
A Framework for Security Analysis

of Key Derivation Functions

Chuah Chai Wen, Edward Dawson,
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Abstract. This paper presents a comprehensive formal security frame-
work for key derivation functions (KDF). The major security goal for a
KDF is to produce cryptographic keys from a private seed value where
the derived cryptographic keys are indistinguishable from random bi-
nary strings. We form a framework of five security models for KDFs.
This consists of four security models that we propose: Known Public In-
puts Attack (KPM, KPS), Adaptive Chosen Context Information Attack
(CCM) and Adaptive Chosen Public Inputs Attack(CPM); and another
security model, previously defined by Krawczyk [6], which we refer to
as Adaptive Chosen Context Information Attack(CCS). These security
models are simulated using an indistinguisibility game. In addition we
prove the relationships between these five security models and analyse
KDFs using the framework (in the random oracle model).

Keywords: Key derivation function, Security framework, Indistinguisha-
bility, Cryptographic keys.

1 Introduction

Cryptographic keys are necessary for safeguarding electronic transactions, com-
munications, and data storage. Key derivation functions (KDF) are the standard
algorithm used to generate these cryptographic keys. KDFs are used to gener-
ate one or more cryptographic keys from a private seed value, such as a pass-
word, Diffie-Hellman (DH) shared secret or some non-uniformly random source
material[5,7,8]. It is critical in the design of security systems that KDF propos-
als themselves are secure. Significant effort in designing a KDF proposal and
comprehensive security analysis to evaluate the proposal is justified. The prac-
tical importance of KDFs is reflected in their adoption in industrial standard
documents; for example PKCS5 [4], ISO-18033-2[9] and more recently in NIST
800-135[3]. There are KDF proposals such as [1,4,6,10] based on cryptographic
hash functions.

In the current literature, formal models for the security analysis of KDFs have
been introduced by Yao & Yin in [10] and Krawczyk in [6]. However, there are
some limitations with each of these security models as they do not completely
cover the range of realistic capabilities of the adversary. This has motivated us
to extend the existing security models into a new security framework.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 199–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



200 C.C. Wen et al.

In this paper we develop a comprehensive, formal security framework to form a
basis for the design and analysis of KDFs. We begin with an overview of the KDF
construction and define the security of KDFs in terms of an indistinguishability
game. We develop a framework in which the security can be asserted in terms of
the ability of adversaries of varying capabilities to win these indistinguishability
games. The adversaries considered range from passive observers of information
to active adversaries of varying strength.

2 Key Derivation Functions

Generally, a key derivation function KDF is defined as

K ← KDF (PrivS , s, ctx , n)

where

– PrivS is a private seed. The space of all possible private seeds is denoted by
PSPACE and the probability distribution of PrivS is assumed to be public;

– s is a salt, a public random string chosen from the salt space SSPACE ;
– ctx is a public context string chosen chosen from a context space CSPACE ;
– n is a positive integer that indicates the number bits of the to be produced

by the KDF;
– K is the derived cryptographic key of length n bits.

Note that all inputs are publicly known, except for the secret seed PrivS . The
salt is uniformly random and is used to create a large set of possible keys cor-
responding to a given private seed value. Context information is arbitrary but
application specific data; for example, a session identifier or the identities of
communicating parties. The basic operation of a KDF is to transform the pri-
vate seed value and public inputs into an n bit pseudorandom string which can
be used as a cryptographic key. The length, n, of the cryptographic key is an
application specific security parameter. From now on we will represent the key
derivation function as KDF (PrivS , s, ctx)n.

3 General Security Framework

The general security framework is based on an indistinguishability game played
between a challenger C and an adversary A in polynomial time t, where the
KDF is considered secure if no A can win the game with probability signifi-
cantly greater than the probability of winning by guessing randomly. To win
the game A has to determine if the challenge output given in the game is the
cryptographic key generated by the KDF or a truly random binary string of
the same length within a polynomial number of time steps. The game runs in
two major stages: the learning stage and the challenge stage. An optional stage
called the adaptive stage may be available for some powerful A, who can repeat
the learning stage after receiving the challenge output. An explanation of how
this game is conducted follows.
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– Learning stage: A private seed value PrivS is chosen from PSPACE . A
can make at most q queries, either q < |SSPACE |×|CSPACE |< |PSPACE |
or q<|CSPACE |<|PSPACE | depending on the type of security models. For
each query, a derived cryptographic key associated with a salt and context
information is provided to A. A can use this information to construct a
lookup table to be used in the challenge stage of the game. The capabilities
of the adversary determine the level of control they have over the public
inputs to KDF. A passive adversary is just an observer that obtains the
cryptographic keyK, but cannot query the KDF to generate a cryptographic
key from their choice of public inputs. An active adversary is able to interact
with the KDF to demand cryptographic keys corresponding to their choice
of public inputs, with the ability to choose either salt or context information,
or both.

– Challenge stage: A random bit b∈R{0, 1} is generated by C. If b = 0,
then C computes K ′ = KDF(PrivS , s, ctx ), else C outputs a random binary
string K ′ of length of n bits. An active A may have the ability to choose
either salt or context information, or both, to obtain the challenge output
but this is subject to the restriction that the chosen set of public inputs were
not a set of inputs from the learning stage. C sends K ′ to A.

– Adaptive stage: Give the challenge output K ′, a powerful active A may
have the capability to learn more about K ′ in an adaptive stage before
guessing whether K ′ is the cryptographic key or a binary random string.
The adaptive stage consists of repeating the steps in the learning stage for
up to q - q′ queries, subject to the restriction that A may not ask anything
directly regarding the public inputs from the challenge stage.

To complete the game, A guesses whether K ′ is the key or a random string. If A
guesses that K ′ is a cryptographic key then A sends b′ = 0, otherwise, A sends
b′ = 1. A wins the game if b′ = b.

If the adversary is unable to distinguish between a cryptographic key derived
from a private seed value using the KDF and a random string of the same length,
then the KDF is secure in terms of indistinguishability. Formally, we say that the
KDF is (t, q, ε)-secure if the probability of the adversary winning the game in
time at most t with at most q queries is Pr[b = b′] ≤ 1

2 + ε, where ε is negligible.
If the adversary is able to distinguish the challenge output with a probability
greater than 1

2 , then the adversary is considered to have an ‘advantage’ in dis-
tinguishing the cryptographic keys which are produced by the KDF and KDF is
considered insecure.

4 Defining the Security Models

The major security goal for a KDF is that the cryptographic keys generated
by the KDF are indistinguishable from truly random binary strings of the same
length. That is, this KDF’s security goal is formalized as an adversary’s inability
to gain any information about cryptographic keys derived from a private seed
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value, even though public inputs are provided to the adversary. We consider
this security goal in situations where the capability of the adversary differs and
use this to establish five security models: KPM, KPS, CCM, CCS and CPM.
Two models, KPM and KPS, are weak security models as A is only an observer.
The other models, CCM, CCS and CPM, are stronger security models as the
adversary is active. The difference between these three security models lies in
the capability of A in choosing the public inputs. For CCM and CCS, A can
only choose ctx while A can choose both s and ctx in CPM. Table 1 briefly
summarizes the capability of the adversary in the five security models. The
symbol ‘

√
’ indicates that the adversary is able to query the KDF to generate the

cryptographic keys from their choice of public inputs. The symbol ‘X’ indicates
that the adversary is not able to choose the public inputs although these are
known by the adversaries. The symbol ‘-’ indicates that the adversaries are not
able to learn more about the challenge output at the adaptive stage. Each of
these security models is discussed in greater detail in the following sections.

Table 1. Summary of the capabilities of the adversary in five security models

Security Models KPM KPS CCM CCS CPM

Type of Adversary Passive Passive Active Active Active

Type of Salt Multiple Fixed Multiple Fixed Multiple

Number of Queries, q < |SSPACE | × |CSPACE | |CSPACE | |SSPACE | × |CSPACE | |CSPACE | |SSPACE | × |CSPACE |
Capability A in choosing:

Learning Stage
Salt X X X X

√
Context information X X

√ √ √
Challenge Stage
Salt X X X X

√
Context information X X

√ √ √
Adaptive Stage
Salt - - X X

√
Context information - -

√ √ √

4.1 Known Public Inputs Attack - KPM-Secure

For the KPM security model, the adversary can observe the salt and context
information, and the resulting derived key. At the learning stage, each crypto-
graphic key is generated from a fixed private seed value together with a different
salt, and with the same or different context information. These cryptographic
keys are provided to adversaries. At the challenge stage, A is presented with a
binary string. If the KDF is secure, A should not be able to distinguish whether
this string is a cryptographic key or a random string of the same length.

Definition 1 {KPM-secure}. The KDF is (t, q, ε) KPM-secure if for all ad-
versaries A running in polynomial time t and making at most q < |SSPACE | ×
|CSPACE | queries to the KDF with known multiple salt and known context in-
formation win the following indistinguishability game with probability not larger
than ( 12 + ε).
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Learning 1. C chooses PrivS ← PSPACE .

stage 2. For i = 1, . . . , q′ ≤ q, (2.1) C chooses si
R← SSPACE and ctxi ← CSPACE .

(2.2) C computes Ki = F (PrivS , si, ctxi)n.
(2.3) A is provided with the triple (Ki, si, ctxi).

Challenge 1. C chooses s
R← SSPACE and ctx← CSPACE

stage 2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
3. C sends K′, s and ctx to A.
4. A outputs b′ = 0, if A believes that K′ is
cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.2 Known Public Inputs Attack - KPS-Secure

For the KPS, the adversary is an observer. In this indistinguishability game, each
cryptographic key is generated from a fixed private seed value together with
a fixed salt, and with the different context information. The major difference
between KPM-secure and KPS-secure is that for KPM-secure, multiple salts are
used to generate the cryptographic keys while for KPS-secure, a fixed salt is used
for generating one or more cryptographic keys.

Definition 2 {KPS-secure}. The KDF is (t, q, ε) KPS-secure if for all ad-
versaries A running in polynomial time t and making at most q < |CSPACE |
queries to the KDF with known fixed salt and known context information win
the following indistinguishability game with probability not larger than ( 12 + ε).

Learning 1. C chooses PrivS ← PSPACE .

stage 2. C chooses s
R← SSPACE .

3. A is provided with the value s.
4. For i = 1, . . . , q′ ≤ q, (4.1) C chooses ctxi ← CSPACE .

(4.2) C computes Ki = F (PrivS , s, ctxi)n.
(4.3) A is provided with the pair (Ki, ctxi).

Challenge 1. C chooses ctx← CSPACE
stage (subject to restriction ctx /∈ ctxi, . . . ,ctx

′
q).

2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
3. C sends K′ and ctx to A.
4. A outputs b′ = 0, if A believes that K′ is
cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.3 Adaptive Chosen Context Information Attack (CCM)

For the CCM model, the adversaries are active, and are capable of choosing the
context information in the indistinguishability game. For CCM, the adversaries
are allowed to query multiple context information used with the same private
seed value and with different randomly generated salt to form the cryptographic
keys.

Definition 3 {CCM-secure}. The KDF is (t, q, ε) CCM-secure if for all ad-
versaries A running in polynomial time t and making at most q < |SSPACE | ×
|CSPACE | queries to the KDF with known multiple salt and chosen context in-
formation win the following indistinguishability game with probability not larger
than ( 12 + ε).
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Learning 1. C chooses PrivS ← PSPACE .

stage 2. For i = 1, . . . , q′ ≤ q, (2.1) C chooses si
R← SSPACE .

(2.2) A is provided si.
(2.3) A chooses ctxi ← CSPACE .
(2.4)C computes Ki = F (PrivS , si, ctxi)n.
(2.5)A is provided the derived cryptographic key, Ki.

Challenge 1. C chooses s
R← SSPACE .

stage 2. A is provided s.
3. A chooses ctx← CSPACE .

4. C chooses b
R←{0, 1}. (4.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(4.2) else C outputs K′ R← {0, 1}n.
5. C sends K′ to A.

Adaptive
stage

1. Step 2 in Learning stage is repeated for up to q − q′ queries (subject to restriction {si, ctxi} �=
{s, ctx}).
2. A outputs b′ = 0, if A believes that K′ is cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.4 Adaptive Chosen Context Information Attack (Krawczyk)

The formal security model for KDFs proposed by Krawczyk [6] is included in
our framework. We refer to this model as CCS-secure. For this security model,
the adversaries are capable of influencing the inputs in the indistinguishability
game, and are allowed to query multiple context information under the same
private seed value with the same randomly generated salt.

Definition 4 {CCS-secure}. The KDF is (t, q, ε) CCS-secure if for all ad-
versaries A running in polynomial time t and making at most q < |CSPACE |
queries to the KDF with known fixed salt and chosen context information win
the following indistinguishability game with probability not larger than ( 12 + ε).

Learning 1. C chooses PrivS ← PSPACE .

stage 2. C chooses s
R← SSPACE .

3. A is provided with the value s.
4. For i = 1, . . . , q′ ≤ q, (4.1) A chooses ctxi ← CSPACE .

(4.2) C computes Ki = F (PrivS , s, ctxi)n.
(4.3)A is provided the derived cryptographic key, Ki.

Challenge 1. A chooses ctx← CSPACE
stage (subject to restriction ctx /∈ ctxi, . . . , ctx

′
q).

2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
5. C sends K′ to A.

Adaptive 1. Step 4 in Learning stage is repeated for up to q − q′ queries (subject to restriction ctxi �= ctx ).

stage 2. A outputs b′ = 0, if A believes that K′ is cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.5 Adaptive Chosen Public Inputs Attack (CPM)

The Krawczyk security model restricts the capability of the strong active ad-
versary. The adversary is only able to change the context information. In some
situations, an active adversarymay exist that can influence all the possible inputs
for KDFs: the salt and the context information, as shown in [2]. This situation
motivated the creation of a security model called CPM-secure. For a KDF to be
CPM-secure, an adversary A who is allowed to choose both public inputs, salt
and context information. For instance, the adversary may choose a null or non-
random salt value. The adversary’s chosen salt value and different chosen context
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information is used to generate the cryptographic keys. The adversaries are able
to choose whether to respond to the challenger immediately or to progress to
the adaptive stage. Again the adversaries are allowed to make no more than q
queries.

Definition 5 {CPM-secure}. The KDF is (t, q, ε) CPM-secure if for all ad-
versaries A running in polynomial time t and making at most q < |SSPACE | ×
|CSPACE | queries to the KDF with chosen salt and chosen context information
win the following indistinguishability game with probability not larger than ( 12 + ε).

Learning 1. C chooses PrivS ← PSPACE .
stage 2. For i = 1, . . . , q′ ≤ q, (2.1) A chooses si ← SSPACE and ctxi ← CSPACE .

(2.2) C computes Ki = F (PrivS , si, ctxi)n.
(2.3) A is provided the derived cryptographic key,
Ki.

Challenge 1. A chooses s← SSPACE and ctx← CSPACE .
stage (subject to restriction {s, ctx} /∈ {si, ctxi},

. . . ,{s′q , ctx′
q} ).

2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
3. C sends K′ to A.

Adaptive
stage

1. Step 2 in Learning stage is repeated for up to q − q′ queries (subject to restriction {si, ctxi} �=
{s, ctx}).
2. A outputs b′ = 0, if A believes that K′ is cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

5 Relating These Five Security Models

The models described above provide assurance for varying levels of security. A
KDF which is considered secure under one model may not be under another.
For example, a KDF may be KPM-seucre but not CPM-secure. In this section,
we establish more precisely the relations between these five security models.
Figure 1 gives a summary of these relations.

Fig. 1. The relationship between the proposed five security models
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5.1 Implications between Security Models

We start by studying the implication relationships between the different security
notions. These are shown as lemmas 1-4 in Figure 1.

Lemma 1. CPM ⇒ CCM .

Proof: Assume a KDF is CPM-secure but not CCM-secure. Since the KDF is
not CCM-secure, then there exists an adversary A who can win the CCM game
with probability greater than 1

2 + ε. Now, we assume an adversary B who plays
the CPM game with C. B will make use of the capability of A, so that A is
playing the CCM game with B while B is playing the CPM game with C.

The game is conducted as below:

– Learning stage

1. C chooses PrivS ← PSPACE .
2. For i = 1, . . . , q′ ≤ q,

(a) B chooses si ← SSPACE and sends it over to A.
(b) A chooses ctxi ← CSPACE and sends it over to B.
(c) B forwards si and ctxi to C. C computes Ki = F (PrivS , si, ctxi)n.
(d) B is provided Ki. B forwards Ki to A.

– Challenge stage

1. B chooses s← SSPACE and forwards s to A.
2. A chooses ctx← CSPACE .A sends ctx to B.
3. B forwards s and ctx to C.
4. C chooses b

R←{0, 1}.
(a) If b = 0, C outputs K ′ = F (PrivS , s, ctx)n,

(b) else C outputs K ′ R← {0, 1}n.
5. C sends K ′ to B and B forwards K ′ to A.

– Adaptive stage

1. Step 2 in Learning stage is repeated for up to q − q′ queries (subject
to restriction {si, ctxi} �= {s, ctx}).

2. A outputs b′ = 0, if A believes that K ′ is cryptographic key, else outputs
b′ = 1. A sends b′ to B and B simply forwards b′ to C.

3. B wins the game if b′A = bC .

The probability that B wins the CPM game is equal to the probability that A
wins the CCM game. Our assumption is that the KDF is not CCM-secure. That
is the probability that A wins the CCM game is greater than 1

2 + ε. Therefore,
B wins the CPM game with probability greater than 1

2 + ε. This implies that
the KDF is not CPM-secure. This is a contradiction. Hence, CPM ⇒ CCM . �
Lemma 2. CCM ⇒ KPM .

Lemma 3. CPM ⇒ CCS .

Lemma 4. CCS ⇒ KPS .

The proofs of these lemmas are similar to the proof of Lemma 1.
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5.2 Non-implications between Security Models

To prove the non-implications between the security models (corollaries 1-12 in
Figure 1), we analyse five KDFs, KDF1-KDF5, all based on an underlying hash
function F (Table 2). Of these KDFs, three are proposals found in the literature.
The other two are (contrived) KDF designs which are useful to demonstrate the
separation between some of the security models. Perhaps the most interesting
observation from our results in this section is that security when the salt value
is fixed does not imply security when different salt values are used.

In what follows, all the proofs are given in the random oracle model (ROM).
While proofs in the standard model would be clearly preferable, we believe that
using the ROM is appropriate for our purposes. Firstly, as observed by oth-
ers [6,10], many hash-based KDFs proposed in the literature and used in stan-
dards seem impossible to be proven secure based on standard properties of the
underlying hash functions. Yet one would like to show that these “practical”
hash-based KDFs have some level of security that justifies their use. For ex-
ample, KDF1 in Table 2, which is standardised in PKCS#5 [4], does not seem
provable without considering idealised properties of the underlying hash func-
tion. An extensive discussion on the applicability of the ROM in the analysis
of KDFs is given by Krawczyk [6]. In addition, use of the ROM in this work
is sufficient for our purpose of studying the relationships between the different
security notions in our framework.

Table 2. Summary of the security analysis of KDF proposals based on the proposed
formal security framework for KDF

Theorem KDF proposals KPM KPS CCM CCS CPM

1 KDF1 (PrivS , s, ctx )n = F ctx (PrivS , s), assuming ctx is an integer value
[4]

√
X

√
X X

2 KDF2(PrivS , s, ctx )n = F (PrivS‖ctx )‖F (PrivS‖s‖ctx ) X
√

X
√

X

3 KDF3(PrivS , s, ctx )n = F (PrivS‖s‖ctx1 )‖ F (PrivS‖s‖ctx2 ) √ √
X X X

4 KDF4(PrivS , s)n = F (PrivS , s1, PrivS)‖ F (PrivS , s2, PrivS)‖ . . . ‖
F (PrivS , sl, PrivS), where s = s1 ‖ s2 ‖ . . . ‖ sl [1]

√ √ √ √
X

5 KDF5(PrivS , s, ctx )n = F (F (PrivS , s), ctx ) [6]
√ √ √ √ √

KDF1. Here we analyse the security of KDF1, which corresponds to PBKDF1 ,
a password-based KDF standardised in PKCS#5 [4]. KDF1 is defined as

KDF1 (PrivS , s, ctx)n = F ctx (PrivS , s),

where the context ctx is an integer value which indicates the number of iterations
of the hash function F . We show that it achieves CCM security. In addition, we
use the analysis of PBKDF1 to prove the non-implications of corollaries 1-5 in
Figure 1.

Theorem 1. KDF1 is secure with the respect to KPM, CCM and is not secure
in KPS, CCS and CPM.

Proof: Firstly, we show that KDF1 is CCM secure. The proof is in the RO
model, where in order to obtain the value F (x), the adversary needs to query
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the random oracle with input x. The random oracle queries are simulated by
the challenger as follows. On input a string x, if x has not been queried before,
output F (x) ∈R {0, 1}n, where n is the output length of the hash function. If x
has been queried before, output the same value F (x) as before. Let qF and qk
be the number of queries made by the adversary to the random oracle and the
KDF oracle, respectively.

During the learning stage, C chooses PrivS ∈R PSPACE , si ∈R SSPACE
and uses F to compute Ki = F ctx i(PrivS , si), where A chooses. At the challenge
stage, a challenge key is computed as K ′ = F ctx (PrivS , s), where C chooses s
and A chooses ctx . A receives K ′ and continues to learn cryptographic keys by
making up to q − q′ KDF queries during the adaptive stage.

Since, F is modeled as a RO, A can only distinguish whether K ′ is the crypto-
graphic key generated from KDF1 or is a random key with probability different
from 1

2 , if one of the following happens:

a) s = si for some i = 1 . . . qk. This implies that s was chosen during the
learning stage. When this occur, the adversary can easily win the game as
follows. Without loss of generality, assume s = si and ctx ≤ ctx i. Then,
F ctx i−ctx (PrivS , s) = Ki, which can be checked by the adversary.
The probability that this case occurs is Pr[s = si] =

qk
|SSPACE | .

b) The adversary queries F (PrivS ′||s′) to the random oracle, such that PrivS ′||s′
= PrivS ||s. This amounts to A guessing PrivS , which can happen with prob-
ability Pr[PrivS ′ = PrivS ] ≤ qF

|PSPACE | .

The probability that A wins this indistinguishability game is:
Pr[A wins] = Pr[A wins|s = si]Pr[s = si] +

Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +
Pr[A wins|s �= si ∧ PrivS ′ �= PrivS ]Pr[s �= si ∧ PrivS ′ �= PrivS ]

≤ 1
(

qk
|SSPACE |

)
+ 1

(
qF

|PSPACE |
)
+ 1

2

(
1− qk

|SSPACE | − qF
|PSPACE |

)

≤ 1
2 + qk

2|PSPACE | +
qF

2|PSPACE | ,

where ε = qk
2|SSPACE | +

qF
2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Therefore, KDF1 is CCM-secure. KDF1 is KPM-secure by Lemma 2.

Secondly, we show KDF1 is not secure in CCS. Recall from Definition 4,
that in CCS, the salt s is fixed for the entire indistinguishability game and A
is allowed to choose ctx .An attack to the CCS security of KDF1 is as follows.
In the learning stage, A queries ctx1 to get K1, such as K1 = F ctx1(PrivS , s).
During the challenge stage, A asks for the challenge output corresponding to
context ctx1 − 1 to the KDF . A bit b is choosen randomly to output challenge
output, b = 0, if cryptographic key, K ′ = F ctx∗−1

(PrivS , s) or b = 1, K ′ =
random string. Once A receives the value of K ′, A checks K1

?
= F (K ′). If so, A

outputs b′ = 0, otherwise b′ = 1. A wins the game as b′ = b except with negligible
probability 1

2n (corresponding to the case where b = 1, but still K1 = F (K ′)).
Next we show that KDF1 is not KPS-secure. The attack is similar to the

strategy followed by the adversary in the CCM game above in the case where
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s = si for some i = 1, . . . , qk. In the KPS game the salt s is fixed and the context
is chosen by the challenger. Without loss of generality assume that ctx i ≤ ctx
for some i = 1, . . . , qk. The adversary checks if K ′ = F ctx−ctx1(Ki). If so, it
outputs b′ = 0, else outputs b′ = 1. Again, we see that the adversary wins with
all but negligible probability.

Finally, it follows from Lemma 3 that since KDF1 is not CCS-secure, then it
is not CPM secure. �

The proof of Corollary 1 - 5 are an immediate result of Theorem 1:

Corollary 1. CCM � KPS If a KDF is CCM-secure, it may not be KPS-secure.

Corollary 2. CCM � CCS If a KDF is CCM-secure, it may not be CCS-secure.

Corollary 3. KPM � KPS If a KDF is KPM-secure, it may not be KPS-secure.

Corollary 4. KPM � CCS If a KDF is KPM-secure, it may not be CCS-secure.

Corollary 5. CCM � CPM If a KDF is CCM-secure, it may not be CPM-
secure.

KDF2. Here we analyse the security of KDF2 which is defined as,

KDF2(PrivS , s, ctx)n = F (PrivS‖ctx)‖F (PrivS‖s‖ctx)
We show that it achieves CCS security. Furthermore, we use the analysis of
KDF2 to prove the non-implications of corollaries 6-10 in Figure 1.

Theorem 2. KDF2 is secure with respect to KPS, CCS and is not secure in
KPM, CCM and CPM.

Proof: Firstly, we prove that KDF2 is CCS-secure. Again, the proof is in the
RO model as in Theorem 1. In the learning stage, C chooses PrivS ∈R PSPACE ,
s ∈R SSPACE and C uses F to compute Ki = KDF2(PrivS , s, ctx i)n, where
A chooses ctx i. At the challenge stage, challenge key is computed as K ′ =
KDF2(PrivS , s, ctx)n, where s is same as at the learning stage and ctx is chosen
by A. C sends K ′ to A. Once A receives K ′, A continues learn the cryptographic
keys which are derived from KDF2 up to q − q′ queries.

Since, F is modeled as a RO, hence, A can only distinguish if K ′ is the key
generated by KDF2 or a random string of the same length, only if:

a) ctx = ctx i for some i = 1 . . . qk. In this case, F (PrivS‖ctx)‖F (PrivS‖s‖ctx)
= F (PrivS‖ctx i)‖F (PrivS‖s‖ctx i), it means K ′ = Ki, where Ki is one of the
key at the learning stage. Hence, A can distinguish K ′ is the key generated
by KDF2 by checking that K ′ is one of the key which had been generated at
the learning stage. However, recall Definition 4, during the challenge stage,
A is not allow to choose ctx = ctx i∀i which had been chosen at the learning
stage. It means, ctx �= ctx i∀i. Consequently, the probability is Pr[ctx = ctx i]
= 0.



210 C.C. Wen et al.

b) Query PrivS such as PrivS ′ = PrivS and find F (PrivS ′‖ctx) = F (PrivS‖ctx)
or F (PrivS ′‖s‖ctx) = F (PrivS‖s‖ctx). This amounts to A guessing PrivS ,
which can happen with probability Pr[PrivS ′ = PrivS ] ≤ qF

|PSPACE | .

The probability that A winning this indistinguishability game is:

Pr[A wins] = Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +
Pr[A wins|PrivS ′ �= PrivS ]Pr[PrivS ′ �= PrivS ]

≤ 1
(

qF
|PSPACE |

)
+ 1

2

(
1− qF

|PSPACE |
)

≤ 1
2 + qF

2|PSPACE | , where ε = qF
2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Therefore, this KDF is CCS-secure. KDF2 is KPS-secure by Lemma 4.

Secondly, we show KDF2 is not KPM-secure. During the learning stage, C
chooses PrivS ∈R PSPACE , s ∈R SSPACE , ctx i ∈ CSPACE and uses F to
compute Ki = KDF2(PrivS , si, ctx i)n. A receives Ki, si and ctx i. In the chal-
lenge stage, challenge key K ′ is computed by K ′ = KDF2(PrivS , s, ctx)n, where
s ∈R SSPACE and ctx ∈ CSPACE .

F is modeled as a RO, A can distinguish if K ′ is the key generated by KDF2
or a random string of the same length, only if:

a) ctx = ctx i for some i = 1 . . . qk. Since set space of s is greater than set space
of ctx, therefore, ctx will be reused with a high probability. The probability
of choosing ctx = ctxi, ∀i in the challenge stage is qk

|CSPACE | . This implies

that ctx has been chosen at the learning stage, where the first half of K ′ is
similar with the first half of Ki for some i = 1 . . . qk at the learning stage. A
can distinguish the challenge output is cryptographic key by observing the
first component part of K ′. The probability is, Pr[ctx = ctx i]≤ qk

|CSPACE | .
b) Query PrivS such as PrivS ′ = PrivS and find F (PrivS ′‖ctx) = F (PrivS‖ctx)

or F (PrivS ′‖s‖ctx) = F (PrivS‖s‖ctx). This implies that A guessing PrivS
which can happen with probability Pr[PrivS ′ = PrivS ] ≤ qF

|PSPACE | .

Hence, the probability that A can win this indistinguishability game is:

Pr[A wins] = Pr[A wins|ctx = ctx i]Pr[ctx = ctx i] +
Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +
Pr[A wins|ctx �= ctx i ∧ PrivS ′ �= PrivS ]Pr[ic �= ctx i ∧ PrivS ′ �=
PrivS ]

≤ 1
(

qk
|CSPACE |

)
+ 1

(
qF

|PSPACE |
)
+ 1

2

(
1− qk

|CSPACE | − qF
|PSPACE |

)

≤ 1
2 + qk

2|CSPACE | +
qF

2|PSPACE | ,

where ε = qk
2|CSPACE | +

qF
2|PSPACE | ,

qk
2|CSPACE | >

|SSPACE ||CSPACE |
2|CSPACE | is not negligible.

Therefore, KDF2 is not KPM-secure. Hence, KDF2 is not CCM-secure by
Lemma 2 and is not CPM-secure by Lemma 1. �
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The proof of Corollary 6 - 10 are an immediate result of Theorem 2:

Corollary 6. CCS � KPM If a KDF is CCS-secure, it may not be KPM-secure.

Corollary 7. CCS � CCM If a KDF is CCS-secure, it may not be CCM-secure.

Corollary 8. KPS � KPM If a KDF is KPS-secure, it may not be KPM-secure.

Corollary 9. KPS � CCM If a KDF is KPS-secure, it may not be CCM-secure.

Corollary 10. CCS � CPM If a KDF is CCS-secure, it may not be CPM-
secure.

KDF3. Now we analyse the security of KDF3, which we defined it as,

KDF3(PrivS , s, ctx)n = F (PrivS‖s‖ctx1)‖ F (PrivS‖s‖ctx2), where ctx =
ctx1‖ctx2.

We show that it only achieves KPS and KPM security. In addition, we use this
analysis to prove the non-implications of corollaries 11 and 12 in Figure 1.

Theorem 3. KDF3 is secure with respect to KPM, KPS and is not CCM, CCS
and CPM.

Proof: Firstly, we show that KDF3 is KPM-secure. During the learning stage,
C chooses PrivS ∈R PSPACE , si ∈R SSPACE , ctx i ∈ CSPACE and C uses F
to compute Ki = KDF3(PrivS , si, ctx i)n. A is provided Ki, si and ctx i. In the
challenge stage, challenge key is computed as K ′ = KDF3(PrivS , s, ctx)n, where
s ∈R SSPACE and ctx is chosen by C.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if:

a) C chooses ctx ∈ CSPACE , ctx = ctx1‖ctx2 and ctx1 = ctx2. In this case, A
can check the challenge key K ′, the first half is equal with the second half
of K ′, such as F (PrivS‖s‖ctx1) = F (PrivS‖s‖ctx2). However, with a high
probability the chosen ctx by C is most likely different such that ctx1 �= ctx2.
Hence, the probability is, Pr[ctx1 = ctx 2] ≤ 1

|CSPACE | .
b) s = si and ctx = ctx i for some i = 1 . . . qk. In this case, A will distin-

guish K ′ is one of the cryptographic key at the learning stage, such as
K ′ = Ki for some i = 1 . . . qk, where F (PrivS‖s‖ctx1)‖F (PrivS‖s‖ctx2) =
F (PrivS‖si‖ctx i

1)‖F (PrivS‖si‖ctx i
2) . The probability is, Pr[s = si ∧ ctx =

ctx i] ≤ qk
|SSPACE |×|CSPACE| .

c) Query PrivS , PrivS ′ = PrivS and find F (PrivS ′‖s‖ctx1) = F (PrivS‖s‖ctx1)
or F (PrivS ′‖s‖ctx2) = F (PrivS‖s‖ctx2). This implies that A guessing PrivS
which can happen with probability Pr[PrivS ′ = PrivS ] ≤ qF

|PSPACE | .

The probability that A winning the game is:

Pr[A wins] = Pr[A wins|ctx1 = ctx2]Pr[ctx1 = ctx2] +
Pr[A wins|s = si ∧ ctx = ctx i]Pr[s = si ∧ ctx = ctx i] +
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Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +
Pr[A wins|ctx 1 �= ctx2 ∧ s �= si&ctx �= ctx i ∧ PrivS ′ �= PrivS ]×
Pr[ctx1 �= ctx2 ∧ s �= si&ctx �= ctx i ∧ PrivS ′ �= PrivS ]

≤ 1
(

1
|CSPACE |

)
+ 1

(
qk

|SSPACE ||CSPACE |
)
+ 1

(
qF

|PSPACE|
)
+

1
2

(
1− 1

|CSPACE | − qk
|SSPACE ||CSPACE | − qF

|PSPACE |
)

≤ 1
2 + 1

2|CSPACE| +
qk

2|SSPACE ||CSPACE | +
qF

2|PSPACE | ,
where ε = 1

2|CSPACE | +
qk

2|SSPACE ||CSPACE | +
qF

2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Therefore, KDF3 is KPM-secure.

Secondly, we show that KDF3 is KPS-secure. During the learning stage, C
chooses PrivS ∈R PSPACE . C choose a fixed s ∈R SSPACE which is used for
entire game and chooses different ctx i ∈ CSPACE . Then, C uses F to compute
Ki = KDF3(PrivS , s, ctx i)n. A is providedKi, s and ctx i. In the challenge stage,
challenge key is computed as K ′ = KDF3(PrivS , s, ctx)n, where ctx is chosen
by C.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if:

a) C chooses ctx ∈ CSPACE , ctx = ctx1‖ctx2 and ctx 1 = ctx2. Hence, A can
distinguish the challenge key K ′ such as the first half of the K ′ is equal
with the second half of the K ′, where F (PrivS‖s‖ctx1) = F (PrivS‖s‖ctx2).
However, the chosen ctx by C is most likely different such that ctx1 �= ctx2.
Therefore, the probability if Pr[ctx1 = ctx2]≤ 1

|CSPACE | .

b) Query PrivS , PrivS ′ = PrivS and find F (PrivS ′‖s‖ctx1) = F (PrivS‖s‖ctx1)
or F (PrivS ′‖s‖ctx2) = F (PrivS‖s‖ctx2). This implies that A guessing PrivS
which can happen with probability Pr[PrivS ′ = PrivS ] ≤ qF

|PSPACE | .

The probability that A winning the game is:

Pr[A wins] = Pr[A wins|ctx 1 = ctx 2]Pr[ctx1 = ctx 2] +
Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +
Pr[A wins|ctx1 �= ctx2 ∧PrivS ′ �= PrivS ]Pr[ctx1 �= ctx2 ∧PrivS ′ �=
PrivS ]

≤ 1
(

1
|CSPACE |

)
+ 1

(
qF

|PSPACE|
)
+ 1

2

(
1− 1

|CSPACE | − qF
|PSPACE |

)

≤ 1
2 + 1

2|CSPACE| +
qF

2|PSPACE | ,
where ε = 1

2|CSPACE | +
qF

2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Hence, KDF3 is KPS-secure.

Thirdly, we show KDF3 is not CCM-secure. In the learning stage, C chooses
PrivS ∈R PSPACE and si ∈R SSPACE , then C uses F to compute Ki =
KDF3(PrivS , si, ctx i)n, where ctx i is chosen by A. A receives Ki and si.

In the challenge stage, the challenge key K ′ is computed by C such as K ′ =
KDF3(PrivS , s, ctx)n, where s ∈R SSPACE by C and ctx is chosen by A.
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Once C sends K ′ to A, A continues learn the cryptographic keys KDF3 up
to q − q′ queries at the adaptive stage.

F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if, A chooses ctx ∈
CSPACE , ctx = ctx1‖ctx2 and ctx1 = ctx2. In this case, F (PrivS‖s‖ctx1) =
F (PrivS‖s‖ctx2), A can distinguish the challenge key K ′ where the first half of
K ′ is equal with the second half ofK ′. Since A chooses ctx , hence, the probability
is, Pr[ctx1 = ctx 2] = 1. Thus, KDF3 is not CCM-secure and KDF3 is not CPM-
secure by Lemma 1.

Next, we show KDF3 is not CCS-secure. During the learning stage, C chooses
PrivS ∈R PSPACE and s ∈R SSPACE , which are fixed for entire game, then
C uses F to compute Ki = KDF3(PrivS , s, ctx i)n, where ctx i is chosen by
A. A receives Ki and s. In the challenge stage, challenge key is computed as
K ′ = KDF3(PrivS , s, ctx)n, where ctx is chosen by A. C sends K ′ to A, A
continues learn the cryptographic keys KDF3 up to q−q′ queries at the adaptive
stage.

Since, F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if, A chooses ctx ∈
CSPACE , ctx = ctx1‖ctx2 and ctx1 = ctx2, A can distinguish the challenge
key K ′ where the first half of K ′ is equal with the second half of K ′, such as
F (PrivS‖s‖ctx1)‖F (PrivS‖s‖ctx2). ctx is chosen by A, hence, the probability
is, Pr[ctx1 = ctx 2] = 1. Therefore, KDF3 is not CCS-secure and KDF3 is not
CPM-secure by Lemma 3. �

The proof of Corollary 11 - 12 are an immediate result of Theorem 3.

Corollary 11. KPM � CCM If a KDF is KPM-secure, it may not be CCM-
secure.

Corollary 12. KPS � CCS If a KDF is KPS-secure, it may not be CCS-secure.

KDF4. Here we analyse the security of KDF4, which proposed by Adam et. al
in 2004 [1]. KDF4 is defined as,

KDF4(PrivS , s)n = F (PrivS , s1, PrivS )‖ F (PrivS , s2, PrivS )‖ . . . ‖ F (PrivS ,
sl, PrivS ), where s = s1 ‖ s2 ‖ . . . ‖ sl.

We show that it achieves CCM and CCS security.

Theorem 4. If q = 0 and l > 1, then KDF4 is secure in CCM, CCS, KPM
and KPS but is not secure in CPM.

Proof: Firstly, we prove that KDF4 is secure in KPM, KPS, CCM and CCS
when q = 0 and l > 1 as follows. If q = 0, it means, A can play neither at
the learning stage nor at the adaptive stage. During the challenge stage, the
challenge key is computed as K ′ = KDF4(PrivS , s)n, where PrivS and s are
chosen by C, such as PrivS ∈R PSPACE and s ∈R SSPACE . K ′ is provided
to A.
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Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF4 or a random string of the same length, only if:

a) If the chosen s where s = s1‖s2‖ . . . ‖sl and s1 = s2 = . . . = sl. Then, A can
distinguishK ′ it the cryptographic key which is derived fromKDF4 by check-
ing is there has l repetition component parts, such as F (PrivS , s1,PrivS )
= F (PrivS , s2,PrivS )= . . . =F (PrivS , sl,PrivS ). However, s is chosen ran-
domly by C. Hence, the probability is Pr[s = s1‖s2‖ . . . ‖sl] ≤ 1

|SSPACE | .
b) Query PrivS , PrivS ′ = PrivS and findKDF4(PrivS ′, s)n =KDF4(PrivS , s)n.

This amounts to A guessing PrivS , with probability Pr[PrivS ′ = PrivS ] ≤
qF

|PSPACE | .

The probability that A winning this indistinguishability game is:

Pr[A wins] = Pr[A wins|s = s1‖s2‖ . . . ‖sl]Pr[s = s1‖s2‖ . . . ‖sl] +
Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +
Pr[A wins|s = s1 �= s2 �= . . . �= sl ∧ PrivS ′ �= PrivS ]×
Pr[s = s1 �= s2 �= . . . �= sl ∧ PrivS ′ �= PrivS ]

≤ 1
(

1
|SSPACE |

)
+ 1

(
qF

|PSPACE |
)
+ 1

2

(
1− 1

|SSPACE | − qF
|PSPACE |

)

≤ 1
2 + 1

2|SSPACE | +
qF

2|PSPACE | ,
where ε = 1

2|SSPACE | +
qF

2|PSPACE | is negligible.

A has negligible ‘advantage’ in making random guessing the challenge output.
KDF4 is secure in KPM, KPS, CCM and CCS.

Secondly, we show that KDF4 is not CPM-secure (q = 0, l > 1). When q = 0,
A is not allowed to play at the learning stage and at the adaptive stage. In the
challenge stage, the challenge key is computed as K ′ = KDF4(PrivS , s,PrivS )n,
where s is chosen by A. F is modeled as a RO, A can only distinguish if K ′ is
the key generated by KDF4 or a random string of the same length, only if, A
chooses s = s1‖s2‖ . . . ‖sl, s1 = s2 = . . . = sl, such as K ′ = F (PrivS‖s1‖PrivS )
‖ . . . ‖F (PrivS‖sl‖PrivS ) and F (PrivS‖s1‖PrivS ) = . . . = F (PrivS‖sl‖PrivS ).
A can distinguish K ′ is the cryptographic key when A observes there is a l
repetition component parts. Since s is chosen by A, hence the probability is
Pr[s1 = s2 = . . . = sl] = 1. Therefore, A can distinguish between a derived
cryptographic key and a truly random string based on the observation of the l
repetition component parts. Thus, KDF4 is not CPM-secure. �

KDF5. Here we analyse the security of KDF5, which corresponds to the KDF
proposal presented by Krawczyk in [6]. KDF5 is defined as,

KDF5(PrivS , s, ctx)n = G(F (PrivS , s), ctx)

In the following analysis, both G and H are modelled as random oracles, and
we show that KDF5 is CPM -secure.

Remark: We must note that Krawczyk [6] proved that KDF5 is CCS-secure
in the standard model. Specifically, Krawczyk proves that if F is a good (ran-
domised) computational extractor and G is a pseudorandom function, then the
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composition shown above is CCS-secure. He then goes on to show that the
standard MAC algorithm HMAC satisfies both requirements under standard as-
sumptions in the underlying hash function. Extending Krawczyk’s result to CPM
security in the standard model would necessitate the modification of the given
definition of computational extractor, to relax the requirement on the salt being
chosen uniformly at random. This notion of extractor would be trivially satisfied
by deterministic extractors, such as those mentioned by Krawczyk himself [6].
We leave the formalisation of these changes as future work and now focus in
showing that CPM-security is achievable in the ROM.

Theorem 5. KDF5 is secure with respect to all five security models.

Proof: Firstly, we show that KDF5 [6] is CPM-secure. During the learning stage,
C choosesPrivS ∈R PSPACE . C uses F to computeKi = KDF5(PrivS , si, ctx i),
where si and ctx i are chosen by A from SSPACE and CSPACE respectively.
A is provided Ki. In the challenge stage, challenge key is computed as K ′ =
KDF5(PrivS , s, ctx), where s and ctx are chosen by A. C sends K ′ to A, A
continues learn the cryptographic keys up to q − q′ queries.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF5 or a random string of the same length, only if:

a) (s, ctx ) = (si, ctx i) for some i = 1 . . . qk, it means, G(F (PrivS , s), ctx) =
G(F (PrivS , si), ctx i). A will distinguish K ′ is one of the key at the learning
stage. However, based on Definition 5, the chosen pair (s, ctx) is restricted
not the similar pair (si, ctxi) ∀ i in the learning stage. Hence, the probability
is Pr[(s, ctx) = (si, ctx i)] = 0.

b) Query PrivS such as PrivS ′ = PrivS and find F (PrivS ′‖s) = F (PrivS‖s)
or F (PrivS ′‖s‖ctx) = F (PrivS‖s‖ctx). This implies that A guessing PrivS
with with probability Pr[PrivS ′ = PrivS ] ≤ qF

|PSPACE | .

The probability that A winning this indistinguishability game is:
Pr[A wins] = Pr[A wins|PrivS ′ = PrivS ]Pr[PrivS ′ = PrivS ] +

Pr[A wins|PrivS ′ �= PrivS ]Pr[PrivS ′ �= PrivS ]

≤ 1
(

qF
|PSPACE |

)
+ 1

2

(
1− qF

|PSPACE |
)

≤ 1
2 + qF

2|PSPACE | , where ε = qF
2|PSPACE | is negligible.

A is only has negligible ‘advantage’ to distinguish the challenge output. There-
fore, KDF5 is CPM-secure. Hence KDF5 is secure in CCM, KPM, CCS and
KPS by Lemma 1, Lemma 2, Lemma 3 and Lemma 4 respectively. �

6 Conclusion

We propose four new security models known as KPM, KPS, CCM and CPM. To-
gether with the CCS security model (proposed by Krawczyk), we believe these
security models form a comprehensive security framework for KDFs. This al-
lows for consideration of the security of a KDF against adversaries of varying
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capabilities. We establish the relations between these five security models. These
relations are established using existing and modified KDF proposals.

As future work, we plan to use our proposed security framework to analyse
the security level of other existing KDF proposals and, where possible, extend
our analyses to the standard model (i.e without random oracles).
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