

Lecture Notes in Computer Science 7232
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Mark D. Ryan Ben Smyth Guilin Wang (Eds.)

Information Security
Practice and Experience

8th International Conference, ISPEC 2012
Hangzhou, China, April 9-12, 2012
Proceedings

13

Volume Editors

Mark D. Ryan
University of Birmingham
School of Computer Science
Birmingham B15 2TT, UK
E-mail: mdr@cs.bham.ac.uk

Ben Smyth
Toshiba Corporation
1, Komukai-Toshiba-Cho, Saiwai-ku
Kawasaki 212-8582, Japan
E-mail: toshiba@bensmyth.com

Guilin Wang
University of Wollongong
School of Computer Science and Software Engineering
Wollongong NSW 2522, Australia
E-mail: guilin@uow.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29100-5 e-ISBN 978-3-642-29101-2
DOI 10.1007/978-3-642-29101-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, D.4.6, C.2.0, H.2.0, K.6.5, K.4.4, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 8th International Conference on Information Security Practice and Expe-
rience (ISPEC 2012) was hosted by Hangzhou Normal University in Hangzhou,
China, between 9–12 April 2012.

The ISPEC conference series is an established forum that brings together re-
searchers and practitioners to provide a confluence of new information security
technologies, including their applications and their integration with IT systems
in various vertical sectors. In previous years, ISPEC has taken place in Singa-
pore (2005), Hangzhou, China (2006), Hong Kong, China (2007), Sydney, Aus-
tralia (2008), Xi’an, China (2009), Seoul, Korea (2010), and Guangzhou, China
(2011). For all sessions, as this one, the conference proceedings were published
by Springer in the Lecture Notes in Computer Science series.

In total, 109 papers from 20 countries were submitted to ISPEC 2012, and
27 were selected for inclusion in the proceedings (acceptance rate 25%), includ-
ing 20 full papers and 7 works-in-progress. The accepted papers cover multiple
topics of information security and applied cryptography. Each submission was
anonymously reviewed by at least three reviewers and the majority of papers
were reviewed by four reviewers. We are grateful to the Program Committee,
which was composed of more than 53 well-known security experts from 16 coun-
tries; we heartily thank them as well as all external reviewers for their time and
valued contributions to the tough and time-consuming reviewing process. In ad-
dition to the paper presentations, the program also featured three invited talks
and we are grateful to each speaker for accepting our invitation to participate
in the conference.

There are many people who contributed to the success of ISPEC 2012. We sin-
cerely thank the Honorary Chair, Xiuyuan Yu, and the General Chairs, Robert
H. Deng and Qi Xie, for their strong support. We also thank the Organizing
Committee – namely, Xiumei Li, Wenhao Liu, Shengbao Wang, Xianqin Xiang,
Mingrui Yu, and Zhenming Yuan – for dealing with local issues. We are grateful
to the authors from around the world for submitting and presenting their papers.
We are also deeply grateful to the Program Committee members for their fair
review. It would have been impossible to organize ISPEC 2012 without the hard
work of all our chairs and committees. Finally, we would like to thank all the
participants for their contribution to ISPEC 2012.

April 2012 Mark D. Ryan
Ben Smyth

Guilin Wang

ISPEC 2012

8th International Conference on Information
Security Practice and Experience

Hangzhou, China
April 9–12, 2012

Hosted by

Hangzhou Normal University, China

Honorary Chair

Xiuyuan Yu Hangzhou Normal University, China

General Chairs

Robert H. Deng Singapore Management University, Singapore
Qi Xie Hangzhou Normal University, China

Program Chairs

Mark D. Ryan University of Birmingham, UK
Guilin Wang University of Wollongong, Australia

Program Committee

Moritz Becker Microsoft, Cambridge, UK
Sergiu Bursuc University of Birmingham, UK
Rohit Chadha ENS Cachan, France
David Chadwick University of Kent, UK
Kostas Chatzikokolakis École Polytechnique, France
Kefei Chen Shanghai Jiaotong University, China
Tom Chothia University of Birmingham, UK
Sherman S.M. Chow University of Waterloo, Canada
Richard Clayton University of Cambridge, UK
Jason Crampton Royal Holloway, University of London, UK
Cas Cremers ETH Zürich, Switzerland
Stéphanie Delaune ENS Cachan, France
Xuhua Ding Singapore Management University, Singapore
Pooya Farshim TU Darmstadt, Germany
Flavio D. Garcia Radboud University Nijmegen,

The Netherlands

VIII ISPEC 2012

Dawu Gu Shanghai Jiaotong University, China
Gerhard Hancke Royal Holloway, University of London, UK
James Heather University of Surrey, UK
Matt Henricksen Institute for Infocomm Research, Singapore
Dalia Khader University of Luxembourg, Luxembourg
Boris Köpf IMDEA Software Institute, Spain
Steve Kremer INRIA Nancy, France
Tieyan Li Irdeto (Cloakware), China
Dongdai Lin Chinese Academy of Science, China
Peng Liu Pennsylvania State University, USA
Subhamoy Maitra Indian Statistical Institute, India
Andrew Martin University of Oxford, UK
Kanta Matsuura University of Tokyo, Japan
Atsuko Miyaji Japan Advanced Institute of Science and

Technology, Japan
Sebastian Mödersheim DTU Informatics, Denmark
Yi Mu University of Wollongong, Australia
Shishir Nagaraja IIIT Delhi, India
Eiji Okamoto University of Tsukuba, Japan
Alfredo Pironti INRIA, France
Saša Radomirović Université du Luxembourg, Luxembourg
Douglas S. Reeves North Carolina State University, USA
Kouichi Sakurai Kyushu University, Japan
Ben Smyth Toshiba Corporation, Japan
Sriramkrishnan Srinivasan University of Surrey, UK
Tomasz Truderung University of Trier, Germany
Bogdan Warinschi University of Bristol, UK
Jian Weng Jinan University, China
Duncan S. Wong City University of Hong Kong, China
Yongdong Wu Institute for Infocomm Research, Singapore
Yang Xiang Deakin University, Australia
Jeff Yan Newcastle University, UK
Danfeng Yao Virginia Tech, USA
Sung-Ming Yen National Central University, Taiwan
Hongbo Yu Tsinghua University, China
Yong Yu University of Electronic Science and

Technology of China, China
Zhenfeng Zhang Chinese Academy of Science, China
Yunlei Zhao Fudan University, China
Jianying Zhou Institute for Infocomm Research, Singapore

Publication Chair

Ben Smyth Toshiba Corporation, Japan

ISPEC 2012 IX

Organizing Committee

Xiumei Li Hangzhou Normal University, China
Wenhao Liu Hangzhou Normal University, China
Shengbao Wang Hangzhou Normal University, China
Xianqin Xiang Hangzhou Normal University, China
Mingrui Yu Hangzhou Normal University, China
Zhenming Yuan Hangzhou Normal University, China

External Reviewers

Shweta Agrawal
Toru Akishita
Man Ho Au
Matteo Avalle
Joonsang Baek
Subhadeep Banik
Gilles Barthe
Rana Barua
Joseph Bonneau
Sébastien Canard
Silvio Cesare
Shan Chen
Yu Chen
Kai-Yuen Cheong
Céline Chevalier
Cheng-Kang Chu
Ozgur Dagdelen
George Danezis
Prem Laxman Das
Angelo De Caro
Gerhard De Koning Gans
Ning Ding
Ehab Elsalamouny
Jia Fan
Daniel Fett
Pierre-Alain Fouque
Steven Galbraith
David Galindo
Sugata Gangopadhyay
Wei Gao
Thomas Gross
Haihua Gu
Hauhua Gu
Fuchun Guo

Satoshi Hada
Jinguang Han
Feng Hao
Julio Cesar Hernandez-Castro
Dennis Hofheinz
Xinyi Huang
Sorina Ionica
Vincenzo Iovino
Mahavir Jhawar
Dingding Jia
Jonathan Katz
Wei Ming Khoo
Markulf Kohlweiss
Yuichi Komano
Fabien Laguillaumie
Junzuo Lai
Jean Lancrenon
Fagen Li
Juanru Li
Zhenqi Li
Hongliang Liang
Kaitai Liang
Changlu Lin
Hsi-Chung Lin
Joseph Liu
Yamin Liu
Zhen Liu
Zhiqiang Liu
Zongbin Liu
Yu Long
Haining Lu
Jiqiang Lu
Xianhui Lu
Jiqiang Lv

X ISPEC 2012

Sergio Maffeis
Hamid Mala
Xianping Mao
Takahiro Matsuda
Murat Moran
Steven Murdoch
Sean Murphy
David Naccache
Takashi Nishide
Kazumasa Omote
Goutam Paul
Baodong Qin
Elizabeth A. Quaglia
Mohammad Reza Reyhanitabar
Alfredo Rial
Somitra Sanadhya
Santanu Sarkar
Patrick Schweitzer
Michael Scott
Sourav Sen Gupta
Taizo Shirai
Masaaki Shirase
Riccardo Sisto
Efstathios Stathakidis
Graham Steel
Koutarou Suzuki
Katsuyuki Takashima
Xiao Tan
Qiang Tang
Stefan Tillich
Jheng-Hong Tu

Max Tuengerthal
Joop Van De Pol
Roel Verdult
Andreas Vogt
Daoshun Wang
Jun Wang
Liangliang Wang
Yu Wang
Gaven J. Watson
Robert Watson
Lingbo Wei
Yongzhuang Wei
Sheng Wen
Gaoyao Xiao
Zhi Xin
Xi Xiong
Yanjiang Yang
Rehana Yasmin
Tomoko Yonemura
Ching-Hua Yu
S. Yu
Tsz Hon Yuen
Greg Zaverucha
Hailong Zhang
Jun Zhang
Shengzhi Zhang
Wei Zhang
Xusheng Zhang
Zongyang Zhang
Mingyi Zhao
Bin Zhu

Table of Contents

Digital Signatures

A Pre-computable Signature Scheme with Efficient Verification for
RFID . 1

Fuchun Guo, Yi Mu, Willy Susilo, and Vijay Varadharajan

Redactable Signatures for Independent Removal of Structure and
Content . 17

Kai Samelin, Henrich C. Pöhls, Arne Bilzhause,
Joachim Posegga, and Hermann de Meer

Public Key Cryptography

Improved Efficiency of Chosen Ciphertext Secure Encryption from
Factoring . 34

Xianhui Lu, Bao Li, Qixiang Mei, and Yamin Liu

Deniable Encryptions Secure against Adaptive Chosen Ciphertext
Attack . 46

Chong-zhi Gao, Dongqing Xie, and Baodian Wei

Computational Soundness of Indistinguishability Properties without
Computable Parsing . 63

Hubert Comon-Lundh, Masami Hagiya, Yusuke Kawamoto, and
Hideki Sakurada

Cryptanalysis I: Differential Attacks

New Impossible Differential Attacks on Camellia . 80
Dongxia Bai and Leibo Li

Impossible Differential Attacks on Reduced-Round LBlock 97
Ya Liu, Dawu Gu, Zhiqiang Liu, and Wei Li

New Truncated Differential Cryptanalysis on 3D Block Cipher 109
Takuma Koyama, Lei Wang, Yu Sasaki, Kazuo Sakiyama, and
Kazuo Ohta

Applications I.i: Oblivious Transfer

T-out-of-n Distributed Oblivious Transfer Protocols in Non-adaptive
and Adaptive Settings . 126

Christian L.F. Corniaux and Hossein Ghodosi

XII Table of Contents

A Code-Based 1-out-of-N Oblivious Transfer Based on McEliece
Assumptions . 144

Preetha Mathew K., Sachin Vasant, Sridhar Venkatesan, and
C. Pandu Rangan

Applications I.ii: Internet Security
(Works-in-Progress)

Towards Fine-Grained Access Control on Browser Extensions 158
Lei Wang, Ji Xiang, Jiwu Jing, and Lingchen Zhang

Enhanced STE3D-CAP: A Novel 3D CAPTCHA Family 170
Yang-Wai Chow and Willy Susilo

Key Management

High-Entropy Visual Identification for Touch Screen Devices 182
Nathaniel Wesley Filardo and Giuseppe Ateniese

A Framework for Security Analysis of Key Derivation Functions 199
Chuah Chai Wen, Edward Dawson,
Juan Manuel González Nieto, and Leonie Simpson

Applied Cryptography

On the Equivalence of Two Definitions of Visual Cryptography
Scheme . 217

Teng Guo, Feng Liu, and ChuanKun Wu

Key Length Estimation of Pairing-Based Cryptosystems Using ηT

Pairing . 228
Naoyuki Shinohara, Takeshi Shimoyama, Takuya Hayashi, and
Tsuyoshi Takagi

Lightweight Integrity for XOR Network Coding in Wireless Sensor
Networks . 245

Kazuya Izawa, Atsuko Miyaji, and Kazumasa Omote

Applications II.i: PINs

iPIN and mTAN for Secure eID Applications . 259
Johannes Braun, Moritz Horsch, and Alexander Wiesmaier

Table of Contents XIII

Applications II.ii: Fundamentals (Works-in-Progress)

Secure Distributed Computation of the Square Root and
Applications . 277

Manuel Liedel

Prevent Kernel Return-Oriented Programming Attacks Using Hardware
Virtualization . 289

Tian Shuo, He Yeping, and Ding Baozeng

Cryptanalysis II: Fault Attacks and Key Recovery

Structure-Based RSA Fault Attacks . 301
Benjamin Michéle, Juliane Krämer, and Jean-Pierre Seifert

Fault Analysis of the KATAN Family of Block Ciphers 319
Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar,
Willy Susilo, and Jennifer Seberry

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 337
Yanfeng Wang, Wenling Wu, and Xiaoli Yu

On the CCA-1 Security of Somewhat Homomorphic Encryption over
the Integers . 353

Zhenfei Zhang, Thomas Plantard, and Willy Susilo

Cryptanalysis III: Key Recovery (Works-in-Progress)

Partial Key Exposure on RSA with Private Exponents Larger
Than N . 369

Marc Joye and Tancret̀de Lepoint

Linear Cryptanalysis of Reduced-Round ICEBERG 381
Yue Sun and Meiqin Wang

Overcoming Significant Noise: Correlation-Template-Induction
Attack . 393

An Wang, Man Chen, Zongyue Wang, and Yaoling Ding

Author Index . 405

A Pre-computable Signature Scheme

with Efficient Verification for RFID

Fuchun Guo1, Yi Mu1, Willy Susilo1, and Vijay Varadharajan2

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong, Australia
{fg278,ymu,wsusilo}@uow.edu.au

2 Information and Networked Systems Security Research
Department of Computing, Faculty of Science

Macquarie University, Sydney, Australia
vijay.varadharajan@mq.edu.au

Abstract. Passive RFID tags have limited rewritable memory for data
storage and limited computation power, which pose difficulties to imple-
ment security protection on RFID tags. It has been shown that strong
security and privacy protections for RFID require utilizing public-key
cryptography. Unfortunately, the implementation of public key cryptog-
raphy is infeasible in low-cost passive tags. With this issue in mind, in
this work, we propose a pre-computable signature scheme with a very
efficient signature verification algorithm for RFID applications. Our sig-
nature scheme is provably secure under the DDH assumption and a vari-
ant of q-SDH assumption. With pre-computations, no exponentiation is
required in our signature verification. Our research shows that it is fea-
sible for low-cost RFID tags to verify signatures with the basic modular
multiplication only (if they have a small amount of writable memory).

Keywords: RFID, Low-cost RFID tags, Signature verification, Modu-
lar multiplication.

1 Introduction

Radio-frequency identification (RFID) is a technique that can be used to replace
barcodes. In an RFID system, an RFID tag, which contains a unique identifi-
cation code, can be identified by an RFID reader through radio waves without
requiring any physical contact. Using this technique, large-scale objects can be
identified and managed easily. RFID exhibits many applications. For example,
RFID has been found applicable in supply chain management for goods tracking
[2], healthcare for tracking disabled people [17] and warehouses for distribution
and inventory [7].

RFID technique introduces new security challenges. A strong security and pri-
vacy protection [26,22] requires public-key cryptography, which needs to perform
exponentiations. However, passive RFID tags have limited rewritable memory

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 1–16, 2012.
� Springer-Verlag Berlin Heidelberg 2012

2 F. Guo et al.

and lightweight logic circuits [27]. According to [14], it requires at least 11,904
gates to implement the point multiplication (i.e., exponentiation) of elliptic curve
cryptography and higher for others. Circuits for implementing exponentiation are
costly for low-cost RFID tags.

In this work, we explore new signature schemes with efficient signature verifi-
cation for low-cost tags. We believe that the tag’s ability to authenticate RFID
readers is a significant issue, which should be looked at. A secure authentication
between tags and readers can be simply done by utilizing a symmetric cryptog-
raphy (e.g. a pseudo random function) with a shared secret [22]. However, to
enhance the RFID security to a satisfactory level, we must adopt digital signa-
tures. It not only provides secure reader-to-tag authentication, but also a proof
so that readers cannot deny communications with tags. We found that all tradi-
tional signature schemes must involve exponentiations in signature verification.
To be able to verify signatures, RFID tags must add a costly exponentiation cir-
cuit. To find a signature scheme without exponentiations in signature verification
therefore becomes interesting and challenging.

Currently, there exist the following three related approaches that could po-
tentially improve the efficiency of signature verification.

Divisible Online/Offline Signatures. Online/offline signatures were proposed
to improve the efficiency of signature generation. The notion of divisible on-
line/offline signatures [12] is a variant of online/offline signatures [9], where the
offline signature token can be sent to the verifier prior to signature generation.
However, most of divisible online/offline signature schemes shown in [12] do not
meet the requirement of pre-verification and require exponentiation computa-
tions in the online phase. The exception is the generic scheme presented in [9]
based on the one-time signature scheme [16]. With an interaction between signer
and verifier in the offline phase, the verifier performs hashing operations only
in the online phase. This scheme requires the verifier to interact with the signer
prior to signature generation and the signer to store all one-time signing keys.

Server (Signer)-Aided Signature Verification. Server (signer)-aided signature
verification enables the verifier to delegate a substantial part of verification work-
load to a powerful server like [13,8] (or singer like [18]). With pre-computations,
the best efficient server-aided verification protocols can speed up signature veri-
fication but still requiring a small exponentiation computation. The server-aided
verification technique indeed improves the verification efficiency. However, the
circuit implementation of this algorithm is not reduced. The small exponentia-
tion based on an elliptic group still requires the point doubling and point addition
like normal exponentiations. This scheme improves verification efficiency, but it
is not suitable for low-cost RFID tags.

Batch Verification. Batch verification of digital signatures was studied in
[11,1,25,10]. Roughly speaking, with this verification approach, the cost of veri-
fying n signatures together is significantly less than the sum of cost one by one
in a separated way. Batch verification is useful in reducing the pairing computa-
tion of pairing-based signatures and the time of verifying batch signatures, since
the pairing computation generally more expensive than exponentiations. This

A Pre-computable Signature Scheme with Efficient Verification for RFID 3

technique improves the verification efficiency on average, but it gives a more
complicated algorithm in signature verification compared to traditional signa-
ture schemes. It is therefore not suitable for RFID tags to simplify verification
algorithm.

In this paper, we propose a pre-computable signature scheme in which signa-
ture verification is very efficient without need of exponentiation computations.
Intuitionally, when the signer generates a signature of any message for the ver-
ifier, the verifier with a pre-computation token will interact with the signer in
order to avoid exponentiation computations in signature verification. The rest
of computation for the verifier is a modular multiplication (a 160-bit modulus)
and bitwise comparisons. We prove the security of our signature scheme under
the DDH assumption held in the pairing group and a new assumption called the
oracle q-SDH assumption. In Section 4.2, we compare our scheme to the divisible
online/offline signature scheme and the server (signer)-aided signature verifica-
tion. It shows that ours is the most computationally efficient for the verifier.

To apply our signature verification in low-cost RFID tags without exponen-
tiation computations, we assume that pre-computation tokens for tags are gen-
erated outside (e.g. generated by the trusted backend server) with a powerful
device. When verifying signatures, tags only need the computational capability
of modular multiplication and bitwise comparisons. In Section 4.1, we show that
the logic gate requirement of our verification algorithm for tags is significantly
less compared to the point multiplication according to the implementation in
[14,20]. As an additional note, we notice that pre-computation consumes about
2KB memory for each signature verification, and each pre-computation token
is one-time in use. The tradeoff of memory and computing capability for RFID
is none-trivial and has been studied in [15] for identification. Our scheme indi-
cates that for those low-cost tags with at least 2KB writable memory, to add the
capability of signature verification, we only need to add the circuit of modular
multiplication instead of point multiplication.

Paper Organization.We organize the rest of this paper as follows. In Section 2,
we introduce some preliminaries and definitions of our pre-computable signature
scheme. The detail of our signature construction is proposed in Section 3. In
Section 4, we discuss the hardware requirement for RFID application and give the
comparison. In Section 5, we show how to further improve signature verification
when messages to be signed are partially known. We conclude this paper in
Section 6.

2 Preliminaries and Definitions

2.1 Definition of Our Signature

A pre-computable signature scheme with efficient verification consists of the
following four algorithms.
Setup: Taking as input a security parameter 1λ, the signer generates a key pair
(pk, sk), where pk is the public key and sk is the signing key.

4 F. Guo et al.

Pre-Com: Taking as input the public key pk, the signature recipient (verifier) gen-
erates the one-time pre-computable tokenPC without interacting with the signer.

Sign-Verify: Taking as input the message m, the token PC provided by the
recipient and the signing key sk provided by the signer, the signature generation
protocol returns a valid signature σm of m or outputs 0 (reject). This is an
interactive protocol between the signature recipient and the signer.

Re-verify: Taking as input the signed message (m,σm) and the public key pk,
return 1 if σm is a valid signature on m signed by sk, or 0 for invalid. This
algorithm allows anyone to verify the signature.

The completeness of the above signature scheme requires that for all (pk, sk), to-
kens PC and messages m, a signature σm of m accepted by the recipient in the
Sign-Verify algorithmmust be also accepted by a verifier in the Re-verify algorithm.

Each pre-computable token PC is one-time for the recipient during running
the Sign-Verify algorithm. To be able to verify k signatures, the signature recip-
ient should pre-compute PC1, PC2, · · · , PCk. This is similar to the structure of
online/offline signatures [9,24] for efficient signing in which each pre-computation
token is one-time in use.

Our signature definition is different from traditional signatures. In traditional
signature schemes, there is only one verification algorithm for all verifiers. In
our definition, the signature recipient and other verifiers run different verification
algorithms. We define the Pre-Com and Sign-Verify algorithms for those signature
recipient who will receive signatures from signers, and the Re-verify algorithm
for others. Our pre-computable signature scheme speeds up verification for the
verifiers of signature recipient.

Applying the signature scheme in RFID systems, readers are the signers and
tags are the signature recipients. The tag owner runs the Pre-Com algorithms
for tags, and the tags run the Sign-Verify algorithm for receiving and verifying
signatures. Signatures are re-verified through the Re-verify algorithm. Here, the
tag owner can be the trusted backend server of RFID system, and we assume
that the tag owner can securely upload pre-computation tokens to tags through
a secure channel, which is guaranteed by a basic authentication ability of RFID
tags described in [26,22].

The signature scheme should be secure against chosen-message attacks. The
model modified from the standard model is defined as follows:

Setup: The challenger runs the algorithm Setup to obtain a pair of public key
and signing key (pk, sk). The public key pk is forwarded to the adversary.

Query: The adversary adaptively makes a signature query on mi. To query the
signature, the adversary computes PC and takes as input (m,PC) into the Sign-
Verify algorithm. The challenger responds by following the Sign-Verify algorithm.
Let qs be the number of signature queries made by the adversary in this phase.

Forgery: The adversary outputs a signed message pair (m∗, σm∗) and wins the
game if no signature query on m∗ and Re-Verify[σm∗ ,m, pk] = 1.

A Pre-computable Signature Scheme with Efficient Verification for RFID 5

Definition 1. A pre-computable signature scheme is (t, qs, ε)-secure against cho-
sen-message attacks defined above, if no adversary who makes qs signature queries
can forge a valid signature with probability ε in t polynomial time.

2.2 Bilinear Groups

Our signature scheme is built from a bilinear pairing or Tate pairing denoted by
BP = (g1, g2,G1,G2,GT , p, e). Here, g1 is a generator of G1, g2 is a generator of
G2, p is the group order of all G1,G2,GT , and the bilinear map e : G1×G2 → GT

satisfies that

– For all g1 ∈ G1, g2 ∈ G2 and a1, a2 ∈ Zp, we have e(ga1
1 , ga2

2) = e(g1, g2)
a1a2 .

– If g1, g2 are generators of G1,G2 respectively, we have e(g1, g2) is a generator
of GT .

If G1 �= G2, we also name BP as asymmetric pairing; otherwise, we call it sym-
metric pairing. Many cryptosystems (e.g. [3]) based on bilinear groups can be
instantiated with an asymmetric pairing or a symmetric pairing. An asymmet-
ric pairing is used to reduce the presentation of groups elements. Following the
same notations in [3,4], the elements from G1 can be half size of that from G2.
However, some of them (e.g. [5]) must use the asymmetric pairing, and require
the decisional Diffie-Hellman (DDH) assumption holds in the group G1 (even al-
though the DDH assumption in G2 is easy). Our scheme requires the hardness
of DDH problem in the group G1, but does not require an efficiently computable
group homomorphism ψ : G2 → G1.

2.3 Complexity Assumptions

The complexity assumptions we resort to in our scheme are the DDH assumption
in G1 and a variant of the q-Strong Diffie-Hellman assumption [3], associated
with an oracle. We name the variant q-SDH assumption as the Oracle q-Strong
Diffie-Hellman assumption (Oracle q-SDH, in short).

Decisional Diffie-Hellman Assumption:
Instance: (g1, g

x1
1 , gr1x1

1 , gx2
1 , gr2x2

1) ∈ G1.

Intractable: check r1
?
= r2.

Definition 2. The DDH assumption is (t, ε)-hard in G1 if no adversary can
check whether r1 is equal to r2 in running time t with probability ε at least.

Given an instance of DDH problem (gx1
1 , gr1x1

1 , gx2
1 , gr2x2

1) under the base g1,
it is actually composed of two instances of the DL problem (gx1

1 , gr1x1
1) and

(gx2

1 , gr2x2

1) under different bases. When the DDH assumption holds, we have
it is hard to decide whether the solutions of two DL instances under different
bases are the same or not. We shall adopt this property to construct our signature
scheme secure against malicious signers.

Before defining the oracle q-SDH assumption, we firstly revisit the q-SDH
assumption and the modified q-SDH assumption [6].

6 F. Guo et al.

q-Strong Diffie-Hellman Assumption:

Instance: (g1, g
a
1 , g

a2

1 , · · · , gaq

1) ∈ G1 and (g2, g
a
2) ∈ G2.

Intractable: find any pair
(
c, g

1
a+c

1

)
∈ Zp ×G1 .

Modified q-Strong Diffie-Hellman Assumption:

Instance: (g1, g
a
1) ∈ G1, (g2, g

a
2) ∈ G2 and q pairs

(
ci, g

1
a+ci
1

)
∈ Zp ×G1.

Intractable: find any pair
(
c, g

1
a+c

1

)
∈ Zp ×G1 for c /∈ {c1, c2, · · · , cq}.

Oracle q-Strong Diffie-Hellman Assumption:
Instance: (g1, g

a
1) ∈ G1, (g2, g

a
2) ∈ G2 and Oa(·).

Oracle: On input (ci, hi) ∈ Zp ×G1,

the oracle computes Oa(ci, hi) = h
1

a+ci

i .

Intractable: find any pair (c, g
1

a+c

1) ∈ Zp ×G1 for c /∈ {c1, c2, · · · , cq}.

According to the algebraic algorithm [21] with respect to the group G1, hi falls
into three types:

– hi = gdi
1 , where di is chosen by the adversary. We have that

h
1

a+ci

i = g
di

a+ci
1 .

Since the exponent di can be removed by the adversary, the response from

the oracle is equivalent to g
1

a+ci
1 of the modified q-SDH assumption.

– hi = gadi
1 , where di is chosen by the adversary. We have that

h
1

a+ci

i = g
adi
a+ci
1 = g

di− cidi
a+ci

1 .

Since gdi
1 and the exponent cidi can be removed by the adversary, the re-

sponse from the oracle is equivalent to g
1

a+ci
1 of the modified q-SDH assump-

tion.

– hi = g
1

Πci∈C(a+ci) or g
a

Πci∈C(a+ci) , where C is any subset of {c1, c2, · · · , cq}

chosen by the adversary. Without loss of generality, let hi = g
adi

(a+c1)(a+c2)

1

where di is chosen by the adversary. We have that

h
1

a+ci

i = g
adi

(a+c1)(a+c2)(a+ci)

1 = g
di

(a+c1)(a+c2)
− cidi

(a+c1)(a+c2)(a+ci)

1 .

It is easy to check that given the pairs (c1, g
1

a+c1
1), (c2, g

1
a+c2
1) and (ci, g

1
a+ci
1),

we can compute g
1

(a+c1)(a+c2)

1 and g
1

(a+c1)(a+c2)(a+ci)

1 . Therefore, the response
from the oracle is equivalent to the pairs of the modified q-SDH assumption.

According to the above analysis, what the oracle responds is equivalent to q pairs

of (ci, g
1

a+ci
1). In comparison with the modified q-SDH assumption, the proposed

assumption is still stronger since all its random values ci are adaptively chosen

A Pre-computable Signature Scheme with Efficient Verification for RFID 7

by the adversary; while they are passively given by the instance of the modified
q-SDH assumption. Therefore, as long as the adversary does not query (c, h∗)
for any h∗ to the oracle, it seems that the oracle would be useless for computing
the pair (c, g1/(a+c)) for any c /∈ {c1, c2, · · · , cq}.

Definition 3. The Oracle q-SDH assumption is (t, ε)-hard if no adversary can

find any pair (c, g
1/(a+c)
1) for c /∈ {c1, c2, · · · , cq} in running time t with proba-

bility ε at least after making q queries to the oracle.

3 Our Signature Scheme

3.1 Construction

In our signature scheme, the message space is Zp, which is 160 bits for |p| = 160.
We can extend the message space into arbitrary bit stings by utilizing a collision-
resistant hash functions H : {0, 1}∗ → Zp. However, we believe that 160-bit
message space is sufficient in many RFID scenarios, such as authentication in
[26,22]. The message space therefore is assumed to be of Zp in this paper.

Setup: Taking as input a security parameter 1λ, the signer randomly chooses a
bilinear pairing BP = (g1, g2,G1,G2,GT , p, e) and a random value α ∈ Zp, and
sets h1 = gα1 , h2 = gα2 . The public key and the signing key are defined as

pk = (BP, h1, h2), sk = α.

Pre-Com: Taking as input the public key pk, the signature recipient does as
follows:

– Randomly choose r, y, β, x1, x2, · · · , x2n ∈ Zp and a 2n-bit string B =
b1b2 · · · b2n ∈ {0, 1}2n, where half bits are zero. Here, n is a security pa-
rameter about error probability that will be discussed later. We let B0 be
the subset of {1, 2, · · · , 2n} containing j if bj = 0, and let B1 be a subset
with an analogous definition for bj = 1.

– Compute Si and vi for all i = 1, 2, · · · , 2n as⎧⎪⎪⎨⎪⎪⎩
bi = 0 : Si =

(
g
xi(rα−y)
1 , gxi

1

)
, vi = gxir

1

bi = 1 : Si =
(
g
xi(rβ−y)
1 , gxi

1

)
, vi = xi

.

– Set the one-time pre-computable token PC as

PC =
(
r, y, β,B, S1, S2, · · · , S2n, v1, v2, · · · , v2n

)
.

Sign-Verify: Given a message m ∈ Zp to be signed, the signer takes as input
sk and the recipient takes as input PC. The interactive protocol for signature
generation and verification is described as follows:

8 F. Guo et al.

– The recipient computes w = rm + y (mod p) and sends Sm = (S1, S2,
· · · , S2n, w) to the signer.

– Upon receiving Sm, let Si = (s1,i, s2,i), the signer computes ui for all i =
1, 2, · · · , 2n as

ui =
(
s1,i · sw2,i

) 1
α+m

,

and forwards Um = (u1, u2, · · · , u2n) to the recipient.
– Upon receiving Um, the recipient checks ui or sets σi for all i = 1, 2, · · · , 2n

as follows ⎧⎨⎩ i ∈ B0 : check ui
?
= vi

i ∈ B1 : set σi = (ui, vi)

.

If ui �= vi holds for any i ∈ B0, return 0. Otherwise, the signature of m is

σm =
(
r, β, σi : i ∈ B1

)
.

Re-verify: Taking as input m,σm and pk, the verifier checks that the pairing
equation

e
(
u

1
vir(β+m)

i , h2g
m
2

)
= e(g1, g2)

holds for (r, β) and any pair (ui, vi) from σm. If it is correct, return 1; otherwise,
return 0.

Remark 1. In the above signature scheme, the message m to be signed could let
α+m = 0 or β +m = 0. However, the probability is negligible, and we directly
assume that both α+m and β +m are nonzero during signing and verification.

Remark 2. In our Re-verify algorithm, if the input by both the signer and the
verifier is correct, the verification is about one pairing and two exponentiations.
Otherwise, it will cost n pairing computation and n+ 1 exponentiation compu-
tations for the worst case. According to the Theorem 1, the verification will cost
i pairing and i+ 1 exponentiations with probability 1/2i at most.

3.2 Correctness

In our signature scheme, the actual signing proof on a messagem is the group el-

ement g
1/(α+m)
1 . This signature format is the same as [3], where the verification

approximately requires one pairing and one exponentiation. Instead of verify-
ing the correctness of signature, the signature recipient in our scheme verifies
whether the input by the signer is valid or not.

If Si = (s1,i, s2,i) =
(
g
xi(rα−y)
1 , gxi

1

)
, we have

s1,i · sw2,i = g
xi(rα−y)
1 · (gxi

1)rm+y = g
xir(α+m)
1

ui =
(
s1,i · sw2,i

) 1
α+m = gxir

1 = vi.

A Pre-computable Signature Scheme with Efficient Verification for RFID 9

When the recipient provides this kind of Si, the recipient believes that the input
by the signer is 1

α+m if ui = vi. However, the recipient cannot get the signing
proof. We call this Si as verification token.

If Si = (s1,i, s2,i) =
(
g
xi(rβ−y)
1 , gxi

1

)
, we have

(
s1,i · sw2,i

) 1
α+m =

(
g
xi(rβ−y)
1 · (gxi

1)rm+y
) 1

α+m

= g
xir(β+m)

α+m

1

u
1

vir(β+m)

i = g
1

α+m

1 .

When the recipient provides this kind of Si, the recipient will get the valid
signing proof if the input is 1

α+m . However, the recipient cannot verify whether

the input by the signer is 1
α+m or not. We call this Si as proof token.

In our signature scheme, verification tokens are mixed with proof tokens un-
der on the DDH assumption. The recipient provides both tokens to the signer
such that the input to the proof tokens can be checked from verification tokens.
Precisely, 2n numbers of Si are sent to the signer, where half of them are verifica-
tion tokens and the others are proof tokens. Each Si is generated independently,
and it is actually an instance of DL problem. When the DDH assumption holds
in the group G1, we immediately get that all Si are indistinguishable. If Um is
passed the check, the recipient believes that there exists at least one input to
the proof token is 1

α+m , and therefore the received signature is valid.
The only error probability of accepting an invalid signature is that the signer

successfully distinguishes the function of each token. The following theorem
shows that this probability is negligible when n is enough large.

Theorem 1. Assuming that the DDH assumption holds in the group G1, σm is
a valid signature with error probability

1(
2n
n

) +

(
2n

2

)
· ε,

where ε is the advantage of breaking the DDH assumption.

Proof. According to our scheme, the recipient was cheated only and if only

ui = vi holds for all i ∈ B0 and u
1

vir(β+m)

i �= g
1

α+m

1 holds for all i ∈ B1. To
successfully cheat the recipient, the signer must do as follows:

– Guess the subset B0 ∈ {1, 2, · · · , 2n} chosen by the recipient correctly.
– Compute ui the same as the Sign-Verify algorithm for all i ∈ B0.
– For all i ∈ B1, choose α

′ �= α and compute ui as(
s1,i · sw2,i

) 1
α′+m

.

We let Pr[Success] be the probability that the adversary (signer) computes the
subset B0 successfully. Let Pr[Guess] be the probability that the adversary finds

10 F. Guo et al.

the subset by guessing, and let Pr[Dis] be the probability that the adversary
finds the subset by distinguishing verification tokens from proof tokens. We have

Pr[Success] ≤ Pr[Guess] + Pr[Dis].

There are
(
2n
n

)
choices of B0 set as the subset of {1, 2, · · · , 2n}. Since B0 is

randomly chosen, we therefore have

Pr[Guess] =
1(
2n
n

) .
The adversary is given Sm = (S1, S2, · · · , S2n, w), where verification tokens and
proof tokens are randomized. Let β′ = rβ mod p. Since r, y, β are randomly and
independently picked from Zp, we have β

′ is also random and independent from
r and y. Without loss of generality, let r1 = rα − y and r2 = rβ − y. We have

(r1, r2, w) = (r, y, β′) ·

⎛⎝ α − 1 0
0 − 1 1
m 1 0

⎞⎠T

= (r, y, β′) ·AT .

Since the determinant of A is −(α+m) that is nonzero (Remark 1), we have r1
and r2 are universally random and independent of w. Therefore, (S1, S2, · · · , S2n)
containing r1, r2 are independent of w.

According to the definition of Si, each token Si = (si,1, si,2) = (gxiri
1 , gxi

1) is
an instance of DL problem, where ri ∈ {r1, r2} is the solution of sr1i,2 = si,1 or

sr2i,2 = si,1. Given any two tokens Si, Sj, let Si = (gxiri
1 , gxi

1) and Sj = (g
xjrj
1 , g

xj

1),
where ri, rj ∈ {r1, r2}. Since (xi, ri, xj , rj) are random and independent, this is
an instance of DDH assumption. The adversary will distinguish whether ri = rj
with probability ε at most. There are

(
2n
2

)
different instances from Um in total.

We yield the following union bound

Pr[Dis] ≤
(
2n

2

)
· ε.

Putting the above two probability bound, we obtain the theorem. �

When the DDH assumption holds, ε is negligible such that
(
2n
2

)
ε is also negligible.

We can choose a proper n to restrict the error probability in a small range. For
example, we can set n = 15 for error probability bounded with 2−30.

3.3 Security

Theorem 2. Assume that the Oracle q-SDH assumption holds with (t′, ε′), we
can use it to construct (t, qs, ε)-secure signature scheme.

t = t′ −O(nqs · T), qs =
q

2n
, ε = ε′,

where T is the average time of an exponentiation in the group G1.

A Pre-computable Signature Scheme with Efficient Verification for RFID 11

Proof. Suppose there exists an adversary A who can break our signature scheme
with (t, qs, ε) advantage. We construct an algorithm B that solves the Oracle
q-SDH assumption with advantage (t′, ε′) at least. The algorithm B is given
(g1, g

a
1) ∈ G1, (g2, g

a
2) ∈ G2 and an oracle Oa(). The aim of B is to output

(c, g
1/(a+c)
1) ∈ Zp×G1 with a new c never queried to the oracle. B interacts with

the adversary as follows.

Setup: The algorithm B sets pk = (BP, ga1 , g
a
2) and forwards this public key to

the adversary, where the signing key α is simulated with a in the given instance.

Query: The adversary makes a signature query by presenting (mi, Smi), which
is adaptively chosen. Let Smi = (S1, S2, · · · , S2n, wi) and Si = (s1,i, s2,i) for all
i = 1, 2, · · · , 2n. The algorithm B responds by computing u′i = s1,i · swi

2,i for all
i = 1, 2, · · · , 2n, and querying the following 2n pairs to the oracle Oa()(

(mi, u
′
1), (mi, u

′
2), · · · , (mi, u

′
2n)

)
.

Let ui = (u′i)
1

a+mi be the response to (mi, wi) from the oracle. The algorithm B
forwards Umi = (u1, u2, · · · , u2n) to the adversary.

Forgery: The adversary A outputs a forged signature (m∗, σm∗). Let σm∗ be(
r, β, (u1, v1), (u2, v2), · · · , (un, vn)

)
.

If it is a valid signature, it means that there exists one pair, e.g. (u1, v1), such
that

e
(
u

1
v1r(β+m∗)

1 , h2g
m∗
2

)
= e(g1, g2).

The algorithm B outputs (m∗, u
1

v1r(β+m∗)

1) = (m∗, g
1

a+m∗
1), which is the solution

to the Oracle q-SDH assumption.
The main time cost for B is the signature simulation, where each signature

query requires O(n) exponentiations. The algorithm B makes 2n queries to the
oracle for each signature query, and there is no aborting in the above simulation.
Therefore, we obtain Theorem 2. This completes our security proof. �

4 Application to RFID

4.1 Hardware Requirement

Applying our signature scheme to RFID, we let tag owner run the Pre-Com
algorithm and RFID tags run the Sign-Verify algorithm. The tag owner computes
and uploads pre-computation tokens into tags in a secure channel, such that
tags enable to verify signatures generated by pre-defined readers. The remaining
computation for tags is mainly dominated by a modular multiplication in the
Sign-Verify algorithm.

12 F. Guo et al.

Circuit Requirement. Our Sign-Verify algorithm is computationally efficient
for tags, consisting of the modular multiplication rm + y (mod p) and bitwise
comparisons. Since the bitwise comparison is very simple in architecture, we
discuss the circuit requirement of modular multiplication only.

We found that our modular multiplication falls into the type presented by
Oren and Feldhofer in [20], and can be replaced with randomized multiplication
[23] without modular reductions. More precisely, rm+y (mod p) can be replaced
with rm+ y +R · p without affecting the security, as long as R is a |p|+ 80-bit
random string for 80-bit security. To avoid the modular reduction, we compute
y′ = y+R ·p instead of y in the pre-computation phase in which |y′| = 2|p|+80.
The rest of verification is rm + y′. The implementation of randomized multi-
plication with a 1024-bit modulus in [20] fits completely into 4681 gates. Our
Sign-Verify algorithm for tags merely need the randomized multiplication with
a 160-bit modulus. Following the result of Table 3 in [20], our randomized mul-
tiplication only requires the components of memory for r, y′, the multiplexers,
multiplier, adder and accumulator, which are no more than 2000 gates avail-
able for a low-cost tag [27]. It saves a significant gates compared to the point
multiplication described in [14].

Memory Requirement. Each signature verification requires a one-time token
PC defined as

PC =
(
r, y′, β, B, S1, S2, · · · , S2n, v1, v2, · · · , v2n

)
.

For 2−30 error probability in signature verification, we have n = 15. For 80-bit
security of signature scheme, we have |p| = |G1| = 160 (bits) [3]. Putting these
parameter into |PC|, we finally have

|PC| = (4 + n)|p|+ 2n+ 5n|G1|+ 80 ≈ 2KB.

That is, each signature verification requires about 2KB memory for pre
-computation token. We notice that the token size can be reduced with a pseudo
random function to generate all randomness stored in PC. I.E., replacing all
vi = xi with a random seed.

The above analysis of circuit requirement and memory requirement indicates
that signature verification is feasible for those tags with 2KB writable mem-
ory but very limited computational capability. For polynomial verifications, our
scheme requires a large amount of memory and is impractical for tags. However,
when RFID tags alternately communicate with readers and tag owners, a small
rewritable memory (e.g. 4KB) is obviously sufficient. Our scheme is more suit-
able in those scenarios where tags are to receive few important messages signed
by pre-defined readers.

4.2 Comparisons

In this section, we compare our signature scheme to the divisible online/offline
signature scheme and server-aided signature verification in terms of verification
structure, computational efficiency and hardware requirement.

A Pre-computable Signature Scheme with Efficient Verification for RFID 13

The divisible online/offline signature scheme from the Lamport one-time sig-
nature can be described as follows. In the offline phase, the signer pre-signs on
Hots =

(
H(x1,0), H(x1,1), H(x2,0), H(x2,1), · · · , H(xL,0), H(xL,1)

)
by utilizing a

traditional signature scheme, and this signature is pre-verified by the verifier.
In the online phase, given an L-bit message m to be signed, the signer reveals
xi,b to the verifier if the i-bit message is b for all i. The signature verification
is to check whether xi,b is the pre-image of H(xi,b). In comparison with this
scheme, our scheme does not require the verifier to interact with the signer in
the pre-computation phase, or require the signer to store all xi for signature
generation.

The server(signer)-aided signature verification proposed in [18] is the most
efficient for signature verification. In the pre-computation phase, the verifier
pre-computes one exponentiation. Given a signature to be verified, with a pre-
computation token, the verifier can delegate two exponentiations to the server
(or signer). The rest of verification is one exponentiation with a small exponent
and two modular multiplications.

Table 1. Comparison of three schemes for efficient signature verification

Pre-computation Size Signature Verification

DOOS 6.4KB 160 times of hashing

SAV 0.06KB
One exponentiation with a 30-bit exponent

and two modular multiplications

Our scheme 2KB One modular multiplication

We compare the efficiency and list the result in Table 1. The comparison is un-
der the assumption of 80-bit security and 30-bit error probability. We use DOOS
to denote the above divisible online/offline signature scheme, and SAV to denote
the above server-aided signature verification. We observe that all verifications
must perform bitwise comparisons. This computation is negligible in comparison
with others, and not considered in our discussion. A hash function architecture
for low-cost RFID tags has been proposed in [19], but it still requires 5527 gates.
Our verification is the most efficient with one modular multiplication, and the
architecture is the most cheapest compared to those schemes.

5 Signature Verification of Partially Known Messages

We have described a pre-computable signature scheme in Section 3. With the
pre-computation token (r, y), given any messagem ∈ Zp, the RFID tag computes
rm + y (mod p) and compares whether ui = vi for signature verification. The
main computation is the modular multiplication. In this section, we show how
to remove this modular multiplication when messages to be signed are partially
known by the verifier.

14 F. Guo et al.

In our construction, messages to be signed are from Zp. Observe that the
message can be re-written into an N -bit strings as m = m[1]m[2] · · ·m[N], where
m[i] is the i-th bit of message. In RFID applications, messages to be signed may
have been partially known. For example, the unique identification code is set as
one part of messages and would never be changed in each tag. We can assume
that each bit of messages to be signed is either known by the tag or decided by the
reader. Under this assumption, we show how to speed up signature verification
with extended pre-computations.

Let U = {N1, N2, · · · , Nl} be the subset of {1, 2, · · · , N}, where only m[i] for

all i ∈ U are decided by the signer. Let zNi = 2N−m[Ni] for all i = 1, 2, · · · , l,
the message m can be re-written into

m = mR + zN1m[N1] + zN2m[N2] + · · ·+ zNl
m[Nl].

Let (yN1 , yN2, · · · , yNl
) be random numbers in Zp satisfying

y =

l∑
i=1

yNi (mod p),

where y is the randomness defined in Section 3. We enable to split rm+ y into

rm + y = r(mR +

l∑
i=1

zNim[Ni]) + y = rmR +

l∑
i=1

(r ·m[Ni] · zNi + yNi).

Table 2. Pre-computation tokens in tags instead of (r, y)

N1 N2 · · · Nl

0 rmR + r · 0 · zN1 + yN1 r · 0 · zN2 + yN2 · · · r · 0 · zNl + yNl

1 rmR + r · 1 · zN1 + yN1 r · 1 · zN2 + yN2 · · · r · 1 · zNl + yNl

In the pre-computation phase, suppose 2l distinct numbers shown in Table 2
are computed and stored in the tag instead of (r, y). Signature verificationwithout
the modular multiplication is feasible in the Sign-Verify algorithm for the verifier.

Let m be the message to be signed. For i = 1, 2, · · · , l, the tag does as follows:

– If i = 1, output wNi = rmR + r ·m[Ni] · zNi + yNi .
– Otherwise i = 2, 3, · · · , l, output wNi = r ·m[Ni] · zNi + yNi .

The tag returns (wN1 , wN2 , · · · , wNl
) instead of computing w to the signer, and

the signer computes

w = wN1 + wN2 + · · ·+ wNl
(mod p)

before generating ui. As a consequence, the tag does not need to perform the
modular multiplication and the rest of computation is the bitwise comparisons.

We assume there are l bits of messages unknown and decided by the signer.
In comparison with our first scheme, the second scheme removes the modular
multiplication, at the cost of 2l additional elements in Zp which is about l

25KB
in total for the 160-bit prime p. The result of pre-computation and verification
cost are listed in Table 3.

A Pre-computable Signature Scheme with Efficient Verification for RFID 15

Table 3. Data storage requirement and signature verification cost

Schemes Data Storage Signature Verification

Our scheme 1 2 KB Modular Multiplication+Bitwise Comparison

Our scheme 2 (2 + l
25
) KB Bitwise Comparison

6 Conclusion

We proposed a pre-computable signature scheme with efficient signature verifi-
cation for RFID. Our signature verification requires a 2KB-size pre-computation
token for each signature verification, but the rest of verification is mainly domi-
nated by a modular multiplication. Our signature verification will be more com-
putationally efficient when messages to be signed are partially known. We believe
that they are good candidates for passive tags that have a weak computation
capacity. The proposed signature verification is applicable to low-cost tags with
a small amount of rewritable memory.

Acknowledgement. We would like to thank Sherman S.M. Chow and the
anonymous reviewers of ISPEC 2012 for their helpful comments and sugges-
tions. This work has been supported by ARC Discovery Grant DP110101951.

References

1. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponen-
tiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

2. Blass, E.O., Elkhiyaoui, K., Molva, R.: Tracker: Security and privacy for rfid-based
supply chains. In: NDSS 2011. The Internet Society (2011)

3. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M.K.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boyen, X.: The Uber-Assumption Family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

7. Chow, H.K.H., Choy, K.L., Lee, W.B., Lau, K.C.: Design of a rfid case-based
resource management system for warehouse operations. Expert Syst. Appl. 30(4),
561–576 (2006)

8. Chow, S.S.M., Au, M.H., Susilo, W.: Server-aided signatures verification secure
against collusion attack. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong,
D.S. (eds.) ASIACCS 2011, pp. 401–405. ACM (2011)

9. Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line Digital Signatures. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg
(1990)

16 F. Guo et al.

10. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical Short Signa-
ture Batch Verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009)

11. Fiat, A.: Batch rsa. J. Cryptology 10(2), 75–88 (1997)
12. Gao, C.-z., Wei, B., Xie, D., Tang, C.: Divisible On-Line/Off-Line Signatures. In:

Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 148–163. Springer, Heidel-
berg (2009)

13. Girault, M., Lefranc, D.: Server-Aided Verification: Theory and Practice. In: Roy,
B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

14. Hein, D.M., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID – A Proof in
Silicon. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 401–413. Springer, Heidelberg (2009)

15. Juels, A.: Minimalist Cryptography for Low-Cost RFID Tags (Extended Ab-
stract). In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 149–164.
Springer, Heidelberg (2005)

16. Lamport, L.: Constructing digital signatures from a one-way function. Tech. rep.,
SRI-CSL-98, SRI International Computer Science Laboratory (1979)

17. Lee, S.Y., Wang, L.H., Fang, Q.: A low-power rfid integrated circuits for in-
telligent healthcare systems. IEEE Transactions on Information Technology in
Biomedicine 14(6), 1387–1396 (2010)

18. Lim, C.H., Lee, P.J.: Server (Prover/Signer)-Aided Verification of Identity Proofs
and Signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 64–78. Springer, Heidelberg (1995)

19. O’Neill, M.: Low-cost sha-1 hash function architecture for rfid tags. In: RFIDSec
2008 (2008)

20. Oren, Y., Feldhofer, M.: A low-resource public-key identification scheme for rfid
tags and sensor nodes. In: Basin, D.A., Capkun, S., Lee, W. (eds.) WISEC 2009,
pp. 59–68. ACM (2009)

21. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equiva-
lent to Discrete Log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005)

22. Paise, R.I., Vaudenay, S.: Mutual authentication in rfid: security and privacy. In:
Abe, M., Gligor, V.D. (eds.) ASIACCS 2008, pp. 292–299. ACM (2008)

23. Shamir, A.: Memory Efficient Variants of Public-Key Schemes for Smart Card
Applications. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 445–449. Springer, Heidelberg (1995)

24. Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

25. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch Pairing Delegation. In: Miyaji,
A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007)

26. Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

27. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy As-
pects of Low-Cost Radio Frequency Identification Systems. In: Hutter, D., Müller,
G., Stephan, W., Ullmann, M. (eds.) SPC 2003. LNCS, vol. 2802, pp. 201–212.
Springer, Heidelberg (2004)

Redactable Signatures for Independent Removal

of Structure and Content

Kai Samelin�, Henrich C. Pöhls��, Arne Bilzhause,
Joachim Posegga, and Hermann de Meer

Institute of IT-Security and Security-Law (ISL), University of Passau, Germany
{ks,hcp,ab,jp}@sec.uni-passau.de, demeer@uni-passau.de

Abstract. In this paper, we present a provably secure redactable sig-
nature scheme allowing to independently redact structure and content.
We identify the problems when structure is not separated from content,
resulting in an attack on the scheme proposed at VLDB ’08 by Kundu
and Bertino. The attack allows for changing the semantic meaning of a
given tree. We introduce a rigid security model, including consecutive
redaction control, to formalize the required behaviour of our scheme.
Moreover, we present first performance evaluations of our implementa-
tion to demonstrate the practical use of the presented scheme.

Keywords: Structural Integrity, Redactable Signatures, Performance,
XML.

1 Introduction

A redactable signature scheme (RSS) allows a third party to remove parts of a
signed document m without invalidating its protecting signature σ. This action
can be performed without involvement of the original signer. In more detail, a
RSS allows a third party to replace parts of the original document with ⊥, a
special symbol indicating that a redaction took place. As a result, the verifier
only sees a blinded version of the document, while still being able to verify that
the remaining subdocuments are still valid and authentic. The RSSs we will
consider allow for public redactions, i.e. no private keys are required to perform
a redaction. Moreover, a RSS can allow to prohibit a consecutive third party to
remove certain parts, a property named Consecutive Redaction Control [20]. The
notation we use for a document is m = m[1]|| . . . ||m[�]. We will call each m[i] a
submessage, where � ∈ N+ is the number of submessages and || a concatenation.
Current schemes just allow to redact subdocuments. In particular, no existing
scheme allows redacting the ordering or other structures, which carry information
as well. This may not be sufficient in some cases, which is shown show next.

Examples and Benefits of Redacting Structure Separately. Structured
data comes in many forms, for example XML-Schemata describe the structure

� Is funded by ”Regionale Wettbewerbsfähigkeit und Beschäftigung”, Bayern, 2007-
2013 (EFRE).

�� Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 17–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 K. Samelin et al.

(and often implicitly the semantics) of tree-structured XML-Documents. Even
in linear documents, e.g. a text file, the order of subdocuments is important,
e.g. the ordering of chapters in a book. Liu et al. introduced the paradigm of
separating structural integrity and content integrity in [18] without considering
RSS. This implicit information stored inside the structure of a document leads
to our attack on the Kundu-Scheme.

The “digital document sanitization problem”, as introduced by Miyazaki et
al. in [19], assumes that the signing process itself cannot be altered. This may
happen, if the signer is not reachable anymore, or must not know which parts of
the document are passed to third parties. Consider the following two examples
clarifying why one needs to be able to redact structure: (1) In an university the
exam results are published in a list. The list first gives the student’s name (m[1])
and the grade (m[2]), then the next student’s name (m[3]) and then the grade
(m[4]) and so on. Imagine the list being ordered by grades, i.e. the student with
the best grade is at the beginning. Thus, the subdocumentsm[i] hold information
about either a grade or a student’s name, while the ordering carries the infor-
mation “better-than”. We only want a signed list of all the students’ name who
took part in the exam. Hence, we need to redact all information about grades
from this list. A redactable scheme allows deleting the grades, i.e. all m[i]←⊥,
where i is even. Using a transparent [1,4,5] RSS would also remove the trace
that some parts where removed. In particular, ⊥ would not be visible anymore.
However, the original ordered relation of the remaining subdocuments is still
present, invading privacy. Hence, we also need to redact the ordering among
them. Current schemes are not able to redact this information; they require that
the ordering cannot be redacted or work only on structureless sets [20].

(2) From a business point of view, we can derive our second example: The
sales department provides a monthly overview over all sent invoices to an external
auditor. However, the order in which a company sends out its invoices may leak
some business critical information. Further imagine that the list must be ordered
in a monthly manner, i.e. the invoices need to be grouped by month, while the
internal ordering must not be made public to protect trade-secrets. This requires
the RSS to explicitly sign each subdocument relation separately to allow removal
of only this information at a later stage.

There are many other application scenarios, e.g. one can redact hierarchies
within companies, or explicitly sign partially ordered sets, which is useful for
information flow models [24]. Many more examples for the use of RSS are given
in the original works, our main motivation is to maintain privacy or protect
trade secrets. Hence, the RSS is required to be transparent, meaning the fact
that redaction has occurred must not be known by a verifying third party. Loss
of transparency would decrease the value of the redacted information, e.g. a
summarized report redacted by the PR department is less valuable than a sum-
marized report where redactions by the PR department are hidden. Hence, we
require a usable scheme to be transparent and allow redactions of structure to
cater for such constellations.

Redactable Signatures for Independent Removal of Structure and Content 19

State of the Art and Current Limitations. The concept of removing parts
from signed data without invalidating the signature was initially introduced as
“content extraction signature” by Steinfeld et al. in [25] resp. in [12] by John-
son et al. Their inspiring work has lead to many RSS constructions in the last
years [8,20,21]. The schemes have been extended to work on tree-structured
data [4,15,16] and on arbitrary graphs [17]. However, the schemes proposed in [15]
and [16] suffer from an attack vector changing the semantics of the tree. We will
present this attack in this paper. A related concept are sanitizable signature
schemes (SSS), introduced by Ateniese et al. in [1], where the choice of values
for a specific submessage m[i] is not per se limited to m[i] or ⊥, but to arbi-
trary strings ⊂ {0, 1}∗. Limiting third parties to certain values is a well-known
field [7,13,23].

Recently, Brzuska et al. defined and formalized a set of desired properties
for redactable tree-structured documents in [4]. In this paper, we extend these
definitions towards linear documents with separate structure redaction. Most of
the schemes proposed up to now are not transparent, i.e. one can see that a
third party redacted something [10,12,21,25,26]. Furthermore, this also impacts
on privacy, as already noted in [16] and [20]. The scheme introduced in [20]
also suffers from several problems: (1) It is just useable for sets, which means
that the ordering, what we call structure, is not protected. (2) It does not al-
low multi-sets, i.e. each element, resp. subdocument must be unique. (3) This
fact is not checked during their verification algorithm, hence their scheme is
forgeable, i.e. by copying existing elements. The only other provably transparent
schemes, i.e. [4] and [8], require O(n2) operations as well, but their only gain is
transparency, hence coming very costly. We have the same complexity, but allow
much more freedom, i.e. removing structure and allowing consecutive redaction
control.

Our Contribution and Organization. In this paper, we present the first
transparent RSS for ordered linear documents which redacts content and struc-
ture separately. We introduce a precise formal model for this new paradigm.
This model will also include consecutive redaction control, which has been used
in several papers [11,20,21], but has not yet been formalized rigorously. We will
denote the set of admissible redactable entities as ADM, following the notation
of [5]. Moreover, we present an attack on the Kundu-Scheme in Sect. 2, allowing
to exploit the implicit semantic meaning of structure. Furthermore, we propose
a concrete provably secure RSS construction, which will meet all of our security
requirements stated in Sect. 4. Our scheme is also secure against the probabilis-
tic attacks on transparency described by Brzuska et al. in [4]. Existing schemes
fell victim to this attack: The scheme by Kundu and Bertino [16] lacks provably
transparency since it uses ordered random numbers [4]. Also the schemes by Izu
et al. in [11] are suspect to this attack. This is a result of the proofs given for
the Kundu-Scheme in [4]. Hence, we introduce a way to sign the ordering of
all submessages m[i] in this paper. Our solution will sign each “left-of” relation
to allow transparent redactions, as already proposed by Chang et al. in [8] and
by Brzuska et al. in [4]. In particular, each pair (m[i],m[j]) gets signed, where

20 K. Samelin et al.

n1 (0.2;0.8)

n2 (0.3;0.7)

n3(0.6;0.1) n4 (0.9;0.2)

Fig. 1. Original Tree T

n1

n2

n3 n4

Fig. 2. Transitive Closure of
T , i.e. span�(T)

n1(0.2;0.8)

n4(0.9;0.2)

Implicit New
Edge e1,4
after Redaction
of n2 and n3

Fig. 3. Redacted Tree T ′

0 < i < j ≤ �. However, their schemes do not allow to redact any structure. Our
solution requires O(n2) operations for signing and verification. This is similar
to [4] and [8]. A more detailed theoretical cost analysis is provided as well, while
a performance comparison of our implementation using real data can be found
in Sect. 5. Additional preliminaries and our extended model are presented in
Sect. 3. Formal proofs of the security and correctness are in the appendix.

2 Attacking the Kundu-Scheme

The only RSS for trees able to redact non-leafs is the Kundu-Scheme, intro-
duced in [15] and revised in [16]. Their scheme builds upon the idea that a third
party having the pre- and post-order traversal numbers of all nodes contained
in a tree T is always able to correctly reconstruct T . Hence, signing each node
ni ∈ T along with both numbers and the content is enough to protect T . To
make the scheme transparent, these traversal numbers are randomized in an
order-preserving manner, which does not have an impact on the reconstruction
algorithm, which just checks for greater than relations [15,16]. Thus, verifica-
tion is straight forward — with one additional step: A verifier has to check if
all nodes are in the correct order using the traversal numbers. This leads to
the problem that a verifier is not able to determine whether a given edge ex-
isted in the original tree T , just if it could have existed. However, as shown
in the introduction, the structure itself does carry information as well: Assume
that one removes n2 and n3 from T , as depicted in Fig. 3. This allows to add
a new edge e1,4, which has not explicitly been present in the original tree T .
This implies, that the tree TA = ({n1, n4}, {e1,4}) is valid in terms of the sig-
nature. For more detail we compute the traversal numbers for the example tree
in Fig. 1: The pre-order traversal of T will output (1, 2, 3, 4), while the post-
order traversal will output (4, 3, 2, 1). The randomization step may transform
them into (0.2, 0.3, 0.6, 0.9) and (0.8, 0.7, 0.2, 0.1) resp. Hence, the node n1 has a
structural position of ρ1 = (0.2; 0.8). For n2, n3 and n4 this is done accordingly.
We redact n2, an intermediate node of n4, and n3. For the redacted tree in Fig. 3,
the traversal-numbers are still in the correct order. Hence, the signature verifies.
Kundu and Bertino neither prohibit nor exclude the redaction of intermediate
nodes, but claim this is a useful property [16]. This behaviour is problematic,
as we will show next. The Kundu-Scheme signs the transitive closure of the tree

Redactable Signatures for Independent Removal of Structure and Content 21

T , as depicted in Fig. 2. This is a very weak form of structural integrity pro-
tection and allows some semantic attacks: Consider a hierarchical structure of
treatments inside a medical database, i.e. treatments consists of treatments, e.g.
a chemotherapy consists of giving drugs against cancer and additional prophy-
lactic drugs to avoid infections, codified into the tree’s structure. If the cancer
drugs and chemotherapy node is redacted, the only treatment node left is the
prophylactic drug one. This does neither destroy any XML-Schemata nor can it
be detected by humans. This behaviour is not acceptable, though it may have
its application, e.g. to redact hierarchies within a company. However, we argue
that the places where this is allowed must be explicitly denoted by the signer
to avoid the mentioned attack. It remains on open question how to construct a
secure scheme, which allows such constellations, along with a suitable security
model, since the one introduced in [4] just allows to redact leafs.

3 Preliminaries, Notations and Security Properties

Basically, we have the same requirements as Brzuska et al. [4], i.e. unforgeability,
privacy and transparency. However, we need to adjust the definitions as we treat
structure as a redactable entity and to make statements about linear documents
instead of trees. We require that the splitting of m into the subdocuments m[i],
along with the order, is efficiently reconstructable from any received m.

Definition 1 (RSS Algorithms for Content and Structure Redaction).
A RSS which allows separate redaction of content and structure, with consecutive
redaction control, consists of five efficient algorithms. In particular, RSS :=
(KeyGen, Sign,Verify,Redact,Close) such that:

KeyGen. The algorithm KeyGen outputs the public and private key of the signer,
i.e. (pk, sk) ← KeyGen(1λ), where the input parameter λ is the security pa-
rameter.

Sign. The algorithm Sign outputs the signature σ on input of the secret key sk
and the document m. It outputs (m,σ)← Sign(sk,m).

Verify. The algorithm Verify outputs a bit d ∈ {0, 1} indicating the correctness of
the signature σ, w.r.t. pk, protecting m. In particular: d← Verify(pk,m, σ)

Redact. The algorithm Redact takes as input the document m, the public key
pk of the signer, the signature σ and description of the redaction mod con-
taining either a submessage m[i] or a binary relation m[i, j] that shall be
redacted. Calling Redact sequentially allows to redact more relations and sub-
messages. The algorithm outputs (m′, σ′) ← Redact(pk,m, σ,mod), where
m′ ← mod(m) denotes the alteration of m w.r.t. mod. mod may contain
more than one modification in our notation. We require that ADM, which
denotes the entities of m admissible to be redacted, is always correctly recov-
erable from (m,σ). The algorithm doing so will be described as:

22 K. Samelin et al.

Sanitizable. On input of a valid message/signature pair (m,σ), Sanitizable
outputs ADM: ADM← Sanitizable(m,σ).

We will treat Sanitizable as part of Redact and not as a stand alone algorithm.
Note, Redact allows public redactions, since just the public key pk of the
signer is required.

Close. The algorithm Close alters σ on input of m, the public key pk of the
signer, the signature σ and a sanitization control description modc which
contains the entities subject to redaction control. The algorithm outputs
(m,σ′) ← Close(pk,m, σ,modc). modc may contain many modifications.
Close does not change the message m itself, but Sanitizable(m,σ′) =
Sanitizable(m,σ) \ modc. This algorithm can be called by the signer and
any other third party. This enables the signer to close parts of m prior to
distributing.

Signing each “left-of” relation is enough to protect the structure of an ordered
document. This has already been utilized and proven in [8] and [4]. The signer is
able to redact parts of the document as well, since a RSS allows public redaction.
Hence, all parties can sanitize and close the document, which includes the signer
and the final recipient as well.

3.1 Security Properties

We now define the required security properties of RSS. These have already been
identified in [4] for trees. Therefore, we will adapt and extend their notion for our
needs. We will denote the transitive closure of a message m, w.r.t. to Redact, as
span�(m), which is derived from [8]. We denote a redaction of a submessagem[i]
as m \m[i]. A redaction of a relation between m[i] and m[j] will be denoted as
m \m[i, j]. Note, the following definitions address only the information a third
party can derive from the signature; e.g., if obvious redactions took place, it
may be trivial to decide whether something has been redacted. We will use the
notation
 to express a subset relation in terms of submessages and submessage
relations.

Unforgeability. No one should be able to compute a valid signature on a docu-
ment outside the transitive closure span�(m), without having access to the secret
key sk. That is, even if an outsider can request signatures on different documents,
it remains impossible to forge a signature for a new document. This is analogous
to the standard unforgeability requirement for other signature schemes. We say
that a RSS is unforgeable, iff for any efficient (PPT) adversaryA the probability
that the game depicted in Fig. 4 returns 1, is negligible (as a function of λ).

Privacy. No one should be able to gain any knowledge about redacted parts
without having access to them. This is similar to the standard indistinguishabil-
ity notion for encryption schemes. We say that a RSS for documents is private,
iff for any efficient (PPT) adversary A the probability that the game depicted
in Fig. 5 returns 1, is negligibly close to 1

2 (as a function of λ).

Redactable Signatures for Independent Removal of Structure and Content 23

Experiment UnforgeabilityRSSA (λ)
(pk, sk) ← KeyGen(1λ)

(m∗, σ∗) ← ASign(sk,·)(pk)
let i = 1, 2, . . . , q index the queries

return 1 iff
Verify(pk,m∗, σ∗) = 1 and
∀i, 1 ≤ i ≤ q : m∗ /∈ span�(mi)

Fig. 4. Game for Unforgeability

Experiment PrivacyRSSA (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(sk,·),LoRRedact(...,sk,b)(pk)
where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) �= mod1(m1), return ⊥
(m,σ) ← Sign(sk,mb)
return (m′, σ′) ← Redact(pk, m, σ,modb).

return 1 iff b = d

Fig. 5. Game for Privacy

Experiment TransparencyRSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)

where oracle Sign/Redact for input m,mod:
if mod(m) /∈ span�(m), return ⊥
if b = 0: (σ,m)← Sign(sk,m),

(σ′, m′)← Redact(pk, σ,m,mod)

if b = 1: m′ ← mod(m)

(m′, σ′)← Sign(sk,m′),
finally return (m′, σ′).

return 1 iff b = d

Fig. 6. Game for Transparency

Experiment DisclosureSecureRSSA (λ)

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ARSign(sk,·)(pk)

where oracle RSign for input m,modc:
(σ,m)← Sign(sk, m)

return Close(pk, m, σ,modc)

return 1 iff
let i = 1, 2, . . . , q index the queries
let ADMi ← Sanitizable(mi, σi) and
let ADM∗ ← Sanitizable(m∗, σ∗) and
Verify(pk, m∗, σ∗) = 1 and
∃i : m∗ ∈ span�(mi) ∧mi \m∗ �

⋃
0<i≤q

ADMi or

∃i : ADM∗ ⊃ ADMi ∧ ∀i : ADM∗ �
⋃

0<i≤q
ADMi

Fig. 7. Game for Disclosure Secure

Transparency. The verifier should not be able to decide whether a signature
has been created by the signer, or through the redaction algorithm Redact. This
means, that a party cannot decide whether a freshly signed or a blinded version
where some parts have already been redacted has been received. We say that a
RSS is transparent, iff for any efficient (PPT) adversary A, the probability that
the game depicted in Fig. 6 returns 1, is negligibly close to 1

2 (as a function of λ).

Disclosure Secure. No one should be able to redact parts of a document which
are not part of ADM. This is analogous to the immutability requirement for
SSS [5]. Note, in [20]Miyazaki et al. merged this with unforgeability. However, for
unforgeability any message is enough to break the game; for disclosure security,
an adversary has two possibilities: Either it is able to redact a part which is
subject to redaction control or is able to alter ADM, such that the disclosure
control is reversed. Therefore, the games are slightly different. Additionally, our
game is stricter as the adversary can choose the parts of the message to be
subject to disclosure control. We say that a RSS is disclosure secure, iff for any
efficient (PPT) adversary A the probability that the game depicted in Fig. 7
returns 1, is negligible (as a function of λ).

Next, we will describe the needed primitives for our scheme.

24 K. Samelin et al.

3.2 Aggregate Signatures and Bilinear Pairings

Aggregate signatures (AGG) have been introduced by Boneh et al. in [3]. The
basic idea is as follows: Given � signatures σi, 0 < i ≤ �, one constructs a
compressed signature σ which contains all signatures σi. This allows verifying
all given signatures σi by verifying σ. The scheme can be constructed as follows:
Let G1 be a cyclic multiplicative group with prime order q, generated by g, i.e.
G1 = 〈g〉. Further, let GT denote a cyclic multiplicative group with the same
prime order q. Let ê : G1 ×G1 → GT be a bilinear map such that:

1. Bilinearity: ∀u, v ∈ G1 : ∀a, b ∈ Z/qZ : ê(ua, vb) = ê(u, v)ab

2. Non-degeneracy: ∃u, v ∈ G1 : ê(u, v) �= 1
3. Computability: There is an efficient algorithm Abimap that calculates the

mapping ê for all u, v ∈ G1

Definition 2 (The BGLS-Scheme). The AGG by Boneh et al. [3] (BGLS-
Scheme) with public aggregation consists of five efficient algorithms. Especially:

AGG = {AKeyGen,ASign,AVerf,AAgg,AAggVerf}

AKeyGen. The algorithm KeyGen outputs the public and private key of the

signer, sk
$← Z/qZ denote the signer’s private key and Hk : {0, 1}∗ →

G1 an ordinary cryptographic hash-function from the family HK and set
Q ← gsk, where g is a generator of G1. Set the public parameters and key
pk← (g,Q,G1,GT ,Hk, ê). Output (pk, sk).

ASign. The algorithm ASign outputs the signature σi on input of the secret key
sk and a single document mi. It outputs σi ← (Hk(mi))

sk.
AVerf. To verify a signature σi, a third party has to check, if the following equa-

tion holds: ê(σi, g)
?
= ê(Hk(mi), Q).

AAgg. To aggregate � signatures σi, protecting mi, into an aggregated signature
σ, the aggregator computes σ ←

∏�
i=1 σi, denoted as AAgg(pk,S), where S

is a set of signatures signed using the same public parameters. Note: This
can be done by untrusted parties and without knowing the private keys.

AAggVerf. To verify an aggregated signature σ, a verifier checks whether ê(σ, g)
?
=∏�

i=1 ê(Hk(mi), Q) holds, on input of σ, pk and a list of signed (sub)messages.

To improve efficiency, the right side can be rewritten as ê(
∏�

i=1Hk(mi), Q).
Note, we just use one public key, Q, which allows this improvement. Using
just one public key also has the advantage that we are sure that just one sign-
ing key is used. We denote the algorithm as d← AAggVerf(pk, σ, {mi}0<i≤�).

As usual, the correctness requirements should hold. Formal proofs of those can
be found in [3]. We require the expected security properties to hold, i.e. un-
forgeability under chosen message attacks. The proofs can also be found in [3].
We explicitly assume that splitting up an aggregate signature is not feasible, as
shown for the BGLS-Scheme in [9]. However, we require that the attacker has
access to a signing oracle. For the BGLS-Scheme, this has already been assumed
in [20], but is not stated formally in [3]. Moreover, it is required that, if a third
party knows a contained signature, it can build an inverse and actually remove

Redactable Signatures for Independent Removal of Structure and Content 25

the signature from the aggregate. We will denote the removal of σi from σ as
σ′ ← σ \σi. For the BGLS-Scheme [3] this means: σ′ ← σ ·σ−1

i . We will use this
behaviour to obtain secure consecutive redaction control.

4 RSS Construction Using Aggregate Signatures

Our construction is based upon the defined AGG. The construction introduced
will be generic, we give an instantiation afterwards. It extends the scheme intro-
duced by Miyazaki et al. in [20] without inheriting its flaws and limitations. Us-
ing aggregating signatures over accumulating hashes [2] resp. distributing many
signatures has three advantages: (1) We can introduce consecutive redaction con-
trol; (2) we are information theoretically secure, both in terms of transparency
and privacy; (3) we speed up the verification procedure as well.

4.1 High-Level Description of Our Construction

Construction 1 (RSS). Our construction makes use of an aggregating signa-
ture scheme AGG as defined earlier. We will explain every algorithm in detail
next. Note, this is a high-level description; an instantiation based on the BGLS-
Scheme is given in Sect. 4.2.

Key Generation. The key pair generation algorithm KeyGen outputs the key
pair (sk, pk), i.e.: (sk, pk) ← AKeyGen(1λ), i.e. it uses the key pair of the
underlying AGG.

Signing. To sign m, where all “left-of” relations m[i, j] can be derived from,
perform the following steps:
1. Choose a nonce τ , i.e. τ must be unique for each document signed. The

tag is needed to avoid adding subdocuments from other documents signed
with the same secret key sk

2. Sign τ , i.e. στ ← ASign(sk, τ)
3. Draw � pair-wise distinct nonces ri from a uniform distribution. These

are needed to prevent an adversary from aggregating a contained entity
twice

4. Append each ri to the corresponding subdocument m[i]
 m, then append
τ and sign the resulting string, i.e. σi ← ASign(sk, τ ||ri||m[i])

5. Sign each existing tagged “left-of” relation: σi,j ← ASign(sk, τ ||ri||rj),
for all 0 < i < j ≤ �, if m[i, j]
 m

6. Aggregate each generated signature, i.e:

σc ← AAgg(pk, στ ∪ {σi | m[i]
 m} ∪ {σi,j | m[i, j]
 m})

7. Output σ = (σc, τ, {σi | m[i]
 m}, {σi,j | m[i, j]
 m}, {ri | m[i]

m ∨m[i, j]
 m ∨m[j, i]
 m})

Note: This algorithm already allows to sign partially ordered sets by not re-
quiring all relations; this is necessary to maintain privacy and transparency.

26 K. Samelin et al.

Redact. To redact a subdocument m[i], the following steps are performed:
1. Check σ’s validity using Verify. If the signature is not valid, return ⊥
2. If m[i] �
 m, return ⊥
3. Set m′ = m \m[i]. Note, this does not redact the submessage’s relations
4. Calculate: σ′

c = σc \ σi
5. Output σ′ = (σ′

c, τ, {σi | m′[i]
 m′}, {σi,j | m′[i, j]
 m′}, {ri | m′[i]

m′ ∨m′[i, j]
 m′ ∨m′[j, i]
 m′})

To redact a relation m[i, j], the third party has to perform the following steps:

1. Check σ’s validity using Verify. If the signature is not valid, return ⊥
2. If m[i, j] �
 m, return ⊥
3. Set m′ = m \m[i, j]. Note, this does not redact submessages mi nor mj

4. Calculate: σ′
c = σc \ σi,j

5. Output σ′ = (σ′
c, τ, {σi | m′[i]
 m′}, {σi,j | m′[i, j]
 m′}, {ri | m′[i]

m′ ∨m′[i, j]
 m′ ∨m′[j, i]
 m′})
Verify. The algorithm Verify performs the following steps:

1. Check, if all ri are pair-wise distinct. If not, output 0
2. Use AAggVerf to verify τ , every m[i] and the received relations which we

assumed can be derived from m. In particular, all received submessages
m[i], appended with τ and the received ri, τ itself, and only the submes-
sage relations derived from m must be checked. If the validation passes,
return 1, otherwise 0 resp. ⊥ on error

Close. The algorithm Close prohibits the possibility of further redaction:

1. Check the validity of σ using Verify. If the signature is not valid, return
⊥

2. If a submessage m[k] is subject to redaction control, do not distribute
σk anymore, i.e. output σ′ = (σc, τ, {σi | m[i]
 m ∧ σi �= σk}, {σi,j |
m[i, j]
 m}, {ri | m[i]
 m ∨m[i, j]
 m ∨m[j, i]
 m})

3. If a submessage relation m[k, l] is subject to redaction control, do not
distribute σi,j anymore, i.e. output σ′ = (σc, τ, {σi | m[i]
 m}, {σi,j |
m[i, j]
 m}, {ri | (m[i]
 m ∨m[i, j]
 m ∨m[j, i]
 m) ∧ σi,j �= σk,l})

The algorithms Redact and Close do not require any private keys. They only al-
low to remove resp. to close just a single submessage or one relation. This is done
for brevity; sequentially running the given algorithms reestablishes the required
and intuitive behaviour, i.e. removing a submessage along with its relations. The
reason why we need to add στ to the aggregate: If at least one subdocument resp.
relation is closed, an adversary must be able to calculate resp. extract στ , which,
as will prove in the appendix, is infeasible. Thus, the verification algorithm will
not accept the signature, which reestablishes our required correctness require-
ment. A third party having all signatures but στ can calculate it by redacting
all relations and all submessages. However, this does not introduce any security
problems, since the third party could give away all signatures anyway.

Redactable Signatures for Independent Removal of Structure and Content 27

4.2 Instantiation Using the BGLS-Scheme

To clarify the generic description given in Sect. 4.1 we will give an instantiation
now. It shows how such a scheme can be implemented using the BGLS-Scheme
and it allows us to give performance measurements in Sect. 5.

Construction 2 (RSS2). For brevity, we will omit the case where already par-
tially ordered sets are subject to signing; the algorithms can be adjusted accord-
ingly very easily, as already shown in the high-level description of our algorithms.
We will use the BGLS-Scheme, since it is well known. The proof given in the ap-
pendix is done for the BGLS-Scheme as well. We will prove our generic scheme
in the full version of this paper.

Sign. To sign a document m = m[1]|| . . . ||m[�], the signer signs each subdoc-
ument using the secret key sk and an additional tag τ . First, the signer
signs τ , i.e. στ ← (Hk(τ))

sk. Afterwards, � pair-wise distinct nonces ri
have to be drawn uniformly. Then, each submessage m[i]
 m is signed,
i.e. σi ← (Hk(τ ||ri||mi))

sk. Note, τ must be different for each document m
under sk. Afterwards, the signer calculates σi,j ← (Hk(τ ||ri||rj))sk for all
0 < i < j ≤ �. The tag τ is required to avoid adding subdocuments of other
documents signed with the same secret key sk. Hence, τ “binds” all subdoc-
uments to exactly one document mτ . Afterwards, the signer aggregates all
signatures σi and σi,j into the final aggregated signature σc, i.e.:

σc ← στ ·
�∏

i=1

σi ·
�∏

j=2

i<j∏
i=1

σi,j

All signatures, i.e. σi, σi,j and στ , are sent along with the document m.
Furthermore, a third party requires all random numbers ri for verification.

Redact. Verify σ first. To redact m[k], m[k] is deleted from the set of subdoc-
uments, i.e. m′ = m \m[k]. Then the third party produces a new aggregated
signature σ′ over the remaining subdocuments by calculating σ′

c ← σc · σ−1
k .

To redact a relation m[i, j], the algorithm is similar, i.e. m′ = m \ m[i, j]
and σ′

c ← σc ·σ−1
i,j . Redacted signatures must not be further distributed. Also,

all no longer required nonces must be deleted as well to maintain privacy, as
shown in the generic construction.

Verify. To verify σ, the verifier checks whether the following equation holds:

ê(σc, g)
?
= ê(Hk(τ) ·

�∏
i=1

si ·
�∏

j=2

i<j∏
i=1

ti,j , Q)

where

si =

{
Hk(τ ||ri||m[i]) if m[i]
 m
1 otherwise

and ti,j =

{
Hk(τ ||ri||rj) if m[i, j]
 m
1 otherwise

If so, he checks if all used ri are pair-wise distinct. If this test is passed, the
ordering and the content has been verified explicitly and the received docu-
ment is valid. The case where a given submessage resp. submessage relation

28 K. Samelin et al.

is not part of the received document, does not impact on transparency, since
the document could have been signed like this; A third party always knows, if
a given entity does not exist, which is crucial to have a useable verification
procedure, while 1 is the neutral element in the multiplicative group. More-
over, no information from the signature is leaked, as required by our security
model. Thus, the instantiation used allows a very compact representation of
the verification algorithm without introducing security flaws.

Close. The algorithm Close just no longer sends the corresponding signature.
This is the same behaviour as defined in the generic construction.

Correctness and Security of the Proposed Scheme. The proofs are rele-
gated to App. A.

Runtime and Storage Complexity. Our construction requires n+ n(n−1)
2 +

1+n steps for signing. The dominant term is n(n−1)
2 , which is inO(n2). Redacting

a subdocument or relation just requires two steps, namely deleting the subdoc-
ument or relation m[k] and adjusting the aggregated signature to σ′. Hence, the
redaction algorithm is in O(1). Verification is in O(n2). Note, this construction
requires all signatures to be available. Hence, our scheme has a storage require-

ment of O(n2), since n+ n(n−1)
2 signatures are required.

4.3 Modifications

Restricting to Sanitizer and Accountability. The proposed scheme allows
public redaction. To limit redaction to explicitly denoted third parties, the sig-
nature σc can be altered to hold an additional signature σ2 ← SIGN(sk, CH(m)),
where m is the message to be signed, while CH is a chameleon hash [14]. The
parameters of CH and m itself need to be delivered with σ2. Only third parties
who possess the secret key for CH can alter m without breaking the verifica-
tion procedure. This can be enriched further to achieve third party and signer
accountability [5]: CH could be replaced with a tag-based chameleon-hash, i.e.
the one introduced by Brzuska et al. in [5]. Note, both types of accountability
have not yet been formalized for RSS. We are confident that both formalizations
are similar or even the same, though we note that this is ongoing work. The
approach has already been introduced in [23] by Pöhls et al.

Binding Subdocuments and Relations. A third party can bind two or more
subdocuments m[i] resp. relations m[i, j] to each other. In particular, it may be
wanted that m[1] and m[3] can just be redacted together as one. This is also true
for any relations; it may be wanted that a (maybe consecutive) third party is
only able to redact all relations of, e.g.,m[6] at once. To do so, the corresponding
signatures must be aggregated and distributed, e.g. in our first example σ(1,3) ←
σ1 ·σ3. For our second example this would be σ(6) ←

∏i=5
i=1 σi,6 ·

∏i=�
i=7 σ6,i. Note,

this does not affect the message m itself. This has already been proposed in [20].

Redactable Signatures for Independent Removal of Structure and Content 29

Table 1. Median Runtime for the Scheme; All in ms

Generation of σ in ms Verification of σ in ms Redaction in ms
�����Curve

�
10 25 50 100 10 25 50 100 10 25 50 100

128 Bit 6,350 28,675 158,557 615,546 3,675 16,638 89,233 338,156 3 10 22 32

256 Bit 39,313 170,405 667,321 2,660,354 20,323 92,828 345,360 1,401,178 9 20 44 83

384 Bit 95,555 435,902 1,740,444 6,837,645 49,203 229,935 896,825 3,580,709 15 37 71 153

However, we can show that for our scheme, which allows much more freedom,
the signer is still able to restrict the third parties in such a sophisticated way.

5 Performance Measurements

We have implemented our scheme to demonstrate the usability despite its run-
time complexity of O(n2) and the fact that it is based on pairings. We used the
library developed by the National University of Maynooth1 [22] and the tests
were run on a Lenovo Thinkpad T61 with an Intel T8300 Dual Core @2.40

Ghz and 4 GiB of RAM. We ran Ubuntu Version 10.04 LTS (64 Bit) and Java
version 1.6.0 26-b03. We used a single thread to calculate the signatures; an
improvement would be to parallelize signature calculations, since all but the ag-
gregation step are independent. The source code is available upon request. We
took the median of 10 runs and evaluated three sizes of curves, i.e. 128, 256
and 384 Bit. Table 1 shows the results for 10, 25, 50 and 100 subdocuments. As
shown, for high security parameter sizes and high subdocument counts, we are
considerably slower than a standard SHA-512 hash. For comparison, a SHA-512
on a document with 10 subdocuments takes 4ms and for 100 it takes 40ms. So,
our implementation is at best 1,587 times slower than SHA-512 (10 subdocu-
ments signed using a 128 bit curve). In comparison to other primitives based on
pairings used in SSS our scheme can compete: A chameleon hash like Zhang et.
al’s [27] (128bit) takes 930ms to generate a single hash according to [23], while
our scheme has a growth of O(n2). However, all other provably secure and trans-
parent schemes, i.e. [4] and [8], have the same complexity and therefore just
differ by a constant factor. Hence, faster aggregate signatures would directly
lead to a faster scheme. We note that for large security parameters, and a large
submessage count, the scheme becomes very slow.

6 Conclusion and Open Questions

We presented a secure RSS for linear documents, that offers information-
theoretical transparency and privacy. It treats content and structure as separate
redactable parts; giving more freedom, which allows this RSS a wider applica-
bility. Furthermore, we have introduced a formal and rigorous security model,

1 http://www.nuim.ie/

30 K. Samelin et al.

which is the first to formally define the property of secure consecutive redac-
tion control. Our scheme needs O(n2) signing and verification steps. However, it
allows redacting structure and content separately, which has not been possible
with any scheme before, and has many applications in real world environments.
Our implementation demonstrates that our construction is rather slow, but may
still be useable for some real-life applications. It remains an open question, if
more efficient schemes can be constructed and how we can construct an unlink-
able [6] RSS with the same possibilities. Moreover, we presented an attack on
the Kundu-Scheme [15,16], which breaks the structural integrity protection, thus
allows modifying a signed document’s semantic meaning.

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Benaloh, J., De Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures, pp. 274–285. Springer, Heidelberg (1993)

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

4. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable Signa-
tures for Tree-Structured Data: Definitions and Constructions. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)

5. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

6. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable
Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

7. Canard, S., Jambert, A.: On Extended Sanitizable Signature Schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

8. Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Hei-
delberg (2009)

9. Coron, J.-S., Naccache, D.: Boneh et al.’s k-Element Aggregate Extraction As-
sumption Is Equivalent to the Diffie-Hellman Assumption. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003)

10. Haber, S., Hatano, Y., Honda, Y., Horne, W.G., Miyazaki, K., Sander, T., Tezoku,
S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. In: ASIACCS, pp. 353–362 (2008)

11. Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and Deletable
Signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379,
pp. 130–144. Springer, Heidelberg (2009)

12. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic Signature Schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

Redactable Signatures for Independent Removal of Structure and Content 31

13. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

14. Krawczyk, H., Rabin, T.: Chameleon Hashing and Signatures. In: Symposium on
Network and Distributed Systems Security, pp. 143–154 (2000)

15. Kundu, A., Bertino, E.: Structural Signatures for Tree Data Structures. In: Proc.
of PVLDB 2008, New Zealand. ACM (2008)

16. Kundu, A., Bertino, E.: CERIAS Tech Report 2009-1 Leakage-Free Integrity As-
surance for Tree Data Structures (2009)

17. Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: EDBT,
pp. 609–620 (2010)

18. Liu, B., Lu, J., Yip, J.: XML data integrity based on concatenated hash function.
International Journal of Computer Science and Information Security 1(1) (May
2009)

19. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura,
H.: Digital documents sanitizing problem. Technical Report ISEC2003-20, IEICE
(2003)

20. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme
based on bilinear maps. In: Proceedings of the 2006 ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS 2006, pp. 343–354.
ACM, New York (2006)

21. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally Signed Document Sanitizing Scheme with Disclosure Condition
Control. IEICE Transactions 88-A(1), 239–246 (2005)

22. Owens, L., Duffy, A., Dowling, T.: An Identity Based Encryption system. In: PPPJ,
pp. 154–159 (2004)

23. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature —
Performance, Mixing Properties, and Revisiting the Property of Transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011)

24. Sandhu, R.S.: Lattice-Based Access Control Models. Computer 26, 9–19 (1993)
25. Steinfeld, R., Bull, L., Zheng, Y.: Content Extraction Signatures. In: Kim, K.-c.

(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)
26. Wu, Z.-Y., Hsueh, C.-W., Tsai, C.-Y., Lai, F., Lee, H.-C., Chung, Y.: Redactable

Signatures for Signed CDA Documents. Journal of Medical Systems, 1–14 (Decem-
ber 2010)

27. Zhang, F., Safavi-naini, R., Susilo, W.: ID-Based Chameleon Hashes from Bilinear
Pairings. In: IACR Cryptology ePrint Archive, number 208 (2003)

32 K. Samelin et al.

A Security and Correctness Proofs

Theorem 1 (The Construction is Correct). Our construction is correct.

Proof. Trivially follows from the definitions and the algorithms, i.e. every infor-
mation claimed to be valueable is explicitly signed and must explicitly be verified.
Signing the “left-of” relationship is enough to protect the ordering due to the
transitive behaviour. See [8] and [4] for additional information. Note, the unique
nonces imply that copy attacks, i.e. just aggregating a specific signature σi again
are prohibited. The nonces also circumvent the problem of not being able to sign
a document where a document is contained twice from the beginning [3]. ��

Theorem 2 (The Construction is Private). Our construction is private in
the information-theoretical sense.

Proof. Our scheme is private in the information-theoretical sense. In particular,
the parts redacted are completly removed from the signature and the message.
Hence, the secret bit b is perfectly hidden. The signing algorithm requires that
always fresh ri are drawn uniformly, while removing a random number from a
uniformly distributed list leads to a uniformly distributed list again. Hence, even
an unbounded adversary is not able to guess the bit better than at random. The
adversary would be able to distinguish between two uniform distributions. The
other way around is similar; if the redacted message would have been signed
directly, while the corresponding ri are not changed, the output is the same,
prohibiting even unbounded adversaries from guessing any better than random.
This implies perfect privacy. ��

Theorem 3 (The Construction is Transparent). Our construction is trans-
parent in the information-theoretical sense.

Proof. Our scheme is also transparent in the information-theoretical sense. In
other words, the secret bit b is perfectly hidden. Our signing algorithm requires
that always fresh ri are drawn uniformly, while removing a random number from
a uniformly distributed list leads to a uniformly distributed list again. Hence,
even an unbounded adversary is not able to guess the bit better than at random.
Otherwise, the adversary would be able to distinguish between two uniform
distributions, which is obviously impossible. Again, the other way around is
similar: If the redacted message would have been signed directly, the distributions
are still uniform and it is impossible for any adversary to guess b better than at
random. ��

Theorem 4 (The Construction is Unforgeable). Our construction is un-
forgeable.

Proof. Note: We require that the tags τm are chosen unique for each message,
while sk is fixed. The ri are drawn uniformly as well. Hence, we will omit unlikely
collisions of those and trivial mix-and-match-attacks. Knowing this, we can con-
struct an adversary B with breaks the unforgeability of the BGLS-Scheme, if an
adversary A with a non-negligible advantage ε exists, winning our unforgeability

Redactable Signatures for Independent Removal of Structure and Content 33

game. To do so, B uses A as a black box. For every signature query A requests,
B forwards the queries to its signing oracle OSign and genuinely returns the
answers to A. Eventually, A will output a pair (m∗, σ∗). Given the transcript
of the simulation, B checks, if (m∗, σ∗) is a trivial “forgery”, i.e. a result of an
allowed redaction. If so, B aborts the simulation. If, at some time, B does not
need to restart, B outputs the tuple (m∗, σ∗) as its forgery attempt. Note that if
∃i : σ∗ �= σi ∧mi = m∗, then the pair (m∗, σ∗) does not win our unforgeability
game and is therefore not a valid forgery attempt. This ends the simulation. We
have to distinguish between two cases: (1) If ∃i : σ∗ = σi ∧ mi �= m∗, B has
found collision of the underlying random oracle or must have forged at least two
messages. One can extract the colliding aggregates and output them as a valid
forgery of the BGLS-Scheme itself. In both cases, m∗ has never been queried.
(2) If ¬∃i : σ∗ = σi ∨ mi = m∗. Then we have a valid forgery of a message
m never queried. This breaks the unforgeability of the BGLS-Scheme. To avoid
duplicate work, we relegate the reader to [3] and [20], where the authors show
how to break the “Diffie-Hellman-Problem” using our algorithm B, which always
outputs a valid forgery, if A is successful, hence with probability ε. ��
Theorem 5 (The Construction is Disclosure Secure). Our construction
is disclosure secure.

Proof. Note, the following proofs are given under the assumption, that the k-
element-aggregate-extraction-assumption (k-EAEA) [3] yields, even if the ad-
versary has access to a signing oracle. Let A be an algorithm winning our dis-
closure secure game. We can then use A to break k-EAEA and therefore also
the “Diffie-Hellman Assumption” [9] resp. the unforgeability of the underly-
ing BGLS-Scheme. To do so, we let B use A as a black-box again. For every
query of A to the oracle ORSign, B forwards the queries to its oracle OAAggSign ,
where OAAggSign signs and aggregates messages in one step. A full description
is given in the full version of this paper. For all messages mc = mi \ modc,i,
B calls OSign and simulates (m′

i, σ
′
i) ← Close(pk,mi, σi,modc,i). Afterwards,

it forwards (m′
i, σ

′
i) genuinely to A. Eventually, A outputs its forgery attempt

(m∗, σ∗). If (m∗, σ∗) is non-trivial and actually winning the disclosure secure
game, B outputs (m∗, σ∗), otherwise B aborts. This ends the description of our
simulation.

There are two cases:

Case 1: A could reconstruct parts of ADMi

Case 2: A could redact parts of mi, which were subject to disclosure control

The first case: Trivial; A must be able to extract signatures from the aggregate;
The algorithm given in [9] can use B to break the DH-Assumption. The second
case: Either A forged the signature or extracts sub-signatures as well. As before,
an algorithm able to forge signatures can be used to solve the DH-Problem [3,20].
To extract the sub-signatures in the non-forgery case, one reverse calculates the
signatures. In particular, one only needs to calculate σ\σ∗ and output the result.
The result was an aggregated signature, and therefore the algorithm given in [9]
can use B to break DH. ��

Improved Efficiency of Chosen Ciphertext

Secure Encryption from Factoring�

Xianhui Lu1, Bao Li1, Qixiang Mei2, and Yamin Liu1

1 State Key Laboratory of Information Security, Graduate University of Chinese
Academy of Sciences, Beijing, 100049, China

2 School of Information, Guangdong Ocean University, Zhanjiang, 524088, China
{xhlu,lb,ymliu}@is.ac.cn, nupf@163.com

Abstract. We propose a new variant of HK09 (proposed by Hofheinz
and Kiltz in Eurocrypt 2009) which improves the decapsulation efficiency
at the price of a slightly increased key size. Compared with the original
HK09 scheme the decapsulation efficiency is improved by 32% (instan-
tiated over the quadratic residuosity group) or 57.6% (instantiated over
the semi-smooth subgroup) and the encapsulation efficiency remains the
same.

Keywords: public key encryption, chosen ciphertext security, factoring.

1 Introduction

Indistinguishability against adaptive chosen ciphertext (IND-CCA) security
[15,16] is now widely accepted as the standard security notion of public key
encryption schemes. During a long period of time, IND-CCA secure schemes
were designed based on decisional assumptions, such as Decisional Diffie-Hellman
(DDH) assumption [5,7,12], Decisional Composite Residuosity (DCR) assump-
tion [6,7] and Decisional Quadratic Residuosity (DQR) assumption [6,7], whereas
the construction of IND-CCA secure schemes based on computational assump-
tions, such as factoring assumption and Computational Diffie-Hellman (CDH)
assumption, remained an open problem.

The first IND-CCA secure public key encryption scheme based on a computa-
tional assumption was proposed by Canetti, Halevi and Katz [3], who obtained
a IND-CCA secure scheme from the Computational Bilinear Diffie-Hellman
(CBDH) assumption. Later Cash, Kiltz and Shoup proposed a IND-CCA se-
cure scheme under the CDH assumption [4]. The efficiency was later improved
in [8,9,17]. In these schemes the encapsulated key is generated by applying the
hardcore predicate based on the CDH assumption. Thus, one exponentiation
can only generate one bit of the key or a few bits of the key (using simultane-
ous hardcore bits). Hence the computational efficiency of these schemes is not
suitable for practice.

� Supported by the National Natural Science Foundation of China (No.61070171), the
National Basic Research Program of China(973 project) (No.2007CB311201) and
the Postdoctoral Science Foundation of China (No.20100480514).

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 34–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring 35

Hofheinz and Kiltz proposed the first practical IND-CCA secure public key
encryption scheme based on the factoring assumption [10](HK09). Their scheme
is constructed from Blum-Goldwasser encryption [2]. Thanks to the use of Blum-
Blum-Shub pseudorandom generator [1], one multiplication can generate one bit
of the key. The authors also proposed, in the appendix, a variant (HK09-A) of
their scheme that has slightly more efficient decapsulation but suffers from a
comparatively large key size (about 2lT or lT + log lT elements, lT = 80 for the
security level of 80).

The construction of HK09 was latter generalized to the extractable hash proof
system by Wee in [17]. In [17], Wee also proposed a conceptually simpler variant
of HK09 which is more modular but less efficient (there is a linear blow-up in
both ciphertext overhead and public key size over HK09).

The efficiency of HK09 was later improved in [14,13]. In [14], the authors in-
stantiated HK09 over the semi-smooth subgroup and also proposed an ElGamal
style variant of HK09. Briefly, semi-smooth subgroup consider the modulus of
N = PQ = (2p′p + 1)(2q′q + 1), where (p′, q′) are prime numbers large enough
but much smaller than (P,Q), and (p, q) are product of distinct prime numbers
smaller than a bound. The unique subgroup of QRN (the quadratic residuos-
ity group) with order p′q′ is called semi-smooth subgroup. Since p′q′ is much
smaller than the order of QRN , schemes instantiated over semi-smooth sub-
group are more efficient. In [13] the authors proposed a tradeoff between the
efficiency of encapsulation and decapsulation of HK09. Compared with original
HK09 the efficiency of decapsulation was improved by 38.9% and the efficiency
of encapsulation was dropped by 11.4% (instantiated over the semi-smooth sub-
group).

1.1 Motivation

Up to now, HK09-A is the most efficient IND-CCA secure public key encryption
scheme based on factoring assumption over QRN in standard model. Unfortu-
nately, it suffers the disadvantage of a comparatively large key size (2lT elements
for private key and 2lT + 1 elements for public key).

In HK09, the ciphertext is (R = gμ2
lK+lT , S = |(gtX)μ|) and the encapsulated

key is K = BBSN (gμ2
lT), where g ∈ QRN , μ ∈ [(N − 1)/4], X = gx2

lK+lT ,
x ∈ [(N − 1)/4] is the private key, lK is the length of K, lT is the length of the
hash value t = T(R), N = (2p+1)(2q+1) is a Blum number. To recover K, the
decapsulation algorithm needs to compute gμ = (S/Rx)1/t. Since the exponent
inversion can not be computed directly for hidden order group, the decapsulation

algorithm computes gμ2
lT by using the gcd (greatest common divisor) skill.

To avoid the computation of exponent inversion, in HK09-A, the authors
interpret t as a bitwise selector of lT out of 2lT group elements Xij , where i ∈
[lT], j ∈ {0, 1}. Concretely, the ciphertext is (R = gμ2

lK
, S = |(

∏lT
i=1Xi,ti)

μ|).
Despite the improved decapsulation efficiency, the key size is comparatively large.

An interesting question is, can we construct a variant of HK09 that simulta-
neously enjoys the properties of high efficiency and small key size?

36 X. Lu et al.

1.2 Our Contribution

We propose a variant of HK09 which improves the decapsulation efficiency at the
price of a slightly increased key size. Compared with the original HK09 scheme
the decapsulation efficiency is improved by 32% (instantiated over the quadratic
residuosity group) or 57.6% (instantiated over the semi-smooth subgroup) and
the encapsulation efficiency remains the same. Thus our variant simultaneously
enjoys the properties of high efficiency and small key size (2 or 3 elements for
private key and 3 elements for public key).

Our main idea is to avoid the computation of exponent inversion by hiding gμ

instead of gμt into S. Concretely, the ciphertext is (R = gμ2
lK , S = |XμtY μ|), the

encapsulated key is K = BBSN (gμ), where h ∈ QRN , g = h2, X = gx2
lK , Y =

gy2
lK h, (x, y) ∈ [(N−1)/4] is the private key. Thus, the decapsulation computes

gμ = S2/R2(xt+y) directly.
The main difficulty is the security proof of this new variant. To construct

the challenge ciphertext, the simulator may set X = gx2
lK
h−1, Y = gy2

lK
ht

∗

(to construct S∗ without hμ
∗
). In this case the simulator can only compute

g(t
∗−t)μ = h2(t

∗−t) in the simulation of decapsulation. A direct solution is setting

R = gμ2
lK+lT and computing gμ2

lT by using the gcd skill as in [10]. In this case

we still need to use gμ2
lT as the seed for BBS. We figure out a more efficient

solution by setting g = h2
lT +1

and computing gμ = hμ2
lT +1

from h2(t
∗−t)μ

and hμ2
lK+lT +1

= gμ2
lK by using the gcd skill. In our new solution we can set

R = gμ2
lK and use gμ as the seed for BBS.

Note that, in [13] the authors also improved the decapsulation efficiency by
avoiding the computation of exponent inversion. Their skill is to derive the encap-

sulated key from gμt2
lT directly. Compared with the scheme in [13], we improve

the decapsulation efficiency at the cost of one element increasing in key size,
while they improved the decapsulation efficiency at the cost of 11.4% decreasing
in encapsulation efficiency.

We remark that our new variant can be instantiated over the semi-smooth
subgroup using the technique in [14]. The resulting scheme is more efficient than
that over the QRN group.

1.3 Outline

In section 2 we review the definition of key encapsulation mechanism and target
collision resistant hash function. In section 3 we propose a new variant of HK09.
Finally we give the conclusion in section 4.

2 Definitions

In describing probabilistic processes, x
R← X denotes that x is sampled according

to the distribution X. If S is a finite set, s
R← S denotes that s is sampled from the

uniform distribution on S. If A is a probabilistic algorithm and x an input, then

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring 37

A(x) denotes the output distribution of A on input x. Thus, we write y
R← A(x)

to denote of running algorithm A on input x and assigning the output to the
variable y.

2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists the following algorithms:

– KEM.KeyGen(1k): A probabilistic polynomial-time key generation algorithm
takes as input a security parameter (1k) and outputs a public key PK and a
secret key SK. We write (PK, SK)← KEM.KeyGen(1k)

– KEM.Enc(PK): A probabilistic polynomial-time encapsulation algorithm
takes as input the public key PK, and outputs a pair (K,ψ), where K ∈
KD(KD is the key space) is a key and ψ is a ciphertext. We write (K,ψ)←
KEM.Enc(PK)

– KEM.Dec(SK, ψ): A decapsulation algorithm takes as input a ciphertext ψ
and the secret key SK. It returns a key K. We write K ← KEM.Dec(SK, ψ).

We require that for all (PK,SK) output by KEM.KeyGen(1k), all (K,ψ) ∈
[KEM.Enc(PK)], we have KEM.Dec(SK, ψ)=K.

Now we review the IND-CCA (Indistinguishability against adaptive chosen
ciphertext attack) security of KEM. Note that we use the definition in [11] which
is simpler than the original definition in [7].

Definition 1. A KEM scheme is indistinguishability against adaptive chosen
ciphertext attacks if the advantage of any adversary in the following game is
negligible in the security parameter k.

1. The adversary queries a key generation oracle. The key generation oracle
computes (PK, SK)← KEM.KeyGen(1k) and responds with PK.

2. The adversary queries an encapsulation oracle. The encapsulation oracle
computes:

b
R← {0, 1}, (K1, ψ

∗)← KEM.Enc(PK),K0
R← KD,

and responds with (Kb, ψ
∗).

3. The adversary makes a sequence of calls to the decapsulation oracle. For each
query the adversary submits a ciphertext ψ, and the decapsulation oracle
responds with KEM.Dec(SK, ψ). The only restriction is that the adversary
can not request the decapsulation of ψ∗.

4. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above game is AdvccaA (k) = |Pr[b′ = 1|b =
1] − Pr[b′ = 1|b = 0]|. If a KEM is secure against adaptive chosen ciphertext
attacks defined in the above game we say it is IND-CCA secure.

38 X. Lu et al.

2.2 Target Collision Resistant Hash Function

Now we review the definition of target collision resistant (TCR) hash function.
We say that a function H : X → Y is a TCR hash function, if, given a random
preimage x ∈ X , it is hard to find x′ �= x with H(x′) = H(x). Concretely, the
advantage of an adversary A is defined as:

AdvtcrA (k) = Pr[x
R← X, x′ ← A(x) : x �= x′ ∧ H(x) = H(x′)].

We say H is a TCR hash function if AdvtcrA (k) is negligible.

3 New Variant of HK09

Our new variant of HK09 is described as follows.

– KeyGen: Choose uniformly at random a Blum integer N = PQ = (2p +
1)(2q + 1), where P,Q, p, q are prime numbers. Then compute:

h
R← QRN , g ← h2, (x, y)

R← [(N − 1)/4],

X ← gx2
lK
, Y ← gy2

lK
h,

pk← (N, g,X, Y), sk ← (x, y),

where T : QRN → {0, 1}lT is a TCR hash function, lK is the bit length of
the encapsulated key K.

– Encapsulation: Given pk, the encapsulation algorithm computes:

μ
R← [(N − 1)/4], R← gμ2

lK
, t← T(R), S ←

∣∣(XtY
)μ∣∣ ,

K ← BBSN (gμ),

where BBSN (α) = LSB(α), · · · ,LSB(α2lK−1

), LSB(α) denotes the least sig-
nificant bit of α.

– Decapsulation: Given a ciphertext (R,S) and sk, the decapsulation algo-
rithm verifies R ∈ Z∗

N , S ∈ Z∗
N ∩ [(N − 1)/2], then computes:

t← T(R), ρ← xt+ y,

if

(
S2

R2ρ

)2lK+1

= R2 then compute K ← BBSN

(
S2

R2ρ

)
,

else return the rejection symbol ⊥ .

The correctness of the scheme above can be verified as follows:(
S2

R2ρ

)
=

(∣∣(XtY)
μ∣∣2

g2μ2
lK ρ

)
=

(
h2μgμ2

lK+1ρ

gμ2
lK+1ρ

)
= (h2)μ = gμ.

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring 39

We remark that, if pq is added to the private key, the efficiency of decapsula-
tion can be improved by computing ρ = (xt + y) mod pq. It is clear that, our
new variant above can also be instantiated over semi-smooth subgroup using the
technique in [14]. In this case, (x, y) are selected from 2lp′+lq′+λ, where lp′ is the
length of p′, lq′ is the length of q′, λ is a parameter for security level. If p′q′ is
added to the private key, the efficiency of decapsulation can be further improved
by selecting (x, y) from [p′q′] instead of 2lp′+lq′+λ.

3.1 Security Proof

Theorem 1. If factoring N is hard and T is a TCR hash function, then the
new variant is IND-CCA secure.

Review the security proof in HK09, wherein, the reduction is divided into two
phases. In the first phase the BBS distinguisher is reduced to the factoring
assumption. In the second phase, the IND-CCA security of the scheme is reduced
to the BBS distinguisher. The experiment for the BBS distinguish problem is
defined as:

AdvBBS
A = |Pr[A(N, z,BBSN (u)) = 1]− Pr[A(N, z, U) = 1]|,

where N is a Blum integer (N = PQ,P = 2p+1, Q = 2q+1, p and q are prime

numbers), u ∈ QRN , z = u2
lK , U is a random bit string of length lK .

Given Theorem 2 in [10], it is clear that we only need to proof the following
theorem.

Theorem 2. If it is hard to distinguish (N, z,BBSN (u)) from (N, z, U) and T
is a TCR hash function, then the new variant is IND-CCA secure.

Proof. Suppose that an adversary A can break the IND-CCA security of the
new variant. To prove the theorem, we construct an adversary B to distinguish
(N, z,BBSN (u)) from (N, z, U). The construction of B is described as follows.

Setup: On receiving (N, z, V), where V = U or V = BBSN (u), the adversary B
computes:

h
R← QRN , g ← h2

lT +1

, (x, y)
R← [(N − 1)/4],

t∗ ← T(z), X ← gx2
lK
h−1, Y ← gy2

lK
ht

∗
,

pk← (N, g,X, Y).

The adversary B sends pk to adversary A.
Challenge: The adversary B constructs the challenge ciphertext as follows.

R∗ ← z, S∗ ←
∣∣∣R∗ρ∗ ∣∣∣ ,K∗ ← V.

40 X. Lu et al.

Where ρ∗ = xt∗+y. Let R∗ = gμ
∗2lK , the correctness of the challenge ciphertext

can be verified as follow:

S∗ =
∣∣R∗ρ∗ ∣∣

=
∣∣∣gμ∗2lK (xt∗+y)

∣∣∣
=

∣∣∣gμ∗2lK xt∗gμ
∗2lK y

∣∣∣
=

∣∣∣∣(g2lKxt∗h−t∗
)μ∗ (

g2
lK yht

∗)μ∗ ∣∣∣∣
=

∣∣∣∣(g2lKxh−1
)μ∗t∗ (

g2
lK yht

∗
)μ∗ ∣∣∣∣

=
∣∣Xμ∗t∗Y μ∗ ∣∣

=
∣∣∣(Xt∗Y

)μ∗ ∣∣∣ .

(1)

Decapsulation: On receiving the decapsulation query (R,S), the adversary B
verifies R ∈ Z∗

N , S ∈ Z∗
N ∩ [(N − 1)/2], then computes:

t← T(R), ρ← xt+ y.

Then the adversary B considers three cases:

Case 1: t �= t∗. In this case, the adversary B acts as:

if

(
S2

R2ρ

)2lK+lT +1

= R2(t∗−t) computes:

2c = gcd(t∗ − t, 2lK+lT) = a(t∗ − t) + b2lK+lT ,

returns K ← BBSN

(((
S2R−2ρ

)a
Rb

)2lT −c)
,

else returns the rejection symbol ⊥ .
Since t �= t∗ we have 0 < c < lT . LetR = gμ2

lK , the correctness of the verification
equation can be verified as follows:(

S2

R2ρ

)2lK+lT +1

=
(

|(XtY)μ|2
g2ρ2lK μ

)2lK+lT +1

=

(
((gx2lK h−1)t(gy2lK ht∗))2μ

g2ρ2lK μ

)2lK+lT +1

=

(
(g(xt+y)2lK ht∗−t)2μ

g2ρ2lK μ

)2lK+lT +1

=

(
(gρ2lK ht∗−t)2μ

g2ρ2lK μ

)2lK+lT +1

=
(
(ht

∗−t)2μ
)2lK+lT +1

= (h2
lT +1

)2
lKμ(2(t∗−t))

= g2
lKμ(2(t∗−t))

= R2(t∗−t).

(2)

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring 41

The correctness of K can be verified as follows:

K = BBSN

(((
S2R−2ρ

)a
Rb

)2lT −c
)

= BBSN

(((
h2(t

∗−t)μ
)a

(gμ2
lK)

b
)2lT −c)

= BBSN

⎛⎝((
h2μ

)a(t∗−t)
((h2

lT +1

)
μ2lK

)
b
)2lT −c⎞⎠

= BBSN

(((
h2μ

)a(t∗−t)
(h2μ)

b2lK+lT
)2lT −c

)

= BBSN

(((
h2μ

)a(t∗−t)+b2lK+lT

)2lT −c)
= BBSN

(((
h2μ

)2c)2lT −c)
= BBSN

((
h2μ

)2lT)
= BBSN

((
h2

lT +1
)μ)

= BBSN (gμ) .

(3)

Case 2: t = t∗, R �= R∗. Denote this case as an event badtcr. Since T is a TCR
hash function, we have Pr[badtcr] ≤ AdvtcrC .

Case 3: t = t∗, R = R∗, S �= S∗. In this case, if S2 �= R2ρ return the rejection
symbol ⊥. If S2 = R2ρ, we have |S| = S �= S∗ = |S∗| and S2 = R2ρ = R∗2ρ∗

=
S∗2. Then, S �= ±S∗ and S2 − S∗2 = (S + S∗)(S − S∗) = 0. Thus B can factor
N directly by computing gcd(N,S + S∗) or gcd(N,S − S∗).

Guess: On receiving b′ from adversary A, the adversary B outputs b′.

This finishes the construction of the adversary B. We claim that the distribution
of simulated public key and the challenge ciphertext is almost identical in the
simulation above and the IND-CCA game.

Lemma 1. There exists an event badkey such that, conditioned on ¬badkey the
public key and the challenge ciphertext are identically distributed in simulation
and the IND-CCA game. Concretely,

Pr[badkey] ≤
5

2k−1
,

where k is the parameter of security level.

Since the proof of the lemma above is very similar to that of lemma 1 in [10],
we omit the detail.

42 X. Lu et al.

It is clear that, unless badtcr or badkey occurs, B perfectly simulates the real
IND-CCA game. To be concrete:

AdvBBS
B = AdvccaA − Pr[badtcr]− Pr[badkey]
≥ AdvccaA −AdvtcrC − 5

2k−1 .
(4)

This completes the proof of theorem 2. ��

3.2 Efficiency

In this section, we analyze the efficiency of our new variant and compare it
with the previous schemes in [10,14,13]. Note that, all of these schemes can be
instantiated over the QRN group or the semi-smooth subgroup. For the sake of
clarity, these two cases are discussed respectively.

The case of QRN group. Compared with the original HK09 scheme the
decapsulation efficiency of the proposed variant is improved by 32% in the case
of quadratic residuosity group. The efficiency of schemes in [10,14,13] and our
variant is listed in table 1, where HK09 is the scheme in [10], HK09-A is the
scheme in the appendix of [10], E-HK is the ElGamal style variant of HK09 in
[14], T-HK is the tradeoff variant of HK09 in [13] and NEW is the proposed
variant. The parameters are the same as those in [10,14,13], lN = 1024, lK =
lT = 80.

Table 1. Schemes instantiated over the QRN group

Encapsulate(mul) Decapsulate(mul) SK (bits) PK (bits)

HK09 3272(3lN + lK + 1.5lT) 2376(1.5lN + 4lK + 6.5lT) lN 2lN
HK09-A 3232(3lN + lK + 1lT) 1616(1.5lN + lK) 2lT lN (2lT + 1)lN
E-HK 4808(4.5lN + lK + 1.5lT) 2043(1.5 × 1.2lN + 2.5lT) 2lN 3lN
T-HK 3432(3lN + 2lK + 2.5lT) 1816(1.5lN + lK + 2.5lT) lN 2lN

NEW 3272(3lN + lK + 1.5lT)
1736(1.5lN + lK + 1.5lT)
1616(1.5lN + lK)

2lN
3lN

3lN

The encapsulation of our variant can first compute A = gμ, which requires
1.5lN multiplications. Then, the computation of B = (XtY)μ requires 1.5lN +

1.5lT multiplications. Finally, the computations of R = A2lK = g2
lKμ and K =

BBSN (A) require lK multiplications. Thus, the encapsulation requires 3lN +
lK +1.5lT multiplications. The decapsulation computes D = Rρ, which requires
1.5lN+1.5lT multiplications (the length of ρ = xt+y is lN + lT). Then computes

((S/D)2)2
lK and K = BBSN ((S/D)2), which require lK multiplications. We

have that the decapsulation requires 1.5lN + lK + 1.5lT multiplications. Note
that, the decapsulation can be improved by adding pq to the private key and
computing ρ = (xt+ y) mod pq. As a result, the decapsulation requires 1.5lN +
lK multiplications.

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring 43

In [10], the authors claim that the encapsulation requires 3lN + 1lK + 2.5lT
multiplications. We point out that the computation of A2lT = gμ2

lT
and S =

AtB = gμtXμ can be further optimized. A2lT is a by-product of At. That is, the
encapsulation of HK09 requires 3lN + 1lK + 1.5lT multiplications.

In [14], the authors claim that the encapsulation requires 4.5lN + lK + 2.5lT
multiplications and the decapsulation requires 1.5 × 1.2lN + lK + 2.5lT multi-
plications (the authors of [14] consider the case of the semi-smooth subgroup
group, we consider the QRN group here). We point out that, g2

v

can be precom-
puted. Thus the computation of R = gμ2

v

only requires lN multiplications. As
a result, the encapsulation of E-HK requires 4.5lN + lK + 1.5lT multiplications.
In decapsulation, the computation of K = BBS+r (R

ρ′
) is a by-product of Rρ′t.

So the decapsulation only requires 1.5× 1.2lN + 2.5lT multiplications.

The case of semi-smooth subgroup group. Compared with the origi-
nal HK09 scheme the decapsulation efficiency of our new variant is improved
by 57.6% in the case of semi-smooth subgroup. The efficiency of schemes in
[10,14,13] and our variant instantiated over the semi-smooth subgroup is listed
in table 2, where S-HK is the instantiation of HK09, S-E-HK is the instantiation
of E-HK, S-T-HK is the instantiation of T-HK, S-HK-A is the the instantiation
of HK9-A and S-NEW is the instantiation of NEW. The parameters are the same
as those in [10,14,13], lK = lT = 80, lp′ = lq′ = 160, λ = 80, le = lp′ + lq′ + λ =
400, le′ = lp′ + lq′ = 320.

Table 2. Schemes instantiated over the semi-smooth subgroup

Encapsulate(mul) Decapsulate(mul) SK (bits) PK (bits)

S-HK 1400(3le + lK + 1.5lT)
1440(1.5le + 4lK + 6.5lT)
1320(1.5le′ + 4lK + 6.5lT)

le
2le′

2lN

S-E-HK 2000(4.5le + lK + 1.5lT)
920(1.5 × 1.2le + 2.5lT)
776(1.5 × 1.2le′ + 2.5lT)

2le
3le′

3lN

S-T-HK 1560(3le + 2lK + 2.5lT)
880(1.5le + lK + 2.5lT)
760(1.5le′ + lK + 2.5lT)

le
2le′

2lN

S-HK-A 1360(3le + lK + 1lT)
680(1.5le + lK)
560(1.5le′ + lK)

2lT le
(2lT + 1)le′

(2lT + 1)lN

S-NEW 1400(3le + lK + 1.5lT)
800(1.5le + lK + 1.5lT)
560(1.5le′ + lK)

2le
3le′

3lN

Note that, the private key of schemes instantiated over semi-smooth subgroup
is selected from [2lp′+lq′+λ]. When p′q′ is added to the private key, the decapsu-
lation efficiency can be improved by selecting the private key from [p′q′]. So we
consider two cases for the decapsulation efficiency and the private key size.

4 Conclusion

We proposed a variant of HK09 which improves the decapsulation at the price
of a slightly increased key size. Compared with the original HK09 scheme the

44 X. Lu et al.

decapsulation efficiency is improved by 32% (instantiated over the quadratic
residuosity group) or 57.6% (instantiated over the semi-smooth subgroup) and
the encapsulation efficiency remains the same. We proved that the proposed
variant is IND-CCA secure under the factoring assumption.

References

1. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

2. Blum, M., Goldwasser, S.: An Efficient Probabilistic Public-Key Encryption
Scheme Which Hides All Partial Information. In: Blakely, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, pp. 289–302. Springer, Heidelberg (1985)

3. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

4. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

5. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

6. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33,
167–226 (2004), http://dl.acm.org/citation.cfm?id=953065.964243

8. Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key En-
cryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg
(2008)

9. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-
Key Encryption from Computational Diffie-Hellman in the Standard Model. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18.
Springer, Heidelberg (2010)

10. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332.
Springer, Heidelberg (2009)

11. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed
Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

12. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

13. Lu, X., Li, B., Mei, Q., Liu, Y.: Improved tradeoff between encapsulation and
decapsulation of hk09. In: Inscrypt 2011 (2011) (to appear)

14. Mei, Q., Li, B., Lu, X., Jia, D.: Chosen Ciphertext Secure Encryption under Fac-
toring Assumption Revisited. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 210–227. Springer, Heidelberg (2011)

http://dl.acm.org/citation.cfm?id=953065.964243

Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring 45

15. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing, STOC 1990, pp. 427–437. ACM, New York (1990)

16. Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

17. Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg
(2010)

Deniable Encryptions Secure against Adaptive

Chosen Ciphertext Attack

Chong-zhi Gao1,2, Dongqing Xie1, and Baodian Wei3

1 School of Computer Science, Guangzhou University,
Guangzhou 510006, China

czgao@gzhu.edu.cn, dongqing xie@hotmail.com
2 Key Laboratory of Network Security and Cryptology, Fujian Normal University,

Fuzhou 350007, China
3 Department of Electronics and Communication Engineering,

Sun Yat-sen University, Guangzhou 510006, China
weibd@mail.sysu.edu.cn

Abstract. The deniable encryption is a type of encryption which can
hide the true message while revealing a fake one. Even if the sender
or the receiver is coerced to show the plaintext and the used random
numbers in encryption, a deniable encryption scheme behaves like only
an innocent message is encrypted. Because it protects privacy against
malicious coercer, the deniable encryption is very useful in communi-
cation systems such as the cloud storage system when the communica-
tion channel is eavesdropped by a coercer. Previous deniable encryptions
only concern the security under the adversary’s chosen plaintext attack
(CPA). For non-interactive deniable encryptions, this paper introduce
some security notions under adaptive chosen ciphertext attack (CCA).
Furthermore, the first sender-deniable construction with deniability and
indistinguishability against CCA attack is constructed.

Keywords: Deniable Encryption, Chosen Plaintext Attack, Chosen Ci-
phertext Attack.

1 Introduction

Suppose in a communication system, a sender sends an encrypted message to
a receiver. Consider a situation in which an adversary obtains the ciphertext
and later asks the sender or the receiver to open the ciphertext, i.e., to show
the plaintext and the randomness used in generating the ciphertext. A regular
encryption scheme does not resist the coercive attack above since it also serves
as a commitment and thus the plaintext will be exposed.

Canetti et al. [3] investigated this coercive attack and first introduced the notion
of deniable encryption, in which the sender (or the receiver) has the ability to open
a ciphertext as an encryption of another message different than the true plaintext
and thus the privacy is protected. Because it protects privacy against malicious
coercer, the deniable encryption is very useful in communication systems such as
the cloud storage system when the communication channel is eavesdropped by a

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 46–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 47

coercer [8]. The deniability could be classified as sender deniability or receiver de-
niability according to which parties may be coerced. For the sender-deniable case,
Canetti et al.’s scheme achieves O(1

n) detection advantage and semantic security
under chosen plaintext attack where n denotes the length of the ciphertext. Here
“detection advantage” is the advantage that the adversary successfully detects
whether the sender/receiver are cheating or not.

The deniable encryption in Canetti et al.’s definition [3] is interactive style
(For self-containment, we include in Appendix a definition of interactive deniable
encryptions (adapted from [3]).). In the security model for an interactive deniable
scheme, a chosen plaintext attack (CPA) is considered, i.e., the adversary is given
the receiver’s public key pk without access to the private decryption key sk. Thus
a natural question arises: can we strengthen the adversary’s attacking ability by
letting him have ability to access the decryption oracle? This paper considers
this type of attack in non-interactive cases. The idea is similar with the regular
encryption cases for which the IND-CCA2 (indistinguishability against adaptive
chosen ciphertext attack [15, 1]) security is defined.

1.1 Other Related Work

To achieve negligible detection advantage, Canetti et al. [3] defined a weaker
notion of deniability – flexibly deniable encryption. In this weaker framework,
the sender may choose to encrypt a message in an honest mode or in a dishonest
mode, and the ciphertext obtained in the dishonest mode can be opened later
as being encrypted in the honest mode, but not vice versa. Most recent deniable
encryption schemes are in this flexible frameworks [12, 10, 11, 8].

We call the non-flexible deniability “full deniability”. In fully deniable encryp-
tions, there is no honest or dishonest mode, i.e., all ciphertexts can be opened
later as encryptions of faked messages. In 2011, Bendlin et al. showed in [2]
that any non-interactive public-key deniable encryption scheme cannot achieve
negligible detection advantage in the fully deniable framework. Thus, in order
to obtain negligible detection advantage, resorting to interactive approaches [5]
or the flexible framework seems necessary. However, Dürmuth and Freeman’s
interactive construction [5] which was announced achieving negligible detection
advantage was broken by Peikert and Waters (this is mentioned by Dürmuth
and Freeman themselves in [6]). So it is still an open problem to construct a
(fully) deniable encryption scheme with negligible detection advantage.

Recently, Neill et al. [14] gave the first non-interactive public-key deniable
encryption scheme which requires no third party, and is simultaneously sender
and receiver deniable in the flexible framework.

1.2 Our Contribution

In the fully deniable framework, we introduce the security notions for non-
interactive deniable encryptions which resist adaptive chosen ciphertext attack.
Furthermore, we give the first concrete implementation which requires no third
party.

48 C. Gao, D. Xie, and B. Wei

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we explain some
security notions and some basic tools used in our construction. Section 3 gives
a non-interactive deniable encryption scheme secure against adaptive chosen
ciphertext attack. Section 4 concludes the paper.

2 Preliminaries

2.1 Notations

We denote by N the set of natural numbers, and by R the set of real numbers. If
k ∈ N, we denote by 1k (resp. 0k) the concatenation of k ones (resp. zeroes) and
by {0, 1}k the set of bitstrings of bitlength k. The notation [k] represents the set
{1, 2, . . . , k}. “PPT” is an abbreviation for “probabilistic polynomial-time”.

If S is a set, the notation |S| denotes the number of elements in set S, and
the notation x ← S denotes that x is selected randomly from S. If A is an
algorithm, by y ← A(x1, x2, . . .) it means that on input x1, x2, . . . , A’s output
is y. If p(·, ·, . . .) is a predicate, the notation Pr[p(x, y, . . .) : x← S; y ← T ; . . .]
denotes the probability that p(x, y, . . .) will be true after the ordered execution
of the algorithms x← S, y ← T, . . . , etc.

Definition 1 (Negligible Function). A function ε : N→ R is negligible if for
all c > 0, ε(k) < 1/kc for all sufficiently large k.

2.2 Deniable Encryption

In the rest of this paper, all notions are under the framework of full deniability.
In Section 2 and 3, encryption schemes are all non-interactive style.

A public-key deniable encryption scheme is a two-party (a sender S and a re-
ceiver R) public key encryption protocol with the additional property that later,
upon coercion, the sender can convincingly lie about the encrypted value.

Deniable Encryption

A sender-deniable encryption scheme is a tuple of algorithms E = (Gen,Enc,
Dec, φS).

– (pk, sk)← Gen(1k). The key generation algorithm, a PPT algorithm which on
input a security parameter 1k where k ∈ N, outputs a public/private key pair
(pk, sk).

– c← Encpk(m, r). The encryption algorithm, a PPT algorithm which on input a
public key pk, a plaintextm and a random local input r, outputs a ciphertext c.
We write an execution of this algorithm as c← Encpk(m) with the randomness
omitted.

– m ← Decsk(c). The decryption algorithm, a deterministic polynomial time
algorithm which on input a private key sk and a ciphertext c, returns a
plaintext m.

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 49

– r′′ ← φS(pk,m, r,m
′). The sender’s opening algorithm, a PPT algorithm

which on input a public key pk, a true plaintext m, a true random local
input r and a fake plaintext m′, outputs a fake randomness r′′.

Correctness: For any message m, the probability

Pr
[
m̄ �= m : (pk, sk)← Gen(1k); c← Encpk(m); m̄← Decsk(c)

]
should be negligible.

In the following we give two security notions defined under adaptive chosen
ciphertext attack.

SDEN-CCA (Sender-deniability under adaptive chosen ciphertext at-
tack)
For a deniable encryption scheme E = (Gen,Enc,Dec, φS), sender-deniability
under adaptive chosen ciphertext attack (SDEN-CCA) is defined through the
following experiment, in which A denotes the adversary.

Experiment SDEN-CCAm,m′
A,E (k):

1. (pk, sk)← Gen(1k);
2. r, r′ ← R where R is the random local input space. For two mes-

sages m and m′, c ← Encpk(m, r), c
′ ← Encpk(m

′, r′) and r′′ ←
φS(pk,m, r,m

′);
3. b← {0, 1};

(m∗, r∗, c∗) =

{
(m′, r′, c′) if b = 0

(m′, r′′, c) if b = 1

4. b′ ← ADecsk(·)(pk,m∗, r∗, c∗).
5. The experiment returns 1 if b′ = b, otherwise returns 0.

The decryption oracle Decsk(·) receives a ciphertext c and outputs c’s plaintext
m. If the input is the challenge ciphertext c∗ or an invalid ciphertext, it just
returns null.

We define the adversary’s detection advantage in above experiment as:

AdvSDEN-CCA
A,E (k) = max

m,m′∈M
{2 · Pr

[
SDEN-CCAm,m′

A,E (k) = 1
]
− 1}

where M is the plaintext space of E .

Definition 2 (SDEN-CCA). A deniable encryption scheme E is δ-sender-
deniable under adaptive chosen ciphertext attack (δ-SDEN-CCA) if for every
PPT adversary A, AdvSDEN-CCA

A,E (k) is at most δ.

The SDEN-CCA definition captures the property that the sender can output
a fake message-randomness pair (m′, r′′) and convincingly announce that c =
Encpk(m, r) is generated by (m′, r′′), under an adversary’s chosen ciphertext
attack.

50 C. Gao, D. Xie, and B. Wei

Remark 1 (Receiver deniability). For an interactive deniable encryption scheme,
receiver deniability requires that the receiver gives his random local inputs in
communication when he is coerced. In above non-interactive definition, the re-
ceiver has no random input in decrypting the ciphertext and thus defining the
receiver deniability in above framework does not make sense. However, when the
decryption algorithm is probabilistic or the randomness in the key generation
algorithm is viewed as a random input to the decryption algorithm, defining
receiver deniability is meaningful. Discussing the latter case is out of the scope
of this article.

IND-CCA (Indistinguishability under adaptive chosen ciphertext at-
tack). IND-CCA is defined in the usual way by viewing E as a standard encryp-
tion scheme. Previous literatures usually use the notation IND-CCA2 [15, 1] to
distinguish it from the non-adaptive cases [9, 13]. Consider the following exper-
iment for a deniable encryption scheme E = (Gen,Enc,Dec, φS):

Experiment IND-CCAA,E(k):

1. (pk, sk)← Gen(1k), and pk is sent to the adversary A = (A1,A2);

2. (m0,m1, st)← ADecsk(·)
1 (pk) where st is a state information;

3. b← {0, 1}; c∗ ← Encpk(mb);

4. b′ ← ADecsk(·)
2 (pk, c∗, st);

5. The experiment returns 1 if b′ = b, otherwise returns 0.

The decryption oracle Decsk(·) receives a ciphertext c and outputs c’s plaintext
m. If the input is the challenge ciphertext c∗ or an invalid ciphertext, it just
returns null.

We define the adversary’s advantage in above experiment as:

AdvIND-CCA
A,E (k) = 2 · Pr [IND-CCAA,E(k) = 1]− 1.

Definition 3 (IND-CCA). A deniable encryption scheme E is indistinguish-
able under adaptive chosen ciphertext attack (IND-CCA) if for every PPT ad-
versary A, AdvIND-CCA

A,E (k) is negligible in k.

For a regular encryption scheme, in the IND-CPA (indistinguishability under
chosen plaintext attack) definition [9], which is weaker than IND-CCA, the ad-
versary is not allowed to query the decryption oracle Decsk(·).

2.3 Building Blocks

This section reviews some cryptographic primitives that we will use in construct-
ing deniable encryption schemes with CCA security.

Extended Hash Proof System
In the following we review the notion of subset membership problem and its
related extended hash proof system.

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 51

Assume there exists a set X and an underlying NP-language L ⊂ X , and k is
the system parameter. The subset membership problem (SMP) related to L and
X is hard iff it is infeasible to distinguish a random element in L and a random
element in X \ L. Formally, the SMP is hard if for every PPT distinguisher D,

Advsmp
D (k) := Pr [D(X) = 1 : X ← X \ L]− Pr [D(X) = 1 : X ← L]

is negligible in the parameter k.
We denote the sampling algorithm of L by SampL(L,W) with W ∈ RSampleL

being the random input, and assume the output is uniformly distributed in L if
W is randomly selected from RSampleL. For simplicity, we may assume sampling
a random element in X is just selecting a random element X from X with X
itself being the random local input of the sampling algorithm.

Furthermore, A SMP has a sparse language if

ςL,X (k) := Pr [X ∈ L : X ← X]

is negligible.
The notion of extended hash proof systems was first introduced by Cramer

and Shoup [4] and later was used by Fehr et al. [7] to construct non-committing
encryption schemes secure against chosen-ciphertext attacks.

Definition 4 (EHPS). An extended hash proof system EHPS for a subset mem-
bership problem SMP consists of the following PPT algorithms:

– (hpk, hsk) ← HashGen(1k). The key generation algorithm, a PPT algorithm
which on input a security parameter 1k where k ∈ N, outputs a public key hpk
and a secret key hsk.

– K ← SEval(hsk,X, t). The secret evaluation algorithm, a deterministic algo-
rithm which on input a secret key hsk, an element from space X and a tag t
from the tag space T , outputs a value K in the key space K.

– K ← PEval(hpk,X,W, t). The public evaluation algorithm, a deterministic
algorithm which on input a public key hpk, an element from space X , a witness
W for language L and a tag t, outputs a value K in the key space K.

Correctness: It is required that for all (hpk, hsk) ← HashGen(1k), all t ∈ T
and all X ← SampleL(L,W), PEval(hpk,X,W, t) = SEval(hsk,X, t) holds.

The above definition guarantees that the public key hpk uniquely determines
the action of the secret evaluation algorithm SEval for all X ∈ L. Another key
property of an extended hash proof system EHPS says that the action of SEval
is undetermined for all element X ∈ X \ L. This is captured by the following
definition.

Definition 5 (2-universal). An extended hash proof system is 2-universal iff
for all possible hpk, all distinct (X1, t1), (X2, t2) in (X\L)×T , and any K1,K2 ∈
K, there exists a negligible function neg(k) such that

Pr [SEval(hsk,X2, t2) = K2|SEval(hsk,X1, t1) = K1] < neg(k),

where the probability is taken over all possible hsk with (hpk, hsk)← HashGen(1k).

52 C. Gao, D. Xie, and B. Wei

Cross-Authentication Codes

This tool was first introduced by Fehr et al. [7] to construct non-committing
encryption schemes secure against chosen-ciphertext attacks.

Definition 6 (L-Cross-authentication code [7]). For L ∈ N, an L-cross-
authentication code (short: L-XAC) XAC consists of a key space XK and a
tag space XT and of three PPT algorithms XGen, XAuth and XVer. XGen(1k)
produces a uniformly random key K ∈ XK, XAuth(K1, . . . ,KL) outputs a tag
T ∈ XT , and XVer(K, i, T) outputs a decision bit. The following properties are
required:

Correctness. The probability

failXAC(k) := max
i∈[L]

Pr [XVer(Ki, i,XAuth(K1, ...,KL)) �= 1] ,

is negligible, where K1, . . . ,KL are generated by XGen(1k) independently and the
max is taken over all i ∈ [L].

Security against impersonation and substitution attacks. Advimp
XAC(k) and

AdvsubXAC(k) are defined as follows and are both negligible:

Advimp
XAC(k) := max

i,T ′
Pr

[
XVer(K, i, T ′) = 1 : K ← XGen(1k)

]
where max is taken over all i ∈ [L] and T ′ ∈ XT .

AdvsubXAC(k) := max
i,K �=i,F

Pr

[
T ′ �= T and XVer(Ki, i, T

′) = 1 : Ki ← XGen(1k);
T ← XAuth(K1, . . . ,KL);T

′ ← F (T)

]
.

where max is taken over all i ∈ [L], all K �=i = (Kj)j �=i ∈ XKL−1 and all possible
PPT algorithm F : XT → XT .
A concrete implementation of an L-cross-authentication code can be found in
[7].

3 A Deniable Encryption Scheme Secure under Chosen
Ciphertext Attacks

Using the building blocks introduced in Section 2.3, which are utilized to con-
struct a CCA secure non-committing encryption scheme by Fehr et al. [7] (FHKW
scheme for short), together with Canetti et al.’s parity paradigm [3], we propose
a deniable encryption scheme secure under adaptive chosen ciphertext attacks.
Our construction is a small variant of the FHKW scheme. On a high level, in-
stead of encrypting multiple bits as in the original FHKW scheme, we exploit
these message bits to host the bits for the parity idea in Canetti et al’s deniable
encryption. Therefore, there is only a conceptual difference of viewing the mes-
sage bits between our construction and the FHKW scheme. Not surprisingly, the
technique in FHKW scheme for obtaining the CCA security also works in our
construction.

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 53

3.1 Construction

Suppose SMP is a subset membership problem instance with sparse language
L ⊂ X , and EHPS is a 2-universal extended hash proof system for SMP with
tag space T and key space K. Let L ∈ N be an odd integer, suppose XAC is
an L-cross-authentication code with key space XK = K and tag space XT .
Furthermore, a collision free hash function h : XL → T is needed.

The deniable encryption scheme E = (Gen,Enc,Dec, φS) is constructed as
follows. Its plaintext space is {0, 1}.

– Gen(1k). The key generation algorithm runs (hpk, hsk) ← HashGen(1k), out-
puts pk = (hpk, h) as public key and sk = hsk as secret key.

– Encpk(m, r). m ∈ {0, 1} and the random local input r has the form (�̂,W1,

X̂1, K̂1, . . . ,WL, X̂L, K̂L) ∈ [L+1
2]× (RSampleL ×X ×K)L.

1. To encrypt 0 (resp. 1), compute �= 2(�̂− 1) (resp. �= 2�̂− 1). Thus � is
a random even number (resp. odd number) from {0, 1, .., L}.

2. Set a mode string s = s1s2, .., sL ∈ {0, 1}L as s1 = 1, s2 = 1, . . . , s� =
1, s�+1 = 0, . . . , sL = 0.

3. For j ∈ [L], set

Xj =

{
X̂j if sj = 0

SampleL(L;Wj) if sj = 1

and compute t = h(X1, ..., XL).
4. For j ∈ [L], set

Kj =

{
K̂j if sj = 0

PEval(hpk,Xj,Wj , t) if sj = 1

and compute T = XAuth(K1, ...,KL).
5. Return the ciphertext c = (X1, . . . , XL, T).

– Decsk(c).
1. Parse c = (X1, . . . , XL, T), and compute t = h(X1, ..., XL).
2. For j ∈ [L], compute K̄j = SEval(hsk,Xj , t) and sj = XVer(K̄j, j, T).
3. Output 0 if the string s = s1s2, .., sL has an even number of 1s, otherwise

output 1.
– φS(pk,m, r,m

′). Return r′ = r ifm′ = m. Otherwise, parse r := (�̂,W1, X̂1, K̂1,
. . . ,WL, X̂L, K̂L), compute

� =

{
2�̂− 1 if m = 1,

2(�̂− 1) if m = 0,

and set r′ := (�̂′,W ′
1, X̂

′
1, K̂

′
1, . . . ,W

′
L, X̂

′
L, K̂

′
L) where

1. �̂′ =

{
�̂ if (m,m′) = (1, 0)

�̂− 1 if (m,m′) = (0, 1)

2. (W ′
j , X̂

′
j, K̂

′
j) = (Wj , X̂j , K̂j) for all j �=�;

54 C. Gao, D. Xie, and B. Wei

3. W ′
� is randomly selected from RSampleL;

4. X̂ ′� = SampleL(L;W�) and K̂ ′� = PEval(hpk, X̂ ′�,W�, t) where t is com-
puted as in the encryption algorithm Encpk(m, r).

Correctness: It can be proved that the probability that an encryption is de-
crypted incorrectly is negligible. We suppose in encrypting a message m, the
mode string is s = s1, . . . , sL. We also suppose the corresponding mode string
in decryption is s̄ = s̄1, . . . , s̄L and the decrypted message is m̄. Then for any
j ∈ [L], Pr [s̄j = 0|sj = 1] = failXAC(k). And

Pr [s̄j = 1|sj = 0]

= Pr [Xj /∈ L ∧ s̄j = 1|sj = 0] + Pr [Xj ∈ L ∧ s̄j = 1|sj = 0]

= Pr [Xj /∈ L|sj = 0] · Pr [s̄j = 1|sj = 0 ∧Xj /∈ L] + Pr [Xj ∈ L ∧ s̄j = 1|sj = 0]

≤ Pr [s̄j = 1|sj = 0 ∧Xj /∈ L] + Pr [Xj ∈ L|sj = 0]

≤ Advimp
XAC(k) + ςL,X (k).

Let ε(k) = max{failXAC(k), ςL,X (k) + Advimp
XAC(k)}, which is negligible. Then

Pr [m̄ �= m] ≤ Pr [s̄ �= s] ≤ 1− (1− ε(k))L ≤ L · ε(k), which is also negligible.

3.2 Security Proof

Now we prove that our construction is secure under adaptive chosen ciphertext
attacks (CCA). We call an X a 0-element if X is uniformly sampled from X , or
a 1-element if X is uniformly sampled from L. The intuition behind the proof
is that a 1-element can be opened as a 0-element without being detected. As in
our construction, the encryption of 1 has a mode string s = s1, . . . , sL where for
some even number v, s1 = s2 = · · · = sv+1 = 1, and sv+2 = sv+3 = · · · = sL =
0. Since the 1-element Xv+1 of the ciphertext can be opened as a 0-element,

the encryption of 1 with mode string

v+1︷ ︸︸ ︷
111 . . .1

L−v−1︷ ︸︸ ︷
0 . . . 0 thus can be opened as

encryption of 0 with a mode string

v︷ ︸︸ ︷
111 . . .1

L−v︷ ︸︸ ︷
00 . . . 0. On the other hand, the

encryption of 0 with mode string

v︷ ︸︸ ︷
111 . . .1

L−v︷ ︸︸ ︷
0 . . . 0 where v is an even number can

be opened as an encryption of 0 with a mode string

v−1︷ ︸︸ ︷
11 . . . 1

L−v+1︷ ︸︸ ︷
00 . . . 0.

Meanwhile, the extended hash proof system and L-cross-authentication code
are employed to guarantee the security against the CCA attack, just as in the
FHKW scheme [7]. The basic idea is that by adding the authentication part T
into the ciphertext, whenever an adversary submits a valid decryption query, he
must know the corresponding plaintext and randomness in advance. And thus
accessing the decryption oracle is of no help to the adversary.

Remark 2. Although the technique we use is adopted from Fehr et al. [7]’s tech-
nique for proving encryption schemes’ NC-CCA security (non-committing secu-
rity under CCA attack), however we note that the NC-CCA and SDEN-CCA are

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 55

defined in different frameworks and the NC-CCA security does not necessarily
imply SDEN-CCA security (but we have no formal proof for it.).

Theorem 1 (4
L-SDEN-CCA). The deniable encryption scheme E = (Gen,Enc,

Dec, φS) constructed above is 4
L -SDEN-CCA secure.

Proof. We first prove there exists a negligible function ε(k) such that 2 ·Pr[SDEN
-CCA1,0

A,E(k) = 1]−1 < ε(k), and then we prove 2·Pr
[
SDEN-CCA0,1

A,E(k) = 1
]
−1 <

4/L. Thus the theorem follows immediately.

Claim 1. There exists a negligible function ε(k) such that 2·Pr[SDEN-CCA1,0
A,E(k) =

1]− 1 < ε(k).

Proof. Our proof is generally based on Fehr et al. [7]’s technique for proving
encryption schemes’ SO-CCA security, which will proceed in a series of games.
We define Game0 and Game7 as following.

Game0

1. (pk, sk)← Gen(1k);
2. r′ ←R; c′ ← Encpk(0, r

′);
3. (m∗, r∗, c∗)← (0, r′, c′);
4. b′ ← ADecsk(·)(pk,m∗, r∗, c∗);
5. The game returns b′.

Game7

1. (pk, sk)← Gen(1k);
2. r ←R; c← Encpk(1, r); r

′′ ← φS(pk, 1, r, 0);
3. (m∗, r∗, c∗)← (0, r′′, c);
4. b′ ← ADecsk(·)(pk,m∗, r∗, c∗);
5. The game returns b′.

Let outξ be the output of Gameξ. To prove the claim, we should prove there
exits a negligible ε(k) such that |Pr [out0 = 1]− Pr [out7 = 1] | < ε(k). We prove
this by interpolating a series of games into Game0 and Game7.

Without loss of generality, we assume that A always makes q decryption
queries. Let ci denote A’s i-th decryption query, and let c∗ denote the challenge
ciphertext. We write ci = (X i

1, . . . , X
i
L, T

i), c∗ = (X∗
1 , . . . , X

∗
L, T

∗) and similarly
for the variables t, (Kj)j∈[L], (sj)j∈[L].

Game1
Game1 is the same with Game0, except that it is aborted as soon as X∗

j = X∗
j′

for some distinct j, j′ ∈ [L]. by a standard counting argument, we get

|Pr [out0 = 1]− Pr [out1 = 1] | ≤ L(L− 1)

|L| . (1)

56 C. Gao, D. Xie, and B. Wei

Game2
Game2 is the same with Game1, except that it is aborted as soon as h(X i

1, ...,
X i

L) = h(X∗
1 , ..., X

∗
L) for some i ∈ [q]. Due to the collision resistance of h(·),

there exists a negligible function ε1(k) such that

|Pr [out1 = 1]− Pr [out2 = 1] | < ε1(k). (2)

Write r∗ as (�̂∗
,W ∗

1 , X̂
∗
1 , K̂

∗
1 , . . . ,W

∗
L, X̂

∗
L, K̂

∗
L). For later analysis, we implement

howW ∗
�+1, X

∗
�+1,K

∗
�+1 are generated in Game2 where �= 2(�̂∗−1). In Game2,

�̂∗
is randomly selected from [L+1

2], W ∗
�+1 is randomly selected from RSampleL,

and X∗
�+1 = X̂∗

�+1, t
∗ = h(X∗

1 , ..., X
∗
L), K

∗
�+1 = K̂∗

�+1.

Game3
Now we transform Game2 into Game3, by modifying the decryption oracle.
In Game2, receiving a decryption query c, K̄j = SEval(hsk,Xj , t) and sj =
XVer(K̄j, j, T) are computed for all j ∈ [L]. Now in Game3, for all j ∈ [L], the de-
cryption oracle first determines whether Xj is in L. If Xj ∈ L, the oracle findsWj

such that Xj = SampleL(L;Wj) and computes K̄j = PEval(hpk,Xj,Wj , t). The
value of sj in Game3 is now changed to sj = 1 iff Xj ∈ L and XVer(K̄j , j, T) = 1.

We define bad3 to be the event that X i
j /∈ L but XVer(K̄i

j , j, T
i) = 1 for some

i ∈ [q], j ∈ [L]. Note that the decryption oracle is now inefficient, but it doesn’t
need the information of hsk, i.e., the decryption oracle does not leak any infor-
mation about hsk beyond hpk. By a counting argument and the fact that Game2
and Game3 are identical unless the event bad3 occurs, we get

|Pr [out2 = 1]− Pr [out3 = 1] | ≤ Pr [bad3] ≤ Lq · Advimp
XAC(k). (3)

Game4
Now we transform Game3 into Game4, computing K∗

�+1 = SEval(hsk,X∗
�+1, t

∗),
rather than as K∗

�+1 = K̂∗
�+1 in Game3. Furthermore, the K̂∗

�+1 component of
r∗ is replaced by K∗

�+1. Note that in Game3, hsk is not needed in decryption
oracle and thus in Game4 the only information about hsk beyond hpk is released
while computing K∗

�+1. But the 2-universality of EHPS guarantees K∗
�+1 looks

uniform. And thus
Pr [out3 = 1] = Pr [out4 = 1] . (4)

Game5
Now we transform Game4 into Game5, by modifying the decryption oracle back
in the sense that sj = XVer(K̄j , j, T) again. The difference between Game4
and Game5 is almost the same with the difference between Game2 and Game3
except that in Game4 and Game5, the information about hsk beyond hpk is
leaked while computing K∗

�+1. We define bad5 to be the event that X i
j /∈ L

but XVer(K̄i
j , j, T

i) = 1 for some i ∈ [q], j ∈ [L] in Game4 and Game5. When

(Xj
i , t

j) �= (X∗
�+1, t

∗) for all i, j, the only information about hsk beyond hpk is
released while computing K∗

�+1. Thus by the the 2-universality of EHPS and a
counting argument, we get

Pr
[
bad5|(Xj

i , t
j) �= (X∗

�+1, t
∗) for all i, j

]
≤ Lq · Advimp

XAC(k). (5)

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 57

When (Xj
i , t

j) = (X∗
�+1, t

∗) for some i = i0, j = j0, since we can safely as-
sume tj �= t∗ for all j and X∗

i1
�= X∗

i2
for all i1 �= i2 from the games after

Game2, we can conclude that i0 = � +1 and Xj0
i = X∗

i for all i by the colli-

sion resistance of h(·). Therefore, to make the decryption query (Xj
1 , . . . , X

j
L, T

j)

valid, (Xj
1 , . . . , X

j
L, T

j) �= (X∗
1 , . . . , X

∗
L, T

∗) should be hold, which implies that
T j �= T ∗. Thus, Pr [bad5] in this case is the probability that the adversary issues
a valid decryption query, which satisfies the following inequality

Pr
[
bad5|(Xj

i , t
j) = (X∗

�+1, t
∗) for some i, j

]
≤ Lq · AdvsubXAC(k). (6)

Combining inequalities (5) and (6), we get

|Pr [out4 = 1]− Pr [out5 = 1] | ≤ Pr [bad5] ≤ Lq ·max{Advimp
XAC(k),Adv

sub
XAC(k)}.

(7)
Game6
Now we transform Game5 into Game6, computing X∗

�+1 = sample(L,W ∗
�+1)

rather than as X∗
�+1 = X̂∗

�+1 in Game5. Furthermore, the X̂∗
�+1 component

of r∗ is replaced by X∗
�+1. It is easy to see any algorithm which distinguishes

Game6 from Game5 can break the subset membership problem. Thus there exists
a negligible function ε2(k) such that

|Pr [out5 = 1]− Pr [out6 = 1] | ≤ ε2(k). (8)

Using the notations of Enc, φS , we may rewrite Game6 into Game7. Combining
equations (1), (2), (3), (4), (7) and (8) together, we get that there exits a negli-
gible ε(k) such that |Pr [out0 = 1]−Pr [out7 = 1] | < ε(k). And thus the claim is
proved.

Claim 2. 2 · Pr
[
SDEN-CCA0,1

A,E(k) = 1
]
− 1 < 4/L.

Proof. The proof is similar to the proof of claim 1, except that the adversary
can distinguish an honest opening from a dishonest opening with a probability
less than 4/L. We define Game−1 and Game7 as following.

Game−1

1. (pk, sk)← Gen(1k);
2. r′ ←R; c′ ← Encpk(1, r

′);
3. (m∗, r∗, c∗)← (1, r′, c′);
4. b′ ← ADecsk(·)(pk,m∗, r∗, c∗);
5. The game returns b′.

Game7

1. (pk, sk)← Gen(1k);
2. r ←R; c← Encpk(0, r); r

′′ ← φS(pk, 0, r, 1);
3. (m∗, r∗, c∗)← (1, r′′, c);
4. b′ ← ADecsk(·)(pk,m∗, r∗, c∗);
5. The game returns b′.

58 C. Gao, D. Xie, and B. Wei

Let outξ be the output of Gameξ. To prove the claim, we should prove |Pr[out−1 =
1]− Pr[out7 = 1]| < 4/L. We prove this by interpolating a series of games into
Game−1 and Game7.

Let c∗ denote the challenge ciphertext and write c∗ = (X∗
1 , . . . , X

∗
L, T

∗), r∗ =

(�̂∗
,W ∗

1 , X̂
∗
1 , K̂

∗
1 , . . . ,W

∗
L, X̂

∗
L, K̂

∗
L).

Game0
Game0 is the same with Game−1, except that it is aborted as soon as �̂∗

= L+1
2 .

Since in Game−1, �̂∗
is randomly selected from [L+1

2], we get

|Pr [out−1 = 1]− Pr [out0 = 1] | ≤ 2

L+ 1
. (9)

The games from Game1 to Game6 are defined in the same way as in the proof
of Claim 1, except that � equals 2�̂∗ − 1 from Game1. Note that the Gamei
is aborted as soon as �̂∗

= L+1
2 when 0 ≤ i ≤ 6, and thus we can assume

1 ≤ �̂∗ ≤ L+1
2 − 1 in the games from Game0 to Game6. By the same deduction

as in the proof of Claim 1, we can prove that there exists a negligible function
ε(k) such that

|Pr [out0 = 1]− Pr [out6 = 1] | ≤ ε(k). (10)

Note that in Game7, �̂∗
is randomly distributed in {0, 1, . . . , L+1

2 − 1} by the

implementation of the φS . We define bad7 to be the event that �̂∗
equals 0 in

Game7. By the fact that Game6 and Game7 are identical unless the event bad7
occurs, we get

|Pr [out6 = 1]− Pr [out7 = 1] | ≤ Pr [bad7] ≤
2

L+ 1
. (11)

Combining equations (9), (10) and (11) together, we conclude that |Pr[out−1 =
1]− Pr[out7 = 1]| < 4/L.

Theorem 1 follows immediately from Claim 1 and Claim 2. �

Theorem 2 (IND-CCA). Our encryption scheme E = (Gen,Enc,Dec, φS) is
IND-CCA secure.

To prove this theorem, we will transform a game which encrypts 0 to another
game which encrypts 1, and prove that any PPT adversary can distinguish suc-
cessive games with only negligible probability. The proof is almost the same with
that of Claim 1 and is thus omitted. We note that in the IND-CCA games, the
variable r∗ will not be given to adversary.

4 Conclusion

In the fully deniable framework, we introduce the security notions for non-
interactive deniable encryption schemes secure against adaptive chosen cipher-
text attack (CCA). Furthermore, a concrete construction is also given.

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 59

Acknowledgement. We would like to thank Sherman Chow and anonymous re-
viewers of ISPEC 2012 for giving valuable suggestions and corrections to this pa-
per. This paper is supported by Natural Science Foundation of China(60903165,
60803135), Open Funds of Key Lab of Fujian Province University Network Secu-
rity and Cryptology(09A008), and Fundamental Research Funds for the Central
Universities(10lgpy31).

References

[1] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of
Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–46. Springer, Heidelberg (1998)

[2] Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Receiver-deniable public-
key encryption is impossible. Cryptology ePrint Archive, Report 2011/046 (2011),
http://eprint.iacr.org/

[3] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable Encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

[4] Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Cho-
sen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

[5] Dürmuth, M., Freeman, D.M.: Deniable Encryption with Negligible Detection
Probability: An Interactive Construction. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 610–626. Springer, Heidelberg (2011)

[6] Dürmuth, M., Freeman, D.M.: Deniable encryption with negligible detection prob-
ability: An interactive construction. Cryptology ePrint Archive, Report 2011/066
(2011), http://eprint.iacr.org/

[7] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption Schemes Secure against
Chosen-Ciphertext Selective Opening Attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010)

[8] Gasti, P., Ateniese, G., Blanton, M.: Deniable cloud storage: sharing files via
public-key deniability. In: Al-Shaer, E., Frikken, K.B. (eds.) WPES, pp. 31–42.
ACM (2010)

[9] Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)
[10] Ibrahim, M.H.: A method for obtaining deniable public-key encryption. I. J. Net-

work Security 8(1), 1–9 (2009)
[11] Ibrahim, M.H.: Receiver-deniable public-key encryption. I. J. Network Secu-

rity 8(2), 159–165 (2009)
[12] Klonowski, M., Kubiak, P., Kuty�lowski, M.: Practical Deniable Encryption. In:

Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 599–609. Springer, Heidelberg (2008)

[13] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attack. In: Proc. of the Twenty-Second Annual ACM Symposium on
Theory of Computing, Baltimore, Maryland, pp. 427–437. ACM (1990)

[14] O’Neill, A., Peikert, C., Waters, B.: Bi-Deniable Public-Key Encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011)

[15] Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

http://eprint.iacr.org/
http://eprint.iacr.org/

60 C. Gao, D. Xie, and B. Wei

Appendix

Deniable Encryption in Interactive Style

We present the definition of interactive encryptions with deniability. To compare
it with the non-interactive definition in Section 2.2, we rephrase Canetti et al.’s
definition [3] into a game style one. In the rest of the paper, all encryption
schemes are interactive.

A sender-deniable (interactive) encryption scheme is a protocol E = (Gen,
Com, φS) executed between a sender S and a receiver R.

– key ← Gen(1k). The key generation algorithm, a PPT algorithm which on
input a security parameter 1k where k ∈ N, outputs a public/private key pair
key = (pk, sk).

– (m̄, T rans) ← Comkey(m, rS , rR). The communication protocol, a two party
computation protocol for transmitting m with rS being S’s random local in-
put, rR being R’s random local input, m̄ being the output of the receiver R
and Trans being the (public) transcript in the communication. Here we as-
sume S has pk as input and R has (pk, sk) as input. Let Transkey(m, rS , rR)
denote the second part of above output, and let Transkey(m) denote the ran-
dom variable describing Transkey(m, rS , rR) with rS and rR being uniformly
and independently selected.

– r′′S ← φS(pk,m, rS ,m
′). The sender’s opening algorithm, a PPT algorithm

which on input a public key pk, a true plaintext m, a true random local
input rS of S and a fake plaintext m′, outputs a fake randomness r′′S for the
sender S.

Correctness: For any message m, the probability

Pr
[
m̄ �= m : key ← Gen(1k); (m̄, T rans)← Comkey(m, rS , rR)

]
should be negligible.

In the following we give two security notions defined under chosen plaintext
attack (CPA).

SDEN (Sender-deniability)
For a deniable encryption scheme E = (Gen,Com, φS), sender-deniability is de-
fined through the following experiment, in which A denotes the adversary.

Experiment SDENm,m′
A,E (k):

1. key ← Gen(1k) where key = (pk, sk) and pk is sent to A;
2. rS , r

′
S ← RS where RS is the random local input space for S;

rR, r
′
R ← RR where RR is the random local input space for R. For

two messages m and m′, the sender’s opening algorithm computes
r′′S ← φS(pk,m, rS ,m

′).
3. b← {0, 1};

(m∗, r∗S , T rans
∗) =

{
(m′, r′S ,Transkey(m

′, r′S , r
′
R)) if b = 0

(m′, r′′S ,Transkey(m, rS , rR)) if b = 1

Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack 61

4. b′ ← A(pk,m∗, r∗S , T rans
∗).

5. The experiment returns 1 if b′ = b, otherwise returns 0.

We define the adversary’s detection advantage in above experiment as:

AdvSDEN
A,E (k) = max

m,m′∈M
{2 · Pr

[
SDENm,m′

A,E (k) = 1
]
− 1}

where M is the plaintext space of E .

Definition 7 (SDEN). A deniable encryption scheme E is δ-sender-deniable
(δ-SDEN) if for every PPT adversary A, AdvSDEN

A,E (k) is at most δ.

Indistinguishable Security(IND). Consider the following experiment:

Experiment INDA,E(k):

1. key ← Gen(1k) where key = (pk, sk) and pk is sent to A;
2. (m0,m1, st)← A1(pk) where st is a state information;
3. b ← {0, 1}; trans∗ ← Transkey(mb, rS , rR) where rS is randomly

selected from RS , and rR is randomly selected from RR.
4. b′ ← A2(pk, trans

∗, st);
5. The experiment returns 1 if b′ = b, otherwise returns 0.

We define the adversary’s advantage in above experiment as:

AdvIND
A,E (k) = 2 · Pr [INDA,E(k) = 1]− 1.

Definition 8 (IND). A deniable encryption scheme E is indistinguishable (IND)
if for every PPT adversary A, AdvIND

A,E (k) is negligible in k.

Remark 3. In above definition, m0,m1 are selected by adversary A. However
in Canetti et al.’s security definition [3], it is required for any m0,m1 ∈ M ,
Transkey(m0) and Transkey(m1) are indistinguishable by A.

Receiver deniability. The receiver deniability is defined analogously. For a
receiver-deniable encryption scheme E = (Gen,Com, φR) where φR is the re-
ceiver’s opening algorithm, consider the following experiment:

Experiment RDENm,m′
A,E (k)

1. key ← Gen(1k) where key = (pk, sk) and pk is sent to A;
2. rS , r

′
S ← RS where RS is the random local input space for S;

rR, r
′
R ← RR where RR is the random local input space for R. For

two messages m and m′, the receiver’s opening algorithm computes
r′′R ← φR(pk,m, rR,m

′).
3. b← {0, 1};

(m∗, r∗R, T rans
∗) =

{
(m′, r′R,Transkey(m

′, r′S , r
′
R)) if b = 0

(m′, r′′R,Transkey(m, rS , rR)) if b = 1

62 C. Gao, D. Xie, and B. Wei

4. b′ ← A(pk,m∗, r∗R, T rans
∗).

5. The experiment returns 1 if b′ = b, otherwise returns 0.

We define the adversary’s detection advantage in above experiment as:

AdvRDEN
A,E (k) = max

m,m′∈M
{2 · Pr

[
RDENm,m′

A,E (k) = 1
]
− 1}

where M is the plaintext space of E .

Definition 9 (RDEN). A deniable encryption scheme E is δ-receiver-deniable
(δ-RDEN) if for every PPT adversary A, AdvRDEN

A,E (k) is at most δ.

Computational Soundness of Indistinguishability

Properties without Computable Parsing

Hubert Comon-Lundh1, Masami Hagiya2,
Yusuke Kawamoto1, and Hideki Sakurada3

1 LSV, CNRS, ENS Cachan and INRIA, France�
2 University of Tokyo, Japan

3 NTT Communication Science Laboratories, NTT Corporation, Japan

Abstract. We provide a symbolic model for protocols using public-key
encryption and hash function, and prove that this model is computation-
ally sound: if there is an attack in the computational world, then there
is an attack in the symbolic (abstract) model. Our original contribution
is that we deal with the security properties, such as anonymity, which
cannot be described using a single execution trace, while considering an
unbounded number of sessions of the protocols in the presence of active
and adaptive adversaries. Our soundness proof is different from all ex-
isting studies in that it does not require a computable parsing function
from bit strings to terms. This allows us to deal with more cryptographic
primitives, such as a preimage-resistant and collision-resistant hash func-
tion whose input may have different lengths.

1 Introduction

There are two main approaches to the analysis of protocol security. The first
considers an attacker modeled as a probabilistic polynomial-time (PPT) inter-
active Turing machine (ITM) and a protocol is an unbounded number of copies
of ITMs. The attacker is assumed to control the network and can schedule the
communications and send fake messages. The security property is defined as an
indistinguishability game: the protocol is secure if, for any attacker A, the prob-
ability that A gets an advantage in this game is negligible. A typical example is
the anonymity property, by which an attacker should not be able to distinguish
between two networks in one of which identities have been switched. The diffi-
culty with such computational security notions lies in the problem of obtaining
detailed proofs: they are in general unmanageable, and cannot be verified by
automatic tools.

The second approach relies on a formal model: bit strings are abstracted by
formal expressions (terms), the attacker is any formal process, and security proper-
ties, such as anonymity, can be expressed by the observational equivalence of pro-
cesses. This model is much simpler: there is no coin tossing, no complexity bounds,
and the attacker is given only a fixed set of primitive operations (the function sym-
bols in the term algebra). Therefore it is not surprising that security proofs become

� This work has been supporter by the ANR project ProSe.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 63–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 H. Comon-Lundh et al.

much simpler and can sometimes be automatized. However, the drawback is that
we might miss some attacks because the model might be too abstract.

Starting with work of Abadi and Rogaway [2] and Backes, Pfitzmann and
Waidner [4], there have been several results showing the computational sound-
ness of the formal models: we do not miss any attacks when considering the
abstract model, provided that the security primitives satisfy certain properties;
for instance IND-CPA or IND-CCA in the case of encryption. Such results avoid
the weaknesses of both approaches to security.

In their original work, Abadi and Rogaway only considered symmetric encryp-
tion and a passive attacker with some other minor restrictions. This has been
extended in a number of directions. For instance, Backes et al. consider active at-
tackers and several cryptographic primitives and show simulatability theorems,
which imply the computational soundness of some formal model [4,6]. There are
also several other soundness results, typically for some trace properties [13,9]
and, more recently, for equivalence properties [7].

In the present work, we show a soundness result for active attackers and
public-key encryption and hash functions as cryptographic primitives. Our result
extends the previous work in the following respects:

1. In addition to security properties that can be checked on each trace, i.e., each
individual sequence of events, we consider equivalence properties. Therefore,
our work does not fit into the general framework of [3], which only considers
trace properties. Actually, we need rather different proof techniques, such as
tree oracles and tree transformations. The only previous results concerning
equivalence properties in the presence of active attackers are [7], in which
only symmetric encryption and a particular class of processes is considered,
and [12], in which only a fixed number of protocol instances is considered.
We do not assume here any bound on the number of protocol instances.

2. Our soundness proof does not use a computable parsing function from bit
strings to terms. This is a major difference from all existing studies on com-
putational soundness. It allows us to deal with a preimage-resistant and
collision-resistant hash function whose input may have different lengths, for
which the soundness of process calculi cannot be obtained by [7]’s proof
technique with the computable parsing function, as we detail later.

3. Unlike [7], we do not restrict ourselves to the so-called “simple processes”.
Simple processes are parallel compositions of replicated processes that are
just finite sequences of inputs/outputs and tests, without conditional branch-
ing. We consider here a larger fragment of the applied π-calculus of [1]: we
allow negative tests and non-trivial processes in both branches of condi-
tional, as well as arbitrary replications. We keep however two important
restrictions. First we assume that the processes are determinate: every copy
of a process has first to generate communication channels and disclose them.
In this way, the attacker can schedule to which copy of a process a message is
sent. Furthermore, we do not allow private communication channels. Consid-
ering such private channels would require to consider timing attacks, or (for

Computational Soundness of Indistinguishability Properties 65

instance) to assume that an attacker cannot distinguish between terminating
and non-terminating processes, as investigated in [15].

4. We included hash functions in our set of primitives in order to illustrate the
usefulness of dropping the parsing assumptions. Previous (positive) results
on the computational soundness of hash functions either assume stronger
properties of the hash functions than the standard preimage-resistance and
collision-resistance ([5,11,10,8]), or they assume that all plaintexts have the
same size ([5]). In any case, all these studies do not consider both an ac-
tive attacker and indistinguishability properties. On the other hand, we as-
sume that the hash function is only applied to nonces (possibly of different
lengths).

5. Finally, we observe that the ability of the computational attacker to observe
the length of bit strings cannot be soundly represented using a (reasonable)
symbolic length function. Up to our knowledge, this problem has never been
considered in the papers on computational soundness. We propose here a new
solution where each plaintext term is associated with a label representing its
expected length in the symbolic model, and protocols accept only input of
expected length in the computational model. This is a reasonable assumption
that can be easily implemented.

Our proof relies on ideas that are similar to [7]: each process is associated with
a computation tree, which records all possible executions of the process. The ob-
servational equivalence between two processes implies some labeled bisimilarity
between the computation trees. Computation trees are used as tree oracles in
the computational model. The computational indistinguishability between two
processes is then equivalent to that between the two tree oracles. The proof
proceeds by successive transformations of the computation trees, in such a way
that the attacker wins a game (may distinguish the tree oracles) iff he wins
the game against the transformed trees. Eventually, the computation trees are
simple enough: it is straightforward that the attacker cannot win.

There are however important differences between our work and [7], which we
summarize now. Without computable parsing, we cannot rely on the same notion
of computation trees as in [7]; in [7], when the attacker submits a bit string to the
tree oracle, the bit string is parsed into a term and the branch of the computation
tree labeled with this term is then taken. In this paper, we consider symbolic
computation trees, in which all term labels that satisfy the same conditions are
gathered together: now the computation trees are finitely branching and the
edges are labeled with formulas rather than terms. The formulas are evaluated
on the attacker’s input, whether in the computational or in the symbolic model.
In addition, since the formulas are arbitrary Boolean combinations of atomic
formulas, we may allow arbitrary conditional branching (which is not the case
in [7]).

Symbolic computation trees however introduce new difficulties, since the pre-
vious transformations are no longer valid. We need therefore additional trans-
formations, as well as a partial unraveling of the computation tree.

66 H. Comon-Lundh et al.

We also differ from [7] in three other respects:

1. We consider hash functions (in the standard model), whose inputs may have
different structures (we use two different constructors for nonces of different
lengths): this is an example where we cannot assume a computable parsing
function. On the other hand, the impossibility result of [5] shows that the
BRISM/UC results cannot be extended to hash functions in the standard
model, when the plaintexts may have different structures; the BRISM frame-
work relies on the existence of a computable parsing function, allowing to
translate bit strings into terms.

2. The soundness of indistinguishability requires a symbolic length function:
we need to provide the symbolic attacker with a capability to distinguish
terms, whose implementations are bit strings of different lengths. This is
difficult because, for instance, a pair 〈u, u〉 and a ciphertext {u}rek(k) may
or not have the same length, depending on the security parameter, while
a symbolic length function cannot depend on a security parameter; should
〈u, u〉 and {u}rek(k) get the same symbolic length or not ? A symbolic length
function is hardly sound with respect to the computational length.

The solution adopted in [7] is to assume that the length of any cryp-
tographic primitive applied to some arguments is a homogeneous function
of the lengths of its arguments. Typically, in case of a linear function, the
length |[[〈u, v〉]]η| of the computational interpretation of a pair, with respect
to the security parameter η must be α× |[[u]]η|+β× |[[v]]η|+ γ× η. Then, by
induction, we may factor out η from the length of the interpretation of any
term and get (in)equalities on lengths, independently of η.

This is a strong restriction on the implementation since, for instance, the
pairing operation does not have a constant overhead; it depends linearly on
the security parameter.

We propose another solution here, relying on labels, that is more realis-
tic: messages received by honest agents do have expected lengths. Such an ex-
pected length is represented by a symbolic label such that two identical labels
yield the same computational length of messages in an honest execution. On
the computational side, we assume that the honest agents check the lengths of
messages that they receive or encrypt, which is easy to implement, so that the
actual length matches the expected one. It turns out that these assumptions,
together with some weak length-regularity of the cryptographic primitives,
are sufficient for the soundness result, as we show in this paper.

3. [7] uses a trace mapping property, whose use in the indistinguishability games
is unclear. We formalize a new transformation of computation trees, in which
computational traces that do not have a symbolic counterpart yield a failure
node.

We do not have the space to present here the result in detail, which will appear
as a research report. We sketch our symbolic model in Section 2, emphasizing
the unusual components. Similarly, we sketch our computational interpretation
in Section 3 and finally sketch the main steps of the proofs of our main result in
Section 4.

Computational Soundness of Indistinguishability Properties 67

2 The Symbolic Model

2.1 Terms

We rely on a variant of the applied π-calculus [1]. Terms are built from names
(out of a set N), variables (out of a set X), the constructor function symbols
FuncC = {n1(), n2(), 〈 , 〉 , h(), ek(), dk(), cert(), { } } and the destructor
function symbols FuncD = {π1(), π2(), dec(,)}. Let F = FuncC∪FuncD. n1()
and n2() are two constructor symbols for nonces. They can get only names as
arguments. They are intended to produce names of different lengths. cert() is
a constructor for public keys certificates, h() is a hash function symbol and
ek(), dk() are intended to represent encryption and decryption keys, respec-
tively. These two symbols can only take names as arguments.

All the function symbols are available to the attacker, except for cert(). Term
is the set of ground terms built on these function symbols, the names and a set of
constants Const. Term(X) are the terms that may additionally contain variables
from X . Constructor terms are terms that do not contain symbols from FuncD.
For any expression or set of expressions S, Var(S) is the set of variables occurring
free in S.

The function symbols satisfy the equations of Fig. 1. In these equations, the

π1(〈x, y〉) = x
π2(〈x, y〉) = y

dec({x}rek(k), dk(k)) = x if k, r ∈ Name

Fig. 1. Equational specification of the algebra

variables x, y range over any ground constructor term. This corresponds to a
“call-by-value” interpretation of the destructors. In other words, the implemen-
tation is strict: if an argument of a destructor is not a constructor term, we
cannot apply these equations to cancel the destructor. The set of equations is
infinite, as there are symbols k, r, r′ that range over all possible names. Then,
Term might be seen as a quotient algebra with respect to the congruence gener-
ated by the equations of Fig. 1. We ambiguously keep the same notation Term
and Term(X) for the quotients. Term is then a F -algebra: morphisms and first-
order structures are defined as usual, referring to this quotient structure.

We orient all equations of Fig. 1 from left to right. This yields an infinite
convergent term rewriting system on terms. The normal form of u is written
as u↓.

A labeled term is either a term or a symbolic expression obtained from a term
by labeling some of its subterms with labels in Label. More formally, the set
LTerm of labeled terms is defined by:

LTerm ::= Term | F(LTerm, · · · , LTerm) | Term:Label | F(LTerm, · · · , LTerm):Label

68 H. Comon-Lundh et al.

For instance, {
〈
n1(r), n2(r′):ln2

〉
:l1}r

′′
ek(k) and {h(n1(r):ln1):l2}r

′
ek(k) are labeled

terms. Intuitively, u:l represents a message whose length is expected to be l in
an honest protocol execution.

The rewrite rules of Fig. 1 can only be applied to unlabeled instances of the
variables; when we rewrite a labeled term, the labels of the rule instances are
implicitly removed. In this way, we keep the confluence and termination of the
rewrite system and rewriting a labeled term yields a labeled term (for instance,
we do not get u:l:l′).

2.2 Predicates, Conditions, Frames and Static Equivalence

Predicates are used either in honest processes, in order to check properties of the
input terms, or by the attacker, in order to distinguish sequences of terms. We
consider the following predicate symbols: M , EQ , EK , IsEK ,IsN 1, IsN 2, PL,
and HL, whose (informal) meaning is as follows. M (u) holds on ground terms u
such that u↓ is a constructor term. EQ is the strict equality predicate: EQ(u, v)
implies u ↓= v ↓ and M (u) and M (v). EK holds on a ciphertext {u}wv and a
public key ek(k) when v = ek(k). IsEK is true on pairs of an encryption key and
a certificate of that key. IsN 1 holds on terms n1(r) with r ∈ Name and IsN 2 holds
on terms n2(r) with r ∈ Name. PL holds on two ciphertexts whose plaintexts
have the same expected length, i.e. the same label. HL holds on two hash values
whose plaintexts have the same label. A condition is a Boolean combination of
atomic formulas. Examples of predicate interpretations are given in Example 1.

The frames usually record the messages that have been sent. Since we con-
sider symbolic executions, we need to extend the classical definition to message
templates that may contain variable. A frame is an an expression νy.νn.σ where
y is a finite set of variables, n is a finite set of names, σ is a substitution from
a finite set of variables dom(σ) into Term(X) such that y ∩ dom(σ) = ∅, and
Var(codom(σ)) ∩ dom(σ) = ∅.

Given a frame φ, we write σφ the associated substitution, bn(φ) is the associ-
ated sequence of bound names n and bv(φ) is the associated sequence of bound
variables y. A ground frame φ is a frame such that Var(codom(σφ)) = ∅. We
recall here the definition of symbolic indistinguishability between ground frames
(for general frames, this notion will be directly defined on computation trees).

Definition 1. Two ground frames φ1 and φ2 are statically equivalent, which is
written as φ1 ∼ φ2, if dom(σφ1) = dom(σφ2) and for any terms u and v such
that cert does not occur in u, v, Var(u)∪Var(v) ⊆ dom(σφ1) and (fn(u)∪ fn(v))∩
(bn(φ1) ∪ bn(φ2)) = ∅, we have the following:

– For each PR ∈ {M , IsEK , IsN 1, IsN 2},M |= PR(uσφ1 ↓) iffM |= PR(uσφ2↓).
– For each PR ∈ {EQ ,EK ,PL,HL}, M |= PR(uσφ1 ↓, vσφ1 ↓) iff M |=

PR(uσφ2 ↓, vσφ2 ↓).

Example 1. In the examples, we omit the variables of the domains of σφ: they
are always x1, . . . , xn where n is the length of the frame.

Computational Soundness of Indistinguishability Properties 69

1. νr. n1(r) ∼ νr′. n1(r′), while νr. n1(r) �∼ νr′. n2(r′), sinceM |= IsN 1(n
1(r))

andM �|= IsN 1(n
2(r)).

2. νr. {b: l}rek(a) ∼ νr. {c: l′}rek(a) iff l = l′, sinceM |= PL({b: l}rek(a), {b′: l}r
′

ek(a))

and M |= PL({c:l′}rek(a), {b′: l}r
′

ek(a)) iff l = l′. In this example, the recipe

u is reduced to the variable x1 and the recipe v is the ground (labeled)
term {b′: l}r′ek(a).

3. νa, r. {b: l}rek(a), dk(a) �∼ νa, r. {c: l}rek(a), dk(a) if b, c ∈ N and a, b, c, r are

pairwise distinct. It suffices to consider u = dec(x1, x2), v = b: M |=
EQ(uσφ1 ↓, v) whileM �|= EQ(uσφ2 ↓, v).

4. νa, a′, r, r′. {b: l}rek(a), {b: l}r
′

ek(a), ek(a) �∼ νa, a′, r, r′. {b: l}rek(a), {b: l}r
′

ek(a′), ek(a)
using EK .

2.3 Processes

Processes are built as in the applied π-calculus [1], using the predicates and
function symbols of the previous section. We do not recall here the syntax and
the basic definitions. Let us explain the communication rule.

c(x: l).P ‖ c(u: l).Q → P{x �→ u} ‖ {x �→ u} ‖ Q

If a process c(x: l).P is ready to receive a message on the channel c and another
process is ready to emit the message u on channel c and if the two messages have
the same label, then the network moves to a configuration in which x is replaced
with u in P . The active substitution {x �→ u} is kept (as a local memory of P).

While the attacker’s processes are arbitrary processes (the attacker may re-
label the terms as he wishes), protocols are specified as combinations of basic
processes, using replication, name generation and parallel composition.

The basic processes are built using name generation, conditionals and se-
quences of input/output actions. We assume that all inputs are labeled variables.
This is not a restriction, since the attacker may re-label the terms. We assume
that all occurrences of plaintexts (of either ciphertexts or hashes) in the basic
processes are labeled, and that before sending a message s the process always
checks M (s). This forbids sending ill-formed messages (or forwarding ill-formed
message). Since, according to our semantics, ill-formed messages do not pass any
test, the effect of message forwarding (moving the control point of some process)
can be achieved with a well-formed message. We believe that this assumption is
not a restriction.

The main restriction, with respect to the full applied π-calculus is that, each
time a process is replicated, it must start with the generation of communication
channels that are disclosed and then used as input/output channels. This ensures
the determinacy of processes: when the attacker sends a message on a channel
c, there is at most one basic process that is able to receive a message on c.

70 H. Comon-Lundh et al.

Example 2. This is a simple process that first generates two channel names and
disclose them, hence can be later replicated.

B(a, b, c, d) = νx, y. νiin, iout, r. c(x: l).c(〈iin, iout〉).
iin(y: l). if EQ(π1(dec(y, dk(a)))), b) ∧M (π2(dec(y, dk(a)))) ∧ IsEK (ek(b))

then iout({π2(dec(y, dk(a))): l′}rek(b))
else iout({d: l′}rek(b))

Example 3. The following is an example of a protocol.

(νa)(νb)(νd)
(
! (νx) (νc1, c2) c(x: l) c(〈c1, c2〉) (! B(a, b, c1, d))‖ !B(b, a, c2, d))

)
The attacker, using the public channel c, may send a signal, which will give
back fresh channel names c1, c2. This allows to get a copy of the (outermost)
replicated process. Each of these channel names may then be used to request a
copy of the corresponding instance of B.

Protocols may also include an initial setting, in which, for instance, some private
keys are disclosed (static corruption).

We assume a number of (reasonable) properties of the protocols:

– Two occurrences of the same variable have the same label.
– The random seed r used in honest encryption terms { }r only occur in that

terms and the random seed k used for honest (i.e., certified) keys ek(k) and
dk(k), are not used for any other purpose.

– Encryption keys with their certificates are sent to the attacker whenever they
are generated.

– Only correct encryption keys are used for encryption (for unknown keys,
IsEK is checked before encryption). This rules out the problem of keys that
are forged by the attacker.

– Only hash values of nonces are produced by the protocols: for unknown
plaintexts s, the protocol checks IsN 1(s) ∨ IsN 2(s) before hashing.

– There is no dynamic corruption: the protocols only disclose decryption key
at the beginning of the execution.

– There is no key cycle: a key hierarchy ensures that the attacker cannot force
the protocol to produce a cycle involving non-corrupted keys.

Finally, two processes P and Q are observationally equivalent, which we write
P ∼ Q if, as usual, there is no context C such that C[P] may emit on a channel
a while C[Q] cannot (or the converse).

3 Computational Interpretation

3.1 Computational Interpretation of Terms and Predicate Symbols

Each function symbol f is associated with a function [[f]] from bit strings to bit
strings that can be computed in deterministic polynomial time. These interpre-
tations are assumed to satisfy the equations of Fig. 1, hence the set of bit strings

Computational Soundness of Indistinguishability Properties 71

has a structure of F -algebra. Let SS be a set of mappings from Name to {0, 1}∗.
Given τ ∈ SS, for any ground term u, [[u]]τ is the unique extension of τ into a
homomorphism of F -algebra. If u is a term with variables X and θ is a mapping
from X into {0, 1}∗, [[u]]θ,τ is defined in a similar way. The interpretation of la-
beled terms is defined by ignoring the labels. Labels themselves are interpreted
as natural numbers. The security parameter is the minimal length of τ(r) for
r ∈ Name.

In addition, we assume the following properties of the computational inter-
pretation:

– The ranges of constructor function symbols are disjoint and disjoint from
the interpretation of names. This assumption is necessary for a soundness
result. However, we do not assume that the range of a function symbol is
computable.

– We assume the following properties on lengths of the computational inter-
pretation of names and nonces.

• For each b = 1, 2 and any r, r′ ∈ Name,
∣∣[[nb(r)]]τ ∣∣ = ∣∣[[nb(r′)]]τ ∣∣, and that∣∣[[n1(r)]]τ ∣∣ < ∣∣[[n2(r)]]τ ∣∣ < |[[r]]τ |.

• When τ is uniformly drawn (which we will assume in what follows), the
distribution of [[nb(r)]]τ is uniform and covers all bit strings of the length
|[[nb(r)]]τ |.
•

∣∣[[n1(r)]]τ ∣∣ and ∣∣[[n2(r)]]τ ∣∣ are polynomial in the security parameter η.

Thanks to the assumptions, for instance, the lengths of keys are different
from those of nonces in the computational model.

– We assume a weak notion of length regularity: Let u: l be any labeled term
occurring in a protocol such that y1: l1, y2: l2, . . . , yn: ln are all variables
occurring in u. For any computational interpretation τ of names as bit
strings, if terms v1, v2, . . . , vn satisfy |[[vi]]τ | = [[li]]

τ for i = 1, 2, . . . , n, then∣∣[[u {y1 �→ v1, y2 �→ v2, · · · , yn �→ vn}]]τ
∣∣ = [[l]]τ .

– For each PR ∈ {M , IsEK} and any term u,

• M |= PR(u) iff [[PR]]([[u]]τ) = 1 holds for any τ ∈ SS, and
• M |= ¬PR(u) iff [[PR]]([[u]]τ) = 0 holds for any τ ∈ SS.

Note that this does not imply anything on the interpretation of PR on a bit
string that is not the interpretation of any term.

– For each PR ∈ {IsN 1, IsN 2} and any bit string m, [[PR]](m) = 1 iff there
are u ∈ Term and τ ∈ SS such thatm = [[u]]τ andM |= PR(u). For instance,
we can implement [[IsN b]](m) by checking whether the length of m is [[lnb]]τ

or not.

– For any bit string m and any name k,

• if [[M]]([[πi]](m)) = 1 for i = 1, 2, then [[M]]([[dec]](m, [[dk(k)]]τ)) = 0,

• if [[M]]([[dec]](m, [[dk(k)]]τ)) = 1, then[[M]]([[dec]](m, [[dk(k′)]]τ)) = 0 for
any name k′ such that [[dk(k)]]τ �= [[dk(k′)]]τ ,
• for any m ∈ {0, 1}∗ and any m′ ∈ {0, 1}∗ \ {[[dk(k)]]τ : τ ∈ SS},
[[M]]([[dec]](m,m′) = 0.

72 H. Comon-Lundh et al.

These assumptions cover the case where m is not the computational inter-
pretation of any term. They can be ensured, for instance, by assuming that
the decryption of a ciphertext with a wrong key returns an error. The pre-
vious work on computational soundness has implemented this by appending
each ciphertext with the encryption key used to produce the ciphertext.

– The implementation is strict: For any f ∈ F and any bit stringm, [[M]](m) =
0 implies [[M]]([[f]](· · ·m · · ·)) = 0. For instance, [[M]]([[{u}rek(k)]]τ) = 0 when

u = dec({s}r′ek(k), dk(k′)).
– For any two terms u, v, [[EQ]]([[u]]τ , [[v]]τ) = 1 iff [[M]]([[u]]τ) = [[M]]([[v]]τ) = 1

and [[u]]τ = [[v]]τ .

For a computational soundness result, we assume nothing on the computational
interpretation of the predicates EK , PL, HL, which may (not) be available to a
computational attacker.

3.2 Interactive Turing Machines

The processes are interpreted as interactive Turing machines, which we do not
recall here. Let us only highlight the specifics of our model.

The model of the network includes a store that records the IDs (interpreta-
tion of channel names) associated with each process. This allows us to consider
nested replications: the attacker may refer to a given replicated process in a
deterministic way using such channel IDs.

More importantly, each basic process, upon receiving a message on a channel
c, checks that the length of the input bit string matches the expected length. It
proceeds only there is a match: the machine in state c(x: l).B may move to the
state B only if the content of its input tape has length [[l]].

Definition 2. Two protocols P and Q are computationally indistinguishable,
which we write P ≈ Q, if, for any attacker’s machine A,

|Pr [τ : [[P]]τ‖A = 1]−Pr [τ : [[Q]]τ‖A = 1]|

is negligible in the security parameter.

3.3 Cryptographic Assumptions

We assume the public-key encryption scheme to be IND-CCA2 and the hash
function to be preimage-resistant and collision-resistant. For instance, preimage-
resistance is stated as follows.

Given a security parameter η, a hash function [14] is a deterministic algorithm
H that, given a key k ∈ KH and a bit string m ∈MH, outputs a hash value of m
by k, whose length only depends on η (not on m), where KH is a key space and
MH is a message space such that m′ ∈ MH implies {0, 1}|m′| ⊆ MH, and that
each bit string in MH is so long that it cannot be guessed by the attacker (i.e.

Computational Soundness of Indistinguishability Properties 73

there is a polynomial p such that η ≤ p(min{|m| |m ∈ MH})). H is preimage-
resistant if the following probability is negligible in η for any PPT attacker A
and any � such that {0, 1}� ⊆MH:

Pr[k
$← KH ; s

$← {0, 1}� ; m :=H(k, s) ; s′ ← A(1η, k,m) : H(k, s′) = m].

We also assume the following (which are necessary for the soundness result):

– The key certificates cannot be forged with a non-negligible probability.
– The length of a pair is longer than (or equal to) the sum of the lengths of

its two components.
– The length of a ciphertext is strictly longer than the length of the corre-

sponding plaintext.
– The length of a hash value (of a nonce) is strictly smaller than the length of

the nonce. This rules out identities such as h(n) = n that could, otherwise,
occur with a non-negligible probability.

4 The Main Result

Our main result states that we captured all distinguishing capabilities of a com-
putational attacker in a symbolic model:

Theorem 1. Let P and Q be two protocols. If P ∼ Q, then P ≈ Q.

The rest of the paper is devoted to the sketch of the proof of this result. First we
express the problem as the equivalent problem “tP ∼ tQ implies tP ≈ tQ” where
tP is a computation tree that represents all possible execution sequences (see
Section 4.1). Unlike [7], these trees have a finite outdegree, which is independent
of the security parameter.

Next, we perform successive transformations T of the computation trees,
transforming the problem into “T (tP) ∼ T (tQ) implies T (tP) ≈ T (tQ)”. The
computation trees T (tP) are no longer the computation trees of processes and
that is why we use the detour through computation trees. Let us consider some
of these transformations in more details.

1. The first transformation aims at ensuring more properties of the computation
trees and therefore enables the next step: we partially unravel the computa-
tion trees, unfolding some conditions (see Section 4.2). This transformation
may yield computation trees whose branching degree depends on the secu-
rity parameter. The difficulty lies in proving that they are still polynomially
simulatable.

2. The second transformation is a classical one: thanks to the absence of key
cycles, following the ordering on keys, we may replace plaintexts of encryp-
tions by uncorrupted keys with a constant of the same length as the plaintext
(see Section 4.3). This step requires the IND-CCA2 property of the public-
key encryption scheme. After this step, t ∼ t′ iff the total unravelings U(t)
and U(t′) of t and t′ respectively (which are infinitely branching trees) are
identical up to renaming, which we write U(t) � U(t′).

74 H. Comon-Lundh et al.

3. The third transformation rules out coincidences (see Section 4.4): in the result-
ing computation tree, the conditions explicitly state that two distinct names
are distinct and that two hash values of distinct terms are distinct. Though this
is trivial in the symbolicmodel, it may happen by chance in the computational
one. We also need here to rely on collision-resistance of the hash function.

4. The fourth transformation rules out guesses made in advance (see Sec-
tion 4.5): in the resulting computation tree, the conditions state explicitly
that a random term that has not been produced yet, cannot be computed.
This is more tricky than it looks, and relies in particular on the assumption
that the length of a pair is longer than the sum of the lengths of its com-
ponents. It also rules out the computation of a nonce from its hash value,
thanks to preimage-resistance.

After these transformations, we can conclude that t ≈ t′, thanks to a trace
mapping property (see Section 4.6).

4.1 Computation Trees

A computation tree is a finitely branching tree whose nodes are labeled with
pairs consisting a process (a state) and a frame and whose each edge is labeled
with a variable, a channel name and a condition. For any node of a computation
tree, given a variable x and a channel name c, the disjunction of all the conditions
Φ such that (x, c, Φ) labels some edge departing from the node is a tautology
and any two such conditions cannot be satisfied together.

We may associate a computation tree to any protocol: Roughly speaking, if a
process P0‖Q is structurally equivalent to (νn)(c(x: l).P1‖Q) and (νm)(P0‖Q,φ)
is labeling a node, we add an edge (νm) (P0‖Q,φ)

x,c,Φ−−−→ (νm, n)(P2‖Q,φ� φ′)
if there is a (sequence of) test Φ in P1, whose satisfaction yields the output of φ′

and the remaining process P2.
1 Any symbolic trace (i.e., any sequence of triples

(x, c, s) where x is a variable, c is a channel name and s is a ground term) that
can be produced by an attacker process corresponds to an instance θ of a path
in the process computation tree, such that, at any step as above, there is a term
u such that uσφθ↓= xθ (in other words, xθ is deducible from the corresponding
instance of the frame).

Given a sample τ , each computation tree t is also associated with a tree
oracle Ot,τ : when the oracle is queried with a bit string m, a variable x and
a channel ID [[c]]τ , it evaluates (in the computational model) the conditions
departing from the root node and associated with (x, c). Exactly one of them is

satisfied: this corresponds to an edge t
x,c,Φ−−−→ t′. Then the oracle replies sending

the computational interpretation of the frame labeling the root of t′ and then
behaves as Ot′,τ . Two tree oracles are indistinguishable if no polynomial time
attacker can guess with a significant advantage which of the two oracles he is
interacting with.

1 The names that are bound in front of the state/frame cannot be renamed, unless
they are renamed in the whole subtree.

Computational Soundness of Indistinguishability Properties 75

Example 4. The computation tree of the protocol P = νiin, iout, r, k. cB(x). c̄B(〈iin,
iout〉). B is shown in Fig. 2 where n̄ = iin, iout, r, k and B is the following basic
process:

iin(y).if EQ(π1(y), n
1(r))

then if M (dec(π2(y), dk(k)))
then iout(dec(π2(y), dk(k))).0
else 0

else 0.

���������������

���������������

�
�
�
�
�
��

P, []

x, cB ,

(νn̄)B, [〈iin, iout〉]
y, iin, EQ(π1(y),n

1(r))∧
M (dec(π2(y), dk(k)))

y, iin, EQ(π1(y), n
1(r))∧

¬M (dec(π2(y), dk(k)))

y, iin, ¬EQ(π1(y),n
1(r))

(νn̄) 0, [〈iin, iout〉 , dec(π2(y), dk(k))] (νn̄) 0, [〈iin, iout〉] (νn̄) 0, [〈iin, iout〉]

Fig. 2. Example of a computation tree

4.2 Partial Unraveling

The goal is to replace plaintexts with fixed bit strings, thanks to IND-CCA2.
However, in some cases, it would not be correct, because the terms occurring in
the frames or the conditions may contain variables. For instance in dec({u: l}rx,
y), we may replace u with a fixed term of expected length l only if the instance of
the term does not contain a redex, in other words unless x = ek(k) and y = dk(k)
for some name k. The basic idea is to narrow these terms, which may require to
split the conditions, depending on whether there is a key generated so far such
that x = ek(k) and y = dk(k).

We prove that we can unravel a computation tree, in such a way that the
resulting tree is both computationally and symbolically indistinguishable from
the original tree and such that any occurrence of an encryption/decryption is
safe: either the key is explicitly an encryption/decryption key that has been
generated before, or the condition implies that this is not the case. Furthermore,
we prove that the tree oracle can still be simulated in polynomial time.

For example, let us consider the computation tree t1 shown in Fig. 3 that has
only one subtree t2. For brevity, the states and the bindings are omitted from
Fig. 3.

The partial unraveling Uek(t1) of t1 is shown in Fig. 4. In Uek(t1), the edge
from t2 to t3 is split into the two edges to t30 and t31 such that C0 = ¬EQ(y1, s)∧
EQ(y2, {s: l}r1ek(k)) and C1 = ¬EQ(y1, dec(y2, dk(k)))∧¬EQ(y2, {s: l}r1ek(k)). Sim-

ilarly, the edge from t2 to t4 is split into the edges to t40 and t41. Then Uek(t1)
is a safe computation tree.

76 H. Comon-Lundh et al.

�
�
�
�
�
��

�
�

�
�

�
��

h(s: l)

y1,

h(s: l), {s: l}r1ek(k)

y2, ¬EQ(y1, dec(y2, dk(k))) y2, EQ(y1, dec(y2, dk(k)))

t3 t4

Fig. 3. Example of a computation tree t1

������������

������������

�
�
�
�
�
��

�
�

�
�

�
�

�
�

h(s: l)

y1,

h(s: l), {s: l}r1ek(k)

y2, C0

y2, C1

y2, EQ(y1, s)
∧EQ(y2, {s: l}r1ek(k))

y2, EQ(y1, dec(y2, dk(k)))
∧¬EQ(y2, {s: l}r1ek(k))

t30 t31 t40 t41

Fig. 4. The partial unraveling Uek(t1) of t1

4.3 Replacing Plaintexts

To such safe computation trees, we may apply the pattern function Ω, replacing
each encryption {u: l}rek(k) with {�l: l}rek(k). This yields again a computation
tree which is both symbolically and computationally indistinguishable from the
original one, unless we break IND-CCA2.

For example, the tree Ω(Uek(t1)) is shown in Fig. 5 where C′
0 = ¬EQ(y1, s)∧

EQ(y2, {�l: l}r1ek(k)) and C′
1 = ¬EQ(y1, dec(y2, dk(k))) ∧ ¬EQ(y2, {�l: l}r1ek(k)).

Note that the plaintext s inside the ciphertext {s: l}r1ek(k) is replaced with the

constant �l, whose expected length l is the same as s.
After this step, t ∼ t′ iff the total unravelings of t and t′ respectively (which

are infinitely branching trees) are identical up to renaming.

4.4 Ruling Out Coincidences

Roughly speaking, we add to any condition Φ, labeling an edge of the com-
putation tree, the conditions ¬EQ(r, r′) for distinct names r, r′, as well as the
conditions ¬EQ(h(u), h(v)) for distinct terms h(u), h(v) that appear either in
the current frame or condition. We also add similar constraints for keys. This
relies, for instance, on collision-resistance.

Computational Soundness of Indistinguishability Properties 77

������������

������������

�
�
�
�
�
��

�
�

�
�

�
�

�
�

h(s: l)

y1,

h(s: l), {�l: l}r1ek(k)

y2, C
′
0

y2, C
′
1

y2, EQ(y1, s)
∧EQ(y2, {�l: l}r1ek(k))

y2, EQ(y1, dec(y2, dk(k)))
∧¬EQ(y2, {�l: l}r1ek(k))

Ω(t30) Ω(t31) Ω(t40) Ω(t41)

Fig. 5. Ω(Uek(t1))

4.5 Ruling Out Predictions

This is a bit more involved: we need to introduce new predicate symbols (for the
purpose of the proof only). For instance, we consider a predicate NP(K,u, v),
which holds, given a substitution σ, if for any destructor context C using de-
cryption keys in K, we have C[u]σ ↓�= vσ ↓. We may express for instance that,
when a name n is generated, if the currently available keys are in K, the last
attacker input x cannot contain anything that depends on n. This is expressed
by adding the constraint NP(K,x, n). We use here preimage-resistance of the
hash function, expressing that a nonce cannot be guessed from its hash.

����

����

���������������

���������������

�
�

�
�

�
�

�
�

�

����������

����������

�
�

�
�

�
�

�
�

�

	
	
	
	
	
	
		

h(s: l)

y1,NP(K, y1, s) y1,¬NP(K, y1, s)

h(s: l), {�l: l}r1ek(k) abort

y2,EQ(y1, s)
∧EQ(y2, {�l: l}r1ek(k))
∧NP(K, y2, s)

y2, EQ(y1, s)
∧EQ(y2, {�l: l}r1ek(k))
∧¬NP(K, y2, s)

Δ(Ω(t30)) Δ(Ω(t31)) Δ(Ω(t40)) Δ(Ω(t41))abort

abort

abort

abort

Fig. 6. Δ(Ω(Uek(t1)))

For instance, if we apply the transformation Δ to Ω(Uek(t1)), ruling out
predictions, the edge from Ω(Uek(t1)) to Ω(Uek(t2)) is split in two by adding
NP(K, y1, s), which expresses the impossibility of computing the nonce s from
y1, or ¬NP(K, y1, s), and the edge from Ω(Uek(t2)) to Ω(t40) is split in two
by adding NP(K, y2, s) or ¬NP(K, y2, s), as shown in Fig. 6. We omit details
of the other edges that are split similarly. ¬NP(K, y1, s), for instance, implies

78 H. Comon-Lundh et al.

EQ(C[y1], s) for some destructor context C. Hence the satisfaction of this condi-
tion implies the existence of an attacker on the preimage-resistance of the hash
function; the execution aborts in this case.

4.6 Trace Mapping

We show that the conditions resulting from all previous transformations are
either unsatisfiable or else satisfiable both in the computational and in the sym-
bolic model. It follows that, for every computational trace, which corresponds to
a path in the computation tree and an assignment of variables that satisfies all
the conditions along this path, there is also a symbolic trace that corresponds
to the same path. This is what we call trace mapping. It is slightly different
from the usual trace mapping, which states that every computational trace is
an interpretation of a symbolic trace, with an overwhelming probability. First,
thanks to our previous transformation steps, we get a property with the prob-
ability 1 (not with an overwhelming probability only). Next, we do not state
that the computational trace is an interpretation of the symbolic one: we only
state that they satisfy the same conditions. This is sufficient to conclude: thanks
to trace mapping, for every sequence of attacker inputs si, if Ot,τ replies the
sequence [[ur]]

τ , then there is a sequence of symbolic attacker inputs vi yielding
the sequence ur of symbolic replies of U(t). Now, since U(t) � U(t′), there is
also a sequence u′r of replies of U(t′) such that, for some τ ′, [[u′r]]

τ ′
= [[ur]]

τ is the
sequence of replies of the oracle Ot′,τ ′ on the input sequence si. Hence t ≈ t′.
(And we do not need [[vi]]

τ = si.)

5 Conclusion

We managed to get a computational soundness result for observational equiv-
alence, without any parsing assumption. This result holds for a large subset of
the applied π-calculus. We believe that the same method can be applied to other
primitives, though, as this proof shows, it might be long and tedious.

However, we learned several lessons from this work. For instance, we attacked
the problem of the symbolic length from another angle, using a trade-off between
computational assumptions and assumptions on the protocols. We also showed
how collision-resistance (resp. preimage-resistance) of hash functions can be used
in soundness proofs. And maybe, more importantly, we identified several assump-
tions that look necessary for soundness results, showing the limitations of the
method.

Acknowledgments. We thank Dominique Unruh and Véronique Cortier for
valuable discussions. We also thank the anonymous reviewers for helpful
comments.

Computational Soundness of Indistinguishability Properties 79

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. of the 28th ACM Symposium on Principles of Programming Languages
(POPL 2001), pp. 104–115 (2001)

2. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)

3. Backes, M., Hofheinz, D., Unruh, D.: CoSP: A general framework for compu-
tational soundness proofs. Cryptology ePrint Archive, Report 2009/080 (2009),
http://eprint.iacr.org/

4. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations. In: Proc. of the 10th ACM Concerence on Computer and Com-
munications Security (CCS 2003), pp. 220–230 (2003)

5. Backes, M., Pfitzmann, B., Waidner, M.: Limits of the BRSIM/UC Soundness of
Dolev-Yao Models with Hashes. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.)
ESORICS 2006. LNCS, vol. 4189, pp. 404–423. Springer, Heidelberg (2006)

6. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Information and Computation 205(12), 1685–1720
(2007)

7. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equiva-
lence. In: Proc. of the 15th ACM Conference on Computer and Communications
Security (CCS 2008), pp. 109–118 (2008)

8. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally Sound Sym-
bolic Secrecy in the Presence of Hash Functions. In: Arun-Kumar, S., Garg, N.
(eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer, Heidelberg (2006)

9. Cortier, V., Warinschi, B.: Computationally Sound, Automated Proofs for Security
Protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

10. Garcia, F.D., van Rossum, P.: Sound and complete computational interpretation
of symbolic hashes in the standard model. Theor. Comput. Sci. 394(1-2), 112–133
(2008)

11. Janvier, R., Lakhnech, Y., Mazaré, L.: Computational soundness of symbolic anal-
ysis for protocols using hash functions. Electr. Notes Theor. Comput. Sci. 186,
121–139 (2007)

12. Kawamoto, Y., Sakurada, H., Hagiya, M.: Computationally sound symbolic
anonymity of a ring signature. In: Proc. of Joint Workshop on Foundations of
Computer Security, Automated Reasoning for Security Protocol Analysis and Is-
sues in the Theory of Security (FCS-ARSPA-WITS 2008), pp. 161–175 (2008)

13. Micciancio, D., Warinschi, B.: Soundness of Formal Encryption in the Presence of
Active Adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

14. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

15. Unruh, D.: Termination-insensitive computational indistinguishability (and appli-
cations to computational soundness). In: Proc. of the 24th IEEE Computer Security
Foundations Symposium (CSF 2011). IEEE Computer Society (June 2011)

http://eprint.iacr.org/

New Impossible Differential Attacks

on Camellia�

Dongxia Bai1 and Leibo Li2,3,��

1 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

baidx10@mails.tsinghua.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
3 School of Mathematics, Shandong University, Jinan 250100, China

lileibo@mail.sdu.edu.cn

Abstract. Camellia is one of the most worldwide used block ciphers,
which has been selected as a standard by ISO/IEC. In this paper, we
propose several new 7-round impossible differentials of Camellia with 2
FL/FL−1 layers, which turn out to be the first 7-round impossible differ-
entials with 2 FL/FL−1 layers. Combined with some basic techniques in-
cluding the early abort approach and the key schedule consideration, we
achieve the impossible differential attacks on 11-round Camellia-128, 11-
round Camellia-192, 12-round Camellia-192, and 14-round Camellia-256,
and the time complexity are 2123.8, 2121.7, 2171.4 and 2238.3 respectively.
As far as we know, these are the best results against the reduced-round
variants of Camellia. Especially, we give the first attack on 11-round
Camellia-128 reduced version with FL/FL−1 layers.

Keywords: Camellia, Impossible Differential, Cryptanalysis, Impossi-
ble Differential Attack.

1 Introduction

Camellia is a 128-bit block cipher jointly developed by NTT and Mitsubishi in
2000, and supports 128-, 192-, and 256-bit key lengths [1]. It was adopted by
cryptographic evaluation projects such as CRYPTREC [5] and NESSIE [23], as
well as the standardization activities at IETF [24]. Then it was accepted by
ISO/IEC [9] as an international standard.

Camellia has a Feistel structure with FL/FL−1 layers inserted every 6 rounds.
The FL/FL−1 functions are keyed linear functions which are designed to provide
non-regularity across rounds and destroy the differential property [1]. As one of
the most widely used block cipher, Camellia has attracted a significant amount of

� Supported by the National Natural Science Foundation of China (Grant No.
60803125 and NO. 61133013), and the Tsinghua University Initiative Scientific Re-
search Program(2009THZ01002).

�� Corresponding author.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 80–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Impossible Differential Attacks on Camellia 81

attention of the cryptology researchers. The security of Camellia against various
attacks are discussed in many papers, such as linear and differential cryptanal-
ysis [25], higher order differential cryptanalysis [7,11,19], truncated differential
attack [5,10,14,26], impossible differential cryptanalysis [4,16,17,18,21,22,26,27],
collision attack [15,28], square attack [8,15,29], square like attack [6] et.al. Among
these methods, the impossible differential attack [3,12] is the most efficient.

In recent years, there are a number of results on simple versions of Camellia
which exclude the FL/FL−1 layers. In [4], the authors present the first 6-round
impossible differentials with FL/FL−1 functions, and give the impossible dif-
ferential attacks on Camellia-192/-256 with FL/FL−1 functions. Then some 7-
round impossible differentials with FL/FL−1 functions are introduced in [16,17].
In this paper, we propose some new 7-round impossible differentials including 2
FL/FL−1 layers, which are the first 7-round impossible differentials including
2 FL/FL−1 layers. Due to our new 7-round impossible differentials including
one more FL/FL−1 layer than all of those impossible differentials above, using
our new impossible differentials could achieve better attacks. Combined with the
early abort approach [20] and the key schedule considerations, we first present
the attack on 11-round Camellia-128, which requires 2120.5 chosen plaintexts and
2123.8 11-round encryptions. Then we give attacks on 11-round Camellia-192, 12-
round Camellia-192, and 14-round Camellia-256, and the time complexity are
2121.7, 2171.4 and 2238.3 respectively.

The rest of this paper is organized as follows. We give some notations and
briefly describe the block cipher Camellia in Section 2. Some properties of Camel-
lia and 7-round impossible differentials with 2 FL/FL−1 layers are given in Sec-
tion 3. Section 4 presents the impossible differential attacks on reduced-round
Camellia with FL/FL−1 layers. Finally, we conclude the paper in Section 5.

2 Preliminaries

2.1 Notations

In this paper, we will use the following notations:
Lr−1, L

′
r−1 : the left 64-bit half of the r-th round input,

Rr−1, R
′
r−1 : the right 64-bit half of the r-th round input,

ΔSr : the output difference of the S-box layer of the r-th round
Kr : the subkey used in the r-th round
Xl : the l-th byte of a 64-bit word X (l = 1, . . . , 8)
Y{i} : the i-th bit of a bit string Y (1 ≤ i ≤ 128)
x‖y : the concatenation of x and y
x≪i : the left rotation of x by i bits
⊕, ∩, ∪ : bitwise exclusive-OR(XOR), AND, OR

2.2 Description of Camellia

Camellia [1] is a 128-bit block cipher with Feistel structure. It has 18 rounds for
128-bit key and 24 rounds for 192-/256-bit key. We give the encryption procedure
of Camellia-128 as follows, see Fig. 1.

82 D. Bai and L. Li

⊕

⊕

⊕

⊕

⊕

⊕

6 rounds

6 rounds

6 rounds

⊕

⊕

⊕

⊕

M

C

KW1 KW2

KW4KW3

FL-1FL

FL-1FL

L0

L18 R18

R0

PKS

KS

KS

KS

KS

KS

P

P

P

P

P

⊕

⊕

U

I <<<1

X

Y

XL XR

YL YR

KLL

KLR

⊕I <<<1

Y

XXL XR

YL YR

KLL

⊕ U
KLR

FL Function

FL-1 Function

Fig. 1. Encryption procedure of Camellia-128

Encryption Procedure. First a 128-bit plaintext M is XORed with sub-
keys KW1‖KW2 and separated into two 64-bit intermediate values L0 and R0 :
L0‖R0 =M ⊕ (KW1‖KW2). Then the following operations are performed from
r = 1 to 18, except for r = 6 and 12:

Lr = Rr−1 ⊕ F (Lr−1,Kr), Rr = Lr−1,

for r = 6 and 12, do the following:

L′
r = Rr−1 ⊕ F (Lr−1,Kr), R

′
r = Lr−1,

Lr = FL(L′
r,KLr/3−1), Rr = FL−1(R′

r,KLr/3).

Finally the 128-bit ciphertext C is calculated as: C = (R18‖L18)⊕(KW3‖KW4).
F is the round function defined below:

F : GF (2)64 ×GF (2)64 → GF (2)64

(X,Kr) �→ Z = P (S(X ⊕Kr)),

where S and P are defined as follows:

S : (GF (2)8)8 → (GF (2)8)8

(x1, x2, . . . , x8) �→ (y1, y2, . . . , y8),

y1 = S1(x1), y2 = S2(x2), y3 = S3(x3), y4 = S4(x4),

y5 = S2(x5), y6 = S3(x6), y7 = S4(x7), y8 = S1(x8),

New Impossible Differential Attacks on Camellia 83

here S1, S2, S3 and S4 are the 8× 8 S-boxes.

P : (GF (2)8)8 → (GF (2)8)8

(y1, y2, . . . , y8) �→ (z1, z2, . . . , z8),

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8,
z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8, z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8,
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8, z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8,
z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7, z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7.

The inverse of P is as follows:

P−1 : (GF (2)8)8 → (GF (2)8)8

(z1, z2, . . . , z8) �→ (y1, y2, . . . , y8),

y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8, y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8,
y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8, y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8,
y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8, y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,
y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7, y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8.

FL is defined below:

FL : GF (2)64 ×GF (2)64 → GF (2)64

(XL‖XR,KLL‖KLR) �→ (YL‖YR),
YR = ((XL ∩KLL) ≪1)⊕XR, YL = (YR ∪KLR)⊕XL.

FL−1 is the inverse of FL, and all of them are linear as long as the keys are
fixed [2].

Similarly to Camellia-128, Camellia-192/-256 have 24-round Feistel structure
with FL/FL−1 layers inserted after 6, 12, 18 rounds. Before the first round and
after the last round, there are pre- and post-whitening layers which use bitwise
exclusive-or operations with 128-bit subkeys, respectively.

Key Schedule. Two 128-bit variables KA and KB are generated from the
main key K = KL‖KR. For Camellia-128, KL is the 128-bit K, and KR is 0.
For Camellia-192,KL is the left 128-bit of K, and the concatenation of the right
64-bit of K and its complement is used as KR. For Camellia-256, KL is the left
128-bit of K, and KR is the right 128-bit of K. All of the subkeys are derived
from rotating KL,KR,KA or KB, and KB is only used in Camellia-192/-256.
For details of Camellia, we refer to [1].

3 New 7-Round Impossible Differentials of Camellia with
2 FL/FL−1 Layers

In this section, we give some useful properties of Camellia, and then present
several new 7-round impossible differentials.

84 D. Bai and L. Li

Property 1. (from [13]) Let x, x′, k be 32-bit values, and Δx = x ⊕ x′, then
the differential properties of AND and OR operations are:

(x ∩ k)⊕ (x′ ∩ k) = (x ⊕ x′) ∩ k = Δx ∩ k,
(x ∪ k)⊕ (x′ ∪ k) = (x ⊕ k ⊕ (x ∩ k))⊕ (x′ ⊕ k ⊕ (x′ ∩ k)) = Δx⊕ (Δx ∩ k).

Property 2. For FL−1 function, if the input difference is ΔY =(a, 0, 0, 0, 0, 0, 0,
0), where a is a non-zero byte whose most significant bit is 0, then the output
difference is ΔX = (a, 0, 0, 0, A, 0, 0, 0), where A is an unknown byte.

Proof. By Property 1, apparently we can get the output difference below (note
that the most significant bit of a is 0):

ΔXL = XL ⊕X ′
L = (YL ⊕ (YR ∪KLR))⊕ (Y ′

L ⊕ (Y ′
R ∪KLR))

= ΔYL ⊕ΔYR ⊕ (ΔYR ∩KLR) = ΔYL = (a, 0, 0, 0),

ΔXR = XR ⊕X ′
R = (((XL ∩KLL) ≪1)⊕ YR)⊕ (((X ′

L ∩KLL) ≪1)⊕ Y ′
R)

= ΔYR ⊕ ((ΔXL ∩KLL) ≪1) = (A, 0, 0, 0).

here Y and X are the 64-bit input value and output value of FL−1 function, and
KL is the 64-bit subkey used in FL−1 function, and A is an unknown byte. ��

Property 3. (from [16]) For FL−1 function, if the output difference is ΔX =
(0, 0, 0, 0, b, 0, 0, 0), where b is a non-zero byte, then the input difference should
satisfy the form ΔY = (B, 0, 0, 0, b, 0, 0, 0), where B is an unknown byte.

Impossible Differential. We now demonstrate that the 7-round differential

((0, 0, 0, 0, 0, 0, 0, 0);(a, 0, 0, 0, 0, 0, 0, 0))
7R→((0, 0, 0, 0, b, 0, 0, 0);(0, 0, 0, 0, 0, 0, 0, 0))

is impossible, where a is a non-zero byte whose most significant bit is 0, and b
is an arbitrary non-zero byte, see Fig. 2.

By Property 2, the input difference of the first round is ((0, 0, 0, 0, 0, 0, 0, 0); (a,
0, 0, 0, A, 0, 0, 0)), and then the output differences of the second and third round
are

(P (c, 0, 0, 0, C, 0, 0, 0); (a, 0, 0, 0, A, 0, 0, 0)) and

(P (c1, c2, c3, c4, c5, c6, c7, c8)⊕ (a, 0, 0, 0, A, 0, 0, 0); P (c, 0, 0, 0, C, 0, 0, 0)),

where (c, 0, 0, 0, C, 0, 0, 0) is evolved from (a, 0, 0, 0, A, 0, 0, 0) after key-addition
layer and S-box layer, (c1, c2, c3, c4, c5, c6, c7, c8) is evolved from P (c, 0, 0, 0, C, 0, 0,
0) (note that P (c, 0, 0, 0, C, 0, 0, 0) = (c, c⊕ C, c⊕ C,C, c, C, C, c ⊕ C)), c, c1, c5
are unknown non-zero bytes, and C, ci(i = 2, 3, 4, 6, 7, 8) are unknown bytes. So
we can get that the input difference of S-box layer of the fourth round is

P (c1, c2, c3, c4, c5, c6, c7, c8)⊕ (a, 0, 0, 0, A, 0, 0, 0).

New Impossible Differential Attacks on Camellia 85

In the backward direction, the input difference of the seventh round is ((0, 0, 0,
0, 0, 0, 0, 0); (0, 0, 0, 0, b, 0, 0, 0)), and the output difference of the sixth round de-
duced by Property 3 is ((0, 0, 0, 0, 0, 0, 0, 0); (B, 0, 0, 0, b, 0, 0, 0)). Then the output
difference of the fifth round is

((B, 0, 0, 0, b, 0, 0, 0); P (D, 0, 0, 0, d, 0, 0, 0)),

where (D, 0, 0, 0, d, 0, 0, 0) is evolved from (B, 0, 0, 0, b, 0, 0, 0) after key-addition
layer and S-box layer, d is an unknown non-zero byte, and D is an unknown
byte. Hence, the output difference of S-box layer of the fourth round is

P−1(P (c, 0, 0, 0, C, 0, 0, 0)⊕P (D, 0, 0, 0, d, 0, 0, 0)) = (c⊕D, 0, 0, 0, C⊕d, 0, 0, 0).

(0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(a,0,0,0,0,0,0,0)

(a,0,0,0,A,0,0,0)

(a,0,0,0,A,0,0,0)
∆S=(c,0,0,0,C,0,0,0)

P(c,0,0,0,C,0,0,0)

∆S=(c1,c2,c3,c4,c5,c6,c7,c8)

P(c1,c2,c3,c4,c5,c6,c7,
c8) (a,0,0,0,A,0,0,0)

(0,0,0,0,b,0,0,0) (0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(0,0,0,0,b,0,0,0)

(B,0,0,0,b,0,0,0)

(B,0,0,0,b,0,0,0)
∆S=(D,0,0,0,d,0,0,0)

P(D,0,0,0,d,0,0,0)

∆S=(c D,0,0,0,C d,0,0,0)

⊕

⇒

FL-1FL

PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

FL FL-1

⊕PKS

⇒

P(c1,c2,c3,c4,c5,c6,c7,c8)
(a,0,0,0,A,0,0,0)=(?,

0,0,0,?,0,0,0)→P(c1,c2,
c3,c4,c5,c6,c7,c8)=(?,0,0,
0 , ? , 0 , 0 , 0) → c 1 = 0
contradiction!

Fig. 2. 7-round impossible differential with 2 FL/FL−1 layers

Now the input and output differences of S-box layer of the fourth round are
all determined. According to the output difference of S-box layer, the input
difference of S-box layer should satisfy the form (?, 0, 0, 0, ?, 0, 0, 0) (? denotes an
unknown byte). So we can get:

86 D. Bai and L. Li

P (c1, c2, c3, c4, c5, c6, c7, c8)⊕ (a, 0, 0, 0, A, 0, 0, 0) = (?, 0, 0, 0, ?, 0, 0, 0)

⇒ P (c1, c2, c3, c4, c5, c6, c7, c8) = (?, 0, 0, 0, ?, 0, 0, 0)⊕ (a, 0, 0, 0, A, 0, 0, 0)

= (?, 0, 0, 0, ?, 0, 0, 0)

⇒ c1 = 0,

which contradicts c1 �= 0. As a result, the differential

((0, 0, 0, 0, 0, 0, 0, 0);(a, 0, 0, 0, 0, 0, 0, 0))
7R→((0, 0, 0, 0, b, 0, 0, 0);(0, 0, 0, 0, 0, 0, 0, 0))

is impossible. Actually, we can get three more 7-round impossible differentials
with 2 FL/FL−1 layers, which are:

((0, 0, 0, 0, 0, 0, 0, 0); (0, a, 0, 0, 0, 0, 0, 0))
7R
� ((0, 0, 0, 0, 0, b, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0)),

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, a, 0, 0, 0, 0, 0))
7R
� ((0, 0, 0, 0, 0, 0, b, 0); (0, 0, 0, 0, 0, 0, 0, 0)),

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, 0, a, 0, 0, 0, 0))
7R
� ((0, 0, 0, 0, 0, 0, 0, b); (0, 0, 0, 0, 0, 0, 0, 0)),

where a, b are non-zero bytes, and the most significant bit of a is 0.

4 Impossible Differential Attacks on Camellia with
FL/FL−1 Layers

In this section, we present some new impossible differential attacks on 11-round
Camellia-128, 11-round Camellia-192, 12-round Camellia-192, 14-round Camellia-
256, using the new 7-round impossible differential proposed in Section 3. All of
these attacks start from the middle round, and exclude the whitening layers to
not change the structure of the algorithm.

4.1 Impossible Differential Attack on 11-Round Camellia-128

As illustrated in Fig. 3, the 7-round impossible differential is applied in rounds
7 to 13, and the attack is from round 5 to 15. The attack procedure is as follows.

1. Take 2n structures of plaintexts M = (L4, R4) with following form:

(P (x1, α2, α3, α4, α5, α6, α7, α8); P (y1, y2, y3, y4, y5, β6, β7, y8)),

where αi (i = 2, . . . , 8), βj (j = 6, 7) are fixed constants, x1, yi (i = 1, 2, 3, 5, 8)
take all the 8-bit values, and y4 takes all the 7-bit values with the most sig-
nificant bit fixed. As a result, each structure contains 255 plaintexts which
can provide about 2109 plaintext pairs with the difference

(P (e, 0, 0, 0, 0, 0, 0, 0);P (a1, a2, a3, a, a5, 0, 0, a8)),

where e, a1, a are non-zero bytes (the most significant bit of a is 0), and
ai �= a (i = 2, 3, 5, 8) are unknown bytes. Aggregately, we can collect about
2n+109 plaintext pairs.

New Impossible Differential Attacks on Camellia 87

(0,0,0,0,b,0,0,0)

P(0,b2,b3,b4,b,b6,b7,b8)

(0,f,f,f,0,f,f,f)
P(0,b,b,b,b,b,b,0)

(0,0,0,0,0,0,0,0)

(0,f,f,f,0,f,f,f)

⊕PKS

⊕PKS

(a,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0)

(a,0,0,0,0,0,0,0)

P(a1,a2,a3,a,a5,0,0,a8)

P(0,a,a,a,a,0,0,a)

P(e,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

⊕PKS

⊕PKS

7-round ID
with 2 FL/FL-1 Layers

Fig. 3. Attack on 11-round Camellia-128

2. Obtain the ciphertexts of each structure and choose only the pairs that
satisfy the following difference by birthday paradox

(P (0, b2, b3, b4, b, b6, b7, b8); (0, f, f, f, 0, f, f, f)),

where b, b8, f are non-zero bytes, and bi �= b (i = 2, 3, 4, 6, 7) are unknown
bytes. We expect to have about 2n+109−64 = 2n+45 pairs remaining with this
condition.

3. For each plaintext pair, we immediately get the differenceΔS5 = P−1(P (a1,
a2, a3, a, a5, 0, 0, a8) ⊕ P (0, a, a, a, a, 0, 0, a)) = (a1, a2 ⊕ a, a3 ⊕ a, 0, a5 ⊕
a, 0, 0, a8 ⊕ a). So for l = 1, 2, 3, 5, 8 guess K5,l and keep only the pairs
whose ΔS5,l is equal to the corresponding value above. The probability of
this event is 2−40, thus there remains 2n+45−40 = 2n+5 pairs. Note that
K5,l(l=1,2,3,5,8) = KA{16−39,48−55,72−79}.

4. For each ciphertext pair corresponding to a remaining plaintext pair, obtain
the difference ΔS15 = (0, b2 ⊕ b, b3 ⊕ b, b4 ⊕ b, 0, b6 ⊕ b, b7 ⊕ b, b8). Based on
the fact that the bits KA{16−30} are already known, perform the following
substeps.
4.1 The value of K15,8 (KA{23−30}) is already known, so use it to partially

decrypt every remaining ciphertext pair and keep only the pairs satisfy-
ing ΔS15,8 = b8. The probability of this event is 2−8, thus the expected
number of remaining pairs is 2n+5−8 = 2n−3.

4.2 Since K15,7 = KA{15−22}, 7 bits including KA{16−22} are already known
and guess the only unknown bit KA{15}. Keep only the pairs satisfying
ΔS15,7 = b7 ⊕ b. The probability of this event is 2−8, so we expect
2n−3−8 = 2n−11 pairs remain.

4.3 The values of K15,l(l=2,3,4,6) (KA{7−14,103−126}) are unknown, so for l =
2, 3, 4, 6 respectively guess K15,l and choose only the pairs whose ΔS15,l

88 D. Bai and L. Li

is equal to the corresponding value above. The probability of this event
is 2−32, thus the expected number of such pairs is 2n−11−32 = 2n−43.

4.4 Guess K15,1 and decrypt every remaining pair to get (L13,5, L
′
13,5), so

this step does not effect the number of the remaining pairs.
5. For each remaining pair, obtain the difference ΔS14 = (0, 0, 0, 0, f, 0, 0, 0).

GuessK14,5 and choose only the pairs satisfying ΔS14,5 = f . The probability
of this condition is 2−8, thus we expect 2n−43−8 = 2n−51 pairs remain.

6. For l = 4, 6, 7 guess K5,l and encrypt every remaining pair to get (L5,1, L
′
5,1).

7. For every remaining pair, guess the 8-bit value of K6,1 and calculate the
differenceΔS6,1. The probability thatΔS6,1 is equal to a fixed value e is 2−8,
where e is already determined by ΔL4. Such a difference is impossible, so if
there exits a pair satisfying this condition, discard the 121-bit wrong subkey
guess. Unless the initial assumption on the subkeys K5, K15,l(l=1,2,3,4,6,7,8)

and K14,5 is correct, it is expected that we can discard the whole 8-bit value
of K6,1 for each guessed 113-bit value above since the 121-bit wrong value
remains with a very small probability by choosing a proper n. Hence if there
remains a value of K6,1 after the filtering, we can assume that the guessed
value above is right.

Complexity. After analyzing the 2n−51 remaining pairs, the expected number
of remaining 121-bit wrong keys is N = 2121 × (1 − 2−8)2

n−51

. In order to
let N 1, we choose n = 65.5. Then the data complexity is 2120.5 chosen
plaintexts. The memory complexity is dominated by storing the 2110.5 proper
pairs in step 2, which requires 2115.5 bytes. Table 1 shows the time complexity
of each step, so the total complexity of the attack, in encryption unit, is about
(2n+59 + 2127)/11 ≈ 2123.8.

Table 1. Time Complexity of the Attack on 11-round Camellia-128

Step Time Complexity

2 2n+55 E

3
∑4

i=0 2× 2n+45−8i × 28(i+1) × 1
8
= 2n+51 × 5 1

11
E

4.1 2× 2n+5 × 240 × 1
8
= 2n+43 1

11
E

4.2 2× 2n−3 × 240 × 21 × 1
8
= 2n+36 1

11
E

4.3
∑3

i=0 2× 2n−11−8i × 241 × 28(i+1) × 1
8
= 2n+38 1

11
E

4.4 2n−43 × 273 × 28 × 1
8
= 2n+35 1

11
E

5 2× 2n−43 × 281 × 28 × 1
8
= 2n+44 1

11
E

6
∑2

i=0 2
n−51 × 289 × 28(i+1) × 1

8
= (2n+43 + 2n+51 + 2n+59) 1

11
E

7 2× 2113 × 28 × (1 + (1− 2−8) + . . .+ (1− 2−8)2
n−51−1)× 1

8
≈ 2127 1

11
E

4.2 Impossible Differential Attack on 11-Round and 12-Round
Camellia-192

In this section, first we give a brief description of the attack on 11-round Camellia-
192, and then present the attack on 12-round Camellia-192.

New Impossible Differential Attacks on Camellia 89

Attack on 11-round Camellia-192. A similar 11-round attack as described
in Section 4.1 is equally applicable to Camellia-192 from round 11 to 21, uti-
lizing the 7-round impossible differential in rounds 13 to 19 as shown in Fig.3.
According to the key schedule of Camellia-192/-256, we get

K11 = KA{46−109}, K12,1 = KA{110−117},
K20,5 = KR{63−70}, K21,l(l=1,2,3,4,6,7,8) = KA{7−30,95−126}.

Considering the redundancy in K11,K12,1 and K21,l(l=1,2,3,4,6,7,8), in fact we
only need to guess 113 bits KA{7−30,46−126}‖KR{63−70}. By choosing n = 65.4,
then N 0. Consequently, this attack requires 2120.4 chosen plaintexts, 2115.4

bytes of memory and an overall effort of 2120.4 +2124.4/11 ≈ 2121.7 eleven-round
Camellia-192 encryptions. The details see Table 3 in Appendix A.

Attack on 12-round Camellia-192. We add one round on the bottom of
the 11-round attack, and give a 12-round attack on Camellia-192, which is from
round 11 to 22, see Fig. 4. The attack procedure is as follows.

P(g1,g2,g3,g4,g5,g6,g7,g8)

(a,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

(a,0,0,0,0,0,0,0)

(0,0,0,0,b,0,0,0)

P(0,b2,b3,b4,b,b6,b7,b8)
P(0,0,0,0,f,0,0,0)

(0,f,f,f,0,f,f,f) P(0,b,b,b,b,b,b,0)

(0,0,0,0,0,0,0,0)

P(a1,a2,a3,a,a5,0,0,a8)

P(0,a,a,a,a,0,0,a)

P(e,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)
7-round ID

with 2 FL/FL-1 Layers

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

P(0,b2,b3,b4,b,b6,b7,b8)

Fig. 4. Attack on 12-round Camellia-192

1. The choice of plaintexts is the same as the 11-round attack, and the cipher-
text pairs are sieved by the difference

(P (g1, g2, g3, g4, g5, g6, g7, g8); P (0, b2, b3, b4, b, b6, b7, b8)),

where b, b8 are non-zero bytes, and gi (i = 1, . . . , 8), bj �= b (j = 2, 3, 4, 6, 7)
are unknown bytes. The probability of this condition is about 2−8, so the
expected number of remaining pairs is about 2n+109−8 = 2n+101.

90 D. Bai and L. Li

2. Obtain the difference ΔS11 = (a1, a2 ⊕ a, a3 ⊕ a, 0, a5 ⊕ a, 0, 0, a8 ⊕ a), then
for l = 1, 2, 3, 5, 8 guess K11,l and keep the pairs whose ΔS11,l is equal to
the corresponding value above. So we expect 2n+101 × 2−40 = 2n+61 pairs
remain. Note that K11,l(l=1,2,3,5,8) = KA{46−69,78−85,102−109}.

3. We can get the differenceΔS22 = (g1, g2, g3, g4, g5⊕f, g6, g7, g8) (ΔS22,5 �= g5
since f �= 0), and the bits KA{46−69,78−85} are already known. Then perform
the following substeps.

3.1 The values of K22,l(l=3,4) (KA{47−62}) are already known, so for l = 3, 4
ΔS22,l can be computed, then choose the pairs satisfying ΔS22,l = gl.
Thus there remains 2n+61 × 2−16 = 2n+45 pairs.

3.2 Since K22,7 = KA{79−86}, guess the only unknown bit KA{86} and keep
the pairs satisfying ΔS22,7 = g7. Next K22,2 = KA{39−46}, guess the
unknown 7 bits KA{39−45} and keep the pairs satisfying ΔS22,2 = g2.
Similarly, as K22,6 = KA{71−78}, we guess the unknown 7 bits KA{71−77}
and keep the pairs satisfying ΔS22,6 = g6. Thus the expected number of
remaining pairs is 2n+45 × 2−24 = 2n+21.

3.3 The values of K22,l(l=1,8) (KA{31−38,87−94}) are unknown, so for l = 1, 8
guess K22,l and choose the pairs satisfying ΔS22,l = gl. Then 2n+21 ×
2−16 = 2n+5 pairs remain. As K22,5 = KA{63−70}, guess the only un-
known bit KA{70} and keep only the pairs satisfying ΔS22,5 �= g5. The
probability of this event is (28 − 1)/28 ≈ 1, thus we expect about 2n+5

pairs remain. And now the intermediate values (L21‖R21, L
′
21‖R′

21) also
can be computed.

4. We can obtain ΔS21 = (0, b2 ⊕ b, b3 ⊕ b, b4 ⊕ b, 0, b6 ⊕ b, b7 ⊕ b, b8), and the
bits KA{102−109} are already known. So perform the substeps below.

4.1 As K21,2 = KA{103−110}, guess the only unknown bit KA{110} and keep
the pairs satisfying ΔS21,2 = b2⊕ b. Then we expect 2n+5× 2−8 = 2n−3

pairs remain.
4.2 The values of K21,l(l=3,4,6,7,8) (KA{7−30,111−126}) are unknown, so for l =

3, 4, 6, 7, 8 guess K21,l and keep only the pairs whose ΔS21,l is equal to
the corresponding value above. Then the expected number of such pairs
is 2n−3 × 2−40 = 2n−43.

4.3 Since K21,1 = KA{95−102}, guess the unknown 7 bits KA{95−101} and get
(L19,5, L

′
19,5).

5. Obtain the difference ΔS20 = (0, 0, 0, 0, f, 0, 0, 0), then guess K20,5 and
choose the pairs satisfyingΔS20,5 = f . So there remains 2n−43×2−8 = 2n−51

pairs.

6. The values of K11,l(l=4,6,7) (KA{70−77,86−101}) are already known, so we can
get (L11,1, L

′
11,1).

7. SinceK12,1 (KA{110−117}) are already known, for every remaining pair,ΔS12,1

can be computed. We expect with probability of 2−8 that we get a pair with
ΔS12,1 = e, where e is a fixed value determined by ΔL10. Such a difference
is impossible, and every subkey we guessed that proposes such a difference
is definitely a wrong key. If there remains a value of K12,1 after the filtering,
we can assume that the guessed value above is right.

New Impossible Differential Attacks on Camellia 91

Complexity. The number of remaining 128-bit wrong keys after analyzing all
the 2n−51 pairs is N = 2128 × (1 − 2−8)2

n−51

. In order to let N 1, we choose
n = 65.6. Then the data complexity is 2120.6 chosen plaintexts. The memory
complexity is dominated by storing the 2166.6 pairs in step 1, which is about
2171.6 bytes. The time complexity is dominated by step 2, which is about 2n+107×
5/12 = 2172.6 × 5/12 ≈ 2171.4 12-round encryptions. The details see Table 4 in
Appendix A.

4.3 Impossible Differential Attack on 14-Round Camellia-256

We add one more round respectively on the top and bottom of the 12-round
attack, and present a 14-round attack on Camellia-256, which is from round 10
to 23 as illustrated in Fig. 5. The attack procedure is below.

1. Take 2n structures of plaintexts M = (L9, R9) with following form:

(P (x1, x2, x3, x4, x5, α6, α7, x8); P (y1, y2, y3, y4, y5, y6, y7, y8)),

where αi (i = 6, 7) are fixed constants, xi (i = 1, 2, 3, 5, 8), yj (j = 1, . . . , 8)
take all the 8-bit values, and x4 takes all the 7-bit values with the most
significant bit fixed. It is obvious that each structure contains 2111 plaintexts
which can provide about 2221 plaintext pairs with the difference

(P (a1, a2, a3, a, a5, 0, 0, a8);P (h1, h2, h3, h4, h5, h6, h7, h8)),

where a1, a are non-zero byte (the most significant bit of a is 0), and ai �=
a (i = 2, 3, 5, 8), hj (j = 1, . . . , 8) are unknown bytes. Hence, we can collect
about 2n+221 plaintext pairs, then obtain the ciphertexts of each structure.

2. We can get that ΔS10 = (h1⊕ e, h2, h3, h4, h5, h6, h7, h8) (ΔS10,1 �= h1 since
e �= 0), so for l = 2, . . . , 8, 1 respectively guessK10,l and choose only the pairs
with ΔS10,l satisfying the condition above. Then we expect about 2n+221 ×
2−56 = 2n+165 pairs remain. Note that K10 = KL{1−45,110−128}. In this step,
we can get (L10‖R10, L

′
10‖R′

10).
3. We can obtain the difference ΔS23 = (j1, j2 ⊕ b2, j3 ⊕ b3, j4 ⊕ b4, j5 ⊕ b, j6 ⊕
b6, j7 ⊕ b7, j8 ⊕ b8) (ΔS23,5 �= j5 since b �= 0), and the bits KL{1−45,112−128}
are already known.
3.1 The values of K23,l(l=1,...,7) (KL{1−39,112−128}) are already known, so for

l = 1, . . . , 7, ΔS23,l can be computed, then choose only the pairs satis-
fying ΔS23,1 = j1 and ΔS23,5 �= j5. The probability of this condition is
2−8× ((28− 1)/28) ≈ 2−8, thus the expected number of remaining pairs
is 2n+165−8 = 2n+157.

3.2 Since K23,8 = KL{40−47}, guess the unknown 2 bits KL{46,47} and get
the intermediate values (L22‖R22, L

′
22‖R′

22).

Next, we perform the steps 4 to 9, which are totally the same as steps 2 to 7 of
Section 4.2. Finally we expect 2n+5 pairs remain.

92 D. Bai and L. Li

P(e,0,0,0,0,0,0,0)

P(h1,h2,h3,h4,h5,h6,h7,h8)P(a1,a2,a3,a,a5,0,0,a8)

P(g1,g2,g3,g4,g5,g6,g7,g8)

(a,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

(a,0,0,0,0,0,0,0)

(0,0,0,0,b,0,0,0)

P(0,b2,b3,b4,b,b6,b7,b8)
P(0,0,0,0,f,0,0,0)

(0,f,f,f,0,f,f,f)
P(0,b,b,b,b,b,b,0)

(0,0,0,0,0,0,0,0)

P(0,a,a,a,a,0,0,a)
(e,e,e,0,e,0,0,e)

(0,0,0,0,0,0,0,0)

P(j1,j2,j3,j4,j5,j6,j7,j8)

7-round ID
with 2 FL/FL-1 Layers

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

P(g1,g2,g3,g4,g5,g6,g7,g8)

P(0,b2,b3,b4,b,b6,b7,b8)

Fig. 5. Attack on 14-round Camellia-256

Table 2. Summary of Attacks on Camellia with FL/FL−1 Layers

Cipher #Rounds Attack Type Data Time Source

Camellia-128 9∗ Square Attack 248CP 2122 [15]
10∗ Impossible DC 2118CP 2118 [21]
10∗ Impossible DC 2118.5CP 2123.5 [16]

10 (Weak Key) Impossible DC 2110.4CP 2110.4 [17]
10 Impossible DC 2112.4CP 2120 [17]
11∗ Impossible DC 2120.5CP 2123.8 this paper

Camellia-192 11∗ Impossible DC 2118CP 2163.1 [21]
11 (Weak Key) Impossible DC 2119.5CP 2138.54 [17]

11 Impossible DC 2113.7CP 2184 [17]
11∗ Impossible DC 2120.4CP 2121.7 this paper
12∗ Impossible DC 2120.1CP 2184 [17]
12∗ Impossible DC 2120.6CP 2171.4 this paper

Camellia-256 12 (Weak Key) Impossible DC 2119.7CP 2202.55 [17]
12 Impossible DC 2114.8CP/CC 2240 [17]
14∗ Impossible DC 2120CC 2250.5 [17]
14∗ Impossible DC 2121.2CP 2238.3 this paper

∗: the attack does not include the whitening layers;
Weak Key: the weak key space which contains 3

4
of keys

New Impossible Differential Attacks on Camellia 93

Complexity. The expected number of remaining 194-bit wrong keys after an-
alyzing all the 2n+5 pairs is N = 2194 × (1 − 2−8)2

n+5

. In order to let N 1,
we choose n = 10.2. Then the data complexity is 2121.2 chosen plaintexts. The
memory complexity is dominated by storing the 2n+165 = 2175.2 pairs in step 2,
which is about 2180.2 bytes. The time complexity is dominated by step 2 and step
4, which is about (2n+230 +2n+227 +2n+229× 5)/14 = 2n+228× 14.5/14 ≈ 2238.3

encryptions. Table 5 in Appendix A shows the details of each step.

5 Conclusion

In this paper, we propose some new 7-round impossible differentials including
2 FL/FL−1 layers, and then present attacks on 11-round Camellia-128, 11-
round Camellia-192, 12-round Camellia-192 and 14-round Camellia-256 without
whitening layers. A summary of the previous works and our attacks on Camellia
with FL/FL−1 layers is given in Table 2.

Acknowledgment. We are grateful to the anonymous reviewers for their valu-
able comments on this paper.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Specification of Camellia–a 128-bit block cipher. version 2.0 (2001),
http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of
Reduced-Round Camellia-192 and Camellia-256. In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

5. CRYPTREC-Cryptography Research and Evaluation Committees, report, Archive
(2002), http://www.cryptrec.go.jp/english/index.html

6. Duo, L., Li, C., Feng, K.: Square Like Attack on Camellia. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 269–283. Springer, Heidelberg
(2007)

7. Hatano, Y., Sekine, H., Kaneko, T.: Higher Order Differential Attack of Camellia
(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146.
Springer, Heidelberg (2003)

8. He, Y., Qing, S.: Square Attack on Reduced Camellia Cipher. In: Qing, S.,
Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 238–245. Springer,
Heidelberg (2001)

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://www.cryptrec.go.jp/english/index.html

94 D. Bai and L. Li

9. International Standardization of Organization (ISO), International Standard-
ISO/IEC 18033-3, Information technology-Security techniques-Encryption
algorithms-Part 3: Block ciphers (2005)

10. Kanda, M., Matsumoto, T.: Security of Camellia against Truncated Differential
Cryptanalysis. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 137–286.
Springer, Heidelberg (2002)

11. Kawabata, T., Kaneko, T.: A Study on Higher Order Differential Attack of Camel-
lia. In: The 2nd Open NESSIE Workshop (2001)

12. Knudsen, L.R.: DEAL–a 128-bit Block Cipher. Technical report, Department of
Informatics, University of Bergen, Norway (1998)

13. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

14. Lee, S., Hong, S.H., Lee, S.-J., Lim, J.-I., Yoon, S.H.: Truncated Differential Crypt-
analysis of Camellia. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 32–38.
Springer, Heidelberg (2002)

15. Duo, L., Li, C., Feng, K.: New Observation on Camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

16. Li, L., Chen, J., Jia, K.: New Impossible Differential Cryptanalysis of Reduced-
round Camellia. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS,
vol. 7092, pp. 26–39. Springer, Heidelberg (2011)

17. Li, L., Chen, J., Wang, X.: Security of Reduced-Round Camellia against Impossible
Differential Attack, http://eprint.iacr.org/2011/524.pdf

18. Lu, J.: Cryptanalysis of Block Ciphers. PhD Thesis, Department of Mathematics,
Royal Holloway, University of London, England (2008)

19. Lu, J.: Higher-order meet-in-the-middle attacks on 10-round Camellia-128, 11-
round Camellia-192 and 12-Camellia-256. In an invited talk at ASK 2011 in August
2011, Singapore (2011)

20. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossi-
ble Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

21. Lu, J., Wei, Y., Kim, J., Fouque, P.A.: Cryptanalysis of Reduced Versions of the
Camellia Block Cipher. In: SAC 2011 (2011) (to appear)

22. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impos-
sible Differential Cryptanalysis of Reduced–Round Camellia–128. In: Jacobson Jr.,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

23. NESSIE–New European Schemes for Signatures, Integrity, and Encryption, final
report of European project IST-1999-12324. Archive (1999),
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

24. NTT Information Sharing Platform Laboratories: Internationally Standardized En-
cryption Algorithm from Japan “Camellia”,
http://info.isl.ntt.co.jp/crypt/index.html

25. Shirai, T.: Differential, linear, boomerang and rectangle Cryptanalysis of Reduced-
Round Camellia. In: Proceedings of the Third NESSIE Workshop, Munich, Ger-
many, November 6-7 (2002)

26. Sugita, M., Kobara, K., Imai, H.: Security of Reduced Version of the Block Cipher
Camellia against Truncated and Impossible Differential Cryptanalysis. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg
(2001)

http://eprint.iacr.org/2011/524.pdf
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
http://info.isl.ntt.co.jp/crypt/index.html

New Impossible Differential Attacks on Camellia 95

27. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of Reduced-
Round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

28. Wenling, W., Dengguo, F., Hua, C.: Collision Attack and Pseudorandomness
of Reduced-Round Camellia. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 252–266. Springer, Heidelberg (2004)

29. Yeom, Y., Park, S., Kim, I.: On the Security of Camellia against the Square Attack.
In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99. Springer,
Heidelberg (2002)

A Time Complexity of Attacks in Section 4

Table 3. Time Complexity of the Attack on 11-round Camellia-192

Step Time Complexity

2 2n+55 E

3
∑4

i=0 2× 2n+45−8i × 28(i+1) × 1
8
= 2n+51 × 5 1

11
E

4.1 2× 2n+5 × 240 × 21 × 1
8
= 2n+44 1

11
E

4.2
∑4

i=0 2× 2n−3−8i × 241 × 28(i+1) × 1
8
= 2n+44 × 5 1

11
E

4.3 2n−43 × 281 × 27 × 1
8
= 2n+42 1

11
E

5 2× 2n−43 × 288 × 28 × 1
8
= 2n+51 1

11
E

6.1 2n−51 × 296 × 21 × 1
8
= 2n+43 1

11
E

6.2
∑1

i=0 2
n−51 × 297 × 28(i+1) × 1

8
= (2n+51 + 2n+59) 1

11
E

7 2× 2113 × (1 + (1− 2−8) . . .+ (1− 2−8)2
n−51−1)× 1

8
≈ 2119 1

11
E

Table 4. Time Complexity of the Attack on 12-round Camellia-192

Step Time Complexity

1 2n+55 E

2
∑4

i=0 2× 2n+101−8i × 28(i+1) × 1
8
= 2n+107 × 5 1

12
E

3.1
∑1

i=0 2× 2n+61−8i × 240 × 1
8
= (2n+99 + 2n+91) 1

12
E

3.2 2× 2n+45 × 240 × 21 × 1
8
= 2n+84 1

12
E

2× 2n+37 × 241 × 27 × 1
8
= 2n+83 1

12
E

2× 2n+29 × 248 × 27 × 1
8
= 2n+82 1

12
E

3.3
∑1

i=0 2× 2n+21−8i × 255 × 28(i+1) × 1
8
= 2n+83 1

12
E

2× 2n+5 × 271 × 21 × 1
8
= 2n+75 1

12
E

4.1 2× 2n+5 × 272 × 21 × 1
8
= 2n+76 1

12
E

4.2
∑4

i=0 2× 2n−3−8i × 273 × 28(i+1) × 1
8
= 2n+76 × 5 1

12
E

4.3 2n−43 × 2113 × 27 × 1
8
= 2n+74 1

12
E

5 2× 2n−43 × 2120 × 28 × 1
8
= 2n+83 1

12
E

6 2n−51 × 2128 × 1
8
× 3 = 2n+74 × 3 1

12
E

7 2× 2128 × (1 + (1− 2−8) + . . .+ (1− 2−8)2
n−51−1)× 1

8
≈ 2134 1

12
E

96 D. Bai and L. Li

Table 5. Time Complexity of the Attack on 14-round Camellia-256

Step Time Complexity

1 2n+111 E

2
∑7

i=0 2× 2n+221−8i × 28(i+1) × 1
8
= 2n+230 1

14
E

3.1 2× 2n+165 × 264 × 1
8
+ 2× 2n+157 × 264 × 1

8
× 6 = (2n+227 + 2n+219 × 6) 1

14
E

3.2 2× 2n+157 × 264 × 22 × 1
8
= 2n+221 1

14
E

4
∑4

i=0 2× 2n+157−8i × 266 × 28(i+1) × 1
8
= 2n+229 × 5 1

14
E

5.1
∑1

i=0 2× 2n+117−8i × 2106 × 1
8
= (2n+221 + 2n+213) 1

14
E

5.2 2× 2n+101 × 2106 × 21 × 1
8
= 2n+206 1

14
E

2× 2n+93 × 2107 × 27 × 1
8
= 2n+205 1

14
E

2× 2n+85 × 2114 × 27 × 1
8
= 2n+204 1

14
E

5.3
∑1

i=0 2× 2n+77−8i × 2121 × 28(i+1) × 1
8
= 2n+205 1

14
E

2× 2n+61 × 2137 × 21 × 1
8
= 2n+197 1

14
E

6.1 2× 2n+61 × 2138 × 21 × 1
8
= 2n+198 1

14
E

6.2
∑4

i=0 2× 2n+53−8i × 2139 × 28(i+1) × 1
8
= 2n+198 × 5 1

14
E

6.3 2n+13 × 2179 × 27 × 1
8
= 2n+196 1

14
E

7 2× 2n+13 × 2186 × 28 × 1
8
= 2n+205 1

14
E

8 2n+5 × 2194 × 1
8
× 3 = 2n+196 × 3 1

14
E

9 2× 2194 × (1 + (1− 2−8) + . . .+ (1− 2−8)2
n+5−1)× 1

8
≈ 2200 1

14
E

Impossible Differential Attacks

on Reduced-Round LBlock

Ya Liu1, Dawu Gu1, Zhiqiang Liu1, and Wei Li2,3

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{liuya0611,dwgu,ilu zq}@sjtu.edu.cn
2 School of Computer Science and Technology,
Donghua University, Shanghai 201620, China

3 Shanghai Key Laboratory of Integrate Administration Technologies
for Information Security, Shanghai 200240, China

liwei.edu.cn@gmail.com

Abstract. LBlock is a lightweight block cipher with 32 rounds, which
can be implemented efficiently not only in hardware environment but
also in software platforms. In this paper, by exploiting the structure of
LBlock and the redundancy in its key schedule, we propose an impossible
differential attack on 21-round LBlock based on a 14-round impossible
differential. The data and time complexities are about 262.5 chosen plain-
texts and 273.7 21-round encryptions, respectively. As far as we know,
these results are the currently best results on LBlock in the single key
scenario.

Keywords: Block Cipher, LBlock, Impossible Differential Attacks.

1 Introduction

With the development of electronic and communication technologies, low-end de-
vices such as RFID tags have been deployed in various scenarios of daily life such
as access control, public transport systems, identification, eHealth, and so on.
Due to some practical requirements, the primitives used in this constrained envi-
ronment have to satisfy some properties, including sufficient computation speed,
less gate equivalents and low power consumption. As a matter of fact, traditional
block ciphers such as AES [6] are unsatisfactory for these requirements. There-
fore, more and more lightweight block ciphers are proposed, e.g., PRESENT [3],
KATAN/KTANTAN [4], PRINTcipher [10], LBlock [17] etc. They are dedicat-
edly designed with a trade-off between the security and hardware performance
(i.e., good hardware performance and moderate security), and suitable for tiny
computing devices which don’t require the encryption of large amounts of data
and strong security.

LBlock [17], proposed by Wu and Zhang in 2011, is a lightweight block ci-
pher with 32 rounds. The block and key sizes are 64-bit and 80-bit, respectively.
LBlock adopts a variant Feistel structure with left rotation operations inserted

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 97–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 Y. Liu et al.

every round, and it can be implemented efficiently not only in hardware envi-
ronment but also in software platforms. In [17], the designers carefully evaluated
the security against differential cryptanalysis, linear cryptanalysis, impossible
differential cryptanalysis, integral attack and related-key attack. Among them,
the best results in the single key scenario were an integral attack on 20-round
LBlock as well as an impossible differential attack on 20-round LBlock. Recently,
Minier and Naya-Plasencia presented a new related-key impossible differential
attack on 22-round LBlock [15].

Impossible differential cryptanalysis, which is a variant of differential crypt-
analysis [2], was independently proposed by Knudsen [9] and Biham et al. [1].
Its main idea is to use impossible differentials that hold with probability zero to
discard the wrong keys until only one key is left. Up to now, impossible differen-
tial cryptanalysis has received much attention and been used to attack a variety
of well-known block ciphers such as AES, ARIA, CLEFIA, MISTY1 and so on
[5,7,11,13,14,16,18].

In this paper, we study the security of LBlock from the aspect of impossible
differential cryptanalysis. We first present some properties of the structure of
LBlock. Then we observe the redundancy in the key schedule and acquire some
relations between the round subkeys. Based on them, we propose a new im-
possible differential attack on 21-round LBlock based on a 14-round impossible
differential. Among it, some techniques such as building a precomputation table,
constructing a hash table and the early abort skill [12] are adopted. The data,
time and memory complexities of our attack are about 262.5 chosen plaintexts,
273.7 21-round encryptions and 255.5 4-bit words of memory, respectively. Com-
pared to the previously best results, these results are the currently best results
on LBlock in the single key scenario. In table 1, we summarize our results along
with the former known ones on LBlock.

Table 1. Summary of the attacks on LBlock in the single key scenario

Rounds Attack Type Data (CP) Time (Enc) Source

18 Integral Attack 262.3 262.3 [17]
20 Integral Attack 263.7 263.7 [17]
20 Impossible DC 263 272.7 [17]
21 Impossible DC 262.5 273.7 Section 4.3

DC: Differential Cryptanalysis; CP: Chosen Plaintexts;
Enc: Encryptions;

The remainder of this paper is organized as follows. Section 2 gives some
notations and a brief description of LBlock. Section 3 introduces some 14-round
impossible differentials of LBlock. Section 4 first exploits several properties of
LBlock and the redundancy in its key schedule, and then presents an impossible
differential attack on 21-round LBlock. Section 5 summarizes this paper.

Impossible Differential Attacks on Reduced-Round LBlock 99

2 Preliminaries

In this section, we first illustrate some notations which are used in the pa-
per. Then we briefly describe the encryption algorithm and the key schedule of
LBlock.

2.1 Some Notations

Some notations are given as follows.

– P, C: the 64-bit plaintext and the 64-bit ciphertext;
– ΔP, ΔC: the differences of a plaintext pair and a ciphertext pair;
– Lr−1, Rr−1: the left half and the right half of the r-th round input;
– ΔLr−1: the difference of the left half of two r-th round inputs;
– ΔRr−1: the difference of the right half of two r-th round inputs;
– X | Y : the concatenation of X and Y ;
– Kr: the r-th round subkey;
– Sr: the output of the S-boxes in the r-th round;
– ΔSr: the output difference of the S-boxes in the r-th round;
– X ≪ j: left rotation of X by j bits;
– XL(32), XR(32): the left half and the right half of a 64-bit word X ;
– Xi,j : the j-th 4-bit word of Xi;
– Xl,{i,j}: the i-th and j-th 4-bit words of Xl;
– Xl,{i∼j}: the i-th to the j-th 4-bit words of Xl;
– Xi,j [l]: the l-th bit of Xi,j ;
– Xi,j [l, t]: the l-th and t-th bits of Xi,j ;
– Xi,j [l ∼ t]: the l-th to the t-th bits of Xi,j ;
– [i]2: binary form of an integer i

Clearly, (Lr, Rr) is the output of the r-th round.

2.2 Overview of LBlock

LBlock is a 64-bit lightweight block cipher with 32 rounds. It adopts a 80-bit
key size and a variant Feistel structure with left rotations inserted every round.
According to the notations above, we will describe the encryption algorithm and
the key schedule of LBlock briefly.

Encryption Algorithm. Let P = PL | PR = X1 | X0 be a 64-bit plaintext.
For i = 2, 3, · · · , 33, do

Xi = F (Xi−1, Ki−1) ⊕ (Xi−2 ≪ 8).

The concatenation of two binary strings X32 and X33 forms the ciphertext C,
i.e.,

C = X32 | X33.

100 Y. Liu et al.

Here the round function F uses the SPN structure including the key-addition
layer, the nonlinear transformation S and the linear diffusion layer P . The non-
linear transformation S consists of eight 4 × 4 S-boxes si in parallel. The linear
function P is defined as a permutation of eight 4-bit words, which is expressed
as follows:

P : {0, 1}32 → {0, 1}32;

Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | Y0 �→ Z7 | Z6 | Z5 | Z4 | Z3 | Z2 | Z1 | Z0,

Z7 = Y6, Z6 = Y4, Z5 = Y7, Z4 = Y5,

Z3 = Y2, Z2 = Y0, Z1 = Y3, Z0 = Y1.

The precise structure can be found in [17].

Key Schedule. The key schedule of LBlock is designed in a stream cipher
way. The 80-bit master key K is stored in a key register and represented as
K = k79k78k77 · · · k1k0. At round i, the leftmost 32 bits of current contents of
register K are output as the round key Ki, i.e., Ki = k79k78 · · ·k49k48. After
extracting the round subkey Ki, the key register is updated as follows:

1. [k79k78k77 · · ·k1k0] = [k50k49k48 · · ·k1k0k79k78 · · · k52k51],
2. [k79k78k77k76] = s9[k79k78k77k76],

[k75k74k73k72] = s8[k75k74k73k72],
3. [k50k49k48k47k46] = [k50k49k48k47k46] ⊕ [i]2,

where s9 and s8 are two 4-bit S-boxes [17].

3 14-Round Impossible Differentials of LBlock

In [17], Wu and Zhang found some 14-round impossible differential characteris-
tics by the means of U-method [8]. One of them is illustrated in the following:
(00000000, 00α00000) �14r (0β000000, 00000000), where α, β ∈ {0, 1}4 \ {0}4

represent non-zero 4-bit words. Similarly, Wu and Zhang obtained some other
14-round impossible differentials by changing the positions of α, β. They pre-
sented impossible differential cryptanalysis of 20-round LBlock on the basis of
the above 14-round impossible differential.

We study all possible 14-round impossible differential characteristics of LBlock.
By exploiting the structure of reduced-round LBlock and the redundancy in the
key schedule, we select a 14-round impossible differential to attack 21-round
LBlock. This 14-round impossible differential is

(00000000, 00α00000)�14r (0000β000, 00000000), (1)

which contradicts in the middle and makes full use of the relations between the
round subkeys. For other 14-round impossible differentials, the round subkeys
involving in our attack on 21-round LBlock have less common or related bits.
Therefore, we use the 14-round impossible differential (1) to analyze the security
of LBlock. In Section 4, we will elaborate how many common or related bits exist
in our attack using the 14-round impossible differential (1).

Impossible Differential Attacks on Reduced-Round LBlock 101

4 Impossible Differential Attacks on 21-Round LBlock

In this section, we propose an impossible differential attack on 21-round LBlock
by putting three additional rounds in the plaintext side and four additional
rounds in the ciphertext side of the 14-round impossible differential (1). Figure
1 shows the whole attacking procedure.

KS P

<<<8

KS P

<<<8

KS P

<<<8

14-Round Impossible Differential

KS P

<<<8

KS P

<<<8

KS P

<<<8

KS P

<<<8

(0000 α30α40)
(0000 α0α20)

(α3α400 000α1)

(0000 00α3α4)

(0000 0α100)
(0000 0α200)

(0000 α2000)

(00α0 0000)

(00α10 0000)

(000α1 0000)

(00α0 0000)(0000 0000)

(0000 β000)

(0000 0000) (0000 β1000)

(0000 00β10)

(0000 00β10)
(0000 00β20)

(0000 000β2)

(00β30 000β4)

(00β0 000β2)
(000β3 0β400)

(000β3 β1β400)
(000β5 β6β700)

(0β500 β70β60)

(ββ500 β7β2β60)

Fig. 1. Impossible Differential Attacks on 21-Round LBlock

Before introducing the whole attack, we present some properties of LBlock.
In addition, we also observe the redundancy in the key schedule and gain the
relations between the round subkeys. Based on them, we mount an impossible
differential attack on 21-round LBlock. At last, we analyze the data and time
complexities of our proposed attack.

4.1 Some Properties of LBlock

We study the structure of LBlock and present four properties, which can be used
to attack 21-round LBlock. In the following, we will elaborate them.

Property 1. For 3 rounds of LBlock from rounds i + 1 to i + 3, the necessary
conditions of ΔLi+3 = (0000 0000) and ΔRi+3 = (00α0 0000) are:

102 Y. Liu et al.

(1) Li = (0000 α0α20), Ri = (α3α400 000α1) and Li+1 = (0000 0α100)
(2) ΔSi+1,3 = ΔRi,7, ΔSi+1,1 = ΔRi,6,

ΔSi+2,2 = ΔRi+1,1, ΔSi+3,5 = ΔRi+2,2,

where αi(1 ≤ i ≤ 4) are non-zero 4-bit words.

Property 2. For 4 rounds of LBlock from rounds i + 1 to i + 4, if the input
difference of the (i + 1)-th round is (0000β000, 00000000), then

(1) ΔLi+1 = (0000 00β10), ΔLi+2 = (00β0 000β2) and ΔLi+3 = (000β3 β1

β400)
(2) ΔSi+1,3 = ΔLi+1,1, ΔSi+2,1 = ΔLi+2,0,

ΔSi+3,5 = ΔLi+3,4, ΔSi+3,0 = ΔLi+3,2,
ΔSi+4,4 = ΔLi+4,6, ΔSi+4,3 = ΔLi+4,1, ΔSi+4,2 = ΔLi+4,3,

where β1, β2, β3, β4 are non-zero 4-bit words.

The proofs of Properties 1 and 2 can be obtained from Fig 1. According to the
encryption algorithm and Properties 1 and 2, we can obtain the following results.

Property 3. Let (0000α0α20, α3α400000α1) →3r (00000000, 00α00000) be a 3-
round differential. X1 | X0 and X ′

1 | X ′
0 are two 64-bit words, which satisfy the

input difference of this 3-round differential. If we want to check whether they
satisfy this 3-round differential, we have to guess at least seven 4-bit words of
the round subkeys, i.e., Ki+1,{6,3,1,0}, Ki+2,{7,2} and Ki+3,5.

Property 4. Let (0000β000, 00000000) →4r (ββ500β7β2β60, 000β3β1β400) be a
4-round differential. Y1 | Y0 and Y ′

1 | Y ′
0 are two 64-bit words, which satisfy the

output difference of this 4-round differential. If we want to check whether they
satisfy this 4-round differential, we have to guess at least fourteen 4-bit words of
the round subkeys, i.e., Ki+1,3, Ki+2,{1,7}, Ki+3,{0,2,3,5} and Ki+4,{0,2,3,4,5,6,7}.

4.2 Some Observations on the Key Schedule of LBlock

We exploit the redundancy in the key schedule of LBlock in this section. Some
relations between three or four consecutive round subkeys are presented. On the
basis of them, the guessed key space of our proposed attack is reduced. In the
following, we will describe them in detail.

Property 5. For rounds 1 to 3 and rounds 18 to 21, we can obtain the relations
among their round subkeys, respectively.

(1) Let K = k79k78k77 · · · k1k0 be the current key of register. If the subkey of
the first round is K1 = k79k78k77 · · · k49k48, then the subkeys of the second
and third rounds can be expressed as follows:

K2 = s9(k50, · · · , k47)|s8(k46, · · · , k43)|k42| · · · |k19,

K3 = s9(k21, · · · , k18)|s8(k17 ⊕ 1, k16, k15, k14)|k13| · · · |k0|k79| · · · |k70.

Impossible Differential Attacks on Reduced-Round LBlock 103

(2) Let K = k′
79k

′
78k

′
77 · · · k′

1k
′
0 be the current key of register. If the subkey of

the 18th round is K18 = k′
79k

′
78k

′
77 · · ·k′

49k
′
48, then the subkeys from the 19th

to 21st rounds can be expressed as follows:

K19 = s9(k′
50, · · · , k′

47)|s8(k′
46, · · · , k′

43)|k′
42| · · · |k′

22|k′
21 ⊕ 1|k′

20|k′
19,

K20 = s9(k′
21 ⊕ 1, k′

20, k
′
19, k

′
18 ⊕ 1)|s8(k′

17, · · · , k′
14)|

k′
13| · · · |k′

0|k′
79| · · · |k′

73|k′
72 ⊕ 1|k′

71|k′
70,

K21 = s9(k′
72 ⊕ 1, k′

71, k
′
70, k

′
69 ⊕ 1)|s8(k′

68 ⊕ 1, k′
67, k

′
66, k

′
65)|k′

64| · · · |k′
51|

s9(k′
50 · · ·k′

47)|s8(k′
46 · · · k′

43) ⊕ 1|k′
42|k′

41 ⊕ 1.

By Property 5, we search common or related bits of partial 4-bit words of three
or four consecutive round subkeys involving in Properties 3 and 4, which is
illustrated in Property 6.

Property 6. For rounds 1 to 3 and rounds 18 to 21, we can get the common or
related bits of their consecutive round subkeys as follows:

(1) If four 4-bit words of K1, K1,{6,3,1,0}, are known, then we can obtain three
bits information of K2,7, i.e., s−1

9 (K2,7)[3, 2, 1]. In other words, seven 4-bit
words involving in Property 3 have three related bits, i.e., K1,0[2, 1, 0] =
s−1
9 (K2,7)[3, 2, 1] = k50k49k48.

(2) If each of the 4-bit words of K21 is known except for K21,1, then we can
obtain nine bits of K18,3, K19,{1,7} and K20,{0,2,3,5}, i.e., K18,3, K19[30, 31]
and K20[0 ∼ 2]. In other words, fourteen 4-bit words involving in Property
4 have nine common or related bits, i.e., s−1

9 (K21,7)[3 ∼ 1] = K20,0[2 ∼ 0],
K21,2[1, 0] = K19,7[3, 2], K21,5[2 ∼ 0] | K21,4[3] = K18,3.

In our attack on 21-round LBlock by employing the 14-round impossible differ-
ential (1), we can reduce the guessed key space by 2−12 times. For other 14-round
impossible differentials, we also studied the relations between the round subkeys
involving in whole attacking procedure in the same way. However, we did not
achieve any better result.

4.3 Attack Procedure

Based on the 14-round impossible differential (1) and properties 1 to 6, we
present an impossible differential attack on 21-round LBlock. In this attack,
we adopt some techniques such as constructing a hash table and building a
precomputation table to reduce the complexity. Before describing our attacking
algorithm, we first construct a precomputation table T from rounds 2 to 3.

Table T : For each of 228 possible pairs (L2,5, ΔL2,5, K3,5, K2,{2,7}, L1,{2,7}),
we first calculate ΔL1,2 = s5(L2,5 ⊕ K3,5) ⊕ s5(L2,5 ⊕ ΔL2,5 ⊕ K3,5). Then
we continue to compute the first word of the right half of the output dif-
ference in the first round, i.e., ΔR1,1 = s2(L1,2 ⊕ K2,2) ⊕ s2(L1,2 ⊕ ΔL1,2 ⊕

104 Y. Liu et al.

K2,2). Store all possible pairs (L2,5, ΔL2,5, K3,5, K2,{2,7}, L1,{2,7}) in a hash ta-
ble T indexed by (L1,{2,7}, ΔL1,2, ΔR1, R1,3, s

−1
9 (K2,7)[3, 2, 1]), where ΔR1 =

(0000 ΔL2,50ΔR1,10) and R1,3 = s7(L1,7⊕K2,7)⊕L2,5. There are 227 rows in T
and each row contains approximately 2 9-bit subkeys (K2,2, s

−1
9 (K2,7)[0], K3,5)

on average.
We can extract the proper subkeys K2,2|s−1

9 (K2,7)[0]|K3,5 from this precom-
putation table T . In the following, we will elaborate the attack algorithm.

The Attack Algorithm

1. Select a set of 220 plaintexts which has some fixed values in all words except
for PL,3, PL,1, PR,7, PR,6 and PR,0. Call this special set a structure, which
contains all plaintexts with the following forms:

(y1y2y3y4γ1y5γ2y6, γ3γ4y7y8y9y10y11γ5),

where yi(1 ≤ i ≤ 11) are fixed and γj(1 ≤ j ≤ 5) take all possible values of
F4

2. Clearly, each structure can form about 239 plaintext pairs, of which the
differences have the following forms:

(0000μ10μ20, μ3μ400000μ5),

where μi(1 ≤ i ≤ 5) are non-zero 4-bit words. Take 2n structures. Totally, we
collect about 2n+39 plaintext pairs. Encrypt these plaintext pairs to obtain
the corresponding ciphertext pairs. If the ciphertext differences have the
following forms:

(000ν1ν2ν300, ν4ν500ν6ν7ν80),

where νi(1 ≤ i ≤ 8) are non-zero 4-bit words, these pairs will be kept.
The expected number of the remaining plaintext pairs is about 2n+39 ×
2−32 = 2n+7. In this step, we can simplify the selection of proper pairs by
constructing a hash table.

2. Guess K21,4, K21,3 and K21,2, respectively. By Property 2, we check whether
three equations, ΔS21,4 = ΔCR,6, ΔS21,3 = ΔCR,1 and ΔS21,2 = ΔCR,3,
hold. The total probability of this event is 2−12. Therefore, we expect about
2n+7×2−12 = 2n−5 plaintext pairs remain. Next, guess K21,{7,6,5,0}. Partially
decrypt the ciphertext pairs to get partial outputs of the 20-th round, i.e.,
R20,{5,3,2,0} and R′

20,{5,3,2,0}.
3. By Property 6, we can obtain the value of K20,0[2 ∼ 0] by the guessed 4-bit

word K21,7. Thus, guess K20,0[3] and K20,5, respectively. According to Prop-
erty 2, verify whether two equations, ΔS20,5 = ΔCL,4 and ΔS20,0 = ΔCL,2,
hold. The probability for that happens is 2−8. Thus, the expected number
of the remaining pairs is approximately 2n−5 × 2−8 = 2n−13. Continue to
guess K20,{2,3}. Partially decrypt the remaining pairs to obtain R19,{7,1} and
R′

19,{7,1}.
4. Guess K19,1 and verify whether ΔS19,1 is equal to ΔL19,0. The probability

of this event is 2−4. Thus about 2n−13 × 2−4 = 2n−17 pairs will be kept.

Impossible Differential Attacks on Reduced-Round LBlock 105

According to Property 6, we can get the value of K19,7[3, 2] by K21,2. Next,
guess K19,7[1, 0] and partially decrypt the remaining pairs to acquire R18,3

and R′
18,3.

5. By Property 6, we know K18,3 = K21,5[2 ∼ 0] | K21,4[3]. Check whether the
equation ΔS18,3 = ΔL18,1 holds. The probability for that happens is 2−4.
So there remains approximately 2n−17 × 2−4 = 2n−21 pairs.

6. Guess K1,3 and K1,1, respectively. Verify whether two equations, ΔS1,3 =
ΔPR,7 and ΔS1,1 = ΔPR,6, hold. The probability of this event is 2−8. So
about 2n−21 × 2−8 = 2n−29 pairs remain. Continue to guess K1,{6,0} and
encrypt some 4-bit words of the remaining plaintext pairs to get L1,{7,2} and
L′

1,{7,2}.
7. According to the precomputation table T , we get rid of some wrong subkeys.

Initialize an empty table H with 29 rows. Each row corresponds to a different
value (K2,2, s

−1
9 (K2,7)[0], K3,5). For each of the remaining pairs, according

to the inputs of the second round and the guessed bits K1,0[2, 1, 0] (which is
equal to s−1

9 (K2,7)[3, 2, 1] by Property 6), access the row (L1,{2,7}, ΔL1,2, ΔR1,

R1,3, s
−1
9 (K2,7)[3, 2, 1]) in the precomputation table T , which corresponds to

2 values of (K2,2, s−1
9 (K2,7)[0], K3,5). In other words, for each of 2n−29

proper pairs, about 2 of the subkeys (K2,2, s−1
9 (K2,7)[0], K3,5) can result

in the input difference of the 14-round impossible differential (1). Remove
these values from the table H . After trying all remaining pairs, if the table
H is not empty, output the 9-bit value (K2,2, s−1

9 (K2,7)[0], K3,5).
8. We have obtained some 72-bit subkeys (K21,{7,6,5,4,3,2,0}, K20,0[3], K20,{5,3,2},

K19,7[1, 0], K19,1, K1,{6,3,1,0}, K2,2, s
−1
9 (K2,7)[0], K3,5). Let K = k79 · · · k0 be

the secret key. According to the value of 25-bit key (K1,{6,3,1,0}, s−1
9 (K2,7)[0],

K2,2, K3,5) (which is k75 · · · k72k63 · · ·k60 k55 · · · k47 k30 · · · k27 k13 · · · k10), we
guess the remaining 55-bit key of K and verify whether this key is correct
by about 255 trail encryptions. If this guessed key is correct, end this attack,
otherwise go to step 2 and try another guess.

Up to now, we have removed all wrong keys to recover the correct one. In this
attack, we consider the redundancy in the key schedule and adopt some tech-
niques such as constructing a hash table and building a precomputation table
T , which reduce the complexity.

4.4 Complexity of the Attack

For each of the remaining pairs in step 7, we remove about two subkeys (K2,2,
s−1
9 (K2,7)[0], K3,5) along with the guessed subkey (K21,{7,6,5,4,3,2,0}, K20,{5,3,2},

K20,0[3], K19,7[1, 0], K19,1, K1,{6,3,1,0}). Therefore, the probability for a wrong
joint subkey surviving is about 1− 2

29 = 1− 2−8. Let ε be the expected number
of the wrong subkeys remaining. Clearly,

ε = 272 × (1 − 2−8)2
n−29

.

If we take n = 42.5, then ε ≈ 26.7. At this time, we consider that about 26.7 wrong
subkeys are left. For each of remaining subkeys, we can obtain some candidates

106 Y. Liu et al.

of the main key. With about 255×26.7 = 261.7 trail encryptions, the correct main
key will be recovered.

The data complexity is 2n+20 = 262.5 chosen plaintexts. In the following, we
will discuss the time complexity of each step in table 2.

Table 2. Complexity of Impossible Differential Attack on 21-Round LBlock

Step Time Complexity

1 2n+20 21-round encryptions

2
∑2

i=0 2n+7−4·i × 2 × 24·(i+1) + 2n−5 × 2 × 228 ≈ 2n+24 1-round encryptions

3 2n−5 × 2 × 229 + 2n−9 × 2 × 233 + 2n−13 × 2 × 241 ≈ 2n+29.2 1-round encryptions

4 2n−13 × 2 × 245 + 2n−17 × 2 × 247 ≈ 2n+33.3 1-round encryptions

5 2n−17 × 2 × 247 = 2n+31 1-round encryptions

6
∑1

i=0 2n−21−4·i × 2 × 247+4·(i+1) + 2n−29 × 2 × 263 ≈ 2n+35.2 1-round encryptions

7 2n−29 × 263 × 2 = 2n+35 Memory Access

8 255 × ε ≈ 261.7 21-round encryptions

From Table 2, we know that the total time complexity is about 2n+31.2 21-
round LBlock encryptions. Furthermore, the memory complexity is about 2n+7×
4 = 2n+9 64-bit blocks. By the value of n, we obtain the time and memory
complexities are approximately 273.7 21-round LBlock encryptions and 255.5 4-
bit words, respectively.

5 Conclusion

In this paper, we have presented an impossible differential attack on 21-round
LBlock by setting a 14-round impossible differential (1) at rounds 4 to 17. In
our attack, we study the structure of LBlock and the redundancy in its key
schedule, and acquire some relations between some consecutive round subkeys.
Meanwhile, some techniques such as building a hash table and constructing a
precomputation table are adopted to reduce the complexity. Our proposed attack
requires approximately 262.5 chosen plaintexts, 273.7 21-round encryptions and
255.5 4-bit words of memory. To the best of our knowledge, these results, in term
of the number of the attacked rounds, is better than any previously published
results on LBlock in the single key scenario.

Acknowledgements. The authors are grateful to all anonymous reviewers for
valuable suggestions and comments. This work has been supported by the Na-
tional Natural Science Foundation of China (No. 61073150 and No. 61003278),
the Opening Project of Shanghai Key Laboratory of Integrate Administration
Technologies for Information Security and the Fundamental Research Funds for
the Central Universities.

Impossible Differential Attacks on Reduced-Round LBlock 107

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

3. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

5. Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of
Reduced-Round Camellia-192 and Camellia-256. In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454.
Springer, Heidelberg (2008)

8. Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible
Differential Cryptanalysis for Block Cipher Structures. In: Johansson, T., Maitra,
S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg
(2003)

9. Knudsen, L.R.: DEAL - a 128-bit block cipher. Tech. rep., Department of Infor-
matics, University of Bergen, Norway, technical report (1998)

10. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

11. Lu, J., Dunkelman, O., Keller, N., Kim, J.-S.: New Impossible Differential Attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

12. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the Efficiency of Impos-
sible Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

13. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved Impos-
sible Differential Cryptanalysis of 7-Round AES-128. In: Gong, G., Gupta, K.C.
(eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg
(2010)

14. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impos-
sible Differential Cryptanalysis of Reduced–Round Camellia–128. In: Jacobson Jr.,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

15. Minier, M., Naya-Plasencia, M.: Some preliminary studies on the differential be-
havior of the lightweight block cipher LBlock. In: Leander, G., Standaert, F.X.
(eds.) ECRYPT Workshop on Lightweight Cryptography, pp. 35–48 (November
2011)

108 Y. Liu et al.

16. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossi-
ble Differential Cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 398–411. Springer, Heidelberg (2008)

17. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

18. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced-
round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)

New Truncated Differential Cryptanalysis

on 3D Block Cipher

Takuma Koyama1, Lei Wang1, Yu Sasaki2,
Kazuo Sakiyama1, and Kazuo Ohta1

1 The University of Electro-Communications
{t-koyama,wanglei}@ice.uec.ac.jp, {sakiyama,kazuo.ohta}@uec.ac.jp

2 NTT Information Sharing Platform Laboratories, NTT Corporation
sasaki.yu@lab.ntt.co.jp

Abstract. This paper presents 11- and 13-round key-recovery attacks
on block cipher 3D with the truncated differential cryptanalysis, while
the previous best key-recovery attack broke only 10 rounds with the im-
possible differential attack. 3D is an AES-based block cipher proposed
at CANS 2008, which operates on 512-bit blocks and a 512-bit key, and
consists of 22 rounds. It was previously believed that the truncated dif-
ferential cryptanalysis could not extend the attack more than 5 rounds.
However, by carefully analyzing the data processing part and key sched-
ule function simultaneously, we show the attack to 11-round 3D with
2251 chosen plaintext (CP), 2288 computations, and 2128 memory. Ad-
ditionally, the time complexity is improved up to 2113 by applying the
early aborting technique. By utilizing the idea of neutral bit, we attack
13-round 3D with 2469 CP, 2308 computations, and 2128 memory.

Keywords: 3D block cipher, key-recovery attack, truncated differential
cryptanalysis, early aborting technique.

1 Introduction

At CANS 2008, Nakahara proposed a three-dimensional block cipher [10] called
3D which was based on AES (Advanced Encryption Standard) [12]. It operates
on 512-bit blocks and a 512-bit key, and consists of 22 rounds. 3D was designed
to have a larger block size and key size than those of AES, while the data
procession can take advantage of the design of the AES round function. To
enlarge the internal state size of AES (4 × 4-byte state), 3D puts four AES
states in parallel, and regard the group as the internal state of 3D (4×4×4-byte
state). See its illustration in Fig. 1. To take advantage of the three-dimensional
states, 3D applies the diffusion (ShiftRows) of AES to two directions (θ1 and θ2
operations) in every two rounds in turn.

For block ciphers, there are two types of security evaluation standards; secret-
key-type attacks and known-key-type attacks. Regarding the known-key-type
attack, Le et al. [4] attacked 15 rounds with a multiple inbounds technique [9].
Although their attack works for more rounds than us, the known-key-type attack

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 109–125, 2012.
� Springer-Verlag Berlin Heidelberg 2012

110 T. Koyama et al.

Fig. 1. Left: AES state and ShiftRows operation, Right: 3D state and θ1 and θ2
operations

uses the knowledge of the key, and its goal is to distinguish the permutation from
a random one. The known-key-type attacks cannot be used in the secret-key-
type attacks because the goal is different. Hereafter, we focus our attention on
the key-recovery attack. Nakahara [11] attacked 10 rounds with an impossible-
differential technique [5], which uses the fact that a certain input difference never
reaches another certain output difference after a few rounds. He also considered
the truncated differential cryptanalysis [6], which analyzes a set of differential
transitions simultaneously. However to attack 6 rounds, the probability of the
differential path he found became lower than the probability to find a pair of
plaintexts with the same input and output differences for a random permutation.
Moreover, even attacking 6 rounds seemed hard due to an insufficient number
of valid plaintext pairs. From these observations, he predicted the hardness of
applying the truncated differential cryptanalysis on 6 rounds.

In fact, however, the previous work incorrectly estimated the number of pos-
sible plaintext pairs, and thus mistakenly concluded that satisfying on 6-round
path was impossible. In this paper, we show that the truncated differential crypt-
analysis can still attack effectively on more than 5-round 3D. We show several
improvements:

– correctly choose plaintext pairs and extend the differential path accordingly;
– carefully analyze the differential transition inside the 2-round iterated path,
which raises the probability from 2−96 to 2−94;

– carefully analyze the diffusions for the data processing part and key schedule
function simultaneously so that more rounds can be added to the previous
differential path.

Thus, this paper presents new 11- and 13-round key-recovery attacks on 3D with
the truncated differential cryptanalysis.

In our 11-round attack, we use the differential path which is satisfied with
probability 2−376, while the probability to find a pair of texts with the same
plaintext and ciphertext differences by a random permutation is 2−384. Let us
denote pairs that satisfy the path by right pairs and that do not satisfy the path
by wrong pairs. At the first stage of the attack, we need to collect only right pairs.
Because the probability of the path is higher than the random case, we can easily
detect right pairs in this attack. A simple key-recovery method recovers the key
with 2251 CP, 2288 computations, and 2128 memory. Furthermore, we optimize its

New Truncated Differential Cryptanalysis on 3D Block Cipher 111

time complexity to 2113 by applying the early aborting technique [7,8] originally
proposed by Lu, Kim, and Dunkelman [7].

In our 13-round attack, we use the differential path with probability 2−470,
while the probability to find a pair of texts with the same plaintext and cipher-
text differences by a random permutation is 2−384. Hence, right pairs cannot be
detected easily in the attack. To solve this problem, we devise a technique to
efficiently filter out wrong pairs. This technique comes from the general idea of
neutral bit originally proposed by Biham and Chen [2].

Roughly speaking of our technique, we modify a part of plaintexts so that
the modified paired values never break the differential path for the first several
rounds. Hence, if the pair is a right pair, the second pair satisfying the whole path
can be obtained faster than the wrong pairs. With this idea, wrong pairs can be
filtered out. As a result, the key is recovered with 2469 CP, 2308 computations,
and 2128 memory. Our attacks are currently best key-recovery attacks against
reduced-round 3D. Table 1 summarizes previous key-recovery attacks and ours.

This paper is organized as follows: in Sect. 2 we describe 3D. In Sect. 3 we
describe the previous results for 3D. In Sect. 4 we present our 11-round key-
recovery attack and its optimization by the early aborting technique. In Sect.
5 we present our technique to detect right pairs, and extend our attack to 13-
rounds. Finally, Sect. 6 concludes this paper.

Table 1. A comparison of previous results with our new attacks under key-recovery
situation

Reference Attack Rounds Data Time Memory

[10] Multiset 4.75 29CP 219.5 28

[10] ID 5.75 236CP 265.5 232

[10] Multiset 5.75 2129CP 2139 2128

[11] ID 6 2256CC 2256 2256

[11] ID 10 2501CP 2401 2311

Ours (Sect. 4:Scenario 1) TD 11 2251CP 2288 2128

Ours (Sect. 4:Scenario 2) TD with EAT 11 2252CP 2113 2128

Ours (Sect. 5:Scenario 3) TD 13 2469CP 2308 2128

ID: Impossible Differential attack; TD: Truncated Differential attack;
EAT: Early Aborting Technique; CP: Chosen Plaintext; CC: Chosen Ciphertext

2 Description of 3D Block Cipher

The 3D cipher has an SPN structure. The recommended number of rounds r is
22. 512-bit message blocks and the secret key are represented as 3-dimensional
cubes (4 × 4 × 4 state of bytes) or 4 × 16 matrices. The state of 64-byte data
block A = (a0, a1, ..., a63) is denoted by

112 T. Koyama et al.

A =

⎛⎜⎜⎝
a0 a4 a8 a12 a16 a20 a24 a28 a32 a36 a40 a44 a48 a52 a56 a60
a1 a5 a9 a13 a17 a21 a25 a29 a33 a37 a41 a45 a49 a53 a57 a61
a2 a6 a10 a14 a18 a22 a26 a30 a34 a38 a42 a46 a50 a54 a58 a62
a3 a7 a11 a15 a19 a23 a27 a31 a35 a39 a43 a47 a51 a55 a59 a63

⎞⎟⎟⎠ . (1)

The i-th round of 3D (0 ≤ i ≤ r − 1) can be denoted by

τi(X) = π ◦ θimod2+1 ◦ γ ◦ κi(X). (2)

The round transformations of 3D are briefly described here.

– κi: bitwise xor with a 512-bit round subkey, equivalent to AddRoundKey in
AES;

– γ: a byte-wise S-box application. The S-box of 3D is exactly the same per-
mutation as SubBytes in AES;

– θ1, θ2: equivalent to ShiftRows in AES but applied to each 4 × 4 square
bytes of the state alternately; θ1 in the odd-numbered rounds, θ2 in the
even-numbered rounds. We describe the transition by θ in Appendix A;

– π: matrix multiplication with columns of the state, equivalent to MixColumns
in AES. The values of matrix were originally presented in [1]. The matrix
has branch number 5.

For r-round 3D the round function is iterated r− 1 times, and in the last round
the π function is replaced by the round key κr.

The key-schedule of 3D follows a similar framework as its encryption. For
r-round 3D encryption and decryption, (r + 1) 512-bit subkeys are needed. The
user key K = κ0. The i-th subkey κi (1 ≤ i ≤ r) can be denoted by

κi = π ◦ θimod2+1 ◦ γ′ ◦ κ∗(κi−1). (3)

The key-schedule works as follows:

– κ∗: bitwise xor with a 512-bit constant matrix depending on the number of
rounds r;

– γ′: a byte-wise S-box application to alternate columns of the state;
– θ1, θ2, π: these transformations are the same as encryption.

Each round transformation stands for a fraction of 0.25 (a quarter) of one round.
Thus, we use the following notation: �x.yz denotes the number of rounds. For
example, �0 indicates the input of 3D, and �1.75 indicates the intermediate state
after the application of θ2 in the second round and before the application of π
in the second round.

3 Previous Works on 3D Block Cipher

In this section, in particular, we show previous results against 3D as the secret-
key-type attacks. In [10], Nakahara proposed several approaches of cryptanalysis

New Truncated Differential Cryptanalysis on 3D Block Cipher 113

on reduced-round 3D. Among those approaches, he discussed the truncated dif-
ferential cryptanalysis. He proposed a truncated differential path on 6-round 3D,

which transmits the number of differences 16
1R−−→ 16

2R−−→ 4
3R−−→ 16

4R−−→ 4
5R−−→

16
6R−−→ 4. In the differential path, an attacker can use a pool of 2128 CP with dif-

ference at bytes in positions (0, 5, 10, 15, 16, 21, 26, 31, 32, 37, 42, 47, 48, 53, 58, 63).
This pool leads to about 2255 input pairs. The output difference contains 60
non-zero byte differences. 2255 × (2−8)60 = 2−417 < 1 pairs satisfy the output
difference of his differential path. Thus, he concluded that there is no pair that
satisfies the 6-round differential path. Since then, the truncated differential at-
tack has not been discussed more on 3D.

Later, Nakahara improved impossible-differential attack and multiset attack
to 3D [11]. His ID attack covering 10-round 3D with the time complexity of
2401, the data complexity of 2501 CP, and the memory requirement of 2311 was
the previous best key-recovery attack on the reduced-round 3D. We summarize
these previously known results in Table 1.

4 Key-Recovery Attack on 11-Round 3D Block Cipher

In this section, firstly, we describe an 11-round truncated differential path. Sec-
ondly, we describe how to get pairs which follow the truncated differential path.
In total, we will find three such pairs. Thirdly, we present how to recover the
secret key. Fourth, we describe the early aborting technique and then we show
how to reduce the complexity of recovering the secret key. Finally, we conclude
our attack.

Fig. 2. Truncated differential path on 11-round 3D. Black states denote non-zero
difference. White states denote zero difference. Cyan (gray), magenta (dark gray),
and yellow (light gray) bytes represent four variants of our differential path (colors in
brackets correspond to grayscale printing).

114 T. Koyama et al.

4.1 Truncated Differential Path

Our truncated differential path is shown in Fig. 2, where ΔP indicates the
input differences, ΔC indicates the four variants of output differences. Black
bytes indicate non-zero differences, and white bytes indicate zero difference. We
describe the four variants of ΔC in Sect. 4.1 steps 2 and 3. The truncated
differential path in Fig. 2 can be divided into three parts. In the following, we
describe the three parts of the attack in detail.

1. The first part is from state �0 to �1. An adversary chooses 16-byte differences
for state �0 diagonally. The 16-byte differences reach the 16-byte differences
on the state �1 with the probability of almost 1.

2. The second part consists of 2 rounds, and is repeated four times; from state
�1 to �3, from state �3 to �5, from state �5 to �7, and from state �7 to �9. We
describe the transition by exemplifying the case that is from state �1 to �3.
Focus on only the black bytes in those states. The adversary constructs such
a truncated differential trail through a π function between state �1.75 and
state �2 in a probabilistic way. On the each full-active column, the differences
reduce four bytes to one byte with the probability of about 2−8×3 = 2−24.
There are four full-active columns in state �1.75, thus the total probability
is about 2−24×4 = 2−96. Moreover, we can use four variants of the difference
transition from 16 bytes to 4 bytes on our attack scheme as in Fig. 3. In
other words, we can attack the reduced-round 3D as long as the four active
bytes in state �2 are (a0, a16, a32, a48), (a1, a17, a33, a49), (a2, a18, a34, a50),
or (a3, a19, a35, a51). As a result, the probability of the path becomes four
times higher; 2−96 × 4 = 2−94. Repeating this part four times, so the total
probability from state �1 to �9 is about 2−94×4 = 2−376.

Fig. 3. Four variants of the differences transition through the π function

3. The third part is from states �9 to �11. Due to the second part, there are
four variant of the differences on state �9. The vertical 16-byte differences
on state �9 reach the same colored diagonal 16-byte differences on state �11
with the probability of about 1.

The total probability to find a right pair is about 2−376. On the other hand, the
probability to find such a pair in the random case is about 2−8×48 × 4 = 2−382.
A pair will be denoted as a wrong pair if it satisfies the ΔP and ΔC but does
not follow the truncated differential path. For 2−376 > 2−382, the adversary

New Truncated Differential Cryptanalysis on 3D Block Cipher 115

can obtain one pair that follows the truncated differential path with a higher
probability than the case that does do not follow the path. We discuss the
accurate probability in Sect. 4.5.

4.2 How to Obtain Chosen Plaintext

In this section, we describe how to obtain the CP. When the adversary obtains
2376 pairs of (P, P⊕ΔP), we assume he obtains one pair which fills the truncated
differential path in Fig. 2. Recall he needs three pairs which satisfy the truncated
differential path to recover a user key, therefore he needs to obtain 3×2376 ≈ 2378

pairs. To obtain such pairs, the adversary makes many CP structures as follows:

1. fix non-active 48-byte values of P .
2. set all the possible values (2128 possibilities) on the diagonal active 16-byte

of P and query them to the encryption oracle.
3. make 2255 input and output pairs from former 2128 queried values.
4. repeat the above steps 2123 times, and obtain 2123+255 = 2378 pairs.

In total, the adversary queries 2128+123 = 2251 CP to the encryption oracle, and
obtains three pairs which follow the truncated differential path from 2378 pairs.

4.3 How to Recover a User Key

In this section, we describe how to recover a user key from the described three
pairs. In Fig. 4 and Fig. 5, the bytes noted “g” indicate guessed bytes or com-
puted bytes for the adversary. On the other hand, stripe bytes are unknown bytes
for the adversary. Figure 4 shows the first 1-round transition of the key-schedule.
The adversary guesses the values of the 28 bytes of κ0 (see Fig. 4). There are
28×28 = 2224 key candidates of the 28 bytes in total. Then, the attack steps are
as follows:

1. guess possible values of 28 bytes of κ0 denoted by “g” and then compute 16
bytes of κ1.

Fig. 4. The first 1-round key-schedule. “g” indicates guessed or computed value. Stripe
bytes indicate unknown values.

116 T. Koyama et al.

2. compute the values P and P ⊕ΔP with the guessed key (see Fig. 5). The
adversary can compute the state �2 named as state X from the P and the
guessed key. In a similar way, he can compute the state �2 named as state
X ′ from the P ⊕ΔP and the guessed key.

3. recall P and P⊕ΔP satisfy the truncated differential path. A state ofX⊕X ′

satisfies the truncated differential state �2 in Fig. 2 with the probability of
2−94. Thus, the adversary checks whether the X⊕X ′ satisfies the differential
transition under the guessed key candidate.

4. repeat the above steps with all the possible values on the “g” bytes of the
κ0. We can reduce the key space to 2224−94 = 2130.

5. using three pairs, we can reduce the key space 2224−282 < 1. Hence, the only
correct candidate remains after the above steps.

Fig. 5. Transition of guessed or computed values to recover κ0

Thus this offline computation is 6 × 2224 × 2
11 ≈ 2225 times of 1-round com-

putation. Finally, he recovers these 28-byte of κ0. For recovering the remaining
unknown 36-byte candidates of κ0, we present the procedure as follows:

Scenario 1
Recover the remaining bytes exhaustively. The total amount of the data is
2251 CP and the offline computation is 2225 +28×36 ≈ 2288 times of 1-round
computation. This attack requires 2128 states memory to create pairs.

4.4 Differential Attack with Early Aborting Technique

In this section, we propose how to reduce the data complexity to recover a user key
by applying the early aborting technique. The early aborting technique was pre-
sented by Lu et. al in 2008 [7]. By using this technique, we can analyze a transition
of differences even though only partial values of the transition are known.

New Truncated Differential Cryptanalysis on 3D Block Cipher 117

We need a pre-computation for the technique. Fig. 6 focuses the transition of
the first column (a0, a1, a2, a3) from state �1.75 to �2 in Fig. 8. The adversary
computes backward all the possible differences of the first column which fill the
truncated differential path in state �2 ((28 − 1) × 4 candidates) to state �1.75.
For four columns (the first column, the fifth column, the ninth column, and the
thirteenth column), it needs about 28+2+2 times of one-column π−1 computations
in total. Since, he stores the computations in a table as the valid transitions from
state �1.75 to �2.

Fig. 6. Transition of differential from state �1.75 to �2 at first column with early
aborting technique. Δ in a white block indicates computed non-zero difference. Δ
in a black block indicates non-zero difference but cannot compute. 0 indicates zero
difference. Stripe block indicates unknown bytes.

We describe how to reduce the data complexity as follows:

Scenario 2

1. guess possible values of 14 bytes of κ0 denoted by “g” and then compute
8 bytes of κ1 in Fig. 7.

Fig. 7. The first 1-round key-schedule with early aborting technique

2. compute the state �1.75 from the P and the guessed key (see Fig. 8).
The adversary also computes the state �1.75 from the P ⊕ΔP and the
guessed key. Then he can compute the difference at bytes in positions
(0, 1, 16, 19, 34, 35, 49, 50).

3. use early aborting technique in this step. The adversary does not know
the values of a2 and a3 in state �1.75. So he checks whether the computed
differences satisfy the differences of a0 and a1 of state �1.75 computed

118 T. Koyama et al.

in the step 2 by using the table of the pre-computation. The probability

is about 28−1
(28−1)×(28−1) × 4 = 2−6. Thus he can reduce the key space

28×14−6 = 2106.
4. check whether the differences of the fifth column, the ninth column, and

the thirteenth column satisfy the differential transition similarly. He can
reduce the key space 2112−6×4 = 288. On this scenario, he uses five pairs
which follow the truncated differential path. Thus he repeats the above
steps four times with the right pairs. In total the key space reduces to
2112−24×5 < 1.

Fig. 8. Transition of guessed or computed values to recover κ0 with early aborting
technique

This procedure needs the 2-round computation from state �0 to �2. Thus this
offline computation is 10×2112× 2

11 ≈ 2113 times of 1-round computation and 212

times of pre-computations. Finally, he recovers these 14-byte of κ0. For remaining
unknown 50-byte candidates of κ0, repeat the procedure with early aborting
technique as follows:

1. guess 7 bytes of κ0 2 denoted by “g2” in Fig. 9 and compute the above four
steps similarly. The adversary has already recovered 14 bytes of κ0 denoted
as gray bytes in Fig. 9). Thus he computes the difference at bytes in posi-
tions (0, 1, 16, 19, 34, 35, 49, 50) with the partial recovered key. Additionally,
he computes the difference at bytes in positions (2, 17, 32, 51) in state �1.75
with the guessed 7 bytes. By checking whether the computed differences in
state �1.75 satisfy the transition with the table of the pre-computation, he
can reduce the key space and recover the 7 bytes. On this procedures, the
adversary uses the above five right pairs. The complexity to recover 7 bytes
are lower clearly than 2113 times of 1-round encryption.

New Truncated Differential Cryptanalysis on 3D Block Cipher 119

2. guess 7 bytes of κ0 3 denoted by “g3” in the same way. The complexity to
recover the 7 bytes are also lower than 2113 times of 1-round encryption.

Fig. 9. Additional guessed 7 bytes to recover κ0. Gray bytes denotes known value.

3. guess 10 bytes of κ0 4 denoted by “g4” in Fig. 10. On the step, the ad-
versary needs to make other four plaintext/ciphertext pairs which follow
the ΔP ′ and the ΔC′ and a similar truncated differential path to above
truncated differential path. The differences of the ΔP ′ reach the bytes in
positions (4, 5, 6, 7, 20, 21, 22, 23, 36, 37, 38, 39, 52, 53, 54, 55) in state �1.75. In
other words, he reduces the key space by checking whether the computed
differences of the second, sixth, tenth, and fourteenth column satisfy the
transition from state �1.75 to �2. The number of guessed key candidates is
28×10. So the four pairs which satisfy the path are needed on recovering the
10 bytes, because of 280−24×4 < 1. The complexity to recover the 10 bytes
are lower clearly than 2113 times of 1-round encryption.

Fig. 10. Left: Another truncated differential path consisting of ΔP ′′ and ΔC′′, Right:
Additional guessed 10 and 5 bytes to recover κ0

4. guess 5 bytes of κ0 5 denoted by “g5” and 5 bytes of κ0 6 (“g6”) in Fig. 10
and recover the key like step 1 and 2 with the pairs of ΔP ′ and ΔC′. The
complexity to recover each 5 bytes are also lower clearly than 2113 times of
1-round encryption.

5. guess 7 bytes of κ0 7 (“g7”) in Fig. 11 and repeat the above procedure with
the three pairs which follow the ΔP ′′ and ΔC′′ like step 3. The three pairs
which satisfy the path are needed on recovering the 7 bytes, because of
28×7−24×3 < 1.

The time complexity and memory requirement of the pre-computation are neg-
ligible compared with those of the main computation. In total the adversary

120 T. Koyama et al.

needs 5 + 4 + 3 = 12 pairs which follow the differential paths to recover the
14+7+7+10+5+5+7 = 55 bytes of the κ0. After all, recover the remaining 9
bytes exhaustively with the complexity of 28×9 = 272. Thus the total offline com-
putation is about 2113 times of 1-round computation and the data complexity is
about 2252 CP.

Fig. 11. Left: Another truncated differential path consisting of ΔP ′′ and ΔC′′, Right:
Additional guessed 7 bytes to recover κ0

4.5 Conclusion of 11-Round Attack

In this section we conclude the 11-round attack and refer to the success probabil-
ity of our attack. On Section 4.2, we have to consider the two probabilistic events
on obtaining CP. The first one is whether we can obtain a pair which satisfies
the input/output differential (ΔP , ΔC). Querying one pair to the encryption
oracle, the probability that we cannot obtain the pair values is about 1− 2−376.
Thus, the probability that we cannot obtain any right pair from the 2376 is as:

(1− 2−376)2
376 ≈ lim

n→∞(1 − 2−n)2
n

= e−1. (4)

In other words, the probability that we can obtain one right pair is described as:

Pr1 = 1− e−1. (5)

The other is whether the obtained pair follows the truncated differential path
or does not follow. For 2−376 > 2−382, the probability that the obtained pair
follows the path is as:

Pr2 = 1− 2−382+376 = 1− 2−6. (6)

In total, the probability to obtain n right pairs is expressed as:

Pr3(n) = (Pr1 × Pr2)n =
{
(1 − e−1)(1− 2−6)

}n ≈ 0.6222n. (7)

On 11-round attack, we need three pairs in scenario 1, and 12 pairs in scenario
2. For (7), the total probabilities that we succeed at the attack are as follows:

scenario 1 : Pr3(3) ≈ 0.2409.
scenario 2 : Pr3(12) ≈ 0.0034.

New Truncated Differential Cryptanalysis on 3D Block Cipher 121

Table 2 lists the results of 11-round key-recovery attack under two scenarios.
We note that the success probabilities of the attacks can increase about 1 by
querying more CP. For (4), when we obtain a right pair from 2378 pairs, (4)

decreases to (1 − 2−376)2
378 ≈ e−4. Thus (5) increases to 1− e−4 ≈ 0.9817, and

(7) also increases to about 1 for both scenarios. In this case, we need 2252 CP
in scenario 1, and 2254 CP in scenario 2.

Table 2. Results of our 11-round key-recovery attacks

Reference Attack Rounds Data Time Memory Probability

scenario 1 TD 11 2251CP 2288 2128 0.2409

scenario 2 TD with EAT 11 2252CP 2113 2128 0.0034

5 Extended Attack on 13-Round 3D Block Cipher

On our attack against 13-round 3D, a user key is recovered in the same way as
11-round attack. On the other hand, we need to improve the way to obtain CP.
Hence, we mainly describe how to distinguish a right pair from wrong pairs. In
our technique, we modify the values of the pairs but keep them to satisfy the
differential path from state �0 to �2. Hence, if the modified pair is a right pair,
the pair satisfying the whole path can be obtained faster than the wrong pairs.
Thus, we can generate another right pair from a right pair and wrong pairs. This
technique comes from the general ideas of message modification [14,15,16,17] and
especially neutral bit [2].

5.1 Truncated Differential Path

Fig. 12 indicates the truncated differential path on the 13-round 3D. The 13-
round path is very similar to that of 11 rounds. The adversary needs several
plaintext/ciphertext pairs which follow the truncated differential path. The to-
tal probability to obtain one pair which follows the differential path is about
2−94×5 = 2−470. Remember that the probability to find a pair which fills the
ΔP and ΔC but does not satisfy the truncated differential path is about 2−382.
For 2382−470 = 2−88, this occurrence probability of the right pair is 2−88 of the
random case. When he obtains one pair which satisfies ΔP and ΔC and the
path, he will also obtain 2470−382 = 288 wrong pairs.

5.2 How to Obtain Another Right Pair

The adversary needs to distinguish a right pair from the other 288 wrong pairs.
We note that the vertical 16 bytes, (a0, ..., a3, a16, ..., a19, a32, ..., a35, a48, ..., a51),
in state �1 only depend on the diagonal active 16 bytes, (a0, a5, a10, a15, a16,
a21, a26, a31, a32, a37, a42, a47, a48, a53, a58, a63), in ΔP . In other words, the
vertical 16 bytes are independent of the other 48 bytes in ΔP . Exploiting this
characteristic, we can find a right pair as follows:

122 T. Koyama et al.

Fig. 12. Truncated differential path on 13-round 3D. Black bytes denote non-zero
difference. White bytes denote zero difference.

1. choose one pair (P, P ⊕ΔP) from the 288 + 1 pairs.
2. fix their values of the above diagonal 16 bytes which hold differential and

change the values of the remaining 48 non-active bytes as they satisfy ΔP .
Thus we obtain a new pair (P ′, P ′⊕ΔP). If the pair of (P, P ⊕ΔP) is a right
pair, (P ′, P ′⊕ΔP) also satisfy the differential state �2 with a probability of
1 due to the described independence.

3. check whether P ′ and P ′⊕ΔP satisfies the truncated differential path from
state �2 to �13. The probability increases from 2−470 to 2−376. We query
P ′ and P ′ ⊕ ΔP to the encryption oracle with changing the values of 48
non-active bytes. This procedure requires 2× 2376 = 2377 CP.

4. repeat the above procedure for all of the 288 pairs. The wrong pairs still
remain 288× 2376−382 = 282 pairs. In other words, 282 pairs follow the differ-
ential path from state �0 to �2, but do not follow the differential path from
�2 to �13. The procedure reduces 26 wrong pairs.

The adversary needs to query 2128×2470−255 = 2343 CP to the encryption oracle
to find 288 + 1 pairs. Furthermore he needs 2377 × 288 ≈ 2465 CP to reduce 26

wrong pairs. As a result, 2343+2465 ≈ 2465 CP are necessary to obtain one right
pair and 282 wrong pairs.

5.3 How to Recover a User Key

Scenario 3
Recall scenario 1 of the 11-round attack, he guesses the same 28-byte values
of κ0. One pair which follows the truncated differential path reduces the key
space 2−94. However he has 282 wrong pairs, so he can reduce the key space to
2224−94+82 = 2212. Repeating all the above steps of 13-round attack 19 times,
he reduces the key space to 2224−12×19 = 1. Finally, he recovers the 28-byte
of κ0 with the time complexity of 2224+82×19 ≈ 2310, the data complexity of

New Truncated Differential Cryptanalysis on 3D Block Cipher 123

2465×19 ≈ 2469 CP, and the memory requirement of 2128. For the remaining
36 bytes, he recovers the key exhaustively. The total offline computation is
about 2310 × 2

13 + 236×8 × 1
13 ≈ 2308 times of 1 round computation.

5.4 Conclusion of 13-Round Attack

In this section, we conclude the 13-round attack and refer to the success prob-
ability of our attack. We need the time complexity of 2308, the data complexity
of 2469CP, and the memory requirement of 2128 on the attack.

Recall (5), let Pr4 be probability that we can obtain a right pair from 2470

pairs;

Pr4 = 1− (1− 2−470)2
470 ≈ 1− e−1. (8)

During reducing the wrong pairs, the probability that P ′ and P ′ ⊕ΔP created
from the right pair remains after 2377 query is as:

Pr5 = 1− (1− 2−377)2
377

≈ 1− e−1. (9)

So the probability that we can obtain a right pair is Pr4 × Pr5. In total, the
probability to obtain 19 right pairs is as:

Pr6 = (Pr4 × Pr5)16 = ((1 − e−1)(1− e−1))19 ≈ 3.0× 10−9. (10)

Recall Sect. 4.5, (10) increases about 1 by querying more CP. By querying 2346

CP for one right pairs, we can obtain 2473 pairs and (8) increases to 1 − (1 −
2−470)2

473 ≈ 1 − e−8. Then, we also obtain about 288+3 = 291 wrong pairs. On
the step of reducing wrong pairs (see Section 5.2, step 3), (9) also increases by

querying more CP. By querying 2379 CP, (9) increases to 1 − (1 − 2−376)2
379 ≈

1− e−8. Due to an increase of wrong pairs, we need to repeat all the above steps
more 6 times to recover the 28-byte guessed key. And then, (10) increases to
((1 − e−8)(1 − e−8))19+6 ≈ 1. In total, we need 2346 + 2379+91 ≈ 2470 CP to
recover the key with the probability of about 1. Thus, we can recover the user
key of the 13-round 3D.

6 Conclusion

In this paper, we presented new key-recovery attacks on the 11- and 13-round
3D, by applying the truncated differential cryptanalysis technique. We showed
that the truncated differential cryptanalysis can attack effectively on more than
5-round 3D. In addition we optimized the time complexity of our 11-round attack
by applying the early aborting technique. Furthermore, we proposed a technique
to exploit the truncated differential path with lower occurrence probability than
that of a random case. This technique comes from the neutral bit concept.

Table 1 lists the complexities of previous and our new attacks described in this
paper. Our attack on 13-round 3D is the currently best one on reduced-round

124 T. Koyama et al.

3D with the time complexity of 2308, the data complexity of 2469 CP, and the
memory requirement of 2128.

We examined not only the encryption transition but also the key-schedule
transition to construct our attack schemes. The encryption starts with θ1. On
the other hand, the key-schedule starts with θ2. That is to say, θ1 and θ2 trans-
formations are applied to the encryption and the key-schedule in reverse order.
Through the examination, we deem that the inverted design makes very hard to
construct efficient truncated differential paths on more than 14 rounds.

Acknowledgements. Lei Wang was supported by Grant-in-Aid for JSPS Fel-
lows (23001043).

References

1. Barreto, P.S.L.M., Rijmen, V.: The ANUBIS Block Cipher. In: 1st NESSIE Work-
shop, Heverlee, Belgiunm (2000)

2. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

3. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

4. Dong, L., Wu, W., Wu, S., Zou, J.: Known-Key Distinguisher on Round-Reduced
3D Block Cipher. In: Jung, S. (ed.) WISA 2011. LNCS, vol. 7115, pp. 55–69.
Springer, Heidelberg (2011)

5. Knudsen, L.R.: DEAL -A 128-bit Block Cipher. Technical report no. 151, Depart-
ment of Informatics, University of Bergen (1998),
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/newblock.html

6. Knudsen, L.R., Berson, T.A.: Truncated Differentials of SAFER. In: Gollmann, D.
(ed.) FSE 1996. LNCS, vol. 1039, pp. 15–26. Springer, Heidelberg (1996)

7. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible
Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

8. Lu, J., Wei, Y., Kim, J., Fouque, P.A.: Cryptanalysis of Reduced Versions of the
Camellia Block Cipher. In: SAC 2011 (2011) (to appear)

9. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full Lane Compression Function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

10. Nakahara Jr., J.: 3D: A Three-Dimensional Block Cipher. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 252–267. Springer,
Heidelberg (2008)

11. Nakahara Jr, J.: New Impossible Differential and Known-Key Distinguishers for
the 3D Cipher. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp.
208–221. Springer, Heidelberg (2011)

12. National Institute of Standards and Technology: Specification for the Advanced
Encryption Standard (AES). In: Federal Information Processing Standards Publi-
cation 197 (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

13. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)

http://www2.mat.dtu.dk/people/Lars.R.Knudsen/newblock.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

New Truncated Differential Cryptanalysis on 3D Block Cipher 125

14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer [3], pp. 1–18

15. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup [13],
pp. 17–36

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer [3],
pp. 19–35

17. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup
[13], pp. 1–16

A Rotations of Byte Positions by θ Function

θ1 transforms (1) into⎛⎜⎜⎝
a0 a4 a8 a12 a16 a20 a24 a28 a32 a36 a40 a44 a48 a52 a56 a60
a5 a9 a13 a1 a21 a25 a29 a17 a37 a41 a45 a33 a53 a57 a61 a49
a10 a14 a2 a6 a26 a30 a18 a22 a42 a46 a34 a38 a58 a62 a50 a54
a15 a3 a7 a11 a31 a19 a23 a27 a47 a35 a39 a43 a63 a51 a55 a59

⎞⎟⎟⎠ , (11)

and θ2 transforms (1) into⎛⎜⎜⎝
a0 a4 a8 a12 a16 a20 a24 a28 a32 a36 a40 a44 a48 a52 a56 a60
a17 a21 a25 a29 a33 a37 a41 a45 a49 a53 a57 a61 a1 a5 a9 a13
a34 a38 a42 a46 a50 a54 a58 a62 a2 a6 a10 a14 a18 a22 a26 a30
a51 a55 a59 a63 a3 a7 a11 a15 a19 a23 a27 a31 a35 a39 a43 a47

⎞⎟⎟⎠ . (12)

T-out-of-n Distributed Oblivious Transfer

Protocols in Non-adaptive and Adaptive Settings

Christian L.F. Corniaux and Hossein Ghodosi

James Cook University, Townsville QLD 4811, Australia
chris.corniaux@my.jcu.edu.au, hossein.ghodosi@jcu.edu.au

Abstract. The unconditionally secure Distributed Oblivious Transfer
(DOT) protocol introduced by Naor and Pinkas allows a receiver to con-
tact k servers and obtain one out of two secrets held by a sender. In its
generalized version presented by Blundo, D’Arco, De Santis, and Stinson,
a receiver can choose one out of n secrets.

In this paper, we introduce three unconditionally secure DOT proto-
cols which allow a receiver to obtain t out of n secrets.

The first protocol allows the receiver to obtain t secrets in one round
only, provided she is able to communicate with k + t− 1 servers.

The settings of the second and third protocols are adaptive, i.e., the
receiver sequentially sends t queries to the servers to obtain t secrets. In
the second protocol, the number of receiver’s queries is limited unlike in
the third one, where the contacted servers need to communicate with each
other.

These three protocols, like other unconditionally secure oblivious
transfer protocols, guarantee the security of the sender and the privacy
of the receiver. In addition, the sender’s security is guaranteed against
a coalition of the receiver and k− 1 servers and, similarly, the receiver’s
privacy is guaranteed against a coalition of k − 1 servers.

Keywords: Cryptographic Protocol, Distributed Oblivious Transfer,
Unconditional Security, Adaptive Queries.

1 Introduction

Oblivious Transfer (OT) is a cryptographic protocol which allows two parties to
exchange, in total privacy, one or more secret messages. The first OT protocol,
introduced by Rabin [14], enables a sender to transmit a message to a receiver
in such a way that the receiver gets the message with probability 1

2 while the
sender does not know whether the message was received. Even, Goldreich and
Lempel [7] introduced a variant of the original OT for a contract signature
application. This OT, identified as OT-

(
2
1

)
, is an exchange protocol between a

receiver and a sender who has two secret messages; the receiver chooses one of
the two messages and the sender transmits the chosen message to the receiver.
At the end of the protocol, the sender does not know which message was selected
and the receiver knows nothing of the other message.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 126–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

T-out-of-n Distributed Oblivious Transfer Protocols 127

A major drawback with OT-
(
2
1

)
and with the more general OT-

(
n
1

)
proposed

by Brassard, Crépeau and Roberts [4] is the restriction in the availability of the
secret messages, because if the unique sender is unavailable, the receiver cannot
execute the protocol. To increase the availability of messages, the sender may
distribute them to m servers, like in the first unconditionally secure Distributed
Oblivious Transfer (DOT) protocol introduced by Gertner and Malkin [8] in
1997. However, the protocol does not guarantee the messages’ confidentiality
against curious or corrupted servers. In 2000, Naor and Pinkas [11] introduced
an unconditionally secure DOT protocol which takes non-fully trusted servers
into account: servers are only provided with parts – called shares – of the original
messages. In this DOT, denoted (k,m)-DOT-

(
2
1

)
, the parties encompass a sender

who has two secrets,m servers owning shares of the secrets, and a receiver whose
purpose is to obtain one of the two secrets. The protocol itself is composed of
two phases: (i) the set-up phase and (ii) the transfer phase. During the set-up
phase, the sender generates a bivariate polynomial Q, determines shares from
this polynomial and sends to each of the m servers a different set of shares. In
the transfer phase, the receiver chooses the index of a secret and selects k servers
she intends to contact. Then, she generates a univariate polynomial Z and sends
to each of the k selected servers a value determined by the polynomial Z and
the identifier of the server. Each contacted server generates a response based
on its program and the value sent by the receiver. The response is sent back to
the receiver. After receiving k responses, the receiver is able to determine the
chosen secret. In [2,3], Blundo, D’Arco, De Santis and Stinson generalized Naor
and Pinkas’s protocol to n secrets. Another 1-out-of-n DOT protocol [13] was
introduced by Nikov, Nikova, Preenel and Vanderwalle, highlighting the relation
between the sender’s security and the receiver’s privacy.

However, if a receiver wishes to obtain t > 1 secrets, these protocols have
to be executed t times, involving computation and communication overheads.
Note that executing the set-up phase once and the transfer phase t times is not
possible without compromising the security of the sender. Bellare and Micali [1]
introduced an OT-

(
3
2

)
protocol that can be generalized to an OT-

(
n

n−1

)
protocol.

However, this protocol as well as other OT-
(
n
t

)
protocols (e.g., [12]) have been

studied in computationally secure settings, not in unconditionally secure settings.
In this paper, we introduce the first unconditionally secure DOT protocol

allowing a receiver to contact k+ t− 1 servers and obtain t out of n secrets (1 ≤
t < n) in one round only. We also introduce two unconditionally secure DOT
protocols which enable a receiver to obtain t secret in an adaptive manner [10]
(the choice of one secret depends on the secrets already obtained). Actually,
adaptive DOT protocols are motivated by specific oblivious activities like search
in databases or consultation of strongly linked documents, like website files.

Recently, Jiang, Li and Li [9] proposed an unconditionally secure DOT pro-
tocol with adaptive queries. However, their protocol consists in the repetition of
the transfer phase in Nikov et al.’s protocol [13]. This technique does not guar-
antee the protocol’s security against a dishonest – but not malicious – receiver
(See Appendix).

128 C.L.F. Corniaux and H. Ghodosi

Our two unconditionally secure DOT protocols with adaptive queries are
adapted from Blundo et al.’s DOT protocol [2,3]. In the first one, the servers
receive a list of t elements from the sender and use a different element of the list
for each query prepared by the receiver. Thus, the receiver cannot obtain more
than t secrets. This model is well adapted to a unique receiver, but for several
receivers, we propose a second protocol where the number of queries accepted
by the protocol is unlimited. In this second protocol, servers are allowed to com-
municate with each other and for each query, generate new ad hoc secret sharing
polynomials.

Like in [11,2,3], our three protocols guarantee the security of the sender and
the privacy of the receiver. Furthermore, the sender’s security is guaranteed even
if the receiver corrupts up to k − 1 servers and, symmetrically, the receiver’s
privacy is guaranteed even if the sender corrupts up to k−1 servers. In addition,
the one-round protocol is significantly more efficient than t executions of the
(k, m)-DOT-

(
n
1

)
protocol presented in [2,3].

This paper is organized as follows: in Sect. 2, we introduce some definitions
and notations, as well as our security model. The three protocols are described,
and their security is analysed, in Sects. 3, 4 and 5. Finally, the performance of
the protocols is discussed in Sect. 6.

2 Preliminaries

2.1 Notations and Definitions

The settings of the different DOT protocols described in this paper encompass
a sender S who owns n secrets ω1, . . . , ωn (n > 1), a receiver R who wishes to
learn t secrets (1 ≤ t < n), and m servers S1, . . . , Sm.

Each protocol is composed of a set-up phase and either one transfer phase (in a
non-adaptive setting) or t transfer phases (run 1 to run t, in an adaptive setting).
In a non-adaptive setting, the receiver wishes to obtain t secrets ωσ1 , . . . , ωσt and
in an adaptive setting, the receiver wishes to learn a secret ωe� (e� ∈ {1, . . . n})
in run �.

The three protocols require the availability of private communication channels
between the sender and the servers and between the receiver and the servers. We
assume that these communication channels are secure, i.e., any party is unable to
eavesdrop on them and they guarantee that communications cannot be tampered
with.

Like in other DOT schemes where only a subset of servers are contacted by
the receiver (See [11,2,3]), we assume the existence of a mechanism preventing
the receiver from contacting more than the specified number of servers in each
run or in the transfer phase.

All operations are executed in a finite field IK = IFp (p prime). We assume that
p > max(n, ω1, . . . , ωn,m). We denote In = {1, . . . , n} the set of indices of secrets
ω1, . . . , ωn held by S and Im = {1, . . . ,m} the set of indices of servers S1, . . . , Sm.
By an abuse of language, a polynomial and its corresponding polynomial function

T-out-of-n Distributed Oblivious Transfer Protocols 129

will not be differentiated. In addition, the Kronecker’s symbol, δji , is equal to 0
if i �= j and equal to 1 if i = j.

We also formally define a quasi-random polynomial.

Definition 1. If (IK[X],+,×) is the ring of polynomials over IK and (IKd[X],+)
the additive group of polynomials of degree at most d over IK, we say that a
polynomial F =

∑d
i=0 fiX

i of IKd[X] is quasi-random, if the coefficients fi
(1 ≤ i ≤ d) are randomly selected in IK and the constant term f0 ∈ IK has a
predefined value.

2.2 Security Model

Our objective is to propose unconditionally secure DOT protocols with the same
level of security as in Blundo et al.’s protocol [2,3].

Similarly to other OT protocols, our protocols must guarantee the following
properties:

– Correctness - When all participants follow the protocol, R obtains the se-
lected secrets.

– Sender’s Security - Assuming the servers and S are honest, even if R does
not follow the protocol, she cannot obtain information on the secrets she did
not choose.

– Receiver’s Privacy - Assuming the servers and R are honest, S who may not
follow the protocol, cannot obtain any information on the receiver’s selection.
Because S is only involved in the set-up phase and other participants are
not supposed to communicate with him in the transfer phase or the runs,
this property is de facto guaranteed.

In addition, because of the distributed setting, the protocols are required to
satisfy the following properties:

– The receiver’s privacy against a passive coalition of k − 1 servers.
– The sender’s security against a passive coalition of the receiver and k − 1

servers, before the transfer phase (or the first run) is started.

We assume that all parties wish to complete the protocols to allow R to obtain
the chosen secrets.

Like the original protocol, our protocols do not guarantee the sender’s security
against a “greedy” receiver who, once the protocol is completed and she has
obtained t secrets, would corrupt one server. With the additional information
collected from the corrupted server, the receiver is able to determine all secrets.

3 One-Round t-out-of-n DOT Protocol

3.1 Principle of the Protocol

The (k, m)-DOT-
(
n
1

)
protocol presented in [2,3] (See Fig. 1) is modified so that

when the receiver collects K = k + t− 1 shares instead of k shares, she obtains
exactly t secrets.

130 C.L.F. Corniaux and H. Ghodosi

The key idea underlying our t-out-of-n DOT protocol is that fromK = k+t−1
collected shares (1 < K ≤ m), a receiver is able to build t univariate polynomials
of degree at most k − 1 agreeing with k shares. These t polynomials allow the
receiver, who wishes to obtain t secrets, to build a free linear system of t equations
in t unknowns. Solving this system results in the obtaining of the t chosen secrets.

During the set-up phase of the protocol, the sender generates shares of the
n secrets he holds and distributes them to the m servers. The sender does not
intervene in the rest of the protocol. During the transfer phase, the receiver
contacts K servers to collect enough shares to construct ωσ1 , . . . , ωσt .

Input The sender S contributes with n secrets ω0, . . . , ωn−1 ∈ IK
The receiver R chooses an index e ∈ {0, . . . , n − 1}, and
contributes with n− 1 private values δ1e , . . . , δ

n−1
e ∈ {0, 1}

Output R receives ωe, while S receives nothing.

Set-up Phase

1 - Preparation of sharing polynomials. The sender S generates a quasi-random
polynomial B0 of degree at most k − 1, such that B0(0) = ω0 and the sparse
n-variate polynomial Q defined by

Q (x, y1, . . . , yn−1) = B0(x) +

n−1∑
j=1

(ωj − ω0)× yj .

We note that ω0 = Q (0, . . . , 0) and, for h ∈ {1, . . . , n − 1}, ωh = Q(0, . . . , 0, 1,
0, . . . , 0), where the number 1 is in position h+ 1.

2 - Distribution of sharing polynomials. Then, to each server Sj (1 ≤ j ≤ m), S
transmits the (n− 1)-variate polynomial Q (j, y1, . . . , yn−1).

Transfer Phase

1 - Selection of the secret index and generation of the corresponding requests.
The receiver R chooses the identifier e of one secret and generates n − 1 quasi-
random polynomials Di (1 ≤ i ≤ n − 1), of degree at most k − 1, such that
(D1(0), . . . , Dn−1(0)) is an (n−1)-tuple of zeros if R is interested in ω0 (i.e., e = 0),
or an (n − 1)-tuple of zeros and a single one in position e if R is interested in ωe

(where e ∈ {1, . . . , n− 1}).
2 - Selection of servers and distribution of requests. R selects a subset Ik ⊂
{1, . . . ,m} of k indices and sends a request (D1(i), . . . , Dn−1(i)) to each server
Si (i ∈ Ik). When a server Si receives such a request, it replies with the share
si = Q(i,D1(i), . . . , Dn−1(i)).

3 - Construction of the requested secret. After having received k responses, R
interpolates a univariate polynomial R from the k points (i, si) and calculates the
chosen secret: ωe = R(0).

Fig. 1. Simplified Blundo et al.’s DOT Protocol

T-out-of-n Distributed Oblivious Transfer Protocols 131

3.2 Description of the Protocol

The set-up phase is similar to the one described in Fig. 1 except that, to avoid
a specific processing of ω0, we slightly modify the form of the sparse polynomial
generated by the sender: first, the sender selects a random element α ∈ IK and
then, he generates a quasi-random polynomial Q such that

Q (x, y1, . . . , yn) = α+

k−1∑
i=1

aix
i +

n∑
i=1

(ωi − α)× yi .

In the transfer phase, the servers have the same behaviour as in the original
protocol. On the other hand, the receiver:

– Selects K = k + t− 1 servers to contact instead of k servers.
– Generates t sets of n sharing polynomials instead of n − 1 sharing polyno-

mials. One set of polynomials is associated with a chosen secret. Since two
distinct chosen secrets produce two secret inputs with two differences (two
’1’ in different positions like in (1, 0, . . . , 0) and (0, 1, . . . , 0)), the receiver is
able to use the same polynomials to share the (n− 2) ’0’ values in the same
positions and so, minimise the number of sharing polynomials to generate.
From the K collected shares, the receiver prepares t sets of k shares (k − 1
shares common to all sets) and interpolates t polynomials. From each of
these t polynomials, the receiver is able to obtain one secret.

The resulting protocol is described in Fig. 2.

3.3 Correctness and Security of the Protocol

Correctness. To each server Sj (1 ≤ j ≤ k − 1), R sends a vector Θj =

(Z
(σ1)
1 (j), . . . , Z

(σ1)
n (j)). Thus, the response returned to R by Sj is

Fj(Θj) = α+
k−1∑
i=1

aij
i +

n∑
i=1

(ωi − α)Z(σ1)
i (j) .

By construction, for j = 1, . . . , k − 1 and r = 1, . . . , t, we have Z
(σ1)
i (j) =

Z
(σr)
i (j) = λi,j . It follows that the interpolation of the k shares Fj(Θj) (j =

1, . . . , k − 1, k − 1 + r) gives a polynomial of IKk−1[X],

G(σr)(x) = α+

k−1∑
i=1

aix
i +

n∑
i=1

(ωi − α)Z(σr)
i (x) .

The evaluation of G(σr) for x = 0 is therefore:

G(σr)(0) = α+

k−1∑
i=1

ai0
i +

n∑
i=1

(ωi − α)Z(σr)
i (0) = ωσr .

We conclude that the protocol is correct.

132 C.L.F. Corniaux and H. Ghodosi

Set-up Phase

1 - Preparation of a sharing polynomial. The sender S generates a sparse (n+ 1)-
variate polynomial Q defined by

Q (x, y1, . . . , yn) = α+
k−1∑
i=1

aix
i +

n∑
i=1

(ωi − α)× yi,

where the numbers α and ai (1 ≤ i ≤ k − 1) are randomly selected in IK.

2 - Distribution of sharing polynomials. Then, to each server Sj (1 ≤ j ≤ m), S
transmits the n-variate polynomial Fj defined by

Fj (y1, . . . , yn) = Q (j, y1, . . . , yn) .

Transfer Phase

1 - Selection of secret indices and servers. The receiver R chooses the t secrets,
ωσ1 , . . . , ωσt , that she wishes to obtain. The set containing the indices of the t secrets
is denoted Iσ = {σ1, . . . , σt} ⊂ In. The receiver also selects a subset IK ⊂ Im of
K = k+t−1 indices of the servers she intends to contact. Without loss of generality,
we assume that these servers are S1, . . . , SK .

2 - Generation of the receiver’s requests. R builds n lists Λi = {λi,1, . . . , λi,k−1}
(i ∈ In) of k − 1 elements randomly selected in IK. Then, for σr ∈ Iσ, from

each list Λi, R interpolates a polynomial Z
(σr)
i ∈ IKk−1[X] from the k points of

{(0, δσr
i), (1, λi,1), . . . , (k − 1, λi,k−1)}.

3 - Transmission of the requests to the servers. R sends to each server Sj a

vector Θj = (Z
(σ1)
1 (j), . . . , Z

(σ1)
n (j)) if 1 ≤ j ≤ k − 1 and a vector Θj =

(Z
(σj−k+1)

1 (j), . . . , Z
(σj−k+1)
n (j)) if k ≤ j ≤ K.

4 - Transmission of the requests’ responses to the receiver. When a server Sj (j ∈
IK) receives a request Θj , it replies with the share Fj (Θj).

5 - Construction of the requested secrets. For each secret index σr ∈ Iσ, R inter-
polates a univariate polynomial G(σr) ∈ IKk−1[X] from the k values Fj(Θj) (1 ≤
j ≤ k − 1) and Fk−1+r(Θk−1+r). Then, R calculates the t secrets ωσr = G(σr)(0)
(1 ≤ r ≤ t).

Fig. 2. One-Round t-out-of-n DOT Protocol

Sender’s Security against a Dishonest Receiver. During the transfer
phase, R contacts K servers to collect shares. We assume that R does not
follow the protocol and sends a vector Θj = (yj,1, . . . , yj,n) of elements of IK to
the server Sj (j ∈ IK). From the K collected shares, R is able to build a linear
system of K equations in k + n unknowns, namely α, a1, . . . , ak−1, ω1, . . . , ωn.

This system may also be written under the matrix form T ×U = Γ , where:

T =

⎛⎝ (1−
∑n

i=1 y1,i) 11 . . . 1k−1 y1,1 . . . y1,n
. .
(1−

∑n
i=1 yK,i) K

1 . . . Kk−1 yK,1 . . . yK,n

⎞⎠ ,

T-out-of-n Distributed Oblivious Transfer Protocols 133

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
a1
. . . .
ak−1

ω1

. . . .
ωn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Γ =

⎛⎝G(1)(0)
.

G(K)(0)

⎞⎠ .

To obtain s linear combinations of the secrets ω1, . . . , ωn, R has to transform
the system T ×U = Γ into an equivalent system T ′ ×U = Γ ′, where

T ′ =
(
A B
0 D

)
and A ∈MK−s,k(IK), B ∈ MK−s,n(IK) and D ∈ Ms,n(IK). In T , we observe a
Vandermonde submatrix composed of the columns 2 to k:⎛⎝11 . . . 1k−1

.
k1 . . . kk−1

⎞⎠ .

The rank of this submatrix is k − 1, and so the number of rows of A is at least
k − 1. It follows that K − s = k + t− 1− s ≥ k − 1 and so s ≤ t. Therefore, R
cannot determine more than s = t linear combinations of secrets.

To force the receiver to obtain information on no more than t secrets from
the t linear combinations, the technique described by Naor and Pinkas [11]
may be applied; in the set-up phase, the sender randomly selects n masks
c1, . . . , cn ∈ IK∗. Two polynomials Q1 and Q2 are generated (See Fig. 2, first
step of the set-up phase), Q1 to share the n masked secrets ciωi and Q2 to
share the n masks ci (i ∈ In). In the transfer phase, in response to the re-
ceiver’s request (Z1(j), . . . , Zn(j)), the contacted server Sj (j ∈ IK) returns two
shares: Q1(j, Z1(j), . . . , Zn(j)) and Q2(j, Z1(j), . . . , Zn(j)). From the collected
2K shares the receiver is able to determine exactly t masked secrets and their
corresponding masks.

It follows that the protocol is secure against a dishonest receiver.

Receiver’s Privacy against a Coalition of Servers. The indices σr ∈ Iσ
chosen by the receiver are represented under the form of vectors (δ1σr

, . . . , δnσr
)

of private values, where δjσr
= 0 or δjσr

= 1. The receiver’s input to the protocol
consists of shares of these values. That is, each server Sj (j ∈ IK) receives for
each of the n elements δiσr

a share produced by a Shamir’s (k, K)-threshold
secret sharing scheme.

In order to breach the privacy of the receiver, a set of k − 1 colluding servers
should be able to determine at least one of the values δjσr

. The set of k − 1
collaborating servers, however, owns k − 1 shares corresponding to each values
δjσr

associated with a Shamir’s (k, K)-threshold scheme. Due to the perfectness
of Shamir’s threshold scheme, every set of k − 1 shares provides the coalition
with absolutely no information about the relevant secret.

134 C.L.F. Corniaux and H. Ghodosi

It follows that the receiver’s privacy is guaranteed against a coalition of up to
k − 1 servers.

Sender’s Security against a Coalition of the Receiver and Servers be-
fore the Transfer Phase. Assuming the technique described above to pre-
vent the receiver from obtaining information on more than t secrets is used,
each server Sj (j ∈ Im) receives two n-variate polynomials from S. More pre-

cisely, each server Sj receives a list of 2 × (n + 1) elements: α1 +
∑k−1

i=1 a1,jj
i,

α2 +
∑k−1

i=1 a2,jj
i, c1ω1 − α1, . . . , cnωn − α1 and c1 − α2, . . . , cn − α2. The first

two elements can be considered as shares generated by (k,m)-threshold Shamir’s
secret sharing schemes whereas the other elements can be viewed as 2n secrets
masked by α1 and α2, the masks α1 and α2 being unknown. To determine α1

or α2, a coalition of servers would need to obtain the corresponding sharing
polynomial which is of degree at most k − 1. So, the coalition should contain at
least k members. In addition, although each server is able to determine linear
combinations of masks c1, . . . , cn they cannot obtain linear combinations of the
secrets ω1, . . . , ωn, as shown by Cheong, Koshiba and Nishiyama [5]. Note that
in this scenario, the use of the technique preventing the receiver from obtain-
ing information on more than t secrets makes the additional masking of secrets
described in Blundo et al.’s DOT sub-protocol [2,3] unnecessary.

Furthermore, in this scenario there is no advantage for the receiver to collude
with k− 1 servers to breach the sender’s security, since the receiver has no input
to contribute in an attack.

We conclude that a coalition of the receiver with k − 1 servers cannot obtain
any information on the secrets held by the sender before the transfer phase is
executed.

Sender’s Security against a Coalition of Servers after the Protocol
is Executed. Like in the original protocol, the security of the sender is not
guaranteed if servers are corrupted by the receiver once the protocol has been
executed. Actually, if the receiver corrupts only one server, she is able to obtain
all secrets. Indeed, any corrupt server Sj (j ∈ Im) is able to provide the receiver
with the elements c1ω1 − α1, . . . , cnωn − α1, c1 − α2, . . . , cn − α2. Moreover,
the execution of the protocol gives the receiver t masks cσ1 , . . . , cσt , as well as
t secrets, ωσ1 , . . . , ωσt . Consequently, simple subtractions allow the receiver to
determine α1 and α2 and hence all masks and masked secrets. Then, simple
divisions allow the receiver to calculate all the secrets ω1, . . . , ωn.

4 Adaptive DOT Protocol with Limited Queries

4.1 Description of the Protocol

This protocol is a basic adaptation of Blundo et al.’s DOT protocol [2,3] (See
Fig. 1) where we allow the transfer phase to be executed t times.

T-out-of-n Distributed Oblivious Transfer Protocols 135

In addition to the secure private communication channels between the sender
and the servers and between the receiver and the servers, we assume the avail-
ability of a broadcast channel.

The major characteristics of the adapted protocol are:

– In the set-up phase, the sender generates a list of polynomialsQ(�) (1 ≤ � ≤ t)
instead of a single polynomial Q.

– In run �, the contacted servers use the polynomial Q(�) to respond to the
receiver’s query.

To avoid a specific processing of the first secret like in the original protocol, we
slightly transform the sparse polynomial generated by the sender; In the set-up
phase, the sender selects a random element α ∈ IK and generates t quasi-random

polynomials B
(�)
0 (1 ≤ � ≤ t), of degree at most k − 1, such that B

(�)
0 (0) = α.

Then, the sender builds the t (n+ 1)-variate polynomials

Q(�)(x, y1, . . . , yn) = B
(�)
0 (x) +

n∑
i=1

(ωi − α)× yi .

Set-up Phase

1 - Preparation of sharing polynomials. The sender S selects a random element α ∈
IK and generates t quasi-random polynomials B

(�)
0 =

∑k−1
i=1 a

(�)
i Xi + α (1 ≤ � ≤ t).

2 - Distribution of sharing polynomials. Then, to each server Sj (j ∈ Im), S trans-

mits the t + n values B
(1)
0 (j), . . . , B

(t)
0 (j), ω1 − α, . . . , ωn − α, as well as a local

current run number initialized to 0 (we require t ≤ p− 1).

Run � (1 ≤ � ≤ t)

1 - Selection of a secret index and generation of the corresponding requests. The
receiver R chooses the index e(�) of one secret and generates n quasi-random poly-
nomials D

(�)
i (i ∈ In), of degree at most k − 1, such that (D

(�)
1 (0), . . . , D

(�)
n (0)) =

(δe
(�)

1 , . . . , δe
(�)

n).

2 - Selection of servers and update of the current run number. R selects a subset
I(�)
k ⊂ Im of k indices and broadcasts the current run number �. On reception of

� and I(�)
k , a server Sj (j ∈ Im) with a local run number �′ checks that � ≤ t and

�′ < �. If the two inequalities are satisfied, the local run number is updated with �,
otherwise, Sj shuts down.

3 - Distribution of the requests. R sends to each server Sj (j ∈ I(�)
k) a request

(D
(�)
1 (j), . . . , D

(�)
n (j)).

4 - Transmission of the requests’ responses to the receiver. When a server Sj receives

such a request, it replies with the share s
(�)
j = B

(�)
0 (j) +

∑n
i=1 (ωi − α)D

(�)
i (j).

5 - Construction of the requested secret. After receiving k responses s
(�)
j (j ∈ I(�)

k),

R interpolates a univariate polynomial R(�) from the k points (j, s
(�)
j) and calculates

the chosen secret: ωe(�) = R(�)(0).

Fig. 3. Adaptive DOT Protocol with Limited Queries

136 C.L.F. Corniaux and H. Ghodosi

To transmit a list of t polynomials Q(1)(j, y1, . . . , yn), . . . , Q
(t)(j, y1, . . . , yn) to

a server Sj , the sender just has to send to Sj the values B
(1)
0 (j), . . . , B

(t)
0 (j),

ω1 − α, . . . , ωn − α.
A server contacted by the receiver needs to know what polynomial Q(�) to

use, i.e., what is the current run number �. Therefore, we add a mechanism to
synchronize the contacted servers thanks to a broadcast channel. Before sending
requests, the receiver broadcasts the number of the next run. On reception of
the next run number �, a server with a local run number �′ checks if �′ < � ≤ t.
If the double inequality is satisfied, then the server updates its local run number
to �. Otherwise it shuts down since the receiver has either reused a run number
or tried to execute more than t runs.

The DOT protocol introduced by Blundo et al. [2], including the above mod-
ifications, is described in Fig. 3.

4.2 Correctness and Security of the Protocol

We show that the protocol is correct and guarantees the sender’s security. In
addition we consider the two scenarios involving a coalition of active parties.

Correctness. In run �, a contacted server Sj (j ∈ I(�)k) uses the n + 1 values

B
(�)
0 (j), ω1 − α, . . . , ωn − α to prepare the response s

(�)
j . We have:

s
(�)
j = B

(�)
0 (j) +

n∑
i=1

(ωi − α)D(�)
i (j) .

The polynomial B
(�)
0 is of degree at most k − 1, as well as the polynomi-

als D
(�)
i (i ∈ In). It follows that the degree of the polynomial R = B

(�)
0 +∑n

i=1 (ωi − α)×D(�)
i is at most k − 1. With the k values s

(�)
j , the receiver is

therefore able to interpolate this polynomial R. Thus, the receiver can calculate

R(�)(0) =

(
B

(�)
0 +

n∑
i=1

(ωi − α)D(�)
i

)
(0)

= B
(�)
0 (0) +

n∑
i=1

(ωi − α)D(�)
i (0)

= α+

n∑
i=1

(ωi − α)δe
(�)

i

It follows that R(�)(0) = α + (ωe(�) − α) = ωe(�) . Consequently, the protocol is
correct.

T-out-of-n Distributed Oblivious Transfer Protocols 137

Sender’s Security against a Dishonest Receiver. We assume that R does
not follow the protocol and, after t runs, has collected kt shares which allow her
to build a linear system of kt equations in (k − 1)t+ n+ 1 unknowns.

With a demonstration similar to the demonstration detailed in the previous
protocol for the sender’s security against a dishonest receiver, it is not difficult
to prove that from these kt equations, R cannot determine more than t linear
combinations of secrets. Again, the technique described by Naor and Pinkas [11]
may be used to force R to obtain information on no more than t secrets from
the t linear combinations.

Thus, the sender’s security is guaranteed.

Receiver’s Privacy against a Coalition of Servers. In run �, the index e(�)

chosen by the receiver is represented under the form of a vector (δe
(�)

1 , . . . , δe
(�)

n) of
private values. The receiver’s input to the protocol consists of shares – generated
by Shamir’s k-threshold scheme – of these values. A set of k−1 colluding servers

holds k−1 shares related to a value δe
(�)

i , which is insufficient to determine δe
(�)

i .
That is, the inputs of the receiver guarantee her privacy.

Sender’s Security against a Coalition of the Receiver and Servers be-
fore the First Run. The analysis of the security property is similar to the
analysis performed in the previous protocol: each server receives 2t shares gen-
erated by (k, m)-threshold Shamir’s secret sharing schemes and 2n other ele-
ments which can be viewed as 2n secrets protected by two masks, α1 and α2.
To determine one of these masks, a coalition of servers would need to obtain a
corresponding sharing polynomial which is of degree at most k−1, and so would
require at least k members.

We conclude that a coalition of the receiver with k − 1 servers cannot obtain
any information on the secrets held by the sender before the first run is executed.

5 Adaptive DOT Protocol with Unlimited Queries

5.1 Description of the Protocol

The major problem with the current unconditionally secure polynomial-based
DOT [11,2,3,13] protocols is that the transfer phase cannot be repeated. Indeed,
when the receiver sends a same request to a server in two different runs, she
obtains the same response. Thus, she is able to reuse responses from previous
queries, which allows her to request additional shares and obtain additional se-
crets. The key idea of our second adaptive protocol is to force a server contacted
in different runs, with a same request, to respond with – possible – different
shares. To achieve this, we propose that the servers generate a new polynomial
Q(�) for the run � instead of reusing the same polynomial Q in each run like in the
protocol proposed by Jiang et al. [9]. We assume that to exchange information
about this new polynomial, a private communication channel between any two

138 C.L.F. Corniaux and H. Ghodosi

servers are available in addition to the secure private communication channels
between the sender and the servers and between the receiver and the servers.

In the original protocol, we observe that the polynomial B0 generated by the
sender can be considered as a sharing polynomial for the value ω0. Consequently,
applying the redistribution technique introduced by Desmedt and Jajodia [6],
the servers contacted in run � are able to calculate a new sharing polynomial,

B
(�)
0 , for ω0. The polynomial Q(�) is then defined by:

Q(�)(x, y1, . . . , yn−1) = B
(�)
0 (x) +

n−1∑
i=1

(ωi − ω0)× yi .

To avoid a specific processing of ω0, we slightly transform the sparse polynomial
generated by the sender and introduce the following modifications in Blundo et
al.’s DOT protocol (The resulting protocol is described in Fig. 4):

– In the set-up phase, the sender randomly selects an element α ∈ IK. The
quasi-random polynomial B0 is such that B0(0) = α and the coefficient of
yi is ωi − α (i ∈ In).

– In run �, in addition to the n values D
(�)
1 (j), . . . , D

(�)
n (j) sent to the server

Sj (j ∈ I(�)k), the receiver sends the list I(�)k of contacted servers.

– Each contacted server Sj generates a quasi-random polynomial C
(�)
j , of de-

gree at most k − 1, such that C
(�)
j (0) = B0(j). Then Sj distributes C

(�)
j (i)

to Si (i ∈ I(�)k). With k shares C
(�)
j (i), each server Si calculates

B
(�)
0 (i) =

∑
j∈I(�)

k

C
(�)
j (i)×

∏
d∈I(�)

k
d �=i

d

d− i .

– The response s
(�)
i returned by Si to the receiver is then built using B

(�)
0 (i)

instead of B0(i).

5.2 Correctness and Security of the Protocol

The sender’s security, the receiver’s privacy against a coalition of servers and
the sender’s security against a coalition of the receiver and k − 1 servers before
the first run are the same as in the previous protocol. Indeed, the redistribution
protocol is secure and the receiver’s contribution is exactly the same.

We now show that the protocol is correct; At the end of run �, the receiver

has collected k shares s
(�)
j (j ∈ I(�)k) and interpolates

R(�)(0) =
∑

i∈I(�)
k

(
s
(�)
i

∏
i∈I(�)

k
j �=i

j

j − i

)
.

T-out-of-n Distributed Oblivious Transfer Protocols 139

Set-up Phase

1 - Preparation of a sharing polynomial. The sender S selects a random element
α ∈ IK. Then, S generates a quasi-random polynomial B0, of degree at most k− 1,
such that B0(0) = α.

2 - Distribution of sharing polynomials. Then, to each server Sj (j ∈ Im), S trans-
mits B0(j) and the n values ω1 − α, . . . , ωn − α.

Run � (� ≥ 1)

1 - Selection of a secret index and generation of the corresponding requests. The
receiver R chooses the index e(�) of a secret and generates n quasi-random poly-
nomials D

(�)
i (i ∈ In), of degree at most k − 1, such that (D

(�)
1 (0), . . . , D

(�)
n (0)) =

(δe
(�)

1 , . . . , δe
(�)

n).

2 - Selection of servers and distribution of the requests. R selects a subset
I(�)
k ⊂ {1, . . . ,m} of k indices and sends to each server Sj (j ∈ I(�)

k) a request

(D
(�)
1 (j), . . . , D

(�)
n (j)) as well as the list I(�)

k .

3 - Redistribution of shares and transmission of the requests’ responses to the
receiver. When a server Sj receives such a request, it generates a quasi-random

polynomial C
(�)
j , of degree at most k− 1, such that C

(�)
j (0) = B0(j). The server Sj

distributes to each server Si (i ∈ I(�)
k) the share C

(�)
j (i). Each server Si calculates

B
(�)
0 (i) =

∑
j∈I(�)

k

C
(�)
j (i)

∏
d∈I(�)

k
d �=i

d

d− i
(1)

and replies to R with the share s
(�)
i = B

(�)
0 (i) +

∑n
j=1 (ωj − α)D

(�)
j (i).

4 - Construction of the requested secret. After receiving k responses s
(�)
i (i ∈ I(�)

k),

R interpolates a univariate polynomial R(�) from the k points (i, s
(�)
i) and calculates

the chosen secret: ωe(�) = R(�)(0).

Fig. 4. Adaptive DOT Protocol with Unlimited Queries

We show that R(�)(0) = ωe(�) .

R(�)(0) =
∑

i∈I(�)
k

((
B

(�)
0 (i) +

n∑
j=1

(ωj − α)D(�)
j (i)

) ∏
i∈I(�)

k
j �=i

j

j − i

)

=
∑

i∈I(�)
k

(
B

(�)
0 (i)

∏
i∈I(�)

k
j �=i

j

j − i

)
︸ ︷︷ ︸

=R1

+

n∑
j=1

(∑
i∈I(�)

k

(ωj − α)D(�)
j (i)

∏
i∈I(�)

k
j �=i

j

j − i

)
︸ ︷︷ ︸

=R2

140 C.L.F. Corniaux and H. Ghodosi

If we replace B
(�)
0 with its value (1), we obtain

R1 =
∑

i∈I(�)
k

((∑
j∈I(�)

k

C
(�)
j (i)

∏
d∈I(�)

k
d �=i

d

d− i

) ∏
i∈I(�)

k
j �=i

j

j − i

)

=
∑

j∈I(�)
k

((∑
i∈I(�)

k

C
(�)
j (i)

∏
d∈I(�)

k
d �=i

d

d− i

) ∏
i∈I(�)

k
j �=i

j

j − i

)

=
∑

j∈I(�)
k

C
(�)
j (0)

∏
i∈I(�)

k
j �=i

j

j − i

=
∑

j∈I(�)
k

B0(j)
∏

i∈I(�)
k

j �=i

j

j − i

= B0(0) = α

In addition, we have

R2 =

n∑
j=1

(ωj − α)D(�)
j (0)

=

n∑
j=1

(ωj − α) δe
(�)

j = ωe(�) − α

It follows that R(�)(0) = R1 +R2 = ωe(�) . Therefore, the protocol is correct.

6 Efficiency Consideration

In Table 1, we list the main computations (poly. = sharing polynomials, int. =
interpolations, scp. = (n−1)-tuple scalar products) performed by each party, for
Blundo et al.’s DOT protocol repeated t times and for our three DOT protocols.
Blundo et al.’s DOT protocol is denoted [BL], our one-round DOT protocol
[OR], our adaptive DOT protocol with limited queries [AL] and our adaptive
DOT protocol with unlimited queries [AU].

Similarly, in Table 2, we list for each protocol the number of shares exchanged
between the sender and the servers, the receiver and the servers, and among the
servers.

To improve the fairness of the comparison, we do not take into account the
masks of the sub-protocol described in [2,3], i.e., the 2mt(n−1) shares distributed
by the sender to the servers and the 2kt shares collected by the receiver.

The computation and communication performances of all protocols are close,
except for the set-up phase which is t times more efficient for [OR] and [AU]
than for the other two protocols. However, [AU] requires more computation on
the servers’ sides than [BL] executed t times.

T-out-of-n Distributed Oblivious Transfer Protocols 141

Table 1. Computation Efficiency of DOT protocols

[BL] [OR] [AL] [AU]

Set-up Phase(s)

S 2t poly. 2 poly. 2t poly. 2 poly.

Transfer Phase(s) or Run(s)

R (n− 1)t poly.,
2t int.

n (t = 1) or
n+ t (t > 1)
poly., 2t int.

nt poly., 2t int. nt poly., 2t int.

Contacted
Server

2 scp. 2 scp. 2 scp. 2 poly., 2 int.,
2 scp.

Table 2. Communication Efficiency of DOT protocols (shares)

[BL] [OR] [AL] [AU]

Set-up Phase(s)

S → Servers 2mtn 2m(n+ 1) 2m(n+ t) 2m(n+ 1)

Transfer Phase(s) or Run(s)

R → Servers kt(n− 1) Kn ktn ktn

Servers → R 2kt 2K 2kt 2kt

Servers → Servers 2k(k − 1)

The number of shares exchanged in the adaptive protocols is similar to the
number of shares exchanged in [BL] executed t times, apart from the shares
exchanged among the contacted servers in [AU]. On the other hand, we observe
that in the set-up phase of [OR], the sender S transmits around t less shares to
the servers S1, . . . , Sm than in [BL]. Furthermore, the transfer phase of [OR] is
around e = kt

k+t−1 times more efficient than the transfer phase of [BL] executed
t times. Note that e ∈]1, k] and that e = 1 corresponds to the receiver’s request
for t = 1 secret only.

In conclusion, in this paper we have presented three polynomial-based uncon-
ditionally secure DOT protocols displaying the same level of security as Blundo
et al.’s DOT protocol. The one-round t-out-of-n DOT protocol is more efficient
than the original protocol executed t times and the other two protocols allow
one or more receivers to adaptively obtain several of the sender’s secrets.

Acknowledgements. We would like to thank Saša Radomirović and the anony-
mous reviewers of ISPEC 2012 for their helpful comments.

142 C.L.F. Corniaux and H. Ghodosi

References

1. Bellare, M., Micali, S.: Non-interactive Oblivious Transfer and Applications. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidel-
berg (1990)

2. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New Results on Uncondition-
ally Secure Distributed Oblivious Transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC
2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)

3. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On unconditionally secure
distributed oblivious transfer. Journal of Cryptology 20(3), 323–373 (2007)

4. Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

5. Cheong, K.Y., Koshiba, T., Nishiyama, S.: Strengthening the Security of Dis-
tributed Oblivious Transfer. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009.
LNCS, vol. 5594, pp. 377–388. Springer, Heidelberg (2009)

6. Desmedt, Y.G., Jajodia, S.: Redistributing secret shares to new access structures
and its applications. Tech. rep., George Mason University (1997)

7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28, 637–647 (1985)

8. Gertner, Y., Malkin, T.: Efficient distributed (n choose 1) oblivious transfer. Tech.
rep., MIT Lab of Computer Science (1997)

9. Jiang, S., Li, H., Li, B.: Distributed oblivious transfer with adaptive queries.
In: 2010 International Conference on Communications and Mobile Computing,
pp. 213–217. IEEE (2010)

10. Naor, M., Pinkas, B.: Oblivious Transfer with Adaptive Queries. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

11. Naor, M., Pinkas, B.: Distributed Oblivious Transfer. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)

12. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

13. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On Unconditionally Secure Dis-
tributed Oblivious Transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002.
LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)

14. Rabin, M.O.: How to exchange secrets with oblivious transfer. Tech. rep., Aiken
Computation Lab, Harvard University (1981)

Appendix: Jiang et al.’s DOT Protocol Analysis

The main difference between Blundo et al.’s DOT protocol [2,3] and Nikov et al.’s
DOT protocol [13] lies in the form of the polynomial generated in the set-up phase.
In Nikov et al.’s protocol, the sender S generates a quasi-random polynomial B0

of degree at most k−1, such thatB0(0) = ω0 and n−1 quasi-random polynomials
Bi (1 ≤ i ≤ n − 1), of degree at most λS (λS < k), such that Bi(0) = ωi − ω0.
Then, S generates a sparse n-variate polynomial Q defined by

Q (x, y1, . . . , yn−1) = B0(x) +
n−1∑
j=1

Bj(x)× yj .

T-out-of-n Distributed Oblivious Transfer Protocols 143

Jiang et al. have proposed an unconditionally secure adaptive DOT protocol [9]
based on Nikov et al.’s DOT protocol. The set-up phase is unchanged and the
transfer phase, where the polynomialsDi (1 ≤ i ≤ n−1) are of degree at most λR
(λS+λR ≤ k−1), is repeated t times, allowing the receiver R to obtain t secrets.
Jiang et al. describe a “special case” allowing R to determine any polynomial
Bj (1 ≤ j ≤ n − 1) and claim that it does not reduce the sender’s security
level. Actually, what is important is the number of contacted servers required
to determine Bj : only λS + 1 instead of k, which leaves R with k − (λS + 1)
redundant shares that can be used to determine an additional secret.

Thus, assuming the set-up phase is similar to the set-up phase of Fig. 2 with
the n-variate polynomial Q presented above, and that the �-th adaptive transfer
phase is denoted ‘run �− 1’, we are able to devise the following attack:

In run 0, the dishonest receiver R selects the secret index e = 0 and transmits
to each server Si (i ∈ Ik = {i1, . . . , ik}) the request (0, . . . , 0) composed of
n − 1 zeros. The k collected shares are then B0(i) (i ∈ Ik). Since B0 is a
polynomial of degree at most k − 1, R is able to fully determine it and to
calculate ωe = ω0 = B0(0).

We assume that R wishes to obtain the secret ωe� in run � and in addition, the
secret ωe+ . Each run �, from run 1, allows R to obtain λS +1 shares to calculate
the chosen secret ωe� , as well as u = k − (λS + 1) extra shares. It follows that
the number of runs to obtain ωe+ is v = 1 + "λS+1

u # = " k
k−(λS+1)#.

For each run � (1 ≤ � ≤ v − 1), R prepares two lists of servers: J (�), the

list of λS + 1 servers to contact to obtain the secret ωe� and J
(�)
+ the list of

k − (λS + 1) servers to contact to obtain shares of ωe+ . The list J
(�)
+ may be

defined for example by J
(�)
+ = {i(�−1)×(k−λS+1)+1, . . . , i�×(k−λS+1)}. The set J (�)

is composed of the rest of the list of servers, i.e., J (�) = Ik \ J�
+. Each server

of J (�) receives a request (δe�1 , . . . , δ
e�
n−1) whereas each server of J

(�)
+ receives a

request (δ
e+
1 , . . . , δ

e+
n−1). A server Sj ∈ J (�) responds with B0(j)+Be�(j). Because

R determined B0 in run 0, she is able to calculate Be�(j). The polynomial Be�

being of degree at most λS , R interpolates Be� from the λS +1 shares collected
from the servers of J (�) and hence determines ωe� = Be�(0) +B0(0).

At the end of run v − 1, R has collected λS + 1 shares Be+(j) from different

servers Sj of J
(1)
+ ∪· · ·∪J

(v−1)
+ . The polynomial Be+ being of degree at most λS ,

R interpolates Be+ from the λS +1 shares and calculates ωe+ = Be+(0)+B0(0).
In conclusion, if the receiver does not follow the protocol but the servers do,

she is able to obtain one secret per run plus another secret at the end of run v.
This attack shows that, without modifications, Nikov et al.’s DOT protocol

cannot be used as an adaptive DOT protocol.

A Code-Based 1-out-of-N Oblivious Transfer

Based on McEliece Assumptions

Preetha Mathew K.1, Sachin Vasant2,�,
Sridhar Venkatesan2,�, and C. Pandu Rangan1,��

1 Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, India
{kpreetha,prangan}@cse.iitm.ac.in

2 Department of Mathematics and Computer Applications,
PSG College of Technology, Coimbatore, India
{sachin.tcs2k7,vsridhar1729}@gmail.com

Abstract. In this paper, we propose an efficient code-based 1-out-of-N
oblivious transfer, OTN

1 , based on McEliece assumptions without invok-
ing the OT 2

1 several times as in the paradigm proposed in [20,6]. We also
show that the protocol is computationally secure against passive and ac-
tive adversaries. To our knowledge, this is the first practical code-based
OTN

1 protocol. The proposed protocol is compared with some existing
number-theoretic OTN

1 protocols for efficiency.
Also, the passively secure 1-out-of-2 OT protocol proposed by Dowsley

et al. [10] is reviewed. A formal argument of the computational security
of the protocol against active adversaries is furnished.

Keywords: Code-based cryptography, 1-out-of-N oblivious transfer,
McEliece Cryptosystem.

1 Introduction

Oblivious transfer is one of the well-established cryptographic primitives that
has played a prominent role in achieving secure two-(multi-)party computa-
tion [14,17]. OT protocols are the foundation of secure distributed computation.
Hence it is used for developing various applications. Some of the applications
of this primitive includes Private Information Retrieval (PIR)[22], fair electronic
contract signing [11], zero knowledge proofs [1,29], secure function evaluation [14]
and aids in developing a one-time proxy signature [36]. A k-out-of-N oblivious
transfer (OTN

k) is a two party primitive in which the sender has N messages,
and the receiver intends to read k (choices) of these N messages. This oblivious
transfer protocol is said to be secure, if the receiver remains oblivious to the
messages that are not within his choice set while the sender does not obtain any

� This material is based upon work supported by the Summer Fellowship from Indian
Statistical Institute Chennai.

�� Currently, Head, Indian Statistical Institute Chennai.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 144–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Code-Based 1-out-of-N Oblivious Transfer 145

information about the choices of the receiver. A specific instance of the above OT
is the 1-out-of-2 OT protocol, OT 2

1 , where k = 1 and N = 2, was first modeled
by Rabin [26] with its security based on the assumption of hardness of quadratic
residuosity problem. The definition was, later, in an equivalent manner is given
in [9]. An extensive discussion of OT 2

1 is furnished in [24,22,15].
Another variant of oblivious transfer is 1-out-of-N OT, OTN

1 in which the
receiver is able to retrieve only the message specified according to his choice
out of N messages. Such protocols are also known as ”All-or-Nothing Disclosure
Of Secrets” (ANDOS) in which the receiver is not allowed to gain combined
information of the secrets[35]. In literature, there are two flavors for construct-
ing a OTN

1 scheme: (i) performing N or logN invocations of a secure OT 2
1 [20,6],

and (ii) constructions based on the hardness assumptions of certain fundamental
problems [21,28].The security of the former is based upon the security assump-
tion of OT 2

1 invoked whereas, the security of latter approaches directly relies
on the hard problems such as Decisional Diffie-Hellman problem [35], Extended
Riemann Hypothesis [16], etc. Generic constructions of OTN

1 are also proposed
using certain primitives like Lossy Trapdoor functions [25].

The efficiency of an OT scheme is evaluated based on communication and com-
putational complexity incurred during the execution of the protocol. OT protocols
using modular exponentiations are computationally expensive than those which
use only hash functions, X-OR operations etc. [21]. The above line of thought is
indicated by Naor and Pinkas in [21], discussing the communication/computation
trade-off and render schemes which are computationally efficient under the secu-
rity assumption of discrete-logarithm (DL) problem. The computationally inten-
sive task of modular exponentiation is a major drawback of the number-theoretic
OT protocols. Code-based protocols serve as efficient alternatives for the above,
since the underlying operations are vector-matrix multiplication which are less
computationally intensive than the modular exponentiation.

The notion of code-based cryptography to provide a secure cryptosystem was
introduced by McEliece [27] in 1978. It did not gain popularity during that
period due to its large key size. The security of the McEliece cryptosystem is
based on Bounded Decoding problem which is NP-complete [2] and the hard-
ness of Goppa Code Distinguishability [8] problem. The problem of Bounded
Decoding is conjectured to be hard in the average case [31]. [30] discusses the
security of code-based cryptosystems and presents arguments on which we can
gain confidence on their security. Unlike number-theoretic schemes which are
weak against Shor’s algorithm[33], no quantum algorithm has been found for
the solution of the code-based hard problems. Hence, code-based cryptosystems
such as McEliece scheme and its secure variants are among the strong candidates
for Post-Quantum Cryptography.

Dowsley et al. in [10] pioneered a simple and efficient code-based OT 2
1 based

on McEliece security assumption which was computationally secure for both the
sender and the receiver. We revisit the protocol in section 3. Almost concur-
rently and independently Kobara et al. in [18] proposed two code-based OT 2

1

protocols which is an extension of Rabin OT to the code-based setting. They

146 K. Preetha Mathew et al.

also discussed the methodology with which Shamir’s zero-knowledge identifi-
cation scheme (ZKID),[32], can be used to verify the correctness of receiver’s
public keys and combining McEliece encryption with Stern’s ZKID, [34], to pro-
vide verifiable encryption. With the view of providing unconditional security
for the receiver, Morozov and Savvides in [19] implement an interactive hash-
ing subroutine [23] for generating the two public keys on the receiver’s end and
base their security assumption on the hardness of the general decoding problem
on the sender’s side. Although code-based OT 2

1 are computationally efficient in
comparison with number-theoretic OT 2

1 protocols, they suffer from high commu-
nication overhead. This is an inherent issue of McEliece cryptosystem attributed
to the large size of public key (100 kilobytes to several megabytes) [4].

Motivation: Various proposals on oblivious transfer including code-based OT 2
1

have been observed in the recent past, but there is no 1-out-of-N code-based OT
protocol, OTN

1 , in literature. Näıve extension of existing code-based OT 2
1 as per

[20,6], will result in high communication and computation cost. Also existence
of schemes based on different hardness assumptions is advantageous. Even if one
of the hardness assumptions is broken (as number-theoretic assumptions would
be, on the advent of quantum computers), switching over to alternatives would
be possible. Since, OTN

1 is a building block for many other cryptographic prim-
itives, we believe that an efficient code-based OTN

1 would enable the realisation
of such primitives under code-based assumptions. Hence we propose a new ap-
proach to construct OTN

1 protocol using McEliece assumptions.

Our Contributions: Our contributions in this paper are: (i) formally argu-
ing the security of the passively secure OT 2

1 protocol proposed by Dowsley et
al. [10] against active adversaries, (ii) this is the first code-based OTN

1 proto-
col computationally secure against active adversaries, which is computationally
efficient, and (iii) the proposed code-based OTN

1 protocol maintains the commu-
nication overhead comparable with that of code-based OT 2

1 protocols.

Organization of the paper: Section 2 provides a brief introduction of the
security definition and the assumptions on which the proposed protocol is con-
structed. The security of the passive protocol in [10] against active adversaries is
formally argued in section 3. We propose a code-based OTN

1 protocol, argue its
security against active adversaries and compare its efficiency with some existing
schemes based on number-theoretic security assumptions in section 4. Finally,
conclusion and directions for future work is given in section 5.

2 Preliminaries

In this section, we state the security definition of 1-out-of-N oblivious transfer,
OTN

1 , and state the security assumptions upon which the scheme is constructed.
A brief overview of the McEliece cryptosystem [27] is provided, which acts as
the underlying trapdoor function for the proposed scheme. Henceforth, we make
use of the following notations:

A Code-Based 1-out-of-N Oblivious Transfer 147

– x ∈R D denotes a uniformly random selection of x from D.
– ⊕ denotes a bit-wise X-OR operation
– X

c
= Y denotes that the random variable X is computationally indistin-

guishable from the random variable Y .

2.1 Security Definition of Oblivious Transfer

The security definition of OTN
1 is adapted from the definition given in [10]. Let

[A,B](b1, b2, . . . , bN , c) be an oblivious transfer protocol, where A is the sender

entity and B is the receiver entity. Let Ã be the dishonest sender and B̃ be dishon-
est receiver. For the protocol [Ã,B](b1, b2, . . . , bN , c), define V iewÃ(Ã(x),B(b))
to be the knowledge or view that a malicious PPT algorithm Ã has of the state of
the algorithm B, corresponding to its state x. For the protocol [A, B̃](b1, b2, . . . ,
bN , c), let us define V iewB̃(A(a), B̃(y)) as the knowledge or view that a malicious

PPT algorithm B̃ has of the state of the algorithm A, corresponding to its state
y. A formal definition of OTN

1 is as follows.

Definition 1. A protocol [A,B](b1, b2, . . . , bN , c) is said to honestly implement
a secure 1-out-of-N oblivious transfer, for probabilistic polynomial time (PPT)
algorithms A and B, and N bit-strings (b1, b2, . . . , bN)of arbitrary length m and
a choice c ∈ {1, . . . , N}, if the following properties hold :

– Completeness: For honest entities A and B, the entity B must obtain bc
correctly, and outputs it, whereas A does not output anything.

– Security for A: For the state of honest entity A to remain secure against
any adversary B̃ in [A, B̃](b1, b2, . . . , bN , c) the view that B̃(x) obtains on the
state of A for bi, ∀i ∈ {1, . . . , N} \ {c}, is computationally indistinguishable
from the view of the state of A given a random string y ∈R {0, 1}m.

– Security for B: The honest entity B remains secure against any adversary
Ã in [Ã,B](b1, b2, . . . , bN , c), if the view that Ã(x) has, when input of B is
c, is computationally indistinguishable from the view obtained when input of
B is any i ∈ {1, . . . , N} \ {c}.

V iewÃ(Ã(x),B(c))
c
= V iewÃ(Ã(x),B(i))

2.2 Security Assumptions

The following are some of the hard problems on which the security of the
McEliece [27] cryptosystem and the proposed scheme is based. Incidentally, these
problems are based on coding theory. Hence, before proceeding to the security
assumptions, a brief overview of some of the facts of coding theory is given.
A binary linear-error correcting code of length n and dimension k or a [n, k]-
code is a k-dimensional subspace of Fn

2 . If the minimum hamming distance be-
tween any two codewords is d, then the code is a [n, k, d] code. The hamming
weight of a codeword x, wt(x), is the number of non-zero bits in the codeword.
If t ≤ $d−1

2 %, the code is said to be t-error correcting, i.e, it detects and corrects

148 K. Preetha Mathew et al.

errors of weight at most t. The generator matrix G ∈ Fk×n
2 of a [n, k] linear code

C is a matrix of rank k whose rows span the code C. The parity-check matrix
H ∈ Fn−k×n

2 of a [n, k] code C is defined such that HGT = 0. Hence, code C
can be defined as {mG : ∀m ∈ Fk

2} or {c : HcT = 0}.
The security of the proposed scheme is based on the assumption of hardness

of the following problems:

Definition 2. Bounded Decoding Problem. For a code C having param-
eters [n, k, 2t + 1] and a generator matrix G, given a y ∈ Fn

2 and an integer
t ≤ $d−1

2 % find m ∈ Fk
2 with e ∈ Fn

2 having weight wt(e) ≤ t, where y = mG+ e.

The advantage of a PPT algorithm C for solving the problem on a given code C
is denoted by AdvBDC (C).

Assumption 1. For any probabilistic polynomial time algorithm F , AdvBDF (C) <
ε1(n, k) where ε1(n, k) is a negligible function, for any random linear code C.

For Goppa codes, there is a polynomial time bounded decoding algorithm. Thus,
there is a preference for most code-based cryptosystems to use the Goppa code
as a trapdoor.

Definition 3. Goppa code-distinguishability. For parameters [n, k, 2t + 1]
given a matrix G ∈ Fk×n

2 , output 1 if G is a generator matrix of a Goppa code,
0 if G is a generator matrix of a random code.

The advantage of a PPT algorithm D of solving the problem is denoted by
AdvCDD (n).

Assumption 2. For any probabilistic polynomial time distinguisher
D, AdvCDD (n) < ε2(n, k) where ε2(n, k) is a negligible function if it is not a high
rate goppa code (for a high rate code k

n → 1), [7].

|Pr[D(G) = 1]− Pr[D(M) = 1]| < ε2

where G is the generator of the goppa code and M is any random code.

2.3 Overview of McEliece PKC

In this section, an overview of the McEliece PKC [27] is presented which is based
on the hardness assumptions defined in the earlier section.

– Setup:

• k × n generator matrix G
• random n× n permutation matrix T
• random dense k × k non singular matrix S
• G̃ = SGT ,

G̃ and the code parameters [n, k, 2t+1] are made public and the private key
is (S,G, T).

A Code-Based 1-out-of-N Oblivious Transfer 149

– Encryption: For the k bit message m, compute y = mG̃ + e, where e is
random vector of length n and weight t. Now, y is the ciphertext sent to the
receiver.

– Decryption: On receiving y, compute y′ = yT−1 = mSG + eT−1, where
T−1 is the inverse of the permutation matrix T . On applying the list decoding
algorithm [3] for G on y′ , an m′ = mS is obtained. Finally, m is retrieved
as m = m′S−1.

3 Review of the Passively Secure 1- out-of-2 Protocol for
OT by Dowsley et al.

In this section, a brief description of the passively secure OT protocol by Dowsley
et al., [10], is furnished and also present our argument on the security of the
protocol against active adversary.

3.1 The OT Protocol

The protocol [A,B](b0, b1, c) involves the following steps:

Protocol 1

1. A chooses a Q ∈R Fk×n
2 and sends it to B

2. B selects a random t-error correcting Goppa Code [n, k, 2t+ 1] and its gen-
erator matrix G. B also selects an invertible matrix S ∈R Fk×n

2 and a ran-
dom n × n permutation matrix T . B sets the decodable key Pc = SGT and
P1−c = Pc ⊕Q and sends P0, t to A.

3. A computes P1 as P1 = P0⊕Q. A now performs McEliece encryption on two
bit strings r0, r1 ∈R Fk

2 using the keys P0 and P1 respectively,i.e., computes
yi = riPi ⊕ zi∀i ∈ {0, 1} where zi ∈ {0, 1}n with wt(zi) ≤ t. A now encrypts

the bits as b̂i = bi ⊕ 〈ri,mi〉, ∀i ∈ {0, 1} for some randomly selected mi ∈
{0, 1}k. A sends b̂i, yi,mi ∀i ∈ {0, 1}.

4. B now decrypts rc using the McEliece decryption algorithm, and finds bc =
b̂c ⊕ 〈rc,mc〉.

Completeness: The protocol is complete as B can decrypt rc corresponding
to the decodable trapdoor Pc and hence, retrieve bc. r1−c cannot be decrypted
since it is encrypted by a random matrix where the decoding trapdoor is not
available.

3.2 Security of the Protocol against Active Adversary

The authors of [10] had claimed that their scheme was not secure against a

dishonest active adversary B̃, as B̃ may find some (P ′, P ′′) having reasonable
decoding properties such that P ′⊕P ′′ = Q, and hence, gain partial information
of b1−c. We claim that, the argument is fallacious because the probability of
generating such codes is negligible.

150 K. Preetha Mathew et al.

Lemma 1. The probability that a uniformly generated matrix Q can be repre-
sented as Q = P ′ ⊕ P ′′, where P ′ and P ′′ are matrices having good decoding
properties, is negligible.

Proof: Let us assume that the probability that a uniform matrix Q is of the
form Q = P ′ ⊕ P ′′ is a non-negligible value 1

p . This would in turn imply that

a non-negligible fraction 1
p of all randomly generated matrices can be expected

to be of the form P ′ ⊕ P ′′ where P ′ and P ′′ are matrices with good decoding
properties.

Let Pdecode be the set of all matrices that display good decoding properties,
and Qdecode be the set of all uniformly generated matrices that maintain the
properties. Since every element Q ∈ Qdecode is formed by the linear combination
of some P ′, P ′′ ∈ Pdecode, therefore |Qdecode| =

(|Pdecode|
2

)
≈ O(|Pdecode|2). Since

|Qdecode| is a non-negligible fraction 1
p of the set of all uniformly generated

matrices, |Pdecode| is a non-negligible fraction 1
p2 of the set of all uniformly

generated matrices.
Thus, a non-negligible fraction of all uniformly generated matrices have good

decoding properties. This is in contradiction with the assumption 1. �

A more formal argument that their OT protocol is secure against active ad-
versaries is proved by the following theorem.

Theorem 1. The OT 2
1 protocol [A,B](b0, b1, c) is secure for both entities A and

B against corresponding active adversaries under Definition 1, and the assump-
tions 1 and 2.

Proof: Security for A: Let us consider the active PPT adversary B̃. To obtain
the bit bi, it is necessary to completely decode the given yi to obtain ri, and
partial knowledge of ri would not suffice.

The lemma 1 describes the infeasibility in adaptive choosing of Pc.
The proof is completed with the following argument:
With the assumption that A is honest, {y0, y1} output by A is always decod-

able for the corresponding code generated by {P0, P1}, if the decoding algorithm

is available. Since 〈r1−c,m1−c〉 is a hard-core predicate [13], to distinguish b̂1−c

for b1−c = 0 and b1−c = 1, B̃ has to obtain r1−c. Hence, for P1−c, the adversary

B̃ has to perform the following steps:
1. r1−c ← Decode(y1−c).

2. Compute, b1−c = b̂1−c ⊕ 〈r1−c,m1−c〉, .
Now, r1−c is the solution for the Bounded Decoding problem with input (y1−c,
P1−c), which is a contradiction to the assumption 1.

Security for B: Let us assume Ã is a PPT adversary in the proposed OT 2
1 pro-

tocol [Ã,B](b0, b1, c). On receiving a yc that is not decodable, we assume that B
accepts bc = 0, instead of notifying Ã of erroneous encryption. Thus, a malicious
generation of yi will lead to no knowledge of the appropriate c. Hence, the knowl-
edge of the choice c is based on the information Ã obtains from the keys.

A Code-Based 1-out-of-N Oblivious Transfer 151

Rewriting assumption 2 for M = G⊕Q,Q ∈ Fk×n
2 ,

|Pr[D(G) = 1]− Pr[D(G ⊕Q) = 1]| < ε2 (1)

where ε2 is a negligible function for any PPT distinguisher D. Assume that
there exists a PPT adversary Ã which finds the choice c with non-negligible
probability,

Ã(P0, P1, t)→ c

Ã can distinguish Pc from P1−c. Note that,

P1−c = Pc ⊕Q

Since, Ã can distinguish Pc from P1−c, Ã can distinguish Pc from any Pc ⊕ Q
with non-negligible probability. This is a contradiction to the equation (1) �

With the formal argument for the security of the protocol 1, an efficient ex-
tension of the protocol to the 1-out-of-N scenario is proposed.

4 1-out-of-N Oblivious Transfer

In this section, we present the first code-based OTN
1 and provide a security

argument for the same. Also, a comparison of the proposed protocol with some
existing number-theoretic OTN

1 protocols is provided.

4.1 The 1-out-of-N OT Scheme

In the 1-out-of-N protocol, the sender A sends a random matrix Q to the receiver
B. The receiver selects a random t-error correcting Goppa code [n, k, 2t+1] and
sets the generator matrix G as the key Pc. B derives P1 as a function of Pc and
Qc, where Qc is obtained by c− 1 circular right shifts on Q and sends (P1, t) to
A. A encrypts a random ri using McEliece encryption using the encryption key
Pi = Pi−1 ⊕ Qi−1 and masks bi with a hard core predicate of ri, ∀1 ≤ i ≤ N .
B decrypts rc and unmasks bc. It is to be noted that N < n due to the circular
shifting of matrix Q.

Following is the formal description of the protocol.

Protocol 2. For the public parameters [n, k, 2t + 1], N and a hard-core pred-
icate h : {0, 1}k → {0, 1}m, where m is the size of the secret. The protocol
[A,B](b1, b2, . . . , bN , c) is as follows:

1. A generates Q ∈R Fk×n
2 , and sends it to B.

2. B selects a random t-error correcting binary Goppa Code [n, k, 2t+ 1] with
generator matrix G and sets Pc = G. If c = 1 then P1 = G, else, B computes
P1 = Pc ⊕ (⊕c−1

i=1Qi) where Qi = Qi−1T , i > 1, Q1 = Q and T is the n× n
permutation matrix that represents circular right shift by 1 column. B sends
(P1, t) to A.

152 K. Preetha Mathew et al.

3. A generates r1 ∈R Fk
2 and encrypts r1 as y1 = r1P1 + z1 where z1 ∈R Fn

2

with wt(z1) ≤ t. A conceals b1 as b̂1 = b1 ⊕ h(r1) and sends (b̂1, y1) to B.
A conceals the subsequent messages as follows: Compute Pi = Pi−1 ⊕Qi−1.
Generate ri ∈R Fk

2. Encrypt ri as yi = riPi + zi where zi ∈R Fn
2 with

wt(zi) ≤ t and bi as b̂i = bi ⊕ h(ri). Send (b̂i, yi), ∀i ∈ {2, 3, . . . , N}
4. B decrypts rc from yc and retrieves bc = b̂c ⊕ h(rc). If yc is not decodable,

then bc is assumed to be 0.

4.2 Security of the Scheme

In accordance with definition 1, a proof that the proposed scheme is a secure
OTN

1 is presented in this section, along with its security against the active ad-
versaries. The security of the scheme is based on the hardness assumptions 1
and 2.

The following lemma, on the security of the proposed construction of the
blinding matrices Qi, ∀i ∈ {2, . . . , N}, shows that the construction does not
compromise the security of A.

Lemma 2. For any matrix M ∈R Fk×n
2 , the probability that ⊕j

i=1Mi = 0 with
M1 =M and Mi being i−1 circular right shifts from M , for any j ∈ {2, . . . , N}
is at most 1

2
k(� n

j
�+(n mod j)−1) .

Proof: For j = 2, M1 ⊕M2 = 0. Let, ci denote the ith column of M1 and the
indices be reduced to mod n to obtain the circular effect. M2 is obtained by
right shifting M1 by one column. Therefore,the i− 1th column of M1 becomes
ith column of M2. So, ci ⊕ ci−1 = 0 =⇒ ci = ci−1, ∀i ∈ {0, 1 . . . , n − 1}.
Therefore, all columns of M1 must be equal. The probability of such a matrix
being generated is 1

2k(n−1) <
1

2k(� n
2

�+(n mod 2)−1) .

For j ≥ 3, ⊕j
i=1Mi = 0 implies ci ⊕ ci−1 . . . ⊕ ci−(j−1) = 0, ∀i ∈ {0, 1 . . . , n−

1}. Substituting i = i − 1 in the previous equation, ci−1 ⊕ ci−2 . . . ⊕ ci−j = 0.
Addition of the above two equations yields, ci ⊕ ci−j = 0 =⇒ ci = ci−j , ∀i ∈
{0, 1 . . . , n − 1}. This means, every j + 1th column must be equal. Hence, ∀i ∈
{0, 1 . . . , j− 1}, it is necessary that, ci = ck, where k is of the form i+xj mod n,
where x ∈ Z+. There are $nj % such x’s. When n mod j > 0, for columns ci, ∀i ∈
{0, 1, . . . , n mod j− 1}, there is one more repetition of the corresponding columns
ci−j . Thus, the probability of ⊕j

i=1Mi = 0 is at most 1

2
k(�n

j
�+(n mod j)−1) . �

From the lemma, it could be observed that the probability for ⊕j
i=1Mi = 0 is

maximum for j = N . The probability is at most 1

2k(� n
N

�+(n mod N)−1) . Since N ≤
n− 1, substituting N = n− 1 results in the probability 1

2
k(� n

n−1
�+(n mod n−1)−1) =

1

2
k(� n

n−1
�) <

1
2k . Hence, the probability of finding an M such that ⊕n−1

i=1 Mi = 0

is at most 1
2k

Using the above lemma for the blinding matrices, the proposed scheme is
proved to be a secure OTN

1 given a multibit hardcore predicate.The protocol is
argued to be conditionally secure for both the receiver and sender.

A Code-Based 1-out-of-N Oblivious Transfer 153

Theorem 2. The proposed protocol [A,B](b1, b2, . . . , bN , c) is an OTN
1 accord-

ing to definition 1, under the assumptions 1 and 2.

Proof: Completeness: Assuming the entities are honest, the entity A encrypts
ri using the key Pi, where Pi = Pi−1 ⊕ Qi−1 and P1 = Pc ⊕ (⊕c−1

i=1Qi). Hence,
rc is encrypted with P ′

c, where P
′
c = Pc−1 ⊕ Qc−1. On iterating backwards,

P ′
c = P1⊕ (⊕c−1

i=1Qi) = Pc. Hence, rc is encrypted with Pc. Since, B possesses the

decoding trapdoor for Pc, he is able to retrieve rc, and compute bc = b̂c⊕ h(rc).
For example, if we consider c = 3, N = 4, the key with trapdoor is P3. P1

is generated as P1 = P3 ⊕ Q1 ⊕ Q2. B sends P1 to A. A assumes the key
P ′
1 = P1. A constructs P ′

2 = P ′
1 ⊕ Q1 = (P3 ⊕ Q1 ⊕ Q2) ⊕ Q1 = P3 ⊕ Q2 and

P ′
3 = P ′

2 ⊕Q2 = (P3 ⊕Q2)⊕Q2 = P3 and P ′
4 = P ′

3 ⊕Q3 = P3 ⊕Q3. Hence, for
the choice c = 3, the construction gives the key P3 consistent to both A and B.
It can be seen that for i �= c, Pi = Pc ⊕R, where R is a random matrix. Since,
the decoding trapdoor for such Pi’s is not known, the receiver cannot decode
the corresponding ri’s. A formal proof for the same is given below.

Security for A: Let us assume B̃ is a PPT adversary in the proposed OTN
1

protocol [A, B̃](b1, b2, . . . , bN , c). Lemma 2 proves that probability of obtaining
Pi = Pc for some i �= c is negligible. Hence, it can be assumed without loss
of generality that matrices Q1, Q2 . . . QN will ensure sufficient alteration in the
structure of Pc. To obtain any knowledge of bi for some i �= c the adversary has
to decode yi completely.

Since A is honest, A computes yi = riPi ⊕ zi, ∀i with wt(zi) ≤ t. Hence, the
outputs of A, {y1, y2, . . . , yN} are decodable for the corresponding code gener-
ated by {P1, P2, . . . , PN} if the decoding algorithm is available. Since h(ri) is a

hrad-core predicate, the distribution for b̂i can be distinguished for various bi
only by obtaining the corresponding ri. Hence, for Pi, i �= c , any PPT adversary
B̃ with a non-negligible success probability, has to perform the following steps:

1. ri ← Decode(yi).

2. Compute, bi = b̂i ⊕ h(ri).
Now, ri is the solution for the Bounded Decoding problem with input (yi, Pi)

found with non-negligible probability by PPT algorithm B̃, which is a contra-
diction to the assumption 1.

Security for B: Let us assume Ã is a PPT adversary in the proposed OTN
1 pro-

tocol [Ã, B](b1, b2, . . . , bN , c). On receiving a yc that is not decodable, B accepts

bc = 0, instead of notifying Ã of erroneous encryption. Thus, a malicious gener-
ation of yi will lead to no knowledge of the appropriate c. Hence, the knowledge
of the choice c is based on the information Ã obtains from the keys.

Rewriting assumption 2 for M = G⊕R,R ∈ Fk×n
2 .

From equation (1),

|Pr[D(G) = 1]− Pr[D(G ⊕R) = 1]| < ε2

where ε2 is a negligible function for any PPT distinguisher D. Assume that there
exists a PPT adversary Ã which finds the choice c with non-negligible probability,

154 K. Preetha Mathew et al.

Ã(P1, P2, . . . , PN , t)→ c

Ã can distinguish Pc from Pi, ∀i ∈ {1, 2, . . . , N} \ {c}. Note that,

Pi = P1 ⊕ (⊕i−1
j=1Qj) = (Pc ⊕ (⊕c−1

j=1Qj))⊕ (⊕i−1
j=1Qj)

=⇒ Pj = Pc ⊕R

where R = (⊕c−1
j=1Qj)) ⊕ (⊕i−1

j=1Qj). Since, Ã can distinguish Pc from Pi where

i �= c, Ã can distinguish Pc from Pc ⊕R with non-negligible probability. This is
a contradiction to the equation (1). �

4.3 Efficiency and Parameters of the Proposed Scheme

The asymptotic efficiency of some of the OTN
1 is given in Table 1. From the

table, it is clear that the proposed protocol involves only N vector matrix mul-
tiplication. These operations are computationally less expensive than N expo-
nentiations.

It can also be noted that the communication complexity is asymptotically
comparable to any OT 2

1 protocol based on McEliece assumption.
As mentioned earlier, the security of the proposed protocol is based on the

hardness of Bounded Decoding problem and Goppa code distinguishability prob-
lem. The work factor required to solve the above problems is based on the pa-
rameters of the underlying code. Table 2 gives some of the secure parameters for

Table 1. Comparison of the proposed protocol with some existing OTN
1 protocols and

the original OT 2
1 protocol

Scheme Sender computa-
tion

Receiver computa-
tion

Communication

logN-dimension
protocol, Naor
and Pinkas, [22]

logN encryptions
due to OT 2

1 protocol
logN decryptions
due to OT 2

1 protocol
logN times the com-
munication complexity
of OT 2

1 protocol

2-dimensional
protocol, [22]

logN encryptions
due to OT 2

1 protocol
logN decryptions
due to OT 2

1 protocol
logN times the com-
munication complexity
of OT 2

1 protocol

DDH based pro-
tocol, Tzeng, [35]

2N exponentiations 3 exponentiations 2N elements in Zq, for
a large prime q

1-out-of-2 proto-
col, Dowsley et.
al., [10]

2 encryptions using
McEliece cryptosys-
tems

1 invocation of decod-
ing algorithm

2 k × n matrices

Proposed scheme N encryptions using
McEliece cryptosys-
tem

1 invocation of decod-
ing algorithm

2 k × n matrices,i.e,the
same complexity as the
underyling OT 2

1 proto-
col

A Code-Based 1-out-of-N Oblivious Transfer 155

Table 2. Parameters of the proposed OTN
1

Parameters [n, k, 2t + 1] Key size (in bits) Binary work factor

[2048, 1696, 65] 3473408 286.8

[4096, 3604, 83] 14761984 2128.5

the proposed protocol and the corresponding work factor for solving the Bounded
Decoding problem. The proposed parameters are as per the secure parameters
mentioned in [12]. For the given parameters, the Goppa-code distinguishability
is known to be hard [7].

5 Conclusion

In this paper, we reviewed Dowsley et al.’s passive OT 2
1 protocol and formally ar-

gued its security against active adversaries. The paper also introduces an elegant
and computationally efficient 1-out-of-N code based oblivious transfer based on
McEliece assumptions. To the best of our knowledge, the proposed protocol is
the first practical code-based OTN

1 . The scheme is proved to be computation-
ally secure against passive and active adversaries. On comparison with some
of the existing number-theoretic OTN

1 , the proposed protocol is computation-
ally efficient. The protocol achieves a communication complexity comparable to
code-based OT 2

1 asymptotically, thus making it independent of N .

References

1. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard [5], pp. 547–557

2. Berlekamp, E.R., Mceliece, R.J., Vantilborg, H.C.: On the inherent intractability
of certain coding problems. IEEE Transactions on Information Theory (1978)

3. Bernstein, D.J.: List decoding for binary goppa codes (2008)
4. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography, 1st edn.

Springer, Heidelberg (2008) (incorporated)
5. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
6. Brassard, G., Crépeau, C., Robert, J.-M.: Information theoretic reductions among

disclosure problems. In: FOCS, pp. 168–173. IEEE (1986)
7. Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate

mceliece cryptosystems
8. Courtois, N.T., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital

Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–
174. Springer, Heidelberg (2001)

9. Crépeau, C.: Equivalence between Two Flavours of Oblivious Transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

10. Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: Oblivious
Transfer Based on the McEliece Assumptions. In: Safavi-Naini, R. (ed.) ICITS
2008. LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008)

156 K. Preetha Mathew et al.

11. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

12. Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based Cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

13. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Johnson, D.S. (ed.) STOC, pp. 25–32. ACM (1989)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

15. Haitner, I.: Semi-honest to Malicious Oblivious Transfer—The Black-Box Way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

16. Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005)

17. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM (1988)

18. Kobara, K., Morozov, K., Overbeck, R.: Coding-Based Oblivious Transfer. In: Cal-
met, J., Geiselmann, W., Müller-Quade, J. (eds.) MMICS 2008. LNCS, vol. 5393,
pp. 142–156. Springer, Heidelberg (2008)

19. Morozov, K., Savvides, G.: Efficient computational oblivious transfer using inter-
active hashing. In: Proceedings of the 6th ACM Symposium on Information, Com-
puter and Communications Security, ASIACCS 2011, pp. 448–452. ACM, New
York (2011)

20. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC, pp.
245–254 (1999)

21. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

22. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol-
ogy 18(1), 1–35 (2005)

23. Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful adver-
sary. In: AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 155–169 (1991)

24. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork,
C. (ed.) STOC, pp. 187–196. ACM (2008)

26. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187 (2005), http://eprint.iacr.org/

27. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report, 114–116 (1978)

28. Salomaa, A., Santean, L.: Secret selling of secrets with several buyers. Bulletin of
the EATCS 42, 178–186 (1990)

29. De Santis, A., Di Crescenzo, G., Persiano, G.: Zero-knowledge arguments and
public-key cryptography. Inf. Comput. 121(1), 23–40 (1995)

30. Sendrier, N.: The tightness of security reductions in code-based cryptography. In:
2011 IEEE Information Theory Workshop (ITW), pp. 415–419 (October 2011)

http://eprint.iacr.org/

A Code-Based 1-out-of-N Oblivious Transfer 157

31. Sendrier, N.: Decoding One Out of Many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011)

32. Shamir, A.: An efficient identification scheme based on permuted kernels (extended
abstract). In: Brassard [5], pp. 606–609

33. Shor, P.W.: Polynominal Time Algorithms for Discrete Logarithms and Factoring
on a Quantum Computer. In: Adleman, L.M., Huang, M.-D.A. (eds.) ANTS 1994.
LNCS, vol. 877, p. 289. Springer, Heidelberg (1994)

34. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

35. Tzeng, W.-G.: Efficient 1-out-of-n oblivious transfer schemes with universally us-
able parameters. IEEE Trans. Computers 53(2), 232–240 (2004)

36. Wang, H., Pieprzyk, J.: Efficient One-Time Proxy Signatures. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 507–522. Springer, Heidelberg (2003)

Towards Fine-Grained Access Control

on Browser Extensions�

Lei Wang, Ji Xiang, Jiwu Jing, and Lingchen Zhang

State Key Lab of Information Security, Graduate University of CAS, China
{lwang,jixiang,jing,lchzhang}@is.ac.cn

Abstract. We propose a practical and fine-grained browser extension
access control framework, which regulates the misbehavior of JSEs with
malicious intent at run time by means of restricting the access to re-
sources, in order to prevent the malicious JSEs from ruining users se-
curity. The resource access of a JSE, which constrains its behavior, is
the basis of the functionalities of it. Instead of the conventional static
access control rules, we formulate the fine-grained access control policies
dynamically in the framework while JSEs are executing within Firefox,
which makes our framework more flexible and practical in real-world use.
We tested 100 popular JSEs on AMO to evaluate the compatibility of
our framework, and found that only two of them are not compatible
due to their sensitive behavior. To evaluate the capability of restraining
the misbehavior of JSEs, we tested ten malicious ones and the results
show that all of them are blocked by our framework before they actually
misbehave.

Keywords: framework, fine-grained access control, dynamic regulation,
ordinal resource access.

1 Introduction

Fundamentally, a web browser is an environment where many kinds of codes run,
such as HTML, Java, AJAX and JavaScript codes, etc. As for the JavaScript
codes executing inside Mozilla Firefox, they are from the browser core, websites
or JSEs (JavaScript Extensions). The browser core constitutes the browser itself
and achieves its main functions. JavaScript code of websites is executed by Fire-
fox under the constraint of SOP (Same Origin Policy) [1], which is to regulate
the behavior of JavaScript code in the websites. Nevertheless, there is a lack of
practical and run-time policies to restrict the behavior of JSEs while they are
running inside Firefox, though Mozilla offers a strict review process to check the
JSE before publishing it on AMO [2], JSEs from the wild which are absent from
the review process, will be dropped onto the user’s computer by some malware
and run when Firefox starts the next time.

� This work was supported by National Natural Science Foundation of China (Grant
No. 70890084/G021102, 61003274 and 61003273) and Knowledge Innovation Pro-
gram of Chinese Academy of Sciences (Grant No. YYYJ-1013).

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 158–169, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Fine-Grained Access Control on Browser Extensions 159

Up to now, there are already some run-time solutions to detect and regulate
the malicious JSEs [3–7]. [3] and Sabre [4] adopt the dynamic taint technology
to analyze the information flow inside Firefox, which achieves high accuracy at
the cost of great overhead. [5] and [6] formulate several static access control rules
to restrict the privileges of JSEs. Though it incurs low overhead, it is difficult
to formulate appropriate policies for each monitored JSE while preserving the
accuracy. Barth et al. [7] propose a novel security browser extension framework
for ensuring users security, which may need a long time to be widely deployed. As
for the policies of Mozilla [8, 9], the strict review process can be easily bypassed
by dropping JSEs onto the user’s computer by some malware.

In this paper, we propose a practical, flexible and fine-grained browser exten-
sion access control framework, which works at run time to ensure the security
of host machines against JSEs with malicious intent while they are running
within Firefox. In our framework, we dynamically formulate the fine-grained ac-
cess control policies with the consideration of restricting the ordinal access to
some resources, instead of prohibiting accessing some certain types of resource.
For example, if one of the policies in [5, 6] is that a JSE is denied to access
the cookie-related XPCOM (Cross Platform Component Object Model) compo-
nents which are provided by Mozilla Firefox, it means that the JSE is unable to
access cookies any longer. However, ours is quite different. In our fine-grained
framework, the access control policy is formulated dynamically while the JSE
is running, and we only prohibit its sending out the cookie (i.e., accessing the
network communication resource) after the JSE acquired it.

JSEs achieve their versatile functionalities by accessing kinds of resources.
Our framework considers the ordinal access to the sensitive resources to achieve
better regulation, because some popular JSEs on AMO also access the sensitive
resources, however, with different resource access sequence. Legitimate JSEs usu-
ally access their own resources, which are created by themselves, and they do
not leak users privacy or compromise the host machine during their lifetime.
However, most JSEs with malicious intent target at compromising users’ com-
puter to obtain the private information. Therefore, we propose two modules in
our framework, the access control module, which enforces the fine-grained poli-
cies towards the resource access of JSEs, and the dynamic regulations module,
which dynamically formulates the access control policies, to restrict the access
to resources at run time.

We implemented the framework on Firefox, version 3.6.13Pre, and tested the
top 100 popular JSEs on AMO [2] to evaluate its compatibility. Only two JSEs
are not compatible with our framework because of their ordinal access to the
sensitive resources, e.g., the login passwords. To evaluate the capability of re-
straining malicious JSEs, we tested the most famous one, FFSniFF [10] which
steals users passwords, and other nine malicious ones implemented by ourselves.
And the experimental results show that our framework is able to prohibit their
malicious behavior at run time.

160 L. Wang et al.

To summarize, our paper makes the following contributions:

– Our browser extension access control framework is built inside Firefox and
is a run-time JSE behavior-regulating mechanism. It is a much simpler and
faster deployment mechanism for wide deployment in real world, compared
with the framework of [7].

– The access control policies in our framework are formulated dynamically,
which makes it more flexible to restrict the resource access of JSEs, and are
global ones and applicable for all the JSEs running inside Firefox.

– Our framework is fine-grained and all its policies aim at restricting the ordi-
nal access to the sensitive resources of JSEs, instead of allowing/prohibiting
the access to some single resource.

2 Background Overview

2.1 Basic Notions

Resources are those that can be accessed by invoking XPCOM components
provided by Mozilla Firefox, such as files, cookies, Windows registry values,
DOM tree information of websites and login information, etc. Resources are the
essential components of JSEs to fulfill their functionalities. Sensitive resources
are resources that contain private and confidential information of users and can
be exploited to leak private information or to compromise the host machine, such
as credit card number, login account and passwords. Otherwise, the resources
are considered to be insensitive ones, for example the configuration file and the
log file created by the JSE itself.

Resource Access is the behavior of accessing the resource by a JSE. Re-
source access of a JSE dominates its behavior during the lifetime. Due to the
types of resources, resource access is also composed of sensitive resource access
and insensitive resource access.

Ordinal Resource Access to some sensitive resources are a series of actions
on the sensitive resources accessed by the JSE. For example, a JSE sends the
acquired passwords back to the attacker by utilizing the network communication
resource after accessing the password resource.

In this paper, we focus on restricting the resource access of JSEs while they
are running inside Firefox, to ensure the users security by preventing information
leakage and the compromise of host machines. Methods for detecting malicious
JSEs during their distribution and installation are out of scope. Malicious JSEs
launching the attack in collusion with each other are also beyond the scope of
this paper.

2.2 Firefox Overview

As depicted in Figure 1, there are three kinds of JavaScript codes executed in-
side Firefox, and they are all processed by SpiderMonkey, which is the JavaScript
engine embedded within Firefox and in charge of compiling and executing the

Towards Fine-Grained Access Control on Browser Extensions 161

Fig. 1. JavaScript codes executing within Firefox

JavaScript codes from websites, browser core and JSEs. It also illustrates that
XPCOM components of Firefox interact with OS to realize a variety of function-
alities, such as communicating via network, accessing local file system, operating
DOM tree of websites and so on. XPCOM components enlarge capabilities of
JavaScript, and both JSEs and Firefox browser core call them to accomplish
various functionalities. Therefore, XPCOM components are the essence of JSEs
and almost all functionalities of JSEs are realized by invoking them, even for the
simplest one, e.g., ‘HelloWorld’, which calls the XPCOM component of nsID-
OMJSWindow and method of open to open a new window [11].

As Figure 1 shows, each calling of XPCOM components has to pass through
XPConnect, which is a bridge between JavaScript and XPCOM components and
is presented by Mozilla Firefox to call corresponding XPCOM components from
JavaScript codes and to interact with JavaScript objects from within XPCOM
components [12]. This restriction is required by Mozilla for security reasons and
also becomes the main breakthrough point to realize our framework.

2.3 JavaScript Extensions of Firefox

JavaScript extensions (JSEs) are browser extensions written in JavaScript lan-
guage. Up to now, there are more than seven-thousand JSEs available for down-
load on AMO [2] and the download number of all JSEs is over 2.5 billion.

JSEs achieve versatile functionalities to extend the capabilities of Firfox. To
realize its specific functionalities, a JSE accesses kinds of resources, such as files
on the host machine, cookies, login information, Windows registry values and so
on. Resources accessed by JSEs are the main determinant of their behavior.

162 L. Wang et al.

3 Browser Extension Security Policy Framework

3.1 Motivation

JSEs have become the most popular extensions within Firefox, but there are no
secure enough policies to prohibit them from hurting users security at run time
while Firefox is running equipped with JSEs.

– Though Mozilla provides a strict review process to check JSEs, there are not
sufficient policies on restricting the resource access while Firefox is running
equipped with JSEs.

– Other than installing from AMO, there are some ways to install JSEs, e.g.,
dropping the JSE into the extension directory of Firefox. Some malware may
utilize this to drop a malicious JSE into Firefox while it is running, and the
malicious JSE works when Firefox starts the next time, which is absent from
the review process of Mozilla.

– Ter Louw et al. [5, 6] proposed some resource access restriction rules, and
they aim at restricting the resources accessed by JSEs, which is partially
consistent with our idea. However, they only consider the resource access and
neglect the ordinal behavior of JSEs, which makes it difficult to formulate
appropriate policies for each JSE.

– Barth et al. [7] proposed a novel browser extension system that improves
the browser security by adjusting the JSEs’ development pattern with least
privilege, privilege separation and strong isolation principles. Though it is an
excellent solution, it changes the development pattern of browser extensions
and needs a long time for widespread deployment.

Therefore, we propose a run-time behavior-regulating browser extension access
control framework to regulate the misbehavior of JSEs with malicious intent by
restricting the ordinal access to some sensitive resources for them.

Fig. 2. The architecture of our framework

Towards Fine-Grained Access Control on Browser Extensions 163

3.2 Architecture

The architecture of our framework is shown in Figure 2. It is located between
JSEs and the resources to ensure that all the policies are checked before the
resources are accessed by JSEs. Our framework prohibits the misbehavior of
JSEs before it actually occurs. It is composed of two modules, an access control
module, which enforces the fine-grained policies to restrict the resource access
of JSEs, and a dynamic regulations module, which dynamically formulates the
access control policies to restrict the ordinal access to some sensitive resources.

3.3 Access Control Module

The access control module is composed of resource acquiring component, re-
source classifying component, filtering component and triggering component,
and the architecture is shown in Figure 3.

Fig. 3. The architecture of the access control module

Resource Acquiring Component. To realize the whole functions of the
framework, first of all we have to relate the JSE with its accessing resources
and recognize what kinds of resources the JSE is accessing, which is the primary
function of this component. Its implementation is described in detail in Section
4.2.

Resource Classifying Component. The resource classifying component
is used to determine whether the resource accessed by a JSE is sensitive. If the
resource accessed by the JSE is insensitive, the resource access continues without
any interference. If the resource is sensitive, the resource access enters the fil-
tering component and the triggering component starts the dynamic regulations
module subsequently.

After we analyze the behavior of top 25 popular JSEs on AMO, we found
that legitimate JSEs usually access their own resources, for example files created
by themselves. All the resources accessed by JSEs and their classifications are
summarized in Table 1, and each type of resource in the table is given a badge
to avoid verbosity in the following reference. We strive to make JSEs access the
resources reasonably, because the resources are associated with the behavior of
JSEs.

164 L. Wang et al.

Table 1. Resources accessed by JSEs

Resources Resource Instances Label Badge

Files Configuration files Insensitive A
Log files Insensitive B

CSS (Cascading Style Sheets) files of web pages Insensitive C
Temporary files Insensitive D

Files created by the JSE itself Insensitive E
Executable files downloaded from the Internet Sensitive F
Files on the host machine apart from the above Sensitive G

Cookies Cookies created by the JSE itself Insensitive H
Cookies created others Sensitive I

Login information Login information created by the JSE itself Insensitive J
Login information created others Sensitive K

Windows registry values Registry values created by the JSE itself Insensitive L
Registry values created others Sensitive M

Browsing history Browsing history of users Sensitive N
Node value of web pages ‘input’ node value of the web page DOM tree Sensitive O

Other node values of the web page DOM tree Insensitive P
Network communication HTTP/HTTPs network communication to send Sensitive Q

HTTP/HTTPs network communication to receive Sensitive R
Email communication to send Sensitive S

Email communication to receive Sensitive T
Processes processes created/launched by the JSE Sensitive U

processes killed by the JSE Sensitive V

Filtering Component. In the beginning, there is no filtering policy in this
component. Policies of this component are all formulated dynamically by the
dynamic regulations module. All the sensitive resource access has to be checked
by the filtering policies in this component before it actually occurs. If the access
complies with the filtering policies, the access is blocked immediately and the JSE
stops working. Otherwise the JSE continues working without any interference.

Triggering Component. When the resource accessed by a JSE is sensi-
tive, the triggering component will trigger the dynamic regulations module to
dynamically formulate the access control policies for the accessed resource.

3.4 Dynamic Regulations Module

The dynamic regulations module is proposed to formulate the fine-grained access
control policies and to restrict the ordinal resource access of JSEs when the
resources accessed by JSEs are sensitive ones.

The framework is composed of several dynamic access control policies, which
target at restricting the ordinal resource access of JSEs and can be added dynam-
ically in future. At present, there are two policies to enhance the access control
policies: (1) never to send the sensitive information out after acquiring them,
meaning that the JSE is prevented from accessing the sensitive resources Q and
S after accessing G, I, K, M, N or O ; (2) never to launch the executable files
after downloading them from the Internet, meaning that if the JSE accesses the
sensitive resource F, the access to U will be denied. Policies can be dynamically
appended if the restriction of the resource access becomes more strict in future.

The access control policies are formulated after analyzing 25 popular JSEs on
AMO. These JSEs never send any sensitive information out even if they access

Towards Fine-Grained Access Control on Browser Extensions 165

the information and never launch the executable file even if they download it
from the Internet. In contrast, most JSEs with malicious intent aim at stealing
private information of users. It inspires us to formulate the appropriate and fine-
grained policies in our framework to prevent leakage of users private information
and the compromise of host machines.

Malicious JSEs usually launch attacks by accessing several sensitive resources
ordinally. Taking FFSniFF [10] as an example, it acquires the ‘input’ node value
of the web page DOM tree (accessing the sensitive resource O) in the begin-
ning, which is definitely identified by our framework. Since the accessed resource
is sensitive and contains private information of users, the dynamic regulations
module is triggered to append the first policy to the access control policies and
its subsequent resource access is to be filtered by the filtering component. Once
our framework detects that its subsequent behavior is to send the acquired in-
formation out over network (accessing the sensitive resource S), FFSniFF is
terminated immediately due to the restriction policy. Though FFSniFF acquires
the ‘input’ node values, it does not send them back to the attacker actually.
Hence, users security is protected by our framework.

4 Implementation

4.1 Position to Achieve the Framework

As shown in Figure 1, while a JSE is running within Firefox, it invokes XP-
COM components, which are called by XPConnect, provided by Firefox to ac-
cess the resources. Therefore, we achieve the functionalities of the framework by
adding codes in XPConnect. According to our analysis of XPConnect, we locate
the framework in the function XPCWrappedNative :: CallMethod, which is
used to invoke XPCOM components in XPConnect ultimately. We realize the
framework just before calling XPCOM components, so that each invocation of
XPCOM components is protected through the framework.

To realize our framework, the most essential procedure is to acquire all the re-
sources accessed by the JSE, and then we enforce all the policies of the framework
before the resources are accessed. Therefore, we propose the implementation of
the resource acquiring component next.

4.2 Resource Acquiring Component

Because the resources accessed by a JSE are expressed in the form of XPCOM
components and their arguments while it is running, the resource acquiring com-
ponent of the access control module is responsible for distilling XPCOM com-
ponents and their arguments and relating them with the JSE.

In this component, we intercept all the XPCOM components invoked by JSEs
in XPConnect rather than SpiderMonkey and XPCOM, taking advantage of the
restrictions of Mozilla. We utilize the call stack of JavaScript codes to relate the
XPCOM components with a JSE in order to distinguish that invoked by Firefox

166 L. Wang et al.

browser core. For example, when FFSniFF is accessing the ‘input’ node value of
the web pageDOM tree, we identify and record the JSE name ‘ffsniff’ in the source
filename (e.g., chrome://ffsniff/content/ffsniffOverlay.js) whose file contains the
currently running JavaScript codes, in the JavaScript call stack ‘JSStackFrame’.
FFSniFF invokes the XPCOM component, ‘nsIDOMHTMLInputElement’, and
its method ‘getElementsByTagName’ with an argument ‘input’ to access the ‘in-
put’ node value, which is considered as the sensitive resource in our framework.
Therefore, we accomplish the procedure of relating the accessed resources with
the JSE.

During this distilling procedure, we found that the arguments of some XP-
COM components contain all the information we want, for example nsIXML-
HttpRequest.open (A.B denotes calling the method B of XPCOM component A)
contains the type of request and the requested URI, when a JSE is to commu-
nicate with a remote server via network. However, in the case of reading a file
in the local disk by invoking nsIScriptableInputStream.read, its only argument is
the length of the accessed contents and there is no filename. In this scenario, we
analyze the anterior XPCOM components and their arguments, e.g., we acquire
the filename of the accessed file in the argument of nsILocalFile.initWithPath.
Therefore, we are able to record XPCOM components, their arguments and the
resources accessed by the JSE completely.

5 Evaluation

5.1 Compatibility with Legitimate JSEs

We have tested 100 popular JSEs on AMO [2] (including the aforementioned
25 JSEs) to evaluate the compatibility of our policy framework. For each pop-
ular JSE, we installed it from AMO and triggered its core functionalities. The
experimental results show that our policy framework is efficient, accurate and
compatible with most JSEs and with only 2-in-100 false positive rate.

LastPass and StumbleUpon are the two JSEs that violate policies of the frame-
work and are prohibited from working, because they satisfy the characteristics
of attacks, i.e., sending data over network after reading sensitive information.
LastPass is an online password manager, and it automatically fills out forms,
accesses and manages users data, thus there is security risk that LastPass steals
users private data if the author has malicious intent. Whereas StumbleUpon ac-
cesses users cookies to discover great websites that match users interests during
running. Therefore, the two JSEs are regulated to stop working by our frame-
work. Actually most legitimate JSEs do not have these characteristics. Due to
the popularity of LastPass and StumbleUpon, we maintain a static access control
policy to whitelist them.

5.2 Effectiveness on Restricting Malicious JSEs

In this section, we evaluated the framework with obviously malicious JSEs to
test the efficiency and accuracy of prohibiting malicious JSEs. Due to the diffi-
culty of acquiring samples of malicious JSEs listed on Mozilla blocklist [13], we

Towards Fine-Grained Access Control on Browser Extensions 167

implemented nine JSEs that behave maliciously besides FFSniFF, which can be
obtained on Internet.

– Downloading from the Internet. FFSniFF is acquired from the Internet
and it aims at stealing the passwords input by users on web pages [10]. JSEs
on Mozilla blocklist are not available for download any more, therefore, we
just test this one as a popular malicious JSE towards our framework.

– Tampering with a legitimate JSE to make it behave maliciously.
Because Firefox does not check the integrity of a JSE once it is installed,
we modified the source codes of an installed JSE, NoScript, to attach mali-
cious behavior, e.g., stealing sensitive information, downloading and execut-
ing codes.

– Implementing malicious JSEs by ourselves. According to our analysis
on the behavior of malicious JSEs, we have implemented eight malicious
JSEs that include but not limited to the malicious behavior of sensitive
information theft and pernicious executive downloading.

We evaluated the policy framework with all the ten malicious JSEs listed above,
and it was able to identify and prohibit all the malicious JSEs we tested. Ex-
perimental results show that our framework is an efficient mechanism to restrict
the misbehavior of JSEs and is transparent to users.

5.3 Performance

To evaluate the performance of the framework, we utilized three popular browser
benchmark suits, SunSpider [14], Acid3 [15] and Kraken [16] to run the compre-
hensive tests. Our test platform is a 2.33GHz Intel Core2 Quad machine running
Microsoft Windows XP Professional SP3 with 4GB RAM and the version of Fire-
fox we used is 3.6.13pre.

Table 2 shows the experimental results. It depicts that our policy framework
brings in only 7.567% additional overhead with the SunSpider benchmark suit,
and 3.236% higher overhead with Kraken, compared with original, unmodified
Firefox. The framework has little influence on JavaScript compiling and exe-
cuting from the score of SunSpider, and has no effect on modern technologies
used on Web 2.0, as the result of Kraken shown. With Mozilla’s own benchmark
suit, Kraken, the framework costs only 3.236% more overhead than unmodified
Firefox. The most time-consuming procedure in our framework is the dynamic
formulation and enforcement procedure of the fine-grained access control poli-
cies, which has to formulate the policies and to take appropriate actions on the
information cached in the computer memory that is acquired by the resource
acquiring component according to the policies.

6 Related Work

Review Process [8, 9]. Mozilla provides a review process to ensure that a
JSE is safe and available for download on AMO [2] only if it passes the review

168 L. Wang et al.

Table 2. The results of performance evaluation

Original Firefox Modified Firefox Overhead

SunSpider 0.91 1321.6ms 1421.6ms 7.567%

Acid3 94/100 94/100 0

Kraken 1.1 24704.0ms 25503.4ms 3.236%

process. The review process of JSEs includes two categories, full review and
preliminary review. Full review requires the source codes and functionalities
of JSEs to be examined cautiously by editors. Yet preliminary review process
is a faster review intended for the experimental JSEs and does not check for
functionality or full policy compliance. JSEs on AMO were all reviewed by the
editors and installing JSEs from AMO is the most secure way. However, we can
also drop JSEs into the extension directory of Firefox, e.g., C: \Program Files
\Mozilla Firefox \extensions, to install them, which can be utilized by malwares.
The existing review process of Mozilla seems helpless to this. Therefore, we
need a run-time behavior-regulating mechanism against JSEs, which works while
Firefox is running equipped with JSEs.

Access Control Policies. Ter Louw et al. [5, 6] are the first to address the
security of JSEs and utilize XPCOM components calling to identify malicious
JSEs. They monitor the XPCOM components called by JSEs to restrict the
XPCOM access of JSEs by defining several static access control rules. Their
mechanism just takes care of single XPCOM component called by JSEs, whereas
our framework focuses on restricting the ordinal resource access of JSEs, which
is reflected in both XPCOM components and their arguments, and dynamically
formulating the global policies to restrict the resource access of JSEs.

Security Framework. Due to the high accuracy of the dynamic taint anal-
ysis technique, several researchers adopt this technical solution in several prior
works [3, 4]. They all aim at detecting malicious JSEs and preventing them
from hurting users security. Besides the dynamic taint analysis technology, some
security researchers put forward overall security frameworks for securing JSEs
[7, 17, 18]. Barth et al. [7] proposed a security browser extension framework
within the web browser, Google Chrome. To utilize the extension framework, all
extensions have to be developed by a new pattern which is not compatible with
that currently used, and all the existing extensions have to be rewritten, which
may need a long time for wide deployment in real world. VEX [17, 18] is an-
other extension framework proposed to find vulnerabilities in JSEs, which adopts
the static information flow technology to analyze JSEs offline. Nevertheless, our
framework is working online to restrict the misbehavior of JSEs while Firefox
is running. And with the advantage of the implementation, our framework is a
much more fast deployment mechanism in practical real world use.

7 Conclusion

We proposed a practical, realtime, efficient and fine-grained browser extension
access control framework, that is capable of regulating and restricting the mis-

Towards Fine-Grained Access Control on Browser Extensions 169

behavior of JSEs by several global policies. Policies of our framework are dy-
namically formulated on the basis of the fine-grained resource access control and
the ordinal resource access of JSEs, and are proposed to restrict the misbehavior
of JSEs with malicious intent and to protect users’ security. The framework is
integrated inside Firefox, which makes it a fast deployment mechanism in real-
world use. Experimental results show that the framework achieves efficiency and
accuracy and is a simple and efficient restriction mechanism for restricting the
resource access of JSEs at run time while Firefox is running equipped with JSEs.

References

1. SOP: The Same-Origin Policy (August 2001),
http://www.mozilla.org/projects/security/components/same-origin.html

2. Amo: Addons.mozilla.org, https://addons.mozilla.org
3. Djeric, V., Goel, A.: Securing script-based extensibility in web browsers. In:

USENIX Security (2010)
4. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based

browser extensions. In: 2009 Annual Computer Security Applications Conference,
pp. 382–391. IEEE (2009)

5. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible Web Browser Security.
In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 1–19.
Springer, Heidelberg (2007)

6. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing web browser security
against malware extensions. Journal in Computer Virology 4(3), 179–195 (2008)

7. Barth, A., Felt, A., Saxena, P., Boodman, A.: Protecting browsers from exten-
sion vulnerabilities. In: Proceedings of the 17th Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Citeseer (2010)

8. Review process of mozilla,
https://addons.mozilla.org/en-US/developers/docs/policies/reviews

9. Add-on reviews,
https://wiki.mozilla.org/AMO:Editors/EditorGuide/AddonReviews

10. Ffsniff: Firefox sniffer (June 2008),
http://azurit.elbiahosting.sk/ffsniff

11. Building an firefox extension,
https://developer.mozilla.org/en/Building_an_Extension

12. Mozilla xpconnect, https://developer.mozilla.org/en/XPConnect
13. Mozilla addons blocklist, http://www.mozilla.com/en-US/blocklist/
14. Sunspider javascript benchmark,

http://www.webkit.org/perf/sunspider/sunspider.html

15. Acid3 benchmark, http://www.webstandards.org/action/acid3/
16. Kraken benchmark, http://krakenbenchmark.mozilla.org/index.html
17. Bandhakavi, S., King, S., Madhusudan, P., Winslett, M.: VEX: vetting browser

extensions for security vulnerabilities. In: USENIX Security (2010)
18. Bandhakavi, S., Tiku, N., Pittman, W., King, S.T., Madhusudan, P., Winslett, M.:

Vetting browser extensions for security vulnerabilities with vex. Communications
of the ACM 54(9), 91–99 (2011)

http://www.mozilla.org/projects/security/components/same-origin.html
https://addons.mozilla.org
https://addons.mozilla.org/en-US/developers/docs/policies/reviews
https://wiki.mozilla.org/AMO:Editors/EditorGuide/AddonReviews
http://azurit.elbiahosting.sk/ffsniff
https://developer.mozilla.org/en/Building_an_Extension
https://developer.mozilla.org/en/XPConnect
http://www.mozilla.com/en-US/blocklist/
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webstandards.org/action/acid3/
http://krakenbenchmark.mozilla.org/index.html

Enhanced STE3D-CAP:

A Novel 3D CAPTCHA Family

Yang-Wai Chow1 and Willy Susilo2,�

1Centre for Multimedia and Information Processing
2Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{caseyc,wsusilo}@uow.edu.au

Abstract. With the growth of the Internet, its wide-ranging services are
increasingly being threatened by adverse and malicious attacks.
CAPTCHAs have emerged as a standard security countermeasure against
Internet attacks such as distributed denial of service attacks and bot-
nets. However, many CAPTCHA schemes themselves have been found
to be susceptible to automated attacks. The task of designing a good
CAPTCHA scheme is still an open and challenging question, as a good
CAPTCHA must fulfil two fundamental requirements; namely, it must
be secure against automated attacks whilst being human usable. This pa-
per presents STE3D-CAP-e, a human usable text-based CAPTCHA that
is robust against a variety of attacks. STE3D-CAP-e adopts a novel 3D
CAPTCHA approach designed to capitalise on the inherent human abil-
ity to perceive depth from stereoscopic images. By presenting CAPTCHA
challenges using stereoscopic images, humans can distinguish the main
text from the background clutter in 3D. The various issues that were
considered and addressed in the design of STE3D-CAP-e are described,
along with a formal definition of its underlying AI problem family. This
paper also presents analysis of STE3D-CAP-e in terms of its security and
usability.

Keywords: CAPTCHA, stereoscopic, usability, segmentation-resistant.

1 Introduction

In recent years, CAPTCHAs (Completely Automated Public Turing test to tell
Computers and Humans Apart) have become ubiquitous on the Internet as a
security countermeasure against adverse attacks like distributed denial of ser-
vice attacks and botnets. While the idea of ‘Automated Turing Tests’ has been
around for some time, the term ‘CAPTCHA’ was introduced by von Ahn et al.
[13] as automated tests that humans can pass, but current computer programs
cannot pass. In their seminal work, they describe CAPTCHAs as hard Artificial
Intelligence (AI) problems that can be exploited for security purposes.

� This work is supported by ARC Future Fellowship FT0991397.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 170–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

STE3D-CAP: A Novel 3D CAPTCHA Family 171

This has given rise to an arms race between CAPTCHA developers, who at-
tempt to create more secure CAPTCHAs, and attackers, who try to break them.
The development of a good CAPTCHA scheme is not an easy task as it must
be secure against automated attacks, and at the same time, it must be usable
by humans (i.e. human-friendly). Of the different categories of CAPTCHAs (e.g.
image-based CAPTCHAs, audio CAPTCHAs) that have emerged thus far, text-
based CAPTCHAs are the most common and widely deployed category to date.
The popularity of text-based CAPTCHAs is due, in part, to its intuitiveness to
users world-wide in addition to its potential to provide strong security [15].

STE3D-CAP (pronounced ‘steed-cap’ /’stidkæp/)1, or Stereoscopic 3D CAPT-
CHA, was introduced as a novel CAPTCHA approach that was designed to be
segmentation-resistant whilst being human usable [11]. The fundamental idea
behind STE3D-CAP is to present CAPTCHA challenges to the user using stereo-
scopic images. This technique relies on the inherent human ability to perceive
depth from stereoscopic images. If the stereoscopic CAPTCHA is designed well,
this task will be easy and natural for humans but difficult for current computer
programs. By incorporating stereoscopic images in the CAPTCHA challenge,
segmentation-resistant methods like adding clutter and ‘crowding characters to-
gether’ can be implemented to a higher degree whilst still maintaining usability.
This is because to humans, the text in the resulting CAPTCHA will appear to
stand out from the clutter in the perceived 3D scene.

1.1 Our Contributions

This paper was inspired by the work by Susilo et al. [11], where they introduced
a CAPTCHA built from stereoscopic images which they called STE3D-CAP.
This paper builds on the concepts underlying STE3D-CAP, and presents a new
and improved stereoscopic CAPTCHA design. We will refer to this enhanced
version as STE3D-CAP-e. The work in [11] relied on the use of specialised stereo-
scopic display hardware to present stereoscopic images to the user [11]. How-
ever, as stereoscopic 3D devices have yet to become ubiquitous, this restricts
the pervasiveness of STE3D-CAP. Therefore, the work presented here focuses on
an anaglyph approach to presenting STE3D-CAP-e challenges. Nevertheless, it
should be noted that this in no way precludes the use of stereoscopic display
devices for STE3D-CAP-e.

Instead of adding random clutter, as used in a variety of other CAPTCHAs
and in [11] in STE3D-CAP-e the clutter will consist of characters in the back-
ground. This will appear as ‘text-on-text’ and the resulting CAPTCHA challenge
will be to distinguish the main characters from the background characters. The
innovation of using text as the background clutter makes the task of segmenta-
tion all the more difficult for computers.

Two versions of STE3D-CAP-e are presented in this paper; one in which the
rendered characters appear as solid objects, and the other that uses wireframe
characters. Examples of these are shown in Figure 1(a) and 1(b) respectively.

1 ‘Steed’ - a spirited horse, especially for war.

172 Y.-W. Chow and W. Susilo

These stereoscopic CAPTCHAs can be viewed using red-cyan anaglyph glasses.
To solve STE3D-CAP-e, a user must identify the foreground characters.

(a) Solid object version. Foreground
characters = ‘TEKX’

(b) Wireframe version. Foreground
characters = ‘ECFU’

Fig. 1. Examples of STE3D-CAP-e, which can be viewed in 3D using a pair of red-cyan
anaglyph glasses

2 Related Work

2.1 CAPTCHA Security

CAPTCHA security has been the topic of much scrutiny. A number of researchers
have demonstrated that many existing CAPTCHA schemes are vulnerable to
automated attacks. Much of this vulnerability stems from certain design flaws
in these CAPTCHAs.

2.2 CAPTCHA Usability

In addition to the security strength, or robustness, of a CAPTCHA scheme, the
other issue that has to be considered when designing CAPTCHAs is its ease of
use for humans. ScatterType is an example of a text-based CAPTCHA that was
designed to resist segmentation attacks2, however initial usability experiments
showed an overall legibility rate of 53% [1]. The legibility rate was subject to
the difficulty level of the CAPTCHA challenge. Baird et al. [1] stated that the
CAPTCHA generation parameter range could be controlled to be within an op-
erating regime that would result in highly human legible CAPTCHAs. However,
they also reported that there was weak correlation between the generating pa-
rameters and the desired properties, thus making automatic selection of suitably
legible challenges difficult.

Another usability issue is that before being able to identify individual char-
acters in the string, humans must first be able to distinguish the text from any
background clutter. In addition to its aesthetic properties, the use of colour or
background textures can make the task of perceiving the text from the back-
ground easier. However, it has been shown that inappropriate use of colour and

2 It is observed that for the human legible challenges in this CAPTCHA, it can prob-
ably be segmented using something similar to the vertical pixel-count attack as
described in [14].

STE3D-CAP: A Novel 3D CAPTCHA Family 173

background textures can be problematic in terms of both usability and security
[15]. In general, if the background colour or texture can easily be separated from
the text using an automated program, then it does not contribute to the security
strength of the CAPTCHA and it may be better not to use it as it can actually
harm usability. This is because it may make it hard to see the actual text or be
distracting for a human user.

2.3 3D CAPTCHAs

A number of attempts at designing and developing 3D CAPTCHAs have re-
cently emerged in literature and in practice. These approaches typically gener-
ate CAPTCHA challenges by rendering 3D models of text-objects or of other
objects.

Among 3D CAPTCHA ideas that have been proposed in the research com-
munity, Mitra et al. [7] proposed a technique of generating ‘emerging images’ by
rendering extremely abstract representations of 3D models placed in 3D envi-
ronments. This approach is based on ‘emergence’, the unique human ability to
perceive objects in an image not by recognising the object parts, but as a whole
[7]. Ross et al. [9] presented a pilot usability study and security analysis of a
prototype implementation of their CAPTCHA called ‘Sketcha’. Sketcha is based
on oriented line drawings of 3D models and the user’s task is to correctly orient
images containing these 3D model line drawings.

3 Enhanced Stereoscopic 3D CAPTCHA: STE3D-CAP-e

STE3D-CAP-e is a text-based CAPTCHA that is designed to be human usable,
yet at the same time robust against a variety of automated attacks. The underly-
ing concept behind STE3D-CAP-e is to present the CAPTCHA challenge to the
user via stereoscopic images. When viewed in 3D, legitimate human users should
be able to distinguish the main text from the background clutter. This approach
attempts to exploit the difference in ability between humans and computers in
the task of 3D perception.

3.1 Design and Implementation

The security strength of a CAPTCHA is determined by the cumulative effects
of its design choices [4]. A number of security flaws found in existing CAPTCHA
designs was previously outlined in section 2. STE3D-CAP-e was designed to over-
come these, by addressing the following issues in its design and implementation:

– Instead of using random clutter, in STE3D-CAP-e the background clutter
consists of characters themselves. This ‘text-on-text’ approach makes it ex-
tremely difficult for a computer to correctly segment the resulting CAPTCHA.
On the other hand, stereoscopy is part of the human visual system and when
STE3D-CAP-e is viewed in 3D, humans should be able to identify the fore-
ground characters from the background characters. In the Mori and Malik

174 Y.-W. Chow and W. Susilo

[8] attack on Gimpy, they state that it is nearly impossible to determine in-
dividual characters in such severe clutter, as many parts can be occluded or
highly ambiguous. Therefore, in the second part of their work they presented
a holistic approach to determine entire words [8].

– STE3D-CAP-e uses random characters. As such, holistic approaches that rely
on a database of dictionary words (or phonetic strings) to identify entire
words will not work.

– In addition, STE3D-CAP-e is a variable length CAPTCHA. Variable length
CAPT-CHAs are harder to segment as the attacker has limited prior knowl-
edge regarding the exact length of the solution [14].

– STE3D-CAP-e uses both local and global warping. This significantly deters
pixel-count attacks [16].

– Random 3D transformations are also implemented for all characters in STE3D-
CAP-e. Thus, increasing the difficulty of attacks.

– All characters are rendered using the same colour. Therefore, colour cannot
be used as a criteria to separate the background from the foreground.

– Furthermore, STE3D-CAP-e adopts the ‘crowding characters together’ ap-
proach for both the background and foreground characters, and also overlaps
character rows, which makes the task of segmentation all the more difficult.

The current implementation of STE3D-CAP-e consists of 3 rows, with 7 charac-
ters per row. The character set is made up of capital letters and digits. Characters
in the rows are made to overlap in the vertical direction and the characters in the
columns are crowded together in the horizontal direction, at times overlapping
or joining together. The foreground characters consist of 3 to 5 characters, in
sequence, that can start from any location in the middle row. Initial implemen-
tations allowed foreground characters to take random locations, but this had
usability implications as it confused users.

The other reason for restricting foreground characters to the middle row, is
because it may be possible to identify characters in the top and bottom rows by
trying to recognise the top part or bottom part of the characters in those rows.
Placing the foreground characters in the middle row circumvents this. Although
in doing so, attackers will have this information. Nevertheless, this does not make
the task of segmentation or identifying individual characters any easier, due to
the overlapping characters from both the top and bottom rows.

It should be noted that STE3D-CAP-e can easily be expanded to contain more
rows and columns, and longer foreground character strings. However, this was
thought to make the challenge unnecessarily confusing. In addition, a variety
of factors can also be adjusted (e.g. amount of local and global warping, trans-
formation range, etc.) Two versions of STE3D-CAP-e were implemented, one
by rendering characters as solid objects and the other by rendering them in
wireframe. Examples of these were previously shown in Figure 1(a) and 1(b)
respectively.

STE3D-CAP: A Novel 3D CAPTCHA Family 175

3.2 Issues Unique to STE3D-CAP-e

In light of the fact that STE3D-CAP-e uses a novel stereoscopic approach to
present CAPTCHA challenges, there are several issues unique to STE3D-CAP-e
that are not relevant to other CAPTCHAs. These are discussed as follows.

Stereoscopy. Stereoscopy relates to the perception of depth in the human vi-
sual system that arises from the interocular distance (i.e. the distance between
the eyes) [3]. When presented with a stereo pair, two images created for the
left and right eyes respectively, the human visual system perceives the sensation
of depth through a process known as stereopsis. Stereopsis relies on binocular
disparity (i.e. the difference in the images that are projected onto the left and
right eye retinas, then onto the visual cortex), to obtain depth cues from stereo-
scopic images. Stereoscopic display technologies simulate binocular disparity by
presenting different images to each of the viewer’s eyes independently [6]. If the
stereoscopic images are generated correctly, the visual cortex will fuse the images
to give rise to the sense of depth. There are a variety of different stereoscopic
display technologies, a comprehensive overview can be found in McAllister [6].

There are a number of factors to consider when generating stereoscopic im-
ages. One of which is referred to as stereoscopic parallax, or simply parallax.
Parallax is the distance (which can be positive or negative) between the pro-
jected positions of a point in the left and right eye views on the projection plane.
A point in space that is projected onto the projection plane can be classified as
having one of three relationships:

– Zero parallax occurs when the projected point coincides with the projection
plane. This will result in the pixel position of the projected point being at
exactly the same position in the anaglyph image.

– Positive parallax occurs when the projected point is located behind the pro-
jection plane. In this case, the pixel position of the projected point is located
on the right for the right eye, and on the left for the left eye. When perceived
in 3D, the point will appear at a depth ‘into’ the screen.

– Negative parallax occurs when the projected point is located in front of the
projection plane. When this happens, the pixel position of the projected
point is located on the left in the right image and on the right in the left
image. Viewed in 3D, the viewer will perceive the point as coming ‘out’ of
the screen.

Since STE3D-CAP-e challenges are generated in 3D, this allows greater flex-
ibility in the random transformation of 3D characters. Unlike traditional 2D
CAPTCHAs in which characters can only be randomly translated in the hor-
izontal and vertical dimensions, and rotated clockwise or counter-clockwise. In
STE3D-CAP-e characters can be randomly translated ‘into’ or ‘out of’ the screen.
In addition to clockwise and counter-clockwise rotation, the 3D characters in
STE3D-CAP-e can also have random rotations in terms of their yaw and pitch.

In normal perspective projection, objects will get smaller with distance from
the viewer. However, this must be avoided in STE3D-CAP-e, otherwise separating

176 Y.-W. Chow and W. Susilo

foreground from background characters will be a simple matter of distinguishing
characters based on their size. As such, the characters in STE3D-CAP-e are scaled
in a way that makes them all appear to be of similar sizes when rendered in the
2D image, despite them being at different depths in 3D.

Another issue that had to be addressed was how to make it difficult for com-
puter vision techniques to reconstruct the 3D scene. To achieve this, characters
in STE3D-CAP-e are rendered in a random order with a degree of translucency.
This effectively blends the colours of the foreground and background characters
together and creates a ‘see-through’ effect (the degree of which can be adjusted),
thus making it harder for attacks involving image processing and computer vision
techniques. This is discussed in section 4.2.

Limitations. The unique nature of STE3D-CAP-e also results in a number of
limitations:

– STE3D-CAP-e is a visual CAPTCHA, and like all other visual CAPTCHAs,
it is not accessible to those with visual impairments. In addition, STE3D-
CAP-e cannot be used by individuals who are stereo-blind.

– To view STE3D-CAP-e in 3D, a stereoscopic display approach has to be used.
For the anaglyph approach, this requires a pair of anaglyph glasses. While
these are cheap to produce, it gives rise to the limitation that individuals who
are colour-blind, or have a colour defect which coincides with the anaglyph
colour filters, will not be able to view STE3D-CAP-e in 3D. This can be
overcome using other stereoscopic display approaches (e.g. autostereoscopic
displays or active shutter glasses). However, while these devices are the way
of the future, they have yet to become ubiquitous.

– To comfortably view STE3D-CAP-e challenges in 3D, its display size cannot
be too small.

3.3 New AI Problem Family

This section introduces the AI problem family used to construct STE3D-CAP-e.
This is based on the definitions and notations defined in von Ahn et al. [13]. To
commence, the terminology that will be used throughout this section is defined
as follows.

An image is defined as an h×w matrix (where h stands for height and w stands
for width), whose entries are pixels. A pixel is defined as a triplet (R,G,B), where
0 ≤ R,G,B ≤M , for a constantM [13]. Let I2d be a distribution on 2D images
(i.e. anaglyph),and I3d be a distribution on 3D images, T2d be a distribution
on 2D transformations, and T3d be a distribution on 3D transformations, that
includes rotation, scaling, translation and warping. The depth of a 3D image is
denoted by d, where d = 0 represents a foreground image. Let T3d : I3d → I3d
be a transformation function that accepts a 3D image and produce a distorted
3D image. Let T2d : I2d → I2d be a transformation function that accepts a 2D
image (anaglyph) to produce a distorted 2D image. Functions T3d and T2d apply
local warping/distortion to each 3D image and global warping/distortion to the

STE3D-CAP: A Novel 3D CAPTCHA Family 177

final 2D image. Let F : I3d × ZZ → I3d be a function that transforms a 3D
image (that is originally at depth d = 0) to a 3D image of depth d ∈ ZZ. Let
G : I3d × ZZ→ I3d be a function that ‘extracts’ the 3D image at layer d ∈ ZZ to
produce a new 3D image. Let E : I3d → I2d be an anaglyph extraction function,
that extracts an anaglyph image (in the I2d set) from a 3D image (in the I3d
set). Note that for practicality, we assume that any new 3D image created will
have depth d = 0 (i.e. in the foreground). Let � : I3d × I3d → I3d be a function
that combine two 3D images into a single 3D image. Let |A| be the cardinality
of A. Let Δ : |I3d| → I3d be a lookup function that maps an index in |I3d| and
outputs a 3D image in I3d. Let � be the length of the STE3D-CAP-e challenge.
Let γ be the number of layers that will be used for the clutter in STE3D-CAP-e.

For clarity, the rest of this paper will use Roman boldface characters to
denote elements of I3d and Sans Serif characters to denote elements of I2d.
Problem Family (PSTE3D-CAP-e)
Consider the following experiment.

1. Randomly select I := {i ∈ |I3d|�}.
2. For each i ∈ I, compute Ĩ := {i← Δ(i)}.
3. For each i ∈ Ĩ, compute Ĩ := {T3d(i)}.
4. For β := 1 to γ do

(a) Randomly select C := {c ∈ |I3d|�}.
(b) For each c ∈ C, compute C̃ := {c← Δ(i)}.
(c) For each c ∈ C̃, compute C̃ := {T3d(c)}.
(d) For each c ∈ C̃, compute Ĉ := {F(c, β)}.
(e) For each i ∈ Ĩ, c ∈ C̃, compute Ĩ := {i � c}.

5. Compute I := E(Ĩ).
6. Compute Î := T2d(I).
7. Output Î as the STE3D-CAP-e challenge.

The output of the experiment is Î. Note that |Î| = �, is the length of the

STE3D-CAP-e challenge. The total number of objects in Ĩ is (γ + 1)�, where
γ is the number of layers used in the STE3D-CAP-e clutter. Assuming that
Δ−1 : I3d → |I3d| and E−1 : I2d → I3d exist, then the answer to the STE3D-
CAP-e challenge is

υ = ∀c∈E−1(Î)
(
Δ−1 ({G(c, 0)})

)
.

PSTE3D-CAP-e is to write a program that takes Î as input and outputs υ, assuming
the program has precise knowledge of I3d and I2d.
Hard Problem in PSTE3D-CAP

We believe that PSTE3D-CAP-e contains a hard problem. Given Î, for any program
B,

Pr
[
Br(Î) = υ

]
< η.

Based on this hard problem, we can construct a secure (α, β, η)-CAPTCHA.

178 Y.-W. Chow and W. Susilo

4 Security Analysis

This section presents analysis on the security of STE3D-CAP-e. An adversary,
A, will have access to the STE3D-CAP-e challenge, Î. A’s main goal is to output
υ = ∀c∈E−1(Î)

(
Δ−1 ({G(c, 0)})

)
. In this section, we will provide several possible

attack scenarios that can be used to attack STE3D-CAP-e and the formalisation
of these attacks. Please note that the sample images resulting from the proposed
attacks are not included in the paper due to the page limitation.

4.1 Brute Force Attacks

To attack a STE3D-CAP-e challenge, Î, A can launch a straightforward attack
by adopting the brute force strategy. In this attack, A will provide a random
solution to the challenges until one succeeds. This means that given Î, A will
try a random answer to solve the challenge. Since STE3D-CAP-e is a variable-
length CAPTCHA, its length of the correct answer is �. Suppose that there
are 36 possible characters which comprise of case insensitive letters and digits,
then the chance of a successful brute force attack is 1

36�
. Having attempted

n times, the overall chance will be
(

1
36�

)n
, which is negligible. Furthermore, in

practice CAPTCHAs are usually combined with techniques such as token bucket
algorithms to combat denial-of-service attacks [5].

4.2 Single Image Attacks

In a single image attack,A is provided with an anaglyph STE3D-CAP-e challenge,
Î. Note that this image is a 2D image. A will be interested to extract υ from Î.
There are several strategies that A can employ to conduct this attack:

1. Anaglyph filtering technique.
2. Edge detection technique.
3. 3D reconstruction technique.

These techniques are discussed in detail as follows.

Edge Detection Technique. The aim of the edge detection technique is to
find the edges of the objects in the given image, Î. Since Î is a 2D image, directly
conducting an edge detection method on this image will include all the clutter
embedded in the image.

Anaglyph Filtering Technique. The aim of this attack is to separate the ‘left’
image from the ‘right’ image of Î, and then try to analyse them. This is possible
because in an anaglyph image, the two images are colour encoded to produce a
single image. Hence, separate left and right images can simply be obtained by
filtering the anaglyph image using appropriate colour filters (usually red/cyan,
red/blue, or red/green). Formally, we define two functions Eleft : I2d → I2d and
Eright : I2d → I2d as extraction functions for left and right colours, respectively.

The attack is conducted as follows.

STE3D-CAP: A Novel 3D CAPTCHA Family 179

1. Compute Ileft := Eleft(Î).
2. Compute Iright := Eright(Î).

The attacker, A, can try to run an edge detection filter on these separate images.
If the foreground characters were to completely block the background characters,
this would appear as completely clear regions in the resulting images. Nonethe-
less, one can see that this is not the case because STE3D-CAP-e challenges were
rendered using a certain degree of translucency, therefore the foreground char-
acters do not completely occlude the background characters.

With Ileft and Iright, A can also try to analyse these by obtaining the differ-
ences between them. This is because foreground characters will have a different
parallax compared to background characters. Formally, let Idiff = Ileft−Iright,
where − denotes any preprocessing and image difference operations. This still
does not yield much useful information for the task of segmentation, because of
the significantly overlapping characters. In order to make a successful attack, A
should compute

Inew := Î \ ∀c∈E−1(Î),δ �=0 {G(c, δ)}

and then compute Ileft := Eleft(Inew) and Iright := Eright(Inew). Upon obtain-
ing these values, A can compute Idiff = Ileft − Iright and possibly apply a
thresholding or edge detection technique, either before or after Idiff . Neverthe-
less, it is not feasible to compute Inew , since the function E−1 does not exist and
cannot be ascertained from Idiff . Hence, this attack will not succeed.

3D Reconstruction Technique. The purpose of this attack is to estimate 3D
information from the given anaglyph image. This will require the use of a stereo
correspondence algorithm. Stereo correspondence, a process that tries to find
the same features in the left and right images, is a heavily investigated topic in
computer vision [10]. The result of this is typically to produce a disparity map, an
estimate of the disparity in the left and right images, which may subsequently be
used to find depth discontinuities or to construct a depth map, if the geometric
arrangement of the views is known.

One of the problems in stereo matching is how to handle effects like translu-
cency [12]. Therefore, the design of STE3D-CAP-e is such that all characters
are rendered with a degree of translucency. Furthermore, many stereo matching
algorithms require texture throughout the images, as untextured regions in the
stereo pair gives rise to ambiguity [2]. STE3D-CAP-e is rendered without the use
of textures.

5 Usability

We conducted a pilot study to determine the usability of STE3D-CAP-e. This
study was also done to ascertain whether any improvements could be made to
the design of STE3D-CAP-e, from a usability standpoint.

180 Y.-W. Chow and W. Susilo

For this study, a total of 36 STE3D-CAP-e challenges were generated with
an 800 x 300 resolution. Of these, 18 were generated using the solid object ap-
proach and the other 18 using the wireframe approach. Each approach contained
an equal number of challenges with lengths of 3, 4 and 5, respectively (i.e. 6
challenges per category). The experiment was designed to be short to avoid par-
ticipants losing concentration. Total time required to complete the experiment
varied between participants, but took no longer than 7 minutes. A program was
written to present the STE3D-CAP-e challenges to participants in a randomised
sequence, with the same conditions maintained for all participants. The program
also timed and recorded all answers.

From the results of the experiment, the overall accuracy, with accuracy being
determined based on the number of correct answers, was 86.71%. The amount
of time taken by participants to solve individual challenges varied rather widely,
with an average response time of approximately 6.5 seconds per challenge. In
general, the amount of time taken per challenge rarely exceeded 10 seconds.

Results of the solid object and wireframe approaches were compared, and
it was found that the wireframe approach gave rise to a higher accuracy at
88.29%, while the accuracy of the solid object approach was 85.12%. On average,
participants also took longer to solve challenges generated using the solid object
approach as opposed to the wireframe approach. Nevertheless, t-tests indicated
that these differences between the means were not statistically significant.

5.1 Pilot Study Conclusions

For good usability, and to avoid users getting annoyed, Chellapilla et al. [4]
stated that the human success rate of a good CAPTCHA should approach 90%.
The overall result from this pilot study just about satisfies this benchmark, and
this suggests that both solid object and wireframe versions of STE3D-CAP-e are
human usable. Furthermore, it is anticipated that the human success rate will
significantly improve if digits are removed from STE3D-CAP-e challenges. This
will avoid users getting confused between particular digits and letters. As this
was observed to be a major source of incorrect answers in this study, the removal
of digits will certainly improve the usability of STE3D-CAP-e. While it will also
mean that attackers can work with a smaller set of possible characters, this is
not a large concern as it is not deemed to have a major impact on the security of
STE3D-CAP-e. Other usability issues that can be factored in to increase usability,
is prevent confusing character combinations. For example, ‘V’‘V’, which could
be mistaken to be a ‘W’, and vice versa.

6 Conclusion

Current CAPTCHAs generally suffer from a security-usability trade off. STE3D-
CAP-e is a novel 3D CAPTCHA approach that was designed to address these
limitations. The result is a CAPTCHA that is both human usable and resistant
against a variety of automated attacks.

STE3D-CAP: A Novel 3D CAPTCHA Family 181

References

1. Baird, H.S., Moll, M.A., Wang, S.-Y.: A Highly Legible CAPTCHA That Resists
Segmentation Attacks. In: Baird, H.S., Lopresti, D.P. (eds.) HIP 2005. LNCS,
vol. 3517, pp. 27–41. Springer, Heidelberg (2005)

2. Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. Interna-
tional Journal of Computer Vision 35(3), 269–293 (1999)

3. Bourke, P., Morse, P.: Stereoscopy: Theory and Practice. In: Workshop at the 13th
International Conference on Virtual Systems and Multimedia, VSMM 2007 (2007),
http://local.wasp.uwa.edu.au/ pbourke/papers/vsmm2007/

stereoscopy workshop.pdf

4. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building Segmentation
Based Human-Friendly Human Interaction Proofs (HIPs). In: Baird, H.S., Lopresti,
D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

5. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a CAPTCHA that Exploits
Interest-Aligned Manual Image Categorization. In: Ning, P., di Vimercati, S.D.C.,
Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security,
pp. 366–374. ACM (2007)

6. McAllister, D.: 3D Displays. Wiley Encyclopedia on Imaging, Pacific Grove, CA
(2002)

7. Mitra, N.J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H., Cohen-Or, D.: Emerg-
ing Images. ACM Trans. Graph. 28(5) (2009)

8. Mori, G., Malik, J.: Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In: CVPR (1), pp. 134–144 (2003)

9. Ross, S.A., Halderman, J.A., Finkelstein, A.: Sketcha: a CAPTCHA based on Line
Drawings of 3D Models. In: Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.)
WWW, pp. 821–830. ACM (2010)

10. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision 47(1-3), 7–42
(2002)

11. Susilo, W., Chow, Y.W., Zhou, H.: STE3D-CAP: Stereoscopic 3D CAPTCHA. In:
Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp.
221–240. Springer, Heidelberg (2010)

12. Tsin, Y., Kang, S.B., Szeliski, R.: Stereo matching with linear superposition of
layers. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 290–301 (2006)

13. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI
Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003)

14. Yan, J., Ahmad, A.S.E.: A Low-Cost Attack on a Microsoft CAPTCHA. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Communica-
tions Security, pp. 543–554. ACM (2008)

15. Yan, J., Ahmad, A.S.E.: Usability of CAPTCHAs or Usability Issues in CAPTCHA
Design. In: Cranor, L.F. (ed.) SOUPS. ACM International Conference Proceeding
Series, pp. 44–52. ACM (2008)

16. Yan, J., Ahmad, A.S.E.: CAPTCHA Security: A Case Study. IEEE Security &
Privacy 7(4), 22–28 (2009)

http://local.wasp.uwa.edu.au/~pbourke/papers/vsmm2007/stereoscopy_workshop.pdf
http://local.wasp.uwa.edu.au/~pbourke/papers/vsmm2007/stereoscopy_workshop.pdf

High-Entropy Visual Identification

for Touch Screen Devices

Nathaniel Wesley Filardo and Giuseppe Ateniese

Johns Hopkins University
Computer Science Department

3400 N. Charles Ave.
Baltimore, MD 21218

{nwf,ateniese}@cs.jhu.edu
http://www.cs.jhu.edu/~{nwf,ateniese}/

Abstract. We exhibit a system for improving the quality of user-derived
keying material on touch-screen devices. We allow a device to recover
previously generated, highly entropic data suitable for use as (part of)
a strong secret key from a user’s act of identifying to the device. Our
system uses visual cryptography [21], using no additional electronics and
no memorization on the part of the user. Instead, we require the use of a
transparency overlaid on the touch-screen. Our scheme is similar to the
identification scheme of [22] but tailored for constrained, touch-screen
displays.

1 Introduction

Mobile devices have become pervasive features of modern life. While handy,
these devices typically do not have input mechanisms that make entering se-
cure passwords easy. (In fact, many of them use predictive text models to make
entering even low entropy prose easier. This does not bode well for asking the
user to enter even short, highly entropic strings such as t5Ax9zK%.) Therefore,
we expect mobile devices either to not be used for storing sensitive data or to
present a likely vulnerability.

Our system enhances password or pass-phrase security by pairing traditional
password entry with the requirement that the user answer a randomly chosen
visual challenge. The system does not require that a user memorize any static
secret material beyond their extant password; instead, our challenges use visual
cryptography [21] and require that the user carry a transparent slide to respond.
Informally, this puts our system in the category of systems which “authenticate
with something you have” (or as one factor of a multi-factor system) rather than
“with something you know.” Our scheme is similar to the one in [22] (a detailed
comparison may be found in Appendix A).

We believe our system to be useful as a generic tool for augmenting password
strength, without requiring that users memorize yet more secrets. The challenges
encode many bits of entropy in their solution, and are well-suited as a drop-in
augmentation to systems, both for authentication and for deriving encryption

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 182–198, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

High-Entropy Visual Identification for Touch Screen Devices 183

keys, which have traditionally used passwords or phrases. Our system is designed
so that any attacker not in possession of the user’s slide gains no insight into how
to answer by collecting any number of challenges (but without seeing responses).

In our demonstration prototype using OpenIntent’s OI Safe [23],1 a pass-
word store and cryptography provider for the Android environment, the entropy
encoded in the challenge is concatenated with the user’s password and fed
into a traditional Password-Based Encryption (PBE) [1, 17] scheme to decrypt
the (strong, random) key used to encrypt individual password entries. That is,
authentication takes place by successfully decrypting a second key, rather than
the more typical hash-and-compare done with password authentication schemes.
The safe stores, in addition to the user’s data, enough information to create
challenges. A new challenge is generated and the safe is re-keyed every time it
is successfully opened.

We will first give a brief review of the basic visual cryptography we use
(section 2), followed by an overview of our scheme and prototype implemen-
tation (section 3) and a contrast to prior work (section 4). We then discuss our
threat model more fully, and the resulting theoretical design of a parametric fam-
ily of systems (section 5). Having laid out our parameter space, we exhibit our
particular realization within this family and apply standard human-computer
interaction tools to estimate performance of an ideal instantiation (section 6).

2 Visual Cryptography

(a) The basic 2 × 2-subpixel, 2-
of-2 visual secret splitting scheme.
Shown here, four display pixels of
each share are being combined to
produce one pixel of the hidden im-
age.

(b) An example slide, which should be scaled
to match the device’s display and printed on
a transparent sheet of plastic. Slides are com-
posed of random noise rendered as display
pixels as per section 2. The grid lines separate
independent instances of visual secret splitting
(each grid cell) and are imposed only to aid in
subsequent use; see Figure 1.

1 All of the code used for this paper is available on the Web at http://github.com/
nwf/android-vcpass and http://github.com/nwf/android-vcpass-oisafe

http://github.com/nwf/android-vcpass
http://github.com/nwf/android-vcpass
http://github.com/nwf/android-vcpass-oisafe

184 N.W. Filardo and G. Ateniese

Visual Cryptography [21] is a method for encrypting or hiding visual infor-
mation in a way where decryption may be done by a human without the use
of code-books, tables, or computers. The prototypical example, and the one we
use in our prototype scheme, is a two-of-two secret splitting scheme, in which a
black and white secret image is split into two “black and transparent” shares,
neither of which alone conveys any information about the encoded image.2

To hide a single pixel of the image, we follow the most basic 2-of-2 secret
splitting scheme of [21]. A b × b block of pixels in the shares will have either
identical (for a white pixel) or complementary (for black) diagonals set black
(the other pixels will be transparent), as shown in 1a. The resulting shares will
have b2 as many pixels as the original image; to avoid confusion we distinguish
between “display pixels” of the shares and “image pixels” of the original and
reconstructed images. Information security is attained by setting one share’s
blocks independently, identically distributed (iid) uniformly at random, making
it clearly uncorrelated with the hidden image. The other share’s corresponding
block is then set to the appropriate diagonal. While the image was an input to
the values of this share, no information survives due to the iid uniform bit flip
channel defined by the first share. Thus the secret is only recoverable from the
pair of shares, as intended.

3 System Overview

As is typical of secure document stores, OI Safe has a “master key” which is used
to encrypt individual entries. The master key is chosen at random and is itself en-
crypted using a salted PBE scheme fed with the user’s password; this makes chang-
ing the password independent of the amount of the data being stored. OI Safe may
be “opened” by entering the password, which allows it to decrypt the master key,
and thereby allows the user and external applications to access stored passwords
and its encryption functionality. Itmay be “closed” (either explicitly or after a con-
figurable timeout) by erasing the in-memory copy of the master key plain-text.

Our prototype enhances the security of the system by combining, prior to PBE
strengthening, the user’s password with (roughly 36 bits of) random data, hidden
using visual cryptography. To open the safe under this new scheme, the user first
provides a plain-text password, as with the non-augmented OI Safe, and then
decrypts the previously generated random data. The latter step involves placing
a transparency (carrying a gridded image such as 1b), previously generated and
printed, over the display and indicating the direction (or absence) of an arrow
in each grid cell by touching and dragging in the appropriate direction. (The set
of arrow and blank images we call the “vocabulary” in subsequent discussion.3)

2 Formally, the requirement is that there is zero mutual information between either of
the shares in isolation and the secret.

3 Our prototype chooses to use a vocabulary of four arrows, one for each cardinal
direction, and two blanks. There are sixteen independent cells in our challenges.
These choices balances the entropy of the challenge (see subsection 5.2) against the
(estimated) time to answer the challenge (see subsection 6.1), but are not the only
possible choice; section 5 will discuss the system, and its parameters, more fully.

High-Entropy Visual Identification for Touch Screen Devices 185

We emphasize that it is possible to use the touch screen, and therefore to answer
the challenge, without removing the overlay slide first.

A camera shot of the challenge prompt and slide overlay running on a Motorola
DroidTM phone may be found in Figure 1. This picture gives an idea of the
“arrow” vocabulary used and gives an example of what a user of the system
would see when answering a challenge.4 By virtue of visual secret splitting,
absent the slide, the phone appears to be displaying random noise. To answer
the challenge, the user would touch each cell and drag in the direction indicated
in the table. Additional details of implementation may be found in section 6.

(a) Camera shot of the application’s chal-
lenge prompt.

none down none down
left right up none
up none none right
none left left right

(b) Solution to challenge.

Fig. 1. Challenge and solution. To improve visibility, challenges are displayed using
only one color subpixel – in this case green. As the user provides answers (correct or
not), the cells are shaded blue; answers are provided by touching each triangle and
dragging away from the broad side. The black lines on the slide align to yellow lines
between cells on the display. Due to the difficulty of aligning the display, slide, and
camera, it may be hard to make out all the triangles in the challenge; the challenge is
readable only within a very narrow field of view, even when properly aligned.

The system is initialized by using a desktop computer and printer to create the
user’s slide. Sufficient information about the slide (i.e., the seed to a CSPRNG
and other material; see section 6) are then imported into the safe at construction
of the secure store, i.e., at the same time as the user first sets their traditional,

4 In this case, the system is prompting for an answer to check that it knows what the
user’s slide looks like; in general, the user would see this after having typed in their
traditional password at the prompt in OI Safe.

186 N.W. Filardo and G. Ateniese

plain-text password, just as they would in the conventional (i.e., purely plain-
text password based) OI Safe scheme. The safe then generates an initial challenge
and stores these parameters under the same encryption used for its own master
key. Subsequently, each time the safe is opened, the parameters are decrypted
and a new challenge is generated, using the device’s strong random number gen-
erator. This challenge is written to non-volatile store for the next authentication
attempt, and the safe master key is re-crypted with the user’s password and the
answer to this new challenge.5 That is, whenever the safe is opened, it updates
itself to be ready for the next authentication.6 Cycling challenges in this way
helps thwart incomplete surveillance attempts: repeated observation of, say, the
user solving the challenge without being able to see the challenge or slide in
detail, will not lead to an in-aggregate solution to a challenge, whereas repeated
incomplete obsevations of password entry might.

4 Prior Work

There are deployed systems (usually under the heading of “biometrics”) which
attempt to make the statement that “with high probability, the operator of the
device is in fact a legitimate user” based on fingerprints [14, 18, 19], facial recog-
nition [2, 14], typing patterns [25, 26], retinal scans [9], etc. While much of this
work was based on probabilistic matching, making it untenable as a source for
keying material, recent work [8] has shown how to derive good keying mate-
rial from biometric data. These systems typically require cameras or specialized
scanners and may involve a lengthy initial data acquisition phase; our system
requires only a touch-screen display (and a printer during initialization).

There are “visual identification” schemes, such as Déjà Vu [7], which use
visual recognition for (remote) authentication. The secret here is entered by
the discrimination of a series of pre-selected, randomly-generated visuals from a
larger set. This scheme trades entropy (it derives at most one bit per displayed
image) for a more pleasant user experience (this system does not require that the
user carry a slide). These systems were generally conceived of for desktop, not
mobile, environments and therefore use relatively large images and can present
many at a time. Further, their low entropy per challenge makes them usable for
one-time passwords but less ideal for encryption keys.

The system of [11] uses visual secret splitting to authenticate bank transac-
tions. Here, the user confirms that the bank’s share decrypts to correctly identify

5 This is akin to the user changing their password every time they use the safe. In fact,
the same code-path is invoked when the user does change their password or chooses
to change their slide; both of these actions require that the safe be already open.

6 This act is done entirely in the background since it takes noticeable amounts of CPU
time—roughly 10 seconds—on current Android phones. The safe will not close itself
until it is ready to be opened again. Possibly we should require visual challenges on a
different schedule than closing the safe; perhaps once per day or reboot, so that the
user does not typically need their slide with them. That is, we can hold the visual
challenge answer in memory on a different schedule than the user’s password.

High-Entropy Visual Identification for Touch Screen Devices 187

the requested transaction and then reveals the location of two markers within
the image to indicate acceptance. This paper appears not to consider an adver-
sary which accumulates information across multiple uses of the system in order
to learn about the user’s transparency.

There has been prior work on visual cryptography for authentication of hu-
mans to devices. [16] gives a system which requires the user to memorize a secret
and (mentally) perform some unspecified “simple operation” on that secret and
the message received via visual cryptography. The system of [22] proposes chal-
lenges which illuminate regions of a multi-colored slide, the responses to which
are enumerations of the indicated colors; a detailed comparison may be found in
appendix A. The system of [24] uses visual secret splitting to encode passwords
in a different context: authenticating users for remote voting; that paper does
not consider the amount of entropy in the secret to be split (they offer, for pur-
poses of illustration, only a very low security example; however, as they work on
larger displays than we do, and need use a slide only once, this is not really a
limitation so much as an omission from the paper).

We also briefly contrast our system to a hypothetical scheme where we used
a camera to scan a secret image (like a QR code). Other than the obvious
need for the target device to have a camera, this system would suffer from
the likely constraint that these secret images should have relatively low pixel
density, for ease and reliability of picture-taking. Unfortunately, this would also
ease surveillance and adversarial capture of the secret.

Our system focuses on providing a moderately sized, secure channel for en-
tropy with a simple, touch-screen user interface. As with all visual cryptography
schemes, our system comes with the added cost of needing to carry a trans-
parency containing a visual cryptography share.

5 Design

5.1 Threat Model

Our design, as with most secret-based systems, aims to defend against semi-
active attackers with incomplete surveillance capabilities. We are primarily con-
cerned with an adversary who steals the user’s mobile device or finds it after
it has inadvertently been left behind and thus has absolute control of the
hardware for the duration of their attack. Since secure erasure of long-term data
(which includes challenges but not the user’s responses thereto) may be impos-
sible, such acts may compromise all past challenges.7 In the case of a remote
authentication system, the adversary may be able to prompt the challenger to
provide a challenge at any time and then abort the protocol. Our system ensures
that challenges do not leak data about their interpretation, even in aggregate.

7 In particular, modern flash devices engage in “wear-leveling” whereby writes to a log-
ical sector are actually spread among several physical sectors. This greatly improves
the useful life of the flash, but means that many old copies of rewritten material
may be extractable by an adversary.

188 N.W. Filardo and G. Ateniese

At no time will the adversary be given both a challenge and its solution (e.g.,
through device compromise or surveillance). This restriction may sound severe,
but recall that our system is still fundamentally password-like, and that any
secret-based system fails if the secret can be observed.8

In the same vein, we do not consider software attacks (e.g., viruses, trojan
horses, “malware”) on the system, as once an adversary is able to observe our
process’s memory, it becomes a simple matter to read out the secret keys directly.
Even in absence of such abilities, software which can capture touch screen events
and screen contents can read out the user’s password and answers to visual cryp-
tography problems. In the specific case of a password safe, it may be possible to
impersonate the legitimate client and simply ask for the secrets contained within
the safe directly! We therefore assume that the underlying trusted computing
base is indeed sufficiently worthy of the trust placed in it.9

The formal game we play is to give our adversary the parameters of the
system and the complete set of challenges that the system may ever produce.10

The adversary wins the game if they can gain a non-negligible advantage over
merely guessing.

5.2 The Challenge Schema

Our challenge to the user is relatively simple: given N cells, each of which may
each take on one of |K| values (which we call the vocabulary), discriminate be-
tween |D| (D ⊆ K) individual values and the remaining |K \D|. Upon prompt-
ing, the user is required to answer with which of the cells contain a value from
D and to indicate which value in particular. The remainder of the cells require
no explicit user action. To generate a challenge, the cells are set unformly at
random (iid) from the vocabulary (of size |K|). We therefore expect N |D| |K|−1

cells to require user interaction, and each cell will contribute

−
∑
i

pi log2 pi = −
|D|
|K| log2

1

|K| −
|K \D|
|K| log2

|K \D|
|K| (1)

bits of entropy. We allow systems with |D|+ 1 < |K|, (with less than maximum
potential entropic return) to let us trade between expected user actions and the
resulting entropy.

8 In fact, our system does marginally better than traditional password-based systems
in terms of the effects of perfect observation (see the discussion in Appendix B).

9 Perhaps if the system were being used for remote authentication, rather than de-
cryption of local data, there would be some room for correctness even in the face of
local compromise. Our focus here is, as stated, to guard against the loss of secret
data if the device is stolen.

10 Our system generates each challenge iid uniformly from this space; in a system where
that is not the case, the probability of a challenge share might leak information about
its contents. If such a system were to be designed, security under our game would
require that the theoretical adversary be told these probabilities as well, since it may
be possible for a real-world adversary to estimate them with high precision.

High-Entropy Visual Identification for Touch Screen Devices 189

To generate a challenge, the generator (e.g., the safe after successful authenti-
cation) must have access to all the vocabulary entries and slide data for each cell.
Naturally, this informationmust be kept secret, as it allows anyone in possession of
it to reply correctly to challenges without being able to see the images themselves.
We assume that the generator has access to sufficiently safe encrypted storage (in
the case of our prototype, these secrets are stored inside the presumably secure
safe). The generator also needs a (cryptographically) secure random number gen-
erator to provide the entropy that will later be read back from the challenge.

5.3 System Game

The system may be described as a game between the three parties of user (the
operator of the device), generator (the device when it has the system secrets in
memory), and verifier (the device when it does not have the system secrets in
memory).

1. For each cell n ∈ {1, . . . , N}, the user uses an initialization program to create
a vocabulary of equal-length, independent bit strings,Kn, with distinguished
subsetDn, subject to the criteria from subsection 5.4. The user then provides
all Dn privately to the generator. We use K and D to denote the in-n-order
concatenation of all Kn and Dn, respectively.

2. For each of the N cells, the user’s initialization program further creates a
(iid) random string of bits sn, the slide, of the same length as strings in
Kn. This string is also privately provided to the generator, and the user
announces all {kn ⊕ sn|kn ∈ Kn} (without revealing any information about
Dn). We use s to denote the in-n-order concatenation of sn.

3. For each of the N cells, the generator selects an element kn ∈ Kn iid uni-
formly at random and (privately) informs the verifier. The generator pub-
lishes the challenge, cn = kn ⊕ sn.

4. The generator stores Ek(D, s) (an encrypted copy of the private parameters
of the system) for later use.

5. The user now computes k′ = s⊕ c = s⊕ (k⊕ s) and (privately) reveals the
answer to the verifier.

6. The verifier accepts if k′ = k.

An adversary wins the game if they may replace the user in the last two steps
and cause the verifier to accept with odds better than ≥ 1/k+ ε for some ε > 0.
However, the adversary cannot win without successfully attacking the private
exchanges (e.g., via surveillance, timing, or software attacks): an ε > 0 implies
either nonuniform selection of kn or correlation between sn⊕kn and kn, which in
turn would imply nonuniform selection of sn. (In actual usage, steps 3 through
6 are repeated many times; the publication of all the encrypted vocabulary in
step 2 is intended to capture this repeated use of the system parameters.)

In our system, comparison of k against k′ is checked implicitly: k′ is fed
through a PBE scheme and used to decrypt a block (containing the safe’s random
master key) encrypted with k. k′ and k are never compared directly: successful

190 N.W. Filardo and G. Ateniese

decryption is taken to imply that k = k′. Further, k and s are derived from
cryptographically secure pseudo-random number generators; the seeds for these
generators stand in for their outputs in step 4 and the re-keying procedure above.
After every successful verification, the verifier knows k and may use it to decrypt
Ek(D, s), revealing the secret parameters of the system. Since, in our system,
the verifier and generator are the same (i.e., the device, just at different points
in time), at this point, steps 3 and 4 may be repeated to produce a new secret
key and a new challenge for later authentications, which allows the system to
(limitedly) frustrate even perfect surveillance (unlike a pure password scheme,
where no such mitigation is possible; see appendix B).

5.4 Visual Secret Shares That Don’t Leak

The constructions in [21] are all intended to produce n shares for a single mes-
sage; no share is ever used for multiple messages. [22] does present a multiple-use
scheme for visual identification (authentication of a human), but that scheme
considers the equivalent of a cell to be entirely revealed to an adversary after a
use; therefore, it requires the use of many more cells to combat an adversary.
To keep the number of cells low, thereby allowing for larger cells on smaller dis-
plays, we use a standard visual secret splitting scheme to obscure the challenge.
To ensure that no number of challenge visual shares will reveal any information
about the user’s share, we must impose some constraints on the system.

As before, we have N cells, a set of K vocabulary entries for each, D ⊆ K
of which are to be distinguished in some way (when combined with the user’s
share). The cells are each made up of some number of image pixels, P . For each
image pixel, we permit only one of the D values to “claim” it. We then set, iid
uniformly at random and independent of the user’s share, the values of all image
pixels in the K \D values and all unclaimed image pixels of each d ∈ D. This
“vocabulary generation” happens independently for each of the N cells. Were
we to permit more than one d, d′ ∈ D to claim a given pixel, then there would be
correlation between challenges containing d and d′, thereby leaking information
to an adversary.

We assume that the parameters |D|, |K|,N , P , the subset of the pixels claimed
by each D, and the intended decoded value (i.e., the intended image) of these
claimed pixels are public. Because each pixel of the slide is only meaningfully
correlated with one pixel out of all of the D, and not correlated with any element
in K \D, the information security argument continues to hold. Instantiation of
this scheme requires NP |K| independent uniform random bits: NP (|K| − 1) of
which are consumed by the K \D and unclaimed D image pixels, and NP of
which determine the user’s share.11

11 We do run the risk of generating a confusing vocabulary: that is, one in which
two elements of K may not be sufficiently distinguishable. To mitigate this risk,
instantiations of the system should present the full vocabulary to the user when
the system is being initialized (i.e., when the slide is being generated). We assume
that this clear-text is not intercepted. We assume that any correlation between the
vocabulary entries K by the user’s rejection of confusing vocabularies are negligible.

High-Entropy Visual Identification for Touch Screen Devices 191

5.5 Incomplete Erasure Attacks

As mentioned earlier, whenever one rewrites sensitive material, (e.g., by changing
the password in a staged keying system like OI Safe’s) there is always a danger
that the old copy is not completely erased. In our case, however, the rewritten
material is encrypted with the result of a PBE scheme, and each of those copies’
keys was derived, in part, from the answer to a visual challenge. Therefore, the
key is reasonably entropic. Under standard assumptions of the system used to
encrypt the master key, namely IND-CPA, the multitude of messages offers no
gain to the adversary.12

6 Implementation

We now turn our attention to the particular parameters used by our prototype
implementation. Rather than being a rigid encoding of this particular choice
of parameters, our prototype has been designed to encapsulate the application
(e.g., OI Safe) using it from the details of visual cryptography whenever possi-
ble: the application is almost entirely oblivious to the contents of the values it
passes to our visual cryptography front-end. In testing, we switched a number
of these parameters and the design of the distinguished elements without having
to (additionally) modify OI Safe at all.

Fig. 2. An example vocabulary for one cell, as seen when overlaid with the slide,
with |K| = 6 and |D| = 4. The four distinguished values (resp. up, down, left, right)
are shown at the left and would be distinguished by the user touching the cell and
dragging away from the broad side of the triangle. The rightmost two cells do not call
for a user’s response. Each cell has an independently generated vocabulary encoding
the same arrows but with different “filler” pixels.

Mobile devices by necessity do not have large displays, both in the sense
that there are few pixels present and that the pixels themselves are small. The
former restricts the number of cells we can reasonably fit in a challenge. Despite
the small screen size limiting our cell count, we chose to present only a single
challenge at a time.13 The latter had unexpected consequences: we found that
using display-native pixel size for the sub-pixels of the visual cryptography made

12 Our prototype uses OI Safe’s default “strong” choice storing both the encrypted
master key and our the secret seeds: BouncyCastle’s Java cryptography provider in
mode PBEWithSHA1And256BitAES-CBC-BC.

13 Presenting multiple challenges for the same slide sequentially does not yield linear
increase in entropy; the marginal utility of the next challenge behaves as in Table 1.

192 N.W. Filardo and G. Ateniese

(a) An example challenge, ideally ren-
dered, with slide overlaid.

left right none none
up down left right
none none up down
left right none none

(b) Answer to the challenge.

Fig. 3. An example of a system with |K| = 6, |D| = 4, and N = 16

alignment of the slide and challenge almost impossibly difficult; we therefore set
the ratio of display to image pixels to 6 : 1. With the additional impact of the
inter-vocabulary-item constraints on pixels from subsection 5.4, our vocabulary
tends to have images which are not immediately obvious; even an ideal rendering
(see Figure 3) leaves something to be desired. It is possible that there are better
vocabulary designs to be had or that the issue will be less severe on future display
technologies (higher density LCDs or e-ink displays); for the moment, our design
suffices.

The size of our cells are chosen so that a 4× 4 grid of cells fits on a display of
312×312 (display) pixels. Given the 6 : 1 pixel ratio, this makes our cells 13×13
image pixels and sets P = 169. This allows for 42 image pixels to be set by
each distinguished value, which is likely large enough that confusable values are
unlikely to be generated. Our prototype instantiates our scheme with N = 16,
|D| = 4, and |K| = 6. In particular, this gives a 16 cell grid, with an expected
10.6 cells requiring user action (though some challenges will have all or no cells
requiring user interaction). Each of the |D| = 4 cells is a direction indicator, as
shown in Figure 2. The image pixels of these cells which are not fixed by the
direction indicator are set randomly as described above.

This system provides roughly 2.3 bits of entropy per cell, or roughly 36 bits
per challenge. If all 95 printable ASCII characters are available and used to
greatest effect, then each of our challenges may be seen as having added the
equivalent of 5.5 characters to the password (36/ log2(95) = 5.47 . . .). Restricting
ourselves to the 26 letters of the alphabet, the requisite string length becomes
7.7 (36/ log2(26) = 7.65 . . .). See subsection 6.1 for a way to estimate how long
a user would take to respond in each case.

Initial vocabulary and user share generation currently happens on a desktop
computer, to make printing easier. To further the ease of use and development, we
instantiate two Cryptographically Secure Pseudo-Random Number Generators
(CSPRNGs) using AES in CTR mode with seeds of a few hundred random
bits each (rather than store and manipulate the full string of NP |K| = 16224
bits). One CSPRNG is used to generate the user’s slide, the other is used to

High-Entropy Visual Identification for Touch Screen Devices 193

generate the “noise” pixels in the vocabulary.14 While the resulting bit stream
is necessarily not an iid uniform string of bits, a CSPRNG’s output should be
indistinguishable from one by any probabilistic polynomial-time adversary.

Our prototype produces a new challenge after every successful opening of the
safe. The secrets of the visual cryptography subsystem are themselves guarded by
the same PBE-derived key as the safe’s master key. To reduce space consumption,
we store the CSPRNG seeds and recreate both the slide and vocabulary in
memory on demand.

A few words must be said about the odd coloring of Figure 1. We use a green,
rather than white, cell color as it uses only one color sub-pixel in each LCD
pixel; this in turn helps the user see the reconstructed image. Yellow lines are
shown between cells and corresponding thin black lines are printed on the user’s
slide to aid in alignment of the two. Due to the mechanics of LCD displays and
perhaps also imprecise printing, there is some difficulty in aligning the slide to
the screen in a way that makes the entire image clear from any single vantage
point; the challenge is readable only within a very narrow field of view, even
when properly aligned.

6.1 Estimating Timing

We currently have difficulties reliably both producing a slide with pixels sized
correctly for the phone’s display and aligning the slide and the display. More
precise printing than that of a laser printer, shaping of transparencies, or some
form of software-assist15 may be sufficient to ease usage of our system. However,
we do not believe that users would currently put up with the difficulty of use.16

In lieu of actual users, we can use Fitts’s law [10, 20],

Mij = .204 log2

[
1 +

Dij

Wj

]
, MT =

∑
i,j

Pij [Mij +RT]

to estimate the time it will take for a user to answer a challenge with an ideal
slide and display. The left equation relates Dij , the distance between objects
i and j, and Wj ,the width of object j, to Mij , the estimated time of motion
from i to j. Informally, it can be read as “short distances and large objects
allow fast positioning.” The right equation computes the average positioning
time by weighting the positioning time of each pair Mij with the probability of
needing to make that move, Pij ; RT is the “reaction time,” the time it takes the

14 In our prototype, those seeds are passed to the device via a QR barcode rather than
as a file, enabling us to work on devices where externally manipulating storage is
annoying or impossible. This is not, however, central to the scheme.

15 For example, we could have the user touch a series of distinguished points on the
slide, giving the device a better idea of how to display the challenge. Alternatively,
for devices supporting multi-touch displays, we could perhaps manufacture slides
that triggered touch events merely by being placed upon the display.

16 We acknowledge that this represents a practical weakness of our design. We do,
however, believe that it can be overcome.

194 N.W. Filardo and G. Ateniese

positioning system (i.e., the user) to find the next move. We can compare the
derived estimate for our prototype with similar estimates for using touch-screen
keyboards17.

To estimate the effects of reaction time in the visual cryptography setting,
where order of entry is irrelevant and there are potentially many acceptable
responses at any moment (i.e., cells not yet answered), we use a weighted version
of Hick’s Law [12, 20]: RT (n) = .200 log2 [n+ 1] . Our variant is a recurrence
form, which should capture that users do not re-search already searched cells:

RT (n) =

n∑
i=0

pn,i [−.200 log2 pn,i + RT (n− i)] , pn,i =

⎧⎨⎩
|D|
|K|

[
|K\D|
|K|

]i
i < n[

|K\D|
|K|

]n
i = n

where pn,i is the probability that searching n cells for one that requires activity
takes i steps. Note that in this variant there is no ambiguity about whether to
respond and so no +1 inside the log2—the nonresponse case is handled as i = n.
For our instantiation, we estimate a total of RT (N) = 2.9 seconds spent search-
ing per challenge. To get expected motion time, we compute the expectation of
nMT :

E
[
nMT

]
=

N∑
n=0

p(n)nMT =

N∑
n=0

(
16

n

)[
|D|
|K|

]n [
|K \D|
|K|

]N−n

nMT.

For our instantiation, this yields an estimate of 2.2 seconds of motion. Combining
these yields a grand total of 5.1 seconds to respond to a challenge, neglecting
slide positioning time.

Using the Android on-screen keyboard as a prototypical example, we estimate
that it would take an expert user (for whom RT = 0) 3.6 seconds to enter a
(memorized) random 8-character mono-case string or 4.7 seconds to enter a
(memorized) random 6-character mixed-case alphanumeric string.18

7 Future Work

Our system avails itself only of the most basic form of visual cryptography.
Visual Cryptography has been actively studied by many researchers over the
years. The original Naor and Shamir paper [21] discusses k-out-of-n threshold
schemes more general than the 2-out-of-2 we used here. Visual cryptography
has been extended to work with full-color images [6, 13, 15], with “meaningful”
(i.e., non-random) cover images [5, 27, 28], and general access structures both
without [3] and with [4] meaningful cover images. This prior work has tended
(the identification schemes of [22] aside) to focus on the act of secret splitting
itself, rather than its potential application to authentication.

17 In all cases, we ignore errant entries, so these times are lower bounds. Numbers
reported in this section are derived from measurements of a Motorola DroidTM phone
running Google Android version “2.1-update1” build “ESE81.”

18 The increase in time is due to the need to transition between shifted and un-shifted
modes of the on-screen keyboard.

High-Entropy Visual Identification for Touch Screen Devices 195

8 Conclusion

We have developed and exhibited a system which allows users to answer high-
entropy challenges without having to memorize said entropy or provide biometric
information. The trade-off is carrying a visual cryptography share on a trans-
parency and an (estimated) increase of a few seconds of entry time relative to a
memorized, keyboard-based equivalent.

Acknowledgements. We are indebted to Matthew Wright for his combinato-
rial help in deriving the correct form of aM (k, i). The phone pictured was gen-
erously donated to JHU ISI for student use by Google, Inc. We would further
like to thank our shepherd Moritz Becker and the several anonymous reviewers
for their very helpful comments.

A The Visual Identification System of Naor and Pinkas

The identification scheme with one verifier of [22] uses a transparency, known
by the verifier and possessed by the human, composed of N squares, each of
which is iid colored with one of 10 colors. The challenges in this system serve to
illuminate d of these squares and keep the rest dark. The answer to the challenge
is the list of colors lit, in some pre-defined order. As with our work, this system
assumes incomplete surveillance; indeed, their colored slide is likely easier to
observe accurately from a distance or at low resolution than our visual secret
splitting share, which uses relatively small pixels.

Our goal is slightly different than the above system, as we seek to generate
a large amount of entropy in addition to identifying the user. For the above
system to output more than 30 bits of entropy (as ours does), it must be that
d > 10. After M observed responses, the adversary has attack probability of(

1
10 + 9dM

10N

)d
. As their security threshold is 10−7 and goes as 1−5−d, to be robust

to even a single answer being observed, this system requires N > 9dM > 90.19

While only d of those need to be interacted with, 10 choices is enough to warrant
a menu or keypad UI element, slowing response time.

If we change the system to have 5 “colors” (the four cardinal directions and
blank, as in our system), then d > 13 (with an expected 4/5 ∗ 13 = 10.4 interac-

tions required from the user) and the security threshold is (1/5 + 4dM/5N)
−d

by analogy. Making this 10−7 requires N > 116. To make layout easy, we should
use an 11 × 11 grid of squares: the slide would contain arrows and blanks, and
the display just needs to light up the requested cells. On our demo device, each

19 Our system, if instantiated with N = 16, |K| = 5 and |D| = 4, achieves this
threshold; raising |K| to 6 as in our instantiation lowers our entropy moderately.
Both systems quickly fall below any reasonable threshold. Our system could be
augmented to generate challenges which contain voids in certain cells; this would
slow the adversary’s rate of information gain but would also lower the entropy were
N held constant. We have not thoroughly analyzed the impact of such a change.

196 N.W. Filardo and G. Ateniese

cell would be 5 millimeters on a side. On average, the user will have to scan
112/(4/5 ∗d) ≈ 11.5 cells at a time, so Hick’s search time should be on the order
of .200(121/11.5) log2 [11.5] ≈ 7.4 seconds. Fitts’s response time should be on
the order of 5.6 seconds. We expect that answering one of these challenges will
therefore take between two and three times as long as one of ours (13.0 vs 5.1
seconds). It may be simpler to align and read off the challenges in this scheme,
but that comes with increased risk of successful surveillance. Were we to do a
user study, it would be interesting to compare the two.

B Adversary Information Gain from Leaked Answers

The constraint that our system never yield (challenge,answer) pairs to the adver-
sary may seem odd. However, we can demonstrate that expanding our system to
work in the face of leaked answers to challenges is nontrivial by demonstrating
a substantial loss of entropy for each leaked answer. Thus our system requires
that the user be able to respond without the adversary’s having perfect surveil-
lance whereby they are able to see the pixel values of a challenge. For remote
authentication, it should be easy to generate a novel challenge for every inter-
action, making surveillance-based attempts to recover (challenge,answer) pairs
harder than they might otherwise be. Our prototype’s situation is harder, as the
challenges are necessarily created while the system secrets are available, that is,
when the safe is open. An adversary may therefore collect the challenge and wait
for the user to answer it; however, taking the same rudimentary precautions one
takes with passwords should be sufficient.

Before we can compute the probability of an adversary’s successful guess, we
need to define a combinatorial relation. We need to count the number of strings
of length M > 0 drawn from a vocabulary of k > 0 symbols which use exactly

0 < i ≤ k of them. This is aM (k, i)
def
=

(
k
i

) (
iM −

∑
j<i

(
i
j

)
aM (j, j)

)
. We will not

rigorously prove this, but can sketch the inductive argument. First, note that
∀M.aM (1, 1) = 1, which is correct as there is only one unary string of a given
length. iM counts all possible strings for a vocabulary size i, and

(
k
i

)
provides the

number of such vocabularies that can be built out of our total vocabulary of size
k. iM multiply counts strings which use fewer than i symbols, and so we must
subtract them off; if the undesired string uses j < i symbols, it will be generated
in

(
i
j

)
aliases. There are, by induction, aM (j, j) such miscreant strings.

Having observed M > 0 answers to a given cell in a system in which |D| =
|K| − 1, the probability of an adversary getting the right answer is

p(M) = |K|−M

⎡
⎣1 · aM (|K| , |K|) + |K|−1

|K|−1∑
k=1

(k + 1) aM (|K| , k)

⎤
⎦ .

The first term is the probability that our adversary has seen all vocabulary
entries for that cell, at which point there is no guessing left. The second term
is a sum over the number of entries seen, k. Having observed k < |K| distinct
entries, the adversary need not guess if the challenge uses one of these, which

High-Entropy Visual Identification for Touch Screen Devices 197

will happen with odds k/ |K|; the adversary otherwise guesses uniformly, getting

the right answer with odds 1/(|K| − k). All told, 1 · k
|K| +

1
|K|−k

|K|−k
|K| = k+1

|K| .
Similarly, we can measure the expected entropy of the system:

H(M) = − |K|−M [0 · aM (|K| , |K|)]

− |K|−M

|K|−1∑
k=1

aM (|K| , k)
[
0 +

|K| − k

|K| log2
1

|K| − k

]

= |K|−M−1

|K|−1∑
k=1

aM (|K| , k) (|K| − k) log2 (|K| − k) .

The adversary’s guesses are independent for each cell in the challenge, so af-
ter M challenges the odds of a successful guess is p(M)N and the entropy is
NH(M); see Table 1.20 For systems instantiated with |K| > |D| + 1, the odds
are necessarily higher and the entropies lower.

Table 1. The expectations, after M challenges’ answers have been revealed, of remain-
ing entropy (in bits) and probability of the adversary’s first guess being correct. The
values here are for a system instantiated with N = 16, |K| = 5, |D| = 4.

M Expected entropy Expected probability correct guess

0 37.2 6.6 × 10−12

1 25.6 4.3× 10−7

2 17.3 9.4× 10−5

3 11.4 2.5× 10−3

References

[1] Abadi, M., Warinschi, B.: Password-Based Encryption Analyzed. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 664–676. Springer, Heidelberg (2005)

[2] Abeni, P., Baltatu, M., D’Alessandro, R.: User authentication based on face recog-
nition with support vector machines. In: CRV 2006: Proceedings of the The 3rd
Canadian Conference on Computer and Robot Vision, p. 42. IEEE Computer
Society (2006)

[3] Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for
general access structures. Inf. Comput. 129(2), 86–106 (1996)

[4] Ateniese, G., Blundo, C., Santis, A.D., Stinson, D.R.: Extended capabilities for
visual cryptography. Theor. Comput. Sci. 250(1-2), 143–161 (2001)

20 Note that evenM = 1 is sufficient for the adversary to win the game, as the probabil-
ity of success is dramatically increased. However, in a traditional password scheme,
the probability of success after M = 1 revealed answers is 1. While the expected
attack odds under our system will never hit 1, it rapidly falls below any reason-
able security threshold, and so we would still recommend re-keying after discovered
surveillance.

198 N.W. Filardo and G. Ateniese

[5] Chang, C.C., Yu, T.X.: Sharing a secret gray image in multiple images. In: Proceed-
ings of the First International Symposium on Cyber Worlds, pp. 230–237 (2002)

[6] Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without
color darkening. Theor. Comput. Sci. 374(1-3), 261–276 (2007)

[7] Dhamija, R., Perrig, A.: Déjà vu: a user study using images for authentication. In:
SSYM 2000: Proceedings of the 9th Conference on USENIX Security Symposium,
p. 4. USENIX Association (2000)

[8] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38, 97–139
(2008)

[9] Farzin, H., Abrishami-Moghaddam, H., Moin, M.S.: A novel retinal identification
system. EURASIP Journal on Advances in Signal Processing, 10 (2008)

[10] Fitts, P.M.: The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391
(1954)

[11] Greveler, U.: VTANs - eine anwendung visueller kryptographie in der online-
sicherheit. In: GI Jahrestagung (2) 2007, pp. 210–214 (2007)

[12] Hick, W.E.: On the rate of gain of information. Quarterly Journal of Experimental
Psychology (4), 11–26 (1952)

[13] Hou, Y.C.: Visual cryptography for color images. Pattern Recognition 36(7), 1619
(2003)

[14] Jain, L., et al. (eds.): Intelligent Biometric Techniques in Fingerprint and Face
Recognition. CRC Press (1999)

[15] Jin, D., Yan, W.Q., Kankanhalli, M.S.: Progressive color visual cryptography.
Journal of Electronic Imaging 14(3), 33019 (2005)

[16] Kim, M.R., Park, J.H., Zheng, Y.: Human-machine identification using visual
cryptography. In: Proc. the 6th IEEE Int. Workshop on Intelligent Signal Pro-
cessing and Communication Systems, pp. 178–182 (1998)

[17] Laboratories, R.: Pkcs #5: Password-based cryptography standard, v2.0 (1999),
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf

[18] Lenovo: Thinkvantage R© client security solution, http://www.pc.ibm.com/us/
think/thinkvantagetech/security.html

[19] Ltda., A.S.: Fingerauth password manager, http://www.fingerauth.com/
[20] Mackenzie, S.I., Soukoreff, W.R.: Text entry for mobile computing: Models and

methods, theory and practice. Human-Computer Interaction 17(2 & 3), 147–198
(2002)

[21] Naor, M., Shamir, A.: Visual cryptography. Tech. rep. (1994)
[22] Naor, M., Pinkas, B.: Visual Authentication and Identification. In: Kaliski Jr.,

B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336. Springer, Heidelberg
(1997)

[23] OpenIntents: OI Safe, http://www.openintents.org/en/node/205
[24] Paul, N., Evans, D., Rubin, A.D., Wallach, D.S.: Authentication for remote voting.

In: Workshop on Human-Computer Interaction and Security Systems (2003)
[25] Pavaday, N., Soyjaudah, K.: A comparative study of secret code variants in terms

of keystroke dynamics, pp. 133–140 (2008)
[26] Admit One Security: Keystroke dynamics,

http://www.biopassword.com/keystroke_dynamics_advantages.asp

[27] Yang, C.N., Laih, C.S.: New colored visual secret sharing schemes. Des. Codes
Cryptography 20(3), 325–336 (2000)

[28] Youmaran, R., Adler, A., Miri, A.: An improved visual cryptography scheme for se-
cret hiding. In: 23rd Biennial Symposium on Communications, pp. 340–343 (2006)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf
http://www.pc.ibm.com/us/think/thinkvantagetech/security.html
http://www.pc.ibm.com/us/think/thinkvantagetech/security.html
http://www.fingerauth.com/
http://www.openintents.org/en/node/205
http://www.biopassword.com/keystroke_dynamics_advantages.asp

A Framework for Security Analysis

of Key Derivation Functions

Chuah Chai Wen, Edward Dawson,
Juan Manuel González Nieto, and Leonie Simpson

Queensland University of Technology,
{chaiwen.chuah,e.dawson,j.gonzaleznieto,lr.simpson}@qut.edu.au

Abstract. This paper presents a comprehensive formal security frame-
work for key derivation functions (KDF). The major security goal for a
KDF is to produce cryptographic keys from a private seed value where
the derived cryptographic keys are indistinguishable from random bi-
nary strings. We form a framework of five security models for KDFs.
This consists of four security models that we propose: Known Public In-
puts Attack (KPM, KPS), Adaptive Chosen Context Information Attack
(CCM) and Adaptive Chosen Public Inputs Attack(CPM); and another
security model, previously defined by Krawczyk [6], which we refer to
as Adaptive Chosen Context Information Attack(CCS). These security
models are simulated using an indistinguisibility game. In addition we
prove the relationships between these five security models and analyse
KDFs using the framework (in the random oracle model).

Keywords: Key derivation function, Security framework, Indistinguisha-
bility, Cryptographic keys.

1 Introduction

Cryptographic keys are necessary for safeguarding electronic transactions, com-
munications, and data storage. Key derivation functions (KDF) are the standard
algorithm used to generate these cryptographic keys. KDFs are used to gener-
ate one or more cryptographic keys from a private seed value, such as a pass-
word, Diffie-Hellman (DH) shared secret or some non-uniformly random source
material[5,7,8]. It is critical in the design of security systems that KDF propos-
als themselves are secure. Significant effort in designing a KDF proposal and
comprehensive security analysis to evaluate the proposal is justified. The prac-
tical importance of KDFs is reflected in their adoption in industrial standard
documents; for example PKCS5 [4], ISO-18033-2[9] and more recently in NIST
800-135[3]. There are KDF proposals such as [1,4,6,10] based on cryptographic
hash functions.

In the current literature, formal models for the security analysis of KDFs have
been introduced by Yao & Yin in [10] and Krawczyk in [6]. However, there are
some limitations with each of these security models as they do not completely
cover the range of realistic capabilities of the adversary. This has motivated us
to extend the existing security models into a new security framework.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 199–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

200 C.C. Wen et al.

In this paper we develop a comprehensive, formal security framework to form a
basis for the design and analysis of KDFs. We begin with an overview of the KDF
construction and define the security of KDFs in terms of an indistinguishability
game. We develop a framework in which the security can be asserted in terms of
the ability of adversaries of varying capabilities to win these indistinguishability
games. The adversaries considered range from passive observers of information
to active adversaries of varying strength.

2 Key Derivation Functions

Generally, a key derivation function KDF is defined as

K ← KDF (PrivS , s, ctx , n)

where

– PrivS is a private seed. The space of all possible private seeds is denoted by
PSPACE and the probability distribution of PrivS is assumed to be public;

– s is a salt, a public random string chosen from the salt space SSPACE ;
– ctx is a public context string chosen chosen from a context space CSPACE ;
– n is a positive integer that indicates the number bits of the to be produced

by the KDF;
– K is the derived cryptographic key of length n bits.

Note that all inputs are publicly known, except for the secret seed PrivS . The
salt is uniformly random and is used to create a large set of possible keys cor-
responding to a given private seed value. Context information is arbitrary but
application specific data; for example, a session identifier or the identities of
communicating parties. The basic operation of a KDF is to transform the pri-
vate seed value and public inputs into an n bit pseudorandom string which can
be used as a cryptographic key. The length, n, of the cryptographic key is an
application specific security parameter. From now on we will represent the key
derivation function as KDF (PrivS , s, ctx)n.

3 General Security Framework

The general security framework is based on an indistinguishability game played
between a challenger C and an adversary A in polynomial time t, where the
KDF is considered secure if no A can win the game with probability signifi-
cantly greater than the probability of winning by guessing randomly. To win
the game A has to determine if the challenge output given in the game is the
cryptographic key generated by the KDF or a truly random binary string of
the same length within a polynomial number of time steps. The game runs in
two major stages: the learning stage and the challenge stage. An optional stage
called the adaptive stage may be available for some powerful A, who can repeat
the learning stage after receiving the challenge output. An explanation of how
this game is conducted follows.

A Framework for Security Analysis of Key Derivation Functions 201

– Learning stage: A private seed value PrivS is chosen from PSPACE . A
can make at most q queries, either q < |SSPACE |×|CSPACE |< |PSPACE |
or q<|CSPACE |<|PSPACE | depending on the type of security models. For
each query, a derived cryptographic key associated with a salt and context
information is provided to A. A can use this information to construct a
lookup table to be used in the challenge stage of the game. The capabilities
of the adversary determine the level of control they have over the public
inputs to KDF. A passive adversary is just an observer that obtains the
cryptographic keyK, but cannot query the KDF to generate a cryptographic
key from their choice of public inputs. An active adversary is able to interact
with the KDF to demand cryptographic keys corresponding to their choice
of public inputs, with the ability to choose either salt or context information,
or both.

– Challenge stage: A random bit b∈R{0, 1} is generated by C. If b = 0,
then C computes K ′ = KDF(PrivS , s, ctx), else C outputs a random binary
string K ′ of length of n bits. An active A may have the ability to choose
either salt or context information, or both, to obtain the challenge output
but this is subject to the restriction that the chosen set of public inputs were
not a set of inputs from the learning stage. C sends K ′ to A.

– Adaptive stage: Give the challenge output K ′, a powerful active A may
have the capability to learn more about K ′ in an adaptive stage before
guessing whether K ′ is the cryptographic key or a binary random string.
The adaptive stage consists of repeating the steps in the learning stage for
up to q - q′ queries, subject to the restriction that A may not ask anything
directly regarding the public inputs from the challenge stage.

To complete the game, A guesses whether K ′ is the key or a random string. If A
guesses that K ′ is a cryptographic key then A sends b′ = 0, otherwise, A sends
b′ = 1. A wins the game if b′ = b.

If the adversary is unable to distinguish between a cryptographic key derived
from a private seed value using the KDF and a random string of the same length,
then the KDF is secure in terms of indistinguishability. Formally, we say that the
KDF is (t, q, ε)-secure if the probability of the adversary winning the game in
time at most t with at most q queries is Pr[b = b′] ≤ 1

2 + ε, where ε is negligible.
If the adversary is able to distinguish the challenge output with a probability
greater than 1

2 , then the adversary is considered to have an ‘advantage’ in dis-
tinguishing the cryptographic keys which are produced by the KDF and KDF is
considered insecure.

4 Defining the Security Models

The major security goal for a KDF is that the cryptographic keys generated
by the KDF are indistinguishable from truly random binary strings of the same
length. That is, this KDF’s security goal is formalized as an adversary’s inability
to gain any information about cryptographic keys derived from a private seed

202 C.C. Wen et al.

value, even though public inputs are provided to the adversary. We consider
this security goal in situations where the capability of the adversary differs and
use this to establish five security models: KPM, KPS, CCM, CCS and CPM.
Two models, KPM and KPS, are weak security models as A is only an observer.
The other models, CCM, CCS and CPM, are stronger security models as the
adversary is active. The difference between these three security models lies in
the capability of A in choosing the public inputs. For CCM and CCS, A can
only choose ctx while A can choose both s and ctx in CPM. Table 1 briefly
summarizes the capability of the adversary in the five security models. The
symbol ‘

√
’ indicates that the adversary is able to query the KDF to generate the

cryptographic keys from their choice of public inputs. The symbol ‘X’ indicates
that the adversary is not able to choose the public inputs although these are
known by the adversaries. The symbol ‘-’ indicates that the adversaries are not
able to learn more about the challenge output at the adaptive stage. Each of
these security models is discussed in greater detail in the following sections.

Table 1. Summary of the capabilities of the adversary in five security models

Security Models KPM KPS CCM CCS CPM

Type of Adversary Passive Passive Active Active Active

Type of Salt Multiple Fixed Multiple Fixed Multiple

Number of Queries, q < |SSPACE | × |CSPACE | |CSPACE | |SSPACE | × |CSPACE | |CSPACE | |SSPACE | × |CSPACE |
Capability A in choosing:

Learning Stage
Salt X X X X

√

Context information X X
√ √ √

Challenge Stage
Salt X X X X

√

Context information X X
√ √ √

Adaptive Stage
Salt - - X X

√

Context information - -
√ √ √

4.1 Known Public Inputs Attack - KPM-Secure

For the KPM security model, the adversary can observe the salt and context
information, and the resulting derived key. At the learning stage, each crypto-
graphic key is generated from a fixed private seed value together with a different
salt, and with the same or different context information. These cryptographic
keys are provided to adversaries. At the challenge stage, A is presented with a
binary string. If the KDF is secure, A should not be able to distinguish whether
this string is a cryptographic key or a random string of the same length.

Definition 1 {KPM-secure}. The KDF is (t, q, ε) KPM-secure if for all ad-
versaries A running in polynomial time t and making at most q < |SSPACE | ×
|CSPACE | queries to the KDF with known multiple salt and known context in-
formation win the following indistinguishability game with probability not larger
than (12 + ε).

A Framework for Security Analysis of Key Derivation Functions 203

Learning 1. C chooses PrivS ← PSPACE .

stage 2. For i = 1, . . . , q′ ≤ q, (2.1) C chooses si
R← SSPACE and ctxi ← CSPACE .

(2.2) C computes Ki = F (PrivS , si, ctxi)n.
(2.3) A is provided with the triple (Ki, si, ctxi).

Challenge 1. C chooses s
R← SSPACE and ctx ← CSPACE

stage 2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
3. C sends K′, s and ctx to A.
4. A outputs b′ = 0, if A believes that K′ is
cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.2 Known Public Inputs Attack - KPS-Secure

For the KPS, the adversary is an observer. In this indistinguishability game, each
cryptographic key is generated from a fixed private seed value together with
a fixed salt, and with the different context information. The major difference
between KPM-secure and KPS-secure is that for KPM-secure, multiple salts are
used to generate the cryptographic keys while for KPS-secure, a fixed salt is used
for generating one or more cryptographic keys.

Definition 2 {KPS-secure}. The KDF is (t, q, ε) KPS-secure if for all ad-
versaries A running in polynomial time t and making at most q < |CSPACE |
queries to the KDF with known fixed salt and known context information win
the following indistinguishability game with probability not larger than (12 + ε).

Learning 1. C chooses PrivS ← PSPACE .

stage 2. C chooses s
R← SSPACE .

3. A is provided with the value s.
4. For i = 1, . . . , q′ ≤ q, (4.1) C chooses ctxi ← CSPACE .

(4.2) C computes Ki = F (PrivS , s, ctxi)n.
(4.3) A is provided with the pair (Ki, ctxi).

Challenge 1. C chooses ctx ← CSPACE
stage (subject to restriction ctx /∈ ctxi, . . . ,ctx

′
q).

2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
3. C sends K′ and ctx to A.
4. A outputs b′ = 0, if A believes that K′ is
cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.3 Adaptive Chosen Context Information Attack (CCM)

For the CCM model, the adversaries are active, and are capable of choosing the
context information in the indistinguishability game. For CCM, the adversaries
are allowed to query multiple context information used with the same private
seed value and with different randomly generated salt to form the cryptographic
keys.

Definition 3 {CCM-secure}. The KDF is (t, q, ε) CCM-secure if for all ad-
versaries A running in polynomial time t and making at most q < |SSPACE | ×
|CSPACE | queries to the KDF with known multiple salt and chosen context in-
formation win the following indistinguishability game with probability not larger
than (12 + ε).

204 C.C. Wen et al.

Learning 1. C chooses PrivS ← PSPACE .

stage 2. For i = 1, . . . , q′ ≤ q, (2.1) C chooses si
R← SSPACE .

(2.2) A is provided si.
(2.3) A chooses ctxi ← CSPACE .
(2.4)C computes Ki = F (PrivS , si, ctxi)n.
(2.5)A is provided the derived cryptographic key, Ki.

Challenge 1. C chooses s
R← SSPACE .

stage 2. A is provided s.
3. A chooses ctx ← CSPACE .

4. C chooses b
R←{0, 1}. (4.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(4.2) else C outputs K′ R← {0, 1}n.
5. C sends K′ to A.

Adaptive
stage

1. Step 2 in Learning stage is repeated for up to q − q′ queries (subject to restriction {si, ctxi} �=
{s, ctx}).
2. A outputs b′ = 0, if A believes that K′ is cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.4 Adaptive Chosen Context Information Attack (Krawczyk)

The formal security model for KDFs proposed by Krawczyk [6] is included in
our framework. We refer to this model as CCS-secure. For this security model,
the adversaries are capable of influencing the inputs in the indistinguishability
game, and are allowed to query multiple context information under the same
private seed value with the same randomly generated salt.

Definition 4 {CCS-secure}. The KDF is (t, q, ε) CCS-secure if for all ad-
versaries A running in polynomial time t and making at most q < |CSPACE |
queries to the KDF with known fixed salt and chosen context information win
the following indistinguishability game with probability not larger than (12 + ε).

Learning 1. C chooses PrivS ← PSPACE .

stage 2. C chooses s
R← SSPACE .

3. A is provided with the value s.
4. For i = 1, . . . , q′ ≤ q, (4.1) A chooses ctxi ← CSPACE .

(4.2) C computes Ki = F (PrivS , s, ctxi)n.
(4.3)A is provided the derived cryptographic key, Ki.

Challenge 1. A chooses ctx ← CSPACE
stage (subject to restriction ctx /∈ ctxi, . . . , ctx

′
q).

2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
5. C sends K′ to A.

Adaptive 1. Step 4 in Learning stage is repeated for up to q − q′ queries (subject to restriction ctxi �= ctx).

stage 2. A outputs b′ = 0, if A believes that K′ is cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

4.5 Adaptive Chosen Public Inputs Attack (CPM)

The Krawczyk security model restricts the capability of the strong active ad-
versary. The adversary is only able to change the context information. In some
situations, an active adversarymay exist that can influence all the possible inputs
for KDFs: the salt and the context information, as shown in [2]. This situation
motivated the creation of a security model called CPM-secure. For a KDF to be
CPM-secure, an adversary A who is allowed to choose both public inputs, salt
and context information. For instance, the adversary may choose a null or non-
random salt value. The adversary’s chosen salt value and different chosen context

A Framework for Security Analysis of Key Derivation Functions 205

information is used to generate the cryptographic keys. The adversaries are able
to choose whether to respond to the challenger immediately or to progress to
the adaptive stage. Again the adversaries are allowed to make no more than q
queries.

Definition 5 {CPM-secure}. The KDF is (t, q, ε) CPM-secure if for all ad-
versaries A running in polynomial time t and making at most q < |SSPACE | ×
|CSPACE | queries to the KDF with chosen salt and chosen context information
win the following indistinguishability game with probability not larger than (12 + ε).

Learning 1. C chooses PrivS ← PSPACE .
stage 2. For i = 1, . . . , q′ ≤ q, (2.1) A chooses si ← SSPACE and ctxi ← CSPACE .

(2.2) C computes Ki = F (PrivS , si, ctxi)n.
(2.3) A is provided the derived cryptographic key,
Ki.

Challenge 1. A chooses s ← SSPACE and ctx ← CSPACE .
stage (subject to restriction {s, ctx} /∈ {si, ctxi},

. . . ,{s′q , ctx′q}).

2. C chooses b
R←{0, 1}. (2.1) If b = 0, C outputs K′ = F (PrivS , s, ctx)n,

(2.2) else C outputs K′ R← {0, 1}n.
3. C sends K′ to A.

Adaptive
stage

1. Step 2 in Learning stage is repeated for up to q − q′ queries (subject to restriction {si, ctxi} �=
{s, ctx}).
2. A outputs b′ = 0, if A believes that K′ is cryptographic key, else outputs b′ = 1.

A wins the game if b′ = b.

5 Relating These Five Security Models

The models described above provide assurance for varying levels of security. A
KDF which is considered secure under one model may not be under another.
For example, a KDF may be KPM-seucre but not CPM-secure. In this section,
we establish more precisely the relations between these five security models.
Figure 1 gives a summary of these relations.

Fig. 1. The relationship between the proposed five security models

206 C.C. Wen et al.

5.1 Implications between Security Models

We start by studying the implication relationships between the different security
notions. These are shown as lemmas 1-4 in Figure 1.

Lemma 1. CPM ⇒ CCM .

Proof: Assume a KDF is CPM-secure but not CCM-secure. Since the KDF is
not CCM-secure, then there exists an adversary A who can win the CCM game
with probability greater than 1

2 + ε. Now, we assume an adversary B who plays
the CPM game with C. B will make use of the capability of A, so that A is
playing the CCM game with B while B is playing the CPM game with C.

The game is conducted as below:

– Learning stage

1. C chooses PrivS ← PSPACE .
2. For i = 1, . . . , q′ ≤ q,

(a) B chooses si ← SSPACE and sends it over to A.
(b) A chooses ctxi ← CSPACE and sends it over to B.
(c) B forwards si and ctxi to C. C computes Ki = F (PrivS , si, ctxi)n.
(d) B is provided Ki. B forwards Ki to A.

– Challenge stage

1. B chooses s← SSPACE and forwards s to A.
2. A chooses ctx← CSPACE .A sends ctx to B.
3. B forwards s and ctx to C.
4. C chooses b

R←{0, 1}.
(a) If b = 0, C outputs K ′ = F (PrivS , s, ctx)n,

(b) else C outputs K ′ R← {0, 1}n.
5. C sends K ′ to B and B forwards K ′ to A.

– Adaptive stage

1. Step 2 in Learning stage is repeated for up to q − q′ queries (subject
to restriction {si, ctxi} �= {s, ctx}).

2. A outputs b′ = 0, if A believes that K ′ is cryptographic key, else outputs
b′ = 1. A sends b′ to B and B simply forwards b′ to C.

3. B wins the game if b′A = bC .

The probability that B wins the CPM game is equal to the probability that A
wins the CCM game. Our assumption is that the KDF is not CCM-secure. That
is the probability that A wins the CCM game is greater than 1

2 + ε. Therefore,
B wins the CPM game with probability greater than 1

2 + ε. This implies that
the KDF is not CPM-secure. This is a contradiction. Hence, CPM ⇒ CCM . �
Lemma 2. CCM ⇒ KPM .

Lemma 3. CPM ⇒ CCS .

Lemma 4. CCS ⇒ KPS .

The proofs of these lemmas are similar to the proof of Lemma 1.

A Framework for Security Analysis of Key Derivation Functions 207

5.2 Non-implications between Security Models

To prove the non-implications between the security models (corollaries 1-12 in
Figure 1), we analyse five KDFs, KDF1-KDF5, all based on an underlying hash
function F (Table 2). Of these KDFs, three are proposals found in the literature.
The other two are (contrived) KDF designs which are useful to demonstrate the
separation between some of the security models. Perhaps the most interesting
observation from our results in this section is that security when the salt value
is fixed does not imply security when different salt values are used.

In what follows, all the proofs are given in the random oracle model (ROM).
While proofs in the standard model would be clearly preferable, we believe that
using the ROM is appropriate for our purposes. Firstly, as observed by oth-
ers [6,10], many hash-based KDFs proposed in the literature and used in stan-
dards seem impossible to be proven secure based on standard properties of the
underlying hash functions. Yet one would like to show that these “practical”
hash-based KDFs have some level of security that justifies their use. For ex-
ample, KDF1 in Table 2, which is standardised in PKCS#5 [4], does not seem
provable without considering idealised properties of the underlying hash func-
tion. An extensive discussion on the applicability of the ROM in the analysis
of KDFs is given by Krawczyk [6]. In addition, use of the ROM in this work
is sufficient for our purpose of studying the relationships between the different
security notions in our framework.

Table 2. Summary of the security analysis of KDF proposals based on the proposed
formal security framework for KDF

Theorem KDF proposals KPM KPS CCM CCS CPM

1 KDF1 (PrivS , s, ctx)n = F ctx (PrivS , s), assuming ctx is an integer value
[4]

√
X

√
X X

2 KDF2(PrivS , s, ctx)n = F (PrivS‖ctx)‖F (PrivS‖s‖ctx) X
√

X
√

X

3 KDF3(PrivS , s, ctx)n = F (PrivS‖s‖ctx1)‖ F (PrivS‖s‖ctx2)
√ √

X X X

4 KDF4(PrivS , s)n = F (PrivS , s1, PrivS)‖ F (PrivS , s2, PrivS)‖ . . . ‖
F (PrivS , sl, PrivS), where s = s1 ‖ s2 ‖ . . . ‖ sl [1]

√ √ √ √
X

5 KDF5(PrivS , s, ctx)n = F (F (PrivS , s), ctx) [6]
√ √ √ √ √

KDF1. Here we analyse the security of KDF1, which corresponds to PBKDF1 ,
a password-based KDF standardised in PKCS#5 [4]. KDF1 is defined as

KDF1 (PrivS , s, ctx)n = F ctx (PrivS , s),

where the context ctx is an integer value which indicates the number of iterations
of the hash function F . We show that it achieves CCM security. In addition, we
use the analysis of PBKDF1 to prove the non-implications of corollaries 1-5 in
Figure 1.

Theorem 1. KDF1 is secure with the respect to KPM, CCM and is not secure
in KPS, CCS and CPM.

Proof: Firstly, we show that KDF1 is CCM secure. The proof is in the RO
model, where in order to obtain the value F (x), the adversary needs to query

208 C.C. Wen et al.

the random oracle with input x. The random oracle queries are simulated by
the challenger as follows. On input a string x, if x has not been queried before,
output F (x) ∈R {0, 1}n, where n is the output length of the hash function. If x
has been queried before, output the same value F (x) as before. Let qF and qk
be the number of queries made by the adversary to the random oracle and the
KDF oracle, respectively.

During the learning stage, C chooses PrivS ∈R PSPACE , si ∈R SSPACE
and uses F to compute Ki = F ctx i(PrivS , si), where A chooses. At the challenge
stage, a challenge key is computed as K ′ = F ctx (PrivS , s), where C chooses s
and A chooses ctx . A receives K ′ and continues to learn cryptographic keys by
making up to q − q′ KDF queries during the adaptive stage.

Since, F is modeled as a RO, A can only distinguish whether K ′ is the crypto-
graphic key generated from KDF1 or is a random key with probability different
from 1

2 , if one of the following happens:

a) s = si for some i = 1 . . . qk. This implies that s was chosen during the
learning stage. When this occur, the adversary can easily win the game as
follows. Without loss of generality, assume s = si and ctx ≤ ctx i. Then,
F ctx i−ctx (PrivS , s) = Ki, which can be checked by the adversary.
The probability that this case occurs is Pr[s = si] =

qk
|SSPACE | .

b) The adversary queries F (PrivS ′||s′) to the random oracle, such that PrivS ′||s′
= PrivS ||s. This amounts to A guessing PrivS , which can happen with prob-
ability Pr[PrivS ′ = PrivS] ≤ qF

|PSPACE | .

The probability that A wins this indistinguishability game is:
Pr[A wins] = Pr[A wins|s = si]Pr[s = si] +

Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +
Pr[A wins|s �= si ∧ PrivS ′ �= PrivS]Pr[s �= si ∧ PrivS ′ �= PrivS]

≤ 1
(

qk
|SSPACE |

)
+ 1

(
qF

|PSPACE |
)
+ 1

2

(
1− qk

|SSPACE | −
qF

|PSPACE |
)

≤ 1
2 + qk

2|PSPACE | +
qF

2|PSPACE | ,

where ε = qk
2|SSPACE | +

qF
2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Therefore, KDF1 is CCM-secure. KDF1 is KPM-secure by Lemma 2.

Secondly, we show KDF1 is not secure in CCS. Recall from Definition 4,
that in CCS, the salt s is fixed for the entire indistinguishability game and A
is allowed to choose ctx .An attack to the CCS security of KDF1 is as follows.
In the learning stage, A queries ctx1 to get K1, such as K1 = F ctx1(PrivS , s).
During the challenge stage, A asks for the challenge output corresponding to
context ctx1 − 1 to the KDF . A bit b is choosen randomly to output challenge
output, b = 0, if cryptographic key, K ′ = F ctx∗−1

(PrivS , s) or b = 1, K ′ =
random string. Once A receives the value of K ′, A checks K1

?
= F (K ′). If so, A

outputs b′ = 0, otherwise b′ = 1. A wins the game as b′ = b except with negligible
probability 1

2n (corresponding to the case where b = 1, but still K1 = F (K ′)).
Next we show that KDF1 is not KPS-secure. The attack is similar to the

strategy followed by the adversary in the CCM game above in the case where

A Framework for Security Analysis of Key Derivation Functions 209

s = si for some i = 1, . . . , qk. In the KPS game the salt s is fixed and the context
is chosen by the challenger. Without loss of generality assume that ctx i ≤ ctx
for some i = 1, . . . , qk. The adversary checks if K ′ = F ctx−ctx1(Ki). If so, it
outputs b′ = 0, else outputs b′ = 1. Again, we see that the adversary wins with
all but negligible probability.

Finally, it follows from Lemma 3 that since KDF1 is not CCS-secure, then it
is not CPM secure. �

The proof of Corollary 1 - 5 are an immediate result of Theorem 1:

Corollary 1. CCM � KPS If a KDF is CCM-secure, it may not be KPS-secure.

Corollary 2. CCM � CCS If a KDF is CCM-secure, it may not be CCS-secure.

Corollary 3. KPM � KPS If a KDF is KPM-secure, it may not be KPS-secure.

Corollary 4. KPM � CCS If a KDF is KPM-secure, it may not be CCS-secure.

Corollary 5. CCM � CPM If a KDF is CCM-secure, it may not be CPM-
secure.

KDF2. Here we analyse the security of KDF2 which is defined as,

KDF2(PrivS , s, ctx)n = F (PrivS‖ctx)‖F (PrivS‖s‖ctx)

We show that it achieves CCS security. Furthermore, we use the analysis of
KDF2 to prove the non-implications of corollaries 6-10 in Figure 1.

Theorem 2. KDF2 is secure with respect to KPS, CCS and is not secure in
KPM, CCM and CPM.

Proof: Firstly, we prove that KDF2 is CCS-secure. Again, the proof is in the
RO model as in Theorem 1. In the learning stage, C chooses PrivS ∈R PSPACE ,
s ∈R SSPACE and C uses F to compute Ki = KDF2(PrivS , s, ctx i)n, where
A chooses ctx i. At the challenge stage, challenge key is computed as K ′ =
KDF2(PrivS , s, ctx)n, where s is same as at the learning stage and ctx is chosen
by A. C sends K ′ to A. Once A receives K ′, A continues learn the cryptographic
keys which are derived from KDF2 up to q − q′ queries.

Since, F is modeled as a RO, hence, A can only distinguish if K ′ is the key
generated by KDF2 or a random string of the same length, only if:

a) ctx = ctx i for some i = 1 . . . qk. In this case, F (PrivS‖ctx)‖F (PrivS‖s‖ctx)
= F (PrivS‖ctx i)‖F (PrivS‖s‖ctx i), it means K ′ = Ki, whereKi is one of the
key at the learning stage. Hence, A can distinguish K ′ is the key generated
by KDF2 by checking that K ′ is one of the key which had been generated at
the learning stage. However, recall Definition 4, during the challenge stage,
A is not allow to choose ctx = ctx i∀i which had been chosen at the learning
stage. It means, ctx �= ctx i∀i. Consequently, the probability is Pr[ctx = ctx i]
= 0.

210 C.C. Wen et al.

b) Query PrivS such as PrivS ′ = PrivS and find F (PrivS ′‖ctx) = F (PrivS‖ctx)
or F (PrivS ′‖s‖ctx) = F (PrivS‖s‖ctx). This amounts to A guessing PrivS ,
which can happen with probability Pr[PrivS ′ = PrivS] ≤ qF

|PSPACE | .

The probability that A winning this indistinguishability game is:

Pr[A wins] = Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +
Pr[A wins|PrivS ′ �= PrivS]Pr[PrivS ′ �= PrivS]

≤ 1
(

qF
|PSPACE |

)
+ 1

2

(
1− qF

|PSPACE |
)

≤ 1
2 + qF

2|PSPACE | , where ε =
qF

2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Therefore, this KDF is CCS-secure. KDF2 is KPS-secure by Lemma 4.

Secondly, we show KDF2 is not KPM-secure. During the learning stage, C
chooses PrivS ∈R PSPACE , s ∈R SSPACE , ctx i ∈ CSPACE and uses F to
compute Ki = KDF2(PrivS , si, ctx i)n. A receives Ki, si and ctx i. In the chal-
lenge stage, challenge key K ′ is computed by K ′ = KDF2(PrivS , s, ctx)n, where
s ∈R SSPACE and ctx ∈ CSPACE .
F is modeled as a RO, A can distinguish if K ′ is the key generated by KDF2

or a random string of the same length, only if:

a) ctx = ctx i for some i = 1 . . . qk. Since set space of s is greater than set space
of ctx, therefore, ctx will be reused with a high probability. The probability
of choosing ctx = ctxi, ∀i in the challenge stage is qk

|CSPACE | . This implies

that ctx has been chosen at the learning stage, where the first half of K ′ is
similar with the first half of Ki for some i = 1 . . . qk at the learning stage. A
can distinguish the challenge output is cryptographic key by observing the
first component part of K ′. The probability is, Pr[ctx = ctx i]≤ qk

|CSPACE | .
b) Query PrivS such as PrivS ′ = PrivS and find F (PrivS ′‖ctx) = F (PrivS‖ctx)

or F (PrivS ′‖s‖ctx) = F (PrivS‖s‖ctx). This implies that A guessing PrivS
which can happen with probability Pr[PrivS ′ = PrivS] ≤ qF

|PSPACE | .

Hence, the probability that A can win this indistinguishability game is:

Pr[A wins] = Pr[A wins|ctx = ctx i]Pr[ctx = ctx i] +
Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +
Pr[A wins|ctx �= ctx i ∧ PrivS ′ �= PrivS]Pr[ic �= ctx i ∧ PrivS ′ �=
PrivS]

≤ 1
(

qk
|CSPACE |

)
+ 1

(
qF

|PSPACE |
)
+ 1

2

(
1− qk

|CSPACE | −
qF

|PSPACE |
)

≤ 1
2 + qk

2|CSPACE | +
qF

2|PSPACE | ,

where ε = qk
2|CSPACE | +

qF
2|PSPACE | ,

qk
2|CSPACE | >

|SSPACE ||CSPACE |
2|CSPACE | is not negligible.

Therefore, KDF2 is not KPM-secure. Hence, KDF2 is not CCM-secure by
Lemma 2 and is not CPM-secure by Lemma 1. �

A Framework for Security Analysis of Key Derivation Functions 211

The proof of Corollary 6 - 10 are an immediate result of Theorem 2:

Corollary 6. CCS � KPM If a KDF is CCS-secure, it may not be KPM-secure.

Corollary 7. CCS � CCM If a KDF is CCS-secure, it may not be CCM-secure.

Corollary 8. KPS � KPM If a KDF is KPS-secure, it may not be KPM-secure.

Corollary 9. KPS � CCM If a KDF is KPS-secure, it may not be CCM-secure.

Corollary 10. CCS � CPM If a KDF is CCS-secure, it may not be CPM-
secure.

KDF3. Now we analyse the security of KDF3, which we defined it as,

KDF3(PrivS , s, ctx)n = F (PrivS‖s‖ctx1)‖ F (PrivS‖s‖ctx2), where ctx =
ctx1‖ctx2.

We show that it only achieves KPS and KPM security. In addition, we use this
analysis to prove the non-implications of corollaries 11 and 12 in Figure 1.

Theorem 3. KDF3 is secure with respect to KPM, KPS and is not CCM, CCS
and CPM.

Proof: Firstly, we show that KDF3 is KPM-secure. During the learning stage,
C chooses PrivS ∈R PSPACE , si ∈R SSPACE , ctx i ∈ CSPACE and C uses F
to compute Ki = KDF3(PrivS , si, ctx i)n. A is provided Ki, si and ctx i. In the
challenge stage, challenge key is computed as K ′ = KDF3(PrivS , s, ctx)n, where
s ∈R SSPACE and ctx is chosen by C.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if:

a) C chooses ctx ∈ CSPACE , ctx = ctx1‖ctx2 and ctx1 = ctx2. In this case, A
can check the challenge key K ′, the first half is equal with the second half
of K ′, such as F (PrivS‖s‖ctx1) = F (PrivS‖s‖ctx2). However, with a high
probability the chosen ctx by C is most likely different such that ctx1 �= ctx2.
Hence, the probability is, Pr[ctx1 = ctx 2] ≤ 1

|CSPACE | .
b) s = si and ctx = ctx i for some i = 1 . . . qk. In this case, A will distin-

guish K ′ is one of the cryptographic key at the learning stage, such as
K ′ = Ki for some i = 1 . . . qk, where F (PrivS‖s‖ctx1)‖F (PrivS‖s‖ctx2) =
F (PrivS‖si‖ctx i

1)‖F (PrivS‖si‖ctx i
2) . The probability is, Pr[s = si ∧ ctx =

ctx i] ≤ qk
|SSPACE |×|CSPACE| .

c) Query PrivS , PrivS ′ = PrivS and find F (PrivS ′‖s‖ctx1) = F (PrivS‖s‖ctx1)
or F (PrivS ′‖s‖ctx2) = F (PrivS‖s‖ctx2). This implies that A guessing PrivS
which can happen with probability Pr[PrivS ′ = PrivS] ≤ qF

|PSPACE | .

The probability that A winning the game is:

Pr[A wins] = Pr[A wins|ctx1 = ctx2]Pr[ctx1 = ctx2] +
Pr[A wins|s = si ∧ ctx = ctx i]Pr[s = si ∧ ctx = ctx i] +

212 C.C. Wen et al.

Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +
Pr[A wins|ctx 1 �= ctx2 ∧ s �= si&ctx �= ctx i ∧ PrivS ′ �= PrivS]×
Pr[ctx1 �= ctx2 ∧ s �= si&ctx �= ctx i ∧ PrivS ′ �= PrivS]

≤ 1
(

1
|CSPACE |

)
+ 1

(
qk

|SSPACE ||CSPACE |
)
+ 1

(
qF

|PSPACE|
)
+

1
2

(
1− 1

|CSPACE | −
qk

|SSPACE ||CSPACE | −
qF

|PSPACE |
)

≤ 1
2 + 1

2|CSPACE| +
qk

2|SSPACE ||CSPACE | +
qF

2|PSPACE | ,
where ε = 1

2|CSPACE | +
qk

2|SSPACE ||CSPACE | +
qF

2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Therefore, KDF3 is KPM-secure.

Secondly, we show that KDF3 is KPS-secure. During the learning stage, C
chooses PrivS ∈R PSPACE . C choose a fixed s ∈R SSPACE which is used for
entire game and chooses different ctx i ∈ CSPACE . Then, C uses F to compute
Ki = KDF3(PrivS , s, ctx i)n. A is providedKi, s and ctx i. In the challenge stage,
challenge key is computed as K ′ = KDF3(PrivS , s, ctx)n, where ctx is chosen
by C.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if:

a) C chooses ctx ∈ CSPACE , ctx = ctx1‖ctx2 and ctx 1 = ctx2. Hence, A can
distinguish the challenge key K ′ such as the first half of the K ′ is equal
with the second half of the K ′, where F (PrivS‖s‖ctx1) = F (PrivS‖s‖ctx2).
However, the chosen ctx by C is most likely different such that ctx1 �= ctx2.
Therefore, the probability if Pr[ctx1 = ctx2]≤ 1

|CSPACE | .

b) Query PrivS , PrivS ′ = PrivS and find F (PrivS ′‖s‖ctx1) = F (PrivS‖s‖ctx1)
or F (PrivS ′‖s‖ctx2) = F (PrivS‖s‖ctx2). This implies that A guessing PrivS
which can happen with probability Pr[PrivS ′ = PrivS] ≤ qF

|PSPACE | .

The probability that A winning the game is:

Pr[A wins] = Pr[A wins|ctx 1 = ctx 2]Pr[ctx1 = ctx 2] +
Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +
Pr[A wins|ctx1 �= ctx2 ∧PrivS ′ �= PrivS]Pr[ctx1 �= ctx2 ∧PrivS ′ �=
PrivS]

≤ 1
(

1
|CSPACE |

)
+ 1

(
qF

|PSPACE|
)
+ 1

2

(
1− 1

|CSPACE | −
qF

|PSPACE |
)

≤ 1
2 + 1

2|CSPACE| +
qF

2|PSPACE | ,
where ε = 1

2|CSPACE | +
qF

2|PSPACE | is negligible.

A only has negligible ‘advantage’ over random guessing the challenge output.
Hence, KDF3 is KPS-secure.

Thirdly, we show KDF3 is not CCM-secure. In the learning stage, C chooses
PrivS ∈R PSPACE and si ∈R SSPACE , then C uses F to compute Ki =
KDF3(PrivS , si, ctx i)n, where ctx i is chosen by A. A receives Ki and si.

In the challenge stage, the challenge key K ′ is computed by C such as K ′ =
KDF3(PrivS , s, ctx)n, where s ∈R SSPACE by C and ctx is chosen by A.

A Framework for Security Analysis of Key Derivation Functions 213

Once C sends K ′ to A, A continues learn the cryptographic keys KDF3 up
to q − q′ queries at the adaptive stage.
F is modeled as a RO, A can only distinguish if K ′ is the key generated

by KDF3 or a random string of the same length, only if, A chooses ctx ∈
CSPACE , ctx = ctx1‖ctx2 and ctx1 = ctx2. In this case, F (PrivS‖s‖ctx1) =
F (PrivS‖s‖ctx2), A can distinguish the challenge key K ′ where the first half of
K ′ is equal with the second half ofK ′. Since A chooses ctx , hence, the probability
is, Pr[ctx1 = ctx 2] = 1. Thus, KDF3 is not CCM-secure and KDF3 is not CPM-
secure by Lemma 1.

Next, we show KDF3 is not CCS-secure. During the learning stage, C chooses
PrivS ∈R PSPACE and s ∈R SSPACE , which are fixed for entire game, then
C uses F to compute Ki = KDF3(PrivS , s, ctx i)n, where ctx i is chosen by
A. A receives Ki and s. In the challenge stage, challenge key is computed as
K ′ = KDF3(PrivS , s, ctx)n, where ctx is chosen by A. C sends K ′ to A, A
continues learn the cryptographic keys KDF3 up to q−q′ queries at the adaptive
stage.

Since, F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF3 or a random string of the same length, only if, A chooses ctx ∈
CSPACE , ctx = ctx1‖ctx2 and ctx1 = ctx2, A can distinguish the challenge
key K ′ where the first half of K ′ is equal with the second half of K ′, such as
F (PrivS‖s‖ctx1)‖F (PrivS‖s‖ctx2). ctx is chosen by A, hence, the probability
is, Pr[ctx1 = ctx 2] = 1. Therefore, KDF3 is not CCS-secure and KDF3 is not
CPM-secure by Lemma 3. �

The proof of Corollary 11 - 12 are an immediate result of Theorem 3.

Corollary 11. KPM � CCM If a KDF is KPM-secure, it may not be CCM-
secure.

Corollary 12. KPS � CCS If a KDF is KPS-secure, it may not be CCS-secure.

KDF4. Here we analyse the security of KDF4, which proposed by Adam et. al
in 2004 [1]. KDF4 is defined as,

KDF4(PrivS , s)n = F (PrivS , s1, PrivS)‖ F (PrivS , s2, PrivS)‖ . . . ‖ F (PrivS ,
sl, PrivS), where s = s1 ‖ s2 ‖ . . . ‖ sl.

We show that it achieves CCM and CCS security.

Theorem 4. If q = 0 and l > 1, then KDF4 is secure in CCM, CCS, KPM
and KPS but is not secure in CPM.

Proof: Firstly, we prove that KDF4 is secure in KPM, KPS, CCM and CCS
when q = 0 and l > 1 as follows. If q = 0, it means, A can play neither at
the learning stage nor at the adaptive stage. During the challenge stage, the
challenge key is computed as K ′ = KDF4(PrivS , s)n, where PrivS and s are
chosen by C, such as PrivS ∈R PSPACE and s ∈R SSPACE . K ′ is provided
to A.

214 C.C. Wen et al.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF4 or a random string of the same length, only if:

a) If the chosen s where s = s1‖s2‖ . . . ‖sl and s1 = s2 = . . . = sl. Then, A can
distinguishK ′ it the cryptographic key which is derived fromKDF4 by check-
ing is there has l repetition component parts, such as F (PrivS , s1,PrivS)
= F (PrivS , s2,PrivS)= . . . =F (PrivS , sl,PrivS). However, s is chosen ran-
domly by C. Hence, the probability is Pr[s = s1‖s2‖ . . . ‖sl] ≤ 1

|SSPACE | .
b) Query PrivS , PrivS ′ = PrivS and findKDF4(PrivS ′, s)n =KDF4(PrivS , s)n.

This amounts to A guessing PrivS , with probability Pr[PrivS ′ = PrivS] ≤
qF

|PSPACE | .

The probability that A winning this indistinguishability game is:

Pr[A wins] = Pr[A wins|s = s1‖s2‖ . . . ‖sl]Pr[s = s1‖s2‖ . . . ‖sl] +
Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +
Pr[A wins|s = s1 �= s2 �= . . . �= sl ∧ PrivS ′ �= PrivS]×
Pr[s = s1 �= s2 �= . . . �= sl ∧ PrivS ′ �= PrivS]

≤ 1
(

1
|SSPACE |

)
+ 1

(
qF

|PSPACE |
)
+ 1

2

(
1− 1

|SSPACE | −
qF

|PSPACE |
)

≤ 1
2 + 1

2|SSPACE | +
qF

2|PSPACE | ,
where ε = 1

2|SSPACE | +
qF

2|PSPACE | is negligible.

A has negligible ‘advantage’ in making random guessing the challenge output.
KDF4 is secure in KPM, KPS, CCM and CCS.

Secondly, we show that KDF4 is not CPM-secure (q = 0, l > 1). When q = 0,
A is not allowed to play at the learning stage and at the adaptive stage. In the
challenge stage, the challenge key is computed asK ′ = KDF4(PrivS , s,PrivS)n,
where s is chosen by A. F is modeled as a RO, A can only distinguish if K ′ is
the key generated by KDF4 or a random string of the same length, only if, A
chooses s = s1‖s2‖ . . . ‖sl, s1 = s2 = . . . = sl, such as K ′ = F (PrivS‖s1‖PrivS)
‖ . . . ‖F (PrivS‖sl‖PrivS) and F (PrivS‖s1‖PrivS) = . . . = F (PrivS‖sl‖PrivS).
A can distinguish K ′ is the cryptographic key when A observes there is a l
repetition component parts. Since s is chosen by A, hence the probability is
Pr[s1 = s2 = . . . = sl] = 1. Therefore, A can distinguish between a derived
cryptographic key and a truly random string based on the observation of the l
repetition component parts. Thus, KDF4 is not CPM-secure. �

KDF5. Here we analyse the security of KDF5, which corresponds to the KDF
proposal presented by Krawczyk in [6]. KDF5 is defined as,

KDF5(PrivS , s, ctx)n = G(F (PrivS , s), ctx)

In the following analysis, both G and H are modelled as random oracles, and
we show that KDF5 is CPM -secure.

Remark: We must note that Krawczyk [6] proved that KDF5 is CCS-secure
in the standard model. Specifically, Krawczyk proves that if F is a good (ran-
domised) computational extractor and G is a pseudorandom function, then the

A Framework for Security Analysis of Key Derivation Functions 215

composition shown above is CCS-secure. He then goes on to show that the
standard MAC algorithm HMAC satisfies both requirements under standard as-
sumptions in the underlying hash function. Extending Krawczyk’s result to CPM
security in the standard model would necessitate the modification of the given
definition of computational extractor, to relax the requirement on the salt being
chosen uniformly at random. This notion of extractor would be trivially satisfied
by deterministic extractors, such as those mentioned by Krawczyk himself [6].
We leave the formalisation of these changes as future work and now focus in
showing that CPM-security is achievable in the ROM.

Theorem 5. KDF5 is secure with respect to all five security models.

Proof: Firstly, we show that KDF5 [6] is CPM-secure. During the learning stage,
C choosesPrivS ∈R PSPACE . C uses F to computeKi = KDF5(PrivS , si, ctx i),
where si and ctx i are chosen by A from SSPACE and CSPACE respectively.
A is provided Ki. In the challenge stage, challenge key is computed as K ′ =
KDF5(PrivS , s, ctx), where s and ctx are chosen by A. C sends K ′ to A, A
continues learn the cryptographic keys up to q − q′ queries.

Since F is modeled as a RO, A can only distinguish if K ′ is the key generated
by KDF5 or a random string of the same length, only if:

a) (s, ctx) = (si, ctx i) for some i = 1 . . . qk, it means, G(F (PrivS , s), ctx) =
G(F (PrivS , si), ctx i). A will distinguish K ′ is one of the key at the learning
stage. However, based on Definition 5, the chosen pair (s, ctx) is restricted
not the similar pair (si, ctxi) ∀ i in the learning stage. Hence, the probability
is Pr[(s, ctx) = (si, ctx i)] = 0.

b) Query PrivS such as PrivS ′ = PrivS and find F (PrivS ′‖s) = F (PrivS‖s)
or F (PrivS ′‖s‖ctx) = F (PrivS‖s‖ctx). This implies that A guessing PrivS
with with probability Pr[PrivS ′ = PrivS] ≤ qF

|PSPACE | .

The probability that A winning this indistinguishability game is:
Pr[A wins] = Pr[A wins|PrivS ′ = PrivS]Pr[PrivS ′ = PrivS] +

Pr[A wins|PrivS ′ �= PrivS]Pr[PrivS ′ �= PrivS]

≤ 1
(

qF
|PSPACE |

)
+ 1

2

(
1− qF

|PSPACE |
)

≤ 1
2 + qF

2|PSPACE | , where ε =
qF

2|PSPACE | is negligible.

A is only has negligible ‘advantage’ to distinguish the challenge output. There-
fore, KDF5 is CPM-secure. Hence KDF5 is secure in CCM, KPM, CCS and
KPS by Lemma 1, Lemma 2, Lemma 3 and Lemma 4 respectively. �

6 Conclusion

We propose four new security models known as KPM, KPS, CCM and CPM. To-
gether with the CCS security model (proposed by Krawczyk), we believe these
security models form a comprehensive security framework for KDFs. This al-
lows for consideration of the security of a KDF against adversaries of varying

216 C.C. Wen et al.

capabilities. We establish the relations between these five security models. These
relations are established using existing and modified KDF proposals.

As future work, we plan to use our proposed security framework to analyse
the security level of other existing KDF proposals and, where possible, extend
our analyses to the standard model (i.e without random oracles).

References

1. Adams, C., Kramer, G., Mister, S., Zuccherato, R.: On The Security of Key Deriva-
tion Functions. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp.
134–145. Springer, Heidelberg (2004)

2. Barak, B., Shaltiel, R., Tromer, E.: True Random Number Generators Secure in a
Changing Environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)

3. Dang, Q.: Recommendation for Existing Application-Specific Key Derivation Func-
tions. NIST Special Publication 800, 135 (2010)

4. Kaliski, B.: PKCS# 5: Password-based cryptography specification version 2.0.
Technical report, RFC 2898 (September 2000)

5. Krawczyk, H.: On Extract-then-Expand Key Derivation Functions and an HMAC-
based KDF (2008), http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.131.8254&rep=rep1&type=pdf

6. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (2010)

7. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). Technical report, RFC 5869 (May 2010)

8. McGrew, D., Weis, B.: Key Derivation Functions and Their Uses (2010),
http://www.ietf.org/id/draft-irtf-cfrg-kdf-uses-00.txt

9. Shoup, V.: ISO 18033-2: An emerging standard for public-key encryption. Final
Committee Draft (December 2004)

10. Yao, F.F., Yin, Y.L.: Design and Analysis of Password-Based Key Derivation Func-
tions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer,
Heidelberg (2005)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8254\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.8254\&rep=rep1\&type=pdf
http://www.ietf.org/id/draft-irtf-cfrg-kdf-uses-00.txt

On the Equivalence of Two Definitions

of Visual Cryptography Scheme�

Teng Guo1,2, Feng Liu1, and ChuanKun Wu1

1 State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100029, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100190, China

{guoteng,liufeng,ckwu}@is.iscas.ac.cn

Abstract. A visual cryptography scheme (VCS) is a secret sharing
method, for which the secret can be decoded by human eyes without
needing any cryptography knowledge nor any computation. To the best
of our knowledge, there are two different definitions of basis matrix (k, n)-
VCS. The definition of unconditional secure basis matrix (k, n)-VCS is
the generally accepted one, and has been widely used since the pioneer
work of Naor and Shamir in 1994, while the definition of stacking secure
basis matrix (k, n)-VCS is relatively new, and has been used in many
studies in recent years. Our study shows that the above two definitions
are actually equivalent. Furthermore, we generalize the equivalence re-
lation to general access structure basis matrix VCS and general access
structure size invariant VCS. But the equivalence relation does not hold
for non-basis matrix (k, n)-VCS.

Keywords: Visual cryptography, Secret sharing, Unconditional secure,
Stacking secure.

1 Introduction

Naor and Shamir first formally gave the definition of k out of n threshold visual
cryptography scheme in [19], which is also denoted as (k, n)-VCS. In a (k, n)-
VCS, an original secret image is split into n shares, where the stacking of any
k shares can reveal the content of the secret image but any less than k shares
should provide no information (in an information-theoretic sense) of the secret
image, except the size of it. In [1], Ateniese et al. extended the model of Naor
and Shamir to general access structure and formally brought up the concept of
basis matrices, which are widely used to construct VCSs and to prove bounds
of VCS (see [19, 1, 9, 4, 10, 30, 11, 20, 26, 2, 22, 7, 14, 24, 6, 17, 18]). A VCS
based on basis matrices is also referred to as a basis matrix VCS for short. Ito
et al. and Yang separately introduced size invariant visual cryptography scheme
(SIVCS) in [21] and [25] respectively, which has no pixel expansion.

� This work was supported by NSFC No.60903210.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 217–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 T. Guo, F. Liu, and C. Wu

Ateniese et al. first formally give the definition of unconditional secure ba-
sis matrix (k, n)-VCS, which is the most widely used definition of VCS (see
[19, 1, 10, 15, 23, 16, 3, 30, 14, 24, 6, 17, 18]). Unconditional secure means that
we cannot get any information from less than k shares (also called perfect se-
curity). On the other hand, in recent years, many studies use the definition of
stacking secure basis matrix (k, n)-VCS (see [6, 5, 8, 28, 27, 13, 29, 12, 25]).
Stacking secure means that the stacking of less than k shares will not disclose
the secret. When the adversary cannot analyze the shares from the pixel level
with the assistances of computers and scanners, stacking secure is enough. It is
easy to see that unconditional security surely implies stacking security, on the
other hand, stacking security may not guarantee unconditional security. To the
best of our knowledge, no rigorous treatment has been paid to the relationship
between the above two definitions of basis matrix (k, n)-VCS, except an illustra-
tion which took a (2, 3) threshold structure as an example in [6]. Intuitively, the
unconditional secure condition is stronger than the stacking secure condition.
For non-basis matrix (k, n)-VCSs, which are based on two collections of share
matrices, we have proved that this is in fact true by giving a (k, n)-VCS that is
stacking secure but not unconditional secure. However, for basis matrix (k, n)-
VCSs, surprisingly, we have proved that the two security conditions are actually
equivalent, which leads to the equivalence of the above two definitions of basis
matrix (k, n)-VCS. Our result provides a firm foundation for the using of the
definition of stacking secure basis matrix (k, n)-VCS. Finally, we point out the
following:

1. Many researches have obtained stacking secure basis matrix (k, n)-VCSs
(see [6, 5, 8, 28, 27, 13, 29, 12, 25]), our results show that they also guarantee
unconditional security.

2. The study of optimal (k, n)-VCS in [6] is based on the definition of stack-
ing secure basis matrix (k, n)-VCS, on the other hand, their conclusion is
for unconditional secure basis matrix (k, n)-VCSs. However, it only took a
(2, 3) threshold structure as an example to illustrate the equivalence of the
above two definitions of basis matrix (k, n)-VCS. From this perspective, its
derivation process is not rigorous, and our study can be seen as a rigorous
complement and generalization to the study of [6].

3. To the best of our knowledge, most optimization algorithms and linear pro-
grammings that are used to study optimal (k, n)-VCS (see [6, 5, 13]) describe
their constraints by the stacking secure condition of basis matrix VCS. On
the other hand, the schemes obtained by those researches in [6, 5, 13] are
expected to guarantee unconditional security. Hence there is a gap between
what is obtained and what is expected. Our results fill up this gap, and
provide a firm foundation to this type of researches.

This paper is organized as follows. In Section 2, we give some preliminaries of
VCS. In Section 3, we prove the equivalence of the two definitions of basis matrix
(k, n)-VCS. Then the equivalence relation is generalized to general access struc-
ture basis matrix VCS. Finally, it is proved that the equivalence relation cannot
be extended to non-basis matrix VCS. The paper is concluded in Section 4.

On the Equivalence of Two Definitions of Visual Cryptography Scheme 219

2 Preliminaries

In this section, we first formally give the definition of unconditional secure basis
matrix (k, n)-VCS. Then we formally give the definition of stacking secure basis
matrix (k, n)-VCS.

Before moving any further, we first set up our notations. Let X be a subset of
{1, 2, · · · , n} and let |X | be the cardinality of X . For any n×m Boolean matrix
M , let M [X] denote the matrix M constrained to rows in X , then M [X] is a
|X | ×m matrix. We denote by H(M [X]) the Hamming weight of the OR result
of rows ofM [X]. Let C0 and C1 be two collections of n×m Boolean matrices, we
define C0[X] = {M [X] : M ∈ C0}, and define C1[X] = {M [X] : M ∈ C1}. We
define H(C0[X]) = {H(M [X]) : M ∈ C0}, and define H(C1[X]) = {H(M [X]) :
M ∈ C1}.
Remark: H(C0[X]) and H(C1[X]) are two collections (multi-sets) of numbers
between 0 and m.

In a visual cryptography scheme with n participants, we share one pixel at a
time. The pixel is either white or black. If the pixel to be shared is white (resp.
black), we randomly permutate the columns of S0 (resp. S1) and distribute the
j-th (0 ≤ j ≤ n) row to share j, in which 0 denotes a white pixel and 1 denotes
a black pixel. Formally, unconditional secure basis matrix (k, n)-VCS is defined
as follows:

Definition 1 (Unconditional secure basis matrix (k, n)-VCS [1]). The
two n × m Boolean matrices (S0, S1) constitute an unconditional secure basis
matrix (k, n)-VCS if the following conditions hold:

1. (Contrast) For any participant set X with |X | ≥ k, we denote l = H(S0[X]),
and denote h = H(S1[X]). It holds that 0 ≤ l < h ≤ m.

2. (Security) For any participant set Y with |Y | ≤ k − 1, S0[Y] and S1[Y] are
equal up to a column permutation.

Remark: From another viewpoint, if we take S0[Y] and S1[Y] as two multi-sets
with their column vectors as elements, then the above security condition can be
stated as follows: the two multi-sets S0[Y] and S1[Y] are the same for any Y
with |Y | ≤ k− 1. To verify the security condition, we need to verify the equality
of the two multi-sets S0[Y] and S1[Y]. Finally, we point out that S0 and S1 are
also referred to as the basis matrices.

Now, we formally give the definition of stacking secure basis matrix (k, n)-VCS
as follows:

Definition 2 (Stacking secure basis matrix (k, n)-VCS [27, 8, 6]). The
two n × m Boolean matrices (S0, S1) constitute a stacking secure basis matrix
(k, n)-VCS if the following conditions hold:

1. (Contrast) For any participant set X with |X | ≥ k, we denote l = H(S0[X]),
and denote h = H(S1[X]). It holds that 0 ≤ l < h ≤ m.

2. (Security) For any participant set Y with |Y | ≤ k−1, it holds that H(S0[Y])=
H(S1[Y]).

220 T. Guo, F. Liu, and C. Wu

Remark: The contrast conditions of the above two definitions of basis ma-
trix (k, n)-VCS are the same. The differences lie in the security condition. The
unconditional secure condition of basis matrix (k, n)-VCS requires that S0[Y]
and S1[Y] are equal up to a column permutation for any Y with |Y | ≤ k − 1,
while the stacking secure condition of basis matrix (k, n)-VCS requires that
H(S0[Y]) = H(S1[Y]) holds for any Y with |Y | ≤ k − 1. Intuitively, the stack-
ing secure condition is easier to characterize and verify than the unconditional
secure condition. That is the very reason that a lot of papers use the definition
of stacking secure basis matrix (k, n)-VCS (see [6, 5, 8, 28, 27, 13, 29, 12, 25]).

3 The Equivalence of Two Definitions of Basis Matrix
VCS

In this section, we first prove that the two definitions of basis matrix (k, n)-
VCS are actually equivalent. Then we extend the equivalence relation to general
access structure basis matrix VCS and general access structure SIVCS. At last,
it is proved that the equivalence relation cannot be extended to non-basis matrix
(k, n)-VCS.

3.1 The Equivalence of Two Definitions of Threshold Basis Matrix
VCS

To begin with our proof, we first illustrate the terminologies we will use. Numbers
0, 1, 2, . . . , 2m − 1 can be represented as m-tuple Boolean row vectors (00 . . . 0︸ ︷︷ ︸

m

),

(00 . . . 0︸ ︷︷ ︸
m−1

1), (00 . . . 0︸ ︷︷ ︸
m−2

10), . . . , (11 . . . 1︸ ︷︷ ︸
m

). To get m-tuple Boolean column vectors,

we transpose the above m-tuple Boolean row vectors. Now we have a 1 − 1
mapping between the set of all m-tuple Boolean column vectors and the set of
numbers {0, 1, 2, . . . , 2m− 1}. The above 1− 1 mapping is also referred to as the
coding rule.

Given two numbers a, b ∈ {0, 1, 2, . . . , 2m−1}, if the m-tuple Boolean column
vector of b can be obtained by turning some (possibly 0) ‘1’ bits of the m-tuple
Boolean column vector of a into ‘0’ bits, then we say that a covers b or that b is
covered by a, which is denoted as a � b.

Remark: Obviously, a trivially covers a. If a � b and a �= b, we say that a
non-trivially covers b or that b is non-trivially covered by a, which is denoted as
a � b. It is convenient to know that, if a � b, then a > b. However, the converse
is not true.

According to the coding rule, the column vectors of the n×m Boolean matrix
can be mapped to numbers in {0, 1, 2, . . . , 2n−1}. Thus the n×m Boolean matrix
can also be viewed as a multi-set of cardinality m, with its column vectors as
elements. Given two n×m Boolean matrices S0 and S1, which can also be viewed
as two multi-sets, the following two propositions about them are equivalent: (1)
S0 and S1 are equal up to a column permutation; (2) the two multi-sets S0 and

On the Equivalence of Two Definitions of Visual Cryptography Scheme 221

S1 are equal. Since the OR result of a column vector is 0 if and only if it is a
zero vector, the Hamming weight of the OR result of the rows of S0 (resp. S1) is
equal to the number of non-zero column vectors in the multi-set S0 (resp. S1).
From another viewpoint, it is equal to m minus the number of zero vector in the
multi-set S0 (resp. S1).

Lemma 1. Given two n×m Boolean matrices (S0, S1) and a participant set X
with |X | ≥ 1, if it holds that H(S0[Y]) = H(S1[Y]) for any participant set Y
with Y ⊆ X, then S0[Y] and S1[Y] are equal up to a column permutation for
any participant set Y with Y ⊆ X.

Proof: For any participant set Y with Y ⊆ X , according to the coding rule, the
values of the column vectors in (S0[Y], S1[Y]) may be 0, 1, 2, . . . , 2|Y | − 1. The
number of column vectors of value i (0 ≤ i ≤ 2|Y | − 1) in S0[Y] (resp. S1[Y])
is denoted as lYi (resp. hYi). Obviously, for all i with 0 ≤ i ≤ 2|Y | − 1, we have

lYi ≥ 0 and hYi ≥ 0. We also have

2|Y |−1∑
i=0

lYi =

2|Y |−1∑
i=0

hYi = m. The conclusion

trivially holds for empty participant set Y . So we only need to prove that the
conclusion holds for any non-empty participant set Y with Y ⊆ X.

From another viewpoint, we only need to prove that lYi = hYi holds for any
non-empty participant set Y with Y ⊆ X and any i with 0 ≤ i ≤ 2|Y | − 1. We
use proof by contradiction to reach our conclusion.

Assume that the conclusion does not hold, more specifically speaking, there
exists a non-empty participant set Y ⊆ X (1 ≤ t = |Y | ≤ |X |) such that, for
some j (0 ≤ j ≤ 2t − 1), we have hYj �= lYj . The minimum j with hYj �= lYj
is denoted as j∗. As we have H(S0[Y]) = H(S1[Y]), for the above Y , we get
hY0 = lY0 (for H(S0[Y]) = m − lY0 and H(S1[Y]) = m − hY0). Thus we have
j∗ > 0. It cannot be true that j∗ = 2t−1, otherwise, as j∗ is the minimum j with

hYj �= lYj , we get
2t−2∑
i=1

(lYi) + lY2t−1 = H(S0[Y]) �= H(S1[Y]) =
2t−2∑
i=1

(hYi) + hY2t−1,

contradicting with the given condition that H(S0[Y]) = H(S1[Y]) holds for any
Y with Y ⊆ X . Thus we have 0 < j∗ < 2t− 1. Besides we have hYe = lYe for any
e with 0 ≤ e < j∗, for j∗ is the minimum j with hYj �= lYj .

Suppose that the ‘1’ bits of the column vector of value j∗ are on rows Z =
{a1, a2, . . . , aw}, then we must have 1 ≤ w < t (for 0 < j∗ < 2t − 1). We define
participant set V = Y \Z (|Y | = t, |V | = t−w). The number of column vectors
of value i (0 ≤ i ≤ 2|V | − 1) in S0[V] (resp. S1[V]) is denoted as lVi (resp. hVi).
Take any column vector from S0[Y] (resp. S1[Y]), its value is denoted as d, if d is
covered by j∗, then its corresponding |V |-tuple Boolean column vector in S0[V]
(resp. S1[V]) must be of value 0 (for all the ‘1’ bits of that t-tuple Boolean column

vector have been removed). Thus we have hV0 =
∑
j∗�d

hYd =
∑
j∗�d

(hYd) + hYj∗ and

lV0 =
∑
j∗�d

lYd =
∑
j∗�d

(lYd) + lYj∗ . Because j
∗ is the minimum j with hYj �= lYj ,

we have hYj = lYj for all j with 0 ≤ j < j∗. From the coding rule, we know

222 T. Guo, F. Liu, and C. Wu

if j∗ � d, then d < j∗. Hence we get
∑
j∗�d

hYd =
∑
j∗�d

lYd . As h
Y
j∗ �= lYj∗ , we get

hV0 �= lV0 . Furthermore, since H(S0[V]) = m − lV0 and H(S1[V]) = m − hV0 ,
we get H(S0[V]) �= H(S1[V]), which contradicts with the given condition that
H(S0[Y]) = H(S1[Y]) holds for any Y with Y ⊆ X . Hence the assumption
cannot be true, and we get the conclusion. �

Theorem 1. The definition of stacking secure basis matrix (k, n)-VCS and the
definition of unconditional secure basis matrix (k, n)-VCS are equivalent.

Proof: The contrast conditions of the above two definitions are the same. So
we only need to prove the equivalence of the security conditions of the above
two definitions. For basis matrix (k, n)-VCS, the unconditional secure condition
trivially implies the stacking secure condition. Now we turn to prove the converse.
Take any participant set X with |X | = k − 1, the condition that H(S0[Y]) =
H(S1[Y]) holds for any participant set Y with |Y | ≤ k − 1 implies the given
condition of Lemma 1. Hence we know that S0[Y] and S1[Y] are equal up to a
column permutation for any participant set Y with Y ⊆ X . Because the selection
of X is arbitrary, the conclusion of Theorem 1 holds. �
Remark: The above equivalence relationship means that a basis matrix (k, n)-
VCS is stacking secure if and only if it is unconditional secure. From another
viewpoint, a stacking secure basis matrix (k, n)-VCS also guarantees uncondi-
tional security.

3.2 The Equivalence of Two Definitions of General Access Structure
Basis Matrix VCS

First we give some preliminaries of general access structure. Suppose the par-
ticipant set is denoted as P = {1, 2, 3, . . . , n}. A general access structure is a
specification of qualified participant sets ΓQual ∈ 2P and forbidden participant
sets ΓForb ∈ 2P . Any participant set X ∈ ΓQual can reveal the secret by stacking
their share images, but any participant set Y ∈ ΓForb cannot obtain any infor-
mation of the secret image, except the size of it. All the minimal qualified sets
are defined as Γ0 = {A ∈ ΓQual : ∀A′ � A,A′ /∈ ΓQual}. If for any A ∈ ΓQual,
any superset of A is also in ΓQual, then ΓQual is said to be monotone increasing.
If for any B ∈ ΓForb, any subset of B is also in ΓForb, then ΓForb is said to be
monotone decreasing. If ΓQual is monotone increasing and ΓForb is monotone
deceasing and ΓQual∪ΓForb = 2P , then the access structure is said to be strong.
In a strong access structure, ΓQual = {A ⊆ P : ∃B ∈ Γ0, A ⊇ B}, and we
say that ΓQual is the closure of Γ0. If ΓQual = Γ0, then the access structure is
said to be weak. In (k, n) threshold access structure, Γ0 = {B ⊆ P : |B| = k}
and ΓForb = {B ⊆ P : |B| ≤ k − 1}. If the (k, n) threshold access structure is
strong, ΓQual = {B ⊆ P : |B| ≥ k}. On the other hand, if the (k, n) threshold
access structure is weak, ΓQual = Γ0 = {B ⊆ P : |B| = k}. Hence, in a strong
(k, n)-VCS, it is required that the stacking of more than or equal to k shares
can reveal the secret, while in a weak (k, n)-VCS, it is only required that the

On the Equivalence of Two Definitions of Visual Cryptography Scheme 223

stacking of k shares can reveal the secret. All the maximal forbidden sets are
defined as ΓM = {A ∈ ΓForb : ∀a ∈ P \ A,A′ = A ∪ {a}, A′ ∈ ΓQual}. In (k, n)
threshold access structure, ΓM = {B ⊆ P : |B| = k − 1}.

Formally, unconditional secure basis matrix {ΓQual, ΓForb}-VCS is defined as
follows:

Definition 3 (Unconditional secure basis matrix {ΓQual, ΓForb}-VCS [1]).
The two n×m Boolean matrices (S0, S1) constitute an unconditional secure basis
matrix {ΓQual, ΓForb}-VCS if the following conditions hold:

1. (Contrast) For any participant set X ∈ ΓQual, we denote l = H(S0[X]),
and denote h = H(S1[X]). It holds that 0 ≤ l < h ≤ m.

2. (Security) For any participant set Y ∈ ΓForb, S0[Y] and S1[Y] are equal up
to a column permutation.

Now, we formally give the definition of stacking secure basis matrix {ΓQual,
ΓForb}-VCS as follows:

Definition 4 (Stacking secure basis matrix {ΓQual, ΓForb}-VCS). The two
n×m Boolean matrices (S0, S1) constitute a stacking secure basis matrix {ΓQual,
ΓForb}-VCS if the following conditions hold:

1. (Contrast) For any participant set X ∈ ΓQual, we denote l = H(S0[X]),
and denote h = H(S1[X]). It holds that 0 ≤ l < h ≤ m.

2. (Security) For any participant set Y ∈ ΓForb, it holds that H(S0[Y]) =
H(S1[Y]).

Theorem 2. The definition of stacking secure basis matrix {ΓQual, ΓForb}-VCS
and the definition of unconditional secure basis matrix {ΓQual, ΓForb}-VCS are
equivalent.

Proof: The contrast conditions of the two definitions are the same. So we only
need to prove the equivalence of the security conditions of the two definitions. For
basis matrix {ΓQual, ΓForb}-VCS, the unconditional secure condition trivially
implies the stacking secure condition. Now we turn to prove the converse. Take
any participants set X with X ∈ ΓForb, since ΓForb is monotone deceasing, we
have H(S0[Y]) = H(S1[Y]) for any participant set Y with Y ⊆ X . From Lemma
1, we know that S0[Y] and S1[Y] are equal up to a column permutation for any
participant set Y with Y ⊆ X . Because the selection of X is arbitrary, we get
the conclusion. �

3.3 The Equivalence of Two Definitions of General Access Structure
SIVCS

The two definitions of general access structure SIVCS are the same as the two
definitions of general access structure basis matrix VCS. However, their encoding
processes are different. In SIVCS (see [21], [25]), to share a black (resp. white)
pixel, we randomly choose a column from the black (resp. white) basis matrix,

224 T. Guo, F. Liu, and C. Wu

and then distribute the i-th row of the column to participant i, while in VCS,
to share a black (resp. white) pixel, we randomly permutate the columns of the
black (resp. white) basis matrix, and then distribute the i-th row of the permuted
matrix to participant i. From Theorem 2, we know that the following Theorem
also holds.

Theorem 3. The definition of stacking secure {ΓQual, ΓForb}-SIVCS and the
definition of unconditional secure {ΓQual, ΓForb}-SIVCS are equivalent.

3.4 The Inequivalence of Two Definitions of Non-basis Matrix VCS

A more general definition of (k, n)-VCS is given by two collections of n × m
Boolean matrices C0 and C1. To share a white pixel, we randomly choose a
share matrix from C0 and distribute the j-th (0 ≤ j ≤ n) row to share j. (k, n)-
VCS can also be classified as unconditional secure and stacking secure. Similarly,
the contrast conditions are the same, both require that, for any participant set X
with |X | ≥ k, if we denote lX = max

M∈C0[X]
H(M) and denote hX = min

M∈C1[X]
H(M),

then it must hold that 0 ≤ lX < hX ≤ m. On the other hand, the security con-
ditions are different. The unconditional secure condition requires that C0[Y] and
C1[Y] contain the same matrices with the same frequencies for any participant
set Y with |Y | ≤ k−1, while the stacking secure condition requires that the two
multi-sets of numbers H(C0[X]) and H(C1[X]) are the same for any participant
set Y with |Y | ≤ k − 1.

Formally, unconditional secure (k, n)-VCS is defined as follows:

Definition 5 (Unconditional secure (k, n)-VCS [1]). The two collections of
n×m Boolean matrices (C0, C1) constitute an unconditional secure (k, n)-VCS
if the following conditions hold:

1. (Contrast) For any participant set X with |X | ≥ k, we denote lX = max
M∈C0[X]

H(M), and denote hX = min
M∈C1[X]

H(M). It holds that 0 ≤ lX < hX ≤ m.

2. (Security) For any participant set Y with |Y | ≤ k − 1, C0[Y] and C1[Y]
contain the same matrices with the same frequencies.

Now, we formally give the definition of stacking secure (k, n)-VCS as follows:

Definition 6 (Stacking secure (k, n)-VCS). The two collections of n × m
Boolean matrices (C0, C1) constitute a stacking secure (k, n)-VCS if the following
conditions hold:

1. (Contrast) For any participant set X with |X | ≥ k, we denote lX = max
M∈C0[X]

H(M), and denote hX = min
M∈C1[X]

H(M). It holds that 0 ≤ lX < hX ≤ m.

2. (Security) For any participant set Y with |Y | ≤ k−1, it holds that H(C0[Y]) =
H(C1[Y]).

On the Equivalence of Two Definitions of Visual Cryptography Scheme 225

Remark: H(C0[Y]) and H(C1[Y]) are two collections (multi-sets) of numbers
between 0 and m. Readers can refer to Section 2 for full definitions of H(C0[Y])
and H(C1[Y]).

For (k, n)-VCS, the unconditional secure condition trivially implies the stack-
ing secure condition. However, the following Lemma shows that the converse
does not hold.

Lemma 2. For (k, n)-VCS, the stacking secure condition does not imply the
unconditional secure condition.

Proof: In order to reach our conclusion, we only need to construct a (k, n)-
VCS, which is stacking secure but not unconditional secure. Suppose {C0, C1}
are two collections of share matrices of an unconditional secure (k, n)-VCS, C0

for sharing a white pixel and C1 for sharing a black pixel. Suppose the pixel
expansion is m. We pad each share matrix in C0 with a n ×m all-zero matrix
on the left of it, and pad each share matrix in C1 with a n×m all-zero matrix
on the right of it. The two padded collections of share matrices are denoted as
{C′

0, C
′
1}. Since padding all-zero matrix will not affect the contrast condition

and the stacking secure property, {C′
0, C

′
1} constitutes a stacking secure (k, n)-

VCS. However we can distinguish black pixels from white pixels by observing
the relative padding positions (e.g. By observing a block on a single share, if
the left half pixels are all white, we know the shared pixel is white, on the other
hand, if the right half pixels are all white, we know the shared pixel is black).
Hence {C′

0, C
′
1} does not constitute an unconditional secure (k, n)-VCS. �

Although the above two definitions of (k, n)-VCS have the same contrast
condition, however, from Lemma 2, we know that their security conditions are
inequivalent. Hence we have the following Theorem.

Theorem 4. The definition of stacking secure (k, n)-VCS and the definition of
unconditional secure (k, n)-VCS are inequivalent.

Remark: Since (k, n) threshold structure is a special case of general access
structure, from Theorem 4, we know that stacking secure VCS and unconditional
secure VCS are inequivalent. The above inequivalence relationship means that a
stacking secure VCS may not guarantee unconditional security.

To illustrate our ideas more specifically, we give the following example.

Example 1. The following two share matrix collections define a (2, 2)-VCS.

C0 =

{[
0010
0010

]
,

[
0001
0001

]}
and C1 =

{[
1000
0100

]
,

[
0100
1000

]}
The above two collections satisfy the stacking secure condition, yet violate the
unconditional secure condition.

4 Conclusions

In this paper, we have examined the intuitive differences between the stacking
secure condition and the unconditional secure condition. Surprisingly, we have

226 T. Guo, F. Liu, and C. Wu

proved their equivalence with respect to basis matrix (k, n)-VCS. The generaliza-
tions to general access structure basis matrix VCS and general access structure
SIVCS are given sequently. At last, it is proved that the equivalence relationship
does not hold for non-basis matrix (k, n)-VCS.

Acknowledgements. This work was supported by NSFC No.60903210. Many
thanks to the anonymous reviewers for their valuable comments.

References

1. Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for
general access structures. Information and Computation 129, 86–106 (1996)

2. Blundo, C., Cimato, S., De Santis, A.: Visual cryptography schemes with optimal
pixel expansion. Theoretical Computer Science 369, 169–182 (2006)

3. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast optimal thresh-
old visual cryptography schemes. SIAM Journal on Discrete Mathematics 16(2),
224–261 (2003)

4. Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography
schemes. Journal of Cryptology 12(4), 261–289 (1999)

5. Bose, M., Mukerjee, R.: Optimal (2, n) visual cryptographic schemes. Designs,
Codes and Cryptography 40, 255–267 (2006)

6. Bose, M., Mukerjee, R.: Optimal (k, n) visual cryptographic schemes for general
k. Designs, Codes and Cryptography 55, 19–35 (2010)

7. Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without
color darkening. Theoretical Computer Science 374, 261–276 (2007)

8. Ciou, C.B., Yang, C.N.: Image secret sharing method with two-decoding-options:
Lossless recovery and previewing capability. Image and Vision Computing 28(12),
1600–1610 (2010)

9. Droste, S.: New Results on Visual Cryptography. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)

10. Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing
schemes in visual cryptography. Theoretical Computer Science 240(2), 471–485
(2000)

11. Horng, G.B., Chen, T.H., Tsai, D.S.: Cheating in visual cryptography. Designs,
Codes and Cryptography 38, 219–236 (2006)

12. Hou, Y.C., Xu, C.S.: A probability-based optimization model for sharing multi-
ple secret images without pixel expansion (in chinese). Journal of Information,
Technology and Society 2, 19–38 (2003)

13. Hsu, C.S., Tu, S.F., Hou, Y.C.: An Optimization Model for Visual Cryptogra-
phy Schemes with Unexpanded Shares. In: Esposito, F., Raś, Z.W., Malerba, D.,
Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 58–67. Springer,
Heidelberg (2006)

14. Hu, C.M., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Trans-
actions on Image Processing 16(1), 36–45 (2007)

15. Koga, H.: A General Formula of the (t,n)-Threshold Visual Secret Sharing Scheme.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 328–345. Springer,
Heidelberg (2002)

On the Equivalence of Two Definitions of Visual Cryptography Scheme 227

16. Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing
schemes in visual cryptography. Combinatorics, Probability & Computing 12(3),
285–299 (2003)

17. Liu, F., Wu, C.K., Lin, X.J.: The alignment problem of visual cryptography
schemes. Designs, Codes and Cryptography 50, 215–227 (2009)

18. Liu, F., Wu, C.K., Lin, X.J.: Step construction of visual cryptography schemes.
IEEE Transactions on Information Forensics & Security 5(1), 27–38 (2010)

19. Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

20. De Prisco, R., De Santis, A.: Cheating Immune (2,n)-Threshold Visual Secret Shar-
ing. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 216–228.
Springer, Heidelberg (2006)

21. Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer
Science E82-A(10), 2172–2177 (1999)

22. Tsai, D.S., Chen, T.H., Horng, G.B.: A cheating prevention scheme for binary
visual cryptography with homogeneous secret images. Pattern Recognition 40,
2356–2366 (2007)

23. Tzeng, W.G., Hu, C.M.: A new approach for visual cryptography. Designs, Codes
and Cryptography 27, 207–227 (2002)

24. Wang, Z.M., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography via error
diffusion. IEEE Transactions on Information Forensics and Security 4(3), 383–396
(2009)

25. Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern
Recognition Letters 25, 481–494 (2004)

26. Yang, C.N., Chen, T.S.: Reduce shadowsize in aspect ratio invariant visual se-
cret sharing schemes using a square block-wise operation. Pattern Recognition 39,
1300–1314 (2006)

27. Yang, C.N., Chen, T.S.: Visual secret sharing scheme: prioritizing the secret pixels
with different pixel expansions to enhance the image contrast. Optical Engineer-
ing 46(9), 097005 (2007)

28. Yang, C.N., Chen, T.S.: Colored visual cryptography scheme based on additive
color mixing. Pattern Recognition 41, 3114–3129 (2008)

29. Yang, C.N., Chung, T.H.: A general multi-secret visual cryptography scheme. Op-
tics Communications 283(24), 4949–4962 (2010)

30. Zhou, Z., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography. IEEE Trans-
actions on Image Processing 15(8), 2441–2453 (2006)

Key Length Estimation of Pairing-Based

Cryptosystems Using ηT Pairing

Naoyuki Shinohara1, Takeshi Shimoyama2,
Takuya Hayashi3, and Tsuyoshi Takagi3

1 National Institute of Information and Communications Technology
2 FUJITSU LABORATORIES Ltd.

3 Kyushu University

Abstract. The security of pairing-based cryptosystems depends on the
difficulty of the discrete logarithm problem (DLP) over certain types of
finite fields. One of the most efficient algorithms for computing a pairing
is the ηT pairing over supersingular curves on finite fields whose char-
acteristic is 3. Indeed many high-speed implementations of this pairing
have been reported, and it is an attractive candidate for practical deploy-
ment of pairing-based cryptosystems. The embedding degree of the ηT
pairing is 6, so we deal with the difficulty of a DLP over the finite field
GF (36n), where the function field sieve (FFS) is known as the asymptoti-
cally fastest algorithm of solving it. Moreover, several efficient algorithms
are employed for implementation of the FFS, such as the large prime vari-
ation. In this paper, we estimate the time complexity of solving the DLP
for the extension degrees n = 97, 163, 193, 239, 313, 353, 509, when we use
the improved FFS. To accomplish our aim, we present several new com-
putable estimation formulas to compute the explicit number of special
polynomials used in the improved FFS. Our estimation contributes to
the evaluation for the key length of pairing-based cryptosystems using
the ηT pairing.

Keywords: pairing-based cryptosystems, discrete logarithm problem,
finite field, key length, suitable values.

1 Introduction

Pairing-based cryptosystems such as identity-based encryption [9] have recently
become one of the main research topics in cryptography. Their security is based
on the intractability of the discrete logarithm problem (DLP) over certain types
of finite fields. Once the underlying DLP is broken, the pairing-based cryptosys-
tems are no longer secure. Therefore, evaluating the intractability of a DLP is
an important task.

One of the most efficient algorithms for computing a pairing is the ηT pairing
defined over supersingular curves on finite fields whose characteristic is 3 [7].
Many high-speed implementations of the ηT pairing have been reported in pre-
vious literature [4,8,15,16,22], and there are many efficient algorithms for Tate

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 228–244, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 229

pairing over finite fields whose characteristic is 3 [6,11,12,17,24,28]. The timings
reported in the literature are appealing for using the ηT pairing in practices;
therefore in this paper we deal with the DLP over finite fields whose character-
istic is 3. Moreover, since the embedding degree of the ηT pairing is 6, we are
interested in finite fields GF (36n) for some integers n.

In this paper, we try to estimate the time complexity of solving the DLP over
GF (36n) for extension degrees n = 97, 163, 193, 239, 313, 353, 509, using the
following background facts. In 2010, Hayashi et al. solved a 676-bit DLP (over
GF (36·71)) [18]. Joux and Lercier estimated that the time complexity of solving
the DLP over GF (36·97) is around 271 [21]. And Smart et al. showed that the
difficulty of solving the DLP over GF (36·193) is roughly equivalent to that of
factoring a 1024-bit RSA key (80-bit security) [31]. NIST recommended using
a key size of more than 80 bits after 2011 [5]. Ahmadi et al. assumed that the
DLP with n = 509 has the security level of 128 bits [4].

To estimate the time complexity, we consider an efficient algorithm to solve a
DLP over GF (36n). Adleman proposed the function field sieve (FFS) to practi-
cally solve a DLP over finite fields whose characteristic is small [1,3]. The time
complexity of the FFS for a DLP over GF (36n) is asymptotically

L36n [1/3, (32/9)
1/3] = exp(((32/9)1/3 + o(1))(log 36n)1/3(log log 36n)2/3),

for n → ∞. In 2002, Joux and Lercier proposed a practical improvement of
the FFS called JL02-FFS [20], and in 2006 another new variant of the FFS
(JL06-FFS) for GF (q), where the characteristic is small and q is a medium-sized
prime power [21]. Hayashi et al. reported that JL06-FFS has an advantage over
JL02-FFS when we try to solve a DLP over GF (36n) [18]. Additionally, there
are well-known efficient algorithms for implementation of JL06-FFS: the large
prime variation [26], the lattice sieve [27], the filtering [10], the Galois action
[18] and the free relation [18]. Thus, we estimate the time complexity of solving
a DLP over GF (36n) by JL06-FFS with these efficient algorithms. We call this
FFS “the improved FFS” in this paper.

There is an elemental parameter (κ, dH , dm, B,R, S) commonly-utilize in JL06-
FFS (FFS) and the improved FFS. There is also an advanced parameter (λ, θ, β)
for the improved FFS, where λ is for the large prime variation, θ for the lat-
tice sieve, and β for the filtering. For our estimation of the time complexity,
we require the value of the parameter (κ, dH , dm, B,R, S, λ, θ, β), such that the
computational cost of the improved FFS is almost minimum, when the extension
degrees n are fixed. In this paper, such values are called the “suitable values” of
(κ, dH , dm, B,R, S, λ, θ, β). To find suitable values for the fixed extension degrees
n, we performed an experiment via a personal computer with an Intel Quad-Core
(2.8 GHz) CPU and 8 GB RAM, and it took roughly 57 hours. Specifically, we
checked certain computable criteria to solve a DLP with the improved FFS,
changing the values of (κ, dH , dm, B,R, S, λ, θ, β). The criteria are checkable by
using our new formulas (22), etc., which are extended from Granger’s formula
[13]. (Section 5 provides details on our experiment.)

230 N. Shinohara et al.

Table 1. Estimation of the time complexity of solving DLP over GF (36n)

n 97 163 193 239 313 353 509

log2 Csieve 52.79 68.17 71.90 78.08 90.04 94.42 111.35

n: extension degree of the field GF (36n) over its base field GF (36).
Csieve: computational cost of the sieving step of the improved FFS

(In this paper, we ultimately regard Csieve as the time complexity
of solving the DLP over GF (36n).)

Through the experiment we obtained Table 3 of the suitable values, and were
able to eventually regard the computational cost Csieve of the sieving step of
the improved FFS as the time complexity of solving the DLP over GF (36n).
On the strength of the costs Csieve, we present Table 1 of the time complexity
estimation of solving the DLP over GF (36n).

The hardness of the DLP over GF (36·509) was estimated to be equivalent to
128-bit security [4], however, the DLP over GF (36·509) actually accomplishes
only about 111-bit security. To safely utilize a cryptographic schemes with ηT
pairing over GF (3n), we must be aware of this fact.

2 Outline of Function Field Sieve

This section briefly explains the importance of the discrete logarithm problem
(DLP) of GF (36n) where n is prime. It is well known that a function field sieve
(FFS) is the most efficient method for solving a DLP of a finite field, so we
provide an overview of it.

2.1 DLP and ηT Pairing

We first refer to a discrete logarithm (DLP) over the multiplicative group
GF (36n)∗. Let g be a generator of the multiplicative group GF (36n)∗ and A ∈
〈g〉. We then try to solve the DLP over 〈g〉; namely, we compute the smallest
positive integer logg A such that glogg A = A.

It is expected that the ηT paring over the supersingular curve on GF (3n)
realizes practical pairing-based cryptosystems. The safety of these cryptosystems
is based on the difficulty of the DLP over GF (36n), since the map ηT is a
bilinear map from G1×G2 to GF (36n), where G1 and G2 are cyclic groups. For
example, let α be a secret integer such that v1 = [α]v2 for given v1, v2 ∈ G1.
We then prepare arbitrary w ∈ G2 and compute ηT (v1, w), ηT (v2, w). Since
ηT (v1, w) = ηT ([α]v2, w) = ηT (v2, w)

α ∈ GF (36n)∗, we can obtain α by solving
the DLP over GF (36n)∗.

2.2 FFS

There are several variants of FFS. Adleman proposed the first FFS in 1994 [1],
and Adleman and Huang later proposed a practical FFS [3]. Joux and Lercier

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 231

proposed two more practical FFS’s; JL02-FFS [20] and JL06-FFS [21]. Hayashi et
al. reported that JL06-FFS has an advantage over JL02-FFS in solving a DLP
over GF (36n) [18], so we introduce JL06-FFS. From this section, FFS means
JL06-FFS.

We begin with an overview of the FFS, and suppose that we try to obtain
logg A in this section. This consists of four steps: polynomial selection, sieving,
linear algebra, and individual logarithm. The parameter (κ, dH , dm, B,R, S) of
FFS is called the elemental parameter of the FFS.

Polynomial Selection: Let κ be the extension degree of the coefficient field of
GF (3κ)[x], where κ = 1, 2, 3, 6. We select a monic irreducible polynomial f ∈
GF (3κ)[x], a polynomial m ∈ GF (3κ)[x], and a bivariate polynomial H(x, y) =
x+ ydH ∈ GF (3κ)[x, y] such that

H(x,m) ≡ 0 (mod f), deg f = 6n/κ. (1)

Note that, by letting dm be degm, the following property holds:

dm · dH ≥ deg f. (2)

Then the finite field GF (36n) is described as GF (3κ)[x]/(f). And H(x, y) sat-
isfies the eight conditions proposed by Adleman [1]. There is a surjective homo-
morphism

Φ :

{
GF (3κ)[x, y]/(H) → GF (36n) ∼= GF (3κ)[x]/(f)

y �→ m.

Here we select the smoothness bound B and define a rational factor base F̄ (B)
and an algebraic factor base F̂ (B) as follows:

F̄ (B) = {p ∈ GF (3κ)[x] | deg(p) ≤ B, p is monic irreducible},
F̂ (B) = {〈p, y − t〉 ∈ Div(GF (3κ)[x, y]/(H)) | p ∈ F̄ (B), H(x, t) ≡ 0 (mod p)},

where Div(GF (3κ)[x, y]/(H)) is the divisor group of GF (3κ)[x, y]/(H) and
〈p, y − t〉 is a divisor generated by p and y − t.
Sieving: For given positive integers R, S, we find pairs (r, s) ∈ (GF (3κ)[x])2

such that

deg r ≤ R, deg s ≤ S, gcd(r, s) = 1, r is monic, (3)

rm+ s =
∏

pi∈F̄ (B)

pai

i (4)

〈ry + s〉 =
∑

〈pj,y−tj〉∈F̂ (B)

bj〈pj , y − tj〉 (5)

by a sieving algorithm. The property (5) can be translated into the following
equation:

(−r)dHH(x, −s/r) = (−r)dHx+ sdH =
∏

〈pj,y−tj〉∈F̂ (B)

p
bj
j . (6)

232 N. Shinohara et al.

Thus, in particular, we collect (r, s) satisfying (3), (4) and (6). And such (r, s)
is called a B-smooth pair. Here, we assume (36n − 1)/(3κ − 1) is coprime to h
which is the class number of the quotient field of GF (3κ)(x)[y]/(H). Then, we
obtain the following congruent:∑

pi∈F̄ (B)

ai logg pi ≡
∑

〈pj,y−tj〉∈F̂ (B)

bj logg κj (mod (36n − 1)/(3κ − 1)), (7)

where κj = Φ(λj)
1/h, 〈λj〉 = h〈pj , y− tj〉. The congruent (7) is called a relation.

Let Rsieve be the number of relations obtained in the sieving step, and then we
require the following criteria that

Rsieve ≥ (#F̄ (B) + #F̂ (B)). (8)

Linear Algebra: After generating a linear equation from relations, we translate
it into a smaller linear equation by an algorithm such as the filtering. The smaller
one is solved via an algorithm such as the Lanczos method [2,25], and then we
obtain

logg p1, ..., logg p#F̄ (B), logg κ1, ..., logg κ#F̂ (B).

Individual Logarithm: Using the special-Q descent method [21], we compute
integers ei, fj such that

logg A ≡
∑

pi∈F̄ (B)

ei logg pi +
∑

〈pj ,y−tj〉∈F̂ (B)

fj logg κj (mod (36n − 1)/(3κ − 1)).

Then we obtain the discrete logarithm logg A.

3 Known Evaluation Methods

The computational cost of FFS is greatly influenced by the parameter selection
of the FFS. For example, if we add only 1 to the value of the parameter R of the
FFS given in equation (3), the computational cost of sieving increases 3κ-fold.
Therefore, the value of the parameter of the FFS must be meticulously selected.

The elemental parameter (κ, dH , dm, B, R, S) of the FFS is given in section
2.2. For a fixed pair (n, κ), there is a well known method for evaluating the
value of the parameter, such that the computational cost of solving our DLP by
FFS is estimated as approximately minimum. Such parameter values are called
“suitable values” in this paper. (Note that it is difficult to identify the most
suitable values, namely the value of parameters of FFS for which the cost is truly
the minimum.) In general, an approximate suitable value is actually adopted to
solve a DLP by FFS. However, we expect there might be more suitable values
around the approximate one. For our aim, we introduce a sharp probability
evaluation method in section 4.3 by extending Granger’s method. Therefore, in
this section, we explain how to compute the approximate suitable values, and
Granger’s method.

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 233

Table 2. Approximate suitable values of elemental parameter of FFS

n 97 163 193 239 313 353 509
κ 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6
dH 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 10 10 10 10
dm 97 49 33 17 140 70 47 24 166 83 56 28 180 90 60 30 235 118 79 40 236 118 79 40 306 153 102 51
B 18 9 6 3 23 11 7 4 24 12 8 4 27 13 9 4 30 15 10 5 31 16 10 5 37 18 12 6
R 18 9 6 3 23 11 7 4 24 12 8 4 27 13 9 4 30 15 10 5 31 16 10 5 37 18 12 6
S 18 9 6 3 23 11 7 4 24 12 8 4 27 13 9 4 30 15 10 5 31 16 10 5 37 18 12 6

n: extension degree of the field GF (36n) over its base field GF (36)
κ: extension degree of the coefficient field of GF (3κ)[x] such that GF (36n) � GF (3κ)[x]/(f),

where f ∈ GF (3κ)[x] is a monic irreducible polynomial of degree 6n/κ

dH : degree in y of the bivariate polynomial H(x, y) = x+ ydH ∈ GF (3κ)[x, y] used for FFS
dm: degree of the polynomial m in GF (3κ)[x] such that H(x,m) ≡ 0 (mod f)
B: smoothness bound for FFS
R: maximum degree of polynomial r ∈ GF (3κ)[x] used in the sieving step of FFS
S: maximum degree of polynomial s ∈ GF (3κ)[x] used in the sieving step of FFS

3.1 Asymptotic Evaluation Formulas

From asymptotic analysis in [21], when we solve a DLP over a finite field
GF (3κ)[x]/(f) for given integers κ, deg f by FFS, the smallest positive integer
satisfying (9) is generally selected as the value of B:

(B + 1) log 3κ ≥
√

deg f

B
log

deg f

B
. (9)

We then assume that R = S = B and

dH =
⌈√

deg f/B
⌉
. (10)

We also calculate the smallest integer dm satisfying (2) for the given dH and
deg f . We then have Table 2 of approximate suitable values of the elemental
parameter of FFS.

3.2 Granger’s Evaluation Formula

Granger proposed a sharp evaluation formula in (15) to estimate the running
time of FFS. By extending ρ1 in (15) we obtain our new functions ρ2 and ρ3 in
section 4.3. Here we briefly explain Granger’s method, and more detail is given
in [13].

There is a problem about deciding on the smoothness bound B of factor bases
F̄ (B) and F̂ (B). The numbers of factor bases increase exponentially, and take
discrete values since B is an integer. To correct this problem, Granger naturally
extends B-smooth to (B, β)-smooth with a new parameter β ∈ (0, 1]. The new
parameter β means the ratio of the number of polynomials in F̄ (B) of degree B
to that of all monic irreducible polynomials in GF (3κ)[x] of degree B.

In fact, factor bases F̄ (B) and F̂ (B) are extended to F̄ (B, β) and F̂ (B, β)
such that

F̄ (B, β) = Λ̄ � F̄ (B − 1), F̂ (B, β) = Λ̂ � F̂ (B − 1),

234 N. Shinohara et al.

where Λ̄ ⊂ F̄ (B), Λ̂ ⊂ F̂ (B) and the degree of an element in Λ̄ or Λ̂ is B.
Elements of Λ̄ and Λ̂ are called large primes. We call a monic polynomial g
in the rational side (B, β)-smooth if every prime factor of g is in the factor
base F̄ (B, β). In the same manner as the rational side, (B, β)-smooth is also
introduced in the algebraic side. Therefore, B-smooth pair in section 2.2 can be
naturally extended to (B, β)-smooth pair. In fact, a pair (r, s) is said to be a
(B, β)-smooth pair if the (r, s) satisfies (3) and the following properties that

rm+ s =
∏

pi∈F̄ (B−1)

pai

i

∏
Pj∈Λ̄

B
aj

j , (11)

(−r)dHx+ sdH =
∏

〈pi,y−ti〉∈F̂ (B−1)

pbii
∏

〈Pj ,y−tj〉∈Λ̂

B
bj
j , (12)

which correspond to (4) and (6) respectively.
The criteria (8) is described as

Rsieve ≥ 2#F̄ (B, β), (13)

since F̄ (B, β) and F̂ (B, β) have almost the same cardinality in practice. For
checking this criteria, Granger proposed two formulas to compute Rsieve and
#F̄ (B, β). First, we discuss how to compute #F̄ (B, β). Let Iq(k) be the number
of monic irreducible polynomials in GF (q) of degree k. Iq(k) is computable by
the equation Iq(k) =

1
k

∑
d | k μ(d)q

k/d, where μ is the mobius function. We then
have the following formula:

#F̄ (B, β) =
B−1∑
k=1

Iq(k) + $βIq(B)%. (14)

Next we consider Rsieve, namely the number of (B, β)-smooth pairs (r, s) col-
lected in the sieving step. Let ρ1(q, B, β, k) be the probability that a monic
polynomial in GF (q)[x] of degree k is (B, β)-smooth. For given non-negative
integers i, j, let āi,j be the number of pairs (r, s) satisfying (3). We denote
DNR(i, j), DNA(i, j) by the degrees of rm+ s and (−r)dHx+ sdH respectively,
where i = deg r and j = deg s. Then Rsieve is described as

R∑
i=0

S∑
j=0

ρ1(q, B, β,DNR(i, j))ρ1(q, B, β,DNA(i, j))āi,j , (15)

and the detail of the function āi,j is given in the full version [30] of this paper.

4 New Evaluation Formulas for Efficient Implementation
of FFS

To solve the DLP over GF (36n) for n ≥ 97, we employ several efficient algo-
rithms for implementation of the FFS; the large prime variation [26], the lattice

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 235

sieve [27], the filtering [10], the Galois action [18], and the free relation [18].
These algorithms are not considered in Granger’s method. Especially, for the
lattice sieve and the large prime variation, new parameters θ and λ are respec-
tively introduced. We extend Granger’s formula for the FFS with those efficient
algorithms. (We call this FFS the “improved FFS.”) Then the number Rsieve

of the relations given by the sieving step of the improved FFS is computable
by exchanging ρ1 in (15) with our new formulas ρ2 and ρ3 in section 4.3. As
mentioned in section 3.2, we also suppose that F̄ (B, β) and F̂ (B, β) have almost
the same cardinality in this section.

4.1 Well-Used Efficient Algorithms for FFS

This section provides brief explanations of efficient algorithms.

Large Prime Variation: The large prime variation is employed to reduce the
computational cost of a sieving algorithm. To provide a simple explanation, we
discuss only in rational side. On the algebraic side, the same discussion can be
made.

In fact, we sieve with all factors p ∈ F̄ (B, β) where deg p ≤ B − 1 not B;
namely, we aim to effectively collect pairs (r, s) such that rm + s is (B, β)-
smooth with high probability. For a pair (r, s), rm+ s is separated into the two
products P and Q such that P =

∏
deg pi≤B−1 p

ai

i , Q =
∏

deg qj≥B q
aj

j , where pi,

qj ∈ GF (3κ)[x] are irreducible. We can compute degQ = deg(rm + s) − degP
effectively since degP is easily computable by sieving. If degQ is small enough,
the rm + s is (B, β)-smooth with high probability. Therefore, we prepare a
threshold value λB ∈ Z, and eliminate (r, s) for which degQ is larger than λB.
Hence the most suitable value of λ is required.

Lattice Sieve: Sieving in the lattice sieve is performed for only every (r, s) such
that rm + s (resp. 〈ry + s〉) is divisible by a fixed Q ∈ Λ̄ (resp. Q ∈ Λ̂). Such
Q is called special-Q. It is usually chosen from Λ̂ if DNR(R,S) < DNA(R,S),
where functions DNR and DNA are defined in section 3.2, and otherwise from
Λ̄. Let Θ̄ (resp. Θ̂) be the set of special-Q’s on the rational side (resp. algebraic
side). We then have that Θ̄ ⊂ Λ̄ and Θ̂ ⊂ Λ̂. Therefore, by letting θ be the ratio
of the number of special-Q’s to #(F̄ (B)\F̄ (B − 1)) (resp. #(F̂ (B)\F̂ (B − 1))),
it holds that 0 < θ ≤ β ≤ 1. Moreover, the number of special-Q’s is $θI3κ (B)%.

When we use the lattice sieve, (r, s) is represented as c(r1, s1) + d(r2, s2),
where c, d, r1, s1, r2, s2 ∈ GF (3κ)[x]. Sieving is then performed on the c-d plane.
The size of the c-d plane is roughly estimated at about 3κ(R+S+1−B), since the
degrees of r1, s1, r2, and s2 are about B/2 in most cases. The time complexity of
the lattice sieve depends on the frequency of memory access, and the frequency
is proportional to the size of the c-d plane. Therefore, we can assume that the
complexity of sieving for one special-Q is almost the same as the size of c-d
plane. Sieving is performed on both the rational side and algebraic side, so the
complexity Csieve of sieving in the lattice sieve is described as

2 · 3κ(R+S+1−B)$θI3κ(B)%. (16)

236 N. Shinohara et al.

In practice, to collect relations efficiently, sieving is performed with p ∈ F̄ (B) and
p ∈ F̂ (B), not F̄ (B, β) and F̂ (B, β). After sieving, F̄ (B) and F̂ (B) are reduced
to F̄ (B, β) and F̂ (B, β) via singleton and clique in the filtering described below.

Filtering: In the linear algebra step, the filtering [10] removes inessential vari-
ables and equations to solve the linear equation efficiently. It consists of three
phases. The singleton phase removes an equation containing a variable whose
frequency is one in the linear equation (such an equation is called singleton.)
The clique phase deletes excess equations to produce more singletons. And the
merge phase combines equations to produce singletons. The singleton phase and
clique phase need little computation, and the merge phase needs a great deal.
In order to produce many singletons in the clique phase, it is better to gather
more relations. If we find many singletons, the number of variables in the linear
equation can be reduced. Then the linear equation can be solved faster.

The explanation of the lattice sieve mentions that sieving is performed with
F̄ (B) and F̂ (B). After that, we reduce variables in these factor bases by filtering.
In most cases, a reduced variable corresponds to some large prime, so we estimate
that the size of the matrix is 2#F̄ (B, β).

Free Relation: By using the free relation, we can obtain a relation virtually
for free, without the sieving. Details of the method are discussed in [18,30], and
the advantage is as follows. Let Rfree be the number free relations. Then the
following property holds:

Rfree ≈

⎧⎨⎩
#F̂ (B)/dH if gcd(dH , 3) = 1

#F̂ (B)/2 if dH = 2, 6

#F̂ (B) if dH = 3, 9

(17)

where dH ≤ 10. It seems that the suitable value of dH is divisible by 3, so we
check both cases where dH is an approximate value and an integer divisible by
3. We therefore must pay attention to the selection of dH .

Galois Action: Via the Galois action, we can reduce the size of the matrix
from 2#F̄ (B, β) to 2#F̄ (B, β)/κ. Therefore, the computational cost Clinear of
the linear algebra step is described as

Clinear =

(
2#F̄ (B, β)

κ

)2

. (18)

In order to use the Galois action, a primitive polynomial f ∈ GF (3κ)[x] is
selected so that all coefficients of f are in GF (3). Then x is fixed by a function

φ : x �→ x3
6n/κ

but c ∈ GF (3κ) \GF (3) is not. This means that the logarithm of
the element of the factor base p that has at least one coefficient inGF (3κ)\GF (3)
corresponds to the logarithm of the other element of the factor base φ(p) as
36n/κ logg p ≡ logg φ(p). Since the order of φ is κ, the number of variables in the
linear algebra step can be reduced about 1/κ times itself.

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 237

4.2 Criteria for Sufficient Number of Relations

In the same manner in section 3.2, we change criteria (8). In fact, (13) is changed
for FFS with five efficient algorithms in section 4.1. First, since we use the free
relation, (13) is translated into Rsieve+Rfree ≥ 2#F̄ (B, β). With consideration
for the filtering, it is better to collect more relations1, so we assume that the
constraint property is that Rsieve + Rfree ≥ 4#F̄ (B, β). Finally, applying the
Galois action, it is translated into

Rsieve +Rfree ≥
4#F̄ (B, β)

κ
. (19)

To solve the DLP in our case, the values of parameters of the improved FFS
must satisfy (19).

4.3 New Evaluation Formulas

New evaluation formulas enable us to estimate the complexity of the improved
FFS by considering the parameters, κ, dH , dm in the polynomial selection step,
B, R, S in the sieving step, λ for the large prime variation, θ for the lattice
sieve, and β for the filtering. As discussed in section 3.2, Granger gave the
evaluation formula ρ1 to compute the number Rsieve of the relations. On the
other hand, with consideration for the large prime variation and the lattice
sieve, we introduce new evaluation formulas ρ2 and ρ3 for (B, β, λ)-smooth and
(B, β, λ,Θ)-smooth, which are variants of (B, β)-smooth, respectively.

Granger considers a case employing the FFS with (B, β)-smooth, so he re-
quires the number of (r, s) satisfying (3), (11), and (12). However, we consider
the improved FFS. Therefore, if DNR(R,S) < DNA(R,S), we require the num-
ber of (r, s) satisfying (3) and the following properties

rm + s = (
∏

pi∈F̄ (B−1)

peii)(
∏

Pj∈Λ̄

P
ej
j), (where ei, ej ≥ 0,

∑
ej ≤ λ) (20)

and

(−r)dHx+ (−s)dH

= (
∏

〈pi,y−ti〉∈F̂ (B−1)

peii)(
∏

〈Pj ,y−tj〉∈Λ̂\Θ̂
P

ej
j)(

∏
〈P�,y−t�〉∈Θ̂

Pe�
�) (21)

where at least one e� is larger than 0 and ei, ej ≥ 0,
∑
ej +

∑
e� ≤ λ. Such

rm + s and (−r)dHx + (−s)dH are called (B, β, λ)-smooth and (B, β, λ, Θ̂)-
smooth respectively. Conversely, if DNR(R,S) ≥ DNA(R,S), we search (r, s)
such that rm + s and are (B, β, λ, Θ̄)-smooth and (B, β, λ)-smooth. In this pa-
per, (B, β, λ,Θ)-smooth means (B, β, λ, Θ̂)-smooth if DNR(R,S) < DNA(R,S),
otherwise (B, β, λ, Θ̄)-smooth.

1 In [23] for the factorization of RSA768, the authors collected about two time more
relations than the number of factor base.

238 N. Shinohara et al.

In the same manner as Granger’s method, we introduce two new formulas
ρ2 and ρ3 of the probabilities for (B, β, λ)-smooth and (B, β, λ,Θ)-smooth. The
details are given in the full version [30] of this paper. Let ρ2(q, B, β, λ, k) be the
probability that a monic polynomial in GF (q)[x] of degree k is (B, β, λ)-smooth.
Then ρ2 is described as follows:

ρ2(q, B, β, λ, k) =

1

qk

⎧⎨⎩Nq(k,B − 1) +

�k/B�∑
�≥1

Nq(k − �B,B − 1)

⎧⎨⎩
min{�,λ}∑

i=1

(
$βIq(B)%

i

)(
�− 1

�− i

)⎫⎬⎭
⎫⎬⎭ .

Let ρ3(q, B, β, Θ, λ, k) be the probability that a monic polynomial g ∈ GF (q)[x]
of degree k is (B, β, Θ, λ)-smooth. Then ρ3 is described as follows:

ρ3(q, B, β, λ, Θ, k) =

1

qk

�k/B�∑
�=1

Nq(k − �B,B − 1)

⎧⎨⎩
�∑

�Q=1

Min1∑
λQ=1

(
#Θ

λQ

)(
�Q − 1

�Q − λQ

)
τB,β,λ,Θ(�, �Q, λQ)

⎫⎬⎭
where

Min1 = min{�Q, λ,#Θ},

τB,β,λ,Θ(�, �Q, λQ) =

⎧⎨⎩
∑Min2

λt=1

(�βIq(B)�−#Θ
λt

)(
�−�Q−1
�−�Q−λt

)
(Min2 ≥ 1),

1 (� = �Q),
0 (others),

Min2 = min{�− �Q, λ− λQ, $βIq(B)% −#Θ}.

Consequently, we obtain the following theorem:

Theorem 1. By replacing ρ1 in the formula (15) with ρ2, ρ3, we have that

Rsieve =

R∑
i=0

S∑
j=0

ρv(q, B, β,DNR(i, j))ρw(q, B, β,DNA(i, j))āi,j . (22)

where (ρv, ρw) is (ρ2, ρ3) if DAR(R,S) > DNR(R,S), and (ρ3, ρ2) otherwise.

To find suitable values of parameters of the improved FFS, we check the criteria
(19) for a given value of the parameter (κ, dH , dm, B,R, S, λ, θ, β). Namely, with
changing the value of the parameter, we compute Rsieve, Rfree and #F̄ (B, β)
many times, by using (22), (17), and (14). (Note that, since we supposed that
#F̄ (B, β) = #F̂ (B, β), the value of (17) is given by (14).) When κ is small and
n is large, it takes a long time to compute (22). However, if κ �= 1 and n ≤ 509,
we can actually compute it. For example, in our experiments, it takes roughly
about 57 hours to make Table 3, using a PC with an Intel Quad-Core (2.8 GHz)
× 1 CPU and 8 GB RAM.

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 239

5 Estimation of Key Length

In order to estimate the key length of pairing-based cryptosystems for the fixed
extension degrees n = 97, 163, 193, 239, 313, 353, 509, we estimate the time
complexity of solving the DLP over GF (36n) by the FFS (introduced in sec-
tion 2.2) with the five efficient algorithms in section 4.1. (This FFS with ef-
ficient algorithms is called the “improved FFS” in this paper.) The improved
FFS has two kinds of parameters: the elemental parameter (κ, dH , dm, B,R, S)
commonly utilized in the FFS without efficient algorithms, and the advanced
parameter (λ, θ, β) for the efficient algorithms, where λ, θ, and β are used
for the large prime variation, the lattice sieve, and, the filtering, respectively.
For our estimation of the time complexity, we search the values of parameter
(κ, dH , dm, B,R, S, λ, θ, β), such that the computational cost Csieve of solving
the DLP by the improved FFS is almost minimum. Such parameter values are
called “suitable values” in this paper. (Note that it is not realistic to identify the
most suitable value of the parameter for fixed extension degrees n, since there
are infinitely many values of (κ, dH , dm, B,R, S, λ, θ, β).) To find suitable values
of (κ, dH , dm, B,R, S, λ, θ, β) for the fixed extension degrees n, we performed
an experiment to check the criteria (19) to solve the DLP, for many values of
(κ, dH , dm, B,R, S, λ, θ, β). Criteria (19) is computable by using our new estima-
tion formula (22) corresponding to the explicit number of the relations (defined
in section 4.3), and so on. In this section, for the fixed extension degrees n,
we present Table 5 of the suitable values of (κ, dH , dm, B,R, S, λ, θ, β) and the
computational costs Csieve when those suitable values are given. From Table 5,
we obtain Table 1 meaning our estimation of the time complexity of solving the
DLP over GF (36n), in section 1.

We performed an experiment to develop Table 5, using a PC with an Intel
Quad-Core (2.8 GHz) × 1 CPU and 8 GB RAM. As mentioned in section 1,
for fixed extension degrees n, we suppose that if there are more suitable val-
ues than the approximate ones in Table 2, they are close to those in Table 2.
Therefore, we select several values of (dH , dm, B,R, S) around each value in Ta-
ble 2. For example, if (n, κ) = (193, 6), then the approximate suitable value of
(dH , dm, B,R, S) is (7, 28, 4, 4, 4). We select values of (dH , dm, B,R, S) such as
(7, 28, 4, 4, 4), (7, 28, 4, 3, 4), (7, 28, 4, 4, 5) and so on. For such a single value, we
change the values of λ, β, θ many times in that order. (We have empirically con-
firmed that this order has no impact on the estimation of suitable values.) Then,
to check the property (19) we compute (22), (17), and (14) for given values of
(dH , dm, B,R, S, λ, θ, β).

From now, the value of (n, κ, dH , dm, B,R, S) is fixed. Through experiments,
we obtain the fact that the cost Csieve of sieving decreases if λ increases, and
there exists an integer λ0 such that Csieve does not decrease for any λ ≥ λ0.
Therefore, λ0 is the most suitable value of λ. To find the integer λ0, the value
of λ is started from 1 and in steps of 1 in our computation.

For a fixed λ, we move β in [0, 1], and next θ is also moved in [0, β] for the
given β, by binary search, since 0 < θ ≤ β ≤ 1. As mentioned in section 4.1,
our sieving is performed with β = 1, so the cost Csieve of sieving is given by the

240 N. Shinohara et al.

Table 3. Suitable values of parameter of improved FFS to solve DLP over GF (36n)

n κ dH dm B R S λ θmin βmin log2 Clinear log2 Csieve

97 2 6 49 9 9 9 6 0.08436 0.420 49.06 54.49

3 6 33 6 6 6 6 0.01292 0.280 47.49 53.95

6 6 17 3 3 3 6 0.00010 0.225 46.44 52.79

163 2 7 70 11 12 12 7 0.03786 0.297 60.42 72.06

3 7 47 7 8 8 8 0.01358 0.424 57.60 72.82

6 6 28 4 4 4 6 0.00001 0.002 53.49 68.17

193 2 7 83 12 12 12 7 0.26513 0.727 68.49 74.74

3 7 56 8 8 8 7 0.03672 0.471 67.00 74.06

6 7 28 4 4 4 7 0.00015 0.230 64.69 71.90

239 2 8 90 13 14 14 7 0.06879 0.421 73.33 85.36

3 8 60 9 9 9 7 0.01221 0.227 74.31 81.81

6 8 30 4 4 4 8 0.01105 0.668 67.75 78.08

313 2 8 118 15 15 15 7 0.21124 0.653 86.59 93.11

3 8 79 10 10 10 8 0.02540 0.373 84.75 92.23

6 9 35 5 5 5 7 0.00010 0.173 82.25 90.04

353 2 9 118 16 16 16 7 0.09357 0.414 91.70 98.18

3 9 79 10 11 11 8 0.01749 0.416 85.03 101.20

6 9 40 5 5 5 8 0.00214 0.484 85.20 94.42

509 2 9 170 18 19 19 8 0.12474 0.547 104.67 117.45

3 9 114 12 12 12 9 0.25254 0.847 105.43 114.30

6 9 57 6 6 6 8 0.00060 0.342 102.69 111.35

n: extension degree of the field GF (36n) over its base field GF (36)
κ: extension degree of the coefficient field of GF (3κ)[x] such that GF (36n) � GF (3κ)[x]/(f),

where f ∈ GF (3κ)[x] is a monic irreducible polynomial of degree 6n/κ

dH : degree in y of the bivariate polynomial H(x, y) = x+ ydH ∈ GF (3κ)[x, y] used for FFS
dm: degree of the polynomial m in GF (3κ)[x] such that H(x,m) ≡ 0 (mod f)
B: smoothness bound for FFS
R: maximum degree of polynomial r ∈ GF (3κ)[x] used in the sieving step of FFS
S: maximum degree of polynomial s ∈ GF (3κ)[x] used in the sieving step of FFS
λ: threshold value for the large prime variation θmin:] minimal ratio of the required special-Q’s to

all monic irreducible polynomials in GF (3κ)[x] of degree B
βmin: minimal ratio of the required large primes to all monic irreducible polynomials in GF (3κ)[x]

of degree B
Clinear: computational cost of the linear algebra step of FFS
Csieve: computational cost of the sieving step of FFS

formula (16), where θ is minimum number such that (19) holds for θ ≤ β = 1.
Such θ is described as θmin in Table 5.

Next, we consider the cost Clinear of the linear algebra step. This is evaluated
by the formula (18), and 2#F̄ (B, β)/κ means the size of the matrix appearing
in the linear algebra step. As mentioned in section 4.1, by the filtering, the size
is reduced from 2#F̄ (B) to 2#F̄ (B, β). Therefore, we compute Clinear given
by (18) for βmin, where βmin is explained as follows. For the explanation of
βmin, we consider the case in which filtering is not employed. In other words,

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 241

in the sieving step, we set β as small as possible under the condition that (19)
holds. If we reduce the β, then the relations given by sieving decrease since the
numbers of the factor bases decrease. We therefore must collect more relations
by performing the lattice sieve more times. This implies that larger θ is required,
so there exists the minimum β satisfying (19) since 0 < θ ≤ β ≤ 1. The βmin is
denoted by the minimum β. If we set β smaller than βmin, then (19) does not
hold, and so we suppose that the filtering reduces the size of the matrix from
2#F̄ (B) to 2#F̄ (B, βmin).

In Table 5, we omit the case of κ = 1 for the following reason. For each
pair (n, κ) where n = 71, 79, 89, 97 and κ = 1, 2, 3, 6, we check (19) for many
values of parameter (dH , dm, B, R, S, θ, λ, β). Then, for every fixed n, there
are no suitable values when κ = 1. In other words, for each candidate of the
suitable values when κ = 1, there exist more suitable values when κ = 2, 3, or
6. Therefore, we suppose that the same property holds for n > 97. Since the
computational costs of (22) are very heavy when κ = 1 and n ≥ 163, we omit
the test for the condition.

Finally, for each fixed value of (n, κ, dH , dm, B,R, S, λ) mentioned above, we
have computed βmin, θmin, and obtained the costs Csieve, Clinear . Comparing
these costs where (n, κ) is fixed and (dH , dm, B,R, S, λ) is changed, we obtain
Table 5 of suitable values of (dH , dm, B,R, S, λ, θ, β) for each fixed (n, κ).

Notice that in Table 5, Csieve for a fixed (n, κ) is larger than Clinear for the
same (n, κ). Moreover, for each n, the Csieve with κ = 6 is less than the Csieve

with κ = 2, 3. Therefore, we estimate that the time complexity of solving our

 50

 60

 70

 80

 90

 100

 110

 120

 130

 97 163 193 239 313 353 509

C
om

pl
ex

ity
 (

lo
g 2

)

degree n

L36n[1/3,(32/9)1/3]
Our estimation

Fig. 1. Time complexity estimation of solving DLP over GF (36n) and
L36n [1/3, (32/9)

1/3] with o(1) = −0.18

242 N. Shinohara et al.

DLP by the improved FFS is Csieve with κ = 6, so we obtain Table 1 and Figure
1. For each pair (n, κ, dH , dm) in Table 5, we have confirmed the existence of
polynomials f, m, H satisfying (1), and these are given in the full version [30]
of this paper.

6 Conclusions

In this paper, we evaluated the security of pairing-based cryptosystems using the
ηT pairing defined over finite fields whose characteristic is 3. For the evaluation,
we consider the time complexity of solving the discrete logarithm problem (DLP)
over the extension fieldGF (36n) of the embedding degree 6 by the asymptotically
fastest function field sieve (FFS). The extension degree 6 allows us to improve
the speed of FFS by efficient algorithms such as the large prime variation, the
lattice sieve, the filtering, the Galois action, and the free relation. We therefore
estimated the precise time complexity of solving our DLP by FFS with the
efficient algorithms, called the “improved FFS” in this paper. By using our
new formulas to count the explicit number of smooth polynomials used in the
improved FFS, our experiment obtain the precise time complexity. Finally, we
adapted the formulas to the degree n appeared in several studies in the literature,
and then estimated that the time complexity of solving the DLP over GF (36n)
for n = 193, 239, 509 is 272, 278, 2111, respectively. Therefore, n must be larger
than 239 to keep 80 bit security.

Many high-speed implementations of the ηT pairing have been reported, which
have attracted us to achieve practical use of the ηT pairing. Our estimation in
this paper contributes to evaluating the key length of the pairing-based cryp-
tosystems using the ηT pairing.

References

1. Adleman, L.M.: The Function Field Sieve. In: Huang, M.-D.A., Adleman, L.M.
(eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

2. Aoki, K., Shimoyama, T., Ueda, H.: Experiments on the Linear Algebra Step in
the Number Field Sieve. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC
2007. LNCS, vol. 4752, pp. 58–73. Springer, Heidelberg (2007)

3. Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete loga-
rithms over finite fields. Inform. and Comput. 151, 5–16 (1999)

4. Ahmadi, O., Hankerson, D., Menezes, A.: Software Implementation of Arithmetic
in F3m . In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 85–102.
Springer, Heidelberg (2007)

5. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management - Part 1: General (Revised). NIST Special Publication 800-57 (2007)

6. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-
Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

7. Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient pair-
ing computation on supersingular abelian varieties. Des., Codes Cryptogr. 42(3),
239–271 (2007)

Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing 243

8. Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., Shirase, M., Takagi, T.:
Algorithms and arithmetic operators for computing the ηT pairing in characteristic
three. IEEE Trans. Comput. 57(11), 1454–1468 (2008)

9. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

10. Cavallar, S.: Strategies in Filtering in the Number Field Sieve. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 209–231. Springer, Heidelberg (2000)

11. Galbraith, S., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker,
C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

12. Gorla, E., Puttmann, C., Shokrollahi, J.: Explicit Formulas for Efficient Multi-
plication in F36m . In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 173–183. Springer, Heidelberg (2007)

13. Granger, R.: Estimates for Discrete Logarithm Computations in Finite Fields of
Small Characteristic. In: Paterson, K.G. (ed.) Cryptography and Coding 2003.
LNCS, vol. 2898, pp. 190–206. Springer, Heidelberg (2003)

14. Granger, R., Holt, A.J., Page, D., Smart, N.P., Vercauteren, F.: Function Field
Sieve in Characteristic Three. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076,
pp. 223–234. Springer, Heidelberg (2004)

15. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing-based cryptography in characteristic three. IEEE Trans. Comput. 54(7),
852–860 (2005)

16. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Identity-Based Cryptography, pp. 188–206 (2009)

17. Harrison, K., Page, D., Smart, N.P.: Software implementation of finite fields of
characteristic three, for use in pairing-based cryptosystems. LMS Journal of Com-
putation and Mathematics 5, 181–193 (2002)

18. Hayashi, T., Shinohara, N., Wang, L., Matsuo, S., Shirase, M., Takagi, T.: Solving
a 676-Bit Discrete Logarithm Problem in GF(36n). In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 351–367. Springer, Heidelberg (2010)

19. Joux, A., et al.: Discrete logarithms in GF(2607) and GF(2613). Posting to the
Number Theory List (2005), http://listserv.nodak.edu/cgi-bin/
wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690

20. Joux, A., Lercier, R.: The Function Field Sieve Is Quite Special. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg
(2002)

21. Joux, A., Lercier, R.: The Function Field Sieve in the Medium Prime Case. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006)

22. Kawahara, Y., Aoki, K., Takagi, T.: Faster Implementation of ηT Pairing Over
GF (3m) Using Minimum Number of Logical Instructions for GF (3)-Addition. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 282–296.
Springer, Heidelberg (2008)

23. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

24. Kerins, T., Marnane, W., Popovici, E., Barreto, P.S.L.M.: Efficient Hardware for
the Tate Pairing Calculation in Characteristic Three. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509\&L=nmbrthry\&T=0\&P=3690
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509\&L=nmbrthry\&T=0\&P=3690

244 N. Shinohara et al.

25. Lanczos, C.: Solution of systems of linear equations by minimized iterations. J.
Res. Nat. Bureau of Standards 49(1), 33–53 (1952)

26. Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. LNIM, vol. 1554, pp. 43–49 (1993)

27. Pollard, J.M.: The lattice sieve. LNIM, vol. 1554, pp. 43–49 (1993)
28. Page, D., Smart, N.P.: Hardware Implementation of Finite Fields of Characteristic

Three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 529–539. Springer, Heidelberg (2003)

29. Pomerance, C., Wagstaff Jr., S.S.: Implementation of the continued fraction integer
factoring algorithm. Congress Numer. 37, 99–118 (1983)

30. Shinohara, N., Shimoyama, T., Hayashi, T., Takagi, T.: Key Length Estimation of
Pairing-based Cryptosystems using ηT Pairing, Cryptology ePrint Archive: Report
2012/042 (2012), http://eprint.iacr.org/2012/042

31. Smart, N., Page, D., Vercauteren, F.: A comparison of MNT curves and supersingu-
lar curves. Applicable Algebra in Engineering, Communication and Computing 17,
379–392 (2006)

http://eprint.iacr.org/2012/042

Lightweight Integrity for XOR Network Coding

in Wireless Sensor Networks

Kazuya Izawa, Atsuko Miyaji, and Kazumasa Omote

Japan Advanced Institute of Science and Technology (JAIST)
{s0910201,miyaji,omote}@jaist.ac.jp

Abstract. In INFOCOM 2009, Yu, Wei, Ramkumar and Guan have
proposed the novel mechanism (called Yu’s scheme), in which a forwarder
can filter polluted messages before spreading the pollution in the XOR
network coding systems. In order to perform such filtering, two or more
message authentication codes (MACs) are used for this scheme. How-
ever, Yu’s scheme has a problem that the number of MACs increases at
every coding point, since it cannot operate MACs with the XOR net-
work coding. This means that the MAC of Yu’s scheme does not have
homomorphic property.

In this paper, we propose the first symmetric-key-based scheme not
only to filter polluted messages but also to operate MACs with the XOR
network coding on a forwarder. The XOR network coding of MACs pro-
duces improvement which does not increase the number of MACs at a
coding point. Our scheme uses the UHFs-based MAC with a homomor-
phic property to hold homomorphic MAC, and hence it can aggregate
MACs in our XOR network coding systems. We emphasize that a for-
warder cannot straightforward filter polluted messages even if our scheme
uses the UHFs-based MACs.

1 Introduction

Wireless Sensor Networks (WSNs) consist of small, battery-operated, limited
memory and limited computational power sensor nodes. Most of existing secure
schemes in WSNs are not based on public key cryptography. More importantly,
reducing communication traffic is desirable to save the energy of the relay nodes
(forwarders). It is especially necessary to reduce the amount of useless commu-
nication. For instance, it is important to remove polluted messages quickly or to
conduct data aggregation.

Unlike the traditional message forwarding approaches, network coding [1] al-
lows forwarders to combine multiple input messages into one or more encoded
ones. This technique has novel advantages to maximize network throughput and
to reduce the number of retransmissions. While a network coding is normally
operated over large finite fields (called normal network coding), we focus on
a special network coding based only on XOR operations, named XOR network
coding [3,6,10,11,13,16,17,18]. It is easy to apply XOR network coding to wireless
networks such as WSNs, owing to its simplicity.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 245–258, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

246 K. Izawa, A. Miyaji, and K. Omote

Network coding systems are vulnerable to pollution attacks, in which adver-
saries inject polluted messages into the systems on the compromised forwarders.
In a worst case scenario, a single corrupted message can end up corrupting all
the information reaching a destination. These attacks not only prevent the sinks
from recovering the source messages but also drain out the energy of the for-
warders. Hence, it is crucial to filter polluted messages in network coding systems
as early as possible. In order to achieve such filtering in the XOR network coding
systems, Yu, Wei, Ramkumar and Guan [16] have proposed the novel mechanism
(called Yu’s scheme), in which a forwarder can filter polluted messages before
spreading the pollution. In this scheme, two or more message authentication
codes (MACs) are used to filter polluted messages.

However, Yu’s scheme has a problem that the number of MACs increases at
every coding point, since it cannot operate MACs with the XOR network coding.
This means that the MAC of Yu’s scheme does not have homomorphic property.
If two or more MACs are operated with XOR network coding, their MACs are ag-
gregated (encoded) to one MAC. Otherwise, as Yu’s scheme, their MACs are just
forwarded to downstream nodes without XOR network coding. It is meaningless
that in spite of coding a message, their MACs is not aggregated (encoded). On
the other hand, Apavatjrut et al. [3] have simply applied the homomorphic MAC
based on universal hash functions (UHFs) to the XOR network coding systems,
in which two or more MACs are operated with XOR network coding. However,
a forwarder cannot filter polluted messages in this scheme. More particularly, a
forwarder cannot verify the MACs for filtering since the UHFs-based MAC has
one-time pad. Only a sink can verify the encoded (aggregated) MACs since it
knows all the seeds which generate one-time pad.

In this paper, we propose the first symmetric-key-based scheme not only to
filter polluted messages but also to operate MACs with the XOR network cod-
ing on a forwarder. The XOR network coding of MACs produces improvement
which does not increase the number of MACs at a coding point. Our scheme
uses the UHFs-based MAC with a homomorphic property to hold homomorphic
MAC, and hence it can aggregate MACs in our XOR network coding systems.
As a result, it can reduce the amount of extra space associated with communica-
tion complexity for integrity protection. We emphasize that a forwarder cannot
straightforward filter polluted messages even if our scheme uses the UHFs-based
MAC. Our scheme improves how to generate a pseudo-random function (PRF)
in the UHFs-base MAC so that a forwarder can filter polluted messages.

2 Related Work

Working on network coding started with the pioneering paper by Ahlswede et
al. [1], which established the value of coding in the routers and provided theo-
retical bounds on the capacity of such networks. Network coding systems can
be divided into two classes of normal and XOR network coding [16]. There are
several lightweight authentication schemes for both of network coding, based on
symmetric-key-cryptography such as message authentication codes (MACs).

Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks 247

For a lightweight authentication scheme in a normal network coding against
pollution attacks, the homomorphic MAC [2] and RIPPLE [12] have been pro-
posed so far. Agrawal and Boneh [2] design a homomorphic MAC which allows
checking the integrity of normal network encoded data. It converts a homomor-
phic MAC into a broadcast homomorphic MAC, in which a forwarder can verify
the integrity of MACs. Li et al. [12] have proposed a symmetric-key-based scheme
for network coding authentication (named RIPPLE). Despite using symmetric-
key-based homomorphic MAC algorithms, RIPPLE achieves asymmetry by de-
layed disclosure of the MAC keys, inspired by TESLA [14]. While these schemes
focus on normal network coding systems, the following two recent schemes [16,3]
focus on a lightweight authentication in a XOR network coding against pollution
attacks, which is more suitable for WSNs.

Yu’s scheme [16] exploits probabilistic key pre-distribution and MACs. In
this scheme, the source node generates multiple MACs for each message using
its secret keys, where each MAC can authenticate only a part of the message
and the parts authenticated by different MACs are overlapped. Every encoded
message is attached with the MACs of the source messages. Therefore, multiple
downstream forwarders can collaboratively verify different parts of the encoded
message using the MACs and their own shared keys. However, Yu’s scheme has
a problem that the number of MACs increases at every coding point, since it
cannot operate MACs with the XOR network coding. The details of Yu’s scheme
will be described in Section 4.

Apavatjrut et al. [3] have naively applied the homomorphic MAC based on
UHFs to the XOR network coding systems. Such a XOR homomorphic MAC is
given by MACk(M) = hk(M) ⊕ r, where hk is a homomorphic UHF with the
secret key k,M is a message, and r is one-time pad. However, a forwarder cannot
filter the polluted messages in this scheme. We explain this reason as follows. We
assume that a forwarder F3 is connected with two upstream nodes F1 and F2, for
example. Let M1 and M2 denote the source messages of s1 and s2, respectively.
F3 receivesM1, M2, MACk(M1) = hk(M1)⊕ r1 and MACk(M2) = hk(M2)⊕ r2
from F1 and F2. Then, F3 can compute the encoded message M1 ⊕M2 and its
MAC (MACk(M1⊕M2) = hk(M1⊕M2)⊕(r1⊕r2)). However, F3 cannot compute
r1 ⊕ r2, since r1 ⊕ r2 is random number generated by s1 and s2. Therefore, in
this scheme, a forwarder cannot filter the polluted messages because it cannot
verify the MACs.

3 Preliminaries

3.1 Requirements

The following requirements need to be considered when designing a lightweight
integrity of XOR network coding systems in WSNs.

Early Filtering of Polluted Messages. Network coding systems (including
XOR and normal network coding) suffer from pollution propagation, i.e., a small
number of polluted messages can quickly propagate in the systems and infect

248 K. Izawa, A. Miyaji, and K. Omote

a large proportion messages. When a forwarder receives a polluted message,
all of its encoded messages will be polluted. Then, these polluted messages are
further used by downstream forwarders for encoding, thus, more messages will be
polluted. It is therefore necessary to filter polluted messages as early as possible.

Encoding of MACs. The MAC is computed from the source message. The
forwarder, who is not directly connected with source nodes, cannot obtain the
source message but can obtain only the encoded messages. So, it is necessary for
a forwarder to verify the MAC of encoded messages in order to filter the polluted
messages. Hence, the encoding of MACs is essential for a forwarder to check the
integrity of encoded messages. This MAC encoding also has an advantage of
traffic reduction.

Restricted Resources. It is required that the WSNs consist of small, battery-
operated devices with limited memory and limited computational power. XOR
network coding and the symmetric-key-based MAC are more suitable for such
resource-constrained WSNs.

3.2 Notation

We explain the following common notations in the paper:

Symbol Explanation

n the number of source messages transmitted (n ≥ 2)

m the number of codewords of each message

Mi, mi,j i-th source message and its j-th codeword; Mi = (mi,1 · · ·mi,m)

t the number of random keys each node has

u the number of codeword hashed in each MAC

q security parameter (e.g., q = 128)

KUHF, K′PRF global key pools for UHF and PRF

ks,i, k
′
s,i i-th (q-bit) keys of the source node; ks,i ∈ KUHF, k

′
s,i ∈ KPRF

sid the session ID (sid ∈ {0, 1}q)
mid the set of message indeces

hk universal hash function using key k: {0, 1}∗ �→ {0, 1}q
fk′ pseudo-random function family indexed by the key k′: {0, 1}∗ �→ {0, 1}q
g pseudo-random permutation function: [1, m] → [1, m]

H Non-cryptographic hash function: {0, 1}q → [1, m]

3.3 System and Network Assumptions

We consider a general multicast network in which there are one source node,
multiple sinks (receivers) and a number of forwarders. The source node sends
n messages M1, . . . ,Mn in every unit of time, that is, session (the source can
actually generate messages continuously). A forwarder can use XOR network
coding technique to generate and forward the encoded messages.

Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks 249

In XOR network coding for n source messages M1, . . . ,Mn, an encoded mes-
sage can be represented as E = α1M1 ⊕ · · · ⊕ αnMn, where αi ∈ {0, 1} for
i = 1, . . . , n. The bit string (α1 · · ·αn) is called the encoding vector of E. Of
course, Mi can be the encoded message. We adopt the model used in [8] and
divide each message into m codewords of the same length. Our scheme partitions
codewords only for constructing MACs.

We also assume that all of the nodes have been assigned some random secret
keys using the probabilistic key pre-distribution schemes such as [7]. In particu-
lar, we assume that each node picks a fixed number of keys randomly from a large
global key pool. By carefully controlling the key pool size and the number of keys
that each node picks, we assure that any two nodes have certain probability to
find some shared keys. The source node uses its keys to generate MACs for its
messages, while each forwarder or sink verifies the MACs of received messages
using their shared keys with the source node.

3.4 Threat Model [16]

We assume that the source and multiple sinks are always trusted, but the for-
warders can be compromised. The adversaries can fully control the compromised
forwarders and launch pollution attacks. In such attacks, they may either pollute
the output messages of the compromised nodes, or inject the forged messages
into systems. Formally speaking, we identify that an encoded message E has
been polluted or forged, if and only if its content is not consistent with its en-
coding vector, for example, E �= α1M1⊕α2M2⊕· · ·αnMn for n source messages
M1, . . . ,Mn.

3.5 Universal Hash Functions (UHFs)

Following Carter and Wegman [5], a universal hash function (UHF) is a family
of functions indexed by a parameter called the key with the following property:
for all distinct inputs, the probability over all keys that they collide is small.

Definition 1. Let hk be a function of an (�, q)-family H from an �-bit set A to
an q-bit set B with the parameter k taken in a set of KUHF. Let ε be any positive
real number. Then, hk is an ε-almost universal class (or ε-AU class) of hash
function if ∀x, x′ �= x ∈ A : Prk{hk(x) = hk(x

′)} ≤ ε.

Definition 2. hk is ⊕-linear if ∀x, x′ �= x ∈ A : hk(x⊕ x′) = hk(x)⊕ hk(x′).

Definition 3. hk is an ε-almost XOR universal class (or ε-AXU class) of
hash function if ∀x, x′ �= x ∈ A and ∀Δ ∈ B : Prk{hk(x) = hk(x

′)⊕Δ} ≤ ε.

3.6 MAC Based on UHFs

UHF is not a cryptographically secure primitive. That is, it is not generally
collision-resistant against an adversary who can choose messages after selection

250 K. Izawa, A. Miyaji, and K. Omote

of k. Thus UHF is not in general a MAC. The UHFs can be used for message
authentication if the output is processed with another function.

A MAC algorithm based on UHFs consists of two building blocks: an efficient
keyed compression function that reduces long inputs to a fixed length and a
method to process the short hash result and an output transformation. In prac-
tical constructions, the encryption with the one-time pad is typically replaced by
applying a pseudo-random function with secret key k′ ∈ KPRF. In this case, one
obtains computational rather than unconditional security. Informally, a pseudo-
random function family is a function that a computationally limited adversary
cannot distinguish with probability substantially better than 1/2 from a function
chosen uniformly at random from all functions with the same range and domain.

Let fk′ denote a pseudo-random function family indexed by the key k′, which
is computationally indistinguishable from a random family of functions from D
to R. We define the prf-advantage of an adversary A for family f as Advprff (A) =∣∣Pr[k′ ← KPRF : Afk′ (·) = 1]− Pr[ζ ← FD→R : Aζ(·) = 1]

∣∣ , where FD→R is the

set of all functions from D to R. We denote by Advprff (q1, t1) the maximum
prf-advantage of an adversary making q1 queries to its oracle and running in
time t1.

We assume that the sender keeps the state with the counter (nonce) c ∈ C.
Note that we need to guarantee that c is not reused during the MAC generation.
The design of MAC obtained from an ε-AXU and ⊕-linear hash function hk is
given by the following equation [9]:

MACk||k′ (x) = hk(x) ⊕ fk′(c). (1)

Given a UHF family h : KUHF×A→ B and a PRF family f : KPRF×C → B, we
construct the MAC UMAC = (UGen,UTag,UVer) such as : UGen(1q) generates
the key (k, k′) uniformly at random from KUHF×KPRF; UTag : KUHF×KPRF×A
→ C×B is defined as UTagk,k′ (M) = (c, hk(M)⊕fk′(c)); UVer : KUHF×KPRF×A×
C×B is defined as UVerk,k′ (M, (c, tag)) = 1 if and only if hk(M)+fk′(c) = tag.

We denote by Advuf-mac
UMAC (q1, q2, t1) the maximum advantage of all adversaries

against existentially unforgeability under an adaptive chosen message attack,
making q1 queries to UTag, q2 queries to UVer and running in time at most t1.
The tagging algorithm of UMAC outputs, in addition to the composition of UHF
and PRF, a unique counter c incremented at each invocation. Thus, the UMAC
is stateful and its properties are as follows [15,4].

Fact 1. Assume that h is an εUHF-AXU family of hash functions and f is a PRF
family. Then UMAC is a stateful MAC with advantage: Advuf-mac

UMAC (q1, q2, t1) ≤
Advprff (q1 + q2, t1) + εUHFq2.

4 The Yu’s Scheme

Yu et al. [16] have proposed the novel mechanism, in which a forwarder can filter
polluted messages before spreading the pollution in the XOR network coding

Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks 251

systems. This scheme exploits probabilistic key pre-distribution and MACs. We
describe the brief procedure of each phase of Yu’s scheme.

Parameter Setup Phase: The source node chooses t, u and {r1, . . . , rt}. Any
node can compute a hash chain from a given seed rj using a pseudo-random
permutation function g. The source node has t random keys ks,1, . . ., ks,t from
a global key pool K, where s is the index of the source node. The index of each
key ks,j in the key pool for j = 1, . . . , t is denoted as id(ks,j). A forwarder picks
t random keys from K. Note that sinks have the same t keys as the source node
for complete verification of messages.

MAC Calculation Phase: The source node attaches t MACs to each message
Mi for i = 1, . . . , n. More concretely, Mi is attached with MACi,1, . . . ,MACi,t

as well as the corresponding indeces of the random keys that are used to generate
MACs. Thus, the source node actually generates and transmits:

Mi, (id(ks,1),MACi,1), . . . , (id(ks,t),MACi,t). (2)

For j = 1, . . . , t, MAC is defined as MACi,j = Encks,j (id(ks,j), rj , σi,j), where
Enc denotes symmetric-key encryption function using key ks,j and σi,j is the hash
of u randomly selected codewords of Mi. Note that the MAC is decryptable
in this scheme. The positions of codewords in Mi are randomly selected by
the outputs of hash chain with a random seed rj . The hash is computed by
σi,j =

⊕u
�=1mi,rj,� , where rj,1, . . . , rj,u are the indeces of selected codewords

and also the output values of hash chain. Each source message is attached with
t MACs, and each MAC is computed from u codewords. In other words, each
MAC authenticates u codewords of Mi.

Message Verification Phase: Each forwarder or sink verifies its input mes-
sages based on the MACs for which it has the shared key(s) with the source
node. When receiving a message along with the MACs of source messages, it
first checks the indeces prefixed to each MAC to find a shared key. Then, it
decrypts the corresponding MACs of source messages and generates the indeces
of u codewords from rj . After identifying the indeces of codewords, it takes the
corresponding codewords out of the received message and calculates the hash of
these codewords. It further takes out the hashes embedded into the decrypted
MACs of source messages and encodes them using the encoding vector transmit-
ted along with the received message. Finally, it checks if the hash of the received
message equals the combination of the hashes embedded in the corresponding
MACs. If equals, the verification succeeds. Otherwise, the received message is
assumed to be polluted and will be discarded.

When each forwarder generates its output message, it always attaches the
MACs of all source messages from which this output message is produced. For
example, when a forwarder generates E =M1⊕M2, it will attach MAC1,1, . . .,
MAC1,t and MAC2,1, . . ., MAC2,t to its output message E.

252 K. Izawa, A. Miyaji, and K. Omote

S

CF

R1 R2

Yu’s scheme

S

CF

R1 R2

Our scheme

MACs

F1 F2

F3

F1 F2

F3

Fig. 1. The problem of Yu’s scheme

4.1 Problem Statement

In Yu’s scheme, all the forwarders just forward their MACs to downstream nodes
without XOR network coding of MACs. Actually, the MAC is decrypted to verify
the corresponding codewords of a message. Due to such a special (decryptable)
mechanism, the contents embedded into the decrypted MACs are operated with
XOR network coding and hence MACs are verified, although MACs are not
directly operated. Therefore, the number of MACs increases at a coding point,
that is, the MACs cannot be suppressed to a certain number. In a worst case
scenario, a forwarder transmits nt MACs to downstream nodes.

Figure 1 shows the difference between Yu’s scheme and our scheme to explain
the problem of Yu’s scheme in an example. The source node S wants to send two
messages M1 and M2 to two sinks R1 and R2. Let CF and F denote a coding
forwarder and a mere forwarder, respectively. Where a forwarder performs coding
is dependent on a network topology (CF receives two or more messages). At
first, S sends M1 and M2 to F1 and F2 with their MACs, respectively. Then,
a forwarder broadcasts the message and its MACs to downstream nodes. The
source node attaches t MACs to each message M1 and M2. While CF has to
forward 2t MACs to downstream nodes in Yu’s scheme, CF has only to forward
t MACs in our scheme. Hence, the communication amount of MACs from CF to
sinks in Yu’s scheme is twice our scheme in this example.

5 Our Scheme

In this section, we propose the first symmetric-key-based scheme not only to filter
polluted messages but also to operate MACs with the XOR network coding on a
forwarder. The primary aim of our scheme is to reduce the amount of extra space

Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks 253

S

CF

F1 F2

F3

Fig. 2. Example of XOR network coding in our scheme (t = 2, n = 2)

for integrity protection, i.e., the number of MACs on communication traffic. The
XOR network coding of MACs produces improvement which does not increase
the number of MACs at a coding point. We describe the detailed procedure of
each phase of our scheme in the rest of this section.

Parameter Setup Phase: System parameters m and q are given in advance,
since they are related to pre-determined parameters of some functions. The
source node chooses t, u mid and sid. Any node can compute a hash chain
from the seed rj using a pseudo-random permutation function g. Any node can
also compute an universal hash function h and a pseudo-random function1 f .
The source node has random keys ks,1, . . ., ks,t from a global key pool KUHF and
k′s,1, . . ., k

′
s,t from another global key pool KPRF. The index of each key ks,j is

id(ks,j). A forwarder picks t random keys from each of KUHF and KPRF, i.e., 2t
random keys in total. Note that sinks have the same 2t keys as the source node
for complete verification of messages.

MAC Calculation Phase: The source node attaches t MACs to each message
Mi for i = 1, . . . , n. The source node generates and transmits:

Mi, {i}, sid, (id(ks,1),MAC{i},1), . . . , (id(ks,t),MAC{i},t), (3)

where id(ks,j) = id(k′s,j). For j = 1, . . . , t, MAC is defined as follows:

MAC{i},j = hks,j (σi,j)⊕ fk′
s,j
(sid||i), (4)

where || denotes concatenation and the σi,j is the hash of u randomly selected
codewords of Mi, same as Yu’s scheme. The random seed rj , which is used to
generate hash chain for σi,j , is computed as rj = H(fk′

s,j
(sid||i)) in our scheme.

1 In practice, AES acts as a pseudo-random function (PRF). Other even more practical
constructions of PRFs deployed in standards use MAC functions, such as HMAC.

254 K. Izawa, A. Miyaji, and K. Omote

MAC Coding Phase: Two or more MACs can be operated with XOR network
coding in this UHFs-based MAC. The forwarder generates and transmits:

Eτ ,mid, sid, (id(ks,1),MACmid,1), . . . , (id(ks,t),MACmid,t), (5)

where Eτ is encoded message of τ source messages M1, . . . ,Mτ and mid is a set
of message indeces which constitutes Eτ , that is, mid = {1, . . . , τ} (τ ≥ 2). For
j = 1, . . . , t, the coded MAC is defined as follows:

MACmid,j = hks,j (σmid,j)⊕ Fk′
s,j
(sid||mid), (6)

where we define Fk′
s,j
(sid||mid) = fk′

s,j
(sid||1)⊕ · · · ⊕ fk′

s,j
(sid||τ) and σmid,j =

σ1,j ⊕ · · · ⊕ στ,j. We assume that Fk′
s,j
() is a pseudo random function. The σi,j

is the hash of u randomly selected codewords of Eτ . The rj is computed as
H(Fk′

s,j
(sid||mid)).

Figure 2 shows an example of XOR network coding in our scheme. The source
node S sends M1 and M2 (n = 2) to F1 and F2 with their MACs, respectively.
Each source message attaches two MACs (t = 2). Hence, the number of their
keys in each forwarder is four (= 2t) in total. A forwarder broadcasts the message
and its MACs to downstream nodes. Since this MAC has homomorphic property,
two MACs are operated with XOR network coding by the node CF as follows:

MAC{1},j ⊕MAC{2},j = hks,j (σ1,j)⊕ fk′
s,j
(sid||1)⊕ hks,j (σ2,j)⊕ fk′

s,j
(sid||2)

= hks,j (σ{1,2},j)⊕ Fk′
s,j
(sid||{1, 2}), (j = 1, 2). (7)

Note that id(ks,j) is omitted in this figure.

Message Verification Phase: We consider the verification of MACs by a for-
warder. This verification phase has three status; impossible, valid and failed.
In the case of impossible and valid, the forwarder transmits data to the down-
stream nodes. Otherwise, it discards them. The coding forwarder conducts the
XOR network coding of the message and their MACs before forwarding them.

1. A forwarder first checks id(ks,j) prefixed to each MAC to see if it has any
shared key with the source node. If it does not find any shared key (i.e.,
impossible), it forwards the messages and their MACs.

2. Once finding a shared key, it computes the seed rj of the corresponding
MACs and generates the indeces of u codewords from rj using hash chain.

3. After identifying the indeces of codewords, it takes the corresponding code-
words out of the received message and calculates the hash σi,j of these code-
words.

4. It computes MAC{i},j using the σi,j in Equation (4) or (6). The values sid
and mid are public information.

5. Finally, it checks if the MACs of the received messages equals the computed
MACs. If equals (i.e., valid), the verification succeeds. Otherwise (i.e., failed),
the received message is assumed to be polluted and will be discarded.

Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks 255

In Figure 2, we show an example of verification by the forwarder F3 which
shares the keys ks,2 and k′s,2 with S. This means that F3 can verify the coded
MAC: MAC{1},2 ⊕ MAC{2},2 by using ks,2 and k′s,2. More concretely, after
F3 computes σ{1,2},2 = σ1,2 ⊕ σ2,2 directly from M1 ⊕ M2, it then computes
MAC{1,2},2 = MAC{1},2 ⊕ MAC{2},2 as Equation (7). Note that F3 knows
neither M1 nor M2. It finally checks if this value equals the received MAC. But
other forwarders F1, F2 and CF cannot verify MACs since they do not share any
key with S.

6 Discussion

6.1 Security

In this section, we discuss both the security of MAC used in our scheme (in the
case that a MAC key is not revealed) and the security against pollution attacks
(in the case that some MAC-keys are revealed).

For the composition of UHF and PRF to be a MAC, it is important that
the counters used as input into the PRF be unique. In our scheme, we use as
input (counter) to the PRF, the session ID and the index i of source message
when computing the MAC for the message Mi. As Fact 1 shows, assuming a
pseudo random function, as long as no nonce is re-used during the generation
of tags, forging a new valid (Mi, sid||mid, tag) tuple is infeasible, even after the
attacker has seen many such tuples before, either by eavesdropping or by active
manipulation of tag generation. We can prove security of our MAC by the same
framework as the security proof of the MAC based on universal hash. More
specifically, we can prove security of our homomorphpic MAC, assuming h is
an εUHF-AXU family of hash functions, f is a PRF family and F is also a PRF
family.

Since a UHFs-based MAC has homomorphic property, different MAC value
can be generated by operating two or more MACs with network coding. Such
MAC value may be considered to be forgery. However, such operation is not
forgery in network coding system since it is the coding operation itself in the re-
dundant message processing. This is implicitly included in the security definition
of [2].

It is important to filter polluted messages, as described in Section 3.1. On the
other hand, it is also important to reduce the amount of extra space associated
with communication complexity for integrity protection in WSNs. Our scheme
probabilistically prevents the pollution attack and operates MACs with the XOR
network coding for communication efficiency. This means that our scheme aims
to satisfy both security and efficiency for XOR network coding in WSNs. Note
that our scheme uses the same probabilistic technique to prevent pollution at-
tacks as Yu’s scheme and hence we can obtain the same results, in which the
number of hops from polluted node until a pollution is detected is evaluated (i.e.,
a forwarder can filter polluted messages in a few hops with high probability.).

The tag pollution attack and its countermeasure are described in [12].
This scheme prevents the tag pollution attack under the assumptions of time

256 K. Izawa, A. Miyaji, and K. Omote

synchronous and delayed authentication, since it is based on TESLA [14]. We do
not consider that our scheme prevents perfectly the tag pollution attack. Both
Yu’s scheme and our scheme probabilistically prevents this attack without their
assumptions.

6.2 Efficiency

Sensors are usually resource-limited and power-constrained. The energy savings
of performing network coding are crucial for energy-constrainedWSNs. Since the
nodes with the heaviest traffic are typically the nodes which are most essential
to the connectivity of the network (e.g., area near sink), their failure may cause
the network to partition. It is thus important to achieve constant congestion in
large-scale WSNs. Actually, all of the MACs for all messages need to be gathered
to each sink. The communication complexity should not depend on the number
of source nodes n because of its power-constrained.

In this section, we compare our scheme with Yu’s scheme in respect to the
maximum communication complexity of MACs, storage amount of MAC keys
and verification cost of one MAC for integrity protection of a forwarder at each
session. Let UMAC, Dec, H and G be the computation costs of UHFs-based
MAC, symmetric decryption over |2q|, non-cryptographic hash function and
pseudo-random permutation function, respectively. While the maximum number
of MACs sent by a forwarder in Yu’s scheme becomes nt, that in our scheme is
constant t, described in Table 1. Hence, the maximum number of MACs in our
scheme becomes 1/n compared with Yu’s scheme, although the number of keys
(i.e., storage amount) doubles. In verification cost of one MAC, Dec operation
is required in Yu’s scheme2. Note that H and G are very lightweight since the
size of their outputs is quite small. The XOR operation is assumed to be negligi-
ble here because of very lightweight computation. Consequently, the maximum
communication complexity of MACs of our scheme is superior to those of Yu’s
scheme, although the storage amount of MAC keys in our scheme is somewhat
worse. The verification cost of our scheme is almost the same as that of Yu’s
scheme.

For example, we use well-chosen parameters in WSNs described in [16], e.g.,
m = 16, n = u = 8, t = 5, q = 128 (bits) and |KUHF| = |KPRF| = 100,
in order to evaluate the congestion of MACs on a forwarder in each session.
For such parameters, it is assumed that the size of Mi is 256 bytes. While the
maximum communication complexity of MACs for Mi in Yu’s scheme is 720
bytes ((128 + 8 + 8) · 5 · 8/8), that in our scheme is 80 bytes (128 · 5/8). Hence,
the maximum ratio of the size of MACs for each Mi is 280% in Yu’s scheme and
32% in our scheme. Especially, in Yu’s scheme, the size of attached MACs is much
larger than that ofMi. The primary aim of our scheme is to reduce the amount of
extra space associated with communication complexity for integrity protection.
This result shows that the XOR network coding (aggregation) of MACs is pretty
effective to reduce the number of MACs on communication traffic.
2 If a block cipher is used as Dec then two Dec operations are required since the size
of the input or output is beyond |2q |.

Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks 257

Table 1. The maximum communication complexity of MACs, storage amount and
verification cost for integrity protection of a forwarder at each session

Max comm. of MACs Storage amount of keys Verification cost per MAC

Yu’s scheme n|2q |t |2q |t Dec + (u− 1)G

Ours |2q |t 2|2q |t UMAC+H+(u− 1)G

7 Conclusion

We have proposed the first symmetric-key-based scheme not only to filter pol-
luted messages but also to operate MACs with the XOR network coding on a
forwarder. Our scheme uses the UHFs-based MAC with a homomorphic prop-
erty to hold homomorphic MAC, and hence it can aggregate MACs in our XOR
network coding systems. The evaluation results show that our scheme is very
effective to reduce the amount of extra space associated with communication
complexity for integrity protection. While the maximum ratio of the size of
MACs for each Mi is 280% in Yu’s scheme, that is 32% in our scheme.

References

1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4), 1204–1216 (2000)

2. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-Based Integrity for Network
Coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

3. Apavatjrut, A., Znaidi, W., Fraboulet, A., Goursaud, C., Lauradoux, C., Minier,
M.: Energy Friendly Integrity for Network Coding in Wireless Sensor Networks.
In: NSS 2010, pp. 223–230 (2010)

4. Bowers, K.D., Juels, A., Oprea, A.: HAIL: a high-availability and integrity layer for
cloud storage. In: ACM Conference on Computer and Communications Security
2009, pp. 187–198 (2009)

5. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

6. Dong, Q., Wu, J., Hu, W., Crowcroft, J.: Practical network coding in wireless
networks. In: MOBICOM 2007, pp. 306–309 (2007)

7. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: ACM Conference on Computer and Communications Security 2002,
pp. 41–47 (2002)

8. Gkantsidis, C., Rodriguez, P.: Cooperative Security for Network Coding File Dis-
tribution. In: INFOCOM 2006 (2006)

9. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 144–161. Springer, Heidelberg (2008)

10. Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M., Crowcroft, J.: XORs in the
air: practical wireless network coding. In: SIGCOMM 2006, pp. 243–254 (2006)

11. Kuo, F.-C., Tan, K., Li, X., Zhang, J., Fu, X.: XOR Rescue: Exploiting Network
Coding in Lossy Wireless Networks. In: SECON 2009, pp. 1–9 (2009)

258 K. Izawa, A. Miyaji, and K. Omote

12. Li, Y., Yao, H., Chen, M., Jaggi, S., Rosen, A.: RIPPLE Authentication for Network
Coding. In: INFOCOM 2010, pp. 2258–2266 (2010)

13. Nage, T., Yu, F.R., St-Hilaire, M.: Adaptive Control of Packet Overhead in XOR
Network Coding. In: ICC 2010, pp. 1–5 (2010)

14. Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient Authentication and Sign-
ing of Multicast Streams over Lossy Channels. In: IEEE Symposium on Security
and Privacy, pp. 56–73 (2000)

15. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Univer-
sal Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

16. Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An Efficient Scheme for Secur-
ing XOR Network Coding against Pollution Attacks. In: INFOCOM 2009,
pp. 406–414 (2009)

17. Zhang, S., Liew, S.C., Lam, P.P.: Hot topic: physical-layer network coding. In:
MOBICOM, pp. 358–365 (2006)

18. Zhang, Z., Lv, T., Su, X., Gao, H.: Dual XOR in the Air: A Network Coding Based
Retransmission Scheme for Wireless Broadcasting. In: ICC 2011, pp. 1–6 (2011)

iPIN and mTAN for Secure eID Applications

Johannes Braun1, Moritz Horsch1, and Alexander Wiesmaier2

1 Technische Universität Darmstadt
Hochschulstraße 10, 64283 Darmstadt, Germany

{jbraun,horsch}@cdc.informatik.tu-darmstadt.de
2 AGT Group (R&D) GmbH

Hilpertstraße 20a, 64295 Darmstadt, Germany
awiesmaier@agtgermany.com

Abstract. Recent attacks on the German identity card show that a
compromised client computer allows for PIN compromise and man-in-
the-middle attacks on eID cards. We present a selection of new solutions
to that problem which do not require changes in the card specification.
All presented solutions protect against PIN compromise attacks, some
of them additionally against man-in-the-middle attacks.

Keywords: eID, iPIN, onetime PIN, nPA, mTAN, man-in-the-middle,
PIN compromise, identity theft, smartcard.

1 Introduction

1.1 Motivation

Electronic identity (eID) cards play an important role in trustworthy authenti-
cation and many countries already employ elaborated national eID cards. The
German eID card [1], for example, provides machine readable travel document
functionality as specified by the International Civil Aviation Organization [2,3,4]
and is equipped with an eID functionality allowing the owner to electronically
prove his identity. Furthermore, it supports an eSign functionality to generate
(qualified) electronic signatures to be used in eBusiness and eGovernment ap-
plications. The eID and eSign functions are protected by separated personal
identification numbers (PIN).

The German eID card is a representative of the newest generation of eID
cards and may serve as blueprint for others cards to come. The card provides a
contactless interface according to ISO14443 [5] and to supports version 2 of the
Extended Access Control (EAC) protocol according to BSI-TR-03110 [6]. The
EAC protocol provides a mutual authentication and may in particular be used
together with the Password Authenticated Connection Establishment (PACE)
[6, Section 4.2] protocol, which protects the communication over the wireless
channel and ensures user consent. EAC and PACE have been proven secure
against active adversaries having access to the communication channels between
the involved components [7,8,9]. To use the card, a terminal is required where
the user enters his PIN.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 259–276, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

260 J. Braun, M. Horsch, and A. Wiesmaier

PICC PCD

eID server

Service provider
PACE TLS

EAC

Fig. 1. eID infrastructure

However, terminals are not necessarily trustworthy, especially if the terminal
consists of a simple card reader (without key pad) connected to a computer. En-
tering the PIN on a compromised terminal can leak it to an adversary and allow
for identity theft attacks. Several attacks bypassing the security of the protocols
based on compromised computers and eavesdropping on the PIN have been pre-
sented (cf. Section 1.3). The work at hand focuses on that threat concerning the
eID functionality as implemented by the German eID card. We propose a new
solution to protect the PIN without requiring changes to the card specification.

1.2 The eID Functionality of the German Identity Card

The German eID card allows its cardholder to electronically prove his identity
to service providers on the Internet. To use the eID functionality a terminal
is needed, which in general consists of a computer connected to a card reader.
A client application which implements the required communication and cryp-
tographic protocols as well as the user interaction needs to be installed on the
computer. In the following, we simply refer to the German eID card as the card or
synonymously as Proximity Integrated Circuit Card (PICC) and to the terminal
(including computer, card reader and client application) as Proximity Coupling
Device (PCD). The terms PICC and PCD originate from BSI-TR-03110 [6]. As
the legitimate user is always the cardholder we use the term user and denote his
PIN with π to distinguish it from other constructs, such as temporary passwords.

In contrast to a common one-factor authentication by username and password,
the eID functionality enables a two-factor authentication based on the ownership
of the card and the knowledge of π. This enables a high level of trust between the
service provider and the user which in fact is backed by a sovereign document.
But it also implies big trouble if such a card is used illegitimately.

Any service provider (e.g. web mail service or online shop) that uses authenti-
cation via this card needs to present a certificate to the card to proof its identity
and its permission for data access. These certificates are emitted by the German
administration. However, the authentication process is not performed by the ser-
vice providers themselves. Dedicated eID servers perform it in the name of the
service providers. An eID server manages certificates issued for service providers,
performs the security protocols, and reads the personal data stored on the card.
The service providers only receive the data and perform a local authentication
process based on their environment. The corresponding infrastructure is shown
in Figure 1. The authentication process is as follows:

1. The user (using the PCD) opens the website of a service provider and clicks
on a link to perform the login process and the client application starts.

iPIN and mTAN for Secure eID Applications 261

2. The client application establishes a TLS connection to the eID server and
receives the service provider’s certificate.

3. The certificate description (e.g. issuer, URL, terms of usage) is displayed to
the user, who agrees to the data transmission by entering the PIN π.

4. A secure channel is established between both parties by performing PACE.
5. The eID server and the card perform a mutual authentication using the EAC

protocol. Hereby, the PCD serves as bridge between the secure messaging
channel and the TLS channel. The certificate received in step 2 is used during
the protocol to prove the access rights of the eID server.

6. The personal data is read by the eID server and passed to the service provider
which grants access to the user upon receipt.

1.3 Identity Theft Attacks Concerning the eID Functionality

Given a non compromised PCD, the usage of the German identity card is secure.
The necessity to enter a PIN to enable the communication with the card pro-
vides protection against the unauthorized usage of the card. Furthermore, the
communication is secured against eavesdropping by the establishment of strong
ephemeral session keys and encrypted communication. As detailed in this sec-
tion, in case of a compromised PCD, the secure usage of the card cannot be
guaranteed. As current attacks show, the major threat is PIN compromise.

PIN Compromise Attacks. As shown by the Chaos Computer Club [10] an
adversary can obtain the PIN by using key loggers or Trojan horses. Once holding
the PIN, the attacker still needs to access the card. Aside from stealing the card,
the attacker can establish a remote connection to the card via the compromised
PCD, if the card holder leaves the card on the PCD or is tricked into doing so.
The adversary is then able to impersonate the victim.

Man-in-the-Middle (MitM) Attack. A MitM attack also requires the ma-
nipulation of the client application on the PCD. An adversary controlling the
PCD presents the user the correct service certificate but sends another one to
the card. Therewith, the user is tricked into entering his PIN and authenticating
at a service different from the one he intended to. Taking over the session by the
adversary after authentication and showing an error message to the user might
leave the attack undetected.

1.4 Approach and Outline

At present, the only way to prevent the attacks presented above is using card
readers with a secure key pad and display. Such readers are expensive and might
not always be available, for example in Internet cafés or other public places.

By adding an additional trustworthy identity provider, we propose a new solu-
tion working with a common basic card reader and leaving existing infrastructure
components and protocols untouched.

In Section 2, we present the PACE protocol and address some background on
multiparty computation. In Section 3, we present our solution involving different
levels of trust. In Section 4, we give a security analysis and discuss the feasibility
of our approach. The paper closes with future work and the conclusion.

262 J. Braun, M. Horsch, and A. Wiesmaier

PICC PCD

(a) Kπ = KDF(π) Kπ = KDF(π)

(b) z = E(Kπ, s)
z−→ s = D(Kπ, z)

(c) Y = y ·G X←− X = x · G
Y−→

(d) H = y · X H = x · Y
(e) G′ = s · G + H G′ = s · G + H

(f) P̃KPICC = S̃KPICC ·G′ P̃KPCD←− P̃KPCD = S̃KPCD · G′

P̃KPICC−→
(g) K = S̃KPICC · P̃KPCD K = S̃KPCD · P̃KPICC

(h) KENC = KDFENC(K) KENC = KDFENC(K)
(i) KMAC = KDFMAC(K) KMAC = KDFMAC(K)

(j) TPICC = MAC(KMAC, P̃KPCD)
TPCD←− TPCD = MAC(KMAC, P̃KPICC)
TPICC−→

Fig. 2. PACE [6, Chapter 4.2]

2 Background

2.1 PACE

The Password Authenticated Connection Establishment (PACE) protocol [6] was
developed by the German Federal Office for Information Security, is designed to
be free of patents, and can be classified as a password-based key agreement
protocol [11, Section 7]. PACE uses a password with low entropy to perform a
user authentication and to establish a secure connection with strong ephemeral
session keys. Usually, the password is a PIN π, which is permanently stored in
PICC and is to be entered by the user into PCD for a successful protocol execu-
tion. Entering a wrong password leads to invalid session keys and the connection
establishment fails. Generally speaking, PACE makes sure that only the owner
has access to the card and unauthorized access is prohibited. PACE can be in-
stantiated in different variants. Here, we focus on the elliptic curve variant with
Generic Mapping [6, A.3.4.1] as used by the German eID card.

Figure 2 provides an overview of the protocol steps. Before it starts both par-
ties agree on common domain parametersD, containing elliptic curve parameters
and a base point G. The numbers x, y, S̃KPCD and S̃KPICC are smaller than
the order r of the elliptic curve and are chosen uniformly at random.

1. As depicted in step (a), both parties derive a key Kπ from the shared pass-
word π using the key derivation function (KDF). The KDF enables to derive
one or more secret keys from a common secret value and is basically a SHA-1
hash computation. In step (b) the PICC chooses a nonce s, encrypts it using
the encryption function E(key, ·) with the key Kπ, and sends the resulting
ciphertext z to the PCD. The PCD decrypts z to obtain the nonce s.

2. In steps (c) – (e), both parties use s to generate a new common base point
G′ = s ·G+H , where H is agreed upon by the two communication partners
in an anonymous Diffie-Hellman (DH) key agreement.

iPIN and mTAN for Secure eID Applications 263

3. As shown in steps (f) – (g) a second DH key agreement based on G′ is
performed. Both, the PICC and the PCD choose an ephemeral private key
(S̃KPICC, S̃KPCD) and calculate a common secret point K.

4. Steps (h) and (i) depict the key derivation of the keys KENC for encryption
and KMAC for message authentication from the common secret K.

5. In step (j) both parties calculate an authentication token (TPICC, TPCD)
using a MAC function and the shared key KMAC.

The authentication tokens (TPICC, TPCD) represent a mutual key confirmation

and include a checksum of the ephemeral public keys (P̃KPICC, P̃KPCD). By
checking the token, both parties can verify that the opponent calculated the
same new base point G′ and therefore knows the shared password π.

2.2 Multiparty Computation

Perfect Secret Sharing means dividing a secret s into n so called shares, such
that it is possible to reconstruct the secret if given at least k ≤ n shares. Less
than k shares, however, provide absolute no information about the secret. I.e.
the secret is information theoretically secure as long as an adversary only obtains
less than k shares. An example is Shamir’s secret sharing scheme [12].

Secure Multiparty Computation (SMPC) denotes the distributed computation
of a function f by n participants. Thereby, a so called non qualified subset of
t < n participants cannot learn anything about the function output besides their
own inputs and outputs. SMPC can be realized based on Shamir’s secret sharing
scheme, where t < n/2 is required [13,14,15] to guarantee perfect security against
passive adaptive adversaries. Thus, n = 3 and t = 1 are the smallest possible
parameters. Note that this means, that two participants can reconstruct the
inputs and outputs without involving the third participant. An SMPC scheme
providing computational security can be realized for n = 2 and t = 1 [16,14]
based on the Paillier cryptosystem [17].

Secure Multiparty AES (MPC AES) is based on an SMPC scheme and imple-
ments the AES encryption and decryption interactively in a distributed manner
as shown in [14]. For the MPC AES execution, each participant initially has to
hold a share of the AES key as well as a share of the clear- or ciphertext. These
have to be shared bytewise. At the end of the protocol execution each partici-
pant holds a share of the ciphertext (encryption) or of the cleartext (decryption).
These shares can then be combined to a valid cipher- or cleartext.

3 iPIN and mTAN for eID Cards

We provide solutions to prevent from the aforementioned identity theft attacks,
even though the user only has access to an insecure PCD (e.g. without secure
key pad and display). We use onetime passwords in different flavors, leading to
the different solutions we present here.

To facilitate the use of onetime passwords and to ensure the desired security
properties without changing the existing infrastructure and its protocols, we

264 J. Braun, M. Horsch, and A. Wiesmaier

introduce an additional trustworthy infrastructure component, called Universal
Identity Provider (uIdP). Keeping existing components untouched is a crucial
requirement, as several million German eID cards have already been issued and
have to work with our solution. The uIdP is involved in the PACE protocol
execution and interacts with an adapted client software installed on the PCD
such that the involvement of the uIdP is transparent to the other components
such as cards, eID servers, or service providers.

Concerning the onetime passwords, we differentiate between so-called iPIN
and mTAN variants. iPIN denotes indexed onetime passwords, from which the
PIN π can be reconstructed given the user’s iPIN and the uIdP’s iPIN with the
same index. It is also possible to construct iPINs directly from Kπ, which then
can be reconstructed directly. From a security point of view, the knowledge of
the derived key Kπ is equivalent to the knowledge of π.

The mTAN variants are closely related to the mobile TransAction Number
(mTAN) procedure known from online banking services. In online banking, a
randomized TAN and some transaction details are send by the bank to the
customer’s mobile phone via SMS. The user confirms his consent by entering
the TAN into the online banking application, thereby sending the TAN back
to the banking server. The mobile phone is a so-called Out Of Band Device
(OOBD). That means it realizes an additional communication channel (out of
band channel) which is independent from the previously established communi-
cation channel between the two parties. In our mTAN variants, the uIdP takes
the role of the banking server and sends the TAN to the user.

The several variants are justified by the different security goals they achieve,
yet have their advantages and disadvantages. iPINs allow a stronger protection of
the user PIN but require the precomputation and distribution of lists containing
the iPINs, while the mTAN technique is more usable and allows to prevent from
the MitM attack. We describe the variants along with their security assump-
tions, required setup steps, and detailed protocol steps in the following sections.
Variants 1 and 2 apply iPINs while Variants 3 and 4 make use of the mTAN
technique. Variant 5 combines both. Note that Variants 1 and 5 in addition to
the uIdP technically require a second remote server we denote with uIdP-2. We
refer the reader to Section 4.2 for a discussion on practical realizations.

Depending on the respective variant, a potential adversary requires different
specific capabilities for a successful identity theft concerning different possible
attacks. These capabilities are summarized in Table 1, which lists the attacks in
its columns, the PACE variants (i.e. our solutions) in its rows, and the necessary
attacker capabilities at the respective intersections. Basically, ‘PIN comp. attack’
and ‘MitM attack’ denote the attacks described in Section 1.3. Thereby, ‘PIN
comp. attack’ only includes remote connections to the card, while ‘physical card
usage’ denotes the physical theft of the card and its application to impersonate
the owner. ‘PIN compromise’ means that the PIN is revealed to an adversary.

Regarding the attacker capabilities, ‘r’ denotes read access, while ‘rwx’ de-
notes read-write-execute access. Thus, e.g. ‘uIdP:rwx’means, that an adversary
must be capable to read the uIdP’s memory, as well as change and run malicious

iPIN and mTAN for Secure eID Applications 265

Table 1. Required adversarial strength for identity theft

P
A
C
E

v
a
r
ia
n
t

Threat
PIN compromise PIN comp. attack MitM

attack
physical card usage

PACE client:r client:rwx client:rwx PIN + card theft
V1 two out of

{client, uIdP, uIdP-2}:r
PIN + client:rwx client:rwx iPIN + card theft, OR

PIN + card theft
V2 uIdP:r

(during protocol run)
PIN + client:rwx client:rwx iPIN + card theft, OR

PIN + card theft
V3 uIdP:r

(anytime)
PIN + client:rwx, OR
OOBD:r + client:rwx

client:rwx OOBD + card theft, OR
PIN + card theft

V4 uIdP:r
(anytime)

PIN + client:rwx, OR
OOBD:r + client:rwx

uIdP:rwx +
client:rwx

OOBD + card theft, OR
PIN + card theft

V5 two out of
{client, uIdP, uIdP-2}:r

PIN + client:rwx uIdP:rwx +
client:rwx

OOBD + card theft, OR
PIN + card theft

r = read access, rwx = read-write-execute access, theft = physical theft

code, whereas ‘uIdP:r’ means only reading is required, which also includes key
logging and so forth. With ‘theft’ we denote the physical theft of things. ‘PIN’
as an adversarial strength means, that the adversary must be able to compromise
the PIN, implying the required strengths for that purpose.

3.1 Preliminaries

The preliminaries and principles are common to all five variants.
In general, we assume an adversary with the goal to compromise the PIN

and/or perform the mentioned identity theft attacks but not to break up the
flow of the protocols. Denial of service attacks are out of scope. Thus, even a
compromised participant acts according to the protocol, as deviant behavior will
be detected and responded with protocol abortion by honest participants, which
is not in the interest of the attacker. The channels between PCD, uIdP, eID
server, and service provider are always secured applying TLS, thus an adversary
cannot eavesdrop on the communication between non compromised participants.

For each variant, a non recurring setup involving registration of the user at the
uIdP(s) and establishing a unique user ID (e.g. a unique pseudonym) is necessary.
The actual realization of the registration depends on the uIdP, but is essentially
the same for all variants. In case of the involvement of two uIdPs, however, we
assume for simplicity reasons that the user ID is the same for both. Depending on
the actual variant, the setup phase involves the generation and transmission of
pre-shared data such as iPINs to support later protocol executions. As this data
is security sensitive, a non compromised system is necessary. Thus, we assume
that this is temporarily available to the user during setup. We discuss how such
a system can be practically provided in Section 4.2.

Protocol runs are initiated by the user. To do so, he starts the client appli-
cation on the PCD, provides his ID, and applies his identity card upon request.
As the uIdP needs the public domain parameters D (including the base point
G) to enable dedicated computations of the PACE protocol, the PCD reads D
from the card and initially sends it along with the user’s ID to the uIdP.

266 J. Braun, M. Horsch, and A. Wiesmaier

PICC PCD uIdP uIdP-2

(init0)
ID−→

ID−−−−−−−−−−−−−−−−−−−−−−→
(init1)

i←− i
$← {1, ..., u} i−→

Ki
π,1 = user INPUT

(b0) z = E(Kπ, s)
z−→ (z1, z2, z3) = share(z)

z2−→
z3−−−−−−−−−−−−−−−−−−−−−−→

(b1) (z1,K
i
π,1) (z2,K

i
π,2) (z3,K

i
π,3)

←→ DMPC AES(Ki
π,1, z1,K

i
π,2, z2,K

i
π,3, z3) ←→

s1 s2 s3

(b2)
s1−→ s = rec(s1, s2)

(c) Y = y ·G X←−−−−−−−−−−−−−−−−−−−−−−−−−−−− X = x · G
Y−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(d) H = y · X H = x · Y
(e) G′ = s · G + H

G′
←− G′ = s ·G + H

(f)-(j) equal to standard PACE between PICC and PCD, cf. Figure 2

Fig. 3. PACE with multiparty decryption

3.2 Variant 1: Multiparty Decryption of Nonce

Variant 1 is designed to provide the highest possible security concerning the
user PIN π respectively the derived key Kπ. That is, they are never available
in cleartext on any of the systems participating in the protocol execution. This
goal is achieved by applying MPC AES to decrypt the nonce s. As MPC AES
based on Shamir’s secret sharing is necessarily a three party protocol [14], two
trusted remote servers are required to implement this variant. We denote the
trusted remote systems with uIdP and uIdP-2. The first uIdP server takes the
main role, while the second one only provides support to facilitate MPC AES.

Assumptions. The adversary is able to compromise any participant, but at
most one at the same time. uIdPs are trustworthy, meaning that they do not
collude to obtain the PIN and act reasonably to protect themselves and the user.

Setup. To enable MPC AES, the key Kπ must be shared in advance among the
participants. The generation of iPIN lists works as follows: Kπ is derived from π.
Then, the sharing of Kπ for three participants is repeated u times always storing
each share in one of three indexed lists. Finally, each list has length u. Hence,
they can be used u times before new iPIN lists must be generated. The lists are
securely transmitted to the uIdPs and the user. E.g., the corresponding lists are
sent to the uIdPs via TLS and the user receives a print-out.

Protocol Execution. Figure 3 shows the steps of one protocol execution of
Variant 1. To initialize the protocol run (step (init0)), the PCD sends the user
ID to the remote servers uIdP and uIdP-2. With the ID, the remote servers
identify the user account and load the user specific information, e.g. iPIN lists.

To start the multiparty decryption, the shared key Kπ must also be available
to the participants. This was achieved by the distribution of the iPIN lists dur-
ing the setup phase. To apply a specific iPIN, the uIdP chooses (uniformly at

iPIN and mTAN for Secure eID Applications 267

PICC PCD uIdP

(init0)
ID−→

(init1)
i←− i

$← {1, ..., u}
(init2) iPINi

1 = user INPUT
iPINi

1−→ π = rec(iPINi
1,iPINi

2)
(a) Kπ = KDFπ(π) Kπ = KDFπ(π)

(b) z = E(Kπ, s)
z−−−−−−−−−−−−−−−−−−−−−−→ s = D(Kπ, z)

(c)-(j) equal to Variant 1, cf. Figure 3

Fig. 4. PACE with PIN sharing

random) a fresh index i and announces it in step (init1). Now, the user must
enter the correct iPIN Ki

π,1 taken from his list into the PCD to show his consent,
while uIdP and uIdP-2 load the iPINs with the announced index from their lists.

Now the PICC gets involved. In step (b0) the PCD receives the encrypted
nonce z from the PICC. Remember, z is an AES ciphertext under the key Kπ

and does not reveal information about π. However, in combination with its
decryption s, it is easily possible to brute force π. Thus, z must not be sent
to the uIdP, to not expose both values to one system. The PCD shares z and
sends one share to the uIdP, another one to the uIdP-2 and the third one is kept
by the PCD.

In step (b1) the PCD, uIdP and uIdP-2 jointly execute the decryption using
MPC AES and each participant obtains a different share of the nonce s. The
used iPINs are now securely deleted by uIdP and uIdP-2, thus a reuse of the
user’s iPIN (now known to the PCD) is impossible. From now on, the uIdP-2 is
not needed anymore and it deletes all values computed during that session.

In step (b2) the PCD transmits its share to the uIdP where s is reconstructed.
The subsequent Diffie-Hellman key exchange (steps (c)-(d)) is executed between
PICC and the uIdP. The PCD only forwards the data not being able to learn s.

In step (e) G′ is transmitted from the uIdP to the PCD. Afterwards, the
standard PACE steps are executed between PICC and PCD (see Figure 2).

3.3 Variant 2: Secret Shared PIN

In Variant 2, the protocol is less complicated and much easier to implement
than in Variant 1 as it requires only one trusted remote server and no MPC
AES. However, the user PIN is temporarily revealed (by reconstruction from the
iPINs) to the uIdP. But it can be deleted afterwards, thus limiting the time span
the user PIN can be compromised by a potential intrusion into the uIdP.

Assumptions. Compared to Variant 1, we increase the security assumptions
by requiring the uIdP not to be compromised during protocol execution. Also,
the uIdP is trusted not to misuse the PIN, and to erase it securely after usage.

Setup. The generation and distribution of iPIN lists is as in Variant 1 with the
differences that: first, π is shared instead of the derived key Kπ and second,

268 J. Braun, M. Horsch, and A. Wiesmaier

PICC PCD uIdP OOBD

(init0)
ID−→

(init1) TAN
$← {1, ..., u} TAN−−−−→

(init2) TAN∗ = user INPUT
TAN∗
−→ TAN

?
= TAN∗

(a)-(j) equal to Variant 2, cf. Figure 4

Fig. 5. PACE with mTAN

any perfect secret sharing scheme for two participants can be used, in particular
XOR secret sharing which is very efficient and easy to implement.

Protocol Execution. Figure 4 shows the protocol execution. Initially (step
(init0)), the PCD sends the user ID to the uIdP. With the ID, the uIdP again
identifies the user and loads the specific information, in particular the iPIN list.

In step (init1), the uIdP chooses (uniformly at random) a fresh index i and
requests the ith iPIN from the PCD, thus from the user. In step (init2), the user
enters the correct iPIN into the PCD to show his consent. The iPIN is then sent
to the uIdP, which reconstructs π and derives Kπ (step (a)).

From now on, the PICC is involved into the protocol. z is sent by the PICC
(see PACE specification [6]) and the PCD forwards it to the uIdP for decryption.

Afterwards, the protocol follows exactly Variant 1. After finishing its tasks,
the uIdP deletes all session data including π, Kπ and the used iPINs.

3.4 Variant 3: PACE with mTAN

This variant introduces the mTAN mechanism to circumvent the need for iPIN
lists. The uIdP sends a onetime password (here called TAN) to the user’s mobile
phone, which serves as an OOBD. To show consent the user enters the TAN
instead of an iPIN into the PCD upon request.

Compared to Variants 1 and 2, Variant 3 allows a much easier setup phase as
no iPIN lists have to be generated and transferred in advance. Also, the usability
is improved as the user is not required to keep a iPIN list (e.g. a piece of paper
with iPINs printed on it). Yet the uIdP stores the user PIN π permanently
leading to the disadvantage, that a compromise of the uIdP might reveal π at
any time. Note that a large amount of PINs from different users might be revealed
at once. Thus, advanced security mechanisms for the uIdP are indispensable.

Assumptions. In Variant 3, the security assumptions are further increased
compared to Variants 1 and 2. The uIdP is assumed not to be compromised and
is considered completely trustworthy.

Setup. Apart from the registration, only the user PIN π has to be transferred
to the uIdP and the out of band channel must be defined. To define the out of
band channel, the user might in particular deposit his mobile phone number at
the uIdP, e.g. during registration or in a subsequent step, e.g. by yellow mail.

iPIN and mTAN for Secure eID Applications 269

PICC PCD uIdP OOBD

(init0)
ID,SI−→

(init1) TAN
$← {1, ..., u} SI,TAN−−−−−−→

(init2) TAN∗ = user INPUT
TAN∗
−→ TAN

?
= TAN∗

(a)-(j) equal to standard PACE, though between PICC and uIdP, cf. Figure 2

Fig. 6. Remote PACE

Protocol Execution. As seen in Figure 5, the protocol execution of Variant
3 is very similar to that of Variant 2. The differences concern the initialization
part of the protocol before the PICC is involved.

To initialize the protocol run (step (init0)), the PCD sends the ID to the uIdP.
With the ID, the uIdP identifies the account and loads π. Afterwards, the uIdP
chooses a TAN uniformly at random, i.e. a six digit number and sends it to the
user’s mobile phone (step (init1)). The uIdP appends additional information,
e.g. to identify itself and the purpose and context of the message.

In step (init2), upon receipt, the user enters the TAN into the PCD, to show his
consent. The PCD forwards it to the uIdP, which compares it to the one it sent.
If the TAN is positively verified, the uIdP proceeds, otherwise the protocol is
aborted by the uIdP. Following a positive TAN verification, the PICC is involved
and the following protocol steps are executed as in Variant 2.

3.5 Variant 4: Remote PACE and EAC

In Variant 4, the entire PACE protocol is executed remotely by the uIdP, while
the PCD only forwards messages between card and uIdP. This means the uIdP
is necessarily involved into the EAC protocol. Thus, the uIdP can check the
service provider’s certificate and reconfirm its identity by sending it together
with a TAN to the user by applying the mTAN mechanism. Thus, this variant

Fig. 7. Remote PACE and EAC Architecture

270 J. Braun, M. Horsch, and A. Wiesmaier

additionally provides protection from active adversaries and the MitM attack
described above. On the negative side the user PIN π is permanently stored at
the uIdP and the entire traffic of the eID functionality is routed over the uIdP.

Assumptions. The uIdP is assumed not to be compromised at all and is con-
sidered completely trustworthy. The PCD might try to manipulate the service’s
certificate as described for the MitM attack in Section 1.3. Thus, we assume a
stronger adversary, that can manipulate the client application during execution.
Setup. The setup is identical to Variant 3 (cf. Section 3.4).

Protocol Execution. Figure 6 shows the steps of Variant 4. Remember, that
the service’s certificate is obtained from the eID server before PACE is actually
started and sent during EAC to the PICC after PACE was executed.

To initialize the protocol run (step (init0)), the PCD sends the user ID and
the service’s certificate (SI) to the uIdP. With the ID, the uIdP identifies the user
and loads the user’s data. The uIdP chooses a TAN uniformly at random, i.e. a
six digit number, and sends it to the user’s OOBD (step (init1)). Additionally,
the uIdP appends the certificate’s main information to the mTAN message.

That additional information allows the user to verify, that the certificate
shown to him by the PCD and the one sent to the PICC are identical. In case
this is true, the user enters the received TAN, which then is sent back to and
verified by the uIdP (step (init2)). A positive verification of the TAN, shows the
user’s consent. Then, the uIdP performs the standard PACE steps (a)-(j) jointly
with the PICC. The PCD only forwards the data between uIdP and PICC.

As the complete PACE protocol is executed between PICC and uIdP, the
PACE channel is established between them, and the PCD does not hold the
keys for the PACE channel. Hence, all following messages for EAC must be
routed over the uIdP for encryption when sent to and decryption when received
from the PICC. The uIdP checks if the service’s certificate is the same as the
one the user confirmed during PACE. Only if this is true, the uIdP encrypts the
certificate with the PACE keys and sends it via the PCD to the PICC. The PCD
cannot tamper with that message as it lacks the keys.

Figure 7 shows the remote PACE and EAC architecture resulting from Vari-
ant 4. The PCD is the central element connecting the participants but mainly
forwarding messages. The PACE channel is established between uIdP and PICC.
During EAC, the eID server communicates via a TLS secured channel with the
PCD that hands all messages to the uIdP to put these into the PACE channel
and vice versa. Thus, from the point of view of the eID server the involvement
of the uIdP is not visible. The same holds for the PICC.

3.6 Variant 5: Combination

Variant 5 is a combination of Variants 1 and 4. It makes use of iPINs and
combines this with the mTAN mechanism and the remote PACE execution.
Therewith, the reconfirmation of a specific service’s certificate is possible. Hence,
the user PIN π is never revealed and protection from MitM attacks can be
guaranteed. However, this comes at the cost of the setup phase of Variant 1 and

iPIN and mTAN for Secure eID Applications 271

PICC PCD uIdP uIdP-2 OOBD

(init0)
ID,SI−→

(init1) i
$← {1, ..., u} SI,i−−−−−−−−−−−−−→

i−−−−→
(init2) Ki

π,1 = user INPUT

(b0) z = E(Kπ, s)
z−→ (z1, z2, z3) = share(z)

z2−→
z3−−−−−−−−−−−−−−−−−−−−−−→

(b1) ←→ DMPC AES(Ki
π,1, z1,K

i
π,2, z2,K

i
π,3, z3) ←→

(b2)
s1−→ s = rec(s1, s2)

(c)-(j) equal to standard PACE, though between PICC and uIdP, cf. Figure 2

Fig. 8. Remote PACE with multiparty decryption

the uIdP being able to monitor the traffic of the eID functionality. As in Variant
1, a second uIdP-2 is required to support MPC AES decryption.

Note that other combinations of the different techniques used in the above
presented variants are also possible, but not explained here.

Assumptions. We assume an adversary, that is able to compromise any partic-
ipant, but at most one at the same time. Furthermore, the uIdPs are trustworthy
in the sense that they do not collude to obtain the PIN and act reasonably to
protect themselves and the user. This includes, for example, that the main uIdP
is assumed not to store communication transcripts of the user.

Setup. The setup of Version 5 is the combination of the setups of Variants 1
and 4. It includes the generation of iPIN lists from the key Kπ within a secure
environment and their distribution (cf. Section 3.2). In addition, the user deposits
his mobile phone number at the main uIdP to enable out of band communication
(cf. Section 3.5). Note that the PIN π is not transferred to any of the uIdPs.

Protocol execution. The protocol steps are depicted in Figure 8. To initialize
the protocol run (step (init0)), the PCD sends the user ID and the service’s
certificate (SI) to the uIdP. With the ID, the uIdP identifies the user and loads
the user’s data. In step (init1), the uIdP randomly chooses an iPIN index i and
sends i along with the service’s certificate to the user’s OOBD. At the same time
the uIdP sends i to uIdP-2. In step (init2), the user enters the correct iPIN Ki

π,1

taken from his list into the PCD to show his consent, while uIdP and uIdP-2
load the iPINs with the announced index from their lists.

In step (b0), the PCD receives the encrypted nonce z from the PICC. The
PCD shares z and sends one share to the uIdP and another one to the uIdP-2,
while the third one is kept by the PCD. In step (b1) the PCD, uIdP and uIdP-2
jointly execute the decryption function using MPC AES (see Section 2.2) and
each participant obtains a different share of the nonce s. The used iPINs are
now securely deleted by uIdP and uIdP-2. In step (b2), the PCD transmits its
share to the uIdP where s is reconstructed.

Then, the standard PACE steps (c)-(j) (see Figure 2) are executed between
PICC and uIdP, while the PCD only forwards the messages between them.

272 J. Braun, M. Horsch, and A. Wiesmaier

4 Analysis

4.1 Security Analysis

PIN Compromise. The user PIN π or the derived keyKπ can be compromised
only if available on a compromised device or when it is computable from any of
the exchanged messages or values computed during protocol execution. This is
especially relevant, as the knowledge of a single cleartext-ciphertext pair of the
nonce, i.e. s and z, allows for an offline brute force attack on the 6 digit PIN π.

The secret π cannot be compromised via the PCD in any of the variants, as:
first it is never entered by the user. The entered iPINs in Variants 1,2 and 5 do
not enable reconstruction due to perfect secret sharing as the other shares are
never available on the PCD (uIdP and uIdP-2 do not reveal this values). The
TANs entered in Variants 3 and 4 are random numbers by definition and cannot
reveal the PIN. Second, the PCD learns z, so the question is does it learn s? We
show in the following, that it does not.

In Variants 1 and 5, z is decrypted to s by MPC AES. The multiparty com-
putation based on Shamir’s secret sharing scheme is unconditionally secure thus
does not leak any information. The PCD does not get any of the other output
shares besides its own one and s is reconstructed on the uIdP. In Variants 2 –
4, s is decrypted by the uIdP.

In Variants 1 – 3, the new base point G′ is sent back to the PCD, ending the
involvement of the uIdP(s). However, from G′ one cannot recover s due to the
difficulty of computing discrete logarithms. The steps after this mapping do not
involve π, Kπ, z or s besides their incorporation into G′, hence need no further
analysis. Note that in case of the remote Variants 4 and 5, the PCD actually has
no informational advantage over a wiretapper eavesdropping on the contactless
channel, and PACE has been proven secure against such an adversary [7].

In Variants 1 and 5, the PIN additionally cannot be compromised by intrusion
into one of the uIdP’s systems. The uIdPs learn their iPINs, one (uncondition-
ally secure) share of z and the output of the secure multiparty computation
respectively. The main uIdP additionally learns s from the reconstruction, but
due to the lack of z cannot recover the user PIN.

In Variants 2 – 4, the PIN is revealed when the uIdP is compromised. The ad-
vantage of Version 2 is, that the PIN is only temporarily available, thus the com-
promise must occur at that certain time frame when the PIN is reconstructed.

To conclude, we note that a compromised participant, either PCD or uIdP,
might reveal more than intended by the protocol, e.g. the PCD might reveal z to
the uIdP. However, the other participant, not being compromised, would ignore
such additional input or even detect the compromise and report it to the user.

MitM Attack. This concerns only Variants 4 and 5, as the others do not provide
protection from that attack.

An exchange of the service’s certificate with another one by a compromised
PCD is always revealed as explained in the following. If the uIdP receives the
exchanged certificate during initialization, it sends it via the OOBD to the user
who detects the exchange by comparison with the service’s certificate. If the

iPIN and mTAN for Secure eID Applications 273

certificate is exchanged during EAC, the exchange is detected by the uIdP by
comparison with the formerly received one. As the uIdP encrypts all messages
sent to the PICC with the PACE key, which the PCD in both variants does not
know, the PCD cannot exchange the certificate at any other protocol stage.

If the uIdP is compromised, the PCD is not compromised by assumption.
The uIdP can now send an exchanged certificate to the PICC without being
recognized by the user or PCD. However, the eID server applies the correct
certificate as the PCD and eID server agree on the service without involving
the uIdP. Thus, PICC and eID server apply different certificates and the mutual
authentication fails.

We conclude that the MitM attack is prevented as long as either PCD or uIdP
are not compromised.

Discussion. All variants hand over some control to the uIdP, which makes it an
attractive target for attackers. But remember, any adversary additionally needs
control over the eID card to maliciously use the eID functionality. This requires
either additionally compromising the PCD or stealing the card. Furthermore, in
case the user does not trust the uIdP anymore, he can change the PIN on his
own at any time, thereby withdrawing all rights of the uIdP.

Besides that, the preliminaries for security are changed compared to the stan-
dard scenario. That is, the security in the standard scenario relies on two factors:
the knowledge of the PIN and the possession of the card. This is changed to the
possession of the card and the possession of either the iPIN list or the OOBD
(e.g. mobile phone), which is an issue concerning physical theft. However, the
factor ‘knowledge’ can be kept by requiring an additional user password when
contacting the uIdP or accessing the OOBD. To provide the same level of se-
curity against physical theft, the password has to be handled in the same way
as the PIN in the standard scenario. This means in particular that after three
wrong entries the account is locked and a separate pre-defined substantially
longer password is requested to unlock the account again.

4.2 Feasibility

For practical application several feasibility issues have to be discussed. One is the
need for a trustworthy system accessible by the user for iPIN generation. This
can be resolved by offering a secure system at the office of the authority that
distributes the card. Another possibility is bundling the card with a bootable
live CD containing a secure environment for iPIN generation. In this case, the
user boots once in a while his own system from the live CD to create a new
set of iPINs. It might even be reasonable to trust the user’s home system with
generating the iPINs. In this case, the security increase kicks in when using the
card on other systems e.g. in Internet cafés. For the mTAN variants, which in
fact do not require precomputations, the secure system could be omitted at all,
e.g. by transferring his PIN, ID and phone number by yellow mail to the uIdP.

Concerning the required infrastructure, the need for two uIdP servers for
Variants 1 and 5 is in question. Aiming at the highest possible security level,

274 J. Braun, M. Horsch, and A. Wiesmaier

this comes with the registration at two independent service providers. Having
one provider operating two independent servers requiring only one registration
is more usable, but we have to trust the operator of the uIdP servers not to
reconstruct the PIN. In both cases an adversary has to compromise two systems
for a successful attack. Remember that 2-party SMPC is possible using Paillier’s
cryptosystem, but the application to our solution is left to future work.

The encryption with MPCAES takes two seconds [14] for one AES block based
on a reference implementation [18]. As s has a length of 128 bit, only one AES
block has to be decrypted. Hence, this is not a serious performance issue. Yet,
the implementation of the multiparty computation is clearly non standard. The
other variants only involve standard methods, as mTAN used for online banking
and elliptic curve cryptography provided by several major crypto providers such
as Bouncy Castle [19].

In practice, the uIdP service(s) could be provided by governmental authorities
as part of the eID card infrastructure which is necessary anyway. It is also
possible to have the private economy provide the uIdP services, as done with PKI
services. Besides certificate authorities, banks seem to be reasonable candidates.
The trusted infrastructure is already available as well as methods such as mTAN.
The bank could also provide the system for iPIN generation at its offices.

Except the client application, all components of the standard infrastructure
remain unchanged. The client application hides the involvement of the uIdP
from the eID server, the service provider, and the PICC. Thus, they adhere to
the standard protocols. Long delays might indeed lead to an abortion. Yet, with
current high speed Internet connections we do not consider this to be a problem.

5 Conclusion and Future Work

We have shown five PACE variants that increase the security against identity
theft. Our approaches allow the secure usage of identity cards, even though no
trusted system is available to the user. All variants prevent from PIN compromise
in case of a compromised client. Variants 4 and 5 even provide protection against
the described MitM attack. The only security requirement is a trustworthy iden-
tity provider. It is a valid assumption that, as a part of its core business, the
uIdP’s security mechanisms are far more sophisticated than the ones on a usual
client PC. The necessity of iPIN lists might lead to a decrease of usability. But
for a scenario, where the user applies the card for authentication mainly from his
home, this seems to be an acceptable effort compared to the increase in security.
For the mobile scenario, where the user applies his card en route, the mTAN
based approaches allow a secure and convenient usage even from Internet cafés.
Thus, we provided possibilities to securely apply smartcard based authentica-
tion using insecure devices only, by adding a special infrastructure component
to allow one time passwords without requiring any changes in existing protocol
implementations on the smartcard or the existing infrastructure.

As mentioned in Section 2.2, using the Paillier cryptosystem Variants 1 and 5
can also be implemented as two party protocols with the advantage, that only one

iPIN and mTAN for Secure eID Applications 275

remote server is needed which can still not learn the PIN. But there are several
drawbacks: first, the setup is much more complicated, in particular the iPIN
generation. Second, MPC is only computationally secure, not being prohibitive
but clearly needs further consideration concerning the security parameters to
not weaken the overall protocol. Third, there exist no timings and performance
estimations. Hence, the Paillier-based solutions are left for future work.

One of the next tasks will be the implementation of the introduced PACE
variants based on an existing client implementation such as MONA [20]. The
remote execution of the PACE protocol (Variant 4) has additional applications in
scenarios where the card is used with resource restricted PCDs, such as a mobile
phone as considered in [21,22,23,24]. Variant 4 hands all expensive computations
to the remote server and the PCD only forwards messages. Thus, the client
software on the PCD is much less involved and easy to implement.

References

1. Federal Office for Information Security. Architektur elektronischer Personalausweis
und elektronischer Aufenthaltstitel. Technical Guideline BSI-TR-03127, Version
1.14 (2011),
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/

Publikationen/TechnischeRichtlinien/TR03127/BSI-TR-03127 pdf.pdf

2. International Civil Aviation Organization (ICAO). Machine Readable Travel Doc-
uments - Part 1: Machine Readable Passport, Specifications for electronically en-
abled passports with biometric identification capabilities. ICAO Doc 9303 (2006)

3. International Civil Aviation Organization (ICAO). Machine Readable Travel Doc-
uments - Part 3: Machine Readable Official Travel Documents, Specifications for
electronically enabled official travel documents with biometric identification capa-
bilities. ICAO Doc 9303 (2008)

4. International Civil Aviation Organization (ICAO). Supplemental Access Control
for Machine Readable Travel Documents. ISO/IEC JTC1 SC17 WG3/TF5 for
ICAO, Version 0.8, Draft of 12.10.2009 (2009)

5. ISO/IEC. ISO/IEC 14443-1: Identification cards - Contactless integrated circuit(s)
cards - Proximity cards - Part 1-4. International Standard (2001)

6. Federal Office for Information Security (Bundesamt für Sicherheit in der Informa-
tionstechnik). Advanced Security Mechanism for Machine Readable Travel Doc-
uments - Extended Access Control (EAC), Password Authenticated Connection
Establishment (PACE), and Restricted Identification (RI). Technical Directive
(BSI-TR-03110), Version 2.05 (2010),
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/

TechGuidelines/TR03110/TR-03110 v205 pdf.pdf

7. Bender, J., Fischlin, M., Kügler, D.: Security Analysis of the PACE Key-Agreement
Protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009)

8. Ullmann, M., Kügler, D., Neumann, H., Stappert, S., Vögeler, M.: Password Au-
thenticated Key Agreement for Contactless Smart Cards. Communications of the
ACM (2008)

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03127/BSI-TR-03127_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03127/BSI-TR-03127_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/TR-03110_v205_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03110/TR-03110_v205_pdf.pdf

276 J. Braun, M. Horsch, and A. Wiesmaier

9. Dagdelen, Ö., Fischlin, M.: Security Analysis of the Extended Access Control Pro-
tocol for Machine Readable Travel Documents. In: Burmester, M., Tsudik, G.,
Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 54–68. Springer,
Heidelberg (2011)

10. Chaos Computer Club. Practical demonstration of serious security issues concern-
ing swissid and the german electronic identity card, November 01 (2010),
http://www.ccc.de/de/updates/2010/

sicherheitsprobleme-bei-suisseid-und-epa

11. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

12. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
13. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

14. Damg̊ard, I., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 367–374. Springer, Heidelberg (2010)

15. Cramer, R., Damg̊ard, I., Maurer, U.M.: General Secure Multi-party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

16. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty Computation from Threshold
Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

17. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

18. VIFF. VIFF, the Virtual Ideal Functionality Framework, January 19 (2012),
http://viff.dk/

19. Bouncy Castle. Bouncy Castle Crypto APIs, January 19 (2012),
http://www.bouncycastle.org

20. Horsch, M.: Mobile Authentisierung mit dem neuen Personalausweis (MONA).
Master thesis, Technische Universität Darmstadt (July 2011)

21. Buchmann, J., Wiesmaier, A., Hühnlein, D., Braun, J., Horsch, M., Kiefer, F.,
Strenzke, F.: Towards a mobile eCard Client. Tagungsband zum 13. KryptoTag,
p. 4 (December 2010)

22. Wiesmaier, A., Horsch, M., Braun, J., Kiefer, F., Hühnlein, D., Strenzke, F., Buch-
mann, J.: An efficient mobile PACE implementation. In: Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, ASI-
ACCS 2011, pp. 176–185. ACM, New York (2011)

23. Braun, J., Horsch, M., Wiesmaier, A., Hühnlein, D.: Mobile Authentisierung und
Signatur. In: Schartner, P., Taeger, J. (eds.) D-A-CH Security 2011: Bestandsauf-
nahme, Konzepte, Anwendungen, Perspektiven, pp. 32–43. Syssec Verlag (Septem-
ber 2011)

24. Hühnlein, D., Petrautzki, D., Schmölz, J., Wich, T., Horsch, M., Wieland, T.,
Eichholz, J., Wiesmaier, A., Braun, J., Feldmann, F., Potzernheim, S., Schwenk,
J., Kahlo, C., Kühne, A., Veit, H.: On the design and implementation of the Open
eCard App. In: GI SICHERHEIT 2012 Sicherheit - Schutz und Zuverlässigkeit
(2012)

http://www.ccc.de/de/updates/2010/sicherheitsprobleme-bei-suisseid-und-epa
http://www.ccc.de/de/updates/2010/sicherheitsprobleme-bei-suisseid-und-epa
http://viff.dk/
http://www.bouncycastle.org

Secure Distributed Computation

of the Square Root and Applications

Manuel Liedel

Fakultät für Wirtschaftswissenschaften,
University of Regensburg

Manuel.Liedel@wiwi.uni-regensburg.de

Abstract. The square root is an important mathematical primitive
whose secure, efficient, distributed computation has so far not been pos-
sible. We present a solution to this problem based on Goldschmidt’s al-
gorithm. The starting point is computed by linear approximation of the
normalized input using carefully chosen coefficients. The whole algorithm
is presented in the fixed-point arithmetic framework of Catrina/Saxena
for secure computation. Experimental results demonstrate the feasibil-
ity of our algorithm and we show applicability by using our protocol
as a building block for a secure QR-Decomposition of a rational-valued
matrix.

Keywords: Square Root, Fixed-Point Arithmetic, Secure Computation,
QR-Decomposition.

1 Introduction

Secure Multi-Party-Computation (SMPC) is an important branch of cryptogra-
phy which enables a number of distinct entities (or parties) to securely evaluate
any function without any of them having to reveal their particular input. The
problem was first presented in [16] and (mostly) theoretically solved in ([1], [2],
[6], [9]). However due to their high complexity these protocols are unsuitable for
all but the most elementary computations.

In 2010 in [3], [4] and [5], Catrina et al. presented a framework for secure com-
putation with fixed-point numbers. It can be used in conjunction with any linear
Secret Sharing Scheme with a multiplication protocol such as Shamir’s ([14])
and is the most versatile and practical scheme for secure computations with
non-integer numbers developed so far. We describe how it can be extended by
a protocol that securely computes the square root. It is based on Goldschmidt’s
algorithm for square root rather than Newton-Raphson iterations mainly be-
cause each iteration contains fewer dependent multiplications for virtually iden-
tical computation complexity. However, since Goldschmidt’s algorithm is not
self-correcting, the last iteration is Newton-Raphson to correct for accumulated
rounding errors ([13]). The starting point - correct up to 5.4 bits - is computed
by linear approximation.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 277–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

278 M. Liedel

We view our protocol not so much as a stand-alone application, but rather
as a building block for more intricate algorithms. One such application is the
secure computation of the QR-Decomposition of matrices, which can be used to
securely solve linear systems of equations1 and is an important building block in
many other numerical algorithms such as optimization algorithms and finding
zeroes of functions.

In section 2 we will define cryptographic primitives and terminology. In sec-
tions 3 and 4 we will describe our algorithm and its implementation. In section 5
we will apply our algorithm to the QR-Decomposition of matrices and in section
6 we will present our experimental results. Lastly in section 7 we will draw a
conclusion.

2 Cryptographic Primitives and Definitions

The cryptographic primitive underlying our algorithms is a linear Secret Sharing
Scheme (LSSS), such as Shamir’s, with a multiplication protocol. Any secret
shared number x will be written with braces [x], while any public constant c will
be written without braces. To signify a secret-shared vector v we will add an

arrow:
−→
[v]. A secret-shared matrix A will be written [[A]]. All matrices - unless

stated differently - will be assumed to be quadratic with n rows and columns.
On top of the LSSS we employ the fixed-point arithmetic presented in [3],[4]

and [5] to facilitate computations with non-integer numbers. We assume that all
numbers have total bit-length k of which f are fractional, i.e. are elements of
Q<k,f> (cf. [5]). In order to be able to represent these in a Secret Sharing Scheme
all fixed-point numbers are scaled by 2f before being secret-shared yielding the
set Z<k,f>. Any number in Z<k,f> representing x

2f
will be denoted by x̄. Since

secret-sharing requires a finite field we will treat Z<k,f> as if it were part of
Z/qZ for a very large q (e.g. log2 q ≈ l = 1024, k = 110). Note that because of
this no wrap-around will occur and thus computations will not be affected by
the fact that numbers are actually part of the much bigger Z/qZ. At some points
in our protocols (pseudo-)random sharings of zero (PRSZ) need to be computed.
We refer the reader to [8] for details.

We aim to develop algorithms secure in the so-called honest-but curious sce-
nario in which parties may not deviate from the protocol. In addition we only
require statistical and not information-theoretic security, i.e. the protocols can
be simulated such that the distributions of the real and the simulated view are
statistically indistinguishable ([5]).

In the analysis of our algorithm we measure computation complexity using
the unit of one secure multiplication.

1 This has been done already (cf. [7] and others), but only for fields with characteristic
> 0.

Secure Distributed Computation of the Square Root and Applications 279

3 Mathematical Foundations

Both algorithms - Goldschmidt’s as well as Newton-Raphson’s - work by itera-
tive approximation, i.e. iteratively improving an initial estimate. They converge
quadratically: If a good initial estimate is given, the number of correct digits
doubles in every iteration.

3.1 Newton-Raphson Method

The aim of the Newton-Raphson method is to approximate the zero of a con-
tinuous, once differentiable function f . Starting with iterate x0 a new iterate is
given by (cf. [15]).

xk+1 = xk −
f(xk)

f ′(xk)
(1)

We assume that the input is always greater than 0 and apply (1) to the function
f(R) = 1

R2 −x, whose zero is given by 1√
x
. The iterating function is thus Rj+1 =

1
2 · Rj ·

(
3− x ·R2

j

)
. At the end we multiply by x and gain

√
x.

3.2 Goldschmidt’s Algorithm

If x > 0 is the number whose radicand is desired, Goldschmidt’s algorithm
([10]) iteratively computes approximations of

√
x and 1√

x
2. The description of

the software-friendly version can be seen in Fig. 1. An initial estimate y0 of
1√
x
= 1√

x0
, such that

1

2
< x0 · y20 <

3

2
(2)

is assumed to be given. We set g0 = x0 ·y0 and h0 = y0

2 . The iterates for
√
x and

1
2
√
x
are given by gi and hi respectively. Note that the multiplications in lines 3

and 4 are independent.

Algorithm 1: Goldschmidt’s algorithm for square root

1 While |gi − gi−1| > ε
2 ri−1 = 1

2
− gi−1 · hi−1

3 gi = gi−1 · (1 + ri−1)
4 hi = hi−1 · (1 + ri−1)

Fig. 1. Goldschmidt’s algorithm for square root with starting point y0

2 It is actually a variation of the Newton-Raphson method described above; this can
be shown using the original definition of the algorithm shown in [13]. Thus the
convergence properties of Newton-Raphson iterations also apply here

280 M. Liedel

3.3 Computation of the Starting Value

We compute the starting value by linear approximation:

L(x) = α · x+ β. (3)

Since the domain of our linear approximating function is the interval [12 , 1[, we
first have to normalize the input x0 to this range giving xnormal. This is done
in such a way that the resulting value is actually a very close approximation of
1√
x0

(see section 4)! To compute the coefficients α and β the idea (cf. [12]3) is

to minimize the relative error function

E(x) =
α · x+ β − 1√

x

1√
x

(4)

Differentiating E gives its maximum at xmax = − β
3α . Evaluating at xmax we get

M := E(xmax) =

√
3

3
·
√
−β
α
·

⎛⎝2

3
· β −

√
3√
−β
α

⎞⎠ (5)

Plugging this back into E and solving the system

E

(
1

2

)
= −M (6)

E(1) = −M (7)

for α and β gives us the values α = −0.8099868542 and β = 1.787727479 which
allow us to compute a linear approximation to 1√

x
for 1

2 ≤ x < 1 with relative

error no more than 0.0222593752. This means the result is exact to almost 5.5
bits.

4 Description and Analysis of the Algorithms

We approximate 1√
x
by first normalizing the input value to the interval [12 , 1[

and then applying function (3) using the constants computed in section 3.3. The
final result is computed by Goldschmidt and Newton-Raphson iterations.

4.1 Norm

Protocol Norm from [5] returns values 2k−1 ≤ [c] < 2k and [v] such that [x] · [v] =
[c]. If 2m−1 ≤ [x] < 2m then [v] =

[
2k−m

]
. We modify Norm so that in addition

it also returns [m] as well as [w] = [2
m
2], if m is even and [w] = [2

m−1
2], if m

is odd. [w] is computed by sub-protocol HalfIndex, which works by rearranging

3 The coefficients used in [5] can be computed in a similar way.

Secure Distributed Computation of the Square Root and Applications 281

Protocol 2: ([c], [v], [m], [w]) ← NormSQ([x], k, f)

1
(
[xk−1]

F82 , . . . , [x0]
F82
)
← BitDec([x], k, k)

2
(
[yk−1]

F82 , . . . , [y0]
F82
)
← PreOR

(
[xk−1]

F82 , . . . , [x0]
F82
)

3 foreach i ∈ [0, . . . , k − 1]do parallel

4 [yi] ← BitF2MtoZQ
(
[yi]

F82
)

5 foreach i ∈ [0, . . . , k − 2]do
6 [zi] ← [yi]− [yi+1]
7 [zk−1] ← [yk−1]

8
−−→
[W] ← HalfIndex

(−→
[z], k

)
9 [w] ←

∑ k
2
i=0 2

i · [Wi]

10 [m] ←
∑k−1

i=0 2i · [zi]
11 [v] ←

∑k−1
i=0 2k−i−1[zi]

12 [c] ← [x][v]
13 return([c], [v], [m], [w])

Fig. 2. Modified protocol NormSQ

the entries of
−→
[z] and can thus be implemented without additional expense. The

modified protocol NormSQ is depicted in Fig. 2. Note that - in contrast to Norm -
we leave out computation of the sign, since we assume the radicand to be greater
than zero.

4.2 Approximation

Correctness: Let us assume that m is even. After evaluating the linear approxi-
mating function (3) we get α ·22k+β ·2k · [c]. Multiplication by [v] = [2k−m] then
yields α · 23k−m + β · 22k−m · [c]. But since [c] is nothing but the Secret-Sharing

of x̄
2m · 2k = x·2f

2m · 2k this equals4 α · 23k−m + β · 23k−m · x·2f2m . After truncating5

this by 3k − 2f Bits, we get

22f−m ·
(
α+ β · x · 2

f

2m

)
, (8)

which is a linear approximation to the inverse square root of the normalized

value x·2f
2m of [x], scaled by the factor 22f−m. This means equation (8) equals

K · 22f−m · 1√
x·2f
2m

=
2

3f
2

2
m
2
·K · 1√

x
, (9)

4 For ease of presentation we will drop braces from here.
5 We neglect rounding errors at this point; for computational reasons the order in
Protocol 3 is slightly different.

282 M. Liedel

Protocol 3: [w] ← LinAppSQ([b], k, f)

1 α ← fldk(−0.8099868542)
2 β ← fld2k(1.787727479)
3 ([c], [v], [m], [W]) ← NormSQ([b], k, f)
4 [w] ← α[c] + β
5 [m] ← Mod2([m], �log2 k�)
6 [w] ← [w] · [W] · [v]
7 [w] ← DivConst

(
[w], 2

f
2

)
8 [w] ← TruncPr ([w], 3k, 3k − 2f)

9 [w] ← (1− [m]) · [w] · 2f +
(√

2 · 2f
)
· [m] · [w]

10 [w] ← TruncPr([w], k, f)
11 return [w]

Fig. 3. Linear approximation of 1√
x

where K is factor very close to 1, determined by the approximation. Multipli-

cation by [W] = 2
m
2 and division by 2

f
2 thus yields an approximation to 1√

x

scaled by 2f which is just what is needed. If m is odd (to distinguish between
even and odd we employ the protocol Mod2 from [3]), function NormSQ returns

[W] = 2
m−1

2 . Thus multiplication by [W] · 2− f
2 only gives K · 1√

2
· 1√

x
. In this

case we thus subsequently multiply the equation by
√
2 and get the desired result.

Complexity: The cost is dominated by the protocol NormSQ and - to a lesser
degree - by the protocol TruncPr([w], 3k, 3k − 2f). All other steps only add a
small constant number of multiplications. The complexity of LinAppSQ can be
seen in Table 1.

4.3 Goldschmidt’s Algorithm

Given an approximation [y0] that fulfills the requirement (2) all we we have left
to do is turn Algorithm 1 into a Secure Multi-Party Algorithm (Fig. 4).

In contrast to Algorithm 1 the number of iterations is fixed at θ =
⌈
log2

(
k
5.4

)⌉
which ensures accuracy to k bits. We have replaced the last iteration (lines 19-
23) by a Newton-Raphson iteration, because - in contrast to a Goldschmidt
iteration - it is self-correcting and accumulated errors can be eliminated6 ([13],
except perhaps for the last bit which may be wrong due to the inexactness
of probabilistic rounding). Since [g] and [gh] are no longer needed at this point,

6 Due to accumulated rounding errors it is theoretically possible that the result after
the last Goldschmidt iteration has less than k

2
correct bits, and thus one Newton-

Raphson iteration might not suffice to eliminate them. However this did not occur
once in our experiments. See section 6.2 for more details.

Secure Distributed Computation of the Square Root and Applications 283

Protocol 4: [g] ← SQR([x], k, f)

1 θ ←
⌈
log2

(
k
5.4

)⌉
16 [r] ← 3

2
· 2f − [gh]

2 [y0] ← LinAppSQ([x], k, f) 17 [h] ← [h] · [r]
3 [g0] ← [y0] · [x] 18 [h] ←TruncPr([h], k, f)
4 [g0] ← TruncPr([g0], k, f) 19 [H] ← (2 · [h])2
5 [h0] ← DivConst([g0], 2) 20 [H] ← [H] · [x]
6 [gh] ← [g0] · [h0] 21 [H] ←

(
3 · 22f

)
− [H]

7 [gh] ← TruncPr([gh], k, f) 22 [H] ← [h] · [H]
8 For i = 1, . . . , θ − 2 23 [g] ← [H] · [x]
9 [r] ← 3

2
· 2f − [gh] 24 [g] ← DivConst([g], 2)

10 [g] ← [g] · [r] 25 [g] ← TruncPr([g],4k,4f)
11 [h] ← [h] · [r] 26 return([g])
12 [g] ←TruncPr([g], k, f)
13 [h] ←TruncPr([h], k, f)
14 [gh] ← [g] · [h]
15 [gh] ←TruncPr([gh], k, f)

Fig. 4. Goldschmidt’s square root algorithm for SMPC

their computation is omitted in the last Goldschmidt iteration (lines 16-18). Note
that computation (and truncation) of [g] and [h] in the loop can be parallelized.
Complexity again can be read off from Table 1.

4.4 Security

All our protocols consist of building blocks that have been proven secure either
perfect or statistical ([3],[4],[5]). No information is revealed in our additional pro-
tocols. All counters are public parameters and thus do not leak any information.
We conclude our protocols are secure in the honest-but-curious scenario.

5 Application to QR-Decomposition

The QR-Decomposition of a matrix is an important numerical primitive, that
can be used to solve linear systems of equations and is part of many numerical
algorithms. For any matrix A, the goal is to compute an orthogonal matrix Q
and an upper-triangular matrix R such that Q ·R = A. For details see [11].

5.1 Secure Computation of the QR-Decomposition

We compute the QR-Decomposition by the sequential application ofHouseholder-
Matrices. Each such Householder-Matrix is responsible for computing one col-
umn of R. Their product forms Q. To compute a Householder-Matrix one first

needs to compute the Householder-Vector
−→
ṽ from the respective column −→v . The

Householder-Matrix P is then defined by P =
(
Id− 2 · ṽṽt

ṽtṽ

)
. The secure version

284 M. Liedel

Table 1. Complexity of the protocols. The bit-length of k is assumed to be a power of
2, e.g. k = 2l. All vectors are assumed to be of length n and all matrices are assumed
to be quadratic with n rows and n columns.

Secure Multiplications Rounds Field

LinAppSqr 10 k
2
+ l + 9 Zq

7k + 1 7 Zq1

2k2 − 2k + kl l + 1 F28

SQR 6θ + 11 k
2
+ l + 4θ + 14 Zq

3f · (θ + 1) + 7k + 1 2θ + 9 Zq1

2k2 − 2k + kl l + 1 F28

House 6θ + 15 k
2
+ l + 4θ + 17 Zq

8k + 4f + 3θf 2θ + 10 Zq1

2k2 + kl − 4 l + 1 F28

Pre-Mult-House 2n2 + 3n+ 3θ + 9 l + 3θ + 13 Zq

k · (2θ + 6) + nf · (n+ 2) − 1 12 Zq1

2k2 + kl 2l + 2 F28

QRDecomp O(n3 + θn) (n− 1) ·
(
k
2
+ 2l + 7θ + 30

)
Zq

O(n3f + θkn) (n− 1) · (2θ + 22) Zq1

O(+kln+ k2n) 3(n− 1) · (l + 1) F28

of the algorithm used to compute the Householder-Vector
−→
ṽ from a vector −→v is

based on the one described in [11], but differs in that the first component is not
normalized to one which saves one division. It can be seen in Fig. 5.

We assume the vector to be non-zero.7 In steps 1-3 the norm of the input-
vector is computed using the routine described in [3] that reduces the cost of
the inner-product to one secure multiplication. Protocol SQR is utilized in step
3. In step 5 the sign of [x1] is computed. Steps 1-3 and 4-5 can be parallelized.

5.2 Multiplication with a Householder-Matrix

If a secret-shared Householder-Vector
−→
[v] and a matrix [[A]] are given, the al-

gorithm for Pre-Multiplication of [[A]] by the respective Householder-Matrix is
described in Fig. 6. Correctness can be easily verified using the equation in sec-
tion 5.1. Post-Multiplication is only slightly different.

5.3 Computation of the QR-Decomposition

With these tools it is easy to describe the QR-Decomposition based on
Householder-Multiplications (Fig. 7). The matrix R is saved in the upper-
triangular part, while the Householder-Vectors - except for the first component,

7 This condition could be checked prior to the computation, but this should rarely be

necessary. For
−→
[x] = 0 the respective Householder-Vector is not defined.

Secure Distributed Computation of the Square Root and Applications 285

Protocol 5:
−→
[v] ←House

(−→
[x], n

)
1 [μ] ← Inner

(−→
[x],

−→
[x]

)
2 [μ] ← TruncPr([μ], k, f)
3 [μ] ← SQR([μ], k, f)

4
−→
[v] ←

−→
[x]

5 [σ] ← 1− 2 · LTZ([x1], k) \\σ = [sign([x1])]
6 [β] ← [x1] + [σ] · [μ]
7 [v0] ← [β]

8 return
−→
[v]

Fig. 5. Computation of a Householder-Vector

Protocol 6: [[A]] ← Pre-Mult-House
(
[[A]],

−→
[v],m, n

)
1 [ṽ] ← Inner

(−→
[v],

−→
[v]

)
2 [ṽ] ← TruncPr([ṽ], k, f)
3 [β] ← −2 · DivNR(1, [ṽ], k, f)

4
−→
[̃v] ← Matrix-Mult-Vector([[A]]t,

−→
[v])

5
−→
[w] ← [β] ·

−→
[̃v]

6
−→
[w] ← TruncPr(

−→
[w], 2k, 2f)

7 [[V]] ← Matrix-Matrix-Multiply
(−→
[v],

−→
[w]t)

)
8 [[V]] ← TruncPr([[V]], 3k, 3f)
9 [[A]] ← [[A]] + [[V]]
10 return [[A]]

Fig. 6. Pre-Multiplication of A by the Householder-Matrix determined by the House-

holder vector
−→
[v]

which is stored in an additional vector [δ] - are stored below the diagonal.
If necessary the matrix Q can then be computed by repeated application of
protocol 6.

6 Experimental Results

6.1 The Setup

All protocols were tested with an underlying (5,2) Shamir Secret Sharing Scheme.
In contrast to ”real”Multi-Party-Computations all computations were performed
on one machine so network-latency is not included in the computation times.
We tested our protocols using our own C++-implementation of the fixed-point
arithmetic from [3], [4] and [5]. For computations with very large numbers we
employed the GNU MP 5.0.2. The machine was running Linux Mint 10 with an
Athlon II Quad-Core CPU @2.6GHz and 4GB RAM.

286 M. Liedel

Protocol 7:
(
[[A]],

−→
[δ]

)
← QR ([[A]], n)

1 For (j = 1, . . . , n− 1)

2
−−−−−→
[v(j : n)] ← House

(−−−−−−−−→
[A(j : n, j)], n− j + 1

)
3 [[A(j : n, j : n)]] ← Pre-Mult-House

(
[[A(j : n, j : n)]],

−−−−−→
[v(j : n)], n− j, n− j

)
4 If (j < n)

5 [[A(j + 1 : n, j)]] ←
−−−−−−−−−→
[v(j + 1 : m)]

6 [δj] ← [v1]

7 return
(
[[A]],

−→
[δ]

)

Fig. 7. Secure Computation of the QR-Decomposition of a square matrix using
Householder-Matrices

6.2 Computation of the Square Root

In our experiments we computed 8 square roots from numbers a = 0.008585937,
b = 0.146234375, c = 0.6326875, d = 11.19, e = 197.04, f = 3110.4, g =
489, 291.776, h = 3, 701, 997.568. Since in our protocol numbers are normal-
ized first, the size of the number should matter less than how close or how far a
number 2k−1 ≤ s < 2k, s ∈ {a, b, c, d, e, f, g, h} is to the respective 2k and 2k−1.
Care was taken that the numbers are evenly distributed, i.e. irrespective of size
there is one number for each eighth of the interval [2k−1, 2k[. We used fixed-point
numbers with 110 bits of which 80 were fractional. The absolute value of the ab-
solute error (the difference between the exact result and the computed result)
was always less than 2−80, i.e. exact in our fixed-point setting. Computation
times were ≈ 4.89s (≈ 0.98s per player) for all numbers. One full Goldschmidt
iteration took about 0.57s (≈ 0.114s p.p.) to compute (the abbreviated one took
0.19s (≈ 0.038s p.p.)). What stands out is that the Newton-Raphson iteration
at the end at about 0.19s p.p. was more than 60% more expensive! Even though
communication did not actually take place, this is remarkable and vindicates
our decision to use Goldschmidt iterations for all but one iteration. Figures for
average precision gained from testing our algorithm on 1400 random numbers
can be seen in Table 2.

Table 2. Exactness for computation of the square root

x a b c d e f g h

abs. error < 2−81 < 2−82 < 2−81 < 2−82 < 2−81 < 2−80 < 2−81 < 2−82

rel. error < 2−78 < 2−81 < 2−81 < 2−84 < 2−85 < 2−86 < 2−90 < 2−93

Secure Distributed Computation of the Square Root and Applications 287

6.3 Computation of the QR-Decomposition

We tested our secure implementation of the QR-Decomposition on a symmetric
positive definite 3 × 3-matrix A and a random 5× 5-matrix B. To quantify the
exactness of our results (Q̃, R̃) we compared them to the exact ones using the
Frobenius-Norm:

‖A‖F :=

√√√√ n∑
i=1

n∑
j=1

a2ij (10)

The results can be found in Table 3. Note that the Frobenius-Norm is just one of
a number of (equivalent) matrix-norms. Using another norm could yield slightly
smaller or bigger numbers.

Table 3. Experimental results of the QR-Decomposition

Matrix A B

‖Q̃‖F − ‖Q‖F 4.7 · 10−20 ≈ 1.6 · 10−24

‖R̃‖F − ‖R‖F 3.2 · 10−14 ≈ 7 · 10−12

‖Q̃ · R̃‖F − ‖A,B‖F 3.1 · 10−14 ≈ 7 · 10−12

7 Conclusion and Further Work

We have for the first time described a practical way to securely compute the
square root of a shared value. We have demonstrated the feasibility of our ap-
proach experimentally and applied it to the QR-Decomposition of a square-
matrix which can be used to securely solve linear systems of equations and can
serve as a building block for many other numerical algorithms.

Acknowledgment. The author is funded by ”Ausbau der Kompetenzpartner-
schaft zum Themenschwerpunkt ’IT-Sicherheit’ an den Standorten Passau und
Regensburg” which is co-funded by the European Regional Development Fund
(EFRE).

References

1. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Com-
puting, STOC 1990, pp. 503–513. ACM, New York (1990)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

288 M. Liedel

3. Catrina, O., de Hoogh, S.: Improved Primitives for Secure Multiparty Integer
Computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 182–199. Springer, Heidelberg (2010)

4. Catrina, O., de Hoogh, S.: Secure Multiparty Linear Programming Using Fixed-
Point Arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010)

5. Catrina, O., Saxena, A.: Secure Computation with Fixed-Point Numbers. In: Sion,
R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 11–19. ACM, New York (1988)

7. Cramer, R., Damg̊ard, I.: Secure Distributed Linear Algebra in a Constant Number
of Rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136.
Springer, Heidelberg (2001)

8. Cramer, R., Damg̊ard, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-
Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 1987, pp. 218–229. ACM, New York (1987)

10. Goldschmidt, R.E.: Applications of division by convergence. Master’s thesis, M.I.T.
(1964)

11. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press (1996)

12. Ito, M., Takagi, N., Yajima, S.: Efficient initial approximation for multiplicative
division and square root by a multiplication with operand modification. IEEE
Transactions on Computers 46, 495–498 (1997)

13. Markstein, P.: Software division and square root using goldschmidt’s algorithms.
In: 6th Conference on Real Numbers and Computers, pp. 146–157 (2004)

14. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
15. Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Texts in applied math-

ematics. Springer, Heidelberg (2002)
16. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE
Computer Society, Washington, DC, USA (1982)

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 289–300, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Prevent Kernel Return-Oriented Programming Attacks
Using Hardware Virtualization

Tian Shuo1,2, He Yeping1, and Ding Baozeng1,2

1 Institution of Software, Chinese Academy of Sciences
2 Graduate University of Chinese Academy of Sciences

{tianshuo,baozeng}@nfs.iscas.ac.cn, yeping@iscas.ac.cn

Abstract. ROP attack introduced briefly in this paper is a serious threat to
compute systems. Kernel ROP attack is great challenge to existing defenses be-
cause attackers have system privilege, little prerequisite to mount attacks, and
the disability of existing countermeasures against runtime attacks. A method
preventing kernel return-oriented programming attack is proposed, which
creates a separated secret address space for control data taking advantage of
VMM architecture. The secret address space is implemented as a shadow
stack on the same host with the target OS facilited by hardware virtualization
techniques. The experience result shows the performance overhead in our im-
plementation is about 10% and acceptable in practical.

Keywords: Return-Oriented Programming, kernel attacks, virtualization, sha-
dow stack.

1 Introduction

ROP(Return Oriented Programming) was introduced by Shacham in[1] for x86 archi-
tecture, and allowed attackers to induce arbitrary behaviors in the target program
without injecting new code. It was subsequently extended to various architectures,
such as Atmel AVR, SPARC, ARM, Z80, and PowerPC[2-5]. ROP attacks are increa-
singly used in practical, in particular, ROP-based attacks happened on applications
such as Adobe Reader, Adobe Flashplayer, and Quicktime Player. Moreover, ROP
has been adapted to kernel exploits, such as ROP-based rootkit for Windows operat-
ing system which bypasses kernel integrity protection mechanisms. Finally, tools
have been developed enabling the automatic constructing of ROP instruction se-
quences[6] . ROP attack is a severe threaten to computer system security.

ROP attack is one of code-reuse run-time attacks, which can execute unintended
operations using valid code existing in memory. A pioneering runtime attack is stack
smashing, which hijacks control flow to injected shell code in stack data region taking
advantage of memory vulnerabilities. Instead of injecting code, code-reuse attacks,
such as return-to-libc attacks, make use of valid functions in program memory for
malicious intention. In further, ROP-based attacks is Turing-complete without
injecting shell code or calling function in kernel space. Return-oriented programming

290 T. Shuo, H. Yeping, and D. Baozeng

constructing program operation units by contacting together pieces of binary code
terminated with return in memory, which are called gadgets. The basic operation units
can be created with ROP include memory operation, algorithm/logic operation,
(un)conditional jump, and system call.

There are many challenges for preventing ROP-based kernel attacks in practical.
First, there are many runtime attacks countermeasures[7, 8] based on preventing code
injection, however, ROP attack is immunity to these defenses because of its code-
reuse. Second, probability countermeasures[9-11] for runtime attacks can be bypassed
by attackers in case of memory leak[12]. Third, while randomizing the address space
layout[13] increased the difficulty of issuing attack, attackers can still have enough
code pieces for their malicious program[14, 15]. In the end, There are also ad-hoc
ROP attacks defenses on the assumption of ROP gadgets terminated with return in-
struction[16, 17]. These ad-hoc defenses cannot adapted to kernel ROP attacks be-
cause target OS cannot run on the prevention framework[18] or the countermeasures
might be bypassed by attackers with high privilege.

In this paper, we introduce ROP attack briefly, and induce the challenges for de-
feating kernel level ROP attack. The essential element of ROP attack is hijacking
control flow by changing control data to arbitrary value during program running.
And the challenges for kernel ROP attack countermeasures are shown as following:
First, attacks on kernel level with system privilege are able to cheat the host to by-
pass the defense mechanism; Second, various of implementations of ROP attack are
able to bypass the ad-hoc ROP attack countermeasures and nowadays existing run-
time attacks prevention methods; Third, the performance overhead introduced by
the defense must not be heavy, otherwise, it will be unpractical during system run-
ning. Under this circumstance, we propose a mechanism based on shadow stacking,
and a secret address space with one-way view for control data is proposed, which is
implemented taking advantage of VMM architecture. The secret address space is on
the same physical host but different logical address space with the target kernel
based on memory paging table maintained by hypervisor. Therefore, the isolation
between target kernel and shadow stack enable the mechanism defeating system
privilege ROP attacks. On the other hand, the switching between the two address
spaces requires hypervisor involvement, and incurs heavy overhead by context
switch. We make use of the hardware virtualization features to mitigate the over-
head, and evaluation of our experiment result shows that the overhead is about 10%,
which makes our kernel ROP attacks defenses practical. Therefore, there are ROP
attacks without return and jump-oriented programming attacks proposed recently,
our work is mainly for defeating ROP attacks in which gadgets are terminated with
return instruction.

This paper is constructed as follow: In section 2, the ROP attack is briefly intro-
duced, and the challenges for kernel ROP attacks defense is proposed; In section 3,
we introduce our solution based on VMM, including the briefly overview, implemen-
tation and evaluation; Section 4 is the related works and section 5 concludes the
paper.

 Prevent Kernel Return-Oriented Programming Attacks Using Hardware Virtualization 291

2 Return-Oriented Programming Attack

2.1 ROP Introduction

ROP(Return-Oriented Programming) allows an adversary to introduce arbitrary (Tur-
ing-complete) behavior into target program without injecting any malicious code in
the program address space, it is based generalization of the original return-into-libc.
Instead invokes functions residing in libc for malicious aims, ROP enables attackers
constructing desired semantics by contacting gadgets, which are short instruction
sequences terminated with return instruction. The address pointer of gadgets is in-
serted in stack data region as instruction register content. Generally, a program con-
sists of code and data, and there are several kinds of data: some are related to control
flow, such as stored registers in stack frame, and regular data like the local variables
of a function, as depicted in Fig 1.

Fig. 1. The abstraction of program and the ROP elements

Mounting ROP attack includes three steps as shown in Fig.1. First, attackers identi-
fy gadgets in binary code for basic operations, and a gadget can be instruction se-
quence start from intermediate part of valid instruction and terminate with byte c3
which is the instruction of ret. As shown in Fig. 1, gadgets are identified by start ad-
dress in code segments of the program. As described in Fig 2, valid code is wrong
interpreted starting at two byte offseting the real start location, forming a garget. The
finding of usable gadgets is collateral to our work, and details refer to [32].

Second, the control data is overwritten pointing to and scheduling gadgets for spe-
cific operations, as in Fig. 1 the return addresses in stack is modified to be the address
of gadgets, it can be realized by buffer overflow or indirect pointer exploitation.
Third, attackers must make sure register SP pointing to the first return address in stack
to mount the attack, on Intel x86, while function returns, SP will transfer to stack
frame of return address automatically, on the other hand, this can be performed by
stack-pivot sequence allowing to change SP to arbitrary value.

292 T. Shuo, H. Yeping, and D. Baozeng

Fig. 2. Example of gadget in valid code

2.2 Challenges for Defense Kernel ROP Attacks

There are many state-of-the-art approaches against runtime attacks, however, they
don’t work well for kernel ROP attack because of its new features.

First, ROP attack requires neither malicious code injection nor libc function call-
ing, and bytes in the program’s code segments are sufficient for arbitrary execution.
The general defense against runtime attacks managing to prevent adversary from in-
jecting shell code, such as W⊕X[7] and instruction set randomization[8], makes no
sense to ROP attacks defense. On the other hand, existing control flow monitoring
measures are too coarse-grained, such as stack shepherding[19] which checking the
matching between source and destination during function call, are not able to detect
the disorder of control flow on instruction level.

Second, there are various methods for adversary modifies control data to contact
gadgets executed sequentially. It’s necessary for adversary to change the return address
pointing to the start of gadget in code segment, which is typical result of buffer overflow
exploiting, and can also be performed using stack-pivot sequence [18]. Therefore, coun-
termeasures against buffer overflow are not enough for ROP attack defense.

Third, for kernel ROP attack, an adversary executes malicious operations with sys-
tem privilege. It’s hard to ensure the integrity of defending mechanism running in
kernel, which is likely be cheated by adversary such as rootkit. On the assumption
that kernel and applications are not trusted, any measures on the host system may be
controlled by attackers. Therefore, traditional in-host defenses on target operating
system might be bypassed by kernel attack.

Existing runtime attack countermeasures can’t defeat kernel ROP attack because of
its powerful new features. Overwriting control data in function stack is an essential
step for adversary mounting ROP attacks. And the uniform treatment of all data in
program memory makes it hard to guarantee the integrity of control flow transferring
caused by function return. Based on the observation, keeping control data integrity
during function running can effectively defense ROP attack. On the other hand, kernel
ROP attack defense requires the countermeasure have high privilege, and the architec-
ture of VMM provides the opportunity of enforce defense with hypervisor privilege,
facilitating keeping control data secret to avoid contaminated by adversary.

b8 13 00 00 00
e9 c3 f8 ff ff

mov $0x13, %eax
jmp 3aae9

00 00
00 e9
c3

add %al, (%eax)
add %cd, %cl
ret

gadget

valid code

bytes assembler

 Prevent Kernel Return-Oriented Programming Attacks Using Hardware Virtualization 293

3 Our Solution

3.1 ROP Attack Defense Overview

Our solution prevents kernel ROP-based attack transparently to users by keeping con-
trol structure secret from adversary. A secret address space is in parallel to the system
address space of target kernel, and can’t be observed from running operating system
and applications. The data stack in the secret address space is used for containing
control data, and is called secret stack. Taking advantage of compiler interface, opera-
tions of keeping control data integrity can be inserted into function prologue and epi-
logue like stack smashing countermeasures [7]. As shown in Figure 3, when CALL
instruction executed, function prologue will store the return address of callee function,
which is the address next to CALL instruction, into the secret stack instead of pro-
gram stack. On the other hand, when RET instruction executed, function epilogue
pops out the top value of secret stack, which will change the program counter value
and program execution control will transfer to the address.

Fig. 3. Overview of ROP attack defense framework

The overall design of kernel ROP attacks defense framework is shown as Figure 4.
The target kernel is a guest OS running on VMM(Virtual Machine Monitor). Two ad-
dress spaces in parallel is provided in the same VM domain by creating two page tables,
one for system kernel virtual memory, and another for secret address space. A page table
is required for mapping virtual address space to physical address; therefore, when an
instruction is executed the current page table is used by the hardware to perform address
translation. Page based virtual memory is generated by creating page table that map vir-
tual address to physical address. OS creates separated page table for each process so that
its own virtual memory address space and the necessary isolation can be achieved. A new
page table for secret virtual address space is created after kernel booting, and a continual
physical address is allocated In the system virtual memory, there is no mapping between
page table entries and the physical memory for secret address space. Therefore, there is
one-way view between the two virtual address spaces.

Generally, kernel is mapped into fixed address range, which is called system ad-
dress space. We denote the code and data in this range as kernel code and kernel data.

294 T. Shuo, H. Yeping, and D. Baozeng

We assume that the pages containing kernel data can be write protected, while the
data regions will have all access rights. In generally, the dynamically LKM code
should be maintained in the kernel data region. In secret address space, all kernel code
and data are set to non-executable and it avoids malicious modification of the secret
page table by target kernel.

The entry and exit gates are the only regions that mapped into both address spaces,
and are used to store and load control data while OS running. As mentioned early, the
entry and exit gates are used for switching between system and secret virtual address
sapce. They are written-protected by the hypervisor so that their contents could not be
modified by any code in the system address space. The main function of entry and
exit gates are switching address spaces by modify the CR3 value.

Fig. 4. Overall design of kernel ROP attacks defense framework

3.2 Hardware Virtualization

The switching between kernel system and secret address spaces needs to modify the
CR3 register directly. However, changing the value of CR3 is a privileged operation
which will cause trapping into the hypervisor. All accesses to guest CR3 register in
the guest OS cause VMExit, which switching guest to hypervisor. The context switch-
ing brings heavy performance overhead and makes the defense mechanism unpractic-
al. For this reason, hardware virtualization feature available in Intel VT[20] is utilized
for the practical of our method.

The current virtual address space is identified by CR3 register, which contains the
physical address of the root of current page table data structure, and in two-level paging
mechanism the root of page table structure is called the page directory. While switching
between processes, the CR3 register is updated by the kernel to appropriated page table
structures. Any process running on privilege of kernel-level can update CR3 register to
switch process context. In VMM architecture, the page table in guest OS is used for

 Prevent Kernel Return-Oriented Programming Attacks Using Hardware Virtualization 295

translating virtual address to virtual physical addresses, which share real physical ad-
dress with various VMs on the same VMM. Shadow page tables are used to map guest
virtual to real physical memory and there are different VMM implementations to main-
tain consistency among the guest page tables and shadow page tables.

With Intel VT, VMExit will not be triggered if the CR3 is updated to a page table
root addresses in a list (CR3_TARGET_LIST) maintained by hypervisor. In order to
avoid hypervisor intervention while directly modifying CR3 register to switch address
spaces between guest OS and secret virtual space, the page table directories of both
the address spaces are added into CR3_TARGET_LIST, as shown in Figure 5. The
secret address space has only shadow page table without virtual page table in guest
OS, and whose root is pointed by page table directory SEC_SHADOW. The hypervi-
sor also maintain the page table directory of shadow page tables of process running on
guest OS, denoted by SHADOW. Therefore, the switching between guest OS and
secret address spaces just need to directly modify CR3 register with SHADOW or
SEC_SHADOW, which is transparent to the normal process in guest OS .

Fig. 5. Virtual memory manged by page table utilizing hardware virtualization

3.3 Implementation and Evaluation

In our prototype, we use Xen as the hypervisor and HVM domU of Ubuntu as our
target. A secret address space is created in the same domU, and a modification for libc
changes all function call and return operations, keeping return addresses are stored
into and loaded from stack in the secret space.

First, we generate a separate hypervisor-protected secret address space by creating
a separate page table sec_pg_dir. A separate section allocation description file is add-
ed in the guest kernel, and the kernel linker script files are modified to control the
memory layout of output object file. A function sec_space_nomapping_init(start, end)
is defined to set the kernel page table entries of the virtual address from start to end of
secret space to be invalid. If the guest OS tries to access secrete address space in ker-
nel mode, it will be trapped into hypervisor.

296 T. Shuo, H. Yeping, and D. Baozeng

Then, we create entry gates and exit gates in guest source tree and the control data
is migrated to secret address using compiler interface. As shown in Table1, the execu-
tition of call instruction will store the address of next instruction in program code into
the stack frame, and then the program counter is pointing to the callee and callee
stack is initialized beginning with push %ebp. After modified, the operation of func-
tion call is shown as the second column of Table1, entry gate swithing address space
by assigning CR3 with sec_pg_dir, and the return address is stored in the data stack of
in secret virtual memory. Then, exit_gate switches back into the guest OS and contin-
ue the callee executation. The modified operation for return instruction execution is
similar to call as shown in Table1.

Table 1. The modified code with entry_gate and exit_gate for function call and return

original code modified code

call

push %ebp

;entry_gate:

current_pg_dir = read_cr3

push %eax

mov %eax, sec_pg_dir

mov %cr3, %eax

call

;exit_gate:

mov %eax, current_pg_dir

mov %cr3, %eax

push %ebp

leave

ret

Leave

;entry_gate:

current_pg_dir = read_cr3

push %eax

mov %eax, sec_pg_dir

mov %cr3, %eax

ret

;exit_gate:

mov %eax, current_pg_dir

mov %cr3, %eax

 Prevent Kernel Return-Oriented Programming Attacks Using Hardware Virtualization 297

Since the CR3 register cannot be directly loaded with data, the value of sec_pg_dir
first needs to be moved to a general purpose register, eax. In order to prvent the ex-
ecution from diverting to somewhere else due to interrupt, we use CLI instruction to
disable interrupt. Moreover, we also put the variable current_pg_dir and sec_pg_dir
into the CR3_TAGET_LIST maintained by hypervisor just like SIM[21], therefore, it
could avoid the hypervisor intervention when switching the address spaces. This
would greatly improve the performance.

In experiment, we worked on libc linked to the target operating system instead of
the whole kernel. Code of libc is most likely used for adversary constructing gadget
according to Chen et al[17]. Although there might be ROP attacks without gadgets in
libc, the experiment shows the overhead bring by in-host secret address space and the
practical of our defense to certain degree. We make use of UnixBench[22] measure
the performance reduction brought by the countermeasure. The result shown in Fig 6
is performance ration of with countermeasure and original guest system. The over-
head is around 10%, and is acceptable.

Fig. 6. Result of performance measured by UnixBench

4 Related Work

There are many approaches trying to prevent runtime attacks from malicious beha-
vior. Operating system and processor manufactures enable memory pages to set
attribute W⊕X(Writable XOR Executable)[7], current Windows versions enabled it
by default[23]. However, W⊕X unable to against attacks without code injection,
such as return-to-libc, and ROP attacks. Probability countermeasures are proposed
against runtime attacks, and mainly contain three classes. The first ones, such as
StackGuard[9, 10]and its enforcement ProPolice[24], based on canary protect return
address from stack smashing. The second ones utilize obfuscation technique, rando-
mizing the address space layout[13] or program instructions[8] increasing the difficul-
ty of issue attacks. The third class attempts to protect against attacks by reorganizing
the layout of stack memory[24, 25]. However, all the countermeasures depend on the
assumption of keep memory secret[12], which is broken in case of memory over-read
vulnerability coexist with buffer overflow in program.

298 T. Shuo, H. Yeping, and D. Baozeng

Approaches defeating ROP attacks are proposed recent years, however, none of
them aims to prevent kernel-level ROP attacks. ROP attack defenses based on new
hardware features are applied to embedded microprocessor system[26], and Stack-
Ghost[27] is used on SPARC architecture, both of witch can hardly apply to general
system. Shepherding[19] and ROPdefender[18] monitor program control transfer
while running taking advantage of dynamic binary instrumentation, however, they
can’t be extend to kernel running monitoring. Return instruction and gadget are essen-
tial elements for ROP, G-free [28] eliminates the condition of constructing gadgets by
unaligned branch instructions deletion, and Jinku Li et al[16] rewrite the binary code
of Linux kernel for a system without both intended and unintended return instructions.
There are also ROP defense methods based on measure of return frequency [17, 29],
which can be bypassed by executing longer gadgets sequence.

CFI(Control Flow Integrity)[30] principle is the basic for verifying that a program
running according to the intention of programmer. CFI is enforced on VMM archi-
tecture in order to prevent kernel rootkits which hijack control flow of guest operating
system [31], it monitor the kernel state and checking the target of control transferring
based on the memory and registers values, so it can’t defense against kernel ROP
attacks but detecting the attacks happened yet on the guest os. VMM architecture
facilitate the implementation of guest OS code integrity using shadow memory [32],
and a secret address space secret for adversary on kernel[21]. Our solution make use
of the idea of shadow stack, such as RAD[33], Stack Shield[34], and further, in order
to avoid contaminated by adversary on kernel level, we constructed secret address
space for control data provided by feature of VMM.

5 Conclusion

ROP attack is considered a major threaten in practical computing environment. ROP
attack can be divided into three parts, first, attackers identify gadgets in binary code
representing basic operations, second, the control data is overwritten pointing to and
scheduling gadgets for specific operations, third, attackers must make sure register SP
pointing to the first return address in stack to mount the attack. The challenges for
preventing kernel ROP attacks are the system privilege of attacks, little prerequisite to
mount attacks, and the disability of exiting runtime attack countermeasures. We pro-
pose a method preventing kernel ROP attack taking advantage of hardware virtualiza-
tion, disable the attack by enforce control data integrity which is in a secret address
space. We implemented our solution on libc measuring overhead caused by separated
secret address space and virtual space switching. The result of experience shows that
the performance loss is about 10%, which is acceptable in practical.

Acknowledgement. We thank the anonymous reviewers for comments that helped to
improve the paper. This work was supported by the National Science Foundation of
China under Grant No.90818012, the National Science and Technology Major Projcet
No.2010ZX01036-001-002 and the Knowledge Innovation Key Directional Program
of Chinese Academy of Sciences under Grant No.KGCX2-YW-125.

 Prevent Kernel Return-Oriented Programming Attacks Using Hardware Virtualization 299

References

1. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without func-
tion calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and
Communications Security, pp. 552–561 (2007)

2. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go bad: ge-
neralizing return-oriented programming to RISC. In: Proceedings of the 15th ACM Confe-
rence on Computer and Communications Security, pp. 27–38 (2008)

3. Checkoway, S., A. J. F., Kantor, B., Halderman, J.A., Felten, E.W., Schacham, H.:
Can DREs provide long-lasing security? The case of return-oriented programming and the
AVC Advantage. USENIX/ACCURATE/IVAoSS (2009)

4. Kornau, T.: Return oriented programming for the ARM achitecture (2010)
5. Lidner, F.: Developments in Cisco IOS forensics (2009)
6. Dullien, T., Kornau, T., Weinmann, R.-P.: A framework for automated architecture-

independent gadget search. In: Proceedings of the 4th USENIX Conference on Offensive
Technologies, p. 1 (2010)

7. PaXTeam. Documentation for the PaX project
8. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Randomized in-

struction set emulation to disrupt binary code injection attacks. In: Proceedings of the 10th
ACM Conference on Computer and Communications Security, pp. 281–289 (2003)

9. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S., Grier, A.,
Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and prevention of buffer-
overflow attacks. In: Proceedings of the 7th Conference on USENIX Security Symposium,
vol. 7, pp. 63–78 (1998)

10. Madan, B., Phoha, S., Trivedi, K.: StackOFFence: a technique for defending against buffer
overflow attacks. In: Information Technology: Coding and Computing, ITCC 2005, pp.
656–661 (2005)

11. Tian Shuo, H.Y.: Ding Liping: SSGuard: a Nonlinear-enhanced Countermeasure against
Stack-smashing Attacks. In: Proceedings of ICIMT 2010, vol. 1, pp. 427–433 (2010)

12. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.: Breaking
the memory secrecy assumption. In: Proceedings of the Second European Workshop on
System Security, pp. 1–8 (2009)

13. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the effective-
ness of address-space randomization. In: Proceedings of the 11th ACM Conference on
Computer and communications Security, pp. 298–307 (2004)

14. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to randomized
lib (c). In: Computer Security Applications Conference, pp. 60–69 (2009)

15. Le, L.: Payload already inside: data re-use for ROP exploits. Black Hat (2010)
16. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootkits with

”Return-Less” kernels. In: Proceedings of the 5th European Conference on Computer sys-
tems, pp. 195–208 (2010)

17. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: Detecting Return-Oriented
Programming Malicious Code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS,
vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

18. Davi, L., Sadeghi, A.-R., Winandy, M.: ROPdefender: a detection tool to defend against
return-oriented programming attacks. In: Proceedings of the 6th ACM Symposium on In-
formation, Computer and Communications Security, pp. 40–51 (2011)

19. Vladimir Kiriansky, D.B.: Saman Amarasinghe Secure Execution via Program Shephe-
rding. In: 11th USENIX Security Symposium, pp. 191–206 (2002)

300 T. Shuo, H. Yeping, and D. Baozeng

20. Intel. IA-32 Intel Architecture Software Developer’s Mannual Volume 3B: System Pro-
gramming Guide, Part 1 (January 2006)

21. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware virtua-
lization. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, pp. 477–487 (2009)

22. http://www.Tux.org
23. Microsoft. Data Execution Prevention (2006)
24. Eto, H., Yoda, K.: Propolice: Improved stack-smashing attack detection. Transactions of

Information Processing Society of Japan 43(12), 4034–4041 (2002)
25. Younan, Y., Pozza, D., Piessens, F., Joosen, W.: Extended protection against stack smash-

ing attacks without performance loss. In: 22nd Annual Computer Security Applications
Conference, ACSAC 2006, pp. 429–438 (2006)

26. Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against control
flow attacks. In: Proceedings of the First ACM Workshop on Secure Execution of Un-
trusted Code, pp. 19–26 (2009)

27. Frantzen, M., Shuey, M.: StackGhost: Hardware facilitated stack protection. In: SSYM
2001: Proceedings of the 10th Conference on USENIX Security Symposium, pp. 55–66
(2001)

28. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-Free: defeating return-
oriented programming through gadget-less binaries. In: Proceedings of the 26th Annual
Computer Security Applications Conference, pp. 49–58 (2010)

29. Davi, L., Sadeghi, A.-R., Winandy, M.: Dynamic integrity measurement and attestation:
towards defense against return-oriented programming attacks. In: Proceedings of the 2009
ACM Workshop on Scalable Trusted Computing, pp. 49–54 (2009)

30. Abadi, M., Erlingsson, M.B., Ligatti, J.: Control-flow integrity principles, implementa-
tions, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 1–40 (2009)

31. Nick, L., Petroni, J., Hicks, M.: Automated detection of persistent kernel control-flow at-
tacks. In: Proceedings of the 14th ACM Conference on Computer and Communications
Security, pp. 103–115 (2007)

32. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with vmm-
based memory shadowing (2008)

33. Tzi-Cker Chiueh, F.-H.H.: RAD: a compile-time solution to buffer overflow attacks. icdcs.
In: 21st IEEE International Conference on Distributed Computing Systems (ICDCS 2001),
pp. 409–417 (2001)

34. Vendicator. Stack Shield: A ”stack smashing” technique protection tool for Linux

Structure-Based RSA Fault Attacks

Benjamin Michéle, Juliane Krämer, and Jean-Pierre Seifert

Security in Telecommunications
Technische Universität Berlin and Telekom Innovation Laboratories

{ben,juliane,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. Fault attacks against cryptographic schemes as used in tam-
per-resistant devices have led to a vibrant research activity in the past.
This area was recently augmented by the discovery of attacks even on the
public key parts of asymmetric cryptographic schemes like RSA, DSA,
and ECC. While being very powerful in principle, all existing attacks
until now required very sophisticated hardware attacks to mount them
practically – thus excluding them from being a critical break-once-run-
everywhere attack.

In contrast, this paper develops a purely software-based fault attack
against the RSA verification process. This novel attack consists in com-
pletely replacing the modulus by attacking the structures managing the
public key material. This approach contrasts strongly with known attacks
which merely change some bits of the original modulus by introducing
hardware faults. It is important to emphasize that the attack described
in this paper poses a real threat: we demonstrate the practicality of our
new public key attack against the RSA-based verification process of a
highly protected and widely deployed conditional access device – a set-
top box from Microsoft used by many IPTV providers. Furthermore, we
successfully applied our attack method against a 3G access point, leading
to root access.

Keywords: Fault attacks, RSA, signature verification, public key cryp-
tography.

1 Introduction

Throughout the last years there has been a great amount of research on hardware-
based fault attacks against cryptographic schemes [2,21,27]. The threat that
these attacks pose to cryptographic protocols has been adequately demonstrated.
In our work we develop a completely new fault attack against the verification
process of asymmetric signature schemes, which we call a structure-based fault
attack. The objective of our attack is the forgery of signatures for arbitrary files.
Contrary to other atacks, e.g., [2,21], we do not want to reveal the secret key.
Although our novel attack augments the possibilities of hardware-based fault
attacks, it is particularly useful for enabling purely software-based fault attacks.
Our attack can also be seen as an extension of non-control-data attacks [6] to
cryptographic protocols.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 301–318, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

302 B. Michéle, J. Krämer, and J.-P. Seifert

The general goal of our approach is to attack the verification process of asym-
metric signature schemes such as RSA so that signatures for arbitrary files can
be forged. Instead of introducing faults to the verification key itself, we intro-
duce faults to the structures managing the key. We use this approach to launch a
purely software-based break-once-run-everywhere attack against a highly secure,
widely deployed consumer electronics device: the set-top box (STB) used for Mi-
crosoft’s IPTV system Mediaroom [17]. Additionally, we present a second suc-
cessful structure-based attack we conducted against a highly security-sensitive
device, a 3G residential femtocell from Ubiquisys [28]. Both of the attacked sys-
tems1 use the RSA signature scheme.

Since it is not possible to factorize RSA moduli with currently used bit
lengths [13], many attacks rely on modifying some bits of the modulus by in-
ducing hardware faults [1,20,27]. These attacks are probabilistic and involve the
danger of destroying the attacked device as well. The attack presented in this
paper avoids directly factorizing the modulus or a hardware-based modified ver-
sion of it, i.e., the memory area containing the original key remains unmodified.
Instead, the entire RSA modulus is replaced by attacking the structures man-
aging it. This results in a different memory region being used as the modulus.
Thus, our novel attack is another proof that the public key parts have to be
protected, a demand that has been heard for several years [3,7].

The main contributions of this paper are:

– Development of a New Fault Attack: We introduce a novel attack
against signature verification processes, which we call a structure-based fault
attack. The main advantage of our attack is that we only modify the (dy-
namic) structures managing the public key material, but not the key material
itself. For RSA, this means that the memory region containing the original
modulus remains unmodified.

– A Compromise of Two Highly Security-Sensitive Devices: We prove
the practical applicability of our attack by compromising the security of two
highly tamper-resistant, security-sensitive devices: an STB by Microsoft and
a 3G access point.

The paper is organized as follows: In Section 2 we provide necessary background
information. The theory behind our structure-based fault attack is explained in
Section 3. Then we describe a proof-of-concept practical attack in Section 4,
i.e., the application of our attack against a real system and key. In Section 5
we explain related attacks like our successful attack against a 3G access point.
Finally, we close with our conclusions in Section 6.

2 Background

This section provides some background information necessary for understanding
the novel attack. First, we explain the de facto standard method for establishing
file integrity and authenticity by using digital signature schemes as defined in
PKCS#1. Then we evaluate existing attacks against these schemes.

1 Both vendors were notified of the vulnerabilities in their products.

Structure-Based RSA Fault Attacks 303

2.1 Protection of Integrity and Authenticity

Cryptographic Hash Function – SHA-1. A cryptographic hash function is an
algorithm that turns a possibly variable-sized amount of data into a fixed-size
output, the hash value. The SHA-1 [22] hash function produces 160-bit values.
Though there is distinct data being mapped to the same hash value due to the
domain being considerably larger than the image set, the design of good hash
functions ensures three characteristics: It must not be possible to calculate data
having a certain hash value (preimage resistance), to calculate data distinct to
given data, having the same hash value as these (second preimage resistance),
and to find two inputs that hash to the same output (collision resistance).

Asymmetric Cryptography with RSA. RSA is an asymmetric cryptographic al-
gorithm publicly described for the first time in 1978 [26]. Given sufficiently large
keys and the use of up-to-date implementations, RSA is believed to be secure.

An RSA signature scheme consists of a modulus N = pq, where p and q are
two distinct large primes of the same bit size, and two integers e, d < N such
that ed ≡ 1 mod ϕ(N), where ϕ(N) is Euler’s totient function. The public
key consists of the pair (N, e), whereas (p, q, d, ϕ(N)) form the secret key. If an
attacker learns any part of the secret key, he can determine the other parts, too.

Messages m satisfying 0 < m < N are signed with s = md mod N . The
message-signature pair (m, s) is verified ifm = se mod N . Recovering the secret
key is equivalent to factorizing N , which is computationally infeasible for the
size of primes used: Nowadays, p and q consist of at least 1024 bits each, thus
N is a 2048-bit semiprime.

Digital Signature Scheme Standard PKCS#1. The de facto standard digital
signature scheme used to protect the integrity and authenticity of files is defined
in PKCS#1 [11]. From the two presented signature schemes with appendix, we
will focus on RSASSA-PKCS1-v1 5.

The first step in creating a digital signature for a file is to calculate the file’s
cryptographic hash value. This hash value is then embedded in an ASN.1 [10]
structure indicating the used hash function, e.g., SHA-1. This string is padded
to the bit length used by the RSA algorithm, e.g., 2048bits, to form the encoded
message. The standard requires a minimum length of 8 octets for the padding
string, resulting in a minimum length of 368 bits for the encoded message. Table 1
illustrates an exemplary PKCS#1 encoded message. Finally, the RSA signature
primitive is applied to the encoded message to generate the signature.

The recipient can check the authenticity of the file by verifying its signature.
First, the verification primitive is applied to the signature and the RSA public
key. The resulting string has to be carefully checked, i.e., it must conform to
the previously explained format of an encoded message including padding, etc.
Failure to do so can create attack vectors that may lead to forged signatures and
compromised systems [5,19]. Then, the ASN.1 structure has to be analyzed to
identify the hash function that was used to create the hash value in the signature.
Finally, this hash value has to be compared against a freshly calculated hash of

304 B. Michéle, J. Krämer, and J.-P. Seifert

the file. If the encoding is valid and the hash values are identical, the recipient
will treat the file as authentic.

Table 1. 2048-bit PKCS#1 encoded message using the SHA-1 hash function

221 bytes 15 bytes 20 bytes

prefix padding postfix ASN.1 object identifier for SHA-1 SHA-1 hash

00 01 FF .. FF 00 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14 22 59 .. 11

2.2 Related Work

This section summarizes why pure mathematical attack strategies do not work
against SHA-1 and RSA, and explains attacks based on various fault injections.

Breaking SHA-1 and RSA. Attacking a hash function in the PKCS#1 setting
means conducting a second preimage attack. Having a 160-bit output, SHA-1
is resistant to brute force second preimage attacks [24]. Thus, SHA-1 is weak
collision resistant, which is crucial for any system relying on digital signatures.
In 2005, it was shown that SHA-1 is not strong collision resistant [31]. Due to
these results, Federal US agencies had to stop relying on digital signatures using
SHA-1 by the end of 2010 [23]. Yet, the lack of strong collision resistance cannot
be used to forge signatures in our case.

Attacking RSA effectively means factorizing the public modulus. Except for
quantum computers, there is no publicly known algorithm to date that can
factorize an n-bit RSA modulus in polynomial time, i.e., in time O

(
nk

)
for some

natural constant k. The most efficient algorithm known is the general number
field sieve whose expected running time is subexponential in the modulus’ bit
length [15]. This was used for the factorization of the largest RSA modulus that
has been factorized publicly so far [13], a 768-bit integer. However, this does not
pose any threat to 2048-bit moduli to date.

Xbox TEA Vulnerability. In 2003, a vulnerability [8] was reported on Microsoft’s
Xbox that allows the execution of unauthorized code. Microsoft uses a two-stage
boot loader: Stage one, the secret boot ROM, is hardwired in silicon whereas
stage two, the Flash Boot Loader (FBL), is stored in FLASH ROM along with
a public key used to verify the authenticity of the kernel. The stage one boot
loader checks the integrity of the FBL and, if successful, executes its code. The
integrity is verified by calculating a hash value of the FBL and public key using
the Tiny Encryption Algorithm (TEA) and comparing it to a hash stored in the
secret boot ROM.

TEA, however, has a related-key weakness [12] that allows an attacker to
generate hash collisions by complementing the most significant bit of adjacent
double words in the FBL. Whereas in [8] this was exploited to change jump
instructions, the same weakness was exploited in [9] to modify the modulus
stored in the FBL in a way that the resulting modulus was prime and the hash

Structure-Based RSA Fault Attacks 305

would not change. This faulty modulus allowed the creation of a new private
key, which could be used to sign modified kernel images accepted by the FBL.

Hardware-Based Fault Attacks. A hardware-based fault attack against the RSA
verification process was presented in 2005 [27] and generalized one year later [20].
The attack consists of forcing the attacked cryptographic device to use a slightly
modified modulus instead of the original one by inducing hardware faults. Since
the factorization of the altered modulus is known, the attacker can calculate a
new private key so that the device accepts the signature of any arbitrary message
signed with this new key. Besides the fact that this attack involves the danger
of destroying the attacked device, it is probabilistic, i.e., the modulus cannot be
modified deterministically. It also requires complex hardware to be conducted.
In contrast, our attack is completely software-based and thus does not suffer
from these limitations.

Non-Control-Data Attacks. The authors of [6] state that most memory cor-
ruption attacks are control-data attacks. This means that these attacks alter
the program flow by corrupting data that is loaded to the processor’s program
counter, such as return addresses and function pointers. This allows an attacker
to execute previously injected code or existing library code in a malicious way.

On the other hand, there are non-control-data attacks [6] that use memory cor-
ruption attacks to manipulate the data the program is working with. The authors
identified the following types of data to be critical for software security: config-
uration data, user input, user identity data, and decision-making data. They
demonstrate that by manipulating this data, security compromises equivalent to
control-data attacks are possible in many real-world software applications.

Regarding non-control-data attacks, we extend the list of security critical data
types to cryptographic key data used for signature verification. However, we do
not introduce faults to the data itself, but rather to the structures managing
this data such as pointers.

3 Structure-Based Fault Attack

In this section we describe our novel attack against signature verification pro-
cesses that we call a structure-based fault attack. It forces the verification process
to use a faulty public key instead of the original key. Knowledge of this faulty
public key is exploited to calculate a corresponding private key. This key can
then be used to sign arbitrary files that will be accepted by the verification pro-
cess. The impact on vulnerable systems can therefore be seen as comparable to
a universal forgery of digital signatures.

The novel idea of our attack is to introduce faults into the structures managing
the data needed for the public key operations. This attack scheme can be used
in different scenarios to attack a variety of systems. Depending on the system
being attacked, different privileges are required to carry out the attack. For
example, the ability to write to certain memory addresses is required for some

306 B. Michéle, J. Krämer, and J.-P. Seifert

scenarios. Section 3.1 lists possible ways to corrupt a program’s memory, which
can be seen as memory fault injections [6]. Section 3.2 explains how the attack
can be applied to RSA-based signatures. Section 3.3 lists scenarios where our
novel attack succeeds whereas obvious known attacks like disabling the signature
check would be unsuccessful.

3.1 Enabling the Attack

In general, a system performing cryptographic operations needs a structure man-
aging the relevant key material. For example, if the system is to verify an RSA-
based signature, the responsible process will need at least the public exponent,
a reference to the modulus, and its length. If it was possible to introduce faults
into any part of this structure, this would enable an attacker to forge signatures.
Faults to the program’s memory can be introduced in a number of different ways:

Stack-Based Buffer Overflows. Using a stack-based buffer overflow, an attacker
may be able to replace the exponent, modulus size information, or the pointer
to the modulus stored in memory. Depending on the system, this may also be
possible with heap-based buffer overflows as well as format string vulnerabilities.

Missing Boundary Checks. A process copying data from one memory location to
another might fail to correctly check boundaries, possibly due to signed integer
overflows. This could enable an adversary to overwrite key material structures
or parts of the modulus by providing malicious boundaries to the process. We
give an example of a similar type of vulnerability in Section 4.5.

Certificate Chains. The public key used for verification can be supplied on un-
protected media like hard disks. In this case it has to be protected by a certificate
chain, whose root certificate is securely stored inside the verifying device. This
adds more flexibility to the system, as certificates can be issued to third parties.
However, parsing the ASN.1 in certificate chains is complex and error prone, and
may lead to vulnerabilities [29,30]. Therefore system designers may be tempted
to amend certificates with an easily parsable header containing the public key
information needed for signature verification. This information includes at least
the exponent, the modulus size, and an offset indicating the start address of the
modulus bits. This optimization, however, introduces a new vulnerability: An ad-
versary can alter the header information which will ultimately enable the forgery
of signatures. Microsoft uses this optimization for their otherwise highly secured
IPTV system. In Section 4 we describe our proof-of-concept attack against Mi-
crosoft’s IPTV system leading to forged signatures.

Hardware-Based. Classical hardware-based fault attacks modify bits of the mod-
ulus while it is being loaded, e.g., from memory to processor registers. There are
various methods that can be used to induce faults in semiconductors [1]. Our
structure-based attack can be applied to this hardware-based scenario as well.
Instead of modifying the modulus bits directly, an adversary could introduce

Structure-Based RSA Fault Attacks 307

faults while the key material structures are being calculated or loaded. For ex-
ample, if an adversary knows the exact time when the pointer to the modulus is
calculated, a glitch attack can be used to introduce faults to this pointer. This
would result in a completely new modulus as seen by the verifying process.

3.2 Conducting the Attack

This section explains how to perform our structure-based attack against an RSA
modulus and shows that the resulting moduli are indeed well suited for this
attack. For completeness, we also describe how to apply our attack against the
public exponent of an RSA key.

Attacking the Modulus

Our attack is very powerful as it does not require altering the modulus it-
self [20,27], but rather the structures managing it: The attack starts with search-
ing the exploitable memory space for a number that can be used as a new
modulus. The exploitable memory space depends on the attacker’s ability to
modify the structures managing the modulus: An adversary may attack the size
of the modulus, the address information, or both.

By deterministically introducing faults into these structures, the attacker pro-
vides a new memory region to be used as modulus data, as illustrated in Figure 1.
Thus, the new modulus depends on the fault introduced to the pointer as well
as the current content of the memory at this address. The verification process
loads the data from the faulty address, which results in a new modulus N̂ being
used during verification.

The introduced fault is chosen so that the factorization and with that the
totient of this new modulus are known and its totient is coprime to e. Thus, the
attacker can calculate d̂, so that ed̂ ≡ 1 mod ϕ(N̂). As the verification process

now uses (N̂ , e) for verifying signatures, it accepts the signature of any given

message signed with (d̂, N̂).

Size. The first parameter that can be altered is the modulus’ size information,
which will be limited by a minimum bit length (cf. Section 2.1).

Pointer to Memory Address. The other parameter that can be modified is the
pointer to the memory area in which the modulus bits are stored. Detection of a
modified pointer might be difficult in a running system as the memory address
in which the modulus is stored may be dynamically calculated.

Combination of Size and Address. Both parameters can be modified in combina-
tion, too. Yet, some constraints may be imposed on the size and memory address
parameters. For example, in the case of certificate chains with additional headers
as described in Section 3.1, the resulting modulus may be checked to be within
the original key material memory address range. Nevertheless, a combination of

308 B. Michéle, J. Krämer, and J.-P. Seifert

(a) Before the attack (b) After the attack

Fig. 1. Structure-based fault attack: After inducing a fault in the pointer to the mod-
ulus N , the verification process will use the faulty modulus N̂ .

size and address modification can be used to generate a wide variety of possible
moduli in this case.

Our proof-of-concept uses exactly this combined attack with the described
constraint to forge signatures on a real system, which we describe in Section 4.

Combination with TOCTTOU Attacks. Another advantage of our attack is the
ability to combine it with time-of-check-to-time-of-use (TOCTTOU) attacks.
For example, if certificate chains are involved, a typical application flow will be
similar to the one shown in Figure 3(a). First, the verification process will call a
function to verify the validity of the public key by verifying the certificate chain.
The function will need the memory address of the modulus as an argument
passed to it. Typically, the pointer to this address will be copied when the
function is called. If the certificate chain is valid, the verification process will
call a second function to verify the signature. This function will also need a
pointer to the modulus data, which will be copied when the function is called.
This can enable an adversary to provide two distinct moduli to these signature
validation functions, without modifying the original modulus data.

Methods for applying faults to the arguments passed to the verification func-
tions are listed in Section 3.1.

Suitable Moduli

In practice, factorizing an integer becomes infeasible if at least two of its prime
factors are above a critical size. With commodity hardware, this critical size is
somewhere between 30 and 50 digits. The probability G(β) for a random integer
≤ x to have its second largest prime factor ≤ xβ is given in [14, p. 383]. Note
that this probability depends only on β, not on x.

To show that this formula can be applied in practice, we used freely available
software [32] to factorize random integers of varying bit length. For each bit
length, we tried to factorize 100 integers by finding prime factors of up to 30 digits
using the Elliptic Curve Method (ECM) with the optimal settings from [33].
The results given in Figure 2 demonstrate that it is indeed feasible to expect
a high percentage of random integers to be easily factorizable, depending on

Structure-Based RSA Fault Attacks 309

Fig. 2. Factorization of 100 random integers of varying bit length: Experimental results
(ECM, B1=250k, 430 curves) vs. theoretical probability that the second largest prime
factor of an integer has no more than 30 and 50 digits, resp.

the integers’ bit length. Note that the candidate moduli are not independently
distributed random numbers, as their respective bitstrings overlap. They are,
however, sufficiently random to yield good factorization results.

Figure 2 illustrates the fraction of random integers whose second largest prime
factor has no more than 30 and 50 digits, respectively. In other words, this
fraction of integers can be fully factorized using these prime factors.

With these settings and considering primes of up to 30 digits, the factorization
of 100 integers for each bit length given in Figure 2 required less than a day on
a computer with two Intel six-core Xeon X5650 CPUs running at 2.67GHz.
In contrast, trying to find prime factors of up to 50 digits for a single 2048-bit
integer took more than a week on the same machine. An adversary will therefore
always try to modify the modulus in a way that it becomes either small or that
it results in many modulus candidates of which one can be easily factorized.

Attacking the Exponent

The part of the public key that can be attacked easily is the public exponent e.
The attack consists of replacing the original exponent with e = 1. This can
be done either directly or by modifying the pointer to the memory containing
the exponent. The adversary can then provide a simple encoded message (cf.
Section 2.1) as a signature, i.e., without having to apply the signing primitive.
The verification process will raise such a signature to the power of 1, yielding
the same valid encoded message. Hence, the signature will be treated as valid.

310 B. Michéle, J. Krämer, and J.-P. Seifert

3.3 Infeasibility of Trivial Attacks

If we are able to manipulate data structures, naturally the question arises as
to why we do not disable the signature check directly in the program code in
memory. Another option would be to overwrite the original modulus with our
modulus. The answer is that there are at least six scenarios that prevent an
adversary from taking this route:

Read-Only Program Memory. If the memory region of the executable code is
write-protected, we cannot disable the signature check by overwriting the corre-
sponding memory region. However, references to cryptographic keys or the keys
themselves are normally kept on the stack or heap. In general, these memory
regions are not write-protected. Data kept in these structures might be prone to
buffer overflow attacks and may allow the insertion of faults into key structures.

Key Stored in Read-Only Memory (ROM). The above mentioned limitation for
executable code holds true for the key material, too. The key cannot be replaced
if it is stored in ROM. However, by changing the references to the key material
an adversary effectively introduces faults to the key being used for verification.

Length Restriction for Fault Insertion. If an adversary is able to overwrite the
entire modulus, he can overwrite it with his own modulus and therefore create
valid signatures. However, the amount of modulus bits that can be altered by an
adversary using buffer overflows or hardware fault attacks might be limited and
thus not sufficient to create an easily factorizable modulus. With our attack, the
change of a single bit results in a completely different modulus.

Locality of Fault Insertion. The memory area that can be altered depends on the
attack used to introduce faults to the verifying process’ memory. For example,
if an adversary can provoke a stack buffer overflow, he may only be able to
overwrite memory used by the stack. If the modulus is stored on the heap, the
adversary cannot overwrite the modulus directly.

Certificate Chains. If the system uses certificate chains to verify the authenticity
of a file, the modulus of the signed certificate cannot be modified. Any direct
modification would lead to an invalid certificate and an untrusted signature.

Run-Time Monitoring. The system being attacked could use run-time monitor-
ing to ensure the integrity of critical data structures such as public key material.
This would make it very difficult for an adversary to change the public key data
itself. However, introducing faults to management structures, such as function
arguments or local variables pointing to key material, are likely to go undetected.

4 Proof-of-Concept Practical Attack

As a proof-of-concept we applied our structure-based fault attack against the
set-top box (STB) used by Microsoft’s IPTV system Mediaroom [17]. We must

Structure-Based RSA Fault Attacks 311

emphasize that the companies involved in designing the STB and its software
spent a great amount of effort in securing it. Many leading TV service providers
around the world are offering this IPTV service to their customers. According
to Microsoft, more than 7 million consumers have a subscription [17].

We start with a short overview of the STB used for Mediaroom and its file
verification mechanism. Then we explain how we applied our attack to forge
file signatures. We used the simple attack against the exponent described in
Section 3.2 to successfully forge signatures verified by the boot loader. Due to
additional checks on the exponent, this attack did not succeed against the file
verification process used by the kernel. Therefore we applied the attack against
the modulus structure of the certificates as described in Section 3.2 to forge
signatures for the configuration files.

4.1 System Overview

Microsoft offers its IPTV system to big telecommunication companies to pro-
vide IPTV to their customers. An example is British Telecom, which offers this
product under the brand name BT-Vision. Every customer needs a special STB
that will connect to the IPTV backend system to receive IPTV streams. Due to
the strong security required by the copyright holders of the streamed content,
all HD content is encrypted by the streaming servers. The encrypted stream is
then passed through the main CPU of the STB to the secure coprocessor, which
decrypts and outputs the content over HDMI. Even the main CPU of the STB
never has access to decrypted video content. This setup results in a complete
end-to-end encryption from the IPTV backend to the customer’s TV.

Accordingly, the STB uses a trusted boot mechanism to ensure that only soft-
ware signed by Microsoft can be executed. In addition, every configuration and
customization file is signed by the IPTV provider. These files and the software
are provided on the built-in hard disk, along with signed files containing the cor-
responding hash values and the certificates required to verify these signatures.
The STB periodically checks for software and configuration updates, which are
automatically downloaded from the IPTV provider and placed on the disk. This
enables the provider to remotely fix vulnerabilities, add features, etc. The only
part of the software that cannot be updated remotely on older STB generations
is the encrypted boot loader stored in flash memory.

4.2 File Verification

During startup, the boot loader makes use of the secure coprocessor to verify
the authenticity of operating system files using a securely stored public key from
Microsoft. Some operators display custom splash screen images during startup,
which are verified in the same way, but with a certificate from the operator. After
handing over control to the kernel, every file containing executable code is verified
with the public key of MS before being loaded. Additionally, every customization
and configuration file used for the IPTV client application is verified with the

312 B. Michéle, J. Krämer, and J.-P. Seifert

(a) Verification process for signed
files

(b) Microsoft issues a certificate to BT-
Vision, which is used to sign files

Fig. 3. Microsoft STB: signature verification and generation

operator’s certificate. The signature verification process for operator-signed files
is illustrated in Figure 3(a) and consists of the following steps:

Certificate Chain Validation. The operator’s certificate is loaded from the hard
disk and must contain a valid PKCS#1 signature from Microsoft. This signature
is verified on the secure coprocessor, using a separate public key from Microsoft
that cannot be replaced.

Signature Validation. A file containing hash values as shown in Figure 3(b) is
loaded from the hard disk. Each line of this file contains a triple of name, size,
and SHA-1 hash value of a corresponding file on the disk, e.g., a splash screen
image. The signature of this hash value file is verified with the operator’s public
key. If the signature is valid, the signed hash values are treated as authentic.

Comparison of Hash Values. The file is loaded from the hard disk and the corre-
sponding SHA-1 hash value is calculated. The verification process compares this
value with the signed value from the list. If they are equal, the file is treated as
authentic and will be processed. For the boot loader this means that the splash
screen image can be displayed on the screen. Regarding the IPTV client, options
from a configuration file can be applied, for example.

The binary format of the certificate used to verify the signatures is proprietary.
It basically contains a public RSA key consisting of the modulus and the public
exponent, as well as a PKCS#1 signature over the modulus. This prevents an

Structure-Based RSA Fault Attacks 313

adversary from replacing the modulus, because he cannot forge the PKCS#1
signature that has to be issued by Microsoft. However, the exponent and the
structural information about the modulus, i.e., its size and starting address
within the file, are not protected by the signature. This enables us to launch
our structure-based fault-attack against the signature verification.

4.3 Attacking the Exponent

One easily exploitable weakness of the binary format described in Section 4.2 is
the public exponent not being protected by the signature. This allows an attacker
to modify the public key file and set the exponent to 1. He may then replace
the signature in the signature file with a plain PKCS#1 encoded message. The
verification process will verify the signature by raising it to the power of e, which
in this case is 1. The result will be the same value, that is, the plain PKCS#1
encoded message. Hence, the forged signature will be accepted.

4.4 Attacking the Modulus

The goal of this section is to practically demonstrate that a structure-based fault
attack against a public key modulus can be used to sign arbitrary files used by
the IPTV client process running on Microsoft’s STB.

We use the 2048-bit modulus of the public RSA key from BT-Vision, which
is stored on the hard disk of BT-Vision’s STB. Alternatively, the entire software
package containing the key can be downloaded from [4] using [25]. The Windows
CE kernel uses this public RSA key to verify signatures of various files when
they are loaded, including all the configuration files for the IPTV client soft-
ware. The modulus is embedded in the previously explained binary format and
has the following hexadecimal representation. The characters printed in italics
denote the faulty modulus N̂ that was chosen for the proof-of-concept.

CDCDBFC0FE0E908A43AB41070DAB8F33F1914186C3F66BCCED9769571A681BFA

D4560C4A15315E3C2BAA00CD353C779FB49DAA5517484C5E78593F92C221DD1C ←↩
48D3C31404DE9507171E5B1FCE3A6B3BBDE04CE161C983B6F1F0B942F4ED9AC0 ←↩
756FAD62CD09E96E83FA42DE6323B8CD740665C57BF064D034427BEB114136C8 ←↩
ECC7F4134988385A51F39C1BFA8D0D5FF0E737EEE42DCBC3F8AE350ED24992DE ←↩
4EEA8B2BF5B46273CBDBEBDAB936E97A03C589504A31CC71DA2DD1079AABE468 ←↩
298E89E1FA52D62FACB13FC9F159CE6C7C9660A7719C5C0C79CAC5FFDF2D3AAC ←↩
DAE36E57853C44839D9665AE347A73750AA7DAA142FE37A095793B6E8ED180E716 ←↩

In this real-world example, neither the starting address nor the bit length of the
original 2048-bit modulus is protected. The new modulus N̂ , however, has to
be within the memory range of the original one, i.e., it has to be a continuous
part of the original modulus. Another restriction stems from the signature com-
plying to PKCS#1, which requires the modulus’ bit length to be at least 368
(cf. Section 2.1). The standard, however, is not implemented correctly on the
STB and allows padding strings of only two octets in length. This results in a
minimum bit length of only 320. Due to the file format of the certificate file, size

314 B. Michéle, J. Krämer, and J.-P. Seifert

and starting address of the new modulus can be chosen only bytewise. Thus, we
get n-bit strings as key candidates with n ∈ {320 + i · 8 | i ∈ {0, . . . , 215}} and
[(2048 − n)/8] + 1 strings of bit length n for a fixed n. Altogether, the set of

available numbers consists of
∑215

i=0[(2048− (320+ i ·8))/8]+1 = 23652 integers.
For our attack to succeed, only one of these integers has to be fully factorized.

Due to the large number of available candidates with short bit length, chances
are high that at least one of them can be factorized very easily (cf. Section 3.2).
Using even the small set of primes {2, 3}, trial division indicates the 36th out of

217 analyzed 320-bit numbers to be a suitable N̂ :

4A15315E3C2BAA00CD353C779FB49DAA5517484C

5E78593F92C221DD1C48D3C31404DE9507171E5B16

N̂ has the small prime factor 3 with multiplicity 1. As its quotient is also prime
after dividing N̂ by 3, we know the factorization of N̂ . Its totient is, as expected,
coprime to e = 65537. The STB will accept any configuration and customization
file signed with the corresponding private exponent d̂:

18D4F063FFE8903C0DE226F9DF44715CCE2CD705

1232BB9252FA537E2EA43D51B45220319FDB75F116

4.5 Impact on the STB

The goal of our proof-of-concept is to demonstrate the efficiency and practical
applicability of our structure-based fault attack against a highly secured and
widely deployed device designed by very experienced large companies. It was
not our goal, however, to completely destroy the security of Microsoft’s STB.
Using our attack, we were thus able to replace various signature-protected files:

Configuration Files. These files control every aspect of the IPTV client software
running on the STB. Using our attack, anyone can freely change these parameters
on his own STB. This includes enabling various locked down features, e.g., DVB-
T receivers with time-shift functionality, USB connectivity, stand-alone mode,
etc. In addition, the menus can be changed and extended to include new services
from unauthorized providers.

Customization Files. The bitmap files used for the boot loader splash screens as
well as those used for the IPTV client can be exchanged. This does not seem to
be a threat at first sight, but it is. Obviously, to some degree Microsoft trusts
the companies deploying their IPTV service. Therefore it allows them to provide
custom images for splash screens as long as they are signed and therefore cannot
be replaced by a malicious end user.

Using our attack we can replace these images, which in itself does not pose a
threat. But due to additional flaws in the boot loader, a specially crafted bitmap
file causes the boot loader to overwrite significant parts of the memory. These
parts include mapped memory from the hardware, interrupt vectors, encrypted
flash memory, and other unidentified parts.

Structure-Based RSA Fault Attacks 315

In this particular case it seems difficult to exploit the vulnerability for control-
data attacks [6]. The reason for this is that the function copying the image data
replaces the most significant byte of every 4-byte integer with hexadecimal FF16.
In MIPS machine code [18], there is no valid machine instruction starting with
FF16. Additionally, with regard to overwriting return addresses, those addresses
starting with FF16 do not offer a promising attack vector. Finally, the overwrit-
ten memory parts do not seem to be used as stack memory.

However, if key material was stored in this memory area, we could launch
an attack against the modulus again. The advantage is obvious: We do not
depend on specific data to overwrite the modulus. Even with the restriction of
the MSB being FF16 there is a high probability to easily factorize the resulting
modulus. Interesting targets would be the keys used to ensure that only signed
code is executed. These keys, however, are not stored in the main memory and
therefore not vulnerable to this attack.

5 Further Attacks

The STB is not the only device being susceptible to structure-based attacks.
We were able to root a 3G access point by manipulating public key structures
as shown in the next section. Furthermore, we recall a similar vulnerability
described by Paul Leyland in PGP 2.x.

5.1 3G Access Point

During our research we analyzed a commercially deployed 3G residential femto-
cell, produced by Ubiquisys [28]. This device was found to be vulnerable to our
structure-based attack, too. It enabled us to flash a modified firmware to the
device resulting in full root access.

Essentially, a structure consisting of four elements is stored in memory and
passed to a function. We attack this structure by introducing a fault to one of
its parts while it is being loaded from the network. This effectively forces the
function to use a modulus supplied by us rather than the one securely stored on
flash memory. The result is a compromise of this security-sensitive function and
subsequently the entire device.

Normally only firmware images signed by the provider can be flashed to the
device, because an open 3G access point could be abused for all sorts of mali-
cious activity. As the RSA modulus used for verifying authentic firmware images
has a length of 2048 bit, it is unfeasible to attack it directly (cf. Section 2.2).
Therefore, we attacked the process supplying the verification process with the
modulus. Listing 1.1 shows the vulnerable code section:

316 B. Michéle, J. Krämer, and J.-P. Seifert

Listing 1.1. Vulnerable Code on 3G Femtocell

echo ”Checking downloaded f i l e s i gn a tu r e . . . ”
FILESIZE = ‘ s t a t −c %s r o o t f s . tgz ‘
FILESIG = ‘ cat r o o t f s . s i g ‘
i f [‘ s i gcheck r o o t f s . tgz $SIZE $SIG $MODULUS‘ != OK] ; then

echo ” S ignature check f a i l e d ”
DOWNLOADFAIL=1;

f i

The sigcheck function processes the first four arguments as firmware file,
size, signature, and modulus. It uses the fixed value of e = 65537 as the public
exponent. If the signature rootfs.sig can be verified using the supplied modulus,
the firmware file rootfs.tgz belonging to the signature will be treated as authentic.

Now our structure-based fault attack is launched: We provide sigcheckwith a
faulty argument, in this case a faulty signature in rootfs.sig. This signature consists
of two strings instead of the expected single string. The first string resembles a
signature whereas the second string is a modulus; both are provided by us. Now
effectively five arguments are being passed to sigcheck: our firmware file, its size,
our new signature, our new modulus, and the original modulus. sigcheck accepts
a secondmodulus as an optional fifth parameter, which is only used if the signature
cannot be verified using the first modulus; otherwise it is ignored.

Obviously, the implemented file verification method does not sufficiently pro-
tect the data structures involved in signature verification. Using our attack we
were able to forge signatures for manipulated firmware images which were ac-
cepted by the verification process running on the device. The impact is devas-
tating as our attack allows us to flash custom firmware images to the device and
also gives us a root shell on this powerful device.

5.2 PGP Key Vulnerability

In 1997, a vulnerability in PGP 2.x public keys was described [16]. The public
key file contains the public exponent and the modulus as well as the respective
bit length. A fingerprint can be generated using the command ”pgp -kvc” to
verify the key’s authenticity. This fingerprint is the MD5 hash of the key bits,
but not of their lengths. This design misfeature of PGP 2.x allows an adversary
to generate a PGP key that will have the same fingerprint as the original.

The attack is conducted by changing the bit length information of the expo-
nent and modulus, leaving the sum of the bit lengths as well as the fingerprint
unaltered. The modified exponent and modulus can then be exploited to gener-
ate a new private key either by using an exponent ê = 1 or by finding an easily
factorizable modulus.

Structure-Based RSA Fault Attacks 317

6 Conclusion

In this paper we introduced a novel attack against signature verification pro-
cesses. Instead of attacking the public key used for verification directly, we at-
tack the structures managing the public key material. Our approach opens the
door to a whole new class of attacks.

We demonstrated that the effort to launch our attack is minimal, once a
vulnerable system is found. We showed that even the most secure software from
one of the world’s largest software companies is vulnerable to our attack. This
leads us to conclude that system designers are not aware of these kinds of attacks.
Even large companies have to be reminded that they should reuse existing proven
cryptographic libraries and not try to enhance them. It is important to note that
we were able to apply our attack so easily due to software designers not expecting
this kind of attack. However, we have described how our structure-based attack
can be applied in other less obvious ways. Thus, we emphasize the necessity to
protect public key material against fault attacks.

We have also proved that our structure-based fault attacks are powerful yet
feasible for attackers with limited resources. Except for the hardware-based ap-
plication of our attack, all attacks are software-based. Required computing re-
sources are negligible, which we demonstrated in practice.

Interestingly, our attack on the STB would not have been possible if the im-
plementors of the relevant certificate format had been familiar with the PGP
key vulnerability. A detailed knowledge of the Xbox vulnerabilities might have
prevented our attack as well. It is therefore strongly advisable for implemen-
tors of security critical components to familiarize themselves with all previously
performed attacks.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s ap-
prentice guide to fault attacks. In: Proceedings of the IEEE 1994, pp. 370–382 (2006)

2. Biehl, I., Meyer, B., Müller, V.: Differential Fault Attacks on Elliptic Curve Cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

3. Brier, E., Chevallier-Mames, B., Ciet, M., Clavier, C.: Why One Should Also Secure
RSA Public Key Elements. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 324–338. Springer, Heidelberg (2006)

4. BT-Vision. STB Software Package (2010),
http://ref-bootstrap.nevis.btopenworld.com/upgrade/upgrade-files/005/

Philips DiT9719 05 L3/1.6.25077.835/PKG.DIR

5. Bushing, Marcan: Console Hacking 2008: Wii Fail (2008),
http://events.ccc.de/congress/2008/Fahrplan/events/2799.en.html

6. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-Control-Data Attacks
Are Realistic Threats. In: USENIX Security Symposium, pp. 177–192 (2005)

7. Gueron, S., Seifert, J.-P.: Is It Wise to Publish Your Public RSA Keys? In: Breveg-
lieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236,
pp. 1–12. Springer, Heidelberg (2006)

8. Huang, A.: Hacking the Xbox. No Starch Press (2003)

http://ref-bootstrap.nevis.btopenworld.com/upgrade/upgrade-files/005/Philips_DiT9719_05_L3/1.6.25077.835/PKG.DIR
http://ref-bootstrap.nevis.btopenworld.com/upgrade/upgrade-files/005/Philips_DiT9719_05_L3/1.6.25077.835/PKG.DIR
http://events.ccc.de/congress/2008/Fahrplan/events/2799.en.html

318 B. Michéle, J. Krämer, and J.-P. Seifert

9. Huang, A.: Xbox Hardware Hacking (2003),
http://events.ccc.de/congress/2003/fahrplan/event/604.en.html

10. ITU. Abstract Syntax Notation One (ASN.1): Specification of basic notation (ITU-
T Recommendation X.680). International Telecommunications Union, Nov. 2208

11. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. RFC 3447 (Informational) (February 2003)

12. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

13. Kleinjung, T., et al.: Factorization of a 768-bit RSA modulus. Cryptology ePrint
Archive, 2010/006

14. Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley
(1997)

15. Lenstra, A.K., Hendrik, J., Lenstra, W. (eds.): The development of the number
field sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993)

16. Leyland, P.: The comp.security.pgp FAQ (1997),
http://www.pgp.net/pgpnet/pgp-faq/#KEY-PUBLIC-KEY-FORGERY

17. Microsoft. Mediaroom, http://www.microsoft.com/mediaroom/you/
18. MIPS Technologies. MIPS32 Architecture (2008),

http://www.mips.com/products/architectures/mips32/#specifications
19. Mitre. Common Vulnerabilities and Exposures: CVE-2006-4339, RSA Signature

Forgery (2006),
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4339

20. Muir, J.A.: Seiferts RSA fault attack: Simplified analysis and generalizations. IACR
Eprint archive (2005)

21. Naccache, D., Nguyên, P.Q., Tunstall, M., Whelan, C.: Experimenting with Faults,
Lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 16–
28. Springer, Heidelberg (2005)

22. National Institute of Standards and Technology. Secure Hash Standard. Federal
Information Processing Standard (FIPS) 180-1 (April 1993)

23. National Institute of Standards and Technology. NIST’s Policy on Hash Functions
(2008), http://csrc.nist.gov/groups/ST/hash/policy.html

24. Paar, C., Pelzl, J.: Understanding Cryptography. A Textbook for Students and
Practitioners. Springer, Heidelberg (2010)

25. Plenkk. Pkgtool (2010),
http://www.t-hack.com/wiki/index.php/Download_Update_Files

26. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

27. Seifert, J.-P.: On authenticated computing and RSA-based authentication. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
CCS 2005, pp. 122–127. ACM, New York (2005)

28. Ubiquisys. Residential femtocells,
http://www.ubiquisys.com/residential-3g-femtocells

29. US-CERT. Vulnerability note vu#748355 (2002),
http://www.kb.cert.org/vuls/id/748355

30. US-CERT. Technical cyber security alert ta04-041a (2004),
http://www.us-cert.gov/cas/techalerts/TA04-041A.html

31. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

32. Zimmermann, P.: GMP-ECM, http://ecm.gforge.inria.fr/
33. Zimmermann, P.: Optimal parameters for ECM,

http://www.loria.fr/~zimmerma/records/ecm/params.html

http://events.ccc.de/congress/2003/fahrplan/event/604.en.html
http://www.pgp.net/pgpnet/pgp-faq/#KEY-PUBLIC-KEY-FORGERY
http://www.microsoft.com/mediaroom/you/
http://www.mips.com/products/architectures/mips32/#specifications
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4339
http://csrc.nist.gov/groups/ST/hash/policy.html
http://www.t-hack.com/wiki/index.php/Download_Update_Files
http://www.ubiquisys.com/residential-3g-femtocells
http://www.kb.cert.org/vuls/id/748355
http://www.us-cert.gov/cas/techalerts/TA04-041A.html
http://ecm.gforge.inria.fr/
http://www.loria.fr/~zimmerma/records/ecm/params.html

Fault Analysis of the KATAN Family

of Block Ciphers

Shekh Faisal Abdul-Latip1,2, Mohammad Reza Reyhanitabar1,
Willy Susilo1, and Jennifer Seberry1

1 Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering,

University of Wollongong, Australia
{sfal620,rezar,wsusilo,jennie}@uow.edu.au

2 Information Security and Digital Forensics Lab (INSFORLAB),
Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka, Malaysia
shekhfaisal@utem.edu.my

Abstract. In this paper, we investigate the security of the KATAN fam-
ily of block ciphers against differential fault attacks. KATAN consists
of three variants with 32, 48 and 64-bit block sizes, called KATAN32,
KATAN48 and KATAN64, respectively. All three variants have the same
key length of 80 bits. We assume a single-bit fault injection model where
the adversary is supposed to be able to corrupt a single random bit of
the internal state of the cipher and this fault injection process can be
repeated (by resetting the cipher); i.e., the faults are transient rather
than permanent. First, we determine suitable rounds for effective fault
injections by analyzing distributions of low-degree (mainly, linear and
quadratic) polynomial equations obtainable using the cube and extended
cube attack techniques. Then, we show how to identify the exact position
of faulty bits within the internal state by precomputing difference char-
acteristics for each bit position at a given round and comparing these
characteristics with ciphertext differences (XOR of faulty and non-faulty
ciphertexts) during the online phase of the attack. The complexity of our
attack on KATAN32 is 259 computations and about 115 fault injections.
For KATAN48 and KATAN64, the attack requires 255 computations (for
both variants), while the required number of fault injections is 211 and
278, respectively.

Keywords: Block ciphers, cube attack, differential fault analysis,
KATAN.

1 Introduction

Fault analysis as a type of side channel attack (or implementation attack) was
originally introduced by Boneh et al. [6] by an attack against implementations
of public key algorithms. The method was then adapted and extended by Biham
and Shamir [5] to differential fault analysis, making it applicable to implemen-
tations of symmetric key algorithms as well [9, 10]. Several models for fault

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 319–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

320 S.F. Abdul-Latip et al.

attacks have been introduced in the literature, among which we adopt a popular
model, called transient single-bit fault model, as used for example in [10, 9]. In
this model it is assumed that the adversary can inject one bit of error into the
internal state of a cipher during its execution (e.g. using a laser beam) without
damaging the bit position permanently; that is, the cipher can be reset to resume
its normal (unfaulty) operation and this fault injection can be repeated as many
times as required. For some interesting practical settings for carrying out these
attacks we refer to [15].

In this paper we present fault attacks on the KATAN family of block ciphers
[7]. KATAN consists of three variants with 32, 48 and 64-bit block sizes, named
KATAN32, KATAN48 and KATAN64, respectively. All three variants have the
same key length of 80 bits. KATAN aims at meeting the needs of an extremely
resource-limited environment such as RFID tags. Assuming the transient single-
bit fault attack model as used for example in [10, 9], we present a differential
fault attack empowered by the algebraic techniques of the cube attack [8] and
its extended variants [1].

The cube attack, put forth by Dinur and Shamir at EUROCRYPT 2009 [8], is
a generic type of algebraic attack that may be applied against any cryptosystem,
provided that the attacker has access to a bit of information that can be rep-
resented by a low-degree multivariate polynomial over GF(2) of the secret and
public variables of the target cryptosytem. Dinur and Shamir in [8] compared
the cube attack to some of the previously known similar techniques [14, 16].
Recently, we have presented an extended variant of the cube attack in [1] to
extract low-degree (mainly quadratic) sparse system of equations in addition to
the linear equations obtainable from the original cube attack. In this paper, we
employ these techniques together with fault analysis to build a hybrid attack
against KATAN.

Previous Work. Cryptanalytical results on the KATAN family have been
presented in [13, 3]. Recall that all three members of the KATAN family (i.e.
KATAN32, KATAN48, and KATAN64) have 254 rounds. Knellwolf et al. [13]
presented partial key recovery attacks (called “conditional differential cryptanal-
ysis”) against 78 rounds of KATAN32, 70 rounds of KATAN48, and 68 rounds
of KATAN64 and concluded that the full versions of these ciphers seem to have
sufficiently large number of rounds (254 rounds) to provide a confident secu-
rity margin against their proposed attack. Bard et al. [3] presented cube attacks
against 60, 40, and 30 rounds, and algebraic attacks against 79, 64, 60 rounds
of KATAN32, KATAN48 and KATAN64, respectively. They also showed a side
channel attack against the full 254 rounds of KATAN32, which has been the
only attack against a full-round member of the KATAN family, so far. Bard et
al.’s attack against the full-round KATAN32 combines the cube attack technique
with a side channel attack model; namely, it assumes that adversary can obtain
one bit of information from the internal state of the cipher and this one-bit in-
formation leakage must be error free. Bard et al. stated that such information
is supposed to be captured by some side channels; for example, power or timing
analysis or electromagnetic emanation, but we note that such measurements are

Fault Analysis of the KATAN Family of Block Ciphers 321

not error (noise) free in practice and it is not clear whether Bard et al’s attack
can be adapted to handle such errors. Another way to capture such information
leakage (albeit again hardly error free) is to use intrusive probing techniques
which are expensive and usually are destructive to the underlying device. We
also note that the Bard et al.’s attack is not a fault attack. The idea behind
a fault attack, as introduced by Boneh et al. [6], is that if a wrong (faulty)
result is released from a cryptosystem (as well as the normal unfaulty results)
then adversary can use that information to break the cryptosystem. (Bard et
al. do not assume and do not use any faulty computations in their side channel
model).

Our Contribution. We combine the cube attack [8] and its extended variant
(as presented in our previous work) [1] with fault analysis to form successful
hybrid attacks against the full-round versions of all three members of the KATAN
family. To the best of our knowledge, this is the first time that the cube attack
and its extended variants are combined with “fault analysis” to form a successful
hybrid attack against a block cipher. We assume a single-bit transient fault
injection model as our side channel model, where the adversary is supposed to
be able to corrupt a single random bit of the internal state of the cipher and this
fault induction process can be repeated (by resetting the cipher); i.e., the faults
are transient rather than permanent.

First, we determine effective rounds for fault inductions by analyzing distribu-
tions of low-degree polynomial equations obtainable using the cube and extended
cube attack methods. Then, we show how to identify the exact position of faulty
bits within the internal state by precomputing difference characteristics for each
bit position at a given round and comparing these characteristics with cipher-
text differences during the online phase of the attack. Finally, we show how to
recover a low-degree (linear and quadratic) system of multivariate polynomial
equations in the internal state and subkey bits that are easily solvable. The
complexity of our attack on KATAN32 is 259 and it requires about 115 fault
injections. For KATAN48 and KATAN64, the attack requires 255 computations
(for both variants), while the required number of fault injections is 211 and 278,
respectively.

Our fault attack on KATAN32 turns out to need about 28 times more (off-
line) operations compared to the previous side channel attack by Bard et al.
[3] which requires 251 computations; nevertheless, our attack model (namely,
the transient fault injection at random bit positions in the internal state) is
essentially different from the (noise free) information leakage assumption by
Bard et al. in [3], and is arguably more practical as supported by previously
known results such as [15]. Furthermore, our attack is directly adapted to the
cases of KATAN48 and KATAN64 (both requiring 255 computations) and, so
far, is the only attack against the latter variants of KATAN in the side channel
attack model.

322 S.F. Abdul-Latip et al.

2 A Brief Description of KATAN

KATAN is a family of block ciphers [7] consisting of three variants, namely:
KATAN32, KATAN48 and KATAN64. Each variant accepts an 80-bit secret
key and performs 254 rounds to produce a ciphertext. All variants also share
the same key schedule as well as the same nonlinear functions. KATAN ciphers
aim at constrained environments such as hardware implementations with limited
resources (power consumption, clock frequency and gate counts). KATAN32 with

ka

kb

IR

L1

L2

Fig. 1. The Outline of the KATAN Family of Block Ciphers

block size of 32 bits is the lightest variant in the family. A 32-bit plaintext
block is loaded into two registers L1 and L2, respectively, of length 13 and 19
bits. The bits are indexed in the right-to-left order, from 0 to 12 for L1 (i.e.
L1 = (L1[12], · · · , L1[0])) and from 0 to 18 for L2 (i.e. L2 = (L2[18], · · ·L2[0])).
The least significant bit (LSB) of the plaintext block is loaded to bit 0 of register
L2 followed by the other bits until the 18-th bit, and then remaining bits are
loaded into register L1 until the most significant bit (MSB) of the plaintext is
loaded into bit 12 of register L1. One round of KATAN32 consists of shifting the
register L1 and L2 one bit to the left, and computing two new bit values using
nonlinear functions fa and fb, respectively. These new bits are then loaded into
the LSB bits of registers L2 and L1, respectively. The nonlinear functions fa and
fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka (1)

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb (2)

where IR specifies an irregular update rule (i.e. L1[x5] is used only when IR = 1),
and ka and kb are two subkey bits. We refer to [7] for the details on the irregular
update rules (IRs) for each round.

Fault Analysis of the KATAN Family of Block Ciphers 323

The key schedule for all variants of KATAN expands an 80-bit secret key K
to 508 subkey bits using the following linear mapping

ki =

{
Ki, for 0 ≤ i ≤ 79, (3)

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, otherwise (3′)

Given the precomputed subkey values, the values of ka and kb for a particular
round t are defined as k2t and k2t+1, respectively. Thus the subkey for round t is
defined as ka||kb = k2t||k2t+1. The selection for tap positions, xis (1 ≤ i ≤ 5) and
yjs (1 ≤ j ≤ 6), and the length of registers L1 and L2 are defined independently
for each variant as shown in Table 1. Besides the tap positions and the length

Table 1. Parameters for the KATAN Family of Block Ciphers

Cipher |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

of the registers, the difference between all the three variants is the number of
times the nonlinear functions fa and fb are applied in each round using the same
subkey. One round of KATAN48 is shifting the registers L1 and L2 two bits to
the left (i.e. requires two clock cycles). In each shift within the same round, the
function fa and fb are applied using the same subkey ka||kb. Hence, full round
of KATAN48 requires 508 clock cycles (i.e. 254 rounds × 2 clocks per round) to
produce the ciphertext.

In contrast, one round of KATAN64 requires the registers L1 and L2 to be
shifted three bits to the left (i.e. requires three clock cycles). Similarly, in each
shift within the same round, the function fa and fb are applied using the same
subkey ka||kb. As a result, the full round KATAN64 requires 762 clock cycles to
produce the ciphertext. Fig. 1 shows the generic structure of the KATAN family
of block ciphers. The initial state of KATAN-v (for v=32, 48, 64) is denoted by
IS = (sv−1, · · · , s1, s0) = L1||L2 for the associated L1 and L2 registers.

3 An Overview of the Cube and Extended Cube Attacks

The main idea underlying the cube attack [8] is that the multivariate “master”
polynomial p(v1, · · · , vm, k1, · · · , kn), representing an output bit of a cryptosys-
tem over GF(2) of secret variables ki (key bits) and public variables vi (i.e.
plaintext or initial values), may inject algebraic equations of low degrees, in
particular linear equations. The cube attack provides a method to derive such
lower degree (especially linear) equations, given the master polynomial only as
a black-box which can be evaluated on the secret and public variables.

Let’s ignore the distinction between the secret and public variables’ notations
and denote all of them by xi, · · · , x�, where � = m + n. Let I ⊆ {1, ..., �} be

324 S.F. Abdul-Latip et al.

a subset of the variable indexes, and tI denote a monomial term containing
multiplication of all the xis with i ∈ I. By factoring the master polynomial p by
the monomial tI , we have:

p(x1, · · · , x�) = tI · pS(I) + q(x1, · · · , x�) (4)

where pS(I), which is called the superpoly of tI in p, does not have any common
variable with tI , and each monomial term tJ in the residue polynomial q misses
at least one variable from tI . A term tI is called a “maxterm” if its superpoly in
p is linear polynomial which is not a constant, i.e. deg(pS(I)) = 1.

The main observation of the cube attack is that, the summation of p over tI ,
i.e. by assigning all the possible combinations of 0/1 values to the xis with i ∈ I
and fixing the value of all the remaining xis with i /∈ I, the resultant polynomial
equals pS(I) (mod 2). Given access to a cryptographic function with public and
secret variables, this observation enables an adversary to recover the value of the
secret variables (kis) in two steps, namely the preprocessing and online phases.

During the preprocessing phase, the adversary first finds sufficiently many
maxterms, i.e. tIs, such that each tI consists of a subset of public variables
v1, · · · , vm. To find the maxterms, the adversary performs a probabilistic lin-
earity test (such as the BLR test of [4]) on pS(I) over the secret variables
ki ∈ {k1, · · · , kn} while the value of the public variables not in tI are fixed
(to 0 or 1) (cf. [8] for more details).

Then the next step is to derive linearly independent equations in the secret
variables kis from pS(I) that are closely related to the master polynomial p, such
that, solving them enables the adversary to determine the values of the secret
variables. Once sufficiently many linearly independent equations in the secret
variables are found, the preprocessing phase is completed. In the online phase, the
adversary’s aim is to find the value of the right-hand side of each linear equation
by summing the black box polynomial p over the same set of maxterms tIs
which are obtained during the preprocessing phase. Now, the adversary can easily
solve the resultant system of the linear equations, e.g. by using the Gaussian
elimination method, to determine the values of the secret (key) variables.

A generalized variant of the cube attack, called extended cube, has been shown
in [1] for extracting “low-degree nonlinear” equations efficiently. It revises the
notion of tweakable polynomials from the original cube attack as

p(x1, ..., x�) = tI ·XK · pS(I∪K) + q(x1, ..., x�) (5)

where tI is a subterm of size s over xis with i ∈ I; XK is a subterm of size r
over xis with i ∈ K, and pS(I∪K) is the superpoly of tI · XK in p. Note that
since both subterms tI and XK are factored out from p, the superpoly pS(I∪K)

does not contain any common variable with tI and XK , and each term tJ in
the residue polynomial q misses at least one variable from tI · XK . Now using
the main observation of the cube attack, the summation of p over ‘tI ·XK ’, by
assigning all the possible combinations of 0/1 values to the xis with i ∈ I∪K and
fixing the value of all the remaining xis with i /∈ I ∪K, the resultant polynomial
equals to pS(I∪K) (mod 2).

Fault Analysis of the KATAN Family of Block Ciphers 325

The only difference between the original cube attack and the extended cube
attack is in the preprocessing phase; the online phase for both of the methods are
the same. During the preprocessing phase of the extended cube attack, the ad-
versary finds many monomials tIs, such that each tI consists of a subset of public
variables v1, · · · , vm, and the corresponding superpoly pS(I) is a polynomial of
degree D. To find those tIs, the adversary performs the generalized version of
the BLR test as proposed by Dinur and Shamir in [8] on pS(I) over the secret
variables k1, · · · , kn.

To derive efficiently a nonlinear equation pS(I) of degree D over secret vari-
ables kis, the adversary should identify the subset S ⊆ {1, · · · , n} that consists
of the secret variable indexes within pS(I), in which each ki with i ∈ S is either
a term or a subterm of pS(I). To do this, the subterm XK (cf. equation (5))
is assigned with each secret variable ki ∈ {k1, · · · , kn} one at a time while the
subterm tI is fixed to the monomial in which its superpoly pS(I) is of degree D,
and all public variables vis with i /∈ I are fixed to 0 or 1. For each assignment of
XK , the adversary chooses κ sets of vector x ∈ {0, 1}n−1 representing samples
of n− 1 secret variables kis with i /∈ K independently and uniformly at random,
and verify that XK (or similarly the secret variable ki that is assigned to XK)
exists as a variable in the superpoly pS(I) if pS(I∪K) = 1 for at least an instance
vector x.

Having the set of secret variables kis with i ∈ S of the nonlinear superpoly
pS(I) of degree D enables the adversary to derive the nonlinear equation over the
secret variables by finding all terms of degrees 0, 1, · · · , D within the superpoly
equation. Suppose N = |S| is the number of secret variables kis with i ∈ S of
the superpoly pS(I) of degree D. To derive pS(I), firstly the adversary assigns the
subterm XK one at a time with a monomial indexed by a subset K ∈ T where
T is a set of cube indexes of monomials constructed from all combinations of kis
from degree 1 until degree D with i ∈ S. In each assignment, all vi, ki /∈ tI ·XK

are set to zero. Then to verify the existence of the monomial XK ∈ T as a term
in pS(I), the adversary sums p over the monomial tI ·XK . If the result is equal
to 1, then with probability 1, XK is a term in the superpoly pS(I). Finally, the
existence of a constant term (i.e. a term of degree 0) in the superpoly pS(I) is also
determined by setting all public variables, vis, for i /∈ I and all secret variables
k1, · · · , kn to zero, and sum the polynomial p over tI . Similarly, if the result is
equal to 1, then with probability 1, a constant term exists within the superpoly
pS(I).

4 Fault Analysis of KATAN

We simulate a fault attack assuming that the adversary can cause one transient
single-bit error at a time in the internal state during the encryption/decryption
process. It is assumed that the adversary can choose the target round(s) in which
faults should be injected, for example, based on the side channel information
inferred from power consumption traces and/or the clocking sequence (e.g., this
can be done by triggering a laser beam with the target number of clocks of the

326 S.F. Abdul-Latip et al.

cryptographic module). However, it is assumed that adversary cannot influence
the exact position of the faulty bit within the internal state; he can only inject
the fault randomly with the hope that it will hit the target bit positions by
chance.

Using this fault model, our aim is to recover the 80-bit secret key used in
KATAN. Our attack consists of two phases, namely offline and online phases.
During the offline phase, firstly we identify the rounds (of the enciphering pro-
cess) that can provide linear and quadratic equations due to single-bit faults.
We call such rounds as effective rounds for our fault attacks.

Next, we determine the position of the faulty bits within the internal state us-
ing difference characteristics which we construct using the cube methods. Given
a faulty ciphertext resulting from a random fault injection into an “unknown”
internal state bit sj+t after t-th round, to determine the position j, first we
compute the ciphertext differential, Δc, by XORing (summing modulo 2) the
non-faulty ciphertext c with the faulty ciphertext c′ such that Δcj = cj ⊕ c′j , for
0 ≤ j < |L1|+ |L2|. Then, guided by the lookup table, we refer to positions with
values ‘0’ and ‘1’ (and ignore those with a ‘-’ sign) within each characteristic and
compare them with bits in the same positions in Δc. If all the corresponding
bits in Δc match the bits in the characteristic of the faulty bit sj+t then we can
ensure that a fault has been injected into the bit at position j.

Finally, we extract a low-degree system of multivariate polynomial equations
which are obtainable within the effective rounds using the difference between
faulty and non-faulty ciphertexts facilitate by the cube and extended cube meth-
ods. More precisely, we only concentrate on extracting simple independent linear
and quadratic equations that are easily solvable. After having a sufficient number
of independent equations, we determine the target internal state bit positions
for fault injections.

Knowing both the rounds and bit positions to be aimed, next the adversary
moves to the online phase. In the online phase, the adversary repeatedly clocks
the ciphers from the beginning until achieving one of the target rounds. Upon
achieving this round, the adversary randomly injects a fault to the internal state
with the hope to effect one of the target bits by chance. As the fault injection
might not hit any one of the target bits, and the effect of one injection should
be mutually exclusive from the effect of other injections, the error caused by
the injections need to be transient rather than permanent. This is to enable the
adversary to inject faults into the internal state repeatedly until all the target bits
of each target round have been injected successfully. The aim of the online phase
is to determine the value of right hand side of each equation obtained during the
offline phase. Having the value of right-hand side of the equations, enables the
adversary to recover the subkey bits provided by the key schedule algorithm.
The knowledge about the value of the subkey bits enables the adversary to
exploit the key schedule algorithm to recover the 80-bit secret key.

Our attack on the KATAN ciphers exploits the observation that after recov-
ering n neighboring “subkey bits”, the adversary can recover the 80-bit “secret
key” with time complexity of 280−n computations. This is because the 80-bit

Fault Analysis of the KATAN Family of Block Ciphers 327

secret key is directly loaded into an 80-bit LFSR (the key register) and the sub-
key bits for round t > 79 are computed using a linear update function and shift
operations (cf. Equation 3 and Equation 3′). Therefore, at any round t > 79,
if we can recover the value of some of the LFSR bits (or similarly the value of
the subkey bits), we can guess the remaining 80−n values of the LFSR internal
state bits and iteratively clock the LFSR backward until round t = 0 to recover
the secret key. Suppose the highest and the lowest index values of the subkey
bits to be recovered are H and L respectively. Hence, our aim is to recover the
subkey bits such that H − L ≤ 79, as all subkey bits between these index range
will be the content of the 80-bit LFSR at a particular round t.

4.1 Attack on KATAN32

To apply differential fault attack on KATAN, first we determine the effective
rounds for fault injection. To do this, we find the number of linear and quadratic
equations within each round during the offline phase using cube methods. For
each faulty round t, we consider each internal state bit as the monomial tI (cf.
equation 4) one at a time, and each bit of the ciphertext as a polynomial p
over the internal state bits at round t. Next we detect the linear and quadratic
equations by applying linearity and quadraticity tests using the BLR and gen-
eralized BLR tests as described in Section 3. Each time an equation (linear and
quadratic) being detected, we accumulate the number of equations accordingly
until all the internal state bits of round t have been considered. We repeat this
procedure for each round of all KATAN’s variants. As a result, Fig. 2 is derived
indicating the range of rounds that should be considered for fault injections. In
the figure, “Faulty Round” denotes the number of rounds that the cipher has
run before injecting a fault into the internal state.

In order to examine the actual internal state position of faulty round t which
has been affected by a random fault injection, the difference characteristic for
each of the internal state bit of round t needs to be constructed. To construct
the difference characteristics, we select each of the internal state bit of round
t as the monomial, tI , one at a time and apply the BLR linearity test on the
corresponding superpoly, pS(I), to determine whether the test will result con-
stant 0, constant 1, linear or higher degree superpoly. Constant 0 and constant 1
superpolys indicate values ‘0’ and ‘1’ in the difference characteristic bits, respec-
tively. However linear and higher degree superpolys indicate unknown values in
the characteristic bits, i.e. the ‘-’ sign. Table 6 in Appendix shows an example
of difference characteristics for KATAN32 for faulty round t = 237.

The fault attack can be efficiently applied if the rounds that have high number
of quadratic equations are considered. As for KATAN32, this refers to the fault
injections after t = 237 rounds as shown in Fig. 2. Considering this faulty round,
we provide a sample set of linear and quadratic equations that can help in
recovering the target subkey bits as shown in Table 3 in Appendix.

In the table, L2 = (s18+t, · · · , s0+t) and L1 = (s31+t, · · · , s19+t). Δcj denotes
a ciphertext bit difference where the difference is obtained by XORing the non-
faulty ciphertext bit cj with the faulty ciphertext bit c′j , i.e. Δcj = cj ⊕ c′j , for

328 S.F. Abdul-Latip et al.

Fig. 2. Distribution of Linear and Quadratic Equations in KATAN

0 ≤ j ≤ 31. For subkey bits we use a slightly different notation to facilitate our
analysis, in which we denote the kis as subkey bits whose indexes range from
0 ≤ i ≤ 507 (in which bits indexed 0 until 79 are from the original secret key
bits). We do not consider each subkey bit indexed i > 79 as a boolean function
over the 80 secret key bits. Instead, to facilitate our analysis we only consider
each one of them as an independent new variable.

Considering fault injection after t = 237 rounds, 10 subkey bits can be found
within the quadratic equations, i.e. k474, . . . , k482 and k484 (cf. Table 3 for the
polynomial equations and Table 6 for the difference characteristics in Appendix).
Recovering these subkey bits, requires solving the corresponding quadratic equa-
tions in which some of the linear equations listed in the table should also be
involved, as they can provide the solution for the internal state bits of registers
L1 and L2 within the quadratic equations. For example, to find the solution for
k474, we consider s1+t as the faulty bit after t = 237 rounds. Considering the dif-
ference between non-faulty and faulty ciphertext bit c24, i.e. Δc24, the symbolic
representation of the differential is

s22+t + s26+t + s31+t + k474 + s24+ts27+t = Δc24. (6)

The value of the right hand side (RHS) of this equation (either 0 or 1) can be
determined by numerically computing Δc24, such that Δc24 = c24 ⊕ c′24. To
recover the value of k474 for example, requires the values of all other bits within
the equation to be known. If there exist a case in which the value of certain bits
cannot be recovered considering the equations derived from the faulty round t

Fault Analysis of the KATAN Family of Block Ciphers 329

only, the adversary needs to consider earlier rounds to find equivalent bits since
the value of the internal state bits are only shifted from the LSB to MSB except
the LSB bits. Tables 2–5 in Appendix show the set of equations that are solvable
and resulting from faulty rounds t = 231, 237, 243 and 249, respectively. Note
that, comparing more earlier rounds results in having difficulty to determine the
faulty bit positions within register L1 and L2. This is because the uniqueness of
the difference characteristics will slowly disappear as we consider earlier rounds.

4.2 Attack on KATAN48

Following the method used on KATAN32, we consider the KATAN48 block ci-
pher as our next target. Since KATAN48 requires two clocks for each round, if a
certain internal state bit sj+t cannot be solved directly in certain faulty round
t, then its solution may be found by referring to bit sj−2n+t in an earlier faulty
round t− n, for j − 2n ≥ 29 and 31 ≤ j ≤ 47, or j − 2n ≥ 0 and 2 ≤ j ≤ 28.

Our attack on KATAN48 considers faulty rounds t = 234, 238, 242, 246 and
250 as the target rounds. Similar to the analysis of KATAN32, the selection of
these rounds is based on the number of quadratic equations that can be found
within the effective rounds. Fig. 2 shows that the highest number of quadratic
equations for KATAN48 can be found at faulty rounds t = 237 and t = 238. Since
the difference characteristics are more clearly defined when we consider later
rounds, we choose t = 238 rather than t = 237 as our first target round. Table
8 in Appendix shows the polynomial equations obtained using the difference
between non-faulty and faulty ciphertexts for fault induction after t = 238 rounds
of KATAN48. Table 7 in Appendix shows the equations obtained using fault
induction after t = 234 rounds of KATAN48. For equations obtainable using
fault induction after t = 242, 246, 250 rounds of KATAN48 we refer to the full
version of this paper in [2].

4.3 Attack on KATAN64

Now we consider a fault attack on the third variant of the KATAN block cipher,
namely, KATAN64. In KATAN64 we have L2 = (s38+t, · · · , s0+t) and L1 =
(s63+t, · · · , s39+t). Since each round in KATAN64 requires 3 clocks, if certain
internal state bits sj+t cannot be recovered at faulty round t, we can try to
recover their values from bit sj−3n+t of faulty round t− n, for j − 3n ≥ 39 and
42 ≤ j ≤ 63, or j − 3n ≥ 0 and 3 ≤ j ≤ 38. Our attack on KATAN64 considers
faulty rounds t = 236, 238, 242, 246 and 250 as the target rounds. Equations
obtainable using fault induction after these rounds are provided in the the full
version of this paper in [2].

4.4 Attack Complexity

Result on KATAN32.Our experimental simulation of the attack on KATAN32
shows that 21 subkey bits from faulty rounds t = 231, 237, 243, 249 can be

330 S.F. Abdul-Latip et al.

recovered, requiring collectively 20 specific internal state bit positions (regardless
of the round number) to be considered as target faulty bits, as shown in Tables
2–5 in Appendix. The average number of fault injections needed to successfully
hit these 20 target faulty bits is 115 (where the average is taken over 10,000
trials).

Since the highest index of the subkey bits is H = 498 and the lowest index is
L = 474 (hence H − L = 24 < 80) the target subkey bits can be found in the
80-bit key register within rounds 209 ≤ t ≤ 236. Therefore, to recover the secret
key, we need to guess the remaining 59 bits of the key register and then to clock
the key register backward until round t = 0. This reduces the complexity of the
attack to 259 computations compared to 280 by exhaustive key search.

Result on KATAN48. The attack on KATAN48 results in recovering 25 sub-
key bits considering faulty rounds t = 234, 238, 242, 246, 250 which requires col-
lectively 27 specific internal state bits positions to be considered as target faulty
bits (refer to Tables 7 and 8 in Appendix and the full version of this paper in
[2]). The average number of required fault injections to successfully hit these
27 target faulty bits is 211 (where the average is taken over 10,000 trials). The
highest and the lowest subkey bit indexes are H = 500 and L = 476, respectively
(hence H−L = 24 < 80), so all the subkey bits can be found within the content
of the 80-bit key register at rounds 210 ≤ t ≤ 237. Therefore, to recover the
secret key we need to guess the remaining 55 bits of the key register and then
to clock backward until round t = 0 to recover the secret key. Thus, finding the
correct key requires 255 computations in this attack.

Result on KATAN64. In attacking KATAN64 we consider faulty rounds t =
236, 238, 242, 246, 250 to recover (at least) the same 25 subkey bits as in the
attack on KATAN48 which requires collectively 44 specific internal state bit
positions to be faulty (refer to the full version of this paper in [2]). The average
number of required fault injections to successfully hit these 44 target faulty bits is
278 (where the average is taken over 10,000 trials). This results in an attack with
complexity 255 (Noticing that the highest index of the subkey bits is H = 491
and the lowest index is L = 476 (i.e. H − L = 15 < 80); hence, these 25 target
subkey bits can be found in the 80-bit secret key register and we only need to
guess the remaining 55 bits of the key register).

5 Conclusion

In this paper, we showed fault attacks using a transient single-bit fault model
against all three members of the KATAN family; namely, KATAN32, KATAN48
and KATAN64. Our attacks employ the cube attack and its extensions to deter-
mine the effective fault injection rounds, to generate the difference characteristics
and to generate linear and quadratic equations. The complexity of our attack
on KATAN32 is 259 computations and about 115 fault injections. For KATAN48

Fault Analysis of the KATAN Family of Block Ciphers 331

and KATAN64, the attack requires 255 computations (for both variants), while
the required number of fault injections is 211 and 278, respectively. Our fault
attacks on KATAN48 and KATAN64, so far, are the only attacks against the
full-round versions of these ciphers.

Acknowledgments. We thank Flavio D. Garcia and the anonymous reviewers
of ISPEC 2012 for their constructive comments and suggestions.

References

[1] Abdul-Latip, S.F., Reyhanitabar, M.R., Susilo, W., Seberry, J.: Extended Cubes:
Enhancing the Cube Attack by Extracting Low-Degree Non-Linear Equations. In:
Cheung, B., et al. (eds.) ASIACCS 2011, pp. 296–305. ACM (2011)

[2] Abdul-Latip, S.F., Reyhanitabar, M.R., Susilo, W., Seberry, J.: Fault Analysis of
the KATAN Family of Block Ciphers. Cryptology ePrint Archive: Report 2012/030
(full version of this paper)

[3] Bard, G.V., Courtois, N.T., Nakahara Jr., J., Sepehrdad, P., Zhang, B.: Algebraic,
AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers. In:
Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196.
Springer, Heidelberg (2010)

[4] Blum, M., Luby, M., Rubinfield, R.: Self-Testing/Correcting with Application to
Numerical Problems. In: STOC, pp. 73–83. ACM, New York (1990)

[5] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

[6] Boneh, D., DeMillo, R., Lipton, R.: On the Importance of Checking Cryptographic
Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 37–51. Springer, Heidelberg (1997)

[7] DeCannière, C., Dunkelman,O., Knežević, M.: KATANandKTANTAN—AFam-
ily of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

[8] Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer,
Heidelberg (2009)

[9] Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

[10] Hojśık, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)

[11] Hojśık, M., Rudolf, B.: Floating Fault Analysis of Trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008)

[12] Hu, Y., Zhang, F., Zhang, Y.: Hard Fault Analysis of Trivium. Cryptology ePrint
Archive, Report 2009/333 (2009)

[13] Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSR-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

332 S.F. Abdul-Latip et al.

[14] Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Communi-
cation and Cryptology, pp. 227–233. Kluwer Academic Publisher (1994)

[15] Skorobogatov, S.P., Anderson, R.J.: Optical Fault Injection Attacks. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 31–48.
Springer, Heidelberg (2003)

[16] Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential
Attack. IACR ePrint Archive, Report 2007/413 (2007),
http://eprint.iacr.org/2007/413

[17] Vielhaber, M.: AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU Time.
Cryptology ePrint Archive, Report 2009/402, IACR (2009)

A Appendix

Table 2. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 231 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s8+t Δc7 s10+t

s9+t Δc8 s11+t

s10+t Δc9 s12+t

s11+t Δc17 s9+t

s19+t Δc28 s22+t

s20+t Δc29 s23+t

s21+t Δc30 s24+t

s22+t Δc31 s25+t

http://eprint.iacr.org/2007/413

Fault Analysis of the KATAN Family of Block Ciphers 333

Table 3. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 237 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s1+t Δc28 s19+t + s23+t + s28+t + k480 + s21+ts24+t

Δc24 s22+t + s26+t + s31+t + k474 + s24+ts27+t

Δc6 s6+t

Δc4 s4+t + s15+t + k481 + s0+ts5+t + s7+ts9+t

s2+t Δc29 s20+t + s24+t + s29+t + k478 + s22+ts25+t

Δc27 s4+t

Δc25 s0+t

Δc5 s5+t + s16+t + k479 + s1+ts6+t + s8+ts10+t

s3+t Δc30 s25+t + s30+t + k476 + s23+ts26+t

Δc28 s5+t

Δc26 s1+t

Δc12 s8+t

Δc6 s6+t + s17+t + k477 + s2+ts7+t + s9+ts11+t

s4+t Δc27 s2+t

Δc7 s7+t + s18+t + k475 + s3+ts8+t + s10+ts12+t

s5+t Δc30 s7+t

Δc28 s3+t

Δc21 s21+t + s26+t + k484 + s19+ts22+t

Δc8 s19+t

s9+t Δc2 s11+t

s10+t Δc12 s12+t

s11+t Δc7 s9+t

s12+t Δc12 s10+t

s19+t Δc22 s22+t

s20+t Δc23 s23+t

s21+t Δc24 s24+t

s22+t Δc25 s25+t

s23+t Δc26 s26+t

Δc12 s20+t

s24+t Δc27 s27+t

Δc20 s7+t + s18+t + s22+t + s27+t + k475 + k482 + s3+ts8+t+
s10+ts12+t + s20+ts23+t + 1

Δc13 s21+t

334 S.F. Abdul-Latip et al.

Table 4. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 243 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s0+t Δc21 s22+t + s27+t + k494 + s20+ts23+t

s1+t Δc27 s6+t

Δc22 s23+t + s28+t + k492 + s21+ts24+t

Δc20 s3+t

s2+t Δc28 s7+t

Δc23 s24+t + s29+t + k490 + s22+ts25+t

Δc21 s4+t

Δc19 s0+t

s3+t Δc24 s25+t + s30+t + k488 + s23+ts26+t

Δc22 s5+t

Δc20 s1+t

Δc0 s6+t + s17+t + k489 + s2+ts7+t + s9+ts11+t

s4+t Δc25 s26+t + s31+t + k486 + s24+ts27+t

Δc21 s2+t

Δc1 s7+t + s18+t + k487 + s3+ts8+t + s10+ts12+t

s18+t Δc4 s21+t

Δc1 s4+t + s15+t + k493 + s0+ts5+t + s7+ts9+t

s19+t Δc5 s22+t

Δc2 s5+t + s16+t + k491 + s1+ts6+t + s8+ts10+t

s21+t Δc7 s24+t

s22+t Δc8 s25+t

Δc5 s19+t

s23+t Δc9 s26+t

Δc6 s20+t

s24+t Δc10 s27+t

Δc7 s21+t

s26+t Δc20 s21+t + s23+t + s31+t + k486 + k496 + s19+ts22+t+
s24+ts27+t + 1

Δc9 s23+t

Fault Analysis of the KATAN Family of Block Ciphers 335

Table 5. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t = 249 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s4+t Δc19 s22+t + s26+t + s31+t + k498 + s24+ts27+t

s5+t Δc20 s0+t

s21+t Δc1 s24+t

s23+t Δc3 s26+t

Δc0 s20+t

s25+t Δc2 s22+t

Table 6. Difference characteristics for KATAN32 (faulty round t=237). ’0’ and ’1’
denote differential values 0 and 1 of the corresponding ciphertext bit differential Δcj ,
and ’-’ denotes an unknown differential value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 - 0 - 0 - - 0 - - 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 -
1 0 0 1 - 0 - 0 - - 0 - - - 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 - -
2 0 1 - 0 - 0 - - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 - - -
3 1 - 0 - - - - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
4 - 0 - 0 - 0 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0 - - 1 - - - - -
5 0 - 0 - 0 0 0 0 - - - - - 0 0 0 0 0 0 0 0 0 0 - - 1 - - - - - -
6 - 0 - 0 0 0 0 - - - - - - 0 0 0 0 0 0 0 0 0 - - 1 - - - - - - 0
7 0 - 0 0 - 0 - - - - - - - 0 0 0 0 0 0 1 0 - - 1 - - - - - - - -
8 - 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
9 0 0 0 0 0 1 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - - - 0 - - -
10 0 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
11 0 0 0 1 0 0 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 - - - -
12 0 0 1 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - 0 0 - - - - -
13 0 1 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0
14 1 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0
15 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1
16 0 0 0 0 0 0 0 0 - 0 - - - 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1 0
17 0 0 0 0 0 0 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1 - 0
18 0 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 1 0 - 0 1 - 0 0 - 1 - 0 -
19 0 0 0 - 0 - 0 - - - - 1 - 0 0 0 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - -
20 0 0 - 0 - 0 - - - - 1 - - 0 0 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - - -
21 0 0 0 - 0 - - - - 1 - - - 0 0 0 0 0 - 0 1 - 0 0 0 1 0 0 - 0 - -
22 - 0 - 0 - - - - 1 - - - - 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - - - - -
23 0 - 0 - - - - 1 - - - - - 0 0 0 - 0 1 - 0 0 0 1 0 0 - - - - - -
24 - 0 - - - - 1 - - - - - - 0 0 - 0 1 - 0 0 0 1 0 0 - 0 - - - - -
25 0 - - 0 0 1 - - - - - - - 0 0 0 1 - 0 0 0 1 0 0 0 0 - - - - - -
26 - - 0 0 1 - - - - - - - - 0 0 1 - 0 0 0 1 0 0 0 0 - - - - - - -
27 - 0 0 0 - - 0 - 1 - - - - 0 0 - 0 0 0 1 0 0 0 0 0 - 0 - - - - -
28 0 0 0 - 0 0 0 1 - 0 - 0 - 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - -
29 0 0 - 0 0 0 1 - 0 - 0 - - 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - -
30 0 - 0 0 0 1 - 0 - 0 - - 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - -
31 - 0 0 0 1 - 0 - 0 - - 0 - 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1

Δcj

sj+t

Table 7. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t=234 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s6+t Δc26 s15+t

Δc25 s14+t

s9+t Δc28 s17+t

s11+t Δc18 s19+t + 1

s29+t Δc41 s37+t

s30+t Δc42 s38+t

336 S.F. Abdul-Latip et al.

Table 8. Polynomial equations obtained using the difference between non-faulty and
faulty ciphertexts for fault induction after t=238 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s4+t Δc9 s12+t + 1
Δc16 s13+t

s5+t Δc17 s14+t

s6+t Δc24 s15+t

s8+t Δc47 s0+t

Δc13 s16+t

s9+t Δc14 s17+t

s10+t Δc15 s18+t

s11+t Δc16 s19+t

s12+t Δc17 s20+t

Δc16 s29+t

Δc15 s3+t

s13+t Δc17 s30+t

s14+t Δc18 s31+t

Δc17 s5+t

s15+t Δc19 s32+t

Δc6 s7+t

s16+t Δc20 s33+t

Δc13 s8+t

s17+t Δc38 s29+t + s35+t + s41+t + k482 + s30+ts38+t

Δc21 s34+t

Δc14 s9+t

Δc12 s16+t + s25+t + k479 + s3+ts12+t + s10+ts18+t

s18+t Δc22 s35+t

Δc15 s10+t

s19+t Δc46 s1+t

Δc40 s31+t + s37+t + s43+t + k480 + s32+ts40+t

Δc14 s18+t + s27+t + k477 + s5+ts14+t + s12+ts20+t

s29+t Δc33 s37+t

s30+t Δc25 s38+t

Δc17 s13+t + s22+t + k483 + s0+ts9+t + s7+ts15+t

s31+t Δc36 s33+t + s39+t + s45+t + k478 + s34+ts42+t + 1
Δc35 s39+t

Δc18 s14+t + s23+t + k481 + s1+ts10+t + s8+ts16+t

Δc7 s4+t

Δc1 s4+t + s40+t + s46+t + k476 + s35+ts43+t

s32+t Δc36 s40+t

s33+t Δc37 s41+t

s34+t Δc38 s42+t

s35+t Δc39 s43+t

Biclique Cryptanalysis of Reduced-Round

Piccolo Block Cipher

Yanfeng Wang1,2, Wenling Wu1, and Xiaoli Yu1

1 State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
wangyanfengok1@gmail.com, {wwl,yuxiaoli}@is.iscas.ac.cn

Abstract. Piccolo is a lightweight block cipher, with a fixed 64-bit block
size and variable key length 80- or 128-bit, which was proposed at CHES
2011. The iterative structure of Piccolo is a variant of Generalized Feistel
Network. The transformation utilizing different-size-word based permu-
tation improves diffusion property of Piccolo and the simple key schedule
algorithm reduces hardware costs. By analyzing the distribution of the
subkeys, we present a biclique cryptanalysis of full round Piccolo-80 with-
out postwhitening keys and 28-round Piccolo-128 without prewhitening
keys. The attacks are respectively with data complexity of 248 and 224

chosen ciphertexts, and with time complexity of 278.95 and 2126.79 en-
cryptions.

Keywords: Lightweight block cipher, Piccolo, Meet-in-the-middle, Bi-
clique cryptanalysis, Complexity.

1 Introduction

The large development of low resource devices such as RFID tags and
sensor nodes increases the need to provide security among such devices. The
implementation costs should be taken into account when choosing security algo-
rithms for resource-limited devices. Symmetric-key algorithms, especially block
ciphers, still play an important role in the security of embedded systems. Re-
cently, a lot of block ciphers suitable for these environments have been designed,
such as PRESENT[1], MIBS[8], KATAN & KTANTAN[4], TWIS[10], PRINT[9],
LBlock[13], KLEIN[6], LED[7] etc.

Piccolo[12] is a 64-bit block cipher and is designed to be particularly suitable
for low-cost devices. According to the different key length, we denote the ciphers
by Piccolo-80/128 respectively. The designers evaluated the security of Piccolo
by various attacks and attacked Piccolo-80 to 17 rounds and Piccolo-128 to 21
rounds under the related-key model. The best result of actual single-key attack
is 3-Subset Meet-in-the-Middle(MITM) attacks on 14-round Piccolo-80 and 21-
round Piccolo-128 without whitening keys whose complexity is not presented.
Designers also took the worst setting into consideration.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 337–352, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

338 Y. Wang, W. Wu, and X. Yu

MITM attack[5], introduced by Diffe and Hellman, is a typical method in the
cryptanalysis of block cipher, whose outstanding property is the extremely low
data complexity. Over the past few years, variants have also been developed,
for example 3-Subset MITM[3]. The method has been improved with many
techniques to carry out the preimage attack on the hash function[11]. These
techniques include spice-and-cut framework, initial structure, partial matching
etc. Using the characteristic of key expansion in cipher algorithm, adversary can
construct an initial structure and filter out wrong keys based on the result of
partial matching, which is the main idea of the method. Recently, [2] gave the
first attack on the full AES-128/-192/-256 with the biclique technique.

In this paper, 6-round bicliques of dimension 8 are constructed for both
Piccolo-80 and Piccolo-128. Taking advantage of the 8-dimension bicliques, we
give an attack on full round Piccolo-80 without postwhitening keys and another
attack on 28-round Piccolo-128 without prewhitening keys. The attacks are re-
spectively with data complexity of 248 and 224 chosen ciphertexts, and with
time complexity of 278.95 and 2126.79 encryptions. As far as we know, these are
currently the best results on Piccolo.

This paper is organized as follows. Section 2 provides a brief description of Pic-
colo and the notations used throughout this paper. Section 3 presents the struc-
ture of the biclique cryptanalysis of reduced-round Piccolo. Section 4 presents the
key recovery attacks on full round Piccolo-80 and 28-round Piccolo-128. Finally,
we present conclusions in Section 5.

2 A Brief Description of Piccolo

We first introduce some notations used throughout this paper and then give a
simple description of the block cipher Piccolo.

2.1 Notations

r: iterative rounds.
ki: i-th

116-bit group of the key k.
a|b:concatenation.
a(b): b denotes the bit length of a.
{a}b: representation in base b.
a[c−d]: c-th bit to d-th bit of a.
Xt: t-th byte of X .
Xt,s: t-th and s-th bytes of X , 16 bits in total.
P r
(64): 64-bit input of r-th round.
T r
(64): state after F -function in r-th round.
Cr

(64): 64-bit output of r-th round.

1 All counts involved in the text always start from 0.

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 339

(64)P

0rk 1rk

2rk 3rk

2 4rrk 2 3rrk

2 2rrk
2 1rrk

0wk

0(16)P 1(16)P 2(16)P 3(16)P

1wk

2wk
3wk

(64)C0(16)C 3(16)C2(16)C1(16)C

Fig. 1. The structure of the block cipher Piccolo

2.2 Description of Piccolo

Encryption Algorithm. The general structure of Piccolo is a variant of Gen-
eralized Feistel Network, which is depicted in Figure 1. The number of it-
erative rounds is 25 for Piccolo-80 and is 31 for Piccolo-128. Each round is
made up of two functions F : {0, 1}16 → {0, 1}16 and one round permutation
RP : {0, 1}64 → {0, 1}64. F consists of two S-box layers separated by a diffu-
sion matrix M. RP divides a 64-bit input into eight bytes and then permutes
them(Figure 2).

0 1 2 3 4 5 6 7

2 7 4 1 6 3 0 5

Fig. 2. Round permutation of the block cipher Piccolo

Key Schedule. To reduce the cost of hardware and to decrease key set-up time,
the key schedule of Piccolo, referred to as KS80

r and KS128
r , is rather simple. A

series of 16-bit constants, con80
i and con128

i , are used in the key schedule.
Key Schedule for 80-Bit Key Mode: The key scheduling function for the 80-bit

key mode divides an 80-bit key K(80) into five 16-bit words ki(16) (0 ≤ i < 5)
and provides the subkeys as follows:

340 Y. Wang, W. Wu, and X. Yu

Algorithm KS80
r (K(80)) :

wk0 ← kL0 |kR1 , wk1 ← kL1 |kR0 , wk2 ← kL4 |kR3 , wk3 ← kL3 |kR4
for i← 0 to (r − 1) do

(rk2i, rk2i+1)← (con80
2i , con

80
2i+1)⊕

⎧⎨⎩
(k2, k3) if i mod 5 = 0 or 2

(k0, k1) if i mod 5 = 1 or 4

(k4, k4) if i mod 5 = 3

Key Schedule for 128-Bit Key Mode: The key scheduling function for the 128-bit
key mode divides a 128-bit key K(128) into eight 16-bit words ki(16)(0 ≤ i < 8)
and provides subkeys as follows:

Algorithm KS128
r (K(128)) :

wk0 ← kL0 |kR1 , wk1 ← kL1 |kR0 , wk2 ← kL4 |kR7 , wk3 ← kL7 |kR4
for i← 0 to (2r − 1) do

if (i + 2) mod 8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7)← (k2, k1, k6, k7, k0, k3, k4, k5)

rki ← k(i+2) mod 8 ⊕ con128
i

3 Biclique Cryptanalysis of Piccolo

3.1 Definition of Biclique

Now we introduce the notion of biclique[2]. Let f be a subcipher that connects
2d states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]}:

{K[i, j]} =

⎡⎣ K[0, 0] K[0, 1] . . . K[0, 2d − 1]

.

K[2d − 1, 0] K[2d − 1, 1] . . . K[2d − 1, 2d − 1]

⎤⎦ .
The 3-tuple [{Ci}, {Sj}, {K[i, j]}] is called a d-dimensional biclique, if Ci =
fK[i,j](Sj) for all i, j ∈ {0, . . . , 2d− 1}. Figure 3 stands for the relations between
3-tuple. What’s more, the vertexes of the graph stand for states while the edges
stand for keys. Besides dimension, the length, which is defined as the number of
rounds that f covered, is also a significant characteristic of a biclique. Accord-
ing to the definition of biclique, a d-dimensional biclique needs to establish 22d

relationships simultaneously. [2] proposed an approach to find a d-dimensional
biclique from related-key differentials. And it is difficult to construct a long bi-
clique of high dimension for many cipher algorithms, especially for the algorithm
with well diffusion. As a result, the availability of the Biclique Cryptanalysis de-
pends on the cipher’s diffusion property and key schedule. In detail, MITM with
biclique attack works well for block ciphers having simple key schedule and slow
diffusion.

After analyzing the key schedule algorithm of Piccolo, we can come up with
the conclusion that the subkeys are linearly derived from the master key. Fur-
thermore, six rounds (19-24 rounds) in Piccolo-80 and six rounds (22-27 rounds)

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 341

0S

1S

2 1dS

0C

1C

2 1dC

[0,0]K

[2 1,2 1]d dK

Fig. 3. d-dimensional biclique

in Piccolo-128 use k4 and k0 only once, respectively. Taking advantage of these
properties and in consideration of the data complexity, we construct 6-round
biclique for both Piccolo-80 and Piccolo-128, with the same dimension of 8.

3.2 Pattern of Biclique Cryptanalysis of Piccolo

In fact, the biclique cryptanalysis of Piccolo is a meet-in-the-middle attack with
biclique, which follows the strategy of initial structure and partial matching. At
first, we construct a series of bicliques with high dimension by tools like related-
key differentials. Then, we filter out wrong keys in every biclique by matching
the internal variable in two directions. The attacks described in our paper are
always in the single-key model and the procedures are described as follows:

Step 1. Part Key Space. Part the key space into groups, in other words, the
key groups cover the full key space and do not intersect.

Step 2. Build Biclique. Construct a biclique of appropriate dimension for each
key group.

Step 3. Filter Out Keys. Delete wrong keys that don’t match for every biclique.
1. Choose the position of the matching internal variable v.
2. Ask the decryption oracle to decrypt the ciphertext Ci obtained during

the building of biclique, then get the corresponding plaintexts Pi. In our
attack, the dimension of the biclique is 8, so the number of Pi is 2

8.
3. Let Pi → v be forward direction computation and v ← Sj be backward

direction computation. If one of the tested keys K[i, j] is the correct key,
it will map state Sj to the plaintext Pi. Therefore, the adversary can
delete the wrong key that does not match.

Step 4. Search Candidates. Exhaustively test the remaining key candidates un-
til the correct key is found.

The structure of the Biclique Cryptanalysis aimed at Piccolo can be described
as Figure 4.

By using the technique of partial matching, the computational complexity of
matching will be reduced significantly. Therefore, the complexity of the whole
attack will be reduced and moreover we probably find a better attack.

342 Y. Wang, W. Wu, and X. Yu

0P

1P

0C

1C

82 1
C

0S

1S

82 1
S

Match Biclique

Oracle

82 1
P

Fig. 4. Structure of Biclique Cryptanalysis

4 Key Recovery for Reduced-Round Piccolo

In this section, the key recoveries for full round Piccolo-80 without postwhitening
and 28-round Piccolo-128 without prewhitening are given. The parameters of the
key recovery are summarized in Table 1.

Table 1. Parameters of the key recovery in Piccolo

Piccolo-n Rounds BDimension Matching v Forward Rounds Backward Rounds BLength

Piccolo-80 25(0-24) 8 T 11
1,4 0-11 18-12 6(19-24)

Piccolo-128 28(0-27) 8 T 15
1,4 0-15 21-16 6(22-27)

† v :matching variable.
† BLength: Length of Biclique; † BDimension: Dimension of Biclique.

4.1 Key Recovery for Full Round Piccolo-80

According to the key schedule, we know that the subkeys are linearly derived
from the master key (Table 2). Moreover, six rounds (19-24 rounds) in Piccolo-80
use k4 only once. Using this property, we can build 6-round biclique of dimen-
sion 8 and then explore a MITM attack with biclique on full round Piccolo-80
without postwhitening keys.

Key Partitioning. For more clarity we define the key groups with respect to
the master key and enumerate the groups of keys by 264 base keys. The base keys
K[0, 0] are all possible 264 80-bit values, with the last 16 bits fixed to 0(16) and
the remaining 64 bits running over all values. The keys K[i, j] (i, j ∈ {0, 1}8) of
one group are defined as follows:

K4[0, 0] = 00 K4[i, 0] = i0

K4[0, j] = 0j K4[i, j] = ij

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 343

Table 2. Key schedule of Piccolo-80

Piccolo-80

whitening keys wk0 = kL
0 |kR

1 , wk1 = kL
1 |kR

0 , wk2 = kL
4 |kR

3 , wk3 = kL
3 |kR

4

round i rk2i
⊕

con80
2i rk2i+1

⊕
con80

2i+1 round i rk2i
⊕

con80
2i rk2i+1

⊕
con80

2i+1

0 k2 k3 13 k4 k4

1 k0 k1 14 k0 k1

2 k2 k3 15 k2 k3

3 k4 k4 16 k0 k1

4 k0 k1 17 k2 k3

5 k2 k3 18 k4 k4

6 k0 k1 19 k0 k1

7 k2 k3 20 k2 k3

8 k4 k4 21 k0 k1

9 k0 k1 22 k2 k3

10 k2 k3 23 k4 k4

11 k0 k1 24 k0 k1

12 k2 k3

† light grey color: position of key difference;
† italic: rounds covered by bicliques.

This yields the partition of the Piccolo-80 key space into 264 groups of 216 keys
each. The following two procedures are exhaustively applied to every key group.

6-Round Biclique of Dimension 8. We will construct a 6-round (f : 19-
th round to 24-th round) biclique of dimension 8 for every key group. Having
known the keys covered by the biclique, we need to determine 28 states and 28

ciphertexts that satisfy the definition of the biclique.
The state S is defined as P 19

(64), which is the input of the 19-th round encryp-
tion, and C is the output of the 24-th round i.e. the ciphertext of Piccolo-80
without postwhitening keys. Procedure of computing the states and ciphertexts
is depicted in Figure 5:

Step 1. The adversary fixes C0 = 0(64) and derives S0 = f−1
K[0,0](C0) (Figure 5,

Left). The process is called basic computation.

Step 2. Encrypt S0 under different keys K[i, 0] (0 < i < 28) and the corre-
sponding ciphertexts are denoted by Ci (Figure 5, Middle). The key differ-
ences between keys K[i, 0] and K[0, 0] will cause states’ differences which
are noted with black color and the computational complexity is determined
by the influence of the key difference.

Step 3. Decrypt C0 under different keys K[0, j] (0 < j < 28) and the corre-
sponding results are denoted by Sj (Figure 5, Right). Similarly, the influence
of the key difference is noted with black color.

344 Y. Wang, W. Wu, and X. Yu

0S

19

20
rk rk

rk rk

rk rk

rk rk

rk rk

21

22

23

24

0C

0S

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

iC

jS

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

0C

rk rk

Fig. 5. Biclique construction in Piccolo-80

The black color in the figure represents that the computation process is dif-
ferent with the basic computation. Thanks to the simple key schedule of Piccolo,
two differential trails caused by key difference share no active area. Luckily, it is
easy to prove that the tuples also conform to combined differentials, that is to

say: Sj
K[i,j]−−−−→ Ci (i, j ∈ {0, 1}8) are always true.

Until now, for every key group, we obtain a corresponding 8-dimensional bi-
clique as discussed above.

Matching over 19 Rounds. Taking the computational complexity into ac-
count we choose v = T 11

1,4, which is a 16-bit length of the state after F -function
in round 11, as the internal matching variable. Other positions also can be chosen
as internal matching variable, such as T 11

0,5, T
10
1,4 , T 10

0,5 and so on. The choosing
is according to the principle that the attack complexity is better than the brute
force attack. Next, we compute the values of the matching variables in both
directions and delete the wrong key that doesn’t match.

Backward direction: Now we evaluate the amount of computation in backward
direction. Let Sj be fixed and use keys K[i, j] (0 ≤ i < 28) to partly decrypt
Sj . We can get the corresponding values of T 11

1,4, denoted by Vi,j . Because of the
same starting point, the computational complexity is determined by the influence
caused by key differences between K[i, j] (i �= 0) and K[0, j]. As shown in the
right part of Figure 6, there is no difference between the states noted by grid
line and we can skip the computation of the states with white color obtaining
the matching variables.

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 345

iP

0rk 1rk

0

1
2rk 3rk

4rk 5rk

6rk 7rk

8rk 9rk

10rk 11rk

2

3

4

5

34rk 35rk

36rk 37rk

12rk 13rk

14rk 15rk

16rk 17rk

18rk 19rk

6

7

8

9

10
20rk 21rk

22rk 23rk
11

[,]
,

K i j
i i jP V

jS

17

18

19

0wk 1wk

[,]
,

K i j
i j jV S

32rk 33rk
16

30rk 31rk
15

28rk 29rk
14

26rk 27rk
13

24rk 25rk
12

is computed once
8is computed 2 times

Fig. 6. Process of MITM : Biclique analysis of full round Piccolo-80

346 Y. Wang, W. Wu, and X. Yu

F functions are the major contributor to the computational complexity of the
attack. Therefore, in order to simply evaluate the complexity, we firstly count
the number of F functions that we need to compute and compare it with that
in the round-reduced cipher.

Moreover, for a single Sj , the matching values can be obtained after computing
2 F functions(noted with grid line) once and 11 F functions (noted with black
color) 28 times.

Forward direction: The process of forward computation is a little more com-
plex than that of backward direction. Firstly, we ask for the decryptions of the
ciphertexts Ci (0 ≤ i < 28) and get 28 plaintexts Pi. Then we encrypt the
plaintexts Pi with the keys K[i, j] (0 ≤ j < 28) to T 11

1,4.
As demonstrated in the left part of Figure 6, it makes no difference between

the encryptions of the first 4 rounds (0-3 rounds), which is not true for the fol-
lowing rounds. As a result, for a single Pi, the area to be computed 28 times
includes 13 F -functions and the area to be computed only once includes 8 F -
functions.

Search Candidates. In the last stage of the attack, the attacker exhaustively
tests the remaining key candidates in each key group, until the correct key is
found.

Complexities.When evaluating the performance of the attack described above,
we need to consider both the data complexity and the computational complexity.

Data Complexity. The data complexity is directly determined by the number
of ciphertexts that we need to decrypt (Figure 5). We fix C0 = 0(64) for every
biclique and all the ciphertexts share the same values in bytes C1,5, so the data
complexity does not exceed 248.

Computational Complexity. First, let us see the complexity of constructing a
single biclique with C0 = 0(64). As before, we aim at counting the F functions
that we need to compute. Firstly, the basic computation costs 12 F functions.
In order to get Ci (0 ≤ i < 28), we need to compute 2 F functions 28 times.
Similarly, computing Sj (0 ≤ j < 28) involves 8 F functions 28 times. Thus, a
biclique is constructed with complexity of 25.7 full round Piccolo-80 encryptions.

In the matching part we compute the internal variable with 16 bits in two
directions for each biclique, which spends 28(11 × 28 + 2) F functions in back-
ward direction and 28(13× 28 + 8) F functions in forward direction. In total, it
costs 28(24× 28 +10) F functions, which is about 214.94 Piccolo-80 encryptions.
Because we test 216 keys to see whether the 16-bit positions match or not, the
number of remaining key candidates in each key group is 216−16 = 1 on the av-
erage. Altogether, we need 264 bicliques. The whole computational complexity
is estimated as:

C = 264(25.7 + 214.94 + 1) ≈ 278.95.

The probability to recovery the right key of full round Piccolo-80 without post-
whitening keys is 1, since we have generated biclique for every key group.

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 347

4.2 Key Recovery for 28-Round Piccolo-128

The relationship between the master key and the subkeys used in the first 28
rounds is described in Table 3. Obviously, six rounds (22-27 rounds) in Piccolo-
128 only use k0 once. This property is used to build a biclique of dimension 8 and
we explore biclique cryptanalysis of 28-round Piccolo-128 without prewhitening
keys.

Table 3. Key schedule of the first 28 rounds in Piccolo-128

Piccolo-128

whitening keys wk0 = kL
0 |kR

1 , wk1 = kL
1 |kR

0 , wk2 = kL
4 |kR

7 , wk3 = kL
7 |kR

4

round i rk2i
⊕

con128
2i rk2i+1

⊕
con128

2i+1 round i rk2i
⊕

con128
2i rk2i+1

⊕
con128

2i+1

0 k2 k3 14 k2 k7

1 k4 k5 15 k0 k1

2 k6 k7 16 k2 k7

3 k2 k1 17 k4 k3

4 k6 k7 18 k6 k5

5 k0 k3 19 k2 k1

6 k4 k5 20 k6 k5

7 k6 k1 21 k0 k7

8 k4 k5 22 k4 k3

9 k2 k7 23 k6 k1

10 k0 k3 24 k4 k3

11 k4 k1 25 k2 k5

12 k0 k3 26 k0 k7

13 k6 k5 27 k4 k1

† light grey color: position of key difference;
† italic: rounds covered by bicliques.

Key Partitioning. The base keys K[0, 0] are all possible 2112 128-bit values
where the first 16 bits are fixed to 0(16) and the remaining 112 bits run over all
values. The keys {K[i, j] (i, j ∈ {0, 1}8)} in one group are defined as:

K0[0, 0] = 00 K0[i, 0] = i0

K0[0, j] = 0j K0[i, j] = ij

This divides the Piccolo-128 key space into the 2112 groups of 216 keys each. And
the following two phases are exhaustively applied to every key group.

6-Round Biclique of Dimension 8. The process of building a 6-round (f :
22-th round to 27-th round) biclique for every key group is similar to that in
Piccolo-80. The state is defined as P 22

(64) and the procedure of obtaining the 28

states and 28 ciphertexts is shown in Figure 7:

348 Y. Wang, W. Wu, and X. Yu

Step 1. Basic computation. The adversary fixes C0 = 0(64) and computes the

value of S0 = f−1
K[0,0](C0) (Figure 7, Left).

Step 2. Encrypt S0 under different keys K[i, 0] (0 < i < 28) and get Ci (Figure
7, Middle). Similarly, the influence of the key difference is noted with black
color.

Step 3. Decrypt C0 under different keys K[0, j] (0 < j < 28) to derive Sj and
the differences are noted with black color (Figure 7, Right).

0S

rk rk

rk rk

rk rk

rk rk

rk rk

22

23

24

0C

0S

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

iC

jS

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

0C

rk rk

25

26

27

2wk 3wk 2wk 2wk3wk 3wk

Fig. 7. Biclique construction in Piccolo-128

As before, the three tuples [{Ci}, {Sj}, {K[i, j]}] satisfy the definition of bi-
clique:

Sj
K[i,j]−−−−→ Ci (i, j ∈ {0, 1}8).

Matching over 22 Rounds. Though the general pattern is similar, the pro-
cedure of partial matching in this attack has a little difference with that in
Piccolo-80 because of the different key schedule algorithm. In the partial match-
ing process, we choose T 15

1,4 as the internal matching variable.
Backward direction. Now we evaluate the amount of computation in backward

direction. Similarly, as shown in the right part of Figure 8, there is no difference
between the states noted by grid line and we can skip the computation of the
states with white color obtaining the matching variables. And the matching
values can be obtained by decrypting 8 F functions 28 times and 3 F functions
once for every Sj .

Forward direction. Firstly, we ask for the decryption of the ciphertexts Ci (0 ≤
i < 28) and get 28 plaintexts Pi. Then encrypt the plaintexts Pi with the keys
K[i, j] (0 ≤ j < 28) to v = T 15

1,4. As demonstrated in the left of Figure 8, there

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 349

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

rk rk

0

1

2

3

4

5

[,]
,

K i j
i i jP V

[,]
,

K i j
i j jV S

rk

rk

rk rk

rk

rk rk

rk rk

6

7

8

16

17

18

19

20

21

rk rk

rk rk

rk rk

rk rk

9

10

11

12

rk rk

rk rk

rk rk

13

14

15

22

is computed once
8is computed 2 times

Fig. 8. Process of MITM : Biclique analysis of 28-round Piccolo-128

is no difference in the process during the encryption of the first 6 rounds (0-5
rounds) and the left-half-round of the sixth round, which is not true for the
other parts. Besides, we can skip the 3 F functions of 14-th round and 15-th
round because of the variant of GFN. As a result, for a single Pi, the area to be
computed 28 times includes 16 F functions and the area to be computed only
once includes 13 F functions.

Search Candidates. Test the remaining key candidates until finding the cor-
rect key.

Complexities. Next we will evaluate the complexity of the key recovery on
28-round Piccolo-128.

350 Y. Wang, W. Wu, and X. Yu

Data Complexity. We fix C0 = 0(64) for every biclique and all the ciphertexts
share the same values in bytes C1,4,5,6,7. So the data complexity does not exceed
224 (Figure 7).

Computational Complexity. First, let us see the complexity of constructing
a single biclique with C0 = 0(64). Basic computation spends 12 F -functions.
Deriving Ci (0 ≤ i < 28) needs to compute 1 F -functions 28 times. Similarly, it
needs to compute 7 F -functions 28 times to obtain Sj (0 ≤ j < 28). So a biclique
can be constructed with complexity of about 25.2.

In the matching part we compute 16 bits in two directions per biclique spend-
ing 8 F functions 28 times and 3 F functions once for every Sj , that is 28(8 ×
28 + 3), in backward direction and 28(16 × 28 + 13) F functions in forward di-
rection. In total, it costs 28(24 × 28 + 16) F functions, which is about 214.78

28-round Piccolo-128 encryptions. Because we test 216 keys to find whether the
16-bit match or not, the number of remaining key candidates in each key group
is 216−16 = 1 on the average. Altogether, we totally need 2112 bicliques.

The whole computational complexity C is estimated as:

C = 2112(25.2 + 214.78 + 1) ≈ 2126.79.

Since the groups around base keys has fully covered the key space, the success
probability is 1.

5 Conclusion

Designers had provided various attacks including differential cryptanalysis, linear
cryptanalysis, boomerang-type cryptanalysis, impossible differential cryptanal-
ysis and MITM attack on security analysis for Piccolo[12]. The best result of
actual single-key attack was 3-subset meet-in-the-middle(MITM) attacks on 14-
round Piccolo-80 and 21-round Piccolo-128 without whitening keys. By analyzing
the key schedule and the structure of encryption, we gave biclique cryptanalysis
of full round Piccolo-80 without postwhitening keys and 28-round Piccolo-128

Table 4. Summary of previous results on Piccolo

Single-Key Model

Piccolo-80 Piccolo-128 Method Reference

7 7 Differential [12]

8 8 Linear [12]

9 9 Boomerang [12]

9 9 Impossible Differential [12]

14 21 3-Subset MITM [12]

19 23 MITM Expectation [12]

25 28 Biclique Cryptanalysis This paper

Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher 351

without prewhitening keys. The attacks are respectively with data complexity
of 248 and 224 chosen ciphertexts, and with time complexity of 278.95 and 2126.79

encryptions. Furthermore, the result of the attack presented in our context has
an advantage over the MITM attack which was evaluated in the worst setting
by designers. Table 4 summarized the previous results on Piccolo.

We noticed that the data complexity of key recovery can be significantly
reduced by sacrificing only a small factor of computational advantage. The high
computational complexity has something to do with the biclique cryptanalysis
itself. By deeply analyzing the biclique cryptanalysis, we know that all bicliques
should cover the full key space if we want the success rate to be 1. Then, two
main reasons for reducing computational complexity would be as follows. Firstly,
it costs little complexity to construct long biclique of high dimension. Secondly,
the key difference affects the internal matching value slightly in the process of
partial matching. As discussed above, we can draw the conclusion that biclique
cryptanalysis is available to the cipher having simple key schedule and slow
diffusion.

Acknowledgments. We would like to thank anonymous referees for their help-
ful comments and suggestions. The research presented in this paper is supported
by the National Natural Science Foundation of China (No.60873259) and The
Knowledge Innovation Project of The Chinese Academy of Sciences.

References

1. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

2. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 344–371. Springer, Heidelberg (2011)

3. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanaly-
sis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stin-
son, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg
(2011)

4. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

5. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

6. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer, Heidelberg (2012)

7. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

352 Y. Wang, W. Wu, and X. Yu

8. Izadi, M., Sadeghiyan, B., Sadeghian, S., Khanooki, H.: MIBS: A New Lightweight
Block Cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 334–348. Springer, Heidelberg (2009)

9. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

10. Ojha, S.K., Kumar, N., Jain, K., Sangeeta: TWIS – A Lightweight Block Cipher.
In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 280–291.
Springer, Heidelberg (2009)

11. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an
Application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011)

12. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

13. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

On the CCA-1 Security of Somewhat

Homomorphic Encryption over the Integers�

Zhenfei Zhang, Thomas Plantard, and Willy Susilo

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering (SCSSE)

University Of Wollongong, Australia
{zz920,thomaspl,wsusilo}@uow.edu.au

Abstract. The notion of fully homomorphic encryption is very impor-
tant since it enables many important applications, such as the cloud
computing scenario. In EUROCRYPT 2010, van Dijk, Gentry, Halevi
and Vaikuntanathan proposed an interesting fully homomorphic encryp-
tion scheme based on a somewhat homomorphic encryption scheme using
integers. In this paper, we demonstrate a very practical CCA-1 attack
against this somewhat homomorphic encryption scheme. Given a decryp-
tion oracle, we show that within O(λ2) queries, we can recover the secret
key successfully, where λ is the security parameter for the system.

Keywords: Fully Homomorphic Encryption, Somewhat Homomorphic
Encryption, CCA-1 attack, Approximate GCD.

1 Introduction

Fully homomorphic encryption is a very important notion for cloud computing.
It allows the cloud to process users’ encrypted data without the need to decrypt
them.

Essentially, fully homomorphic encryption schemes enable one to apply ho-
momorphic operations over arbitrary number (n) of given ciphertexts c1, c2, ...,
cn without the need to know the corresponding plaintexts m1, m2, ..., mn.

This notion, which was initially named “data homomorphisms”, was proposed
by Rivest, Shamir and Dertouzos [1] shortly after the introduction of RSA [2]. For
many years, schemes that support partial homomorphism have been proposed.
Nevertheless, the construction of fully homomorphic encryption had been a long
standing open research problem, until the recent Gentry’s breakthrough work
[3,4], where a fully homomorphic scheme was proposed.

The initial construction of Gentry’s FHE scheme (referred to as Gentry
scheme throughout this paper) uses ideal lattices. His work was then refined and
optimized by Smart and Vercauteren [5] (referred to as Smart-Vercauteren
variant), Stehlé and Steinfeld [6], and Gentry and Halevi [7] (referred to as
Gentry-Halevi variant). Meanwhile, van Dijk et al. proposed a FHE scheme

� This work is supported by ARC Future Fellowship FT0991397.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 353–368, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

354 Z. Zhang, T. Plantard, and W. Susilo

using integers (referred to as vDGHV variant) [8], which is later extended by
Coron et al. [9] (referred to as CMNT variant), Coron et al. [10], whose security
was re-evaluated by Chen and Nguyen [11]. There is also a third type of FHE
variants that are based on coding theory proposed recently [12], whose structure
is very close to the construction from ideal lattices.

The essential idea of such a scheme is to construct a somewhat homomor-
phic encryption (SHE) scheme and then convert it to a fully one using Gentry’s
bootstrapping technique (see section 2.2) [3,13]. Therefore, usually a fully ho-
momorphic encryption scheme contains two parts, a somewhat homomorphic
encryption scheme whose ability of homomorphic operations is limited, and a
bootstrapping technique that breaks such a limitation.

It is known that any FHE scheme that adopts Gentry’s bootstrapping tech-
nique cannot be CCA-1 secure (see Subsection 2.4 for definitions). Since the
bootstrapping technique requires one to publish the encryption of their secret
keys, therefore, if there exists a decryption oracle, then the attacker can recover
the secret key by incorporating this oracle within k queries, where k is the num-
ber of bits of the security key (in the case of vDGHV scheme, the secret key
of the squashed decryption algorithm has O(λ5) bits, hence, a CCA-1 attack is
successful in O(λ5) queries). As a result, the CCA-1 security cannot be achieved
by FHE schemes that use bootstrapping technique.

We should highlight that it is important to investigate a somewhat homomor-
phic encryption (SHE) scheme by itself, since it has many applications, such as
medical, financial and the advertising domains as mentioned in [14]. It is noted
that in these applications, only SHE schemes are required.

As far as a SHE is concerned, the CCA-2 security is also not achievable. As
a SHE allows certain level of homomorphic operations on ciphertexts, one can
modify the CCA-2 challenge ciphertext and submit it to the decryption oracle.
Therefore, the attacker can recover the plaintext.

However, whether a SHE can be CCA-1 secure remains an open problem.
Indeed, in [15], Loftus et al. showed a CCA-1 attack against Gentry-Halevi
SHE scheme and Smart-Vercauteren SHE scheme (we refer to this work
as LMSV attack), and proposed a CCA-1 secure SHE scheme (referred to as
LMSV variant).

Our Contributions

In this paper, we propose a CCA-1 attack against vDGHV SHE scheme, which
is different from the LMSV attack. We should highlight that the technique used
in the LMSV scheme to stop the LMSV attack is not applicable to our case.
With a decryption oracle of vDGHV SHE scheme, we can recover the secret key
successfully. Also, since the ciphertexts of vDGHV SHE scheme and CMNT
SHE scheme share the same structure, our attack can be applied to CMNT SHE
scheme as well. Moreover, our CCA-1 attack against vDGHV FHE scheme uses
O(λ2) queries, where λ is the security parameter of the system, while a trivial
CCA-1 attack uses O(λ5) queries.

On the CCA-1 Security of SHE over the Integers 355

2 Preliminaries

2.1 Notations

Let λ be the security parameter of the system, i.e., it takes at least 2λ operations
to break the system. For integers z and d, denote [z]d for the reduction of z mod
d within (−d/2, d/2]. For a rational number q, let $q# be the closest integer to
q, [q] the fractional part of q.

2.2 Gentry’s Framework

As stated earlier, a fully homomorphic encryption scheme essentially consists of
two parts: a somewhat homomorphic encryption scheme and a bootstrapping
technique.

The somewhat homomorphic encryptions scheme enables basic additions and
multiplications over F2. Hence, it is arithmetically “complete”, because essen-
tially any circuit is derived from additions and multiplications over F2 [3]. How-
ever, in such a scheme, in order to bring some security strength, the ciphertexts
contain a random “noise”. The size of the noise is limited, to ensure a valid
decryption. Nevertheless, it grows in size as the ciphertext is processed to ho-
momorphically evaluate the function on its plaintext. Once the size of the noise
in the ciphertext exceeds a certain threshold, then the ciphertext can no longer
be decrypted correctly.

The “bootstrapping technique” is to solve such a limitation. If there is a
guarantee that the maximum evaluation circuit depth of this somewhat homo-
morphic scheme is greater than its decryption circuit depth, then one can reduce
the noise by evaluating its own decryption circuit, and consequently, convert the
somewhat homomorphic scheme to a fully homomorphic scheme.

The general idea of bootstrapping is to “refresh” a ciphertext, namely given a
ciphertext c for some plaintext m, compute a ciphertext c′ such that the size of
the noise in c′ is smaller than the size of the noise in c. The algorithm to conduct
this ciphertext refreshing operation is called “Recrypt”, which enables one to
evaluate arbitrarily large circuits.

To enable Recrypt, one publishes an encryption of the (SHE) secret key.
The new ciphertext c′ encrypts the same message, but it maintains a smaller
noise,

c′ = Recrypt(Encrypt(sk),Encrypt(c)),

Decrypt(sk, c′) = Decrypt(sk, c).

2.3 Overview of vDGHV SHE Scheme

In this subsection, we briefly review the vDGHV SHE scheme. We omit the
description of CMNT scheme. However, it is important to note that the cipher-
texts of those two schemes resemble the same structure (i.e., ci = gip+2ri), and
their decryption algorithms are identical.

356 Z. Zhang, T. Plantard, and W. Susilo

Parameters. The following are the parameters used in the vDGHV somewhat
homomorphic encryption scheme.

– α: the maximum length of the noise ri, i.e.: ri ∈ [−2α, 2α);
– β: the length of the secret key p, i.e.: p ∈ (2β, 2β+1)
– γ: the maximum length of an integer in the public key;
– σ: the number of public keys used in one encryption;
– n: the number of integers in the public key;

Table 1. Parameter Configurations

α β γ n

Minimum λ λ2 λ4 log λ λ4 log λ+ λ

Recommended λ λ2 λ5 λ5 + λ

In their paper, the author also gave two sets of parameters, one for the minimum
requirement of the system, and another for the recommended configuration. We
briefly list their configurations in table 1.

The Scheme. Now we describe vDGHV SHE scheme. The somewhat homo-
morphic encryption scheme consists of four algorithms:

KeyGen(λ)

– Generate parameters α, β, γ, σ, n in function of λ;
– Generate a random odd integer p ∈ [2β , 2β+1);
– Generate n random integers {ri ∈ [−2α, 2α)};
– Generate n random integers {gi ∈ [0, 2γ−β)};
– sk ← p;
– x0 ← g0p+ 2r0;
– xi ← gip+ 2ri mod x0, 0 < i ≤ n;
– Reorder {xi} such that x0 is the smallest;
– pk ← {xi, α, σ}.

Encrypt(m, pk)

– Generate a bit sequence {si}, such that
∑
si = σ;

– c← m+ 2× r +
∑n−1

i=1 (si × xi) (mod x0), where r ∈ [−2α, 2α);

Decrypt(c, sk)

– m← (c mod 2)⊕ ($c/p# mod 2).

Remark 1. Essentially, the Decrypt algorithm is simplified from [c−$c/p#]2,
where $z# is to find the closest integer to z, while [z]p is to find the residue of
z mod p in (−p/2, p/2]. This is slightly different from c mod p mod 2. c mod p
returns an integer in [0, p), while c− p× $c/p# finds an integer in (−p/2, p/2].

On the CCA-1 Security of SHE over the Integers 357

Evaluate(c1, c2, ..., ck, P , pk)

– Return P(c1, c2, ..., ck).

P is a k-inputs evaluation polynomial while the depth of its circuit CD is lower
than the maximum circuit depth allowed by this SHE.

This SHE supports homomorphic additions and multiplications, when α β.
For instance, suppose c1 = m1 + g1p+ 2r1 and c2 = m2 + g2p+ 2r2 for certain
g1, r1, g2, r2, the product of two ciphertexts c1c2 = m1m2 + 2(r1m2 + r2m1 +
2r1r2) + p(g1m2 + 2g1r2 + g2m1 + 2g2r1 + g1g2p). One can observe that the
decryption of c1c2 is m1m2, as long as 2(r1m2 + r2m1 + 2r1r2) ∈ (−p/2, p/2].
Therefore, the above scheme is somewhat homomorphic.

However, the homomorphic circuit depth is limited, i.e., the noise grows after
each operation, and eventually the absolute value of the noise will be greater
than p/2 and a decryption error is then possibly generated.

Suppose we want to evaluate a circuit whose depth is greater than this SHE
permits, we break the circuit into several sub-circuits. For each sub-circuit, the
resulting noise is less than the threshold (p/2). Then we refresh the resulting
ciphtertext using the bootstrapping technique. We refer the readers to the orig-
inal scheme for more details. In the following, we describe the bootstrapping
technique in general.

To bootstrap, firstly, decryption circuit in Remark 1 need to be modified. The
original decryption requires at least one division, while the modified one consists
of only additions. As we have shown earlier, the noise grows significantly faster
in a multiplication than in an addition.

Remark 2. The squash technique transfers an original secret key of O(λ2) bits
into a new secret key of O(λ5) bits. As a requirement of bootstrapping, one is
obliged to publish the encryption of the secret key, which in this case is the new
one. Therefore, a trivial CCA-1 attack to the vDGHV FHE uses O(λ5) queries.

Then, because the modified decryption circuit depth is relatively low, now it
is possible to carry out the decryption circuit homomorphically, through the
proposed SHE. In practice, we encrypt ciphertexts, denoted by Enc(c) and
the public keys, denoted by Enc(pk). Let CD be the decryption circuit, then
Eval(CD, Enc(c), Enc(pk)) = Enc(m). This is because firstly CD(c, pk) = m
and secondly, CD can be carried out homomorphically. Therefore, we obtain a
new ciphertext Enc(m).

The new ciphertext, Enc(m) has a refreshed noise level (less than 2α), which
means Enc(m) can be evaluated again. By doing this repeatedly, we can eval-
uate circuit with any depth homomorphically. Therefore, a fully homomorphic
encryption scheme is achieved.

2.4 Security Models

In the following, we describe briefly both CCA-1 and CCA-2 attacks for com-
pleteness [16]. The IND-CCA-1/2 security game is defined as follows:

358 Z. Zhang, T. Plantard, and W. Susilo

1. The challenger runs KeyGen algorithm and output a secret key sk and a
public key pk;

2. The attacker is given two oracles, an encryption oracle and a decryption
oracle;

3. The challenger generates c = Encrypt(mb, sk), where b ∈ {0, 1};
4. (Only for CCA-2) The attacker is given two oracles again, but it can not

query on c;
5. The attacker output b′.

We say that an encryption scheme is CCA-1/2 secure if the advantage of the
attacker to win the game (Pr[b = b′]− 1/2) is negligible.

2.5 LMSV CCA-1 Attack

In this subsection we briefly revisit the LMSV attack against Gentry-Halevi
SHE and Smart-Vercauteren SHE schemes. For completeness, we show the
above SHE schemes first, as well as LMSV SHE scheme, which is resistant
against their own CCA-1 attack.

Recall that all three SHE schemes consist of four algorithms, KeyGen, En-
crypt, Decrypt and Evaluate. The LMSV attack requires the first three
algorithms.

KeyGen(λ)

– Generate parameters n, t, ρ in function of λ;
– Set f(x)← xn + 1, n is a power of 2;
– Pick a random n − 1 degree polynomial v(x), with coefficients vi ∈ (0, 2t),

denote v the vector form of coefficients of v(x);
– Generate a matrix V from v and check if the Hermite Normal Form (HNF)

of V has the correct form (as shown below) and if d is an odd number;

V =

∣∣∣∣∣∣∣∣∣∣∣

v0 v1 v2 . . . vn
−vn v0 v1 . . . vn−1

−vn−1 −vn v0 . . . vn−2

...
...

...
. . .

...
−v1 −v2 −v3 . . . v0

∣∣∣∣∣∣∣∣∣∣∣
, HNF (V) =

∣∣∣∣∣∣∣∣∣∣∣

d 0 0 . . . 0
[−a]d 1 0 . . . 0
[−a2]d 0 1 . . . 0

...
...
...
. . .

...
[−an−1]d 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.

– Find the polynomial w(x), such that w(x) × v(x) = d mod f(x);
– sk ← w, where w is one of odd coefficients of w(x);
– pk ← {a, d, ρ}.

Encrypt(m, pk)

– Generate a degree n− 1 polynomial r(x), with coefficients ri ∈ (0, ρ);
– c(x)← m+ 2× r(x), where m ∈ {0, 1};
– c← [m+ c(a)]d.

On the CCA-1 Security of SHE over the Integers 359

The three SHE schemes have different decryption algorithms. We firstly intro-
duce DecryptGH and DecryptSV that are used in Gentry-Halevi SHE
and Smart-Vercauteren SHE, respectively.

DecryptGH/DecryptSV(c, sk)

– m← [c× w]d mod 2.

The decryption algorithm for LMSV SHE uses a ciphertext check procedure to
stop the LMSV attack. Here, T is the threshold used for the ciphertext check.
T need to be greater than a function of ρ.

DecryptLMSV(c, sk)

– c(x)← c− $c× w(x)/d# × g(x) mod f(x);
– c′ ← [c(a)]d;
– If c′ �= c or ‖c(x)‖∞ ≥ T return ⊥;
– Else, return c(x) mod 2

Now we describe the LMSV attack. Decrypt algorithms for Gentry-Halevi
SHE and Smart-Vercauteren SHE schemes are m ← [c × w]d mod 2. This
decryption will be valid as long as [c × w/d] ≤ 1/2. Therefore, for a certain
key set (w, d), the maximum value c′ allowed is a fixed integer. The adversary
picks several different “ciphertexts”, and pass them to the decryption oracle to
check if they can be decrypted correctly. Eventually, the attacker will recover
the threshold c′ which is the maximum integer that can be decrypted correctly.
This c′ in return gives the attacker w, the secret key.

To stop this attack, Loftus et al. proposed a ciphertext check procedure. The
ciphertext that is to be decrypted, will be “disassembled” into the generating
polynomial c(x). Recall that c(x) = 2 × r(x) +m, hence, for valid ciphertexts,
‖c(x)‖∞ is bounded by a certain threshold smaller than T , while for invalid
“ciphertexts” (i.e., integers picked by attacker), the corresponding c(x) can have
arbitrary coefficients. Therefore, in the latter case, an error ⊥ is generated, and
the decryption stops.

3 Our CCA-1 Attack

In this section we present our CCA-1 attack. We use vDGHV SHE scheme to
demonstrate our attack. However, the following attack can be applied to CNMT
with a trivial modification.

The security strength of vDGHV SHE comes from the noise that is added to
ciphertexts. If we can somehow reduce the noise in ciphertext, then the scheme
will no longer be secure. With the help of a decryption oracle, we can eliminate
the noise. Hence, we achieve a CCA-1 attack.

We propose two variants that follow the same idea. The first variant requires
several ciphertexts. The main idea is to eliminate the noise and then, to find the
GCD of the remaining parts. The second variant requires only one ciphertext,
and we are able to recover the secret key directly.

360 Z. Zhang, T. Plantard, and W. Susilo

We note that our attack recovers the secret key that allows us to decrypt
any valid ciphertexts, and does not require any access to OD at Stage 5 in the
CCA attack model. Thus, our attack falls in the category of CCA-1. However,
we also note that essentially, our attack is stronger than CCA-1, because instead
of solving one challenge, we recover the secret key.

3.1 The Attack

Essentially, in vDGHV SHE scheme, the public keys (xi-s) can be treated as
ciphertexts encrypting 0-s with smaller noise. Therefore, the following algorithms
can be applied on public keys with less cost. However, in order to strictly follow
the definition of CCA-1 attack, we apply our algorithms on real ciphertexts.

We note that for any correct ciphertext ci, the following holds that

ci = mi + 2r′i + g′ip

for certain r′i ∈ (−p/4, p/4] and integer g′i, since if |2r′| > p/2 decryption error
will be induced. For convenience, denote α′ = β − 1.Using the recommended
parameter configuration, we have α′ = λ2 − 1.

Now we show our attack against vDGHV SHE scheme. Suppose we have
k ciphertexts c1, c2, ..., ck of encrypted 0-s, i.e.: ci = g′ip + 2r′i. It holds that
Decrypt(ci, sk) = 0. The length of r′i-s is no greater than α′.

Let OD(c) be the decryption oracle that returns Decrypt(c, sk). The follow-
ing pieces of pseudo-code describe two variants of our attack.

Algorithm 1. NoiseEli(c)

lp ← 2β − 2α
′+1

rp ← 2β+1 + 2α
′+1

while rp − lp > 2 do
s ← �(lp + rp)/4� × 2
if OD(c+ s) = 0 then

lp ← s
end if
if OD(c+ s) = 1 then

rp ← s
end if

end while
if OD(c+ s+ 1) = 1 then

s ← s+ 1
end if
return c′ ← c+ s

Algorithm 1: NoiseEli is to help to eliminate the noise in ciphertext. Instead
of generating a ciphertext with no noise, this algorithm generates a ciphertext
with a fixed noise.

Algorithm 2: CCA-GCD describes the first variant of our attack, while Al-
gorithm 3 CCA-p describes the second variant of our attack.

On the CCA-1 Security of SHE over the Integers 361

Algorithm 2. CCA-GCD(c0, c1, ..., ck)

c′0 ← NoiseEli(c0)
c′1 ← NoiseEli(c1)
c′2 ← NoiseEli(c2)
p′ ← gcd(c′2 − c′1, c

′
1 − c′0)

t ← 3
while p′ ≥ 2β+1 and t ≤ k do

c′t ← NoiseEli(ct)
p′ ← gcd(c′t − c′t−1, p

′)
t ← t+ 1

end while
return p′

The first algorithm inputs a ciphertext c = 2r′ + g′p with any noise r′, it
outputs a new ciphertexts c′ = g′p + $p/2%. The new ciphertext contains a
constant noise of $p/2%.

For any ciphertext c = 2r + gp, the Decrypt algorithm will always output
0, as long as |2r| ≤ $p/2%, and output 1 if 2r > $p/2%. Denote l = $p/2% − 2r. l
represents the threshold, such that OD(c+ l) = 0 and OD(c+ l + 2) = 1. Also,
we know that l ∈ (2β − 2α

′+1, 2β+1 + 2α
′+1). Therefore, we set lp and rp to be

the lower and upper bound of l. Then we start a while loop to narrow the bound
as in Algorithm 1.

Algorithm 3. CCA-p(c)

a ← NoiseEli(c)
b ← NoiseEli(−c)
return a+ b+ 1

3.2 Correctness

In this subsection we prove the correctness of our attack.
For any even integer s ∈ (2β − 2α

′+1, 2β+1 + 2α
′+1), decrypting c+ s has two

possible consequences:

– If OD(c+ s) = 1, we know that the threshold l for this ciphertext is smaller
than s, then we move the upper bound rp to s;

– One the other hand, if OD(c+ s) = 0, we know that the threshold l for this
ciphertext is greater than s, then we move the lower bound lp to s;

By the end of the loop, we have s = lp = rp − 2. Also, it holds that OD(c+ s) =
0 and OD(c + s + 2) = 1. If $p/2% is an even integer, then s = $p/2%, and
OD(c + s + 1) = 1. By contrast, if $p/2% is odd, then s = $p/2% − 1, and
OD(c+ s+ 1) = 0. In this case, we increase s by 1.

Hence, s is the threshold l we were looking for, and c + s = gp + $p/2%.
Therefore, we successfully generate a fixed noise ciphertext in log(2β+2α

′+2)+1
queries.

362 Z. Zhang, T. Plantard, and W. Susilo

The second algorithm is more straightforward. Given k + 1 outputs of Algo-
rithm 1, we obtain k linear independent noise free ciphertexts. By running a
classic GCD algorithm we obtain p′. It holds that either p = p′ or p|p′.

To have p = p′ it requires gcd(g2−g1, g3−g2, ..., gk−gk−1) = 1. The probability
of k random integers from Z to be coprime is 1/ζ(k), where ζ(x) is the Riemann
Zeta function

∑∞
i=1

1
ix (see [17] for more details), while the probability of having

k numbers randomly chosen form (0, 2λ
5

) to be coprime is greater than 1/ζ(k).
In practice, 4 random integers has 1/ζ(4) > 92% probability of being coprime,

while 7 random integers has 1/ζ(7) > 99% probability of being coprime. Our
test (see subsection 3.5) confirmed this result, where on average cases, 3 random
integers are coprime.

For the last algorithm, we generate a = NoiseEli(c) and b = NoiseEli(−c).
It holds that:

a = gp+ $p/2%, b = −gp+ $p/2%.

Therefore, we obtain 2×$p/2% from a+b. Because p is an odd integer, we recover
the secret key by p = a+ b+ 1.

3.3 Efficiency

We examine the efficiency of our last two algorithms. For original ciphertexts
(no homomorphic operations have been evaluated on them), it requires log(2β +
2α

′+2)+1 < β+3 queries to find the fixed noise ciphertext.CCA-GCD algorithm
requires a minimum 3 fixed noise ciphertexts. Therefore, in best cases we recover
the secret key in 3(β + 3) queries. As β = λ2, Algorithm 2 recovers the secret
key in O(λ2) operations.

Algorithm 3 also works on O(λ2) but with better performance. To be more
precise, it uses one ciphertext only, therefore to eliminate the noise requires at
most 2(β + 3) queries.

It is true that Algorithm 3 is more efficient that Algorithm 2. The reason that
we propose Algorithm 2 is that we observe Algorithm 3 will fail if we modify
the decryption circuit. For instance, if c mod p returns an integer within [0, p)
instead of (−p/2, p/2], then Algorithm 3 will be unsuccessful. However, in this
case Algorithm 2 is still valid.

3.4 An Example

In this subsection, we give an example of our CCA-1 attack. In our example,
the security parameter λ is 2. Therefore, the noise r′i and the multiplier g′i are
bounded by 22 and 228, respectively. The secret key p is an odd integer between 24

and 25. The ciphertext is in form of c′i = 2r′i+g
′
ip. Table 2 lists three ciphtertexts.

The results below indicate that we retrieve the secret key successfully. Table 3
shows that the noise is successfully eliminated within maximum 5 queries for each
ciphertext. We recover si for each ciphertext such that ci + si = gip+(p− 1)/2.

On the CCA-1 Security of SHE over the Integers 363

Table 2. Three sample ciphertexts

r′i p g′i c′i
c1 -3 19 343759059 6531422115

c2 1 19 230194545 4373696357

c3 2 19 276209466 5247979858

3.5 Implementation

In this subsection, we show the result of our implementation of our attack with
different λ. This implementation is based on the NTL library [18].

The implementation was conducted in a 2.66 GHz CPU. The memory was
always sufficient, as it merely required more than 600 Mbs. We started from
λ = 2, and increased λ continuously until it reached 32. For each λ, we fed
the program with 100 different seeds, and recorded the average time to find the
secret key p, as well as average number of ciphertexts required for Algorithm 2.

The average number of ciphertexts required for Algorithm 2 for different choice
of λ is quite stable. Approximately 3.8 ciphertexts are required to recover the
secret key p. This implies that on average case the number of integers required
to have them being coprime is 2.8.

Fig. 1 shows the timing results of our implementation. The x axis shows the
choice of λ, while the y axis indicates the average time (in seconds) for each
attack. Statistically, attack CCA-p uses approximately 1.9 times less time in
comparison to attack CCA-GCD (this is due to the number of ciphertexts
required to be noise-eliminated), and this is consistent with our result.

4 Discussions

4.1 On the Difference between Our Attack and LMSV Attack

We note that the LMSV attack is different from the attack described in this
paper. The LMSV attack uses the decryption oracle to find the integer s such
that [w × s/d] = 1/2, and eventually recover the secret key, while our attack
aims to manipulate the noise in the ciphertexts. By recovering the noise, our
attack will recover the secret key of vDGHV variant.

A proof of such a difference is that our attack can be adapted to recover the
noise for LMSV SHE scheme as well. However, this does not help us to recover
the secret key or break the CCA-1 security (see subsection 4.2). Another evidence
is that using LMSV SHE’s solution (i.e., generating ⊥ for invalid ciphertext)
will not stop our attack either (see subsection 4.3).

4.2 On Adapting Our Attack to SHE Schemes with Ideal Lattice

We note that our method cannot be adapted to attack SHE schemes that use
ideal lattices. In a typical SHE scheme with ideal lattice, a message is encrypted
in a similar way:

364 Z. Zhang, T. Plantard, and W. Susilo

NoiseEli(c1)

lp rp s1 OD(c1 +
s1)

action

0 24 12 0 lp ← 12
12 24 18 1 rp ← 18
12 18 14 0 lp ← 14
14 18 16 1 rp ← 16
14 16 14 end of

loop

OD(c1 + s1 + 1) = 1 =⇒ s1 = 15

NoiseEli(c2)

lp rp s2 OD(c2 +
s2)

action

0 24 12 1 rp ← 12
0 12 6 0 lp ← 6
6 12 8 1 rp ← 8
6 8 6 end of

loop

OD(c2 + s2 + 1) = 1 =⇒ s2 = 7

Table 4 and 5 show how to extract p from c′i in two ways. Both of the two examples
uses NoiseEli to find constant noise ciphertext. As displayed in the tables, in GCD-
CCA we recover 3p instead of p, and we did not further proceed the algorithm, since
it is merely an example. This example requires access to the oracle for 14 times for the
GCD-CCA variant and 10 times for CCA-p.

Table 3. Eliminate the noise of three ciphertexts

NoiseEli(c3)

lp rp s3 OD(c3 +
s3)

action

0 24 12 1 rp ← 12
0 12 6 1 rp ← 6
0 6 2 0 lp ← 2
2 6 4 0 lp ← 4
4 6 4 end of

loop

OD(c3 + s3 + 1) = 1 =⇒ s3 = 5

Table 4. Find p with CCA-GCD

CCA-GCD(c1,c2)

c′1 = c1 + 15− c2 − 7 c′2 = c2 + 7− c3 − 5

p′ = gcd(c′1, c
′
2) = 57

On the CCA-1 Security of SHE over the Integers 365

Table 5. Find p with CCA-p

NoiseEli(c1)

lp rp s1 OD(c1 +
s1)

action

0 24 12 0 lp ← 12
12 24 18 1 rp ← 18
12 18 14 0 lp ← 14
14 18 16 1 rp ← 16
14 16 14 end of

loop

OD(c1 + s1 + 1) = 1 =⇒ s1 = 15

NoiseEli(−c1)

lp rp s−1 OD(c1 +
s−1)

action

0 24 12 1 rp ← 12
0 12 6 1 rp ← 6
0 6 2 0 lp ← 2
2 6 4 1 rp ← 4
2 4 2 end of

loop

OD(−c1 + s−1 + 1) = 1 =⇒ s−1 = 3

CCA-p(c1)

a ← c1 + 15 b ← −c1 + 3

p ← (a+ b) + 1 = 19

c = m+ rBI + gBpk
J ,

where I and J are two ideal lattices that are co-prime. r and g are some random
elements generated during encryption. Lattice I is usually < 2 >, which are all
even numbers, and BI is a basis of I. As for lattice J , it generates a good basis
Bsk

J and a bad basis Bpk
J . Then Bpk

J is used for encryption, while Bsk
J becomes

the secret key.
Therefore, even we can somehow eliminate r through our attack, we still

need to solve such a problem: given as many giB
pk
J , find Bsk

J . This is a GGH
type cryptosystem [19]. As a result, we cannot recover Bsk

J directly using our
technique.

Take LMSV SHE scheme for instance, for a ciphertext c = 2r(a)+m (mod d),
our attack recovers r(x). To recover the i-th coefficient of r(x), one passes c +
2× r′ × ai to the decryption oracle, where r′ is a random integer picked by the
attacker. By observing if the oracle returns m or ⊥, one increases or decrease
r′ accordingly. Eventually, the attacker obtains r′ + ri = T . As a result, the
attacker recovers one coefficient of r(x). By doing this repetitively, one recovers
the entire r(x).

366 Z. Zhang, T. Plantard, and W. Susilo

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35

Se
co

nd
s

Lambda

GCD
P

Fig. 1. Average time for recovering p

However, we note that this does not lead to a CCA-1 attack or a secret key
attack. To recover the secret key one still need to solve the following problem:
given an ideal lattice in the form of a, d, find a good basis of this lattice.

4.3 On LMSV SHE CCA-1 Approach

In this subsection we consider the existing proposed solution to make vDGHV
SHE scheme CCA-1 secure. We note that our attack is successful, since we are
able to eliminate the noise. Therefore, if there exist some techniques to disturb
the noise elimination, our attack will fail.

Loftus et al. [15] showed a solution to combat their own CCA-1 attack against
Gentry-Halevi SHE scheme/Smart-Vercauteren SHE scheme (which we
refer to as the LMSV SHE scheme). However, the solution in LMSV SHE
scheme is not applicable in our case. Their possible solution is to generate some
error ⊥ (or even some random 0-s or 1-s), when the decryption oracle detects
that the noise r is very close to ±(p − 1)/2. The decryption algorithm sets a
bound T , such that when (p − 1)/2 − |r| < T , it will not proceed decryption.
However, essentially it will still leak some information. We can modify our attack
to find T and consequently find a fixed noise ciphertext.

Wemodify our attack as follows: for each round, we query to the oraclemultiply
times. If the feedbacks are consistent (meaning that the attacker is not confused
by random 0-s and 1-s) and not ⊥, we proceed to the next round. Otherwise, we

On the CCA-1 Security of SHE over the Integers 367

recover a fixed noise ciphertext with a noise level of T . Hence, our attack will still
be successful even after the “patch” suggested by Loftus et al. [15].

5 Conclusion

Fully homomorphic encryption schemes play an important role in the security
of many practical applications, such as cloud computing. Although the CCA-1
security for a FHE scheme is not achievable, whether its SHE scheme is CCA-1
secure remains an interesting research question, since a SHE scheme has potential
to enable promising applications.

In this paper, we proposed a CCA-1 attack against vDGHV SHE scheme with
integers. Unlike other schemes where the ciphertexts are protected by some noise
and lattices, the strength of ciphertexts in SHE scheme with integers comes only
from the noise. We demonstrated that we successfully eliminated the noise and
recovered the secret key. Hence, we achieve a CCA-1 attack against vDGHV
SHE scheme.

References

1. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press
(1978)

2. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: [13], pp. 169–178
4. Gentry, C.: A Fully Homomorphic Encyrption Scheme. PhD thesis, Stanford

University (2009)
5. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively

Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

6. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

7. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

8. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

9. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryp-
tion over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

10. Coron, J.S., Naccache, D., Tibouchi, M.: Optimization of fully homomorphic en-
cryption. Cryptology ePrint Archive, Report 2011/440 (2011),
http://eprint.iacr.org/

11. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers. Cryptology
ePrint Archive, Report 2011/436 (2011), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

368 Z. Zhang, T. Plantard, and W. Susilo

12. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: [20], pp. 505–524

13. Mitzenmacher, M. (ed.): Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2. ACM
(2009)

14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? IACR Cryptology ePrint Archive 2011, 405 (2011)

15. Loftus, J., May, A., Smart, N., Vercauteren, F.: On cca-secure fully homomorphic
encryption. Cryptology ePrint Archive, Report 2010/560 (2010),
http://eprint.iacr.org/

16. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of
Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

17. Nymann, J.E.: On the probability that k positive integers are relatively prime ii.
Journal of Number Theory 7(4), 406–412 (1975)

18. Shoup, V.: NTL - A Library for Doing Number Theory,
http://www.shoup.net/ntl/index.html

19. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice
Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

20. Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)

http://eprint.iacr.org/
http://www.shoup.net/ntl/index.html

Partial Key Exposure on RSA

with Private Exponents Larger Than N

Marc Joye1 and Tancrède Lepoint2,3,�

1 Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

marc.joye@technicolor.com
2 CryptoExperts

41 boulevard des Capucines, 75002, Paris, France
3 Laboratoire d’Informatique de l’École Normale Supérieure

45 rue d’Ulm, 75230 Paris Cedex 05, France
tancrede.lepoint@cryptoexperts.com

Abstract. In 1998, Boneh, Durfee and Frankel described several attacks
against RSA enabling an attacker given a fraction of the bits of the
private exponent d to recover all of d. These attacks were later improved
and extended in various ways. They however always consider that the
private exponent d is smaller than the RSA modulus N . When it comes
to implementation, d can be enlarged to a value larger than N so as
to improve the performance (by lowering its Hamming weight) or to
increase the security (by preventing certain side-channel attacks). This
paper studies this extended setting and quantifies the number of bits
of d required to mount practical partial key exposure attacks. Both the
cases of known most significant bits (MSBs) and least significant bits
(LSBs) are analyzed. Our results are based on Coppersmith’s heuristic
methods and validated by practical experiments run through the SAGE
computer-algebra system.

Keywords: RSA cryptosystem, cryptanalysis, key exposure, Copper-
smith’s methods, lattice reduction.

1 Introduction

For efficiency reasons, it might be tempting to select a small RSA private expo-
nent d. In 1990, Wiener [30] showed that this results in an insecure system when
d < N0.25, where N denotes the RSA modulus. His attack made use of the con-
tinued fractions method. The bound was subsequently improved to d < N0.292

by Boneh and Durfee [3] (see also [14, Section 3]) from powerful LLL-based
techniques due to Coppersmith [8].

A related problem is that of partial key exposure: What is the fraction of
the private exponent d that has to be made available to an attacker in order
to break the system. This question was posed by Boneh, Durfee and Frankel [4]

� This work was done while the author was with Technicolor.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 369–380, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

370 M. Joye and T. Lepoint

in 1998. They present several attacks where the attacker gains knowledge of
most significant bits of d or of least significant bits of d. (Observe that Wiener’s
attack corresponds to a partial key exposure where the most significant bits are
known to be zero.) Further partial key exposure attacks are presented by Blömer
and May in [2] for larger values of public exponent e. The attacks in [4] require
e < N1/2. For attacks that work up to full-size exponents e, we refer to the paper
of Ernst, Jochemsz, May and de Weger [12].

One may argue that partial key exposure attacks are unimportant. If an at-
tacker is able to recover some bits of d then it should likewise be able to recover
the entire private key d. While this may hold true in theory, in practice things are
not so easy. Revealing some bits of d can be a lengthy and costly process. Partial
key exposure attacks then facilitate the recovery of the entire private key. This
especially applies to RSA implementations since it is likely that precautions were
taken to prevent an adversary to obtain the private key d. Examples of imple-
mentation attacks include side-channel attacks [18, 19, 20]. Such attacks exploit
differences in running times, power consumption traces, or other side channels re-
sulting from the execution of the cryptographic algorithm. Yet another use case of
partial key exposure is in covert communication channels (a.k.a. subliminal chan-
nels) [27, 28, 31]. A covert channel enables users to exchange secret information
(e.g., an RSA private key) through messages that appear to be innocuous. Partial
key exposure then reduces the number of exchanged messages.

All partial key exposure results on RSA presented so far have in common that
the private exponent d is defined as an element in Z∗

φ(N), where φ(N) denotes
Euler’s totient function of N —namely, the order of the multiplicative group
of integers modulo N . In a number of implementations, a multiple of φ(N) is
added to d prior to the exponentiation. In more detail, the RSA exponentiation
xd mod N is carried out as xd+kφ(N) mod N for some k > 0, that is, with an
exponent whose size is at least that of N . There are mainly two reasons to do so.
One of them is to offer better resistance against implementation attacks like side-
channel attacks (e.g., [9, § 5.1]). The other reason is efficiency. An appropriate
choice of k can lower the Hamming weight of the exponent and reduce the total
number of multiplications, leading to an expected performance improvement of
up to 9.3% [5].

This paper deals with private exponents d that are larger than N (or more ex-
actly than φ(N)). We follow the heuristic strategy put forward by Jochemsz and
May [16, 17] for solving multivariate polynomials with small integer or modular
roots. The main advantage resides in its generality. The method is nevertheless
heuristic in the sense that it is not guaranteed to succeed. We therefore ran many
experiments with different parameter sets and none of them failed. Two practical
cases are considered. The first case assumes that the attacker knows the most
significant bits (MSBs) of d. Informally, we then show that if the public/private
exponents verify (e, d) ∼ (Nα, Nβ) with β � 1 the fraction of d that is sufficient
to recover it entirely is given by

Partial Key Exposure on RSA with Private Exponents Larger Than N 371

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− α
β

when 1 < α+ β 	 3
2

2β − α+ 2
√
(α+ β)

(
α+ β − 3

2

)
3β

when 3
2 	 α+ β < 2

.

In some scenarios, the least significant bits (LSBs) can be easier to obtain; for
example, when the underlying exponentiation algorithm processes the bits of d
from the right to the left. Informally, with the above notation, we then show
that the fraction of d that is sufficient to recover it entirely is given by

(6β − 5) + 2
√
6α+ (6β − 5)

6β
.

The rest of this paper is organized as follows. In the next section, we introduce
some useful background on lattice basis reduction. We also sketch the strategy
of Jochemsz and May. We apply it to the cases of known MSBs in Section 3
and known LSBs in Section 4. Section 5 provides various data obtained through
numerical experiments. Finally, we conclude in Section 6 and discuss some open
issues for further research.

2 LLL and Multivariate Polynomials

2.1 Lattices

A lattice is a discrete additive subgroup of Rn. For any integer lattice L �= {0},
there exist w 	 n linearly independent vectors b1, . . . , bw over R such that L =
b1Z⊕· · ·⊕bwZ. This set of vectors is called a basis of the lattice. A lattice can be
so represented by its basis matrix B; i.e., the matrix of the bi’s in the canonical

basis of Rn. The determinant of a lattice is defined as det(L) = (det(BBt))
1
2 .

When the lattice is full-rank (w = n), the formula simplifies to det(L) = |detB|.
The determinant of a lattice is well-defined since it is independent of the choice
of the basis: lattice bases are obtained one from the others through a unimodular
transformation (i.e., a multiplication by a matrix with determinant ±1).

Among all the bases of a lattice L, some are ‘better’ than others. The goal of
lattice reduction is to shorten the basis vectors and thus, since the determinant
is invariant, to make them more orthogonal. The LLL algorithm, named after
Lenstra, Lenstra and Lovász [21], produces in polynomial time a set of reduced
basis vectors. The following lemma, as presented in [22], gives bounds on LLL-
reduced basis vectors.

Lemma 1 (LLL). Let L be a lattice of dimension w. In polynomial time, the
LLL algorithm outputs reduced basis vectors vi, 1 	 i 	 w, satisfying

‖v1‖ 	 ‖v2‖ 	 · · · 	 ‖vi‖ 	 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

372 M. Joye and T. Lepoint

2.2 Strategy for Finding Small Roots of Multivariate Polynomials

In [6, 7, 8], Coppersmith presents rigorous methods based on LLL to find small
roots of univariate modular polynomials or of bivariate integer polynomials. The
methods can be extended to polynomials in more variables, but only heuristically.

The methods for finding small roots of a polynomial f mainly depend on
the shape of its Newton polytope (in others words, of the monomials that ap-
pear in f). In [16], Jochemsz and May presents a heuristic strategy that applies
to any multivariate polynomial with either modular or integer roots, based on
Howgrave-Graham [15] lemma for the univariate case, and the improvements of
Coron [10, 11]. We briefly review hereafter their root-finding strategy.

For the sake of illustration, consider without loss of generality a trivariate
polynomial f(x, y, z) over the integers. Let (x0, y0, z0) be a (small) root of f ,
and let (X,Y, Z) be a upper bound of this root; i.e., |x0| < X , |y0| < Y and
|z0| < Z. Define W = ‖f(xX, yY, zZ)‖∞ the maximal coefficient (in absolute
value) of f(xX, yY, zZ). A basis B of a lattice L is defined via the so-called shift
polynomials xiyjzkf(x, y, z) (resp. xiyjzk) for {i, j, k} determined by a set S
(resp. M \ S) which depends on the monomials of f . The set M then consists
of all the monomials that appear in the shift polynomials xiyjzkf(x, y, z). LLL
reduction algorithm is then performed on B in order to reduce the lattice L.
From a result of [16], provided that

XsxY syZsz < W s , where

⎧⎪⎨⎪⎩
sx =

∑
xiyjzk∈M\S i+ (m− 1)

sy =
∑

xiyjzk∈M\S j + (m− 1)

sz =
∑

xiyjzk∈M\S k + (m− 1)

and s = |S| − 1 ,

the first vectors, say f0 and f1, of the reduced basis produced by LLL provide
two polynomials with root (x0, y0, z0) over the integers. The common roots of
{f, f0, f1} are revealed under the assumption that two variables can be elimi-
nated from the system {f = 0, f0 = 0, f1 = 0}. This can be done through the
evaluation of resultants or of Gröbner bases.

Again, it is worth remembering that the strategy is heuristic. It is assumed
that the aforementioned use of resultants produces a non-zero univariate poly-
nomial, for which finding integer roots is easy. So, in our example, f0 and f1
need to be algebraically independent. More generally, the following assumption
is supposed to hold true for n-variate polynomials, n � 3.

Assumption 1. The resultant computations for the polynomials fi yield non-
zero polynomials.

This heuristic assumption has proven to be useful in many attacks (e.g.,
[2, 4, 10, 11, 12, 16, 17, 24, 25]).

3 Key Recovery from Known MSBs

Most key recovery attacks on RSA cryptosystem use a similar technique. The
goal is to derive, from an RSA equation, a multivariate polynomial in some of
the unknowns of RSA, like p, q, d or φ(N).

Partial Key Exposure on RSA with Private Exponents Larger Than N 373

Let N = pq be an RSA modulus where p and q are two equal-size (balanced)
primes. The public exponent is denoted e and the corresponding private exponent
is d = e−1 mod φ(N). In this section, we assume that the attacker succeeded in
getting the most significant bits of d∗ = d + �φ(N) for some unknown integer
� > 0. We write

d∗ = d̃+ d0

where d̃ is a known approximation for d∗ and d0 is the value to be found. The
upper bound on d0 is defined as d0 	 N δ. The next theorem states how large δ
can be in order to recover d0 (and thus the entire private key d∗). Note that the
knowledge of d∗ yields a non-zero multiple of φ(N) as ed∗ − 1 and consequently
the two secret factors of N [23].

Theorem 1. With the previous notations, suppose that e ∼ Nα and d∗ ∼ Nβ.
Then under Assumption 1 and up to a small error factor ε, there exists, for suf-
ficiently large N , a polynomial-time algorithm that computes all of d∗, provided
that

δ 	
{
α+ β − 1− ε for 1 < α+ β < 3

2
α+β−

√
4(α+β)2−6(α+β)

3 − ε for 3
2 	 α+ β < 2

.

The rest of this section will be devoted to the proof of Theorem 1. Notice also
that it leads to the following result:

Corollary 1. Using the notation of Theorem 1, recovering a fraction of d∗ larger
than ⎧⎨⎩

1−α
β when 1 < α+ β 	 3

2

2β−α+2

√
(α+β)

(
α+β− 3

2

)
3β when 3

2 	 α+ β < 2

.

is sufficient to recover the entire private exponent d∗ in polynomial time.

A graphical interpretation of this corollary, representing the fraction of d∗ re-
quired to recover the entire exponent d∗ in polynomial time, is depicted in Fig. 1.

Proof (of Corollary 1). This is a immediate consequence of Theorem 1 since the
fraction of d∗ corresponding to the unknown d0 is given by 1− δ

β . ��

3.1 Preliminaries

Since ed ≡ 1 (mod φ(N)) and d∗ = d+ �φ(N), we can write ed∗ = 1 + k∗φ(N)
for some integer k∗, or equivalently,

ed̃+ ed0 = 1 + (k̃ + k0)(N − (p+ q − 1)) (1)

with k̃ =
⌊
ed̃−1
N+1

⌋
and k̃ = k∗ − k0. Moreover, since p and q are assumed to be

balanced, we have p+ q 	 3
√
N . Hence, as shown in [2], it follows that

|k0| = |k∗ − k̃| 	
∣∣∣∣∣ed∗ − 1

φ(N)
− ed̃− 1

N + 1

∣∣∣∣∣ 	 e

φ(N)

(
|d0|+ 3N− 1

2 d̃
)
.

374 M. Joye and T. Lepoint

1

0
1 2

2
3

3
2

β

fraction of d∗
that is sufficient

(a) e = 216 + 1 ∼ N0

1

0
1 7

4

5
8

5
4

β

fraction of d∗
that is sufficient

(b) e ∼ N1/4

1

0
1 3

2

1
2

β

fraction of d∗
that is sufficient

(c) e ∼ N1/2

Fig. 1. Graphical representations of the results of Corollary 1

We define δ such that |d0| 	 N δ. Assuming that δ 	 β − 1
2 , the conditions

e ∼ Nα, φ(N) ∼ N , |d0| 	 N δ, d̃ ∼ Nβ immediately yield, up to some small
error factor ε, the bound

|k0| 	 Nα−1+max(δ,− 1
2+β) = Nα+β− 3

2 . (2)

3.2 Trivariate Approach: β � 3/2 − α

Equation (1) yields the trivariate polynomial

f(x, y, z) = (ed̃− 1− k̃N) + ex− yN + k̃z + yz ,

of which (x0, y0, z0) = (d0, k0, p + q − 1) is a root. Furthermore, up to a small
error factor ε, we have the upper bounds

|d0| 	 X = N δ , |k0| 	 Y = Nα+β− 3
2 , and |p+ q − 1| 	 Z = N

1
2 .

We now apply the strategy of Jochemsz and May [16]. The goal is to maximize
δ with respect to β, when α is a fixed value. Define two integers m and t. As
sketched in § 2.2, the set S describing the monomials used for the shift polyno-
mials contains the monomials of fm−1, and the set M is defined as the set of
monomials of xiyjzk f(x, y, z) with xiyjzk ∈ S. Since Y is much smaller than X
and Z for α+ β < 3/2+ δ (a posteriori we shall see that it was the good choice
to make), we use extra-shifts on y. Therefore, we get

xiyjzk ∈ S ⇐⇒

⎧⎪⎨⎪⎩
i = 0, . . . ,m− 1

j = 0, . . . ,m− 1− i+ t

k = 0, . . . ,m− 1− i
and

xiyjzk ∈M ⇐⇒

⎧⎪⎨⎪⎩
i = 0, . . . ,m

j = 0, . . . ,m− i+ t

k = 0, . . . ,m− i
.

Partial Key Exposure on RSA with Private Exponents Larger Than N 375

The parameter t has to be optimized with respect to m in order to maximize δ.
From the discussion in § 2.2, we know that two polynomials sharing the root

(x0, y0, z0) can be computed thanks to LLL algorithm as long as XsxY syZsz <
W s with the notation of § 2.2. First notice that, up to a small error factor ε, we
have W = Nα+β− 1

2 . Now defining τ such that t = τm, we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
s =

(
1
3 + 1

2τ
)
m3 + o(m3)

sx =
(
1
3 + 1

2τ
)
m3 + o(m3)

sy =
(
1
2 + τ + 1

2τ
2
)
m3 + o(m3)

sz =
(
1
2 + 1

2τ
)
m3 + o(m3)

.

In order to get the asymptotic bound, we let m grow to infinity and all the
lower-order terms contribute to some error factor ε. The latter equation then
becomes X2+3τY 3+6τ+3τ2

Z3+3τ < W 2+3τ . If we substitute the values for the
upper bounds, we get:

δ(2 + 3τ) +
(
α+ β − 3

2

)
(3 + 6τ + 3τ2) + 1

2 (3 + 3τ) <
(
α+ β − 1

2

)
(2 + 3τ) .

The optimal value for τ is given by
1−α

2 − β
2 − δ

2

α+β− 3
2

(valid until α + β + δ 	 2) and

leads to

δ <
α+ β −

√
4(α+ β)2 − 6(α+ β)

3
− ε .

3.3 Bivariate Approach: β < 3/2− α

Analogously to what was done in the previous section, a lattice reduction leads
directly to the bound δ < α+ β − 1− ε.1 However, this latter bound can simply
be obtained with a straightforward argument. As k∗ ∼ Nα+β−1, we can consider
the bivariate polynomial

f(x, y) = (ed̃− 1− k∗N) + ex+ k∗y

modulo k∗. Indeed, when δ < α+ β − 1 holds, we immediately obtain the value

of d0 over the integers as d0 = x0 mod k∗ = 1−ed̃
e mod k∗.

4 Key Recovery from Known LSBs

We now assume that the attacker succeeded to recover the least significant bits
(LSBs) of d∗ = d + �φ(N). More generally, we write d∗ = dl + d0M , where dl
is known to the attacker, together with its higher bound M = Nμ, but d0 is
unknown. (In the particular case of known LSBs, M is a power of two.) We
prove the following theorem:

1 Due to the shape of the bivariate polynomial (linear in each variable), no extra-shift
is necessary.

376 M. Joye and T. Lepoint

1

0
1 15

8

1
2

β

fraction of d∗
that is sufficient

(a) e = 216 + 1 ∼ N0

1

0
1 13

8

0.69

β

fraction of d∗
that is sufficient

(b) e ∼ N1/4

Fig. 2. Graphical representation of the results of Corollary 2

Theorem 2. With the previous notations, suppose that e ∼ Nα and d∗ ∼ Nβ.
Then under Assumption 1 and up to a small error factor ε, there exists, for suf-
ficiently large N , a polynomial-time algorithm that computes all of d∗, provided
that

μ �
(
(6β − 5) + 2

√
6α+ (6β − 5)

6
− ε

)
.

The proof of this theorem can be seen as an application of the strategy offered
in [12]. We omit it due to space limitations.

We then obtain:

Corollary 2. Using the notation of Theorem 2, recovering a fraction of d∗ larger
than

(6β − 5) + 2
√
6α+ (6β − 5)

6β
.

is sufficient to recover the entire private exponent d∗ in polynomial time.

Proof (of Corollary 2). This immediately follows from Theorem 2 by noting that
the fraction of d∗ corresponding to the unknown d0 is given by μ

β . ��

A graphical interpretation of Corollary 2, representing the fraction of d∗ required
to recover the entire exponent d∗ in polynomial time, is depicted in Fig. 2.

5 Practical Experiments

The attacks described in Section 3 and 4 were implemented with the SAGE
computer-algebra system [29] using Shoup’s NTL [26], and run on a 2.8GHz
Intel Core i5 running Mac OS X 10.7.2. In all the listed experiments, we were
able to recover the factorization of N , i.e., in each case, Assumption 1 held. One
can notice that our attacks are much better than predicted (when computing
the theoretical value with the used values of m and t). This difference between
theoretical results and practical ones is studied in [14, 25].

Partial Key Exposure on RSA with Private Exponents Larger Than N 377

Table 1. Experimental results for the attack on MSBs with a 1000-bit N

(a) e = 65537 ∼ N0

β δ Γ Parameters LLL

1.501 0.39 0.475 m = 4, t = 3 42 sec
dim = 40

1.55 0.34 0.331 m = 3, t = 2 4 sec
dim = 24

1.60 0.25 0.267 m = 2, t = 2 1 sec
dim = 15

1.65 0.20 0.218 m = 3, t = 3 20 sec
dim = 28

1.70 0.10 0.178 m = 6, t = 1 27 min
dim = 56

(b) e ∼ N1/2

β δ Γ Parameters LLL

1.001 0.41 0.475 m = 4, t = 3 57 sec
dim = 40

1.05 0.29 0.331 m = 4, t = 3 1 min 45 sec
dim = 40

1.10 0.23 0.267 m = 3, t = 3 13 sec
dim = 28

1.15 0.20 0.218 m = 4, t = 2 1 min 19 sec
dim = 35

1.20 0.17 0.178 m = 4, t = 2 1 min 43 sec
dim = 35

5.1 Results for Attack on MSBs

As an illustration, consider an RSA application making use of a 2048-bit modulus
N and public exponent e. Further, in order to prevent DPA-type attacks, assume
that a 128-bit random multiple � of φ(N) is added to d, defining the private
exponent d∗ = d+ �φ(N). Thus, β = 2048+128

2048 = 1.06.
Consider the following practical settings:

Case 1: e = 65537, i.e. α ∼ 0. From Corollary 1, it follows that it suffices to
recover the 1/β = 94% of d∗ rather than all of it, allowing 128 bits of d∗

to remain unknown. However, a practical implementation does not require
lattice reduction (see § 3.3) and verifying the latter result is easy.

Case 2: e ∼ N1/2, i.e. α ∼ 1/2. Corollary 1 then tells us that it suffices to
recover the 71% of d∗ rather than all of it, theoretically allowing 640 bits of
d∗ to remain unknown.

A practical implementation with δ = 0.19 (i.e. 0.19× 2048 = 389 bits of
d∗ unknown), and parametersm = 7, t = 1 (dim = 72), allowed us to recover
the 389 unknown bits of d∗ in 5 hours and 48 minutes.2

Since the bounds of the algorithms do not depend of the length of the modulus
N , all the following experiments for this attack were performed with a 1000-bit
N , and three different values for the public exponent, e = 216 + 1 = 65537 and
e ∼ N1/2.

For every β value between 1 and 2−α, we looked for the bigger δ that gave us
enough small vectors to recover the root (x0, y0, z0). We tried for each δ different
values of m � 2 and t � 1. The results are presented in Table 1. In our tests,
the bound δ given in the table is reached by d0, and the Γ -column gives the
asymptotic bound which is reached when the lattice dimension goes to infinity.

2 Notice that one can get closer to the theoretical bound by increasing the size of the
lattice (at the expense of an increased running time: for δ = 0.18, with parameters
m = 4, t = 1, dim = 30, the 368 unknown bits were recovered in 2 minutes).

378 M. Joye and T. Lepoint

Table 2. Experimental results for the attack on LSBs with a 1000-bit N

(a) e = 216 + 1 ∼ N0

β μ Γ Parameters LLL

1.01 0.58 0.535 m = 2, t = 1 1 sec
dim = 16

1.10 0.76 0.700 m = 2, t = 1 1 sec
dim = 16

1.20 0.96 0.871 m = 2, t = 1 1 sec
dim = 16

1.30 1.16 1.033 m = 2, t = 1 1 sec
dim = 16

(b) e ∼ N1/4

β μ Γ Parameters LLL

1.01 0.77 0.710 m = 2, t = 1 1 sec
dim = 16

1.10 0.92 0.854 m = 4, t = 1 20 sec
dim = 50

1.20 1.08 1.008 m = 5, t = 1 2 min 1 sec
dim = 77

1.30 1.26 1.158 m = 4, t = 1 22 sec
dim = 50

5.2 Results for Attack on LSBs

All experiments for this attack were conducted with a 1000-bit N , and two
different values for the public exponent, e = 216 + 1 = 65537 and e ∼ N1/4.

For every β value between 1 and 15/8− α, we looked for the smaller μ that
gave us enough small vectors to recover the root (x0, y0, z0). We tried for each
μ different values of m � 2 and t � 1. The results are presented in Table 2.

In our tests, the bound μ given in the table is reached by dl and the Γ -column
gives the asymptotic bound which is reached when the lattice dimension goes to
infinity.

6 Conclusion

In this paper we established sufficient conditions to successfully mount partial
key exposure attacks on RSA. Unlike previous works, we focused on the practical
setting of a private exponent d larger than the modulusN . We derived theoretical
bounds that were validated through numerical experiments for various parameter
sets. Our results illustrated once more the importance of careful implementation.

Our work raises several open issues. For the interested reader, here some
possible venues for further research. Is it possible to derive bounds when β �
2? Is it possible to mount a key recovery attack when random key bits of d∗

are exposed? This problem naturally finds applications in so-called cold-boot
attacks; see [13, 24]. Is it possible to extend the results to CRT implementations
for arbitrary values for � and/or e?3 How does the use of unbalanced primes
modify the attack [1]?

References

1. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

3 One can apply the same strategy as above to mount a partial key recovery attack
on LSBs for a low public-exponent e.

Partial Key Exposure on RSA with Private Exponents Larger Than N 379

2. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000), extended ab-
stract in Proc. of EUROCRYPT 1998

4. Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

5. Cohen, G.D., Lobstein, A., Naccache, D., Zémor, G.: How to Improve an Expo-
nentiation Black-Box. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 211–220. Springer, Heidelberg (1998)

6. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

7. Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

9. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

10. Coron, J.S.: Finding Small Roots of Bivariate Integer Polynomial Equations Revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004)

11. Coron, J.S.: Finding Small Roots of Bivariate Integer Polynomial Equations: A
Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–
394. Springer, Heidelberg (2007)

12. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on
RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

13. Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key
Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

14. Herrmann, M., May, A.: Maximizing Small Root Bounds by Linearization and
Applications to Small Secret Exponent RSA. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

15. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

16. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

17. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073 . In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

18. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

19. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. Journal of Cryptographic Engineeering 1(1), 5–27 (2011)

380 M. Joye and T. Lepoint

20. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

21. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

22. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis,
University of Paderborn (2003)

23. Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences 13(3), 300–317 (1976)

24. Sarkar, S.: Partial Key Exposure: Generalized Framework to Attack RSA. In: Bern-
stein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 76–92.
Springer, Heidelberg (2011)

25. Sarkar, S., Sen Gupta, S., Maitra, S.: Partial Key Exposure Attack on RSA –
Improvements for Limited Lattice Dimensions. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010)

26. Shoup, V.: Number Theory Library (Version 5.5.2). A library for doing Number
Theory (2011), http://www.shoup.net/ntl

27. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) Advances in Cryptology, Proceedings of CRYPTO 1983, pp. 51–67. Plenum
Press (1984)

28. Simmons, G.J.: The Subliminal Channel and Digital Signatures. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378.
Springer, Heidelberg (1985)

29. Stein, W.A., et al.: Sage Mathematics Software (Version 4.7). The Sage Develop-
ment Team (2011), http://www.sagemath.org

30. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

31. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John
Wiley & Sons (2004)

http://www.shoup.net/ntl
http://www.sagemath.org

Linear Cryptanalysis of Reduced-Round

ICEBERG

Yue Sun and Meiqin Wang

School of Mathematics, Shandong University, Jinan 250100, China
yuesun@mail.sdu.edu.cn, mqwang@sdu.edu.cn

Abstract. ICEBERG is proposed by Standaert et al. in FSE 2004 for re-
configurable hardware implementations. ICEBERG is a fast involutional
SPN block cipher and all its components are involutional and allow very
efficient combinations of encryption/decryption. ICEBERG uses 64-bit
block size and 128-bit key and the round number is 16. In this paper, we
firstly find the best linear approximation of 6-round ICEBERG. We find
that 2122 of ICEBERG keys are weak for linear cryptanalysis, and the
linear deviation can be strengthened more heavily than the linear charac-
teristic by the multi-path effect(Linear Hull). And we discover a 6-round
linear hull consisting of 7 linear characteristics with a linear deviation of
2−29.99. Then we give a linear attack against 7-round ICEBERG for the
weak keys.

Keywords: Linear Cryptanalysis, ICEBERG, Linear Hull, Weak Keys.

1 Introduction

RFID systems and sensor networks have been aggressively deployed in a variety
of applications, but their further pervasive usage is mainly limited by lots of
security and privacy concerns. As RFID tags and sensor networks are low cost
with limited resources, the present cryptographic primitives cannot be feasible.
So the security primitives suitable for these light-weight environments must be
designed. Recently, several light-weight block ciphers have been proposed such
as PRESENT [1], mCRYPTON [2], HIGHT [3], SEA [4] and KTANTAN [5]
etc. In general, a block cipher based on SP-network structure has the different
encryption and decryption process like AES [6], which will increase the hardware
costs. Although the block cipher based on the Feistel structure does not have
such disadvantage, its slow avalanche effect requires the large round number to
guarantee the security. In this way, how to design an involutional block cipher
based on SP-network structure has become an important object in the field of
light-weight block cipher.

At FSE 2004, Standaert et al. proposed a fast involutional block cipher with
SP-network structure optimized for reconfigurable hardware implementations,
named as ICEBERG [7]. ICEBERG uses 64-bit text blocks and 128-bit keys and
the round number is 16. Specially, all components are involutional and allow
very efficient combinations of encryption/decryption.

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 381–392, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

382 Y. Sun and M. Wang

In their paper, they give some security evaluations of ICEBERG. The de-
signers point out that the upper-bound of the differential characteristic for full
round ICEBERG is 2−160, and the input-output correlation of the best linear
characteristic is smaller than 2−64. These evaluations are very loose, and do not
show how many rounds are vulnerable to attack.

In this paper, we will give the concrete linear cryptanalysis for reduced-round
ICEBERG. Firstly, we identify the best linear characteristics for 6-round ICE-
BERG by analyzing the property of linear layer of ICEBERG, then we present
the linear cryptanalysis results on 7-round ICEBERG, but unluckily, the success
rate is low. Further more, we give a detailed analysis towards the rate of weak
keys in linear cryptanalysis. We can recover 2122 key values in the whole key
space with 263 plaintext-ciphertext pairs in 290.19 7-round encryptions, the suc-
cess rate is 26.1%; when using the whole codebook, the success rate can reach
95.7%. We list the results in Table 1.

The paper is organized as follows. Section 2 introduces the ICEBERG algo-
rithm. In Section 3, we discuss the feature of linear transformation of ICEBERG
and identify the best 6-round linear approximation. Then Section 4 and Sec-
tion 5 present both the 7-round linear attack results and the 7-round attack by
linear hull under weak key. Section 6 concludes this paper.

Table 1. Results of linear cryptanalysis on 7-round ICEBERG

Type Time Complexity Data Complexity Success rate ratio of weak keys

LC 291.19 264 0.6% 1

LC under weak keys 290.19 263 26.1% 2−6

LC under weak keys 291.19 264 95.7% 2−6

LC: Linear Cryptanalysis

2 Description of ICEBERG

ICEBERG is a block cipher with SP-network structure. It operates on 64-bit
block and uses a 128-bit key. It is an involutional iterative block cipher based on
the repetition of 16 identical key-dependent round functions. The round function
ρK can be expressed as:

ρK : Z64
2 → Z64

2 : ρK ≡ εK ◦ γ,

where γ is the non-linear layer and εK is the linear layer.
It is an involutional cipher since its encryption is only different from its de-

cryption in the key schedule. Because the key schedule has little relationship
with our analysis, we will not describe it here.

Linear Cryptanalysis of Reduced-Round ICEBERG 383

2.1 Non-linear Layer γ

Function γ is composed of non-linear substitution layers S0 and S1 and bit per-
mutation layer P8. Fig. 1 depicts the non-linear layer γ. Each substitution layer
consists of 16 identical S-boxes in parallel. The bit permutation layer consists of
eight identical bit permutations P8. The γ layer can be expressed as:

γ : Z64
2 → Z64

2 : γ ≡ S0 ◦ P8 ◦ S1 ◦ P8 ◦ S0.

Fig. 1. The Non-Linear Layer γ

Fig. 2. The Linear Layer εK

The γ layer can be viewed as one layer consisting of the application of eight
identical 8× 8 S-boxes listed in Table 2.

2.2 Linear Layer εK

Fig. 2 depicts the linear layer εK . The εK can be described as:

εK : Z64
2 → Z64

2 : εK ≡ P64 ◦ P4 ◦ σK ◦M ◦ P64.

384 Y. Sun and M. Wang

Table 2. The 8× 8 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 24 c1 38 30 e7 57 df 20 3e 99 1a 34 ca d6 52 fd

10 40 6c d3 3d 4a 59 f8 77 fb 61 0a 56 b9 d2 fc f1

20 07 f5 93 cd 00 b6 62 a7 63 fe 44 bd 5f 92 6b 68

30 03 4e a2 97 0b 60 83 a3 02 e5 45 67 f4 13 08 8b

40 10 ce be b4 2a 3a 96 84 c8 9f 14 c0 c4 6f 31 d9

50 ab ae 0e 64 7c da 1b 05 a8 15 a5 90 94 85 71 2c

60 35 19 26 28 53 e2 7f 3b 2f a9 cc 2e 11 76 ed 4d

70 87 5e c2 c7 80 b0 6d 17 b2 ff e4 b7 54 9d b8 66

80 74 9c db 36 47 5d de 70 d5 91 aa 3f c9 d8 f3 f2

90 5b 89 2d 22 5c e1 46 33 e6 09 bc e8 81 7d e9 49

a0 e0 b1 32 37 ea 5a f6 27 58 69 8a 50 ba dd 51 f9

b0 75 a1 78 d0 43 f7 25 7b 7e 1c ac d4 9a 2b 42 e3

c0 4b 01 72 d7 4c fa eb 73 48 8c 0c f0 6a 23 41 ec

d0 b3 ef 1d 12 bb 88 0d c3 8d 4f 55 82 ee ad 86 06

e0 a0 95 65 bf 7a 39 98 04 9b 9e a4 c6 cf 6e dc d1

f0 cb 1f 8f 8e 3c 21 a6 b5 16 af c5 18 1e 0f 29 79

Table 3. The P64 Permutation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 23 25 38 42 53 59 22 9 26 32 1 47 51 61

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

24 37 18 41 55 58 8 2 16 3 10 27 33 46 48 62

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

11 28 60 49 36 17 4 43 50 19 5 39 56 45 29 13

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

30 35 40 14 57 6 54 20 44 52 21 7 34 15 31 63

It consists of the 64-bit permutation layer P64, the parallel binary matrix multi-
plicationsM , the key addition layer σK , the parallel 4-bit permutation layer and
the identical 64-bit permutation as in Fig. 2. P64 and P4 are listed in Table 3
and Table 4, respectively. The matrix multiplication M is based on the parallel
application of a simple involutional matrix multiplication. Let V ∈ Z4×4

2 be a
binary involutional matrix (i.e. such that V 2 = In):

V =

⎡⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎦ .
M is then defined as:

M : Z16
24 → Z16

24 : x→ y =M(x)⇔ yi = V · xi 0 ≤ i ≤ 15.

Linear Cryptanalysis of Reduced-Round ICEBERG 385

Table 4. The P4 Permutation

0 1 2 3

1 0 3 2

Then the diffusion box D is defined as performing multiplication by V .
The encryption process for R rounds is defined as follows:

σRKR
0
◦ γ ◦ (©R−1

r=1 ρRKr
1
) ◦ σRK0

1

where σK is the key addition layer.

3 Linear Cryptanalysis of 6-Round ICEBERG

Linear cryptanalysis(LC) is a known-plaintext or a ciphertext-only attack, intro-
duced by Matsui in 1993 [8]. The principle of linear cryptanalysis is that there
is a linear approximation between text bits and key bits in the encryption al-
gorithm, holding with a probability much further away from 1/2, so it can be
a distinguisher between a given cipher and a random permutation. The effec-
tiveness of a linear relation is measured by a parameter called bias, denoted as
ε, which is the absolute value of the difference between the parity of the linear
relation and 1/2. The higher the bias, the more attractive the linear relation is,
since they demand less plaintext-ciphertext pairs. In this section, we give the
best linear approximation of 6-round ICEBERG we found.

3.1 Linear Characteristic of 6-Round ICEBERG

The way to search the best linear characteristic of an iterated SPN block cipher
depends on two components. The linear distribution of the active S-box in the
non-linear layer determines the bias of the inner round while the linear layer
determines the number of active S-boxes. So the higher bias of the active S-box
and the fewer active S-boxes in one round, the better the linear approximation
is. According to the linear distribution, we can see the bias at most is 2−2, if we
do not control the number of active S-boxes carefully, after the linear layer, the
number of active S-boxes will be enlarged heavily. Therefore, we will focus on
the linear approximation with fewer active S-boxes which is determined by the
linear layer of ICEBERG.

Linear Layer P64-DP4-P64

To achieve hardware efficiency, the linear layer of light-weight block cipher is
always designed to be a permutation which can be implemented by wire-crossing,
sometimes to be involutional. However, permutations make diffusion slow. As
we see, 3 rounds for PRESENT are needed to reach full diffusion when a bit-
flip occurred in the input influences all output bits while at least 5 rounds for

386 Y. Sun and M. Wang

PUFFIN [9]. It is believed that the fewer rounds required to achieve full diffusion
the more resistant the cipher should be. Unlike other light-weight block cipher,
besides two same permutations on 64 bit named P64 is emplaced at the beginning
and end of the linear layer of ICEBERG, there are 16 permutations on 4 bit
named P4 and 16 diffusion boxes named D in the middle. The diffusion box D,
which makes each output bit equal to the exclusive-or among the three input
bits, results in only 2 rounds being required to reach full diffusion. The diffusion
pattern is depicted in Fig. 3. P4 and D can be regarded as a whole, named DP4
depicted in Table 5. Now we give the following three properties of the linear
layer of ICEBERG in view of linear cryptanalysis.

Fig. 3. Diffusion of Difference Activating S5 over 2 Rounds of ICEBERG

Table 5. The DP4 Linear-Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 14 3 7 10 9 4 11 6 5 8 12 1 2 15

P1. According to Table 3, the four input bits of each DP4 must come from
four different S-boxes; moreover, as P64 is involutional, the four output bits
must go into four different S-boxes.

P2. Each two bits in each S-box must go into different bytes after P64, also
in different nibbles of DP4.

P3. DP4 makes one active bit on one end to three active bits on the other
end or two active bits to two active bits.

Because of the above three properties, the number of active S-boxes for two
rounds at least is four, and there are three primary patterns (1 → 3, 2 → 2,
3→ 1) and two auxiliary patterns (2→ 3, 3→ 2) for the two-round differential
characteristic as depicted in Fig. 4. For each pattern, we take the diffusion box
DP4 as the origin to begin our analysis.

� Pattern(1 → 3): It implies there should be m(1 	 m 	 8) active DP4(s)
with 1 → 3 (1 nonzero input mask bit to 3 nonzero output mask bits), and
after passing the bottom P64, the 3m nonzero output mask bits of DP4s

Linear Cryptanalysis of Reduced-Round ICEBERG 387

should be into three active S-boxes, each of which has m nonzero input
mask bits. Whilst the m nonzero input mask bits should be into the same
one active S-box by passing through the top P64 in reverse order. To sustain
this condition, we need to searchm-DP4s whose three output mask bits will
be located in the same three bytes after P64. Meanwhile, deduced by the
reversed P64, the m input mask bits should be just right located in the same
one byte. The pattern is depicted in Fig. 4(a).

� Pattern(2 → 2): It implies there should be m(1 	 m 	 8) active DP4(s)
with 2→ 2 (2 nonzero input mask bits to 2 nonzero output mask bits), and
after bottom P64, the 2m nonzero output mask bits of DP4s should be into
two active S-boxes, each of which has m nonzero input mask bits. While the
m nonzero input mask bits should be into two active S-boxes after passing
the top P64 in reverse order. To satisfy this condition, we need to search
m-DP4s whose two nonzero output mask bits are located in the same two
bytes after P64. Meanwhile, deduced by the reversed P64, the 2m nonzero
input mask bits should be just right located in the same two bytes. The
pattern is depicted in Fig. 4(b).

� Pattern(3→ 1): Since DP4(x) = DP4−1(x), P64(x) = P64−1(x), Pattern
(3→ 1) is Pattern(1→ 3) in reverse order. It is depicted in Fig. 4(c).

� Pattern(2 → 3): From the above analysis, we can deduce 2 	 m 	 6. It is
depicted in Fig. 4(d).

� Pattern(3→ 2): It is the reversal of Pattern(2→ 3), depicted in Fig. 4(e).

Table 6 gives |Γi| and one example in Γi for each pattern. It should be noticed
that the pattern is not an intact two-round linear approximation, it begins with
the output mask(s) of the active S-box(es) in this round and ends at the input
mask(s) of the active S-box(es) in the latter round.

3.2 6-Round Linear Characteristic

Resort to the above five patterns, eight 6-round best linear approximation pat-
terns can be deduced as follows,

– 1→ 3→ 1→ 3→ 1→ 3,

– 3→ 1→ 3→ 1→ 3→ 1,

– 1→ 3→ 1→ 3→ 2→ 2,

– 2→ 2→ 3→ 1→ 3→ 1,

– 2→ 2→ 2→ 2→ 3→ 1,

– 1→ 3→ 2→ 2→ 2→ 2,

– 1→ 3→ 2→ 2→ 3→ 1,

– 2→ 2→ 2→ 2→ 2→ 2.

388 Y. Sun and M. Wang

Table 6. Γi for each pattern

Pattern i |Γi| OM IM DP4s

1 → 3 1 64 (0, 1x) (0, 1x), (2, 80x), (3, 2x) (0, 1x, dx)

2 13 (5, 84x) (5, 84x), (6, 28x), (7, 28x) (1, 2x, ex), (3, 2x, ex)

3 1 (5, c4x) (5, c4x), (6, 29x), (7, 68x) (1, 2x, ex), (3, 2x, ex), (7, 2x, ex)

2 → 2 1 96 (0, 1x), (1, 10x) (0, 1x), (1, 10x) (0, 3x, 3x)

2 27 (0, 5x), (1, 11x) (0, 5x), (1, 11x) (0, 3x, 3x), (5, cx, cx)

3 12 (6, a8x), (7, 2cx) (6, a8x), (7, 2cx) (1, cx, cx), (3, cx, cx), (5, 3x, 3x)

4 5 (6, a9x), (7, 6cx) (6, a9x), (7, 6cx) (1, cx, cx), (3, cx, cx),

(5, 3x, 3x), (7, cx, cx)

5 1 (6, abx), (7, 7cx) (6, abx), (7, 7cx) (1, cx, cx), (3, cx, cx),

(5, 3x, 3x), (7, cx, cx), (8, cx, cx)

3 → 1 1 64 (0, 1x), (2, 80x), (3, 2x) (0, 1x) (0, dx, 1x)

2 13 (5, 84x), (6, 28x), (7, 28x) (5, 84x) (1, ex, 2x), (3, ex, 2x)

3 1 (5, c4x), (6, 29x), (7, 68x) (5, c4x) (1, ex, 2x), (3, ex, 2x), (7, ex, 2x)

2 → 3 2 218 (1, 12x), (3, 6x) (0, 1x), (2, c0x), (4, 1x) (0, ax, 5x), (2, 6x, 9x)

3 119 (2, c4x), (3, 2x) (2, c4x), (3, 7x), (4, 21x) (0, cx, cx), (2, 1x, dx), (4, 4x, 7x)

4 51 (1, 1cx), (3, 1cx) (1, 1ex), (2, c0x), (3, 1ex) (0, 2x, ex), (2, 4x, 7x)

(6, cx, cx), (8, 3x, 3x)

5 17 (1, 3cx), (3, 3cx) (1, 3ex), (2, c0x), (3, 3ex) (0, 2x, ex), (2, 4x, 7x)

(6, cx, cx), (8, 3x, 3x), (11, cx, cx)

6 3 (6, ebx), (7, 7cx) (0, 40x), (6, ebx), (7, 7ex) (1, cx, cx), (3, cx, cx), (5, 3x, 3x)

(7, cx, cx), (8, cx, cx), (13, 4x, 7x)

3 → 2 2 218 (0, 1x), (2, c0x), (4, 1x) (1, 12x), (3, 6x) (0, 5x, ax), (2, 9x, 6x)

3 119 (2, c4x), (3, 7x), (4, 21x) (2, c4x), (3, 2x) (0, cx, cx), (2, dx, 1x), (4, 7x, 4x)

4 51 (1, 1ex), (2, c0x), (3, 1ex) (1, 1cx), (3, 1cx) (0, ex, 2x), (2, 7x, 4x)

(6, cx, cx), (8, 3x, 3x)

5 17 (1, 3ex), (2, c0x), (3, 3ex) (1, 3cx), (3, 3cx) (0, ex, 2x), (2, 7x, 4x)

(6, cx, cx), (8, 3x, 3x), (11, cx, cx)

6 3 (0, 40x), (6, ebx), (7, 7ex) (6, ebx), (7, 7cx) (1, cx, cx), (3, cx, cx), (5, 3x, 3x)

(7, cx, cx), (8, cx, cx), (13, 7x, 4x)

OM means the output mask of the active S-box in this round;
IM means the input mask of the active S-box in the next round;
The tuple (a, b) means the input mask or output mask of Sa is b;
The triple (a, b, c) means the input mask on the a-th DP4 is b while its output mask
is c.

Linear Cryptanalysis of Reduced-Round ICEBERG 389

Fig. 4. Patterns for linear layer P64-DP4-P64

By further analysis of these 8 patterns, we obtain the best linear approxima-
tion for 6-round of ICEBERG in pattern 1 → 3 → 1 → 3 → 1 → 3, with bias
2−31.06, which is depicted in Table 7. Since ICEBERG is involutional, there is a
trail in 3 → 1 → 3 → 1 → 3 → 1 with the same highest bias and the opposite
order.

4 Linear Attacks against 7-Round ICEBERG

Using the 6-round linear approximation (00004000 00000000x) →
(00070083 00000420x) with probability of 2−31.06, we present a linear attack
to the 7-round ICEBERG. Firstly, we choose 264 plaintext pairs. According to
the input mask in round 7 (00070083 00000420x), we know there are four active
S-boxes, which result in 32 subkey bits in round 7 needing to recover. The time
complexity of this step is 264+32−2 = 294 one-round encryptions, equals to 291.19

7-round encryptions. The success rate is computed with the method in [12] as
follows,

Ps = Φ(2
√
N |p− 1/2| − Φ−1(1− 2−α−1))

= Φ(2
√
264 · 2−31.06 − Φ−1(1 − 2−32−1))

= 0.6%.

The remaining 96 master key bits can be recovered by exhaustive search.

5 Linear Attacks under Weak Keys against 7-Round
ICEBERG

Since the bias of the best 6-round linear approximation is quite low, the suc-
cess rate of the attack is very small. So in this section, we consider the linear

390 Y. Sun and M. Wang

Table 7. 6-Round Best Linear Approximation We Found

Round Output Mask Bias εr
S5=40x

R1 S-box S5=40x 2−3.42

R1 LT S5=40x, S6=1x, S7=40x
R2 S-box S5=40x, S6=1x, S7=40x 2−8.83

R2 LT S5=40x
R3 S-box S5=40x 2−3.42

R3 LT S5=40x, S6=1x, S7=40x
R4 S-box S5=40x, S6=1x, S7=40x 2−8.83

R4 LT S5=40x
R5 S-box S5=40x 2−3.42

R5 LT S5=40x, S6=1x, S7=40x
R6 S-box S5=40x, S6=6x, S7=40x 2−8.14

R6 LT S0=20x, S1=4x, S4=83x, S6=7x

hull attack under weak keys. The concept of linear hull was first announced by
Nyberg [10], and Keliher et al successfully exploited this method to attack the
Q cipher, then M. Q. Wang et al practice it to attack the PRESENT cipher
later. A linear hull is a collection of all linear relations with a and b as input
and output masks, denoted ALH(a, b). Since it is infeasible to compute the bias
of the linear expression aX+bY(X,k)=0 over the secret key, researchers have
adopted the average potential over all independent and uniform random sub-
keys. However, in 2009, Murphy proved that Nyberg’s results can only be used
to give a lower bound on the data complexity and will be no use on real linear
cryptanalysis [11]. In fact, the linear hull has this kind of positive effect in linear
cryptanalysis for some keys instead of the whole key space. So the linear hull
can be used to improve the traditional linear cryptanalysis for some weak keys.
We continue using the best linear approximation’s input and output mask as the
linear hull’s input and output mask. Table 8 shows the distribution rank of the
bias of each linear trail. As we see in the table, the top 7 linear trails are with
relative higher biases than others. We detailed their biases in Table 9.

Table 8. Bias Rank of the linear trails

Bias(log2) [-32,-31) [-33,-32) [-34,-33) [-35,-34) [-36,-35) [-37,-36) [-38,-37) [-39,-38)

Trails 1 0 6 1 2 11 13 16

Bias(log2) [-40,-39) [-41,-40) [-42,-41) [-43,-42) [-44,-43) [-45,-44) [-46,-45) ... #Total

Trails 36 56 79 120 134 250 295 ... 14033

Assuming that the subkeys are independent from each other. So if we define
the relation of the key of the 7 linear trails as K0,K1...K6, we can see, if K0 =
0,K1 = K2 = ... = K6 = 1 or K0 = 1,K1 = K2 = ... = K6 = 0, the multi-path

Linear Cryptanalysis of Reduced-Round ICEBERG 391

Table 9. 6-Round Linear Hull

Input Mask Output Mask Bias εr
(00004000 00000000x) (00070083 00000420x) +2−31.06

(00004000 00000000x) (00070083 00000420x) −2−33.46

(00004000 00000000x) (00070083 00000420x) −2−33.46

(00004000 00000000x) (00070083 00000420x) −2−33.55

(00004000 00000000x) (00070083 00000420x) −2−33.55

(00004000 00000000x) (00070083 00000420x) −2−33.55

(00004000 00000000x) (00070083 00000420x) −2−33.55

effect should be maximum, which is the sum of all the biases of the 7 linear
trails, equals to ±2−22.99. So the rate of weak keys in the whole key space should
be 2−7 + 2−7 = 2−6, which can work for 2122 key values. Under the weak keys,
we can recover the 32 subkey bits in the last round of 7-round ICEBERG, if we
use 263 known plaintexts, the success rate will be

Ps = Φ(2
√
N |p− 1/2| − Φ−1(1− 2−α−1))

= Φ(2
√
263 · 2−29.99 − Φ−1(1 − 2−32−1))

= 26.1%.

If we use 264 known plaintexts, the success rate is 95.7%. And the time com-
plexity will be 264+32−2 = 294 one round encryptions, equals to 291.19 7-round
encryptions.

6 Summary

In this paper, we analyze the property of the linear layer of ICEBERG and
identify the best 6-round linear approximation with bias of 2−31.06. Then we
present the first linear analysis of 7-round ICEBERG under weak keys. Our
attack requires 290.19 7-round encryptions and 263 known plaintexts, the success
rate is 26.1%; when using the whole codebook, the success rate can reach 95.7%.

Acknowledgments. We would like to thank anonymous reviewers for their
very important comments. This author was supported by National Natural Sci-
ence Foundation of China (No.61133013, No.61070244 and No.60931160442),
Tsinghua University Initiative Scientific Research Program (No.2009THZ01002
and No.20111080970), Outstanding Young Scientists Foundation Grant of Shan-
dong Province (No.BS2009DX030).

References

1. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

392 Y. Sun and M. Wang

2. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

3. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

4. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

6. Joan, D., Vincent, R.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICE-
BERG: An Involutional Cipher Efficient for Block Encryption in Reconfigurable
Hardware. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299.
Springer, Heidelberg (2004)

8. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

9. Huiju, C., Howard, M.H., Cheng, W.: PUFFIN: A Novel Compact Block Cipher
Targeted to Embedded Digital Systems. Digital System Design Architectures (DSD
2008), pp. 383–390 (2008)

10. Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.) EU-
ROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

11. Murphy, S.: The Effectiveness of the Linear Hull Effect. Technical Report, RHUL-
MA-2009-19 (2009), http://www.isg.rhul.ac.uk/ssean/LinearHull.pdf

12. Selçuk, A.A., Biçak, A.: On Probability of Success in Linear and Differential Crypt-
analysis. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 174–185. Springer, Heidelberg (2003)

http://www.isg.rhul.ac.uk/ssean/LinearHull.pdf

Overcoming Significant Noise:

Correlation-Template-Induction Attack�

An Wang1, Man Chen2, Zongyue Wang2, and Yaoling Ding3

1 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
wanganl@tsinghua.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

3 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

Abstract. Due to low Signal to Noise Ratio (SNR) in general experi-
mental environments, previous attack methods such as correlation power
analysis (CPA) do not always screen out the correct key value. Some-
times the success rate of the attack is so slight that we have to find
other ways to make certain of the prosperity. In this paper, rather than
adopting the traditional means of singling out a single key value, we
suggest a way of setting up a threshold for the attack. Accordingly, we
propose a feasible method to filter the inherently enlarging candidate key
space, which is called correlation-template-induction attack. The method
contains three steps: First, we apply a variation of CPA and get a set
of candidate key values. Then, we filter the candidate key space with
template attack, which is easy to implement and requires encryptions
of just a few input data to screen out the correct key. Next, to achieve
optimal of our attack, we mix the concept of induction together with our
attack. The experimental results given in this article on an AES smart
card implementation guarantee the effectiveness of our method.

Keywords: power analysis attack, correlation power analysis, template
attack, correlation-template-induction attack.

1 Introduction

Side-channel attacks, especially power analysis attacks, are of great threaten to
cryptographic devices, and thus gain attentions from different classes of people
ranging from cipher designers to hardware engineers. Power analysis attacks con-
tain different sorts of attacks: differential power analysis (DPA) attacks, tem-
plate attacks, collision attacks, correlation power analysis (CPA) attacks, etc.
DPA was first introduced by Kocher et al. in 1999 [7]. Later, the correlation
factor between power consumption samples and a specific power model, such as

� Supported by the National Natural Science Foundation of China (Grant No.
61133013 and 60931160442) and the Tsinghua University Initiative Scientific Re-
search Program (No.2009THZ01002, No.20111080970).

M.D. Ryan, B. Smyth, and G. Wang (Eds.): ISPEC 2012, LNCS 7232, pp. 393–404, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

394 A. Wang et al.

the Hamming weight model, of the handled data was taken into account. The
so-called CPA was explicitly proposed in 2004 by Brier et al. [5]. Subsequent
studies apply CPA to practical environments [10,11,12], and even to other as-
pects of side-channel attacks [8]. Collision attack was proposed in 2003 [14] and
was further studied in [3,4,8,13]. It detects collisions among the intermediate
values of the algorithm to recover the key. Template attack [1,6] consists of a
preprocessing template construction stage to give a standard description of the
device’s characters, and a matching template stage to recover the key. Owing to
its high efficiency, template attack is widely used.

Efficient as power analysis attacks are, there are some drawbacks when faced
with the real world situations. Whenever an attacker records the power con-
sumptions of the target cryptographic device, noise always exists and somehow
makes the consumptions remarkable deviate from their real values. Take the ex-
ecution of CPA to AES as an example. If the success rate of a single key-byte is
90%, the probability of recovering the entire key value for 16 key-bytes will be
only 18.5%! Bogdanov et al. pointed out that one can widen the judgement scale
to attacks like CPA to reduce the possibility of miss-judgement of key values
[2]. But their method can only be achieved under the condition that no mistake
occurs in collision attack stage. The widening of the discriminant criteria’s value
range, thus enlarging the candidate key space apparently, requires large amounts
of searching efforts to get the unique correct key value. So we have to deal with
the problem that how to reduce the size of the candidate key space so that we
can search less times.

Template attack is easy to implement and is very efficient, while CPA has a uni-
form key value distribution. Thus, in this paper, we put forward the correlation-
template-induction attack by combining CPA and template attack, making the
most of each method’s advantages. In the real world situations where significant
noise exists, this is a feasible method, tolerant of certain noise, to filter the can-
didate key space. On one hand, using our method, one can obtain the correct key
with a high probability. On the other hand, the efficiency of the method is greatly
improved by analyzing the selection of the parameters we use in the attacks.

2 Preliminary

2.1 Correlation Power Analysis

In CPA [5], the attacker has to first choose an intermediate value of the crypto-
graphic algorithm he is interested in, which is determined by the plaintext and
a part of the key value. Second, the attacker records the power consumptions
of the intermediate values together with the input data to the device during
the many times of the encryption operations. Till now, the attacker has got all
he needs to process CPA. Next, he can calculate the correlation factor for each
possible key value, and pick up the most significant one to elicit the correct key.

Let T be the set of power traces T i that are acquired (AcquireTraces)
during the execution of a known algorithm using a set P of known texts P i

Overcoming Significant Noise: Correlation-Template-Induction Attack 395

(ChooseInputs) for the particular time when the intermediate values are pro-
cessed. N is the number of known texts. Fk denotes the set of Hamming weights
of the intermediate values computed(ComputeIntermediates) by the algo-
rithm with part key value k and with input P . ρk is the Pearson correlation
coefficient calculated by T , Fk(Correlation). That is,

Correlations(Fk, T) =
N

∑
F k
j T

j −
∑
F k
j

∑
T j√

N
∑

(F k
j)

2 − (
∑
F k
j)

2
√
N

∑
(T j)2 − (

∑
T j)2

.

where F k
j is the jth element in Fk, j = 1, 2, . . . , N . The formula argmax

i∈{0,...,255}
ρi

outputs the key value correlated with the biggest correlation coefficient. With
an 8-bit micro-controller, CPA can be expressed as follows.

Algorithm 1. Correlation power analysis for recovering a key byte

1: P = (P 1, P 2, . . . , PN) ← ChooseInputs()
2: T = (T 1, T 2, . . . , TN) ← AcquireTraces(P)
3: for k from 0 to 255
4: Fk ← ComputeIntermediates(k,P)

5: ρk ← Correlation(Fk, T)
6: end for
7: k = argmax

i∈{0,...,255}
ρi

8: return k as a key candidate

When the SNR is high enough, Algorithm 1 works quite well (see Figure 1).
In Figure 1, Correlation is the correlation coefficient; Samples mean the sample
points of the power consumption trace; Key-byte shows different guesses for the
key byte. Obviously, the correlation coefficient is most significant when the key
value is 30. However, when the SNR is low, noise often influences the result
of attack. Therefore, the output of argmax

i∈{0,...,255}
ρi does not always single out the

correct key value (especially when the maximum correlation coefficient of some
particular model is small). Figure 2 expresses an example where this case occurs
(a particular sample point is chosen to illustrate the error). To get the correct
key value with a high probability, that argmax

i∈{0,...,255}
ρi outputs more key values can

be a feasible way.

2.2 Template Attack

Template attack [6,1] can basically be divided into two stages: the template
construction stage and the matching template stage. Like CPA, template attack
first chooses the special value which depends only on the plaintext and a part of
the key. Here, we take Hamming weight of the intermediate value F = f(k, P) as
the special value to elaborate template attack (other power consumption models
are also utility identically).

396 A. Wang et al.

Fig. 1. CPA with high SNR (the correct key is 30)

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

Key−byte

C
or

re
la

tio
n

XO
X X XX

Fig. 2. CPA with low SNR (the circle corresponds to the correct key 30, and the crosses
correspond to some wrong keys)

Let ChooseInputs and AcquireTraces have the same meanings as the defi-
nitions in Section 2.1 except that the traces are acquired when processing f(k, P)
with different plaintext P . GetCharacter exploits the differences between the
power consumption traces of diverse Hamming weights and outputs a multivari-
ate normal distribution for each Hamming weight value, i.e. Hamming weight
i ∼ N(mi, Ci) [9]. n denotes the dimension of the multivariate normal distri-
bution. Record records the multivariate normal distributions for later usage.
ChooseInput randomly outputs a value for the template attack. Acquire-
Trace obtains the power consumption trace of f(k, P). Given the power con-
sumption trace T and the multivariate normal distribution (m,C), the similarity
between them can be judged [6] by

MatchTemplate(T, (m,C)) =
exp(− 1

2 · (T −m)′ · C−1 · (T −m))√
(2 · π)n · det(C)

.

Overcoming Significant Noise: Correlation-Template-Induction Attack 397

The formula argmax
i∈{0,...,8}

Similarityi outputs Hamming weight value whose mul-

tivariate normal distribution the trace matches best. ComputeKey computes
the key candidates which lead to the given Hamming weight. With an 8-bit
micro-controller, the template attack can be expressed as follows.

Algorithm 2. Template attack for getting the key-byte candidates

Template construction stage (for a device under control):
1: Pi = (P i

1 , P
i
2 , . . . , P

i
L) ← ChooseInputs()

2: [Such that F i
j = f(k, P i

j) has the Hamming weight i for the key byte k in the device,
i = 0, 1, . . . , 8, j = 1, 2, . . . , L]
3: T i = (T i

1, T
i
2, . . . , T

i
L) ← AcquireTraces(P)

4: for i from 0 to 8
5: (mi, Ci) ← GetCharater(T 0, T 1, . . . , T 8)
6: end for
7: Record((m0, C0), (m1, C1), . . . , (m8, C8))

Matching template stage (for the target device):
1: P ← ChooseInput()
2: T ← AcquireTrace(P)
3: for i from 0 to 8
4: Similarityi = MatchTemplate(T, (mi, Ci))
5: end for
6: HW = argmax

i∈{0,...,8}
Similarityi

7: S ← φ
8: for each F i

j such that HW (F i
j) = HW do

9: k ← ComputeKey(F i
j , P)

10: S ← S
⋃
{k}

11: end for
12: return S as the key-byte candidates

With high SNR, Algorithm 2 works quite well (see Figure 3(a) where the
voltage can be distinguished easily). When confronted with low SNR however,
the noise will cause deflection of the power consumption trace, and thus, the
attack may single out the wrong key value. Figure 3(b) is an example. However,
if one widens the output range of the term argmax

i∈{0,...,8}
Similarityi, the probability

of erroneously filtering out the correct key value will be significantly reduced.
Yet, the candidate key space will be increased apparently.

3 Correlation-Template-Induction Attack

In this section, we describe our strategy of attack. Due to the low Signal to
Noise Ratio, previous attack methods don’t always obtain the correct key value.
Waddle and Wagner stated in their article [15] that an attack suggesting two
likely subkeys is more helpful than an attack suggesting none. Following this sort

398 A. Wang et al.

850 900 950 1000 1050 1100

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Samples [Sa]

Vo
lta

ge
 [V

]

HW=0
HW=1
HW=2
HW=3
HW=4
HW=5
HW=6
HW=7
HW=8

(a) with high SNR

850 900 950 1000 1050 1100

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Samples [Sa]

V
o

lt
ag

e
[V

]

HW=0
HW=1
HW=2
HW=3
HW=4
HW=5
HW=6
HW=7
HW=8

(b) with low SNR

Fig. 3. Different power consumptions based on different Hamming weights

of concept, the attacker can enlarge the set of the candidate key values. However,
this enlarging makes the attacker searches more times to get the unique correct
key. In this paper, we use a second filtering step to get rid of some candidate
keys.

3.1 Our Attack Model

Instead of concentrating on the maximum correlation coefficient, we relax the
restriction to several largest correlation coefficients. Since each of the correla-
tion coefficients provides a key value, the enlarged candidate key space of CPA
is acquired. The more largest correlation coefficients we use, the higher success
rate of recovering key we get. To balance the success rate and the complexity,
we set a percentage threshold TCPA. That means key values related to correla-
tion coefficients bigger than the certain percentage TCPA of the maximum one
are survived. The symbol TCPA is directly bound up with the Signal to Noise
Ratio and has to be set to different values accordingly. This variation of CPA
is listed in Algorithm 3 and can be called by ModifiedCPA. Similarly, we em-
ploy a threshold TTA in template attack to increase the success rate. We say
the key value survived when the key responds to Hamming weight within TTA

of the Hamming weight calculated from experimental results. TTA judges the
influence of the noise to MatchTemplate. This variation of template attack,
ModifiedTemplateAttack, is listed below as Algorithm 4.

Algorithm 5 lists our method in which #S denotes the size of S. First, we call
ModifiedCPA to get the key-byte candidates. Then, ModifiedTemplateAt-
tack obtains another set of possible key values. The intersection of the two sets
dramatically decreases the number of the candidates. Identically, by adopting
the easy-implementing ModifiedTemplateAttack and intersecting the sets a
few times can we get a small candidate key space.

Step 6 to step 11 of Algorithm 5 illustrates the concept of induction attack.
When #S is smaller than some threshold TCTI , to match the candidate key with
the key in the device, every candidate key value in S is used as an input. That

Overcoming Significant Noise: Correlation-Template-Induction Attack 399

Algorithm 3. Modified correlation power analysis for getting the key-byte candidates

1: P = (P 1, P 2, . . . , PN) ← ChooseInputs()
2: T = (T 1, T 2, . . . , TN) ← AcquireTraces(P)
3: for k from 0 to 255

4: Fk ← ComputeIntermediates(k,P)
5: ρk ← Correlation(Fk, T)
6: end for
7: ρ = max(ρi), i = 0, 1, 2, ..., 255
8: S ← φ
9: for each ρk s.t. ρk > ρ · TCPA do
10: S ← S

⋃
{k}

11: end for
12: return S as the key-byte candidates

Algorithm 4. Modified template attack for getting the key-byte candidates

Template construction stage is the same as algorithm 2.
Matching template stage:
1: P ← ChooseInput()
2: T ← AcquireTrace(P)
3: for i from 0 to 8
4: Similarityi = MatchTemplate(T, (mi, Ci))
5: end for
6: HW = argmax

i∈{0,...,8}
Similarityi

7: S ← φ
8: for each F i such that HW − TTA ≤ HW (F i) ≤ HW + TTA do
9: k ← ComputeKey(F i, P)
10: S ← S

⋃
{k}

11: end for
12: return S as the key-byte candidates

Algorithm 5. Correlation-template-induction attack for getting the key-byte
candidates

1: S ← ModifiedCPA()
2: while #S > TCTI do
3: S ′ ← ModifiedTemplateAttack()
4: S ← S ∩ S ′
5: end while
6: for each k ∈ S do
7: P ← ChooseInput(S)
8: T ← AcquireTrace(P)
9: D ← LeastSquares(T, (m0, C0))
10: if D > TLS then S ← S \ {k}
11: end for
12: return S as the key-byte candidates

400 A. Wang et al.

means, instead of choosing randomly, we select from the key-byte candidates
ChooseInput(S). TCTI is up to the efficiency rate between ModifiedTem-
plateAttack and induction attack. LeastSquares is adopted to see wether the
deflection from (m0, C0) is 0 or not. If the selected key value equals the correct
key, the intermediate value should be zero and D ≤ TLS should be met. The
term D ≤ TLS singles out the most likely key-byte candidates. TLS judges the
influence of the noise to LeastSquares.

3.2 Efficiency Analysis

CPA requires a number of power consumption traces and it has to calculate the
correlation coefficient for each guessed key value k. Assuming the guessed key is
of m bits, CPA needs to call Correlation 2m times.

One template attack requires just one trace to get rid of some wrong key
values. The template construction stage is a pre-processing phase. Thus, its
runtime can be neglected in template attack. In the matching template stage,
it requires to MatchTemplate for each one of the Hamming weight. Suppose
the guessed key is of m bits, leading to m+ 1 different Hamming weights. That
means one template attack needs to call MatchTemplate m+ 1 times. That’s
to say, since Correlation and MatchTemplate have equivalent efficiency, the
complexity of a single template attack is far less than that of CPA.

We discuss the efficiency of our method in two cases: TCTI = 1 or TCTI >
1. Suppose TCTI = 1, thus skipping induction attack steps. If the total key
value is separated into t bytes and the success rate of one CPA for a single
key-byte value is α, the success rate for the entire key is αt. In general, this
rate is not that practicable and we have to manipulate CPA a second or more
times to enhance the success ratio. Our method insures S includes the correct
key value inherently with the extremely high probability. The aforementioned
calculation requirements of CPA and template attack suggest that template
attack is outclassed by CPA in runtime, i.e. CCPA+nTA < 2CCPA (Although
template attack is executed for n times, in almost all cases, n is so small that
this inequality always holds). Therefore, we conclude our method outstrips CPA.

Suppose TCTI > 1. It is obvious that MatchTemplate is more complex
while induction attack has to traversal all candidate key values. Therefore, when
the size of candidate key space is less than TCTI > 1, With just a few possible
key-byte values, CIA < CTA, and induction attack gets less keys with higher
possibility than template attack does. In fact, the success rate of executing CPA
twice is far less than that of executing correlation-template-induction attack
(Please refer to Table 2). Therefore, we can conclude that correlation-template-
induction attack is superior to CPA both in efficiency and success rate.

Besides, we find there are some ways of accelerating our method in practice.
That is, instead of choosing random inputs to the device in template attack, we
choose some special values related to the candidate key values we have screened
out. Here, attack on the output of the first AES AddRoundKey on an 8-bit micro-
controller, i.e. HW (P

⊕
k) is stated as an example. Since the key value in the

micro-controller is an unknown constant, the XOR operation depends entirely on

Overcoming Significant Noise: Correlation-Template-Induction Attack 401

the input to the device. That means the output of the XOR operation is a random
variable. Let P i donate the set of plaintext-bytes having Hamming weight i when
it traversals from 0 to 255, then Table 1 shows its size #P i. We can see that with
a random input, one gets Hamming weight 0 with probability 1

256 , gets Hamming
weight 1 with probability 8

256 , etc. If we set TTA to 1 (By analyzing Figure 3(b),
the Hamming weight bias in our device is ±1 in almost all cases), #S ′ is the size
of key-byte candidates we can get from the ModifiedTemplateAttack. With
only one random input, algorithm 4 can screen out

E(#S ′) = 9 · 1 + 37 · 8 + 92 · 28 + · · ·+ 9 · 1
256

≈ 139.65

candidate key values on average from 256 key-byte values. However, if one
chooses plaintext-byte from the candidate key space directly, assuming s is the
number of the key-byte candidates we get fromModifiedCPA, with probability
1
s he chooses the correct key value, then he can screen out only 9 members from
256 key-byte values for S ′. Since those 9 members are not always all key-byte
candidates from ModifiedCPA, after the intersection step, #S can be even
smaller than 9.

Table 1. The relation between Hamming weight of intermediate and number of can-
didate key-bytes when TTA = 0/1 in ModifiedTemplateAttack

HW 0 1 2 3 4 5 6 7 8

#Pi 1 8 28 56 70 56 28 8 1

#S ′ 9 37 92 154 182 154 92 37 9

4 Experimental Results

We employed AT89S52 chip for setting up experiment platform of software. Under
the configuration of bandwidth 350MHz and sampling rate 1GS/s, an oscilloscope
namedAgilent 54641Awas used for a practical attack.The codes of AES algorithm
written by assembly languagewere programmed into themicrocontroller, in which
30 (0x1E) was chosen as a correct key-byte which we tried to attack.

We executed our correlation-template-induction attack to recover the correct
key-byte of AES. First, aiming at Hamming weight of the S-box’s output corre-
sponding to the key-byte, modified CPA aforementioned was executed, and 256
correlation coefficients were acquired. The threshold TCPA was set to 50%, and
42 key-bytes survived. Subsequently, we employed modified template attack for
getting Hamming weight of S-box’s input. The threshold TTA was set to 1, and
154 key-bytes survived. Figure 4 shows the result of modified CPA. Particularly,
we rearranged the horizontal axis by Hamming weight of the corresponding in-
termediate which was focused on by template attack. In Figure 4, the lateral
shadow covers 42 survived key-byte values from modified CPA, and the longitu-
dinal shadow covers 154 survived key-byte values from modified template attack.
Thus, the 26 key-byte values in the overlapped shadow survived.

402 A. Wang et al.

Fig. 4. The correlation coefficients correspond to 256 cases of key-byte. The 26 key-
bytes in the overlapped shadow survived after the first modified template attack.

Afterwards, we executed 3 modified template attacks which reduced the size
of the survived key-byte candidates space to 14, 8, 3 respectively. The results
are described in Figure 5(a,b,c). Because the threshold TCTI was set to 5 in our
experiment, step 6-11 of Algorithm 5 were triggered, in which the three survived
key-byte values were chosen as the plaintext bytes for the induction attack. In
induction attack, the acquired traces were compared with the predetermined
template, which is described in Figure 5(d). Obviously, the trace corresponding
to key-byte 30 is close to the template of Hamming weight 0. Therefore, this key
was recovered correctly.

(a) 14 keys survive in 2nd template
attack

(b) 8 keys survive in 3rd template
attack

(c) 3 keys survive in 4th template
attack

900 950 1000

0.95

1

1.05

Samples [Sa]

Vo
lta

ge
 [V

]

Template
Correct Key
Wrong Key

(d) 1 key survives in the induction
attack

Fig. 5. Results of three template attacks and one induction attack

Overcoming Significant Noise: Correlation-Template-Induction Attack 403

Table 2. Comparison of complexity and success rate between four methods

CPA[5] CPA+CPA[5] CPA+TA (modified) C-T-I attack

Precomputation 0 0 9Ccons 9Ccons

Traces required 100n 200n 106n 107n
Key recovery stage 256Ccorr 512Ccorr 256Ccorr + 54Cmatch 256Ccorr + 39Cmatch

Success rate (byte) 90% 99% 99.30% 99.40%
Success rate (all) 18.53% 85.15% 89.37% 90.82%

Table 2 shows the complexity and success rate between CPA, CPA twice, and
two our methods (skipping and not skipping induction attack). Every trace for
computation of key recovery is from the average of n traces under low SNR en-
vironment (n = 10000 in our experiment). The symbols Ccorr, Ccons, and Cmatch

stand for the complexity of computing a correlation coefficient, constructing a
template, and matching a template respectively. Under the same environments,
it’s obvious that the complexity of our methods is much higher than the tradi-
tional methods. Meanwhile, based on the accuracy of our device and the chosen
parameters, we estimate that the success rate of CPA, modified CPA, modified
template attack, induction attack are 90%, 99.9%, 99.9%, 99.9% respectively in
our experiment environment. So we have the success rate of attacks aiming at a
single key-byte and all 16 key-bytes. As is shown, the success rate of our method
is higher than the traditional methods.

5 Conclusion

Power analysis techniques are of great concern because a very large number
of vulnerable products are deployed. The attacks proposed before are easy to
manipulate, but sometimes they don’t succeed in obtaining the correct key value
as the result of the influence of the significant noise. In this article, we have
presented a technique to enhance the attacks by enlarging the candidate key
space. We also find some way to optimize our means. The validity of our method
is certified by the experimental results presented in Section 4.

As a matter of fact, the method in our article is not the optimal scheme. More
side-channel techniques mix together can achieve higher success rate with higher
efficiency. We are looking forward for more perfect proposals.

References

1. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel Attacks. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003)

2. Bogdanov, A., Kizhvatov, I.: Beyond the Limits of DPA: Combined Side-Channel
Collision Attacks. Cryptology ePrint Achieve, Report 2010/590, to appear in IEEE
Transactions on Computers (2010), http://eprint.iacr.org/

http://eprint.iacr.org/

404 A. Wang et al.

3. Bogdanov, A.: Improved Side-channel Collision Attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Hei-
delberg (2007)

4. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Chair, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

7. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

8. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced Power Analysis Col-
lision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 125–139. Springer, Heidelberg (2010)

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

10. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

11. Oswald, E., Parr, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

12. Plos, T.: Susceptibility of UHF RFID Tags to Electromagnetic Analysis. In: Malkin,
T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 288–300. Springer, Heidelberg (2008)

13. Schramm, K., Leander, G., Felke, P., Parr, C.: A Collision-Attack on AES Combin-
ing Side Channel- and Differential- Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163-175. Springer, Heidelberg (2004)

14. Schramm, K., Wollinger, T.J., Paar, C.: A New Class of Collision Attacks and
Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp.
206–222. Springer, Heidelberg (2003)

15. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

Author Index

Abdul-Latip, Shekh Faisal 319
Ateniese, Giuseppe 182

Bai, Dongxia 80
Baozeng, Ding 289
Bilzhause, Arne 17
Braun, Johannes 259

Chen, Man 393
Chow, Yang-Wai 170
Comon-Lundh, Hubert 63
Corniaux, Christian L.F. 126

Dawson, Edward 199
Ding, Yaoling 393

Filardo, Nathaniel Wesley 182

Gao, Chong-zhi 46
Ghodosi, Hossein 126
González Nieto, Juan Manuel 199
Gu, Dawu 97
Guo, Fuchun 1
Guo, Teng 217

Hagiya, Masami 63
Hayashi, Takuya 228
Horsch, Moritz 259

Izawa, Kazuya 245

Jing, Jiwu 158
Joye, Marc 369

K., Preetha Mathew 144
Kawamoto, Yusuke 63
Koyama, Takuma 109
Krämer, Juliane 301

Lepoint, Tancret̀de 369
Li, Bao 34
Li, Leibo 80
Li, Wei 97
Liedel, Manuel 277

Liu, Feng 217
Liu, Ya 97
Liu, Yamin 34
Liu, Zhiqiang 97
Lu, Xianhui 34

Meer, Hermann de 17
Mei, Qixiang 34
Michéle, Benjamin 301
Miyaji, Atsuko 245
Mu, Yi 1

Ohta, Kazuo 109
Omote, Kazumasa 245

Pandu Rangan, C. 144
Plantard, Thomas 353
Pöhls, Henrich C. 17
Posegga, Joachim 17

Reyhanitabar, Mohammad Reza 319

Sakiyama, Kazuo 109
Sakurada, Hideki 63
Samelin, Kai 17
Sasaki, Yu 109
Seberry, Jennifer 319
Seifert, Jean-Pierre 301
Shimoyama, Takeshi 228
Shinohara, Naoyuki 228
Shuo, Tian 289
Simpson, Leonie 199
Sun, Yue 381
Susilo, Willy 1, 170, 319, 353

Takagi, Tsuyoshi 228

Varadharajan, Vijay 1
Vasant, Sachin 144
Venkatesan, Sridhar 144

Wang, An 393
Wang, Lei 109, 158
Wang, Meiqin 381

406 Author Index

Wang, Yanfeng 337

Wang, Zongyue 393

Wei, Baodian 46

Wen, Chuah Chai 199

Wiesmaier, Alexander 259

Wu, ChuanKun 217

Wu, Wenling 337

Xiang, Ji 158
Xie, Dongqing 46

Yeping, He 289
Yu, Xiaoli 337

Zhang, Lingchen 158
Zhang, Zhenfei 353

	Title Page
	Preface
	ISPEC 2012
	Table of Contents
	Digital Signatures
	A Pre-computable Signature Scheme with Efficient Verification for RFID
	Introduction
	Preliminaries and Definitions
	Definition of Our Signature
	Bilinear Groups
	Complexity Assumptions

	Our Signature Scheme
	Construction
	Correctness
	Security

	Application to RFID
	Hardware Requirement
	Comparisons

	Signature Verification of Partially Known Messages
	Conclusion
	References

	Redactable Signatures for Independent Removal of Structure and Content
	Introduction
	Attacking the Kundu-Scheme
	Preliminaries, Notations and Security Properties
	Security Properties
	Aggregate Signatures and Bilinear Pairings

	RSS Construction Using Aggregate Signatures
	High-Level Description of Our Construction
	Instantiation Using the BGLS-Scheme
	Modifications

	Performance Measurements
	Conclusion and Open Questions
	References

	Public Key Cryptography
	Improved Efficiency of Chosen Ciphertext Secure Encryption from Factoring
	Introduction
	Motivation
	Our Contribution
	Outline

	Definitions
	Key Encapsulation Mechanism
	Target Collision Resistant Hash Function

	New Variant of HK09
	Security Proof
	Efficiency
	The case of QRN group.
	The case of semi-smooth subgroup group.

	Conclusion
	References

	Deniable Encryptions Secure against Adaptive Chosen Ciphertext Attack
	Introduction
	Other Related Work
	Our Contribution
	Organization

	Preliminaries
	Notations
	Deniable Encryption
	Building Blocks

	A Deniable Encryption Scheme Secure under Chosen Ciphertext Attacks
	Construction
	Security Proof

	Conclusion
	References

	Computational Soundness of Indistinguishability Properties without Computable Parsing
	Introduction
	The Symbolic Model
	Terms
	Predicates, Conditions, Frames and Static Equivalence
	Processes

	Computational Interpretation
	Computational Interpretation of Terms and Predicate Symbols
	Interactive Turing Machines
	Cryptographic Assumptions

	The Main Result
	Computation Trees
	Partial Unraveling
	Replacing Plaintexts
	Ruling Out Coincidences
	Ruling Out Predictions
	Trace Mapping

	Conclusion
	References

	Cryptanalysis I: Differential Attacks
	New Impossible Differential Attacks on Camellia
	Introduction
	Preliminaries
	Notations
	Description of Camellia
	Encryption Procedure.
	Key Schedule.

	New 7-Round Impossible Differentials of Camellia with 2 FL/FL-1 Layers
	Impossible Differential.

	Impossible Differential Attacks on Camellia with FL/FL-1 Layers
	Impossible Differential Attack on 11-Round Camellia-128
	Complexity.

	Impossible Differential Attack on 11-Round and 12-Round Camellia-192
	Attack on 11-round Camellia-192.
	Attack on 12-round Camellia-192.
	Complexity.

	Impossible Differential Attack on 14-Round Camellia-256
	Complexity.

	Conclusion
	References

	Impossible Differential Attacks on Reduced-Round LBlock
	Introduction
	Preliminaries
	Some Notations
	Overview of LBlock

	14-Round Impossible Differentials of LBlock
	Impossible Differential Attacks on 21-Round LBlock
	Some Properties of LBlock
	Some Observations on the Key Schedule of LBlock
	Attack Procedure
	Complexity of the Attack

	Conclusion
	References

	New Truncated Differential Cryptanalysis on 3D Block Cipher
	Introduction
	Description of 3D Block Cipher
	Previous Works on 3D Block Cipher
	Key-Recovery Attack on 11-Round 3D Block Cipher
	Truncated Differential Path
	How to Obtain Chosen Plaintext
	How to Recover a User Key
	Differential Attack with Early Aborting Technique
	Conclusion of 11-Round Attack

	Extended Attack on 13-Round 3D Block Cipher
	Truncated Differential Path
	How to Obtain Another Right Pair
	How to Recover a User Key
	Conclusion of 13-Round Attack

	Conclusion
	References

	Applications I.i: Oblivious Transfer
	T-out-of-n Distributed Oblivious Transfer Protocols in Non-adaptive and Adaptive Settings
	Introduction
	Preliminaries
	Notations and Definitions
	Security Model

	One-Round t-out-of-n DOT Protocol
	Principle of the Protocol
	Description of the Protocol
	Correctness and Security of the Protocol

	Adaptive DOT Protocol with Limited Queries
	Description of the Protocol
	Correctness and Security of the Protocol

	Adaptive DOT Protocol with Unlimited Queries
	Description of the Protocol
	Correctness and Security of the Protocol

	Efficiency Consideration
	References

	A Code-Based 1-out-of-N Oblivious Transfer Based on McEliece Assumptions
	Introduction
	Preliminaries
	Security Definition of Oblivious Transfer
	Security Assumptions
	Overview of McEliece PKC

	Review of the Passively Secure 1- out-of-2 Protocol for OT by Dowsley et al.
	The OT Protocol
	Security of the Protocol against Active Adversary

	1-out-of-N Oblivious Transfer
	The 1-out-of-N OT Scheme
	Security of the Scheme
	Efficiency and Parameters of the Proposed Scheme

	Conclusion
	References

	Applications I.ii: Internet Security(Works-in-Progress)
	Towards Fine-Grained Access Control on Browser Extensions
	Introduction
	Background Overview
	Basic Notions
	Firefox Overview
	JavaScript Extensions of Firefox

	Browser Extension Security Policy Framework
	Motivation
	Architecture
	Access Control Module
	Dynamic Regulations Module

	Implementation
	Position to Achieve the Framework
	Resource Acquiring Component

	Evaluation
	Compatibility with Legitimate JSEs
	Effectiveness on Restricting Malicious JSEs
	Performance

	Related Work
	Conclusion
	References

	Enhanced STE3D-CAP: A Novel 3D CAPTCHA Family
	Introduction
	Our Contributions

	Related Work
	CAPTCHA Security
	CAPTCHA Usability
	3D CAPTCHAs

	Enhanced Stereoscopic 3D CAPTCHA: STE3D-CAP-e
	Design and Implementation
	Issues Unique to STE3D-CAP-e
	New AI Problem Family

	Security Analysis
	Brute Force Attacks
	Single Image Attacks

	Usability
	Pilot Study Conclusions

	Conclusion
	References

	Key Management
	High-Entropy Visual Identification for Touch Screen Devices
	Introduction
	Visual Cryptography
	System Overview
	Prior Work
	Design
	Threat Model
	The Challenge Schema
	System Game
	Visual Secret Shares That Don't Leak
	Incomplete Erasure Attacks

	Implementation
	Estimating Timing

	Future Work
	Conclusion

	A Framework for Security Analysis of Key Derivation Functions
	Introduction
	Key Derivation Functions
	General Security Framework
	Defining the Security Models
	Known Public Inputs Attack - KPM-Secure
	Known Public Inputs Attack - KPS-Secure
	Adaptive Chosen Context Information Attack (CCM)
	Adaptive Chosen Context Information Attack (Krawczyk)
	Adaptive Chosen Public Inputs Attack (CPM)

	Relating These Five Security Models
	Implications between Security Models
	Non-implications between Security Models

	Conclusion
	References

	Applied Cryptography
	On the Equivalence of Two Definitions of Visual Cryptography Scheme
	Introduction
	Preliminaries
	The Equivalence of Two Definitions of Basis Matrix VCS
	The Equivalence of Two Definitions of Threshold Basis Matrix VCS
	The Equivalence of Two Definitions of General Access Structure Basis Matrix VCS
	The Equivalence of Two Definitions of General Access Structure SIVCS
	The Inequivalence of Two Definitions of Non-basis Matrix VCS

	Conclusions
	References

	Key Length Estimation of Pairing-Based Cryptosystems Using ηT Pairing
	Introduction
	Outline of Function Field Sieve
	DLP and ηT Pairing
	FFS

	Known Evaluation Methods
	Asymptotic Evaluation Formulas
	Granger’s Evaluation Formula

	New Evaluation Formulas for Efficient Implementation of FFS
	Well-Used Efficient Algorithms for FFS
	Criteria for Sufficient Number of Relations
	New Evaluation Formulas

	Estimation of Key Length
	Conclusions
	References

	Lightweight Integrity for XOR Network Coding in Wireless Sensor Networks
	Introduction
	Related Work
	Preliminaries
	Requirements
	Notation
	System and Network Assumptions
	Threat Model [16]
	Universal Hash Functions (UHFs)
	MAC Based on UHFs

	The Yu’s Scheme
	Problem Statement

	Our Scheme
	Discussion
	Security
	Efficiency

	Conclusion
	References

	Applications II.i: PINs
	iPIN and mTAN for Secure eID Applications
	Introduction
	Motivation
	The eID Functionality of the German Identity Card
	Identity Theft Attacks Concerning the eID Functionality
	Approach and Outline

	Background
	PACE
	Multiparty Computation

	iPINandmTANforeIDCards
	Preliminaries
	Variant 1: Multiparty Decryption of Nonce
	Variant 2: Secret Shared PIN
	Variant 3: PACE with mTAN
	Variant 4: Remote PACE and EAC
	Variant 5: Combination

	Analysis
	Security Analysis
	Feasibility

	Conclusion and Future Work
	References

	Applications II.ii: Fundamentals (Works-in-Progress)
	Secure Distributed Computation of the Square Root and Applications
	Introduction
	Cryptographic Primitives and Definitions
	Mathematical Foundations
	Newton-Raphson Method
	Goldschmidt’s Algorithm
	Computation of the Starting Value

	Description and Analysis of the Algorithms
	Norm
	Approximation
	Goldschmidt’s Algorithm
	Security

	Application to QR-Decomposition
	Secure Computation of the QR-Decomposition
	Multiplication with a Householder-Matrix
	Computation of the QR-Decomposition

	Experimental Results
	The Setup
	Computation of the Square Root
	Computation of the QR-Decomposition

	Conclusion and Further Work
	References

	Prevent Kernel Return-Oriented Programming Attacks Using Hardware Virtualization
	Introduction
	Return-Oriented Programming Attack
	ROP Introduction
	Challenges for Defense Kernel ROP Attacks

	Our Solution
	ROP Attack Defense Overview
	Hardware Virtualization
	Implementation and Evaluation

	Related Work
	Conclusion
	References

	Cryptanalysis II: Fault Attacks and Key Recovery
	Structure-Based RSA Fault Attacks
	Introduction
	Background
	Protection of Integrity and Authenticity
	Related Work

	Structure-Based Fault Attack
	Enabling the Attack
	Conducting the Attack
	Infeasibility of Trivial Attacks

	Proof-of-Concept Practical Attack
	System Overview
	File Verification
	Attacking the Exponent
	Attacking the Modulus
	Impact on the STB

	Further Attacks
	3G Access Point
	PGP Key Vulnerability

	Conclusion
	References

	Fault Analysis of the KATAN Family of Block Ciphers
	Introduction
	A Brief Description of KATAN
	An Overview of the Cube and Extended Cube Attacks
	Fault Analysis of KATAN
	Attack on KATAN32
	Attack on KATAN48
	Attack on KATAN64
	Attack Complexity

	Conclusion
	References

	Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher
	Introduction
	A Brief Description of Piccolo
	Notations
	Description of Piccolo

	Biclique Cryptanalysis of Piccolo
	Definition of Biclique
	Pattern of Biclique Cryptanalysis of Piccolo

	Key Recovery for Reduced-Round Piccolo
	Key Recovery for Full Round Piccolo-80
	Key Recovery for 28-Round Piccolo-128

	Conclusion
	References

	On the CCA-1 Security of Somewhat Homomorphic Encryption over the Integers
	Introduction
	Preliminaries
	Notations
	Gentry’s Framework
	Overview of vDGHV SHE Scheme
	Security Models
	LMSV CCA-1 Attack

	Our CCA-1 Attack
	The Attack
	Correctness
	Efficiency
	An Example
	Implementation

	Discussions
	On the Difference between Our Attack and LMSV Attack
	On Adapting Our Attack to SHE Schemes with Ideal Lattice
	On LMSV SHE CCA-1 Approach

	Conclusion
	References

	Cryptanalysis III: Key Recovery (Works-in-Progress
	Partial Key Exposure on RSA with Private Exponents Larger Than N
	Introduction
	LLL and Multivariate Polynomials
	Lattices

	KeyRecoveryfromKnownMSBs
	Preliminaries
	Trivariate Approach: β � 3/2 − α
	Bivariate Approach: β < 3/2 − α

	KeyRecoveryfromKnownLSBs
	Practical Experiments
	Results for Attack on MSBs
	Results for Attack on LSBs

	Conclusion
	References

	Linear Cryptanalysis of Reduced-Round ICEBERG
	Introduction
	Description of ICEBERG
	Non-linear Layer γ
	Linear Layer K

	Linear Cryptanalysis of 6-Round ICEBERG
	Linear Characteristic of 6-Round ICEBERG
	6-Round Linear Characteristic

	Linear Attacks against 7-Round ICEBERG
	Linear Attacks under Weak Keys against 7-Round ICEBERG
	Summary
	References

	Overcoming Significant Noise: Correlation-Template-Induction Attack
	Introduction
	Preliminary
	Correlation Power Analysis
	Template Attack

	Correlation-Template-Induction Attack
	Our Attack Model
	Efficiency Analysis

	Experimental Results
	Conclusion
	References

	Author Index

