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Abstract. One of the defining characteristics of intelligent software agents is
their ability to pursue goals in a flexible and reliable manner, and many modern
agent platforms provide some form of goal construct. However, these platforms
are surprisingly naive in their handling of interactions between goals. Most pro-
vide no support for detecting that two goals interact, which allows an agent to
interfere with itself, for example by simultaneously pursuing conflicting goals.
Previous work has provided representations and reasoning mechanisms to iden-
tify and react appropriately to various sorts of interactions. However, previous
work has not provided a framework for reasoning about goal interactions that
is generic, extensible, formally described, and that covers a range of interaction
types. This paper provides such a framework.

1 Introduction

One of the defining characteristics of intelligent software agents is their ability to pursue
goals in a flexible and reliable manner, and many modern agent platforms provide some
form of goal construct [1]. However, these platforms are surprisingly naive in their
handling of interactions between goals in that few implemented agent platforms provide
support for reasoning about interactions between goals. Platforms such as Jason [2],
JACK [3], 2APL [4] and many others don’t make any attempt to detect interactions
between goals, which means that agents may behave irrationally. Empirical evaluation
[5] has shown that this can be a serious issue, and that the cost of introducing limited
reasoning to prevent certain forms of irrational behaviour is low, and consistent with
bounded reasoning.

There has been work on providing means for an agent to detect various forms of
interaction between its goals, such as resource contention [6], and interactions involving
logical conditions, both positive [7] and negative (e.g. [8]). However, this strand of work
has not integrated the various forms of reasoning into a single framework: each form
of interaction is treated separately. Although more recent work by Shaw and Bordini
[9] does integrate a range of interaction reasoning mechanisms, it does so indirectly, by
translation to Petri nets, which makes it difficult to extend, to determine whether the
reasoning being done is correct, or to relate the reasoning back to the agent’s goals and
plans (traceability).
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This paper provides a framework for extending BDI platforms with the ability to
reason about interactions between goals. The framework developed improves on previ-
ous work by being generic and by being formally presented. Thus, the key criteria for
evaluating our proposed framework is its ability to deal with the different types of in-
teraction between goals. The sorts of goal interactions that we want to be able to model
and reason about include the following.

Resources: goals may have resource requirements, including both reusable resources
such as communication channels, and consumable resources such as fuel or money.
Given a number of goals it is possible that their combined resource requirements exceed
the available resources. In this case the agent should realise this, and only commit to
pursuing some of its goals or, for reusable resources, schedule the goals so as to use the
resources appropriately (if possible). Furthermore, should there be a change in either
the available resources or the estimated resource requirements of its goals, the agent
should be able to respond by reconsidering its commitments. For example, if a Mars
rover updates its estimate of the fuel required to visit a site of interest (it may have
found a shorter route), then the rover should consider whether any of its suspended
goals may be reactivated.

Conditions: goals affect the state of the agent and of its environment, and may also at
various points require certain properties of the agent and/or its environment. An agent
should be aware of interactions between goals such as:

– After moving to a location in order to perform some experiment, avoid moving
elsewhere until the experiment has been completed.

– If two goals involve being at the same location, schedule them so as to avoid trav-
elling to the location twice.

– If there are changes to conditions then appropriate re-planning should take place.
For example, if a rover has placed equipment to perform a long-running experiment
but the equipment has malfunctioned, then the rover should respond to this.

In summary, the challenge is to provide mechanisms that allow for:

– Specification of the dependencies between goals/plans and resources/conditions. To
be practical, dependencies must be specified in a local and modular fashion where
each goal or plan only needs to specify the resources/conditions that it is directly
affected by.

– Reasoning about conditions and resources so as to detect situations where there is
interaction between goals.

– Having a means of specifying suitable responses to detected interactions. Possible
responses include suspending or aborting a goal, changing the means by which
a goal is achieved (e.g. travelling by train rather than plane to save money), and
scheduling goals (e.g. to avoid double-booking a reusable resource).

Section 2 reviews the goal framework and agent notation that we will build on. Section 3
presents our framework for reasoning about goal interactions, and Section 4 completes
the framework by extending the agent notation. In Section 5 we evaluate the frame-
work by showing how it is able to deal with the various types of goal interaction under
consideration. We conclude in Section 6.
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2 Conceptual Agent Notation with Generic Goals

We now briefly present the Conceptual Agent Notation (CAN) [10, 11]. CAN is used
as a representative for a whole class of BDI agent languages which define agent execu-
tion in terms of event-triggered plans, where multiple plans may be relevant to handle
a given event, and where failure is handled by reposting events. It is similar to AgentS-
peak(L) [12] in that it uses a library of event-triggered plans which have a specified
trigger, context condition, and plan body. CAN differs from AgentSpeak(L) in that it
provides additional constructs, and in that it uses a particular failure handling mecha-
nism (event reposting) which is common to BDI languages.

In order to extend goals into “interaction-aware goals” that are able to detect and
respond to interactions with other goals we will use a variant of CAN which uses the
generic goal construct of van Riemsdijk et al. [1]. Their framework defines a goal type
with certain default life-cycle transitions, and provides a mechanism for adding ad-
ditional life-cycle transitions. A goal type is defined in terms of a set C of condition-
response pairs 〈c, S〉where c is a condition to be checked that, if true, changes the goal’s
state to S. For example, a goal to achieve p includes 〈p, DROPPED〉 which specifies that
when p becomes true the goal should be dropped. Condition-response pairs come in two
flavours: “continuous”, checked at all times, and “end”, checked only at the start/end
of plan execution. A goal instance g(C, π0, S, π) specifies a set of condition-response
pairs C, an initial plan π0, a current state S (e.g. ACTIVE, DROPPED, SUSPENDED),
and a current plan π.

The default goal life-cycle of van Riemsdijk et al. [1] is that goals are adopted into
a suspended state, and they are then repeatedly activated and suspended until they are
dropped. Active goals are subjected to means-end reasoning to find an abstract plan for
pursuing the goal, and this plan is then executed (as long as the goal remains active).

We integrate this generic goal construct into CAN, replacing its more limited goal
construct. The resulting language defines an agent in terms of a set Π of plans of the
form e : c ← π where e is the triggering event, c is a context condition (a logical
formula over the agent’s beliefs), and π is a plan body (we will sometimes refer to plan
bodies as “plans”):

π ::= ε | a | e | π1;π2 | π1‖π2

We denote the empty plan body by ε, and an event is written as e. For simplicity we
define a generic action construct, a, which has a pre-condition prea and post-condition
defined in terms of non-overlapping addition and deletion sets adda and dela. A number
of previously defined CAN constructs can be viewed as special cases of this, for example
+b can be defined as an action with pre+b = true, add+b = {b} and del+b = ∅.
Similarly, −b has pre−b = {b}, add−b = ∅, del−b = {b} and ?c has pre?c = {c} and
add?c = del?c = ∅. We assume that events e and actions a can be distinguished. An
agent configuration is a pair 〈B,G〉 where B is the agent’s current beliefs, and G is a
set of goals.

Figures 1 and 2 provide formal semantics for this language (based on previously
presented semantics for CAN [1, 10, 13]) in structured operational semantics style [14]
where the premise (above the line) gives the conditions under which the transition below
the line may take place. We define a number of different transition types. Firstly,→ as
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S = ACTIVE

g(C, π0, S, ε)
e⇒ g(C, π0, S, π0)

1
π

e⇒ π′ S = ACTIVE

g(C, π0, S, π)
e⇒ g(C, π0, S, π

′)
2

〈c, S′, f〉 ∈ C B |= c S �= S′ ok(f, π)

g(C, π0, S, π)
u⇒ g(C, π0, S

′, π)
3

g ∈ G 〈B, g〉 e⇒ 〈B′, g′〉
〈B,G〉 e→ 〈B′, (G \ {g}) ∪ {g′}〉

4
g ∈ G g

u⇒ g′

〈B,G〉 u→ 〈B, (G \ {g}) ∪ {g′}〉
5

〈B,G〉 u→∗ 〈B,G′〉 〈B,G′〉 � u→ 〈B,G′′〉
〈B,G〉 u� 〈B, {g|g ∈ G′ ∧ g �= g(C, π0, DROPPED, π)}〉

6

〈B,G〉 u� 〈B,G′′〉 〈B,G′′〉 e→ 〈B′, G′〉
〈B,G〉 → 〈B′, G′〉 7

Fig. 1. Formal semantics for CAN with generic goals

being a transition over a set of goals (i.e. 〈B,G〉), and⇒ is defined as being a transition
over a single goal/plan (i.e. 〈B, g〉 where g ∈ G). Furthermore, we use letters to denote
particular transition types (e for execute, u for update) and a superscript asterisk (∗)
denotes “zero or more” as is usual. For conciseness we abbreviate 〈B, g〉 by just g,
for example the bottom of rule 9 abbreviates 〈B, e〉 e⇒ 〈B′, �Γ �〉, and similarly for
rules 1-3.

Figure 1 defines the semantics of goals. The first two rules specify that an active
goal can be executed by replacing an empty plan with the initial plan π0 (rule 1) or
by executing the goal’s plan (rule 2) which makes use of the rules for plan execution
(Figure 2). The next rule (3) defines a single goal update: if an update condition holds,
update the goal’s state, subject to two conditions: firstly, the new state should be dif-
ferent (S �= S′), secondly, the condition c should be active given the f tag1 and the
plan π; formally ok(f, π) ≡ ((f = end ∧ π = ε) ∨ (f = mid ∧ π �= ε) ∨ f = all).
Rules 4 and 5 define respectively execution (rule 4) and update (rule 5) of a set of goals
by selecting a single goal and respectively executing it or updating it. Rule 6 defines a

complete update cycle
u� which performs all possible updates, and deletes goals with a

state of “DROPPED”. Rule 7 defines a single top-level transition step of a set of goals:

first perform all possible updates (
u�) and then perform a single execution step (

e→).
We require that all possible updates are done in order to avoid ever executing a goal that
has a pending update to a non-active state.

Figure 2 defines a single execution step (
e⇒) for various CAN plan constructs. Rule

8 defines how an action a is executed in terms of its precondition and add/delete sets.
Rule 9 defines how an event is replaced by the set of guarded relevant plan instances
�Γ �. Rule 10 selects an applicable plan instance from a set of plans, using the auxiliary

1 We have compressed the two sets C and E of van Riemsdijk et al. [1] into a single set of
triples 〈c, S, f〉 where f is a flag specifying when the condition should be checked: when the
plan is empty (end), when the plan is non-empty, i.e. during execution (mid) or at all times
(all). E.g. 〈c, S〉 ∈ C in their framework translates to 〈c, S, all〉.
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B |= prea

〈B, a〉 e⇒ 〈(B ∪ adda) \ dela, ε〉
8

Γ = {cθ:πθ | (e′:c←π) ∈ Π ∧ θ = mgu(e, e′)}
e

e⇒ �Γ �
9

(ci:πi) ∈ Γ B |= ciθ πiθ
e⇒ π′

�Γ �
e⇒ πiθ � �Γ \ {ci:πi}�

10
P1

e⇒ P ′

P1;P2
e⇒ P ′;P2

11
P1

e⇒ P ′

P1‖P2
e⇒ P ′‖P2

12

P2
e⇒ P ′

P1‖P2
e⇒ P1‖P ′ 13

P1
e⇒ P ′

P1 � P2
e⇒ P ′ � P2

14
P1 � e⇒ P ′ P2

e⇒ P ′
2

P1 � P2
e⇒ P2

15

Fig. 2. Formal semantics for CAN plan constructs

construct � to indicate “try π, but if it fails, use the set of (remaining) relevant plans”.
Rule 11 simply defines the semantics of sequential execution “;”, rules 12 and 13 define
parallel execution “‖”, and rules 14 and 15 define “try-else” (�). The function denoted
by an overline (e.g. π1;π2) cleans up by removing empty plan bodies: ε;π = ε‖π =
π‖ε = π, and ε � π = ε, otherwise π = π.

Note that the semantics model failure as an inability to progress, i.e. a failed plan
body π is one where π �⇒ π′. This simplifies the semantics at the cost of losing the dis-
tinction between failure and suspension, and creating a slight anomaly with parallelism
where given π1‖π2 we can continue to execute π2 even if π1 has “failed”. Both these
issues are easily repaired by modelling failure separately (as is done by Winikoff et al.
[10]), but this makes the semantics considerably more verbose.

We can now define a (very!) simple Mars rover that performs a range of experiments
at different locations on the Martian surface. The first plan below for performing an
experiment of type X at location L firstly moves to the appropriate location L, then
collects a sample using the appropriate measuring apparatus.

exp(L,X) : ¬locn(L) ← goto(L) ; sample(X)
exp(L,X) : locn(L) ← sample(X)

We assume for simplicity of exposition that goto(L), and sample(X) are primitive
actions, but they could also be defined as events that trigger further plans. The action
goto(L) has precondition ¬locn(L) and add set {locn(L)} and delete set {locn(x)}
where x is the current location.

3 Reasoning about Interactions

We provide reasoning about interactions between goals by:

1. Extending the language to allow goal requirements (resources, conditions to be
maintained etc.) to be specified (Section 3.1).

2. Providing a mechanism to reason about these requirements, specifically by aggre-
gating requirements and propagating them (Section 3.2).
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3. Defining new conditions that can be used to specify goal state transitions, and
adding additional state transition types that allow responses to detected interac-
tions to be specified. These are then used to extend CAN with interaction-aware
goals (Section 4).

3.1 Specifying Requirements

There are a number of ways of specifying requirements. Perhaps the simplest is to re-
quire each primitive action to specify its requirements. Unfortunately this is less flexible
since it does not allow the user to indicate that a plan, perhaps combining a number of
actions, has certain requirements. We thus extend the language with a construct τ(π,R)
which indicates that the plan π is tagged (“τ”) with requirementsR. It is still possible to
annotate actions directly, τ(a,R), but it is no longer the only place where requirements
may be noted.

However, in some cases, the requirements of a goal or plan can only be determined
in context. For example, the fuel consumed in moving to a location depends on the
location, but also on the current location, which is not known ahead of time. We thus
provide a second mechanism for dynamic tagging where the requirements of a goal/plan
are provided in terms of a procedure that computes the requirements, and a condition
that indicates when the procedure should be re-run. This is denoted τ(π, f, c) where f
is a function that uses the agent’s beliefs to compute the requirements, and c is a re-
computation condition. Once the requirements have been propagated (see next section)
this becomes T (π,R, f, c) (the difference between τ and T is discussed in Section 3.2)
we need to retain f and c so the requirements can be re-computed (if c becomes true).
Otherwise T (π,R, f, c) behaves just like T (π,R).

We define R as being a pair of two sets, 〈L,U〉, representing a lower and upper
bound. For convenience, where a requirement R is written as a set R = {. . .} then
it is taken to denote the pair 〈R,R〉. Each of the sets can be defined in many ways,
depending on the needs of the domain and application. Here we define each set as
containing a number of the following requirement statements:

– re(r/c, t, n) where the first argument in the term is either r or c, denoting a reusable
or consumable resource, t is a type (e.g. fuel), and n is the required amount of the
resource.

– pr(c) where c is a condition that must be true at the start of execution (i.e. a pre-
condition)

– in(c) where c is a condition that must be true during the whole of execution (in-
cluding at the start). For the computation of summaries we also define a variant ins

which means that c must be true somewhere during the execution but not necessar-
ily during the whole execution.

In the Mars rover example we have the following requirements:

1. goto(L) computes its requirements based on the distance between the destination
and current location. This needs to be re-computed after each goto. We thus specify
the requirements of the goto(L) action as τ(goto(L), f(L), c) where f(L) looks up
the current location locn in the belief base, and then computes the distance between
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it and L; and where c = Δlocn(x) (informally, Δc means that the belief base has
changed in a way that affects the condition c; formally, if B is the old belief base
and B′ the updated belief base, then Δc ≡ ¬(B |= c⇔ B′ |= c));

2. sample(X) requires that the rover remains at the desired location, hence we
specify an in-condition (in) that the location (locn) remains L: τ(sample(X),
{in(locn(L))}).

We thus provide requirements by specifying the following plan body (for the first plan),
where f is a function that is given a location L and computes the fuel required to reach
the location.
τ(goto(L), f(L), c); τ(sample(X), {in(locn(L))})

3.2 Propagating Requirements

We define a function Σ that takes a plan body and tags it with requirements by propa-
gating and aggregating given requirements. We use ε to denote the empty requirement.
The function returns a modified plan which contains tags of the form T (π,R): this is
different from τ(π,R) in that τ is used by the user to provide requirements for a plan,
not including the requirements of the plan’s sub-plans, but T does include the require-
ments of sub-plans. Observe that Σ is defined compositionally over the plan, and that
computing it is not expensive in the absence of recursive plans [5].

Σ(ε) = T (ε, ε)
Σ(a) = T (a, {pr(prea)})
Σ(e) = T (e, 〈L1 � . . . � Ln, U1 � . . . � Un〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
and π1 . . . πn are the plans relevant for e.

Σ(π1;π2) = T (π′
1;π

′
2, 〈L1 � L2, U1 � U2〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
Σ(π1||π2) = T (π′

1||π′
2, 〈L1 � L2, U1 � U2〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
Σ(π1 � π2) = T (π′

1 � π
′
2, 〈L1, U1 � U2〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
Σ(�Γ �) = T (�Γ ′�, 〈L1 � . . . � Ln, U1 � . . . � Un〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
and Γ = {b1:π1, . . . , bn:πn} and Γ ′ = {b1:π′

1 . . . , bn:π
′
n}.

Σ(τ(π, 〈L,U〉)) = T (π′, 〈L′ ⊕ L,U ′ ⊕ U〉), where T (π′, 〈L′, U ′〉) = Σ(π)
Σ(τ(π, f, c)) = Σ(T (π, f(B), f, c)), where B is the agent’s beliefs.
Σ(T (π,R)) = if π′ = T (π′′, ε) then T (π′′, R) else π′, where π′ = Σ(π)

The requirements of an action are simply its pre-condition. The requirements of an
event are computed by taking the requirements of the set of relevant plans and combin-
ing them: the best case is the minimum of the available plans (�), and in the worse case
(represented by the upper bound) we may need to execute all of the plans and so we take
the (unspecified sequential) maximum of the requirements of the available plans using
�. The requirements for π1;π2 and π1‖π2 are determined by computing the require-
ments of π1 and of π2 and then combining them appropriately with auxiliary functions
� and � which are both variants on �: � treats pre-conditions of the first requirement
set as pre-conditions, since we do know that they occur at the start of execution; and �
is like � except that, because execution is in parallel, we cannot reuse resources. The
lower bound requirements for π1 � π2 are just the (lower bound) requirements for π1,
since, if all goes well, there will be no need to execute π2. However, in the worse case
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(upper bound) both π1 and π2 will need to be executed (sequentially, hence �). The
requirements for a user-tagged plan, τ(π,R) are determined by computing the require-
ments of π and then adding (⊕) this to the provided R. Finally, when re-computing the
requirements of T (π,R) we simply replace R with the newly computed requirements.

The case for events (e) is interesting: in the worst case, we may need to execute
all of the available plans. In the best case, only one plan will be executed. However,
when computing the initial estimate of requirements we don’t know which plans are
applicable, so we overestimate by using all relevant plans, and later update the estimate
(see below).

The function Σ is defined in terms of a number of auxiliary functions: ⊕, �, �, �
and �. By defining what can appear in R as well as these functions the agent designer
can create their own types of reasoning. We have defined an example R in the previous
section, and briefly and informally given the intended meaning of the auxiliary functions
above. The appendix contains precise formal definitions of these auxiliary functions.

We integrate requirements propagation into the operational semantics of CAN by
defining operational semantics for the T (π,R) construct which captures the process of
updating requirements:

π ⇒ π′ π �= ε R �= ε

T (π,R)⇒ Σ(π′)
π �= ε

T (π, ε)⇒ π T (ε, R)⇒ ε

The first rule is the general case: if π executes one step to π′ then T (π,R) can also
be stepped to Σ(π′). The next rule specifies that tagging with an empty requirement
set can be deleted. The final rule allows an empty plan body with requirements to be
resolved to the empty plan body. Finally, we modify the goal initialisation rule (first
rule in figure 1) to compute requirements by replacing the right-most π0 with Σ(π0):

S = ACTIVE

g(C, π0, S, ε)
e⇒ g(C, π0, S,Σ(π0))

Alternatively, as is done by Thangarajah et al. [6], we could modify the agent’s plan set
by replacing π with Σ(π) at compile time.

Returning to the Mars rover, let π = τ(goto(L), f, c); τ(sample(X), {in(locn(L))})
then the following requirements are computed (recall that T (π,R) where R is a set is
short for T (π, 〈R,R〉), and we assume that f returns 20 for the fuel requirement of
reaching L from the starting location):

Σ(π) = T (π2;π3, {re(c, fuel , 20), ins(locn(L)), pr(¬locn(L))})
π2 = T (goto(L), {re(c, fuel , 20), pr(¬locn(L))}, f, c)
π3 = T (sample(X), {in(locn(L))})

After the first action (π2) has completed we have: Σ(π′) = π3.

4 Using Requirements to Deal with Interactions

The work of the previous sections allows us to specify requirements, and to compute
and update them. In this section we consider how this information can be used to avoid
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undesirable interactions and (attempt to) ensure desirable interactions. For goals, we
do this by defining a new goal type, an “interaction-aware goal”, which has additional
condition-response triples. But first, we define a number of new conditions, and new
responses.

4.1 Conditions

The language of conditions is extended with new constructs: rok (“resources are ok”),
culprit , and interfere .

The new condition rok (G) means that there are enough resources for all of the goals
in G. Informally we define rok(G) by computing the resource requirements of the ac-
tive goals in G and comparing it with the available resources. If the available resources
exceed the resource requirements of the active goals, then clearly rok(G) is true. If
not, then we need to work out which goals should be suspended. We define the con-
dition culprit(g) to indicate that the goal g is responsible for a lack of sufficient re-
sources. Informally, culprit(g) is true if removing g from G makes things better2 i.e.,
culprit(g) ≡ rok(G \ {g}) ∧ ¬rok (G). See the appendix (definitions 4 and 5) for the
(correct) formal definitions of rok and culprit .

The new condition interfere(g) is true if g is about to do something that interferes
with another goal. Informally, this is the case if one of the actions that g may do next
(denoted na(g), defined in the appendix) has an effect that is inconsistent with another
goal’s in-condition (where both goals are active). Formally3 interfere(g) ≡ ∃g′ ∈
(G \ {g}), c ∈ getin(g′), a ∈ na(g) . g.S = g′.S = ACTIVE ∧ eff a ⊃ ¬c where G
is the agent’s goals, we use g.S to refer to the state of the goal g, we use ⊃ to denote
logical implication (to avoid confusion with transitions), and we define getin to return
the in-conditions of a goal, plan or requirements set:

getin(g(C, π0, S, π)) = getin(π)

getin(T (π, 〈L,U〉)) = {c | in(c) ∈ L}
getin(π) = getin(Σ(π)), if π �= T (π′, R)

We also define eff a to be a logical formula combining adda and dela as a conjunction
of atoms in adda and the negations of atoms in dela. For example, for goto(L) we have
eff goto(L) = locn(L) ∧ ¬locn(x).

We can also define a similar condition that detects interference with pre-conditions.
In order to avoid suspending goals unnecessarily, we only consider interference to be
real if the pre-condition being affected currently holds. In other words, if the precondi-
tion c of goal g′ does not currently hold, then there is not a strong reason to suspend goal
g which makes c false because c is already false. This gives interferepre(g) ≡ ∃g′ ∈
(G \ {g}), c ∈ getpre(g′), a ∈ na(g) . B |= c ∧ g.S = g′.S = ACTIVE ∧ eff a ⊃ ¬c
where getpre retrieves the pre-conditions, similarly to getin (see appendix definition
2).

2 In fact, as discussed in the appendix, this isn’t entirely correct.
3 We use a period “.” to denote “such that”, i.e. ∃a ∈ A, b ∈ B . p is read as “there exists a in
A and b in B such that p”.



An Integrated Formal Framework for Reasoning about Goal Interactions 25

4.2 Responses

Responses to interactions can be either “subtle”: influencing existing choices, but not
changing the semantics, i.e. “subtle” responses can be viewed as refining the semantics
by reducing non-determinism. Alternatively, responses can be “blunt” responses which
change the semantics.

So-called “subtle” responses apply where there is a choice to be made in the execu-
tion. This is the case in the following places: when selecting which (top-level) goal to
execute, when selecting which plan to use from a set of alternatives (�Γ �), and when
selecting which parallel plan to execute (π1‖π2). Note that only the first case involves
goals: the second and third involve plan bodies.

Influencing the choice of goal can be done by a range of means, including suspending
goals and giving certain goals higher priority. Suspending goals can be done using the
generic goal mechanism. In order to allow a goal to be given a higher priority we define
a new response (not goal state) PICKME (below).

Influencing the selection of a plan from a set of possible plans (�Γ �) can be done
by modifying the selection rule (it can’t be done using the generic goal mechanism
because plan selection occurs within a single goal). For example, we could require that
an applicable plan is not selected if a cheaper plan exists. This can be formalised by
adding to the rule for plan selection the following additional condition (the relation ≺
and function getres are defined in the appendix in definitions 1 and 3):

(ci:πi) ∈ Γ B |= ciθ ¬∃(cj :πj) ∈ Γ.getres(πj) ≺ getres(πi)

�Γ �
e⇒ πiθ � �Γ \ {ci:πi}�

However, we do not consider plan selection to be particularly useful in preventing re-
source issues, because the set of applicable plans will typically not contain a wide range
of options.

The third case, influencing the scheduling of parallel plans (π1‖π2) we consider to
be less useful and leave it for future work.

Turning now to the so-called “blunt” responses we have a number of possible re-
sponses including: (a) dropping a goal, and (b) adding a new goal. The former may be
used to permanently eliminate a goal that cannot be achieved (although suspension may
be a more sensible response). The second may be used to create a new goal (or plan),
for example, if a resource shortage is detected, a plan may be created to obtain more of
the resource (e.g. re-fuelling).

We thus define the following additional responses:

– !π which executes π (we can define synchronous and asynchronous variants of this)
– PICKME which specifies that this goal should be given priority when selecting

which goal to execute (but, since more than one goal may be flagged as PICKME,
cannot guarantee that the goal will be selected next). More generally, we could have
a priority mechanism and have responses that raise/lower the priority of the goal.

These are defined formally as follows. Although they appear in condition-response
triples, the semantics of these two constructs aren’t just changing the state of the goal,
and so we revise the existing rule so it does not apply to these two responses:
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〈c, S′, f〉 ∈ C S′ ∈ asd B |= c S �= S′ ok(f, π)

g(C, π0, S, π)
u⇒ g(C, π0, S

′, π)
3′

where asd = {ACTIVE, SUSPENDED, DROPPED}.
Because we want a PICKME to only last while the corresponding condition is true,

we do not update the goal’s state to PICKME, but instead modify the selection rule (rule
4) by adding the following additional condition (premise, where we use ⊃ to denote
logical implication) which requires that if any active goals are prioritised, then the se-
lected goal must be a prioritised one: ( (∃g(C′, π′

0, ACTIVE, π′) ∈ G . 〈c′, PICKME〉 ∈
C′ ∧ B |= c′) ⊃ (〈c, PICKME〉 ∈ g.C ∧B |= c) ). Where g is the goal being selected,
and where we use g.C to denote the C set of g (i.e. g = g(C, π0, S, π)).

We now turn to !π. A response of the form !π transforms the goal from g(C, π0, S, π
′)

to the variant gπ(C, π0, S, π
′):

〈c, !π〉 ∈ C B |= c

g(C, π0, S, π
′) u⇒ gπ(C, π0, S, π

′)
16

We then define the semantics of this as follows:

π
e⇒ π1

gπ(C, π0, S, π
′) e⇒ gπ1

(C, π0, S, π′)
17

where gε(C, π0, S, π) = g(C, π0, S, π), and for g = gπ(. . .) with π �= ε we have
g = g.

4.3 Interaction-Aware Goals

Finally, we are in a position to define a new goal type which uses the conditions and
responses defined, along with the underlying infrastructure for specifying and propagat-
ing requirements, in order to deal with interactions as part of the agent’s goal reasoning
process.

We extend goals into interaction-aware goals by simply adding to their C set the
following condition-response triples, where culprit is short for culprit(g) with g be-
ing the current goal, and similarly for interfere . The condition notculprit differs from
¬culprit in that it includes the current goal g in the computation of resources (whereas
culprit treats it as not having any resource requirements, since it is suspended).
Formally notculprit(g(C, π0, SUSPENDED, π)) ≡ ¬culprit(g(C, π0, ACTIVE, π)).
Similarly, notinterfere differs from¬interfere by considering the current goal as being
hypothetically active, i.e. notinterfere(g(C, π0, SUSPENDED, π)) ≡ ¬interfere(g(C,
π0, ACTIVE, π)).

I = {〈culprit , SUSPENDED, all〉, 〈notculprit , ACTIVE, all〉,
〈interfere, SUSPENDED, all〉, 〈notinterfere, ACTIVE, all〉}

An alternative, if there is a plan πr which obtains more of a needed resource, is to use
it instead of suspending: I ′ = {〈culprit , !πr, all〉, . . .}.
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5 Motivating Scenarios Revisited

We now consider how the different forms of reasoning discussed at the outset can be
supported. We define

gexp(l, x) ≡ g(I ∪ {〈locn(l), PICKME, all〉}, exp(l, x))
that is, gexp(l, x) is an interaction-aware goal which uses the initial plan body (which
is actually just an event) exp(l, x). Finally, we suppose that the Mars rover has been
asked to perform three experiments: experiment 1 of type T1 at location LA (i.e. g1 =
gexp(LA, T1)) experiment 2 of type T1 at location LB (i.e. g2 = gexp(LB, T1)), and
experiment 3 of type T2 at location LA (i.e. g3 = gexp(LA, T2)).

Let us now briefly consider how the Mars rover deals with the following cases of
interaction:

1. A lack of resources causes a goal to be suspended, and, when resources are suf-
ficient, resumed: since the goals are interaction-aware, suspension and resumption
will occur as a result of the conditions-responses in I. Specifically, should the re-
sources available be insufficient to achieve all goals, then some of goals will be
suspended by the 〈culprit , SUSPENDED, all〉 condition-response triple. Note that
since updates are performed one at a time, this will only suspend as many goals as
are needed to resolve the resource issue.

If further resources are obtained, then the suspended goals will be re-activated
(〈notculprit , ACTIVE, all〉). In the case of reusable resources, the suspension/re-
sumption mechanism will realise scheduling of the reusable resources amongst
goals: once a goal has completed and releases the (reusable) resources it has been
using, another goal that requires these resources can then resume.

2. A lack of resources, instead of suspending, may trigger a plan to obtain more
resources: if the goals are defined using I ′ rather than I, then a lack of resources
will cause a plan body πr to be used to obtain more resources. In this domain,
where the main resource is fuel, a sensible choice for πr would be to re-fuel.

3. Once the Mars rover has moved to location LA, it avoids moving again until
the sampling at LA has completed: once goal g1 has executed goto(LA) then,
as discussed at the end of Section 3.2, its requirement is updated to include the
in-condition locn(LA). Should goal g2 get to the point of being about to exe-
cute its action goto(LB), then this next action interferes with the in-condition,
and goal g2 will then be suspended, using the condition-response triple 〈interfere,
SUSPENDED, all〉, preventing the execution of goto(LB). Once g1 has concluded
the experiment, then it no longer has locn(LA) as an in-condition, and at this point
g2 will be re-activated (〈¬interfere, ACTIVE, all〉).

4. Once it has moved to location LA, the rover also performs g3 before moving
elsewhere: when it reaches LA the PICKME response of g3 (and g1) is triggered
which prioritises selecting these goals over g2, and thus the rover will remain at LA

until g1 and g3 are both completed.

As can be seen, interaction-aware goals — which are defined in terms of the additional
condition and response types, which themselves rest on the resource specification and
propagation mechanism defined in Section 3 — are able to deal with a range of goal-
interaction scenarios.
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6 Discussion

We have provided a framework for reasoning about goal interactions that is: generic,
i.e. can be customised to provide the reasoning that is needed for the application at hand;
presented formally, and hence precisely, avoiding the ambiguity of natural language;
and that integrates different reasoning types into one framework. We have also defined
a wider range of conditions and responses than previous work.

Our work can be seen as a rational reconstruction of earlier work [6–8] which for-
malises and makes precise the English presentation in these papers. However, we do
more than just formalise existing work: we provide a generic framework that allows for
other forms of reasoning to be added, and for the existing forms to be integrated.

In addition to work on reasoning about interactions between an agent’s goals, there
has also been work on reasoning about interactions between the goals of different agents
[15, 16]. This work has a somewhat different flavour in that it is concerned with the cost
of communication between agents. However, in some other aspects, such as the use of
requirements summaries, it is similar to the single agent case.

Also related is the work by Horty and Pollack [17] which looked at the cost of plans
in context (i.e. taking into account the agent’s other plans). Although the paper is osten-
sibly concerned with cost, they do also define various notions of compatibility between
plans. However, their plans are composed only of primitive actions.

Thangarajah et al. [18] consider the goal adoption part of goal deliberation: should a
candidate goal (roughly speaking, a desire) be added to the agent’s set of adopted goals?
They embed the goal adoption problem in a BDI setting into a soft constraint optimi-
sation problem model and discuss a range of factors that can be taken into account in
making decisions. However, while promising, this is early work: the presentation is in-
formal and a precise definition of the mapping to soft constraint optimisation problems
is not given.

There are three main directions for future work that we would like to pursue: imple-
mentation, evaluation, and extending to further interaction scenarios.

What this paper presents can be seen as an extended BDI programming language
with interaction-aware goals. One area for future work is how to implement this ex-
tended language using a standard BDI platform (such as Jason, Jadex, JACK etc.) that
doesn’t have a generic goal construct, or resource/condition management. One possi-
bility is to transform the agent program, Π , into a variant that uses existing constructs
(such as maintenance goals) to realise the desired behaviour. Another possibility, if the
platform provides an API for manipulating the state of goals, is to realise generic goals
by two parallel goals: one that executes the plan π, and another (with higher priority)
that monitors for conditions and updates the first goal’s state. Finally, a third approach
is to use a meta-interpreter [19]. An implementation would allow for an evaluation to
be done in order to assess the benefits, and also the real practical computational cost.

An interesting scenario which we have not yet investigated is “achieve then main-
tain”, where a particular condition is achieved (e.g. booking a hotel), but then for some
period of time (e.g. until the travel dates) the condition is maintained and updated should
certain changes take place (e.g. budget reductions or changes to travel dates).
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A Definitions

Definition 1 (≺). We define an ordering on requirement sets as follows. We say that R1

is less than R2 (R1 � R2) if, intuitively, R2 requires more than R1. Formally, we define
this by recognising that for a given condition c we have that ins(c) � pr(c) � in(c),
i.e. a requirement that a condition hold for some unspecified part of the execution is
less demanding than insisting that it hold at the start, which in turn is less demanding
than insisting that it hold during the whole of execution (including at the start). We thus
define R1 � R2 to hold iff:

– re(f, t, n1) ∈ R1 ⊃ (r(f, t, n2) ∈ R2 ∧ n1 ≤ n2)
– in(c) ∈ R1 ⊃ (in(c′) ∈ R2 ∧ c′ ⊃ c)
– pr(c) ∈ R1 ⊃ ((pr(c′) ∈ R2 ∨ in(c′) ∈ R2) ∧ c′ ⊃ c)
– ins(c) ∈ R1 ⊃ ((ins(c

′) ∈ R2 ∨ pr(c′) ∈ R2 ∨ in(c′) ∈ R2) ∧ c′ ⊃ c)

We next define na (“next action”) which takes a plan body and returns a set of possible
next actions. Note that na is an approximation: it doesn’t attempt to predict which
actions might result from a set of plans �Γ �. A more accurate approach is to wait until
an action is about to be executed before checking for interference.

na(a) = {a}
na(π1;π2) = na(π1)

na(π1‖π2) = na(π1) ∪ na(π2)

na(π1 � π2) = na(π1)

na(e) = ∅
na(�Γ �) = ∅

Definition 2 (getpre). getpre returns the pre-condition of a goal/plan.

getpre(g(C, π0, S, π)) = getpre(π)

getpre(T (π, 〈L,U〉)) = {c | pr(c) ∈ L}
getpre(π) = getpre(Σ(π)), if π �= T (π′, R)

Definition 3 (getres). Calculating resource requirements only uses active goals, we
ignore goals that are suspended or are executing responses triggered by !π.

getres(g(C, π0, S, π)) = getres(π), if S = ACTIVE

getres(g(C, π0, S, π)) = ε, if S �= ACTIVE

getres(gπ(C, π0, S, π)) = ε

getres(T (π, 〈L,U〉)) = {re(f, t, n) | re(f, t, n) ∈ U}
getres(π) = getres(Σ(π)), if π �= T (π′, R)
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Definition 4 (rok ). In defining rok(G) we need to sum the resource requirements of the
set of goals, and then check whether the available resources are sufficient. As discussed
by Thangarajah et al. [6], there are actually a number of different cases. Here, for
illustrative purposes, we just consider the case where there are sufficient resources to
execute the goals freely as being an rok situation. We thus define the collected resource
requirements of a goal set G = {g1, . . . , gn} as being getres(G) = U1 � . . .�Un where
Ui = getres(gi). Finally, we define rok (G) ≡ getres(G) � R whereR is the available
resources.

Definition 5 (culprit ). In defining culprit(g) one situation to be aware of is where
removing a single goal is not enough. In this situation the definition given in the body
of the paper will fail to identify any goals to suspend. To cover this case we need a
slightly more complex definition. Informally, the previous definition is correct except
where there does not exist a single goal that can be removed to fix the resource issue
(¬∃g ∈ G.rok (G \ {g})). In this case we consider culprit(g) to be true if removing
g and one other goal will fix the problem. This generalises to the situation where one
must remove n goals to fix a resource issue:

culprit(g) ≡ ∃n . ( (∃G′ ⊆ G.|G′| = n ∧ rok(G \G′) ∧ ¬rok (G) ∧ g ∈ G′)
∧ (¬∃G′′ ⊆ G.|G′′| < n ∧ rok(G \G′′) ∧ ¬rok (G)))

We now turn to defining the various auxiliary functions that are needed. We assume
that requirements definitions, Ri, are normalised, i.e. that they contain (a) exactly one
re(f, t, n) for each resource type t that is of interest (where n may be 0); and (b) exactly
one in, one ins and one pr. We also assume that resource reusability is consistent, i.e.
that a resource type t is not indicated in one place as being consumable and in another
as being reusable.

The intended meaning of the auxiliary functions (based on where they are used in
the definition of Σ) is as follows: ⊕ adds resources without changing the intervals; �
is used to collect the upper bound for a set of plans which are executed sequentially
in an unknown order; � computes the minimal (lower bound) requirements of a set of
alternative plans; � corresponds to a sequential join of two intervals, and � corresponds
to the parallel composition of two intervals. Formally, they are defined as follows:

R1 ⊕R2 =
{re(f, t, n1 + n2) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{in(c1 ∧ c2) | in(c1) ∈ R1 ∧ in(c2) ∈ R2} ∪
{ins(c1 ∧ c2) | ins(c1) ∈ R1 ∧ ins(c2) ∈ R2} ∪
{pr(c1 ∧ c2) | pr(c1) ∈ R1 ∧ pr(c2) ∈ R2}

R1 �R2 =
{re(r, t,max(n1, n2)) | re(r, t, n1) ∈ R1 ∧ re(r, t, n2) ∈ R2} ∪
{re(c, t, n1 + n2) | re(c, t, n1) ∈ R1 ∧ re(c, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6) | in(c1) ∈ R1

∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1 ∧ ins(c4) ∈ R2

∧ pr(c5) ∈ R1 ∧ pr(c6) ∈ R2}
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R1 �R2 =
{re(f, t,min(n1, n2)) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{in(c1 ∨ c2) | in(c1) ∈ R1 ∧ in(c2) ∈ R2} ∪
{ins(c1 ∨ c2) | ins(c1) ∈ R1 ∧ ins(c2) ∈ R2} ∪
{pr(c1 ∨ c2) | pr(c1) ∈ R1 ∧ pr(c2) ∈ R2}

R1 � R2 =
{re(r, t,max(n1, n2)) | re(r, t, n1) ∈ R1 ∧ re(r, t, n2) ∈ R2} ∪
{re(c, t, n1 + n2) | re(c, t, n1) ∈ R1 ∧ re(c, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5) | in(c1) ∈ R1 ∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1

∧ ins(c4) ∈ R2 ∧ pr(c5) ∈ R2} ∪ {pr(c) | pr(c) ∈ R1}

R1 � R2 =
{re(f, t, n1 + n2) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6) | in(c1) ∈ R1

∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1 ∧ ins(c4) ∈ R2 ∧ pr(c5) ∈ R1 ∧ pr(c6) ∈ R2}
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