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Preface

Computational biology is a wide and varied discipline, incorporating aspects
of statistical analysis, data structure and algorithm design, machine learning,
and mathematical modeling toward the processing and improved understand-
ing of biological data. Experimentalists now routinely generate new information
on such a massive scale that the techniques of computer science are needed to
establish any meaningful result. As a consequence, biologists now face the chal-
lenges of algorithmic complexity and tractability, and combinatorial explosion
when conducting even basic analyses. The goal of the 10th European Conference
on Evolutionary Computation, Machine Learning, and Data Mining in Compu-
tational Biology (EvoBIO 2012) was to bring together experts across multiple
fields to discuss novel methods for tackling complex biological problems, and the
beauty of EvoBIO is that often these experts draw inspiration from biological
systems in order to produce solutions to biological problems.

The 10th EvoBIO conference was held in Málaga, Spain, during April 11–13,
2012, at the Computer Science School of the University of Málaga, Spain.
EvoBIO 2012 was held jointly with the 15th European Conference on Genetic
Programming (EuroGP 2012), the 12th European Conference on Evolutionary
Computation in Combinatorial Optimization (EvoCOP 2012), the First Interna-
tional Conference and 10th European Event on Evolutionary and Biologically In-
spired Music, Sound, Art, and Design (EvoMUSART 2012), and the European
Conference on the Applications of Evolutionary Computation. Collectively, the
conferences are organized under the name Evo* 2012 (www.evostar.org).
EvoBIO, held annually as a workshop since 2003, became a conference in 2007 and
it is now the premier European event for those interested in the interface between
evolutionary computation, machine learning, and data mining in computational
biology. All papers in these proceedings were presented at EvoBIO 2012 in oral or
poster presentations, and were received in response to a call for papers soliciting
a wide range of topics in the realm of biological data analysis and computational
biology.

EvoBIO 2012 added a new submission format: four-page abstracts review-
ing, discussing, or extending work previously published in a journal. This form
was requested in addition to our existing submission formats: 12-page full re-
search articles describing new developments in methodology, approach, and/or
application, eight-page system demonstrations of active or developing systems
in research or practice domains, and eight-page short reports describing new
methodologies, approaches, and/or applications. After peer review, EvoBIO ac-
cepted 15 papers for oral presentation and 8 for poster presentation.

With the goal of sharing inspiration in mind, EvoBIO and EuroGP held a
special joint session to celebrate the tenth anniversary of EvoBIO. In this ses-
sion, advances in the field of genetic programming were applied to problems of
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computational biology, and likewise, the unique mechanisms present in biological
systems were used to create new extensions to the paradigm of genetic program-
ming. This invigorating session created new collaborations and encouraged the
development of new approaches and their application to the biological problem
domain.

First and foremost, we thank all the authors who spent time and effort to
generate the fantastic contributions to this body of work. We thank the members
of the Program Committee for their expert evaluation and review of the submit-
ted papers. We also thank many members of the Evo* community who worked
tirelessly to ensure a smooth and successful conference event; Jennifer Willies
from Edinburgh Napier University for her unwavering dedication as event coor-
dinator and the Institute for Informatics and Digital Innovation at Edinburgh
Napier University; and Penousal Machado from the University of Coimbra for
his fantastic work as Publicity Chair. We owe special thanks to Carlos Cotta
from the University of Málaga for his outstanding planning as local organizer
and for bringing Evo* to the beautiful city of Málaga. We extend our gratitude
to the School of Computer Science directed by Jose M. Troya and the School of
Telecommunications directed by Antonio Puerta from the University of Málaga
for hosting our event, and to the Málaga Convention Bureau for their support
of this conference. We also deeply appreciate the work of Marc Schoenauer from
INRIA in France and the MyReview team for providing the publication man-
agement system and technical support.

We hope you enjoy the fascinating research articles included in this volume,
and we invite you to contribute your work to EvoBIO 2013.

April 2012 Mario Giacobini
Leonardo Vanneschi

William S. Bush



Organization

EvoBIO 2012, together with EuroGP 2012, EvoCOP 202, EvoAPPLICATIONS
2012, and EvoMUSART 2012 was part of EVO* 2012, Europe’s premier co-
located events in the field of evolutionary computing.

Program Chairs

Mario Giacobini University of Torino, Italy
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal

University of Milano-Bicocca, Milan, Italy
William S. Bush Vanderbilt University in Nashville, TN, USA

Local Chair

Carlos Cotta University of Málaga, Italy

Publicity Chair

Penousal Machado University of Coimbra, Portugal

Proceedings Chair

Mario Giacobini University of Torino, Italy

Steering Committee

Elena Marchiori Radboud University, Nijmegen,
The Netherlands

Jason H. Moore Dartmouth Medical School in Lebanon,
NH, USA

Clara Pizzuti ICAR-CNR, Italy
Marylyn Ritchie Vanderbilt University, USA

Program Committee

Jesus S. Aguilar-Ruiz Universidad Pablo de Olavide, Spain
Wolfgang Banzhaf Memorial University of Newfoundland,

Canada
Jacek Blazewicz Poznan University of Technology, Poland



VIII Organization

Erik Boczko Vanderbilt University, USA
Ernesto Costa University of Coimbra, Portugal
Federico Divina Pablo de Olavide University Seville, Spain
Jitesh Dundas Edencore Technologies, USA
Alex Freitas University of Kent, UK
Raffaele Giancarlo University of Palermo, Italy
Raul Giraldez Rojo Pablo de Olavide University, Spain
Rosalba Giugno University of Catania, Italy
Jin-Kao Hao University of Angers, France
Tom Heskes Radboud University Nijmegen,

The Netherlands
Ting Hu Dartmouth College, Hanover, USA
Zhenyu Jia University of California, Irvine, USA
Mehmet Koyuturk Case Western Reserve University, USA
Michael Lones University of York, UK
Penousal Machado University of Coimbra, Portugal
Bob MacCallum Imperial College London, UK
Elena Marchiori Radboud University, Nijmegen,

The Netherlands
Andrew Martin University College London, UK
Brett McKinney University of Tulsa, USA
Jason H. Moore Dartmouth College, Hanover, USA
Pablo Moscato The University of Newcastle, Australia
Alison Motsinger-Reif North Carolina State University, USA
Vincent Moulton University of East Anglia, UK
Carlotta Orsenigo Politecnico di Milano, Italy
Clara Pizzuti ICAR-CNR, Italy
Paolo Provero University of Torino, Italy
Michael Raymer Wright State University, USA
Marylyn Ritchie The Pennsylvania State University, USA
Simona Rombo ICAR-CNR, Italy
Marc Schoenauer LRI- Université Paris-Sud, France
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Automatic Task Decomposition

for the NeuroEvolution of Augmenting
Topologies (NEAT) Algorithm

Timmy Manning and Paul Walsh

Cork Institute of Technology,
Bishopstown, Cork, Ireland
timothy.manning@mycit.ie

Abstract. Neuroevolution, the process of creating artificial neural
networks through simulated evolution, can become impractical for ar-
bitrarily complex problems requiring large or intricate neural network
architectures. The modular feed forward neural network (MFFN) ar-
chitecture decomposes a problem among a number of independent task
specific neural networks, and is suggested here as a means of manag-
ing neuroevolution for complex problems. We present an algorithm for
evolving MFFN architectures based on the NeuroEvolution of Augment-
ing Topologies (NEAT) algorithm. The algorithm proposed here, denoted
MFF-NEAT, outlines an approach to automatically evolving, attributing
fitness values and combining the task specific networks in a principled
manner.

Keywords: Neuroevolution, NEAT, Task Decomposition, Neural
Network, Negative Correlation, Mixture of Experts.

1 Introduction

The number of neurons and synapses required by a network scales with the com-
plexity of a problem domain. The typical approach to identifying optimal neural
network architectures requires time consuming evaluations of potential architec-
tures. Each architecture must in turn be evaluated several times starting with
different initial parameter and weight configurations as typical gradient descent
training algorithms can settle on local minima with suboptimal performance.
For complex problems, the evaluation requirements of neural network architec-
tures can form a bottleneck in the development process. Such problems promote
the use of constructive neuroevolution algorithms for the discovery of optimal
neural network architectures in an automated and methodical fashion. However,
the efficiency and tractability of constructive neuroevolution approaches can also
suffer as the dimensionality of the problem increases [11,8].

The NeuroEvolution of Augmenting Topologies algorithm (NEAT) and the
Modular Feed Forward neural network (MFFN) architecture have desirable and
complimentary features for solving complex problems. Currently, there is no

M. Giacobini, L. Vanneschi, and W.S. Bush (Eds.): EvoBIO 2012, LNCS 7246, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 T. Manning and P. Walsh

approach to automatically evolving optimal MFFN architectures using NEAT
which maintains the advantages of both. In this paper we outline and evaluate
MFF-NEAT, an approach to neuroevolving an MFFN architecture based on
NEAT which:

1. Reduces a problem to a number of simpler sub-tasks
2. Promotes the dissemination of the functionality
3. Harnesses unexploited information generated in fitness evaluations

2 NeuroEvolution of Augmenting Topologies

NEAT is a leading neuroevolution algorithm which simultaneously evolves the
parameters and architecture of a neural network [14]. The NEAT algorithm
evolves blueprints for networks in the form of genomes which can be translated
into neural networks (phenotype). The genome used in NEAT is variable length
and comprises a set of neuron genes and synapse genes. The format of a NEAT
gene is shown in Fig. 1(a). Fig. 1(b) shows a simple neural network and Fig. 1(c)
gives the corresponding NEAT genome.

Fig. 1. (a) The format of a NEAT gene. Weight values are recorded with each synapse
gene, but are omitted to simplify the diagrams. (b) A sample neural network architec-
ture. (c) The NEAT genome corresponding to the phenotype shown in (b).

The NEAT approach to evolution combines three core concepts: complexifica-
tion, speciation and principled crossover. Complexification ensures the evolution
of minimal neural networks. The initial potential network solutions contain no
hidden layer neurons, with synapses linking only the input layer neurons to the
output layer neurons. The hidden layer neurons and additional synapses are
added over time. Structural additions to the solution which do not increase the
overall fitness will tend to have little impact on future generations. In this way
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the networks produced will be efficient, with minimal impact from unnecessary
neurons or synapses [13].

Principled crossover is used to combat the competing convention problem
(also known as the permutation problem). The competing convention problem
states that between two networks learning the same problem, even of the ex-
act same architecture, the corresponding neurons and synapses may be learning
different aspects of the problem space. Therefore, crossing over genes between
different genomes can lose the context of the data. Principled crossover is imple-
mented by tracking the lineage of each gene using “innovation numbers”. Each
innovation number corresponds to a specific evolution to a network. The addition
of a novel gene to a genome results in a new innovation number representing that
evolution. If a gene is added to a genome which recreates a previous evolution,
the previous innovation number is reused for the gene. The innovation numbers
of synapses are dictated by the innovation numbers of the neurons they link.
Hidden layer neurons are added splitting existing synapses, so the innovation
number of a neuron is decided by the innovation number of the synapse it splits.
Allowing crossover only between genes which have the same global innovation
number ensures the consistent context of crossed over elements, thereby reducing
the impact of the permutation problem.

Speciation is used to preserve “innovative” ideas created through evolution.
Innovation is defined here as a sufficient evolutionary divergence in the archi-
tecture of a solution from the other solutions in the population. Such a new
divergence may ultimately provide a high fitness solution, but could be dis-
carded before it matures sufficiently for its true potential to become evident.
Speciation segregates the innovative solutions in the population and guarantees
them a minimum number of generations to prove their worth.

To add a new synapse, two unconnected neurons are selected. Using the
genome of Fig. 1(c) as an example, the neuron genes with the innovation num-
bers 2 and 5 could be selected. In this situation, a synapse joining neuron 2 to
neuron 5 will receive the innovation number 10. A gene representing the new
synapse is added to the genome which records the innovation number and the
synapse properties. Fig. 2 shows the gene which would be added to the genome
representing the new synapse and the corresponding phenotype.

To add a new neuron, a synapse is first selected. Again, using the genome of
Fig. 1(c) as an example, the synapse with innovation number 9 joining neurons
3 and 4 could be selected. Synapse gene 9 is marked as inactive meaning it will
not be expressed in the phenotype. The new neuron is added to the network
using two new synapses, joining it to the neurons to which the original synapse
was connected (neurons 3 and 4 in this case). The three new genes added to the
genome and the corresponding phenotype are given in Fig. 3.

3 The Modular Feed Forward ANN Architecture

Under the “mixture of experts” model of Jacobs and Jordan [5], a modular feed
forward artificial neural network (MFFN) decomposes a task to be learned by a
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Fig. 2. (a) The gene added to the genome of Fig. 1 representing a new synapse, and
(b) the corresponding phenotype

Fig. 3. (a) The updated gene (9) and 3 new genes (11, 12 and 13) representing the
addition of a new neuron to the genome of Fig. 1, and (b) the corresponding phenotype

monolithic neural network into several smaller tasks. Each task is handled by a
sub-network. The sub-networks are referred to as expert networks as each tends
to focus on one particular aspect of the problem space or a reduced problem area
(local computation) and works independently of the other sub-networks. In a
successfully trained MFFN each expert network will compute different functions
that are relevant in different scenarios or regions of the input space [5,3]. The
structure of a MFFN network is given in Fig. 4.

The contribution of each expert network to the overall problem is combined by
a gating network to form the output of the system. The gating network decides
how, and under which situations to combine the outputs of the expert networks.
There is however no general approach to inferring the optimal number of expert
networks, the architecture of each expert network, or the optimal architecture
for the gating network. The advantages of the MFFN architecture are:

1. The division of the concepts to be learned into smaller sub-networks results
in an overall reduction in computational complexity of the network (“divide-
and-conquer”) [9]

2. Reduces the effect of catastrophic interference
3. Reduces the effect of crosstalk
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Both catastrophic interference and crosstalk result in inefficient learning and pos-
sibly degraded performance. Catastrophic interference is caused when training
data with differing output show similar patterns [17]. The MFFN architecture
addresses this problem by contextually separating the processing [2,1]. Crosstalk
occurs when the training of neurons suffer from trying to contribute to more
than one concept, thus receiving conflicting training information. The MFFN
architecture addresses this problem through the physical separation of neurons
learning disparate tasks [4].

Fig. 4. (a) A fully connected monolithic MLP architecture. (b) A theoretical MFFN
architecture solution for the same problem.

4 Approach

MFF-NEAT is implemented as a two-level co-evolutionary approach, with a
two step sequential task decomposition [6]. MFF-NEAT combines sampling to
define the functionality of expert networks and a form of disassortative (negative
assortative) sexual selection to select expert networks to combine to form the
MFF-NEAT systems. Disassortative sexual selection chooses parents for mating
with phenotypic traits more dissimilar than likely in random mating [15]. Each
MFF-NEAT system takes a subset of expert networks, defines a gating network,
and produces an evaluable output. To evaluate an input vector, the vector is
first applied to the phenotype of each expert. The input vector and output of
the expert phenotypes are then applied to the gating network. Fig. 5 shows an
example of an MFF-NEAT system.

Two separate populations are maintained; expert networks and MFF-NEAT
systems. Both populations are evolved using the standard NEAT approach. Ex-
pert networks are added to the MFF-NEAT systems over time.

For each expert species and extant MFF-NEAT system a record is maintained
of its fitness on each individual training exemplar. This record is referred to as
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Fig. 5. A complete MFF-NEAT system. In this example, this gating network accepts
as inputs the output of 2 expert networks, but can grow to accept the output of up to
3 experts.

the “coverage vector” and is stored as an array of fitness values. The coverage
vectors are used to select complimentary expert species to add to the MFF-
NEAT systems and focuses evolutionary pressure on experts which tackle specific
subsets of exemplars as required. A graphical depiction of two coverage vectors
and their overlap is given in Fig. 6.

Fig. 6. Figures (a) and (b) give the theoretical coverage vectors for two expert species
across 20 training exemplars. The overlap of both coverage vectors is given in (c).

A “species archive” is maintained of all the different expert species identified.
For each expert species the archive retains a single prototype genome of the
species and a coverage vector representing the average performance of experts of
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that species on the training exemplars. The coverage vectors for each expert are
back propagated from the evaluations of the MFF-NEAT systems which employ
the experts. The coverage vectors are generated as the average of only the most
elite member of each MFF-NEAT system species per generation to prevent the
more populace species dominating the coverage definition.

Using the species archive and coverage vectors, extinct species can be con-
tinually re-evaluated for relevance and reintroduced at later evolutionary stages
when or if they become useful, or perhaps selected to form the basis of new
functionality in an exaptation-like manner. As the coverage vectors are taken by
sampling from a range of constantly evolving systems comprising various combi-
nations of the expert species, it is appreciated that this approach will not provide
the archive with an exact map of which training exemplars benefit from the pres-
ence of which expert networks. Over many generations the statistical sampling
approach should however result in above average peaks in the coverage vectors.
These peaks should indicate the exemplars whose accurate classifications appear
to benefit from the presence of the specific experts.

A novel “disassortative evolutionary operator” is introduced in addition to the
standard NEAT operators to add new expert networks to existing MFF-NEAT
systems. Expert species are selected for addition to an MFF-NEAT system based
on the coverage vectors of the system itself and the coverage vectors for each
expert species in the archive. The target species is the species which offers the
largest theoretical increase to the coverage of the MFF-NEAT system, referred
to as the “gain”, when the coverage vectors of the MFF-NEAT system and the
expert species are overlapped similar to as shown in Fig. 6(c). Once the target
expert species is identified, a new expert network of this species is spawned from
the expert population or the archival species prototype.

To integrate a new expert to a gating network, a new input neuron is added to
the gating network. The output of this new neuron corresponds to the output of
the expert network. A single synapse is added joining this neuron to the output
neuron of the gating network. This approach offers minimal disruption to the
learned concepts in the gating network, but the gating network must learn to
successfully integrate the output of the new expert network.

5 Implementation

A population size of 150 was used for both the MFF-NEAT system and expert
networks. In each generation, a new population of MFF-NEAT systems were
generated from the fittest of the previous generation. Each new MFF-NEAT
system has a 0.5% chance of disassortative evolution. The remaining popula-
tion receive a standard NEAT evolutionary operation, with a 90% chance of a
synaptic weight perturbation, a 6% chance of receiving a new synapse and a 4%
chance of a new hidden layer neuron. Each system has a 50% chance of evolving
it’s gating network, and a 50% chance of evolving a single expert network.

An artificial limit of 4 was placed on the number of expert networks per MFF-
NEAT system to prevent the systems growing large quickly and overtraining.
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The complexification process of NEAT does not provide a mechanism for the
removal of architectural elements and the experts of an MFFN cannot simply be
switched due to the permutation problem. This results in MFF-NEAT systems
which become stuck with early expert species and reach the maximum number of
experts allowed quickly. To address this situation, a new MFF-NEAT system is
added every 50 generations with a minimal gating network. This process allows
novel combinations of expert networks in later generations and encourages small
gating networks which use refined experts well.

6 Experiments

The three experiments carried out here evaluate the performance of the MFF-
NEAT approach relative to standard NEAT on differing problem domains. All
experiments use the same parameter sets. All experiments have a binary out-
put, with absolute error defined as the average difference between the evidential
response of the network and the expected output across all training exemplars.
The MFF-NEAT experiments were run a single time, while the NEAT experi-
ments were run five times with different initial network populations. The best
performing NEAT experiment was then selected for evaluation.

6.1 Monks Third Problems

Monks data set is an artificial problem designed for the comparative evaluation
of machine learning approaches [16]. Monks data set comprises six categorical
attributes with 3, 3, 2, 3, 4 and 2 possible values respectively. Of the three
tasks defined for this data set, only the third problem, M3, is evaluated here as
it is considered the most challenging. M3 produces a 1 output when the fifth
attribute has value 3 and the fourth attribute has value 1, or the fifth attribute
does not have the value 4 and the second attribute does not have the value 3.
All other conditions produce a 0 output. The data was divided into 432 training
exemplars and 122 exemplars for testing. Five percent of the training data is
misclassified to represent noise in the data set. The experiments were run for
10000 generations.

The MFF-NEAT approach achieved a minimum absolute error (AE) of
0.035788 at generation 1802 on the testing data. NEAT achieved 0.033628 AE
at generation 4379. The peak number of correctly classified records (CCR) on
the test set was 97.9167% at generation 1802 and 97.2222% at generation 3578
for MFF-NEAT and NEAT respectively.

6.2 Heart Disease Diagnosis

The goal of this data set is the diagnosis of heart disease given a set of exami-
nation results. The data used was taken from the Proben1 “set of benchmarks
and benchmarking rules for neural network training algorithms” [10]. This data
set comprises 920 exemplars with 32 input attributes. 44.7% of the exemplars
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represent heart disease free cases. The exemplars were randomly divided into 670
training cases and 250 testing cases. The output values are 0 and 1, representing
the absence and presence of heart disease respectively. The experiments were
run for 10000 generations.

MFF-NEAT peaked at an absolute error of 0.149381 on the test set at gener-
ation 4687. The best performing standard NEAT experiment peaked at 0.1512
absolute error at generation 5725. Both approaches achieve 86% correctly clas-
sified records on the test data set.

6.3 Mass Spectral Peptide Data

The goal of this data set is to distinguish b- and y-ion series peaks in the tandem
mass spectra of peptides based on the intensity of fragment ions surrounding the
peak. For each b- and y-ion series peak 20 attributes were generated which de-
scribe the mass spectrum and the relative intensities of peaks at the pre-defined
offsets. The data generated comprised equal numbers of randomly selected b-
and y-ion series exemplars. The b-ion series peak are denoted with a 0 output
and y-ion series peaks with a 1.

The exemplars were divided into three set; training data (750 exemplars),
testing data (150 exemplars) and validation data (150 exemplars). For the MFF-
NEAT evaluations, two thirds of the training data was allocated to generating
fitness values and the remainder for generating the coverage vectors. In each
generation, all population members were evaluated on the testing data set. The
best performing on the testing data set was then evaluated on the validation data
set to gauge the ability of the network to generalize. Six NEAT and MFF-NEAT
experiments were run for 6000 generations each.

The NEAT experiments produced accuracies of 0.72236, 0.738644, 0.729544,
0.722234, 0.734529 and 0.734948 (mean 0.730). The results of the MFF-NEAT
experiments were 0.733038, 0.7353, 0.738606, 0.726395, 0.751967 and 0.731926
(mean 0.736). These results were evaluated using a Student’s t-test, to produce
a t-value of 1.28. The performance of this small scale evaluation is therefore
insufficient to say with confidence that MFF-NEAT offers an advantage over
standard NEAT, but the results are still encouraging.

7 Discussion

MFF-NEAT produces a slightly higher absolute error than standard NEAT on
the M3 problem. It is suggested here that this failure of MFF-NEAT is at-
tributable to the M3 problem being insufficiently complex to benefit from task
decomposition, in which case evolutionary pressure would likely offer increasing
returns if spent producing a single monolithic network. The more challenging
heart disease diagnosis and mass spectral data sets appear to benefit from the
application of the MFF-NEAT approach in terms of absolute error. This, com-
bined lower levels of overtraining observed in the experiments suggest that the
increasingly distributed nature of the MFF-NEAT systems provide a form more
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amenable to generalization. The more efficient evolution noted in the experimen-
tal data is attributed to three principle advantages identified:

1. Promotion of the dissemination of useful functionality
2. Maximization of useful information generated in evaluations
3. Reduction in the complexity of the functions evolved

7.1 Promotion of the Dissemination of Useful Functionality

The independent nature of the expert networks makes them a favourable ap-
proach to neuroevolution. This independence facilitates the propagation of the
expert functionality among MFF-NEAT systems of varying species in a highly
principled crossover-like manner without disruption to previously learned con-
cepts and avoiding the competing conventions problem. The disassortative evo-
lutionary operator and the use of coverage vectors influence the evolution of
the expert population in a way which produces complimentary networks which
work well together. Additionally, networks are evolved in parallel under differ-
ent conditions (in different combinations of experts) keeping diversity high in
the population and increasing the chance of discovering useful expert networks.

7.2 Maximization of Useful Information Generated in Evaluations

Standard NEAT evaluates the potential solution populations on every exemplar,
but uses only the average fitness in selecting parents from which to generate the
following generations. The coverage vectors maintained by MFF-NEAT record
and use the classification ability of potential solution networks and expert species
on a per-exemplar basis. The expert species coverage vectors are retained and
refined over the lifetime of the program. The overlaps in the solution structures
and the coverage vectors are used to attribute specific functionality to the ex-
pert networks. As the sampling size for the coverage increases, an increasingly
accurate impression of the ability of the experts is achieved, resulting in further
refinement to the principled nature of the disassortative evolutionary operator.

7.3 Reduction in the Complexity of Functions Evolved

The principle of divide and conquer reduces a problem to into a number of sub-
problems, each tackled by an independent network. Each network will tend to
deal with only a subset of the input attributes and require only a fraction of
the neurons and synapses of a monolithic neural network attempting to solve
the entire problem. This results in small genomes for the expert networks and
a simplified error surface [12], meaning specific (but reduced) functionality can
be evolved efficiently. The isolation of the task specific neurons and synapses
in the expert networks has the additional effect of minimizing the potential for
crosstalk and catastrophic interference, further reducing the complexity of the
neuroevolution process. Similar benefits can be expected for the MFFN gating
network, as it does not need to relearn functionality which has been “farmed
out” to the expert networks.
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The use of negative correlation for neuroevolution is not a novel idea. A similar
approach in this area is that of Liu et al. [7], referred to as EENCL, which
employs a negative correlation to evolve different weight sets for the training
exemplars. Networks trained using different weights have disparate evolutionary
focuses and tend to work well together when joined as an ensemble. Although
similar, the MFF-NEAT approach offers a number of advantages over EENCL.
The coverage vectors allow MFF-NEAT to identify patterns and functionality
which are useful only in an indirect manner to the output of the network, which
facilitates the two-step sequential task decomposition possible through the use of
the MFFN architecture. The coverage vectors also provide a means of selecting
apt sub-networks to combine. The gating network of the MFFN architecture also
offers a method for intelligently combining the outputs of the sub-networks. It is
also considered that the favourable ensemble properties of the EENCL approach
could be emulated in MFF-NEAT through allowing an excess of experts of the
same species or of similar functionality.

8 Conclusions and Future Work

In this paper we describe and evaluate MFF-NEAT, a novel approach to neu-
roevolution. MFF-NEAT takes advantage of the speciation and complexification
of the NEAT algorithm to provide an efficient means of evolving modular neural
network solutions. MFF-NEAT can automatically decompose a task and pro-
duce expert networks which encode functional points or pattern recognitions
which may be either directly or indirectly relevant to the output of the gating
networks. The concepts of a species archive and coverage vectors are introduced
to optimize the usage of data generated in fitness evaluations, encourage the
re-use of previously defined functionality and allow the focusing of evolutionary
pressures on specific insufficiencies of a solution. In evaluations, MFF-NEAT is
shown to offer a general performance advantage over standard NEAT on many
problems.

Future work on this project will be focused on evaluating and expanding the
scalability of MFF-NEAT. Scalability will be evaluated through application to
complex large scale real world bioinformatics problems. The ability of MFF-
NEAT to handle noisy data will be evaluated through the use of simulated
complex data sets with controllable levels of noise.
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Abstract. In the recent years many bio-inspired computational methods were de-
fined and successfully applied to real life problems. Examples of those methods
are particle swarm optimization, ant colony, evolutionary algorithms, and many
others. At the same time, computational formalisms inspired by natural systems
were defined and their suitability to represent different functions efficiently was
studied. One of those is a formalism known as reaction systems. The aim of this
work is to establish, for the first time, a relationship between evolutionary algo-
rithms and reaction systems, by proposing an evolutionary version of reaction
systems. In this paper we show that the resulting new genetic programming sys-
tem has better, or at least comparable performances to a set of well known ma-
chine learning methods on a set of problems, also including real-life applications.
Furthermore, we discuss the expressiveness of the solutions evolved by the pre-
sented evolutionary reaction systems.

1 Introduction

It is nowadays about fifty years since the very first computational experiments that
originated Genetic Programming (GP) and about twenty years since John Koza named
and popularised the method [14]. During the past two decades there has been a signif-
icant range and volume of development in the theory and application of GP and GP
is nowadays recognized as a well established research field [21]. Large part of the ef-
forts of researchers has been dedicated to the study of the evolution of several different
computational formalisms, that can help practitioners to solve problems with different
levels of expressiveness. Under this perspective, from the very earliest experiments in
the automatic generation of executable structures [6] a variety of representations have
been explored starting with binary string machine code [9], finite state automata [7],
generative grammatical encodings [24] to the dominant tree-based form popularised by
Koza [14]. To this day numerous alternative representations have been proposed includ-
ing graph [23], strongly-typed [16], linear-tree [12], and linear-graph [13]. Among the
many variants, particularly popular are the developments in grammar-based GP (see
for instance [17]) and cartesian GP (see for instance [15]). Besides [21], the interested
reader is referred to [18] for an in-depth discussion of the open issues opened by the
several different GP representation models that have been proposed along the years.

This paper is situated in this vast research field, and its aim is the one of proposing
a new GP system, able to evolve programs expressed in a new and challenging compu-
tation formalism called Reaction Systems (RS) and recently introduced by Rozenberg
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and coworkers [3] (an introduction to RS is offered in Section 2). This new GP variant
will be called Evolutionary Reaction Systems (EvoRS).

Why introducing a new GP variant, evolving another computational formalism, de-
spite the many variants already defined so far? Many answers could be given to this
question, justifying the fact that evolving RS is interesting and relevant. First of all, as
it will be clear in the continuation of this paper, RS is a powerful and expressive compu-
tation formalism, that is particularly intuitive, being based on a single, simple concept:
the one of reaction (clearly inspired by chemical reactions). As such, RS can simulate
constructs that allow to produce non-terminating programs (like iterations or recursion)
without explicitly using them. Another reason why the introduction of EvoRS is, in our
opinion, relevant is that it lightens the final user from the burden of defining the set of
functional symbols used to build up the evolved programs. This definition is clearly a
crucial step in many of the most currently used GP variants, including tree based GP and
grammar-based GP, since it has a direct impact on the ability of the GP system to find
good solutions and it must be completely hand-defined by the final user. Last but not
least, RS is a bio-inspired computational formalism, and in [18], O’Neill and coworkers
dedicate an entire section of their GP open issues chapter to “The Influence of Biology
on GP”, claiming that we currently do not use a sufficient set of features from biological
evolution to embody its full potential in our artificial evolutionary process, and that in
order to provide GP with new potentials and power we need to go back to the natural
example of biology and to study what else can be learned from it. This paper is intended
to represent a step in this direction. Not only our objective is introducing EvoRS and
discussing its functioning, but we also want to give an idea of the potentialities of this
new evolutionary algorithm, by comparing its performances with the ones of other well
known machine learning methods (including standard tree-based GP) and by discussing
the expressiveness of its returned solutions.

This paper is structured as follows: in Section 2 we introduce RS, describing their
functioning and discussing relevant bibliographic material; Section 3 presents EvoRS,
illustrating the main ideas behind it, and its composing elements; Section 4 discusses
the test problems that we have used to validate EvoRS and the experimental settings
and obtained results; finally Section 5 concludes the paper.

2 Preliminary Notions

Reaction Systems. Reaction systems were introduced by Rozenberg and Ehrenfeucht [3]
in 2004 as a formalism inspired by chemical reactions. The model was defined to be
simple and easily extensible. Indeed, in the recent years it has been extended to include,
for example, the notion of time [5] which was not present in the original formulation
(the one we are considering here). Thus, the model can be adapted to different needs,
providing both a formalism that allows to study the formal properties and a modeling
tool for real-life chemical systems. In this section we provide a brief explanation of the
necessary notions about reaction systems. For a complete introduction, refer to [3]. A
central concept in reaction systems is the one of reaction. Every reaction is composed
by a set of reactants that are necessary for the reaction to happen, a set of inhibitors
whose aim is blocking the reaction and a set of chemicals that are produced by the
reaction.
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Definition 1. A reaction α is a triple of non-empty sets (R, I, P ) with R ∩ I = ∅. The
set R is called the set of reactants, I is the set of inhibitors and P is the set of products.
Let S be such that R, I, P ⊆ S, then α is a reaction on S.

The set of all reactions that can be defined over a set S is denoted by rac (S). Given a
set T ⊆ S and a reaction α = (Rα, Iα, Pα) ∈ rac (S), α is enabled on T iff Rα ⊆ T
and Iα ∩ T = ∅ (i.e., all the reactants and none of the inhibitors are present). The result
of α on T , denoted by resα (T ), is Pα if α is enabled on T and ∅ otherwise. Note that
no set of the triple that define a reaction can be empty. This modeling was chosen to
better simulate real systems: every reaction needs some reactant to transform, can be
inhibited in some way and produces some chemicals. Equipped with the concept of
reaction we can now define what a reaction system is. In fact, it can be considered as a
set of reactions that can act over a certain set of chemicals.

Definition 2. A reaction system, RS from now on, A is a pair (S,A) where S is a finite
set of symbols and A ⊆ rac (S).

The notion of results of A on T (or, equivalently, of the entire RS A on T), with T ⊆ S,
is
⋃

a∈A resa (T ) and it is denoted by resT (A). After introducing the concept of results,
it is necessary to define the dynamics of a RS. The dynamics of a RS is given by a pair
of finite sequences of sets (i.e., an iterative process) that represents, step by step, the
chemicals present in the system and the ones that are added from outside.

Definition 3. Let A = (S,A). An iterative process π is a pair of finite sequences (γ, δ)
with γ = C0, C1, . . . , Cn and δ = D1, . . . , Dn of subsets of S. Furthermore, D1 =
resA (C0) and Di = resA (Di−1 ∪Ci−1) for all 1 < i ≤ n.

The sequence γ of an iterative process represents the chemicals inserted at every time
step from outside. The sequence δ represents the chemicals that are produced by the RS.
The state of a RS is given by the finite sequence of sets W0, . . . ,Wn with W0 = C0

and Wi = Ci ∪Di for all 1 ≤ i ≤ n. The set W0 is called the initial state of the system
(i.e., the set of chemicals initially present in the system). The set Wi for 0 ≤ i ≤ n
is called the state of the system at time i. We will consider only RS such that Ci = ∅
for all 1 ≤ i ≤ n. In this case the dynamics is necessarily ultimately periodic [4] (i.e.,
it necessarily reaches a loop where we are cycling between a finite number of set of
chemicals). There is a natural partial ordering between reactions. Let a, b ∈ rac (S),
then a ≤ b iff resT (a) ⊆ resT (b) ∀T ⊆ S. It has been proved [4] that this is equivalent
to Ra ⊇ Rb, Ia ⊇ Ib and Pa ⊆ Pb. This property allows us to easily simplify a RS by
removing unnecessary reactions (this action will be performed by a particular genetic
operator). This partial ordering can be used to find a system equivalent (i.e., that has
the same behaviour with all inputs) to a given one but with less reactions. In fact, it is
possible to prove that every set of reactions A is equivalent to its subset that contains
only all the maximal elements of A. This means that we can easily simplify a RS by
removing the reactions that do not influence its dynamics.

Example 1. Boolean functions can be easily represented by RS. As an example con-
sider the and function with two inputs. It can be represented as a reaction system with
S = {x1, x2,True, i}, where x1 and x2 are the input variables, True is a constant that
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represents the output true of the system and i is a dummy inhibitor (a symbol that can
only be in an inhibitor set and is never inserted in the system nor produced by other re-
action). The set of reactions A contains only the reaction α = ({x1, x2}, {i}, {True}).
The outputs of the system with all possible inputs are the following:

{x1} �� ∅ {x2} �� ∅ ∅ �� ∅ {x1, x2} α �� {True}

where on the left of the arrow there is the initial state, on the right the state at time
1 and the superscript over the arrow indicates the reactions that were enabled. This
notation means that, if we have only x1 in the system, no reaction is enabled and hence
we obtain the empty set as a result. If only x2 is present in the system then we also
obtain the empty set as a result. Moreover, when we have no symbols in the system we
do not generate other symbols. Finally, when both x1 and x2 are present in the system
the reaction α is enabled (indicated by the superscript over the arrow) and we generate
the symbol True. Denoting a true variable by inserting its corresponding symbol in the
initial state of the system and a false variable by not inserting it, the reaction α clearly
represents an and gate. Also notice that it is always possible to insert a dummy inhibitor
(a symbol that is never present) and a dummy reactant (a symbol that is always present)
in order to avoid the use of empty sets in the definition of reactions. Therefore, we
will allow empty sets either as reactant sets or as inhibitor sets since they can be easily
simulated using dummy symbols.

3 Evolutionary Reaction Systems

In this section an evolutionary version of reaction systems is presented. We will call it
Evolutionary Reaction Systems (EvoRS). An EvoRS individual is a RS. A population
is a set of RS. We will discuss only the phases of EvoRS that are different from others
evolutionary algorithms. For example, selection, being based on the phenotype, it does
not depend on the particular representation used and then could be performed using one
of the standard algorithms (i.e., roulette-wheel, tournament, etc.).

Input and Output for EvoRS. One first aspect to note is that it is necessary to allow both
input and output from a RS. Let x1, . . . , xm be the set of input variables. Suppose that
every variable can assume only a finite numberni of values: xi ∈ {k1, . . . , kni}. Fix i ∈
{1, . . . ,m}. To the variable xi we will associate ni − 1 input symbols, that represents
the predicates xi = k2, . . . , xi = kni . The predicate xi = k1 will be represented by
the absence of an input symbol. Thus, there will be

∑m
i=1(ni − 1) input symbols. An

important characteristic of RS is that the symbols that are not explicitly preserved from
one step to the other disappears (e.g., in 1 the symbol True is not preserved, hence we
can have it at t = 1 but not at t = 2). In fact, using a set of output symbols, if one
of them appears at time t, we are not assured that in the subsequent time steps it will
be preserved. Therefore, we decided to fix a parameter execution length that
is a positive natural number. Suppose we have o0, o1, . . . , on possible output values.
Choose o0 as a default value. We will prevent it from being generated by any reaction.
We run the RS for execution length steps and, if during the execution one of
the output symbols o1, . . . , on is produced then it is returned as output. Otherwise the
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default value o0 is returned. In this way we are certain that a RS will always produce an
output. Hence, a fitness evaluation can be performed.

Initialization. The initialization of an EvoRS is simply the creation of a population of
randomly generated RS. Three parameters are needed: (1) the population size,
(2) the number of symbols that can be used in the system (note that they need to
be at least as many as the input symbols plus the output symbols); (3) the maximum
initial size (when a RS is randomly generated, the number of reactions that it
contains – i.e., its size – is chosen randomly but its value is bounded by the initial
size parameter).

Crossover. Given the list of individuals A1, . . . ,An obtained by selection, for any pair
A2i−1,A2i with 1 ≤ i ≤ n

2 , there is a probability pc that it will be subject to crossover.
Given two RS, A = (S,A) and B = (S,B) a crossover of A and B is a stochastic
operator that generates two reactions systems A′ and B′ in the following way: (1) let
C = A ∪ B; (2) let k ∈ {1, . . . , |C| − 1}; (3) let A′ be a subset of cardinality k of C
(it can be randomly selected, or, if the element of C are ordered, it is possible to take
the first k elements); we define: A′ = (S,A′) and B′ = (S,C \ A′). Note that since
A∩B can be non-empty, we have that |A|+ |B| ≥ |A∪B| = |A′|+ |B′|, thus possibly
reducing the total number of reactions.

Mutation. We have defined three kind of mutation for RS. One type of mutation is the
random reaction insertion. Fix a RS A = (S,A). With probability pin for any of the
reactions in A, another randomly generated reaction is inserted. The second type of mu-
tation is the random reaction removal. Let A = (S,A) be a RS. All reactions in A have
probability prm of being removed. The last kind of mutation, called renewal, is, in fact,
a random recreation of the RS with probability pren. The system that is generated has a
number of reactions chosen randomly and bounded by the initial size parameter.

Minimization of Reaction Systems. To simplify the individuals that are in the popula-
tion, we introduce another genetic operator, that we call minimization, that reduces the
number of reactions that comprises a RS without altering its behaviour, by eliminating
reactions that have no impact on the results (equivalent of “dead code”). This operator
is always applied and is based on the following observation: given a RS A = (S,A), the
set B ⊆ A of all maximal reactions in A can replace A without altering the behaviour
of the system. After the introduction of all the genetic operator we can recall all the
parameters that are necessary for EvoRS (see Table 1).

There are four parameters related to the entire system (from the population size to
the length of the execution of a RS). There is one parameter for crossover and three
parameters for the three different types of mutation. The operators are applied as spec-
ified by Fig. 1. After the selection phase the more destructive kind of mutation, the
renewal, is applied. The next operator to be applied is the crossover, followed by the
two less destructive kind of mutation. The EvoRS cycle is ended by the application of
the minimization operator.
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Table 1. The parameters of an EvoRS system

Parameter Meaning
population size Number of RS in the population

number of symbols Number of symbols used in the creation of reactions
initial size Initial size (i.e., number of reactions) of the RS

execution length Number of iterations to perform during the fitness evaluation
pc Crossover probability
pin Probability of inserting a random reaction into a system
prm Probability of removing a random reaction from a system
pren Probability of regenerate randomly the current RS

�� ��

�� �	Initialization

��

�� ��

�� �	Selection

��

The EvoRS cycle

�� ��

�� �	Termination criteria

��

�� ��

�� �	Renewal

��
�� ��

�� �	RS minimization

��

�� ��

�� �	Crossover

��
�� ��

�� �	Random insertion

��

�� ��

�� �	Random removal��

Fig. 1. The execution cycle of EvoRS

Properties of EvoRS. Before describing the experimental results of EvoRS, it is inter-
esting to note some of the advantages that they may have compared to other machine
learning techniques. First of all, RS are not black boxes: their reactions, and the interac-
tions between them, can be read and interpreted by humans. A second advantage with
respect to other techniques, as GP, is that it is not necessary to define a set of functional
and terminal symbols specific to the problem under exam. In fact, only the number of
symbols used by the reactions is a necessary parameter. The operations are carried on
by the reactions an the interactions between them. As currently defined, EvoRS also has
a disadvantage: since for any input variable it is necessary to have a number of symbols
comparable to the number of values that the variable can assume, we cannot use EvoRS
on problems with continuous variable. An extension of EvoRS capable of handling this
kind of problems is currently under study and will be presented in the future.

4 Experimental Study

To validate EvoRS, we compared it to some well-known machine learning methods on
three different test problems. In this section we present the test problem used, then we
will briefly introduce the other machine learning method used. Finally, the experimental
settings are described.

Test Problems. We report the problems used in the experimental phase. All the consid-
ered test problems concern the classification of instances in two target classes. The first
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problem is the well known k-even parity problem (see [14] for a definition of this prob-
lem). In the experimental phase we considered binary sequences of length from 2 to
8. In the second test problem the task is to distinguish democrat votes from republican
votes in the 1984 United States Congressional Voting Records. The data are the posi-
tion taken by the representative on 16 key votes identifies by the Congress Quarterly
Almanac. The dataset (available in WEKA [10]) has 435 instances and 17 attributes
(where the last attribute is the target class). All the non-target attributes assume three
possible values: yes, no and unknown (corresponding to a position that is neither yes or
no). The target attribute assumes only two values: republican and democrat. The last
test problem regards diagnosing of cardiac Single Proton Emission Computed Tomog-
raphy (SPECT) images. Each of the patients is classified into two categories: normal
and abnormal. The dataset has 267 instances that are described by 23 binary attributes
(where the last attribute is the target class). Each row of the dataset represent an image
of a different patient, where the attributes are the result of a processing that extracted 44
continuous features that describe the image, 22 of whom were selected in a subsequent
phase. This dataset is available at the UCI Machine Learning Repository [8].

Other Studied Techniques. In the experimental phase, performances obtained with
EvoRS have been compared with the results obtained considering different machine
learning techniques. The machine learning techniques chosen to make the compari-
son are: feed-forward artificial neural networks trained with back-propagation (ANN),
Bayesian networks (Bayes Net), naive Bayes classifier (Naive Bayes), radial basis func-
tion networks (RBF Net), and support vector machines using the sequential minimal
optimization algorithm (SVM/SMO). For a complete description of these methods we
refer to [1] for ANN, to [11] for Bayes Net, to [22] for Naive Bayes, to [19] for RBF
net and to [2] and [20] for SVM/SMO. Furthermore, we compared EvoRS standard
tree-based Genetic Programming (GP) [21].

Experimental Setting. Due to the fact that both deterministic and non-deterministic
machine learning methods are used in the experimental phase, it is important to explain
how the experiments have been performed in order to produce a fair comparison of the
results. Fitness was calculated as the number of correctly classified instances. We used
the same set for both training and testing the algorithm. Hence, in these tests, we are
not concerned with the issues of overfitting or generalization ability.

For all the non-evolutionary techniques we used the implementation of WEKA [10].
For the two Bayesan techniques (Bayes Net and Naive Bayes) only one run using
the default WEKA’s parameter setting has been performed. For ANN, RBF Net and
SVM/SMO, 100 independent runs using the default WEKA’s parameters have been
performed. In each run we changed the seed used to generate random numbers in the
algorithm. For GP, 100 independent runs have been performed for each of the consid-
ered test problems. All the runs used populations of 100 individuals allowed to evolve
for 100 generations. Tree initialization was performed with the Ramped Half-and-Half
method [21]. The maximum initial depth was 4 for the SPECT and voting datasets,
while it was equal to k for k-even parity problems. The function set contained the three
boolean operators and, or, and not. For the vote dataset they where interpreted as three-
valued logic operators (i.e., the conjunction of a true or unknown value with an unknown
value gives an unknown value, the negation of an unknown value remains unknown and
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the disjunction of a false or unknown value with an unknown value remains unknown).
When the evaluation of a tree returned unknown instead of a specific class, its value
was considered equal the one of the most represented class. The terminal set contained
a number of variables equal to the number of attributes of each test problem. We have
explicitly imposed functions and terminals to have the same probability of being chosen
when a random node is needed. The reproduction (replication) rate was 0.1. Standard
tree mutation and standard crossover (with uniform selection of crossover and muta-
tion points) were used with probabilities of 0.1 and 0.9, respectively. The new random
branch created for mutation has maximum depth 4. Selection for survival was elitist,
with the best individual preserved in the next generation. The maximum tree depth is
17 except for the even parity problem, where the maximum tree depth is 2k.

For EvoRS, 100 independent runs allowed to evolve for 100 generations were per-
formed. In all the run elitism was used. Hence, the individual with the best fitness was
preserved across generations. For all the problems a population size of 50 individuals
was used (half of the population size with respect to GP). The number of symbols was
two times the number of input variables for the k-even parity problem and the SPECT
problem. For the vote dataset we used two times the number of input variables plus
10 additional symbols. This variation was necessary since every input variable in the
vote dataset can assume three values instead of two. The initial size of the RS was two
times the number of input variables. For all the problems the execution length was 3.
A crossover probability of 0.8 was chosen. The probability of a random insertion was
fixed to 0.2. The probability of random removal was fixed to 0.2 and the probability of
renewal was 0.1 for all the considered problems. Furthermore, elitism was used. It is
important to note that a research of the best set of parameters has not been performed.
Hence, these parameters need to be considered a guess based on a very limited number
of test runs. A more detailed explanation of the parameters setting will be the focus of
successive researches.

Experimental Results. In this section the results of the experimental phase are pre-
sented. Furthermore, an example of the structure of the solutions generated by EvoRS
is presented. All the box plots presented have the end of the two whiskers representing
one standard deviation above and below the mean of the data. The cross represents the
mean of the data. The fraction of successfully classified instances for GP and EvoRS is
the one obtained after the last considered generation.

k-Even Parity. The results for the k-even parity problem are presented in Fig. 2. EvoRS
and GP perform better than the other considered techniques for all the tested values of
k. In particular, EvoRS is the best performer for values of k between 2 and 5, while
GP performs better for values of k greater than 5. To test whether or not the differences
in terms of fitness between the considered techniques are statistically significant, a test
of statistical significance has been performed. First of all, a Kolmogorov-Smirnov (KS)
test with a significance level of α = 0.05 has been performed to test whether or not
the fitness values are normally distributed. The (KS) test rejects the null hypothesis
(hence the fitness values are not normally distributed) for all the k values and for all
the non-deterministic techniques. Because the data are not normally distributed, a rank-
based statistic has been used. The Wilcoxon rank-sum test for pairwise data comparison
with a Bonferroni correction for the value of α is used under the alternative hypothesis
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Fig. 2. The results for the k-even parity problem. The two whiskers represent one standard devi-
ation above and below the mean of the data.
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that the samples do not have equal medians. The test has been performed by comparing
EvoRS with the other techniques. We obtained that we can not reject the null hypothesis
only in three cases: with k = 2 when comparing EvoRS with GP and RBF Net and also
when k = 5 when comparing EvoRS with GP. In all the other cases the presented results
have a statistically significant difference.

Vote Dataset. The results for the vote problem are presented in Fig. 3(a). In this case,
ANNs is the best performer with the 99% of correctly classified instances. SVM/SMO
produce a 97% of correctly classified instances followed by EvoRS and RBF Net with
94%. It is important to underline that EvoRS is a newly defined evolutionary technique,
hence the tuning of its parameters is quite difficult. Nonetheless it produces results
that are comparable with the ones produced by other well-known (and well studied)
machine learning techniques. Also for this problem the same statistical tests as for the
k-even parity have been performed. The null hypothesis cannot be rejected only when
comparing EvoRS with RBF Net.
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Fig. 3. The results for the vote and SPECT datasets. The two whiskers represent one standard
deviation above and below the mean of the data.

SPECT Dataset. Results for the SPECT dataset are presented in Fig. 3(b). In the
SPECT problem EvoRS performance is lower than the other contenders except Naive
Bayes. The same statistical tests performed for the other test problems have been con-
sidered for this problem. From the results of the Wilcoxon test we obtained that, for this
problem, the null hypothesis has been always rejected. So difference in performance
of the different studied methods is statistically significant. Nonetheless EvoRS perfor-
mances are non very low compared to the other techniques. We do not consider this a
negative result for a newly-developed and still-to-be-tuned evolutionary algorithm.

Some Individuals Found by EvoRS. Contrarily to many other machine learning tech-
niques and similarly to GP, EvoRS provides models that are directly interpretable by
humans. Let us consider, for instance, a solution generated by EvoRS for the even par-
ity problem with k = 2. It is composed by the following three reactions:
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a1 = ({x1, x2}, {t1}, {x1, x2, t1,True})
a2 = ({t1}, ∅, {x1, x2}) a3 = (∅, {x1, x2, t1}, {x1, t1})

Where x1 and x2 are the input symbols, True is the output symbols representing true
and t1 is a temporary symbol. The dynamic evolution of the system can be represented
by the following graph, where the nodes are states and the transitions between them are
represented by the edges labeled with the reactions that are activated:

{x1} �� ∅ a3 �� {x1, t1} a2 �� {x1, x2} a1�� {x1, x2, t1,True}
a2

��

{x2}

		��������

Recall that the test were performed with an execution length of three. Hence,
both {x1, x2} and ∅ reach a state containing True in no more than three steps. But {x1}
and {x2} reach it in four steps, too many to obtain True as output. This example shows
how the solutions generated achieve the goal of producing the correct output not by
rote memorization of the inputs but by producing a complex interactions between the
different reactions.

5 Conclusions

In this work a new biologically inspired evolutionary algorithm, called evolutionary
reaction systems (EvoRS), has been defined. It is based on reaction systems, an expres-
sive and powerful computational formalism inspired by chemical reactions, recently de-
fined by Rozenberg and coworkers. We have shown that the performances of EvoRS are
comparable, and in some cases even better, than the ones of other well known machine
learning algorithms (including Bayesian methods, neural networks, support vector ma-
chines and standard genetic programming) on a set of case studies including real-life
applications. This encourages us to pursue the study of EvoRS, with the objective of
making it an established evolutionary algorithm. Future work will be focused in two
directions. The first one is to study the best parameter settings for EvoRS and an as-
sessment of its generalization ability. Since this method is new, an extensive study of
the influence of different parameters is definitely needed. Another direction of research
is the definition of a new version of EvoRS capable of handling continuous variables.
This step would allow EvoRS to be applicable to a wider set of problems, including
symbolic regression ones.
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Abstract. Ligand-based virtual screening experiments are an important
task in the early drug discovery stage. In such an experiment, a chemi-
cal database is searched for molecules with similar properties to a given
query molecule. The optimal assignment approach for chemical graphs
has proven to be a successful method for various cheminformatic tasks,
such as virtual screening. The optimal assignment approach assumes all
atoms of a query molecule to have the same importance. This assumption
is not realistic in a virtual screening for ligands against a specific protein
target. In this study, we propose an extension of the optimal assignment
approach that allows for assigning different importance to the atoms of a
query molecule by weighting the edges of the optimal assignment. Then,
we show that particle swarm optimization is able to optimize these edge
weights for optimal virtual screening performance. We compared the op-
timal assignment with optimized edge weights to the original version
with equal weights on various benchmark data sets using sophisticated
virtual screening performance metrics. The results show that the optimal
assignment with optimized edge weights achieved a considerably better
performance. Thus, the proposed extension in combination with parti-
cle swarm optimization is a valuable approach for ligand-based virtual
screening experiments.

1 Introduction

The field of cheminformatics deals with in-silico approaches that are applied
in the early stages of the drug discovery pipeline. The ranking of a chemical
database with respect to a given query molecule, also known as ligand-based
virtual screening (VS), represents one of the key tasks in cheminformatics [1,19].
The aim of a ligand-based VS experiment is to enrich molecules with simi-
lar properties (e.g. biological activity) to the query molecule in a preferably
small top fraction of the ranked database. Generally, the database is sorted by
a similarity function that measures the similarity between the query molecule
and each database molecule. Database molecules with similar properties to the
query molecule are assigned a top rank, whereas molecules with different proper-
ties are assigned a low rank. To assess the desired properties and to evaluate the
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outcome of a VS run, the enriched molecules are then further analyzed by means
of biological assays.

In recent years, a plethora of different similarity measures were proposed
and the development of new functions is still a field of active research [2,9]. A
common way to calculate the similarity between two molecules is to interpret
the molecules as chemical graphs. The similarity between those graphs is then
measured by means of graph kernels. Fröhlich et al. introduced the optimal
assignment of chemical graphs to the field of cheminformatics [6,7]. The optimal
assignment kernel and its extensions have proven to be a valuable similarity
function for cheminformatic problems, such as VS [13,14].

The optimal assignment assumes every part of a query molecule to be equally
important. However, this assumption is often not realistic in a VS for ligands
that are biologically active against a specific protein target. Depending on the
binding mode of a ligand, not all of its substructures are of the same importance.
Parts of a ligand that exhibit important interactions (e.g. H-bonds) to the protein
target should be more important than parts that do not directly interact with
the protein.

The aim of this study is twofold. First, we propose an extension of the opti-
mal assignment approach, which allows for assigning different importance to the
atoms of a query molecule by weighting the edges of an optimal assignment. The
importance of the atoms can be assigned by looking for potential interactions
between the target and the ligand if a crystal structure and expert knowledge of
the protein target is available. However, often crystal structures are not available
or it is hard to interpret them. Hence, the second aspect of this study concerns
the optimization of the edge weights of the optimal assignment. We show that
the edge weights can be optimized with respect to an optimal VS performance
on a data set of known actives and inactives. Using the VS performance on a
data set as objective function results in a fitness landscape with multiple local
optima. Evolutionary algorithms for numerical optimization problems are suited
to optimize problems with such a fitness landscape. We employed particle swarm
optimization (PSO) [16], a popular evolutionary algorithm that has been suc-
cessfully applied in various practical tasks [8,25], to optimize the edge weights
of the optimal assignment.

In the experiments, we compared the optimal assignment with optimized edge
weights to the original version with equal edge weights. To assess the performance
of both methods, we used sophisticated VS performance metrics that are able
to measure the overall performance as well as the so called early enrichment of
molecules, which is important in real-world VS experiments.

The results show that the optimization of edge weights considerably improved
the overall VS performance as well as the early enrichment on various VS bench-
mark data sets. Additionally, the method is able to enrich molecules with a
different scaffold, which is a desired behavior for real-world VS runs. Thus, we
think that optimization of the edge weights of an optimal assignment is a valu-
able method if no crystal structure but a data set of known actives and inactives
is available.
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2 Methods

This section first introduces the optimal assignment kernel as similarity measure
for molecular graphs and motivates the importance of different optimal assign-
ment edge weights. Then, we present an evolutionary algorithm to optimize these
edge weights. Finally, the experimental setup used to evaluate the performance
of the optimal assignment with optimized edge weights is introduced.

2.1 Optimal Assignment Kernel

The optimal assignment kernel (OAK) [6,7] measures the similarity between two
molecular graphs by finding an optimal mapping of the atoms of the smaller
molecule on a subset of the atoms of the larger molecule. An optimal mapping
of an atom on another atom results in an optimal assignment edge (Fig. 1). A
mapping is called optimal if the mapping maximizes the pairwise sum of atom
similarities. The optimal assignment is performed on the matrix S of pairwise,
inter-molecule atom similarities. A pairwise atom similarity Sij is calculated by
a radial basis function (RBF) on the physio-chemical descriptors of each atom.
The OAK uses 24 atom and 8 bond descriptors of the chemical expert system
of JOELib2 [11].

From a chemical perspective, the local environment of an atom influences
its chemical properties. Hence, the OAK includes information of the topological
neighbors and the bonds up to a predefined depth in the atom similarity calcula-
tion. The information is gathered by a recursive atom-wise similarity calculation
on the neighbors. The recursive atom-wise similarities are weighted by a decay
parameter because the influence of neighboring atoms on the chemical properties
of an atom decreases with increased topological distance.

Given two molecular graphs A and B with atoms a1, . . . , am and b1, . . . , bn
and the matrix S of pairwise atom similarities, the optimal assignment problem
can be formulated as finding an optimal permutation π of indices that maximizes
the objective function of Equation 1.

S(A,B) =

{
maxπ

∑m
i=1 Siπ(i) if n > m

maxπ
∑n

j=1 Sπ(j)j otherwise
(1)

Using the Hungarian method [21], an optimal solution for the optimal assignment
problem can be computed in O(max(m,n)3).

The sum of all pairwise atom similarities in Equation 1 increases with the
number of atoms that a molecule contains. To obtain comparable similarity val-
ues for molecules of arbitrary sizes the result S(A,B) of the optimal assignment
is normalized to a range of [0, 1] by Equation 2.

SOA(A,B) =
S(A,B)√

S(A,A)S(B,B)
(2)

An example of an optimal assignment of two molecular graphs is visualized in
Fig. 1.
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Fig. 1. Optimal assignment of two molecules of the COX2 dataset. The atom assign-
ments are based on pairwise-atom similarities calculations of the OAK. Green optimal
assignment edges represent a high atom similarity whereas red edges indicate a low
atom similarity.

Optimal Assignment Edge Weights. In a VS for ligands against a spe-
cific protein target, a single active query molecule is used to search a chemical
database for other biologically active compounds. Generally, not all parts of the
query molecule have the same importance for activity. For instance, the exact
topology of a substructure that is crucial for the molecule’s binding to the pro-
tein target is usually more important than the topology of some linker region.
Hence, important substructures should receive more attention in the optimal
assignment than unimportant substructures.

A different importance can be assigned to the atoms of a query molecule by
weighting the optimal assignment edges that originate from the atoms. Edges
that are part of more important substructures receive larger weights whereas
edges within less important parts of the query molecule receive smaller weights.
Consequently, the contribution of an assignment to the sum of pairwise atom
similarities increases with the importance of the substructure that contains the
assignment.

Assuming a fixed query molecule Q with atoms q1, . . . , qm, the objective func-
tion of the optimal assignment problem (Equation 1) is modified to Equation 3.

S(Q,B) =

{
maxπ

∑m
i=1 wiSiπ(i) if n > m

maxπ
∑n

j=1 wπ(j)Sπ(j)j otherwise
(3)

The optimal assignment edge weights wi represent the importance of the cor-
responding atom of the query molecule. The edge weights are fixed throughout
the similarity calculations of a VS run and need to be determined prior to the
VS of a chemical database.
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2.2 Edge Weight Optimization

A possible approach to assign edge weights would be to look at the binding
mode of the query molecule to the protein target. However, depending on the
availability of crystal structures and literature, the exact binding mode is often
unknown. Hence, it is often unknown which parts of a query molecule are im-
portant for activity and which parts are less important. However, a data set of
known ligands and decoys is usually available. The information of this data set
can be used to optimize the edge weights of a query molecule for optimal VS
performance.

We employed evolutionary algorithms to optimize the edge weights of a given
query structure. The VS performance on a data set of known ligands and decoys
was used as fitness function for the optimization. Changing the edge weights
can dramatically change the actual optimal assignment. This fact results in a
fitness landscape with multiple local optima. Thus, an evolutionary algorithm
for numerical optimization with a good exploratory behavior should be used for
optimization. Differential evolution (DE) [23] and PSO are popular evolution-
ary algorithms for tackling numerical problems with multiple local optima or
dynamically changing fitness functions. Implementations of the two algorithms
are available in the optimization framework EvA2 [20].

In preliminary experiments (not published), we compared DE and PSO using
the EvA2 standard parameters with respect to convergence speed and model
quality. PSO and DE resulted in a similar model quality but PSO needed on
average 1,000 iterations less to converge, which is a considerably faster conver-
gence speed. Thus, we decided to employ PSO to optimize the edge weights of
the optimal assignment. Additionally, several multi-run PSO optimizations re-
sulted in similar fitness values indicating that multi-runs might not be necessary
for optimizing the edge weights of an optimal assignment.

Particle Swarm Optimization. PSO is a population based optimization tech-
nique inspired by swarms of fish or birds. Each individual, or swarm particle, xi is
characterized by its position in the problem space and its current travel velocity
vi(t) that allows it to move in the problem space. The particles are arranged in
a logical topology which defines a neighborhood N(xi) for each particle xi. The
motion of a particle is influenced by both individual knowledge and knowledge
of neighboring swarm individuals.

At iteration t, a swarm particle xi is attracted by the best position xh
i in the

particle’s history and the best position xn
i found by its neighboring particles’

history, resulting in Equations 4 and 5.

vi(t+ 1) = χ [vi(t) + r1φ1(x
p
i − xi(t)) + r2φ2(x

n
i − xi(t))] (4)

xi(t+ 1) = xi(t) + vi(t+ 1) (5)

The parameters φ1 and φ2 control the trade-off between the different attractors
and r1 and r2 are uniform random samples for randomized exploration. The
constriction approach includes a constriction factor χ to assure that the swarm
reliably converges [5]. Using the constriction approach, it is not necessary to limit
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the velocity vector to a maximum velocity vmax. Commonly used neighborhoods
are ring, 2D-grid, or star topologies [17].

2.3 Experimental Setup

Data Sets. All VS experiments were performed using a subset of the Directory
of Useful Decoys (DUD) Release 2 [12]. The DUD contains known actives and
mimetic decoys for 40 protein targets. We used the same 13 subsets of the DUD
as in an earlier VS study [13] because these data sets contain a sufficient number
of different scaffolds. On a data set with a low number of scaffolds the VS
performance would be mainly based upon a trivial enrichment. An overview of
the data sets and their corresponding protein targets can be found in Table 1.

The DUD was designed to serve as an unbiased, publicly available benchmark
database for evaluation of docking methods. In contrast to docking methods,
ligand-based VS methods require a biologically active query molecule. In line
with other VS studies on the DUD data sets [4,13], we used the ligands of the
complexed crystal structures that were used to identify the binding sites for
docking algorithms as query molecules.

Table 1. DUD data sets for VS experiments

data set target protein actives decoys

ACE Angiotensine-converting enzyme 49 1797
ACHE Acetylcholinesterase 107 3892
CDK2 Cyclin-dependent kinase 72 2074
COX2 Cyclooxygenase-2 426 13289
EGFR Epidermal growth factor receptor 475 15996
FXA Factor Xa 146 5745
HIVRT HIV reverse transcriptase 43 1519
INHA Enoyl ACP reductase 86 3266
P38 P38 mitogen activated protein 454 9141
PDE5 Phosphodiesterase 5 88 1978
PDGFRB Platelet derived growth factor receptor kinase 170 5980
SRC Tyrosine kinase 159 6319
VEGFR2 Vascular endothelial growth factor receptor 88 2906

Virtual Screening Metrics. In recent years, a plethora of sophisticated eval-
uation metrics for VS experiments have been suggested [18]. According to rec-
ommendations for the evaluation of VS experiments [15], the VS results should
be analyzed under at least two different aspects.

First, the overall performance on the complete data set. The overall perfor-
mance can be measured by the well known area under the ROC curve (AUC).
The ROC curve plots the fraction of correctly predicted actives (true positive
rate) against the fraction of inactives that are falsely predicted as active (false
positive rate). The AUC can achieve values in the interval [0, 1]. The higher the
AUC value, the better the performance.
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The second aspect is the early enrichment performance, which originates
from real-world screening applications. In those screenings only the top ranked
molecules are further evaluated in biological assays because of cost and time
requirements. We employed two different metrics to measure the early enrich-
ment performance. For both metrics, increased values indicate an increased early
enrichment.

The first early enrichment metric, the BEDROC score [24], extends the AUC
by a decreasing exponential weighting function that reduces the influence of lower
ranked structures. The influence of the early enrichment on the final BEDROC
score is controlled by a parameter α. High values of α increase the importance
of top ranked structures. We used α = 53.6, which means that 80% of the final
BEDROC score is based on the performance in the first 3% of the ranked data
set. Like the AUC, the BEDROC score adopts values in the range [0, 1].

Another metric that is commonly used for the early enrichment problem is
the enrichment factor (EF). The EF measures the enrichment of actives at a
predefined fraction of the data set (x%) as defined in Equation 6. In particular,
the EF represents how much more enrichment could be found compared to a
random enrichment of actives. In contrast to the other two metrics, the EF is
not bounded to the interval [0, 1].

EF@x% = Nactives seen

N@x%
/ Nactives

Nactives+Ndecoys
(6)

Evaluation Setup. To robustly evaluate the equally weighted and the edge
weight optimized OAK, we generated 25 randomized 50/50 splits. The first half
of a data set was used to optimize the optimal assignment edge weights for
optimal AUC performance. In each iteration of the PSO, a complete VS run was
performed and evaluated on the first half of the data set. The second half of a
data set was used as external test set to obtain 25 unbiased VS results for the
calculation of mean and standard deviation.

We used the constriction PSO implementation of Eva2 with default parame-
ters: φ1 = φ2 = 2.05, χ ≈ 0.73, an initial velocity v = 0.2, and a population size
of 30 individuals. These parameter settings worked well in an earlier problem
solved with PSO. As neighborhood, we used a 2D-grid with range two. As pre-
liminary experiments indicated that multi-runs result in similar fitness values,
we performed only a single optimization run for each of the 25 randomized splits.
Generally, multi-runs are necessary to draw statistically relevant conclusions for
a given optimization problem. However, we think that a single run for each of
the 25 different splits, which results in 25 optimizations in total, is enough to
draw relevant conclusions.

3 Results

The goal of this section is to compare the overall performance as well as the
early enrichment performance of the OAK with PSO optimized edge weights
(PSO-OAK) to the original version with equal edge weights (OAK).
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Table 2 shows the AUC performance and the BEDROC scores on the 13 em-
ployed benchmark data sets. The results are based on the averaged performance
and its standard deviation on the external sets of the 25 randomized splits. We
performed a standard paired t-test to test for significant differences between the
performance values.

Table 2. AUC and BEDROC performance for equally weighted and PSO weight op-
timized OAK. Bold values indicate the best result with respect to the metric.

OAK PSO-OAK
data set AUC BEDROC AUC BEDROC
ACE 0.717 ± 0.046 0.438 ± 0.077 0.934 ± 0.023 0.602 ± 0.090
ACHE 0.666 ± 0.027 0.397 ± 0.050 0.892 ± 0.027 0.693 ± 0.051
CDK2 0.542 ± 0.043 0.196 ± 0.054 0.809 ± 0.023 0.471 ± 0.053
COX2 0.913 ± 0.008 0.795 ± 0.013 0.972 ± 0.007 0.930 ± 0.012
EGFR 0.895 ± 0.006 0.592 ± 0.023 0.968 ± 0.003 0.805 ± 0.015
FXA 0.462 ± 0.020 0.053 ± 0.029 0.822 ± 0.026 0.416 ± 0.051
HIVRT 0.566 ± 0.057 0.262 ± 0.078 0.725 ± 0.045 0.194 ± 0.101
INHA 0.615 ± 0.042 0.653 ± 0.038 0.939 ± 0.016 0.773 ± 0.040
P38 0.403 ± 0.016 0.134 ± 0.023 0.763 ± 0.013 0.271 ± 0.039
PDE5 0.610 ± 0.033 0.504 ± 0.062 0.826 ± 0.024 0.632 ± 0.052
PDGFRB 0.495 ± 0.034 0.252 ± 0.041 0.833 ± 0.022 0.627 ± 0.041
SRC 0.662 ± 0.030 0.371 ± 0.367 0.893 ± 0.018 0.623 ± 0.045
VEGFR2 0.250 ± 0.036 0.058 ± 0.030 0.754 ± 0.033 0.193 ± 0.071

The PSO-OAK outperformed the OAK on all data sets with respect to AUC
performance, which means that the PSO-OAK showed a considerably better
overall performance. The AUC performance benefit ranged from 0.059 on the
COX2 data set up to 0.504 on the VEGFR2 data set. On 6 out of the 13 bench-
mark data sets, the OAK performed with an AUC between 0.250 and 0.566
close to or worse than random. In contrast, the PSO optimized OAK exhib-
ited an AUC performance from 0.725 to 0.833 on these 6 data sets, which is
considerably better than random.

The PSO-OAK achieved an improved BEDROC score on all data sets but
the HIVRT data set, which means that the enrichment of biologically active
structures in roughly the first 3% of the data set could be increased on all but
one data set. The performance loss on the HIVRT data set was 0.068. On the
other 12 data sets, the BEDROC score was improved by 0.120 for INHA up to
0.375 for PDGFRB.

Table 3 shows the EF at 1% and 5% of the data set and represents the early
enrichment performance at two small fractions of the complete data set. At
a fraction of 1% the PSO-OAK yielded a better enrichment on 11 of the 13
benchmark data sets. On these data sets, the improvement was between 3.15 on
the PDE5 data set and 16.60 on the PDGFRB data set. As for the BEDROC
score, the enrichment of the PSO-OAK was, with a decrease of 5.78, significantly
worse on the HIVRT data set. On the COX2 data set, the OAK and the PSO-
OAK achieved a comparable enrichment.
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Table 3. Enrichment factors (EFs) at 1% and 5% of the data set for equally weighted
and PSO weight optimized OAK. Bold values indicate the best result with respect to
the metric whereas italics indicate results that are statistically indistinguishable.

OAK PSO-OAK
data set EF@1% EF@5% EF@1% EF@5%

ACE 23.281 ± 5.367 7.613 ± 1.305 28.437 ± 7.068 11.681 ± 2.045
ACHE 23.112 ± 3.228 5.964 ± 0.801 28.291 ± 3.388 13.945 ± 1.173
CDK2 7.260 ± 3.233 3.152 ± 0.628 20.394 ± 3.233 7.457 ± 0.935
COX2 30 .018 ± 0 .376 14.060 ± 0.425 30 .624 ± 0 .550 17.690 ± 0.278
EGFR 25.730 ± 1.241 10.457 ± 0.471 30.026 ± 0.844 15.161 ± 0.438
FXA 3.093 ± 1.817 0.610 ± 0.358 15.683 ± 3.159 10.127 ± 1.294
HIVRT 15.077 ± 5.358 3 .633 ± 1 .164 9.294 ± 5.577 3 .670 ± 1 .616
INHA 33.799 ± 3.009 10.798 ± 0.825 37.407 ± 1.241 14.312 ± 1.133
P38 4.026 ± 0.900 1.476 ± 0.218 6.751 ± 1.575 3.999 ± 0.356
PDE5 19.151 ± 3.187 5.483 ± 0.815 22.297 ± 0.622 7.792 ± 1.000
PDGFRB 12.617 ± 2.735 4.120 ± 0.604 29.220 ± 2.343 10.898 ± 0.640
SRC 15.495 ± 2.164 7.858 ± 0.798 27.641 ± 3.667 13.054 ± 0.910
VEGFR2 2.264 ± 1.594 0.875 ± 0.397 7.454 ± 4.895 3.963 ± 1.413

Fig. 2. Receiver operator characteristics (ROC) on the HIVRT data set for equally
weighted and PSO weight optimized OAK. The standard deviations of the ROC curves
are indicated by shaded tubes.
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At a fraction of 5% of the data set, the PSO-OAK also achieved a considerably
better enrichment on the COX2 data set. Thus, the optimization of edge weights
improved the enrichment at 5% on 12 out of 13 data sets. The increase on these
data sets ranged from 2.31 for PDE5 up to 9.52 for FXA. On the HIVRT data
set, the OAK and the PSO-OAK showed a comparable performance.

The performance values of the two methods on the HIVRT data set exhibit an
interesting behavior. While the overall performance of the PSO-OAK was consid-
erably better, the early enrichment up to 3% of the data set was worse compared
to the OAK. To investigate these performance differences on the HIVRT data
set in more detail, the ROC curves of the OAK and the PSO-OAK are depicted
in Figure 2. The curves show that the enrichment of true positives of the OAK
was better up to a false positive rate of 4%, which accounts for the significantly
better BEDROC and EF@1% performance. At larger fractions of false positives
the PSO-OAK enriched more true positives, which underlines the good overall
performance. Another aspect concerns the different course of the curves of the
two methods. The PSO-OAK shows a smooth curve progression, whereas the
OAK exhibits a nearly stepwise increase.

4 Discussion and Conclusion

In this study we proposed an extension of the optimal assignment approach for
chemical graphs that uses PSO to optimize the edge weights for optimal VS
performance. An improved in-silico VS performance, in particular an increased
early enrichment, helps to increase the success rate of further biological assays
and thus, reduces cost and time requirements.

The optimization of edge weights of the optimal assignment substantially in-
creased the overall VS performance and the early enrichment on various bench-
mark data sets. The median improvements amount to 35% for the AUC, 68% for
the BEDROC score, 22% for the EF at 1% of the data set, and 66% for the EF
at 5% of the data set. This considerable performance gain can be explained by
the additional information the edge weight optimized OAK receives from the op-
timization step. Recent studies showed that the importance of substructures of a
molecule can be extracted from an accurate machine learning model [3,22]. The
same works the other way around. Optimizing the edge weights, which repre-
sent the importance of atoms, for optimal VS performance on a problem-specific
data set is similar to building a machine learning model on such a data set.
Thus, the proposed extension of the OAK includes a model of activity against
the specific protein target, which is not the case for the original optimal assign-
ment approach. Consequently, a considerable performance gain is to be expected
and the performance could be similar to model-based approaches. The compari-
son of the OAK with optimized edge weights to model-based approaches should
be addressed in further studies. A drawback compared to the equally weighted
OAK is that the optimization of edge weights can lead to substantial overfitting,
a common problem of machine learning approaches. However, overfitting could
not be observed on the employed benchmark data sets because the performance
on the external test sets was promising.
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The ROC curves on the HIVRT reveal another possible benefit of the edge
weight optimized OAK. The nearly stepwise increase for the equally weighted
OAK indicates that the approach accumulates numerous molecules with the
same scaffold before discovering a new scaffold. As a specific scaffold contains
both actives and inactives, the scaffold-wise accumulation leads to a nearly step-
wise increase of the ROC curve. In contrast, the smooth curve progression of the
edge weight optimized OAK indicates that the method accumulates molecules
of different scaffolds. This capability to enrich molecules with different scaffolds,
also called ”scaffold-hopping”, is important for a pharmaceutical company. Only
substances with a substantially different scaffold compared to existing treatments
can be patented [10].

To conclude, the OAK with optimized edge weights is a valuable method to
improve the VS performance if a problem-specific data set is available. A further
advantage is that the edge weights can be used to visualize the importance of
the atoms of a query structure. In combination with structure-based approaches
such a visualization could help to gain a better understanding of the binding
mode of a ligand.
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Abstract. Lévy flights are a class of random walks inspired directly by observ-
ing animal foraging habits, in which the stride length is drawn from a power-law
distribution. This implies that the vast majority of the strides will be short. How-
ever, on rare occasions, the stride are gigantic. We use this technique to self-adapt
the mutation rate used in Linear Genetic Programming. We apply this original
approach to three different classes of problems: Boolean regression, quadratic
polynomial regression, and surface reconstruction. We find that in all cases, our
method outperforms the generic, commonly used constant mutation rate of 1 over
the size of the genotype. We compare different common values of the power-law
exponent to the regular spectrum of constant values used habitually. We conclude
that our novel method is a viable alternative to constant mutation rate, especially
because it tends to reduce the number of parameters of genetic programing.

1 Introduction

To men, nature has always been a source of inspiration for innovation. This is true for
all realms of technological advances. Since men first saw a bird, mankind wanted to
fly and plane. Directly mimicking biological organisms has given rise to anodyne in-
ventions such as velcro, and entire new fields of science, such as artificial intelligence.
Evolutionary algorithms (EAs), including genetic programming (GP), are prime exam-
ples of Darwinian evolution concepts used to “intelligently” explore the solution space
of problems too vast to enumerate exhaustively.

Although successfully applied to real-life problems, EAs generally suffer from a se-
vere drawback: the number of parameters needing optimization before the EA is able to
perform. Parameter setting and the necessity of tuning them to the specific problem is
both time and resources consuming. And the number of possible combinations of param-
eters grows exponentially. GP, or in our case, linear genetic programming (LGP), is no
exception to the rule. The maximum number of generations, the mutation rate, the type
of selection, or the size of the genotype are only a small subset of all possible variables.

In this work, we take another page from nature and apply a biological concept to
make an attempt at optimizing LGP systems. Instead of fixing a single global rate, or
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using a complicated variable rate function, we use the Lévy flight paradigm, a particu-
lar case of random walk, to draw the mutation rate from a heavy-tailed distribution. In
Section 2 we give a detailed description of Lévy systems and of linear genetic program-
ming, we then proceed to describe our methods in Section 3. In Section 4, we describe,
analyze, and discuss our simulation results. Finally, we draw some conclusions and
offer possible future research direction in Section 5.

2 Background

2.1 Lévy Walks and Flights as Optimal Search Strategies

Until 1995 [5,20] animal movement was mainly modeled by random walks (RWs) [2,3].
A RW is a stochastic process where the location of a point in a space varies in time
according to a defined set of probabilistic rules. The hypothesis that animal foraging
behavior could be better described by a particular class of RWs, Lévy dynamics (LDs),
was first proposed in [16]. According to this paradigm, the distance (step length) trav-
elled by a point between reorientation events is described by a probability distribution
that is heavy- tailed, i.e. without finite variance, usually power-law or Pareto distribu-
tions. Here, the probability density function of a step length x ∈ [xmin,∞) is draw from

P(x) =Cx−γ

where the γ satisfies 1 < γ ≤ 3. Exponents equals to 1 do not correspond to a well-
defined probability distribution, while exponents greater than 3 correspond to distribu-
tions with finite variance. An important feature of LDs is that they are scale-free: they
do not have any characteristic spatial scale, exhibiting the same patterns regardless of
the range over which they are viewed.

These distributions do not satisfy the central limit theorem’s hypothesis, therefore
standard results on the long-term limit of RWs do not apply for LDs. Instead, they
are superdiffusive, the long-term mean-squared displacement of the point is propor-
tional to the time from the beginning of the process raised to a given exponent strictly
greater than 1.

When the time taken to complete a given step is somehow proportional to its length,
the term Lévy walk (LW) is used. Otherwise, when the the movement of the point
is instantaneous, Lévy flight (LF) is preferred, even if these two terms are often used
as synonyms when referred to animal moving behaviors. Taking into considerations
all the above observations, LWs and LFs provide an interesting paradigm that allows
for a continuous transition between different movements: from ballistic (straight-line)
motion (γ = 1) to diffusive (Brownian) RWs (γ ≥ 3), passing through superdiffusion
(when 1 < γ ≤ 3).

The use of LW in foraging behavior of animals was initiated by empirical papers that
demonstrated the presence of a heavy-tailed distribution in data describing the move-
ments of fruit flies [5] and wandering albatrosses [20]. The success on the use of these
paradigms is surely also due to the theoretical studies of the efficiency of a point carry-
ing out a random walk search with a power-law distribution of its movements in an en-
vironment designed to model patchily distributed search targets [19,21]. These studies
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showed that LWs are more efficient than non-Lévy walks and the optimal Lévy expo-
nent is approximately 2. In fact, from the observation that diffusive movements tend to
repeatedly search the same space, while ballistic movements are less suited to exploit-
ing the patchy nature of the food environment, Viswanathan et al. [19,20,21] postulated
that a LW with exponent around the value 2 represents an optimal compromise between
the Brownian and the ballistic search modes.

The studies of Viswanathan et al. initiated a great interest in LWs, both in the analy-
sis of empirical papers (a large number of animal species behaviors were studied, from
reindeer, to spider monkeys, from gray seals to bees, moths and marine predators) and
in the theoretical study of the model and it generalization to different fields. Recently,
a re-analysis by Edwards et al. [7] of the original data showed flaws in the statistical
methods used to analyze them. A recent re-analysis of previously published statisti-
cal studies overwhelmingly rejected the original Lévy model for almost all datasets
tested [8].

Further theoretical work showed that alternative search strategies can outperform
LWs [10]. For example, they showed that if there is a small increase in the initial dis-
tance between forager and target, or a short period of time following detection for
which a target is available for future searches, the optimal Lévy exponent decreases
from 2 towards the ballistic limit of 1. Furthermore, the efficiency of an LW relative to
that of a ballistic search is greatly reduced. Therefore, the theoretical optimum of a 2
LW is not as robust as is widely thought.

However, it is quite well established that a wide range of movement strategies can
lead to the observation of heavy-tailed patterns. Therefore, one of the key questions
in the field of optimal foraging is: under what circumstances is it advantageous for
a forager to follow a movement strategy based on a LW? Crucially, the answer to
this question depends on what alternative strategies are realistically available to the
forager [10]. Even the exact modelization of animal foraging behavior is still under
discussion and strongly depends on the assumption of the model, the Lévy-walk and
-flight paradigms interestingly apply in many situations, suggesting a new metaphor for
designing robust and efficient heuristic search strategies.

2.2 Genetic Programming and Linear Genetic Programming

Genetic Programming (GP) is an inductive learning technique in which a population
of computer programs evolve using Darwinian principals towards an optimal solution
to a predefined problem [1,12]. In traditional GP, individuals are programs in the form
of trees where nodes are operators and terminals are variables or constant values. For
a finite number of successive generations, individuals are selected for the adequacy
to the problem at hand: their fitness is evaluated. Operators such as recombination or
mutation are used on selected parent programs in order to produce offspring that are
different and possibly closer to generate a globally optimal solution. If their fitness is
higher than that of their parents, they may replace them in the next generation. There
are countless different methods for selecting, mutating, recombining, and replacing in-
dividual solutions, making the parameter space of GP extremely large. Tree-based GP
also suffers what is called the bloat, where the trees are becoming increasingly deep
and unbalanced, dramatically reducing the efficiency of genetic operators [14,17].
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In evolutionary algorithms, including GP and evolution strategy, a broad range of
(self-)adaptive mutation rates were proposed. These can decrease linearly following a
simulated annealing technique [9], or be much more elaborated, including sophisticated
statistical frameworks [18]. In our case, we are comparing our results to the most com-
mon implementation: the constant mutation rate.

To remedy this problem, in this work we will consider Linear Genetic Programming
(LGP) [4]. In LGP, programs are now sets of linear instructions. LGP is very similar to
a computing machine system composed of a set of registers and instructions that operate
upon their content. In the linear representation, an individual is an imperative program
denoting a sequence of instructions that are executed sequentially from top to bottom.
Each instruction includes an operation, one or multiple operands, and a return that the
result of that operation is assigned to. Both operands and return are stored in registers
with varying read/write permissions. In general, input registers (e.g. rx,ry) hold the
program inputs and can only be read and serve as operand. Additional calculation reg-
isters can be read and written and can be used as either operand or return. Calculation
registers are usually initialized with a constant value, (e.g. 1) for numeric search prob-
lem and FALSE for Boolean programs. One of the calculation registers (usually r0) is
assigned as the output register that after a program is executed, the value stored in r0
will be returned as the output.

3 LGP with Lévy-Flight Mutation

In order to streamline the search for an optimal mutation rate, we use a Lévy-flight
approach implemented into Linear Genetic Programming (LGP) system. Similar strate-
gies were applied in other other subfields of EA, notably Evolutionary Programming
[13]. In LGP, point mutation can be applied to any loci, that is, a return register can be
replaced, and so can an operator or an operand. These mutations occur with a probabil-
ity pm, or at a fixed rate, which is usually a function of the number of loci N, generally
x/N, where x << N. This will become the standard against which we will compare our
Lévy-flight implementation.

In this preliminary study, we focus on a mutation-only based search framework (i.e.
no recombination will be used) and we will predefine a common fixed length for all
LGP programs. More specifically, all individuals/programs will have exactly N = I× 4
loci if we constrain a program with I instructions. Each instruction is of the following
form:

rret = ropr1 operator ropr2

where rret is chosen from the calculation register set, ropt can be either calculation or
input register, and operator is one of the possible operations.

The mutation-based Lévy-flight LGP algorithm starts with randomly generating a
population of a given size |P|. The configuration of population size and other param-
eters will be detailed in Section 4. Next, the fitness of each individual in this initial
population is evaluated. Then the evolution process enters a generational iteration out-
lined as follows.
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1. Mutate each individual using a mutation rate m drawn from a power-law distribu-
tion p(l) =Cl−γ, where N is the fixed length of an individual, l = 1,2,3, ...,N, and
the constant C = 1/∑ l−γ;

2. Evaluate offspring;
3. Choose by tournament selection the next generation from the competition pool that

consists of |P| parent and |P| offspring individuals;
4. Go to Step 1 if termination criterion is not met.

In order to obtain statistically significant results, we repeat each experiment between
1000 and 10,000 times in 3 different types of problems.

4 Experimental Results

The performance of our Lévy-flight GP is evaluated by comparing to conventional
fixed-rate mutation algorithms on three test problems. For each problem below, we will
offer a brief description of the problem itself. We will also specify for each one the set
of parameters we have used.

4.1 Boolean Regression

We first use a simple two-input and one-output Boolean search problem [11]. This is
a very simple prototypical GP problem in which all the absolute optimal solution is
reachable at every repetition. We are therefore not interested in comparing the actual
maximum fitness of our Lévy-flight GP against the traditional one, which is f itness = 0
in all cases, but rather, we will measure the speed at which this optimal function is
found in terms of number of generations.

Table 1. LGP parameter configurations for Boolean search

Target function x== y

Number of input 2
Number of output 1
Number of registers 2+2
Fitness function Hamming distance
Operation set {AND, OR, NAND, NOR}
Individual length (N) 16/24/32
Population size (|P|) 1000
Tournament size 4
Number of runs 10,000

The LGP parameter settings are shown in Table 1. In this problem, the LGP
must replicate the behavior of a target Boolean function EQUALS form the possible
16 binary combinational logic functions: TRUE, FALSE, X, Y, AND, NAND,
X IMPLY Y, Y IMPLY X, X NIMPLY Y, Y NIMPLY X, NOT X, NOT Y,
OR, NOR, EQUALS, XOR. The reason EQUALS was selected is because it is the
least probable function of all. More specifically, in our case with 2 calculation registers,
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2 input registers, and 4 Boolean operators, we have (22 × 24 × 24 × 24)I = (27)I possi-
ble programs representing the 16 binary logic function, EQUALS is the least common
of all.

We run independent simulations for all 3 individual length N = {16,24,32} using
fixed mutation rate m = c/N, where the constant c = {1,2,3,4} and compare these
commonly-used parameter values with Lévy-flight mutation, where the rate m is drawn
in a power-law distribution with exponents of γ= {1.0,1.5,2.0,2.5,3.0}.As the Boolean
regression problem is easy, each independent run will evolve the absolute optimum in
a “reasonable” number of generations. We record the number of generation each rep-
etition until it reaches the optimal fitness and report averages and confidence intervals
in Fig. 1. For reasons of space and readability, we only report result for N = {16,24}.
Trends for N = 32 are however consistent.
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Fig. 1. Results of Boolean search problem. For each run, the total number of generations required
to find the target is recorded. Results of conventional mutation scheme with a constant rate m =
c/N and Lévy-flight mutation with a power γ are compared for individuals of size (a) N = 16 and
(b) N = 24. Points are mean values and error bars represent 95% confidence intervals.

In all three values of N, we observe a sharp fitness improvement with the increase
of the constant c, thus with the increase of m = c/N. However, we see that mutation
rate m = 1/N, which is the most commonly used in GP, is also the one that performs
the poorest in the Boolean regression problem. The highest performance in this case
is achieved with c = 4, for values of c > 4, the number of generations necessary for
convergence increases (values not reported). With Lévy-flight mutation, the number of
generations until convergence increases quasi linearly with increasing values of γ. This
is explained by the fact that the power-law distribution becomes narrower (steeper on
a log-log scale), which means that longer Lévy flights (i.e. higher mutation rate m)
become less probable.

In order to assess the statistical significance of our results, we evaluate the results
for each pair of c and γ values with a Kruskal-Wallis test and a a Bonferroni-Dunn Non
Parametric for Multiple Comparison test [6,22]. The Kruskal-Wallis has always shown
statistical differences between the groups (p < 0.05). The Bonferroni-Dunn test points
out significant differences (p < 0.05) between mutation rate pairs. Results are reported
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Fig. 2. Results of the statistical significance test for the boolean search problem. Matrix represent
the results of the Bonferroni-Dunn Non Parametric for Multiple Comparison test for individuals
of size (a) N = 16, (b) N = 24, and (b) N = 32. For each size, all possible combinations of c and γ
are shown. Gray squares represent a statistically significant different in the statistical test. White
squares represent non-significant differences.

in Fig. 2: gray squares represent a statistically significant different results, white squares
represent non-significant differences.

For all individual sizes N, the Bonferroni-Dunn test highlight that most pairs of the
mutation parameters c and γ shows statistically significant differences.

4.2 Numeric Regression: The Mexican Hat Function

For the first numeric search experiment, we choose a surface reconstruction and a poly-
nomial regression [15]. This first problem consists in rebuilding the two-dimensional
surface of the mexican hat function (Fig. 3) defined by the equation:

fmh(x,y) =

(
1− x2

4
− y2

4

)
× e(−

x2
8 − y2

8 ).

The parameters of this problem are specified in left column of Table 2. The fitness of
each individual is evaluated as the sum of the squared errors between the predicted and
the actual values of each point. This problem is much more difficult for LGP systems to
solve. Because populations of LGP individuals do not reach optimal fitness, we report
the average and confidence intervals for the fitness of the best individual in a population
of 1000 individual after 2000 generations. We also perform the Bonferroni-Dunn statis-
tical significance test on the results of each pairs of mutation rate c and γ. For reasons
of space, we omit the figure reporting the fitness of individuals of size N = 80.

The average fitness improves as c (and m = c/N) increases until c = 3, for values
of c > 3, the fitnesses deteriorates (not shown for readability reasons). As before, the
worst results are obtained with a standard m= 1/N. In the case of Lévy flight mutations,
fitness peaks γ ≈ 1.5− 2.0. Interestingly, γ ≈ 1 yields worst fitness than higher values,
which suggests that in this case, there are too many long Lévy flights for the system
to converge to optima. Statistical significance test show that the results are different in
many head-to-head c vs. γ comparison simulations.
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Fig. 3. The two-dimensional surface of the mexican hat function

Table 2. LGP parameter configurations for numeric search

Problem mexican hat quadratic polynomial
Number of input 2 1
Input range [−4.0,4.0]× [−4.0,4.0] [−1.0,1.0]
Number of output 1 1
Sample size 400 100
Number of registers 2+4 1+4
Fitness function sum of square errors sum of square errors
Operation set {+,−,×,÷,xy} {+,−,×,÷}
Constant set {1,2,3, ...,9} {1,2,3, ...,9}
Individual length (N) 40/60/80 40/60/80
Population size (|P|) 1000 1000
Tournament size 4 4
Number of runs 1000 1000

4.3 Numeric Regression: Quartic Polynomial Regression

The third and last problem we submit to our Lévy-flight mutation LGP system is a
quartic polynomial regression of the form:

f (x) = x4 + x3 + x2 + x

The LGP parameter settings for this problem are shown in the right column of Table 2.
This is a problem of intermediate difficulty when compared to the 2 problem described
above. Within the allocated maximal number of generations, a reasonable number of
runs did in fact evolve the optimal solution. We report the results of numerical simula-
tions in Figs. 5, 6, and7 for individual sizes N = {40,60,80} respectively. Left hand side
panels, letter (a), show the cumulative distribution of the normalized number of simula-
tion that successfully reach an optimal solution over the span of 5000 generations. For
readability reasons, we limit the number of curves by reporting values c = {1,2,3} and
γ = {1.0,2.0,3.0}. Panels on the right-hand side show the results of the Bonferroni-
Dunn test. Upper panels (b) show the statistically different results for simulation that



46 C. Darabos et al.

16
18

20
22

24

constant mutation rate                      Levy flight mutation power

be
st

 fi
tn

es
s

1 2 3 1.0 1.5 2.0 2.5 3.0

11
12

13
14

15
16

17

constant mutation rate                     Levy flight mutation power

be
st

 fi
tn

es
s

1 2 3 1.0 1.5 2.0 2.5 3.0

(a) (b)

c
=
1

c = 1

c
=
2

c = 2

c
=
3

c = 3

γ
=
1

γ = 1

γ
=
1
.5

γ = 1 .5

γ
=
2

γ = 2
γ
=
2
.5

γ = 2 .5

γ
=
3

γ = 3

c
=
1

c = 1

c
=
2

c = 2

c
=
3

c = 3

γ
=
1

γ = 1

γ
=
1
.5

γ = 1 .5

γ
=
2

γ = 2

γ
=
2
.5

γ = 2 .5

γ
=
3

γ = 3

c
=
1

c = 1

c
=
2

c = 2

c
=
3

c = 3

γ
=
1

γ = 1

γ
=
1
.5

γ = 1 .5

γ
=
2

γ = 2

γ
=
2
.5

γ = 2 .5

γ
=
3

γ = 3

(c) (d) (e)

Fig. 4. Results of the mexican hat problem. Upper row, average best fitness after 2000 generations.
Again, points are mean values and error bars represent 95% confidence intervals. Lower row,
Bonferroni-Dunn test results comparing conventional mutation with a constant rate m = c/N and
Lévy-flight mutation with a power γ. Panels (a) and (c), individual N = 40. Panels (b) and (d),
individual size N = 60. Panel (e), individuals size N = 80.

did evolve an optimal solution after the 5000 generation. Lower panels (c) are results of
unsuccessful simulations, based on the best fitness evolved.

Though results are different, trends are similar across all values of N. Differences be-
tween curves only become magnified with the increase of N. Simulations with constant
mutations rate c= 1 are persistently the worst performing, followed by the highest value
of γ = 3. These are followed by the 2 intermediate values of c = 2 and γ = 2.0. The best
results in this specific problem are obtained by a Lévy-flight mutation with γ = 1.0,
closely followed by c = 3. In these cases, it is to be noted that although Lévy-flight
mutations yield the best result at the end of the end of the evolutionary process, con-
stant rate mutation show faster convergence (steeper slope). This remark doesn’t hold
as N increases. Statistical test show that most important number of pairs are, indeed,
statistically different.
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Fig. 5. Results of quartic polynomial regression problem for N = 40. (a) Cumulative success
rate over 5000 generations. (b) statistical test results of successful simulations. (c) statistical test
results of unsuccessful results.
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Fig. 6. Results of quartic polynomial regression problem for N = 60. (a) Cumulative success
rate over 5000 generations. (b) statistical test results of successful simulations. (c) statistical test
results of unsuccessful results.
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Fig. 7. Results of quartic polynomial regression problem for N = 80. (a) Cumulative success
rate over 5000 generations. (b) statistical test results of successful simulations. (c) statistical test
results of unsuccessful results.

5 Discussion, Conclusions, and Future Work

Although this is preliminary exploratory work, we demonstrate that in all problems, all
values of γ in the Lévy flight mutation show higher performance than the m = 1/N con-
stant mutation rate that is usually used in genetic programing. We believe the behaviors
observed in these experiments are interesting, and deserve further investigation in or-
der to refine the model. Interestingly, the differences in performance for the different
value of γ in Lévy-flight mutation are less pronounced, and it is therefore reasonable to
assume we can reduce the parameter space of GP simulation by fixing γ to an interme-
diate value. In fact, we can easily tune the explorative behavior of our GP systems. The
higher we fix the value of γ, the lower the probability of long Lévy flight. With lower
values of γ, we increase the probability of long exploratory Lévy flights, without really
reducing the short steps, that exploit the solution locally in the space.

We expect to generalize this work to other evolutionary algorithm, including genetic
algorithm, on prototypical problems. We intend to study the effect of this mutation
paradigm combined with recombination operators. In addition, we will apply the Lévy-
flight mutation concept to a broader range of problem classes. Finally, we will be com-
paring our Lévy-flight variable mutation rate to other types of (self-)adaptive mutation
rates that exist.
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Abstract. Zooplankton are considered good indicators for understand-
ing how oceans are affected by climate change. While climate influence on
zooplankton abundance variability is currently accepted, its mechanisms
are not understood, and prediction is not yet possible. This paper uti-
lizes the Genetic Programming approach to identify which environmental
variables, and at which extent, can be used to express zooplankton abun-
dance dynamics. The zooplankton copepod long term (since 1988) time
series from the L4 station in the Western English Channel, has been
used as test case together with local environmental parameters and large
scale climate indices. The performed simulations identify a set of relevant
ecological drivers and highlight the non linear dynamics of the Copepod
variability. These results indicate GP to be a promising approach for
understanding the long term variability of marine populations.

Keywords: Ecological Modeling, Genetic Programming, Plankton
Dynamics, Climate Change, Time Series.

1 Introduction

In a global warming scenario there is growing concern about the impact that
climate change may have on marine ecosystems. In order to forecast such impacts
it is crucial to understand, in particular, the effects of climate variability on
zooplankton composition and productivity, as most marine animals belong to or
feed on it during some stage of their life cycle.

Over the last two decades, several studies in different basins in the world have
indicated that long-term (multidecadal) changes in zooplankton abundance and
biomass are related to multidecadal changes in climate variability, but the causes
behind this are still highly speculative [1].

An important step for understanding this relationship is the assembly of an
appropriatecomputationalmodel forexplainingzooplanktonvariability.Mostmod-
els used in biological oceanography are based on a-priori assumptions, and are
usually based on correlation analysis, whether univariate or multivariate, and in
few cases are based on linear or logistic regression. However, biological systems in
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general, and zooplankton populations in particular, tend to not behave linearly, as
the regime shifts recently observed in several marine systems [2].

A major difficulty in selecting ecological drivers is the identification of vari-
ables that are not individually relevant but that may become relevant in the
context of others. On the contrary, features that are individually relevant may
not all be useful because of possible redundancies [3]. Often, neither the expe-
rience of the researcher nor univariate or multivariate methods are sufficient to
select relevant variables in a system. Another major problem in understanding
ecological functioning is the choice of the statistical models. For instance, in
[4] the zooplankton response to environmental changes is predicted through the
logistic regression model, while in [5] an advection-diffusion-reaction equation
is used to model the relationship between zooplankton and environmental vari-
ables. Of course, such a-priori assumptions reject other possible relationships
among plankton and environmental drivers.

In this work the relation between plankton variability and environmental
drivers is approached by choosing no a-priori drivers, and utilizing no a-priori
functional forms. This goal is achieved by using the Genetic Programming (GP)
approach [6,7]. The main characteristic that makes the GP approach suitable
for this endeavour is the capability to generate functions able to approximate
the investigated natural phenomenon without any strong a-priori assumption
on the functional form or the (in)dependence of the involved variables. More-
over, the GP approach provides a natural selection of the relevant variables, and
it is able to evolve mathematical models that are understandable, and whose in-
terpretation can support the research activities of biologists and oceanographers.
Even though the GP approach has been used in a growing range of applications
dealing with marine environment [8,9,10], it has not yet been exploited for the
description and prediction of plankton abundance variability, necessary steps for
understanding the possible effects and scenarios due to climate change.

The marine area chosen for this study is the Western English Channel where,
since 1988, zooplankton samples have been collected at the monitoring station
L4, off Plymouth (UK) [11]. This ecosystem is characterized by both cold and
warm temperate zooplankton species, and a large number of historical studies
have been carried out [12]. The copepod time series measured here have been
analyzed together with several ecological variables from the same site and climate
indices affecting the northern hemisphere.

The paper is organized as follows. Section 2 discusses the data and methods
used in this work, while section 3 shows the results obtained. Conclusions and
future work on this study are presented in section 4.

2 Data and Methods

The aim of this research is to define a Symbolic Regression model, based on
Genetic Programming (GP), able to express zooplankton abundance variability
as function of climatological, physical and biological parameters. The functions
generated by GP can be interpreted as approximations of the ecological mecha-
nisms governing the target marine ecosystem.
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2.1 Data

Table 1 shows the biotic and abiotic data used in this work.

Table 1. The environmental and climate variables used in this study

Time Series Period Data Gap Source

Total Copepod 1988-2008 yes
Sea Surface Temperature (sst) 1988-2010 yes
Salinity (sal) 1996-2010 yes
Micro Zooplankton (mzp) 1992-2008 yes WCO-L4[11]
Chlorofill (chl) 1992-2011 yes
Total Organic Carbon (toc) 1992-2011 yes
Total Organic Nitrogen (ton) 1992-2011 yes

North Atlantic Oscillation (NAO) 1950-2011 no
East Atlantic Pattern (EA) 1950-2011 no
East Atlantic West Russia Pattern (EAWR) 1950-2011 no NOAA-CPC[13]
Scandinavian Pattern (SCA) 1950-2011 no
Polar Eurasia Pattern (POL) 1950-2011 no

North Hemisphere Temperature (NHT) 1850-2011 no UEA-CRU[14]

Atlantic Multidecadal Oscillation (AMO) 1948-2011 no NOAA-ESRL[15]

The focus of this study are marine copepods and in particular their variability
over time. Copepods usually represent the largest mesozooplankton component
and are found in all pelagic systems. They are an important food source for larval
fish and for planktivorous pelagic fish, hence their variability has a direct impact
on the food web. The total Copepod variable used in this work, see Figure 1,
is the sum of the copepod abundances over all species identified in each sample
and represent the copepod density in this area.

The sea surface temperature (sst) and the salinity (sal) are important phys-
ical parameters that are related to the sea current circulation. They do affect
plankton biogeography, as plankton species have specific temperature and salin-
ity ranges within which they can survive. Temperature has been shown to be of
particular relevance in shaping plankton distributions and biogeographical shifts
[1,12]. The chlorophyll-a (chl) is considered a proxy for phytoplankton biomass,
which is an important food source for copepods. Microzooplankton (mzp) rep-
resents the smaller, unicellular, zooplankton fraction, and is also an important
food source for copepods. Total organic carbon and nitrogen (toc and ton re-
spectively) are proxies for primary production and for relevant nutrients for
phytoplankton and their abundance may depend on anthropic activities. Details
on the acquisition and measurements of these parameters can be found at [11].

Even if the investigated marine area is restricted to the L4 station, large scale
climate patterns should need also to be considered for their influence on local
scale. The Northern Atlantic Oscillation (NAO) is defined as the dipole of at-
mospheric pressure anomalies between Island (low) and Azores (high). Strong
positive phases tend to be associated with above-average temperatures and pre-
cipitation over northern Europe in winter and below-average temperatures and
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Fig. 1. Total Copepod abundance, bi-weekly sampling, 1988-2009; x-axis refers to years
and y-axis refers to the number of individuals per m3

precipitation across southern Europe. Opposite patterns of temperature and pre-
cipitation are observed during strong negative phases. The East Atlantic Pat-
tern (EA) is structurally similar to the NAO but the anomaly centers are dis-
placed southeastward with respect to the NAO. The positive phase of the EA
is associated with above-average surface temperatures in Europe, with above-
average precipitation over northern Europe and with below-average precipitation
across southern Europe. The East Atlantic/West Russia Pattern (EAWR) affects
the Eurasia continent where positive phases reflect below-average precipitation
across central Europe. The Scandinavian Pattern (SCA) is also considered as
one of the prominent indices of Eurasia. The positive phase is associated with
below-average temperatures over western Europe and above-average precipita-
tion across central and southern Europe, and below-average precipitation across
Scandinavia. The Northern Hemisphere Temperature (NHT) index is defined
as the combination of land and sea surface temperature anomalies [14] over
the northern hemisphere, while the Atlantic Multidecadal Oscillation (AMO)
describes long duration changes in the sea surface temperature of the North At-
lantic Ocean. The AMO affects air temperatures and rainfall over much of the
Northern Hemisphere, in particular, North America and Europe.

The time series presented in Table 1 refer to observed data with heterogeneous
dimensionality and magnitude. In order to allow the GP based procedure to
evolve the set of approximating functions, the data have been normalized and
smoothed. Let X = (x1, . . . , xN ) be a time series with time-indices 1, . . . , N ,
the normalization X = (x1, . . . , xN ) is obtained by dividing every element xi

by the element of X with maximum value: xi = xi

max(X) . The smoothing filter

reduces the noise from the time series replacing each value by its moving average
computed with a smoothing period of l neighbors: xi = 1

2l

∑k=i+l
k=i−l xk. In this

study l = 2.

2.2 Genetic Programming

The variables described above, will be utilized in a Symbolic Regression model
based on the GP approach. The GP procedure generates solutions starting from
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an initial population of randomly generated functions, then it improves the solu-
tions by miming the selection processes that occur naturally in biological systems
through Selection and the Crossover and Mutation genetic operators. The bi-
ological and physical time series, and the large scale climate indices are used
as training set for the GP model. The Pyevolve libraries have been used for
implementation [16].

The zooplankton dynamics are not necessarily linear and for this reason three
different sets of mathematical operators, able to capture three different degrees
of non-linearity, have been considered for the experiments:

S1 = {+,−, ∗, /∗}
S2 = {+,−, ∗, /∗, sqrt∗, log∗, sin, cos, tan, atan}
S3 = {+,−, ∗, /∗, sqrt∗, log∗, sin, cos, tan, atan,min,max, if − then− else}

where /∗, sqrt∗, log∗ operators correspond to protected division, protected square
root and protected logarithm respectively. The term protected indicates a restric-
tion on the mathematical operator such that /∗ returns 0 when a division by
0 is attempted, sqrt∗ returns 0 when a square root of a negative number is at-
tempted and log∗ returns a small number (10−100 in the performed experiments)
if a logarithm of a number ≤ 0 is attempted. S2 adds trigonometric, logarithmic
and square root operators to the basic set of mathematical operations in S1. S3

improves the non linear expressive potential of the approximating function by
adding min and max. These operators return the minimum and the maximum
between two values a and b. S3 also adds the if − then− else operators defined
as: if a > b then c else d or if a < b then c else d, whose semantics is if a is
greater than b then returns c else returns d, or if a is less than b then returns c
else returns d, respectively.

The fitness function that has been used for the evaluation of the individuals
is the Root Mean Squared Error (RMSE):

RMSE =
√

1
N

∑N
i=1(xi − x′

i)
2

(1)

where N is the number of values in the observed data and x and x′ are the
observed and the approximating values respectively.

Table 2 shows the GP parameters used in this study. This parameters have
been selected, after several experiments, to reduce the overfitting effects.

2.3 Training and Validation and Genotype Analysis

The data described in section 2.1 are used to train the GP model described in
Section 2.2. In particular, the variables of each individual are instantiated with
the values of the corresponding time series and the fitness value is returned.
On the other hand, time series have missing data and different begin-end dates.
To avoid that some variables could not be instantiated, the training set TS is
computed by intersecting all the time series, that is, by restricting all the time
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Table 2. The Genetic Programming parameters used in this work

variables sst, sal, mzp, chl, toc, ton, nao, ea, eawr, sca, pol, nht, amo

constants 0.0, 0.25, 0.5, 0.75, 1.0

initial population ramped half and half

individual max depth 4

population size 1000

max generations 100

selector method roulette wheel

crossover rate 0.9

mutation rate 0.02

elitism the best individual is copied to the next generation

scaled fitness linear scaling

termination criterion max generations ∨ raw fitness = 0.00

series to the same begin-end dates and to the time-indices whose value exists for
all the time series.

The training phase generates a set of functions corresponding to the indi-
viduals of the population that meet the termination criterion. Each generated
function is an approximation of the zooplankton time series. Three experiments
have been performed by using the three set of mathematical operators S1,S2,S3.
To reduce the probability that the approximation of the zooplankton time series
is obtained by chance, each experiment consisted of 100 runs of the training
phase, and at each run the best approximating function (smaller fitness value)
was selected. Moreover, in order to reduce the impact of the missing data on the
generated functions, only 75% of the training set time-indices has been randomly
sampled at each run.

Let ΦSi be the set of real valued functions obtained by performing the ex-
periments Si and let V be the set of variables listed in Table 1. Each function
fSi ∈ ΦSi can be expressed as fSi : v1 × · · · × vl → �, where vi ∈ V with
1 ≤ i ≤ l and l ≤ |V| is the number of variables occurring in fSi . According
to this definition the zooplankton abundance at the time t can be expressed
as z(t) = fSi(v1(t), . . . , vl(t)), where vi ∈ V and the time-index t is the t−th
element of the training set time series associated to vi, 1 ≤ i ≤ l.

The validation phase is aimed at identifying which set of mathematical oper-
ators is the most effective for approximating the zooplankton time series, while
the genotype of the elements in ΦSi is analyzed to identify the most relevant vari-
ables and the most persistent functional forms responsible for the zooplankton
dynamics.

Each function fSi ∈ ΦSi is validated singularly and the validation of the
experiment Si is obtained by averaging the validations of all the functions in
ΦSi . The validation set V S, for fSi , is obtained by intersecting all the time
series associated to the variables vi ∈ V occurring in fSi . Since the training set
is obtained by intersecting all the variables in V the set of time-indices of TS is
contained into the set of V S time-indices, thus the validation phase can be used
to estimate the predicting and generalization power of fSi .
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The genotype of the individuals belonging to ΦSi is analyzed in order to iden-
tify which variables are most relevant in the experiment Si. These variables
should be considered the ecological driver of the analyzed zooplankton commu-
nity. In the proposed approach, the relevancy of each variable v ∈ V is defined
as the number of functions that involves that variable with respect to the total
number of functions. Finally the functional forms that involve the most relevant
variables are analyzed in order to identify to which extent these variables con-
tribute to increase or reduce the population of zooplankton in the investigated
marine area.

3 Relevant Environmental Variables and Zooplankton
Abundance Prediction

As discussed in section 2.3, three experiments have been defined based on the
three set of mathematical operators S1,S2,S3. The goals of the experiments
are the identification of the most relevant environmental variables, the identi-
fication of the most effective mathematical operators needed for describing the
zooplankton dynamics and the validation of the predicting power of the learnt
approximating functions.

Three indicators have been defined to evaluate the approximating power of
the learnt functions, as proposed in [17]. The Root Mean Squared Error (RMSE)
defined in equation (1) indicates the average error of the approximation. The ac-
curacy of the learnt function to follow the trend of the observed data is indicated
by MISS, defined in equation (2):

MISS = 1
N−1

∑N
i=2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if Δxi > 0 ∧Δx′

i < 0
∨ Δxi < 0 ∧Δx′

i > 0
∨ Δxi = 0 ∧Δx′

i �= 0
∨ Δxi �= 0 ∧Δx′

i = 0
0 otherwise

(2)

where N = |ΦSi | is the number of functions in ΦSi , x and x′ are the observed
and the approximated values respectively and Δxi = xi − xi−1. The Average
Percentage Change (APC) indicating the magnitude of the incorrect prediction
with respect to the trend of the observed data is defined in equation (3):

APC = 1
N−1

∑N
i=2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|xi−xi−1|
xi−1

if Δxi > 0 ∧Δx′
i < 0

∨ Δxi < 0 ∧Δx′
i > 0

∨ Δxi = 0 ∧Δx′
i �= 0

∨ Δxi �= 0 ∧Δx′
i = 0

0 otherwise

(3)

where Δx is defined as for equation (2). The smaller the values of RMSE, MISS
and APC, the better is the approximation of the observed data.

Table 3 summarizes the approximation performance with respect to the three
set of mathematical operators Si and with respect to the training and validation
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Table 3. Summary of the generalization performance

training validation
t-indices RMSE MISS APC t-indices RMSE MISS APC

S1 44 0.103 0.259 0.070 109.19 0.170 0.358 0.050

S2 44 0.098 0.273 0.058 116.98 0.166 0.336 0.045

S3 44 0.107 0.236 0.068 111.98 0.153 0.324 0.038

phases. The columns t-indices represent the average number of time-indices of the
training and validation set, as described in secton 2.3, while the values reported
in the columns RMSE, MISS and APC are obtained by averaging the results of
the equations (1), (2) and (3) over all the functions fSi ∈ ΦSi , with 1 ≤ i ≤ 3.
The best generalization performance and predicting accuracy is provided by S3

and it is shown by the smallest values for RMSE, MISS and APC obtained during
the validation phase. It is also noteworthy that the number of time-indices used
to validate the functions are more than twice than the number of time-indices
used in the training phase.

To understand the mechanism governing the zooplankton variability it is note-
worthy to analyze the genotype of the individuals that belong to all three sets
of functions ΦSi . Figure 2 shows the relevance score of the variables described in
section 2.1 with respect to the three sets Si. The relevance of the variable v is
obtained as the ratio between the number of individuals fSi ∈ ΦSi that involve
v and the size of the population |ΦSi | (in this study |ΦSi | = 100). The variables
whose relevance fall between the two red lines have a probability to be generated
by chance 5%. Such probability has been computed according to the binomial
distribution

(
N
k

)
pk(1 − p)N−k, where N is the number of runs (N = 100 in this

study), k is the number of functions fSi in which the variable v occurs, and
p is the probability that v happens within a function. In this case p has been
considered uniform among the thirteen variables, that is p = 1

13 .

Fig. 2. Relevance of environmental variables discussed in section 2.1 with respect to
the set of mathematical operators S1,S2 and S3. The y-axis represents the relavance
score.
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Five variables, out of thirteen, should be considered relevant with respect to
the three sets of mathematical operators Si, namely the total organic carbon
(toc), the sea surface temperature (sst), the east Atlantic pattern (ea), the to-
tal organic nitrogen (ton) and the salinity (sal). As shown in Figure 2, these
variables obtain larger relevance score for all three experiments involving the
set of mathematical operators Si. The other variables rarely occur in the learnt
functions (low relevance score), have a non uniform behavior with respect to
the three sets Si and often have a probability to be selected by chance 5%. In
literature it is known that zooplankton dynamics depends mainly on sst [12]
while the influence of ea, toc, ton and sal has not yet been observed.

As shown in Table 4, the functions that involve only the five relevant variables
(and do not involve at all the eight irrelevant variables) are 44% in ΦS1 , 91%
in ΦS2 and 64% in ΦS3 . On the contrary, the functions that involve only irrel-
evant variables are 0% in all the three set of functions ΦSi . In ΦS2 , 94% of the
individuals involve only the operators sin, cos, tan, arctan,

√
and log, while the

same set of operators is involved in 47% of ΦS3 . The percentage of individuals of
ΦS3 that involve at least one among min,max and if − then− else is 52%, while
the same operators occur exclusively in only 6% of the individuals. These results

Table 4. Summary of the genotype analysis of the three set of individuals ΦSi

Genetic material ΦS1 ΦS2 ΦS3

only toc, sst, ea, ton, sal 44% 91% 64%

only mzp, chl, nao, eawr, sca, pol, nht, amo 0% 0% 0%

only sin, cos, tan, arctan,
√

, log - 94% 47%

also min,max, if − then− else - - 52%

only min,max, if − then− else - - 6%

characterize the genotype of the populations resulting from the GP approach
presented in section 2.2. Although the approach proposed for the identification
of the relevance may be affected by introns, these results confirm the relevance
of the variables shown in Figure 2. The most persistent mathematical operators
are those of S2 and S3 as confirmed by ΦS2 and ΦS3 genotypes.

Table 3 indicates that the individuals of ΦS3 generalizes better than the in-
dividuals of ΦS2 and ΦS1 , while the genotype analysis of all individuals, shown
in Table 4, suggest that the generalization performance of f ∈ ΦS3 is obtained
by introducing strong non linear operators like min,max and if − then − else.
The persistence of the trigonometric operators suggests the cyclic dynamics of
the zooplankton community with respect to the environmental variables investi-
gated. From the genotype analysis of ΦS2 it has been observed that zooplankton
abundance increase as toc, sst, ton and sal increase. Moreover, 31 individuals out
of 34, in ΦS2 , involve the variable ea as part of the denominator or as argument of
the cos function. This means that zooplankton abundance increases as ea tends
to 0 and decrease otherwise. Similar behavior has been observed also for the in-
dividuals of ΦS3 that do not involve the if− than−else operator. The equations
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(4) and (5) are two examples from ΦS2 and ΦS3 that involve only relevant vari-
ables. In both the equations the zooplankton abundance z is proportional to toc
and sst. Moreover, in eq. (4), large values of |ea| make z decrease, and in eq. (5),
z increase slower for large values of ea (toc < ea), indeed cos(cos(toc)) ≥ 0.54,
where toc ∈ [0, 1] and ea ∈ [−1, 1].

z(toc, sst, ea) = cos(ea) ∗ sst ∗
√
arctan(toc) (4)

z(toc, sst, ea) =

{
0.54 ∗max(sin(sst), toc) if toc < ea
cos(cos(toc)) ∗max(sin(sst), toc) otherwise

(5)

The predicting power of the two individuals is summarized in Table 5.

Table 5. Summary of the approximating power of the individuals represented by
equations (4) and (5)

training validation
t-indices RMSE MISS APC t-indices RMSE MISS APC

eq. (4) 44 0.083 0.209 0.016 118 0.145 0.282 0.025

eq. (5) 44 0.098 0.116 0.026 118 0.140 0.299 0.027

a)

b)

Fig. 3. Approximation of the copepods time-series; a) using the equation (4), b) using
the equation (5)

Figure 3 shows the diagrams corresponding to the two individuals represented
in the equations (4) and (5). The two individuals have been generated with a
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training set whose time series have 44 time-indices, and validated with a vali-
dation set consisting of 118 time-indices. These two individuals exemplify the
prediction accuracy provided by the relevant variables shown in Figure 2 and by
the mathematical operators of S2 and S3. Most of the individuals f ∈ ΦSi are
not able to provide a good approximation of the zooplankton abundance in the
period around 1996. This lack of approximation may depend on the gaps in the
observed time-series and/or on some environmental variable not considered in
this study.

4 Conclusion and Future Work

This work has utilized the copepods time series from the station L4 in the West-
ern English Channel, to investigate decadal zooplankton variability with a novel
methodology. The Genetic Programming approach has been used to express the
copepods variability as function of several environmental variables, involving
both large scale climate indices, and local physical and biological parameters.
From the genotype analysis of the evolved functions emerges that total organic
carbon (toc), sea surface temperature (sst), East Atlantic pattern (EA), salin-
ity (sal) and total organic nitrogen (ton) are the most relevant parameters that
drive the copepods variability in this area. In particular it has been noted that
the copepod variability is subject to strong non linear dynamics that increases
when toc, sst, sal and ton increase and |ea| tends to 0, and decreases otherwise.
The dependence of the zooplankton dynamics from the previous environmental
variables has not been observed in the literature and sheds an important and
original insight in the mechanisms governing the zooplankton variability. As fu-
ture work, the dynamics of other species of zooplankton from the same site,
will be investigated and compared to the total copepod dynamics. Moreover the
approximating capabilities of the Genetic Programming will be compared with
other approaches based on multivariate regression, as for example the multi-
variate least square fitting and the Support Vector Regression (SVR) machine.
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Abstract. Understanding disease-related metabolite interactions is
a key issue in computational biology. We apply a modified Bayesian
Optimization Algorithm to targeted metabolomics data from plasma
samples of insulin-sensitive and -resistant subjects both suffering from
non-alcoholic fatty liver disease. In addition to improving the classifica-
tion accuracy by selecting relevant features, we extract the information
that led to their selection and reconstruct networks from detected fea-
ture dependencies. We compare the influence of a variety of classifiers
and different scoring metrics and examine whether the reconstructed net-
works represent physiological metabolite interconnections. We find that
the presented method is capable of significantly improving the classifi-
cation accuracy of otherwise hardly classifiable metabolomics data and
that the detected metabolite dependencies can be mapped to physiologi-
cal pathways, which in turn were affirmed by literature from the domain.

1 Introduction

1.1 Background

Many diseases are the result of complex sequences of biochemical reactions
involving several different metabolites. A central issue in the computational re-
search field is understanding the biochemical interaction between various metabo-
lites and the reconstruction of metabolic dependencies from metabolite patterns
[16]. Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease, which
is known to be associated with insulin resistance, but can also be detected in
insulin-sensitive subjects. Insulin-resistant individuals with NAFLD have a very
high risk of developing type 2 diabetes (T2D) at an early stage whereas insulin-
sensitive people with NAFLD are less likely to develop T2D [22,26]. In this work,
we apply a method to select feature subsets that are relevant for the discrimi-
nation of samples from insulin-sensitive and -resistant individuals with NAFLD.
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In parallel, we extract the information utilized by the method in order to gain
insight into feature dependencies, which in this case correspond to interconnec-
tions between metabolites. In this way we try to improve the understanding of
metabolic alterations that contribute to the development of T2D.

The young discipline of metabolomics has received increased attention in recent
years. It measures small molecules contained in cells, tissues, or fluids involved
in metabolism to reveal information about physiological processes. These mea-
surements give a useful metabolic signature that represents normal biological pro-
cesses, pathogenic processes, or responses to a therapeutic intervention [1].

Modern high-throughput techniques produce datasets that stand up to statis-
tical scrutiny. This provides the opportunity to mine the generated data using
statistical methods. The extraction of biologically relevant information and the
reduction of factors such as noise, redundancy and dimensionality are central
objectives of bioinformatics techniques. It has been shown that the classification
accuracy of machine learning algorithms is not monotonic with respect to the ad-
dition of features, which in a targeted metabolomics approach, reflect calculated
concentrations of predefined metabolites. Irrelevant or redundant features may
degrade the predictive accuracy of the classification model. Feature selection is
therefore focused on identifying and removing as much irrelevant or redundant
information as possible [18].

Finding possible feature sets is a combinatorial optimization problem. This
problem is generally NP-hard, as the space of feature subsets grows exponentially
with the number of features. Techniques for feature selection can be organized
into filter and wrapper methods. Filter methods, in most cases, compute a feature
relevance score and discard low scoring features. The remaining subset of features
serves as input to a classification algorithm. Filter techniques easily scale to very
high-dimensional datasets, are computationally fast and are independent of the
classification algorithm. A common disadvantage of filter methods is that most
proposed techniques are univariate; i.e., each feature is considered separately,
ignoring feature dependencies [24].

Wrapper methods search the feature subset space for the best subset. An
individual in the search space is represented by a bitstring, each bit indicat-
ing whether a feature is present or absent. A classification algorithm is trained
and the classification performance serves as an evaluation criterion for candi-
date feature subsets. In this manner, the search algorithm wraps around the
classification model. Advantages of wrapper approaches include the interaction
between feature subset search and model selection and the ability to take feature
dependencies into account.

As randomized, evolutionary and population-based search algorithms, Genetic
Algorithms (GAs) have been shown to be a good choice for finding small feature
subsets with high discriminatory power [27]. GAs implicitly manipulate partial
solutions of a problem, so called building blocks, by mechanisms of selection and
recombination. They reproduce and mix building blocks without using informa-
tion about dependencies among the related features. Recombination operators
often break partial solutions, which can sometimes lead to losing them [12].
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Estimation of Distribution Algorithms (EDAs) are a type of evolutionary algo-
rithms that replace typical genetic operators with building a probabilistic model
from promising solutions which encodes the dependencies among the variables
of the problem. This model is an important source of information that can be
exploited to assist in a better understanding of the underlying structure of the
problem. The Bayesian Optimization Algorithm (BOA) uses a Bayesian Network
(BN) to estimate the joint distribution of promising solutions and then samples
new individuals from the BN [21]. Each node in the BN represents a feature
and has two possible states (indicating absence or presence of the feature). The
evolution of solutions is guaranteed by the factorization of the probability dis-
tribution of best individuals in each generation of the search. For this work,
we apply a modified BOA. In addition to the selected features, we extract the
probabilistic information that led to their selection.

1.2 State of the Art

As described in [24], wrapper methods using population-based search strategies
have successfully been applied to a variety of tasks in bioinformatics. When the
size of the problem allows for the application of the wrapper approach, several
works have noted its superiority in terms of predictive accuracy [6]. In [12], an
algorithm for feature subset selection by BN-based optimization was demon-
strated to filter irrelevant and redundant features from artificial data sets and
to achieve dimensionality reduction and improvement of classification accuracy
in real data sets. Earlier studies demonstrated that wrapper approaches are ca-
pable of selecting sets of highly discriminative metabolite features as biomarker
candidates [8].

For the automated inference of metabolite dependencies, some traditional ap-
proaches such as measuring correlation coefficients have been used, but nonlinear
dependencies or dependencies among multiple features constitute a challenging
problem. Relief is a feature weight-based algorithm [14]. Given training datasets,
it detects those features that are statistically relevant to the target concept. The
central mechanism of the Correlation-Based Feature Selection algorithm [10] is
a heuristic that evaluates the value of subset features using average feature-class
correlations and average feature-feature inter-correlations. Nicholson et.al. [2]
show that metabolic data can be used to derive probabilistic graphical models
of metabolite dependencies, and in [16], Suhre et. al. demonstrate that densely
connected subgraphs in Gaussian graphical models can be attributed to known
reactions in the human fatty acid metabolism. They showed that metabolite
profiles can capture metabolic pathways.

2 Methods

We implemented BOA as described in [21] and made it available as part of
the EvA2 framework [15]. EvA2 is a comprehensive metaheuristic optimization
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framework with emphasis on Evolutionary Algorithms (EA) written in JavaTM.
To perform feature selection, we created a modular Java software environment
which integrates EvA2 and classification algorithms provided in WEKA [9].

2.1 The Bayesian Optimization Algorithm

As described in [21], the first population of solutions in BOA is generated ran-
domly with a uniform distribution over the space of all possible solutions. Each
individual in the population is then evaluated by a classification algorithm and a
set of promising solutions is selected. Following the suggestion in [21], we apply
a range-based approach selecting the best N/2 from the N individuals of the
population. If the number of selected solutions is close to N , the populations
will not evolve very much from generation to generation. On the other hand,
a low number will lead to low diversity. The selected set is used for building a
BN. After the network is built, it is used to generate new candidate solutions.
Finally, the new solutions are incorporated into the population after removing
the least promising ones. We halt the algorithm after the completion of 30,000
executions of the evaluation function.

Bayesian networks (BNs). BNs are graphical models that can represent con-
ditional probabilities among multiple variables of a problem. A BN has two
components: structure and parameters. The structure is a directed acyclic graph
(DAG), in which each node represents a variable of the underlying problem and
the edges between nodes represent probabilistic dependencies among the vari-
ables. Parameters are the conditional probabilities computed for each of the
variables according to the different value combinations of their parents. A BN
can be used to generate new instances with similar properties as those of given
data. [3].

Network construction. Finding the best network for a problem requires esti-
mating the graph topology and its parameters. The goal is to learn a BN that
best explains the given training data [3]. As it was shown in [4], this task is
NP-complete. Learning the network structure requires a search procedure and
scoring metric. The search procedure explores the space of all possible networks
to find the one that maximizes the scoring metric. For reasons of computational
feasibility, we reduce the space of networks by restricting the number of incoming
edges into each node to three.

A greedy algorithm is used to find the best network. It starts with an empty
network, and in each step, adds the edge that maximally increases the metric
score while maintaining an acyclic topology. The algorithm stops when no further
improvements in the network score are possible. Networks constructed in this way
are not guaranteed to be the optimum representation of the underlying data, but
encode the probability distribution of promising solutions to a reasonable extent.
Methods that construct the exact optimum network for a problem entail huge
computational requirements and are therefore only suitable for small problem
sizes [7].
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To discriminate between different networks, a scoring metric is needed to mea-
sure how well the BN models the data. From the class of Bayesian metrics, we
select the frequently used Bayesian-Dirichlet metric (BDM) [20]:

p(D,B|ξ) = p(B|ξ)
n∏

i=1

∏
πxi

Γ (m′(πXi))

Γ (m′(πXi) +m(πXi))
·
∏
xi

Γ (m′(xi, πXi) +m(xi, πXi))

Γ (m′(xi, πXi))

Here

– Γ represents the Gamma function: for integers Γ (x) = (x− 1)!
– p(B|ξ) is the initial probability of the network B given optional prior infor-

mation ξ
– m(πXi) is the number of instances in the data D where the parent nodes of

the ith bit are set to πXi

– m′(πXi ) denotes optional prior information about the number of instances
where the parent nodes of the ith bit are set to πXi

– m(xi, πXi) is the number of instances in D that have their ith bit set to xi

and their parent nodes set to πXi

– m′(xi, πXi) denotes optional prior information about the number of instances
that have their ith bit set to xi and their parent nodes set to πXi .

When we assume no prior information about the number of instances with a
special configuration for their variables,m′(xi, πXi) can be set to 1 for all possible
values. The resulting version of the BDM is known as K2, which is the second
metric we consider in this work.

From the class of minimum description length metrics, we use the Bayesian
Information Criterion (BIC):

BIC(B) =

n∑
i=1

⎛⎝∑
πXi

(∑
xi

(m(xi, πXi) log(m(xi, πXi))) −m(πXi) log(m(πXi))

)

− 1

2
log(N)|xi| |πXi |

)
BIC tries to prevent the models from overfitting to the given data by using
the penalization term 1

2 log(n)|xi| |πXi |. This term increases with the model
complexity and therefore favors networks with fewer parameters.

Generating new candidate solutions. When the construction of the BN is com-
plete, new individuals are generated from the network. First, for each variable,
the conditional probabilities of each possible instance given all possible instances
of its parents are computed. A well-defined ordering of the nodes into parents and
children is guaranteed to exist due to the acyclic topology. Traversing through
the network, each bit in a new instance is then set according to the conditional
probability of the corresponding node. This procedure is repeated until N/2 new
instances are created.



Inferring Disease-Related Metabolite Dependencies with a BOA 67

Modified BOA. To track the feature dependencies during the optimization pro-
cess, we modified the BOA procedure. In our implementation, the BNs, which are
derived from the most promising solutions in each generation, are extracted and
stored. After termination of the algorithm, we compute the relative frequency
for every edge that was ever established during the optimization procedure. The
idea is that dependencies between strongly connected features are detected in
many iterations of the algorithm. Hence, edges that connect such features are fre-
quently established. A ranking of all edges is obtained by sorting them according
to their relative frequency.

We carried out this ranking procedure for every combination of classifier and
metric and performed five repetitions resulting in five edge-rankings for each
combination. To achieve a measure of reproducibility, we computed Kendall’s
coefficient of concordance (Kendall’s W ) between these five rankings. Kendall’s
W is a descriptive statistic indicating the strength of the agreement among the
the rankings. If W is 1, all the rankings are concordant; i.e., each edge received
the same rank in each of the five repetitions. If W is 0, then there is no overall
trend of agreement and the rankings may be regarded as random.

Classifiers. From WEKA, we applied different classifier types:

– k-nearest-neighbor (kNN): an instance-based learner, which compares each
new instance to existing ones using a distance metric

– K*NN: another instance-based method with an entropic distance measure [5]
– Naive Bayes: a classifier-based on Bayes’ formula for conditional probabilities
– J4.8 decision tree: a reimplementation of the C4.5 decision tree, which has

been shown to have a very good combination of error rate and speed [17]
– Random Forest: a metalearner that bags ensembles of random trees
– Linear SVM: a maximum-margin-based classifier, which we chose due to its

amenities concerning interpretability compared to nonlinear models [25]

We want our selected features to be interpretable by a domain expert. Hence, we
focused on classification methods that allow conclusions to be drawn about the
involved features. The modular structure of our software environment allows us
to combine the modified BOA search procedure with an arbitrary classification
method and thereby examine the compatibility of the different classifier types
with BOA and their impact on the results.

For the evaluation of each feature subset, we perform a stratified nested cross
validation. The optimal parameter combination is determined in an inner loop
within a two-fold cross-validation. The performance of the selected parameters
is then evaluated in an outer loop using three-fold cross-validation according to
the area under the receiver operating characteristic curve (AUC). We carry out
this validation scheme five times to avoid bias induced by the random number
generator and then compute the average AUC.

2.2 Experimental Design

Plasma samples of 40 adults with NAFLD (20 insulin-sensitive and 20 -resistant
subjects) were analyzed by a targeted metabolomics approach. All individuals
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were intensively phenotyped as part of the Tübingen Lifestyle Intervention Pro-
gram (TULIP) and considered healthy according to physical examination and
routine laboratory tests.

Biocrates (Innsbruck, Austria) measured the concentrations of 247 compounds
in EDTA-plasma by targeted IDQ. This targeted metabolomics analytical plat-
form combines flow injection, liquid chromatography, and gas chromatography
mass spectromectric approaches. We consider a measured concentration to be
reliable if it exceeds a signal-to-noise ratio of three. To ensure validity we only
consider metabolites that contained at least 70% reliable measurements. This
restriction excludes 69 metabolites from the data set, leaving 178 compounds for
the data analyses (amino acids, acylcarnitines, bile acids, free fatty acids, sph-
ingomyelins, phosphatidylcholines and lysophosphatidylcholines). For the com-
putational analyses the data is mean centered and scaled to unit variance.

We apply each of the classifiers and metrics introduced in Sec. 2.1 in the
modified BOA. In addition to improving the classification accuracy of insulin-
sensitive and -resistant subjects with NAFLD we reconstruct networks from the
detected feature dependencies and examine whether they represent physiological
metabolite interconnections.

3 Results and Discussion

3.1 Classification Accuracy

The first question we addressed is whether BOA can enhance the classification
performance when it is used as wrapper in a feature selection approach. Fig. 1
(a) displays the classification performances of the applied classifiers. It shows
the distribution of average AUCs that all classifiers achieved when applied to
the best feature set selected by BOA and the distribution of average AUCs all
classifiers achieved when applied to the complete data set (NoFS).

Fig. 1 (a) demonstrates that classification performances without feature sub-
set selection are close to an AUC of 0.5 and were significantly improved by BOA,
indicating that it is capable of selecting discriminatory feature subsets. The most
discriminative subset yields an average AUC of 0.93 and was selected using the
K*NN classifier and the BDM for network construction. Further, the weakest dis-
criminative power with an average AUC of 0.70 is revealed by a feature subset
also selected using the BDM. The classifier, in this case, is the Random Forest.
By further investigating the results from individual classifiers and metrics, we
address the following questions: Do the applied classifiers differ in their perfor-
mance and does the metric used in constructing the BN impact the achieved
classification accuracy?

In Fig. 1 (b) we compare the different classifiers. Each box denotes the distri-
bution of average AUCs across all results that were achieved using the respec-
tive classifier. K*NN and Naive Bayes yield the highest classification accuracies,
followed by the k-nearest-neighbor learner and the linear SVM. The results ob-
tained by the decision tree and the Random Forest are comparable to each other,
but considerably worse than the other classifiers.
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Fig. 1. Comparison of the classification performances (a) before and after feature sub-
set selection; (b) of the applied classifiers; (c) using different scoring metrics

Fig. 1 (c) displays a comparison of the results that were obtained using the
different scoring metrics. It shows the distributions of average AUCs all classifiers
achieved when the respective metric was applied. No considerable difference can
be observed between these results. For each metric, the distribution covers the
complete range of classification accuracies that are obtained by the different
classifiers. These results indicate that the choice of a scoring metric does not
measurably influence the level of predictive accuracy that can be achieved by
BOA-based feature subset selection.

3.2 Reproducibility of Edges

As described in section 2.1, for each combination of metric and classifier, we
determined Kendall’s W between rankings of edges based on their relative fre-
quency during five repetitions of the optimization process. The results of that
examination are presented in Fig. 2.

Each box in Fig. 2 (a) summarizes the distribution for a fixed classifier while
varying the scoring metrics. The Random Forest classifier achieves the best re-
sults in this respect yielding a maximum W of 0.53 in combination with the
BDM. With regard to the best achieved value, it is followed by K*NN and the
Naive Bayes classifiers. However, it must be stated that the differences between
the individual classifiers are not significant.

Similarly, each box in 2 (b) represents the distribution of W for a fixed metric
while varying classifiers. The results show that the BDM performs considerably
better than the K2 metric and both of them perform significantly better than
the BIC. The multiruns in which BDM was used show a median W of 0.48,
which indicates a reasonable degree of agreement.

These results demonstrate that the choice of the scoring metric has an impact
on the reproducibility of the edges in the BNs that are generated during the
optimization process. In contrast, the reproducibility is not strongly affected by
the choice of the classifier.
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Fig. 2. Kendall’s coefficient of concordance between the edge rankings using (a) the
applied classifiers and (b) the different metrics

3.3 Networks of Dependent Metabolites

In the following, we reconstructed networks of metabolites that are connected
by the most relevant edges arising from the above described results. Based on
our findings in Sec. 3.1 and 3.2, we used edges that were generated using the
K*NN and the Naive Bayes classifiers for the network reconstruction as these
yielded the most accurate classifications. Due to its superiority regarding edge
reproducibility, we chose the BDM as the scoring metric.

To extract the most relevant edges, we first discarded those that were estab-
lished in less than 4 out of the 5 repetitions. For each of the remaining edges we
computed the mean of its relative frequencies during the optimization process
and created a ranking. For the network reconstruction we selected the top 5%
from that ranking.

In this way, we reconstructed two networks: one from the results using the
K*NN classifier and one from the results using Naive Bayes. The one created
using K*NN includes 78 metabolites in total, grouped by the edges to form 20
separate components of different sizes: 11 components of size 2, 5 components of
size 3, 3 components of size 4 and one major component including 29 metabolites.
The network constructed using Naive Bayes includes 79 metabolites, grouped to
19 components: 8 components of size 2, 2 components of size 3, 5 components
of size 4, 1 component of size 5, 2 components of size 6 and again one major
component of size 20.

3.4 Physiological Interpretation

To assess whether the reconstructed networks reflect physiological metabolite in-
terconnections, we performed an automated lookup in the KEGG database [13].
For each connected component, we looked up the contained metabolites and the
human metabolic pathways they are involved in. Then, for each pathway, we
counted the number of metabolites it shares with the considered connected com-
ponent as a test statistic. As a baseline, we then constructed 100 sets of metabo-
lites of the same size as the considered network component, each of which was
selected randomly from our data set. These yielded an empirical distribution of
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Table 1. Significant overlaps between network components and metabolic pathways

p-value in component
Pathway NB20 NB6a NB6b K*NN29

Linoleic acid metabolism 0.01 0.77 0.50 0.52
Valine, leucine and isoleucine biosynthesis 1 0.03 1 1
Sphingolipid metabolism 1 1 1 0.03
Glycerophospholipid metabolism 0.04 0.81 0.55 0.21
alpha-Linolenic acid metabolism 0.04 0.74 0.48 0.46
Arachidonic acid metabolism 0.05 0.74 0.48 0.47

test statistics for which the null hypothesis is true; i.e., the observed intersection
between pathway and network component was achieved by random selection of
metabolites. The intersection obtained from the reconstructed network compo-
nent is then compared with this empirical distribution to assess significance.
For the pathways that exceeded the significance threshold of 0.05, the p-values
are given in Tab. 1. The term NB20 in the table denotes the component of
cardinality 20 in the network that was reconstructed using Naive Bayes. NB6a
and NB6b encode components of size 6 within the same network. Analogously,
K*NN29 denotes the component of size 29 in the network established using the
K*NN classifier. We only applied the significance testing to network components
of a minimal cardinality of 6 as no meaningful significance can be expected for
smaller numbers of metabolites.

Tab. 1 displays that three out of the four tested connected components show
significant overlap with one or more pathways. Interestingly the detected path-
ways are referred to in the literature with regard to their role in T2D and
NAFLD. The linoleic acid, glycerophospholipid, alpha-linolenic acid and arachi-
donic acid metabolism, which show significant overlap with the NB20 component
are discussed in [23]. The sphingolipid metabolism, which exhibits significant
overlap with the K*NN29, component is also addressed by the authors. The
component NB6a significantly overlaps with the valine, leucine and isoleucine
biosynthesis. These branched-chain amino acids were also found by Newgard et.
al. in [11] and [19] to be strongly associated with insulin sensitivity and may
contribute to the development of insulin resistance and diabetes.

4 Conclusions

Our results demonstrate that feature subset selection using BOA is capable of
significantly improving the classification accuracy of otherwise hardly classifi-
able metabolomics data. Using this approach, the choice of the applied clas-
sification algorithm strongly influences the results regarding classification per-
formance. Additionally, the feature dependency information extracted by the
modified BOA provides automated identification of metabolite interconnections.
With respect to reproducibility, the choice of the scoring metric used in the
network construction phase of BOA was shown to be important. The detected
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metabolite dependencies can be mapped to physiological pathways which in turn
were confirmed by literature from the domain of NAFLD and T2D research. The
results suggest that the presented approach could also be used to generate hy-
potheses on metabolite interactions that are not yet known to play a role in
disease processes.

Acknowledgements. This investigation was supported in parts by the Kompe-
tenznetz Diabetes mellitus (Competence Network for Diabetes mellitus) funded
by the Federal Ministry of Education and Research (FKZ 01GI0803-04) and
a grant from the German Federal Ministry of Education and Research to the
German Center for Diabetes Research (DZD eV).

References

1. Atkinson, A., Colburn, W., DeGruttola, V., DeMets, D., Downing, G., Hoth, D.,
Oates, J., Peck, C., Schooley, R., Spilker, B., et al.: Biomarkers and surrogate
endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology
& Therapeutics 69(3), 89–95 (2001)

2. Bang, J., Crockford, D., Holmes, E., Pazos, F., Sternberg, M., Muggleton, S.,
Nicholson, J.: Integrative top-down system metabolic modeling in experimental
disease states via data-driven Bayesian methods. The Journal of Proteome Re-
search 7(2), 497–503 (2008)

3. Ben-Gal, I.: Bayesian networks. Encyclopedia of Statistics in Quality and Reliabil-
ity (2007)

4. Chickering, D.: Learning Bayesian networks is NP-complete. Learning from data:
Artificial intelligence and statistics 112, 121–130 (1996)

5. Cleary, J., Trigg, L.: K*: An Instance-based Learner Using an Entropic Distance
Measure. In: Proceedings of the 12th International Conference on Machine Learn-
ing, pp. 108–114 (1995)

6. Doak, J.: An evaluation of feature-selection methods and their application to com-
puter security (Technical Report CSE-92-18). Davis: University of California, De-
partment of Computer Science (1992)

7. Echegoyen, C., Lozano, J., Santana, R., Larranaga, P.: Exact Bayesian network
learning in estimation of distribution algorithms. In: IEEE Congress on Evolution-
ary Computation, CEC 2007, pp. 1051–1058. IEEE (2007)
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Abstract. Parameter estimation (PE) of biological systems is one of the most
challenging problems in Systems Biology. Here we present a PE method that in-
tegrates particle swarm optimization (PSO) to estimate the value of kinetic con-
stants, and a stochastic simulation algorithm to reconstruct the dynamics of the
system. The fitness of candidate solutions, corresponding to vectors of reaction
constants, is defined as the point-to-point distance between a simulated dynamics
and a set of experimental measures, carried out using discrete-time sampling and
various initial conditions. A multi-swarm PSO topology with different modalities
of particles migration is used to account for the different laboratory conditions
in which the experimental data are usually sampled. The whole method has been
specifically designed and entirely executed on the GPU to provide a reduction of
computational costs. We show the effectiveness of our method and discuss its per-
formances on an enzymatic kinetics and a prokaryotic gene expression network.

1 Introduction

The emerging research area of Systems Biology aims at a better understanding of the
dynamics of living cells in a quantitative way, by exploiting a synergistic integration
between in silico analysis and wet experiments. In this context, a general limit to the
effectiveness of computational modeling is the availability of physical parameters (e.g.
reaction rates), which have a pivotal meaning in the regulation of biological systems,
but that are usually hard or even impossible to measure. The problem of parameter es-
timation (PE) consists in the indirect determination of these unknown kinetic values, by
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exploiting the experimental data related to other quantities that can instead be measured
by standard laboratory protocols (e.g. the abundance of some chemical species). Many
methods for PE have been proposed, that rely either on some approximation strategy
(see [3] and references therein) or to global optimization methods [10]. Following the
latter line of research, in [1] we showed that particle swarm optimization (PSO) can
outperform genetic algorithms for PE; indeed, this is an example of a dynamic opti-
mization problem for which PSO can be efficiently applied [7].

PSO is a bio-inspired global optimization algorithm suitable for problems whose
solutions are encoded as real-valued vectors [8]. PSO makes use of a population (the
swarm) of candidate solutions (the particles), which are iteratively improved with re-
spect to a fitness function. Each particle is identified by a position in the search space,
and a velocity, that is used to update the current position of the particle at each iteration.
The velocity, which is clamped to a maximum speed, changes according to two attrac-
tors: the (local) best position found by the particle itself, and the (global) best position
found by any particle in the swarm. The influence of the attractors is weighted by ran-
dom numbers, by cognitive and social factors to prevent the premature convergence to
local minima, and by an inertia weight to avoid chaotic behaviors of the swarm.

In this work, we present a PSO-based method for PE that exploits the outcome of
Gillespie’s stochastic simulation algorithm (SSA) [5] to evaluate the fitness function.
More precisely, the fitness is defined as the point-to-point distance between the mea-
surements of the amount of some biochemical species, sampled during an experiment,
and a simulated dynamics generated by SSA. In particular, one of the main novelties of
our method in the context of PE is that it takes into account the quite common scenario
of laboratory research, where multiple experiments are carried out starting from differ-
ent initial conditions. Namely, our method is developed to deal with experimental data
that consist of discrete-time temporal series of molecular species amounts, that are re-
peated a certain number of times. With respect to the approach previously presented in
[1], this work considers a more realistic experimental target to perform the optimization,
and a simplified definition of the fitness function to reduce the computational burden.

In this context, in order to estimate a common set of parameters able to reproduce
the correct system dynamics in all conditions, we make use of a multi-swarm version
of PSO where each swarm is assigned to a specific initial condition. Our method re-
sembles the island-model of Evolutionary Computation [12], where a population of
candidate solutions is partitioned into a set of disjoint sub-populations which evolve
independently but interact by means of periodic migrations. In PSO terms, each sub-
population corresponds to a swarm and the migration process is defined as the move-
ment of particles between swarms. In this setting, a particle belonging to a particular
swarm evaluates its own fitness by comparing the simulated dynamics with the experi-
mental measures observed in that initial condition; then, to let the swarms cooperate, the
global best particle of each swarm migrates toward another swarm at regular intervals of
iterations, thus sharing the local estimates of the parameters values. Indeed, it is reason-
able and biologically plausible to assume that there exists a common set of parameters
that can simultaneously fit all the measures in all initial conditions, provided that the
functioning of the biological system does not change in the chosen experimental set-
tings, as it is presumed in the formulation of our problem. Finally, we have developed an
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original implementation in CUDA of our multi-swarm PSO method embedding SSA,
which is executed on general-purpose GPU (GPGPU) parallel architectures to provide
a reduction of computational costs.

2 Parameter Estimation of Stochastic Biological Systems

In this section we propose a solution to the problem of PE for models of biological
systems, defined according to the stochastic formulation of chemical kinetics [5]. We
provide a formalization of the modeling framework and describe the type of experimen-
tal data that are assumed to be available as target for the estimation process. Then, we
define a proper fitness function for this problem and explain the multi-swarm structure
of PSO that will be exploited for PE in this context.

2.1 Formalization of the Problem

A stochastic model for a biological system can be defined by specifying the set S =
{S1, . . . , SN} of its molecular species, and a set R = {R1, . . . , RM} of biochemical
reactions which describe the interaction among the species [5]. Each reaction Rμ, μ =
1, . . . , M , is characterized by a stochastic kinetic constant cμ ∈ R

+ (given in time−1),
a value that encompasses the physical and chemical properties of the reaction and that
is generally hard or even impossible to measure experimentally. In the following, we
assume that we have a complete knowledge of the sets S and R, of the molecular
amounts of the species initially present in the system, but no knowledge of the vector
γc = (c1, . . . , cM ), whose components need to be estimated. The estimation process
will be performed by relying on the following data:

– The system is analyzed under D different initial conditions, for some D ≥ 1, that
correspond to distinct experimental settings the system is exposed to, such as some
chemical or environmental perturbation. In what follows we assume that different
conditions are characterized by distinct initial amounts of some species in S.

– For each initial condition, the experiment is repeated E times, for some E ≥ 1
(usually, E = 3 in real laboratory experiments). This allows to account for the
experimental errors in the measurement procedures, as well as for the variability of
the system response that is due to the intrinsic biological noise.

– For each initial condition and for each replicate, the molecular amounts of a set
S′ ⊆ S of molecular species are measured by means of standard laboratory tech-
nologies, where S′ = {S1, . . . , SK}, for some K ≤ N . Usually, N is in the order
of tens, while K in the order of a few units for real systems.

– For each initial condition, for each replicate and for each species in S′, the ex-
perimental measures are carried out at (a finite set of) time points t1, . . . , tF , not
necessarily sampled at regular intervals along the time course of the experiment.

We denote by Y d,e
k (tf ) the amount of species Sk ∈ S′ measured at time tf in the

replicate e of initial condition d, where k = 1, . . . , K , f = 1, . . . , F , e = 1, . . . , E,
d = 1, . . . , D. From now on, this set of measures will be called discrete-time target
series (DTTS). Figure 1 (left side) shows an example of DTTS, with three replicates of
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the measurements of some species Sk in a fixed experimental condition d. For simplic-
ity, we assume that Y d,e

k (tf ) ∈ N, that is, it corresponds to the number of molecules of
species Sk occurring in the system at time tf . This is not restrictive, since a straightfor-
ward transformation of real-valued concentrations into a corresponding discrete number
of molecules might be done as described, e.g., in [5].

t1
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t

*

...

e1
e2
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x

o o
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o
* *

*

*
x x

x
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Ykd,e(tf)
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o

Xk ( i)
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Fig. 1. (Left) Different discrete-time target series for species Sk in the experimental condition d,
corresponding to three replicates e1, e2, e3 of the same experiment. (Right) Identification of the
amount of Sk, at the target time point tf , exploiting an execution of SSA with parameters γ .

In order to estimate the vector γc of reaction constants, we proceed by comparing
two quantities: (i) the experimental DTTS of every Sk ∈ S′, (ii) the molecular amounts
of the same species Sk determined by executing in silico simulations of the dynamics
of the stochastic model, which return the variation of the amounts of these species in
time. To this aim, in this paper we exploit the stochastic simulation algorithm (SSA) [5],
a seminal procedure used for reproducing the exact dynamics of biochemical systems,
under the assumption that reactions take place inside a single volume where molecules
are uniformly distributed. Given the state of the system at some time instant – that is,
the set of molecular amounts of all the species in S – and a vector γ = (γ1, . . . , γM )
of stochastic constants associated to the reactions in R, SSA can simulate a correct
dynamics of the system by computing, during each iteration, the length τ of the time
interval required for the execution of a single reaction Rμ, μ = 1, . . . , M . So doing,
SSA determines a set of consecutive time instants τ0, . . . , τmax – where τ0 and τmax

are the fixed initial and last instants of the simulation – such that at the end of each step
of length τ , with τ0 ≤ τ ≤ τmax, the state of the system is instantly updated by deleting
(adding, respectively) the molecules that appear as reagents (products, respectively) in
reaction Rμ. The values of τ and μ are calculated by exploiting the propensity functions
of the reactions [5], which are pseudo-probabilities computed step by step for each
reaction Rμ by considering its stochastic constant cμ and the molecular amounts of all
the reagents of Rμ occurring in the system at the current step.

Let now Xγ
k (τ) denote the molecular amount of species Sk ∈ S′ at time τ , with k =

1, . . . , K and τ0 ≤ τ ≤ τmax, obtained by running SSA with some values γ1, . . . , γM

of the stochastic constants, as specified in an arbitrary vector γ. In order to compare
the simulated amount of species Sk and the measured amount of the same species in
the DTTS, we need to determine the value Xγ

k (tf ), that is, the amount of Sk taken in
correspondence to each experimentally sampled time point tf , f = 1, . . . , F . This can



78 M.S. Nobile et al.

be done for each tf by choosing two consecutive time instants τi, τi+1 ∈ [τ0, τmax]
in a SSA simulation, such that τi ≤ tf ≤ τi+1 and there exist no other τ ′, τ ′′ such
that τi ≤ τ ′ ≤ tf ≤ τ ′′ ≤ τi+1. Then, we can assume that Xγ

k (tf ) = Xγ
k (τi), since

Xγ
k (τ) = Xγ

k (τi) for every τ ∈ [τi, τi+1) by definition of SSA (Figure 1, right side).

2.2 Fitness Function

Let γ = (γ1, . . . , γM ) be a vector of arbitrary values of stochastic constants, with γμ ∈
R

+, μ = 1, . . . , M . Our aim is to determine the fitness of the parameter values specified
in γ by comparing (i) the measured experimental data, and (ii) the result of a SSA
execution using γ. Namely, we want to establish if the simulated molecular amounts
Xγ

k (tf ) match the experimental measures Y d,e
k (tf ) of the DTTS, at corresponding time

instants, for each species Sk ∈ S′. To this aim, given a fixed initial condition d ∈
{1, . . . , D}, for every species Sk and every tf ∈ {t1, . . . , tF } we measure the point-to-
point distance between Xγ

k (tf ) and Y d,e
k (tf ), considering all E replicates carried out

in the setting d. This leads to the following definition of the fitness function:

Fd(γ) =
1
E

F∑
f=1

K∑
k=1

E∑
e=1

|Y d,e
k (tf ) − Xγ

k (tf )|. (1)

The value Fd(γ) evaluates the quality1 of the vector γ with respect to the DTTS in
a fixed experimental setting d, by averaging over all the available E experimental
data, and considering all the species in S′ and all the sampled time instants tf . In
what follows, we denote by Fd(γc) the fitness value obtained in condition d by us-
ing γc = (c1, . . . , cM ), that is, the correct parameter vector that we wish to estimate
(this value will be used in Section 3.2 to identify a successful run of PSO). This fitness
function is suitable to measure the quality of a chosen parameter vector in each exper-
imental setting, independently from the other initial conditions that are considered in
a laboratory to analyze the biological system. Since our aim is to face the problem of
PE having at our disposal a set of D experimental DTTS, in the next section we show
how to exploit a multi-swarm PSO to estimate a unique vector of parameters γ that can
simultaneously fit all DTTS in all conditions. In other terms, we exploit a multi-swarm
architecture to deal with multiple fitness-cases – distributing one case per swarm – and
take advantage of particles migration to achieve a unique result for all these cases, as
the PE problem we are considering here actually requires.

In addition to the fitness function given in Equation 1, we have also tested the strategy
of fitness sharing [6], in order to mitigate the premature convergence of solutions, a
problem typical of population-based optimization heuristics. Within a swarm, fitness
sharing modifies the fitness value of each particle, in such a way that the more diverse
are advantaged. To this aim, Fd(γ) has been modified as follows:

Fsh(γ) = Fd(γ) · max{‖γi − γj‖ | i �= j}∑
i�=j ‖γi − γj‖

(2)

where ‖γi−γj‖ denotes the Euclidean norm of particles γi and γj of the same swarm.
1 We stress the fact that by exploiting SSA to generate the Xγ

k (tf ) values for the fitness calcu-
lation, it is very unlike to reach the (ideal) value of zero, due to the intrinsic stochasticity.
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2.3 Multi-swarm PSO

Our multi-swarm topology of PSO is structured as follows. First, we consider a swarm
σd for each experimental setting d = 1, . . . , D, consisting of n particles γd correspond-
ing to vectors of values for the stochastic constants, that is, γd = (γd,1, . . . , γd,M ),
with γd,μ ∈ R

+, μ = 1, . . . , M . As described in Section 2.1, this vector is used to
execute the SSA to generate the sets of values Xγ

k (tf ) associated to this particle, for all
Sk ∈ S′. The fitness of particle γd is then evaluated according to Equation 1 by using
the experimental data of condition d, Y d,e

k (tf ). So doing, each swarm performs a PE
independently from the others, and determines its global best particle, denoted γbest

d ,
which is the vector of stochastic constants that matches the dynamics of the system in
condition d in the best possible way.

Then, in order to estimate a set of stochastic constants that is common for all swarms,
and that is able to reproduce the correct system dynamics in all conditions, we exploit
the migration of particles [11], which is used here to share the global best particle of
each swarm among the other swarms. The migration takes place at regular intervals,
that is, after a number ITmig of iterations, with 1 ≤ ITmig ≤ ITmax, where ITmax

is the maximum number of iterations of the PSO. Two migration topologies have been
considered. In the static topology (ST), swarms are arranged in a unidirectional ring,
as also considered in [11], whereby swarm σd sends its global best particle to swarm
σ(d mod D)+1. In the dynamic topology (DT), the interconnections among swarms are
chosen randomly and updated at each step of migration, provided that each swarm al-
ways sends only its global best particle and receives only one global best particle from
some other swarm. In the DT, if a swarm remains isolated at some migration step, then
it will neither receive nor send particles to other swarms at that step. Chosen either the
ST or DT, the migration acts by removing the worst particle of the swarm and replacing
it with the incoming particle, in order to maintain the swarm size.

Note that the notion of DT for migration was first introduced for parallel genetic
algorithms [9], where the migration topology is dynamically updated according to some
properties of the populations; in our method, instead, the topology is randomly updated.

3 Implementation and Discussion of the Methodology

In this section we briefly present the architectural choices behind the GPU-based im-
plementation of our PE methodology, and then we present the results obtained on two
biological systems, a basic scheme of enzymatic kinetics and a prokaryotic gene ex-
pression network.

3.1 A GPU-Based Multi-swarm PSO

The methodology described so far is computationally expensive, because of the huge
number of fitness evaluations performed by the multi-swarm PSO. Being the PSO an in-
herently parallel algorithm, we improved the performances of our PE method by using
the GPGPU architecture, that exploits the great computational power of modern video
cards. Our method has been implemented with NVIDIA’s CUDA, a GPGPU computing
library combining multi-threading with the single instruction multiple data architecture.
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In this implementation, a single thread is executed for each particle. Multiple threads
are organized in multi-dimensional structures called blocks; threads belonging to the
same block can cooperate by using a small amount of shared memory. We associate
each swarm to a different block, so that parallel algorithms can exploit this feature (e.g.
parallel reduction to find the worst and best particles of each swarm). Moreover, fitness
evaluations are independent and can be computed in parallel, by simultaneously execut-
ing all SSA simulations in separate threads. Our implementation of PSO is synchronous:
the D vectors of the best particles γbest

d are updated when all SSA simulations are con-
cluded. Every ITmig iterations, the synchronization is followed by the migration of
particles, according to the static or the dynamically-generated topology, as described in
Section 2.3. The dynamical generation of a new topology is done efficiently, in-place
and in linear time with Durstenfeld’s algorithm [4].

3.2 Results

In this section we present the results of our method for the estimation of the stochastic
constants of two simple systems: the Michaelis-Menten kinetics (MM) and a prokary-
otic auto-regulatory gene network (PGN). For these systems, the DTTS of every exper-
iment replicate e has been generated in silico by first averaging the amount of target
species over 1000 SSA executions, each one performed using the vector of correct pa-
rameters γc, and then sampling the outcome at F = 10 time instants for each species.

The MM system describes the catalytic transformation of a substrate (S) into a final
product (P ) mediated by the activity of an enzyme (E), passing through the reversible
formation of an intermediate complex (ES) [1]. The chemical reactions corresponding
to MM are: R1 : E + S

c1−→ ES, R2 : ES
c2−→ E + S, R3 : ES

c3−→ E + P , where
γc = (2.5 · 10−3, 0.1, 5). For MM we consider E = 3 replicates for each of the D = 4
distinct experimental settings, which are characterized by different initial amounts of
molecules for the substrate and the enzyme (S, E): σ1 : (1000, 750), σ2 : (2000, 750),
σ3 : (500, 750), σ4 : (1000, 500).

The PGN system is a simple example of auto-regulation mechanism of gene expres-
sion, whereby a gene (DNA) that codes for a protein (P ) is inhibited by the binding
with a dimer of the protein itself (DNA·P2) [13]. The chemical reactions corresponding
to PGN are: R1 : DNA + P2

c1−→ DNA · P2, R2 : DNA · P2
c2−→ DNA + P2, R3 :

DNA
c3−→ DNA + mRNA, R4 : mRNA

c4−→ λ, R5 : 2P
c5−→ P2, R6 : P2

c6−→ 2P ,
R7 : mRNA

c7−→ mRNA + P , R8 : P
c8−→ λ, where λ denotes a degradation and

γc = (0.1, 0.7, 0.35, 0.3, 0.1, 0.9, 0.2, 0.1). For PGN we consider E = 3 replicates for
each of the D = 3 distinct experimental settings, which are characterized by different
initial amounts of DNA molecules: σ1 : (50), σ2 : (100), σ3 : (1000).

Several preliminary tests have been executed to find the best setting for our multi-
swarm PSO, that has been used to generate the results presented below: all PEs have
been executed 50 times under the same conditions; the maximum number of iterations is
ITmax = 200; the size of each swarm has been set to n = 32 particles; the interval for
the migration of particles is ITmig = 10 iterations; the cognitive and social factors of
particles have been set to 1.9; the inertia weight is equal to 0.9; the maximum velocity
of particles is limited to 1/10 of the maximum distance between solutions.
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The aim of the first analysis we performed was to determine the effect of combining
fitness sharing (FS) with the two migration strategies (ST and DT). We run four PEs
of MM corresponding to the following cases: (1) FS-ST, (2) FS-DT, (3) noFS-ST, (4)
noFS-DT. In cases (1) and (2), the fitness was evaluated as defined in Equation 2, while
in cases (3) and (4) as in Equation 1. The results of this analysis indicate that fitness
sharing does not provide a better estimation of the parameters (data not shown), while
the comparison between ST and DT migration suggests that the latter improves the
optimization process. As a matter of fact, the particles with the smallest fitness values
have been identified when particles migrate according to DT (Figure 2, left side). Hence,
all the analysis of the two biological systems have been executed considering case (4).
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Fig. 2. (Left) Comparison between the average best fitness of the MM optimization with static
(solid line) and dynamic topology (dashed line). (Right) Fitness landscape of MM considering
the variation of parameters γ1 and γ2.

To determine how much the estimated values of stochastic constants of a particle γ
are close to the correct parameter vector γc, we define the mean error εγ :

εγ =
1
M

M∑
μ=1

εγμ =
1
M

M∑
μ=1

|cμ − γμ|
cμ

, (3)

where γμ (μ = 1, . . . , M) denotes the value of each stochastic constant codified in the
particles of PSO, and εγμ is the relative error of the constant γμ with respect to the real
constant cμ [13]. The best solution found by the multi-swarm PSO is denoted as γ∗ =
{γ | εγ∗ = min{εγ | γ ∈ ⋃

d σd}}, that is, we select the particle having the minimum
mean error value among all swarms. We also compute the average mean error 〈εγsr〉,
that is calculated averaging the values of the mean errors εγsr , which denote the errors
of the best particles found in a successful run. A run is considered successful if there is
a best particle γsr of some swarm σd having a fitness value Fd(γsr) ≤ 1.1Fd(γc).

We started by analyzing the influence that specific stochastic constants can have on
the estimation process. To this aim, we executed our PE method by fixing to cμ the value
of one or more components γμ of particles γ . In Table 1 we present the derived values of
the mean error εγ∗ : when we estimate only a subset of components of γ (from column
2 to 7), we obtain better solutions. In particular, if we look at the average mean error
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〈εγsr〉 (second line), we also note that the PEs involving the optimization of γ2 always
lead to the highest errors. This result is even clearer considering the single contribution
of each γ∗

μ to the mean error of the best particle γ∗ (last three lines of Table 1).

Table 1. Error of the best particles γ∗ and successful runs particles γsr of MM: influence of the
components γ1, γ2, γ3 on the PE process

Constants γ1, γ2 , γ3 γ1, γ2, c3 c1, γ2, γ3 γ1, c2, γ3 γ1, c2, c3 c1, γ2, c3 c1, c2, γ3

εγ∗ 2.51·10−1 6.07·10−2 7.66·10−3 4.77·10−3 2.00·10−5 2.95·10−2 2.13·10−3

〈εγsr 〉 1.56 8.52·10−1 2.58·10−1 2.21·10−2 4.21·10−3 2.80·10−1 1.30·10−2

εγ1/εγ∗ 1.39·10−1 2.62·10−2 0.00 8.08·10−1 1.00 0.00 0.00

εγ2/εγ∗ 7.45·10−1 9.74·10−1 7.57·10−1 0.00 0.00 1.00 0.00

εγ3/εγ∗ 1.16·10−1 0.00 2.43·10−1 1.92·10−1 0.00 0.00 1.00

Table 2. Error of the best particles γ∗ and successful runs particles γsr of MM: influence of the
number of target species considered in DTTS on the PE process

Species S, E, ES, P S, E, ES E, ES, P S, E S, ES S, P

εγ∗ 2.51·10−1 3.50·10−1 4.12·10−2 3.38·10−1 7.31·10−2 1.05·10−1

〈εγsr 〉 1.56 11.1 13.8 13.7 8.76 6.23

εγ1/εγ∗ 1.39·10−1 8.71·10−3 2.32·10−1 5.57·10−3 1.82·10−1 5.52·10−2

εγ2/εγ∗ 7.45·10−1 9.64·10−1 4.89·10−1 9.87·10−1 8.06·10−1 7.45·10−1

εγ3/εγ∗ 1.16·10−1 2.75·10−2 2.80·10−1 7.15·10−3 1.13·10−2 2.00·10−1

To better understand this result, we plot in Figure 2 (right) the fitness landscape of
MM considering the variation of parameters γ1 and γ2. Whereas parameter γ1 induces
a unique (global) minimum on the fitness landscape, γ2 features several local minima
which mislead the particles. The figure displays another interesting characteristic of
MM system: as the values of γ1 increases, the fitness landscape shows a “flat” portion
(characterized by many local optima, not clearly visible in this graphical representation)
where particles can get stuck, thus resulting in solutions with a poor quality.

Afterwards, we compared the results obtained when using, from time to time, the
DTTS of one or more molecular species of MM. If we assume the availability of the
experimental measures for only a few species, that is, less information during the opti-
mization process, then the values of the average mean error increase. On the other hand,
the error of the best particles does not significantly change from case to case, proving
the efficiency of our method. For space limits, we report in Table 2 only the results
obtained on a few subsets of S (similar results were obtained in all the other cases).

In general, since the correct values of γc are not known, the mean error εγ of the par-
ticles γ cannot be computed to assess the quality of the estimated stochastic constants.
To this aim, a more reliable and suitable way to proceed is to compare the experimental
data used as target and the simulated dynamics of the system, generated using the set
of stochastic constants of the best particles. Therefore, for each swarm σd we select the
best particle γbest

d , we perform the stochastic simulations by using the D corresponding
parameter vectors, and then we choose the solution that matches all the DTTS in the
best qualitative and quantitative way.
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In the case of MM system, the best solution found is γ∗ = (0.00236337, 0.119315,
5.18206). In Figure 3 we plot the dynamics (solid lines) obtained by considering the
D = 4 different initial conditions stated above and the target DTTS (dots) used to
compute the fitness values. As clearly shown in this figure, the dynamics of all species
generated with the solution γ∗ generated by the multi-swarm PSO match very closely
the targets for all initial conditions.
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Fig. 3. Dynamics of MM obtained using the constants found by the best solution generated by the
four swarms of PSO (solid lines) compared to the DTTS (dots), under different initial conditions
(for the sake of clarity, only one DTTS per species is shown)

Finally, in Figure 4 we show the comparison between the simulations of PGN per-
formed using the best solution found by the multi-swarm PSO – which corresponds to
γ∗ = (0.176459, 1, 0.384382, 0.314425, 0.106459, 1, 0.184306, 0.0413758) – and the
DTTS used during the optimization. In particular, the plots report the dynamics of only
two molecular species of PGN, namely DNA and mRNA, where the initial conditions
correspond to swarms σ2 (top graphics) and σ3 (bottom graphics), as given above. Once
more, the dynamics match very closely the targets for both initial conditions; this is true
also for the other species and for the initial condition of swarm σ1 (data not shown).
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Fig. 4. Dynamics of PGN obtained using the constants found by the best solution generated by
the three swarms of PSO (solid lines) compared to the target used during the optimization (dots),
under different initial conditions (for the sake of clarity, only one DTTS per species is shown)

4 Conclusions

In this paper we have proposed a method for the estimation of reaction constants in
stochastic biological systems, which exploits experimental discrete-time target series.
The foremost novelties of our method, in the context of parameter estimation, rely on
several peculiar features. First of all, it does not require a uniform sampling rate, nor
observations of every chemical species in the system. It can handle experimental sam-
ples coming from multiple experiments executed under different initial conditions, and
produces a single estimation for all conditions exploiting a multi-swarm version of PSO,
where the populations converge to a common solution by periodically exchanging their
best particles. The fitness function we use is a point-to-point distance between the exper-
imental samples and the dynamics simulated with a stochastic algorithm, which allows
to account for the effects of biological noise. Moreover, the method is developed using
a GPGPU computing architecture, to exploit the intrinsic parallelism of PSO. This im-
plementation works entirely on the GPU, running a separate thread for each particle and
achieving a boost (24×, according to our tests) with respect to a strictly sequential imple-
mentation. For instance, for the computation of 1280000 fitness values, the execution of
the GPU implementation on a workstation with a Tesla C1060 takes 14 minutes, while the
sequential version takes346minutes, executed on a CPU Intel Core Duo 6700 (2.66 GHz).

By profiling the computational costs of our method, we have evidenced that SSA is
responsible for the largest part of the effort. Therefore, a further improvement of our
method will be focused on the implementation of a less computationally expensive
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simulation algorithm, like the tau-leaping [2]. This will also allow us to improve our
method with respect to the following aspects. First, we might extend the fitness func-
tion defined here, that has been intentionally simplified with respect to [1] to reduce the
computational burden. Second, in our implementation every fitness is calculated by com-
paring the experimental samples against the dynamics produced by a single simulation;
though, due to the stochasticity of biological systems, the noise of one simulated dy-
namics might mislead the estimation. Thus, by exploiting a faster stochastic simulation
algorithm we will be able to compare the experimental data against the averaged dynam-
ics of many different simulations. Third, the reduction of the computational costs related
to the stochastic simulations might allow us to perform a larger number of iterations,
potentially converging to better solutions.

As a final remark, we highlight that this GPU-based method for PE has been developed
to the aim of analyzing large biological systems of great biological interest, consisting
of many reactions and many species, which are already under multidisciplinary investi-
gations in our research group.
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Técnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
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Abstract. Social networks affect in such a fundamental way the
dynamics of the population they support that the global, population-
wide behavior that one observes often bears no relation to the agent
processes it stems from. Up to now, linking the global networked
dynamics to such agent mechanisms has remained elusive. Here we define
an observable dynamic and use it to track the self-organization of cooper-
ators when co-evolving with defectors in networked populations interact-
ing via a Prisoner’s Dilemma. Computations on homogeneous networks
evolve towards the coexistence between cooperator and defector agents,
while computations in heterogeneous networks lead to the coordination
between them. We show how the global dynamics co-evolves with the
motifs of cooperator agents in the population, the overall emergence of
cooperation depending sensitively on this co-evolution.

Keywords: Complex Networks, Self-Organization, Cooperation, Evo-
lutionary Game Theory, Evolutionary Dynamics.

1 Introduction

Dynamical processes involving populations of agents constitute paradigmatic
examples of complex systems. From epidemic outbreaks to opinion formation,
evolutionary and learning behavioral dynamics, the impact of the underlying
web of ties in the overall behavior of the population is well known [1, 6, 10, 12,
13, 15, 21, 22, 26, 30, 41, 42]. Furthermore, it is often impossible to avoid such
structures when applications require the deployment of agents under physical or
other constraints as it is with network routing [18,29], computational intelligence
techniques [7, 8, 43] and sensor networks [2].

In this context, Evolutionary Games [35] provides one of the most sophisti-
cated examples of complex system dynamics in which the role of the underlying
network topology proves ubiquitous. For instance, when cooperation is modeled
as a Prisoner’s dilemma game (PD), cooperation may emerge (or not) depending
on how agents are networked [14, 16, 23–25, 27, 31, 32, 37, 38]. Up to now, multi-
agent based models were unable to identify the detailed mechanism by which
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local self-regarding actions lead to a collective cooperative scenario, in particu-
lar relating it to the network topology. In the following, we devise a means to
establish such a link between individual and collective behaviors, in terms of
the underlying network topology. To this end we make use of evolutionary game
dynamics, although the method should be easily applicable to other dynamical
processes taking place on general complex networks.

2 Results and Discussion

2.1 Evolution of Cooperation in Finite Well-Mixed Populations

Let us consider two agents who can each adopt one of two possible behaviors:
Cooperator (C) or Defector (D). Whenever they interact, four outcomes are
possible: Two Cs receive R (reward) each, whereas each receives P (punishment)
if both are Ds. Whenever a C interacts with a D, the C gets S (the sucker’s
payoff) whereas the D gets T (temptation to defect). These outcomes can be
summarized through the so-called payoff matrix,

(C D

C R S
D T P

)
(1)

Whenever T > R > P > S one obtains the PD [4, 35]. For simplicity, we
formalize the PD game in terms of a single parameter B (benefit) by defining
T = B > 1, R = 1, S = 1−B and P = 0.

In the context of Evolutionary Game Theory [35], the payoff of an agent is
associated with her/his fitness that is her/his social success. Thus, behaviors
that provide higher rewards are imitated more frequently and spread in the
population. Here, evolution and strategy update is modelled via a stochastic
birth-death process in finite populations of size N , often referred as pairwise
comparison rule [35, 39]. At each iteration, a randomly selected agent x adopts
the strategy of a randomly selected neighbor y with probability given by the
Fermi distribution

p = [1 + e−β(fy−fx)]−1, (2)

where the fitness values fx (fy) stand for the accumulated payoff of x (y) and β
controls the intensity of selection measuring the importance of the agent payoffs
and stochastic effects in the imitation process [39].

In the limit of well-mixed populations of size N – where agents may interact
with any other agent in the population –, Cs are always worse off than Ds, and
will be outcompeted under natural selection [35]. Mathematically, this means
that the gradient of selection [28, 34, 39]

G(j) = T+(j)− T−(j) (3)

is negative for all j, where j stands for the number of Cs in the population and

T±(j) =
N − j

N

j

N

1

1 + e±β(fD−fC)
(4)
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represent the probabilities to increase/decrease the number of Cs in the popu-
lation [40].

The elegance of this result (despite the doomsday scenario for Cs) is best
appreciated when realizing that the population ends up adopting the Nash-
equilibrium of a PD game interaction between two agents: everybody defects.
Consequently, there is no difference in the outcome of the game, from an agent
or from a (collective) population wide perspective. This result holds in struc-
tureless populations, a feature which is seldom observed in practice, with strong
implications in many natural phenomena.

It is noteworthy that the general methodology discussed in the next section is
independent from the stochastic update rule adopted in the evolutionary process.
Moreover, this stochastic update is more general one could initially foresee, as
the ensuing dynamics may be also shown to be equivalent to the replicator
equation [17, 40] and to finite action learning automata in the limit of infinite,
well-mixed populations [9, 36, 41].

2.2 Gradients of Selection in Structured Populations

A homogeneous network, in which all agents engage in the same number of
games (k) with their first neighbors, represents the simplest case of a structured
population, where agents occupy the nodes of the network, whose links determine
who is neighbor of whom. Unlike well-mixed populations, even in such simple
homogeneous scenario where all agents share the same number of neighbors,
agents with the same strategy no longer necessarily share the same fitness (here
associated with game payoff): fitness becomes context-dependent and so does
the gradient of selection, which is now impossible to compute analytically.

To overcome this problem, we define the Average Gradient of Selection (AGoS),
denoting it by GA(j) as the average i) over all possible transitions taking place in
every node of the network throughout evolution, and ii) over a large number of
networked evolutions. For each agent i we compute the probability of changing
behavior at time t,

Ti =
1

ki

n̄i∑
m=1

[1 + e−β(fm−fi)]−1, (5)

where ki stands for the degree of node i and n̄i for the number of neighbors
of i having a strategy different from that of i. The AGoS at a given time t of
simulation p, where we have j Cs, is defined as,

Gp(j, t) = T+
A − T−

A (6)

where, T±
A = 1

N

∑AllDs
AllCs

i=1 Ti(t).
For a given network type, we run Ω = 2 × 107 simulations (using 103 ran-

domly generated networks) starting from all possible initial fractions j/N of Cs.
Each configuration of the population is associated with the fraction j/N of Cs.
Evolutions run for Δ = 105 time steps. Hence, the overall, time-independent
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Fig. 1. Time-independent AGoS. (a) We plot GA(j) for a population of players
interacting via a PD in a homogeneous random network, for two values of the benefit B.
Globally, GA(j) indicates that the population evolves towards a co-existence scenario.
(b) Stationary distributions showing the pervasiveness of each fraction j/N in time.
In line with the AGoS in a), the population spends most of the time in the vicinity of
the stable-like root xR of GA(j). When j/N ≈ 0, Cs become disadvantageous, giving
rise to an unstable-like root xL of GA(j) which, however, plays a minor role as shown
(N = 103, k = 4 and β = 1.0). Homogeneous random networks were obtained by
repeatedly swapping the ends of pairs of randomly chosen links of a regular lattice [33].

AGoS is given by the average

GA(j) =
1

ΩΔ

Δ∑
t=1

Ω∑
p=1

Gp(j, t) (7)

over all simulations and time-steps.
The gradient of selection in networks has to be computed numerically and

has the nice property of being network dependent but context independent, as
it recovers a population most likely direction of selection. As demonstrated be-
low, AGoS allow us to follow in time the evolutionary dynamics from a global,
population-wide perspective, as opposed to an agent perspective, which can al-
ways be inferred from the structure of the payoff matrix.



90 F.L. Pinheiro, F.C. Santos, and J.M. Pacheco

Fig. 2. Evolutionary dynamics cooperation in homogeneous networks. We
plot the interior roots xR of GA(j) (circles and squares) for a PD (T = B, R = 1,
P = 0, S = 1 − B) in homogeneous networks, from random networks (circles) to
ordered lattices (squares), as a function of the benefit B. GA(j) indicates that the
population evolves towards a stationary fraction xR of Cs. This is confirmed by the
stationary states (lines) obtained via computer simulations starting from 50% of Cs
and Ds randomly placed in each network. (N = 103, k = 4 and β = 0.1).

2.3 Results for Homogeneous Networks

The results for GA(j) on homogeneous random networks are shown in Fig. 1a.
Unlike well-mixed populations, where cooperation has no chance and GA(j) < 0
for all values of j, homogeneous networks can sustain cooperation [24, 33, 37].
The shape of GA(j) suggests that, even though every agent engages in a PD,
from a global, population-wide perspective, homogeneous networks give rise to
an emerging collective dynamics promoting the co-existence between Cs and Ds
defined by a co-existence point at j/N = xR.

This hypothesis is confirmed when one computes the stationary distribution,
which measures the fraction of time that the population spends in each available
state j/N before reaching fixation (Fig. 1b). It represents the pervasiveness in
time of each composition of the population [19], here identified by the fraction of
Cs. The remarkable agreement between the roots of GA(j) and the peaks of the
stationary distribution gives credit to GA(j) while emphasizing the fundamen-
tal transformation in the evolutionary dynamics of the population introduced
by a complex network of interactions. As we show below, the emergence of an
unanticipated global (macroscopic) dynamics from a distinct agent (microscopic)
dynamics pervades throughout evolutionary dynamical processes in structured
populations.
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The co-existence point is associated with the internal root of GA(j), xR, inex-
istent in well-mixed populations, and whose location decreases with increasing
B. Together with xR one obtains a coordination root (xL ≈ 0) of GA(j) since,
in the absence of cooperative partners, Cs will always be disadvantageous. How-
ever, the impact of xL is minor, as shown in Fig. 1b. In Fig. 2 we track the
position of xR (dots) for two different homogeneous structures along a range
of the B values. These are compared with the equilibrium fraction of coopera-
tors (lines), in other words the stationary states. As expected we find a match
between the AGoS prediction and the dynamical outcome, thus providing ev-
idence that the AGoS remains valid and quantitatively accurate for a broad
range of game parameters and different types of homogeneous networks.

Fig. 1a shows that, as we move from a single agent to a population wide
perspective, one witnesses the emergence of a new evolutionary dynamics. This
new global dynamics has important practical consequences: The fixation time –
the time required for Cs to invade the entire population – becomes much larger in
homogeneous networks when compared to well-mixed populations (irrespective
of the small-world effects associated with random links) as the population spends
a large period of time in the vicinity of xR, mainly when selection is strong
(large β).

The analysis in Fig.1 was limited to the time-independent GA(j) as we av-
eraged over the entire time span of all runs. However, the AGoS itself evolves
in time, giving origin to a time-dependent GA(j, t). At the beginning of each
simulated evolution, Cs and Ds are randomly spread in the network, precluding
the occurrence of correlated (assorted) clusters of agentswith the same strategy.
Hence, GA(j, t = 0) < 0 in general. As populations evolve, Cs (Ds) breed Cs
(Ds) in their neighborhood, promoting the assortment of strategies, with impli-
cations both on the fitness of each player and on the shape (and sign) of GA(j, t).
The time-dependent gradients GA(j, t) for a particular generation t0 (and cor-
responding roots) are trivially computed by averaging over the configurations
occurring during N previous time-steps (1 generation),

GA(j) =
1

ΩΔ

t0∑
t=t0−N

Ω∑
p=1

Gp(j, t) (8)

In Fig. 3a we plot snapshots of GA(j, t) for three different times, whereas Fig.
3b portrays the time evolution of the internal roots (xL and xR) of GA(j, t),
on which we superimposed two evolutionary runs starting with strategies ran-
domly placed in the population. As GA(j, t = 0) < 0, the fraction of Cs will
start decreasing (Fig. 3a). However, with time, strategy assortment leads to the
emergence of a co-existence root of GA(j, t), towards which the fraction of Cs
converges. The ensuing coexistence between Cs and Ds, which matches perfectly
the shape of GA(j, t), stems from the evolving self-organization of Cs and Ds in
the network, defining a global dynamics which is impossible to predict from the
nature of the local (PD) interactions.
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Fig. 3. Time-dependent AGoS. (a) We plot GA(j, t) for three different moments
of evolutionary time. Each line provides a snapshot for a given moment, portraying the
emergence of a population-wide (time-dependent) co-existence-like dilemma stemming
from an agent (time-independent) defection dominant dilemma (PD). (b) The circles
show the position of the different interior roots of GA(j, t), whereas the solid (dark grey
points) line and (light grey crosses) crosses show two independent evolutionary runs
starting from 50% of Cs and Ds randomly placed in the networked population. Open
(full) circles stand for unstable, xL (stable, xR) roots of GA(j, t) (B = 1.01, N = 103,
k = 4 and β = 10.0).

2.4 Results for Heterogeneous Networks

It is now generally accepted that homogeneous networks provide a simplified
picture of real interaction networks [3,5,6,11–13]. Most social structures share a
marked heterogeneity, where a few nodes exhibit a large number of connections,
whereas most nodes comprise just a few. The fingerprint of this heterogeneity is
provided by the associated network degree distributions, which exhibit a broad-
scale shape, often resembling a power-law [3, 5, 6, 12]. In the following we use
GA(j, t) to show how population heterogeneity shifts the internal roots in Fig. 1
to the right, effectively transforming a co-existence scenario into a coordination
one. To this end, we compute GA(j, t) employing scale-free (SF) networks of
Barabási and Albert (BA) [5], which provide a widely used representation of a
heterogeneous structured population [12]. Fig. 4a shows GA(j) for BA networks,
whereas the circles in Fig. 4b portray the time evolution of the internal roots of
GA(j, t).
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Fig. 4. AGoS on BA networks. (a) Starting from a defection dominance PD played
at an agent level, a coordination dynamics emerges at a global, population-wide scale,
for the three values of B depicted. (b) Evolution of the unstable root xL of GA(j, t)
(open circles), exhibiting the time-dependence of the global dynamics; solid (dark grey
dots) line and (light grey crosses) crosses show two independent evolutionary runs
starting from 50% of Cs and Ds randomly placed. The ultimate fate of Cs in each run
depends on whether the population composition crosses over the time-dependent value
xL ofGA(j, t), thereby overcoming the dynamical coordination barrier during evolution.
(B = 1.25, N = 103, < k >= 4 and β = 0.1). BA networks were obtained combining
growth and preferential attachment, following the model proposed by Barabási and
Albert [5].

Clearly, heterogeneous networks lead to a global dynamics dominated by a
coordination threshold xL. This unstable root of GA(j, t) represents the crit-
ical fraction of Ds above which they are able to assort effectively. Once this
happens, they successfully invade highly connected nodes (hubs), rendering co-
operation an advantageous strategy, as Cs acquire then a higher probability of
being imitated than Ds. The requirement that Cs must first invade hubs before
outcompeting Ds (by formation of cooperative star-like clusters [27]), makes in-
vasion harder for isolated Cs. Consequently, the unstable root xL (located close
to j/N ≈ 0 in homogeneous networks) moves here to higher fractions of Cs. Once
this coordination is overcome, Cs benefit from the strong influence of hubs to
rapidly spread in the population, eventually leading to fixation. Hence, the stable



94 F.L. Pinheiro, F.C. Santos, and J.M. Pacheco

internal root xR which characterizes GA(j) in homogeneous networks collapses
into values close to j = N on SF networks, leading to full cooperation. Naturally,
the location of xL is an increasing function of B, as shown in Fig. 4a.

The requirement that Cs occupy the hubs to outcompete Ds also leads to
an intricate interplay between the time-dependent decline of xL (see Fig. 4b)
and the pervasiveness of Cs in the population. In Fig. 4b we show, with full
lines, two evolutions in BA networks (for the same conditions): One ends up
in full cooperation whereas the other reaches full defection. In the former, the
fraction of Cs decreases in time slower than xL. Hence, a crossover moment is
reached, after which j/N > xL. As a result, the population will subsequently
reach full cooperation. In the latter, j/N remains always below xL and the
population evolves towards full defection. Clearly, heterogeneous networks lead
to the emergence of a global dynamics with time-dependent coordination barriers
and basins of attraction, all of which can be characterized using GA(j, t) .

3 Conclusions

Overall, our study shows that behavioral dynamics in social networks can be
understood as if the network structure is absent but agents faced a different
dilemma: The structural organization of a population of self-regarding agents
circumvent the Nash-equilibrium of a cooperation dilemma by creating a new
dynamical system globally described by two internal fixed points, xL (unsta-
ble) and xR (stable). Moreover, such a dynamical system, resulting from agents
interacting via a two-person game, cannot be mapped onto a two-person evo-
lutionary game in a well-mixed population. On the contrary, such dynamics
resembles that from, e.g., N-person dilemmas [20] in the presence of coordina-
tion thresholds [28, 34]. Hence, the global dynamics of a 2-person dilemma in
structured populations resembles a time-dependent N-person dilemma, in which
the coordination or co-existence features emerge from the population structure
itself. In this sense, different network topologies emphasize differently this co-
existence/coordination dichotomy. In such a context, the AGoS proves instru-
mental in characterizing the emergence of a new population-wide evolutionary
dynamics.

In sum it is of our belief that these results, together with the methodology
proposed here are of broad interest for areas within the biological and social
sciences that extend far beyond the scope of cooperation problems [6, 11–13].
Moreover, we address a core problem common to most complex systems anal-
ysis on fields such as biology, social and engineering sciences: describe the link
between local and global dynamics in multi-agent systems. From human behav-
iors, epidemics, collective intelligence or many population-based applications,
most can be described as an interaction scheme embedded in a complex network
for which a tool such as the AGoS may help us to anticipate the emergent,
population-wide, global dynamics.
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Abstract. A standard tree-based genetic programming system, called GRNGen,
for the reverse engineering of gene regulatory networks starting from time series
datasets, was proposed in EvoBIO 2011. Despite the interesting results obtained
on the simple IRMA network, GRNGen has some important limitations. For in-
stance, in order to reconstruct a network with GRNGen, one single regression
problem has to be solved by GP for each gene. This entails a clear limitation on
the size of the networks that it can reconstruct, and this limitation is crucial, given
that real genetic networks generally contain large numbers of genes. In this pa-
per we present a new system, called GeNet, which aims at overcoming the main
limitations of GRNGen, by directly evolving entire networks using graph-based
genetic programming. We show that GeNet finds results that are comparable, and
in some cases even better, than GRNGen on the small IRMA network, but, even
more importantly (and contrarily to GRNGen), it can be applied also to larger
networks. Last but not least, we show that the time series datasets found in lit-
erature do not contain a sufficient amount of information to describe the IRMA
network in detail.

1 Introduction

Biological systems are very complex and it is nowadays recognized that, in order to
understand their functioning, we have to analyze the interactions among their compo-
nents at several different levels [14]. The emerging field of systems biology [8] is aimed
at a formal understanding of biological processes via the development of quantitative
mathematical models of these interactions. Typically, these models describe biological
systems as networks, where regulatory interactions among genes are explicitly repre-
sented (gene regulatory networks, or GRNs).

Numerous formalisms to model GRNs have been defined so far (for instance boolean
random networks [9] or systems of ordinary differential equations [17,16]). Typically,
the data consist of measurements at steady state after multiple perturbations (like gene
overexpression, knockdown or drug treatment) or, as considered in the present work, at
multiple instants after one or more perturbations (i.e. time series data). Many reverse
engineering approaches have been proposed to date, and their assessment and evalua-
tion is of critical importance [15]. In 2011, a system for the GRNs reverse engineering
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using time series data, based on Genetic Programming (GP) [11,13], called GRNGen
(which stands for Gene Regulatory Network Generator) and inspired by other GP based
GRN reverse engineering methods defined so far (like [1]), was proposed [5]. The per-
formances of this system were tested on an extremely simple synthetic GRN called
IRMA, composed by only five genes and first introduced in [3] (Section 3 contains
a brief introduction of this network). Despite its simplicity and the interesting results
shown on IRMA, GRNGen presents some important limitations, the most serious one
being the fact that a different regression problem has to be solved by GP for each gene
composing the GRN to be reconstructed. This fact, by admission of the authors of [5]
themselves, is a serious limitation to the scalability of the proposed method, making
it practically impossible to use for true GRN containing large numbers of genes. The
aim of this paper is presenting a new GP environment that overcomes the major limita-
tions of GRNGen. We call this system GeNet. Contrarily to GRNGen, that was based
on standard tree-based GP [11], evolving individuals (i.e. potential solutions contained
into the population) in GeNet are directly GRNs models, represented as graphs; thus
GeNet is a Graph-Based GP system [12,13].

This paper is structured as follows: in Section 2, we present GeNet; in particular, we
explain how GRNs can be represented as evolving individuals in a graph-based GP sys-
tem, the way in which their fitness is calculated, and how we have redefined crossover
and mutation. In Section 3 we discuss the case studies used to experimentally validate
GeNet: the IRMA network and a set of artificially generated GRNs of several sizes.
Section 4 describes our experimental study: on the IRMA network the performances
of GeNet are compared with the results reported in [5], including not only the perfor-
mances of GRNGen, but also the ones of other state of the art GRN reverse engineering
methods. On the other hand, the results returned by GeNet on the artificially generated
networks are used to discuss GeNet scalability. Finally, Section 5 concludes the paper
and discusses ideas for future research.

2 GeNet

In this section we present the new GP system to evolve GRNs; in particular, we define
the representation of GRNs that we have adopted, the fitness function and how we have
redefined crossover and mutation.

Representation of the Individuals as GRNs. We model a GRN as a directed, colored
and weighted graph, composed by a set V of vertices and a set E of edges, N = 〈V,E〉,
where V contains exactly one vertex for each gene of the network and E is a subset
of V × V in which every edge represents a typed (colored) connection between two
vertices. Given two vertices v1, v2 ∈ V , there is a (directed) edge from v1 to v2 (and
we write v1

e−→ v2) if and only if the expression value of the gene represented by v1
has an influence on the expression value of the gene represented by v2. The color of the
edges represents the type of influence; in our simple model it can be either ”+” or ”-”.
Moreover, if we want the model to be as realistic as possible, we cannot assume that
every gene expression affects the network in the same proportion, due for instance to
different speed and rate of expression, so we add a weight to every edge. In a v1

e−→ v2
connection the weight indicates the strength of the influence of v1 on v2. For each edge
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e, we can express the color and the weight of e as functions: col(e) : E → {+,−}
and w(e) : E → R. Furthermore, in the cell there might be some genetic product of
an inactive gene, called basal production; to model this we added a node constant, that
simulates the basal expression value of the gene. Given its nature, it can only assume
positive values. Moreover, we also wanted to simulate a persistence of products ex-
pressed by a gene in successive timesteps, so we added a persistence constant (it can
be imagined as the opposite of a decay value). This constant also allows us to model
auto-allostheric promoters (i.e. genes that affect directly their own production by an
enzyme that uses positive feedback as an activation method). Thus, every vertex v has
two properties: the basal constant and the persistence constant (const(v) : V → R and
pers(v) : V → [0, 1] ⊆ R). In Figure 1 we report the traditional graph-representation
of an extremely simple hypothetical GRN composed by four genes (part (a)) and the
corresponding representation that would be used by the GeNet implementation (part
(b)). For each gene, we keep a linear structure containing genes from incoming con-
nections (i.e. the other genes of the network that influence it). Given that the evolving
individuals in GeNet are GRNs, sometimes in this paper we will use the terminology
individuals/networks to address them.

(a) (b)

Fig. 1. Part (a): the graph representation of a very simple hypothetical GRN. Part (b): how this
GRN would be represented in the GeNet implementation.

Simulation of the Dynamics of a GRN in GeNet. In order to simulate the dynamics
of a GRN (simulation that will be used to calculate the fitness of individuals/networks),
we need a function that calculates the new values of expression of the genes using the
old ones and the influence information stored in the network. For simplicity, we call
this function influence function from now on. For each gene, the influence function is
calculated using the values of the constants of the gene and the weights of the incoming
edges along with the expression values (at the previous timestep) of nodes linked to
them. For example, a possible value of the influence function for the geneG4 in Figure 1
could be: G4t = +(0.4∗G3t−1)−(0.8∗G1t−1)+(0.2∗G4t−1)+3 (where we indicate
by Gt the expression value of gene G at time t). This means that the expression value
of G4 at a given time t depends on the expression values of G1 (inversely) and G3
(directly) at time t − 1, and also by the value of G4 itself at time t − 1. For each
influencing gene we have a sign and a multiplicative factor; the sign is determined by
the type of the connection and the multiplicative factor is expressed by the weight of the
connection, except in the case of G4 itself, where the multiplicative factor quantifies the
persistence of gene G4. Finally, the basal constant of gene G4 is added. More formally,
the influence function of a gene represented by a vertex v̄ in the graph is defined as:
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Infl(v̄, t) =

⎛⎜⎜⎝ ∑
v∈VIN

e∈E:v
e−→v̄

col(e) ∗ w(e) ∗ vt−1

⎞⎟⎟⎠+ pers(v̄) ∗ v̄t−1 + const(v̄) (1)

where: VIN is the set of vertices {v | ∃e ∈ E : v
e−→ v̄}; for each edge e, col(e) is

its color and w(e) is its weight and for each vertex v, vt is the expression value of the
gene represented by v at time t, pers(v) is the persistence value of v and const(v) is
the basal constant value of v, as defined previously. We are aware that activation and
inhibition are too complex processes to be represented only by plus/minus sign and
we point out that there is not a close direct relation between the sign that a particular
gene has in the influence function of another gene (i.e the col(e) value of the edge e
connecting them) and the role of the former towards the latter in the real net (i.e. if the
former is an inhibitor or an activator of the latter).

Fitness Calculation. Given a target time series dataset, we take the expression values
of all the genes at the first time step, and we use them as the starting point to reconstruct
the dataset itself, by simulating the dynamics of the network. Successively, in order to
obtain the expression value of a gene represented by a vertex v̄ at time t, we simply
calculate Infl(v̄, t) applying equation (1). If we iterate this process for a number of
instants equal to the number of time steps of the target dataset, we reconstruct a new
dataset of the same dimensions as the target one. At this point, as fitness, we simply use
the root mean squared error (RMSE) between the target dataset and the calculated one.

Initialization of the Population. It is nowadays an accepted fact that GRNs generally
have a scale-free topology, i.e. they are characterized by a large number of nodes poorly
connected, and a few nodes richly connected (see for instance [2]). For this reason, we
have decided to initialize the population by directly constructing individuals/networks
with a scale-free topology. Many algorithms exist in literature to accomplish this task.
To initialize GeNet populations we use one of the most simple and well-known one,
called incremental growth with preferential attachment, that can be found, for instance,
in [2]. In synthesis, this algorithm works as follows: to create a random network with
a scale-free topology, we start with an empty network. We first insert a vertex in the
network, then we insert a second vertex and we link it to the first one. Successively,
we define a value, called likelihood, associated to each one of the vertices added to the
network so far, and proportional to the number of vertices linked to it. So, for example,
in the initial situation in which we have added only two nodes (with a link between
each other), these nodes will have a likelihood of 1/2 each. The next step consists in
adding a third vertex to the network and link it to one of the already existing vertices,
chosen with a probability that, for each vertex, is equal to its likelihood. Successively,
we update the likelihoods of all the vertices added to the network so far and we iterate
the algorithm until all the vertices that are supposed to take part in the network have
been added. The fact that the likelihood is proportional to the connectivity ensures that,
at each step, it will be more likely to create an edge connecting a new vertex to an
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existing vertex that is already more connected than others, thus generating a scale-
free network. At the end of this iterative process, we add edges to the network until
a given predefined level of connectivity is reached. We link this new edges to nodes
chosen randomly again with probability equal to their likelihood. The algorithm that
allows us to initialize the GeNet population is a simple iteration of N independent
generations of as many scale-free networks (where N is the predefined population size),
where, for each individual/network to be created we generate the desired connectivity at
random from a gaussian distribution, whose values of the mean and standard deviation
are parameters of the algorithm.

Crossover. Before describing the crossover operator that we have defined for GeNet,
it is suitable to point out that, by construction, the initialization algorithm described
above creates an initial population where each individual/network has exactly the same
vertices (where each vertex represents exactly one gene). This fact will not be changed
neither by crossover, nor by mutation; in other words, all the individuals/networks in the
population will always have the same vertices (one for each gene). What changes from
one individual to the other are the connections between the vertices and the constant val-
ues associated to each vertex and to each edge (color and weight of the edges and basal
constant and persistence value of the vertices). This is a characteristic that distinguishes
GeNet from traditional graph-based GP, as defined for instance in [12,13], where the
vertices of a graph (as the nodes of a tree in standard tree-based GP [11,13]) can change
from an individual to the other. We believe that this characteristic of GeNet is reason-
able, given that GeNet has to reconstruct GRNs from time series datasets, where the
number of genes is known and fixed. The crossover operator that we defined takes as
input two parental individuals/networks and creates two offsprings. Given two individ-
uals/networks i and j (that represent the parents), crossover works by considering all
the pairs of vertices representing the same gene in i and j. In particular, we consider
the incoming edges in i and in j for these vertices and: (1) the edges that are in com-
mon to both the parents are passed-by to both offsprings; (2) the remaining edges are
distributed randomly between the two offsprings (i.e. for each one of these edges we
randomly choose with uniform probability the offsprings in which to insert it).

Mutation. We defined five types of mutation for GeNet: (1) the add/removal of an
edge; (2) the change of color of an already existing edge; (3) the variation of the basal
constant associated to a vertex; (4) the variation of the persistence associated to a vertex;
(5) the variation of the weight of an edge. The first two operators are clearly discrete
mutations, while the last three ones operate on continuous values, given that they mutate
values that are real numbers. We have chosen to implement the latter ones as Gaussian
mutations centered in the current value to be mutated; in this way we intend to define
mutation operators that are as less ”destructive” as possible.

3 Case Studies

We present the performances of GeNet on two different test cases: the first one is com-
posed by the two datasets provided in [3] for the well-known IRMA network (follow-
ing [3], these two datasets will be called switch-on and switch-off). This first test case
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allows us to compare the results returned by GeNet with the reverse engineering meth-
ods presented in [5] and [3]. The second test case consists in a set of hand-generated
networks and the relative time series. The second test case is, as far as we know, new,
and so no comparison with computational methods from the literature will be done on
it: it is defined just to show some characteristics of scalability of GeNet.

IRMA: Switch-on and Switch-off Datasets. IRMA [3] is a simple synthetic network
that contains five genes in the yeast Saccharomyces cerevisiae, regulating each other. A
description of these genes is beyond the objectives of this paper. The interested reader is
referred to [3]. The IRMA network was defined with the explicit goal of enabling easy
in vivo reverse engineering and modelling assessment. In IRMA, each gene controls the
transcription of at least one other gene within the network, and so the network is con-
nected (see Figure 2(a) for a graph representation of IRMA). In addition, the network
can be “switched” on or off by culturing cells in galactose or in glucose, respectively.
These actions allow us to set the network in the two possible states that it can assume
and allowed the authors of [3] to obtain two different time series datasets, switch-on
and switch-off, that will be also used here. The authors of [3] assert that IRMA can eas-
ily be grown and manipulated and it includes a variety of regulatory interactions, thus
capturing the behaviour of larger eukaryotic GRNs on a smaller scale. The usefulness
of IRMA as a simplified biological model to benchmark both modelling and reverse
engineering approaches was tested in [3]. In particular, three well-established reverse
engineering approaches were tested on IRMA time series datasets: BANJO (Bayesian
network) [18], NIR and TSNI (ordinary differential equations) [7,6]. Results obtained
by these approaches, as well as GRNGen [5], are used here for comparison with GeNet.

Artificial Networks. To evaluate the ability of GeNet to work also on large networks,
we generated artificial (or ”artifact”) target networks composed by different numbers of
genes. Successively, each one of these networks has been used to generate time series
(by simulating the dynamics of the network) of a given number of steps, which we used
as the input dataset for GeNet. The procedure we used to generate an artificial network
takes as input the number of genes and the desired average connectivity, and it works
as follows: for each gene, the constant and persistence values are generated randomly
with uniform distribution in the range [0, 1]; then, edges are added randomly until the
average connectivity is reached. The random generation of an edge simply works by
linking together two randomly chosen (with uniform distribution) nodes that are not yet
connected. The color of the edge is chosen uniformly at random in the set {+,−} (by
simulating a coin tossing) and the weight is chosen uniformly at random in the range
[0, 1]. We generated networks of 5, 25 and 100 genes and for each one of these networks
we generated time series datasets composed by 20, 50, 200 and 500 points, obtaining
12 different datasets.

4 Results

We have performed 500 independent runs for the switch-on and switch-off datasets
and 50 for the artificial datasets. In each run, we have used the following configuration
(obtained after a set of preliminary tests performed for parameter tuning) for GeNet: a
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population of 1000 individuals evolved for 100 generations, using tournament selection
with a tournament size equal to 30. Elitism was used, copying into the new popula-
tion the two best individuals at each generation. The used crossover rate was 1, while
for each one of the different mutation operators, we used a rate equal to 0.01 (for the
add/remove of an edge, when the operator had to be performed, we flipped a coin to
determine if an edge had to be added or removed). We obtained best results by restrict-
ing the nodes persistence, basal constants and the weights of edges to the range [0, 1].
Finally, the artificial networks have been built using an average connectivity equal to
1.6, which is exactly the same as in the IRMA network.

Results on the Switch-on and Switch-off Datasets. As the authors of [5] did for the
studied methods, we have considered the networks obtained by GeNet, and for each
of them we have studied the following performance measures: (1) Positive Predictive
Value (PPV) = TP / (TP + FP) and (2) Sensitivity (Se) = TP / (TP + FN); where TP
(True Positives) is the number of links that are both in the reconstructed network and
in the true one, FP (False Positives) is the number of links that are in the reconstructed
network, but not in the true one, and FN (False Negatives) is the number of links that are
not in the reconstructed network, but are contained in the true one. For GeNet (as the au-
thors of [5] did for GRNGen) we calculated PPV and Se on the best individual (i.e. the
one with the best fitness in the population) of every run at the last generation, and of all
these PPV and Se values, we report the best, the average, the median and the standard
deviation. As in [5], we consider PPV and Se on the directed graph, ignoring colors.
Table 1 (respectively Table 2) reports the results for the switch-off (respectively switch-
on) datasets. Both Tables 1 and 2 contain the results returned by BANJO, NIR/TSNI
and GRNGen in the upper part and the results returned by GeNet in the lower part. The
results returned by BANJO, NIR/TSNI and GRNGen are exactly the same as reported
in [5]. We also point out that (as explained in [5]) BANJO, NIR and TSNI are deter-
ministic methods, and thus we report the results obtained in one execution, instead of
reporting the best, average, median and standard deviations of the results obtained over
several executions. From Table 1 we can see that, on the switch-off dataset, GeNet out-
performs all the other methods in terms of Se (we remark that in the performed runs,
we have been able to obtain several networks that have an ideal Se, i.e. Se = 1). In
particular, GeNet has better values of the best, average and median Se than GRNGen.

Table 1. PPV and Se values returned by the considered methods on the switch off data. Upper
part: results of BANJO, NIR and TSNI calculated on the networks reported in [3] and results of
GRNGen as reported in [5]. Lower part: results obtained by GeNet.

BANJO NIR &
TSNI

GRNGen
(best)

GRNGen
(median)

GRNGen
(avg.)

GRNGen
(std.dev.)

PPV 0.60 0.60 0.80 0.66 0.66 0.097
Se 0.42 0.42 0.75 0.62 0.58 0.081

GeNet (best) GeNet (avg.) GeNet (median) GeNet (std.dev.)

PPV 0.62 0.41 0.42 0.07
Se 1.00 0.70 0.75 0.14
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Table 2. PPV and Se values returned by the considered methods on the switch on data. Upper
part: results of BANJO, NIR and TSNI calculated on the networks reported in [3] and results of
GRNGen as reported in [5]. Lower part: results obtained by GeNet.

BANJO NIR &
TSNI

GRNGen
(best)

GRNGen
(median)

GRNGen
(avg.)

GRNGen
(std.dev.)

PPV 0.33 0.75 0.80 0.71 0.68 0.10
Se 0.25 0.42 0.75 0.56 0.57 0.084

GeNet (best) GeNet (avg.) GeNet (median) GeNet (std.dev.)

PPV 0.60 0.36 0.36 0.08
Se 1.0 0.58 0.63 0.17

On the other hand, GeNet is outperformed by GRNGen in terms of best, average and
median PPV. Similar qualitative considerations hold for the switch-on dataset (results
shown in Table 2): GeNet outperforms GRNGen in terms of Se and is outperformed by
it in terms of PPV. But, as already pointed out above, the competitive value of GeNet
is not in the single results found on the switch-on and switch-off datasets, but in its
ability to scale on larger datasets. This is empirically demonstrated in the continuation
of this paper. But before considering larger datasets, we feel that another important
consideration must be done concerning the results presented so far: in the GeNet ex-
periments, the fitness values1 of the individuals with the best PPV and Se (reported so
far in the tables) are much worse than the fitness values of the best individuals that we
have obtained (i.e. of the individuals with the best fitness values). Indeed, over the 500
performed runs, the individual with the best fitness never corresponded neither with the
individual with the best PPV, nor with the individual with the best Se. Even more se-
riously: the individuals with the best PPV and Se are frequently among the individuals
with the worst fitness in the population. This discrepancy that we have found between
RMSE on data and structural similarity to the IRMA network (quantified by PPV and
Se) casts a shadow on the accuracy with which the switch-on and the switch-off datasets
describes IRMA. In particular, we believe that single datasets with only 16 (switch-on)
and 21 time steps (switch-off) do not contain enough information to describe IRMA by
themselves. For the sake of completeness, we also report here the results concerning the
fitness values obtained by GeNet on the switch-on and switch-off datasets: for each one
of the 500 performed runs, we consider the fitness value of the individual with the best
fitness in the population at the last studied generation (these are exactly the same 500
individuals that have been used to report the PPV and Se results in Tables 1 and 2). Of
all these 500 fitness values we report the best, average, median and standard deviation
in Table 3. Figure 2 reports one of the individuals/networks found by GeNet, that has
PPV = 0.6154 and Se = 1.0.

1 We remind that the fitness of an individual in GeNet is always calculated as the RMSE between
the target time series dataset and the one reconstructed by the individual itself. So, in principle,
it has no relationship with the PPV and Se of the network. Furthermore, we also point out that
the PPV and Se themselves could not have been used as fitness values, because, in order to
calculate them, the target network must be known, while reverse engineering methods must
work using only the information contained in the time series datasets.
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Table 3. Best, average, median and standard deviation of the best fitness obtained in each of the
500 GeNet runs that we have performed on the switch-on and switch-off datasets

best fitness average fitness median fitness fitness std.dev.

switch-off 0.029 0.045 0.043 0.008
switch-on 0.106 0.129 0.128 0.009

(a) (b)
Fig. 2. Part (a): The topology of the regulatory interactions among genes in IRMA. Dashed lines
represent protein-protein interactions. Directed edges with an arrow end represent activation,
whereas a dash end represents inhibition. Figure taken from [3]. Part(b): Graphical representation
of an individual found by GeNet.

Results on the Artificial Networks. All the results that we have obtained on the arti-
ficial networks are reported in Table 4, where a label like ”Artn” indicates an artificial
dataset generated by a network of n genes. Art5, Art25 and Art100 have been simulated
to generate datasets of 20, 50, 100 and 500 time steps. We executed 50 indipendent runs
and the results are shown in the different tabular forms of Table 4. GeNet is clearly
scalable with the number of considered time steps, in the sense that its ability to re-
construct the target network does not change much when passing from datasets with a
small (i.e. equal to 20) to a large (i.e. equal to 500) number of time steps. As expected,
the performance of GeNet in terms of PPV, Se and fitness deteriorates as the number
of genes increases, but one encouraging result emerges from Table 4: the ratio between
PPV and number of genes and between Se and number of genes is practically constant
for all the studied experiments. It is also worth noticing that obtaining the same results
with GRNGen would have been practically impossible (for instance for the networks
with 100 genes it would have required the resolution of 100 different regression prob-
lems with GP). Another interesting result is the execution time that GeNet has employed
to complete the 50 independent runs on the different datasets. These results are shown
in Table 5.

On the Consistency between IRMA Topology and Data. The aim of this section
is to further investigate the relationship between the fitness of the GeNet individu-
als/networks and the structural similarity with IRMA. In particular, we want to verify if
an individual identical to (or at least structurally ”very similar to”) the IRMA network
exists in the search space. To reach this goal, we used Particle Swarm Optimization
(PSO) [10,4] as a method to optimize continuous (in our case real-valued) parameters.
In fact, from [3] we know exactly the topology of IRMA, but we lack knowledge on the
values of the parameters (nodes constants, nodes persistences and edges weights) that
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Table 4. Results on the artificial datasets. Artn indicates an artificial dataset generated by a net-
work of n genes. Each network has been run for 20, 50, 200 and 500 steps.

20 time steps:
Art5
(best)

Art5
(avg.)

Art5
(med.)

Art5
(s.d.)

Art25
(best)

Art25
(avg.)

Art25
(med.)

Art25
(s.d.)

Art100
(best)

Art100
(avg.)

Art100
(med.)

Art100
(s.d.)

PPV 0.636 0.481 0.462 0.077 0.175 0.073 0.070 0.041 0.039 0.014 0.012 0.009
Se 1.000 0.713 0.750 0.134 0.175 0.080 0.075 0.044 0.044 0.016 0.013 0.010

Fitness 0.019 0.040 0.039 0.013 0.055 0.069 0.066 0.010 0.177 0.242 0.238 0.041

50 time steps:
Art5
(best)

Art5
(avg.)

Art5
(med.)

Art5
(s.d.)

Art25
(best)

Art25
(avg.)

Art25
(med.)

Art25
(s.d.)

Art100
(best)

Art100
(avg.)

Art100
(med.)

Art100
(s.d.)

PPV 0.700 0.437 0.429 0.098 0.180 0.063 0.065 0.035 0.036 0.018 0.020 0.010
Se 0.875 0.608 0.625 0.152 0.225 0.073 0.075 0.042 0.038 0.019 0.019 0.010

Fitness 0.008 0.027 0.026 0.011 0.028 0.039 0.037 0.009 0.185 0.249 0.242 0.037

200 time steps:
Art5
(best)

Art5
(avg.)

Art5
(med.)

Art5
(s.d.)

Art25
(best)

Art25
(avg.)

Art25
(med.)

Art25
(s.d.)

Art100
(best)

Art100
(avg.)

Art100
(med.)

Art100
(s.d.)

PPV 0.667 0.418 0.444 0.124 0.184 0.066 0.059 0.041 0.034 0.014 0.014 0.009
Se 0.875 0.440 0.500 0.160 0.225 0.075 0.075 0.044 0.044 0.016 0.019 0.010

Fitness 0.037 0.037 0.037 0.000 0.030 0.49 0.045 0.017 0.167 0.253 0.250 0.038

500 time steps:
Art5
(best)

Art5
(avg.)

Art5
(med.)

Art5
(s.d.)

Art25
(best)

Art25
(avg.)

Art25
(med.)

Art25
(s.d.)

Art100
(best)

Art100
(avg.)

Art100
(med.)

Art100
(s.d.)

PPV 0.600 0.375 0.357 0.137 0.076 0.069 0.065 0.034 0.037 0.017 0.018 0.008
Se 0.875 0.443 0.500 0.202 0.093 0.075 0.075 0.045 0.038 0.019 0.019 0.008

Fitness 0.022 0.026 0.026 0.000 0.022 0.052 0.044 0.024 0.152 0.240 0.232 0.042

Table 5. The completion time that has been necessary for GeNet to execute 50 independent runs
on the different datasets. The upper column represents the datasets with the following notation:
x-y stands for a dataset of x genes and y timesteps. The lower column reports the execution times
in the format hh:mm’ss”.

5-20 5-50 5-200 5-500 25-20 25-50 25-200 25-500 100-20 100-50 100-200 100-500
6’31” 8’53” 16’09” 35’39” 16’02” 25’29” 1:04’13” 2:22’25” 1:10’32” 1:53’18” 5:09’42” 8:47’11”

we must use to exactly represent IRMA in our model. Thus, we have performed 50 runs
of PSO using the following configuration: (1) Given that the graph that represents the
IRMA network contains 5 vertices (genes) and 8 edges, a particle is a vector composed
by 18 real numbers: two real numbers for each vertex (one for the node constant and
one for the node persistence) and one real number for each edge (its weight). (2) The
fitness of each particle is the RMSE between the target dataset (in these experiments we
have chosen the switch-off dataset, given that it is the one for which we have found the
best fitness results so far) and the dataset obtained by simulating a network with exactly
the same topology as IRMA, but using the constant values represented by the particle
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itself. We point out that the fitness used by this PSO system is exactly the same as the
one used by GeNet. The only difference is that the search space of the PSO system is
restricted to networks that have the same topology as IRMA (what changes is just the
values of the constants). Furthermore, even though this may be an obvious considera-
tion, it is also worth pointing out that this technique cannot be used as a feasible reverse
engineering method to derive GRNs, because it is based on the previous knowledge of
the topology of the target network (which is exactly what reverse engineering methods
are supposed to discover). So, here we use this PSO system only to verify that, if we
force a network to have exactly the same topology as IRMA, we can find values of the
constants that allow us to perfectly match the time series data. In other words, we use
this PSO system to verify if IRMA can suitably be explained by the data.

The PSO has been executed with the following parameters setting: inertia = 0.01;
cognitive constant C1 = 1.9; social constant C2 = 1.9; number of particles in the swarm
= 500; number of iterations = 1000. Furthermore, the possible weights of the edges
have been restricted to the range [0, 3] and the nodes constants to the range [0, 1]. An
experiment made by 50 PSO runs returned the following results: the best particle had a
fitness value equal to 0.068; the average fitness (calculated over the best particle found
in each of the 50 runs) was equal to 0.151 with a standard deviation of 0.043. Surpris-
ingly, these results are worse than the ones returned by GeNet itself (reported in the
upper row of Table 3), while we were expecting that a network with the same topol-
ogy as IRMA should produce much better results. To the best of our consideration, this
result can have only one reasonable explanation: there are a lot of different networks,
even very different from each other, that can fit the data well. Even more importantly,
many possible networks with a completely different topology from IRMA explains the
data much better than IRMA itself as already indicated also by the GeNet results. This
is a further, and we believe quite clear, indication of the fact that the switch-off dataset
is not informative enough to describe the IRMA network2.

5 Conclusions and Future Work

One of the main motivations that drove us to define the GeNet system was that, differ-
ently from GRNGen introduced in [5], it allows us to evolve entire networks. In fact, in
order to reconstruct a network of N genes with GRNGen, one must solve N regression
problems with GP and then combine together the obtained results, and this fact clearly
limits the dimensions of the networks that can reasonably be reconstructed by GRNGen.
The results presented in this paper confirm that GeNet permits us to overcome this limi-
tation, by allowing us to reconstruct networks of several different dimensions in a quite
reliable way. Furthermore, this paper also shows that, even on the small network used to
present GRNGen in [5] (i.e. the well known IRMA network introduced in [3]), GeNet
obtains comparable (and in some case even better) results than GRNGen. Last but not
least, this work has allowed us to discover interesting facts about the IRMA network.
In particular, we have clearly shown that the switch-on and switch-off datasets reported
in [3] do not contain a sufficient amount of information to describe IRMA in detail.

2 Exactly the same qualitative conclusions can be drawn for the switch-on dataset, but we do not
report the results for lack of space caused by the strict page limit imposed to this publication.
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Our current research activity consists in testing the GeNet system on real (and very
large) GRNs. The results that our work will produce will in any case be an interesting
contribution, because, given the large number of genes, they simply could not have
been obtained using GRNGen. But, of course, we also want those results to have the
best possible quality. For this reason, while running the experiments on real networks,
we are also still working on some adjustments, improvements and details of the current
GeNet version. For instance, we are looking for the most effective parameter setting
and we are trying to define more effective genetic operators. We consider this study as a
long term and ambitious one, but we believe that this paper, introducing GeNet for the
first time, can represent the very first important step in this research track.
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Abstract. Multiobjective optimization is successfully applied in many
biological problems. Currently, most biological problems require to op-
timize more than one single objective at the same time, resulting in
Multiobjective Optimization Problems (MOP). In the last years, mul-
tiple metaheuristics have been successfully used to solve optimization
problems. However, many of them are designed to solve problems with
only one objective function. In this work, we study several multiobjec-
tive adaptations to solve one of the most important biological problems,
the Motif Discovery Problem (MDP). MDP aims to discover novel Tran-
scription Factor Binding Sites (TFBS) in DNA sequences, maximizing
three conflicting objectives: motif length, support, and similarity. For
this purpose, we have used the Artificial Bee Colony algorithm, a novel
Swarm Intelligence algorithm based on the intelligent behavior of honey
bees. As we will see, the use of one or another multiobjective adaptation
causes significant differences in the results.

Keywords: Artificial Bee Colony, Swarm Intelligence, DNA, motif
discovery, multiobjective optimization.

1 Introduction

Optimization is the process to find the best solution to a given problem, sat-
isfying a set of constrains. When the problem defines only a single objective
function, the procedure is simple, we have to find the best solution (called global
optimum), or a good approximation to it. However, when designing optimiza-
tion models, often we need to optimize more than one objective function at the
same time, these problems are known as Multiobjective Optimization Problems
(MOP) [1]. In MOPs the objectives are in conflict with each other, i. e., the
optimization of one objective causes a worsening in the others. Therefore, we
do not have a single optimal solution, but a set of optimal solutions known as
Pareto set. The solutions of this set are called nondominated solutions, and the
plot of the objective function values of these nondominated solutions results in
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the Pareto front. Metaheuristics are one of the most widely used techniques to
solve MOPs. From the several existing metaheuristics, evolutionary algorithms
are the most popular ones [2]. In this work, we tackle a MOP with different mul-
tiobjective adaptations of the Artificial Bee Colony (ABC) algorithm [3]. ABC is
a novel collective intelligence algorithm based on the foraging behavior of honey
bee swarms. It has been successfully applied to solve many optimization prob-
lems, and it has never been used to solve this kind of problems. The problem
addressed in our study is a multiobjective optimization model of one of the most
important biological problems, the Motif Discovery Problem (MDP), applied to
the specific task of discovering novel Transcription Factor Binding Sites (TFBS)
in DNA sequences [4]. As we will see, the use of a multiobjective adaptation or
another causes significant differences in the quality of the results. So, we must
choose carefully the multiobjective adaptation used in our metaheuristics when
solving a problem. Our main objective is to use standard concepts and func-
tions to adapt the ABC algorithm to the multiobjective context, since currently
there is not defined a multiobjective ABC. To provide a possible methodology
for choosing the best multiobjective adaptation for ABC and other algorithms,
is the main motivation of this paper. We have defined five multiobjective adap-
tations of ABC. The first one defines a multi-term fitness function which assigns
a weight to each objective to obtain a single fitness value. The second mul-
tiobjective adaptation uses the ranking and sorting methodology proposed by
Fonseca and Fleming in [5]. We have also experimented with a new methodology
that uses as a selection criterion the Hypervolume indicator (HV, [6]). With this
multiobjective indicator we can calculate the percentage of the problem search
space covered by one or more individuals, allowing us to know which solution
is able to cover a larger volume. This indicator is also used, in addition to the
Coverage Relation (CR, [7]), to compare the results obtained by our ABC mul-
tiobjective adaptations. Finally, we have tested two ABC adaptations where we
apply the most important functions of two standard multiobjective algorithms:
NSGA-II [8] and SPEA2 [9]. It is important to emphasize that we have con-
ducted a more detailed study of the best multiobjective adaptation, comparing
its predictions with those discovered by fourteen well-known biological methods
such as: AlignACE, MEME, or Weeder.

The rest of the paper is organized as follows. Section 2 presents a brief re-
view of existing works related to the MDP. It also defines the multiobjective
formulation of the problem. In Section 3 we include a description of the applied
evolutionary algorithms, detailing the operation of each multiobjective adapta-
tion. Section 4 is devoted to the experimentation, conducting a discussion of the
results. Finally, we present some conclusions and future lines in Section 5.

2 Motif Discovery Problem: Review and Formulation

In this section we present a brief review of several methods and techniques used
for finding motifs. Then, we explain the multiobjective formulation applied to
define the MDP, including a small example to facilitate the understanding of the
concepts.
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2.1 Brief Review of MDP Related Works

Several approaches in the literature organize the motif finding methods into two
groups: methods based on probabilistic models, and string-based methods. Prob-
abilistic methods represent the motifs by a position weight matrix and they are
usually designed to find longer or more general motifs. The most popular meth-
ods are Consensus, MEME, AlignACE, ANN Spec, Improbizer, MotifSampler,
GLAM, or the recently proposed SeSiMCMC. On the other hand, string-based
techniques are appropriate for finding totally constrained motifs, some examples
are Oligo/Dyad-Analysis, MITRA, YMF, QuickScore, or Weeder. Thanks to the
work [10] we can compare the results obtained by all these fourteen biological
methods with those obtained by our algorithm.

In the last years, there have appeared many proposals that use evolutionary
computation to solve the MDP. Most of these proposals are based on genetic
algorithms (GA), some examples are FMGA [11], St-GA [12], and MDGA [13].
Regarding to the not based on genetic algorithm techniques, we highlight the
TS-BFO algorithm [14], and DE/EDA [15]. All these methods employ a single
objective implementation, and the motif length is given beforehand, assuming
only one motif per sequence. Moreover, almost all of these algorithms try to
find motifs in all of the given sequences. In [16] and [17] the authors propose a
new multi-term fitness function. The objective of this process was to maximize
the similarity of the motifs, while avoiding saturation of low complexity solu-
tions. However, the best way to address the problems previously listed is using a
multiobjective approach. Kaya [18] proposed a multiobjective GA-based method
named MOGAMOD for discovering motifs, defining an effective multiobjective
formulation to address the MDP. Our algorithm uses this multiobjective formu-
lation, incorporating some biological constraints which allow us to better adapt
it to the real world.

2.2 Multiobjective Formulation of MDP

We define three conflicting objectives to tackle the MDP: motif length, support,
and similarity. Given a set of sequences S = {Si|i = 1, 2, ..., D} of nucleotides
defined on the alphabet B = {A,C,G, T } we define:

• A nucleotide sequence as Si = {Sj
i |j = 1, 2, ..., wi}, where wi is the sequence

width.
• The set of all the subsequences contained in S as {sjii |i = 1, 2, ..., D, ji =
1, 2, ..., wi − l + 1}, where ji is the binding site of a possible motif instance
sji on sequence Si, and l is the motif length.

• The consensus motif as a string abstraction of the motif instances.

Support is calculated by comparing each candidate motif with the consensus
motif, only those sequences that achieve a candidate motif of certain quality
with respect to the consensus motif (>=50%), will be taken into account when
we build the final motif. The final number of sequences used to build the final
solution is indicated by the support. To obtain the similarity value we also have
to define:
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• The Position Indicator Matrix (PIM) A = {Ai|i = 1, 2, ..., D} of a motif,
where Ai = {Aj

i |j = 1, 2, ..., wi} is the indicator row vector with respect to

a sequence Si, and where Aj
i is 1 if the position j in Si is a binding site, and

0 otherwise.
• The Position Count Matrix (PCM) N(A) with the numbers of different
nucleotide bases on each position of the candidate motifs (A) as N(A) =
{N(A)1, N(A)2, ..., N(A)l}, where N(A)j = {N(A)jb|b ∈ B} and N(A)jb =

|{S(A)ji |S(A)ji = b}|.
• The Position Frequency Matrix (PFM) as N̂ = N(A)

|A| generated by the nor-

malization of the dominant nucleotides of each position.

We calculate the final similarity value by averaging all the values of each PFM
column. As is indicated in the following expression:

Similarity(Motif) =

∑l
i=1 maxb{f(b, i)}

l
(1)

where f(b, i) is the score of nucleotide b in column i in the PFM andmaxb{f(b, i)}
is the value of the dominant nucleotide in column i.

To guide the pattern search to solutions that have biological relevance, we
have incorporated several constraints that should be satisfied by each solution:

• The motif length is restricted to the range [7,64].
• We set a minimum support value of 2 for the motifs of the data sets composed
by 4 sequences, and of 3 for the other ones.

• We apply the complexity concept [16] expanded with the improvements sug-
gested in [17] as a biological constraint. The complexity of the candidate
motifs should be considered in order to avoid low complexity solutions by
using the following expression:

Complexity = log10
l!∏
ni!

(2)

where l is the motif length, and ni is the number of nucleotides of type
i ∈ {A,C,G, T }.

2.3 MDP Example

In Figure 1 we include an MDP example with motif length = 9. This exam-
ple clarifies the methodology followed to obtain the values of the three defined
objectives. First, we build the consensus motif by using the candidate motifs.
Thus, we can check which candidates exceed the threshold value of support, i.
e., which candidates to consider and which not. In this example, five candidates
exceed this threshold value, then we have support = 5. By using these candidate
motifs we have also to build the PCM and the PFM with the occurrence rate
of each base at each motif position. Finally, to obtain the similarity value, we
apply Equation 1 with the values obtained by the dominant nucleotide at each
motif position, in this example we have similarity = 0.911.
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Fig. 1. An artificial motif discovery problem. From left to right it shows the candidate
motifs, the consensus motif and the candidates which have surpassed the threshold
value of Support, and lastly, the final motif, the position count matrix, and the position
frequency matrix.

3 Artificial Bee Colony

In this section we describe the operation of the Artificial Bee Colony (ABC)
algorithm. Then, we describe the five multiobjective adaptations presented to
solve the MDP.

3.1 Original ABC Algorithm

Artificial Bee Colony (ABC) is a novel Swarm Intelligence based algorithm pro-
posed by Karaboga [3]. It defines an optimization model based on the foraging
behavior of honey bees. The model consists of four main components: employed,
onlooker, scout foraging bees, and food sources. Employed bees exploit nectar of
the food sources, onlooker bees analyze the vicinity of the exploited food sources,
and the scout bees provide randomness to the process, exploring more remote
areas.

A general outline of ABC is shown below [3]:
1: Initialize randomly the population of solutions xi (employed bees)
2: Evaluate population
3: Until stopping criterion is not met, perform steps 4-8
4: Produce new solutions for employed bees: vij = xij + φij(xij − xkj),

applying a greedy selection process between xi and vi
5: Calculate the probability values Pi for the solutions xi

6: Produce new solutions for onlooker bees, applying the same greedy selec-
tion process than in step 4

7: Insert new randomly generated solutions for scout bees, expanding the
covered problem search space

8: Rank all solutions to assign the best food sources to the employed bees
of the next generation
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3.2 Multiobjetive ABC Algorithm

The multiobjective dominance concept [1] indicates that all solutions belonging
to the same Pareto front are equally good. If we analyze the outline of ABC, we
can detect in which parts there are conflicts for selecting the best solution (or
solutions) from a given set of individuals. In steps 4 and 6 we have two possible
conflicts when generating and selecting new solutions for employed and onlooker
bees. In step 8, we can find another conflict when we have to select the best
food sources for the employed bees of the next generation. To know what solu-
tions we have to choose in each case, we must define a multiobjective selection
methodology that allow us to know which individual is the best. To address
this selection problems, we define five multiobjective adaptations based on sev-
eral multiobjective techniques and indicators. Now, we describe the operation of
each multiobjective adaptation utilized to address these conflicts, including the
pseudocode used to tackle the multiobjective sorting function of step 8.

The first adaptation (MOABCv1) addresses a MOP as a single-objective
problem. It assigns weights (equal to 1/3, since all three objectives are equally
important) to each objective, performing then a normalized sum of their val-
ues. Thus, we obtain a single fitness value that allows us to make compar-
isons without any difficulty. Its multiobjective sorting function is detailed in
Algorithm 1. The second adaptation (MOABCv2) uses the rank-based fitness
assignment method proposed by Fonseca and Fleming in [5]. Applying this tech-
nique, we obtain a single fitness value for each solution, and we can solve the
selection conflicts described above. The pseudocode of the sorting function of
this second adaptation is shown in Algorithm 2. The third multiobjective ABC
adaptation (MOABCv3) bases its behavior on the dominance concept and on
an indicator widely used in multiobjective evolutionary computation, the HV
indicator [6]. First, we organize the population by fronts, and then, we apply the
HV to check what solution covers a larger volume of the problem search space.
This version uses the HV to rank the solutions in each Pareto front. By using
this new methodology, we solve the problems for choosing the best multiobjec-
tive solutions. We show its multiobjective sorting function in Algorithm 3. The
following multiobjective adaptation (MOABCv4) is based on the main concepts
defined by a standard multiobjective evolutionary algorithm such as NSGA-II
[8]. MOABCv4 applies two key functions of NSGA-II: the nondominated sort
and the crowding distance calculation. The first one organizes the population by
Pareto fronts, as happened in MOABCv3, providing a provisional ranked popu-
lation. In the second function, we calculate the crowding distance value of each

Algorithm 1. MOABCv1 - multi-term fitness
Input: colony C
Output: sorted colony, the first half of bees made up the new population of employed bees
1: /* We obtain the multi-criteria fitness for each colony bee */
2: for i = 1 to ColonySize do
3: C[i].MCFitness ⇐ w1(C[i].length) + w2(C[i].support) + w3(C[i].similarity)
4: end for
5: C ⇐ sortColonyUsingMCFitness(C)
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Algorithm 2. MOABCv2 - rank-based fitness
Input: colony C
Output: sorted colony, the first half of bees made up the new population of employed bees
1: /* We sort the colony by using a rank-based fitness assignment */
2: for i = 1 to ColonySize do

3: C[i].rank ⇐ 1 + p
(t)
i //where p

(t)
i is the number of solutions that dominates xi

4: end for
5: C ⇐ sortColonyUsingRank(C)

Algorithm 3. MOABCv3 - ranking + hypervolume
Input: colony C
Output: sorted colony, the first half of bees made up the new population of employed bees
1: /* We sort the colony by using the hypervolume covered by each solution*/
2: for i = 1 to ColonySize do
3: C[i].rank ⇐ nondominatedRanking(i) //irnk

4: C[i].hv ⇐ calculateSolutionHypervolume(i) //ihv

5: end for
6: /* We define an order ≺n as i ≺n j if ((irnk < jrnk)or((irnk = jrnk)and(ihv > jhv))) */
7: C ⇐ sortColonyUsingRankingAndHypervolume(C)

Algorithm 4. MOABCv4 - ranking + crowding distance
Input: colony C
Output: sorted colony, the first half of bees made up the new population of employed bees
1: /* We sort the colony by using the two key features of the NSGA-II algorithm */
2: for i = 1 to ColonySize do
3: C,#paretoFronts ⇐ nondominatedSort(C) //irnk

4: for j = 1 to #paretoFronts do
5: C ⇐ crowdingDistanceCalculation(C,j) //icw
6: end for
7: end for
8: /* We define an order ≺n as i ≺n j if ((irnk < jrnk)or((irnk = jrnk)and(icw > jcw))) */

9: C ⇐ sortColonyUsingRankingAndCrowding(C)

Algorithm 5. MOABCv5 - strength + raw fitness
Input: colony C
Output: sorted colony, the first half of bees made up the new population of employed bees
1: /* We sort the colony by using the two key features of the SPEA2 algorithm */
2: for i = 1 to ColonySize do
3: C[i].strength ⇐ calculateBeeStrength(i)
4: end for
5: for i = 1 to ColonySize do
6: C[i].rawFitness ⇐ calculateBeeRawFitness(i)
7: end for
8: C ⇐ sortColonyUsingRawFitness(C)

solution in order to sort the individuals within each Pareto front. The crowding
distance concept serves as an estimation of the cuboid perimeter formed by using
the nearest neighbors as vertices, and lets us to know which solutions provides
greater spreads. The general outline of its multiobjective sorting function is in-
dicated in Algorithm 4. Finally, we propose MOABCv5 that incorporates the
main characteristics of other well-known multiobjective evolutionary algorithm,
the SPEA2 algorithm [9]. In this algorithm, the fitness assignment strategy (also
called raw fitness) is divided into two parts: a first, where we determine the num-
ber of solutions that dominates each individual (strength), and a second, where
we consider the number of individuals by which each individual is dominated.
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The sum of the individual forces (strengths) that dominate a given solution is
its raw fitness. Note that the lower is the force with which an individual is domi-
nated, the better is the solution. In Algorithm 5, we include the sorting function
used in MOABCv5.

4 Experimental Results

In this section we explain the methodology followed to configure each algorithm,
describing the instances used in our experimentation. We also include the results
achieved by the designed adaptations, comparing the obtained results with those
obtained by two standard multiobjective algorithms (NSGA-II [8] and SPEA2
[9]), and with those obtained by fourteen well-known biological methods.

In each experiment we have performed 30 independent runs to ensure the
statistical significance in the results. We have used the HV [6] as multiobjective
metrics, calculating the reference volume from the maximum value of each objec-
tive in each instance. To analyze the performance of the algorithms, we have also
used the CR [7] indicator, which is useful to know what algorithm gets the best
Pareto fronts. All experiments have been performed on a Pentium 4 (2.8 GHz)
with 1 GB of RAM by using gcc without optimization options. As benchmark,
we have used twelve real sequence data sets selected from TRANSFAC database
[19]. In Table 1, we describe the properties of each instance. In Table 1, we
also include the established runtimes (in seconds). Figure 2 shows the individual
representation used in our algorithms. It represents the motif length, and the
starting positions of each candidate motif in each sequence. Finally, we have ad-
justed the parameter values of the algorithms to obtain the best configuration to
solve the MDP. The parameter values used are the same as in [20]. Once defined
the followed methodology and the parameter settings, we can proceed to com-
pare the results obtained by the multiobjective adaptations. The first comparison
uses the HV [6], and it is shown in Table 2. Analyzing the results of Table 2,
we notice how the second multiobjective adaptation (MOABCv2, which applies
the fitness assignment method proposed by Fonseca and Fleming [5]) achieves the

Table 1. Data set properties

#Seq. Size #Nucl. Time (s)
dm01g 4 1500 6000 15
dm04g 4 2000 8000 15
dm05g 5 2500 12500 15
hm03r 10 1500 15000 25
hm04m 13 2000 26000 25
hm16g 7 3000 21000 15
mus02r 9 1000 9000 15
mus03g 4 1500 6000 15
mus07g 12 500 6000 25
yst03m 8 500 4000 15
yst04r 7 1000 7000 15
yst08r 11 1000 11000 25

Seq. 0 Seq. 1 Seq. 2 Seq. n
Motif Length S0 S1 S2 ... Sn

Fig. 2. Individual representation
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best results, obtaining the greater hypervolume in seven of the twelve instances
tested, and the second best result in four of the remaining five. In these exper-
iments we have also performed an exhaustive statistical study to demonstrate
that the differences among the algorithms are statistically relevant. For doing
this, we have applied the methodology described in [21], where the authors an-
alyze the sample distributions and the variance homogeneities applying several
tests. Depending on the results of these tests, the authors apply parametric or
non-parametric tests, always considering a confidence level of 95%. Successful
tests are marked with ‘+’ in the last column of Table 2, and negative tests are
indicated with ‘-’. As we can see all the differences are statistically significants.
The second comparison uses the CR [7] indicator. Applying this indicator we
can compare the nondominated solutions discovered by two algorithms by using
the dominance concept. It considers that a covers b if and only if a dominates to
b or both belong to the same Pareto front, i. e., a � b. Table 3 shows the results
of this comparison. If we analyze Table 3 by rows, we see how, again, the second
multiobjective adaptation covers a higher percentage of solutions of the other
algorithms, achieving an average coverage result of 84.54%. Moreover, if we ex-
amine Table 3 by columns, we see how this adaptation (MOABCv2) is the least
covered by the other multiobjective adaptations and algorithms with an aver-
age coverage percentage of 21.39%. These results demonstrate that MOABCv2
discovers DNA motifs that dominate those discovered by the other algorithms.
Moreover, these predictions are not dominated by the predictions made by the
other algorithms.

Finally, we have analyzed the motifs discovered by our best multiobjective
adaptation (MOABCv2), comparing them with those predicted by fourteen
well-known biological methods such as [10]: Consensus, MEME, MEME3, Alig-
nACE, ANN Spec, Improbizer, MotifSampler, GLAM, SeSiMCMC,
Oligo/Dyad-Analysis, MITRA, YMF, QuickScore, and Weeder. Thanks to the
methodology defined in [10], we can compare the results obtained by all these
biological methods with those obtained by our algorithm. To carry out this com-
parison, we have used the same biological indicators as in [10]: Sensitivity (nSn),
Positive Predictive Value (nPPV ), Performance Coefficient (nPC), and Corre-

Table 2. Median and IQR of the algorithm hypervolumes

MOABCv1 MOABCv2 MOABCv3 MOABCv4 MOABCv5 NSGA-II SPEA2

Instance H̃V IQR H̃V IQR H̃V IQR H̃V IQR H̃V IQR H̃V IQR H̃V IQR

dm01g 79.03% 0.007 83.81% 0.005 83.27% 0.011 83.49% 0.009 83.38% 0.012 81.51% 0.005 83.00% 0.006 +
dm04g 79.17% 0.008 84.31% 0.009 83.62% 0.014 83.71% 0.010 84.04% 0.009 81.09% 0.007 82.28% 0.012 +
dm05g 83.74% 0.006 87.01% 0.007 86.37% 0.006 86.18% 0.007 86.41% 0.010 84.33% 0.006 86.17% 0.007 +
hm03r 51.80% 0.021 61.47% 0.015 60.90% 0.029 58.71% 0.018 61.64% 0.018 47.81% 0.044 52.97% 0.011 +
hm04m 44.71% 0.009 57.66% 0.019 55.60% 0.020 56.34% 0.020 57.04% 0.027 43.57% 0.026 46.48% 0.014 +
hm16g 64.82% 0.024 82.45% 0.036 83.27% 0.061 77.54% 0.037 81.89% 0.045 68.27% 0.018 72.03% 0.012 +
mus02r 54.23% 0.011 65.80% 0.018 64.05% 0.036 65.08% 0.016 64.07% 0.022 59.19% 0.011 59.39% 0.009 +
mus03g 75.24% 0.005 80.05% 0.008 79.65% 0.007 79.85% 0.008 79.74% 0.007 77.19% 0.003 77.56% 0.006 +
mus07g 79.77% 0.011 89.08% 0.042 89.29% 0.019 89.38% 0.010 89.20% 0.037 87.00% 0.005 89.50% 0.005 +
yst03m 62.30% 0.018 70.47% 0.024 68.96% 0.034 71.25% 0.013 69.91% 0.016 65.17% 0.020 66.27% 0.017 +
yst04r 67.37% 0.007 76.28% 0.007 75.19% 0.013 74.47% 0.010 75.58% 0.012 74.77% 0.004 71.46% 0.009 +
yst08r 51.02% 0.011 62.64% 0.024 61.29% 0.029 57.52% 0.017 61.60% 0.018 64.82% 0.011 57.08% 0.021 +
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Table 3. Coverage Relation (A � B)

A \ B MOABCv1 MOABCv2 MOABCv3 MOABCv4 MOABCv5 NSGA-II SPEA2 average
MOABCv1 - 1.78% 2.02% 2.00% 2.60% 20.92% 12.84% 10.07%
MOABCv2 99.23% - 57.68% 62.80% 86.01% 97.07% 90.83% 84.54%
MOABCv3 99.11% 46.83% - 49.27% 72.87% 93.59% 88.62% 78.20%
MOABCv4 99.22% 51.91% 59.27% - 84.27% 96.62% 89.55% 82.50%
MOABCv5 99.11% 23.98% 26.11% 37.67% - 90.15% 82.97% 65.11%
NSGA-II 81.25% 4.56% 6.23% 10.03% 13.39% - 42.52% 31.78%
SPEA2 90.07% 14.16% 17.10% 16.40% 21.68% 60.17% - 42.86%
average 91.17% 21.39% 24.98% 26.54% 41.45% 71.34% 62.14%

lation Coefficient (nCC). These biological indicators are calculated with the
values of TP (True-Positives), TN (True-Negatives), FP (False-Positives), and
FN (False-Negatives), obtained by comparing the set of known binding sites for
each instance, with the predictions made by each method (all this information is
available in http://bio.cs.washington.edu/assessment). Table 4 shows the
results of this comparison. To organize the large amount of biological data, and
to make this comparison more understandable, first, we have selected the best
predictions of the best biological method for each indicator in each instance (in-
formation included in the second column of the tables). Then, we have selected
the best motif from the set of the nondominated solutions predicted by our al-
gorithm (the motif with the highest value of each indicator). This information is
included in the third column of the tables. Finally, in the last column we show

Table 4. Comparison of biological indicators

Sensitivity (nSn) Positive Predictive Value (nPPV)
Instance best value (method) MOABCv2 Increase best value (method) MOABCv2 Increase
dm01g 0.344000 (SeSiMCMC) 0.472000 0.128000 0.344000 (SeSiMCMC) 1.000000 0.656000
dm04g 0.022222 (MotifSampler) 0.392593 0.370371 0.032967 (MotifSampler) 1.000000 0.967033
dm05g 0.037500 (MEME) 0.306250 0.268750 0.026667 (MEME) 1.000000 0.973333
hm03r 0.063726 (MEME) 0.291667 0.227942 0.108333 (MEME) 0.660714 0.552381
hm04m 0.005952 (AlignACE) 0.273810 0.267858 0.006061 (AlignACE) 0.370370 0.364309
hm16g 0.000000 (-) 0.390244 0.390244 0.000000 (-) 0.681818 0.681818
mus02r 0.094828 (MEME) 0.288793 0.193965 0.142857 (MEME) 0.761364 0.618507
mus03g 0.281690 (AlignACE) 0.521127 0.239437 0.256410 (AlignACE) 1.000000 0.743590
mus07g 0.040000 (ANN Spec) 0.540000 0.500000 0.020942 (ANN Spec) 1.000000 0.979058
yst03m 0.340136 (Improbizer) 0.272109 -0.068027 0.700000 (YMF) 0.904762 0.204762
yst04r 0.335878 (Consensus) 0.588785 0.252907 0.357143 (MITRA) 0.750000 0.392857
yst08r 0.387097 (AlignACE) 0.258065 -0.129032 0.786408 (MotifSampler) 0.571429 -0.214979

Performance Coefficient (nPC) Correlation Coefficient (nCC)
Instance best value (method) MOABCv2 Increase best value (method) MOABCv2 Increase
dm01g 0.207730 (SeSiMCMC) 0.414062 0.206333 0.330043 (SeSiMCMC) 0.629028 0.298985
dm04g 0.013453 (MotifSampler) 0.279221 0.265768 0.013401 (MotifSampler) 0.488895 0.475494
dm05g 0.015831 (MEME) 0.212121 0.196290 0.006491 (MEME) 0.415052 0.408561
hm03r 0.041801 (MEME) 0.238710 0.196909 0.063601 (MEME) 0.414497 0.350896
hm04m 0.003012 (AlignACE) 0.171875 0.168863 -0.000400 (AlignACE) 0.291424 0.291824
hm16g 0.000000 (-) 0.294931 0.294931 -0.005204 (MEME) 0.458497 0.463701
mus02r 0.060440 (MEME) 0.264822 0.204382 0.097480 (MEME) 0.461257 0.363777
mus03g 0.155039 (AlignACE) 0.418301 0.263262 0.222480 (AlignACE) 0.605236 0.382756
mus07g 0.013937 (ANN Spec) 0.465517 0.451580 0.006056 (ANN Spec) 0.649290 0.643234
yst03m 0.261905 (oligodyad) 0.223464 -0.038441 0.437304 (oligodyad) 0.373357 -0.063947
yst04r 0.202765 (Consensus) 0.413043 0.210278 0.322430 (Consensus) 0.581656 0.259226
yst08r 0.269103 (MotifSampler) 0.174174 -0.094929 0.470596 (MotifSampler) 0.317704 -0.152892

http://bio.cs.washington.edu/assessment
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the obtained increases. It is important to note that, while the biological methods
only perform well in an specific set of instances (e. g., yeast instances), our pro-
posal discovers good motifs in all of them, regardless of the species. Therefore,
we can assume that our multiobjective adaptation will also work well with other
kind of instances.

5 Conclusions and Future Work

In this work we demonstrate that the use of a good multiobjective adaptation
is important to solve MOPs optimally. To do this, we have defined five multi-
objective adaptations of the Artificial Bee Colony (ABC) algorithm to solve an
important biological MOP, the Motif Discovery Problem (MDP). After compar-
ing the results obtained by the five multiobjective adaptations among them, and
with two standard multiobjective algorithms such as NSGA-II and SPEA2, we
have noticed as the second adaptation (Algorithm 2) achieves the best results. In
addition, we have compared the motifs discovered by the best ABC multiobjec-
tive adaptation with those predicted by fourteen well-known biological methods,
checking that our predictions are biologically relevant. As future work, we intend
to apply this multiobjective study to other evolutionary algorithms.
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Abstract. Genetic mutation is an essential factor in the evolution of
biological organisms and a driving force of phenotypical innovation. On
rare occasions, nature takes a major evolutionary leap during which an
organism’s gene repertoire suddenly doubled. Genetic mutation affects
both the whole genome duplication as it happens, and also during all the
subsequent evolutionary steps. We develop a Boolean model of gene reg-
ulatory networks that simulates the duplication event and subsequent
Darwinian evolution using an evolutionary algorithm. We analyze the
role of these two different types of mutations on synthetic systems. Our
results show that high duplication mutation rate triggers the develop-
ment of new phenotypes, advantageous in a changing environment, to
the detriment of environmental robustness. Additionally, our research
highlights the necessity of a low evolutionary mutation rate for the sur-
vival of duplicated individuals within a mixed population, ensuring the
spreading novel phenotype. We conclude that both types of mutations
play complementary roles in determining the successful propagation of
organisms with duplicated genomes.

Keywords: Whole Genome Duplication, duplication mutations, evolu-
tionary mutations, fitness, robustness.

1 Introduction

Evolution is nature’s way of giving living organisms the opportunity to develop
new abilities and adapt to their (changing) environment. It is at the origin of
the diversity at every level of biological organization, from species, to individual
organisms, to the genes themselves. Evolution happens across successive gen-
erations through three main mechanisms: natural selection, recombination and
mutation. Throughout millennia, evolution has been constantly operating at a
slow pace, steadily increasing the robustness and fitness of biological organisms.
In rare cases, evolution takes a giant leap, duplicating parts or the totality of a
genome, usually in response to drastic environmental changes.

Studies have examined the effect of evolutionary mutation rate on the speed
of adaptive evolution and introduce the idea of “survival of flattest”, where high
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evolutionary mutation rate tends to select the genotype with flatter regions of
the fitness landscape although they occupy lower fitness peaks [21]. However, the
effect of mutation during major evolutionary jumps, and during the following
evolutionary steps, although well established phenomena, remain open questions.
In a preliminary work [14], we proposed a Boolean model that simulates whole
genome duplication (WGD) in simple biological organisms, and studied the ef-
fect of subsequent diversification. In the present article, we build on that model,
refining it to mimmic even more closely the behavior observed in biology, and
address the role of the two different types of mutations: the duplication mutation
(DM) that happens once during the duplication process, and evolutionary mu-
tation (EM) happening at every generation. Using Random Boolean Networks
(RBNs) [10] to model the dynamics of gene regulatory networks (GRNs), we
simulate WGD events in simple synthetic biological organisms. We separately
quantify the effect of DM and EM on environmental robustness and evolutionary
innovation. Then, we investigate the effect of EM on the survival of duplicated
and non-duplicated individuals in a mixed population. We conclude by discussing
the results and offering possible future research directions.

2 Background

At the gene level, a regulatory network, or GRN, is made of a set of genes, as
vertices, linked by gene-products (protein, mRNA, miRNA), as directed edges,
representing the regulatory influence of a source gene on a target gene. Though
extremely complex, by abstracting number of the particular kinetics of the bio-
chemical interactions, one can still study the global dynamics of GRNs. Random
Boolean networks (RBNs), where N vertices represent the binary (on/off ) ex-
pression state of the genes, have been extensively used to model the temporal
changes in simple GRNs [10]. The expression of each gene is governed by a
randomly generated Boolean function of its upstream gene(s) with probability
pexpr. Every vertex changes its expression state instantaneously, synchronously,
and in discreet time steps. The set of all expression states of all genes at any
given time t is called a configuration. As the system is finite, there are 2N pos-
sible configurations. Therefore, starting in an arbitrary initial configuration, the
system deterministically travels through a sequence of transient configurations.
It will eventually encounter a previously visited configuration, thus entering a
limit cycle called an attarctor.

By tuning the input and output degree distributions of the underlying di-
rected network and the expression probability within the Boolean function, the
RBN dynamics undergoes a phase transition from an ordered regime, with short
and stable attractors, to chaotic regime, with longer attractors that are more
sensitive to small perturbations. According to Kauffman’s conjecture, biological
organisms operate in the ordered regime, at the edge of chaos, in a region called
critical. The critical regime offers a tradeoff between the ability to withstand
environmental perturbations (robustness) and the ability to utilize these pertur-
bations for evolutionary innovation (evolvability) [2]. Regardless of the level of
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biological organization, living organisms display remarkable resilience to chang-
ing conditions, and at the same time, they are able to respond to these changes
by developing novel phenotypes. At first glance, these qualities seem paradoxical,
yet both empirical [7,8] and theoretical [2,20] analyses suggest that they are, in
fact, complementary.

When a more rapid, or more profound response is made necessary by sudden
and extreme environmental perturbations, biological organisms may undergo a
drastic evolutionary process in the form of a whole genome duplication (WGD).
During a WGD, the entire gene repertoire of an organism, including the regula-
tory interactions, is doubled [16]. WGD has long been recognized as a driver of
evolutionary innovation [12] and recent genetic analyses have demonstrated sev-
eral major evolutionary transitions resulted from ancient WGD events [11,6,17].
The duplication of genetic materials has implications for environmental robust-
ness, as redundant genes diverge to compartmentalize the original function of the
ancestral gene (subfunctionalization) [16]. In S. cerevisiae, for example, this oc-
curs through the differential expression of redundant genes under various growth
conditions [9]. WGD also has implications for evolutionary innovation, as du-
plicate genes diverge to acquire new functions (neofunctionalization) [16]. In S.
cerevisiae, the ability to consume glucose and grow anaerobically have both been
attributed to the genetic diversification that followed a WGD event [15].

Immediately after undergoing a WGD event, the stability, and thus the fitness
of the new phenotypes is generally greatly reduced [19]. Because a non-duplicated
organism is supposedly optimally adapted to its (ancestral) environment, WGD
is highly detrimental to the organism, and is oftentimes fatal. When such a large
quantity of genetic material is produced at once, the number of transcriptional
errors increases dramatically, leading to phenotypes ill adapted to their ancestral
environment. We call this the duplication mutation (DM). However, duplicate
genes also supply new genetic material, which can be shaped via evolutionary
mutation (EM) and selection to produce novel functions. These functions may
allow for more rapid adaptation if a new environment is encountered, providing
potential fitness benefits [19].

3 Methods

3.1 RBN Topology

In RBN, the topology of the underlying network has an crucial influence on
system dynamics [3,13,2]. Empirical evidence suggest that, unlike Kauffman’s
original random connectivity, the output degree distributions of GRNs of sev-
eral organisms is highly inhomogeneous [3,1]. There is a small number of hubs
with high outgoing connectivity, and the vast majority of the nodes are, on the
contrary, sparsely connect. Thus, the outgoing degree distribution is heavy tailed,
following a power-law distribution p ∼ ax−γ . The incoming degree distribution
is much more homogeneous, following a Poisson distribution centered around the
network’s average degree k̄. Our RBN topologies are generated accordingly, as
described by [5]. We consider RBNs with N = 10 nodes prior to duplication and
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N = 20 nodes after duplication due to the high computational cost. RBNs are
initialized near the most biological relevant regime by setting the probability of
gene expression within the look-up table pexpr to 0.5 and the scaling exponent γ
to 1.894 [2].

3.2 Genome Wide Duplication and Duplication Mutation

In our synthetic systems, unlike in nature, we are able to simulate a perfect WGD
event that does not change its dynamical behavior. First, we create a mirror-
image of the original RBN. Then, duplicate and original components are linked
by new edges from the source nodes in one component to the targets in the other
(Fig.1). After duplication, each node has twice as many inputs and outputs as
the corresponding node in the original (non-duplicated) system. As a result, the
number of entries in the look-up table is squared. Supplementary entries are
populated to simulate redundancy. This mimics the biological scenario, when
the original gene or it duplicate is expressed, the gene’s product is present in the
medium; otherwise, if both are repressed, original gene’s product is absent.
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Fig. 1. Duplication of RBNs: (a) original (non-duplicated) system and (b) duplicated
system. After duplication, each node has twice as many edges. The black edges in-
dication the pre-existing edges whereas the grey edges represent the new edges. To
expand the Boolean rule table, we mimic the original biochemical influences. For ex-
ample, when b and b′ are both repressed, the function is identical to b is repressed in
the original rule; when at least one of b and b′ is expressed, we consider that the b’s
gene product is present in the medium.

Finally, to simulate the imperfect WGD in a biological organisms, we intro-
duced DM in the Boolean function. With a probability MD (also called DM
rate), entries in the Boolean rules are flipped. We explore in detail the effect of
a wide range of MD values in Section 4.

3.3 Environmental Robustness

Environmental perturbations come in many forms, including alterations in tem-
perature, growth medium, or biotic environment. A RBN is environmentally
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robust if its phenotype is insensitive to these non-genetic perturbations. We
measure environmental robustness as the sensitivity of a RBN to the perturba-
tion of a single, randomly chosen configuration of its attractor. Specifically, we
systematically perturb the state of each node in the randomly chosen configura-
tion, one at a time, and measure the proportion of perturbations in which the
RBN returns to its original attractor.

3.4 Evolutionary Innovation

An evolutionary innovation can be thought of as a change in phenotype that
confers a fitness advantage. In our system, the phenotype is represented by the
attractor. To assess evolutionary innovation, we measure the fitness of a RBN
as the ability of its attractor to match a target attractor. This target attractor
represents the gene expression pattern required for optimal adaptation to a given
environment [13]. Fitness thus provides a proxy for evolutionary innovation.

For each RBN, we randomly select a single output node and record the se-
quence of output states σout while the system is cycling in the attractor. The
fitness F of a RBN is then calculated as the Hamming distance between the
output and target sequences,

F = max

⎧⎨
⎩1− 1

lcm(L,Lc)

lcm(L,Lc)∑
t=1

|σout(t)− σtarget(t)|
⎫⎬
⎭ , (1)

where L is the length of the output sequence, Lc is the length of the target
sequence, and lcm denotes the least common multiple. To facilitate the compari-
son of sequences with L �= Lc, both sequences are concatenated onto themselves
until they are of length lcm(L,Lc). To ensure that fitness is independent of the
starting position of the output sequences, we take the maximum fitness over all
cyclic permutations of σout. All fitness reported in this article are average of the
whole population.

3.5 Evolution and Evolutionary Mutation

We simulate the evolution of randomly initialized populations of 100 RBNs,
each is paired with its own, randomly chosen Boolean function in the form of a
lookup table, and initial state which do not change throughout the evolutionary
trajectory of its lineage. Each population is evolved for 1000 to 2000 discrete,
non-overlapping generations, and experiments are replicated independently 100
times. In every generation, the fitness of each RBN is assessed according to Eq. 1.
RBNs are then selected with uniform probability, with replacement, to compete
in binary tournaments. Within a tournament, the RBN with the highest fitness
is selected to move on to the next generation, after undergoing evolutionary
mutation. EM only affects the RBN’s look-up tables, such that the entries in
the look-up tables associated with each vertex undergo bit-flip mutation with
probability ME. A wide range of different ME values will be explored in the
experimental part in Section 4. This process of selection and mutation is repeated
until the next generation is fully populated.
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4 Experimental Results

4.1 Duplication Mutations in an Ancestral Environment

To simulate an ancestral environment, we assume the original RBNs are opti-
mally adapted to their environment. We use this optimal phenotype (single gene
expression sequence) as the target to evaluate the fitness of the duplicated sys-
tems. When measure the fitness immediately after a perfect duplication,MD = 0,
the RBNs display the exact same attractors as their non-duplicated counterparts.
Therefore, they maintain an optimal fitness F = 1.0 in the ancestral environment
(left-most point in Fig. 2).

However, once we introduce DM, the fitness decreases rapidly asMD increases.
Figure 2 shows the results of these experiments in a log-lin scale.
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Fig. 2. Effect of DM on instant fitness in ancestral environment. The average fitness
and standard deviation are reported for 10,000 independent repetitions.

Even though perfectly the duplicated RBNs exhibit the same phenotype as the
non-duplicated, the duplication event proceeds to shift the gene expression pexpr
away from 0.5 (left and center panels of Fig. 3c). This phenomenon makes the
Boolean functions more canalizing, which in turn tilts our systems closer towards
the ordered regime with attractors that are short and stable. The redundancy
in the perfectly duplicated RBNs and the canalization of the rules lead to an
increase of environmental robustness (two left-most points in Fig. 3a).

Once we introduce DMs in the system, pexpr move towards 0.5 (right panel
of Fig. 3c). Now, the RBNs shifts closer to the chaotic regime as the DM rate
increases, with longer, less stable attractors. Consequently, we observe a decrease
in the environmental robustness in Fig. 3a and an increase in attractor length
in Fig. 3b as the DM rate increases.

These results are consistent with the negative effect of WGD observed in
biological organisms where the duplication is imperfect and detrimental to the
organism in its ancestral environment.
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Fig. 3. Effect of DM on: (a) robustness, (b) attractor length and (c) distribution of
Pexpr. Results depicts 10000 replicates.

4.2 Effects of Mutations on Evolutionary Innovation

To understand the effect of mutations on the evolutionary innovation capabilities
of RBNs, we have to present both original and duplicated systems with a novel
environment they must adapt to. Consequently, we produce a random phenotype
in the form of a gene expression pattern of length 10 that becomes the target
sequence the output gene of our systems must evolve towards. We investigate
separately the effect of DM (thus fixing the EM to a constant rate) and the effect
of EM (fixing the rate of DM).

Duplication Mutation: As we focus exclusively on DM, we fix the EM rate to
ME = 0.002 for the rest of this section. Perfectly duplicated RBNs achieve higher
fitness than original systems during the evolution process (Fig. 4a). However, this
advantage comes at the cost of environmental robustness (Fig. 4b). Imperfect
duplicates achieve even higher fitness. RBNs show marginally longer attractors
and lower robustness with the increasing of MD (Fig. 3b and inset). We explore
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Fig. 4. Effect of DM in evolution on: (a) fitness and (b) environmental robustness
of RBNs with MD ∈ [0, 0.2, 0.4] under fixed evolutionary mutation rate (ME=0.002).
Inset in panel (b) depicts attractor length change during evolution. Mean and standard
deviation are reported for 100 repeats. Scale of x axis is identical in all panels, including
the inset.

MD ∈ [0, 10−4, 10−3, 10−2, 10−1, 0.2, 0.3, 0.4]. For readability reasons, we only
show results for more extreme values. The trends are however similar.

These results are consistent with the finding that WGD is beneficial in a
novel environment. Moreover, besides the duplication itself, the DM further in-
crease the fitness a population can reach in evolution at the cost environmental
robustness.

Evolutionary Mutations: From a biological viewpoint, successful WGD
events that produce viable phenotypes are extremely rare. In this section, we
focus on the effect on EM, and fix the duplication mutation rate to MD=0.1
which is believed to be orders of magnitude higher than the evolutionary mu-
tation rate [16]. We explore a wide range of evolution mutation rates ME ∈
[10−4, 10−3, 10−2, 10−1] and report the results after 1000 generations in Fig. 5.
We observe that although the extreme values of ME do not cause significant
difference in fitness between different individuals, there is a transition in the
intermediate values, where duplicated systems yield higher fitness than non-
duplicated ones for ME = 10−3 whereas this trend is inverted for ME = 10−2

(Fig. 5a). Regardless of the EM rate, non-duplicated RBNs maintain a more
constant, and generally higher environmental robustness (Fig. 5b).

To understand why different EM rates influence different RBNs differently,
we need to examine how robust the systems are to genotypical mutations. Thus
we measure the mutational robustness, which is the insensitivity of the RBNs
phenotype to the genetic perturbations. Mutational robustness is evaluated by
flipping each entry of its Boolean rules with a probability pm and measuring
whether the system fall into the same attractor before and after the perturbation
[20]. Values reported in Fig. 6b are averaged over 1000 different perturbations
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Fig. 5. Effect of EM in evolution: (a) fitness of RBNs at generation 1000 and (b)
environmental robustness at generation 1000. Values are reported as the average and
standard deviation over 100 runs.

on RBNs at the end of the evolution (ME = 10−3). In addition, we measure the
fitness of these genetically perturbed RBNs and report those values in Fig. 6a.

When the Boolean rules are perturbed, the original RBNs always show higher
mutational robustness than the duplicated ones (Fig. 6b). This leads to a flat-
ter fitness landscape of the original RBNs than that of the duplicated ones in
Fig. 6a.

Therefore, although the duplicated RBNs generate fitter phenotypes at ME =
10−3, they are also more fragile to genotypical mutations. When the EM rate is
higher, systems are unable to maintain the fitness during evolution. Oppositely,
the non-duplicated models are more robust to genotypical mutations and thus
maintain the fitness better under high EM rate.

4.3 Survival of the Duplicated RBNs

The difference in fitness between the original and the duplicated RBNs over the
spectrum of EM rates raises the question whether the dominance of duplicated
systems is dependent on the EM rate. Specifically, if WGD only affects a subset
of the population at generation zero, whether the EM rate changes which of the
duplicate or original individuals will dominate the population at the end of the
evolutionary process. To answer this question, we constructed mixed populations
with an equal number of non-duplicated and duplicated RBNs. We evolve them
under different EM rates. We observe a phase transition reported in Fig.7. When
the EM rate ME=10−3, the duplicated RBNs take over the entire population
in ∼ 70% of the repetitions. Whereas when ME=10−2, it is the non-duplicated
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RBNs that overtake in the same proportion. This is a prime example of the
“survival of flattest”, where individual with generally lower, but more constant
fitnesses get selected over those with higher but narrow fitness peaks [21].
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5 Discussion

We have used Random Boolean Networks (RBNs) to investigate the role of two
different, yet complementary types of mutations in whole genome duplication
(WGD) event. Despite their abstract nature, RBNs are able to closely model
and predict a wide range of cellular and molecular phenomena [18]. Because
our model displays the same attractor before and after a perfect duplication,
we believe it is apt to simulate the WGD event. Our analysis helps clarify the
roles of duplication mutations and evolutionary mutations in WGD. Specifically,
we show that although perfect duplication does not change the phenotype and
actually increases the environmental robustness, the duplication mutations dur-
ing WGD are detrimental in ancestral environment. On the contrary, duplication
mutations provide marginal benefit in novel environments, at the expense of envi-
ronmental robustness. Over evolutionary time, these differences magnified, with
duplicated RBNs achieving significantly higher fitness and lower environmen-
tal robustness than the non-duplicated counterparts. The duplication mutations
further increases the fitness and environmental robustness gap between original
and duplicated RBNs.

The trade-off between fitness and environmental robustness of both systems
is clear in mixed populations, and highlighted by the phase transition at differ-
ent evolutionary mutation rates. Consistent with the “survival of flattest”, the
non-duplicated RBNs with a higher mutational robustness thrive at higher evo-
lutionary mutation rate whereas the duplicated RBNs with a lower mutational
robustness are taking over the population at lower evolutionary mutation rates.

In conclusion, using simple abstract models of GRN, this work sheds some
light on WGD events in biological organisms. It highlights the necessity for a
high duplication mutation rate that triggers the development of new phenotypes,
though lowering their robustness. It also explains a low evolutionary mutation
rate, crucial not only because it improves fitness over time, but also because it
ensures the domination of duplicated individuals in the whole population.

Future work will seek to test our model with different parameters and incor-
porate diversification. Studies shown that rapid diversification via gene loss and
edge rewiring happen immediately after WGD [16]. The advantages that the
diversification can bring to the system in terms of fitness and robustness will be
helpful to understand this process. Moreover, several studies shown that tran-
scription factors, which are usually hubs in GRN, are better maintained than
other genes after WGD [4]. It will be insightful to look at that bias of gene loss
from the evolvability and robustness view.
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Abstract. Recent technological innovations have catalyzed the generation of a 
massive amount of data at various levels of biological regulation, including 
DNA, RNA and protein. Due to the complex nature of biology, the underlying 
model may only be discovered by integrating different types of high-throughput 
data to perform a “meta-dimensional” analysis.  For this study, we used simu-
lated gene expression and genotype data to compare three methods that show 
potential for integrating different types of data in order to generate models that 
predict a given phenotype: the Analysis Tool for Heritable and Environmental 
Network Associations (ATHENA), Random Jungle (RJ), and Lasso. Based on 
our results, we applied RJ and ATHENA sequentially to a biological data set 
that consisted of genome-wide genotypes and gene expression levels from lym-
phoblastoid cell lines (LCLs) to predict cytotoxicity.  The best model consisted 
of two SNPs and two gene expression variables with an r-squared value of 0.32.  

Keywords: Systems biology, neural networks, evolutionary computation, data 
integration, human genetics. 

1 Introduction 

1.1 A Systems Biology Approach for Complex Genetic Traits 

A major focus of recent human genetics research has been to uncover the etiology of 
common, complex phenotypes.  Over the past decade genome-wide association stu-
dies (GWAS) have discovered thousands of SNPs that significantly associate with 
hundreds of complex traits [1].  However, the effect sizes of the significant SNPs are 
usually tiny and collectively they only explain a small portion of the estimated varia-
bility in phenotype due to genetic factors [2].  These results are not surprising if one 
considers that an extremely simplistic study design is being used to study complex 
biological processes.   
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One key to understanding the complexity that underlies traits will be effectively in-
tegrating different types of data, such as genome-wide gene expression levels and 
SNP genotypes [3]. Tools for an effective data integration analysis must be able to 
perform several key tasks. First, they need to be able to handle both quantitative and 
categorical predictor variables. Next, they should be able to deal with the inherently 
high level of noise in these data sets to perform accurate variable selection [4].  Final-
ly, these methods should be able to integrate the different data types to form “meta-
dimensional” predictive models.  The prefix meta- refers to the fact that these models 
will encompass different kinds of multi-dimensional models. While no single method 
to date is able to perform all of these tasks seamlessly, there are several candidates 
that show potential for testing systems biology-based hypotheses to elucidate the eti-
ology of complex phenotypes.  

For this study, we chose to test three analysis methods using simulated, or in silico, 
meta-dimensional data – Lasso, Random Jungle, and evolutionary computation me-
thods within ATHENA. These methods were selected as they are capable of perform-
ing meta-dimensional analyses on high-throughput data while using different types of 
algorithms. 

2 Methods 

2.1 Data Simulation 

To test these methods, we modified a previously developed simulation technique [5] 
to generate SNP genotype and gene expression variables (EVs) that predict a quantita-
tive outcome.  Each model was simulated with 3 functional variables: 2 SNPs and 1 
EV. In total 10 models were generated: four with only main effects of the three va-
riables, four with an interaction effect between the two SNPs, and two null data sets 
with no functional variables. 

SNP genotype data was randomly generated using genomeSIMLA [6]. The data 
was simulated with patterns of correlation for 100 or 1000 SNPs to represent the natu-
rally occurring linkage disequilibrium. The two functional SNPs were selected to 
have a minor allele frequency (MAF) of 0.3.   A total of 1000 data sets were generat-
ed (100 for each of the 10 models). Genotype data was generated for 500 individuals / 
data set. 

Gene expression data was simulated using a multivariate random normal distribu-
tion (MVN) with forced correlation between specific SNPs and EVs. For a given EV 
(X) and individual (i), the distribution was defined as X ~ 
MVN(μi, ∑X), where the mean μi is calculated from the 
product of effect matrix B and the vector of SNP geno-
types G for individual i so that: μi = Gi*B.  The effect 
matrix is shown in Figure 1. The number of rows and 
columns are equal to the number of SNPs and EVs, re-
spectively, and k is the correlation between a given SNP 
and EV. This correlation is modeling the occurrence of 
expression quantitative loci (eQTLs) where SNPs are 
associated with an expression trait. For this analysis, we 

Fig. 1. Effect matrix B show-
ing the relationship between 
SNPs (rows) and EVs (col-
umns) 
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set k = 0.8, which results in an r-squared value of ~0.3-0.35 between the SNP and EV 
for all data sets.  Biologically speaking, k is likely to be variable across SNP-EV 
pairs.  This layer of complexity should be added into the simulation for studies that 
are exploring eQTL detection specifically. 

The covariance matrix ∑X used to generate the MVN was calculated from the ob-
served correlation structure of 50 or 500 real EVs selected at random from a data set 
downloaded from the Gene Expression Omnibus (GEO) website [7]. The data set 
consisted of transformed and normalized microarray data for baseline EV levels of 
LCLs in the study described in [8] (Accession Number: GSE7792).   

The quantitative outcome was generated to represent log transformed IC50 values 
from a cytotoxicity study using LCLs where IC50 is the concentration of drug at 
which 50% of the cells remain viable.  The outcome variables were selected from a 
normal distribution generated for each individual with standard deviation (sd) of 0.56. 
The sd was calculated from the real log IC50 values generated by the same study used 
in step 2. These values were downloaded from PharmGKB website [9] (Accession 
Number: PS206922).  The mean of the distribution (µi) was calculated the values of 
the functional variables for each individual and coefficients determined to produce a 
given effect size (Eq. 1). An example of a main effect (Eq. 2) calculation is shown 
below: 

 µi = a + b1(X1) + b2(X2) + b3(X3) (1) 

 µi = -0.5 + 0.3(SNP.1) + 0.3(SNP.2) + 0.4(EV.1) (2) 

Table 1. Description of simulated data sets (100 data set /model). Mean (standard deviation) 
for adjusted r-squared values calculated from: 1Univariable linear regression analyses, 
2Multivariable linear regression analyses that included all direct main and inte terms, and 
3Multivariable linear regression analyses that included only direct main effects. 

Variable 
count 

(SNP/EV) 

Effect 
Type 

SNP 11 SNP 21 EV 11 MODEL 
(FULL)2 

MODEL 
(RED.)3 

100/50 Main 
only 

0.06 (0.02) 0.08 (0.02) 0.08 (0.02) 0.21 (0.03) ---- 
0.16 (0.03) 0.17 (0.03) 0.17 (0.03) 0.40 (0.04) ---- 

SxS  
Int. 

0.04 (0.02) 0.04 (0.02) 0.08 (0.02) 0.23 (0.03) 0.16 (0.03) 
0.03(0.02) 0.01 (0.01) 0.24 (0.03) 0.39 (0.04) 0.32 (0.04) 

1000/500 Main 
only 

0.05 (0.02) 0.08 (0.02) 0.10 (0.04) 0.23 (0.03) ---- 
0.15 (0.03) 0.10 (0.03) 0.18 (0.03) 0.48 (0.03) ---- 

SxS  
Int. 

0.04 (0.02) 0.05 (0.02) 0.04 (0.02) 0.21 (0.03) 0.13 (0.03) 
0.03 (0.02) 0.07 (0.02) 0.18 (0.03) 0.39 (0.04) 0.26 (0.03) 

 
The effect sizes for each of the functional variables are shown in Table 1. The ad-
justed r-squared values range from 0.21-0.48 for the full model, representing values 
effect sizes have been seen in other studies [8] [10] [11].   

Gene expression and outcome data were generated using scripts written for the R 
statistical software package (R 2.13.0 [12]).   
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2.2 Data Analysis 

ATHENA 
ATHENA is a multi-functional software package that uses grammatical evolution to 
optimize artificial neural networks, ANNs (GENN) or symbolic regression, SR 
(GESR) as previously described [13] [14].  Specifically, the algorithm for both 
GENN and GESR is as follows: 

1. The data set is divided into 5 equal parts for 5-fold cross-validation (4/5 for train-
ing and 1/5 for testing). 

2. Training begins by generating a random population of binary strings initialized to 
be functional ANNs or SRs.  The population is divided into demes across a user-
defined number of CPUs for parallelization. 

3. The ANNs or SRs in the population are evaluated using the training data and the 
prediction error for each model is recorded.  The solutions with the highest fitness 
are selected for crossover and reproduction, and a new population is generated. 

4. Step 3 is repeated for a pre-defined number of generations.  Migration of best so-
lutions occurs between CPUs every n-number of generations, as specified by the 
user. 

5. The overall best solution across generations is tested using the remaining 1/5 data 
fitness is recorded.   

6. Steps 2-5 are repeated four more times, each time using a different 4/5 of the data 
for training and 1/5 for testing.  The best model is defined as the model chosen 
most over all five cross validations.  Ties are broken using the fitness metric  
(r-squared for quantitative outcomes and balanced accuracy for binary outcomes). 

For this analysis, we ran GESR and GENN in ATHENA with different parameter 
settings for each method because GESR is 2x faster than GENN.  For GESR, we 
used an initial population size of 20000 across 20 demes (1000/deme), 400 genera-
tions, and migration between demes every 25 generations. For GENN, we used an 
initial population size of 8000 across 10 demes (800/deme), 200 generations, and 
migration every 50 generations.  For the biological data analysis we used the follow-
ing GENN parameters: initial population size of 100,000 across 100 demes 
(1000/deme), 400 generations, and migration every 25 generations 

Random Jungle 
Random Jungle (RJ) [15] is a faster implementation of Random Forest (RF).  RF is a 
machine learning algorithm that builds either classification or regression trees from 
the data to predict a categorical or continuous outcome, respectively [16]. Each tree is 
trained using a bootstrap sample of individuals from the dataset.  For each tree node, 
the attribute, or independent variable, is selected from a subset of all attributes based 
on how well it reduces an impurity measure.  Individuals that are not used to for tree 
generation (“out-of-bag” individuals) are used to calculate tree prediction error and 
assign an importance score to each variable based on the effect permutation has on 
prediction error [17]. Importantly, RF can detect interactions between variables with-
out large main effects.   
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RJ was implemented specifically to analyze large quantities of data and can be run 
on multiple CPUs for faster computation time. Parameter settings for the RJ runs are 
available from the authors upon request. Importance scores were calculated using the 
Gini index.  

Lasso 
Lasso is a linear regression variable selection method [18]. Lasso is different from 
stepwise regression variable selection in that it operates to minimize the sum of 
squared errors with a tuning parameter that puts a constraint on the absolute value of 
the variable coefficients.  This results in coefficient shrinkage and allows the metho-
dology to incorporate prediction accuracy and parsimony when generating the final 
regression model [19].   

For this study, we used the lars package in R in order to perform Lasso analysis 
[20].  The algorithm computes the final solution for all values of the tuning parame-
ter.  Default settings were used for all Lasso parameters except the value for “effec-
tive zero.” This parameter determines the absolute value for the coefficient at which 
the term is dropped from the model. Based on initial analyses using simulated data, 
we set the value to 0.005 to put more pressure on parsimony.  

Biological Data Set 
For this analysis, we used a publicly available data set that consisted of genome-wide 
SNPs, EVs, and a cytotoxicity measurement generated from 171 HapMap lymphob-
lastoid cell lines (LCLs). Details of this data set have been previously described [8]. 
Briefly, cytotoxcity of etoposide, a chemotherapeutic agent, was calculated as IC50, 
or the concentration of drug at which 50% of the cells remain viable. IC50 values 
were log-transformed for normalization.  Next, we adjusted the quantitative outcome 
in order to account for relatedness and gender by using the residuals from a mixed 
model regression analysis in genABEL in R [21]. We reduced the initial number of 
SNPs downloaded from the HapMap website from ~3 million to ~500,000 by filtering 
with a minor allele frequency threshold of 0.2, a genotyping rate threshold of 0.9, and 
linkage disequilibrium pruning with a pair-wise r-squared threshold of 0.9.  The EVs 
consisted of ~18,000 transformed and normalized baseline expression levels. 

3 Results 

3.1 Random Jungle and Lasso 

Figure 2 shows the results for the RJ and Lasso analyses. Detection power is defined 
as the average number of times the functional variables were identified in the top 
ranking variables for the simulation models with 150 and 1500 variables. We  
summarize the results by averaging the detection power across the different effect 
sizes and types within the two variable counts because our goal is to find the method 
that is optimal across a variety of models, and these parameters are unlikely to be 
known a priori in biological data. The null data sets were simulated so that no  
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variables were forcibly correlated with the outcome.  We are showing results for the 
top 10 and top 3 rankings for each analysis. For Lasso, this was determined by the 
absolute value of the coefficients in the final regression model, which are normalized 
so that SNP and expression variables can be compared.  For RJ, this was determined 
by the importance value as described in the methods section.   

 

Fig. 2. Average detection power for RJ and Lasso for each of the functional variables (SNP.1, 
SNP.2, and EV) and the full functional model (ALL) across four different simulated models 

Our results show that Lasso had higher average detection for the data sets with 150 
variables. Conversely, RJ had higher average detection for the data sets with 1500 
variables. Also, RJ appeared to be biased towards ranking EVs higher than SNPs as 
highlighted by the relatively high detection in of the EV in the null data.  Important-
ly, the Lasso models were not very parsimonious with an average of 23 and 114 va-
riables in the models that had 150 and 1500 total variables, respectively.    
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3.2 ATHENA 

GENN and GESR both generate relatively parsimonious models for all of the analys-
es. The best models had average variable counts of 4.1 and 2.35 GENN and GESR, 
respectively).  Therefore, we are showing the average number of times the functional 
variables were identified in the best model (Figure 3).  For both variable counts, 
GENN has higher average detection power than GESR, with the difference most not-
able in the models with 1500 variables. GENN also performed more accurate model-
ing than GESR with the average testing set r-squared of 0.25 and 0.15, respectively.  
(Null data values were    -0.001 for GENN and -0.005 for GESR). 

 

Fig. 3. Average detection power for ATHENA methods GENN and GESR for each of the func-
tional variables (SNP.1, SNP.2, and EV) and the full functional model (ALL) across four dif-
ferent simulated models 

3.3 Combination Approach on Biological Data 

Based on these results, we developed a RJ filtering-GENN modeling method and 
applied it to the full biological data set described in the methods section.  First, we 
chose to filter the full data set with RJ because it: 1. can handle large quantities of 
data in a computationally efficient manner because it is easily parallelized, 2. ranks 
the variables in a manner that makes filtering simple by using an importance score 
cut-off or a pre-determined number of variables; and 3. obtained higher overall detec-
tion power than the Lasso, another method that could potentially be used as a filter.  
Next, we chose the GENN algorithm within ATHENA as our modeling technique 
over GESR and Lasso because it: 1. had higher detection power and modeling accura-
cy than GESR, and 2. was far more parsimonious than Lasso resulting in smaller, 
more interpretable models.   

First, we ran RJ and filtered the 500 variables with the highest importance values 
into GENN. Notably, although the simulated data analyses showed RJ to be biased 
towards ranking EVs higher than SNPs, the biological data set analysis showed the  
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opposite with 492 SNPs and only 8 EVs in 
the top 500 spots. This could be due to a 
number of factors including the overwhel-
mingly higher number of SNPs than EVs 
(28x more).  For the ATHENA analyses, 
the best GENN model consisted of two 
SNPs (rs2375699 and rs1111599) and two 
EVs (genes TP53I3 and HIST1H4D) and is 
shown in Figure 4.  The testing r-squared 
value shows that the model explains about 
32% of variation in the quantitative out-
come. Interestingly, both SNPs were identi-
fied as highly significant in the previous 
study that used this data set [8]. This is en-
couraging because we are producing similar 
findings as a study that used a completely 
different approach.  

These results are promising and they be-
gin the process of validating the use of our 
novel filtering-modeling method for inte-
grating different types of high-throughput 
data. 

4 Discussion 

In order for data analysis to keep up with technology, powerful computational me-
thods must be developed and rigorously tested. For this study, we assessed the ability 
of three different methods using included simulated genotype and gene expression 
predictor variables and a quantitative outcome.  We then used our results to develop 
a filtering-modeling technique which plays to the strengths of the different analytical 
methods.  Future studies should involve determining the optimal way to perform RJ 
filtering.  For example, it may be preferable to filter SNPs and EVs separately based 
on the conflicting biases in simulated and biological data in RJ.   

Importantly, the methods tested here are not an exhaustive list of techniques that 
show potential for meta-dimensional studies.  For example, Bayesian networks (BNs) 
have previously been proposed as a promising method for data integration because 
they perform variable selection, model both indirect and direct effects, and generate 
importance values for the variables in the model [22].   

The ultimate goal of constructing a powerful meta-dimensional analysis is to de-
termine the biological underpinnings complex human traits. The biological model we 
generated from our analysis points to potential variants involved in DNA repair; how-
ever, follow-up in independent data sets and ultimately functional studies will be 
needed to determine its implication in etoposide cytotoxicity. The extremely complex, 
meta-dimensional nature of biology combined with our recent ability to interrogate 
multiple potential sources of trait variability necessitates novel and creative analysis 
techniques such as the novel technique implemented in this study.  

Fig. 4. ANN representing the best GENN 
model from ATHENA analysis. PADD = 
additive node; w = multiplication of weight 
and variable value. 
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Abstract. Phylogenetic Inference is considered as one of the most im-
portant research topics in the field of Bioinformatics. A variety of meth-
ods based on different optimality measures has been proposed in order
to build and evaluate the trees which describe the evolution of species. A
major problem that arises with this kind of techniques is the possibility
of inferring discordant topologies from a same dataset. Another question
to be resolved is how to manage the tree search process. As the space of
possible topologies increases exponentially with the number of species in
the input dataset, exhaustive methods cannot be applied. In this paper
we propose a multiobjective adaptation of a well-known Swarm Intelli-
gence algorithm, the Artificial Bee Colony, to reconstruct phylogenetic
trees according to two criteria: maximum parsimony and maximum like-
lihood. Our approach shows a significant improvement in the quality of
the inferred trees compared to other multiobjective proposals.

Keywords: Artificial Bee Colony, Swarm Intelligence, Phylogenetic
Inference, Multiobjective Optimization.

1 Introduction

As well as a wide range of topics in Bioinformatics, searching for the best phylo-
genetic trees which describe the evolution of species is considered as an NP-Hard
problem. Several heuristic-based proposals emerged to deal with the computa-
tional complexity required by optimality criteria methods like maximum par-
simony and maximum likelihood [1]. However, these approaches only consider
a single objective to be optimized, so the inference process is carried out in
agreement with the chosen criterion. As a result, given a same input dataset,
the phylogenies obtained using different methods may be inconsistent with each
other. Recent studies have considered the Phylogenetic Inference as an ideal
problem to be addressed by multiobjetive optimization techniques [2].

In this paper we try to resolve the Phylogenetic Inference problem according
to two metrics: parsimony and likelihood. For this purpose, we define a multi-
objective adaptation of the Artificial Bee Colony (ABC), a Swarm Intelligence
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algorithm based on the colective behaviour of the honey bees [3]. Bioinspired
Computing arises as a response to those optimization problems that cannot be
solved in reasonable times using classic algorithmic techniques. We have chosen
the ABC algorithm because of the promising results which have been reported
for a variety of optimization problems [4]. In order to test this algorithm, we
have performed a number of experiments on four nucleotide data sets. To il-
lustrate our experimental results, we show the parsimony and likelihood values
scored by our Pareto trees and we compared them with the solutions reported
by other authors. Additionally, the multiobjective perfomance of our algorithm
is evaluated by using the widely used hypervolume metrics.

This paper is organized in the following way. In the next section, we give a
brief overview of the published methods for inferring phylogenies. Section 3 ex-
plains the basis of Phylogenetic Inference, focusing on the definition of maximum
parsimony and maximum likelihood methods. Section 4 describes the proposed
algorithm, the Multiobjective Artificial Bee Colony (MOABC). In Section 5 we
show, explain and compare the experimental results of our algorithm. Finally,
in Section 6 we detail some concluding remarks and define future research lines.

2 Related Work

Phylogenetic Inference has been addressed from different perspectives through-
out the years. The first approaches described a number of explicit steps to quickly
reconstruct phylogenetic trees from input data. These procedures, known as al-
gorithmic methods, do not provide an evaluation function to assess the quality
of the generated trees. To overcome this issue, new methods based on optimality
measures were proposed. The main goal to achieve with these approaches was
the definition of an objective function to be considered in the inference process,
generating optimal trees according to some criteria [5]. Some of the most popular
optimality criteria methods are maximum likelihood and maximum parsimony.

Inferring phylogenetic trees using optimality criteria requires higher process-
ing times than algorithmic methods. Thereby, evolutionary strategies were pro-
posed to deal with this question. The first attempt to apply these ideas was
reported by Matsuda in 1995 [6]. Three years later, Lewis developed a genetic
algorithm for maximum likelihood inference taking as input nucleotide sequences
[7]. This approach laid the foundations for future phylogenetic analyses. Evolu-
tionary algorithms for inferring phylogenetic trees by the maximum parsimony
criterion can be also found in the literature [8].

All the previously mentioned approaches suffer from one major drawback:
the phylogenetic analyses are performed under a single objective assumption,
so the generated topologies may present conflicting ancestral relationships for
a same dataset, in agreement with the chosen criterion. Multiobjective opti-
mization emerged as an ideal solution to this [9], allowing new developments to
resolve this issue. Coelho et al. published a multiobjective immune-inspired algo-
rithm for inferring phylogenies by minimizing two objective functions: minimal
evolution and mean-squared error [10]. In 2007, Cancino and Delbem presented
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PhyloMOEA [11], a multiobjective genetic algorithm based on the maximum
parsimony and maximum likelihood criteria. The results reported by Cancino
and Delbem have motivated this research: a Multiobjective Artificial Bee Colony
algorithm for Phylogenetic Inference.

3 Basis of Phylogenetic Inference

Phylogenetic Inference encloses a wide range of estimation techniques that aim
to describe ancestral evolutionary relationships among a collection of organisms
[5]. These methods take as input a set of n sequences of N characters (often
known as sites), which belong to an alphabet α. For example, the alphabet
for a DNA-based analysis is α = {A,C,G, T }, which represents the nucleotide
bases Adenine, Cytosine, Guanine and Thymine. These methods use as input
molecular characteristics of the organisms under consideration. The output of
the inference process is known as phylogenetic tree.

A phylogenetic tree is a mathematical structure that represents a hypothesis
of the evolution of species. It defines ancestor-descendant relationships among
species to explain the data and represents them in a hierarchical tree topology.
We can distinguish the following components in a phylogenetic tree:

– Terminal nodes or leaves. They represent the results of the evolutionary
history, this is, the input data.

– Internal nodes. They represent hypothetical organisms whose evolution re-
sulted in the species considered as input of the inference process.

– Branches. They indicate an ancestral connection between two nodes. The
branches in a tree can be associated to a branch length value that usually
represents either evolutionary time or molecular changes needed for the evo-
lutionary process.

When a phylogenetic tree has a common ancestor that defines the origin of
the phylogeny, we will say that this tree has a rooted topology. If this common
ancestor does not exist and the direction of natural process cannot be defined,
the tree will have an unrooted topology [11].

3.1 Methods for Inferring Phylogenies

As we remarked in Section 2, we can find a wide range of methods for inferring
phylogenies in the literature. The search for optimal phylogenetic trees is a well-
known NP-Hard problem due to the exponential growth of the tree search space
in accordance with the number of species. Let n be the number of species to be
processed, the number of possible unrooted topologies is given by [12]:

(2n− 5)!

(n− 3)!2n−3
(1)

This expression means that searching for optimal trees using as input a set of
ten or more organisms is cost prohibitive in terms of computational time. The
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way to address this problem is the development of evolutionary and bioinspired
approaches for inferring optimal topologies in acceptable times.

In the following subsections we will introduce the basis of two of the most
used criteria-based methods for phylogenetic reconstruction: maximum parsi-
mony and maximum likelihood analysis.

Maximum Parsimony Approach. Cladistic methods based on the parsimony
criterion [1] aim to find those phylogenies that minimize the amount of molecular
changes needed to explain the observed data. In a maximum parsimony analysis,
the simpler the explanation for natural evolution is, the better the parsimony
score will be for that phylogenetic tree. This classic approach is inspired by
the Occam’s razor principle, which affirms that the simplest explanation for an
specific phenomenon will be more plausible than other possible hypotheses.

The parsimony score for a phylogenetic tree τ , inferred from a set of n nu-
cleotide sequences characterized by N aligned sites, is given by the following
equation [11]:

P (τ) =

N∑
i=1

∑
(a,b)∈B(τ)

C(ai, bi) (2)

where (a, b) is a branch in set B which defines an ancestral relationship between
the nodes a and b, ai and bi the state or value of the ith site on the sequences for
a and b, respectively, and C(ai, bi) the cost of evolving from the state ai to bi. In
a maximum parsimony approach, we will prefer those trees which minimize this
value, because they would represent a simpler explanation to the observed data.
In order to compute the parsimony score, we can find a wide range of proposals
in the literature. In this work, we will use the algorithm proposed by Fitch [13]
to assess the parsimony of a phylogenetic tree.

Maximum Likelihood Approach. In Phylogenetics, the term likelihood refers
to an statistical measure that assesses the probability of the observed data given
an evolutionary history described by a tree topology. The main goal in a maxi-
mum likelihood approach is the reconstruction of that phylogenetic tree which
represents the most likely evolutionary history of the species [1]. In a maximum
likelihood analysis, we must bear in mind:

1. The topology of the phylogenetic tree.
2. The branch length values.
3. The molecular evolutionary model.

An evolutionary model, also known as substitution model, describes the proba-
bilities of change from a given state to other one on the molecular sequences of
two related organisms. Numerous evolutionary models can be found in the liter-
ature (such as JC69, F84, HKY85...) [1]. The likelihood value for a phylogenetic
tree will be highly related to the chosen substitution model.
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We can formulate the likelihood of a phylogenetic tree as follows. Let τ be
the phylogenetic tree to be evaluated, D the set of N -site molecular sequences,
Di the ith state value on the sequences and m the substitution model. The
likelihood score is the conditional probability of the data given τ and m [1]:

L[D, τ,m] = Pr[D|τ,m] =

N∏
i=1

B∏
j=1

(ritj)
nij (3)

where B is the set of branches for τ , ri the probability of change for the state i,
tj the length of the branch j and nij the number of state changes in the branch
j for the character i. The likelihood is an objective to be maximized. The higher
the likelihood score for a tree is, the more likely the evolutionary hypothesis will
be. We can use the Felsenstein algorithm [14] to compute likelihood.

4 Multiobjective Artificial Bee Colony

In the previous section, we have defined the basis of Phylogenetic Inference
and performed a quick review of the methods which define the metrics to be
used. Now, we will explain the main features of our proposal, a multiobjective
adaptation of the Artificial Bee Colony algorithm for inferring phylogenetic trees.

4.1 Artificial Bee Colony Features

The Artificial Bee Colony is a Swarm Intelligence algorithm proposed by D.
Karaboga [3] in 2005. He developed a method to resolve classical optimization
problems inspired by the collective behaviour of honey bees. Swarm Intelligence
algorithms focus on the definition of a collection of individuals who assume a role
in the swarm. These individuals perform their activities and interactuate with
others to resolve a problem. This behaviour is governed by well-defined rules
and allows the swarm to obtain a collective intelligence. The result is the design
of new bioinspired algorithms to address a wide range of problems. Recently,
the ABC algorithm has been used to resolve several optimization problems,
improving the results of classical evolutionary approaches [4]. This algorithm is
inspired by the behaviour of three groups of bees in the hive:

– Employed bees. Employed bees aim to look for and exploit food sources.
These bees can examinate the neighbourhood of the current food source
they are exploiting and find other new sources.

– Onlooker bees. The information gathered by the employed bees about food
sources will be used by onlooker bees to select the most promising sources.
These interactions among bees take place in the dancing area. Onlooker bees
will decide the sources to be exploited in accordance with the quality of them,
denoted by the dances performed by employed bees.

– Scout bees. These bees looks randomly at their environment for new undis-
covered food sources. The main purpose of these searches is to avoid the
absence of food in the hive when the sources found by other bees are ex-
hausted.
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Applying the ABC algorithm to optimization problems, we can identify the bees
as the individuals in the population, the food sources as possible solutions to
the problem, and the nectar they contain as the fitness of these solutions.

4.2 A Multiobjective Artificial Bee Colony Algorithm for
Phylogenetic Inference

In this paper, we propose a multiobjective version of the ABC algorithm applied
to Phylogenetic Inference. The main goal is to find those phylogenetic trees
which represent a consensus between the maximum parsimony and maximum
likelihood criteria. From a multiobjective perspective, these solutions cannot
be evaluated in a traditional way because they must simultaneously consider
conflicting criteria. To resolve this issue, we apply the dominance concept [9]: a
solution dominates other one if and only if the first solution has better or equal
scores in all considered objectives than the second one and, at least, it is better in
one of them. Multiobjective metaheuristics try to obtain those non-dominated
solutions which are closer to the optimal solutions to the problem, the set of
Pareto-optimal solutions. If we represent Pareto solutions in the value space of n
objective functions, the resultant n-dimensional curve is known as Pareto front.

The MOABC algorithm takes as input the following parameters:

1. swarmSize. Population size.

2. maxIterations. Iterations of the main loop to be performed.

3. limit. Control parameter defined to avoid population stagnation.
4. mutation. Mutation rate to be applied over the found solutions to generate

new ones.

Our proposal will generate as output multiobjective phylogenetic trees according
to the parsimony and likelihood metrics, this is, a set of non-dominated Pareto
solutions. Algorithm 1 shows the pseudocode for the MOABC.

The MOABC begins with the initialization of employed bees, which represent
the first half of the population. For this purpose, random phylogenetic trees
are selected from a repository of 1000 trees generated by bootstrap analysis [1]
over each dataset. 500 phylogenetic trees are inferred by maximum parsimony
analysis using the DNAPARS software from PHYLIP [15]. The remaining 500
trees are generated by maximum likelihood analysis performed with PhyML [16].
After selecting the initial trees, parsimony and likelihood scores are computed
by using the Fitch and Felsenstein algorithms. We use the TreeTemplate class
from the C++ libraries for bioinformatics BIO++ [17] to encode phylogenetic
trees.

We can differentiate three sections in the MOABC loop. Firstly, employed
bees search for solutions in the neighbourhood (lines 6-12 of Algorithm 1). For
each employed bee, its associated solution is compared to the result of mutating
it. Mutation is carried out by applying Nearest Neighbour Interchange (NNI)
topological changes [1] (for parsimony treatment) and modifying randomly se-
lected branch lengths using a gamma distribution [7] (for likelihood treatment),
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Algorithm 1. MOABC Pseudocode
1: /* Initializing the swarmSize/2 employed bees */
2: C ← initializeAndEvaluatePopulation(swarmSize/2)
3: ParetoFront ← 0
4: i ← 0
5: while i < maxIterations do
6: for j = 1 to swarmSize/2 do
7: /* Employed bees: searching for solutions in the neighbourhood*/
8: newEmployedBee ← generateNeighbour(C[j],mutation)
9: if MOFitness(newEmployedBee) < MOFitness(C[j]) then
10: C[j] ← newEmployedBee
11: end if
12: end for
13: /* Generating the probability vector */
14: probVector ← calculateSelectionProbabilities(C)
15: /* Generating onlooker bees according to the probability vector */
16: for j = (swarmSize/2)+1 to swarmSize do
17: selectedEmployedBee ← selectEmployedBee(probVector,C)
18: newOnlookerBee ← generateNeighbour(selectedEmployedBee,mutation)
19: if MOFitness(newOnlookerBee) ≤ MOFitness(selectedEmployedBee) then
20: C[j] ← newOnlookerBee
21: else
22: C[j] ← selectedEmployedBee
23: end if
24: end for
25: /* Generating scout bees */
26: for j = 1 to swarmSize/2 do
27: if C[j].iterations > limit then
28: C[j] ← generateScoutBee()
29: end if
30: end for
31: /* Sorting the current solutions */
32: C ← FastNonDominatedSort(C)
33: /* Saving Pareto solutions */
34: ParetoFront ← saveSolutions(C, ParetoFront)
35: i ← i + 1
36: end while

both according to the mutation rate parameter. The NNI operator takes an in-
ternal branch of the tree and executes a swap between the nodes in the subtrees
situated at the sides of the chosen branch to generate new topologies. In order
to improve the likelihood score, we also apply a gradient descent algorithm to
optimize tree branch lengths [18].

Once we have generated the neighbour solution, we must decide which one is
better in a multiobjective context. For this purpose, Equation 4 is calculated for
each competing solution. MOFitness assigns a score to a solution b according to
the number of solutions in the population dominated by b and the solutions that
dominates b ([19] includes a more detailed explanation). The tree that minimizes
this expression will be the solution assigned to the employed bee.

MOFitness(b) = Dominates(b) + isDominated(b) ∗ swarmSize (4)

Secondly, onlooker bees (the second half of the population) will decide which
solutions must be exploited in accordance with the information provided by em-
ployed bees (lines 13-24). For this purpose, current solutions are ordered using
two operators taken from NSGAII: fast non dominated sort (FNDS) and crowd-
ing distance [20]. After that, we compute a vector to define selection probabilities
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for each solution. The better the solution quality is, the higher its selection prob-
ability will be. Onlooker bees will verify this vector and choose one of the current
solutions. Neighbour trees are computed by applying mutation and compete with
the selected ones using MOFitness. Unlike the previous step, a neighbour solu-
tion will be saved if it scores a lower or equal MOFitness value with regard to the
original solution. Allowing equal scores helps to promote population diversity.

Thirdly, scout bees are generated in the next section (lines 25-30). The limit
parameter plays a key role in this step. If the solution associated to a bee is not
improved in limit iterations, it must be discarded (local optimum). This individ-
ual becomes a scout bee, which will explore the search space for new solutions.
Scout bees randomly select phylogenetic trees from the bootstrap repository and
improve them by applying deeper NNI moves and branch length optimization.
This strategy allows to avoid local optimal by using different starter trees to
explore undiscovered regions of the tree search space.

Once these three sections have been completed, the swarmSize/2 best phy-
logenetic trees found in this iteration are assigned to the employed bees as new
starter trees and the MOABC loop begins again. The Pareto set is updated with
the best non-dominated solutions and, after maxIterations, it will contain those
trees whose parsimony and likelihood scores are closer to the optimal values.

5 Experimental Methodology and Results

In this section we explain the methodology to configure our algorithm and show
experimental results. Parameters values were assigned in agreement with other
authors’ proposals [11] with which we will compare our results. For the limit pa-
rameter, we performed several experiments to decide its optimal value. For each
considered limit value (5, 10, 15, 20 and 25), ten independent runs were carried
out and the Pareto sets were evaluated using the hypervolume indicator, a multi-
objective metrics that indicates the search space area dominated by our Pareto
solutions. The results indicated that the best mean hypervolume values were
achieved by using the limit=15 value. Table 1 shows MOABC’s configuration.

Our approach was tested on four public nucleotide data sets [11]: rbcL 55
contains 55 sequences (1314 nucleotides per sequence) of the rbcL gene from dif-
ferent species of green plants. mtDNA 186 has 186 sequences (16608 nucleotides
per sequence) of human mitochondrial DNA. RDPII 218 is composed of 218 se-
quences (4182 nucleotides per sequence) of prokaryotic RNA. And ZILLA 500
contains 500 sequences (759 nucleotides per sequence) from rbcL plastid gene.

To prove the statistical relevance of our approach, we have conducted a set
of experiments consisting on ten executions per dataset. At the end of them,
Pareto fronts were evaluated using the hypervolume metrics and the Shimodaira-
Hasewaga (SH) test [21]. Meanwhile hypervolume evaluates solutions from a
multiobjective perspective, the SH test decides which percentage of these so-
lutions are not significantly worse than optimal phylogenetic trees found by
single-objective approaches [11]. Table 2 resumes our experimental results. For
each dataset, Figure 1 shows the Pareto fronts which score the hypervolume
value closer to the mean hypervolume obtained by the overall experiments.
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Table 1. MOABC input
parameters

Parameter Value

maxIterations 100

swarmSize 100

mutation 5%

limit 15

Topological operator NNI

Substitution model HKY85

Table 2. Experimental results

Dataset Pareto Most Parsimonous Most Likely SH Test

Solutions Tree Tree Parsimony Likelihood

Parsimony Likelihood Parsimony Likelihood

rbcL 55 6 4874 -23969.111 4881 -23961.487 100% 100%

mtDNA 186 14 2431 -40319.181 2448 -40240.283 80% 85%

RDPII 218 34 41488 -149938.023 42621 -144087.843 8% 26%

ZILLA 500 36 16218 -82684.057 16272 -82497.441 98% 61%

Table 3. Hypervolume metrics

Dataset Minimal Maximum Hypervolume

Reference Point Reference Point Mean (%) Std. deviation

Parsimony Likelihood Parsimony Likelihood

rbcL 55 4774 -23495.5 5279 -25941.6 64.87 0.0016

mtDNA 186 2376 -39376.4 2656 -43567.2 64.50 0.0005

RDPII 218 40658 -140667.6 45841 -162933.1 70.15 0.0193

ZILLA 500 15893 -80850.9 17588 -89319.8 65.05 0.0007

Fig. 1. Pareto fronts for rbcL 55(a), mtDNA 186(b), RDPII 218(c) and
ZILLA 500(d)

Considering the results for rbcL 55, mtDNA 186 and ZILLA 500, the SH
test shows a high acceptance ratio because the inferred phylogenetic trees are in



Inferring Phylogenetic Trees Using a MOABC Algorithm 153

the optimal parsimony-likelihood range. For the RDPII 218 dataset, extreme
points on Pareto Front define a higher range of possible non-dominated solutions.
This fact motivates a lower acceptance rate. Analyzing these results, we can
conclude that the SH test denotes that our extreme solutions are relevant from
a single-objective perspective. To evaluate the multiobjective performance of our
algorithm, we used the well-known hypervolume indicator. Table 3 defines the
reference points and shows mean hypervolume values for each dataset. According
to Column 6, our solutions cover over 64% of the space defined by the reference
points for rbcL 55,mtDNA 186 and ZILLA 500, and a 70.15% for RDPII 218.
We would like to remark that these results are significantly interesting because
they would allow researchers to make future comparisons with other bioinspired
multiobjective approaches to Phylogenetic Inference.

5.1 Comparisons with Other Authors

In this subsection we present a comparison between our MOABC and Phy-
loMOEA, a multiobjective algorithm for Phylogenetic Inference published by
Cancino and Delbem [11]. Table 4 shows the parsimony and likelihood scores for
the most parsimonious and most likely trees (columns 2-3 and 4-5, respectively)
found by the two algorithms for each dataset. Our MOABC improves the results
reported by Cancino and Delbem in all datasets. For the rbcL 55 instance, the
most parsimonious tree found by the two algorithms scores the same parsimony
but MOABC improves the likelihood value. This fact demonstrates that our
solutions dominate the trees generated by using PhyloMOEA.

In a recent study, Cancino and Delbem suggested the use of a parametric
evolutionary model called HKY 85 + Γ to improve likelihood scores, without
changing parsimony values [22]. We have implemented that model in our proposal
and carried out new experiments. In Table 5 we can find the likelihood values
for the most likely trees found by the two algorithms. Once again, our proposal
improves PhyloMOEA’s results. Consequently, we conclude that MOABC shows
a significant improvement in the quality of the inferred trees.

Table 4. MOABC - PhyloMOEA Comparison

MOABC

Best parsimony Best likelihood

Dataset Parsimony Likelihood Parsimony Likelihood

rbcL 55 4874 -23969.111 4881 -23961.487

mtDNA 186 2431 -40319.181 2448 -40240.283

RDPII 218 41488 -149938.023 42621 -144087.843

ZILLA 500 16218 -82684.057 16272 -82497.441

PhyloMOEA

Best parsimony Best likelihood

Dataset Parsimony Likelihood Parsimony Likelihood

rbcL 55 4874 -24626.243 4884 -24583.330

mtDNA 186 2438 -41004.302 2450 -40894.343

RDPII 218 41534 -158724.280 42631 -156595.822

ZILLA 500 16219 -87275.281 16276 -86993.825

Table 5. Best likelihood
scores using HKY 85 + Γ

Dataset MOABC PhyloMOEA

rbcL 55 -21821.480 -21889.844

mtDNA 186 -39890.140 -39896.441

RDPII 218 -134149.328 -134696.535

ZILLA 500 -80965.400 -81018.060
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6 Conclusions

We have studied in this paper a multiobjective adaptation of a Swarm Intelli-
gence algorithm, the Artificial Bee Colony, to infer phylogenetic trees according
to the maximum parsimony and maximum likelihood principles. Our approach
has been tested on four public nucleotide data sets and a variety of experiments
has been carried out. We have evaluated the multiobjective performance of the
proposal by computing the hypervolume metrics and reference points have been
defined for future comparisons. Experimental results have proved the relevance
of our approach, inferring phylogenetic trees which considerably improve the
results reported by other authors in the literature. Therefore, we can suggest
that multiobjective Swarm Intelligence algorithms offer multiple possibilities to
define improved heuristic approaches to Phylogenetic Inference.

As future research lines, we will address the question of how to boost per-
formance by applying Parallel Computing. Bioinspired techniques and Paral-
lelism will allow us to develop heuristic-based algorithms to infer multiobjective
phylogenetic trees minimizing execution times. From this perspective, MPI and
OpenMP libraries can help the researcher to exploit the characteristics of mod-
ern parallel architectures to improve efficiency. Additional future work could be
the study of different topological operators (such as Subtree Pruning and Re-
grafting (SPR) and Tree Bisection and Reconnection (TBR)) and evolutionary
models (JC69, F84...) to optimize parsimony and likelihood scores.
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Abstract. Protein structure prediction consists in determining the thre-
e-dimensional conformation of a protein based only on its amino acid se-
quence. This is currently a difficult and significant challenge in structural
bioinformatics because these structures are necessary for drug designing.
This work proposes a method that reconstructs protein structures from
protein fragments assembled according to their physico-chemical simi-
larities, using information extracted from known protein structures. Our
prediction system produces distance maps to represent protein struc-
tures, which provides more information than contact maps, which are
predicted by many proposals in the literature. Most commonly used
amino acid physico-chemical properties are hydrophobicity, polarity and
charge. In our method, we performed a feature selection on the 544 prop-
erties of the AAindex repository, resulting in 16 properties which were
used to predictions. We tested our proposal on 74 mitochondrial ma-
trix proteins with a maximum sequence identity of 30% obtained from
the Protein Data Bank. We achieved a recall of 0.80 and a precision
of 0.79 with an 8-angstrom cut-off and a minimum sequence separation
of 7 amino acids. Finally, we compared our system with other relevant
proposal on the same benchmark and we achieved a recall improvement
of 50.82%. Therefore, for the studied proteins, our method provides a
notable improvement in terms of recall.

Keywords: Protein structure prediction, physico-chemical amino acid
properties, fragment assembly, protein distance map, feature selection.

1 Introduction

Knowing the protein native 3D structures is currently a difficult and significant
challenge because these structures determine protein function and they are neces-
sary to design new drugs. Experimental methods to determine protein structures,
generally X-ray crystallography and nuclear magnetic resonance, are very expen-
sive and they have limitations with the structures of some proteins. Moreover,
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the great number of protein sequences whose three-dimensional structures must
be determined, make computational methods of protein structure prediction a
very useful tool.

Protein structure prediction (PSP) consists in determining a three-dimensio-
nal model based only on the amino acid sequence of a protein and it is currently
an issue with great significance in structural bioinformatics [1].

There are currently two main approaches for the PSP problem. The first
is the ab initio methods, which find the structure that corresponds to a global
minimum of a function, generally a energy function, based in sequence properties.
These methods do not use any protein as a template, their computational cost
is generally very high and their reliability decreases when the sequence length
increases [2].

The second main approach is homology methods, also known as comparative
modeling, which try to solve the structure based on protein templates (template-
based modeling). This approach is based on the structural conservation of pro-
teins in a protein family, since the 3D structures are more conserved in evolution
than sequences. These methods are considered the most currently reliable ap-
proach for PSP problem [2].

Template-based modeling methods achieve good results when solved struc-
tures are available for proteins with sequences similar to the sequence of the
target protein. However, when no homologous proteins with solved structures
exist, free-modeling is used.

Within free-modeling methods we find the fragment assembly methods that
reconstruct the structure of a protein from structural fragments of other proteins.
Three of most relevant fragment assembly-based methods are Fragment-HMM
[3], FragFold [4] and ROSETTA [5]. ROSETTA uses a two-stage approach, which
begins with a low-resolution model and continues with a representation of all
the atoms of the protein, with the goal of minimizing the corresponding energy
function.

Since all information used in structure prediction must be inferred from amino
acid sequence, there is many useful information derived from sequence used in
the literature. Among this information, there are recent methods that use a
great set of physico-chemical properties of amino acids [6]. However, the most
commonly used properties are hydrophobicity, polarity and charge, which are
used, for example, in the models HP and HPNX [7]. There is a database of amino
acid properties named AAindex [8] which contains currently 544 properties, from
which we selected a subset of 16 in this work by a feature selection process.

The motivation for applying feature selection (FS) techniques has shifted from
being optional to becoming a real prerequisite for model building. Specifically,
in the PSP problem, the feature selection was also applied and improves the
accuracy of predictions [9]. Theoretically, having more features should give us
more discriminating power. However, this can cause several problems: increased
computational complexity and cost; too many redundant or irrelevant features;
and estimation degradation in the classification error.
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Based on the generation procedure, FS can be divided into individual feature
ranking (FR) and feature subset selection (FSS) [10,11]. FR measures feature-
class relevance, then ranks features by their scores and selects the top-ranked
ones. These methods are widely used due to their simplicity, scalability, and good
empirical success [12]. However, FR is criticized because it can only capture the
relevance of features to the target concept, while redundancy and basic interac-
tions between features are not revealed. Furthermore, it is difficult to determine
the number of features retained, because a threshold is required. In contrast, FSS
attempts to find a set of features that performs well. It integrates the metrics
for measuring feature-class relevance and feature-feature interactions.

In this work, a hybrid algorithm was used, BARS [13], in order to handle large
datasets to take advantage of the above two approaches (FR, FSS) [14]. This
method decouple relevance analysis and redundancy analysis, and have proven to
be more effective than ranking methods and more efficient than subset evaluation
methods in many traditional high-dimensional datasets.

There are many PSP algorithms currently in the literature that produce a
contact map to represent the predicted structure [6,15]. In contrast, our method
produces a distance map, which includes more information than a contact map
because it incorporates the distances between all of the amino acids in the
molecule, irrespective of whether they make contact. There are fewer propos-
als in the literature that predict distance maps [16], because it is more difficult
to perform regression than classification (continuous distances instead binary
contacts). Some authors discretize the distances to predict, providing an inter-
mediate representation between contacts and continuous distances, such as the
proposal of Walsh et al. 2009 [2] which uses 4-class distance maps. However,
unlike 3D models, both distance and contact maps have the desirable property
of being insensitive to rotation or translation of the protein molecule.

Our method is a free-modeling approach based on fragment assembly that
selects the best distances between pairs of amino acids using fragments of known
structures of proteins. These fragments are chosen through a searching process
for nearest neighbors by similarity in 16 physico-chemical properties of amino
acids selected from the AAindex repository.

We tested our methodology by performing predictions on mitochondrial ma-
trix proteins from the Protein Data Bank (PDB) [17] with a maximum sequence
identity of 30%. We have performed predictions with a minimum sequence sep-
aration of 7 amino acids, as has been used in the literature [18]. Finally, we
compared our system with RBFNN method proposed by Zhang et al. 2005 [19]
with the same proteins in the same experimental conditions.

In section 2, we define the elements, procedures and evaluation measures used
by our prediction method. In section 3, we detail the used protein datasets, the
experimental settings and the achieved results. Finally, in section 4, we describe
the main conclusions of the performed study and we outline approaches for future
studies.
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2 Methods

2.1 Representation of Protein Structures

The representation of protein structure that we used is the distance map, which is
a square matrix of order L, where L is the number of amino acids in the protein
sequence. The distance matrix is divided in two parts: observed part (upper
triangular) and predicted part (lower triangular). The element (i, j), where i < j,
of the distance matrix is the actual distance measured in angstroms (Å) between
the amino acids ith and jth in the sequence. To measure the distances between
amino acids, it is necessary to use a reference atom of each amino acid. The
most commonly used reference atoms are the alpha carbon and the beta carbon
of amino acids [18]. In our method, we used the beta carbon (with the exception
of glycine, for which the alpha carbon was used). The distances predicted by
the algorithm are stored in the lower triangular of the distance map. Thus, the
element (i, j) with i > j of the distance matrix is the predicted distance measured
in angstroms between the amino acids ith and jth of the protein sequence.

2.2 Construction of Protein Fragments Knowledge Base

Our prediction system ASPpred (Amino acid Subsequences Properties-based
Predictor), works in two phases. In the first phase, it constructs a gallery of
protein fragments from all the subsequences of all the proteins in the training
set. In the second phase, the target structures of the proteins in test set were
predicted using the generated protein fragments model.

The knowledge base consists of a set of vectors called prediction vectors.
Each one of these vectors was obtained from one training protein subsequence
and contains the physico-chemical properties of the amino acids ends of such
fragment. The vector also contains the actual distance between them.

In order to define our prediction vectors formally, it is necessary to define
the following elements. In first place, an amino acid sequence of length L is
defined by s1 . . . sL. A fragment or subsequence into a sequence is represented
by s1 . . . sb . . . se . . . sL, where sb . . . se is the fragment, sb is the beginning amino
acid of the fragment, se is its ending amino acid and 1 ≤ b < e ≤ L.

Moreover, physico-chemical properties are defined by P1 . . . Pm, where m is
the number of properties used by the algorithm. The value of the property Pi

of an amino acid sj is defined by Pi(sj). The prediction vector of a fragment is
defined by the tuple showed in Equation 1.

{B1, E1, . . . , Bm, Em, D} (1)

Where D is the distance between amino acids sb and se. Bi and Ei are defined in
Equations 2 and 3, respectively. Bi represents the physico-chemical distribution
of the entire sequence with decreasing weighting starting at the first amino acid
of the fragment. Ei is analogous to Bi starting at the last amino acid of the
fragment.



160 G. Asencio-Cortés et al.

Bi = Pi(sb) +
L∑

j=1
j �=b

Pi(sj)
L|b − j| , ∀i ∈ {1..m} (2)

Ei = Pi(se) +
L∑

j=1
j �=e

Pi(sj)
L|e − j| , ∀i ∈ {1..m} (3)

Note that prediction vectors represent fragments of different lengths, but these
lengths is not included in them. The physico-chemical properties included in the
prediction vectors are explained in the next subsection. From the point of view
of data mining, Bi and Ei are the attributes of training instances and D the
class to predict.

2.3 Physico-chemical Feature Selection

To the aim of using the smallest and most effective set of physico-chemical
properties, we performed a feature selection from the repository AAindex of
physico-chemical properties of amino acids. This repository currently contains
544 amino acid properties.

We used BARS to perform the feature selection over all the properties in
AAindex. BARS is an agglomerative algorithm due to the way it constructs the
final subset of selected features. The method begins by generating a ranking.
Then, pairs of features are obtained with the ranking’s first features, in combi-
nation with each one of the remaining features on the list. The pairs of features
are ranked according to the value of the evaluation, and the process is repeated,
that is, the subsets made up by the first sets on the new list are compared with
the rest of the sets. At the end, the algorithm returns the best positioned feature
subset of all the subsets evaluated.

BARS can use any measure to evaluate feature subsets. Taken into account
this domain with a numeric class attribute where distance between amino acids
is represented, we used linear regression as evaluator criteria when the search
process is carried out to find a relevant and not redundant subset of features.

The dataset that we used for the feature selection is published by Fariselli et
al. 2001 [18], that contains 173 proteins with a sequence identity lower than 25%,
without chain breaks and with alignments with more than 15 sequences in the
corresponding families. This process results on 16 physico-chemical properties
that are showed in Table 1 with the same name and description used in AAindex.

2.4 Structure Reconstruction

The second phase of our system consists in obtaining the prediction vectors of
the target proteins and in performing a full sequential search to compare each
test prediction vector with the training prediction vectors achieved in the first
phase. The objective was to find the training prediction vector most similar to
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Table 1. The 16 physico-chemical properties of amino acids considered from AAindex

CHOC760104 Proportion of residues 100% buried
LEVM760104 Side chain torsion angle phi(AAAR)
MEIH800103 Average side chain orientation angle
PALJ810107 Normalized frequency of alpha-helix in all-alpha class
QIAN880112 Weights for alpha-helix at the window position of 5
WOLS870101 Principal property value z1
ONEK900101 Delta G values for the peptides extrapolated to 0 M urea
BLAM930101 Alpha helix propensity of position 44 in T4 lysozyme
PARS000101 p-Values of mesophilic proteins based on the distributions of B values
NADH010102 Hydropathy scale based on self-information values in the two-state

model (9% accessibility)
SUYM030101 Linker propensity index
WOLR790101 Hydrophobicity index
JACR890101 Weights from the IFH scale
MIYS990103 Optimized relative partition energies - method B
MIYS990104 Optimized relative partition energies - method C
MIYS990105 Optimized relative partition energies - method D

each test prediction vector. For the search process, we consider only training
vectors with the same amino acid ends (first and last of each subsequence) than
the test vectors. Figure 1 shows this search scheme.

test Bt
1 Et

1 . . . Bt
m Et

m ?

training
...

Br
1 Er

1 . . . Br
m Er

m Dr

...

Fig. 1. Search for the most similar training prediction vector

In the search scheme of the Figure 1, Bt
1 . . . Bt

m and Et
1 . . . Et

m are the elements
of the test subsequence explained above and Br

1 . . . Br
m and Er

1 . . . Er
m are those

of the training subsequence with more similarity to the test subsequence. The
distance field Dr of the most similar training vector is assigned to the distance
field (symbolized with ?) of test vector.

The training vector with the highest similarity to a test vector satisfies the
condition showed in Equation 4. As can be seen in that condition, for the com-
parison of the test and training vectors, an Euclidean distance is used, which
includes all the attributes in these vectors with same weigths. All these attributes
are normalised previously. The normalization ensured that all of the attributes
are on the same scale and contributed equally to the prediction.
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min
r∈TrainingSet

√√√√ m∑
i=1

(Bt
i − Br

i )2 +
m∑

i=1

(Et
i − Er

i )2 (4)

Finally, once predicted distances are assigned in test vectors, these distances
are stored in the lower triangular of the distance map of the test sequence.
Specifically, the distance field of the prediction vector of the subsequence sb . . . se

is assigned to the position (e, b) of the distance map. Thus the structure of each
target sequence, by its distance map, is reconstructed.

2.5 Evaluation of Predicted Models

We used several measures to evaluate the quality of the predictions. The first
measure is the precision, that is the percentage of predicted contacts that are
present in the native structure. This measure is largely used in the literature of
protein structure prediction, as in the works of Fariselli et al. [18,20]. The second
one is the recall, that is the percentage of native contacts that are predicted to be
contacts. Recall has also been widely used in other protein prediction methods
[19]. Finally, we have obtained measures of accuracy, specificity and Matthews
Correlation Coefficient, that may often provide a much more balanced evaluation
of the prediction than percentages [21]. The following formulas (5,6,7,8,9) define
these five measures.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Specificity =
TN

TN + FP
(8)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(9)

These measures are used to evaluate the quality of a classification: i.e., each pre-
dicted value is assigned a value of 0 or 1. Thus, there are four possible outcomes
depending on the quality of the predictions: a) both the real and predicted val-
ues are 1 (true positive, TP), b) both the real and predicted values are 0 (true
negative, TN), c) the real value is 1 and the predicted value is 0 (false negative,
FN) and d) the real value is 0 and the predicted value is 1 (false positive, FP).
Because in this case, the class to predict is a real value (a distance), to obtain
these measures it is necessary to binarise the class using a distance threshold or
cut-off.
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In this work, we used a cut-off value of 8 angstroms, which is commonly used
in the literature [18,20,19]. In the evaluation of the measures, we omitted pre-
dictions of amino acid pairs with a minimum separation in the protein sequence
of 7 amino acids, as in Fariselli et al. [18].

3 Experimentation and Results

3.1 Prediction of Mitochondrial Matrix Proteins

We performed an experimental validation of our predictor using all mitochondrial
matrix proteins (GO ID: 5759) published in the PDB with a maximum identity
of 30% (non-homologous proteins) at October 2011 (74 proteins with a maximum
length of 1094 amino acids). In Table 2, we show the PDB codes of the proteins
used in this study. We classified proteins in three groups of sequence length L
(L ≤ 300, 300 < L ≤ 450 and L > 450) in order to show the prediction behavior
for each sequence length interval.

Table 2. Mitochondrial matrix proteins used to train and test our predictor

L ≤ 300 2CW6 1CSH 2DFD 3CMQ 1PJ3 3C5E

1BWY 2GRA 1D2E 2E0A 3EXE 1WDK 3DLX

1EFV 2HDH 1F0Y 2IB8 3GH0 1WLE 3E04

1KKC 2O23 1GKZ 2IZZ 3KGW 1ZMD 3IHJ

1MJ3 2WYT 1HW4 2OAT 7AAT 2FGE 3IKL

1QQ2 3ED7 1I4W 2QB7 L > 450 2J6L 3IKM

1R4W 3EMN 1OTH 2QFY 1A4E 2JDI 3MW9

1RHS 3QUW 1RX0 2R2N 1CJC 2UXW 3N9Y

1TG6 3ULL 1W6U 3AFO 1G5H 2WYA 3OEE

1XX4 5CYT 2A1H 3BLX 1HR6 2XIJ 3OU5

1ZD8 L300 − 450 2BFD 3BPT 1OHV 2ZT5 3SPA

A cross-validation was performed over each group of proteins and over the
all 74 proteins. We used a leave-one-out scheme in order to avoid the effect of
fold choice in a cross-validation with folds. Table 3 shows the five evaluation
measures obtained in this experiment.

We achieved a recall value of 0.80 and a precision of 0.79 for the complete
group of proteins, as shown in Table 3. We obtain best predictions, in terms of
recall and precision, with proteins of length between 300 and 450 amino acids.
In this group of proteins, we achieved recall of 0.84 and precision of 0.83.

In most cases the precision obtained in predicting proteins with long se-
quences (more than 300 amino acids) is lower than with proteins of short se-
quences. For example, in the work of Fariselli et al. 2001 [18], which also uses
a cross validation, cut-off of 8 angstroms and minimum sequence separation of
7 amino acids, achieved a precision value of 0.11 for proteins of more than 300
amino acids.
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Table 3. Efficiency of our method predicting mitochondrial matrix proteins

Protein set Recall Precision Accuracy Specificity MCC

All proteins (74) 0.80 0.79 0.97 0.97 0.82
L ≤ 300 (20) 0.77 0.76 0.98 0.98 0.75
300 < L ≤ 450 (27) 0.84 0.83 0.99 0.99 0.83
L > 450 (27) 0.77 0.76 0.95 0.95 0.82

(a) 1TG6 (277 amino acids) (b) 3BLX (349 amino acids) (c) Color scale

Fig. 2. Predicted distance maps for the mitochondrial matrix proteins 1TG6 (a) and
3BLX (b) with their color scale (c)

Figure 2 shows the predicted distance maps for protein 1TG6 (277 amino
acids) and 3BLX (349 amino acids) from the study set. We show a color scale to
represent the distances, ranging from the minimum (red) to the maximum (blue)
distance. We can appreciate in these distance matrices that the lower triangular
(predicted distances) is largely similar to the upper triangular (real distances).

3.2 Comparison with RBFNN on the Same Benchmark

In order to assess the quality of the predictions obtained with our method and to
validate our predictor, we compared our proposal with RBFNN method proposed
by Zhang et al. 2005 [19]. We predicted the same test proteins with the same
training sets in the same conditions.

Zhang et al. 2005 used recall (namely accuracy (Ap) by the authors), predicted
and desired numbers to evaluate the performance. Predicted numbers Np is the
count of the predicted contacts by the algorithm and desired numbers Nd is the
total number of contacts. The contact threshold was set at 8 Å.

In Table 4 we show the results of this experimentation. As we can see in
this table, the average recall (Ap) of ASPpred is 50.82% higher than RBFNN.



Prediction of Mitochondrial Matrix Protein Structures 165

Table 4. Comparison at 8 Å with RBFNN on the same benchmark

PDB code (length)
RBFNN ASPpred

Np Nd Ap Np Nd Ap

1TTF (94) 376 1421 26.46 1307 1421 91.96
1E88 (160) 1006 3352 30.01 3075 3352 91.73
1NAR (290) 3346 10524 31.79 1797 10524 17.07
1BTJ B (337) 3796 14283 26.58 14026 14283 98.20
1J7E (458) 6589 25026 26.33 23407 25026 93.53

Average 27.67 78.49

Np: predicted numbers; Nd: desired numbers; Ap: prediction accuracy (%).

Only the protein 1NAR is poorly predicted because there is only one protein as
training in the benchmark and it seems to be insufficient to build an effective
knowledge base of protein fragments. Thus on the same benchmark dataset,
ASPpred yields a sizable improvement.

4 Conclusions and Future Work

In this work we have proposed a method in which protein fragments are assem-
bled according to their physico-chemical similarities, using 16 physico-chemical
properties of amino acids selected from AAindex by the BARS feature selection
algorithm. We have predicted distance maps, which provide more information
about the structure of a protein than contact maps. We have performed an exper-
imental validation of the method on all non-homologous mitochondrial matrix
proteins currently available in PDB. We have achieved a recall of 0.80 and a pre-
cision of 0.79 with an 8-angstrom cut-off and a minimum sequence separation
of 7 amino acids. Finally, we have compared our system with RBFNN method
proposed by Zhang et al. 2005 on the same benchmark and we have achieved a
recall improvement of 50.82%. Therefore we achieved a significant improvement
over previous algorithms.

As future work, we propose to use other prediction vector definitions, including
more specific descriptors of the fragment that represent, as amino acid windows.
We will also include in these vectors information of the secondary structure of the
fragment and its solvent accessibility. We are designing feasibility measures for
the geometry derived from predicted distance maps and adjustment algorithms
in order to improve our results.
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Abstract. Cancer is the uncontrolled growth of abnormal cells, which do not 
carry out the functions of normal cells. Lung cancer is the leading cause of 
death due to cancer in the world. The survival rate of cancer is about 15%. In 
order to improve the survival rate, we need an early detection method. In this 
study, we propose a new method for early detection of lung cancer using 
Tetrakis Carboxy Phenyl Porphine (TCPP) and well-known machine learning 
techniques. Tetrakis Carboxy Phenyl Porphine (TCPP) is a porphyrin that is 
able to label cancer cells due to the increased numbers of low density 
lipoproteins coating the surface of cancer cells and the porous nature of the 
cancer cell membrane.  

In our previous work we studied the performance of well know machine 
learning techniques in the context of classification accuracy on Biomoda 
internal study. We used 79 features related to shape, intensity, and texture. We 
obtained an accuracy of 80% using the current feature set. In order to improve 
the accuracy of our method, we performed feature selection on these 79 
features. We used Support Vector Machine (SVM) based Recursive feature 
Elimination (RFE) method in our experiments. We obtained an accuracy of 
87.5% using reduced 19 feature set.  

1 Introduction 

Lung cancer is the leading cancer killer among both men and women. Based on 
statistics by American Cancer Society, it is believed there are 220,000 new cases, 
deaths per year is about 160,000 and 5-year survival rate of all stages is 15% [1]. 
However the 5-year survival rate of localized stage is about 50%. Localized stage 
cancer is the cancer that does not spread to additional sites like lymph nodes within 
the body. Various factors influencing the 5-year survival rate are stage of cancer, type 
of cancer, other factors like symptoms, general health etc. Early detection of lung 
cancer is the leading factor in survival rate. The symptoms of lung cancer do not 
appear until the cancer spreads to other areas, thus leading to cancer detection of only 
24% in early stages [3].  We need an accurate early detection of lung cancer, for 
increasing the survival rate.  
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Various methods like Computed Tomography (CT) scan, chest radiography, 
Sputum analysis, microarray data analysis are used for lung cancer detection [5]. 
Mass screening by Computed Tomography (CT) of chest is promising method for 
lung cancer detection. However this method is not recommended because it is costly 
and long term safety of this method is not established due to the risk of exposure to 
radiation [7]. The use of microarray data for cancer is investigated in [9]. However 
the use of microarray data is a costly approach. In this paper we investigate the use of 
Tetrakis Carboxy Phenyl Porphine (TCPP) as alternative approach for early detection 
of lung cancer.  

The use of machine learning for aiding in cancer detection and prediction is 
investigated in [8]. Machine learning techniques like Artificial Neural Networks 
(ANN) and Decision Tress (DT) are used for cancer detection for nearly 20 years [10, 
11, and 12]. The potential of using machine learning methods for detecting cancer 
cells or tumors via X-rays, Computed Tomography (CT) is shown in [13, 14]. 
Machine learning methods used for tumor classification or cancer detection using 
microarray data or gene expression are Fisher Linear Discriminant analysis [15], K-
Nearest Neighbor (KNN) [16], Support Vector Machines (SVM)[17], boosting, and 
Self-Organizing Maps (SOM) [18], Hierarchical clustering [19], and Graph theoretic 
approaches [20]. 

In our previous work [24] we used various machine learning methods for cancer 
detection using 79 different features. We performed feature selection on this feature 
set and improved the accuracy to 87.5% using reduced feature set of 19 features. The 
rest of the paper is organized as follows: in section 2 we describe the data collection 
process, Tetrakis Carboxy Phenyl Porphine (TCPP) staining procedure, section 3 
contains image processing steps and description of features extracted, section 4 
contains the results obtained and in section 5 we conclude the paper. 

2 Sample Collection 

The central hypothesis is that TCPP labeled sputum specimens can detect lung cancer. 
To test this hypothesis, sputum specimens from various subject cohorts were 
examined with the Biomoda CyPath® Early Lung Cancer Detection Assay. The long-
term goal is to establish the Biomoda CyPath® Early Lung Cancer Detection Assay 
along with machine learning techniques as an effective program for screening and 
early detection of lung cancer, with a resultant decrease in lung cancer mortality, and 
long term monitoring of patients undergoing therapy. A diagnostic and screening tool 
for lung cancer is important considering that early detection increases survivability.  
Biomoda CyPath® Early Lung Cancer Detection Assay along with machine learning 
techniques may provide a useful diagnostic and screening tool method for the early 
detection of lung cancer and for rapid assessment of the efficacy of tumor therapy and 
recurrence of lung cancer. 

Biomoda’s internal study included 28 samples from a variety of sources.  Biomoda 
performed this in-house validation study using sputum samples from 15 lung cancer 
patients and 13 normal patients. Cohort 1 consisted of 15 patients who had recently 
been diagnosed with lung cancer and had not undergone surgery or received adjuvant 
therapy for lung cancer.  Cohort 2 included 13 subjects who were heavy smokers but 
did not have a history or diagnosis of lung cancer.   
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This study was initiated with an approved protocol and a copy of the informed 
consent document that was reviewed and approved by a duly-constituted Institutional 
Review Board (IRB). Subjects aged 18 and above were included in the study. Patients 
with a history of angina after minimal exertion, severe obstructive lung diseases 
(Predicted Forced Expiratory Volume in 1 Second (FEV1)<20% of predicted), 
uncontrolled asthma (defined as a hospitalization or emergency room visit within the 
last year, > 2 nocturnal Morning dip index (MDI) uses per month, or daily wheezing), 
and those on supplemental oxygen or resting Saturation of Peripheral Oxygen 
(SpO2)% <90 % were excluded from the study. The rationale for these exclusion 
criteria was to avoid any circumstances that could have aggravated their medical 
condition, considering that some exertion was required for sputum collection (without 
which the subjects could not have been able to produce adequate quantity of sputum). 

A.   Sample Collection and Processing 
Obtaining the deep lung sample is very important step in successful accomplishment 
of the assay. The sputum sample was collected over three days following a “triple 
morning cough procedure”.  At the Biomoda laboratory, the samples were processed 
onto a microscope slide, which contained a monolayer of the sputum cells. After 
preparing the labeling reagents containing TCPP (Biomoda CyPath® Early Detection 
Lung Cancer Assay), the slide was immersed in the labeling solution, rinsed, air-dried 
and cover-slipped.  The completed slide was viewed under an ultraviolet microscope 
utilizing a FITC filter and was observed for the presence of fluorescing red cells and 
other cellular metrics. 

B.   Slide Scoring and Analysis 
Slide scoring and analysis was carried out using the “CyPath Slide Scoring 
Procedure” (conducted with UV light with a FITC filter) as described below.  

• The slide was placed on the microscope stage so that the edge of the 
microscope’s 20x objective remained at the edge of the cellular area.  

• Each slide was scanned in a methodical pattern from one end of cellular area 
to the other, slightly overlapping the area that had already been scanned.  

• The results were interpreted based on the characteristics of cancer cells, 
normal cells and necrotic cells.  

Each TCPP labeled cell was photographed using the 20x objective and 
stored on a file. The results were recorded in the Biomoda laboratory 
research notebook.  

3 Feature Extraction 

Image processing techniques are applied to the images to extract features that assist in 
differentiating lung cancer cells vs. normal cells. One of the discriminators used for 
differentiating lung cancer cells vs. normal cells is that cancer cells glow bright red 
when TCPP is added. Sputum samples from patients that are diagnosed with lung 
cancer and sputum samples from normal patients are used for performing this initial 
study. 
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Digital image in most of the cases is considered as a 2-dimensional signal with 
intensity as amplitude of the signal. Image preprocessing is a multi staged process 
involving multiple steps like, image segmentation, image transformation, image 
restoration etc. In our study we use multiple image based features (image 
segmentation, intensity based, shape factors, wavelet based, seeded region growing, 
orientation and eccentricity, and nucleus segmentation). Initial feature extraction steps 
used in this study are described below: 

A.   Image Segmentation 
Image segmentation is a process of partitioning image into multiple regions. Image 
segmentation involves the following steps 

 Obtain the intensity values from the image 
 Apply threshold using the average of  intensity values 
 Remove pixels which are surrounded by fewer pixels 
 Fill the gaps in each individual component 
 Obtain individual components using connectivity 

B.   Feature Extraction 
The features can be divided into four groups. Intensity based, shape based, wavelet 
based and nucleus based features. Brief description of each feature is given below 

 Intensity and Color Based Features 
Intensity based features are extracted from intensity image and all color 
components (Red, Green and Blue). We extract average intensity, minimum 
intensity, mode, variance, maximum intensity, skewness, kurtosis, and 
number of pixels with maximum intensity and minimum intensity. We 
extract the same for Red, Green and Blue components. We extract a total of 
44 intensity and color based features.  

 Shape Based Features 
The next set of features is extracted to capture the shape properties of the 
segment. 
1. Size of the segment, which is nothing but the number of pixels occupied 

by the segment. This is also area of the segment. 
2. Aspect ratio is the ration between the smallest diameter to the largest 

diameter 
min

max

d
Aspect Ratio=

d
                                                              (2) 

Where dmin is the smallest diameter, dmax is the largest diameter. 
3. Orientation of the cell 
4. Circularity 

2

4 A
C ircularity=

P
Π                                                         (3) 

Where A is the area of the segment, which is size of segment and P is the perimeter of 
the segment 
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 Wavelet Based Features 
Wavelet transform is powerful signal processing tool for analyzing signals. 
The wavelet representation consists of coarse overall approximation together 
with detail coefficients that influence the function at various scales. It 
overcomes the problems of Short Time Fourier Transform (STFT) relating to 
time and space resolution.  Discrete Wavelet Transform (DWT) provides 
high time resolution and low frequency resolution for high frequencies and 
high frequency resolution and low time resolution for low frequencies.  

The wavelet transform has excellent energy compaction and de-
correlation properties, which can be used to effectively generate compact 
representations that exploit the structure of data. Wavelets can capture both 
texture and shape information efficiently. Wavelet transform can be obtained 
by decomposing simultaneously with high-pass filter h and low-pass filter g. 
The outputs will be detail coefficients (from the high-pass filter) and 
approximation coefficients (from the low-pass). This decomposition can be 
repeated further to increase the frequency resolution.  

In our experiments we applied level 3 wavelet decomposition using 
Daubechies wavelet ‘db4’. After applying wavelet transform we will be 
getting one set of approximate coefficients and three sets of detailed 
coefficients. We extracted mean, variance, maximum and minimum values 
from each of these coefficients. 

 Nucleus Based Feature 
Nucleus based features capture the nucleus properties of the cell. In order to 
segment nucleus we use Seeded region growing method. Region growing 
methods [25] are a class of region-based segmentation method which groups 
pixels or sub regions into a larger regions based on certain criteria. In Seeded 
Region growing method, we start with a initially set of “seed” points and 
neighboring pixels which have similar properties (such as gray level, texture, 
color, shape) that of seed points are added to current set. Initial step in this 
method is to choose a group of pixels as seed points. After this neighboring 
pixels are added to this initial if they satisfy properties like difference 
between intensities is below a certain threshold. After performing nucleus 
segmentation we extract both shape based and intensity based features for 
nucleus. 

4 Experiments 

The Support Vector Machine based Recursive Feature Elimination (RFE-SVM) 
approach [23] is a popular technique for feature selection, especially in the 
bioinformatics area. Recursive Feature Elimination (RFE) involves training the 
classifier with respect to feature set F (i.e optimize the parameters for training 
dataset); calculate the ranking criterion for all the features F; eliminate the feature 
with least ranking and repeat training process. In the case of RFE-SVM the ranking 
criterion is the weights magnitude. 

After performing image processing techniques we extract the 79 features as 
explained in previous section. The dataset consists of 119 data points of which 60 data 



 Feature Selection for Lung Cancer Detection Using SVM 173 

points are from cancer samples and 59 are normal samples from different patients. Of 
these data points 66 percent are used for training and remaining 34 percent are used 
for testing. In order to eliminate over-fitting problem we used 5-fold cross validation 
during training process. Non-Linear kernel, Radial basis function (RBF) kernel is 
used in our experiments.  Model selection described in [26] is used to find optimal 
parameters. 

Table 1. accuracy obtained by using various features 

Number of features used Accuracy obtained 
79 80 
74 80 
69 82.5 
64 82.5 
59 85 
54 85 
49 85 
44 85 
39 85 
34 82.5 
29 82.5 
24 85 
19 87.5 

 
On this dataset we performed Support Vector Machine (SVM) based Recursive 

feature Elimination (RFE). The features are ranked based on the weight assigned by 
Support Vector Machine (SVM). After that we remove least significant features in 
steps of 5 and perform analysis on the remaining features. The accuracies obtained in 
each step are given in table 1. 

Using our initial feature set we obtained a testing accuracy of 80%. The PAP 
smear, commonly used as a cytological method, has an accuracy of about 62%. 
Besides obtaining better accuracy, simple method of Biomoda CyPath® adds to its 
advantages. The PAP test consists of approximately 27 steps and five reagents, some 
of which are categorized as hazardous materials and also requires higher level of 
expertise. For 19 features we obtained an accuracy of 87.5%. Further elimination of 
features resulted in decrease of accuracy. Of these 19 features 9 features belong to 
intensity based, 3 features belong to wavelet based, 1 feature belongs to shape and 
remaining are nucleus based (4 shape and 1 intensity). In the 10 intensity based 
features green component has 4 features; red has 1 feature and remaining 4 features 
belong to intensity.  

We show the performance of our method using Receiver Operating Characteristic 
(ROC) curves. The Receiver Operating Characteristic (ROC) curves are generated for 
SVMs by considering the rate at which true positives accumulate versus the rate at 
which false positives accumulate with each one corresponding, to the vertical axis and 
the horizontal axis in Figure 1.  The point (0, 1) is the perfect classifier, since it 
classifies all positive and negative cases correctly. Thus an ideal system will initiate 
by identifying all the positive examples and so the curve will rise to (0, 1) 
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immediately, having a zero rate of false positives, and then continue along to (1, 1). 
Figure 1(a) shows the ROC curve obtained using 79 features and figure 1(b) shows 
the Roc curve obtained using reduced 19 features. 

 

 

Fig. 1. a ROC curve using 79 features 

 

 
Fig. 1. b ROC curve using 19 features 
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5 Conclusion  

In this paper we performed feature selection using Support Vector Machine (SVM) 
based Recursive feature Elimination (RFE) method on 79 features. We eliminated 
features based on their rank and obtained an accuracy of 87.5% by using 19 most 
significant features. Our experiments show that green component, intensity and shape 
of the nucleus are significant in detection of lung cancer. Besides its use as a potential 
screening tool for lung cancer, this method can be used to monitor treatment 
effectiveness, to detect the recurrence of lung cancer, and also to identify patients who 
may need an invasive diagnostic procedure. Our results show the potential use of 
feature selection to improve the accuracy and efficiency of lung cancer detection. As 
a future work we plan to use large datasets of patients.  We would also like to see the 
performance of other classifiers on this reduced dataset. 
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Abstract. Fluorescence imaging has become a widely used technique for 
quantitatively measuring mRNA or protein expression. The first measurements 
were on gene expression noise in bacteria and yeast. The relative biological and 
physicochemical simplicity of these single cells encouraged a number of groups 
to try similar approaches in multicellular organisms. Such work has been 
primarily on whole Drosophila embryos, where the genes forming the body 
plan are very well understood. The numerous sources of noise in complex 
embryonic tissues are a major challenge for characterizing gene expression 
noise. Here, we present our approach for first separating experimental from 
biological noise, followed by distinguishing sources of biological noise. We 
decompose raw signal into trend and residual noise using Singular Spectrum 
Analysis. We demonstrate our statistical techniques on the Drosophila 
Hunchback protein pattern. We show that the ‘texture noise’, arising from the 
pre-cellular compartmentalization of the embryo surface, which is highly 
dynamic in time, is a major component of total biological noise, and can exceed 
gene transcription/translation noise.  

Keywords: Fluorescence imaging, measuring gene expression, gene expression 
noise, experimental noise, confocal scanning noise, noise filtration, noise 
analysis, Singular Value Decomposition (SVD), Singular Spectrum Analysis 
(SSA), Poisson noise. 
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1 Introduction 

The past decade has seen impressive scientific projects aimed at analyzing the noise 
arising from gene transcription and translation. The approach is based on genetically 
engineered fluorescent proteins and fluorescence imaging. Specifically, the dual-
reporter method was first applied to bacteria [1, 2], and then to yeast cells [3, 4].  

These breakthroughs in the study of expression noise at the single cell (and a single 
gene) level introduced now widely accepted terminology and concepts into the field. 
The main ideas are that noise in gene expression arises not only from the inherent 
randomness of biochemical processes such as transcription and translation (intrinsic 
noise), but also from fluctuations in cellular components (extrinsic noise) that lead 
indirectly to variation in the expression of a particular gene [e.g.5]. Extrinsic noise is 
due to cellular components such as regulatory proteins and polymerases, and has a 
global effect [1]. Intrinsic noise arises from the stochastic nature of the biochemical 
processes of gene expression and causes identical copies of a gene to express at 
different levels [1]. These early projects showed that the intrinsic noise in bacteria and 
yeast tends to be well-fit by a Poisson birth and death process [4; 6]. 

Detailed consideration of the unicellular experiments raises some crucial questions 
as to what extent the measured noise is chiefly the molecular noise of gene 
transcription and translation. Even ignoring the observational noise (e.g. in 
fluorescence measurements), we still have to pay attention to biological noise sources 
such as active molecular transport, compartmentalization, the mechanics of cell 
division, etc. “…one can argue that the inside of a bacterial cell is not a well-stirred 
pot…” [7]. We might expect that these noise sources are relatively low and 
controllable in bacterial and yeast populations, but this is certainly not the case for 
whole embryo observations. 

The ideas and approaches for transcription/translation noise in simple single cells 
has started to be transferred to higher multicellular organisms, primarily the early 
Drosophila embryo [8,9,10,11,12], with tempting parallels between fluorescence of 
separate nuclei in Drosophila blastoderm images and separate cells in the dual-
reporter experiments in bacteria and yeast. In both cases we can mask the sources of 
fluorescence (bacteria / yeast cells and nuclei in the blastoderm), measure their 
intensity, and estimate noise. The problem is to what extent the nucleus to nucleus 
variability corresponds to the noise of bacterial gene translation.  

Very serious observational limitations to confocal scanning of whole Drosophila 
embryo have been raised by some authors (e.g. Myasnkova et al. [13, 14]). Our 
experience studying noise in fluorescence intensity in confocal scanning of live gfp-
BCD embryos (unpublished) in comparison with fixed immunostained embryos [15] 
reveals that the nature of the noise is quite far from the simple kinetic considerations 
of Poisson birth and death processes used in single cells. We think the simple Poisson 
view does not conform to the biological reality. Nuclear fluorescence, biologically, is 
the result of complicated and relatively poorly studied processes of active (energy-
dependent) transport of diverse molecules from one compartment to another. The 
geometry and dynamics of the compartments and their relation to the molecular 
machinery of active transport is still puzzling. The statistics of the nuclear abundance 
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of a given gene product is not likely to be simply modeled by elementary polypeptide 
synthesis on the ribosome. We need to pay attention to the many coupled processes of 
stratification and compartmentalization of the cytoplasm, which is highly dynamic 
and quite cell-cycle dependent; e.g. with well-known local and whole-embryo scale 
cytoplasmic movements, especially during mitosis [16]. 

In this communication, we show that the observed noise of signal intensity in the 
cytoplasm or in the surface layer of the Drosophila blastoderm is largely the result of 
inhomogeneity of the biological material. We call this ‘texture noise’. Fig. 1 
illustrates how this texture looks during the syncytial (precellular) blastoderm stage. 
Texture noise is probably of higher magnitude than the noise arising from the kinetics 
of protein synthesis (cf Figs. 1&2). 

 
Fig. 1. Some examples of texture in syncytial Drosophila embryos. Different techniques show 
consistent texture characteristics: texture is caused by the geometry of the nuclei (and their 
close environments), connected by cytoplasmic “bridges”. A) protein in a fixed and 
immnostained embryo; B) live embryo carrying green fluorescence protein; C) mRNA in a 
fixed embryo, FISH method (fly-FISH DB [17]). 

2 Methods and Approaches 

2.1 Immunostaining and Confocal Scanning 

Embryos were dechorionated, heat fixed, devitellinized, and incubated with primary 
and secondary antibodies, as described in [22]. Whole-embryo images were taken 
using a laser confocal scanning microscope (Leica TCS SP2). Images were collected 
using an HC PL APO 20x objective and variable digital zoom (1.2–1.5x). Each 
embryo was scanned sequentially, multiple times (64, 128 or 256) and all individual 
scans were saved. The settings of the microscope were adjusted for each gene product 
such that pixels expressed at maximum intensity were 200 on the 8-bit scale. Initial 
image size before processing was 1024x1024 pixels. 
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2.2 Processing of Sagittal Images and Profile Extraction 

We have developed a suite of computational tools to process sagittal images, 
consisting of a set of plugins for ImageJ software [W.Rasband, NIH USA] and scripts 
in Delphi (for Wndows OS) or Free Pascal (for Linux OS). After raw image rotation 
and cropping, the software is used to find the image contour (embryo edges). This 
contour is then used to find a series of curvilinear profiles running beneath and in 
parallel with the embryo edge (or contour). Two particular profiles were selected 
visually: one running through the apical periplasm, the other through the basal 
periplasm. Local fluorescence intensity is then collected along these profiles, using a 
small circular window or Region Of Interest (ROI) of given radius R (in pixels), 
centered on the profile. The ROI is moved down the length of the contour in n-pixel 
steps. At each step the averaged intensity within the ROI is measured and saved. In 
this communication we have used a one-pixel ROI (2R=1) and one-pixel step (n=1). 

Bleaching Compensation: Our preliminary analysis of the data reveals an approximately 
linear decrement of intensity with the number of confocal scans. The exact coefficients for 
the intensity decrease were estimated by linear regression and the data was adjusted on a 
pixel-to-pixel basis to compensate for fading.  

2.3 Singular Spectrum Analysis of Expression Profiles 

SSA: Here we describe the basic algorithm for SSA extraction of signal from a one-
dimensional series F = ( f0, . . . , fN−1). For the given data, fn represents the intensity 
measured at the nth point of a curvilinear profile running through the embryo image. 
The first step of SSA has only the window length parameter L, 1 < L < N, and 
consists of the construction of the Hankel matrix of size L × K, also called the 
trajectory matrix. There is a one-to-one relation between a series of length N and 
Hankel matrices of size L × K; each secondary diagonal of a Hankel matrix has equal 
values and produces a term of the series. The trajectory matrix is then decomposed 
into the sum of the ordered elementary matrices. This is the so-called singular value 
decomposition (SVD), and each SVD component generates an elementary 
reconstructed component (elementary RC) of the series F. The signal extraction 
problem is thus reduced to (i) choice of window length L and (ii) selection of the 
subgroup J of SVD components for reconstruction. 

Trend Extraction in SSA: SSA needs no a priori specification of models 
(deterministic or stochastic). In this communication, we are interested in extraction of 
a slowly varying signal, the trend. Any trend can be approximated by a finite-rank 
series, as the class of finite-rank series includes all types of sums of products of 
polynomials, exponentials, and sinusoids. Let us assume that the trend is (or is 
approximated by) a series of rank r. With large enough N and L (L ≤ N/2), the trend is 
separable from noise and is reconstructed by the r-leading SVD components. The 
subspace spanned by the r-corresponding eigenvectors contains information about the 
finite-rank structure and, in particular, allows one to derive the approximate analytical 
formula of the trend. If N is not large enough (e.g. for strong noise or high rank r) and 
separability is bad, then the trend still can be extracted using small L. In this case, the 
trend is determined by a few leading components, and SSA works like a smoothing  
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adaptive linear filter. However, the subspace spanned by the corresponding 
eigenvectors does not reflect the finite-rank structure of the trend and is liable to be 
affected by noise and outliers. Grouping of SVD components is based on the fact that 
the slowly varying component of the series generates eigenvectors and factor vectors 
of slowly varying form [18], and therefore is composed of similar elementary RCs. 
Thus, the identification of the components of a trend consists in identification (visual 
or automatic) of slowly varying eigenvectors, factor vectors, or elementary RCs. 
Noise is then quantified as the difference between raw intensity and trend value at 
each position (i.e. local residuals). Fig. 2 illustrates the process of trend extraction on 
a Drosophila gene expression profile. Further details of the SSA application to 
Drosophila data are described in [19; 15]. 

 

Fig. 2. Decomposition of a raw data series (A, blue) into trend (A, red) and residual noise (B) 
and criteria for quality of trend extraction (C). The first three principal components are low 
frequency (C, top), while the rest of components are high frequency and quite different (C, 
bottom). The sharp transition from low-frequency to high-frequency components indicates a 
good separation of trend and noise. This data is from the embryo shown in Fig. 3C,D. 

Filtering of Periodic Components: With periodic components, extraction is based 
on Fourier decomposition of the eigenvector elements and assumes the extraction of 
exponentially-modulated harmonics [18]. 

2.4 Estimating the Dependence of the Variance on the Trend 

To estimate whether the variance of the data depends on the trend, we use the 
following procedure: 

1. adjust for bleaching (see above); 
2. calculate means and variances at each pixel over all the scans; 
3. Place the (mean, variance) in increasing order; 
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4. Smooth by calculating a moving average (with the window, say, of 50) of 
mean/variance. 

5. Remove pairs with small mean (less than 20 or 30), as they can be corrupted due 
to big offset in the microscope. 

6. Estimate linear regression coefficients (see section 3.1). 

3 Results and Discussion 

hunchback (hb) is one of the best studied Drosophila genes in early embryo 
development, and one we have worked on for some time [15,20,21,22]. It is a gap-
class gene and one of the primary targets of the primary morphogenetic gradient of 
Bicoid (Bcd). The Bcd-Hb system has been extensively studied with respect to 
variability and robustness in early embryo patterning [9, 10, 11, 15]. 

Quantitative analysis of the data, both ours and that presented in the FlyEx 
database [23] reveal that Hb staining at the beginning of the syncytial blastoderm 
stage is clearly visible in the cytoplasm (Fig. 3). From nuclear cleavage cycle (cc) 10 
to cc 13-14, the cytoplasmic signal decreases several-fold (cf Fig. 4), as Hb is 
localized to nuclei. I.e., early data is cytoplasmic, and not of nucleus-to-nucleus noise. 
Visual  

 
Fig. 3. Hb protein in syncytial cytoplasm showing texture of early embryo. A) Early embryo 
immunostained for Hb, tangential scan, from cc10, FlyEx database [23]: hz15. B) Intensity plot 
from a selected strip (about one nucleus wide, marked by yellow borders in A). The seven 
nuclei clearly seen in the anterior half in A correspond to the seven spikes in B. C) Mid-sagittal 
scan of an early embryo immunostained for Hb, ~cc 10 - 11. D) The intensity plot acquired by 
moving an ROI along the yellow profile shown in C.  

inspection clearly shows the texture of cytoplasm, and we might expect the residual 
noise, after elimination of experimental / observational noise, to be dominated by this 
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cortical texture noise (not transcription-translation noise). The texture noise seen in 
early cytoplasm is likely to be carried over into older, cellularizing embryos 

3.1 Photo-Detection Noise 

At the cellularizing blastoderm stage, mid cc 14A, the Hb signal is mainly from 
nuclei; the signal from the basal cortical cytoplasm is very low but detectable. Here, 
we compare Hb noise from the nuclear layer versus Hb noise in basal cytoplasm 
(below the nuclei). We use pixel-width profiles as well as the chains of small ROIs, 
running through the nuclear layer and through the basal cytoplasmic layer.  

A sagittal image of a mid cc 14A embryo immunostained for Hb is shown in Fig. 
4A. We present analysis on two selected profiles: the 11th one runs through the 
brightest area of the nuclear layer, showing the nuclear spatial periodicity; while the 
26th one runs far below the nuclear layer has practically no periodic components (see 
Fig. 4A). Pixel intensity was adjusted as described in section 2, to compensate for 
bleaching. 

Linear Dependence of Pixel Variance on Mean (trend): The embryo in Fig. 4A 
was scanned 256 times in succession, giving 256 (independent) measurements for 
each profile. Hence each pixel (point) corresponds to a set of 256 sample values. With 
this data, we calculate a mean and variance for each pixel (point). Scatterplots for 
~1000 datapoints (pixels) are shown for variances (Fig. 4B) and means (Fig. 4C) 
against anterior-posterior position. Our data show a linear dependence of the variance 
on the mean (Fig. 4D). The proportionality of the variance to the mean indicates a 
Poisson distribution; the null hypothesis of a Poisson distribution is not rejected (P-
level = 0.4).  

This effect can be explained if we are observing a linear combination of a Poisson 
random variable ξ. If we observe η=a*ξ – b (more precisely, η= max(a*ξ – b,0), 
where a corresponds to microscope gain, and b corresponds to microscope offset) and 
Dξ = Eξ = L for a Poisson distribution (D denotes variance, E denotes expectation), 
then Dη=a2*L, Eη=a*L – b. Therefore, Dη = a*(Eη + b) = a*Eη + a*b, where Eη 
(mean) and Dη (Var) are the mean and the variance at each pixel. From the data, we 
estimate the coefficients in the equation Var = a*mean + c and calculate b=c/a. 

Results were obtained for several profiles to confirm the reliability of the 
procedure and the stability of the results. The values of a, b and the ratio a/b was 
verified by comparing with the real microscope settings for the confocal scans (gain 
and offset) for the embryos studied. For the Hb data in Fig. 4 the coefficient a = 1.86 
and b = 4. This corresponds to a low offset, which agrees visually with the high 
background seen in Fig. 4B.  

Poisson Character of the Photon-Detection Noise: After the above-described 
transformation of raw pixel-level data we were able to verify the Poisson character of 
the instrumental noise. This was done both for individual pixels (analysis of 
periodograms) and for pixel-width profiles (raw data vs. root-transformed vs. log-
transformed ones; data not shown). 
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We found that observational or confocal scanning noise at the pixel level is 
dominant in confocal images even after averaging several dozen individual scans. 
Under the protocols we are using (section 2) it usually takes more than one hundred 
(up to 256) individual scans of the same embryo to achieve a smooth image. This 
gradual decrease of pixel noise by averaging over an increasing number of individual 
scans is evident by eye (data not shown). 

 
Fig. 4. Observational noise at cc14. A) Sagittal view of an embryo, with the 11th and 26th 
profles shown. B) Intensities and their variances (red), with their trends, measured along the 
11th profile. The variance is proportional to the signal. C) Variance vs. mean (estimated from a 
256-size sample) for pixels of the 11th profile: the variance is proportional to the signal. D) 
Linear dependence of variance on mean (trend). 

3.2 Can One Distinguish Photomultiplier Tube (PMT) and Residual Noise? 

To elucidate this question we made periodograms for three datasets: from a single 
scan; and from images made by averaging 32 and 256 scans. In all three cases the 
right half of the periodogram corresponds mainly to (white) PMT noise. The noise 
residual after the minimization of the PMT noise corresponds mainly to the left half 
of the periodogram (from 0 to 0.2) (Fig. 5). Comparing the periodograms (1 scan and 
256 scans averaged) we can see that the right component decreases with the number 
of scans averaged (wide blue arrows). Averaging over a hundred scans leaves mainly 
the left component of the noise. This noise is not white. We can treat it as a 
superposition of irregular periodic components mainly belonging to the low frequency 
half of a periodogram.  
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Minimization of the PMT noise allows us to study the character of the residual 
noise, or texture noise as discussed in the Introduction. 

For further analysis we concentrated on the 26th profile, the one running 
underneath the nuclear layer (Fig. 4A) and which does not show any evident sign of 
nuclear periodicity. Our null hypothesis was that the PMT noise is independent from 
(or, more strictly, uncorrelated with) the residual (texture) noise. If so, then the 
variance of total residual noise is a sum of these two components:  

Var = Vartext + Varpmt/K,  

where Vartext is the variance describing the texture noise, Varpmt is the variance 
describing the PMT noise, and K is the number of scans averaged. 

 

Fig. 5. Decomposition of the residual noise (after subtraction of the trend and the periodic 
nuclear component) for Hb profile #26 (Fig. 4A) into instrumental (PMT) and residual (texture) 
noise. The more individual scans used for averaging, the more evident the texture noise 
components in the periodograms. The texture noise components mainly belong to the frequency 
interval (0, 0.2), while the PMT noise mainly occupies the frequency interval (0.2, 0.5). (The 
standard deviation for the PMT noise is 0.36.) Periodograms for the residuals are shown for an 
individual scan (A) and an average over 256 scans (B).  

Four particular data-sets were considered: the 26th profile from a single scan, and 
from averaging the same profile over 8, 16, and 64 scans. Variance was estimated by 
SSA, giving the following ratios between std.dev.text / std.dev.pmt: 

 
Scans 
averaged 

std.dev.text / std.dev.pmt 

1 0.67 / 2.80 
8 0.67 / 0.99 
16 0.67 / 0.70 
64 0.67 / 0.35 

 
This shows that the pixel-noise observed in images made from averaging 16 scans 

(the usual practice [24]) is mainly PMT noise, while images made by averaging 64 
scans or more is mainly texture noise. 

 

 

A B
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3.3 Texture Noise Character  

As shown in previous sections, the trends mined from Hb images averaged for 256 
scans include mainly residual noise, which we classify as texture noise. In this section 
we study the character of the texture noise. A standard way to evaluate the character 
of the noise in data series is to apply the Box-Cox transformation. A common first 
step is to compare the results of applying the two extremes of the Box-Cox 
transformation: square root and logarithm of the data (Fig. 6).  

Fig. 6 shows residuals and standard deviations estimated by a sliding window of 
length = 100 datapoints. For root-transformation, standard deviations are close to 
constant (Fig. 6D). However, this character of noise-trend dependence is typical for 
raw (non-transformed) data and sensitive to background removal (data not shown). 
This raises a more general methodological problem of how to define zero intensity 
values for experimental data. The zero of confocal scans are set by gain and offset. 
But the zero of the real signal (measurable quantities of Hb molecules) corresponds to 
background fluorescence. This background strongly depends on the experimental 
procedures of fixation and immunostaining, and on antibody qualities. Generally 
speaking, this subject needs further analysis. 

 

Fig. 6. Poisson character of texture noise for the profile running through the nuclear layer (Hb 
protein immunostaining; 256 scans, profile 11). A) The raw profile data with background. B) 
The residual noise (blue) for the profile A after the signal noise decomposition: the noise at 
higher intensity is higher; the standard deviation estimated by a sliding window of length = 100 
datapoints is plotted in red. C) The standard deviation (red), plotted with the residual noise for 
the log-transformed data. D) The standard deviation (red) plotted with the residual noise for the 
square-root transformed data. 
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4 Conclusion 

1. The confocal scanning (instrumental) noise at the pixel level is dominant in 
confocal images. Under common protocols, it takes an averaging of more than one 
hundred individual scans (of the same embryo) to minimize this noise. We found 
that this instrumental noise is Poisson distributed. 

2. The residual noise after minimization of the instrumental noise appears to be close 
to Poisson. However the signal-noise dependence is sensitive to the background 
signal and sensitive to the method of background subtraction. 

3. We can treat the residual noise as the superposition of irregular periodic 
components mainly belonging to the low frequency half of the noise periodogram. 
Our interpretation is that this noise corresponds to the texture of the biological 
object we are imaging – the syncytial to cellularizing blastoderm stages of the 
early Drosophila embryo. 

4. The residual noise is not likely to be the intrinsic noise of transcription and 
translation. It is more likely to stem from the spatial compartmentalization of the 
embryo surface. 
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Abstract. We implement an Artificial Immune System (AIS) for epis-
tasis detection in human genetic datasets. Our AIS outperforms previous
attempts to solve the same problem by Penrod et al. by a factor of over
2.4 and performs at 81% of the power of the field standard exhaustive
search, Multifactor Dimensionality Reduction (MDR). We show that the
immune system performs best when ’paring down’ large antibodies to
more specific and accurate classifiers. This is promising as it shows that
the AIS is doing valuable work, and needs not rely on a near-perfect
antibody showing up by chance. We perform a receiver operator charac-
teristic (ROC) analysis to further examine this property.

Keywords: Artificial Immune System, Epistasis, Genetics, Analysis.

1 Introduction

We now have access to vast databases of raw genetic information, but this has
in turn made it difficult to determine what part of that information is useful
for solving any given problem. The standard approach to determining genetic
causes to diseases is to perform a genome-wide analysis study (GWAS) that
targets linear genotype-phenotype interactions. However, many are starting to
believe that genetic architecture may be more complicated than single-gene, or
linear, models; instead it is proposed that complex non-linear interactions can
help determine one’s phenotypes [6]. These non-linear interactions are termed
epistatic interactions and the presence of these interactions is known as epistasis.
Epistasis is non-linear because multiple genes may have non-additive effects. In
other words, the underlying genetic model for any phenotype may be multiple
genes that have no detectable signal individually, but together produce a strong
correlation. This view is starting to receive more credence within the genetic
community [3].

Performing a linear GWAS is computationally easy. Let G be the set of genes
in our dataset, checking each for a correlation takes roughly O(|G|). This, being
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linear time, is easily achievable on most modern computer systems. However,
expanding the search space to include epistatic models means that all combi-
nations of attributes must be considered. This makes the makes the problem
combinatorial and non-polynomial. This is prohibitively difficult given the size
of the genome and current computing technology. Instead we look for heuristic
polynomial-time algorithms that can efficiently detect epistatic signals most of
the time; and without resorting to brute-force searches.

The class of algorithms known as artificial immune systems (AISs) takes
inspiration from a biological immune system [2]. A biological immune system
trains itself to recognize antigens that are not part of the host’s body. Similarly,
the concept can be adapted to train computer programs to recognize signals
that are not part of a healthy genotype. Previous work exists that shows that
AISs and related genetic algorithms could be effective in detecting epistatic
signals [9,8].

In this paper we demonstrate the performance of our improved AIS in detect-
ing epistatic signals. We also show that the AIS demonstrates some interesting
ROC characteristics [4]. Whereas standard ROC’s suggests that there should
be a trade-off between sensitivity and specificity, experimental analysis shows
that maximizing sensitivity produces the most accurate and powerful algorithm.
The objective of this work is to demonstrate the implementation of an improved
AIS for epistasis analysis compared to previous research and to examine some
interesting aspects of the functioning of an AIS.

1.1 Related Work

A basic AIS is This paper builds upon the work done by Penrod et al. [9]. In
Penrod et al., the authors implement a basic AIS for detection of epistatic signals
in genetic datasets. The paper concluded that whereas the average performance
of the AIS did not provide a large improvement over a corresponding random
search, there were certain parameter settings that provided better performance.
This paper implements an improved AIS, the improvements resulting from an
exploration of the speculation presented in Penrod et al. Work on the subject of
relating biological, genetic or learning algorithms to epistasis has also been done
by Motsinger et al. with GPNN, Greene et al. with Ant Colony Optimization,
and Bereta et al. with another Immune System [8,5,1].

2 Methods

2.1 AIS Implementation

We generate antibodies that recognize the input data instances with varying
degrees of affinity. Each antibody is an set of rules. The affinity of an antibody
for an antigen is calculated by counting the portion of satisfied rules. We then
increase the overall fitness of the antibodies over many generations via positive
selection and point mutations.

For full source code, please contact the authors at the given email.
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Data. We used simulated epistatic datasets generated by the Dartmouth Bioin-
formatics Laboratory [11]. Each dataset containedR = 400 instances and A = 20
attributes. Each instance contains the genotype of an individual and an out-
come. The genotype consists of a number of single nucleotide polymorphism
(SNP) measurements. Each measurement represents the possible zygosity of the
corresponding SNP and is represented as either 0, 1 or 2. The zygosity refers
to the SNP having two alleles, the possible zygosities are commonly denoted as
’AA’, ’Aa’ and ’aa’. The outcome classifies the instance as either control or case
depending on whether the corresponding phenotype is healthy or sick, respec-
tively. In the simulated data there was no corresponding phenotype, so instances
will simply be referred to as ’case’ and ’control’ abstractly. All testing was done
on the same battery of 500 datasets. These were a subset of the datasets used
in Penrod et al. Each dataset contained 200 case instances and 200 control in-
dividuals. The minor allele frequency was 0.6 and the heritability was 0.01 for
all datasets; this is the lowest heritability within all datasets generated by the
laboratory, and produces the signals most difficult for algorithms to detect.

Abstract Data Types. For ease of explanation and programming we used sev-
eral abstract data types (ADTs), namely measurements, functions, rules, anti-
gens and antibodies.

1. Measurement: Each attribute in the dataset corresponds to a single nu-
cleotide polymorphism (SNP). Each instance in the dataset contains a mea-
surement of each SNP. We implement measurements as a value that can be
either 0, 1 or 2.

2. Antigen: Each antigen corresponds to an instance i of the input dataset
D. For notational convenience the antigen corresponding to the ith instance
is represented as an array of measurements Agi[]. Agi[j] refers to the mea-
surement of the jth SNP from the ith instance. Agi.outcome refers to the
outcome of the instances and correspondingly the antigen, it can be either
CASE or CONTROL

3. Function: A function takes two SNP measurements as input and produces
a Boolean output. Specifically

f : {0, 1, 2}× {0, 1, 2} → {TRUE,FALSE} (1)

We implemented the equality and inequality functions, or a = b and a �= b
for a, b ∈ {0, 1, 2}.

4. Rule: A rule contains an index a pointing to an attribute, a function f and
a measurement, m. A rule can either be satisfied or violated by an antigen
Ag. To determine whether the rule is satisfied we use the index as a pointer
to Ag[a] and apply the rule’s function. Specifically

Ra,f,m(Ag) = f(Ag[a],m) (2)

5. Antibody: Each antibody Ab is a set of rules. The set can be any size from
1 to A, the number of attributes in the dataset and each rule must have a
unique index, a.
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Terminology and Parameters

1. Case/Control: An antigen is a case antigen if it corresponds to a case instance
in the dataset and similarly a control antigen corresponds to a control in-
stance. The set of case antigens is denoted CASES and the set of control
antigens is denoted CONTROLS.

2. Wild Card: The number of rules in an antibody can be less than the number
of SNPs in an antigen. Therefore for a given antibody there may be some
SNPs to which no rule corresponds. For that antibody these orphan SNPs’
rules are referred to as wild cards. A wild card indicates that an antibody
does not use that SNP as a constraint when predicting outcome.

3. Affinity: This is a measure of how well an antibody ’matches’ an antigen. It
is equal to the number of satisfied rules over the total number of rules in the
antibody for a given antigen.

4. Recognition: If the affinity between an antibody and an antigen is equal to
1.0 we say that the antibody recognizes the antigen.

As parameters for our AIS we implemented:

1. N : Antibody Population Size
2. G: Number of Generations
3. Sr: Survival Rate
4. Pwc: Probability of Wild Card
5. Mr: Mutation Rate

Random Antibodies and Mutation. To execute our algorithm we needed
two ways of producing new antibodies, namely random generation and mutation.

Random Rule. To return a random rule for attribute a we assign m randomly
chosen from Measurements and a function either = or �= with p = 1/2 for both.

Random Antibodies. To generate a random antibody we must produce a set of
rules. Our process is not completely random and is biased by our parameter Pwc.
We start by iterating through each of the n attributes. For each attribute, a, we
flip a weighted coin which lands on ’rule’ with p = 1− Pwc and ’wild card’ with
p = Pwc. If the coin lands on ’rule’ we add a random rule with attribute value a
to the Ab; else we add nothing, which is equivalent to a wild card.

Mutations. To mutate an antibody we iterate through each of the n attributes.
For each attribute, a, we mutate with probability Mr. To mutate attribute a,
we flip a weighted coin just as before. If the coin lands on rule we replace the
rule referencing attribute a with a random rule; else we eliminate it, which is
equivalent to replacing with a wild card.

Calculating Affinity. Antigens and antibodies can be visualized as arrays.
Antigens are fixed length and contain attribute measurements of 0, 1 or 2 along
with a case/control classification. The population of antigens is effectively the
input dataset parsed into the program. See Table 1, Ai stands for attributei.
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Table 1. Graphical Representation of a set of Random Antigens

Antigen A1 A2 ... An Status

1 0 1 ... 2 CASE

2 1 1 ... 1 CONTROL
... ... ... ... ... ...

A 2 2 ... 0 CONTROL

Table 2. Graphical Representation of a set of Random Antibodies

Antibody R1 R2 ... Rn−1 Rn

1 =0 ∗ ... =2 *

2 �=1 =1 ... * *

... ... ... ... ... ...

N * =2 ... �=0 *

The antibody population is slightly different. To visualize antibodies as arrays
we assign rules referencing attribute a to slot a in the antibody array. If no rule
exists for attribute a we write a ∗, which represents a wild card. Wild cards are
used as stand ins for visualization and do not affect affinity. See Table 2.

To calculate the affinity of an antibody Ab for an antigen Ag we iterate through
every rule in Ab and count how many times a rule is satisfied by Ag. Percentage
of rules satisfied is termed the affinity, Af of Ab for Ag. Wild cards do not affect
the affinity score and are not counted. If the affinity is equal to 1.0 then we say
that Ab has recognized Ag. We denote calculating affinity by Af = Ab ·Ag. This is
represented visually in Table 3, rule satisfaction is written as 1 and violation as 0.

Table 3. A Random Antibody Tested Against a Random Antigen

Ag 0 1 0 2 CASE
Ab =0 ∗ =1 �=1 NA

Ab · Ag 1 N/A 0 1 Af = 0.66

CCRR: We used case to control recognition ratio (CCRR) to score antibod-
ies. To calculate CCRR we take the number of case antigens recognized by an
antibody Ab and divide that by the number of control antigens recognized by
the antibody. In the event that the number of controls recognized is 0 we add
one to the numerator and denominator to avoid division by zero.

Algorithm. We initialize the AIS by generating a population of N random
antibodies. We then loop for G generations. In each generation we score the
antibodies and then determine an elite selection which will serve as parents. We
generate one daughter antibody for each of the parent antibodies by mutating the
parent and replacing a non-elite antibody with the mutant. Lastly we replace all
remaining non-elite and non-daughter antibodies with new random antibodies.
Below we present pseudocode for the algorithm. Within our set of N antibodies
we refer to the ith antibody by Abi. The affinity of antibody i for antigen j is
denoted by Abi.Afj .



194 D. Granizo-Mackenzie and J.H. Moore

N.B. Any time an integer is required from a real number we round down.

1. INITIALIZATION: Generate A antigens corresponding to the A instances
in the input dataset.

2. INITIALIZATION: Generate N random antibodies.
3. For each antibody Abi|i ∈ {1 : N} calculate Abi.Afj = Abi · Agj for each

control antigen Agj ∈ CONTROLS.
4. Repeat step 3 for case antigens Agj ∈ CASES.
5. Set the score of each antibody to its CCRR.
6. Sort antibodies by CCRR in descending order.
7. Replace antibodies AbSrN+1 through Ab2SrN with mutations of elite anti-

bodies Ab1 through AbSrN respectively.
8. Replace remaining antibodies Ab2SrN+1 through AbN with random antibod-

ies.
9. Repeat steps 3 through 8, G times.
10. OUTPUT: Return the final generation’s elite antibodies.

Success Metric. After obtaining the AIS’s output of SrN elite antibodies
we counted the number of times that a rule existed for each attribute in the
dataset. In other words, we created an array counts of size A and then looked
at every rule. Every time a rule’s attribute was a, we added 1 to counts[a].
This served as an indication of how ’important’ the AIS judged that attribute
to be. We recorded that our algorithm was ’successful’ if and only if the first
two attributes, X0 and X1 — the correct genetic model — had the two highest
counts within the array.

2.2 Random Search

We observed that our AIS generates N +G(1 − Sr)N new antibodies over the
course of execution. To perform a random search corresponding to running an
AIS on parameters N , G and Sr we generate NG antibodies, rank them by
CCRR and return the NSr highest scored. We use NG because we can be
certain that NG ≥ N +G(1−Sr)N will give the random search at least enough
resources. This is equivalent to running the AIS with N ′ = NG and G = 1 while
holding all other parameters the same and considering only the top NSr best
scored antibodies for results.

3 Results

3.1 AIS Power

To obtain the performance baseline for our AIS we performed a power anal-
ysis over several parameter settings and the 500 dataset testing battery. For
each parameter combination we calculated the power by dividing the num-
ber of successes by 500. The goal was to determine how well the AIS detects
epistatic signals in the most difficult 0.01 heritability datasets. We ran the
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Fig. 1. Graph Showing Average Power of the AIS Varying Pwc and G

AIS on the 500 datasets over all combinations of the parameters N = 100,
G = {100, 500, 10000}, Sr = 0.2, Pwc = {.1, .2, ...., .9} and Mr = 0.2. The re-
sults of this analysis are found in Figure 1. We noticed that there were some
unexpected powers from the 100 and 500 generation runs for Pwc = .1 and .2.

We performed a corresponding random analysis. We ran on identical param-
eters excepting N and G. G was set to 1 and N was set to 10000, 50000, and
1000000 to correspond to the AIS settings of N = 100, G = {100, 500, 10000}.
The results of the power analysis are displayed in Figure 2. The random search
demonstrated nearly the opposite behavior of AIS. The powers increase as we
increase the probability of a wild card.

3.2 MDR Comparison

We tested our AIS against Multifactor Dimensionality Reduction (MDR) — the
field standard for epistasis detection [7]. MDR is an exhaustive search and an-
alyzes all possible models of up to m attributes. It therefore takes O( A!

(A−m)!)

time and is limited by a maximum-way model. The AIS takes approximately
O(G × N × A) time and is theoretically not bound by a maximum model size.
MDR returns a model of each size from 1 to m by generating a full set of IF-
THEN rules that encompasses each attribute value combination for the model
and testing the consistency of the IF-THEN rules. We ran MDR on the 500
datasets and recorded how many times it returnedX0, X1 as the two-way model.
MDR found the correct result 233 times for a power of 0.466. We then summa-
rized the results of AIS vs. random search vs. MDR in Figure 4. The maximum
power of the random search is identical to the minimum power of the AIS at
Pwc = .9. The gap quickly grows as we decrease Pwc. The AIS reaches its maxi-
mum power of 0.378 at Pwc = .1, which is 81.12% of MDR’s 0.466.
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Table 4. A power comparison of AIS, random search and MDR

Powers
Pwc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Random Search 0.004 0.004 0.012 0.028 0.058 0.102 0.134 0.156 0.176

AIS 0.378 0.366 0.336 0.298 0.262 0.240 0.208 0.186 0.176

MDR 0.466

3.3 ROC Analysis

If a signal is epistatic, then rules for both of the model attributes X0 and X1
must be present for an antibody to be scored higher than average. Now if that
antibody contains very few rules then it can be considered a very good antibody,
as it will be scored very highly and is effectively a silver bullet way of finding
the correct model. If the antibody contains many rules, then there will be con-
siderable signal masking by the non-model ’noisy’ rules. Therefore we have a
trade-off between high-accuracy low-speed and low-accuracy high-speed. This
trade-off can be analyzed with ROC principles.

To treat the AIS as a binary classifier systems, we term an antibody as ’correct’
if it contains bothX0 andX1 and incorrect otherwise. Through ROC analysis we
attempt to determine how the AIS behavior changes as a function of Pwc. Since
rules are created independently, the chance that a random antibody contains a
rule for any attribute is 1 − Pwc. It follows that the chance that the antibody
contains any two given attributes is (1 − Pwc)

2. Therefore a random antibody
will be correct with a probability of (1 − Pwc)

2.
In an experimental test on the 500 datasets for (Pwc = {.1, .2, ...., .9}, N =

{100, 10000, 1000000}). We found that the actual percentage of correct
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antibodies varies from the predicted (1 − Pwc)
2 with a standard deviation of

0.023. For each of the 13500 antibody sets we assigned each antibody a CCRR
score based on antigens from the corresponding datasets. Within each set we
compared each correct antibody with each incorrect antibody and counted the
number of comparisons in which the correct antibody had a higher CCRR. We
then divided these counts by the total number of comparisons.1 Figure 3 shows
the results of this analysis.
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Fig. 3. Plot showing percentage of comparisons won by correct antibodies

As predicted a lower Pwc causes a reduction in signal strength.2 Finally, we
multiplied the comparison win rate and the correct antibody generation chance.
Figure 4 shows the resulting values. We see that Pwc = .6 appears to be the
best value for facilitating both presence of the correct model and lack of signal-
masking.

1 Statisticians will note that a Wilcoxon test could be used to determine how signif-
icantly our scoring metric places correct antibodies above incorrect antibodies [10].
We did not perform a Wilcoxon test as it would have been impractical and would
not have lend any information of real value for our purposes. It may be of use to re-
searchers, however, when attempting to determine which scoring metrics are optimal
for the AIS algorithm.

2 The percentage of comparisons won falls below the expected 0.5 in nearly all cases.
When the wild card probability is low we have very large and specific antibodies
generated which often recognize nothing and receive a CCRR of 1.0. This causes
many comparisons to be a tie which is not counted as a win for the correct antibody.
An analysis of random antibodies scored based on dataset 1 of 500 confirmed this
hypothesis with 99.74% having a CCRR of 1.0 when Pwc = 0.1.
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Fig. 4. Plot showing the chance that a random antibody will contain the correct model
and win a comparison against a random antibody which does not contain the correct
mode

4 Discussion and Conclusions

The goal of this paper was to show that the AIS was doing valuable work. First
we compared it to a random search. The random search behaved exactly as
expected; it relied on many antibodies containing rules for only X0 and X1
and few other attributes being randomly generated. This is very unlikely for
a low Pwc setting and vice versa. On the other hand, we hypothesized that if
our AIS was doing valuable work it would not need to rely on good antibodies
randomly occurring. This was confirmed as our AIS performed the same as a
random search on the highest Pwc setting, and performed better on each lower
setting. This shows that the AIS was detecting the correct model within a larger
antibody, and then paring down the antibody via mutation to a smaller and more
accurate rule set. This is very promising as it shows that the AIS is capable of
finding the correct model quickly. The random search is still NP time, as it
requires a good antibody to show up by chance. Work done in Penrod et al.
proved largely unsatisfactory compared to a random search [9]. This may have
been caused by the misguided assumption that a high wild card probability was
necessary for functioning. It may be interesting to note that one of the changes
that caused the most immediate improvement in performance was to change the
’recognition’ requirement. Namely to satisfaction for all the rules instead of only
half; however, the authors are unsure as to exactly what significance this may
have.

Next we showed that the AIS functioned better than expected by the ROC
analysis. The ROC analysis correctly predicts that the power will increase as
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we lower Pwc from 0.9 to 0.6. However, the AIS outperforms the ROC analysis’
prediction for wild card probabilities lower than 0.6. This shows that the AIS
does an excellent job of mutating a large antibody down to the correct model.
Again this is promising, as it shows that the AIS is doing work in excess of
that which a simplistic analysis predicts. In other words, the AIS is exhibiting
complexity above both a random search and the more complicated ROC analysis.

We have shown that an AIS can at least compete with MDR on hard datasets,
and do so in a similar computational time. We would like to point out that MDR
does quite poorly on these datasets, failing more often than succeeding, despite
being an exhaustive search. An analysis of when MDR and AIS fail, and whether
the two are different, might be an interesting future project. We believe there are
many ways one might potentially improve AIS to match or exceed the perfor-
mance of MDR on difficult datasets, one of the simplest might be a reappraisal
of the way we determine the solution attributes based on AIS output. One in-
teresting test would be to perform the same ROC curve analysis but for several
different scoring metrics and analyze the sensitivity-specificity graphs. In this
way one might determine exactly what scoring metric is appropriate for differ-
ent types of signal detection problems. There are also many algorithmic changes
which could be made, including neighborhood testing, adding noise during test-
ing, and developing different mutation strategies that have already been shown
to increase the performance of AIS’s.

In conclusionwe have redesigned anAIS based on previouswork byPenrod et al.
This new AIS performs very well on difficult datasets. We have shown that an AIS
works primarily by taking large noisy antibodies and pruning them until only the
correct epistatic model is left. Perhaps most importantly we have shown that an
AIS can detect non-linear epistatic signals with a much better efficiency than a
random search; and that an AIS is more computationally efficient than MDR and
is potentially a better solution for detecting epistatic signals in genetic datasets.

Acknowledgments. The authors would like to thank Todd Mackenzie for lit-
erature suggestion and Todd Mackenzie and Andrew Stella for a review of the
manuscript.
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Abstract. With the recent flood of genome sequence data, there has been 
increasing interest in rare variants and methods to detect their association to 
disease. Many of these methods are collapsing strategies which bin rare variants 
based on allele frequency and functional predictions; but at this point, most 
have been limited to candidate gene studies with a small number of candidate 
genes. We propose a novel method to collapse rare variants based on 
incorporating biological information from the public domain.  This paper 
introduces the functionality of BioBin, a biologically informed method to 
collapse rare variants and detect associations with a particular phenotype.  We 
tested BioBin using low coverage data from the 1000 Genomes Project and 
discovered appropriate binning characteristics based on what one might expect 
given the size of the gene. We also tested BioBin using the pilot targeted exome 
data from 1000 Genomes Project.  We used biologically-informed binning and 
differences in minor allele frequencies as a means to distinguish between two 
ancestral populations. Although BioBin is still in developmental stages, it will 
be a useful tool in analyzing sequence data and uncovering novel associations 
with complex disease. 

Keywords: Rare Variants, Prior Knowledge, Collapsing Tool, Pathway 
Analysis. 

1 Introduction 

1.1 Paucity of Analytical Tools to Manage Sequence Data 

Technological advances have dramatically increased the availability of genome sequence 
data at diminishing costs. We are hindered in exploiting these laboratory advances because 
strategies for analyzing these data to utilize their maximal potential are scarce. In fact, this 
wealth of data has made distinguishing true scientific discoveries from the thousands of 
false discoveries even more challenging.  The opportunities for sequence-level association 
studies are abundant, including candidate gene, linkage studies, whole-exome sequencing, 
and whole-genome sequencing. The growing disparity in rapidly advancing data 
collection vs. slowly developing data analysis methods mandates a more concerted 
research effort to develop the necessary analytical tools to successfully interpret the 
genotypic and biologic data.    
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In the era of genome-wide association studies (GWAS), there was a focus on 
common variants, often missing valuable information about epistatic (gene-gene, 
GxG) and gene-environment (GxE) interactions with the DNA, structural variants, 
and rare variants[1]. While researchers have been able to reproducibly attribute 
common causal variants to over 80 diseases and traits[2], the estimated odds ratios are 
predominantly less than 1.5 and do not explain a large fraction of the estimated 
heritability.  In an effort to elucidate heritability and to take advantage of the new 
sequencing technology, many researchers are investigating, in particular, the effects 
of rare variants. It is believed that rare variants can act alone, in concert with other 
rare variants, or together with common variants. There is increasing evidence to 
support a role for rare variants to contribute to risk of common, complex disease.  
Recent studies have implicated rare variants with moderate effect sizes using 
phenotypes such as obesity, autism, schizophrenia, hypertriglyceridemia, hearing loss, 
complex I deficiency, and type-1 diabetes[3-6]. Because association signals for rare 
variants are harder to detect and because they may act in concert, methods can be used 
to group the rare variants and test for group association with disease status.  
Potentially, multiple rare variants can account for missing heritability in a given trait. 

Rare variants, which are more prevalent in sequencing studies, have low r2 values 
and cannot be detected using a tag-SNP approach[7]. To date, most sequence analysis 
tools use standard analytical methods to reduce the search space. One standard 
method is to use family data which allows the analyst to exploit transmission patterns 
to filter the data[8]. This strategy is effective but not applicable to data sets without 
family information. Another technique is to perform a candidate gene study and 
collapse rare variants into bins in order to combine association signals. There are 
many explanations that describe why collapsing methods are favorable over other 
strategies: 

1. Application to case-control studies 
2. Application to whole-genome sequence data 
3. Enrich association signals by combining otherwise undetectable rare variants  
4. Reduce the degrees of freedom in the statistical test 

The first published collapsing method, the cohort allelic sums test (CAST), calculates 
the sums of allelic mutation frequencies in cases versus controls and applies a 
statistical test to determine if the difference is statistically significant[9]. The CAST 
method assumes that rare variants have the same magnitude and direction of effect.  
Because the method uses a chi-square statistic, it is less than ideal because it does not 
easily incorporate covariates, cannot be used for quantitative phenotypes, and does 
not measure the direction of association[10]. Li and Leal developed a similar method, 
the combined multivariate and collapsing method (CMC), which uses a multivariate 
statistical test and permits combined analysis of rare and common variants[7]. The 
CMC method has improved power over CAST, presumably because functional 
information (i.e. direction of effect) was incorporated and because the method can be 
implemented in a regression framework[11]. Another option for collapsing is to 
weight the variants before collapsing based on some identified characteristic.  Madsen  
and Browning proposed a collapsing method that weights each variant using its  
allele frequency and then performing a rank sum test between cases and controls [12]. 
Price et al. proposed a method to optimize the grouping of rare variants using a  
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variable-threshold approach based on allele frequency[13]. Several other methods 
cleverly incorporate functional data to guide collapsing and use a regression 
framework for statistical association[14,15]. One of the most promising collapsing 
methods, VAAST, was published more recently by Yandell et al. The VAAST 
algorithm evaluates each variant by allele frequency and assigns the variant functional 
prediction. It was shown to have better predictive power than SIFT and able to 
reliably identify disease-causing candidate genes[16]. However, there are two 
justifications why these methods must be improved in order to be useful for sequence 
data. First, few of these tools have been proven to manage whole-genome sequence 
data.  This approach limits novel discovery since a particular set of genes or pathways 
must be selected for analysis. Second, incorporating functional information for 
collapsing is risky. Predictive function algorithms such as SIFT or PolyPhen are often 
incorrect[15], and creating a bin based simply on allele frequency makes an implicit 
assumption between allele frequency and odds ratio[13]. However, creating a 
weighted collapsing method incorporating multiple pieces of information spreads the 
risk and increases the likelihood that the aggregate is biologically similar. 

1.2 Biofilter, a Tool to Uncover GxG and GxE Interactions 

Biofilter was developed in our lab to reduce the search space in large scale GWAS 
studies[17]. Biofilter prioritizes interactions based on statistical and biological 
knowledge. It uses data from multiple sources that contain information about 
biological pathway and SNP interactions (see Table 1). Figure 1 shows a schematic of 
Biofilter.  

Table 1. List of biological databases incorporated into Biofilter 

Name Databases 
KEGG Pathway maps for interactions, reactions, and relations 
GO Gene ontology and gene annotations 
Reactome Open reaction and pathway db, curated by expert biologists 
DIP Experimentally determined protein-protein interactions 
NetPATH Curated signal transduction pathways 
PFAM Protein family annotation and alignments 
BioGrid Curated interaction repository 
MINT Experimentally verified protein-protein interactions the literature 
PharmGKB Annotated gene variants and gene-drug-disease links 
PharmSpresso* Search engine for literature mining 
BIND* Stores interactions, molecular complexes and pathways 
BioCARTA* Metabolism pathways 
HPRD* Curated information on OMIM implicated proteins 
UniPathway Metabolic pathways for UniProtKB 
MetaCyc* Non-redundant metabolic pathways 
NHGRI-GWAS Catalog of SNP-trait associations 
cisRED Regulatory element predictions 
ORegAnno* Open regulatory annotation database 
PolyPhen2 Predicts functional effects 
TRRD* Transcription regulatory regions database 
ECRbase* Evolutionary Conserved Regions database 
UCSC* UCSC Genome Bioinformatics 
* denotes databases currently being integrated into Biofilter 
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Fig. 1. Schematic of Biofilter 

The Biofilter was developed to provide a mechanism to filter GWAS data based on 
known biology and allow for a comprehensive search for GxG interactions.  However, 
the wealth of biological data in the database can be very informative for sequence data 
collapsing algorithms.  Thus, it will serve as the database of biological knowledge for 
BioBin. 

2 Methodology 

2.1 Integrate Collapsing Method for Rare Variants Using Biological Knowledge 

Existing collapsing strategies bin primarily on allele frequency and functional 
prediction; however, these have mainly been limited to candidate gene studies.  
Incorporating biological information into a collapsing strategy is useful because it can 
be expanded to whole-genome data, serves a purpose for data reduction in these large 
data sets, and can be used as a framework to include expression data in the future. Our 
first goal was to successfully develop a flexible model using biological information. 
Currently, BioBin incorporates two pieces of information to bin rare variants: 

1. Allele frequency threshold (set as parameter by user) 
2. Biological domain knowledge (i.e. gene boundaries, pathway groups) 
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In BioBin the allele frequencies are calculated from the data and used to categorize 
rare and common variants based on the user’s frequency threshold.  This is not 
identical to the variable allele frequency threshold described by Price et al.; however, 
it does address similar concerns since the threshold is a flexible parameter[13]. 

The most important contribution of BioBin is the incorporation of biological 
knowledge. Users of BioBin are able to specify biological boundaries for creating 
bins. For example, the user can specify that bins are bounded by pathways, gene 
boundaries, or sub-gene elements (introns, exons, etc) without the necessity of an 
external feature file. Alternatively, the user can choose to reduce the search space by 
limiting analysis to specific databases of information, biological pathways, or 
implicated genes. BioBin collapses variants based on prior domain knowledge in a 
way that is meaningful for biological interpretation.  It is possible to over-fit the data 
using prior knowledge. To address this, one should incorporate permutation testing on 
disease status among affected and unaffected individuals. 

Users have the flexibility of determining the feature level for each analysis (see 
detailed structure in Figure 2). The user chooses the burden test to determine the bin 
boundaries (pathway, gene, sub-gene, etc). As the limiting factor of subdividing bins 
is an issue of statistical power, there will be variant thresholds that will internally 
maintain the correct number of variants in a bin. 

 

Fig. 2. Sample binning structure and strategies. Pathways are referred to as “Path X” and “V” refers 
to genetic variants. +, -, N corresponds to functional binning based on protective, detrimental, and 
neutral variants. 

Figure 2 shows an example containing a small number of genes and pathways and 
a sampling of the many ways that variants can be binned together. Unlike other 
methods, BioBin captures intergenic variants, potentially discovering novel 
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associations outside of currently known gene boundaries.  Additionally, as the 
example shows, the number of bins grows rapidly with increasing amounts of 
knowledge used, which demonstrates the importance of BioBin’s ability to prioritize 
the bins.  BioBin allows a user to assign weights to a particular interesting group of 
bins and ranks the bins according to the user preference, so the user need only test the 
top percentage of bins for association, thereby reducing the penalty for multiple 
testing and increasing the chances of finding a true significant association. 

In recent publications concerning collapsing rare variants, the complexity of 
models tested has been variable. There is a penalty associated with models that 
include unanticipated parameters; for example, the CMC method is less powerful 
when variants of opposite direction of effect are included because the study design did 
not account for opposing effects[11]. However, the functional significance of a given 
variant is incredibly important if one is trying to discover an association between a 
regional bin of variants and a phenotype.  The most effective method would be to 
include only variants that demonstrate the same functional effect.  This has improved 
power in simulated studies and will be implemented in BioBin using a similar 
prediction algorithm. This option will increase memory required, but will also 
increase the chance to find an association with bins that are functionally similar. 

2.2 Initial Testing 

Distribution of Variants Across Low Coverage Data from 1000 Genomes Project. 
Method testing can be problematic, particularly for sequence data driven tools. For 
BioBin it is important to consider the validity of the code, its capacity to handle large 
data sets, and applicability to detecting genetic associations.  As a way to test validity 
and data capacity, we used CEU (population originating from Northwestern Europe) 
low-coverage pilot data from the 1000 Genomes Project18. This data set contains 
whole-genome sequence data from 60 unrelated CEU individuals with an average 
depth of coverage between 2x-6x. 

For this analysis, the most terminal nodes (bins) were created using physical gene 
boundaries. We hypothesized that the number of variants in any given bin should 
correlate with the size of the gene. Therefore, an approximately increasing linear 
relationship between the number of variants and gene size should be apparent in the 
data. 

Case-Control Analysis Using Targeted Exome Data from 1000 Genomes Project. 
Second, we tested the ability of BioBin to produce results compatible with an 
association study. Using 1000 Genomes targeted exome pilot data, we borrowed an idea 
from population genetics.  A similar method was published by Madsen and Browning in 
2009. To mimic disease resequencing, they grouped exonic rare variants by each  
region and compared across YRI (Yoruba people of Ibadan, Nigeria) and CEU (people 
of northern and western European ancestry) populations. The authors used five  
100 kb regions of sequenced Encode III data in two populations and performed a case-
control analysis using population identity as the phenotype[12]. This is a favorable 
approach since it utilizes natural data without the need for simulation and  
takes advantage of natural differences in allele frequencies between two populations. 
For this study, we used 1000 Genomes exome pilot data composed of 90 CEU  
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samples and 66 TSI samples (Tuscan Italians from Southern Europe). The 1000 
Genomes exome pilot targeted 8,140 exons from 906 randomly selected genes. It is high 
quality data with a depth of coverage >70x for both CEU and TSI[18]. We performed a 
Fisher’s Exact Test on the BioBin results to determine association with population 
identity. 

3 Application 

For the initial test of BioBin, we used 1000 Genomes Project pilot data from the CEU 
population. One would reasonably expect a strong correlation between the rare variant 
distribution and the size of the gene. Using an allele frequency threshold of 0.02 
(which specifies the rare/common variant threshold), BioBin evaluated the low 
coverage data.  On a desktop machine with 12 GB RAM and Intel Xeon Processor 
(2.2 GHz), the run time for processing this data was approximately two hours and 
used 7.4 GB of memory.  On a high performance cluster, using a single node with 
3.07GHz processor, the run time was approximately 45 minutes.  Figure 3 shows the 
relationship between the bin sizes versus the gene size. The corresponding fitted line 
is shown on Figure 3 in red (r=0.6750, p-value < 0.0001). 

 

Fig. 3. Number of variants in each bin plotted against gene size across the entire genome 

Using the smaller exome data set, we tested the collapsing algorithm using 
“phenotype” data.  The pilot high coverage exome data from 1000 Genomes Project 
includes targeted exome data for 156 CEU and TSI individuals.  We dichotomized the 
independent variable by the presence or absence of rare variants and used population 
identity to code case-control status (dependent variable). The statistical analysis was 
completed using a Fisher’s exact test. However, this analysis is amenable to a 
regression framework by utilizing the proportion of rare variants present instead of the 
all-or-nothing approach.   
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The bins accounted for 762 genes. P-values were appropriately compared to a 
corrected threshold of significance using Bonferroni’s conservative correction for 
multiple testing (0.05/762=6.6X10-5).  Table 2 shows the top genes that differ 
between the two populations, p-values, genomic location, and their annotated 
function.   

Table 2. Genes associated with population identity 

Gene P-value* Function 
CDHR5 <10-7** Cadherin-related family member 5 
HNRNPUL1 0.007 Heterogeneous nuclear ribonucleoprotein U-like 1 
PLAT 0.03 Plasminogen activator, tissue 

*P-values calculated from Fisher’s Exact Test  
** Significant after correction using Bonferroni correction for multiple testing  

For more clarification, Table 3 shows the contingency table used in the analysis of 
CDHR5, the only remaining significant gene after multiple testing correction.   

Table 3. Contingency table for CDHR5 

CDHR5 
Population No variants At least one variant Total 

CEU 38 52 90 
TSI 3 63 66 

Total 41 115 156 

4 Discussion 

BioBin is in early developmental stages, but exhibits quite a bit of promise as a 
flexible collapsing tool.  It can be implemented into an analysis plan for studying 
complex phenotypes. This tool serves the purpose of data reduction, simplifying 
pathway analyses, and offers a plausible framework for integrating large scale 
complex data sets into a single analysis.   

The preliminary results using 1000 Genomes Pilot data are satisfactory.  The initial 
challenges were to successfully read in and manipulate variant call format (VCF) 
files, computationally build and store “trees” of biological information from which we 
could form bins, and determine the most useful output that could be used in a 
statistical analysis pipeline.   

As a test of validity, we plotted the number of variants in each bin with the size of 
the gene. Figure 3 shows a statistically significant linear trend in the data.  As 
expected, increasing bin sizes were correlated with increasing gene sizes.   

BioBin will ultimately be used for association discovery in case-control analyses. 
One can use bins as a means of data reduction for sequence data, then test the 
aggregate bins for phenotype association.  We performed a case-control analysis using 
1000 Genomes Project exome pilot data, where ethnicity was considered a binary 
dependent variable.  There was one gene in the pilot data that was statistically  
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significant and thus could be used to distinguish between CEU and TSI populations 
using differences between binned variants.  To our knowledge, variants in CDHR5 
have not been previously associated with population identity. 

5 Conclusion 

BioBin is a novel collapsing method that uses allele frequency data and biological 
information to bin rare variants.  The resultant bins can be tested in a regression 
framework for association with a given phenotype.  The advantages of using a 
biologically-informed method are:  

1. Capability for whole-genome and whole-exome analyses  
2. Practical method for data reduction in sequence data analysis  
3. Utilizes domain knowledge to prioritize results for association testing  
4. Accurate binning increases the statistical power to detect associations  
5. Output can be used in Biofilter to identify GxG, GxE, and gene-drug interactions 
6. Can be combined with common variant methods 
7. Provides framework to integrate numerous types of complex data sets 

These results demonstrate that BioBin is capable of handling large data sets, the bin-
variant distribution agrees with our expectation given gene sizes, and that rare-variant 
analyses can be done with case-control studies.  While the development of BioBin is 
far from complete, it will be a useful tool for researchers studying complex disease. 
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Abstract. The availability of large volumes of protein-protein inter-
action data has allowed the study of biological networks to unveil the
complex structure and organization in the cell. It has been recognized
by biologists that proteins interacting with each other often participate
in the same biological processes, and that protein modules may be of-
ten associated with specific biological functions. Thus the detection of
protein complexes is an important research problem in systems biology.
In this review, recent graph-based approaches to clustering protein in-
teraction networks are described and classified with respect to common
peculiarities. The goal is that of providing a useful guide and reference
for both computer scientists and biologists.

1 Introduction

In the last few years the development of advanced high-throughput technolo-
gies [48] to determine protein interactions has made available large volumes of
experimental data that reflect the interplay among proteins in complex cellular
networks. Protein-protein interaction (PPI) networks can be used for discover-
ing (putative) functional modules, or complexes, consisting of proteins sharing
a common function. This is motivated by the observation that proteins are or-
ganized into different putative protein complexes each performing specific tasks
in the cell [18,36] and that proteins interacting with each other often participate
in the same biological processes. Furthermore, protein modules can often be as-
sociated with specific biological functions and proteins belonging to a specific
module are more related to each other than to the members of other modules
[47]. Therefore the detection of putative protein complexes using PPI networks
can help in understanding the mechanisms regulating cell life, in describing the
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evolutionary orthology signal (e.g., [22]), in predicting the biological functions
of uncharacterized proteins, and, more importantly, for therapeutic purposes.

It is worth pointing out that protein complexes and functional modules have
different biological meanings. A protein complex is a molecular machine that
consists of several proteins that bind each other at the same place and time.
On the contrary, a functional module consists of a few proteins that control or
perform a particular cellular function through interactions between themselves
(these proteins do not necessarily interact at the same time and place). However,
it is hard to distinguish them in many cases because analyzed pair-wise protein
interactions do not have temporal and spatial information, thus in the following
we will use the two terms as synonyms.

The problem of detecting protein complexes using PPI networks can be com-
putationally addressed by using clustering techniques. Clustering consists of
grouping data objects into groups (clusters) such that the objects in the same
cluster are more similar each other than with objects in the other clusters [20].
In PPI networks, clustering means grouping together proteins which share a
large number of interactions. These clusters are considered to represent func-
tional modules. Possible uncharacterized proteins in a cluster may be assigned
to the biological function recognized for that module. PPI networks have various
characteristics which have to be taken into account when developing clustering
algorithms for detecting functional complexes. Therefore, a number of clustering
approaches have been proposed to extract relevant modules from PPI networks.

In this work, we present a short overview of state-of-the-art clustering methods
for complex detection in PPI networks, by introducing a classification criterion
that is different from those proposed previously. We mainly focus on methods
that use only the topology of the graph for detecting clusters, and do not employ
similarity measures between proteins as described by vectors of features (for
instance, features derived by the protein aminoacid sequences or by functional
domain composition of proteins). Our goal is twofold: (a) to guide researchers
in the development of new methods for clustering PPI networks by providing a
description of the main algorithmic approaches of state-of-the-art methods; and
(b) to guide practitioners in the application of methods by providing information
about their availability.

In this respect our contribution differs from that contained in other surveys,
whose main goal is either to describe and compare experimentally methods pre-
sented in the literature, such as [2,8,40,28,41,49,27], or to highlight the compu-
tational aspects of graph-based analysis of networks [34].

2 Methods

Clustering approaches for detecting protein complexes in PPI networks can be
broadly categorized as distance-based and graph-based ones [28]. Distance-based
clustering approaches employ the concept of distance between two proteins as de-
scribed by vectors of features (for instance, derived by their aminoacid sequence)
[7,43,4,35]. Graph-based clustering techniques (mainly) consider the topology of
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the network. These latter techniques are deeply studied in other research fields,
such as physics and data mining, and are known as community detection
methods [17].

We distinguish the following five main types of algorithmic approaches em-
ployed in methods for complex detection in PPI networks:

1. Local neighbourhood Density search (LD);
2. Cost-based Local search (CL);
3. Flow Simulation (FS);
4. Statistical-based Measures (SM);
5. Population-based Stochastic search (PS).

For each of the categories listed above, we describe a selection of methods by
focusing on those that can be directly used by practitioners, that is, whose
software is publicly available.

2.1 Local Neighborhood Density Search (LD)

Many methods, including the most popular, are based on local neighbourhood
density search. Their objective is to find dense subgraphs (that is, each node is
connected to many other nodes in the same subgraph) within the input network.
We summarize in the following six representative methods of this approach, and
include a pointer to the software when publicly available.

One of the most popular methods for finding modules in PPI networks based
on the LD approach is MCODE [6]. This method employs a node weighting
procedure by local neighbourhood density and outward traversal from a locally
dense seed protein, in order to isolate the dense regions according to given in-
put parameters. The algorithm allows fine-tuning of clusters of interest without
considering the rest of the network and allows examination of cluster intercon-
nectivity, which is relevant for protein networks. It is implemented as Cytoscape
plug-in. With a user-friendly interface, it is suited for both computationally and
biologically oriented researchers.
http://baderlab.org/Software/MCODE.

In [3] the DPClus method for discovering protein complexes in large inter-
action graphs was introduced. It is based on the concepts of node weight and
cluster property which are used for selecting a seed node to be expanded by iter-
atively adding neighbours, and to terminate the expansion process, respectively.
Once a cluster is generated, its nodes are removed from the graph and the next
cluster is generated using only the remaining nodes until all the nodes have been
assigned to a cluster. The algorithm allows also to generate overlapping clusters
by keeping the nodes already assigned to clusters.
http://kanaya.naist.jp/DPClus/.

SWEMODE was introduced in [30]. It identifies dense sub-graphs by intro-
ducing two network measures that combine functional information with topo-
logical properties of the networks. These measures, weighted cluster coefficient

http://baderlab.org/Software/MCODE
http://kanaya.naist.jp/DPClus/
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and weighted nearest-neighbours degree, compute the strengths of interactions
between the proteins by using their semantic similarity based on the Gene On-
tology terms of the proteins.
No publicly available implementation.

DECAFF [26], is an algorithm to mine protein complexes in PPI networks
that tries to address two major limitations plaguing protein interaction data,
namely incompleteness and noise. The method consists of three main steps:
detection of local dense neighbourhoods of each protein, merging of the local
sub-graphs on the base of the similarity degree between neighbourhoods, filtering
away possible false complexes detected.
No publicly available implementation.

CFinder is a program for detecting and analyzing overlapping dense groups
of nodes in networks; it is based on the clique percolation concept (see [12,33,1]).
The idea behind this method is that a cluster can be interpreted as the union
of small fully connected sub-graphs that share nodes, where a parameter is used
to specify the minimum number of shared nodes.
http://hal.elte.hu/cfinder/wiki/?n=Main.Manual.

The greedy local expansion method PINCoC was introduced in [38]. It ex-
pands a single protein randomly selected by adding/removing connected proteins
that best contribute to improve a given quality function based on the concept
of co-clustering [32] that favors the detection of maximal dense groups. In or-
der to escape poor local maxima, with a given probability, the protein causing
the minimal decrease of the quality function is removed. An extension of PIN-
CoC for detecting multi-functional protein complexes, called MF-PINCoC, was
introduced in [39].
http://wwwinfo.deis.unical.it/~rombo/pincoc/download.html.

PCP is a method proposed in [11] that exploits the shared interaction part-
ners of proteins, i.e., the level-2 neighbours. The method transforms the input
graph by adding edges between level-2 neighbours and by removing edges, using
a criterion that quantifies the likelihood that the two proteins of an edge share
functions. Any clustering method can then be applied to the resulting graph. The
authors proposed a clustering method that iteratively merges dense sub-graphs.
http://www.comp.nus.edu.sg/~wongls/projects/complexprediction/PCP-3aug07/ .

DME [16] is a method for extracting dense modules from a weighted interac-
tion network. The method detects all the node subsets that satisfy a user-defined
minimum density threshold. The method returns only locally maximal solutions,
i.e. modules where all the direct supermodules (containing one additional node)
do not satisfy the minimum density threshold. The obtained modules are ranked
according to the probability that a random selection of the same number of
nodes produces a module with at least the same density. An interesting prop-
erty of this method is that it allows to incorporate constraints with respect to
additional data sources.

http://hal.elte.hu/cfinder/wiki/?n=Main.Manual
http://wwwinfo.deis.unical.it/~rombo/pincoc/download.html
http://www.comp.nus.edu.sg/~wongls/projects/complexprediction/PCP-3aug07/
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http://people.kyb.tuebingen.mpg.de/georgii/dme.html.

The methods based on the LD approach here briefly described have as common
objective that of finding dense subgraphs within the network and to maximize
the density of each subgraph.

MCODE and DPClus adopt a rather similar search strategy. They define the
weight of each node, the node with highest weight is chosen as seed cluster,
and neighbouring nodes are added to the current cluster if threshold parameters
are satisfied. The main difference between the methods lies in the definition of
weight.

The originality of PCP mainly relies in the procedure for transforming an
interaction graph by adding and removing edges.

Both CFinder and the extended version of PINCoC, generate overlapping
clusters, and use the concepts of k-clique and co-cluster to find dense subgraphs,
respectively.

DME is somewhat different from all other methods since it enumerates all
node subsets that satisfy a user-defined minimum density threshold. Each of the
above mentioned methods require setting the values of some parameters; this
influences the number and resolution of the discovered clusters. Other recent
algorithms based on this approach include SPICi [23] and DEEN [21], two seed-
based fast algorithms for complex detection in PPI networks.

2.2 Cost-Based Local Search (CL)

Methods based on cost-based local search extract modules from the interaction
graph by partitioning the graph into connected subgraphs, using a cost function
for guiding the search towards a best partition. We describe here in short three
methods based on this approach with different characteristics.

A typical instance of this approach is RNSC [24], which explores the solution
space of all the possible clusterings in order to minimize a cost function that
reflects the number of inter-cluster and intra-cluster edges. The algorithm begins
with a random clustering, and attempts to find a clustering with best cost by
repeatedly moving one node from a cluster to another one. A list of tabular
moves is used to forbid cycling back to previously examined solutions. In order
to output clusters likely to correspond to true protein complexes, thresholds
for minimum cluster size, minimum density, and functional homogeneity must
be set. Only clusters satisfying these criteria are given as the final result. This
obviously implies that many proteins are not assigned to any cluster.
http://www.cs.toronto.edu/~juris/data/rnsc/.

Several community discovery algorithms have been proposed based on the op-
timization of a modularity-based function (see e.g. [15]). Modularity measures
the fraction of edges falling within communities, subtracted by what would be
expected if the edges were randomly placed. In particular, Qcut [44] is an ef-
ficient heuristic algorithm applied to detect protein complexes. Qcut optimizes
modularity by combining spectral graph partitioning and local search. By op-

 http://people.kyb.tuebingen.mpg.de/georgii/dme.html
http://www.cs.toronto.edu/~juris/data/rnsc/
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timizing modularity, communities that are smaller than a certain scale or have
relatively high inter-community density may be merged into a single cluster.
In order to overcome this drawback, the authors introduce an algorithm that
recursively applies Qcut to divide a community into sub-communities. In order
to avoid over-partitioning, a statistical test is applied to determine whether a
community indeed contains intrinsic sub-community.
http://cs.utsa.edu/~jruan/Software.html

Recently, the notion of ModuLand [25], has been introduced. ModuLand
is an integrative method family for determining overlapping network modules as
hills of an influence function-based, centrality-type community landscape, and
including several widely used modularization methods as special cases. Several
algorithms obtained from ModuLand provide an efficient analysis of weighted
and directed networks, determine overlapping modules with high resolution, un-
cover a detailed hierarchical network structure allowing an efficient, zoom-in
analysis of large networks, and allow the determination of key network nodes. It
is implemented as Cytoscape plug-in.
http://www.linkgroup.hu/modules.php

2.3 Flow Simulation (FS)

Methods based on the flow simulation approach mimic the spread of informa-
tion on a network. We report four methods based on this approach. The first two
are based on the concept of random walk and are popular methods with avail-
able software. The other two methods exploit biological knowledge for passing
information between proteins in the network in order to cluster proteins. Unfor-
tunately, we could not find publicly available software for these two methods.

One of the first flow simulation method for detecting protein complexes in a
PPI network is the Markov Clustering algorithm MCL [13]. MCL simulates the
behaviour of many walkers starting from the same point, that move within the
graph in a random way.
http://micans.org/mcl/

A more recent method based on flow simulation is RRW [31]. RRW is an
efficient and biologically sensitive algorithm based on repeated random walks for
discovering functional modules, which implicitly makes use of network topology,
edge weights, and long range interactions between proteins.
http://www.cs.ucsb.edu/~kpm/software.html

IFB [10] proposed an Information Flow-Based approach to identify overlap-
ping functional modules. The algorithm integrates topological and biological
knowledge to select a number of informative proteins and simulates the infor-
mation flow through the network from each informative protein. The weighted
degree of a node is defined as the sum of the weights of the edges containing that
node, and the weight of an edge is computed using the correlation between the

http://cs.utsa.edu/~jruan/Software.html
http://www.linkgroup.hu/modules.php
http://micans.org/mcl/
http://www.cs.ucsb.edu/~kpm/software.html
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expression profiles of the two genes encoding the proteins linked by that edge.
This weighted degree provides the semantic information of a node.
No publicly available implementation.

An interesting method based on flow simulation is STM [19], which finds clus-
ters of arbitrary shape by modelling the dynamic relationships between proteins
of a PPI network as a signal transduction system. The overall signal transduction
behaviour between two proteins of the network is defined in order to evaluate the
perturbation of one protein on the other one, both biologically and topologically.
The signal transduction behaviour is modelled using the Erlag distribution.
No publicly available implementation.

2.4 Statistical Measures (SM)

The two following approaches rely on the use of statistical concepts to cluster
proteins. They are based on the number of shared neighbours between two pro-
teins, and on the notion of preferential attachment of the members of a module
to other elements of the same module, respectively.

Samantha and Liang [45] proposed a clustering method, here called SL by
the names of the authors, based on the idea that if two proteins share a number
of common interaction partners larger than what would be expected in a ran-
dom network, then they should be clustered together. The method assesses the
statistical significance of forming shared partnership between a pair of proteins
using the concept of p-value of a pair of proteins.

The p-values of all proteins pairs are computed and stored in a similarity
matrix. The protein pair with the lowest p-value is chosen to form the first group
and the corresponding rows and columns of the matrix are merged in a new row
and column. The new p-value of the merged row/column is the geometric mean
of the separate p-values of the corresponding elements. This process is repeated
by adding new proteins to the actual cluster until a threshold is reached. The
process is repeated on the remaining proteins until all the proteins have been
clustered.
No publicly available implementation.

In [14] a statistical approach for the identification of protein clusters is pre-
sented, here called Farutin (the name of the first author). This method is based
on the concept of preferential interaction among the members of a module. The
authors use a novel metric to measure the community strength. The community
strength is gauged by the preferential attachment of each member of a module to
the other elements of the same module. This concept of preferential attachment
is quantified by how unlikely it is observed in a random graph.

Since it is necessary to count the number of edges in the graph, the authors
assume a random graph as the null model where an edge is the random variable.
This measure of community strength is local, since it is a function of the sub-
graph induced by a set of proteins and their degrees. To identify the clusters a
greedy approach that searches for a set of nodes in the network with small values
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of community strength is adopted. At the beginning a list of two adjacent nodes
is considered. The list is then grown by adding the node that leads to the largest
decrease of the community score until no such node exists. This is repeated for
each connected node pair, thus the obtained clusters can partially overlap.
No publicly available implementation.

2.5 Population-Based Stochastic Search (PS)

Population-based stochastic search has been used for developing algorithms for
community detection in networks (see, e.g., [46,37]). However, we are aware of
only two works that apply this approach to detect protein complexes in PPI
networks.

Specifically, in [29] the authors proposed an algorithm based on evolutionary
computation, here called CGA, for enumerating maximal cliques and apply it
to the Yeast genomic data. The advantage of this method is that it can find as
many potential protein complexes as possible.
No publicly available implementation.

Recently, in [42] an immune genetic algorithm, here called IGA, is described
to find dense subgraphs based on efficient vaccination method, variable-length
antibody schema definition and new local and global mutations. The algorithm
is applied to clustering protein-protein interaction networks.
No publicly available implementation.

3 Discussion

We summarize the characteristics of each method in Table 1, with respect to few
features: the structure of the clusters found by a method, the kind of approach
it uses, whether the clusters are found simultaneously or one at a time, the
capability of the method to detect overlapping clusters, if the method assigns
each protein to a cluster, and if software for that method is publicly available.

All the considered methods have some input parameters that influence the
number of clusters produced, the size, the density, and the structure. The LN
methods, except CFinder, obtain the modules one at a time because they select
a seed node and expand it until a condition, generally related to cluster den-
sity, is satisfied. Thus they can be considered bottom-up approaches: individual
nodes are grouped together until all the graph has been examined. Methods that
simultaneously find the clusters can be considered top-down. They consider the
whole graph and try to partition it in connected components. Because of the
threshold constraints incorporated in many methods in order to decide when
a group of connected nodes is a cluster, nodes with few interactions are often
discarded.

The elimination of sparsely connected nodes could result in the elimination
of important information on the network structure and possibly prevent the
detection of clusters of different topological shapes. Nevertheless, it is not clear
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Table 1. Summary of some characteristics of the methods. The first column report
the method acronym and reference, in chronological order. The second column reports
the topological structure a method searches (a = arbitrary, d = dense sub-graphs).
The approach each method is based on is reported in the third one. The fourth column
(Simult.) specifies if the method finds all clusters simultaneously and the fifth column
(Overlap) reports if the method generates overlapping clusters. Finally, the last two
columns specify if the method returns some unassigned proteins (Un. Prot), and if
software implementing that method is (publicly) available (Software).

Method Structure Approach Simult. Overlap Un. Prot. Software

MCL [13] a FS yes no no yes

SL [45] a SM no no no no

MCODE [6] d LN yes no yes yes

RNSC [24] d CL yes no yes yes

STM [19] a FS yes yes yes no

SWECODE [30] d LN no no yes no

DPCLus [3] d LN yes no yes yes

IFB [10] a FS no yes yes no

Farutin [14] a SM no yes no no

CFinder [1] d LN yes yes yes yes

CGA [29] d PS yes yes yes no

PCP[11] d LN no yes yes yes

DECAFF [26] d LN no yes yes no

MF-PINCoC [38] a LN no yes no yes

Qcut [44] d CL yes no no yes

DME [16] d LN no yes yes yes

RRW [31] a FS yes no no yes

ModuLand [25] d CL yes yes no yes

IGA [42] d PS yes yes no no

whether the assumption that each protein has to belong to a cluster (representing
a putative protein complex) is realistic, given the actual incompleteness of the
PPI network data available, and forcing every node into a community could
distort results [51].

Several challenges for the topic discussed in this work are still open. Notably
among them, the necessity of diminishing the clustering methods dependence on
many input parameters. Further improvements could be achieved by making a
method able to set automatically some of its parameters, for example according
to the density and/or characterization of the input PPI network.

Another interesting issue is that of finding a suitable compromise between
the accuracy of the proposed method, and the portion of input graph that is in-
volved in the final clustering. Indeed, the most accurate clustering methods are
often able to assemble only a small percentage of the PPI network they analyze
(e.g.,MCODE [6]).

Furthermore, biological graphs are affected by inaccuracy, also due to the
methods exploited in order to discover protein-protein interactions (e.g., high
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throughput and computational methods). Although several techniques are able
to exploit the specific reliability indices provided by the available interaction
datasets (e.g., MINT [9]) as suitable filters during the clustering process, many
efforts are still needed to make the clustering techniques more robust to such
kind of noise.

Finally, all the considered methods, with the exception of SWEMODE [30],
cluster the input biological graph only on the basis of topological connections.
An interesting challenge would be that of combining the main advantages of
the considered approaches with taking into account also possible properties of
the nodes, such as protein sequence similarity, Gene Ontology annotations [5] or
functional domain composition of proteins [50].

4 Conclusion

In this paper, we presented a compact survey of graph-based clustering methods
for detecting protein complexes in PPI networks. We proposed a classification
based on five main categories, that are, local neighbourhood density search, cost-
based local search, flow simulation, statistical measures and population-based
stochastic search. We summarized the main algorithmic features and software
availability of the considered methods, by also discussing their possible limi-
tations. Finally, we pointed out some open issues related to the problem of
clustering PPI networks.

We hope that the overview presented in this paper will be used by both com-
puter scientists and practitioners as a quick reference for guiding the selection,
use and development of algorithms for discoverying protein complexes and func-
tions through the analysis of PPI networks.

References

1. Adamcsek, B., Palla, G., Farkas, I.J., Dernyi, I., Vicsek, T.: Cfinder: locating cliques
and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023
(2006)

2. Aittokallio, B., Schwikowski, B.: Graph-based methods for analyzing networks in
cell biology. Briefing in Bioinformatics 7(3), 243–255 (2006)

3. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Develop-
ment and implementation of an algorithm for detection of protein complexes in
large interaction networks. BMC Bioinformatics 7(207) (2006)

4. Arnau, V., Mars, S., Mar̀ın, I.: Iterative cluster analysis of protein interaction data.
Bioinformatics 21(3), 364–378 (2005)

5. Asburner, S., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., et al.: Gene on-
tology: tool for the unification of biology. the gene ontology consortium. Nature
Genetics 25, 25–29 (2000)

6. Bader, G., Hogue, H.: An automated method for finding molecular complexes in
large protein-protein interaction networks. BMC Bioinformatics 4(2) (2003)

7. Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phisi-
cal Review Letters 76(18), 3251–3254 (1996)



Complex Detection in Protein-Protein Interaction Networks 221
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Abstract. In this paper, we focus on protein contact map prediction,
one of the most important intermediate steps of the protein folding prob-
lem. The objective of this research is to know how short-range interac-
tions can contribute to a system based on decision trees to learn about
the correlation among the covalent structures of a protein residues. We
propose a solution to predict protein contact maps that combines the
use of decision trees with a new input codification for short-range in-
teractions. The method’s performance was very satisfactory, improving
the accuracy instead using all information of the protein sequence. For a
globulin data set the method can predict contacts with a maximal accu-
racy of 43%. The presented predictive model illustrates that short-range
interactions play the predominant role in determining protein structure.

Keywords: Protein structure prediction, protein contact map predic-
tion, short-range interactions, decision trees.

1 Introduction

The protein structure prediction still being one of the greatest challenges of bioin-
formatics [1]. And, inter-residual contactmaps is a critical step for the inter-residue
contacts prediction problem. The ability to make successful predictions involves
understanding the relationshipbetweena sequence and its protein structure [2,3,4,5].

Multiplemethods to predict contactmaps have been developed.Based on ab ini-
tio approaches, in homology methods, fold recognition, template-based methods,
machine learning, neural network and others [6,7,8,9,10,11,12,13,14]. The predic-
tion quality of these methods has not been improved to satisfactory levels, despite
of years of attempts. The main reason for this is perhaps that, it is hard to learn
long-range dependencies on contact maps, hence it is especially difficult to predict
contacts between residues that have large sequence separations. In addition, an-
other important drawback of these methods is the insufficient capacity to explain
their knowledge model for the protein’s folding process understanding.

The traditional or ab initio folding method employs the principle of predict-
ing protein structure from its known amino acid sequence (a0, a1, . . . , an), in
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order to derive the 3D structure of proteins. We know that a protein chain folds
spontaneously and leads to a unique three dimensional structure when placed in
aqueous solution. The folding process cannot occur by random conformational
search for the lowest energy state. Proteins must form the structure in a time-
ordered sequence of events, now called a ”pathway”. The nature of these events,
whether they are restricted to ”native contacts” (defined as contacts that are
retained in the final structure) or whether they might include non-specific in-
teractions, such as a general collapse in size at the very beginning, were left
unanswered [15].

In this paper we propose a solution to predict protein contact maps based on
short-range interactions. Despite of some evidences of long-range interactions in
stabilizing protein folding, the objective of this research is to know how short-
range interactions can contribute to a system based on decision trees to learn
the correlation among the covalent structures of a protein residues. Taking into
account the high degree of flexibility and the simplicity of understanding of a
solution based on decision trees, the proposed algorithm employs the Quinlan
C4.5 method, according to previous papers [16,17].

This article is structured as follows. A methodology section, which explains the
proteins data set selection criteria, the definition of contact maps, the proposed
model architecture and the measures employed for the algorithm effectiveness. A
results section, we show tabular and graphical experimentation results. Finally,
the conclusions of this research.

2 Materials and Methods

2.1 Data Bases

To analyse the effect of short-range interactions on prediction, we use a set of
non-homologous proteins of solved 3D structure. Initially, the set counts 2485
proteins with the lowest possible homology (less than 25% of identity), extracted
from the Protein Data Bank (PDB) using PDB select tool. This set is firstly
reduced by excluding those proteins which has non-standard amino acid residues.
They were excluded those chains whose backbone was broken. They were chosen
only the chains whose: structure does not contain redundant sequences; without
ligands, to eliminate false contacts due to the presence of hetero-atoms; and,
those proteins that do not belong to the same family or have a common origin.
Reducing the list to 173 proteins. This data set combines maximum coverage
with minimum redundancy following the Fariselli criteria [6].

With the goal of comparing the proposed predictor with previous methods
in the state of the art we employed 53 globulin protein sequences proposed by
Zhang [2]. This is a set with a few homologous sequences extracted from PDB.

2.2 Contact Maps Definition

Contact maps are compactly 2D representation of 3D conformation of a protein
in a symmetrical square matrix of pairwise inter-residue contacts. The calcula-
tion of the distances among the residues is determined by Euclidean distance.
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Fig. 1. Contact Map of 2igd protein, constructed with a threshold of 8Å. Left: 3D
structure for protein. Right: its contact map showing parallel (top right cluster) and
anti parallel sheets (top left and bottom right cluster), and helix features (thin cluster
close to main diagonal).

The contact map of a protein (figure 1) is a particularly useful representation
of protein structure. This representation provides useful information about the
protein’s structural motives and it also captures non-local interactions giving
clues to its tertiary structure.

2.3 Model Architecture

Decision trees have been proved to be a successful method for prediction of
contact maps of proteins [16,17]. Those classifiers make it possible to have un-
derstandable rules, which can be used to find further explanations of the data
that are classified.

To predict contact map, we use an algorithm based on the Quinlan C4.5
decision tree [18], using the default setting. Our method builds decision trees
for all possibles pairs of contacts, which has a total of 400 trees (20 x 20 amino
acids). The prediction is treated as a classification problem, which takes into
account the contacts or non-contacts between residues.

As input coding, the proposed method introduces the use of short-range inter-
actions as a basis for training the predictor. Taking into account that oligopep-
tides are a few amino acids covalently joined (up to 10) and the average length
of structural motives regions (up to 21), the algorithm employs vectors of length
21. This is equivalent to shift a window of length 21 by the amino acids chain.
The built vector includes information of the substring formed among non adja-
cent amino acids. It is created a vector for each possible short-range interactions
that can be formed in the protein (figure 2).

For a couple of amino A1 A2, the first 20 elements of the vector match the
existing amino acids and contain their frequencies in the substring that is formed
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Fig. 2. Scheme of input coding for decision trees. The first 20 bits in the coding,
represent the frequency that appears the amino acids in the sub-chain. Where cero
means that this amino acid is not present in the sub-chain. The last bit encodes by
class (Contact or Not-Contact).

between the pair of amino acids analysed. To define the Class we adopt a thresh-
old value of 8Å.

The decision tree-based predictor of protein contact maps (DTP) is shown
in Figure 3. Given the distance matrix of a protein set with known structure
(P1, P2, ..., Pn), the DTP builds a model of two-dimensional array of size NxN,
where N is the number of amino acids (20). Each matrix cell contains a function
f(A1,A2,S) formed by a decision tree, whose input vector is composed by the
amino acids couple (A1, A2) and the information extracted from the substring
(S) contained between them. For an unknown sequence (S?), each couples of
amino acids is evaluated in the built model. The result of prediction is obtained
by the occurrence of contact or non-contact.

2.4 The Pre-processing Procedure

Contact map prediction is an unbalanced problem. These maps contain, as av-
erage, a number of contacts (NC) considerably lower than the number of non-
contacts (NNC) about 1/13. NC increases almost linearly with protein sequence
length (data not shown). For this reason NNC increases with the square of the
protein length.

The C4.5 decision trees. This algorithm is based on the data frequency and it
is highly susceptible to the unbalance problem. To avoid the unbalanced effects
we edit the data base applying an oversampling method. This method reproduces

Fig. 3. Scheme of the decision tree-based predictor of protein contact maps. Where P1

to Pn are the training proteins, A is the algorithm that creates the knowledge model
and S? is the unknown sequence.
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the minority class until mitigate the problem, taking into account the unbalance-
ratio. This value is statistically calculated for each couple of amino acids in the
protein. As result, the number of predicted contacts of a residue becomes a
function of its structural environment.

2.5 Evaluation of the Efficiency

The effectiveness of prediction (Ap) is calculated as the ratio of true positives
(1). This is because this equation penalizes non-contacts and prioritizes contacts.

Ap = TP/(TP + FN) (1)

In order to compare the effectiveness of the predictor, an extra measure is ap-
plied: the improvement over a random predictor (2). This measure computes the
ratio between Ap (1) and the accuracy of a random predictor (Nc / Np):

R = Ap/(Nc/Np) (2)

where Nc is the number of real contacts in the protein of length Lp, and Np are
all the possible contacts. In this paper in order to limit the prediction of local
contacts (clustered along the main diagonal of the contact map) the proposed
procedure does not include contacts between residues whose sequence separation
is less than four residues.

3 Results

To study the influence of short-range interactions in the proteins, are analysed
the distribution of protein contacts and structural motives with respect to the
length of the sequence separation. We used the set of 173 proteins grouped into
four classes, according to their sequences length (Ls): Ls < 100 (65 proteins),
100 ≤ Ls < 170 (57), 170 ≤ Ls < 300 (30) and Ls > 300 (21).

At first,with the aimof the study the distribution of inter-residual contacts,were
analysed the frequencies of their appearance depending on the residues separation
in the sequence (figure 4). It was used a thresholds range from 5Å to 12Å. It is
obvious that most of contacts are concentrated in low sequences separation. As-
suming a loss of 5% of contacts, the 95% is concentrated in sequence separations
≤ 150 and the 70% are concentrated just in residues with separation 10.

Another interesting analysis is to take into account the length by structural
motives regions (helical and beta regions). We also studied the distribution of
the number of residues per helical segment and per β-sheet segment (figure 5).

The fact that the length of β-regions in proteins is shorter than the helical
segments is clearly shown in figure 5. Helical segment appears in regions from 3
to 20 amino acids and β-segment appears in regions from 2 to 10 amino acids.
In average, the 80% of structural motives appears to be in the range of 2 to 10
amino acids.
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Fig. 4. Contacts distribution histogram. Plotting the contacts frequency as a function
of sequence separation, for thresholds of 5Å to 12Å.

The distribution of contacts and structural motives, indicates that contacts in
proteins are not randomly distributed and occur, predominantly, among residues
with a low sequence separation.

To solve our specific problem, three methods are implemented:

– DTP: employs all information included in the protein sequences. The length
of sub-sequences is not limited.

– DTPsi: method variation that employs as input coding only the short-
interactions present. The input vector will be formed by the information
of amino acids with maximal sequence separation up to 20.

– DTPsi ed: it is the DTPsi method but we apply a pre-processing algorithm
to the input data. Taking into account the unbalanced nature of present
classes in this problem, we used an oversampling method to balance the
database.

The implemented methods are tested on the selected database using a 10 folds
cross-validation procedure. With the intention of highlighting the relationship

Fig. 5. Distribution of the number of residues per helical segment and per β-sheet
segment
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Table 1. Comparison of the performance of the different methods used to predict
contact maps

Ls < 100(65) 100 ≤ Ls < 170(57) 170 ≤ Ls < 300(30) Ls ≥ 300(21)
Ap R Ap R Ap R Ap R

DTP 0,12 2,33 0,05 2,75 0,03 4,26 0,03 7,52
DTPsi 0,13 2,10 0,07 2,14 0,06 1,18 0,04 3,47
DTPsi ed 0,18 1,71 0,14 1,61 0,13 1,38 0,12 1,49

between the results and the proteins size, the values of effectiveness were calcu-
lated after grouping proteins according to their sequence length (table 1).

The results show that, in general, for all proteins, the algorithm trained with
short-range interactions (DTPsi) show a good behaviour. DTPsi not only im-
proves the minimum efficiency threshold proposed by the DTP algorithm, when
is applied an algorithm to balance the class (DTPsi ed), it improves drastically
the prediction effectiveness.

Figure 7 shows the effectiveness of predictions based on the proteins length,
using different methods (DTP, DTPsi and DTPsi ed). This graph shows that the
effectiveness of the algorithm is dependent on the length of the protein. However,
like the rest of algorithms, DTPsi ed is more efficient to predict contacts in short
sequences and it’s efficiency decreases when the sequence length is incremented.

3.1 Comparison with the Previous Methods

To compare the accuracy of our algorithm with respect to the previous methods
we used the set of 53 proteins. Here the protein sequences are grouped into
four classes: Ls<100, 100≤Ls<200, 200≤Ls<300, Ls>300, according to their
sequences’ length (Ls). The proteins 1TTF, 1E88, 1NAR, 1BTJ B and 1J7E A,
were used to test the trained algorithm. The proposed procedure does not include
contacts between residues whose sequence separation is less than four, to avoid
small ranges of false contacts.

The table 2 shows the comparative results for the algorithms: Occ (Occu-
pancy method) [19], based on a filtered procedure, reached an accuracy about
26%; Net 75 method [20], it uses multiple sequence alignment as input for a
classical feed-forward neural network trained with a standard back-propagation
algorithm, reached the accuracy of about 28%; RBFNN method [2] uses a binary
input encoding scheme with a radial-based function neural network optimized
by a genetic algorithm, reached an accuracy of 32%; and DTPsi ed, achieved the
best accuracy: 43%.

Considering the relationship between the residue length and the average ac-
curacy, our algorithm can improve the prediction performance dramatically. Ex-
cept for sequence length less than 100 where there are not differences respect to
RBFNN method.
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Fig. 6. This graph shows the efficiency of the contacts prediction based on the sequence
lengths of proteins. In the x-axis values are represented the effectiveness achieved by
the predictors, depending on the length of the sequences. The vertical axis represents
the effectiveness values.

Table 2. Comparison of the predictors accuracy: Occ, Net 75, RBFNN and DTPsi ed
(our method). Ls is the length of the protein sequence. For this comparison it was
employed the experimental results reported by Zhan[2].

Methods Ls<100 100≤Ls<200 200≤Ls<300 Ls>300

Occ 0,26 0,21 0,15 0,10
Net75 0,26 0,28 0,21 0,20
RBFNN 0,30 0,31 0,32 0,28
DTPsi ed 0,30 0,43 0,35 0,29

Fig. 7. This graph shows the comparative results in the prediction of contacts consider-
ing the sequence lengths of proteins. In the x-axis are represented the values effectively
achieved by the predictors, depending on the length of the sequences. The vertical axis
represents the effectiveness.
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4 Conclusions

The presented predictive model illustrates how short-range interactions play a
predominant role in determining protein structure. The proposed method com-
bines the use of decision trees with a new input encoding for short-range interac-
tions. The method performance was very satisfactory. It improves the accuracy
with respect to the obtained by the DTP method. In a comparison with reported
algorithm for a globulin data set, DTPsi ed can predict contacts with a maximal
accuracy of 43%.
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Abstract. We present a multi-objective evolutionary approach to
predict protein contact maps. The algorithm provides a set of rules,
inferring whether there is contact between a pair of residues or not. Such
rules are based on a set of specific amino acid properties. These properties
determine the particular features of each amino acid represented in
the rules. In order to test the validity of our proposal, we have
compared results obtained by our method with results obtained by
other classification methods. The algorithm shows better accuracy and
coverage rates than other contact map predictor algorithms. A statistical
analysis of the resulting rules was also performed in order to extract
conclusions of the protein folding problem.

Keywords: Protein structure prediction, contact map, multi-objective
evolutionary computation.

1 Introduction

Protein Structure Prediction (PSP) is one of main challenges in Structural
Bioinformatics. Since Anfinsen’s experiment discovered that the amino acid
sequence determines the shape of a protein [1], a huge number of computational
experiments were performed with the aim of obtaining the rules of the protein
folding. Knowledge of these rules would play an important role in Biomedicine
for the design of new drugs. Although experimental procedures to obtain the 3D
protein structure, as X-ray Crystallography and Nuclear Magnetic Resonance
(NMR), have shown brilliant results [2], the cost of such techniques, both in
term of time and money, is prohibitive. Besides, these techniques cannot be
applied to all proteins. In fact, 25% of proteins do not crystallize and are too
big for the NMR.

For these reasons, computational methods are particularly suited for this
problem, since they, generally, represent a cheaper and faster way to address the
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protein folding problem. Some of these computational methods used a contact
map representation to solve this problem. A contact map is a bi-dimensional
representation of the protein structure of a protein, where if an entry i, j has
value 1 then a contact between residues i and j is predicted, and a 0 indicates a no
contact. We consider a contact between i and j, if the distance between them is
lower than a certain threshold μ. Different approaches were developed as protein
contact map predictors: artificial neural networks (ANNs) [3,4], support vector
machines [5], evolutionary algorithms (EAs) [6] and template-based modeling [7].
Every two years, Critical Assessment of Protein Structure Prediction (CASP)
competition [8] evaluates the most accurate computational methods for the PSP
problem. One of the categories of this competition is called “Detecting residue-
residue contacts in proteins (RR)”. Our approach is included in this category.

Among the above mentioned methods, EAs, have become popular as robust
and effective methods for solving optimization problems. In particular, they have
shown the capacity of finding suboptimal solutions in search spaces when the
search space is characterized by high dimensionality. This is the case for the
protein folding problem, where the set of possible folding rules of a protein
determine the search space. Many evolutionary approaches have been developed
to tackle the PSP problem, e.g., [9] [10] [6] [11]. These methods evaluate
individuals by means of a single function that provides a measure of their
quality. In other words, they are evaluating a single objective function. This
approach represents the classical way of addressing a problem with an EA: the
objectives to optimize are combined into a single fitness function which is then
used in order to guide the evolutionary search. However, there are some problem
where this approach is not the most appropriate. Different solutions can produce
conflicts between different objectives. A solution that is optimal with respect to
one objective may not be optimal for the rest, therefore it would be improper
to choose such solution as optimal solution of the problem. It becomes then
necessary to establish a compromise among the objectives. The solutions that
fulfill this compromise are called the Pareto set. The notion of Pareto set is based
on the concept of dominance that will be explained in the next section. When
an optimization problem has several objectives, the task of finding one or more
suboptimal solutions is called Multi-objective optimization.

Multi-objective Evolutionary Algorithms (MOEAs) appear as an extension of
EAs for single objective problems. A MOEA should be designed to achieve two
purposes simultaneously: to achieve good approximations to the Pareto front and
maintain the diversity of solutions, in order to adequately search the solution
space and do not converge to a unique solution [12]. Some of the best known
MOEAs are NSGA, SPEA, NSGA-II, SPEA-II and PAES-II [8].

Several prediction methods have considered the PSP problem as a multi-
objective optimization problem. For instance, [13] developed MI-PAES as a
modified version of PAES using a torsion angles model. A parallel multi-objective
optimization was performed by using Chemistry at HARvard Macromolecular
Mechanics (CHARMM) energy function in [14]. [15] proposed a multi-objective
Feature Analysis and Selection Algorithm (MOFASA) in order to solve the
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Protein Fold Recognition (PFR) problem. In [16], a I-PAES algorithm is used
as search procedure for exploring the space of the PSP problem. The concept of
bond and non-bond energies are included in the fitness function of this approach.

In this paper, we propose a contact map predictor based on a MOEA. More
specifically, it is based on a NSGA-II algorithm [17]. A NSGA-II algorithm
initially creates a population (random or by a technique of initialization) of
parents. The population is sorted according to levels of non-dominance (ranking
Pareto fronts). Each solution is then assigned a fitness value according to their
level of non-dominance (1 is the best level). Tournament selection, the crossover
and mutation are used to create the offspring population of size N.

Our algorithm generates a set of rules that predicts contacts between amino
acids. In particular, each rule imposes a set of conditions on some specific amino
acids properties. Rules consider two windows of 3 amino acids, which are centered
around the two target residues in contact.

In order to test our proposal, we obtain the training data set from the
Protein Data Bank (PDB), and produce a file in arff format with the encoded
information. The rules that are produced after the training phase are classified
according to each specific pair of residues that they represents. For a new protein
sequence, we apply the required rules for each residue pair and obtain the protein
contact map. Our application also provide a graphical representation of these
contact maps. The novelty of our proposal consists on the use of amino acid
properties which are involved in the folding process and, to the best of our
knowledge, have not been applied in similar evolutionary approaches for this
problem.

The remainder of this paper is organized as follows. Section 2 introduces
some basic concepts of the Multi-objective optimization. Our multi-objective
evolutionary approach is described in section 3. Section 4 presents the
experimentation and obtained results. Finally, section 5, includes some
conclusions and possible future works.

2 Multi-objective Optimization Problem

Before describing our algorithm, this section presents a brief introduction to
multi-objective optimization problems and related concepts.

A Multi-objective optimization problem is based on the optimization
(minimization or maximization) of a set of objective functions, usually in
conflict with each other. The existence of multiple objective poses a fundamental
difference with the single objective problems: typically there will not be a single
solution, but a set of solutions that can present different clashes among the
values of the objectives to optimize. We can define a multi-objective optimization
problem in this way: let (f1(x), f2(x)...fn(x)) be a set of functions to be
optimized, where x = (x1, ..., xp) is a vector of decision variables belonging
to a universe X and fi(x) is an arbitrary linear or non-linear function, 1 ≤
i ≤ n. Therefore, the problem consists of finding the x that provides the best
compromise value for all fi(x).
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To solve the above problem, we should defined some criteria to determine
which solutions are considered of good quality and which are not. Hence, we
introduce the concept of dominance, that is used in the process of evaluating
the different solutions. A solution x is said to be not dominated iff there is not
another solution y such that: fi(y) <= fi(x) for all i = 1..n and fi(y) < fi(x)
for some i. From this, it follows that the Pareto front is formed by all the non-
dominated solutions.

We have applied these concepts to the Protein Contact Prediction problem. In
this article, we have considered coverage and accuracy as two different functions
and are optimized separately.

In order to do so, we have implemented a MOEA based on an Elitist Non-
Dominated Sorting Genetic Algorithm (NSGA-II). NSGA-II incorporates elitism
and reduces the complexity of the procedure fast sorting by non-dominance of
its predecessor NSGA. The algorithm performs a classification of the population
using Pareto fronts. Individuals which belong to the first front are the non-
dominated front, those in the second front are not dominated in the absence
of previous front, and so on. Each individual is assigned a rank equal to its
level of non-dominance. The best individuals are those with lower ranks. In
order to maintain diversity, we use a crowding distance, which is assigned to
each individual of the current population. The selection is performed by binary
tournament. The tournament is won by the individual with a lower range (Pareto
front level). If the two ranges are the same, the tournament is won by the
individual who has lower crowding distance. This algorithm has a low time
complexity of O(NlogN), where N is the population size.

3 Our Approach

In this section, we present the main characteristics of our proposal. As we have
said before, the aim of this algorithm, called PSP-NSGAII, is the prediction
of protein contact maps. In order to test our proposal, the first thing to do
was to select a set of sequences. For this, we selected from PDB a set of
173 proteins that appears in [3]. We extract the required information as the
amino acid sequences and distances between amino acids. To calculate the
distances, we use the Euclidean distance between Cβ atoms (Cα for Glycine)
of each pair of residues. The formula of Euclidean distance is d(i, j) =√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, where (x1, y1, z1) represent the atomic

coordinates of the first amino acid and (x2, y2, z2) are the coordinates of the
second amino acid. Once the training set is prepared, we use this data to train
our evolutionary algorithm. As we have said previously, we propose a Multi-
Objective algorithm as a method to identify protein folding rules. These rules
provide us the specified characteristics of amino acids in contact. They specify
which property values and conditions must have the amino acids in contact and
the ones which precede and follow them. Our proposal build the set of final rules
in an incremental way. Each time the algorithm is run, a set of rules are selected
and added to a final solution set. For each iteration, we select those rules which
contribute to increase the F-measure of the global solution.
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In the following the characteristics of the representation, the fitness function
and the genetic operators used by the EA will be presented.

3.1 Encoding

Each individual is represented as follows. We have taken into account six amino
acids. For two amino acid in contact i and j, we represent the amino acid i− 1,
i + 1, j − 1 and j + 1, i.e., the amino acids that precede and follow i and j in
the sequence. This choice was made after having performed various experiments
with different window sizes, ranging from 6 to 14. Each amino acid is represented
by 7 genes; two genes for the hydrophobicity (ranging from -1 to 1), two genes
for polarity (ranging from -1 to 1), 1 gene for the charge (-1, 0, 1 for negative,
neutral and positive charge respectively) and two genes for the volume of residue
(ranging from 0 to 1). Figure 1 shows the representation for an amino acid. Our
representation consists in 42 attributes in total.

H1 H2 P1 P2 C V1 V2︸ ︷︷ ︸
i

Fig. 1. Example of encoding for the amino acid i. An individual is constituted by six
amino acids i−1, i, i+1, j−1, j and j+1. H1,H2,P1,P2,V1 and V2 are lower and upper
bounds for the hydrophicity, polarity and volume values, respectively. C represents the
charge value of the residue.

We selected Kyte-Doolittle hydropathy profile [18], the Grantham’s profile
[19] for polarity and Klein’s scale for net charge [20]. The Dawson’s scale
[21] is employed to determine the volume of the residues. In table 1, we can
appreciate the amino acid values for each property according to the cited scales
and normalized between −1 and 1 for hydrophobicity and polarity, and between
0 and 1 for the residue volume.

From all the extracted data, we have built a file in arff for-
mat, with all the training data information. This file is available at
http://www.upo.es/eps/asencio/data/training set.arff. In this file we include
protein subsequences of windows of six amino acids codified with the values
of the cited four different physico-chemical properties. The positive class (con-
tact) is represented with 1 and the negative class (no contact) is represented
with 0. The total data set constitutes 123, 949 instances with 6, 922 positive and
117, 027 negative cases (contact and no contacts respectively).

3.2 Fitness Function

As already mentioned, we consider two objectives to be optimized: coverage and
accuracy. Coverage represents the number of predicted contacts and accuracy
evaluates the real predicted contacts rate. Therefore, Coverage = C/Ct and
Accuracy = C/Cp, where C is the number of correctly predicted contacts of a
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Table 1. Values of different properties according to the cited scales for each amino
acid. H represents the hydrophobicity, P the polarity, C the charge net and V is the
residue volume.

Prop. A C D E F G H I K L

H 0.40 0.56 -0.78 -0.78 0.62 -0.09 -0.71 1.00 -0.87 0.84

P -0.21 -0.85 1.00 0.83 -0.93 0.01 0.36 -0.93 0.58 -1.00

C 0 0 -1 -1 0 0 0 0 1 0

V 0.33 0.40 0.33 0.67 0.87 0.07 0.80 0.73 0.93 0.73

Prop. M N P Q R S T V W Y

H 0.42 -0.78 -0.36 -0.78 -1.00 -0.18 -0.16 0.93 -0.20 -0.30

P -0.80 0.65 -0.23 0.38 0.38 0.06 -0.09 -0.75 -0.88 -0.68

C 0 0 0 0 1 0 0 0 0 0

V 0.80 0.67 0.73 0.80 1.00 0.40 0.67 0.67 0.93 0.93

protein, Ct is the total number of contacts of the protein and Cp is the number
of predicted contacts. We aim at finding the best compromise between these two
measures.

3.3 Genetic Operators

We use two mutation operators. The first operator follows a Gaussian
distribution for a randomly selected individual and increase or decrease a gene
value with a probability of 0.5. A second operator randomly selects a gene that is
related to a given property, and moves the bounds to the maximum or minimum
of the domain, making the property irrelevant in this rule. For example, if the
property is the hydrophobicity, we change the range to -1, 1 so the rule does not
take into account this property in this case. This type of mutation is applied
with a 0.1 probability. For each individual, we test that the mutated value was
between the allowed ranges.

A 2-point crossover operation was used with a 0.5 probability. A binary
tournament selection is applied with a probability of 0.5. In each tournament,
we select the individual which is located in the better Pareto front. If the two
individuals are on the same front, we use the crowding distance to determine
the winning configuration. The crowding distance is a measure of the diversity
of the population. This process is called Stacking tournament selection.

The population size is set to 100, and the initial population is randomly
initialized. The maximum number of generations that can be performed is set to
100. However, if the fitness of the best individual does not increase over twenty
generations, the algorithm is stopped and a solution is provided. At the end of
the execution, repeated or redundant rules are discarded from the solution set.

All the parameters were set after having performed several trial runs of the
algorithm.
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4 Experiments and Results

As mentioned in the previous section, in order to test our proposal, we have
selected a protein data set specified in [3]. This data set consists of 173 proteins
with percentage of sequence identity lower than 25%. Four subsets have been
classified according to the sequence length; lower than 100 residues (DS1),
between 100 and 170 (DS2), between 170 and 300 (DS3), and higher than 300
residues (DS4). The minimum and maximum size of the proteins are 31 and
753 amino acids respectively. A threshold of 8 angstroms (Å) was established
to determine a contact. In order to avoid the effect of learning local contacts,
we set a minimum sequence separation of 7 residues between each pair of amino
acids to establish a contact. A 3-fold cross-validation were performed during all
the experimentations. All these requirements were also found in [3]. In order
to validate our experimentations, accuracy and coverage rates were calculated.
These two measures are also employed to validate the prediction algorithms in
CASP competitions.

We have performed several experiments with three Weka classifiers [22]: Näive
Bayes (NB), C4.5 classifier tree (J48), Nearest Neighbor approach with k = 1
(IB1). The obtained results can be seen in Table 2 for a 3-fold cross-validation.
We appreciate low coverage and accuracy values in all the cases. The training
data used contained all the possible subsequences of size 6 of the DS1 protein
data set with a minimum separation between contact residues of 7 amino acids.
This experiment was performed with the aim of validating our representation
and confirms that this representation provides enough information for a good
performance of a learning classifier. Moreover, we can also notice that PSP-
NSGAII achieved the best results for this experiment.

Table 2. Average results obtained for different classification Weka algorithms for the
DS1 protein data set

Algorithm Data Set Coverageμ Accuracyμ
J48 DS1 0.03 0.31

IB1 DS1 0.09 0.09

NB DS1 0.20 0.13

PSP-NSGAII DS1 0.21 0.33

The optimal number of rules for the prediction is unknown. In order to
establish the optimal number of executions, we have run several preliminary
experiments and compared the obtained results. From these, we have concluded
that the best results were obtained when the algorithm was run for 1,000
executions.

Table 3 shows the average results obtained using the dataset. Our results were
compared with the ones showed in [3]. We can observe as main conclusion, how
the coverage and accuracy rates decrease if the size of the proteins increases. This
is due to the fact that, generally, ab initio methods only work well with peptides
lower than 150 amino acids [23]. We obtain better results for proteins whose
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Table 3. Average results and standard deviation obtained for 1,000 executions of the
algorithm for the different protein data subsets

Data Set #proteins Coverageμ±σ Accuracyμ±σ Accuracyμ[3]

DS1 65 0.21±0.02 0.33±0.01 0.26

DS2 57 0.10±0.01 0.21±0.02 0.21

DS3 30 0.08±0.03 0.13±0.02 0.15

DS4 21 0.06±0.03 0.09±0.03 0.11

sequence length is lower than 100 (DS1), 0.33 against 0.26. We have obtained
the same accuracy rate for the second subset DS2, and similar rates for the third
and fourth group. We could not compare the coverage rates, because they are
not included in the cited paper [3].

We have analyzed the set of resulting rules, and they show that a vast majority
of amino acids in contact have high values of hydrophobicity. On the other hand,
a high percentage of contacts have non-polar residues. These conclusions were
expected, because hydrophobic and non-polar amino acids tend to be located in
the inner of the protein. Therefore, these type of residues have more probabilities
to be in contact [6]. According to the residue volume, residues with values
between 0.5 and 0.75 are the most representative. We have not observed any
clear conclusion according to the net charge. Although the amino acids with
opposite charges are supposed to be in contact [6], this condition seems to be
irrelevant in our rule set and does not appear as a clear conclusion. Figure
2 shows the graphical representation of the probability of appearance of each
property in our whole set of resulting rules for the amino acid i. The properties
values have been discretized in five groups in intervals of 0.5 from −1 to 1 for
the hydrophobicity and polarity and from 0 to 1 in intervals of 0.25 for the
residue volume. The rest of amino acid positions in the rules presents similar
behaviors.

In figure 3, we show a graph which represents the different Pareto fronts for
five generations (from generation 0 to 80 with an interval of 20) of an execution
in order to test the correct performance of our multi-objective evolutionary
algorithm. Each different symbol represents an individual of the Pareto front in
different generations. The X-axis represents the coverage and the Y-axis shows
the accuracy rate. These two measures are the two parameters which should be
optimized during the executions. We can notice how the quality of individuals
improve with the generations.
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Fig. 3. First Pareto fronts for an execution in different generations

5 Conclusions and Future Work

In this work, we presented a multi-objective optimization algorithm for the
residue-residue contact prediction. This algorithm generates rules that predict
the necessary conditions for the contact between two amino acids based on
their physico-chemical properties. The algorithm was tested on a set of protein
sequences that had been previously used in the literature and achieve similar
coverage and accuracy rates than other contact map predictor algorithm. We
have analyzed the resulting rules set and drawn some conclusions about the
folding prediction problem. From the obtained results, we can conclude that
our algorithm, as other ab initio methods, obtains lower accuracy if the size of
the protein is increased. Although these methods are computationally expensive,
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they have a main advantage; by only taking the sequence as baseline information,
it is possible to obtain a folding model for an unknown protein.

As future work, we are planning to include more useful information based
on amino acid properties in our rules representation as secondary structure
prediction and solvent accessibility. The variability of the window size must
be taken into account for the next version of the algorithm. Furthermore, our
algorithm must be validated with a higher number of proteins data set.
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In Silico Infection of the Human Genome
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Abstract. The human genetic sequence database contains DNA se-
quences very like those of mycoplasma bacteria. It appears such bacteria
infect not only molecular Biology laboratories but their genes were picked
up from contaminated samples and inserted into GenBank as if they were
homo sapiens. At least one mouldy EST (Expressed Sequence Tag) has
transferred from online public databases on the Internet to commercial
tools (Affymetrix HG-U133 plus 2.0 microarrays). We report a second
example (DA466599) and suggest there is a need to clean up genomic
databases but fear current tools will be inadequate to catch genes which
have jumped the silicon barrier.

Keywords: Bioinformatics, data cleansing, bit rot, in silico biology,
meme, Blast, phishing, jumping information genes, in silico evolution.

1 Introduction

Figure 1 shows how our understanding of genetics has changed over the last 150
years. In each frame the small blue double helix is used to illustrate the movement
of genes. In 1865 Mendel showed that genes are discrete units. Originally it was
thought that genes were inherited only from parents, however it is now known
that genes can be transferred horizontally. Firstly in 1930 McClintock showed

Horizontal gene transfer
1959 Today

Gene transfer to GenBank
McClintock 1930

Jumping genes
Mendel 1865

Fig. 1. Tetratych showing: 1865 Mendel’s [1] discovery of the essential digital nature of
inheritance; 1930 Barbara McClintock’s [2] discovery of transposons in Maize whereby
genes move not only from parent to child but also along chromosomes; 1959 Micro-
graph of genetic transfer along a pilus linking two bacteria (Akiba and Ochia discovered
the first interspecies gene transfer [3]); mycoplasma bacteria genes are transferred be-
tween computers, including into the reference human genome DNA sequence held by
GenBank [4]
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genes could move to new positions in chromosomes of the same species. Later it
was found that jumping genes could be transferred between species [3]. Indeed
today lateral gene transfer mediated by viral agents is thought to be common [5].

What so far has been little recognised is that jumping genes have escaped
biology and now roam our computer systems.

2 The Human Genome

Ensuring databases are both up to date and contain only correct data is a huge
software engineering problem. Even as the human genome was first published the
associated problems of data cleansing Bioinformatics sequence data were being
discussed [6,7] but it appears only technical problems where considered.

We discovered that GenBank, the definitive publicly accessible database hold-
ing the human DNA sequence, has been corrupted in a surprising way. It contains
the DNA sequence of a bacteria [4].

Section 3 describes how we recently discovered a second sequence which is
probably not human in the human genome [8]. Here we extend RN/11/14 [8].

It appears that not only has the human DNA sequence been “completely
sequenced” [6] but in the process other living organisms commonly found in
molecular biology laboratories have infected not just the physical samples but
also the virtual in silico Bioinformatics environment. By unwittingly using a
technique reminiscent of computer hacking, a bacteria gene has succeeded in
not just moving within its own genome [2] nor only jumping horizontally and
crossing the species barrier [3] but has crossed the silicon barrier between life and
data and succeeded in reproducing itself across very diverse information based
media. Given the highly interconnected nature of genomic research, technology
and medicine and the low priority so far attached to the problem, it is unlikely
current data warehouse cleansing techniques will be able to eradicate this and
potentially other silicon jumping genes.

3 Computational In Silico Experiment

Using Blast [9] at the European Bioinformatics Institute with their default set-
tings, we searched for the anomalous HG-U133 +2 gene sequence (GenBank
AF241217, probeset 1570561 at, which we reported in [4]). This gave a list of
DNA sequences which partially match published DNA sequences. The list is
ordered by blastn so that the best matches are at the top. Only the top 50
fuzzy matches are included. As expected the first match is the query sequence
itself (EM HTG:AF241217). Despite [4] having been published more than a year
ago, EM HTG:AF241217 is still described as “Homo sapiens”. All the others are
mycoplasma, except the 34th in the list, DA466599, which EBI says is human.
(EBI gives one reference for DA466599: [10]. DA466599 was uploaded to the DNA

http://www.cs.ucl.ac.uk/staff/W.Langdon/WBL_2011.html#Langdon:RN1114
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Data Bank of Japan 2 years after the HG-U133 +2 was launched). However
we suggest that DA466599 may not be a human DNA sequences but is another
example of physical contamination leading to virtual infection of the public data.

We ran a second EBI blastn query (again using the NCBI em rel database).
This time looking for DNA sequences that match DA466599. The results for
DA466599 are similar to those for AF241217 and so support the view that DNA
sequence DA466599 is not human but instead is also a contamination. Again the
best 50 matches were reported. Of course the first one is DA466599 itself. All
the other matches returned by blastn are for various species of mycoplasma.

4 No In Silico Evolution?

Notice what these mycoplasma genes have done. Not only, despite rigorous hy-
giene standards, do they routinely spread themselves through microbiological
laboratories [11] but now at least two have got themselves copied into GenBank
and one has spread from there into an Affymetrix GeneChip design. How is this
different from any other case where a gene has been sequenced? Fundamentally
it is the same. But notice, even though we can post hoc guess a mechanism, it
is as if the gene had acted to spread itself. In Biology, gene DNA sequences are
acted upon by many mechanisms that copy them but we still adopt the short
hand of saying the gene has spread itself [12].

It is difficult to know the number of copies of the human genome. However if
we ignore the small number of mirror sites and assume everyone downloads se-
quences from GenBank directly. This means the GenBank’s Internet bandwidth
limits the number of copies. Since each copy takes 2 hours, the maximum down-
loads per year is 4383. Although new versions of GenBank are released “every
two months” GenBank is fairly stable and people may not need to be fully up to
date, therefore we suggest each copy lasts about a year. This gives an estimate
of the global population of the human genome DNA sequence of less than 4 000.

In biology none of the DNA copying mechanisms is perfect. This ensures inher-
ited material is subject to variation. In our computer systems it is often assumed
copies are perfect. Indeed we have seen no evidence, yet, of DNA sequences being
corrupted once they have been captured by our databases. However changes are
possible. Rosenthal [13] says “1.2 10−9 of the data written to CERN’s storage
was permanently corrupted within six months”. Also error rates on transferring
data across the Internet are never better than 10−12 [14] and wireless connec-
tions to portable devices are very much worse. Even in the best cases, operator
error is always a hazard [14]. In other words, error rates in the best computer
systems are much less than typical mutation rates but accidental changes are
possible, particularly with portable laptop computers.

After reproduction and variation, the third requirement of evolution is selec-
tion. Although one might see human imposed differential selection on corrupted
gene sequences, the most likely selection pressure would be simply aimed at
removal of errors. Complete extermination would not lead to evolution. Par-
tial erasure might serve. However given the small population size and hence low

http://investor.affymetrix.com/phoenix.zhtml?c=116408&p=irol-newsArticle&ID=454699
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copy rate, very low mutation rates and absence of suitable fitness selection, the
conditions for the evolution of these in silico genes are currently poor.

5 Discussion

It is well known that mycoplasma contamination is rife [11]. Many labs are
routinely periodically sterilised to counter it. Miller et al. [11] said mycoplasma
contamination has “potentially major consequences for the diagnosis and charac-
terization of diseases using expression array technology.” Even so, using RNAnet
http://bioinformatics.essex.ac.uk/users/wlangdon/rnanet/, we previ-
ously estimated about 1% of published data in the Gene Expression Omnibus
(GEO) database at NCBI (www.ncbi.nlm.nih.gov/geo) are contaminated [4].

One potential fortuitous side effect of the in silico spread of mycoplasma
contamination is that the Affymetrix HG-U133 +2 1570561 at probeset might
be used to indicate physical sample contamination. Thus probeset 1570561 at
could be treated as a free additional quality control signal. If 1570561 at says
there is significant expression of mycoplasma genes, then the sample is probably
contaminated and the other gene expression levels given by the microarray are
suspect.

Having found two suspect DNA sequences it seems likely the published
“human genome” sequence contains more. Indeed contamination of all organism
sequences seems possible [15]. With the explosive growth of genomic sequence
data available via the Internet, including data from the 1000 genome project [16],
it seems time to look again at genomic database quality.
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Abstract. A recent research article, entitled Taxon ordering in phylo-
genetic trees: a workbench test presented the application of an evolution-
ary algorithm to order taxa in a phylogenetic tree, according to a given
distance matrix. In previous articles, the authors introduced the first ap-
proaches to study the influence of algorithm parameters on the efficacy of
finding the tree with the shortest distance among taxa, based on genetic
distances. In the considered work, the authors tested the algorithm using
both genetic and geographic distances, and a combination of the two, on
three phylogenetic trees of different viruses. The results were interesting,
especially when applying geographic distances, allowing a new reading
direction, orthogonal to the classical root-to-taxa one.

Keywords: Evolutionary algorithm, phylogenetic tree, taxon order.

1 Short Background in Phylogenetics

Evolutionary biology often makes use of phylogenetic trees to describe and infer
the relationships among living organisms. A phylogenetic tree is a mathematical
structure representing the evolutionary history of sequences or individuals. It
consists of nodes connected by branches, and the terminal nodes, representing
the “leaves” of the tree, are called taxa. Internal nodes represent ancestors,
and can be connected to many branches. Evolutionary information is contained
in the tree topology: in other words, the relationship between two individuals
is described by the pathway linking the two tips, along the branches, through
the internal nodes. For this reason the most important feature of a tree is its
topology.

There are several ways to draw a phylogenetic tree: it is strictly depending
by the analyses’ aim, but scientists often depict the tree topology as cladogram
or phylogram. Basically, the tree is drawn following a horizontal direction where
the evolution is described by the pathway from the root of the tree to its tips.
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Usually, the root of the tree is placed at the left side of the figure and the tips
are at the right side. Considering what we stated above, the vertical order in
which taxa are reported is not meaningful, since the reading direction is only
from root to tips and viceversa, the branch length being a measure of divergence.
In fact, taxa belonging to an unresolved clade (where several taxa are linked to
the same internal node) are often reported following the same order than in the
original input file. This representation is hazardous because a superficial browse
through the tree could lead to incorrectly consider the closeness among taxa.

A first approach to reorder the taxa according to a distance matrix was pro-
posed by Moscato, Cotta and colleagues [1,2]. In these works, the authors both
build new phylogenies and improve existing ones generated by Neighbor Join-
ing and hypercleaning methods. They approached the problem as a minimum
Hamiltonian path problem, and used memetic algorithms to find the “solution
that minimizes the length of a path of distances between species” [2].

2 Taxon Ordering in Phylogenetic Trees: A Workbench
Test

A more recent article, entitled Taxon ordering in phylogenetic trees: a workbench
test, published on BMC Bioinformatics [3], described the validation of an Evo-
lutionary Algorithm (EA) to order taxa in a phylogenetic tree given a distance
matrix. The idea behind this approach is the following: each internal node in
a tree can be freely rotated without modifying the topology. In order to better
represent the tree, one could group taxa with similar features, such as genetic
similarity, geographic location or collection date, preserving the original topol-
ogy. This approach was intended to improve the interpretability of phylogenetic
trees including more information, especially in highly unresolved trees, and to
assist in reading them correctly.

In a previous work [4], the authors investigated the influence of the different
parameters on the dynamics of the proposed alforithm. First, a simple (1 +
1)-EA was adopted, applying genetic distances for the fitness evaluation. This
was considered as the sum of the vertical distances’ of the r closes taxa to the
considered one, for each taxon on the tree. The study proved that the parameter
r, called the radius, drastically influenced the algorithm’s performances, and a
value of r = 8 could be a good choice for the fitness evaluation. Comparing the
results of the EA with a random search, the former consistently outperformed
the latter. Then, the study was directed to the comprehension of the influence
of the population size on the search dynamics.The best performances coupled
with the more consistent results were obtained when applying (1 + 5)-EAs and
(5 + 5)-EAs.

After this first test to determine the effectiveness of the algorithm and its
parameters, the authors validated the method by applying it to three different
phylogenetic trees from literature, using both genetic and geographic distances,
and a merge of the two.
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When reordering the taxa, the trees obtained considering geographic distances
showed interesting interpretations. Fig. 1 summarizes the best trees obtained re-
ordering the taxa according to geographic distances and its combination with the
genetic ones. The pattern of the points’ distribution along the map, represent-
ing the State of sample collection, is the same as the one along the tree. Thus,
the algorithm effectively reorder taxa on the tree with respect to the distance
matrix. The color distribution on the map and on the tree strongly helps the
interpretation of the tree, adding a further interpretation.

Fig. 1. (a) Map representing the study area of USA and Mexico where VSV samples
were collected, and (b) the original tree, as presented by Perez et al.[5]. The best trees
obtained using the geographic (c) and combined genetic-geographic (d) distances. The
dashed line in D highlights the “C” shape acquired by the clades (the figure is taken
from [3]).

When the genetic distances are used, a recurrent reorder occurs, with long
branches of the tree pushed to the extremities of the tree. Being the branch
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length proportional to the genetic distance, it is correct that the EA reduces the
global distance in the tree by moving them to the extremities, since the samples
on those branches are the most divergent on the tree.

Other very interesting results in reordering the taxa according to both ge-
netic and geographic distances were obtained by applying the EA to a West Nile
virus tree. The samples were collected from a small area in the Cook county, IL,
USA, and there was no evident relationship among genetic and geographic dis-
tance. Although, genetic variation was larger within sites than between different
collection sites. These relationship had a support of the results reported in the
considered article. In fact, while with geographic-only and geographic-genetic
distances a grouping of samples collected from the same site was recorded, this
movement does not appear when applying genetic-only distances.

3 Conclusions

The work presented in the article Taxon ordering in phylogenetic trees: a work-
bench test [3] showed interesting results for helping the interpretation of phylo-
genetic trees, a new reading direction, orthogonal to the classical root-to-taxa
one. The preliminary results of the study were promising, even thou the genetic
information is already contained within the tree topology. Adding more informa-
tion to the tree by using the geographic distance could provide a strong support
to the interpretation of phylogenetic trees. The recent development of tools for
phylogeography underlines the increasing interest towards the understanding of
the relationship among genetic diversity and spatial distribution. The algorithm
presented in the article and here discussed does not pretend to be one of them,
but is a simpler method to merge the information from genetic and spatial data.
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Santander-Jiménez, Sergio 144
Santiesteban-Toca, Cosme E. 156, 224,

234
Santos, Francisco C. 86
Seitz, Alexander 62
Spirov, Alexander V. 177
Spirova, Ekaterina N. 177
Stefan, Norbert 62
Stefano, Mattia 97

Torstenson, Eric S. 201

Vanneschi, Leonardo 13, 97
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