

Lecture Notes in Artificial Intelligence 7169

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Chiaki Sakama Sebastian Sardina
WambertoVasconcelos MichaelWinikoff (Eds.)

Declarative
Agent Languages
and Technologies IX

9th International Workshop, DALT 2011
Taipei, Taiwan, May 3, 2011
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Chiaki Sakama
Wakayama University, Dept. of Computer and Communication Sciences
930 Sakaedani, Wakayama 640-8510, Japan
E-mail: sakama@sys.wakayama-u.ac.jp

Sebastian Sardina
RMIT University, School of Computer Science and Information Technology
PO Box GPO Box 2476V, Melbourne, VIC, 3001, Australia
E-mail: sebastian.sardina@rmit.edu.au

Wamberto Vasconcelos
University of Aberdeen, Dept. of Computing Science
Meston Building, Aberdeen, AB24 3UE, UK
E-mail: w.w.vasconcelos@abdn.ac.uk

Michael Winikoff
University of Otago, Dept. of Information Science
PO Box 56, Dunedin, 9054, New Zealand
E-mail: michael.winikoff@otago.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29112-8 e-ISBN 978-3-642-29113-5
DOI 10.1007/978-3-642-29113-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933973

CR Subject Classification (1998): I.2.11, C.2.4, D.2.4, D.2, D.3, F.3.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains revised papers presented at the International Workshop
on Declarative Agent Languages and Technologies (DALT 2011). In addition
to these technical contributions, this volume also revisits the most influential
papers of past DALT editions, through a “retrospective” in which the authors
themselves appraise the impact of the research in the field and how it led to
future developments.

DALT 2011 was the ninth and most recent edition of the ongoing series of
events aimed at promoting declarative approaches and technologies for software
agents and multiagent systems. DALT 2011 took place in Taipei, Taiwan, on
May 3, and was held as a satellite workshop of the 10th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011).
Past editions were held in 2003 in Melbourne, Australia; in 2004 in New York,
USA; in 2005 in Utrecht, The Netherlands; in 2006 in Hakodate, Japan; in 2007
in Honolulu, USA; in 2008 in Estoril, Portugal; in 2009 in Budapest, Hungary;
and in 2010 in Toronto, Canada. The post-workshop proceedings for all these
were published in the Lecture Notes in Artificial Intelligence series as volumes
2990, 3476, 3904, 4327, 4897, 5397, 5948, and 6619, respectively.

Business and pleasure activities increasingly benefit from computer networks
to share information and processes. Software to support such activities thus need
to be distributed (i.e., many independent pieces of hardware, communicating via
message-passing), open (i.e., components may come and go) and heterogeneous
(i.e., components have been developed independently by different parties using
different technologies). Moreover, as solutions become more sophisticated, they
need to become more autonomous, being able to function with little or no human
interference. Software agents and multiagent systems help make this class of
applications a reality.

Engineering such systems brings about exciting challenges for which declar-
ative approaches offer much. Declarative formalisms (e.g., functions and logics),
and their associated mechanisms, can be used to specify, verify, analyze and, in
many cases, actually program software agents and multiagent systems. Declar-
ative approaches, with their well-understood and robust mathematical founda-
tions, provide abstractions with which to explore computational phenomena.

The series of international workshops on Declarative Agent Languages and
Technologies (DALT) has been organized as a forum in which theoreticians and
practitioners come together for scientific exchange on declarative approaches to
specifying, verifying, programming, and running software agents and multiagent
systems. A main theme of the DALT series is to advance the state of the art in
declarative specification and verification techniques, to address large, expressive
and realistic classes of software agents and multiagent systems.

VI Preface

We have included in this volume five papers presented at DALT 2011; the
authors have revised their papers in light of the comments and suggestions they
received from the reviewers and during the workshop. The papers are:

1. A Formal Framework for Reasoning about Goal Interactions, by Michael
Winikoff

2. Plan Indexing for State-Based Plans, by Louise Dennis
3. Probing Attacks on Multiagent Systems using Electronic Institutions, by

Shahriar Bijani, David Robertson, and David Aspinall
4. Formalizing Commitments Using Action Languages, by Tran Cao Son, En-

rico Pontelli, and Chiaki Sakama
5. Detecting Conflicts in Commitments, by Akin Gunay and Pinar Yolum

In addition to these original contributions, we also have a retrospective of the
best papers of the DALT series, by the respective authors themselves, explaining
how the research developed and how it influenced and impacted the community,
the state of the art and subsequent work. The best papers of the DALT series
were selected based on their number of citations given by Google Scholar.1 The
papers are:

1. Coo-BDI: Extending the BDI Model with Cooperativity, by Davide Ancona
and Viviana Mascardi (DALT 2003)

2. Extending the Operational Semantics of a BDI Agent-Oriented Programming
Language for Introducing Speech-Act Based Communication, by Álvaro F.
Moreira, Renata Vieira, and Rafael H. Bordini (DALT 2003)

3. A Lightweight Coordination Calculus for Agent Systems, by David S. Robert-
son (DALT 2004)

4. A Distributed Architecture for Norm-Aware Agent Societies, by Andrés Garćıa-
Camino, Juan-Antonio Rodŕıguez-Aguilar, Carles Sierra, and Wamberto W.
Vasconcelos (DALT 2005)

5. Producing Compliant Interactions: Conformance, Coverage, and Interoper-
ability, by Amit K. Chopra and Munindar P. Singh (DALT 2006)

6. Specifying and Enforcing Norms in Artificial Institutions, by Nicoletta Fornara
and Marco Colombetti (DALT 2008)

7. Social Commitments in Time: Satisfied or Compensated, by Paolo Torroni,
Federico Chesani, Paola Mello, and Marco Montali (DALT 2009)

In 2011, there was also a DALT Spring School, held during April 10-15 in
Bertinoro (Forl-Cesena), Italy. The school, organized by Paolo Torroni and An-
drea Omicini, aimed at giving a comprehensive introduction to the DALT re-
search topics and disseminating the results of research achieved in an 8-year-long
workshop activity, with a perspective on the future. The 5-day school program
included five courses:

– Agent Reasoning: Knowledge, Plans and Flexible Control Cycles by Francesca
Toni

1 http://scholar.google.com/

Preface VII

– Agent Reasoning: Goals and Preferences, by Birna van Riemsdijk
– Agent Interaction: Languages, Dialogues and Protocols, by Peter McBurney
– Agent and Multi-Agent Software Engineering: Modelling, Programming, and

Verification, by Rafael Bordini
– Organization, Coordination and Norms for Multi-Agent Systems, by Wamberto

Vasconcelos

There was also a student session, organized by Federico Chesani in two tracks:
for junior and senior students. The initiative was a success, with more than 30
students attending, and it received very positive feedback. The DALT school was
very conveniently co-located with the Third ALP/GULP International School
on Computational Logic. Additional information and course materials are avail-
able for download at the website: http://lia.deis.unibo.it/confs/dalt_
school/. The DALT school is represented in this volume by two invited con-
tributions from DALT lecturers: a short course report by Rafael Bordini, and a
technical article by Wamberto Vasconcelos and colleagues.2

We would like to take this opportunity to thank the authors for their contri-
butions, the members of the Steering Committee for support and guidance, and
the members of the Program Committee for timely and high-quality reviews. We
would also like to thank Wiebe Van der Hoek (Department of Computer Science,
University of Liverpool, UK), for his invited talk “Control and Delegation;” we
are very happy to include in this volume an extended abstract for this talk.

August 2011 Chiaki Sakama
Sebastian Sardina

Wamberto Vasconcelos
Michael Winikoff

2 We thank Paolo Torroni for providing us with this summary text on the DALT 2011
Spring School for inclusion in this preface.

Organization

Organizing Committee

Chiaki Sakama Wakayama University, Japan
Sebastian Sardina RMIT University, Australia
Wamberto Vasconcelos University of Aberdeen, UK
Michael Winikoff University of Otago, New Zealand

Steering Committee

Matteo Baldoni Università di Torino, Italy
Andrea Omicini Alma Mater Studiorum – Università

di Bologna, Italy
M. Birna van Riemsdijk Delft University of Technology,

The Netherlands
Tran Cao Son New Mexico State University, USA
Paolo Torroni Alma Mater Studiorum – Università

di Bologna, Italy
Pinar Yolum Bogazici University, Turkey
Michael Winikoff University of Otago, New Zealand

Program Committee

Thomas Ågotnes University of Bergen, Norway
Marco Alberti Universidade Nova de Lisboa, Portugal
Natasha Alechina University of Nottingham, UK
Cristina Baroglio Università di Torino, Italy
Rafael Bordini Federal University of Rio Grande do Sul, Brazil
Jan Broersen University of Utrecht, The Netherlands
Federico Chesani Alma Mater Studiorum – Università

di Bologna, Italy
Amit Chopra Università di Trento, Italy
Francesco M. Donini Università della Tuscia, Italy
James Harland RMIT University, Australia
Andreas Herzig Paul Sabatier University, France
Koen Hindriks Delft University of Technology,

The Netherlands
João Leite New University of Lisbon, Portugal
Yves Lespérance York University, Canada
Viviana Mascardi Università di Genova, Italy

X Organization

Nicolas Maudet LAMSADE, Université Paris-Dauphine, France
John-Jules Meyer University of Utrecht, The Netherlands
Peter Novák Czech Technical University in Prague,

Czech Republic
Fabio Patrizi Università “La Sapienza” di Roma, Italy
Enrico Pontelli New Mexico State University, USA
David Pym University of Aberdeen, UK
Michael Rovatsos The University of Edinburgh, UK
Flavio Correa da Silva Universidade de Sao Paulo, Brazil
Guillermo Simari Universidad Nacional del Sur, Argentina
Tran Cao Son New Mexico State University, USA
Marina De Vos University of Bath, UK

Additional Referees

Federico Chesani
Marco Montali
Michal Čáp

Table of Contents

DALT 2011 Papers

Control and Delegation . 1
Wiebe van der Hoek

Plan Indexing for State-Based Plans . 3
Louise A. Dennis

An Integrated Formal Framework for Reasoning about Goal
Interactions . 16

Michael Winikoff

Probing Attacks on Multi-Agent Systems Using Electronic
Institutions . 33

Shahriar Bijani, David Robertson, and David Aspinall

Detecting Conflicts in Commitments . 51
Akın Günay and Pınar Yolum

Formalizing Commitments Using Action Languages 67
Tran Cao Son, Enrico Pontelli, and Chiaki Sakama

Best of DALT

Lightweight Coordination Calculus for Agent Systems: Retrospective
and Prospective . 84

David Robertson

The Evolution of Interoperability . 90
Amit K. Chopra and Munindar P. Singh

1000 Years of Coo-BDI . 95
Viviana Mascardi and Davide Ancona

A Distributed Architecture for Norm-Aware Agent Societies:
A Retrospective . 102

Andrés Garćıa-Camino, Juan-Antonio Rodŕıguez-Aguilar,
Carles Sierra, and Wamberto W. Vasconcelos

Speech-Act Based Communication: Progress in the Formal Semantics
and in the Implementation of Multi-agent Oriented Programming
Languages . 111

Álvaro F. Moreira, Renata Vieira, and Rafael H. Bordini

XII Table of Contents

Specifying and Enforcing Norms in Artificial Institutions:
A Retrospective Review . 117

Nicoletta Fornara and Marco Colombetti

A Retrospective on the Reactive Event Calculus and Commitment
Modeling Language . 120

Paolo Torroni, Federico Chesani, Paola Mello, and Marco Montali

DALT Spring School 2011

Web Service Composition via Organisation-Based (Re)Planning 128
David Corsar, Alison Chorley, and Wamberto W. Vasconcelos

Agent and Multi-Agent Software Engineering: Modelling, Programming,
and Verification (Extended Abstract) . 149

Rafael H. Bordini

Author Index . 153

Control and Delegation�

Wiebe van der Hoek��

University of Liverpool, United Kingdom
wiebe@csc.liv.ac.uk

The context of the talk is an interest and a need to reason about issues related to co-
operation in multi-agent systems, where, given the notion of a coalition (that is, a
group of agents), questions arise regarding the coalitional power (what can the coalition
achieve?), coalition formation (which coalitions will form?) and the result of coopera-
tion (how will the coalition act?). Coalition Logics provide a tool to analyse some of
those questions. They took off with two important developments, namely with Pauly’s
formulation of Coalition Logic CL [2], and the work on Alternating-time Temporal
Logic (ATL) by Alur, Henzinger and Kupferman [1].

Basic concept in both systems is the cooperation modality: 〈〈C〉〉ϕ meaning ‘coalition
C can cooperate to ensure that ϕ’. Formally, this is defined to hold as ‘the members of C
can each chose a strategy, such that, no matter what the agents outside C decide to do, ϕ
will be true in all remaining computations’ (more precisely: ∃σC : ∀σC̄ : out(σC, σC̄) |=
ϕ — what matters for now is the ∃∀ pattern). This is the so-called α-ability.

In CL and ATL however, no answer is given to the question as to where the agents’
powers arise from. In our work on Coalition Logic for Proposition Control (CL-PC), we
give one possible answer to this: we assume that every agent i is uniquely assigned a set
of propositional atoms Ai: the agent has complete control over the truth values. So the
choices or powers available to agents correspond to the valuations over their variables
that are possible. Here is the basic semantics: a model M is a tuple

M = 〈AG,A,A1, . . . ,An, θ〉, where

– AG = {1, . . . , n} is a finite, non-empty set of agents;
– A = {p, q, . . .} is a finite, non-empty set of propositional variables;
– A1 . . . ,An is a partition of A among the members of Ag, with the intended inter-

pretation that Ai is the subset of A representing those variables under the control of
agent i ∈ AG; for C ⊆ Ag, let AC = ∪c∈CAc, and finally,

– θ : A → {
,⊥} is a propositional valuation. For C ⊆ Ag, define θ′ = θ modC iff
for all p �∈ AC, θ′(p) = θ(p).

We then define M |= �Cϕ iff ∃θC(θC = θ modC and M †θC |= ϕ), where M †θC is like
M, but with θ replaced by θC. With �C defined as ¬�C¬ϕ, we can then define α-ability
as 〈〈C〉〉αϕ↔ �C�C̄ϕ (‘C can chose values for their variables, so that, no matter what
the complement C̄ of C choses for theirs, ϕ holds’ and β-ability as 〈〈C〉〉βϕ↔ �C̄�Cϕ
(‘for any choice of the others, C can respond with a valuation for their atoms, such that
ϕ’). Define controls(C, ϕ) as �Cϕ ∧�C¬ϕ (obviously, for atoms p this coincides with
p ∈ AC).
� Abstract of a talk given at DALT2011, Taipei, Taiwan.

�� Based on work with Thomas Ågotnes, Nicolas Troquard, and Michael Wooldridge.

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 W. van der Hoek

In [5], we

1. Provide a Kripke semantics for CL-PC

2. Give a sound and complete axiomatisation of CL-PC

3. Give a syntactic characterisation of controls(C, ϕ)
4. settle the computational complexity of model checking and satisfiability of CL-PC.

In CL-PC, the ‘ownership’ of atoms is fixed: in DCL-PC [4] we add a notion of delega-
tion, which is formalised through programs of the form i �p j, which have the effect
that in the resulting model, p ∈ Aj, if originally p ∈ Ai. An example of a statement in
DCL-PC is thus 〈while ¬�jϕ do

⋃
p∈Ai

i �p j〉
 (‘it is possible that i passes on con-
trol of his atoms to j, until j can eventually achieve ϕ’). [4] offers a sound and complete
axiomatisation of DCL-PC, and establishes its model checking and satisfiability com-
plexity. Model checking appears to be hard, due to the very succinct representation of
our models.

Then, in [3] we relax CL-PC’s assumption regarding complete information of the
agents.

– agents may be uncertain about the values of the variables.
E.g., if agent i’s goal is p ↔ ¬q he can achieve this if (1) he controls at least one of
the variables, and (2) if he controls one of them, he knows the value of the other

– there may also be uncertainty about who controls what
(1) agents may be uncertain about which atoms are controlled by other agents or
even by themselves; and (2) agents may be uncertain who to join coalitions with.

These two assumptions about partial information give rise to ECL-PC(PO) (Epistemic
CL-PC with Partial Observability) and ECL-PC(UO) (ECL-PC with Uncertainty about
Ownership). In the former, one can for instance express Ka�a(p ↔ q) ∧ ¬�a(p ∧ q)
(think of a having control over p, but not knowing the truth value of q), and in the latter
logic, an example would be Ka�{a,b}�{a,b}(p ↔ q)∧Kb�a�b(p ↔ q) (suppose a and
b are the only two agents, a being fully ignorant of who controls what, but b having the
information that both p and a are under his control). In [3], we extend CL-PC to cope
with these two types of uncertainty, and provide a sound and complete axiomatisation
for this.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: IEEE Sympo-
sium on Foundations of Computer Science, pp. 100–109 (1997)

2. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computa-
tion 12(1), 149–166 (2002)

3. van der Hoek, W., Troquard, N., Wooldridge, M.: Knowledge and control. In: Tumer, K.,
Yolum, P., Sonenberg, L., Stone, P. (eds.) Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), pp. 719–726 (2011)

4. van der Hoek, W., Walther, D., Wooldridge, M.: Reasoning about the transfer of control.
JAIR 37, 437–477 (2010)

5. van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control.
Artificial Intelligence 64, 81–119 (2005)

Plan Indexing for State-Based Plans

Louise A. Dennis

Department of Computer Science, University of Liverpool, UK
L.A.Dennis@liverpool.ac.uk

Abstract. We consider the issue of indexing plans (or rules) in the
implementation of BDI languages. In particular we look at the issue of
plans which are not triggered by the occurence of specific events. The
selection of a plan from such a set represents one of the major bottle-
necks in the execution of BDI programs. This bottle-neck is particularly
obvious when attempting to use program model checkers to reason about
such languages.

This paper describes the problem and examines one possible indexing
scheme. It evaluates the scheme experimentally and concludes that it is
only of benefit in fairly specific circumstances. It then discusses ways the
indexing mechanism could be improved to provide wider benefits.

1 Introduction

The implementation of the theory of Beliefs, Desires and Intentions [10] as pro-
gramming languages has led to a family of languages with many similarities to
resolution based logic programming languages and resolution based first-order
theorem provers.

A key component of programs written in these languages is the plan or rule
base, consisting of programmer designed procedures for achieving intentions.
For simplicity we will here refer to these procedures as plans and the set of such
procedures as the plan library.

At given points in the execution of a BDI agent’s reasoning cycle the plan
library will be accessed in order to determine which plans are applicable given
the agent’s current set of beliefs and intentions. There are two types of plans
used in these languages: triggered plans are activated by the occurence of some
event (normally the acquisition of a belief or a goal) while state-based plans may
become active at any time a particular set of beliefs and goals are held. Both
types of plans typically have a guard – a set of beliefs and goals – that the
agent must either believe or intend before the plan is deemed applicable. Both
triggers and guards may (and indeed commonly do) contain free variables which
are instantiated by unification against the current events, beliefs and goals. A
naive implementation of plan selection involves accessing all the plans in the
library and then checking each one in turn to see if its trigger event has occurred
(in the case of triggered plans) and its guard is satisfied by the agent’s state.
The time involved in doing this, especially in the presence of large plan libraries,
represents a significant bottle-neck in agent execution.

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 3–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 L.A. Dennis

This paper investigates an indexing mechanism for plans in the hope this will
reduce the time spent checking guards for applicability. A preliminary implemen-
tation is presented and the results of testing this implementation are discussed.
The results reveal that there are complex tradeoffs and attention needs to be
paid to the efficiency of retrieval from the index if the process is to be of use
outside a small number of situations.

1.1 Plans in BDI Languages

The design of plans in BDI languages owes much to logic programming and
the semantics of plan applicability is generally similar to that of guarded horn
clauses. The guards on plans are checked against the agent’s belief base, Σ, and,
in some cases, also against the goal base, Γ . In the tradition of logic programming
these guards are expressed as first-order predicates with free variables which are
instantiated by unification with the goal and belief bases.

In some languages the guards may also be more complex and contain logical
formulae constructed using negation, conjuction and disjunction. There may
even be deductive rules that operate on the belief and goal bases allowing the
agent to conclude that it has some derived belief or goal from the explicit ones
stored in its database.

Notation: In what follows we will write triggered plans as trigger : {guard} ←
body and state-based plans as {guard} ← body. We will refer to the individual
forumulae contained in guards as guard statements. Where a guard statement
states that something is not believed by the agent or is not a goal of the agent we
will refer to this as a negative guard statement. Where a guard statement can be
deduced using rules we will refer to it as a deductive guard statement. All other
guard statements, i.e. those that can be inferred directly by inspection of Σ or
Γ we will refer to as explicit guard statements. Our interest here is primarily in
the use of explicit guard statements as a filter on plan selection.

A naive implemention of plan selection retrieves all plans from the agent’s
plan library and then iterates over this set checking each trigger and guard in
turn for applicability. This involves the construction of unifiers and, in some
cases, logical deduction, typically in a Prolog-style. This represents a signifi-
cant bottle-neck in execution of the agent program. Figure 1 shows profile in-
formation generated using the JProfiler tool [1] from running a program written
in the GOAL language [5,8] as implemented in the AIL toolkit [2]. The proce-
dure matchPlans selects all plans and then checks their guards in turn. In the
example shown, this procedure is taking up 40% of the execution time. Of the
constituent calls within matchPlans most are involved in the checking of guards
(ail .syntax.Guards$1.hasNext). We performed similar profiling on all the ex-
amples in the AIL GOAL distribution (fewer than half a dozen, sadly). The
percentage of time spent on plan selection shown in figure 1 is typical of the
programs we examined.

In many agent programs the time taken for plan selection is not of major con-
cern. It typically only becomes a problem in the presence of an extremely large

Plan Indexing for State-Based Plans 5

Fig. 1. Profiling the Execution of a GOAL Program

plan library and there are relatively few examples of the use of BDI-programs in
such cases. However there is considerable interest in the community in the use
of program model checking for BDI programs [9,3]. A program model checker
uses the actual program as the model which is checked against some property.
This causes individual segments of code to be executed many times as the model
checker investigates all execution paths and exacerbates the effects of any inef-
ficiences in the program or the underlying language interpreter.

1.2 Indexing

An indexing system allows the fast retrieval of data from a large set by organising
the data in some way. For instance, the data can be stored in tuples where some
subset of the data is indexed by a key. Data is retrieved by deriving a query
key (or key set) from the current problem and using that to traverse the index,
returning only that data associated with the key in a tuple.

Clearly an index is only of value if the cost of storing data in the index,
computing query keys and retrieving data using those keys is lower than the
cost of examining the entire set of data and computing the relevance of each
item on the fly.

2 Related Work

2.1 Plan Indexing in Jason

The Jason implementation of AgentSpeak [4] uses triggered plans. Each
event is represented by a predicate and the Jason implementation generates a

6 L.A. Dennis

predicate indicator from these predicates. The predicate indicator is the name of
the predicate plus the number of arguments it takes represented as a string.

Consider, for instance the plan: see(X) : {garbage(X)} ← remove(X). This
states that if an agent sees some garbage then it removes the garbage. This
plan would be indexed by the predicate indicator see/1 (predicate see with 1
argument). Jason stores all its plans in tuples of the trigger predicate indicator
and a list of all the plans with that trigger. When plans are retrieved the list of
predicate indicators alone is searched (using string matching) and then only the
plans in the associated tuple are returned.

By indexing plans by their triggers Jason is able to considerably speed up the
plan selection process. The guards are checked only for those plans whose trigger
matches the current event. In our example unifiers for X are only determined
and the plan’s guard checked, when the agent has just acquired a belief that it
can see something, not when any other event occurs.

Jason gains considerable speed up in the plan selection process by this means,
and this indexing style is used in many implementations of languages that have
triggered plans (e.g. Gwendolen [6]).

Unfortunately not all languages use triggered plans. GOAL, for instance, has
state-based plans, called conditional actions which have no trigger and consist of
a guard and a plan body alone. The absense of a trigger means that these can
not be indexed in the same way.

Aside: It is of note that Jason also indexes its belief base with predicate indi-
cators allowing the rapid filtering out of irrelevant beliefs during the checking of
plan guards. This technique is trivially applicable in the case of state-based plans
and, indeed, the implementation of GOAL discussed in section 4 uses indexing
of the belief base in this style.

2.2 Term Indexing

First order theorem provers have long investigated a similar problem, indexing
horn clauses for retrieval against a given literal in a variety of situations [11].
This is a similar problem to that addressed by Jason. Theorem provers typically
work with horn clauses with a single head literal which must be matched to a
single literal in the problem at hand.

In our case we are considering a set of literals (the guard) all of which need
to match a set of literals in the belief base, but the belief base may also contain
literals irrelevant to the current problem.

Theorem provers also deal with a far larger number of clauses which need
to be retrieved and much of the research in theorem proving has focused on
efficient term representations in order to minimize time searching the index. In
situations where we consider agents which may have plans numbering in the
tens of thousands the advanced techniques for term indexing developed in the
theorem proving field may have a contribution to make to the problem of plan
indexing, particularly in languages which have triggered plans.

Plan Indexing for State-Based Plans 7

3 Data Structures

We have chosen to index our plans using a tree-based indexing scheme. Plans
are stored as sets at the leaves of a tree data structure and the tree is traversed
with reference to the current agent state in order to retrieve plans.

We do not generate an explicit query key before traversing the tree but instead
refer to indexing information stored in the agent’s belief base. However there is
no reason why a query key should not be generated and, indeed, the pseudo-code
in the appendices assumes this.

3.1 Plan Keys

We slightly extend the notion of a predicate indicator from Jason’s plan indexing
algorithm to that of a plan key. A plan key is a tuple, (pi, τ) of a predicate
indicator, pi, and a type, τ , which refers to the type of entity the associated
guard refers to – in the examples we have considered these are either beliefs or
goals.

Plan guards are thus associated with a list of plan keys. This list contains
a plan key for each explicit guard statement. Negative and deductive guard
statements are ignored. We call this list the guard’s index list.

3.2 Plan Index Trees

We store all our plans in a tree data structure. Each node in the tree is labelled
with a plan key and has two subtrees. One subtree contains all plans which have
the plan key in their index list, the must have branch, and the other subtree
contains all the plans which do not, the don’t care branch. More complex logical
formulae and predicates which can be deduced are ignored1 partly for simplicity
and partly because plan keys alone do not provide sufficient information to tell
that some guard statement is not true in the current agent state. For ease of
indexing the plan keys are ordered as the levels in the tree descend 2. The leaves
of the tree are populated with the set of plans which exist on that tree branch.

Say for instance we have three plans:

plan1 : {Ba,Bb} ← body
plan2 : {Bb,Bc} ← body
plan3 : {Bc} ← body

Where a statement Bb means that the agent must believe b for the plan to apply.
These would be stored as shown in figure 2.

1 In the languages we consider deduction is performed by resolution using horn clauses
stored in a rule base so we simply exclude all predicates that appear in the head of
any of the listed horn clauses. It may be that in some languages it is harder to
identify and exclude these predicates.

2 Details of this are discussed in appendix A.

8 L.A. Dennis

don’t care

c/0 c/0

b/0 b/0

a/0

plan2 plan3plan1

c/0 c/0

don’t caremust have

must have

must have must have must havemust have

must have
don’t care don’t care

don’t care don’t care don’t care

Fig. 2. Example of a Plan Tree

In order to select plans, the program traverses the tree. At each node it checks
Σ or Γ (as relevant) for the presence of the appropriate plan key. If it exists then
both plans that require that element and plans that do not require that element
may be applicable to the current state. As a result, the program searches both
sub-trees for relevant plans. If the plan key doesn’t exist in the relevant set then
only plans that do not require that guard statement will be applicable and the
program only searches the don’t care branch of that node.

So if the belief base contained both a and c then plan 3 would be returned
and the branches of the tree highlighted in figure 3 would be explored.

We include pseudo-code for the algorithms to insert plans into the tree and
look plans up from the tree in the appendices.

4 Results

We implemented two versions of our plan indexing algorithm in the AIL-based
implementation of the GOAL language3. The code used in the implementation
is available from the author and via the MCAPL sourceforge distribution 4.

The first version indexed by predicate indicators alone and considered only
guard statements that referred to beliefs. The second version used plan keys and
considered also guard statements referring to goals. We then conducted some
simple experiments with the system to see whether the overhead associated with
storing and accessing plans from the tree data structure was off-set by the gains

3 AIL is, among other things, a prototyping tool for BDI-languages [2]. The version
of GOAL used was based on the semantics described in [8].

4 http://mcapl.sourceforge.net

http://mcapl.sourceforge.net

Plan Indexing for State-Based Plans 9

don’t care

c/0 c/0

b/0 b/0

a/0

plan2 plan3plan1

c/0 c/0

must have don’t care

must have must have

must have must have must have must have

don’t care don’t care

don’t care don’t care don’t care

Fig. 3. Example of a Plan Tree Lookup

in time reduced spent checking the plan guards. In all the experiments the only
differences between the code run was the way in which the plans in the library
were stored and retrieved, all other parts of the system were identical.

4.1 Experiment 1: Junk Code

In the first example we studied a simple program in which a lead agent communi-
cated with two others simply to ascertain their existence. When they received a
query they responded with a simple “ping” message and the program was done.
To this were added plans for a Dining Philosopher program which were irrel-
evant to achieving the goal at hand and these “junk” plans were duplicated n
times. The average run time of the system was then plotted against the number
of duplications of the redundant code in the system.

We ran each version of the code 100 times and averaged the time taken in
order to allow for differences in running time caused by different scheduling
behaviour between the agents.

Results. The graph in figure 4 shows the result of running the program with
up to 24 duplications of the redundant code.

The graph shows that the fastest performance is achieved by the system that
organises its plan library as a tree indexed by plan keys that refer to both beliefs
and goals and that the performance gain increases as the number of plans increase.

4.2 Experiment 2: Generic Contract Net with Many Goals

The second example we considered was a contract net style program with three
agents. One agent wished to achieve a number of goals, none of which it could do

10 L.A. Dennis

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0 5 10 15 20 25

T
im

e
ta

ke
n

Copies of Junk Code

Average Time as code increases

No indexing
Belief indexing

Belief and Goal indexing

Fig. 4. Plan Indexing Performance in the presence of Redundant Plans

on its own. The other two agents could both achieve these goals and would “bid”
for them.Whichever bid was received first was awarded the “contract” for the goal.

Results. Figure 5 shows the results, averaged over 100 runs of the program, as
the number of goals to be achieved increases.

In this case it can be seen that the traditional approach of testing all plans
is working considerably better than the plan indexing variety and indeed, that
as the number of goals increases the efficiency gap between the two methods is
going to get significantly worse. This result is obviously disappointing.

4.3 Discussion of the Results

The results are obviously disappointing but it is of interest to consider the dif-
ferences between the two experimental set ups. Clearly as the guards on plans
contain more statements, especially if those statements require further deduction
to check, then the system slows down. At the same time as the number of plan
keys in the plan tree increases5 the computation required to traverse the tree
also increases and, again, the system slows down.

5 by this we mean the size of the plan tree increases from experiment to experiment,
not within any particular run of the program. That said, if plans were to be added
dynamically to the agent then dynamic changes to the indexing tree would also be
necessary.

Plan Indexing for State-Based Plans 11

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

T
im

e
ta

ke
n

Number of Goals

Average Time as code increases

No indexing
Belief indexing

Belief and Goal indexing

Fig. 5. Plan Indexing Performance in the presence of Multiple Goals

In the first experiment the system contained an increasing number of plans
that were never applicable in the agent’s current state. Since the plans were
duplicated a relatively small number of plan keys were involved in the plan tree.
In the second example each new goal introduced into the problem introduced
a new plan key into the plan tree, and the increased traversal overhead clearly
more than offset any gains being made by filtering out the plans before the
guards were considered.

Tentatively, therefore, it seems that plan indexing in this style may be of
benefit in programs were there are a large number of plans which refer to a
comparatively small number of predicates.

5 Further Work

This paper represents a preliminary investigation into the indexing of state-based
plans.

The programs we investigated contained a number of the plan guards involving
negative and deductive guard statements. The plan index ignored such guards
when indexing the plans. It would be desirable to have a quick way to eliminate
plans based on these types of guards, particularly because they are more complex

12 L.A. Dennis

to check than explicit guard statements. Deductive rules require the (sometimes
recursive) checking of the truth of their bodies, while negative guard statements
require exhaustive checking of either Σ or Γ .

An obvious extension to the indexing proposed would be to investigate ways
to incorporate consideration of these guards into the indexing scheme. A problem
with both is that plan keys, alone, are in general not sufficient to provide a quick
check of the applicability of the guard. For instance in the case of negative guard
statements, simply knowing that there is a predicate in the belief base does not
necessarily imply for certain that the guard statement is true since there may
be no unifier that satisfies both it and any other guard statements with which
it shares free variables. However it might be possible to perform some limited
indexing of negative guards using predicate indicators so long as the guard, itself,
had no parameters. Similarly, in the case of ground guards, it might be possible
to match directly against the belief base.

Similarly it might be possible to represent belief rules in such a way (assuming
the rule bodies do not contain any negative literals) that a judgement could be
quickly drawn that the rule was not applicable (e.g. as a list of the plan keys
that referred to explicit predicates appearing within the rule and which would
need to hold for the rule to apply).

A further extension would be to look at techniques from term indexing for
sharing subterms and, in particular, free variables. Some of these techniques
allow unifiers to be constructed as part of the term lookup process. This would
allow plan trees to return only plans that matched, together with relevant unifiers
and so remove the need for checking the guards at all once the list were found.

Obviously all these approaches run the risk that the plan lookup process
becomes even more inefficient when compared to simply iterating over the list of
all plans in order to check the guards. Another important aspect of further work
is improving the data structure and lookup process currently used for storing the
plans. An adaptation of the RETE algorithm [7] would appear to be a promising
approach in this direction.

6 Conclusions

This work represents an initial approach to the indexing of plans for retrieval in
the plan selection phase of a BDI interpreter. The proposed scheme represents
efficiency gains for GOAL-like languages in situations where an agent’s plan
library contains a large number of plans referring to a small number of predicates.
However the scheme is less efficient in situations where many predicates are
used. Therefore some care should be taken before deciding to implement such
an indexing method.

It seems plausible that the indexing of state-based plans can be improved, even
if the approach presented here has not yielded good results. Such improvements
would supply gains both in terms of the efficiency of BDI-programs in large scale
settings, and in terms of the model checking of such programs.

Plan Indexing for State-Based Plans 13

References

1. JProfiler,
http://www.ej-technologies.com/products/jprofiler/overview.html

2. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of
Multi-Agent Programs. In: Proceedings of the 23rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), L’Aquila, Italy, pp. 69–78
(September 2008)

3. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of
Multi-Agent Programs. In: Proc. 23rd Int. Conf. Automated Software Engineering
(ASE), pp. 69–78. IEEE CS Press (2008)

4. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-
Oriented Programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah
Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and Ap-
plications, ch. 1, pp. 3–37. Springer, Heidelberg (2005)

5. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A Verification
Framework for Agent Programming with Declarative Goals. J. Applied Logic 5(2),
277–302 (2007)

6. Dennis, L.A., Farwer, B.: Gwendolen: A BDI Language for Verifiable Agents. In:
Löwe, B. (ed.) AISB 2008 Workshop, Logic and the Simulation of Interaction and
Reasoning, Aberdeen, AISB (2008)

7. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19, 17–37 (1982)

8. Hindriks, K.V., van Riemsdijk, M.B.: A Computational Semantics for Communi-
cating Rational Agents Based on Mental Models. In: Braubach, L., Briot, J.-P.,
Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 31–48. Springer, Hei-
delberg (2010)

9. Jongmans, S.-S.T.Q., Hindriks, K.V., van Riemsdijk, M.B.: Model Checking Agent
Programs by Using the Program Interpreter. In: Dix, J., Leite, J., Governatori, G.,
Jamroga, W. (eds.) CLIMA XI 2010. LNCS, vol. 6245, pp. 219–237. Springer,
Heidelberg (2010)

10. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS), San Fran-
cisco, USA, pp. 312–319 (June 1995)

11. Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term Indexing. In: Handbook of
Automated Reasoning, vol. 2, pp. 1853–1964. North Holland (2001)

A Insertion Code

Notation: Both the algorithms presented in these appendices recurse through a
tree structure. Each node in this tree contains a plan key and two subtrees, the
must have branch and the don’t care branch. The leaves of the plan tree contain
a list of plans. We will treat both nodes and leaves as plan trees. We abuse object
oriented notation and refer to the plan key of a plan tree, pt, as pt.pk, the must
have branch as pt.musthave, the don’t have branch as pt.donthave and the list
of plans as pt.plans.

The insertion code recurses through a list of plan keys generated from the
guard of a plan, p, and inserts the plan into a pre-existing plan tree (which

http://www.ej-technologies.com/products/jprofiler/overview.html

14 L.A. Dennis

could be empty). However where the plan contains a plan key that does not
already exist in the tree the tree must be modified with new nodes for that plan
key.

The algorithm takes as inputs the list of plan keys associated with the guard
of plan, p, and the pre-existing plan tree into which the plan is to be inserted.

Code fragment 1.1 Insert a Plan into an Index Tree

1addPlan (PlanKey L i s t pks , Plan p , PlanTree pt)
2i f (pks i s empty)
3i f (pt i s a l e a f)
4add p to pt . p lans
5r e tu rn pt
6e l s e
7r ep l a c e pt . dontcare with addPlan (pks , p , pt . dontcare)
8r e tu rn pt
9e l s e
10i f (pt i s a l e a f)
11c r e a t e a new plan t r e e node , n , where
12n . pk equa l s the head o f pks
13n . dontcare i s a p l an t r e e l e a f where
14n . p lans = pt . p lans
15n . musthave i s the r e s u l t o f
16addPlan (t a i l o f pks , p , new p l an t r e e l e a f)
17r e tu rn n
18e l s e
19i f pt . pk equa l s the head o f pks
20r ep l a c e pt . musthave with
21addPlan (t a i l o f pks , p , pt . musthave)
22r e tu rn pt
23e l s e i f the head o f pks i s ordered a f t e r pt . pk
24r ep l a c e pt . dontcare with
25addPlan (pks , p , pt . dontcare)
26r e tu rn pt
27e l s e
28c r e a t e a new plan t r e e node , n , where
29n . pk equa l s the head o f pks
30n . dontcare i s pt
31n . musthave i s the r e s u l t o f
32addPlan (t a i l o f pks , p , pt . musthave)
33r e tu rn n

B Lookup Code

Notation: The notation used in this code is explained in appendix A.
The algorithm takes a list of plan keys (generated from the agent’s belief and

goal bases) and which have been ordered according to some ordering on plan
keys. The algorithm recurses through the tree comparing the plan key at each
node against the supplied list of plan keys.

Plan Indexing for State-Based Plans 15

Code fragment 2.1 Look up plans in the Index

1lookup (PlanKey L i s t pks , Plan Tree pt)
2i f (pt i s a l e a f)
3r e tu rn pt . p lans
4e l s e
5i f pt . pk i s in pks
6r e tu rn
7lookup (pks , pt . musthave)
8AND
9lookup (pks , pt . dontcare)
10e l s e
11r e tu rn lookup (pks , pt . dontcare)

An Integrated Formal Framework
for Reasoning about Goal Interactions

Michael Winikoff�

Department of Information Science,
University of Otago,

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Abstract. One of the defining characteristics of intelligent software agents is
their ability to pursue goals in a flexible and reliable manner, and many modern
agent platforms provide some form of goal construct. However, these platforms
are surprisingly naive in their handling of interactions between goals. Most pro-
vide no support for detecting that two goals interact, which allows an agent to
interfere with itself, for example by simultaneously pursuing conflicting goals.
Previous work has provided representations and reasoning mechanisms to iden-
tify and react appropriately to various sorts of interactions. However, previous
work has not provided a framework for reasoning about goal interactions that
is generic, extensible, formally described, and that covers a range of interaction
types. This paper provides such a framework.

1 Introduction

One of the defining characteristics of intelligent software agents is their ability to pursue
goals in a flexible and reliable manner, and many modern agent platforms provide some
form of goal construct [1]. However, these platforms are surprisingly naive in their
handling of interactions between goals in that few implemented agent platforms provide
support for reasoning about interactions between goals. Platforms such as Jason [2],
JACK [3], 2APL [4] and many others don’t make any attempt to detect interactions
between goals, which means that agents may behave irrationally. Empirical evaluation
[5] has shown that this can be a serious issue, and that the cost of introducing limited
reasoning to prevent certain forms of irrational behaviour is low, and consistent with
bounded reasoning.

There has been work on providing means for an agent to detect various forms of
interaction between its goals, such as resource contention [6], and interactions involving
logical conditions, both positive [7] and negative (e.g. [8]). However, this strand of work
has not integrated the various forms of reasoning into a single framework: each form
of interaction is treated separately. Although more recent work by Shaw and Bordini
[9] does integrate a range of interaction reasoning mechanisms, it does so indirectly, by
translation to Petri nets, which makes it difficult to extend, to determine whether the
reasoning being done is correct, or to relate the reasoning back to the agent’s goals and
plans (traceability).

� This work was partly done while the author was employed by RMIT University.

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 16–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Integrated Formal Framework for Reasoning about Goal Interactions 17

This paper provides a framework for extending BDI platforms with the ability to
reason about interactions between goals. The framework developed improves on previ-
ous work by being generic and by being formally presented. Thus, the key criteria for
evaluating our proposed framework is its ability to deal with the different types of in-
teraction between goals. The sorts of goal interactions that we want to be able to model
and reason about include the following.

Resources: goals may have resource requirements, including both reusable resources
such as communication channels, and consumable resources such as fuel or money.
Given a number of goals it is possible that their combined resource requirements exceed
the available resources. In this case the agent should realise this, and only commit to
pursuing some of its goals or, for reusable resources, schedule the goals so as to use the
resources appropriately (if possible). Furthermore, should there be a change in either
the available resources or the estimated resource requirements of its goals, the agent
should be able to respond by reconsidering its commitments. For example, if a Mars
rover updates its estimate of the fuel required to visit a site of interest (it may have
found a shorter route), then the rover should consider whether any of its suspended
goals may be reactivated.

Conditions: goals affect the state of the agent and of its environment, and may also at
various points require certain properties of the agent and/or its environment. An agent
should be aware of interactions between goals such as:

– After moving to a location in order to perform some experiment, avoid moving
elsewhere until the experiment has been completed.

– If two goals involve being at the same location, schedule them so as to avoid trav-
elling to the location twice.

– If there are changes to conditions then appropriate re-planning should take place.
For example, if a rover has placed equipment to perform a long-running experiment
but the equipment has malfunctioned, then the rover should respond to this.

In summary, the challenge is to provide mechanisms that allow for:

– Specification of the dependencies between goals/plans and resources/conditions. To
be practical, dependencies must be specified in a local and modular fashion where
each goal or plan only needs to specify the resources/conditions that it is directly
affected by.

– Reasoning about conditions and resources so as to detect situations where there is
interaction between goals.

– Having a means of specifying suitable responses to detected interactions. Possible
responses include suspending or aborting a goal, changing the means by which
a goal is achieved (e.g. travelling by train rather than plane to save money), and
scheduling goals (e.g. to avoid double-booking a reusable resource).

Section 2 reviews the goal framework and agent notation that we will build on. Section 3
presents our framework for reasoning about goal interactions, and Section 4 completes
the framework by extending the agent notation. In Section 5 we evaluate the frame-
work by showing how it is able to deal with the various types of goal interaction under
consideration. We conclude in Section 6.

18 M. Winikoff

2 Conceptual Agent Notation with Generic Goals

We now briefly present the Conceptual Agent Notation (CAN) [10, 11]. CAN is used
as a representative for a whole class of BDI agent languages which define agent execu-
tion in terms of event-triggered plans, where multiple plans may be relevant to handle
a given event, and where failure is handled by reposting events. It is similar to AgentS-
peak(L) [12] in that it uses a library of event-triggered plans which have a specified
trigger, context condition, and plan body. CAN differs from AgentSpeak(L) in that it
provides additional constructs, and in that it uses a particular failure handling mecha-
nism (event reposting) which is common to BDI languages.

In order to extend goals into “interaction-aware goals” that are able to detect and
respond to interactions with other goals we will use a variant of CAN which uses the
generic goal construct of van Riemsdijk et al. [1]. Their framework defines a goal type
with certain default life-cycle transitions, and provides a mechanism for adding ad-
ditional life-cycle transitions. A goal type is defined in terms of a set C of condition-
response pairs 〈c, S〉where c is a condition to be checked that, if true, changes the goal’s
state to S. For example, a goal to achieve p includes 〈p, DROPPED〉 which specifies that
when p becomes true the goal should be dropped. Condition-response pairs come in two
flavours: “continuous”, checked at all times, and “end”, checked only at the start/end
of plan execution. A goal instance g(C, π0, S, π) specifies a set of condition-response
pairs C, an initial plan π0, a current state S (e.g. ACTIVE, DROPPED, SUSPENDED),
and a current plan π.

The default goal life-cycle of van Riemsdijk et al. [1] is that goals are adopted into
a suspended state, and they are then repeatedly activated and suspended until they are
dropped. Active goals are subjected to means-end reasoning to find an abstract plan for
pursuing the goal, and this plan is then executed (as long as the goal remains active).

We integrate this generic goal construct into CAN, replacing its more limited goal
construct. The resulting language defines an agent in terms of a set Π of plans of the
form e : c ← π where e is the triggering event, c is a context condition (a logical
formula over the agent’s beliefs), and π is a plan body (we will sometimes refer to plan
bodies as “plans”):

π ::= ε | a | e | π1;π2 | π1‖π2

We denote the empty plan body by ε, and an event is written as e. For simplicity we
define a generic action construct, a, which has a pre-condition prea and post-condition
defined in terms of non-overlapping addition and deletion sets adda and dela. A number
of previously defined CAN constructs can be viewed as special cases of this, for example
+b can be defined as an action with pre+b = true, add+b = {b} and del+b = ∅.
Similarly, −b has pre−b = {b}, add−b = ∅, del−b = {b} and ?c has pre?c = {c} and
add?c = del?c = ∅. We assume that events e and actions a can be distinguished. An
agent configuration is a pair 〈B,G〉 where B is the agent’s current beliefs, and G is a
set of goals.

Figures 1 and 2 provide formal semantics for this language (based on previously
presented semantics for CAN [1, 10, 13]) in structured operational semantics style [14]
where the premise (above the line) gives the conditions under which the transition below
the line may take place. We define a number of different transition types. Firstly, → as

An Integrated Formal Framework for Reasoning about Goal Interactions 19

S = ACTIVE

g(C, π0, S, ε)
e⇒ g(C, π0, S, π0)

1
π

e⇒ π′ S = ACTIVE

g(C, π0, S, π)
e⇒ g(C, π0, S, π

′)
2

〈c, S′, f〉 ∈ C B |= c S �= S′ ok(f, π)

g(C, π0, S, π)
u⇒ g(C, π0, S

′, π)
3

g ∈ G 〈B, g〉 e⇒ 〈B′, g′〉
〈B,G〉 e→ 〈B′, (G \ {g}) ∪ {g′}〉

4
g ∈ G g

u⇒ g′

〈B,G〉 u→ 〈B, (G \ {g}) ∪ {g′}〉
5

〈B,G〉 u→∗ 〈B,G′〉 〈B,G′〉 � u→ 〈B,G′′〉
〈B,G〉 u� 〈B, {g|g ∈ G′ ∧ g �= g(C, π0, DROPPED, π)}〉

6

〈B,G〉 u� 〈B,G′′〉 〈B,G′′〉 e→ 〈B′, G′〉
〈B,G〉 → 〈B′, G′〉 7

Fig. 1. Formal semantics for CAN with generic goals

being a transition over a set of goals (i.e. 〈B,G〉), and⇒ is defined as being a transition
over a single goal/plan (i.e. 〈B, g〉 where g ∈ G). Furthermore, we use letters to denote
particular transition types (e for execute, u for update) and a superscript asterisk (∗)
denotes “zero or more” as is usual. For conciseness we abbreviate 〈B, g〉 by just g,
for example the bottom of rule 9 abbreviates 〈B, e〉 e⇒ 〈B′, �Γ �〉, and similarly for
rules 1-3.

Figure 1 defines the semantics of goals. The first two rules specify that an active
goal can be executed by replacing an empty plan with the initial plan π0 (rule 1) or
by executing the goal’s plan (rule 2) which makes use of the rules for plan execution
(Figure 2). The next rule (3) defines a single goal update: if an update condition holds,
update the goal’s state, subject to two conditions: firstly, the new state should be dif-
ferent (S �= S′), secondly, the condition c should be active given the f tag1 and the
plan π; formally ok(f, π) ≡ ((f = end ∧ π = ε) ∨ (f = mid ∧ π �= ε) ∨ f = all).
Rules 4 and 5 define respectively execution (rule 4) and update (rule 5) of a set of goals
by selecting a single goal and respectively executing it or updating it. Rule 6 defines a

complete update cycle
u� which performs all possible updates, and deletes goals with a

state of “DROPPED”. Rule 7 defines a single top-level transition step of a set of goals:

first perform all possible updates (
u�) and then perform a single execution step (

e→).
We require that all possible updates are done in order to avoid ever executing a goal that
has a pending update to a non-active state.

Figure 2 defines a single execution step (
e⇒) for various CAN plan constructs. Rule

8 defines how an action a is executed in terms of its precondition and add/delete sets.
Rule 9 defines how an event is replaced by the set of guarded relevant plan instances
�Γ �. Rule 10 selects an applicable plan instance from a set of plans, using the auxiliary

1 We have compressed the two sets C and E of van Riemsdijk et al. [1] into a single set of
triples 〈c, S, f〉 where f is a flag specifying when the condition should be checked: when the
plan is empty (end), when the plan is non-empty, i.e. during execution (mid) or at all times
(all). E.g. 〈c, S〉 ∈ C in their framework translates to 〈c, S, all〉.

20 M. Winikoff

B |= prea

〈B, a〉 e⇒ 〈(B ∪ adda) \ dela, ε〉
8

Γ = {cθ:πθ | (e′:c←π) ∈ Π ∧ θ = mgu(e, e′)}
e

e⇒ �Γ �
9

(ci:πi) ∈ Γ B |= ciθ πiθ
e⇒ π′

�Γ �
e⇒ πiθ � �Γ \ {ci:πi}�

10
P1

e⇒ P ′

P1;P2
e⇒ P ′;P2

11
P1

e⇒ P ′

P1‖P2
e⇒ P ′‖P2

12

P2
e⇒ P ′

P1‖P2
e⇒ P1‖P ′ 13

P1
e⇒ P ′

P1 � P2
e⇒ P ′ � P2

14
P1 � e⇒ P ′ P2

e⇒ P ′
2

P1 � P2
e⇒ P2

15

Fig. 2. Formal semantics for CAN plan constructs

construct to indicate “try π, but if it fails, use the set of (remaining) relevant plans”.
Rule 11 simply defines the semantics of sequential execution “;”, rules 12 and 13 define
parallel execution “‖”, and rules 14 and 15 define “try-else” (). The function denoted
by an overline (e.g. π1;π2) cleans up by removing empty plan bodies: ε;π = ε‖π =
π‖ε = π, and ε π = ε, otherwise π = π.

Note that the semantics model failure as an inability to progress, i.e. a failed plan
body π is one where π �⇒ π′. This simplifies the semantics at the cost of losing the dis-
tinction between failure and suspension, and creating a slight anomaly with parallelism
where given π1‖π2 we can continue to execute π2 even if π1 has “failed”. Both these
issues are easily repaired by modelling failure separately (as is done by Winikoff et al.
[10]), but this makes the semantics considerably more verbose.

We can now define a (very!) simple Mars rover that performs a range of experiments
at different locations on the Martian surface. The first plan below for performing an
experiment of type X at location L firstly moves to the appropriate location L, then
collects a sample using the appropriate measuring apparatus.

exp(L,X) : ¬locn(L) ← goto(L) ; sample(X)
exp(L,X) : locn(L) ← sample(X)

We assume for simplicity of exposition that goto(L), and sample(X) are primitive
actions, but they could also be defined as events that trigger further plans. The action
goto(L) has precondition ¬locn(L) and add set {locn(L)} and delete set {locn(x)}
where x is the current location.

3 Reasoning about Interactions

We provide reasoning about interactions between goals by:

1. Extending the language to allow goal requirements (resources, conditions to be
maintained etc.) to be specified (Section 3.1).

2. Providing a mechanism to reason about these requirements, specifically by aggre-
gating requirements and propagating them (Section 3.2).

An Integrated Formal Framework for Reasoning about Goal Interactions 21

3. Defining new conditions that can be used to specify goal state transitions, and
adding additional state transition types that allow responses to detected interac-
tions to be specified. These are then used to extend CAN with interaction-aware
goals (Section 4).

3.1 Specifying Requirements

There are a number of ways of specifying requirements. Perhaps the simplest is to re-
quire each primitive action to specify its requirements. Unfortunately this is less flexible
since it does not allow the user to indicate that a plan, perhaps combining a number of
actions, has certain requirements. We thus extend the language with a construct τ(π,R)
which indicates that the plan π is tagged (“τ”) with requirementsR. It is still possible to
annotate actions directly, τ(a,R), but it is no longer the only place where requirements
may be noted.

However, in some cases, the requirements of a goal or plan can only be determined
in context. For example, the fuel consumed in moving to a location depends on the
location, but also on the current location, which is not known ahead of time. We thus
provide a second mechanism for dynamic tagging where the requirements of a goal/plan
are provided in terms of a procedure that computes the requirements, and a condition
that indicates when the procedure should be re-run. This is denoted τ(π, f, c) where f
is a function that uses the agent’s beliefs to compute the requirements, and c is a re-
computation condition. Once the requirements have been propagated (see next section)
this becomes T (π,R, f, c) (the difference between τ and T is discussed in Section 3.2)
we need to retain f and c so the requirements can be re-computed (if c becomes true).
Otherwise T (π,R, f, c) behaves just like T (π,R).

We define R as being a pair of two sets, 〈L,U〉, representing a lower and upper
bound. For convenience, where a requirement R is written as a set R = {. . .} then
it is taken to denote the pair 〈R,R〉. Each of the sets can be defined in many ways,
depending on the needs of the domain and application. Here we define each set as
containing a number of the following requirement statements:

– re(r/c, t, n) where the first argument in the term is either r or c, denoting a reusable
or consumable resource, t is a type (e.g. fuel), and n is the required amount of the
resource.

– pr(c) where c is a condition that must be true at the start of execution (i.e. a pre-
condition)

– in(c) where c is a condition that must be true during the whole of execution (in-
cluding at the start). For the computation of summaries we also define a variant ins

which means that c must be true somewhere during the execution but not necessar-
ily during the whole execution.

In the Mars rover example we have the following requirements:

1. goto(L) computes its requirements based on the distance between the destination
and current location. This needs to be re-computed after each goto. We thus specify
the requirements of the goto(L) action as τ(goto(L), f(L), c) where f(L) looks up
the current location locn in the belief base, and then computes the distance between

22 M. Winikoff

it and L; and where c = Δlocn(x) (informally, Δc means that the belief base has
changed in a way that affects the condition c; formally, if B is the old belief base
and B′ the updated belief base, then Δc ≡ ¬(B |= c⇔ B′ |= c));

2. sample(X) requires that the rover remains at the desired location, hence we
specify an in-condition (in) that the location (locn) remains L: τ(sample(X),
{in(locn(L))}).

We thus provide requirements by specifying the following plan body (for the first plan),
where f is a function that is given a location L and computes the fuel required to reach
the location.
τ(goto(L), f(L), c); τ(sample(X), {in(locn(L))})

3.2 Propagating Requirements

We define a function Σ that takes a plan body and tags it with requirements by propa-
gating and aggregating given requirements. We use ε to denote the empty requirement.
The function returns a modified plan which contains tags of the form T (π,R): this is
different from τ(π,R) in that τ is used by the user to provide requirements for a plan,
not including the requirements of the plan’s sub-plans, but T does include the require-
ments of sub-plans. Observe that Σ is defined compositionally over the plan, and that
computing it is not expensive in the absence of recursive plans [5].

Σ(ε) = T (ε, ε)
Σ(a) = T (a, {pr(prea)})
Σ(e) = T (e, 〈L1 � . . . � Ln, U1 � . . . � Un〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
and π1 . . . πn are the plans relevant for e.

Σ(π1;π2) = T (π′
1;π

′
2, 〈L1 � L2, U1 � U2〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
Σ(π1||π2) = T (π′

1||π′
2, 〈L1 � L2, U1 � U2〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
Σ(π1 π2) = T (π′

1 π
′
2, 〈L1, U1 � U2〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
Σ(�Γ �) = T (�Γ ′�, 〈L1 � . . . � Ln, U1 � . . . � Un〉), where T (π′

i, 〈Li, Ui〉) = Σ(πi)
and Γ = {b1:π1, . . . , bn:πn} and Γ ′ = {b1:π′

1 . . . , bn:π
′
n}.

Σ(τ(π, 〈L,U〉)) = T (π′, 〈L′ ⊕ L,U ′ ⊕ U〉), where T (π′, 〈L′, U ′〉) = Σ(π)
Σ(τ(π, f, c)) = Σ(T (π, f(B), f, c)), where B is the agent’s beliefs.
Σ(T (π,R)) = if π′ = T (π′′, ε) then T (π′′, R) else π′, where π′ = Σ(π)

The requirements of an action are simply its pre-condition. The requirements of an
event are computed by taking the requirements of the set of relevant plans and combin-
ing them: the best case is the minimum of the available plans (�), and in the worse case
(represented by the upper bound) we may need to execute all of the plans and so we take
the (unspecified sequential) maximum of the requirements of the available plans using
�. The requirements for π1;π2 and π1‖π2 are determined by computing the require-
ments of π1 and of π2 and then combining them appropriately with auxiliary functions
� and � which are both variants on �: � treats pre-conditions of the first requirement
set as pre-conditions, since we do know that they occur at the start of execution; and �
is like � except that, because execution is in parallel, we cannot reuse resources. The
lower bound requirements for π1 π2 are just the (lower bound) requirements for π1,
since, if all goes well, there will be no need to execute π2. However, in the worse case

An Integrated Formal Framework for Reasoning about Goal Interactions 23

(upper bound) both π1 and π2 will need to be executed (sequentially, hence �). The
requirements for a user-tagged plan, τ(π,R) are determined by computing the require-
ments of π and then adding (⊕) this to the provided R. Finally, when re-computing the
requirements of T (π,R) we simply replace R with the newly computed requirements.

The case for events (e) is interesting: in the worst case, we may need to execute
all of the available plans. In the best case, only one plan will be executed. However,
when computing the initial estimate of requirements we don’t know which plans are
applicable, so we overestimate by using all relevant plans, and later update the estimate
(see below).

The function Σ is defined in terms of a number of auxiliary functions: ⊕, �, �, �
and �. By defining what can appear in R as well as these functions the agent designer
can create their own types of reasoning. We have defined an example R in the previous
section, and briefly and informally given the intended meaning of the auxiliary functions
above. The appendix contains precise formal definitions of these auxiliary functions.

We integrate requirements propagation into the operational semantics of CAN by
defining operational semantics for the T (π,R) construct which captures the process of
updating requirements:

π ⇒ π′ π �= ε R �= ε

T (π,R)⇒ Σ(π′)
π �= ε

T (π, ε)⇒ π T (ε, R)⇒ ε

The first rule is the general case: if π executes one step to π′ then T (π,R) can also
be stepped to Σ(π′). The next rule specifies that tagging with an empty requirement
set can be deleted. The final rule allows an empty plan body with requirements to be
resolved to the empty plan body. Finally, we modify the goal initialisation rule (first
rule in figure 1) to compute requirements by replacing the right-most π0 with Σ(π0):

S = ACTIVE

g(C, π0, S, ε)
e⇒ g(C, π0, S,Σ(π0))

Alternatively, as is done by Thangarajah et al. [6], we could modify the agent’s plan set
by replacing π with Σ(π) at compile time.

Returning to the Mars rover, let π = τ(goto(L), f, c); τ(sample(X), {in(locn(L))})
then the following requirements are computed (recall that T (π,R) where R is a set is
short for T (π, 〈R,R〉), and we assume that f returns 20 for the fuel requirement of
reaching L from the starting location):

Σ(π) = T (π2;π3, {re(c, fuel , 20), ins(locn(L)), pr(¬locn(L))})
π2 = T (goto(L), {re(c, fuel , 20), pr(¬locn(L))}, f, c)
π3 = T (sample(X), {in(locn(L))})

After the first action (π2) has completed we have: Σ(π′) = π3.

4 Using Requirements to Deal with Interactions

The work of the previous sections allows us to specify requirements, and to compute
and update them. In this section we consider how this information can be used to avoid

24 M. Winikoff

undesirable interactions and (attempt to) ensure desirable interactions. For goals, we
do this by defining a new goal type, an “interaction-aware goal”, which has additional
condition-response triples. But first, we define a number of new conditions, and new
responses.

4.1 Conditions

The language of conditions is extended with new constructs: rok (“resources are ok”),
culprit , and interfere .

The new condition rok (G) means that there are enough resources for all of the goals
in G. Informally we define rok(G) by computing the resource requirements of the ac-
tive goals in G and comparing it with the available resources. If the available resources
exceed the resource requirements of the active goals, then clearly rok(G) is true. If
not, then we need to work out which goals should be suspended. We define the con-
dition culprit(g) to indicate that the goal g is responsible for a lack of sufficient re-
sources. Informally, culprit(g) is true if removing g from G makes things better2 i.e.,
culprit(g) ≡ rok(G \ {g}) ∧ ¬rok (G). See the appendix (definitions 4 and 5) for the
(correct) formal definitions of rok and culprit .

The new condition interfere(g) is true if g is about to do something that interferes
with another goal. Informally, this is the case if one of the actions that g may do next
(denoted na(g), defined in the appendix) has an effect that is inconsistent with another
goal’s in-condition (where both goals are active). Formally3 interfere(g) ≡ ∃g′ ∈
(G \ {g}), c ∈ getin(g′), a ∈ na(g) . g.S = g′.S = ACTIVE ∧ eff a ⊃ ¬c where G
is the agent’s goals, we use g.S to refer to the state of the goal g, we use ⊃ to denote
logical implication (to avoid confusion with transitions), and we define getin to return
the in-conditions of a goal, plan or requirements set:

getin(g(C, π0, S, π)) = getin(π)

getin(T (π, 〈L,U〉)) = {c | in(c) ∈ L}
getin(π) = getin(Σ(π)), if π �= T (π′, R)

We also define eff a to be a logical formula combining adda and dela as a conjunction
of atoms in adda and the negations of atoms in dela. For example, for goto(L) we have
eff goto(L) = locn(L) ∧ ¬locn(x).

We can also define a similar condition that detects interference with pre-conditions.
In order to avoid suspending goals unnecessarily, we only consider interference to be
real if the pre-condition being affected currently holds. In other words, if the precondi-
tion c of goal g′ does not currently hold, then there is not a strong reason to suspend goal
g which makes c false because c is already false. This gives interferepre(g) ≡ ∃g′ ∈
(G \ {g}), c ∈ getpre(g′), a ∈ na(g) . B |= c ∧ g.S = g′.S = ACTIVE ∧ eff a ⊃ ¬c
where getpre retrieves the pre-conditions, similarly to getin (see appendix definition
2).

2 In fact, as discussed in the appendix, this isn’t entirely correct.
3 We use a period “.” to denote “such that”, i.e. ∃a ∈ A, b ∈ B . p is read as “there exists a in
A and b in B such that p”.

An Integrated Formal Framework for Reasoning about Goal Interactions 25

4.2 Responses

Responses to interactions can be either “subtle”: influencing existing choices, but not
changing the semantics, i.e. “subtle” responses can be viewed as refining the semantics
by reducing non-determinism. Alternatively, responses can be “blunt” responses which
change the semantics.

So-called “subtle” responses apply where there is a choice to be made in the execu-
tion. This is the case in the following places: when selecting which (top-level) goal to
execute, when selecting which plan to use from a set of alternatives (�Γ �), and when
selecting which parallel plan to execute (π1‖π2). Note that only the first case involves
goals: the second and third involve plan bodies.

Influencing the choice of goal can be done by a range of means, including suspending
goals and giving certain goals higher priority. Suspending goals can be done using the
generic goal mechanism. In order to allow a goal to be given a higher priority we define
a new response (not goal state) PICKME (below).

Influencing the selection of a plan from a set of possible plans (�Γ �) can be done
by modifying the selection rule (it can’t be done using the generic goal mechanism
because plan selection occurs within a single goal). For example, we could require that
an applicable plan is not selected if a cheaper plan exists. This can be formalised by
adding to the rule for plan selection the following additional condition (the relation ≺
and function getres are defined in the appendix in definitions 1 and 3):

(ci:πi) ∈ Γ B |= ciθ ¬∃(cj :πj) ∈ Γ.getres(πj) ≺ getres(πi)

�Γ �
e⇒ πiθ �Γ \ {ci:πi}�

However, we do not consider plan selection to be particularly useful in preventing re-
source issues, because the set of applicable plans will typically not contain a wide range
of options.

The third case, influencing the scheduling of parallel plans (π1‖π2) we consider to
be less useful and leave it for future work.

Turning now to the so-called “blunt” responses we have a number of possible re-
sponses including: (a) dropping a goal, and (b) adding a new goal. The former may be
used to permanently eliminate a goal that cannot be achieved (although suspension may
be a more sensible response). The second may be used to create a new goal (or plan),
for example, if a resource shortage is detected, a plan may be created to obtain more of
the resource (e.g. re-fuelling).

We thus define the following additional responses:

– !π which executes π (we can define synchronous and asynchronous variants of this)
– PICKME which specifies that this goal should be given priority when selecting

which goal to execute (but, since more than one goal may be flagged as PICKME,
cannot guarantee that the goal will be selected next). More generally, we could have
a priority mechanism and have responses that raise/lower the priority of the goal.

These are defined formally as follows. Although they appear in condition-response
triples, the semantics of these two constructs aren’t just changing the state of the goal,
and so we revise the existing rule so it does not apply to these two responses:

26 M. Winikoff

〈c, S′, f〉 ∈ C S′ ∈ asd B |= c S �= S′ ok(f, π)

g(C, π0, S, π)
u⇒ g(C, π0, S

′, π)
3′

where asd = {ACTIVE, SUSPENDED, DROPPED}.
Because we want a PICKME to only last while the corresponding condition is true,

we do not update the goal’s state to PICKME, but instead modify the selection rule (rule
4) by adding the following additional condition (premise, where we use ⊃ to denote
logical implication) which requires that if any active goals are prioritised, then the se-
lected goal must be a prioritised one: ((∃g(C′, π′

0, ACTIVE, π′) ∈ G . 〈c′, PICKME〉 ∈
C′ ∧ B |= c′) ⊃ (〈c, PICKME〉 ∈ g.C ∧B |= c)). Where g is the goal being selected,
and where we use g.C to denote the C set of g (i.e. g = g(C, π0, S, π)).

We now turn to !π. A response of the form !π transforms the goal from g(C, π0, S, π
′)

to the variant gπ(C, π0, S, π
′):

〈c, !π〉 ∈ C B |= c

g(C, π0, S, π
′) u⇒ gπ(C, π0, S, π

′)
16

We then define the semantics of this as follows:

π
e⇒ π1

gπ(C, π0, S, π
′) e⇒ gπ1

(C, π0, S, π′)
17

where gε(C, π0, S, π) = g(C, π0, S, π), and for g = gπ(. . .) with π �= ε we have
g = g.

4.3 Interaction-Aware Goals

Finally, we are in a position to define a new goal type which uses the conditions and
responses defined, along with the underlying infrastructure for specifying and propagat-
ing requirements, in order to deal with interactions as part of the agent’s goal reasoning
process.

We extend goals into interaction-aware goals by simply adding to their C set the
following condition-response triples, where culprit is short for culprit(g) with g be-
ing the current goal, and similarly for interfere . The condition notculprit differs from
¬culprit in that it includes the current goal g in the computation of resources (whereas
culprit treats it as not having any resource requirements, since it is suspended).
Formally notculprit(g(C, π0, SUSPENDED, π)) ≡ ¬culprit(g(C, π0, ACTIVE, π)).
Similarly, notinterfere differs from¬interfere by considering the current goal as being
hypothetically active, i.e. notinterfere(g(C, π0, SUSPENDED, π)) ≡ ¬interfere(g(C,
π0, ACTIVE, π)).

I = {〈culprit , SUSPENDED, all〉, 〈notculprit , ACTIVE, all〉,
〈interfere, SUSPENDED, all〉, 〈notinterfere, ACTIVE, all〉}

An alternative, if there is a plan πr which obtains more of a needed resource, is to use
it instead of suspending: I ′ = {〈culprit , !πr, all〉, . . .}.

An Integrated Formal Framework for Reasoning about Goal Interactions 27

5 Motivating Scenarios Revisited

We now consider how the different forms of reasoning discussed at the outset can be
supported. We define

gexp(l, x) ≡ g(I ∪ {〈locn(l), PICKME, all〉}, exp(l, x))
that is, gexp(l, x) is an interaction-aware goal which uses the initial plan body (which
is actually just an event) exp(l, x). Finally, we suppose that the Mars rover has been
asked to perform three experiments: experiment 1 of type T1 at location LA (i.e. g1 =
gexp(LA, T1)) experiment 2 of type T1 at location LB (i.e. g2 = gexp(LB, T1)), and
experiment 3 of type T2 at location LA (i.e. g3 = gexp(LA, T2)).

Let us now briefly consider how the Mars rover deals with the following cases of
interaction:

1. A lack of resources causes a goal to be suspended, and, when resources are suf-
ficient, resumed: since the goals are interaction-aware, suspension and resumption
will occur as a result of the conditions-responses in I. Specifically, should the re-
sources available be insufficient to achieve all goals, then some of goals will be
suspended by the 〈culprit , SUSPENDED, all〉 condition-response triple. Note that
since updates are performed one at a time, this will only suspend as many goals as
are needed to resolve the resource issue.

If further resources are obtained, then the suspended goals will be re-activated
(〈notculprit , ACTIVE, all〉). In the case of reusable resources, the suspension/re-
sumption mechanism will realise scheduling of the reusable resources amongst
goals: once a goal has completed and releases the (reusable) resources it has been
using, another goal that requires these resources can then resume.

2. A lack of resources, instead of suspending, may trigger a plan to obtain more
resources: if the goals are defined using I ′ rather than I, then a lack of resources
will cause a plan body πr to be used to obtain more resources. In this domain,
where the main resource is fuel, a sensible choice for πr would be to re-fuel.

3. Once the Mars rover has moved to location LA, it avoids moving again until
the sampling at LA has completed: once goal g1 has executed goto(LA) then,
as discussed at the end of Section 3.2, its requirement is updated to include the
in-condition locn(LA). Should goal g2 get to the point of being about to exe-
cute its action goto(LB), then this next action interferes with the in-condition,
and goal g2 will then be suspended, using the condition-response triple 〈interfere,
SUSPENDED, all〉, preventing the execution of goto(LB). Once g1 has concluded
the experiment, then it no longer has locn(LA) as an in-condition, and at this point
g2 will be re-activated (〈¬interfere, ACTIVE, all〉).

4. Once it has moved to location LA, the rover also performs g3 before moving
elsewhere: when it reaches LA the PICKME response of g3 (and g1) is triggered
which prioritises selecting these goals over g2, and thus the rover will remain at LA

until g1 and g3 are both completed.

As can be seen, interaction-aware goals — which are defined in terms of the additional
condition and response types, which themselves rest on the resource specification and
propagation mechanism defined in Section 3 — are able to deal with a range of goal-
interaction scenarios.

28 M. Winikoff

6 Discussion

We have provided a framework for reasoning about goal interactions that is: generic,
i.e. can be customised to provide the reasoning that is needed for the application at hand;
presented formally, and hence precisely, avoiding the ambiguity of natural language;
and that integrates different reasoning types into one framework. We have also defined
a wider range of conditions and responses than previous work.

Our work can be seen as a rational reconstruction of earlier work [6–8] which for-
malises and makes precise the English presentation in these papers. However, we do
more than just formalise existing work: we provide a generic framework that allows for
other forms of reasoning to be added, and for the existing forms to be integrated.

In addition to work on reasoning about interactions between an agent’s goals, there
has also been work on reasoning about interactions between the goals of different agents
[15, 16]. This work has a somewhat different flavour in that it is concerned with the cost
of communication between agents. However, in some other aspects, such as the use of
requirements summaries, it is similar to the single agent case.

Also related is the work by Horty and Pollack [17] which looked at the cost of plans
in context (i.e. taking into account the agent’s other plans). Although the paper is osten-
sibly concerned with cost, they do also define various notions of compatibility between
plans. However, their plans are composed only of primitive actions.

Thangarajah et al. [18] consider the goal adoption part of goal deliberation: should a
candidate goal (roughly speaking, a desire) be added to the agent’s set of adopted goals?
They embed the goal adoption problem in a BDI setting into a soft constraint optimi-
sation problem model and discuss a range of factors that can be taken into account in
making decisions. However, while promising, this is early work: the presentation is in-
formal and a precise definition of the mapping to soft constraint optimisation problems
is not given.

There are three main directions for future work that we would like to pursue: imple-
mentation, evaluation, and extending to further interaction scenarios.

What this paper presents can be seen as an extended BDI programming language
with interaction-aware goals. One area for future work is how to implement this ex-
tended language using a standard BDI platform (such as Jason, Jadex, JACK etc.) that
doesn’t have a generic goal construct, or resource/condition management. One possi-
bility is to transform the agent program, Π , into a variant that uses existing constructs
(such as maintenance goals) to realise the desired behaviour. Another possibility, if the
platform provides an API for manipulating the state of goals, is to realise generic goals
by two parallel goals: one that executes the plan π, and another (with higher priority)
that monitors for conditions and updates the first goal’s state. Finally, a third approach
is to use a meta-interpreter [19]. An implementation would allow for an evaluation to
be done in order to assess the benefits, and also the real practical computational cost.

An interesting scenario which we have not yet investigated is “achieve then main-
tain”, where a particular condition is achieved (e.g. booking a hotel), but then for some
period of time (e.g. until the travel dates) the condition is maintained and updated should
certain changes take place (e.g. budget reductions or changes to travel dates).

An Integrated Formal Framework for Reasoning about Goal Interactions 29

References

1. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: A unifying frame-
work. In: Proceedings of the Seventh International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 713–720 (2008)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-
peak using Jason. Wiley (2007) ISBN 0470029005

3. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents - Components
for Intelligent Agents in Java. Technical report, Agent Oriented Software Pty. Ltd., Mel-
bourne, Australia (1998), http://www.agent-software.com

4. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

5. Thangarajah, J., Padgham, L.: Computationally effective reasoning about goal interactions.
Journal of Automated Reasoning, 1–40 (2010)

6. Thangarajah, J., Winikoff, M., Padgham, L., Fischer, K.: Avoiding resource conflicts in in-
telligent agents. In: van Harmelen, F. (ed.) Proceedings of the 15th European Conference on
Artificial Intelligence, pp. 18–22. IOS Press (2002)

7. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and exploiting positive goal interac-
tion in intelligent agents. In: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 401–408. ACM Press (2003)

8. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference between
goals in intelligent agents. In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 721–726 (2003)

9. Shaw, P.H., Bordini, R.H.: Towards Alternative Approaches to Reasoning About Goals.
In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS
(LNAI), vol. 4897, pp. 104–121. Springer, Heidelberg (2008)

10. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2002), Toulouse, France, pp. 470–481
(2002)

11. Sardiña, S., Padgham, L.: A BDI agent programming language with failure handling, declara-
tive goals, and planning. Autonomous Agents and Multi-Agent Systems 23(1), 18–70 (2011)

12. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In:
Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, pp. 42–55.
Springer, Heidelberg (1996)

13. Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning. In: Pro-
ceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 16–23 (2007)

14. Plotkin, G.: Structural operational semantics (lecture notes). Technical Report DAIMI FN-
19, Aarhus University (1981(reprinted 1991))

15. Clement, B.J., Durfee, E.H.: Identifying and resolving conflicts among agents with hierar-
chical plans. In: AAAI Workshop on Negotiation: Settling Conflicts and Identifying Oppor-
tunities, Technical Report WS-99-12 (1999)

16. Clement, B.J., Durfee, E.H.: Theory for coordinating concurrent hierarchical planning agents
using summary information. In: Proceedings of the Sixteenth National Conference on Arti-
ficial Intelligence, pp. 495–502 (1999)

17. Horty, J.F., Pollack, M.E.: Evaluating new options in the context of existing plans. Artificial
Intelligence 127(2), 199–220 (2001)

http://www.agent-software.com

30 M. Winikoff

18. Thangarajah, J., Harland, J., Yorke-Smith, N.: A soft COP model for goal deliberation in
a BDI agent. In: Proceedings of the Sixth International Workshop on Constraint Modelling
and Reformulation, ModRef (September 2007)

19. Winikoff, M.: An AgentSpeak Meta-interpreter and Its Applications. In: Bordini, R.H.,
Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI),
vol. 3862, pp. 123–138. Springer, Heidelberg (2006)

A Definitions

Definition 1 (≺). We define an ordering on requirement sets as follows. We say that R1

is less than R2 (R1 � R2) if, intuitively, R2 requires more than R1. Formally, we define
this by recognising that for a given condition c we have that ins(c) � pr(c) � in(c),
i.e. a requirement that a condition hold for some unspecified part of the execution is
less demanding than insisting that it hold at the start, which in turn is less demanding
than insisting that it hold during the whole of execution (including at the start). We thus
define R1 � R2 to hold iff:

– re(f, t, n1) ∈ R1 ⊃ (r(f, t, n2) ∈ R2 ∧ n1 ≤ n2)
– in(c) ∈ R1 ⊃ (in(c′) ∈ R2 ∧ c′ ⊃ c)
– pr(c) ∈ R1 ⊃ ((pr(c′) ∈ R2 ∨ in(c′) ∈ R2) ∧ c′ ⊃ c)
– ins(c) ∈ R1 ⊃ ((ins(c

′) ∈ R2 ∨ pr(c′) ∈ R2 ∨ in(c′) ∈ R2) ∧ c′ ⊃ c)

We next define na (“next action”) which takes a plan body and returns a set of possible
next actions. Note that na is an approximation: it doesn’t attempt to predict which
actions might result from a set of plans �Γ �. A more accurate approach is to wait until
an action is about to be executed before checking for interference.

na(a) = {a}
na(π1;π2) = na(π1)

na(π1‖π2) = na(π1) ∪ na(π2)

na(π1 π2) = na(π1)

na(e) = ∅
na(�Γ �) = ∅

Definition 2 (getpre). getpre returns the pre-condition of a goal/plan.

getpre(g(C, π0, S, π)) = getpre(π)

getpre(T (π, 〈L,U〉)) = {c | pr(c) ∈ L}
getpre(π) = getpre(Σ(π)), if π �= T (π′, R)

Definition 3 (getres). Calculating resource requirements only uses active goals, we
ignore goals that are suspended or are executing responses triggered by !π.

getres(g(C, π0, S, π)) = getres(π), if S = ACTIVE

getres(g(C, π0, S, π)) = ε, if S �= ACTIVE

getres(gπ(C, π0, S, π)) = ε

getres(T (π, 〈L,U〉)) = {re(f, t, n) | re(f, t, n) ∈ U}
getres(π) = getres(Σ(π)), if π �= T (π′, R)

An Integrated Formal Framework for Reasoning about Goal Interactions 31

Definition 4 (rok). In defining rok(G) we need to sum the resource requirements of the
set of goals, and then check whether the available resources are sufficient. As discussed
by Thangarajah et al. [6], there are actually a number of different cases. Here, for
illustrative purposes, we just consider the case where there are sufficient resources to
execute the goals freely as being an rok situation. We thus define the collected resource
requirements of a goal set G = {g1, . . . , gn} as being getres(G) = U1 � . . .�Un where
Ui = getres(gi). Finally, we define rok (G) ≡ getres(G) � R whereR is the available
resources.

Definition 5 (culprit). In defining culprit(g) one situation to be aware of is where
removing a single goal is not enough. In this situation the definition given in the body
of the paper will fail to identify any goals to suspend. To cover this case we need a
slightly more complex definition. Informally, the previous definition is correct except
where there does not exist a single goal that can be removed to fix the resource issue
(¬∃g ∈ G.rok (G \ {g})). In this case we consider culprit(g) to be true if removing
g and one other goal will fix the problem. This generalises to the situation where one
must remove n goals to fix a resource issue:

culprit(g) ≡ ∃n . ((∃G′ ⊆ G.|G′| = n ∧ rok(G \G′) ∧ ¬rok (G) ∧ g ∈ G′)
∧ (¬∃G′′ ⊆ G.|G′′| < n ∧ rok(G \G′′) ∧ ¬rok (G)))

We now turn to defining the various auxiliary functions that are needed. We assume
that requirements definitions, Ri, are normalised, i.e. that they contain (a) exactly one
re(f, t, n) for each resource type t that is of interest (where n may be 0); and (b) exactly
one in, one ins and one pr. We also assume that resource reusability is consistent, i.e.
that a resource type t is not indicated in one place as being consumable and in another
as being reusable.

The intended meaning of the auxiliary functions (based on where they are used in
the definition of Σ) is as follows: ⊕ adds resources without changing the intervals; �
is used to collect the upper bound for a set of plans which are executed sequentially
in an unknown order; � computes the minimal (lower bound) requirements of a set of
alternative plans; � corresponds to a sequential join of two intervals, and � corresponds
to the parallel composition of two intervals. Formally, they are defined as follows:

R1 ⊕R2 =
{re(f, t, n1 + n2) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{in(c1 ∧ c2) | in(c1) ∈ R1 ∧ in(c2) ∈ R2} ∪
{ins(c1 ∧ c2) | ins(c1) ∈ R1 ∧ ins(c2) ∈ R2} ∪
{pr(c1 ∧ c2) | pr(c1) ∈ R1 ∧ pr(c2) ∈ R2}

R1 �R2 =
{re(r, t,max(n1, n2)) | re(r, t, n1) ∈ R1 ∧ re(r, t, n2) ∈ R2} ∪
{re(c, t, n1 + n2) | re(c, t, n1) ∈ R1 ∧ re(c, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6) | in(c1) ∈ R1

∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1 ∧ ins(c4) ∈ R2

∧ pr(c5) ∈ R1 ∧ pr(c6) ∈ R2}

32 M. Winikoff

R1 �R2 =
{re(f, t,min(n1, n2)) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{in(c1 ∨ c2) | in(c1) ∈ R1 ∧ in(c2) ∈ R2} ∪
{ins(c1 ∨ c2) | ins(c1) ∈ R1 ∧ ins(c2) ∈ R2} ∪
{pr(c1 ∨ c2) | pr(c1) ∈ R1 ∧ pr(c2) ∈ R2}

R1 � R2 =
{re(r, t,max(n1, n2)) | re(r, t, n1) ∈ R1 ∧ re(r, t, n2) ∈ R2} ∪
{re(c, t, n1 + n2) | re(c, t, n1) ∈ R1 ∧ re(c, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5) | in(c1) ∈ R1 ∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1

∧ ins(c4) ∈ R2 ∧ pr(c5) ∈ R2} ∪ {pr(c) | pr(c) ∈ R1}

R1 � R2 =
{re(f, t, n1 + n2) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6) | in(c1) ∈ R1

∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1 ∧ ins(c4) ∈ R2 ∧ pr(c5) ∈ R1 ∧ pr(c6) ∈ R2}

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 33–50, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Probing Attacks on Multi-Agent Systems
Using Electronic Institutions

Shahriar Bijani1,2, David Robertson1, and David Aspinall1

1 Informatics School, University of Edinburgh, 10 Crichton St. Edinburgh, UK
2 Computer Science Dept., Shahed University, Persian Gulf Highway, Tehran, Iran

{s.bijani,david.aspinall}@ed.ac.uk,
dr@inf.ed.ac.uk

Abstract. In open multi-agent systems, electronic institutions are used to form
the interaction environment by defining social norms for group behaviour.
However, as this paper shows, electronic institutions can be turned against
agents to breach their security in a variety of ways. We focus our attention on
probing attacks using electronic institutions specified in the Lightweight
Coordination Calculus (LCC) language. LCC is a choreography language used
to define electronic institutions in agent systems. A probing attack is an attack
against the confidentiality of information systems. In this paper, we redefine the
probing attack in conventional network security to be applicable in a multi-
agent system domain, governed by electronic institutions. We introduce
different probing attacks against LCC interaction models and suggest a secrecy
analysis framework for these interactions. The proposed framework could be
used to detect the possibility of certain probing attacks and to identify some
forms of malicious electronic institutions.

Keywords: Multi-Agent Systems, Electronic Institutions, Interaction Models,
Security, Probing Attack, Information Leakage, Lightweight Coordination
Calculus (LCC).

1 Introduction

One way to build large-scale multi-agent systems is to develop open architectures in
which agents are not pre-engineered to work together and in which agents themselves
determine the social norms that govern collective behaviour. Open multi-agent
systems have growing popularity in the Multi-agent Systems community and are
predicted to have many applications in the future [1]. A major practical limitation to
such systems is security because the openness of such systems negates many
traditional security solutions.

An electronic institution [2] is an organisation model for multi-agent systems that
provides a framework to describe, specify and deploy agents’ interaction
environments [3]. It is a formalism which defines agents’ interaction rules and their
permitted and prohibited actions. Lightweight Coordination Calculus, LCC [4, 5], is a
declarative language to execute electronic institutions in a peer to peer style. In LCC,

34 S. Bijani, D. Robertson, and D. Aspinall

electronic institutions are called interaction models. While electronic institutions can
be used to implement security requirements of a multi-agent system, they also can be
turned against agents to breach their security in a variety of ways, as this paper shows.

Although openness in open multi-agent systems makes them attractive for various
new applications, new problems emerge, among which security is a key. This is
because we can make only minimum guarantees about identity and behaviour of
agents. The more these systems are used in the real world, the more the necessity of
their security will be obvious to users and system designers. Unfortunately there
remain many potential gaps in the security of open multi-agent systems and relying on
security of low level network communications is not enough to prevent many attacks
on multi-agent systems. Furthermore, traditional security mechanisms are difficult to
use in multi-agent systems directly, because of their social nature. Confidentiality is
one of the main features of a secure system and there are various attacks against this.
In this paper, we focus our attention on probing attacks against confidentiality from
agents on agents using electronic institutions specified in the LCC language.

Most work on security of multi-agent systems directly or indirectly focuses on
mobile agents and many of the solutions have been proposed for threats from agents
to hosts or from hosts to agents (e.g.[6-8]). But little research has been done on
attacks from agents on agents in open multi-agent systems. A survey of possible
attacks on multi-agent systems and existing solutions for attack prevention and
detection can be found in [9]. None of these solutions address the probing attacks
introduced in this paper.

Xiao et al. [10] have proposed multilevel secure LCC interaction models for health
care multi-agent systems. A security architecture for the HealthAgents system and a
security policy set using LCC have been suggested in [11]. Hu et al. [12] have
developed a system to support data integration and decision making in the breast
cancer domain using LCC and briefly addressed some security issues. They have all
used constraints and message passing in LCC interaction models to implement
security solutions for access control and secure data transfer, but they have not
addressed inference of private data based on our defined probing attack.

In this paper, we introduce a new attack against the confidentiality of agents’ local
knowledge, inspired by the concept of probing attack in conventional computer
networks. We introduce an attack detection method by proposing a conceptual
representation of LCC interaction models and adapting an inference system from
credential-based authorisation policies [13] to electronic institutions. We also suggest
countermeasures to prevent probing attacks on the systems using the LCC language.

2 Lightweight Coordination Calculus (LCC)

LCC is a compact executable specification to describe the notion of social norms [5].
It is a choreography language based on π-calculus [14] and logic programming. We
use LCC to implement interaction models for agent communication. An interaction
model (an electronic institution) in LCC is defined as a set of clauses, each of which
specifies a role and its process of execution and message passing. The LCC syntax is
shown in Fig. 1.

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 35

Fig. 1. LCC language syntax; principal operators are: outgoing and incoming messages (=>and
<=), conditional (<−), sequence (then) and committed choice (or). Functor P is a non-numeric
constant and variable names in a clause are local.

An interaction model in LCC is a set of clauses each of the form Role :: Def, where
Role denotes the role in the interaction and Def is the definition of the role. Roles are
of the form a(Type, Id), where Type gives the type of role and Id is an identifier for
the individual peer undertaking that role. The definition of performance of a role is
constructed using combinations of the sequence operator (then) or choice operator
(or) to connect messages and changes of role. Messages are either outgoing to
another peer in a given role (=>) or incoming from another peer in a given role (<=).
Message input/output or change of role can be governed by constraints (connected by
the “<−” operator) which may be conjunctive or disjunctive. Constraints can be
satisfied via shared components registered with a website (e.g. www.openk.org), so
that complex (possibly interactive) solving methods can be shared along with
interaction models; or they can be calls to services with private data and reasoning
methods. Variables begin with upper case characters.

Role definitions in LCC can be recursive and the language supports structured
terms in addition to variables and constants so that, although its syntax is simple, it
can represent sophisticated interactions. Notice also that role definitions are “stand
alone” in the sense that each role definition specifies all the information needed to
complete that role. This means that definitions for roles can be distributed across a
network of computers and (assuming the LCC definition is well engineered) will
synchronise through message passing while otherwise operating independently.
Matching of output messages from one peer to input messages of another is achieved
by simple structure matching (as in Prolog), since (although operating independently)
the roles were originally defined to work together. More sophisticated forms of
input/output matching have been defined for LCC (to allow for more sophisticated

Interaction Model := {Clause,...}

Clause := Role::Def

Role := a(Type, Id)

Def := Role | Message | Def then Def | Def or Def | null ← Constraint

Message:= M => Role | M => Role <− Constraint | M <= Role |
 M <= Role <− Constraint

Constraint:= Constant | P(Term,...) | Constraint ∧ Constraint |
 Constraint ∨ Constraint | ¬Constraint

Type := Term

Id := Constant | Variable

M := Term

Term := Constant | Variable | P(Term,...)

Constant := lower case character sequence or number

Variable := upper case character sequence or number

36 S. Bijani, D. Robertson, and D. Aspinall

ontology matching) but these are not the subject of this paper. For a more detailed
introduction to LCC, see [4].

For different applications, agents may use their own interaction model or download
an existing one. When an agent selects an interaction model and a role in it, its
behaviour in that interaction is then determined by the constraints attached to message
sending/receiving events specified in the definition of that role. Agents may be
involved in any number of interactions (specified by interaction models)
simultaneously.

Fig. 2. An example of an interaction model with two clauses in LCC

Fig.2 illustrates an example of an interaction model for a simple communication in
LCC. There are two roles (clauses) in this interaction model: requester and informer.
In the first clause, a requester asks about something from an informer, then gets an
answer from it and then continues as a requester. In the second clause, an informer is
asked by a requester and then it should tell the requester if it knows the answer.

3 Probing Attack in Multi-Agent Systems

We redefine the probing attack [15]in conventional network security to be applicable
in multi-agent systems. A probing attack in network security is an attack based on
injecting traffic into the victim’s network and analysing the results [16]. It is a sort of
active traffic analysis, which is a popular attack in cryptography [17, 18] and is a
basis for other attacks in computer network systems [2].

In our case, an adversary, who plays a role in an interaction model, could infer
information not only from the interaction model itself, but also from the local
knowledge of other agents. An adversary could control other agents’ behaviour in an
interaction, by publishing a malicious interaction model. Furthermore, it could access
the private local knowledge (e.g. decision rules and policies) of the victim agents by
injection of facts to the agent knowledge-base, asking queries and analysing results.

We can define four types of probing attacks on open multi-agent systems: (1)
explicit query attack, (2) implicit query attack, (3) injection attack and (4) indirect
query. In explicit query probing attack, the idea is to make several direct queries to an
agent via messages (Fig. 3-a). It may seem an elementary attack, but there can be
sophisticated versions of it, such as gathering provenance information [19, 20] by an

a(requester, A) ::

 ask(X)=>a(informer, B) <−
 query_from(X, B) then
 tell(X)<= a(informer,B)then
 a(requester, A)

a(informer, B) ::
 ask(X)<= a(requester,A)then
 tell(X)=> a(requester,A) <− know(X)

Role definition
Clause Message out

Role

Constraint
Message in
Recursion

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 37

attacker or accessing all the information in a semi-open ontology by asking intelligent
questions from different parts of it. An example of a semi-open ontology is ontology
of a service provider company which is open to customer’s questions, but where
extensive knowledge of the whole ontology is a commercially confidential asset [9].

In Fig. 3, two simple examples of a proteomics lab interaction model illustrate the
first two types of probing attack. This is a modified version of the DNA sequencing
interaction model [21] in the OpenKowledge project [22] and it is used for knowledge
sharing between researchers and proteomics labs. In the proposed scenario in [21] a
query is passed on to each laboratory in a list of proteomics labs and the results are
sent back to the researcher to be analysed. It could be a case that proteomics labs may
not wish to share all DNA sequencing information with researchers. In Fig. 3
examples, an adversary (in the role of researcher) could ask explicit and implicit
queries from a proteomics lab agent (omicslab) to access commercially important
information. In Fig. 3-a, in the omicslab clause (lines 9 to 13), when a proteomics lab
agent O receives an ask(X) message, it explicitly sends X, which is a private DNA
sequence, to the researcher. This could be categorised as an explicit query attack.

1.a(researcher(LabList), R) ::
2. (ask(X)=>a(omicslab,H)<-
3. LabList=[H|T] then
4. tell(X)<=a(omicslab,H) then
5. null <- processResult(X, H)
6. then a(researcher(T), R)
7.) or
8. null <- LabList = []

9.a(omicslab, O) ::
10. ask(X)<= a(researcher,R) then
11. tell(X)=>a(researcher,R)
12. <-know(X)
13. then a(omicslab, O)

1.a(researcher(LabList), R) ::
2. (ask(X)=>a(omicslab, H) <-
3. LabList=[H|T] then
4. tell(Y)<= a(omicslab,H) then
5. null <- processResult(X,Y,H)
6. then a(researcher(T), R)
7.) or
8. null <- LabList = []

9.a(omicslab, O) ::
10. ask(X)<= a(researcher,R)then
11. tell(Y)=>a(researcher,R)<-
12. Combine(X,Y)
13. then a(omicslab, O)

 (a) (b)

Fig. 3. Two examples of explicit and implicit query attacks, in which a malicious researcher
could access confidential information of proteomics lab agents. In (a), omicslab agent receives
an explicit query asking X (line 10) and reveals X by sending back tell(X) message to the
researcher (line 11). In (b), an implicit query Combine(X,Y) is asked as a constraint in the
omicslab clause (line 12), receiving the tell(Y) message by the researcher agent informs it that
the constraint holds by the omicslab agent.

The second type of probing attack is asking an implicit query on confidential
information. An adversary often might not be interested to ask a query explicitly, for
various reasons; e.g. a direct question from confidential information may be forbidden
or might attract the attention of the victim. An implicit query could be asked by
placing a query as a constraint in LCC, rather than sending a message. In other words,
an adversary could not only infer information from a received message, but also from
analysing the constraints in an interaction model. An example of confidential
information in proteomics lab could be the combination (binding potential) of two
publicly known proteins that activate a particular gene. In this example, the relation

38 S. Bijani, D. Robertson, and D. Aspinall

between two pieces of public information is private. In Fig. 3-b, X and Y are not
confidential but a malicious researcher, R, could recognise whether proteins X and Y
could combine not by asking a direct question, but by putting a combine(X,Y)
constraint in line 12. When O sends the non-confidential tell(Y) message to R it will
indirectly inform R that X and Y could combine together because R knows that
combine(X, Y) had to be satisfied before the tell(Y) message could be sent.

The third type of probing attack happens by injection of some facts into the system
and asking queries before and after the injection. Arguably, the whole interaction
model that has been designed by an adversary could be considered as injected
information for agents using it. But the purpose of the injection is to introduce the
constraints in the victim’s interaction model. In this type of attack, the assumption is
that the injection affects decisions of the victim. This attack is similar to the implicit
query attack and in some cases might be considered as compound implicit queries.
We illustrate a sample attack in Fig. 4 and Fig. 5 inspired by an example of a probing
attack in authorisation languages by Gurevich and Neeman [23].

1. a(vendor, V)::
2. ask(S)<= a(customer,C) then
3. null <- (¬want(C,S) ∨ payFor(C,S)) then // injection
4. null <- (¬SupplyFrom(X) ∨ want(C,S)) then // injection
5. ok => a(customer,C) <- agree(C,S) then // implicit query
6. ...
7. then a(vendor, V)

Fig. 4. A fragment of a selling interaction model shows an example of type three probing attack

Fig. 4 shows one clause of a selling interaction model that could be used for a
probing attack by injection. The attack begins when an agent selects a vendor role of
this malevolent interaction model, which has been created and published by an
adversary. The adversary (C) plays the role of customer and initiates the interaction
by sending the ask(S) message to the vendor. The goal of the adversary is to discover
the confidential fact whether the X company is the supplier of the vendor
(SupplyFrom(X)). The first two constraints (line 3) tell the vendor that the customer
pays for S or does not want S. The next two constraints (line 4) denote (inject) the fact
that X is not the vendor’s supplier or the customer wants S. In other words, these
constraints are added information to the knowledge-base of the vendor agent and
could shape its decisions. The subsequent implicit query asking if the vendor agrees
with the deal is sent (line 5) to signal to the attacker that the complex constraint was
satisfied. These injections and the agent’s response to the query are not still enough
for the attacker to infer the validity of SupplyFrom(X). Then the adversary terminates
this interaction and initiates two other interactions with the victim (Fig. 5).

Each new interaction model injects only one part of the previous injections and
asks the same implicit query. If the answer to the first query is positive (an ok
message) and to the next two queries are negative, after some analyses (see section
4.4), the adversary could infer the confidential fact that who is the supplier of the
vendor (SupplyFrom(X)).

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 39

1. a(vendor2, V)::
2. null<-want(C,S) then //injection
3. ok=>a(customer,C) <- agree(C,S)
 /* query */ ...

1. a(vendor3, V)::
2. null<- payFor(C,S)then //injection
1. ok=>a(customer,C) <- agree(C,S)

 /* query */ ...
(a) (b)

Fig. 5. Definitions of the vendor roles in two malicious interaction models as parts of a probing
attack scenario

Indirect query is the fourth type of probing attack, in which an adversary tries to
access confidential information of the victim agent via a third party for reasons
similar to the implicit attack. Indirect attack is a modification of the explicit query
attack and could also be combined with the other types of probing attacks. A modified
fragment of an interaction model in MIAKT project [12], which aims to support
multidisciplinary meetings for the diagnosis and management of breast cancers, is
illustrated in Fig. 6. The dataHandler retrieves a patient’s private data based on the
request submitted by an authorised domain specialist (Fig. 6-a, line 3), but an
illegitimate nurse has open access to this without any authorisation check (Fig. 6-b,
line 5).

1. a(dataHandler,H) ::
2. patient_record(Patient) <= a(specialist,E) then
3. inform(Patient) =>a(specialist,E) <- is_authorised(E,ID)and
4. get_patient_id(Patient,ID) then ...

(a)
1. a(specialist,E) ::
2. patient_record(Patient) =>a(dataHandler,H) then
3. process(Patient) <- inform(Patient) <= a(dataHandler,H) then ...
4. patient_record(Patient) <= a(nurse, N) then
5. inform(Patient) => a(nurse, N) ...

(b)

Fig. 6. A fragment of an interaction model to support multidisciplinary meetings for the
diagnosis and management of breast cancer.(a) the data handler role[12]. (b) the specialist role.

4 Attack Detection

We suggest a framework to detect probing attacks, which benefit from electronic
institutions to attack MAS. Fig. 7 shows the necessary steps in the detection of
malicious interaction models.

Fig. 7. Different steps to detect possibility of probing attack from interaction models

Annotation Abstraction
Information

Leakage Analysis IM with
security labels (IM+)

Conceptual
representationInteraction

Models (IM)

40 S. Bijani, D. Robertson, and D. Aspinall

4.1 Annotation

The first step to analyse secrecy of the interaction models is adding security labels to
the existing LCC code. In the original LCC syntax there is no means of assigning
security levels to information. Variables, constants and constraints are ultimately the
most elementary causes of the described information leak, so when we receive an
interaction model, we could annotate it to reflect the confidentiality level of the
information. Fig. 8 suggests an added syntax for LCC with two levels of confidential
terms: l (means low security) and h (means high security). The default security level
for the terms without labels would be low.

Term := Constant | Variable | P(Term,...) | sTerm

sTerm := Term{lb}

lb := l | h

Fig. 8. Adding security labels to the LCC syntax

4.2 Abstraction

The next step in our security analysis is converting the annotated interaction models
to simpler logical representations, which is called conceptual representation, in order
to illustrate only the related parts of the LCC code to the secrecy evaluation. Although
LCC resembles a type of logic programming language, the conversion of LCC
specifications to logical expressions is not necessarily based on simple interpretation
of LCC operators to their equivalent logical operators. What we need for our
conceptual representation is a more minimal interpretation of LCC, which reflects
information leaks or helps to find knowledge leakage.

The conceptual representation links the notion of electronic institutions with the
idea of information flow analysis. It could vary in detection of different types of
probing attacks and from various stakeholders’ points of view. For example when an
adversary has designed and published the interaction model herself / himself, and
plays one or more roles in it, she/he might be only interested to analyse clauses
related to other roles.

We now introduce two conceptual representations of interaction models for
detection of different types of probing attack. They are to some extent similar, but the
main differences are derived from the way an adversary exploits the interaction model
and what the interaction model could add to the knowledge of an agent. In both
representations, if we use non-temporal logic for the conceptual representations, the
then operator in LCC will be equivalent to a logical conjunction. That is because we
analyse the interaction model ahead of time, so we can ignore the effect of the
actions’ sequence on the information inferred by the adversary. We also interpret the
choice operator or in LCC as logical disjunction and message passing operators,
which are represented by send/receive, as a way of finding the query. We can
legitimately do this because we are not defining the semantics of the LCC
specification but, instead, we are describing the (constraint-based) information that
can be inferred to be true if the definition is satisfied (i.e. it has completed in the
interaction).

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 41

In the first version, the conditional operator (<–) in LCC is interpreted as a
material conditional in logic. For example the omicslab clause in Fig. 3-a simply
could be represented by two logical expressions as:

receive(R, ask(X)),
know(X) send(R, tell(X))

This represents the conditional nature of the constraints, so in combination with a
security type system, it could be used for analysing direct and indirect information
flows and consequently for detection of explicit, implicit or indirect query attacks.
On the other hand, this representation does not reflect the injecting capability of
constraints, so it is not suggested for detecting injection probing attacks.

IN0 ={receive(R,ask(X)}

q0 ={Combine(X,Y)}

IN1 ={
want(C,S) payFor(C,S),
SupplyFrom(X) want(C,S)
}
q1 ={agree(C,S)}

(a) (b)

IN2 = {want(C,S)}

q2 ={agree(C,S)}

IN3 = {payFor(C,S)}

q3 ={agree(C,S)}

(c) (d)

Fig. 9. Abstraction examples. IN is the conceptual representation of an LCC clause, q is a
query. (a) Abstraction of the implicit query attack in Fig. 3-b. ask(X)<= a(researcher,R)is
represented by receive(R,ask(X)), where R is the sender Id, and ask(X) is the received message,
the constraint Combine is interpreted as a query, the sent message in the left hand side of <- is
not represented, because it does not affect (b) Abstraction of the injection attack example in
Fig. 4 (c) Abstraction of the injection attack example in Fig. 5-a (d) Abstraction of the injection
attack example in Fig. 5-b.

In the second representation of interaction models, which mainly addresses
injection attack detection, constraints are interpreted as queries or injection from the
counterpart agent (an adversary). Hence the conditional operator (<-) is used just to
find the queries and injections and it does not appear in the representation. The sent
message in the left of <-(if it exists), could be an answer to the query, but it is not
represented in this abstraction, because it does not affect our injection attack analysis.
The received message’s parameters are also considered new information for the
receiver agent. If the abstraction contains any injection, it could change the agent’s
knowledge state, which affects the agent’s decisions. The equivalent representation of
Fig. 3-b and Fig. 4 would be as shown in Fig. 9. While the main target of this
abstraction is detecting injection attacks, it can also represent the implicit query attack
as shown in Fig. 9-a. We use the second representation in our secrecy analysis for the
rest of this paper.

42 S. Bijani, D. Robertson, and D. Aspinall

4.3 Updated LCC Rewrite Rules

In order to integrate the abstraction phase into the LCC interpreter and to detect the
attacks against interaction models, we have upgraded the LCC clause expansion
mechanism [5] for detection of probing attacks by amending the LCC rewrite rules. In
[5], Robertson defined the following clause expansion mechanism for agents to
unpack any LCC interaction model they receive and suggested applying rewrite rules
to expand the interaction state: , , , , … , , , ,
where Cn is an expansion of the original LCC clause Ci in terms of the interaction
model S and in response to the set of received messages Mi, On is an output message
set, Mn is a remaining unprocessed set of messages.

The rewrite rules allow an agent to conform to the interaction model by unpacking
clauses, finding the next step and updating the interaction state. The rewrite rules are
defined in the LCC interpreter, which should be installed on each agent running LCC
codes. For more information about LCC expansion algorithm see [5] and [24]. The updated
LCC rewrite rules augmented with security-related information is shown in Fig. 10.

The general format of the new rewrite rules in Fig. 10 is as following:

s(A LCC rewrite rule, Δ, Δ′),
in which s is the notion of the new rewrite rules, Δ is the current security environment
and Δ′ is the updated security environment after expanding the rewrite rule. Δ= (R, L,
K), where R is the conceptual representation of interaction models and contains the set
of injections and queries, L is the mapping between conceptual representation and the
confidentiality labels and K is the agents’ current state of knowledge.

The LCC rewrite rules are in the form of , , , , where Y is the expansion
of X, Mi is the initial set of messages, O is the output message set, and Mo is the subset
of Mi, which is not yet processed and S is the interaction model. As the result of the
nine rewrite rules in Fig. 10, one clause of an interaction model is expanded. The first
rule starts unpacking a clause by expanding the body of it (B) and the rules (2) to (9)
expand different parts of the clause body. Based on the closed rules in (10), an
interaction rule is decided to be closed. e_s rules are to extract the conceptual
representation of a term and satisfy the constraints. They have the following format:

e_s (Δ, Δ′, C, X)
where
Δ = security environment before abstraction of C,

Δ′ = security environment after abstraction of C,
C = the constraint to be satisfied,
X = could be either Δ, if C is a pre-condition or Δ′, if C is a post-condition.

extract_rep(Δ, Δ′, C) function returns true and is in charge of the abstraction phase, in
which the conceptual representation is extracted from the constraint C1 and the

1 The constraints have been converted into the conjunctive normal form (CNF).

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 43

security environment Δ is updated into Δ′. The extract_rep is also called when we
have disjunctive constraints to be able to extract conditional injections too.
satisfied(C,Δ) is true if C can be satisfied from the current environment Δ.
satisfied(C,Δ′)is true if the updated environment Δ′ could fulfil the constraint C.

 , , , , Δ, Δ , , , , Δ, Δ (1) , , , , Δ, Δ , , , , Δ, Δ (2) , , , , Δ, Δ , , , , Δ, Δ (3) , , , , Δ, Δ , , , , Δ, Δ (4) , , , , Δ, Δ , , , , Δ, Δ (5)

 , , , , Δ, Δ _ Δ, Δ , , Δ (6)

 , , , , Δ, Δ _ Π, Π , , Δ (7)

 , , , , Δ, Δ _ Π, Π , , Δ (8)

, , , , , , Δ, Δ , , _ Π, Π , , Δ (9)

 (10)

 _ Δ, Δ , , Δ _ Δ, Δ , , Δ (11) _ Δ, Δ , , Δ _ Δ, Δ , , Δ (12) _ Δ, Δ , , _ _ Δ, Δ , , _ _ Δ, Δ , , _ (13) _ Δ, Δ , , _ _ Δ, Δ , _ Δ, Δ , , _ _ Δ, Δ , , _ (14)

Fig. 10. The amended LCC rewrite rules, which include security-related information, for
expansion of one clause in an interaction model

44 S. Bijani, D. Robertson, and D. Aspinall

, , ,Δ,Δ
Δ Δ

 , , , ,Δ,Δ Δ , ∪ , , ,Δ,Δ
 (15)

 , . , (16)

Fig. 11. Revised definition of a trace through an LCC interaction model S

In [24] the behaviour of agents coordinated through LCC definitions is defined in
terms of traces produced via application of rewrites to LCC clauses. Fig. 11 extends
this definition to include security constraints. Here, S is the state of an interaction, Mi
is the initial set of messages, p is a unique identifier for a peer. i(S, Mi, Sf, Δ, Δ′) is
true when the sequence of interactions and an initial set of messages Mi change the
initial state of the interaction model S and security environment Δ to the state Sf and

the security environment Δ′. (16) selects a clause Sp from the interaction state

S. ∪ merges specific clause Sp to S and generate a new interaction state S′. LA is
responsible for the information leakage analysis, described in section 4.4. If it detects
an attack, it will prevent expanding the rest of the interaction model and will generate
an alert.

4.4 Information Leakage Analysis

After the conceptual representation of interaction models, in which injections and
queries are defined, we can analyse them to detect an injection probing attack. A
probing attack happens when a malicious agent could infer anything about its
counterpart’s local knowledge. We use Becker’s inference system[13] to detect
probing attacks from interaction models’ conceptual representations.

Becker has introduced an inference system for detectability2 [25] of a specific
property in Datalog-based policy languages. Although this inference system has been
created for credential-based authorisation policies with some modifications it could
also be used to detect probing attacks on multi-agent systems. We want to know when
an adversary injects expressions into the agent’s private knowledge-base and asks a
query, what else the adversary could infer from the knowledge-base. To answer this
question we use the inference system in Fig. 12, which is called by the LA function
introduced in Fig. 11.

In this inference system, as described in section 4.3, Δ = {R, L, K} and R is the set
of conceptual representations of different clauses, in which an agent is playing a role.
R={(INi ,qi)…}, where INi is a set of ground injections in clause i and qi is its

2 Detectability (or non-opacity) is an information flow property that shows the ability to infer a

specific predicate from a set of rules.

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 45

corresponding query. The inference system assumes that the injection is ground and
the query is monotonic (without negation). K is the agent’s confidential local
knowledge set, which is the basis of the agent’s decisions and is not visible by the
adversary from outside. The injections’ set IN is also assumed to influence the
judgements of the agent in the current interaction. The axiom (V) says that if IN'
contains IN (IN'≽IN), all facts that are entailed from IN∪ K, could also be entailed
from IN' ∪ K. In case of ground K, the containment relation (≽) is decidable. (VI) is
similar to (V) and is for negative queries. (VIII) is the most important part of the
inference system and tells us what can be inferred from the knowledge set K when IN
is injected to it by an adversary.

I , , , , , ⊢ ∆, ⊢ ,∆, ⊢
 III ∪ ⊢ , ,, , , ⊢ IV ∪ , ,, , , ⊢

V ∆, ⊢ , ≽ , , ∆, ⊢ VI ∆, ⊢ , , ∆, ⊢

 VII ∆, ⊢ , ∆, ⊢∆, ⊢ VIII ∆, ∪ ⊢∆, ⊢ ,

Fig. 12. The adapted inference system of Becker [13] to detect information leaks as a part of
our attack detection framework

The fired(I,f) operator [13] in (VIII) is

where S is a set of explanations α of why any ground atom f is inferred from the
injection set I (i.e. I∪α⊢f) and it could be computed by the standard abduction
method [26]. The intuition behind the fired operator is that when an adversary injects
some expressions (IN) into the agent’s knowledge-base K and receives a result (i.e.
K∪ IN ⊢q), either q holds in K, or at least one of the expressions (e.g. f) in IN has the
main role in proving q, so f is fired in the context of K [13].

46 S. Bijani, D. Robertson, and D. Aspinall

Fig. 13. An example of using the inference system to detect the possibility of probing attack.
Finally, it shows what an adversary could infer from the local knowledge (K) of the victim
agent using the three introduced clauses.

4.5 Example

To illustrate the detection mechanism of malicious interaction models, we formulate
an injection attack in Fig. 13 similar to the scenario in Fig. 4 and Fig. 5. The first step
is annotation of the interaction model with security labels; in our case labels indicate

(c) Ground Representation

1) K∪ IN1⊢ q 2) K ∪ IN2⊬q 3) K ∪ IN3⊬q

R = {(IN1,q), (IN2,q), (IN3,q)}

L(Low)={Wcs, Pcs, Acs }, L(High)={Sx}

IN1 = {Wcs→Pcs, Sx→Wcs}, q1= Acs:

IN2={Wcs}, q2= Acs

IN3={Pcs}, q3= Acs
q= q1= q2= q3= Acs

(d) Problem formulation

(e) Steps of applying the inference rules to the example

IN1 ={
want(c,s) payFor(c,s),
SupplyFrom(x) want(c,s)
}
q1 = agree(c,s)

Query result= true

Clause 1:
a(vendor, V)::
 ask(S)<= a(customer, C) then
 null <- (¬want{l}(C,S)∨ payFor{l}(C,S))then
 null <- (¬SupplyFrom{h}(X) ∨ want(C,S))then
 ok => a(customer,C) <- agree(C,S) then
 a(vendor2(C,S), V)

Clause 2 :
a(vendor2(C,S), V)::
 null <- want{l}(C,S) then
 ok => a(customer,C) <- agree(C,S) then
 a(vendor3(C,S), V)

(a) Annotated interaction models

Clause 3:
a(vendor3(C,S), V)::
 null <- payFor{l}(C,S) then
 ok => a(customer,C) <- agree(C,S)

IN2 = {want(c,s)}
 q2 = agree(c,s)

Query result= false

IN3 = {payFor(c,s)}
 q3 = agree(c,s)

Query result= false

A
bstraction

(b) Conceptual representations

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 47

the security level of a piece of information on an ordinal scale (high and low) and the
default for non-labelled terms would be low. The second step is abstraction, in which
the conceptual representation of each clause is generated. Following the abstraction,
we must convert the injections and queries to ground expressions to be able to use this
inference system. Finding a ground substitution for these expressions does not cause
loss of generality. Injections and queries in an interaction model are showed as K∪
INi⊢q , which means q holds after injection of INi to the knowledge state K. It is
assumed that the adversary’s query is successful the first time and unsuccessful the
second and third times.

The sequence of inference rules in Fig. 13 (e) shows what the adversary could infer
from the local knowledge of the victim agent. As a result of this analysis, we know
the adversary could find the following facts from the target agent’s local knowledge:

¬agree(c,s)∧ ¬ want(c,s)∧ ¬payFor(c,s)∧ SupplyFrom(x).
All the inferred facts might be important but in this example, SupplyFrom(x), which
reveals high level private information about the supplier of the target vendor, is
detected as information leakage. The detection happens when the third clause of
Fig. 13 is interpreted by the LCC interpreter, so it stops execution of the clause and
generates an alert.

5 Discussion

Two reasons that security problems might lead to probing attacks in languages like
LCC are (1) no distinguished notion of private and public data in the LCC code and
(2) no mechanism for information leakage control in an interaction. Two
countermeasures to these problems are adding some access control features in LCC
and secrecy analysis of interaction models. The annotation phase in the proposed
framework adds security labels to LCC terms and the inference module analyses
vulnerabilities of the interaction models against injection attacks.

This solution exploits detectability, which is a popular tool in information flow
analysis which is the main techniques for studying confidentiality[27]. Hence, the
suggested attack detection mechanism is promising enough to preserve the secrecy of
interaction models against injection probing attacks. Becker’s inference system is
sound and for ground finite detectability is fully decidable, but it’s completeness is
still an open problem [13]. For our analysis, the injections and the query have to be
ground expressions. Nevertheless, finding a ground substitution for the conceptual
representation of the interaction models might not cause loss of generality in practice.
It is because the detection happens in run-time, so variables have been replaced with
constants, before the ground substitution phase.

In order to detect injection attacks, all clauses related to a specific peer should be
analysed together, although LCC can be interpreted and executed by agents in
distributed peer to peer networks and each clause of an interaction model might be
run separately. That is the reason of sending the identifier of a peer to the secrecy
analysis module LA in Fig. 11. For the same purpose, the attack detection system is
defined as a part of the LCC interpreter, which is installed on each peer.

48 S. Bijani, D. Robertson, and D. Aspinall

If we wanted to prevent the injection attack, it would have been necessary to
simulate the interactions that a peer undertakes and to know the held constraints in
advance. But there is no centralised control point in choreography systems, so we can
not prevent probing attacks before they happen and we may only detect them during
run time.

It is important to remember that the suggested detection framework is intended to
detect only one type of probing attack, i.e. injection attack. To detect other probing
attacks, we suggest replacing the abstraction and the information leakage analysis
modules with a secure type analysis module, in which every well-typed LCC
interaction model is secure. Another advantage of using a security type system is that
it can detect indirect information flows in interaction models and it is not depend on
single execution of an interaction, so it can be used in advance to prevent probing
attacks.

6 Conclusion

In this paper, we have introduced probing attacks on multi-agent systems governed by
electronic institutions and developed a secrecy analysis framework for the LCC
interaction models to detect probing attacks. We have proposed four types of probing
attacks, namely, explicit query, implicit query, injection and indirect query attacks on
choreography systems using LCC interaction models.

The three main steps of the attack detection system are annotation, abstraction,
and information leakage analysis. In the annotation phase, we label LCC interaction
models to reflect the confidentiality level (high or low) of each term. For each
interaction model, the abstraction generates a logical representation that helps to find
information leaks. In the information leakage analysis phase, we have adapted
Becker’s inference system, which shows the possibility of private information
disclosure by an adversary. The inference system tells us whether an adversary could
infer some facts from the local knowledge of an agent, just by injecting sets of ground
statements and queries. The suggested attack detection system is deployed on each
agent as a part of the LCC interpreter. Hence, we have updated the LCC rewrite rules
in the LCC interpreter to do the abstraction and information leakage analysis.

To generalise our work to other electronic institution languages besides LCC, we
could adapt the abstraction module for each language. We are now working on a
security type system for LCC to be able to detect and prevent other types of probing
attacks.

References

1. Artikis, A., Sergot, M., Pitt, J.: Specifying Norm-Governed Computational Societies.
ACM Transactions on Computational Logic 10(1), 1–42 (2009)

2. Esteva, M., De La Cruz, D., Rosell, B., et al.: Engineering open multi-agent systems as
electronic institutions. In: Procedings of the National Conference on Artificial Intelligence
(AAA 2004), pp. 1010–1011. AAAI Press (2004)

 Probing Attacks on Multi-Agent Systems Using Electronic Institutions 49

3. Joseph, S., de Pinninck, A.P., Robertson, D., et al.: OpenKnowledge Deliverable 1.1:
Interaction Model Language Definition (2006)

4. Robertson, D.: Multi-agent Coordination as Distributed Logic Programming. In: Demoen, B.,
Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Heidelberg (2004)

5. Robertson, D.: A Lightweight Coordination Calculus for Agent Systems. In: Leite, J.,
Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–
197. Springer, Heidelberg (2005)

6. Van’t Noordende, G.J., Overeinder, B.J., Timmer, R.J., et al.: Constructing secure mobile
agent systems using the agent operating system. International Journal of Intelligent
Information and Database Systems 3(4), 363–381 (2009)

7. Endsuleit, R., Wagner, A.: Possible attacks on and countermeasures for secure multi-agent
computation. In: Arabnia, H.R., Aissi, S., Mun, Y. (eds.) SAM 2004, pp. 221–227.
CSREA Press (2004)

8. Venkatesan, S., Chellappan, C.: Protection of Mobile Agent Platform through Attack
Identification Scanner (AIS) by Malicious Identification Police (MIP). In: First
International Conference on Emerging Trends in Engineering and Technology, pp. 1228–
1231. IEEE (2008)

9. Bijani, S., Robertson, D.: A Review of Attacks and Security Approaches in Open Multi-
agent Systems. Artificial Intelligence Review (2012)

10. Xiao, L., Lewis, P., Dasmahapatra, S.: Secure Interaction Models for the HealthAgents
System. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp.
167–180. Springer, Heidelberg (2008)

11. Xiao, L., Dasmahapatra, S., Lewis, P., et al.: The design and implementation of a novel
security model for HealthAgents. Knowledge Engineering Review 26(2) (2011)

12. Hu, B., Dasmahapatra, S., Lewis, P., et al.: Facilitating Knowledge Management in
Pervasive Health Care Systems. Networked Knowledge-Networked Media 221, 285–304
(2009)

13. Becker, M.Y.: Information Flow in Credential Systems. In: 23rd IEEE Computer Security
Foundations Symposium (CSF), pp. 171–185. IEEE (2010)

14. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes.1. Information and
Computation 100(1), 1–40 (1992)

15. Anderson, R., Kuhn, M.: Tamper Resistance: A Cautionary Note. In: Proceedings of the
Second USENIX Workshop on Electronic Commerce, vol. 2, pp. 1–11. USENIX
Association (1996)

16. Zheng, J., Hu, M.-Z.: Intrusion Detection of DoS/DDoS and Probing Attacks for Web
Services. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 333–344.
Springer, Heidelberg (2005)

17. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing
Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer,
Heidelberg (2003)

18. Schmidt, J.-M., Kim, C.: A Probing Attack on AES. In: Chung, K.-I., Sohn, K., Yung, M.
(eds.) WISA 2008. LNCS, vol. 5379, pp. 256–265. Springer, Heidelberg (2009)

19. Xu, S., Ni, Q., Bertino, E., et al.: A characterization of the problem of secure provenance
management. In: IEEE International Conference on Intelligence and Security Informatics,
ISI 2009, pp. 310–314. IEEE (2009)

20. Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: Proceedings of the 3rd
Conference on Hot Topics in Security, pp. 1–5. USENIX Association (2008)

21. Abian, J., Atencia, M., Besana, P., et al.: OpenKnowledge Deliverable 6.3: Bioinformatics
Interaction Models (2008)

50 S. Bijani, D. Robertson, and D. Aspinall

22. Siebes, R., Dupplaw, D., Kotoulas, S., et al.: The openknowledge system: an interaction-
centered approach to knowledge sharing. In: Proceedings of the 15th International
Conference on Cooperative Information Systems (CoopIS), pp. 381–390 (2007)

23. Gurevich, Y., Neeman, I.: DKAL: Distributed-knowledge authorization language. In:
IEEE 21st Computer Security Foundations Symposium, CSF 2008, pp. 149–162. IEEE
(2008)

24. Robertson, D., Barker, A., Besana, P., et al.: Models of interaction as a grounding for peer
to peer knowledge sharing. In: Advances in Web Semantics I, pp. 81–129 (2009)

25. Bryans, J.W., Koutny, M., Mazare, L., et al.: Opacity generalised to transition systems.
International Journal of Information Security 7(6), 421–435 (2008)

26. Kakas, A.C., Kowalski, R.A., Toni, F.: The Role of Abduction in Logic Programming. In:
Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial
Intelligence and Logic Programming: Logic Programming 5, pp. 235–324. Oxford
University Press, USA (1998)

27. Gorrieri, R., Martinelli, F., Matteucci, I.: Towards information flow properties for
distributed systems. Electronic Notes in Theoretical Computer Science 236, 65–84 (2009)

Detecting Conflicts in Commitments

Akın Günay and Pınar Yolum

Department of Computer Engineering,
Boğaziçi University,

34342, Bebek, İstanbul, Turkey
{akin.gunay,pinar.yolum}@boun.edu.tr

Abstract. Commitments are being used widely to specify interaction
among autonomous agents in multiagent systems. While various formal-
izations for a commitment and its life cycle exist, there has been little
work that studies commitments in relation to each other. However, in
many situations, the content and state of one commitment may render
another commitment useless or even worse create conflicts. This paper
studies commitments in relation to each other. Following and extend-
ing an earlier formalization by Chesani et al., we identify key conflict
relations among commitments. The conflict detection can be used to
detect violation of commitments before the actual violation occurs dur-
ing agent interaction (run-time) and this knowledge can be used to guide
an agent to avoid the violation. It can also be used during creation of
multiagent contracts to identify conflicts in the contracts (compile-time).
We implement our method in REC and present a case study to demon-
strate the benefit of our method.

1 Introduction

A commitment is a contract from one agent to another to bring about a certain
property [2, 11]. For instance a merchant and a customer may have a contract,
in which the customer agrees to pay to the merchant in return of the delivery
of a good. This contract can be represented as a commitment, in which the
merchant will be committed to the customer to deliver a good, if it is paid. In this
commitment, the merchant is the debtor, the customer is the creditor, delivery
of the good is the property and payment is the condition of the commitment.

Commitments are dynamic entities and they evolve over time according to
the occurrence of events in the environment they exist. To represent the dy-
namic nature of a commitment, the commitment is associated with a state and
transitions between states are defined over a set of operations. These states and
operations are called the life cycle of a commitment. Previous work has studied
the life cycle of individual commitments in detail [5, 10, 12–14]. However, indi-
vidual life cycle of a commitment provides limited information to manage and
monitor commitments in a multiagent system.

Example 1. Consider the two commitments: The first commitment is between
a merchant and a customer, which states, if the customer pays for some goods,

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 51–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

52 A. Günay and P. Yolum

then the merchant will be committed to deliver the goods within the next day.
The second commitment is between the merchant and a delivery company, which
states, if the merchant pays for the delivery of some goods, then the delivery
company will be committed to deliver these goods to the customer within three
to five days.

If we examine the commitments in Example 1 individually according to the life
cycle of a commitment, then we do not detect any problem, since both commit-
ments are valid. However if we examine the two commitments together, then
it is obvious that the first commitment is going to be violated. This is because
the merchant commits to the customer to deliver the goods in the next day, but
the commitment with the delivery company cannot deliver before three days.
This example demonstrates that if we examine commitments in a multiagent
system together, instead of examining them individually, we can detect possible
problems as early as the commitments created.

The above example demonstrates the benefit of examining commitments to-
gether in order to detect possible problems in advance at run-time. However, the
same idea can also be used in an offline manner to detect inconsistencies in mul-
tiagent contracts. A multiagent contract is simply a set of related commitments.
A major issue in a contract is the consistency between the commitments of the
contract. If there are inconsistencies between commitments, then one commit-
ment may not be satisfied without violating other commitment(s), which causes
a participating agent to find itself in a problematic situation. In order to avoid
such situations we should examine the commitments in a contract together and
eliminate the inconsistencies before creating the contract.

In this paper, we present a method that examines commitments in a mul-
tiagent system together in order to capture commitment pairs such that one
commitment cannot be satisfied without violating the other commitment. The
major benefit of our approach is capturing such situations in advance before a
commitment is actually violated. Hence, it makes it possible to take early action
to avoid future problems. We use an extended version of event calculus formaliza-
tion of commitments proposed by Chesani et al. [3]. We extend this formalization
by introducing the axioms for conditional commitments, which are essential to
fully model commitments. On top of this formalization, we identify and develop a
set of axioms to reason about inconsistencies between commitments. To achieve
this, we define a conflict relation between commitments. The conflict relation
indicates that a commitment cannot be satisfied without violating another. Our
formalism and approach to capture inconsistencies in contracts is executable in
REC [3], which is a tool for reasoning based on reactive event calculus.

Our major contributions in this paper are (1) extending the previous event
calculus formalization of commitments by introducing conditional commitments;
(2) introducing new axioms to define a conflict relation between commitments;
(3) use of conflicts of commitments to detect violation of a commitment in ad-
vance before the commitment is actually violated.

The rest of the paper is structured as follows. Section 2 reviews commitments
and describes the extended formal model of commitments in event calculus.

Detecting Conflicts in Commitments 53

Section 3 describes the conflict relations of commitments and how they can be
used to capture inconsistencies in contracts. Section 4 examines our approach
over a running example. Finally, Section 5 concludes the paper with further
discussion.

2 Background: Commitments

A commitment is made from one agent to another to bring about a certain
property [2, 11]. By participating in a commitment, the participating agents put
themselves under the obligation to satisfy the requirements of the commitment.
A commitment is represented as C(x, y, q, p), which states that the debtor agent
x will be committed to the creditor agent y to bring about the property p, if the
condition q is satisfied.

In order to represent real world situations more precisely, the condition and
the property of a commitment may be associated with temporal quantifiers,
which defines when and how the condition and the property must be satisfied.
In general there are two types of temporal quantifiers [3, 7]. Existential temporal
quantifier states that the associated property must be satisfied at least at one
moment within a given interval of moments. Universal temporal quantifier states
that the associated property must be satisfied at all moments within a given
interval of moments.

null conditional expired

active violatedfulfilled

create(c, x, y, q, p) condExpire(c, q)

create(c, x, y,�, p) detach(c, q)

propExpire(c, p)discharge(c, p)

Fig. 1. Life cycle of a commitment

A commitment is a dynamic entity and has a life cycle. Each commitment has
a state that evolves over time. The state of a commitment changes according to
a set of operations that can be performed by the participating agents of the
commitment. The state of a commitment also changes, when the condition or
the property of the commitment is not satisfied according to the associated
temporal quantifier. In this paper we use the commitment life cycle that we
present in Figure 1. In this life cycle we skip operations such as delegate and
cancel, which are used in previous work, for simplicity.

54 A. Günay and P. Yolum

The following operations can be performed on a commitment.

– create(c, x, y, q, p): Creates a new commitment c, in which x is the debtor, y
is the creditor, q is the condition and p is the property of the commitment.
This operation can only be performed by the debtor x.

– detach(c, q): Detaches the condition q from the commitment c. This opera-
tion can only be performed by the creditor y.

– discharge(c, p): Discharges the commitment c, when the property p is satis-
fied. This operation can only be performed by the debtor x.

condExpire(c, q) and propExpire(c, p) are meta operations that show that the
condition q and property p of the commitment c are violated according to
the associated temporal quantifier, respectively. A commitment can be in one of
the following states.

– null: A dummy state, which is assigned to a commitment before its creation.
– conditional: The condition of the commitment is not satisfied yet. This is

like an offer and neither the debtor nor the creditor is under the obligation
of the commitment.

– expired: The condition of the commitment is violated considering to the
associated temporal quantifier. Hence, the commitment expires. This usually
corresponds to the rejection of an offer.

– active: The debtor is under the obligation of the commitment to satisfy
the property of the commitment. Otherwise, the debtor may be punished
depending on the properties of the underlying environment.

– fulfilled: The property of the commitment is satisfied and the debtor ful-
filled its commitment. The debtor is no more under the obligation of the
commitment.

– violated: The property of the commitment is not satisfied and the debtor
violates its commitment.

2.1 Event Calculus

Event calculus is a formalism to reason about events and their effects. An event
in event calculus initiates or terminates a fluent. A fluent is a property whose
value is subject to change over time. A fluent starts to hold after an event that
initiates it and ceases to hold after an event that terminates it. Event calculus
was introduced by Kowalski and Sergot [6] and extended by Shanahan [9].

In the following, E is a sort of events (variables E,E1, E2, ...), F is a sort of
fluents (variables F, F1, F2, ...) and T is a sort for integer time moments (vari-
ables T, T1, T2, ...), which are ordered by the < relation that is transitive and
asymmetric. Variables are universally quantified, unless otherwise specified.

The event calculus predicates are as follows [9].

– initiates(E,F, T): Fluent F starts to hold after event E at time T .
– terminates(E,F, T): Fluent F ceases to hold after event E at time T .
– initially(F): Fluent F holds from time 0.

Detecting Conflicts in Commitments 55

– happens(E, T): Event E occurs at time T .
– holdsAt(F, T): Fluent F holds at time T .
– clipped(F, T1, T2): Fluent F is terminated between times T1 and T2.

In the following we present the axiomatisation of the event calculus predicates.

Axiom 1

holdsAt(F, T)←
initially(F)∧¬clipped(F, 0, T)

Axiom 1 states that the fluent F holds at time T , if it held at time 0 and has
not been terminated between 0 and T .

Axiom 2

holdsAt(F, T2)←
happens(E, T1) ∧ initiates(E,F, T1) ∧ ¬clipped(F, T1, T2) ∧ T1 < T2

Axiom 2 states that the fluent F holds at time T , if the fluent F is initiated by
an event E at some time T1 before T2 and the fluent F has not been terminated
between T1 and T2.

Axiom 3

clipped(F, T1, T2)↔
∃E, T [happens(E, T)∧ terminates(E,F, T) ∧ T1 < T < T2]

Axiom 3 states that fluent F is clipped between T1 and T2, if and only if there
is an event E happens between T1 and T2 and terminates the fluent F .

2.2 Formalizing Commitments in Event Calculus

In the rest of this section, we present the event calculus axioms that represent
the life cycle of a commitment. These axioms extend the axioms introduced
by Chesani et al. [3] by introducing the conditional commitment, which is not
present in the axioms of Chesani et al.. The conditional commitment is essential
to represent a complete life cycle of a commitment.

In the following, we use A as a sort of agents (variables A,A1, A2, ...), P as
the set of properties (variables P, P1, ..., Q,Q1, ...), C as the set of commitments
(variables C,C1, C2, ...) and S as the set of commitment states. We represent
an existentially quantified moment interval as e(T1, T2), a universally quan-
tified moment interval as u(T1, T2) and a property as prop(Q(T1, T2), F), in
which Q = {e, u}. We represent a commitment as comm(A1, A2, Q, P). The
state of a commitment is represented by the fluent status(C, S). We also use
predicates conditional(C, T), expired(C, T), active(C, T), violated(C, T) and
fulfilled(C, T) to represent that at moment T the commitment C is in con-
ditional, expired, active, violated and fulfilled state, respectively.

56 A. Günay and P. Yolum

Axiom 4 (Creating active commitment)
The create(E,A,C, T) operation performed by the debtor A through the occur-
rence of event E at moment T creates the commitment C in active state.

initiates(E, status(comm(A1, A2,
, P), active), T)←
create(E,A1, comm(A1, A2,
, P), T)

Axiom 5 (Creating conditional commitment)
The condCreate(E,A,C, T) operation performed by the debtor A through the
occurrence of event E at moment T creates the commitment C in conditional
state.

initiates(E, status(comm(A1, A2, Q, P), conditional), T)←
condCreate(E,A1, comm(A1, A2, Q, P), T)

Axiom 6 (Expiration of conditional commitment)
The state of a commitment changes from conditional to expired, when the condi-
tion of the commitment is not detached by the creditor within the corresponding
moment interval.

initiates(E, status(comm(A1, A2, Q, P), expired), T)←
condExpire(E, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), conditional), T)←
condExpire(E, comm(A1, A2, Q, P), T)

A commitment in conditional state with an existentially quantified condition
expires, when the commitment is still in conditional state after the corresponding
moment interval.

condExpire(E, comm(A1, A2, prop(e(T1, T2), F), P), T)←
conditional(comm(A1, A2, prop(e(T1, T2), F), P), T) ∧ T > T2

A commitment in conditional state with a universally quantified condition ex-
pires, when the condition does not hold at any moment within the corresponding
moment interval.

condExpire(E, comm(A1, A2, prop(u(T1, T2), F), P), T)←
conditional(comm(A1, A2, property(u(T1, T2), F), P), T)∧
¬holdsAt(F, T)∧T1 ≤ T ∧T ≤ T2

Axiom 7 (Detaching conditional commitment)
The state of a commitment changes from conditional to active, when the commit-
ment is detached by the creditor through the occurrence of event E at moment
T .

initiates(E, status(comm(A1, A2, Q, P), active), T)←
detach(E,A2, comm(A1, A2, Q, P), T)

Detecting Conflicts in Commitments 57

terminates(E, status(comm(A1, A2, Q, P), conditional), T)←
detach(E,A2, comm(A1, A2, Q, P), T)

A commitment in conditional state with an existentially quantified condition is
detached, when the event E initiates the fluent F of the condition within the
corresponding moment interval.

detach(E,A2, comm(A1, A2, prop(e(T1, T2), F), P), T)←
conditional(comm(A1, A2, prop(e(T1, T2), F), P), T)∧
initiates(E,F, T) ∧ T1 ≤ T ∧ T ≤ T2

A commitment in conditional state with a universally quantified condition is
detached, when the commitment is still in conditional state after the end of the
corresponding moment interval of the condition.

detach(E,A2, comm(A1, A2, prop(u(T1, T2), F), P), T)←
conditional(comm(A1, A2, prop(u(T1, T2), F), P), T)∧T > T2

Axiom 8 (Violating active commitment)
The state of a commitment changes from active to violated, when the property
of the commitment is not discharged by the debtor within the corresponding
time interval.

initiates(E, status(comm(A1, A2, Q, P), violated), T)←
propExpire(E, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), active), T)←
propExpire(E, comm(A1, A2, Q, P), T)

A commitment in active state with an existentially quantified property expires,
when the commitment is still in active state after the corresponding moment
interval.

propExpire(E, comm(A1, A2, Q, prop(e(T1, T2), F)), T)←
active(comm(A1, A2, Q, prop(e(T1, T2), F)), T) ∧ T > T2

A commitment in conditional state with a universally quantified property ex-
pires, when the property does not hold at any moment within the corresponding
moment interval.

propExpire(E, comm(A1, A2, Q, prop(u(T1, T2), F)), T)←
active(comm(A1, A2, Q, prop(u(T1, T2), F)), T)
¬holdsAt(F, T)∧T1 ≤ T ∧T ≤ T2

Axiom 9 (Discharging active commitment)
The state of a commitment changes from active to fulfilled, when the commit-
ment is discharged by the debtor through the occurrence of event E at moment
T .

58 A. Günay and P. Yolum

initiates(E, status(comm(A1, A2, Q, P), fulfilled), T)←
discharge(E,A1, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), active), T)←
discharge(E,A1, comm(A1, A2, Q, P), T)

A commitment in active state with an existentially quantified property is dis-
charged, when the event E initiates the fluent F of the property within the
corresponding moment interval.

discharge(E,A1, comm(A1, A2, Q, prop(e(T1, T2), F)), T)←
active(comm(A1, A2, Q, prop(e(T1, T2), F)), T)∧
initiates(E,F, T) ∧ T1 ≤ T ∧ T ≤ T2

A commitment in active state with a universally quantified property is dis-
charged, when the commitment is still in active state after the end of the corre-
sponding moment interval of property.

discharge(E,A1, comm(A1, A2, Q, prop(u(T1, T2), F), T)←
active(comm(A1, A2, Q, prop(u(T1, T2), F)), T)∧T > T2

3 Conflicting Commitments

Our aim in this paper is to develop a method to capture commitment pairs,
such that one of the commitments cannot be satisfied without violating the
other commitment. We call such commitment pairs as conflicting commitments.
Since satisfaction and violation of a commitment is determined according to
the satisfaction and violation of its committed property, in order to capture
conflicting commitments, we should first define conflicting properties. Similar to
the conflicting commitments, two properties conflict with each other if one of
the properties cannot be satisfied without violating the other. The idea of our
method is, if properties of two commitments conflict with each other, then the
commitments also conflict with each other.

3.1 Conflicting Properties

In order to define a conflict between two properties we have to know the mean-
ing of the fluents involved by these properties in the intended domain of the
underlying multiagent system. This is necessary since without such a domain
knowledge, fluents are meaningless. In order to formalize this situation, we use a
fluent conflict relation. Two fluents conflict with each other if it is not possible
to hold both fluents at the same time in a given domain.

Definition 1. Fluents F1 and F2 in a given domain D are in a fluent conflict, if
it is not possible to hold both fluents at the same moment in the domain D. The
predicate fluentConf(F1, F2,D) indicates the fluent conflict between the fluents
F1 and F2 in domain D.

Detecting Conflicts in Commitments 59

Example 2. Consider the fluent carRented(C,P), which means the car C is
rented to the person P . Now consider the same fluent with two different set of
grounded values, carRented(herbie, sally) and carRented(herbie, linus). The
first fluent states that the car herbie is rented to sally and the second fluent
states that the car herbie is rented to linus. As a domain knowledge, we know
that the same car cannot be rented to two different person at the same time.
Hence, we also know carRented(herbie, sally) and carRented(herbie, linus) can-
not hold at the same moment. As result these two fluents conflict with each other.

The above case can be represented as the following rule in domain D:

fluentConf(carRented(C,P1), carRented(C,P2), D)←
isCar(C) ∧ isPerson(P1) ∧ isPerson(P2) ∧ P1 �= P2

In the rest of the paper we assume that the domain dependent fluent conflict
knowledge is already present.

Definition 2. Properties P1 and P2 are in a property conflict relation if it is
not possible to satisfy one property without violating the other. The predicate
propConf(P1, P2) indicates a conflict between properties P1 and P2.

Occurrence of a property conflict depends on the existence of a fluent conflict
between the fluents of the properties as we discussed above and the temporal
quantifiers of the properties. There are three possible cases considering temporal
quantifiers of the properties as we present below.

Existential-Existential. A property conflict relation between two existentially
quantified properties occurs if and only if fluents of these properties are in fluent
conflict relation and both properties must be satisfied at a common moment.

Axiom 10

propConf(prop(e, (T1, T2), F1), prop(e, (T3, T4), F2)←
fluentConf(F1, F2, D) ∧ T1 = T2 = T3 = T4

Example 3. Consider the properties prop(e(1, 1), isRented(herbie, sally)) and
prop(e(1, 1), isRented(herbie, linus)). The first property is satisfied if the car
herbie is rented by sally exactly at moment 1 and the second property is satisfied
if the car herbie is rented by linus exactly at moment 1. As domain knowledge we
know that the fluents isRented(herbie, sally) and isRented(herbie, linus) have
a fluent conflict, which means the car herbie cannot be rented both by sally
and linus at moment 1. Thus, it is not possible to satisfy one of these proper-
ties without violating the other, therefore these two properties are in property
conflict.

Note that, in order to have a property conflict in the case of existentially quanti-
fied properties, the moment intervals of the properties must refer exactly to the
same moment. If the moment interval is not just on a moment, it is possible to
satisfy both properties, even if the fluents of the properties have a fluent conflict.

60 A. Günay and P. Yolum

Existential-Universal. A property conflict between an existentially and a uni-
versally quantified property occurs if there is a fluent conflict between the fluents
of the properties and the moment interval of the universally quantified property
covers the moment interval of the existentially quantified property.

Axiom 11

propConf(prop(e(T1, T2), F1), prop(u(T3, T4), F2)←
fluentConf(F1, F2, D)∧T3 ≤ T1∧T2 ≤ T4

Example 4. Consider the properties prop(e(1, 3), isRented(herbie, sally)) and
prop(u(1, 5), isRented(herbie, linus)). The first property is satisfied if the car
herbie is rented by sally at least at one moment between 1 and 3 and the second
property is satisfied if the car herbie is rented by linus at all moments between
1 and 5. As domain knowledge we know that the fluents isRented(herbie, sally)
and isRented(herbie, linus) have a fluent conflict, which means the car herbie
cannot be rented both by sally and linus between moments 1 and 3. If herbie is
rented to sally at any moment between 1 and 3 to satisfy the first property, then
it is not possible to satisfy the second property. If herbie is rented to linus at all
moment between 1 and 5 to satisfy the second property, then it is not possible to
satisfy the first property. Thus, it is not possible to satisfy one of these properties
without violating the other and these two properties are in property conflict.

Universal-Universal. A property conflict between two universally quantified
properties occurs if there is a fluent conflict between the fluents of the properties
and the moment intervals of the properties overlap with each other.

Axiom 12

propConf(prop(u(T1, T2), F1), prop(u(T3, T4), F2))←
fluentConf(D,F1, F2)∧
[T1 ≤ T3∧T3 ≤ T2∨T3 ≤ T1∧T1 ≤ T4]

Example 5. Consider the properties prop(u(1, 5), isRented(herbie, sally)) and
prop(u(3, 7), isRented(herbie, linus)). The first property is satisfied if the car
herbie is rented by sally at all moments between 1 and 5 and the second property
is satisfied if the car herbie is rented by linus at all moments between 3 and
7. As domain knowledge we know that the fluents isRented(herbie, sally) and
isRented(herbie, linus) have a fluent conflict, which means the car herbie cannot
be rented both by sally and linus between moments 3 and 5. If herbie is rented
to sally at all moments between 1 and 5 to satisfy the first property, then it
is not possible to satisfy the second property. If herbie is rented to linus at all
moment between 3 and 7 to satisfy the second property, then it is not possible to
satisfy the first property. Thus, it is not possible to satisfy one of these properties
without violating the other and these two properties are in property conflict.

Detecting Conflicts in Commitments 61

3.2 Conflict Relations between Commitments

Now we define the first type of conflict relation between two commitments using
the property conflict relation that we defined before. A commitment conflict
relation may occur between two active commitments, which indicates that one
of the commitments cannot be satisfied without violating the other.

Definition 3. Given the two commitments C1 and C2 with properties P1 and
P2, respectively, there is a commitment conflict between commitments C1 and
C2, if the properties P1 and P2 have a property conflict and commitments C1

and C2 are in active state. The fluent commConf(C1, C2) indicates a conflict
between commitments C1 and C2.

Axiom 13 (Commitment conflict)

initiates(E, commConf(comm(, , Q1, P1), comm(, , Q2, P2)), T)←
active(comm(, , Q1, P1), T) ∧ active(comm(, , Q2, P2), T)∧
propConf(P1, P2)

Example 6. Consider the commitments comm(charlie, sally,
, prop(u(1, 5),
isRented(herbie, sally))) and comm(charlie, linus,
, prop(u(3, 7), isRented
(herbie, linus))). The first commitment states that charlie is committed to sally
to rent herbie at all moments between 1 and 5 and the second commitment states
that charlie is committed to linus to rent herbie at all moments between 3 and
7. We know that there is a property conflict between the properties of these
two commitments. Hence it is not possible to satisfy both properties. As result,
it is also not possible to satisfy one commitment without violating the other.
If charlie rents herbie to sally and satisfies his commitment to sally, then he
violates his commitment to linus. On the other hand, if charlie rents herbie to
linus and satisfies his commitment to linus, then he violates his commitment
to sally.

Note that, the debtors and the creditors are actually irrelevant while capturing
commitment conflicts. The only relevant factors are the property conflict between
the properties of the commitments and the states of the commitments.

The commitment conflict relation that we discuss above points out to a def-
inite violation of at least one commitment. This happens, since both commit-
ments are in active state. However, this is not the case if at least one of the
commitments are not in active but conditional state. In this case, occurrence of
a commitment conflict and violation of the commitment depends on the satisfac-
tion of the condition(s) of the commitment(s). In the following we define another
relation, which we call conditional commitment conflict relation between com-
mitments to reflect such situations.

Definition 4. Given the two commitments C1 and C2 with conditions Q1 and
Q2, and properties P1 and P2, respectively, there is a conditional commitment
conflict between commitments C1 and C2 if the properties P1 and P2 have a
property conflict and at least one of the commitments C1 or C2 is in conditional

62 A. Günay and P. Yolum

state, if not in active state. The fluent condCommConf(C1, C2) indicates a
conditional commitment conflict between commitments C1 and C2.

Axiom 14 defines the conditional commitment conflict, where one commitment
is in active state and the other commitment is in conditional state. Note that,
if the condition of the commitment in conditional state is satisfied, then the
conditional conflict relation between the commitments is terminated and the
commitment conflict relation is initiated.

Axiom 14 (Conditional commitment conflict (active-conditional))

initiates(E, condCommConf(comm(, , Q1, P1), comm(, , Q2, P2)), T)←
active(comm(, , Q1, P1), T) ∧ conditional(comm(, , Q2, P2), T)∧
propConf(P1, P2)

Axiom 15 defines the conditional commitment conflict, where both commitments
are in conditional state. Note that, if one of the conditions is satisfied, then
Axiom 14 applies.

Axiom 15 (Conditional commitment conflict
(conditional-conditional))

initiates(E, condCommConf(comm(, , Q1, P1), comm(, , Q2, P2)), T)←
conditional(comm(, , Q1, P1), T)∧
conditional(comm(, , Q2, P2), T)∧
propConf(P1, P2)

Example 7. Consider the commitments comm(charlie, sally, prop(e(1, 3),
isPaid(sally)), prop(u(3, 5), isRented(herbie, sally))) and comm(charlie, linus
,
, prop(u(3, 7), isRented(herbie, linus))). The first commitment is in condi-
tional state, which means that charlie will be committed to sally to rent herbie
at all moments between 3 and 5, if sally pays the rent between moments 1 and
3 and the second commitment is in active state, which means that charlie is
committed to linus rent herbie at all moments between 3 and 7. We know that
there is a property conflict between the properties of these two commitments.
In this case, occurrence of a commitment conflict depends on the satisfaction
of the condition of the first commitment. If sally does not pay, then the first
commitment expires and the conflict is resolved automatically.

4 A Commitment Conflict Scenario

We present a scenario to demonstrate how the conflict relations that we define
can be used to capture violation of a commitment in a multiagent system, before
the violation actually occurs. We also implement this scenario in the REC tool
and we present the trace of the execution.

Detecting Conflicts in Commitments 63

Scenario Description. There are two customers Sally and Linus and a car rental
agent Charlie. Charlie has a commitment in conditional state to Sally, which
states, if Sally pays the rent between days one and three, then Charlie will be
committed to Sally to rent a car to her between days four and seven. Charlie
has also a commitment in conditional state to Linus, which states, if Linus uses
a promotion ticket between days one and five, then Charlie will be committed
to Linus to rent a car to him for days six and seven for a cheaper price. We also
know that Charlie has just one car, namely Herbie, available for rent for the
next seven days.

In this scenario, it is obvious that Charlie will get into trouble if both Sally and
Linus satisfy the conditions of their own commitments. If this happens, Charlie
will have active commitments to both of them to rent a car at the same dates.
However, Charlie has only one car to rent at that dates, hence he cannot satisfy
one of these commitments without violating the other. This situation cannot
be captured at run time by considering these two commitments individually, at
least until one of the commitments is actually violated. However, if we consider
these commitments together, we can capture that there is a potential problem,
immediately when the two commitments are created.

Let us first define the fluents, the events and effects of the events on the fluents
in our scenario.

Fluents:
– rentPaid(C,Car,A): The customer C paid the rent for the car Car to the

agency A.
– promeUsed(C,Car,A): The customer C used a promotion ticket for the car

Car to the agency A.
– rented(Car, C): The car Car is rented to the customer C.

Events:
– payRent(C,Car,A): The customer C pays the rent for the car Car to the

agency A.
– usePromo(C,Car,A): The customer C gives the promotion ticket for the

car Car to the agency A.
– rent(A,Car, C): The agency A rents the car Car to the customer C.

Effects of events on fluents:
– initiates(payRent(C,Car,A), rentPaid(C,Car,A), T)
– initiates(usePromo(C,Car,A), promoUsed(C,Car,A), T)
– initiates(rent(A,Car, C), rented(Car, C), T)

Finally we define the creation of commitments as result of the event as follows.

ccreate(offer(A,Car, C)), A, comm(A,C,
prop(e(T, T2), rentPaid(C,Car,A)),
prop(u(T3, T4), rented(Car, C))), T)←
T2 is T + 2 ∧ T3 is T + 3 ∧ T4 is T3 + 3

64 A. Günay and P. Yolum

ccreate(promote(A,Car, C)), A, comm(A,C,
prop(e(T, T2), promoUsed(C,Car,A)),
prop(u(T3, T4), rented(Car, C))), T)←
T2 is T + 4 ∧ T3 is T + 5 ∧ T4 is T3 + 1

Assume that the domain dependent fluent conflicts are already defined and fol-
lowing list of happens statement shows the execution of the system.

happens(offer(charlie, herbie, sally), 1)
happens(promote(charlie, herbie, linus), 1)
happens(payRent(sally, herbie, charlie), 2)
happens(rent(charlie, herbie, sally), 3)
happens(usePromo(linus, herbie, charlie), 4)

Let us trace the execution. At moment 1, charlie creates two conditional com-
mitments as described in the scenario. Let us call the commitment between
charlie and sally as CS and the commitment between charlie and linus as CL.
The property of the commitment CS is prop(u(4, 7), rented(herbie, sally)) and
the property of the commitment CL is prop(u(6, 7), rented(herbie, linus)). As-
suming that there is a fluent conflict between the two grounded rented fluent,
by using the Axiom 12 we can conclude that there is a property conflict between
the properties of the commitment CS and CL. Detection of this property conflict
further causes the condition of the Axiom 15 to hold, which allows us to conclude
that there is a conditional commitment conflict between the commitments CS

and CL. Hence, we immediately capture that depending on the satisfaction of
the conditions of these two commitments CS and CL, one of these commitments
cannot be satisfied without violating the other. At moment 2, sally pays the
rent and satisfies the condition of her own commitment CS and the state of CS

changes to active. At that moment using the Axiom 14, we can deduce that we
have still a conditional commitment conflict, which depends on the satisfaction
of the condition of the commitment CL. At moment 3, charlie rents herbie to
sally to satisfy the commitment CS . Finally, at moment 4 by using the promo-
tion ticket, linus satisfies the condition of the commitment CL and the state of
this commitment changes to active. Accordingly the condition of the Axiom 13
holds and we conclude that there is a commitment conflict. At that moment,
we definitely know that at least one of the commitments CS and CL is going to
be violated. Note that, if we examine the commitments using only the life cycle
axioms, we cannot capture the violation of one of these commitments not before
moment 6.

5 Discussion

In this paper we introduce the conflict relation between two commitments. A
conflict relation indicates one of the commitments in this relation cannot be satis-
fied without violating the other commitment. To formalize this conflict relation
we first extend the existing event calculus formalization of the commitments

Detecting Conflicts in Commitments 65

with conditional commitments and then introduce a set of new axioms to cap-
ture conflicts between commitments. We implement our axioms using the REC
tool and evaluate them on a multiagent scenario. In our future work we plan to
apply our method to capture inconsistencies in multiagent contracts [4]. We also
left detection of conflicts between more than two commitments and handling of
conflicting commitments as future work.

The first formalization of commitments in event calculus is introduced by
Yolum and Singh [14]. In their formalization they do not use an explicit state
definition for commitments. They discuss how a multiagent protocol can be
represented in a flexible way by using the event calculus formalization of com-
mitments and they also show how agents can reason about commitments on
the execution of the protocol. In a series of papers Torroni and his colleagues
develop another event calculus based monitoring framework for commitments,
which uses SCIFF abductive logic programming proof-procedure [1, 3]. Their
framework is capable of efficiently monitoring evolution of commitments in a
multiagent system at run-time. We use their framework as a basis for our work.
We extend their commitment formalization with conditional commitments and
on top of this formalization we build our axioms to define conflict relation of
commitments.

Singh discusses semantics of dialectical and practical commitments [12]. In his
work, Singh provides a unified temporal logic based semantics for dialectical and
practical commitments. Our main motivation in this paper is to deal with prac-
tical commitments and we do not discuss dialectical commitments. Singh also
provides some reasoning postulates related to the ones we discuss here. These are
named consistency and strong consistency, which states an agent cannot commit
to false and an agent cannot commit to a negation of previously committed prop-
erty, respectively. Especially, the strong consistency postulate corresponds to our
commitment conflict relation. However, the postulates introduced by Singh acts
as a constraint and restrict existence of such commitments. We do not put any
restrictions on commitments, instead our aim is to just detect such situations
and let dealing with the situation to the underlying multiagent system.

Mallya et al. discuss resolvability of commitments [8]. They use a variant of
CTL to formalize commitments and provide a set of definitions about when a
commitment is resolvable using the same temporal quantifiers for properties of
commitments. Their discussion concentrates on the resolvability of individual
commitments. In our work we assume that all commitments are individually
resolvable as defined by Mallya et al.. However, our work can be used in order
to capture resolvability of multiple commitments, considering individual resolv-
ability.

Acknowledgment. This research is partially supported by Boğaziçi University
Research Fund under grant BAP5694, and the Turkish State Planning Orga-
nization (DPT) under the TAM Project, number 2007K120610. Akın Günay is
partially supported by TÜBİTAK National PhD Scholarship (2211).

66 A. Günay and P. Yolum

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifi-
able agent interaction in abductive logic programming: The sciff framework. ACM
Transactions on Computational Logic 9, 1–43 (2008)

2. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Orga-
nizations. In: Lesser, V.R., Gasser, L. (eds.) ICMAS, pp. 41–48. The MIT Press
(1995)

3. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment Tracking via the
Reactive Event Calculus. In: Proceedings of the 21st International Joint Conference
on Artifical Intelligence, pp. 91–96. Morgan Kaufmann Publishers Inc. (2009)

4. Desai, N., Narendra, N.C., Singh, M.P.: Checking Correctness of Business Con-
tracts via Commitments. In: Proceedings of the 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS 2008, vol. 2,
pp. 787–794 (2008)

5. Fornara, N., Colombetti, M.: Operational Specification of a Commitment-Based
Agent Communication Language. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2002,
pp. 536–542. ACM (2002)

6. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation Com-
puting 4, 67–95 (1986)

7. Mallya, A.U., Huhns, M.N.: Commitments Among Agents. IEEE Internet Com-
puting 7, 90–93 (2003)

8. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving Commitments Among Au-
tonomous Agents. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922,
pp. 166–182. Springer, Heidelberg (2004)

9. Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

10. Singh, M.P.: Agent Communication Languages: Rethinking the Principles. Com-
puter 31(12), 40–47 (1998)

11. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial In-
telligence and Law 7(1), 97–113 (1999)

12. Singh, M.P.: Semantical Considerations on Dialectical and Practical Commitments.
In: Proceedings of the 23rd International Conference on Artificial Intelligence,
AAAI 2008, pp. 176–181. AAAI Press (2008)

13. Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite,
J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476,
pp. 198–220. Springer, Heidelberg (2005)

14. Yolum, P., Singh, M.P.: Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. In: Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
2002, pp. 527–534. ACM (2002)

Formalizing Commitments Using Action Languages

Tran Cao Son1, Enrico Pontelli1, and Chiaki Sakama2

1 Dept. Computer Science, New Mexico State University
{tson,epontell}@cs.nmsu.edu

2 Computer and Comm. Sciences, Wakayama Univ.
sakama@sys.wakayama-u.ac.jp

Abstract. This paper investigates the use of high-level action languages for
representing and reasoning about commitments in multi-agent domains. We in-
troduce the language Lmt, an extension of the language L, with new features
motivated by the problem of representing and reasoning about commitments. The
paper demonstrates how features and properties of commitments can be described
in this action language. We show how Lmt can handle both simple commitment
actions as well as complex commitment protocols. Furthermore, the semantics of
Lmt provides a uniform solution to different problems in reasoning about com-
mitments such as the problem of (i) verifying whether an agent fails (or succeeds)
to deliver on its commitments; (ii) identifying pending commitments; and (iii)
suggesting ways to satisfy pending commitments.

1 Introduction and Motivation

Commitments are an integral part of societies of agents. Modeling commitments has
been an intensive topic of research in autonomous agents. The focus has often been
on the development of ontologies for commitments [6,15], on the identification of re-
quirements for formalisms to represent commitments [13], and the development of for-
malisms for specifying and verifying protocols or tracking commitments [7,19,11].

Commitments are strongly related to agents’ behavior and capabilities, and they are
often associated with time constraints, such as a specific time (or time interval) in the
future. For example, a customer will not pay for the promised goods if the goods have
not been delivered; a client will have to wait for her cheque if the insurance agent
does not keep her promise of entering her claim into the system; or an on-line shopper
needs to pay for the order within 10 minutes after clicking the ‘Check Out’ button.
Thus, any formalization of commitments should be considered in conjunction with a
formalization of actions and changes, which allows us to reason about narratives in
presence of (quantitative) time constraints, actions with durations, etc.

Action languages (e.g., A, B, and C [10]), with their English like syntax and simple
transition function based semantics, provide an easy and compact way for describing
dynamic systems. Unlike event calculus —an action description formalism often used
in the literature for reasoning about commitments—action languages can elegantly deal
with indirect effects of actions and static laws. Furthermore, off-the-shelf implementa-
tions of various action languages are available. Research has provided various avenues
to extend the basic action languages with advanced features, such as resources, dead-
lines, and preferences. Existing action languages, on the other hand, do not provide

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 67–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 T.C. Son, E. Pontelli, and C. Sakama

means for expressing statements like “I will make some sandwiches” or “I will come
at 7pm.” Both statements are about achieving a certain state of the world without spec-
ifying how. The first statement does not indicate a specific time in the future while the
second does. Moreover, with a few exceptions, action languages have been developed
mostly for single-agent environments. Action languages have been successfully used
in specifying and reasoning about narratives (e.g., [2,4]). Some attempts to use action
languages in formalizing commitments have been made [8,9]. However, these attempts
do not consider time constraints and actions with durations.

In this paper we answer the question of whether action languages, like B or L, can be
enriched with adequate features to enable the representation of domains where agents
can interact through commitments, maintaining the desirable features of having a clear
semantics and a declarative representation. In particular, we develop an action language,
called Lmt, to perform this activity. Lmt, an extension of the action languageL [2,3,4],
is a language for multi-agent domains with features related to time, observations, and
delayed effects. The main reason behinds the selection of L for our work lies in that
L allows for the reasoning about narratives which is necessary for reasoning about
commitments while other languages such as A, B, and C do not. We show that several
tasks related to reasoning with commitments, such as identifying satisfied, pending,
and unsatisfied commitments, can be expressed as queries in Lmt. Furthermore, the
problem of finding a way to satisfy pending commitments can be directly addressed
using planning. The language also provides a natural means for specifying, verifying,
and reasoning about protocols among agents.

2 The Language Lmt

In this section, we extend the language is an extension of the language L [3,4] to con-
sider concurrency, actions with durations, time constraints and multi-agency. We first
define the languageLm for concurrency and multi-agency. To deal with time constraints
and action with durations, we extend Lm and define Lmt.

2.1 Adding Concurrency and Multi-agency to B: The Action Language Lm

The signature of the language is 〈AG, {Fi,Ai}i∈AG〉 where AG is a (finite) set of
agent identifiers and Fi andAi are the sets of fluents and the set of actions of the agent
i, respectively. We assume that Ai ∩ Aj = ∅ for any two distinct i, j ∈ AG. Observe
also that

⋂
i∈S Fi may be not empty for some S ⊆ AG. This represents the fact that

fluents in
⋂

i∈S Fi are relevant to all the agents in S. A fluent literal (or literal) is either
a fluent or a fluent preceded by ¬. Given a literal �, we denote with �̄ its complement.
A fluent formula is a propositional formula constructed from literals. A multi-agent
domain specification is a set of axioms of the following forms:

a causes � if ψ (1)

ϕ if ψ (2)

impossible A if ψ (3)

initially � (4)
where a ∈

⋃
i∈AG Ai is an action, � is a fluent literal, ψ and ϕ are sets of fluent literals

(interpreted as conjunctions), and A ⊆
⋃

i∈AG Ai is a set of actions.

Formalizing Commitments Using Action Languages 69

Axioms of type (1), (2), and (3) are referred to as dynamic laws, static laws (or
state constraints), and non-executability laws, respectively. Intuitively, a dynamic law
describes the direct effects of execution of one action (possibly concurrently to other
actions), i.e., it says that the execution of a, under the condition that ψ is true, causes �
to be true. A static law describes integrity constraints on states of the world. It states that
wheneverψ is true then ϕ must be true but does not require that if ψ is false then ϕ must
be true. In this sense, a static law of the form (2) differs from a logical implication ψ ⇒
ϕ. Statements of the type (3) encode conditions that prevent the (concurrent) execution
of groups of actions, i.e., it states that the set of actions A cannot be simultaneously
executed. Statements of type (4) are employed to describe the initial state of the world.

Let D =
⋃

i∈AG Di be the domain description defined over the set of fluents⋃
i∈AG Fi and the set of actions

⋃
i∈AG Ai. An action snapshot is a set {ai}i∈AG where

ai ∈ Ai ∪ {noop}. Intuitively, each action snapshot A encodes a set of actions that the
agents in AG concurrently execute in a state where, ai = noop ∈ A indicates that the
agent i does not participate in A. The semantics of the multi-agent domain D is defined
by the transition function ΦD , which maps a snapshot of actions and a state to a set of
states. Intuitively, given an action snapshot A and a state s, the transition function ΦD

defines the set of states that may be reached after executing A in state s. If ΦD(A, s) is
the empty set, then A is not executable in s.

An interpretation I of the fluents in D is a maximal consistent set of fluent literals
drawn from F . A fluent f is said to be true (resp. false) in I iff f ∈ I (resp. ¬f ∈ I).
The truth value of a fluent formula in I is defined recursively over the propositional
connectives in the usual way. For example, f ∧ q is true in I iff f is true in I and q is
true in I . We say that I satisfies ϕ (I |= ϕ) if ϕ is true in I .

Let I be a set of fluent literals. We say that I is closed under D if for every rule
(ϕ if ψ) in D, if I |= ψ then I |= ϕ. By ClD(I) we denote the smallest superset of I
which is closed under D. A state of D is an interpretation that is closed under the set of
static causal laws of D.

A set of actions B is prohibited (not executable) in a state s if there exists an exe-
cutability condition of the form (3) in D such that A ⊆ B and s |= ψ.

The effect of an action snapshot A in a state s of D is the set of formulae eA(s) =
{� | D contains a law a causes � if ψ, a ∈ A, and s |= ψ}.

Given the domain description D, if A is prohibited in s, then ΦD(A, s) = ∅, other-
wise ΦD(A, s) = {s′ | s′ = ClD((s∩ s′)∪ eA(s)) and s′ is a state}. The function ΦD

is extended to define Φ̂D for reasoning about the effects of sequences of action snap-
shots as follows. For a state s and a sequence of action snapshots α = [A1, . . . , An], let
αn−1 = [A1, . . . , An−1], we define

Φ̂D(α, s) =

⎧⎨
⎩
{s} if n = 0

∅ if Φ̂D(αn−1, s) = ∅ ∨ ∃s′.[s′ ∈ Φ̂D(αn−1, s) ∧ ΦD(An, s
′) = ∅]⋃

s′∈̂ΦD(αn−1,s)
ΦD(An, s

′) otherwise

An initial state is a state s0 such that, for each statement of type (4) in D we have
that s0 |= �. We will assume from now on that there exists at least one initial state. A
trajectory is a sequence s0β0s1β1 . . . βn−1sn such that each βj is a snapshot, s0 is an
initial state, and si ∈ ΦD(si−1, βi−1) for 1 ≤ i ≤ n.

70 T.C. Son, E. Pontelli, and C. Sakama

We allow queries to be composed, of the form: ϕ after α, where ϕ is a fluent
formula and α is a sequence of action snapshots. A query q is true w.r.t. an initial state
s0, denoted s0 |= q, if Φ̂D(α, s0) �= ∅ and ∀s ∈ Φ̂D(α, s0) we have that s |= ϕ. A
query q is entailed by D (D |= q) if for each initial state s0 of D we have s0 |= q.

2.2 Considering Time: The Action Language Lmt

The language proposed so far does not allow for the specification of durative actions. In
particular, we wish to be able to model actions with delayed effects and actions whose
effects can be overridden by the execution of another action. For example, pumping
gasoline into the tank causes the tank to be full after 5 minutes; drilling a hole in the
tank takes only 1 minute and will cause the tank never to be full. The execution of
drilling 1 minute after initiating the pumping action will cause the tank to never be-
come full. Thus, the execution of the action drill makes the tank no longer full and this
effect cannot be reversed by other actions. To address the first issue, we introduce the
notion of annotated fluents, i.e., fluents associated to relative time points, and use anno-
tated fluents in axioms of the form (1)-(3). To deal with the second issue, we introduce
the notions of irreversible and reversible processes. Note that axioms of the form (4)
described the initial state of the world and thus will not be changed.

The signature of Lmt extends the signature of Lm with a countable set of process
names P . An annotated literal is of the form �t, where � is a fluent literal and t > 0
is an integer, representing a future point in time. We also allow annotations of the form
�∨[t1,t2], denoting �t1 ∨ · · · ∨ �t2 for t1 ≤ t2. Annotated formulae are propositional
formulae that use annotated literals. Given a fluent formula ϕ (i.e., where fluents are
not annotated), ϕt (ϕ∨[t1,t2]) is the annotated formula obtained by replacing each literal
� in ϕ with the annotated literal �t (�∨[t1,t2]). An annotated formula is single time if it is
of the form ϕ∨[t1,t2] for some non-annotated formula ϕ. An annotated formula is actual
if no literal in the formula is annotated. For an annotated formula ϕ, ϕ+t is the formula
obtained by replacing each �r in ϕ with �r+t.

A multi-agent domain specification is a collection of laws of the form (1)-(3) and
laws of following forms:

ϕ starts process id [reversible | irreversible] �t̂ (5)

ϕ stops process id (6)

a starts process id [reversible | irreversible] �r̂ if ϕ (7)

a stops process id if ϕ (8)

where the ϕ’s are sets of fluent literals, a ∈ ∪i∈AGAi, �t̂ and �r̂ are time annotated
literals, of the form ∨[t1, t2] with 1 ≤ t1 ≤ t2 and ∨[r1, r2] with 0 ≤ r1 ≤ r2,1

and process id belongs to P . The main novelty is the introduction of the notion of
process. A process is associated to a delayed effect, denoted by �t̂, and the time interval
t̂ indicates when the process will produce its effect. A process can be started by an action

1 For simplicity, we do not consider ∧[t1, t2]. This is because a law with the annotation ∧[t1, t2]
can be replaced by a set of laws whose annotation is ∨[ti, ti] for t1 ≤ ti ≤ t2.

Formalizing Commitments Using Action Languages 71

or a property. Each reversible process can be interrupted by a stops action/condition
before materializing its effects, while irreversible processes cannot be interrupted.

The notion of a state in an Lmt domain D is similar to a state in L domain, in that
it is an interpretation of the fluents in D and needs to satisfy the constraints imposed
by static laws in D. In presence of processes, a state of the world needs to account
for changes that will occur only in the future, when a process reaches its completion.
For example, an action sendPayment may state that the action starts a process named
payment process whose effect is to make paid true 3, 4, or 5 units of time after the
execution of the action. For this reason, we introduce the notion of an extended state as
a triple (s, IR,RE) where s is a state and IR and RE are sets of pairs of future effects,
each of the form (x : �t̂), where x is a process name and �t̂ is an annotated literal. s
encodes the current state of the world, while IR and RE contain the irreversible and
reversible processes, respectively. (s, IR,RE) is complete if IR = ∅ and ER = ∅.

In presence of future effects encoded by the processes, the world changes due to
(i) the completion of a process; or (ii) action occurrences. Let us consider an extended
state (s, {(x : p1)}, ∅) with (x : p1) as a process whose effect is p. Intuitively, if nothing
happens, we would expect that p would be true in the world state one unit of time from
the current time. This results in the new extended state of the world (s\{¬p}∪{p}, ∅, ∅).
If instead we perform in the initial extended state an action a, whose effect is to make q
true in the next moment of time, then the next state will be (s\ {¬p,¬q}∪{p, q}, ∅, ∅).
Thus, in order to define the semantics of Lmt domains, we need two steps. First, we
specify an update function, which computes the extended state which is t units of time
from the current state assuming that no action occurs during this time span. Second, we
define the transition function that takes into consideration the action occurrences.

The update of an extended state (s, IR,RE) is used to move forward by one time
step; the time of the annotated fluents is decreased by one. Fluents that have become
actual are used to update the state—in such a case we need to ensure that irreversible
changes prevail over reversible ones. Formally, for ŝ = (s, IR,RE), the set of literals
that should be used in updating s in the next moment of time is

τ(ŝ) = {� | (x : �1) ∈ IR} ∪ {� | (x : �1) ∈ RE such that � ∃(z : �̄1) ∈ IR}.
For a state s, the set of processes started and stopped by s in the next moment of time
is IR1(s) = {(process id : �t̂) | there exists a law of the form (5) with the option
irreversible such that s |= ϕ}, RE1(s) = {(process id : �t̂) | there exists a law of
the form (5) with the option reversible such that s |= ϕ}, and P2(s) = {process id |
there exists a law of the form (6) such that s |= ϕ}. For a set of process names N and a
set of future effects X , let X \N = X \ {(x : �t) | x ∈ N, (x : �t) ∈ X}).

The update of ŝ by one unit of time is a set of extended states defined as follows:
update(ŝ) = {(s′, I(IR, s′), R(ER, s′) | s′ = ClD(τ (ŝ) ∪ (s ∩ s′)) and s′ is a state}

where, I(IR, s′) = (IR−1)∪IR1(s
′) andR(ER, s′) = ((RE−1)∪RE1(s

′))\P2(s
′),

and for a set of future effects X , we have X − d = {(x : �t−d) | (x : �t) ∈ X}.
Intuitively, s′ is a state that satisfies the effects that need to be true one unit from the
current state. For t > 0, let ŝ+ t =

⋃
û∈update(ŝ+t−1) update(û) where ŝ+ 0 = ŝ.

Given an extended state ŝ = (s, IR,ER) and an annotated literal �t, we say that �t

holds in ŝ, denoted ŝ |= �t, if, for t = 0, ŝ |= �t if s |= �, and, for t > 0, ŝ |= �t if
û |= � for every û ∈ ŝ+ t.

72 T.C. Son, E. Pontelli, and C. Sakama

Let us now consider the case where an action snapshot A = {ai}i∈AG is executed in
the extended state ŝ. Intuitively, there are two possible types of effects: the direct effect
of the actions (eA(s)) and the processes that are created by the actions. We know that
eA(s) must be satisfied in the next time point. The effects of the processes starting by
A in s, denoted by procsA(s), is a set of pairs (IR′, RE′) where:

• For each (ai starts pid irreversible �∨[t1,t2] if ϕ) in D, with ai ∈ A and s|=ϕ,
we have that IR′ contains (pid : �t) for some t s.t. t1 ≤ t ≤ t2;

• For each (ai starts pid reversible �∨[t1,t2] if ϕ) in D, with ai ∈ A, and s|=ϕ,
we have that RE′ contains (pid : �t) for some t s.t. t1 ≤ t ≤ t2.

In addition, the set of processes stopped by A in s is defined as stopA(s) = {pid |
(ai stops pid if ϕ) ∈ D, s |= ϕ}. Intuitively, each (IR′, RE′) encodes a possible
set of effects that the snapshot A can create given the current state of the world is s.
stopA(s) is the set of processes that need to be stopped.

We are now ready to define transition function Φt
D for Lmt domains which maps

extended states and action snapshots to sets of extended states. We assume that
 is a
special process name in P that does not appear in any laws of D. For a set of literals
L, we define ⊕(L) = {(
 : �1) | � ∈ L}. Given an extended state ŝ = (s, IR,RE), a
fluent literal � holds in ŝ if � holds in s. The notion of executability of a set of actions
can be carried over to Lmt domains without changes as it only considers the current
state of the world. The transition function Φt

D is:

Φt
D(A, ŝ) =

⋃
(I,R)∈procsA(s)

update((s, IR ∪ I ∪ ⊕(eA(s)), (RE ∪R) \ stopA(s))

if A is executable in s, and Φt
D(ŝ, A) = ∅ otherwise. Intuitively, Φt

D(ŝ, A) encodes the

possible trajectories of the world given that A is executed in ŝ. We extend Φt
D to Φ̂t

D

which operates on sequences of action snapshots in the same way as done for ΦD .
In presence of time, we might be interested in the states of the world given that A is

executed t units of time from the current state of the world. We overload Φt
D and define

Φt
D(ŝ, A, t) = Φ̂t

D(ŝ, [{noop}i∈AG , . . . , {noop}i∈AG︸ ︷︷ ︸
t

] ◦ [A])

We also write Φt
D(ŝ, A, t)+t1 to denote

Φt
D(ŝ, A, t) + t1 =

⋃
ŝ′∈Φt

D(ŝ,A,t) Φ̂
t
D(ŝ′, [{noop}i∈AG , . . . , {noop}i∈AG︸ ︷︷ ︸

t1

])

Intuitively, a member of Φt
D(ŝ, A, t)+ t1 is a possible extended state after t1 time steps

from the execution of A, which in turn was executed t time steps from ŝ.
Let us define a timed action snapshot to be a pair (A, t) where A is an action snapshot

and t is a time reference. Φ̂t
D can also be extended to a transition function that operates

on sequences of timed action snapshots α = [(A1, t1), . . . , (An, tn)] where t1 < t2 <
. . . < tn and Ai’s are action snapshots as follows:

• For n = 0: Φ̂t
D(ŝ, α) = ŝ; and

• For n > 0: Φ̂t
D(ŝ, α) =

⋃
û∈Φt

D(ŝ,A1,t1)
Φ̂t
D(û, β)

where β=[(A2, t2 − t1), . . . , (An, tn − t1)] if Φ̂t
D(û, β) �= ∅ for every û∈Φt

D

(ŝ, A1, t1); otherwise, Φ̂t
D(ŝ, α) = ∅.

Formalizing Commitments Using Action Languages 73

For a state s and a sequence of timed action snapshot α, Φ̂t
D(s, α) = Φ̂t

D((s, ∅, ∅), α).
Example 1. Let us consider a slight modification of the popular Netbill example [13].
Let us assume that every action takes one day to complete but the action of sending
the payment might take 3 to 5 days for its effects to materialize. Also, as long as the
payment has not been made, the customer can still cancel the payment. We envision
AG = {merchant, customer}. Both the merchant and the customer use the set of fluents
F = {request, paid, goods, receipt, quote, accept}; the agents use the sets of actions:

Amerc = {sendQuote, sendGoods, sendReceipt}
Acust = {sendRequest, sendAccept, sendPayment}

The domain specification Dn consists of the following axioms (P = {pmt}):

Customer Merchant

sendRequest causes request sendGoods causes goods

sendAccept causes accept sendReceipt causes receipt

sendPayment starts pmt reversible paid∨[3,5] sendQuote causes quote

cancelPayment stops pmt impossible {sendReceipt} if ¬paid
impossible {sendAccept} if ¬quote impossible {sendGoods} if ¬accept
impossible {cancelPayment} if paid

The last two laws state that the Merchant cannot execute the action sendReceipt if
¬paid is true (the Customer has not paid yet); he cannot execute the action sendGoods
if ¬accept is true (the Customer has not accepted the offer). On the other hand, the
Customer cannot execute the action sendAccept if he has not received the quote.

Let s0 = {request, quote, accept,¬paid,¬receipt,¬goods}, and α1 = {noop,
sendGoods}. α1 is executable in s0 and Φt

Dn
((s0, ∅, ∅), α1) = {(s′0, ∅, ∅)}, where

s′0 = {request, quote, accept,¬paid,¬receipt, goods}.
Let û = (s′0, ∅, ∅) and α2 = {sendPayment, noop}. It is easy to see that

Φt
D(û, α2) = {update((s′0, ∅, {(pmt : paidi)})) | i = 3, 4, 5}

Thus, Φt
D(û, α2) + 3 = {(u′, ∅, ∅)} ∪ {update((s′0, ∅, {(pmt : paidi)})) | i = 1, 2} where

u′ = {request, quote, accept, paid,¬receipt, goods}. We can see that Φt
D(û, α2) +

5 = {(u′, ∅, ∅)}. ��

3 Basic Commitments in Lmt

We demonstrate that Lmt is adequate to encode commitments and their manipulation.
Commitments are encoded as a new class of fluents and are manipulated by commitment
actions. Due to the lack of space, we present our study on unconditional commitments
[15]. Detailed treatment for conditional commitments can be found in [18].

A commitment is of the form c(x, y, ϕ, t1, t2), where x, y ∈ AG, 0 < t1 ≤ t2, and ϕ
is formula. This states that the debtor x agrees to establish ϕ between t1 and t2 for the
creditor y. For example, the statement “A commits to visit B in three hours,” conveys
the commitment c(A,B, arrived, 3, 3). A commitment where we do not care when the
property is made true can be expressed using a disjunctive annotation.

Observe that we can think of commitment fluents as propositions, i.e., c(x, y, ϕ) is a
syntactic sugar for c x y name(ϕ) where name(ϕ) is a propositional variable repre-
senting the name of the formula ϕ. We assume that the various propositions c(x, y, ϕ)

74 T.C. Son, E. Pontelli, and C. Sakama

are in
⋂

i∈AG Fi. We also assume that, to enable communication, if c(x, y, ϕ) is a com-
mitment fluent, then ϕ is a fluent formula which uses fluents from Fx ∩ Fy. The fol-
lowing operations are used to manipulate commitments:

• Creation: create(x, y, ϕ, t1, t2) describes the fact that agent x creates a commit-
ment towards agent y in the period between t1 and t2. We assume that each created
commitment is associated to a unique identifier;

• Discharge: discharge(x, y, ϕ) indicates that agent x discharges a commitment to-
wards agent y (by satisfying the request);

• Release: release(x, y, ϕ) indicates that agent y releases x from its obligation;
• Assignment: assign(x, y, k, ϕ, t1, t2) indicates that agent y transfers the commit-

ment to a different creditor (with a new time frame);
• Delegation: delegate(x, y, k, ϕ, t1, t2) indicates that agent x delegates the com-

mitment to another debtor (with a new time frame);
• Cancel: cancel(x, y, ϕ, ψ, t1, t2) indicates that x modifies the terms of the com-

mitment (by canceling the previous one and generating a new one).

These manipulations of commitments are the consequence of actions performed by
the agents or conditions occurring in the state of the world. We consider two types of
enabling statements, called trigger statements, for commitment manipulation

[a | ϕ] triggers c activity

where ϕ is a fluent formula, a ∈ A, and c activity is one of the activities (or com-
mitment actions). They indicate that the commitment activity c activity should be ex-
ecuted whenever ϕ holds or a is executed. An example of the first type of statement is

paid triggers create(m, c, receipt, 1, 3) (9)

which encodes the fact that the merchant agrees to send the customer the receipt be-
tween 1 and 3 units of time since receiving the payment. The statement

sendAccept triggers create(c,m, paid, 1, 5) (10)

states that the customer agrees to pay for the goods between 1 to 5 units of time af-
ter sending the acceptance notification. A more complicated trigger statement is the
following, taken from an example in [7],

broken triggers create(s, c, (broken⇒ paid 10), k, k)

for k ≥ 3, which represents the agreement between the service provider (s) and a
customer (c) that, if the printer is broken, the service provider needs to fix it within
three days or faces the consequence of paying $10 each day the printer is not fixed.

A domain with commitments is a pair (D,C) where D is a domain specification in
Lmt and C is a collection of trigger statements. Intuitively, a domain with commitments
is an action theory enriched with a set of (social or contractual) agreements between
agents in the domain which are expressed by the set of trigger statements. For example,
let Dn be the domain in Example 1 and C1 be the set consisting of the two statements
(9) and (10), we have that (Dn, C1) is a domain with commitments.

Formalizing Commitments Using Action Languages 75

In the following, we will define the semantics of a domain with commitments (D,C)
by translating it into a Lmt domain D′ where D′ consists of D and a collection of dy-
namic laws and static laws originating from C. In the following, we will associate with
the commitment c(x, y, ϕ) an unique process identifier, id(x, y, ϕ), which indicates that
x commits to create ϕ for y.

– Let
a triggers c activity

be an action trigger in C. We consider the following cases:

◦ if c activity = create(x, y, ϕ, t1, t2), then the laws

a causes c(x, y, ϕ) and
a starts id(x, y, ϕ) reversible done(x, y, ϕ)∨[t1,t2]

are added to D′. The dynamic law records the fact that the commitment c(x, y, ϕ)
has been made by the execution of the action a. The second law starts a pro-
cess which indicates that the commitment must be satisfied between t1 and t2.
The fluent done(x, y, ϕ) is introduced to record that there is an active commit-
ment from x towards y to achieve ϕ. The annotation ∨[t1, t2] indicates that this
commitment must be completed between the interval [t1, t2]. Observe that the
creation of a commitment c(x, y, ϕ) will also start the process id(x, y, ϕ).

◦ if c activity = discharge(x, y, ϕ) then D′ contains

a causes ¬c(x, y, ϕ) if c(x, y, ϕ),
a causes ϕ if c(x, y, ϕ), and
a stops id(x, y, ϕ) if c(x, y, ϕ).

The action a triggers the discharge of the commitment c(x, y, ϕ) by satisfying
it. Therefore, it is translated into a dynamic law that states that the commitment
no longer exists and that ϕ is achieved. It will also stop the process id(x, y, ϕ)
which is associated with c(x, y, ϕ).

◦ if c activity = release(x, y, ϕ) then the laws

a stops id(x, y, ϕ) if c(x, y, ϕ) and
a causes ¬c(x, y, ϕ) if c(x, y, ϕ)

belongs to D′. The action stops the commitment process and records that the
commitment has been removed.

◦ if c activity = assign(x, y, k, ϕ, t1, t2) then D′ contains

a causes ¬c(x, y, ϕ) if c(x, y, ϕ),
a causes c(x, k, ϕ),

a stops id(x, y, ϕ) if c(x, y, ϕ), and
a starts id(x, k, ϕ) reversible done(x, k, ϕ)∨[t1,t2].

The law takes the responsible of achievingϕ for y from x and assigns it to k. The
two dynamic laws indicate this. The next two laws state that the action stops the
commitment process id(x, y, ϕ) and starts the commitment process id(x, k, ϕ).

76 T.C. Son, E. Pontelli, and C. Sakama

◦ if c activity = delegate(x, y, k, ϕ, t1, t2) then D′ contains

a stops id(x, y, ϕ) if c(x, y, ϕ),
a causes ¬c(x, y, ϕ) if c(x, y, ϕ),

a causes c(k, y, ϕ), and
a starts id(k, y, ϕ) reversible done(k, y, ϕ)∨[t1,t2].

This is similar to the case of release, only with different debtor.

◦ if c activity = cancel(x, y, ϕ, ψ, t1, t2) then D′ contains

a stops id(x, y, ϕ) if c(x, y, ϕ),
a causes ¬c(x, y, ϕ) if c(x, y, ϕ),

a causes c(x, y, ψ), and
a starts id(x, y, ψ) reversible done(x, y, ψ)∨[t1,t2].

The action stops the commitment process id(x, y, ϕ) which means that the com-
mitment c(x, y, ϕ) no longer exists. It also starts a new commitment process
id(x, y, ψ) which is supposed to fullfils the commitment c(x, y, ϕ).

– Let
ψ triggers c activity,

be a fluent trigger in C. The translation of a fluent trigger into statements in Lmt is
similar to the translation of an action trigger and is obtained from the corresponding
action trigger one by:

◦ replacing a dynamic law of the form (a causes ϕ if λ) with (ϕ if λ, ψ);
◦ replacing a law of the form (a starts pid [reversible | irreversible] ϕ if λ)

with the law (ψ starts pid [reversible | irreversible] ϕ if λ); and
◦ replacing a law of the form (a stops pid if λ) with the law (ψ stops pid if λ).

We further need to include some additional static laws: if c(x, y, ϕ) is present and ϕ is
true, then the commitment can be released: ¬c(x, y, ϕ) if ϕ, done(x, y, ϕ).

Let M = (D,C) be a domain with commitments. We denote with τ(C) the collec-
tion of axioms generated from the translation process mentioned above; with a slight
abuse of notation, we denote τ(M) = D ∪ τ(C). By definition, the domain τ(M) de-
fines a transition function Φt

τ(M) which determines the possible evolutions of the world
given a state and the sequence of timed action snapshots [(α1, t1), . . . , (αn, tn)]. The
function Φt

τ(M) can be used to specify the transition function forM, i.e., the transition

function ΦM for M is defined to be the function Φt
τ(M). Observe that each state of

τ(M) consists of fluent literals in D and commitments which appear in τ(C). In the
definition of Φt

τ(M), this is treated as any normal fluent. The presence of c(x, y, ϕ) in
a state indicates that the commitment c(x, y, ϕ) has been made. done(x, y, ϕ) encodes
the fact that the commitment c(x, y, ϕ) needs to be realized by the debtor.

Example 2. Consider the domain with commitmentsM1 = (Dn, C2), where Dn is the
domain description described in Example 1 and C2 is the set of statements consisting
of (9), (10), and the following statements

request triggers create(m, c, quote, 1, 1)

Formalizing Commitments Using Action Languages 77

and
accept triggers create(m, c, goods, 1, 1).

So, the set of fluents in τ(M1), denoted by F1, consists of F (the set of fluents of
D1) and the commitment fluents such as c(m, c, receipt), c(c,m, paid), c(m, c, quote),
and c(m, c, goods), and fluents of the form done(x, y, ϕ) which are introduced by the
translation fromM1 to τ(M1). Let s0 = {¬f | f ∈ F1}, we have that

Φt
τ(M1)

(s0, {sendRequest}) = {[s0, u, v]}

where u = s0 \ {request, c(m, c, quote)} ∪ {request, c(m, c, quote)} and v = u \
{done(m, c, quote)} ∪ {done(m, c, quote)}. The presence of c(m, c, quote) and
done(m, c, quote) in u and v is due to the laws c(x, y, quote) if request and

request starts c(x, y, quote) reversible done(x, y, ϕ)1

respectively, both are the result of the translation to laws in τ(M1) of the statement

request triggers create(m, c, quote, 1, 1). �

Let M = (D,C) be a domain with commitments and γ = [s0, . . . , sn] be a sequence
of states in τ(M). Let c(x, y, ϕ) be a commitment fluent appearing in γ. We say that
c(x, y, ϕ) is

• satisfied in γ if sn |= ¬c(x, y, ϕ);
• violated in γ if sn |= c(x, y, ϕ) ∧ done(x, y, ϕ); or
• pending in γ if sn |= c(x, y, ϕ) and sn �|= done(x, y, ϕ).

The reasoning about commitments given the execution of a sequence of action snap-
shots can then be defined as follows. LetM = (D,C) be a domain with commitments,
s0 be a state in D, and A = [(α1, t1), . . . , (αn, tn)] be a sequence of timed action snap-
shots. We say that a commitment c(x, y, ϕ) is factual during the execution of A in s

if there exists a sequence of states γ = [s0, . . . , sm] in Φ̂t
τ(M)(s0, A) and c(x, y, ϕ)

appears in γ. A factual commitment c(x, y, ϕ) is

• satisfied after the execution of A in s0 if it is satisfied in every sequence of states
belonging to Φ̂t

τ(M)(s0, A).
• strongly violated after the execution of A in s0 if it is violated in every sequence of

states belonging to Φ̂t
τ(M)(s0, A).

• weakly violated after the execution of A in s0 if it is violated in some sequence of
states belonging to Φ̂t

τ(M)(s0, A).
• pending after the execution of A in s0 if it is not violated in any sequence of states

and not satisfied in some sequences of states belonging to Φ̂t
τ(M)(s0, A).

Example 3. Consider the domain M1 and the state s0 in Ex. 2. We have that c(m, c,
quote) is violated after the execution of sendRequest at s0, since Φt

τ(M1)
(s0,

{sendRequest}) = {[s0, u, v]}. It is easy to verify that for A = [(sendRequest, 0),
(sendQuote, 1)], Φt

τ(M1)
(s0, A) = {[s0, u, v′]} where v′ = u \ {¬done(m, c, quote),

¬quote, c(m, c, quote)} ∪ {done(m, c, quote), quote,¬c(m, c, quote)}. This implies
that the commitment c(m, c, quote) is satisfied after the execution of A in s0. ��

78 T.C. Son, E. Pontelli, and C. Sakama

4 Observations and Narratives

4.1 Observation Language

We consider an extension of the action language by enabling the representation of ob-
servations. We extend the signature of the language Lmt with a set of situation con-
stants S, containing two special constants, s0 and sc, denoting the initial situation and
the current situation. Observations are axioms of the forms:

ϕ at s (11)

α occurs at s (12)

s at t (13)

α between s1, s2 (14) s1 ≺ s2 (15)

where ϕ is a fluent formula,α is a (possibly empty) sequence of timed action snapshots,
and s, s1, s2 are situation constants which differ from sc. Axioms of the forms (11) and
(15) are called fluent facts and precedence facts, respectively. (11) states that ϕ is true in
the situation s. (15) says that s1 occurs before s2. Axioms of the forms (12) and (14) are
referred to as occurrence facts. (12) indicates that α starts its execution in the situation
s. On the other hand, (14) states that α starts and completes its execution in s1 and s2,
respectively. Axioms of the form (13) link situations to time points.

A narrative of a multi-agent system (a narrative, for short) is a pair (D,Γ) where D
is a domain description and Γ is a set of observations of the form (11)-(15) such that
{s0 ≺ s, s ≺ sc | s ∈ S } ⊆ Γ .

Observations are interpreted with respect to a domain description. While a domain
description defines a transition function that characterizes what states may be reached
when an action is executed in a state, a narrative consisting of a domain description
together with a set of observations defines the possible situation histories of the system.
This characterization is achieved by two functions, Σ and Ψ . While Σ maps situation
constants to sequences of sets of actions, Ψ picks one among the various transitions
given by ΦD(A, s) and maps sequences of sets of actions to a unique state.

More formally, let (D,Γ) be a narrative. A causal interpretation of (D,Γ) is a par-
tial function Ψ from action snapshots sequences to extended states, whose domain is
nonempty and prefix-closed.2 By Dom(Ψ) we denote the domain of a causal interpre-
tation Ψ . Notice that [] ∈ Dom(Ψ) for every causal interpretation Ψ . A causal model of
D is a causal interpretation Ψ such that Ψ([]) is an extended state of D and, for every
α ◦ [A] ∈ Dom(Ψ), Ψ(α ◦ [A]) ∈ ΦD(A,Ψ(α)).

A situation assignment of S with respect to D is a mapping Σ from S into the set
of sequences of action snapshots of D that satisfy the following properties: Σ(s0) = []
and, for every s ∈ S, Σ(s) is a prefix of Σ(sc).

An interpretation M of (D,Γ) is a triple (Ψ,Σ,Δ), where Ψ is a causal model of
D, Σ is a situation assignment of S such that and Σ(sc) belongs to the domain of Ψ ,
and Δ is a time assignment which maps prefixes of Σ(sc) to the set of non-negative
numbers, with the following restrictions: Δ([]) = 0 and Δ(β) ≤ Δ(γ) for every
β ! γ ! Σ(sc). Additionally, for every α, β s.t. β ◦ α ! Σ(sc), Ψ(β ◦ α) belongs to

Φ̂t
D(Ψ([]), (β, 0) ◦ (α,Δ(β))).

2 A set X of action sequences is prefix-closed if for every sequence α ∈ X , every prefix of α is
also in X . The symbol ◦ denotes list concatenation.

Formalizing Commitments Using Action Languages 79

For an interpretation M = (Ψ,Σ,Δ) of (D,Γ):

(i) α occurs at s is true in M if the sequence Σ(s) ◦ α is a prefix of Σ(sc);
(ii) α between s1, s2 is true in M if Σ(s1) ◦ α = Σ(s2);
(iii) ϕ at s is true in M if ϕ holds in Ψ(Σ(s));
(iv) s1 ≺ s2 is true in M if Σ(s1) is a prefix of Σ(s2);
(v) s at t is true in M if Δ(Σ(s)) = t.

Given two sequences of sets of actions α = [A1, . . . , An] and α′ = [B1, . . . , Bm], we
say that α is a subsequence of α′, denoted by α " α′, if α can be obtained from α′ by
(i) deleting some Bi from α′; and (ii) replacing some action a ∈ A in the remaining Bi

by noop. An interpretation M = (Ψ,Σ,Δ) is a model of a narrative (D,Γ) if all facts
in Γ are true in M , and there is no other interpretation M ′ = (Ψ,Σ′, Δ′) such that M ′

satisfies condition (i) above and Σ′(sc) is a subsequence of Σ(sc). These models are
minimal, as they exclude extraneous actions. A narrative is consistent if it has a model.

We can also envision an extension of the query language by allowing queries of the
form ϕ after α at s, where the testing of the entailment starts from the states in
Ψ(Σ(s)). In the presence of time, given a narrative (D,Γ) and a fluent formula ϕ, we
are also interested in knowing whether ϕt is true (resp. false) in a situation s for some
t1 ≤ t ≤ t2. This is expressed using a query of the form

ϕ∨[t1,t2] at s (16)

We say that a query q of form (16) holds w.r.t. (D,Γ) (i.e., (D,Γ) |= q) if, for every
model M = (Ψ,Σ,Δ) of (D,Γ), there exists t1 ≤ t ≤ t2 s.t. ϕ is true in Ψ(Σ(s)) + t.

4.2 Narratives and Commitments

A narrative with commitments is a triple (D,Γ,C) where (D,C) is a domain with
commitments and Γ is a collection of observations. The semantics of a narrative with
commitments (D,Γ,C) is defined by (i) translating it to the narrative (τ(M), Γ) in
Lmt where M = (D,C); and (ii) specifying models of (τ(M), Γ) to be models of
(D,Γ,C). To save space, we omit the specific details on the semantics of narratives
with commitments. Let N = (D,Γ,C) be a narrative and M be a model of N . We say
that a commitment c(x, y, ϕ) is:
• satisfied by M if M |= ¬c(x, y, ϕ) at sc.

• violated by M if M |= (done(c, y, ϕ) ∧ c(x, y, ϕ)) at sc.

• pending w.r.t. M if M |= ¬done(c, y, ϕ) ∧ c(x, y, ϕ) at sc.
Given a narrative N , we will say that a commitment is satisfied if it is satisfied in all
models of N ; it is strongly violated if it is violated in all models of N ; and it is weakly
violated if it is violated in some models of N .

Example 4. Consider the narrative N1 = (Dn, Γ, C2) where M1 = (Dn, C2) is the
domain description in Ex. 2 and Γ consists of the precedence facts s0 ≺ s1 ≺ s2 ≺
s3 ≺ sc and the following observations:

¬paid ∧ ¬accept ∧ ¬quote ∧ ¬goods at s0
sendRequest occurs at s0 and sendAccept occurs at s2

where s0, s1, s2, s3, sc are situation constants.

80 T.C. Son, E. Pontelli, and C. Sakama

A model M = (Ψ,Σ,Δ) for this narrative can be built as follows:

• The sequences of actions leading to the various situations are Σ(s0)=[],
Σ(s1)=[{sendRequest}], Σ(s2)=[{sendRequest}, {sendQuote}], and

Σ(s3)=Σ(sc)=[{sendRequest}, {sendQuote}, {sendAccept}].
• Ψ([]) is the state where all fluents are false and Ψ(si) = Φ̂tM1(Σ(si), Ψ([])).
• The time assignment for situation constants is given by Δ(si) = i for each i and
Δ(sc) = 3. This is because each action only takes one unit of time to accomplish.

The presence of the action sendQuote can be explained by the fact that quote is the
precondition for sendAccept. We can show that M is a model of the narrative N1.

The minimality condition of models of a narrative also allows us to prove that, for
every model (Ψ ′, Σ′, Δ′) of M1, the situation assignment Σ′ is identical to Σ and
Ψ ′([]) must satisfy {¬paid,¬accept,¬quote,¬goods}. This allows us to conclude that
N1 |= (¬paid at s) for s ∈ S and N1 |= c(c,m, paid)∧¬done(c,m, paid) at sc. We
can show that the commitment c(m, c, quote) is satisfied, the commitment c(c,m, paid)
is pending, and there are no violated commitments. �

5 Complex Commitments and Protocols

A basic commitment represents a promise made by an agent to another one, but without
specifying a precise procedure to accomplish the commitment. Basic commitments also
do not describe complex dependencies among “promises”.

A protocol is a pair (Pid, P) where Pid is a unique identifier and P is of the form:

1. a set {ai}i∈AG , where ai ∈ Ai ∪ {any};
2. ?ϕ where ϕ is a formula;
3. p1; . . . ; pn where pi’s are protocols;
4. p1| . . . |pn where pi’s are protocols;
5. if ϕ then p1 else p2 where p1, p2 are protocols and ϕ is a formula;
6. while ϕ do p where p is a protocol and ϕ is a formula;
7. p1 < p2 where p1 and p2 are protocols.

Intuitively, Case (1) describes a request for execution of certain specific actions by cer-
tain agents (any indicates that we do not care about what that agent is doing); Case (2)
is a test action, which tests for the condition ϕ in the world state; Case (3) sequentially
composes protocols, i.e., it requires first to meet the requirements of p1, then those of
p2, etc.; Case (4) requires any of the protocols p1, . . . , pn to be satisfied, i.e., it repre-
sents a non-deterministic choice; Cases (5) and (6) are the usual conditional selection
and iteration over protocols; Case (7) is a partial ordering among protocols, indicat-
ing that p1 must be completed sometime before the execution of p2. According to this
definition, (p0, sendGoods < sendPayment < sendReceipt) is a protocol.

The language can be extended to allow statements that trigger complex commit-
ments, analogously to the case of basic commitments:

[a | ϕ] triggers complex commitment

A narrative can be extended with the following type of observation:

Pid at s (17)

Formalizing Commitments Using Action Languages 81

where Pid is a protocol identifier. This observation states that the protocol referred to
by Pid has started execution at situation s. A narrative is a triple (D,Γ,C) where Γ can
contain also protocol observations.

For a trajectory h = s0α1s1 . . . αksk, s0 is called the start of h and is denoted by
start(h). h[i, j] denotes the sub-trajectory siαi+1 . . . αjsj . For every state s, traj(s)
denotes a set of trajectories whose start state is s. Given a protocol P and a trajectory
h = s0α1 . . . αksk, we say that h is an instance of (Pid, P) if

• If P = {ai}i∈AG then k = 1 and, if α1 =
{
a1i
}
i∈AG , then for each ai �= any we

have ai = a1i .
• If P = ϕ then k = 0 and s0 |= ϕ.
• If P = p1; . . . ; pn then there exists some sequence of indices i0 = 0 ≤ i1 ≤ . . . ≤
in ≤ in+1 = k such that h[iit , iit+1] is an instance of pt.

• If P = p1| . . . |pn then there exists some 1 ≤ i ≤ n such that h is an instance of pi.
• If P = if ϕ then p1 else p2 and s0 |= ϕ then h is an instance of P if it is an

instance of p1; otherwise, h must be an instance of p2.
• If P = while ϕ do p and s0 �|= ϕ then h is an instance of P if k = 0; otherwise,

there is an index 0≤i≤k s.t. h[0, i] is an instance of p and h[i, k] is an instance of P .
• If P = p1 < p2 then there exists 0 ≤ i ≤ j ≤ k such that h[0, i] is an instance of p1

and h[j, k] is an instance of p2.

(Pid, P) |= h denotes that h is an instance of (Pid, P).
We will now complete the definition of a model of a narrative with protocols. The

notion of interpretation and the entailment relation between interpretations and obser-
vations, except for the observations of type (17), are defined as in the previous section.
For an interpretation M = (Ψ,Σ,Δ) of a narrative (D,Γ,C) and a protocol obser-
vation (Pid at s) ∈ C, we say that M |= (Pid at s) if there exists some instance
s0α1s1 . . . αksk of (Pid, P) where: s0 = Ψ(Σ(s)), Σ(s) ◦ [α1, . . . , αk] is a prefix of
Σ(sc);3 and For every 1 ≤ j ≤ k, Ψ(Σ(s) ◦ [α1, . . . , αj]) = sj . The remaining defini-
tions related to narratives can be used unchanged for narratives with protocols.

Example 5. Let N2 = (Dn, Γ, C2) where Dn is defined as in Exp. 4, C2 is defined
as in Exp. 4 with the addition of the protocol (p0, sendGoods < sendPayment <
sendReceipt) and Γ consists of the precedence facts s0 ≺ sc and the single obser-
vation p0 at s0. Observe that any instance of p0 contains the actions sendGoods,
sendPayment, and sendReceipt, in this order. The executability condition of sendGoods
implies that accept has to be true at the time it is executed. Together with the minimal-
ity condition of models of N2, we have that for every model M = (Ψ,Σ,Δ) of N2,
Ψ(s0) |= accept. We construct one model as follows:
• Σ(s0) = [] and Σ(sc) = [{sendGoods}, {sendPayment}, {sendReceipt}];
• Ψ(s0) = s0 where accept ∈ s0, and Ψ(sc) ∈ Φ̂t

τ(M2)
(s0, Σ(sc));

• Δ(s0) = 0 and Δ(sc) = 3.
Observe that we can also infer that, in the above model, the customer must have paid
right after he/she received the goods (at time 1), since (i) paid must be true for
sendReceipt to be executed; and (ii) sendReceipt is executed at time 2. �

3 We use ◦ to denote concatenation of lists.

82 T.C. Son, E. Pontelli, and C. Sakama

6 Related Works

Our proposal is related to several works on reasoning with commitments. The main
differences between our work and previous works lie in our use of an action language
and in our formulation of various problems as a query in our language; this also allows
the use of planning to satisfy pending commitments. The treatment of commitments
and the ontology for commitments adopted in this paper is largely inspired by [13,15].
Space limitations allow us to highlight only some representative cases.

With respect to [19], our formalization of basic commitments embedded in a domain
with commitments and in a narrative of a multi-agent system allows also for a proto-
col specification that subsumes that of [19]. Similar differences are present w.r.t. [11],
which builds on dynamic temporal logic.

Our approach has some relations to [7]; using a reactive event calculus, they provide
a notion similar to narratives. Besides being different from each other in the use of an
action language, our approach considers protocols and [7] does not. The same authors,
in [16], propose a new language for modeling commitments in which existential quan-
tifier of time points are used. The use of disjunctive time specification in annotating
fluent formulas in our work allows us to avoid the issues raised in [12,16].

[8,9] also makes use of an action language in dealing with commitments and proto-
cols. While we focus on formalizing commitments, the works [8,9] use C+ in specifying
protocols. A protocol in our definition is similar to a protocol defined in [8,9] in that it
restricts the evolution of the system to a certain sets of trajectories. In this sense, our
definition of protocols provides the machineries for off-line verification of properties
of protocols [17]. By introducing the observation of the from “Pid at s” we allow for
the possible executions of a protocol in different states and hence different contexts.
However, we do not have the notion of a transformer as in [8] and the ability to handle
nested commitments as in [9].

The use of complex protocols in commitments has also been explored in [1].
The language Lmt is an evolution of a classical action languages, drawing features

like static causal laws from B [10], narrative and observations from L [3,4], and time
and deadlines from ADC [5]. To the best of our knowledge, Lmt is the first action lan-
guage with all these features, embedded in the context of modeling multi-agent domains.
Lmt has similarities to the language PDDL 2.1 in that it can describe systems with du-
rative actions and delayed effects. Lmt has a transition function based semantics and
considers observations, ir/reversible processes and multiple agents, while PDDL 2.1
does not. It should also be mentioned that Lmt differs from the event calculus in that
it allows representing and reasoning with static causal laws and considers ir/reversible
fluents while event calculus does not. These are also the differences between Lmt and
situation calculus based approaches to dealing with duration [14].

7 Discussion and Conclusion

In this paper, we show how various problems in reasoning about commitments can be
described by a suitable instantiation of commitment actions in the language Lmt. In
particular, we show how the problem of verifying commitments or identifying pending

Formalizing Commitments Using Action Languages 83

commitments can be posed as queries to a narrative with commitments. We show how
the language can also be easily extended to consider commitment protocols.

Since our framework provides a way to identify pending, violated, and satisfiable
commitments given a narrative (D,Γ,C), a natural question that arises is what should
the agents do to satisfy the pending commitments. The semantics of domains with com-
mitments suggests that we can view the problem of identifying a possible course of
actions for the agents to satisfy the pending commitments as an instance of the plan-
ning problem and thus can be solved by planning techniques. An investigation of the
application of multi-agent planning techniques in generating plans to satisfy pending
commitments is one of our main goals in this research in the near future.

References

1. Baldoni, M., Baroglio, C., Marengo, E.: Commitment-Based Protocols with Behavioral
Rules and Correctness Properties of MAS. In: Omicini, A., Sardina, S., Vasconcelos, W.
(eds.) DALT 2010. LNCS, vol. 6619, pp. 60–77. Springer, Heidelberg (2011)

2. Balduccini, M., Gelfond, M.: Diagnostic Reasoning with A-Prolog. TPLP 3(4,5) (2003)
3. Baral, C., Gelfond, M., Provetti, A.: Representing Actions: Laws, Observations and Hypoth-

esis. JLP 31(1-3) (1997)
4. Baral, C., McIlraith, S., Son, T.C.: Formulating diagnostic problem solving using an action

language with narratives and sensing. In: KR, pp. 311–322 (2000)
5. Baral, C., Son, T.C., Tuan, L.C.: A transition function based characterization of actions with

delayed and continuous effects. In: KR, pp. 291–302 (2002)
6. Castelfranchi, C.: Commitments: From individual intentions to groups and organizations. In:

Int. Conf. on Multiagent Systems, pp. 41–48. The MIT Press (1995)
7. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event

calculus. In: IJCAI (2009)
8. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocol. In: AAMAS, pp. 1345–

1352. ACM (2006)
9. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commitments in

business processes. In: AAAI, pp. 1328–1333 (2007)
10. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3(6) (1998)
11. Giordano, L., Martelli, A., Schwind, C.: Specifying and Verifying Interaction Protocols in a

Temporal Action Logic. Journal App. Logic 5(2) (2007)
12. Mallya, A., Yolum, P., Singh, M.P.: Resolving Commitments among Autonomous Agents.

In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182. Springer,
Heidelberg (2004)

13. Mallya, A., Huhns, M.: Commitments among agents. IEEE Internet Comp. 7(4) (2003)
14. Reiter, R.: Knowledge in Actions. MIT Press (2001)
15. Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Int. Law 7(1) (1999)
16. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time: Satisfied or

Compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT
2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)

17. Torroni, P., et al.: Modelling interactions via commitments and expectations. In: Handbook
of Research on Multi-Agent Systems, pp. 263–284. IGI Global (2009)

18. Son, T.C., Pontelli, E., Sakama, C.: Formalizing Commitments Using Action Languages.
Technical Report. NMSU-2010,
http://www.cs.nmsu.edu/˜tson/papers/techrep1001.pdf

19. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calculus
planning using commitments. In: AAMAS, pp. 527–534. ACM (2002)

http://www.cs.nmsu.edu/~tson/papers/techrep1001.pdf

Lightweight Coordination Calculus for Agent Systems:
Retrospective and Prospective

David Robertson

Informatics, University of Edinburgh, UK

Abstract. The Lightweight Coordination Calculus was presented in a paper to
DALT 2004 as a method for specifying a class of social norms for multi-agent
systems. This was intended for use in the engineering of a range of applications
but at the time the original paper was written this was an aspiration and we had
little experience of actual use of the method. In this paper I summarise how ex-
perience with this approach has developed in the seven years from 2004 to date.

1 Introduction: Original Aims of the Lightweight Coordination
Calculus

The Lightweight Coordination Calculus (LCC) was first presented at DALT [1] and
at ICLP [2] in 2004. The aim of these papers, and of the DALT paper particularly,
was to provide a means by which declarative programming might apply directly to the
problem of coordinating agents that had not previously worked together. This sort of
problem had been tackled previously but the primary means of attack had been either to
standardise agent ontologies or standardise on performatives for agent illocutions. The
former is difficult to scale to large and open systems because of problems in making
sure that agents actually use language in comparable ways (and being able to check
that they have). The latter is difficult to scale to complex social interactions in which a
standard set of performatives leaves too much to the interpretation locally of agents. It
appears to be very difficult in practice to build agents independently but with enough
innate commonality to reliably perform complex social interactions. Work on institu-
tions in the multi-agent community was, in 2004, already providing a partial answer
to this problem by providing systems for specifying the desired interactions, separately
from the agents involved. The practical aim of LCC was to turn this into a program-
ming problem by viewing interactions between agents as executable specifications that
could be communicated between agents that wished to coordinate. The theoretical aim
of LCC was to form a bridge to multi-agent institutions from more abstract work on
languages for communicating processes, then use this to bring techniques from formal
reasoning into electronic institutions. A more detailed overview of the broader aims of
LCC appears in [3].

2 Relating LCC to Other Languages: Translators and Meta
Interpreters

One of the most frequent questions asked about LCC was how it related to other
languages. This question was hard to answer definitively because a wide variety of

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 84–89, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lightweight Coordination Calculus for Agent Systems: Retrospective and Prospective 85

languages are in use for coordination between systems, inside and outside of the multi-
agent community. Several translators were written from such languages to LCC. Li built
translators to LCC from service orchestration languages such as the Business Process
Execution Language for Web Services BPEL4WS [4] (an XML-based language for de-
scribing workflow amongst Web services). Sierra’s group at IIIA, Barcelona, added a
translation facility to the ISLANDER electronic institution specification system [5]. A
translator is the most obvious bridge between languages but languages like these are
quite complex so the translators themselves are non-trivial to build. An alternative so-
lution is to use LCC to specify an interpreter for another language, similarly to the way
in which one traditionally uses a declarative language to define interpreters for other
languages. Although it is unusual to think of a protocol language, like LCC, as an inter-
preter this works well in practice because the structure of LCC is suited to the task, as
demonstrated by Li [6,7]. By bringing LCC into contact with other systems it became
possible to explore more extensively how it could apply more broadly, particularly for
Web service choreography [8].

3 Protocol Brittleness: Ontologies, Constraints and Adaptation

A strength of LCC is its ability to be used as, effectively, a programming language that
coordinates agents. This is also a weakness, however, because the autonomy expected
of agents often demands flexibility in interaction. If LCC protocols are too brittle then
the interaction simply fails. One way to tackle this is, of course, to write LCC speci-
fications that are more sophisticated but that creates work for LCC ”programmers” so
various routes for adding various forms of more generic flexibility have been explored.
A principal cause of brittleness is ontology mismatch - agents that could cooperate but
fail because each describes its world in different ways. Mechanisms were invented for
assisting in mapping local agent ontologies to terms in LCC specifications [9] and for
using statistical information on the correlations between LCC terms to infer ontology
mappings [10,11]. A second cause of brittleness in LCC was the inability to commit
precisely to a constraint without committing to specific values for variables - this gave
brittleness to interactions that required progressive refinement of the constraint space.
Mechanisms were invented to add finite domain constraints to LCC-based systems,
thus allowing one form of constraint representation and providing for constraint relax-
ation [12]. A third cause of brittleness was that agents originally had no control over the
structure of LCC specifications - they could only choose whether or not to participate
in a particular LCC-supported interaction, with no option to adapt the rules of interac-
tion as they participated. This is a particular issue in argumentation systems, where the
course of future interaction may be influenced strongly by the structure of arguments
used previously within the same interaction. Mechanisms based on protocol synthesis
were invented to produce these forms of interaction in a class of argumentation sys-
tems [13]. Later, LCC was used as a prototypical low level language for the protocol
level of the Argument Interchange Format [14] which is a general purpose framework
for describing argumentation systems.

86 D. Robertson

4 Community Formation: Discovery, Group Formation and Trust

LCC is, deliberately, neutral to the manner in which it is used to coordinate agents.
Nevertheless, in practice agent coordination that is sustainable over time has to occur
in environments that support the interactions between agents and this requires mech-
anisms for helping agents to discover agents that are likely to be compatible; to form
appropriate groups to achieve tasks and to establish trust. A range of methods have
been developed to address aspects of this problem. At one end of the range, there are
statistical methods for recommending compatible groups of agents based on previous
successful/unsuccessful interactions [15]. These sorts of methods give crude measures
of compatibility but have the advantage of requiring only simple statistical data on the
history of interactions and no adaptation of the agents themselves. At the other end of
the range are methods that check deontic specifications of agents (their permissions,
obligations, etc) in real time against the LCC interaction specifications in which they
are involved [16]. These allow more subtle control at the interface between agents and
their interactions but at the cost of additional representation of deontic specifications
for agents and of the inference machinery needed to perform the checking.

5 Application Areas

Although originally developed with multi-agent systems in mind, LCC has been used
in a wide variety of contexts. In proteomics it has been used to share data on protein
structure between protein data bases [17] and, in subsequent research, between research
labs in Spain’s ProteoRed network. In astrophysics, LCC has been used as a high level,
executable specification language for data intensive experiments [18]. In crisis manage-
ment, LCC has been used in simulation experiments comparing methods of centralised
and peer to peer response to emergency flooding situations in the Trentino region of
Italy [19]. In healthcare, LCC provided the basis for peer to peer sharing of health-
care workflows based on the ProForma system of medical protocol specification - this
formed the basis for the Safe and Sound initiative (www.clinicalfutures.org)
[20,21]. In computer games, LCC has been used as a language for specifying coordi-
nation between game agents in Unreal Tournament [22]. In service environments, LCC
has been used in the development of market systems for confederations of services [23].
The common theme across all of these applications is the need for a compact language
for specifying desired interactions plus a relatively straightforward way to make these
easy to share and connect to local systems (whether these are autonomous agents or
more traditional services).

6 Work in Progress

In the seven years since the DALT 2004 paper the world has changed considerably.
Personal devices have become more sophisticated, more capable of data intensive pro-
cessing and are much more ubiquitous. Social use of computation is also much more

Lightweight Coordination Calculus for Agent Systems: Retrospective and Prospective 87

extensive and intimate than ever before. This has created many more potential appli-
cations for agents and in particular the coordination of agents. Potentially, these could
operate across very large sectors of the population to harness individual sensing and
problem solving for problems that hitherto resisted attack. We have already seen ex-
amples of this in the numerous social computing and crowdsourcing applications fa-
miliar to many. We are also experiencing the social effects of commercial interest in
this area (through Facebook and other major companies) and the resulting conflicts
over anonymity, privacy and ownership of information. Most of these issues are at least
one step removed from declarative agent languages but they do increase the need for
such languages and the need for scale and (perhaps) openness of operation places addi-
tional demands on specifications for agent interaction. Given this, future developments
of LCC focus on community formation (driven from interaction data); security (in the
context of electronic institution sharing in open systems); and the ability to synthe-
sise/adapt specifications locally without breaking the coherence of interactions. These
issues are not new but we lack methods that apply at current global scale. Further dis-
cussion of these issues will appear in [24].

Acknowledgements. This work was initially supported under the Advanced
Knowledge Technologies (AKT) Interdisciplinary Research Collaboration
(www.aktors.org), which is sponsored by the UK Engineering and Physical
Sciences Research Council (EPSRC). Development of the OpenKnowledge system
(www.openk.org) was supported by the European Union Framework 7 programme.
Continuing work is supported by an EPSRC e-Science Platform grant. I am grateful
for the discussions and inspiration provided by many other researchers on the AKT,
OpenKnowledge and e-Science initiatives, as well as those on the other related efforts
described in this paper.

References

1. Robertson, D.: A Lightweight Coordination Calculus for Agent Systems. In: Leite, J.,
Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–
197. Springer, Heidelberg (2005)

2. Robertson, D.: Multi-agent Coordination as Distributed Logic Programming. In: Demoen,
B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Heidelberg
(2004)

3. Robertson, D., Walton, C., Barker, A., Besana, P., Chen-Burger, Y., Hassan, F., Lambert,
D., Li, G., McGinnis, J., Osman, N., Bundy, A., McNeill, F., van Harmelen, F., Sierra, C.,
Giunchiglia, F.: Models of interaction as a grounding for peer to peer knowledge sharing. In:
Chang, E., Dillon, T., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS,
vol. 4891. Springer, Heidelberg (2008)

4. Andrews, A., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution
language for web services, version 1.1 (2003),
http://www-106.ibm.com/developerworks/webservices/library/
ws-bpel

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

88 D. Robertson

5. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and Multi Agent
Systems, pp. 1045–1052 (2002)

6. Li, G., Robertson, D., Chen-Burger, J.: Using a multi-agent platform for pure decentralised
business workflows. Journal of Web Intelligence and Agent Systems 6 (2008)

7. Li, G., Robertson, D., Chen-Burger, J.: A novel approach for enacting distributed busi-
ness workflow on a peer-to-peer platform. In: IEEE Conference on e-Business Engineering,
Beijing, China (2005)

8. Barker, A., Walton, C., Robertson, D.: Choreographing web services. IEEE Transactions on
Services Computing 2 (2009)

9. Giunchiglia, F., McNeill, F., Yatskevich, M., Pane, J., Besana, P., Shvaiko, P.: Approximate,
structure-preserving semantic matching. In: 7th International Conference on Ontologies,
Databases and Applications of Semantics (2008)

10. Besana, P., Robertson, D.: How Service Choreography Statistics Reduce the Ontology Map-
ping Problem. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 44–57. Springer, Heidelberg (2007)

11. Schorlemmer, M., Kalfoglou, Y., Atencia, M.: A formal foundation for ontology-alignment
interaction models. International Journal on Semantic Web and Information Systems 3 (2007)

12. Hassan, F., Robertson, D.: A constraint relaxation approach for over-constrained agent inter-
action. In: 11th Pacific Rim International Workshop on Multi-Agent Systems, Kuala Lumpur,
Malasia (2008)

13. McGinnis, J., Robertson, D.: Realizing Agent Dialogues with Distributed Protocols. In: van
Eijk, R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI), vol. 3396, pp.
106–119. Springer, Heidelberg (2005)

14. Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,
Vreeswijk, G., Willmott, S.: Towards an argument interchange format. The Knowledge En-
gineering Review 21 (2006)

15. Lambert, D., Robertson, D.: Matchmaking Multi-Party Interactions Using Historical Perfor-
mance Data. In: 4th International Joint Conference on Autonomous Agents and Multi-Agent
Systems, Utrecht, The Netherlands (2005)

16. Osman, N., Robertson, D.: Dynamic Verification of Trust in Distributed Open Systems. In:
20th International Joint Conference on Artificial Intelligence, Hyderabad, India (2007)

17. Quan, X., Walton, C., Gerloff, D., Sharman, J., Robertson, D.: Peer-to-peer experimentation
in protein structure prediction: an architecture, experiment and initial results. In: Interna-
tional Workshop on Distributed, High-Performance and Grid Computing in Computational
Biology, Eilat, Israel (2007)

18. Barker, A., Mann, R.: Integration of multiagent systems to AstroGrid. In: Proceedings of
Astronomical Data Analysis Software and Systems XV. European Space Astronomy Centre,
Spain (2005)

19. Marchese, M., Vaccari, L., Trecarichi, G., Osman, N., McNeill, F.: Interaction models to sup-
port peer coordination in crisis management. In: 5th International Conference on Information
Systems for Crisis Response and Management, Washington, DC (2008)

20. Besana, P., Patkar, D., Barker, A., Robertson, D., Glasspool, D.: Sharing choreographies in
openknowledge: A novel approach to interoperability. Journal of Software 4, 833–842 (2009)

21. Fox, J., Glasspool, D., Patkar, V., Austin, M., Black, E., South, M., Robertson, D., Vincent,
C.: Delivering clinical decision support services: There is nothing as practical as a good
theory. Journal of Biomedical Informatics 43, 831–843 (2010)

Lightweight Coordination Calculus for Agent Systems: Retrospective and Prospective 89

22. Graham, P.: Multi-agent coordination in complex virtual environments. PhD thesis, Infor-
matics, University of Edinburgh (2011)

23. Guo, L., Darlington, J., Fuchs, B.: Towards an Open, Self-Adaptive and P2P Based e-Market
Infrastructure. In: Proceedings of the IEEE International Conference on e-Business Engi-
neering, Macao, China (2009)

24. Robertson, D., Giunchiglia, F.: Programming the social computer. Royal Society Philosoph-
ical Transactions A (special issue: Web Science: A New Frontier) (in press)

The Evolution of Interoperability

Amit K. Chopra1 and Munindar P. Singh2

1 University of Trento, Italy
chopra@disi.unitn.it

2 North Carolina State University, USA
singh@ncsu.edu

1 History

This note is a retrospective review of our 2006 paper [1] on the properties of protocols,
especially interoperability.

A bit of history is in order. By 2006, the importance of a social semantics for proto-
cols was well-established in the multiagent systems community. Further, commitments
had emerged as a preeminent abstraction for capturing the semantics. The big advan-
tage was that specifying the meaning of protocol messages in terms of the commitments
among agents enabled the agents to act flexibly.

Informally, the notion of flexibility derives from reasoning about the legal executions
from a global perspective: if the set of legal executions of a protocol is a subset of those
of another, then the latter is more flexible. For example, all other things being equal,
a protocol that enables merchants and customers to exchange goods and payment in
any order is more flexible than one that only supports payment before goods. Specify-
ing protocols in terms of commitments promotes flexibility because compliance with
a protocol amounts to fulfilling one’s commitments. This in principle frees a protocol
designer from the necessity of specifying the order of messages.

Flexibility is, of course, highly desirable for engineering multiagent systems. It ties
in well with qualities that are commonly ascribed to agents—proactivity, opportunism,
intelligent exception-handling, and so on. Flexibility is good from the business perspec-
tive: the more flexibly one can act the greater are the opportunities for engaging others
in business. For example, by adopting a protocol that enables payment and goods to be
exchanged in any order, a merchant can also engage customers who are unwilling to
make their payments before the delivery of goods.

2 Distributed Enactment

Let us revisit the above assumption that increased flexibility offers expanded possibil-
ities for engaging others. Note that protocols are enacted by agents in distributed set-
tings. In such settings, it is difficult to ensure that the agents operate in lockstep with one
another. Specifically, the agents may send and receive messages as they please without
being made to block for another agent. This phenomenon is commonly referred to as
asynchrony. About the only constraint we can rely upon is that the receipt of a message
is causally later than its sending. Asynchrony makes interoperation challenging. And

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 90–94, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Evolution of Interoperability 91

without interoperability, there can be no meaningful engagement. As a result, increased
flexibility might not improve the opportunities for engagement in practice.

For concreteness, let us assume reliable, noncreative, order-preserving, point-to-
point messaging. Even so, unexpected things could happen during enactment. Consider
two agents who have adopted roles in some protocol. Even in acting according to the
protocol, their messages to each other could cross in transit. For example, consider that
a merchant’s cancellation of an offer it had made earlier to some customer crosses in
transit the customer’s payment for the offered items. We naturally ask: what is the state
of this interaction? Should the customer’s payment entitle it to the items offered or
should the payment be considered as having been made too late? Answering this ques-
tion is important to enabling meaningful engagement. In scenarios involving more than
two agents, the problem is exacerbated by the fact that an agent would in general lack
knowledge of the messages exchanged by agents other than itself.

Perhaps the most commonly adopted solution today is to assume synchronous com-
munication, which means that when an agent sends a message, it waits to take its next
step until it receives an acknowledgment for the message it has sent. Synchronous com-
munication is ill-suited to distributed settings since it creates delays corresponding to
message roundtrips, and effectively makes one party dependent upon progress by an-
other. Another common solution is to specify protocols so that if agents were to follow
them, then the scenario of their messages crossing would not even arise. This is achieved
quite simply by specifying protocols in terms of a progression of interaction state and
ensuring that in each state, only one agent can send a message (the recipient would
eventually block pending receipt of the message). In essence, the agents would enact
protocols in close to lockstep synchrony.

Returning to our example, the problem scenario of the cancellation and the payment
crossing could be handled as follows. The merchant would not be allowed to cancel
offers. If it could, it could do so only in some limited period of time (a make up your
mind period) before the sending of payment is enabled. Some protocols may be more
flexible and allow cancellations at any time. However, in that case, when payment and
cancellation cross, the situation for all practical purposes must be handled offline from
the system that the protocol represents. (Assigning priorities to the agents can help de-
cide which of two or more conflicting messages “wins”. However, such priorities alone
cannot synchronize the agents because the agents may since have progressed further.)
So, for all practical purposes, it would seem we are stuck with lockstep synchrony in
protocols. That does not leave the agents much flexibility. Much research in distributed
systems arises from relaxing synchronous enactment in one way or another [11].

It was the thinking leading up to our 2006 paper [1] that made the tension between
flexibility and interoperability clear to us. In the paper, we defined the notion of con-
formance with protocols based on commitments. This notion afforded designers much
flexibility in building agent implementations. We defined interoperability following the
more traditional manner of distributed systems research (based on the absence of dead-
locks). We noted that a conformant agent may be noninteroperable with other agents.
(In subsequent work not dealing with commitments [2], we revised conformance to be
an interoperability preserving relation.) Winikoff [3] also noted the challenge of inter-
operability with protocols.

92 A.K. Chopra and M.P. Singh

Recall that the motivation behind commitment protocols was to enable agents to
interact as flexibly as possible. An agent can do or communicate anything anytime; it is
compliant as long as it fulfills its commitments. However, without reconciling flexibility
with interoperability, none of the flexibility could be realized in practice. Since 2006,
reconciling flexibility with interoperability has become an important research direction.

3 Commitment-Level Interoperability

We have since made substantial progress on this issue. The key for us was to think
in terms of interoperability conceptually. Interoperability is about the assumptions that
agents make of each other. When the assumptions are compatible, the agents are inter-
operable. Traditionally, the assumptions have taken an operational form: they specify
the order in which each agent expects to observe messages. A protocol is a global spec-
ification of assumptions: we can derive from it the assumptions relevant to any single
participant. Traditionally, protocols for distributed systems have been specified opera-
tionally (for instance, as a finite state machine).

What made the difference in our work was the realization that for commitment pro-
tocols, the assumptions among the agents are the commitments themselves, not the or-
derings of the messages they exchange. Reconstructing the above problem scenario in
terms of commitments, the problem is that the customer would infer that the merchant
is, on account of the payment, committed to sending the items offered, whereas the
merchant, on account of the cancellation, would infer that it is not. In other words, they
would have an incompatible view of the state of the interaction, and their engagement
would break down.

The foregoing motivates alignment as a definition of interoperability expressed in
terms of commitments that we formalized in 2008 [5] and 2009 [4].

We informally state this definition below. We use the notation C(x, y, r, u) to mean
that agent x commits to agent y that if condition r holds, it will bring about condition u.
In this definition, the local perspective of an agent refers to the sequence of messages it
has observed, including those it has sent and those it has received; a system execution is
essentially a snapshot in time: it refers to a set of local perspectives, one for each agent.
The meaning of “relevant” in this informal definition is beyond the scope of this paper.

Definition 1. A multiagent system is aligned (interoperable) if and only if, for every
relevant system execution, for every pair of agents (x, y) in the system:

– if the local perspective of y entails a commitment of the form C(x, y, r, u), then the
local perspective of x entails it too.

Essentially what Definition 1 states is an invariant on (relevant) system executions. An
interesting observation from the perspective of accommodating flexibility is that the
above definition does not refer to the sending or receiving of messages by any agent
whatsoever. This lack of consideration on message transmission represents the begin-
ning of freedom from synchronous executions, which facilitates the reconciliation of
flexibility with interoperability.

In 2008, we proposed that commitment protocol specifications specify only mean-
ings of messages, not the orders in which agents should exchange messages—another

The Evolution of Interoperability 93

step in our argument [5]. This was in contrast to earlier work, that relied on ordering and
occurrence constraints on messages in order to talk of interoperability. Even previous
declarative approaches, such as our own [6], sought to capture some aspect of ordering
and occurrence. The step to eliminate all such operational considerations when talking
about meaning was a major step in the development of multiagent protocols.

In 2009, we proposed the computational rules by agents can reason about their com-
mitments locally [4]. These rules ensure that the invariant that Definition 1 refers to
holds regardless of the particular meanings of the messages and independent of the par-
ticular decision-making strategies of the agents. In 2010, we presented an architecture
in which the computational rules constitute a middleware—logically speaking, the final
step of our argument [7].

In reality, the actual thinking and research evolved far more haphazardly than the
steps above might indicate. The main point though is this: we wanted highly flexible
protocols. So we specified protocols in terms of message meanings. However, meaning-
based specifications make interoperability challenging. So we formulated a set of com-
putational rules that guarantee interoperability. The rules form the basis of a middleware
that the agents run upon. From the application (agent) perspective, the middleware of-
fers the guarantee of interoperability; its implementation is, however, transparent to
agents—just as reliable message queues offer guarantees about message delivery, but
are transparent to applications that use them.

4 Conclusions

The knowledge flow between distributed systems research and multiagent systems
research has largely been in one direction: toward multiagent systems research. Dis-
tributed open systems have informed multiagent systems research since the very
beginning [8–10]. The flow need not be one way though. We, as a community of re-
searchers in multiagent systems, place a high value on accommodating the autonomy
of agents. Therefore, we value flexibility in protocol enactment. We value social ab-
stractions. These criteria are not central to traditional distributed systems research, but
are clearly central to practical distributed systems applications. If we formulate prob-
lems keeping our own values in sight, there is a significant potential for influencing the
building of large distributed systems that are comprised of multiple autonomous par-
ties [12]. Dealing with multiple autonomous parties is the need of the moment in areas
such as health care, e-governance, and interorganizational business processes. A recent
collection of manifestos [13] lays out interesting research directions in protocols and
multiagent systems.

Acknowledgments. We thank Michael Winikoff for his helpful comments. Amit
Chopra’s contribution was partially supported by a Marie Curie Trentino Cofund award.
Munindar Singh’s contribution was partially supported by National Science Foundation
under Grant #0910868.

94 A.K. Chopra and M.P. Singh

References

1. Chopra, A.K., Singh, M.P.: Producing Compliant Interactions: Conformance, Coverage, and
Interoperability. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327,
pp. 1–15. Springer, Heidelberg (2006)

2. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice, interop-
erability, and conformance in interaction protocols and service choreographies. In: Proceed-
ings of the 9th International Conference on Autonomous Agents and Multiagent Systems,
pp. 843–850. IFAAMAS (2009)

3. Winikoff, M.: Implementing commitment-based interactions. In: Proceedings of the 6th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, pp. 868–875.
IFAAMAS (2007)

4. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proceedings of the Eighth
International Conference on Autonomous Agents and Multiagent Systems, pp. 937–944.
IFAAMAS (2009)

5. Chopra, A.K., Singh, M.P.: Constitutive interoperability. In: Proceedings of the Seventh
International Conference on Autonomous Agents and Multiagent Systems, pp. 797–804.
IFAAMAS (2008)

6. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocols. In: Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 1345–1352. ACM Press (2006)

7. Chopra, A.K., Singh, M.P.: Elements of a Business-Level Architecture for Multiagent Sys-
tems. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919,
pp. 15–30. Springer, Heidelberg (2010)

8. Huhns, M.N. (ed.): Distributed Artificial Intelligence. Pitman/Morgan Kaufmann, London
(1987)

9. Gasser, L., Huhns, M.N. (eds.): Distributed Artificial Intelligence, vol. II. Pitman/Morgan
Kaufmann, London (1989)

10. Hewitt, C.: Open information systems semantics for distributed artificial intelligence. Artifi-
cial Intelligence 47(1-3), 79–106 (1991)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Proceed-
ings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pp. 273–284 (2008)

12. Chopra, A.K.: Social computing: Principles, platforms, and applications. In: Proceedings of
the 1st Workshop on Requirements Engineering for Social Computing (2011)

13. Chopra, A.K., Artikis, A., Bentahar, J., Colombetti, M., Dignum, F., Fornara, N., Jones,
A.J.I., Singh, M.P., Yolum, P.: Research directions in agent communication. ACM Transac-
tions on Intelligent Systems and Technologies (2011)

1000 Years of Coo-BDI�

Viviana Mascardi and Davide Ancona

DISI - Università di Genova
Via Dodecaneso 35, 16146, Genova, Italy

{viviana.mascardi,davide.ancona}@unige.it

Abstract. The idea of extending the BDI architecture with cooperativ-
ity started shaping in 2003 when two independent proposals to support
cooperation in a BDI setting were presented at DALT. One proposal,
Coo-BDI, extended the BDI architecture by allowing agents to cooper-
ate by exchanging and sharing plans in a quite flexible way; the other
extended the BDI operational semantics for introducing speech-act based
communication, including primitives for plan exchange. Besides allowing
a natural and seamless integration with speech-act based communica-
tion for BDI languages, the intuitions behind Coo-BDI have proved to
be promising and attractive enough to give rise to new investigations. In
this retrospective review we discuss papers that were influenced by Coo-
BDI and we outline other potential developments for future research.

1 Life after Coo-BDI

The paper introducing Coo-BDI [3] ended with the following statement:

We are currently working with the authors of [27] to realize this exten-
sion..

The planned extension has consisted in the design and implementation of a
unified architecture for highly cooperative BDI agents meeting the following
requirements:

– messages adhere to the form proposed in [27], including a 〈tellHow, SenderId,

Plan〉 performative allowing the receiver to add Plan to its plan library if
SenderId is trusted, and

– plans are associated with access specifiers as in Coo-BDI so that agents can
decide when a plan should be shared with others by means of a tellHow

message.

Together with J. F. Hübner and R. H. Bordini we worked one year to finish
the design and implementation of our planned extension, and finally the Coo-
BDI approach was successfully and smoothly integrated with AgentSpeak [9,
29] in the context of Jason [10]. Jason implemented the operational semantics

� There are only 10 types of people in the world: those who understand binary, and
those who don’t.

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 95–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

96 V. Mascardi and D. Ancona

given in [9] as well as the extensions in [27], giving the necessary formal and
practical basis for plan exchange among BDI agent in the way required by Coo-
BDI. The obtained language was named Coo-AgentSpeak and was presented
at AAMAS 2004 [4]. The extensions purposely made to Jason for supporting
Coo-AgentSpeak features are part of the standard Jason release.

Encouraged by the promising results, we explored the applicability of the
Coo-BDI principles to other concrete scenarios. In particular, we were interested
in investigating if and how Web Services (WSs) technologies could support a
component, described in terms of beliefs, desires and intentions, that dynamically
adapts its behavior to new environments (namely, a Coo-BDI agent). A positive
answer came from CooWS [11] which implements the ideas behind the Coo-BDI
by means of WS technologies. In CooWS plan bodies are expressed in BPEL
[1], a high-level scripting language for Web Services built on top of WSDL [12].
Agents able to execute a BPEL specification can execute the body of any plan,
making the exchange of plans among agents a fruitful extension of the basic BDI
architecture.

In parallel with this practical research activity, theoretical work was carried
out for finding a BDI logic suitable for modeling the behavior of Coo-BDI agents.
BDIATL [26] was the result of that effort. By replacing ATL∗ (Alternating-Time
Temporal Logic [2]) with CTL∗ (an extension of Computation Tree Logic and
Linear Temporal Logic [20]) in Rao and Georgeff’s BDI logic [32, 30, 31], BDIATL

allows us to express new commitment strategies that could not be defined there.
In particular, we can express three variants of Rao and Georgeff’s “open minded”
commitment: “independent open minded”, “optimistic open minded”, and “pes-
simistic open minded”. In these commitment strategies the new features that
ATL∗ adds to CTL∗, namely cooperation modalities, are exploited for expressing
the way of thinking of rational Coo-BDI agents.

After the intense activity of the beginning, research on Coo-BDI slackened for
a few years during which we pursued other scientific goals, including that of deep-
ening our knowledge on semantic web issues. When the competencies acquired on
these themes in general, and on ontology matching [21] in particular, were mature
enough, an inspired intuition of A. Ricci gave us the chance to resume Coo-BDI
and apply to it the techniques we were experimenting in other domains. The
result was CooL-AgentSpeak [24], the “Cooperative Description-Logic AgentS-
peak” language integrating Coo-BDI and AgentSpeak-DL [28] and enhancing
them with ontology matching capabilities. In CooL-AgentSpeak, search for a
plan takes place as in Coo-BDI. However, handling an event is more flexible as
it is not based solely on unification and on the subsumption relation between
concepts as in AgentSpeak-DL, but also on ontology matching. Belief querying
and updating take advantage of ontological matching as well. The syntax of the
language and motivating scenarios for its adoption are given. A sketch of the
operational semantics and of how CooL-AgentSpeak can be implemented on top
of JASDL [23] are also provided.

1000 Years of Coo-BDI 97

2 The Lives of the Others

Many research activities carried out under the agents and MASs umbrella share
with Coo-BDI the idea of exchanging knowledge among peers that, otherwise,
could not properly cope with some situations.

M. Baldoni, C. Baroglio, A. Martelli, V. Patti and C. Schifanella [5–8] face the
issue of allowing an entity to play a role in an interaction ruled by a choreography,
even when it owns no policy conforming to that role. The scenario of interest is
Service-oriented Computing. As the authors recognize, in an agent framework
the solution might easily come from a Coo-BDI-like approach: one might think
of dynamically enriching the set of behaviors of the agent, which failed the
conformance test, by asking other agents to supply a correct interaction policy.
In Service-oriented Computing, however, a Coo-BDI-like approach can not be
applied since in that scenario it is fundamental that knowledge is available before
the interaction among the peers takes place.

The work by S. Costantini, P. Dell’Acqua and L. M. Pereira [15] discusses
issues related to learning rules from other agents. The origins of that work date
back to 2005, with the prototype implementation presented in [19], developed in
DALI [18]. In 2008 that implementation has been enriched with temporal-logic-
like operators [14, 17], and experiments in Ambient Intelligent applications have
been carried out [16]. In the more recent paper [15], the authors further enrich
the approach with a meta-evaluation component that prevents agents to blindly
accept and incorporate new knowledge by allowing them to evaluate (and thus
possibly discard) it according to its usefulness. The proposal adds to Coo-BDI
the very relevant aspect of meta-reasoning for evaluating, activating and de-
activating the new knowledge, where evaluation may in principle affect the level
of trust of source agents.

The work by Meneguzzi and Luck [25] describes how a procedural agent model
can be modified to allow an agent to build new plans at runtime by chaining
existing fine-grained plans from a plan library into high-level plans. The applica-
bility of the approach is demonstrated through a modification to the AgentSpeak
architecture, where declarative and procedural aspects are combined together.
Meneguzzi and Luck propose an integration with the Coo-BDI approach as a
possible future extension to their architecture to partially overcome efficiency
issues, since getting plans from other planning-capable agents may significantly
reduce the amount of time spent to create plans from scratch.

The Coo-BDI approach to plan failure has been easily incorporated into the
AgentSpeak meta-interpreter designed and implemented by M. Winikoff [34] and
into the guidelines on how to create multi-agent systems using Erlang provided
by C. Varela, C. Abalde, L. M. Castro and J. Guĺıas [33].

Finally, the framework Agent Coordination and Cooperation Cognitive Model,
AC3M [13], exhibits connections with Coo-BDI as well: the relationships between
coordination, cooperation, BDI and OODA (Observe-Orient-Decide-Act cycle)
are analyzed, with a particular focus on uncertain environments.

98 V. Mascardi and D. Ancona

3 The Future

Research on Coo-BDI has not been financed within a specific project, but has
been mainly driven by the willingness of several researchers to collaborate to-
gether, by exploiting cross-fertilization fostered by their rather different research
backgrounds. Nevertheless, in these eight years the main ideas coming out from
this collaboration have proved to have a certain influence on the research commu-
nity of multi-agent systems, and we believe that there are still many interesting
opportunities for improving and extending them in the near future.

Cooperative multi-agent systems find their natural applications in mobile
code, context-aware and self-adaptive systems, but also semantic web applica-
tions. The most recent and interesting extensions to AgentSpeak discussed in
[24] open new interesting scenarios in the intersection of multi-agent systems
and advanced semantic web applications, including the Linked Open Data and
the Federated Social Web. However, as we highlighted in the IAT 2011 paper,
“cross-ontological” knowledge and reasoning may lead to unwanted behavior.
Precision and recall of the best performing ontology matching algorithms seldom
reach 100% on real ontologies (see http://oaei.ontologymatching.org/2010/
results/benchmarks/index.html), and this means that using real ontologies
and real ontology matchers, wrong matches might be returned, with possibly
destructive consequences.

In order to cope with the intrinsic limitations of ontology matching techniques
available today, we would greatly benefit frommeta-reasoning capabilities similar
to those discussed in [15]. Such capabilities might in fact allow agents to reason
on the consequences of adopting new plans involving cross-ontological knowledge
for ensuring a better control on which plans might be safely incorporated into
the plan base, thus limiting risks.

More in general, safety and security are properties of paramount importance
for cooperative multi-agent systems, especially when exploited in the context of
mobile code, and much work still have to be done to make Coo-BDI usable in
practice in contexts where safety and security are serious concerns. Interesting
research directions include static and dynamic typechecking and verification of
Coo-BDI agents, exploiting for instance session types [22].

The investigation of safety issues and the implementation of CooL-AgentSpeak
in Jason is another short term research goal. The far future is too far to be pre-
dicted (especially when projects are not funded!), but we are confident that we
will be able to talk about Coo-BDI in the next 10000 years1!

References

1. Alves, A., et al.: Web Services Business Process Execution Language version 2.0,
public review draft, August 23 (2006),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

(accessed on August 30, 2011)

1 Check the footnote in the first page...

http://oaei.ontologymatching.org/2010/results/benchmarks/index.html
http://oaei.ontologymatching.org/2010/results/benchmarks/index.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

1000 Years of Coo-BDI 99

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

3. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity.
In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI),
vol. 2990, pp. 109–134. Springer, Heidelberg (2004)

4. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-AgentSpeak: Coopera-
tion in AgentSpeak through plan exchange. In: Proceedings of the 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2004,
pp. 696–705. IEEE Computer Society (2004)

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Interaction Pro-
tocols and Capabilities: A Preliminary Report. In: Alferes, J.J., Bailey, J., May,
W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 63–77. Springer,
Heidelberg (2006)

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: The need of
capability requirements inside choreographies and interaction protocols. In: Yan,
Y., Zhang, L. (eds.) Proceedings of the International Workshop on Service Oriented
Techniques, SOT 2006, pp. 17–24 (2006)

7. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Preserving play-
ers goals: a choreography-driven matchmaking approach. In: Baldoni, M., Bocca-
latte, A., De Paoli, F., Martelli, M., Mascardi, V. (eds.) Proceedings of the 8th
AI*IA/TABOO Joint Workshop “From Objects to Agents”, WOA 2007, pp. 132–
139. Seneca Edizioni Torino (2007)

8. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Reasoning on
choreographies and capability requirements. International Journal of Business Pro-
cess Integration and Management 2(4), 247–261 (2007)

9. Bordini, R.H., Moreira, Á.F.: Proving BDI properties of agent-oriented program-
ming languages. Annals of Mathematics and Artificial Intelligence 42, 197–226
(2004)

10. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

11. Bozzo, L., Mascardi, V., Ancona, D., Busetta, P.: COOWS: Adaptive BDI agents
meet service-oriented computing. In: Gleizes, M.P., Kaminka, G.A., Nowé, A.,
Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) Proceedings of the 3rd European
Workshop on Multi-Agent Systems, EUMAS 2005, p. 473. Koninklijke Vlaamse
Academie van Belie voor Wetenschappen en Kunsten (2005); longer version of this
paper also appeared in the Proceedings of the WWW/Internet 2005 Conference,
edited by P. Isàıas and M. B. Nunes, vol. II, pp. 205–209 (2005)

12. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1, W3C note, March 15 (2001),
http://www.w3.org/TR/wsdl

(accessed on August 30, 2011)
13. Consoli, A., Tweedale, J., Jain, L.C.: An Architecture for Agent Coordination and

Cooperation. In: Apolloni, B., Howlett, R.J., Jain, L.C. (eds.) KES 2007, Part III.
LNCS (LNAI), vol. 4694, pp. 934–940. Springer, Heidelberg (2007)

14. Costantini, S., Dell’Acqua, P., Pereira, L.M.: A multi-layer framework for evolving
and learning agents. In: Proceedings of the AAAI 2008 Workshop on Metareason-
ing: Thinking about Thinking. Stanford University, AAAI Press (2008)

15. Costantini, S., Dell’Acqua, P., Pereira, L.M.: Conditional Learning of Rules and
Plans by Knowledge Exchange in Logical Agents. In: Pasche, A. (ed.) RuleML
2011 - Europe. LNCS, vol. 6826, pp. 250–265. Springer, Heidelberg (2011)

http://www.w3.org/TR/wsdl

100 V. Mascardi and D. Ancona

16. Costantini, S., Dell’Acqua, P., Pereira, L.M., Toni, F.: Learning and evolving agents
in user monitoring and training. In: Proceedings of the 48th National Conference of
the Italian Association for Computer Science and Automatic Computation, AICA
Conference 2010 (2010)

17. Costantini, S., Dell’Acqua, P., Pereira, L.M., Tsintza, P.: Runtime verification of
agent properties. In: Proceedings of the International Conference on Applications
of Declarative Programming and Knowledge Management, INAP 2009 (2009)

18. Costantini, S., Tocchio, A.: The DALI Logic Programming Agent-Oriented Lan-
guage. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp.
685–688. Springer, Heidelberg (2004)

19. Costantini, S., Tocchio, A.: Learning by knowledge exchange in logical agents. In:
Corradini, F., De Paoli, F., Merelli, E., Omicini, A. (eds.) Proceedings of the 6th
AI*IA/TABOO Joint Workshop “From Objects to Agents”, WOA 2005, pp. 1–8.
Pitagora Editrice Bologna (2005)

20. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

21. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
22. Honda, K.: Types for Dynamic Interaction. In: Best, E. (ed.) CONCUR 1993.

LNCS, vol. 715, pp. 509–523. Springer, Heidelberg (1993)
23. Klapiscak, T., Bordini, R.H.: JASDL: A Practical Programming Approach Com-

bining Agent and Semantic Web Technologies. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp.
91–110. Springer, Heidelberg (2009)

24. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: Enhancing
AgentSpeak-DL agents with plan exchange and ontology services. In: Boissier,
O., Bradshaw, J., Cao, L., Fischer, K., Hacid, M.-S. (eds.) Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT
2011, pp. 109–116. IEEE Computer Society (2011)

25. Meneguzzi, F., Luck, M.: Composing High-Level Plans for Declarative Agent Pro-
gramming. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.)
DALT 2007. LNCS (LNAI), vol. 4897, pp. 69–85. Springer, Heidelberg (2008)

26. Montagna, R., Delzanno, G., Martelli, M., Mascardi, V.: BDIATL: An alternating-
time BDI logic for multiagent systems. In: Gleizes, M.P., Kaminka, G.A., Nowé, A.,
Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) Proceedings of the 3rd European Work-
shop on Multi-Agent Systems, EUMAS 2005, pp. 214–223. Koninklijke Vlaamse
Academie van Belie voor Wetenschappen en Kunsten (2005)

27. Moreira, Á.F., Vieira, R., Bordini, R.H.: Extending the Operational Semantics of
a BDI Agent-Oriented Programming Language for Introducing Speech-Act Based
Communication. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT
2003. LNCS (LNAI), vol. 2990, pp. 135–154. Springer, Heidelberg (2004)

28. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-Oriented Pro-
gramming with Underlying Ontological Reasoning. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170.
Springer, Heidelberg (2006)

29. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In: Perram, J.W., Van de Velde, W. (eds.) MAAMAW 1996. LNCS,
vol. 1038, pp. 42–55. Springer, Heidelberg (1996)

30. Rao, A.S., Georgeff, M.P.: Asymmetry thesis and side-effect problems in linear-
time and branching-time intention logics. In: Mylopoulos, J., Reiter, R. (eds.)
Proceedings of the 12th International Joint Conference on Artificial Intelligence,
IJCAI 1991, pp. 498–505. Morgan Kaufmann (1991)

1000 Years of Coo-BDI 101

31. Rao, A.S., Georgeff, M.P.: Deliberation and intentions. In: D’Ambrosio, B., Smets,
P. (eds.) Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence,
UAI 1991. Morgan Kaufmann (1991)

32. Rao, A.S., Georgeff, M.P.: Modelling rational agents within a BDI-architecture.
In: Proceedings of the 2nd International Conference of Principles of Knowledge
Representation and Reasoning, KR 1991. Morgan Kaufmann Publishers (1991)

33. Varela, C., Abalde, C., Castro, L.M., Guĺıas, J.: On modelling agent systems with
Erlang. In: Cesarini, F., Wadler, P. (eds.) 3rd ACM SIGPLAN Workshop on Er-
lang, Proceedings, pp. 65–70. ACM (2004)

34. Winikoff, M.: An AgentSpeak Meta-interpreter and Its Applications. In: Bordini,
R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005.
LNCS (LNAI), vol. 3862, pp. 123–138. Springer, Heidelberg (2006)

A Distributed Architecture for Norm-Aware

Agent Societies: A Retrospective

Andrés Garćıa-Camino1, Juan-Antonio Rodŕıguez-Aguilar2,
Carles Sierra2, and Wamberto W. Vasconcelos3

1 Independent Researcher
andres@garcia-camino.es

2 IIIA-CSIC, Campus UAB 08193 Bellaterra, Catalunya, Spain
{jar,sierra}@iiia.csic.es

3 Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
wvasconcelos@acm.org

Abstract. We provide a retrospective on the research leading to and
following our paper “A Distributed Architecture for Norm-Aware Agent
Societies” [1], presented at DALT 2005. We do so by giving the context
and motivation for that research, listing its contributions, and discussing
the main developments of the research and its impact.

1 Introduction

We provide a retrospective on the research reported in the paper “A Distributed
Architecture for Norm-Aware Agent Societies” [1], presented at DALT 2005.
That paper described a distributed architecture to endow multi-agent systems
with a social layer in which normative positions are explicitly represented and
managed via institutional rules. These rules operate on a representation of the
execution states of a multi-agent system. The paper presented the syntax and se-
mantics of institutional rules and an interpreter for them. The approach achieved
greater precision and expressiveness by having constraints as part of the rules.
Finally, the paper proposed means to connect rules and states in a distributed
architecture, whereby a team of administrative agents employ a tuple space to
guide the execution of a multi-agent system.

This retrospective is organised as follows. In Section 2 we give the context
and motivation for the research. Section 3 reviews the representation of norms
and institutional rules, and mechanisms for processing them. We revisit the
computational infrastructure based on a shared tuple space in Section 4 and in
Section 5 we report on how the research was further developed and its impact
in the state-of-the-art. Finally, we draw conclusions in Section 6.

2 Context and Motivation of Research

The work reported in [1] was carried out within Garćıa-Camino’s PhD research [2].
The work was influenced by research on electronic institutions (EIs, for short),
especially Esteva’s PhD thesis [3], the AMELI middleware [4] and the Electronic

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 102–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Distributed Architecture for Norm-Aware Agent Societies 103

Institutions Development Environment (EIDE) [5]. Another influence was the
Sustainable Lifecycles in Information Ecosystems (SLIE) European project [6].
These efforts helped define a software engineering perspective on electronic in-
stitutions, expanding and grounding earlier theoretical work (e.g., [7,8]).

The research reported in [1] was also motivated by a gap between theoretical
work on norms for multi-agent systems [9,10] and implementation/engineering
concerns. More specifically, we provided clear connections between a declarative
formal specification of norms with agents’ behaviours, also providing a compu-
tational infrastructure to support the implementation of multi-agent systems.

3 Representation and Processing of Norms

Norms are represented in [1] as atomic formulae obl (S,W, Ī), per(S,W, Ī) and
prh(S,W, Ī), standing for, respectively, an obligation, a permission and a prohi-
bition to send a message Ī in a state W of a scene S1. The normative position of
an agent is its “social burden”, that is, the obligations, permissions and prohi-
bitions associated with the agent. We show in Fig. 1 the architecture proposed
in [1] and how its components fit together. The architecture provides a social
layer for multi-agent systems specified via electronic institutions [3]. EIs spec-
ify the kinds and order of interactions among software agents with a view to
achieving global and individual goals. The diagram shows a tuple space in which
institutional states Δ0, Δ1, . . . are stored; these states contain all norms and
other information that hold in specific points of time during the EI enactment.

IAg

GAg GAg

EAg EAg

Electronic Institution

Institutional Agent

. . . Tuple Space
10

Governor Agents

. . .

. . .

External Agents

Fig. 1. Architecture Proposed in [1]

The normative positions of agents
are updated via institutional rules.
These are constructs of the form
LHS � RHS where LHS describes a
condition of the current institutional
state and RHS depicts how it should
be updated, giving rise to the next in-
stitutional state. The architecture is
built around a shared tuple space [11]
– a kind of blackboard system that can
be accessed asynchronously by different
administrative agents. In our diagram
our administrative agents are shown in
grey: the institutional agent updates
the institutional state using the institu-
tional rules; the governor agents work
as “escorts” or “chaperons” to the external, heterogeneous software agents, writ-
ing onto the tuple space the messages to be exchanged.

1 States and scenes are means to break down complex EIs [3,8]. For instance, a virtual
auction institution has scenes addressing agents’ registration, the actual auction room,
payment/delivery scenes and departure scenes. Each scene is decomposed into states,
connected by expected illocutions (messages) from/to the various concerned parties.

104 A. Garćıa-Camino et al.

An important contribution of [1] to research on normative systems has been
the use of rules to update normative positions, adding and removing norms
to/from institutional states. Constraints [12] play a special role in our approach,
allowing a fine-grained and precise representation of the context in which rules
should apply, and how these match with institutional states. A constraint C
is of the form T � T′, where T,T′ are first-order terms, and �∈ {=, �=, >
,≥, <,≤}; Γ = {C1, . . . ,Cn} denotes a set of constraints. Γ1 ! Γ2 holds iff
satisfy(Γ1, Γ

′
1) and satisfy(Γ2, Γ

′
2) hold and for every constraint (⊥1 � X �
1)

in Γ ′
1, there is a constraint (⊥2 � X �
2) in Γ ′

2, such that max (⊥1,⊥2) ≥ ⊥1

and min(⊥1,⊥2) ≤ ⊥1, where ⊥i,
i, i = 1, 2 are arbitrary values. Relation
satisfy(Γ, Γ ′) holds, for two sets of constraints Γ, Γ ′ iff Γ can be satisfied and
Γ ′ is the smallest set obtained from Γ such that:

– if both (T � X), (X �′ T′) ∈ Γ then (T � X �′ T′) ∈ Γ ′.
– if (X � T) ∈ Γ then (−∞ < X � T) ∈ Γ ′.
– if (T � X) ∈ Γ then (T � X <∞) ∈ Γ ′.

Γ ′ contains a syntactic variation of the elements in Γ in which the constraints
of each variable are expanded to be within an interval – two limits, −∞,∞,
represent the lowest and highest value any variable may have.

We extended a conventional rule interpreter [13] to handle constraints in rules,
shown in Fig. 2 as a logic program, interspersed with built-in Prolog predicates
(each clause is shown with a number on its left). Clause 1 contains the top most

1. s∗(Δ,Rs,Δ′)←
findall(〈RHS, Σ〉, (member((LHS � RHS),Rs), s∗l (Δ, LHS, Σ)),RHSs),
s′r(Δ,RHSs,Δ′)

2. s∗l (Δ, LHS, Σ)← findall(σ, sl(Δ, LHS, σ),Σ)
3. sl(Δ, (A ∧ LHS), σ1 ∪ σ2)← sl(Δ,A, σ1), sl(Δ, LHS, σ2)
4. sl(Δ,¬LHS, σ)← ¬sl(Δ, LHS, σ)
5. sl(Δ,B, σ)← member(B · σ,Δ), constrs(Δ,Γ), satisfy(Γ · σ, Γ ′)
6. sl(Δ,C, σ)← constrs(Δ,Γ), {C · σ} � Γ

7. s′r(Δ,RHSs,Δ′)←
findall(Δ′′, (member(〈RHS, Σ〉,RHSs), member(σ,Σ), sr(Δ,RHS · σ,Δ′′)),AllΔ),
merge(AllΔ,Δ′)

8. sr(Δ, (U ∧ RHS),Δ1 ∪Δ2)← sr(Δ,U,Δ1), sr(Δ,RHS,Δ2)
9. sr(Δ,⊕B,Δ ∪ {B}))←

10. sr(Δ,�B,Δ \ {B}))←
11. sr(Δ,⊕C,Δ ∪ {C})← constrs(Δ,C), satisfy([Constr|C], C′)

Fig. 2. Interpreter for Institutional Rules (reproduced from [1])

definition: given a Δ and a set of rules Rs, it shows how we can obtain the next
state Δ′ by finding (via the built-in findall predicate2) all those rules in Rs

2 ISO Prolog built-in findall/3 obtains all answers to a query (2nd argument), record-
ing the values of the 1st argument as a list stored in the 3rd argument.

A Distributed Architecture for Norm-Aware Agent Societies 105

(picked by the member built-in) whose LHS holds in Δ (checked via the auxiliary
definition s∗l). This clause then uses the RHS of those rules with their respective
sets of substitutions Σ as the arguments of s′r to finally obtain Δ′.

Clause 2 implements s∗l : it finds all the different ways (represented as individ-
ual substitutions σ) that the left-hand side LHS of a rule can be matched in an
institutional state Δ – the individual σ’s are stored in sets Σ of substitutions,
as a result of the findall/3 execution. In clause 6, constrs(Δ,Γ), Γ ⊆ Δ, holds
iff for every C ∈ Δ then C ∈ Γ .

Clause 7 shows how s′r computes the new state from a list RHSs of pairs
〈RHS, Σ〉 (obtained in the second body goal of clause 1): it picks out (via predi-
cate member/2) each individual substitution σ ∈ Σ and uses it in RHS to compute
via sr a partial new institutional state Δ′′ which is stored in AllΔ. AllΔ con-
tains a set of partial new institutional states and these are combined together
via the merge/2 predicate – it joins all the partial states, removing any repli-
cated components. A garbage collection mechanism can be also added to the
functionalities of merge/2 whereby constraints whose variables are not referred
in Δ are discarded.

4 Computational Infrastructure

We refer back to Fig. 1: in its centre we show a tuple space [11] – this is a black-
board system with accompanying operations to manage its entries. Our agents,
depicted as a rectangle (labelled IAg), circles (labelled GAg) and hexagons (la-
belled EAg) interact (directly or indirectly) with the tuple space, reading and
deleting entries from it as well as writing entries onto it. We proposed means to
represent institutional states with a view to maximising asynchronous aspects
(i.e., agents should be allowed to access the tuple space asynchronously) and
minimising housekeeping (i.e., not having to move information around).

1 main:-
2 out(current state(0)),
3 time step(T),
4 loop(T).

5 loop(T):-
6 sleep(T),
7 no one updating,
8 in(current state(N)),
9 get state(N,Delta),

10 inst rules(Rules),
11 s∗(Delta,Rules,NewDelta),
12 write onto space(NewDelta),
13 NewN is N + 1,
14 out(current state(N)),
15 loop(T).

Fig. 3. Institutional Agent

The top most rectangle in Fig. 1 depicts our
institutional agent IAg, responsible for updat-
ing the institutional state, applying s∗. The cir-
cles below the tuple space represent the gover-
nor agents GAgs, responsible for following the
EI “chaperoning” the external agents EAgs. The
external agents are arbitrary heterogeneous soft-
ware or human agents that actually enact an EI
to ensure that they conform to the required be-
haviour, each external agent is provided with
a governor agent with which it communicates
to take part in the EI. Governor agents ensure
that external agents fulfil all their social duties
during the enactment of an EI. In our diagram,
we show the access to the tuple space as black
block arrows; communication among agents are
the white block arrows.

106 A. Garćıa-Camino et al.

We show in Fig. 3 a Prolog implementation for the institutional agent IAg. It
bootstraps the architecture by creating an initial value 0 for the current state
(lines 2-3); the initial institutional state is empty. In line 3 the institutional agent
obtains via time step/1 a value T, an attribute of the EI enactment setting up
the frequency new institutional states should be computed.

The IAg agent then enters a loop (lines 5-14) where it initially (line 6) sleeps
for T milliseconds – this guarantees that the frequency of the updates will be
respected. IAg then checks via no one updating/0 (line 7) that there are no
governor agents currently updating the institutional state with their utterances
– no one updating/0 succeeds if there are no updating/2 tuples in the space.
Such tuples are written by the governor agents to inform the institutional agent
it has to wait until their utterances are written onto the space.

1 main:-
2 connect ext ag(Ag),
3 root scene(Sc),
4 initial state(Sc,St),
5 loop([Ag,Sc,St,Role]).

6 loop(Ctl):-
7 rd(current state(N)),
8 Ctl = [Ag|],
9 out(updating(Ag,N)),

10 get state(N,Delta),
11 findall([A,NC],(p(Ctl):-A,p(NC)),ANCs),
12 social analysis(ANCs,Delta,Act,NewCtl),
13 perform(Act),
14 in(updating(Id,N)),
15 loop(NewCtl).

Fig. 4. Governor Agent

When the agent IAg is sure there
are no more governor agents updating
the tuple space then it removes the
current state/1 tuple (line 8) thus
preventing any governor agent from
trying to update the tuple space (the
governor agent checks in line 7 of Fig. 4
if such entry exists – if it does not, then
the flow of execution is blocked on that
line). The agent IAg then obtains via
predicate get state/2 all those tuples
pertaining to the current institutional
state N and stores them in Delta; the
institutional rules are obtained in line
10 – they are also stored in the tuple
space so that any of the agents can ex-
amine them. In line 11 Delta and Rules are used to obtain the next institutional
state NewDelta via predicate s∗/2 and its implementation in Fig 2). In line 12
the new institutional state NewDelta is written onto the tuple space, then the
tuple recording the identification of the current state is written onto the space
(line 14) for the next update. Finally, in line 15 the agent loops3.

Distinct threads will execute the code for the governor agents GAg shown in
Fig. 4. Each of them will connect to an external agent via predicate connect ext

ag/1 and obtain its identification Ag, then find out (line 3) about the EI’s root
scene (where all agents must initially report to [3]) and that scene’s initial state
(line 4). In line 5 the governor agent makes the initial call to loop/1: the Role

variable is not yet instantiated at that point, as a role is assigned to the agent
when it joins the EI. The governor agents then will loop through lines 6-15,
initially checking in line 7 if they are allowed to update the current institutional
state, adding their utterances. Only if the current state/1 tuple is on the space

3 For simplicity we did not show the termination conditions for the loops of the insti-
tutional and governor agents. These conditions are prescribed by the EI specification
and should appear as a clause preceding the loop clauses of Figs. 3 and 4.

A Distributed Architecture for Norm-Aware Agent Societies 107

then does the flow of execution of the governor agent move to line 8, where it
obtains the identifier Ag from the control list Ctl; in line 9 a tuple updating/2
is written out onto the space. This tuple informs the institutional agent that
there are governors updating the space and hence it should wait to update the
institutional state. In line 10 the governor agent reads all those tuples pertaining
to the current institutional state. In line 11 the governor agent collects all those
actions send/1 and receive/1 in the EI specification which are associated with
its current control [Ag,Sc,St,Role]. In line 12, the governor agent interacts
with the external agent and, taking into account all constraints associated with
Ag, obtains an action Act that is performed in line 14 (i.e., a message is sent or
received). In line 14 the agent removes the updating/2 tuple and in line 15 the
agent starts another loop.

We were able to claim that the resulting society of agents is endowed with
norm-awareness because their behaviour is regulated by the governor agents de-
picted above. The social awareness of the governor agent, in its turn, stems from
two features: i) its access to the institutional state where obligations, prohibi-
tions and permissions are recorded (as well as constraints on the values of their
variables); ii) its access to the set of possible actions prescribed in the protocol.
With this information, we can define various alternative ways in which gover-
nor agents, in collaboration with their respective external agents, can decide on
which action to carry out.

social analysis(ANCs,Delta,Act,NewCtr):-
remove prhs(ANCs,Delta,ANCsWOPrhs),
select obls(ANCsWOPrhs,Delta,ANCsObls),
choose customise(ANCsObls,Delta,Act,NewCtr).

Fig. 5. Definition of Social Analysis

We show in Fig. 5 a definition
for predicate social analysis/4.
Its first subgoal removes from the list
ANCs all those utterances that are
prohibited from being sent, obtain-
ing the list ANCsWOPrhs. The second
subgoal ensures that obligations are
given adequate priority: the list ANCsWOPrhs is further refined to get the obli-
gations among the actions and store them in the list ANCsObls – if there are
no obligations, then ANCsWOPrhs is the same as ANCsObls. Finally, in the third
subgoal, an action is chosen from ANCsObls and customised in collaboration with
the external agent.

5 Developments and Impact

The research reported in [1] was further developed in many ways. We refined, ex-
tended and related the rule-based approach to normative-oriented programming
desiderata in [14], also exploring the approach in an auction scenario. In [15]
we consolidated our approach, offering the pragmatics of our rule-based lan-
guage, and how to represent and enact protocols; in that paper we also carry
out an expressiveness analysis of the language, comparing it with other similar
approaches. A shorter version of [1] appears as [16].

Our rule-based approach to norm-oriented programming and the tuple-space
centered architecture allowed us to extend AMELI [4]: in [17] we presented

108 A. Garćıa-Camino et al.

AMELI+, a layered and distributed architecture with a team of administrative
agents responsible for the “housekeeping” of rules and propagation of norms
among various concurrent scenes. In [18] we developed an algorithm to deal
with normative conflicts in a distributed setting.The use of constraints to in-
crease precision and expressiveness of a formalism influenced the work reported
in [19,20]. However, in this research constraints were used in the norm themselves
(and not in rules adding/removing norms). The approach to use rules in order to
give norms an operational semantics was also adopted in [21] and, subsequently,
in [22].

The seminal ideas of [1] provided us with a vantage point from which various
issues could be conveniently explored. The impact of this research was very no-
ticeable, leading to distributed and highly scaleable architectures for multi-agent
systems, also providing an explicit account of normative aspects and mechanisms
for their management. Alternative formulations of our distributed architecture
were proposed in [23] and in [24]; the concept of administrative agents stemmed
from early work on EIs [3,7], but in [1] these were presented in a compact and
self-contained fashion, being explicitly related with the information model and
representation of norms.

6 Conclusions

This is a retrospective on the work reported [1], listing its context, the main
ideas and contributions, and assessing its developments, influence and impact.
The proposal of a formalism for norm representation which was expressive yet
of practical use, and coupled with conceptual/architectural concerns, paved the
way to the development of alternative formalisms and associated mechanisms
and architecures.

References

1. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: A
Distributed Architecture for Norm-Aware Agent Societies. In: Baldoni, M., En-
driss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904,
pp. 89–105. Springer, Heidelberg (2006)

2. Garćıa-Camino, A.: Normative Regulation of Open Multi-Agent Systems. PhD
thesis, Universitat Autònoma de Barcelona, Spain (2009); IIIA monography,
Vol. 35

3. Esteva, M.: Electronic Institutions: From Specification to Development. PhD the-
sis, Universitat Politècnica de Catalunya, Spain (2003); IIIA monography, Vol. 19

4. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Jennings, N., et al. (eds.) Procs.
3rd Int’l Joint Conf. on Autonomous Agents & Multiagent Systems (AAMAS
2004), pp. 236–243. ACM (2004)

5. Esteva, M., Rodriguez-Aguilar, J.A., Arcos, J.L., Sierra, C., Noriega, P., Rosell,
B., de la Cruz, D.: Electronic institutions development environment. In: Procs. 7th
Int’l Joint Conf. on Autonomous Agents & Multiagent Systems (AAMAS 2008),
pp. 1657–1658. IFAAMAS, Richland (2008)

A Distributed Architecture for Norm-Aware Agent Societies 109

6. Vasconcelos, W.W., Robertson, D., Agust́ı, J., Sierra, C., Wooldridge, M.J., Par-
sons, S., Walton, C.D., Sabater, J.: A Lifecycle for Models of Large Multi-agent
Systems. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS,
vol. 2222, pp. 297–318. Springer, Heidelberg (2002)

7. Esteva, M., Rodŕıguez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.-L.: On the
Formal Specification of Electronic Institutions. In: Sierra, C., Dignum, F.P.M.
(eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidel-
berg (2001)

8. Vasconcelos, W.: Logic-Based Electronic Institutions. In: Leite, J., Omicini, A.,
Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp. 221–242.
Springer, Heidelberg (2004)

9. Dignum, F.: Autonomous agents with norms. Art. Intell. & Law 7, 69–79 (1999)
10. Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)
11. Carriero, N., Gelernter, D.: Linda in context. Comm. of the ACM 32 (1989)
12. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint

logic programs. Journal of Logic Programming 37, 1–46 (1998)
13. Vianu, V.: Rule-based languages. Annals of Mathematics and Artificial Intelli-

gence 19, 215–259 (1997)
14. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A rule-

based approach to norm-oriented programming of electronic institutions. ACM
SIGecom Exchanges 5, 33–40 (2006)

15. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Con-
straint rule-based programming of norms for electronic institutions. Autonomus
Agents and Multi-Agent Systems 18, 186–217 (2009)

16. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Norm-
oriented programming of electronic institutions. In: 5th Int’l Joint Conf. on Au-
tonomous Agents and Multiagent Systems, AAMAS 2006 (2006)

17. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A., Vasconcelos, W.W.: A Distributed
Architecture for Norm Management in Multi-Agent Systems. In: Sichman, J.S.,
Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI), vol. 4870,
pp. 275–286. Springer, Heidelberg (2008)

18. Gaertner, D., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A., Vasconce-
los, W.: Distributed norm management in regulated multi-agent systems. In: 6th
Int’l Joint Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2007
(2007)

19. Kollingbaum, M.J., Vasconcelos, W.W., Garćıa-Camino, A., Norman, T.J.: Conflict
Resolution in Norm-Regulated Environments Via Unification and Constraints. In:
Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007.
LNCS (LNAI), vol. 4897, pp. 158–174. Springer, Heidelberg (2008)

20. Kollingbaum, M.J., Vasconcelos, W.W., Garćıa-Camino, A., Norman, T.J.: Manag-
ing Conflict Resolution in Norm-Regulated Environments. In: Artikis, A., O’Hare,
G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995,
pp. 55–71. Springer, Heidelberg (2008)

21. Aldewereld, H., Dignum, F., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar,
J.A., Sierra, C.: Operationalisation of norms for usage in electronic institutions. In:
Procs. 5th Int’l Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2006), pp. 223–225. ACM, New York (2006)

110 A. Garćıa-Camino et al.

22. Aldewereld, H., Álvarez Napagao, S., Dignum, F., Vázquez-Salceda, J.: Making
norms concrete. In: Procs. 9th Int’l Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pp. 807–814. IFAAMAS, Richland (2010)

23. Okuyama, F., Bordini, R., da Rocha Costa, A.: A Distributed Normative In-
frastructure for Situated Multi-agent Organisations. In: Baldoni, M., Son, T.C.,
van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397,
pp. 29–46. Springer, Heidelberg (2009)

24. Felićıssimo, C.H., de Lucena, C.J.P., Briot, J.P.: A norm-based approach for the
modeling of open multiagent systems. In: Procs. Int’l Conf. on Agents & Artificial
Intelligence (ICAART 2009), pp. 540–546 (2009)

Speech-Act Based Communication:

Progress in the Formal Semantics
and in the Implementation of Multi-agent

Oriented Programming Languages

Álvaro F. Moreira1, Renata Vieira2, and Rafael H. Bordini1

1 Institute of Informatics
Federal University of Rio Grande do Sul

CP 15064, CEP 91501-970, Porto Alegre – RS, Brazil
{alvaro.moreira,r.bodini}@inf.ufrgs.br

2 Faculdade de Informática
Pontif́ıcia Universidade Católica do Rio Grande do Sul
CP 275, CEP 93022-000, Porto Alegre – RS, Brazil

renata@pucrs.br

Abstract. In this paper we revisit the motivations and the initial de-
velopments that led to our DALT 2003 paper Extending the Operational
Semantics of a BDI Agent-Oriented Programming Language for Introduc-
ing Speech-Act Based Communication. We then discuss our own follow-up
work which consisted in formally defining a larger set of speech-act based
performatives and deploying them in Jason, a fully-fledged implementa-
tion of AgentSpeak. Subsequent research referring to the computation-
ally grounded semantics of speech-act based agent communication that
we introduced in that paper is also discussed.

1 Introduction

In [13], we introduced an operational semantics of speech-act based communi-
cation for AgentSpeak(L) [16], defining semantic rules for handling some of the
performatives defined by Searle [19]. We were motivated mainly by two facts:
first we realised that, at that time, the semantics for agent-oriented program-
ming languages was given only at a very abstract level and important social and
pragmatical aspects, such as inter-agent communication, were completely ne-
glected. Second, previous attempts at giving semantics for agent communication
were based on the approach in [11], asserting pre and post conditions on mental
states of agents expressed in the modal logic introduced in [7]. Although that
was a well-established way of defining the meaning of speech-act based commu-
nication, it lacked a computational interpretation and could not, therefore, be
used for guiding the implementation of programming languages.

Given that state of affairs, and also our interest in developing AgentSpeak(L)
into a core language for investigating agent-oriented languages (both on their for-
mal and practical aspects), we endeavoured to define a computationally grounded

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 111–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 Á.F. Moreira, R. Vieira, and R.H. Bordini

semantics for speech-act communication in a way that could be used as a direct
guide for the implementation of multi-agent programming languages.

The operational semantics given in our DALT-2003 paper was an extension
of the formal semantics of AgentSpeak(L) which was first presented in [14]
and further developed in [3]. We started by considering the performatives
Tell ,Untell ,Achieve,Unachieve ,TellHow ,UntellHow and by formalising only
the effects of receiving these illocutionary forces on the computational inter-
pretation — formalised in [3] — of beliefs, desires, and intentions of AgentSpeak
agents.

When working in that direction, we realised it was important to keep track of
the source of the messages being exchanged along an agent’s execution. For that
purpose, all the atomic predicates in the belief base were annotated with their
source of information. Those annotations can be of 3 different types: self when
it comes from the internal plan execution of the agent, percept when it derives
from the agent perception of its environment, and it can also be an agent’s ID
when the message has been sent by another agent.

In our semantics, the performatives Tell and Untell affect the belief base of
the agent by respectively adding and removing beliefs from it. The performa-
tives Achieve and Unachieve add new events in the agent’s set of events. These
events, later when handled in an agent reasoning cycle, might have effects on
the intentions of the receiving agent (i.e., pursuing a new intention with Achieve
and dropping an intention with Unachieve). Plans can also be communicated
with TellHow and UntellHow , for respectively adding and removing a plan from
the agent’s plans library.

At around the same time, some of us were working on a fully-fledged imple-
mentation of an extension of AgentSpeak (that eventually culminated in platform
called Jason [4]). It became clear that the work on the semantics of communi-
cation was crucial and had to be pursued further.

2 Improvements to the Original Proposal

Following the DALT paper, in [22] we extended the formal treatment to a larger
set of performatives. Besides those already considered, we also defined the opera-
tional semantics for sending and receiving AskIf , AskAll , and AskHow messages.

The sender of a message with performative AskIf gets blocked (i.e., the inten-
tion that originated the message sending has its execution suspended) until it
gets a reply saying whether the content of the message is true for the receiving
agent. Similarly, the intention that originated an AskAll gets suspended until
it gets the set of answers that make the content of the message true for the
receiver. The intention that gave rise to an AskHow message is suspended until
it obtains a set of plans that match, for the receiver, the triggering event in the
message’s content.

We also generalised the content of the messages allowing agents to send and
receive sets of predicates and sets of plans instead of only a single predicate and
a single plan (as it was the case in the DALT original paper). As before, our

Speech-Act Based Communication 113

main concern was to give an account of the effects that communication based on
speech-acts have on a computational interpretation of the agent’s mental states.
Hence, questions such as the mechanism for actual message exchange and for
synchronisation were not taken into account in detail, although more of that
aspect was formalised in the extended paper than in the original DALT paper.

3 Some Subsequent Related Research

In this section we discuss subsequent related research in agent programming
that cited our work published in post-proceedings of DALT–2003. Since com-
munication is intrinsically related to collaborative action, task distribution, and
planning, much of the work which took ours as basis go in that direction. One
of the first papers that referred to the operational semantics we presented back
then was [1]. That paper presents an approach for plan exchange among BDI
agent, based on the operational semantics of speech-act based communication
for AgentSpeak, including special illocutionary forces for the communication of
plans.

The importance of communication for achieving goals in multi-agent systems,
and how an agent can delegate tasks to other agents, is stressed in [5]. The
authors of that paper emphasise the importance of having precise semantics for
goal delegation, as well as issues related to commitment, trust, and organisational
structures, as indeed we conjectured when presenting the semantics proposed in
our DALT–2003 paper.

AgentSpeak was extended in two ways in [6]. First, that work puts forward the
use of “execution monitoring” to enable agents to reflect on their past endeav-
ours. Second, they extend the semantics and syntax of the language to allow for
user-defined monitoring strategies. This allows agent designers to use execution
monitoring so as to balance the focus of an agent’s behaviour in a way that is
appropriate for particular application domains.

The notation we first proposed in our DALT 2003 paper was adapted by [9]
in their operational semantics for learning intentionally. Intentional learning in-
tends to keep reasons for action updated while keeping MAS-consistency in order
to facilitate coordination. Such “reasons to act” in some particular way rather
than another are usually expressed in the context part of plans. When an agent
detects a failed execution of some intention, it desires to update its “practical
reasons”.

The work in [2] developed a semantics based on commitments and arguments
for conversational agents. Their formal framework uses three basic elements:
social commitments, actions that agents apply to these commitments, and argu-
ments that agents use to support their actions. Their logical model gathers these
elements and the existing relations between them within the same framework.
The semantics reflects the dynamics of agent communication. It also establishes
an important link between commitments as a deontic concept and arguments.
They offer a way to express the temporal aspects related to the handling of
commitments and arguments. On the other hand, they also capture the actions
that agents are committed to achieve.

114 Á.F. Moreira, R. Vieira, and R.H. Bordini

Unlike mental semantics, the semantics in the work mentioned above can be
verified even for agents that are not programmed using a programming lan-
guage based on mentalistic notions and with formal semantics. The reason is
that it is expressed in terms of public commitments and arguments and not in
terms of private mental states, as originally proposed by Singh [20]. The com-
pliance of agents with this semantics can be checked by verifying whether the
agents behave in accordance with their commitments and arguments. It is thus a
prescriptive theory serving to establish rules regulating the behaviour of agents
when communicating. The authors claim that it can be used for specifying agent
communication protocols implementing such rules. They claim that equipping
these protocols with an operational semantics like the one proposed in our DALT
paper will be of great importance as a framework for designing and implementing
normative agent communication.

In [12], a technique that enables new plans to be added to a plan library,
extending their previous work to include the chaining of subplans, is presented.
The mechanism makes use of plan patterns. In this way, they allow an agent to
discover new ways of achieving goals through local planning and the delegation
of tasks. As cooperation between agents requires communication, they refer to
our DALT paper and they closely followed three of our proposed performatives:
Ask , Tell , and Achieve.

The work in [17] points out that an aspect of agent architecture which is not
always provided in existing agent programming frameworks is a mechanism for
goal adoption. In their approach, the agent is endowed with a set of (suspended)
goals at start-up. They refer to our DALT paper as an example of a framework
that does allow goal adoption through communication.

In [21], richer state and action representations are given and are compared
to the usual definition of a belief base and its update in AgentSpeak. That
paper also refers to our proposed language extension regarding communication
(as presented in our DALT paper), saying that such features can be realised in
the underlying background theory they provide by specifying how beliefs and
goals are affected by speech acts.

Recent work is still alerting to the fact that communication is essential
for complex sophisticated collaborative planning, and goals failure handling
(e.g., [18]. Also such research efforts recognise the role of communication in
rational agents, particularly in the process of goal adoption. In fact, agent com-
munication is presented as a common source of motivation for agent action. In
those recent discussions, our work is still remembered.

4 Future Developments

We believe that the next steps in the development of multi-agent programming
languages will still be focused on communication. This is an aspect where agent-
oriented languages can impact in the software engineering of complex and in-
telligent systems when compared with other general purpose programming lan-
guages. Our work on proposing an operational semantics for modelling the effects

Speech-Act Based Communication 115

of illocutionary forces over a computational interpretation of the mental states
of agents was just a first step in a much larger research programme.

Recently, our research has focused on another important aspect of agent com-
munication which is a common understanding of the information exchanged be-
tween agents. In [15,8] we proposed AgentSpeak-DL, a variant of AgentSpeak(L)
having a description logic, instead of predicate logic, as the underlying logic,
and in [10] an extension of Jason with underlying ontological reasoning was
presented.

Besides allowing more structured belief bases, which are essentially ontologies
defined in a description logic, we believe that the combination of speech-act
based communication with ontological reasoning can open up a richer set of
possibilities for agent deliberation. This is because with such an approach agents
can not only count on reasoning over their internal beliefs but they can also count
on deliberation based on the information that can be derived from the content of
messages from other agents, as well as ontological reasoning based on ontologies
available on the Web.

References

1. Ancona, D., Mascardi, V., Hubner, J.F., Bordini, R.H.: Coo-agentspeak: Coopera-
tion in AgentSpeak through plan exchange. In: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
2004, vol. 2, pp. 696–705. IEEE Computer Society (2004)

2. Bentahar, J., Moulin, B., Meyer, J.-J.C., Lespérance, Y.: A New Logical Semantics
for Agent Communication. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 151–170. Springer, Heidelberg (2007)

3. Bordini, R.H., Moreira, Á.F.: Proving BDI properties of agent-oriented program-
ming languages: The Asymmetry Thesis principles in AgentSpeak(L). Annals of
Mathematics and Artificial Intelligence 42(1-3), 197–226 (2004)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley, Chichester (2007)

5. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI
Agent Systems. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni,
A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg
(2005)

6. Cleaver, T.W., Sattar, A., Ferdous, R.: User defined monitoring strategies for bdi
agent programs. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1055–1057. ACM (2006)

7. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intel-
ligence 42(3), 213–261 (1990)

8. Fuzitaki, C., Moreira, Á., Vieira, R.: Ontology Reasoning in Agent-Oriented Pro-
gramming. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA
2010. LNCS (LNAI), vol. 6404, pp. 21–30. Springer, Heidelberg (2010)

9. Guerra-Hernández, A., Castro-Manzano, J.M., El-Fallah-Seghrouchni, A.: Toward
an AgentSpeak(L) Theory of Commitment and Intentional Learning. In: Gelbukh,
A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 848–858.
Springer, Heidelberg (2008)

116 Á.F. Moreira, R. Vieira, and R.H. Bordini

10. Klapiscak, T., Bordini, R.H.: JASDL: A Practical Programming Approach Com-
bining Agent and Semantic Web Technologies. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397,
pp. 91–110. Springer, Heidelberg (2009)

11. Labrou, Y., Finin, T.: A semantics approach for KQML—a general purpose com-
munication language for software agents. In: Proceedings of the Third Interna-
tional Conference on Information and Knowledge Management (CIKM 1994),
pp. 447–455. ACM Press (1994)

12. Meneguzzi, F., Luck, M.: A new logical semantics for agent communication. In:
From Agent Theory to Agent Implementatio, 6th Internatinal Workshop. Helds in
Conjunction with AAMAS 2008 (2008)

13. Moreira, Á.F., Vieira, R., Bordini, R.H.: Extending the Operational Semantics of
a BDI Agent-Oriented Programming Language for Introducing Speech-Act Based
Communication. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT
2003. LNCS (LNAI), vol. 2990, pp. 135–154. Springer, Heidelberg (2004)

14. Moreira, Á.F., Bordini, R.H.: An operational semantics for a BDI agent-oriented
programming language. In: Proceedings of the Workshop on Logics for Agent-
Based Systems (LABS 2002), Held in Conjunction with the Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR 2002),
Toulouse, France, April 22-25, pp. 45–59 (2002)

15. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-Oriented Pro-
gramming with Underlying Ontological Reasoning. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170.
Springer, Heidelberg (2006)

16. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI),
vol. 1038, pp. 42–55. Springer, Heidelberg (1996)

17. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a uni-
fying framework. In: 7th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, vol. 2,
pp. 713–720. IFAAMAS (2008)

18. Sardiña, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Autonomous Agents and Multi-Agent Sys-
tems 23(1), 18–70 (2011)

19. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge (1969)

20. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE
Computer 31(12), 40–47 (1998)

21. Thielscher, M.: Integrating Action Calculi and AgentSpeak: Closing the gap.
In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13,
pp. 79–89. AAAI Press (2010)

22. Vieira, R., Moreira, Á.F., Wooldridge, M., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
Journal of Artificial Intelligence and Research (JAIR) 29, 221–267 (2007)

Specifying and Enforcing Norms in Artificial

Institutions: A Retrospective Review�

Nicoletta Fornara1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara,marco.colombetti}@usi.ch

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

In this short contribution we explain how our research has evolved from the
publication of the following paper [2] with respect to its relevant aspects. This
paper proposes a model of norms whose content is related to time, which are
specified at design time and therefore are expressed in terms of roles played by
the agents. Those norms have an activation event that is used to express the
template of the events that when happen, provided that certain conditions hold,
transform the norm in a social commitment. This dynamic evolution of norms
is formalized by means of ECA-rules. Another relevant contribution is that the
model of norms presented in this paper makes it possible to specify two types of
sanctions for norms enforcement: active sanctions and passive sanctions.

A significant evolution of this model has been the adoption of a different formal
language for the specification of static and dynamic aspects of norms, a choice
that brought us to extend and partially change our model of norms. Indeed start-
ing from 2009 we adopted standard Semantic Web Technologies [5] for modeling,
describing the evolution in time, and monitoring norms [4,1]. In particular, we de-
cided to represent as much knowledge as possible in OWL 2 DL.

The main advantage of this choice is that when knowledge is represented in
OWL 2 DL the reasoning process is decidable and fairly efficient, and reasoners
are freely available and widely used. Moreover, Semantic Web Technologies are
increasingly becoming a standard for Internet applications, and thus it is easier
to find available ontologies to be re-used for certain application domains (like for
instance the Friend of a Friend (FOAF) ontology), and suitable tools for editing
and implementing them. The fact that SemanticWeb Technologies are standard is
crucial for the realization of very important for open interoperable systems, which
we regard as an important aspect for future applications running on the Internet.

Semantic Web languages are very powerful for representing concepts, domain
knowledge, and for sharing them. Unfortunately, the adoption of these languages
for the specification of the dynamic aspects of norms is not straightforward, and
we had to tackle an open research question: how can a language like OWL be
used for temporal and deontic reasoning?

� The first author is supported by the project number 11115-KG funded by the Hasler
Foundation.

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 117–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 N. Fornara and M. Colombetti

In our first proposal [4] we started to model temporal propositions, social
commitments, and norms using OWL 2 DL1, and with the additional use of
SWRL (Semantic Web Rule Language)2 rules we succeeded in describing their
temporal evolution. We used an OWL 2 DL reasoner (firstly Pellet3 and subse-
quently HermiT 4) for reasoning on the ontology containing individuals used to
represent concrete instances of norms. To perform run-time monitoring of the
evolution in time of the commitments representing specific obligations and pro-
hibitions created when norms are activated, we used a Java program together
with OWL-API for accessing the ontology, in order to simulate the elapsing of
time.

The first problem that we tackled in this phase was related to the representa-
tion of time: we decided to include in our ontology the OWL Time Ontology5,
with some additional SWRL rules used to increase its deductive power; however,
given that the OWL Time ontology has a weak axiomatization of temporal enti-
ties we did not succeed in performing full temporal reasoning. Secondly we had
a problem with the fact that in standard OWL 2 DL, reasoning is carried out
under the open world assumption. But, to deduce that an obligation is violated
if there is no evidence that the relevant action has been performed before its
deadline, we need to perform closed world reasoning on certain classes of action.
To solve this problem we extended the Java program in charge of representing
the elapsing of time with the functionalities necessary to perform close world
reasoning on certain classes. In particular we assumed that when the system is
unable to infer that an action has been performed in the past, this is sufficient
evidence that the action has not been performed.

In our subsequent work [1] we continued this line of research. In particular
we realized that for efficiently modeling and simulating the temporal evolution
of the obligations, prohibitions, and social commitments used to represent the
semantics of certain communicative acts, it is better to model them with differ-
ent constructs. Therefore we started to propose a new ontology of obligations
in OWL 2 DL and SWRL rules, with the following characteristics: (i) obliga-
tions have a content that is related to time in order to represent deadlines, an
activation condition, and an end condition used for deducing if an obligation
is canceled; (ii) the content of an obligation is represented as an OWL class
of possible actions: an instance of such a class has to be performed within a
given deadline in order to fulfill the obligation; (iii) also the activation and end
conditions are represented as OWL classes of events (a superclass of actions).
The main advantage of using OWL classes to specify contents, activation con-
ditions, and end conditions, is that at design time it is possible to describe the
general templates of the required events, while at run time any concrete event

1 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
2 http://www.w3.org/Submission/SWRL/
3 http://clarkparsia.com/pellet/
4 http://owlapi.sourceforge.net/download.html
5 http://www.w3.org/TR/owl-time/, http://www.w3.org/2006/time.rdf

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.w3.org/Submission/SWRL/
http://clarkparsia.com/pellet/
http://owlapi.sourceforge.net/download.html
http://www.w3.org/TR/owl-time/
http://www.w3.org/2006/time.rdf

Specifying and Enforcing Norms in Artificial Institutions 119

satisfying the template will constitute a relevant realization of it, and this can
be established by standard OWL reasoning.

The temporal evolution of the state of the system is simulated using as input
a set of events/actions together with the instant of time at which those events
happen. As in our first proposal [4], we simulate the elapsing of time with a Java
program that asserts that the current instant of time has elapsed. As we have
already pointed out, the Java program is also used to implement the closed-world
reasoning necessary to deduce the state of obligations.

Currently we are continuing this line of research by extending the ontology of
obligations that we use to model the activation of norms, and that we plan to
use to express the semantics of commissive communicative acts (like promises),
with a model of prohibitions and social commitments, that we plan to use to
express more complex norms and the semantics of assertives communicative
acts. All these concepts are part of a larger model of artificial institutions, called
OCeAN, that in 2009 we have formalized using Discrete Event Calculus[3] and
are now specifying using Semantic Web Technologies, with the goal of using it
in the implementation of an e-marketplace. An important aspect of this work
is the study of an efficient software architecture for an open interaction system
designed using these concepts and functionalities. In particular, we plan to study
the mechanism by which agents start to play certain roles, efficient mechanisms
for the enforcement of norms, and how to treat the interconnections among
multiple artificial institutions.

References

1. Fornara, N.: Specifying and Monitoring Obligations in Open Multiagent Systems
using Semantic Web Technology. In: Semantic Agent Systems: Foundations and
Applications. SCI, ch. 2, pp. 25–46. Springer, Heidelberg (2011)

2. Fornara, N., Colombetti, M.: Specifying and Enforcing Norms in Artificial Institu-
tions. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT
2008. LNCS (LNAI), vol. 5397, pp. 1–17. Springer, Heidelberg (2009)

3. Fornara, N., Colombetti, M.: Specifying Artificial Institutions in the Event Calculus.
In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems: Semantics
and Dynamics of Organizational Models. Information science reference, ch. XIV,
pp. 335–366. IGI Global (2009)

4. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. AI Commun. 23(4), 341–356 (2010)

5. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

A Retrospective on the Reactive Event Calculus

and Commitment Modeling Language

Paolo Torroni1, Federico Chesani1, Paola Mello1, and Marco Montali2

1 DISI, University of Bologna, Italy
{paolo.torroni,federico.chesani,paola.mello}@unibo.it

2 KRDB, Free University of Bozen-Bolzano, Italy
montali@inf.unibz.it

Abstract. Social commitments in time: Satisfied or compensated was
the title of a presentation given at the 7th DALT workshop edition [34]
in which we proposed a layered architecture for modeling and reason-
ing about social commitments. We gave emphasis to modularity and to
the need of accommodating certain temporal aspects in order for a com-
mitment modeling framework to be flexible enough to adapt to diverse
commitment theories, and expressive enough to model realistic scenar-
ios. We grounded the framework on two formalisms: the Reactive Event
Calculus (REC) and the Commitment Modeling Language (CML). In
this retrospective, we review recent developments of this line of work,
and discuss our contribution in a broader context of related research.

1 A Short Introduction to REC and CML
Social commitments are a well-known concept in Multi-Agent Systems (MAS)
research [8, 31]. They are commitments made from an agent to another agent to
bring about a certain property. In broad terms, a social commitment represents
the commitment that an agent, called debtor, has towards another agent, called
creditor, to bring about some property or state of affairs, which is the subject of
the commitment. In some instantiations of this idea, such as [18, 37], the subject
of a commitment is a temporal logic formula.

Representing the commitments that the agents have to one another and spec-
ifying constraints on their interactions in terms of commitments provides a prin-
cipled basis for agent interactions [35]. From a MAS modelling perspective, a
role can be modelled by a set of commitments. For example, a seller in an on-
line market may be understood as committing to its price quotes and a buyer
may be understood as committing to paying for goods received. Commitments
also serve as a natural tool to resolve design ambiguities. The formal semantics
enables verification of conformance and reasoning about the MAS specifications
[17] to define core interaction patterns and build on them by reuse, refinement,
and composition.

Central to the whole approach is the idea of manipulation of commitments:
their creation, discharge, delegation, assignment, cancellation, and release, since
commitments are stateful objects that change in time as events occur. Time

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 120–127, 2012.
� Springer-Verlag Berlin Heidelberg 2012

A Retrospective on the REC and CML 121

and events are, therefore, essential elements. Literature distinguishes between
base-level commitments, written C(x, y, p), and conditional commitments, writ-
ten CC(x, y, p, q) (x is the debtor, y is the creditor, and p/q are properties).
CC(x, y, p, q) signifies that if p is brought out, x will be committed towards y to
bring about q.

In our DALT 2009 paper Social commitments in time: Satisfied or compensated
[34], we drew inspiration from work by Mallya et al. [24] and gave emphasis to
temporal aspects of commitments. We wanted to propose an expressive enough
notation, to be able to model commitment properties that have to be satisfied
at specific time points or along specific intervals, and introduce a notion of com-
pensation, with a mind on some scenarios in which social commitments may
realistically be used. To this end, we identified a number of desiderata for so-
cial commitment frameworks. We then defined a new notation for commitments
and commitment specification programs: the Commitment Modeling Language
(CML). Finally, we proposed an abstract commitment framework architecture
and a concrete instance of it that supports CML. In such an instance, temporal
reasoning with commitments is operationalized using the Reactive Event Cal-
culus (REC), and various verification tasks can be accomplished thanks to an
underlying declarative, computational logic-based framework.

The architecture proposed in [34] consists of four layers: a user application
layer, a commitment modeling layer, a temporal representation and reasoning
layer, and a reasoning and verification layer.

On the top layer, the user can define contracts or social interaction rules using
commitments. Such definitions are based on a language provided by the layer
below. The commitment modeling language is implemented using a temporal
representation and reasoning framework, which is in turn built on top of a more
general reasoning and verification framework, which lies at the bottom layer. It
is important to rely on a formal framework that accommodates various forms of
verification, because in this way commitments can be operationalized and the
user can formally analyze commitment-based contracts, reason on the state of
commitments, plan for actions needed to reach states of fulfillment, and track
the evolution of commitments at run-time. Indeed, the underlying reasoning and
verification layer must be powerful enough to accommodate temporal represen-
tation and reasoning.

Our proposal also included a concrete instance of such an architecture. We
report it here (see Fig. 1). At the bottom of the stack lay a number of Pro-
log+CLP modules, which implement the SCIFF family of proof-procedures and
provide the SCIFF language to the layer above [1]. The SCIFF framework is
based on abductive logic programming and it consists of a declarative speci-
fication language and a family of proof-procedures for reasoning from SCIFF
specifications. Some kinds of reasoning are: deduction, hypothetical reasoning,
static verification of properties, compliance checking and run-time monitoring.
In general, SCIFF comes in handy for a number of useful tasks in the context of
agent interaction. Its main metaphor is that of expectation about events. A sim-
ple introduction to SCIFF and its usage is given in [35], where expectations are

122 P. Torroni et al.

User and Domain Knowledge Base

Commitment Modeling Language

Reactive Event Calculus

SCIFF Framework

(CML Program)

(REC Theory)

(SCIFF Program)

(Prolog + CLP)

create, discharge, cancel, ...

initiates, terminates

holds_at, clipped, mvi, E, H, ...

SICStus Prolog clauses,
clp(fd), clp(R), CHR constraints

Fig. 1. Social commitment framework architecture

discussed in relation with commitments. The CLP solvers integrated in SCIFF
can work with discrete and dense domains, depending on the application needs,
and they are particularly useful for reasoning along the temporal dimension.

On top of the SCIFF layer we find the REC: a SCIFF implementation of the
EC, which enables runtime verification [9]. In the third layer, the constructs that
define CML are written by way of REC theories. Thus this layer provides the
top layer with the language to write a CML program. The top layer consists of
user and domain-dependent knowledge encoded into a CML program.

A sample CML program taken from [34] is the following one, which models
a car rental contract inspired from a scenario due to [24]:

create(rent a car(Tc, Te),C(r, c, [Tc, Tc + 2days]great car)). (1)

create(car broken(Tb),C(r, c, [Tr]replace car))←
Tr ≤ Tb + 24hours, holds([Tb]viol(C(r, c, [Ts, Te]great car), Tb)).

(2)

Renting a car at time Tc until Te creates a commitment that for 2 days as of
Tc the car does not break down. The car breaking down at a time Tb creates a
commitment that the car must be replaced within 24 hours of the incident, if
the breakdown has caused a breach of commitment.

2 Recent Developments

Our implementation of REC on top of the SCIFF framework addressed an issue
which had initially been introduced in [35], namely the reconciliation of com-
mitments and expectations. Since the publication of [9], the REC framework
has been fully implemented and is now distributed within the j-REC tool for
run-time monitoring [10]. j-REC, which embeds a tuProlog reasoner,1 can be
downloaded from http://www.inf.unibz.it/~montali/tools.html#jREC.

A significant and recent research direction, which is still subject of ongoing
work, is monitoring and diagnosis of business contract exceptions. In [20–22],

1 http://sourceforge.net/projects/tuprolog

http://www.inf.unibz.it/~montali/tools.html#jREC
http://sourceforge.net/projects/tuprolog

A Retrospective on the REC and CML 123

Kafalı et al. study misalignment of commitments with temporal constraints. Mis-
alignment is an undesirable situation in contract-regulated interactions, because
it may bring about exceptions. To detect and therefore address occurrences of
misalignment in an intrinsically distributed environment such as a multi-agent
system or e-commerce setting, in [20] the authors present a diagnosis algorithm
where agents reason based on the current states of their commitments. They also
provide a method for automatic realignment, which can be applied by an agent
when the diagnosis algorithm identifies a misalignment. REC is used to formalize
the agent interactions in a delivery process scenario inspired from e-commerce.

As misalignments are typically due to mistakes in the delegation process, [21]
and its extended version [22] focus on the notion of delegation. The authors
propose a systematic classification of commitment delegation types, and iden-
tify similarity relations, to formalize connections among commitments. Under-
standing similarities enables handling exceptions in contract-regulated systems.
In particular, it helps identifying possible reasons of exceptions by considering
time-related commitments and“improper”ways of delegating such commitments,
which may bring about inconsistent states. Again, the exception diagnosis frame-
work is implemented in REC.

The theoretical foundations of REC, which we started to investigate in [9],
were further explored in [11]. There we evaluate REC theoretically, discussing
its formal properties and the use of negation, as well as from a practical per-
spective, by means of a examples dealing with quantitative temporal aspects,
violations and compensations. On the application side, a recent survey [7] shows
how REC has been applied to a variety of application domains, namely business
process modeling, service-oriented computing, clinical guidelines and multi-agent
systems. With respect to these different global computing domains, the survey
identifies some challenges posed by concrete monitoring applications, showing
how REC addresses them.

With respect to the multi-agent systems domain, we found that REC is suc-
cessful not only in modeling and reasoning about e-commerce style contracts, but
also in representing and reasoning upon the dynamic relations between agents
and roles in multi-agent organizations [12] and in the context of agent-based sim-
ulation [13], for example to dynamically evaluate whether a running simulation
is compliant with a given commitment-based contract, or to provide useful infor-
mation to the interacting agents, helping them exhibit a compliant behaviour.

3 Related Work

We complete this retrospective with a brief survey on recent work by other au-
thors, which is closely related to [9]. Two very relevant stuies by Yolum et al. were
presented at DALT 2011 [19, 23]. The first one studies commitments in relation
to each other. Following and extending our formalization of commitments based
on REC/CML [34, 9] Günay and Yolum identify key conflict relations among
commitments. Conflict detection enables detecting a commitment violation be-
fore the actual violation occurs during agent interaction, and this knowledge can

124 P. Torroni et al.

be used to guide an agent to avoid the violation. It can also be used during
creation of multi-agent contracts to identify conflicts in the contracts. The au-
thors implement their method in REC. The second article, by Kafalı and Yolum,
proposes a method to check if an agent’s state complies with its projections, i.e.,
what they expect the outcome of a commitment-based contract to be, based on
its content as well as their past experiences and the current world state. These
projected states represent an agent’s expectations from the future. The authors
also propose a satisfiability relation, to check if an agent’s state complies with
its projections, and relate satisfiability with the occurrence of exceptions. The
examples used in the paper show the importance of an explicit representation of
(metric) time, especially in the subject of a commitment.

El Menshawy et al. [16, 26] addresses verification of social commitments and
time following an approach alternative to our rule-based REC/CML languages.
The authors focus on the semantics of commitment operations, and propose a
logical model based on an original extension of CTL∗ with commitments and
operations, and a new definition of assignment and delegation operations by con-
sidering the relationship between the original and new commitment contents.
For the verification task, they rely on off-the-shelf symbolic model checkers such
as NuSMV and MCMAS. The reader may be interested in comparing model
checking-based and logic programming-based verification, especially in the con-
text of domains that naturally lend themselves to declarative specifications, such
as open multi-agent systems whose interactions are specified by social commit-
ments. Montali et al. [28] present such a comparison, based on experimental
results. Unfortunately, there is not much literature on this topic, also due to
lack of benchmarks.

In a number of recent publications [4–6, 3, 25], Marengo et al. focus on the
distinction between regulative and constitutive rules, and propose a new formal-
ization of commitments where temporal regulations are incorporated as content
of the commitments, using LTL as an underlying temporal language. This line of
research suggests a possible future development of the REC/CML framework,
in which a explicit representation of time and the distinction between regulative
and constitutive rules are combined in a unified framework. Some preliminary
results on the formal relations between LTL and SCIFF are discussed in [27].

Frameworks for reasoning about events in time are rapidly gaining impor-
tance. In [2], Artikis et al. review representative approaches of logic-based event
recognition, which is a key issue for many new applications that require efficient
techniques for automated transformation of large data volumes into operational
knowledge. A direction for future research is the evaluation of REC’s reason-
ing efficiency, both theoretically and empirically. Although REC is implemented
and used, such a systematic evaluation is still missing. Efficiency of temporal
reasoning frameworks is an issue also for Patkos et al. [29, 30], who use the
Jess rule-based system2 to implement their Event Calculus reasoner. Urovi et
al. [36] study selected versions of the Event Calculus to support efficient tem-
poral reasoning without compromising the expressive power required to specify

2 http://www.jessrules.com

http://www.jessrules.com

A Retrospective on the REC and CML 125

norm-governed systems. Pros and cons of different implementations of the Event
Calculus, taking into account reactivity, efficiency, intended application, and
amenability to formal analysis, are also discussed by Chesani et al. in [11, 7].

Other interesting proposals for temporal representation and reasoning in the
context of multi-agent systems are the action languages recently introduced by
Pontelli et al., applied to multi-agent planning [15] and commitment specification
[32, 33]. In these last two articles, the authors show how the problem of verifying
commitments or identifying pending commitments can be posed as queries to a
narrative with commitments.

4 Conclusion

The abundance of recent proposals for modeling and representing events in time,
especially in the context of commitments, demonstrates that this is a lively area,
which has a good potential for further growth while posing at the same time
interesting challenges. A reason for that is that there are many new applica-
tions requiring efficient and powerful techniques for describing and monitoring
events in open domains. One such domain is multi-agent systems, where interac-
tions can be described by way of commitment-based contracts. The REC/CML
framework we introduced in [34, 9] proposed an approach to these issues that
aimed to be effective, both in terms of expressiveness (by accommodating metric
time) and practical usability (by relying on procedures that make use of effi-
cient, constraint-based solvers). Our initial work motivated further research, in
contexts such as multi-agent contract exception handling, organization modeling
and simulation.

In the future, we plan to integrate REC/CML in a possible commitment-
based middleware for agent development, such as that envisaged by Chopra
and Singh [14]. There, instead of low-level communication primitives such as
send and receive, the API would expose commitment-based operations such as
create, delegate, update, and so on, and support listeners for commitment-related
events. Another challenge we intend to take on is the systematic evaluation of our
framework. However, performing an objective analysis of REC/CML in relation
with other commitment modeling and verification frameworks could be hard, due
to a lack of suitable benchmarks. For this reason, in our works we took inspiration
from what we considered realistic scenarios, and in [34] we attempted to define
a number of desiderata for a commitment modeling framework.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logic 9(4), 1–43 (2008)

2. Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition.
Knowledge Engineering Review (to appear)

3. Baldoni, M., Baroglio, C., Marengo, E.: Behavior-oriented commitment-based pro-
tocols. In: Proc. 19th ECAI. Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 137–142. IOS Press (2010)

126 P. Torroni et al.

4. Baldoni, M., Baroglio, C., Marengo, E.: Constraints among commitments: Regu-
lative specification of interaction protocols. In: Proc. AC 2010, Toronto, Canada,
pp. 2–18 (May 2010),
http://users.encs.concordia.ca/~bentahar/AC2010/AC2010.htm

5. Baldoni, M., Baroglio, C., Marengo, E.: Commitment-Based Protocols with Be-
havioral Rules and Correctness Properties of MAS. In: Omicini, A., Sardina, S.,
Vasconcelos, W. (eds.) DALT 2010. LNCS, vol. 6619, pp. 60–77. Springer, Heidel-
berg (2011)

6. Baldoni, M., Baroglio, C., Marengo, E., Patti, V.: Constitutive and regulative spec-
ifications of commitment protocols: A decoupled approach. ACM Transactions on
on Intelligent Systems and Technology (to appear)

7. Bragaglia, S., Chesani, F.,Mello, P.,Montali, M., Torroni, P.: Reactive event calculus
for monitoring global computing applications. In: Essays in Honour of Marek Sergot:
Computational Logic for Normative Systems. Springer, Heidelberg (to appear)

8. Castelfranchi, C.: Commitments: From individual intentions to groups and orga-
nizations. In: Proc. 1st ICMAS, pp. 41–48. The MIT Press (1995)

9. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: Proc. 21st IJCAI, pp. 91–96. AAAI (2009)

10. Chesani, F., Mello, P., Montali, M., Torroni, P.: A REC-based commitment
tracking tool. In: 10th AI*IA/TABOO Italian Joint Workshop “From Objects to
Agents”, WOA 2009 (2009)

11. Chesani, F., Mello, P., Montali, M., Torroni, P.: A logic-based, reactive calculus of
events. Fundamenta Informaticae 105(1-2), 135–161 (2010)

12. Chesani, F., Mello, P., Montali, M., Torroni, P.: Role Monitoring in Open Agent
Societies. In: J ↪edrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-
AMSTA 2010, Part I. LNCS, vol. 6070, pp. 112–121. Springer, Heidelberg (2010)

13. Chesani, F., Mello, P., Montali, M., Torroni, P.: Monitoring time-aware com-
mitments within agent-based simulation environments. Cybernetics and Sys-
tems 42(7), 546–566 (2011)

14. Chopra, A.K., Singh, M.P.: Elements of a Business-Level Architecture for Multia-
gent Systems. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009.
LNCS, vol. 5919, pp. 15–30. Springer, Heidelberg (2010)

15. Dovier, A., Formisano, A., Pontelli, E.: An investigation of multi-agent planning
in clp. Fundamenta Informaticae 105(1-2), 79–103 (2010)

16. El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable Semantic Model for Agent
Interactions Using Social Commitments. In: Dastani, M., El Fallah Segrouchni, A.,
Leite, J., Torroni, P. (eds.) LADS 2009. LNCS, vol. 6039, pp. 128–152. Springer,
Heidelberg (2010)

17. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents:
A road map of current technologies and future trends. Computational Intelli-
gence 23(1), 61–91 (2007)

18. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent
communication language. In: Proc. 1st AAMAS, pp. 536–542. ACM Press (2002)

19. Gunay, A., Yolum, P.: Detecting Conflicts in Commitments. In: Sakama, C., et al.
(eds.) DALT 2011. LNCS (LNAI), vol. 7169, pp. 51–66. Springer, Heidelberg (2012)

20. Kafalı, Ö., Chesani, F., Torroni, P.: What Happened to My Commitment? Ex-
ception Diagnosis among Misalignment and Misbehavior. In: Dix, J., Leite, J.,
Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS (LNAI), vol. 6245, pp.
82–98. Springer, Heidelberg (2010)

21. Kafali, O., Torroni, P.: Diagnosing commitments: delegation revisited (extended
abstract). In: Proc. 10th AAMAS, IFAAMAS, pp. 1175–1176 (2011)

http://users.encs.concordia.ca/~bentahar/AC2010/AC2010.htm

A Retrospective on the REC and CML 127

22. Kafalı, Ö., Torroni, P.: Social Commitment Delegation and Monitoring. In: Leite,
J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011.
LNCS, vol. 6814, pp. 171–189. Springer, Heidelberg (2011)

23. Kafali, O., Yolum, P.: A distributed treatment of exceptions in multiagent contracts
(preliminary report). In: Proc. 9th DALT, pp. 65–78 (2011)

24. Mallya, A.U., Yolum, p., Singh, M.P.: Resolving Commitments among Autonomous
Agents. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182.
Springer, Heidelberg (2004)

25. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A.K., Patti, V., Singh, M.P.:
Commitments with regulations: Reasoning about safety and control in Regula.
In: Proc. 10th AAMAS, IFAAMAS, pp. 843–850 (2011)

26. Menshawy, M.E., Bentahar, J., Qu, H., Dssouli, R.: On the verification of social
commitments and time. In: Proc. 10th AAMAS, IFAAMAS, pp. 483–490 (2011)

27. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
A Logic-Based Approach. LNBIP, vol. 56, pp. 383–385. Springer, Heidelberg (2010)

28. Montali, M., Torroni, P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello,
P.: Verification from Declarative Specifications Using Logic Programming. In: Gar-
cia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 440–454.
Springer, Heidelberg (2008)

29. Patkos, T.: A formal theory for reasoning about action, knowledge and time. PhD
thesis, Department of Computer Science, University of Crete, Greece (2010)

30. Patkos, T., Plexousakis, D.: Efficient epistemic reasoning in partially ob-
servable dynamic domains using hidden causal dependencies. In: Proc. 9th
NRAC, pp. 55–62 (2011), http://ijcai-11.iiia.csic.es/files/proceedings/
W4-NRAC11-Proceedings.pdf#page=59

31. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

32. Son, T., Pontelli, E., Sakama, C.: Formalizing Commitments Using Action Lan-
guages. In: Sakama, C., et al. (eds.) DALT 2011. LNCS (LNAI), vol. 7169,
pp. 67–83. Springer, Heidelberg (2012)

33. Son, T., Pontelli, E., Sakama, C.: Formalizing commitments using action languages.
In: Proc. 10th Symposium on Logical Formalizations of Commonsense Reasoning.
AAAI Spring Symposium Series. Stanford University (2011)

34. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time:
Satisfied or Compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B.,
Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg
(2010)

35. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M.,
Lamma, E., Mello, P.: Modelling interactions via commitments and expectations.
In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of
Organizational Models, pp. 263–284. IGI Global, Hershey (2009)

36. Urovi, V., Bromuri, S., Stathis, K., Artikis, A.: Run-time support for norm-
governed systems. Technical Report CSD-TR-10-01, Royal Holloway, University
of London, UK (2010), http://golem.cs.rhul.ac.uk/TR/CSD-TR-10-01.pdf

37. Yolum, P., Singh, M.: Flexible protocol specification and execution: applying event
calculus planning using commitments. In: Proc. 1st AAMAS, pp. 527–534. ACM
Press (2002)

http://ijcai-11.iiia.csic.es/files/proceedings/W4-NRAC11-Proceedings.pdf#page=59
http://ijcai-11.iiia.csic.es/files/proceedings/W4-NRAC11-Proceedings.pdf#page=59
http://golem.cs.rhul.ac.uk/TR/CSD-TR-10-01.pdf

Web Service Composition

via Organisation-Based (Re)Planning

David Corsar, Alison Chorley, and Wamberto W. Vasconcelos

Department of Computing Science, University of Aberdeen, Aberdeen, UK
{dcorsar,a.h.chorley,w.w.vasconcelos}@abdn.ac.uk

Abstract. The benefits of Service Oriented Architectures (SOA) for
business, such as reduced costs and development time, are well recog-
nised, however one of the most challenging steps in using SOA is defin-
ing the correct composition of services for a particular business process.
Quickly recognised as a task where computer automation could help,
various approaches have been proposed, including the use of AI tech-
niques for planning service compositions. However, these techniques can
perform poorly due to the search space explosion caused by dealing with
the vast number of available services that must be composed. In this pa-
per we present an approach to composing Web services, using software
agents to enact plans of actions which achieve organisational goals, where
each action specifies what should be achieved as opposed to which service
to use. When enacting an action, agents use a matchmaking process to
determine services that can be used to achieve the desired effects, intel-
ligently handling any errors that may occur. The action plans are based
on an organisation model in which organisational goals are refined into
scenes, landmarks, and objectives, allowing the set of actions available to
the plan synthesis mechanism to be tailored to the goal being targeted
at that specific time, further reducing the planning search space.

1 Introduction

The Service Oriented Architectures (SOA) paradigm, in which services are com-
posed to form systems which implement business processes, has various tech-
nological and business benefits. Given the (constantly increasing) vast number
of services available on the web, and bearing in mind the dynamic nature of
services (disappearing and re-appearing in different versions), manually build-
ing and managing such compositions (and keeping them up-to-date) has become
very difficult [18,19], and (semi-)automated computer support is necessary.

With the creation of languages such as BPEL4WS [2] and OWL-S [11] for
describing services, and defining the flow of a process with bindings between
services, several researchers have proposed methods for computer support [7],
including the use of AI planning techniques to automatically determine service
compositions (surveyed in [19]). However, as [4] discusses, this task is hard as
these approaches focus on composing stateless atomic services, failing to take
into account the complex business protocols involved. Further, [9] argue that the

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 128–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Web Service Composition via Organisation-Based (Re)Planning 129

high number of available services and service compositions create large planning
search spaces making classical AI approaches to planning unfeasible for this task.

Once the difficult task of defining a composition has been achieved, either
manually or automatically, it is natural to then want to execute and monitor the
composition. While various platforms exist for enacting service compositions ex-
pressed in BPEL4WS (such as Eclipse BPEL1, BPWS4J2), and OWL-S (OWL-S
API3), few projects, such as CASCOM4 and Astro5, incorporate automated com-
position, execution, and monitoring. The handling of errors during the execution
is also important for large scale, intelligent software, however there appears to
be very little work on this (the Astro project and [20] are two exceptions).

The ALIVE project6 [1,14,24] aims to address these issues, by providing a
framework in which plans of abstract actions to achieve organisational goals are
used by agents to dynamically produce a service composition. ALIVE plans do
not refer to actual services; rather each action in a plan defines the preconditions
that must be satisfied before the action is performed and the effects of performing
the action. Agents within a multiagent system (MAS) coordinate the enactment
of the plan, performing each step by selecting an appropriate service to achieve
the action by using a semantic matchmaking process over a repository of service
descriptions. A planning process is used to determine the action plan; however,
as actions are more abstract than services, there should be far fewer actions
than services, with multiple services matching any one action (for example, an
action to purchase a book could be achieved through use of any one of a variety
of services), which helps to reduce the planner’s search space. Further, we make
use of organisation concepts that describe, at an abstract level, how processes
are performed in a given organisation. These descriptions consist of a set of
scenes, each consisting of a set of landmarks which are in turn decomposed into
objectives, to further reduce the planning search space.

ALIVE agents have the ability to manage the service invocation, monitor the
plan enactment, and handle any errors that occur. Error handling is performed
at several levels: errors with service invocation are handled autonomously, with
alternative services being used if possible; if an action cannot be performed, the
agents attempt to produce an alternative plan to achieve the goal; if this is not
possible, organisational changes can be suggested to resolve the problem.

This paper is an extended version of the work reported in [5], and contains
material used in the tutorial “Organisation, Coordination and Norms for Multi-
Agent Systems”, given at the First International Spring School on Declarative
Agent Languages and Technologies (DALT School 2011, Bertinoro, Italy, 10-15
April 2011)7. The paper is structured as follows. In section 2 we discuss related

1 http://www.eclipse.org/bpel/
2 http://www.alphaworks.ibm.com/tech/bpws4j
3 http://www.mindswap.org/2004/owl-s/api/
4 http://www.ist-cascom.org/
5 http://www.astroproject.org/
6 The ALIVE project has been co-funded by the European Commission under the 7th
Framework Programme for RTD (FP7 215890).

7 http://lia.deis.unibo.it/confs/dalt_school/

http://www.eclipse.org/bpel/
http://www.alphaworks.ibm.com/tech/bpws4j
http://www.mindswap.org/2004/owl-s/api/
http://www.ist-cascom.org/
http://www.astroproject.org/
http://lia.deis.unibo.it/confs/dalt_school/

130 D. Corsar, A. Chorley, and W.W. Vasconcelos

service composition approaches. In section 3 we provide an illustrative use case.
In section 4 we introduce the ALIVE architecture. In section 5 we discuss how
model-driven development is used in ALIVE for the purposes of planning. In
section 6 we discuss how organisation-based plans for service composition are
generated and enacted. In section 7 we evaluate our approach, and in section 8
we provide concluding remarks.

2 Related Work

Various approaches to automated service composition have been proposed in the
literature, in this section we briefly present approaches based on two different
planning frameworks, namely centralised and decentralised [9].

Centralised approaches are characterised by the synthesis of plans composed
of basic actions, defined in terms of preconditions and effects, that move from
an initial world state to some goal state. To achieve this, centralised approaches
make use of AI planning techniques combined with service descriptions defined
in terms of preconditions and effects. Roa et al [19] survey a variety of such
approaches for web service composition, which make use of mechanisms such as
HTN planing [22], planning rules [13], or logic programming [12].

Decentralised approaches attempt to develop plans through the use of agents,
each of which has access to a set of Web services and the agents work together
to develop a plan (service composition) that will take them from an initial state
to a goal state. A key step in the decentralised approach is that, before agents
can work together to build a plan, a filtering process is performed to restrict the
services available to each agent, in order to make the problem tractable.

The CASCOM project is one of only two approaches we have found using
this approach. In the CASCOM approach [10], organisation information is used
to filter the services available to each agent, and for selecting services to be
considered for inclusion in a composition. An ontology of roles and interactions
is used to define the roles each agent plays and to extend service descriptions to
specify the roles that provide the service and who the service depends on. These
are then used in service matchmaking and service filtering for composition. In
service matchmaking, agents requesting a service pass a query which includes
the desired provider roles and the roles the requestor can play; this is used by
the matchmaker along with the role ontology’s taxonomy to select and rank
services based on which roles provide the service and which roles the service is
dependent on. In service filtering for composition, when no single suitable service
can be found, all the plans (composite services) that were created in the past
are examined, and ranked according to their relevance based on the class of the
roles in the request and those roles used by the services within the plan.

Falou et al. [9], assume that filtering has been performed, and describe a
subsequent graph theory-based approach to plan building. Briefly, each agent
has a graph of how services available to them can be composed (which are
considered to be partial plans), with a planning agent responsible for receiving
an initial and goal state and determining a combination of partial plans that
will achieve the goal state.

Web Service Composition via Organisation-Based (Re)Planning 131

The ALIVE approach to service composition sits between these two
approaches: a centralised style planning process is used to determine a plan of
actions, with the actual composition evolving as the decentralised agents enact
the plan. As we discuss in section 6, the ALIVE approach also makes more ex-
tensive use of organisation information than [10], and does not require additional
service markup.

3 Example Scenario

We explore a scenario to highlight the challenges involved in providing porta-
bility of communication services to which a customer has subscribed; in such
scenarios, customers, depending on their context, dynamically request new com-
munication services, as well as change and cancel some of their currently con-
tracted services. More specifically, let us assume that a large cell phone operator
would like to extend their communication services to on-line social networks and
virtual communities such as SecondLife8 (SL) or Bebo9.

These services should support communication throughanumber ofdistinct types
of media channels such as mobile telephony, plain old telephony services (POTS),
video, SMS, e-mail, and instantmessaging10 (IM).We notice thatwhen connecting
such disparate channels, our aim is to bring them together to offer users the expe-
rience of a seamless cross-channel communication service. Crucially though, it is
not realistic to pursue näıve unifications of the underlying technologies: our aim is
to produce a virtual communication device – not an IM client glued on to a mobile
phone glued on to an e-mail client. The goal should be to allow the dynamic recon-
figuration of communication pathways based, on the one hand, on the availability
of services (Does the user have a phone? Is the user currently registered to receive
voice-mail messages in Bebo? Is the user currently signed up for a VoIP provider?)
and on the other hand, on the availability of the user.

Social context, once formally captured, provides knowledge that can be ex-
ploited in routing and configuring calls. Players of SL have a social context rep-
resented within SL, such as groups, tribes, friends, and so on, but those players
also have identities on Facebook11, Bebo, Orkut12 and so on. By connecting these
identities (through mechanisms such as OpenID13) social context can be used to

8 http://secondlife.com/
9 http://www.bebo.com/

10 Instant messaging puts together various technologies to allow real-time text-based
communication between two or more participants over the Internet or some form of
internal network/intranet.

11 http://www.facebook.com/
12 http://www.orkut.com
13 OpenID (http://openid.net/) is an open standard for authenticating users which

can be used for access control, allowing users to log on to different services with the
same digital identity where these services trust the authentication body. OpenID
replaces the common login process that uses a login-name and a password, by al-
lowing a user to log in once and gain access to the resources of multiple software
systems.The term OpenID can also refer to an ID used in the standard.

http://secondlife.com/
http://www.bebo.com/
http://www.facebook.com/
http://www.orkut.com
http://openid.net/

132 D. Corsar, A. Chorley, and W.W. Vasconcelos

reconfigure the services required to effect communication on-the-fly. These social
structures involve normative relationships: if A and B are friends on Facebook,
they can write on each others’ “walls”, but that does not mean that, say, they
have rights to view each other’s data on LinkedIn14. However, it might mean
that if A wants to communicate with B, A has permission to use a Facebook
wall as a medium.

In addition to the technological and social constraints above, software solu-
tions to such scenarios must factor in any regulations governing communication
over electronic media. An example of a regulation is the ban the French govern-
ment imposed in 2005 on research institutes and universities, preventing them
from using Skype15, a popular voice-over the Internet protocol (VoIP) that al-
lows users on its peer-to-peer network to speak to each other over the Internet
for free. This ban was due to concerns over the proprietary encryption mecha-
nisms in Skype, and fears that eavesdropping and unauthorised decryption was
technically possible. We thus consider in our scenario explicit regulations from
the real-world which must be factored into the software solution; we observe
that ultimately such regulations should change the behaviour of the software,
but encoding regulations in some source programming language is very labour-
intensive. We argue that regulations are more naturally captured via an explicit
specification of norms (namely, permissions, prohibitions and obligations on com-
ponents of the solution) that, together with the social context, should define the
design space of software solutions.

We call the system under study a “Service Communication Router” (SCR).
The main business goals the SCR has to achieve are:

– To satisfy national and European regulations;
– To make portability and customisation of services as transparent as possible

to the customer; and
– To provide new added-value services.

Within the broad class of scenarios sketched above, we want to make the dis-
cussion more concrete and detail a more concrete example. Let us suppose that
Bob is in a band, the AliveA5Os. They have decided to preview their new track
in SL. Bob uses his SL communicator to send a message to all of his friends.
He types in: “Hi all! Come hear AliveA5Os’ new song, Hawaiian Mussels, at
1900CET at Alive Island”. The following sequence of events unfolds:

1. Alice is in Bob’s tribe on SL. She’s tinkering in SL and receives a message
through her SL IM client.

2. Henry is a friend of Bob on facebook, and also in Bob’s IM friends list. He’s
working at home and receives the message through his MSN client.

3. Hirta and Max are on holiday. They’re friends of Bob on Bebo: when they
next check in to an internet cafe, they notice the message waiting for them
on Bebo.

14 http://www.linkedin.com/
15 http://www.skype.com

http://www.linkedin.com/
http://www.skype.com

Web Service Composition via Organisation-Based (Re)Planning 133

4. Verig is the A&R man at Irish Beach records, and is in Bob’s LinkedIn
network. He’s on the move, and receives a call to his mobile; an automated
voice reads out the message.

5. Estragon is a close friend of Henry; they’re friends on Facebook and in SL.
Estragon is in a meeting at work. When he gets out, he has an email in his
inbox containing the message.

6. Pandora is using Facebook. Her wall is updated with the message from Bob,
and she’s impressed and forwards it to her network of friends. They each
receive the message in the channel, and on the device most appropriate to
them, including Vladimir, who’s playing SL and receives a voice call on his
SL communicator reading him the message forwarded via Pandora.

3.1 Components of the Scenario

In this section we outline the various components of our scenario. Initially, we
list its various stakeholders: we refer to these in a generic fashion, using the roles
they play. The roles we have chosen to represent in our scenario are:

– customers – initiate and receive messages/calls.
– managers – represent interfaces to static or dynamic information repositories
– subscription managers – responsible for subscription look-up
– context managers – responsible for interfacing with the emergent presence

determination service
– profile managers – responsible for handling user preferences.

The following data are available from customers:

– a set of subscribed communication services, each element of which is a tag
corresponding to a particular application (e.g., Facebook, SL, etc.)

– a set of preferences, comprising a specification of mappings from contexts to
channels

– a context that can be determined by accessing the emergent presence engine;
a context is resolved as a set of tags corresponding to contextual states (e.g.,
“in a meeting”, “at work”, etc.).

The channels are the following communication media:

– IM is text-based instant messaging communicated (typically) over XMPP
– SL-Text is text-based communications coming from bespoke subsystems in

SecondLife
– POTS is traditional voice telephony
– VoIP is packet-switched voice over IP infrastructure
– SMS is standard mobile text messaging.

To deal with messages coming into and going out of the SCR we have various
handlers. For the incoming material we have handle im for IM, handle pots for
voice calls over POTS, handle sms for text messages and handle SL text for
chat from SecondLife. For outgoing material we provide delivery components,
namely, deliver sms to deliver text messages, deliver pots to deliver voice calls

134 D. Corsar, A. Chorley, and W.W. Vasconcelos

and deliver email to deliver email. We also consider transformations that are re-
sponsible for performing transcoding tasks. We have perform asr for automated
speech recognition and perform tts for text to speech transformation.

When selecting which channel to use, the SCR makes use of functionality
determine possible that identifies possible communication channels for a par-
ticipant and determine appropriate, that identifies appropriate communication
channels for a participant (based on the participant’s profile and preferences).
The SCR accesses a reasoning service calculate possible that supports deter-
mine possible and calculate appropriate that supports determine appropriate.
The SCR uses functionalities to access other sources of information, namely,
get preferences, that accesses the customers’ profile data, get context, that ac-
cesses emergent presence data, and get subscription, that accesses subscription
data.

4 ALIVE Architecture

Figure 1 outlines the key components of the ALIVE architecture related to plan-
ning and service composition. Each layer models different aspects of the system,
with links between the layers defining correspondences between them. The Or-
ganisation Layer (OL) provides an abstract model of an agent organisation, in-
cluding concepts such as roles and their high level objectives (which are shared
with the organisation). Combined with landmarks and scenes (discussed in sec-
tion 5.1) the OL provides an abstract specification of tasks performed in an

Fig. 1. ALIVE 3-layered architecture

Web Service Composition via Organisation-Based (Re)Planning 135

organisation and how they are achieved. The Coordination Layer (CL) contains
components that are used to synthesise a MAS for the organisation model (OM).
Agents in the MAS play organisational roles, and actions define how organisa-
tional objectives can actually be achieved. This enables the agents to produce
a plan of actions that will achieve those objectives. Agents then coordinate the
plan enactment, enacting actions relevant to their role through use of a match-
making process with the service layer. The matchmaking process analyses service
descriptions to determine a set of service(s) that achieve the desired effects of
a given action. The agent then selects the “best” service and uses it to enact
the action. The Service Layer (SL) uses the OWL-S model to provide seman-
tic service descriptions (SDs), in terms of a signature and capabilities. The SD
can describe a single service, or act as a façade for describing a composition of
services. A framework for invoking services is also provided.

5 ALIVE Models

The ALIVE approach is based on the Eclipse Modeling Framework (EMF)16 im-
plementation of the Model-Driven Development (MDD) [3] approach to software
engineering. In this approach, models are systematically used to represent the
important artifacts of a system, with model transformations used to convert in-
stances of one model to instances of another. The ALIVE architecture uses three
meta-models (top level models), one for each layer, which developers instanti-
ate using graphical editors we have developed, to create models of the different
layers of their system. In this section we provide a summary of the organisation
model (OM) (section 5.1) and coordination model (CM) (section 5.2); the service
model, which provides the service descriptions, is an EMF representation of the
OWL-S ontologies, and so not discussed here (for a description of the OWL-S
ontologies, see [11]).

5.1 The Organisation Model

The Organisation Model (OM) describes an agent organisation, defining the
structure of the society, roles and interactions as intended by the organisation’s
stakeholders. The OM is strongly based on the OperettA approach to organisa-
tion modeling; for more details on OperettA see [15].

Briefly, an organisation model is composed of two structures relevant here.
We have a social structure (SS), which describes the society’s objectives (which
can be recursively decomposed in terms of their sub-objectives), roles (in terms
of their name and objectives shared with the organisation), and coordination
mechanisms (dependencies) between roles. We also have an Interaction Structure
(IS), which describes, at an abstract level, patterns of interaction within the
organisation.

An IS consists of (multiple) scene(s), each describing a scenario of activity
within the organisation, and the acceptable scene transitions (the order in which

16 http://www.eclipse.org/emf

http://www.eclipse.org/emf

136 D. Corsar, A. Chorley, and W.W. Vasconcelos

scenes can be enacted). Each scene is described by its players (roles involved in
the scene), results (achieved landmarks), and landmark patterns. Each landmark
pattern defines a series of landmarks (important states in the scene’s execution,
defined by objectives achieved when that landmark is reached) which along with
partial orderings between the landmarks (specifying that one landmark must be
achieved before another), specify one way to complete the scene.

The use case OM is as outlined in Figure 2, which decomposes (top-down)
the various OM concepts, and shows ordering (left-to-right) between scenes
and landmarks. Briefly, our SCR’s IS contains three scenes, one of which,

Interaction
Structure

Scenes

Landmark
Patterns

Landmarks

Objectives

transfer
_Message

deliver
_Message

provide
_Appropriate
_Channels

provide_User
_Subscription

_Info

provide
_Possible
_Channels

provide
_User

_Context

provide
_User

_Preferences

start
know_All

_Subscriptions

know
_Receiver
_Data

know
_Appropriate
_Channels

message_Sent

LMP_1

Start Communication End

IS

Fig. 2. Organisation Model for the Service Communication Router (SCR)

Communication is expanded further. The Communication scene has one land-
mark pattern, which has five landmarks, ordered via partial orderings into the
sequence: start, know All Subscriptions, know Receiver data, know Appropriate
Channels, and message Sent. The last four landmarks entail the objectives that
must be achieved for the landmark to be reached (for example, the objective pro-
vide User Subscript-ion Info must be achieved to reach the know All Subscrip-
tions landmark). Table 1 specifies the role associated with each objective (the
table also presents actions – these will be introduced and discussed below).

Web Service Composition via Organisation-Based (Re)Planning 137

Table 1. Correspondences between the OL and CL for the SCR Models

Objective Role Action
provide User Subscription Info Subscription Manager provide User Subscription Info

provide Possible Channels Channel Manager provide Possible Channels
provide User Context Context Manager provide User Context

provide User Preferences Profile Manager provide User Preferences
provide Appropriate Channels Channel Manager provide Appropriate Channels

transform Message Transformation Manager transform message
deliver Message Delivery Manager deliver message

5.2 The Coordination Model

The Coordination Model (CM) is composed of three sub-models, each of which
describes a different aspect of the CL. The three sub-models are: the action
model, which describes activities that can be carried out at the CL; the agent
model, which describes the agents that will enact the actions, and the plan/task
model which describes plans of actions and the tasks (planning problems) the
plans are designed to achieve. All these are presented in Section 5.2.

Describing Actions. The action model describes the CL behaviours that
achieve aspects of the OM, such as the objectives, landmarks, and scenes. The
action model is based on the OWL-S process model [11], and describes an action
in terms of its name, inputs, outputs, preconditions, and effect. There are two
types of actions: atomic actions, which are standalone actions that have a direct
effect on the world when performed; and composite actions, which are composed
of other actions and have an indirect effect on the world (the actual effect is
defined by the atomic actions selected to perform the composite action).

There are seven different constructs available for describing how the referenced
actions of a composite action are composed, most of which recursively refer to
other constructs:

1. any-order : a set of constructs to be performed in any order.
2. choice: a set of constructs, one of which should be performed.
3. if-then-else: under a certain condition, perform one construct, else perform

another.
4. perform: refers to an action to be performed.
5. repeat-until : repeat a construct until a condition is true.
6. repeat-while: repeat a construct while a condition is true.
7. sequence: a list of constructs to be performed in order.
8. split : a set of constructs to be performed in parallel.
9. split-join: like split, but control flow should wait for all constructs to be

completed before continuing.

Describing an Agent System. The agent model describes the different agents
that constitute a MAS representing the organisation. Each agent in the MAS
is described in terms of its name, the role(s) from the organisation that it is
playing, and the (CL) action(s) it is capable of performing.

138 D. Corsar, A. Chorley, and W.W. Vasconcelos

Describing Plans and Tasks. The plan/task model describes the action plans
that the agents attempt to enact. The plan model is similar to a grounding of
OWL-S services [11], consisting of a sequence of action groundings. Each action
grounding references the action that should be performed at that point in the
plan and bindings between inputs of that action and actual values. Tasks, which
are used as planning problems for a planner (currently JSHOP2), describe the
initial world state and the action(s) that the planner should attempt to generate
a plan to perform, along with any input values for those action(s).

5.3 Deriving Models

One of the strengths of the Model-Driven Development (MDD) approach is that
it provides strong support for model transformations. Model transformations are
essentially a script consisting of rules specifying how to generate new artifacts
from elements of existing models. There are two types of transformation: model-
to-model (M2M), which generate a new model (instances of a meta-model) from
an existing model (instances of another meta-model); and model-to-text, which
populates templates with values from a model, for example, generating text
specifying a planning domain and problem for a planner. In this section we
describe two M2M transformations used by ALIVE for deriving action (section
5.3) and agent (section 5.4) models.

Deriving Organisational Actions. The OM provides abstract descriptions of
the processes undertaken by an organisation, while the CL actions describe how
OM processes can be achieved by agents. To ensure the agents can determine
how to achieve each OM process, we have defined an M2M transformation script
which generates a set of CL actions from relevant OM concepts. Briefly, the rules
of this M2M transformation are:

1. A composite action with the name “IS” is created based on the Interaction
Structure (IS) in the organisation model. This action is composed of the
following scene actions.

2. For each scene in the IS, a composite action with name “scene <scene-
name>” is created. These actions are composed of the following landmark
pattern actions.

3. For each landmark pattern in a scene, a composite action with name “LMP X”
is created. This action is composed of the following landmark actions.

4. For each landmark in a landmark pattern, a composite action with name
“LM <landmark-name>” is created. This action is composed of the follow-
ing objective actions for every objective entailed by the landmark.

5. For objectives with sub-objectives, a composite action with name “<object-
ive-name>” is created, composed of objective actions for each sub-objective
of the objective.

6. For objectives with no sub-objectives, an atomic action with name “<object-
ive-name>” is created.

Web Service Composition via Organisation-Based (Re)Planning 139

The rules also attempt to add as much detail as possible from the OM, such
as using the scene transitions and landmark patterns to infer an ordering for
the corresponding actions through the use of appropriate control constructs.
Further, every action generated from an objective is assigned as being performed
by the role(s) that include that objective as part of their objectives. However, the
actions produced by these rules are still incomplete: they do not include details
such as inputs, outputs, preconditions, or effects, and it is up to the developer to
use the provided editors to add these details. We explain below how these rules
operate in our example.

5.4 The Derived SCR Action Model

Figure 3 outlines the action model generated by applying the above transforma-
tions to the OM outlined in Figure 2. Briefly, going top-down, a composite ac-
tion is generated for the IS, composed of a sequence of composite actions for each
scene. As the start and end scenes have no landmark patterns, the corresponding
actions are not composed of any actions. The scene Communication action is
composed of the landmark pattern composite action LMP 1, which in turn

LM_start
LM_know_All

_Subscriptions

LM_know
_Receiver

_Data

LM_know
_Appropriate
_Channels

LM
_message

_Sent

LMP_1

scene_Start
scene_

Communication
scene_End

IS

provide_User
_Subscription

_Info

provide
_Possible
_Channels

provide_User
_Context

provide
_User

_Preferences

provide
_Appropriate
_Channels

If...Thenperform_tts

If...Thenperform_att If...Then deliver_email

If...Then deliver_sms

If...Then
deliver

_voicemail

Composed of sequence

Composed of any order

Next / also

Then

Composed of

Else

Atomic Action

Composite
Action

deliver
_message

transform
_message

Fig. 3. SCR actions derived from the OM in Figure 2

140 D. Corsar, A. Chorley, and W.W. Vasconcelos

is composed of a sequence of landmark composite actions. Each landmark
action is composed of an any-order set of actions (so the LM know Receiver Data
action is composed of the atomic actions provide Possible Channels, provide User
Context, and provide User Preferences which can be performed in any order). All
objectives are initially transformed to atomic actions, however, the actions for the
objectives transform message and deliver message have been manually changed
to composite actions, which further break down how to achieve the objective (for
example, the transform message action selects the appropriate transformation ac-
tion based on the channel type of the message and the selected appropriate chan-
nel17). The “If... Then” octagon stands for the “if-then-else” construct to combine
actions (with outgoing arrows specifying the “if” and “else” parts).

Along with generating actions, the transformation script also generates a map-
ping file, which specifies mappings between OM concepts and the corresponding
action. Table 1 lists the objective-action correspondences/mappings for the SCR
example.

Deriving an Agent Model. Once an OM and corresponding set of actions
have been defined, it is possible to derive an agent model for the organisation.
We have defined a M2M transformation script which achieves this using the
following rules:

1. One agent is generated for each role in the organisation. The agent’s name
is generated automatically, and the agent is assigned as playing that role.

2. For every action in the action model, if the action is set as being performed
by the same role that the agent is playing, then that action is added to the
agent’s set of actions.

5.5 Code Generation

In addition to the above M2M transformations, the ALIVE architecture also
uses M2T transformations to generate program code used for plan synthesis
and executable agents. This transformation uses an agent model to generate the
code for a MAS for the AgentScape environment18. The executable MAS con-
sists of generic agents for planning, event reporting, and service matchmaking,
along with a customised agent for each agent defined in the agent model. The
functionalities of the agents are discussed in section 6.

6 Organisation-Based Service Compositions

After the generation of the MAS code, the agents can be injected into AgentScape
from where they plan for and produce Web service compositions to achieve

17 The action perform tts performs a text-to-speech transformation, the action per-
form att performs an audio-to-text transformation.

18 http://www.agentscape.org/

http://www.agentscape.org/

Web Service Composition via Organisation-Based (Re)Planning 141

organisational objectives, landmarks, scenes, and ultimately the entire interac-
tion structure. In this section we discuss how plans are generated and enacted
to produce Web service compositions dynamically generated at runtime.

6.1 Organisation-Based Planning for Web Service Composition

The planning agent is responsible for generating the necessary plan(s) to achieve
the goals of the organisation. To generate plans, the planning agent makes use of
the plan synthesis component, which in turn makes use of the JSHOP2 planner.
We believe however, that the process is general enough to substitute JSHOP2
for another planner:

Step 1 - Action model instance(s) and a task model instance are passed to the
planning component.

Step 2 - The action instance(s) are converted into a planning domain specifica-
tion, expressed in the chosen planner’s syntax through a M2T transforma-
tion; the task model is transformed into the planning problem specification
for the planner.

Step 3 - The (underlying) planner is then invoked, using the generated planning
domain and problem.

Step 4 - Plans generated by the planner are then converted to instances of the
plan model, and returned.

One of the key responsibilities of the planning agent is to decide which action(s)
the task should refer to. At this point, the planning agent makes use of the
OM to reduce the search space for the planner: for example, if the MAS is
attempting to achieve the entire IS, the planning agent can set the task action
to be the action corresponding to the IS; however, the planning agent may decide
(depending on the size of the IS) to split the process down, and produce plans
for each scene, landmark pattern, or landmark by using the corresponding action
for the task. Due to dependencies between the landmarks that often cannot be
handled by the planner (for example, the planner cannot produce a plan for the
LM message sent landmark action until the appropriate channel is known), the
planning agent will typically break down the IS to the low-level landmarks and
use the corresponding actions to create tasks to perform each landmark in turn.

Having selected the level that planning will be performed for (landmark, land-
mark pattern, scene, or IS) the planning agent builds the first task (in our ex-
ample, this would refer to the LM know All Subscriptions action), and requests
plans from the plan synthesis component to perform that task. The returned
plans are checked for norm compliance19 and the “best” plan (the one(s) that
satisfies the most norms and violated the least) is then distributed to the other
agents to perform. Once execution of that plan is complete, the planning agent
will use the agent’s world state (a record of the post-conditions of all actions
performed so far) at that point as the precondition of a task to achieve the

19 Although not discussed in this paper, the OM also defines norms that the agents
must comply with when enacting plans.

142 D. Corsar, A. Chorley, and W.W. Vasconcelos

next landmark (the LM know Receiver Data action) and repeat the plan syn-
thesis/selection/distribution steps. This process is repeated until all landmarks
(and so the scene) are achieved, at which point the planning agent moves on
to the next scene, repeating the process until all the scenes are complete. The
post-conditions of actions are recorded with actual values, and these represent
the state of the world; having the agents probing and sensing the world is not
an option here: for instance, an agent cannot find out whether it sent a message,
or that it received a message by sensing the world, unless we made provisions
for recording, in a persistent fashion, all messages (and these should be differen-
tiated, when sent twice or more).

6.2 Dynamic Web Service Compositions

Each of the agents interacts with the others to decide on the scheduling of
the plan. Once the plan has been scheduled, the agents dynamically build a
composition of Web services to perform the plan. For each action in the scheduled
plan the agent performing the action follows a set sequence:

1. The precondition of the action is checked against the state of the world to
ensure the action can be performed at this time.

2. The agent asks the matchmaking agent for services that will perform the
action.

3. The agent chooses a service and invokes it.
4. The agent updates the state of the world and informs the next agent that it

has finished successfully.

The agents enact all the actions in the plan until the plan is completed, whereby
they inform the planning agent of success. The planning agent will then create
a task for the next landmark and the cycle starts again. It is only at this point
that it is possible to determine the composition of Web services that were used
to perform the plan.

This sequence may fail at several places and is handled in different ways by
the agents:

• The plan synthesis component may return zero plans indicating that there is
no sequence of actions that can perform the task. If this happens, feedback
is provided to the OL suggesting changes to the OM which should help avoid
this problem in the future.

• The scheduling of the plan may fail with the agents unable to decide who will
do which action and when. If this happens, the agents will inform the planning
agent that they need an alternative plan from the set returned by the plan
synthesis component.

• The precondition checking may fail, which means that the action cannot be
performed in the current state of the world. This may be because the action
cannot be performed until another action is performed first, or a preceding

Web Service Composition via Organisation-Based (Re)Planning 143

action has caused unexpected side effects when it was performed. If this hap-
pens, the agent will call for the other agents to stop enacting the plan and
inform the planning agent of the need to replan from the current state of the
world.

• The matchmaker agent may return zero services, indicating that there are
no services currently available that can perform the action. If this happens,
the agent will call for the other agents to stop enacting the plan and inform
the planning agent that it is necessary to replan from the current world state
avoiding the use of this particular action.

• The invocation of a particular service may fail. If this happens, the agent will
try alternative services, possibly asking the matchmaker agent for additional
services, until one succeeds or it runs out of services. If there are no services
that can perform the action then the agent will call for the other agents to
stop enacting the plan and inform the planning agent that it is necessary to
replan from the current world state avoiding the use of this particular action.

When it is necessary to replan due to failure, the planning agent has two strate-
gies for replanning: first it will attempt to replan from the current world state but
removing the problematic action from the actions passed to the plan synthesis
component. If this fails then the planning agent will attempt to find an alterna-
tive way to complete the scene, for example by using an alternative landmark
pattern.

7 Evaluation

We evaluate our approach in two ways. Initially, we address the adequacy of our
approach with respect to desirable features which approaches for engineering the
new generation of open software should possess. Then we contrast the planning
aspects of ALIVE against exhaustive planning approaches.

7.1 Adequacy of Architecture

Approaches (and associated methodologies and tools) for designing and engi-
neering the new generation of open software should possess the following key
features (with their motivation):

1. They should scale up to tackle large-scale applications consisting of hundreds
or thousands of components.

2. Due to the sheer size of the applications being built, they should support self-
governing software, that is, the engineered applications should “look after
themselves”. Approaches should thus explicitly factor in feedback loops that
enable the connection of runtime phenomena with design-time models and
artifacts.

3. To increase application transparency, approaches should accommodate hu-
mans in the feedback and governance loops, allowing for potential human
intervention in the software management processes.

144 D. Corsar, A. Chorley, and W.W. Vasconcelos

4. Approaches should allow alternative points of entry in the design process,
both to accommodate existing systems (and let developers add further miss-
ing parts gradually), as well as different development styles and needs.

5. They should provide a methodology to support and guide the use of (semi-
)automatic tools.

6. They should factor in and incorporate existing open standards, allowing for
extensions to be easily integrated.

We do not claim that this list is exhaustive, nor that it is novel. It overlaps with
challenges and “wish-lists” compiled by the Web services [8], distributed systems
[6] and autonomic computing [17,21] communities; we have, however, provided
a simple rationale for the inclusion of each item in the list, and we picked those
which we can relate with our proposal.

Our approach scales up naturally, addressing item 1 above, as we can accom-
modate arbitrarily large and complex organisations which, on their turn, will give
rise to a high number of software agents; each agent is a self-contained relatively
small program, and agents could run in different computers, with more com-
puters being added when needed (and this without changing our architecture).
Similarly, the matchmaking mechanism could be replicated in many different
computers, avoiding any bottleneck and single-point of failure.

Although not detailed in this paper, an important novelty of the ALIVE
architecture is the explicit modelling of feedback loops. The execution of a sys-
tem engineered with the suite of ALIVE tools causes events to happen; these
events concern invocations of Web services (and their responses), the messages
the agents exchange among themselves and with the matchmaker, and so on.
We have defined an event meta-model, which we use to transform raw events
onto alternative formats for different feedback mechanisms. A first feedback loop
connects the events stemming from the service layer onto the coordination layer,
possibly leading to re-planning. For instance, if attempts to perform an action
(possibly using various different service descriptions and Web services) all failed,
then the agents should re-plan, avoiding that action. A second feedback loop con-
nects the coordination layer with the organisation layer: if the agents run out of
planning options (that is, all plans they attempted failed), then the designers of
the organisation should reassess their specification, paying attention to partic-
ular points highlighted by the feedback mechanism. For instance, an objective
may be unachievable with the current scenes and description of actions and thus
an alternative organisation should be designed. These feedback loops address
points 2 and 3 of the list above.

The ALIVE approach does not advocate a specific entry point in the three-
layered architecture. Indeed, we accommodate three possible development paths,
namely, top-down, bottom-up and middle-out, detailed as follows. The top-down
path starts from the OL, then moves on to the CL and finally the SL. The
bottom-up path addresses legacy systems (making use of Web services): such
systems will generate raw events which are mapped onto our event meta-model,
thus allowing the feedback mechanisms to process them. The feedback mecha-
nism to the CL is also able to suggest a skeleton for a workflow, based on the

Web Service Composition via Organisation-Based (Re)Planning 145

partial order among the events, and this workflow is then used to provide a
design pattern to the OL. The middle-out path explores the CL-OL bottom-
up connection and the CL-SL top-down connection. The different development
paths address desirable feature 4 of the list above.

We developed a methodology to support the design, execution and monitoring
of systems produced via the suite of ALIVE tools. We detail the model-driven
methodology in [23], addressing point 5 of the list of desirable features above.
Finally, we adopted open standards throughout the suite of tools, allowing us
to incorporate (as well as extend) technologies such as Protégé20 to edit parts
of the models, JSHOP2 for planning, and so on. The adoption of standards was
largely facilitated by the meta-modelling development of the ALIVE framework.

7.2 Organisation-Based Planning vs. Exhaustive Planning

We now contrast the organisation-based planning with exhaustive planning. The
organisation model can be seen as a template for partial plans, and these could
be as fine-grained and detailed as the designers wish to (or as the application
requires it to be). The more finely detailed the organisation is, the more restricted
the search space for plans becomes. For instance, a scene with many intermediate
landmarks will give rise to fewer plans than a scene with only a few landmarks
– planning aims at finding a sequence of actions connecting landmarks, and the
more landmarks, the fewer options of actions to connect them.

Another source of simplification in the ALIVE planning activity relates to
the level of abstraction of actions. In our approach actions are not necessarily
equated with individual Web services. Instead, an action is mapped, via the
matchmaking, to a semantic description of a Web service or, potentially, a Web
service composition. The matchmaker thus provides, upon request, different al-
ternative Web services (and/or their compositions) which fulfil the action. Web
service compositions performed by the matchmaker are attempts to fulfil an
action, and this is a simpler problem than assembling a composition for a full-
fledged business workflow. Moreover, the mapping of an action to a Web service
composition could be cached and re-used without the need to assemble the com-
position afresh next time an agent contacts the matchmaker to find means to
execute the same action.

The organisation-based planning thus provides two layers of abstractions
which help reduce the search space of the planning efforts. The first abstrac-
tion layer concerns organisational features such as landmarks and objectives,
which narrow down the planning with abstract actions. The second abstraction
layer stems from the coarse-grained actions, and to which the matchmaker pro-
vides candidate Web services and their compositions. If, however, we have an
organisation model that is underspecified and the actions are defined to reflect
too closely individual Web services, then the benefits stemming from the abstrac-
tion layers disappear and the ALIVE approach will have a similar performance
as ordinary planning for Web service composition.

20 http://protege.stanford.edu

http://protege.stanford.edu

146 D. Corsar, A. Chorley, and W.W. Vasconcelos

Although the performance improvement of ALIVE is a function of the quality
of the design (which is difficult, if not impossible to objectively measure and
provide feedback about), there is an important benefit of our approach when re-
planning is needed. The levels of abstraction mentioned above allows re-planning
in two stages, namely, when choosing actions to connect landmarks (and fulfil or-
ganisational objectives), and when choosing how individual actions are matched
by which Web services. The action-level planning is more stable: when an ALIVE
plan fails, our agents first try to achieve their actions using different Web ser-
vices, but still sticking to their original actions. Only when the agents attempt
all possible means to achieve an action (using the matchmaker to find out about
them), is that an action-level re-planning is performed.

8 Conclusions, Discussion and Future Work

We have presented an organisation-based approach to Web service composition,
using off-the-shelf planning techniques. This approach was investigated within
the EU-funded project ALIVE (FP7 215890), which used knowledge-rich means
to support the engineering of open systems. The approach split the design pro-
cess into three concerns, namely, those relating with organisation (the context),
coordination (how stakeholders acted together) and services (how it was done).
These concerns shaped the layered architecture and model-driven development
allowed these layers/concerns to be formally related.

The task of building Web service compositions was quickly recognised as one
in which automated computer support was not only necessary, but could poten-
tially be provided through the use of techniques such as workflow composition
and traditional AI planning. However, given the vast number of services available
with which to plan, traditional approaches to planning can quickly suffer from
search space explosion. Within the ALIVE project, we have addressed the task
of building Web service compositions by using plans of actions, which specify
preconditions and effects expected of services, but not the actual services them-
selves. This allows for runtime selection of services by agents, capable of not
only consuming the services, but also handling any errors in a variety of ways,
including planning for alternative compositions. By incorporating organisational
knowledge into the process, we further reduce the planner’s workload.

We plan to extend the work in various directions. We have been looking
into ways to formally connect normative aspects and planning, both during the
planning activity (centralised and distributed) as well as its distributed enact-
ment [16]. This would allow norms to influence planning, but to be kept sep-
arate from plan representation and mechanisms, and achieving a separation of
concerns which encourages re-use of norms, and interchangeability of planning
representations and mechanisms. We are also looking into how normative and or-
ganisational aspects can be formally related, with a view to defining mechanisms
to check for properties such as “potential for normative compliance/violation”,
whereby roles, their goals and roles’ relationships may jeopardise compliance
with particular norms (or encourage norm compliance). The ALIVE framework

Web Service Composition via Organisation-Based (Re)Planning 147

and methodology have been used to model two other scenarios, namely, ser-
vice/information provision via a portal, and simulation of emergency relief ef-
forts [1,14]. The use cases have provided useful feedback on the various ALIVE
tools and models and how these can be made more useful; this feedback will help
us improving the next versions. The complete ALIVE suite of tools is available
at http://ict-alive.sourceforge.net/.

References

1. Aldewereld, H., Padget, J., Vasconcelos, W., Vázquez-Salceda, J., Sergeant,
P., Staikopoulos, A.: Adaptable, organization-aware, service-oriented computing.
IEEE Intelligent Systems 25(4), 26–35 (2010)

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
process execution language for web services version 1.1 (May 2003),
http://www.oasis-open.org/committees/download.php/2046/

BPELV1-1May52003Final.pdf (last accessed June 22, 2010)

3. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
IEEE Software 20(5), 36–41 (2003)

4. Bertoli, P., Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H., Wagner, M.:
Continuous orchestration of web services via planning. In: Procs. 19th Int’l Conf.
on Automated Planning and Scheduling (ICAPS 2009). AAAI (2009)

5. Corsar, D., Chorley, A., Vasconcelos, W.: Organisation-based (re-)planning for web
service composition. In: Procs. 12th Int’l Conf. on Information Integration, Web-
based Applications & Services (iiWAS 2010), pp. 649–652. ACM, New York (2010)

6. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and
Design (International Computer Science), 4th edn. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2005)

7. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and
Grid Services 1(1), 1–30 (2005)

8. Ermolayev, V., Keberle, N., Plaksin, S., Kononenko, R., Terziyan, V.: Towards
a framework for agent-enabled semantic web service composition. Int. J. of Web
Services Research 1, 63–87 (2004)

9. Falou, M.E., Bouzid, M., Mouaddib, A.-I., Vidal, T.: Automated web service com-
position: A decentralised multi-agent approach. In: Procs. IEEE/WIC/ACM Int’l
Conf. on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 387–394.
IEEE Computer Society, Los Alamitos (2009)

10. Fernández, A., Ossowski, S.: Exploiting organisational information for service co-
ordination in multiagent systems. In: AAMAS 2008: Proceedings of the 7th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, pp.
257–264. IFAAMAS (2008)

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Scinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services. W3C Member Submission (November
2004), http://www.w3.org/Submission/OWL-S/

12. McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services.
In: Procs. 8th Int’l Conf. on Knowledge Representation and Reasoning (KR 2002),
pp. 482–496. Morgan Kaufmann (2002)

http://ict-alive.sourceforge.net/
http://www.oasis-open.org/committees/download.php/2046/BPELV1-1May52003Final.pdf
http://www.oasis-open.org/committees/download.php/2046/BPELV1-1May52003Final.pdf
http://www.w3.org/Submission/OWL-S/

148 D. Corsar, A. Chorley, and W.W. Vasconcelos

13. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on
the semantic web. The VLDB Journal 12(4) (November 2003)

14. Nieves, J.C., Padget, J., Vasconcelos, W.W., Staikopoulos, A., Cliffe, O., Dignum,
F., Vázquez-Salceda, J., Clarke, S., Reed, C.: Coordination, Organisation and
Model-Driven Approaches for Dynamic, Flexible, Robust Software and Services En-
gineering. In: Dustdar, S., Li, F. (eds.) Service Engineering, pp. 85–115. Springer,
Heidelberg (2011)

15. Okouya, D., Dignum, V.: Operetta: a prototype tool for the design, analysis and
development of multi-agent organizations. In: Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008,
pp. 1677–1678. IFAAMAS, Richland (2008)

16. Oren, N., Vasconcelos, W., Meneguzzi, F., Luck, M.: Acting on Norm Constrained
Plans. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.)
CLIMA XII 2011. LNCS, vol. 6814, pp. 347–363. Springer, Heidelberg (2011)

17. Parashar, M., Hariri, S.: Autonomic Computing: An Overview. In: Banâtre, J.-
P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp.
257–269. Springer, Heidelberg (2005)

18. Pistore, M., Barbon, F., Bertoli, P.G., Shaparau, D., Traverso, P.: Planning and
Monitoring Web Service Composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA
2004. LNCS (LNAI), vol. 3192, pp. 106–115. Springer, Heidelberg (2004)

19. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

20. Saboohi, H., Amini, A., Abolhassani, H.: Failure recovery of composite semantic
web services using subgraph replacement. In: Procs. Int’l Conf. on Computer and
Communication Engineering (ICCCE 2008), pp. 489–493 (2008)

21. Salehie, M., Tahvildari, L.: Autonomic computing: emerging trends and open prob-
lems. SIGSOFT Softw. Eng. Notes 30, 1–7 (2005)

22. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN Planning for Web Service
Composition Using SHOP2. Journal of Web Semantics 1(4), 296–377 (2004)

23. Staikopoulos, A., Saudrais, S., Clarke, S., Riveret, R., Dignum, V.: The ALIVE
methodology. Deliverable 6.1b, version 2.0 (October 2009),
http://www.ist-alive.eu/index.php?option=com docman&task=doc

download&gid=31&Itemid=49 (last accessed June 22, 2010)
24. Vázquez-Salceda, J., Vasconcelos, W.W., Padget, J., Dignum, F., Clarke, S., Roig,

M.P.: ALIVE: an agent-based framework for dynamic and robust service-oriented
applications. In: Procs. 9th Int’l Conf. on Autonomous Agents and Multiagent
Systems(AAMAS 2010), pp. 1637–1638. IFAAMAS, Richland (2010)

http://www.ist-alive.eu/index.php?option=com_docman\&task=doc_download\&gid=31\&Itemid=49
http://www.ist-alive.eu/index.php?option=com_docman\&task=doc_download\&gid=31\&Itemid=49

Agent and Multi-Agent Software Engineering:

Modelling, Programming, and Verification

Extended Abstract
for a Course at DALT Spring School 2011

Rafael H. Bordini

Institute of Informatics
Federal University of Rio Grande do Sul

CP 15064, CEP 91501-970, Porto Alegre – RS, Brazil
R.Bordini@inf.ufrgs.br

In this extended abstract, I shall briefly describe the course I gave at the DALT
International Spring School that took place at the University Residential Centre
in Bertinoro, Italy, in April 2011. Before I do so, I feel compelled to say, although
this was supposed to be a technical paper, that participating in that School was
the most fabulous experience of my academic career. I attended many conferences
and summer schools over the last decade, and in particular all the summer
schools were incredible experiences, but none matched that of the DALT School
in Bertinoro. The University Centre is located in an astounding medieval castle,
where even Dante stayed for some time. The castle is at the top of a hill and the
views from the castle where we were also accommodated are just breathtaking.
The food was excellent and the people involved at all levels incredibly friendly;
the organisation was impeccable. Of course just atmosphere does not make an
academic event that memorable. Perhaps because this was the most specific
summer school I ever attend in regards to the topics covered, which allowed the
courses to go into much more depth than usual, but certainly not only because
of that but also other factors such as the particular combination of people in
that School, that was definitely the most technically productive school I ever
attended. All the attendants cannot possibly thank enough the organisers for
the amazing experience they created for us. Unfortunately, nothing is perfect.
As memorable as the school was, I will never be able to forget the suffering it
was to walk up those extremely steep hills either.

The course was commissioned by the School organisers with the specific title
“Agent and Multi-Agent Software Engineering: Modelling, Programming, and
Verification”. I liked the title for various reasons. First because it makes explicit
the move from single to multi agent that is an important development in agent
programming languages. Second because it covers two areas that have been at the
centre of my research over many years: programming and verification of multi-
agent systems. Modelling is not an area I have contributed to significantly, so I
used less time of the course for this part. It consisted simply of mentioning a se-
lection of the best-known methodologies for agent-oriented software engineering
as well as an overview of key concepts in modelling multi-agent systems. That

C. Sakama et al. (Eds.): DALT 2011, LNAI 7169, pp. 149–151, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 R.H. Bordini

was after a brief motivation to the development of autonomous software, showing
the growing number of commercial application of autonomous software as well as
pointing out that all current trends in computer science point to directions that
are only possible if autonomy in software becomes commonplace. References to
some of the main researchers and academic events in the area were made in the
modelling as well as later in the agent programming and verification parts of
the course. All the material used in the course, including the slides are available
online at http://www.inf.ufrgs.br/~bordini/DALT-SpringSchool-2011.

The part of the course about programming referred to the variety of agent
languages in the literature but focused on the AgentSpeak variant used in the
Jason platform [5] available at http://jason.sourceforge.net. AgentSpeak
is a BDI-based agent-oriented programming language, influenced also by logic
programming. It has been much referred to in the AAMAS literature and is
widely known, perhaps for being both simple and elegant, yet faithful to the
BDI architecture and reactive planning systems. Jason is a platform that has
become rather popular, with some 500 downloads a month on average. While Ja-
son includes many extensions of the original AgentSpeak(L) language, and allow
multiple agents and also has some support for simulating shared environments,
its main strength in the language for programming autonomous (communicat-
ing) agents rather than agent organisations or agent environments. Yet both
sophisticated social structures and shared environments are equally important
to agent programming in complex multi-agent systems.

A platform called JaCaMo was created very recently which addresses
that problem. The platform is based on Jason for programming agents,
Moise [8,7] (http://moise.sourceforge.net) for programming organisa-
tions, and CArtAgO [10,9] (http://cartago.sourceforge.net) for program-
ming environments. This course briefly presented Moise and CArtAgO
so that JaCaMo could then be presented; JaCaMo is available at
http://jacamo.sourceforge.net. A didactic example was presented that al-
lowed the demonstrations of the use of first-class programming abstractions at
the three levels of a multi-agent systems: social, individual, and environment;
the example is available with the course material and also in the JaCaMo releases
on Source Forge. For those used to traditional agent-oriented programming, it is
quite revealing to see how full multi-agent oriented programming as embodied
in JaCaMo can lead to much more powerful programming.

The last part of the course was about verification. As with the other parts,
references to other researchers who contributed to agent verification and rele-
vant survey papers were given and then the course centred on the work I have
done with various colleagues. Our early work [3] aimed at allowing the use
of model checking techniques on systems programmed in AgentSpeak partic-
ularly. Later, in a joint project with Michael Fisher and Louise Dennis [6,2],
we developed an approach to model check systems programmed in various
BDI-based agent languages, including systems where different agents were pro-
grammed in different agent programming languages, and focusing on the use
of Java Pathfinder [12] (http://javapathfinder.sourceforge.net/) as the

http://www.inf.ufrgs.br/~bordini/DALT-SpringSchool-2011
http://jason.sourceforge.net
http://moise.sourceforge.net
http://cartago.sourceforge.net
http://jacamo.sourceforge.net
http://javapathfinder.sourceforge.net/

Agent and Multi-Agent Software Engineering 151

underlying model checker. In programmodel checking [11], the well-known state-
space explosion problem is particularly difficult, so it is even more important to
use abstraction techniques. The course also mentioned briefly work we have done
on property-based slicing for AgentSpeak [4]; property-based slicing is interest-
ing because it is a precise form of under-approximation. It was also pointed out
that model checking can be useful in practical software development even when
full verification is not possible, for example model checking can be used for test
case generation [1].

References

1. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.R.,
Pasareanu, C.S., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test
case generation and runtime verification. Theor. Comput. Sci. 336(2-3), 209–234
(2005)

2. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated verification of
multi-agent programs. In: ASE, pp. 69–78. IEEE (2008)

3. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12(2),
239–256 (2006)

4. Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Property-based slicing for
agent verification. J. Log. Comput. 19(6), 1385–1425 (2009)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons
(2007)

6. Dennis, L., Fisher, M., Webster, M., Bordini, R.: Model checking agent
programming languages. Automated Software Engineering, 1–59 (2011),
http://dx.doi.org/10.1007/s10515-011-0088-x

7. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20, 369–400 (2010)

8. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing Organised Multi-Agent Sys-
tems Using the MOISE+ Model: Programming Issues at the System and Agent
Levels. Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

9. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the AandA meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456
(2008)

10. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2011)

11. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

12. Visser, W., Mehlitz, P.C.: Model Checking Programs with Java PathFinder. In:
Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 27–27. Springer, Heidelberg
(2005)

http://dx.doi.org/10.1007/s10515-011-0088-x

Author Index

Ancona, Davide 95
Aspinall, David 33

Bijani, Shahriar 33
Bordini, Rafael H. 111, 149

Chesani, Federico 120
Chopra, Amit K. 90
Chorley, Alison 128
Colombetti, Marco 117
Corsar, David 128

Dennis, Louise A. 3

Fornara, Nicoletta 117

Garćıa-Camino, Andrés 102
Günay, Akın 51

Mascardi, Viviana 95
Mello, Paola 120

Montali, Marco 120
Moreira, Álvaro F. 111

Pontelli, Enrico 67

Robertson, David 33, 84
Rodŕıguez-Aguilar, Juan-Antonio 102

Sakama, Chiaki 67
Sierra, Carles 102
Singh, Munindar P. 90
Son, Tran Cao 67

Torroni, Paolo 120

van der Hoek, Wiebe 1
Vasconcelos, Wamberto W. 102, 128
Vieira, Renata 111

Winikoff, Michael 16

Yolum, Pınar 51

	Title
	Preface
	Organization
	Table of Contents
	DALT 2011 Papers
	Control and Delegation
	References

	Plan Indexing for State-Based Plans
	Introduction
	Plans in BDI Languages
	Indexing

	Related Work
	Plan Indexing in Jason
	Term Indexing

	Data Structures
	Plan Keys
	Plan Index Trees

	Results
	Experiment 1: Junk Code
	Experiment 2: Generic Contract Net with Many Goals
	Discussion of the Results

	Further Work
	Conclusions
	References

	An Integrated Formal Framework for Reasoning about Goal Interactions
	Introduction
	Conceptual Agent Notation with Generic Goals
	Reasoning about Interactions
	Specifying Requirements
	Propagating Requirements

	Using Requirements to Deal with Interactions
	Conditions
	Responses
	Interaction-Aware Goals

	Motivating Scenarios Revisited
	Discussion
	References

	Probing Attacks on Multi-Agent Systems Using Electronic Institutions
	Introduction
	Lightweight Coordination Calculus (LCC)
	Probing Attack in Multi-Agent Systems
	Attack Detection
	Annotation
	Abstraction
	Updated LCC Rewrite Rules
	Information Leakage Analysis
	Example

	Discussion
	Conclusion
	References

	Detecting Conflicts in Commitments
	Introduction
	Background: Commitments
	Event Calculus
	Formalizing Commitments in Event Calculus

	Conflicting Commitments
	Conflicting Properties
	Conflict Relations between Commitments

	A Commitment Conflict Scenario
	Discussion
	References

	Formalizing Commitments Using Action Languages
	Introduction and Motivation
	The Language Lmt
	Adding Concurrency and Multi-agency to B: The Action Language Lm
	Considering Time: The Action Language Lmt

	Basic Commitments in Lmt
	Observations and Narratives
	Observation Language
	Narratives and Commitments

	Complex Commitments and Protocols
	Related Works
	Discussion and Conclusion
	References

	Best of DALT
	Lightweight Coordination Calculus for Agent Systems: Retrospective and Prospective
	Introduction: Original Aims of the Lightweight Coordination Calculus
	Relating LCC to Other Languages: Translators and Meta Interpreters
	Protocol Brittleness: Ontologies, Constraints and Adaptation
	Community Formation: Discovery, Group Formation and Trust
	Application Areas
	Work in Progress
	References

	The Evolution of Interoperability
	History
	Distributed Enactment
	Commitment-Level Interoperability
	Conclusions
	References

	1000 Years of Coo-BDI
	Life after Coo-BDI
	The Lives of the Others
	The Future
	References

	A Distributed Architecture for Norm-Aware Agent Societies: A Retrospective
	Introduction
	Context and Motivation of Research
	Representation and Processing of Norms
	Computational Infrastructure
	Developments and Impact
	Conclusions
	References

	Speech-Act Based Communication: Progress in the Formal Semantics and in the Implementation of Multi-agent Oriented Programming Languages
	Introduction
	Improvements to the Original Proposal
	Some Subsequent Related Research
	Future Developments
	References

	Specifying and Enforcing Norms in Artificial Institutions: A Retrospective Review
	References

	A Retrospective on the Reactive Event Calculus and Commitment Modeling Language
	A Short Introduction to REC and CML
	Recent Developments
	Related Work
	Conclusion
	References

	DALT Spring School 2011
	Web Service Composition via Organisation-Based (Re)Planning
	Introduction
	Related Work
	Example Scenario
	Components of the Scenario

	ALIVE Architecture
	ALIVE Models
	The Organisation Model
	The Coordination Model
	Deriving Models
	The Derived SCR Action Model
	Code Generation

	Organisation-Based Service Compositions
	Organisation-Based Planning for Web Service Composition
	Dynamic Web Service Compositions

	Evaluation
	Adequacy of Architecture
	Organisation-Based Planning vs. Exhaustive Planning

	Conclusions, Discussion and Future Work
	References

	Agent and Multi-Agent Software Engineering: Modelling, Programming, and Verification
	References

	Author Index

