
Protecting Sensitive Relationships

against Inference Attacks in Social Networks�

Xiangyu Liu and Xiaochun Yang

College of Information Science and Engineering,
Northeastern University, Liaoning, 110819, China
neulxy@gmail.com, yangxc@mail.neu.edu.cn

Abstract. The increasing popularity of social networks in various appli-
cation domains has raised privacy concerns for the individuals involved.
One popular privacy attack is identifying sensitive relationships between
individuals. Simply removing all sensitive relationships before releasing
the data is insufficient. It is easy for adversaries to reveal sensitive re-
lationships by performing link inferences. Unfortunately, most of previ-
ous studies cannot protect privacy against link inference attacks. In this
work, we identify two types of link inference attacks, namely, one-step
link inference attacks and cascaded link inference attacks. We develop a
general framework for preventing link inference attacks, which adopts a
novel lineage tracing mechanism to efficiently cut off the inference paths
of sensitive relationships. We also propose algorithms for preventing one-
step link inference attacks and cascaded link inference attacks meanwhile
retaining the data utility. Extensive experiments on real datasets show
the satisfactory performance of our methods in terms of privacy protec-
tion, efficiency and practical utilities.

1 Introduction

In recent years, a fast growing popularity in social networks has attracted the
interests of researchers from different disciplines. Exploring the properties of so-
cial networks has generated interesting knowledge discovery and data mining
problems. However, social networks usually contain individuals’ sensitive infor-
mation. Preserving privacy in the release of social network data becomes an
important concern.

One fundamental privacy issue in publishing social network data is link re-
identification problem. In social network, the main entities are individuals who
participate in thousands of interactions with each other. An edge (or link) refers
to an interaction between two individuals involved, and there are many different
kinds of interactions. In Email network, an edge connecting two people indicates
that they communicate through emails. Some interactions or relationships are

� The work is partially supported by the National Natural Science Foundation of
China(Nos. 61173031, 60973018) and the Fundamental Research Funds for the Cen-
tral Universities(Nos. N090504004, N100604013).

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 335–350, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

336 X. Liu and X. Yang

V0

V1

V2

V3

V4

V5

V6

V7

V8 V9 V1 0

(a) G (b) Variants of G

V0

V1V2

V3V4

V5V6V7

V8

V9

V1 0

2

3

1

2
3

1

1

1

1

(c) Ga

V0 V1

V2

V3

V4
V5V6

V7

V8

V9

V1 0

(d) G1

Fig. 1. Multiple versions of graph G

considered as sensitive due to the involved individuals. For instance, in telecom-
munication network, Adam and Bob would like to prevent the disclosure of their
close relationship, which can be observed based on the frequent telephone calls
between them.

1.1 Motivation

In the process of anonymizing data, sensitive relationships are always removed,
i.e., they are not provided in the released data in order to protect individuals’ pri-
vacy. However, it may be possible to predict or infer some of these relationships
through the techniques of link inference, which has been widely investigated in
recent years. We name inferring sensitive relationships in social network as link
inference attack. A common sense we have known is that if two individuals have
many friends in common, these two individuals are likely to know each other. In
Fig.1(a), v0 has three common neighbors with v5, and only one common neigh-
bor with v8. We infer the probability of there existing a link between v0 and
v5 is larger than that between v0 and v8. Link inference techniques could be
adopted by adversaries to identify sensitive relationships with high probability.
We empirically evaluated the re-identification power of link inference on real
social networks, Email-1 and LiveJ-1[10], to demonstrate that such intuition
really holds. In our evaluation, for any two vertices, we considered there existed
an edge between them if the count of their common neighbors was larger than
a threshold δ and we studied the impact of δ on link inference. We report the
statistical data of true positive instances (TP) and true negative instances (TN),
and calculate corresponding rates of TP and TN, as illustrated in Table 1. When
threshold δ = 2, the rates of correctly inferred edges are only 9.12% and 25.49%
for Email-1 and LiveJ-1, respectively. For both datasets, the rates of correctly
inferred edges become higher as δ increases. When δ = 18, TPR in LiveJ-1 even
reaches 86.98%, and 63.61% in Email-1. TNR gets slightly decreased when δ
increases but still keeps as high as 99%. From our evaluation results in Table 1,
we clearly see that the re-identification power of link inference is strong enough
to help adversaries identify sensitive relationships with high probability. Hence,
link inference attacks are real in practice.

Protecting Sensitive Relationships against Inference Attacks 337

Previous work on protecting privacy of social network does not consider link
inference attacks. Link inference associated information can be studied by ad-
versaries, even though the releasing graph is anonymized through existing meth-
ods. Given graph G in Fig.1(a), according to existing methods [3,9], we obtain
an anonymized graph Ga in Fig.1(c). Ga guarantees the probability of an ad-
versary re-identifying any vertex or edge is at most 1

k . For Ga, the constant k
is 2. Obviously, the expected number of common neighbors between v0 and v5
is 1× 6656

14400 + 2× 3216
14400 + 3× 416

14400 + 4× 16
14400 = 1, and the expected number is

1× 252
864+2× 18

864 = 288
864 between v0 and v8. However, the adversaries can still infer

that the probability of v0 having a link with v5 is larger than with v8, which is
the same with previous conclusion that we draw based on original graph G.

Table 1. Re-identification power of link inferences on real social networks

δ
Email-1 LiveJ-1

TP TPR(%) TN(×107) TNR(%) TP TPR(%) TN(×107) TNR(%)

2 6425 9.12 1.242 99.96 12028 25.49 1.244 99.95
6 3849 26.80 1.248 99.94 6495 57.04 1.247 99.91
10 2568 41.93 1.248 99.93 3896 69.62 1.248 99.89
14 1722 53.76 1.248 99.93 2504 79.14 1.248 99.88
18 1117 63.61 1.249 99.92 1550 86.98 1.248 99.87

1.2 Challenges and Contributions

We address the problem of link inference attacks in social networks. The chal-
lenge of our problem lies in the complexity of link inferences in social network.
Typically, the adversary can perform inference attack with multiple steps. In
order to avoid privacy leakage, we need to modify the social graph. Due to the
complexity of graph, a little modification (e.g., remove an edge) may incur a
great impact on link inferences. How to cut off the inference paths of sensitive
relationships without privacy leakage meanwhile incurring minimal information
loss has proposed a great challenge.

Our contributions can be summarized as follows. (1) We discuss two types of
link inference attacks, namely, one-step link inference attacks and cascaded link
inference attacks, which have strong link re-identification power in real networks.
(2) We propose inference security to protect privacy against link inference at-
tacks. (3) We develop a general framework for preventing link inference attacks,
which adopts a novel lineage tracing mechanism to efficiently cut off the infer-
ence paths of sensitive relationships. (4) We propose algorithms for preventing
one-step link inference attacks and cascaded link inference attacks. (5) We de-
sign a number of techniques to make the inference preventing methods efficient
meanwhile maintaining the utility. (6) Our extensive empirical studies show that
our methods perform well in real datasets.

The remainder of the paper is organized as follows. Related work are sum-
marized in Section 2. In Section 3, we give the problem definition and formalize
the inference security model. We outline a general framework for preventing link

338 X. Liu and X. Yang

inference attacks, and propose algorithms for obtaining inference secure graphs
in Section 4. We evaluate our methods in Section 5. Section 6 concludes the
paper.

2 Related Work

With the increasing popularity of social networks, protecting privacy informa-
tion in social networks while retaining data utility for data mining and analysis
has become an interesting problem that has been studied by a number of re-
cent works. Privacy attacks in social networks are mainly classified into two
categories, including vertex re-identification attacks and link re-identification
attacks.

In vertex re-identification attacks (a.k.a. identity disclosure), an adversary
identifies the identities of vertices in the published network using the subgraphs
associated with target individuals as background knowledge. Liu et al. [1] propose
k-degree to prevent from privacy attacking using vertex degree as adversary
knowledge. Zhou et al. [2] provide identity privacy through anonymizing the 1-
neighborhood subgraph of each vertex. Hay and Campan [3,4] propose to protect
identity privacy against subgraph knowledge through clustering vertices into
super vertices, where the vertices in a super vertex are indistinguishable from
each other. Zou et al. [5] propose a privacy preserving model K-Automorphism
for protecting identity privacy.

In link re-identification (i.e., link disclosure) attacks, an adversary aims at
identifying sensitive relationships among the individuals in social network. Zhel-
eva et al. [6] discuss a number of privacy preserving strategies to prevent sensitive
edge disclosure, in which the protection of link privacy cannot be guaranteed.
Ying et al. [7] study graph randomization through adding/removing and switch-
ing edges randomly while preserving the spectrum of the network, which do not
provide quantifiable privacy protection. Cormode et al. [8] propose a permuta-
tion based approach to protect the privacy of links in bipartite graphs. Bhagat
et al. [9] improve the work in [8] and study graph anonymization to protect link
privacy based on vertices grouping.

Different from considering identity disclosure and link disclosure problems
separately, recent work [10,11] has focused on proposing general frameworks to
protect both identity and link privacy. Cheng et al. [10] study how to partition
and anonymize a releasing graph into disjoint k subgraphs that are isomorphic to
each other for ensuring the probabilities of identifying an identity and a sensitive
link both at most 1

k . Besides protecting identity and link privacy, Yuan et al.
[11] give a solution to satisfy different needs on privacy protecting level.

One fundamental problem underlying all of the research work mentioned
above is that each of them assumes adversaries acquire privacy information using
target individual’s associated graph structural knowledge, and ignores that it’s
very possible for adversaries to infer privacy using graph inference knowledge. In
this work, we try to protect sensitive relationships in a releasing graph against
link inference attacks.

Protecting Sensitive Relationships against Inference Attacks 339

3 Preliminaries and Problem Definition

We model a social network as a simple graph, G = (V,E), where V is the set of
vertices, E is the set of edges. We use V (G) and E(G) to refer to the vertex set
and edge set of G. In this work, we also use link and relationship interchangeably
to denote an edge.

Generally, link inference techniques are classified into three categories, in-
cluding similarity based link inference, maximum likelihood link inference and
probabilistic models based link inference. In this work, we choose common neigh-
bor similarity based link inference (a similarity based link inference technique)
as our specific link inference preventing problem.

Definition 1. (common neighbor similarity) The common neighbor similarity
of vertices u and v is defined as the count of common neighbors of u and v,
denoted as SimCN(u, v), which is formalized as Equation 1,

SimCN(u, v) = |Γ (u) ∩ Γ (v)| (1)

where Γ (u) refers to the neighbors of u.

We choose common neighbor similarity based link inference (LICN for short) as
adversaries’ graph inference knowledge for the following reasons:

(1) As shown in Table 1, LICN is simple, effective and has strong link re-
identification power, which helps adversaries identify sensitive relationships with
high probability;
(2) For adversaries, LICN is easy to implement. The necessary information for
adversaries to perform LICN are the common neighbor sets of the two target
individuals, which are easily collected in real social networks. For instance, in
Online Social Networks (OSNs), such as Facebook and MySpace, after the pro-
cess of sending a friend application to a user and being one of his/her friends,
you can access all his/her friends (i.e., neighbors).

Definition 2. (sensitive edge) Given graph G(V,E), if edge euv is defined as
sensitive by data owners or two involved individuals u and v, then euv should
not exist in G, and vertex pair (u, v) is denoted as sensitive pair.

In this work, we assume some (not all) edges in G are defined as sensitive, and
prevent the disclosures of these edges due to link inferences. As shown in Table
1, although an edge is removed, the existence of this edge could be inferred with
high probability based on graph inference knowledge.

Definition 3. (link inference) Given graph G(V,E) and threshold δ, if the com-
mon neighbor similarity of vertices u and v satisfies SimCN(u, v) ≥ δ, it is
inferred that there exists an edge between u and v.

For two individuals with a sensitive relationship, the data owner provides a
minimum threshold δ to specify his tolerance of revealing closeness of them.
Threshold δ can also be personalized by these two involved individuals.

340 X. Liu and X. Yang

V0 V1

V2

V3

V4
V5V6

V7

V8

V9

V1 0

(a) G1
1

V0 V1

V2

V3

V4
V5V6

V7

V8

V9

V1 0

(b) G2
1

V0 V1

V2

V3

V4
V5V6

V7

V8

V9

V1 0

3 3

3

32

13

3

2
1

(c) G2
3

V0 V1

V2

V3

V4
V5V6

V7

V8

V9

V1 0

(d) G3
3

Fig. 2. Cascaded link inferences

Definition 4. (one-step link inference) Given graph G(V,E) and threshold δ,
one-step link inference on G refers to performing link inference on each uncon-
nected vertex pair in G, such that for any unconnected vertex pair (u, v) with
SimCN(u, v) ≥ δ, we add euv to E(G).

Given graph G in Fig.1(a) and δ=2, after one-step link inference on G, we obtain
G1 in Fig.1(d), where {ev0v5 , ev0v6 , ev1v2 , ev1v3 , ev2v3 , ev2v4 , ev3v4 , ev5v6} (dotted
edges) are newly inferred edges.

Definition 5. (cascaded link inference) Given graph G(V,E), threshold δ and
an integer i, i-times cascaded link inference (i-inference for short) on G refers
to performing one-step link inference iteratively on G for i times, and we obtain
the i-inference graph of G, denoted as Gi.

In cascaded link inference, if an edge is inferred from the original graph, this
edge is also used for future link inference. Obviously, one-step link inference is
the special case of i-inference when i = 1, i.e. 1-inference. G0 denotes graph G
with no link inference. E(Gi)\E(Gi−1)(we define G−1=φ) refers to the inferred
edges in the i-th one-step link inference.

Definition 6. (inference secure) Given graph G(V,E), sensitive edge set S, an
integer i (i ≥ 0), and threshold δ, if S ∩E(Gi) = φ, then G is i-inference secure.

Example 1. Given G in Fig.1(a), Fig.1(b) lists three variants of G with some
edges removed. After 3-inference on G2 in Fig.1(b), we obtain G2

3 in Fig.2(c),
where edges labeled with integer i (i = 1, 2, 3) are inferred in i-th one-step link
inference. For instance, ev1v6 is inferred in the 2nd one-step link inference and
belongs to E(G2

2)\E(G2
1). Let S = {ev0v5 , ev0v6} and δ = 2, since S ∩E(G2

2) = φ
and S ∩ E(G2

3) = S, G2 is 2-inference secure, not 3-inference secure. Similarly,
G is 0-inference secure and G3 is 3-inference secure.

Theorem 1. Given graph G, sensitive edge set S, and threshold δ, if ∀euv ∈ S
satisfies euv �∈ E(G) and SimCN(u, v) < δ, then G is 1-inference secure.

Proof. After one-step link inference on G, we obtain G1. For ∀euv ∈ S, we have
SimCN(u, v) < δ and euv �∈ E(G), thus euv would not exist in E(G1) due to
link inference. Hence, G is 1-inference secure.

Protecting Sensitive Relationships against Inference Attacks 341

Problem 1. (Optimal Inference Security) Given graph G, sensitive edge set S,
integer i and threshold δ, find an i-inference secure graph G′ with V (G)=V (G′)
and E(G)∩E(G′)=E(G′), such that |E(G)\E(G′)| is minimized.

Theorem 2. The problem of Optimal Inference Security is NP-hard.

Proof. The proof is by reducing the NP-complete problem of SATISFIABILITY
[12]. Limited by space, we omit the details here.

In the next section, we derive a novel lineage tracing mechanism to efficiently cut
off inference paths of sensitive relationships meanwhile incurring low information
loss.

4 Preventing Link Inference Attacks

In this section, we study preventing link inference attacks in social networks. We
first outline the general framework for preventing link inference attacks, then
propose algorithms for preventing one-step link inference attacks and cascaded
link inference attacks.

4.1 A General Framework

Given graph G that is not i-inference (i≥0) secure, i.e. S∩E(Gi)�=φ, we provide
lineage tracing mechanism to cut off the inference paths of S∩E(Gi). Informally,
all edges that contribute to the inference of S∩E(Gi) are considered as the
lineage of S∩E(Gi). The key is to efficiently find inference paths of S∩E(Gi).

Fig.3(a) describes the process of obtaining Gi, where the arrow line labeled
with integer k (k=1,. . .,i) refers to the k-th one-step link inference. Clearly, edges
in E(Gk) \E(Gk−1) are due to the combinational impact of E(Gk−1)\E(Gk−2)
and E(Gk−2), as depicted in Fig.3(b). Intuitively, we can prevent inferring edges
in E(Gk)\E(Gk−1) through removing edges in E(Gk−1)\E(Gk−2). We formalize
this intuition in Theorem 3.

E (G)

E (G 1)

...
E (G i)

1

2
i

(a) Obtain Gi

E (G k) \E (G k-1)

E (G k-2)

E (G k-1) \E (G k-2)

Inference

(b) Union infer

E (G)
E 0

E (G 1)

E 1

...

E (G k-1)
E k-1

E (G k)
E k

tra ce

(c) Lineage tracing

E (G)

E r E 0

E (G 1) S 0

trace

infer

(d) Prevent S0

Fig. 3. Cutting off inference paths through lineage tracing

Theorem 3. Given graph G(V,E), edges in E(Gk)\E(Gk−1) can be prevented
from inferring through removing edges in E(Gk−1)\E(Gk−2).

342 X. Liu and X. Yang

Proof. (Proof by Contradiction.) Assume to the contrary that there exists an
edge e in E(Gk)\E(Gk−1) that cannot be prevented from inferring through re-
moving edges in E(Gk−1)\E(Gk−2), i.e. edge e can still be inferred after remov-
ing E(Gk−1)\E(Gk−2) from Gk−1. Thus, e can be inferred based on E(Gk−2)
through one-step link inference and e is obviously in E(Gk−1)\E(Gk−2), contra-
dicting our assumption that e is in E(Gk)\E(Gk−1).

As shown in Fig.3(c), given graph G and edge set Ek⊆E(Gk)\E(Gk−1), The-
orem 3 inspires us that we can prevent inferring Ek by removing edges in
E(Gk−1)\E(Gk−2), noted as Ek−1. Similarly, we prevent inferring Ek−1 by re-
moving Ek−2⊆E(Gk−2)\E(Gk−3). We perform these lineage tracing and remov-
ing operations iteratively until we remove E0 in E(G). After above operations,
edges in Ek would not exist in E(Gk).

Clearly, for graph G that is (k−1)-inference secure but not k-inference secure
(i.e., S∩E(Gk−1)=φ and S∩E(Gk)�=φ), we can prevent inferring S∩E(Gk) using
lineage tracing and removing operations described in Fig.3(c) and obtain k-
inference security for G. Given graph G and an integer i (i≥0), if we want to
obtain i-inference security for G, we can firstly obtain 0-inference secure graph
(i.e. remove sensitive edges directly from E(G)), and then obtain k-inference
(k=1,. . .,i) secure graph based on (k−1)-inference secure graph iteratively.

Based on the framework, we propose algorithms for preventing one-step link
inference attacks and cascaded link inference attacks in the following subsections,
where we will elaborate the technical details of lineage tracing and removing.

4.2 Preventing One-Step Link Inference Attacks

Algorithm 1 protects input graph G against one-step link inference attacks (i.e.,
to obtain 1-inference secure graph), the process of which is outlined in Fig.3(d).
The fact that the graph produced by Algorithm 1 is 1-inference secure is a
straightforward result of Theorem 1. The key idea is to make SimCN of each
sensitive edge less than δ.

Algorithm 1 firstly removes sensitive edges from E(G) to obtain 0-inference
security (Line 1). Then S0 is initialized with sensitive edges with SimCN ≥ δ
(Line 2). All edges present in S0 would be in E(G1). Removable edge set Er that
contribute to the inference of S0 is generated (Lines 3-5). In practice, we can
obtain 1-inference secure graph through removing E0⊆Er from E(G) and E0

should contain as less edges as possible. In procedure Remove Edge, we pro-
vide different strategies for removing edges in Er (Line 7). While removing edges
in Er, sensitive edges already with SimCN < δ should be excluded from S0 (Line
8). In order to minimize the changes on graph properties due to edge removing,
for a removed edge e, the procedure Find Add Edge finds a new edge e′ to
add to E(G) (Line 9). Hence, the condition of E(G)∩E(G′)=E(G′) in Prob-
lem 1 is relaxed to E(G)∩E(G′)≈E(G′). Algorithm 1 performs the procedures
Remove Edge and Find Add Edge repeatedly until graph G is 1-inference
secure. We present the details of Algorithm 1 in the followings.

Protecting Sensitive Relationships against Inference Attacks 343

Algorithm 1: Preventing One-Step Link Inference Attacks

Input: Graph G(V,E), sensitive edge set S and threshold δ
Output: 1-inference secure graph G
E(G)← E(G)\S ; /* Remove sensitive edges in G */1

S0 ←{euv|∀euv ∈ S&SimCN (u, v) ≥ δ} ; /* Initialize S0 */2

for each euv ∈ S0 do /* Generate Er */3

for each w ∈ Γ (u) ∩ Γ (v) do4

Add euw, ewv to Er;5

repeat6

e← Remove Edge(S0, Er) ; /* Remove edge e in Er */7

update S0;8

e′ ← Find Add Edge(e) ; /* Based on e, find a new edge e′ */9

if new edge e′ for e is found then10

E(G)← E(G) ∪ {e′};11

until S0 is empty ;12

return G;13

4.2.1 Generate Removable Edge Set
When we generate removable edge set in Algorithm 1 (Lines 3-5), we only con-
sider edges that contribute to the SimCN of sensitive edges in S0. As shown in
Algorithm 1, S0 only contain sensitive edges with SimCN ≥ δ.

Definition 7. (removable edge set) Given graph G, sensitive edge set S, and
threshold δ, we use removable edge set Er to denote the set of all edges that
connect between vertices of sensitive pairs with SimCN≥δ and their common
neighbors.

Example 2. Given graph G in Fig.1(a), let S = {ev0v5 , ev0v6} and δ = 2. Since
SimCN(v0, v5) and SimCN(v0, v6) both equal to 3 > δ, we obtain removable
edge set Er = {ev0v1 , ev0v2 , ev0v3 , ev0v4 , ev1v5 , ev2v5 , ev3v5 , ev2v6 , ev3v6 , ev4v6}.
Note that there always exists a feasible solution to obtain a 1-inference secure
graph. In the worst case, all edges in Er can be removed, i.e. remove E0=Er from
E(G). In this way, SimCN of all sensitive pairs equal to 0; thus, any inference
security requirement is satisfied. However, we want to remove minimum edges
in Er to obtain a 1-inference secure graph. In the next subsection, we introduce
our heuristic strategy of removing edges in Er.

4.2.2 Remove Edges in Er

Taking S0 and Er as input, Remove Edge removes an edge in Er and return
it. We provide different strategies of removing edges in Er .

A naive strategy of Remove Edge is that for sensitive edge euv ∈ S0 with
SimCN(u, v) ≥ δ, we randomly remove (SimCN(u, v)−δ+1) edges in Er. The
removed edges must meet the following conditions: (1) These edges connect
between u (or v) and vertices in Γ (u) ∩ Γ (v); (2) None of these edges connect
to the same common neighbor. Removing such edges incurs SimCN(u, v) < δ.

344 X. Liu and X. Yang

After performing such removing operation on each sensitive edge in S0, G is
1-inference secure. Since S0 ⊆ S and δ ≥ 1, the computational complexity of
naive strategy is O(|S|Simmax), where Simmax denotes the maximal SimCN of
the sensitive edges in S.

In order to prevent inferring S0 with minimum edges removed in Er, we design
a heuristic function IC (Inference Contribution) to evaluate the contribution of
each edge in Er for the inference of S0, which is formalized as Equation 2.

IC(euv) = countifm∈Γ (v)(eum ∈ S0) + countifn∈Γ (u)(env ∈ S0) (2)

Clearly, removing the edge with larger IC value results in more decrease on
SimCN of sensitive edges in S0. A heuristic strategy of Remove Edge is to
always remove the edge in Er with the largest IC. Obviously, heuristic strategy
remove at most |S|Simmax edges in Er. Since removing an edge introduces |Er|
operations to search the edge with the largest IC in Er and there are at most
2|S|Simmax edges in Er, the computational complexity of the heuristic strategy
is O(2|S|2Sim2

max).
Considering Example 2, for graph G, we obtain G1 and G2 in Fig.1(b) with

naive and heuristic strategy, respectively. As shown in Fig.2, G1 and G2 are both
1-inference secure. However, G1 incurs more edges removed than G2.

4.2.3 Add Edges for Preserving Graph Properties
Although existing research work [7] studies graph randomizing techniques mean-
while preserving graph spectrum, it is not realizable to adopt the methods in [7]
when the amount of edge modifications is large. We design two efficient strategies
on adding new edges for preserving graph properties.

Definition 8. (Non Inference Contributing Edge) Given graph G, sensitive edge
set S, and threshold δ, for an edge e �∈ E(G), if adding e to E(G) does not
change S0={euv|∀euv ∈ S&SimCN(u, v) ≥ δ}, then edge e is a non inference
contributing edge, denoted as nic-edge for simplicity.

Notice that the procedure Find Add Edge only consider nic-edges as candi-
dates to ensure new edges would not incur changes of S0.

u 1 v1

u 2 v2

u 1 v1

u 2 v2

(a) Deletion/Addition

u 1 v1 u 1 v1

v2v2

(b) Switch

Fig. 4. Add new edges for preserving graph properties

Deletion/Addition. The first edge adding strategy is Deletion/Addition,
which is illustrated in Fig.4(a). When edge eu1v1 is removed from E(G), we add
new edge eu2v2(eu2v2 �∈ E(G)) to E(G), which is with the largest Structural

Protecting Sensitive Relationships against Inference Attacks 345

Similarity (SS) to eu1v1 . Structural Similarity (SS) is formalized as Equation 3.

For a removed edge eu1v1 , there exist at most |V (G)|(|V (G)|−1)
2 −|E(G)| new edge

candidates.

SS(eu1v1 , eu2v2) =
|(Γ (u1) ∪ Γ (v1)) ∩ (Γ (u2) ∪ Γ (v2))|
|(Γ (u1) ∪ Γ (v1)) ∪ (Γ (u2) ∪ Γ (v2))| (3)

Switch. Fig.4(b) describes another efficient new edge adding strategy, named
as Switch. Different from Deletion/Addition, in Switch, when edge eu1v1 is
removed, we add new edge that connects between one vertex in {u1, v1} and
other vertices in V (G). For instance, as shown in Fig.4(b), edge eu1v1 is removed
and new edge eu1v2 is added to E(G). When adopting Switch, Structural Sim-

ilarity SS(eu1v1 , eu1v2) is simplified into SS(eu1v1 , eu1v2)=
|Γ (u1)∪(Γ (v1)∩Γ (v2))|
|Γ (u1)∪(Γ (v1)∪Γ (v2))| .

Obviously, for a removed edge eu1v1 , there exist at most (2(|V (G)|−2)) new
edge candidates in Switch, which is less than Deletion/Addition.

Although Switch achieves a better efficiency than Deletion/Addition through
considering less new edge candidates, it performs well in preserving graph prop-
erties, which will be shown in the experimental section.

4.3 Avoiding Cascaded Link Inference Attacks

Based on the general framework, we now propose the algorithm of avoiding
cascaded link inference attacks (i.e., transform a graph to be i-inference secure),
which is shown in Algorithm 2.

Algorithm 2: Avoiding Cascaded Link Inference Attacks

Input: Graph G(V,E), threshold δ, sensitive edge set S and an integer i
Output: i-inference secure graph G
E(G)← E(G)\S ; /* Make G 0-inference secure */1

for k = 1 to i do /* Obtain k-inference secure graph iteratively */2

S0 ← E(Gk) ∩ S ; /* Obtain sensitive edges in Gk */3

for j=k−1 to 0 do /* Lineage tracing and removing */4

Er ← φ,Es ← φ;5

generate Er for S0 using edges in E(Gj)\E(Gj−1);6

remove Es⊆Er to prevent inferring S0;7

S0 ← Es;8

return G;9

Algorithm 2 firstly makeG 0-inference secure (Line 1), then obtains k-inference
(1≤k≤i) secure graph iteratively (Lines 2-8). When transform a graph from
(k−1)-inference secure into k-inference secure (Lines 3-8), we firstly obtain sen-
sitive edges inferred in Gk (Line 3), i.e. E(Gk) ∩ S. Then, we perform lineage
tracing and removing operations iteratively to cut off the inference paths of
E(Gk)∩S (Lines 4-8). For each iteration with j, S0 contains the removed edges

346 X. Liu and X. Yang

in E(Gj+1)\E(Gj), and we remove edges in E(Gj)\E(Gj−1) to prevent infer-
ring S0. We adopt the general idea of Algorithm 1 to prevent inferring S0, and
make some modifications and extensions to original method. Firstly, when we
generate Er that contribute to the inference of S0, we only consider edges in
E(Gj)\E(Gj−1) (Lines 6). Secondly, SimCN of edges in S0 are calculated on
E(Gj), and edges in E(Gk)\E(Gj) are neglected (Line 7).

Now, we analyze the computational complexity of Algorithm 2. When trac-
ing lineage in E(Gj)\E(Gj−1), Er and Es contain at most 2|S|Simk−j

max and
|S|Simk−j

max edges respectively, where Simmax denotes the maximal SimCN of
the edges in E(Gk). Algorithm 2 with naive edge removing strategy removes
Σi

k=1Σ
0
j=k−1|S|Simk−j

max ≤ |S|Simi
max edges for obtaining i-inference security.

Hence, the computational complexity of Algorithm 2 with naive edge removing
strategy is O(|S|Simi

max), where Simmax is the maximal SimCN of the edges
in E(Gi). Similarly, the computational complexity is O(2|S|2Sim2i

max) for Algo-
rithm 2 with heuristic edge removing strategy.

5 Experimental Evaluation

In this section, we provide extensive experiments to evaluate our methods. We
use two real network datasets, Email-1 and LiveJ-1, which are also used in [10].
There are 5000 vertices and 11047 edges in Email-1 with average degree 4.42,
5000 vertices and 17847 edges in LiveJ-1 with average degree 7.14, respectively.
Table 2 lists the statistics of vertex pairs with SimCN=1,. . .,10 in each dataset.

Table 2. Statistics of SimCN in networks

Dataset
Common Neighbor Similarity (SimCN)

1 2 3 4 5 6 7 8 9 10

Email-1 164144 31146 13068 7307 4558 3075 2153 1723 1285 1014
LiveJ-1 284567 21158 7510 4363 2771 2028 1575 1220 967 792

We implement four versions of Algorithm 1 for preventing one-step link infer-
ence attacks, which are Naive(N, NA), LIP(H, NA), D/A-LIP(H, D/A) and S-LIP(H,
S), where N and H refer to remove edges with naive and heuristic strategy re-
spectively, NA refers to no edge addition, and D/A and S refer to edge addition
with Deletion/Addition and Switch strategy respectively. We also implement
Algorithm 2 for avoiding cascaded link inference attacks, named as CLIP , which
adopts heuristic edge removing strategy. All the programs are implemented in
Java. The experiments are performed on a 2.33GHz Intel Core 2 Duo CPU with
4GB DRAM running the Windows XP operating system.

5.1 Performance of Link Inference Preventing v.s. SimCN , δ

We design two set of experiments to evaluate the impacts of SimCN and δ on
the performance of one-step link inference preventing algorithms. Firstly, for

Protecting Sensitive Relationships against Inference Attacks 347

evaluating the impact of SimCN , we set δ=2 and generate S through randomly
sampling 200 unconnected vertex pairs with SimCN=2,. . .,10 in Email-1 and
LiveJ-1, respectively. Secondly, for evaluating the impact of δ, we generate
S with unconnected vertex pairs with SimCN≥15 and obtain 1193 and 521
sensitive pairs in Email-1 and LiveJ-1 respectively, and set δ=2,. . .,10.

5.1.1 Runtime and Information Loss
We use I.L. = number of removed edges

|E(G)| to evaluate information loss of inference

preventing algorithms. Fig.5 and Fig.6 show the results of runtime and infor-
mation loss. Due to the same edge removing strategy for LIP, D/A-LIP and
S-LIP, we only plot LIP in Fig.6 as representative. Generally, as δ is constant
and SimCN increases, both runtime and information loss get higher as shown
in Figs.5(a), 5(b) and Figs.6(a), 6(b), respectively. The reason is intuitively that
preventing the inferences of sensitive edges with larger SimCN incurs more edges
to remove. An exception arises in Fig.6(b) when SimCN=8, where the algorithms
incurs less information loss than SimCN=7, which seems unexpected. However,
on closer inspection, we find that the average IC of edges in Er is 2.911 when
SimCN=8, which is much higher than 2.294(SimCN=7) and 2.443(SimCN=9).
Such observation shows that the IC value is an important factor affecting the
performance of the link inference preventing algorithms. When S is constant and
δ gets increased, the algorithms require lower runtime and incur less informa-
tion loss, which are depicted in Figs.5(c),5(d) and Figs.6(c), 6(d), respectively,
since higher δ refers to less inference secure requirement. In Fig.5, the runtime
of the algorithms can be summarized as Naive�LIP<S-LIP�D/A-LIP. With
our heuristic edge removing strategy, the information loss of LIP is much lower
than Naive, as shown in Fig.6.

5.1.2 Data Utilities
We examine two graph structural properties, Transitivity and Average Path
Length (see [13] for details), on 1000 vertices randomly sampled in vertices of
S and their neighbors. We use Change ratio = |Po − Ps|/|Po| to evaluate the
property change ratio, where Po and Ps refer to the property values of the
original graph G and the inference secure version of G. Fig.7 and Fig.8 show the
change ratios of Transitivity and Average Path Length, respectively. Generally,
S-LIP and D/A-LIP are most effective in terms of preserving graph properties,
and their change ratios are around 2% for Email-1 and 7% for LiveJ-1. The
curves of Naive and LIP in Fig.7 and Fig.8 behave similarly to the ones in Fig.6.
Although considering less adding edge candidates, in practice, S-LIP performs
as well as D/A-LIP but with higher efficiency. We notice that S-LIP and D/A-
LIP do not preserve graph properties of LiveJ-1 as well as Email-1. Such
observation could be explained by the statistic data in Table 2, where except for
SimCN = 1, the numbers of vertex pairs in Email-1 with SimCN=2,. . .,10 are
much higher than in LiveJ-1. Hence, the newly added edges in Email-1 are
with higher SS values and preserve graph properties better.

348 X. Liu and X. Yang

10-3

10-1

101

103

 2 4 6 8 10

Ti
m

e(
S

ec
).

SimCN

D/A-LIP
S-LIP

10-3

10-1

101

103

 2 4 6 8 10
SimCN

LIP
Naive

(a) Email-1

10-2

100

102

104

 2 4 6 8 10

Ti
m

e(
S

ec
).

SimCN

D/A-LIP
S-LIP

10-2

100

102

104

 2 4 6 8 10
SimCN

LIP
Naive

(b) LiveJ-1

10-2

100

102

104

 2 4 6 8 10

Ti
m

e(
S

ec
).

δ

D/A-LIP
S-LIP

LIP
Naive

(c) Email-1

10-2

100

102

104

 2 4 6 8 10

Ti
m

e(
S

ec
).

δ

D/A-LIP
S-LIP

LIP
Naive

(d) LiveJ-1

Fig. 5. Runtime of preventing one-step link inference

0
2
4
6
8

 2 4 6 8 10

In
f.

lo
ss

 (%
)

SimCN

Naive
LIP

(a) Email-1

 0
 2
 4
 6
 8

 2 4 6 8 10

In
f.

lo
ss

 (%
)

SimCN

Naive
LIP

(b) LiveJ-1

 0
 5

10
15
20
25
30

 2 4 6 8 10

In
f.

lo
ss

 (%
)

δ

Naive
LIP

(c) Email-1

 0
 2
 4
 6
 8

10
12

 2 4 6 8 10

In
f.

lo
ss

 (%
)

δ

Naive
LIP

(d) LiveJ-1

Fig. 6. Information loss of preventing one-step link inference

 0
 4
 8

 12
 16

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

SimCN

Naive
LIP
S-LIP
D/A-LIP

(a) Email-1

 0
 4
 8

 12
 16
 20
 24

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

SimCN

Naive
LIP
S-LIP
D/A-LIP

(b) LiveJ-1

 0
 8

 16
 24
 32
 40

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

δ

Naive
LIP

 0
 8

 16
 24
 32
 40

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

δ

S-LIP
D/A-LIP

(c) Email-1

 0
 8

 16
 24
 32
 40

 2 4 6 8 10
C

ha
ng

e
ra

tio
(%

)

δ

Naive
LIP

 0
 8

 16
 24
 32
 40

 2 4 6 8 10
C

ha
ng

e
ra

tio
(%

)

δ

S-LIP
D/A-LIP

(d) LiveJ-1

Fig. 7. Change ratio of Transitivity

 0
 2
 4
 6
 8

 10
 12

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

SimCN

Naive
LIP
S-LIP
D/A-LIP

(a) Email-1

 0
 4
 8

 12
 16
 20
 24

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

SimCN

Naive
LIP
S-LIP
D/A-LIP

(b) LiveJ-1

 0

 8

 16

 24

 32

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

δ

Naive
LIP

S-LIP
D/A-LIP

(c) Email-1

 0
 8

 16
 24
 32
 40
 48

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

δ

Naive
LIP

 0
 8

 16
 24
 32
 40
 48

 2 4 6 8 10

C
ha

ng
e

ra
tio

(%
)

δ

S-LIP
D/A-LIP

(d) LiveJ-1

Fig. 8. Change ratio of Average Path Length

 0
200
400
600
800

1000

 1 3 5 7 9

of

 d
is

cl
os

ur
es

i-inference

sim-6
sim-4
sim-2

(a) Email-1

 0

200

400

600

800

 1 3 5 7 9

of

 d
is

cl
os

ur
es

i-inference

sim-6
sim-4
sim-2

(b) LiveJ-1

0
10
20
30
40
50
60

 1 2 3 4 5 6 7 8

In
f.

lo
ss

 (%
)

i

Total
Step

(c) Email-1

0
5

10
15
20
25

 1 2 3 4 5 6 7 8

In
f.

lo
ss

 (%
)

i

Total
Step

(d) LiveJ-1

Fig. 9. Re-identification power and information loss in CLIP

Protecting Sensitive Relationships against Inference Attacks 349

5.2 Re-identification Power and Information Loss in CLIP

Firstly, we evaluate the re-identification power of cascaded link inference. We set
δ=8, and generate S through randomly sampling 1000 unconnected vertex pairs
with SimCN=2,4,6 in each dataset. We count the number of disclosures in the i-
inference (i=1,. . .,9) graph and show the results in Fig.9(a) and Fig.9(b). Overall,
the number of disclosures gets higher as i increases and tends to stabilize after
i=4. Such observation can be explained by the community theories of real social
networks. The social networks consist of a large amount of communities, and
the probability of there existing a link between two vertices within a community
is much higher than two vertices belong to different communities. Hence, after
performing one-step link inference several times, cascaded link inference has
disclosed the sensitive edges connecting vertices within a community rather than
other ones bridging different communities, such that i-inference (i>4) do not lead
to an observable increase in disclosures in any dataset. Specially, for sensitive
pairs with SimCN=6, 4-inference causes 100% and 80% of these edges disclosed
in Email-1 and LiveJ-1, respectively. Hence, cascaded link inference is indeed
a privacy threat for sensitive relationships in real networks.

Secondly, we examine the information loss of CLIP. We set δ=3, and generate
S through randomly sampling 200 unconnected vertex pairs with SimCN=4 in
each dataset. Total and Step in Figs. 9(c), 9(d) refer to the information loss
for obtaining i-inference secure graph and transforming a (i−1)-inference secure
graph into i-inference secure, respectively. As depicted in Fig.9(c) and Fig.9(d),
Total gets higher as i increases from 1 to 8 meanwhile Step behaves unsteadily.
An interesting observation of Step, namely Sharp Drop, arises in Email-1 when
i=5 and in LiveJ-1 when i=7, where Step decreases sharply. Such observation
could be interpreted as follows. Before Sharp Drop arises, edges in G are gradu-
ally removed by CLIP. When most of the inference paths of S have been cut off,
CLIP would remove much less edges in G than before to obtain an i-inference
secure graph, which is a Sharp Drop. However, inference paths could be recon-
structed by cascaded link inference and Step may increase after Sharp Drop, as
shown in Fig.9(d) when i=8. Overall, studying the inference paths of sensitive
links is the key to avoid cascaded link inference attacks.

6 Conclusion

In this paper, we discuss an important privacy problem in social networks,
namely link inference attacks. We formalize inference security and develop a
general framework for obtaining inference secure graphs. We propose efficient
algorithms for preventing one-step link inference attacks and cascaded link in-
ference attacks. An extensive empirical study on real datasets indicates that link
inference attacks are real in practice, and our methods perform well in terms of
privacy protection and efficiency meanwhile maintaining graph properties.

350 X. Liu and X. Yang

References

1. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD, pp.
93–106 (2008)

2. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-
tacks. In: ICDE, pp. 506–515 (2008)

3. Hay, M., Miklau, G., Jensen, D., Towsley, D.: Resisting structural re-identification
in anonymized social networks. In: VLDB, pp. 102–114 (2008)

4. Campan, A., Truta, T.M.: A clustering approach for data and structural anonymity
in social networks. In: PinKDD (2008)

5. Zou, L., Chen, L., Ozsu, M.T.: K-automorphism: A general framework for privacy
preserving network publication. VLDB Endowment 2(1), 946–957 (2009)

6. Zheleva, E., Getoor, L.: Preserving the Privacy of Sensitive Relationships in Graph
Data. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890,
pp. 153–171. Springer, Heidelberg (2008)

7. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach.
In: SDM, pp. 739–750 (2008)

8. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data
using safe groupings. VLDB Endowment 1(1), 833–844 (2008)

9. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph
anonymization for social network data. VLDB Endowment 2(1), 766–777 (2009)

10. Cheng, J., Fu, A.W.-C., Liu, J.: K-Isomorphism: Privacy preserving network pub-
lication against structural attacks. In: SIGMOD, pp. 459–470 (2010)

11. Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks.
VLDB Endowment 4(2), 141–150 (2010)

12. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158
(1971)

13. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of
complex networks: A Survey of measurements. Advances in Physics 56(1), 167–242
(2007)

	Protecting Sensitive Relationships against Inference Attacks in Social Networks
	Introduction
	Motivation
	Challenges and Contributions

	Related Work
	Preliminaries and Problem Definition
	Preventing Link Inference Attacks
	A General Framework
	Preventing One-Step Link Inference Attacks
	Avoiding Cascaded Link Inference Attacks

	Experimental Evaluation
	Performance of Link Inference Preventing v.s. SimCN,
	Re-identification Power and Information Loss in CLIP

	Conclusion

