. Furthermore, the
gamma prior settings are set such that ωi and (αi − 1) are both an element of
{0.5 ; 1.0 ; 5.0 ; 25.0} for each job class Ji. This results in 100 different compu-
tations covering the majority of interesting job class settings, i.e., the cases in
which both job classes have high or low parameter uncertainty, and the mixed
case in which one class has high and the other one low parameter uncertainty.
Moreover, these computations could still be performed in a reasonable amount
of time. Choosing our settings in a more extreme fashion immediately results in
difficulties with the precision in calculating OPT, and also significantly increases
the computation time of this optimal policy.

In our computations, 50.000 simulations are run for each Bayesian scheduling
instance. In each of those simulations, we draw for each job class a parameter
realization from a gamma distribution. This realization is subsequently used to
draw 15 processing time realizations from an exponential distribution. Using

Learning in Stochastic Machine Scheduling 33

these realizations the sum of completion times for each of the policies is calcu-
lated. Performance of the policies SEPT and �-SEPT is measured by average
objective value of the policy over the average objective value of OPT.

The preliminary computational results indicate that in case both job classes
have high parameter uncertainty �-SEPT is only about 1% away from the optimal
value, while for SEPT the deviation is more than 13%. On the other hand, when
the parameter uncertainty is low, we find that SEPT performs already better (1%
away from OPT), but �-SEPT obtains exactly the same value as OPT. In case
both job classes have the same expected processing time, SEPT has the worst
performance ratio among the instances tested: for high parameter uncertainty
SEPT is about 30% above OPT, and for medium parameter uncertainty it is still
7% away from the optimal value. Intuitively, this was to be expected, because in
these cases SEPTwill just randomly choose a job class to start with. Also �-SEPT
performs the worst when both job classes have the same expected processing
time, and in addition one job class has high parameter uncertainty, whereas
the other one has low parameter uncertainty. This is explained by the fact that
�-SEPT makes its decisions based only on the first moment of the distribution
and disregards further moments. Still in these cases, �-SEPT outperforms SEPT,
and it has a maximum deviation from OPT of only 9%. To conclude, on all
instances �-SEPT clearly outperforms the non-adaptive variant SEPT, thereby
emphasizing the impact of learning on the performance of the algorithm. Finally,
we remark that when averaging over the 50.000 trials, SEPT has a much higher
variance than the other two policies. Again this is explained by the fact that
SEPT, in case that the two job classes have the same expected processing time,
randomly picks a job class to start with.

6 Concluding Remarks

In this paper, we studied the performance guarantee of two natural extensions
of the traditional stochastic scheduling policy SEPT to the setting of Bayesian
scheduling. We only considered the case in which there are 2 job classes and gave
tight performance guarantees for both policies. An interesting extension will be
the case of m job classes. For this case, we can prove a performance guarantee
of m on both SEPT and �-SEPT. For the non-adaptive policy SEPT this bound
is tight, whereas for the adaptive policy �-SEPT, we have a lower bound of
1 +
√
m− 1 and we conjecture that this is the right performance guarantee.

Acknowledgments. We thank three anonymous reviewers for their helpful
comments to improve the exposition of the paper.

References

1. Araman, V.F., Caldentey, R.: Dynamic pricing for nonperishable products with
demand learning. Operations Research 57(5), 1169–1188 (2009)

2. Burnetas, A.N., Katehakis, M.N.: On sequencing two types of tasks on a single
processor under incomplete information. Probability in the Engineering and Infor-
mational Sciences 7(1), 85–119 (1993)

34 S. Marbán, C. Rutten, and T. Vredeveld

3. Chen, L., Plambeck, E.L.: Dynamic inventory management with learning about
the demand distribution and substitution probability. Manufacturing & Service
Operations Management 10(2), 236–256 (2008)

4. Dean, B.C.: Approximation Algorithms for Stochastic Scheduling Problems. PhD
thesis, Massachusetts Institute of Technology (2005)

5. DeGroot, M.H.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)
6. Farias, F.F., Van Roy, B.: Dynamic pricing with a prior on market response. Op-

erations Research 58(1), 16–29 (2010)
7. Gittins, J.C.: Multi-armed bandit allocation indices. Wiley, N.Y. (1989)
8. Gittins, J.C., Glazebrook, K.D.: On Bayesian models in stochastic scheduling. Jour-

nal of Applied Probability 14(3), 556–565 (1977)
9. Gittins, J.C., Jones, D.M.: A dynamic allocation index for the sequential design of

experiments. In: Progress in Statistics, pp. 241–266 (1974)
10. Glazebrook, K.D., Owen, R.W.: On the value of adaptive solutions to stochastic

scheduling problems. Mathematics of Operations Research 20(1), 65–89 (1995)
11. Hamada, T., Glazebrook, K.D.: A Bayesian sequential single machine scheduling

problem to minimize the expected weighted sum of flowtimes of jobs with expo-
nential processing times. Operations Research 41(5), 924–934 (1993)

12. Hamada, T., Tamaki, M.: Some results on a Bayesian sequential scheduling on
two identical parallel processors. Journal of the Operations Research Society of
Japan 42(14), 316–329 (1999)

13. Lariviere, M.A., Porteus, E.L.: Stalking information: Bayesian inventory manage-
ment with unobserved lost sales. Management Science 45(3), 346–363 (1999)

14. Lin, K.Y.: Dynamic pricing with real-time demand learning. Operations Re-
search 174(1), 522–538 (2003)

15. Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research 31(3), 513–525 (2006)

16. Megow, N., Vredeveld, T.: Approximation in Preemptive Stochastic Online
Scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 516–527. Springer, Heidelberg (2006)

17. Möhring, R.H., Radermacher, F.J., Weiss, G.: Stochastic scheduling problems I:
General strategies. ZOR – Zeitschrift für Operations Research 28, 193–260 (1984)

18. Möhring, R.H., Schulz, A.S., Uetz, M.: Approximation in stochastic scheduling:the
power of LP-based priority policies. Journal of ACM 46(6), 924–942 (1999)

19. Rothkopf, M.H.: Scheduling with random service times. Management Science 12(9),
703–713 (1966)

20. Scarf, H.: Bayes solutions of the statistical inventory problem. The Annals of Math-
ematical Statistics 30(2), 490–508 (1959)

21. Schulz, A.S.: New old algorithms for stochastic scheduling. In: Algorithms for Opti-
mization with Incomplete Information (2005); Dagstuhl Seminar Proceedings, vol.
05031

22. Smith, W.E.: Various optimizers for single stage production. Naval Research Lo-
gistics Quaterly 3, 59–66 (1956)

23. Weiss, G.: Approximation results in parallel machines stochastic scheduling. Annals
of Operations Research 26(1), 195–242 (1990)

24. Weiss, G.: Turnpike optimality of Smith’s rule in parallel machines stochastic
scheduling. Mathematics of Operations Research 17(2), 255–270 (1992)

An Online Algorithm Optimally Self-tuning

to Congestion for Power Management Problems

Wolfgang Bein1, Naoki Hatta2, Nelson Hernandez-Cons3, Hiro Ito2,
Shoji Kasahara3, and Jun Kawahara4

1 Center for Information Technology and Algorithms, School of Computer Science,
University of Nevada, Las Vegas

beinw@unlv.nevada.edu
2 Department of Communications and Computer Engineering,

Graduate School of Informatics, Kyoto University
{nhatta,itohiro}@kuis.kyoto-u.ac.jp

3 Department of Systems Science, Graduate School of Informatics, Kyoto University
{shoji,nelson}@i.kyoto-u.ac.jp
4 JST ERATO MINATO Project

jkawahara@erato.ist.hokudai.ac.jp

Abstract. We consider the classical power management problem: There
is a device which has two states ON and OFF and one has to develop
a control algorithm for changing between these states as to minimize
(energy) cost when given a sequence of service requests. Although an
optimal 2-competitive algorithm exists, that algorithm does not have
good performance in many practical situations, especially in case the
device is not used frequently. To take the frequency of device usage into
account, we construct an algorithm based on the concept of “slackness
degree.” Then by relaxing the worst case competitive ratio of our online
algorithm to 2 + ε, where ε is an arbitrary small constant, we make
the algorithm flexible to slackness. The algorithm thus automatically
tunes itself to slackness degree and gives better performance than the
optimal 2-competitive algorithm for real world inputs. In addition to
worst case competitive ratio analysis, a queueing model analysis is given
and computer simulations are reported, confirming that the performance
of the algorithm is high.

1 Introduction

Consider an electric light which is turned on automatically when someone passes
by, say, for example at the entrance of a building. Or consider a device which
can enter a “sleep mode” – a state for energy saving when not used for a certain
period of time (e.g. a server or a copy machine). We abstract such a situation
to the automatic operation of a two-state device, which has an ON-state and
an OFF-state. In this paper we equate the sleep mode with the OFF-state,
which consumes no power. If a user utilizes the device, the state of it must be
ON during usage. When the user has finished, if another user needs it almost
immediately, it is wasteful to turn it off, because additional power consumption

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 35–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

36 W. Bein et al.

occurs when switching the state. For example, a copy machine consumes extra
electrical power when it comes back from the sleep mode. In the case of a compact
fluorescent light, switching states frequently shortens the life of the bulb and
although the switching cost may be negligible one can amortize the shorter
lifespan appropriately.

It is, of course, not known in advance when and how many users will request
service. Since we have to control switching the states of the device without knowl-
edge of future requests, the situation can be formulated as an online optimization
problem. More formally, there is a two-state device. Users request the device one
after another and use it for an arbitrary period of time. When it is used, the de-
vice must be kept in the ON-state. Once it is not used it can be turned off at an
arbitrary time. In the ON-state the device uses an amount of power proportional
to usage time, one unit of cost per unit of time. We call this the running cost.
There is no cost in the OFF-state. There is also a constant switching cost a > 0
for turning the device on and no cost for turning it off. An optimal online algo-
rithm is well known for this problem in the context of the worst case competitive
analysis [7,11,12]. We call this the optimal worst case competitive ratio algorithm,
or OWCR, for short. OWCR turns it on when a user requests service. After use
OWCR waits for the next service request for time a. If another user requests ser-
vice within the period, OWCR does not turn it off; otherwise, OWCR turns it off
after time a. The OWCR is 2-competitive, which is optimal.

However, OWCR does not perform well in various natural situations. If the
arrival interval of users is spaced long enough,OWCR keeps the device in the ON-
state for an extra a units for each user. This action seems to be quite wasteful. If
the device usage time is infinitesimal the cost for OWCR is 2a (the switching cost
and running cost are both a). On the other hand, the behavior of the optimal
offline algorithm “OPT” is to turn off immediately after the user has finished.
OPT pays only switching cost a (and the infinitesimal running cost). Therefore,
the competitive ratio for such a request sequence is 2. The fact is that although
OWCR does not seem clever at all, under worst case competitive analysis this
algorithm has the best performance.

Basic Concept of Our Algorithm. Since OWCR is optimal it appears as if
there is not much hope for improvement. However, if we allow the worst case
competitive ratio to increase by only a small positive constant ε from 2 (say,
for example, by 0.01), we can design various algorithms that have lower cost
than OWCR for real world inputs. For example, we can decrease the duration
of keeping the ON-state (“standby time”) gradually when the frequency of the
device usage becomes low: If the waiting time – the time from the preceding
user leaving to the latest user arriving – was more than a (something like an
“off-peak” situation), the system may be slack and the algorithm may elect to
make the standby time shorter. On the other hand, if the preceding waiting time
was less than or equal to a (similar to a “rush hour”), the algorithm may reset
the standby time.

In other words, standby time may decrease as a sequence x1 > x2 > · · ·
while off-peak arrivals continue. Such an algorithm may have better performance.

An Online Algorithm Optimally Self-tuning to Congestion 37

However we cannot evaluate this easily in the context standard competitive anal-
ysis. On the other hand, we are not satisfied only with heuristics or experimental
analysis and we seek a rigorous theoretical analysis.

For the above aim, we introduce a parameter called “slackness degree,” which
represents the frequency of arrivals. We set the parameters x1, x2, . . . to opti-
mize the competitive ratio for each slackness degree. The proposed algorithm
adaptively reacts to fluctuation of inputs and works optimally in the sense of
the competitive ratio according to slackness degrees. Moreover, an important
property of our algorithm is that it need not know the actual slackness degree.
Its worst case competitive ratio is at most 2 + ε and it is close to the optimal
offline algorithm for real world inputs. E.g., if we set ε = 0.01 and if the slackness
degree of an input is 10, 20, 50 and 100, then the competitive ratio is 1.58, 1.29,
1.12 and 1.06, respectively.

Related Work. As mentioned above it is well known that the optimal compet-
itive ratio of this problem is 2 [9,11,12,17]. In the randomized model where the
algorithm uses a probability distribution the best competitive ratio improves to
e/(e − 1) ≈ 1.582 (the expected cost of the algorithm for all inputs is within
a factor of e/(e − 1) of the optimal cost). Furthermore, it is known that this
bound is tight [9,10,11]. Systems with multiple power saving states have also
been studied, and it is clear that the additive model, where costs at any states
are cumulative, is reduced to the two state model. Thus, it is sufficient to consider
the two state model [1,8,15,18].

Strategies for this problem are categorized into two groups: adaptive and non-
adaptive. Non-adaptive strategies set a threshold only once at first on the idle
time interval for switching from the active state to the sleep state [8]. Adaptive
strategies use the history of idle periods to make the decisions for future inputs
[6,8].

There are several lines of investigation for evaluating algorithms more ade-
quately by considering alternatives to the competitive ratio or analysis. In sub-
stitution for the competitive ratio, the accommodation ratio [4], the Max/Max
ratio [2] and the random order ratio [13] were proposed. To analyze more real-
istic situations, competitive analysis with restriction to the adversary or using
parameters have also been considered. In the access graph model [3] and the
diffuse adversary model [14], the competitive ratio is evaluated by using weak
adversaries whose action is restricted (see the survey [5]). Panagiotou et. al. [16]
analyzed the LRU algorithm for paging by introducing parameters α and β which
characterize the degree of the locality of reference. They showed the competitive
ratio is bounded by a function of α and β.

Organization. Section 2 gives the basic statement of the problem. Section 3
presents our algorithm and gives the concept of slackness degree and competitive
ratio analysis under this concept. Section 4 gives an analysis using queueing
theory with computer simulations. Conclusions are given in Section 5.

38 W. Bein et al.

2 Problem Statement

In this paper we consider a device with infinite capacity that has two states,
an ON-state and an OFF-state (simply ON and OFF), for which we design a
control algorithm for changing between ON and OFF. Let ts1, . . . , t

s
n, t

e
1, . . . , t

e
n be

non-negative real values that represent the service times t s and end-of-service
times t e for n requests and which satisfy 0 ≤ ts1 < te1 < ts2 < te2 < · · · < tsn < ten.
The input for this problem is given as σ = 〈(ts1, te1), (ts2, te2), . . . , (tsn, ten)〉. For
this input, the device must be kept ON between times tsi and tei for each i =
1, . . . , n.

The state of the device can be switched at an arbitrary time. There is no
cost for switching from ON to OFF, while there is a switching cost a (> 0) when
switching from OFF to ON. For keeping the ON-state, it takes running cost of
one unit per unit time.

The strategy of the optimal offline algorithm (OPT) for this problem is clear:
If the period between the current request and next one is less than a, the device is
kept ON. Otherwise, it is turned off immediately. Therefore OPT’s total cost for
the input σ = 〈(ts1, te1), (ts2, te2), . . . , (tsn, ten)〉 is a+

∑n
i=1(t

e
i−tsi)+

∑n−1
i=1 min{tsi+1−

tei , a}.
For some i-th request (tsi , t

e
i), we consider the sum of the i-th running cost

and the next (i+ 1)-th switching cost. Let ALG be any algorithm. Let u be the
period between the end of the request and the start of the next request (i.e.,
u = tsi+1 − tei). Then the optimal offline algorithm pays tei − tsi + min{u, a}. If
ALG turns the device off after v (< u) standby time, the cost is tei − tsi + v + a.
Otherwise, it must pay tei − tsi + u. In each case, the smaller tei − tsi is, the worse
the competitive ratio becomes. Therefore, from the standpoint of competitive
analysis, it is enough to consider that usage times of the device (i.e., tei − tsi for
each i) are tiny. On the basis of the above discussion, we redefine this problem
as follows.

Let t1, . . . , tn be non-negative real values satisfying 0 ≤ t1 < · · · < tn rep-
resenting the time of service of the device for n requests. An input is given
as σ = 〈t1, t2, . . . , tn〉. We do nothing if the state is ON at ti (i = 1, . . . , n),
and should turn a device ON if it is OFF at that time. For a given input
σ = 〈t1, t2, . . . , tn〉 (n may be ∞), the action of an algorithm is determined
by a sequence 〈w1, w2, . . . , wn〉, where wi is standby time after ith request is
leaving. In other words, the problem is how to determine wi from 〈t1, t2, . . . , ti〉.
For each i = 2, . . . , n, let ui = ti − ti−1 be an idle period. OPT’s cost for
this redefined problem is OPT(σ) = a +

∑n−1
i=1 min{ti+1 − ti, a}. We denote

ALG’s cost for input σ by ALG(σ) and the competitive ratio of ALG for σ
by RALG(σ) = ALG(σ)/OPT(σ). Let Σ be the set of whole inputs σ. For
a subset Σ′ ⊆ Σ, we define RALG(Σ

′) = supσ∈Σ′ RALG(σ). And we repre-
sent RALG = RALG(Σ), which is the (worst case) competitive ratio
of ALG.

An Online Algorithm Optimally Self-tuning to Congestion 39

3 Our Algorithm

3.1 Decrease and Reset Algorithm (DRA)

We propose an algorithm which decreases the standby time gradually when the
frequency of the device usage becomes low.

Decrease and Reset Algorithm (DRA).
Let x1, x2, . . . , be an infinite non-increasing sequence of non-negative values. In
DRA, wi = xf(i) such that

f(i) =

{
f(i− 1) + 1 if ui ≥ a and i �= 1,
1 otherwise.

If xi = a for all i, DRA is equivalent to OWCR. Setting xi be larger than a is
clearly wasteful, and hence we consider cases such that xi ≤ a for all i = 1, 2,
From a simple observation we see that x1 gives a lower bound of RDRA:

Observation 1. RDRA ≥ 1 + a/x1.

Proof. Let m be an integer. For an input σ = 〈x1, 2x1, . . . ,mx1〉, OPT’s total
cost is a+ (m− 1)x1 and DRA’s total cost is m(a+ x1). Thus the competitive
ratio of them is the following:

RDRA ≥ RDRA(σ) =
m(a+ x1)

a+ (m− 1)x1

(m→∞)→ 1 +
a

x1
.

�

From this observation, it follows that x1 cannot be much smaller than a, other-
wise RDRA becomes very large. In other words, if the difference between a and
x1 is small, the effect to RDRA is not so large. Thus we relax the worst case
competitive ratio from 2 to 2 + ε for small ε > 0, i.e., we let x1 = a/(1 + ε).

The above observation is easily extended to the other values x2, x3, . . . , as
follows.

Observation 2. For any integer k,

RDRA ≥
ka+

∑k
i=1 xi

(k − 1)a+ xk
.

Proof. Let m be an integer and t1, t2, . . . , tmk be a sequence such that t1 = a
and if i = 1 mod k then ti = ti−1 + xk, otherwise ti = ti−1 + a. For input
σ = 〈t1, t2, . . . , tmk〉, DRA sets wi = xg(i) for all i, where g(i) = ((i−1) mod k)+
1. OPT’s total cost is a + m(k − 1)a + (m − 1)xk and DRA’s total cost is

mka+m
∑k

i=1 xi. Thus the competitive ratio of them is the following:

RDRA ≥ RDRA(σ) =
mka+m

∑k
i=1 xi

a+m(k − 1)a+ (m− 1)xk

(m→∞)→ ka+
∑k

i=1 xi

(k − 1)a+ xk
.

So this observation is satisfied. �

40 W. Bein et al.

Our upper bound of the competitive ratio is 2 + ε, and thus, the following
inequalities must be satisfied for every k = 1, 2, . . .:

ka+
∑k

i=1 xi

(k − 1)a+ xk
≤ 2 + ε.

Solving this equation for xk, we have

xk ≥
1

1 + ε

(
(2 + ε)a+

k−1∑
i=1

xi

)
− ka.

By elementary induction, we obtain

xk ≥ −ε
(
2 + ε

1 + ε

)k

a+ (1 + ε)a. (1)

This is a necessary condition for keeping the competitive ratio less than or equal
to 2 + ε. But this condition is not sufficient to guarantee optimality within the
ε bound. We propose next an algorithm that sets exact values for x2, x3, . . . , to
guarantee optimality within the ε bound.

3.2 How to Set the Coefficients for “Optimality”

Before turning to this problem, we need to define what “optimal” means here.
Our motivation is to give a better algorithm for slack systems. Thus we introduce
a measure, “slackness degree” for representing the slackness of input sequences.
For an input sequence σ = 〈t1, t2, . . . , tn〉, request i is called a busy request if
ui ≤ a or a slack request, otherwise. The first request is neither busy nor slack
one. We denote the number of slack requests in σ by s(σ), and that of busy
requests in σ by b(σ).

Definition 1. For an input σ, if s(σ)/b(σ) ≥ d (b(σ) �= 0) for a real number
d ≥ 0, σ is called d-slack. The slackness degree d(σ) is defined as the maximum
d such that σ is d-slack.

The slackness degree describes how busy the inputs are. Clearly if d(σ) is larger,
σ has more slack. We will optimize DRA under the assumption that an input is
d-slack without knowing the value of d.

We consider asymptotic performance, and assume that σ is large enough.
In other words σ has a sufficient number of busy requests, i.e., b(σ) = ω(1) if
b(σ) �= 0.

Note that for b(σ) = 0 (i.e., all arrivals are slack), we can easily get the upper

bound of the competitive ratio of 1+
∑|σ|

i=1 xi

|σ|a , which is close to 1 when |σ| is large
and limi→∞ xi = 0. This case is so particular that we ignore it in the following.

We will show that it is sufficient to consider inputs which end with a busy
request:

An Online Algorithm Optimally Self-tuning to Congestion 41

For a detailed analysis, let us separate an input σ = 〈t1, t2, . . . , tn〉 into some
(b(σ) or b(σ) + 1) blocks as follows. Assume that tb1 , tb2 , . . . , tbb(σ)

(0 ≤ b1 <
b2 < · · · < bb(σ) ≤ n) are the busy requests in σ. The blocks are defined as
B1 = {t1, . . . , tb1}, B2 = {tb1+1, . . . , tb2}, . . . , Bb(σ) = {tbb(σ)−1+1, . . . , tbb(σ)

}. If
bb(σ) < n, then Bb(σ)+1 = {tbb(σ)+1, . . . , tn} also exists. For analyzing the worst
case competitive ratio we will show that the final block Bb(σ)+1 can be ignored
even if it exists. Let β(σ) be the number of blocks in σ. (Then β(σ) = b(σ) or
b(σ) + 1.) Let s(Bi) be the number of slack requests in block Bi.

Lemma 1. If s(Bb(σ)) ≤ s(Bb(σ)+1) − 2 holds, then RDRA(σ) ≤ RDRA(σ
′),

where σ′ is obtained from σ by exchanging tbb(σ)
with tbb(σ)+1, i.e., σ

′ = 〈t1, . . . ,
tbb(σ)−1, tbb(σ)+1, tbb(σ)

, tbb(σ)+2, . . . , tn〉. (Note that tbb(σ)+1 is a slack request from
s(Bb(σ)) (≥ 2).)

Proof. The competitive ratio of DRA for σ′ is

RDRA(σ
′) =

DRA(σ)− xs(Bb(σ)+1) + xs(Bb(σ))+2

OPT (σ)− xs(Bb(σ))+1 + xs(Bb(σ))+2
.

Since x1, x2, . . . is a non-increasing sequence and s(Bb(σ)) ≤ s(Bb(σ)+1) − 2,
xs(Bb(σ))+2 ≥ xs(Bb(σ)+1) and xs(Bb(σ))+1 ≥ xs(Bb(σ))+2 hold. Thus we get

RDRA(σ
′) =

DRA(σ)− xs(Bb(σ)+1) + xs(Bb(σ))+2

OPT (σ)− xs(Bb(σ))+1 + xs(Bb(σ))+2
≥ DRA(σ)

OPT (σ)
= RDRA(σ).

�

Lemma 2. For any d ≥ 0 and sufficiently long inputs, there exists an input
which finishes with a busy request and gives the worst competitive ratio in the
same slackness degree d.

Proof. By Lemma 1 for a d-slack input σ we can shift the last busy request
later as long as the last two blocks satisfy s(Bb(σ)) ≤ s(Bb(σ)+1) − 2 without
decreasing the competitive ratio (Operation 1). We can clearly exchange the two
subsequences in σ which begin with a slack request and end with a busy request
without changing the competitive ratio (Operation 2).

When we apply Operation 1 and Operation 2 for a sufficiently long input
σ repeatedly and let the result be σ∗, which is d-slack and gives the worst
competitive ratio, approximately we can assume that σ∗ finishes with a busy
request. �

Lemma 3. For any input σ, if each xi satisfies inequality (1) then RDRA(σ) ≤
2 + ε.

Proof. In Observations 1 and 2, the given input is clearly the worst for the
competitive ratio among one-block input σ (i.e., σ includes one busy requests at
the end) and the slackness degree is fixed. This means RDRA ≤ 2 + ε for any
one-block input. From Lemma 2, RDRA ≤ 2 + ε for any long enough input. �

42 W. Bein et al.

Lemma 4. For a sufficiently long input σ, if σ is d-slack (d > 0) and x1, x2, . . .
(xi ≤ a) satisfy inequality (1), the following inequality holds:

RDRA(σ) ≤ 1 +
1

d
+

∑∞
i=1 xi

ad
. (2)

And the equality holds for d ≥ h− 1 where h = min{i |xi = 0}.
Proof. To analyze the worst case input, we define σ(k) as an input in which one
busy request arrives after (k−1) slack requests, where k = 1, 2, . . . , is any positive
integer. Then we find that all the worst case input instances are described as the
combination of σ(k) by Lemma 2. Let the combination of them be σw, which
can be represented by a sequence of σ(·), i.e., σw = σ(f(1))σ(f(2)) · · ·σ(f(n))
where n = b(σw), and each f(i) is a positive integer (i = 1, . . . , n).

Against this input, DRA must pay the switching cost for all the requests. The

cost of DRA for σw is a+
∑n

i=1

{∑f(i)
j=1(xj + a)

}
+x1. OPT keeps the ON-state

during xf(i) for the last input in each σ(f(i)) and switches to OFF immediately
for the other inputs. The cost is a+

∑n
i=1 xf(i)+

∑n
i=1(f(i)− 1)a. Therefore the

competitive ratio is

RDRA(σw) =
a+

∑n
i=1(

∑f(i)
j=1(xj + a)) + x1

a+
∑n

i=1 xf(i) +
∑n

i=1(f(i)− 1)a

≤
a+

∑n
i=1

∑f(i)−1
j=1 xj +

∑n
i=1 f(i)a+ x1

a+
∑n

i=1(f(i)− 1)a

≤ a+ n
∑∞

i=1 xi +
∑n

i=1(f(i)− 1)a+ an+ x1

a+
∑n

i=1(f(i)− 1)a
.

Since
∑n

i=1(f(i)− 1)/n = s(σw)/b(σw) ≥ d and σw is d-slack, we have

RDRA(σ) ≤ RDRA(σw) ≤ 1 +

∑∞
i=1 xi + a+ x1/n

a/n+ ad

(n→∞)→ 1 +
1

d
+

∑∞
i=1 xi

ad
.

The inequalities are tight when
∑n

i=1 xf(i) = 0 and the slackness degree of σw is
just d, and such input exists only when

∑n
i=1 f(i)/n ≥ h. Thus for a sufficiently

long input when d ≥ h− 1, we find that the bound is tight. �

Note that even for 0-slack inputs (s(σ) = 0), if x1, x2, . . . satisfy (1), the
competitive ratio is guaranteed to be 2 + ε according to Observation 1.

We get the upper bound of the worst competitive ratio with parameter d. To
minimize it, we should minimize each xi such that they satisfy (1).

Theorem 1. We set the coefficients xi as xi = max{−ε ((2 + ε)/(1 + ε))
i
a +

(1+ ε)a, 0}. Then for any sufficiently long d-slack input σ, DRA guarantees the
following competitive ratio:

RDRA(Σd) = min

{
1 +

1

d
+

∑h−1
i=1 xi

ad
, 2 + ε

}
, (3)

An Online Algorithm Optimally Self-tuning to Congestion 43

where Σd is the set of sufficiently long d-slack inputs, and h = �(log(1+ε)−log ε)/
(log(2 + ε)− log(1 + ε))�+ 1.

Proof. Let h be defined as in Lemma 4. Then the value of h is obtained as
shown above. From Lemmas 4 and 3 we get

RDRA(Σd) ≤ min

{
1 +

1

d
+

∑∞
i=1 xi

ad
, 2 + ε

}
.

To optimize the competitive ratio we should minimize each xi in range of satis-
fying inequality (1). So we get

xi =

⎧⎨⎩−ε
(
2 + ε

1 + ε

)i

a+ (1 + ε)a if i < h,

0 otherwise.

(4)

This means
∑∞

i=1 xi =
∑h−1

i=1 xi.
Furthermore, from Lemma 4, when d ≥ h− 1 there are inputs which hold the

equation in (2) tightly. On the other hand, from Lemma 3, when d < h−1, there
are inputs such that DRA uses only x1, . . . , xd (i.e., they satisfy (1) tightly.) and
then achieve 2 + ε-competitive ratio tightly. Therefore we obtain the desired
equation (3). �

From this, we will call the DRA satisfying the condition of Theorem 1 the
optimal DRA (ODRA).

Corollary 1. For the value that 0 < ε < 0.2,

RODRA ≤ min

{
1 +

(1 + ε)2 + 2(1 + ε) log 1
ε

d
, 2 + ε

}
.

We also get such a heuristic bound, but skip the details of proof. If d→∞ then
RODRA → 1. Therefore we confirm that the competitive ratio is close to 1 when
the frequency of requests within any time period is small enough.

Note that this algorithm works certainly without information of the input σ.
Since we can define the d-slackness from some period from the entire input, we
can evaluate the competitive ratio considering a part when the slackness degree
changes.

4 Queueing Analysis

4.1 Analysis

In this section, we analyze the cost performance of DRA using queueing theory.
We assume that customers arrive at the system according to a Poisson process
with rate λ. The sojourn time of a customer is independently and identically
distributed (i.i.d.) with a general distribution with mean 1/μ. As we mentioned
before, the system capacity is infinity. Then the system we consider here is an
M/G/∞ queueing model.

44 W. Bein et al.

In the M/G/∞ model, the busy period is defined as the time interval during
which the number of customers in the system is greater than zero, while in the
idle period, no customers are in the system. For analytical simplicity, we assume
that the system is in equilibrium at time 0, and that the first busy period starts
at time 0. Let Bn and In denote the nth busy period of the system and the nth
idle period, respectively. Note that both busy periods and idle periods are i.i.d.,
and hence independent of n. The mean busy period and the mean idle period of
the M/G/∞ system are given by

E[Bn] =
eρ − 1

λ
(≡ E[B]), E[In] =

1

λ
(≡ E[I]), (5)

respectively, where ρ = λ/μ. We define the nth cycle as the time interval con-
sisting of Bn and In.

The power control process under DRA with coefficients given by (4) evolves as
follows. When the first busy period B1 starts, the initial power cost a is required.
During the busy period, the power cost per unit time is one. When B1 ends, the
system is kept in the ON-state for the standby time of x1. Note that x1 is the
power cost of the first idle period I1. If I1 > a, the next standby time for I2 is
set to x2. If I1 ≤ a, then the standby time for I2 is initialized to x1. Similarly, if
I1 > a and I2 > a, then the standby time for I3 is set to x3, while if I1 > a and
I2 ≤ a, the standby time for I3 is initialized to x1, and so on. In the following,
the time interval from the beginning of the busy period with x1 standby time
to the end of the idle period which is smaller than a is referred to as the reset
interval.

Let L (≥ 1) denote the number of cycles in a reset interval. Consider the
amount of power consumption during a reset interval. When the number of
cycles in the reset interval is L = k, the amount of power consumption is given
by the power consumption for k busy periods and k standby times. Let Tk denote
the total amount of power consumption of standby times in the reset interval
consisting of k cycles. We obtain

Tk =

{∑k−1
i=1 xi + Ik · 1{Ik≤xk}, k = 1, 2, . . . , h− 1,∑h−1
i=1 xi, k ≥ h,

where 1χ is the indicator function of event χ. Then we have the following lemma.

Lemma 5. The mean of the total amount of power consumption of standby
times in a reset interval E[TL] is given by

E[TL] = εa(2 + ε)e−λa(1− e−λa)h−2

−εa(2 + ε)(1− e−λa)
(2 + ε)e−λa

1 + ε− (2 + ε)e−λa

{
1−

(
2 + ε

1 + ε
· e−λa

)h−2
}

+(1 + ε)a · e−λa

1− e−λa

{
1− (h− 1)e−λa(h−2) + (h− 2)e−λa(h−1)

}
+
1

λ
· 1− e−λa(h−1)

1− e−λa
−

h−1∑
k=1

e−λa(k−1)

(
1

λ
+ xk

)
e−λxk

An Online Algorithm Optimally Self-tuning to Congestion 45

+

[
εa(2 + ε)

{
1−

(
2 + ε

1 + ε

)h−1
}

+ (1 + ε)a(h− 1)

]
· e−λa(h−1). (6)

From the Poisson arrival assumption we can obtain this formula, however, we
skip the details of proof.

Let QODRA denote the mean power-consumption cost per unit time. Then we
obtain the following theorem.

Theorem 2. QODRA is given by

QODRA =
1

eρ

[
λa

{
(1− e−λa) ·

h−1∑
k=1

e−λ{a(k−1)+xk} + e−λa(h−1)

}

+eρ − 1 + λ(1 − e−λa)E[TL]

]
, (7)

where E[TL] is given by (6).

Proof. Let R denote the reset interval. Using L, the number of cycles in a reset
interval, we obtain R =

∑L
n=1(Bn + In). We skip the details of analysis, but we

can obtain the mean reset interval E[R] as follows.

E[R] = E

[
L∑

n=1

Bn

]
+ E

[
L∑

n=1

In

]
=

eρ

λ(1 − e−λa)
.

Let W (k) denote the total amount of power consumption for a reset interval
which consists of k cycles. W (k) is given by W (k) = (k− 1)a+ a · 1{xk<Ik≤a} +∑k

i=1 Bi + Tk. Taking the mean of W (L) yields

E[W (L)] = a(E[L]− 1) + aE[1{xk<Ik≤a}] + E[L]E[B] + E[TL].

Note that reset intervals are i.i.d. and that the amount of power consumption
during the reset interval is also i.i.d. Therefore, we haveQODRA = E[W (L)]/E[R]
from the renewal-reward theorem [19]. �

4.2 Numerical Examples

In this section, we present some numerical examples using the analysis shown
in the previous section. In order to validate the analysis, we also perform some
simulations with the algorithms and compare the results obtained with the ones
from the analysis.

Algorithms Compared to ODRA. For comparing with ODRA we consider
the following algorithm, which is a simple variant of DRA.

Given parameter k let ALG(k) be the DRA algorithm where x1 = x2 = . . . =
xk = a, xk+1 = xk+2 = . . . = 0.

46 W. Bein et al.

Table 1. Basic parameters

Parameter Value

Value of a 1, 3, 10 [unit]
ALG(10) parameter k 10
Value of ε 0.1, 0.01, 0.001
Consuming cost while in ON-state 1 [unit]
Customer arrival rate λ 0.001, 0.01, 0.1, 0.5, 0.99
Mean sojourn time 1/μ 1
Number of events 100000
Number of simulations 100

The worst case competitive ratio of ALG(k) is 2+ 1
k , which can be obtained eas-

ily. We consider three cases: ALG(∞) (all xi are equal to a), ALG(1), ALG(10).
Note that ALG(∞) is equal to OWCR. Let Qξ denote the mean of the power-
consumption cost per unit time when the algorithm of ξ ∈ {OPT,ALG(∞),
ALG(1), ALG(10)} is employed. Qξ’s can be derived in a straightforward man-
ner, and we obtain

QOPT = 1− e−(aλ+ρ),

QALG(∞) = 1 + (aλ− 1)e−(aλ+ρ),

QALG(1) = 1 + 2(aλ− 1)e−(aλ+ρ) − (aλ− 1)e−(2aλ+ρ),

QALG(10) = 1 + (aλ− 1)e−(aλ+ρ) + (aλ− 1)e−(kaλ+ρ) − (aλ− 1)e−((k+1)aλ+ρ).

We omit detailed derivations of the above equations due to the page limitation.

Competitive Ratios. We calculated the average power consumption per unit
time of each algorithm and the competitive ratio with Qopt. We use the basic set
of parameters shown in Table 1. The analytical results are shown in Table 2. We
also conducted experiments with Monte Carlo simulation, in order to validate
the results obtained through the analysis. (Skipping the details of simulation
results.) The analytical results exhibit good agreement with simulation, and this
validates the analytical derivations for Qξ’s.

We can observe that the performance of these algorithms is almost the same
when the system is congested, e.g., ρ ≥ 0.5. The reason is clearly that it
never be OFF. The difference appears when the system becomes slack. Espe-
cially ALG(∞), which must be the optimal worst competitive ratio algorithm
(OWCR), shows very bad average competitive ratio (e.g., it is around 1.9 for
ρ = 0.01, a = 10). ALG(1) shows the best average competitive ratio in every
case. However it’s worst competitive ratio is 3, i.e., it may perform badly for ad-
versary inputs. Our algorithm ODRA performs almost the same as ALG(1) in
every case. From these results, we can observe that ODRA has good performance
not only in the worst case but also in average case.

An Online Algorithm Optimally Self-tuning to Congestion 47

Table 2. Analytical results of competitive ratios

ρ a QALG(∞)/QOPT QALG(1)/QOPT QALG(10)/QOPT
QODRA/QOPT

ε = 0.1 ε = 0.01 ε = 0.001

CRworst 2 3 2.1 2.1 2.01 2.001

0.001 1 1.49950 1.00075 1.00052 1.001271 1.002656 1.004223
0.001 3 1.74850 1.00336 1.00232 1.005697 1.011871 1.018820
0.001 10 1.90410 1.01350 1.09015 1.022692 1.046865 1.073527

0.01 1 1.49501 1.00739 1.04936 1.012424 1.025660 1.040258
0.01 3 1.73510 1.03264 1.19886 1.053683 1.108154 1.164850
0.01 10 1.86001 1.12344 1.15605 1.188589 1.350484 1.488426

0.1 1 1.45167 1.06483 1.29439 1.099045 1.184070 1.256516
0.1 3 1.60997 1.24109 1.58518 1.304441 1.472030 1.555845
0.1 10 1.49896 1.49896 1.49896 1.400979 1.479744 1.496660

0.5 1 1.29099 1.17649 1.28972 1.189663 1.260917 1.284193
0.5 3 1.23478 1.29557 1.24777 1.200283 1.228261 1.234040
0.5 10 1.02052 1.03682 1.02052 1.019213 1.020304 1.020495

0.99 1 1.15672 1.15662 1.15672 1.127199 1.152416 1.157843
0.99 3 1.05614 1.09169 1.05614 1.052462 1.056840 1.057616
0.99 10 1.00017 1.00032 1.00017 1.000182 1.000183 1.000184

5 Conclusions

We have introduced the concept of slackness degree, which reflects the frequency
of requests, and developed the “optimal” online algorithm under this concept.
We strongly believe that it is important to consider inputs of problems based
on the real world and to design more practical algorithms in online problems.
In future work, we plan to consider the randomized version and the multi-state
version of this problem.

Acknowledgments. This researchhas been carried out in collaborationwith the
“Consumer Electronics Network Eco Management” project sponsored by Pana-
sonic Corporation. We would like to thank the project members, Mr. Toshiya
Naka, Mr. Hideyuki Yoshida and Mr. Kazuhiro Aizu. We also would like to thank
Prof. Hiroshi Fujiwara of ToyohashiUniversity of Technology for his valuable com-
ments on power consumption problems and helpful discussions.

References

1. Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. In: Proc. 45th
Symp. Foundations of Computer Science (FOCS), pp. 530–539. IEEE (2004)

2. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

3. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. J. Comput. Systems Sci. 50, 244–258 (1995)

48 W. Bein et al.

4. Boyar, J., Krarup, S., Nielsen, M.N.: Seat reservation allowing seat changes. J.
Algorithms 52, 169–192 (2004)

5. Chrobak, M.: Sigact news online algorithms column 8. SIGACT News 36, 67–81
(2005)

6. Chung, E., Benini, L., Bogliolo, A.: Dynamic power management for non-stationary
service requests. In: Proceedings of the Design and Automation and Test in Europe
Conference and Exhibition, pp. 77–81 (1999)

7. Eggers, S.J., Katz, R.H.: Evaluating the performance of four snooping cache co-
herency protocols. In: Proc. 16th International Symp. on Computer Architecture
(ISCA). IEEE (1989)

8. Irani, S., Gupta, R., Shukla, S.: Competitive analysis of dynamic power manage-
ment strategies for systems with multiple power savings states. In: DATE 2002:
Proceedings of the Conference on Design, Automation and Test in Europe, p. 117.
IEEE Computer Society, Washington, DC, USA (2002)

9. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM SIGACT
News (2005)

10. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic tcp acknowledgement and other
stories about e/(e− 1). In: Proc. 33rd STOC, pp. 502–509. ACM (2001)

11. Karlin, A., Manasse, M., McGeoch, L., Owicki, S.: Competitive randomized algo-
rithms for nonuniform problems. Algorithmica 11, 542–571 (1994)

12. Karlin, A., Manasse, M., Rudolph, L., Sleator, D.: Competitive snoopy caching.
Algorithmica 3, 79–119 (1988)

13. Kenyon, C.: Best-fit bin-packing with random order. In: Proc. 7th Symp. on Dis-
crete Algorithms (SODA), pp. 359–364. ACM/SIAM (1996)

14. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. SIAM J. Com-
put. 30, 300–317 (2000)

15. Lotker, Z., Patt-Shamir, B., Rawitz, D.: Rent, lease or buy: Randomized algo-
rithms for multislope ski rental. In: Albers, S., Weil, P. (eds.) 25th International
Symposium on Theoretical Aspects of Computer Science (STACS 2008). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 1, pp. 503–514. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008)

16. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In: Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 2006, pp. 487–496. ACM, New York (2006)

17. Phillips, S., Westbrook, J.: Competitive analysis and beyond. In: Algorithms and
Theory of Computation Handbook, ch.10. CRC Press (1999)

18. Ramanathan, D., Irani, S., Gupta, R.: Latency effects of system level power man-
agement algorithms. In: Proceedings of the IEEE International Conference on Com-
puter Aided Design (2000)

19. Wolff, R.W.: Stochastic modeling and the theory of queues. Prentice-Hall (1989)

Single Approximation for Biobjective Max TSP�

Cristina Bazgan1,2,3, Laurent Gourvès1,2,
Jérôme Monnot1,2, and Fanny Pascual4

1 Université Paris-Dauphine, LAMSADE,
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

2 CNRS, UMR 7243
3 Institut Universitaire de France

4 Université Pierre et Marie Curie, LIP6, 4 place Jussieu, 75005 Paris, France
{bazgan,laurent.gourves,monnot}@lamsade.dauphine.fr,

fanny.pascual@lip6.fr

Abstract. We propose an algorithm which returns a single Hamiltonian
cycle with performance guarantee on both objectives. The algorithm is
analysed in three cases. When both (resp. at least one) objective func-
tion(s) fulfill(s) the triangle inequality, the approximation ratio is 5

12
−ε ≈

0.41 (resp. 3
8
−ε). When the triangle inequality is not assumed on any ob-

jective function, the algorithm is 1+2
√

2
14

− ε ≈ 0.27-approximate.

1 Introduction

The traveling salesman problem (TSP) is one of the most studied problems in
combinatorial optimization. Given an undirected complete graph with weights
on the edges, the problem consists of finding a Hamiltonian cycle (also called
tour) of maximum or minimum total weight, defined as the sum of its edges’
weight. In this paper we study the approximation of the biobjective maximiza-
tion version, Biobjective Max TSP. In this case every edge has two weights and
the total weight of a tour is a couple defined as the componentwise sum of its
edges’ weights. We are interested in the existence and the computation in poly-
nomial time of a single tour with simultaneous performance guarantees on the
two objectives. Our work falls into a recent stream of research on the approx-
imability of multiobjective optimization problems [21,20,18,10,5,11,3,1,6] where
multiobjective TSP takes a prominent place [2,4,16,7,13,14].

In many real optimization problems not only one objective function is consid-
ered but several ones (see [9] about multiobjective combinatorial optimization).
This is also the case for TSP where we might want to minimize the travel time,
the cost or to maximize the profit, the number of viewpoints along the way etc.
This gives rise to Multiobjective TSP. Unfortunately it is unlikely that optimal-
ity is met simultaneously by a single feasible solution on all objectives. However
there always exists a set of efficient (also called Pareto optimal) solutions for

� This research has been supported by the project ANR-09-BLAN-0361 GUaranteed
Efficiency for PAReto optimal solutions Determination (GUEPARD).

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 49–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 C. Bazgan et al.

which any improvement on an objective induces a deterioration of (at least)
another one.

Generating the whole set of efficient solutions is a major challenge in multi-
objective combinatorial optimization. However, even for moderately-sized prob-
lems, it is usually computationally prohibitive to identify the efficient set for two
major reasons. First, the number of efficient solutions can be very large. Second,
the associated decision version is often NP-complete, even if the underlying single
objective problem is polynomial time solvable. To handle these two difficulties,
researchers have been interested in developing approximation algorithms with a
priori provable performance guarantees.

Given a positive real ρ ≤ 1, and considering that all objectives have to be
maximized, a ρ-approximation of the set of efficient solutions is a set of solu-
tions that includes, for each efficient solution, a solution that approximates it
within a factor ρ on all objectives. The ρ-approximation typically contains sev-
eral incomparable solutions and it is assumed that one solution is selected with
the help of a, yet unkown, a posteriori decision process.

One of the most important results concerning the approximation of multiob-
jective problems was given by Papadimitriou and Yannakakis [18]: under certain
general assumptions, multiobjective optimization problems always have at least
one (1 − ε)-approximation of size polynomial in the size of the instance and
1/ε, for any given accuracy ε > 0. This result makes the computation of ap-
proximate efficient sets of multiobjective problems accessible to polynomial time
algorithms.

Nevertheless the efficient set is not the unique object that one can approximate.
A popular approach inmultiobjective optimization consists in optimizing only one
objective while the others are turned into budget constraints [21,20,11,6]. Budget
constraints come from an a priori decision process which restricts the set of desired
solutions. It is noteworthy that the efficient set approach and the budget approach
are essentially the same [18].

In another popular approach, no decision process is sought. The goal is to
compute a single solution which approximates a vector composed of the optimal
values on every objective taken separately [22,19,3,1]. Contrasting with the pre-
vious approaches, this framework aims at approximating an ideal point which is
the image of a not necessarily feasible solution. Hence no ρ-approximation for
every ρ is guaranteed to exist. Note that the ideal point approach and the effi-
cient set approach restricted to sets of size 1 coincide. The former is a particular
case of the latter. Since generating several solutions allows better approxima-
tions than what a single solution can achieve, approximation ratios under the
respective approaches are not directly comparable.

Previous results for the multiobjective TSP are known; most of them fol-
low the efficient set approach, approximating the Pareto set with two or more
solutions, but some of them use the ideal point approach. In this article we exclu-
sively follow the ideal point approach and provide deterministic approximation
algorithms whose performance guarantees improve on previous results.

Single Approximation for Biobjective Max TSP 51

Previous Results. Multiobjective TSP is well studied from the approximation
point of view. Manthey and Ram [16] follow the efficient set approach for several
variants of multiobjective Min TSP. In particular they generalize the well known
tree doubling algorithm to provide a (2 + ε)-approximation of the efficient set.
The other results of [16] deal with multiobjective Min TSP with the sharpened
triangle inequality and multiobjective Min TSP with distance 1 or 2. This latter
problem is investigated in [2,4] under the efficient set approach.

More rencently Bläser et al. [7] study the multiobjective Max TSP with k
objective functions. Using the efficient set approach they devise randomized ap-
proximation algorithms with ratios 1

k − ε and 1
k+1 − ε for the symmetric and

asymmetric versions respectively. Subsequently these results were significantly
improved by Manthey [14] who provides randomized approximation algorithms,
using the efficient set approach, with ratios 2

3−ε and
1
2−ε for the symmetric and

asymmetric versions respectively. These algorithms use as a black box the ran-
domized PTAS for min-weight matching given by Papadimitriou and Yannakakis
[18]. Recently, Manthey [15] establishes deterministic approximation algorithms,
using the efficient set approach, with ratios 1

2k−ε and
1

4k−2−ε for the symmetric
and asymmetric versions respectively that can be improved for the biobjective
case to ratios 3

8 − ε and 1
4 − ε respectively.

Manthey also investigates the approximation of Biobjective Max TSP under
the ideal point approach [14,15], i.e. approximate efficient sets of size one. If
the single objective Max TSP problem is ρ-approximable then Biobjective Max
TSP is ρ

3 -approximable with one solution [14]. Taking the best polynomial time
approximation algorithms known so far for the symmetric Max TSP, he derives
a 61

243 -approximate (resp. 7
24 -approximate) tour without (resp. with) the triangle

inequality. The ratios come from a 61
81 -approximation and a 7/8-approximation

given in [8] and [12] respectively. As mentioned very recently in [15], using a new
7
9 -approximation [17], the first ratio becomes 7

27 instead of 61
243 . Another positive

consequence of the general technique is that every biobjective instance admits a
single 1

3 -approximate tour. From the negative side, Manthey [14] gives a 5 node
non metric instance in which no single tour can be (1/3+ε)-approximate (ε > 0),
thus meeting the previous bound. To our best knowledge, no such upper bound is
known for metric instances so it is still possible that a single ρ-approximate tour
exists in biobjective Max TSP for some ρ > 1/3. Finally one can observe that
known inapproximability results on the single objective Max TSP imply that
the general technique is limited to provide biobjective (1/3 − ε)-approximation
in polynomial time (ε > 0).

New Results. In this paper, we establish a general algorithm which computes a
maximum value matching on each objective taken separately and combines them
into a single Hamiltonian cycle having a performance guarantee on both objec-
tives. The algorithm is analyzed in three cases. When both objective functions
fulfill the triangle inequality, we obtain a 5

12 − ε ≈ 0.41-approximate algorithm
which improves the aforementioned 7

24 − ε ≈ 0.291-approximation. In this case,
we also propose a 4-node instance without any single (12 + ε)-approximate solu-
tion and a family of instances without any single (34 + ε)-approximate solution

52 C. Bazgan et al.

when the number of nodes tends to infinity. If only one objective function ful-
fills the triangle inequality, we obtain a (38 − ε)-approximate algorithm. In the
case where no objective function satisfies the triangle inequality, a quick analy-
sis gives a ratio 1/4− ε but in a more accurate case analysis, we can show that

the algorithm is 1+2
√
2

14 − ε ≈ 0.27-approximate, improving the aforementioned
7
27 ≈ 0.259-approximation. An extension of Manthey’s instance to any number
of vertices precludes any (13 + ε)-approximate algorithm returning one solution.

The following table gives a summary of mentioned results on the biobjective
Max TSP (k = 2). Approximations achieved with several solutions follow the
Pareto set approach while those limited to one solution follow the ideal point
approach.

Biobjective Max TSP
randomized algo. deterministic algo. this paper (deterministic)

general 2/3− ε [14] 7/27 ≈ 0.259 1+2
√
2

14 − ε ≈ 0.27
case several solutions one solution [14,17] one solution

3/8− ε
several solutions [15]

metric 2/3− ε [14] 7/24 ≈ 0.291 5/12− ε ≈ 0.41
case several solutions one solution [14,12] one solution

Organization of the Article. In Section 2 we give definitions on the problems
and concepts used throughout the article. In Section 3 we establish some non
existence results which give upper bounds on possible approximation ratios under
the ideal point approach. Section 4 presents a general algorithm for Biobjective
Max TSP and its analysis in three cases depending on the (non) metric nature
of the objective functions. In Section 5 we improve the analysis of the previous
algorithm in the non metric case. Future works are provided in a final section.
Due to space limitation some proofs are omitted.

2 Preliminaries

Let G = (V,E) be a complete undirected graph with a nonnegative weight
w(e) on every edge e ∈ E and n = |V | vertices. The weight of a set of edges
E′ ⊆ E is the sum of the weights of the edges in E′ and is denoted by w(E′). An
instance is metric if its weights satisfy the triangle inequality, namely w(x, z) ≤
w(x, y) + w(y, z) for all distinct vertices x, y, z ∈ V .

Max TSP is to find a Hamiltonian cycle or tour (i.e. a cycle that visits every
vertex of the graph exactly once) of maximum weight in a complete graph. In
the multiobjective Maximum Traveling Salesman Problem every edge is endowed
with k nonnegative values. For the biobjective case (k = 2), each edge e ∈ E has
a nonnegative weight w(e) and a nonnegative length �(e). Similarly the length
of a set of edges E′, denoted by �(E′), is the sum of the lengths of its elements.

Each feasible tour T is represented in the objective space by its correspond-
ing objective vector (w(T), �(T)). A tour T dominates a tour T ′ if and only if

Single Approximation for Biobjective Max TSP 53

w(T) ≥ w(T ′) and �(T) ≥ �(T ′) with at least one strict inequality. A tour T is
efficient if and only if no other tour T ′ dominates T , and (w(T), �(T)) is said
to be non-dominated. An efficient set contains, for each non-dominated vector,
a corresponding efficient solution (no need to keep two tours having the same
objective vector).

Unfortunately computing the efficient set of multiobjective Max TSP can-
not be done in polynomial time, unless P = NP , so we are interested in its
polynomial time computable approximations. For any 0 < ρ ≤ 1, a tour T ρ-
approximates another tour T ∗ if and only if w(T) ≥ ρw(T ∗) and �(T) ≥ ρ�(T ∗).
A set of feasible tours A is a ρ-approximation of the efficient set P if for every
T ∗ ∈ P , there exists T ∈ A such that T ρ-approximates T ∗. If A is reduced to
a single tour, we say that we follow the ideal point approach.

Define optw (resp. opt�) as maxT∈F w(T) (resp. maxT∈F �(T)) where F de-
notes the set of feasible tours. Under the ideal point approach, a tour T is a
ρ-approximation if and only if w(T) ≥ ρ optw and �(T) ≥ ρ opt�.

3 Non Existence of a Single ρ-Approximate Solution

It is unlikely that every instance admits a single solution which is nearly optimal
for w and � at the same time. Thus instances without any ρ-approximate solution
imply that no deterministic ρ-approximate algorithm (even exponential) exists.

If the triangle inequality is satisfied on both objectives, the example given
in Figure 1 (left) shows that there does not always exist a (12 + ε)-approximate
solution, for all ε > 0. The three possible tours in this instance are indeed
(a, b, c, d, a), (a, c, d, b, a), and (a, c, b, d, a) whose values are (2, 2), (2, 4), and
(4, 2). However this instance only contains 4 nodes so it does not prevent an
algorithm to provide a (0.5 + ε)-approximate solution for 5 nodes and more.

(1,2)

(2,1)

(1,0)

(0,1)

(1,1)

a b

cd
u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Fig. 1. (Left) There is no (0.5 + ε)-approximate solution in this instance where every
objective function satisfies the triangle inequality. (Right) Instance with r = 5 where
non represented edges have value (1, 1).

However one can build an instance which does not contain any (34 + ε)-
approximate solution for n sufficiently large. The instance contains 2r nodes
{v1, · · · , vr}∪{u1, · · · , ur}. Edges (ui, vi) have value (2, 1) for i = 2, · · · r, see Fig-
ure 1 (right). Edges (ui, vi+1) have value (2, 1) for i = 1, · · · r−1. Edges (ui, ui+1)
and (vi, vi+1) have value (1, 2) for i = 1, · · · r−1. Edges (u1, v1) and (ur, v1) have

54 C. Bazgan et al.

value (1, 2) and (2, 1) respectively. Any other edge has value (1, 1). The coordi-
nates being 1 or 2, the triangle inequality is satisfied. The tour containing all
edges of value (2, 1) (resp. (1, 2)) has value (4r− 1, 2r) (resp. (2r, 4r− 1)) so the
optimal weight/length is 4r− 1. Any given tour uses α edges with value (2, 1), β
edges with value (1, 2) whereas α+ β ≤ 2r. Its value is then (2α+ β, 2β + α) ≤
(2r+α, 2r+β). Observe that min{2r+α, 2r+β} = 2r+min{α, β} ≤ 3r. Hence
any tour is at most 3r

4r−1 -approximate.
If the objective functions do not necessarily fulfill the triangle inequality,

Manthey [14] proved that for a K5 there does not exist a (13 + ε)-approximate
algorithm, for all ε > 0. We can easily generalize his result to Kn with n ≥ 5
in order to obtain an asymptotic result. For every n ≥ 5, consider Kn where a
fixed K4 is decomposable into 2 Hamiltonian paths Pw and P�. For every edge
e ∈ E(Kn), set w(e) = 1 and �(e) = 0 if e ∈ Pw, w(e) = 0 and �(e) = 1 if e ∈ P�

and w(e) = 0 and �(e) = 0 if e /∈ Pw ∪P�. We can check that there are four non-
dominated tours Ti, i = 1, . . . , 4 with w(T1) = w(Pw) = 3, �(T1) = �(Pw) = 0,
w(T2) = w(P�) = 0, �(T2) = �(P�) = 3, w(T3) = 2, �(T3) = 1 and w(T4) = 1,
�(T4) = 2. In conclusion, a single solution never approximates the Pareto set of
the biobjective Max TSP with ratio better than 1/3 for Kn with n ≥ 5.

4 A Generic Algorithm for Biobjective Max TSP

In this section, we present an algorithm for the Biobjective Max TSP. This algo-
rithm is based on the combination of the edges of a maximum weight matching
for the objective w and a maximum weight matching for the objective �. The
algorithm is as follows :

1. Build a maximum weight (resp. length) matching of G and denote it by Mw

(resp. M�).
The set of edges Mw ∪M� is made of p connected components C1, . . . , Cp.
Each Ci is a cycle of even size, or a path of length at least one. Note that
there is at most one path of length at least two in Mw ∪M� (because the
graph is complete and we can assume that Mw are M� are of maximum size).
Likewise, each path of length one is in Mw ∩M�.

2. For each component Ci which is a cycle, remove the edge in Ci ∩Mw which
has a minimum weight.
We thus obtain a set of paths, which is called a partial tour.

3. Add edges in order to connect these paths and obtain an Hamiltonian cycle of
Kn (edges are added arbitrarily unless otherwise noted. This step is detailled
inside the proofs when needed).

Let us now show that the Hamiltonian cycle obtained with this algorithm has
a weight larger than or equal to αw(Mw) and a length larger than or equal to
α�(M�), where 0 < α ≤ 1. We will determine the value of α in a general graph
(cf. Lemma 1), in a graph where one objective function (w.l.o.g. w) fulfills the
triangle inequality (cf. Lemma 2), and in a graph where both objective functions
fulfill the triangle inequality (cf. Lemma 3).

Single Approximation for Biobjective Max TSP 55

Lemma 1. Step 1 and 2 of the algorithm build in polynomial time a partial tour
on Kn with weight at least 1

2w(Mw) and length at least 1
2�(M�).

Proof. For each component Ci which is a cycle, step 2 of the algorithm removes
the edge in Ci∩Mw with minimum weight. Since |Ci∩Mw| ≥ 2 the loss in weight
is at most w(Ci∩Mw)/2. The resulting set of edges is a partial tour of weight at
least 1

2

∑p
i=1 w(Ci ∩Mw) =

1
2w(Mw) and length

∑p
i=1 �(Ci ∩M�) = �(M�). �

In the following Lemmas we consider two cases:

– Case 1: at the end of Step 1 of the algorithm, every component Ci is a cycle
– Case 2: at the end of Step 1 of the algorithm, at least one component Ci is

a cycle and at least one component Ci′ is not a cycle.

If no component is a cycle then we are already done since the set of edges is then
a partial tour of weight w(Mw) and length �(M�).

Lemma 2. Assuming that w satisfies the triangle inequality, we can build in
polynomial time a partial tour on Kn with weight at least 3

4w(Mw) and length
at least 3

4�(M�).

Proof. We distinguish two cases depending on the value of p that is the number
of connected components of Mw∪M�. If p = 1 then C1 is either a tour or a cycle
on n − 1 nodes (in this case n is odd) with weight at least w(Mw) and length
at least �(M�). If C1 is a cycle on n− 1 nodes, let x be the isolated node. Then
by replacing any edge (u, v) ∈Mw by (u, x), (x, v), we get a tour C′ of Kn satis-
fying w(C′) ≥ w(C1) ≥ w(Mw) due to the triangle inequality and �(C′) ≥ �(M�).

Let us now consider the case where p ≥ 2. Assume that case 1 occurs, that is
each component Ci is a cycle and thus it contains at least four edges. Since p ≥ 2
and |M� ∩ Ci| ≥ 2 for each Ci we have |M�| ≥ 4. It follows that if e ∈ M� is an
edge of minimum length among the edges of M�, then �(e) ≤ �(M�)/4. Thus, by
deleting e, we are in case 2 since ∪pi=1Ci \ {e} contain at least one cycle and at
least one path with w(∪pi=1Ci \ {e}) ≥ w(Mw) and

�(∪pi=1Ci \ {e}) ≥ 3�(M�)/4 (1)

Now, assume that case 2 occurs. By renaming the connected components, we can
assume that there is an integer r ∈ {1, . . . , p} such that Ci for i ≥ r is not a
cycle whereas Ci for 1 ≤ i < r is a cycle. Let x and y be the two extremities of
Cr. Proceed repeatedly as follows, for i = r − 1 down to 1. Remove an edge of
minimum weight in Mw ∩ Ci and call it (vi1, v

i
2). Add the edge with maximum

weight between (vi1, x) and (vi2, x). If w(v
i
1, x) ≥ w(vi2, x) then x := vi2, otherwise

x := vi1. By this way the procedure maintains a path with extremities x and y,
while reducing the number of cycles. At the end of the procedure we get a partial
tour that is the union between a path and ∪pi=rCi. Using the triangle inequality
we know that max{w(vi1, x), w(vi2, x)} ≥ (w(vi1, x) + w(vi2, x))/2 ≥ w(vi1, v

i
2)/2,

meaning that each time an edge (vi1, v
i
2) is removed (i ∈ {1, . . . , r − 1}), another

56 C. Bazgan et al.

one with at least half its weight is added so, in total, the loss in weight is bounded
by 1

2

∑r−1
i=1 w(vi1, v

i
2). Since |Mw ∩ Ci| ≥ 2 we deduce that w(vi1, v

i
2) ≤ w(Mw ∩

Ci)/2. Summing up the previous inequality, we deduce that
∑r−1

i=1 w(vi1, v
i
2) ≤

w(∪r−1
i=1Ci ∩ Mw)/2 ≤ w(Mw)/2. Thus the total loss in weight is bounded by

w(Mw)/4.
In conclusion the partial tour has weight at least 3w(Mw)/4 and length at

least 3�(M�)/4 by inequality (1). �

Lemma 3. Assuming that w and � satisfy the triangle inequality, we can build
in polynomial time a partial tour on Kn with weight at least 5

6w(Mw) and length
at least (56−ε(n))�(M�). Here ε(n) = 2/(n−1) and then tends to 0 when n tends
to ∞.

Proof. As it is done in Lemma 2, we transform case 1 into case 2. Thus, suppose
that we are in case 1 that is each component Ci is a cycle and w.l.o.g. that the
edge of M� with minimum length is e. Remove this edge e to create a path with
endpoints denoted by x and y. When n is even (resp. odd) this deletion induces
a loss of at most 2�(M�)/n = ε(n)�(M�) (resp. 2�(M�)/(n − 1) = ε(n)�(M�)).
Note that ε(n) tends to 0 when n tends to ∞.

Suppose now that we are in the case 2. As it is done in Lemma 2 we can
assume that there is an integer r ∈ {1, . . . , p} such that Ci for i ≥ r is not a
cycle whereas Ci for 1 ≤ i < r is a cycle. We are going to patch the cycles to
Cr, one by one. We explain how to patch C1, and the procedure is repeated for
the cycles C2, · · · , Cr−1. Let x and y be the two extremities of Cr.

If |C1 ∩Mw| ≥ 3 then delete an edge of minimum weight and call it (v11 , v
1
2).

We get that w(v11 , v
1
2) ≤ 1

3w(C1 ∩Mw). Add the edge with maximum weight
between (v11 , x) and (v12 , x). By the triangle inequality, max{w(v11 , x), w(v12 , x)} ≥
w(v11 , v

1
2)/2. If w(v

1
1 , x) ≥ w(v12 , x) then x := v12 , otherwise x := v11 . Disregarding

the weight of the edges in C1 ∩M�, the modification causes a loss in weight of
at most w(v11 , v

1
2) − w(v11 , v

1
2)/2 = w(v11 , v

1
2)/2 ≤ 1

6w(C1 ∩Mw). Since no edge
from M� was removed, and disregarding the length of the edges in C1 ∩Mw, the
modification does not cause any loss in length. Hence the patching guarantees
that the new path P satisfies w(P) ≥ w(Cr) + 5w(C1 ∩ Mw)/6 and �(P) ≥
�(Cr) + �(C1 ∩M�).

Now suppose that C1 is a cycle on 4 nodes and contains four edges (a, b), (b, c),
(c, d), (d, a) such that C1 ∩Mw = {(a, b), (c, d)} and C1 ∩M� = {(b, c), (a, d)}.
Using the triangle inequality we get that

w(a, c) + w(b, d) + w(C1 ∩M�) ≥ w(C1 ∩Mw) (2)

�(a, c) + �(b, d) + �(C1 ∩Mw) ≥ �(C1 ∩M�) (3)

– Suppose that �(C1 ∩Mw) ≥ �(C1 ∩M�)/8. W.l.o.g., assume �(a, d) ≥ �(b, c).
Remove (b, c) and add the edge with maximum length between (b, x) and
(x, c). Since max{�(b, x), �(x, c)} ≥ �(b, c)/2 by the triangle inequality, we get
that the new path P satisfies �(P) ≥ �(Cr)+�(C1∩Mw)+�(a, d)+�(b, c)/2 ≥
�(Cr) + �(C1 ∩M�)/8 + �(C1 ∩M�)/2 + �(a, d)/2 ≥ �(Cr) + �(C1 ∩M�)/8 +
�(C1 ∩M�)/2 + �(C1 ∩M�)/4 = �(Cr) + 7�(C1 ∩M�)/8.

Single Approximation for Biobjective Max TSP 57

– Suppose that w(C1 ∩ M�) ≥ w(C1 ∩ Mw)/8. W.l.o.g., assume w(a, b) ≥
w(c, d). Remove (c, d) and add the edge with maximum length between (c, x)
and (x, d). Since max{w(c, x), w(x, d)} ≥ w(c, d)/2 by the triangle inequality,
we get as in the previous case that w(P) ≥ w(Cr) +w(C1 ∩M�) +w(a, b) +
w(c, d)/2 ≥ w(Cr) + 7w(C1 ∩Mw)/8.

– Now suppose that �(C1 ∩Mw) < �(C1 ∩M�)/8 and w(C1 ∩M�) < w(C1 ∩
Mw)/8. Using Inequalities (2) and (3) we get that w(a, c)+w(b, d) > 7w(C1∩
Mw)/8 and �(a, c) + �(b, d) > 7�(C1 ∩M�)/8. In this case the new path P
obtained by adding any two edges to (a, c), (b, d) and Cr satisfies w(P) ≥
w(Cr) + 7w(C1 ∩Mw)/8 and �(P) ≥ �(Cr) + 7�(C1 ∩M�)/8.

In conclusion, when C1 contains four nodes, we can always patch it to Cr so that
the loss in weight (resp. length) is at most w(C1 ∩Mw)/8 (resp. �(C1 ∩M�)/8).

We have seen that this loss is of (at most) 1/6 on both objective functions
when C1 contains at least six nodes. We deduce that after the patching of all
cycles Ci for i < r, the current solution is a path P and its weight (resp. length) is

at least w(Cr) +
5
6w

(⋃r−1
i=1 Ci ∩Mw

)
(resp. �(Cr) +

5
6�
(⋃r−1

i=1 Ci ∩M�

)
). Adding

∪pi=r+1Ci to P , we get a partial tour P ′. Using w(Cr) ≥ w(Cr ∩ Mw) and
�(Cr) ≥ �(Cr ∩M�) − ε(n)�(M�) we get that the solution P ′ has weight (resp.
length) at least 5

6w(Mw) (resp. (
5
6 − ε(n))�(M�)). �

Theorem 1. We can build in polynomial time a single tour on Kn which con-
stitutes a (ρ− ξ(n))-approximate Pareto set for the biobjective Max TSP where
ρ = 5/12 when w and � satisfy the triangle inequality, ρ = 3/8 when only w
satisfies the triangle inequality and ρ = 1/4 when neither w nor � satisfies the
triangle inequality. Here ξ(n) = Θ(1/n) and then tends to 0 when n tends to ∞.

Proof. Consider first the case when x and � satisfy the triangle inequality. Lemma
3 states that we can build a partial tour with weight (resp. length) at least
5w(Mw)/6 (resp. (56 −ε(n))�(M�)) where ε(n) =

2
n−1 . If the partial tour is not a

tour then connect its components to create a tour. Using the fact that every edge
weight (resp. length) is nonnegative, the weight (resp. length) cannot decrease.
Denote by optw (resp. opt�) the optimal weight (resp. length) of a tour. It is
well known that w(Mw) ≥ (12 − ε′(n))optw and �(M�) ≥ (12 − ε′(n))opt� where

ε′(n) = 0 when n is even, otherwise ε′(n) = 1
2n . Let ξ(n) = ε(n)

2 + 5ε′(n)
6 −

ε′(n)ε(n). We get that the tour constructed has weight at least 5
6w(Mw) ≥

5
6 (

1
2 − ε′(n))optw > (5

12 − ξ(n))optw . The length is at least (56 − ε(n))�(M�) ≥
(56 − ε(n))(12 − ε′(n))opt� = (5

12 − ξ(n))opt�. Use Lemmas 2 and 3 and similar
arguments for the other cases. �

5 An Improved Analysis

In this section, we refine the analysis of our approximation algorithm when the
triangle inequality is not assumed on any objective function. We show that the

tour returned by our algorithm is an asymptotic 1+2
√
2

14 ≈ 0.273 approximation

58 C. Bazgan et al.

of the ideal point. Recall that some instances of the problem do not admit any
(13 + ε)-approximate solution, for all ε > 0 [14].

The intuition behind the improved analysis is the following. The ratio 1/4 of
Theorem 1 follows from two observations: the tour returned by the approximation
algorithm is a 1/2-approximation of the maximum weight/length matching, and
this latter is an asymptotic 1/2-approximation of the maximum weight/length
tour. Taken separately both observations are tight but we exploit the fact that
they cannot occur simultaneously.

Theorem 2. We can build in polynomial time a (1+2
√
2

14 − ξ(n))-approximate
Pareto set containing a single tour on Kn for Biobjective Max TSP. Here ξ(n) =
Θ(1/n) and then, tends to 0 when n tends to ∞.

Proof. (Sketch) Define δ as 4
√
2−5
14 ≈ 0.0469. Actually, δ is the positive root of

equation −1 + 20x + 28x2 = 0. We can show that every instance Kn of the
problem satisfies one of the following statements:

(i) a partial tour P ′ on Kn with weight at least (12 + δ)w(Mw) and, at the
same time, length at least (12 + δ)�(M�) exists and can be computed in
polynomial time.

(ii) every Hamiltonian cycle has weight at most (32 + 7δ)w(Mw) and, at the
same time, its length is at most (32 + 7δ)�(M�).

Recall that w(Mw) ≥ (12 − ε′(n))optw, �(M�) ≥ (12 − ε′(n))opt� where ε′(n) = 0
when n is even, otherwise ε′(n) = 1/2n. If Kn satisfies (i), then by hypothesis
the partial tour P ′ has weight (resp. length) at least (1/4 + δ/2 − ξ(n))optw
(resp. (1/4 + δ/2 − ξ(n))opt�) with ξ(n) = ε′(n)(1/2 + δ). If Kn satisfies (ii),
then starting from Mw∪M� as it is done in previous section and using Lemma 1,
a partial solution P with weight (resp. length) at least w(Mw)/2 (resp. �(M�)/2)
can be built in polynomial time. Now, since by hypothesis optw ≤ (32+7δ)w(Mw),
and opt� ≤ (32 + 7δ)�(M�), the partial solution P has a weight (resp. length) at

least 1
2

optw
(3
2+7δ)

(resp. 1
2

opt�
(3
2+7δ)

).

Finally remark that on the one hand, a tour can be obtained by connecting the
components of a partial tour without decreasing the weight/length since every
edge weight/length is nonnegative and on the other hand, 1

2
1

(3
2+7δ)

= 1/4+δ/2 =

1+2
√
2

14 because δ is the positive root of equation −1 + 20x+ 28x2 = 0.
We assume n ≥ 5, since otherwise the partial solution P given in Lemma 1

has weight (resp. length) at least optw/2 (resp. opt�)/2).
We consider three distinct cases which can be distinguished in polynomial

time.

Case 1. Let us suppose that there exists a cycle, say C1 w.l.o.g., such that
the edge with minimum weight in C1 ∩Mw has weight at least (12 − δ)w(Mw)
and, at the same time, the edge with minimum length in C1 ∩M� has length
at least (12 − δ)�(M�). Since 1/2 − δ > 1/3, C1 must be a cycle on four nodes,
i.e. C1 ∩Mw = {(a, b), (c, d)} and C1 ∩M� = {(b, c), (a, d)} (see Figure 2 for an
illustration).

Single Approximation for Biobjective Max TSP 59

a b

cd

Edges of M�

Edges of Mw

A third matching

Fig. 2. The cycle C1. Bold edges belong to M� and dashed edges belong to Mw; the
remaining edges form a third matching Mr = {(a, c), (b, d)}.

We conduct a subcase analysis depending on the weight or the length of the
edges having at least one endpoint in V (C1): case (1.1.w) max{w(e) : e ∈
C1 ∩M�} > 2δw(Mw), case (1.1.�) max{�(e) : e ∈ C1 ∩Mw} > 2δ�(M�), case
(1.2.w) max{w(a, c), w(b, d)} > (12+δ)w(Mw), case (1.2.�) max{�(a, c), �(b, d)} >
(12 + δ)�(M�), case (1.3.w) max{w(i, j) : i ∈ V (C1), j /∈ V (C1)} > 2δw(Mw),
case (1.3.�) max{�(i, j) : i ∈ V (C1), j /∈ V (C1)} > 2δ�(M�) and case (1.4)
max{w(e) : e ∈ C1 ∩M�} ≤ 2δw(Mw), max{�(e) : e ∈ C1 ∩Mw} ≤ 2δ�(M�),
max{w(a, c), w(b, d)} ≤ (12 + δ)w(Mw), max{�(a, c), �(b, d)} ≤ (12 + δ)�(M�),
max{w(i, j) : i ∈ V (C1), j /∈ V (C1)} ≤ 2δw(Mw) and max{�(i, j) : i ∈
V (C1), j /∈ V (C1)} ≤ 2δ�(M�).

One can prove that in case (1.4) the instance Kn satisfies (ii) whereas in
other cases the instance Kn satisfies (i). Due to space limitation, we only give
the details of the first four cases.

(1.1.w) If w(a, d) > 2δw(Mw) or w(b, c) > 2δw(Mw) then remove (c, d). We get
that w(a, b) + w(b, c) + w(a, d) > (12 + δ)w(Mw) and �(a, b) + �(b, c) +
�(a, d) ≥ (1− 2δ)�(M�) ≥ (1/2 + δ)�(M�).

(1.1.�) If �(a, b) > 2δ�(M�) or �(c, d) > 2δ�(M�) then remove (b, c). We get that
�(a, d)+ �(a, b)+ �(c, d) > (12 + δ)�(M�) and w(a, d)+w(a, b)+w(c, d) ≥
(1− 2δ)w(Mw) ≥ (1/2 + δ)w(Mw).

(1.2.w) If max{w(a, c), w(b, d)} > (12 + δ)w(Mw) then remove {(a, b), (c, d)} and
add the edge with maximum weight between (a, c) and (b, d), say (a, c)
without loss of generality. We get that w(a, c) +w(b, c) +w(a, d) > (12 +
δ)w(Mw) and �(a, d)+ �(a, c)+ �(b, c) ≥ (1− 2δ)�(M�) ≥ (1/2+ δ)�(M�).

(1.2.�) If max{�(a, c), �(b, d)} > (12 + δ)�(M�) then remove {(a, d), (b, c)} and
add the edge with maximum length between (a, c) and (b, d), say (a, c)
without loss of generality. We get that w(a, c) +w(a, b) +w(c, d) > (1−
2δ)w(Mw) > (1/2+δ)w(Mw) and �(a, c)+�(a, b)+�(c, d) ≥ (12+δ)�(M�).

Case 2. Suppose that there exists a cycle, say C1 w.l.o.g., such that the edge with
minimum weight in C1∩Mw has weight at most (12 − δ)w(Mw) and, at the same
time, the edge with minimum length in C1∩M� has length at least (12 −δ)�(M�).
We will prove that the instance Kn satisfies (i). Again, since 1/2− δ > 1/3, C1

must be a cycle on four nodes. Again we suppose that C1 ∩Mw = {(a, b), (c, d)}
and C1 ∩M� = {(b, c), (a, d)}.

60 C. Bazgan et al.

Remove the edge in C1 ∩Mw with minimum weight and for any other cycle
Ci remove one edge in Ci∩M� arbitrarily. We get a partial tour. Since w(Mw)−
min{w(a, b), w(c, d)} ≥ (12 + δ)w(Mw) and �(C1 ∩ M�) = �(a, d) + �(b, c) ≥
2(12 − δ)�(M�) ≥ (12 + δ)�(M�), the partial tour has weight (resp. length) at least
(12 + δ)w(Mw) (resp. (

1
2 + δ)�(M�)).

The case where there exists a cycle C1 such that the edge with minimum
weight in C1 ∩Mw has weight at least (12 − δ)w(Mw) and, at the same time, the
edge with minimum length in C1 ∩M� has length at most (12 − δ)�(M�) is dealt
with similar arguments by flipping w and �.

Case 3. Denote by ewi (resp. e�i) the edge in Ci ∩ Mw (resp. Ci ∩ M�) with
minimum weight (resp. length). We deal with the remaining case where w(ewi) ≤
(12 − δ)w(Mw) and �(e�i) ≤ (12 − δ)�(M�) for all i ∈ {1, . . . , p}. We will prove that
the instance Kn satisfies (i). Since every cycle contains at least two edges of Mw

and also two edges of M� we deduce that

p∑
i=1

w(ewi) ≤ w(Mw)/2 and

p∑
i=1

�(e�i) ≤ �(M�)/2 (4)

– Suppose there is an index i∗ such that w(ewi∗) ≥ δw(Mw). Then for every
cycle Ci except Ci∗ remove ewi . Remove e�i∗ . Using the first part of inequality
(4) we get a partial tour with weight at least w(Mw)−

∑p
i=1 w(e

w
i)+w(ewi∗) ≥

(1/2 + δ)w(Mw) and length at least �(M�)− �(e�i∗) ≥ (1/2 + δ)�(M�).

– Suppose there is an index i∗ such that �(e�i∗) ≥ δ�(M�). With similar argu-
ments we can build a partial tour with weight at least (1/2 + δ)w(Mw) and
length at least (1/2 + δ)�(M�).

– Suppose that w(ewi) < δw(Mw) and �(e�i) < δ�(M�) for all i. If
∑p

i=1 w(e
w
i) ≤

(12 − δ)w(Mw), then by removing ewi for i = 1, . . . , p we get a partial tour P
with weight at least (1/2 + δ)w(Mw) and length at least �(M�). Otherwise,
there exists an index i∗ < p such that

i∗∑
i=1

w(ewi) ≤ (
1

2
− δ)w(Mw) and

i∗+1∑
i=1

w(ewi) > (
1

2
− δ)w(Mw) (5)

Using inequalities (4), (5) and w(ewi∗+1) < δw(Mw) we get that

i∗+1∑
i=1

w(ewi) +

p∑
i=i∗+2

w(ewi) ≤ w(Mw)/2

p∑
i=i∗+2

w(ewi) < δw(Mw)

p∑
i=i∗+1

w(ewi) < 2δw(Mw) ≤ (
1

2
− δ)w(Mw) (6)

Single Approximation for Biobjective Max TSP 61

Now remark that

min{
i∗∑
i=1

�(e�i),

p∑
i=i∗+1

�(e�i)} ≤
1

2

p∑
i=1

�(e�i) ≤
1

4
�(M�) (7)

where the right part of inequality (4) is used. If
∑i∗

i=1 �(e
�
i) ≤

∑p
i=i∗+1 �(e

�
i) then

remove e�i for i = 1, . . . , i∗ and remove ewi for i = i∗ + 1, . . . , p. We get a partial
tour with weight at least (1/2 + δ)w(Mw) by inequality (6) and length at least

3�(M�)/4 ≥ (1/2+δ)�(M�) by inequality (7). If
∑i∗

i=1 �(e
�
i) >

∑p
i=i∗+1 �(e

�
i) then

remove ewi for i = 1, . . . , i∗ and remove e�i for i = i∗ + 1, . . . , p. We get a partial
tour with weight at least (1/2 + δ)w(Mw) by inequality (5) and length at least
3�(M�)/4 ≥ (1/2 + δ)�(M�) by inequality (7). �

6 Future Work

We considered the biobjective Max TSP. It would be interesting to study the
cases where there is a fixed number k ≥ 3 of objectives. There are still gaps
between positive and negative results given in this article. For example, when
both objective functions are metric, we provide a polynomial time (5

12 − ε)-
approximation and an upper bound of 3

4 . Maybe both results can be improved.
An interesting future work would be to investigate randomized algorithms. An-
other direct extension of our work is to consider the multiobjective asymmetric
Max TSP.

References

1. Angel, E., Bampis, E., Fishkin, A.V.: A note on scheduling to meet two min-sum
objectives. Operations Research Letters 35(1), 69–73 (2007)

2. Angel, E., Bampis, E., Gourvès, L.: Approximating the Pareto curve with local
search for the bicriteria TSP(1,2) problem. Theoretical Computer Science 310(1-
3), 135–146 (2004)

3. Angel, E., Bampis, E., Gourvès, L.: Approximation algorithms for the bi-criteria
weighted max-cut problem. Discrete Applied Mathematics 154(12), 1685–1692
(2006)

4. Angel, E., Bampis, E., Gourvès, L., Monnot, J.: (Non)-Approximability for the
Multi-criteria TSP(1,2). In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS,
vol. 3623, pp. 329–340. Springer, Heidelberg (2005)

5. Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria
batching and parallel machine scheduling problems. Theoretical Computer Sci-
ence 306(1-3), 319–338 (2003)

6. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and
budgeted matroid intersection via the gasoline puzzle. Mathematical Program-
ming 128(1-2), 355–372 (2011)

7. Bläser, M., Manthey, B., Putz, O.: Approximating Multi-criteria Max-TSP. In:
Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 185–197.
Springer, Heidelberg (2008)

62 C. Bazgan et al.

8. Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algo-
rithms for max TSP. Information Processing Letters 95(2), 333–342 (2005)

9. Ehrgott, M.: Multicriteria Optimization. LNEMS. Springer, Heidelberg (2005)
10. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack

problems. Management Science 48(12), 1603–1612 (2002)
11. Hong, S.-P., Chung, S.-J., Park, B.H.: A fully polynomial bicriteria approxima-

tion scheme for the constrained spanning tree problem. Operations Research Let-
ters 32(3), 233–239 (2004)

12. Kowalik, L., Mucha, M.: Deterministic 7/8-approximation for the metric maximum
TSP. Theoretical Computer Science 410(47-49), 5000–5009 (2009)

13. Manthey, B.: Multi-Criteria TSP: Min and Max Combined. In: Bampis, E., Jansen,
K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 205–216. Springer, Heidelberg (2010)

14. Manthey, B.: On approximating multi-criteria TSP. In: Proceedings of the
26th International Symposium on Theoretical Aspects of Computer Science
(STACS 2009), pp. 637–648 (2009)

15. Manthey, B.: Deterministic Algorithms for Multi-criteria TSP. In: Ogihara, M.,
Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 264–275. Springer, Heidelberg
(2011)

16. Manthey, B., Shankar Ram, L.: Approximation algorithms for multi-criteria Trav-
eling Salesman Problems. Algorithmica 53(1), 69–88 (2009)

17. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 - Approximation Algorithm for the
Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

18. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)

19. Rasala, A., Stein, C., Torng, E., Uthaisombut, P.: Existence theorems, lower
bounds and algorithms for scheduling to meet two objectives. In: Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002),
pp. 723–731 (2002)

20. Ravi, R., Goemans, M.X.: The Constrained Minimum Spanning Tree Problem. In:
Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer,
Heidelberg (1996)

21. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Many
birds with one stone: multi-objective approximation algorithms. In: Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing (STOC 1993),
pp. 438–447 (1993)

22. Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both
makespan and total weighted completion time. Operations Research Letters 21(3),
115–122 (1997)

Parameterized Approximation Algorithms

for Hitting Set

Ljiljana Brankovic1 and Henning Fernau2

1 School of Electrical Engineering and Computer Science
The University of Newcastle, Callaghan, NSW 2308, Australia

Ljiljana.Brankovic@newcastle.edu.au
2 Fachbereich 4, Abteilung Informatik
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de

Abstract. We are going to analyze simple search tree algorithms for
approximating d-Hitting Set, focussing on the case of factor-2 approxi-
mations for d = 3. We also derive several results for hypergraph instances
of bounded degree, including a new polynomial-time approximation.

1 Introduction

Our approach—in general. There is now a growing body of literature concerned
with combining two very natural ideas to cope with intractability: that of ap-
proximation and that of parameterized algorithms; see [4] for background in-
formation. We are putting here a recent approach of ours [3] to another test:
namely, the idea of combining search tree algorithms with approximation to ob-
tain better approximation ratios at the cost of (moderately) exponential time.

Problem statement. The d-Hitting Set (d-HS) can be viewed as a “vertex
cover problem” on hypergraphs, formally stated as follows:

Given: A hypergraph G = (V,E) with edge size bounded by d: ∀e ∈ E(|e| ≤ d)
Parameter: a non-negative integer K
Question: Is there a hitting set C of cardinality of at most K, i.e.,
∃C ⊆ V ∀e ∈ E(C ∩ e �= ∅) and |C| ≤ K?

We will mostly consider the case d = 3 in what follows.
In this paper, we follow the definition proposed in [4], which in our context

can be phrased as follows. Given a hypergraph G and a parameter K such that
a minimum hitting set C∗ of G satisfies |C∗| ≤ K, a parameterized approxi-
mation algorithm with (constant) approximation ratio ρ for minimum hitting

set produces a hitting set C such that |C| ≤ ρ|C∗|. If K < |C∗|, the algorithm
will answer NO. Such an algorithm runs in time O∗(f(K)) for some function f ,
where O∗ notation suppresses polynomial factors.

Bibliographical notes. Despite all efforts, the best known constant factor polyno-
mial time approximation algorithm for general (unweighted) hypergraphs with

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 63–76, 2012.
� Springer-Verlag Berlin Heidelberg 2012

64 L. Brankovic and H. Fernau

edge size d is still a factor-d approximation for fixed d, and this is even optimal
under the unique games conjecture [10]. So, even the factor-2 approximation we
focus on in this paper is is a considerable progress. Several exact parameter-
ized algorithms have been developed for our problem. Let us only mention the
best published results here: The best publically available algorithm for 3-HS is
Wahlström’s, as it appeared in his PhD Thesis [12], having a running time of
O∗(2.076K). The best published one has only a running time of O∗(2.179K);
see [7].

Why Hitting Set? (1) Hitting Set problems show up in many places; e.g.,
Reiter’s ground-breaking research on model-based diagnosis [11] relates the au-
tomatic diagnosis of systems to Hitting Set, or HS for short. (2) vertex

cover, or VC for short, is the paradigmatic test-bed problem for parameterized
algorithms. As HS can be seen as a vertex cover problem on hypergraphs, it is
quite a natural question to see how the ideas developed in [3] might generalize
to the case of hypergraphs. It should be noted that the paper [2] can be seen as
a sort of precursor of [3], although the techniques are quite different.

Why using exponential time for approximation? As we have seen when working
on our VC-approximation paper, this kind of work often also gives new insights
and ideas for polynomial time approximations, for instance, new reduction rules.
On the other hand, we believe that this is also interesting for “classical FPT”,
keeping in mind that, at least with search tree algorithms, what slows them
down is finding (proving) a NO answer: In that case, often the whole search
tree has to be traversed. Approximation algorithms, be them polynomial time
or FPT, can serve to find a quicker NO. Since we are talking exponential time
anyways, a “very fast” exponential time algorithm may be worthwhile running
first (or in parallel) to find this quick NO answer, even though we might be
mainly interested in finding exact answers. As it is considered unlikely to find a
better polynomial time approximation algorithm than the (trivial) one offering a
factor of three. Whoever is interested in finding better approximation guarantees
must therefore use exponential time.

The results of this paper. We show a branching algorithm that enables to ap-
proximate 3-HS within a factor of two, running in time O∗(1.29K); see Sec. 3
and 4. For subcubic instances, the analysis can be improved to show an upper
bound of O∗(1.26K); see Sec. 5. These figures compare favorably with the ones
that can be obtained by employing the best exact algorithms for approximation
purposes, as explained in Sec. 2. We also give several results for approximating d-
HS for general d, as well as a new polynomial-time algorithm for approximating
3-HS for instances of degree bounded by three up to a factor of 5

2 .

General notions and definitions. We introduce some terminology on hypergraphs
as needed for Hitting Set. A hypergraph G = (V,E) is given by its finite set
of vertices V and its set of (hyper)-edges E, where a hyperedge is a subset of V .
The cardinality |e| of a hyperedge e is also called its size. The cardinality of the
set of edges which contain the vertex v is called the degree of v, written deg(v).

Parameterized Approximation Algorithms for Hitting Set 65

2 A Simple Design for Parameterized Approximation

Most of the currently best algorithms for 3-HS are all based on a search tree
algorithm, combined with the use of reduction rules. To each node n of the search
tree, a set of vertices Cn of the input hypergraph G = (V,E) can be associated
that collects a partial hitting set, i.e., in the subtree Tn rooted at n, we are only
interested in hitting set solutions S that contain Cn. Cn has been constructed
on the path from the root of the search tree down to n by invoking the simple
operation “Put x into the solution.” |Cn| times. We can also associate a
“current hypergraph” Gn = (Vn, En) to n that can be easily obtained from G
and Cn.

The technique for obtaining an approximative solution from such an algorithm
is very simple through interleaving a step that deliberately worsens a solution
in order to speed up the branching. So, we associate a hyperedge set Hn ⊆ E to
n that has been formed as follows (to obtain a factor-2 approximation for the
ease of presentation): Whenever some vertex x is put into the solution, we pick
some e ∈ En and put it into Hn. The approximative solution associated to n
is now Sn := Cn ∪ V (Hn). Of course, the “current hypergraph” G′

n = (Vn, En)
associated to n now depends on G and (Cn, Hn).

This procedure guarantees the following properties:

• If G = (V,E) has a hitting set S of size K, then there is a path in the search
tree of the approximative branching algorithm of length at most K/2 such
that Cl and Hl are associated to the leaf l of that path, with Cl ⊆ S ⊆ Sl.
• Any valid hitting set solution C with Cl ⊆ C ⊆ Sl contains at least one vertex
from each edge from Hl, i.e., |C| ≥ 2|Cl| by construction, since |Hl| = |Cl|.
• Hence, 2|Cl| ≤ |S| and 4|Cl| = |Sl|, and Sl is an approximative solution that
is at most twice as big as the optimum (constrained to sets embracing Cl).

This allows us to conclude, using Fernau’s result [7]:

Proposition 1. There is a factor-2 approximation of 3-HS in timeO∗(1.477K).

There is a technical difficulty when trying to apply Wahlström’s result [12],
namely the Measure & Conquer analysis that he employs. It is not completely
clear if we can always choose an edge to worsen the approximation factor whose
removal reduces the measure by the same amount as the previous branching did.
As we will present considerably better running times in this paper, this question
is of no major concern.

The same approach can be used for other variants of d-HS, as summarized
in the following table. There, the first line lists the running time estimates that
we obtained in [6] for the exact solution, ρd shows the intended approximation
factor, where ρd = (d+1)/2, since each vertex that we put into the hitting set is
accompanied by one worsening step, and T ρd

d shows the obtained running times;
clearly, for the chosen approximation factors, the basis of T ρd

d is just the square
root of the basis for Td.

By letting grow Hn more slowly or more rapidly along the search tree, it is
straightforward to obtain similar results for other (better or worse) approxima-
tion factors with accordingly changed (slower or faster) running times. We leave

66 L. Brankovic and H. Fernau

Table 1. Approximation factors and running times obtained based on [7,6]

d 3 4 5 6 10 100

Td(K) ≤ 2.18K 3.12K 4.08K 5.05K 9.02K 99.0002K

ρd = 2 2.5 3 3.5 5.5 55.5
T

ρd
d (K) ≤ 1.51K 1.77K 2.02K 2.25K 3.01K 9.95K

out the according details in this extended abstract, but rather refer to similar
reasonings for VC in [3].1

In the following, we will present branching algorithms that are simpler and
simpler to analyze than those from [7,6,12], but where a more elaborated use of
interleaving nonetheless leads to better running times. For the ease of presen-
tation, we will no longer differentiate between Cn and V (Hn) in what follows,
but just assume that a partial hitting set Cn is associated to each node n of
the search tree. Whenever clear from the context, we omit the index n. Similarly
abusing notation, we also allow G = (V,E) to refer to the “current hypergraph.”

It is worth noticing that the approach for approximating VC of [2] (as detailed
in the PhD Thesis of N. Bourgeois) that consisted in first splitting the given
instance into parts and then computing exact solutions for each of the parts is
dependent on some kernelization results that are not available in this case.

3 A Simple Branching for Approximation

We are now elaborating on the interleaving idea further, looking at a very
simplistic-looking general branching algorithm. Due to the fact that we observe
a good approximation ratio when a certain vertex is not put into the partial
hitting set, even this simple branching already improves on the idea presented in
the previous section. In the beginning, Algorithm 1 is called with the parameters
(G,K, ∅), where (G,K) is the original 3-HS instance that we want to solve. This
original parameter K is also occasionally used by Algorithm 1, while k refers to
the value of the parameter in the current situation.

The algorithm uses the following ingredients:

• Several reduction rules are known for HS; we will list (some of) them below,
including possibly rules that are only valid in an approximative sense.
• We still have to specify heuristic priorities that might improve our branching.
• Whenever a vertex is put into the hitting set, an edge is selected for wors-
ening the solution. Also here, we might introduce some selection strategies
to improve on the running time.
• It is well-known that (3)HS can be solved to optimality in polynomial time
if each vertex belongs to at most two edges by invoking some Edge Cover

algorithm on an auxiliary graph.

1 Similar ideas have been presented at WorKer 2011 by H. Shachnai, joint work with
M. Fellows and F. Rosamond.

Parameterized Approximation Algorithms for Hitting Set 67

Algorithm 1. 3HS-2-appr-general: A 2-approximation algorithm for 3-HS

1: Input: Hypergraph G = (V,E), parameter k, and a partial hitting set C
2: Output: Either NO or a hitting set C with |C| ≤ 2K.
3: Apply all reduction rules exhaustively, possibly modifying C and k.
4: if k < 0 then
5: Return NO.
6: else if possible: choose a v ∈ V such that deg(v) ≥ 3 according to heuristic

priorities. then
7: Binary branch on v:
8: Case 1: Put v ∈ C, i.e., C ← C ∪ {v}, V ← V \ {v}, E ← {e ∈ E | e ⊆ V }.

Select some f ∈ E for worsening and put all vertices of f into C, i.e.,
C ← C ∪ f , V ← V \ f , E ← {e ∈ E | e ⊆ V }, k ← k − 2

Recursively call 3HS-2-appr-general with the modified parameters.
9: Case 2: Do not put v into C, i.e.,

V ← V \ {v}, E ← {e \ {v} | e ∈ E}.
Recursively call 3HS-2-appr-general with the modified parameters.

10: else
11: Solve the remaining instance optimally using an Edge Cover algorithm.
12: Return either NO or a hitting set C with |C| ≤ 2K.

Simple reduction rules. We first list the (well-known) reduction rules valid for
(3)HS, as they can be found, e.g., in [7].

• (hyper)edge domination: A hyperedge e is dominated by another hyperedge
f if f ⊂ e. In that case, delete e.
• tiny edges: Delete all hyperedges of size one and place the corresponding
vertices into the hitting set.
• vertex domination: A vertex x is dominated by a vertex y if, whenever x
belongs to some hyperedge e, then y also belongs to e. Then, we can simply
delete x from the vertex set and from all edges it belongs to.

Notice that the tiny edge rule puts a vertex into the hitting set. Since this is
an exact rule, we may worsen the solution in order to obtain a sufficiently ap-
proximated solution. One easy consequence of the vertex domination rule is that
we can assume a minimum degree of two in an irreducible instance. Moreover,
for each vertex pair (x, v) of an irreducible instance, there exists an edge pair
(irreducibility witness) (e, f) with x ∈ f, v /∈ e, but x /∈ f, v ∈ e.

The following simple rule preserves the approximation factor of two.

• small edges: If e is a hyperedge of size two, i.e., e = {x, y}, then put both x
and y into the hitting set.

In general, we will always first employ exact reduction rules before employing
approximative reduction rules.

Analyzing a simplistic branching. In the first case of the branching, v is put into
C, and afterwards, the solution is worsened by putting all vertices of an edge e

68 L. Brankovic and H. Fernau

into C, as well. Since any optimum solution that contains v will also contain at
least one vertex from e, while the algorithm will, altogether, put e∪ {v} into C,
with |e ∪ {v}| ≤ 4, this locally preserves the claimed 2-approximation factor.

In the second case of the branching, v is not put into C. Clearly, there is some
edge e ∈ E containing v. In this second case, v will be removed from e. In the
recursive call, the small edges rule triggers and puts from e into C.

So, at this point of the analysis, we face one (2, 1) branching vector, i.e., a
branching number of 1.619, obviously worse than what we got by profiting from
earlier analysis for exact algorithms. However, there is some hope that we might
get better running time estimates. For instance, since we know that the vertex v
is (at least) of degree three, we might find that there are edges e, f, g containing
e such that |e ∪ f ∪ g| = 7. Now, in Case 2 of the branching, three small edges
are produced. This alone gives already a (2, 3) branch, i.e., O∗(1.325K), for our
factor-2 approximation. We deliver a detailed analysis in the next section.

4 A More Elaborated Analysis of a Factor-2
Approximation Algorithm for 3-HS

More approximation-preserving reduction rules.

• approximative vertex domination: Assume there is a hyperedge e = {x, y, z}
such that, whenever x belongs to some hyperedge h, then y or z also belong
to h. Then, we put y and z together into the hitting set that we produce.

Lemma 1. The approximative vertex domination rule is correct for an algo-
rithm aiming at a factor-2 approximation.

Proof. Namely, assume that an optimum solution contains x. Then, we can re-
place x in that solution by y and z, losing a factor of two, but still having a valid
hitting set. If x is not in any optimum solution C, then, in order to hit e, y or
z (or both) must be in C, so our rule loses again at most a factor of two. �

This rule alone is already very powerful. Consider any vertex v that Algorithm 1
chooses for branching. By approximative vertex domination, v must belong to
two edges e, f with |e∪f | = 5, as otherwise, fixing some e where v belongs to, all
edges f that contain v would also contain some other vertex of e. In particular,
this reasoning shows that there is for any vertex v of degree two, the two edges
containing v will together host five vertices. This yields a branching vector of
(2, 2), which already improves on the much more sophisticated exact algorithms
that were (ab)used to produce approximative solutions in Proposition 1.

• small triangle situation: Assume there are three small hyperedges e = {y, z},
f = {x, y}, g = {x, z}. This describes a triangle situation (e, f, g). Then, we
put {x, y, z} together into the hitting set, and we can even choose another
hyperedge of size three to worsen the ratio.

Parameterized Approximation Algorithms for Hitting Set 69

y z

w x
g

f

e
u v w

xy

e

f

g

rt

h

Potential triangle situation Potential vertex domination

Fig. 1. Special situations for better branching

Notice that it is clear that two of the three vertices {x, y, z} must be in any
optimum solution. So, if we put {x, y, z} together with a whole edge h into the
hitting set, out of these six vertices, three must be in any optimum solution.
This shows the validity of this rule. To improve our branching, we will always
first look for small triangle situations before applying the small edges rule.

• approximative double vertex domination: Assume there is a hyperedge e =
{x, y, a} and another vertex b such that, whenever x or y belong to some
hyperedge h, then a or b also belong to h. Then, we put a and b together
into the hitting set that we produce.

Lemma 2. The approximative double vertex domination rule is correct for an
algorithm aiming at a factor-2 approximation.

Proof. Assume that an optimum solution contains at least one of the vertices x
and y. Then, we can replace The vertices x and y in that solution by a and b,
losing at most a factor of two, but still having a valid hitting set. If neither x
nor y is in any optimum solution C, then, in order to hit e, a must be in C, so
our rule loses again at most a factor of two. �

We will now describe how this new reduction rule can help in certain branching
scenarios. Assume there are three hyperedges e = {x, y, z}, f = {x, y, w}, g =
{x,w, z}. This describes a potential triangle situation (x; e, f, g) in the sense
that, when branching at vertex x, in the branch that does not put x into the
hitting set, a small triangle situation will be produced. Hence, we can reduce the
parameter k by three in that branch.

We can experience a similar profit from vertex domination. We assume there
are hyperedges e = {u, v, w}, f = {u, v, x} and a further edge g �= {v, w, x}
containing v but not u; we can further assume deg(u) ≥ 3 (as otherwise v
dominates u), and that none of the further edges hi containing u also contain v.
Finally, we consider edge h = {u, r, t} and assume that all edges hi containing u,
also contain r or t. We then consider a binary branch at v. In the branch when
v is put into the hitting set, the approximative vertex domination rule triggers
on vertex u. Hence, we can reduce the parameter by at least three in this branch

70 L. Brankovic and H. Fernau

(including the worsening step). In the case when v is not put into the hitting set,
then the small edges e′ = e\{v} = {u,w}, f ′ = f\{v} = {u, x} and g′ = g\{v} �=
{x,w} (with u /∈ g′) are produced, so that either e′∩g′ = ∅ or f ′∩g′ = ∅. Hence,
the small edge rule can be performed twice, yielding a parameter reduction of
two. We will term (v; e, f, g) a potential vertex domination situation.

Algorithm 2. 3HS-2-appr: A more specific 2-approximation algorithm for 3-

HS

1: Input: Hypergraph G = (V,E), parameter k, and a partial hitting set C
2: Output: Either NO or a hitting set C with |C| ≤ 2K.
3: Apply all reduction rules exhaustively, possibly modifying C and k.
4: if k < 0 then
5: Return NO.
6: else if possible: choose (a) an internal or (b) [if (a) fails] an external branching

pair (u, v) then
7: Binary branch on {u, v} as follows:
8: Case 1: Put u, v ∈ C, i.e.,

C ← C ∪ {u, v}, V ← V \ {u, v}, E ← {e ∈ E | e ⊆ V }, k ← k − 1
Recursively call 3HS-2-appr with the modified parameters.

9: Case 2: Do not put u, v into C, i.e.,
V ← V \ {u, v}, E ← {e \ {u, v} | e ∈ E}.

Recursively call 3HS-2-appr with the modified parameters.
10: else
11: Solve the remaining instance optimally using an Edge Cover algorithm.
12: Return either NO or a hitting set C with |C| ≤ 2K.

Explaining a more refined branching. In Algorithm 2, we follow another branch-
ing strategy in a hypergraph G = (V,E) by selecting branching pairs. More
specifically, a pair (u, v) of vertices, where deg(u), deg(v) ≥ 3, is called a branch-
ing pair if one of two conditions is met:

• If there are two hyperedges e = {u, v, w}, f = {u, v, x}, then (u, v) is an
internal branching pair. We branch on this case with preference.
• If in the hypergraph G′ = (V ′, E′) that is obtained from G by deleting u
and all the edges u belongs to, v has still degree at least three, then (u, v) is
an external branching pair.

In the penultimate line of the algorithm, it might still be that there are vertices
of degree at least three. However, as we do not find any branching pair, these
vertices will disappear in a single branch that will afterwards allow the use of
an Edge Cover algorithm to solve the Hitting Set instance with maximum
degree of two.

Clearly, an optimum solution either contains u or v, or neither u nor v. We are
worsening this case distinction by a factor of two if we consider the case when
u or v is in an optimum solution together, so taking {u, v} into the solution.
This is done in the first branch. If this is not the case, neither u nor v are in an

Parameterized Approximation Algorithms for Hitting Set 71

optimum solution. However, in the second branch, when u, v are removed from
the instance, reduction rules will apply We are giving a more refined analysis in
the following theorem. The following lemma is crucial to show the running time
of 3HS-2-appr.

Lemma 3. If the maximum degree in an irreducible hypergraph G is at least
three, then there must exist a vertex v with deg(v) ≥ 3, called preferred vertex,
that satisfies one of the following cases.

1st branching scenario There is another vertex u ∈ V and three edges e, f, g
such that {u, v} = e ∩ f ∩ g.

2nd branching scenario There are 3 edges e, f, g s.t. (A) {v} = e∩ f ∩ g and
|e ∪ f ∪ g| = 7 or (v; e, f, g) describes (B) a potential triangle situation or
(C) a potential vertex domination situation.

Proof. Consider an irreducible hypergraph G = (V,E) with maximum degree
at least 3, and consider a vertex v ∈ V with degree at least 3. Then one of the
following three cases must be satisfied:

1. There are three edges e, f, g containing v such that e ∩ f ∩ g = {u, v}; then
we have the first branching scenario.

2. There are no three edges e, f, g containing v such that e∩f ∩g = {u, v}, but
there are two edges containing v such that e ∩ f = {u, v}, say e = {u, v, w}
and f = {u, v, x}.
• If there exists an edge h = {v, w, x} or h = {u,w, x} then {v; e, f, h}
(or {u; e, f, h}) is a potential triangle situation (case (B) in the second
branching scenario). In what follows we assume that such edge h does
not exist.
• Since the hypergraphG is irreducible, the vertex u also obeys deg(u) ≥ 3.

Claim: There is an edge g such that g∩(e∪f) = {v} or g∩(e∪f) = {u}.
Namely, any edge h (h /∈ {e, f}) containing v [or u, resp.] will not contain
u [or v, resp.] to avoid the first branching scenario. To falsify the claim,
h∩{w, x} �= ∅. To avoid the potential triangle situation described in the
previous item, |h ∩ {w, x}| = 1. Still, any hyperedge h containing u or v
also contains w or x, which is not possible, as the approximative double
vertex domination rule would have dealt with this situation. ♦
Without loss of generality, assume that g ∩ (e ∪ f) = {v}, and let j be
another edge containing u (but not v).
• If there are no more edges containing v, then {u; e, f, j} describes a
potential vertex domination situation.
• If there is another edge � containing v, then in order to avoid the
potential triangle situation � �= {v, w, x} and thus |� ∩ {w, x}| ≤ 1.
Hence, {v; e, g, �} or {v; f, g, �} describe the second branching sce-
nario, case (A).

3. There are no two edges e, f containing v such that e ∩ f = {u, v} for some
vertex u; then we have the second branching scenario, case (A). �

72 L. Brankovic and H. Fernau

Table 2. A list of branching vectors, keeping track of the worsening steps

Situation Branching vector subcubic case? with w = 1 w = 1.5 w = 2

1st branching sc. (1, 3 + 3w) No 1.2852 1.2431 (No)
2nd b.s., Case (A) (1 + w, 3) Yes 1.3196 1.2600 1.2356
2nd b.s., Case (B) (1 + w, 2 + w) No ≤ Case (A) ≤ Case (A) ≤ Case (A)
2nd b.s., Case (C) (2 + w, 2) Yes 1.3196 1.2600 1.255

Remark 1. As an aside, let us mention that there is a simple variant of Algo-
rithm 1 that branches on preferred vertices, if possible internal branching pairs,
and would obtain the branching numbers listed in Table 2, referring to the anal-
ysis of the previous lemma. The parameter w refers to a worsening step; usually,
w = 1. Our new analysis profits from external branching pairs, as we will see.

Theorem 1. 3HS-2-appr can be used to find a 2-approximation 3-HS of a 3HS-
instance G = (V,E) in time O∗(1.2852K).

Proof. The correctness of the Algorithm 2 has been discussed before.
Now we turn to the running time analysis. The first branching scenario is

encountered if the algorithm branches on an internal branching pair. It assumes
the existence of two vertices u and v and three edges e, f, g such that e∩f ∩g =
{v, u}. Hence, the recursive call faces three tiny edges: e′ = e \ {v, u}, f ′ =
f \ {v, u}, and g′ = g \ {v, u}. The tiny edges rule will then put three vertices
into the hitting set, but since this is an exact reduction rule, three additional
independent edges can be selected and put into the hitting set. Altogether, this
yields a branching vector of (1, 6) and a branching number of 1.2852.

If no internal branching pair exists, then we face the 2nd branching scenario
described in Lemma 3. Let v be some preferred vertex. Let Vv and Ev collect
all vertices and edges that are directly affected by branching at v. This means:
(a) If {v} = e ∩ f ∩ g and |e ∪ f ∪ g| = 7 or if (v; e, f, g) describes a potential
triangle situation, then Vv = e ∪ f ∪ g, Ev = {e, f, g}; (b) if (v; e, f, g) describes
a potential vertex domination situation, then Vv = e ∪ f ∪ g ∪ h, where h is the
edge where the (approximative) vertex domination rule will apply to, see the
discussion leading to Fig. 1, and Ev collects all edges containing vertices from
Vv. Consider G′ = (V ′, E′), where V ′ = V \ Vv, E

′ = E \ Ev. If the maximum
degree in G′ is at most two, then by branching at v alone according to the 2nd
branching scenario, possibly followed by branching at other vertices from Ev,
we will produce a hypergraph of maximum degree two that can be solved in
polynomial time. The finitely many branches indicated in the previous sentence
do not affect the overall running time.

Note that there is no preferred vertex in G′ that corresponds to the 1st branch-
ing scenario, as such vertex would have been previously selected by the algorithm
instead of v as part of an internal branching pair. Hence, we will find a vertex
v′ that fits into one of the cases of the second branching scenario. For the pur-
pose of analyzing this part of the algorithm, we assign parameter a to vertices
v and v′, where a(v) = 1 if {v; e, g, f} describes a potential vertex domination
situation, and a(v) = 0 otherwise; similarly, a(v′) = 1 if {v′; e′, g′, f ′} describes a

Parameterized Approximation Algorithms for Hitting Set 73

potential vertex domination situation, and a(v′) = 0 otherwise. Then we branch
as follows:

Case 1. At least one of the vertices v and v′ is in a minimum hitting set re-
specting previous choices; then we put {v, v′} in C and have a parameter
reduction of 1. Additionally, if {v; e, g, f} and/or {v′; e′, g′, f ′} describes a
potential vertex domination situation, we add additional vertices to C, as
described above. Thus the total parameter reduction is 1 + a(v) + a(v′).

Case 2. None of the vertices v and v′ is in any minimum hitting set respecting
previous choices; then we simply remove v and v′ from the vertex set V and
from all the edges that contain v or v′. The total parameter reduction is
6− a(v)− a(v′).

For the claimed parameter reductions to be true, it is crucial to observe that
the branching at v and v′ is done independently, as it is guaranteed by the
construction of Vv and Ev. Hence, the reductions follow from what we collected
for branching at a single vertex in Table 2. In total, we have a branching vector
(1 + a(v) + a(v′), 6 − a(v) − a(v′). Depending on the values a(v) and a(v′),
the branching vector can be (1, 6), (2, 5) or (3, 4). Out of the 3 corresponding
branching numbers, the largest one is 1.2852, corresponding to (1, 6). �

5 Approximating 3-HS with Degree Constraints

In the related case of Minimum VC, quite some research was undertaken to find
better approximations for the degree-restricted case, e.g., for the case of cubic
graphs. Surprisingly, to the best knowledge of the author, no such results are
known for 3-HS. Also for the problem of finding smaller kernels, only relatively
small progress was reported in [9], though that paper is far from trivial. Here,
we are going to report on several results, focussing on consequences of running
Algorithm 2 on subcubic instances, i.e., instances where each vertex belongs to
at most three hyperedges. Proofs are omitted due to space restrictions.

Lemma 4. If G = (V,E) is a subcubic irreducible 3-HS instance, then we know:
If there are two edges e, f ∈ E with |e∩ f | = 2, then for any further edge g with
v ∈ g, e ∩ g = e ∩ f = {v}.

Lemma 5. If G = (V,E) is a subcubic irreducible 3-HS instance, then no
potential triangle situation occurs.

In the following, we assume (in addition), that hyperedge components with at
most 27 vertices are solved (exactly) due to table look-up. This will be called the
small component rule. This rule, as well as the tiny edge and the small triangle
rule are exact rules that put a vertex into the hitting set, so that a worsening step
triggers. Hence, these three rules are summarized as trigger rules. The following
auxiliary results turns out to be useful for proving the crucial Lemma 8.

Lemma 6. Whenever a hypergraph component completely disappears when ap-
plying reduction rules, then the last reduction rule applied was a trigger rule.

74 L. Brankovic and H. Fernau

Lemma 7. Let G = (V,E) be a subcubic irreducible 3-HS instance. The re-
moval of H ⊆ V , |H | ≤ 3, cannot destroy any hypergraph component.

Lemma 8. After branching on a subcubic instance or after performing a wors-
ening step, i.e., after the corresponding vertices were put into the hitting set,
we find a vertex of degree two or a yet unaccounted small edge, unless we have
entered the final polynomial-time phase.

Theorem 2. Algorithm 2 can be implemented to find a 2-approximation for
3-Hitting Set on subcubic instances in time O∗(1.2555K).

Proof. Due to Lemmas 4 and 5, only the cases marked with “Yes” in Table 2
may occur when running Algorithm 1, modified towards branching on preferred
vertices as indicated in Remark 1. A yet unaccounted small edge will first trigger
the small edge or the small triangle rule, clearly allowing to add one to each
component of the branching vector, yielding, in particular, w ≥ 2. Otherwise,
let v be a vertex of degree two, as it exists due to Lemma 8, pertaining to
hyperedges e and f . The idea is to exploit the worsening step as follows. If any
hyperedge h containing some vertex from X = (e ∪ f) \ {v}), with h /∈ {e, f},
has two vertices from X , then X induces a small hyperedge component, again
allowing to reduce the parameter by at least one. So, there is a hyperedge h
containing exactly one vertex from X = (e ∪ f) \ {v}, with h /∈ {e, f}. Slightly
modifying our algorithm, we will always pick such a hyperedge h in the worsening
step. This will put (at least) two more vertices in the approximative hitting set
compared to what we already accounted for, due to the vertex domination and
small edge rules. So, we can always rely on w ≥ 2 in the branching vectors.
Hence, we are facing as worst-case branching vectors: (3, 3) and (4, 2). �
We can make use of the same idea for subcubic instances of d-HS in general.
However, we must be careful with the interplay between the intended approxi-
mation factor and the corresponding small edges rule. We give some details for
the case d = 4 in the following. If we put a hyperedge of size 3 into the hitting
set, then this gives us an approximation factor of three (only). We show two
ways how to deal with this problem: either, we aim at an approximation fac-
tor of three only, or we have to set up recurrences that allow for an improved
factor-2.5 approximation. The figures are based on Table 1.

Theorem 3. Minimum 4-HS can be approximated in time O∗(1.4613K) up to
a factor of three in general and in time O∗(1.2556K) on subcubic hypergraphs.

Theorem 4. Minimum 4-HS can be approximated in time O∗(1.7650K) up to
a factor of 2.5 in general and in time O∗(1.5754K) on subcubic hypergraphs.

Let us move back to the 3-HS case again, but now applying the idea mentioned
last to hypergraphs of maximum degree four. Similar to Lemma 8, we can now
assume that, before applying any worsening step, we might find a vertex of degree
three in the graph. So, with the help of two subsequent worsening steps, we can
produce a small hyperedge due to vertex domination. This means (again) that
we can assume w = 3/2 in Table 2. Evaluations the corresponding branching
vectors are also shown there prove:

Parameterized Approximation Algorithms for Hitting Set 75

Theorem 5. Minimum3-HittingSet can beapproximated in timeO∗(1.3196K)
up to a factor of two in hypergraphs of maximum degree four.

We conclude with a new polynomial-time approximation algorithm:

Algorithm 3. 3HS3-2.5-appr: A 2.5-approximation algorithm for 3-HS3

1: Input: Hypergraph G = (V,E) of maximum degree three
2: Output: a hitting set C with |C| ≤ 2.5|C∗|, where C∗ is an optimum solution
3: Initially branch on an arbitrary hyperedge (if it exists).
4: while E 	= ∅ do
5: Apply all reduction rules exhaustively.
6: if the hypergraph is 3-regular then
7: Pick a hyperedge h and put it into C.
8: Pick a hyperedge e s.t. some neighbor x /∈ e of some vertex v ∈ e obeys deg(x) =

2. // Irreducibility witness.
9: Put e into the hitting set C.
10: end while
11: Return C.

Theorem 6. Minimum 3-Hitting Set can be approximated in polynomial
time up to a factor of 2.5 in hypergraphs of maximum degree three.

Proof. 1. As long as Line 7 in Algorithm 3HS3-2.5-appr is not executed, the
algorithm works fine: It would put a hyperedge e into C, reduce the degree of
x to one, so that vertex domination triggers, followed by the small edge rule on
f \ {x}, putting in total 5 vertices in C. As at least one vertex of f and of e
must be in C∗, by a local ratio argument, we achieve a factor of 2.5.
2. We can afford that the tiny edge, the small triangle and the small (non-
trivial) component rule are followed by a worsening step, still staying within the
promised approximation factor.
3. We claim that Line 10 either creates a new vertex of degree two (see 1.), or
it triggers one of the three mentioned rules, so that Line 7 can be executed as a
worsening step (see 2.). �

6 Further Questions

(1) Can we employ other forms of exact parameterized algorithms to obtain
parameterized approximation algorithms, for instance, those relying on a Mea-
sure & Conquer analysis (see [12]) or on iterative compression, (see [8]). (2)
Can we further improve on the running time analysis, for instance, by mak-
ing use of a Measure & Conquer style analysis in the cubic case? (3) Can
the techniques presented be extended to work for the weighted case, as known
for moderately exponential-time approximation algorithms [5]? (4) The method
that we employed for obtaining approximation algorithms is reminiscent of the
well-known local ratio method [1]. This deserves further exploration. (5) Can
other prominent techniques from polynomial-time approximation be employed
for exponential-time approximation?

76 L. Brankovic and H. Fernau

References

1. Bar-Yehuda, R.: One for the price of two: a unified approach for approximating
covering problems. Algorithmica 27, 131–144 (2000)

2. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combina-
torial Problems by Moderately Exponential Algorithms. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 507–518.
Springer, Heidelberg (2009)

3. Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation
for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part
I. LNCS, vol. 6506, pp. 390–402. Springer, Heidelberg (2010)

4. Chen, Y., Grohe, M., Grüber, M.: On Parameterized Approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

5. Cygan, M., Kowalik, �L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Information Processing Letters 109, 957–961 (2009)

6. Fernau, H.: Parameterized algorithmics for d-hitting set. International Journal of
Computer Mathematics 87(14), 3157–3174 (2010)

7. Fernau, H.: A top-down approach to search trees: Improved algorithmics for 3-

hitting set. Algorithmica 57, 97–118 (2010)
8. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative Com-

pression and Exact Algorithms. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS
2008. LNCS, vol. 5162, pp. 335–346. Springer, Heidelberg (2008)

9. Kanj, I.A., Zhang, F.: 3-hitting set on Bounded Degree Hypergraphs: Upper and
Lower Bounds on the Kernel Size. In: Marchetti-Spaccamela, A., Segal, M. (eds.)
TAPAS 2011. LNCS, vol. 6595, pp. 163–174. Springer, Heidelberg (2011)

10. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74, 335–349 (2008)

11. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57–95 (1987)

12. Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and
Related Problems. PhD thesis, Department of Computer and Information Science,
Linköpings universitet, Sweden (2007)

Approximation Algorithms

for the Maximum Leaf Spanning Tree Problem
on Acyclic Digraphs

Nadine Schwartges, Joachim Spoerhase, and Alexander Wolff

Chair of Computer Science I, University of Würzburg
http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. We consider the problem Maximum Leaf Spanning Tree

(MLST) on digraphs, which is defined as follows. Given a digraph G,
find a directed spanning tree of G that maximizes the number of leaves.
MLST is NP-hard. Existing approximation algorithms for MLST have
ratios of O(

√
OPT) and 92.

We focus on the special case of acyclic digraphs and propose two
linear-time approximation algorithms; one with ratio 4 that uses a result
of Daligault and Thomassé and one with ratio 2 based on a 3-approxi-
mation algorithm of Lu and Ravi for the undirected version of the prob-
lem. We complement these positive results by observing that MLST is
MaxSNP-hard on acyclic digraphs. Hence, this special case does not ad-
mit a PTAS (unless P = NP).

1 Introduction

Network design deals with the problem of optimally connecting a given set of
network nodes by links. Network design problems arise for example in the plan-
ning of telecommunications networks, logistical networks or in circuit layout.
Often, network design problems are modeled as graph optimization problems.
Specifically, the goal is to find a subgraph G′ of a given graph G so that G′ meets
certain connectivity requirements and optimizes a quality measure tailored to
the respective application.

An important class of network design problems are spanning tree problems.
Here, a solution of the problem has to satisfy only a minimum connectivity
requirement. Specifically, there must be a node r—the root—such that every
node is reachable from r by some path. Spanning trees use the minimum number
of edges (links) among all subgraphs of G with this property.

A prominent spanning tree problem is Minimum Spanning Tree (MST),
where every edge of the input graph G has an associated cost. The goal is to
find a spanning tree whose total edge cost is minimum. A natural extension of
this problem is Steiner Tree, where only a given subset T of so-called terminal
nodes needs to be connected.

In contrast to MST, the quality measure of the spanning tree problem we
investigate here is associated with the nodes, not the edges. This assumption is

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 77–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 N. Schwartges, J. Spoerhase, and A. Wolff

driven by applications in which the network nodes perform a certain function. We
assume that nodes of higher degree have more sophisticated and thus also costlier
functionality. Specifically, if we distinguish only between pure receivers (leaves
of the tree) and routers (internal nodes), which are more expensive, we arrive at
the Maximum Leaf Spanning Tree problem (MLST): given a graph G with
root r, the task is to find an r-rooted spanning tree that maximizes the number
of leaves. MLST is one of the classical NP-hard problems listed by Garey and
Johnson [11].

We consider digraphs, that is, edges can only be traversed in one direction.
Directed MLST is NP-hard, too, since it is a generalization of the undirected
version. This motivates our interest in approximations. Although approximation
algorithms are known for digraphs, their performance guarantees are not sat-
isfactory. Therefore, we focus on the special case of acyclic digraphs, which is
still NP-hard [2]. It turns out that we can exploit the special structure of acyclic
digraphs to obtain guarantees that are significantly better than those known for
general digraphs.

Previous results and related work. On undirected graphs, MLST is well-investi-
gated. It is known that undirected MLST is NP-hard [11]. Galbiati et al. [10]
showed that undirected MLST is even MaxSNP-complete, that is, there is no
polynomial-time approximation scheme (PTAS) for this problem (if P �= NP).

These negative results have stimulated the development of a series of approxi-
mation algorithms for MLST. Improving on their own earlier results, Lu and
Ravi [13] developed a nearly-linear-time 3-approximation algorithm based on an
expansion strategy. Basically, this strategy consists of growing a subforestF of the
input graph by iteratively connecting nodes to a maximal set of edges so that F re-
mains a forest. The expansion idea originally goes back to Kleitman andWest [12]
who considered graphs with bounded minimum degree and derived lower bounds
for the maximum number of leaves of spanning trees in such graphs.

Solis-Oba [14] later proposed a linear-time algorithm based on the ideas of
Kleitman and West [12] and Lu and Ravi [13]. By means of a clever analysis
he showed that his algorithm is not only faster than the algorithm of Lu and
Ravi but also gives a 2-approximation. So far, better results have been obtained
only for special graph classes such as cubic graphs, the currently best being a
3/2-approximation algorithm [4].

Recently, there has been a lot of interest in the directed version of MLST. As
often in network design, the directed case seems to be much harder than the
undirected one. Drescher and Vetta [9] pointed out that the techniques that are
successful for undirected graphs—namely, edge-swapping and expansion—fail for
digraphs. They end up giving an algorithm for directed MLST with a ratio of
O(
√
OPT), which is considerably worse than the ratio 2 known for undirected

graphs [14]. Daligault and Thomassé [8] improved upon this result by providing
a 92-approximation algorithm. The techniques employed in both of the above
algorithms differ completely from the approaches for the undirected case.

A large portion of the research on directed MLST has focused on the de-
velopment of fixed-parameter tractable algorithms. The parameterized version

The Maximum Leaf Spanning Tree Problem 79

of MLST includes an additional parameter k. The goal is to decide whether a
given graph has a spanning tree with at least k leaves. The currently fastest
fixed-parameter tractable algorithm is due to Gutin et al. [7] and has a running
time of 3.72k · nO(1) where n is the number of nodes in the input graph. There
are also specialized fixed-parameter results for acyclic digraphs [1,2], that is, for
the graph class considered in this work.

The currently fastest (unparameterized) exact algorithm was given by Binkele-
Raible and Fernau [3]. It runs in O∗(1.9043n) time, where the O∗-notation ne-
glects polynomial factors.

Our contribution. In this paper, we give two linear-time approximation algo-
rithms for MLST on acyclic digraphs.

Our first result is a 4-approximation algorithm that makes use of a result of
Daligault and Thomassé [8] who gave a lower bound on the number of leaves in
a special class of digraphs.

In our second and main result we investigate the expansion approach, which
has already led to several positive results for undirected MLST [12,13,14]. Ap-
plying the expansion idea to acyclic digraphs we obtain a 2-approximation algo-
rithm. So we improve significantly upon the 92-approximation algorithm known
for general digraphs and close up to the undirected case.

Our positive results are complemented by the observation that MLST in
acyclic digraphs is MaxSNP-hard, that is, there is no PTAS for this problem
(unless P=NP). That justifies the development of constant-factor approxima-
tion algorithms for MLST in acyclic digraphs.

To stress the relevance of our main result, let us compare MLST to Steiner

Tree (ST), which can be considered paradigmatic among the tree-based network
design problems. The best known algorithm for undirected ST has a ratio of
roughly 1.39 [5]. This has to be compared to the best known algorithm for the
directed case, which has a performance guarantee of O(nε) [6], for any ε > 0.
There is a specialized approximation algorithm solving ST in acyclic digraphs
but it yields the same result [15]. It can even be shown that for the acyclic case
the approximation ratio is lower-bounded by Ω(logn) [15]. To sum up, even the
acyclic directed case of ST is significantly harder than the undirected one.

In terms of general graphs, ST and MLST behave similarly. In both cases, the
results for undirected graphs are much better than the results for digraphs w.r.t.
approximation. For acyclic digraphs, however, the problems exhibit significant
difference. For ST, the acyclic case is provably harder than the undirected one
and no improvement upon the general case has been obtained so far. In this
paper, we provide an example of a tree-based network design problem (namely
MLST) for which acyclicity can be exploited very well. It turns out that both
algorithm and proof are a lot simpler in the acyclic than in the undirected case.

Since both our algorithms have the same (linear) asymptotic running time,
the expansion algorithm supersedes the 4-approximation algorithm. Neverthe-
less, we think it is worth describing both algorithms since they are based on
two conceptually different existing approaches that yield strong results. Finally,

80 N. Schwartges, J. Spoerhase, and A. Wolff

the analysis of the 4-approximation algorithm is considerably simpler than the
analysis of the expansion algorithm.

We use n and m as shorthand for the numbers of nodes and edges of the given
acyclic digraph G with root r. We denote an optimum spanning tree of G by T ∗

and the number of its leaves by OPT. Given an arbitrary spanning tree T of G,
we denote the set of leaves of T by L(T).

2 Indegree-Based Algorithm

In this section, we develop a 4-approximation algorithm based on (an extension
of) a lemma by Daligault and Thomassé [8]. Let V=1 be the set of nodes of
indegree 1 in the given digraph G, and let V≥2 be the set of nodes of indegree
at least 2 in G.

Lemma 1 ([8]). Any rooted acyclic digraph G has a spanning tree with at least
|V≥2|/3 leaves. Such a spanning tree can be computed in O(m) time.

Proof (Sketch). Daligault and Thomassé [8] prove the existence of a spanning
tree with at least (|V≥2|+ deg(r) + 2)/3 ≥ |V≥2|/3 leaves.

The proof of Daligault and Thomassé is constructive, and it is not hard to
verify that the construction can be carried out in linear time. �

Our approximation algorithm is based on the following observation. Lemma 1
gives us already a good approximation in the case that |V≥2| is large enough
in comparison to OPT. On the other hand, if |V≥2| is small then |V=1| is large.
Since each of the nodes in V=1 has exactly one incoming edge, every spanning
tree (including the optimum one) must use these incoming edges. In other words,
a large fraction of the edges are fixed, which leaves less freedom for the choice of
the remaining edges. Intuitively we expect that even an arbitrary spanning tree
gives us a good approximation.

Theorem 1. The algorithm of Lemma 1 is a 4-approximation algorithm for
MLST on acyclic digraphs.

Proof. Let α := |V≥2|/OPT and let T be the spanning tree output by the algo-
rithm of Lemma 1. We now prove the following two bounds

|L(T)| ≥ α

3
OPT (1)

|L(T)| ≥ (1− α)OPT . (2)

Bound (1) is an immediate consequence of the definition of α and Lemma 1.
For proving bound (2), we consider the graph F = (V,E′) with E′ = { (u, v) |

v ∈ V=1 }. The subgraph F of G is a forest containing only edges that are part
of every spanning tree of G. Let L′ be the set of leaves and isolated nodes of F ,
that is, the set of nodes with outdegree 0.

Consider an optimum spanning tree T ∗ of G. As argued above, F is a subforest
of T ∗ and F has the same node set as T ∗. Every leaf of T ∗ has outdegree 0 in T ∗

The Maximum Leaf Spanning Tree Problem 81

and therefore also in F . Hence, L′ contains the set of leaves of T ∗ as a subset.
This yields |L′| ≥ OPT.

As F contains all edges ending in a node of V=1, there are exactly |V=1| edges
in F . The output tree T contains F as a subforest. Let us reconstruct T from F .
To this end, we need n− 1 − |V=1| = |V≥2| additional edges that are part of T
but do not lie in F . By adding these edges to F , at most |V≥2| nodes in L′ get
connected with an outgoing edge. Hence, T contains at least |L′| − |V≥2| leaves.
Using |L′| ≥ OPT and the definition of α, we can conclude that

|L(T)| ≥ |L′| − |V≥2| ≥ OPT− αOPT = (1− α)OPT .

This proves bound (2).
Now we balance bounds (1) and (2) to prove the approximation ratio 4. If α ≥

3/4 then bound (1) yields |L(T)| ≥ OPT/4. On the other hand, if α ≤ 3/4 then
bound (2) yields |L(T)| ≥ OPT/4. �

3 Expansion Algorithm

In this section, we present a linear-time 2-approximation algorithm for acyclic
digraphs. Our algorithm and its analysis bear resemblances with the 3-approxi-
mation algorithm of Lu and Ravi [13] for undirected graphs. Therefore, we start
with a brief outline of their algorithm.

3.1 Expansion Algorithm for Undirected Graphs

The algorithm of Lu an Ravi is based on a two-stage expansion strategy that
works roughly as follows.

Stage I constructs a leafy subforest F of the input graph G. A forest is leafy
if and only if any degree-2 node is adjacent to two nodes of degree at least 3.
The leafy subforest F is constructed by processing the nodes of G iteratively in
an arbitrary order. Processing a node u means to expand u if u has degree at
least 3 after the expansion. The expansion of u adds to F a maximal set Eu of
edges (u, v) ∈ E(G) such that F remains a forest.

Stage II connects the subtrees created in stage I to a spanning tree of G in
an arbitrary manner.

The total running time of the algorithm is O(mα(m,n)), where α(· , ·) is the
inverse Ackermann function.

The 2-approximation algorithm of Solis-Oba [14] can be understood as a spe-
cial case of the algorithm of Lu and Ravi, in which the nodes are processed in
a particular order. More precisely, only leaves of F or singletons are expanded.
Also, the connected components of F grow one by one rather than simultane-
ously. The particular node order does not only yield the better performance
guarantee but also linear running time.

Our 2-approximation algorithm for acyclic digraphs closes up to the result of
Solis-Oba for undirected graphs. Our analysis, however, is a lot simpler than that
of Solis-Oba. In fact, our algorithm and its analysis are closer to the work of Lu

82 N. Schwartges, J. Spoerhase, and A. Wolff

and Ravi. We remark that a (straightforward) adaption of Solis-Oba’s algorithm
to DAGs does not yield better results (confer Section 3.4).

3.2 Expansion Algorithm for Acyclic Digraphs

Similar to the algorithm of Lu and Ravi, our expansion algorithm for acyclic
digraphs consists of an expansion stage in which a subforest F of G is created
and a connection stage where this forest F is completed to a spanning tree.

A detailed description of our algorithm can be found in Algorithm 1 and in
the procedures expansion and connection that implement the expansion and the
connection stage. We use a node-marking technique. If a node is marked in these
stages it indicates that the node already has an incoming edge belonging to F
or is the root of F .

The connection stage is similar to the undirected case. Basically, the connected
components of F are connected to each other in an arbitrary manner.

The expansion stage, however, has to be adapted to digraphs appropriately.
Instead of requiring degree at least 3 as in the undirected case, we expand a
node if it obtains outdegree at least 2. Also the implementation of the expansion
operation simplifies. Whenever an edge (u, v) is added to F , we only have to
make sure that v has indegree 0 in F . We accomplish this by means of node
markings. The algorithm of Lu and Ravi has to check whether u and v lie in
different connected components. This is why we can improve the running time
from O(mα(m,n)) to O(m).

Algorithm 1. MaxLeafTwoApprox(G)

Input: acyclic digraph G with root r
Output: spanning tree T
mark r
F ← expansion(G)
T ← connection(G,F)
return T

Lemma 2. Given an acyclic digraph G, MaxLeafTwoApprox(G) computes, in
O(m) time, a spanning tree of G.

Proof. Recall that a node u is marked if and only if it has (exactly) one incoming
edge or if u = r. No marked node can get further incoming edges. Hence, when
the algorithm terminates, each node has either indegree 0 or 1 depending on
whether it is marked or not. Since the connection stage marks all yet unmarked
nodes, the result of the algorithm, F , is a subgraph ofG that is acyclic (becauseG
is) and in which every node except r has exactly one incoming edge. Thus, F is
a spanning tree of G.

The linear running time can be achieved if the graph is represented by an
adjacency list. Determining, for every v ∈ V , the set Uv of unmarked neighbors
in procedure expansion takes O(

∑
v outdeg(v)) = O(m) time in total.

The Maximum Leaf Spanning Tree Problem 83

Procedure expansion(G)

F ← ∅ { empty forest }
foreach node v in G do

if v /∈ F then
F ← F + v

Uv ← unmarked endpoints of outgoing edges of v in G
if |Uv | ≥ 2 then

F ← F + Uv

foreach u ∈ Uv do
F ← F + (v, u)
mark u

return F

Procedure connection(G,F)

foreach unmarked node v do
choose an arbitrary incoming edge e of v in G
F ← F + e
mark v

return F

In procedure connection, connecting all yet unmarked nodes with an arbitrary
incoming edge takes O(n) time. �

3.3 Performance Guarantee

The expansion stage (procedure expansion) of our algorithm creates a forest F
that possibly contains isolated nodes. Let F̄ be the forest obtained by removing
all isolated nodes from F . The forest F̄ consists of a set {T0, . . . , Tk} of node
disjoint, non-trivial subtrees Ti = (Vi, Ei), i = 0, . . . , k. Let ri be the root of
subtree Ti.

Since procedure expansion expands only nodes of outdegree at least 2, none
of the trees Ti, i = 0, . . . , k contains an interior node of outdegree 1. In other
words, F̄ contains only leaves and nodes of outdegree at least 2. This implies
that at least half of the nodes in F̄ are leaves as we show now.

Lemma 3. For i = 0, . . . , k, any subtree Ti ∈ F̄ has at least (|Vi|+ 1)/2 leaves.

Proof. It is well known that a binary tree on n nodes has at least (n + 1)/2
leaves. Internal nodes of outdegree greater than 2 can only increase the number
of leaves. �

We first consider only the leaves of an optimal spanning tree T ∗ that lie in V (F̄). A
trivial upper bound on the number of these leaves is |V (F̄)|. The forest F̄ , in turn,
has at least (|V (F̄)| + k + 1)/2 leaves (because of Lemma 3) and is thus a good
intermediate step in obtaining our desired 2-approximation algorithm for MLST.

84 N. Schwartges, J. Spoerhase, and A. Wolff

To prove the overall performance guarantee we face, however, the following two
problems. The first problem is that the procedure connection may connect leaves
of F̄ with outgoing edges thereby “killing” those leaves. The second problem is
that the optimum T ∗ may well have additional leaves outside of F̄ . Concerning
the first problem, we now show that connection kills at most k leaves of F̄ .

Lemma 4. Procedure connection creates a tree with at least |L(F̄)| − k leaves.

Proof. Let n0 denote the number of outdegree-0 nodes in F (that is, leaves
and isolated nodes) at the beginning of an iteration of procedure connection,
and let ncc denote the current number of (possibly trivial) connected compo-
nents of F . Note that ncc drops by 1 and n0 increases by 1 in each iteration of
connection. This means that the value of n0 − ncc remains constant during the
execution of the procedure.

This implies the claim since n0−ncc = |L(F̄)|− (k+1) holds at the beginning
of the procedure and, hence, also at the end when we have that n0 equals the
number of tree leaves and ncc = 1. �

The following lemma resolves the second above-mentioned problem—leaves out-
side of F̄ cannot effectively increase the total number of leaves—and shows that
the optimum kills at least k leaves in V (F̄).

Lemma 5. It holds that OPT ≤ |V (F̄)| − k.

Proof. Let T ∗ be an optimum spanning tree, and let R be the set of all roots
r0, . . . , rk of F̄ that are different from the “global” root r. Our proof works as
follows. We identify a unique node for each root ri ∈ R, its witness q(ri). We
will make sure that each witness is an internal node of T ∗ that lies in V̄ :=
V (F̄)∪ {r}. This shows that T ∗ has at most |V (F̄)| − k leaves in V̄ . It does not
rule out, however, that T ∗ has additional leaves outside of V̄ . To this end, we
will additionally identify, for each leaf l of T ∗ outside of V̄ , a witness q(l), that
is, a unique internal node in T ∗ that lies in V̄ . We will then show that the map q
is injective. This proves the claim: if T ∗ has � leaves outside of V̄ , then T ∗ can
have at most |V (F̄)| − k − � leaves inside of V̄ .

To define the map q, consider a node z that is either a leaf of T ∗ not contained
in V̄ or a root in R. We define the node q(z) to be the closest ancestor of z in T ∗

(excluding z itself) that lies in V̄ . Since the root r lies in V̄ such a witness q(z)
always exists.

Let z and z′ be distinct nodes in the domain of q. It remains to show that q(z) �=
q(z′). Assume to the contrary that q(z) = q(z′). Let P and P ′ be the paths in
T ∗ from s := q(z) = q(z′) to z and to z′, respectively. We distinguish two cases.

First, we consider the case that s, z and z′ lie on a common path in T ∗.
Then we can assume without loss of generality that z is an internal node on the
path P ′, which implies that z is not a leaf in T ∗. Since z lies in the domain of q,
z must be the root of some subtree Ti in F̄ . In particular, z ∈ V̄ . Thus, z is
an ancestor of z′ in T ∗ that lies in V̄ and is closer to z′ than q(z′) = s. This
contradicts the choice of q(z′).

The Maximum Leaf Spanning Tree Problem 85

Now, we consider the case that s, z and z′ do not lie on a common path. Then
there is a node u at which the paths P and P ′ split; see Fig. 1. Let v and v′ be
the successors of u on paths P and P ′, respectively. Either v or v′ is marked by
procedure expansion. For, if v and v′ are still unmarked when node u is processed
then u will be expanded thereby marking v and v′. We assume without loss of
generality that v is the node marked by procedure expansion.

We claim that z �= v. If z is a leaf of T ∗ that lies outside of V̄ , then z �= v
because v—being marked—lies in V̄ . If z is the root of a subtree Ti for any
i ∈ {0, . . . , k}, then the claim follows because v has an incoming edge belonging
to F̄ . Therefore, v is an ancestor of z in T ∗ that lies in V̄ and is closer to z
than q(z). Again, this is a contradiction.

Both cases yield the desired contradiction. This completes the proof. �

s = q(z) = q(z′)

u

v v′

z z′

P P ′

Fig. 1. Illustration of the case where s, z and z′ do not lie on a common path

From Lemmas 2 to 5, we can deduce the main result of this paper.

Theorem 2. The expansion algorithm for acyclic digraphs is a 2-approximation
algorithm. It runs in linear time.

Proof. Let T be the tree created by the expansion algorithm. Then we have

OPT

|L(T)| ≤
|V (F̄)| − k

|L(F̄)| − k
≤ |V (F̄)| − k

(
∑k

i=0(|Vi|+ 1)/2)− k
=

2(|V (F̄)| − k)

|V (F̄)| − k + 1
≤ 2,

where the first inequality is due to Lemmas 4 and 5, the second inequality is due
to Lemma 3, and the equality follows from the fact that

∑k
i=0 |Vi| = |V (F̄)|. �

3.4 Tight Example

We construct an infinite sequence G1, G2, . . . of rooted acyclic digraphs such
that the performance ratio of Algorithm 1 on this sequence tends to 2.

For any positive integer k, let the root r of Gk have k+1 successors s0, . . . , sk,
see Fig. 2. The node s0 is the root of a perfect binary tree Bk with k + 1 levels
L0 = {s0}, L1, . . . , Lk. For i = 1, . . . , k, there is an edge from si to each node in
level Li. This completes the description of Gk.

Since the order in which our algorithm expands the nodes is not specified,
we can assume that the algorithm first expands the root r and then the perfect

86 N. Schwartges, J. Spoerhase, and A. Wolff

r

s0

T

s1
sk

(a) result T of our algorithm applied to Gk

T ∗

(b) optimum spanning tree T ∗ of Gk

Fig. 2. Tight example Gk (drawn for k = 3) with two different spanning trees; solid
edges represent tree edges, dotted edges represent non-tree edges

binary tree Bk. Then the spanning tree that our algorithm outputs has 2k + k
leaves in total; 2k leaves in Bk plus the k leaves s1, . . . , sk.

On the other hand, in the optimum solution T ∗ every node of Bk is a leaf.
Thus, OPT = 2k+1 − 1. Clearly, the performance ratio (2k+1 − 1)/(2k + k) of
our algorithm approaches 2.

Note that the above suboptimal spanning tree can also be obtained when we
apply (a straightforward adaption of) Solis-Oba’s algorithm [14] to Gk, that is,
if we expand always at the leaves of the current subtree. This demonstrates that
Solis-Oba’s algorithm, too, does not yield better results for DAGs. Finally, this
example remains valid even if the algorithm expands the nodes in topological
order (which appears most natural).

4 MaxSNP-Hardness

Galbiati et al. [10] prove that the undirected MLST problem is MaxSNP-hard,
which implies that there is no PTAS for undirected MLST (unless P = NP).
Their hardness proof consists of a so-called L-reduction in which they use a
special class of instances for undirected MLST. We now show that, for this
special class, the undirected and the acyclic directed case are equivalent.

The undirected graphs that Galbiati et al. use in their proof have the structure
depicted in Fig. 3 (a). These graphs consist of three levels of nodes. Each level
has the same cardinality. Each node in level 1 is connected to the root r and
each node in level 3 is connected to its counterpart in level 2. Additional edges
connect only nodes between level 1 and level 2. Let G be an undirected graph
with such a structure. Galbiati et al. show, that for any spanning tree T in G
there is a spanning tree T ′ with the same number of leaves such that any node
in level 1 is directly connected to the root r. We call the tree T ′ valid. Confer
Fig. 3 (b) for a valid spanning tree. Galbiati et al. only use valid spanning trees
in their L-reduction.

Given G, we construct an acyclic digraph D by orienting the edges of G so
that r is the root of D and each edge starting in level i ends in level i + 1,
where i = 1, 2. The remaining edges emanate from r; see Fig. 3 (c).

The Maximum Leaf Spanning Tree Problem 87

1

2

3

r

(a) (b) (c) (d)

Fig. 3. Example of a graph used in the MaxSNP-hardness proof of Galbiati et al. [10]

We observe that there is a one-to-one correspondence between valid spanning
trees of G and spanning trees of D. The unique orientation of any valid spanning
tree of G yields a spanning tree of D with the same number of leaves. Conversely,
each spanning tree T of D must contain all edges between r and level 1 and all
edges between level 2 and level 3 since nodes in levels 1 and 3 have indegree one.
Hence, the undirected tree corresponding to T is a valid spanning tree of G with
the same number of leaves.

To sum up, the above equivalence shows that MLST on acyclic digraphs is
MaxSNP-hard.

5 Concluding Remarks

Summarizing, we have given two linear-time approximation algorithms for solv-
ing the acyclic directed MLST problem with ratios of 4 and 2, respectively.
The 4-approximation algorithm uses a result of Daligault and Thomassé [8] for
MLST in acyclic digraphs. The 2-approximation algorithm is inspired by Lu and
Ravi’s 3-approximation algorithm for MLST in undirected graphs. Our result
provides an example of a tree-based network design problem where acyclicity in
digraphs can be exploited very well. Finally, we observed that MLST in acyclic
digraphs is MaxSNP-hard.

References

1. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized
Algorithms for Directed Maximum Leaf Problems. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362.
Springer, Heidelberg (2007)

2. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed
trees with many leaves. SIAM J. Discrete Math. 23(1), 466–476 (2009)

3. Binkele-Raible, D., Fernau, H.: A Faster Exact Algorithm for the Directed Maxi-
mum Leaf Spanning Tree Problem. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010.
LNCS, vol. 6072, pp. 328–339. Springer, Heidelberg (2010)

4. Bonsma, P.S., Zickfeld, F.: A 3/2-Approximation Algorithm for Finding Spanning
Trees with Many Leaves in Cubic Graphs. SIAM J. Disc. Math. 25(4), 1652–1666
(2011)

88 N. Schwartges, J. Spoerhase, and A. Wolff

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approxi-
mation for Steiner tree. In: Proc. 42nd ACM Symp. Theory Comput. (STOC), pp.
583–592 (2010)

6. Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.:
Approximation algorithms for directed Steiner problems. In: Proc. 9th Annu. ACM-
SIAM Symp. Discrete Algorithms (SODA), pp. 192–200 (1998)

7. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the
directed k-leaf problem. J. Comput. Syst. Sci. 76(2), 144–152 (2010)

8. Daligault, J., Thomassé, S.: On Finding Directed Trees with Many Leaves. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 86–97. Springer,
Heidelberg (2009)

9. Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf span-
ning arborescence problem. ACM Trans. Algorithms 6(3), 1–18 (2010)

10. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the
maximum leaves spanning tree problem. Inform. Process. Lett. 52(1), 45–49 (1994)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York (1979)

12. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete
Math. 4(1), 99–106 (1991)

13. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear
time. J. Algorithms 29(1), 132–141 (1998)

14. Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning Tree with Max-
imum Number of Leaves. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

15. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18(1), 99–110 (1997)

Optimization over Integers with Robustness

in Cost and Few Constraints

Kai-Simon Goetzmann1,�, Sebastian Stiller2,��, and Claudio Telha3

1 Institut für Mathematik, TU Berlin
goetzmann@math.tu-berlin.de

2 Sloan School of Management, MIT
sebastia@mit.edu

3 Operations Research Center, MIT
ctelha@mit.edu

Abstract. We consider robust counterparts of integer programs and
combinatorial optimization problems (summarized as integer problems
in the following), i.e., seek solutions that stay feasible if at most Γ -many
parameters change within a given range. While there is an elaborate
machinery for continuous robust optimization problems, results on robust
integer problems are still rare and hardly general.

We show several optimization and approximation results for the ro-
bust (with respect to cost, or few constraints) counterpart of an integer
problem under the condition that one can optimize or approximate the
original integer problem with respect to a piecewise linear objective (re-
spectively piecewise linear constraints).

For example, if there is a ρ-approximation for a minimization prob-
lem with non-negative costs and non-negative and bounded variables
for piecewise linear objectives, then the cost robust counterpart can be
ρ(1 + ε)-approximated.

We demonstrate the applicability of our approach on two classes of in-
teger programs, namely, totally unimodular integer programs and integer
programs with two variables per inequality. Further, for combinatorial
optimization problems our method yields polynomial time approxima-
tions and pseudopolynomial, exact algorithms for Robust Unbounded
Knapsack Problems.

Keywords: Robust Optimization, Integer Programming, Total Unimod-
ularity, Unbounded Knapsack, Integer Programs with two variables per
inequality.

1 Introduction

Asolution to an optimization problemoften has to be good not just for one instance
but for a set of scenarios. This can either be due to uncertainty as to which of the

� Supported by the Deutsche Forschungsgemeinschaft within the research training
group ‘Methods for Discrete Structures’ (GRK 1408).

�� Marie-Curie Fellow of the European Commission under the ROSES-Project (FP7-
PEOPLE-2009-IOF 254402).

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 89–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2012

90 K.-S. Goetzmann, S. Stiller, and C. Telha

scenarios will eventually occur, or because the solution shall be used several times
in different scenarios.

One solution concept for optimization over scenarios is Robust Optimization.
In the robust paradigm feasibility and cost of a solution are measured by those
scenarios in which the solution performs worst. This worst case approach con-
trasts to stochastic programming, where the cost of a solution is typically a
weighted average over all scenarios, good ones and bad ones.

As an illustration, suppose we choose a route for regularly driving to work.
We want to be on time no matter what happens, thus we have to evaluate each
route by the travel time in its worst case scenario.

Robust optimization has thriven in the past decade, partly because its appli-
cability became apparent, and partly because the resulting mathematical models
allow for strong solution methods. For continuous problems a cohesive body of
quite general methods has been developed. For combinatorial problems and in-
teger linear programs (IPs) the picture is a lot more scattered. Typically, the
results cover a specific combinatorial problem. This is of course a consequence
of the richness of combinatorial optimization and integer linear programming.
General results for all of these problems as in the continuous case are unlikely.
Therefore the following result by Bertsimas and Sim is even more remarkable:

In [7], they show that for uncertain cost coefficients, where at most Γ of them
can deviate from the nominal setting at the same time, solvability or approxima-
bility of any problem with binary decision variables extends to the robust case, as
it suffices to solve a linear number of instances of the deterministic problem.

Bertsimas and Sim explicitly note that this result is intrinsically limited to
binary variables. With the help of a new technique we get a corresponding result
for integer, not necessarily binary cost robust problems1. Further, we can extend
our method to general robust integer problems with uncertainty in one (or few)
linear constraint(s). Restricting the latter result again to binary problems gives
the exact sibling of the cost robust result in [7] for robustness in constraints.
However, new insights were needed to translate the methods from [7] to the
constraint robust setting.

Our Contribution: The main results of this paper are the following:

– The cost robust counterpart (in the same sense as in [7]) of an integer prob-
lem can be solved or approximated if the original problem can be solved for
piecewise linear convex cost functions with at most two bends.

– To solve integer problems with uncertainty in a constant number of linear
constraints, one has to solve a modified problem where the left hand sides
of the constraints are replaced by piecewise linear convex functions.

– For binary problems with uncertainty in a constant number of linear con-
straints, it suffices to solve a polynomial number of instances of the original
problem with slightly modified coefficients in the constraints.

1 We speak of integer problems to integrate IPs and combinatorial problems, where
the feasibility sets need not be given explicitly by linear constraints.

Optimization over Integers with Robustness in Cost and Few Constraints 91

At first sight, the requirement of solvability for piecewise linear functions seems
clumsy, and not likely to be useful. To the contrary, we exemplify its usefulness by
a number of quite different and broad applications of our results. Those general
results allow us to develop methods for cost robust counterparts of entire classes
of integer linear programs, notably, totally unimodular programs (TUM) and
integer programs with two variables per constraint (IP2). Both classes have been
studied intensely in the deterministic case, but we are not aware of any general
results on their robust counterparts. Our general result on cost robust TUM
problems broadly extends results on Robust Min Cost Flows in [7]. Further,
we apply our general results to a combinatorial problem, namely, Unbounded
Knapsack. In this case we derive an algorithm that handles cost robustness and
robustness in the constraints at the same time.

We believe that this paper will motivate the consideration of piecewise linear
cost functions and constraints for further classes of integer problems.

Let us remark that although many optimization problems with a natural
non-binary IP description can be reformulated as binary IPs, this does usually
not yield a workaround to apply results for robust binary IPs to the naturally
non-binary problem – even granted the incurred blow-up of the instance. The
hindrance is usually that the scenario sets of the robust counterparts make no
sense once the problem is transformed into an unnatural binary program.

Related Work: Modern continuous robust optimization started with [20] for con-
vex uncertainty sets and [4,5,6] for ellipsoidal uncertainty sets. Still a good
overview for the state of the art is [1]. The Γ -scenario setting from [7,8] has
found frequent application, e.g. in [9,10,16].

Robust Knapsack has so far only been considered in the binary setting. While
for Γ -scenarios for uncertain costs the result from [7] applies, for the case of
general scenarios there is no approximation algorithm at all [2,21]. Klopfenstein
and Nace [17,18] considered polyhedral aspects of the robust Knapsack Problem,
and in the context of the chance-constraint version also a weight robust Knapsack
Problem. For the latter problem they derive a pseudo-polynomial algorithm, a
result that also follows from our general result on constraint robust problems.

For integer linear programs with two variables per inequality (IP2), Hochbaum
et al. [13] and Bar-Yehuda and Rawitz [3] provide a pseudopolynomial time 2-
approximation algorithm. In case the inequalities are restricted to be monotone,
there are pseudopolynomial time exact algorithms [3,14]. All algorithms explic-
itly assume that the variables are bounded.

Our general result generalizes a result for cost robust binary IPs [7], and
our results for totally unimodular integer programs generalize results on specific
totally unimodular problems, e.g., Min Cost Flows [7].

Structure of the paper: In Section 2 and 3 we present the general results on
cost robust and constraint robust integer problems, respectively. In Section 4
we apply them to problems with a totally unimodular description and integer
programs with two variables per inequality, enabling us to solve the cost robust

92 K.-S. Goetzmann, S. Stiller, and C. Telha

counterparts, as well as to the Unbounded Knapsack Problem, where we can
solve a robust version that features both, uncertainty in cost and weights.

2 Uncertainty in the Objective

We start with the general result on cost robust, not necessarily binary problems.
We will use [n] for the set {1, . . . , n} here and throughout. Further, let us note
that in our notation the set IN includes the zero. By TA(I) we denote the running
time of an algorithm A on an instance I.

The formal definition for the considered class of problems reads as follows:

Definition 1 (Cost Robust Optimization Problem). For the optimization
problems minx∈X{cTx} and maxx∈X{cTx}, given by P = (c,X) where X ⊆ ZZn

and c ∈ IRn, and a non-negative integer vector d ∈ INn together with Γ ∈ [n],
the minimization (maximization) (d, Γ)-Cost Robust Counterpart (CRC) of P
is defined by

min
x∈X

{
cTx+ max

S⊆[n]
|S|≤Γ

∑
j∈S

|djxj |
}

and max
x∈X

{
cTx− max

S⊆[n]
|S|≤Γ

∑
j∈S

|djxj |
}

, (1)

respectively.

Our main goal is to show that one can solve or approximate the CRC of P , if
one can solve or approximate the following variant of P :

Definition 2 (Modified Optimization Problem). For the minimization
(maximization) problem given by P = (X, c), c′ ∈ IRn

≥0 and α ≥ 0, the (c′, α)-
Modified Minimization (Maximization) Problem (MMin, MMax) of P is

min
x∈X

{∑
j∈[n]

c̃j(xj)
}

and max
x∈X

{∑
j∈[n]

c̃j(xj)
}
, (2)

where c̃j(xj) := cjxj ±max{c′jxj − α, 0} ±max{−c′jxj − α, 0} for minimization
(“+”) and maximization (“−”), respectively.

At this point minimization and maximization are fully symmetric. At a later
stage it will come in handy to have them defined separately.

Theorem 3. Consider the optimization problem of P = (c,X) with X ⊆ ZZn

and c ∈ IRn. Suppose for some ρ ≥ 1 there is a ρ-approximation algorithm A1

for the (c′, α)-MMin (MMax) of P and arbitrary c′ and α. Further suppose there
is an algorithm A2 that, for given d ∈ INn and Γ ∈ [n], computes upper bounds
uj on the absolute value of each variable xj in the optimal solution of the (d, Γ)-
CRC of P . Then there is a ρ-approximation algorithm A for the (d, Γ)-CRC
of P with running time TA(P, d, Γ) ∈ O

(
TA2(P, d, Γ) + ϑ ·TA1(P, d, ϑ)

)
, where

ϑ := maxj{ujdj}.

We will use ϑ := maxj{ujdj} throughout the remainder of this paper without
defining it again.

Optimization over Integers with Robustness in Cost and Few Constraints 93

Note that for ρ = 1, i.e., if we have an exact algorithm for the modified
problem, we can solve the CRC exactly.

Proof. We only consider minimization problems, since we can transform any
maximization problem into a minimization problem by taking the negative of
the costs. Along the lines of the binary result from [7], we formulate the inner
maximization problem of (1) as an IP, dualize and eliminate all but one dual
variable to get the following reformulation of (1):

min
x∈X,ϑ≥0

{
cTx+ Γϑ+

∑
j∈[n]

(
max{djxj − ϑ, 0}+max{−djxj − ϑ, 0}

)}
. (3)

From this point on, the methods from [7] no longer apply because the variables
are non-binary. We thus use our new technique, which utilizes the notion of the
Modified Optimization Problem: For a fixed ϑ, (3) is equivalent to the (d, ϑ)-
MMin of P . By the conditions of the Theorem, we can compute a ρ-approximate
solution to this problem.

Let (x∗, ϑ∗) be an optimal solution to (3). We know that |x∗
j | ≤ uj, so if

ϑ ≥ maxj ujdj = ϑ, for all j both maxima in (3) vanish. Hence, if we increase ϑ
beyond this number, the objective value increases. It follows that ϑ∗ ≤ ϑ.

Also, we can assume that ϑ∗ is integral: Denote by

C∗(ϑ) := Γϑ+min
x∈X

{ ∑
j∈[n]

(
cjxj +max{djxj −ϑ, 0}+max{−djxj −ϑ, 0}

)}
(4)

the optimal cost for a fixed ϑ. Since x and d are integral, this function is linear
in ϑ within each interval [k, k+1], k ∈ IN. In such an interval the local maximum
is obtained for ϑ = k or for ϑ = k+1, and thus the global maximum is obtained
for some integral ϑ.

We can thus compute all ρ-approximate solutions corresponding to integral
values of ϑ in [0, ϑ], and choose the best among them, resulting in the claimed
running time. �

Remark. Our model of robustness limits to deviation in at most Γ cost coef-
ficients. The resulting inner maximization problem, which we dualized in the
previous proof, is totally unimodular. Therefore a standard argument originat-
ing from [7] gives that this model is equivalent to protecting against any cost
function c+ δd with δ in the set {δ ∈ IRn :

∑
j∈[n] |δj | ≤ Γ}.

Unless maxj ujdj is polynomial in the input, in Theorem 3 one ends up with a
pseudopolynomial algorithm for the CRC, even if a polynomial algorithm for the
modified optimization problem is given. This can be overcome if ρ = 1 and C∗

as defined in (4) is convex as a function of ϑ, in which case ϑ∗ can be found via
a carefully constructed binary search (similar to the one in proof of Theorem 7
in [7]):

Theorem 4. Consider the minimization problem of P = (c,X) with X ⊆ ZZn

and c ∈ IRn. If the conditions of Theorem 3 hold, and if ρ = 1 and C∗ is a

94 K.-S. Goetzmann, S. Stiller, and C. Telha

convex function, then there is an exact algorithm A for the (d, Γ)-CRC of P
with running time TA(P, d, Γ) ∈ O

(
TA2(P, d, Γ) + log(ϑ) ·TA1(P, d, ϑ)

)
.

For an application of this result we refer the reader to the part on problems with
totally unimodular description in Section 4.

When ρ > 1 or C∗ is not convex, we can still restrict the number of calls
of the oracle A1 to O(log(ϑ)) in exchange for a slightly weaker approximation
guarantee. But for this result we have to consider minimization and maximiza-
tion separately and restrict to combinatorial problems with non-negative cost
coefficients and variables. Note that in this case the second maximum in both
the definition of MMin and MMax vanishes.

It requires some additional non-trivial insights to prove that if ϑ∗ is approxi-
mated, also the value of the solution will not deviate too much from the optimal
value. We present these ideas in the following two proofs.

Theorem 5 (Minimization Problem). Consider the minimization problem
of P = (c,X) with X ⊆ INn and c ∈ IRn

≥0. Under the conditions of Theorem 3,
for all ε > 0 there is a ρ(1 + ε)-approximation algorithm A for the (d, Γ)-CRC
of P with running time TA(P, d, Γ) ∈ O

(
TA2(P, d, Γ)+ 1

ε · log(ϑ) ·TA1(P, d, ϑ)
)
.

Proof. We start as in the proof of Theorem 3. To attain the claimed running
time, however, for any given ε > 0, we now solve (4) approximately for all
ϑ ∈ {0} ∪ {(1 + ε)k : k ∈ IN, (1 + ε)k−1 ≤ ϑ}, and return the best of all these
solutions. This yields a ρ(1 + ε)-approximation for the CRC:

Let (x∗, ϑ∗) be an optimal solution to (3), w.l.o.g. ϑ∗ ≤ ϑ and ϑ∗ ∈ IN. In
case ϑ∗ ∈ {0, 1}, our solution is within a factor of ρ of the optimum, since
these two values for ϑ are checked. Otherwise, let k0 ∈ IN � {0} be such that
(1 + ε)k0−1 < ϑ∗ ≤ (1 + ε)k0 =: ϑ0. Since Γ, ϑ∗, c, and x ≥ 0, we get

C∗(ϑ0)

C∗(ϑ∗)
≤ max

{
Γϑ0

Γϑ∗ ,
minx∈X

{∑
j cjxj +max{djxj − ϑ0, 0}

}
minx∈X

{∑
j cjxj +max{djxj − ϑ∗, 0}

}} ≤ 1 + ε .

Since we can compute ρ-approximations to C∗(ϑ), the best solution we find
is a ρ(1 + ε)-approximation for the CRC. Further, the oracle A1 is called
O(log(1+ε) ϑ) = O

(
1
ε · log(ϑ)

)
times , resulting in the claimed running time. �

For maximization, the perturbed cost in a worst scenario can be relatively close
to zero, while all numbers involved are rather large. This, roughly speaking,
spoils an approximation result for maximization similar to Theorem 5 – unless
we impose a further condition:

Theorem 6 (Maximization Problems). Consider the maximization problem
of P = (c,X) with X ⊆ INn and c ∈ IRn

≥0. Suppose the conditions of Theorem
3 hold, and suppose that the relative cost decrease in the (d, Γ)-CRC of P is
bounded from above by a constant β < 1, i.e.:

∃ β < 1 :
dj
cj
≤ β ∀ j ∈ [n] .

Then there is a 2ρ-approximation algorithm A for the (d, Γ)-CRC of P with
running time TA(P, d, Γ) ∈ O

(
TA2(P, d, Γ) + log(ϑ) ·TA1(P, d, ϑ)

)
.

Optimization over Integers with Robustness in Cost and Few Constraints 95

Proof. As in the proof of Theorem 5, we solve the MMax of P for ϑ = (1 + ε)k

for some k ∈ IN and a particular ε > 0. For the choice of ε, consider an optimal
solution (x∗, ϑ∗) with value OPT. We get that

Γϑ∗ ≤ Γϑ∗ +
∑
j∈[n]

max{djx∗
j − ϑ∗, 0} = cTx∗ −OPT︸ ︷︷ ︸

(1)

(∗)
≤ dTx∗ ≤ βcTx∗ ,

where (∗) holds because (1) is the cost we lose due to the decrease of some of
the coefficients, and this cost is bounded by dTx∗.

We now set ε := (1−β)/2β (w.l.o.g. β > 0). Then

OPT ≥ (c− d)Tx∗ ≥ (1− β)cTx∗ = 2εβcTx∗ ≥ 2εΓϑ∗ .

With this, we can bound the error that arises from approximating ϑ∗:
Denote by C∗(ϑ) := −Γϑ + maxx∈X

{∑
j∈[n] cjxj − max{djxj − ϑ, 0}

}
the

optimal cost for a fixed ϑ. With ϑ0 as in the proof of Theorem 5 we then get

OPT

C∗(ϑ0)
≤ OPT

−Γϑ0 +maxx∈X

{∑
j∈[n]

(
cjxj −max{djxj − ϑ∗, 0}

)}
=

OPT

−Γϑ0 + OPT+ Γϑ∗ ≤
OPT− εΓϑ∗ + εΓϑ∗

−Γ (1 + ε)ϑ∗ +OPT+ Γϑ∗

= 1+
εΓϑ∗

OPT− εΓϑ∗ ≤ 2 .

Since we are able to approximate the optimal solution to the MMax of P within
a factor of ρ, the considerations above prove that our algorithm yields a 2ρ-
approximation. The number of calls of A1 is the same as in the proof of Theorem
5. Since ε is constant, we get the claimed overall running time. �

3 Uncertainty in Constraints

We now turn to the case where the coefficients of a single linear constraint (or
those of a constant number of them) are uncertain. In the setting considered
here minimization and maximization are equivalent, so we restrict to one of the
two. The formal definition of the considered class of problems is as follows:

Definition 7 (Constraint Robust Maximization Problem). Consider the
problem maxx∈X{cTx}, given by P = (c,X) where c ∈ IRn and X = {x ∈
X ′ : aTx ≤ r} for some X ′ ⊆ ZZn, a ∈ IRn, r ∈ IR. For a non-negative integer
vector b ∈ INn together with Γ ∈ [n], the (b, Γ)-Constraint Robust Counterpart
(ConsRC) of P is defined by

max cTx s.t. x ∈ X ′, aTx+ max
S⊆[n]
|S|≤Γ

∑
j∈S

|bjxj | ≤ r. (5)

As in the cost robust setting, the left hand side of the constraint with uncertain
coefficients can be transformed into a sum of piecewise linear convex function
with two bends:

96 K.-S. Goetzmann, S. Stiller, and C. Telha

Lemma 8. The (b, Γ)-Constraint Robust Counterpart of the maximization prob-
lem P = (c,X) as defined in Definition 7 is equivalent to

max
ξ≥0

max
x∈X(ξ)

cTx, with (6)

X(ξ) :=
{
x ∈ X ′ : Γξ +

∑
j∈[n]

(
ajxj +max{bjxj − ξ, 0}+max{−bjxj − ξ, 0}

)
≤ r

}
.

Proof. With the same transformations as in the cost robust setting, we get that
(5) is equivalent to

max cTx s.t. x ∈ X ′ and

min
ξ≥0

{
Γξ +

∑
j
ajxj +max{bjxj − ξ, 0}+max{−bjxj − ξ, 0}

}
≤ r.

Thus, for all feasible solutions x of (5) there exists some ξ(x) ≥ 0 such that
x ∈ X(ξ(x)). Consequently, (5) is equivalent to maxξ≥0 maxx∈X(ξ) c

Tx. �

For the non-binary case, the optimal ξ∗ can be found by enumeration, since it is
integral and bounded by the maximum deviation in the constraint coefficients:

Corollary 9. Consider the (b, Γ)-ConsRC of the maximization problem P =
(c,X) as defined in Definition 7. Suppose there is an algorithm A1 computing a ρ-
approximation for maxx∈X(ξ) c

Tx for any ξ ≥ 0, and an algorithm A2 that com-
putes upper bounds uj on the absolute value of each variable xj in the optimal so-
lution of (5). Then there is a ρ-approximation algorithm A for the (b, Γ)-ConsRC
of P with running time TA(P, b, Γ) = O

(
TA2(P, b, Γ)+ ξ ·TA1(P, b, Γ, ξ)

)
, where

ξ := maxj{ujbj}.

If all variables are binary, i.e. X ′ ⊆ {0, 1}n, there are only n+ 1 possibilities for
ξ∗, and for a fixed ξ the constraint of problem (6) becomes linear again. Hence,
to solve the (b, Γ)-ConsRC of P = (c,X), it suffices to solve n + 1 problems of
the type of P for slightly different coefficients in the linear constraint.

This result is an exact sibling of the result on cost robust binary problems in
[7], but it requires some new insights to translate the methods from [7] to the
constraint robust setting.

Theorem 10. If X ′ ⊆ {0, 1}n, the (b, Γ)-ConsRC of the maximization problem
P = (c,X) as defined in Definition 7 is equivalent to

max
�=1,...,n+1

(
max cTx s.t. x ∈ X ′, Γ b� + aTx+

�−1∑
j=1

(bj − b�)xj ≤ r

)
,

whereby w.l.o.g. we assume bn ≤ bn−1 ≤ . . . ≤ b1 and define bn+1 := 0.

Proof. We know that ξ∗ ∈ [0, b1]. We split up this interval at b�, � = n, . . . , 2,
and maximize over each subinterval, i.e. we reformulate (6) to get

max
�=1,...,n

(
max

ξ∈[b�+1,b�]

(
max

x∈X(ξ)
cTx

))
. (7)

Optimization over Integers with Robustness in Cost and Few Constraints 97

For x ∈ {0, 1}n we have max{bjxj − ξ, 0} = max{bj − ξ, 0}xj , and thus for
ξ ∈ [b�+1, b�]

X(ξ) =
{
x ∈ X ′ : Γξ +

∑
j∈[n]

(
ajxj +max{bj − ξ, 0}xj

)
≤ r

}
=
{
x ∈ X ′ : Γξ + aTx+

�∑
j=1

(bj − ξ)xj ≤ r
}
. (8)

For any fixed x, the left hand side of the constraint in (8) is a linear function in ξ
that has to be no greater than r somewhere in [b�+1, b�] for x to be feasible. Thus,
if the constraint is satisfied for any ξ in this interval, because of linearity it will
be satisfied for at least one of the values ξ = b�+1 or ξ = b�. As a consequence,

max
ξ∈[b�+1,b�]

(
max

x∈X(ξ)
cTx

)
= max

ξ=b�+1,b�

(
max

x∈X(ξ)
cTx

)
. (9)

Combining (7)–(9) yields the claimed result. �

As a corollary from Theorem 10 we get the existence of a pseudopolynomial
exact algorithm as well as an FPTAS for the weight robust counterpart of the
binary Knapsack Problem, generalizing a result from [18].

All the results from this section hold as well if there is a constant number k of
constraints with uncertain coefficients. The problem maxx∈X(ξ) c

Tx would then

have to be solved (maxj{ujbj})k times in the setting of Corollary 9 and (n+1)k

times in the binary case.

4 Applications

The final section is devoted to applications of the general results presented above.
We first consider the cost robust setting for problems with a totally unimodular
description and IPs with two variables per inequality, and then study the Un-
bounded Knapsack Problem, both with uncertain weights and cost, integrating
our general results.

Problems with Totally Unimodular Description. The concept of totally
unimodular matrices is arguably the most successful concept for solving a large
class of integer programs. In general, robust counterparts need not inherit total
unimodularity. We show that in our setting, however, the CRC of P can be solved
exactly for those problems where the solution space of P can be described by a
totally unimodular matrix of size polynomial in the size of the input of P .

This generalizes results on specific totally unimodular problems. In particular,
it broadly generalizes the results on Robust Network Flows in [7], since the Min
Cost Flow Problem is totally unimodular.

In this section we do not require non-negativity of the cost vector, so the
minimization results we show can be used for maximization problems as well.
We do require non-negative variables. This condition can be lifted, but this yields
much less readable results that rest on similar arguments.

98 K.-S. Goetzmann, S. Stiller, and C. Telha

Definition 11. A minimization problem P = (c,X) is said to have a bounded
TUM description (A, b, u) if the set of feasible solutions X ⊆ INn is described by
a totally unimodular matrix A ∈ IRm×n, an integral right-hand-side b, and an
integral vector of upper bounds u, i.e.

conv(X) = {x ∈ IRn : Ax ≤ b, x ≤ u}, A TUM, b ∈ ZZm, u ∈ ZZn.

To apply Theorem 4 to solve problems of this kind, we need to establish the
following two lemmas:

Lemma 12. If the minimization problem P = (c,X) is given by a bounded TUM
description (A, b, u), then the Modified Minimization Problem can be solved in
polynomial time.

Lemma 13. Let C∗(ϑ) be defined as in (4). Then for a minimization problem
P = (c,X) with a bounded TUM description (A, b, u), C∗ is convex for any
c ∈ IRn, d ∈ INn, Γ ∈ [n].

The key idea is to split up each variable into three to model the piecewise linear
cost function, and to observe that the resulting LP is still totally unimodular.
For details we refer the reader to the technical report [11].

With Theorem 4 and the two lemmas, we get that we can solve the CRC of
any problem with a bounded totally unimodular description in polynomial time:

Theorem 14. If the minimization problem P = (c,X) is given by a bounded
TUM description (A, b, u), then for any c ∈ IRn, d ∈ INn and Γ ∈ [n], there is
an exact algorithm for the (d, Γ)-CRC of P that runs in polynomial time.

Integer Programs with Two Variables per Inequality. We now apply our
main results to a second, large, and intensely studied class of integer programs,
namely integer programs with two variables per inequality (IP2).

Definition 15 (Integer Programs with Two Variables per Inequality).
A bounded integer program with two variables per inequality (bounded IP2) is
a system of the form

min {cTx : aT

i x ≥ bi for i = 1, . . . ,m, � ≤ x ≤ u, x integer} ,

where b ∈ ZZm, �, u ∈ ZZn, c ∈ �n and each vector ai ∈ ZZn has two non-zero
components.

A bounded IP2 is called monotone if the non-zero coefficients of ai have op-
posite signs.

The conditions required in Section 2 allow to intensely use the existing tech-
niques for non-robust IP2, in particular [13], [14] and [3]. We obtain a pseu-
dopolynomial time 2-approximation for the CRC of bounded IP2s and an exact
pseudopolynomial time algorithm for the CRC of bounded, monotone IP2s.

Optimization over Integers with Robustness in Cost and Few Constraints 99

Theorem 16. The cost robust counterpart of a bounded monotone IP2 can be
solved in pseudopolynomial time.

Remark. Theorem 16 can be established by extending (to handle piecewise linear
functions) the pseudopolynomial time algorithm of Hochbaum and Naor [14] for
bounded monotone IP2, cf. [11]. In [3], Bar-Yehuda and Rawitz give an exact
pseudopolynomial algorithm for monotone cost functions but non-negative lower
bounds.

Theorem 17. There is a pseudopolynomial time 2-approximation algorithm for
the cost robust counterpart of a bounded IP2 with non-negative coefficients in the
objective function and non-negative lower bounds.

Remark. Theorem 17 is proven by extending (to handle piecewise linear func-
tions) the pseudopolynomial 2-approximation algorithm of Hochbaum et al. [13],
cf. [11]. This result is also shown in [3].

Robust Unbounded Knapsack Problems. To demonstrate how versatile
our main results are for combinatorial problems, we apply them to the Unbounded
Knapsack Problem, the non-binary extension of the classical Knapsack Problem
(KP). For this problem we will be able to handle counterparts that feature both,
cost robustness and robustness in the constraint.

Definition 18 (Unbounded Knapsack Problem). An instance of the Un-
bounded Knapsack Problem (UKP) is given by a knapsack capacity W ≥ 0 and
n types of items with weights wj ∈ IN and costs cj ∈ IR≥0, j ∈ [n]. The task is
to find a vector x ∈ INn with

∑
j wjxj ≤W maximizing the cost

∑
j cjxj.

UKP and its extensions, in particular its robust counterparts, are NP -hard.
Intuitively, UKP seems to be more complex than the binary KP, since the input
is more compact. Still, as for KP, there is both a pseudopolynomial Dynamic
Program (DP) and an FPTAS [19,15].

We now consider the robust versions of the Unbounded Knapsack Problem.

Cost Robust UKP (CRUKP). While the result for binary cost robust pro-
grams [7] can be applied to the standard Knapsack Problem, the CRC of UKP
surpasses the reach of [7]. As argued earlier, a reformulation as a binary integer
program does not only cause a blow-up in size, but it also renders the scenario
set meaningless. Thus, to solve CRUKP, we need to be able to solve UKP for
piecewise linear concave cost functions. In [12], Hochbaum presented an FPTAS
for this problem. We give an alternative FPTAS based on a dynamic program
(DP) in our technical report [11]. With these results, by Theorem 6 it follows
that for all ε > 0, there is a (2 + ε)-approximation algorithm for CRUKP, if
the relative cost decrease is bounded away from 1 by a constant. On the other
hand, using Theorem 3 with the DP from [11], we get an exact algorithm with
pseudopolynomial running time.

100 K.-S. Goetzmann, S. Stiller, and C. Telha

Weight Robust UKP (WRUKP). Next we turn to the Unbounded Knapsack
Problem where weights instead of costs are uncertain. In terms of Section 3 we
have uncertainty in the only constraint. We consider the (Δw,Γ)-ConsRC of
UKP, where Δwj denotes the possible increase in weight of items of type j.
From Corollary 9 we learn that we have to solve maxx∈X(ξ) c

Tx in order to get a
pseudopolynomial algorithm for WRUKP. The FPTAS from [12] could be used
for this. Alternatively, we can compute an exact solution in pseudopolynomial
time by the DP described in [11]. With uj =

W
wj

, this yields an exact algorithm

for WRUKP with running time O(maxj
Δwj

wj
· n2W 2).

General Robust UKP (RUKP). Finally, we consider a version of UKP where
both weights and costs are uncertain. At most Γw types of items can increase
their weight, and at most Γc cost coefficients decrease. This is the (Δw,Γw)-
ConsRC of CRUKP. Since the DP from [11] works for concave cost and convex
weight functions, by Theorem 3 we get an exact algorithmA1 for CRUKP on the
modified solution spaceX(ξ) with a running time ofO(maxj

dj

wj
· n2W 2), and can

thus solve RUKP exactly in a running time of O(maxj
Δwj

wj
·maxj

dj

wj
· n2W 3).

Acknowledgement. We are grateful to Martin Skutella and Günter Rote for
discussions that substantially enhanced this paper.

References

1. Special issue on robust optimization. Math. Program. 107(1-2) (2006)
2. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of min-max and min-max

regret versions of some combinatorial optimization problems. Europ. J. of Oper.
Res. 179(2), 281–290 (2007)

3. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two
variables per constraint 1. Algorithmica 29(4), 595–609 (2001)

4. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4),
769–805 (1998)

5. Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. Oper.
Res. Letters 25(1), 1–13 (1999)

6. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems
contaminated with uncertain data. Math. Program. 88(3), 411–424 (2000)

7. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. 98(1-3), 49–71 (2003)

8. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
9. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust Combinatorial Optimization

with Exponential Scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007)

10. Fischetti, M., Monaci, M.: Light Robustness. In: Ahuja, R.K., Möhring, R.H., Zaro-
liagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868,
pp. 61–84. Springer, Heidelberg (2009)

11. Goetzmann, K.-S., Stiller, S., Telha, C.: Optimization over integers with robustness
in cost and few constraints. Technical Report 009-2011, Technische Universität
Berlin (2011)

Optimization over Integers with Robustness in Cost and Few Constraints 101

12. Hochbaum, D.: A nonlinear knapsack problem. Oper. Res. Lett. 17, 103–110 (1995)
13. Hochbaum, D., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-

approximation algorithms for integer programs with two variables per inequality.
Math. Program. 62(1), 69–83 (1993)

14. Hochbaum, D., Naor, J.: Simple and fast algorithms for linear and integer programs
with two variables per inequality. SIAM J. Comput. 23, 1179–1192 (1994)

15. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22, 463–468 (1975)

16. Khandekar, R., Kortsarz, G., Mirrokni, V., Salavatipour, M.R.: Two-Stage Robust
Network Design with Exponential Scenarios. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 589–600. Springer, Heidelberg (2008)

17. Klopfenstein, O., Nace, D.: A note on polyhedral aspects of a robust knapsack
problem (2007), http://www.optimization-online.org

18. Klopfenstein, O., Nace, D.: A robust approach to the chance-constrained knapsack
problem. Oper. Res. Letters 36(5), 628–632 (2008)

19. Martello, S., Toth, P.: Knapsack Problems. Algorithms and Computer Implemen-
tations. John Wiley and Sons (1990)

20. Soyster, A.L.: Convex programming with set-inclusive constraints and applications
to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

21. Yu, G.: On the max-min 0-1 knapsack problem with robust optimization applica-
tions. Oper. Res. 44(2), 407–415 (1996)

http://www.optimization-online.org

A Lower Bound on Deterministic Online

Algorithms for Scheduling on Related Machines
without Preemption

Tomáš Ebenlendr1 and Jǐŕı Sgall2

1 Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic
ebik@math.cas.cz

2 Dept. of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, CZ-11800 Praha 1, Czech Republic

sgall@kam.mff.cuni.cz

Abstract. We prove a new lower bound of 2.564 on deterministic on-
line algorithms for makespan scheduling on related machines (without
preemptions). Previous lower bound was 2.438 by Berman et al. We use
an analytical bound on maximal frequency of scheduling jobs instead of
the combinatorial bound obtained by computer based search through the
graph of possible states of an algorithm in the previous work.

1 Introduction

We consider one-by-one online scheduling on uniformly related machines. The
speed of machine Mi is denoted si. Each job is characterized by its processing
time pj takes pj/si time to process on Mi. No preemptions are allowed, i.e.,
once the job is started it cannot be interrupted and the machine is busy with
this job until the job is processed. The objective is to minimize the makespan
(also called the length of the schedule, or the maximal completion time). The
online algorithm sees only the next job from the input sequence and it has to
schedule this job before it is given the following job. Note that in this model
it is not necessary to specify the starting times of jobs, as any schedule can be
trivially converted to the schedule without idle time (gaps), while not increasing
the makespan. (Accordingly, this model is often considered as a variant of load
balancing.)

We prove a new lower bound of 2.564 for the above-described problem, i.e.,
for deterministic online algorithms for makespan scheduling on related machines
without preemptions. The previous lower bound was 2.438 by Berman et al [5].
They use combinatorial approach with computer based search through the graph
of possible states of an algorithm. In contrast, we use an analytical bound on
maximal frequency of scheduling jobs.

Our lower bound is based on an instance where both the machine speeds and
the processing times are a geometric sequence of machines, with both sequences
having the same common ratio, similarly as in [5,10]. In the previous bounds
for similar problems one usually argues about the total amount of work done by

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 102–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Lower Bound on Deterministic Online Algorithms for Scheduling 103

the machines. In contrast, our bound is based on reasoning about the number of
jobs scheduled and the frequency of scheduling jobs on every machine. First, we
consider how the algorithm behaves on one of the machines and we upper bound
the frequency of scheduling a job on this machine. This bound is a function of the
competitive ratio, the common ratio of the geometric sequence, and the speed
of the machine. Then we take the sum of these bounds on frequencies over all
machines. Any online algorithm has to schedule one job in one step, thus this sum
has to be at least 1. Finally, we let the common ratio of the geometric sequence
to approach 1, and obtain our lower bound. This yields a certain inequality for
the competitive ratio which we solve numerically.

Related Work

Naturally, the lower bounds need to be compared to the existing algorithms. The
first constant-competitive algorithm for non-preemptive scheduling on related
machines was developed in [1]. The currently best algorithms are 3 +

√
8 ≈

5.828 competitive deterministic and 4.311 competitive randomized one [5]. For an
alternative very nice presentation see [3]. All these algorithms use doubling, i.e.,
strategies that estimate the optimal makespan by a geometric sequence. While
this is a standard technique for obtaining a constant competitive ratio, it would
be surprising if it led to optimal algorithms. The lower bound for randomized
algorithms is 2, see [10]. Thus, both in the deterministic and randomized cases,
significant gaps remain.

For a small number of machines the best known algorithm is the greedy List
Scheduling (even though for many machines it is not even constant-competitive).
Here List Scheduling is defined so that the next job is always scheduled so that
it will finish as early as possible. The exact competitive ratio for m = 2 is φ and
for 3 ≤ m ≤ 6 it is equal to 1+

√
(m− 1)/2 [6]; moreover for m = 2, 3 it can be

checked easily that there is no better deterministic algorithm. For m = 2 it is
possible even to give the exact optimal ratio for any speed combination, see [9].
The previous lower bound of 2.438 works for m = 9; for a smaller number of
machines, no lower bound is known, except for the bound of 2 that follows from
the analysis of List Scheduling for m = 3.

Interestingly, for the related problem where preemptions are allowed, we are
able to provide an optimal online algorithm for any combination of the speeds
and its competitive ratio is between 2.112 and e ≈ 2.718, see [8,7]. Similar results
seem to be out of reach for non-preemptive scheduling, as the combinatorial
structure is much more difficult and the value of the optimum is NP-hard to
compute, while for the preemptive scheduling it is computable, in fact given by
an easy formula.

The problem of non-preemptive scheduling can be formulated in the language
of online load balancing as the case where the jobs are permanent and the load
is their only parameter corresponding to our processing time. Consequently,
there are many results on load balancing that extend the basic results on online
scheduling in a different direction, see e.g. [2].

104 T. Ebenlendr and J. Sgall

Notations

We number the machines as well as the jobs from 0 (to obtain simpler formulas).
Thus we have machines M0,M1, . . . ,Mm−1 and jobs J = (J0, J1, . . . , Jn−1). We
use J [j] = (J0, J1, . . . , Jj) to denote the input sequence of jobs cut off after Jj .

Let Ji be the set of jobs scheduled on machine Mi. The completion time of the
machine is then simply the sum of processing times of the jobs scheduled to the
machine divided by its speed: Ci =

1
si

∑
j:Jj∈Ji

pj. We compare the maximum
completion time in the output of the algorithm with maximum completion time
of the optimal schedule.

2 Lower Bound

Our lower bound is proved by an instance with a geometric sequence of machines,
si = α−i, and a geometric sequence of jobs, pi = αi, for some α > 1. Both
sequences have the same length, i.e., n = m. The optimal schedule after step
t is to schedule the jobs on the machines in the reverse order, i.e., the Jj on
machine Mt−j. The optimal makespan is thus equal to the size of the largest
job, C∗

max(J [t]) = pt = αt.
To achieve the competitive ratio of R, the algorithm has to complete the

job t before time R · C∗
max(J [t]). It follows immediately that it cannot schedule

any job at any machine with speed below 1/R. Furthermore, if the speed of
a machine is only slightly above 1/R, the jobs cannot be scheduled on it very
often. Intuitively, the faster machines can schedule a job more frequently. We
calculate the maximal frequency of scheduling a job for each machine separately,
depending on its speed and R. The lower bound will follow from the fact that
the sum of the frequencies has to be at least 1 so that the algorithm schedules
all the jobs.

Following this scheme of the proof has some technical difficulties. In particular,
the notion of frequency is not clear: The algorithm may schedule nothing on a
machine for some time and then several jobs in a row. We need to think in a
certain amortized way. Instead of formalizing the notion of amortized frequency,
we formulate the bounds in terms of the number of jobs.

The following main lemma gives the bound for a single machine. The number
ti can be interpreted as the highest possible amortized frequency of scheduling
a job to machine Mi with respect to the claimed competitive ratio R.

Lemma 1. Let A be an R-competitive algorithm. Consider the instance de-
scribed above. Let

ti = logα
R

R− αi
for si = α−i > R−1 (1)

Then, for any fixed α > 1 and n, the algorithm A schedules at most n
ti
+ R+ 1

jobs from the input sequence on machine Mi. Moreover the algorithm schedules
at most one job on the machine with speed equal to 1/R (if there is any) and no
job on any slower machine.

A Lower Bound on Deterministic Online Algorithms for Scheduling 105

Proof. If si < 1/R, then no job can be scheduled the machine Mi, since if the
sequence would end now, the optimal makespan would be equal to the size of the
last job on input, i.e, C∗

max(J [t]) = pt. Moreover if si = 1/R then only one job
can be scheduled on Mi: The same argument now shows that no job is scheduled
on Mi before scheduling any job. Thus we assume si > 1/R from now on.

Let p′1, p
′
2, . . . , p

′
ni

be (the processing times of) the jobs in Ji (i.e., those sched-
uled on the machine Mi). Intuitively, to schedule as many jobs as possible, it
is best to schedule greedily the smallest possible jobs. We proceed to obtain a
lower bound qi on p′i, the size of the ithe job on the machine.

We can bound p′j by
∑j

k=1 p
′
k ≤ Rsip

′
j because the algorithm is R-competitive

and the optimal makespan is p′j after scheduling this job as the last one. In
addition, p′j ≥ 1 for all jobs. This yields:

p′j ≥ max

{∑j−1
k=1 p

′
k

Rsi − 1
, 1

}
for j = 1, 2, . . . , ni . (2)

We define a sequence (qj)
ni

j=1 of lower bounds on the processing times from Ji
recursively by taking equality in the expression above:

qj = max

{∑j−1
k=1 qk

Rsi − 1
, 1

}
for j = 1, 2, . . . , ni . (3)

We can show that qj ≤ p′j by induction on j: We have q1 = 1 ≤ p′1 by definition.

To bound p′j+1, note that
∑j

k=1 qk ≤
∑j

k=1 p
′
k using inductive assumption and

plug in (2) and (3) for j + 1:

qj+1 = max

{∑j
k=1 qk

Rsi − 1
, 1

}
≤ max

{∑j
k=1 p

′
k

Rsi − 1
, 1

}
≤ p′j+1.

If qj > 1 then by the definition of qj we have

qj+1 =
qj +

∑j−1
k=1 qk

Rsi − 1
=

qj
Rsi − 1

+

∑j−1
k=1 qk

Rsi − 1
=

qj
Rsi − 1

+ qj = qj
Rsi

Rsi − 1
(4)

and thus

logα
qj+1

qj
= logα

Rsi
Rsi − 1

= ti . (5)

Now we bound ni. We know that qni ≤ p′ni
≤ pn = αn and thus logα qni ≤ n.

Using (5) we have at most n/ti+1 numbers of size qj > 1 in q1, . . . , qni . We also

have that
∑�R�

j=1 qj ≥ �R� > R − 1 ≥ Rsi − 1, thus qj > 1 for any j > R. This
gives that there are no more than n/ti + R + 1 jobs scheduled to the machine
Mi by an R-competitive algorithm. �

Theorem 1. For any R-competitive deterministic algorithm for nonpreemptive
scheduling on related machines, the following inequality holds:

1 ≤
∫ 1

0

ln(R)

− ln(1−R−x)
dx . (6)

106 T. Ebenlendr and J. Sgall

0−1 b a

i

1
ti

Fig. 1. The labels on the horizontal axis are a = logα R and b = �logα R − 1. The
sparsely hatched region shows the area of the sum in (7). The densely hatched region
shows the additional area of the integral in (8).

This gives R > 2.564.

Proof. Let ni be the number of jobs scheduled on the machine Mi at the end of
the sequence. The algorithm has to schedule all jobs, thus Lemma 1 implies

n =

n−1∑
i=0

ni =

�logα R�∑
i=0

ni ≤ (R+ 1)�logα R�+
�logα R�−1∑

i=0

n

ti
.

(The change of the summation bound is an artifact of the subtlety of i = logα R:
There ti is not defined but ni ≤ 1.) We can set n arbitrarily large, so that the
term (R + 1)�logα R� is negligible. Thus, for any ε > 0, we get:

1− ε ≤
�logα R�∑

i=0

1

ti
=

� lnR
ln α �∑
i=0

lnα

− ln(1− αiR−1)
(7)

≤
∫ lnR

lnα

−1

lnα

− ln(1− αiR−1)
di (8)

=

∫ 1

− lnα
lnR

lnR

− ln(1−Ry−1)
dy (9)

α→1−−−→
∫ 1

0

lnR

− ln(1−Ry−1)
dy . (10)

In (8) we simply bound the sum by the appropriate integral. We use the fact that
the function in the sum can be viewed as a continuous and decreasing function
of i, see Figure 1. We substitute i = y lnR

lnα to get (9).
The inner function of the integral in (6) is a bounded monotone function of

R and x. So we can solve the integration numerically and get the threshold of
R ≈ 2.5649877. �

A Lower Bound on Deterministic Online Algorithms for Scheduling 107

Our bound with the limit argument gives little intuition about the size of the
instance we need. In the rest of this section we give a bound of O(1/ε2) on the
size of the instance for proving the lower bound of R′ = R − ε. The two limits
(ε → 0 and α → 1) may need many machines and jobs for an accurate bound
and we need to bound both of these errors.

Let us denote the expression (9) by Fα(R):

Fα(R) =

∫ 1

− ln α
lnR

lnR

− ln(1 −Ry−1)
dy

Let Rα be the bound that is obtained from the inequality 1 ≤ Fα(Rα), that is
Rα = inf {R | Fα(R) ≥ 1}.

Suppose that we have ε′ > 0 such that R′ + ε′ < R, and α > 1 such that
R′ + ε′ ≤ Rα. Then, to obtain a lower bound of R′, we need to choose n such
that

Fα(Rα − ε′) ≤ 1− (R′ + 1)�logα R′�/n.

We can prove asymptotic bounds analytically or more precise bounds by numer-
ical checking on the computer. Let c1 = ∂

∂αFα(R
′) and c2 = ∂

∂R′Fα(R
′). For α

close to 0 and R′ between 2.56 and 2.57, c1 and c2 are positive, bounded away
from 0 and bounded. Then, for a small ε′, we obtain Fα(Rα − ε′) ≈ 1 − ε′c2
and Rα ≈ R − (α − 1) c1/c2. Using a computer we have checked numerically

that Rα > R − 3(α − 1) and Fα(Rα − ε′) < 1 − ε′

2 . The first inequality says
that α = 1 + ε/4 and ε′ = ε/4 suffices to provide R′ + ε′ ≤ Rα. The second

inequality implies that it is sufficient to choose n so that (R+1)�logα R� ≤ n ε′

2 .

A sufficiently large n is n = Θ
(

1
ε′ ln(α)

)
= Θ

(
1

ε ln(1+ε)

)
= Θ(ε−2).

3 Conclusions

We have been able to improve the lower bound for non-preemptive online schedul-
ing on related machines. The advantage of the new lower bound is that it provides
a clean analytical argument. On the other hand, it seems that the limit case with
many machines may not be the hardest one. For a fixed small number of machines,
we assume that the combinatorial structure of the problem could lead to new lower
bounds. This would probably need some combination of our analytical approach
and the enumerative techniques from [5].

Our techniques cannot be used for lower bounds against the randomized al-
gorithms, the best lower bound in this case remains at 2.

Of course, a challenge in this area is to design new algorithms, perhaps not
based on the doubling techniques used so far.

Acknowledgments. Partially supported by Inst. for Theor. Comp. Sci., Prague
(project 1M0545 of MŠMT ČR), grant IAA100190902 of GA AV ČR, and grant
166610 of GA UK. We are grateful to anonymous reviewers for helpful comments.

108 T. Ebenlendr and J. Sgall

References

1. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with
applications to machine scheduling and virtual circuit routing. J. ACM 44, 486–504
(1997)

2. Azar, Y.: On-line Load Balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Al-
gorithms: The State of the Art. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg
(1998)

3. Bar-Noy, A., Freund, A., Naor, J.: New algorithms for related machines with tem-
porary jobs. J. Sched. 3, 259–272 (2000)

4. Berman, P., Charikar, M., Karpinski, M.: On-line Load Balancing for Related Ma-
chines. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS
1997. LNCS, vol. 1272, pp. 116–125. Springer, Heidelberg (1997)

5. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related ma-
chines. J. Algorithms 35, 108–121 (2000)

6. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Com-
put. 9, 91–103 (1980)

7. Ebenlendr, T.: Combinatorial algorithms for online problems: Semi-online schedul-
ing on related machines. PhD thesis, Charles University, Prague (2011)

8. Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algo-
rithms for all speeds. Algorithmica 53, 504–522 (2009)

9. Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized on-line
scheduling for two uniform machines. J. Sched. 4, 71–92 (2001)

10. Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related
machines. Oper. Res. Lett. 26, 17–22 (2000)

Scheduling Jobs on Identical and Uniform

Processors Revisited�

Klaus Jansen and Christina Robenek

Department of Computer Science
Christian-Albrechts-University Kiel

Christian-Albrechts-Platz 4, 24098 Kiel, Germany
{kj,cot}@informatik.uni-kiel.de

Abstract. We study the problem of scheduling jobs on uniform proces-
sors with the objective to minimize the makespan. In scheduling theory
this problem is known as Q||Cmax. We present an EPTAS for scheduling
on uniform machines avoiding the use of an MILP or ILP solver. Instead
of solving (M)ILPs we solve the LP-relaxation and use structural infor-
mation about the “closest” ILP solution. For a given LP-solution x we
consider the distance to the closest ILP solution y in the infinity norm, i.e.
‖x−y‖∞. We call this distance max -gap(Aδ), where Aδ is the constraint
matrix of the considered (I)LP. For identical machines and δ = Θ(ε) the
matrix Aδ has integral entries in {0, . . . , (1 + δ)/δ} and O(1/δ log(1/δ))

rows representing job sizes and 2O(1/δ log2(1/δ)) columns representing con-
figurations of jobs, so that the column sums are bounded by (1 + δ)/δ.
The running-time of our algorithm is 2O(1/ε log(1/ε) log(C(Aδ))+O(n log n)
where C(Aδ) denotes an upper bound for max -gap(Aδ). Furthermore,
we can generalize the algorithm for uniform machines and obtain a

running-time of 2O(1/ε log(1/ε) log(C(Ãδ)) + poly(n), where Ãδ is the con-
straint matrix for a sub-problem considered in this case. In both cases

we show that C(Aδ), C(Ãδ) ≤ 2O(1/ε log2(1/ε)). Consequently, our algo-

rithm has running-time at most 2O(1/ε2 log3(1/ε)) + O(n log n) for iden-

tical machines and 2O(1/ε2 log3(1/ε)) + poly(n) for uniform machines, the
same as in [11]. But, to our best knowledge, no instance is known to

take on the value 2O(1/ε log2(1/ε)) for max -gap(Aδ) or max -gap(Ãδ). If
C(Ãδ), C(Aδ) ≤ poly(1/ε), the running-time of the algorithm would be

2O(1/ε log2(1/ε)) + poly(n) and thus improve the result in [11].

Keywords: scheduling on uniform processors, bin packing, EPTAS.

1 Introduction

In this paper we study the problem of scheduling jobs on uniform processors
with the objective to minimize the makespan. In scheduling theory this problem

� Research supported by German Research Foundation (DFG) project JA 612/14-1,
“Design and analysis of efficient polynomial approximation schemes for scheduling
and related optimization problems”.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 109–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 K. Jansen and C. Robenek

is known as Q||Cmax and is formally described as follows. We are given a set J of
n Jobs Jj with processing times pj and a set P of m processors Pi, each of them
running with a certain speed si. A job Jj needs pj/si time units to be finished,
if it is executed on Pi. Without loss of generality we assume that the number
m of processors is bounded by the number n of jobs and that the processors
are sorted by decreasing speed, i.e. s1 ≥ s2 ≥ . . . ≥ sm. For an instance I let
OPT (I) denote the length of an optimum schedule.

A polynomial time approximation scheme (PTAS) for Q||Cmax is a family of
polynomial-time approximation algorithms (Aε)ε>0, where for an instance I the
output of each algorithm Aε is a schedule of length (1 + ε)OPT (I) and the
running-time of Aε is bounded by a polynomial in the input length |I|. The
running-time of every Aε is allowed to be exponential in 1/ε, which can lead to
very large running-times if ε is very small. Therefore we distinguish furthermore
efficient polynomial-time approximation schemes (EPTAS) that have running-
time bounded by f(1/ε)poly(|I|) for a function f , and fully polynomial-time
approximation schemes (FPTAS) with running-time bounded by a polynomial
in both, 1/ε and |I|.

Known Results. In [4] and [5] the problem was shown to be NP-hard even for
identical processors. In 1976 Horowitz and Sahni [10] presented an approximation
scheme for a constant number m of uniform processors. Later Gonzales et al. [4]
showed for the same problem that the LPT list algorithm (using largest pro-
cessing time first policy) has output in [1.5 OPT (I), 2 OPT (I)]. Hochbaum and

Shmoys presented a PTAS for Q||Cmax with running-time (n/ε)O(1/ε2) [8], [9].
For identical processors the complexity was improved to (n/ε)O(1/ε log(1/ε)) by
Leung [17]. Since the problem was shown to be NP-hard in the strong sense [4],
no FPTAS exists. But, for identical processors Hochbaum [7] and Alon et al. [1]
developed an EPTAS with running-time f(1/ε) + O(n), where f is a func-
tion doubly exponential in 1/ε. In [11] Jansen gave an EPTAS for schedul-
ing jobs on uniform processors using an MILP relaxation with running-time
2O(1/ε2 log3(1/ε)) + poly(n). Sanders et al. obtained a robust online algorithm for
scheduling on identical machines with competitive ratio (1 + ε) and migration

factor β(ε) = 2O(1/ε log2(1/ε)) so that the running-time for incorporating a newly
arrived job is constant. It maintains and updates a data structure in time dou-

bly exponential in 1/ε, namely 22
O(1/ε log2(1/ε))

, in each iteration. This is done
by comparing the distance between solutions for ILPs with different right hand
sides. The general case for uniform processors is not considered.

Our Results. In this work we present an EPTAS for scheduling on uniform
machines avoiding the use of an MILP or ILP solver. In our new approach instead
of solving (M)ILPs we solve the LP-relaxation and use structural information
about the “closest” ILP solution. For a given LP-solution x we consider the
distance to the closest ILP solution y in the infinity norm, i.e. ‖x− y‖∞. For the
constraint matrix Aδ of the considered LP we call this distance

max -gap(Aδ) := max{min{‖y�−x�‖∞ : y�solution of ILP} : x�solution of LP}.

Scheduling Jobs on Identical and Uniform Processors 111

LetC(Aδ) denote an upper bound formax -gap(Aδ). The running-time of our algo-

rithm is 2O(1/ε log(1/ε) log(C(Aδ))+poly(n). We show that C(Aδ) ≤ 2O(1/ε log2(1/ε)).

Consequently, our algorithm has running-time at most 2O(1/ε2 log3(1/ε))+poly(n),
the same as in [11]. But, to our best knowledge, no instance is known to take on

the value 2O(1/ε log2(1/ε)) for max - gap(Aδ). We conjecture C(Aδ) ≤ poly(1/ε). If

that holds, the running-time of the algorithm would be 2O(1/ε log2(1/ε)) + poly(n)
and thus improve the result in [11].

Methods. Assume that we are given an instance Ī ofm identical processors and n
jobs with only d different processing times pj , such that there are nj jobs of each
size. We use the dual approximation method by Hochbaum and Shmoys [9] to
find a value T for the optimum makespan and transform the scheduling problem
into a bin packing problem with bin size T . Then the problem can be described
via the following configuration ILP for d different item sizes:∑

i

xi ≤ m∑
i

a(j, i)xi ≥ nj for j = 1, . . . , d

xi ∈ Z≥0.

(ILP (d))

A configuration Ci is a multiset of processing times pj so that their total sum
is bounded by T . The integer a(j, i) denotes the number of jobs of processing
time pj in Ci. In ILP (d) the variable xi is the number of bins in which jobs are
packed according to configuration Ci.

Solving an ILP is always difficult [14, 15], so what kind of information about
the structure of the ILP-solution can we get from a solution of the LP-relaxation?
For the constraint matrix A := (a(j, i))ji of the above ILP (d) we consider
max -gap(A). Having an upper bound C(A) for max -gap(A) and having an op-
timum fractional solution x� we conclude that there exists an optimum solution
y� of ILP (d) so that y�i ≥ �x�

i −C(A)� for x�
i ≥ C(A). So we know how a subset

of the bins B′ ⊂ B has to be filled with jobs in the optimum solution y�. We can
reduce the instance to an instance Īred by taking out the bins in B′ and those
jobs that are packed in B′:

m̃ := m−
∑

x	
i>C(A)

�x�
i − C(A)� processors

ñj := nj −
∑

x	
i>C(A)

a(j, i)�x�
i − C(A)� for all processing times pj .

(1)

In Figure 1 for example we have C(A) = 3. Given an optimum fractional so-
lution x� we conclude that there exists an optimum solution y� of the ILP
with ‖x� − y�‖∞ ≤ 3. Thus, if x�

i = 7.5 we have y�i ≥ 5. Therefore we know
that there is an integral solution of ILP (1) where at least 5 bins are occu-
pied with configuration Ci. We take out these 5 bins and the corresponding

112 K. Jansen and C. Robenek

C(Aδ) = 3 and x�
i = 7.5⇒ y�i ≥ 5

Fig. 1. Reducing the instance

jobs. Keep in mind that if the number of different job sizes and the num-
ber of jobs per bin is bounded by a constant, the total number of remain-
ing jobs in Īred can be bounded by a function in the value C(A) namely by
#(non-zero configurations in LP-solution) ∗#(jobs per bin) ∗C(A). Cook et al.
[2] showed for general (I)LPs that max -gap(A) is bounded by Δ times the num-
ber of variables, where Δ is the maximum absolute value of a subdeterminant
of the constraint matrix A.

So for an instance I with identical machines our algorithm first chooses
δ ∈ Θ(ε) and finds by binary search a candidate T for the makespan with
OPT (I) ≤ T ≤ (1 + δ)OPT (I). By scaling we can assume that T = 1 and
round the processing times pj to values p̄j = δ(1 + δ)kj with kj ∈ Z such that
pj ≤ p̄j ≤ (1+ δ)pj . Consequently, we have to enlarge the bin capacities slightly
to (1 + δ)T = (1 + δ). With Ī we denote the instance of rounded jobs, that are

large, i.e. p̄j > δ. We set up a configuration ILP for Ī with 2O(1/δ log2(1/δ)) vari-
ables and constraint matrix Aδ as described above and solve the LP-relaxation
or decide that no solution exists. In the latter case we increase the value T
and restart. Notice that we have at most O(1/δ) large jobs per bin and by the
rounding we have R ∈ O(1/δ log(1/δ)) different large job sizes. Solving the LP-
relaxation can be done in time poly(1/δ, logn) [6]. Using the theorem by Cook

et al. [2] we show that C(Aδ) is at most 2O(1/δ log2(1/δ)). Having a solution of
the LP-relaxation we can reduce the instance as described in equation 1. The
number of remaining large jobs in Īred is bounded by 2O(1/δ log(1/δ) log(C(Aδ)/δ)).
We allocate them by a dynamic programming approach. If this fails, we increase
T and restart. In the end the small jobs are added greedily. The running-time is
composed as follows “sorting the items by size”+“binary search on T”∗“solving
the LP”∗“dynamic program”+“adding small jobs”. This gives total running-
time O(n logn) + O(log(1/ε))poly(1/ε, logn)2O(1/ε log(1/ε) log(C(Aδ))) + O(n) ≤
O(n log n) + poly(logn)2O(1/ε log(1/ε) log(C(Aδ))) ≤ 2O(1/ε log(1/ε) log(C(Aδ))) +
O(n log n).

The algorithm for uniform processors is much more complex. Since we have
different bin capacities for uniform machines, we cannot directly apply the tech-
niques used for identical machines. Therefore, we distinguish between three dif-
ferent scenarios for the shape of the bin sizes. For each scenario we give an

algorithm that solves the problem in time 2O(1/δ log(1/δ) log(C(Ãδ)))+poly(n) that
applies our new technique to a subset of the instance. Furthermore, we use
a new technique to round LP solutions for fractional bin packing producing

Scheduling Jobs on Identical and Uniform Processors 113

only few extra bins. In all cases the running time depends on C(Ãδ) and is

2O(1/ε2 log3(1/ε)) + poly(n) in the worst case for C(Ãδ). Here, the matrix Ãδ de-
scribes the constraints appearing in an ILP-approach that characterizes a more
general scheduling problem as the one for identical machines: the jobs have a
bounded number of different sizes and the machines run group-wise with the
same speed, so we have configurations for each group. The entries of Ãδ are
integers in {0, 1, . . . , (1 + δ)g(1/δ)/δ} and the column sums are bounded by
(1+ δ)g(1/δ)/δ+1 for a function g(1/δ) = poly(1/δ) that will be specified later.
The value C(Ãδ) is an upper bound for max -gap(Ãδ).

We found out that the value Δ for matrices describing scheduling problems
can be exponential in the number of different item sizes (see Lemma 2). But, no
instance is known to take on the upper bound for max -gap(Aδ) or max -gap(Ãδ).
Therefore, an open question is to find a better bound for max -gap(Aδ) and
max -gap(Ãδ). One can also think of a robust online algorithm for identical
processors or even for uniform processors with improved running-time using
similar techniques.

Organization of the paper. We show that max -gap(Aδ) is bounded from above
and that Δ is bounded from below in Section 2. In Section 3 we present an
efficient algorithm for uniform processors that avoids to solve (M)ILPs and uses
an upper bound for max -gap(Ãδ) instead. Here, we proceed by case distinction
and consider three different scenarios for the bin sizes. Due to space limitation
we left out some proofs that can be found in the full version of the paper [13].

2 Bounds for max -Gap(Aδ) and the Running-Time

To obtain an upper bound C(Aδ) for max -gap(Aδ) we use an interesting result
by Cook et al. [2]. They proved that the maximum distance between an optimum
solution of the LP and a closest optimum solution of the ILP (and vice versa)
is bounded by a function in the dimension and the coefficients of the underlying
matrix.

Theorem 1. [2] Let A be an integral (M ×N) matrix, such that each subdeter-
minant is at most Δ in absolute value, and let b and c be vectors. Suppose that
both objective values (i) min{cTx|Ax ≥ b} and (ii) min{cTx|Ax ≥ b; x ∈ Z

N}
are finite. Then:

(a) for each optimum solution y of (i) there exists an optimum solution z of (ii)
with ‖y − z‖∞ ≤ NΔ and

(b) for each optimum solution z of (ii) there exists an optimum solution y of (i)
with ‖y − z‖∞ ≤ NΔ.

Note that the theorem above also holds, if we have additional inequalities of the
form xi ≥ 0. Furthermore, we can use cTx =

∑
i xi as objective function instead

of the inequality
∑

i xi ≤ m in ILP (d). For scheduling on identical processors
the objective values of the ILP formulation for the rounded large jobs Ī and its
LP relaxation both are finite. Consequently, max -gap(Aδ) is bounded by NΔ.
In the following we give bounds for the parameters N and Δ.

114 K. Jansen and C. Robenek

Lemma 1. The number of variables N in the modified ILP, the maximum abso-
lute value Δ over all subdeterminants corresponding to the matrix Aδ = (a(j, i))

and max -gap(Aδ) are at most 2O(1/δ log2(1/δ)).

Since δ = Θ(ε), the algorithm described informal in the introduction fufills the
following theorem.

Theorem 2. There is an algorithm with running-time

2O(1/ε log(1/ε) log(C(Aδ))) +O(n log n) ≤ 2O(1/ε2 log3(1/ε)) +O(n logn)

that schedules n jobs onm identical processors producing a schedule with makespan
at most (1 + ε)OPT (I).

If C(Aδ) = poly(1/ε), the running-time improves to 2O(1/ε log2(1/ε))+O(n logn).
On the other hand, the value Δ can be quite large.

Lemma 2. The maximum value Δ over all subdeterminants of the coefficient
matrix Aδ = (a(j, i)) is at least 2Ω(1/δ log2(1/δ)).

3 Scheduling on Uniform Processors

For uniform processors we can compute a 2 - approximation using the LPT algo-
rithm studied by Gonzales et al. [4]. Here LPT (I) ≤ 2OPT (I) where LPT (I)
is the schedule length generated by the LPT algorithm. Similar to identical pro-
cessors, we can split the interval [LPT (I)/2, LPT (I)] into 1/δ subintervals of
length (δ/2)LPT (I) ≤ δOPT (I) and transform the scheduling problem with
makespan T into a bin packing problem with bin sizes c1 ≥ . . . ≥ cm (where
ci = T · si). By scaling we assume cm = 1. As for identical machines we round
the job sizes pj to values p̄j = δ(1+ δ)kj ≤ (1+ δ)pj. Additionally we round and
increase slightly the bin capacities ci to values c̄i = (1 + δ)�i ≤ ci(1 + δ)2. Let
the instance of rounded jobs and bin capacities be denoted with Ī. For a set of
bins B let cmin(B) := min{ci|bi ∈ B}. Analogously we define cmax(B).

Lemma 3. [11] If there is a feasible packing of n jobs with processing times pj
into m bins with capacities c1, . . . , cm, then there is also a packing of the n jobs
with rounded processing times p̄j = δ(1 + δ)kj ≤ (1 + δ)pj into the m bins with
rounded bin capacities c̄i = (1 + δ)�i ≤ ci(1 + δ)2.

In the general case with different bin sizes, we distinguish between three differ-
ent scenarios depending on the structure of the set of bins in the instance. Let
g : N −→ N and f : N −→ N be functions so that g(1/δ) ≥ 1/δ log2(1/δ) with g =
poly(1/δ) and f(1/δ) = max{�(1 + δ+ log2(1/δ))/δ�, 1/δ4 log(g(1/δ)/δ)C(Ãδ)}.
The constant C(Ãδ) is still an upper bound for max -gap(Ãδ). Here Ãδ is a ma-
trix corresponding to a more general scheduling problem with O(1/δ log(1/δ))

rows (different job sizes) and 2O(1/δ log2(1/δ)) columns (configurations) with in-
tegral entries in {0, 1, . . . , (1 + δ)g(1/δ)/δ} and column sums bounded by (1 +

Scheduling Jobs on Identical and Uniform Processors 115

δ)g(1/δ)/δ+1 similar to the constraint matrix of the configuration ILP used for
identical processors. We consider the following three scenarios:

Case 1: For all i ∈ {1, . . . ,m} we have c̄1/c̄m ≤ g(1/δ).
Case 2: There exists an index K + 1 ≤ f(1/δ) with c̄1/c̄i < g(1/δ) for 1 ≤ i ≤ K

and c̄1/c̄i ≥ g(1/δ) for K + 1 ≤ i ≤ m.
Case 3: There exists an index K + 1 > f(1/δ) with c̄1/c̄i < g(1/δ) for 1 ≤ i ≤ K

and c̄1/c̄i ≥ g(1/δ) for K + 1 ≤ i ≤ m.

In the first scenario all bins have similar capacities. More precisely the capac-
ity of every bin is bounded from above by g(1/δ) (Keep in mind that cmin :=
mini ci = 1). This scenario can be solved very similar to the problem with iden-
tical machines. Due to space limitations we omit that case here.

In the second scenario we consider two different bin groups B0 := {b1, . . . , bK}
and B1 := {bK+1, . . . , bm}. For B0 we preprocess an assignment of large jobs
(p̄j > δcmin(B0)) via a dynamic program and obtain a set of assignment vectors
V . If the dynamic program does not find a feasible solution for B0, we increase
T . For v ∈ V we allocate large jobs fractionally into B1 via an LP. If the LP
does not have a feasible solution we compute a different vector v. If we still
do not find an LP solution, we increase T . Then we round the solution of the
LP with a novel rounding technique using a subroutine for bin packing with
different bin sizes that produces only few extra bins. In the end the small jobs
are scheduled behind the large ones. The complete algorithm can be found in
the full version [13].

The third scenario is the most complicated case. Here we have three bin
groups B0 = {b1, . . . , bK}, B1 = {bi|i > K, c̄i ≥ δcmin(B0)} and the remaining
bins B2 = B \ (B0 ∪ B1). If B1 �= ∅ we distinguish large, medium and small jobs,
else we only have large and small jobs:

A job is called large if p̄j > δcmin(B0) andmedium if p̄j ∈ (δcmin(B1), δcmin(B0)];
other jobs are called small. We first allocate a subset of the large jobs into B0 and
B1 using a linear program.As in the case for identical machines for a given solution
x of the LPwe reduce the instance by the number of large jobs surely packed in the
closest integral solution. If the LP has no feasible solution we have to increase T
and restart. Via dynamic programmingour algorithmobtains an assignment of the
remaining large jobs into B0 andB1 (if there is none, increase T). Themedium jobs
are packed with a bin packing subroutine into B1. Finally, the allocated medium
and large jobs are fit togetherwith the remaining jobs and the small jobs are added.
An overview of the algorithm for this case is given in Figure 1. In the next section
we describe this algorithm fully detailed.

3.1 Algorithm for Case 3

In this case we have two or three bin groups depending on the shape of bin sizes as
depicted in Figure 2. Let B0 = {b1, . . . , bK} be the set of the largest bins. Then,
we define B1 = {bi|i > K, c̄i ≥ δcmin(B0)} and B2 = B\(B0∪B1) as the remaining
bins. If B1 �= ∅ we distinguish large, medium and small jobs. A job is called large
if p̄j > δcmin(B0) and medium if p̄j ∈ (δcmin(B1), δcmin(B0)]; other jobs are

116 K. Jansen and C. Robenek

< g(1/δ)

≥ g(1/δ)

δcmax(B0)

B0 B1 B2
1 2 K K + 1 m

Fig. 2. Shape of bins for case 3

called small. Note that for a medium job we have p̄j ≤ δcmin(B0) ≤ cmax(B1) by
construction. If B1 = ∅ we do not have medium jobs. In this case we have for all
i > K that c̄i ≤ δcmin(B0). Thus, we have an additional gap between c̄K and

c̄K+1, i.e.
c̄K

c̄K+1
= cmin(B0)

cmax(B1)
> cmin(B0)

δcmin(B0)
= 1

δ .

Lemma 4. Let A be a set {a(1 + δ)x, . . . , a(1 + δ)y} with x, y ∈ Z
+,

x < y and a ∈ IR+. Then |A| ≥ log(max(A)/min(A))/δ + 1 and |A| ≤
2 log(max(A)/min(A))/δ + 1 for any δ ∈ (0, 1/2].

The above Lemma implies that the number of different rounded bin sizes
and large and medium job sizes corresponding to B0 ∪ B1 is bounded by
O(1/δ log(g(1/δ)/δ)) and O(1/δ log(g(1/δ)/δ2)), respectively. Notice that both
numbers are at most O(1/δ log(1/δ)) since g(1/δ) = poly(1/δ).

Now we divide the set B = B0∪B1∪B2 into N groupsB� withm� bins with the
same rounded bin size c̄(�) for � = 1, . . . , N and set up a linear program. Later
we consider a reduced LP for the first two bin groups separately. In the LP below

we use a variable x
(�)
i to indicate the fractional length of a multiset C

(�)
i of large

processing times p̄j ∈ [δc̄(�), c̄(�)] packed into bins of size c̄(�). Let a(j, i(�)) be

the number of the occurrences of p̄j in C
(�)
i and let size(C

(�)
i) =

∑
j a(j, i

(�))p̄j .

Furthermore, let nj be the number of jobs with processing time p̄j = δ(1+δ)j for
j = 0, . . . , R (where δ(1 + δ)R is the largest jobs size). Finally, we use a variable
yj,� to indicate the fractional number of jobs of size δ ≤ p̄j < δc̄(�) packed as a
small job in B�.∑

i x
(�)
i ≤ m� for � = 1, . . . , N∑

�,i a(j, i
(�))x

(�)
i +

∑
� yj,� = nj for j = 0, . . . , R∑

i size(C
(�)
i)x

(�)
i +

∑
j yj,�δ(1 + δ)j ≤ m�c̄(�) for � = 1, . . . , N

x
(�)
i ≥ 0 for � = 1, . . . , N and i = 1, . . . , h�

yj,� ≥ 0 for j = 0, . . . , R and � = 1, . . . , N

Scheduling Jobs on Identical and Uniform Processors 117

Algorithm 1. Algorithm for case 3

1: Obtain 2 - approximation using the LPT algorithm.
2: Compute a value T ∈ [LS(I)/2, LS(I)].
3: Round the processing times of the jobs and distinguish small, medium and large

jobs
4: Allocate a subset of the large jobs into B0 and B1 using a linear program and with

Theorem by Cook et al. [2] reduce the instance.
5: if the linear program does not have a feasible solution then
6: increase T and go to step 2.
7: end if
8: Via dynamic programming obtain an assignment of the remaining large jobs into

B0 and B1.
9: if the dynamic program for Ired does not find a feasible solution then
10: increase T and go to step 2.
11: end if
12: Allocate medium jobs into B1 via a bin packing subroutine.
13: Fit the allocated large and medium jobs together with the remaining jobs.
14: Schedule the small jobs behind the large ones. .

We suppose that all jobs fit into the bins, i.e. δ(1 + δ)R ≤ cmax(B0); otherwise
there is no schedule with the corresponding makespan in the binary search.
Suppose that B0 consists of L bin groups B� and B1 consists of P bin groups,
see also Fig. 3.

Allocating large jobs. Suppose that the entire LP and the corresponding ILP

have a solution. Consider now the corresponding (x
(�)
i) variables and constraints

for the first L + P bin groups. Let δ(1 + δ)Rm be the smallest medium job size
and let δ(1 + δ)R� be the smallest large job size.∑

i x
(�)
i ≤ m̄� ≤ m� for � = 1, . . . , L+ P∑

�,i a(j, i
(�))x

(�)
i ≥ n̄j for j = Rm, . . . , R

x
(�)
i ≥ 0 for � = 1, . . . , L+ P and i = 1, . . . , h�

1 . . .m1 1 . . .mL

B0
1 . . .mL+1 1 . . .mL+P

B1

δcmin(B0)

Fig. 3. Groups of similar capacities in B0 ∪ B1

118 K. Jansen and C. Robenek

For a large job size we have p̄j > δcmin(B0) > cmax(B2). Hence, the large jobs
have to be scheduled in B0∪B1. Consequently, we describe them by configuration
variables only in the original LP and so the number n̄j for large jobs covered by
the LP above is integral and satisfies n̄j = nj .

For medium job sizes, there are yj,� variables in the initial LP and we have

in general fractional variables n̄j ≤ nj . Note that a configuration C
(�)
i in B0

contains only large job sizes by construction and a configuration C
(�)
i in B1 may

contain both, large and medium job sizes.

Let C̄
(�)
k be a configuration with only large job sizes in bin group B� in B1

and let z
(�)
k be a variable that indicates the total length of C̄

(�)
k . For the rest of

the paper we call C̄
(�)
k a big configuration. Then, the original configurations with

both, medium and large job sizes, can be partitioned into groups with the same

arrangement of large jobs according to configuration C̄
(�)
k (containing only large

jobs). Let Index(k, �) be the set of all indices i such that C
(�)
i coincides with C̄

(�)
k

for the large job sizes. Then, z
(�)
k =

∑
i∈Index(k,�) x

(�)
i and the following modified

LP for the large job sizes has a feasible solution.

LPlarge∑
i x

(�)
i ≤ m� for � = 1, . . . , L∑

k z
(�)
k ≤ m� for � = L+ 1, . . . , L+ P∑

�,i a(j, i
(�))x

(�)
i +

∑
�,k a(j, k

(�))z
(�)
k ≥ nj for j = R�, . . . , R

x
(�)
i ≥ 0 for � = 1, . . . , L+ P and i = 1, . . . , h�

Since all large job sizes have to be placed into the first L+P bin groups and using
the assumption that the entire ILP has a solution, the modified ILP for the large
job sizes has a feasible solution, too. Using the Theorem by Cook et al. [2], there

is an ILP solution (x̂
(�)
i , ẑ

(�)
k) with distances ‖x̂(�)

i − x
(�)
i ‖∞ and ‖ẑ(�)k − z

(�)
k ‖∞

bounded by NΔ ≤ 2O(1/δ log2(g(1/δ)/δ+1)). Notice that the column sum of a
column of the constraint matrix

∑
j a(j, i

(�))+1 corresponding to a configuration
is at most cmax(B0)/(δcmin(B0))+1 ≤ g(1/δ)/δ+1. Since g(1/δ) = poly(1/δ), the

distances above are at most C(Ãδ) = 2O(1/δ log2(1/δ)). If x
(�)
i or z

(�)
k is larger than

C(Ãδ), then we know that there is an integer solution with x̂
(�)
i ≥ �x

(�)
i −C(Ãδ)�

or ẑ
(�)
k ≥ �z

(�)
k −C(Ãδ)�. Then we can reduce our instance Ī to a reduced instance

Ired with ñ large jobs and m̃� ≤ m� bins per block B� as described in the
introduction.

The values of the coefficients of the constraint matrix are bounded by the num-
ber of large jobs per configuration which is at most cmax(B0)/(δcmin(B0)) ≤
g(1/δ)/δ. The number of strict positive variables of a basic solution of the
modified LP is at most O(1/δ log(g(1/δ)/δ)). Since each reduced variable has
value at most C(Ãδ), ñ can be bounded by O(1/δ2g(1/δ) log(g(1/δ)/δ))C(Ãδ).
Since g(1/δ) = poly(1/δ), the number of remaining large jobs is at most ñ ≤
poly(1/δ)C(Ãδ)2

O(log(1/δ))C(Ãδ). Moreover, this implies that we need at most

M̃ ≤ ñ ≤ 2O(1/δ log2(1/δ)) machines for the large jobs in Ired. Since the modified

Scheduling Jobs on Identical and Uniform Processors 119

ILP for the large sizes has a feasible solution, we can find a solution for Ired
by dynamic programming. Simply go over the machines in B0 ∪ B1 and place
the ñ jobs onto the machines. This can be done by computing feasible vectors
(xR�

, . . . , xR) that correspond to a packing of xi large jobs of size p̄i into the

first k bins for k = 1, . . . ,
∑L+P

�=1 m̃�. In this way we can find a feasible packing

in time ñO(1/δ log(g(1/δ)/δ)) ≤ 2O(1/δ log(1/δ) log ñ) ≤ 2O(1/δ log(1/δ) log(C(Ãδ))).

Allocating medium jobs. The main difficulty now is to handle the medium jobs.
Consider the LP for the medium and large jobs corresponding to bin group B1.
Take out for a moment the large jobs Ilarge,dp placed by the dynamic program

into B1. Notice that these large jobs have occupied a subsetMlarge,dp of only M̃ ≤
ñ machines in B1. Furthermore, notice that there are still large jobs preassigned

via the big configurations C̄
(�)
k of length �z(�)k − C(Ãδ)� = �

∑
i∈Index(k,�) x

(�)
i −

C(Ãδ)� in B1. Since we have a feasible LP solution for all jobs, the residual

configurations C
(�)
i (restricted to medium job sizes) with fractional lengths x

(�)
i

fit into the gaps either besides their corresponding big configurations of lengths

�z(�)k − C(Ãδ)� or after them. The placement of medium jobs can be seen as

a fractional bin packing problem with different bin sizes. We round the x
(�)
i

variables for B1 and use a bin packing subroutine:

New rounding technique. In our new approach we subdivide B1 into groups of
bins D1, . . . , DH with similar bin sizes. These groups are not necessary equal to
the groups B1, . . . , BN we considered to set up the above LP-relaxation. Then
we use the solution of the LP relaxation above to pack the jobs or items via
a bin packing algorithm. For each group Dk the bin packing algorithm packs
the selected items into the group Dk of bins with different bin sizes plus few
additional bins of maximum capacity cmax(Dk). Based on the subdivision the
number of medium item sizes can be bounded by d = O(1/δ log(1/δ)) for each
group Dk. Using a recent result [12], we are able to pack the selected items into
Dk plus O(log2(d)) = O(log2(1/δ)) bins of capacity cmax(Dk). The overall goal
is to obtain a packing of almost all jobs into B1 plus at most O(log2(1/δ)) bins
of capacity cmax(B1). In the following we explain in detail how this rounding
works.

Suppose that B1 has a bin bi1 with c̄i1 < cmax(B1)/h(1/δ), where h : IR+ →
IR+ is a function with poly(1/δ) ≥ h(1/δ) ≥ 1/δ. W.l.o.g. let i1 ∈ {K+1, . . . ,m}
be minimal with that property. In this case we build D1 = {bK+1, . . . , bi1−1}
and construct the other groups D2, . . . , DH iteratively in the same way. The
next group D2 = {bi1 , . . . , bi2−1} fulfills the properties cmin(D2) = c̄i2−1 ≥
cmax(D2)/h(1/δ) and c̄i2 < cmax(D2)/h(1/δ), see Figure 4. If all bins have ca-
pacity larger than or equal cmax(B1)/h(1/δ), we have only one group D1 = B1.
With Lemma 4 we conclude that the number of different bin sizes in each group
Dk is at most O(1/δ log(h(1/δ))) and the number of medium job sizes in Dk

is at most O(1/δ log(h(1/δ)/δ)). Since h(1/δ) ≤ poly(1/δ), both numbers are

bounded by O(1/δ log(1/δ)). Consider now a linear program solution x
(�)
i and

120 K. Jansen and C. Robenek

c̄i1 < cmax(B1)/h(1/δ)

c̄i2 < cmax(D2)/h(1/δ)

D1 D2 DH

bK+1 bi1−1 bi1 bi2−1 bi2 biH−1
m

Fig. 4. Grouping B1 into D1 to DH

consider the reduced linear program LPk with corresponding constraints for the
bin group Dk.

LPk :∑
i x

(�)
i = m̄� for bins of capacity c(�) in Dk∑

�,i a(j, i
(�))x

(�)
i ≥ n

(k)
j for each medium job size in Dk

x
(�)
i ≥ 0 for � = 1, . . . , L,

The value m̄� ≤ m� is the fractional number of bins of size c̄(�) in Dk and n
(k)
j is

the fractional number of medium job sizes δ(1+ δ)j placed into Dk according to

the solution of LPlarge. If in LPk we replace the right hand sides n
(k)
j by �n(k)

j �
for each medium job size, we have to cover an integral number of jobs. Thus, the
total execution time

∑
p̄jmedium in Dk

δ(1+δ)j of the non-covered medium jobs

inDk for can be bounded by cmax(Dk)
∑∞

j=0(1+δ)−j = cmax(Dk)(1+δ)/δ (using
the geometric sum over the job sizes). Since medium jobs have processing time
p̄j ∈ (δcmin(B1), δcmin(cminB0)) the additional execution time of non-covered
jobs in D1 is bounded by δcmin(B0)

∑∞
j=0(1 + δ)−j = (1 + δ)B0.

Now a (fractional) solution of the modified LPk can be transformed into an

integral solution. That means �n(k)
j � jobs of size δ(1 + δ)j can be packed into

the bins in Dk plus O(log2(d)) additional bins of size cmax(Dk) [12] (where
d = O(1/δ log(1/δ)) is the number of different medium job sizes). Notice that
it is allowed to use m� bins instead of the fractional number m̄� of bins in each
group B�. This is sufficient, since the overall area

∑
�:B�⊂Dk

Area(large, �) of the
medium jobs packed into Dk plus the extra bins remains the same.

Lemma 5. The total execution time of the medium jobs in the additional bins
for D1, . . . , DH is at most (1 + δ)min{cmin(B0), (1/δ)cmax(D1)}
+O(log2(1/δ))cmax(D1).

Since medium jobs are small corresponding to B0 and since K ≥ f(1/δ) ≥ �(1+
δ+log2(1/δ))/δ� we can distribute medium jobs corresponding to the additional
term among the first K bins. Here we use a greedy algorithm that allocates a

Scheduling Jobs on Identical and Uniform Processors 121

load of at least δcmin(B0) and at most 2δcmin(B0) on the first bins. This increases
the makespan by at most 2δcmin(B0). It is also possible that the total area of
large jobs pre-assigned via the LP to B0 is smaller than the total area of large

jobs placed via the pre-assignment with configuration lengths �x(�)
i −C(Ãδ)� and

the dynamic program into B0. This implies that this additional occupied area in
B0 can not be used for medium and small jobs. Then some medium jobs cannot
be placed correctly onto the machines. We show below how to place these jobs
into B0. Furthermore, some small jobs have to be placed into B1. But this is
easier and possible, since these jobs are small corresponding to the bins in B1
and the total area of large, medium and small jobs corresponding to the variable

values x
(�)
i and yj,� for � = 1, . . . ,K + L fits into B0 ∪ B1.

Lemma 6. The medium jobs, that do not fit into B0 because of additional large
jobs placed by the dynamic program into B0, can be distributed among the ma-
chines in B0, so that the makespan is bounded by (1 +O(δ))OPT (I).

Repacking process. Packing the allocated large and medium jobs together with
the remaining jobs into the bins requires an extensive repacking process described
in the following steps.

Step 1: Remove the set Amedium of medium jobs placed onto machines belonging
to Mlarge,dp ⊂ B1. Reinsert the large jobs from Ilarge,dp onto these machines and
place fractionally a subset of Amedium into the remaining gaps.

Lemma 7. The schedule produced in Step 1 can bemade integral and hasmakespan
at most (1 +O(δ))OPT (I).

Step 2: Round the (x
(�)
i) variables corresponding to B2 and place the jobs via

a bin packing subroutine into B2 plus some additional bins of size cmax(B2) ≤
δcmax(B0). This can be done via our new rounding technique similar as the
medium jobs are placed in B1. The additional bins can be distributed among the
first K bins.

Step 3: As in [11] we round the (yj,�) variables over the bin groups B� using a
result of Lenstra et al. [16] and place the corresponding jobs greedily onto the
machines. Thereby we have to place in addition one fractional job per bin group
on one machine. Since the jobs corresponding to yj,� are small in B� we only
have to increase the bin sizes slightly.

This implies that the algorithm for case 3 produces a schedule of length (1 +

O(δ))OPT (I) in time 2O(1/ε log(1/ε) log(C(Ãδ))) + poly(n). In the full version [13]
we consider the remaining cases in detail and prove.

Theorem 3. There is an EPTAS for scheduling jobs on uniform machines with
running-time

2O(1/ε log(1/ε) log(C(Ãδ))) + poly(n) = 2O(1/ε2 log3(1/ε)) + poly(n).

If C(Ãδ) = poly(1/ε), the running-time improves to 2O(1/ε log2(1/ε)) + poly(n).

122 K. Jansen and C. Robenek

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. Journal on Scheduling 1, 55–66 (1998)

2. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in in-
teger linear programming. Mathematical Programming 34, 251–264 (1986)

3. Eisenbrand, F., Shmonin, G.: Caratheodory bounds for integer cones. Operations
Research Letters 34, 564–568 (2006)

4. Gonzales, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform pro-
cessors. SIAM Journal on Computing 6, 155–166 (1977)

5. Graham, R.J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 5, 287–326 (1979)

6. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1987)

7. Hochbaum, D.S.: Various notions of approximations: good, better, best, and more.
In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, ch.
9, pp. 346–398. Prentice Hall (1997)

8. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: practical and theoretical results. Journal of the ACM 34, 144–162
(1987)

9. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM Journal
on Computing 17, 539–551 (1988)

10. Horowitz, R., Sahni, S.: Exact and approximate algorithms for scheduling non-
identical processors. Journal of the ACM 23, 317–327 (1976)

11. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an
MILP relaxation with a constant number of integral variables. SIAM J. Discrete
Math. 24(2), 457–485 (2010)

12. Jansen, K.: A fast approximation scheme for the multiple knapsack problem. To
appear in: International Conference on Current Trends in Theory and Practise of
Computer Science, SOFSEM 2012 (2012)

13. Jansen, K., Robenek, C.: Scheduling on uniform processors revisited, Technical
Report, University of Kiel

14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research 12, 415–440 (1987)

15. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8, 538–548 (1983)

16. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 24, 259–272 (1990)

17. Leung, J.: Bin packing with restricted piece sizes. Information Processing Let-
ters 31, 145–149 (1989)

Approximation Algorithms for Fragmenting

a Graph against a Stochastically-Located Threat

David B. Shmoys1,� and Gwen Spencer2,��

1 School of ORIE and Dept. of Computer Science, Cornell University, Ithaca, NY
shmoys@cs.cornell.edu

2 School of ORIE, Cornell University, Ithaca, NY
gms39@cornell.edu

Abstract. Motivated by issues in allocating limited preventative re-
sources to protect a landscape against the spread of a wildfire from a
stochastic ignition point, we give approximation algorithms for a new
family of stochastic optimization problems.

1 Introduction

Increasing frequency of catastrophically-damaging wildfire events has stimulated
interest among foresters and land managers in effective use of preventative fuel
reductions. Traditional fire suppression policy has focused almost exclusively on
realtime firefighting (once the fire has broken out), but preventative fuel reduc-
tions such as dead-brush removal, small-scale controlled burns, and crown raising
can be applied in advance to slow or stop the spread of wildfires. Recent wildfire
modeling literature has used historical and scientific information to estimate a
distribution of wildfire occurrence in which both the ignition site and the wind
direction can vary [3],[8].

The planning problem of how to allocate limited resources across preventative
and realtime stages, and where to distribute preventative resources using proba-
bilistic information motivates a natural new family of budgeted stochastic opti-
mization problems that fragment (or cut) a landscape graph to isolate a
stochastically occurring ignition point. A key feature is the tradeoff between spend-
ing preventively when only distributional knowledge is available and spending at
increased cost once a fire has broken out. We explore a number of model vari-
ants. Studying this family of problems through the lens of efficient approxima-
tion, we give constant bicriteria approximations in trees, and a budget-balanced
constant approximation for the limiting case in which real-time actions become
prohibitively expensive. Our techniques also yield new approximation results for
multistage stochastic extensions of the budgeted Maximum Coverage problem.
The theme of our models (protecting a network from the spread of a stochastic

� Work supported under grants no. CCR-0635121, DMS-0732196, CCF-0832782, CCF-
1017688.

�� Supported in part by NSF under a Graduate Research Fellowship and under grants
no. CCR-0635121, DMS-0732196, CCF-0832782, CCF-1017688.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 123–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

124 D.B. Shmoys and G. Spencer

outbreak of a harmful diffusive process) has other important environmental ap-
plications (e.g., containing invasive species over land or through water systems).

Results. In trees, the problem is (weakly) NP hard even when there is a sin-
gle ignition point that is known deterministically [4] (the Knapsack Problem
is a special case). An existing PTAS in graphs of bounded treewidth for the
deterministic ignition-point case extends immediately to a PTAS in graphs of
bounded treewidth for the deterministic ignition-set case. Applying some careful
partial-enumeration then allows a PTAS in trees for the stochastic case in which
the number of scenarios is constant.

The Graph Protection Problem: Summary of Main Results
restricted graph classes general graphs (via Räcke)[5]

2-stage
stochastic, single source trees: (1− (1 − 1/2δ)2δ, 2) constant number of scenarios ⇒

Via pipage rounding. (1 − (1− 1/2n)2n, O(log n))
Alternative: (0.387, 1)

stochastic, single source trees: (1− (1 − 1/2δ)2δ, 1, 2) constant number of scenarios ⇒
with (B1, B2) Via pipage rounding. (1 − (1− 1/2n)2n, O(log n), O(log n))
k-stage
stochastic, single source trees, restricted partition hierarchy: constant number of scenarios

(1− (1 − 1/kδ)kδ, 2 + ε) and restricted partition hierarchy ⇒
Via pipage rounding. (1 − (1− 1/kn)kn, O(log n))

1-stage
stochastic, single source trees: (1− 1/e, 1) open
with probabilistic edges Due to submodularity.

stochastic, single source trees: (1− (1 − 1/δ)δ, 1) (1 − (1− 1/n)n, O(log n))
Reduce to MCKP, apply [1].

stochastic with trees: (1 + ε, 1) (1 + ε, O(log n))
constant support and
constant source size

deterministic with bounded tree width: (1 + ε, O(log n))
arbitrary source size (1 + ε, 1)

deterministic with bounded tree width: (1 + ε, O(log n)) [4]
single source (1 + ε, 1) [4]

For the 2-stage stochastic model in which actions may either be taken in
advance of the ignition based on probabilistic information, or after the single ig-
nition point is known at inflated cost, we give a (1−(1−1/2δ)2δ)-approximation
in trees which violates the budget by a factor of at most 2 (δ is the tree di-
ameter). Notably, the inflation in the second stage can vary across scenarios
and edges. For the limiting stochastic case in which no realtime action is possi-
ble, we give a (1 − (1 − 1/δ)δ)-approximation algorithm in trees for the case of
probabilistic ignition from a single source. We also give a 0.387-approximation
which is budget-balanced for the 2-stage stochastic model, and some results
for a k-stage extension. In some cases we can extend to general graphs with an

Approximation Algorithms for Fragmenting a Graph 125

additional O(log n) loss in budget-balancedness via the probabilistic cut-capacity
approximation result of Räcke [5] as in Engelberg, et al. [2].

For an extension in which transmission on edges is probabilistic and depends
on the level of investment in removing the edge (assuming independence of edge
realizations), we give a (1− 1/e)-approximation algorithm in trees.

Our multistage and probabilistic-transmission results in trees also hold for
analogous generalizations of the Maximum Coverage with Knapsack Constraint
problem (MCKP) in which elements may fail independently with probability
that depends on the level at which we invest in them, and the objective is
to maximize the expected weight of the sets covered by the realized elements.
For probabilistic element-failure MCKP, our guarantee matches the asymptotic
guarantee for the deterministic element case from Ageev & Sviridenko [1].

Related Literature. The placement of preventative fuel treatments has been
addressed in the recent forestry literature. Finney [3] prioritizes spatial fire
spread dynamics, limits probabilistic model components, and aims to reduce the
rate of spread of the head of fire. Wei et al. [8] considers the objective of reducing
expected value lost across a grid-cell landscape by reducing burn probabilities
(probabilities computed through simulation); however their IP-based approach
is based on a questionable linearity assumption. These approaches produce di-
vergent solution forms: the development of additional mathematical tools and
techniques that simultaneously address stochastic and spatial aspects would be
useful to decision-makers faced with this important planning problem.

The problems we study have ties to the existing computer science litera-
ture. The special case in which the ignition point is known deterministically and
there is a single decision stage has been studied as the Minimum-Size Bounded-
Capacity Cut problem by Hayrapetyan et al. [4]. They show that the problem
is weakly NP-hard in trees by reduction from the Knapsack problem. In general
graphs they give two different (1

1−λ ,
1
λ) bicriteria-approximations for the (ex-

pected value burned, budget), and they give a PTAS in graphs of bounded tree
width. Engelberg, et al. [2] study a number of budgeted cut problems in graphs
including the weighted Budgeted Separating Multiway Cut Problem (wBSMC),
which the single-stage (aka, no realtime action) stochastic version of our problem
reduces to. They apply Räcke’s probabilistic cut-capacity-preserving approxima-
tion to reduce to the case of trees, then observe submodularity in trees, and apply
[7] to get a ((1 − 1/e), O(log n)) bicriteria result. Our LP-based result for the
single-stage stochastic version of our problem in trees generalizes to wBSMC in
trees giving a slightly stronger (1− (1− 1/n)n, O(log n)) bicriteria result.

Techniques. For the deterministic case, a psuedopolynomial-time exact dy-
namic programming method is converted to an efficient scheme by rounding
the input (as in [4]): our extension to general ignition sets is by demonstrating
bounded treewidth of a modified input. For the extension with probabilistic-
edge transmission, proving submodularity in tree graphs allows application of
Sviridenko’s [7] result on budgeted maximization of submodular functions. In
the multistage-stochastic case, we solve a natural LP with a more complex

126 D.B. Shmoys and G. Spencer

feasible region than that considered by Ageev & Sviridenko [1], but we are able
to extend their pipage-rounding analysis to reduce the number of fractional
variables: this requires additional specifications about which pairs of fractional
decision variables may be rounded against each other and a careful treatment
of the larger number of fractional variables that remain at the end of the pi-
page stage. All extensions from trees to general graphs employ the probabilistic
capacity-preserving mapping of Räcke in the standard way (see [2]): approximate
the costs by a distribution over trees, solve a suitably modified instance in each
tree, translate solutions back to the original graph, select the best solution. Our
techniques also yield similar results for stochastic multistage and probabilistic
item-failure extensions of the constrained Maximum Coverage problem.

2 2-Stage Stochastic Graph Protection Problem in Trees

The spread of wild fires can be prevented both through advance fuel treatments
and through real-time fire-fighting. Our model captures the tradeoff between
using resources in advance vs. waiting until the realization of the ignition point
is known but operations are more costly.

The input is a connected tree T = (V,E), a non-negative value function
v : V → Z, a non-negative cost function c : E → Z, and a budget B. A
distribution Π over source nodes i is specified. In the first stage Π is known,
and it costs ce to remove edge e from T , in the second phase a realization from
Π is specified (say the source is i), and edge e may be removed from T at cost
M iece. That is: edges purchased in the second stage, once the source is known,
have increased cost by a multiplicative inflation factor that may depend both
on the scenario realized and on the edge.

The total spending on removing edges from T over both phases must be at
most B. The objective is to specify a set of edges to buy in the first stage, and
then a set of edges to buy in the second stage (depending on the realized source
node from Π), such that the expected value not reachable from the realized
source node is maximized. We aim to maximize the expected value protected
from the source. We can contract all edges with costs strictly greater than B
since they will not be in any optimal solution.

Special Case 0.Consider the limiting case when all second-stage actions are pro-
hibitively expensive and alsoΠ has support of size 1: this case is theMinimum-Size
Bounded-Capacity Cut problem of Hayrapetyan, et al. [4]. They give a PTAS in
graphs of bounded tree width and show that this deterministic problem with a
single ignition node is NP-hard in trees.

Suppose in this deterministic single-stage case we replace the single ignition
point s with a ignition set S. Now the objective is to maximize the expected value
protected from every node in S by removing a budget-balanced set of edges.

Theorem 1. There exists a PTAS in graphs of bounded tree width for the single-
stage deterministic Graph Protection Problem (GPP) with a general ignition set.

Approximation Algorithms for Fragmenting a Graph 127

Fig. 1. Leftmost graph: The two dashed edges are removed in stage 1. Second graph:
The (bolded) ignition node is realized. Third Graph: After ignition, additional edges can
be removed in stage 2. Fourth Graph: Fire spreads through the connected component
containing the ignition node: Non-ignition nodes lost to fire are shown circled.

A modified graph with a single source also has bounded tree width, so the
existing PTAS can be applied. The PTAS asserted in Theorem 1 for trees can
be produced directly by extending the classic dynamic programming framework
for Knapsack. (see full paper [6]).

Applying [4] with an enumeration scheme over a polynomial number of divi-
sions of the tree into source-containing components which can each be modified
to act as a single-source deterministic problem, we get (details in [6]):

Theorem 2. There exists a PTAS for the stochastic single-stage GPP in trees
provided that the size of the support of the distribution Π and the size of each
ignition set given positive weight by Π are bounded by a constant.

Theorems 1 and 2 can be extended to bicriteria approximations for general
graphs as in Engelberg, et. al [2]: the guarantees on value protected (expected
value protected) are identical (though δ may be as much as n), and the bud-
get is violated by a O(log n)-factor (applying Räcke’s result [5] on cut-capacity
approximation). We mention this method briefly at the end of the paper.

Theorem 3. There exists a bicriteria (1−(1− 1
2δ)

2δ, 2)-approximation algorithm
for the 2-stage stochastic Graph Protection Problem in trees provided that each
scenario has a single ignition node (δ denotes the tree diameter).

In general graphs, for the case of a constant number of scenarios, Theorem 3 can
be extended to a (1− (1− 1

2n)
2n, O(log n))-bicriteria approximation (the multi-

stage case requires an application of the Markov inequality to ensure O(log n)-
capacity distortion for each scenario under the cut-capacity approximation, de-
tails are at the end of the paper).

The following proof of Theorem 3 does not require that the node values are uni-
form across scenarios, but for notational convenience we will ignore this. This flex-
ibility (and creative use of scenario-dependent edge costs) allows the input form to
describe spatial properties of certain types of diffusive processes so that fragment-
ing the graph has more subtle process-specific implications for value protection
than is immediately obvious when considering connectivity (details in [6]).

128 D.B. Shmoys and G. Spencer

Roughly, the key ideas of the proof follow: the optimal fractional solution to
a natural LP for 2-stage GPP acts as a starting point for a rounding algorithm.
The rounding algorithm (carefully) chooses two fractional variables and rounds
the LP solution along a vector that maintains their weighted sum (in order to
retain feasibility of the budget constraints) while increasing a proxy function
that matches the LP objective on integer points and remains boundedly close
to the LP objective on fractional points. This is repeated until at most a few
fractional variables remain. The effect of some final required roundings can be
bounded against the value of an initial partial-enumeration phase. Since the final
solution is obtained by a series of increasing steps for the proxy function, it will
have high value compared to the original LP solution (for the correct partially-
enumerated set). A technical point for the analysis is that a series of such integer
solutions must be produced so that the effect of the final required roundings are
small. Some simple alterations of this analysis will also yield results for single
and k-stage versions as well as for a version in which the first and second stage
budgets are specified in the input.

Proof. We formulate the following natural LP: max
∑

(i,v)(pivv)xiv such that∑
e∈P (i,v) ye+

∑
e∈P (i,v) z

i
e ≥ xiv for all (i, v) pairs,

∑
e yece+

∑
e z

i
e(M

iece) ≤ B

for all i, and xiv ≤ 1 for all (i, v) pairs.
Here, pi denotes the probability that node i is the ignition point under Π

(the scenario where i is the ignition point is scenario i). In the associated IP,
xiv is 1 if node v is protected in scenario i, and 0 otherwise. Also, ye is 1 if edge
e is bought in the first stage, and 0 otherwise, and zie is 1 if edge e is bought
in the second stage for scenario i, and 0 otherwise. Constraints of the first form
capture that if node v is protected in scenario i then it must be that some edge
on the path from i to v is purchased either in the first stage or in the second
stage for scenario i. Constraints of the second form capture that at most B can
be spent buying edges in scenario i over the first and second stages combined.
Preprocess by setting ye to 0 if ce > B, and zie to 0 if M iece > B: the optimal
solution can not use these options. Let δ denote the diameter of the tree.

Notice that in this LP, given a set of ye and zie, we can automatically determine
the best xiv . Following [1] we rewrite the problem as the following nonlinear
optimization problem:

maxL(x) =
∑
(i,v)

(pivv)min{1,
∑

e∈P (i,v)

ye +
∑

e∈P (i,v)

zie}

s.t.
∑
e

yece +
∑
e

zie(M
iece) ≤ B ∀i, and xiv ≤ 1 ∀(i, v).

Consider the function: F (x)=
∑
(i,v)

(pivv)
[
1−

(∏
e∈P (i,v)

(1−ye)
)(∏

e∈P (i,v)

(1−zie)
)]

.

Approximation Algorithms for Fragmenting a Graph 129

Lemma 1. F (x) has the following key properties:

1. F (x) coincides with L(x) when all the ye and zie are integral.
2. On non-integral (ye, z

i
e) vectors, F (x) is at least (1− (1− 1

2δ)
2δ)L(x).

3. F (x) is concave in the direction of a vector that changes at most 2 ye values
at a time and changes no zie′ values. F (x) is concave in the direction of
a vector that changes at most 2 zie values for a common i at a time and
changes no ye values, and changes no zi

′

e values for i′ �= i. Based on the
budget constraint coefficients of the changing variables, vectors of this type
can be found through appropriate scaling that maintain all budget constraints.

4. Let Y , Z denote sets corresponding to the ye, z
i
e decision variables being set

to 1. F (X) defined on subsets of Y ∪ Z is a submodular set function.

Properties 1, 2 and 4 hold just as in [1] since the function F (x) has the same
form (though now there is a formal distinction between first and second stage
variables). For property 3: the number of terms in F ’s product which change for
any particular (i, v) is at most 2: concavity results as in [1], but unlike in [1], not
any set of two fractional decision variables will maintain budget feasibility).

Denote by LP[I0, I1] the original LP (post preprocessing) subject to the addi-
tional constraints that decision variables in I1 are set to 1 and decision variables
in I0 are set to 0. We use an auxiliary algorithm A identical to [1] except for a
key additional point. First, A computes the optimal solution xLP to LP[I0, I1]
by some known polynomial-time algorithm, then A transforms this solution into
xA by a series of pipage steps. Each pipage step is as follows. If there exists only
a single fractional variable among the ye, and for every i there is at most a single
fractional variable among the zie, stop. Otherwise, select either two fractional ye
or two fractional zie for a common i and consider the vector that maintains all
budget constraints as one is increased while the other is decreased: this vector
intersects the boundary of the feasibility polytope at two points. At one point
the first decision variable has become 0 and the second has become 1, at the
other point the second decision variable has become 0 and the first has become
1. Both points are feasible since all budget constraints are maintained, and one
has F (X) at least as great as the previous solution due to the concavity of F
along the vector. We replace the current solution with this higher-F (X) solution
that has a greater number of integral variables.

Each pipage step of A reduces the number of fractional components of the
current vector. Finally A outputs an almost-integral feasible vector xA which
has at most one fractional first-stage variable, and at most one fractional second-
stage variable for each scenario i.

As in [1], this rounding procedure gives F (A) ≥ F (xLP). Defining J1 =
{(i, v) : i is separated from v by I1}, and from property 2 of the lemma:

F (x
LP

) ≥
∑

(i,v)∈J1

pivv +
(
1 − (1 − 1

2δ
)
)2δ ∑

(i,v)∈J\J1

(pivv)min{1,
∑

e∈P (i,v)

(ye)
LP

+
∑

e∈P (i,v)

(z
i
e)

LP }

Main Algorithm. For each set of at most three ye, set them to 1, then find the
PTAS 2nd stage decision that can be made in each scenario (no additional first

130 D.B. Shmoys and G. Spencer

stage edges purchased), and evaluate the objective of each such solution. Take
the best such solution and call it q∗.
1. For each I1 ⊆ Y such that |I1| = 4 and

∑
i∈I1

ci ≤ B:

– Set I0 = ∅.
– Set t = 0.
– While t = 0: apply A to LP[I0, I1].

1. If all the xA
i (decision variables in either stage) are integral, then set t

to 1 and set x̂ to xA
i .

2. Else, if xA
i has no fractional ye, then round up any fractional zie, set t to

1 and set x̂ to xA
i with the rounded up second stage variables.

3. Else, if neither of these conditions holds, round down the single fractional
ye and round up all fractional zie, set x̂ to xA

i with the rounded variables.
Also, add the index of the ye that was rounded down to I0.

4. If F (x̂) > F (x̄), then set x̄ to x̂. (Since x̂ and x̄ are integral, this chooses
the highest L-value among all the x̂ considered by the algorithm).

Now we prove that this algorithm meets claim of Theorem 3. First observe
that the algorithm spends at most 2B for scenario i: pipage rounding maintains
budget feasibility for every scenario and the final roundings used to achieve
integrality round up at most a single fractional decision variable per scenario. Our
preprocessing guarantees that this single round up costs at most B in addition
to the cost of the fractional solution returned by A.

Let X∗ be the optimal set of decision variables, let Y ∗ denote the first stage
variables in X∗. If |Y ∗| ≤ 3, then step 0. finds a (1 + ε) approximation to OPT.
So, we address the case when |Y ∗| ≥ 4. W.l.o.g. we can assume that the set of
decision variables is ordered such that Y ∗ = {1, ..., |Y ∗|} and for each i ∈ Y ∗,
among the elements {i, ..., |Y ∗|} the element i protects the maximum total weight
of (i, v) pairs which are not already protected by the set {1, ..., i− 1}.

For the iteration in which I1 = {1, 2, 3, 4}, let q denote the number of runs of
the while loop. Since each run of the while loop either terminates the iteration
or sets a first stage variable to 0, q is at most n − 4. During the iteration the
algorithm finds a series of q feasible solutions to the LP. Let Ij0 denote I0 in the

jth run of the while loop. The jth feasible solution X̂j has X̂j ∩Ij0 = ∅ (from the
form of the algorithm). Index the elements of Iq0 in the order that the algorithm

adds them to I0, that is, Ij0 = {i1, ..., ij} where il is the index of the lth first
stage variable added to I0 for this iteration.

Assume first that Iq0 ∩ Y ∗ = ∅. That is, when the iteration terminates, no
first stage variables used by OPT have been forced to 0: OPT is a feasible
solution for LP[I1, I

q
0]. Since this is the last run of the while loop, it must have

ended in an if statement of one of the first 2 types. In the first case: all the
xA
i (decision variables in either stage) are integral and xA

i is the outcome of
pipage rounding of the fractional optimal of LP[I1, I

q
0]. In particular: since x̂ is

integral, L(x̂) = F (x̂) = F (xA
i) ≥ F (xLP). For the second case, rounding up the

second-stage variables only increases the value of F , and after the rounding we
have an integral solution, so L(x̂) = F (x̂) ≥ F (xA

i) ≥ F (xLP). Either way, the

Approximation Algorithms for Fragmenting a Graph 131

following inequality derived from property 2 and the fact that OPT is feasible for
LP[I1, I

q
0] now gives that x̂ is a budget-balanced (1− (1− 1

2δ)
2δ)-approximation:

F (x
LP

) ≥
∑

(i,v)∈J1

pivv +
(
1 − (1 − 1

2δ
)
)2δ ∑

(i,v)∈J\J1

(pivv)min{1,
∑

e∈P (i,v)

(ye)
LP

+
∑

e∈P (i,v)

(z
i
e)

LP }

≥
(
1 − (1 − 1

2δ
)
)2δ

OPT.

Now, assume that Iq0 ∩ Y ∗ �= ∅. Let Is+1
0 be the first I0 in the series I10 , ..., I

q
0

that has nonempty intersection with Y ∗: the sth run of the while loop is the first
run of the while loop for this iteration in which the algorithm adds a first stage
variable from Y ∗ to I0 (call that variable is). The algorithm adds is to I0 after
considering a solution x̂ in which is was the single fractional first stage variable
was rounded down (this is the third type of if statement in the while loop).
We claim that the x̂ that resulted when is was rounded down (and fractional
second stage variables were rounded up) was a (1− (1−1/2δ)2δ)-approximation.
Proving this claim will be establish Theorem 3.

As in [1], F (X) defined on subsets of Y ∪Z is a submodular set function. Thus,
we have the diminishing-returns property: for any subsets R and G of Y ∪ Z
and any element i ∈ Y ∪Z, we get F (R∪ i)−F (R) ≥ F (R∪G∪ i)−F (R∪G).
Now, letting h denote a member of Y ∗ which is not in {1, 2, 3, 4}, and letting H
denote any superset of {1, 2, 3, 4}:

1/4F (I1) = 1/4F (1, 2, 3, 4)

=1/4[F ({1, 2, 3, 4})− F ({1, 2, 3}) + F ({1, 2, 3})− F ({1, 2}) + F ({1, 2}) − F ({1}) + F ({1})− F (∅)]

≥ 1/4[F ({1, 2, 3, h})− F ({1, 2, 3})+ F ({1, 2, h})−F ({1, 2})+F ({1, h})−F ({1}) + F ({h}) − F (∅)]

≥ F (H ∪ {h}) − F (H).

The first equality results from a collapsing sum where we remove the final +F (∅)
since it is 0 (since the tree is connected and every scenario has a source). By
the labeling of the decision variables in Y ∗: since h is not in {1, 2, 3, 4}, the
additional marginal value h protects beyond what is protected by any prefix of
{1, 2, 3, 4} is at most the additional value that the index which does follow the
prefix protects. Finally, we apply the diminishing-returns property 4 times to
get the final inequality.

Also, as in [1], rounding up a fractional solution produced by A only increases
the value of F . Let xA denote the unrounded solution returned by A. Let I(xA)
be the integral positive elements of xA, let {j1, ..., ji} denote the set of fractional
second stage variables in xA, and is denote the fractional first stage variable in
xA from Y ∗. Then x̂ is I(xA) ∪ {j1, ..., ji}, so we can use the integrality of x̂ to
bound its LP value as follows:

L(x̂) = L(I(xA) ∪ {j1, ..., ji}) = F (I(xA) ∪ {j1, ..., ji})
Adding and subtracting a common quantity:

= F (I(xA) ∪ {j1, ..., ji} ∪ {is}) −
(
F (I(xA) ∪ {j1, ..., ji} ∪ {is}) − F (I(xA) ∪ {j1, ..., ji}︸ ︷︷ ︸)

)

132 D.B. Shmoys and G. Spencer

Applying our bound to bracketed quantity since I(xA) contains {1, 2, 3, 4}
and is ∈ Y ∗:

≥ F (I(xA) ∪ {j1, ..., ji} ∪ {is})− 1/4F (I1) ≥ F (xA)− 1/4F (I1)

The second inequality holds because F increases when its argument is rounded
up, and I(xA)∪ {j1, ..., ji} ∪ {is} is just xA rounded up. Now write out F (xA):

=
∑

(i,v)∈J1

pivv +
∑

(i,v)∈J\J1

(pivv)
[
1 −

(∏
e∈P (i,v)

(1 − (ye)
A)

)(∏
e∈P (i,v)

(1 − (zi
e)

A)
)]

− 1/4F (I1)

= 3/4
∑

(i,v)∈J1

pivv +
∑

(i,v)∈J\J1

(pivv)
[
1 −

(∏
e∈P (i,v)

(1 − (ye)
A)

)(∏
e∈P(i,v)

(1 − (zi
e)

A)
)]

Pipage rounding produces xA from xLP while increasing F :

≥ 3/4
∑

(i,v)∈J1

pivv +
∑

(i,v)∈J\J1

(pivv)
[
1 −

(∏
e∈P (i,v)

(1 − (ye)
LP

)
)(∏

e∈P (i,v)

(1 − (z
i
e)

LP
)
)]

Apply the well-known inequality which holds for all fractional solutions:

≥ 3/4
∑

(i,v)∈J1

pivv + (1 − (1 − 1/2δ)
2δ

)
∑

(i,v)∈J\J1

(pivv)min{1,
∑

e∈P(i,v)

(ye)
LP

+
∑

e∈P (i,v)

(z
i
e)

LP }

Notice that 3/4 ≥ (1 − (1 − 1/2δ)2δ). Also, xLP is the optimal solution for
LP[I1, I

s
0] and X∗ is feasible for LP[I1, I

s
0]. Thus, the last quantity is bounded

below by (1 − (1− 1/2δ)2δ)L(X∗) = (1− (1− 1/2δ)2δ)OPT.

Suppose that the division of the budget between first and second stages is spec-
ified in the input as (B1, B2). Adding the additional constraints

∑
e yece ≤ B1

and
∑

e z
i
e(M

iece) ≤ B2 for all i to the LP alters our analysis only slightly: pre-
process to eliminate decision variables that are too expensive to fully buy in their
corresponding stages, the algorithm now enumerates over four-member sets of
first-stage decision variables, at the conclusion of the pipage phase the remaining
fractional first-stage variable is rounded down (so B1 is respected) and at most
one second-stage variable per scenario is rounded up (B2 is overspent by at most
a factor of 2), first stage variables which are rounded down are excluded one by
one in the iterations of the while loop. Thus, we get:

Theorem 4. Given a specific first-stage budget B1 and second-stage budget B2,
there exists a (1− (1− 1

2δ)
2δ)-approximation algorithm for the 2-stage stochastic

GPP in trees that respects B1 and violates B2 by a factor of at most 2 (each
ignition set has size 1, δ denotes the diameter of the tree).

Stochastic Single-Stage and k-Stage Results. In the limiting single-stage
stochastic case (where second-stage action is prohibitively expensive) there is
only a single budget constraint: the proof of Theorem 3 can be simplified so that
it directly follows [1] to get:

Theorem 5. There exists a (1 − (1 − 1
δ)

δ)-approximation algorithm for the
single-stage stochastic GPP in trees provided that each ignition set has size 1
(δ denotes the diameter of the tree).

Approximation Algorithms for Fragmenting a Graph 133

For the 2-stage stochastic GPP in trees with single ignition node, consider the
algorithm that chooses the better performance between spending all of B in stage
1 vs. spending all of B in stage 2: apply Theorem 5 for stage 1 and the PTAS for
deterministic single-source GPP for stage 2 assuming that the optimal solution
earns α(OPT) in the first stage, and minimize over α ∈ (0, 1) to get a worst case
guarantee of (0.387, 1). For a constant number of scenarios, use Theorem 2 in
the place of Theorem 5 to get a (.5(1− ε), 1)- approximation.

The k-stage stochastic graph protection problem in trees (for constant k)
has k stages in which information is revealed and decisions about edge removal
are made (rather than one or two stages). This information can be considered as
updates that arrive at k specific times which condition the distribution on where
the ignition will occur (by specifying that the ignition will occur among some
particular subset of the nodes). For each stage the input includes a partition of
the node set, and the partition for stage i refines the partition for stage i− 1. In
each stage the planner has the option to remove additional edges from the graph
at some (stage, partition piece)-specific cost. A solution specifies which edges
will be removed for each partition piece realization at each stage. The total cost
incurred for each realized sequence of k partition pieces should be B.

Theorem 6. For a restricted class of information revelation hierarchies, there
exists a bicriteria (1− (1− 1

kδ)
kδ), 2+ ε)-approximation algorithm for the k-stage

stochastic GPP in trees provided that each ignition set has size 1 (k is a constant,
δ denotes the diameter of the tree).

Theorem 6 requires that the number of partition pieces added over all stages
excluding the last stage (in which any of n points may be realized) is bounded
by a constant: guessing the optimal division of the budget to ε/k-precision for
each possible information realization takes polynomial time. As in the (B1, B2)
case: impose additional constraints based on the guess of optimal budget division,
reject too-expensive decision variables, pipage round (now roundings take place
between pairs of fractional variables that correspond to a common partition piece
within a stage). Last, round up all fractional variables (see [6] for details).

If there is a specified budget for each of the k stages, then the guessing (enu-
meration) may be dropped: with no requirements on the information revelation
hierarchy the same analysis gives a (1− (1 − 1

kδ)
kδ) value-protection guarantee

which violates each stage’s budget by a factor of at most 2.

Reductions, Results for Stochastic Multistage MCKP. A looser (1− 1
e)

guarantee which matches Theorem 5 asymptotically may be obtained by reduc-
ing single-stage stochastic GPP in trees to the weighted Budgeted Separating
Minimum Cut Problem in trees for which the analysis of Engelberg, et. al [2]
applies: submodularity of the objective allows application of the result of Sviri-
denko [7]). The tighter result in Theorem 5 can alternately be proved by a more
subtle reduction to MCKP addressed in [1] (reducing wBSMC in trees to MCKP
gives the tighter result for wBSMC as well). Full Reductions in [6].

134 D.B. Shmoys and G. Spencer

Maximum Coverage with a Knapsack Constraint (MCKP): Given a family F =
{Sj : j ∈ J} of subsets of a set I = {1, 2, ..., n} with associated nonnegative
weights wj and costs cj of the elements, and positive integer B, find a subset
X ⊆ I with

∑
j∈X cj ≤ B so as to maximize the total weight of the sets in F

having nonnegative intersections with X .

– Stochastic MCKP: There is also a distribution Π : each scenario specifies
how much value will be received for covering the subset Sj for each j. The
objective is to maximize the expected weight of subsets covered.

– Multistage MCKP: Elements may be purchased in different stages at a cost
that is stage-, scenario-, and element-dependent (costs are specified in the
input). Stochastic multistage versions of wBSMC in trees reduce to these
MCKP problems.

The features of the LP we analyzed (objective function and budget constraints)
also hold for the natural LPs for these problems: the analysis proving theorems
3, 4, 5, and 6 can be extended with identical guarantees to the corresponding
multistage stochastic MCKP generalizations.

3 1-Stage Extension to Probabilistic Edge Transmission

In ecological fact, fuel-treated areas are not 100% burn resistant (e.g. they may
burn if extreme weather arises). Also, different types of treatments (with different
costs) may reduce the probability of fire passing between adjacent parcels by
different amounts. These considerations motivate a version of GPP in which the
input specifies a more complicated relationship between spending on each edge
and the resulting transmission probability across that edge. Previously we had
two options: pay 100% of the edge cost to get probability of transmission 0, or
pay 0% of the edge cost to get probability of transmission 1.

To single-stage stochastic GPP where each ignition set has size 1, we add
the feature that each edge has (as part of the input) a specified monotonically-
decreasing step function that gives the probability of transmission across that
edge as a function of the spending level (the spending level may range from 0%
to 100% of the edge cost, the events of transmissions across edges are assumed
to be independent). We give an approximation result assuming that the running
time of the algorithm is allowed to depend polynomially on the number of steps
in each step function. The objective remains to maximize the expected value
protected from the ignition point, only now this expectation is over realization
of both the scenario and the individual edge-transmission events that arise.

The analogous notion for MCKP is of probabilistic element failure: for each
element there is a step function that represents the probability that the element
will fail to cover the subsets which contain it (generalizing that an element e fails
to cover subsets which contain it with probability 1 if we do nothing, and with
probability 0 if we pay ce). The objective is to maximize the expected weight
of subsets covered, where this expectation is over both element and scenario
realization. The generalization of wBSMC in trees to a case with probabilistic
edge occurrence reduces to MCKP with probabilistic element failure.

Approximation Algorithms for Fragmenting a Graph 135

Theorem 7. There exists a (1− 1
e)-approximation algorithm for the single-stage

stochastic GPP in trees with probabilistic edge transmission (provided that each
ignition set has size 1). For MCKP with probabilistic element failure: there exists
a (1− 1

e)-approximation algorithm.

Proof (GPP). Each (spending level, edge) pair is an element the solution can
buy with cost corresponding to the spending level times the edge cost (we only
have elements corresponding to critical spending levels at which the transmis-
sion probability instantaneously drops). Let X denote the set of such elements.
The expected value protected is a set function over these elements. Denote this
function by E. We wish to maximize this set function by buying elements sub-
ject to a knapsack constraint: if we show that this set function is submodular,
[7] will immediately yield a (1− 1

e)-approximation that is budget-balanced (pro-
vided that we can compute in polynomial time the element which gives largest
improvement). To prove submodularity we will establish the law of diminishing
returns: for an arbitrary (spending level, edge) pair denoted by a, if A ⊆ B ⊆ X ,
then E(A ∪ a)− E(A) ≥ E(B ∪ a)− E(B).

Let the edge of the (spending level, edge) pair a be denoted by e. According
to the step function for e, buying a results in some probability of transmis-
sion αi. Before a is added, A contains some set of elements which affect the
transmission probability on e, and B contains a superset of these elements.
Thus the probability of transmission on e is (weakly) larger for the set A
than for the set B. In both cases, when a is added to a set, the new prob-
ability of transmission on e is the minimum of αi and the current probabil-
ity of transmission on e. The gap is larger for A than for B. Let ℘e(·) de-
note the probability of transmission on e as a function of the set of elements:
℘e(A) ≥ ℘e(B)⇒ ℘e(A)− ℘e(A ∪ a) ≥ ℘e(B)− ℘e(B ∪ a).

Next, focus on a particular (ignition point, node) pair (i, v). If the path from
i to v does not contain e, then adding e does not change the (i, v)th term in the
expression for expected value protected. If the path from i to v does contain e, for
each non-e edge on this i to v path, the probability of transmission under A is at
least the probability of transmission under B. Let P (Q) denote the probability
that every edge on the i to v path (excluding e) transmits under Q:

P (A) ≥ P (B) ⇒ P (A)(℘e(A) − ℘e(A ∪ a)) ≥ P (B)(℘e(B) − ℘e(B ∪ a)) ⇒

⇒ P (A)℘e(A) − P (A)℘e(A ∪ a) ≥ P (B)℘e(B) − P (B)℘e(B ∪ a).

⇒ (1 − P (A)℘e(A ∪ a)) − (1 − P (A)℘e(A)) ≥ (1 − P (B)℘e(B ∪ a)) − (1 − P (B)℘e(B)).

⇒ E(A ∪ a) − E(A) ≥ E(B ∪ a) − E(B).

The third line compares the changes in probability that v is protected from i
which result when a is added to A and when a is added to B. The final inequality
follows from summing change in expected valued protected over (ignition point,
node) pairs (including pairs for which the addition of e caused no change). This
establishes submodularity. Computing the change in E resulting from the addi-
tion of a single element simply requires computing the product along the (ignition

136 D.B. Shmoys and G. Spencer

point, node) path twice for each (i, v) pair. This takes polynomial time for each
of polynomially-many elements.�.(Similar MCKP analysis in [6]).

Extensions to General Graphs

Single-Stage. Theorems 1, 2, 5 can be extended to bicriteria approximations for
general graphs: the guarantees on value protected (expected value protected) are
identical, and the budget is violated by a O(log n)-factor. As in Engelberg, et. al
[2] we apply the result of Räcke [5] on cut-capacity approximation: approximate
the costs graph by a distribution over tree graphs (whose maximum diameter is
n), solve a suitably modified instance in each tree, translate solutions back to
the original graph, select the best solution.

Multi-stage. If the number of scenarios is bounded by a constant, then Theo-
rems 3, 4, and 6 can be extended to general graphs: the guarantees on expected
value protected are identical, but the budget(s) is violated by a O(log n)-factor.
To apply the result of Räcke [5] to the multistage case we need that some tree
produced by the cut-capacity approximation has O(log n)-distortion for the op-
timal solution in every scenario (not just for a single set of edges purchased in
the first stage). Details in [6].

References

1. Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algo-
rithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

2. Engelberg, R., Könemann, J., Leonardi, S., Naor, J(S.): Cut Problems in Graphs
with a Budget Constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 435–446. Springer, Heidelberg (2006)

3. Finney, M.A.: A computational method for optimising fuel treatment locations.
International Journal of Wildland Fire 16, 702–711 (2007)

4. Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced Graph Cuts. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer,
Heidelberg (2005)

5. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in net-
works. In: 40th STOC, pp. 255–264 (2008)

6. Shmoys, D., Spencer, G.: Full paper: Approximation algorithms for fragmenting a
graph against a stochastically-located threat,
http://people.orie.cornell.edu/gms39/images/documents/gsfragment.pdf

7. Sviridenko, M.: A note on maximizing a submodular set function subject to a knap-
sack constraint. Operations Research Letters 32, 41–43 (2004)

8. Wei, Y., Rideout, D., Kirsch, A.: An opt. model for locating fuel treatments across
a landscape to reduce expected fire losses. Can. J. of Forest Res. 38, 868–877 (2008)

http://people.orie.cornell.edu/gms39/images/documents/gsfragment.pdf

Non-clairvoyant Weighted Flow Time Scheduling

on Different Multi-processor Models

Jianqiao Zhu, Ho-Leung Chan�, and Tak-Wah Lam��

University of Hong Kong, Hong Kong
{jqzhu,hlchan,twlam}@cs.hku.hk

Abstract. We study non-clairvoyant scheduling to minimize weighted
flow time on two different multi-processor models. In the first model,
processors are all identical and jobs can possibly be speeded up by run-
ning on several processors in parallel. Under the non-clairvoyant model,
the online scheduler has no information about the actual job size and
degree of speed-up due to parallelism during the execution of a job, yet
it has to determine dynamically when and how many processors to run
the jobs. The literature contains several O(1)-competitive algorithms for
this problem under the unit-weight multi-processor setting [9,10] as well
as the weighted single-processor setting [2]. This paper shows the first
O(1)-competitive algorithm for weighted flow time in the multi-processor
setting.

In the second model, we consider processors with different functional-
ities and only processors of the same functionality can work on the same
job in parallel to achieve some degree of speed up. Here a job is mod-
eled as a sequence of non-clairvoyant demands of different functionalities.
This model is derived naturally from the classical job shop scheduling;
but as far as we know, there is no previous work on scheduling to mini-
mize flow time under this multi-processor model. In this paper we take
a first step to study non-clairvoyant scheduling on this multi-processor
model. Motivated by the literature on 2-machine job shop scheduling,
we focus on the special case when processors are divided into two types
of functionalities, and we show a non-clairvoyant algorithm that is O(1)-
competitive for weighted flow time.

1 Introduction

We study online scheduling of jobs with varying importance (weight). Jobs arrive
online and have arbitrary arrival times, weights and sizes. We consider the non-
clairvoyant model in which a scheduler only knows the existence of a job and
its weight when it arrives, the size information is known only at the time when
the job is completed. We assume preemptive scheduling. This model is natural
from the viewpoint of operating systems. The flow time of a job is the length

� Ho-Leung Chan is supported in part by GRF Grant HKU 710210E.
�� Tak-Wah Lam is supported in part by HKU Grant 201007176149.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 137–149, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

138 J. Zhu, H.-L. Chan, and T.-W. Lam

of the duration from its arrival until its completion. We study the objective
of minimizing the total weighted flow time of all jobs. When there is only one
processor, the problem is well-understood. It is known that no algorithm can
be O(1)-competitive even when all weights are 1 (i.e., the unweighted case)
[12]. Kalyanasundaram and Pruhs [11] proposed analyzing the online algorithms
when they are given a slightly faster processor. For the unweighted case, they
showed that SETF is (1 + ε)-speed O(1/ε)-competitive [11]. Later, Bansal and
Dhamdhere [2] extended the result to the weighted case and showed that an
algorithm WSETF is (1 + ε)-speed O(1/ε)-competitive for total weighted flow
time.

In this paper, we study non-clairvoyant scheduling to minimize weighted flow
time on two different multi-processor models.

– Model 1: Homogeneous processors and jobs with varying parallelizability. In
this model, there are m ≥ 1 identical processors and jobs can be processed
by any one processor. Following [9, 10], we further consider jobs that can
be speeded up by running on more than one processors in parallel, and in
general, each job may have an arbitrary degree of speed up due to paral-
lelism at different times. That is, each job consists of a number of phases
each with an arbitrary size and an arbitrary degree of speed-up when run-
ning on different numbers of processors. Non-clairvoyant scheduling under
such multi-processor model has been well studied when the jobs are un-
weighted; in particular, Edmonds showed that a simple non-clairvoyant al-
gorithm Equi is (2 + ε)-speed O(1/ε)-competitive [9] for minimizing total
flow time, and later Edmonds and Pruhs gave an improved algorithm LAPS
that is (1 + β + ε)-speed O(1/βε)-competitive [10]. The results of Equi and
LAPS are non-trivial even though they are restricted to unweighted jobs;
the difficulty arises from the fact that they cannot assume any information
about a phase during the execution of a job. An open problem is whether
these results can be generalized to jobs with arbitrary weights.

– Model 2: Heterogeneous processors and jobs demanding different function-
alities. In this model, we consider processors divided into different function-
alities and only processors of the same functionality can run the same job
in parallel to achieve some degree of speed up. Here a job is modeled as a
sequence of non-clairvoyant demands of different functionalities, targeting
different groups of processors at different times. This model is derived nat-
urally from the classical job shop scheduling (see [4] for a survey); but as
far as we know, there is no previous work on scheduling to minimize total
flow time under this multi-processor model. In this paper we take a first
step to study non-clairvoyant scheduling on this multi-processor model. Mo-
tivated by the literature on 2-machine job shop scheduling (e.g., [7, 1, 3] for
minimizing makespan, [8] for total completion time), we focus on the special
case when processors are divided into two types of functionalities. We hope to

Non-clairvoyant Weighted Flow Time Scheduling 139

devise a non-clairvoyant algorithm that is O(1)-speed O(1)-competitive for
weighted flow time.

Our Results. In this paper, we have derived new results on non-clairvoyant
scheduling in the above multi-processor models. For Model 1 (homogeneous
processors), we analyze the algorithm WLAPS (which is a weighted version of
LAPS) and show that it is (1 + ε)-speed O(1/ε2)-competitive for total weighted
flow time. It shows that an algorithm can be competitive with any tiny amount
of extra speed. Technically speaking, WLAPS was first proposed by [6] in the
context of single processor scheduling to minimize weighted flow time plus energy
usage under the dynamic speed scaling model. WLAPS divides the processing
power to the latest arrival jobs according to their weights, and it was shown
that WLAPS is (1 + ε)-speed O(1/ε2)-competitive in that context. To adapt
WLAPS to the multi-processor setting of Model 1, the main difficulty is that
when jobs have unknown parallelizability, the actual processing rate of the jobs
can be arbitrary and cannot be controled by the online algorithm. When we try
to adapt the potential function analysis of WLAPS [6], it becomes difficult to
bound the processing progress or the change of potential. To this end, we adopt
the technique from LAPS [10] by classifying the work done on a job according
to whether it fully utilizes the processors assigned. We mark a portion of work
as unsaturated if it fully utilizes the processors and mark the rest saturated. We
can analyze the unsaturated work by the potential function of WLAPS, while we
can charge the weighted flow time of the saturated work directly to the optimal
offline schedule.

For Model 2 (heterogeneous processors), we consider a natural extension
of WLAPS for the case with two different functionality types, which we call
2WLAPS. We show that 2WLAPS is O(1)-competitive given constantly faster
processors. Specifically, we show 2WLAPS to be s-speed 4s

(
√
s−2)2−2

-competitive

for any s > (2 +
√
2)2. To ease the discussion, we call the functionalities type-1

and type-2 functionalities. We also call a processor a type-1 or type-2 proces-
sor depending on the functionality it can provide. Roughly speaking, 2WLAPS
again focuses on the latest arrived jobs. Among these latest arrived jobs, some
are requiring type-1 functionalities. 2WLAPS divides the processing power of all
type-1 processors to these jobs proportional to their weight. 2WLAPS schedules
the jobs requiring type-2 functionalities similarly. The analysis of 2WLAPS is
interesting. We bound the total weighted flow time of 2WLAPS by the total
weighted flow time of the optimal offline schedule plus the total weighted flow
time incurred when a job is requiring type-1 functionality. Symmetrically, we
bound the total weighted flow time of 2WLAPS by the total weighted flow time
of the optimal offline schedule plus the total weighted flow time incurred when a
job is requiring type-2 functionality. Summing the two bounds and rearranging
the terms gives the required result.

We also show a better algorithm for the special case when there is only one
processor for each of the two functionality types. The algorithm is 2(1+ ε)-speed
O(1/ε2)-competitive for weighted flow time.

140 J. Zhu, H.-L. Chan, and T.-W. Lam

2 Formal Problem Definitions

This section gives the formal definitions of the problems. We always consider
online jobs, where each job j has an arbitrary release time r(j) and a weight
w(j) known at arrival time. The jobs are preemptive and migratory.

In Model 1, we are given a set of m identical processors. Each job j consists of
a sequence of phases, where the k-th phase of j, denoted jk, has a size p(jk) and
a speed-up function Γjk , which specifies the amount of speed-up when running
the job with multiple processors. When jk is processed by y processors each of
speed s, the processing rate of the k-th phase is Γjk(y) · s. The size of j, denoted
p(j), is the sum of p(jk) over all phases of j. The jobs are non-clairvoyant,
i.e., the number of phases and the size and speed-up function of each phase are
unknown to the algorithm during the execution of the job. We need an online
algoithm that, at any time, determines which subset of jobs to be processed and
the number of processors assigned to each job. The objective is to minimize the
total weighted flow time of all jobs.

We give more details on the speed-up functions. Similar to [9,10,5], we assume
that each speed-up function Γ is non-negative, monotonically increasing and

sublinear, i.e., Γ (y)
y ≥ Γ (y′)

y′ for any y ≤ y′. A phase is fully-parallelizable if its

speed-up function satisfies that Γ (y) = y for all y. A phase is parallel up to n
processors if Γ (y) = y for all y ≤ n and Γ (y) = n for y > n. We assume that
for any phase, its speed-up function Γ satisfies that Γ (y) = y for y ∈ [0, 1]. This
assumption corresponds to the fact that when a phase is processed by time-
sharing a y ≤ 1 fraction of a processor, its processing rate should be y times the
speed of the processor.

In Model 2, we assume two types of functionalities, which we call type-1
and type-2 functionalities. We call a processor type-1 or type-2 depending on
the functionality it provides. We are given m1 type-1 processors and m2 type-2
processors. Let m = m1+m2. Each job j consists of a sequence of phases, where
the k-th phase of j, denoted jk, has a known functionality requirement, a size
p(jk) and a speed-up function Γjk . The jobs are non-clairvoyant, i.e., the number
of segments and the size and speed-up function of each phase are unknown to
the algorithm until the job is completed. A phase requiring type-1 functionality
(resp., type-2 functionality) can only be processed by type-1 processors (resp.,
type-2 processors). At any time, an algorithm decides the set of jobs to be
processed and the number of processors assigned to each job. The objective is
again to minimize the total weighted flow time of all jobs.

We denote Opt as the optimal offline algorithm which always minimizes the
objective for any input and any model. For any algorithm A, denote WA(I) as
the total weighted flow time when I is scheduled by A.

3 Analyzing WLAPS for Homogeneous Processors

This section analyzes the algorithm WLAPS [6] when it is used to schedule jobs
with varying parallelizability on homogeneous processors. It also serves as a warm

Non-clairvoyant Weighted Flow Time Scheduling 141

up and the proof structure will be extended to the heterogeneous processors
setting in the next section. We first state the definition of WLAPS.

Algorithm WLAPS(β). WLAPS is parameterized by a constant β ∈
(0, 1]. At any time t, let na(t) be the number of unfinished jobs remaining
in WLAPS and wa(t) be their total weight. Let {j1, j2, . . . , jna(t)} be the
unfinished jobs ordered in increasing order of arrival times. Let r be
the largest integer such that the latest arrived jobs jr, jr+1, . . . , jna(t)

have a total weight at least βwa(t). Define the adjusted weight of ji
at time t, denoted w′(ji, t), as follows. For i < r, w′(ji, t) = 0; for

i > r, w′(ji, t) = w(ji); and w′(jr, t) = βwa(t)−
∑na(t)

i=r+1 w(ji). WLAPS
shares the processing power among all unfinished jobs proportional to
its adjusted weight.

Denote the set {jr, jr+1, . . . , jna(t)} as R(t). Note that only jobs in R(t) have
non-zero adjusted weight and WLAPS only processes jobs in R(t). When there

arem homogeneous processors, WLAPS assigns a share of w′(ji,t)
βwa(t)

m processors to

each job ji ∈ R(t). The main result of this section is that by putting β = ε
2(1+ε) ,

WLAPS(β) is (1 + ε)-speed 8(1 + 1
ε)

2-competitive. The analysis is as follows.

3.1 Restricting the Input Instance

We first show that for any non-clairvoyant algorithm, the worst-case competitive
ratio occurs when each phase of a job is either fully parallelizable or parallel up
to one processor. The analysis is similar to that in [9,10], but they are concerned
with flow time instead of weighted flow time, and they reduce each phase to fully-
parallelizable or “special” in the sense that the processing rate is 1 regardless of
the number of processors assigned to that phase.

Lemma 1. Let Alg be any non-clairvoyant algorithm and I be any job in-
stance. We can construct another job instance I ′ where each phase is either
fully-parallelizable or parallel up to one processor such that WAlg(I

′) = WAlg(I)
and WOpt(I

′) ≤WOpt(I).

We omit the proof of Lemma 1 here. Instead, in the next section, we prove a more
general lemma for the setting of heterogeneous processors, which will imply this
lemma. To analyze WLAPS, for the rest of this section, we focus on an instance
I where each phase is fully-parallelizable or parallel up to one processor. We will
omit the parameter I from the notations when it is clear. For example, we write
WOpt to mean WOpt(I).

3.2 A Lower Bound on WOpt

We can show that for any instance I, we can find a certain set of jobs so that the
weighted flow time of Opt is at least the weighted flow time of WLAPS incurred
on this set of jobs. Details are as follows. Consider the schedule of I as defined

142 J. Zhu, H.-L. Chan, and T.-W. Lam

by WLAPS. For any job j, we divide its work into chunks, each classified as
saturated or or unsaturated as follows. We mark a chunk of work as unsaturated
if it is in a fully-parallelizable phase of j, or if it is in a phase that is parallel up
to one processor and WLAPS processes the work with at most one processor.
We mark other work as saturated. Note that WLAPS processes the unsaturated
work at a rate of p(1 + ε), where p is the number of processors assigned to the
work; for saturated work, the processing rate by WLAPS is always (1 + ε).

Consider any time t. Let ji ∈ R(t) be one of the jobs currently processed by
WLAPS. For the sake of analysis, we assume we know the entire schedule of I as
defined by WLAPS, and we can figure out how much of the unfinished work of
ji at time t will be classified as unsaturated later. Thus, we can define qa(ji, t)
to be the amount of unfinished unsaturated work in ji in WLAPS. Let qo(ji, t)
be that in Opt. We say that ji is lagging at time t if qa(ji, t) > qo(ji, t).

Lemma 2. Let L(t) ⊆ R(t) be the set of jobs j such that WLAPS is processing
the unsaturated work of j and j is lagging at time t.∫ ∞

0

∑
j∈R(t)/L(t)

w′(j, t) dt ≤ 2 WOpt

Proof. For any time t, we can partition R(t) into three disjoint sets: Let S(t) ⊆
R(t) be the set of jobs such that WLAPS is processing its saturated work.
L(t) ⊆ R(t) is the set of jobs such that WLAPS is processing its unsaturated
work and are lagging. Let N(t) be the set of jobs such that WLAPS is processing
its unsaturated work and are non-lagging. Note that R(t) = S(t) ∪ L(t) ∪N(t).
Then ∑

j∈R(t)/L(t)

w′(j, t) ≤
∑

j∈R(t)/L(t)

w(j) =
∑

j∈S(t)

w(j) +
∑

j∈N(t)

w(j)

Consider any job j in S(t). Note that WLAPS is processing j at a rate of (1+ ε).
Let Ta(j) denote the union of time intervals during which WLAPS is processing
the saturated work of j. Let To(j) denote the union of time intervals during
which Opt is processing the saturated work of j. Note that Opt can process the
saturated work with rate at most one. Hence,

||Ta(j)|| ≤ total amount of saturated work in j ≤ ||To(j)||

where ||Ta(j)|| and ||To(j)|| denote the total length of time intervals in the
corresponding set. Therefore,

∫∞
0

∑
j∈S(t) w(j)dt =

∑
j∈I ||Ta(j)|| ·w(j) ≤

∑
j∈I

||To(j)|| ·w(j) ≤WOpt The last inequality comes from the fact that the weighted
flow time of Opt on j is at least ||To(j)|| · w(j).

For N(t), note that any job j in N(t) is non-lagging at time t. Since j is
unfinished in WLAPS at time t, j is also unfinished in Opt. Let wo(t) be the
total weight of unfinished jobs in Opt at time t. Then,

∑
j∈N(t) w(j) ≤ wo(t)

and
∫∞
0

∑
j∈N(t) w(j)dt ≤

∫∞
0 wo(t)dt = WOpt.

Combining the analysis for S(t) and N(t), the lemma follows. �

Non-clairvoyant Weighted Flow Time Scheduling 143

3.3 Potential Function Analysis

We are now ready to bound the total weighted flow time of WLAPS using
a potential function analysis. Our target is to define a potential function Φ
satisfying the following three conditions.

– Boundary condition. Φ(t) = 0 before any job is released and after all jobs
are completed.

– Discrete-event condition. Φ(t) does not increase when a job arrives or when
a job is completed by WLAPS or Opt.

– Running condition. At any time t where there is no job arrival or completion,

wa(t) +
dΦ(t)

dt
≤ 4(1 +

1

ε
)2

∑
j∈R(t)/L(t)

w′(j, t) . (1)

Then, by integrating (1), we have WWLAPS ≤ 4(1+
1

ε
)2
∫ ∞

0

∑
j∈R(t)/L(t)

w′(j, t)dt.

We define Φ(t) as follows. At any time t, recall that {j1, j2, . . . , jna(t)} are
the unfinished jobs in WLAPS in increasing order of arrival times. Let ci(t) =∑i

k=1 w(jk). Let xi(t) = max{0, qa(ji, t) − qo(ji, t)}, i.e., xi(t) is the amount of
work done in unsaturated work that WLAPS is lagging behind Opt. Then,

Φ(t) = γ

na(t)∑
i=1

ci(t) · xi(t)

where γ is a constant which will be set to 2
mε later. We can check that the

boundary and discrete-event conditions are satified. For the running condition,

let dΦa(t)
dt and dΦo(t)

dt be the rate of change of Φ(t) due to the processing of

WLAPS and Opt, respectively. Then, dΦ(t)
dt = dΦa(t)

dt + dΦo(t)
dt .

Lemma 3. At any time t, (i) dΦa(t)
dt ≤ − γm

β (1− β)(1 + ε)
∑

j∈L(t) w
′(j, t), and

(ii) dΦo(t)
dt ≤ γmwa(t).

Proof. For (i), note that for each job ji ∈ L(t) ⊆ R(t), ci(t) ≥ (1 − β)wa(t)
and xi(t) > 0. Consider Φ(t). For each term γci(t)xi(t), if ji ∈ L(t), the term is

decreasing at a rate of γci(t)
w′(j,t)
βwa(t)

m(1 + ε) due to the processing of WLAPS;

else if ji /∈ L, the term is non-increasing. Note that γci(t)
w′(j,t)
βwa(t)

m(1 + ε) ≥
γ(1−β)wa(t)

w′(j,t)
βwa(t)

m(1+ ε). Hence, dΦa(t)
dt ≤ − γm

β (1−β)(1+ ε)
∑

j∈L(t) w
′(j, t).

For (ii), the worst case occurs when Opt is processing the job the largest
ci(t) at the maximum speed. Since ci(t) ≤ wa(t) and Opt has only m 1-speed

processors, dΦo(t)
dt ≤ γmwa(t). �

Lemma 4. Let β = ε
2(1+ε) and γ = 2

mε . Then,

wa(t) +
dΦ(t)

dt
≤ 4(1 +

1

ε
)2

∑
j∈R(t)/L(t)

w′(j, t)

144 J. Zhu, H.-L. Chan, and T.-W. Lam

Proof. Note that wa(t) +
dΦo(t)

dt ≤ (1 + γm)wa(t) = 2+ε
ε wa(t). Since βwa(t) =∑

j∈R(t) w
′(j, t), we have wa(t) +

dΦo(t)
dt ≤ 2+ε

βε

∑
j∈R(t) w

′(j, t). Next note that

− γm
β (1−β)(1+ ε) = − 2

βε (1−
ε

2(1+ε))(1+ ε) = − 2+ε
βε . We have dΦa(t)

dt ≤ − γm
β (1−

β)(1 + ε)
∑

j∈L(t) w
′(j, t) = − 2+ε

βε

∑
j∈L(t) w

′(j, t).

Summing the two inequalities, we have wa(t) +
dΦo(t)

dt + dΦa(t)
dt is at most

2 + ε

βε

∑
j∈R(t)/L(t)

w′(j, t) ≤ 4(1 +
1

ε
)2

∑
j∈R(t)/L(t)

w′(j, t)

�
We conclude with the main result of this section.

Theorem 1. Let β = ε
2(1+ε) . WLAPS(β) is (1+ ε)-speed 8(1+ 1

ε)
2-competitive.

Proof. By integrating the both sides of Lemma 4 and using the result of Lemma 2,
we have

WWLAPS ≤ 4(1 +
1

ε
)2

∑
j∈R(t)/L(t)

w′(j, t) dt ≤ 8(1 +
1

ε
)2 ·WOpt

�

4 An O(1)-Competitive Algorithm for Two Functionality
Types

This section considers non-clairvoyant scheduling with two different types of
functionalities. Recall that we have m1 type-1 processors and m2 type-2 proces-
sors. We call a job a type-1 job (resp., a type-2 job) at time t if its functionality
requirement at time t is of type 1 (resp., of type 2). We consider a natural
extension of WLAPS which we call 2WLAPS.

2WLAPS(β). Let β ∈ (0, 1] be any constant. We first disregard the
functionality requirements and calculate the adjusted weight of each job
identically as WLAPS. Specifically, let na(t) be the total number of
unfinished jobs in 2WLAPS at time t at let wa(t) be their total weight.
Let {j1, j2, . . . , jna(t)} be the unfinished jobs ordered in increasing order
of arrival times and R(t) = {jr, jr+1, . . . , jna(t)} be the smallest set of
latest arrival jobs with total weight at least βwa(t). Define the adjusted
weight w′(ji, t) of ji at time t identically as WLAPS.

We only make use of the functionality information when we share
the processing power. Specifically, let R1(t) ⊆ R(t) be the set of type-1
jobs in R(t). We share the processing power of the m1 type-1 processors
among the jobs in R1(t) proportional to their adjusted weights. Define
R2(t) and share the processing power of the type-2 processors similarly.

Note that we may idle all processors of a certain type if R(t) contains no job of
that type. The main result of this section is that 2WLAPS(β), when β = 1− 1√

s
,

is s-speed 4s
(
√
s−2)2−2

-competitive, for any s > (2 +
√
2)2.

Non-clairvoyant Weighted Flow Time Scheduling 145

4.1 Restricting the Input Instance

Similar as the previous section, we first show that for any non-clairvoyant algo-
rithm, the worst-case competitive ratio occurs when each phase is either fully-
parallelizable or parallel up to one processor.

Lemma 5. Consider any number of functionality types. Let Alg be any non-
clairvoyant algorithm and I be any job instance. We can construct another job
instance I ′ where each phase is either fully parallelizable or parallel up to 1
processor such that WAlg(I

′) = WAlg(I) and WOpt(I
′) ≤WOpt(I).

Proof. We convert each job j in I into another job j′ in I ′. By changing both the
size and speed-up function of j at the same time, any non-clairvoyant algorithm,
without knowledge of both, will schedule the resulting job j′ identically as j. We
will guarantee that Opt can schedule j′ no worse than j, so the lemma follows.
Note that the functionality of the job is unchanged. Details are as follows.

Consider any job j. We show how to construct j′ based on j. Consider a
infinitesimal chunk of work in j with size Δ and speed-up function Γ . Let pa
and po be the number of processors assigned by Alg and Opt, respectively, to
process Δ. We define a chunk of work in j′ with size Δ′ and speed-up function
Γ ′ based on pa and po. The functionality requirement is unchanged.

If pa < po, we set Δ
′ = pa

Γ (pa)
Δ and Γ ′ to be fully-parallelizable. Note that for

Alg, both the amount of work and the processing rate are increased by a same
factor pa

Γ (pa)
, so the schedule in Alg is unaffected. For Opt, it will finish the work

with Δ′/po =
pa

Γ (pa)·po
Δ unit of time. Since Γ is sublinear, we have pa

Γ (pa)
≤ po

Γ (po)

for pa < po. So Δ′/po = pa

Γ (pa)·po
w ≤ po

Γ (po)·po
Δ = Δ/Γ (po). So the processing

time in Opt will not increase.
If pa > po, we set Δ

′ = min{ 1
Γ (pa)

, 1}Δ and Γ ′ to be parallel up to one proces-

sor. For Alg, still both the amount of work and the processing rate are decreased
by a same factor, so the schedule in Alg is unaffected. For Opt, it will have
processing rate min{po, 1} on Δ′ and will finish the work with Δ′/min{po, 1} =
min{ 1

Γ (pa) ,1}
min{po,1} Δ time. Note that since pa > po we have min{ 1

Γ (pa)
, 1} ≤ min{ 1

Γ (po)
,

1}, and since Γ is sublinear we have min{po, 1} ≥ min{Γ (po), 1}. Thus Δ′/min

{po, 1} ≤
min{ 1

Γ(po) ,1}
min{Γ (po),1}Δ = Δ/Γ (po). The processing time in Opt will not

increase. �

4.2 A Lower Bound of Opt

We derive a lower bound on the total weighted flow time of Opt. Consider any
job j. Note that it is still well-defined to partition the work of j as unsaturated
or saturated as before. I.e., we mark those work as unsaturated if it is in a
fully-parallelizable phase of j, or if it is in a phase that is parallel up to one
processor but 2WLAPS processes the work with at most 1 processor. We mark
the other work as saturated. Hence, we can partition the work of j into four
different parts depending on whether it is type-1 or type-2 and whether it is
saturated or unsaturated.

146 J. Zhu, H.-L. Chan, and T.-W. Lam

Defining the notion of lagging jobs is slightly more complicated and needs
some new notations. Consider any time t. Denote q1,a(ji, t) the amount of un-
finished type-1 unsaturated work remaining in ji in WLAPS at time t. Define
q1,o(ji, t) similarly for Opt. We say that ji is lagging in type-1 work at time t
if q1,a(ji, t) > q1,o(ji, t). Conversely, ji is non-lagging in type-1 work at time t
q1,a(ji, t) ≤ q1,o(ji, t). We can define q2,a(ji, t), q2,o(ji, t) and lagging for type-2
work similarly. Note that job can be lagging in type-1 work and non-lagging in
type-2 at the same time.

Lemma 6. Recall that R1(t) and R2(t) are the sets of type-1 and type-2 jobs,
respectively, in R(t). Let L1(t) ⊆ R1(t) be the set of jobs j such that 2WLAPS
is processing the type-1 unsaturated work of j and j is lagging in type-1 work.∫ ∞

0

∑
j∈R(t)/L1(t)

w′(j, t)dt ≤ 2 WOpt +

∫ ∞

0

∑
j∈R2(t)

w(j)dt

Proof. At any time t, we can partition R1(t) into three disjoint sets: Let S1(t) ⊆
R1(t) be the set of jobs such that 2WLAPS is processing its saturated work.
L1(t) ⊆ R1(t) is the set of jobs such that 2WLAPS is processing its unsaturated
work and are lagging in type-1 work. Let N1(t) ⊆ R1(t) be the set of jobs such
that 2WLAPS is processing its unsaturated work and are non-lagging in type-1
work. Note that R1(t) = S1(t) ∪ L1(t) ∪N1(t). Then,∑
j∈R(t)/L1(t)

w′(j, t) ≤
∑

j∈R(t)/L1(t)

w(j) =
∑

j∈S1(t)

w(j) +
∑

j∈N1(t)

w(j) +
∑

j∈R2(t)

w(j)

Similar as the proof of Lemma 2, we observe that for each job j, the amount of
time that 2WLAPS spent on processing the saturated type-1 work of j is at most
that of Opt. Hence,

∫∞
0

∑
j∈S1(t)

w(j)dt ≤ WOpt. Similarly, at any time t, each

job j in N1(t) is unfinished in Opt, so
∫∞
0

∑
j∈N1(t)

w(j)dt ≤ WOpt. Hence, by
integrating the above inequality from time 0 to time infinity, the lemma follows.

�

4.3 Potential Function Analysis

Finally, we bound the total weighted flow time of 2WLAPS by a potential func-
tion analysis. Our target is to prove the following lemma.

Lemma 7. Let β = 1− 1√
s
be the parameter given to 2WLAPS.

W2WLAPS ≤
s

(
√
s− 1)2

∫ ∞

0

∑
j∈R(t)/L1(t)

w′(j, t)dt

where s > (2 +
√
2)2 is the speed of the processors given to 2WLAPS.

We first show that this would imply our main result on 2WLAPS.

Non-clairvoyant Weighted Flow Time Scheduling 147

Theorem 2. Let β = 1 − 1√
s
. 2WLAP(β) is s-speed 4s

(
√
s−2)2−2

-competitive for

scheduling with two functionality types.

Proof. Using Lemma 6 and 7, we have that

W2WLAPS ≤
s

(
√
s− 1)2

⎛⎝2WOpt +

∫ ∞

0

∑
j∈R2(t)

w(j)dt

⎞⎠
Note that the previous analysis is symmetric we can swap the role of type-1 and

type-2 work to prove that W2WLAPS ≤ s
(
√
s−1)2

(
2WOpt +

∫∞
0

∑
j∈R1(t)

w(j)dt
)
.

By summing up the two inequalities and noticing that
∫∞
0

∑
j∈R1(t)

w(j)dt +∫∞
0

∑
j∈R2(t)

w(j)dt ≤W2WLAPS , we have that

2W2WLAPS ≤
s

(
√
s− 1)2

(4WOpt +W2WLAPS)

The theorem follows by rearranging the terms. �

It remains to prove Lemma 7 using a potential function analysis. We define a
potential function Φ1(t) as follows. At any time t, recall that {j1, j2, . . . , jna(t)}
are the unfinished jobs in 2WLAPS and ci(t) =

∑i
k=1 w(jk). We define x1,i(t) =

max{0, q1,a(ji, t) − q1,o(ji, t)} be the amount of type-1 unsaturated work that
2WLAPS is lagging behind Opt. Then,

Φ1(t) = γ1

na(t)∑
i=1

ci(t) · x1,i(t)

where γ1 is a constant which will be set to 1+
√
s

(s−1)m1
. Note that Φ1(t) satisfies the

boundary condition and the discrete-event condition. It remains to prove the
running condition that at any time t,

wa(t) +
dΦ1(t)

dt
≤ s

(
√
s− 1)2

∑
j∈R(t)/L1(t)

w′(j, t) (2)

We prove the running condition in two lemmas. Let
dΦ1,a(t)

dt and
dΦ1,o(t)

dt be the
rates of change of Φ1(t) due to the action of 2WLAPS and Opt, respectively.

Lemma 8. At any time t, (i)
dΦ1,a(t)

dt ≤ − γ1m1

β (1 − β)s
∑

j∈L1(t)
w′(j, t), and

(ii)
dΦ1,o(t)

dt ≤ γ1m1wa(t).

Proof. For (i), note that for each job ji ∈ L1(t) ⊆ R(t), ci(t) ≥ (1 − β)wa(t)

and x1,i(t) > 0. Furthermore, 2WLAPS assigns w′(ji,t)∑
j∈R1(t) w

′(j,t)m1 ≥ w′(ji,t)
βwa(t)

m1

processors to ji. Consider Φ1(t). For each term γ1ci(t)x1,i(t), if ji ∈ L1(t), the

term is decreasing at a rate of at least γ1ci(t)
w′(j,t)
βwa(t)

m1s due to the processing of

148 J. Zhu, H.-L. Chan, and T.-W. Lam

2WLAPS; else if ji /∈ L, the term is non-increasing. Note that γ1ci(t)
w′(j,t)
βwa(t)

m1s ≥
γ1(1− β)wa(t)

w′(j,t)
βwa(t)

m1s. Hence,
dΦ1,a(t)

dt ≤ − γ1m1

β (1− β)s
∑

j∈L1(t)
w′(j, t).

For (ii), the worst case occurs when Opt is processing the job the largest
ci(t) at the maximum speed. Since ci(t) ≤ wa(t) and Opt has only m1 type-1

processors of speed 1, dΦo(t)
dt ≤ γ1m1wa(t). �

Putting β = 1 − 1√
s
and γ1 = 1+

√
s

(s−1)m1
into Lemma 8 and summing the terms

wa(t),
dΦ1,a(t)

dt and
dΦ1,o(t)

dt , the running condition (2) follows. Lemma 7 follows
by integrating (2) over all period of times.

4.4 A Better Competitive Algorithm with m1 = m2 = 1

When there is only one processor for each functionality, we can have a simple and
better competitive algorithm as follows. Assume the online algorithm is given
one 2(1 + ε)-speed processor for each functionality type. The online algorithm
can consider them as one processor of speed 2(1 + ε) that can process work of
both types. That is, at any time t, if we want to process a set I(t) of jobs using
this 2(1 + ε)-speed processor, we can process each job in I(t) using a processor
of the corresponding functionality.

Hence, an online algorithm can simply run WLAPS on this 2(1 + ε)-speed
processor. We can also assume that the optimal offline schedule is given one
2-speed processor that can process work of both types, instead of two 1-speed
heterogeneous processors, and it may only decrease the total weighted flow time
of the optimal offline schedule. Then, this becomes a single processor scheduling
problem. By Theorem 1, WLAPS with a 2(1 + ε)-speed processor is 8(1 + 1

ε)
2-

competitive against the optimal algorithm with a 2-speed processor. Hence, the
overall algorithm is 2(1 + ε)-speed 8(1 + 1

ε)
2-competitive.

References

1. Anderson, E.J., Jayram, T.S., Kimbrel, T.: Tighter bounds on preemptive job shop
scheduling with two machines. Computing 67(1), 83–90 (2001)

2. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Transactions on
Algorithms 3(4) (2007)

3. Bansal, N., Kimbrel, T., Sviridenko, M.: Job shop scheduling with unit processing
times. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 207–214 (2005)

4. Brucker, P.: Job-shop scheduling problem. In: Floudas, C.A., Pardalos, P.M. (eds.)
Encyclopedia of Optimization, pp. 1782–1788. Springer, Heidelberg (2009)

5. Chan, H.-L., Edmonds, J., Pruhs, K.: Speed scaling of processes with arbitrary
speedup curves on a multiprocessor. In: SPAA, pp. 1–10 (2009)

6. Chan, S.-H., Lam, T.-W., Lee, L.-K.: Non-Clairvoyant Speed Scaling for Weighted
Flow Time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 23–35. Springer, Heidelberg (2010)

7. Chen, B., Vestjens, A.P.A., Woeginger, G.J.: On-line scheduling of two-machine
open shops where jobs arrive over time. J. Comb. Optim. 1(4), 355–365 (1998)

Non-clairvoyant Weighted Flow Time Scheduling 149

8. Della Croce, F., Narayan, V., Tadei, R.: The two-machine total completion time
flow shop problem. European Journal of Operational Research 90(2), 227–237
(1996)

9. Edmonds, J.: Scheduling in the dark. Theor. Comput. Sci. 235(1), 109–141 (2000)
10. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup

curves. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 685–692 (2009)

11. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

12. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theor. Comput.
Sci. 130(1), 17–47 (1994)

A New Perspective on List Update: Probabilistic

Locality and Working Set

Reza Dorrigiv and Alejandro López-Ortiz

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ont., N2L 3G1, Canada

{rdorrigiv,alopez-o}@uwaterloo.ca

Abstract. In this paper we study the performance of list update
algorithms under arbitrary distributions that exhibit strict locality of ref-
erence and prove that Move-to-Front (MTF) is the best list update algo-
rithm under any such distribution. Furthermore, we study the working set
property of online list update algorithms. The working set property indi-
cates the good performance of an online algorithm on sequences with local-
ity of reference. We show that no list update algorithm has the working set
property. Nevertheless, we can distinguish among list update algorithms
by comparing their performance in terms of the working set bound. We
prove bounds for several well known list update algorithms and conclude
that MTF attains the best performance in this context as well.

1 Introduction

The list update problem is one of the most studied online problems. It was first
studied by McCabe [25] more than 45 years ago in the context of maintaining
a sequential file. Since then, various list update algorithms have been proposed
(e.g., [14,29,19,9,31,22,33,28,5,2]) and different aspects of the problem have been
studied (e.g., [20,27,24,6,3,18]). Despite this, there still are various interesting
aspects of the problem not yet explored. In this paper we aim to provide new
insights for the list update problem by studying the performance of list update
algorithms under probabilistic and deterministic inputs with locality of reference.

Consider an unsorted list L of � items. An online list update algorithm A is
a strategy for reordering the elements of L after each access. The input to the
algorithm is an access sequence X = 〈x1, x2, . . . , xm〉 that must be served in an
online manner. To serve a request to an item xj , A linearly searches the list
until it finds xj . If xj is the i-th item in the list, A incurs a cost i to access xj .
Immediately after this access, A can move xj to any position closer to the front
of the list at no extra cost. This is called a free exchange. Also A can exchange
any two consecutive items at a cost of 1. These are called paid exchanges. An
efficient algorithm can thus use free and paid exchanges to minimize the overall
cost of serving a sequence.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 150–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

List Update with Probabilistic Locality of Reference 151

Three well known deterministic online algorithms for list update areMove-To-
Front (MTF), Transpose, and Frequency-Count (FC).MTFmoves the requested
item to the front of the list whereas Transpose exchanges the requested item
with the item that immediately precedes it. FC maintains an access count for
each item ensuring that the list always contains items in non-increasing order
of frequency of access. Timestamp (TS) is an efficient list update algorithm
introduced by Albers [2]. After accessing an item a, TS inserts a in front of the
first item b that is before a in the list and was requested at most once since the
last request for a. If there is no such item b, or if this is the first access to a, TS

does not reorganize the list.
In the early stages, list update algorithms were analyzed using the distri-

butional or average-case model (e.g. [25,14,29,9,19]). In this model, the request
sequences are generated according to a probability distribution and the efficiency
of an algorithm is related to the expected cost it incurs. According to this model,
FC is the best online list update algorithm, followed by Transpose and TS, and
finally MTF. In contrast, in some real-life applications of list update, e.g., data
compression [10,13,17], MTF has the best performance among these algorithms,
and Transpose and FC have much worse performance than MTF and TS. This
inconsistency can be explained by the fact that sequences for list update usually
exhibit locality of reference [20,11] and online list update algorithms try to take
advantage of this property [20,28]. A sequence has high locality of reference if a
recently accessed item is more likely to be accessed in the near future. Summa-
rizing experimental results on list update, Albers and Lauer [3] conclude that
the performance and ranking of list update algorithms depend on the amount of
locality in the input. In addition, it has been commonly assumed, based on intu-
ition and experimental evidence, that MTF is the best algorithm on sequences
with high locality of reference, e.g., Hester and Hirschberg [20] claim: “move-
to-front performs best when the list has a high degree of locality” (see also [4],
page 327). Although this was observed more than twenty years ago [20], only
recently some theoretical models for list update with locality of reference have
been proposed [6,3,16]. These models show the superiority of MTF to other
online list update algorithms on sequences with high locality of reference.

However, to the best of our knowledge, no probabilistic model for list update
with locality of reference has been proposed so far. We introduce such a model
by refining the distributional analysis using the diffuse adversary model of Kout-
soupias and Papadimitriou [23]. More specifically, we restrict the “acceptable”
probability distributions to those with high locality of reference. So far, the dif-
fuse adversary model has only been applied to paging algorithms [23,8]. Under
this model we prove the superiority of MTF and the non-optimality of static
list update algorithms. Furthermore we show that the performance of MTF

improves as the amount of locality increases.
We also study the working set property [32] of list update algorithms. The

working set property is based on the idea that an operation on a recently accessed
item should take less time. The working set property of most other self-organizing
data structures has been studied before [32,12,21]. We show that although no

152 R. Dorrigiv and A. López-Ortiz

list update algorithm has the working set property, their performance can be
expressed in terms of the working set bound. Our analysis shows that MTF

is the best list update algorithm in this setting. Considering the connection
between the working set property and locality, this result confirms (yet again)
thatMTF is the best online list update algorithm on sequences with high locality
of reference.

2 List Update with Locality of Reference

In this section we refine the distributional model for analysis of list update
algorithms by incorporating locality. First we provide more details about the
distributional model and review the known results in this model. Let L =
(a1, a2, . . . , a�) be the list of items and p = (p1, p2, . . . , p�) be a vector of positive
probabilities with

∑n
i=1 pi = 1. At each step, item ai is requested with probabil-

ity pi. For a list update algorithm A, let EA(p) be the asymptotic expected cost
of A in serving a single request in a request sequence generated by p. Tradition-
ally, the performance of online list update algorithms was compared to that of
the optimal static ordering, SOPT. SOPT knows the probability distribution and
initially rearranges the items in non-increasing order of their probabilities and
does not change their order afterwards. By the strong law of large numbers we
have EFC(p) = ESOPT (p) for any p [29]. For MTF, Chung et al. [15] showed that
for any probability distribution p, EMTF(p) ≤ (π/2)ESOPT (p) and Gonnet et al.
[19] showed that this bound is tight. Transpose outperforms MTF in this model:
Rivest [29] proved that for any distribution p, we have ETranspose(p) ≤ EMTF(p).
For TS, we have ETS(p) ≤ (1.34)ESOPT (p) for any probability distribution p
[4].

Therefore, FC is the best online list update algorithm in this model, followed
by Transpose and TS, and finally MTF. As stated before, this is not consistent
with experimental results and one apparent reason for this is the fact that the
model does not incorporate locality of reference assumptions. In this section we
analyze list update algorithms under probability distributions with locality of
reference and show that MTF outperforms other algorithms under this model.
Our model is based on the diffuse adversary model, in which we restrict the set
of “acceptable” probability distributions.

Definition 1. [23] Let A be an online algorithm for a minimization problem and
let Δ be a class of distributions over the input sequences. Then A is c-competitive
against Δ, if there exists a constant b, such that

Eσ∈D[A(σ)] ≤ c · Eσ∈D[OPT (σ)] + b,

for every distribution D ∈ Δ, where A(σ) denotes the cost of A on the input
sequence σ and E[] denotes the expectation under D.

We model locality of reference by considering a class Δ of sequences that ex-
hibit locality of reference. Let L = (a1, a2, . . . , a�) be the list of items and σ be a

List Update with Probabilistic Locality of Reference 153

sequence of requests to the items. We define p(ai, σ), the probability of accessing
item ai after the sequence σ, in a way that reflects locality of reference. The idea
is to favour recently accessed items. Let the age of an item ai in a sequence
σ, denoted by age(ai, σ), be j if ai is the j-th most recently accessed item in
σ. To handle the case that an item is not requested in σ, we assume that all
sequences are prepended by the sequence a�, a�−1, . . . , a1. For example, for the
empty sequence ε we have age(ai, ε) = i. Observe that the items have unique ages
between 1 and �, i.e., the set of ages at each time is exactly {1, 2, . . . , �}. Now we
define probability of accessing ai after σ in terms of the age of ai in σ: p(ai, σ) =
f(age(ai, σ)), where the non-increasing function f is a probability distribution
on {1, 2, . . . , �}. Observe that in contrast to the traditional probabilistic models
for list update, we consider a dynamic probability distribution on items. By
requiring f to be non-increasing we ensure that more recently accessed items are
more probable, thus reflecting the locality of reference assumption. Furthermore,
we can measure the amount of locality of such probability distributions. Define a
random variable Xf such that Xf = x with probability f(x). The expected value

of Xf , E[Xf] =
∑�

i=1 i · f(i) can be considered as a measure for the amount of
non-locality of reference: if E[Xf] is small then we know that the probability of
requesting most recently accessed items is much higher than accessing the rest
of items. We also require f(i) > 0 for 1 ≤ i ≤ � to ensure that all items can be
accessed. The following examples show different possible amounts of locality.

1. Consider the probability distribution f1(i) = 1/� for 1 ≤ i ≤ �. Intuitively, f1
does not have much locality and we have E[Xf1] =

∑
1≤i≤� (i/�) = (�+1)/2,

which is a relatively large number. Actually, this is the largest E[Xf] for non-
increasing probability distributions on {1, 2, . . . , �}.

2. Consider the probability distribution f2 for which f2(i + 1) = f2(i)/2, i.e.,
the probability of accessing an item is halved as its age is increased by one
unit. It can be proved that E[Xf2] < 2, so f2 has constant expected value
and high amount of locality.

3. Let f3 be the Zipfian distribution f3(i) = α/i, i.e., probability of accessing
an item is inversely proportional to its age. We have

�∑
i=1

f3(i) = 1⇒
�∑

i=1

α

i
= 1⇒ αH� = 1⇒ α = 1/H�,

where H� is the �-th Harmonic number. We have f3(i) =
1

iH�
and

E[Xf3] =

�∑
i=1

i · f3(i) =
�∑

i=1

i · 1

iH�
=

�

H�
.

Thus the expected value of f3 is between the expected values of f1 and f2.

We computed the empirical probability of accessing items in terms of their ages
in the files of Calgary Corpus [34] and Canterbury Corpus [1], which are the

154 R. Dorrigiv and A. López-Ortiz

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

of
 a

cc
es

se
s

in
 te

rm
s

of
 a

ge

age

bwt-bib
bib

Fig. 1. Probability of accessing items in terms of their age in file bib before and after
BWT. The probability of accessing the youngest age after BWT (0.67) is off-scale and
thus not shown.

standard benchmarks for data compression. As stated before list update algo-
rithms are widely used in data compression. These two corpora include files of
different types such as English text (technical writing, poetry, fiction and non-
fiction books), source code in various programming languages, picture files, ob-
ject code, and spreadsheets. We computed the empirical probabilities for files
before and after Burrows-Wheeler Transform (BWT). The Burrows-Wheeler
transform (BWT) rearranges a string of symbols to one of its permutations that
is believed to have more locality of reference. Then list update algorithms are
used to encode this transform. The well known compression program bzip2 [30]
is based on the BWT. The results for files bib, progp, and trans in Calgary Corpus
are shown in Figures 1-3. The results for other files are very similar and can be
found in the journal version of the paper. Observe from these results that after
BWT the probability distribution f is non-increasing and has a very low E[Xf],
i.e., high locality, while before BWT the function is increasing at some intervals
and has a much higher expected value. This confirms our intuition that BWT
increases the amount of locality.

Observe that the probability of accessing a particular item changes over time
in our model. Thus EA(p) could be different at different times and we need to
incorporate time in the definition. We define Et

A(f) to be the expected cost of
A in serving the t-th request in a sequence generated under f . It is not obvious
whether Et

A(f) converges as t→∞. We define EA(f) to be limt→∞ Et
A(f) if the

List Update with Probabilistic Locality of Reference 155

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

of
 a

cc
es

se
s

in
 te

rm
s

of
 a

ge

age

bwt-progp
progp

Fig. 2. Probability of accessing items in terms of their age in file progp before and
after BWT. The probability of accessing the youngest age after BWT (0.74) is off-scale
and thus not shown.

corresponding limit exists. Observe that MTF maintains the items in decreasing
order of their ages. Thus the cost of MTF on an item is exactly the age of that
item and we have Et

MTF
(f) = E[Xf] for every t. Therefore EMTF(f) = E[Xf].

If we have high locality of reference, then E[Xf] is small and the expected cost
of MTF will be low. Hence, MTF has good performance on sequences with
locality of reference as expected. Good performance of MTF in this model is
due to the fact that MTF tries to take advantage of locality by moving younger
items to the front of its list. On the other hand, static strategies (algorithms
that do not change the positions of items over the time) do not adapt to locality
and so we expect them not to be optimal in the new model even if they know
the distribution. This intuition is formalized in the following Lemma.

Lemma 1. Let A be a static list update algorithm. Then there exists a non-
increasing function f such that EA(f) > EMTF(f), even if A knows f .

Proof. Define the function f as follows: f(1) = 0.9 and f(i) = 0.1/(� − 1) for
2 ≤ i ≤ �. We have

EMTF(f) = 0.9× 1 +
0.1

�− 1
(2 + 3 + · · ·+ �) = �/20 + 1.

A can rearrange the list (a1, a2, . . . , a�) at the beginning and then cannot change
the order of the items. Since a1 is the youngest item at the beginning it seems
reasonable for A to leave a1 at the front of the list. So assume that this is the
case. We have E1

A(f) = �/20+ 1 and so A has the same expected cost as MTF

156 R. Dorrigiv and A. López-Ortiz

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

of
 a

cc
es

se
s

in
 te

rm
s

of
 a

ge

age

bwt-trans
trans

Fig. 3. Probability of accessing items in terms of their age in file trans before and
after BWT. The probability of accessing the youngest age after BWT (0.79) is off-scale
and thus not shown.

on the first request. In order to compute the asymptotic performance of A, we
define a two-state Markov chain as follows. We are in state A if we have a request
to a1 and we are in state B otherwise. If we are at state A, the probability of
staying at A is 0.9 and the probability of going to B is 0.1. If we are at B, the
probability of going to A is 0.1/(� − 1) and the probability of staying at B is
1− 0.1/(�− 1). Let [q1 q2] be the stationary distribution of the Markov chain.
We have

q1 × (−0.1) + q2 ×
0.1

�− 1
= 0⇒ q1 =

q2
�− 1

.

Furthermore, q1 + q2 = 1 and so q1 = 1/� and q2 = 1 − 1/�. Therefore asymp-
totically we have

EA(f) = (1/�)× 1 + (1− 1/�)× 2 + 3 + · · ·+ �

�− 1
=

�+ 1

2
.

Thus the asymptotic expected cost of A is 10 times more than that of MTF.

Thus MTF outperforms any static strategy. Actually, we can show that the
performance of a static list update algorithm is the same for any function f .

Theorem 1. Let A be a static list update algorithm and f be an arbitrary prob-
ability distribution on {1, 2, . . . , �}. We have EA(f) =

�+1
2 .

Proof. We define a Markov chain based on f . We sort items by their age and con-
sider a single state for any permutation of (a1, a2, . . . , a�). So originally we are at

List Update with Probabilistic Locality of Reference 157

state (a1, a2, . . . , a�). From this state we move to state (a2, a1, a3, . . . , a�) with
probability f(2), to state (a3, a1, a2, a4, . . . , a�) with probability f(3),. . . , and
to state (a�, a1, . . . , a�−1) with probability f(�). The Markov chain has l! states
and we remain in the same state with probability f(1). Let M be the transition
matrix of the Markov chain and [q1 q2 . . . q�!] be its stationary distribution.
Since we have f(i) > 0 for 1 ≤ i ≤ �, this Markov chain is irreducible and aperi-
odic. Consider an arbitrary state (ai1 , ai2 , . . . , ai�). We move to this state from
(ai2 , ai1 , . . . , ai�) with probability f(2), from (ai2 , ai3 , ai1 , . . . , ai�) with proba-
bility f(3),. . . , and from (ai2 , ai3 , . . . , ai� , ai1) with probability f(l). Thus the
column corresponding to this state in M sums to f(1) + f(2) + · · ·+ f(�) = 1.
Therefore M is doubly stochastic. It is known (e.g., [26], page 157) that the
stationary distribution of doubly stochastic matrices is the uniform distribution.
Therefore we have qj = 1

�! for 1 ≤ j ≤ �!. Let (aj1 , aj2 , . . . , aj�) be the static
list maintained by A. ajk appears as the i-th item in exactly (� − 1)! states
of the Markov chain, for 1 ≤ i ≤ �. If we are in such a state, the probabil-
ity of accessing ajk is f(i). Thus the asymptotic probability of accessing ajk is∑�

i=1(�− 1)! · 1�! · f(i) =
1
� (f(1) + f(2)+ · · ·+ f(�)) = 1/�. The cost of A on ajk

is k and the asymptotic expected cost of A is
∑�

k=1 k/� = (� + 1)/2.

This theorem shows that the performance of static strategies does not improve by
increasing the amount of locality. For instance, for the probability distribution f2
defined above we have EA(f2) = (�+1)/2 while EMTF(f2) is a constant smaller
than 2. Next we prove that MTF has the best possible performance and cannot
be beaten by any other strategy.

Lemma 2. Let A be a list update algorithm, t > 0, and f be a non-increasing
probability distribution.We have Et

MTF
(f) ≤ Et

A(f).

Proof. Let σ be an arbitrary sequence of length t− 1 and (a1, a2, . . . , a�) be the
list maintained by MTF after serving σ. We know that Pr[ai|σ] ≥ Pr[ai+1|σ],
i.e., after requesting σ the probability of requesting ai is at least the probability
of requesting ai+1, for 1 ≤ i ≤ �− 1. Therefore we have

�∑
i=1

(Pr[ai|σ]×MTF
t(σ � ai)) ≤

�∑
i=1

(Pr[ai|σ]×At(σ � ai)),

where At(σ � ai) denotes the cost incurred by A in serving the t-th request
of σ � ai, i.e., the sequence obtained by appending ai to σ. Observe that we
have MTF

t(σ � ai) = i. Since this holds for any sequence σ of length t− 1, we
conclude that Et

MTF
(f) ≤ Et

A(f).

3 Working Set Property for List Update

In this section we study the performance of list update algorithms in terms
of the working set bound. Consider the access sequence X = 〈x1, x2, · · · , xm〉.
The working set number of an item z at time i, ti(z), is the number of distinct

158 R. Dorrigiv and A. López-Ortiz

items that are requested since the last request to z (including z) or the number
of distinct items that are requested so far if this is the first access to z. The
working set bound of X is defined as WS(X) =

∑m
i=1 log (ti(xi) + 1).1 If the

total cost of X in a data structure is O(WS(X)) (or equivalently, the amortized
cost of xi is O(log (ti(xi) + 1)) we say that data structure has the working set
property. Observe that we have ti(xi) = age(x1x2 . . . xi−1, xi) and so there is a
close relationship between the working set bound and the probabilistic model
for locality in the previous section.

As stated before, list update algorithms are used in data compression. As
noted in [17], the cost model is different in this case: the cost of encoding an
item in position i is Θ(log i). It is not hard to see that under this logarithmic
cost model MTF has the working set property as ti(xi) is the position of xi in
the list maintained by MTF at time i. In contrast, the following lemma shows
that no online list update algorithm in the standard cost model has the working
set property.

Lemma 3. Let A be an online list update algorithm. There is an access sequence
X such that A(X) ≥ �

log (�+1) ·WS(X).

Proof. Consider an access sequence X of length m obtained by requesting the
item that is in the last position of list maintained by A at each time. We have
A(X) = m·�. Also we have ti(xi) ≤ � for 1 ≤ i ≤ m, because we do not have more

than � distinct items. ThereforeWS(X) ≤ m·log (� + 1), and A(X) ≥ WS(X)
log (�+1) ·�.

However we can still rank list update algorithms by comparing how far their
performance is from the working set bound. First we prove a general upper
bound.

Lemma 4. Let A be an online list update algorithm. For any access sequence
X we have A(X) ≤ � ·WS(X).

Proof. Consider an arbitrary sequence X of length m. Since the maximum cost
that A incurs on a request is �, we have A(X) ≤ m · �. At the same time clearly
ti(xi) ≥ 1 for any i. Thus we have WS(X) ≥ m · log 2 = m which implies
A(X) ≤ � ·WS(X).

The following lemma shows that MTF achieves the best possible performance
in terms of the working set bound.

Lemma 5. For any access sequence X we have MTF(X) ≤ �
log (�+1) ·WS(X).

Proof. Consider an arbitrary access sequence X of length m. We have

MTF(X)

WS(X)
=

∑m
i=1 ti(xi)∑m

i=1 log (ti(xi) + 1)
,

1 In this paper all logarithms are base 2.

List Update with Probabilistic Locality of Reference 159

where 1 ≤ ti(xi) ≤ �. Since the terms in the numerator grow exponentially
compared to terms in the denominator, this expression takes its maximum when
we have ti(xi) = � for 1 ≤ i ≤ m. Therefore

MTF(X)

WS(X)
≤

∑m
i=1 �∑m

i=1 log (�+ 1)
=

m · �
m · log (� + 1)

=
�

log (�+ 1)
,

which implies MTF(X) ≤ �
log (�+1) ·WS(X).

Other list update algorithms do not behave optimally in terms of the working
set bound.

Theorem 2. In the worst case we have
a) Transpose(X) ≥ �

log 3 ·WS(X).

b) FC(X) ≥ �+1
2 ·WS(X).

c) TS(X) ≥ 2�
log (�+1)+1 ·WS(X)

Proof. a) Let L0 = (a1, a2, . . . , a�) be the initial list. Consider a sequence X of
length m obtained by several repetitions of the pattern a�a�−1. Then
Transpose(X) = m · �. Observe that t1(x1) = 1 and ti(xi) = 2 for 2 ≤ i ≤ m.
Therefore WS(X) = 1 +

∑m
i=2 log (2 + 1) = 1 + (m− 1) · log 3, and

Transpose(X)

WS(X)
=

m · �
1 + (m− 1) · log 3 ≥

m · �
m · log 3 =

�

log 3
.

b) Let L0 = (a1, a2, . . . , a�) be the initial list and k be an arbitrary integer.
Consider the following access sequence: X = ak1a

k−1
2 ak−2

3 . . . ak−�+1
� . On serving

X , FC does not change the order of items in its list and incurs cost

�∑
i=1

(k − i+ 1)× i =
k · �(�+ 1)

2
+

�(1− �2)

3
.

We have WS(X) = (k−1) · log 2+(k−2) · log2+ · · ·+(k−�) · log 2+
∑�+1

i=2 log i =

k�− �(�+ 1)/2 +
∑�+1

i=2 log i. Therefore

FC(X)

WS(X)
=

k�(�+ 1)/2 + l(1− �2)/3

k�− �(�+ 1)/2 +
∑�+1

i=2 log i
.

Since k can be selected to be arbitrary larger than �, we get

FC(X)

WS(X)
≥ k�(�+ 1)/2

k�
=

�+ 1

2
.

c) Let L0 = (a1, a2, . . . , a�) be the initial list and k be an arbitrary integer. Con-
sider the access sequenceX obtained by repeating k times the block a2�a

2
�−1 . . . a

2
1.

160 R. Dorrigiv and A. López-Ortiz

Let B be such a block in X . Each item ai is accessed twice in B. TS does not
move ai after its first access in B, because all other items have been accessed
twice since the last access to ai. After the second access, TS moves the item to
the front of the list. Therefore each access is to the last item of the list and TS

incurs a cost of � on each access. We have TS(X) = 2k · �2. Next we compute
WS(X). The first and second access to ai in block B contributes log (� + 1) and
log 2 to WS(X), respectively. Considering the special case of the first block, we

have WS(X) = � +
∑�+1

i=2 log i+ (k − 1) · �(log (� + 1) + log 2). Therefore

TS(X)

WS(X)
=

2k · �2

�+
∑�+1

i=2 log i+ (k − 1) · �(log (�+ 1) + 1)
,

which becomes arbitrarily close to 2�
log (�+1)+1 as k grows.

We can also analyze the performance of randomized list update algorithms in
terms of the working set bound by considering their expected cost. Algorithm
Bit, introduced by Reingold et al. [28], is a simple randomized algorithm that
achieves a competitive ratio 1.75, thus beating any deterministic algorithm [11].
Bit allocates a bit b(ai) for each item ai and initializes these bits uniformly and
independently at random. Upon an access to ai, it first complements b(ai), then
if b(ai) = 0 it moves ai to the front, otherwise it does nothing. The following
lemma shows that although randomization (for Bit) can improve the competitive
ratio it cannot lead to the working set property. In fact the performance of Bit
in terms of the working set bound is worse than MTF. This is inconsistent with
competitive analysis but consistent with experimental results [7].

Lemma 6. In the worst case E(Bit(X)) ≥ 3�+1
2(log (�+1)+1) ·WS(X).

Proof. Let L0 = (a1, a2, . . . , a�) be the initial list and k be an arbitrary integer.
Consider the access sequence X = {a2�a2�−1 . . . a

2
1}k. Let xi and xi+1 be two

consecutive accesses to aj . After two consecutive accesses to each item, aj will
have been moved to the front of the list with probability 1. Therefore aj is in
the last position of the list maintained by Bit at the time of request xi and Bit
incurs cost � on this request. After this request, Bit moves aj to the front of the
list if and only if b(aj) is initialized to 1. Since b(aj) is initialized uniformly and
independently at random, this will happen with probability 1/2. Therefore the
expected cost of Bit on xi+1 is 1

2 (� + 1) and the expected cost of Bit on X is

k · �(� + �+1
2). We have WS(X) = � +

∑�+1
i=2 log i + (k − 1) · �(log (� + 1) + 1).

Therefore

E(Bit(X))

WS(X)
=

k · �(�+ �+1
2)

�+
∑�+1

i=2 log i+ (k − 1) · �(log (�+ 1) + 1)
,

which becomes arbitrary close to 3�+1
2(log (�+1)+1) as k grows.

List Update with Probabilistic Locality of Reference 161

Table 1. Working set bounds of files in Calgary Corpus (normalized by their sizes)
before and after Burrows-Wheeler Transform

File Category Size (bytes) l WS/n WS/n (BWT)
bib Bibliography 111261 81 3.9 1.6
book1 Fiction book 768771 82 3.4 1.7
book2 Non-fiction book 610856 96 3.5 1.6
geo Geophysical data 102400 256 4.2 2.3
news USENET batch file 377109 98 3.6 1.8
obj1 Object code for VAX 21504 256 3.8 2.1
obj2 Object code for Mac 246814 256 4.1 1.5
paper1 Technical paper 53161 95 3.56 1.73
paper2 Technical paper 82199 91 3.47 1.72
pic fax picture 513216 159 1.37 1.25
progc Source code in “C” 39611 92 3.65 1.74
progl Source code in LISP 71646 87 3.22 1.45
progp Source code in PASCAL 49379 89 3.38 1.44
trans Transcript of terminal session 93695 99 3.61 1.38

Table 2. Working set bounds of files in Canterbury Corpus (normalized by their sizes)
before and after Burrows-Wheeler Transform

File Category Size(bytes) l WS/n WS/n (BWT)
alice29.txt English text 152089 74 3.9 2.0
asyoulik.txt Shakespeare play 125179 68 3.6 1.8
cp.html HTML source 24603 86 3.8 1.8
fields.c C source 11150 90 3.5 1.6
grammar.lsp LISP source 3721 76 3.3 1.7
kennedy.xls Excel Spreadsheet 1029744 256 2.6 1.5
lcet10.txt Technical writing 426754 84 3.4 1.6
plrabn12.txt Poetry 481861 81 3.5 1.8
ptt5 CCITT test set 513216 159 1.4 1.1
sum SPARC Executable 38240 255 3.1 1.7
xargs.1 GNU manual page 4227 74 3.6 1.9

4 Experimental Results

In this section we compute the working set bound for some real life inputs for
list update and study the performance of well known list update algorithms in
terms of the working set bound. We computed the working set of files of Calgary
and Canterbury corpora before and after BWT. Tables 1 and 2 show the results

Table 3. Performance of list update algorithm (normalized by the working set bound)
on files of Canterbury and Calgary Corpora after Burrows-Wheeler Transform

File MTF TS FC TR
l

log l+1

alice29.txt 1.98 2.04 5.80 2.67 11.88
asyoulik.txt 2.10 2.14 6.24 2.79 11.13
cp.html 2.96 3.31 8.20 6.09 13.23
fields.c 2.66 3.43 8.96 9.23 13.83
grammar.lsp 3.04 3.91 6.42 10.57 12.13
kennedy.xls 3.90 3.79 5.55 5.15 22.15
lcet10.txt 1.93 1.97 6.41 2.48 13.10
plrabn12.txt 1.99 1.96 5.26 2.21 12.74
ptt5 1.23 1.20 1.31 1.22 12.25
sum 3.51 4.02 10.00 8.37 18.26
xargs.1 3.04 3.64 6.38 9.01 11.88

File MTF TS FC TR
l

log l+1

bib 2.18 2.38 9.22 3.78 12.74
book1 1.98 1.92 5.28 2.16 12.86
book2 2.03 2.12 6.90 2.83 14.55
geo 5.66 5.35 6.07 5.74 18.26
news 2.68 2.95 8.34 4.02 14.78
obj1 4.86 5.04 7.45 8.74 18.26
obj2 3.07 3.40 9.60 5.88 18.26
paper1 2.44 2.82 7.32 5.14 14.43
paper2 2.19 2.34 5.64 3.58 13.95
pic 1.79 1.71 2.18 2.04 21.38
progc 2.77 3.22 8.90 6.35 14.07
progl 2.03 2.38 7.66 4.04 13.47
progp 2.16 2.72 9.03 5.38 13.71
trans 2.13 2.75 13.12 5.76 14.90

162 R. Dorrigiv and A. López-Ortiz

for the Calgary and Canterbury corpora, respectively. From these results we
conclude that the working set bound for BWT of each file is much less than
the working set bound of the original file. This reflects the intuition that BWT
increases the amount of locality of reference in a sequence.

We also computed the performance of list update algorithms on the BWT of
these files. Table 3 shows the corresponding costs normalized by the working set
bound of each file. Comparing the experimental resultswith the theoretical bounds
we proved in Section 3 shows that the actual performance of the algorithms ismuch
better than the theoretical worst case bounds. In particular, the worst case lower
bound of l

log l+1 seems pessimistic. Furthermore,MTF and TS have close perfor-
mance and outperformFC andTR. This is consistent with our theoretical results.

5 Conclusions

We introduced a probabilistic model for list update with locality of reference.
This model is based on the diffuse adversary model and considers a dynamic
probability distribution for accessing the items. We proved that MTF outper-
forms other algorithms in this model and its performance improves as the locality
increases. Analyzing other list update algorithms under this model remains open.
Furthermore, we analyzed several online list update algorithms in terms of the
working set bound. We proved that MTF achieves the optimal performance in
terms of the working set bound, while several other algorithms do not. Thus,
both these models confirms the well known belief that MTF is the best list
update algorithm on sequences with high locality of reference. Our experiments
showed that the working set bound of files decreases after applying BWT. This
is consistent with our intuition that BWT increases locality of reference.

References

1. The canterbury corpus, http://corpus.canterbury.ac.nz/index.html
2. Albers, S.: Improved randomized on-line algorithms for the list update problem.

SICOMP 27(3), 682–693 (1998)
3. Albers, S., Lauer, S.: On List Update with Locality of Reference. In: Aceto, L.,

Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 96–107. Springer, Heidelberg (2008)

4. Albers, S., Mitzenmacher, M.: Average case analyses of list update algorithms,
with applications to data compression. Algorithmica 21(3), 312–329 (1998)

5. Albers, S., von Stengel, B., Werchner, R.: A combined bit and timestamp algo-
rithm for the list update problem. IPL 56, 135–139 (1995)

6. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List Update with Locality of Ref-
erence. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 399–410. Springer, Heidelberg (2008)

7. Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications:
Recent empirical evidence. In: SODA, pp. 53–62 (1997)

8. Becchetti, L.: Modeling Locality: A Probabilistic Analysis of LRU and FWF. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer,
Heidelberg (2004)

9. Bentley, J., McGeoch, C.: Amortized analyses of self-organizing sequential search
heuristics. CACM 28, 404–411 (1985)

http://corpus.canterbury.ac.nz/index.html

List Update with Probabilistic Locality of Reference 163

10. Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data com-
pression scheme. CACM 29, 320–330 (1986)

11. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

12. Bose, P., Doüıeb, K., Langerman, S.: Dynamic optimality for skip lists and B-trees.
In: SODA, pp. 1106–1114 (2008)

13. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, DEC SRC (1994)

14. Burville, P., Kingman, J.: On a model for storage and search. Journal of Applied
Probability 10, 697–701 (1973)

15. Chung, F.R., Hajela, D.J., Seymour, P.D.: Self-organizing sequential search and
hilbert’s inequalities. In: STOC, pp. 217–223 (1985)

16. Dorrigiv, R., Ehmsen, M.R., López-Ortiz, A.: Parameterized Analysis of Paging
and List Update Algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS,
vol. 5893, pp. 104–115. Springer, Heidelberg (2010)

17. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: An Application of Self-Organizing Data
Structures to Compression. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526,
pp. 137–148. Springer, Heidelberg (2009)

18. Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List Factoring and Relative Worst Or-
der Analysis. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534,
pp. 118–129. Springer, Heidelberg (2011)

19. Gonnet, G.H., Munro, J.I., Suwanda, H.: Toward self-organizing linear search. In:
FOCS, pp. 169–174 (1979)

20. Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. ACM Computing Sur-
veys 17(3), 295 (1985)

21. Iacono, J.: Improved Upper Bounds for Pairing Heaps. In: Halldórsson, M.M. (ed.)
SWAT 2000. LNCS, vol. 1851, pp. 32–45. Springer, Heidelberg (2000)

22. Irani, S.: Two results on the list update problem. IPL 38, 301–306 (1991)
23. Koutsoupias, E., Papadimitriou, C.: Beyond competitive analysis. SICOMP 30(1),

300–317 (2000)
24. Mart́ınez, C., Roura, S.: On the competitiveness of the move-to-front rule. Theo-

retical Computer Science 242(1–2), 313–325 (2000)
25. McCabe, J.: On serial files with relocatable records. Op. Res. 12, 609–618 (1965)
26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press

(1995)
27. Munro, J.I.J.: On the Competitiveness of Linear Search. In: Paterson, M. (ed.)

ESA 2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)
28. Reingold, N., Westbrook, J., Sleator, D.: Randomized competitive algorithms for

the list update problem. Algorithmica 11, 15–32 (1994)
29. Rivest, R.: On self-organizing sequential search heuristics. CACM 19, 63–67 (1976)
30. Seward, J.: bzip2, a program and library for data compression,

http://www.bzip.org/

31. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
CACM 28, 202–208 (1985)

32. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the
ACM 32(3), 652–686 (1985)

33. Teia, B.: A lower bound for randomized list update algorithms. IPL 47, 5–9 (1993)
34. Witten, I.H., Bell, T.: The Calgary/Canterbury text compression corpus.

Anonymous ftp from, ftp.cpsc.ucalgary.ca/pub/text.compression/corpus/

text.compression.corpus.tar.Z

http://www.bzip.org/
file:ftp.cpsc.ucalgary.ca/pub/text.compression/corpus/text.compression.corpus.tar.Z
file:ftp.cpsc.ucalgary.ca/pub/text.compression/corpus/text.compression.corpus.tar.Z

OnlineMin: A Fast Strongly Competitive
Randomized Paging Algorithm

Gerth Stølting Brodal1,�, Gabriel Moruz2,��, and Andrei Negoescu2

1 MADALGO, Department of Computer Science, Aarhus University, Åbogade 34,
8200 Aarhus N, Denmark

gerth@cs.au.dk
2 Goethe University Frankfurt am Main. Robert-Mayer-Str. 11-15,

60325 Frankfurt am Main, Germany
{gabi,negoescu}@cs.uni-frankfurt.de

Abstract. In the field of online algorithms paging is one of the most
studied problems. For randomized paging algorithms a tight bound of Hk

on the competitive ratio has been known for decades, yet existing algo-
rithms matching this bound have high running times. We present the
first randomized paging approach that both has optimal competitive-
ness and selects victim pages in subquadratic time. In fact, if k pages fit
in internal memory the best previous solution required O(k2) time per
request and O(k) space, whereas our approach takes also O(k) space,
but only O(log k) time in the worst case per page request.

1 Introduction

Online algorithms are algorithms for which the input is not provided beforehand,
but is instead revealed item by item. The input is to be processed sequentially,
without assuming any knowledge of future requests. The performance of an on-
line algorithm is usually measured by comparing its cost against the cost of an
optimal offline algorithm, i.e. an algorithm that is provided all the input before-
hand and processes it optimally. This measure, denoted competitive ratio [9,12],
states that an online algorithm A has competitive ratio c if its cost satisfies
cost(A) ≤ c · cost(OPT) + b, where cost(OPT) is the cost of an optimal offline
algorithm and b is a constant. If A is a randomized algorithm, cost(A) denotes
the expected cost. In particular, an online algorithm is denoted strongly compet-
itive if its competitive ratio is optimal. While the competitive ratio is a quality
guarantee for the cost of the solution computed by an online algorithm, factors
such as space complexity, running time, or simplicity are also important.

In this paper we study paging algorithms, a prominent and well studied ex-
ample of online algorithms. We are provided with a two-level memory hierarchy,
consisting of a cache and a disk, where the cache can hold up to k pages and
� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.
�� Partially supported by the DFG grant ME 3250/1-2, and by MADALGO.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 164–175, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm 165

the disk size is infinite. When a page is requested, if it is in the cache a cache
hit occurs and the algorithm proceeds to the next page. Otherwise, a cache miss
occurs and the algorithm has to load the page from the disk; if the cache was
full, a page must be evicted to accommodate the new one. The cost is given by
the number of cache misses performed.

Related work. Paging has been extensively studied over the last decades. In [4]
an optimal offline algorithm, denoted MIN, was given. In [12] a lower bound of k
on the competitive ratio for deterministic paging algorithms was shown. Several
algorithms, such as LRU and FIFO, meet this bound and are thus strongly com-
petitive. For randomized algorithms, Fiat et al. [7] proved a lower bound of Hk

on the competitive ratio, where Hk =
∑k

i=1 1/i is the k-th harmonic number.
They also gave an algorithm, named Mark, which is (2Hk − 1)-competitive.
The first strongly competitive randomized algorithm being Hk-competitive was
Partition [11]. For Partition, the memory requirement and runtime per re-
quest can reach Θ(n), where n is the number of page requests, and n can be
far greater than k. Partition was characterized in [1] as counter-intuitive and
difficult to understand. The natural question arises if there exist simpler and
more efficient strongly competitive randomized algorithms. The Mark algo-
rithm can be easily implemented using O(k) memory and very fast running time
(O(1) dictionary operations) per request, but it is not strongly competitive. Fur-
thermore, in [6] it was shown that no Mark-like algorithm can be better than
(2Hk − 1)-competitive. The strongly competitive randomized algorithm Equi-
table [1] was a first breakthrough towards efficiency, improving the memory
complexity to O(k2 log k) and the running time to O(k2) per page request. In [3]
a modification of Equitable, denoted Equitable2, improved the space com-
plexity to O(k). Both Equitable algorithms are based on a characterization in
[10] in the context of work functions. The main idea is to define a probability
distribution on the set of all possible configurations of the cache and ensure that
the cache configuration obeys this distribution. For each request, it requires k
probability computations, each taking O(k) time. For a detailed view on paging
algorithms, we refer the interested reader to the comprehensive surveys [2,5,8].

Our contributions. In this paper we propose a strongly competitive random-
ized paging algorithm, denoted OnlineMin, that handles each page request in
O(log k) time in the worst case. This is a significant improvement over the fastest
known algorithm, Equitable1, which needs O(k2) time per request. The space
requirements of our algorithm are O(k), like Equitable2.

The main building block of our algorithm is a priority based incremental se-
lection process starting from the same characterization of an optimal solution
in [10] as the Equitable algorithms. The analysis of this process yields a simple
cache update rule which is different from the one in [1,3], but leads to the same
probability distribution of the cache content. A straightforward implementation

1 Since no explicit implementation of Equitable2 is provided, due to their similarity
we assume it to be the same as for Equitable.

166 G.S. Brodal, G. Moruz, and A. Negoescu

of our update rule requires O(k) time per request. Additionally we design appro-
priate data structures that result in an implementation which processes a page
request in O(log k) time in the worst case.

2 Randomized Selection Process

In this section we first give some preliminary notions about offset functions for
paging algorithms introduced in [10]. We then describe in Section 2.2 a new pri-
ority based selection process which is the basis of our algorithm OnlineMin. We
analyze the selection process in order to obtain a simple page replacement rule
which remains at all times consistent with the outcome of the selection process.
Finally, in Section 2.3 we prove equivalences between the cache distribution of
our selection process and the Equitable algorithms [1,3], which implies that
OnlineMin is Hk-competitive.

2.1 Preliminaries

Let σ be the request sequence so far. For the construction of a competitive paging
algorithm it is of interest to know the possible cache configurations if σ has been
processed with minimal cost. We call these configurations valid.

For fixed σ and an arbitrary cache configuration C (a set of k pages), the offset
function ω assigns C the difference between the minimal cost of processing σ
ending in configuration C and the minimal cost of processing σ. Thus C is a
valid configuration iff ω(C) = 0. Koutsoupias and Papadimitriou [10] showed
that ω can be represented by a sequence of k + 1 disjoint page sets, denoted
layers, and proved the following2.

Lemma 1. If (L0, . . . , Lk) is a layer representation of ω, then a set C of k pages
is a valid configuration, i.e. ω(C) = 0, iff |C ∩ (∪i≤jLi)| ≤ j for all 0 ≤ j ≤ k.

The layer representation is defined as follows. Initially each layer Li, where i > 0,
consists of one of the first requested k pairwise distinct pages. The layer L0

contains all pages not in L1, . . . , Lk. We denote by ωp the offset function which
results from ω by requesting p. We have the following update rule.

ωp =

{
(L0 \ {p}, L1, . . . , Lk−2, Lk−1 ∪ Lk, {p}), if p ∈ L0

(L0, . . . , Li−2, Li−1 ∪ Li \ {p}, Li+1, . . . , Lk, {p}), if p ∈ Li, i > 0

We give an example of an offset function for k = 3 in Figure 1. The support of ω
is defined as S(ω) = L1∪· · ·∪Lk. In the remainder of the paper, we call a set with
a single element singleton. Also, let i be the smallest index such that Li, . . . , Lk

are singletons. We distinguish the set of revealed pages R(ω) = Li ∪ · · · ∪ Lk,
and the set of non-revealed pages N(ω) = L1 ∪ · · · ∪Li−1. A valid configuration
contains all revealed pages and no page from L0. Note that when requesting
2 We use a slightly modified, yet equivalent, version of the layer representation in [10].

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm 167

0

4
1

2
2

51, 3, 6
3

4 4
2

5
4
2

C1 C2 C3

ω =

C0

6
0

4
1

2, 5
2

61, 3
3

4 5
4

6
5
4

C1 C2 C3C0

4
0

2, 5
1

6
2

41, 3
3

5 6
5

6
5
4

C1 C2 C3C0

2
0 1

6
2

21, 3, 5
3

6 6
4

6
4
2

C1 C2 C3C0

4

Fig. 1. The update of ω and the selection sets. The initial cache configuration is
{4, 2, 5} for k = 3 and request the pages 6, 4, 2. The priority of a page is its number.

some non-revealed page p in the support, we have R(ωp) = R(ω) ∪ {p} and the
number of layers containing non-revealed items decreases by one. Moreover, if
p /∈ L1 then N(ωp) = N(ω) \ {p} and otherwise N(ωp) = N(ω) \ L1. Also, the
layer representation is not unique and especially each permutation of the layers
containing revealed items describe the same offset function.

Equitable and Equitable2. Based on the layer partition above both Equi-
table algorithms are described using a probability distribution over all con-
figurations where the probability that C is the cache content is defined as the
probability of being obtained at the end of the following random process. Starting
with C = R(ω) a page p is selected uniformly at random from N(ω), p is added
to C, and ω is set to ωp. This process is iterated until C has k pages. The proba-
bility for each configuration reachable by one page replacement is computed from
its actual configuration such that the distribution remains consistent with the
random process. The request is handled according to the computed probabilities.

2.2 Selection Process for OnlineMin

If ω is the offset function for the input requested so far an online algorithm should
have a configuration similar to the cache COPT of an optimal strategy. We know
that COPT contains all revealed items and no item from L0. Which non-revealed
items are in the cache depends on future requests. To guess the order of future
requests of non-revealed items OnlineMin assigns priorities to pages when they
are requested. It maintains the cache content of an optimal offline algorithm under
the assumption that the priorities reflect the order of future requests. We intro-
duce a priority based selection process for the layer representation of ω. Assuming
that each order of priorities has equal probability, we prove that the outcome of
the selection process has the same probability distribution as the Equitable al-
gorithms. Our approach allows an efficient and easy-to-implement update method
for the cache of OnlineMin, which is consistent with our selection process.

In the following we assume that pages from L1, . . . , Lk have pairwise distinct
priorities. For some set S we denote by minj (S) and maxj (S) the subset of S
of size j having the smallest and largest priorities respectively. Furthermore,
min(S) = min1 (S) and max(S) = max1 (S).

Definition 1. We construct iteratively k + 1 selection sets C0(ω), . . . , Ck(ω)
from the layer partition ω = (L0, . . . , Lk) as follows. We first set C0(ω) = ∅ and
then for j = 1, . . . , k we set Cj(ω) = maxj (Cj−1(ω) ∪ Lj).

168 G.S. Brodal, G. Moruz, and A. Negoescu

When ω is clear from the context, we let Ci = Ci(ω). For a page request p and
offset function ω = (L0, . . . , Lk), denote ωp = (L′

0, . . . , L
′
k) and let C′

k be the
result of the selection process on ωp. By the layer update rule each layer contains
at least one element and the following result follows immediately.

Fact 1. |Cj | = j for all j ∈ {0, . . . , k}. If |Lj | is singleton then Cj = Cj−1 ∪Lj.
Moreover, all revealed pages are in Ck.

Updating Ck. We analyze how Ck changes upon a request. First we give an aux-
iliary result in Lemma 2 and then show in Theorem 1 that C′

k can be obtained
from Ck by at most one page replacement. We get how C′

k can be directly con-
structed from Ck and the layers, without executing the whole selection process.

Lemma 2. Let p be the requested page from layer Li, where 0 < i < k. If for
some j, with i ≤ j < k we have q ∈ Cj and C′

j−1 = Cj \ {q}, then we get:

C′
j =

{
Cj+1 \ {q}, if q ∈ Cj+1

Cj+1 \ min{Cj+1}, otherwise

Proof. We have:

C′
j = max

j
(L′

j ∪ C′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = Cj+1 \ {q} (case: q ∈ Cj+1)

C′
j = max

j
(L′

j ∪ C′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = max

j
(Cj+1) (case: q /∈ Cj+1)

In both cases, we first use the assumption C′
j−1 = Cj \ {q} and the partition up-

date rule, L′
j = Lj+1. In the case q ∈ Cj+1 we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) =

maxj (Lj+1 ∪ Cj \ {q}) ∪ {q}, which holds as q ∈ Cj implies q /∈ Lj+1. If
q /∈ Cj+1, we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) = maxj+1 (Lj+1 ∪ Cj \ {q}). We
have q ∈ Cj , q /∈ Cj+1 and |Cj+1| = j + 1, which leads to C′

j = maxj (Cj+1) =
Cj+1 \ min{Cj+1}. ��

Theorem 1. Let p be the requested page. Given Ck, we obtain C′
k as follows:

1. p ∈ Ck: C′
k = Ck

2. p /∈ Ck and p ∈ L0: C′
k = Ck \ min(Ck) ∪ {p}

3. p /∈ Ck and p ∈ Li, i > 0: C′
k = Ck \min(Cj)∪{p}, and j ≥ i is the smallest

index with |Cj ∩ Ck| = j.

Before the proof, note that for the third case |Cj ∩ Ck| = j is equivalent to
|(L1 ∪ · · · ∪ Lj) ∩ Ck| = j since Cj has elements only in L1 ∪ · · · ∪ Lj and
Cj ⊆ Ck.

Proof. First assume that p ∈ L0. In this case, by construction p is not in Ck.
The only layers that change are Lk−1 and Lk: L′

k−1 = Lk−1 ∪Lk and L′
k = {p}.

Applying the definition of C′
k and the fact that Ck = maxk−1 (Ck−2 ∪ Lk−1)∪Lk,

since Lk is singleton, we get:

C′
k = C′

k−1 ∪ {p} = max
k−1

(Ck−2 ∪ Lk−1 ∪ Lk) ∪ {p} = Ck \ min (Ck) ∪ {p};

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm 169

Now we consider the case when p ∈ Li. We distinguish two cases: p ∈ Ck and
p /∈ Ck. If p ∈ Ck, we have by construction that p is in all sets Ci, . . . , Ck and
we get Ci = maxi (Ci−1 ∪ Li) = maxi−1 (Ci−1 ∪ Li \ {p}) ∪ {p}. Based on this
observation we show that C′

i−1 = Ci \ {p}. It obviously holds for i = 1 since C′
0

is empty. For i > 1 we get:

C′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \ {p} .

Using C′
i−1 = Ci \ {p} and p ∈ Ci, applying Lemma 2 we get C′

i = Ci+1 \ {p}.
Furthermore, using that p is in all sets Ci+1, . . . , Ck, we apply Lemma 2 for all
these sets which leads to C′

k−1 = Ck \ {p} and we obtain C′
k = C′

k−1 ∪{p} = Ck.
Now we assume that p /∈ Ck. This implies that p is a non-revealed page. First

we analyze the structure of C′
i−1 which will serve as starting point for applying

Lemma 2. If p ∈ Ci we argued before that C′
i−1 = Ci \ {p}. Otherwise, we show

that C′
i−1 = Ci \ min(Ci). It holds for i = 1 since C0 is always empty and by

Fact 1 we have |C1| = 1. For i > 1 we get:

C′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \ min(Ci) .

Let j ≥ i be the smallest index such that |Cj ∩Ck| = j. By construction, we have
Cj ⊆ Ck. Applying Lemma 2 for sets C′

i−1, . . . , C
′
j−1 we get C′

j−1 = Cj \ {s},
where s ∈ Cj and either s = p, s = min Cj , or s is a page with minimal priority
from a set Cl, with i ≤ l < j. Note that page s is also in Ck by the definition of Cj

and thus s = p can be excluded since p is not in Ck. If s is a page with minimal
priority from some set Cl then all the other pages in Cl are also in Cj and thus
in Ck because all of them have higher priorities than s. This leads to Cl ⊂ Ck

which contradicts the minimality of j. Thus we have s = min Cj . Since the page
s = min(Cj) is in all sets Cj , . . . , Ck by Lemma 2 we get C′

k−1 = Ck \ min(Cj)
and it follows C′

k = Ck \ min(Cj) ∪ {p}. ��

2.3 Probability Distribution of Ck

Theorem 2. Assume that non-revealed pages are assigned priorities such that
the order of the priorities is distributed uniformly at random. For any offset func-
tion ω, the distribution of Ck over all possible cache configurations is the same
as the distribution of the cache configurations for the Equitable algorithms.

Proof. Let u be the index of the last non-revealed layer, more precisely |Lu| > 1
and |Li| = 1 for all i > u. The set of non-revealed items is N(ω) = L1 ∪ · · · ∪Lu

and the singletons Lu+1, . . . , Lk contain the revealed items R(ω).
The following selection process is used by both Equitable and Equitable2

to obtain the probability distribution of the cache M . Initially M contains all
k−u revealed items R(ω). Then u elements x1, . . . , xu are added to M , where xi

is chosen uniformly at random from the set of non-revealed items of ωx1,...,xi−1 ,
the offset function obtained from ω after requesting the sequence x1, . . . , xi−1.

170 G.S. Brodal, G. Moruz, and A. Negoescu

We define an auxiliary selection C∗
k (ω) which is a priority based version of

Equitable’s random process and then prove for every fixed priority assignment
that Ck(ω) = C∗

k(ω) holds.
Assume that pages in N(ω) have pairwise distinct priorities, with a uniformly

distributed priority order. Initialize C∗
k(ω) to R(ω) and add elements x∗

1, . . . , x
∗
u

to C∗
k (ω), where x∗

i is the page with maximal priority from the non-revealed
items of ωx∗

1,...,x∗
i−1 . Obviously all pages from N(ω) have the same probability

to posses the maximal priority and thus x∗
1 and x1 have the same distribution.

Since x∗
1 is a revealed item in ωx∗

1 , the priority order of pages in N(ωx∗
1) remains

uniformly distributed. This implies inductively that C∗
k (ω) has the same distribu-

tion as Equitable. Note that by the definition of C∗
k we have C∗

k (ω) = C∗
k(ωx∗

1)
because x∗

1 becomes a revealed item in ωx∗
1 .

Now we prove for each fixed priority assignment that Ck(ω) = C∗
k(ω) by

induction on u. For u = 0 both C∗
k and Ck contain all k revealed items. For u ≥ 1,

let x∗
1 be the non-revealed page with the largest priority in ω. For the auxiliary

process, we have already shown that C∗
k (ω) = C∗

k(ωx∗
1). Also, the index u for ωx∗

1

is smaller by one than for ω, which by inductive hypothesis leads to C∗
k(ω) =

C∗
k(ωx∗

1) = Ck(ωx∗
1). It remains to prove that Ck(ωx∗

1) = Ck(ω). By the definition
of the selection process for C1, . . . , Ck we have Ck(ω) = Cu(ω) ∪ R(ω). Page x∗

1

has the highest priority from N(ω) = L1 ∪ · · · ∪ Lu and thus it is a member
of Cu(ω) and hence also in Ck(ω). Applying the update rule from Theorem 1 we
get Ck(ω) = Ck(ωx∗

1), and this concludes the proof. ��

3 Algorithm OnlineMin

3.1 Algorithm

OnlineMin initially holds in its cache M the first k pairwise distinct pages.
Note that the last requests for all pages in Li are smaller than the last requests
for all pages in Li+1.

Page replacement. The algorithm maintains as invariant that M = Ck after
each request. To do so, it keeps track of the layer partition ω = (L0, . . . , Lk),
where it suffices to store only the support layers (L1, . . . , Lk). The cache update
is performed according to Theorem 1. More precisely, if the requested page p is
in the cache, M remains unchanged. If a cache miss occurs and p is from L0 the
page with minimal priority from M is replaced by p. If p is from Li with i > 0,
and p /∈ M we first identify the set Cj in Theorem 1 satisfying |Cj ∩ M | = j.
This can be done as follows. Let p1, . . . , pk be the pages in M sorted in increasing
order by their layer index. We search the minimal index j ≥ i, such that the
layer index of pj is j, i.e. pj ∈ Lj. We evict the page with minimal priority from
p1, . . . , pj . The layers are updated after the cache update is done.

Forgiveness. If the amount of pages in (L1, . . . , Lk) is 3k and a page in L0 is
requested we apply the forgiveness mechanism in [3]. More precisely, we perform
the partition and cache update as if the requested page was from L1. Doing this

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm 171

all pages in L1 are moved to L0, i.e. they are removed from the support, and the
support size never exceeds 3k.

Priorities. If page p is requested from L0, we select for p a rank within the
support chosen uniformly at random, i.e. a number in {0, . . . , |Sw|}, and we
assign it a priority such that it reflects its rank.

Time and space complexity. Storing the layer partition together with the page
priorities needs O(k) space by applying the forgiveness mechanism. A naive
implementation storing the layers in an array processes a page request in O(k)
time. In the remainder of the paper we show how to improve this complexity to
O(log k) time per request in the worst case.

Competitive ratio. We showed in Theorem 2 that the probability distribution
over the cache configurations for OnlineMin and Equitable2 are the same.
This holds also when using the forgiveness step, and thus the two algorithms
have the same expected cost. This leads to the result in Lemma 3.

Lemma 3. OnlineMin is Hk-competitive.

3.2 Algorithm Implementation

We show how to implement OnlineMin efficiently, such that a page request is
processed in O(log k) worst case time while using O(k) space. In the following
we represent each page in the support by the timestamp of its last request.

Basic structure. Consider a list L = (l1, . . . , lt), with t ≤ 4k, where L has two
types of elements: k layer delimiters and at most 3k page elements. Furthermore,
we distinguish two types of page elements: cache elements which are the pages
in the cache and support elements which are pages in the support but not in the
cache. We store in L the layers L1, . . . , Lk from left to right, separated by k layer
delimiters. For each layer Li we store its layer delimiter, followed by the pages
in Li. For each list element li, be it page element or layer delimiter, we store a
timestamp ti and a v-value vi with vi ∈ {−1, 0, 1}; for page elements we also
store the priority. For some element li, if it is a layer delimiter for some layer
Lj, we set vi = 1 and ti to the minimum of all page timestamps in Lj. If li is a
page element, then ti is set to the timestamp corresponding to the last request
of the page; we set vi = −1 for cache elements and vi = 0 for support elements.
Note that the layer delimiters always have ti values matching the first page in
their layer. As described before, layer delimiters always precede page elements.
An example is given in Figure 2.

Note that the v-values have the property that |Ck ∩ (L1 ∪ · · · ∪Li)| = i iff the
prefix sum of the v-values for the last element in Li is zero. Furthermore, since
|Ck ∩ (L1 ∪ · · · ∪ Li)| ≤ i the prefix sum cannot be negative. This property will
be used when dealing with a cache miss caused by a page from Li, with i > 0.

172 G.S. Brodal, G. Moruz, and A. Negoescu

1 0v
t 2 2 4 5 5 8 8 10 11 13 13 15 18 18 21 21

1 1 1 1 1−1 −1 −1 −1 −1−10 0 0

Fig. 2. Example for list L: representing pages by timestamps of last requests, we have
L1 = {2, 4}, L2 = {5}, L3 = {8, 10, 11}, L4 = {13, 15}, L5 = {18}, and L6 = {21}.
Layer delimiters are emphasized and the memory is M = {4, 10, 11, 15, 18, 21}.

We show how to implement OnlineMin using the following operations on L:

– find-layer(lp). For some page lp, find its layer delimiter.
– search-page(lp). Check whether lp is a page in L.
– insert(lp), delete(lp). The item lp is inserted (or deleted) in L.
– find-min(lp). Find the cache element lq ∈ (l1, . . . , lp) with minimum priority.
– find-zero(lp). Find the smallest j, with p ≤ j such that

∑j
l=1 vl = 0, and

return lj .

We describe how to update the list L upon a request for some page p. OnlineMin
keeps in memory at all times the elements in L having the v-value equal to -1.

If p /∈ M , we must identify a page to be evicted from M . To evict a page we
set its v-value to zero and to load a page we set its v-value to -1. We first find
the layer delimiter for p. We can have p ∈ Li with 0 < i ≤ k or p ∈ L0. If p ∈ Li,
the page to be evicted is the cache element in L1 ∪ · · · ∪Lj having the minimum
priority, where j ≥ i is the minimal index satisfying |M ∩ (L1 ∪ · · · ∪ Lj)| = j.
This is done using find-zero(lLi), where lLi is the layer delimiter of Li, and
the page to be evicted is identified using find-min applied to the value returned
by find-zero. If p ∈ L0, if the forgiveness need not be applied, the page having
the smallest priority in M is to be evicted. We identify this page in L using
find-min on the last element in L. If we must apply forgiveness, we treat p as
being a support page in L1.

After updating the cache, we perform in L the layer updates as follows. If
p ∈ Li with i > 0, the layers are updated as follows: Li−1 = Li−1 ∪ Li \ {p},
Lj = Lj+1 for all j ∈ {i, . . . , k − 1}, and Lk = {p}. We first delete the layer
delimiter for Li and the page element for p, which triggers not only the merge
of Li−1 and Li \ {p}, but also shifts all the remaining layers, i.e. Lj = Lj+1 for
all j ≥ i. If we deleted the layer delimiter for L1, we also delete all pages in L1

because in this case L1 is merged with L0. To create Lk = {p}, we simply insert
at the end a new layer delimiter followed by p, both items having as timestamp
the current timestamp.

If p ∈ L0, we first check whether we must apply the forgiveness step, and
if so we apply it by simulating the insertion of p in L1 and then requesting
it, as described above. If forgiveness need not be applied, we update the layers
Lk−1 = Lk−1 ∪ Lk and Lk = {p} as follows. We first delete the layer delimiter
of Lk, which translates into merging Lk−1 and Lk. Then, we insert a new layer
delimiter having the timestamp of the current request, i.e. create Lk, and insert p
with the same timestamp.

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm 173

3.3 Data Structures

We implement all the operations previously introduced using two data structures:
a set structure and a page-set structure. The set structure focuses only on the
find-layer operation, and the page-set data structure deals with the remaining
operations. While most operations can be implemented using standard data
structures, i.e. balanced binary search trees, the key operation for the page-set
structure is find-zero. That is because we need to find in sublinear time the
first item to the right of an arbitrary given element having the prefix sum zero
in the presence of updates, and the item that is to be returned can be as far as
Θ(k) positions in L.

Set structure. The set structure is in charge only for the find-layer operation.
To do so, it must also support updating the layers. It is a classical balanced
binary search tree, e.g. an AVL tree, built on top of the layer delimiters in L
having as keys the timestamps of the delimiters. Whenever a layer delimiter
is inserted or deleted from L, the set structure is updated accordingly. Each
operation takes O(log k) time in the worst case.

Page-set structure. The page-set structure contains all elements of L and sup-
ports all the remaining operations required on L. We store the elements of L,
i.e. both page elements and layer delimiters, in the leaves of a regular leaf ori-
ented balanced binary search tree indexed by the timestamps. For some node u,
denote by T (u) the subtree rooted at u and by L(u) the leaves of T (u). For each
node u we store the sum su of the v-values in L(u). We also store the minimum
prefix sum value mu among all the prefix sums restricted on the elements within
L(u). More precisely, if L(u) = (p1, . . . , pm), we have mu = minm

l=1(
∑l

j=1 pj).
Finally, in each node u we also store the minimum priority of a cache page in the
subtree rooted at u. Note that if the subtree rooted at u has no cache elements
the priority field is set to infinity.

Fact 2. For each internal node u we have that mu = min(mul
, sul

+mur), where
ul and ur denote the left and right child of u respectively.

Updates. We discuss how to perform insertions and deletions in the page-set
structure. To insert an element, we first identify its location and then insert it.
It remains to update the information at the internal nodes, i.e. the sum of the
v-values, the minimum prefix-sum values and the minimum priorities. The sums
of the elements of the subtrees are easily updated in a bottom up traversal,
together with the minimum priorities, even if rotations need to be done. The
minimum prefix sum values can also be updated in a bottom up traversal using
the observation stated in Fact 2. Deleting an element in the page-set structure
is done analogously to insertion. We note however that when requesting a page
in L1 we must delete both the layer delimiter and all page elements in L1 from
the data structure which leads to O(log k) amortized time. We will show later
how to improve this bound to O(log k) worst case time for deletions as well.

174 G.S. Brodal, G. Moruz, and A. Negoescu

t
v 1 0 1−1−1 1 10 0 11−1 −1 −10 −1

5 5 8 8 112 2 4 10 13 13 15 18 2118 21

0, −10, −11, 1 1, 0 −1, −1 0, 0 0, 0

0, 01, 0 0, 0 −1, −1

1, 0 −1, −1

0, 0

−1, −1

Fig. 3. The page-set data structure for L1 = {2, 4}, L2 = {5}, L3 = {8, 10, 11},
L4 = {13, 15}, L5 = {18}, and L6 = {21}, and the memory M = {4, 10, 11, 15, 18, 21}.
For each internal node u we show the (su, mu) values.

Queries. We turn to queries supported by the page-set structure, which are
the queries required on L. The search-page operation is implemented using a
standard search in a leaf-oriented binary search tree.

To find the page element having the minimum priority in l1, . . . , lp, we first
find the value of the priority as follows. On the path from lp to the root, for each
node u we consider the minimum priority value stored at its left child if the left
child is not on the path. The priority to be returned is the smallest among these
minimums. To find the page, we traverse the tree top-down and at each node
we branch on the subtree matching the minimum priority value. Since it does a
bottom-up and a top-down traversal, this operation takes O(log k) time.

It remains to deal with the find-zero operation, where we are given some
leaf storing lp and must return the first leaf to the right which has the prefix
sum of the v-values zero. We note that the prefix sum cannot be negative, and
thus it suffices to find the first leaf to the right having the minimum prefix sum.
We do so in two steps: we first identify a subtree containing the leaf having the
minimum prefix sum in bottom-up traversal and then we identify the leaf itself
in a top-down traversal of this subtree. To identify the subtree containing the
leaf to be returned, we traverse the path from the leaf storing lp to the root while
maintaining a sum s of the v-values of the right children not on this path, and at
each node u we compute a score as follows. If the right child ur of u is not on the
path, the score of u is given by s + mur and afterwards we set s = s + sur . The
subtree we are looking for is the one having the minimum score; in case of several
subtrees having an identical score, the leftmost one, i.e. the first one encountered
on the path from the leaf to the root, is considered. To identify the leaf having
the minimum prefix sum, we do a top-down traversal of the subtree previously
computed and we use the observation stated in Fact 2 to decide which way to
branch, i.e. we branch left if mul

≤ sul
+ mur and we branch right otherwise.

This operation requires a bottom-up and a top-down traversal of the tree and
thus takes O(log k) time in the worst case.

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm 175

Worst-case bounds. The only operation taking ω(log k) time is page deletion,
more precisely when a page in L1 is requested all pages in L1 are moved to L0 and
thus should be removed from the support. Instead of deleting the set delimiter
and all the pages corresponding to L1, we delete only the set delimiter. With the
leading set delimiter removed, the list L no longer starts with a set delimiter,
but with at most O(k) elements having the v-value set to 0, since all of these
pages belong to L0 and thus cannot be cache elements. Also, these pages do not
influence the prefix sums for the v-values. When we process a page, we simply
start by checking if the leftmost element in the tree has a v-value of 0, and if
so we delete it. Since each page requests adds at most one new element to the
support, the space complexity is still O(k). This way deletions can be done in
O(log k) time in the worst case.

Each page request uses O(1) operations in both data structures. In Theorem 3
we give the time and space complexities for OnlineMin.

Theorem 3. OnlineMin uses O(k) space and processes a request in O(log k)
time in the worst case.

Acknowledgements. We would like to thank previous anonymous reviewers
for very insightful comments and suggestions. Also, we would like to thank An-
namária Kovács for useful advice on improving the presentation of the paper.

References

1. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging
algorithms. Theoretical Computer Science 234(1-2), 203–218 (2000)

2. Albers, S.: Online algorithms: a survey. Mathematical Programming 97(1–2), 3–26
(2003)

3. Bein, W.W., Larmore, L.L., Noga, J., Reischuk, R.: Knowledge state algorithms.
Algorithmica 60(3), 653–678 (2011)

4. Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM
Systems Journal 5(2), 78–101 (1966)

5. Borodin, A., El-Yaniv, R.: Online computation and competitive anlysis. Cambridge
University Press (1998)

6. Chrobak, M., Koutsoupias, E., Noga, J.: More on randomized on-line algorithms
for caching. Theoretical Computer Science 290(3), 1997–2008 (2003)

7. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. Journal of Algorithms 12(4), 685–699 (1991)

8. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms, The State of the Art (the
book grow out of a Dagstuhl Seminar (June 1996, 1998)

9. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 77–119 (1988)

10. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. In: Proc. 35th
Symposium on Foundations of Computer Science, pp. 394–400 (1994)

11. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algo-
rithm. Algorithmica 6(6), 816–825 (1991)

12. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Faster and Simpler Approximation of Stable
Matchings

Katarzyna Paluch�

Institute of Computer Science, Wrocław University

Abstract. We give a 3
2
-approximation algorithm for stable matchings

that runs in O(m) time. The previously best known algorithm by Mc-
Dermid has the same approximation ratio but runs in O(n3/2m) time,
where n denotes the number of people and m is the total length of the
preference lists in a given instance. Also the algorithm and the analy-
sis are much simpler. We also give the extension of the algorithm for
computing stable many-to-many matchings.

1 Introduction

In the paper we consider a variant of the problem called Stable Matchings,
known also in the literature as the Stable Marriage problem. The problem is
defined as follows. We are given two sets W and U of women and men. Each
woman w of W has a preference list Lw of a subset of men and similarly each
man m of U has a preference list Lm of a subset of women. The preference lists
are linearly ordered lists of ties, which are subsets of men (or resp. women),
who are equally good for a given woman (resp. man). Ties are disjoint and can
contain also one person, appropriately a man or a woman. Thus if m and m′ are
on list Lw of woman w, then either (1) w prefers m to m′ or in other words m is
better for w than m′ or (2) m and m′ are in a tie on Lw and then we say that w
is indifferent between m and m′ or that m and m′ are equally good for her or (3)
w prefers m′ to m. Man m and woman w are said to be mutually acceptable
to each other if they belong to each other’s preference lists. The most preferred
person(s) is(are) at the top the preference lists. A matching is a set of pairs
(m, w) such that m ∈ U, w ∈ W and m and w are mutually acceptable and each
man/woman belongs to at most one pair. If (m, w) belongs to a certain matching
M , then we write M(m) = w, which means that in M woman w is a partner of
m and analogously that M(w) = m. If man m (or woman w) is not contained
in any pair of a matching M , then we say that m (w) is unmatched or free
in M . A matching M is called stable if it does not admit a blocking pair. A
pair (m, w) is blocking for M if (0) m and w are mutually acceptable and (1)
m is unmatched or prefers w to M(m) and (2) w is unmatched or prefers m
to M(w). Each instance of the problem can be represented by a bipartite graph
G = (U∪W, E) with vertices U representing men, vertices W representing women
and edges E connecting all mutually acceptable pairs of men and women. The
� Supported by MNiSW grant number N N206 1723 33, 2007-2010.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 176–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Faster and Simpler Approximation of Stable Matchings 177

problem we are interested in is that of finding a stable matching that has the
largest cardinality. The version in which there are no ties in the preference lists
of men and women has been long known and an algorithm by Gale and Shapley
[4] solves it exactly in O(m) time, where m denotes the number of edges in the
underlying graph. In the version without ties a stable matching always exists
and every stable matching has the same cardinality. If we allow ties, as in the
problem we consider in this paper, then a stable matching also always exists
and can be found via the Gale/Shapley algorithm by breaking ties arbitrarily.
However, the sizes of stable matchings can vary considerably and the problem of
finding a stable matching of maximum cardinality is NP -hard, which was shown
by Manlove et al. in [13]. Therefore it is desirable to devise an approximation
algorithm for the problem.

Previous Results. Previous approximation algorithms were presented in
[13], [8], [9], [10], [11]. Currently the best approximation algorithm is by Mc-
Dermid [14] and achieves the approximation guarantee 3

2 . Its running time is
O(n3/2m), where n denotes the number of vertices and m the number of edges.
Inapproximabilty results were shown in [5], [6], [16].

Our Results. While constructing approximation algorithms the goal is not only
to achieve a good approximation guarantee but also good running time (to name
just two examples, see [1],[15]). We give a 3/2-approximation algorithm that runs
in O(m) time and additionally is significantly simpler than that of McDermid.
In devising the algorithm we were led by the observation that it suffices to find
a stable matching that will not create a dangerous path, which is defined later.
We also give the extension of the algorithm for computing stable many-to-many
matchings, which runs in O(mlogc) time, where c denotes the minimum of the
maximal capacities in each side of the bipartition. In particular it means we give
an O(m)-time algorithm for the Hospitals-Residents problem, improving on an
O(d5/2n3/2m) time algorithm given by McDermid, where d denotes the maxi-
mal capacity of a hospital. McDermid’s algorithm follows from the reduction of
the Hospitals-Residents problem to the Stable Matchings problem by "cloning"
hospitals. The approach by cloning does not work if the vertices on both sides of
the bipartition are allowed to have capacities larger than 1. Since the problems
have many practical applications (see [2], [3], [7] for example), we believe our
algorithms will be of help.

2 Algorithm

For a given instance of the problem let Mopt denote an optimal (i.e. largest)
stable matching and let M, M ′ be any two matchings. We say that e is an M -
edge if e ∈ M . A path P or a cycle C is called alternating (wrt M) if its
edges alternate between M -edges and edges of E \ M . It is well known from
matching theory (see [12] for example) that M ⊕ M ′ can be partitioned into a
set of maximal alternating paths and alternating cycles. (For two sets X, Y , the
set X ⊕Y denotes (X \Y)∪ (Y \X).) Let S denote a set of maximal alternating

178 K. Paluch

paths and cycles of M ⊕ Mopt. Consider any alternating cycle c of S or any
alternating path p of even length of S. Then both c and p contain the same
number of M -edges and Mopt-edges. Consider an alternating path p of length
2k + 1 of S. Then either |Mopt∩p|

|M∩p| = k+1
k or |M∩p|

|Mopt∩p| = k+1
k . Therefore if M is

stable and S does not contain a path of length 3 with the middle edge being an
M -edge, then |Mopt| ≤ 3

2 |M | and M is a 3
2 -approximation of Mopt. To achieve a

3
2 -approximation we will eliminate such potential paths of length 3 of M ⊕Mopt.

Accordingly we define a dangerous path wrt to a matching M to be an
alternating path P = (w, m1, w1, m) such that w and m are unmatched in M
(which means that (m1, w1) is in M and (w, m1), (w1, m) do not belong to M)
and (m1, w1) is not a blocking pair for matching M ′ = {(w, m1), (w1, m)}. Let
us notice that if P is a dangerous path, then either m1 is indifferent between
w and w1 and then we say that P is a masculine dangerous path or w1 is
indifferent between m and m1 and then we say that P is a feminine dangerous
path. A path P can of course be both a masculine and feminine dangerous path.

We also introduce the following terminology. If man m is matched to woman
w and there is at least one free woman w1 such that w and w1 are equally good
for m, then we say that w1 is a satellite of m and m is satellitic. If woman w
is matched to a satellitic man m, then we say that w is insecure. If e = (m, w)
is such that w is free and there is at least one free woman w1 such that w and
w1 are equally good for m, then e is called special. If man m has at least one
free woman incident with him, then he is said to be subsatellitic. Woman w
matched to a subsatellitic man m and not insecure is said to be uneasy wrt to
m′ if m and m′ are equally good for her.

2.1 Description of Algorithm GS Modified

Algorithm GS Modified given further on is to some extent modeled on the Gale-
Shapley algorithm in which men propose to women on their lists and women
dispose. In the course of running the algorithm preference lists Lm will diminish
and some additional lists L′

m will be built. If at some point a free man m has a
nonempty list Lm, it means that he has not yet proposed to all women on his list
Lm and potentially belongs to a blocking pair or a masculine dangerous path. If
a free man m has a nonempty list L′

m, it means that he potentially belongs to a
feminine dangerous path.

Whenever it is man m’s turn to propose and Lm = ∅, he would like to get
matched to the best possible woman on his list without creating a blocking pair
(as in GS algorithm) but also ensure that he does not belong to any masculine
dangerous path. To this end m proposes to the woman w to whom he has not
yet proposed and who is as high on Lm as possible. If w is free or matched to
someone worse for her than m, she accepts m and rejects her current partner if
she had one. If w is insecure, which means that she is matched to some man m′

such that there is a free woman w′ who is equally good for m′ as w, then it means
that m currently belongs to a masculine dangerous path (m, w, m′, w′). In this
case w does not care whether m is better for her than m′ and accepts him while
rejecting m′ and immediately afterwards m′ proposes to w′, who accepts him.

Faster and Simpler Approximation of Stable Matchings 179

This operation can be very well viewed as though m′ proposed to w′ without
having proposed to w first and some time later m proposed to w (here edge
(m′, w) was special at the moment m′ proposed to w for the first time and that’s
why if it is m′’s next turn to propose, he will propose to w again, because in
this case w was not removed from Lm′ .) To avoid multiple operations of this
kind concerning one woman we will assume that given a tie a man proposes to
unmatched women before proposing to matched ones. If a woman w, to whom
m proposes is matched to man m′ equally good for her as m and w is uneasy
wrt to m, meaning that m′ has some free women on his list, then at the current
moment m belongs to a feminine dangerous path. What happens now is that w
rejects m but m adds w to his list L′

m. (w does not accept m because m may be
subsatellitic.) In every other case w rejects m.

If man m has proposed to all women on his list Lm and remained free but
his list L′

m is nonempty, he will propose to women on L′
m starting from the top.

If he proposes to w and w is matched to some man m′ who is equally good for
her as m and additionally m′ is subsatellitic, then w accepts m and rejects m′.
Otherwise w rejects him. (Notice that if m proposes to w ∈ L′

m (this means also
that Lm = ∅), then it cannot be the case that m is better for w than M(w).)

Algorithm GS Modified

Each man m’s preference list Lm is organized in such a way that if Lm contains a tie
t, then free women in t come before matched women in t. At the beginning all women are
free and ties on men’s lists are broken arbitrarily and in the course of running the algorithm
whenever woman w becomes matched for the first time, say to man m, we move her to the end
of every tie she belongs to but the one on list Lm.

while there exists a free man m with a nonempty list Lm or a nonempty list L′
m

if Lm �= ∅, then
w ← woman at the top of m’ s list Lm

if (m, w) is not special, remove w from Lm

if w is free, then M ← M ∪ (m, w)
else if w is insecure, then

let w′ be a satellite of M(w)
if (M(w), w′) is not special, remove w′ from LM(w)

M ← M ∪ {(m, w), (M(w), w′)} \ (w, M(w))
else if w prefers m to M(w), then M ← M ∪ (m, w) \ (w, M(w))
else if w is uneasy wrt to m, then add w to the end of list L′

m
else

w ← woman at the top of m’ s list L′
m

remove w from L′
m

if w is uneasy wrt to m, then M ← M ∪ (m, w) \ (w, M(w))

First we show how Algorithm GS Modified runs on the following example.
Suppose the preference lists of men m1, m2, m3, m4 and women w1, w2, w3, w4

are as follows. The brackets indicate ties.
m1 : (w1, w2) w3

m2 : w1 w3 w4

m3 : w2 w1 w3

m4 : w3

w1 : m1 m2 m3

w2 : m3 m1 m2

w3 : m1 (m2, m4) m3

w4 : m2

180 K. Paluch

Suppose that m1 starts. m1 proposes to w1 and gets accepted ((m1, w1) is a special
edge and w2 is a satellite of m1). Now suppose that it is m2’s turn to propose.
(It might also be m3 or m4.) m2 proposes to w1 and gets accepted because w1

is insecure. m1 gets matched with w2. m3 proposes to w2 and gets accepted. m1

proposes to w1 (as (m1, w1) was a special edge) and gets accepted. m2 proposes to
w3 and gets accepted. m4 proposes to w3 and gets rejected but w3 is uneasy wrt
to m4 and m4 adds w3 to his list L′

m4
. Afterwards m4 proposes to w3 again, this

time from L′
m4

, and gets accepted. m2 proposes to w4 and gets accepted.

3 Correctness of Algorithm GS Modified

In this section we prove the correctness of Algorithm GS Modified.
If w ∈ Lm and m proposes to w, then we will sometimes say that m proposes

from Lm (to w). If Lm = ∅, w ∈ L′
m and m proposes to w, then we will sometimes

say that m proposes from L′
m (to w).

Lemma 1. 1) If woman w becomes matched, she will stay matched. 2) Woman
w can become insecure only the first time someone, say m, proposes to her and
only if at the time of proposal edge (m, w) is special. If an insecure woman w
receives a proposal, she always accepts it and is no longer insecure. 3) If woman
w is matched to man m and not insecure, she can accept man m′ only if m′ is at
least as good gor her as m. Moreover, if m′ is better for her than m, she always
accepts him. If m′ is equally good for her as m, then she accepts him, only if she
is uneasy wrt to m′ and m′ proposes from L′

m′ . 4) If woman w matched to man
m is not insecure and changes m for m′, who is equally good for her as m, then
m is subsatellitic and m′ is not.

Proof. Statements 1) and 3) follow directly from the description of Algorithm
GS Modified. 2) If w is matched and m proposes to her, then there is no free
woman w′ incident with m who is equally good for m as w (because then m
would propose to w′ before proposing to w). As a result if w becomes matched
to m she will not become insecure and she will cease to be insecure if she was
before. 4) If w changes m for m′ who is equally good for her as m (and w is not
insecure), then by the above statement m′ proposes from L′

m′ and m is subsatel-
litic. Man m′ proposing from L′

m′ does not have any free women incident with
him. �

Lemma 2. Let M denote a matching computed by Algorithm GS Modified. Then
the graph does not contain blocking pairs and dangerous paths.

Proof. Suppose that (m, w) are a blocking pair. m is either free or M(m) is
worse for him than w. It means that at some point m proposed to w from Lm

when edge (m, w) was not special. (Clearly at some point m proposed to w from
Lm. Assume that at that point edge (m, w) was special. Then w was free and
accepted m. However m got rejected later and therefore proposed to w from Lm

again, when edge (m, w) was no longer special.) If w rejected him then, then by

Faster and Simpler Approximation of Stable Matchings 181

Lemma 1 w was not insecure and matched to someone at least as good for her
as m and thus would have stayed matched to someone as good for her as m.
If w accepted m, then after getting matched to m she was not insecure and by
Lemma 1 would have stayed matched to someone at least as good for her as m.
Either way we get a contradiction.

Suppose now that the graph contains a masculine dangerous path (m′, w, m, w′)
such that m = M(w). Thus m is satellitic and w is insecure. Since she is insecure, it
means that the only proposal she ever got was from m, but m′ must have proposed
to her too, a contradiction.

Finally suppose that the graphcontains a femininedangerouspath (m′, w, m, w′)
such that m = M(w). Thus m is subsatellitic and w is uneasy wrt to m′, also m′

is not subsatellitic. At some point m′ proposed to w from Lm′ while (m, w) was
not special. If he got accepted at that moment, then later on he could not become
rejected, because by Lemma 1 after accepting m′ woman w was not insecure and
could not accept a subsatellitic man equally good for her as her current partner.
Therefore he was rejected then and w was already matched with m (by Lemma
1 3) and 4)). Hence w was uneasy wrt to m′ (because m was subsatellitic) and m′

added w to the end of list L′
m′ . Thus later m′ proposed to w from L′

m′ . According to
the algorithm w would have accepted him and could not later on become matched
to someone equally good for her as m′ and subsatellitic. Contradiction. �

Theorem 1. Algorithm GS Modified computes a stable matching M which is a 3
2 -

approximation of the optimal solution. Algorithm GS Modified runs in O(m) time.

Proof. By Lemma 2 matching M computed by Algorithm GS Modified is stable
and does not contain dangerous paths. Therefore M is a 3

2 - approximation of
the optimal solution.

The running time of the algorithm is proportional to the total length of lists
Lm and L′

m. Each edge of Lm is scanned at most twice - twice, only if the first
time it was scanned, it was special and each edge of L′

m is scanned at most
once. �

Let us finally make the following remark.
If we break ties and run the classic Gale/Shapley algorithm, then the cardi-

nality of the computed matching depends on the order in which we break ties.
Algorithm GS Modified outputs a matching that would have been output by the
GS algorithm if ties were broken as follows. Men’s lists would be identical to
those at the end of Algorithm GS Modified but for one thing: if at some point of
running Algorithm GS Modified man m proposes to an insecure woman w and as
a result m gets matched to w and w’s partner M(w) gets matched to his satellite
w′, then a tie on LM(w) would be broken in such a way that w′ comes before w.
Every tie t on a woman w’s list would be first broken into (m1, m2, . . . , ms) in
such a way that m1 denotes the first man of t to whom w got matched without
becoming insecure and assuming that it happened at some step S, m2 denotes
the first man of t who proposed to w after step S, m3 denotes the second man of
t, who proposed to w after step S and so on. Next we would make the following
alterations on women’s lists: if at some point man m ∈ F proposes to an uneasy

182 K. Paluch

woman w matched to M(w), then a tie on Lw would be broken in such a way
that m comes before M(w).

4 Extension to Stable b-Matchings

Suppose we have a bipartite graph G = (V, E), where V = U ∪ W and U, W
are disjoint sets, and a function b : V → N . Then a subset M ⊆ E is called a
b-matching if for each v ∈ V it is degM (v) ≤ b(v), where degM (v) denotes the
degree of vertex v in a graph GM = (U ∪ W, M). We will call vertices of U - U -
agents and vertices of W - W -agents and vertices of U∪W - agents. Each U -agent
u of U has a preference list Lu of a subset of W -agents and analogously each W -
agent w has a preference list Lw of a subset of U -agents. The preference lists are
linearly ordered lists of ties. The majority of the terminology for stable matchings
goes through for stable b-matchings. Instead of saying that some agent or vertex
is free we will use the term unsaturated: agent v is unsaturated in a b-matching
M if degM (v) < b(v) and if degM (v) = b(v), then we will say that v is saturated.
For any agent v by M(v) we will denote the set {w ∈ U∪W : (v, w) ∈ M}. A pair
(u, w) is blocking for a b-matching M if (0) u and w are mutually acceptable
and (1) u is unsaturated or prefers w to one of W -agents of M(u) and (2) w is
unsaturated or prefers u to one of U -agents of M(w). A b-matching M is said
to be stable if it does not admit a blocking pair. As previously we are interested
in finding a stable b-matching of largest size. Let us also note that if for each
u in U we have b(u) = 1, then the problem is known under the name of the
Hospitals-Residents problem or one-to-many stable matching problem.

Alternating paths and cycles are defined for b-matchings in an analogous way
as for matchings but we do not require paths and cycles to be simple, i.e. an
alternating path P wrt a b-matching M is defined as any sequence of edges
{(v1, v2), (v2, v3), . . . , (vk−1, vk)} such that the edges alternate between M -edges
and edges of E \ M and an alternating cycle C wrt M is defined as an
alternating path (wrt M) that ends and begins with the same vertex, i.e. the
sequence of edges has the form {(v1, v2), (v2, v3), . . . , (vk−1, v1)}. As before for
any two b-matchings M, M ′, a symmetric difference M ⊕M ′ can be partitioned
into alternating paths and cycles. A given stable b-matching M might be not a
3/2-approximation of Mopt, where Mopt denotes a stable b-matching of maximum
size, if the graph contains a dangerous path defined as follows. If M is a stable
b-matching, then a path P = (w, u1, w1, u) is called dangerous if (u1, w1) is in
M , (w, u1), (w1, u) are not in M , w and u are unsaturated, u1, w1 are saturated
and (u1, w1) is not a blocking pair for a b-matching M ′ = (M \ (u1, w1)) ∪
(w, u1) ∪ (w1, u). Since (w, u1) is not blocking for M , w is not better for u1

than any of the W -agents he is currently matched with and analogously u is not
better for w1 than any of the U -agents he is currently matched with. Thus if P
is dangerous, then either w, w1 are equally good for u1 and then P is called a
masculine dangerous path, or u, u1 are equally good for w1 and then P is
called a feminine dangerous path.

Faster and Simpler Approximation of Stable Matchings 183

An approximation algorithm for stable b-matchings is constructed analogously
to the algorithm for stable matchings. U -agents play the role of men and W -
agents play the role of women. For convenience we shall refer to a U -agent as
"he" and to a W -agent as "she". We adapt the terminology from the one-to-one
setting to the current one as follows. If a U -agent u is matched with a W -agent
w and there is at least one unsaturated W -agent w1 such that w and w1 are
equally good for u, then we say that w1 is a satellite of u wrt w and u is
satellitic wrt w. W -agent w matched to a U -agent u satellitic wrt w is said to
be insecure. If e = (u, w) is such that w is unsaturated and there is at least
one unsaturated W -agent w1 such that w and w1 are equally good for u, then
e is called special. If U -agent u has at least one unsaturated W -agent incident
with him, then he is called subsatellitic. A saturated W -agent w matched to
a subsatellitic man u and not insecure is said to be uneasy wrt u′ if u and u′

are equally good for her. By the worst U-agent matched with a W -agent
w we will man any U -agent in u ∈ M(w) such that there is no other U -agent
u′ ∈ M(w) who is worse for w than u.

Algorithm ASBM (short for Approximate Stable b-Matching)

Each U-agent u’s preference list Lu is organized in such a way that if Lu contains a
tie t, then unsaturated W -agents in t come before saturated W -agents in t. At the beginning
all W -agents are unsaturated and ties on U-agents’s lists are broken arbitrarily and in the
course of running the algorithm whenever W -agent w becomes matched for the first time, say
to U-agent u, we move her to the end of every tie she belongs to but the one on list Lu.

while there exists an unsaturated U-agent u with a nonempty list Lu or a nonempty list L′
u

if Lu �= ∅, then
w ← W -agent at the top of u’ s list Lu

if (u, w) is not special, then remove w from Lu

if w is unsaturated, then M ← M ∪ (u, w)
else if w is insecure, then

let w′ be a satellite of a U-agent u′ ∈ M(w) wrt to w
if (u′, w′) is not special, remove w′ from Lu′
M ← M ∪ {(u, w), (u′, w′)} \ (w, u′)

else if w prefers u to the worst U-agent in M(w), then
let u′ denote the worst U-agent matched with w who

is
subsatellitic, if such one exists;
otherwise let u′ denote any worst U-ag. matched with

w
M ← M ∪ (u, w) \ (w, u′)
if w is uneasy wrt to u′, then add w to the end of

list L′
u′

else if w is uneasy wrt u, then add w to the end of list L′
u.

else
w ← W -agent at the top of u’ s list L′

u
remove w from L′

u
if w is uneasy wrt to u, then

let u′ denote a subsatellitic U-agent in M(w)
equally good for w as u
if w is uneasy wrt to u′, add w to the end of L′

u′
M ← M ∪ (u, w) \ (w, u′)

184 K. Paluch

4.1 Data Structures and Running Time

Each agent a (either a U -agent or W -agent) has a preference list La, which is a
list of lists i.e. we have a list for each tie. For each list we have the acces to both
its first and last element.

Each agent has a pointer to their position in every tie (1-element list is here
also considered a tie) they belong to. Whenever W -agent w gets saturated for
the first time, w goes over her whole list Lw and moves herself to the end of
every tie she belongs to but the one, as explained in the algorithm ASBM. This
operation takes O(|Lw|) time.

Every W -agent w stores information about U -agents currently matched with
w in a priority queue. U -agents matched with w who are equally good for w are
kept in one list, thus the priority queue contains lists. This way checking by w if
there exists a U -agent u′ ∈ M(w) such that w prefers some given u to u′ takes
O(log b(w)) time.

Each U -agent u has the counter of the number of unsaturated W -agents in-
cident with him and whenever a saturated W -agent moves herself to the end of
the ties, U -agents also decrease respective counters. Therefore checking if u is
subsatellitic takes constant time.

Each W -agent w has a separate list Sw of satellitic U -agents wrt w matched
with w. Every time w gets matched to some new U -agent u, who is satellitic wrt
w, w adds u to Sw. When we want to check if w is insecure, we go over Sw and
for each u ∈ Sw check if u is still satellitic wrt to w . If u is not satellitic wrt
to w, we remove u from Sw, otherwise we do an appropriate exchange. Once u
is removed from Sw, he will not be added to Sw again. It is so since once u has
no unsaturated W -agents equally good for him as w on his list, it will stay so.
Hence the overall time Algorithm ASBM spends on Sw is O(|U |).

Every list in the priority queue of U -agents matched with w is organized in
such a way that subsatellitic U -agents proceed U -agents that are not subsatel-
litic. Whenever a U -agent u ceases to be subsatellitic we move him to the end
of every list in every priority queue he is in. Moving u to the end of every such
list takes O(

∑
w∈M(u) log(b(w)) time. Every u ceases to be subsatellitic at most

once in the course of running the algorithm. This way to see if w is uneasy wrt u,
we look at the list containing u in the priority queue and see if the first U -agent
on this list is subsatellitic.

Every U -agent u makes a proposal to every W -agent on Lu at most twice and
to every W -agent on L′

u at most once.
Summing all the arguments together, we get that the running time of Algo-

rithm ASBM is O(m min{1, logmax{b(w) : w ∈ W}}), where m denotes the
number od edges in G. If max{b(v) : u ∈ U} < max{b(w) : w ∈ W} then we can
swap the roles of U -agents and W -agents. Therefore we can state.

Theorem 2. The running time of Algorithm ASBM is O(m min{1, log c}),
where c = min{max{b(v) : v ∈ U}, max{b(v) : v ∈ W}} and m denotes the
number of the edges.

Faster and Simpler Approximation of Stable Matchings 185

5 Correctness of Algorithm ASBM

The correctness of Algorithm ASBM is proved in a very similar way as the
correctness of Algorithm GS Modified.

Lemma 3. 1) If W -agent becomes saturated, she will stay saturated. 2) An in-
secure W -agent w accepts every proposal. Once a saturated W -agent is not in-
secure, she cannot become insecure later. 3) A W -agent w matched with u can
reject u only if w is saturated and a) u is satellitic wrt to w (w is insecure)
or b) w is not insecure and u is the worst U -agents currently matched with w
and w receives a proposal from u′, who is better for w than u or c) w is not
insecure and u is (one of) the worst U -agents currently matched with w and u
is subsatellitic and w is uneasy wrt to u′ who proposes from L′

u′ 4) A saturated
W -agent w and not insecure can accept a U -agent u only if u′ is at least as good
for w as the worst U -agent u ∈ M(w); moreover if u′ is equally good for w as
u, then w accepts u′ only if w is uneasy wrt to u′ and u′ proposes from L′

u′ .

The proof is very similar to that of Lemma 1 and follows directly from the
description of Algorithm ASBM.

Theorem 3. Let M denote a b-matching computed by Algorithm ASBM. Then
M is a 3/2-approximation of an optimal stable b-matching.

Proof. We will show that the graph does not contain blocking pairs and dan-
gerous paths.

Suppose that (u, w) are a blocking pair. u is either unsaturated or there exists
w′ ∈ M(u) worse for u than w. It means that at some point u proposed to w
from Lu when edge (u, w) was not special. If u’s proposal to w was rejected, then
at that point w was saturated and not insecure and the worst u′ ∈ M(w) was at
least as good as u for w (by Lemma 3) and thus (also by Lemma 3 4)) w could
not later become matched to some u′′ who is worse for w than u. Therefore u
got accepted then and later got rejected. Since at the moment of that proposal
edge (u, w) was not special, u was not satellitic wrt to w (and clearly could not
become satellitic later.) By Lemma 3 3) at the moment of rejecting u W -agent
w was not insecure and the worst U -agent matched with w was u. Therefore by
Lemma 3 4) w could not later become matched to some u′′ who is worse for her
than u. A contradiction.

Suppose now that the graph contains a masculine dangerous path (u′, w, u, w′)
such that u ∈ M(w). Thus u is satellitic wrt to w and w is insecure. It means that
at some point u proposed to w from Lu when edge (u, w) was not special. Then
w was either insecure, because she is insecure now, or unsaturated. Therefore
u got accepted. Later on he was clearly rejected. However by Lemma 3 3) and
the description of the algorithm ABSM, it is impossible because an insecure w
rejects only satellitic wrt to w U -agents.

Finally suppose that the graph contains a feminine dangerous path (u′, w, u, w′)
such that u ∈ M(w). Thus w is uneasy wrt to u′ and u is subsatellitic. At some

186 K. Paluch

point u′ proposed to w from Lu′ when edge (u, w) was not special. If he got re-
jected then, then w was not insecure and the worst U -agent u′ she was matched
with was equally good for her as u. By Lemma 3 4) at that point w was un-
easy wrt to u′ and u′ added w to the end of list L′

u′ . If he got accepted at that
point, then later he was rejected and also had to add w to the end of list L′

u′ .
When u′ proposed to w from L′

u′ , w was still uneasy wrt to u′ (because w is
uneasy wrt to u′ now), hence u′ was accepted (because u′ proposing from L′

u′

is subsatellitic) and could not get rejected later if there were still subsatellitic
U -agents matched with w, who were equally good as u′ for w. A contradiction. �

Acknowledgements. I would like to thank an anonymous referee for many
helpful comments.

References

1. Archer, A., Williamson, D.P.: Faster approximation algorithms for the minimum
latency problem. In: Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2003, pp. 88–96 (2003)

2. Abdulkadiroglu, A., Pathak, P.A., Roth, A.E.: Strategy-proofness versus Efficiency
in Matching with Indifferences: Redesigning the NYC High School Match. Ameri-
can Economic Review 99(5), 1954–1978 (2009)

3. Erdil, A., Haluk, E.: What’s the Matter with Tie-Breaking? Improving Efficiency
in School Choice, Working Paper, Department of Economics, University of Oxford
(2007)

4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly 69, 9–15 (1962)

5. Halldorsson, M.M., Irving, R.W., Iwama, K., Manlove, D., Miyazaki, S., Morita,
Y., Scott, S.: Approximability results for stable marriage problems with ties. Theor.
Comput. Sci. 306(1-3), 431–447 (2003)

6. Halldorsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxima-
tion results for the stable marriage problem. ACM Transactions on Algorithms 3(3)
(2007)

7. Irving, R.W., Manlove, D.: Finding large stable matchings. ACM Journal of Ex-
perimental Algorithmics 14 (2009)

8. Iwama, K., Miyazaki, S., Okamoto, K.: A (2−c log n
n

)-Approximation Algorithm for
the Stable Marriage Problem. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004.
LNCS, vol. 3111, pp. 349–361. Springer, Heidelberg (2004)

9. Iwama, K., Miyazaki, S., Yamauchi, N.: A (2 − c 1√
(n)

)-Approximation Algorithm

for the Stable Marriage Problem. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS,
vol. 3827, pp. 902–914. Springer, Heidelberg (2005)

10. Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875 - approximation algorithm for the
stable marriage problem. In: Bansal, N., Pruhs, K., Stein, C. (eds.) Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, pp. 288–297. SIAM, New Orleans (2007)

11. Kiraly, Z.: Better and Simpler Approximation Algorithms for the Stable Marriage
Problem. Algorithmica 60(1), 3–20 (2011)

Faster and Simpler Approximation of Stable Matchings 187

12. Lovasz, L., Plummer, M.D.: Matching Theory. Ann. Discrete Math. 29 (1986)
13. Manlove, D., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of

stable marriage. Theor. Comput. Sci. 276(1-2), 261–279 (2002)
14. McDermid, E.: A 3/2-Approximation Algorithm for General Stable Marriage. In:

Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 689–700. Springer, Heidelberg (2009)

15. Mehlhorn, K.: A Faster Approximation Algorithm for the Steiner Problem in
Graphs. Inf. Process. Lett. 27(3), 125–128 (1988)

16. Yanagisawa, H.: Approximation algorithms for stable marriage problems, PhD the-
sis, Kyoto University, Graduate School of Informatics (2007)

Simpler 3/4-Approximation Algorithms

for MAX SAT

Anke van Zuylen

Max Planck Institute for Informatics,
66123, Saarbücken, Germany

anke@mpi-inf.mpg.de

Abstract. We consider the recent randomized 3
4
-algorithm for MAX

SAT of Poloczek and Schnitger. We give a much simpler set of proba-
bilities for setting the variables to true or false, which achieve the same
expected performance guarantee. Our algorithm suggests a conceptually
simple way to get a deterministic algorithm: rather than comparing to an
unknown optimal solution, we instead compare the algorithm’s output
to the optimal solution of an LP relaxation. This gives rise to a new LP
rounding algorithm, which also achieves a performance guarantee of 3

4
.

1 Introduction

The maximum satisfiability problem (MAX SAT) is a fundamental NP-hard
problem. Given a set of variables, x1, . . . , xn, and a set of weighted disjunctive
clauses C1, . . . , Cm of literals, where a literal is either a variable xi or its negation
x̄i, we want to find a truth assignment to the variables that maximizes the weight
of the satisfied clauses.

Let W be the weight of all clauses. A simple approximation algorithm for
MAX SAT sets each variable to true with probability 1

2 ; by linearity of expec-
tation, the expected weight of the satisfied clauses is at least 1

2W , and, hence,
this is a randomized 1

2 -approximation algorithm. This algorithm can be deran-
domized using the method of conditional expectation, which gives rise to the
following algorithm: Consider the variables one at a time. For a clause Cj with
weight wj that is not yet satisfied by the assignment of the variables consid-
ered so far, let cj be the number of variables occurring in Cj for which the
truth assignment has not yet determined. Define the modified weight of Cj as
μ(Cj) = wj

(
1
2

)cj
. Note that this is the expected weight of clause Cj that is not

satisfied, if the remaining variables are set to true with probability 1
2 . We now

set the next variable xi to true if the modified weight of the clauses containing
xi is greater than or equal to the modified weight of the clauses containing x̄i,
and to false otherwise. This deterministic algorithm is due to Johnson [6] and
is known as Johnson’s algorithm. The fact that it can be interpreted as the de-
randomization of the randomized algorithm that sets each variable to true with
probability 1

2 was noted by Yannakakis [9]. Chen, Friesen and Zhang [2] showed
that the approximation ratio of the derandomized algorithm is in fact 2

3 ; see also
Engebretsen [4] for a simplified analysis.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 188–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simpler 3/4-Approximation Algorithms for MAX SAT 189

Better approximation algorithms are known, both for the general case and for
certain special cases, but until recently, all of these used the optimal solution to
a linear program or semidefinite program. See for example Yannakakis [9] and
Goemans and Williamson [5]. The best known approximation algorithm is due
to Avidor, Berkovitch and Zwick [1] and achieves a guarantee of 0.7968.

Very recently, Poloczek and Schnitger [8] gave the first approximation algo-
rithm with performance guarantee 3

4 that is purely combinatorial. They define a
randomized variant of Johnson’s algorithm, which sets variable xi to true or false
with probability proportional to the modified weight of the clauses containing xi

and x̄i respectively. They then show how to slightly modify these probabilities
so that the expected weight of the clauses satisfied by the algorithm is at least
3
4 of the weight of the optimal solution.

The probabilities determined by the algorithm are rather complicated, and
they depend on previous decisions by the algorithm. Derandomization of this
algorithm seems therefore highly non-trivial. In fact, Poloczek [7] shows that,
under certain assumptions, no deterministic variant of the algorithm of Poloczek
and Schnitger [8] can achieve the same guarantee: Poloczek shows that no de-
terministic adaptive priority algorithm can achieve an approximation ratio of 3

4 .
Priority algorithms are a formalization of greedy algorithms, and need to make
an irrevocable decision when a data item is revealed. In the setting considered
by Poloczek, a data item is the name of a variable, say x; the set of clauses that
contain the variable x; and for each such clause, the data item contains the sign
of x in the clause, the weight, and the other variables appearing in the clause
(but not whether these appear negated or not). Based on this information, the
algorithm has to decide whether to set x to true or false. In an adaptive priority
algorithm, the algorithm may adaptively change the order in which it considers
the data items, but when the data item corresponding to variable x is revealed,
it still needs to irrevocably determine the value of x.

It may however still be the case that a deterministic variant, which is not
an (adaptive) priority algorithm, achieves a guarantee of 3

4 . In this paper, we
give a simple expression for the probability with which to set the next variable
to true or false, which gives the same performance guarantee as the algorithm
of Poloczek and Schnitger [8]. Our probabilities are not necessarily the same as
those given by Poloczek and Schnitger [8], but they do satisfy the inequalities
that are required for their analysis (and, by extension, our version of the analysis)
to hold. Although the expression of the probabilities is simple, the probabilities
still depend on the past decisions made by the algorithm, and, hence, the question
whether this algorithm can be derandomized remains non-trivial. However, if
we allow our algorithm to use linear programming, derandomization becomes
relatively straightforward. Our second result is therefore a new deterministic LP
rounding algorithm, which achieves an approximation ratio of 3

4 .
The remainder of this paper is structured as follows: we begin in Section 2

by introducing the notion of a potential function, which is implicitly used in
the analysis of Poloczek and Schnitger. We summarize some key ideas of their
analysis in terms of the potential function. We then give a new randomized

190 A. van Zuylen

algorithm which has very simple probabilities of setting the next variable to true
or false, and we prove that it satisfies the conditions derived in Section 2. Our new
algorithm suggests a conceptually simple way to get a deterministic algorithm:
rather than comparing to an unknown optimal solution, we can instead compare
the algorithm’s output to the optimal solution of an LP relaxation. This gives
rise to the new rounding algorithm described in Section 4.

2 Analysis with a Potential Function

Let the input be a set of variables x1, . . . , xn, and a set of disjunctive clauses
C1, . . . , Cm with weights w1, . . . , wm ≥ 0, where the literals in the clauses are
variables or their negation. Let W =

∑m
j=1 wj . The algorithms we consider

iteratively determine the value (either 1 (true) or 0 (false)) to which we set
variables x1, . . . , xn, and our aim is to prove that the expected weight of the
satisfied clauses is at least 3

4 times the weight of the optimal assignment.
For a given index i, let SAT (i) be the weight of the clauses that are satisfied

by the algorithm’s values for x1, . . . , xi, and let UNSAT (i) be the weight of
the clauses which contain only x1, . . . , xi, or their negations, and that are not
satisfied by the chosen values. Suppose we have already determined the assign-
ment for x1, . . . , xi−1, and the algorithm now fixes the assignment for xi. Then
SAT (i)− SAT (i − 1) is the weight of the clauses that become satisfied by the
algorithm’s assignment for xi (and that were not already satisfied by the assign-
ment for x1, . . . , xi−1), and UNSAT (i) − UNSAT (i − 1) is the weight of the
clauses that become unsatisfiable by the assignment to xi. If for all i, we could
determine an assignment such that

(SAT (i)− SAT (i− 1))− 3(UNSAT (i)− UNSAT (i− 1)) ≥ 0, (1)

then this would imply a 3
4 -approximation algorithm: Note that

∑m
i=1

(
(SAT (i)−

SAT (i−1))−3(UNSAT (i)−UNSAT (i−1))
)
= SAT (n)−3UNSAT (n), where

SAT (n) is the weight of the clauses satisfied by the algorithm’s solution, and
UNSAT (n) is the weight of the clauses that the algorithm does not satisfy, i.e.
UNSAT (N) = W −SAT (n). So we would get that SAT (n)−3(W −SAT (n)) ≥
0, or SAT (n) ≥ 3

4W .
There does not always exist an assignment to i such that (1) holds, but

note that we only need the inequality to hold, summed over all i. We there-
fore introduce the idea of a potential function Φ. This idea is implicit in the
analysis of Poloczek and Schnitger [8]. One can think of Φ as a “bank ac-
count” for the algorithm. In the course of the algorithm, we may add or re-
move some amount to the potential function to allow us to satisfy the inequality
(SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1)) ≥ 0.

More precisely, let Φ(i) be the value of the potential function after determining
the truth assignment of variable xi (where Φ(0) is the potential function at the
start of the algorithm). Let OPT be the weight of the satisfied clauses in an

Simpler 3/4-Approximation Algorithms for MAX SAT 191

optimal solution. The potential function Φ, combined with the algorithm, must
satisfy the following three properties:

(i) Φ(0) ≤ 3(W −OPT);
(ii) Φ(n) ≥ 0;
(iii) For each variable xi, the algorithm (randomly) determines a truth assign-

ment to xi such that

E
[
SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1))

]
≥ E

[
Φ(i)− Φ(i − 1)

]
.

If we have a potential function Φ with an algorithm that together satisfy these
three properties, then E

[
SAT (n)− 3(W − SAT (n))

]
≥ Φ(n)−Φ(0) ≥ −Φ(0) ≥

3(OPT −W), which gives E
[
SAT (n)

]
≥ 3

4OPT .
We remark that the potential functions in this paper will in fact have Φ(0) =

2(W −OPT), which is less than what is allowed by (i), but that increasing it to
3(W −OPT) does not help in our analysis.

2.1 Poloczek and Schnitger’s Potential Function

Poloczek and Schnitger [8] do not explicitly define the idea of a potential func-
tion, but their analysis implicitly uses the following potential function. Let
xi = x∗

i for i = 1, . . . , n be an optimal solution, where each x∗
i is either 1 (true)

or 0 (false). Let xa
i be the truth assignment to xi by the algorithm’s solution, if

xi has already been determined. Let “time i” be the time when the algorithm
has determined the truth assignment to x1, . . . , xi. We’ll say a clause is alive at
time i if it contains some literal from {xi+1, . . . , xn}, and it is not (yet) satisfied
by setting x1 = xa

1 , . . . , xi = xa
i . We’ll say a live clause is contradictory at time i

if it is not satisfied by setting x1 = xa
1 , . . . , xi = xa

i according to the algorithm’s
solution, and xi+1 = x∗

i+1, . . . , x
∗
n. We will make sure that at any point in time

Φ(i) is (at least) twice the weight of the clauses that are alive and contradictory
at time i. Note that we thus have the Φ(0) = 2(W −OPT).

Let Wi,W i be the weight of the clauses that are alive at time i − 1 and
contain xi and x̄i respectively, but do not contain xi+1, . . . , xn. Let Fi, F i be the
weight of the remaining clauses that are alive at time i− 1 and that contain xi

and x̄i respectively. We note that Wi,W i, Fi, F i are random variables that are
determined by the algorithm’s decisions for x1, . . . , xi−1. Let 1A be the indicator
function that is 1 if A holds and 0 otherwise. A contradictory clause at time
i − 1 is not contradictory at time i when it is no longer alive at time i because
either it becomes satisfied or it has no literals in xi+1, . . . , xn. We can thus lower
bound the weight of the contradictory clauses that are alive at time i − 1 and
not alive at time i by Wi1{x∗

i =0} +W i1{x∗
i=1}.

On the other hand, the only clauses that can become contradictory when going
from time i−1 to time i are clauses that are alive at time i−1 and at time i, that
contain either xi or x̄i, and for which the algorithm’s setting for xi is not the same
as the setting in the optimal solution. Hence we can upper bound the weight of
the clauses that become contradictory by 1{x∗

i=0}1{xi=1}F i+1{x∗
i =1}1{xi=0}Fi.

192 A. van Zuylen

We thus have that

Φ(i)− Φ(i− 1) ≤ 2
(
−Wi + 1{xi=1}F i

)
1{x∗

i=0} + 2
(
−W i + 1{xi=0}Fi

)
1{x∗

i=1}.

We note that the expression E
[
c′ − c

]
in the analysis of Poloczek and Schnitger

[8] is equal to E
[
Φ(i)− Φ(i − 1)

]
, and that a similar inequality is given in their

Lemma 2.2.
On the other hand,

SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1))

= 1{xi=1}(Wi + Fi − 3W i) + 1{xi=0}(W i + F i − 3Wi)

Let p be the probability that the algorithm set xi to 1. Then, in order to satisfy
property (iii), we need:

p(Wi + Fi − 3W i) + (1− p)(W i + F i − 3Wi)

− 2
(
−Wi + pF i

)
1{x∗

i=0} − 2
(
−W i + (1− p)Fi

)
1{x∗

i=1} ≥ 0. (2)

3 A New Combinatorial Randomized Algorithm

In the following lemma and its proof, we will define c
0 =∞ if c ≥ 0 and c

0 = −∞
if c < 0.

Lemma 1. Consider the randomized algorithm that iteratively determines the
assignment to x1, . . . , xn as follows: Given the assignment of x1, . . . , xi−1, let
Wi,W i be the weight of the clauses that are not yet satisfied and contain xi

and x̄i respectively, but do not contain xi+1, . . . , xn. Let Fi, F i be the weight
of the remaining clauses that are not yet satisfied and that contain xi and x̄i

respectively. Let α = Wi+Fi−W i

Fi+F i
, and let xi be set to 1 with probability

p =

⎧⎨⎩0 if α ≤ 0,
α if α ∈ (0, 1),
1 if α ≥ 1.

Then the expected weight of the clauses satisfied by the algorithm is at least
3
4OPT .

Proof. We will show that inequality (2) holds, by giving a lower bound B on

2
(
Wi − pF i

)
1{x∗

i =0} + 2
(
W i − (1− p)Fi

)
1{x∗

i=1}, (3)

in the case when α ≤ 0, α ≥ 1 and α ∈ (0, 1), and showing that for each of these
cases, p(Wi + Fi − 3W i) + (1 − p)(W i + F i − 3Wi) +B ≥ 0.

We first consider the case when α ≤ 0, i.e., when Wi + Fi ≤W i. Then p = 0
andWi−pF i = Wi ≤W i−Fi = W i−(1−p)Fi, so (3) is at least 2Wi−pF i = 2Wi.
Therefore, the lefthand side of (2) is at leastW i+F i−3Wi+2Wi = W i+F i−Wi.

Simpler 3/4-Approximation Algorithms for MAX SAT 193

Note that this cannot be negative, since combined with Wi + Fi −W i ≤ 0 this
would give Fi + F i < 0.

If α ≥ 1, then Wi+Fi−W i ≥ Fi+F i, i.e., Wi−F i ≥W i. Since p = 1, (3) is
at least 2W i. So the lefthand side of (2) is at least Wi+Fi−W i and this cannot
be negative, as this would imply Fi+F i < 0 by the fact that W i+F i−Wi ≤ 0.

Finally, if α ∈ (0, 1), then we have that p = α and, by definition of α, −Wi +
pF i = −W i +(1− p)Fi. Hence, the quantity in (3) does not depend on whether
x∗
i is zero or one, since it is either 2Wi − 2pF i or 2W i − 2(1 − p)Fi which are

equal. Thus (3) is also equal to p(2Wi − 2pF i) + (1 − p)(2W i − 2(1 − p)Fi).
Plugging this into (2) gives

p(Wi + Fi − 3W i) + (1 − p)(W i + F i − 3Wi)+

2p(Wi − pF i) + 2(1− p)(W i − (1− p)Fi)

=(6p− 3)Wi − (6p− 3)W i + (5p− 2p2 − 2)Fi − (2p2 + p− 1)F i

=(2p− 1)(3Wi + (1− p)Fi − 3W i − pF i + Fi − F i)

=(2p− 1)(2Wi + Fi − 2W i − F i),

where the first two equalities follow by rearranging terms, and the last equality
uses the fact that Wi + (1− p)Fi = W i + pF i. Now, either p ≥ 1

2 in which case

2p − 1 ≥ 0 and 2Wi + Fi ≥ 2Wi + 2(1 − p)Fi = 2W i + 2pF i ≥ 2W i + F i, so
2Wi + Fi − 2W i − F i ≥ 0. Otherwise, p < 1

2 , in which case 2p− 1 < 0 and also

2W̄i + F i > 2Wi + Fi. Hence in either case the inequality (2) holds. �

Remark 2. Let α be defined as in Lemma 1. If we let

p =

⎧⎨⎩
0 if α ≤ 1

3 ,
α if α ∈ (13 ,

2
3),

1 if α ≥ 2
3 ,

then the expected weight of the clauses satisfied by the algorithm is also at least
3
4OPT .

Proof. We only need to verify that inequality (2) holds for this choice of p, if
α ∈ (0, 13] or if α ∈ [23 , 1). If α ∈ (0, 13] then p = 0, and we note that Wi − pF i ≥
Wi−αF i = W i−(1−α)Fi ≥W i−(1−p)Fi. Hence (3) is at least 2W i−2(1−p)Fi,
and therefore the lefthand side of (2) is at least

W i + F i − 3Wi + 2W i − 2Fi.

Now, note that 3W i+F i ≥ 3W i+3αF i = 3Wi+3(1−α)Fi ≥ 3Wi+2Fi hence
(2) holds.

Similarly, if 2
3 ≤ α < 1, then setting p = 1 will give that (3) is at least

2Wi − 2F i, and hence the lefthand side of (2) is at least 3Wi + Fi − 3W i − 2F i

and this is nonnegative by the fact that α ≥ 2
3 . �

Note that one way to view an iteration of the algorithm is as a 2-player-zero-sum
game. We get to choose p, our probability of playing xi = 1, and the opponent

194 A. van Zuylen

gets to choose q, which is the optimum’s probability of playing xi = 1. We are
trying to maximize

p(Wi+Fi−3W i)+(1−p)(W i+F i−3Wi)+2(1−q)(Wi−pF i)+2q(W i−(1−p)Fi)

and the opponent is trying to minimize this quantity. We show that the value
of this game is nonnegative by showing that there exists a randomized strategy
p such that for any strategy q the outcome is nonnegative. When Wi + Fi <
W i then W i − (1 − p)Fi ≥ Wi − pF i for any p ≥ 0, and hence q = 0 is an
optimal strategy for the opponent. It is easily verified that, given q = 0, p = 0
is an optimal strategy for the algorithm. Similarly, when W i + F i < Wi, then
q = 1, p = 1 are a pair of optimal strategies. In all other cases, the proof of
Lemma 1 shows that q = (1− p) is an optimal strategy for the opponent, given
our strategy.

Note that we thus achieve an expected non-negative value even if we allow
fractional values q ∈ [0, 1]. Hence, our algorithm achieves at least 3

4 of the weight
of any fractional assignment as well; something that was recently shown by
Poloczek [7] for the algorithm in [8].

In fact, allowing the opponent to use fractional assignments makes it easy
to derandomize the algorithm: we can compute the optimum’s probability q
of playing xi = 1 by solving a linear program. Given this information, there
exists a pure strategy p that achieves a nonnegative value. This gives rise to the
deterministic algorithm in the next section.

4 A New Deterministic LP Rounding Algorithm

Let qi be the variable in the linear program corresponding to the decision xi = 1,
and let zj be a variable corresponding to the j-th clause, and let wj be the weight
of the j-th clause. We let Pj be the indices of the literals i such that xi appears
in the clause, and Nj the indices of the literals such that x̄i appears in the clause.
Then the linear programming relaxation is:

min
∑
j

wjzj

s.t.
∑
i∈Pj

qi +
∑
i∈Nj

(1 − qi) ≥ zj for j = 1, . . . ,m

0 ≤ zj ≤ 1 for j = 1, . . . ,m

0 ≤ qi ≤ 1 for i = 1, . . . , n

For ease of notation, we again define c
0 =∞ if c ≥ 0 and c

0 = −∞ if c < 0.

Lemma 3. Let q∗ be an optimal LP solution, with objective value OPTLP . Us-

ing the parameters defined in Lemma 1, let α again be defined as Wi+Fi−W i

Fi+F i
,

and let xi be set to 1 with probability

p =

{
0 if α ≤ 0, or if α ∈ (0, 1) and q∗i < (1− α)/2α
1 if α ≥ 1, or if α ∈ (0, 1) and q∗i ≥ (1− α)/2α.

Simpler 3/4-Approximation Algorithms for MAX SAT 195

Then the weight of the clauses satisfied by the algorithm is at least 3
4OPTLP .

Proof. We’ll again say a clause is alive at time i if it contains some literal from
{xi+1, . . . , xn}, and it is not satisfied yet by the algorithm’s solution on x1, . . . , xi.
We will say the contradictory weight of a live clause j at time i is wj(1 −
min

{
1,
∑

i′∈Pj :i′≥i q
∗
i′ +

∑
i′∈Nj:i′≥i(1 − q∗i′)

}
).

We define the potential function Φ(i) to be twice the contradictory weight
of the live clauses. Initially, Φ(0) = 2(W − OPTLP) ≤ 2(W − OPT), since all
clauses are alive at time 0, and the contradictory weight of clause j at time 0 is
wj(1 − zj).

We now consider Φ(i) − Φ(i − 1). Note that Φ(i) does not contain any con-
tradictory weight for clauses that are alive at time i − 1 that are not alive at
time i. Hence Φ drops by at least 2Wi(1− q∗i) + 2W iq

∗
i . On the other hand, the

contradictory weight for any clause that is still alive at time i will increase only if
the clause contains xi or x̄i (i.e. the clause is contained in Fi or F i respectively)
and it is not satisfied by the algorithm’s setting (i.e. if we set xi = 0 or xi = 1
respectively). The increase in the contradictory weight is thus at most 2q∗i Fi if
we set xi = 0, and 2(1− q∗i)F i if we set xi = 1.

Hence we get that

Φ(i)− Φ(i− 1) ≤ 2
(
−Wi + 1{xi=1}F i

)
(1− q∗i) + 2

(
−W i + 1{xi=0}Fi

)
q∗i .

At time n, there are no live clauses, and hence the contradictory weight of the
live clauses is zero, or, Φ(n) ≥ 0.

As before,

SAT (i)− SAT (i− 1)− 3(UNSAT (i)− UNSAT (i− 1))

= 1{xi=1}(Wi + Fi − 3W i) + 1{xi=0}(W i + F i − 3Wi)

Let p be the probability with which we set xi to 1 (which is 1 if α ≥ 1 or if
α ∈ (0, 1) and q∗i ≥ (1− α)/(2α) and 0 otherwise). Then, we need to show that
p satisfies

p(Wi + Fi − 3W i) + (1− p)(W i + F i − 3Wi)

− 2
(
−Wi + pF i

)
(1 − q∗i)− 2

(
−W i + (1− p)Fi

)
q∗i ≥ 0. (4)

This is the same as (2), except that we replaced 1{x∗
i=1} by q∗i and 1{x∗

i=0} by
(1− q∗i). Note that the proof of Lemma 1 shows that if α ≤ 0 or α ≥ 1, then (4)
holds for our choice of p, for any q∗i ∈ [0, 1]. Hence, we only need to check the
case when α ∈ (0, 1).

If we set p = 0 then the lefthand side of (4) becomes

W i + F i − 3Wi + 2Wi(1− q∗i) + 2W iq
∗
i − 2Fiq

∗
i

= (1 + 2q∗i)

(
W i +

1

1 + 2q∗i
F i −Wi −

2q∗i
1 + 2q∗i

Fi

)
.

196 A. van Zuylen

To see that this is non-negative, note that, since p = 0, and α ∈ (0, 1), we

have that q∗i < 1−α
2α . Therefore, 1

1+2q∗i
> α, and

2q∗i
1+2q∗i

< 1−α. So, (4) is at least

(1+2q∗i)
(
W i + αF i −Wi − αFi

)
. Finally, note that W i+αF i−Wi−(1−α)Fi =

0, by the definition of α.
Similary, if we set p = 1 then the lefthand side of (4) becomes

Wi + Fi − 3W i + 2Wi(1− q∗i) + 2W iq
∗
i − 2F i(1− q∗i)

= (3− 2q∗i)

(
Wi +

1

3− 2q∗i
Fi −W i −

2− 2q∗i
3− 2q∗i

F i

)
.

We claim that for any α ∈ (0, 1)

2− 3α

2− 2α
≤ 1− α

2α
.

This can be seen by noting that (2α−1)2

α(1−α) ≥ 0, and

(2α− 1)2

α(1 − α)
=

4α2 − 4α+ 1

α(1 − α)
= −2α− 3α2

α(1 − α)
+

α2 − 2α+ 1

α(1 − α)
= −2− 3α

1− α
+

1− α

α
.

Hence, since p = 1 implies that q∗i ≥ 1−α
2α , we also have q∗i ≥ 2−3α

2−2α . Therefore,
1

3−2q∗i
≥ 1− α. So, we get that

(3− 2q∗i)

(
Wi +

1

3− 2q∗i
Fi −W i −

2− 2q∗i
3− 2q∗i

F i

)
≥ (3 − 2q∗i)

(
Wi + αFi −W i − (1− α)F i

)
≥ 0.

where the final inequality follows from the fact that 3− 2q∗i ≥ 1 and Wi+αFi−
W i − (1− α)F i = 0. �

5 Conclusion and Future Directions

The question remains whether there exists a deterministic algorithm that achieves
an approximation ratio of 3

4 , which does not use sophisticated techniques such
as linear programming. Poloczek and Schnitger [8] gave the first randomized al-
gorithm that achieves this, and our simplified analysis makes it easier to see the
need for randomization in their algorithm to “foil an adversarial optimum”. We
also show that it is possible to derandomize (our version of) their algorithm if
one has an optimal solution to a linear programming relaxation. The upcoming
paper of Poloczek [7] shows that no adaptive priority algorithm can achieve a
guarantee of 3

4 , but this does not completely exclude the existence of a deter-
ministic combinatorial 3

4 -approximation algorithm. For instance, an algorithm
that looks at all data items and then chooses the next variable to be determined
is not an adaptive priority algorithm, and the upper bound of Poloczek [7] does

Simpler 3/4-Approximation Algorithms for MAX SAT 197

not apply. Moreover, there seems to be some evidence that carefully choosing
the next variable to be determined could lead to improved results by a recent
result of Costello, Shapira and Tetali [3]: They showed that Johnson’s algorithm
has a guarantee strictly better than 2

3 if the variables are considered in a random
order, whereas the best possible guarantee is 2

3 if the variables are considered in
a fixed order.

Acknowledgements. The author thanks David Williamson for pointing her to
the question whether a deterministic variant of the algorithm of Poloczek and
Schnitger exists.

References

1. Avidor, A., Berkovitch, I., Zwick, U.: Improved Approximation Algorithms for
MAX NAE-SAT and MAX SAT. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005.
LNCS, vol. 3879, pp. 27–40. Springer, Heidelberg (2006)

2. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maxi-
mum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)

3. Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some
classic approximation algorithms. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 647–655. SIAM (2011)

4. Engebretsen, L.: Simplified tight analysis of Johnson’s algorithm. Inf. Process.
Lett. 92(4), 207–210 (2004)

5. Goemans, M.X., Williamson, D.P.: New 3
4
-approximation algorithms for the max-

imum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)
6. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.

System Sci. 9, 256–278 (1974); Fifth Annual ACM Symposium on the Theory of
Computing, Austin, Tex. (1973)

7. Poloczek, M.: Bounds on Greedy Algorithms for MAX SAT. In: Demetrescu, C.,
Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidel-
berg (2011)

8. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 656–663. SIAM (2011)

9. Yannakakis, M.: On the approximation of maximum satisfiability. Journal of Algo-
rithms 17, 475–502 (1994)

On Online Algorithms with Advice

for the k-Server Problem

Marc P. Renault1 and Adi Rosén2,�

1 LIAFA, Univerité Paris Diderot - Paris 7; and UPMC
mrenault@liafa.jussieu.fr

2 CNRS and Univerité Paris Diderot - Paris 7
adiro@lri.fr

Abstract. We consider the model of online computation with advice
[5]. In particular, we study the k-server problem under this model. We

prove two upper bounds for this problem. First, we show a
⌈

�log k�
b−2

⌉
-

competitive online algorithm for general metric spaces with b bits of
advice per request, where 3 ≤ b ≤ log k. This improves upon the recent
result of [1]. Moreover, we believe that our algorithm and our analysis
are more intuitive and simpler than those of [1]. Second, we give a 1-
competitive online algorithm for trees which uses 2 + 2�log(p+ 1) bits
of advice per request, where p is the caterpillar dimension of the tree.

Keywords: online computation with advice, k-server problem, online
algorithms, competitive analysis.

1 Introduction

Online algorithms have been the subject of intense research activity over the
past decades. The traditional setting is that of an online algorithm that does
not have any knowledge about the future and that of a worst-case analysis using
competitive analysis (cf. [3]). In the present paper we consider a model recently
introduced by Emek et al. [5], dubbed online computation with advice, which is
aimed at relaxing the “absolutely no knowledge about the future” setting and
at giving a general framework to quantify the interplay between the amount of
knowledge about the future and the possible improvement in the competitive
ratio. Roughly speaking, this model augments the power of the online algorithm
by a series of queries. Each query is issued by the online algorithm when it re-
ceives a new request. These queries map the whole request sequence, including
future requests, to some domain of advice. Thus, they provide the online algo-
rithm with some information about the future. One is typically interested in
the interplay between the size of the domain of advice, i.e., how many bits of
advice are received with each request, and the attainable competitive ratio. For
a formal definition of this model, see Section 2.

� Research supported in part by ANR projects QRAC and ALADDIN.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 198–210, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Online Algorithms with Advice for the k-Server Problem 199

A number of results for various online problems have been obtained in the
above model and in a variant thereof introduced by Böckenhauer et al. [2]. In
the present paper, we consider the k-server problem under the model of online
computation with advice. Emek et al. [5] gave an upper bound of kO(1

b) on the
competitive ratio of deterministic algorithms on general metric spaces, where
b is the number of bits of advice per request. This upper bound was recently

improved to 2
⌈
�log k�
b−1

⌉
by Böckenhauer et al. [1]. Better bounds for specific metric

space where also given (see the paragraph “Related Work” below).
In this paper, we improve the upper bound for deterministic k-server algo-

rithms with advice on general metric spaces by giving a deterministic online
algorithm with b bits of advice per request, for b ≥ 3, whose competitive ra-

tio is
⌈
�log k�
b−2

⌉
. While the improvement over the previous result is only about a

factor of 2, we believe that our algorithm and analysis are more intuitive and
simpler than previous ones, and may lead to further improvements in the upper
bound. Also, we consider the class of metric spaces of finite trees, and give a
1-competitive deterministic online algorithm. The number of bits of advice per
request used by this algorithm is 2 + 2�log(p + 1)�, where p is the caterpillar
dimension of the tree (cf. [8]). We use this measure for the tree since it is at most
the height of the tree, and it is at most logN , where N is the number of nodes
in the tree [8]. This measure is preferable over other measures, such as height,
because it remains constant for degenerate trees, such as the line, the spider and
the caterpillar.

Related Work. The model of online computation with advice considered in the
present paper was introduced by Emek et al. [5]. In that paper, the authors
gave tight bounds of Θ(log n/b) for deterministic and randomized online algo-
rithms with advice for Metrical Task Systems, where n is the number of states
of the systems and b is the number of bits of advice per request. They also gave
a deterministic online algorithm with advice for the k-server problem which is
kO(1

b)-competitive, where Θ(1) ≤ b ≤ log k. This was improved by Böckenhauer
et al. [1] who gave a deterministic online algorithm with advice for general met-

ric spaces with a competitive ratio of 2
⌈
�log k�
b−1

⌉
. Böckenhauer et al., also, gave

a deterministic algorithm for the Euclidean plane with a competitive ratio of
1

1−2 sin(π

2b
) , where b ≥ 3 is the number of bits of advice per request. For the uni-

form metric space (the problem of paging), a 1-competitive deterministic online
algorithm with 1 bit of advice per request is implicit in [4].

Böckenhauer et al. [2] introduced a somewhat similar model for online algo-
rithms with advice, where the advice is a single tape of bits instead of being
given separately for each request. This allows an algorithm to read a different
number of bits of advice per request, but it requires that the online algorithm
knows how many bits of advice to read with each request. Thus, the two models
are, in general, incomparable. We note that upper bounds in the model of [5], as
those given in the present paper, carry over to the model of [2]. Several results
were given in this model [4,2,6,7,1]. For example, in [4,2], the authors explore

200 M.P. Renault and A. Rosén

the number of bits of advice required for deterministic and randomized paging
algorithms, scheduling algorithms and routing algorithms to be 1-competitive.

2 Preliminaries

Online algorithms receive their input piece by piece. Each piece, or request, is
an element of some set R, and the algorithm receives a request sequence denoted
σ = r1, . . . , rn, where n = |σ| and ri is the ith request. An online algorithm must
perform all of the actions pertaining to a request before receiving the subsequent
requests. These actions incur some cost to the online algorithm. In this paper,
we consider only minimization problems.

We use the definition of deterministic online algorithms with advice as pre-
sented in [5]. An online algorithm with advice is defined as a request-answer
game that consists of a request set, R; a sequence of finite nonempty answer sets,
A1, A2, . . . ; and a sequence of cost functions, costn : Rn×A1×A2× · · ·×An →
R

+ ∪ {∞} for n = 1, 2, In addition, online algorithms with advice have ac-
cess via a query to an advice space, U , which is a finite set. The advice space
has a size of 2b, where b ≥ 0 is the number of bits of advice provided to the
algorithm with each request. With each request, the online algorithm receives
some advice that is defined by a function, ui : R

∗ → U , that is applied to the
whole request sequence, including future requests. A deterministic online algo-
rithm with advice can, thus, be represented as a sequence of pairs (gi, ui), where
gi : R

i × U i → Ai for i = 1, 2, The action that the online algorithm takes
upon receiving request ri is a function of the first i requests, r1, . . . , ri, and the
advice received so far, u1(σ), . . . , ui(σ).

The cost of the online algorithm is defined as ALG(σ) = costn(σ,ALG[σ]),
where ALG[σ] =< a1, . . . , an >∈ A1×· · ·×An and aj = gj(r1, . . . , rj , ui, . . . , uj)
for j = 1, . . . , n. At the risk of a slight abuse of notation, we will denote the cost of
a subsequence of σ as ALG(ri, . . . , rj), where the prefix is understood implicitly.

For a minimization problem, we say that an algorithm is c-competitive, or
has a competitive ratio of c, if, for every finite request sequence σ, ALG(σ) ≤
c ·OPT(σ) + ζ, where ζ is not dependent on the request sequence and OPT(σ)
is the optimum cost over σ. If ζ = 0, we say that an online algorithm is strictly
c-competitive.

The k-server problem consists of a metric space, M, k mobile servers and
a finite request sequence, σ. Let M = (M,d), where M is a set of nodes, d :
M ×M → R

+ is a distance function on M and |M | = N > k. Each request of
σ will be to a node of M, and a server must be moved to the requested node
before the algorithm will receive the subsequent request. The goal is to minimize
the distance travelled by the k servers over σ. A lazy k-server algorithm is an
algorithm that, upon each request, only moves a single server to the request if
it is uncovered.

For a metric space which is a tree, we say that a server, s, is adjacent to a
request, ri, if, along the shortest path between the position of s and ri, there
are no other servers.

On Online Algorithms with Advice for the k-Server Problem 201

The caterpillar dimension of a rooted tree, T , with root r, denoted cdim(T),
is defined as in [8]. For a tree, T , composed of a single node, cdim(T) = 0.
For a tree, T , with two or more nodes, cdim(T) ≤ k + 1 if there exists edge
disjoint paths, P1, . . . , Pq, beginning at the root r such that each component
Tj of T − E(P1) − · · · − E(Pq) has cdim(Tj) ≤ k, where E(Pi) are the edges
of Pi. The components Tj are rooted at their unique vertex lying on some Pi.
The decomposition of T into these edge disjoint paths is called the caterpillar
decomposition of the tree. All the nodes of Pi, 1 ≤ i ≤ q, except the root, are
assigned path level k + 1. The root is assigned path level k + 2. Note that the
root of the tree has a path level one more than the caterpillar dimension of the
tree.

Given an unrooted tree, G, we define the caterpillar dimension of G as the
minimum over all nodes, v ∈ G, of the caterpillar dimension of G when rooted
at v. In what follows, we refer to the caterpillar dimension of unrooted trees as
defined here.

3 An Upper Bound for General Metric Spaces

In this section, we present a
⌈
�log k�
b−2

⌉
-competitive deterministic online algorithm

with advice, called CHASE, for the k-server problem on general metric spaces,
with b bits of advice per request, where b ≥ 3. For convenience of notation, we

use α =
⌈
�log k�
b−2

⌉
.

In order to clearly present the algorithm and proof, we will first design and
analyze the algorithm such that it gets a variable number of bits of advice
with each request. The algorithm will receive at least 2 bits of advice with each
request, and the total number of advice bits will not exceed bn for any prefix of
n requests. Afterwards, we will show how to adapt the algorithm so that it gets
at most b bits of advice with each request using a transformation of [1].

Roughly speaking, our algorithm works as follows: given a request sequence,
σ, we consider an optimal algorithm for this sequence. Based on this optimal
algorithm, we partition σ into k subsequences, σs, such that all the requests of
σs are served according to the optimal algorithm by server s. With log k bits
of advice per request, we can indicate, with each request of σs, the identity of
the server s, and, thus, our online algorithm with advice would precisely follow
the optimum algorithm. If, however, we have only b < log k bits of advice per
request, we do that only roughly every log k/b requests of σs. We call these re-
quests “anchors”. The rest of the requests of σs are served in a greedy manner,
i.e., they are served by the closest server to the request which then returns to
its previous position. By serving requests in this way, server s always stays at
its last anchor. Thus, the cost of serving the (log k/b) − 1 non-anchor requests
between any two anchors is bounded from above by 2 log k/b times the distance
from the last anchor to the furthest non-anchor request. This gives us a compet-
itive ratio of O(log k/b). Some fine tuning of the above ideas gives us our result.
In what follows, we formally define the algorithm and prove its competitive ratio.

202 M.P. Renault and A. Rosén

Algorithm CHASE: At the beginning, all servers are unmarked.
Given a request, rj , and the advice, do:

– If the advice is 00, serve rj with the closest server to rj and return it to its
previous position.

– If the advice is 10, serve rj with the closest unmarked server and mark this
server. Do not return the server to its previous position.

– If the advice is 11t, where t is a server number encoded in �log k� bits, serve
the request with server number t.

In order to define the advice, we will fix a optimum algorithm, OPT, that we as-
sume to be a lazy algorithm. Henceforth, we refer to it as the lazy optimum. We
will then partition the request sequence into k subsequences, σ1, . . . , σk, where
σs is the trace of the server s in OPT. In other words, σs consists of the requests
served by server s in the lazy optimum. It should be noted that the requests of
σs are not necessarily consecutive requests in σ. Let rsj be the jth request served

by server s over σs. Recall that α =
⌈
�log k�
b−2

⌉
. Independently, for each server, we

choose an index 1 ≤ qs ≤ α. The way to choose this index will be defined later.
The request sequence σs is divided into α-length cycles starting at rsqs+1. We
will denote the ith cycle of σs by csi . The first cycle, cs1, which starts at request
rs1 and ends at request rsqs , may have a length less than α. Let Cs be the total
number of cycles in σs.

The advice will be defined as follows for request rsj :

– 10, if j = qs, i.e., the last request of the first cycle.

– 11t, if j = qs + iα for some i ≥ 1, i.e., the last request of all cycles except
the first one. Here, t is the server number that serves request rsqs in CHASE
encoded in �log k� bits.

– 00, if j �= qs + iα, i.e., everywhere else.

The first two bits of the advice per request will be referred to as the control bits.

First, we state a technical lemma that we will use in our proof.

Lemma 1. Given a sequence of α non-negative values, a1, . . . , aα, there is an
integral value, q, where 1 ≤ q ≤ α, such that

q∑
i=1

(2(q − i) + 1)ai +

α∑
i=q+1

2(α+ q − i)ai ≤ α

α∑
i=1

ai .

Proof. Summing the expression over all possible values of q, we get

α∑
q=1

[q∑
i=1

(2(q − i) + 1)ai +

α∑
i=q+1

2(α+ q − i)ai

]
=

[α∑
q=1

(
2(α− q) + 1

)]
·

α∑
i=1

ai

= α2
α∑

i=1

ai .

On Online Algorithms with Advice for the k-Server Problem 203

It follows that one of the α possible values of q gives at most the average value,
i.e., α

∑α
i=1

ai. The lemma follows.

Now, we prove the main theorem of this section.

Theorem 1. For every b ≥ 3, algorithm CHASE is an
⌈
�log k�
b−2

⌉
-competitive

k-server algorithm for general metric spaces with b bits of advice per request .

Proof. For the proof, we will compare the cost of CHASE and OPT separately
for every subsequence σs, and cycle by cycle within each σs. Recall that α =⌈
�log k�
b−2

⌉
. Note that the first cycle and the last cycle may be of length less than

α.
Consider the ith cycle of server s in OPT for i > 1 (we will deal with the first

cycle later). Let t be the server in CHASE that serves request rsqs . We will denote
rs(i−2)α+qs , the last request of the previous cycle, by INITs

i . We claim that, just

before the cycle starts, both OPT and CHASE will have a server at INITs
i . This

is true because the advice for request rs(i−2)α+qs indicated to CHASE to bring

server t to INITs
i and, by the definition of the algorithm, t will always return

to INITs
i between rs(i−2)α+qs and rs(i−2)α+qs+1. For OPT, by definition of the

subsequence σs, OPT serves rs(i−2)α+qs with s and does not move s between
request rs(i−2)α+qs and request rs(i−2)α+qs+1.

Also, observe that just before each of the requests between rs(i−2)α+qs+1 and
rs(i−1)α+qs inclusive, i.e., the requests of the ith cycle, server t of CHASE is at

INITs
i . Recall that CHASE serves these requests except the last one by using

the closest server and, then, returns it to its prior position. Therefore, the cost
to CHASE for any request rs(i−2)α+qs+j , where 1 ≤ j ≤ α− 1, i.e., the requests
of cycle i except the last one, is

CHASE(rs(i−2)α+qs+j) ≤ 2d(INITs
i , r

s
(i−2)α+qs+j) . (1)

By the triangle inequality and Equation (1),

CHASE(rs(i−2)α+qs+j) ≤ 2

j∑
l=1

d(rs(i−2)α+qs+l−1, r
s
(i−2)α+qs+l) . (2)

For request rs(i−1)α+qs , i.e., the last request of cycle i, CHASE serves the request
using server t that is at rs(i−2)α+qs . We have, by the triangle inequality,

CHASE(rs(i−1)α+qs) = d(INITs
i , r

s
(i−1)α+qs)

≤
α∑

l=1

d(rs(i−2)α+qs+l−1, r
s
(i−2)α+qs+l) . (3)

Observe that the cost of OPT to serve rs(i−2)α+qs+j for 1 ≤ j ≤ α, i.e., the re-

quests of cycle i, is d(rs(i−2)α+qs+j−1, r
s
(i−2)α+qs+j)). Using this fact and

204 M.P. Renault and A. Rosén

Equations (2) and (3), we can bound the cost of CHASE over a cycle by the cost
of OPT as follows:

α∑
j=1

CHASE(rs(i−2)α+qs+j) ≤
α−1∑
j=1

(
2

j∑
l=1

OPT(rs(i−2)α+qs+l)

)

+

α∑
l=1

OPT(rs(i−2)α+qs+l)

=

α∑
j=1

[2(α− j) + 1]OPT(rs(i−2)α+qs+j) . (4)

The analysis of the first cycle is, essentially, the same as the analysis of the
ith cycle, i > 1, with the exception that an additive constant is introduced per
request of the first cycle. The additive constant results from the fact that, during
the first cycle of σs, CHASE does not necessarily maintain a server at the initial
position of s. Nevertheless, by the definition of CHASE, there will always be an
unmarked server in one of the locations of the initial configuration. Let Δ be
the diameter of the initial configuration. Therefore, for any request of the first
cycle, rsl , of σ

s, analogously to Equation (2), we have

CHASE(rsl) ≤ 2
(
Δ+

l∑
m=1

d(rsm−1, r
s
m)
)
, (5)

where rs0 is the initial position of s. Analogous to Equation (4), summing Equa-
tion (5) over all requests of the first cycle of s, gives

qs∑
l=1

CHASE(rsl) ≤
qs∑
l=1

[2(qs − l) + 1]OPT(rsl) + 2αΔ . (6)

If we assume the cost for requests with indexes less than 0 to be 0 for both OPT
and CHASE, we can rewrite Equation (6) to be more congruent with Equation
(4) as follows:

α∑
j=1

CHASE(rs−α+qs+j) ≤
α∑

j=1

[2(α− j) + 1]OPT(rs−α+qs+j) + 2αΔ . (7)

Using Equations (4) and (7), and summing over all cycles, gives

CHASE(σs) ≤
Cs∑
i=1

α∑
j=1

[2(α− j) + 1]OPT(rs(i−2)α+qs+j) + 2αΔ . (8)

Define a1, . . . , aα such that aj =
∑Cs

i=1
OPT(rs(i−1)α+j), i.e., the cost of OPT for

the requests in σs in jumps of α requests. We can rewrite Equation (8) as

CHASE(σs) ≤
q∑

i=1

(2(q − i) + 1)ai +

α∑
i=q+1

2(α+ q − i)ai + 2αΔ . (9)

On Online Algorithms with Advice for the k-Server Problem 205

By Lemma 1, there is a value 1 ≤ qs ≤ α such that

CHASE(σs) ≤ α

α∑
i=1

ai + 2αΔ = αOPT(σs) + 2αΔ .

We chose this qs separately for each server s in order to define the cycles. Sum-
ming over all k subsequences σs concludes the proof of the competitive ratio.

Finally, we show that the algorithm uses at most bn bits over any prefix of
n requests. There are 2 control bits with each request. Let t be the server in
CHASE that serves rsqs , i.e., the last request of the first cycle of σs. There are
at least α requests of σs between any two requests, where the id of t is given in

the advice. Since α =
⌈
�log k�
b−2

⌉
, the claim follows.

In order to adapt the algorithm so that it receives b bits of advice per request,
we use a transformation of [1]. Two control bits will be given with each request,
and the remaining b− 2 bits will contain portions of server ids. The control bits
will be as defined previously. We then define a string as the concatenation of all
server ids given for the whole sequence. This string will be broken into (b−2)-bit
chunks and a single chunk will be given with each request. The algorithm can
store these (b−2)-bit chunks in a FIFO queue and will have �log k� bits available
to be read from the queue when dictated by the control bits.

4 k-Server with Advice on Trees

In this section, we describe a deterministic online algorithm with advice for the
k-server problem on finite trees, called PATH-COVER, that is 1-competitive and
uses 2 + 2�log(p + 1)� bits of advice per request, where p denotes the minimal
caterpillar dimension of the tree. Similar results can be obtained if other mea-
sures of the tree, such as its height, are used instead of the caterpillar dimension.
We chose this measure since it gives a 1-competitive algorithm with a constant
number of bits of advice per request for degenerate trees such as the line or a
caterpillar. Furthermore, the caterpillar dimension is at most the height of the
tree, and is at most logN , where N is the number of nodes in the tree [8].

The algorithm and advice are based on the actions of a non-lazy optimum
algorithm with certain properties for the given sequence. First, we describe this
non-lazy algorithm and show that it has optimum cost.

4.1 Non-lazy Optimum

We show that, for every sequence of requests, there is an algorithm, OPTnl,
with optimal cost that, also, has the following three properties given that the
algorithm can chose its initial configuration.

1. Between ri and just before ri+1, OPTnl moves at most a single server, s.
Note that s may make multiple moves.

206 M.P. Renault and A. Rosén

2. Just before ri, s is at the same path level or higher than ri. The path level
is according to the caterpillar decomposition of the tree.

3. s is adjacent to ri just before ri.

Given the caterpillar decomposition of T that minimizes cdim(T) and a lazy
optimum, OPTl, we first build OPT′

nl which has the first two properties above.
For u, v ∈ T , let maxPath(u, v) be the node nearest u on the highest path level
on the path between u and v. We choose the initial configuration of OPT′

nl as
follows: for each of the k servers si, place si at maxPath(ui, vi), where ui is the
initial position of si, and vi is the position of the first request served by si in
OPTl. Then, each request, rj , is served in OPT′

nl with the same server as OPTl.
After serving rj , place the server, t, used for rj at maxPath(rj , rq), where rq
is the next request served by t in OPTl. Observe that the first two properties
above hold for OPT′

nl.

Claim. For any σ, OPT′
nl(σ) = OPTl(σ).

Proof. The claim follows from the fact that the trajectories followed by each
of the servers according to OPT′

nl and OPTl are the same. The only difference
being that some of the moves are done earlier in OPT′

nl than in OPTl.

Now, we construct OPTnl based on OPT′
nl to satisfy property 3 along with the

first two properties without increasing the cost.
OPTnl will be defined by induction on the request sequence. Let T ∗ = (t∗1, q1),

. . . , (t∗m, qm) be all the server moves, in order, performed by OPT′
nl such that

the ordered pair (x, y) defines a move of a server from position x to position
y, and m ≥ n is the total number of server moves performed by OPTnl. Let
S∗ = (s∗1, r1), . . . , (s

∗
n, rn) be the subsequence of T ∗, where the ith ordered pair

indicates that the server at position s∗i serves ri in OPT′
nl. We build T j and Sj ,

j ≥ 0, inductively, where T 0 = T ∗ and S0 = S∗. T j = (tj1, q1), . . . , (t
j
m, qm) will

have all three properties above until after serving request rj (in fact Property

1 will hold for the entire sequence T j), and Sj = (sj1, r1), . . . , (s
j
n, rn) will have

the property that sj1, . . . , s
j
j are adjacent to their respective requests.

Assume that Si−1 and T i−1 are well defined. This is trivially true for T 0 and
S0. In order to construct Si and T i, we need to consider si−1

i which is either
adjacent or not to ri. If s

i−1
i is adjacent to ri, then Si := Si−1 and T i := T i−1.

Otherwise, if si−1
i is not adjacent to ri, there exists a server at node x on the

path between si−1
i and ri which is adjacent to ri. In this case, the relevant moves

in both T and S will be modified such that the server at x serves request ri,
and the server at si−1

i will be used the very next time that the server at x
would have been used. To formally define T i and Si we proceed as follows: Si

is defined as Si−1 from (si1, r1) to (sii−1, ri−1), and T i is defined as T i−1 from

(ti−1
1 , q1) to (ti−1

j , qj−1), where qj is ri. The next moves in Si and T i are defined

as (sii, ri) := (tij , qj) := (x, ri). From (tij+1, qj+1) to (t
i
m, qm), T i is defined as T i−1

except for the next occurrence of (x, ql) in T i−1, l < m. Set (til, ql) := (si−1
i , ql)

in T i. If ql is a request, say rp, then we, also, set (sip, rp) := (si−1
i , rp) for Si.

The rest of Si is defined as Si−1.

On Online Algorithms with Advice for the k-Server Problem 207

Lemma 2. On the tree, the cost of OPTnl is no more than the cost of OPT′
nl,

and OPTnl has the following three properties:

1. Between ri and just before ri+1, OPTnl moves at most a single server, s.
2. Just before ri, s is at the same path level or higher than ri.
3. s is adjacent to ri just before ri.

Proof. First, we show that the cost of OPTnl is no more than the cost of OPT′
nl.

This is done by induction on the construction steps of T i (and Si). For i = 0
the claim is trivial. For the inductive step, we note that we change at most two
moves between T i−1 and T i as in the construction above. With the notations
of the construction above, we note that the cost of T i for qi and ql is at most
d(sii, qj) + d(si−1

i , sii) + d(si−1
i , ql) = d(si−1

i , qj) + d(sii, ql) which is the cost paid
by T i−1 for qi and ql.

Property 1 holds for OPTnl because it holds for OPT′
nl, no moves are added

in the construction, and the only changes are to the first move after a request is
issued.

We now show by induction on i that property 2 holds for Si. This is true for
S0 since property 2 holds for OPT′

nl. For the induction step, let s′ be the server
used by Si−1 to serve ri, and let s be the server used by Si to serve ri . Let �(v)
denote the path level of a node v. We know by the induction hypothesis that
�(s′) ≥ �(ri). Also, s lies on the path between s′ and ri, and, by the recursive
nature of the caterpillar decomposition, it follows that �(s) ≥ �(ri). If ql is not
a request, there is nothing else to prove. If ql is a request, by the induction
hypothesis, we know that �(s) ≥ �(ql), and we have that �(s′) ≥ �(s). Therefore,
�(s′) ≥ �(ql). Thus, property 2 holds for Si.

Property 3 is immediate from the inductive construction.

4.2 The Algorithm

There will be two stages to the algorithm. The initial stage will be for the first
k requests and will be used to match the configuration of PATH-COVER to
that of OPTnl as defined in the previous section. Over the remaining requests,
PATH-COVER will be designed to act exactly as OPTnl. PATH-COVER will
receive 2(l + 1) bits of advice per request, where l = �log(p + 1)� and p is the
minimal caterpillar dimension of the tree. The advice will be of the form wxyz,
where w and x will be 1 bit in length, and y and z will be l bits in length.

Algorithm and Advice for r1, . . . , rk. From r1 to rk, PATH-COVER will
serve each request with the nearest server regardless of the advice. As for the
advice, for request ri, where 1 ≤ i ≤ k,

– if w = 1, the algorithm stores the node nearest ri which has the path of level
y.

– if x = 1, the algorithm stores the node nearest the initial position of the ith
server which has the path of level z.

208 M.P. Renault and A. Rosén

Note that both w and x can be 1 for request ri. Immediately after serving rk,
PATH-COVER will use the first k stored nodes as a server configuration and
will move to this configuration at minimal cost (minimum matching).

For 1 ≤ i ≤ k, the advice for ri will be defined as follows:

w: 1, if the server used for ri in OPTnl does not serve another request
up to rk.

0, otherwise
x: 1, if the ith server does not serve any of the first k requests in OPTnl.

0, otherwise
y: A number in binary indicating the path level to which the server

used for ri is moved to in OPTnl after serving ri.
z: A number in binary indicating the path level to which the ith

server is moved to before r1 in OPTnl.

Over the first k requests, w and x will be 1 a total of k times (once for each
of the k servers of OPTnl). For ri, when w is 1, this means that, immediately
after rk, OPTnl will have a server at the path of level y between ri and the root.
When x is 1, this means that, immediately after rk, the ith server of OPTnl will
be at the path of level z between the initial position of the ith server and the
root. This is the server configuration of OPTnl immediately after rk encoded in
the bits of advice over the first k requests.

Algorithm and Advice for rk+1, . . . , rn. From rk+1 to rn, given a request,
ri, where k + 1 ≤ i ≤ n, and the advice, let P be the unique path of level y
between ri and the root. Now, define a path, Q, on the tree as follows:

– if x = 1, Q runs from ri to the end of P nearest the root.

– if x = 0, Q runs from ri to the end of P furthest from the root.

PATH-COVER will serve ri with the closest server along Q. After serving ri,
PATH-COVER will move this server to the node of the path of level z nearest
to ri.

For k + 1 ≤ i ≤ n, the advice for ri will be defined as follows:

w: 0 (not used)
x: Let s be the server used by OPTnl to serve ri, and let c be the

node of the same path level as the location of s closest to ri.
1, if s is between c and the root of the tree.
0, otherwise.

y: A number in binary indicating the path level to which of the server
that OPTnl uses for ri.

z: A number in binary indicating the path level to which the server
used for ri is moved to in OPTnl immediately after serving ri.

On Online Algorithms with Advice for the k-Server Problem 209

Analysis

Theorem 2. PATH-COVER is 1-competitive on finite trees.

Proof. From r1 to rk, all the requests are served by the closest server. This cost
can be bounded by kΔ, where Δ is the diameter of the tree. Immediately after
rk, PATH-COVER matches the configuration of OPTnl. The cost to match a
configuration can be bounded by kΔ.

According to the definition of the advice and the algorithm, the configuration
of PATH-COVER matches the configuration of OPTnl after serving rk. We show
that starting at request rk+1, the configurations of PATH-COVER and OPTnl

match just before serving each request, and that PATH-COVER serves the re-
quest with a server from the same position as does OPTnl. Assume that the con-
figurations of PATH-COVER and OPTnl match until immediately before serving
ri for some k+1 ≤ i ≤ n. Let s be the server used by OPTnl for ri. We claim that
PATH-COVER and OPTnl will use a server from the same position for ri. The in-
duction assumption that the configurations of PATH-COVER and OPTnl match
immediately before serving ri and the third property of OPTnl guarantee that
there is no server between the position of s and ri in PATH-COVER. The second
property of OPTnl guarantees that s is at the same path level or higher than ri.
This implies that the advice provided to PATH-COVER specifies a unique server
that must be at the same position in PATH-COVER as s in OPTnl. Immediately
after serving ri, PATH-COVERandOPTnl move the server used for ri to the same
node in the tree as per their definitions. So, immediately before serving ri+1, the
configurations of OPTnl and PATH-COVER are the same.

Therefore,

PATH-COVER(σ) ≤ OPT(σ) + 2kΔ

4.3 Special Metric Spaces and PATH-COVER

This section presents some variations and implication of the previously described
algorithm, PATH-COVER, for special metric spaces. More detailed proofs of
each case can be found in [9].

The Line. The caterpillar dimension for the line is 1 which implies that our algo-
rithm PATH-COVER requires 4 bits of advice. However, as the servers essentially
do not change path levels on the line, a single bit of advice indicating the direction
of the server to be used is all that is needed for a strictly 1-competitive algorithm.

The Circle. Applying the algorithm for the line to the circle provides a strictly
1-competitive algorithm with 1 bit of advice. The key is to define a clockwise
orientation on the cycle. The 1 bit of advice will indicate whether to use the
adjacent server in the clockwise direction or the counter-clockwise direction.

The Spider. A spider graph consists of a single fork, the centre, and 0 or more
branches without forks connected to the centre. The caterpillar dimension is 1

210 M.P. Renault and A. Rosén

implying 4 bits of advice for PATH-COVER. We can define a variant of PATH-
COVER for the spider that uses 2 bits of advice. One bit indicates the direction
of the adjacent server, s, for the request while the second bit indicates if s should
be moved to the centre after serving the request. This algorithm is 1-competitive.

5 Conclusions

We give an improved upper bound for the k-server problem with advice on gen-
eral metric spaces. Moreover, we believe that our algorithm and our analysis are
more intuitive and simpler than previous ones, and may, thus, lead to further
improvements in the upper bound. We, also, give a 1-competitive k-server algo-
rithm with advice for finite trees, using a number of bits of advice which is a
function of the caterpillar dimension of the tree. The obvious open problem that
remains is to give tight bounds for the k-server problem with advice on general
metric spaces or for specific metric spaces.

Acknowledgements. We thank Yuval Emek, Pierre Fraigniaud, Amos Kor-
man, and Manor Mendel for useful discussions.

References

1. Böckenhauer, H.-J., Komm, D., Královic, R., Královic, R.: On the Advice Complex-
ity of the k-Server Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011) see also
technical report at,
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/703.pdf

2. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
Advice Complexity of Online Problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

3. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, New York (1998)

4. Dobrev, S., Královič, R., Pardubská, D.: How Much Information About the Fu-
ture is Needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

5. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642–2656 (2011)

6. Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

7. Komm, D., Královič, R.: Advice Complexity and Barely Random Algorithms. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 332–343. Springer, Heidelberg
(2011)

8. Matoušek, J.: On embedding trees into uniformly convex banach spaces. Israel
Journal of Mathematics 114, 221–237 (1999),
http://dx.doi.org/10.1007/BF02785579 , doi:10.1007/BF02785579

9. Renault, M.: Online Algorithms with Advice. Master’s thesis, MPRI – Université
Paris Diderot - Paris 7 (2010)

ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/703.pdf
http://dx.doi.org/10.1007/BF02785579

Improved Lower Bound for Online Strip Packing
(Extended Abstract)

Rolf Harren1 and Walter Kern2

1 Max-Planck-Institut für Informatik (MPII)
Campus E1 4, 66123 Saarbrücken, Germany

rharren@mpi-inf.mpg.de
2 University of Twente, Department of Applied Mathematics

P.O. Box 217, 7500 AE Enschede, The Netherlands
w.kern@utwente.nl

1 Introduction

In the two-dimensional strip packing problem a number of rectangles have to be packed
without rotation or overlap into a strip such that the height of the strip used is minimal.
The width of the rectangles is bounded by 1 and the strip has width 1 and infinite height.

We study the online version of this packing problem. In the online version the rect-
angles are given to the online algorithm one by one from a list, and the next rectangle
is given as soon as the current rectangle is irrevocably placed into the strip. To evalu-
ate the performance of an online algorithm we employ competitive analysis. For a list
of rectangles L, the height of a strip used by online algorithm ALG and by the opti-
mal solution is denoted by ALG(L) and OPT(L), respectively. The optimal solution
is not restricted in any way by the ordering of the rectangles in the list. Competitive
analysis measures the absolute worst-case performance of online algorithm ALG by its
competitive ratio

ρALG = sup
L

{
ALG(L)

OPT(L)

}
.

Known Results. Regarding the upper bound on the competitive ratio for online strip
packing, recent advances have been made by Ye, Han & Zhang[6] and
Hurink & Paulus[3]. Independently they showed that a modification of the well-known
shelf algorithm yields an online algorithm with competitive ratio 7/2+

√
10 ≈ 6.6623.

We refer to these two papers for a more extensive overview of the literature.
In the early 80s, Brown, Baker & Katseff[1] derived a lower bound ρ ≥ 2 on the

competitive ratio of any online algorithm by constructing certain (adversary) sequences
in a fairly straightforward way. These sequences, that we call BBK sequences in the
sequel, were further studied by Johannes[4] and Hurink & Paulus[2], who derived im-
proved lower bounds of 2.25 and 2.43, respectively. (Both results are computer aided
and presented in terms of online parallel machine scheduling, a closely related prob-
lem.) The paper of Hurink & Paulus[2] also presents an upper bound of ρ ≤ 2.5 for
packing BBK sequences. Kern & Paulus[5] finally settled the question how well the
BBK sequences can be packed by providing a matching upper and lower bound of
ρBBK = 3/2 +

√
33/6 ≈ 2.457.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 211–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

212 R. Harren and W. Kern

Our Contribution. Using modified BBK sequences we show an improved lower bound
of 2.589 . . . on the absolute competitive ratio of this problem. The modified sequences
that we use consist solely of two types of items, namely, thin items that have negligible
width (and thus can all be packed in parallel) and blocking items that have width 1.
The advantage of these sequences is that the structure of the optimal packing is simple,
i.e., the optimal packing height is the sum of the heights of the blocking items plus the
maximal height of the thin items. Therefore, we call such sequences primitive.

On the positive side, we present an online algorithm for packing primitive sequences
with competitive ratio (3 +

√
5)/2 = 2.618 This upper bound is especially inter-

esting as it not only applies to the concrete adversary instances that we use to show
our lower bound. Thus to show a new lower bound for strip packing that is greater
than 2.618 . . . (and thus reduce the gap to the general upper bound of 6.6623), new
techniques are required that take instances with more complex optimal solutions into
consideration.

Organization. We start our presentation with a description of the Brown-Baker-Katseff
sequences and their modification. Afterwards we present our lower bound based on
these modifications, and finally we describe our algorithm for packing primitive
sequences.

2 Sequence Construction

In this paper we denote the thin items by pi and the blocking items by qi (adopting
the notation from [5]). As already mentioned in the introduction, we assume that the
width of the thin items is negligible and thus all thin items can be packed next to each
other. Moreover, the width of the blocking items qi is always 1, so that no item can be
packed next to any blocking item in parallel. Therefore, all items are characterized by
their heights and we refer to their heights by pi and qi as well. By definition, for any list
L = q1, q2, . . . , qk, p1, p1, . . . , p� consisting of thin and blocking items we have

OPT(L) =

k∑
i=1

qi + max
i=1,...,�

pi.

To prove the desired lower bound we assume the existence of a ρ-competitive algorithm
ALG for some ρ < 2.589 . . . (the exact value of this bound is specified later) and
construct an adversary sequence depending on the packing that ALG generates.

To motivate the construction, let us first consider the GREEDY algorithm for online
strip packing, which packs every item as low as possible—see Figure 1a. This algorithm
is not competitive (i.e., has unbounded competitive ratio): Indeed, consider the list Ln =
p0, q1, p1, q2, p2, . . . , qn, pn of items with

p0 := 1,

qi := ε for 1 ≤ i ≤ n,

pi := pi−1 + ε for 1 ≤ i ≤ n

Improved Lower Bound for Online Strip Packing 213

p0

p1

p2

p3

p4

p5

q5

q4

q3

q2

q1

(a) A greedy packing

α1p1

p0

β0p0

q1

q2

p1

p2

β1p1

β2p2

α2p2

(b) A packing of a BBK se-
quence

q1

q2

p2

p0

p1

(c) An optimal packing of a
BBK sequence

Fig. 1. Online and optimal packings

for some ε > 0. GREEDY would pack each item on top of the preceding ones and thus
generate a packing of height GREEDY(Ln) =

∑n
i=0 pi +

∑n
i=1 qi = n+ 1+Ω(n2ε),

whereas the optimum clearly has height 1 + 2nε.
The GREEDY algorithm illustrates that any competitive online algorithm needs to

create gaps in the packing. These gaps work as a buffer to accommodate small blocking
items—or, viewed another way, force the adversary to release larger blocking items.

BBK sequences. The idea of Brown, Baker & Katseff[1] was to try to cheat an arbitrary
(non-greedy) online packing algorithm ALG in a similar way by constructing an alter-
nating sequence p0, q1, p1, . . . of thin and blocking items. The heights pi respectively
qi are determined so as to force the online algorithm ALG to put each item above the
previous ones—see Figure 1b for an illustration. To describe the heights of the items
formally, we consider the gaps that ALG creates between the items. We distinguish two
types of gaps, namely gaps below and gaps above a blocking item, and refer to the-
ses gaps as α- and β-gaps, respectively. These gaps also play an important role in our
analysis of the modified BBK sequences. We describe the height of the gaps around the
blocking item qi relative to the thin item pi. Thus, we denote the height of the α-gap
below qi by αipi and the height of the β-gap above qi by βipi. Using this notation, we
are ready to formally describe the BBK sequences L = p0, q1, p1, q2, . . . with

p0 := 1,

q1 := β0p0 + ε,

pi := βi−1pi−1 + pi−1 + αipi + ε for i ≥ 1,

qi := max
(
αi−1pi−1, βi−1pi−1, qi−1

)
+ ε for i ≥ 2.

214 R. Harren and W. Kern

As mentioned in the introduction, Brown, Baker & Katseff[1] used these sequences to
derive a lower bound of 2 before Kern & Paulus[5] recently showed that the competitive
ratio for packing them is ρBBK = 3/2 +

√
33/6 ≈ 2.457.

The optimal online algorithm for BBK sequences that Kern & Paulus[5] describe
generates packings with striking properties: No gaps are created except the first possible
gap β0 = ρBBK − 1 and the second α-gap α2 = 1/(ρBBK − 1), which are chosen as
large as possible while remaining ρBKK-competitive. Observing this behavior of the
optimal algorithm led us to the modification of the BBK sequences.

Modified BBK sequences. When packing BBK sequences, a good online algorithm
should be eager to enforce blocking items of relatively large size (as each blocking item
of size q increases the optimal packing by q as well). These blocking items are enforced
by generating corresponding gaps.

Modified BBK sequences are designed to counter this strategy: Each time the online
algorithm places a blocking item qi, the adversary, rather than immediately releasing a
thin item pi+1 (of height defined as in standard BBK sequences) that does not fit in be-
tween the last two blocking items, generates a whole sequence of slowly growing thin
items, which “continuously” grow from pi to pi+1. Packing this subsequence causes ad-
ditional problems for the online algorithm: If the algorithm fits the whole subsequence
into the last interval between qi−1 and qi, it would fill out the whole interval and create
an α-gap of 0. On the other extreme, if ALG would pack a thin item of height roughly
pi above qi, then the (relative) β-gap it can generate is much less compared to what it
could have achieved with a thin item of larger height pi+1. The next blocking item qi+1

will be released as soon as the sequence of thin items has grown from pi to pi+1.
This general concept of modified BBK sequences applies after the first blocking

item q1 is released. Since subsequences of thin items and single blocking items are
released alternately, we refer to this phase as the alternating phase. Before that, we have
a starting phase which ends with the release of the first blocking item q1. This starting
phase needs special attention as we have no preceding interval height as a reference.

The optimal online algorithm by Kern & Paulus[5] generates an initial gap β0 =
ρBBK − 1 of maximal size to enforce a large first blocking item q1. In the starting
phase, we seek to prevent the algorithm from creating a large β0-gap in the following
way. Assume that the online algorithm places p0 “too high” (i.e., β0 is “too large”). Then
the adversary, instead of releasing q1, would continue generating higher and higher thin
items and observe how the algorithm places them. As long as the algorithm places
these thin items next to each other (overlapping in their packing height), the size of the
gap below these items decreases monotonically relative to the height where items are
packed. Eventually, β0 has become sufficiently small—in which case the starting phase
comes to an end with the release of q1—or the online algorithm decides to “jump” in the
sense that one of the items in this sequence of increasing height thin items is put strictly
above all previously packed thin items, creating a new gap (distance between the last
two items) and a significantly increased new packing height. Once a jump has occurred,
the adversary continues generating thin items of slowly growing height until a next
jump occurs or until the ratio of the largest current gap to the current packing height
(the modified analogue to the standard β0-gap) is sufficiently small and the starting
phase comes to an end.

Improved Lower Bound for Online Strip Packing 215

Summarizing, a modified BBK sequence simply consists of a sequence of thin items,
continuously growing in height, interleaved with blocking items which (by definition
of their height) must be packed above all preceding items, and are released as described
above, i.e., when the thin item size has grown up to the largest gap between two blocking
items, c.f. the full paper for more details.

In the next section we use these modified BBK sequences to show the following
theorem.

Theorem 1. There exists no algorithm for online strip packing with competitive ratio

ρ < ρ̂ =
17

12
+

1

48

3

√
22 976− 768

√
78 +

1

12

3

√
359 + 12

√
78 ≈ 2.589

3 Lower Bound

For the sake of contradiction, we assume that ALG is a ρ-competitive algorithm for
online strip packing with ρ < ρ̂. Let δ = ρ̂ − ρ > 0. W.l.o.g. we assume that δ is
sufficiently small.

We distinguish between the thin items pi (whose height matches the height of the
previous interval plus an arbitrarily small excess) and the subsequences of gradually
growing thin items by denoting the whole sequence of thin items by r1, r2, . . . and
designating certain thin items as pi.

Our analysis (cf section 5) distinguishes two phases. In the first phase, the starting
phase, we consider the following problem that the online algorithm faces. Given an
input that consists only of thin items r1, r2, . . . (in this phase no blocking items are
released), minimize the competitive ratio while retaining a free gap of maximal size
(relative to the current packing height). More specifically, let

h(maxgapALG(ri))

ALG(ri)

be the max-gap-to-height ratio after packing ri where h(maxgapALG(ri)) denotes the
height of the maximal gap that algorithm ALG created up to item ri and ALG(ri)
denotes the height algorithm ALG consumed up to item ri. We say ALG is (ρ, c)-
competitive in the starting phase if ALG is ρ-competitive (i.e., ALG(ri) ≤ ρOPT(ri))
and retains a max-gap-to-height ratio of c (i.e., h(maxgapALG(ri))/ALG(ri) ≥ c for
i ≥ 1) for all lists L = r1, r2, . . . of thin items.

In the analysis of the starting phase we show that our modified BBK sequences force
any ρ-competitive algorithm to reach a state with max-gap-to-height ratio less than

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
.

Thus no (ρ, ĉ)-competitive algorithm exists for ρ < ρ̂. In the moment ALG packs an
item ri and hereby reaches a max-gap-to-height ratio of less than ĉ, the starting phase
ends with the release of the first blocking item q1 of height ĉ · ALG(ri).

216 R. Harren and W. Kern

In the analysis of the alternating phase we show that no ρ-competitive algorithm
can exist if the first blocking item after the starting phase has height ĉ times the current
packing height for

ĉ =
1−

√
4ρ̂2 − 12ρ̂+ 5

2(ρ̂− 1)
.

Thus our two phases fit together for

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
=

1−
√
4ρ̂2 − 12ρ̂+ 5

2(ρ̂− 1)
,

which is satisfied for

ρ̂ =
17

12
+

1

48

3

√
22 976− 768

√
78 +

1

12

3

√
359 + 12

√
78 ≈ 2.589

The correseponding value of ĉ is ĉ ≈ 0.04275 We skip the proof of Theorem 1.

Algorithm 1. Online Algorithm for Restricted Instances

1: Initially the packing is considered to be blocked
2: whenever a rectangle rj is released do
3: if rj is a blocking item then
4: Pack rj at the lowest possible height
5: else if rj is a thin item then
6: if the packing is open then
7: Pack rj bottom-aligned with the top thin item
8: else if the packing is blocked then
9: Try to pack rj below the top item

10: If this is not possible, pack rj at distance (ρ− 2)rj above the packing

4 Upper Bound

In this section we present the online algorithm ONL for packing instances that consist
solely of thin and blocking items. We prove that the competitive ratio of ONL is ρ =
(3 +

√
5)/2. We distinguish two kinds of packings according to the item on top: If the

item on top of the packing is a blocking item, we have a blocked packing, otherwise we
have an open packing. Initially, we have a blocked packing by considering the bottom
of the strip as a blocking item of height 0.

The general idea of the algorithm ONL is pretty straight-forward: Generate a β-gap
of relative height ρ − 2 whenever a jump is unavoidable and pack arriving blocking
items as low as possible. Since we neglect the starting phase, β = ρ− 2 is the maximal
β-gap that we can ensure. This leads to the following algorithm—see also Algorithm 1.

Improved Lower Bound for Online Strip Packing 217

s′i−1

s′i

si

βsi

si+1

βsi+1

h′′

h′

Fig. 2. Packing after the (i + 1)-th jump. The blocking items that arrived after si are shown in
darker shade. By definition, si is the first item that does not fit into the previous interval. Thus we
have si+1 > s′i + β si − h′.

– If a blocking item rj arrives, we pack rj at the lowest possible height. This can be
inside the packing, if a sufficiently large gap is available, or directly on top of the
packing. In the latter case, the packing is blocked afterwards.

– If a thin item rj arrives at an open packing, we bottom-align rj with the top item.
– If, finally, a thin item rj arrives at a blocked packing, we try to pack rj below

the blocking item on top. If this is not possible, i.e., rj exceeds the height of all
intervals for thin items, we pack rj at distance β rj = (ρ − 2)rj above the top of
the packing. This changes the packing to an open packing again.

We show that ONL is ρ-competitive for ρ = (3 +
√
5)/2. Actually, this is only ques-

tionable in one case, namely, when we pack a thin item rj with distance (ρ − 2)rj
above the packing. All other cases are trivial since if the packing height increases, then
the optimal height increases by the same value (for thin items the packing height only
increases if rj is the new maximal item).

We denote the thin items that are packed when generating a new gap by si for the
i-th jump. Let s′i−1 be the highest thin item that is bottom-aligned with si−1. Note that
the blocking item that blocks the packing after the i-th jump is packed directly above
s′i−1. See Figure 2 for an illustration.

It is obvious that the first jump item s1, that is actually the first thin item that arrives,
can be packed.

For the induction step we assume ONL(si) ≤ ρOPT(si). Before a jump can be-
come unavoidable, new blocking items of total height greater than β si need to arrive
as otherwise the gap below si could accommodate all of them. Let h′ be the height of
the blocking items that are packed into the β-gap below si and let h′′ be the total height

218 R. Harren and W. Kern

of blocking items that arrive between si and si+1 and are packed above si. We have
h′ ≤ (ρ−2)si and h′+h′′ > (ρ−2)si as otherwise no blocking item would be packed
on top. As further blocking items could be packed even below s′i−1 we get

OPT(si+1) ≥ OPT(si) + h′ + h′′ + si+1 − si

ONL(si+1) = ONL(si) + s′i − si + h′′ + βsi+1 + si+1.

And thus we have

ONL(si+1) ≤ ρOPT(si+1)

⇐ ONL(si) + s′i − si + h′′ + βsi+1 + si+1 ≤ ρ
(
OPT(si) + h′ + h′′ + si+1 − si

)
⇐ (ρ− 1)si + s′i − ρh′ − (ρ− 1)h′′ ≤ (ρ− 1− β)si+1.

As ρ− 1− β = 1 and si+1 > s′i + (ρ− 2)si − h′ this is satisfied if

(ρ− 1)si + s′i − ρh′ − (ρ− 1)h′′ ≤ s′i + (ρ− 2)si − h′

⇔ si ≤ (ρ− 1)(h′ + h′′)

⇐ si ≤ (ρ− 1)(ρ− 2)si = si.

The last equality holds since ρ = (3+
√
5)/2 and thus (ρ−1)(ρ−2) = 1. Summarizing,

we arrive at

Theorem 2. ONL is a ρ-competitive algorithm for packing primitive sequences with

ρ =
3 +
√
5

2
≈ 2.618.

So the true best possible competitive ratio for packing primitive sequences is some-
where in between the two values specified by Theorems 1 and 2. We have reasons to
believe that it is strictly in between these two. But perhaps an even more challenging
question is whether or not (or to what extent) primitive sequences provide worst case
instances for online packing in general.

References

1. Brown, D.J., Baker, B.S., Katseff, H.P.: Lower bounds for online two-dimensional packing
algorithms. Acta Informatica 18, 207–225 (1982)

2. Hurink, J., Paulus, J.: Online scheduling of parallel jobs on two machines is 2-competitive.
Operations Research Letters 36(1), 51–56 (2008)

3. Hurink, J.L., Paulus, J.J.: Online Algorithm for Parallel Job Scheduling and Strip Packing.
In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 67–74. Springer,
Heidelberg (2008)

4. Johannes, B.: Scheduling parallel jobs to minimize the makespan. Journal of Scheduling 9(5),
433–452 (2006)

5. Kern, W., Paulus, J.: A tight analysis of Brown-Baker-Katseff sequences for online strip pack-
ing. Submitted (J. Combinatorial Opt.)

6. Ye, D., Han, X., Zhang, G.: A note on online strip packing. Journal of Combinatorial
Opt. 17(4), 417–423 (2009)

Competitive Router Scheduling

with Structured Data�

Yishay Mansour1,��, Boaz Patt-Shamir2,� � �, and Dror Rawitz2

1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
mansour@cs.tau.ac.il

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
{boaz,rawitz}@eng.tau.ac.il

Abstract. We consider the task of transmitting structured information
over bounded-capacity links. Our information model is a stream of basic
units called superpackets that are broken into k packets each. To model
the possible structure and redundancy of the superpackets, we assume
that for each superpacket there is a collection of minimal subsets of
packets whose delivery makes the superpacket useful. This very general
model encompasses, for example, MPEG streams, where one can think of
a group of pictures (GoP) as a superpacket. The fundamental difficulty
is that networks can forward only the primitive packets, but applications
can use only superpackets, and thus if no minimal subset is delivered,
the whole superpacket becomes useless. Our aim is to maximize goodput
(number of useful superpackets) in the face of overloaded communication
links, where we are forced to drop some packets.

Specifically, we assume that an arbitrary stream of packets arrives
at a router with multiple bounded-capacity outgoing links. An on-line
algorithm needs to decide, for each superpacket, which outgoing link to
use (all packets of the same superpacket must use the same link) and, in
case of an overload at a link, which packets to drop and which to transmit
so as to maximize goodput. We analyze a simple randomized competitive
algorithm to the general case and provide a nearly matching lower bound
on the competitive ratio of any randomized on-line algorithm.

1 Introduction

Consider a video stream encoded in MPEG-2 [1]. Grossly oversimplifying, the
structure of the stream is as follows. The stream is broken into Groups of Pictures
(GoP), which may last a few minutes each. A GoP consists of a single I-frame,
a few P-frames, and many B-frames. An I-frame is a stand-alone picture that

� Research supported in part by the Next Generation Video Consortium, Israel.
�� Supported in part by a grant from the Israel Science Foundation (grant No. 709/09)

and grant No. 2008-321 from the United States-Israel Binational Science Founda-
tion (BSF), and by Israel Ministry of Science and Technology.

� � � Supported in part by the Israel Science Foundation (grant 1372/09) and by Israel
Ministry of Science and Technology.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 219–232, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 Y. Mansour, B. Patt-Shamir, and D. Rawitz

GoP

I-frame

P-frame P-frame P-frame

B-frames

redundancy=1/3

redundancy=0

redundancy=0

redundancy=1/4

Fig. 1. A tree representation of a GoP. Gray nodes represent data. A node with re-
dundancy β is deemed useful if no more than a fraction β of its children is non-useful.

requires no other information for decoding; decoding a P-frame requires its pre-
ceding I-frame; and decoding a B-frame requires its preceding “reference frame”
(be it I- or P-frame).1 The implication of this structure is that if an I-frame is
lost, then the whole GoP is lost, and if a B-frame is lost, then only a fraction
of a second is lost. But then again, if too many B-frames are lost (where “too
many” is defined subjectively), the GoP should be considered again worthless.
This structure can be modeled by a tree. Figure 1 illustrates a simple example.

The root represents the GoP; if either the I-frame (left child) or the other data
(right subtree) are lost, then the GoP is lost; however, the right subtree may be
considered useful even if one of its children is lost; and similarly, each of these
(depth 2) nodes is useful only if both its P-frame child and at least 3/4 of its B-
frames are not lost. While this is not an accurate description of MPEG, we note
that the hierarchical tree structure is very natural and appears in many other
formats (e.g., XML documents [2]), with or without redundancy. Conceivably,
more complex forms of redundancy are also used.

So suppose now that we need to manage a router that delivers multiple video
streams, such that each stream may use any of a number of outgoing links (see
Figure 2). At every step, some packets arrive at the router, and the router needs
to decide which outgoing link is used for each packet, and, in case of an overflow
in that link, which packets to discard. Note that in our example, if we drop an I-
frame from each GoP, then all GoP’s are useless at the receiving ends, even if the
link has delivered all P- and B-frames (this is an instance of a high throughput,
low goodput situation). In this paper we study, from the theoretical viewpoint,
algorithms that decide which packets to drop so as to maximize the goodput of
bounded-capacity links.

To this end, we consider the following abstract model. Senders generate ba-
sic information units, called superpackets, that are broken into packets by the
network protocol at the senders. The router needs to decide which link is used
by each new superpacket: all subsequent packets of that superpacket must use

1 In fact, P-frames depend on the previous reference frame; and B-frames depend on
both their immediate surrounding frames. In addition, MPEG partitions frames into
“slices,” which are transmitted in network packets.

Competitive Router Scheduling with Structured Data 221

mgmt.
alg.

Sender

app. network
protocol

superpackets

Receiver

app. network
protocol

superpackets packets

Sender

app. network
protocol

superpackets

Sender

app. network
protocol

superpackets

packets

Node Receiver

app. network
protocol

superpackets

Receiver

app. network
protocol

superpackets

m links

Fig. 2. Basic system setup. Our focus is on the link management algorithm (shaded).
All packets belonging to the same superpacket must use the same link.

the same link.2 If the number of packets assigned to a link exceeds its capacity,
the management algorithm needs to decide which packet to drop and which to
forward. To allow for arbitrary structure and redundancy, we assume that each
superpacket is associated with a collection of feasible subsets that is closed under
set inclusion (i.e., if S ⊃ S′ and S′ is feasible, then so is S). A superpacket is
considered useful only if the set of its delivered packets is one of its feasible sub-
sets. The goal of the algorithm is to maximize the number useful superpackets
at the receivers.

Our Contribution. Following [3,4], we study the fundamental Priority algo-
rithm for link management, augmented with a simple randomized strategy that
allocates superpackets to links based on the links capacities. Algorithm Prior-

ity assigns to each superpacket a random priority (based only on its weight,
cf. Section 2.2), and in case of overflows, low-priority packets are dropped. This
algorithm enjoys many nice features: in particular let us mention that it is highly
distributed in the sense that it can be employed consistently in multiple loca-
tions without any communication overhead (see [3]). For our context, we note
that the algorithm works without any knowledge of the feasible sets.

Our main result is competitive analysis of this simple algorithm. Specifi-
cally, suppose that at most σ packets arrive in a step and that each link can
serve at most one packet per step; suppose further that each superpacket con-
tains k packets. We prove that the algorithm guarantees expected goodput of
Ω(opt/(k

√
σ/m)), where opt denotes the maximal number of superpackets

that can be delivered in the given input sequence and m is the number of links.
In fact, we prove our result in a more general setting: first, we consider weighted
goodput (i.e., when each superpacket has a different value, and the goal is to
maximize the total value of useful superpackets), where the competitive ratio
is not affected; and second, we consider capacitated links, where each link i has
capacity ci. In this case the expected weight of superpackets delivered by our

2 This requirement, referred to as “stickiness” or “persistence” is typical in commu-
nication protocols, e.g. TCP.

222 Y. Mansour, B. Patt-Shamir, and D. Rawitz

algorithm is Ω(opt/(k
√
σ/c)), where c =

∑m
i=1 ci. Notice that the competitive

ratio depends only on the total available bandwidth c, regardless of the way it
is broken into links. Also note that the competitive ratio improves linearly with√
c. Finally, we provide a refined analysis that takes into account a parameter

we define, called the effective redundancy of the input sequence.
We present a lower bound on the competitive ratio for the case of m unit

capacity links without redundancy. Based on [3], we show that in this case,
no randomized on-line algorithm can improve on our results by more than a
polylogarithmic factor.

We show that our results extend to more general models. In some cases, there
may be more than just two values for a superpacket (no value or full value).
Superpackets may be structured so that there are a few “service levels,” with
different values, so that the value of a delivered superpacket is the value of the
highest satisfied service level. We show that our algorithm is competitive in this
model as well. We also show that our upper bound applies to the instantaneous
network model, where we are given a network, a source s and a destination t,
and the algorithm needs to choose a path from s to t for each superpacket: all
packets of a superpacket must follow the same path. A conflict between two
superpackets occurs, if the routes of the superpackets intersect, and there exists
a time step in which packets from both arrive. The motivation for this model is
the case where a superpacket is a set of short virtual circuits between s and t
over a network of unit-capacity links.

Related Work. Buffer overflow management has been studied extensively in
the last decade from the competitive analysis viewpoint (starting with [5,6]:
see [7] for a recent survey). The simplest superpacket model, in which each
superpacket consists of k packets that need all be delivered, was introduced in [8].
Emek at al. [3] consider the basic problem (k-packet superpackets, single link, no
redundancy) under the name Online Set Packing, and introduce the Priority

algorithm (based on Turan’s Theorem [9]). They prove an upper bound on the
competitive ratio of Priority and a lower bound on the competitive ratio of
any on-line algorithm for that problem. In [4], basic redundancy is introduced:
in our terms, there is a constant 0 ≤ β < 1 such that any subset of at least
(1 − β)k packets is feasible (in other words, a super packet is useful if at most
a β-fraction of its packets are lost). A general technique for dealing with buffers
is also introduced in [4].

The offline version of single link management, without redundancy and su-
perpacket structure, is equivalent to the Set Packing problem (SP), where each
superpacket corresponds to a set and each time step corresponds to an element.
SP is as hard as Maximum Independent Set even when all elements are contained
in at most two sets (i.e., σ ≤ 2), and therefore cannot be approximated to within
an O(n1−ε)-factor, for any ε > 0, where n is the number of sets [10]. Letting T de-
note the number of time steps (elements), SP is O(

√
T)-approximable, and hard

to approximate within T 1/2−ε, for any ε > 0 [11]. When set size is at most k, SP
is approximable within k

2 + ε, for any ε > 0 [12] and within k+1
2 in the weighted

case [13], but known to be hard to approximate to within O(k/ log k)-factor [14].

Competitive Router Scheduling with Structured Data 223

Paper Organization. The remainder of the paper is organized as follows. In
Section 2 we formalize the model and present our algorithm. The analysis of our
algorithm and the lower bound are given in Section 3. Extensions are given in
Section 4.

2 Preliminaries

2.1 Models

Data Model. Our basic concept is a superpacket, typically denoted S, which
is comprised of k packets. The complete set of superpackets is denoted C. Each
superpacket S ∈ C is associated with a feasibility collection FS ⊆ 2S . S̄ ∈ FS is
called a feasible subset of S. We assume that FS is closed under set inclusion,
or monotone, for any superpacket S, namely that if S̄ ∈ FS , then S′ ∈ FS for
any S′ such that S̄ ⊆ S′. The case where FS = {S}, for every S ∈ S, is referred
to as all-or-nothing. In this case a superpacket is lost if even one of its packets
is dropped.

Each superpacket S ∈ C has a weight w(S) > 0. In the unweighted model,

w(S) = 1 for all S ∈ C. Given a set of superpackets C′ ⊆ C we define w(C′) def
=∑

S∈C′ w(S). The input is a sequence of packets that arrive online. We assume
that the online algorithm can associate packets with superpackets (e.g., packets
contain their parent superpacket ID in their headers). We stress, however, that
the algorithm has no knowledge on feasibility collections of superpackets. The
system progresses in discrete time steps, where the time horizon is denoted by
T . In each step t, a set of σ(t) packets arrive. (We assume that no superpacket
has two packets arriving at the same step.) The arrival time of a packet p is
denoted by arr(p). The set of superpackets whose packet arrive at time t is
denoted C(t), i.e., C(t) = {S ∈ C : ∃p ∈ S s.t. arr(p) = t}. The burst size at
time t is denoted σ(t) = | {p : arr(p) = t} |; the weighted burst size is denoted
σ$(t) =

∑
S∈C(t) w(S).

System Model. In the single-link model, we have an integer capacity c ≥ 1, and
the algorithm selects, at each time step t, c packets to forward. All other packets
that arrived at time t are lost (possibly causing the loss of their superpackets).
In the multiple links model, there are m links with capacities c1, . . . , cm, where
ci ≥ 1 for i = 1, . . . ,m. We denote c =

∑m
i=1 ci. The algorithm selects a single

link for each superpacket (for all its packets), and then, in each time step, the
algorithm does, for each link, the single link task: select which packets will be
forwarded, subject to that link capacity constraint.

Given an algorithm alg and an instance I, we denote the set of completed
superpackets by alg(I) (or simply by alg), and call it the goodput of the al-
gorithm. If the algorithm is randomized, its goodput for a given instance is a
random variable, and we shall refer to its expected value. We measure the per-
formance of algorithms using competitive analysis: The competitive ratio of an
algorithm is the supremum, over all instances I, of w(opt(I))/w(alg(I)), where
w(opt(I)) is the maximum possible goodput for I.

224 Y. Mansour, B. Patt-Shamir, and D. Rawitz

Additional Notation. We define for every set of packets S,

N [S]
def
= {S′ ∈ C : ∃p ∈ S, p′ ∈ S′ s.t. arr(p) = arr(p′)}

and N(S)
def
= N [S]\{S}. Notice that N(S) = N [S] if S �∈ C. For a finite sequence

of values x1, . . . , xn, we denote x = 1
n

∑n
i=1 xi and xmax = max {x1, . . . , xn}. We

use the notation xy = 1
n

∑n
i=1 xiyi.

2.2 Algorithm

The following algorithm was proposed in [3] for the Online Set Packing problem.

Algorithm 1. Priority

1: For each superpacket S with weight w(S): select a priority r(S) ∈ [0, 1] indepen-
dently at random by the cumulative distribution function Pr[r(S) < x] = xw(S).

2: for all time step t do
3: Receive σ(t) packets
4: Deliver the c packets whose superpackets have the largest priority.
5: end for

Note that, if w(S) is integral, the priority r(S) ∈ [0, 1] of a superpacket S is
distributed like the maximum of w(S) independent U [0, 1] random variables.

For our case, where we havem links, we use the following simple link allocation
algorithm. Each link is then managed by its own replica of Priority.

Algorithm 2. PLink

1: Whenever a packet p from superpacket S arrives:
2: if p is the first packet from S then
3: set �(S) ∈ {1, . . . ,m} randomly by Pr[�(S) = i] = ci

c

4: end if � else �(S) was set previously
5: send p to link �(S) (managed by Algorithm Priority�(S))

3 Multiple Capacitated Links

In this section we study the case where weighted superpackets arrive at a
server with multiple links. We show that the competitive ratio of PLink is
O(k

√
σσ$/c · σ$). (Recall that c is the total capacity of all links.) We also present

an almost matching lower bound for the all-or-nothing case with unit capacity
links that is based on the lower bound for single unit capacity link from [3].
Our lower bound applies even to unweighted input sequences. We conclude the
section with a discussion on the difference between the effects of many links and
of large capacity.

Competitive Router Scheduling with Structured Data 225

3.1 Analysis of Algorithm PLink

We start by stating lower bounds on the survival probability of a superpacket S
under Priority, in the single link case. (We abuse notation by using Priority

to denote the set of surviving superpackets.) Note that the bounds hold for
arbitrary feasible subsets of S. (Similar results appear in [3], but assuming that
the only feasible set is S itself). Due to lack of space, the proofs are omitted.

Lemma 1. Let c = 1. For any superpacket S ∈ C and for any feasible subset S̄

of S we have Pr[S ∈ Priority] ≥ w(S)

w(N(S̄))+w(S)
.

Lemma 2. Let c > 1. For any superpacket S ∈ C and for any feasible subset S̄

of S we have Pr[S ∈ Priority] ≥ 1
2 ·min

{
c·w(S)

w(N(S̄))+w(S)
, 1
}

.

We now extend the lemmas to the multiple links case. We abuse notation once
again by using PLink to denote the set of surviving superpackets.

Lemma 3. For any S ∈ C and for any feasible subset S̄ of S we have

Pr[S ∈ PLink] ≥ c

4
· w(S)

2w(N(S̄)) + c · w(S) .

Proof. Let �(S) denote the link that was selected for S by PLink. Also let
Ni(S) = {S′ ∈ N(S) : �(S′) = i}. By the independence of the random choices
we get that E[w(Ni(S̄))] =

ci
c · w(N(S̄)), and by Markov’s Inequality we have

that Pr
[
w(Ni(S̄)) >

2ci
c · w(N(S̄))

]
< 1

2 .
According to Lemmas 1 and 2 it follows that

Pr
[
S ∈ PLink | �(S)=i and

w(Ni(S̄))≤ 2ciw(N(S̄))

c

]
≥ 1

2
min

{
ciw(S)

2ciw(N(S̄))
c + w(S)

, 1

}

≥ 1

2
min

{
ciw(S)

2ciw(N(S̄))
c + ciw(S)

, 1

}

=
1

2
min

{
cw(S)

2w(N(S̄)) + cw(S)
, 1

}
=

1

2
· cw(S)

2w(N(S̄)) + cw(S)

Hence

Pr[S ∈ PLink | �(S) = i] ≥Pr

[
w(Ni(S̄)) ≤

2ciw(N(S̄))

c
| �(S) = i

]
·

Pr
[
S ∈ PLink | �(S)=i and

w(Ni(S̄))≤ 2ciw(N(S̄))

c

]
≥ c

4
· w(S)

2w(N(S̄)) + cw(S)
.

226 Y. Mansour, B. Patt-Shamir, and D. Rawitz

Therefore,

Pr[S ∈ PLink] =
∑
i

ci
c
·Pr[S ∈ PLink | �(S) = i] ≥ c

4
· w(S)

2w(N(S̄)) + cw(S)
.

�

The following lemma states the property that allows us to bound the competitive
ratio of PLink.

Lemma 4. Let C′ ⊆ C be a collection of superpackets, and for every S ∈ C′
let S̄ ⊆ S be a feasible subset of S. Then, either (i) E[w(PLink)] ≥ w(C′)

8 , or

(ii) E[w(PLink)] ≥ c
16

w(C′)2∑
S∈C′ w(N(S̄))

.

Proof. By linearity of expectation we have

E[w(PLink)] =
∑
S∈C

w(S) · Pr[S ∈ PLink]

≥
∑
S∈C′

w(S)

4

c · w(S)
2w(N(S̄)) + cw(S)

=
c

4

∑
S∈C

w(S)2

2w(N(S̄)) + cw(S)

≥ c

4
· w(C′)2
2
∑

S∈C′ w(N(S̄)) + cw(C′) ,

where the first inequality follows from Lemma 3 and the second is due to the
following implication of the Cauchy-Schwarz Inequality: for any positive reals

a1, . . . , an and b1, . . . , bn, it holds that
∑

i
a2
i

bi
≥ (

∑
i ai)

2

∑
i bi

.

If c ·w(C′) ≥ 2
∑

S∈C′ w(N(S̄)), then E[w(PLink)] ≥ c
4 ·

w(C′)2

2cw(C′) =
w(C′)

8 , and

otherwise, E[w(PLink)] > c
16 ·

w(C′)2∑
S∈C′ w(N(S̄))

. �

Lemmas 5 and 6 below apply Lemma 4 with two different collections C′.

Lemma 5. Either E[w(PLink)] ≥ w(opt)
8 , or E[w(PLink)] ≥ w(opt)2

16kw(C) .

Proof. For each superpacket S ∈ opt fix S̄ to be the subset of S which
contains the packets delivered by opt. Clearly S̄ is a feasible subset of S.
Hence, by Lemma 4 with C′ = opt we have that either E[w(PLink)] ≥
w(opt)

8 or E[w(PLink)] ≥ c
16

w(opt)2∑
S∈opt

w(N(S̄))
. In the latter case, observe that

each superpacket in C intersects at most ck superpackets in opt. Hence,∑
S∈opt

w(N(S̄)) ≤ ckw(C). It follows that E[w(PLink)] ≥ w(opt)2

16kw(C) . �

Lemma 6. Either E[w(PLink)] ≥ w(C)
8 , or E[w(PLink)] ≥ cw(C)2

16T ·σσ$
.

Competitive Router Scheduling with Structured Data 227

Proof. Fix a superpacket S and let S̄ = S. By Lemma 4 with C′ = C we have

that either E[w(PLink)] ≥ w(C)
8 , or E[w(PLink)] ≥ c

16 ·
w(C)2∑

S∈C w(N(S)) . Summing

over the superpackets we get that∑
S∈C

w(N(S)) <
∑
t

σ(t)σ$(t) = T · σσ$, (1)

and the lemma follows. �

Combining Lemmas 5 and 6 we obtain our main result.

Theorem 1. The competitive ratio of PLink is at most 16k
√

σσ$

cσ$
.

Proof. If either w(PLink) ≥ w(opt)/8 or w(PLink) ≥ w(C)/8, then we are
done. Otherwise, we have that

E[w(PLink)] ≥ w(opt)2

16kw(C) and E[w(PLink)] ≥ cw(C)2
16T · σσ$

.

The maximum of these bounds is minimized when w(opt) =
√

ck·w(C)3
T ·σσ$

, and

therefore, for any instance

E[w(Priority)] ≥ w(opt) · 1
16

√
cw(C)

k · T · σσ$
.

Finally, since T · σ$ =
∑

t σ$(t) ≤
∑

S∈C k ·w(S) = k ·w(C), it follows that

E[(Priority)] ≥ w(opt) · 1
16

√
c · σ$

k2σσ$
= w(opt) · 1

16k

√
c · σ$

σσ$
.

�

Note that the upper bound we provide in Theorem 1 does not depend on the
number of links, but rather on the input sequence and on the total capacity of
the links.

Corollary 1. The competitive ratio of PLink is at most 16k
√
σmax/c.

Proof. Follows from the fact that σσ$ ≤ σ$ · σmax. �

3.2 A Lower Bound

We now present a lower bound for the multiple links case. It uses the simple
scenario of unweighted, unit-capacity per link (i.e., m = c) instances, and thus
it applies to more general setting a fortiori. However, we assume that the only
feasible subset of a superpacket is all packets, i.e., no redundancy is considered.

Our lower bound uses, as a black box, the following lower bound from [3] for
Online Set Packing (osp).

228 Y. Mansour, B. Patt-Shamir, and D. Rawitz

Theorem 2 ([3]). For any randomized online algorithm, there exists an infinite
family of unweighted, unit-capacity instances of osp for which the competitive
ratio is Ω̃(k

√
σmax).

Next building on Theorem 2 we obtain a lower bound for the multiple uncapac-
itated links case.

Theorem 3. For any online randomized algorithm there exists an infinite fam-
ily of unweighted, instances for which, under the m unit capacity link model, the
competitive ratio is Ω̃(k

√
σmax/c).

Proof. Let I ′ be the instance whose existence is promised by Theorem 2. Define
an instance I where each superpacket in I ′ is replicated c times. (Note that
c = m in this case.) Clearly, |opt(I)| ≥ c · |opt(I ′)|, since it is possible to route
the ith copy of each set to link i. We show that given any randomized online
algorithm alg for the multiple links case, one can obtain an algorithm alg

′ for
the single link case such that E[|alg′|] ≥ E[|alg|]/c. Hence, |opt|/E[|alg|] ≥
|opt′|/E[|alg′|], and the theorem follows.

Given an algorithm alg, define algi to be the set of completed superpackets
that were routed to link i. Let � be the link that maximizes performance, i.e., � =
argmaxi E[|algi|]. Clearly, E[|algi|] ≥ E[|alg|]/c. We construct an algorithm
alg

′ for osp that simulates link �. More specifically, given an input sequence,
alg

′ makesm copies of each superpacket, and executes alg on the new instance.
Let alg�(t) be the set of superpackets whose packets were transmitted by alg

on link � at time t. If Sj ∈ alg�(t), where S
j is a copy of S, then alg

′ transmits a
corresponding packet from S, namely alg

′(t) =
{
S : ∃j, Sj ∈ alg�(t)

}
. Since

no two copies of S can be completed by alg, it follows that |alg′| ≥ |alg�|.
Hence, E[|alg′|] ≥ E[|alg|]/c, as required. �

We note that our lower bound shows that our upper bound is essentially tight—
for the case of unit capacity links.

3.3 The Effect of Many Links and Large Capacity

As we mentioned above, it is interesting to note that the competitive ratio of
Algorithm PLink depends only on the total available bandwidth, regardless of
how it is partitioned among the links. However, the lower bound of Theorem 3 is
proved specifically for the case of unit capacity links. It is natural to ask whether
link capacity plays an important role in algorithm performance. The answer is
positive, as demonstrated by the following scenario. Consider two models, one
with m unit-capacity links and another with a single link with capacity m. Sup-
pose that there are n ≥ m superpackets without any redundancy, and let the
arrival sequence consists of all possible

(
n
m

)
bursts of size m in arbitrary order. In

the m unit-capacity links model, only m superpackets can be completely deliv-
ered, because each channel can deliver only one complete superpacket. However,
in the single-link capacity m model, all superpackets are delivered. This means
that the optimum may change dramatically when links are consolidated.

Competitive Router Scheduling with Structured Data 229

We conclude this section with two observations about the effect of sufficiently
many unit capacity links. The proofs are omitted.

First, we consider the effect on the optimal solution.

Observation 7. If m > k(σmax − 1), then opt = C.

Next, we consider the effect on the competitive ratio,

Theorem 4. Suppose that alg is an algorithm that assigns superpackets to
links uniformly at random, and consider unweighted instances without redun-

dancy. Then if m ≥ kσ2

εσ then E[|alg|] ≥ (1 − ε)|opt|.

We note that since σ2

σ ≤ σmax, the same result holds for m ≥ kσmax

ε .

4 Extensions

In this section we present a refinement of the analysis of PLink, and then
we extend the analysis to more general settings. More specifically, we provide
a refined analysis of PLink that takes into account the effective redundancy
of the input sequence (Section 4.1). We show that PLink can be used in the
case where there are several feasibility collections for each superpacket, and each
collection is associated with a different service level (Section 4.2). We also extend
our results to the instantaneous network model (Section 4.3).

4.1 Effective Redundancy

To refine the analysis of Algorithm PLink, we defined the following concepts.
The burstiness of a superpacket S is defined as B(S) =

∑
p∈S σ$(arr(p)). The

minimal burstiness of S is Bmin(S) = minS̄∈FS
B(S̄). Let ρS = Bmin(S)/B(S)

and ρ = maxS∈C ρS . ρ is called the effective redundancy of the input sequence.
We now refine Lemma 6 to include ρ as follows.

Lemma 8. Either E[w(PLink)] ≥ w(C)
8 , or E[w(PLink)] ≥ cw(C)2

16ρT ·σσ$
.

Proof. We follow the proof of Lemma 6, but we take S̄ to be a feasible subset of
S with minimal burstiness, namely such that B(S̄) = Bmin(S). Equation (1) is
replaced with

∑
S∈C w(N(S̄)) <

∑
S∈C B(S̄) ≤

∑
S∈C ρB(S) = ρ · T · σσ$. �

We can therefore conclude that in this case we have an improvement of
√
ρ factor

over Theorem 1:

Theorem 5. The competitive ratio of PLink is at most 16k
√

ρσσ$

cσ$
.

We note that ρ decreases if bursts are roughly the same weight or if there are
no packets whose delivery is essential to the survival of superpackets.

230 Y. Mansour, B. Patt-Shamir, and D. Rawitz

To motivate the parameter ρ, consider the case where superpackets are hi-
erarchically structured. Specifically, we assume that the feasible collection of a
superpacket S is defined by a structure tree TS , whose leaves are the packets,
and whose root is identified with the superpacket. A structure tree is a rooted
tree with a redundancy parameter assigned to each node, subject to the following
restriction for internal nodes: Let d(v) denote the number of children of a node
v. The redundancy parameter of a node v is βS

v ∈ {0, 1
dv
, . . . , dv−1

dv
}. (Assume

w.l.o.g. that βS
v = 0 if d(v) ≤ 1.) The interpretation of redundancy is defined

recursively as follows. A subset S′ of the leaves of a structure tree T is said to
be feasible if either of the following conditions hold: (i) S′ contains one packet
and T contains one leaf; or (ii) Let v1, . . . , vd be the children of the root of T ,
with structure trees T1, . . . , Td, respectively. Let S

′
1, . . . , S

′
d be the subsets of S′

corresponding to T1, . . . , Td, resp. Then S′ is feasible if at least (1− βS
r)d of the

subsets S′
1, . . . , S

′
d are feasible.

Consider a superpacket S with its structure tree TS . We define the redundancy

of a leaf v in TS as ρ̂v
def
=

∏�
i=0(1 − βS

vi), where v = v0, v1, . . . , v� = r is the
path from v to the root r. The redundancy of the superpacket S is defined as

ρ̂S
def
= maxv is a leaf ρv. Notice that ρ̂S depends on TS and on βS , but not on the

input sequence.

Observation 9. ρS ≤ ρ̂S for every superpacket S ∈ C.

It follows that we can replace ρ with ρ̂ = maxS ρ̂S in Theorem 5. We note that
ρ̂S = 1 in the GoP example (see Figure 1), since the I-frame is contained in any
feasible set. However, the competitive ratio will improve, if we send the I-frame
twice.

4.2 Multiple Service Levels

In the model considered in Section 3, each superpacket S has a single weight
(value) w(S) that is collected if a feasible subset of S is delivered. In some
cases, there may be more than just two values for the superpacket (no value
or full value). We consider this case here. Intuitively, we consider superpackets
structured so that there are a few “service levels,” with different values, so that
the value of a delivered superpacket is the value of the highest satisfied service
level. We show that Algorithm PLink is competitive in this case as well.

Formally, we assume that with each superpacket i there are � feasibility col-
lections F1

S ⊃ F2
S · · · ⊇ F�

S and a weight w(S). There are also � payment levels
0 < α1 < · · · < α� ≤ 1, such that the profit obtained from a superpacket S with
delivered packets S′ is αi ·w(S), where i is the maximal service level i such that
S′ ⊆ F i

S.

Let wi(S)
def
= w(S)(αi − αi−1), for i = 1, . . . , �, namely wi(S) stands for the

marginal profit obtained by going from service level i − 1 to service level i. Let
opti denote the optimal value with respect to the instance with the weight
function wi.

Competitive Router Scheduling with Structured Data 231

Lemma 10. Executing Algorithm PLink with the original weights results in

E[wi(PLink)] ≥ 16k
√

σσ$

cσ$
·wi(opti) for a service level i, where ρi is defined by

the feasible collections for service level i.

Proof. Since wi is proportional to the original weight function w, for every i, it
follows that the analysis of Algorithm PLink continues to hold with respect to
wi, even if the random priorities are chosen according to w (see Lemmas 1-3).
Therefore E[wi(PLink)] ≥ 16k

√
σσi$/cσi$·wi(opti) = 16k

√
σσ$/cσ$·wi(opti).

�

Theorem 6. The competitive ratio of PLink is at most 16k
√

σσ$

cσ$
.

Proof. By linearity of expectation and Observation 10 we have that

E[w(PLink)] =
∑
i

E[wi(PLink)]

≥
∑
i

16k

√
σσ$

cσ$
· wi(opti)

≥ 16k

√
σσ$

cσ$

∑
i

wi(opt) = 16k

√
σσ$

cσ$
· w(opt) .

�

4.3 Instantaneous Network Model

We can extend our results to the following scenario we call the instantaneous
network model. In this model we are given a graph with unit capacity edges and
two distinguished nodes, a source s and a destination t, and the algorithm needs
to choose a path from s to t for each superpacket: all packets of a superpacket
must follow the same path. A conflict between superpackets S and S′ occurs if
the routes of S and S′ intersect, and there exists a time step in which packets
from both S and S′ arrive.

We observe that the instantaneous network model can be reduced to the unit
capacity multiple links model.

Lemma 11. There exists a reduction from the instantaneous network model to
the unit capacity multiple links model.

Proof. Consider any feasible solution. For each superpacket S, let p(S) be the
path from s to t that is used for S by the solution. Let C = {e1, ..., ef} be
a minimum s, t-cut in the network, and for each superpacket S, let e(S) be
some edge in C that is contained in p(S), namely e(S) ∈ C ∩ p(S). Define
Ci = {S : e(S) = ei}. Clearly, ∪iCi = C. Let p1, ..., pf be f simple edge disjoint
paths from s to t, where ei ∈ pi. We reassign superpackets to paths as follows:
p′(S) = pi if e(S) = ei, namely if S ∈ Ci. Since the superpackets in Ci intersect
at ei using p, no new conflict is introduced by the new assignment p′. �

232 Y. Mansour, B. Patt-Shamir, and D. Rawitz

It follows that

Theorem 7. There exists a randomized algorithm for the instantaneous network

model whose competitive ratio is at most 16k
√

σσ$

cσ$
.

Theorem 8. For any online randomized algorithm for the instantaneous net-
work model there exists an infinite family of unweighted, instances for which the
competitive ratio is Ω̃(k

√
σmax/c).

References

1. International Organization for Standardization: MPEG-2 standard, ISO/IEC
13818-2:2000 (2000)

2. World Wide Web Consortium: Extensible markup language (XML) 1.0. W3C Rec-
ommendation (November 2008), http://www.w3.org/TR/REC-xml/

3. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing and competitive scheduling of multi-part tasks. In:
29th Annual ACM Symposium on Principles of Distributed Computing (2010)

4. Mansour, Y., Patt-Shamir, B., Rawitz, D.: Overflow management with multipart
packets. In: IEEE INFOCOM (2011)

5. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-
time streams. In: 19th Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 21–30 (2000)

6. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. In: 33rd Annual ACM Sympo-
sium on Theory of Computing, pp. 520–529 (2001)

7. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 41(1), 100–128 (2010)

8. Kesselman, A., Patt-Shamir, B., Scalosub, G.: Competitive buffer management
with packet dependencies. In: 23rd IPDPS, pp. 1–12 (2009)

9. Alon, N., Spencer, J.H.: The Probabilistic Method. 3rd edn. Wiley Interscience
(2008)

10. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1),
105–142 (1999)

11. Halldórsson, M.M., Kratochv́ıl, J., Telle, J.A.: Independent sets with domination
constraints. Discrete Applied Mathematics 99(1-3), 39–54 (2000)

12. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

13. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. Nord. J. Comput. 7(3), 178–184 (2000)

14. Hazan, E., Safra, S., Schwartz, O.: On the Complexity of Approximating k-
Dimensional Matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 83–97. Springer, Hei-
delberg (2003)

http://www.w3.org/TR/REC-xml/

Approximation with a Fixed Number

of Solutions of Some Biobjective Maximization
Problems�

Cristina Bazgan1,2,3, Laurent Gourvès1,2, and Jérôme Monnot1,2

1 Université Paris-Dauphine, LAMSADE,
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

2 CNRS, UMR 7243
3 Institut Universitaire de France

{bazgan,laurent.gourves,monnot}@lamsade.dauphine.fr

Abstract. We investigate the problem of approximating the Pareto set
of biobjective optimization problems with a given number of solutions.
This task is relevant for two reasons: (i) Pareto sets are often computa-
tionally hard so approximation is a necessary tradeoff to allow polyno-
mial time algorithms; (ii) limiting explicitly the size of the approximation
allows the decision maker to control the expected accuracy of approxi-
mation and prevents him to be overwhelmed with too many alternatives.
Our purpose is to exploit general properties that many well studied prob-
lems satisfy. We derive existence and constructive approximation results
for the biobjective versions of Max Bisection, Max Partition, Max

Set Splitting and Max Matching.

1 Introduction

In multiobjective combinatorial optimization a solution is evaluated considering
several objective functions and a major challenge in this context is to generate
the set of efficient solutions or the Pareto set (see [8] about multiobjective com-
binatorial optimization). However, it is usually difficult to identify the efficient
set mainly due to the fact that the number of efficient solutions can be expo-
nential in the size of the input and moreover the associated decision problem
is NP-complete even if the underlying single-objective problem can be solved in
polynomial time. To handle these two difficulties, researchers have been inter-
ested in developing approximation algorithms with an a priori provable guarantee
such as polynomial time constant approximation algorithms. Considering that
all objectives have to be maximized, and for a positive ρ ≤ 1, a ρ-approximation
of Pareto set is a set of solutions that includes, for each efficient solution, a so-
lution that is at least at a factor ρ on all objective values. Intuitively, the larger
the size of the approximation set, the more accurate it can be.

� This research has been supported by the project ANR-09-BLAN-0361 GUaranteed
Efficiency for PAReto optimal solutions Determination (GUEPARD).

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 233–246, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

234 C. Bazgan, L. Gourvès, and J. Monnot

It has been pointed out by Papadimitriou and Yannakakis [18] that, under
certain general assumptions, there always exists a (1 − ε)-approximation, with
any given accuracy ε > 0, whose size is polynomial both in the size of the instance
and in 1/ε but exponential in the number of criteria. In this result, the accuracy
ε > 0 is given explicitly but the size of the approximation set is not given
explicitly. When the number of solutions in the approximation set is limited, not
every level of accuracy is possible. So, once the number of solutions is fixed in
the approximation set of a multiobjective problem, the following questions are
raised: What is the accuracy for which an approximation is guarantee to exist?
Which accuracy can be obtained in polynomial time?

In this paper we are interested in establishing for biobjective maximization
problems the best approximation ratio of the set of efficient solutions when the
size of the approximation set is given explicitly. We give two approaches that
deal with biobjective problems that allow us to obtain approximations of the
set of efficient solutions with one or several solutions. More precisely, in a first
approach, we consider a general maximization problem (denoted by Π1 in the
following) and establish a sufficient condition that guarantees the construction
of a constant approximation of the Pareto set with an explicitly given number
of solutions. As a corollary, we can construct a (1 − ε)-approximation of the
Pareto set with O(1ε) solutions. In a second approach, we establish a necessary
and sufficient condition for the construction of a constant approximation of the
Pareto set with one solution.

Properties defined in these two approaches apply to several problems pre-
viously studied in single-objective approximation. Then we derive polynomial
time constant approximations with one solution for Biobjective Max Bisec-

tion, Biobjective Max Partition, Biobjective Max Cut, Biobjective Max

Set Splitting, Biobjective Max Matching. Some instances show that the
given biobjective appromixation ratios are the best we can expect. In addi-
tion Biobjective Max Partition, Biobjective Max Cut, BiobjectiveMax Set

Splitting admit a (1−ε)-approximation of the Pareto set with O(1ε) solutions.
Several results exist in the literature on the approximation of multiobjective

combinatorial optimization problems. One can mention the existence of fully
polynomial time approximation schemes for biobjective shortest path [12,22,21],
knapsack [9,5], minimum spanning tree [18], scheduling problems [4], randomized
fully polynomial time approximation scheme for matching [18], and polynomial
time constant approximation for max cut [2], a biobjective scheduling problem
[20] and the traveling salesman problem [3,16]. Note that [2] and [20] are ap-
proximations with a single solution.

This article is organized as follows. In Section 2, we introduce basic concepts
about multiobjective optimization and approximation. Section 3 is devoted to
an approach for approximating some biobjective problems with one or several
solutions. Section 4 presents a necessary and sufficient condition for approxi-
mating within a constant factor some biobjective problems with one solution.
Conclusions are provided in a final section. Due to space limitation, some proofs
are omitted.

Approximation with a Fixed Number of Solutions 235

2 Preliminaries on Multi-objective Optimization and
Approximation

Consider an instance of a multi-objective optimization problem with k criteria
or objectives where X denotes the finite set of feasible solutions. Each solution
x ∈ X is represented in the objective space by its corresponding objective vector
w(x) = (w1(x), . . . , wk(x)). We assume that each objective has to be maximized.

From these k objectives, the dominance relation defined on X states that
a feasible solution x dominates a feasible solution x′ if and only if wi(x) ≥
wi(x

′) for i = 1, . . . , k with at least one strict inequality. A solution x is efficient
if and only if there is no other feasible solution x′ ∈ X such that x′ dominates
x, and its corresponding objective vector is said to be non-dominated. Usually,
we are interested in finding a solution corresponding to each non-dominated
objective vector, set that is called Pareto set.

For any 0 < ρ ≤ 1, a solution x is called a ρ-approximation of a solution x′

if wi(x) ≥ ρ · wi(x
′) for i = 1, . . . , k. A set of feasible solutions X ′ is called a ρ-

approximation of a set of efficient solutions if, for every feasible solution x ∈ X ,
X ′ contains a feasible solution x′ that is a ρ-approximation of x. If such a set
exists, we say that the multi-objective problem admits a ρ-approximate Pareto
set with |X ′| solutions.

An algorithm that outputs a ρ-approximation of a set of efficient solutions in
polynomial time in the size of the input is called a ρ-approximation algorithm.
In this case we say that the multi-objective problem admits a polynomial time
ρ-approximate Pareto set.

Consider in the following a single-objective maximization problem P defined
on a ground set U . Every element e ∈ U has a non negative weight w(e). The goal
is to find a feasible solution (subset of U) with maximum weight. The weight of
a solution S must satisfy the following scaling hypothesis: if opt(I) denotes the
optimum value of I, then opt(I ′) = t · opt(I), where I ′ is the same instance as I
except that w′(e) = t ·w(e). For example, the hypothesis holds when the weight
of S is defined as the sum of its elements’ weights, or minw(e) : e ∈ S, etc.

In the biobjective version, called biobjective P , every element e ∈ U has two
non negative weights w1(e), w2(e) and the goal is to find a Pareto set within
the set of feasible solutions. Given an instance I of biobjective P , we denote by
opti(I) (or simply opti) the optimum value of I restricted to objective i, i = 1, 2.
Here, the objective function on objective 1 is not necessarily the same as on
objective 2, but both satisfy the scaling hypothesis.

3 Approximation with a Given Number of Solutions

Papadimitriou and Yannakakis [18] proved the existence of at least one (1− ε)-
approximation of size polynomial in the size of the instance and 1

ε . In this result,
the accuracy ε > 0 is given explicitly but the size of the approximation set is
not given explicitly. In this section we consider a general maximization prob-
lem Π1 and establish a sufficient condition that guarantees the construction of

236 C. Bazgan, L. Gourvès, and J. Monnot

a constant approximation of the Pareto set with an explicitly given number of
solutions for Π1. This result allows to construct a (1− ε)-approximation of the
Pareto set with O(1ε) solutions but not necessarily in polynomial time. Moreover,
if the single objective problem is polynomial time constant approximable and
the sufficient condition is strengthened then the biobjective version is also poly-
nomial time constant approximable with one solution. Thus we obtain constant
approximations and polynomial time constant approximations with one solution
for Biobjective Max Partition, Biobjective Max Cut, Biobjective Max Set

Splitting, Biobjective Max Matching.

In the following, we are interested in particular cases of biobjective maximiza-
tion problems, Biobjective Π1, which satisfy the following property.

Property 1. Given any two feasible solutions S1 and S2, and any real α satisfying
0 < α ≤ 1, if w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists
a feasible solution S3 which satisfies w1(S3) > (1 − α)w1(S1) and w2(S3) >
(1− α)w2(S2).

We say that Biobjective Π1 satisfies polynomially Property 1 if S3 can be con-
structed in polynomial time.

Property 1 means that if S1 is not an α-approximation of S2 and S2 is not
an α-approximation of S1 for both objective functions w1 and w2, then there
exists a feasible solution S3 which simultaneously approximates S1 and S2 with
performance guarantee 1− α.

Given a positive integer �, consider the equations x2� = 1 − x� and x2�−1 =
1 − x�. Denote by α� and β� their respective solutions in the interval [0, 1).

Remark that α� =
(√

5−1
2

)1/�
and α� < β�+1 < α�+1, � ≥ 1.

Theorem 1. If Biobjective Π1 satisfies Property 1, then it admits a β�-approxi-
mate Pareto set (resp. an α�-approximate Pareto set) containing at most p so-
lutions, where p is a positive odd integer such that p = 2� − 1 (resp. a positive
even integer such that p = 2�).

Proof. Let S1 (resp. S2) be a solution optimal for the first objective (resp. second
one). In the following, opt denotes the optimal value on the first objective and
also on the second objective. This can be assumed without loss of generality
because a simple rescaling can make the optimal values coincide (e.g. we can
always assume that opt2 �= 0, thus by multiplying each weight w2(e) by

opt1
opt2

we

are done). Then w1(S1) = w2(S2) = opt. If p is odd then ρ = β� with p = 2�− 1,
otherwise ρ = α� with p = 2�. Subdivide the bidimensionnal value space with
coordinates {0} ∪ {ρiopt : 0 ≤ i ≤ p}. See Figure 1 for an illustration.

Given i, 1 ≤ i ≤ p, the strip s(i, .) is the part of the space containing all
couples (w1, w2) satisfying ρiopt < w1 ≤ ρi−1opt and 0 ≤ w2 ≤ opt. The strip
s(p + 1, .) is the part of the space containing all couples (w1, w2) satisfying
0 ≤ w1 ≤ ρpopt and 0 ≤ w2 ≤ opt. Given j, 1 ≤ j ≤ p, the strip s(., j) is the part
of the space containing all couples (w1, w2) satisfying ρjopt < w2 ≤ ρj−1opt and

Approximation with a Fixed Number of Solutions 237

opt

op
t

ρopt

ρ
op

t

ρ2opt

ρ 2
op

t

ρpopt

ρ p
op

t

Fig. 1. Illustration of Theorem 1

0 ≤ w1 ≤ opt. The strip s(., p+1) is the part of the space containing all couples
(w1, w2) satisfying 0 ≤ w2 ≤ ρpopt and 0 ≤ w1 ≤ opt.

Suppose that w2(S1) < ρpopt and w1(S2) < ρpopt. In other words S1 ∈
s(1, .) ∩ s(., p + 1) and S2 ∈ s(., 1) ∩ s(p+ 1, .). Using Property 1 there exists a
solution S3 satisfying w1(S3) > (1 − ρp)opt and w2(S3) > (1 − ρp)opt. For the
case ρ = β� and p = 2� − 1, we get that 1 − ρp = 1 − β2�−1

� = β�
� = ρ�. For the

case ρ = α� and p = 2�, we get that 1 − ρp = 1 − α2�
� = α�

� = ρ�. Then S3 is a
ρ-approximation of any solution S satisfying max{w1(S), w2(S)} ≤ ρ�−1opt.

One can construct a ρ-approximate Pareto set P as follows: P = {S3} at the
beginning and for j = �− 1 down to 1, pick a feasible solution s with maximum
weight w1 in s(., j) (if s(., j) contains at least one value of a feasible solution)
and set P = P ∪{S}. Afterwards, for i = �−1 down to 1, pick a feasible solution
S with maximum weight w2 in s(i, .) (if s(i, .) contains at least one value of a
feasible solution) and set P = P ∪ {S}. For every strip the algorithm selects a
solution which ρ-approximates (on both objective functions) any other solution
in the strip. Since the solutions of P approximate the whole bidimensionnal
space, P is a ρ-approximate Pareto set containing at most 2�− 1 solutions. Here
2�− 1 is equal to p when p is odd, otherwise it is equal to p− 1.

Now suppose that w2(S1) ≥ ρpopt (the case w1(S2) ≥ ρpopt is treated simi-
larly). Solution S1 must be in s(., j∗) for 1 ≤ j∗ ≤ p. Since w1(S1) = opt, S1 is
a ρ-approximation of any solution S in s(., p) ∪ s(., p + 1). One can build an ρ-
approximate Pareto set P as follows: P = {S1} at the beginning and for j = j∗−1
down to 1, pick a feasible solution S with maximum weight w1 in s(., j) (if s(., j)
contains at least one value of a feasible solution) and set P = P ∪ {S}. Since
the strips form a partition of the space, the algorithm returns an ρ-approximate
Pareto set containing at most p solutions. �

Corollary 1. If Biobjective Π1 satisfies Property 1, then it admits a (1 − ε)-
approximate Pareto set containing O(1ε) solutions.

Property 1 can be relaxed in the following way:

Property 2. We are given two feasible solutions S1 and S2, and a real α satis-
fying 0 < α ≤ 1. If w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists

238 C. Bazgan, L. Gourvès, and J. Monnot

a feasible solution S3 which satisfies w1(S3) > (c − α)w1(S1) and w2(S3) >
(c− α)w2(S2), where 0 < c ≤ 1.

We define similarly that Biobjective Π1 satisfies polynomially Property 2.

Given a positive integer �, consider the equations x2� = c − x� and x2�−1 =
c−x�. Denote by γ� and δ� their respective solutions in the interval [0, 1). Remark

that γ� = (
√
1+4c−1

2)1/� and γ� < δ� < γ�+1, � ≥ 1.

Theorem 2. If Biobjective Π1 satisfies Property 2, then it admits a δ�-approxi-
mate Pareto set (resp. an γ�-approximate Pareto set) containing at most p so-
lutions, where p is a positive odd integer such that p = 2� − 1 (resp. a positive
even integer such that p = 2�).

Proof. The proof is similar with the proof of Theorem 1. Suppose that w2(S1) <
ρpopt and w1(S2) < ρpopt. Using Property 2 there exists a solution S3 satisfying
w1(S3) > (c−ρp)opt and w2(S3) > (c−ρp)opt. For the case ρ = δ� and p = 2�−1,
we get that c− ρp = c− δ2�−1

� = δ�� = ρ�. For the case ρ = γ� and p = 2�, we get
that c − ρp = c − γ2�

� = γ�
� = ρ�. Then S3 is a ρ-approximation of any solution

S satisfying max{w1(S), w2(S)} ≤ ρ�−1opt. �

The previous results of this section consider the construction, not necessarily in
polynomial time, of an approximate Pareto set with a fixed number of solutions.
We give in the following some conditions on the construction in polynomial time
of an approximate Pareto set with one solution.

Proposition 1. If Π1 is polynomial time ρ-approximable and Biobjective Π1

satisfies polynomially Property 1 (resp. 2), then Biobjective Π1 is polynomial
time ρ

2 -approximable (resp. cρ
2 -approximable) with one solution.

Proof. Let S1 (resp. S2) be a polynomial time ρ-approximation solution for the
first objective (resp. second one). In the following, opt1 (resp. opt2) denotes the

optimal value on the first objective (resp. second one). If w2(S1) ≥ w2(S2)
2 then

w2(S1) ≥ ρ
2opt2 and thus S1 is a ρ

2 -approximate Pareto set. If w1(S2) ≥ w1(S1)
2

then w1(S2) ≥ ρ
2opt1 and thus S2 is a ρ

2 -approximate Pareto set. Otherwise,

w2(S1) < w2(S2)
2 and w1(S2) < w1(S1)

2 and since Biobjective Π2 satisfies poly-
nomially Property 1, we can construct in polynomial time a feasible solution S3

which satisfies w1(S3) ≥ w1(S1)
2 and w2(S3) ≥ w2(S2)

2 , that is a ρ
2 -approximate

Pareto set. �

We consider in Sections 3.1, 3.2, and 3.3 several examples of problems Π1 that
satisfy the scaling hypothesis and such that Biobjective Π1 satisfy Property 1
or Property 2.

3.1 Max Pos NAE

The Max Pos NAE problem consists of a set of clauses C defined on a set of
boolean variables x1, . . . , xn. The clauses are composed of two or more positive

Approximation with a Fixed Number of Solutions 239

variables and they are endowed with a non negative weight. The Max Pos NAE

problem consists of finding an assignment of the variables such that the total
weight of the clauses that are satisfied is maximum, where a positive clause is
satisfied by an assignment if it contains at least a true variable and at least a
false variable. Max Pos NAE generalizes Max Cut and so it is NP-hard and
0.7499-approximable [24]. Max Pos NAE is also known under the name Max

Set Splitting or Max Hypergraph Cut [24].

Lemma 1. Biobjective Max Pos NAE satisfies polynomially Property 1.

Proof. Let α ∈ (0, 1] and S1, S2 two solutions of an instance of biobjective Max

Pos NAE satisfying the inequalities: w2(S1) < αw2(S2) and w1(S2) < αw1(S1).
Consider S3 = (S1 \ S2) ∪ (S2 \ S1). Let c(S) be the set of clauses satisfied by
assigning variables from S to true and those from S̄ to false. Clearly c(S) = {Ci =
xi1 ∨ . . . ∨ xit : ∃xij ∈ S, ∃xi� ∈ S̄}. In the following a clause Ci is identified
by the set of variables that it contains {xi1 , . . . , xit}. Then c(S1) \ c(S2) = {C :
C ∩ S1 �= ∅ and C ∩ S̄1 �= ∅} ∩ {C : C ⊆ S2 or C ⊆ S̄2}. Let C ∈ c(S1) \ c(S2).
If C ⊆ S2 then since C ∩ S̄1 �= ∅ we have ∅ �= C ∩ (S2 \ S1) ⊆ C ∩ S3. Moreover
C ∩ S̄3 �= ∅ since C ∩ S1 ∩ S2 �= ∅. Thus C ∈ c(S3). If C ⊆ S̄2 then since
C ∩ S1 �= ∅ we have ∅ �= C ∩ (S1 \ S2) ⊆ C ∩ S3. Moreover C ∩ S̄3 �= ∅ since
C ∩ S̄3 ⊆ C ∩ S̄1 ∩ S̄2 �= ∅. Thus c(S1)\ c(S2) ⊆ C(S3). In the similar way we can
prove c(S2)\c(S1) ⊆ C(S3). Thus, c(S1)Δc(S2) =

(
c(S1)\c(S2)

)
∪
(
c(S2)\c(S1)

)
is contained in c(S3).

The inequality w2(S1) < αw2(S2) can be rewritten as follows:∑
C∈c(S1)

w2(C) < α
∑

C∈c(S2)

w2(C)

∑
C∈c(S1)\c(S2)

w2(C) + (1 − α)
∑

C∈c(S1)∩c(S2)

w2(C) < α
∑

C∈c(S2)\c(S1)

w2(C)

We can use it to get

w2(S3) ≥
∑

C∈c(S1)\c(S2)

w2(C) +
∑

C∈c(S2)\c(S1)

w2(C) =

=
∑

C∈c(S1)\c(S2)

w2(C) + α
∑

C∈c(S2)\c(S1)

w2(C) + (1− α)
∑

C∈c(S2)\c(S1)

w2(C) >

> 2
∑

C∈c(S1)\c(S2)

w2(C)+(1−α)
∑

C∈c(S1)∩c(S2)

w2(C)+(1−α)
∑

C∈c(S2)\c(S1)

w2(C) ≥

≥ (1 − α)
∑

C∈c(S2)

w2(C) = (1 − α)w2(S2).

Using the same technique we can show that w1(S3) > (1− α)w1(S1). �

240 C. Bazgan, L. Gourvès, and J. Monnot

Corollary 2. Biobjective Max Pos NAE admits a
(i) β�-approximate Pareto set (resp. an α�-approximate Pareto set) containing

at most p solutions, where p = 2�− 1 (resp. p = 2�).
(ii) (1− ε)-approximate Pareto set containing O(1ε) solutions.

As indicated above, Corollary 2 deals with the possibility to reach some approx-
imation bounds when the number of solutions in the Pareto set is fixed. We give
in the following an approximation bound that we can obtain in polynomial time
with one solution.

Corollary 3. Biobjective Max Pos NAE admits a polynomial time 0.374-
approximate Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.7499. �

We consider in the following a particular case of Max Pos NAE in which
every clause contains exactly k variables, denoted Max Pos kNAE. Max Pos

3NAE is 0.908-approximable [25]. For k ≥ 4, Max Pos kNAE is (1 − 21−k)-
approximable [1,14] and this is the best possible since it is hard to approximate
within a factor of 1− 21−k + ε, for any constant ε > 0 [13].

Corollary 4. Biobjective Max Pos 3NAE admits a polynomial time 0.454-
approximate Pareto set with one solution. For k ≥ 4, Max Pos kNAE admits
a polynomial time 1/2− 2−k-approximate Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.908 and
ρ = 1− 21−k. �

We consider in the following another particular case of Max Pos NAE in which
every clause contains exactly 2 variables, that is exactly Max Cut which is
0.878-approximable [10].

Corollary 5. Biobjective Max Cut admits a
(i) β�-approximate Pareto set (resp. an α�-approximate Pareto set) containing

at most p solutions, where p = 2�− 1 (resp. p = 2�).
(ii) (1− ε)-approximate Pareto set containing O(1ε) solutions.

Corollary 6. BiobjectiveMaxCut admits a polynomial time 0.439-approximate
Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.878 [10].
�

Clearly this last result is the same as the one given in [2] but we use a different
method. We remark that Biobjective Max Cut is not (1/2 + ε)-approximable
with one solution [2], meaning that we are close to the best possible approxima-
tion result.

Approximation with a Fixed Number of Solutions 241

3.2 Max Partition

The Max Partition problem is defined as follows: given a set J of n items
1, . . . , n, each item j of positive weight w(j), find a solution S that is a bipar-
tition J1 ∪ J2 of the n items such that w(S) = min{

∑
j∈J1

w(j),
∑

j∈J2
w(j)} is

maximized. This NP-hard problem was also studied in the context of schedul-
ing, where the number of partitions is not fixed, and consists of maximizing the
earliest machine completion time [23].

Lemma 2. Biobjective Max Partition satisfies polynomially Property 1.

Corollary 7. Biobjective Max Partition admits a
(i) β�-approximate Pareto set (resp. an α�-approximate Pareto set) containing

at most p solutions, where p = 2�− 1 (resp. p = 2�).
(ii) (1− ε)-approximate Pareto set containing O(1ε) solutions.

Corollary 8. Biobjective Max Partition admits a polynomial time (1/2− ε)-
approximate Pareto set with one solution, for every ε > 0.

Proof. Max Partition is a particular case of the Max Subset Sum problem.
An input of Max Subset Sum is formed by a set J of n items 1, . . . , n, each
item j has a positive weight w(j), and an integer t. The problem consists of
finding a subset S of J whose sum w(S) is bounded by t and maximum. Max

Subset Sum has a fptas [6]. We can obtain a fptas for Max Partition using
the previous fptas for t =

∑n
i=1 w(i)/2.

The results follows from Lemma 2 and Proposition 1 with ρ = 1− 2ε. �

Observe that Biobjective Max Partition is not (1/2 + ε)-approximable with
one solution. In order to see this, consider 3 items of weights w1(1) = 2, w2(1) =
1, w1(2) = 1, w2(2) = 2, w1(1) = 1, w2(3) = 1. The two efficient solutions Si,
i = 1, 2 consists of placing i in a part and the other items in the other part
and have weights w1(S1) = 2, w2(S1) = 1, w1(S2) = 1, w2(S2) = 2. Any other
solution is either dominated by one of these two or has weights equal to 1 on
both criteria.

3.3 Max Matching

Given a complete graph G = (V,E) with non negative weights on the edges,
the Max Matching problem is to find a matching of the graph of total weight
maximum. Max Matching is solvable in polynomial time [7]. We study in this
part the biobjective Max Matching problem and consider instances where the
graph is a collection of complete graphs inside which the weights satisfy the
triangle inequality, since otherwise the biobjective Max Matching problem
is not at all approximable with one solution. In order to see this, consider a
complete graph on 3 vertices with weights (1, 0), (0, 1), (0, 0). The optimum value
on each objective is 1. Nevertheless, any solution has value 0 on at least one
objective. Clearly Property 1 is not satisfied in this case.

242 C. Bazgan, L. Gourvès, and J. Monnot

Biobjective Max Matching problem is NP-hard [19]. It remains NP-hard
even on instances where the graph is a collection of complete graphs inside which
the weights satisfy the triangle inequality.

Lemma 3. Biobjective Max Matching satisfies polynomially Property 2 with
c = 1/3.

Corollary 9. Biobjective Max Matching admits a δ�-approximate Pareto set
(resp. an γ�-approximate Pareto set) containing at most p solutions, where p =
2�− 1 (resp. p = 2�).

Corollary 10. Biobjective Max Matching admits a polynomial time 1
6 -appr-

oximate Pareto set with one solution.

Proof. It follows from Lemma 3 and Proposition 1 considering ρ = 1. �

4 Approximation with One Solution

In this section, we establish a necessary and sufficient condition for constructing,
not necessarily in polynomial time, a constant approximation with one solution
of the Pareto set for biobjective maximization problems. Moreover, if the condi-
tion is strengthened and the single-objective problem is polynomial time constant
approximable, then the biobjective version is polynomial time constant approx-
imable with one solution. Thus, using this condition, we establish a polynomial
time 0.174-approximation with one solution for Biobjective Max Bisection.

In the following, we are interested in particular cases of biobjective maximiza-
tion problems, Biobjective Π2 which satisfy the following property.

Property 3. We can construct three solutions S1, S2, S3 such that Si is a ρi-
approximation for problem Π2 on objective i, i = 1, 2, and S3 is such that
w1(S2)+w1(S3) ≥ α ·w1(S1) and w2(S1)+w2(S3) ≥ α ·w2(S2) for some α ≤ 1.

We say that Biobjective Π2 satisfies polynomially Property 3 if S1, S2, S3 can
be constructed in polynomial time.

The aim of solution S3 in Property 3 is to compensate the potential inefficiency
of Si on criterion 3− i, i = 1, 2.

Theorem 3. Biobjective Π2 is (resp. polynomial time) constant approximable
with one solution if and only if it satisfies (resp. polynomially) Property 3. More
precisely, if Biobjective Π2 satisfies polynomially Property 3 such that Si is a
polynomial time ρi-approximation for problem Π2 on objective i, i = 1, 2, then

Biobjective Π2 admits a polynomial time αmin{ρ1,ρ2}
2 -approximation algorithm

with one solution.

Proof. Suppose that Biobjective Π2 is ρ-approximable with one solution. Let S3

be this solution and S1 and S2 any two solutions. Then w1(S3) ≥ ρ · opt1 ≥

Approximation with a Fixed Number of Solutions 243

ρ ·w1(S1) and thus by setting α = ρ we have w1(S2)+w1(S3) ≥ α ·w1(S1). The
second inequality holds also.

Suppose now that Biobjective Π2 satisfies Property 3. Since Si is a
ρi-approximation for problem Π2 on objective i, i = 1, 2, we have w1(S1) ≥
ρ1 · opt1 and w2(S2) ≥ ρ2 · opt2.

Since Property 3 is satisfied, we can construct S3 such that

w1(S2) + w1(S3) ≥ α · w1(S1) (1)

and
w2(S1) + w2(S3) ≥ α · w2(S2) (2)

Now, we study different cases:

• If w1(S2) ≥ α
2w1(S1), then we deduce that S2 is a good approximation

of the Pareto set. From the hypothesis, we have w1(S2) ≥ α
2w1(S1) ≥

α · min{ρ1,ρ2}
2 opt1. On the other hand, we also have w2(S2) ≥ ρ2 · opt2 ≥

αmin{ρ1,ρ2}
2 opt2.

• If w2(S1) ≥ α
2w2(S2), then we deduce that S1 is a good approximation of

the Pareto set. From the hypothesis, we have w2(S1) ≥ α
2w2(S2) ≥ α ·

min{ρ1,ρ2}
2 opt2. On the other hand, by the construction of S1 we also have

w1(S1) ≥ ρ1 · opt1 ≥ α · min{ρ1,ρ2}
2 opt1.

• If w1(S2) ≤ α
2w1(S1) and w2(S1) ≤ α

2w2(S2), then it is S3 which is a good
approximation of the Pareto set. Indeed, from inequality (1), we deduce

w1(S3) ≥ α
2w1(S1) ≥ α · min{ρ1,ρ2}

2 opt1 and on the other hand, from inequal-

ity (2), we also get w2(S3) ≥ α
2w2(S2) ≥ α · min{ρ1,ρ2}

2 opt2.

In any of these three cases, we obtain a α · min{ρ1,ρ2}
2 -approximation with one

solution.
Clearly, if S1, S2, S3 are computable in polynomial time, then Biobjective Π2

is approximable in polynomial time. �

Remark that we can extend Theorem 3 to the case where ρi are not constant.
The interest of Property 3 is to find a simple method in order to construct a

polynomial time constant approximation for Biobjective Π2. This method does
not allow us to obtain the best polynomial time constant approximation for
Biobjective Π2 with one solution, but only to prove the fact that the problem is
polynomial time constant approximable with one solution.

In Lemma 1 we prove that if a problem Π is (resp. polynomial time) constant
approximable and if Biobjective Π satisfies (resp. polynomially) Property 1,
then Biobjective Π is (resp. polynomial time) constant approximable with one
solution, and thus Biobjective Π satisfies (resp. polynomially) Property 3 by
Theorem 3. Thus all problems studied in Section 3 satisfies Property 3.

There exist problems which are polynomial time constant approximable and
thus satisfy Property 3 and do not satisfy Property 1. One example is Biobjective
TSP, which is polynomial time 7

27 -approximable with one solution [16,17] and
does not satisfy Property 1.

244 C. Bazgan, L. Gourvès, and J. Monnot

Proposition 2. Biobjective TSP does not satisfy Property 1.

Proof. Consider the complete graph K5 where a fixed K4 is decomposable into
2 Hamiltonian paths P1 and P2. For every edge e ∈ E(K5), set w1(e) = 1 and
w2(e) = 0 if e ∈ P1, w1(e) = 0 and w2(e) = 1 if e ∈ P2 and w1(e) = 0 and
w2(e) = 0 if e /∈ P1 ∪ P2. We can check that there are four non-dominated
tours Ti, i = 1, . . . , 4 with w1(T1) = 3, w2(T1) = 0, w1(T2) = 0, w2(T2) = 3,
w1(T3) = 2, w2(T3) = 1 and w1(T4) = 1, w2(T4) = 2. Consider Si = Ti, i = 1, 2
and α = 1/2. Clearly w2(S1) < αw2(S2) and w1(S2) < αw1(S1). Moreover there
is no solution S3 such that w1(S3) > (1−α)w1(S1) and w2(S3) > (1−α)w2(S2).

�

We consider in the following a problem that satisfies Property 3 and for which
we are not able to prove that it satisfies Property 1.

4.1 Max Bisection

Given a graph G = (V,E) with non negative weights on the edges, the Max

Bisection problem consists of finding a bipartition of the vertex set V into two
sets of equal size such that the total weight of the cut is maximum. We establish
in this part a polynomial time ρ

4 -approximation algorithm for Biobjective Max

Bisection where ρ is any polynomial time approximation ratio given for Max

Bisection. Max Bisection is NP-hard [15] and the best approximation ratio
known for Max Bisection is ρ = 0.701 [11].

Lemma 4. Biobjective Max Bisection satisfies polynomially Property 3 with
α = 1 and ρ1 = ρ and ρ2 = ρ

2 , where ρ is any polynomial time approximation
ratio given for Max Bisection.

Corollary 11. Biobjective Max Bisection admits a polynomial time 0.174-
approximate Pareto set with one solution.

Proof. The results follows from Theorem 3 and Lemma 4 and using the polyno-
mial time 0.701-approximation algorithm for Max Bisection [11]. �

5 Conclusion

In this paper, we established some sufficient conditions that allow to conclude
on the existence of constant approximations of the Pareto set with an explicitly
given number of solutions for several biobjective maximization problems. The
results we obtained establish a polynomial time approximation when we ask for a
single solution in the approximation set. A possible future work would be to give
a polynomial time approximation for any explicitly given number of solutions.
A necessary and sufficient condition is given for the construction of (polynomial
time) constant approximation with one solution for biobjective maximization
problems. It would be interesting to generalize this result to maximization prob-
lems with more than two objectives. Another interesting future work would be

Approximation with a Fixed Number of Solutions 245

to establish lower bounds for any explicitly given number of solutions for multi-
objective maximization problems.

Our approaches deal with maximization problems and they do not seem to
apply to minimization problems. A possible explanation is that, in the maxi-
mization framework, adding elements to a partial solution rarely deteriorates
it. Minimization problems rarely satisfy this property. Establishing constant ap-
proximation of the Pareto set with a given number of solutions or show that this
is not possible for minimization problems is an interesting open question.

References

1. Alimonti, P.: Non-Oblivious Local Search for Graph and Hypergraph Coloring
Problems. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 167–180. Springer,
Heidelberg (1995)

2. Angel, E., Bampis, E., Gourvès, L.: Approximation algorithms for the bi-criteria
weighted max-cut problem. Discrete Applied Mathematics 154(12), 1685–1692
(2006)

3. Angel, E., Bampis, E., Gourvès, L., Monnot, J.: (Non)-Approximability for the
Multi-criteria TSP(1,2). In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS,
vol. 3623, pp. 329–340. Springer, Heidelberg (2005)

4. Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria
batching and parallel machine scheduling problems. Theoretical Computer Sci-
ence 306(1-3), 319–338 (2003)

5. Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient fptas for
the 0-1 multi-objective knapsack problem. European Journal of Operational Re-
search 198(1), 47–56 (2009)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

7. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17,
449–467 (1965)

8. Ehrgott, M.: Multicriteria optimization. LNEMS. Springer, Heidelberg (2005)
9. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack

problems. Management Science 48(12), 1603–1612 (2002)
10. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of
ACM 42(6), 1115–1145 (1995)

11. Halperin, E., Zwick, U.: A unified framework for obtaining improved approxima-
tion algorithms for maximum graph bisection problems. Random Structure Algo-
rithms 20(3), 382–402 (2002)

12. Hansen, P.: Bicriteria path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria
Decision Making: Theory and Applications, pp. 109–127 (1980)

13. Hastad, J.: Some optimal inapproximability results. Journal of ACM 48(4),
798–859 (2001)

14. Kann, V., Lagergren, J., Panconesi, A.: Approximability of maximum splitting of k-
sets and some other apx-complete problems. Information Processing Letters 58(3),
105–110 (1996)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New
York (1972)

246 C. Bazgan, L. Gourvès, and J. Monnot

16. Manthey, B.: On Approximating Multi-Criteria TSP. In: Albers, S., Marion, J.-Y.
(eds.) Proceedings of the 26th International Symposium on Theoretical Aspects of
Computer Science (STACS 2009). LIPIcs, pp. 637–648 (2009)

17. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 - Approximation Algorithm for the
Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

18. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)

19. Serafini, P.: Some considerations about computational complexity for multi objec-
tive combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and
Historical Development of Vector Optimization. Lecture Notes in Economics and
Mathematical Systems, vol. 294, pp. 222–232 (1986)

20. Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both
makespan and total weighted completion time. Operational Research Letters 21(3),
115–122 (1997)

21. Tsaggouris, G., Zaroliagis, C.: Multiobjective Optimization: Improved FPTAS for
Shortest Paths and Non-linear Objectives with Applications. In: Asano, T. (ed.)
ISAAC 2006. LNCS, vol. 4288, pp. 389–398. Springer, Heidelberg (2006)

22. Warburton, A.: Approximation of pareto-optima in multiple-objective shortest
path problems. Operations Research 35(1), 70–79 (1987)

23. Woeginger, G.: A polynomial time approximation scheme for maximizing the mini-
mum machine completion time. Operations Research Letters 20(4), 149–154 (1997)

24. Zhang, J., Yea, Y., Han, Q.: Improved approximations for max set splitting and
max NAE SAT. Discrete Applied Mathematics 142(1-3), 133–149 (2004)

25. Zwick, U.: Approximation algorithms for constraint satisfaction problems involv-
ing at most three variables per constraint. In: Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), pp. 201–210 (1998)

Generalized Maximum Flows over Time�

Martin Groß and Martin Skutella

Fakultät II – Mathematik und Naturwissenschaften,
Institut für Mathematik, Sekr. MA 5-2

Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany

{gross,skutella}@math.tu-berlin.de

Abstract. Flows over time and generalized flows are two advanced net-
work flow models of utmost importance, as they incorporate two crucial
features occurring in numerous real-life networks. Flows over time fea-
ture time as a problem dimension and allow to realistically model the
fact that commodities (goods, information, etc.) are routed through a
network over time. Generalized flows allow for gain/loss factors on the
arcs that model physical transformations of a commodity due to leakage,
evaporation, breeding, theft, or interest rates. Although the latter effects
are usually time-bound, generalized flow models featuring a temporal
dimension have never been studied in the literature.

In this paper we introduce the problem of computing a generalized
maximum flow over time in networks with both gain factors and tran-
sit times on the arcs. While generalized maximum flows and maximum
flows over time can be computed efficiently, our combined problem turns
out to be NP-hard and even completely non-approximable. A natural
special case is given by lossy networks where the loss rate per time unit
is identical on all arcs. For this case we present a (practically efficient)
FPTAS.

Keywords: Flows over Time, Generalized Flows, Approximation Algo-
rithms, Time-Expanded Networks.

1 Introduction

Two crucial characteristics of network flows occurring in real-world applications
are flow variation over time and physical transformation of flow resulting in
a lesser or greater amount of flow. These characteristics are not captured by
standard network flow models known from the literature.

Ford and Fulkerson [11, 12] introduce the notion of flows over time (also called
dynamic flows) which model flow variation over time as well as the fact that
flow does not travel instantaneously through a network but requires a certain
amount of time to travel through each arc. Various interesting examples and

� Supported by the DFG Research Center Matheon “Mathematics for key technolo-
gies” in Berlin.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 247–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

248 M. Groß and M. Skutella

applications can be found in the survey articles of Aronson [1] and Powell, Jaillet,
and Odoni [27].

Generalized flows have been suggested as a tool in production planning as
early as 1939 by Kantorovich [20]. They model the situation where flow is not
necessarily conserved on every arc but may be physically transformed due to
leakage, evaporation, breeding, theft, or interest rates. We refer to the PhD thesis
of Wayne [33] for an in-depth treatment of various generalized flow problems.

Both from a practical and theoretical point of view, it seems to be natural
to consider a combination of both flow models. However, to the best of our
knowledge, generalized flows over time are considered for the first time in this
paper. In particular, we hope that the paper will also stimulate further research
in this interesting and challenging direction.

Model and Problem. Consider a directed graph G with node set V (G), arc set
E(G), capacities ue ∈ R≥0, transit times τe ∈ N0 and gain factors γe ∈ R>0

on the arcs e ∈ E(G). These arc attributes have the following meaning: the
capacity of an arc limits the amount of flow that can enter the arc in any time
step. For each unit of flow entering the tail of an arc e ∈ E(G) at time θ, exactly
γe flow units leave the arc at its head at time θ + τe. We assume that we are
given a single source node s ∈ V (G) without incoming arcs and a single sink
node t ∈ V (G) without outgoing arcs and s �= t. Furthermore, we are given
a time horizon T ∈ N. Combined, we call (G, u, τ, γ, s, t, T) a network. For a
node v ∈ V (G), we denote the outgoing and incoming arcs by δ+G(v) and δ−G(v),
respectively.

A generalized flow over time f : E(G) × {0, 1, . . . , T − 1} → R≥0 in such a
network is a mapping that assigns flow values fe,θ ∈ [0, ue] to every arc e ∈ E(G)
at every point in time1 θ ∈ {0, 1, . . . , T − 1} with respect to (generalized) flow
conservation:

∑
e∈δ−(v)

θ−τe∑
ξ=0

γefe,ξ ≥
∑

e∈δ+(v)

θ∑
ξ=0

fe,ξ v ∈ V (G) \ {s} , θ ∈ {0, . . . , T − 1} , (1)

∑
e∈δ−(v)

T−τe−1∑
ξ=0

γefe,ξ =
∑

e∈δ+(v)

T−1∑
ξ=0

fe,ξ v ∈ V (G) \ {s, t} .

Moreover, we require that fe,θ = 0 for all θ ≥ T −τe such that no flow remains in
the network at time T . The above definition of flow conservation allows storage of
flow in nodes; this is referred to as holdover. If holdover is not desired, we require
that equality holds in (1) for all v ∈ V (G) \ {s, t}. The value |f | of a generalized
flow over time f is the amount of flow sent to the sink within the time horizon:
|f | :=

∑
e∈δ−(t)

∑T−τe−1
ξ=0 γefe,ξ. Similarly, we write |x| for the value of a static

generalized flow x. The arrival pattern of a flow over time is a mapping that

1 In this paper, we use a discrete time model with time steps 0, 1, . . . , T − 1 for a
given time horizon T ∈ N. Results in this setting often carry over to continuous time
models; see, e. g., Fleischer and Tardos [7].

Generalized Maximum Flows over Time 249

assigns to every time step θ ∈ {0, 1, . . . , T − 1} the total amount of flow that
has arrived at the sink in the time steps {0, . . . , θ}. The generalized maximum
flow over time problem asks for a generalized flow over time of maximum value
in a given network (G, u, τ, γ, s, t, T).

Previous Work. There has been considerable research on the static generalized
maximum flow problem (i. e., our problem without transit times and temporal
dimension) and on the maximum flow over time problem (i. e., our problem with-
out gain factors). Since generalized flow problems can be formulated as linear
programs [4], they can be solved in polynomial time. The first combinatorial
polynomial time algorithm for computing generalized maximum flows was pro-
posed by Goldberg, Plotkin and Tardos [15] and has subsequently been improved
by Radzik [28, 29]. Fleischer and Wayne [8], Goldfarb and Jin [16], Goldfarb,
Jin and Orlin [17], Restrepo and Williamson [30] and Wayne [33, 34] described
further polynomial time algorithms. Truemper [32] noted that generalized max-
imum flow algorithms show several analogies to minimum cost flow algorithms,
if the negative logarithm of a gain factor is used as the cost. Nonetheless, these
analogies are limited – it is an open problem whether a strongly polynomial
time algorithm for the generalized maximum flow problem exists, contrary to
the minimum cost flow problem.

Maximum flows over time have been introduced by Ford and Fulkerson [11, 12]
in the 1950’s. They proposed two techniques for dealing with them – creating a
pseudo-polynomially large time-expanded network to reduce their computation
to a static maximum flow problem, and a reduction to the static minimum cost
flow problem in the given network, which allows solving this problem in strongly
polynomial time. Flows over time that maximize the amount of flow sent to the
sink at any point in time are called earliest arrival flows or universally maximum
flows over time; this concept is due to Gale [14]. Minieka [23] and Wilkinson [35]
showed that the successive shortest path algorithm is capable of solving this
problem. Hoppe and Tardos [19] as well as Fleischer and Skutella [6] describe
different types of FPTASes for this problem. Nonetheless, the complexity of the
earliest arrival flow problem is mostly open; it is, for example, unclear whether
this problem is NP -hard or not. This is partly due to the fact, that the arrival
pattern (i.e. the function describing the amount of flow arriving at the sink over
time) is a piecewise linear function with exponentially many breakpoints (which
follows from the work of Zadeh [36]).

Since both generalized maximum flows and maximum flows over time can
be dealt with techniques for minimum cost flows, minimum cost flow over time
algorithms might seem attractive candidates for generalized maximum flow over
time algorithms. However, Klinz and Woeginger [22] showed that the minimum
cost flow over time problem is NP -hard.

Our Contribution. In Section 3 we examine the complexity of the generalized
maximum flow over time problem with arbitrary gain factors and show that
there is no polynomial approximation algorithm, even for the special case of
series-parallel networks, unless P = NP .

250 M. Groß and M. Skutella

For the special case of lossy networks, we show in Section 4 that the concept of
condensed time-expanded networks introduced by Fleischer and Skutella [6] can
be successfully generalized to the setting of generalized flows over time and yields
an FPTAS. Notice, however, that this FPTAS approximates the time horizon
rather than the flow value. That is, for a given time horizon T and ε > 0, the
algorithm computes a generalized flow over time with time horizon (1+ ε)T and
value at least as big as the value of a maximum generalized flow over time with
time horizon T .

Section 5 contains the main contribution of this paper. We consider an impor-
tant special case of the generalized maximum flow over time problem where gain
factors are proportional to transit times. Here proportional means that there
exists a c ∈ R such that γe = 2c·τe for every arc e ∈ E(G). Such gain factors are
motivated by the fact that in many applications effects such as leakage, evapora-
tion or interest rates are strictly time-bound. Also many processes of growth or
decay in nature can be captured by such proportional gain factors. Notice that
in this setting paths with equal transit time have equal gain factors and vice
versa, due to transit times being additive and gain factors being multiplicative
along paths.

In Section 5.1 we show how to compute generalized maximum flows over time
with a variant of the successive shortest path algorithm on the static network.
This result is particularly interesting since – apart from the most basic maximum
flow over time problem – hardly any flow over time problem is known to be
solvable by a static flow computation on the underlying static network. It also
implies that there are always optimal solutions that do not need holdover. As the
successive shortest path algorithm requires an exponential number of iterations
in the worst case, our algorithm is not polynomial in the input size.

Therefore we prove in Section 5.2 that an FPTAS can be obtained by ter-
minating the successive shortest path algorithm after a polynomial number of
iterations. We wish to emphasize that this FPTAS approximates the maximum
flow value rather than the required time horizon (which FPTASes for flow over
time problems normally do).

Finally, in Section 6 we conclude with interesting directions for future re-
search. Due to space constraints, we omit many proofs and further details in
this extended abstract and refer the reader to the full version of the paper.

2 Preliminaries

A path in a graph G is a sequence of arcs P = (e1 = (v1, v2), . . . , ek = (vk, vk+1))
for a k ∈ N, e1, . . . , ek ∈ E(G), v1, . . . , vk+1 ∈ V (G) and vi �= vj unless i = j.
A cycle in a graph G is a sequence of arcs C = (e1 = (v1, v2), . . . , ek = (vk, v1))
for a k ∈ N, e1, . . . , ek ∈ E(G), v1, . . . , vk ∈ V (G) and vi �= vj unless i = j.
We will treat paths and cycles as sets, if the order of the arcs in a path or cycle
is not relevant. With this convention, we will now extend the transit times and
gain factors to paths and cycles by defining: τP :=

∑
e∈P τe, τC :=

∑
e∈C τe,

γP :=
∏

e∈P γe, and γC :=
∏

e∈C γe. Cycles C with γC = 1 are called unit

Generalized Maximum Flows over Time 251

gain cycles, cycles with γC > 1 flow-generating cycles and cycles with γC < 1
flow-absorbing cycles.

In the following let
←−−−
E(G) := {←−e | e ∈ E(G)} denote the set of reverse arcs

of E(G), i. e., each arc e = (v, w) ∈ E(G) has a reverse arc ←−e := (w, v) ∈
←−−−
E(G).

Moreover, we set
←−←−e := e for all e ∈ E(G).

Definition 1. The residual network (Gx, ux, τ, γ, s, t, T) of a generalized flow x
in a network (G, u, τ, γ, s, t, T) is defined as follows:

V (Gx) := V (G),

E(Gx) := {e ∈ E(G) | xe < ue} ∪ {←−e | e ∈ E(G), xe > 0} ⊆ E(G) ∪
←−−−
E(G),

(ux)e :=

{
ue − xe e ∈ E(G),

γ←−e x←−e e ∈
←−−−
E(G),

for all e ∈ E(Gx).

Transit times and gain factors are extended to the reverse edges as follows:

τ←−e := −τe and γ←−e =
1

γe
, for all e ∈ E(G).

Definition 2. The time expanded network (GT , uT , γT , s′, t′) is constructed from
a network (G, u, τ, γ, s, t, T) by “copying the network for each time step”:

V (GT) := {vθ | v ∈ V (G), θ ∈ {0, 1, . . . , T − 1}} ,
E(G)T := {eθ = (vθ, wθ+τe) | e = (v, w) ∈ E(G), θ ∈ {0, . . . , T − τe − 1}} ,

HT := { (vθ, vθ+1) | v ∈ V (G), θ ∈ {0, . . . , T − 2}} ,
E(GT) := E(G)T ∪HT .

We call the arcs in HT holdover arcs. If holdover is forbidden at intermediate
nodes, we simply let HT := {(vθ, vθ+1) | v ∈ {s, t} , θ ∈ {0, . . . , T − 2}}. Capac-
ities and gain factors are extended as follows:

uT
e′ :=

{
ue e′ = eθ ∈ E(G)T ,

∞ e′ ∈ HT ,
γT
e′ :=

{
γe e′ = eθ ∈ E(G)T ,

1 e′ ∈ HT ,

for all e′ ∈ E(GT). Finally, we set s′ := s0 and t′ := tT−1.

It is not difficult to see that flows over time correspond to static flows in the cor-
responding time-expanded network and vice versa. We may thus use generalized
flows over time in G and generalized static flows in GT interchangeably. More
details on this can be found in full version of the paper. Moreover, we refer to [31]
for an introduction to flows over time and related concepts and to Gondran and
Minoux [18] for decompositions and optimality criteria for generalized flows.

252 M. Groß and M. Skutella

3 Complexity and Hardness of Approximation

In this section we study the problem in the general case, i. e., in the setting of
arbitrary gain factors on the arcs. We begin by analyzing the computational
complexity of the problem.

It is easy to see that the generalized maximum flow over time problem can
be solved by using the algorithms known for the static generalized maximum
flow problem on a time-expanded network. This yields pseudo-polynomial time
algorithms, implying that the problem is not strongly NP- or PSPACE-hard,
unless P = NP . As a lower bound for the complexity of the generalized max-
imum flow over time problem, we will show that there is no polynomial time
approximation algorithm for it, unless P = NP . It is still unknown whether a
strongly polynomial time algorithm exists for the static generalized maximum
flow problem. Proof for the theorem in this section can be found in the full
version of the paper.

Theorem 1. There is neither a polynomial algorithm nor a polynomial approx-
imation algorithm for the generalized maximum flow over time problem, even on
series-parallel graphs and proportional gains, unless P = NP .

4 Lossy Networks

In this section, we consider the special case of γe ≤ 1, for all arcs e ∈ E(G).
This means that flow is only lost, but never gained along arcs. We refer to such
networks as lossy networks. It is well-known that any network without flow-
generating cycles can be turned into a lossy network by node-dependent scaling
of flow values. Thus, the results discussed in this section hold for all networks
without flow-generating cycles.

Approximating the maximum flow value is hard in general, as we have seen in
the last section. This result even carries over to lossy networks if the reduction
given in the proof of Theorem 1 is modified accordingly2. Therefore, we now
focus on relaxing the feasibility, i. e., given some α > 1 and a problem instance I
with a time horizon T , we ask for a feasible solution to I with time horizon α ·T
whose value is at least that of an optimal solution to I with time horizon T . We
can use the concept of condensed time-expanded networks from Fleischer and
Skutella [6] to show the following theorem.

Theorem 2. Let OPT be the value of an optimal solution to a generalized max-
imum flow over time problem instance I = (G, u, τ, γ, s, t, T) on a lossy network.
For any ε > 0, there is an algorithm with running time polynomial in the input
size and 1/ε that computes a solution of value at least OPT for the problem
instance I ′ = (G, u, τ, γ, s, t, (1 + ε) · T).

A discussion of this theorem can be found in the full version of the paper.

2 Instead of rewarding the use of the positive length arcs by exponentially large gains,
we punish the use of zero length arcs by exponentially small gains.

Generalized Maximum Flows over Time 253

5 Proportional Losses

In this section, we consider the special case of γ ≡ 2c·τ , for some constant c < 0.
This means that in each time unit the same percentage of the remaining flow
value is lost. This is motivated by problems where goods cannot be transported
reliably, e. g., due to leakage or evaporation. In many applications, this loss cru-
cially depends on the time spent in the transportation network as many processes
of growth or decay in nature evolve over time according to an exponential func-
tion. Compare also the work done by Fleischer & Skutella [9] on minimum cost
flows over time with proportional costs.

In Section 5.1 we show that the maximum generalized flow over time problem
can be solved on the static network by a variant of the Successive Shortest
Path Algorithm. This is particularly remarkable as so far only the most basic
maximum flow over time problem and the closely related earliest arrival flow
problem were known to be solvable to optimality by static flow computations on
the static network (i. e., not requiring the use of time-expanded networks).

In Section 5.2 we show how this algorithm can be turned into an FPTAS which
is considerably more efficient and uses much less space than the more general
FPTAS based on condensed time-expanded networks discussed in Section 4.
Furthermore, our FPTAS approximates the flow value instead of the time horizon
like Fleischer and Skutella’s FPTAS. That is, we approximate optimality instead
of feasibility.

5.1 A Variant of the Successive Shortest Path Algorithm

Due to the work of Onaga [25, 26] it is known that augmenting flow successively
along highest gain s-t-paths solves the generalized maximum s-t-flow problem.
More precisely, Onaga’s algorithm for lossy networks proceeds as follows. Be-
gin with the zero-flow and the corresponding residual network. If no source-sink
path exists in this residual network, terminate. Otherwise, augment flow along
a source-sink path of maximum gain and continue with the resulting flow and
residual network. Thus, applying Onaga’s algorithm in the time expanded net-
work solves the generalized maximum flow over time problem – at the cost of
potentially requiring pseudo-polynomially many augmentations in the pseudo-
polynomially large time expanded network.

We will now present an algorithm capable of solving the special case described
above using only the original – not time expanded – network. The idea of this
algorithm is to employ a strategy similar to Onaga’s in the original network and
use this as a foundation to construct a flow over time solving the special case.

We begin by introducing some notations; more precisely, we introduce a
slightly non-standard way of building a time-expanded network from copies of
the original network. Let (G, u, τ, γ, s, t, T) be a (residual) network, let γv→w be
the maximum gain of a v-w-path in G and τv→w the length of a shortest v-w-path

254 M. Groß and M. Skutella

s

vτ = 1

wτ = 2

τ = 1 t

τ = 3

τ = 1

G

s

vτ = 1

wτ = 2

τ = 1 t

τ = 1

G′

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

G5

Fig. 1. A network G, its highest-gain network G′ and its time-expanded network G5

(note that gains are defined implicitly by the transit times)

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

0G
s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

1G′

Fig. 2. 0G and 1G′ (dashed) as subnetworks of G5

s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

G
s0 v0 w0 t0

s1 v1 w1 t1

s2 v2 w2 t2

s3 v3 w3 t3

s4 v4 w4 t4

G′

Fig. 3. G and G′ (dashed) as subnetworks of G5

Generalized Maximum Flows over Time 255

(with respect to transit times) in G. Notice that τv→w := 1
c log γv→w. Initially,

we introduce our construction for the special case of unique gain networks (i. e.,
a network where all paths from a node v ∈ V (G) to a node w ∈ V (G) have the
same gain) only; this special case has the advantage of allowing for a simpler
and more concise definition. The θ-copy θG of G for θ ∈ {0, . . . , T − τs→t − 1}
is then:

V (θG) :=
{
vξ ∈ V (GT)

∣∣ v ∈ V (G), ξ = θ + τs→v

}
E(θG) :=

{
eξ ∈ E(GT)

∣∣ e = (v, w) ∈ E(G), ξ = θ + τs→v

}
More generally, we define θ-copy θG of G for some θ ∈ {0, . . . , T − τs→t − 1} to
be the following subgraph of the time expanded network GT :

E(θG) :=
{
eξ ∈ E(GT)

∣∣ e = (v, w) ∈ E(G), ξ = θ + τs→v, ξ + τe + τw→t < T
}

V (θG) :=
⋃

e=(v,w)∈E(θG)

{v, w} .

For the special case mentioned above these two definitions coincide. Similarly,
we define the [θ, θ′]-copies [θ, θ′]G of G, 0 ≤ θ < θ′ ≤ T − τs→t − 1 as

V ([θ, θ′]G) :=

θ′⋃
ξ=θ

V (ξG),

E([θ, θ′]G) :=
θ′⋃

ξ=θ

E(ξG) ∪
⋃

v∈V (G)

θ′+τs→v−1⋃
ξ=θ+τs→v

{(vξ, vξ+1)} .

For brevity, we also define G := [0, T − τs→t − 1]G if τs→t < T − 1 and as the
empty graph otherwise. Note that G is the subnetwork of GT containing exactly
the nodes and edges of GT that can be part of s′-t′-paths (with s′, t′ being
the source and sink of the time-expanded network, see Definition 2). For our
purposes, it is clearly sufficient to work with G instead of GT .

Furthermore, if we consider an s′-t′-flow f in a time-expanded network GT , it
can happen that flow is sent through holdover edges at source and sink. In this
case, the residual network GT

f corresponding to such a flow f can have reverse
holdover edges at source and sink. These reverse holdover edges do not help to
construct new s′-t′-paths in the time-expanded-network or new flow-generating

cycles with a path to t′ so they can be omitted as well. We write G̃T
f for the

subnetwork of GT
f created by removing nodes and edges not on s′-t′-paths and

reverse holdover edges at source and sink. Figures 1, 2, and 3 show a network,
its time-expansion as well as selected θ- and [θ, θ′]-copies.

Analogously, we define for a flow x in such a unique gain network G the
θ-flow θx of x in θG for some θ ∈ {0, . . . , T − τs→t − 1} by (θx)eξ := xe for

256 M. Groß and M. Skutella

all eξ ∈ E(θG). Furthermore, we define the [θ, θ′]-flow [θ, θ′]x of x in [θ, θ′]G for
some θ, θ′ ∈ {0, . . . , T − τs→t − 1} with θ < θ′ by setting for all e ∈ E([θ, θ′]G):

([θ, θ′]x)e :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 e = (vξ, vξ+1), v ∈ V (G) \ {s, t} ,
(θ′ − θ + 1)|x| e = (sξ, sξ+1), ξ < θ,

(θ′ − ξ)|x| e = (sξ, sξ+1), θ ≤ ξ < θ′,

0 e = (sξ, sξ+1), θ
′ ≤ ξ,

0 e = (tξ, tξ+1), ξ ≤ θ + τs→t,

(ξ − θ − τs→t + 1)|x| e = (tξ, tξ+1), θ + τs→t < ξ < θ′ + τs→t,

(θ′ − θ + 1)|x| e = (tξ, tξ+1), ξ ≥ θ′ + τs→t,

xe e = eξ.

Again, we define for brevity x := [0, T−τs→t−1]x for a flow x inG, if τs→t < T−1
and as the zero flow otherwise. Informally spoken, the idea of our algorithm is to
start with the zero flow, compute a maximum-flow in the highest-gain / shortest-
path subnetwork of the static residual network, augment this flow and repeat this
process until no s-t-path exists in the static residual network. We then use the
augmented maximum-flows to construct an optimal solution to our problem, by
sending each flow as long as possible into the network (i. e., temporally repeated).
We will use the notations introduced above to describe the construction of the
flow over time in the last step of our algorithm, and show its optimality.

Algorithm 1. Let I = (G, u, τ, γ, s, t, T) be an instance of the generalized max-
imum flow over time problem.

1. Begin with i := 0 and the static zero-flow x0 :≡ 0.

2. If no s-t-path exists in Gxi or if τs→t ≥ T in Gxi , then set k := i − 1 and
go to step 6.

3. Restrict the static residual network Gxi to the network G′
xi

containing only
paths of maximum gain and compute a generalized maximum flow x′

i in G′
xi
.

4. Define xi+1 by adding x′
i to xi as follows: (xi+1)e := (xi)e+(x′

i)e+γ−1
e (x′

i)←−e
for all e ∈ E(G). Notice that xi+1 is a feasible flow in G, since x′

i is a feasible
flow in a restricted residual network of xi.

5. Set i := i+ 1 and go to step 2.

6. Construct a generalized flow over time f defined by f =
∑k

j=0 x
′
j .

We will prove the correctness of Algorithm 1 by comparing it to Onaga’s al-
gorithm applied to the time expanded network. For i = 0, . . . , k + 1, define a
generalized flow over time fi :=

∑i−1
j=0 x

′
j . In particular, f0 is the zero flow over

time and f = fk+1. The strategy for our proof is to show that in every iteration
x′
i is a flow along highest gain paths in GT

fi
. Then successively adding x′

0, . . . , x
′
k

produces the same result as Onaga’s algorithm applied to the time expanded
network, showing correctness of our algorithm. The following claim turns out to
be helpful in proving the correctness of Algorithm 1. Proof of it and the following
theorem can be found in the full version of the paper.

Generalized Maximum Flows over Time 257

Claim. For each i = 0, . . . , k+ 1, it holds that Gxi = G̃T
fi
, i. e., the copied static

network is equal to the pruned time-expanded network after each iteration of
the algorithm.

Theorem 3. Algorithm 1 computes a generalized maximum flow over time.

We conclude this section by examining the running time of Algorithm 1. Let
n := |V (G)|, m := |E(G)| and U := maxe∈E(G) ue for a problem instance
(G, u, τ, γ, s, t, T). In our case, a highest gain path can be found in O(nm) time
using Moore-Bellman-Ford’s algorithm (see Bellman [2], Ford [10], Moore [24]) or
in O(m+n logn) by applying Dijkstra’s algorithm [5] with Fibonacci heaps (see
Fredman and Tarjan [13]) and reduced costs. For both algorithms, τe =

1
c log γe

is being used as a cost function. Both algorithms are capable of computing the
highest-gain network as well. A generalized maximum flow in the highest-gain
network can then be computed by a standard maximum flow algorithm. Since
there are at most T time steps, there can be at most T iterations. The running
time of an iteration is dominated by the maximum flow computation, yielding a
running time of O(maxflow ·T), where O(maxflow) is the running time of the
maximum flow algorithm. King, Rao, and Tarjan[21] describe a maximum flow
algorithm with a running time of O(nm logm/(n logn) n), resulting in a running
time of O(nm logm/(n log n) n · T) for our algorithm.

For special cases, this runtime can be improved further. Beygang, Krumke,
and Zeck [3] recently studied static generalized maximum flows in series-parallel
networks and discovered that a greedy-strategy that chooses always the highest-
gain path in the original – not residual – network is sufficient for finding an
optimal solution. This can be carried over to our setting and can be used for
bounding the number of paths used. Since each augmentation saturates an arc,
there can be at most m iterations, yielding a polynomial time algorithm.

5.2 Turning the Algorithm into an FPTAS

In this section, we will see that Algorithm 1 can be terminated early to obtain
an approximate solution. In fact, the algorithm can be turned into an FPTAS.
Proofs for the theorems in this section can be found in the full version of the
paper.

Theorem 4. Let OPT be the value of an optimal solution to a generalized
maximum flow over time problem instance I = (G, u, τ, γ, s, t, T), ε > 0, and
U := maxe∈E ue. Algorithm 1 has found a solution of value at least OPT−ε after
all paths of length ≤ − 1

c (log
1
ε+logm+logU+2 logT) have been processed (recall

that the lengths of the paths used by the algorithm are monotonically increasing).
For a constant c < 0 and using a maximum flow based approach as proposed in
Section 5.1, this leads to a running time of O(maxflow ·(log ε−1+logU+logT))
for a solution of value at least OPT − ε.

The above theorem allows an approximation within a constant value ε. For an
FPTAS, we need to approximate OPT within a factor of (1 − ε) or a value of
εOPT . This can be done by a slight modification of Theorem 4.

258 M. Groß and M. Skutella

Theorem 5. Let OPT be the value of an optimal solution for a generalized
maximum flow over time problem instance I = (G, u, τ, γ, s, t, T), ε > 0 and
U := maxe∈E ue. Algorithm 1 has found a solution of value at least (1− ε)OPT
after �− 1

c (log
1
ε + logm+ logU + 2 logT)� iterations. For a constant c < 0 and

using a maximum flow based approach as proposed in Section 5.1, this leads to
a running time of O(maxflow · (log ε−1 + logU + logT)) for a solution of value
at least (1 − ε)OPT .

6 Conclusion

We have introduced the generalized maximum flow over time problem that, for
the first time, combines important features captured by flows over time and gen-
eralized flows in one network flow model. While the generalized maximum flow
over time problem cannot be approximated in polynomial time, unless P=NP,
we have presented an efficient FPTAS for the special case of lossy networks with
proportional gain factors.

The generalized flow over time model presented in this paper raises numer-
ous interesting questions and directions for future research. The most natural
generalizations of the considered network flow problem seem to be generalized
minimum cost flows over time and generalized multicommodity flows over time.
An interesting approach to these flow problems is the concept of condensed
time-expanded networks introduced by Fleischer and Skutella [6]. However, as
mentioned in Section 4, the analysis of these condensed time-expanded networks
crucially relies on the assumption that, in an optimum solution, flow particles
travel along simple paths from the source to the sink. This assumption, however,
is no longer valid for generalized flows over time in networks containing flow-
generating cycles. The same holds for multi-commodity flows over time without
holdover at intermediate nodes. With respect to practical applications, it is an
important open problem and a big theoretical challenge to make condensed time-
expanded networks usable and, in particular, analyzable for such flow over time
problems.

Acknowledgements. The authors wish to thank the anonymous referees whose
valuable comments helped to improve the presentation of the paper.

References

[1] Aronson, J.E.: A survey of dynamic network flows. Annals of Operations Re-
search 20, 1–66 (1989)

[2] Bellman, R.E.: On a routing problem. Quarterly of Applied Mathematics 16, 87–90
(1958)

[3] Beygang, K., Krumke, S.O., Zeck, C.: Generalized max flow in series-parallel
graphs. Report in Wirtschaftsmathematik 125, TU Kaiserslautern (2010)

[4] Dantzig, G.B.: Linear programming and extensions. Princeton University Press
(1962)

Generalized Maximum Flows over Time 259

[5] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

[6] Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Comput-
ing 36, 1600–1630 (2007)

[7] Fleischer, L.K., Tardos, É.: Efficient continuous-time dynamic network flow algo-
rithms. Operations Research Letters 23, 71–80 (1998)

[8] Fleischer, L.K., Wayne, K.D.: Fast and simple approximation schemes for gener-
alized flow. Mathematical Programming 91, 215–238 (2002)

[9] Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate
storage. In: Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete
Algorithms, Baltimore, MD, pp. 66–75 (2003)

[10] Ford, L.R.: Network flow theory. Paper P-923, The Rand Corporation (1956)
[11] Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
[12] Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static

flows. Operations Research 6, 419–433 (1987)
[13] Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization problems. Journal of the ACM 34, 596–615 (1987)
[14] Gale, D.: Transient flows in networks. Michigan Mathematical Journal 6, 59–63

(1959)
[15] Goldberg, A.V., Plotkin, S.A., Tardos, É.: Combinatorial algorithms for the gen-

eralized circulation problem. Mathematics of Operations Research 16, 351–379
(1991)

[16] Goldfarb, D., Jin, Z.: A faster combinatorial algorithm for the generalized circu-
lation problem. Mathematics of Operations Research 21, 529–539 (1996)

[17] Goldfarb, D., Jin, Z., Orlin, J.B.: Polynomial-time highest gain augmenting path
algorithms for the generalized circulation problem. Mathematics of Operations
Research 22, 793–802 (1997)

[18] Gondran, M., Minoux, M.: Graphs and Algorithms. Wiley (1984)
[19] Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems.

In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 433–441 (1994)

[20] Kantorovich, L.V.: Mathematical methods of organizing and planning production.
Technical report, Publication House of the Leningrad State University (1939);
Translated in Management Science 6, 366–422 (1960)

[21] King, V., Rao, S., Tarjan, R.: A faster deterministic maximum flow algorithm.
Journal of Algorithms 17, 447–474 (1994)

[22] Klinz, B., Woeginger, G.J.: Minimum cost dynamic flows: The series parallel case.
Networks 43, 153–162 (2004)

[23] Minieka, E.: Maximal, lexicographic, and dynamic network flows. Operations Re-
search 21, 517–527 (1973)

[24] Moore, E.F.: The shortest path through a maze. In: Proceedings of the Interna-
tional Symposium on Switching, Part II, pp. 285–292. Harvard University Press
(1959)

[25] Onaga, K.: Dynamic programming of optimum flows in lossy communication nets.
IEEE Transactions on Circuit Theory 13, 282–287 (1966)

[26] Onaga, K.: Optimal flows in general communication networks. Journal of the
Franklin Institute 283, 308–327 (1967)

[27] Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing.
In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network
Routing, ch. 3, vol. 8, pp. 141–295. Handbooks in Operations Research and Man-
agement Science, North–Holland, Amsterdam, The Netherlands (1995)

260 M. Groß and M. Skutella

[28] Radzik, T.: Faster algorithms for the generalized network flow problem. Mathe-
matics of Operations Research 23, 69–100 (1998)

[29] Radzik, T.: Improving time bounds on maximum generalised flow computations
by contracting the network. Theoretical Computer Science 312, 75–94 (2004)

[30] Restrepo, M., Williamson, D.P.: A simple gap-canceling algorithm for the gener-
alized maximum flow problem. Mathematical Programming 118, 47–74 (2009)

[31] Skutella, M.: An introduction to network flows over time. In: Research Trends in
Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009)

[32] Truemper, K.: On max flows with gains and pure min-cost flows. SIAM Journal
on Applied Mathematics 32, 450–456 (1977)

[33] Wayne, K.D.: Generalized Maximum Flow Algorithms. PhD thesis, Cornell Uni-
versity (1999)

[34] Wayne, K.D.: A polynomial combinatorial algorithm for generalized minimum cost
flow. Mathematics of Operations Research 27, 445–459 (2002)

[35] Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network.
Operations Research 19, 1602–1612 (1971)

[36] Zadeh, N.: A bad network problem for the simplex method and other minimum
cost flow algorithms. Mathematical Programming 5, 255–266 (1973)

The Price of Anarchy

for Minsum Related Machine Scheduling

Ruben Hoeksma and Marc Uetz

University of Twente, Dept. Applied Mathematics, P.O. Box 217, 7500AE Enschede,
The Netherlands

{r.p.hoeksma,m.uetz}@utwente.nl

Abstract. We address the classical uniformly related machine schedul-
ing problem with minsum objective. The problem is solvable in poly-
nomial time by the algorithm of Horowitz and Sahni. In that solution,
each machine sequences its jobs shortest first. However when jobs may
choose the machine on which they are processed, while keeping the same
sequencing rule per machine, the resulting Nash equilibria are in gen-
eral not optimal. The price of anarchy measures this optimality gap. By
means of a new characterization of the optimal solution, we show that
the price of anarchy in this setting is bounded from above by 2. We also
give a lower bound of e/(e− 1) ≈ 1.58. This complements recent results
on the price of anarchy for the more general unrelated machine schedul-
ing problem, where the price of anarchy equals 4. Interestingly, as Nash
equilibria coincide with shortest processing time first (SPT) schedules,
the same bounds hold for SPT schedules. Thereby, our work also fills a
gap in the literature.

1 Introduction

The minsum related machine scheduling problem is one of the classical models
in the area of scheduling. It has been solved already in the 1960s [5]. Given are n
jobs with non-preemptive processing requirements, a set of m parallel machines
with different processing speeds, the goal is to find a schedule that minimizes
the sum of job completion times. In the 3-field notation of Graham et al. [8]
the problem is denoted Q||

∑
Cj . The problem is a special case of the more

general unrelated machine scheduling problem R||
∑

Cj , where the processing
times of jobs on machines are represented by an arbitrary n ×m matrix. The
related machine problem is solved in O(n lognm) computation time by the MFT
algorithm of Horowitz and Sahni [10]. The MFT algorithm is a refinement of
the simple matching solution presented earlier by Conway et al. [5, pp. 78-79].
The MFT algorithm computes the optimal assignment of jobs to machines by
considering them in the order longest processing time first (LPT), and the jobs
eventually assigned to a given machine are then sequenced in the order shortest
processing time first (SPT).

In this paper we are interested in the same problem, but in a decentral-
ized setting where there is no central authority that assigns jobs to machines.

R. Solis-Oba and G. Persiano (Eds.): WAOA 2011, LNCS 7164, pp. 261–273, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 R. Hoeksma and M. Uetz

Instead, jobs themselves choose the machine on which they want to be processed.
Any job j seeks to minimize its own completion time Cj , and does not care about
the central objective function

∑
Cj . This results in an n-agent strategic game

where the strategy space of any job-agent is the set of machines. This game is
well-defined once we determine how jobs are locally sequenced on each machine.
Here we only consider the local sequencing rule that is locally optimal for the
global objective

∑
Cj , that is, the jobs on each machine are processed in order of

shortest processing time first (SPT). In spite of doing the optimal thing locally,
Nash equilibria of the resulting game do not necessarily lead to globally optimal
solutions for the objective

∑
Cj . This optimality gap is what we are interested

in. Notice that the problem that we have described so far is an example of a
coordination mechanism as defined by Christodoulou et al. [3], who suggested
to use local sequencing rules per machine in order to influence the dynamics of
the game and thereby the quality of the corresponding equilibrium outcomes.

The price of anarchy is being used since about a decade to measure the
deterioration of system performance caused by the lack of central coordination
[13,16]. It is defined by relating the quality of the worst possible Nash equilibrium
to the quality of the globally optimal solution. Here, the metric for the quality of
a solution is in terms of the central objective function, in our case

∑
Cj . In the

economic literature the central objective function is rather called social choice
function [15]. In our case it is utilitarian, which means that the social choice
function

∑
Cj is simply the sum of the valuation functions of the agents Cj .

For games with utilitarian social choice function, Roughgarden [17] recently
introduced the concept of smoothness of games and its consequences for robust
price of anarchy bounds. He points out that many of the existing price of
anarchy bounds can actually be deduced from smoothness of the underlying
games, and he shows that the corresponding bounds not only hold for pure Nash
equilibria, but extend to mixed Nash equilibria, correlated equilibria as defined
by Aumann [1], and even beyond.

The contribution of this paper is an analysis of the price of anarchy for the
minsum related machine scheduling game as described above. More specifically,
our main result is a proof that the pice of anarchy is at most 2. This analysis also
extends beyond pure Nash equilibria in the same way as in [17], even though it
is not exactly a smoothness argument in the sense of Roughgarden’s definition
in [17]. We also give a parametric example to show that the price of anarchy
cannot be less than e/(e− 1) ≈ 1.58.

An interesting aspect of our work is that also the pure Nash equilibria can
easily be computed in polynomial time through SPT schedules. In fact, it is
well known that Nash equilibria are obtained as solutions of the Ibarra and Kim
algorithm [11] when machines sequence jobs in SPT order. This is even true for
the more general unrelated machine scheduling problem [9,12]. When applied to
the related machine scheduling problem considered here, this means scheduling
the jobs in SPT order, and when a job is scheduled it is placed on the machine

The Price of Anarchy for Minsum Related Machine Scheduling 263

that minimizes its completion time Cj
1. This results in a pure Nash equilibrium

of the game, as no job has the possibility to improve its completion time by
changing to another machine. Hence, we only need to compare optimum and
Nash equilibrium solutions, none of which is blemished by NP-completeness. In
a first instant we therefore thought the problem was trivial. Yet we first needed
a new characterization of the optimal solution to get the job done. In any case,
our results also show that SPT schedules can miss the optimum by no more than
a factor 2, and can be as bad as e/(e− 1) times the optimum.

It is also worth mentioning that the literature related to analyzing the price
of anarchy for scheduling problems has almost exclusively concentrated on the
egalitarian2 makespan objective Cmax(= maxj Cj) as social choice function
[2,3,7,12,13,18]. The fact that most of the literature focusses on the makspan has
potentially two reasons. First, this is the model that has been originally proposed
by Koutsoupias and Papadimitriou [13]. Second, makespan scheduling is akin to
load balancing, with applications for example in internet routing protocols [16].
Yet it is surprising that utilitarian social choice functions have hardly received
any attention from the algorithms community, given that the model is certainly
not less attractive from an application perspective.

We are aware of only two references that are very closely related to our
work, these are the recent papers by Correa and Queyranne [6] and Cole et al.
[4]. Both papers address the same problem as we do, but with additional job
weights wj and in the more general context of unrelated machine scheduling,
R||

∑
wjCj . Their objective is thus weighted utilitarian. One of the main results

in both papers is the proof that the price of anarchy equals 4 when machines
sequence their jobs locally optimal, that is, according to nonincreasing ratios of
weight over processing time. Cole et al. [4] also give an instance which establishes
a lower bound of 4 for the price of anarchy, even in the unweighted case, R||

∑
Cj .

Our results nicely fit into that context.
The organization of the paper is as follows. In Section 2 we briefly recap

the algorithm of Horowitz and Sahni [10]. We then present a new characterization
of optimal solutions, which is crucial for the subsequent analysis. In Section 4 we
show that the price of anarchy is not greater than 2. The basic proof idea is akin
to the arguments for showing (2, 0)-smoothness of the game, but we crucially
need the characterization of optimal solutions. Hence it is at best a relaxed sort
of smoothness. Section 5 describes a parametric instance, for which we show

1 This is not the same as the “SPT schedules” as discussed by Horowitz and Sahni
[10, p. 321], as they assign jobs in SPT order in a greedy list scheduling fashion,
that is, to the machine that minimizes the jobs starting time. When doing that,
the resulting SPT schedule can be arbitrarily far away from the optimum. When we
refer to SPT schedules we refer to greedy list scheduling in SPT order, but jobs are
placed on the machine that minimizes the completion time Cj .

2 See Myerson [14] for a discussion of utilitarian and egalitarian social choice functions.
The interpretation of Cmax as egalitarian indeed makes sense in models where the
objectives of the job-agents is the total load of the machine they are processed on,
as for example in [13].

264 R. Hoeksma and M. Uetz

that it’s price of anarchy is equal to e/(e− 1) > 1.5819. We conclude with some
further remarks in Section 6.

2 Characterization of Optimal Solutions

In this section we briefly recap the MFT algorithm of Horowitz and Sahni [10]
and establish a new characterization for optimal solutions for minsum related
machine scheduling. This characterization is crucial to our analysis in Section 4.

Throughout this paper we denote by J the set of n jobs and by M the set of
m machines. Each job j has a length pj and each machine i has a speed si. The
processing requirement of job j on machine i is equal to pij = pj/si. W.l.og.
assume that p1 ≤ p2 ≤ · · · ≤ pn and s1 ≤ s2 ≤ · · · ≤ sm. We assume ties on the
ordering are broken consistently and that this is done based on index.

For the single machine case it is clear that the contribution of a job can
be measured by its position in the schedule and its processing time. This fol-
lows from rewriting the objective function as follows. Let ϕ be an ordering of
the jobs and let ϕ(k) denote the k-th job in this ordering, then

∑n
k=1 Cϕ(k) =∑n

k=1

∑k
l=1 pϕ(l) =

∑n
k=1(n− k+1)pϕ(k). Hence the only optimal schedules are

schedules that schedule the jobs in order of nondecreasing processing time, as
these match large pj to small values (n− k+1). The same idea can be extended
to the case of parallel machines, even with speeds, resulting in the following
Minimum Mean Flow Time (MFT) algorithm [10].

Algorithm 1. MFT Algorithm for problem Q||∑Cj

For each machine i set hi = 0
while Not all jobs are placed do

Take from the unscheduled jobs the longest job j
Assign job j to the machine with the smallest value of (hi + 1)/si
For that machine update hi = hi + 1

Sort the jobs on each machine in SPT order

Similar to the single machine case, the different values (hi + 1)/si are the val-
ues for a job’s possible positions in the schedule, as in general, the x-th last job on
a machine contributes to the objective value x times its processing time divided
by the machine speed. The algorithm assigns the currently longest unscheduled
job to the machine with the currently smallest position value.

Theorem 1 ([10]). Any optimal schedule for Q||
∑

Cj can be computed by the
MFT algorithm with the proper tie breaking rule.

Since any optimal solution has the jobs on each machine sequenced in SPT
order, we can identify a schedule by denoting for each job on which machine it is
scheduled. Therefore we identify a schedule with an n-vector σ where σj is the
machine on which job j is scheduled.

The Price of Anarchy for Minsum Related Machine Scheduling 265

Next, let hσ(j) be the vector such that hσ
i (j) = |{k > j|σk = i}|, indicating

the number of jobs on machine i in schedule σ that have higher index than j.
Now any schedule σ is optimal if and only if

hσ
σj
(j) + 1

sσj

≤ hσ
i (j) + 1

si
for all jobs j and all machines i . (1)

This because, for all machines i, (hσ
i (j) + 1)/si is the position value of i upon

placement of job j in the MFT algorithm. This needs to be minimized for all j by
any optimal schedule σ. The following lemma provides our new characterization
of optimal solutions.

Lemma 1. A schedule σ is optimal for Q||
∑

Cj if and only if

hσ
i (j) + 1

si
≥ hσ

� (j)

s�
for all machines i and � . (2)

Proof. We show that (2) is true if and only if (1) is true. Let σ be an optimal
schedule. Note that hσ

i (j) ≥ hσ
i (k) for all machines i and all jobs k ≥ j. We

therefore get from (1) that

hσ
i (j) + 1

si
≥ hσ

i (k) + 1

si
≥

hσ
σk
(k) + 1

sσk

for all machines i and all jobs k ≥ j. Since for any machine � either hσ
� (j) = 0,

or there is a job k > j such that σk = � and hσ
� (j) = hσ

σk
(j) = hσ

σk
(k) + 1, it

follows that
hσ
i (j) + 1

si
≥ hσ

� (j)

s�
for all machines i and � .

Now let σ be a schedule that satisfies (2) and suppose it does not satisfy (1).
Then there exist j ∈ J and i ∈M such that

hσ
σj
(j) + 1

sσj

>
hσ
i (j) + 1

si
,

but then we get for job j − 1 that

hσ
σj
(j − 1)

sσj

=
hσ
σj
(j) + 1

sσj

>
hσ
i (j) + 1

si
=

hσ
i (j − 1) + 1

si
,

which contradicts (2). �

A intuitive interpretation for (2) is that, when applying the MFT algorithm,
a job that is placed on a machine can not get a better position than the jobs
already placed on a machine. While it is intuitive that this is indeed a necessary
condition for the optimal solution, the intuition that it is also sufficient is not
that clear. In that sense, it is indeed a nontrivial reformulation of (1).

266 R. Hoeksma and M. Uetz

3 Coordination Mechanism and Nash Equilibria

For the remainder of this paper we compare the optimal solution from Section 2
to outcomes of the scheduling game for Q||

∑
Cj where each job can individually

choose on which machine it will be scheduled and machines sequence jobs in SPT
order. The jobs act selfishly, each trying to minimize its own completion time.
Nash equilibria are considered the natural outcomes of the resulting strategic
game. The price of anarchy, defined in [13], compares the objective value of an
optimal schedule to the objective value of a worst possible Nash equilibrium
schedule. The resulting game for Q||

∑
Cj is a coordination mechanism in the

sense of Christodolou et al. [3], where using SPT locally per machine proposes
itself because it is locally optimal.

We denote schedules in the same way as in Section 2, but with respect to
Nash equilibria, σ represents the strategy profile of the job-agents such that σj

is the machine chosen by job j. Furthermore, σ−j denotes the (n − 1)-vector
obtained from σ by deleting σj , so that σ = (σj , σ−j). For the problem Q||

∑
Cj

with SPT as local scheduling rule, Nash equilibria are defined as follows.

Definition 1 (Nash equilibrium). A strategy profile σ = (σj , σ−j) is a Nash
equilibrium if and only if for all jobs j,∑

k≤j
σk=σj

pk
sσj

≤
∑
k<j
σk=i

pk
si

+
pj
si

for all machines i . (3)

It is well known [9] that the Ibarra-Kim algorithm [11] constructs all Nash equi-
libria depending on the way ties are broken. For uniformly related machines the
algorithm is described as follows.

Algorithm 2. Ibarra-Kim Algorithm for problem Q||∑Cj

while Not all jobs are placed do
Take from the unscheduled jobs the shortest job k
Let machine l be the machine where job k has minimal completion time
Schedule job k directly after the jobs already scheduled on machine l

The Ibarra-Kim algorithm was originally designed as an approximation algo-
rithm for unrelated machine scheduling [11]. To the best of our knowledge the
performance of the resulting schedules for the related machine problem Q||

∑
Cj

has not yet been analyzed, most probably because the problem to find optimal
solutions was settled long before in [5].

4 Upper Bound on the Price of Anarchy

In this Section we establish an upper bound on the price of anarchy for minsum
related machine scheduling. Our proof is (in retrospect) akin to a smoothness
argument for cost-minimization (=utilitarian) games, as introduced by Rough-
garden [17].

The Price of Anarchy for Minsum Related Machine Scheduling 267

Definition 2 ([17] Smooth Games). A cost-minimization game is (λ, μ)-
smooth if for every two outcomes ν and σ,

n∑
j=1

Cj(σj , ν−j) ≤ λ ·
n∑

j=1

Cj(σ) + μ ·
n∑

j=1

Cj(ν) . (4)

If a utilitarian game is (λ, μ)-smooth with λ ≥ 0 and μ < 1, it follows that for
any Nash equilibrium ν and optimal solution σ

n∑
j=1

Cj(ν) ≤
n∑

j=1

Cj(σj , ν−j) ≤ λ ·
n∑

j=1

Cj(σ) + μ ·
n∑

j=1

Cj(ν) . (5)

From (5) it follows directly that λ
1−μ is an upper bound on the price of anarchy for

any (λ, μ)-smooth game. Roughgarden [17] defines the robust price of anarchy
as the least upper bound on the price of anarchy that is provable through a
smoothness argument.

Definition 3 ([17] Robust PoA). The robust price of anarchy of a cost-
minimization game is

inf

{
λ

1− μ

∣∣∣∣ the game is (λ, μ)-smooth

}
.

Instead of proving (4) for any two outcomes ν and σ, we crucially need the
characterization of the optimal solution from Lemma 1 and therefore will prove
(4) with σ restricted to be an optimal solution. However, note that the resulting
bound on the price of anarchy also extends to (mixed) Nash equilibria, correlated
equilibria or no-regret sequences (see [17]) when (4) only holds for arbitrary
strategy profiles ν and an optimal solution σ.

In the following, let therefore σ be an optimal schedule resulting from the
MFT algorithm, and recall that for the objective value in the optimal solution
σ we have

n∑
j=1

Cj(σ) =
n∑

j=1

(
hσ
σj
(j) + 1

) pj
sσj

.

The next Theorem is the main result of this paper.

Theorem 2. The price of anarchy for the minsum related machine scheduling
problem Q||

∑
Cj with SPT as local sequencing rule is no greater than 2.

Proof. We show that the game is “(2, 0)-smooth”, by showing that

n∑
j=1

Cj(σj , ν−j) ≤ 2
n∑

j=1

Cj(σ) (6)

for an optimal schedule σ and any strategy profile ν.
Let Ji(σ) = {j|σj = i} be the set of jobs scheduled on machine i in the optimal

solution σ, likewise let Ji(ν) = {j|νj = i} be the set of jobs scheduled on machine

268 R. Hoeksma and M. Uetz

i in schedule ν. For any job j in Ji(σ), its completion time Cj(σj , ν−j) consists
of the processing times of all jobs that are on machine i in ν and that have
smaller index than j, plus its own processing time on machine i. Summing the
completion times of all jobs that are on machine i in the optimal solution gives
us

∑
j∈Ji(σ)

Cj(σj , ν−j) =
∑

j∈Ji(σ)

⎛⎜⎜⎝pj
si

+
∑

k∈Ji(ν)
k<j

pk
si

⎞⎟⎟⎠
=

∑
j∈Ji(σ)

pj
si

+
∑

j∈Ji(σ)

∑
k∈Ji(ν)
k<j

pk
si

. (7)

Note that the number of times that a job k is counted on the right hand side
of (7) equals the number of jobs with higher index than j on machine i in the
optimal solution, times 1

si
. In other words, the second part of (7) can be rewritten

as ∑
j∈Ji(σ)

∑
k∈Ji(ν)
k<j

pk
si

=
∑

k∈Ji(ν)

hσ
i (k) ·

pk
si

.

This gives us ∑
j∈Ji(σ)

Cj(σj , ν−j) =
∑

j∈Ji(σ)

pj
si

+
∑

k∈Ji(ν)

hσ
i (k) ·

pk
si

.

Now, note that by definition σj = νk = i, so∑
j∈Ji(σ)

Cj(σj , ν−j) =
∑

j∈Ji(σ)

pj
sσj

+
∑

k∈Ji(ν)

hσ
νk(k) ·

pk
sνk

.

Summing over all i leads to

n∑
j=1

Cj(σj , ν−j) =

m∑
i=1

∑
j∈Ji(σ)

Cj(σj , ν−j)

=
m∑
i=1

∑
j∈Ji(σ)

pj
sσj

+
m∑
i=1

∑
k∈Ji(ν)

hσ
νk
(k) · pk

sνk

=

n∑
j=1

pj
sσj

+

n∑
j=1

hσ
νj (j) ·

pj
sνj

.

From Lemma 1 we know

n∑
j=1

hσ
νj (j) ·

pj
sνj
≤

n∑
j=1

(
hσ
σj
(j) + 1

)
· pj
sσj

=
n∑

j=1

Cj(σ) . (8)

The Price of Anarchy for Minsum Related Machine Scheduling 269

Also, the completion time of any job is at least its processing time on the machine
it is scheduled on, so

n∑
j=1

pj
sσj

≤
n∑

j=1

Cj(σ) . (9)

Combining the above, we get

n∑
j=1

Cj(σj , ν−j) ≤ 2

n∑
j=1

Cj(σ) for all strategy profiles ν .

�

5 Lower Bound on the Price of Anarchy

In this Section we describe a parametric instance which has price of anarchy
equal to e/(e− 1). The Nash equilibrium is the schedule with all jobs on the
fastest machine (which is easily shown to be an upper bound on the quality of
Nash equilibria in general, so in that sense, this is a worst case scenario).

Instance 1. Let I be the parametric group of instances I(s) that satisfy the
following. I(s) has m machines, one of which has speed s > 1 and all the other
machines have speed 1. All speeds are integer. Furthermore, I(s) has n = m+s−1
jobs, with length equal to

pj =

{
1 if 1 ≤ j ≤ s
xj−s if s+ 1 ≤ j ≤ n

,

where x = s/(s− 1).

Lemma 2. Instances from I have a Nash equilibrium with all jobs on the fastest
machine.

Proof. In the schedule with all jobs in SPT order on the fastest machine, the
completion time of a job j < s is equal to

Cj =

j∑
k=1

pk
s

=

j∑
k=1

1

s
=

j

s
≤ 1 . (10)

For a job j ≥ s, the completion time is equal to

Cj =

j∑
k=1

pk
s

=
s− 1

s
+

j∑
k=s

(
s

s−1

)k−s

s

270 R. Hoeksma and M. Uetz

=
1

s

(
s− 1 +

j−s∑
k=0

(
s

s− 1

)k
)

=
1

s

⎛⎜⎝s− 1 +

(
s

s−1

)j−s+1

− 1(
s

s−1

)
− 1

⎞⎟⎠
=

1

s

(
s− 1 + (s− 1)

(
s

s− 1

)j−s+1

− (s− 1)

)

=

(
s

s− 1

)j−s

= pj . (11)

So the Nash equilibrium condition (3) holds, as all other machines have speed 1.

We use this to compute a lower bound on the price of anarchy.

Theorem 3. The price of anarchy for the minsum related machine scheduling
problem Q||

∑
Cj with SPT local scheduling rule is no less than e/(e− 1) ≈ 1.58.

Proof. Consider instances I(s) from I as defined above. In the optimal solution
the s longest jobs are on the fastest machine. All other jobs are on a slow machine.
So the objective value in the optimal solution is equal to

OPT(I(s)) =

s−1∑
j=1

pj +

n−s∑
j=s

pj +

n∑
j=n−s+1

j∑
k=n−s+1

pk
s

=

s−1∑
j=1

pj +

n−s∑
j=s

xj−s +

n∑
j=n−s+1

j∑
k=n−s+1

xk−s

s

=
s−1∑
j=1

1 +
n−2s∑
j=0

xj +
n∑

j=n−s+1

1

s

(
j−s∑
k=0

xk −
n−2s∑
k=0

xk

)

= s− 1 + (s− 1)xn−2s+1 − (s− 1) +
n∑

j=n−s+1

(
xj−s − xn−2s

)
= (s− 1)xn−2s+1 +

n−s∑
j=n−2s+1

xj −
n∑

j=n−s+1

xn−2s

= (s− 1)xn−2s+1 + (s− 1)xn−s+1 − (s− 1)xn−2s+1 − sxn−2s

= (s− 1)xn−s+1 − (s− 1)xn−2s+1 . (12)

From Lemma 2 we know that the schedule with all jobs on the fastest machine
is a Nash equilibrium. From (10) and (11) we know that the completion time of
the jobs in this schedule is equal to

Cj =

⎧⎨⎩
j
s if j ≤ s− 1(

s
s−1

)j−s

otherwise
.

From this we compute the objective value in the Nash equilibrium

The Price of Anarchy for Minsum Related Machine Scheduling 271

NE(I(s)) =
s−1∑
j=1

j

s
+

n∑
j=s

xj−s

=
s(s− 1)

2s
+

n−s∑
j=0

xj

=
(s− 1)

2
+ (s− 1)xn−s+1 − (s− 1)

= (s− 1)xn−s+1 − (s− 1)

2
. (13)

Combining (12) and (13) gives us the price of anarchy:

PoA(I(s)) =
(s− 1)xn−s+1 − (s−1)

2

(s− 1)xn−s+1 − (s− 1)xn−2s+1

=
xn−s+1 − 1

2

xn−s+1 − xn−2s+1

=
xs − 1

2x
−(n−2s+1)

xs − 1

=

(
s

s−1

)s

− 1
2

(
s

s−1

)−(n−2s+1)

(
s

s−1

)s

− 1
. (14)

Now, if we let n go to infinity, (14) becomes:

lim
n→∞

PoA(I(s)) =

(
s

s−1

)s

(
s

s−1

)s

− 1
, (15)

and letting also s go to infinity, (15) goes to e/(e− 1) ≈ 1.58. �

6 Concluding Remarks

Of course, the question remains what the truth is concerning the price of anar-
chy for the considered problem, which we could bound in the interval [1.58, 2].
This gap may be due to the fact that the upper bound holds for more general
equilibria than only pure Nash equilibria. While for the parametric instances
from Theorem 3, scheduling all jobs on the fastest machine is even a dominant
strategy equilibrium.

Note that it is indeed possible for mixed Nash equilibria to induce (signifi-
cantly) worse price of anarchy than pure Nash equilibria. This can be seen by

272 R. Hoeksma and M. Uetz

the simple example of two identical machines with two identical jobs. For such
an instance pure Nash equilibria are optimal solutions. However, the randomized
schedule where each job choses each machine with equal probability of 1/2 is a
mixed Nash equilibrium, and yields an expected objective value 5/4 times the
optimal value.

All this leaves open the possibility that indeed 2 would be the true value of
the robust price of anarchy, while the true value for the (pure) price of anarchy
is e/(e−1). We believe however that an improvement on the upper bound of 2 is
possible, because either of the two terms that appears in our analysis in (8) and
(9) can be equal to the optimum value, but we have not been able to construct
instances where both inequalities are tight. Neither have we been able (so far)
to offset the two terms against each other, which might be a feasible approach
for improving our analysis for the upper bound.

References

1. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math.
Econom. 1(1), 67–96 (1974)

2. Azar, Y., Jain, K., Mirrokni, V.: (Almost) optimal coordination mechanisms for un-
related machine scheduling. In: Proceedings 19th SODA, pp. 323–332. ACM/SIAM
(2008)

3. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. The-
oret. Comput. Sci. 410(36), 3327–3336 (2009)

4. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Inner Product Spaces
for MinSum Coordination Mechanisms. In: Proceedings 43rd STOC, pp. 539–548.
ACM (2011)

5. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-
Wesley Publishing Co., Reading (1967)

6. Correa, J., Queyranne, M.: Efficiency of Equilibria in Restricted Uniform Machine
Scheduling with MINSUM Social Cost (manuscript) (2010)

7. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans.
Algorithms 3(1), Art. 4, 17 (2007)

8. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approx-
imation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics 5(2), 287–326 (1979)

9. Heydenreich, B., Müller, R., Uetz, M.: Games and mechanism design in ma-
chine scheduling - An introduction. Production and Operations Management 16(4),
437–454 (2007)

10. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-
tical processors. Journal of the ACM 23(2), 317–327 (1976)

11. Ibarra, O., Kim, C.: Heuristic algorithms for scheduling independent tasks on non-
identical processors. Journal of the ACM 24(2), 280–289 (1977)

12. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for
selfish scheduling. Theoret. Comput. Sci. 410(17), 1589–1598 (2009)

13. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

The Price of Anarchy for Minsum Related Machine Scheduling 273

14. Myerson, R.B.: Utilitarianism, egalitarianism, and the timing effect in social choice
problems. Econometrica 49(4), 883–897 (1981)

15. Myerson, R.B.: Game theory - Analysis of conflict. Harvard University Press, Cam-
bridge (1991)

16. Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings 33rd
STOC, pp. 749–753. ACM (2001)

17. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings 41st
STOC, pp. 513–522. ACM (2009)

18. Yu, L., She, K., Gong, H., Yu, C.: Price of anarchy in parallel processing. Inform.
Process. Lett. 110(8-9), 288–293 (2010)

Author Index

Bazgan, Cristina 49, 233
Bein, Wolfgang 35
Brankovic, Ljiljana 63
Brodal, Gerth Stølting 164

Chan, Ho-Leung 137

Dorrigiv, Reza 150

Ebenlendr, Tomáš 102

Fernau, Henning 63

Goetzmann, Kai-Simon 89
Gourvès, Laurent 49, 233
Groß, Martin 247

Harren, Rolf 211
Hatta, Naoki 35
Hernandez-Cons, Nelson 35
Hoeksma, Ruben 261

Ito, Hiro 35

Jansen, Klaus 1, 109

Kasahara, Shoji 35
Kawahara, Jun 35
Kern, Walter 211

Lam, Tak-Wah 137
López-Ortiz, Alejandro 150

Mansour, Yishay 219
Marbán, Sebastián 21

Monnot, Jérôme 49, 233
Moruz, Gabriel 164

Negoescu, Andrei 164
Nutov, Zeev 9

Paluch, Katarzyna 176
Pascual, Fanny 49
Patt-Shamir, Boaz 219

Rawitz, Dror 219
Renault, Marc P. 198
Robenek, Christina 109
Rosén, Adi 198
Rutten, Cyriel 21

Schwartges, Nadine 77
Sgall, Jǐŕı 102
Shmoys, David B. 123
Skutella, Martin 247
Spencer, Gwen 123
Spoerhase, Joachim 77
Stiller, Sebastian 89

Telha, Claudio 89

Uetz, Marc 261

van Zuylen, Anke 188
Vredeveld, Tjark 21

Wolff, Alexander 77

Zhu, Jianqiao 137

	Title Page
	Preface
	Organization
	Table of Contents
	Approximation Algorithms for Schedulingand Packing Problems
	Introduction
	Scheduling with Fixed Jobs
	Related Results
	New Results

	2D Strip Packing
	Related Work
	New Results

	Multiple Knapsack Problem
	Known Results
	New Results

	Scheduling on Uniform Processors
	Known Results
	New Results

	References

	Approximating Subset k-Connectivity Problems
	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	References

	Learning in Stochastic Machine Scheduling
	Introduction
	Preliminaries and Scheduling Policies
	Bayesian Methodology
	Bayesian Scheduling Policies
	Bounds on Scheduling Policies

	Upper Bound on Performance Guarantees
	Tightness of the Performance Guarantees
	Lower Bound on the Performance Guarantee of SEPT
	Lower Bound on the Performance Guarantee of -SEPT

	Computational Results
	Concluding Remarks
	References

	An Online Algorithm Optimally Self-tuning to Congestion for Power Management Problems
	Introduction
	Problem Statement
	Our Algorithm
	Decrease and Reset Algorithm (DRA)
	How to Set the Coefficients for ``Optimality"

	Queueing Analysis
	Analysis
	Numerical Examples

	Conclusions
	References

	Single Approximation for Biobjective Max TSP
	Introduction
	Preliminaries
	Non Existence of a Single -Approximate Solution
	A Generic Algorithm for Biobjective Max TSP
	An Improved Analysis
	Future Work
	References

	Parameterized Approximation Algorithms for Hitting Set
	Introduction
	A Simple Design for Parameterized Approximation
	A Simple Branching for Approximation
	A More Elaborated Analysis of a Factor-2 Approximation Algorithm for 3-HS
	Approximating 3-HS with Degree Constraints
	Further Questions
	References

	Approximation Algorithmsfor the Maximum Leaf Spanning Tree Problem on Acyclic Digraphs
	Introduction
	Indegree-Based Algorithm
	Expansion Algorithm
	Expansion Algorithm for Undirected Graphs
	Expansion Algorithm for Acyclic Digraphs
	Performance Guarantee
	Tight Example

	MaxSNP-Hardness
	Concluding Remarks
	References

	Optimization over Integers with Robustness in Cost and Few Constraints
	Introduction
	Uncertainty in the Objective
	Uncertainty in Constraints
	Applications
	References

	A Lower Bound on Deterministic Online Algorithms for Scheduling on Related Machines without Preemption
	Introduction
	Lower Bound
	Conclusions
	References

	Scheduling Jobs on Identical and Uniform Processors Revisited
	Introduction
	Bounds for max-Gap(A) and the Running-Time
	Scheduling on Uniform Processors
	Algorithm for Case 3

	References

	Approximation Algorithms for Fragmenting a Graph against a Stochastically-Located Threat
	Introduction
	2-Stage Stochastic Graph Protection Problem in Trees
	1-Stage Extension to Probabilistic Edge Transmission
	References

	Non-clairvoyant Weighted Flow Time Scheduling on Different Multi-processor Models
	Introduction
	Formal Problem Definitions
	Analyzing WLAPS for Homogeneous Processors
	Restricting the Input Instance
	A Lower Bound on WOpt
	Potential Function Analysis

	An O(1)-Competitive Algorithm for Two Functionality Types
	Restricting the Input Instance
	A Lower Bound of Opt
	Potential Function Analysis
	A Better Competitive Algorithm with $m_1 = m_2 = 1$

	References

	A New Perspective on List Update: Probabilistic Locality and Working Set
	Introduction
	List Update with Locality of Reference
	Working Set Property for List Update
	Experimental Results
	Conclusions
	References

	OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm
	Introduction
	Randomized Selection Process
	Preliminaries
	Selection Process for OnlineMin
	Probability Distribution of Ck

	Algorithm OnlineMin
	Algorithm
	Algorithm Implementation
	Data Structures

	References

	Faster and Simpler Approximation of Stable Matchings
	Introduction
	Algorithm
	Description of Algorithm GS Modified

	Correctness of Algorithm GS Modified
	Extension to Stable b-Matchings
	Data Structures and Running Time

	Correctness of Algorithm ASBM
	References

	Simpler 3/4-Approximation Algorithms for MAX SAT
	Introduction
	Analysis with a Potential Function
	Poloczek and Schnitger's Potential Function

	A New Combinatorial Randomized Algorithm
	A New Deterministic LP Rounding Algorithm
	Conclusion and Future Directions
	References

	On Online Algorithms with Advice for the k-Server Problem
	Introduction
	Preliminaries
	An Upper Bound for General Metric Spaces
	k-Server with Advice on Trees
	Non-lazy Optimum
	The Algorithm
	Special Metric Spaces and PATH-COVER

	Conclusions
	References

	Improved Lower Bound for Online Strip Packing
	Introduction
	Sequence Construction
	Lower Bound
	Upper Bound
	References

	Competitive Router Scheduling with Structured Data
	Introduction
	Preliminaries
	Models
	Algorithm

	Multiple Capacitated Links
	Analysis of Algorithm PLink
	A Lower Bound
	The Effect of Many Links and Large Capacity

	Extensions
	Effective Redundancy
	Multiple Service Levels
	Instantaneous Network Model

	References

	Approximation with a Fixed Number of Solutions of Some Biobjective Maximization Problems
	Introduction
	Preliminaries on Multi-objective Optimization and Approximation
	Approximation with a Given Number of Solutions
	Max Pos NAE
	Max Partition
	Max Matching

	Approximation with One Solution
	Max Bisection

	Conclusion
	References

	Generalized Maximum Flows over Time
	Introduction
	Preliminaries
	Complexity and Hardness of Approximation
	Lossy Networks
	Proportional Losses
	A Variant of the Successive Shortest Path Algorithm
	Turning the Algorithm into an FPTAS

	Conclusion
	References

	The Price of Anarchy for Minsum Related Machine Scheduling
	Introduction
	Characterization of Optimal Solutions
	Coordination Mechanism and Nash Equilibria
	Upper Bound on the Price of Anarchy
	Lower Bound on the Price of Anarchy
	Concluding Remarks
	References

	Author Index

