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Preface

It is our great pleasure to welcome you to the proceedings of the 17th International
Conference on Database Systems for Advanced Applications (DASFAA 2012),
which was held in Busan, Korea, in April, 2012. DASFAA is an international con-
ference which provides a forum for technical presentations and discussions among
database researchers, developers and users from academia, business and industry,
in the areas of databases, large-scale data management, data mining, search and
recommendation, and the Web.

The call for papers attracted 159 research submissions from 24 countries
(based on the affiliation of the first author). Among them, the Program Com-
mittee selected, through a comprehensive review process, 44 regular papers and
8 short papers for presentation. The Industrial Committee, chaired by Won Suk
Lee, Mukesh Mohania and Jeffrey Yu, selected 8 industrial papers for presenta-
tion. The conference program also included 8 demo presentations selected from
17 submissions by the Demo Committee chaired by Wolf-Tilo Balke and Seung-
Won Hwang.

This volume also includes extended abstracts of the two invited keynote lec-
tures by Divesh Srivastava (AT&T Research) and Sang Kyun Cha (Seoul Na-
tional University and SAP Labs Korea), whose topics were on “Enabling Real-
Time Data Analysis” and “A New Paradigm of Thinking and Architecture for
Real-Time Information Processing at Fingertips,” respectively. The Tutorial Chair,
Wook-Shin Han, organized four tutorials by leading experts on topics ranging from
probabilistic databases to detecting clones and reuse on the Web. A stimulating
panel was organized by the Panel Chair, Kyuseok Shim. This rich and attrac-
tive conference program boasts conference proceedings that span two volumes of
Springer’s Lecture Notes in Computer Science series.

Beyond the main conference Hwanjo Yu, Yu Ge and Wynne Hsu, who chaired
the Workshop Committee, put together five workshops that catered to specific
interests of the conference participants. The workshop papers are included in a
separate volume of proceedings also published by Springer in its Lecture Notes
in Computer Science series.

DASFAA 2012 was jointly organized by Pusan National University and the
Database Society of Korea. It received in-cooperation sponsorship from the Ko-
rea Institute of Information Scientists and Engineers, the Database Society of
Japan, the China Computer Federation Database Technical Committee, and the
Korea Database Agency. We are grateful to the industry and institutional spon-
sors who contributed generously to making DASFAA 2012 successful.

The conference would not have been possible without the support and hard
work of many colleagues. We would like to express our special thanks to Hon-
orary Conference Chair, Kyu-Young Whang, for his valuable advice on all as-
pects of organizing the conference. We thank the DASFAA Steering Committee



VI Preface

for their leaderships and encouragement. We thank the General Co-chairs, Yoon
Joon Lee and Kazutoshi Sumiya, Organizing Committee Chair, Bonghee Hong,
Publicity Co-chairs, Eenjun Hwang, Jae-Gil Lee and YunChan Chang, Local
Arrangements Committee Co-chairs, Joonho Kwon and Ok-Ran Jeong, Finance
Chair, Min-Su Lee, Web Co-chairs, Ha-Joo Song and Young-Koo Lee, Demo
Award Committee Co-chairs, Young-Kuk Kim, Takahiro Hara and Kyoung-Gu
Woo, Best Paper Committee Co-chairs, SangKeun Lee, Hiroyuki Kitagawa and
Xiaofeng Meng, Sponsor Co-chairs, Yunmook Nah and Kyu-Chul Lee, Regis-
tration Chair, Sanghyun Park, Steering Committee Liaison, Byeong-Soo Jeong,
APWEB Liaison, Wookey Lee, and EDB Liason, Jinho Kim.

Finally, our thanks go to all the committee members and other individuals
involved in putting this all together, and to all authors who submitted their
papers to this conference.

April 2012 Sang-goo Lee
Zhiyong Peng

Xiaofang Zhou
Yang-Sae Moon
Rainer Unland

Jaesoo Yoo
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Enabling Real Time Data Analysis

Divesh Srivastava
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Abstract. Network-based services have become a ubiquitous part of
our lives, to the point where individuals and businesses have often come
to critically rely on them. Building and maintaining such reliable, high
performance network and service infrastructures requires the ability to
rapidly investigate and resolve complex service and performance impact-
ing issues. To achieve this, it is important to collect, correlate and analyze
massive amounts of data from a diverse collection of data sources in real
time.

We have designed and implemented a variety of data systems at
AT&T Labs-Research to build highly scalable databases that support
real time data collection, correlation and analysis, including (a) the Day-
tona data management system, (b) the DataDepot data warehousing
system, (c) the GS tool data stream management system, and (d) the
Bistro data feed manager. Together, these data systems have enabled the
creation and maintenance of a data warehouse and data analysis infras-
tructure for troubleshooting complex issues in the network. We describe
these data systems and their key research contributions in this talk.
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Today's enterprise-scale information systems comprise of complex vertical tiers of 
database, application, web, and mobile servers. Horizontal tiers of OLTP and OLAP 
systems add further complexity to enterprise information management. Historically, 
such introduction of vertical and horizontal tiers was inevitable to address the 
complexity and performance problems in the course of building up enterprise 
applications by divide and conquer. However, these tiers have accumulated so much 
redundancy and overhead over time, making the overall system difficult and 
expensive to maintain. 

Over past decades, we have persistently observed exponential growth of hardware 
power following the well-known Moore’s law.  A commodity server can now have 
hundreds of cores and terabytes of memory, which were not conceivable other than in 
supercomputers several years ago, at a fraction of cost.  This trend is likely to 
continue at least several years, and at least ten times of further increase of hardware 
processing power is expected in the near future. 

The dramatic hardware advance has brought us to an inflection point that we can 
eliminate these complex tiers to streamline information delivery to the new generation 
of end users demanding real-time decision making at fingertips any time anywhere. 
SAP HANA platform was designed with this rethinking of tiers in enterprise-scale 
information systems, leveraging the hardware advance and SAP's knowledge of 
enterprise applications. It enables running OLTP, OLAP, and text processing in a 
single run-time environment in a scalable way. The foundation of SAP HANA 
platform is a massively parallel distributed integrated in-memory row and column 
database system. This talk presents a new paradigm of thinking and architecture 
underlying SAP HANA platform. 
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Abstract. Histograms have been widely used for estimating selectivity
in query optimization. In this paper, we propose a new technique to im-
prove the accuracy of histograms for two-dimensional geographic data
objects that are used in many real-world applications. Typically, a his-
togram consists of a collection of rectangular regions, called buckets. The
main idea of our technique is to use a straight line to convert each rect-
angular bucket to a new one with two separating regions. The converted
buckets, called bichromatic buckets, can approximate the distribution of
data objects better while preserving the simplicity of originally rectangu-
lar ones. To construct bichromatic buckets, we propose an algorithm to
find good separating lines. We also describe how to apply the proposed
technique to existing histogram construction methods to improve the
accuracy of the constructed histograms. Results from extensive experi-
ments using real-life data sets demonstrate that our technique improves
the accuracy of the histograms by 2 times on average.

Keywords: databases, query optimization, histogram, selectivity
estimation.

1 Introduction

In databases, estimating the selectivities of queries is an essential part of query
optimization. Accurate selectivity estimates can help the query execution en-
gine to choose the most efficient query plan. Therefore, over the last decades,
the problem of selectivity estimation has been intensively investigated. Sev-
eral selectivity estimation approaches have been proposed, such as histograms
[16,18,4,5,7,21,9,10,20,8,19], wavelet transformation [15,22], singular value de-
composition [18], discrete cosine transform [13], kernel estimators [6,10], and
sampling [14,11]. Among these approaches, histograms have been shown to be
one of the most popular and effective ways to obtain accurate estimates of se-
lectivity [10,8].

Let D be a data set of our interest and S be the data space of D. A histogram
H for D consists of a set of m buckets Bi (1 ≤ i ≤ m) where m is usually a
system parameter. Each bucket Bi has a data space Si that is a subspace of S
and a frequency Fi that is the number of data objects in Si. The data space Si is

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 3–17, 2012.
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an interval, a rectangle, or a hyper-rectangle if the data objects have one, two, or
higher than two dimensions, respectively. With thesem buckets,H approximates
the distribution of the data in D. Now, suppose that a query Q on D is given by
the user to retrieve data objects within a range SQ. An estimate of the selectivity
of Q (i.e., the number of data objects in SQ) by using the histogram H , denoted
by FQ(H), is typically computed as: FQ(H) =

∑m
i=1 ((|Si ∩ SQ|/|Si|) · Fi), under

the intra-bucket uniform distribution assumption. Here, | | denotes the size of
data space and (Si ∩ SQ) denotes the intersecting area of Si and SQ. Note,
however, that the details of FQ(H) may differ, depending on the histogram
methods. Though uniform distribution of data inside buckets is important for
accurate selectivity estimation, it is well-known that such organization of buckets
is computationally intractable [17].

In this work, we study the problem of constructing highly accurate histograms
for selectivity estimation. We focus on the histograms for two-dimensional geo-
graphic data objects where updates do not frequently occur. Objects in this form
are generally used inGeographic Information Systems (GISs). The histogrammust
be constructed so that its estimated selectivity for the query must be close to the
true selectivity of the query as much as possible. However, creating an accurate
histogram for multi-dimensional data, including geographic data, is not an easy
task. When the region of a query fully covers the region of a bucket B, we can use
B’s object frequency directly. In contrast, when the region of a query partially
overlaps with or is fully contained in the region of B, the problem may arise. In
these latter cases, the estimated selectivity value for the overlapping region be-
tween the query and B is computed in proportion to the size of this overlapping
region. Here, if data objects are distributed uniformly within B, our estimation is
close to the real object frequency. Otherwise, we are very likely to obtain wrong
results. For instance, let us consider a bucket B and a query Q shown in Fig. 1.
The size of the overlapping area betweenQ andB (i.e., the gray area in the figure)
is 1/4 of the size of B. If uniform distribution of objects is assumed, the estimated
selectivity of this overlapping region is 1/4 of the object frequency of B, i.e., 10.
Nevertheless, since objects in B are not uniformly distributed and most of them
lie at the lower-left part of the bucket whose region does not overlap with Q, the
estimate 10 is far from the correct number 1.

In real-life data sets, as the uniformity is rare and non-uniformity is naturally
popular, many histogram construction methods have addressed the skewness
(i.e., non-uniform distribution) problem of the data, e.g., MinSkew [5], GenHist
[10], RkHist [8], STHist [19]. These methods differ from each other in the ways
they allocate rectangular buckets onto the data space, so that the data distri-
bution in each bucket is close to uniformity as much as possible. Nevertheless,
we have observed that there are many regions, such as the region illustrated in
Fig. 1, where it is very difficult to improve the uniformity of data distribution
in the bucket further. The reason is that the bucket is a rectangle while the
data distribution may have many different shapes. One straightforward solution
is to allocate many more buckets to such complex regions. Nevertheless, allocat-
ing more buckets to one region means that fewer buckets can be used for other
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Fig. 1. Inaccuracy of the histogram when data in the bucket is not uniformly
distributed

regions because the bucket quota is limited. Another solution is to use gener-
ally polygonal shapes for the buckets instead of rectangles. Polygons can fit the
distribution of the data objects better. However, since a much higher amount of
memory must be used to describe the polygons than the rectangles in general,
much fewer buckets can be used. Moreover, this solution incurs higher complex-
ity than the traditional rectangle-based solution in partitioning the data space
and deciding the specific shapes of the polygons.

In this paper, we propose a new technique to improve the accuracy of the
histograms. Our main idea is to use a straight line to convert each rectangular
bucket to a new one with two separating regions. The converted buckets, called
bichromatic buckets, can approximate the objects’ distribution better while pre-
serving the simplicity of the originally rectangular ones. For converting original
buckets to bichromatic buckets, we propose an algorithm to find good sepa-
rating lines. Then, we present how to apply the proposed technique to exist-
ing histogram construction methods. We conducted extensive experiments using
real-life data sets. The results demonstrate that our technique can elevate the
accuracy of the histograms by more than 4 times in several cases and by 2 times
on average.

The remainder of this paper is organized as follows. In Section 2, we sketch
the main idea of the proposed technique. In Section 3, we present the proposed
technique in detail in the form of an algorithm. We describe how selectivity
estimation is done with the new technique in Section 4 and show how to apply
this technique to existing histogram methods in Section 5. Experimental results
are presented in Section 6, followed by a review of related work in Section 7.
Finally, we conclude the paper in Section 8.

2 Sketch of the Proposed Technique

Let us consider Fig. 1 again. As we have mentioned in the previous section, using
polygons instead of rectangles can approximate the data distribution better,
but incurs much higher memory requirement. In contrast, the rectangles require
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only small amounts of memory (i.e., for each rectangle, we only need to store
the coordinates of two diagonal corner points), while fail to approximate non-
rectangular shapes of data distribution. Therefore, we take a hybrid approach
as follows. For each rectangular bucket B, we add a straight line to separate B
into two disjoint parts so that the object distribution in each part is as uniform
as possible. We call this line the separating line of B and we call these two parts
Pα and Pβ . A rectangular bucket equipped with a separating line is called a
bichromatic bucket. In terms of object frequency, we store the total number of
objects in the whole data space of B and the ratio of these objects that lie inside
one of the two parts. For simplicity, let Pα be the part that we store the object
ratio. In a Cartesian plane, a straight line can be described by the linear equation
y = ax+ b where a is the slope parameter, b is the intercept parameter, and x, y
are the variables. Thus, without loss of generality, we define Pα as the part of
B that contains all objects oi(s) with coordinates (xi, yi)(s) where yi ≥ axi + b,
while Pβ is the part of B that contains all remaining objects.

Fig. 2. A bichromatic bucket where data distribution is better approximated only by
adding a simple straight line

Let us see Fig. 2 for an example, where data distribution is the same as the
one in Fig. 1. It is clear that, the data distribution in any of the Pα and Pβ parts
of bucket B is more uniform than the data distribution in the whole bucket B
without the separating line. Suppose that a query Q is given as in the figure.
The estimate of Q’s selectivity is computed as the sum of two estimates, i.e.,
the estimate for the overlapping region between Q and Pα and the estimate
for the overlapping region between Q and Pβ . This new selectivity estimate is
potentially much more accurate than the old estimate which depends on the
original version of B. Here, the use of a separating line tends to be very useful
as we have observed that, in real-life geographic data, the distribution of objects
in a small region may often be divided into two parts by a straight line naturally
due to the existence of natural separating factors, such as rivers, mountains,
parks, and boundaries between geographic regions.
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3 A Bichromatic Bucket Construction Algorithm

Fig. 3. An algorithm to construct a bichromatic bucket

Algorithm ConstructBichromaticBucket in Fig. 3 presents the process of con-
structing a bichromatic bucket. The input is a normal rectangular bucket B.
The output is the bichromatic version of B. In constructing the bichromatic ver-
sion of B, the most important work is to find a separating line to divide B into
two disjoint parts so that the distribution of data objects in each part is as close
to uniformity as possible. To do so, in the border lines of B, we define a set of n
points, called index points, where n is a user-specified parameter and the same
value of n is used for constructing all bichromatic buckets in the histogram. The
index points are the points that lie on the border lines of B and divide these
border lines into equal-length segments. The number of index points on the bor-
der line of each side (among 4 sides namely East, West, South, and North),
including both two points at the two ends, is n/4 + 1. Instead of scanning all
possible positions to find the best separating line, we propose to consider only
the positions determined by the combinations of index points. Fig. 4a illustrates
the index points and a potential separating line, created by connecting an index
point to another.
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Algorithm ConstructBichromaticBucket proceeds as follows.

– We first compute the positions of n index points and store these points in a
list P = 〈p0, p1, . . . , pn−1〉 (Line 1).

– For each point pi where i is from 0 to (n − 2), we examine all points pj
where j is from (i + 2) to (n− 1) (Line 2 to 13). For each pair i and j, the
combination of two points pi and pj defines a potential separating line. Let
Lij denote this line. We compute Lij (Line 5). Fig. 4b shows all potential
separating lines defined by p0 and other index points. Fig. 4c shows all
potential separating lines defined by p1 and other index points. The dotted
lines with increasing color intensity are those potential separating lines. In
general, we will consider all these separating lines, starting from the ones
defined by p0 and other index points, then the ones defined by p1 and other
index points, and so on. Among the potential lines started from a point pi
(e.g., p0 in Fig. 4b and p1 in Fig. 4c), we illustrate the order of examination
by the lines’ increasing color intensity.

– Consider a specific line Lij . This line divides the data space of B into two
disjoint regions, which we called Pα and Pβ . We compute the skewness of the
distribution of data objects inside each of these two regions. The skewness
of a data region is defined as follows. Note that, this definition is the same
as the one in [19].

Definition 1 (Skewness of a data region). Consider a data region D.
Skew(D), which denotes the skewness of the data distribution in D, is
computed as

Skew(D) =
∑
r

(xr − x̄)2 (1)

where xr is the real object frequency at location r and x̄ is the estimate of the
object frequency based on the uniform distribution assumption within D. In
other words, Skew(D) is computed as the sum of squares of absolute errors
for all the locations within D.

For a bucket B, we will use Skew(B) to denote “skewness of the data region
of bucketB” if there is no ambiguity. Let Skewij(Pα) and Skewij(Pβ) denote
the skewness of the two regions Pα and Pβ of bucket B, created by the
line Lij , respectively. We compute Skewij(Pα) and Skewij(Pβ). Then, we
compute the potential skewness gain of using Lij (Line 6) as

SkewGain(Lij) = Skew(B)− (Skewij(Pα) + Skewij(Pβ)) (2)

– While we examine potential separating lines Lij (i = 0..(n − 2) and j =
(i + 2)..(n − 1)), the index i and j of the line Lij that has the highest
potential skewness gain is kept track (Line 7 to 11). When the double for -
loop finishes, the best separating line will be found together with its two
index values, bestI and bestJ . In bucket B, we now store these two values
(Line 14 and 15). Note that, Lij can be reconstructed easily if the index
values i and j are known. Finally, we compute the ratio between the object
frequency of the part Pα and the object frequency of B, and store this ratio
in B (Line 16).
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(a) Index points and a separating line

(b) Potential separating lines from p0 (c) Potential separating lines from p1

Fig. 4. Separating line detection

Running Time Complexity. Let N be the total number of objects in a bucket
B and n be the number of index points. Note that, n is a user-specified param-
eter and it is sufficient to set n at small values (e.g., in the experiments we
set n = 32). First, computing the locations of n index points takes O(n) time.
Next, we try at most n2/2 potential separating lines. In each trial, computing
the separating line needs only a small constant time, but O(N) time is needed
to compute the potential skewness gain. Finally, after the best separating line is
found, O(N) time is used to compute the object ratio in one of the two separating
parts. Therefore, the overall time complexity of Algorithm ConstructBichromat-
icBucket is O(n+N(n2/2 + 1)).

4 Estimating the Selectivity Using a Bichromatic Bucket

Consider an existing histogram construction method M . There is always a pro-
cedure that goes together with M to estimate the selectivity for a given query Q.
For example, in many methods, the selectivity estimate of Q is computed as the
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sum of selectivity estimates of Q from all buckets in the histogram. Now, sup-
pose that we apply the proposed technique toM , i.e., to use bichromatic buckets.
Then, the general process to estimate the selectivity of Q, using the histogram
constructed by M , is not changed. The only difference is in the specific way we
use a bichromatic bucket to estimate the selectivity of Q.

Given a bucketB and a queryQ. Let Est(Q,B) denote the selectivity estimate
of Q using bucket B. If B was a normal rectangular bucket, Est(Q,B) would be
computed as

Est(Q,B) =
SB ∩ SQ

SB
· FB (3)

where SQ, SB, and FB are the data space of Q, the data space of B, and the
object frequency of B, respectively.

However, B is a bichromatic bucket with two disjoint parts Pα and Pβ . We
compute the selectivity of Q by considering Pα and Pβ as two different buckets.
For each of these two virtual buckets, the selectivity of Q is computed in the
same way as in Equation (3). More specifically, let Fα and Fβ denote the object
frequencies of Pα and Pβ , respectively. Let Sα and Sβ denote the data spaces of
Pα and Pβ , respectively. Since the object frequency of B and the ratio of objects
that lie in Pα are known, we can compute Fα and Fβ . We can also compute Sα

and Sβ from the position of B and the values of the index points pi and pj that
define the separating line. Then, the selectivity of Q is computed as

Est(Q,Bbichromatic) = Est(Q,Pα) + Est(Q,Pβ) (4)

where

Est(Q,Pα) =
Sα ∩ SQ

Sα
· Fα (5)

and

Est(Q,Pβ) =
Sβ ∩ SQ

Sβ
· Fβ (6)

5 Application to Existing Histogram Methods

We show how the proposed technique can be applied to the two existing repre-
sentative histogram construction methods.

5.1 The MinSkew Method

MinSkew is a well-known histogram construction method for spatial data [5]. Ini-
tially, MinSkew approximates the original data set using a uniform grid. Then,
it starts with a single bucket consisting of all data objects. For each bucket, it
computes the spatial skew of the bucket and the split point along its dimen-
sions that will produce the maximum reduction in spatial skew. Next, MinSkew
picks the bucket whose split will lead to the greatest reduction in spatial skew,
splits this bucket into two child buckets, and assigns data from the old bucket
into the new buckets. After MinSkew finishes, the constructed histogram is a set
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of non-overlapping buckets. Here, we can simply use the Algorithm Construct-
BichromaticBucket to get a new version of every constructed bucket. The set of
bichromatic buckets is then reported as the final histogram. This strategy, i.e.,
converting every bucket to bichromatic after the histogram construction method
finishes, can be applied to any method where the constructed buckets do not
overlap with each other.

5.2 The STHist Method

STHist is a histogram construction method for two or three dimensional geo-
graphic data [19]. Given a data set together with the data space, STHist first
partitions the entire data space into a number of data segments. Then, for each
segment, STHist recursively detects hotspots, which are turned into histogram
buckets. Here, a hotspot is a data region that satisfies certain conditions on the
object frequency, the shape, and the size. All buckets detected in a data segment
are organized into a bucket tree. The histogram is a collection of all these bucket
trees. Regarding the bichromatic bucket technique, we can use Algorithm Con-
structBichromaticBucket to convert every bucket constructed by STHist during
the histogram construction process to bichromatic version. In other words, for
each data segment, after the root bucket is created, Algorithm ConstructBichro-
maticBucket is applied to this root bucket. Then, STHist detects hotspots inside
the improved root bucket and converts these hotspots into child buckets. For
each of these child buckets, we apply Algorithm ConstructBichromaticBucket
to get improved versions. This process continues until no more new bucket is
constructed.

6 Performance Evaluation

We compare several existing histogram construction methods, including MinSkew
[5], RkHist [8], and STHist [19], with their bichromatic buckets based versions,
called Bi-MinSkew, Bi-RkHist, and Bi-STHist, respectively.

Data Sets.We use the following 12 real-life data sets for the experiments: i) The
Sequoia data set [3] that contains 62,556 locations in California; ii) The Digital
Chart of the World (shortly, DCW ) data set [3] that contains 19,499 populated
places in the United States of America plus Mexico; iii) The North East data set
[3] that contains 123,593 postal addresses in New York, Philadelphia, and Boston;
iv) TheGreece Cities data set [3] that contains 5,922 cities and villages in Greece;
v) The Cities5000 data set [2] that contains 16,731 cities around the world with a
population greater than 5,000; vi) The Portland Crime data set [1] that contains
11,846 locations of crime incidents reported to the City of Portland Police Bureau
in 2010; vii) The South Korea data set [2] that contains 69,000 populated places
in South Korea; viii) The China data set [2] that contains 64,252 populated
places in China; ix) The Italy data set [2] that contains 10,881 populated places
in Italy; x) The France data set [2] that contains 42,834 populated places in
France; xi) The Vietnam data set [2] that contains 8,624 populated places in
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Vietnam; xii) The Netherlands data set [2] that contains 4,077 populated places
in Netherlands.

Performance Metric. We use the average relative error as a performance
metric as in [5,10,19]. Average relative error is commonly used to evaluate the
accuracy of selectivity estimation. Improving the accuracy is equivalent to re-
ducing the error. Given a query Q, let σ be the actual object frequency of Q,
and let σ′ be the estimated object frequency of Q by a histogram. Then, the
relative error εrel of Q is defined as

εrel = |σ − σ′|/max{1, σ} (7)

For a set of k queries {Q1, Q2, . . . , Qk}, the average relative error Erel is

Erel =
1

k
·

k∑
i=1

εirel (8)

where εirel is the relative error of query Qi.

Query Set. We used 100,000 random test queries (i.e., k = 100,000) and com-
puted their average for each point in the result graphs. The locations of the
queries are randomly chosen and the sizes of the queries are randomly generated
between 0% and 20% of the entire data region.

Bucket Quota Adjustment. Let m be the number of buckets that can be con-
structed for a histogram of normal buckets. Let m′ be the corresponding number
of buckets that can be constructed for a histogram of bichromatic buckets. When
the proposed technique is used, it is clear that a bichromatic bucket uses more
memory than a normal bucket. Thus, m′ must be less than m for a fair compar-
ison. Here, for a normal rectangular bucket B, we need to store the coordinates
(x1, y1) and (x2, y2) of two diagonal corner points, and the object frequency of
B. Suppose that 4 bytes are generally used to store each coordinate value. Also
suppose that 4 bytes are needed to store the object frequency of B. As a re-
sult, 5× 4 bytes are used for a normal rectangular bucket B. Now, consider the
bichromatic version of B, called B′. To store the separating line, we only need
to store two index values i and j. We tested different values for the number n
of index points and see that n = 32 is enough. Thus in our experiments, we set
n = 32 and only 2 bytes are needed to store both i and j. For the object ratio, 2
bytes is enough for an approximation of high precision. Consequently, B′ needs
6 × 4 bytes while B needs 5 × 4 bytes for storage. Therefore, given a specific
value for m, we will set m′ = RoundDown((5/6)×m) for a fair comparison.

Results. Fig. 5 and 6 show the performance of the histogram methods1. The
amount of storage space allocated for a histogram is varied from 250 to 1500
words, where the size of each word is 4 bytes. These amounts correspond to 50,
100, 150, 200, 250, and 300 buckets to be constructed for a normal histogram and

1 Note that, due to space limitation in a page, we separate the set of result graphs
into 2 parts and present them in 2 figures (i.e., Fig. 5 and 6) for clarity.



Improving the Accuracy of Histograms for Geographic Data Objects 13

(a) Sequoia data (b) DCW data

(c) North East data (d) Greece Cities data

(e) Cities5000 data (f) Portland Crime data

Fig. 5. Average relative errors for varying the amount of storage space allocated to
a histogram (Part 1 with Sequoia, DCW, North East, Greece Cities, Cities5000, and
Portland Crime data sets)
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(a) South Korea data (b) China data

(c) Italy data (d) France data

(e) Vietnam data (f) Netherlands data

Fig. 6. Average relative errors for varying the amount of storage space allocated to a
histogram (Part 2 with South Korea, China, Italy, France, Vietnam, and Netherlands
data sets)
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to 41, 83, 125, 166, 208, and 250 buckets to be constructed for a histogram with
bichromatic buckets, respectively. Note that the Y-axis is shown on a log scale.
In general, the average relative errors tend to decrease in all the methods with
the increasing amount of storage space (thus, the increasing number of buckets
in a histogram). It is because when the number of buckets rises, more accurate
statistics can be obtained. In most experiments, the accuracy of the original
methods has been significantly improved when our technique is applied. For
example, when 1000 words are allocated for the storage space (i.e., 200 buckets
are constructed for a normal histogram and 166 buckets are constructed for a
histogram of bichromatic buckets) and the Sequoia data set is used as in Fig.
5a, the accuracy of Bi-MinSkew (i.e., the MinSkew method with bichromatic
buckets) is 3.1 times better than MinSkew (i.e., the original MinSkew method),
and the accuracy of Bi-RkHist is 9.2 times better than RkHist. When 1000 words
of storage space are used and the North East data set is examined as in Fig. 5c,
the ratios of accuracy improvement of Bi-MinSkew, Bi-RkHist, and Bi-STHist
over the corresponding methods are 4.1, 1.7, and 1.8 times, respectively. This
is because in each bichromatic bucket, the whole data space is divided into two
separating regions with more uniform data distribution in each region.

7 Related Work

Histograms have a rather long research history. A relatively full record of their
history can be found in [12]. In the following, we review some important mile-
stones and concentrate on the studies that are related to ours. Beside the MinSkew
[5] and STHist [19] methods which have been reviewed in Section 5, there are
several other methods. EquiDepth [16] is the first multi-dimensional histogram
method. It attempts to partition the data space, one dimension at a time, into a
set of non-overlapping buckets. In the constructed histogram, each bucket con-
tains the same number of data objects. In [18], a method named MHIST-2 was
proposed, where at each step the most “critical” attribute is chosen for the par-
titioning of the data space. In a MaxDiff histogram, at each step MHIST-2 finds
the attribute with the largest difference in source values (e.g., spread, frequency,
or area) between adjacent values and places a bucket boundary between those
values. Thus, when frequency is used as a source parameter, the resulting MaxD-
iff histogram approximately minimizes the variance of value frequencies within
each bucket.

In [10], the authors proposed a histogram method named GenHist. The main
difference between GenHist and the previously proposed methods is that Gen-
Hist allows buckets to overlap. This new method exploits the fact that, with the
same number of bucket quota, the overlapping between buckets permits the data
space to be partitioned into a higher number of regions. To build the histogram,
GenHist uses multi-dimensional grids of various sizes. High-frequency grid cells
are converted into buckets. More recently, a method named RkHist was intro-
duced in [8]. RkHist builds histograms based on an R-tree space partitioning.
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It exploits the Hilbert space filling curve to generate an initial space partitioning,
then uses a sliding window method, coupled with a new uniformity measure, to
further improve the quality of the selectivity estimates.

In addition to statically computed histograms, such as those created by
MinSkew [5], GenHist [10], RkHist [8], and STHist [19], there are dynamically
generated histograms. For example, the Self-Tuning histogram [4] incrementally
maintains buckets in response to feedback from the query execution engine about
the actual selectivity of range selection operators. This approach can gracefully
adapt buckets to the updates of the underlying data set. Nevertheless, the Self-
Tuning histograms are not very good when the data skewness is high [4]. More-
over, in this kind of histograms, because only the regions of queries that have
been processed are used, only buckets related to those queries can be updated.
Note that, we focus on statically computed histograms in this paper.

Beside histograms, there are alternativemethods for selectivity estimation, such
as wavelet transformation [15,22], singular value decomposition [18], discrete co-
sine transform [13], kernel estimators [6,10], and sampling [14,11]. However, his-
tograms have remained the most popular target for selectivity estimation due to
their effectiveness and robustness across a wide variety of application domains
[12,10,8].

8 Conclusion

Histograms have been widely used for selectivity estimation and constructing
highly accurate histograms is an important problem. In this paper, we present a
new technique that can be applied to existing histogram construction methods
to enhance the accuracy of the constructed histograms. This technique is par-
ticularly designed for geographic data objects of two dimensions. The basic idea
is to add a straight line to each bucket to divide the bucket into two disjoint
parts. In this way, the advantages of traditionally rectangular buckets are pre-
served while additionally new advantages of polygonal buckets are incorporated.
After presenting the motivation, we introduce a simple yet effective algorithm
to convert normal rectangular buckets to bichromatic ones. We also described
how to apply the proposed technique to existing histogram construction meth-
ods. Through extensive experiments using real-life data sets, we show that the
proposed technique really improves the accuracy of existing histogram methods.
The rate of improvement is about 2 times on average and more than 4 times in
several cases.

Acknowledgments. This work was supported by the National Research Foun-
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Abstract. Online aggregation is a commonly-used technique to response
aggregation queries with the refined approximate answers (within an es-
timated confidence interval) quickly. However, we observe that low selec-
tivity and inappropriate sample proportion significantly affect the online
aggregation performance when the data distribution is skewed. To over-
come this problem, we propose a Partition-based Online Aggregation
System called POAS. In POAS, the side effect of low selectivity can be
reduced by efficient pruning of unneeded data due to the partition and
shuffle strategies, and the appropriate sample proportion can be achieved
as far as possible by drawing samples (tuples) from relevant partitions
with dynamic sample size. Moreover, POAS applies some statistical ap-
proaches to calculate estimates from relevant partitions. We have im-
plemented POAS and conducted an extensive experiments study on the
TPC-H benchmark for skewed data distribution. Our results demonstrate
the efficiency and effectiveness of POAS.

1 Introduction

In many decision support applications, such as OLAP and data mining tools,
aggregation queries are used widely and frequently. The common characteristic
of these applications is that large volumes of data need to be accessed and aggre-
gated to response aggregation queries, which is computationally expensive (long
time for processing) [1] and resource intensive [2]. However, the exact answers
are not always required in real situation, so that the ability to approximately
answer aggregation queries efficiently can greatly benefit for these applications.

One commonly-used technique to handle this problem is online aggregation [3],
which returns approximate answers with their corresponding confidence intervals
quickly instead of the precise answers. The basic idea behind this technique is to
compute an approximate result against the random samples and refine the result
as more samples are received. In this way, users can grasp the overall progress
of the running queries and terminate these queries prematurely if an acceptable
answer can be arrived at quickly.

However, we observe that online aggregation usually performs poorly when
the data distribution is skewed. There are at least two factors that skewed data
distribution affects online aggregation: low selectivity and inappropriate sample

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 18–32, 2012.
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proportion1. For the first factor, the number of relevant tuples which satisfy the
query predicate may be much less than others due to the skewed data distri-
bution. Then, there will be few or no relevant tuples in the sample during the
initial stage of online aggregation, so that approximate result calculated from
such a small set of relevant tuples may lead to large error (need to be continually
refined). For the latter factor, the acceptable estimate can be calculated quickly
only when the samples are drawn from relevant relation with an appropriate pro-
portion. Unfortunately, this appropriate sample proportion can not be archived
with high probability in the initial stage of online aggregation due to the skewed
data distribution, leading to large error and extending the processing time.

In this paper, we study the problem of efficiently decrease the effect of skewed
data distribution for online aggregation. We propose a Partition-based Online
Aggregation System called POAS to overcome the limitations mentioned above.
For low selectivity, POAS divides the original dataset into a set of partitions,
which are indexed by NRB-T (Nested Red-Black Tree). Each query will run
against the relevant partitions, which overlap with the query range, instead of
the whole dataset. In this way, the selectivity of aggregate query would increase
due to the efficient pruning of unneeded data. On the other hand, POAS draws
samples from relevant partitions with dynamic sample size to achieves the appro-
priate sample proportion as far as possible, then the acceptable running estimate
to the final result could be refined in the early stage of online aggregation, saving
execution time significantly.

We have implemented POAS and compared it with the COSMOS, which
is a latest online aggregation system for centralized environment proposed in
[1], on the TPC-H benchmark for skewed data distribution. The experiment
results show that our POAS can eliminate the effect of skewed data distribution
effectively and improve online aggregation performance observably.

The main contributions of this paper are summarized as follows:

1. We point out the limitations of online aggregation for skewed data distribu-
tion and present two fundamental principles that need to be considered in
the problem solution.

2. We propose a new online aggregation system called POAS based on these
two fundamental principles to improve the online aggregation performance
for skewed distribution.

3. We implement POAS and conduct extensive experiments, the results demon-
strate the efficiency and effectiveness of POAS.

The rest of this paper is organized as follows. In the next section, we give a brief
overview of related work. In Section 3, we point out the limitations of online
aggregation for skewed data distribution and present two principles to solve it.
In section 4, we give an overview of POAS and introduce the major components
in details. Section 5 presents the statistical estimators used in POAS. And in
section 6, we report results of the experimental evaluation. Finally, we conclude
this paper in Section 7.

1 Sample proportion indicates the proportion of samples in the sample.
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2 Related Works

In many real applications, such as OLAP, aggregation queries are used widely
and frequently. However, calculate exact results for these queries incurs long
response time, and is not always required. To response queries in a short pro-
cessing time with the acceptable results, approximate query processing (AQP)
is proposed recently.

Online aggregation [3] is one commonly-used AQP technique to provide a
time-accuracy tradeoff for aggregation queries. Approximate answer within a
running confidence interval is produced during early stages of query processing
and gradually refined until satisfies the users expectation. The running confi-
dence interval indicates to user that the estimated proximity of each running
aggregation query to its final result. In [4], Haas illustrates how the central limit
theorems, simple bounding arguments and the delta method can be used to
derive formulas for both large-sample and deterministic confidence intervals.

To support join operation for online aggregation, Hass and Hellerstein intro-
duced a novel join methods called ripple joins in [5]. But the convergence of
ripple joins can be slow when memory overflows. To handle this problem, hash
ripple join algorithm is proposed in [6], which combines parallelism with sam-
pling to speed convergence and also maintains good performance in the presence
of memory overflow. However, all works in [3,4,5,6] are focused on single query
processing rather than multi query optimization. Therefore, Wu et al. proposed a
new online aggregation system called COSMOS to process multiple aggregation
queries efficiently [1]. COSMOS organizes queries into a dissemination graph to
exploit the dependencies across queries, and the partial answers can be reused
by the linked queries.

More recently, some online aggregation systems for distributed context are
proposed along with the development of P2P and cloud computing [7,8,9,10].
Wu et.al. extend the online aggregation to a P2P context where sites are main-
tained in a DHT network [7], which maintains synopses that can be reused by
different queries. In addition, [8,9] demonstrates a modified version of Hadoop
MapReduce framework that supports online aggregation. And [10] proposed a
new online aggregation system that supports MapReduce job based on the open-
source project Hyracks [11], which discuss a Bayesian framework for producing
estimates and confidence intervals for online aggregation.

However, none of the above papers address the limitations of online aggrega-
tion for skewed data distribution that we have discussed in this paper. In par-
ticular, the skew issue has been considered in the sample-based AQP technique
rather than online aggregation and the outlier-indexing and weighted sampling
are proposed to provide an aggregate result with significantly reduced approx-
imation error [2]. But the two techniques do not apply to online aggregation
due to the following reasons: (1) they do not satisfy the requirement of online
aggregation for unbiased sampling and (2) they are unsuitable for the iterative
query processing model of online aggregation.
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3 Effect of Skewed Data Distribution

In this section, we take AVG as an example to demonstrate the limitations of
online aggregation for skewed data distribution: (1) the low selectivity, and (2)
the inappropriate sample proportion.

For the first limitation, the number of tuples drawn from relevant relation will
be proportional to its size since the sampling of online aggregation is unbiased
when the sample size is “small enough” [4]. Given a query Q with 1000 tuples
and the selectivity is 1%. Suppose 50 tuples are sampled each time to refine the
estimate iteratively. Then, the event that the sample contains no relevant tuples
in the first iteration has probability of 0.60, contains one tuple with probability
of 0.31, and 0.076 for two tuples, etc. Therefore, few or no relevant tuples may in
the sample during the early stage of online aggregation due to the low selective,
so that AVG is calculated from the sample contains such a small set of relevant
tuples may lead to large error and extend the processing time.

For the second limitation, there are some tuples contribute a lot to the query
(important tuples) in relevant relation. If the sample contains insufficient/su-
perabundant important tuples, which means the proportion of relevant tuples is
inappropriate, it may lead to large error and extend the processing time. Con-
sider the same relation R, and the query Q with selectivity of 99%. Let A be part
of relevant relation contains 9800 tuples with value 1, while the remaining 100
tuples with value 100 (important tuples), belong to part B. Thus, the average
over all relevant tuples of R is 2. Given the error rate 0.01, then the appropriate
proportion between A and B ranges from 96:1 to 100:1. Suppose the sample
contains 200 relevant tuples in the first iteration. Note that, if three or more
tuples from B were to be included in the sample, then the estimate would be
more than 2.485 (sample proportion is less than 65:1). On the other hand, if one
tuple from B in the sample, the estimate is 1.495 (sample proportion is 199:1).
Only in the event where two tuple from B in the sample (sample proportion is
99:1), leading to an acceptable estimate to AVG, which is 1.99, with probability
of 0.27. Therefore, the running estimate to AVG need to be gradually refined,
which extends the processing time.

Although these two examples demonstrated the limitations for AVG, similar
arguments also hold for the sum and count with a little difference due to the
different estimators used for estimating.

Based on the analysis given above, we present two basic principles to overcome
the limitations of online aggregation for skewed data distribution: (1) Efficient
pruning of unneeded data to increase the selectivity of aggregate query. (2)
Draw samples with an appropriate sample proportion to produce a good
approximate result as soon as possible.

In the following sections we propose POAS to resolve these skewed issues
taking into account these two principles.
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4 Partition-Based Online Aggregation System

4.1 System Overview

Figure 1 shows the system architecture of POAS, which comprises three ma-
jor components: Data Preprocessor, Data Management and Query Engine. Data
preprocessor re-organizes the original dataset as partitions. Each query will run
against part of the partitions instead of the original whole dataset. In this way,
the selectivity of query would increase due to the efficient pruning of un-
needed data (the proportion of relevant tuples becomes higher than before).
Moreover, each partition is shuffled so that sequentially scanning each partition

Fig. 1. System Architecture of POAS

gives rise to the random sampling with lower I/O cost. In data management
component, we store each partition as a separate file and index them by NRB-
T (Nested Red-black Tree). Through NRB-T, queries can obtain their relevant
partitions, which overlap with the search range of queries, efficiently. For query
engine component, samples are drawn from these relevant partitions with dy-
namic sample size to archive appropriate sample proportion as far as
possible, so that make the acceptable running estimate to the final result could
be refined in the early stage of online aggregation.

4.2 Data Preprocessor

In this subsection, we discuss two aspects of data preprocessor: partition phase
and shuffle phase.

Partition Phase. The task of partition phase is to manage the original dataset
in the granularity of partitions. Such processing can be implemented quite effi-
ciently by making two scans of the dataset. The purpose of the first scan is to
determine two input parameters of partition phase: the value range of columns
R and the partition size of columns N .

Definition 1. R,N . Given a dataset with n partitioning columns C = {C1, C2,
..., Cn}, the value range of columns denotes by R = {R1, R2, ..., Rn}, where Ri

represents the value range of Ci. And the partition size of columns denotes by
N = {N1, N2, ..., Nn}, where Ni represents the partition size of Ci.
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In our implementation, N is predefined by system. If R is already available in
the meta-data, the first scan may be omitted. Based on the two parameters,
we can obtain the identities of all partitions, denoted by P . To simplify the
presentation, we define P as follows.

Definition 2. P . Each column Ci is divided into Ni uniform intervals, denoted
by Ii = {I1i , I2i , ..., INi

i }. Thus, P = I1 × I2 × ... × In, where |P| =
∏n

i=1Ni.
Each partition is identified by a certain Pi ∈ P.
Initially, all of these partitions are empty so that the purpose of the second scan
is to fill in them with corresponding tuples. After these two scans are completed,
the original dataset is re-organized as partitions.

Shuffle Phase. The task of shuffle operation is to gain the randomness of tuples
for each partition, so that sequentially scanning the partition can reduce the I/O
cost of sampling (completely random disk access can be five orders of magnitude
slower than sequential access [12]). The idea of sequentially scanning a dataset
have also applied in several other works [13,14,1]. Our POAS shares similar
motivation to the scrambled dataset proposed in [1]. The strategy they used is
to “random write” the tuples into the scrambled dataset, which gains the great
randomness of tuples but cost a lot of time to seek position randomly in the
scrambled dataset.

Fig. 2. Shuffle of one partition

In our implementation, a two-level shuffle operation is deployed to avoid the
side effect of “random write” since the “random write” is replaced by “sequential
write” as shown in Figure 2. Given a partition P , we conduct shuffle operation as
follows: step 1, divide P into m splits with equal size s, each split will be loaded
into main memory by turns (s ≤ the size of main memory) and a tuple-level
shuffle is condected to gain the randomness of tuples for each split: as we scan
a tuple T , we exchange it with a randomly chosen victim tuple V , each shuffled
split in the main memory is sequential written to a temporary file with a
random numeric file name; step 2, a file-level shuffle will sequential writes
each f ∈ F into an intermediate partition P ′ by order of the file name, which
gains the randomness of splits for partition P ; step 3, repeat the above processes
with a different split-size for k times (to gain a good randomness, we set k = 4
and use four split-size which are prime to each other).
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4.3 Data Management

The goal of data management is to lookup the partitions that overlap with a
given probe search range efficiently by NRB-T, and make POAS much more
scalability by incremental update strategy.

Fig. 3. NRB-T for the dataset shown in Figure 1

Nested Red-Black Trees. The core idea behind NRB-T is to associate each
partition with its intervals in a hierarchical model. Then, the NRB-T enables
efficient lookup of the relevant partitions for given query. To simplify the pre-
sentation, we have some definitions as follows:

Definition 3. I(R,Ci). Given a dataset R with n partitioning columns C =
{C1, C2, ..., Cn}, the I(R, Ci) denotes a set of intervals of dataset R for Ci.

Definition 4. PI(I). Given a set of intervals I based on Definition 5, the
PI(I) denotes the partition index for I. Each PI(I) is created by the High
values of the intervals.

Definition 5. BS(C). Given the partitioning columns C of R, BS(C) denotes
the build sequence of NRB-T. A NRB-T is built in hierarchical model correspond-
ing to a given BS(C).
We take the dataset mentioned in Figure1 as an example to describe the build
phase of NRB-T: step 1, C is ordered in descending by their predefined parti-
tion size, denoted by C′ and we set BS(C) = C′; step 2, we build the partition
index PI(I(R,C2)) as shown in Figure 3, each node comprises four annota-
tions:Partitions, Interval, Max and Pointer where the Max annotation records
the maximum High value across both its subtrees; step 3, we build the nested
partition index PI(I(Ii, C1)) for ∀Ii ∈ I(R,C2).

Moreover, NRB-T also has an acceptable complexity. Take a dataset with
two partitioning columns as an example. Suppose N1 and N2 (N1 ≤ N2) are the
partition size of each column. Then, building NRB-T has O(N1 logN1 + N1 ×
N2 logN2) complexity, and the memory needs are θ(N1 +N1 ×N2). Probing a
NRB-T takes O(min(N1, k1 × logN1) + min(N1, k1 × logN1) × min(N2, k2 ×
logN2)), where k1 and k2 are the numbers of matching intervals for each partition
index.
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Update Strategy. The update strategy of POAS is designed based on the
fact that the updates to the data warehouse system are performed in a batch
mode. We collect all the updates and commit them periodically. During the
update period, our system will stop processing any queries and only focus on
two operations: update to partition and update to NRB-T (if necessary). Given
number of tuples need to be inserted, the update strategy is performed as follows:

Case 1: Large Number of Update Tuples. Firstly, we partition and shuffle
these tuples to generate a set of update partitions. Then, we append them to the
end of the corresponding exist partitions, and conduct another file-level shuffle
operation for better randomness. If there are tuples not belong to any partitions,
several new partitions are created and extra nodes are added to NRB-T recording
these new partitions.
Case 2: Small Number of Update Tuples. We just append the update
partitions to the end of corresponding partitions without shuffle operation and
implement the same update operation to NRB-T as Case 1 if necessary.

4.4 Query Engine

In this subsection, we show how the aggregation queries are processed in the
query engine. Firstly, query engine access NRB-T to obtain relevant partitions
for a given query. Then, samples are drawn from these partitions with dynamic
sample size. Finally, the estimate to the final result is calculated and refined by
applying the formulas introduced in section 4, and the query can be terminated
in the following two cases: (a) When the estimate to the final result satisfies the
expectation of user; (b) When the query has scanned all tuples and generates
the accurate result.

Dynamic Sample Size. The basic idea behind dynamic sample size is each
relevant partition provides the number of samples that is proportional to its
cardinality. For example, suppose the query Q needs to draw k samples from a

set of relevant partitions Srp. Then, there are
|rpi|
|Srp| ·k samples are drawn from each

rpi ∈ Srp. In this way, the appropriate sample proportion between these relevant
partitions can be archived as far as possible. The reason we call it dynamic is
that the sample size of a given partition is different for each query as the relevant
partitions of each query are different. Since the requirement of unbiased sampling
of online aggregation [3], we need to proof the samples collected with dynamic
sample size are unbiased.

Theorem 1. With dynamic sample size, the samples drawn from Srp are
unbiased.

Proof. The samples forQ is unbiased if each tuple in Srp has the same probability
of being picked. Sequential scan to each rpi results in each tuple has the same
probability of being selected, which is approximate as 1

|rpi| . In addition, each rpi

has probability of |rpi|
|Srp| to draw samples due to the dynamic sample size. Then,

each tuple in Srp has the same probability |rpi|
|Srp| · 1

|rpi| =
1

|Srp| of being sampled.
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5 Estimators and Confidence Intervals for SUM, COUNT
and AVG

Let ε′, c be the running error bound and confidence respectively, ε′ and c give
probabilistic estimate of approximate result v′ which means exact result v lies
in the interval [v′ − ε′, v′ + ε′] with probability c. In this section, we take SUM,
COUNT, AVG as examples to show how estimates and confidence intervals can
be obtained.

5.1 Queries for Single Relation

We consider the single relation query firstly:
SELECT op(expression) FROM R WHERE predicate

Given relevant partitions Srp for this query, and a sample set S has been
obtained from Srp with dynamic sample size. Then, the natural estimators for
SUM, COUNT and AVG are:

v′s|c =
|Srp|
|S| ·

∑
ti∈S

expressionp(ti) v′a =
v′s
v′c

(1)

where expressionp (ti) equals ti for SUM and 1 for COUNT if ti satisfies the
predicate, and 0 otherwise.

The estimators for SUM and COUNT are unbiased means that v′s|c would
be equal on average to the exact query result if the sampling and estimation
process were repeated over and over. And they are also consistent means that
it converges to the exact query result as more and more tuples are sampled.
Moreover, the estimator of AVG is consistent due to the consistency of v′s|c.
Although v′a is biased, but the bias is typically negligible as the number of
sampling steps increases [5].

Based on Central Limit Theorem,

√
|S|·(v′−v)

σ is distributed approximately

as a standardized normal distribution when |S| is ”large enough”, where σ2

|S| is

the variance of v′. Given an predefined confidence c, the error bound ε′ can be
computed by the formula(2) and P {|v′ − v| ≤ ε′} is the predefined confidence c.

P {|v′ − v| ≤ ε′} ≈ 2Φ

(
ε′
√|S|
σ

)
− 1 (2)

5.2 Queries for Multi-relations

As we know that the method used in [5] might be less efficient since much more
unnecessary join operation between Srp(R) and Srp(S) is processed. Figure 4
shows the partitioning of relation R and S for the following query:

SELECT op(expression) FROM R,S WHERE R.Ci = S.Ci and 0 ≤ R.C1 ≤ 10 and 0 ≤
S.C2 ≤ 15

The shaded area represents Srp(R) and Srp(S) respectively. Note that, join

plan
⋃4

i=1 rpi(R) ��
⋃2

i=1 rpi(S) will produce some unnecessary join pairs as
rp1(R) �� rp2(S), rp3(R) �� rp2(S), rp2(R) �� rp1(S) and rp4(R) �� rp1(S).
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Fig. 4. Partitioning of relations R,S

To further improve the performance of POAS, we prune the unnecessary join
pairs by NRB-T firstly. Let si be the set of samples from rpi(R) and s′i from
rpi(S) with dynamic sample size, where

∑ |si| = |SR| and
∑ |s′i| = |SS |. Then,

the estimators for SUM and COUNT of each jpi can be calculated as [5], denote

by v′(s|c,i) = |jpi|
|Si| ·

∑
(r,s)∈jpi

expressionp(r, s), where Si be the set of samples

from jpi, e.g. |S1| = |s1 + s3| · |s′1|. And the estimator for AVG is calculated as

v′(a,i) =
v′
(s,i)

v′
(c,i)

. Then, we can obtain the estimators of multi-relational query by:

v′s|c =
|jp|∑
i=1

v′(s|c,i) v′a =
v′s
v′c

=

∑|jp|
i=1 v

′
(a,i) · |S′

i|∑|jp|
i=1 |S′

i|
(3)

where |S′
i| is the number of samples in Si that satisfy the predicate. Note that,

the estimator v′s|c is unbiased since:

E(v′s) =
∑|jp|

i=1E(v′(s,i)) = SUM(Q) and E(v′c) =
∑|jp|

i=1 E(v′(c,i)) = COUNT (Q).

And the bias of estimator v′a converges to 0 as the number of sampling steps
increases. Moreover, these estimators are consistent due to the same reason in
section 5.1.

Since v′(s|c|a,i) has approximately a normal distribution with mean v(s|c|a,i)

and variance
σ2
(s|c|a,i)

|Si| based on the analysis in [5], and the linear combination of

multiple independent normally distributed random variables still has a normal
distribution, then v′s|c|a has a normal distribution with mean vs|c|a and variance

σ2
s|c =

∑|jp|
i=1

σ2
(s|c,i)
|Si| and σ2

a =
∑|jp|

i=1 σ2
(a,i)·|Si|

(
∑|jp|

i=1 |Si|)2
.

According to the basic feature of normal distribution, v′−v
σ is distributed as

standardized normal random variable. Then, the error bound ε′ can be computed
by the following formula:

P {|v′ − v| ≤ ε′} ≈ 2Φ

(
ε′

σ

)
− 1 (4)

6 Experiments

6.1 Experimental Setup

We have implemented POAS in java and deployed it on a IBM System x3500
with 2 Quad-Core Intel Xeon CPU E5335 and 4GB memory. A modified TPC-H
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toolkit [15] is employed to generate 100G dataset as our test data with Zipf
distribution determined by the Zipf parameter z (z varies over 0, 1.2, 1.6, where
0 represent the uniform distribution). We generate queries based on the Single
Talbe Template (T1) and Multi-table Template (T2):

T1: SELECT sum(Ci)|count(Ci)|avg(Ci) FROM LINEITEM

WHERE [l discount > x and l discount < x + y] | [l quantity > x and l quantity < x+ y]

[l extendedprice > x and l extednedprice < x + y]|
T2: SELECT sum(Ci)|count(Ci)|avg(Ci) FROM LINEITEM L, ORDERS O

WHERE L.orderkey = O.orderkey &

[l discount > x and l discount < x + y] | [l quantity > x and l quantity < x+ y]

[l extendedprice > x and l extednedprice < x + y]|

The aggregate type (AVG, COUNT, SUM) for each query is random selected
during the query generation process. To test the effectiveness of POAS for dif-
ferent selectivity, we vary y from 3% to 20% of the value range of Ci for random
x. For comparison purposes, we implemented 3 methods. In POAS, the queries
are processed by our POAS directly, we partition and shuffle the two relations
based on the columns in “where” predicates (the default partition size for each
partitioning column is 6). In COSMOS, we deploy the latest online aggrega-
tion system called COSMOS proposed in [1]. In OA-original, the queries are
processed by the original online aggregation in [3,5].

In our experiments, we use the average processing time of the query as the
metric. The default error rate e is 0.01 and confidence c is 95%. Each experiment
executes 1800 queries (100 queries for one selectivity) and repeated 10 times to
remove any side effects.

6.2 Performance Comparison

We evaluate the performance of three online aggregation schemes against 100G
test data with different data distribution. Since the results of template 1 and
template 2 show similar trend, we present all results of template 1 and part of
results of template 2. As shown in Figure 5(a) and (b),OA-original and COSMOS
performs poorly when the selectivity is relatively small, and the skewed data
distribution makes such weakness much more obviously. On the other hand, our
POAS performs stable for different selectivity and the adverse effect of skewed
data distribution is eliminated significantly as shown in Figure 5(c). However,
the performance improvement of POAS slows down when selectivity larger than
15% and close to the performance of COSMOS as shown in Figure 5(e). This
is because the effect of skewed distribution for higher selectivity is much less
than before. Figure 5(f) shows the comparison of average performance for all
selectivity (3% ∼ 20%), POAS outperforms the other methods and efficiently
decrease the effect of skewed data distribution.

6.3 Effect of Error Rate and Confidence

Given a predefined confidence, the smaller error rate indicates the more approx-
imate result we can obtain. And a larger confidence gives the higher probability
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Fig. 5. Performance of Three Online Aggregation Systems

that the accurate result is bounded by the estimated error bound. In this test, we
vary the predefined error rate and confidence respectively to examine the perfor-
mance of the three methods. The predefined error rate ranges from 0.01 to 0.05.

Fig. 6. Effect of Error Rate and Confidence

Figure 6(a-c) shows all methods have the similar trend that much more samples
is needed to gain the higher precision, which leads to long processing time. And
the skewed data distribution makes such weakness much more obviously for OA-
original and COSMOS. However, the processing time of POAS for different data
distribution reduces gradually and reaches stable at around 25 msec as shown
in Figure 6(c) which means the affect of skewed data distribution is eliminated
effectively. On the other hand, we vary predefined confidence from 82% to 98%
to show the effect of confidence. Figure 6(d-f) show that along with the increase
of confidence, much more samples are received to update the estimators (ex-
plained by Formula (2)), which lead to a longer processing time. However, the
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performance curve of POAS is relatively smooth without any drastic change and
scalable with skewed data distribution, too.

6.4 Precision of Estimation

In this test, as the results of two templates for different data distribution show
similar trend due to the CLT is used in estimation, we only present the result of
POAS for template 1. We use the average real error rate of queries as the metric

Fig. 7. Accuracy of Estimation

to show the effect of error rate and confidence on the accuracy of POAS (real

error rate is calculated as |v−v′|
v , v is computed by PostgreSQL).

We vary the predefined confidence from 82% to 98% and set the error rate to
0.01 (Zipf 1.6). Based on the result depicted in Figure 7(a), the average real error
rate is always lower than the predefined error rate, which means most of queries
have gained a good approximate result. In addition, the average real error rate
also decreases with the increase of confidence. This is expected as the higher
confidence leads to more samples are received to gain a better estimation.

Moreover, we vary the predefined error rate from 0.01 to 0.05 and set the
confidence to 95% (Zipf 1.6). As shown in Figure 7(b), the estimation is quite
accurate because the average error rate is always lower than the predefined error
rate (real error rate is under the baseline).

6.5 Effect of Partition Size

In this test, we show the effect of partition size on POAS. For facilitate to discuss,
each column has the same partition size (PS) which varies from 2 to 10. As shown
in Table 1, average processing time reduces with increase of partition size. This
is expected as the query can prune much more unneeded data due to the fine-
grained partition (larger partition size). But the performance improvement is
getting slower with increase of partition size. When we increase partition size
from 6 to 10, the decline of average processing time is much slower than the
cases with smaller partition size. This is because much more I/O cost is caused
by accessing to the larger number of partitions. Therefore, the bigger partition
size is not always optimal, we should choose the appropriate partition size by
considering the real application environment.
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Table 1. Effect of Partition Size (data size=100G e=0.01 c=95%)

Partition Size Processing Time (msec)
PS=2 PS=4 PS=6 PS=8 PS=10

uniform 60.322 39.87 34.47 33.19 32.34

zipf-1.2 65.83 46.29 35.11 34.66 34.11

zipf-1.6 124.56 90.45 43.16 42.54 41.20

6.6 Preprocessing Performance

In this test, we compare two preprocessing methods, shuffled partition (deployed
in POAS) and scrambled dataset (deployed in COSMOS). The performance of

Table 2. Performance of Preprocessing

Systems Processing Time (sec)
PS=20G PS=40G PS=60G PS=80G PS=100G

COSMOS 3840.39 6578.42 12539.12 17383.56 31254.26

POAS 1745.63 3289.29 5641.85 6953.47 8978.96

preprocessing is affected by data size rather than other factors, as both two
methods need to scan the whole dataset regardless of what data distribution or
partition size they have. We only present the result with uniform distribution and
partition size 6. As shown in Table 2, the POAS performs better than COSMOS
since the “random write” is replaced by “sequential write”. And the processing
time of POAS is approximate proportional to the data size, which is superior to
COSMOS. Note that, in POAS, we conduct this preprocessing only once as our
online aggregation is read-mostly application.

7 Conclusions

In this paper, we point out the limitations of online aggregation for skewed data
distribution and present two fundamental principles that need to be considered in
the problem solution. Based on the two principles, we propose POAS, a partition-
based online aggregation system that (a) organizes dataset as a set of partitions,
which is indexed by NRB-T, to prune unneeded data for each query, (b) shuffles
each partition to gain well randomness of tuples so that we can use sequentially
scan instead of random access to reduce the I/O cost during sampling, (c) collects
unbiased sample from overlapped partitions with dynamic sample size to archive
appropriate sample proportion. Finally, we have evaluated POAS on the TPC-H
benchmark for skew data distribution, and the results demonstrate the efficiency
and effectiveness of our approach.
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Abstract. In this paper, we investigate the problem of assembling frag-
ments from different graphs to build an answer to a user query. The goal
is to be able to provide an answer, by aggregation, when a single graph
cannot satisfy all the query constraints. We provide the underlying ba-
sic algorithms and a relational framework to support aggregated search
in graph databases. Our objective is to provide a flexible framework for
the integration of data whose structure is graph-based (e.g., RDF). The
idea is that the user has not to specify a join operation between frag-
ments. The way the fragments can be combined is a discovery process and
rests on a specific algorithm. We also led some experiments on synthetic
datasets to demonstrate the effectiveness of this approach.

Keywords: graph databases, relational databases, query processing,
aggregated search.

1 Introduction

Database research has been facing a new challenge raised by the emergence of
massive, complex structural data, in the form of sequences, trees, and graphs
[18]. Graphs have become increasingly important in modelling complex struc-
tures and schemaless data in many application domains such as bioinformatics
[24], chemistry, web, social networks [3], business processes [16], telecommuni-
cation, etc. For instance, graphs may represent molecular structures of chemical
compounds in chemistry, the organization of entities for images in computer
vision, the ER diagrams in database design, the UML diagrams in software en-
gineering, and so on. In addition, Web sites, XML and RDF documents can also
be modeled as graphs [5,2].

The database community has had a long-standing interest in querying graph
databases [18]. Given a graph database D = {g1, g2, . . . , gn} and a query graph
q, the task is to retrieve one or several graphs from the database that are similar
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to the query, which is generally referred to as graph matching. Standard graph
matching approaches are generally categorized as either exact or approximate
[13]. When a mapping exists between both graphs (query graph q and data graph
gi), this is called an isomorphism, and q is said to be isomorphic to gi.

The problem of graph query processing has been tackled recently and a lot
of methods have been proposed [7,22,25,26,4,17,23]. The underlying techniques
have mainly targeted quick retrieval of the graphs that are supposed to be the
answer to a given query. For such approaches, the challenge is to answer the
following questions : (1) How to efficiently compare two graphs and (2) How to
reduce as much as possible the search space and then the number of pair-wise
comparisons of graphs? These are usually tough problems in many real-world
applications where graphs are extremely large.

Although the graph query problem has been tackled in the last decade, no
attention has been paid to the problem of assembling graphs in a sensed way
to provide an answer to a given query graph q if (1) no single candidate graph
turns out to be isomorphic to q, or (2) additional answers to q are needed. For
example, we may have a query whose objective is to find the profile information
related to a professor such as her/his associated universities, her/his research
interests, her/his research histories (e.g. projects, publications), some of her/his
personal information, and so on. However, from a huge volume of documents such
as academic databases, multimedia databases, yellow pages, etc., the required
information is not only contained in a single document, but spread over several
documents. In other words, one document contains her/his personal data, one
contains her/his publications, another contains her/his affiliations, and so on.
This issue is shown in Figure 1 and Figure 2 where given a query graph q and a
set of three data graphs D = {g1, g2, g3}, a possible answer to q could be given
by the aggregation of fragments from the two graphs g1 and g3.

In view of this context, this problem seems to have similar intention as the
problem of approximate graph matching which tries to discover all the graphs
that approximately contain the query graph when no match for the latter can
be found in the graph database [23]. However, aggregated search problem differs
from the problem of substructure similarity search in the sense that it provides
different exact solutions (instead of relaxed ones) to the query graph by assem-
bling graphs as answers to the query such that the aggregated graph contains
the query. The challenge in this scenario is to answer the following questions :
(1) how to determine the participating graphs to the aggregation and (2) how
to build such an aggregation?

Relying on the effectiveness and scalability of relational database management
systems, we propose an approach intended to support the graph aggregation in
the framework of query evaluation, using the relational model. We focus on two
tasks: (1) study how to translate a graph database into a relational database
and (2) investigate the available powerful performance of RDBMS to deploy an
efficient technique for processing and boosting graph aggregated search.

This approach focuses on the directed labeled graphs (we refer to them as
graphs in the rest of the paper). Our design for data aggregation is targeted
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to supplement distributed graph query processing in such a way that query
approximation (via data aggregation) will be supported. Our ultimate goal (in
teh future) is to investigate query aggregation in distributed graph databases.

Fig. 1. A simple query graph q and three data graphs

Fig. 2. An example of graph aggregation

The remainder of this paper is organized as follows: Section 2 gives the basic
definitions used in this paper. Section 3 presents some available graph query
processing algorithms and relational techniques that relate to our work. Section
4 introduces our approach for performing graph aggregated search on distributed
graph databases using a relational infrastructure. Then, we demonstrate the
efficiency and scalability of our technique by conducting some experiments on
some synthetic graph databases in Section 5. We conclude in Section 6.

2 Preliminaries

This section introduces the terminology used in this paper and formally defines
the problem. Conceptually, any kind of data can be represented by graphs. In la-
beled graphs, vertices and edges represent entities and relationships, respectively.
The attributes associated with entities and relationships are called labels.

More formally, a labeled graph g is defined as a 6-tuple (V,E, Lv, Le, Fv, Fe)
where V is the set of vertices; E ⊆ V ×V is the set of edges joining two distinct
vertices; Lv is the set of vertex labels; Le is the set of edge labels; Fv is a function
V → Lv that assigns labels to vertices and Fe is a function E → Le that assigns
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labels to edges. The vertex set and the edge set of a graph g are denoted by
V (g) and E(g), respectively. Labeled graphs are generally classified, according
to the direction of their edges, into two main classes: directed labeled graphs such
as XML and RDF and undirected labeled graphs such as social networks and
chemical compounds. For example, the graphs shown in Figure 1 are undirected
labeled graphs.

Definition 1 (Graph database). A graph database D is a collection of data
graphs gi where D = {g1, g2, . . . , gn}.
Definition 2 (Candidate set). A candidate set C is a collection of data graphs
from D that contain all the features appearing in a query graph q.

Definition 3 (Answer set). An answer set A is a collection of data graphs
that are isomorphic to a query graph q.

Definition 4 (Non isomorphic set of graphs). A non isomorphic set N of
graphs is a collection of data graphs from C that are not isomorphic to q.

Definition 5 (Graph aggregation problem). Given a query graph q and a
non isomorphic setN = {g1, g2, . . . , gm}, the problem of graph aggregation query
is to find different subsets S = {g1, g2, . . . , gk} from N (i.e. k ≤ m) for which
the joining of fragments (subgraphs) Pg1 , Pg2 , . . . , Pgk from graphs g1, g2, . . . , gk
respectively, leads to q, that is q = (Pg1 �� Pg2 �� . . . �� Pgk). Here, the semantics
of the join operation is the one used in the example given figures 1 and 2 to built
a solution to the query of figure 1 by combining fragments stemming from the
two graphs g1 and g3.

3 Graph Query Processing Algorithms

Graph matching [18,13] is considered to be one of the most complex issues be-
cause of its own combinatorial optimization problems. Typical classification in
graph matching methods consists of exact graph matching and inexact graph
matching. These methods allow to find the optimal solution but require expo-
nential time and space due to the NP-completeness of the problem.

The problem of exact graph matching is particularly related to that of graph
isomorphism, more clearly, if an edge resides between a pair of vertices (source
vertex and destination vertex) in the query graph, then that edge must also
reside between the corresponding pair in the data graph. In other words, one tries
to retrieve an accurate pair-wise matching between vertices and edges of both
graphs. The standard algorithm for graph and subgraph isomorphism detection
is the one proposed by Ullman in [20].

The problem of graph query processing has been one of the hot topics dis-
cussed by the database community and a lot of methods have been proposed
[7,22,25,26,4,17,15]. The underlying techniques have focused on quickly retriev-
ing the graphs that are supposed to be the answer to a given query.
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3.1 Approximate Graph Matching

Since exact matching is often too restrictive, approximate matching (similarity
search) of complex structures becomes an important operation that must be
supported efficiently. Instead of finding the data graphs that contain the query
graph, these approximate matching methods find data graphs similar to the
query graph. These kinds of queries are very useful within their own applications
[11,21,12]. For example, a user may not know the exact composition of the full
structure (s)he wants (i.e. query), but requires that it contains a set of small
functional fragments. In such applications, it is possible to define an objective
procedure that finds the similarity in the mapping between both graphs (query
and data). A number of algorithms and models for approximate matching in
graph databases were proposed (see, e.g., [12,9,10,23]).

3.2 Graph Aggregation for Query Processing Problem

The graph query processing has been widely considered for a long time. However,
there is, so far, few of research on automatically assembling graphs such that a
possible answer can be built from a combination of fragments of the graphs, in
case no single isomorphic graph is found.

The problems raised by aggregation in the context of documents are discussed
in [8]. However, the paper does not address formal and algorithmic issues. Mo-
tivated by this problem, Elghazel and Hacid [6] proposed an approach intended
to support the graph aggregation in the framework of query processing. Their
work, at first glance, seems to have similar intention as the problem of approx-
imate matching as mentioned above. However, instead of trying to retrieve all
the graphs that relatively contain the query as the approximate graph matching
problem does, this approach returns several exact answers by combining graphs
whose aggregation contains the query.

4 Relational-Based Approach for Aggregated Search
in Distributed Databases

In this section, we discuss the relational-based mechanism used for graph aggre-
gated search we propose.

4.1 Relational Encoding Schemes

Selection of an appropriate mapping schema for each graph member in the graph
database is an important initial step in graph querying process. Graph structured
databases can be stored by using various relational mapping schemas [14,1,19].
In this paper, we focus on the following two classes of encoding schemes ini-
tially used in [15]: (1) Vertex-Edge mapping scheme and (2) Edge-Edge map-
ping scheme. We also briefly show how to implement it in a standard Relational
Database Management System. Although our approach refers to some funda-
mental techniques introduced in [15], it is different compared to [15] in the sense
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Fig. 3. An example of Vertex-Edge mapping scheme for two graphs g1 and g2

Fig. 4. An example of Edge-Edge mapping scheme for two graphs g1 and g2

that while [15] performs the exact graph query mechanism, we will focus on the
graph aggregated search issue in distributed graph databases.

In the Vertex-Edge scheme, each graph is assigned a unique graphID. Each
vertex is identified by a unique numeric ID (vertexID) inside its container graph.
Moreover, each vertex has its own label attribute. Each vertex is represented by
one triple in a single table (Vertices table) in which all existing vertices are
stored. Similarly, all edges in the graph database are stored in the second table
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(Edges table) which not only contains the unique id of the edge (edgeID), the
id of the container graph but also the id of the source vertex, the id of the
destination vertex and the edge label. In summary, two tables of Vertex-Edge
scheme have the following structures:

– Vertices(vertexID, vertexLabel, graphID)
– Edges(edgeID , graphID, sVertex, dVertex, edgeLabel).

Figure 3 shows an example of the Vertex-Edge encoding scheme of a graph
database.

The second relational scheme, Edge-Edge encoding scheme has the following
structure:

– Edges(edgeID, graphID, eLabel, sVID, sVLabel, dVID, dVLabel).

Each edge is described by a distinct tuple on which each tuple consists of the
graphID, the IDs and the labels of the source and destination vertices. In addi-
tion, each edge is identified by a distinct numeric edgeID.

Figure 4 depicts an example of the Edge-Edge encoding scheme of a graph
database.

As stated in [15], the Edge-Edge scheme is regarded as a de-normalized form
of the Vertex-Edge scheme. In other words, the Edge-Edge scheme is a uniform
relation of all vertices and edges, thus it is considered to be more efficient for
the querying issue (i.e. SQL SELECT statement). For instance, given a query
graph q that holds m vertices and p edges, in order to retrieve that graph using
Vertex-Edge scheme it requiresm+p join operations between Vertices table and
Edges table. Meanwhile, by using the Edge-Edge scheme, one only needs p joins.
However, the Vertex-Edge scheme shows its better performance in dealing with
update operations (i.e. SQL INSERT, DELETE, UPDATE statements).

Our work mainly focuses on querying issue, thus we choose the Edge-Edge
scheme as the encoding one for the query processing mechanism.

4.2 Common Edge Search

Edges or relationships are elements that carry the most important information
in graphs. Hence, common edges search is the most basic function that plays
a key role in our approach. This function discovers all edges that belong to
both query graph q and a graph database D. It also ensures that all edges in
q are found in D. As mentioned in previous sections, our technique is different
from approximate graph matching problem in such a way that it leads to the
calculation of different exact solutions to the query. Therefore, in case there does
not exist a single edge in D, we can immediately conclude that the answer is
empty.

Common edges are the output of SQL-based join operation between a query
and a graph database on their eLabel attribute. Figure 5 shows an example of
common edges search between a query q and a graph database D consisting
of one data graph g5. Relying on the common edges table returned by this
process we can conduct further search. The following SQL template describes
the common edges search operation.
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Fig. 5. An example of common edges between a query q and a graph database D

Fig. 6. Query evaluation process

SELECT q.edgeID, q.graphID,
graphID, eLabel, edgeID, sVLabel, dVLabel
FROM query q,
datagraphs g1, datagraphs g2, ..., datagraphs gn
WHERE ∀ni=1(gi.eLabel = q.eLabel)

where gi is an instance of the table datagraphs and maps its edge labels to edge
labels of the query q.

4.3 Query Graph Decomposition

In the following, we present the decomposition mechanism of a query graph for
our aggregated search approach. First, given input query q, we split it into two
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Fig. 7. Query decomposition

parts: constant part qconst. (i.e. constant query or a set of edges linking two
distinct labeled vertices) and anonymous part qano. (i.e. anonymous query or set
of edges linking unlabeled vertices to the others). Then, our searching process
initially verifies the constant query. This verification phase checks whether each
edge of qconst. (including edge label, source vertex label and destination vertex)
exists in the common edge database C. The search process terminates when no
edge is found in C. Otherwise, it goes to the graph aggregated search phase for
the anonymous query which is represented in subsection 4.4. Figure 7 summarizes
our decomposition mechanism and processing flow on an example.

4.4 Aggregated Search for Anonymous Query Graphs

In this subsection we formulate an algorithm to identify the matching between
a given anonymous query q and the aggregation of graphs in D. This problem
is regarded as the problem of label identification for the blank nodes in q.

Let us assume that AV is a set of anonymous vertices (variables) of q, ordered
by decreasing order of their degree.

In principle, the algorithm starts from the first unlabeled vertex v in AV
(Figure 6). We retrieve all possible labels (i.e. the set S) of vertices in C that
have the same edge labels with v (v is the source vertex or destination vertex,
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both cases are considered). Then, a verification step is used to eliminate invalid
labels in S. For each remaining label in S, we generate a new query qv by
assigning this label to v, then we move to the next unlabeled vertex in AV and
continue recursively the process of label determination and labeling for remaining
vertices. When the query is totally labeled, it is considered as an answer and it
is added to the final result.

The reason for which we construct AV and start from the first elements in
AV is to improve the efficiency of the search process. The degree of a vertex v is
the number of edges incident to it. So, the higher the degree is for a given vertex,
the less possibility of label candidates returned for it, and from this point, we
can initially eliminate as many as possible negative candidates (i.e. reduce the
number of input candidates for the verification phase). This work also helps to
decrease the number of recursions, and therefore, quickly reach the termination
of the algorithm (in case of no valid candidate is found), or quickly reach the
final result A.

The principle of our technique is summarized in the following steps:

1. In C, find a set of vertices S (label candidates) which have similar edge labels
with v

2. If no vertex is found (i.e. S = ∅), then terminate the algorithm.
3. Remove from S invalid candidates (verification step).
4. If all candidates are removed (i.e S = ∅ after verification), then terminate

the algorithm.
5. For each label VL in S

(a) generate a new query qv from q by assigning VL to v (i.e. v becomes a
constant vertex)

(b) move to next unlabeled vertex in AV (i.e. v = next vertex in AV )
(c) If all vertices in S are labeled (i.e. v = ∅), a mapping is found. We add

this mapping to the final result. Otherwise, a recursive call is performed
by using qv and the new vertex v as the input.

We clarify the verification phase in step 3. In q we retrieve a set of constant
vertices Kv = k1, k2, ..., km which are neighbors of v. Then, we search edges
joining two vertices ei ⊆ v × ki in a set of common edges C. If there exists at
least one ei (i.e. ei.eLabel, v.vLabel, ki.vLabel) not found in C, in other words,
if the count of the edge is equal to zero (count(edgeID) = 0), we can conclude
that this candidate is invalid and it should be removed from S. In the case v is a
source vertex, for each label candidate V Label of v, the verification is performed
by the following SQL template:

SELECT count(edgeID)
FROM commonedges c
WHERE c.sV Label = v.V Label
AND ∀mi=1(c.eLabel = ei.eLabel)
AND ∀mi=1(c.dV Label = ki.V Label)

In the case v is a destination vertex, the SQL template is as follows:
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Algorithm 1: AGASeach(q, v, AV,C)

Input: q is a query graph; AV (AV �= ∅) is a set of unlabeled vertices
(variables) in q ordered by their degrees;
v is the in-process vertex in AV (v ∈ AV ). C is a set of common
edges between q and set of data graphs D.

Output: A is final answer set.

S = findLabelCandidates(v[EL], C);
if (S = ∅) then

break;
else

S = verification (S); // elimination of invalid labels

if (S = ∅) then
break;

else
foreach VL in S do

qv = query generator(q, v, VL);
v = nextVertex(AV );
if (v = ∅) then

A = A ∪ {q};
else

AGASeach(qv, v, AV,C); // recursive call

end

end

end

end

SELECT count(edgeID)
FROM commonedges c
WHERE c.dV Label = v.V Label
AND ∀mi=1(c.eLabel = ei.eLabel)
AND ∀mi=1(c.sV Label = ki.V Label)

In step 5a, we create a new query from the current query by using the following
SQL template:

CREATE TABLE new query qv as SELECT * FROM query q;
UPDATE qv SET sV Label = VL WHERE sV ID = v;
UPDATE qv SET dV Label = VL WHERE dV ID = v;

In summary, our approach is algorithmically formed in Algorithm 1.
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5 Performance Evaluation

In this section, we report on first empirical results to evaluate the effectiveness
and efficiency of our technique. Our experiments are conducted on synthetic
datasets. We generate a large number of graphs by using our own graph generator
module. This module allows us to specify the number of graphs (n), the number
of distinct vertex labels (Lv), the number of distinct edge labels (Le), the average
number of edges for each graph (|E|) and the average number of vertices for
each graph (|V |). For this experiment, we generate a set of graph datasets with
different numbers of distinct vertex labels. The average number of vertices and
edges in the data graphs are 20 and 30, respectively. The number of distinct edge
labels is 20 while the number of distinct vertex labels varies from 5 to 20. There
are 1000 data graphs and 100 queries in the considered experiments, that share
the same number of distinct vertex labels and the number of distinct edge labels
with data graphs. The average number of vertices and the average number of
edges in each query are 10 and 15, respectively.

It is always a good choice to filter as many as possible negative graph candi-
dates before going to the query processing step. However, in these experiments,
we only focus on the performance test of the query processing as it is the core of
our approach. In other words, the execution time of either this experiment and
the others in this paper do not include the filtering phase which is independent
from our approach in terms of input data graphs.

The idea in using relational database in storing and querying graph databases
is to take advantage from their powerful features of scalability and efficiency. We
examine the query performance of our SQL-based aggregated search approach.
Since the parameters of synthetic datasets are adjustable, especially the number
of distinct vertex labels, the overall performance of our approach is seriously
not stable. In other words, the number of distinct vertex labels has a heavy
impact on the capability and the scalability of our technique. For an interesting
assess of the results gained with our aggregated search, we propose to measure
the advantage of our approach to find new output solutions compared to the
traditional subgraph isomorphism query approaches (denoted Simple QP here).
The average output size of Simple QP is also recorded.

The experiments then examine 100 queries with a number of distinct vertex
labels ranging from 20 down to 5. The execution results of both the approaches
are summarized in Figure 8 and demonstrated by scatters in Figure 9. The
X-axis represents the number of distinct vertex labels, the Y-axis shows the
average answer set sizes, and the different curves represent both approaches.

As expected, the results of these experiments show that the response time and
the average output size of our approach are strictly related with the number of
distinct vertex label. Strictly speaking, there are two remarkable points: (1) the
less number of distinct vertex labels, the more troublesome the aggregated search
is, since the number of graph candidates increases, and then, the verification and
query generator become costly, and (2) the more the number of distinct vertex
labels, the less number of answers returned from the Simple QP approaches, and
therefore, the more interesting the aggregated search is. In fact, the experiments
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confirm the ability of our technique to deliver new answers that can improve
the efficiency and the precision of a query processing system. For instance, when
the number of distinct vertex labels is equal to 10, Simple QP approach returns
54.28 solutions, meanwhile we obtain 176.69 solutions (i.e. 3 times more) with
our approach. There is another remark that Simple QP fails to return any
answer for a lot of query graphs when the number of distinct vertex labels
reaches 15, however, the aggregated search shows its diversity on query answers
with almost 42 solutions.

Fig. 8. Performance evaluation on varying the number of vertex labels

Fig. 9. Impact of the value of the number of distinct vertex label on both approaches

6 Conclusion

In this paper, we have discussed the problem of assembling graphs to provide
answers to a given query graph in case no single candidate graph is isomorphic
with the query. We also presented a relational technique for supporting the graph
aggregated search. The approach is developed on top of relational infrastructure
by using pure SQL scripts in the form of stored procedures (views) and functions,
thus absolutely residing in a RDBMS. We proposed a relational encoding scheme
to encode graph databases and translate graph queries into SQL queries. Then,
we retrieved common edges between query graph and data graphs. From this
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set of data, we performed graph aggregated search on queries with anonymous
nodes. Finally, through a set of experiments on a synthetic dataset we obtained
preliminary results about the efficiency and scalability of our approach. The
evaluation results indicate that our relational technique for processing graph
aggregated search is strictly correlated with the number of distinct vertex labels.
This point needs additional investigation. Moreover, the experimental results also
show that the execution time for the aggregated search is rather high. Therefore,
we believe that there is a need for additional work for improving and optimizing
the performance of our approach for storing and querying large graph databases.

Regarding our future work, we will deploy more experiments on different
datasets with other types of graphs.We will also conduct database pre-processing
module in which we construct a summary layer of the underlying graph database.
Then, relying on this layer we apply filtering phase to eliminate as many as pos-
sible negative graph members which are certainly not in the answer set. The
pre-processing phase is very useful in reducing search space and improving per-
formance or the efficiency of our SQL-based mechanism for the aggregated graphs
search approach.
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Abstract. Keys play a fundamental role in all data models. They allow
database systems to uniquely identify data items, and therefore promote
efficient data processing in most applications. Due to this role support is
required to discover keys. These include keys that are semantically mean-
ingful for the application domain, or are satisfied by a given database
instance. Here, we study the discovery of keys from SQL tables. We in-
vestigate structural and computational properties of Armstrong tables
for sets of SQL keys that are currently perceived as semantically mean-
ingful. Inspections of Armstrong tables enable data engineers to consoli-
date their understanding of the semantics of the application domain, and
communicate this understanding to other stake-holders of the database,
e.g. domain experts or managers. The stake-holders may want to make
changes to the tables or provide entirely different tables in order to com-
municate their expert views to the data engineers. For such purpose we
propose data mining algorithms that discover keys from a given SQL
table. Finally, we define formal measures to assess the distance between
sets of SQL keys. The measures can be applied to empirically validate the
usefulness of Armstrong tables, and to automate marking and feedback
of non-multiple choice questions in database courses.

1 Introduction

Context. Keys play a fundamental role in understanding both the structure
and semantics in databases. Given an SQL table schema, a key is a collection of
columns whose values uniquely identify rows. That is, no two rows have matching
total values in each of the key columns. The concept of a key is essential for many
other data models, including semantic models, object models and XML. The
discovery of semantically meaningful SQL keys is a crucially important task in
many areas of modern data management, e.g., data modeling, database design,
query optimization, indexing, and data integration. This paper is concerned with
methods for semi-automated schema-driven as well as automated data-driven
SQL key discovery. There has been a great demand on the part of industry
for such methods, because they vastly simplify the job of the DBA and thereby
decrease the overall cost of database ownership. The discovery of composite keys
is especially difficult, because the number of possible keys increases exponentially
with the number of columns. Because such functionality is nevertheless needed
by industry, the goal is to provide practical algorithms that have good typical
case behavior. Industry-leading data modeling tools, such as ERwin, emphasize
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the need for good test data to validate the semantics of the models they produce
[4]. Intuitively, this calls for the generation of test data which satisfy the keys
perceived semantically meaningful and violate the keys perceived meaningless.

Running Example. Consider a simple database that collects basic information
about the weekly schedule of courses. That is, we have a schema Schedule with
columns C ID, L Name, Time and Room. The schema stores the time (including
the weekday) and room in which a lecturer (identified by their L Name) gives a
course (identified by their C ID). An SQL definition may look as follows:

CREATE TABLE Schedule (
C ID CHAR[5], L Name VARCHAR,
Time CHAR[15], Room VARCHAR,
PRIMARY KEY (C ID, Time);)

The table schema specifies additional assertions. The primary key forces rows
over Schedule to be NOT NULL in the C ID and Time columns, and to be
unique on their {C ID, Time} projections (no two distinct rows must have
the same value in both the C ID column and the Time column). A team of
data engineers may wonder if the semantics of the application domain has
been captured. They decide to generate some good test data to discuss their
current understanding with the domain experts. In fact, a joint inspection of
the data sample in Table 1 reveals some concern about rows 1 and 3. As
a consequence, the team decides to specify the uniqueness constraint (UC)
u(Time,L Name,Room). They produce the data sample on the left of Table 2
to consolidate their new understanding. Rows 1 and 3, and 1 and 4, respec-
tively, reveal that the UC u(Time,L Name,Room) should be replaced by the two
stronger UCs u(Time,L Name) and u(Time,Room). The example shows the po-
tential benefit of investigating good sample data for the discovery of semantically
meaningful SQL keys. As a revised SQL table schema the team specifies

Table 1. An Armstrong table for the SQL table schema Schedule

C ID Time L Name Room

11301 Mon, 10am Ullman Red
11301 Tue, 02pm Ullman Red
78200 Mon, 10am Ullman Red
99120 Wed, 04pm ni ni

Table 2. Armstrong tables for revised constraint sets

C ID Time L Name Room

11301 Mon, 10am Ullman Red
11301 Tue, 02pm Ullman Red
78200 Mon, 10am Ullman ni

99120 Mon, 10am ni Red

C ID Time L Name Room

11301 Mon, 10am Ullman Red
11301 Tue, 02pm Ullman Red
78200 Mon, 10am Fagin Blue
99120 Wed, 04pm ni ni
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CREATE TABLE Schedule’ (
C ID CHAR[5], L Name VARCHAR,
Time CHAR[15], Room VARCHAR,
PRIMARY KEY (C ID, Time),
UNIQUE (L Name, Time), UNIQUE (Room, Time);)

While this approach appears to be beneficial it requires us to address our first
research question: what constitutes good test data, and how to create it automat-
ically? Domain experts are likely to welcome an opportunity to modify values in
the test data to reflect their domain knowledge, or provide entire test data them-
selves. In this or similar situations, the data engineers need automated means
to discover a representation of the keys that are satisfied by the test data. For
example, when the domain experts inspect Table 1, they may simply suggest to
use the right data sample in Table 2 instead, with the updated values indicated
by bold font. On input of this table, a constraint mining algorithm would return
NOT NULL constraints on C ID and Time, and the three UCs u(C ID, Time),
u(L Name, Time), and u(Room, Time). This, again, leads to the definition of
Schedule′. This motivates our second research question: how can we discover
the SQL keys that are satisfied by a given SQL table?

Contributions. In this paper we will establish detailed answers to the two
questions above. As our first main contribution we investigate the well-known
concept of Armstrong databases for the class of SQL keys. Armstrong databases
formalize the concept of good test data in the sense that they satisfy the set Σ
of keys currently perceived semantically meaningful, and violate all keys that
are not implied by Σ. We characterize when a given SQL table is Armstrong
with respect to a given set Σ of SQL keys. This characterization allows us to
establish an algorithm that generates good test data for arbitrary sets of SQL
keys. While we show that the problem of computing such Armstrong tables is
precisely exponential in the number of column headers, our algorithm produces
an Armstrong table whose size is at most quadratic as that of a minimum-sized
Armstrong table. As a second main contribution we establish two algorithms
that compute the set of minimal SQL keys satisfied by a given SQL table. While
the problem requires generally exponential time, our algorithms show good best
case behavior. As the final contribution we define formal measures that can be
applied to i) empirically validate the usefulness of our Armstrong tables for the
acquisition of semantically meaningful SQL keys, and ii) automate feedback and
marking of database exam questions.

Organization. We summarize related work in Section 2, and give preliminary
definitions in Section 3. We investigate structural and computational properties
of Armstrong tables for the class of SQL keys in Section 4. In Section 5 we
study the SQL key mining problem. Our formal measures of usefulness and their
applications are discussed Section 6. We conclude in Section 7 where we briefly
comment on future work, too.
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2 Related Work

Data dependencies have been studied thoroughly in the relational model of data,
cf. [1,9]. Dependencies are essential to the design of the target database, the
maintenance of the database during its lifetime, and all major data processing
tasks [1]. These applications also provide a strong motivation for developing
data mining algorithms to discover the data dependencies that are satisfied by a
given database. Armstrong databases are a useful design aid for data engineers
that can help with the consolidation of data dependencies [13], the design of
databases [14] and the creation of concise test data [6].

In the relational model, keys are subsumed by functional dependencies (FDs).
Structural and computational problems of Armstrong relations have been inves-
tigated in the relational model for the class of keys [7], and the more general class
of FDs [3,14]. The mining of keys and FDs in relations has also received consid-
erable attention in the relational model [11,15,16]. However, this work has not
considered occurrences of duplicate rows, null markers and NOT NULL constraints
which are present in most SQL databases.

One very significant extension of Codd’s basic relational model [5] is incom-
plete information [12,17]. This is mainly due to the high demand for the correct
handling of such information in real-world applications. Approaches to deal with
incomplete information comprise incomplete relations, or-relations or fuzzy rela-
tions. In this paper we focus on incomplete bags, and the most popular interpre-
tation of a null marker as “no information” [2,17]. This is the general case of SQL
tables where duplicate rows and null markers are permitted to occur in columns
that are specified as null-able. Relations are idealized special SQL tables where
no duplicate rows can occur and all columns are specified NOT NULL. Recently,
Armstrong tables have been investigated for the combined class of keys and FDs
[10]. In the present paper, we first establish non-trivial optimizations for Arm-
strong tables that arise from the focus on the sole class of keys. This provides
insight into the trade-off between the expressiveness of data dependency classes
and the efficiency of generating Armstrong tables. Intuitively, the focus on the
less expressive class of keys results in smaller Armstrong tables which can be
computed more efficiently. To the best of the authors’ knowledge, no previous
work has addressed the mining of keys in SQL tables, which could be due to the
previous lack of a theoretical model. We are also unaware of any measures that
capture the difference between sets of keys, nor their utilization for assessing the
usefulness of Armstrong tables or database exam questions.

3 The SQL Table Model

Let H = {H1, H2, . . .} be a countably infinite set of symbols, called column
headers or headers for short. A table schema is a finite non-empty subset T
of H. Each header H of a table schema T is associated with an infinite domain
dom(H) of the possible values that can occur in column H . To encompass partial
information every column can have a null marker, denoted by ni ∈ dom(H). The
intention of ni is to mean “no information”.
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For header sets X and Y we may write XY for X ∪Y . If X = {H1, . . . , Hm},
then we may write H1 · · ·Hm for X . In particular, we may write simply H
to represent the singleton {H}. A row over T (T -row or simply row, if T is
understood) is a function r : T → ⋃

H∈T dom(H) with r(H) ∈ dom(H) for all
H ∈ T . The null marker occurrence r(H) = ni associated with a header H in
a row r means that there is no information about r(H). That is, r(H) may not
exist or r(H) exists but is unknown. For X ⊆ T let r(X) denote the restriction
of the row r over T to X . A table t over T is a finite multi-set of rows over T .
For a row r over T and a set X ⊆ T , r is said to be X-total if for all H ∈ X ,
r(H) �= ni. Similar, a table t over T is said to be X-total, if every row r of t is
X-total. A table t over T is said to be a total table if it is T -total.

A uniqueness constraint (UC) over a table schema T is an u(X) where X ⊆ T .
A table t over T is said to satisfy the UC u(X) over T (|=t u(X)) if for all
r1, r2 ∈ t, if r1(X) = r2(X) and r1, r2 are X-total, then r1 = r2. The semantics
is that of SQL’s UCs, and it reduces to that of a key for total tables [1].

Following Atzeni and Morfuni [2] a null-free subschema (NFS) over the table
schema T is a an expression nfs(Ts) where Ts ⊆ T . The NFS Ts over T is satisfied
by a table t over T , denoted by |=t nfs(Ts), if and only if t is Ts-total. SQL
allows the specification of column headers as NOT NULL. NFSs occur in everyday
database practice: the set of headers declared NOT NULL forms the single NFS
over the underlying table schema.

In schema design and maintenance data dependencies are normally specified
as semantic constraints on the tables intended to be instances of the schema.
During the design process or the lifetime of a database one usually needs to
determine further dependencies which are implied by the given ones. Let T be a
table schema, nfs(Ts) an NFS, and Σ∪{ϕ} be a set of UCs over T . We say that Σ
implies ϕ in the presence of nfs(Ts), denoted by Σ |=Ts ϕ, if every Ts-total table
t over T that satisfies Σ also satisfies ϕ. If Σ does not imply ϕ in the presence of
nfs(Ts) we may also write Σ �|=Ts ϕ. Let Σ

∗
Ts

= {ϕ | Σ |=Ts ϕ} be the semantic
closure of Σ. If we do not want to emphasize the presence of the NFS nfs(Ts) we
may simply write Σ |= ϕ, Σ �|= ϕ or Σ∗, respectively. The next lemma explains
why minimal UCs are important. Indeed, for a set Σ ∪ {u(X)} of UCs, and an
NFS nfs(Ts) over T we call u(X) minimal if and only if Σ |=Ts u(X) and for all
u(Y ) over T where Σ |=Ts u(Y ) and Y ⊆ X we have Y = X .

Lemma 1. Let T be a table schema, nfs(Ts) an NFS, and Σ ∪ {ϕ} be a set of
UCs over T . Then Σ implies ϕ in the presence of nfs(Ts) if and only if there is
some u(Y ) ∈ Σ such that Y ⊆ X.

Proof. Let t be the table over T consisting of two rows r1 and r2 over T where
r1 and r2 are XTs-total and r1(X) = r2(X), and r1(H) = ni = r2(H) for all
H ∈ T −XTs, and r1(H) �= r2(H) for all H ∈ (T −X) ∩ Ts. It follows that t is
Ts-total and satisfies Σ, but t violates u(X). ��
Example 1. We can capture the SQL table schema of the running example as the
table schema Schedule = {CTLR} with Schedules = {CT }. Let Σ consist
of the two UCs u(CT ) and u(LTR). It follows that Σ does not imply any of the
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following UCs: u(CLR), u(LT ) nor u(TR). For instance, the Schedules-total
table on the left of Table 2 satisfies Σ and violates every of the three UCs. As
an application of Lemma 1 we see that neither of CLR,LT nor TR is a superset
of CT or LTR. ��

4 Discovering Keys from Armstrong Tables

In this section we investigate structural and computational properties of suitable
data to test the semantic meaningfulness of uniqueness constraints over SQL
table schemata. For this purpose, we use Armstrong tables to formalize the
notion of suitable test data. Having introduced the concepts of strong agree sets
and anti-keys, we characterize when an arbitrarily given SQL table is Armstrong
for an arbitrarily given set of uniqueness constraints. The characterization is then
used to compute Armstrong tables. Finally, we derive results on the time and
space complexity associated with the computation of Armstrong tables.

4.1 Key Concepts

The formal concept of an Armstrong database was originally introduced by Fagin
[9]. We require our tables to be Armstrong with respect to uniqueness constraints
and the NFS. Intuitively, an Armstrong table satisfies the given constraints and
violates the constraints in the given class that are not implied by the given
constraints. This results in the following definition.

Definition 1. Let Σ be a set of UCs, and nfs(Ts) an NFS over table schema
T . A table t over T is said to be Armstrong for Σ and nfs(Ts) if and only if
i) t satisfies Σ, ii) t violates every ϕ /∈ Σ∗

Ts
, iii) t is Ts-total, and iv) for every

H ∈ T − Ts, t is not H-total. ��
Example 2. Let Schedule = {CTLR} with Schedules = {CT }. Let Σ consist
of the two UCs u(CT ) and u(LTR). The left sample in Table 2 is Armstrong
for Σ and Schedules. For example, it violates the UCs: u(CLR), u(LT ) and
u(TR), as well as every NFS nfs(T ′

s) where T
′
s is not contained in Schedules.

��
A natural question to ask is how we can characterize the structure of tables that
are Armstrong. For this purpose we introduce the formal notion of strong agree
sets for pairs of distinct rows, and tables.

Definition 2. For two rows r1 and r2 over table schema T where r1 �= r2 we
define the strong agree set of r1 and r2 as the set of all column headers over T on
which r1 and r2 have the same total value, i.e., ags(r1, r2) = {H ∈ T | r1(H) =
r2(H) and r1(H) �= ni �= r2(H)}. Furthermore, the strong agree set of a table t
over table schema T is defined as ags(t) = {ags(r1, r2) | r1, r2 ∈ t∧ r1 �= r2}. ��
Example 3. Let Schedule = {CTLR} with Schedules = {CT }. Let Σ consist
of the two UCs u(CT ) and u(LTR). Let t denote the left sample in Table 2. The
strong agree set of t consists of CLR, LT , TR, L, R, and T . ��
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For a table t to be Armstrong for Σ and nfs(Ts), t must violate all uniqueness
constraints u(X) not implied by Σ in the presence of nfs(Ts). Instead of violating
all uniqueness constraints it suffices to violate those ones that are maximal with
the property that they are not implied by Σ in the presence of nfs(Ts). This
motivates the following definition.

Definition 3. Let Σ be a set of UCs, and nfs(Ts) an NFS over table schema
T . The set Σ−1 of all anti-keys with respect to Σ and nfs(Ts) is defined as
Σ−1 = {a(X) | X ⊆ T ∧Σ �|=Ts u(X) ∧ ∀H ∈ (T −X)(Σ |=Ts u(XH))}. ��
Hence, an anti-key for Σ is given by a maximal set of column headers which
does not form a uniqueness constraint implied by Σ.

Example 4. Let Schedule = {CTLR} with Schedules = {CT }. Let Σ consist
of the two UCs u(CT ) and u(LTR). The set Σ−1 of anti-keys with respect to Σ
and Schedules consists of a(CLR), a(LT ) and a(TR). ��

4.2 Structure of Armstrong Tables

The concepts from the last sub-section are sufficient to establish a characteriza-
tion of Armstrong tables for the class of UCs over SQL table schemata.

Theorem 1. Let Σ a set of UCs, and nfs(Ts) an NFS over the table schema T .
For all tables t over T it holds that t is an Armstrong table for Σ and nfs(Ts) if
and only if the following three conditions are satisfied:

1. for all a(X) ∈ Σ−1 we have X ∈ ags(t),
2. for all u(X) ∈ Σ and for all Y ∈ ags(t) we have X �⊆ Y ,
3. total(t) = {H ∈ T | ∀r ∈ t(r(H) �= ni)} = Ts.

Proof. We show first that the three conditions are sufficient for t to be an Arm-
strong table for Σ and nfs(Ts). Suppose that t is such that the three conditions
are satisfied. It follows immediately from the last condition that t satisfies nfs(T ′

s)
if and only if T ′

s ⊆ Ts. Let u(X) ∈ Σ. If there were two rows r1, r2 ∈ t such
that r1 �= r2 and X ⊆ ags(r1, r2) = Y , then Y ∈ ags(t). This, however, would
violate the second condition. Hence, t satisfies u(X). Since u(X) ∈ Σ was an
arbitrary choice we conclude that t satisfies Σ. Let u(Y ) /∈ Σ∗. Then there is
some a(X) ∈ Σ−1 such that Y ⊆ X holds. From the first condition we conclude
that Y ⊆ ags(r1, r2) for some r1, r2 ∈ t with r1 �= r2. Consequently, t violates
every uniqueness constraint not implied by Σ.

It remains to show that the three conditions hold necessarily whenever t is
an Armstrong table for Σ and nfs(Ts). Suppose that t is an Armstrong table
for Σ and nfs(Ts). The last condition follows immediately from the fact that t
satisfies nfs(T ′

s) if and only if T ′
s ⊆ Ts. Since t satisfies Σ there cannot be any

Y ∈ ags(t) and u(X) ∈ Σ such that X ⊆ Y holds. We conclude that the second
condition is satisfied. It remains to show that the first condition is satisfied,
too. Let a(X) ∈ Σ−1. We need to show that X ∈ ags(t). From a(X) ∈ Σ−1 it
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follows that u(X) /∈ Σ∗. As t violates u(X) it follows that there are r1, r2 ∈ t
such that r1 �= r2 and X ⊆ Y = ags(r1, r2). Also, from a(X) ∈ Σ−1 it follows
that for all H ∈ T −X we have u(XH) ∈ Σ∗, and thus that t satisfies u(XH).
Suppose that there is some H ∈ Y −X . Then t satisfies u(XH) and, therefore,
r1(H) = ni = r2(H) or r1(H) �= r2(H). This, however, is a contradiction as
H ∈ Y = ags(r1, r2). Consequently, X = Y ∈ ags(t). ��
Example 5. Let Schedule = {CTLR} with Schedules = {CT }. Let Σ consist
of the two UCs u(CT ) and u(LTR), and let t denote the sample on the left of Ta-
ble 2. Recall from the previous examples that Σ−1 = {a(CLR), a(LT ), a(TR)},
and ags(t) = {CLR,LT, TR,L,R, T }. Since t satisfies the three conditions of
Theorem 1, it follows that t is an Armstrong table for Σ and Schedules. ��

4.3 Computation of Armstrong Tables

We will now use the characterization of Theorem 1 to compute Armstrong tables
for an arbitrarily given set Σ of UCs and an arbitrarily given NFS nfs(Ts) over an
arbitrarily given table schema T . A great part of the computation is devoted to
determine the set Σ−1. For this purpose, we borrow concepts from hyper-graphs.
Indeed, to compute Σ−1 we generate the simple hyper-graph H = (V,E) with
vertex set V = T and the set E = {X | u(X) ∈ Σ} of hyper-edges. In fact, based
on Lemma 1 we assume without loss of generality that Σ consists of minimal
UCs only. If not, then we remove all those UCs from Σ that are not minimal.
From this we obtain Σ−1 = {a(T −X) | X ∈ Tr(H)} where Tr(H) denotes the
minimal transversals of the hyper-graph H, i.e. the set of minimal sets X of T
that have a non-empty intersection with each hyper-edge of H [8].

Lemma 2. Let Σ be a set of UCs over table schema T . Then Σ−1 = {a(T−X) |
X ∈ Tr(H)}.
Proof. Recall that Tr(H) = {X ⊆ T | ∀u(Z) ∈ Σ(Z∩X �= ∅)∧(∃Y ⊆ X(∀u(Z) ∈
Σ(Z ∩ Y �= ∅))⇒ Y = X)}.

We show first that if X ∈ Tr(H), then a(T − X) ∈ Σ−1. First it follows
that Σ �|=Ts u(T −X) since otherwise there would be some u(Z) ∈ Σ such that
Z ⊆ T −X . This, however, would mean that Z ∩X = ∅, which contradicts the
hypothesis that X ∈ Tr(H). It remains to show that for all H ∈ X , Σ |=Ts

u((T −X)H). Assume the opposite, i.e. there is some H ∈ X such that Σ �|=Ts

u((T −X)H). Then there cannot be any u(Z) ∈ Σ such that Z ⊆ (T −X)H =
T − (X −H). Hence, for all u(Z) ∈ Σ we have Z ∩ (X −H) �= ∅. This, however,
contradicts the minimality of X ∈ Tr(H). We have shown that a(T −X) ∈ Σ−1.

We show now that if a(X) ∈ Σ−1, then T −X ∈ Tr(H). From a(X) ∈ Σ−1

we conclude that Σ �|=Ts u(X). Hence, for all u(Z) ∈ Σ((T −X)∩Z �= ∅). From
a(X) ∈ Σ−1 we know that for all H ∈ T − X , Σ |=Ts u(XH). Hence, for all
H ∈ T −X there is some u(Z) ∈ Σ such that Z ⊆ XH . Thus, for all H ∈ T −X
there is some u(Z) ∈ Σ such that (T−XH)∩Z = ∅. That is, T−X ∈ Tr(H). ��
We have now a complete strategy for computing Armstrong tables. That is, we
first compute the set of anti-keys, and then produce rows whose strong agree sets
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match these anti-keys. The algorithm can also handle the special case where Σ
contains the empty key u(∅), saying that each table can have at most one row.
This case is dealt with in step (A0). The final step (A4) introduces null marker
occurrences in columns that do not belong to the NFS.

Algorithm 2 . (Armstrong table computation)

Input: (T,Σ, nfs(Ts)) with a set Σ of UCs, and NFS nfs(Ts) over T ;
Output: Armstrong table t over T for Σ and nfs(Ts)
Method: let cH,0, cH,1, . . . ∈ dom(H) be distinct
(A0) if u(∅) ∈ Σ then return

t := {r0} such that ∀H ∈ T we have r0(H) :=

{
cH,0 , if H ∈ Ts

ni , else
;

else t = {r0} where for all H ∈ T we have r0(H) = {cH,0} endif;
(A1) compute Σ−1 using hypergraph transversal methods;
(A2) i := 1;
(A3) for all Y ∈ Σ−1 do

t := t ∪ {ri} where ri(H) :=

⎧⎨⎩ cH,0 , if H ∈ Y
cH,i , if H ∈ Ts − Y
ni , else

;

i := i+ 1;
endfor;

(A4) total(t) := {H ∈ T | ∀r ∈ t(r(H) �= ni)};
if total(t)− Ts �= ∅, then return t := t ∪ {ri} where ∀H ∈ T

ri(H) :=

{
ni , if H ∈ total(t)− Ts

cH,i , else
else return t endif; ��

Example 6. Let Schedule = {CTLR} with Schedules = {CT }. Let Σ con-
sist of the two UCs u(CT ) and u(LTR). On input (Schedule, Σ,Schedules),
Algorithm 2 would compute the following Armstrong table:

C ID Time L Name Room
cH,0 cT,0 cL,0 cR,0

cH,0 cT,1 cL,0 cR,0

cH,1 cT,0 cL,0 ni

cH,2 cT,0 ni cR,0

A suitable value substitution yields the sample on the left of Table 2. ��
The following result follows directly from Lemma 2 and Theorem 1.

Theorem 3. On input (T,Σ, nfs(Ts)), Algorithm 2 computes a table t over T
that is Armstrong for Σ and nfs(Ts). ��

4.4 Complexity Considerations

In this subsection, we investigate properties regarding the space and time com-
plexity of the computation of Armstrong tables.
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Worst-Case Time-Complexity. The following result follows straight from
Theorem 1 and the correctness of Algorithm 2.

Proposition 1. Let Σ be a set of UCs and nfs(Ts) be some NFS over ta-
ble schema T . Let t be an Armstrong table for Σ and nfs(Ts). Then |Σ−1| ≤
|ags(t)| ≤ (|t|

2

)
. ��

We recall what we mean by precisely exponential [3]. Firstly, it means that there
is an algorithm for computing an Armstrong table, given a set Σ of UCs and
an NFS nfs(Ts), where the running time of the algorithm is exponential in the
number of column headers. Secondly, it means that there is a set Σ of UCs and
an NFS nfs(Ts) in which the number of rows in each minimum-sized Armstrong
table for Σ and nfs(Ts) is exponential.

Proposition 2. The complexity of finding an Armstrong table, given a set of
UCs and an NFS, is precisely exponential in the number of column headers. ��

Minimum-Sized Armstrong Tables. Despite the general worst-case expo-
nential complexity in the number of column headers, Algorithm 2 is a fairly
simple algorithm that is, as we show now, quite conservative in its use of time.
Let the size of an Armstrong table be defined as the number of rows that it
contains. It is a practical question to ask how many rows a minimum-sized Arm-
strong table requires. An Armstrong table t for Σ and nfs(Ts) is said to be
minimum-sized if there is no Armstrong table t′ for Σ and nfs(Ts) such that
|t′| < |t|. That is, for a minimum-sized Armstrong table for Σ and nfs(Ts) there
is no Armstrong table for Σ and nfs(Ts) with a smaller number of rows.

Proposition 3. Let Σ be a set of UCs, nfs(Ts) an NFS over table schema T . Let

t be a minimum-sized Armstrong table for Σ and nfs(Ts). Then

√
1 + 8 · |Σ−1|

2
≤

|t| ≤ |Σ−1|+ 2. ��
Note the bounds in Proposition 3. In practice, the number |Σ−1| of anti-keys
will usually be small. For such typical cases, our Armstrong tables are therefore
small as well. The focus on UCs can yield Armstrong tables with a substan-
tially fewer rows than Armstrong tables for more expressive classes such as FDs.
The reason is that we do not need to violate any FD not implied by the given
set. In practice, this is desirable for the validation of schemata known to be in
Boyce-Codd normal form, for example. Such schemata are often the result of
Entity-Relationship modeling. Applying the algorithm from [10], designed for
UCs and FDs, to our running example yields an Armstrong table with 12 rows.
Instead, Algorithm 2, designed for UCs only, produces an Armstrong table with
4 rows. More generally, we can conclude that Algorithm 2 always computes an
Armstrong table of reasonably small size.
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Corollary 1. On input (T,Σ,nfs(Ts)), Algorithm 2 computes an Armstrong
table for Σ and nfs(Ts) whose size is at most quadratic in the size of a minimum-
sized Armstrong table for Σ and nfs(Ts). ��

Size of Representations. We show that, in general, there is no most concise
way of representing the information inherent in a set of UCs and a null-free
subschema.

Theorem 4. There is some set Σ of UCs and an NFS nfs(Ts) such that Σ has
size O(n), and the size of a minimum-sized Armstrong table for Σ and nfs(Ts)
is O(2n/2). There is some table schema T , some NFS nfs(Ts) and some set Σ
of UCs over T such that there is an Armstrong table for Σ and nfs(Ts) where
the number of rows is in O(n), and the number of minimal UCs implied by Σ in
the presence of nfs(Ts) is in O(2n).

Proof. For the first claim let T = H1, . . . , H2n, Ts = T and Σ = {u(H2i−1H2i) |
i = 1, . . . , n}. Then Σ−1 = {a(X1 · · ·Xn) | ∀i = 1, . . . , n(Xi ∈ {H2i−1, H2i})}.

For the second claim let T = H1H
′
1 · · ·HnH

′
n, Ts = T andΣ = {u(X1 · · ·Xn) |

∀i = 1, . . . , n(Xi ∈ {Hi, H
′
i})}. Then the set of minimal UCs implied by Σ is Σ

itself. Since Σ−1 = {a(H1H
′
1 · · ·Hi−1H

′
i−1Hi+1H

′
i+1 · · ·HnH

′
n) | i = 1, . . . , n}

there is an Armstrong table for Σ and nfs(Ts) where the number of rows is in
O(n). ��
We can see that the representation in form of an Armstrong table can offer
tremendous space savings over the representation as a UC set, and vice versa. It
seems intuitive to use the representation as Armstrong tables for the discovery
of semantically meaningful constraints, and the representation as constraint sets
for the discovery of semantically meaningless constraints. This intuition has been
confirmed empirically for the class of functional dependencies over relations [13].

5 Mining Keys from SQL Tables

In this section we will establish algorithms for the automated discovery of unique-
ness constraints from given SQL tables. Such algorithms have direct applications
in schema design, query optimization, and the semantic sampling of databases.
In requirements engineering, for example, these algorithms can be utilized to
discover semantically meaningful uniqueness constraints from sample data that
domain experts provide.

5.1 Mining by Pairwise Comparison of Rows

Our first algorithm gradually inspects all pairs of rows of the given table, and
adjusts the set of minimal uniqueness constraints accordingly. Note that the
output of Algorithm 5 is uc(t) = ∅ whenever t contains any duplicate rows.
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Algorithm 5 . (Mining of UCs by pairwise row comparison)

Input: table t over T ;
Output: set uc(t) of minimal UCs over T satisfied by t
Method:
(A00) uc(t) := {u(∅)};
(A01) for all r1, r2 ∈ t such that r1 �= r2 do

(A02) for all u(X) ∈ uc(t) do
(A03) if X ⊆ ags(r1, r2) then
(A04) uc(t) := uc(t)− {u(X)};
(A05) for all H ∈ T −X where H /∈ ags(r1, r2) do
(A06) uc(t) := uc(t) ∪ {u(XH)};
(A07) enddo;
(A08) endif;
(A09) enddo;
(A10) while u(X), u(Y ) ∈ uc(t) where X ⊆ Y , remove u(Y ) from uc(t);
(A11) enddo; ��
Example 7. Let t, t′ be the samples over Schedule from Table 2, respectively.
The following table shows the evolution of the minimal UCs by gradually adding
a new pair of rows until the entire table has been explored.

rows: 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4
uc(t): T TR, TC TRL, TC TRL, TC TRL, TC TRL, TC
uc(t′): T TR, TL, TC TR, TL, TC TR, TL, TC TR, TL, TC TR, TL, TC

The UCs are those explained in the introductory section of this article. ��
Theorem 6. On input (T, t), Algorithm 5 computes the set of minimal UCs
satisfied by table t over T in time O(|T |2 × |t|2 × m2

t ) where mt denotes the
maximum number of minimal UCs satisfied by any subset s ⊆ t. ��

5.2 Mining by Exploration of Hyper-Graph Transversals

Our next algorithm computes transversals for the complements of strong agree
sets in the given table. The algorithm is compact and benefits from any progress
on the popular problem of computing hyper-graph transversals [8].

Algorithm 7 . (Mining of UCs by exploring hyper-graph transversals)

Input: table t over T ;
Output: set uc(t) of minimal UCs over T satisfied by t
Method:
(A0) disagw(t) := {T − ags(r1, r2) | r1, r2 ∈ t ∧ r1 �= r2};
(A1) nec-disagw(t) := {X ∈ disagw(t) | ¬∃Y ∈ disagw(t)(Y ⊂ X)};
(A2) H := (T, nec-disagw(t));
(A3) uc(t) := {u(X) | X ∈ Tr(H)}; ��
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Example 8. Let t, t′ be the tables over Schedule from Table 2. The next table
shows the steps of applying Algorithm 7 to (Schedule, t) and (Schedule, t′),
respectively.

ags(·) nec-disagw(·) u(·)
t: CLR, TL, TR,L,R, T T,CR,CL u(CT ), u(TLR)
t′: CLR, T, ∅ T,CLR u(CT ), u(LT ), u(RT )

The UCs are those explained in the introductory section of this article. ��
The following lemma explains the soundness of Algorithm 7.

Lemma 3. Let t be a table over table schema T . Then for all X ⊆ T , X ∈
Tr(T, nec-disagw(t)) if and only if |=t u(X) and for all H ∈ X, �|=t u(X −H).

Proof. We begin by showing that the two conditions are necessary for every
X ∈ Tr(T, nec-disagw(t)). First, if t violated u(X), then there were two rows
r1, r2 ∈ t such that r1 �= r2 and X ⊆ ags(r1, r2). Hence, X ∩ disagw(r1, r2) = ∅
and there would be some Y ∈ nec-disagw(t) such that Y ⊆ disagw(r1, r2). Thus,
X ∩ Y = ∅ which contradicts the hypothesis that X ∈ Tr(T, nec-disagw(t)).
We conclude that t satisfies u(X). Suppose there was some H ∈ X such that
|=t u(X−H). Then it would follow that for all r1, r2 ∈ t such that r1 �= r2 it held
that (X−H)∩disagw(r1, r2) �= ∅. This, however, would violate the minimality of
X ∈ Tr(T, nec-disagw(t)). Therefore, it holds that for all H ∈ X , �|=t u(X −H).

We show now that the two conditions are sufficient for X to be in
Tr(T, nec-disagw(t)). From |=t u(X) follows that for all r1, r2 ∈ t where r1 �= r2
we have X ∩disagw(r1, r2) �= ∅. From �|=t u(X−H) for all H ∈ X it follows that
for allH ∈ X there are some r1, r2 ∈ t such that r1 �= r2 andX−H ⊆ ags(r1, r2).
The last condition means that (X−H)∩disagw(r1, r2) = ∅ holds. Consequently,
for all H ∈ X there is some Z ∈ nec-disagw(t) such that Z ⊆ disagw(r1, r2), and
thus (X −H) ∩ Z = ∅. We conclude that X ∈ Tr(T, nec-disagw(t)). ��
The upper bound in the next result follows from the correctness of Algorithm 7
and known upper bounds for the hyper-graph transversal problem [8].

Theorem 8. On input (T, t), Algorithm 7 computes the
set of minimal UCs satisfied by table t over T in time

O
(
|T |2 × |t|2 × |nec-disagw(t)|+

(∏
X∈nec-disagw(t) |X |

)2
)
. ��

6 Empirical Measures of Usefulness

It is non-trivial to measure the usefulness of Armstrong tables for the acquisi-
tion of meaningful SQL keys. One may conduct a two-phase experiment where
design teams are given an application domain and are asked to specify the set of
UCs they perceive as meaningful. In the first phase, they are only given a natu-
ral language description by domain experts. In the second phase, they are also
given an Armstrong table for the set of UCs they perceive currently meaningful.
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Whenever new UCs are identified a corresponding Armstrong table can be pro-
duced repeatedly. For an experiment or assignment, one may specify a target set
Σt and possibly a target NFS nfs(T t

s ). One may then measure the quality of the
output sets (Σi, T

i
s) of the ith phase against the target set (Σt, T

t
s), for i = 1, 2.

If there is an increase in quality, then Armstrong tables are useful indeed. The
question remains how to measure the quality of the output sets against the tar-
get sets. For this purpose we propose three measures. Let min(Σ) denote the
UCs in Σ that are minimal. Soundness measures which of the (minimal) UCs
and headers currently perceived as meaningful are actually meaningful:

soundΣt,T t
s
(Σ, Ts) =

|min(Σ) ∩Σ∗
t |+ |Ts ∩ T t

s |
|min(Σ)|+ |Ts| .

If Σ = ∅ and Ts = ∅, we define soundΣt,T t
s
(Σ, Ts) = 1. Completeness mea-

sures which of the actually meaningful (minimal) UCs and headers in NFSs are
currently perceived as meaningful:

completeΣt,T t
s
(Σ, Ts) =

|Σ∗ ∩min(Σt)|+ |Ts ∩ T t
s |

|min(Σt)|+ |T t
s |

.

If Σt = ∅ and T t
s = ∅, we define completeΣt,T t

s
(Σ, Ts) = 1. Finally, proximity

combines soundness and completeness:

prox((Σ, Ts), (Σt, T
t
s)) =

|(min(Σ) ∩Σ∗
t ) ∪ (Σ∗ ∩min(Σt))|+ |Ts ∩ T t

s |
|min(Σ) ∪min(Σt)|+ |Ts ∪ T t

s |
.

If Σ = ∅ = Σt and Ts = ∅ = T t
s , we define prox((Σ, Ts), (Σt, T

t
s)) = 1.

Example 9. Let Σt = {u(CT ), u(LT ), u(RT )}, Schedulets = CT over ta-
ble schema Schedule. Let Σ = {u(CT ), u(LRT ), u(CLR)} and Ts =
LRT . Then soundΣt,T t

s
(Σ, Ts) = 1/2, completeΣt,T t

s
(Σ, Ts) = 2/5, and

prox((Σ, Ts), (Σt, T
t
s )) = 1/3. ��

In database courses one may use Armstrong tables as automated feedback to so-
lutions. Our measures can be applied to automatically mark non-multiple choice
questions. This can reduce errors and save time in assessing course work.

7 Conclusion and Future Work

We investigated the data- and schema-driven discovery of SQL keys. We es-
tablished insights into properties of Armstrong tables. These can increase the
discovery of semantically meaningful SQL keys in practice, leading to better
schema designs and improved data processing. We established algorithms to au-
tomatically discover SQL keys in given SQL tables. These have applications in
requirement acquisition, schema design and query optimization. A scenario of
how our algorithms can be used together in practice is given in the introduction.
We defined measures to assess the difference between sets of SQL keys. These
can be applied to validate the usefulness of Armstrong tables and to database
education. For the future we plan to implement our results in a design aid, to
test our measures in applications, and to address the class of foreign keys.
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Abstract. Over the past few years, the artifact-centric approach to workflow 
modeling has been beneficially evidenced for both academic and industrial 
researches. This approach not only provides a rich insight to key business data 
and their evolution through business processes, but also allows business and IT 
stakeholders to have a single unified view of the processes. There are several 
studies on the modeling and its theoretical aspects; however, the possible 
realization of this approach in a particular technology is still in its fancy stage. 
Recently, there exist proposals to achieve such realization by converting from 
artifact-centric model to activity-centric model that can be implemented on 
existing workflow management systems. We argue that this approach has 
several drawbacks as the transformation, which is unidirectional, poses loss of 
information. In this paper, we propose a framework for the realization of 
artifact-centric business processes in service-oriented architecture achieving a 
fully automated mechanism that can realize the artifact-centric model without 
performing model transformation. A comprehensive discussion and comparison 
of our framework and other existing works are also presented. 

1 Introduction 

To meet the challenges of globalization, business processes demand for technologies 
that can support more efficient and economical way of automation and collaboration. 
Promisingly, Service-Oriented Architecture (SOA) shows itself as technology enabler 
that can support such needs. During the recent years, an artifact-centric approach to 
business process modeling has been introduced as a propitious paradigm that lends 
itself well to SOA design principle and model-driven architecture (MDA) design 
concept [1, 3, 5, 7, 12]. This approach has been evidenced in both academic and 
industrial researches where it not only provides higher level of flexibility of workflow 
enactment and evolution, but also facilitates the process of business transformation 
and helps communicating the business intent for consolidating business operations 
across organizations [1, 2, 3, 4, 5, 8, 9]. In essence, the approach has a central focus 
on defining key business entities, so called “business artifacts”, which are evolved 
and manipulated within a process. The controlling mechanism that governs the whole 
process can be implemented by business rules. So far, there have been several studies 
on the modeling and theoretical aspects of the artifact-centric approach; however, its 
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realization and system implementation, especially under SOA and MDA environment, 
is still in its fancy stage.  

One possible and practical approach for realizing the artifact-centric business 
processes is by transforming an artifact-centric model to a conceptual flow model, 
which is an activity-centric (control-flow) model. The conceptual flow model is, then, 
mapped into an executable workflow, e.g., BPEL [5]. The advantage of using this 
approach is an ease of implementation as workflow technologies and standards based 
on the traditional model have been developed, e.g., in [11, 12]. In spite of such good 
point, we argue that this approach has several drawbacks as the transformation, which 
is unidirectional, poses loss of information. By converting the model, business rules 
are degraded into control flows; therefore, it is difficult to track and manage the rules 
based on the converted model. The flexibility of the process is also reduced as 
business rules are not available to be modified at run-time. Another possible approach 
is to realize the artifact-centric process model directly without converting the model. 
This can be considered as more efficient and automatic approach for realizing the 
model. We claim that the latter approach overcomes the issues of the former 
approach. In this paper, we propose a framework for the realization of artifact-centric 
business processes. The framework consists of artifact-centric workflow model and a 
mechanism that can automatically realize and execute the model under the service-
oriented environment. We also provide detailed discussions on technical issues and 
challenges of our realization framework as well as the comparison with existing 
activity-centric workflow systems. 

The remainder of this paper is organized as follows. Section 2 presents an artifact-
centric approach to process modeling. Section 3 discusses the realization framework 
for artifact-centric business processes. Section 4 shows implementation and 
evaluation of our framework. Section 5 discusses and reviews the related works. 
Finally, the conclusion and future work are given in Section 6. 

2 Artifact-Centric Approach to Business Process Modeling 

In this section, we introduce an example of business processes to illustrate that we can 
identify business artifacts and use them to construct an artifact-centric business 
process in order to use it for analysing and capturing the requirement of our prototype 
system.  In the artifact-centric approach, a business process can be constructed using 
business artifacts. An artifact stores its business relevant information and its lifecycle. 
The state transition of artifacts is achieved by a service and is controlled by a set of 
business rules. Our example of business process is adapted from a simple online 
ordering process. The process starts when a customer places an order including billing 
information through a web site. Then the order is sent to a manufacturing factory 
where the ordered product is assembled, tested and packaged. Finally, the product is 
shipped to the customer. After we examine this process, several business artifacts are 
identified. Fig. 1 shows data model and lifecycle model of key business artifacts 
involved with this business process. For each artifact, the data model represents its 
data attributes, while the lifecycle model represents its state transition of the artifact. 



 A Framework for Realizing Artifact-Centric Business Processes in SOA 65 

 

Fig. 1. Artifacts and their lifecycles in product ordering processes 

We can see that this process consists of three classes of artifacts: invoice, shipment 
and order. Apart from the artifacts, in the lifecycle model we can see two components 
that are essential for constructing a complete business process – those are services 
(a.k.a. tasks) and business rules. A service is used to make change on artifacts. An 
association between services and business artifact(s) is specified by using business 
rules as to describe on what condition such service is performed on the artifact(s). 
More details are described in Section 3.2. Based on initial concept of artifact-centric 
business processes, we analyzed the problem domain to understand basic 
requirements that needed to be addressed in our framework. Here, we summarized our 
requirements into three points listed in following paragraphs.  

− A Formal Process Definition of Artifact-Centric Business Process (ACP) 
In artifact-centric approach, the conceptual model of an artifact-centric business 
process is defined in a declarative manner. The conceptual model provides a high 
level specification of a business process execution. Normally, it is used to 
communicate business intents between stakeholders but it can’t be executed by a 
computer system. In order to realize the conceptual model of an artifact-centric 
business process, we need to develop a process definition that contains all concrete 
details required by a process execution. 
− A Process Deployment and Execution 
The process deployment has to be developed in such a way that it can parse the model 
definition, map parsed data to predefined classes, and deploy a process in a web 
service environment. When a client invokes the deployed process, the process and 
other related (e.g., artifacts, services, rules) instances need to be created. The concept 
of executing and managing these instances for artifact-centric business processes are 
new and relatively challenging. This is because the core constructs of the artifact-
centric process model differ from those of the traditional activity-centric model. 
− Business Rule Definition and Evaluation 
In the traditional approach, business logics are defined explicitly using control flows 
and activities. In contrast, in artifact-centric approach, we use business rules to define 
an association between artifacts and services. Each rule describes which service is 
invoked and which artifact(s) is changed under what conditions. This requires an 
investigation of how rules can be defined in the most expressive and effective 
manner. In the implementation, the integration of a suitable rule engine to our system 
to handle the artifact-centric process execution is also challenging. 
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3 ACP Realization Framework 

In this section, we illustrate our framework for automated realization of artifact-
centric business processes. The detailed technical discussion on proposed system 
architecture is also presented. It is quite easy to comprehend the artifact-centric 
business process model at the conceptual level from our motivating example since it 
was designed to incorporate information and behaviour aspects of a business process. 
As a result, we can convey and communicate business intent among a variety of 
stakeholders. As already introduced, two approaches are observed. The first approach 
is to convert the artifact-centric model into a conceptual model in a procedural 
manner. The good side is that the artifact model can be easily to be implemented 
using traditional workflow technologies. Its drawback is that the flexibility of the 
artifact model and data may lose in the model conversion. On the contrary, our 
approach directly realizes the artifact-centric process model. Here, we propose an 
ACP realization framework based on the direct approach, and it is illustrated in Fig. 2. 

 

Fig. 2. ACP realization framework 

In our framework, we aim at fully automated realization from ACP definition to 
its execution. This framework does not require additional model transformation (from 
ACP model to workflow executable model) nor require backward mapping 
mechanism to validate the running instances with the original ACP model. The 
framework contains only ACP executable model and the automated realization 
mechanism that can directly execute such process definitions. In the task-based 
model, data is defined separately at later time (in most cases after the task has already 
been defined). While in run-time, workflow systems do not realize the relationship 
between the current stage of task execution and the state of the data or artifacts that 
being manipulated. This poses a technical problem when attempting to discover the 
correspondence and to track run-time instances of those running artifacts directly in 
the ACP model. In our approach, instances of process, services, and artifacts being 
manipulated can be directly reported regarding their ACP model. Monitoring a 
progress of a particular business process can be efficiently achieved at both artifact 
and process levels. We can see that such direct monitoring and reporting are more 
efficient as an additional reverse mapping from instances of activity-centric model to 
artifact-centric model is not needed. 

3.1 Artifact-Centric Business Process Model 

Here, we introduce an artifact-centric business process model (ACP model) that has 
been proposed in our previous work [9, 10]. Our ACP model consists of sets of 
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artifact classes, services, and business rules. An artifact, which is a key business 
entity involved in business processes, contains its relevant attributes and many finite 
processing states. Let Z = { ,  ..., } be a finite set of artifact classes that are 
used in a particular process. Each artifact class ∈Z is defined as a tuple (A, , S, 

) where set A = { , , …, , and each ∈A is a name-value pair attribute; set 
S = { , ,...., } contains the possible states of the instances of class ;  is 
the initial state, and  ⊆ S is a set of its final states. A service is a task that is used 
to perform read/write operations on some artifact(s), and it is denoted as  
v( , , .., ) where , , ..,  are artifacts that are read/updated by service v. 
A business rule is used to associate service(s) with artifact(s). It is defined in a 
Condition-Action style to describe on what pre-condition a particular service is 
executed, and on what post-condition after performing such service must satisfy. A 
business rule, denoted as r, is a tuple (λ, β, v) where λ and β are a pre-condition and 
post-condition, respectively; v is a service that performs read/update operations on the 
attributes and the processing states of some artifacts in schema Z. We restrict both 
pre- and post-conditions to be expressed by a conjunctive normal form. This form can 
contain two types of proposition over schema Z: (1) state proposition (by instate 
predicate) and (2) attribute proposition (by defined predicate and scalar comparison 
operators). We write defined(C, a) if attribute a∈C.A of artifact of class C has a value; 
and instate(C, s) if state s∈C.S of artifact of class C is active. Initially, instate(C, 
 ) implies ∀x∈C.A, ¬defined(C, x). A complete set of business rules defined for a 
particular process model specifies the control logic (named ECA flow) of the whole 
process from the beginning to the termination of the process. Table 1 shows an 
example subset of business rules that are used in our product ordering process. 

Table 1. Example of business rules 

r1: Customer requests to make an order O 
Pre-condition  instate(O,init) ∧ defined(O,OrderID) ∧ defined(O.CustomerName) ^ 

defined(O.CustomerAddress) 
Service  createOrder(O)  
Post-condition  instate(O,Add_OrderItem) ^ defined(O.OrderID) ^ defined(O.CustomerName)  ^ 

defined(O.CustomerAddress) 
r2: Create Shipment S for an order O 
Pre-condition  instate(O,Add_Order_Item) ^ instate(S,Init) ^ defined(O. GrandTotal) ^ 

O.GrandTotal>0  ^ defined(S.ShipID) ^  defined(S.OrderID)  ^ 
defined(S.ShippingAddress) 

Service  createShipping(S,O) 
Post-condition  instate(O,Create_Shipping) ^ instate(S,waiting_for_Ship_Item) ^ 

defined(S.CustomerName) ^ defined(S.ShippingAddress) ^  defined(S.ShipID) ^ 
defined(S.OrderID) 

r3: Create Invoice I for an order O 
Pre-condition  instate(I,Init) ^ instate(O,Creating_Shipping) ^ defined(I.InvoiceID) ^ 

defined(I.OrderID) ^ defined(I.BillingAddress) ^ defined(I.InvoiceDate) ^ 
defined(I.Total) ^ I.Total= O.GrandTotal 

Service  createInvoice(I,O) 
Post-condition  instate(V,Unpaid) ^ instate(O,Billed) 
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3.2 ACP Executable Model 

Now, we propose to use a serializable and executable version of the ACP model based 
on the ACP Model definitions described in Section 3.1. Our artifact-centric 
executable process model is defined by using XML, and it consists of three 
definitions: artifact definition, business rule definition, and service definition, as 
shown in Fig. 3. It contains implementation details required by a system to execute a 
particular business process and they are used for creating running instances. 

 

Fig. 3. Artifact, Service, and Business rule definitions 

- Artifact Definition composes of a set of attributes and states.  An attribute 
definition provides details of business data (<name>, <type>, and <structure>) 
that can be stored in each attribute of a particular artifact, such as attribute Name, 
data type and data Structure. A state definition provides details of each state 
(<name>, <type>) in a particular artifact life cycle, such as name of state, initial 
state and final state.  

- Business Rule Definition is used to define an ECA-like rule description. This 
rule consists of event, precondition and action (<onEvent>, <precon>, and <do>). 
Element <onEvent> provides details of which event can trigger a particular rule. 
Element <preCon> is a condition that needs to be satisfied in order to take a 
further action. Element <do> is a task or service that needs to be invoked. 
Element <invoke> provides service name and operation name of a designated 
web service. Moreover, Mapping rules and transition rules (<map>, <transition>) 
are defined in this part as well. Mapping rule provides details of data mapping 
between artifact and message. The transition rule is used to control state 
transition for each artifact involving in a step of process execution. 

- Service Definition defines concrete details of a web service. This definition 
provides information that is necessary for a service invocation, such as service 
name, operation, WSDL location, and port. In this paper, we consider only inputs 
and outputs of a web service not including its behaviours. 
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Due to the fact that the current web service technologies do not support an artifact as 
an input of a web service. To address this issue, an internal data mapping mechanism 
is required in order to correlate the passing messages (input/output) and their 
corresponding data attributes of artifacts. We use a mapping rule to map data between 
artifact and SOAP message; therefore we introduce mapping rules, as shown in Fig. 4 
and Fig. 5 into our framework. We consider that there are two types of data mapping 
in our framework, which are mapping from message to artifacts and from artifacts to 
message. We include mapping type to indicate a direction of mapping. The rule is 
also included details of a source (<from>) and a destination (<to>) for mapping 
between artifact and message. These two elements contain information that helps the 
system to locate corresponding artifact’s attribute or message’s part to be map when a 
web service is invoked. 

 

Fig. 4. Data mapping between SOAP Message and Artifacts 

 

Fig. 5. Example of mapping rules 

3.3 Run-Time ACP Instances 

During a process execution, we need to keep track the status of a running process. 
This allows the system administrator to inspect the status during a runtime and after a 
completion of a process execution. We classify instances of ACP into four following 
types where each of which corresponds to individual component of ACP model. 

- Process instance – When the process is enacted then the system initially creates 
process instance. Once a process instance is created, it will be given its name 
corresponding to executed business process and will be given an identifier key. 
Process instance acts as a container to store other running instances, which are 
artifact instance, rule instance and service instance. 

- Artifact instance – In a process, an instance of particular artifact class can be 
created at the time the process is initialized or after service invocation (that 
performs a creation of artifact). Newly created artifact instance will be populated 
with artifact definition data and will be given an artifact identifier key. This 
instance serves a purpose of storing information including business data and 
lifecycle during each step of business process execution. Thus, it is a key to 
indicate progress of a running process. 
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- Service instance – Service is instantiated when it is invoked (as defined by the 
action in a business rule). It not only stores service invocation information 
defined in a service definition but it also captures input/output message data as 
well as timestamp. 

- Rule instance – An instance of business rule is created when the rule is triggered 
by event and its pre-condition holds. A rule instance provides information 
regarding decision making. By inspecting this instance, we will know which rule 
is fired, what time rule is fired, and what data triggered rule firing. 

Based on the above types of instances of ACP, we can gather the complete execution 
traces by recording every instance type on the log records. These records of a 
particular process permit the real-time (direct) monitoring of the process and its 
components without the reverse mapping, which is required for the existing model 
transformation realization approach, i.e., covert ACP model to task-based model and 
run it on existing workflow system. It is worthwhile mentioning that with our 
framework, business rules can be modified/removed/added at run-time while still able 
to reflect its process model. At run-time, we allow our ACP system to keep different 
versions of business rule for a particular process model by storing the mapping of 
every version and its original version. This feature enhances the system ability to be 
able to track/monitor different versions of (process and rule) instances of the same 
process. We also claim this feature to be one of the advantages of our realization 
framework compared with the existing approach. 

4 Implementation and Evaluation 

4.1 ACP System Architecture and Its Components 

In this section we show our proposed architecture of the artifact-centric process 
system (ACP System), as illustrated in Fig. 6. This system architecture ensures that 
we can address those requirements from the previous section. We adopted the concept 
of the event driven architecture and service-oriented architecture. 

 

Fig. 6. ACP System 

Here, we describe each ACP system’s component in more details. 

− Process Deployer is used to deploy ACP Model definition file. The definition file 
will be parsed to generate running instances of a particular business process. 
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− Business Rule Engine provides a rule evaluating functionality. For any change in 
a running process, a rule engine will evaluate an instance in order to determine 
the next possible action that will be undertaken. 

− Process Controller is used to manage instances of a process based on rule 
engine‘s command.  Once the process controller receives a command from rule 
engine to start a new process execution, it will use a process factory to create 
running process instance. The factory will identify the corresponding instance 
and create it. The created process instance will be given an id for identification 
purpose.   The process controller can issue a command to an artifact controller to 
update artifact instances or to web-service controller to invoke web services. For 
any changes in a running process, the process controller will consult the rule 
engine to perform the next possible action. 

− Web Service Controller is used to invoke web services to process artifact data. To 
invoke a web service, the controller creates a soap message corresponding to 
message definition in WSDL. The artifact data is mapped to message data using a 
mapping rule. Finally, the request message is sent to a designated web service.  
Once a response message is returned, the service controller processes the 
message, and returned message data is mapped to corresponding artifact attribute. 

− Artifact Controller is used to manage and update artifact (which is stored in 
external repository). After the service controller receives a response message 
from a web service, a data mapper will extract the message. Then the artifact 
controller uses such data to update corresponding artifacts. 

− Front-end UI Interface, proposed in our previous work [10], is used to manage 
web-based interactions between ACP system and users, which includes automatic 
generation of web pages and receiving/responding via web form interfaces. 

4.2 Run-Time Execution 

Here, we discuss operations of our ACP system in more details including instantiation 
of a running instance, operation of rule engine and how each component works 
together to coordinate a process execution. 

− Creation of a Running Instance 
The ACP system has the component so called process factory to create running 
instances from an ACP definition. Once a process execution has started, the process 
controller will call a process factory method to create a process instance and also 
other running instances. The factory will identify a correct deployed process and 
instantiate corresponding instances. During instantiation of running instances, 
implantation data stored in the definition file will be parsed and mapped to 
corresponding instances.  Upon receiving a process instance, the process controller 
will register the process instance in order to be able to keep track processes that are 
currently running. 
− Integration of Rule Engine 
In Artifact-centric business process, business rules are main mechanism to control 
interaction between artifacts and services. The rule engine is integrated into our 
system to provide functionality for evaluating business rules. The rule engine will be 
activated once it receives an internal event generated by the process controller. During 
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the activation, a process instance will be feed as an input of a rule engine. A process’s 
data is validated against a set of conditions. If conditions are satisfied, an action will 
be undertaken to make changes to artifacts. A rule instance that keeps track of rule 
execution is also created in the process as well.  In our current prototype, we have 
integrated Drools rule engine [21] since the engine provides very efficient ways of 
evaluating business rules. The rule format is also easy to comprehend and can be 
written in xml format and drool format. Drools engine conforms to JSR94 standard 
and provide a set of APIs that allows us to integrate it to our system. 
− Coordination of Running Instances 
In order to coordinate running instances, we address this issue using process 
controller, artifact controller and service controller. Here, we will use our motivation 
example to describe how these controllers work together to coordinate all instances 
that are created during a process execution.  Once the ACP system receives a request 
from a user to start an ordering process, the rule engine will evaluate the request. If 
preconditions of rule r1 are satisfied, the rule engine will issue a command to the 
process controller to start a process execution of an ordering process. The rule 
instance of rule r1 is also created at this point as well.  The process controller 
invokes the process factory. The factory identifies the deployed process and 
instantiate a process instance for an ordering process. After receiving a corresponding 
process instance, the process controller will initialize a unique process id and register 
the process instance to a list of running process instance. Once a process instance is 
registered, an instance of rule r1 is added to a list of rule instances. The artifact 
instance of an order artifact is also created by the factory and added to a list of artifact 
instances. The artifact instance is given a unique id that is used for identification 
purpose and its state is set to start.  Next, the process controller orders a web-service 
controller to invoke the createOrder service. The service instance of createOrder 
service is instantiated and added to a list of service instances. The service controller 
will communicate with the artifact controller to retrieve data from corresponding 
artifacts. The createOrder service is then invoked. Once a response is returned, a 
service controller will send message data to an artifact controller to update the 
artifacts. The unique artifact ensures that correct artifact instance is being updated. A 
new artifact instance will be generated if necessary during this step as well. Mapping 
rule defined in rule r1 controls the data mapping between service input-output and 
artifact instance. Once finishing data updating, the artifact controller will update a 
state of an order artifact from start to open_for_item.  After completion of artifact 
updating, the artifact controller sends a signal to the process controller. The process 
controller will generate Artifact_change event to trigger rule engine to continue a 
process until ordering process is completed. 

As we can see that each step of a process execution, the ACP system creates 
artifact instances, service instances and rule instances (cf. Section 3.3). These 
instances can be used to monitor a process since they contain overall information. To 
prove our concepts, we developed a prototype of ACP system and generated a test 
case based on the motivating example.  After the prototype executed a test case, it is 
able to process data from running instances and generate a log file. In a log file, we 
can see detailed information for each step of a particular business process execution. 
To generate this log file, the system need to capture data from rule instances, artifact 
instances and service instance at run-time. A rule instance contains identifier keys that 



 A Framework for Realizing Artifact-Centric Business Processes in SOA 73 

belong to involving service instance and artifact instance. These keys help define a 
relationship between rule instance and the other instance in each step of a process 
execution. This enables our system to be able to generate a record for each step during 
run-time. As shown in Fig. 7, Pre and Post-artifact are also recorded in a log file to 
show progress of each artifact from initial state to final state. The system records 
these data before and after service invocation. We can also use these pre and post 
artifact data to help facilitate process provenance if it is necessary.  Therefore, this is 
a solid proof to illustrate an advantage of artifact-centric business process regarding to 
monitoring and reporting. 

 

Fig. 7. Log record of a test case based on the motivating example 

4.3 Technical Evaluation 

In this section, based on the result of our implementation prototype, we discuss on the 
technical evaluation of our ACP system as well as a detailed comparison between two 
realizations approaches. After a prototype of ACP system is completed, we have 
simulated test cases based on our online ordering process. The result shows that our 
framework can address our requirements. The developed system is able to manage 
running instances created during process execution. Each running instance, e.g. 
service instance, stores process execution data and can be used for purpose of 
monitoring and reporting as shown in Fig. 7. Log record of a test case based on the 
motivating example. A business rule engine is proved to be able to work solely to 
provide decision making that affects on running processes. In our current prototype, 
we centralize all decision making process into a single rule engine. Thus, it simplifies 
rule management. However, this may raise performance issue of process execution if 
there are thousands of business rule to be evaluated by a rule engine. Non-
deterministic is also an issue since a rule engine fires rules simultaneously. However, 
their ordering is non-deterministic. Thus, sequence of process execution may be 
different even with the same business process. A task for evaluating reachability of 
running processes is needed to address this issue. In our implementation, we assume 
that there is no issue regarding to non-deterministic. Since business process models 
are defined implicitly in artifact-centric approach, this would be another issue for a 
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process modeler. An artifact model doesn’t have any explicit control flows as in the 
traditional process model so this is not an easy task for the process modeler. Thus, an 
intuitive process designing tool needs to be further developed. As we know that there 
is another way to implement artifact-centric processes, we compare our system to this 
existing artifact system implemented using the model transformation approach 
described in papers [11, 5]. 
− Realization Approach 
In our implementation, we used our direct approach to realize an ACP model whereas 
the opposite approach proposed in [11] attempts the conversion from an artifact-
centric process model to a procedural model, e.g. BPEL. We consider that logical 
information of artifact-centric process model can be lost during the model conversion 
process since some logical information which defined in a declarative manner, e.g. 
business rules, is spilt and mapped into several control flows in a procedural model.  
Moreover, this conversion task is quite cumbersome, error-prone and time consuming. 
Our approach ensures that there is no loss of data during transformation of the 
conceptual model since logical information of the conceptual model can be mapped 
faithfully to the proposed executable model. Without any model conversion, this 
approach uses less time and reduces chance of making mistake. Thus, direct approach 
is considered to be more appropriate way to realize the artifact model compared to 
model conversion approach.   
− Flexibility and Changes Management 
Flexibility is strength of a process model in declarative style. A conceptual model of 
artifact-centric business process gains this advantage as well since it is specified in the 
same style. Direct approach that we used to realize the conceptual model guarantees 
that the executable model inherits flexibility from its conceptual model, whereas the 
other approach does not since tasks are locked up by control flows. As a result, 
flexibility is well supported for design-time and run-time for our approach, whereas 
the other approach partially supports flexibility at run-time as it depends on the 
functionality offered by a particular workflow system. Thus, Changes can be made 
directly on the implementation level in our direct realization approach. In contrast, 
changes have to made at design-time and then convert to the implementation if an 
artifact model realized in a procedural workflow. 
− Monitoring and Reporting 
As opposed to traditional approach for process modeling, an artifact-centric process 
model focuses on business artifacts as its first class citizen to model a particular 
business process. Each business artifact contains business-relevant data and its life 
cycle. Artifact data and life cycle of each artifact reflect progress of a particular 
process toward a business goal. Thus, business process monitoring and tracking can 
be done by inspecting artifacts. Our approach provides a feature of direct and 
consistent monitoring and reporting at both model and instance level since both data 
and life cycle are combined at model level and instance level. Our implementation 
illustrates that a particular process can be monitored by directly inspecting running 
instances at run-time without any technique involving data gathering and processing.  
Whereas, the other approach needs a sophisticated mechanism which may include 
retransformation from the implementation specification back to its model 
specification and backward mapping for some data to its model to gather and process 
all process information to provide monitoring and reporting functionality.  
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− Verification and Conformance Checking 
Verification and conformance checking is very essential task for both traditional 
approach and artifact-centric approach for modeling business process to ensure 
validity of developed model so that it can be realized on an automated system to 
support decision making for a particular business process. Since we used direct 
approach to realize artifact-centric business process model, single model verification 
for both design-time and run-time can be achieved because an implementation level 
reflects its conceptual level. Thus, conformance checking can be achieved directly, 
whereas the other realization approach needs to have separate verification on both 
Artifact model and procedural model. Run-time verification does not reflect the base 
artifact model because of the conversion. Therefore, conformance checking needs 
some additional procedures.  
− Standards and Technologies Support 
Although our approach has several advantages, there are some drawbacks regarding 
to standards and technologies supports.  Artifact-centric model realized on traditional 
workflow benefits from current industry-wide standards and technologies, e.g. 
OASIS, OMG, W3C and etc. Thus, an implementation of this realization approach is 
much easier and faster than our approach. Moreover, interoperability and execution in 
distributed environment are well supported when the artifact model is realized on 
traditional task-based workflow system. Currently, the developed prototype system 
only supports execution of an artifact-centric business process model in local 
environment and need further extension to handle distributed executions. 

5 Related Work and Discussion 

The notion of a business artifact was originated in [1] where business operational 
model can be constructed using a collection of lifecycles of all artifacts and their 
interaction. The operational model based on business artifacts provides the benefits 
that are flexibility of the representation, ability for analyzing changes, and ability for 
managing application. Moreover, Rong et al [2] improved the idea of the business 
operational model by introducing nine operational patterns for constructing the model 
and the method for verification the model. The concept of business artifact was 
further adopted in [5] as a business process model can be constructed using four core 
constructs that are artifacts, artifact lifecycles, services, and association. To realize an 
artifact-centered model, this paper presented a three-layer framework. The artifact-
centric business process model considered as a logical specification sits on the top 
level. Then, it is converted to a conceptual flow that captures an essence of the top-
level model in a procedural manner. Finally, it is mapped into an operational 
workflow for automation. Gerede and Su [3] focused on the middle layer of the 
framework, a conceptual flow, as it provides a separation between the logical 
specification and the physical execution; hence changes can be made freely to the 
implementation level as long as the logical specification remains unchanged. 
Therefore, the conceptual flow needs to be verified and optimized to ensure its 
correctness and performance respectively. This paper presented verification and 
optimization techniques for a conceptual flow. 

There were other works that extend the artifact-centric approach. Yongchareon and 
Liu [9] introduced a process view framework for artifact-centric business processes 
followed by the extended version for modeling inter-organizational processes [22].  
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An (public/private) artifact-centric process view can be used to support participated 
organizations to have their own freedom to model and implement their own parts of 
the process while preserving global correctness of the collaboration. Narendra et al. 
[12] tried to address flexibility and monitoring issues of the service composition using 
business artifacts, and their lifecycles. The concept of context-based artifact was 
introduced in this paper. The contexts are not only used to keep track of changes that 
make on all artifacts but also used in the coordination between artifacts and web 
services. To support inter-organization, the artifact-centric hubs were proposed by 
Hull et al. [6]. The hubs provide a centralized, computerized rendezvous point, where 
stakeholders can access data of the common interest and check the current status of an 
aggregate process. The framework also incorporates access control mechanisms to 
cope security issues.  Instead of the centralized hubs, Lohmann and Wolf [7] 
proposed the use of artifacts in a choreography setting. In particular, the artifact-
centric business process models were enhanced with the concept of agents and 
locations. By defining precisely and clearly who is accessing an artifact and where the 
artifact is located, an interaction model that acts as a contract between the agents can 
be generated automatically. Liu el al [23] proposed an approach to performance 
monitoring based on Artifact-centric business. The first step is to create monitoring 
context skeletons from business-artifact definition and from user inputs. The second 
step is to derive the executable monitoring models from the monitoring context 
skeletons. This work may be able to apply to improve our prototype in the future. 

As was indicated in [4] by Hull, the implementation of artifact-centric business 
process is considered as one area of research challenges needed. An artifact process 
model can be converted to a conceptual flow. Then, it is mapped into an executable 
workflow. This first approach was adopted in [11]. This paper introduced the 
conceptual flow, namely ArtiFlow, and showed how ArtiFlow can be mapped to 
BPEL. Cohn and Hull [8] illustrated that IBM has used BELA tool to map an artifact-
centric process model into a workflow that runs on IBM’s WebSphere Process Server. 
In this research, we use a different approach compared with Artiflow. Our realization 
approach is to generate the executable model from the logical specification of an 
artifact-centric model based on [9, 10] without any transformation of the model. We 
also develop our prototype to execute our proposed executable model where the 
system uses business rules to control each state of process execution. In Siena [15], 
users can model business artifacts and process as an XML documents in order to 
create a composite web application. Then, the application is deployed and executed on 
an execution engine. However, there is no use of business rules. Moreover, processes 
are still executed in a procedural manner. 

6 Conclusion and Future Work 

In this paper, we propose a new framework for realizing artifact-centric business 
processes. Especially, we showed how an artifact-centric process model can be 
realized in our system. Apart from the proposed system for the realization of ACP 
model, we also provided a detailed discussion on the advantages and disadvantages of 
our approach. Our future work will extend our system to support interoperability. 
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Abstract. Schema matching is widely used in many applications, such
as data integration, ontology merging, data warehouse and dataspaces.
In this paper, we propose a novel matching technique based on the order
of attributes appearing in the schema structure of query results. The ap-
pearance order embodies the extent of the importance of an attribute for
the user examining the query results. The core idea of our approach is to
collect the statistics about the appearance order of attributes from the
query logs to find correspondences between attributes in the schemas to
be matched. As a first step, we employ a matrix to structure the statistics
about the appearance order of attributes. Then, two scoring functions
are considered to measure the similarity of the collected statistics. Fi-
nally, an traditional algorithm is employed to find the mapping with the
highest score. Furthermore, our approach can be seen as a complemen-
tary member to the family of the existing matchers, and can also be
combined with them to obtain more accurate results. We validate our
approach with an experimental study, the results of which demonstrate
that our approach is effective and has good performance.

1 Introduction

Schema matching plays an important role in the realm of data integration, which
is a solution to sharing multiple heterogeneous data sources through a unified
access interface. In essence, schema matching problem refers to the problem of
finding semantic correspondences, also called matches, between elements of the
source schema and elements of the target schema. The match means that its
two elements hold the same meaning or refer to the same object. The match
is very significant for creating a unified mediated schema over multiple source
schemas, exchanging data from one schema to another schema and sharing data
in the similar domain. The schemas to be matched are typically designed by
different developers which have different habits and experiences, so they often
have diverse structures and representations, and this makes schema matching
difficult. Besides, dozens of tables and thousands of attributes in the schemas
also increase the difficulty of schema matching. Even with some availability of
domain expertise, the task of a schema matching may not be easy.

Much attention has been to paid to schema matching, and a multitude of
techniques, also called matchers, have been proposed, e.g., [2, 4, 6, 10, 11]. How-
ever, these existing matchers are not infallible, because no matcher is perfect
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and can returnmatches with 100% accuracy. Consequently, additional efforts are
required for schema matching. In this paper, we proposed a novel matching tech-
nique that exploits the order of attributes appearing in the schema structure of
query results to discover thematches between the attributes of the source schema
and the attributes of the target schema. As is well known, the words in almost
every book, we can read, are arranged from the left side to the right side, and
this is a habit that people capture information from left to right. For example,
given a spreadsheet of some books, people always start from the first column to
read, then the second column, etc. As a result, the developers of the applications
about the structured information always design the schema structure according
to this habit. That is, the more important columns will be arranged at the posi-
tions closer to the left side. For example, the column “bookname” in the above
spreadsheet may appear in the left-hand side of the column “author”; as such,
the column “start time” will be arranged in the left side of the column “arriving
time” in the railway timetable. The arrangement of these columns not only em-
bodies the reading habit but also the default rule of some industry. We browse
five digital libraries and pose the same query to their respective databases, then
present the schema structures of their returned results about books in Figure
1. Surprisingly, all these libraries arrange the attributes of the book in almost
the same order. It is easy to see that the attributes close to the left side are
arranged according to the reading habit. However, the extent of the importance
among the attributes close to the right side is almost the same, but they also
have the similar order. The reason for this behavior is that these libraries fall
into the same industry where there exist some default rules. Consequently, we
are able to exploit the habits, which are typically conformed by both schemas
to be matched, to find matches.

As is clear from the discussion above, different attributes have different im-
portance of structuring the query results to be shown to the final users. As a
result, an attribute will hold its own position in the schema structure of the
query results. Actually, the appearance order of attributes refers to the posi-
tions of attributes appearing in the schema structure. Thus, the statistics about
the appearance order of an attribute in a large number of query results can
be seen as its identification differing from other attributes. Every query result
corresponds to one query statement in the query log. The core idea of our ap-
proach is to collect the statistics about the appearance order of attributes from
the query logs to find correspondences between attributes in the schemas to be
matched. Our approach works in three steps. As the first phase, the query log
of each schema is scanned to collect the statistics about the appearance order.
We design two types of matrices to structure the statistics and call them feature
matrices. One is used to record the information about the position of attributes,
while the other is used to record the information about the number of attributes
which are behind the current attribute. In the second phase, we consider three
types of cardinality constraints for the mappings, which are one-to-one mapping,
onto mapping and partial mapping. Then, two scoring functions are considered
to measure the similarities of feature matrices of the schemas to be matched with
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respect to the three types of constraints. The task of the last phase is to employ
a traditional searching method to find the attribute mapping with the highest
score. Our approach can be seen as a complementary member to the family of
existing matchers and can also be combined with them to achieve more accurate
match results. This paper makes the following contributions:

1. We exploit the statistics about the appearance order of attributes in the
schema structure of the query results to find matches.

2. Two types of feature matrices are employed to collect the statistics about
the appearance order of the attributes from the query logs.

3. Two scoring functions are considered to measure the similarities of the fea-
ture matrices of the schemas to be matched.

4. We perform an extensive experimental study, the results of which show that
the proposed algorithm has good performance.

The rest of this paper is organized as follows. Section 2 introduces the feature
matrices. The scoring functions and the traditional searching algorithm are dis-
cussed in Section 3. The experimental results are given in Section 4. A brief
related work is reviewed in Section 5. Finally, we conclude in Section 6.
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Title Responsibility Publication ISBN Form Of Carrier Subject Theme CLC

Fig. 1. Schema Structure of Query Results from Five Digital Libraries A-E

2 Feature Matrices

In this section, we describe the main work of our first phase. Given two schemas
to be matched, our main task is to scan the query log of each schema to collect the
statistics about the appearance order of attributes. Then, two types of matrices
are designed to structure the statistics collected from the query log.

As our motivation shows, the appearance order of an attribute in schema
structure of query results can be seen as its identification differing from other
attributes in the same schema. It is easy to think that just the clauses with the
type “select” in the query log need to be considered, because the attributes in
other types of clauses do not appear in the query results. However, just scanning
the “select” clause itself is slightly incomplete. Consider the following example.
For a developer who is designing the query interface of a website selling the
mobile phones, it is natural to dispose the query condition “brand” ahead the



82 G. Ding, H. Dong, and G. Wang

condition “price”. If a user want to find the phones with brand “Nokia” and
price under 3000 RMB, the website will produce a corresponding query with
the “where” clause “brand=’Nokia’ and price <= ’3000”’, rather than “price
<= ’3000’ and brand=’Nokia”’. If this scenario happens in another website also
selling mobile phones, we may obtain the same “where” clause, because of people
thinking in much the same way. We can see that the positions of attributes in
the “where” clause can also identify themselves to some extent. As a result, we
consider 4 types of clauses “select”, “where”, “group” and “order” during the
process of scanning the query log. In addition to the types of the clauses, we
need to consider the types of queries. As in [11], the following three types of
queries are considered in our approach:

– SPJ: Single-block queries with Select, Project, Join and optional “group”
and/or “order” clauses.

– SPJU: Multiple SPJ queries connected by the set operator “union”, but
except “intersect”.

– SPJS: SPJ queries with nested subqueries falling into one of the three types.

For SPJ queries, it is a common process that involves creating the appearance
sequences in Definition 1 below, then checking the position of each attribute
in the appearance sequences, finally updating the corresponding entries in the
matrix. For the SPJU and the SPJS queries, they are decomposed into separate
subqueries each of which can be seen as a single-block SPJ query. Next, we will
show the definition of the appearance sequence.

Definition 1. Let “select a1,...,an1 from <table reference> [ where b1,...,bn2 ]
[ group by c1,...,cn3 ] [ order by d1,...,dn4 ]” be a query statement. Then, we call
the sequence a1...an1 [b1...bn2 ][c1...cn3 ][d1...dn4 ] appearance sequence.

Based on the definition above, we can see that each query corresponds to an
appearance sequence which embodies the reading habit of people and the default
rules of some industry mentioned in Section 1. Now, the first task our approach
is turned into collecting the statistics about the positions of attributes in the
appearance sequence. Thus, each query in the query log is scanned to produce an
appearance sequence. The position of each attribute in an appearance sequence
is recorded in a matrix. The rows of the matrix represent all the attributes in
one schema, while the columns represent the positions from 1 to the maximum
of the number of elements in all the appearance sequences. An entry of the
matrix represents the number of some attribute appearing in some position in
all the appearance sequences. This is our first type of matrix, and we call it
p-matrix. Before scanning the query log, all the entries in the p-matrix are
initialized with the value 0. If an attribute appears in some position, the value
of the corresponding entry in the p-matrix is incremented by one. After scanning
all the queries in the query log, the entries in the p-matrix are normalized by
dividing each of them by the largest entry. After this normalization step, the
p-matrix is independent of the size of the query log. To understand the p-matrix
intuitively, an example with dummy statistics and six dummy attributes a - e is
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shown in the left-hand panel of Figure 2, while the normalized one is shown in
the other side.

Consider two appearance sequences S1=a1a2a3a4a5 and S2=b1b2. Although
the two attributes a1 and b1 are both in the first position, we believe that a1
is greater than b1 in terms of the importance of structuring the query results
to be shown to the final users. This is because a1 ranks prior to four attributes
in its sequence, nevertheless just one attribute behind b1. We can see that just
the statistics about the position is not enough. As a result, we make a little
change to the original matrix to collect the information about the number of
attributes which rank after a given attribute in the appearance sequence. The
changed matrix is called n-matrix, which is our second type of matrix. Actually,
the n-matrix is similar to the p-matrix, and they have the same columns and
same rows. The difference between them is that each time increasing the value
of the corresponding entry for an attribute e, the increment is not the value 1
but rather the number of the attributes which rank after e in the appearance
sequence. Except the information about the positions of attributes, the n-matrix
captures a little more information than the p-matrix, and their performance is
tested and compared in our experiment. Now, given tow schemas to be matched,
we can obtain two corresponding matrices. The two matrices can be seen as the
respective feature of attributes in the two schemas. Thus, our task of matching
attributes is transformed into measuring the similarity of the two matrices. In
the next section, two scoring functions are introduced for the measurement of
the similarity of the two matrices.
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Fig. 2. An Example of p-matrix

3 Scoring Functions and Search Algorithm

In this section, our discussion is divided into two parts. Two scoring functions
are discussed in the first subsection, while the search algorithm is discussed in
the second subsection.

3.1 Scoring Functions

Before the main discussion, we introduce several types of cardinality constraints
in schema matching, which are the prerequisite of the scoring functions. In our
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approach, we consider three types of cardinality constraints: one-to-one mapping,
onto mapping and partial mapping, which are first proposed in [4]. For two input
schemas S1 and S2 to be matched, the three types of cardinality constraints are
described as follows:

– One-to-one mapping: For each attribute in S1, there exists one and only one
corresponding attribute as the counterpart in S2, and vice versa. If the two
schemas S1 and S2 are referred to as two sets and the mapping is referred to
as a function, we can see that this function is the so-called bijective mapping
in discrete mathematics, i.e., it is both surjection and incidence.

– Onto mapping: For each attribute in S1, there exists unique attribute in S2

as a match . Conversely, each attribute in S2 either has one and only one
attribute in S1 as amatch or remain unmatched. Compared to the one-to-one
mapping, this mapping actually falls into the class of the incidence.

– Partial mapping: Each attribute in S1 either has one and only one attribute
in S2 as a match or remain unmatched, and vice versa. In practice, this case
is the most general and difficult one. The reason is that for an attribute in
one schema, the existence of its match (counterpart) in another schema is
unknown (uncertain); for a schema, the number of its attributes which have
matches in another schema is unknown.

This three types of cardinality constraints are very prevalent in practice, as
opposed to the case where an attribute in one schema has multiple matches in
another schema, so we do not consider this class of cardinality constraints.

The problem of how to create an effective scoring function to evaluate the
quality of matching has been discussed in [4]. They proposed two scoring func-
tions and addressed the problem of the monotonicity of the scoring functions.
They classified their scoring functions intomonotonic and non-monotonic. Given
the mapping, we exploit their scoring functions as the measurement of similarity
of feature matrices in our approach. As in [11], we introduce some formal de-
scriptions about schema matching. Let S1 and S2 be two schemas to be matched.
Given their respective feature matrices, the matching task is to find a optimal
mapping m̂ that gives the highest score for a specific scoring function. Con-
sequently, any mapping m should provide three kinds of information for the
scoring function. The first is the number of the matches (matching attributes)
included in m, denoted as km; the second is the attributes occurring in m, de-
noted as {a1, ..., ai, ..., akm} for S1 and {b1, ..., bj, ..., bkm} for S2; and the third
is the actual correspondences between attributes of S1 and S2, i.e., m(ai) = bj
(m(i) = j). Here, it should be noted that km is the number of the matches in m
rather than the number of the correct matches in m. For two feature matrices,
they are required to have the same number of the rows and columns for the
computation of the similarity. Thus, if the number of their rows and columns
is not equal, additional rows and columns with values 0 are added into the end
of the corresponding matrix. Now, we present the definition of the monotonic
scoring function.
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Definition 2. Let P1 and P2 be the two feature matrices collected from the query
logs of schema S1 and S2 respectively, and n be the number of the rows of P1 and
P2. Let aij be an entry in P1, which represents the statistics about attribute ai
appearing in position j, while bij be an entry in P2, which represents the statistics
about attribute bi appearing in position j. Given a mapping m, the monotonic
scoring function is defined as:

fe(m) = 1− 1

ub

√∑km

i=1

∑n

j=1
(aij − bm(i)j)2 (1)

Given the mapping m, this scoring function employs the Euclidean distance
metric to measure the similarity between two feature matrices. Let dm(P1, P2)
be the Euclidean distance above, i.e., the square root item. We can see that
dm(P1, P2) increases monotonically with the increase of the number of matches
inm; that is, this function ismonotonic in km. Given two schemas to be matched,
if the correct km is unknown, the matching algorithm using this function will
just return the mapping with only one match as m̂, because the score of any
mapping with more than one match will be smaller than the one with only one
match. As a result, this function can be used to achieve the one-to-one mapping
and the onto mapping problems, rather than the partial mapping problem. The
variable ub takes the value

√
km ∗ n that is the upper bound to the value of

dm(P1, P2); and this guarantees that the value of the function is positive. In the
following, we will discuss the non-monotonic scoring function.

Definition 3. Let P1 and P2 be the two feature matrices with n rows. Let aij
be an entry in P1, which represents the statistics about attribute ai appearing
in position j, while bij be an entry in P2, which represents the statistics about
attribute bi appearing in position j. Given a mapping m, the non-monotonic
scoring function is defined as:

fn(m) =
∑km

i=1

∑n

j=1
(1− α

|aij − bm(i)j |
aij + bm(i)j

) (2)

Now, we will analyze the principle of this scoring function. The item multiplied by
α in the equation above is the normal distance [4]. Suppose that if the statistics
values about the position of attributes are uniformly distributed and two of them
are randomly chosen from the matrices, the expected value of normal distance
is β (around 1

3 ). As a result, if the control parameter α is set to 1
β (3), the

expected score of this function becomes 0 with the assumption above. In other
words, the match of randomly chosen two attributes will not contribute to the
final score in such cases. In contrast, if the match is correct (the two attributes
map correctly), it will positively contribute to the final score. It can be seen that
for a mapping m, the more correct matches m includes, the higher score m is
rewarded. Thus, the optimal mapping m̂ is expected to be rewarded the highest
score among other mappings. Based on the analysis above, we can see that this
function is non-monotonic in km. Actually, the value 1

α represents the average of
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the normal distance or the approximate demarcation point between the normal
distance of the correct matches and the one of the wrong matches. The control
α can be computed via the quantile or the experiments. Further, the behavior
of the scoring function can be controlled by changing the parameter α (see [4]
for more details).

3.2 Search Algorithm

Given the feature matrices and the scoring functions, now, our task is to find
the optimal attribute mapping. In this section, we first introduce how to refer to
the problem of searching the optimal mapping as the combinatorial optimization
problem, then present the details of the search algorithm.

Given two schemas S1 and S2 to be matched, the first schema S1 has n1

attributes {a1, ..., ai, ..., an1}, while S2 has n2 attributes {b1, ..., bj, ..., bn2}. Con-
sider the first cardinality constraint one-to-one mapping where n1 = n2. If the
attributes of S1 are regarded as a fixed sequence a1a2...an1 and the correspon-
dence is fixed m(ai) = bi, any instance of the permutation of all attributes of S2

corresponds to a possible mapping. For example, if n1 = n2 = 2, then the per-
mutation b1b2 and b2b1 correspond to two possible mappings {(a1, b1), (a2, b2)}
and {(a1, b2), (a2, b1)}, where each mapping includes two matches. As a result,
we can see that our task of finding the m̂ can be transformed into the combinato-
rial optimization problem where the score of each permutation is the score of its
corresponding mapping. However, for another two cardinality constraints onto-
mapping and partial mapping, the numbers of the attributes of the two schemas
are typically not equal. To perform the problem transformation above, we need
to make the two schemas own the same number of attributes n. For this purpose,
the “dummy” attributes [11] are added to S1 and S2. The problem of how many
attributes should be added depends on the scoring function. If the monotonic
function is used, the n2 − k̂m attributes will be added to S1, while n1 − k̂m
attributes will be added to S2, so each schema has n1 +n2− k̂m = n attributes.
Here, for onto mapping k̂m is also known and takes the value min(n1, n2), but for
partial mapping it is the estimate of the number of the correct matches between
S1 and S2 and should be given to the algorithm. Now, we describe how to decide
the number of attributes added. For S2, there exist n2 − k̂m attributes {bq...br}
which have no matching attributes in S1, so n2 − k̂m “dummy” attributes are
added to S1 as the matching attributes for {bq...br}. The reason for S1 is the
same as S2, thus we gives unnecessary details no longer. For the non-monotonic
function, the k̂m is not required, so it is considered to be zero. Thus, n2 “dummy”
attributes will be added to S1, while n1 “dummy” attributes will be added to
S2. We can see that in addition to making the two schemas have the same num-
ber of attributes, another purpose of the “dummy” attributes is to make each
attribute have a counterpart in the other schema. Here, it should be noted that
the matches that involve the “dummy” attributes are ignored, when the search
algorithm computes the score of a mapping.

We can see that while regarding the attributes of S1 as a fixed sequence, the
number of the permutations of all attributes of S2 is n!. The space of all the
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Algorithm 1. Generator of New Solutions

input : p = b1b2...bi...bn, a permutation, the current solution;
output: p′, the new solution;
int q, r = random(); //randomly generate two numbers, q, r < n1

if q < r then2

p′ = b1b2...bq−1brbr−1...bq+1bqbr+1...bn;3

if q > r then4

p′ = brbr−1...b1br+1...bq−1bnbn−1...bq+1bq ;5

if q == r then6

p′ = bqbq−1...b1bq+1...bn;7

return p′8

permutations is very large and an exhaustive search is not feasible. Thus, we
exploit the simulated annealing (SA) algorithm [1], which is the classical solu-
tion to the combinatorial optimization problem, to find the optimal permutation
corresponding to m̂, denoted by p̂. SA algorithm is the random search technique
based on physical annealing process, which can approach the global optimiza-
tion gradually by continuously breaking off from the local optimization. In our
context, the scoring functions are used as the energy function of SA. It should be
noted that we aim at the solution with the highest score rather than the usual
lowest energy. The SA algorithm involves six key components: the generator of
the new solutions, the Metropolis criterion, the initial temperature, the length
of Markov chain, the temperature-fall period and the stopping criteria. We now
briefly explain each of these components in our context.

The implementation of the generator is shown in Algorithm 1. Given a current
solution b1b2...bn, two numbers q and r are randomly generated. If q < r, the
elements from bq to br are re-arranged in reverse order, while the order of other
elements remain unchanged. If q > r, the elements from b1 to br and from bq to
bn are conversely re-arranged respectively. If q = r, the elements from b1 to bq
are conversely re-arranged. Here, other methods can also be used, for example
the cross and mutation leveraged from the genetic algorithm.

The Metropolis criterion represents the acceptance criterion of the new so-
lutions. Let p1 be the current solution, p2 be the new solution and f(x) be
the scoring function, i.e., fe(x) or fn(x). The Metropolis criterion means that if
f(p2) > f(p1), using p2 as the current solution instead of p1, else if

exp(− f(p1)−f(p2)
T ) > rn, also accepting p2, else preserving p1 and abandoning p2,

where rn is a random number in range (0, 1) and T is the current temperature.
SA algorithm makes use of this criterion to make a decision about whether or
not to accept the new solutions.

The initial temperature T0 of SA is central to obtainment the global opti-
mization, and the higher the T0 is, the closer the solutions approach the real
solution. However, the much higher T0 will lead to the unacceptable running
time. The work [1] proposed that the T0 should enable the acceptance rate of
the new solutions to approach the value 1 at the beginning. This means that
the acceptance possibility of Metropolis criterion is close to 1 at the beginning,
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Algorithm 2. Search Algorithm

input : n, the number of the attributes in the solution;
p, a permutation, a solution;
T , the temperature;

output: p̂, the optimal solution;
initialize p, T ; // p is initialized to a random solution1

repeat2

int length = 0;3

repeat4

p′ = generator(p); // generate the new solution5

if f(p′) > f(p) then6

p = p′;7

else8

rn = random(< 1); // randomly generate a number in range (0, 1)9

if exp( f(p
′)−f(p)
T

) > rn then10

p = p′;11

length++;12

until length > 10n13

T = 0.95T ;14

until stopping criterion15

return p̂ = p;16

i.e., exp(−�f
T0

) ≈ 1. In practice, this possibility is topically set to 0.95. To use this
method to compute the T0 in our context, we need to compute the�f . Here, the
statistical method is used to compute the score difference. We randomly choose
k pairs of solutions (k > 1000), then compute the score difference of each pair,
finally, take the expectation of these differences as the value of �f .

The last three components of SA are simple relatively. The length of the
Markov chain is topically associated with the problem size, and the too long
chains would not help find the global optimization [1]. Thus, the length of Markov
chain is set to 10n in our approach. For the temperature-fall period, we make use
of the classical method, i.e., Tk+1 = βTk, to control the attenuation of the tem-
perature, where β = 0.95 and Tk is the current temperature. During the running
of the algorithm, if the consecutive r Markov chains have no improvement on
the current optimization, the search process will terminate; this is the stopping
criterion. Now, based on these components, the details of the search algorithm
are shown in Algorithm 2.

The algorithm begins with a random solution (line 1), because the initial
solution has very little effect on its performance. Then, it randomly explores the
new solutions (line 5), and employs the Metropolis criterion to decide whether to
update the current solution (lines 6-11). Actually, the internal circle corresponds
to a Markov chain (lines 4-13). Thus, each iteration of the external circle will
generate a Markov chain. If the length exceeds 10n, the spread of the chain is
over (line 13), and the temperature falls for the next chain (line 14). If after
r iterations of the external circle the current solution remains unchanged, the
algorithm will terminate and return the current solution as the p̂.
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4 Experimental Evaluation

In this section, we test the time cost and evaluate the quality of the matching
results of our proposed approach in synthetic schema matching scenarios. First,
we present how to generate the synthetic data set used in the experiments. Then,
we show the experimental results evaluating the performance of our matching
algorithm in the case of the three cardinality constraints (one-to-one, onto and
partial). We also study the effect of varying the control parameter of the non-
monotonic function on the performance of our approach. Finally, we test the
time cost of the proposed algorithm. Our algorithm is implemented using C++
language and the experiments are carried on a PC compatible machine, with
Intel Core Duo processor (2.33GHz).

We produce the experimental data set based on two online bookstores de-
veloped by different persons. The schema of the first bookstore includes 31 at-
tributes, while the second includes 35 attributes, and there exist 27 matching
attributes (matches) of each schema. We suppose that a fictitious user contin-
uously accesses the bookstore until the produced log including 8000 queries.
These SQL statements include two kinds of queries: the random queries with
any keywords according to the query interface of the bookstore and the fixed
queries generated based on the navigation or the classification functions of the
bookstore. Based on the query logs, two feature matrices of the two bookstores
can be obtained as the experimental data. In the experiments, the FMeasure
metrics is used as the measurement of the performance of the algorithm.
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Fig. 3. Results of One-to-one Mappings

We evaluate the accuracy against the correct mappings determined by manual
inspection of the source and target schemas.We run our algorithmwith randomly
chosen subset of the experimental data in each experiment for many times, then
get the average of the experimental results. We first present the results of one-to-
one mapping in Figure 3. We use the notation “mon” and “non” as the shorthand
for the monotonic function and the non-monotonic function respectively. The
control parameter α for non-monotonic function is set to 0.3. As it can be seen
in Figure 3(a), the match results gradually deteriorate as the number of the
matching attributes (matches) increases, and the worst results for “non” function
is nearly 60%. The results with “mon” are better than the one with “non”. This
is because the correct km is known for the one-to-one mapping. We can also see
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Fig. 4. Results of Onto Mappings

that the overall quality of the results over the n-matrix are higher than the one
over p-matrix. The reason is that the information collected in the n-matrix is
more than the information in the p-matrix.

The experimental results corresponding to the onto cardinality constraint are
shown in Figure 4. Here, the size of the target schema is kept constant at 16 at-
tributes while the matching attribute number of the source schema is increased
from 4 to 14. As it can be seen, in both data sets, the results with “non” outper-
form the results with “mon”. The accuracy with “non” reaches 80% in Figure
4(a) while it was 59% in Figure 4(b). And the overall quality over the n-matrix
is better than the p-matrix. However, the accuracy in the onto mapping case
gradually improves as the number of the matching attributes increases, then the
accuracy begins to decline when the number exceeds some value; this is just con-
trary to the one-to-one mapping. The reason is that the matching with the onto
constraint requires extra effort in contrast to the one-to-one case, i.e., the onto
mapping first need to choose a subset of the 16 attributes, then the onto mapping
based on the chosen attribute subset is turned into the one-to-one mapping.
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Fig. 5. Results of Partial Mappings

Figure 5 illustrates the results of the matching with the partial mapping
cardinality constraint. In this experiment, we fix the size of both source and
target schema at 14, and vary the number of the matching attributes from 4 to
12. To enable the experiment with the “mon” in the partial mapping case, we
give the number of the correct matches to the algorithm with “mon” function.
Here, the trend of curves in Figure 5 is similar to the above experiment, but
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the best performance is less than 70%. It can be seen that the matching with
the partial cardinality constraint is the most difficult matching. Conversely, the
results with “non” function are better than the one with the “mon” function.
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Fig. 6. Varying the Control Parameter α

Now, we test the effect of varying the control parameter α on the match
results. We fix the size of both source and target schema at 14 attributes, and
fix the number of the correctmatches at 9 and 12 respectively, denoted by n = 12
and n = 9. The experiment results are shown in Figure 6. We can see that the
accuracy first increases as α increases from 0.1 to 0.3, then achieves the highest
value as α ∈ (0.3, 0.5), finally drops with the increase of α. The accuracy with
n = 9 is higher than the one with n = 12, which is consistent with the above
experiments.
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Fig. 7. Time Cost

Finally, we test the time cost of our algorithm with one-to-one cardinality
constraint. In this experiment, we set the number of the correct matches to 9
and 14 respectively, denoted by n = 9 and n = 14, and set the temperature-
fall coefficient β = 0.9 and β = 0.95. The results are shown in Figure 7. The
time with n = 14 increases as the length of the Markov chain increases, and
the biggest running time reaches nearly two minutes. However, the time cost
with n = 9 remains unchanged after the length beyond 60. The reason for this
behavior is that the size of the search space for n = 9 is less than the number
of all iterations of the algorithm, so the algorithm will accomplish the search
process ahead of time and ignore the following iterations caused by the increase
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of the length. It can also be seen that the time cost for β = 0.9 in Figure 7(a) is
less than the cost for β = 0.95 in Figure 7(b). The reason is that the number of
iterations increases for β = 0.95.

5 Related Work

Schema matching has been an active research field for a long time [2, 4, 6, 8, 11].
A survey of approaches to automatic schema matching is presented in work [2].
They present a taxonomy that covers many of these existing approaches, and
describe the approaches in some detail. These existing techniques are called
matchers by their work and are mainly classified as schema-based and instance-
based. Schema-based matchers only consider schema information that includes
the usual properties of schema elements, such as name, description, data type,
relationship types, constraints, and schema structure. Instance-based matchers
can give important insight into the data stored in the schemas, especially in the
case that useful schema information is limited.

The work [4] proposes an approach which is fitting into the situation that
the column names in the schemas and the data in the columns are “opaque”
or very difficult to interpret. Their technique works in two steps. First, they
measure the pair-wise attribute correlations in the tables to be matched via
using the mutual information. Then, they find matching node pairs between the
dependency graphs by a heuristic algorithm. A recent work [8] puts the context
into schema matching in order to improve the quality of data exchange. The
context actually refers to the categorical attribute whose values are discrete.
These attributes can classify the source instances into different categories. They
make use of the categorical attributes as the constraint to restrict the matches
to work only for partial data instances in the same relation.

A versatile graph matching algorithm named “similarity flooding” is proposed
in work [3]. The key idea of their method is the assumption that whenever
any two nodes in the graphs are found to be similar, the similarities of their
adjacent nodes increase. Thus, the similarity between two nodes is computed as
the sum of their own similarities plus their neighbors’. After some iterations, the
initial similarity of any two nodes propagates through the graph, i.e., similarity
flooding. Corpus-based Schema Matching is proposed in work [6]. They show how
a corpus of schemas and mappings can be used as a new resource for identifying
the attributes in schema matching. They exploit such a corpus in two ways.
The first is to learn the variation and the similar properties of the element to
be matched from the corpus, while the second is to learn the statistics about
elements and their relationships and use them to infer constraints.

A new class of techniques, called usage-based schema matching, is proposed
in the recent work [11]. Their key idea is to exploit the feature extracted from
the query log to find the correspondence of the attributes. They identify co-
occurrence patterns which represent that two attributes appear in the two query
clauses together. Finally, they employ the genetic algorithm to find the highest-
score mappings. Recently, different from the traditional techniques, the possible
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mapping is introduced to schema matching [10], which presents another research
way for schema matching. For an attribute, the possible mapping represents
that there are multiple matching candidates with respect to this attribute. They
use the possible mappings to create the possible mediated schemas to retrieve
multiple possible query results for one query.

6 Conclusion

In this paper, we employ the order of attributes appearing in the schema struc-
ture of query results to perform schema matching. The appearance order embod-
ies the extent of the importance of an attribute for the user examining the query
results. We first collect the statistics about the appearance order of attributes
from the query logs of the schemas to be matched. Then, two types of matrices
are designed to structure the statistics about the appearance order of attributes.
The first one is called p-matrix while the second one is called n-matrix. Third,
two scoring functions are considered to measure the similarity of the collected
statistics. One function is monotonic with the number of the correctmatches and
fit the one-to-one and onto mappings, while the other is non-monotonic and is
designed for partial mappings. Finally, the simulated annealing (SA) algorithm
is employed to find the mapping with the highest score. We perform extensive
experiments to test the proposed approach, and the experimental results show
that our approach performs well.
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Abstract. In this paper, we focus on efficient construction of tightest
matched subtree (TMSubtree) results for keyword queries on XML data
based on SLCA semantics, where “matched” means that all nodes in a
returned subtree satisfy the constraint that the set of distinct keywords
of the subtree rooted at each node is not subsumed by that of any of
its sibling node, while “tightest” means that no two subtrees rooted at
two sibling nodes can contain the same set of keywords. Assume that d
is the depth of a given TMSubtree, m is the number of keywords of a
given query Q, we proved that if d ≤ m, a matched subtree result has
at most 2m! nodes; otherwise, the size of a matched subtree result is
bounded by (d−m+2)m!. Based on this theoretical result, we propose a
pipelined algorithm to construct TMSubtree results without rescanning
all node labels. Experiments verify the benefits of our algorithm in aiding
keyword search over XML data.

1 Introduction

Over the past few years, keyword search on XML data has been a hot research
issue along with the ever increase of XML-based applications [3, 5, 7, 8, 9, 11,
13, 14, 15, 16, 17]. Same as the importance of effectiveness to keyword search,
efficiency is also a key factor to the success of keyword search.

Typically, an XML document is modeled as a node-labeled tree T . For a
given keyword query Q, each result t is a subtree of T containing each keyword
of Q at least once, where the root node of t should satisfy a certain semantics,
such as SLCA [15], ELCA [5, 16, 17], VLCA [8] or MLCA [9]. Based on the
set of qualified root nodes, there are three kinds of subtree results: (1) complete
subtree (CSubtree), which is a subtree tCv rooted at a node v that is excerpted
from the original XML tree without pruning any information [5, 15]; (2) path
subtree (PSubtree), which is a subtree tPv that consists of paths from v to all its
descendants, each of which contains at least one input keyword [6]; (3) matched
subtree (MSubtree), which is a subtree tMv rooted at v satisfying the constraints
of monotonicity and consistency [7, 11]. Let Sv′ = {k1, k2, ..., km′} be the set
of distinct keywords contained in the subtree rooted at a node v′, Sv′ ⊆ Q.
Intuitively, a subtree tv is an MSubtree if and only if for any descendant node
v′ of v, there does not exist a sibling node u′ of v′, such that Sv′ ⊂ Su′ , which

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 95–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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we call as the constraint of “keywords subsumption”. Obviously, for a given
CSubtree tCv , t

P
v can be got by removing from tCv all nodes that do not contain

any keyword of the given query in their subtrees, and according to [11], tMv
can be got by removing from tPv all nodes that do not satisfy the constraint of
keywords subsumption.

Example 1. To find for “CS” laboratory all publications that are written by
“Tom” and published in “DASFAA” about “XML” from the XML document D
in Fig. 1, we may submit a query Q = {CS, Tom, DASFAA, XML} to complete
this task. Obviously, the qualified SLCA node is the root node with Dewey [14]
label “1”. Therefore, the CSubtree for Q is D itself, the PSubtree is R1, while
the MSubtree is R2.

lab
1

paper
1.2.2

conference
1.2.2.3

title
1.2.2.2

“DASFAA”“...XML...”

paper
1.2.3

title
1.2.3.2

conference
1.2.3.3

“...DB...” “DASFAA”

paper
1.3.2

name
1.1

“CS”

person
1.2

person
1.3

name
1.2.1

“Tom”

name
1.3.1

“Mike”

author
1.2.2.1

“Tom,Mike”

conference
1.3.2.3

title
1.3.2.2

“DASFAA”“...DB...”

author
1.3.2.1
“Mike”

paper
1.3.3

conference
1.3.3.3

title
1.3.3.2

“DASFAA”“...IR...”

author
1.3.3.1
“Mike”

interest
1.3.4

“...DB...”

author
1.2.3.1
“Tom”

R2 R1

Fig. 1. A sample XML document D

From Example 1 we know that a CSubtree, e.g. D, may be incomprehensible
for users since it could be as large as the document itself, while a PSubtree could
make users feel frustrated since it may contain too much irrelevant information,
e.g., although each leaf node of R1 directly contains at least one keyword of
Q, the three papers with Dewey labels “1.2.3, 1.3.2, 1.3.3” have nothing to do
with “XML”. In fact, from Fig. 1 we can easily know that for “CS” laboratory,
the paper written by “Tom” and published in “DASFAA” about “XML” is the
node with Dewey label “1.2.2”. According to Fig. 1, we know that the keyword
sets for node 1.1, 1.2 and 1.3 are S1.1 = {CS}, S1.2 = {Tom, DASFAA, XML},
and S1.3 = {DASFAA}, respectively. According to the constraint of keywords
subsumption, all nodes in the subtree rooted at node 1.3 should be pruned,
since S1.3 ⊂ S1.2. Similarly, the keyword sets for node 1.2.1, 1.2.2 and 1.2.3 are
S1.2.1 = {Tom}, S1.2.2 = {Tom, DASFAA, XML} and S1.2.3 = {Tom, DASFAA},
respectively. According to the constraint of keywords subsumption, since S1.2.1 ⊂
S1.2.2 and S1.2.3 ⊂ S1.2.2, all nodes in the subtrees rooted at node 1.2.1 and 1.2.3
should be removed. After that, we get the MSubtree, i.e., R2, which contains all
necessary information after removing nodes that do not satisfy the constraint of
keywords subsumption, and is more self-explanatory and compact.
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However, most existing methods [2, 13, 15, 16, 17] addressing efficiency focus
on computing qualified root nodes, such as SLCA or ELCA nodes, as efficient as
possible. In fact, constructing subtree results is not a trivial task. Existing meth-
ods [7, 11] need to firstly scan all node labels to compute qualified SLCA/ELCA
results, then rescan all node labels to construct the initial subtrees. After that,
they need to buffer these subtrees in memory and apply the constraint of key-
words subsumption on each node of these subtrees to prune nodes with keyword
sets subsumed by that of their sibling nodes, which is inefficient in time and space.

As illustrated by [7], an MSubtree could still contain redundant information.
E.g., the four conference nodes, i.e., 1.2.2.3, 1.2.3.3, 1.3.2.3 and 1.3.3.3, of D
in Fig. 1 are same to each other according to their content, and for keyword
query {CS, conference}, returning only one of them is enough. However, the
MSubtree result contains all these conference nodes, because all of them satisfy
the constraint of keywords subsumption.

In this paper, we focus on constructing tightest matched subtree (TMSubtree)
results according to SLCA semantics. Intuitively, a TMSubtree is an MSubtree
after removing redundant information, and it can be generated from the corre-
sponding PSubtree by removing all nodes that do not satisfy the constraint of
keywords subsumption and just keeping one node for a set of sibling nodes that
have the same keyword set. Assume that d is the depth of a given TMSubtree,
m is the number of keywords of the given query Q, we proved that if d ≤ m,
then a TMSubtree has at most 2m! nodes; otherwise, the number of nodes of a
TMSubtree is bounded by (d −m + 2)m!. Based on this theoretical result, we
propose a pipelined algorithm to compute TMSubtrees without rescanning all
node labels. Our algorithm sequentially processes all node labels in document
order and immediately outputs each TMSubtree once it is found. Compared with
the MaxMatch algorithm [11], our method reduces the space complexity from
O(d

∑m
1 |Li|) to O(d ·max{2m!, (d−m+2)m!}), where Li is the inverted Dewey

label list of keyword ki.
The rest of the paper is organized as follows. In Section 2, we introduce back-

ground knowledge and discuss related work. In Section 3, we give an in-depth
analysis to the MaxMatch algorithm[11], then define the tightest matched sub-
tree (TMSubtree) and discuss its properties, and finally, present our algorithm
on computing all TMSubtree results. In Section 4, we present the experimental
results, and conclude our paper in Section 5.

2 Background and Related Work

We model an XML document as a node labeled ordered tree, where nodes rep-
resent elements or attributes, while edges represent direct nesting relationship
between nodes in the tree. Fig. 1 is a sample XML document. We say a node v
directly contains a keyword k, if k appears in the node name or attribute name,
or k appears in the text value of v.

A Dewey label of node v is a concatenation of its parent’s label and its local
order, the last component is the local order of v among its siblings whereas the
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sequence of components before the last one is called parent label. In Fig. 1,
the Dewey label of each node is marked as the black sequence of components
separated by “.”. For a Dewey label A : a1, a2, ..., an, we denote the number of
components of A as |A|, and the ith component as A[i]. As each Dewey label [14]
consists of a sequence of components representing the path from the document
root to the node it represents, Dewey labeling scheme is a natural choice of the
state-of-the-art algorithms [1, 5, 10, 13, 15] for keyword query processing on XML
data. The positional relationships between two nodes include Document Order
(≺d), Equivalence (=), AD (ancestor-descendant, ≺a), PC (parent-child, ≺p),
Ancestor-or-self (�a) and Sibling relationship. u ≺d v means that u is located
before v in document order, u ≺a v means that u is an ancestor node of v, u ≺p v
denotes that u is the parent node of v. If u and v represent the same node, we
have u = v, and both u �d v and u �a v hold. In the following discussion, we
do not differentiate between a node and its label if without ambiguity.

For a given query Q = {k1, k2, ..., km} and an XML document D, we use Li

to denote the inverted Dewey label list of ki, of which all labels are sorted in
document order. Let LCA(v1, v2, ..., vm) be the lowest common ancestor (LCA)
of nodes v1, v2, ..., vm, the LCAs of Q on D are defined as LCA(Q) = {v|v =
LCA(v1, v2, ..., vm), vi ∈ Li(1 ≤ i ≤ m)}. E.g., the LCAs of Q = {XML, Tom}
on D in Fig. 1 are nodes 1.2 and 1.2.2.

In the past few years, researchers have proposed many LCA-based semantics
[3, 5, 8, 9, 15, 15], among which SLCA [13, 15] is one of the most widely adopted
semantics. Compared with LCA, SLCA defines a subset of LCA(Q), of which
no LCA in the subset is the ancestor of any other LCA, which can be formally
defined as SLCASet = SLCA(Q) = {v|v ∈ LCA(Q) and �v′ ∈ LCA(Q), such
that v ≺a v

′}. In Fig. 1, although 1.2 and 1.2.2 are LCAs of Q = {XML, Tom},
only 1.2.2 is an SLCA node for Q, because 1.2 is an ancestor of 1.2.2.

Based on the set of matched SLCA nodes, there are three kinds of subtree
results: (1) complete subtree (CSubtree)[5, 15]; (2) path subtree (PSubtree) [6]; (3)
matched subtree (MSubtree), which is a subtree rooted at v satisfying the con-
straints ofmonotonicity and consistency [7, 11], which can be further interpreted
by the changing of data and query, respectively. Data monotonicity means that
if we add a new node to the data, the number of query results should be (non-
strictly) monotonically increasing. Query monotonicity means that if we add a
keyword to the query, then the number of query results should be (non-strictly)
monotonically decreasing. Data consistency means that after a data insertion,
each additional subtree that becomes (part of) a query result should contain
the newly inserted node. Query consistency means that if we add a new key-
word to the query, then each additional subtree that becomes (part of) a query
result should contain at least one match to this keyword. [11] has proved that
if all nodes of a subtree tv satisfy the constraint of “keywords subsumption”,
then tv must satisfy the constraints of monotonicity and consistency, that is, tv
is an MSubtree. According to Example 1, we know that compared with CSub-
trees and PSubtrees, MSubtrees contain all necessary information after removing
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nodes that do not satisfy the constraint of keywords subsumption, and are more
self-explanatory and compact.

To construct MSubtrees, existing method [11] needs to firstly scan all node
labels to compute qualified SLCA nodes, then rescan all node labels to construct
the initial subtrees. After that, they need to buffer these subtrees in memory and
apply the constraint of keywords subsumption on each node of these subtrees to
prune nodes with keyword sets subsumed by that of their sibling nodes, which
is inefficient in time and space.

Considering that an MSubtree may still contain redundant information (dis-
cussed in Section 1), in this paper, we focus on efficiently constructing tightest
matched subtree (TMSubtree) results based on SLCA semantics. Intuitively, a
TMSubtree is an MSubtree after removing redundant information. Construct-
ing TMSubtree results based on ELCA semantics [7] is similar and therefore
omitted for limited space.

3 Result Enumeration

3.1 Insight into the MaxMatch Algorithm

The MaxMatch algorithm [11] returns MSubtree results that are rooted at SLCA
nodes and satisfy the constraint of “keywords subsumption”. For a given query
Q = {k1, ..., km} and an XML document D, supposing that L1(Lm) is the Dewey
label list of occurrence of the least (most) frequent keyword of Q, d is the depth
of D. As shown in Algorithm 1, the MaxMatch algorithm works in three steps
to produce all MSubtree results.

Step 1 (line 1): MaxMatch finds from the m inverted Dewey label lists the
set of SLCA nodes, i.e., SLCASet, by calling the IL algorithm [15]. The cost of
this step is O(md|L1| log |Lm|). In this step, all Dewey labels are processed once.

Step 2 (line 2): MaxMatch calls function groupMatches to construct the
set of groups, i.e., groupSet. As shown in groupMatches, it needs to firstly
merge the m lists into a single list with cost O(logm

∑m
1 |Li|), then sequentially

rescan all labels and insert each one to a certain group (if possible) with cost
O(d

∑m
1 |Li|). Since d� log |m| in practice, the cost of this step is O(d

∑m
1 |Li|).

In this step, all Dewey labels are processed twice to construct the set of groups.
Step 3 (line 3-4): For each group g, MaxMatch firstly constructs the PSubtree,

then traverse it to prune redundant information. The overall cost of Step 3 is
O(min{|D|, d∑m

1 |Li|} · 2m), where 2m is the cost of checking whether the set
of distinct keywords of node v is subsumed by that of its sibling nodes, if not,
then v is a node that satisfies the constraint of keywords subsumption.

Therefore, the time complexity of Algorithm 1 is O(max{min{|D|, d∑m
1 |Li|}·

2m},md|L1| log |Lm|}). Moreover, as the MaxMatch algorithm needs to buffer
all groups in memory before Step 3, its space complexity is O(d

∑m
1 |Li|).

3.2 The Tightest Matched Subtree

Definition 1. (Tightest Matched Subtree (TMSubtree)) For an XML
tree D and a keyword query Q, let Sv ⊆ Q be the set of distinct keywords that
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Algorithm 1: MaxMatch(Q)/*Q = {k1, ..., km}*/

1 SLCASet ← findSLCA(L1, L2, ..., Lm)
2 groupSet ← groupMatches(L1, L2, ..., Lm, SLCASet)
3 foreach group g ∈ groupSet do
4 pruneMatches(g)

Function groupMatches(L1 , L2, ..., Lm, SLCASet)

1 L ← merge(L1, L2, ..., Lm)
2 sequentially scan each Dewey label s ∈ SLCASet to construct groupSet,

where each group gs corresponds to an SLCA node s
3 sequentially scan each Dewey label n ∈ L, and put n to group gs if

s ∈ SLCASet satisfies that s �a n,
4 return groupSet

Procedure pruneMatches(group g)

1 process all Dewey labels of g to construct a PSubtree t
2 foreach node n of t do /*traversing t in depth-first order*/
3 if n satisfies the constraint of keywords subsumption then output n

appear in the subtree rooted at v, Sv �= ∅. A subtree t is a TMSubtree iff t’s
root node is an SLCA node, and each node v of t satisfies that for each sibling
node v′ of v, Sv �⊂ Sv′ , and for each set of sibling nodes {v1, v2, ..., vn} satisfying
Sv1 = Sv2 = ... = Svn , only one of them is kept for presentation.

Intuitively, a TMSubtree is an MSubtree with redundant information being re-
moved, it can be generated from the corresponding PSubtree by removing all
nodes that do not satisfy the constraint of keywords subsumption and just keep-
ing one node for a set of sibling nodes that have the same keyword set.

Definition 2. (Maximum TMSubtree) Let t be a TMSubtree of Q, v a node
of t, Sv ⊆ Q the set of distinct keywords that appear in the subtree rooted at v,
v.level the level value of v in t. We say t is a maximum TMSubtree if it
satisfies the following conditions:

1. v has |Sv| child nodes v1, v2, ..., v|Sv|,
2. if |Sv| ≥ 2∧v.level < d, then for any two child nodes vi, vj(1 ≤ i �= j ≤ |Sv|),
|Svi | = |Svj | = |Sv| − 1 ∧ |Svi ∩ Svj | = |Sv| − 2,

3. if |Sv| = 1 ∧ v.level < d, then v has one child node v1 and Sv = Sv1 ,

Lemma 1. Given a maximum TMSubtree t, t is not a TMSubtree any more
after inserting any keyword node into t without increasing t’s depth.

Proof. Suppose that t is not a maximum matched subtree result, then there
must exist a non-leaf node v of t, such that we can insert a node vc into t as
a child node of v, vc satisfies that Svc ⊆ Sv. Obviously, there are four kinds of
relationships between Svc and Sv:



Fast Result Enumeration for Keyword Queries on XML Data 101

(1) |Svc | = |Sv| = 1. In this case, v has one child node that contains the same
keyword as v. Obviously, vc cannot be inserted into t according to Definition 1.

(2) Svc = Sv ∧ |Sv| ≥ 2. Since v has |Sv| child nodes and each one contains
|Sv|− 1 keywords, for each child node vi (1 ≤ i ≤ |Sv|) of v, we have Svi ⊂ Sv =
Svc . According to Definition 1, all existing child nodes of v should be removed
if vc is inserted into t, thus vc cannot be inserted into t as a child node of v in
such a case.

(3) |Svc | = |Sv| − 1 ∧ |Sv| ≥ 2. According to condition 2, all existing child
nodes of v contain all possible combinations of keywords in Sv, thus there must
exist a child node vci of v, such that Svc = Svci

, which contradicts Definition 1,
thus vc cannot be inserted into t in this case.

(4) if |Svc | < |Sv| − 1 ∧ |Sv| ≥ 2. According to condition 2, all existing child
nodes of v contain all possible combinations of keywords in Sv, thus there must
be a child node vci of v, such that Svc ⊂ Svci

, which also contradicts Definition
1, thus vc cannot be inserted into t in such a case.

In summary, if t is a maximum TMSubtree result, no other keyword node can
be inserted into t, such that t is still a TMSubtree without increasing t’s depth. �

Theorem 1. Given a keyword query Q = {k1, k2, ..., km} and one of its TM-
Subtree t of depth d, if d ≤ m, then t has at most 2m! nodes; otherwise, the
number of nodes of t is bounded by (d−m+ 2)m!.

Proof. Assume that t is a maximum TMSubtree, obviously, the number of nodes
at 1st level of t is 1 = Cm

m .
For the 2nd level, since St.root = Q, t.root has |St.root| = Cm−1

m child nodes,
of which each one contains |St.root| − 1 distinct keywords.

Thus we have Formula 1 to compute the number of nodes at the ith level.

N(i) = N(i− 1) · Cm−i+1
m−i+2 = P i−1

m , 1 ≤ i ≤ m. (1)

If d ≤ m, the total number of nodes in t is

N =

m∑
i=1

P i−1
m = m!

m∑
i=1

1

(m− i+ 1)!
< 2m! (2)

If d > m, each node at the mth level of t contains only one keyword, and all
levels greater than m contains the same number of nodes as that of the mth

level. According to Formula 1, we know that N(m) = m!, thus the total number
of nodes in t is

N =

m∑
i=1

P i−1
m + (d−m)m! < (d−m+ 2)m! (3)

Therefore if d ≤ m, a TMSubtree t has at most 2m! nodes, otherwise, the number
of nodes of t is bounded by (d−m+ 2)m!. �

Example 2. Given a keyword query Q = {k1, k2, k3}, Fig. 2 shows three subtree
results, according to Definition 1, they are all TMSubtrees. Obviously, by fixing
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their depths, no other node with any kind of combination of k1 to k3 can be
inserted into these TMSubtree results according to Lemma 1, that is, they are
all maximum TMSubtrees. The TMSubtree in Fig. 2 (A) has 4 nodes. Since its
depth is 2 and is less than the number of keywords, i.e., 3, it satisfies Theorem
1 since 4 < 2 × 3! = 12. The TMSubtree in Fig. 2 (B) is another maximum
TMSubtree with 10 nodes, and also satisfies Theorem 1 since 10 < 2× 3! = 12.
Fig. 2 (C) is also a maximum TMSubtree with 16 nodes. Since the depth of the
TMSubtree is 4 and is greater than the number of keywords of Q, it still satisfies
Theorem 1 since 16 < (4− 3 + 2)× 3! = 18.

1

2 43

k1,k2 k1,k3 k2,k3

5 6

k1 k2

1

2 43

7 8

k1 k3

9 10

k2 k3

5 6

1

2 43

7 8 9 10

11 12

k1 k2

13 14

k1 k3

15 16

k2 k3

(A) (B) (C)

Fig. 2. Illustration of three possible TMSubtrees for keyword query Q = {k1, k2, k3}

3.3 The Algorithm

Compared with the MaxMatch algorithm that produces all subtree results in
three steps, the basic idea of our method is directly constructing all subtree re-
sults in the procedure of processing all Dewey labels. The benefits of our method
lie in two aspects: (1) the buffered data in memory is largely reduced, (2) each
Dewey label is visited only once. The first benefit comes from Theorem 1, which
guarantees that our method does not need to buffer huge volumes of data in
memory as [11] does; the second benefit is based on our algorithm.

In our algorithm, for a given keyword queryQ = {k1, k2, ..., km}, each keyword
ki corresponds to a list Li of Dewey labels sorted in document order, Li is
associated with a cursor Ci pointing to some Dewey label of Li. Ci can move to
the Dewey label (if any) next to it by using advance(Ci). Initially, each cursor
Ci points to the first Dewey label of Li.

As shown in Algorithm 2, our method sequentially scans all Dewey labels
in document order. The main procedure is very simple: for all nodes that have
not been visited yet, in each iteration, it firstly chooses the currently minimum
Dewey label by calling the selectMinLabel function (line 3), then processes it
by calling the pushStack procedure (line 4), and finally, it moves Ck forwardly
to the next element in Lk (line 5). After all Dewey labels are processed, our
algorithm pops all in-stack elements (line 6), then output the last TMSubtree
result to terminate the processing (line 7 to 8).
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During the processing, our algorithm uses a stack S to temporarily maintain
all components of a Dewey label, where each stack element e denotes a compo-
nent of a Dewey label. e is associated with two variables: the first is a binary
bitstring indicating which keyword is contained in the subtree rooted at e; the
second is a set of pointers pointing to its child nodes, which is used to maintain
intermediate subtrees.

The innovation of our method lies in that our method immediately outputs
each TMSubtree result tv when finding v is a qualified SLCA node, which makes
it more efficient in time and space. Specifically, in each iteration (line 2 to 5
of Algorithm 2), our method selects the currently minimum Dewey label Ck

in line 3, then pushes all components of Ck into S in line 4. The pushStack
procedure firstly pops from S all stack elements that are not the common prefix
of Ck and the label represented by the current stack elements, then pushes all
Ck’s components that are not in the stack into S. To pop out an element from
S, the pushStack procedure will call popStack procedure to complete this task.
The popStack procedure is a little more tricky. It firstly checks whether the
popped element v represents an LCA node. If v is not an LCA node, popStack
firstly transfers the value of v’s bitstring to its parent node in S (line 12), then
insert subtree tv into ttop(S) in line 13. In line 14 to 18, popStack will delete all
possible redundant subtrees by checking the subsumption relationship between
the keyword set of v and that of its sibling nodes. If v is an LCA node (line 3)
and located after the previous LCA node u in document order (line 4), it means
that u is an SLCA node if it is not an ancestor of v (line 5), then popStack
directly outputs the TMSubtree result rooted at u in line 6. The subtree rooted
at u is then deleted (line 7), and u points to v in line 8. If v is an LCA node but
located before u, it means that v is not an SLCA node, thus we directly delete
the subtree rooted at v (line 10).

Example 3. Consider the XML document D in Fig. 1 and query Q = {Mike,
DASFAA, DB}. The inverted Dewey label lists for keywords of Q are shown in
Fig. 3 (B). The status of processing these labels are shown in Fig. 3 (A.1) to
(A.14). In this example, we use “001” (“010” or “100”) to indicate that “Mike”
(“DASFAA” or “DB”) is contained in a subtree rooted at some node. After
1.2.2.1 is pushed into stack, the status is shown in Fig. 3 (A.1), where the bit-
string of the top element of S is “001” indicating that node 1.2.2.1 contains
“Mike”. The second pushed label is 1.2.2.3, the status is shown in Fig. 3 (A.2).
Note that after an element is popped out from the stack, its bitstring is trans-
ferred to its parent in the stack. The next two labels are processed similarly.
Before 1.3.1 is pushed into the stack, we can see from Fig. 3 (A.5) that the
bitstring of the top element in S is “111”, which means that node 1.2 contains
all keywords. After 1.3.1 is pushed into stack, the subtree rooted at 1.2 is tem-
porarily buffered in memory. As shown in Fig. 3 (A.10), before 1.3.3.1 is pushed
into stack, the last component of 1.3.2 will be popped out from the stack. Since
the bitstring of the current top element in S is “111” (Fig. 3 (A.10)), we know
that 1.3.2 is an LCA node. According to line 5 of popStack procedure, we know
that the previous LCA, i.e., 1.2, is an SLCA node, thus we output the matched
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subtree result rooted at 1.2. After that, the subtree rooted at 1.3.2 will be tem-
porarily buffered in memory. When the last component of 1.3 is popped out from
S (Fig. 3 (A.14)), according to line 3 of popStack procedure, we know that 1.3
is an LCA node. According to line 4 of popStack procedure, we know that the
previous LCA node, i.e., 1.3.2, is located after 1.3 in document order, thus we
immediately know that 1.3 is not an SLCA node, and delete the subtree rooted
at 1.3 in line 10 of popStack procedure. Finally, we output the TMSubtree rooted
at 1.3.2 in line 7 of Algorithm 2. Therefore for Q, the two TMSubtree results
are rooted at 1.2 and 1.3.2, respectively.

Mike:

DASFAA:

DB:

1.2.2.1, 1.3.1, 1.3.2.1, 1.3.3.1

1.2.2.3, 1.2.3.3, 1.3.2.3, 1.3.3.3

1.2.3.2, 1.3.2.2, 1.3.4

(B) Dewey label lists for Q={Mike, DASFAA, DB}
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Fig. 3. Running status for Q ={Mike, DASFAA, DB}

As shown in Algorithm 2, for a given keyword query Q = {k1, k2, ..., km} and
an XML document D of depth d, our method just needs to sequentially scan
all labels in the m inverted label lists once, therefore the overall I/O cost of
Algorithm 2 is O(

∑m
1 |Li|).

Now we analyze the time complexity of our algorithm. Since our algorithm
needs to process all components of each involved Dewey label of the given key-
word query Q = {k1, k2, ..., km}, the total number of components processed
in our method is bounded by d

∑m
1 |Li|. During processing, each one of the

d
∑m

1 |Li| components will be inserted into a subtree and deleted from the same
subtree just once, and the cost of both inserting and deleting a component is
O(1). When inserting a subtree into another subtree, the operation of checking
the subsumption relationship between the two keyword sets of two sibling nodes
will be executed at mostm times according to Definition 2. Therefore, the overall
time complexity is O(dm

∑m
1 |Li|).
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Algorithm 2: mergeMatching(Q) /*Q = {k1, ..., km}*/
1 u ← 1 /*u is the root node initially*/
2 while (∃i(¬ eof(Li))) do
3 Ck ← selectMinLabel(Q)
4 pushStack(S,Ck) /*S is the stack*/
5 advance(Ck)
6 while (¬ isEmpty (S)) do popStack(S)
7 output the subtree rooted at u
8 delete the subtree rooted at u

Function selectMinLabel(Q)

1 cmin ← C1

2 foreach(2 ≤ i ≤ m) do
3 if(Ci ≺d cmin) then cmin ← Ci

4 return cmin

Procedure pushStack(S,Ck)

1 n ← the length of the longest common prefix of Ck and the Dewey label in S
2 while (|S| > n) do
3 popStack(S)
4 foreach(|S| < i ≤ |Ck|) do
5 push(S,Ck[i])
6 top(S).bit ← top(S).bit OR 1 << (k− 1) /*bitwise OR operation*/

Procedure popStack(S)
/*Suppose that e1.e2...en is a Dewey label of a node, and all the n components
are in the stack S. In this procedure, v denotes the last component en popped
from S if it is used for bit operation; otherwise, it represents Dewey label
e1.e2...en or the node itself*/

1 flag ←∼ (∼ 0 << m) /*flag is a bitstring with 1 on the right m bits*/
2 v ← pop(S) /*v denotes the Dewey label consists of all components of S */
3 if((v.bit AND flag) = flag) then /*bitwise AND operation*/
4 if(u ≺d v) then
5 if(u ⊀a v) then
6 output the subtree rooted at u
7 delete the subtree rooted at u
8 u ← v
9 else
10 delete the subtree rooted at v
11 else
12 top(S).bit ← top(S).bit OR v.bit
13 add subtree rooted at v to the subtree rooted at top(S)
14 foreach(sibling node v′ of v) do
15 if((v′.bit AND v.bit) = v.bit) then
16 delete the subtree rooted at v
17 else if((v′.bit AND v.bit) = v′.bit) then
18 delete the subtree rooted at v′

Function eof(Li)

1 if (all Dewey labels of Li are processed) then return TRUE
2 else return FALSE
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Since our method is executed in pipelined way, at any time, it just needs
to maintain at most d subtrees, where each one is smaller than a maximum
TMSubtree. According to Theorem 1, each matched subtree result contains at
most max{2m!, (d −m + 2)m!} nodes. Therefore, the space complexity of our
method is O(d · max{2m!, (d − m + 2)m!}). Since d and m are very small in
practice, the size of these subtrees buffered in memory is very small.

Note that to output the name of nodes in a TMSubtree result, existing meth-
ods may either store all path information in advance by suffering from huge
storage space [3], or use the extended Dewey labels [12] by affording additional
cost on computing the name of each node according to predefined rules. In con-
trast, our method maintains another hash mapping between each path ID and
the path information, the total number of index entries is the number of nodes
in the dataguide index [4] of the XML tree, which is very small in practice. To
derive for each node its name on a path, we maintain in each Dewey label a path
ID after the last component, thus we can get the name of each node on a path
in constant time.

4 Experimental Evaluation

4.1 Experimental Setup

Our experiments were implemented on a PC with Intel(R) Core(TM) i5 M460
2.53 GHz CPU, 2 GB memory, 500 GB IDE hard disk, and Windows XP pro-
fessional as the operating system.

The algorithm used for comparison is the MaxMatch algorithm [11]1, which
was implemented based on the Stack [15], IL [15] and IMS [13] algorithms to test
the impacts of different algorithms on the overall performance, and is denoted
as MaxMatch-Stack, MaxMatch-IL and MaxMatch-IMS, respectively. All these
algorithms and our mergeMatching algorithm were implemented using Microsoft
VC++. All results are the average time by executing each algorithm 10 times
on hot cache.

We use XMark2 dataset for our experiments because it possesses complex
schema, which can test the features of different algorithms in a more compre-
hensive way. The size of the dataset is 582MB, it contains 8.35 million nodes,
the maximum depth and the average depth of the XML tree are 12 and 5.5
respectively.

We have selected 30 keywords, which are classified into three categories ac-
cording to their frequencies: (1) low frequency (100-1000), (2) median frequency
(10000-40000), and (3) high frequency (300000-600000). Based on these key-
words, we generated four groups of queries as shown in Table 1: (1) four queries
(Q1 to Q4) with 2, 3, 4, 5 keywords of low frequency; (2) four queries (Q5 to
Q8) of median frequency; (3) four queries (Q9 to Q12) of high frequency; (4) 20
queries (Q13 to Q32) with keywords of random frequency.

1 The MaxMatch algorithm is used to output TMSubtrees in our experiment.
2 http://monetdb.cwi.nl/xml

http://monetdb.cwi.nl/xml
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Table 1. Queries used in our experiment

Query Keywords Query Keywords

Q1 villages,hooks Q17 baboon,patients
Q2 baboon,patients,arizona Q18 tissue,shocks,order
Q3 cabbage,tissue,shocks,baboon Q19 province,bold,increase
Q4 shocks,necklace,cognition,cabbage,tissue Q20 cabbage,male,female
Q5 female,order Q21 listitem,emph,arizona
Q6 privacy,check,male Q22 patients,school,gender
Q7 takano,province,school,gender Q23 patients,school,gender,text
Q8 school,gender,education,takano,province Q24 bold,increase,hooks,takano
Q9 bold,increase Q25 male,female,keyword,incategory
Q10 date,listitem,emph Q26 emph,arizona,villages,education
Q11 incategory,text,bidder,date Q27 check,bidder,date,baboon
Q12 bidder,date,keyword,incategory,text Q28 school,gender,time,baboon,patients
Q13 text,tissue Q29 tissue,shocks,order,province,bold
Q14 takano,province Q30 female,keyword,incategory,cabbage,male
Q15 incategory,cabbage Q31 arizona,villages,education,listitem,emph
Q16 check,bidder Q32 bidder,date,necklace,cognition,check

4.2 Performance Comparison and Analysis

Fig. 4 (A), (B), (C) and Fig. 5 show the results of applying the four algorithms
to queries with keywords of low, median, high and random frequencies. From
these figures we know that our method is more efficient than the MaxMatch
algorithm for all queries. The reason lies in that no matter which algorithm, i.e.,
either Stack, IL or IMS, is adopted for SLCA computation, it cannot avoid the
following operations: (1) MaxMatch needs to re-scan all Dewey labels at least
twice in line 2 of Algorithm 1 to construct the set of groups (see Section 3.1 for
detailed reasons), (2) MaxMatch needs to firstly construct all PSubtrees, then
make pruning by traversing all nodes of each PSubtree. On the contrary, our
method only needs to scan all Dewey labels once, which makes it very efficient
compared with the MaxMatch algorithm.
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Fig. 4. Running time for queries with keywords of low, median and high frequencies

The second observation from Fig. 4 (A), (B), (C) and Fig. 5 is that for a given
keyword query, different algorithms on SLCA computation will impose compar-
atively less influence on the overall performance of the MaxMatch algorithm
when generating TMSubtree results, this is because the running time used to
constructe PSubtrees and make pruning on these PSubtrees usually occupies a
majority of the total running time to generate all TMSubtree results.
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Besides, we show in Fig. 6 the scalability when executing Q9 on XMark
datasets with different sizes (from 116MB to 1745MB (15x)). The query time
of the MaxMatch-Stack, MaxMatch-IL, MaxMatch-IMS and our mergeMatching
algorithms grow sublinearly with the increase of the data size. Also, mergeMatch-
ing consistently saves about 24.5%, 34.1%, 24.6% time when compared with
MaxMatch-Stack, MaxMatch-IL and MaxMatch-IMS, respectively. For other
queries, we have similar results, which are omitted due to space limit.
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Fig. 6. Running time of Q9 on XML documents of different sizes

5 Conclusions

Considering that TMSubtree is more self-explanatory and compact than CSub-
tree and PSubtree, but existing methods on subtree result computation need
to re-scan all Dewey labels more than once, in this paper, we focus on efficient
construction of TMSubtree results for keyword queries on XML data based on
SLCA semantics. We firstly proved the upper bound for the size of a given
TMSubtree, that is, it has at most 2m! nodes if d ≤ m; otherwise, its size
is bounded by (d − m + 2)m!, where d is the depth of a given TMSubtree,
and m is the number of keywords of the given query Q. Then we proposed a
pipelined algorithm to accelerate the computation of TMSubtree results, which
only needs to sequentially scan all Dewey labels once without buffering huge
volumes of intermediate results, because the space complexity of our method is
O(d ·max{2m!, (d −m + 2)m!}), and in practice, d and m are very small, the
size of the buffered subtrees is very small. The experimental results in Section 4
verify the benefits of our algorithm in aiding keyword search over XML data.
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Abstract. Despite a large body of work on XML twig query processing in rela-
tional environment, systematic study of XML join evaluation has received little
attention in the literature. In this paper, we propose a novel and non-traditional
technique for fast evaluation of multi-source star twig queries in a path materi-
alization-based RDBMS. A multi-source star twig joins different XML documents
on values in their nodes and the XQuery graph takes a star-shaped structure. Such
queries are prevalent in several domains such as life sciences. Rather than follow-
ing the conventional approach of generating one huge complex SQL query from a
twig query, we translate a star query into a list of SQL sub-queries that only mate-
rializes minimal information of underlying XML subtrees as intermediate results.
Experiments carried out confirm that our proposed approach build on top of an
off-the-shelf commercial RDBMS has excellent real-world performance.

1 Introduction

Efficient evaluation of XML queries that correlate (join) multiple input documents to
integrate data from different sources is highly important due to its several real-world ap-
plications. For example, querying biological data across multiple sources is a key activ-
ity for many biologists. If these sources represent data in XML format (e.g., INTERPRO

(www.ebi.ac.uk/interpro/), UNIPROT (www.expasy.ch/sprot/), PDB

(www.pdb.org), EMBL (www.ebi.ac.uk/embl/)), then XQuery can be used to
formulate meaningful queries over these data sources. Figure 1 shows three example
queries. Observe that Q1, Q2, and Q3 correlate four, three, and two data sources, re-
spectively. Also, in each query the join conditions share a common data source. For
instance, in Q1 UNIPROT is joined with INTERPRO, PDB, and EMBL. Similarly, in Q2

UNIPROT is joined with INTERPRO and EMBL. Consequently, each of these queries can
be represented as a star-shaped query graph where a node represents a data source and
an edge represents existence of a join expression between a pair of sources. We refer to
such queries as multi-source star twig queries (star queries for brevity). In this paper,
we focus on fast evaluation of this type of queries in a relational environment.

At first glance, it may seem that we can efficiently evaluate star queries by lever-
aging on an existing relational XQuery processor, c.f., [8, 12] and relying on its query
optimization capabilities. Specifically in an XQuery processor, an XQuery query is of-
ten rewritten to an equivalent, logically simpler XQuery and then translated to a sin-
gle, complex SQL query, c.f., [8]. Optimization of an XQuery query is achieved in two

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 110–125, 2012.
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Q2

01  for $entry in fn:collection('UNIPROT')/uniprot/entry,
02      $interpro in fn:collection('INTERPRO')/interprodb/interpro,
03      $embl in fn:collection('EMBL')/EMBL_Services/entry
04  let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@id
05  let $ref2InterPro := $entry/dbReference[@type="InterPro"]/@id
06  let $temp:=$embl/@created
07  where $entry/keyword = 'ATP-binding' 
08    and $entry/organism/name = 'Human'
09    and $interpro/pub_list/publication/journal = 'Science' 
10    and fn:starts-with(xs:string($temp), '1996')
11    and $interpro/@id = $ref2InterPro and $embl/@accession= $ref2EMBL
12  return $entry/name;

4

Q1

01  declare namespace PDBx = 'http://deposit.pdb.org/pdbML/pdbx.xsd'; 
02  for $entry in fn:collection('UNIPROT')/uniprot/entry,
03      $interpro in fn:collection('INTERPRO')/interprodb/interpro,
04      $embl in fn:collection('EMBL')/EMBL_Services/entry,
05      $pdb in fn:collection("PDB")/PDBx:datablock
06  let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
07  let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@id
08  let $ref2InterPro := $entry/dbReference[@type="InterPro"]/@id
09  let $temp:=$embl/@created
10  where $entry/keyword = 'ATP-binding' 
11      and $entry/organism/name = 'Human'
12      and $interpro/pub_list/publication/journal = 'Science' 
13      and fn:starts-with(xs:string($temp), '1996')
14      and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:country  = "US" 
15      and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:year = "1997" 
16      and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB
17      and $interpro/@id = $ref2InterPro 
18     and $embl/@accession= $ref2EMBL
19  return $entry/reference/citation/title;

64

Q3 11

QID Query # of 
Results

01 for $entry in fn:collection('UNIPROT')/uniprot/entry,
02    $embl in fn:collection('EMBL')/EMBL_Services/entry
03 let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@id
04 let $temp:=$embl/@created
05 where $entry/keyword = 'ATP-binding' 
06       and $entry/organism/name = 'Human'
07       and fn:starts-with(xs:string($temp), '1996')  
08       and $embl/@accession= $ref2EMBL
09 return $entry/gene;

Fig. 1. Examples of star twig queries

stages. Logical query optimization (sometimes also called query rewrite) [8, 12, 13] re-
sults in rewrites of XQuery statements to avoid duplicate and full navigations. On the
other hand, physical query optimization depends on the storage method of the data be-
ing queried. For instance, we can store and query XML representations of INTERPRO,
UNIPROT, PDB, and EMBL using XML support provided by DB2.

Unfortunately, query performance still remains a bottleneck. To get a better under-
standing of this problem, we experimented with the datasets in Figure 2(a) and queries
Q1 – Q3. Figure 2(b) shows the query evaluation times in DB2. Observe that it can take
from 4 minutes to more than 20 minutes to evaluate these queries. Is it possible to design
a scheme that can address this performance bottleneck? In this paper, we demonstrate
that techniques build on top of an existing off-the-shelf RDBMS can make up for a large
part of the limitation. In particular, we show that the above queries can be evaluated in
less than a minute.

We take an alternative non-traditional strategy that bypasses logical XQuery opti-
mization and relies solely on the relational optimizer to achieve superior performance
for evaluating star queries. This approach is perhaps surprising because the design goals
of our strategy seem to be diametrically opposite to traditional relational XQuery pro-
cessors. Specifically, given a star queryQ, our proposed algorithm translates it into a list
of SQL queries without undertaking any logical query optimization over a path materi-
alization-based storage scheme [6]. First, SQL queries for materializing the identifiers of
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Source Size No. of 
Files

No. of 
Attributes

No. of 
Nodes Level

UNIPROT 1.4 GB 1 38,380,645 28,247,711 6
INTERPRO 50 MB 1 944,564 754,607 5

PDB 613 MB 70 1,521,615 12,535,308 4
EMBL 1.28 GB 10 13,311,359 16,707,319 6

(a) Real World Data Sets

QID XDB2

Q1 1,421.16
Q2 238.73
Q3

(b) Query Evaluation 
Time (in sec.)

259.83

Fig. 2. Dataset and query evaluation times in DB2

nodes or subtrees satisfying the expressions in the return clause are generated. Based
on these materialized identifiers, SQL queries for non-join expressions in the where
clause are generated followed by queries for join expressions. These queries are exe-
cuted in sequence and the results are materialized in temporary tables. The identifiers of
nodes (subtrees) satisfying Q are then computed from these materialized results. A key
feature of these materialized results is that we only store minimal information (iden-
tifiers of nodes) required for evaluating Q. This obviously has positive impact on the
storage and query processing costs of temporary tables as we can efficiently store large
intermediate result nodes for a given query. Finally, the last step of the algorithm is to
issue an SQL query to retrieve complete information from the base table(s) containing
XML documents by matching the identifiers of the result subtrees.

Our proposed approach has excellent performance. It is significantly faster than
XML support of DB2 v9.5 (highest observed factor being 158 times), which relies on
conventional XQuery optimization techniques. Somewhat unexpectedly, we shall also
show that the proposed technique outperforms one of the fastest XQuery processor
(MONETDB/XQuery [2]) for several queries (highest observed factor being 46 times)!

The rest of our paper is organized as follows. We compare our approach with re-
lated work in Section 2. Section 3 formally defines the notion of multi-source star twig
queries. Section 4 presents in detail the algorithm for evaluating star queries on top of
a path materialization-based relational storage. We evaluate and compare the perfor-
mance of our proposed technique through an extensive set of experiments in Section 5.
Section 6 concludes the paper and suggests future work.

2 Related Work

There is a wealth of work on evaluating XPath expressions in a tree-unaware RDBMS

[6, 7, 14] and tree-aware environment [2, 6]. However, these efforts mainly focus on
various XPath axes and not on XML join operation. In all these efforts, the SQL trans-
lation algorithms generate a single complex SQL whereas here we focus on generating
a sequence of SQL queries. Consequently, in this paper we materialize minimal sub-
tree information to reduce the size of the intermediate tables generated by the list of
SQL queries. Complete information related to subtrees that satisfy the query is only
retrieved during the final step of query execution. Such “lazy” approach to retrieve sub-
tree information is not necessary in approaches that are based on a single SQL query.
Also, in contrast to previous efforts, the proposed algorithm is sensitive to the order
of evaluation of different components (i.e., return clause, join expressions, non-join
expressions) of the star queries.
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There has been efforts related to translating XML queries to SQL in XML publishing
environment [9]. In XPeranto [16], an XQuery query is transformed into an XML Query
Graph Model (XQGM) and composed with the view definition. Then it is translated
to a single “outer union” SQL query to be evaluated inside the relational engine. The
Agora [11] project uses local-as-view (LAV) approach to translate the XML query into
a SQL query over virtual relational schema and then rewriting this SQL query into a
query over the real relational schema. MARS [4] uses both local-as-view and global-as-
view (GAV) approaches. It first compiles the queries, views and constraints from XML

into the relational framework and then determines all minimal reformulations of the
relational queries under the relational integrity constraints using a cost-based approach.
In contrast, our approach is build on top of XML storage framework and translates a
specific type of XML query to a list of SQL queries instead of a single SQL query.

More germane to this work is efforts in the XML publishing environment that trans-
late an XML query to a list of SQL queries [5]. In [5], mapping from the relational
schema to the XML view is specified using a declarative query language RXL. In order
to create the XML view, optimal set of SQL queries are generated to extract and group
data from the underlying relational engine. In general, there are 2|E| possible transla-
tions of an RXL query into one or more queries, where |E| is the number of edges in the
query’s view tree (representation that makes it clear how to generate queries). In con-
trast, the number of SQL queries in our approach is linear to the number data sources to
be joined and the number of output expressions in the query.

3 Multi-source Star Twig Pattern

3.1 Multi-source Twig Pattern

Most XML processors, both native and relational, have overwhelmingly focused on
single-source twig queries modeled as a twig pattern tree [6]. A single-source twig
query is evaluated on a set of documents represented by a single XML schema or DTD.
However, as discussed in Section 1, related data in many real-world applications may
span across multiple data sources with different schemas. Consequently, our query
model should support queries over such multiple data sources using joins. We refer
to such twig queries as multi-source twig patterns.

A multi-source twig pattern Q is a graph with three types of nodes: location step
query node (QNode), logical-AND node (ANode), and return node (RNode). Each Q
has a single node of type RNode which represents the output node. While the label of
ANode is always “AND”, QNodes’ and RNodes’ labels are tags. An edge in Q can be
of two types, namely, axes edge and join edge. The former represents parent-child or
attribute relationship1 between a pair of nodes belonging to the same source whereas the
latter connects two nodes from two different sources. Specifically, a join edge (q1, q2)
asserts that q1 and q2 have equal value2. We distinguish the RNode by underlined tag;
and axes and join edges as direct and dashed edges, respectively.

1 We consider XPath navigation only along the child (/) and attribute (/@) axes. Exten-
sion to other navigation axis is orthogonal to the proposed technique.

2 We currently support equality join condition but inequality join condition can be supported
easily.
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Observe that a multi-source twig query can be represented by an XQuery query Q =
(F ,L,W ,R) where F is a set of for clause items, L is a set of expressions defined
using the let clause, W is a set of predicates in the where clause, andR is an output
expression specified in the return clause. Specifically, the syntax of Q is as follows.

FOR $x1 in p1, . . . , $xn in pn
LET $y := q1
LET . . .

WHERE b1 ∧ b2 ∧ . . . ∧ bk ∧ c1 ∧ c2 ∧ . . . ∧ cm
RETURN r

Note that there must be at least two for clause items in Q that are bound to two differ-
ent document sources. The let clause simply declares a variable and gives it a value.
We categorize the where-expressions in W into two types, namely join expressions
and non-join expressions. A join expression involves predicates that express join con-
ditions over two different document sources. On the other hand, a non-join expression
expresses a filtering condition on a single source. Note that a join expression can also
be expressed in a for clause using qualifier. In this paper, we ignore join expressions in
the for clause, which can always be reformulated away using where clause. Finally,
an output expression r in the return clause is of type RNode.

Definition 1. [XQuery Representation of Multi-source Twig] Let var be the name of
variable binding, exp be a path expression, op ∈ {=, �=, >,≥, <,≤} be an operator,
and val be a value. Given an expression exp, the function source(exp) maps exp to the
document source D over which exp is valid. Then, an XQuery query Q = (F ,L,W ,R)
is a multi-source twig query if the followings are true.

– F is a set of for clause items such that |F| ≥ 2. An item f ∈ F is a triple
(var, dsName, exp), where source(exp) = dsName. Furthermore, ∃ fi ∈ F ∧
fj ∈ F such that fi.dsName �= fj.dsName for i �= j and 1 < i, j ≤ |F|.

– L is a set of let clause items where l ∈ L is a 2-tuple (var, exp).
– Let S and T be path expressions containing var = f.var or var = l.var where
f ∈ F , l ∈ L. Then, W is a set of conjunctive predicates in the where clause
whereW = J ∪ C and J ∩ C = ∅. J is a non-empty set of join expressions where
b ∈ J is of the form S op T . C is a set of non-join expressions where c ∈ C is of
the form S op val.

– R is the return clause containing output expression r, which is a 2-tuple (var,
exp) where var = f.var or var = l.var, f ∈ F , and l ∈ L. �

3.2 Star Twig Pattern

An XQuery representation of a multi-source twig query can be conveniently represented
using an XQuery graph. Similar to a query graph of an SQL query, an XQuery graph
is an undirected graph with nodes D1 . . . Dn. For every join expression between the
document sourcesDi and Dj , we add an edge between Di and Dj . This edge is labeled
by the join expression. The nodes are labeled with corresponding non-join expressions.

An XQuery graphs can have many different shapes such as chain queries, star queries,
tree queries, cyclic queries, clique queries, etc. Note that these classes are not disjoint
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Algorithm 1: The StarTwig2SQL algorithm.
Input: Star twig query Q
Output: A list of SQL queries SQLList

1 Initialize SQLList = ∅;
2 (F ,W,R) ← parseXQuery(Q) /* Phase 1*/;
3 SQLList.add(outputExp2SQL(R)) /* Phase 2 */;
4 (J , C) ← distinguishExp(W ) /* Phase 3 */;
5 SQLList.add(whereExp2SQL(F ,J , C,R));
6 SQLList.add(finalResultQueryGen(R)) /* Phase 4 */ ;
7 return SQLList

and that some classes are subsets of other classes. In this paper, we focus on star queries
joining different XML documents. Intuitively, in a multi-source star twig query all join
expressions share a common document source and hence forms a star-shaped query
graph. For example, queries in Figure 1 are examples of star twig queries. Formally, it
is defined as follows.

Definition 2. [Multi-source Star Twig Query] LetQ = (F ,L,W ,R) be a multi-source
XQuery query. Then Q is called a multi-source star twig query if any one of the follow-
ing conditions is true: (a) |J | = 1 and source(b.S) �= source(b.T ) where b ∈ J . (b) If
|J | > 1 then ∀ i �= j source(bi.S) = source(bj .S) and source(bi.S) �= source(bi.T )
where bi ∈ J , bj ∈ J and 1 ≤ i, j ≤ |J |. �

4 Star Twig Query Evaluation

In this section, we shall elaborate on the algorithm for translating a star twig query to
a list of SQL queries over relational framework. State-of-the-art relational approaches
for XML storage can be broadly classified into four types, namely, node approach, edge
approach, path materialization (PM) approach, and DTD approach [6]. For the sake of
generality, in this paper we assume that the XML data are schemaless. Since the PM

approach has advantages over the rest when XML data are schemaless [6], our proposed
algorithm is built on top of this storage approach. Importantly, we present a generic
algorithm that is independent of any specific PM approach. We assume that paths, con-
tents of leaf nodes, and attributes associated with a XML tree are materialized in Paths,
PathsContent, and Attributes relations, respectively. The reader may refer to [10] for an
example of how various subroutines in the algorithm can be realized on a specific PM

approach.
The algorithm for SQL translation is shown in Algorithm 1. The algorithm consists

of four phases as discussed below.

Phase 1: XQuery Parsing. In the first phase, a multi-source star twig query Q is
parsed using XPath 2.0/XQuery 1.0 Parser Build [1] (Line 02). During the parsing pro-
cess, the algorithm identifies different components of Q based on the star twig query
model discussed in the preceding section. Also, the algorithm replaces the variable
references in Q with the expressions defined in the let clause (if any). The output
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Algorithm 2: The outputExp2SQL algorithm.
Input: An output expression r ∈ R
Output: An SQL query SQL

1 Initialize SQL = ∞;
2 if (r is an attribute node) then
3 PathExp ← pathExpOfParentNode(r);
4 else
5 PathExp ← r.absExp;

6 PathIDs ← getAllPathID(PathExp);
7 Level ← getNodeLevel(PathExp);
8 Source = r.dsName;
9 SQL.genSQL(PathIDs, Level, Source);

10 return SQL

Algorithm 3: The whereExp2SQL algorithm.
Input: F , J , C, r ∈ R
Output: A list of SQL queries SQLList

1 Initialize SQLList = ∅;
2 for (each f ∈ F) do
3 Cf ← getNonJoinExp(f.var, C);
4 if (f.var = r.var) then
5 SQL ← translateWhereNonJoin(r, f , Cf );
6 else
7 SQL ← translateWhereJoin(r, f , Cf , J );

8 SQL ← INSERT INTO T “ +R+ “ ”+F .indexOf(f)+ “ ” +SQL;
9 SQLList.add(SQL);

10 return SQLList

of this phase are a set of for clause items F , a set of where-expressions W , and
the output expression r ∈ R. In addition, we also determine the absolute path ex-
pressions of r ∈ R, c ∈ C, and b ∈ J . The absolute path expression of r is de-
noted by r.absExp. For example, consider r = ($entry, “/name”) in Q2 (Figure 1).
Then r.absExp is “/uniprot/entry/name” as $entry is bound to the expression
“/uniprot/entry”.

Phase 2: OutputExp2SQL Translation. In this phase, the algorithm analyzes the out-
put expression r ∈ R and generates an SQL query for materializing the identifiers of
the XML subtrees that satisfy r (Line 03). An identifier of a node n in an XML tree D
(denoted by nId) is one or more attributes of n that can uniquely identify n in D. The
materialized identifiers of r are stored in a temporary relation PathU(DocId, nId). Note
that we materialize the identifiers instead of entire subtrees because it is more space-
efficient (the size of materialized identifier table is always smaller than or equal to the
table containing entire materialized subtrees). Also, we do not need to materialize the
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Algorithm 4: The translateWhereNonJoin algorithm.
Input: An output expression r, a for clause item f , Cf

Output: An SQL query SQL

1 Initialize selectClause, fromClause, whereClause, optionClause;
2 dataS ← source(r.var);
3 for (i = 1 to |Cf |) do
4 c = Cf [i];
5 if (c is a condition on attribute) then
6 Generate SQL statements for fromClause and whereClause;
7 else
8 Add SQL statements to whereClause;

9 Add instance of PathsContent representing dataS to the fromClause;
10 if (i > 1) then
11 whereClause.add(evalTwig(c.absExp, Cf [i− 1].absExp));

12 Add instances of PathsContent to fromClause;
13 whereClause.add(evalTwig(r.absExp, c.absExp));
14 Add nId, docId to selectClause;
15 SQL = selectClause+ fromClause+ whereClause;
16 return SQL

level of r explicitly as it can be computed on-the-fly in a PM-based storage approach. It
is worth mentioning that the identifier scheme is not tightly coupled to any specific num-
bering scheme as any scheme that can uniquely identify nodes in an XML tree can be
used as an identifier. For instance, the preorder and dewey order values of nodes can be
used for region encoding and dewey number-based labeling schemes, respectively [6].

Given an output expression r ∈ R, the OutputExp2SQL algorithm depicted in Algo-
rithm 2 works as follows. First, the algorithm determines whether r involves an attribute
node (Line 02). If it does, then the algorithm retrieves the absolute path expression of its
parent node (Line 03). Otherwise, the absolute path expression of r is used (Line 05).
This expression is stored in the variable PathExp. Based on PathExp, a set of path ids is
retrieved from the Paths table (Line 06). Also, the algorithm computes the node level of
r using PathExp. Then the SQL query for materializing nodes satisfying r (PathU table)
is generated by exploiting the Paths, Attributes, and PathsContent relations.

Phase 3: WhereExp2SQL Translation. Here, we translate the where-expression into a
list of SQL queries. The result of each SQL query is stored in a temporary table that is an
instance of the relation TempTable(DocId, nId). This phase starts by distinguishing the
join and non-join expressions followed by invocation of the WhereExp2SQL algorithm
(Lines 04–05, Algorithm 1). Intuitively, for each pair of output expression r and an item
f of the for clause expressions it generates an SQL query. If r and f refer to the same
data source D then it generates a non-join query that evaluates the conditions specified
in the where-expression related to D. Otherwise, if r and f refer to different sources,
namely D1 and D2, respectively, then a join query is generated that satisfies the join
predicate(s) as well as non-join predicates on D2. For example, there are three pairs of
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Algorithm 5: The translateWhereJoin algorithm.
Input: An output node r, a for clause item f , Cf , J
Output: An SQL query SQL

1 Initialize selectClause, fromClause, whereClause, optionClause;
2 processExpressions(Cf );
3 i = |Cf |+ 1;
4 Jf ←J .getJoinExp(f );
5 Jr ← J .getJoinExp(r);
6 if (Jf ∩ Jr = ∅) then
7 processJoinExp(Jf .getS(), Jf .getT(), i, Cf [|Cf |].absExp);
8 processJoinExp(Jr .getS(), Jr .getT(), i, Cf [|Cf |].absExp);
9 else

10 Jx = Jf ∩ Jr;
11 processJoinExp(Jx.getS(), Jx.getT(), i, Cf [|Cf |].absExp);

12 i = i+ 1;
13 Add instances of PathsContent relation to fromClause;
14 whereClause.add(evalTwig(r.absExp, T.absExp));
15 Add nId, docId to selectClause;
16 SQL = selectClause+ fromClause+ whereClause;
17 return SQL

(r, f ) in Q2, namely ($entry, $entry), ($entry, $interpro), and ($entry, $embl). Since
($entry, $entry) refers to the same data source (UNIPROT), the algorithm generates an
SQL query that retrieves those nodes in the PathU table (generated by Phase 2) that
satisfy the non-join predicates on UNIPROT. The results of this query is stored in an
instance of TempTable (denoted by T 1). On the other hand, data sources of ($entry,
$interpro) are not identical and hence a join query is generated that selects nodes from
PathU that satisfy the join predicate (Line 11 in Q2) and the conditions on INTERPRO

(Line 9). The results of this query is stored in the temporary table T 2.
The WhereExp2SQL algorithm is depicted in Algorithm 3. For each f ∈ F , first,

it retrieves Cf ⊆ C, where ∀c ∈ Cf c.var = f.var (Line 03). Then, it determines
whether r and f are bound to the same data source. If r.var = f.var, then join
across data sources is not necessary. In this case, the algorithm will invoke the trans-
lateWhereNonJoin algorithm (Line 05). Otherwise, it invokes the translateWhereJoin
algorithm (Line 07). The generated SQL query is stored in a variable called SQLList.
Lastly, an insert statement is appended to the generated SQL query so that the results
of the query can be directly stored in the temporary table. We now elaborate on the
translateWhereNonJoin and translateWhereJoin procedures.

The translateWhereNonJoin Algorithm. Given a pair of (r, f ) representing the same
source, the translateWhereNonJoin algorithm (Algorithm 4) generates a non-join SQL

query. For each where-expression c ∈ Cf , the algorithm first checks whether c is spec-
ified on an attribute. If it is, then it will add SQL statements to the where and from
clauses of the translated SQL query by exploiting the Paths and Attributes relations
(Line 06). These statements retrieve path ids based on c.absExp satisfying the value
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conditions on the attributes. If c is not specified on an attribute then these expressions
are added to the where clause (Line 08). If there are more than one conditions in Cf ,
then it represents a twig query pattern. Consequently, SQL statement for evaluating the
twig pattern is added using evalTwig procedure (Line 10). Next, the algorithm specifies
the condition between these expressions and r using evalTwig procedure (Line 11) as
we are interested in only those nodes that satisfy the output expression. The PathU table
is used for this purpose. The SQL query generated by the translateWhereExp algorithm
returns the identifiers of nodes satisfying r that satisfy expressions in Cf .

The translateWhereJoin Algorithm. Given a pair of (r, f ) representing two different
sources, the translateWhereJoin algorithm (Algorithm 5) generates the join query. First,
the SQL fragment for evaluation of non-join conditions on the source represented by f
is generated as we are interested in those joinable nodes that satisfy the predicates on
this source. The steps for this are encapsulated in the processExpression function and
are same as the ones in Lines 03–11 of Algorithm 4. The next step is to general the
SQL fragment for the join expressions (Lines 04–11). First, the algorithm creates two
subsets of J , namely Jf and Jr, containing sets of join expressions involving the
sources of f and r, respectively (Lines 04–05). If (Jf ∩ Jr = ∅), then the algorithm
processes each of the join expressions by invoking the processJoinExp algorithm twice
(Lines 07–10). The functions getS and getT return the S and T components of a join
expression S op T , respectively (see Definition 1). Let us elaborate on this scenario
with an example. Consider a query Q that contains f.var ∈ {f1, f2, f3}. Let J in Q
contains two join expressions, namely S1 = T and S2 = T where S1, S2, and T are
path expressions representing three different data sources and contain f2.var, f3.var,
and f1.var, respectively. Let R = {r} where r.var = f3.var. Now consider the pair
(r, f2) in the context of Algorithm 5. Here Jf = {“S1 = T ”} and Jr = {“S2 = T ”}.
Since Jf ∩ Jr = ∅, Lines 07–08 are executed. In this case, the algorithm processes
the join between S1 and T first followed by the join between S2 and T . Note that there
is no join expression of the form “S1 = S2”. On the other hand, if (Jf ∩ Jr �= ∅),
then the algorithm will retrieve the common join expressions (denoted by Jx) between
Jf and Jr, and process them by invoking the processJoinExp procedure (Lines 11). To
elaborate further, consider the pair (r, f1) in the context of the above example. Here
Jf = Jr = {“S1 = T ”}. Hence, Line 11 is executed. The objective of processJoinExp
procedure is to generate the SQL fragments involving the join expressions. For each
join expression S op T , it checks the type of node (attribute or element) in S and
T and corresponding SQL fragments are added to where and from clauses. Lastly,
Algorithm 5 evaluates the twig fragment consisting of the join expression and the output
expression r using evaluateTwig procedure. Note that this procedure is similar to the
one discussed in the context of TranslateWhereNonJoin algorithm.

Phase 4: Final Results Generator. Finally, this phase generates a set of SQL queries
for retrieving the final results in two steps. The first step is to combine the results of SQL

queries generated in Phase 3 (Line 02). Note that the results of these queries can be com-
bined by performing intersection operation over them. The results of the SQL queries
generated in this step are sets of identifiers satisfying the output expression r stored
in the PathUFinal(DocId, nId) table. In the second step the algorithm retrieves complete
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QID Query

Q4

for $entry in fn:collection('UNIPROT')/uniprot/entry,
$interpro in fn:collection('INTERPRO')/interprodb/interpro

let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/keyword = 'Vision' and $entry/organism/name = 'Human'
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/@id = $ref2Interpro

return $entry/gene;

Q6

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$pdb in fn:collection('PDB')/PDBx:datablock
let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
where $entry/keyword = '3D-structure' 
and $entry/organism/name = 'Human'
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:year  = "2005" 
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB

return $entry/sequence;

Q8

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd'; 
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/organism/name="Mouse"
and $interpro/pub_list/publication/journal = "Nature" 
and $interpro/@id = $ref2Interpro
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:country  = "US" 
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB

return $entry;

Q5

for $entry in fn:collection('UNIPROT')/uniprot/entry,
$interpro in fn:collection('INTERPRO')/interprodb/interpro

let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/keyword = "Vision" and $entry/organism/name = "Human"
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/pub_list/publication/year = "1990"  
and $interpro/@id = $ref2Interpro

return $entry/gene; 

Q7

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd'; 
for $entry in fn:collection("UNIPROT")/uniprot/entry,

$interpro in fn:collection("INTERPRO")/interprodb/interpro,
$pdb in fn:collection("PDB")/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/organism/name="Human"  
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/pub_list/publication/year = "2000"
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:country  = "UK" 
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:year = "2002" 
and $interpro/@id = $ref2Interpro   
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB
return $entry/gene; 

2

2

# of 
Results

31

1

13

QID Query # of 
Results

Fig. 3. Query set

SX
XDB2

Q4
18.23

130.80

Q5
17.94

131.35

Q8
19.26

104.73

Q7
18.46

112.77

Q6
3.34

128.08

Q3
16.48

259.83

Q1
35.62

1,421.16

Q2
24.47

238.73

Fig. 4. Query evaluation times (in sec.)

information related to these nodes (remaining attributes in PathsContent) for generating
the final result. Specifically, it generates an SQL query by joining the PathUFinal and
PathsContent tables. The results are sorted in document order.

Theorem 1. Let Q = (F ,L,W ,R) be a multi-source star twig query involving n
different data sources. Then, the total number of SQL queries generated from Q is
(n + k) where (a) if the output expression r ∈ R does not contain attribute node then
k = 3; (b) Otherwise, k = 4. �

Due to space constraints, the proof is given in [10].

5 Experimental Results

Prototype for star query evaluation system was implemented on top of a PM-based XML

database system called SUCXENT++ [14] (denoted by SX) using Java JDK 1.6. The
experiments were conducted on an Intel machine with Core2 Duo E6550 2.33GHz pro-
cessor and 3.25GB RAM. The operating system was Windows XP Professional SP3. The
RDBMS used was MS SQL Server 2005 Developer Edition.

We compare our approach to the native XML support of IBM DB2 v9.5 (denoted by
XDB2). XML support of IBM DB2 is also used as performance benchmark in [7]. For SX

and XDB2, appropriate indexes were created [10]. Prior to our experiments, we ensure
that statistics had been collected. The bufferpool of the RDBMS was cleared before
each run. The queries in SX were executed in the reconstruct mode where not only the
internal nodes are selected, but also all descendants of those nodes. Each query was
executed 6 times and the results from the first run were always discarded. For XDB2,
we use the db2batch Benchmark Tool provided by the system. All rows were fetched
from the answer set; however, they were not sent to output.
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QID

Z1

Query

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '

and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

Z2

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $entry/keyword = '                  ' and $entry/organism/lineage/taxon = '               '

and $entry/gene/name= '           '  and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

Z3

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '

and $entry/gene/name= '           '  and $entry/reference/citation/authorList/person/@name = '              '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

QID

Y1

Query

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

and $entry/organism/lineage/taxon = 'The Taxon'
and $interpro/pub_list/publication/journal = '                '  and $interpro/pub_list/publication/year = '           '

return $entry/name ;

Y2

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $entry/organism/lineage/taxon = 'The Taxon'  and $interpro/pub_list/publication/journal = '               ' 
and $interpro/pub_list/publication/year = '           ' 
and $interpro/taxonomy_distribution/taxon_data/@name = '             '

return $entry/name ;

(b) Query Set 1 (d) Query Set 2

14MB 140MB 1.4GB
K 5 - 500 50 – 5,000 500 – 50,000

500KB 5MB 50MB
K 10 - 75 100 - 750 1,000 – 7,500

(a) Values of K (1) (c) Values of K (2)
TaxonKeyword

Keyword Taxon
Gene

Keyword Taxon
Gene Person

Year
Taxon

Journal

YearJournal

Fig. 5. Synthetic query sets and the K parameter

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = '                 '  
and $entry/organism/lineage/taxon = '             '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

QID

W1

Query

W2

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = '                 ' 
and $entry/organism/lineage/taxon = '              '
and $entry/gene/name= '           '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id =  $entry/dbReference[@type="PDB"]/@id

return $entry/name;

W3

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = '                 ' 
and $entry/organism/lineage/taxon = '              '
and $entry/gene/name= '           '
and $entry/reference/citation/authorList/person/@name = '               '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

Keyword

Keyword
Taxon

Gene

Keyword
Taxon

Gene
Person

Taxon

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/
interprodb/interpro, $pdb in fn:collection('PDB')/PDBx:datablock, 

$embl in fn:collection('EMBL')/EMBL_Services/entry
where $entry/keyword = '                 '  

and $entry/organism/lineage/taxon = '             '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id
and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

QID

V1

Query

V2

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock, 
$embl in fn:collection('EMBL')/EMBL_Services/entry

where $entry/keyword = '                 '  
and $entry/organism/lineage/taxon = '             '
and $entry/gene/name= '           '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id
and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

Keyword

Keyword
Taxon

Gene

Taxon

(a) Query Set 3

V3

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,  $interpro in fn:collection('INTERPRO')/
interprodb/interpro, $pdb in fn:collection('PDB')/PDBx:datablock, 

$embl in fn:collection('EMBL')/EMBL_Services/entry
where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '

and $entry/gene/name= '           '
and $entry/reference/citation/authorList/person/@name = '              '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id
and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

Keyword Taxon
Gene

Person

(b) Query Set 4

Fig. 6. Synthetic query sets

We would also like to observe how “far off” our approach is from one of the fastest
XQuery processor (MONETDB/XQuery [2]). Hence, we used the Windows version of
MONETDB/XQuery 0.24.0 (denoted as MX) downloaded from monetdb.cwi.nl/
XQuery/Download/index.html (Win32 builds) for our study.

5.1 Query Evaluation Times on Real Datasets

In our experiments, we used real datasets from life sciences domain as star twig queries
are prevalent in this domain. Specifically, we use the XML representations of UNIPROT,
PDB, INTERPRO, and EMBL downloaded from their official websites. The features of
these datasets are given in Figure 2(a). We chose eight multi-source star twig queries
as shown in Figures 1 and 3 that join up to four data sources, and have between three
to nine expressions in the where clause. We transform these queries to our model
(Section 3) if necessary. Observe that the queries are highly selective (small result size).

monetdb.cwi.nl/XQuery/Download/index.html
monetdb.cwi.nl/XQuery/Download/index.html
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K=5 K=50 K=250 K=500 K=5 K=50 K=250 K=500 K=5 K=50 K=250 K=500
SX 0.52 0.53 0.54 0.58 0.52 0.54 0.58 0.57 0.78 0.79 0.81 0.83
XDB2 1.95 1.75 2.71 3.03 1.51 1.63 2.33 2.61 2.54 2.75 3.44 3.72
MX 7.47 7.52 7.89 8.33 7.48 7.56 8.08 8.53 7.56 7.89 9.38 10.61
MX-R 0.06 0.09 0.11 1.39 0.06 0.08 0.09 1.30 0.13 0.11 0.14 0.16

Z1 Z2 Z3
K=50 K=500 K=2,500 K=5,000 K=50 K=500 K=2,500 K=5,000 K=50 K=500 K=2,500 K=5,000

SX 2.38 2.45 2.46 2.49 2.69 2.66 2.72 2.76 4.75 4.82 4.99 4.99
XDB2 13.92 18.59 201.98 393.95 12.92 16.79 40.38 67.18 40.10 45.51 56.00 72.37
MX
MX-R 0.25 11.25 59.39 114.50 0.27 11.53 59.45 114.66 0.27 11.69 61.00 117.17

GDKmallocmax Error

Z1 Z2 Z3

K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000
SX 27.96 28.20 46.76 47.90 19.17 18.97 19.99 40.04 45.06 45.99 63.45 65.94
XDB2 137.31 175.24 542.73 DNF 138.27 608.10 521.33 DNF 724.47 740.36 1,106.22 DNF

Z1 Z2 Z3

(a) UNIPROT (14 MB) (b) UNIPROT (140 MB)

(c) UNIPROT (1400 MB)

K=10 K=50 K=75 K=10 K=50 K=75
SX 1.87 1.86 1.87 1.88 1.90 1.91
XDB2 13.15 15.68 18.22 12.94 15.87 15.46
MX 0.80 0.78 0.78 0.80 0.80 0.80
MX-R 1.83 7.48 10.81 2.55 10.39 10.69

Y1 Y2

(d) INTERPRO (500KB)

K=100 K=500 K=750 K=100 K=500 K=750
SX 2.60 2.74 2.80 2.70 2.76 2.78
XDB2 19.82 48.77 62.89 19.47 48.50 49.84
MX 0.89 0.90 0.89 0.89 0.92 0.91
MX-R 18.25 22.20

Y1 Y2

GDKMallocmax ErrorGDKMallocmax Error

(e) INTERPRO (5MB)

K=1,000 K=5,000 K=7,500 K=1,000 K=5,000 K=7,500
SX 5.72 6.40 6.83 6.01 6.74 6.85
XDB2 87.77 381.34 564.97 87.20 383.47 462.89
MX 1.34 1.41 1.42 1.40 1.44 1.48
MX-R

Y1 Y2

GDKmallocmax Error

(f) INTERPRO (50MB)

Fig. 7. Query evaluation times (in sec.)

Figure 4 depicts the query evaluation times of SX and XDB2. Note that we did not show
any results of MX as it is vulnerable to the virtual memory fragmentation in Windows
environment. Consequently, it failed to shred UNIPROT XML (1.4GB in size). Observe
that SX significantly outperforms XDB2 for all queries.

5.2 Query Evaluation Times on Synthetic Datasets

The main objective here is to study the effects of the size of intermediate results on the
query evaluation times. In the sequel, the symbol DNF means that the query evaluation
did not finish in 30 mins. We compare SX, XDB2, and MX. Note that due to the GD-
Kmallocmax error in MX for some queries, we rewrote all queries in MX into sequential
ones3. In sequential queries, non-join expressions are specified as qualifiers in path ex-
pressions of for clause items instead of specifying them in the where clause. In the
sequel, we denote the MONETDB system with the rewritten queries as MX-R. We use
UNIPROT and INTERPRO datasets and modified them (discussed below) so that the size
of intermediate results can be controlled. We set UNIPROT as the output data source.

Varying Intermediate Results of UNIPROT. We vary the size of UNIPROT docu-
ments from 14MB to 1.4GB and fix the size of INTERPRO dataset to 50MB. We con-
trol the intermediate result size by varying the number of subtrees (denoted as K) that
matches a non-join twig query in the XML document(s). The variation of K for differ-
ent dataset sizes is depicted Figure 5(a). Figure 5(b) depicts the query set used in this
set of experiments. These queries are chosen by varying the number of predicates on
UNIPROT dataset from 2 to 4. We vary the result size of the highlighted predicates in
the where clause. For instance, in Z1 we vary the number of subtrees (K) returned
by the following non-join twig condition: $entry/keyword =‘Keyword’ and
$entry/organism/lineage/taxon =‘Taxon’.

Figures 7(a)–(c) show the query evaluation times. Note that we do not compare MX

and MX-R in Figure 7(c) as it is vulnerable to the virtual memory fragmentation. We
can make the following observations. Firstly, the cost of query evaluation increases

3 This error occurred because the system cannot allocate certain amount of memory specified in
the error message.
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K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000

SX 26.62 26.92 27.19 27.67 27.42 27.86 28.83 30.67 57.10 57.41 59.05 60.20
XDB2 112.48 109.98 186.45 258.44 109.63 114.19 118.30 244.75 739.66 1,072.99 DNF 719.55

W1 W2 W3

(a) 3 Data Sources (UNIPROT, INTERPRO, and PDB)

(b) 4 Data Sources (UNIPROT, INTERPRO, PDB, and EMBL)

K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000

SX 34.85 35.23 35.73 35.99 35.63 35.84 36.57 37.94 65.70 65.41 67.85 68.65

XDB2 174.02 203.20 243.35 314.38 206.53 514.75 DNF 309.52 833.56 1,131.97 DNF 1,004.22

V1 V2 V3

Fig. 8. Query evaluation times (1.4GB UNIPROT (in sec.))

with the size of intermediate results for all approaches. Secondly, SX performs better
than XDB2 for all queries. For instance, SX is 158 times faster than XDB2 for Z1 when
K = 5, 000 (Figure 7(b)). Thirdly, for certain queries SX is faster than MONETDB! It
is faster than MX for all queries for 14MB dataset (highest observed factor being 14.8
times). On the other hand, MX-R is faster than SX for 13 out of 24 queries (highest
observed factor being 17.9 times). Interestingly, SX outperforms MX-R for remaining
queries (up to 46 times faster). We also observe that rewriting the queries to sequential
ones in MONETDB performs better than MX and it can evaluate queries that previously
cannot be evaluated by MX.

Varying Intermediate Results of INTERPRO. We now fix the UNIPROT dataset size to
140MB and vary the INTERPRO document sizes from 500KB to 50MB. The values of K
for this set of experiments are depicted Figure 5(c). Figure 5(d) presents the query set.
The numbers of predicates on INTERPRO dataset are set to 2 and 3 for Y1 and Y2, re-
spectively. Figures 7(d)–(f) depict the query evaluation times. Similar to above results,
SX is faster than XDB2 for all queries (highest observed factor being 82.7 times). How-
ever, MX performs better than SX for all queries (up to 4.8 times faster). Interestingly,
we observe that MX-R cannot evaluate 10 out of 18 queries because of GDKmallocmax
error. For the remaining queries, SX outperforms MX-R for 7 out of 8 queries (high-
est observed factor being 8.2 times). Hence, it is evident that rewriting XQueries to
sequential ones in MONETDB may not always be a beneficial strategy.

Varying Number of Data Sources. Next, we vary the number of data sources involved
in joins. Note that this also varies the number of sub-queries generated during the eval-
uation (Theorem 1). In addition, we also vary the intermediate result size of nodes
(subtrees) of UNIPROT satisfying output expressions as depicted in Figure 5(a). We
used query sets shown in Figures 6(a) and (b) joining three and four data sources, re-
spectively. Figure 8 shows the evaluation times of queries in Figures 6(a) and (b). Note
that we do not compare MX and MX-R in Figure 8 due to virtual memory fragmentation
problem. Notice that SX is faster than XDB2 for all queries. Furthermore, the number of
data sources involved in the join influences the query evaluation time in all approaches.

Evaluation Times of Sub-queries. The above results confirm the strengths of our ap-
proach. We now explore further the reasons behind such superior performance by in-
vestigating the contributions made by individual sub-queries to the execution costs of
the translated SQL queries. We chose Z2 and Y2 as our test queries. The translated SQL

query of Z2 and Y2 each consists of five sub-queries (denoted as SQ1 to SQ5). SQ1
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(a) Query Z2

K SQ1 SQ2 SQ3 SQ4 SQ5
5 56.52   226.58    330.18      55.60   42.80       

50 72.52   222.68    321.56      55.42   45.84       
250 71.34   256.18    319.34      83.48   55.64       
500 64.12   237.80    325.14      67.68   46.14       
50 156.28 520.82    1,742.60   88.56   60.30       

500 164.00 584.10    1,757.82   80.56   57.34       
2,500 173.24 605.90    1,758.32   89.94   58.66       
5,000 165.24 689.78    1,808.28   105.12 87.34       

500 875.16 4,056.80 13,853.94 268.02 95.22       
5,000 869.68 4,315.80 13,910.64 312.50 123.16      

25,000 919.72 5,025.02 13,967.08 416.80 261.66      
50,000 881.08 7,167.38 13,836.18 434.72 16,405.90 

14
MB

140
MB

1.4
GB

K SQ1 SQ2 SQ3 SQ4 SQ5
10 183.26 433.04 1,123.62   102.64 49.94   
50 180.40 415.78 1,143.44   128.68 52.94   
75 194.64 395.96 1,131.92   107.14 50.14   

100 282.58 423.86 2,055.20   107.60 71.80   
500 213.32 496.96 2,388.94   162.18 140.48 
750 216.88 431.32 2,417.62   119.38 84.56   

1,000 199.18 527.22 5,628.48   171.40 164.66 
5,000 198.84 524.28 6,234.62   175.98 147.58 
7,500 203.76 535.20 6,387.98   183.88 150.80 

5
MB

50
MB

500
KB

(b) Query Y2

Fig. 9. Sub-queries evaluation times of Z2 and Y2 (in msec)

is used to fetch the identifiers of the output nodes (Phase 1). SQ2 and SQ3 materialize
the results for non-join and join expressions (Phase 3). The PathUFinal relation is gen-
erated by SQ4. SQ5 retrieves the complete subtrees including the necessary attributes
for reconstruction and all the descendant node if the output node is an internal node. We
evaluate the evaluation time of each sub-query using SX as shown in Figure 9. Observe
that relatively the most expensive query is SQ3 for both cases. However, the evaluation
time is still below 15s (significantly lower than the evaluation times of XDB2). On the
other hand, SQ1, SQ2, SQ4, and SQ5 are highly efficient for almost all cases. This
is primarily due to (a) efficient support of twig pattern evaluation in a PM-based XML

storage approach, (b) space-efficient storage of intermediate results of the queries, and
(c) small queries are less likely to stress the query optimizer.

6 Conclusions and Future Work

In this paper, we take a non-traditional approach in evaluating multi-source star twig
queries on top of a path-based tree-unaware XML database. Rather than generating one
huge complex SQL query, we translate a star query into a list of SQL queries. This is
surprising, because when only one SQL query is generated, it has the greatest potential
for optimization by the RDBMS. We showed that by materializing only minimal infor-
mation of underlying XML subtrees as intermediate results we can “turbo-charge” star
query processing. Though not elaborated in this paper, it is easy to see that our ap-
proach is also applicable to a host of XML databases using relational backend as well as
wide varieties of complex XML queries. Our results showed that our proposed technique
has excellent real-world performance, outperforming XML join support of DB2 for
many queries. Although MONETDB/XQuery [2] is one of the fastest XQuery processor,
surprisingly, our results show that our scheme outperforms it for several queries. As
part of future work, we would like to extend our approach to larger subset of XML

queries.
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Abstract. View update is the problem of translating an update to a
view to some updates to the source data of the view. In this paper, we
formally define the problem, show the factors determining XML view up-
date translation, and propose a translation solution for two specific but
typical settings of the view update problem. We prove that the trans-
lated source updates are precise and they generalize the solutions to the
problem with similar settings in the relational database.

Keywords: XML data, view update, update translation, virtual views.

1 Introduction

A (virtual) view is defined with a query over some source data of a database.
The query is called the view definition which determines what data appears in
the view. The data of the view, called a view instance, is often not stored
in the database but is derived from the source data on the fly using the view
definition every time when the view is selected.

In database applications, many users do not have privileges to access all the
data of a database. They are often given a view of the database so that they can
retrieve only the data in the view. In data integration applications, user’s access
to the source data becomes even more impractical because of security. When
these users need to update the data of the database, they put their updates
against the view, not against the source data, and expect that the view instance
is changed when it is accessed next time. This type of updates is called a view
update. Because of its important use, view update has a long research history
[1,9,11,12,6,4,13]. The work in [5] discusses detailed semantics of view updates
in many scenarios.

Unfortunately, view updates cannot be directly applied to the view instance
as it is not stored physically and is derived on the fly when required (virtual
view). Even in the cases where the view instance is stored (materialized view),
which is not the main focus of this paper, applying updates to the instance may
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cause inconsistencies between the source data and the instance. To apply a view
update to a virtual view, a translation process is required to translate the view
update to some source updates. When the source data is changed, the data in
the view will be changed next time when the view is selected. To the user of the
view, it seems that the view update has been successfully applied to the view
instance.

Let V be a view definition, V i the view instance, Si the source data of the view,
V (Si) the evaluation of V against Si. Then V i = V (Si). Assume that the user
wants to apply a view update δV to V i as δV (V i). View update translation is to
find a process that takes V and δV as input and produces a source update δS to
Si such that next time when the user accesses the view, the view instance appears
changed and is as expected by the user. That is, for any Si and V i = V (Si),

V (δS(Si)) = δV (V i) (1)

Two typical anomalies, view side-effect and source document over-update, are
easily introduced by the translation process although they are update policy de-
pendent [9]. View side-effect [13] occurs if the translated source update causes
more-than-necessarychange to the source datawhich leads tomore-than-expected
change to the view instance. View side-effect makes Equation (1) violated.

Over-updates may also happen to a source document. An over-update to a
source document causes the source data irrelevant to the view to be changed,
but keeps the equation satisfied. A source document over-update is incorrect as
it changes information that the user did not expect to change.

A precise translation of a view update should produce source updates that
(1) result in necessary (as the user expects) change to the view instance, (2)
do not cause view side-effect, and (3) do not cause over-updates to the source
documents.

In the relational database, much work has been done on view update and the
problem has been well understood [1,9,11]. In case of updating XML views over
relational databases, updates to XML views need to be translated to updates to
the base relational tables. The works in [4,13] propose two different approaches
to the problem. The work in [4] translates an XML view to some relational
views and an update to the XML view to updates to the relational views. It
then uses the relational approach to derive updates to the base tables. The work
in [13] derives a schema for the XML view and annotates the schema based
on keys of relational tables and multiplicities. An algorithm is proposed to use
the annotation to determine if a translation is possible and how the translation
works. Both works assume keys, foreign keys and the join operator based on
these two types of constraints. Another work, technical report [6], proposes brief
work on updating hypertext views defined on relational databases. In the case
of updating pure XML views, the views where the views and their source data
are all modelled in XML, no direct work has been done. To the best of our
knowledge, the only work relating to XML view update is [8] which proposes
a middle language and a transformation system to derive view instance from
source data, and to derive source data from a materialized view instance, and
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assumes XQuery as the view definition language. We argue that with the view
update problem, only view updates are available but not the view instance (not
materialized). Consequently view update techniques are still necessary. The work
in [3] is on the exact topic as this paper, but it restricts its views only to node
relabeling and selection; no restructuring is allowed in the view definitions.

In this paper, we look into the view update problem in pure XML context. This
means that both source data and the view are in XML format. We assume that
base XML documents have no schema and no constraints information available.
Assuming no constraints makes the solutions developed more general.

The view update problem in the relational database is difficult as not all view
updates are translatable. For example, if a view V is defined by a Cartesian
product of two tables R and S, an update inserting a new tuple to the view
instance is not translatable because there is no unique way to determine the
change(s) to R and S. The view update problem in XML becomes much harder.
The main reason is that the source data and view instances are modeled in trees
and trees can nest in arbitrary levels. This fundamental difference makes the
methods of translating view updates in the relational database not applicable to
translating XML view updates. A typical example is that the selection and the
projection operations in the relational database do not have proper counterparts
in XML. The view update problem in XML has many distinct cases that do not
exist in the view update problem in the relational database (see Sections 3 and
4 for details). To the best of our knowledge, our work is the first proposing a
solution to the view update problem in XML.

We notice that the view update problem is different from the view mainte-
nance problem. The former aims to translate a view update to a virtual view
to a source update while the latter aims to translate a source update to a view
update to a materialized view. The methods for one do not work for the other.

We make the following contributions in this paper. Based on the view defi-
nition and the update language presented later, we present a formal definition
of the view update problem and identify the factors determining the view up-
date problem. Secondly, we propose a translation solution to translate ‘typical’
view updates. We prove that the translated source update from the algorithm is
precise in the typical settings. Furthermore, we show that the solution we pro-
pose generalizes the solution to the problem in the relational database in similar
settings.

The paper is organized as follows. Section 2 shows the view definition lan-
guage, the update language, and the preciseness of view update translation. In
Section 3, we propose an algorithm and show that the translation obtained by
the algorithm is a precise translation. In Section 4, we identify a ‘join’ case where
a translated update is precise. Section 5 concludes the paper.

2 Preliminaries

In this section, we define basic notation, introduce the languages for view defi-
nitions and updates, and define the XML view update problem.
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Definition 1 (tree). An XML document can be represented as an ordered tree.
Each node of the tree has a unique identifier vi, an element name ele also called a
label, and either a text string txt or a sequence of child trees Tj1 , · · · , Tjn . That
is, a node is either (vi : ele : txt) or (vi : ele : Tj1 , · · · , Tjn). When the context is
clear, some or all of the node identifiers of a tree may not present explicitly in this
paper. A tree without all node identifiers is called a value tree. Two trees T1 and
T2 are (value) equal, denoted by T1 = T2, if they have identical value trees. If a
tree T1 is a subtree in T2, T1 is said in T2 and denoted by T1 ∈ T2. �

For example, the document <root><A><B>1</B></A><A><B>2</B></A></root>
is represented by T = (vr :root : (v0 :A :(v1 :B :1)), (v2 :A :(v3 :B :2))). The value
tree of T is (root: (A:(B :1)), (A:(B :2))).

Definition 2. A path p is a sequence of element names e1/e2/ · · · /en where all
names are distinct. The function L(p) returns the last element name en.

Given a path p and a sequence of nodes v1, · · · , vn in a tree, if for every node
vi ∈ [v2, · · · , vn], vi is labeled by ei and is a child of vi−1, then v1/ · · · /vn is a
doc path conforming to p and the tree rooted at vn is denoted by T p

vn . �

2.1 View Definition Language

We assume that a view is defined in a dialect of the for-where-return clauses
of XQuery [2].

Definition 3 (V ). A view is defined by

<v>{ for x1 in p1, · · · , xn in pn
where cdn(x1, · · · , xn)
return rtn(x1, · · · , xn) }</v>

where p1, · · · , pn are paths (Definition 2) proceeded by doc() or xi;
cdn(x1, · · · , xn) ::= xi/Ei = xj/Ej and · · · and xk/Ek = strV al and · · · ;
rtn(x1, · · · , xn) ::= <e> {xu/γu} · · · {xv/γv} </e>;
γ, E are paths, and the last elements of all xu/γu, · · · , xv/γv are distinct. �

We note that the paths in the return clause are denoted by xi/γs because these
expressions are specially important in view update translation. We purposely
leave out the $ sign proceeding a variable in the XQuery language.

Definition 4 (context-based production). By the formal semantics of XQuery
[7], the semantics of the language is

for x1 in p1 return

for x2 in p2 return

...

for xn in pn return

if cdn(x1, ..., xn)=true
return rtn(x1, ..., xn)
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The for-statement produces tuples <x1, ..., xn>, denoted by fortup(V ), where
the variable xi represents a binding to one of the sub trees located by pi within
the context defined by x1, · · · , xi−1. This process is called context-based
production. �

For each tuple satisfying the condition cdn(x1, ..., xn), the function
rtn(x1, · · · , xn) produces a tree, called an e-tree, under the root node of the
view. That is, V maps a tuple to an e-tree. The children of the e-tree are the
γ-trees selected by all the expressions xi/γis (for all i) from the tuple. A tuple
is mapped to one and only one e-tree and an e-tree is for one and only one tuple.
A γ-tree of a tuple is uniquely mapped to a child of the e-tree of the tuple and
a child of an e-tree is for one and only one γ-tree of its tuple. This is illustrated
in Figure 1(a) where xc and xt are two variables, T xt/γt and T xc/γc are γ-trees,
and the γ-trees appear as children of the e node. We note that the one-to-one
mapping is between a tree in the tuple (not the source document) and a tree
under an e node in the view.

x1

...
TTx1/ t x1/ c

... ...
TTx1/ t/ t x1/ c/ c

e

...TTLt Lc

... ...
TTLt/ t Lc/ c

<x1, >
xt

...
TTxt/ t xc/ c

... ...
TTxt/ t/ t xc/ c/ c

<xt,xc, >
xc

...

(a) (b)

e

...TTLt Lc

... ...
TTLt/ t Lc/ c

Lt = xt/ t
xc/ cLc =

v
...

Lt = x1/ t
x1/ cLc =

v
...

Fig. 1. Each of tuples is mapped to an e-tree

The path of a node s in the view has the following format:

v/e/Li/θi (2)

where
Li = L(xi/γi) (3)

returns the last element name Li of xi/γi, an expression in rtn(x1, ..., xn), and
θi is a path following Li in the view. When Li/θi is not empty, the path in the
source document corresponding to v/e/Li/θi is

xi/γi/θi (4)

The view definition has some properties important to view update translation.
Firstly because of context-based production, a binding of variable xi may be

copied into x
(1)
i , · · · , x(m)

i to appear in multiple tuples:

< · · · , x(1)i , · · · , xj[1], · · ·>
· · ·

< · · · , x(m)
i , · · · , xj[mj ], · · ·>
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where xj[1], · · · , xj[mj ] are different bindings of xj . Each tuple satisfying the
condition cdn(x1, · · · , xn) is used to build an e-tree. As a result of xi being
copied, the subtrees of xi will be copied accordingly to appear in multiple e-
trees in the view.

Secondly, a tree may have zero or many sub trees located by a given path p.
That is, given a tree bound to xi, the path expression xi/p may locate zero or

many sub trees T
xi/p
1 , · · · , T xi/p

np in xi. This is true both in the source documents
and in the view.

Thirdly, two path expressions xi/γi and xj/γj generally may have the same
last element name, i.e., L(xi/γi) = L(xj/γj). For example, if xi represents an em-
ployee while xj represents a department, then xi/name and xj/name will present
two types of names in the same e-tree. This make the semantics of the view data
not clear. This is the reason why we assume that all L(xi/γi)s are distinct.

Example 1. Consider the view definition below and the source document shown
in Figure 2(a). The view instance is shown in Figure 2(b).

<v>{for x in doc("r")/r/A, y in x/C, z in x/H

where y/D=z and z="1"

return <e>{x/B}{x/C}{y/F/G}{z}</e>
}</v>
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Fig. 2. Source document r and view v

From the view definition, γ1 = B, γ2 = C, γ3 = F/G, and γ4 = φ. L(x/γ1) =
L1 = B, L(x/γ2) = L2 = C, L(y/γ3) = L3 = G, and L(z/γ4) = L4 = H .

Formula (2) is exemplified as the following. The node v3 in the view has the
path v/e/C/F/G where C is L2 = L(x/γ2) and F/G is θ. The node v2 is an e
node and its path is v/e where Li/θi is φ.

The example shows the following.
� The expression x/B (=x/γ1) of the return clause has no tree in the two
e-trees.

� The path expression x/C (=x/γ2) has multiple trees in each e-tree.
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� The trees of x/C are duplicated in the view and so are their sub trees.
� Each of some x/C trees has more than one x/C/F (=x/γ2/θ) sub trees.

2.2 The Update Language

The update language we use follows the proposal [10] extended from XQuery.

Definition 5 (δV ). A view update statement has the format of

for x̄1 in p̄1, · · ·, x̄u in p̄u
where x̄c/p̄c = strV alu
update x̄t/p̄t ( delete T | insert T )

where x̄c, x̄t ∈ [x̄1, · · · , x̄u], p̄1, · · · , p̄u are paths (Definition 2) proceeded by v
or x̄i; p̄c, p̄t are paths; all element names in the paths are elements names in the
view. x̄c/p̄c and x̄t/p̄t are called the (update) condition path and (update)
target path respectively. �

The next procedure maps a path in the update statement to a path in the source
document.

Procedure 1 (mapping).
(i). Replace the variables in x̄c/p̄c and x̄t/p̄t by their paths
in the for-clause until the first element name becomes v.
Thus the full paths of x̄c/p̄c and x̄t/p̄t in the view are built
and will have the format of v/e/Lc/θc and v/e/Lt/θt as shown
in Formula (2).
(ii). Search in the return clause of V using Lc and Lt to
identify the expressions xc/γc and xt/γt. Append θt and θc to
them respectively as xc/γc/θc and xt/γt/θt. Thus, xc/γc/θc and
xt/γt/θt are the source paths of v/e/Lc/θc and v/e/Lt/θt. �

With this mapping, the update statement δV can be represented by the following
abstract form:

(p̄s; v/e/Lc/θc = strV alu; v/e/Lt/θt; del(T )|ins(T )) (5)

where
� v/e/Lc/θc is the full update condition path (int the view) for x̄c/p̄c,
v/e/Lt/θt the full target path for x̄t/p̄t;

� p̄s is the maximal common front part of v/e/Lc/θc and v/e/Lt/θt.
The semantics of an update statement is that under a context node identified
by p̄s, if a sub tree identified by v/e/Lc/θc satisfies the update condition, all the
sub trees identified by v/e/Lt/θt will be applied the update action (del(T) or
ins(T)). The sub tree T v/e/Lc/θc is called the condition tree of T v/e/Lt/θt . A
sub tree is updated only if it has a condition tree and the condition tree satisfies
the update condition. An update target and its condition trees are always within
a tuple when the view definition is evaluated and are in an e-tree in the view
after the evaluation.
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We note that because of the context-based production in the view definition,
the same update action may be applied to a target node for multiple times. For
example, if x is a binding and the context-based production produces two tuples
as < x(1), · · · > and < x(2), · · · >. If the update condition and target are all in
x, x will be updated twice with the same action, each action being fired for each
tuple. We assume that only the effect of the first application is taken and the
effect of all other applications is ignored.

Based on the structure of the target path tp = v/e/Lt/θt, updates may happen
to different types of nodes in the view.

� When Lt/θt �= φ, the update happens to the nodes within a γ-tree.
� When tp = v/e, the update will add or delete a γ-tree.
� When tp = v (in this case, p̄s = v), the update will add or delete an e-tree.

In this paper, we only deal with the first case and leave the solutions to the last
two cases to be future work.

2.3 The View Update Problem

Definition 6 (Precise Translation). Let V be a view definition and S be the
source of V . Let δV be an update statement to V . Let δS be the update statement
to S translated from δV . δS is a precise translation of δV if, for any instance Si

of S and V i = V (Si),
(1) δS is correct. That is, V (δS(Si)) == δV (V i) is true; and
(2) δS is minimal. That is, there does not exist another translation δS′ such
that (δS′ is correct, i.e., V (δS′(Si)) = V (δS(Si)) = δV (V i) and there exists
a tree T in Si and T is updated by δS but not δS′). �

We note that Condition (1) also means that the update δS will not cause view-
side-effect. Otherwise, V (δS(Si)) would contain more, less, or different updated
trees than those in δV (V i).

Definition 7 (the view update problem). Given a view V and a view update
δV , the problem of view update is to (1) develop a translation process P , and
show that the source update δS obtained from P is precise, or (2) prove that a
precise translation of δV does not exist. �

3 Update Translation When Lt/θt �= φ and xc = xt

In this section, we investigate update translation when the update is to change
a γ-tree of the view and the mappings of the update condition path and the
update target path refer to the same variable in the view definition. We present
Algorithm 1 and the statement δS as the solution for view update translation
in this case.

By the algorithm, the following source update is derived.

δS: for x1 in p1, · · · , xn in pn
where cdn(x1, · · · , xn) and xc/γc/θc = strV alu
update xt/γt/θt (insert T | delete T)
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Algorithm 1: A translation algorithm

Input: view definition V , view update δV
Output: translated source update δS

1 begin
2 make a copy of V and reference the copy by δS ;
3 remove rtn() from δS ;
4 from the view update δV , following Procedure 1, find mappings xc/γc/γc

and xt/γt/γt for the condition path x̄c/p̄c and the target path x̄t/p̄t ;
5 make a copy of δV and reference the copy by δVc ;
6 in δVc, replace x̄c/p̄c and x̄t/p̄t by xc/γc/γc and xt/γt/γt respectively ;
7 append the condition in the where clause of δVc to the end of the where

clause in δS using logic and ;
8 append the update clause of δVc after the where clause of δS

We now develop the preciseness of the translation. We recall the notation that
fortup(V ) means the tuples of the context-based production (Definition 4) of V .
The symbols xc, xc[1] and xc[2] are three separate bindings of xc. The symbols

x
(1)
c and x

(2)
c are two copies of xc.

Lemma 1. Given a tuple t = <xt, xc, · · ·> ∈ fortup(V ) and its e-tree e, (1) if
T xt/γt/θt (a tree for the path xt/γt/θt) in t is updated by δS, then all the trees
identified by xt/γt/θt in t are updated by δS, and all the trees identified by Lt/θt
in e are updated by δV . (2) if TLt/θt (a tree for the path Lt/θt) in e is updated
by δV , then all the trees identified by Lt/θt in e are updated by δV , and all the
trees identified by xt/γt/θt in t are updated by δS.

The lemma is correct because of the one-to-one correspondence between a tuple
and an e-tree and between t’s γ-trees and e’s children, and because all the trees
identified by xt/γt/θt in t share the same condition tree(s) identified by xc/γc/θc
in xc of t, and all the trees identified by Lt/θt in e share the same condition tree(s)
identified by Lc/θc in e.

Lemma 2. Assume a tuple t = <xt, xc, · · ·> ∈ fortup(V ). After a tree T xt/γt/θt

in xt is updated by δS, t becomes t′ = <x′t, xc, · · ·>. If xt/γt/θt is not a prefix of
any of the paths in the where clause of δS and if t satisfies cdn() of V , t′ also
satisfies cdn() of V .

The lemma is correct because the subtrees in the tuple used to test cdn() are
not changed by δS when the condition of the lemma is met.

Lemma 3. Assume a tuple t = <xt, xc, · · ·> ∈ fortup(V ) and its e-tree e.
If T xc/γc/θc in t satisfies xc/γc/θc = strV alu, TLc/θc in e satisfies Lc/θc =
strV alu and vice versa.

The correctness of the lemma is guaranteed by the one-to-one correspondence
between t’s γ-trees and e’s children.
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Lemma 4. Assume a tuple t = <xt, xc, · · ·> ∈ fortup(V ), its e-tree e, T xt/γt/θt

in xt, and T ′Lt/θt in e. Obviously T = T ′. As δS and δV have the same update
action, if xc satisfies the update condition, δS(T ) = δV (T ′).

Theorem 1. Given view V and the view update δV where Lt/θt �= φ and
xc = xt, the update δS is a precise translation of the view update δV if and only
if xt/γt/θt does not proceed any path in the where clause of δS.

Proof. We show only the ‘if’ proof. The proof of ‘only if’ can be done in a similar
way. We follow Definition 6 to show that if the condition is true, the translation
is precise. Without losing generality, we assume that xt = xc = x1. Figure 1(b)
illustrates the relationship between a variable binding x1 in the tuple < x1, · · · >
and the e-tree built from the tuple. T x1/γt/θt and T x1/γc/θcare an update target
tree and a condition tree respectively. T x1/γt/θt ’s children will be deleted or a
new child will be inserted.

(1) Correctness: V (δS(Si)) = δV (V (Si))
We firstly show that duplicated γ-trees are updated consistently in the view

and then show that each side of the equation is contained in the other side. The
reason why consistency is important here is that if the update changes one copy
of a duplicated γ-tree without updating the others, the translation will have side
effect.

Consistency: Consider two tuples t1 =< x
(1)
1 , · · · > and t2 =< x

(2)
1 , · · · > in

fortup(δS) where x
(1)
1 and x

(2)
1 are copies of x1. Let e1 and e2 be two e-trees

constructed from t1 and t2 respectively by V . Then, because of xt = xc = x1,
either both e1 and e2 are updated by δV or none is updated.
⊇: Let TLt/θt be a tree in an e-tree e of V (Si) updated to T̄Lt/θt by δV (e

becomes e′ after the update). We show that T̄Lt/θt is in e′ of V (δS(Si)). In
fact, that TLt/θt is in V (Si) means that there exists one and only one tuple
t = <x1, · · ·> in fortup(V ) satisfying cdn(), that in the tuple, x1/γt/θ identifies
the source tree T x1/γt/θt of TLt/θt . TLt/θt being updated by δV means that there
exists a condition tree TLc/θc in e and the condition tree satisfies v/e/Lc/θc =
strV alu.

On the other side, because V and δS have the same for clause, t is in
fortup(δS). Because TLc/θc makes v/e/Lc/θc = strV alu true, so T x1/γc/θc

makes x1/γc/θc = strV al true (Lemma 3). This means T x1/γt/θt is updated by
δS and becomes T̂ x1/γt/θt . Thus t becomes t′ =< x̄1, · · · >. Because of Lemma
4, T̄ x1/γt/θt=T̂ x1/γt/θt . Because of the condition of the theorem and Lemma 2,
t′ satisfies cdn() and generalizes e′ in the view. So T̄Lt/θt is in V (δS(Si)).

⊆: Let TLt/θt
1 and T

Lt/θt
2 be two trees in V (δS(Si)) and their source tree(s)

are updated by δS. We show that T
Lt/θt
1 and T

Lt/θt
2 are in δV (V (Si)). There

are three cases: (a) T
Lt/θt
1 and T

Lt/θt
2 share the same source tree T x1/γt/θt (they

must appear in different e-trees in the view), and (b) T
Lt/θt
1 and T

Lt/θt
2 have

different source trees T
x1/γt/θt
1 and T

x1/γt/θt
2 . Case (b) has two sub cases: (b.1)

T
Lt/θt
1 and T

Lt/θt
2 appear in the same e-tree in the view, and (b.2) T

Lt/θt
1 and

T
Lt/θt
2 appear in different e-trees.
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Case (a): That T x1/γt/θt is updated by δS means that there exist two

tuples <x
(1)
1 , · · ·> and <x

(2)
1 , · · ·> in fortup(δS) such that x

(1)
1 = x

(2)
1 , both

tuples satisfy cdn(), and there exists condition tree T x1/γc/θc in each tuple sat-
isfying xc/γc/θc = strV alu, T x1/γt/θt is updated to T̄ x1/γt/θt by δS (two up-
date attempts with the same action for the two tuples, only the effect of the

first attempt is taken). After the update, the tuples become t′1 = <x̄
(1)
1 , · · ·>

and t′2 = <x̄
(2)
1 , · · ·>. By Lemma 2, t′1 and t′2 satisfy cdn of V and produce

e1, e2 ∈ V (δS(Si)) and T̄
Lt/θt
1 ∈ e1 and T̄

Lt/θt
2 ∈ e2.

On the other side, when V is evaluated against Si, x1 is copied to two tuples

t1 = <x
(1)
1 , · · ·> and t2 = <x

(2)
1 , · · ·> in fortup(V ) and each of the tuples satisfies

cdn(). They produce e-trees e′1 and e′2. Because each tuple has a condition tree
T x1/γc/θc satisfying xc/γc/θc = strV alu, by Lemma 3, each of e′1 and e′2 has

TLc/θc satisfying Lc/θc = strV alu and each has a TLt/θt . Thus T
Lt/θt
1 ∈ e′1 and

T
Lt/θt
2 ∈ e′2 will be updated to T̄

Lt/θt
1 and T̄

Lt/θt
2 by δV . e′1 and e′2 become e1

and e2 in δV (V (Si)).

Case (b.1): That T
x1/γt/θt
1 and T

x1/γt/θt
2 are updated by δS and that they

appear in different e-trees mean that there are two tuples <x1[1], · · ·> and

<x1[2], · · ·> where x1[1] and x1[2] are different bindings of x1, T
x1/γt/θt
1 ∈ x1[1],

T
x1/γt/θt
2 ∈ xc[2], and each of tuples satisfies cdn() and xc/γc/θc = strV alu.

T
x1/γt/θt
1 and T

x1/γt/θt
2 become T̄

x1/γt/θt
1 and T̄

x1/γt/θt
2 after the update and

mapped to T̄
Lt/θt
1 and T̄

Lt/θt
2 in two different e-trees of V (δS(Si)). Following

the same argument of Case (a), T̄
Lt/θt
1 and T̄

Lt/θt
2 are in δV (V (Si)).

Case (b.2): That T
x1/γt/θt
1 and T

x1/γt/θt
2 are updated by δS and that they ap-

pear in a single e-tree mean that there is one and only one tuple <x1, · · ·> where

T
x1/γt/θt
1 , T

x1/γt/θt
2 ∈ x1. The tuple satisfies cdn() and there is a tree T x1/γc/θc

in the tuple satisfying x1/γc/θc = strV alu. T
x1/γt/θt
1 and T

x1/γt/θt
2 become

T̄
x1/γt/θt
1 and T̄

x1/γt/θt
2 after the update and mapped to T̄

Lt/θt
1 and T̄

Lt/θt
2 in

a single e-tree of V (δS(Si)). On the other side, as T
x1/γt/θt
1 and T

x1/γt/θt
2 are

mapped to a single e-tree e and share the same condition tree T x1/γc/θc , T
Lt/θt
1

and T
Lt/θt
2 share the same condition tree TLc/θc in e and will be updated by

δV . So T̄
Lt/θt
1 and T̄

Lt/θt
2 are in the e-tree of δV (V (Si)).

(2) δS is minimal
We prove by contrapositive. Let TLt/θt be a tree in the view updated by δV .

Then from above proofs, T x1/γt/θt is updated by δS and there exists a tuple
<x1, · · ·> such that T x1/γt/θt is in x1 and x1 has a condition tree T x1/γc/θc

satisfying “cdn() and x1/γc/θc = strV alu”.
If T x1/γt/θt is not updated by δS′, either (a) x1 is not a variable in the for-

clause of δS′, i.e., x1 is not in any tuple and neither is T x1/γt/θt , or (b) x1 is in
the tuple <x1, · · ·> but T x1/γt/θt is not in x1, or (c) x1 is in the tuple <x1, · · ·>
and T x1/γt/θt is in x1 but one of “cdn()” and “xc/γc/θc = strV alu” is not
in δS′.
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In Case (a), because x1 is not a variable in δS′, so T x1/γt/θt will not be
updated by δS′ (this does not prevent T x1/γt/θt from appearing in the view). This
means that the TLt/θt in V (δS′(Si)) is different from the TLt/θt in δV (V (Si))
because the assumption assumes that the TLt/θt in δV (V (Si)) is updated. This
contradicts the correctness of δS′.

In Case (b), because T x1/γt/θt is not in x1, so T
x1/γt/θt is not in V (Si). This

contradicts the assumption that TLt/θt is in the view.
In Case (c), if cdn() is violated, the tuple of T x1/γt/θt will not be selected by

V , so T x1/γt/θt is not in V (Si) which contradicts the assumption. If x1/γc/θc =
strV alu is violated, T x1/γt/θt will not be updated by δV . This contradicts the
assumption that TLt/θt is updated by δV .

This concludes that δS is a precise translation. �

The View Update Problem Here Generalizes the View Update Prob-
lem of the Relational Database in a Similar Setting. Suppose that
there are three relations Student(sid, name, tel), Course(cid, name, credit),
and Enrolment(sid, cid, year,mark), a view defined by Vr = Student ��
Enrolment �� Course, and an update statement update Vr set tel="22345"

where name="John". The update condition attribute name and the update tar-
get attribute tel are from the same ‘variable’ Student, and the update does not
change the values of the join condition attributes sid and cid. Consequently
the theorem applies. It says that this update is translatable and the translated
source update is update Student set tel="22345" where name in (select

name from Student join Enrolment join Course) and name="John". This
source update is obviously precise because, if two students having the same name
‘John’ and different telephone numbers ‘21344’ and ‘21345’, and if the telephone
numbers are all changed to ‘22345’ in the view, they are also all changed in the
source relation. Next time when the view is derived, the telephone numbers will
appear changed and the same.

4 Update Translation When Lt/θt �= φ and xc �= xt

We look into the translation problem when the mappings of the update condition
and the update target are from different variables. The results of this section
generalize the view update problem in the relational views when they are defined
with the join operator.

In general, view updates are not translatable in the case of xc �= xt.

Consider two tuples where the binding xt is copied to x
(1)
t and x

(2)
t to combine

with two bindings xc[1] and xc[2] of xc by the context-based production as

< · · · , x(1)t , · · · , xc[1], · · ·>
< · · · , x(2)t , · · · , xc[2], · · ·>

Assume that in the view, the update condition xc/γc/θc is satisfied in xc[1] but
violated in xc[2]. Then, the copy of xt for the first tuple will be updated but the
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one for the second will not. In the source, if xt is updated, not only the first copy
of xt changes, but also the second copy. In other words, the translated source
update has view side-effect. However, if xt in the source is not updated, all its
copies in the view will not be changed.

Although generally view updates, when xc �= xt, are not translatable, for the
following view and the view update, a precise translation exists.

V : <v>{ for x1 in p1, · · ·, xn in pn
where · · · and xc/γc/θc = xc+1/γc+1/θc+1 and · · ·
return rtn(x1, · · · , xn) }</v>

where xc/γc is in rtn(x1, · · · , xn).

δV : (p̄s, v/e/Lc/θc = strV alu, v/e/Lt/θt, del(T )|ins(T ))
where xt is either xc or xc+1.

The conditions of the setting require that the condition path xc/γc/θc must be
a join path in the view definition and the γ-expression xc/γc must be a prefix of
this join path. At the same time, the variable of the target path must be xc or
xc+1, the variable of the path joined to the update condition path.

Theorem 2. Given view V and view update δV defined above where Lt/θt �= φ,
update δS (in Section 3) is a precise translation of the view update δV if and
only if xc/γt/θt does not proceed any path in the where clause of δS.

Proof. The notation of this proof follows that of the proof for Theorem 1 and

Figure 1(a). Consider two tuples t1 = <x
(1)
t , xc[1], · · ·> and t2 = <x

(2)
t , xc[2], · · ·>

in fortup(δS(S)) where x
(1)
t and x

(2)
t are copies of xt and xc[1] and xc[2] can

be the same. If one is updated by δS, the other is updated too. The reason is

that for T
xt/γt/θt
1 ∈ x

(1)
t and T

xt/γt/θt
2 ∈ x

(2)
t , because of the join condition in

the view definition V : xc/γc/θc = xc+1/γc+1/θc+1 and because xc+1 = xt and

x
(1)
t = x

(2)
t , a condition tree T

xc/γc/θc
1 exists for T

xt/γt/θt
1 and T

xc/γc/θc
2 exists

for T
xt/γt/θt
2 and T

xc/γc/θc
1 = T

xc/γc/θc
2 . Consequently if T

xc/γc/θc
1 satisfies the

update condition, so does T
xc/γc/θc
2 . So either both T

xt/γt/θt
1 and T

xt/γt/θt
2 are

updated or none is updated. Following Lemma 4, if e1 and e2 are mapped from

T
xt/γt/θt
1 and T

xt/γt/θt
2 respectively, if one is updated, the other is updated too.

The remaining proof can be completed by following the argument of the proof
of Theorem 1. �

Example 2. Consider the view definition in Example 1 and the view instance
in Figure 2(b). If the view update is

δV : for s in v/e
where s/H = 1
update s/C (insert (K 5))

By the theorem, this update is translatable because the full update condition
path is v/e/H and its source mapping, z, is a join path. The update target path
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is /v/e/C and its source path, y, is the other end of the join condition y/D = z
in the view. Thus, the translated source update is below.

δS: for x in doc("r")/r/A, y in x/C, z in x/H

where y/D=z and z="1"

update y (insert (K 5))

It is easy to check that the translated update works correctly. That is, V (δS(S) =
δV (V (S)).

The View Update Problem Here Also Generalizes the Following
View Update Problem of the Relational Database. Suppose that
there are three relations Student(sid, name, tel), Course(cid, name, credit),
and Enrolment(stud, crs, year, semester,mark), a view defined by
V r = Student ��sid=stud Enrolment ��crs=cid Course, and an update
statement update Vr set mark="90" where sid="s01". The update condi-
tion attribute sid and the target attribute mark are from different ‘variables’
Student and Enrolment and they are bound to equal by the join condition, and
the update does not change the values of the join condition attributes sid, stud,
cid and crs. Consequently the theorem says that this update is translatable
and the translated source update is update Enrolment set mark="90" where

stud in (select stud from Student join Enrolment on sid=stud join

Course on crs=cid) and sid="s01". This source update is precise as if a
student has two courses with the marks of ‘60’ and ‘70’, if they are changed to
‘90’ in the view, they are also all changed to ‘90’ in the source relation. Next
time when the view is derived, the marks of the student will be ‘90’ in the view.

5 Conclusion

In this paper, we invested two cases of the view update problem when the update
target path is longer than the roots of e-trees. In the first case where the update
target and the update condition are from the same variable, a solution is pro-
posed and the translation obtained from the algorithm is proved to be precise.
In the second case where the update target and the update condition are from
the different variables, although in general view updates are not translatable, we
discovered a specific type of view and a specific type of updates and derived a
precise translation for the case. There are a few more cases that have not been
investigated in the paper. These will be our future work.
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Abstract. The rapid growth of RDF data in RDF knowledge bases calls for effi-
cient query processing techniques. This paper focuses on the star-style SPARQL
join queries, which is very common when users want to search information of
entities from RDF knowledge bases. We observe that the computational cost of
such queries mainly comes from loading a large portion of predicate-ahead in-
dexes. We therefore propose to partition the whole RDF knowledge bases based
on the schema of individual entities, so that only entities of similar schemas are
allocated into the same cluster. Such a partitioning strategy generates a pruning
mechanism that effectively isolate the correlations of partitions and the queries.
Consequently, queries are only conducted over a small number of partitions with
small predicate-ahead indexes. Experiments over a large real-life RDF data set
show the significant performance improvements achieved by our partitioned in-
dexing techniques.

Keywords: Entity search, SPARQL query, index, clustering.

1 Introduction

The advances of techniques in information extraction, semantic web, and data integra-
tion allow the extraction and integration of massive simple facts from the web, repre-
sented as RDF triples in the form of < s, p, o > that stand for a subject, a predicate
and a value on that predicate respectively. A huge number of such RDF triples form
a knowledge base (KB), whose size continuously and rapidly grows with the extrac-
tion and integration of new facts. Examples of such KBs are Freebase [2], Yago [6],
and Linked Data [3,8]. They typically contain billions of RDF triples. According to
the statistics of the W3C SWEO (Semantic Web Education and Outreach) group, the
RDF triples scattered over the Web have reached up to 25 billion by September 2010
[3], and the number keeps growing. The large volume of RDF data in RDF KBs bring
challenges for efficient query processing of RDF data.

The SPARQL query language [5], proposed by W3C, is a standard query interface
for RDF data. Many studies [13,14,15,17,20] have been tried to address the challenge
of efficient SPARQL query processing over large RDF KBs. Among them, RDF-3X
[17] is widely accepted as the state of art for efficient SPARQL query processing. It
achieves good efficiency by applying query optimization techniques over the indexes

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 141–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



142 F. Du, Y. Chen, and X. Du

of different combinations of S (subjects), P (predicates), O (objects) for RDF triples.
The efficiency of RDF-3X is still not good enough when queries require to scan a large
portion of an index. Figure 1 shows an example of such queries, which often happen
when a basic graph pattern (BGP) is not selective (i.e., a large number of RDF triples
satisfy the BGP, which typically happens for popular predicates such as name and
born in place in the given example). We observe that for many star-style SPARQL

WHERE

SELECT ?n ?r

{?x name ?n

?x research_area Physics

?x born_in_place ?r

?x awarded Nobel_prize}

awarded

Nobel_prize

Physics

?x

name

?r

?n

res
ea

rch
_are

a

born_in_place

Fig. 1. A query example that requires scanning large predicate indexes for the predicates name
and born in place

[12] queries (i.e., join over one subject variable. One example is shown in Figure 1),
although some BGPs may not be selective, the combination of the predicates specified
in the query (for those BPGs whose predicates are not variables) is very useful for
effectively prune indexes that may not be relevant to the given query. This is because the
combination of predicates somehow implies the types of desired subjects. Considering
that many entities (or subjects exchangeably) extracted from the same sources (e.g.,
IMDB) typically have similar set of predicates, we therefore are able to partition RDF
triples based on the predicate set of their entities, so that entities in the same partition
have similar sets of predicates. In this way, we are able to efficiently prune clusters of
RDF triples based on the schema (predicate set) shared by the entities within the same
cluster. Based on the partition of RDF KBs and the efficient pruning mechanism, we
can significantly improve the performance of star-style SPARQL queries (we call them
entity search in this paper) over the state of art. The contribution of the paper can be
summarized as follows:

– We propose techniques on efficiently and effectively partition the huge RDF KBs
based on the schema of entities, to support efficient star-style entity search over
huge KBs.

– We propose the schema-first entity search algorithm which can efficiently prune
clusters of RDF data based on the schema of clusters.

– We test the performance of our algorithms over a huge real-life RDF KB, the billion
triple challenge (BTC) [1] data set. The results demonstrate that the efficiency of
star-style SPARQL queries can be significantly improved.

The rest of the paper is organized as follows. Section 2 gives the study of related work.
Section 3 introduces the schema-first entity search algorithm. Section 4 describes the
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techniques used for efficient and effective partitioning of the RDF KBs. The experimen-
tal study is given in Section 5, followed by the conclusion given in Section 6.

2 Related Work

Some well-known early works on storing, indexing and query processing RDF data
include Sesame[4,14], Jena [15], YARS [13] et al. All these systems apply relational
tables to store RDF triples. Primary versions of Sesame and Jena maintain all triples in
a giant table, which is called triple store. Each query requires a large number of subject-
subject self-join. Such a solution thus leads to poor performance. In order to improve
the performance, Jena2[21] groups the triples by its property (predicate) name, and
store all triples with the same name into the same relational table, denoted as property
table. In Jena, three kinds of property tables are designed to fit single-valued property,
multi-valued property and their classes. The solution can distinguish the statements of
single and multi predicates, so as to locate different queries, however, it can only support
simple join queries, and does not achieve good performance for large volume of RDF
data.

YARS applies distributed systems to partition triples across multiple machines. Ad-
ditional contexts are used for each triple to indicate its provenance. [23] stores RDF
triples in cloud systems. However, according to their performance evaluation, they only
achieve high throughput for certain simple queries that have parallel access patterns to
the systems.

In [7], the authors propose to use column store for maintaining RDF triples. It parti-
tions the triple table based on predicates. All the triples of the same predicate are stored
in the same vertical table. For triples of the same predicate, the predicate column is
removed, which becomes a minimum-width property tables (i.e., binary relations). Au-
thors of [18] map the tables into Monet DB (with column storage architecture) and Post-
greSQL (with row storage architecture). They show that better performance is achieved
by the column-store solution. [16] deploys a compressed Bit-Matrix structure for stor-
ing huge RDF graphs. However, all the four kinds of BitMat proposed in the paper are
written in same file, which complicates the update operations, and therefore the solution
does not have good scalability.

All these physical designs are complemented by indexes to improve the query ef-
ficiency [9,17,18,20]. YARS2 builds 6 indexes of triples in separated B+ tree or hash
indexes. Hexastore[20] creates the same number of indexes without any compression.
[11] even saves entire paths of the RDF graph and their SPO labels as indexes. These
approaches do help to enhance the performance of simple queries. However, due to the
lacking of good optimization techniques, they can only support a limited kinds of joins.
Moreover, these solutions are not verified on large scale of RDF data.

The state of art RDF query engine, RDF-3X [17], creates single huge triples table to
load data. It stores all triples in B+ tree, and build exhausted indexes of all SPO per-
mutations. In order to save space, URIS and literals in the triples are mapped to integer
identifiers in RDF-3X. A compress scheme is applied to the indexes. According to the
performance experiments, RDF-3X outperforms most of the previous SPARQL query
engines in terms of the query processing time. It is widely accepted as the state of art for
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SPARQL query processing engine.The author improved the join-order optimization in
[10], which make the join process more scalable. However, the performance RDF-3X is
still not good enough when a large portion of indexes need to be sequentially scanned.
This limits the scalability of RDF-3X when the data grow up to billions. The index scan
becomes a bottleneck.

3 Partition-Based Entity Search

3.1 The Entity Search Problem

An RDF triple is simply represented as t =< s, p, o >, where s = Sub(t), p = Pre(t)
and o = V al(t). A subject s in an RDF triple is an ID/URI that uniquely identifies an
entity in the KB. As such, we simply refer an entity whose subject is s as entity s. All
RDF tuples of an entity s are denoted as a set Ts = ∪Sub(t)=s{t}. The predicate set
of an entity s is denoted as Ps = ∪t∈Ts{Pre(t)}, which contains all predicates that
the entity s has. We also call Ps as the schema of the entity s. Let the domain of all
predicates in an RDF KB be P . We therefore have Ps ⊆ P . For a KB containing a large
number of various types of entities, we have |Ps| � |P |.

Entity search over KBs can be defined as to retrieve entities (and their values on
some predicates) that satisfying some constraints over some specified predicate values.
It is basically a star-style graph pattern matching problem, whose goal is to retrieve
entities that perfectly match a specified query pattern. Figure 1 shows an example of
entity search. Note that, a general SPARQL query may contain more than one entity
variables, e.g., the query pattern given in Figure 3.1. In these cases, a SPARQL query
can be addressed by a chain join of the results of multiple entity search queries. This
paper is focused on the basic component, star-style entity search query.

?y located USAname

?m

WHERE
{?x name ?n
?x research_area Physics

?x awarded Nobel_prize
?x born_in_place ?r

?x affiliation ?y 
?y located USA
?y name ?m}

SELECT ?n ?r ?m

awarded

Nobel_prize

?x

?n

?r

name

af
fil

ia
tio

n

res
ea

rch
_are

a
Physics

born_in_place

Fig. 2. An example of a general SPARQL query that contains two entity variables. It can be
addressed by a chain join of entity search results, according to the BGP ?x affiliation ?y.

3.2 Schema-Valid Entities and Tables

For a query q, let Pq be the set of predicates specified by q. For the example of Fig-
ure 1, Pq = {name, born in place, research area, awarded}. Predicates in Pq can
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be constrained predicates whose values have been specified (e.g., research area and
awarded in Figure 1) or wildcard predicates whose values are not specified by the
query (e.g., name and born in place in Figure 1). To match a query q, an entity must
contain all predicates of Pq . Moreover, the entity must satisfy all specified values over
those constrained predicates of q. An entity s is a valid entity of q if it can match to
the query pattern specified by q. For example, entity e1 in Figure 3 is the only valid
entity of the query q in Figure 1. The goal of entity search is to retrieve all valid entities
to a query q. An entity s is called a schema-valid entity of a query q if Pq ⊆ Ps. A
schema-valid entity of q must contain all predicates in Pq . For example, entity e1 and
e2 in Figure 3 are schema-valid entities of the query q. Correspondingly, an entity s
is a schema-invalid entity of a query q if Pq �⊆ Ps (e.g., e3 in Figure 3). Obviously, a
schema-valid entity of q may not be a valid entity of q (e.g., e2). However, to be a valid
entity, an entity s must first be a schema-valid entity of the query q. This motivates us
to organize RDF entities in a smart way so that we can quickly prune those schema-
invalid entities, before looking for valid entities from those schema-valid entities that
take minority in the KB.

name

born_in_place

awarded

e3

Usain Bolt

Jamaica

Athlete

Olympic_golden_medal
occupation

name

born_in_place

awarded

research_area

e2

U.S.

name

born_in_place

awarded

research_area

e1

Turing_award

Database

Jim Gray

Germany

Nobel_prize

Physics

Albert Einstein

Fig. 3. Example of entities

In our model, entities are organized in clusters, with each cluster containing a table of
entities of similar schemas. We treat a cluster as a virtual table whose schema (property
sets) can be dynamically adjusted. A virtual table (hereafter shorted as table)R contains
entities whose predicate sets are not necessarily the same. The schema of a table is
formulated by merging the schemas of all entities it contains, i.e., PR = ∪s∈RPs.
Obviously, A table R may contain valid entities of q only if Pq ⊆ PR. We say that table
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R is schema-valid to q if Pq ⊆ PR. In the other way, table R is schema-invalid to q if
there exists at least one predicate p such that p ∈ Pq and p /∈ PR. It is guaranteed that
there are no valid entities of q in table R that is schema-invalid to q. We therefore can
prune those schema-invalid tables of q when processing the query q.

3.3 Schema-First Entity Search

Based on the table’s schema, we can quickly identify those schema-valid tables of a
given query. This is achieved by creating inverted lists of tables for all predicates. Each
predicate p ∈ P has an inverted list lp recording all the tables that having p as one
predicate in their schema. The tables in an inverted list are sorted and indexed. Because
the number of tables and predicates are very limited, the inverted lists can be easily held
in memory. Given a query q whose specified predicate set is Pq , all schema-valid tables
to q can be efficiently discovered by scanning the inverted lists of all predicates of Pq .
A sorted merge process will be applied to efficiently retrieve those schema-valid tables
from the relevant inverted lists.

A schema-valid table of a query does not have to contain valid entities of the query.
An entity s in a schema-valid table may not match the query pattern of q in two ways:
(1) there exists one predicate p ∈ Pq that p /∈ Ps; (2) some predicate values of s do
not satisfy the values specified by the constrained predicates of q. A refining process is
therefore required for retrieving valid entities from a schema-valid table of q. Note that
the number of entities is often huge for large KBs. They therefore need to be maintained
in external devices. Indexing techniques can be applied for efficient retrieval of valid
entities from virtual tables. In our study, we apply the state of art, RDF-3X, for indexing
entities of one virtual table. They are therefore called clustered indexes. Compared to
building SPO indexes over all the RDF triples, the way of building clustered indexes
over small virtual tables generates smaller predicate-ahead indexes. It therefore saves
the cost of scanning predicate-ahead indexes. This is the reason why clustered indexes
are able to improve the performance of entity search queries conducted over the indexes
of the whole data set. Finally, all valid entities extracted from those schema-valid tables

Algorithm 1. Schema first entity search (SFES)
Input: q: a given query for searching entities in KB
Output: S: the set of valid entities of q
1. retrieve the set Rq of all schema-valid tables of q, by merging the inverted lists of all predi-

cates of Pq;
2. for each table R ∈ Rq do
3. process q as a SPARQL query using the RDF-3X techniques, with indexes built over enti-

ties of R;
4. let SR be the result set of the above query processing over virtual table R, i.e., the set of

valid entities of q in R;
5. S = S ∪ SR;
6. return S;

of a given query q will be combined, as the final results of the entity search query q. We
call the whole process of the above entity search algorithm as the Schema-First Entity
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Search (SFES) algorithm, which is described in Algorithm 1. Schema-first entity search
can quickly identify a small number of virtual tables so that the expensive entity search
computation can be paid to those entities that are more likely relevant to the query.

4 Efficient and Effective Entity Partitioning

The performance of the SFES algorithm will be highly dependent on how entities are
allocated across virtual tables. According to the SFES algorithm, two factors are im-
portant for achieving efficient schema-first entity search. First, there should be a small
number of virtual tables schema-valid to a given query because a relation query process
will be conducted for each schema-valid table. Second, for each schema-valid table, a
large percentage of its entities should also be schema-valid to the query. Those schema-
invalid entities will generate extra I/Os when loading indexes for some predicates (con-
tained by those schema-invalid entities) of the table.

The schema of a table R is a superset of the schemas of entities it contains. As a
result, the more entities a table R has, the more predicates it probably contains. In one
extreme case, if all entities in the KB are maintained by only one table R, it will be a
wide table solution where PR = P . In the wide table solution, each entity has empty
values on most predicates because |Ps| � |PR| in this case. The wide table R will be
schema-valid to any query q (assuming only predicates in P are used by the query q).
In the other extreme case, if only entities of the same schema share a table R, any entity
s in the table R will have values on any predicate of PR because Ps = PR. However,
in this case, a huge number of tables will be generated because there are always no
pre-defined schemas for entities to conform to, in a KB.

In our solution, an entity exists only in one table of the KB. The important problem
is how to allocate entities to virtual tables. A reasonable solution of allocating entities
should be in-between the above two extreme cases. Each table contains a number of
entities of similar schemas so that, (1) the number of entities contained by each ta-
ble is significant enough such that more entities can be pruned when a schema-invalid
table is pruned; (2) the number of predicates for the schema of each table should be
not large (compared to the number of predicates each entity has), so that entities in a
schema-valid tables are likely to be also schema-valid. The above two goals are self-
contradictory. The more entities a table contains, the larger the schema size of the table.
An elaborate solution of allocating entities into clusters is therefore desired to achieve
a good trade-off between the above two goals.

4.1 Entity Clustering

We observe that many entities of similar types have very similar schemas in existing
RDF KBs. For examples, movie entities extracted from IMDB, paper entities extracted
from DBLP. Those well-formed entities usually hold the majority in the KB. Based
on this observation, we extract tables from KB by clustering those entities of similar
schemas together. Considering that some entities are “outliers” in terms of the schemas
they have, they are maintained by a separated virtual table R̄, called the fusion table.
The system therefore maintains a number of tablesR1, R2, . . . , Rn, and the fusion table
R̄. Each entity in the KB must be in one of the tables.
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An optimal solution of allocating RDF entities is that, given a query q, we can find
a table R that exactly contain all schema-valid entities of q. There are no schema-
invalid entities of q in table R, which means all entities in R share the same schema.
However, this is usually impractical because many different schemas of entities often
significantly overlap with each other. When the predicate set Pq of a query is a subset
of the intersection of multiple schemas, the tables of those schemas will be all schema-
valid to the query q.

Clustering of entities is necessary to allocate entities of similar schemas into clusters.
We can define the distance of two entities based on the similarities of their schemas. The
Jaccard distance obviously serves this purpose. Given two schemas P1 and P2, the Jac-
card distance is defined as the d(P1, P2) = |P1∪P2|−|P1∩P2|

|P1∪P2| . There are a number of
clustering approaches, e.g., k-medoids [19] that can be applied for clustering of enti-
ties. Considering the number of entities in a KB can be as large as billions. It will be
extremely expensive to run common clustering algorithms over such a huge data set of
RDF entities.

Taking the idea of Dirichlet process [22], we design an incremental clustering al-
gorithm (Algorithm 2) which can efficiently cluster entities simply by scanning the
whole dataset for once. In our clustering algorithm, we first aggregate entities of the
same schemas so that we can cluster directly over schemas, instead of entities (whose
number is much larger than that of schemas). All the schemas are ranked based on the
numbers of entities they have. Then, a one-pass scanning process is conducted over the
ranked schema list. Schemas with large population are processed first.

The incremental clustering algorithm shown in Algorithm 2 works as follows. The
first schema forms a cluster directly. For each following newly scanned schema P , it
will be compared against all the existing clusters. Schema P can be allocated to an
existing cluster R only if 1) P ⊂ PR; 2) d(P, PR) is no more than the distances of
P to any the other cluster; 3) d(P, PR) is no more than some given threshold ε. If the
schema P cannot be allocated to any existing cluster, a new cluster will be created to
hold it. Finally, all schemas are allocated into a large number of clusters. Each head
clusters with enough entities is treated as a table. In contrast, those tailed clusters with
few entities will be merged into the fusion table R̄.

The k-medoids algorithm achieves the optimal clustering strategy that requires to
scan the data set for multiple times to guarantee the convergence of the partitions. For
each iteration, the re-computation of medoids requires a complexity of O(n

2

k ), which
is also very expensive. Comparatively, the above incremental clustering algorithm only
need to scan the whole dataset for once. The medoid of each cluster is fixed as the
first schema that initializes the cluster. It is therefore the schema of the whole cluster.
Because schemas of large population are processed first, the origin schema of a cluster
therefore usually takes majority of entities in that cluster. The predicate sets of the fol-
lowing schemas allocated to a cluster are subsets of the origin schema. As for the above
reasons, the incremental clustering algorithm (Algorithm 2) is much more efficient than
traditional clustering algorithms such as k-medoids.

Although algorithm 2 may not achieve optimal partitioning strategy that can be
achieved by the k-medoids algorithm. It however does not need to specify the parameter
k beforehand. The quality of partitions is mainly controlled by the parameter ε, which
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Algorithm 2. Entity partitioning
Input: P1, . . . , Pt, a list of rankded schemas.
Input: ε, maximal distance for merging schemas.
Input: δ, minimal entities that a table at least have.
Output: R1, . . . , Rn, R̄, tables for entities.
1. R = ∅, set of existing clusters.
2. for each schema P do
3. minD = +∞, minR = −1;
4. for each cluster Ri ∈ R do
5. if P ⊆ PRi then
6. D = d(P,Ri);
7. if D < minD and D < ε then
8. minD = D;
9. minR = i;

10. if minR ≥ 0 then
11. allocate P to cluster Ri;
12. else
13. create a new cluster for P and insert it into R;
14. R̄ = ∅;
15. for each cluster Ri ∈ R do
16. if |Ri| < δ then
17. merge Ri to R̄;
18. else
19. treat Ri as a table;

determines the similarities between the subsequent schemas and the origin schema. The
smaller the ε, the more similar of different schemas in each cluster, the larger number
of clusters will be generated. Besides ε, the parameter δ also help to control the quality
of a cluster and the number of overall clusters. This is because, after the partitioning
process, all the clusters whose number of entities less than δ will be merged into the fu-
sion table R̄. By properly setting ε and δ, the fusion table R̄ will be much smaller than
the original dataset because in real-life RDF KBs, most entities have a large number of
isomorphic entities which have the same schema.

4.2 Updates of Partitioned Indexes

Most studies for indexing RDF KBs does not consider the update problem. Many of
them follow an assumption that the indexes can be re-built from scratch when enough
updates occur. However, this assumption has a problem that the newly updated RDF
triples will not be indexed timely and therefore may not be search before index updates.
In our study, we only consider the insertion of new triples as update operations, i.e., the
RDF KBs monotonously grow up.

The clusters generated from Algorithm 2 are static analysis of the KBs. However,
with the enlargement of KB, the original partitions may not be effective enough. The
clustering process is very expensive. It cannot be trigger frequently due to the frequent
updates of KBs. To address this, we utilize the fusion table R̄ as a buffer for caching
newly updated entities and triples. As shown in Algorithm 3, the updates of entities
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and triples are respectively processed. Firstly, when an entity is inserted, we will check
its schema. If entities of the same schema have been allocated to one particular parti-
tion, the new entity will be inserted into that partition, which further triggers the index
updates of that cluster. If the schema of the new entity has not been allocated to any
partition, it will be cached and indexed by the fusion table R̄. Secondly, when a triple is
inserted, we will check the schema of the subject of that triple. If it is in one partition,
we will check whether the schema of the updated entity still belongs to the schema of
that partition. If it is, the triple will be inserted to that cluster. Otherwise, the entity will
be removed from that cluster, and inserted as a new entity to the system.

Algorithm 3. Updates of partitioned index
updateEntity(e):

1. e, the inserted entity;
2. if Pe has been assigned to a virtual table Ri then
3. assign e to Ri, and update the indexes of Ri;
4. else
5. assign e to R̄, and update the indexes of R̄;

updateTriple(t):

1. t, the inserted triple;
2. let e = St, the entity of the triple;
3. if e has been assigned to a virtual table Ri then
4. update Pe;
5. if Pe ⊆ PRi then
6. insert t into Ri, and update its indexes;
7. else
8. remove e from Ri;
9. updateEntity(e);

10. else
11. assign t to R̄, and update its indexes;

Such a way of partition and index updates always guarantees the correctness of the
SFES algorithm. However, with the increment of the updates, the fusion table R̄ will
grow up. We therefore periodically check the schemas in R̄. They will be treated as the
input of the clustering algorithm (Algorithm 2) when updates are triggered. In this way,
some schemas of R̄ can be inserted into some existing partitions; some schemas of R̄
can generated new partitions if they have enough population (no less than δ) and cannot
be assigned to any existing partitions. As such, the partitions and fusion table R̄ are
incrementally maintained.

5 Experimental Study

5.1 Experimental Setup

We use C++ to implement our algorithm and run the experiments on a PC with a 1.8Ghz
Core 4 Duo processor, 10 GB memory and running 64-bit Linux Redhat kernel.
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We choose two baselines as competitors of our solution: one uses RDF-3X version
0.3.5 for indexing and querying RDF triples; the other uses PostgreSQL 8.4.1 as a
triple store with indexes over subjects supported. In RDF-3X, URIs and literals of RDF
triples are mapped into integers. The indexes are maintained by B+ tree. It takes around
5 hours to index all triples in our experiments by RDF-3X engine. We observe that
RDF-3X takes significant amount of time on converting IDs to Strings.

Billion Triple Challenge 2010 (BTC) [1] is a dataset with more than 3.2 billion
triples. It contains triples from twelve sources such as Yago, DBpedia, Freebase. We
choose BTC2010 as the experimental dataset so that our solution can be evaluated on
large scale of real-life RDF data. The dataset has 95,898 distinct predicates. The original
data format in the dataset is the NQuads format which includes a subject, a predicate,
an object and a context for each triple. We omit some noisy data and the context, thus
kept 1,026,823,962 triples (after de-duplication) for evaluation. The space consumption
for RDF-3X indexes and PostgreSQL triple store are 47GB and 125GB respectively.

5.2 Experiments on Analysis Clustering Results

The first experiment is to test the impact of parameters in Algorithm 2 on the ratio
of entities falling in the fusion table R̄. Obviously, the less the ratio of entities falling
in R̄, the more entities that have been clustered in virtual tables. We set parameter ε
as ε = 0.5, 0.4, 0.3 and 0.2 respectively. By varying the parameter δ, we are able to
generate the number of clusters from 2000, 3000,..., to 8000. The results are shown in
Figure 4. From the results, we can see that the ratios of entities in R̄ are very small (less
than 0.01) in all the cases. When fixing the parameter ε and increasing the number of
clusters generated, the ratio of entities in R̄ drops. On the other way, when the number
of clusters is fixed (e.g., 8000) and dropping the parameter ε, we can find that the less
the ε, the more the ratio of entities in R̄. This is because small ε guarantees the entities
within a cluster are more similar with each other. In our solution, we choose as ε = 0.2
and the number of clusters as 2000. We also test the query hits of clusters (schema-
valid tables) for the partitioned indexes by using random generated queries. The query
patterns are randomly generated based on the following steps: 1), randomly pick an
entity from the RDF dataset; 2), randomly select a number of predicates (no more than
5) from the schema of the picked entity of step one, forming the query schema Pq; 3),
count the number of clusters that are schema-valid to the query. In step two, we have
two alternatives: one is evenly select a number of predicates from the schema of the
entity; the other is to select predicates based on the frequency of that predicate in the
whole dataset (therefore popular predicates have a larger probability to be picked). For
each of the alternatives, we generate 500 queries. The distribution of the number of
query hits for the 1000 queries is plotted in Figure 5. The results show that for most of
queries, no more than 10 clusters are schema-valid queries. The majority of the clusters
can therefore be pruned without further query processing. We also did some statistics to
show the distribution of each predicate over the number of clusters, that is to compute
frequency of each predicate in clusters (shown in Figure 6). The figure indicates that
most predicates are contained by less than 20 clusters.
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Fig. 4. The ratio of entities in the fusion table R̄ when varying the cluster numbers and ε
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5.3 Query on BTC

We use 10 queries to compare the performance of our solution with the baselines. They
are listed in Appendix A (Q1-Q10). For PostgresSQL, before submitting to the query
engine, the queries are manually rewritten into SQL clauses. The performance of Post-
greSQL is the worst among the three systems. The queries can be divided into the
following three categories; the first category is star join queries with popular predicates
and unspecified object (Q1, Q4, Q6, Q10); the second category is star join queries with
unpopular predicates (Q7, Q8); the third category of queries are the queries with un-
known predicates (Q2, Q3, Q5, Q9). For each query, it first looks up in the inverted list
to find the relevant table. Although the time consumption in this filter step is much more
less than search in tables, we still count it in the query time. The results are shown in
Table 1 and Table 2.
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For the first category of queries, our solution outperforms the other two
solutions. As discussed, when a query contains a popular predicate (e.g.,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> in Q1.) with its object unspeci-
fied (variable), the RDF-3X engine need to load the whole predicate-ahead index of the
popular predicate, which is typically very large in volume. However, for the partitioned
indexes, our solution can prune all the schema-invalid clusters. While, the indexes of
popular predicates will not be very large because instances (entities) of the popular
predicates have been de-clustered into many partitions. Only those of schema-valid ta-
bles are loaded. For the second category of queries, the performance of our solution
achieved a little over RDF-3X. In our solution the unpopular predicates usually relevant
to more clusters, so more schema-valid tables are loaded for allocating the results. In
the third category, although there are unknown predicates in the queries, our solution
prune clusters by using the rest known predicates in first step. After that the system can
filter the unknown predicate based on its object and results of the first step. The result
shown that with only one popular predicate in the rest part of query(as shown in Figure
5,it is the most cases), our solution still has better performance than the competitor.

Table 1. Query run-times in seconds for the Billion Triples Challenge dataset: Q1-Q6

Q1 Q2 Q3 Q4 Q5 Q6
cold caches

Our Solution 0.1 0.05 0.4 3.16 0.12 0.05
RDF-3X 1.38 0.1 0.46 57.76 0.38 0.29

PostgreSQL > 30min 124.63 > 30min > 30min 711.6 > 30min

warm caches
Our Solution 0.003 0.009 0.02 2.63 0.012 0.01

RDF-3X 0.03 0.017 0.035 9.69 0.019 0.03
PostgreSQL > 30min 98.31 > 30min > 30min 680 > 30min

Table 2. Query run-times in seconds for the Billion Triples Challenge dataset: Q7-Q10

Q7 Q8 Q9 Q10 mean (Q1-10)
cold caches

Our Solution 1.15 0.63 0.2 0.09 0.4
RDF-3X 1.15 0.65 0.82 0.38 0.86

PostgreSQL 1715 1600 > 30min 1218 > 80.66

warm caches
Our Solution 0.2 0.08 0.013 0.009 0.099

RDF-3X 0.2 0.08 0.024 0.019 0.16
PostgreSQL 1510 1511 > 30min 1033 > 75.31

6 Conclusion

In this study, we show that the performance of star-style SPARQL join queries (or entity
search queries) in huge RDF knowledge bases can be improved by effectively partition-
ing entities into clusters based on their schemas. We design an efficient and effective
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clustering algorithm for partitioning the entities in huge RDF knowledge bases. The
experimental studies over huge real-life RDF dataset demonstrate the pruning power
of the SFES algorithm. It therefore can save the cost for loading large indexes when
processing entity search queries where the combination of predicates can be applied for
filtering entity partitions.
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A Query List Used in Experiments

Prefix list: dbpedia: <http://dbpedia.org/property/>
dbpedias:<http://dbpedia.org/resource/>
geo: <http://www.geonames.org/>
pos:<http://www.w3.org/2003/01/geo/wgs84 pos#>
ontology: <http://dbpedia.org/ontology/>
skos: <http://www.w3.org/2004/02/skos/core#>
dmdb: <http://data.linkedmdb.org/resource/movie/>
purl: <http://purl.oclc.org/NET/nknouf/ns/bibtex#>
daml: <http://www.daml.org/2003/02/fips55/>
semweb: <http://www.cs.cas.cz/semweb#>

Q1: select ?a ?type ?pub where { ?a <http://www.w3.org/1999/02/22-rdf-syntax-ns#
type> ?type. ?a semweb:publisher ?pub. ?a semweb:periodical title ”Theory of Com-
puting Systems”. }
Q2: select distinct ?a ?lat ?long ?pop where { ?a [] ”Chevilly”. ?a geo:ontology#in
Country geo:countries#FR. ?a pos:lat ?lat. ?a pos:long ?long. ?a geo:ontology#
population ?pop.}
Q3: select distinct ?l ?long ?lat where { ?a [] ”Luciano Emilio en”. ?a dbpedia:placeOf
Birth ?l. ?l pos:lat ?lat. ?l pos:long ?long. }
Q4: select ?x ?y where {?x <http://www.w3.org/2000/01/rdf-schema#label> ?y. ?x
dmdb:director dmdb:director/3480. }
Q5: select ?name ?lat ?long where { ?a [] dbpedias:List of World Heritage Sites in
Europe . ?a dbpedia:name ?name. ?a pos:lat ?lat. ?a pos:long ?long. ?a skos:subject
dbpedias:Category:Ancient Greek cities. }
Q6: select ?x ?author ?title where { ?x purl:hasAuthor ?author. ?x purl:hasBooktitle
”ISWC 2009”. ?x purl:hasTitle ?title. }
Q7: select ?a ?name ?loc ?postcode where ?a daml:fips-55-ont#namedaml:NY.owl#NY.
?a daml:fips-55-ont#directlyLocatedIn ?loc. ?a daml:fips-55-ont#postcode ?postcode.
Q8: select ?x1 ?hometown where { ?x1 ontology:birthPlace ”Chile”. ?x1 ontology:death
Place ?death. }
Q9: select ?a ?name ?bn where { ?a [] ?name. ?a dbpedia:placeOfBirth ”Brooklyn, New
York en”. ?a dbpedia:dateOfBirth ?bn. }
Q10: select distinct ?name ?lat ?long ?pop where { ?a dbpedia:name ?name. ?a db-
pedia:regoin dbpedias:Andaman Islands. a pos:lat ?lat. ?a pos:long ?long. ?a dbpe-
dia:population ?pop. }
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Abstract. XML query languages use directional path expressions to locate data
in an XML data collection. They are tightly coupled to the structure of a data
collection, and can fail when evaluated on the same data in a different structure.
This paper extends XPath expressions with a new structure-independent, non-
directional axis called the neighborhood axis. Given a pair of context nodes, the
neighborhood axis returns those nodes that are common neighbors of the context
nodes in any direction. Such axis finds its usefulness in structure-independent
query formulation as well as supporting relevant results computation in design-
independent XML keyword search. We propose an algorithm called SINBAD that
exploits the novel notion of node locality and small size of XML structure tree to
efficiently determine the common neighbors of the context nodes. Our empirical
study demonstrates that SINBAD, built on top of an existing path materialization-
based relational storage scheme, has promising query performance.

1 Introduction

A wealth of existing literature has extensively studied evaluation of various navigational
axes in XPath expressions [6]. A key common feature of these axes is that they are all
directional in nature. That is, they locate nodes in a fixed direction relative to a context
node (e.g., the descendent axis corresponds to the “down” direction). Unfortunately,
queries that rely on directional axes become dependent on the data being in the specified
direction, even though data has no “natural” direction and can be organized in different
hierarchies. Users who are unfamiliar with a document structure or are knowledgeable
about a structure which subsequently changes will sometimes formulate unsatisfiable
queries, which are queries that fail to produce desired results. These queries are difficult
to debug since they run to completion and produce a result, though not the desired one.

As an example, consider the XML document in Figure 1(a). It contains league
information organized by teams. Each team consists of a set of players. Suppose that
a basketball commentator, John, wishes to find the common team of a player, Hill,
and a manager, Antoni. John can issue any one of the following XPath queries to re-
trieve desired information:Q1: //player[name=‘Hill’]/ancestor::team[
/descendant ::manager[name=‘Antoni’]] or Q2: //manager[name=
‘Antoni’]/ancestor::team[/descendant::player[name=‘Hill’]].

To correctly formulate the aforementioned queries, John has to know something
about the hierarchical structure of the XML data. For instance, he must know that a
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Fig. 1. XML documents

team element is an ancestor of player and manager elements. Furthermore, the
team subtree also includes information related to the team. But if John misunderstands
the structure or if the structure changes over time then this partial knowledge may not
be useful anymore for formulating satisfiable queries as demonstrated below.

Assume that the XML document in Figure 1(a) is now reorganized to the structure
depicted in Figure 1(b). Specifically, the document in Figure 1(b) has same data but
the structural relationships of the elements are different. Now the league information
is organized according to head managers instead of teams. Both documents contain the
same data and same element labels but they have different hierarchical relationships.
Such structural change is real because database administrators may revise the design
over time to address issues such as redundancy, space overhead, performance, and us-
ability [4,12]. Unfortunately, due to the lack of non-directional axes in XPath, for some
queries different path expressions are needed to query each hierarchy. Consequently,Q1

and Q2 may become unsatisfiable on the document in Figure 1(b) as the team element
is no more an ancestor of player or manager elements.

Note that it is unrealistic to expect users to be “structure-aware” as it does not scale
with increasing structural heterogeneity. Is it possible to retrieve the above information
using a single query without being aware of the underlying structural heterogeneities of
elements? Ideally, such a query technique should work even if the document structure
is reorganized. In order to answer this question affirmatively, in this paper we propose
a new non-directional XPath axis called neighborhood axis, which enables us to
locates all common nodes of two context nodes in any direction.

Specifically, the XPath language is extended with a non-directional locator, called
the neighborhood axis, to support non-directional exploitation of XML data. The
proposed axis allows a user to formulate precise queries knowing only the labels of
nodes and unaware of the exact hierarchy. Informally, given two context nodes, the
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neighborhood axis returns those nodes that are common nodes to these context
nodes. For example, reconsider the query posed by John. The relevant team node must
be related to both the player node containing Hill and the manager node containing
Antoni. Accordingly, John can reformulate his query using the neighborhood axis as
follows:Q3://player[name =‘Hill’]/neighborhood{//manager[name
=‘Antoni’]}::team.

Note that Q3 will retrieve the same information when it is evaluated over Figure 1(b)
as well. More importantly, a user does not need to be aware of the structural relation-
ship between the context and test nodes. In this case, John only needs to know that a
team could employ a player and a manager (real-world employment relationship). He
does not need to know the relative hierarchical relationship among them (e.g., team is
ancestor or descendant of manager) in the document.

The neighborhood axis has practical significance in at least two applications.
Firstly, it can complement classical approach to query XML data by enabling users
to formulate structure-independent queries to seek common nodes of a pair of con-
text nodes. Note that classical XPath axes fail to formulate such structure-independent
queries. Secondly, it can provide a framework to support design-independent XML key-
word search [11] by finding relevant nodes that are semantically related to a set of nodes
containing matching query keywords. These nodes can be returned with the result set
in order to ensure that the results of XML keyword search are informative.

We propose a novel and generic algorithm called SINBAD (Structure Independent
commoN neighBors Abstraction proceDure) to evaluate neighborhood axis by ex-
ploiting the notion of node locality. Informally, given a context node c, the locality of c
is a set of nodes that are semantically related to c (detailed in Section 3). The intuition
behind node locality is that users (queries) are typically interested in nodes within the
locality and rarely refer to nodes outside of the locality. As we shall see later, the eval-
uation of neighborhood axis is equivalent to finding the intersection region of two
node localities.

In summary, this paper makes three main contributions. First, we extend classi-
cal XPath query language with a non-directional neighborhood axis in Section 4.
Secondly, in Section 5 we present a novel algorithm called SINBAD to evaluate neigh-
borhood axis queries by exploiting the notion of node locality. Thirdly, through an
experimental study on synthetic and real data sets, in Section 6, we show that our ap-
proach can retrieve common neighbors efficiently .

2 Related Work

Our objective to flexibly issue XML queries independent of the structure is shared by
several recent papers. [3] presents a semantic search engine for XML. The search relies
on an interconnection relationship to decide whether nodes are semantically related.
Two nodes are interconnected if and only if the path between them contains no other
node that has the same label as the two nodes. [7] proposes a schema-free XQuery,
facilitated by a Meaningful Lowest Common Ancestor Structure (MLCAS) operation.
Unlike neighborhood axis, these approaches do not retrieve common neighbors of
two context nodes.
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Recently, several XML keyword search techniques [8, 9, 13] have been proposed to
offer more user-friendly solution for retrieving relevant results. Essentially, these ap-
proaches return variants of the subtree rooted at the lowest common ancestor (e.g.,
VLCA, SLCA) of all the keywords. Due to the lack of expressivity and inherent ambigu-
ity of keyword search, several techniques have also been developed to infer and retrieve
relevant results for a search query [8, 9, 11]. Our work differs from the keyword search
paradigm in the following ways. First, we retrieve nodes based on common locality
of a pair of context nodes and not the entire LCA-variant of all the keywords. Note
that LCA and its variants make use of some common ancestors of the context nodes
and therefore rely on the hierarchical relationships. Consequently, these techniques are
not structure-independent. Secondly, as a neighborhood query is an extension of con-
ventional XPath query, it can impose more complex predicates compared to keyword
search queries. Furthermore, it does not suffer from expressivity and ambiguity issues
similar to keyword search.

More germane to this work is our previous efforts in [1, 15]. In [15], we extended
the XPath language with a symmetric locator, called the closest axis, which lo-
cates nodes that are closest to a context node. Here closest is measured by the dis-
tance from the context node in any direction in the XML tree. In [1], we proposed
rank-distance axis, which is a more generic non-directional axis compared to
the closest axis. Specifically, given a context node and two parameters α and β, the
rank-distance axis returns those nodes that are ranked between α and β in terms
of closeness from the context node. Not only it can find closest node(s) (by setting α and
β to one) but also nodes that are further away from the context node. In contrast, here
we focus on a new axis, called neighborhood, which computes common neighbors
of two context nodes.

Note that common neighbors cannot be computed using closest axis. For exam-
ple, reconsider the query in Section 1 for finding the common team of Hill and An-
toni. At first glance, it may seem that this query may be expressed as follows: Q4:
//player[name=‘Hill’]/closest::team[closest::manager[name=
‘Antoni’]]. Unfortunately, Q4 returns empty result set. The fragment
//player[name=‘Hill’]/closest::teamwill return the team of Hill (which
is New York Knicks). Hence, when the context node is at this team node, the closest
manager node is, unfortunately, not Antoni but manager Walsh. Note that we cannot
use rank-distance axis to select Antoni here as it demands knowledge of structural
relationship between manager nodes (Antoni is a second-level manager) from the user
in order to assign appropriate values to the parameters α and β.

3 Node Locality

In this section, we introduce the notion of node locality that we shall be using to define
neighborhood axis. We begin by briefly introducing the XML data model considered in
this paper.

We model XML documents as ordered, labeled trees as follows. A tree is a tuple
(N , E , Σ,L,F,T,S), where (a) N is the node set. r ∈ N is a special node called the
root of the tree, (b) letO be the domain of ordinals. Then E ⊆ O×N×N is the edge set
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such that (i) each edge has an ordinal oi ∈ O to represent ordering among the children;
(ii) there is a path between every pair of nodes; (iii) there is no cycle among the edges;
and (iv) every edge has a single incoming edge, except r, which has no incoming edge,
(c) Σ is an alphabet of labels and text values, (d) L : N → Σ is a label function that
maps each node to its label, (e) F : N → Σ ∪ {ε} is a value function that maps a node
to its value, in which F(n) = ε if node n has an empty value, and (f) T : N → S is a
type function that maps each node to a type within the type set S.

This simple model, which is sufficient for this paper, ignores comments, attributes,
processing instructions and namespaces. The model distinguishes between labels and
types. The label function maps each node to its label, that is, its element tag. The type
function specifies the type of each node, where two nodes with the same label could
have different types. The type could be defined in various ways, we assume only that
each node has a known type. In this paper, the type of a node n ∈ N is defined as the
root-to-node path of n (i.e., the concatenation of the labels on the path from the root to
n). For example, suppose that there exist name nodes in subtrees rooted at team and
player nodes. Then the path from the root to a team name node and a player name
node differs; therefore they are of different types.

3.1 Intuition

Given a context node, the node locality (locality for brevity) is the set of nodes that are
semantically related to the context node. A node within the locality is called a local
node. For example, the filled nodes in Figure 1(a) depict the locality of the first team
node (New York Knicks). For instance, the league node describes Knicks’ league.
The two player nodes are Knicks’ players. The name node Walsh is Knicks’ head
manager. Notably, the context node itself is also within the locality.

A key characteristic of node locality is that it is structure-independent. That is, when
the document structure changes1, the locality does not change. For instance, all lo-
cal nodes of team New York Knicks in Figure 1(a) are also local nodes of New York
Knicks in Figure 1(b). Observe that when the document structure changes, the position
of all player nodes change but the locality of the team node still contains these two
player nodes.

3.2 Defining Node Locality

Based on the aforementioned discussion, it is evident that a key issue associated with
node locality is the identification of local nodes for a context node. In [15], we in-
troduced the notion of locality as follows. A node n whose T(n) = tn is local to
the context node c whose T(c) = tc if, among all pairs of nodes with type tn and
type tc respectively, the distance2 of n to c is minimum. That is, n is local to c iff
Distance(n, c) = min{Distance(n′, c′)|c′, n′ ∈ N ,T(n′) = T(n),T(c′) = T(c)}.

1 In this paper, we assume that the original and modified documents must have same content,
same element labels, and real-world semantic relationships are maintained in both documents.

2 The distance between nodes u and c is the number of edges in the unique, simple undirected
path between u and c.
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Note that based on this definition we can identify all the local nodes of the team node
in Figures 1(a) and 1(b).

Although the aforementioned definition of local nodes works for many cases, for
certain scenario it may fail to identify the local nodes correctly. Let us illustrate this
by modifying the documents in Figure 1. Assume that there exists a predecessor
node with value San Diego Clippers as a fourth child of the second team node in
Figure 1(a). Similarly, the predecessor node is added as the second child of the
second team node in Figure 1(b). Let us now consider the context node to be the
championship node. Regardless of the structure of the XML document, the local-
ity of a championship should include the team, the managers, the players, the league
and the predecessor. Observe that the aforementioned definition of node locality now
identifies the predecessor node (San Diego Clippers) as one of its local node. Se-
mantically, San Diego Clippers is the predecessor node of Los Angeles Clippers
and is not related to the championship node of New York Knicks. Hence, the locality
of Knicks’ championship node should exclude this predecessor node.

The reason the locality definition of [15] fails is because both championship
and predecessor are optional nodes in this example. In fact, there is only one
championship node and only one predecessor node. Therefore, they are clearly
at the minimum distance of the pair of their types. Consequently, the predecessor
node is always local to the championship node. In the following, we present a novel
definition of node locality that addresses this limitation.

We first introduce some terminology to facilitate our exposition. For each type t ∈ S
where S is the set of all types in the XML document D, the sub-type set of t, denoted
as St, is a subset of S including the types of all child nodes of all nodes with type t
in D. That is, St = {t′ ∈ S|∃n, n′ ∈ N , n = Parent(n′),T(n) = t,T(n′) = t′}.
For example, considering the type team. There are two teams in the modified version
of Figure 1(a). The child nodes of the first team (New York Knicks) are of types name,
player, manager, championship and @founded. The child nodes of second
one (Los Angeles Clippers) are of types name, player, manager, predecessor
and @founded. Therefore, Steam = {name, player,manager, championship,
predecessor,@founded}. Note that St can be computed while parsing the XML doc-
ument if schema is not available. Otherwise, it can be computed from its schema/DTD.

In an XML document, a node n whose type is t is called a full node, denoted as
FullNode(n), if for all types in St, n has at least one child of that type. That is, ∀t′ ∈
St, ∃n′ ∈ N , n = Parent(n′)∧T(n′) = t′. If we denote the set of all types of all child
nodes of n as Tn, then the above definition is equivalent to: FullNode(n) = true
⇐⇒ St ⊆ Tn. Moreover, it is obvious that Tn ⊆ St. Therefore, FullNode(n) =
true ⇐⇒ St = Tn. For example, since Splayer consists of only player’s name and
all nodes of type player in the modified document of Figure 1(a) has a child node
with type player’s name, all of them are full nodes. On the other hand, both team
nodes are not full.

An XML document D is considered full (denoted by Full(D)) iff all of its nodes are
full. That is, ∀n ∈ N , FullNode(n) = true. Clearly in a full document, there are
no optional nodes. Consequently, in a full document we can use minimum distance to
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Fig. 2. Full document of predecessor-enhanced version of Figure 1(a)

identify node locality. That is, a node n whose T(n) = t is local to the context node c
if, among all nodes with type t, the distance of n to c is minimum.

Definition 1. [Node Locality] The locality of a node c in an XML document D, denoted
as Locality(c), is a set of nodes in the full document Full(D) in which each node n
satisfies the following conditions: (a) n is in Full(D); (b) ∀n′ in Full(D), T(n′) =
T(n) =⇒ Distance(c, n′) ≥ Distance(c, n).

Next, we shall discuss how to convert any XML document D to a corresponding full
document Full(D). It is achieved by adding ghost nodes to D. For each node n with
type t and each type t′ ∈ St that n has no child nodes of type t′, a new node n′

with type t′ is conceptually added to D as a child node of n. n′ is called a ghost node
since it does not actually exists in D. For example, in the modified version of Fig-
ure 1(a), a predecessor node (ghost node) is added as the child of the first team
node and a championship node is added as the child of the second team (Los Ange-
les Clippers). Notably, since Schampionship has type year, the championship node
also has a ghost node year. Note that only one year node is sufficient to make the
championship node full. Similarly, an assistant manager node (with accompany-
ing name node) is added as the child of the second manager node (Hughes). Figure 2
depicts the full document (ghost nodes are shown in dotted blue rectangles). Note that
no value nodes are added in the transformation as a full document does not require value
nodes.

We can now compute locality of a node correctly using Definition 1. For instance,
the predecessor node is no longer optional. Therefore, the predecessor node
(San Diego Clippers) is now excluded from the locality of Knicks’ championship
node. Instead, the predecessor node with minimum distance to the context node is
now the corresponding ghost node, which can be filtered out in the final results.

Definition 1 offers a straightforward method to compute the locality of a node c
in document D by converting D to Full(D) and finding the nodes in Full(D) with
minimal distance to c. However, this naive method has two drawbacks. First, Full(D)
is less space-efficient than D and may require updates every time D is updated. Second,
locating the nodes with minimal distance to c requires traversal all nodes in Full(D)
at least once which is expensive when Full(D) is large. In Section 5, we shall address
these drawbacks by adopting an efficient strategy to evaluate the locality of c without
transforming D to Full(D) and with minimal node traversal.
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4 Neighborhood Axis

The neighborhood axis is used to select common nodes of two context nodes. Infor-
mally, a node that is common to two nodes is semantically related to these nodes even
when the document structure changes. Recall that the locality of a node is the set of
all related (local) nodes to the context node. Therefore, the common nodes selected by
the neighborhood axis should be in the locality of both input nodes. Observe that
since node locality is structure-independent, the common locality of the two context
nodes are identical even when structure of the document changes. For example, if John
is interested in the common team of Hill and Antoni, the result should be the only team
node in the common locality (team New York Knicks). On the other hand, if John asks
for common name nodes associated to Hill and Antoni, then this query is ambiguous.
In this case, the neighborhood axis should return all name nodes in the common
locality of these two nodes.

Definition 2. Let c1 and c2 be two context nodes and � be the name test of the step. The
neighborhood nodes of c1 and c2 with label �, denoted as neighborhood(c1, c2, �), is
a list of nodes [n1, n2, . . . , nj ] where:

– n1, n2, . . . , nj ∈ N and j ≥ 1
– ∀ni ∈ neighborhood(c1, c2, �),L(ni) = �
– ∀ni ∈ neighborhood(c1, c2, �), ni ∈ Locality(c1) ∧ ni ∈ Locality(c2)
– ∀p, q, 1 ≤ p < q ≤ j, np precedes nq in document order

The syntax for expressing neighborhood axis should consist of two input nodes
(context nodes). One of them is the context node specified by the previous step. We
refer to it as left context node. The other input node is a parameter (can be expressed
as path expression), which we refer to as right context node. Hence, the BNF rules for
neighborhood axis is as follow. First, the neighborhood is added into
“NonDirectionalStep”3. Next, additional rules are specified to describe the
neighborhood axis.

NonDirectionalStep ::= ClosestStep|RankDistanceStep|NeighborhoodStep

NeighborhoodStep ::= NeighborhoodAxis NodeTest

NeighborhoodAxis ::= "neighborhood""{"PathExpression"}" "::"

Reconsider Figure 1 to find the common team of players Hill and Curry. Then, this
query can be formulated as follows: Q5: //player [name=‘Hill’]/
neighborhood{//player[name=‘Curry’]}::team. Observe that the query
consists of three parts: (a) //player[name=‘Hill’] is used to select the player
Hill (left context node). (b) //player[name=‘Curry’] is used to select the player
Curry (right context node). (c) A neighborhood step with name test of team is used
to find the common team of the two players. Observe that for both documents in Fig-
ure 1, Q5 will return the team node whose name is “New York Knicks”.

3 We have introduced two additional non-directional axes, namely closest and
rank-distance, in [15] and [1], respectively.
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Fig. 3. Structure trees of modified versions of the XML documents in Figure 1

The neighborhood axis can also be used with a predicate. Suppose John now
wishes to find the teammates of player Hill. Intuitively, a teammate is a player in
the same team. Therefore, the XPath for this query can be expressed as follows: Q6:
//player[neighborhood{//player[name=‘Hill’]}::team].This query
will return the player node whose name is “Curry” in both Figures 1(a) and 1(b).

5 Evaluation of Neighborhood Axis

In this section, we present a generic algorithm called SINBAD for evaluating neighbor-
hood axis by exploiting node locality information. We begin by briefly introducing the
terminology that we shall subsequently to describe the algorithm.

We denote the root-to-node path of a node n in an XML tree as Path(n). That is,
Path(n) is a concatenation of the labels on the path from the root to n. Observe that
Path(n) is equivalent to the type of n (T(n)). In the sequel, we shall use these two con-
cepts interchangeably. Next we define the notion of structure tree. Given an XML docu-
ment D, the structure tree of D, denoted as SD, is a DataGuide structural summary [5]
representing all unique paths in D. That is, each unique path p in D is represented in SD
by a node whose path from the root node to this node is p. Further, every unique label
path of D is described exactly once, regardless of the number of times it appears in D.
The structure tree encodes no path that does not appear in D. Note that a structure tree
can be computed in linear time for tree-structured data [5]. Figure 3 depicts the struc-
ture trees of the modified predecessor-enhanced documents in Figure 1 (the nodes
are encoded with their Dewey labels). Intuitively, a document D and its full document
version Full(D) share a common structure tree.

Lemma 1. Given a document D, the structure trees of D and Full(D) are identical.

Proof. (Sketch) According to the definition of full documents, for any type t ∈ S, its
subtype set is identical in D and in Full(D). In the structure tree, each type t corre-
sponds to a path p and each subtype of t corresponds to a child of p. Thus, in both D
and Full(D), the children list of all nodes in the structure tree are identical. Hence,
their structure trees are identical.
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For example, Figure 3(a) depicts the structure tree of both the document in Figure 1(a)
and its full document in Figure 2.

Given two paths p1 and p2 in SD, the path distance between p1 and p2, denoted
as Distance(p1, p2), is the length of path connecting the nodes represented by p1 and
p2. The level of p1, denoted as Level(p1), is the length of p1. The LCA of p1 and p2,
denoted as LCA(p1, p2), is the longest common prefix of p1 and p2. Finally, the LCA

level of p1 and p2, denoted as LCALevel(p1, p2), is the level of the LCA(p1, p2). That
is, LCALevel(p1, p2) = Level(LCA(p1, p2)).

5.1 Evaluation of Locality

In this section, we present a set of properties that shall be exploited by Algorithm SIN-
BAD (Section 5.2) to efficiently check whether a node is in the locality of a context
node.

Lemma 2. Let n1 and n2 be two nodes in a document D and p1 = Path(n1) and
p2 = Path(n2) in structure tree SD. Then,

Distance(n1, n2) = Level(n1) + Level(n2)− 2× LCALevel(n1, n2)

Distance(p1, p2) = Level(p1) + Level(p2)− 2× LCALevel(p1, p2)

Proof. (Sketch) The path connecting two nodes n1 and n2 in a tree is unique and this
path must pass through the LCA(n1, n2). Therefore, we can divide this path into two
parts: one from n1 to LCA(n1, n2) and another fromLCA(n1, n2) to n2. The length of
the path from n1 toLCA(n1, n2) is equal to Level(n1)−LCALevel(n1, n2) while the
length of the path fromLCA(n1, n2) to n2 is Level(n2)−LCALevel(n1, n2). Hence,
Distance(n1, n2) is equal to the sum of these two subparts and is equal to Level(n1)
+ Level(n2)− 2× LCALevel(n1, n2). The proof is similar for Distance(p1, p2).

Theorem 1. Let n1 and n2 be two nodes in a document D. Let p1 = Path(n1) and
p2 = Path(n2) be two paths in SD . Then, (i)LCALevel(n1, n2) ≤ LCALevel(p1, p2)
and (ii) Distance(n1, n2) ≥ Distance(p1, p2).

Proof. (Sketch) From Lemma 2, it is clear that (i) and (ii) are equivalent (notice that
Level(n) = Level(path(n))∀n). Thus, we only need to prove (i).

Let n be LCA(n1, n2) and p = Path(n). Since n is an ancestor of both n1 and n2,
p is a prefix of both p1 and p2. Therefore, p is an ancestor of both p1 and p2. Based
on the definition of LCA level, we have: Level(p) ≤ LCALevel(p1, p2). Therefore:
LCALevel(n1, n2) = Level(n) = Level(p) ≤ LCALevel(p1, p2).

For example, in Figure 2, let n1 and n2 be nodes whose Dewey codes are 0.0.1
and 0.1.4, respectively. Then LCALevel(n1, n2) = 1 and Distance(n1, n2) = 4.
In Figure 3(a), the paths of n1 and n2 (p1, p2) are nodes whose Dewey codes are
0.0.1 and 0.0.4, respectively. Their LCA level is 2 and their distance is 2. Hence,
LCALevel(n1, n2) < LCALevel(p1, p2) andDistance(n1, n2) > Distance(p1, p2).

Theorem 2. Let c be a node in the full document Full(D) (Path(c) = pc). Then, for
any path pn in SD, there exists a node n ∈ Full(D) whose path is pn such that (i)
LCALevel(c, n) = LCALevel(pc, pn) and (ii) Distance(c, n) = Distance(pc, pn).
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Proof. (Sketch) Following Lemma 2, (i) and (ii) are equivalent. Thus, we only need to
prove (i). Let � = LCALevel(pc, pn). Note that � ≤ Level(pc) = Level(c). Let a� be
the ancestor (or self) of c at level �. Choose a�+1 as a child of a� whose tag is equal to
the tag of pn at level �+ 1 of the structure tree SD. Since � = LCALevel(pc, pn), this
tag is not in pc and therefore, is not the tag of the ancestor of c at level �+1. Therefore,
the chosen a�+1 is not the ancestor of c at level �+ 1.

Similarly, a�+2 is selected as a child of a�+1 whose tag is the tag of pn at level �+2.
Continue this process repeatedly until k = Level(pn) where ak is the node n that we
need to find. Obviously, Path(ak) = pn. Moreover, since a� is a common ancestor at
level � of c and ak and their ancestors at level �+1 are different (since they have different
tags), a� = LCA(c, ak). Hence, � = LCALevel(c, ak). So,LCALevel(pc, pn) = � =
LCALevel(c, ak).

For example, consider the full document in Figure 2 and the corresponding structure
tree in Figure 3(a). Let c be the node whose Dewey code is 0.0.3. Hence, pc is
league.team.manager which has a Dewey code of 0.0.2 in the structure tree.
Let’s choose pn as league.team.predecessor (Dewey code is 0.0.4 in Fig-
ure 3(a)). In the structure tree, LCALevel(pc, pn) = 2. Then p2 = LCA(pc, pn) is the
path league.team representing the type team. Observe that the level 2 ancestor, a2,
of c is the node 0.0 (clearly, the path of a2 is p2).

The tag at level 3 of pn is predecessor. Let p3 be the level 3 ancestor of pn. Then
p3 is league.team.predecessor. Since p3 is a child of p2 in the structure tree,
there exists nodes which have path p3 and are the child nodes of nodes with path p2
in the full document. Hence, type predecessor is a type in the sub-type set of type
team. Consequently, a2 must have a child node with type predecessor (path p3).
Let a3 be this child node of a2. Then a3 is the node n we need to find. Observe that
a3 is a ghost node in Figure 2 with Dewey code of 0.0.5 and LCALevel(c, a3) =
LCALevel(pc, pn) = 2 and Distance(c, a3) = Distance(pc, pn) = 2.

Given a context node c whose path is pc and a set of nodes N in a full document
Full(D) whose path is pn, Theorem 1 shows that Distance(pc, pn) is a lower bound
of the distance between c and any nodes n ∈ N . On the other hand, Theorem 2 shows
that ∃n ∈ N,Distance(c, n) = Distance(pc, pn). Thus, Distance(pc, pn) is the
minimum distance between c and any nodes in N . Following Definition 1, all nodes
n ∈ Locality(c) must satisfy Distance(c, n) = Distance(pc, pn).

Theorem 3. Let c be the context node in document D. Then a node n ∈ Locality(c) iff
(a)Distance(c, n) = Distance(pc, pn) or (b)LCALevel(c, n) = LCALevel(pc, pn).

Proof. (Sketch) Condition (a) is a direct consequence of Definition 1, Theorem 1 and
Theorem 2. Condition (b) can be proved by exploiting Lemma 2. Since Distance(c, n)
= Distance(pc, pn), Level(c)+Level(n)−2LCALevel(c, n) = Level(pc)+Level
(pn)− 2LCALevel(pc, pn). Hence, LCALevel(c, n) = LCALevel(pc, pn).

For example, reconsidering Figure 2. Let c be the node whose Dewey code is 0.0.3
(the head manager node). Let us find the player nodes that are local to c. Here
pc = league.team.manager and pn = league.team.player. Therefore,
LCALevel(pc, pn) = 2. Observe that in Figure 2, there are three nodes having path pn.
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Algorithm 1: The Algorithm SINBAD.
Input: A document D, context nodes c1 and c2 in D, name test �, set P of all paths in SD

Output: A set of neighborhood nodes Results

1 Initialize NeighborhoodPaths = ∞ ;
2 Initialize Results = ∞ ;
3 for (each p ∈ P ) do
4 if (LastTag(p) == �) then
5 Add p into NeighborhoodPaths;

6 for p ∈ NeighborhoodPaths do
7 a1 ← the ancestor (or self) of c1 at level LCALevel(Path(c1), p);
8 a2 ← the ancestor (or self) of c2 at level LCALevel(Path(c2), p);
9 if a1 is an ancestor-or-self of a2 or a2 is ancestor-or-self of a1 then

10 a ← the descendant between a1 and a2;
11 Add all descendants-or-self of a in D whose path is p into Results;

12 return Results

Their Dewey codes are 0.0.1, 0.0.2, and 0.1.1. Their LCALevel with c are 2, 2,
and 1, respectively. Hence, according to Theorem 3 only nodes 0.0.1 and 0.0.2 are
in the locality of c. Observe that these two nodes represent the players Curry and Hill
who are managed by the head manager Walsh.

Remark. Theorem 3 offers a very efficient technique to evaluate locality due to three
reasons. First, LCALevel(pc, pn) can be computed completely from the structure tree
SD whose size is significantly smaller than D in most practical cases. SD can also be
built directly from D without creating Full(D) (Lemma 1). Second, due to Theorem 1,
LCALevel(c, n) = LCALevel(pc, pn) = � is equivalent with n is a descendant (or
self) of the ancestor-or-self node a of c at level �. Notice that if our list of nodes are
sorted in document order, the descendant list of a are consecutive and usually small
so that traversing them is usually cheap. Third, observe that users are not interested in
ghost nodes. Hence, these nodes need to be filtered out in the output. Theorem 3 allows
us to accomplish this efficiently without transforming the original document D to a full
document. We only traverse the descendant list of a in the original document D so that
all result nodes are actual nodes. If a local node n (i.e., descendant of a) in the full
document is not returned, it means that n is a ghost node.

For example, let c be the node with Dewey code 0.0 (team node). We wish to
find the predecessor nodes that are local to c. Since pc = league.team and
pn = league.team.predecessor, LCALevel(pc, pn) = 2. The ancestor-or-
self of c at level 2 is c itself. In the full document there are two nodes with type pn
(0.0.5 and 0.1.4). However, since we only need to traverse the descendant list of
node 0.0 in the original document D, neither would be traversed and there does not
exist any predecessor node that is in the locality of c in the original document
(Fig.1). Notably, although node 0.0.5 is descendant of node 0.0 and local to c in the
full document, since we traverse only 0.0’s descendant list in the original document
(we do not transform it to a full document), node 0.0.5 would not be returned.
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5.2 Algorithm SINBAD

Algorithm 1 outlines the SINBAD algorithm. Most importantly, Algorithm 1 does not
take Full(D) as input or require Full(D) in any of its steps. We illustrate the steps with
an example. Reconsider the queryQ5 which selects the common team of player Hill and
manager Antoni. The two context nodes in this query are the player node (0.0.2)
and the manager node (0.0.3.1). Lines 3-5 are used to find all paths whose last
tag is the label team. In our example, the only such path is league.team. For each
path p ∈ NeighborhoodPaths, Lines 7-8 are used to find the ancestor of c1 and c2 at
level LCALevel(p, path(c1)) and LCALevel(p, path(c2)), respectively. According
to Theorem 3, all result nodes must be descendants of both ancestor nodes a1 and
a2. Hence, a1 and a2 must have ancestor-descendant relation (Line 9). Let a be the
descendant node between a1 and a2 (Line 10), all results must be descendants (or self)
of a (Line 11). Notice that Line 11 finds the descendants of a in D, not Full(D), due
to reasons mentioned in Section 5.1. Therefore, Algorithm 1 does not require Full(D)
or convert D to Full(D). Specifically, for our example, both a1 and a2 would be node
0.0 and the only descendant-or-self nodes with label team and descendant of 0.0 are
that node itself. It is our only result.

Time Complexity. Let k be the number of paths satisfying the neighborhood path con-
dition (Lines 3-5) and the Desc(p) be the set of descendant-or-self node of node a
produced in Lines 10-11. Assume that LCALevel() and ancestor-descendant eval-
uation could be computed in O(1) time. The time complexity of the algorithm is:
O(|P | + 3k +

∑
p∈P |Desc(p)|). Notice that both |P | and k are usually very small

so that the worst-case complexity is usually dominated by
∑

p∈P |Desc(p)|. Further-
more, since all nodes in Desc(p) have path p, all nodes in Results are unique and∑

p∈P |Desc(p)| happens to be our result size which is the expected lower bound of
our algorithm. Moreover, we can also notice that the input context nodes are only used
for LCA computation and ancestor-descendant checking, both can be achieved using
only the node identifiers (e.g., Dewey code). Hence, retrieving data for a context node
is cheaper than retrieving data for a result node.

6 Performance Study

We present the experiments conducted to evaluate the performance of our proposed
axis and report some of the results obtained. Note that SINBAD is independent of any
specific storage scheme for XML data. In this paper, we have realized it on top of a
path materialization-based [6] relational storage scheme called SUCXENT++ [10] in
Java JDK1.6. Due to space constraints, we do not discuss the implementation of SQL

translation strategy for SINBAD. Note that our implementation does not require any
invasion of the database kernel. All of our experiments are conducted on an Intel Core
2 Quad CPU 2.66GHz machine running on Windows XP Service Pack 3 with 2GB
RAM. The RDBMS used was MS SQL Server 2008 Developer Edition.
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Fig. 4. Datasets

Fig. 5. Querysets

Data and Query Sets. We use XBench DCSD [14] as a synthetic data set and Uniprot/KB
XML4 as a real-world data set. We vary the size of XML documents from 10MB to
1GB for XBench DCSD data set. Since the original UNIPROT data is 2.8GB in size (de-
noted as U2843), we also truncated this document into smaller XML documents of sizes
28MB and 284MB (denoted as U28 and U284, respectively) to study scalability. Fig-
ure 4 depicts the characteristics of the data sets. Figure 5 depicts the query sets for
XBench DCSD (XQ1–XQ4) and Uniprot/KB data sets (UQ1–UQ4). Note that queries
XQ4 and UQ4 showcase usage of neighborhood axis with other non-directional
axis (i.e., closest [15]). We also consider equivalent directional XPath queries (same
results set) of XQ1–XQ4 (denoted as XQ1′ - XQ4′) and UQ1–UQ4 (UQ1′ - UQ4′) in or-
der to compare the performance of structure-independent queries with their directional
counterparts.

Test Methodology. Appropriate indexes were constructed for SUCXENT++. Prior to
our experiments, we ensured that statistics had been collected. The bufferpool of the

4 Downloaded from ftp://ftp.uniprot.org/pub/databases/uniprot/current
release/knowledgebase/complete/uniprot sprot.xml.gz

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz.
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz.


170 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

Fig. 6. Performance results (in msec.)

RDBMS was cleared before each run. Each query was executed six times and the results
from the first run were always discarded.

Experimental Results. Figure 6 reports the performanceneighborhood axis queries.
We can make the following observations. Firstly, the execution time increases sub-
linearly with result size. Notice that XQ1 and UQ1 have identical context node set with
XQ2 and UQ2, respectively, but with different result sizes. In particular, the result size
of XQ2 is nearly 10 times larger than that of XQ1 and the result size of UQ2 is about 50
times larger than that of UQ1. However, the execution times grows at much slower rate
compared to the result size. Secondly, the execution time increases sub-linearly with the
number of right context nodes (recall from Section 4). For instance, although the num-
bers of right context nodes of XQ3 and UQ3 are significantly larger than XQ1 and UQ1,
respectively, there is not much difference in the corresponding execution times. This is
consistent with our discussion in Section 5.2. Thirdly, our proposed technique is scal-
able as the execution time increases linearly to the document size. Notice that for 75%
of queries, the execution time on even the largest dataset is less than 3 seconds. Lastly,
there are no significant performance difference between the neighborhood axis queries
and their corresponding directional counterparts (XQ1′ - XQ4′ and UQ1′ - UQ4′). This
highlights the strength of our approach as users can query in a structure-independent
manner without compromising on query performance.

7 Conclusions and Future Work

The quest for structure-independent querying of XML data has become more pressing
due to inability of end-users to be aware of structural details of underlying data. In
this paper, we present a novel structure-independent, non-directional XPath axis, called
the neighborhood axis, to locate common neighbors of two context nodes. We pro-
posed an algorithm called SINBAD that exploits the notion of node locality and small
size of XML structural summary to efficiently abstract the common nodes of a pair of
context nodes. Our empirical study on top of an existing path materialization-based re-
lational storage showed that SINBAD has excellent real-world performance. In future,
we plan to extend our approach to yet other non-directional axes, which we believe can
be supported using the techniques presented in this paper.
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Abstract. In this paper, we focus on efficient processing of a given XML key-
word query based on SLCA semantics. We propose an efficient algorithm that
processes all nodes in the set of inverted Dewey label lists in a top-down way.
Specifically, our method recursively divides the set of initial Dewey label lists
into a set of minimum nontrivial blocks (MNBlocks), where a block consists of a
set of Dewey label lists and corresponds to an XML tree. The “minimum” means
that for a given block, none of its sub-blocks corresponds to a subtree that con-
tains all keywords of the given query; the “nontrivial” means that no block can
contain an empty list. Based on these MNBlocks, our method produces all qual-
ified results by directly outputting the LCA node of all nodes in each MNBlock
as a qualified SLCA node. During processing, our method can intelligently prune
useless keyword nodes according to the distribution of all nodes in a given block.
Our experimental results verify the performance advantages of our method ac-
cording to various evaluation metrics.

1 Introduction

Keyword search over XML data has attracted a lot of research efforts [1–3, 5–8, 11, 12]
in the last decade, where a core problem is how to efficiently answer a given keyword
query. Typically, an XML document can be modeled as a node-labeled tree T , and for a
given keyword query Q, lowest common ancestor (LCA) is the basis of existing XML
keyword search semantics [5, 6, 11, 12], of which the most widely followed variant is
smallest LCA (SLCA) [8, 11]. Each SLCA node v of Q on T satisfies that v is an LCA
node of Q on T , and no other LCA node of Q can be v’s descendant node. The meaning
of SLCA semantics is straightforward, i.e., smaller trees contain more meaningfully
related nodes.

To facilitate SLCA computation on XML data, existing methods [8, 11] assign to
each node v a Dewey [9] label, and all Dewey labels of nodes that directly contain a
certain keyword ki are organized in an inverted list Li in document order. The state-
of-the-arts include the Stack [11], IL [11] and IMS [8] algorithms, and the main idea
is utilizing the positional relationships of nodes in the inverted lists to make semantic
pruning in a bottom-up way, that is, they process all nodes that directly contain key-
words of the given query and check whether their LCA nodes satisfy the requirement
of SLCA semantics.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 172–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The Stack algorithm sequentially processes all Dewey labels in document order by
using a stack to merge Dewey labels on the fly and simultaneously computing qual-
ified SLCA nodes. The IL algorithm computes the SLCA results by processing two
lists each time from the shortest to the longest, i.e., SLCA(Q) = SLCA(SLCA
(L1, ..., Lm−1), Lm). Instead of breaking the SLCA computation into a series of binary
SLCA computations as IL does, the IMS algorithm computes each potential SLCA by
taking one node from each Dewey label list in each iteration. For the above three al-
gorithms, the Stack algorithm is the most straightforward in each iteration, but usually
suffers from huge number of iterations. Compared with Stack, IL and IMS are more
flexible to utilize the positional relationship to prune useless keyword nodes. The dif-
ference between IL and IMS lies in that in each iteration, IL always uses a node of
the shorter list to probe the longer list, while IMS always uses a maximum node to
probe other lists. IL is simpler than IMS in each iteration, while usually suffers from
more iterations than IMS. IMS needs the least number of iterations, but suffers from the
hightest cost in each iteration. Therefore, IMS could be the best choice when all nodes
of the set of lists are not uniformly distributed; IL could perform best when all nodes
are uniformly distributed and there exists huge difference in lengths of the set of lists;
otherwise, Stack is the best choice.

In practice, different keyword queries may correspond to Dewey label lists with dif-
ferent distributions; even worse, for a certain keyword query Q = {k1, k2, ..., km} and
the set of Dewey label lists L = {L1, L2, ..., Lm}, different parts of L may possess
different distributions, which result in the inefficiency for existing methods, that is, ac-
cording to only the overall distribution of all nodes and therefore fixing a certain method
could result in losing chances of making fine-grained optimization.

Example 1. Consider processing Q = {a, b} on D in Fig. 1. For all uniformly dis-
tributed nodes under x4, the number of iterations of Stack, IL and IMS are 200, 100
and 99, respectively. Although Stack needs the most iterations, it is the most efficient
since the cost of each iteration for Stack is much less than that of IL and IMS. Consider
processing Q = {a, b} on Case 3 and Case 4, where all nodes are not uniformly dis-
tributed, and both IL and IMS are much more efficient than Stack in such a case, since
they can skip most useless nodes. If Case 3 and Case 4 are processed separately, IL will
be more efficient than IMS, since both IL and IMS need the same number of iterations,
but IMS suffers from higher cost than IL in each iteration. However, if Case 3 and Case
4 are processed together, that is, La = {a302, ..., a401}, Lb = {b302, ..., b402}, we have
|La| < |Lb|, then IMS is much more efficient than IL, because in each iteration, IL
always uses a node from La to probeLb, which means that the probe operations of a302
to a398 are useless since they produce the same result as that of a399.

To realize fine-grained optimization for SLCA computation, we propose an efficient al-
gorithm that recursively divides the set of initial Dewey label lists into a set of minimum
nontrivial blocks (MNBlocks) in a top-down manner, then outputs the LCA node of all
nodes in each MNBlock as an SLCA node, where a block consists of a set of Dewey
label lists and corresponds to an XML tree, the “minimum” means that for a given
block, no one of its sub-block corresponds to a subtree that contains all keywords, the
“nontrivial” means that every list of a block is a nonempty list. During processing, the
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r
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a1 a100... b1 b100... a102 b102

x10

b302 a400...

La

Lb

a101 a200... a201 a301... a302 a399 a401a1 a100... a102 a400...

b101 b200... b201 b301... b303 b304 b401... b402b1 b100... b102 b302

(1)

...
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(107)
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(112)

Fig. 1. A sample XML document D, where only nodes that directly or inderectly contain a and b
are kept for explanation. La and Lb are the two inverted Dewey label lists for Q = {a, b}, where
all nodes in the two lists are shown in document order; each solid (dashed) rectangle on La and
Lb represents a nontrivial (trivial) block, which corresponds to a subtree and is marked by an
enclosed number.

“fine-grained optimization” in our method amounts to an intelligent pruning of useless
keyword nodes according to the distribution of all nodes in a given block.

Intuitively, our method takes all nodes in the set of inverted Dewey label lists as leaf
nodes of an XML tree T , and checks whether it contains all keywords of the given
query. The “top-down” processing strategy means that if T contains all keywords, T
must contain at least one SLCA node, we then remove the root node of T and get a
forest FT = {T1, T2, ..., Tn} of subtrees corresponding to the set of child nodes of T ’s
root node. Based on FT , we check whether each subtree contains all keywords. If no
subtree in FT contains all keywords, it means that T is a smallest tree that contains
all keywords, then we directly output T ’s root node as an SLCA node; otherwise, for
each subtree in FT that contains all keywords, we just need to recursively compute its
subtree set until no subtree in a subtree set contains all keywords. For a given tree T that
contains all keywords of the given query, to check whether there exists some subtrees
of T that contain all keywords, our method does not need to check every subtree in
FT ; instead, we just need to firstly find the keyword ki with the smallest number of
occurrences in T , then find all subtrees of T that contain ki; at last, for each of these
subtrees, we check whether it contains all other keywords. In this way, our method
realizes the fine-grained optimization, thus can be adaptive to inverted Dewey label
lists with different kinds of keyword distributions.



Top-Down SLCA Computation Based on List Partition 175

Example 2. Continue Example 1. Let Tv be the subtree rooted at node v, our method
firstly finds block (1) corresponds to Tx1 in Fig. 1. Since block (1) contains both “a”
and “b”, our method recursively finds two blocks, i.e., block (2) and (3), corresponding
to Tx2 and Tx4 , respectively. Note that all nodes under x3 are not processed since our
method uses nodes of La to find blocks. As block (2) does not contain any node of
Lb (see rectangle marked by “(2)”), we know that subtree Tx2 does not contain all
keywords, thus its root node, i.e., x2, is not an SLCA node and we skip all nodes under
x2. As block (3) contains nodes of both La and Lb, we use nodes of La to find more
sub-blocks, shown as block (4) to block (103), of which no one contains node of Lb,
thus we know that the root node of block (3), i.e., x4, is an SLCA node. The next block
computed in our method is block (104) corresponding to Tx5 . Since Tx5 contains all
keywords, we recursively find block (105). As block (105) is the only sub-block found
in block (104) and it does not contain node ofLb, we know the root node of Tx5 , i.e., x5,
is an SLCA node. The following processing is similar, and the only thing that needs to
be noted is that when processing block (106), our method uses nodes of Lb to compute
sub-blocks, because for block (106), the number of nodes in Lb is much less than that
in La. For block (111), we use nodes of La again to compute sub-blocks, since the
number of nodes in La is much less than that in Lb for block (111). Finally, our method
outputs the root nodes of Tx4 , Tx5 , Tx9 , Tx10 and Tx11 as qualified SLCA nodes, which
correspond to block (3), (104), (107), (109) and (111), respectively.

The rest of the paper is organized as follows. In Section 2, we introduce preliminaries
and related work. In Section 3, we introduce partition, block, MPartition, EBSet and
MNBlock, and their important properties. Our LPSLCA algorithm is presented in Sec-
tion 4. In Section 5, we present the experimental results, and conclude our paper in
Section 6.

2 Preliminaries and Related Work

2.1 Data Model

We model an XML document as a node-labeled tree, where nodes represent elements or
attributes, while edges represent direct nesting relationship between nodes in the tree. If
a keyword k appears in the node name or attribute name, or k appears in the text value
of v, we say v directly contains k. Fig. 1 is a sample XML document.

The positional relationships between two nodes include Document Order (≺d),
Equivalence (=), AD (ancestor-descendant, ≺a), PC (parent-child, ≺p), Ancestor-or-
self (�a) and Sibling relationship. u ≺d v means that u is located before v in document
order, u ≺a v means that u is an ancestor node of v, u ≺p v denotes that u is the parent
node of v. If u and v represent the same node, we have u = v, and both u �d v and
u �a v hold. During processing, each node is assigned with a Dewey label to facilitate
the computation of various positional relationships. In the following discussion, we do
not differentiate between a node and its label if without ambiguity.
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2.2 Query Semantics and Related Algorithms

For a given queryQ = {k1, k2, ..., km} and an XML documentD, inverted Dewey label
lists are often built to record which nodes directly contain which keywords. We use Li

to denote the inverted Dewey label list of ki, of which all Dewey labels are sorted in
document order. Let S = {v1, v2, ..., vn} be a set of nodes, lca(S) = lca(v1, v2, ..., vn)
denotes the lowest common ancestor (LCA) of all nodes in S. For a set of node sets
S = {S1, S2, ..., Sm}, lca(S) represents the LCA of all nodes in

⋃m
1 Si.

The LCAs of Q on D are defined as LCA(Q) = LCA(L1, L2, ..., Lm) = {v|v =
lca(v1, v2, ..., vm), vi ∈ Li(1 ≤ i ≤ m)}. E.g., the LCA nodes for Q = {a, b} on D in
Fig. 1 include r, x1, x4, x5, x8, x9, x10 and x11.

In the past few years, researchers have proposed many LCA-based semantics [3–6,
11], among which SLCA [8,11] is one of the most widely adopted semantics. Compared
with LCA, SLCA [8,11] defines a subset of LCA(Q), of which no LCA in the subset is
an ancestor of any other LCA, which can be formally defined as SLCA(Q) = {v|v ∈
LCA(Q) and �v′ ∈ LCA(Q), such that v ≺a v

′}. In Fig. 1, although r, x1 and x8 are
LCAs, r and x1 are ancestors of x4, and x8 is an ancestor of x9 and x10, thus the set of
SLCAs for Q = {a, b} on D in Fig. 1 are x4, x5, x9, x10 and x11.

For SLCA computation, besides Stack [11], IL [11] and IMS [8] discussed in
Section 1, the HashSearch (HS) [10] algorithm tries to skip as many useless nodes
as possible by taking the shortest list L1 as the working list. In each iteration, it se-
quentially picks a node v1 from L1, and computes a candidate SLCA node v based on
v1. To check whether v is an LCA node, for each keyword ki, the HS algorithm uses a
hash table H , which maintains, for each node vi and each keyword ki, the number of
descendant nodes of vi that directly contains ki. Compared with the Stack, IL and IMS
algorithm, even though HS looks better by comparing their time complexity, HS suffers
from much more space to maintain the hash table. Essentially, HS sacrifices more space
to achieve better efficiency. Moreover, for a given keyword query, although IL, IMS
and HS can reduce the number of iterations by skipping many useless nodes, when the
length of the shortest keyword inverted list is very long, their performance degenerates
accordingly. Even if the length of the shortest list is not very long, when the number of
results is much less than the length of the shortest list, all of them suffer from redundant
computations, that is, the keyword distribution has great impact on their performances.
As a comparison, our method takes the same set of keyword inverted lists as that of IL
and IMS, which does not need additional space to maintain a big hash table as HS does,
but achieves better performance gain even compared with HS. Another related work
is [2], which proposed a new labeling scheme, i.e., JDewey labeling scheme, where
each component of a JDewey label is a unique identifier among all nodes at the same
tree depth. According to this property, the algorithm proposed in [2] computes all SLCA
nodes based on set intersection operation on all lists of each tree depth from the leaf to
the root.

2.3 Notations

Given a set of nodes S, the function first(S)(last(S)) returns the smallest (largest)
node v ∈ S such that v �d vi (vi �d v) for each vi ∈ S. For example, consider
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D in Fig. 1, let La = {a1, a2, ..., a401} be the inverted list of keyword a, we have
first(L1) = a1, last(L1) = a401. In the following discussion, for a set of Dewey label
lists B = {L1, L2, ..., Lm}, Li ∈ B is denoted as B.Li.

3 List Partition

Definition 1. A block is a set of Dewey label lists B = {L1, L2, ..., Lm}. A partition
of B is a set of blocks PB = {B1, B2, ..., Bn}, where each Bj = {L1, L2, ..., Lm} ∈
PB(j ∈ [1, n]) satisfies the following conditions:

1. ∀i ∈ [1,m], Bj .Li ⊆ B.Li,
2. ∃i ∈ [1,m], such that Bj .Li �= ∅,
3. ∃i ∈ [1,m], such that Bj .Li ⊂ B.Li,
4. (Independence) ∀i ∈ [1, n], i �= j, lca(Bi) �a lca(Bj) and lca(Bj) �a lca(Bi),
5. (Completeness) ∀i ∈ [1,m], ∀v ∈ B.Li, if lca(B) ≺a v, v ∈ ⋃n

j=1 Bj.Li.

If ∃i∈[1,m], such that B.Li=∅, B is a trivial block; otherwise a nontrivial block.

Intuitively, a block B is a set of Dewey label lists with at least one nonempty list, which
corresponds to a subtreeTlca(B) rooted lca(B), while a partitionPB={B1, B2, ..., Bn}
ofB is a set of blocks corresponding to a set of subtrees {TB1 , TB2 , ..., TBn} of Tlca(B),
where the root node lca(Bi) of each subtree TBi(i ∈ [1, n]) is a descendant node of
lca(B), i.e., lca(B) ≺a lca(Bi). The Independence means that for any two blocks
of a partition, the root nodes of their corresponding subtrees do not have AD rela-
tionship, thus all nodes of one block must strictly precede or succeed all nodes of the
other block, that is, for a given partition PB = {B1, B2, ..., Bn}, ∀x, y∈ [1, n], x �= y,
last(

⋃m
i=1Bx.Li) ≺d first(

⋃m
i=1 By.Li) or last(

⋃m
i=1 By.Li) ≺d first(

⋃m
i=1Bx.Li).

The Completeness means that for each i ∈ [1,m], the union of the ith list of all blocks
in PB covers all nodes in B.Li that are descendant of lca(B). Since for a given parti-
tion PB , each Bi ∈ PB(i ∈ [1, n]) can be uniquely represented by lca(Bi), henceforth,
we use block Blca(Bi) to denote Bi if it belongs to a partition. According to Definition
1, all Dewey label lists of a given keyword query Q form a block B. B can have many
possible partitions by recursively replacing some block Bi ∈ PB with PBi . Informally
speaking, this means that these newly generated partitions are further fragmentations
of PB .

Example 3. For query Q = {a, b} and the XML document D in Fig. 1, according to
Definition 1,B={{a1, ..., a401}, {b1, ..., b402}} is a block,PB={Bx1, Bx5 , Bx8 , Bx11}
is a partition ofB, whereBx1 = {{a1, ..., a200}, {b1, ..., b200}},Bx5={{a201, ..., a301},
{b201, ..., b301}}, Bx8 = {{a302, ..., a400}, {b302, b303}} and Bx11={{a401}, {b304, ...,
b402}}. Similarly, according to Definition 1, PBx1

= {Bx2 , Bx3 , Bx4}, PBx5
= {Bx6 ,

Bx7},PBx8
={Bx9, Bx10},PBx11

={Ba401 , Bb304 , ..., Bb402} are partitions ofBx1 ,Bx5 ,
Bx8 and Bx11 , respectively. Obviously,Bx2 , Bx3 , Bx6 , Bx7 , Ba401 , Bb304 , ..., Bb402 are
trivial blocks, while Bx1 , Bx4 , Bx5 , Bx8 , Bx9 , Bx10 and Bx11 are nontrivial blocks.

Lemma 1. Given a blockB, ifB is a trivial block, then SLCA computation on all nodes
of B will not produce an SLCA node.
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Lemma 2. Given a block B and one of its partitions PB = {B1, B2, ..., Bn}, ∀i ∈
[1, n], lca(B) ≺a lca(Bi).

Definition 2. Given a block B, we say partition PB is the maximum partition (MParti-
tion) of B, denoted as PM

B , if there does not exist another partition P ′
B of B, such that

some block Bi ∈ PB is a block of partition PB′
j
, where B′

j ∈ P ′
B .

Intuitively, the MPartition PM
B of B is the one that consists of a set of blocks corre-

sponding to the set of subtrees by removing the root node of Tlca(B). Obviously, each
block B has just one MPartition, and the rest partitions of B can be generated by recur-
sively replacing some block of PM

B with its MPartition.

Definition 3. Given a nontrivial block B, we say B is a minimum nontrivial block
(MNBlock) if no block of its MPartition is a nontrivial block.

Lemma 3. The LCA node of each MNBlock w.r.t Q is an SLCA node of Q.

Definition 4. Given a nontrivial block B and its MPartition PM
B = {B1, B2, ..., Bn},

let P t
B ⊆ PB be the set of trivial blocks of PB . The equivalent block set (EBSet) BE

B of
B is recursively defined in formula 1.

BE
B =

{{B}, P t
B = PM

B

PM
B − P t

B , otherwise
(1)

Intuitively, for a given nontrivial block B, the equivalence lies in that B and its EBSet
will produce the same set of SLCA nodes. If no block in B’s MPartition is a nontrivial
block, B is an MNBlock. According to Lemma 3, the only SLCA node of B w.r.t Q is
lca(B), thus its EBSet is itself; otherwise, its EBSet consists of all nontrivial blocks of
its MPartition, since in such a case, lca(B) must not be an SLCA node.

Lemma 4. Given a nontrivial block B and one of its EBSet BE
B , we have:

1. if BE
B = {B}, SLCA(B) = lca(B); otherwise,

2. SLCA(B) = SLCA(BE
B) =

⋃|BE
B |

i=1 SLCA(Bi), where Bi ∈ BE
B .

Lemma 4 provides us a useful property to recursively prune useless blocks and get
SLCA nodes as early as possible. That is, when processing a nontrivial block Bi, if Bi

is an MNBlock, then SLCA(Bi) = lca(Bi); otherwise, we just need to recursively
process all blocks in its EBSet, i.e., all trivial blocks in its MPartition are discarded
without being processed.

Theorem 1. Given a keyword query Q, let B be a block consisting of the set of initial
Dewey label lists, BE

B = {B1, B2, ..., Bn} be the EBSet consisting of MNBlocks, which
is generated by recursively replacing each non-MNBlock with the corresponding EBSet,
then we have SLCA(Q) = {lca(Bi)|i ∈ [1, n]}.
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Example 4. According to Definition 4, we knowBE
B={Bx1 , Bx5 , Bx8 , Bx11} is an EB-

Set of Q = {a, b} on D in Fig. 1. Since Bx1 and Bx8 are not MNBlocks, we recursively
replace them by their EBSets until each block of BE

B is an MNBlock. Specifically, we re-
place Bx1 by Bx4 , replace Bx8 by Bx9 and Bx10 , then we get an EBSet of B consisting
of all MNBlocks, that is, BE

B = {Bx4 , Bx5 , Bx9 , Bx10 , Bx11}. According to Theorem
1, we have SLCA(Q) = {lca(Bx4), lca(Bx5), lca(Bx9), lca(Bx10), lca(Bx11)} =
{x4, x5, x9, x10, x11}.

4 The Algorithm for SLCA Computation

From Theorem 1, we know that for a given query Q, the task of SLCA computation
on the set of initial Dewey label lists can be equivalently transformed into recursively
finding an EBSet that consists of MNBlocks. As shown by the name of Algorithm 1,
“LP” means list partition. For a given query Q = {k1, k2, ..., km}, we firstly construct
the initial block B (in line 1) that consists of the set of initial Dewey label lists of Q,
then assign Dewey label “1” to B.CP (in line 2), where B.CP is a common prefix of
all Dewey labels of B. In line 3, we recursively compute a partition of B by calling
the findPartition procedure. We explain Algorithm 1 using the following example for
limited space.

Algorithm 1: LPSLCA(Q) /*Q = {k1, ..., km}*/
1 B ← {L1, L2, ..., Lm} /*Li(i ∈ [1,m]) is the Dewey label list of ki ∈ Q*/
2 B.CP ← 1
3 findPartition(B)

4 Procedure findPartition(B) /*B = {L1, L2, ..., Lm}*/

5 Lmin ← minargi{|B.Li|}; n ← 0

6 foreach (distinct component x in the (|B.CP | + 1)th position of all Dewey labels of Lmin) do
7 if (∀j ∈ [1,m], j �= min, ∃l ∈ B.Lj , such that l[(|B.CP |+ 1)] = x) then /*l is a Dewey label*/
8 n ← n + 1

9 B′.CP ← B.CP.x /*B.CP is a Dewey label denoting a common prefix of all Dewey labels of B*/
10 foreach (j ∈ [1,m]) do
11 get the start (end) position of B′.Lj according to x(x + 1) by index lookup on B.Lj

12 endfor
13 findPartition(B′)
14 endif
15 endfor
16 if (n = 0) then output B.CP as an SLCA node /*n = 0 means BE

B = {B}*/

Example 5. For query Q = {a, b} and the XML document D in Fig. 1, according
to algorithm 1, B = Br initially. The first block identified by findPartition is Bx1

by calling findPartition(Br). Since Bx1 is not a trivial block, we recursively process
Bx1 by calling findPartition(Bx1) in line 13. When processing Bx1 , our method di-
rectly skips Bx2 , since it is a trivial block and does not satisfy the conditions of line
7. Although Bx3 is also a trivial block, our method will not even consider it since the
blocks considered by Algorithm 1 are those generated by all distinct components of
Dewey labels in the shortest list of each block. For Bx1 , we use components in the
third level of Dewey labels in Bx1 .La to generate blocks, thus as shown in Fig. 1, the
next block generated after Bx2 is Bx4 , which is denoted as an enclosed number. And
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in this iteration, we need to recursively process Bx4 by calling findPartition(Bx4), dur-
ing which we generate 100 trivial blocks, i.e., Ba101 , Ba102 , ..., Ba200 , according to all
distinct components in the fourth level of Dewey labels in Bx4 .La. findPartition(Bx4)
is stopped after outputting Bx4 .CP , i.e., lca(Bx4) = x4, as an SLCA node in line
16. After that, findPartition(Bx1) is also stopped. The second nontrivial block found in
findPartition(Br) is Bx5 , then findPartition(Bx5) is invoked to find more blocks of its
partition, during which block Bx6 will be skipped since it is a trivial block. Similar to
Bx3 , our method will not generate Bx7 since blocks in Bx5’s partition are generated
by all distinct components in the third level of Dewey labels in Bx5 .La. In line 16,
findPartition(Bx5) outputs Bx5 .CP , i.e., lca(Bx5) = x5, as an SLCA and then stops.
The following processing is similar, we find Bx8 , based on which we further find two
MNBlocks, i.e., Bx9 and Bx10 , and output their LCA nodes, i.e., x9 and x10, as quali-
fied results. In findPartition(Bx9), our method just generate one trivial block, i.e.,Bb302 ,
because in this case, blocks are generated by components in the forth level of Dewey
labels in Bx9 .Lb. Similarly, findPartition(Bx10) will also produce just one trivial block,
i.e., Ba400 , which is generated by components in the forth level of Dewey labels in
Bx10 .La. The last block found in findPartition(Br) is Bx11 , which is an MNBlock and
thus we get the last SLCA node, i.e., lca(Bx11) = x11, in line 16 of findPartition(Bx11).
In findPartition(Bx11), our method generates just one block, i.e., Ba401 , because blocks
are generated by components in the third level of Dewey labels of Bx11 .La. Therefore
the final SLCA nodes outputted by Algorithm 1 are x4, x5, x9, x10 and x11. In Fig. 1,
all enclosed numbers denote the detailed processing steps.

Note that in Algorithm 1, we assume that for a given query Q = {k1, k2, ..., km}, the
set of Dewey label lists satisfy 0 < |L1| ≤ |L2| ≤ ... ≤ |Lm|. The case where at
least one Dewey label list is empty can be easily processed before line 1. According to
Algorithm 1, our method does not need to pre-load all Dewey label lists into memory,
since it recursively computes all MNBlocks in document order. Moreover, the operation
of computing the LCA node for two nodes that is frequently used by existing methods
can be avoided, since we have already got it when finding a nontrivial block in line 9
of Algorithm 1. Finally, unlike existing algorithms [8, 10, 11], the distribution of the
underlying data imposes little influence on our method.

Now we analyze the complexity of LPSLCA. We begin by establishing an upper
bound on the number of blocks generated by our LPSLCA algorithm.

Lemma 5. For a given keyword query Q = {k1, k2, ..., km}, Algorithm 1 produces at
most d|L1| blocks, where d is the depth of the given XML tree, L1 is the shortest Dewey
label list of Q.

Proof. Assume that all blocks are computed by each level in a top-down way, as shown
in line 5 to line 12 of Algorithm 1, each block is computed based on a distinct com-
ponent x which comes from the shortest list of a block, and the sum of lengths of all
shortest lists of blocks in the same level is not greater than the length of L1. Thus in
each level, the number of blocks computed by Algorithm 1 is bounded by |L1|. There-
fore, there are at most d|L1| blocks need to be computed, no matter whether they are
trivial or nontrivial ones, where d is the depth of the given XML tree. �
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Consider the worst case where (1) there are |L1| qualified SLCA nodes, (2) all of them
are in the dth level of the given XML tree, and (3) Algorithm 1 produce |L1| nontriv-
ial blocks in the second to the dth level. In this case, there are no trivial block can
be skipped by Algorithm 1. To identify the range of each list of a nontrivial block,
we need to call the index lookup operation two times, which can be implemented us-
ing either binary or galloping search. Note that the comparison operation in binary or
galloping search is not based on Dewey labels, but integers. Therefore, in the second
level, the cost of computing a block is O(m log |Lm|). For other levels, the average
length of the longest list of each block is |Lm|/|L1|. Thus the overall time complexity
is O(m|L1| log |Lm|+ dm|L1| log |Lm|

|L1| ).

5 Experimental Evaluation

5.1 Experimental Setup

Our experiments were implemented on a PC with Intel(R) Core(TM) i5 M460 2.53
GHz CPU, 2 GB memory, and Windows XP professional as the operating system.

The algorithms used for comparison include the Stack [11], IL [11], IMS [8], JDewey
[2] and HS [10] algorithms. All algorithms were implemented using Microsoft VC++,
all results are the average time by executing each algorithm 100 times on hot cache.

Table 1. Statistics of keywords used in our experiment

Keyword tissue baboon necklace arizona cabbage hooks shocks patients cognition villages
|LDewey| 384 725 200 451 366 461 596 382 495 829

Keyword male takano order school check education female province privacy gender
|LDewey| 18441 17129 16797 23561 36304 35257 19902 33520 31232 34065

Keyword bidder listitem keyword bold text time date emph incategory increase
|LDewey| 299018 304969 352121 368544 535268 313398 457232 350560 411575 304752

We used XMark (582MB) and DBLP (876MB) datasets for our experiment. We
have selected from XMark dataset 30 keywords classified into three categories ac-
cording to their occurrence frequencies (i.e. |LDewey| line in Table 1): (1) low fre-
quency (100-1000), (2) median frequency (10000-40000), (3) high frequency (300000-
600000). Based on these keywords, we generated 18 queries as shown in Table 2. We
only present experimental results on XMark dataset for limited space.

5.2 Performance Comparison and Analysis

For a given query, we define the result selectivity as the size of the results over the
size of the shortest inverted list. Fig. 2 shows the running time of different algorithms
for query QX1 to QX18, from which we know that our method outperforms exist-
ing methods for most of these queries, especially when result selectivity is low (see
Table 2), such as QX2, QX6, QX11, QX12, QX15, QX17 and QX18. The reasons lie
in: (1) the set of Dewey label lists may possess different keyword distributions, and our
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Table 2. Queries on 582MB XMark dataset, |Lmin| denotes the length of the short-
est Dewey label list for a query, NS is the number of qualified SLCA results, RS =
NS/|Lmin| denotes the result selectivity

ID Keywords |Lmin| NS RS(%) Freq.

QX1 villages,hooks 461 9 1.95
LowQX2 baboon,patients,arizona 382 1 0.26

QX3 cabbage,tissue,shocks,baboon 366 9 2.46
QX4 shocks,necklace,cognition,cabbage,tissue 200 9 4.5

QX5 female,order 16700 570 3.41
MedQX6 privacy,check,male 18428 29 0.16

QX7 takano,province,school,gender 17129 107 0.62
QX8 school,gender,education,takano,province 17129 107 0.62

QX9 bold,increase 304706 34136 11.2
HighQX10 date,listitem,emph 304969 43777 14.35

QX11 incategory,text,bidder,date 299018 1 0.0003
QX12 bidder,date,keyword,incategory,text 299018 1 0.0003

QX13 incategory,cabbage 366 224 61.2
RandomQX14 province,bold,increase 33520 427 1.27

QX15 listitem,emph,arizona 451 1 0.22
QX16 bold,increase,hooks,takano 461 6 1.3
QX17 emph,arizona,villages,education 451 1 0.22
QX18 check,bidder,date,baboon 742 1 0.13

method can wisely prune useless keyword nodes according to their distribution, that is,
computing sub-blocks according to nodes of the shortest list of each block; (2) the LCA
operation frequently used in existing methods are avoided in our method.
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Fig. 2. Comparison of running time for SLCA computation on XMark dataset (log-scaled)

Besides, we have the following observations for existing methods: (1) IL and IMS are
usually much better than Stack, because Stack is not able to skip useless nodes; (2) IL
could perform better than IMS in some cases, such as QX1, QX3, QX4, QX11, QX13
and QX16, but the performance gain is usually much less than that of IMS on IL, such
as QX5, QX6, QX14 and especially QX12, because for these queries, the set of Dewey
label lists for each one has different keyword distributions, and IL is not as flexible
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as IMS on utilizing various keyword distributions to accelerate the computation; (3)
JDewey could perform better than Stack in many cases, but is usually beaten by IL and
IMS, such as QX13 to QX18, because JDewey needs to process all lists of each level
from the leaf to the root; and for all lists of each level, after finding the set of common
nodes, it needs to recursively delete all ancestor nodes in all lists of higher levels, which
is very expensive in practice; (4) by pre-recording the containment relationship between
each node and each keyword in a hash table, HS is very efficient for most queries as
compared with other existing methods, but it is not as efficient as our method when
the result selectivity is low, especially for QX11 and QX12. When the result selectivity
becomes high, HS can be better than our method, such as QX3, QX9, QX10, QX13,
QX14 and QX16.

6 Conclusions

Considering the variety of keyword distributions and the inflexibility of existing meth-
ods in choosing an appropriate processing strategy for SLCA computation, we propose
an efficient algorithm, namely LPSLCA, which processes all nodes in the set of inverted
Dewey label lists in a top-down way based on list partition to accelerate the SLCA com-
putation. Our method recursively computes the set of minimum nontrivial block and
outputs their LCA nodes as qualified results, during which it can quickly prune useless
nodes based on the distribution of all nodes in each given block so as to realize fine-
grained optimization. Experimental results verify the performance advantages of our
method according to various evaluation metrics.
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Abstract. Keyword search is a friendly mechanism for users to obtain
desired information in XML databases. Among all the research efforts on
automatically reasoning the meaningful answers for users, the MaxMatch
System [6] proposed the concept of contributor and has attracted a lot
of attention. In this paper, we propose the TDPrune system to improve
the efficiency of identifying contributors. It is mainly achieved by avoid-
ing processing unnecessary nodes, and also by visiting nodes only once
instead of twice. According to the experimental results, our TDPrune
system usually outperforms the MaxMatch system, and the difference of
execution time is sometimes by an order of magnitude.

1 Introduction

Keyword search provides a convenient interface for users to obtain desired in-
formation from XML documents, but irrelevant data may be returned due to
lacking exact query semantics. Therefore, there are a lot of researches on auto-
matically reasoning meaningful answers for users.

In general, an XML document could be viewed as a rooted tree, where each
node represents an element or contents. The LCA-based approaches will identify
the LCA node first, which contains every keyword under its subtree at least
once [1,2,3,4,5,6,7,8,9]. Since the LCA nodes sometimes are not very specific
to users’ query, the researchers in [8] proposed the concept of SLCA (smallest
lowest common ancestor), where a node is said to be an SLCA if (i) it is an LCA,
and (ii) it has no descendant nodes that also contain all query keywords. For
example, consider the XML tree in Figure 1, where each node is associated with a
unique Dewey number. For the query Q1 = (Jim, POSITION, TEAM NAME),
the LCA list is [1, 1.2, 1.3]. Since node 1 has descendant nodes 1.2 and 1.3
that are also LCAs, only nodes 1.2 and 1.3 are SLCAs. We could see that the
two corresponding TEAM elements contain more specific information than the
element LEAGUE, which is node 1.

The SLCA approach achieves specificity based on the ancestor/decendant rela-
tionship, but they do not distinguish the importance of sibling nodes. Therefore,

� This work was partially supported by the National Science Council under Contract
No. NSC 100-2321-B-019 -004 -.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 185–196, 2012.
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Fig. 1. A sample XML tree

the researchers in [6] further proposed the concept of contributors, where a node
is a contributor if it represents more (or equal to) keywords compared with its
sibling nodes, and only contributors will be returned. For example, consider Q1

and the subtree rooted at node 1.2 in Figure 1. Since the subtree rooted at node
1.2.2 contains keywords Jim and POSITION, and the subtree rooted at node
1.2.3 only contains the keyword POSITION, the latter subtree is pruned by the
former subtree.

The authors in [6] gave an efficient system MaxMatch to produce the desired
output, which consists of a core module called PruneMatch to prune less impor-
tant nodes. The main idea is first to collect the keywords each subtree represents
in a postorder traversal, and then use this information to determine which nodes
to be pruned in a preorder traversal. Although MaxMatch has been shown quite
efficient, its performance can be further improved. In this paper, we propose a
top-down approach, and the corresponding system is called TDprune. The main
difference with MaxMatch is that our approach visits nodes only once instead of
twice. Further, during the tree traversal, we manage to examine only required
nodes, and hence process less nodes than MaxMatch in most cases. We have
designed a series of experiments to compare the performance of two systems.
The results show that our approach usually outperforms the MaxMatch system,
and the execution time sometimes differs by an order of magnitude.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the MaxMatch system. We then present the main data structures used in our
system in Section 3. The core algorithms are discussed in Section 4. We further
discuss the experimental studies in Section 5. Finally, Section 6 concludes this
paper.

2 Preliminaries

In the following, we formally deliver the definitions and notation given in Max-
Match [6], and then introduce its component algorithms. The sample XML tree
given in Figure 1 will be used in the running examples throughout this paper.



Efficiently Identifying Contributors for XML Keyword Search 187

Fig. 2. Sample dMatch and dMatchSet arrays

2.1 Definitions

Definition 1 [Match]: A node is a match if its tag name or the content corre-
sponds to a given query keyword. �

Definition 2 [Descendant Match]: The descendant matches of a node n, de-
noted as dMatch(n) or n.dMatch, are a set of query keywords, each of which
has at least one match in the subtree rooted at n. dMatch(n) could also be seen
as a bit array of size w or a decimal value for simplicity, where w is the number
of keywords. Each keyword corresponds to its own bit. �

Definition 3 [Contributor]: A node n is a contributor if (i) n is the descendant
of a given SLCA or n itself is one of the SLCAs, and (ii) n does not have a
sibling n2 such that dMatch(n2) ⊃ dMatch(n). �

Definition 4 [dMatchSet]: The dMatchSet value of a node is a bit array of
size 2w to record the dMatch values of its children. All the bits are initialized as
false at the beginning. The jth bit, j ≤ 2w − 1, is set to true if it has at least
one child nc such that dMatch(nc) = j. �

Definition 5 [Relevant Match]: A match node n is considered relevant if (i) n
has an ancestor-or-self t such that t is one of the SLCAs, and (ii) each node on
the path from n to t is a contributor. �

Definition 6 [Query Result]: Given an XML tree and a set of the query key-
words, the query result is defined as all of the relevant matches (including value
children, if any) contained in the subtrees rooted at the SLCAs. The paths from
the SLCA to each relevant match will be also output. �

Example 1. Recall that Q1 = (Jim, POSITION, TEAM NAME). We show its
corresponding dMatch arrays (noted as dm) and dMatchSet arrays (noted as
dms) for part of the sample XML tree in Figure 2. Here the keywords (from left
to right) correspond to the first (right-most), the second, and the third bits of
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Algorithm IsContributor

Input: node n
Output: boolean

1: np ← n.parent
2: i = |n.dMatch|
3: for j ← i+ 1 to 2w − 1 do

4: if np.dMatchSet[j] = true and AND(i, j) = i then

5: return false
6: end if

7: end for

8: return true

Fig. 3. Algorithm IsContributor

dMatch. Observe that dMatch(1.2.2) = 011bin and dMatch(1.2.3) = 010bin. By
Definition 3, nodes 1.2.3 is not a contributor since dMatch(1.2.3) is a proper
subset of dMatch(1.2.2). The functionality of dMatchSet will be explained later
when we show the corresponding algorithm. �

2.2 MaxMatch

The MaxMatch system [6] could be decomposed into four modules as follows:

1. Retrieve the matches of each query keyword.
2. Compute the SLCAs by the algorithm given in [8].
3. Group all matches according to their SLCA ancestors.
4. For each SLCA, construct the correct value of dMatch and dMatchSet for

each node from the matches to the SLCA. Determine the contributors in the
preorder traversal sequence by procedure IsContributor (Figure 3).

The functionality of the first three modules are pretty clear. We now explain the
fourth module, called PruneMatch in more detail. Assume that the third module
outputs a set of groups. Each group {t,M} consists of an SLCA node t and the
sorted matches M under the subtree rooted at t. The fourth module performs
the following two functions: (i) constructing the tree for each group based on the
Dewey encodings, and (ii) pruning the non-contributors. First, the construction
proceeds in a manner of postorder tree traversal. Each constructed tree is com-
posed of the nodes on the paths from every match m up to the SLCA node t.
For each node n from m (exclusively) up to t, the jth bit of n.dMatch is set to
1 if n matches the jth keyword. Besides, n.dMatch is further updated according
to the bitwise OR operator with nc.dMatch, and np.dMatchSet[n.dMatch] is
set to true, i.e., the value 1, where np and nc are the parent and the child of
n, respectively. As shown in Figure 2, dMatchSet(1.2)=00111000bin since the
dMatch values of its child nodes 1.2.3, 1.2.2, 1.2.1 are 2, 3, 4, respectively.
That is, the dMatchSet array of a node summarizes the dMatch values of all its
child nodes.
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Fig. 4. Sample kwMatch and dmatch-range structures

After constructing the tree, MaxMatch performs a preorder tree traversal to
identify the contributors by procedure IsContributor, as listed in Figure 3. It
takes a node n as the input, and determines whether it is a contributor or not.
The for loop starts from i + 1 instead of 1 because only those siblings whose
dMatch values are larger than i are possible to prune the node n. Besides,
np.dMatchSet[j] = true indicates that n has a sibling whose dMatch value is j.
If bitwise AND(i, j) = i, it is obvious that i is the proper subset of j. Take query
Q1 as an example. Recall that the values of dMatch(1.2.2) and dMatch(1.2.3)
are 011bin and 010bin, respectively. Since dMatch(1.2.3) < dMatch(1.2.2) and
AND(dMatch(1.2.3), dMatch(1.2.2)) = dMatch(1.2.3), node 1.2.3 is eventually
pruned by node 1.2.2.

The IsContributor procedure can efficiently determine which child nodes to be
pruned for a given node. However, the PruneMatch algorithm needs to totally
traverse the tree twice. In the following, we will discuss how we combine the two
steps into one step to expedite the processing.

3 Data Structure

In this section, we explain the main data structures used in our TDprune system.
We will use the following query as the running example hereafter: Q2 = (MLB,
James, POSITION). Note that this query only corresponds to one SLCA node,
which is the root node 1.

3.1 kwMatch

As the first module of MaxMatch, TDprune needs to retrieve the matches of
each query keyword in the first beginning. In our system, the matches are orig-
inally represented in the database. By using a B-tree index with each keyword
as the key, the matches corresponding to the ith query keyword will be re-
trieved and represented in kwMatchi. Each kwMatchi is an integer array with
the dimensions ri and ci, where ri is the number of corresponding matches, and
ci is the largest number of components for all Dewey encodings. For the mth

match corresponding to the ith keyword, its nth component value of the Dewey
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encoding will be represented in kwMatchi[m, n]. Note that the matches are repre-
sented in kwMatch in sorted order. The three kwMatch structures corresponding
to Q2 and the sample XML tree are shown on the left part of Figure 4.

3.2 Dmatch-Range

Recall that the second and third modules of MaxMatch identify all the SLCA
nodes and its descendant matches. In MaxMatch, it uses a linked list of nodes to
represent each SLCA group. In contrast, we associate each node a data structure
called dmatch-range, or DR in short, to achieve the same functionality. Suppose
the input query consists of w keywords. Each dmatch-range is an integer ar-
ray with dimension 2w. Consider node n and the ith keyword, n.DR[2i] and
n.DR[2i+1] will represent the first position and the last position of n’s descen-
dant nodes in kwMatchi, respectively.

1 The correctness of such representation is
justified by the following lemma:

Lemma 1. Consider the array A which consists of a list of sorted Dewey en-
codings. For a node v, the descendant nodes of v in A, if any, will be represented
in continuous positions of A.

Proof: The sorted order of Dewey encodings correspond to the preorder sequence
of XML trees. In preorder traversal, all descendant nodes of a particular node
will be continuously visited. �
Note that we can efficiently obtain the values of dmatch-range, since it is pretty
simple to determine the ancestor/descendant relationship based on Dewey en-
coding. As shown on the right of Figure 4, the DR array of node 1 covers all
positions of the three kwMatch structures, since all nodes are descendants of
node 1. As another example, suppose node 1.2 is an SLCA and consider the
2nd keyword “POSITION”. Since kwMatch2[0] = 1.2.2.2 and 1.2 is the prefix of
1.2.2.2, node 1.2.2.2 represents a descendant of node 1.2. Similarly, kwMatch2[1]
= 1.2.3.2 is a descendant node, but kwMatch2[2] = 1.3.2.2 is not a descendant
node. By Lemma 1, we can determine that the value of DR[2, 3] for node 1.2 is
[0, 1].

By utilizing the information in kwMatch, we can easily show each SLCA group
by properly assigning the dmatch-range array for an SLCA node. Moreover, the
dmatch-range array for a non-SLCA node can be used to infer its dMatch value.
We will explain this point further in the next section.

4 Algorithms

In this section, we will explain how our TDPrune system works and discuss the
core algorithms. The main idea of our approach is to traverse the tree from top
to bottom, and output a node as soon as it is identified as a contributor. In
the following subsections, we first present a supporting algorithm called Find-
NextChild, and then discuss how our PruneMatch module works.

1 Note that the keyword sequence and the array index both start from 0.
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Fig. 5. The first invocation of Algorithm FindNextChild for Node 1

4.1 Algorithm FindNextChild

Recall that a contributor is determined based on comparing the dMatch values
among all sibling nodes. For a parent node n, Algorithm FindNextChild is de-
signed to create the child node nc along with its dMatch value, where nc has
the smallest Dewey encoding among all unproduced child nodes. That is, by
repeating invoking Algorithm FindNextChild, n’s child nodes will be produced
in preorder sequence. Note that we use the dmatch-range structure to infer the
dMatch value of a node. Consider a node n. Initially, we assign all component
values of the associated dmatch-range array as “-1”. For the ith keyword, we
then access kwMatchi and let n.DR[2i] and n.DR[2i+1] represent the first po-
sition and the last position of its descendant nodes in kwMatchi. If n.DR[2i] is
not negative after the process, node n must have at least one descendant node
which matches the ith keyword. We can therefore use this information to obtain
the full dMatch array of node n.

Another point to note is that Algorithm FindNextChild can efficiently identify
the child node with the smallest encoding based on the structures kwMatch and
dmatch-range. Suppose that the encoding of the parent node n consists of l
components. Then, all child nodes of n will have l + 1 components, and the
last components can be easily obtained from the kwMatch arrays. Also, since
n.DR[2i] points to the first position of n’s descendant nodes in kwMatchi, and
kwMatch presents encodings in increasing order, we can infer that n.DR[2i] will
represent the smallest encoding among all its descendant nodes in kwMatchi.
Therefore, as the same idea of the Merge-Sort algorithm, to find the child with
the smallest encoding, we only need to compare all the encodings pointed by
n.DR[2i], 0 ≤ i < w.

Due to space limitation, we do not list the complete algorithm. Instead we use
an example to illustrate how it works. Consider query Q2, whose corresponding
kwMatch structures and the dmatch-range of node 1 are shown in Figure 4. From
the values of DR[0], DR[2], and DR[4], we identify that the smallest encoding
among the child nodes of node 1 is 1.1, so we output node 1.1 along with its
dmatch-range and update the dmatch-range of node 1, as shown in Figure 5. In
that figure, we also use the dotted arrow to show the range in kwMatch covered
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Fig. 6. The fourth invocation of Algorithm FindNextChild for Node 1

Fig. 7. A sample dMatchList

by the dmatch-range structure. We can clearly see that node 1.1 has descendant
nodes only in kwMatch1, while node 1 still has unprocessed descendant nodes in
kwMatch2 and kwMatch3. After three more iterations, we produce all child nodes
of node 1 along with their dmatch-range arrays, as shown in Figure 6. Observe
that now the dmatch-range array of node 1 has all the component values as −1.

4.2 PruneMatch

In this subsection, we discuss the PruneMatchmodule in our system. As discussed
in Section 2, the MaxMatch system first builds the complete tree structure, and
uses the structure dMatchSet to determine which child node is a contributor. In
our system, we do not explicitly construct the tree structure. Instead, for each par-
ent node n, we construct a dMatchList structure, which is an array of node lists,
to represent its child nodes based on the state of the corresponding dMatch array.
Specifically, suppose there are w query keywords. The dimension of the dMatch-
List array is 2w, corresponding to all possible combinations of query keywords.
Each dMatchList component represents a linked list of child nodes of nwhich have
the same dMatch value. The dMatchList forQ2 and the sample XML tree is shown
in Figure 7, where the corresponding dMatch value of each dMatchList component
is shown on the left. Note that there is one more structure shown on the bottom of
Figure 7, which is node seq. It is an integer array representing which dMatchList
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Algorithm PruneMatch

Input: node n
Output: the part of the answer tree rooted at n

1: output n; nc cnt ← 0

2: for each nc produced by FindNextChild(n) do

3: for each ith query keyword do

4: if nc.DR[2 ∗ i] != -1 then

5: set the ith bit of dMatch to 1

6: end if

7: end for

8: append nc into n.dMatchList[num(nc.dMatch)]; node seq[nc cnt] ←
num(nc.dMatch); nc cnt++;

9: end for

10: if nc cnt = 0 then

11: do nothing

12: else if nc cnt = 1 then

13: v ← get the only node from n.dMatchList[nc.dMatch]
14: PruneMatch(v)
15: else

16: for each int i in node seq do

17: is contributor ← true
18: for int j ← i + 1; j < 2w; j++ do

19: if n.dMatchList[j].size > 0 and AND(i, j) = i then

20: is contributor ← false; break;

21: end if

22: end for

23: if is contributor = true then

24: v ← get the first node from n.dMatchList[i]; PruneMatch(v);
25: end if

26: end for

27: end if

Fig. 8. Algorithm PruneMatch

component a node is appended into. Particularly, if node seq[i] = j, it means that
the ith node is represented in dMatchList[j]. This structure is used to assist us in
outputting nodes in preorder sequence, as will be shown later.

Algorithm PruneMatch is listed in Figure 8. The variable nc cnt is used to
represent the sequence number of each produced child node, and the final value
represents how many child nodes the node n has. Besides, dMatch is a binary
number, and the function num converting a binary number to a decimal number.
This algorithm first outputs the input node n. It then uses the for loop in L2-L9
to produce a child node nc of n, obtain its dMatch value, and put nc in the
correct component of dMatchList. The following actions are based on how many
child nodes are produced. If there is only one, which is definitely a contributor,
we invoke Algorithm PruneMatch recursively on this node (L13-L14). Otherwise,
we need to determine if a child node is a contributor. The processing sequence
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Fig. 9. Classification of nodes

is based on node seq (L16), and the for loop in L18-L22 performs the same test
as in MaxMatch (see Figure 3). If a child node is identified as a contributor, we
will invoke Algorithm PruneMatch recursively on it to process its descendant
nodes (L23-L25).

4.3 Analysis

We conclude this section by discussing the nodes processed by TDPrune and
MaxMatch, respectively. Denote V as the set of all match nodes and their an-
cestors. Nodes in V can be classified into the following three groups:

– vc: node itself and its parent node are both contributors
– vpc: node itself is not a contributor, but its parent node is a contributor
– vpnc: the node’s parent node is not a contributor

Consider Query Q2. Its corresponding classification of nodes is shown in Figure 9,
where nodes vc, vpc and vpnc are represented by solid circles, hollow circles, and
crosses, respectively. For example, node 1.2 is a vc, since it and its parent node
1 are both contributors. Node 1.3 is a vpc since itself is not a contributor. This
also makes node 1.3.2 a vpnc.

Recall that the PruneMatch module of MaxMatch consists of two steps. First,
it visits all nodes in V to set the value of dMatch and dMatchSet. Second, it
examines nodes vc and vpc to determine contributors. In contrast, the Prune-
Match module of our TDPrune system directly produces nodes vc and vpc and
determine which are contributors. We can clearly see that MaxMatch addition-
ally creates nodes vpnc compared with our system, and the ratio of processed
nodes can be shown by the following equation:

contribution rate =
|vc|+ |vpc|

|V | (1)
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Table 1. Test queries

No Dataset Keywords Contribution Rate

TQ17 DBLP dblp, year, 1995 1.9%

TQ18 DBLP dblp, year, 2009 9.9%

TQ19 DBLP dblp, year, 2009, 2010 18.1%

TQ20 DBLP dblp,year, 2006, 2007, 2008 25.8%
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Fig. 10. Effects of contribution rates

We will use the contribution rate later in Section 5 to examine the performance
of two systems.

5 Experiments

In this section, we compare the performance of the TDPrune system with the
MaxMatch system. The experiments are performed on a personal computer with
Intel Quad-Core 3.4 GHz CPU and 16GB memory, with the Microsoft Windows
7 operating system.

We first apply the Baseball dataset2 and the Mondial dataset3 to perform
the experiments. Sixteen test queries are adopted from the MaxMatch paper [6],
which were designed to cover a variety of cases. The experimental results, which
are omitted due to space limitation, show that TDPrune is more efficient than
MaxMatch for all of those queries. In some cases, the difference is even by an
order of magnitude when the contribution rates are very low.

We then apply the DBLP dataset4 to examine the effect of the contribution
rate further. The dblp.xml file has the size 820MB with 38 million data nodes.

2 http://www.ibiblio.org/xml/books/biblegold/examples/baseball/
3 http://www.cs.washington.edu/research/xmldatasets/
4 http://dblp.uni-trier.de/xml/

http://www.ibiblio.org/xml/books/biblegold/examples/baseball/
http://www.cs.washington.edu/research/xmldatasets/
http://dblp.uni-trier.de/xml/
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We include the root element dblp in the query keyword, and include another
query keyword year whose corresponding matches are descendant nodes of dblp
by two levels, so the output will look like the tree depicted in Figure 10(a), where
only one subtree rooted at dblp will be output. We pick the proper content of
the year element to control the contribution rate. The test queries TQ17-TQ20
and the corresponding contribution rates are listed in Table 1.

From Figure 10(b), we can see that execution time of TDPrune obviously
increases along with the contribution rate, while MaxMatch is not affected since
it will process the same number of nodes. However, TDPrune is always more
efficient than MaxMatch, and the difference is very significant.

6 Conclusion

In this paper, we propose the TDPrune system to improve the efficiency of
MaxMatch. It is mainly designed to eliminate unnecessary node creations and
accesses. The experimental results show that TDPrune usually outperforms Max-
Match, and the difference is sometimes by an order of magnitude. As part of our
future work, we are interested in designing a novel ranking scheme to order the
query results so that users may focus on the most desirable ones.
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Abstract. Semi-supervised clustering has recently received a lot of attention in
the literature, which aims to improve the clustering performance with limited su-
pervision. Most existing semi-supervised clustering studies assume that the data
is represented in a vector space, e.g., text and relational data. When the data
objects have complex structures, e.g., proteins and chemical compounds, those
semi-supervised clustering methods are not directly applicable to clustering such
graph objects.

In this paper, we study the problem of semi-supervised clustering of data ob-
jects which are represented as graphs. The supervision information is in the form
of pairwise constraints of must-links and cannot-links. As there is no predefined
feature set for the graph objects, we propose to use discriminative subgraph pat-
terns as the features. We design an objective function which incorporates the con-
straints to guide the subgraph feature mining and selection process. We derive an
upper bound of the objective function based on which, a branch-and-bound algo-
rithm is proposed to speedup subgraph mining. We also introduce a redundancy
measure into the feature selection process in order to reduce the redundancy in
the feature set. When the graph objects are represented in the vector space of
the discriminative subgraph features, we use semi-supervised kernel K-means
to cluster all graph objects. Experimental results on real-world protein datasets
demonstrate that the constraint information can effectively guide the feature se-
lection and clustering process and achieve satisfactory clustering performance.

Keywords: Semi-supervised clustering, frequent subgraph mining.

1 Introduction

Complex structures in many scientific applications can be represented as graphs, e.g.,
protein structures, chemical compounds, program flows and XML documents. In many
applications, it would be very useful if we can automatically partition a set of data
objects which are represented as graphs into disjoint clusters. For example, in bioin-
formatics, graph clustering can distinguish different families of proteins based on their
structural similarity. In practice, we may also have some prior information about the
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graph data objects, e.g., some proteins are similar (or dissimilar) based on the similar-
ities of their amino acid sequences and three-dimensional structure, or some proteins
share a common evolutionary origin. If we can effectively incorporate the prior infor-
mation into clustering, the clustering performance could be significantly boosted.

Semi-supervised clustering has recently received a lot of attention in the literature.
Traditional clustering approaches fall into the category of unsupervised learning, as
only unlabeled data is used for clustering. When a small amount of supervision in-
formation is available, it can be incorporated into the clustering process to improve
the clustering performance. There has been research focusing on constraint-based [1]
or distance-based [2], [3], [4], [5] semi-supervised clustering. However, most existing
semi-supervised clustering methods assume that the input data is in a feature vector
space, e.g., text and relational data. When the data objects have complex structures but
no predefined feature space, such as proteins and chemical compounds, these methods
are not directly applicable to cluster the data objects.

In this paper, we study the problem of clustering graph objects with a limited amount
of supervision information. Supervision in the form of pairwise constraints is usually
more realistic than requiring class labels in many applications. Thus we consider su-
pervision information including must-links and cannot-links, indicating respectively
whether two graph objects should belong to the same cluster or not. Such pairwise
constraints occur naturally in many domains.

The first challenge in clustering graph objects is the lack of feature vector representa-
tion of the graph objects. As an effective solution adopted in recent graph classification
methods [6], [7], [8], [9], we use subgraphs as features to represent a graph object in a
binary vector. But different from graph classification as a supervised learning problem,
we do not have class labels in our clustering problem to supervise the feature selec-
tion process. In order to evaluate the usefulness of the subgraph features, we propose a
semi-supervised feature mining and selection algorithm – an objective function for sub-
graph feature selection is designed which incorporates the pairwise constraints, with
the aim to satisfy as many constraints as possible. In order to avoid exhaustive enu-
meration of all subgraph features, we integrate the objective function into the subgraph
mining process and push it deep for pruning the search space. Given any subgraph g,
an upper bound of the objective function for g’s supergraphs can be derived, based on
which, we develop a branch-and-bound algorithm to efficiently search for optimal sub-
graph features by pruning the subgraph search space. In addition, considering the high
redundancy between subgraph patterns, we design a redundancy control mechanism in
order to generate a redundancy-aware feature set. Based upon the subgraphs features,
all graph objects can be represented in a feature space. Then we perform the semi-
supervised kernel K-means algorithm [10] to cluster the graph objects. Experimental
results on real protein graphs demonstrate that our semi-supervised feature selection
and graph object clustering algorithms can accurately generate clusters which are very
close to the underlying family labels of the protein data. The branch-and-bound algo-
rithm expedites the subgraph mining process and prunes a lot of low-quality subgraph
features by considering both the constraint and unconstraint graph objects.

The rest of the paper is organized as follows. Section 2 discusses related work on
semi-supervised clustering, graph clustering and graph mining methods. We define the
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semi-supervised graph clustering problem in Section 3. In Section 4 we formulate the
subgraph feature mining problem as an optimization problem and develop a branch-
and-bound algorithm for the feature mining. We discuss two clustering algorithms we
have implemented in Section 5. Experimental results are presented in Section 6. Finally
we conclude our paper in Section 7.

2 Related Work

Semi-supervised clustering algorithms aim to improve clustering results using limited
supervision. The supervision is generally given as pairwise constraints. [2] proposed
an algorithm that, given examples of similar or dissimilar pairs of points in Rn, learns
a distance metric over Rn that respects these relationships. [4] studied the problem of
learning distance metrics using side-information in the form of equivalence relations,
which provide small groups of data points that are known to be similar or dissimilar.
[5] proposed a probabilistic model for semi-supervised clustering based on Markov
Random Fields that provides a principled framework for incorporating supervision into
prototype-based clustering. Most semi-supervised clustering methods in the literature
assume that the input is in a vector space [1], [2], [3], [4], [5]. [10] proposed a semi-
supervised clustering algorithm SS-Kernel-Kmeans, which uses a kernel approach to
cluster a large graph into k disjoint components.

Most existing studies on graph clustering aim to find a k-way disjoint partitioning
of a large graph to minimize a certain objective function, such as ratio cut and nor-
malized cut [11]. Other graph clustering criteria include modularity [12], density [13],
and stochastic flows [14]. To the best of our knowledge, this paper is the first work on
semi-supervised feature selection and clustering of a set of graph objects.

Extracting subgraph patterns from graph data has been studied a lot. Frequent sub-
graph mining methods can be categorized into two major approaches: an Apriori-based
approach [15], [16] and a pattern-growth approach [17], [18], [19]. Recently, graph
classification [6], [7], [8] has received a lot of attention. Kong and Yu studied the
semi-supervised feature selection for graph classification and proposed a solution called
gSSC [9]. A common property of the above methods is to use discriminative subgraphs
as the feature space for graph classification. The feature evaluation function, e.g., in-
formation gain, is integrated into the subgraph mining process. To expedite the search
process, these mining algorithms may not strictly follow the traditional depth-first or
breadth-first traversal order to find discriminative subgraphs, for example, [6] uses leap
search to prune sibling branches, [8] follows an evolutionary computation strategy to
enumerate subgraphs, and gSSC [9] uses the branch-and-bound search strategy.

3 Problem Formulation

In this section, we formulate the problem of semi-supervised clustering of graph objects
based on subgraph features.

A graph object is denoted as G = (V,E, l), where V is the vertex set, E ⊆ V × V
is the edge set, and l is the label function mapping a vertex or an edge to a label.
The size of a graph is defined as the number of edges. Given a set of graph objects
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D = {G1, G2, . . . , Gn} and pairwise constraints in the form of must-links and cannot-
links, the goal of semi-supervised clustering is to partition the graph objects in D into
k disjoint clusters {πc}kc=1, where πc represents the c-th cluster, such that the total dis-
tance between the graph objects and the corresponding cluster centroids is minimized
and a minimum number of constraints are violated. The must-link constraint indicates
that two graph objects should belong to the same cluster, and the cannot-link constraint
indicates that two graphs should belong to different clusters. Moreover, we call the
graph objects occurring in the pairwise constraints as constraint graphs, otherwise as
unconstraint graphs. Thus, we can divide D into a constraint subset Dc and an uncon-
straint subset Du. D = Dc ∪ Du.

Different from traditional clustering problems which assume the input is represented
in a feature space, graph objects have complex topological structures, but no predefined
feature space. Thus we follow the idea of subgraph-based representation, where a set of
subgraphs is used as the feature set for representing the graph objects in a feature space.
A graph g is a subgraph of another graphG, if there exists a subgraph isomorphism from
g to G, denoted as g ⊆ G. G is called a supergraph of g. The definitions of subgraph
isomorphism and subgraph frequency are given as follows.

Definition 1 (Subgraph Isomorphism). For two labeled graphs g and G, a subgraph
isomorphism is an injective function f : V (g) → V (G), s.t., (1) ∀v ∈ V (g), l(v) =
l′(f(v)); and (2) ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(G) and l(u, v) = l′(f(u), f(v)),
where l and l′ are the labeling functions of g and G, respectively.

Definition 2 (Frequency). Given a graph datasetD = {G1, . . . , Gn} and a subgraph
g, the supporting graph set of g is Dg = {Gi|g ⊆ Gi, Gi ∈ D}. The frequency of g is
|Dg|
|D| , denoted as freq(g).

Given a set of subgraph features {g1, . . . , gm}, a graph Gi can be represented as a bi-
nary vector xi = [x1i , . . . , x

m
i ]T, where the k-th component xki in xi denotes whether

gk is a subgraph of Gi. xki = 1 iff gk ⊆ Gi, xki = 0 otherwise. Due to the expressive-
ness of subgraph features, we adopt the subgraph-based feature representation in our
clustering framework. In the paper we use the following notations.

– S = {g1, g2, . . . , gm}: the full set of subgraph features that can be enumerated
from the graph objects in D. Only a subset of subgraph features T ⊆ S is selected
for graph object clustering.

– X : the matrix representation of the graph objectsD = {G1, . . . , Gn} in the feature
space of S. X = [x1,x2, . . . ,xn] = [f1, f2, . . . , fm]T ∈ {0, 1}m×n, where X =
[Xij ]

m×n. Xij = 1 iff gi ⊆ Gj , Xij = 0 otherwise.
– M0 and C0: M0 = {(Gi, Gj)|π(Gi) = π(Gj)} denotes the given set of must-link

constraints where a must-link indicates that two graphs should belong to the same
cluster. Here π(Gi) denotes the cluster label of graphGi. C0 = {(Gi, Gj)|π(Gi) �=
π(Gj)} denotes the given set of cannot-link constraints where a cannot-link indi-
cates that two graphs should belong to different clusters.

Example 1. In Fig.1, we show a set of graph objects D = {G1, G2, G3} and a set of
subgraph features T = {g1, g2, g3, g4}. There is a must-link between (G1, G2) and a
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Fig. 1. A Running Example

cannot-link between (G1, G3). The feature vectors are also shown. For example, g1 is a
subgraph of G1 and G2, but not a subgraph of G3. So the corresponding feature vector
is f1 = [1, 1, 0].

4 Semi-supervised Subgraph Mining

The first and perhaps the biggest challenge in our graph object clustering problem is
how to mine discriminative subgraph features based on both constraint and unconstraint
graphs. It is infeasible and unnecessary to enumerate all subgraph patterns from D for
the clustering purpose, as the number of subgraphs is exponential to the graph size.
In graph classification [6], [7], [8], [9] where the class label information is available,
an evaluation measure such as information gain can be used to select discriminative
subgraph features. However, in our clustering problem, the limited supervision is in
the form of pairwise constraints, rather than class labels. It is non-trivial to design an
objective function for subgraph feature selection, with the aim to satisfy as many con-
straints as possible. In addition, we need a strategy to integrate the objective function
into the subgraph mining process, in order to discover the set of optimal subgraph fea-
tures wrt. the objective function in a timely fashion, and effectively prune the search
space composed of low-quality features.

As our goal is to find a set of high-quality subgraphs for clustering wrt. the con-
straints, we first formulate the subgraph feature mining problem as an optimization
problem, given the semi-supervised information:

T ∗ = argmax
T⊆S

Ψ(T ) s.t. |T | ≤ t, (1)

where Ψ(T ) is an objective function to evaluate the usefulness of a subgraph feature
subset T , T ∗ is the optimal set of subgraph features, |T | represents the size of the
subgraph feature set T , and t is the maximum feature number we use.
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4.1 Objective Function

We consider both constraint and unconstraint graph objects in defining the objective
function Ψ . To fully utilize the supervision information, in the preprocessing step, we
try to infer additional constraints from the given constraint setsM0 and C0 by assuming
consistency of the constraints. For the must-links in M0, we compute the transitive
closure of the must-links to derive connected components consisting of graph objects
connected by must-links. Let there be κ connected components, which are used to create
κ initial clusters { p}κp=1. We use Minf to denote the must-link constraints inferred
from the transitive closure that were not in the initial set, and use M = M0 ∪Minf

to denote the augmented must-link set. For each pair of initial clusters  p and  q that
have at least one cannot-link between them, we add cannot-link constraints between
every pair of graphs in  p and  q, and denote the inferred cannot-links as Cinf . The
augmented cannot-link set is denoted as C = C0∪Cinf . This augmentation step can infer
as many additional constraints as possible from the given constraint sets. Considering
both constraint and unconstraint graphs, the objective function on subgraph features
should satisfy the following aspects:

– must-link: each pair of graph objects (Gi, Gj) ∈ M0 should be close to each other;
– cannot-link: each pair of graph objects (Gi, Gj) ∈ C0 should be far away from each

other;
– separability: unconstraint graph objects should be separated from each other. Sub-

graph features that are too frequent or too rare are not useful, as graph objects
represented in such feature space cannot be separated from each other;

– inner-cluster distance: graph objects in the same initial cluster  p should be close
to each other;

– inter-cluster distance: graph objects in different initial clusters  p and  q should
be far away from each other.

Based on the above properties, we define an objective function Ψ(T ) which we want to
maximize on a subgraph feature set T as follows:

Ψ(T ) =
α

|C0|
∑

(Gi,Gj)∈C0

(DTxi −DTxj)
2 − β

|M0|
∑

(Gi,Gj)∈M0

(DTxi −DTxj)
2

+
γ

|Du|2
∑

Gi,Gj∈Du

(DTxi −DTxj)
2 − δ

|M|
κ∑

p=1

∑
Gi,Gj∈�p,
(Gi,Gj)∈M

(DTxi −DTxj)
2

+
η

|C|
κ∑

p,q=1,
p�=q

∑
Gi∈�p,Gj∈�q,
(Gi,Gj)∈C

(DTxi −DTxj)
2 (2)

where DT = diag(d(T )) is a diagonal matrix indicating which features are selected
into the feature set T from S, d(T )i = I(gi ∈ T ) is an indicator function. α, β, γ, δ, η
are five parameters, which adjust the weights of the five types of constraints.
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For two graphs Gi, Gj ∈ D, we define a symmetric matrix W = [Wij ]
n×n as:

Wij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2β
|M0| − 2δ

|M| if (Gi, Gj) ∈ M0

− 2δ
|M| if (Gi, Gj) ∈ Minf

2α
|C0| +

2η
|C| if (Gi, Gj) ∈ C0

2η
|C| if (Gi, Gj) ∈ Cinf
2γ

|Du|2 if Gi, Gj ∈ Du

0 otherwise

(3)

We give a higher weight Wij to the given must-links and cannot-links in M0 and C0,
and a lower weight to those inferred constraints in Minf and Cinf , as we assume the
provided constraints are stronger than the inferred ones. Then we can rewrite the objec-
tive function Ψ(T ) in Eq.(2) as follows:

Ψ(T ) =
1

2

∑
i,j

(DTxi −DTxj)
2Wij = trace(DT

TX(D −W )XTDT )

= trace(DT
TXLXTDT ) =

∑
gk∈T

(fTk Lfk)

whereD is a diagonal matrix whose entries are column sums ofW , i.e.,Dii =
∑

j Wij .
We denote the matrix D −W as L.

When we use a feature evaluation measure q to denote q(gk) = fTk Lfk, the optimiza-
tion problem in Eq.(1) can be rewritten as

max
T⊆S

∑
gk∈T

q(gk) s.t. |T | ≤ t (4)

Suppose the values for all subgraphs are denoted as q(g1) ≥ q(g2) ≥ . . . ≥ q(gm)
in the descending order. The optimal solution to the optimization problem is: T ∗ =
{gi|i ≤ t}.

Example 2. Continue our example in Fig.1. After we propagate the two given con-
straints, we generate two initial clusters  1 = {G1, G2},  2 = {G3}. Suppose all five

parameters α, β, γ, δ, η are set to be 1, we can compute W =

⎛⎝ 0 −2 3
2−2 0 1
2

3
2

1
2 0

⎞⎠, and the

corresponding matrix L =

⎛⎝− 1
2 2 − 3

2
2 − 3

2 − 1
2− 3

2 − 1
2 2

⎞⎠. With L, all subgraph features’ scores can

be calculated according to our objective function as: q(g1) = fT1 Lf1 = 2, q(g2) = − 3
2 ,

q(g3) = 0, and q(g4) = 2. g2 has the lowest score, as it violates the must-link (G1, G2)
and the cannot-link (G1, G3). g1 and g4 are the best features.
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Fig. 2. Subgraph Pattern Searching Tree

4.2 Subgraph Mining with Branch-and-Bound Pruning

To select the optimal feature set T ∗, we need to find t subgraphs g1, . . . , gt from D
with the highest scores q(·). A straightforward solution is to enumerate the full set
of subgraphs S first, and then calculate the q scores and return the top-t subgraphs.
Obviously, this two-step process is not scalable, as the number of subgraphs in S is
exponential to the size of graph objects in D, and could be extremely large. Thus the
exhaustive enumeration approach is too expensive to be practical.

Our subgraph feature mining is built based on the gSpan algorithm by Yan and Han
[17]. gSpan is an efficient depth-first search algorithm to enumerate subgraphs in their
minimum DFS code order. Given a minimum support threshold min sup ∈ [0, 1],
gSpan outputs all subgraphs whose frequency is no less than the minimum support.

To further improve the mining efficiency, we can integrate the feature evaluation
function q(·) into gSpan and push it deep for search space pruning. If we can derive
a tight upper bound of the feature evaluation function q, we can follow a branch-and-
bound search strategy to quickly identify the top subgraphs and prune low-quality sub-
graph features. Theorem 1 gives an upper bound of the q function. The similar principle
has been used in some related studies on graph mining and classification [6], [9].

Theorem 1. (Upper Bound of q Function): Given two subgraphs g, g′ ∈ S, g′ is a
supergraph of g, i.e., g ⊆ g′. The q value of g′, q(g′), is upper bounded by q̂(g), which
is defined as : q̂(g) = fTg L̂fg, where the matrix L̂ is defined as L̂ij = max(0, Lij).

Proof. We compute q(g′) = fTg′Lfg′ =
∑

Gi,Gj∈Dg′
Lij where Dg′ = {Gi|g′ ⊆

Gi, Gi ∈ D}. Since g′ is the supergraph of g, we have Dg′ ⊆ Dg according to the
Apriori property. Moreover, L̂ij = max(0, Lij), we have L̂ij ≥ Lij and L̂ij ≥ 0.
Therefore, we have

q(g′) =
∑

Gi,Gj∈Dg′

Lij ≤
∑

Gi,Gj∈Dg′

L̂ij ≤
∑

Gi,Gj∈Dg

L̂ij = q̂(g)

For now, we complete the proof.

With the derived upper bound q̂, we can develop a branch-and-bound subgraph mining
algorithm on top of gSpan for mining the optimal subgraph feature set T ∗. During
the depth-first search of the DFS code tree, we maintain the current top-t subgraphs
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according to the q function. Let g be the currently visited subgraph in the DFS code
tree. If there are less than t subgraphs in T , we directly add g into T and recursively
perform mining in the DFS code tree; if there are t subgraphs in T , then we will check
whether the q value of g, q(g) is higher than the current minimum q value in T , i.e.,
q(g) > ming′∈T q(g

′). If yes, we will replace the lowest-ranked subgraph in T , i.e.,
argming′∈T q(g

′), with g. Before we recursively search the subtree rooted at g, we will
first estimate the upper bound of any supergraph g′ of g by q̂(g) = fTg L̂fg . If q̂(g) is
less than the minimum q value in T we have so far, we can safely prune the DSF code
subtree rooted at g, as all supergraphs of g cannot have a higher q value than the current
top-t subgraphs in T . Fig. 2 illustrates the idea of branch-and-bound search in the DFS
code tree. Algorithm 1 shows the branch-and-bound algorithm.

Algorithm 1. Branch-and-Bound Subgraph Mining
Input: Graph objects D = {G1, . . . , Gn}, must-links M and cannot-links C, minimum support
threshold min sup, maximum number of features selected t
Output: A set of optimal subgraph features T ∗

1: formulate the subgraph feature evaluation function q from M and C;
2: T ← ∅;
3: recursively DFS traverse the DFS Code Tree in gSpan:
4: g ← currently visited subgraph in DFS Code Tree;
5: if |T | < t
6: T ← T ∪ {g};
7: recursively DFS traverse the subtree rooted at g;
8: else if q(g) > ming′∈T q(g′)
9: gmin = argming′∈T q(g′) and T = T − {gmin};

10: T = T ∪ {g} and update gmin = argming′∈T q(g′);
11: if q̂(g) > q(gmin) and freq(g) ≥ min sup
12: recursively DFS traverse the subtree rooted at g;
13: return T ∗ = T

4.3 Redundancy-Aware Subgraph Features

Based on the feature evaluation function q, we aim to find t subgraph features with the
highest q function scores. However, there is a potential issue due to the high redundancy
between subgraph patterns: a graph pattern g often occurs in a similar set of graph ob-
jects in the database with its supergraph or subgraph patterns. If a graph has a very
high q function score, it is likely that its supergraphs or subgraphs have high scores as
well. But such supergraphs and subgraphs are redundant to each other. If we return t
subgraph features with high redundancy, the useful information contained in the t fea-
tures is not maximized. To avoid this case, we introduce another function R to measure
the redundancy between two subgraphs by the overlap of their supporting graph sets.

Given two subgraphs gi and gj , the redundancy is defined as R(gi, gj) =
|Dgi

∩Dgj
|

|Dgi
∪Dgj

| ,

where Dg is the set of graph objects containing a subgraph g. R ∈ [0, 1]. It measures
the co-occurrences of two subgraphs in the graph database. The higher R(gi, gj) is, the
more redundant gi and gj are.
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Taking the redundancy between graphs into consideration, our goal is to find t sub-
graphs which have high q function scores and low mutual redundancy. Formally we set
a redundancy threshold δ ∈ [0, 1]. For any two graphs gi, gj in the answer set T , we re-
quireR(gi, gj) ≤ δ. With the redundancy requirement, our branch-and-bound subgraph
mining algorithm (Algorithm 1) can be revised as follows. Let g be the currently visited
subgraph pattern. If q(g) > ming′∈T q(g

′), we further check the redundancy between
g and every graph g′ ∈ T . If ∀g′ ∈ T where q(g′) ≥ q(g), we have R(g, g′) ≤ δ hold,
then g is added to T . Otherwise, g is not added to T and we proceed with the recursive
subgraph mining process. If g is added to T , then we further check for every g′ ∈ T
where q(g′) < q(g). If R(g, g′) > δ, we will remove g′ from T , to make sure every pair
of subgraphs in T satisfy the redundancy requirement. Our revised algorithm makes a
tradeoff between the feature optimality (wrt. the q function) and the redundancy. For a
high-quality subgraph feature with a high q value, if it is redundant to another good fea-
ture in the answer set, then the former one will not be considered. With such redundancy
control, we will select a high-quality feature set with diversity.

Example 3. In Fig. 1, g1 is a supergraph of g4. As both g1 and g4 are subgraphs
of G1 and G2, we have Dg1 = Dg4 = {G1, G2}. The redundancy R(g1, g4) =
|{G1,G2}∩{G1,G2}|
|{G1,G2}∪{G1,G2}| = 1. With the redundancy control mechanism, we choose only
one of them.

5 Semi-supervised Graph Object Clustering

Based on the optimal subgraph feature set T ∗, we can represent each graph object
Gi ∈ D as a vector xi. Then we can use traditional clustering approaches to cluster the
vector representation of the graphs objects. In this section, we describe two clustering
algorithms we have tested. One is the widely used clustering algorithm K-means, and
the other is the kernel-based semi-supervised clustering algorithm SS-Kernel-Kmeans
[10]. We use squared Euclidean distance as the unified clustering distortion measure.

5.1 K-Means

In K-means, we first choose k random points as initial centroids. Then each point is
assigned to the closest centroid. After that, the centroid of each cluster is updated by
taking the average of the vectors of all points in that cluster. We repeat the point as-
signment and centroid update steps until no point changes its cluster assignment, or we
reach the user-specified maximum iterations. The goal of K-means clustering is to find
k clusters {πc}kc=1 which minimize the sum of the squared distance of each point to its
closest centroid. The objective function we aim to minimize can be expressed as:

J
(
{πc}kc=1

)
=

k∑
c=1

∑
xi∈πc

‖xi −mc‖2, where mc =

∑
xi∈πc

xi

|πc| (5)

Note that in K-means, we do not utilize the must-linksM and cannot-links C.
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5.2 Semi-supervised Kernel-Kmeans

In this part, we discuss the semi-supervised kernel K-means algorithm [10] which con-
siders must-link and cannot-link constraints during the clustering process. Assume two
points xi, xj belong to clusters πp, πq respectively. The objective function we aim to
minimize can be formulated as:

J
(
{πc}kc=1

)
=

k∑
c=1

∑
xi∈πc

‖xi −mc‖2 −
∑

(xi,xj)∈M
πp=πq

ŵij

|πp|+
∑

(xi,xj)∈C
πp=πq

ŵij

|πp| (6)

The first term in Eq.(6) is the standard K-means objective function, the second term is a
cluster-size weighted reward function for must-link constraint satisfaction, and the third
is a cluster-size weighted penalty function for cannot-link constraint violation.

6 Experimental Study

In this section, we report our experimental results to demonstrate the effectiveness and
mining efficiency of our semi-supervised feature selection and clustering methods. Our
algorithm is implemented in C++ and compiled with g++ 2.95.3. The experiments are
preformed on a machine with 2.66GHz CPU.

6.1 Datasets

We use protein datasets in our experiments. The protein datasets consist of protein struc-
tures from Protein Data Bank (http://www.rcsb.org/pdb/) classified by SCOP (Structural
Classification of Proteins). A protein can be represented as a graph object, where a node
represents an amino acid and is labeled with the amino acid type. An edge exists be-
tween two nodes if the distance between the two alpha carbons in the amino acids is less
than 11.5 angstroms and the edge is labeled based on the distance between the alpha
carbons. The protein families we use and their sizes are listed in Table 1. The average
node number is 217 and the average edge number is 2141 in a protein graph. In the
first group of experiments, the graph dataset is created by selecting three protein fam-
ilies with SCOP id 52592, 56251, and 56437. We set the cluster number k = 3 in this
experiment. In the second group of experiments, the dataset consists of all six protein
families listed in Table 1. We set k = 6 in this experiment.

Table 1. List of SCOP Families

SCOP ID Family Name Number of Proteins
47617 Glutathione S-transferase (GST) 36
50514 Eukaryotic proteases 44
52592 G proteins 33
56251 Proteasome subunits 35
56437 C-type lection domains 38
88634 Picornaviridae-like VP 39

To generate the pairwise constraints, we randomly select pairs of graph objects
(Gi, Gj) from the protein dataset. If Gi and Gj belong to the same family, we create a
must-link between Gi and Gj ; otherwise, we create a cannot-link between them.
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Fig. 3. Clustering Performance of Different Methods

6.2 Clustering Methodology and Evaluation Measure

We perform 2-fold cross validation in our experiments: 50% of the graph dataset is used
as the training set, from which the must-link and cannot-link constraints are sampled.
The other 50% of the dataset is used as the test set. The subgraph mining and clustering
steps are run on the whole dataset, while the clustering evaluation is done on the test set
only. All results are averaged over 10 runs of the 2-fold cross validation. In the feature
set objective function Ψ in Eq.(2), all five parameters α, β, γ, δ, η are set to be 1.

We use normalized mutual information (NMI) to evaluate our clustering results. It
estimates how closely the clustering algorithm could reconstruct the underlying label
distribution in the data. If X is the random variable denoting the cluster labels of the
graph objects and Y is the random variable denoting the underlying class labels of the
graphs, then NMI is defined as NMI = I(X;Y )

(H(X)+H(Y ))/2 , where I(X ;Y ) = H(X) −
H(X |Y ) is the mutual information between the random variables X and Y , H(X) is
the Shannon entropy of X , and H(X |Y ) is the conditional entropy of X given Y .

We test the following feature selection methods, where the first two use subgraph
features and the third uses simple vertex and edge based features.

– Semi-supervised subgraph feature selection. We select the optimal subgraph fea-
ture set T ∗ wrt. the objective function Ψ(T ) which incorporates the supervision
information. This method is denoted as ssFS.

– Unsupervised subgraph feature selection. We select a feature set T wrt. the objec-
tive function Ψ(T ), but the constraints are not used. Thus we only consider the sep-
arability of the subgraph features on the unconstraint graph objects. This method is
denoted as usFS.

– Using vertex and edge labels as features. As a baseline method, we use vertex and
edge labels as features to represent a graph object as a binary vector. This method
is denoted as VEL.

We also test the following two clustering methods.

– Semi-supervised clustering. The semi-supervised kernel based clustering algorithm
SS-Kernel-Kmeans [10] is used for clustering. This method is denoted as KKM.
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Fig. 4. Clustering Performance with Different Number of Features and Minimum Support
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Fig. 5. Clustering Performance with Different Redundancy Thresholds

– Unsupervised clustering. Traditional K-means is used for clustering. This method
is denoted as KM.

We combine different feature selection mechanisms with the two clustering methods,
and compare their clustering performance.

6.3 Performance on Graph Clustering

In the first experiment, we compare the clustering performance of different methods
listed above. Figure 3 shows the NMI value of different clustering methods when we
increase the number of constraints on the two protein graph datasets we created (k = 3
and k = 6). We set min sup = 30%, the number of features t = 80, and the re-
dundancy threshold δ = 1.0. A general trend we observe is an increasing NMI value
with the increasing number of constraints. In addition, ssFS+KKM achieves the highest
NMI value as it utilizes the supervision information in both feature selection and clus-
tering. ssFS+KM comes next, which also shows the usefulness of the optimal feature
set when considering constraints for feature selection. The performance of usFS+KKM
and usFS+KM is much worse, as the feature selection step is unsupervised. We can see
the NMI value of usFS+KM remains unchanged when we increase the constraint num-
ber, as it does not utilize the supervision information at all. Finally, the performance of
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Fig. 6. Semi-supervised Subgraph Feature Mining Time with Branch-and-Bound Search

VEL is the worst, which shows that subgraph features are more effective than simple
label features. This experiment demonstrates that our feature selection objective func-
tion Ψ(T ) is very effective in selecting discriminative subgraph features for clustering.
When considering supervision information, the semi-supervised clustering algorithm
can also improve the clustering performance.

In the second experiment, we test the clustering performance by varying the param-
eters min sup and the feature number t. We fix the redundancy threshold δ = 1.0 and
use the semi-supervised method ssFS+KKM. We use 120 constraints for the 3-cluster
dataset (k = 3) and 240 constraints for the 6-cluster dataset (k = 6). As we can see
from Figure 4, the NMI value increases in general with the increasing number of fea-
tures. The NMI value also increases when min sup decreases, as a lower min sup
implies a larger set of subgraph candidates for feature selection.

In the third experiment, we test the clustering performance by varying the redun-
dancy threshold δ. We set min sup = 30% and the number of features t = 80. We
run the semi-supervised method ssFS+KKM. As we can see from Figure 5, in general
the clustering performance improves as the redundancy threshold decreases, i.e., with a
lower redundancy tolerance. In most cases, the NMI value is the highest when δ = 0.6
and it is the lowest when δ = 1.0, i.e., with no redundancy control. For all three redun-
dancy thresholds, the NMI values increase with the number of available constraints.

6.4 Subgraph Mining Efficiency

In this part, we study the subgraph mining efficiency of the branch-and-bound search
algorithm (Algorithm 1). In this experiment we set the number of features t = 100
and the redundancy threshold δ = 1.0. For semi-supervised feature selection, we use
120 constraints for the 3-cluster dataset (k = 3) and 240 constraints for the 6-cluster
dataset (k = 6). Figure 6 shows the subgraph feature mining time in a logarithmic scale
by our feature selection method (ssFS) and the original gSpan mining algorithm, when
we vary the min sup threshold. When the min sup is low, ssFS is about an order of
magnitude faster than gSpan, which shows the effectiveness of the branch-and-bound
based pruning. When the min sup is high, the difference becomes smaller, as a lot of
subgraph candidates can be pruned in gSpan as well simply based on min sup.
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7 Conclusions

In this paper, we study the problem of semi-supervised graph object clustering, where
pairwise constraints as must-links and cannot-links are used to guide the feature selec-
tion and clustering steps. As graph objects are not represented in a vector space, we
propose to use subgraphs as features to represent the graph objects in a feature space.
An objective function for feature selection is designed, which incorporates the pair-
wise constraints. We integrate the objective function into gSpan for mining the optimal
feature set. An upper bound of the objective function enables us to prune the subgraph
search space effectively in a branch-and-bound manner. A semi-supervised kernel based
clustering algorithm is used to cluster the graph objects. Our experiments demonstrate
that the semi-supervised subgraph feature selection and clustering approach is very ef-
fective in boosting the clustering performance.
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Abstract. Citations are highly valuable for analyzing documents and have been 
widely studied in recent years. Among the document modeling, the citations are 
treated as documents’ attributes just like the words in the documents; or as the 
degrees in graph theory. These methods add citations into word sampling 
process to reform the document representation but they miss the impact of the 
citations in the generation of content. In this paper, we view the citations as the 
prior information which authors have had. In the generation of document,  
content of the document is split into two parts: the idea of the author and the 
knowledge from the cited papers. We proposed a prior information enabled 
topic model-PLDA. In the modeling, both the document and its citations play 
the important role of generating the topic layer. Our experiments on two linked 
datasets show that our model greatly outperforms basic LDA procedures on a 
clustering task while also maintaining the dependencies among documents. In 
addition, we also show the feasibility by the task of citation recommendation. 

Keywords: Topic Modeling, LDA, Links, Prior Information, Plink-LDA. 

1   Introduction 

In recent years, social network such as Facebook, Twitter are growing rapidly. One 
important and essential part in these networks is the following relationship. The 
following relationship plays an important role in user generated contents, for users are 
strongly influenced by the posts which they follow. It is the posts which produce these 
comments. If there were no posts, such as “#911” shown in Figure 1, there would 
have been no comments about these events. Similarly, authors make a reference to 
other documents while they are writing a paper. People cite papers for they have 
gained some knowledge from the existed knowledge in the literature as shown in 
Figure 2. Both following relationships and references indicate not only topical 
similarity but also dependencies between different documents. Recent studies on how 
to use these links can be classified into two categories: one is that links are used as 
document attributes just like word appearances in the documents; the other is that 
links are used as degrees in graph theory. However, both of them cannot handle the 
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problem of taking these two features, topical similarity and dependencies, into 
account simultaneously.  

Topic model is a popular strategy to analyze the texts in the documents. Many 
derivations of topic models have been proposed to meet different requirements on the 
basis of LDA [1]. Among these models, researchers address the problem of how to 
integrate the links information into the model [2, 3, 4, 5, 6, 14]. However, links 
information is treated as attributes of documents in these models. As a result, the 
dependencies between documents are ignored. We think that both comments and 
references should be referred to because they have the influence on the generating of 
the content, so can we use the link information in another way to show both features? 
Usually, authors make a reference to other documents because what they talk about is 
closely related to what they cite, whether agreement or disagreement. So can we treat 
these links information as some kind of prior information to generate the document 
content? Driven by this, we address the problem of analyzing and using links in a 
different way. We hope that our new model can explicitly model the citations and 
words simultaneously and maintain both the topic similarity and dependencies, which 
makes our contribution in this paper:  

1) We use link information which indicates the topical similarity and dependencies 
between documents as a kind of prior information in the generation of the document. 

2) We propose a unified topic model which can model links and word 
simultaneously to address above problem. 

3) We implement three experiments to evaluate the feasibility of our proposed 
model. 

The rest of the paper is organized as follows. We give the formal description of our 
intuition in section 2. We describe our proposed model Plink-LDA by treating 
citations or following relationships as prior information in this paper. Plink-LDA can 
model the citations and content simultaneously. In order to evaluate the feasibility of 
our model, we do the experiments in section 4 and the experiment results show that 
our model outperforms the baseline.  We discuss related work in section 5. Section 6 
concludes the paper. 

 

Fig. 1. User generated contents example. User comments on the event 911 ten year anniversaries 
extracted from twitter. Users express their views on this event. The views can be seen as exactly the 
reactions to the post #911. 
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Fig. 2. Citations example. Contexts of papers which cite paper “Latent Dirichlet Allocation”. 
These contexts are mostly introduction to or comparison with LDA. And they are highly related 
to each other for that they all cite the same paper. 

2  Problem Definition 

Latent Dirichlet Allocation (LDA) is a probabilistic model to analyze documents in 
the latent topic layer. It interprets the document generation as word sampling process 
from topics. For each word  in document d, a specific topic  is chosen from 
the document-specific distribution. Then  is generated according to the topic-
specific multinomial distribution Φ . 

The generating process of LDA is very intuitive: first, the authors choose a topic, 
which concept the author wants to talk about; second, the authors choose the mostly 
used words for this topic to constitute the content of the document. However, this 
process models the word appearance only. In order to analyze the influence of the 
link, many derivations of LDA are proposed to model links with words 
simultaneously. All of these models have an underlying common view that integrating 
citation into model can make document distribution more precisely; for citations 
reveal some content that is not mentioned by words in the documents. Citations can 
make up this lost information which cannot be completely represented by words. 
Therefore, these models tend to place weight on some topics which not mentioned by 
the document but by its citations. So the documents will be fully represented. In these 
models, links are just like a special kind of word in the document and they are also 
generated from the document-specific distribution. Similarly, we formalized our idea 
in the topic pattern: 

The author gets information  from a reference  
And he may have his own idea z after he gets many  
According to the mixture of z and , all of the words of the document the author 

going to write are sampled to the topic distribution.  

In this model, links are no longer sampled as results. Instead, they are the prior 
information of the documents. The citations make a change to the document-specific 
distribution which eventually reflects our idea. Before giving our model, we give 
some notations we are going to use in the following sections. 

Definition 2.1. [Document]. The content of a document excluding the references. We 
use  to represent the ith document in the dataset. 
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Definition 2.2. [Citation (Link)]. The document’s references. If document d cites 
another document , we call  as a citation of document d. d is also noted as citing 
document and  as cited document. Both follow relationship on social network and 
references of documents are noted as citations here. We use  to represent the ith 
citation of a document. 

Definition 2.3. [Related Documents]. Those documents which are talking about the 
same topic. Most parts of them are similar. The differences among them may only 
take a small part of their contents. 

3  Methodology 

3.1   1Intuition of Plink-LDA 

To illustrate our model, we first look into some details of LDA model. LDA defines 
the following generating process for every document in a corpus [1]:  

1. For each document d, draw a topic distribution θ~Dir α ; 
2. For each word  in document d: 

a) Draw a topic ~ . 
b) Sample a word  according to the multinomial condition probability 

distribution p | , . 

 

Fig. 3. Plate notation for LDA α, β are hyper parameters for the specific collection. The probability of generating a 
word from a document d is:  

 P w|d, θ, Φ  ∑ |∈ , Φ | ,  (1) 

LDA model analyzes documents in three layers: word layer, topic layer and document 
layer. An informal interpretation is that: Documents generate topics and topics 
generate words. From the graphical representation, we can see that generating of topic 
layer is controlled only by the document which it belongs to.  

Many derivations [4, 5, 7] of LDA integrate citations into the model during the 
word sampling process and topic layer is still controlled by the document itself in 
these models. Adding citations into word sampling process do reform the document 
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representation; however, sometimes these reformed distributions may not produce the 
expected results. For example, two documents may have same citation list but they 
talk about totally different solutions to one problem. So some parts of the two 
documents will be totally different from each other but they may just take a small 
place of the document content. Although it is these parts which distinguish them, their 
small content occupation may be ignored by their great similarity in citations.  

To express this intuition more clearly, we can split document content into two 
parts: 1) the idea of the authors; 2) the knowledge learned in the existed literature. But 
it is not equally reflected in the words of the documents. All of the words are 
supposed to be related to the first part mentioned above in previous topic models. 
Citations which the authors refer to are not taken into account. They are just treated as 
attributes of documents just like word appearances. Actually, many words in the 
documents are generated by the topic of the citations. In order to reveal this, we 
assume that the generation for words should be controlled by both the document and 
its citations, and also the relation should be reflected in the model. 

To reflect the intuition that citations have impact on the content constitution of the 
documents, we propose a model which utilizes citations as prior information. To 
reveal this change in utilizing citations, we modify the topic sampling process on the 
basis of LDA. The topic sampling is controlled by both document and its citations. 
We combine document and its citations’ topic distributions together to generate the 
topic. So the generating of the topic layer is no longer controlled only by the 
document topic distribution only. Instead, both the document and its citations’ 
document layer play the role of generating the topic layer.  

3.2    Our Model 

Based on the discussion in section 3.1, we propose the model to address the problem 
that using citations as prior information in LDA. First we give the plate notation graph 
and notations in the following: 

 

Fig. 4. Plate notation for Plink-LDA 
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For this model, the generative process is as follows: 

1. For each document d, draw a document specific distribution θ. 
2. For each word  in d: 

a) Randomly sample a citation inference , then draw a document specific 
distribution ; 

b) Combine θ and  by tuning parameter λ to generate a document distribution 

; 
c) Sample a topic  according to the combined topic distribution ; 
d) Generate word  according to P | , . 

As dedicated in Figure 4, topic sampling process has taken the citation into account. 
To show the influence, we make a linear combination of the document and its 
citations’ topic distribution θ controlled by an tuning parameterλ. For the generating 
process of 2.c, the combined topic distribution is : 

 1  (2) 

As to sampling a citation inference , we take all the citations into account for the 
ease and adjust the weights by the parameter λ. 

To estimate the parameters for this model, we take the widely used Gibbs sampling 
procedure to estimate the latent variable. We use the same sampling algorithm as that 
for LDA model with the posterior probability:  

 Ρ , , , , , ∑  ∑ ·  (3) 

where “-” indicates excluding that instance from counting. The notation is as follows: 

Table 1. Notations for our model 

Symbol Description 
 topic i assigned to word  
 topic i assigned to word  excluding current instance 

 current word 
 citations of the document 

 number of words assigned to topic i in document d excluding instance 
of word i 

 number of words assigned to topic z in document d 
 number of words assigned to topic i in citations of document d 

 the tuning parameter 
 hyper parameter for each document, ∑  α, β hyper parameter for LDA model 
 number of words assigned to topic i of all instances of word w 

excluding this instance 
 number of words assigned to topic i k number of word tokens 
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We notice that the difference in the posterior probability between LDA and our 
model is whether the instances of citations are counted. The instances of words in 
citations actually reveal its topic representation. In our model, those words strongly 
related to the topics of the citations are mainly generated by the citations topic 
distribution. The document topic distribution is modified to show the difference 
between its citations and itself. This change in topic distribution is supposed to 
discriminate the small difference between documents when most part contents of 
documents are similar. The similar dimensions caused by citations in topic space are 
removed or slightly reduced. The modified topic distribution in our model mainly 
focuses on the different parts of its content. As a result, it is capable of distinguishing 
those documents which are strongly related. 

4  Experimental Design 

4.1   Datasets 

For our experiments, we used two standard linked data sets: Citeseer1 and Cora2, to 
evaluate our model. 

Citeseer consists of 3312 scientific publications from six categories: Agents, 
Artificial Intelligence, Database, Human Computer Interaction, Machine Learning 
and Information Retrieval. The citation network consists of 4732 links. After 
stemming and removing stop words, 3703 unique words remain.  

Cora is a dataset containing machine learning papers published in the conferences 
and journals of seven categories: Neural Networks, Rule Learning, Reinforcement 
Learning, Probabilistic Methods, Theory, Genetic Algorithms and Case Based. For 
each paper, there is a unique label to indicate which category it belongs to. The Cora 
dataset subset consists of 2708 scientific publications classified to one of seven 
classes. There are 5429 citations in the data set. After preprocessing, 1433 unique 
words remain.  

4.2   Tasks and Evaluation 

4.2.1   Clustering Performance 
In this task, we measure how well our model performs after integrating links as prior 
information into document modeling. We do the clustering task and compare the 
results based on our model with LDA in terms of accuracy and recall number. 

The experimental set-up is as follows. We first train Latent Dirichlet Allocation 
model on Citeseer and Cora datasets respectively.  We use these model parameter 
results as our baseline. Then we model these two datasets based on our proposed 
model iteratively. To observe the impact of tuning parameter, we model the datasets 
with different tuning values for λ. After this, we utilize the model parameters to 
automatically cluster the documents in the two datasets. After clustering, we first 
decide which category these clusters belong to and then we define the accuracy for a 
cluster as follows: 
                                                           
1 http://www.cs.umd.edu/~sen/lbc-proj/data/citeseer.tgz 
2 http://www.cs.umd.edu/~sen/lbc-proj/data/cora.tgz 
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                    (4) 

Then we calculate the accuracy for a dataset by combining cluster accuracies with 
their weights together.  

Figure 5 and Figure 6 show the results of clustering on two linked datasets. For 
Cora and Citeseer, the model parameters, topic number, are set to 7 and 6 
respectively. Zero for λ means LDA model without integrating link information. 

 

Fig. 5. Accuracy for Cora dataset.  λ is set to 0, 0.33, 0.5, 0.67, 0.8,0.89 respectively. These 
values correspond to different ratios for existed literature and content of the document, which 
are 2:1, 1:1, 1:2, 1:4, 1:8. 

 

Fig. 6. Accuracy for Citeseer dataset.   λ is set to 0, 0.145, 0.167, 0.2, 0.33, 0.5, 0.67, 0.8, 0.89 
respectively. These values correspond to different ratios for existing literature and content of 
the document, which are 6:1, 5:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. 

As depicted in Figure 5 and Figure 6, our model outperforms baseline greatly in all 
situations with different tuning parameters. Integrating link information into topic 
model reforms the document representation in latent semantic space.  
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Table 2. Explicit recall number for Cora. C1 means represents category 1, etc. Row total means 
how many documents one category has. The star notation indicates the maximum recall number 
for a category. 

 C1 C2 C3 C4 C5 C6 C7 
Total 818 180 217 426 351 418 298 

 291 72 130 285* 93 170 151 .  295 93 154 263 103 300 165 .  401 94 144 253 221 280 187* .  394 112 157* 275 228* 312 183 .  397 119 126 279 208 329 179 .  416* 123* 131 261 199 337* 181 

Table 3. Explicit recall number for Citeseer. C1 means represents category 1, etc. Row total 
means how many documents one category has. The star notation indicates the maximum recall 
number for a category. 

 

C1 C2 C3 C4 C5 C6 

Total 596 668 701 249 508 590 

 
187 326 210 19 318 246 .  
350 329 211 45 303 288 .  
401 403 409 66 112 235 .  
249 434 397 69 275 226 .  
430 345 406 58 318 379* .  
349 443* 414 20 279 226 .  
374 399 443* 71* 349 256 .  
435 393 370 61 366* 362 .  450* 371 267 63 263 366 

We can observe that recall number are significantly improved after integrating link 
information into the model. The bold columns are the significant ones. However, we 
also find that there are limiting values for recall numbers. This is restricted by the 
dataset itself. High limiting recall percentage means that documents in the category 
are highly related to each other and closely located together in the semantic space. 
Low limiting recall percentage means that the documents in the category cover many 
topics and are not well classified. Besides, for each category of the two datasets, the 
best tuning parameters are different.  This phenomenon reveals that each category 
has individual cluster aggregation characteristics. 

4.2.2   Perplexity 
In this part, we measure how well our model performs in terms of perplexity. 
Perplexity is an important measurement in information theory. It is a common way of 
evaluating language models.  The lower the perplexity is, the better the model trains 
the dataset. The perplexity formula is as follows: 
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 perplexity  ∑ 2 ∑ |∈  (5) 

where p w|d  represents the probability of the document generating a specific word: 

 p w|d  ∑ | |∈  (6) 

Formula 5 list calculate the total perplexity for the corpus. To get average perplexity 
for each document, we have to divide them by dataset size which is 2708 for Cora and 
3312 for Citeseer respectively. 

Perplexities of the two datasets for all the models in section 4.2.1 are listed in 
Table 4. 

Table 4. Perplexities for Cora and Citeseer datasets under different conditions. The bold values 
in Table 4 means that it achieve a lower perplexity than baseline. For Cora, we can see that, in 
all 5 situations, we have lower perplexities. And for Citeseer, there are also 5 situations when 
we get a lower perplexity. For both datasets, when take the first optimal value for λ, which is 
0.667 for Cora and 0.33 for Citeseer, we also get a lower perplexity than baseline. 

 Cora Citeseer 

0 223070.4 190888.6 
0.145  190972.7 
0.167  189718.6 

0.2  188660.7 

0.33 218606 190091.4 

0.5 220083.9 189109 

0.667 219184.8 187625.4 

0.8 218958.2 191009.1 
0.889 218178.2 190909.4 

 

Fig. 8. Perplexities for Cora and CiteSeer datasets. To depict more clearly, we have already 
minus 218000 for Cora and 187000 respectively from the perplexities. 

 



224 H. Xia et al. 

4.2.3   Citation Recommendation 
We also manually evaluate the document recommendation performance of our model. 
The crucial part of recommending documents is to measure the similarity between 
documents. For example, we take a paper titled “Modeling Risk from a Disease in 
Time and Space” from the Cora dataset. This paper is mainly about Bayes network 
and Markov chain Monte Carlo (MCMC) methods cover most part of it. 

Table 5. Example of recommending citations.For the paper titled “Modeling Risk from a 
Disease in Time and Space” in Cora, several citations recommend by our model are listed. 

Modeling Risk from a Disease in Time and Space 

Citations Recommended documents 
1. Bayesian Dynamic Factor Models and 

Portfolio Allocation 
2. Bayesian Analysis of Agricultural Field 

Experiments 
3. Hierarchical Spatio-Temporal Mapping of 

Disease Rates 
 

1. On MCMC sampling in hierarchical 
longitudinal models 

2. Exact bound for the convergence of 
metropolis chains 

3. A simulation approach to convergence 
rates for Markov chain Monte Carlo 
algorithms 

We can represent this particular paper, its citations and recommended documents 
in the following composition chart shown in Figure 9. Usually papers consist of 
composition 1 style and composition 2 style are strongly correlated due to their highly 
similar compositions. Composition 3 style is less likely regarded as strongly related to 
composition 1 by this criterion, although its main part concerns the same topic, such 
as MCMC in this example. As discussed above, our model slightly removes the 
common parts, which is the population features, from its distribution. As a result, 
composition 3 would be more related to the refined distribution of composition 1. The 
recommended documents listed in the right part of Table 5 are strongly related to 
MCMC and recommending them as similar documents is reasonable. 

 

Fig. 9. Different types of compositions for documents. Different colors mean different topics. 
And the length of box indicate the topic weight in the distribution. 

5 Related Work 

Research on how to utilize links can be categorized into two groups. The first one is 
that links are utilized as degrees in graph theory. The other one is that links are treated 
as attributes of documents just like word appearance in the document. Trevor 
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Strohman [3] did a survey on the impact of all attributes in the documents. Among 
these attributes, such as publication year, text similarity, co-citation coupling, Katz 
distance and citation count, text similarity and Katz distance play the most important 
part. They are the two key attributes for a document. Much work has been done to 
integrate these two parts together to help the research.  

On the basis of LDA, which analyze the document content in a low latent topic 
space, many derivations of LDA are proposed to tackle this problem. Cohn and 
Hoffman [4] proposed an extension to the pLSA [6] model, which called PHITS. 
Citations are modeled with words simultaneously and they are treated equally. Both 
of them share the same latent topic distribution. The intuition is that topic related 
documents have more intersection not only of words but also of citations. So citations 
or hyperlinks will be helpful in modeling the documents more precisely, which will 
eventually improve the performance using these distributions over latent topics. Link-
LDA model [5] is very similar to PHITS. Erosheva et al developed PHITS by 
replacing pLSA with LDA. Reference sampling process is exactly the same to word 
sampling process. Both PHITS and Link-LDA model treat citations as word 
appearance. The generation process is completely guaranteed by the document 
specific topic distribution. They are all treated as observations while maximizing the 
likelihood function. However, documents dependences which revealed by citations 
are ignored in these models. Therefore, some other models were proposed to address 
this problem. Nallapati proposed Pairwise link-LDA and Link-PLSI-LDA [7] to 
tackle the document dependency problem. In this model, citations are guaranteed by 
document pair’s topic distribution. For each pair of documents, it is treated as 
presence or absence of a citation which depends on a Bernoulli random variable. To 
explicitly consider the document relations represented by citations, Guo et al [2] 
proposed CT model which assumes a probabilistic generative process for corpora. 
Word sampling process in this model is completely controlled by the topic 
distribution of its citations. So the original content of the document itself is ignored. 
This perspective of treating citations can greatly reveal the document relations among 
them. Tang and Zhang [8] proposed a two layer Restricted Boltzmann Machines to 
model the links and word simultaneously. Links and words are linked together by a 
layer in the undirected graphical model.  

Besides these topic models, many non-topical procedures are proposed. Qi He [9, 
10] proposed another representation for document by utilizing the links information. 
They represent documents by its citation information. Citation information are 
actually manually generated contents by different researchers to describe a certain 
document. Therefore, citation information according to context are ideal for 
representing the documents by less words. Aya [11] proposed a machine learning 
algorithm to understand the motivation for the citations. Huang [12] investigated the 
effect citation contexts have when applied to clustering citations into topics and 
Ritachie [13] extensively investigated the impact of various citation context extraction 
methods. 

Our procedure is different from previous procedures on how to treat links. We treat 
link as prior information in another way instead of word appearances.  By doing this, 
we can maintain the dependencies while we model the documents. Both topical 
similarities between and dependencies documents are reflected in our proposed Plink-
LDA model, which in turn promotes the performance. We compare our results on 
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dataset Cora with Zhen Guo [2] procedure. Both of our procedures outperform the 
baseline, LDA procedure. The accuracy is around 40% for LDA, 47% for their 
procedure and 62% for our Plink-LDA model which is shown in Figure 5.  

6 Conclusion 

In this paper, we explore the feasibility of utilizing citation information in another 
way. We propose a model which models citations and words simultaneously. In our 
model, citations are no longer regarded as observations but prior information. We 
evaluate this model and the results show that it is feasible. Besides, the proposed 
model can find the researchers’ writing habits in the dataset.  

In the future, we plan to explore the problem how to determine the tuning 
parameters automatically for different datasets, such as using EM algorithms. 

Acknowledgements. The work is supported by the Natural Science Foundation of 
China No. 61035004, No. 60973102 and THU-NUS NExT Co-Lab. 

References 

1. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learning 
Research 3, 993–1022 (2003) 

2. Guo, Z., Zhu, S., Chi, Y., Zhang, Z., Gong, Y.: A latent topic model for linked documents. 
In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 
pp. 720–721. ACM (2009), 978-1-60558-483-6 

3. Strohman, T., Bruce Croft, W., Jensen, D.: Recommending citations for academic papers. 
In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, SIGIR 2007, Amsterdam, The Netherlands, July 
23-27, pp. 705–706. ACM (2007), 978-1-59593-597-7 

4. Cohn, D.A., Hofmann, T.: The Missing Link - A Probabilistic Model of Document 
Content and Hypertext Connectivity. In: Advances in Neural Information Processing 
Systems, Denver, CO, USA, vol. 13, pp. 430–436. MIT Press (2000), Papers from Neural 
Information Processing Systems (NIPS) (2000) 

5. Erosheva, E., Fienberg, S., Lafferty, J.: Mixed-membership models of scientific 
publications. Proceedings of the National Academy of Sciences, Sci. USA 101, 5220–5227 
(2004) 

6. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual 
International ACM SIGIR Conference on Research and Development in Information 
Retrieval, SIGIR 1999, Berkeley, CA, USA, August 15-19, pp. 50–57. ACM (1999) 

7. Nallapati, R., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint Latent Topic Models for Text 
and Citations. In: Proceedings of the 14th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, pp. 
542–550. ACM (2008), 978-1-60558-193-4 

8. Tang, J., Zhang, J.: A Discriminative Approach to Topic-based Citation Recommendation. 
In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, 
vol. 5476, pp. 572–579. Springer, Heidelberg (2009), ISSN: 978-3-642-01306-5 



 Plink-LDA: Using Link as Prior Information in Topic Modeling 227 

9. He, Q., Pei, J., Kifer, D., Mitra, P., Lee Giles, C.: Context-aware Citation 
Recommendation. In: Proceedings of the 19th International Conference on World Wide 
Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, pp. 421–430. ACM 
(2010), 978-1-60558-799-8 

10. He, Q., Kifer, D., Pei, J., Mitra, P., Lee Giles, C.: Citation Recommendation without 
Author Supervision. In: Proceedings of the Forth International Conference on Web Search 
and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12, pp. 755–764. 
ACM (2011), 978-1-4503-0493-1 

11. Aya, S., Lagoze, C., Joachims, T.: Citation Classification and its Applications. In: 
Proceedings of the 2005 International Conference on Knowledge Management, ICKM 
2005, North Carolina, USA, October 27-28, pp. 287–298 (2005) 

12. Huang, S., Xue, G.-R., Zhang, B., Chen, Z., Yu, Y., Ma, W.-Y.: TSSP: A Reinforcement 
Algorithm to Find Related Papers. In: 2004 IEEE/WIC/ACM International Conference on 
Web Intelligence (WI 2004), Beijing, China, September 20-24, pp. 117–123. IEEE 
Computer Society (2004), 0-7695-2100-2 

13. Ritchie, A.: Citation context analysis for information retrieval. PhD thesis, University of 
Cambridge (2008) 

14. Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-Link LDA: Joint models of topic and author 
community. In: Proceedings of the 26th Annual International Conference on Machine 
Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, p. 84. ACM (2009), 978-1-
60558-516-1 



AnyOut: Anytime Outlier Detection

on Streaming Data

Ira Assent1, Philipp Kranen2, Corinna Baldauf2, and Thomas Seidl2

1 Dept. of Computer Science, Aarhus University, Denmark
2 Data Management and Data Exploration Group,

RWTH Aachen University, Germany

Abstract. With the increase of sensor and monitoring applications,
data mining on streaming data is receiving increasing research atten-
tion. As data is continuously generated, mining algorithms need to be
able to analyze the data in a one-pass fashion. In many applications the
rate at which the data objects arrive varies greatly. This has led to any-
time mining algorithms for classification or clustering. They successfully
mine data until the a priori unknown point of interruption by the next
data in the stream.

In this work we investigate anytime outlier detection. Anytime out-
lier detection denotes the problem of determining within any period of
time whether an object in a data stream is anomalous. The more time is
available, the more reliable the decision should be. We introduce AnyOut,
an algorithm capable of solving anytime outlier detection, and investi-
gate different approaches to build up the underlying data structure. We
propose a confidence measure for AnyOut that allows to improve the
performance on constant data streams. We evaluate our method in thor-
ough experiments and demonstrate its performance in comparison with
established algorithms for outlier detection.

1 Introduction

Wide availability of sensors, surveillance and measuring technology has lead to a
remarkable increase in streaming data. Streaming data is typically continuously
collected, and thereby needs to be analyzed in a one-pass manner as the data
arrives. This is in contrast to traditional databases, where data may be accessed
randomly and more than once.

Existing stream mining algorithms, usually assume constant streams in the
sense that the time between the arrival of any two objects is fixed. This as-
sumption does not hold for applications that collect data as and when required.
For example, sensor networks minimize energy consumption and communication
overhead by sending information to a server only in the case of events or changes.
As a consequence, the time for analyzing the data streammay vary greatly. When
a burst occurs, little time is available. When stream speed is slow, the additional
time should be used to improve accuracy. This type of behavior characterizes the
new family of anytime mining algorithms, which received considerable research
attention for clustering and classification [18,29,14,38,11].

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 228–242, 2012.
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Outlier detection has been defined as finding “an observation which deviates
so much from other observations as to arouse suspicions that it was generated
by a different mechanism” [22]. In this work we investigate the anytime outlier
detection problem. We introduce our AnyOut technique, which uses a cluster-
based approach to represent data in a hierarchical fashion. As long as time is
available, the hierarchy is traversed to determine an outlier score based on the
deviation between object and cluster. Until interrupted, more fine grained reso-
lution of the clustering structure is analyzed. We discussed a sketch of the basic
idea in a short workshop paper [5]. Here we investigate two ways to build up the
tree structure and propose a confidence measure for our algorithm to harness its
strength also for constant data streams. Besides the novel confidence measure
and construction method a major contribution is a thorough evaluation against
established baseline algorithms. We show how AnyOut successfully detects out-
liers in various streams settings and compare its performance to LOF, ABOD
and OPTICSOF.

2 Related Work

Outlier detection is sometimes studied as a supervised problem, i.e., similar to
unbalanced classification [45,16]. Supervised methods require labeled outliers as
training data. This is often not the case in practice.

Unsupervised approaches do not assume labeled training data, but identify
outliers based on their deviation from the remainder of the data. In statistical
outlier detection, it is assumed that the data follows a certain distribution, and
objects that do not well fit this assumption are outliers [6,35,36]. Distance-based
outlier detection finds objects that show a high distance to most other objects
[27]. Clustering-based outlier detection uses clusters to identify the inherent
structure of valid data, and finds objects that are not clustered well [15,23].
While many methods separate outliers and inliers (valid data), finding a clear
boundary may prove difficult. The Local Outlier Factor (LOF) method relaxes
this requirement in favor of a scoring function that reflects the degree of deviation
[9]. The result is then not a set of outliers, but a ranking by degree of outlierness.

Also for time series data, outlier detection has been proposed [37]. Time series
are sequences of values in temporal order. Please note that while this bears some
resemblance with streaming data, the important difference is that time series are
assumed to be available entirely at the time of outlier detection. Moreover, the
goal is not to identify outlying objects as in data streams, but outlying patterns
of several temporally neighboring values. Thus, time series outlier detection is
different from outlier detection in data streams.

Recently, approaches for outlier detection on data streams have been proposed
[2,4,40,41,17,43,25,42,10]. However, all of these approaches assume streams of
fixed arrival rates and do not meet the requirements of anytime outlier detection:
interruptible and improvement of accuracy with more time.

Anytime algorithms have been studied in artificial intelligence [28]. In any-
time learning, the training phase for supervised learning is restricted [18,14].
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Other approaches monitor the performance of anytime algorithms [21]. Anytime
clustering is addressed by [29], anytime classification by [11,38]. We presented a
preliminary version of our anytime outlier concept at a KDD workshop [5].

3 Detecting Outliers in Streaming Data

In outlier detection, the goal is to identify objects which deviate from the remain-
der of the data. Here, we abstract from the concrete notion of what constitutes
an outlier in order to formalize the anytime outlier detection problem. Different
outlier detection paradigms may be followed in order to address this problem.
In Subsections 3.1 and 3.2, we propose a cluster-based solution.

As briefly sketched in Related Work as well, it may prove difficult to deter-
mine clear decision boundaries between outliers and inliers. Typically, objects
deviate from the majority of the data objects to a varying degree. Consequently,
many outlier detection techniques aim to capture this degree of deviation in a
corresponding outlier score (e.g. LOF [9]). We assume that outlier detection is
concerned with the computation of an outlier score that expresses the degree of
outlierness. Please note that this is without loss of generality, as algorithms that
separate outliers and inliers can be considered binary special cases.

Common for all approaches on streaming data is that they process the data as
it arrives. Existing work on streaming outlier detection, however, has assumed
that the stream of incoming data objects is of constant speed, i.e. the time that
passes between any two objects arriving in the stream is constant for the entire
stream. In many applications, e.g. in sensor networks that are optimized for low
power consumption and communication overhead, data is generated depending
on changes in the outside environment. These streams are not of constant, but
of varying inter-arrival rates. Consequently, the amount of time that is available
for outlier detection varies as well.

As illustrated in Figure 1, as more objects arrive within shorter periods of
time, decision on outlier detection needs to be taken in less time accordingly.
Please note that since the duration of a burst or the number of objects that arrive
within a certain time window is generally not bounded, simply buffering objects
until the stream slows down is not an option. If the buffer size is exceeded, objects
are lost and detection accuracy drops unexpectedly and unpredictably. On the
other hand, if the stream speed is slow, an ideal outlier detection algorithm
should be capable of making use of this time in order to improve accuracy.

A naive solution to the requirement of anytime behavior might be to resort to
a number of outlier detection methods ordered by their reliability. These could
be accessed one by one until this collection of methods is interrupted. Clearly,

time

... ...

time for outlier 
detection

Fig. 1. Streaming data with varying inter-arrival rates
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this method does not make best use of the time available as each method would
have to start over from scratch.

An anytime outlier detection approach should thus be capable of

– fully using available time (more time leads to more accurate results)
– returning a result anytime (meaningful interruption as objects arrive)
– continuing computation incrementally (not simply starting over).

Definition 1. Anytime outlier detection. Given a data stream of data ob-
jects oi arriving at a priori unknown inter-arrival rate, the anytime outlier de-
tection problem is to compute an outlier score s(oi) in the time ti between the
arrival of oi and its successor oi+1. The larger ti, the more accurate the outlier
score s(oi) should be.

Please note that evaluation of the accuracy of outlier scores s(oi) is not straight-
forward. If synthetic or manually labeled data is available for empirical studies,
this constitutes a ground truth for accuracy assessment. In practice, however,
such ground truth is typically not available, and domain experts need to judge
the quality of the outlier scores that are assigned to objects in the stream. This
issue is not specific to streaming environments, but affects outlier detection re-
search in general.

3.1 AnyOut : Overview over Our Method

In our AnyOut method, we propose following a cluster-based approached for
outlier detection. As mentioned in the related work section, clustering methods
have been successfully used to identify prevailing patterns of the data that serve
as an input to the actual outlier detection.

In order to meet the requirements of fast initial response and improvement
over time, we suggest using a hierarchy of clusters in a tree structure that is
traversed until the algorithm is interrupted by the next arriving data object in
the stream. Clusters at upper levels of the tree hierarchy subsume the more fine
grained information at lower levels of the tree. The hierarchy of the tree thereby
provides a natural organization of the clusters that can be incrementally accessed
in order to refine the outlier score of the object in question. Initially, the object
is compared only to the root node that describes the data distribution using
few clusters. This comparison can be performed efficiently, thereby meeting the
first requirement. Since more detailed information on the data distribution is
available at lower levels of the tree, the reliability of outlier scores is typically
improved. This aspect is empirically studied in the experiments, in Section 4.

3.2 Outlier Detection Using a Cluster Hierarchy

We introduced the ClusTree for clustering [29] as an extension to the R-tree
family [19,38]. The core concept is the use of nodes to compactly represent clus-
ters using cluster features. A cluster feature CF = (n, LS, SS) is a tuple of the
number of objects in the cluster n, of the linear sum of these objects LS, and of
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their squared sum SS. Please note that both LS and SS are vectors of the same
dimensionality as the data. The information in the tuple of a cluster feature CF
suffices for the computation of cluster properties such as the mean and the vari-
ance of the objects within the cluster. Cluster features have been successfully
used to summarize clusters in several existing works [3,44,29]. The ClusTree is
created and updated like any multidimensional index structure. As an extension
to these multidimensional indexes, the ClusTree additional provides buffer en-
tries that are used for anytime insertion of clusters. Since anytime clustering is
not the focus of this work, details on these buffers are omitted here. Interested
readers are referred to [29].

Figure 2 presents an overview over the ClusTree structure. A node in this
illustration consists of two entries that each contain a cluster feature (depicted
here as a curve that represents the data distribution within the cluster), a pointer
to child nodes and a buffer that might contain a cluster feature as well. Pointers
to child nodes are used for navigation during anytime processing to go to finer
representations of a particular cluster.

Given a data set of objects, the question is how to create the tree structure.
While one could simply follow the bottom-up insertion method, a better struc-
ture can be achieved using top-down tree creation methods, also termed bulk
loading in the indexing community. The general idea is to initialize the indexing
structure such that data within a node is closely related. In this work, we follow a
bulk loading method presented in [32] using the EM (expectation maximization)
algorithm [12].

For anytime outlier detection, we propose using the structure of the ClusTree
in order to perform cluster-based outlier score computation. The idea is to com-
pare the object to clusters at the levels of the tree in a top-down fashion as long
as the time allowance dictated by the stream permits.

Assessing the degree of outlierness in our AnyOut approach is based on the
degree of accordance of the object with the closest cluster feature at the current
level of resolution. Whenever a new object oi+1 arrives in the stream, this in-
terrupts the descent down the tree with the current object oi. We then compare
the object oi to the cluster feature to assess the outlier degree.

In order to define the actual outlier score, we reinvestigate the information
stored in the cluster features. As mentioned above, cluster features provide suf-
ficient information to compute statistical properties of the objects within the

. . .

Fig. 2. ClusTree: Node entries represent clusters(descriptor, child pointer, buffer); child
nodes more fine grained clusters of the parent data
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cluster. Thus, objects in a cluster can be interpreted as observations of the data
distribution in this part of feature space. Based on this intuition, we propose
a mean outlier score that computes the degree of outlierness of an object oi as
the extent of deviation of oi from the mean of the closest cluster feature. Since
AnyOut operates directly on the ClusTree, the closest cluster feature is simply
the one that is reached through tree traversal until the point of interruption by
the next data object in the stream.

Definition 2. Mean outlier score. For any data object oi, the mean outlier
score sm(oi) is defined as sm(oi) := dist(oi, μ(es)), where μ(es) is the mean of
entry es in the ClusTree that oi is inserted into when the next object oi+1 of the
data stream arrives.

The mean outlier score thus assesses the deviation of the current object from
the mean of the data distribution in the cluster feature of the current tree entry.

We propose a second way of assessing the outlierness that further extends the
notion that cluster features represent the data distribution. By interpreting the
cluster features as parameters of a Gaussian distribution of the data objects in
this subtree, we arrive at a second outlierness score based on the density of the
object. Recall that the Gaussian probability density of an object oi for mean μes

and covariance matrix Σes of an entry es is computed as

g(oi, es) =
1

(2π)d/2 · det(Σes)
1/2

e(−
1
2 (oi−μes )

TΣ−1
es

(oi−μes )) (1)

where det(Σes) is the determinant and Σ−1
es the inverse of Σes . Please note that

we can estimate the probability density of oi on es based exclusively on es’s
cluster feature. While the full covariance is not available using a cluster feature
(storing covariances is of quadratic complexity instead of linear complexity),
using a matrix of variances has been empirically shown to achieve high accuracy
results e.g. in classification [38]. Thus, a cluster feature is sufficient to compute
an outlier score that reflects the density of the object with respect to the data
distribution.

Definition 3. Density outlier score. For any data object oi, the density out-
lier score sd(oi) is defined as sd(oi) := 1 − g(oi, es) (cf. Equation 1), where es
is the entry in the ClusTree that oi is inserted into when the next object oi+1 of
the data stream arrives.

Both the mean outlier score and the density outlier score reflect the degree of
outlierness of the object at the point of interruption. In both cases, the data dis-
tribution of the closest cluster is the basis for the score computation. They differ
in the way the cluster feature is interpreted: the mean outlier score only takes the
center of mass of the data into account, whereas the density outlier score takes
the overall data distribution into account, assuming a Gaussian distribution.
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Fig. 3. Left: Expected confidence and scattering. Right: Actual outlier positions.

3.3 AnyOut Confidence Measure for Constant Streams

The benefit of anytime algorithms on constant data streams has first been shown
in [33]. The scenario is as follows: the items arrive in a constant time interval
ta, the features are taken at time tf and a decision must be available at time td.
Instead of computing each object consecutively for a constant time ta, the ap-
proach takes a window of several objects and processes these in parallel. Thereby
it can freely distribute the available time among the objects, i.e. it can spend
less time on simple cases and more time on more difficult cases.

The core point is the notion of simple and difficult, which is handled using a
confidence measure. All objects are initialized and for each object a confidence
value for the current result is computed that indicates how certain the algorithm
is with the current output for that object. Just after the initialization the ex-
pected confidence value is rather low. If more time is used for computation, the
expected confidence value increases. However, the actual confidence values will
be scattered around the expected value, i.e. some items have a higher confidence
and other lower than expected. The amount of scattering decreases with increas-
ing computation time (cf. Figure 3 left). The scattered confidences are used to
distribute the computation time, i.e. the item with the least confidence value is
allowed to improve its result by one step (e.g. descending one more level in the
AnyOut algorithm). This process is repeated until the time is used up, i.e. until
the decision for the first item has to made. At that time the next window of
items is taken to be processed in parallel. A second approach was proposed in
[33], which uses a FiFo queue that contains all objects between tf and td. We
will use both approaches to evaluate AnyOut , for more details refer to [33].

To test the performance of the AnyOut algorithm on constant data streams
we hence need a confidence measure for the current outlier score of an object.
To this end we make use of the positions of the outliers in the ranking returned
by the AnyOut algorithm. Figure 3 shows the results for the vowel data set
(middle level of the tree, leaving out one class as outliers, cf. Section 4) using
the mean outlier score. Optimally all outliers (green bars) would be on the far
left. Obviously the objects with the highest outlier score are false alarms. Similar
distributions are observable for other data sets. Therefore we use

conf(o) = e−s(o)
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as a simple and straight forward confidence measure, where s(o) is the current
outlier score of object o. Intuitively, we check for the putative outliers, i.e. the
highest ranked objects, whether they are really outliers by giving them more
computation time.

4 Experiments

In the following we first analyze the performance of our proposed AnyOut al-
gorithm with respect to the individual levels of the tree structure as well as
on different stream settings. In Section 4.3 we then compare our performance
against established baseline methods, namely LOF, ABOD and OPTICSOF. We
use the implementations of these algorithms provided in the ELKI framework [1],
which is publicly available from the ELKI homepage1. Finally we discuss results
for data streams containing drift and novelty in Section 4.4. All experiments use
real world data sets of different characteristics from the UCI machine learning
repository [24].

We evaluate the algorithms after all objects are processed, thereby we have
a complete ranking of all objects with respect to their assigned outlier score
in descending order. We use the ranking and the ground truth to compute the
ROC curve for the results, which plots the true positive rate (TPR) over the false
positive rate for each prefix of the ranking. From the ROC plots we derive the
AUC value (area under the ROC curve [8]) as a first measure. We compute two
further standard measures for ranking quality, namely the Spearman ranking
coefficient (SRC) [39] and Kendall’s Tau [26].

4.1 Level Analysis

For all experiments in Sections 4.1 and 4.2 we perform four fold cross validation.
More precisely, we build up the tree (incrementally or with the described bulk
loading technique) using the training set and analyze its performance. Continu-
ous learning is investigated in Sections 4.3 and 4.4. To generate outliers in the
following we leave out one class in the training set, i.e. the objects from the left
out class which are contained in the test set are the outliers O. In the plots we
report the averaged performance values over all classes and folds.

To analyze the individual levels of the resulting tree structures in our Any-
Out algorithm, we created one ranking for each level of the tree and computed
the measures introduced above. Figure 4 shows the ROC plots for the vowel,
pendigits and letter data sets. Each plot contains a ROC curve for the root
level, the leaf level and a level in the middle. The tree structures in this experi-
ment were build using incremental insertion and the employed outlier score was
the mean outlier score. What is clearly visible from the results on all data sets,
is that the basic principle of the AnyOut algorithm is effective, i.e. the quality
of the results improves if more time is available (deeper levels are reachable).

1 ELKI project homepage: http://elki.dbs.ifi.lmu.de/
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Similar observations can be made using the other quality measures. Figure 5
shows the results for Spearman’s ranking coefficient, AUC and Kendalls Tau. The
two plots compare the mean outlier score and the density outlier score on the
vowel data set using bulk loading to construct the tree. (We compare incremental
insertion and bulk loading in the next section.) The density outlier score yields
slightly worse rankings than the mean outlier score. Moreover, the mean outlier
score yields a constant quality improvement, whereas the density outlier score
shows a slight reduction in ranking quality on intermediate levels. The mean out-
lier score showed better results throughout the data sets and we therefore employ
it in the following.

4.2 AnyOut Performance on Various Stream Settings

To evaluate the anytime performance of AnyOut under variable stream scenarios,
we recapitulate a stochastic model that is widely used to model random arrivals
[13]. A Poisson process describes streams where the inter-arrival times are inde-
pendently exponentially distributed. Poisson processes are parameterized by an
arrival rate parameter λ:

Definition 4. Poisson stream. A probability density function for the inter-
arrival time of a Poisson process is exponentially distributed with parameter λ
by

p(t) = λ · e−λt

The expected inter-arrival time of an exponentially distributed random variable
with parameter λ is E[t] = 1

λ .
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Fig. 6. Results on anytime streams

We use a Poisson process to model random stream arrivals for each fold of the
cross validation. We randomly generate exponentially distributed inter-arrival
times for different values of λ. If a new object arrives (the time between two
objects has passed) we interrupt the AnyOut algorithm and store the outlier
score for the object. We repeat this experiment using different expected inter-
arrival times 1

λ , where a unit corresponds to a level of the tree structure. We
assume that any object arrives at the earliest after the initialization phase of the
previous object, i.e. after evaluating the root of the tree.

Figure 6 shows the results for Poisson streams using the vowel, pendigits
and letter data sets. In these experiments we compare the performance of the
incremental insertion to the described bulk loading using the EM algorithm. In
each group of bars the values for three different λ values are shown, while a
smaller value corresponds to a slower stream according to Definition 4, i.e. more
expected time per object.

Starting with the vowel data set in Figure 6 we see for the AUC measure
and for Kendall’s Tau, that both the incremental insertion and the bulk loading
yield better qualities on slower streams. This is in line with the results from
the level analysis in Section 4.1. Comparing the two tree construction methods
we observe that on the one hand the bulk loading yields better results for any
speed on both measures, but on the other hand the advantage is smaller than
we expected.

The results on pendigits and letter (Figure 6) confirm both of the above find-
ings. With a higher expected time per object (smaller λ value) the AnyOut al-
gorithm shows its effectiveness and produces better rankings. The difference
between incremental insertion and bulk loading performance are rather small
but constant.

Summarizing the evaluation on varying data streams we can conclude that
the proposed AnyOut method is effective for anytime outlier detection.

For constant streams, Figure 7 shows the corresponding results for the vowel
data set using the window approach and FiFo approach introduced in Section 3.3.
We evaluated different window and FiFo sizes from 2 to 12 (denoted asWS and FS
in Figure 7). As above we performed four fold cross validation and computed the
quality measures based on the final ranking of all objects. The results from Figure
7 (left) show that the performance of the AnyOut algorithm improves with larger
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window sizes for slow and fast streams. The results using the FiFo approach are
even slightly better (cf. right part of Figure 7), which is attributable to the greater
flexibility according to the comparably larger set of objects. This is in line with
the results from [33] for anytime classification on constant streams and shows the
effectiveness of the proposed confidence measure for the AnyOut algorithm.

4.3 Comparison to Baseline Methods

We assess the performance of AnyOut against established outlier detection meth-
ods LOF, ABOD and OPTICSOF from the ELKI framework on the same real
world data sets. To generate outliers we added a certain percentage of noise uni-
formly distributed in the feature space. AnyOut processed the points one after the
other incrementally inserting them into the tree structure and returning an out-
lier score. The competing approaches were given the entire data and were allowed
random access. We tested k-values from 1 to 100 for LOF and OPTICSOF and re-
port the best results per data set. This way we compare against the best possible
values for AUC, SRC and Kendalls Tau from LOF, ABOD and OPTICSOF.

Figure 8 shows the resulting SRC values for all four approaches with 5 and 10
percent noise respectively. On vowel and letter the LOF algorithm achieves the
highest SRC values for both noise settings. AnyOut and ABOD yield comparable
yet slightly smaller SRC values and OPTICSOF follows at larger distance. On
the pendigits data set AnyOut performs even slightly better than LOF, while
the other two approaches perform at a lower level. The effects are slightly more
pronounced at the higher noise level.



AnyOut: Anytime Outlier Detection on Streaming Data 239
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Fig. 9. Comparing AnyOut against baseline methods for different constraints on vowel
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Figure 8 certifies AnyOut a competitive performance with respect to the Spear-
man rank coefficient. In Figure 9 we show the results on vowel for all three mea-
sures. Additionally we report the time in milliseconds that the algorithm used per
object. As for the SRC in Figure 8, OPTICSOF performed worst and we spare the
details for readability. Highlighted cells indicate best performance. LOF shows
continuously best ranking values, closely followed by AnyOut and then ABOD at
some distance. This is in line with the previous results. For the processing time we
see that AnyOut is faster by at least one order of magnitude even for this small
data set; on larger data sets the effect increases dramatically. This is however not
surprising, since AnyOut is designed to be fast (logarithmic descent in the tree
structure) while the competing approaches are not. Thus, we compare the ranking
performance of our AnyOut against the best possible baseline: outlier approaches
that are not capable of fast interruptible anytime processing.

4.4 Evolving Data Streams: Drift and Novelty

To test the performance of the algorithms for novelty and drift2 in the data
stream we used the same setup as in the previous section and left out one class
in the first half of the stream. During the second half of the stream we evaluated
the ranking after each object from the new class. The left part of Figure 10
shows the resulting SRC values for AnyOut, LOF and ABOD, the corresponding
values for OPTICSOF are shown in the middle. ABOD shows the strongest
reaction to the novel class. The SRC values are clearly lower for the first five
novelty objects. After that they gradually increase until twenty objects from the
novelty class have arrived. This effect is less pronounced for OPTICSOF, while
the SRC values are generally lower (cf. Section 4.3). The reaction in terms of

2 ’Novelty’ refers to an entirely new concept (new class, new cluster), while ’Drift’
refers to changes in the distribution of an existing concept.
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SRC values is the smallest for LOF and AnyOut. Similar plots result for the
other ranking measures. Since the reaction to an entirely new class is already
very small, the reaction to gradually drifting concepts is negligible and not visible
in the corresponding plots (not shown due to space limitations).

To further analyze the reasons for the minuscule reactions to novelty we in-
vestigate the positions of the novelty objects in the ranking of all objects. At any
time we know the number n of outliers (noise objects). We normalize the rank-
ing positions such that −1 indicates the highest rank (most probable outlier), 0
corresponds to the border object (n-th object) and 1 indicates the lowest rank
(least probable outlier). As above, we evaluate the rankings after each novelty
object. This time we compute the ’mean relative position’ (MRP) of the novelty
objects, i.e. the average of their ranking positions normalized as described above.
The expected value for non-outlier objects is 0.5. Figure 10 shows the results for
all four approaches on pendigits. OPTICSOF assigns the highest rank −1 to the
first novelty object, after that the average rank value gradually increases as the
algorithm learns the new concept. For LOF and ABOD the MRP hardly ever
shows negative values. AnyOut still assigns a very high rank to the first novelty
object (−0.65), but learns the new concept rapidly. After five to ten novelty
objects the MRP value is above zero, i.e. the new class is no longer considered
an outlier class.

In summary, AnyOut successfully learns novel concepts fast and handles drift-
ing concepts, while being capable of anytime processing.

5 Conclusion and Future Work

In this paper we proposed the study of the anytime outlier detection problem
for varying and constant data streams. We first analyzed and discussed the ex-
isting work on outlier detection and stream outlier detection before we formally
defined the novel anytime outlier detection problem. We proposed a first al-
gorithm called AnyOut long with two construction heuristics and a confidence
measure for application with constant streams. We analyzed the structure and
performance of AnyOut on various data streams using real world data. Finally
we compared our method against established baseline algorithms finding compa-
rable performance despite the largely reduced runtime. In future research more
sophisticated confidence measures can be investigated as well as anytime outlier
algorithms using other paradigms such as density based approaches.

The MOA framework [7] is an open source benchmarking software for data
stream mining, similar to WEKA [20]. Recently we extended the MOA frame-
work to support clustering and clustering evaluation on evolving data streams
[30,34]. We now added stream outlier detection to the MOA framework [31] and
integrated the AnyOut algorithm as well as a wrapper for the outlier methods
provided by the ELKI framework [1].
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Abstract. Many real-world applications in time series classification fall into the 
class of positive and unlabeled (PU) learning. Furthermore, in many of these 
applications, not only are the negative examples absent, the positive examples 
available for learning can also be rather limited. As such, several PU learning 
algorithms for time series classification have recently been developed to learn 
from a small set P of labeled seed positive examples augmented with a set U of 
unlabeled examples.  The key to these algorithms is to accurately identify the 
likely positive and negative examples from U, but it has remained a challenge, 
especially for those uncertain examples located near the class boundary. This 
paper presents a novel ensemble based approach that restarts the detection 
phase several times to probabilistically label these uncertain examples more ro-
bustly so that a reliable classifier can be built from the limited positive training 
examples. Experimental results on time series data from different domains 
demonstrate that the new method outperforms existing state-of-the art methods 
significantly.  

Keywords: Ensemble based system, positive and unlabeled learning, time se-
ries classification. 

1 Introduction 

Many real-world data mining application domains, such as aerospace, finance, 
manufacturing, multimedia and entertainment, involve time series classification [1-3]. 
For example, a typical aircraft health monitoring application in aerospace would be to 
classify the states of the airplane engines into either the normal or faulty states based 
on time series sensor readings from multiple sensors (e.g. vibration and temperature 
sensors) attached to the aircraft. Most of classification methods directly apply 
traditional supervised learning techniques that rely on large amounts of labeled 
examples from predefined classes for learning. In practice, this paradigm is not 
practical because collecting and labeling large sets of data for training are often very 
expensive if not impossible.   

Researchers have proposed alternative learning techniques to build classifiers from 
a small amount of labeled training data enhanced by a larger set of unlabeled data that 
are typically easy to collect. These methods include semi-supervised learning [4-6] 
and Positive Unlabeled learning (PU learning) [7-13]. While both approaches exploit 
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the unlabeled data (U) to enhance the performance of their classifiers, they differ in 
their training data requirements: PU learning only requires positive data (P) whereas 
semi-supervised learning still requires both positive and negative training data. PU 
learning is therefore applicable in a wide range of application domains, such as text 
classification, medical informatics, pattern recognition, bioinformatics and 
recommendation system, where negative data are often unavailable. However, the 
applications of PU learning to classify time series data have been relatively less 
explored due to specific challenges of time series classification such as high feature 
correlation [14]. As far as we know, there are only 3 research works that applied PU 
learning approaches for time series data classification.  

The pioneering work, proposed by Wei and Keogh [14], iteratively expands the 
positive set from the initial positive examples using the unlabeled data that are most 
similar to them in terms of Euclidean distance, with the remaining unlabeled data 
being extracted as negative data. The method is highly dependent on having a good 
stopping criterion; otherwise, early stopping will result in an expansion of only a 
small number of positives, with highly noisy negatives. To improve the algorithm, a 
more recent work [15] attempted to propose a good stopping criterion by using the 
historical distances (in this case, dynamic time warping distance) between candidate 
examples from U to the initial positive examples. Although the refinement has 
enabled more positive examples to be extracted, it is still unable to identify accurate 
positives (and hence negatives) from U, especially when the actual positives and 
negatives in U are severely unbalanced. The experimental results reported showed 
high precision but very low recall for classification. 

More recently, to tackle the challenge of constructing accurate boundary between 
positive and negative data in U, we proposed a new PU approach called LCLC for 
time series classification [16]. Unlike the previous methods, LCLC adopts a cluster-
based approach instead of instance-based approach.  First, the unlabeled set U is 
partitioned into small unlabeled local clusters (ULCs) using the K-means algorithm 
[17]. All the examples within an individual cluster will be assigned a same label as 
either LP (Likely Positive) or LN (Likely Negative). The local clusters are also 
exploited for more robust feature selection for classification. A cluster chaining 
approach is then applied to extract the boundary positive and negative clusters (ULCs) 
to estimate the decision boundary between the actual positives and negatives in U. 
LCLC has been demonstrated to perform much better than the first two PU learning 
methods, as it can identify the boundary positive and negative clusters from U more 
accurately. While LCLC’s cluster-based approach (i.e. all the instances within an 
individual cluster will be assigned the same label) is more robust than traditional 
instance-based approach, in practice, not all the examples within the individual local 
clusters will actually be from same class.  This means that some instances within each 
cluster may be misclassified. When these misclassified examples (especially when 
they are in the boundary clusters) are used to build the final 1-NN classifier (i.e. 
classification based on the top one nearest neighbor; Keogh et al [18] performed a 
comprehensive empirical evaluation on the current state-of-the-arts which shows  
1-NN to be the best technique), the performance of overall LCLC algorithm is less 
satisfactory than expected. In Section 2, we will go into the further details of the 
LCLC algorithm as well as the reason that LCLC algorithm generates false 
positives/negatives.  
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In this paper, we propose a novel ensemble based approach En-LCLC (Ensemble 
based Learning from Common Local Clusters) to overcome the drawbacks of the 
LCLC algorithm. Our proposed En-LCLC method adopts an ensemble-based strategy 
by performing the LCLC algorithm multiple times on different cluster settings to 
obtain multiple diverse classifiers. We can then assign each instance with a “soft” 
probabilistic confidence score based on its overall classification results that could 
better indicate each instance’s class label. Based on the probabilistic scores, we also 
identify and remove potential noisy instances which could confuse our classifier. An 
Adaptive Fuzzy Nearest Neighbor (AFNN) classifier is then constructed based on the 
clean set of “softly labeled” positive and negative instances identified. 

The rest of the paper is organized as follows. We provide an overview on the 
LCLC algorithm in Section 2. We then present our proposed En-LCLC algorithm in 
Section 3. Results from extensive experiments on time series data across diverse 
fields reported in Section 4 show that the classifiers built using En-LCLC algorithm 
can indeed identify the ground truth’s positive and negative boundaries more 
accurately, leading to improvements in classification accuracy. Finally, Section 5 
concludes the paper. 

2 LCLC Algorithm and Its Weakness 

In this section, we describe the LCLC method proposed in [16] in further details. As 
mentioned earlier, the first step of LCLC algorithm groups the unlabeled data U into 
local clusters and selects independent and relevant features based on these clusters. 
Subsequently, LCLC algorithm extracts reliable negative set RN from U, with the 
remaining clusters belonging to U-RN regarded as ambiguous clusters (AMBI). 
Finally, LCLC determines likely positive clusters LP and negative clusters LN from 
AMBI using cluster chaining, and the final classifier is built using all the extracted 
positives and negatives from U.  

Algorithm 1 shows the main steps of the LCLC. Steps 1 and 2 perform the local 
clustering and feature selection.  In Step 1, LCLC partitions the unlabeled data U into 
small local clusters ULCi (i=1, 2, …, K) using K-means clustering method. Each local 
cluster ULCi is then treated as an observed variable of the time series data, and it 
assumes that all the instances belonging to a local cluster share the same principal 
component and have the same class label.  

In Step 2, the Clever-Cluster method [19] is then used to select K common feature 
subset from the positive set P and a partitioned coherent unlabeled clusters ULCi. It 
first computes the principal components for each time series observations which are 
the positive set P and unlabeled clusters ULCi. Descriptive common principal 
components are then computed across all these principal components and used to 
select K highest mutual information features. Interested readers could find more 
details in [16]. The intuition for such selection is based on the observation that a  
well-selected subset of the common principal features can capture the underlying 
characteristics of the time series dataset to enable accurate extraction of the remaining 
hidden positives/negatives from U. 
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Step 3 identifies the Reliable Negative set RN from U based on the similarities 
between the local clusters ULCi to the initial positive cluster P. In this step, LCLC 
computes the Euclidean distance of each ULCi from the positive set P using common 
principal features extracted in Step 2. After that, it extracts those local clusters which 
are farthest away from P and store them into RN. The size of RN is set to contain 
about a half of the local clusters, while the other half is considered as ambiguous 
clusters AMBI in Step 4. 
 
Algorithm 1. LCLC algorithm 
input: Initial positive data P, Unlabeled dataset U, number of clusters K 

1. K-ULCs  Partition U into K local clusters using K-means; 
2. Select K features from the raw feature set  Clever-Cluster(P, K-ULCs); 
3. Extract Reliable Negative Examples RN from the Unlabeled dataset U; 
4. Define the ambiguous clusters AMBI = U – RN; 
5. Identify likely positive clusters LP and likely negative clusters LN from the 

AMBI clusters using cluster chaining for boundary decision; 
6. Build a 1-NN classifier using P together with LP as a positive training set, 

and RN together with LN as a negative training set. 

By now (after Step 4), LCLC algorithm has obtained a positive data P and reliable 
negative data RN that can be used to further extract the likely positive clusters LP and 
the likely negative clusters LN from the ambiguous clusters AMBI which are near the 
positive and negative boundary.  Step 5 performs a novel cluster chaining method to 
label these boundary clusters. The basic idea of cluster chaining is to build cluster 
chains starting from the positive P, going through one or more AMBI clusters, and 
finally stopping at a reliable negative cluster in RN.  Figure 1 illustrates the scenario 
where there are two reliable negative clusters RN far away from the positive cluster P, 
and 4 AMBI clusters located between the positive cluster (P) and negative clusters 
(RN).  Two cluster chains have been built here. For each cluster chain, LCLC finds 
the breaking link (decision boundary) with maximal distance between the clusters that 
separates the cluster chain into two sub-chains. All the AMBI clusters within the sub-
chain that contains P will be regarded as likely positive clusters and stored into LP, 
while the AMBI clusters within the other sub-chain that includes RN are regarded as 
likely negative clusters and stored into LN.  

AMBI

AMBI

AMBI

AMBI

PRN

RN

Decision Boundary

 

Fig. 1. Cluster chaining for boundary decision 
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Finally, LCLC uses P together with LP as a positive training set, and RN together 
with LN as a negative training set to build the final 1-NN classifier for time series 
classification.  

Although LCLC works better than the existing PU learning methods identifying 
the boundary clusters more accurately, we observed that it still has two drawbacks. 
Firstly, it assumes that all the instances belonging to a local cluster have the same 
class label. Clustering ensures that most of the examples within a same cluster belong 
to the same class, but some of the examples within same cluster could belong to other 
classes.  By assigning the same label to all the examples within each cluster, LCLC 
will misclassify some examples (typically minority class examples within individual 
clusters), ultimately affecting the performance of the classifier trained on these mis-
assigned examples. The errors introduced will be especially costly for those examples 
located in the boundary clusters between positive and negative classes.  

Secondly, as LCLC algorithm uses K-means algorithm to perform clustering, it 
will generate different clusters based on K randomly initialized centroids. It is highly 
possible that the examples near the positive and negative boundary will be grouped 
into different clusters and assigned with different labels each time we perform LCLC 
algorithm. This source of random errors can introduce further limitations in the 
overall performance of LCLC.  

 

Fig. 2. Drawback of the LCLC on fixed clustering assignment to every instance 

Figure 2 depicts the scenario of having possible misclassified instances in the local 
clusters near the real positive and negative boundaries.  We can see that some 
instances may be clustered wrongly and some assigned with wrong labels based on its 
container cluster’s label. The region represented by dashed green (orange) areas 
shows the set of false negative (positive) examples. The probability to be 
misclassified is high for those instances that are close to the class boundaries, leading 
to decreased accuracy of the final classification. This motivates us to propose a more 
robust approach to address the issue. 
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3 The Proposed Technique En-LCLC 

In this section, we present our proposed En-LCLC algorithm (Ensemble based 
Learning from Common Local Clusters) to overcome the drawbacks in the original 
LCLC. We propose an ensemble based approach that restarts LCLC algorithm 
multiple times to assign labels for each instance in the unlabeled data. We then 
generate an integrated “soft” probabilistic label to the examples based on their 
classification results from diverse classifiers. Following that, we filter and remove 
uncertain instances. We then design an Adaptive Fuzzy Nearest Neighbor (AFNN)  
classifier to train on the enhanced dataset that have been assigned with clean soft 
labels to better reveal the ground truths’ positive and negative boundaries. 

3.1 Probabilistic Soft Labeling Using Diverse Classifiers  

We make use of the randomness of clusters generated by K-means clustering used in 
the LCLC algorithm to create diverse classifiers. We perform n times LCLC 
algorithm in which each K-means clustering with random initialization will produce 
different cluster settings for constructing cluster chains and deciding the boundary 
clusters. Each time corresponds to a different classifier setting. We use the probability 
distribution of the n labels generated by n diverse classifiers for each example as its 
“soft” labels. By integrating them together probabilistically, we minimize the 
potential bias of individual LCLC prediction and the expected errors in the extracted 
likely positive/negative examples by our ensemble-based approach can be expected to 
be reduced. 
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Fig. 3. An example of En-LCLC by repeating LCLC on two different clustering configurations 

Figure 3 illustrates a scenario in which we have two classifiers with different 
cluster settings (i.e. n=2). In the first cluster setting for classifier 1, K-means 
clustering has generated two ambiguous clusters denoted by LP1 and LN1. A cluster 
chain is constructed from P through LP1, LN1, and finishes at RN, and LCLC 
eventually determined all the examples in LP1 as positive and all the examples in LN1 
as negative class. Note that there are three positive and three negative instances that 
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are misclassified in this case. In the second cluster setting for classifier 2, K-means 
clustering generated two ambiguous clusters, denoted by LP2 and LN2; and the 
corresponding cluster chain goes through P, LP2, LN2, and ends at RN. The eventual 
LCLC labels for the examples in LP2 are positives and the examples in LN2 are 
negatives. In this case, only 1 positive and 1 negative are misclassified. With a big n, 
we can integrate the results together probabilistically and give the misclassified 
examples low confidence scores as they will be given inconsistent labels using 
different classifiers.  

Algorithm 2 shows the details to generate the confidence score for each example in 
the unlabeled set U-P (AMBI clusters and RN clusters).  Note that we have given a 
confidence score of 1 for all the positive examples in P.  
 
Algorithm 2. Confidence score generation 
Input: one initial seed positive s, unlabeled dataset U, number of iterations n  

1. Use Wei’s method to get an initial positive set P;  
2. Repeat step 3 to step 5 n times 
3. Partition the remaining unlabeled data U - P  into K unlabeled local 

clusters using K-means clustering with random initialization; 
4. Perform LCLC (cluster chain breaking) to extract  the reliable 

negative clusters RN,  likely positive clusters LP, likely negative 
clusters LN; 

5. Compute the weights for each instance using equation (1) and (3); 
6. Compute the normalized confidence score for each instance using equation 

(4) and (5); 
 
We need to cater for cases where only a small number of positives are available for 
learning, even in the extreme scenario of having only one seed positive example. As 
such, similar with LCLC, in the first step, we adopt Wei’s method [14] for this task as 
follows. Given the positive seed s, we add the next most confident positive instances 
from U until the stopping criterion is reached, that is, when there is a drop of the 
minimal nearest neighbor distance. Wei’s method uses this early stopping criterion 
because when a negative example is mistakenly added into P, there is a high chance 
that we will keep adding more negative examples, for the negative space is expected 
to be much denser than the positive space [14]. While this method tends to provide an 
early stop instead of proceeding to find the actual boundary between the positives and 
negatives, we observe that it is useful for constructing a robust positive set P with 
very high precision. In other words, we can obtain a “pure” positive set P which is 
still reasonably bigger than the original one seed positive example set to work with.  

We repeat n times Steps 3 to 5 with different initializations for K-means clustering 
to create an ensemble system with n diverse classifiers. In Step 4, instead of assigning 
a “hard” label to all the instances within a cluster, we assign a “soft” probabilistic 
label to each instance according to its contribution to the container cluster. In 
particular, given an instance xi, its probability 

ixP to be labeled as its belonging cluster 

ixC ’s label is defined using Gaussian distribution as: 
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The probability 
ixP denotes the possibility that an instance xi has its container cluster’s 

label. If it is near its cluster centroid centroid(
ixC ), then it has a higher probability to 

belong to cluster’s label; otherwise, it will be given a lower probability.  
The probability is converted as a weight for each instance depending on whether it 

is extracted into the positive or negative class: 
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Since we perform LCLC n times, we use j (1 j n≤ ≤ ) to indicate that the weight is 

given in j-th iteration of En-LCLC algorithm.  
Step 6 computes the confidence score that an instance is extracted as either positive 

or negative, which is simply defined as follows: 
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Equation (4) basically sums all the weights over n iterations into a consolidated score. 
An instance will get a bigger positive (negative) value if it is extracted as a positive 
(negative) consistently.  On the other hand, if it is assigned a near zero value (no 
matter positive or negative), it is an unreliable instance which may not be very useful 
for further classification step.   

We compute the confidence score of each instance normalized to the range of     
[-1,1] as follows: 
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Each instance xi in U-P will have a confidence score inor,
λ that indicates its propensity 

to be a positive or negative instance. The instances in U-P (all with normalized 
confidence scores) together with P (all with a fixed confidence score of 1) may serve 
as the training set TRAIN for learning a classifier.  

Note that the training data TRAIN may still contain some uncertain instances  
which have low confidence scores. Before building our final classifier, we perform 
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noise-filtering pass [20] to further remove the possibly incorrectly labeled instances. 
To do so, for each example xi, we define its adaptive neighborhood N(xi) which 
consists of its minimal number of nearest neighbors whose total confidence score is 
larger or equal to 1 (which indicates we have enough information from the neighbors 

to make accurate decision). If 
( )

, ,
1

( ) ( )
iN x

nor i nor j
j

sign signλ λ
=

≠ ∑ , or the instance will be 

misclassified by its nearest neighbors within its adaptive neighborhood (label 
inconsistent), then we will remove the confusing instance from our training set 
TRAIN.  

Algorithm 3. Adaptive Noise-filtering procedure 
Input: Training set TRAIN with normalized confidence score ,nor jλ  for each 

instance in TRAIN 
1. Sort the instances in TRAIN by their normalized confidence score in the 

decreasing order; 
2. For all xi ∈ TRAIN do 
3. K =1; 
4. Find the nearest neighbor xj, and add it to N(xi); 

5. While ,
1

| | 1
K

nor j
j

λ
=

<∑  

6. K=K+1; 
7. Find Kth nearest neighbor xj and add it to N(xi); 

8. If 
( )

, ,
1

( ) ( )
iN x

nor i nor j
j

sign signλ λ
=

≠ ∑  

9. removalflag(xi)=1; 
10. For all xi ∈ TRAIN do 
11. If (removalflag (xi) = = 1)  
12. TRAIN = TRAIN – { xi }; 

Algorithm 3 shows the detailed step of this noise filtering process. For each example 
in training set, Steps 3-7 find its adaptive neighborhoods and Steps 8-9 detect if it is 
the noisy instance. Finally, we remove all these noisy instances from the training set 
in Steps 10-12. 

3.2 Combining Classifiers Using Adaptive Fuzzy Nearest Neighbor Method 

Traditional time series data classification often employed the k-nearest neighbor 
(KNN, especially 1-NN) method to build final classifier based on the given “hard” 
labeled training data [18]. Our approach is able to generate more refined “soft” 
labeled training data with confidence scores.  Instead of applying a fixed threshold 
(which is difficult to determine for arbitrary datasets) on the confidence scores to 
provide “hard” labeling of the training data to enable employing the conventional 
KNN approaches, we will build an adaptive fuzzy nearest neighbor classifier as it can 
effectively make use of the normalized confidence scores of the training instances.  
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The detailed algorithm for building our Adaptive Fuzzy Nearest Neighbor (AFNN) 
classifier is  shown in Algorithm 4. Steps 1-10 classify all the test instances based on 
their prediction values (Step 7), which are the accumulated normalized confidence 
scores of the nearest neighbors from the adaptive neighborhood. Steps 8-10 classify a 
test instance based on the sign of its prediction value. 

 
Algorithm 4. Adaptive Fuzzy Nearest Neighbor 
Input: Training set TRAIN, Test set TEST, ,nor jλ  for each instance xi in TRAIN 

1. For all xi ∈TEST do 
2. K =1; 
3. Find the nearest neighbor xj ,  xj ∈TRAIN; 

4. While ,
1

| | 1
K

nor j
j

λ
=

<∑  

5. K=K+1; 
6. Find Kth nearest neighbor xj,  xj ∈TRAIN; 

7. Compute the prediction value: ,
1

( ) ;
K

i nor j
j

Pre x λ
=

= ∑  

8. If ( ) 0iPre x ≥  

9. Label xi as positive; 
10. Else       Label xi as negative. 

4 Empirical Evaluation 

We compare our proposed technique En-LCLC algorithm against three existing state-
of-the-art PU learning methods for time series classification, namely,  Wei’s method 
[14], Ratanamahatana’s method (denoted as Ratana’s method) [15] as well as the 
LCLC method [16].  

4.1 Experimental Data, Settings and Evaluation Metric 

Similar to the experiments reported in [14] and [16], we have performed our empirical 
evaluation on the five diverse time series datasets across different fields from [21] and 
the UCR Time Series Data Mining archive [22] to facilitate comparison. The details 
of the datasets are shown in Table 1. 

Table 1. Datasets used in the evaluation experiments 

Name 
Training set Testing set Num of 

Features Positive Negative Positive Negative 
ECG 208 602 312 904 86 

Word Spotting 109 796 109 796 272 
Wafer 381 3201 381 3201 152 
Yoga 156 150 156 150 428 
CBF 155 310 155 310 128 
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In our empirical evaluation, we repeated the experiments performed in [14] and 
[16] by randomly selecting just one seed example from the positive training class for 
the learning phase (i.e. seed s in Algorithm 2), with the rest of the training set (both 
positives and negatives) treated as unlabeled data (ignoring their labels; U in 
Algorithm 2).  

We repeat our experiments 10 times with different initial seed positive instances 
for each dataset and report the average values of the 10 results. Since our proposed 
En-LCLC performs n diverse classifiers to generate the confidence scores for each 
instance, we set n = 15 for this work.  We will also evaluate n’s sensitivity later.  

We use the F-measure to evaluate the performance of the four PU learning 
techniques. The F-measure is the harmonic mean of precision (p) and recall (r), and it 
is defined as F=2*p*r/(p+r). In other words, the F-measure reflects an average effect 
of both precision and recall. F-measure is large only when both precision and recall 
are good. This is suitable for our purpose to accurately classify the positive and 
negative time series data. Having either too small a precision or too small a recall is 
unacceptable and would be reflected by a low F-measure. 

4.2 Experimental Results 

Table 2 shows the overall classification results of all the four techniques. The results 
showed that both LCLC [16] and En-LCLC performed much better than the other two 
earlier methods for time series classification, namely, Wei’s method [14], and 
Ratana’s method [15]. Our proposed En-LCLC produced the best classification results 
across all the 5 datasets, achieving F-measures of 86.9%, 76.2%, 77.5%, 89.1% and 
81.6%, which are 0.2%, 3.5%, 5.1%, 3.7% and 11.5% higher than the second best 
results from LCLC. On average (last row), En-LCLC was able to achieve 82.3%  
F-measure, which is 4.8% higher than the second best LCLC method in terms of  
F-measure, indicating that En-LCLC is indeed well-designed for time series data 
classification.  

Table 2. Overall performance of various techniques 

Dataset Wei’s method Ratana’s method LCLC En-LCLC 
ECG 0.405 0.840 0.867 0.869 

Word Spotting 0.279 0.637 0.727 0.762 
Wafer 0.433 0.080 0.724 0.775 
Yoga 0.466 0.626 0.854 0.891 
CBF 0.201 0.309 0.701 0.816 

Average 0.357 0.498 0.775 0.823 
 

Recall that En-LCLC has two key steps for our classification task: (1) using “soft” 
Adaptive Fuzzy Nearest Neighbor classifier replace the “hard” label 1-NN classifier, 
and (2) performing a noise filtering before building our final classifier. To determine 
their individual effects on our classification performance, we also test the En-LCLC 
algorithm without these key steps. The results are shown in Table 3. 
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Table 3. En-LCLC with 1-NN and without noise filtering 

 
Without using “soft” AFNN classifier, we use 1-NN by converting the confidence 

scores into “hard” labels using the following procedure: if the confidence score of an 
unlabeled instance is larger than 0, then it is regarded as a positive training example; 
otherwise, it is treated as a negative training example. We observe from Table 3 that 
En-LCLC with 1-NN is on average 1.8% worse than our proposed En-LCLC. It is 
important to note that En-LCLC with 1-NN has already benefited from the more 
accurate confidence scores obtained from our ensemble-based strategy. Similarly, by 
including noise filtering, En-LCLC is able to perform 1.22% higher on average, 
indicating that removing those potentially noisy examples using the confidence scores 
can contribute to enhance the classification performance.  

Table 4 compares the performance of the LCLC and En-LCLC techniques for 
extracting positives and negatives from unlabeled data. In the table, Ext_P (Ext_N) 
represents the number of positives (negatives) extracted.  Error_P and Error_N 
represent the error rate of positive and negative extraction respectively. Compared 
with LCLC, En-LCLC made 0.40%, 6.80%, 5.60%, 1.90% and 1.90% less errors for 
positive extraction over the 5 datasets. It also made 0.10%, 1.10%, 0.50%, 4.10% and 
5.90% less errors for negative extraction over 5 datasets. As these instances are 
located near the positive and negative boundary, the reduction in false positives and 
false negatives helped improve En-LCLC’s eventual accuracy. 

Table 4. Extraction comparison between LCLC and En-LCLC 

Dataset ECG 
Word 

Spotting
Wafer Yoga CBF 

LCLC 

Ext_P 234.3 139.4 269.7 166.8 106.6 
Error_P 16.1% 36.3% 16.6% 17.3% 12% 
Ext_N 575.7 765.6 3312.3 139.2 358.4 

Error_N 2% 2.6% 4.7% 12.9% 17.1% 

En-LCLC 

Ext_P 233 134.8 271.4 165.7 118.6 
Error_P 15.7% 29.5% 11% 15.4% 10.1% 
Ext_N 574.3 745.6 3299.8 134.8 321 

Error_N 1.9% 1.5% 4.2% 8.8% 11.2% 

 
We now analyze the efficiency of En-LCLC algorithm. The main steps for our 

algorithm include K-means clustering to partition the unlabeled data, compute the 
confidence score for each example, perform noise filtering, and construct Adaptive 
Fuzzy Nearest Neighbor (AFNN) classifier. These steps can be performed using 
efficient algorithms implemented in linear time. Note that our ensemble-based 

Dataset ECG Word Spotting Wafer Yoga CBF 
En-LCLC w 1-NN 0.867 0.736 0.745 0.861 0.754 

En-LCLC w/o 
noise filtering 

0.868 0.749 0.764 0.879 0.792 

En-LCLC 0.869 0.762 0.775 0.891 0.816 



 Ensemble Based Pos

approach will not increase 
classification (n is typicall
therefore not less efficient t
En-LCLC method can scale
algorithm using Matlab and
GHz CPU using Microsoft 

0

2000

4000

6000

8000

10000

5

Se
co

n
ds

Fig. 4. Eff

Finally, we evaluate the
the only one parameter of o
our experiments with diffe
shows the sensitivity of En-
increasing value of n from 
(interestingly, the paramete
When n>= 15, the perform
suggesting that we do not n
 

Fig. 5. Sen

sitive Unlabeled Learning for Time Series Classification 

the overall time complexity although it performs n tim
ly a relatively small integer). Our proposed algorithm
than the other methods.  Figure 4 shows that our propo
e well over all the datasets (we implemented our En-LC
d running on the Desktop Intel Pentium IV core 2 Duo 
Windows XP with 4.0 GB memory).  

10 15 20 25

Number of classifiers n

ECG
Word Spotting
Wafer
Yoga
CBF

 

ficiency analysis of the number of classifiers n 

 effect of parameter n, the number of classifiers, which
our method. In this paper, we have set n = 15. We repea
erent values of n from 5 to 25, with a step of 5. Figur
-LCLC with different values of n. We can see that with 
small values, the F-measure also increased for 4 data

er n does not affect the performance of ECG data muc
mance has reached steady status, without much chang
need a very large n to benefit from ensemble based strate

 

nsitivity analysis of the number of classifiers n 

255 

mes 
m is 
osed 
CLC 

3.0 

h is 
ated 
re 5 
the 

sets 
ch). 
ges, 
egy. 



256 M.N. Nguyen, X.-L. Li, and S.-K. Ng 

5 Conclusions 

Time series classification has been applied in many real-world applications across 
different domains. In this paper, we study the positive unlabeled learning method as it 
eliminates the tedious and costly process to hand-label large amounts of training data.  
We proposed a novel En-LCLC algorithm (Ensemble based Learning from Common 
Local Clusters) to overcome the drawbacks of the existing state-of-the-art LCLC 
algorithm. Our proposed En-LCLC algorithm adopts an ensemble-based strategy 
which performs LCLC algorithm multiple times to minimize the potential bias of 
individual LCLC prediction. As shown in our experiments, the error rates in the 
extracted likely positive/negative examples has been effectively reduced. We 
designed an Adaptive Fuzzy Nearest Neighbor classifier to exploit the “soft” 
confidence scores obtained from the diverse classifiers. We also made use of the 
confidence scores to remove unreliable examples from the training dataset. The 
experimental results show that our proposed method performed much better than 
existing methods over multiple time series data from different domains. 
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Abstract. Finding interesting patterns plays an important role in several data 
mining applications, such as market basket analysis, medical data analysis, and 
others. The occurrence frequency of patterns has been regarded as an important 
criterion for measuring interestingness of a pattern in several applications. 
However, temporal regularity of patterns can be considered as another 
important measure for some applications. In this paper, we propose an efficient 
approach for miming regularly frequent patterns. As for temporal regularity 
measure, we use variance of interval time between pattern occurrences. To find 
regularly frequent patterns, we utilize pattern-growth approach according to 
user given min_support and max_variance threshold. Extensive performance 
study shows that our approach is time and memory efficient in finding regularly 
frequent patterns.  

Keywords: Data mining, interesting pattern, frequent pattern, regularly 
frequent pattern. 

1 Introduction 

Mining patterns that appear frequently in transactional database has been actively and 
widely studied in data mining and knowledge discovery techniques such as 
association rule mining, classification, clustering, time-series mining, graph mining, 
and web mining [1, 2, 9]. The common framework behind frequent pattern mining is 
that only patterns occurring at a high frequency are interest to users. Recently, 
researchers have focused on devising methods to mine user interest-based frequent 
patterns to produce the desired result set in efficient manner by applying early pruning 
technique to reduce the size of resultant itemset. In literature several interesting 
parameters such as closed [4, 5], maximum [6], K-most [7], and demand-driven [8] 
has been proposed for finding frequent patterns.  

Another important criterion for identifying the interestingness of frequent patterns 
might be the shape of occurrence, i.e., whether they occur regularly, irregularly, or 
mostly in specific time interval in the database. For example, in a retail market, 
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among all frequently sold products, the user may be interested only on the regularly 
(e.g., ‘drinks’, ‘tissues’) sold products compared to other products that are frequently 
sold in specific time duration (e.g., ‘electric fans’ during the summer, ‘electric 
heaters’ during the winter and ‘rain-coats’ during the rainy season). Similarly, for 
improved web administration an administrator may be interested on the click 
sequences of heavily hit web pages. In genetic data analysis these to fall genes that 
not only appear frequently but also co-occur regular interval in DNA sequence may 
carry more effective information to scientists. Among the heavy network traffics, the 
regular network access patterns may provide significant information in network 
monitoring. In telecommunications and analysis of sensor network data, finding the 
occurrence regularity can be very necessary in other application such as moving 
object detection. Form the above examples; we can see that user may be interested on 
the appearance characteristics (regularity) of frequent patterns. Hence, regularity 
plays an important role in finding interesting frequent patterns for a wide verity of 
applications. We define such a frequent pattern that occurs after regular intervals in a 
database as regularly frequent patterns.  

Let us consider the database in Table 1 with 9 transactions. It can be examined that 
the supports of the patterns “A”, “C”, “AB”, “BC” and “BE” in the database are 
respectively 5, 5, 4, 4 and 4.Though these patterns may be frequent in the database 
some of them may not be regularly frequent patterns because non-regular appearance 
intervals. For example “A”, “AB” and “BE” occurs more frequently at a certain part 
of the database (i.e., “A” at the beginning and “BE” at the middle of database) then 
the rest part. On the other hand, patterns “C” and “BC” etc are appear within after 
regular intervals throughout the database. So, they can be more important frequent 
patterns in terms of regular occurs intervals. The typical frequent pattern mining 
methods fail to find such regularly frequent patterns because they are only concerned 
about the support and not consider the pattern appearance behavior.  

Motivated by the above discussion and examples, in this paper, we introduce the 
problem of finding regularly occurs frequent patterns in a transactional database. We 
define a new regularity measure for a pattern by the variance of intervals at which the 
same pattern occurs in a database. For regularly frequent patterns mining, we use a 
tree structure, called a RF-tree (Regularly Frequent Pattern tree), which capture the 
database contents in a highly compact manner. To ensure that the tree structure is 
compact and informative, only frequent length-1 items will have nodes in the tree and 
more frequently occurring items are located at the upper part of the tree to have better 
chance of prefix sharing. We use a pattern growth approach to mine the regularly 
frequent patterns from our RF-tree. Our performance study shows that the proposed 
approach is efficient in finding regularly frequent patterns. 

This paper is organized as follows. Section 2, we describe background. In Section 3, 
we explain our proposed approach for regularly frequent pattern mining problem. In 
Section 4, we represent the details of the structure of RF-tree and the regularly frequent 
pattern mining process. In Section 5, we represent experimental results. Finally, in 
Section 6, conclusions are presented.  
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Table 1. A transactional database 

 ID Transaction ID Transaction ID Transaction 

1 A D 4 A B E F 7 C D E 
2 A B E F 5 A B C E 8 D E F 
3 A B C E 6 B C D 9 B C D 

2 Background 

At first, Agrawal et al. [1], proposed a support constraint-based technique to mine the 
frequent patterns. They used the downward closure property to prune the infrequent 
patterns. This property states that if a pattern is infrequent then all of its super patterns 
must be infrequent. But this technique suffers from candidate generation-and-test 
problem and needs several database scans. Han et al. [2] proposed the frequent pattern 
tree (FP-tree) and FP-growth algorithm which overcome the problem of candidate 
generation-and-test of [1] and needs only two-database scans to find all the frequent 
patterns.  

The number of occurrences may not always represent the significance of a pattern. 
Mining interesting patterns from database plays an important role in data mining 
research. Mining periodic patterns [10, 11, 12, 13] and cyclic patterns [13, 14] in a 
static database have been well-addressed over the last decade. Periodic pattern mining 
problem in time series data focuses on the cyclic behavior of patterns either full 
periodic pattern mining [11, 13] and partial periodic pattern mining [12] of time 
series. Recently, Tanbeer et al. [3] proposed the RP (Regular Pattern tree) to mine the 
regularly occurs patterns. The basic model of regular patterns is as follows [3]. 

Let },...,,{ 21 niiiI = be a set of items. A set IX ⊆ is called a pattern (or an 

itemset). A pattern containing ‘k’ number of items is called k-itemset. A transaction  
t = (tid, Y) is a tuple where tid is the transaction-id and Y is a pattern. A transactional 
database T is a set of transactions },...,{ ml ttT = with m = |T|, i.e., total number of 

transactions in database. If IX ⊆ , it is said that X occurs in t and such tid is 

denoted as ].,1[, mjt X
j ∈ Let TttT X

k
X
j

X ⊆= },....,{ where kj ≤ and ],1[, mkj ∈ be the 

ordered set of transactions in which pattern X has occurred. Let X
st  and X

tt , where 

ktsj ≤<≤  be the two consecutive transactions in XT . The number of transactions or 

time difference between X
st and X

tt , can be defined as a period of X, say Xp . Then a 

period of X, .X
t

X
s

X ttp −= Let },...,{ 1
X
s

XX ppP = be the set of periods for pattern X.  

For simplicity, assume the first and last transactions in database as ‘null’ with tf = 0 
and tl = tm respectively. The regularity of X, denoted as Reg(X) ),...,max( 1

X
s

X pp= . The 

pattern X is called regular if Reg(X)≤maxPrd where maxPrd is the user-specified 
maximum regularity constraints.. The regularity of a pattern can be described in 
percentage of |T|.  
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Example 1. Consider the transactional database shown in Table 1. tid is a 
identification of each transaction in this database. The set of items in the database, 
I={A,B,C,D,E}. For instance, in Table 1 the set of transactions where pattern “AB” 
appears in tids 2, 3, 4, and 5. So TAB ={ 2, 3, 4, 5}. The periods for this pattern are 2 
(= 2- tf), 1 (= 3 - 2), 1(= 4 - 3), 1 (= 5 - 4) and 4 (= tl - 4), where tf  = 0 represents the 
initial transaction and tl  = 9 represents the last transaction in database. The regularity 
of ab, Reg(AB)=max(2, 1, 1, 1, 4) = 4. If the user-specified maxPrd = 3, then “AB” is 
not a regular pattern because Reg(AB)>maxPrd.  

But in many real-world applications, it is difficult for the patterns to appear 
regularly without any interruptions. So in erroneous or noisy environment, maxPrd 
measure for regularity calculation is not effective.  

Example 2. The set of all transactions where pattern “C” appears in the database of 
Table 1 is TC= {2, 5, 6, 7, 9}. Then the period of pattern “C” is PC= {2, 3, 1, 1, 2, 0}. 
For a value of maxPrd=3, pattern “C” is a regular pattern. But if the item “C” deleted 
anyhow from tid=5 for error or noise or if it not appear in id =5, then the pattern 
become irregular for given maxPrd. Although the pattern “C” occurs regular manner 
at the end of the database but only one large interval makes it irregular. 

Even though mining regular patterns are closely related to our work, but we cannot 
directly applied it for finding regularly frequent patterns from transactional database 
because regular patterns do not consider the support threshold which is only 
constraint to be satisfied by all frequent patterns. On the other hand, our proposed 
regularly frequent pattern mining technique, introduce a new interesting measure of 
regularity based on variance of intervals and provide the set of patterns that satisfy 
support thresholds and regularity threshold finally in a transactional database. 

3 Proposed Model 

To mine frequent pattern that occur regularly in a database, we propose a new 
methodology. For temporal regularity measure, we use variance of interval time 
between pattern occurrences instead of maxPrd. We use the notions period and set of 
periods that are defined in section 2. 

 
Definition 1 (Regularity of Patten X): Let for a TX, PX be the set of all periods of X 
i.e., },...,,{ 21

X
n

XXX pppP = , where n is the total number of periods in PX. Then 

the average period value of pattern X represent as, 

                         ∑
=

−
=

N

k

X
k

n

p
X

1

                                      (1) 

Then the variance of periods for pattern X is represent as, 

∑
=

−
−=

N

k

X
kX

n

Xp

1

2)(σ                               (2) 
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The regularity of X can be denoted as Reg(X) = Xσ (variance of periods for  
pattern X).  

Example 3. In the database of Table 1, pattern “BF” occurs in tid=3 and tid=5. Then 
TBF = {3, 5} and PBF = {3, 2, 4}. Then average period value for pattern “BF”=9/3=3 

and variance value, 67.0
3

)34()32()33( 222

=−+−+−=BFσ  

The maximum period of the pattern “BF” is 4. So, If the user-specified maxPrd=3, 
then “BF” is not a regular pattern according the exits method, because 
Reg(BF)>maxPrd. On the other hand, if the user-specified variance value of interval, 
max_variance = 1.0, then pattern BF is a regular pattern, because the variance of 
interval of “BF” is 0.67 i.e. Reg(BF) < max_variance. 

From above example, we can see that only one large interval can makes a pattern 
irregular if we use maxPrd as regularity. On the other hand, if we use variance of 
interval time between pattern occurrences in database, then one large interval of that 
pattern has small effect in the value of variance calculation. Therefore, by using 
variance of interval as regularity we can mine regular pattern properly.  
 
Definition 2 (Support): The number of transactions in a database T that contain X is 
called the support of X in database T and is denoted as Sup(X) = |TX|, where |TX| is 
the size of TX. For example the support of pattern “BF” in the database T of Table 1 is 
Sup(BF)=2, since |TBF|=2. 

 
Definition 3 (Regularly frequent Pattern): A pattern is called a regularly frequent 
pattern if it satisfies both of the following two conditions: (i) its support is no less 
than a user-given minimum support threshold, say, min-sup, α and (ii) its regularity is 
no greater than a user-given maximum regularity threshold say, max_variance, β. 

 
Problem Definition: Given a transactional database T, min-sup (α) and 
max_variance (β) constraints, the objective is to discover the complete set of regularly 
frequents in T having than support no less than α and regularity no more β. 

4 RF-tree: Design, Construction and Mining 

In this section, we first introduce RF-tree (Regularly Frequent Pattern tree) for mining 
regularly frequent patterns and then discuss the efficient mining technique on it. To 
facilitate high degree of compactness in the tree structure, items in a RF-tree are 
arranged in frequency-descending item order. A frequency-descending tree can 
provide not only a highly compact tree structure but also an effective mining process 
using pattern growth mining techniques. This has shown and proven in [2] and [9]. 
Our given regularity (variance of internals) does not maintain downward closure 
property. Since only the frequent items will play important role in the frequent-pattern 
mining, so it is need to perform one database scan to identify the set of frequent 
length-1 items say, F for a given min_sup. At this scan, as we know the each length-1 
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items tid occurrence information, therefore, we can easily calculate the regularity by 
definition 1. To facilitate the tree traversal and to store all length-1 items, like FP-tree 
[2], an item header list, called frequent list (F-list) is built. This list consists of each 
distinct item with relative support (i.e., frequency).Once the F-list is built, we 
generate F by removing items that are not frequent. The support values of items in F 
are then used for sorting the F-list in support descending order to facilitate the RF-tree 
construction. In the next sections, we describe the structure and construction of  
RF-tree. 

4.1 Structure of RF-tree 

The structure of a RF-tree consists of one root node referred to as the “null”, a set of 
item-prefix sub-trees (children of the root), and a frequent item list, called the F-list. 
Similar to an FP-tree, each node in a RF-tree represents an itemset in the path from 
the root up to that node. An important feature of a RF-tree is that, in the tree structure 
it maintains the appearance information for each transaction. To explicitly track such 
information, it keeps a list of tid information only at the last item-node for a 
transaction. Hence, a RF-tree maintains two types of nodes; say ordinary node and tail 
node. The former are types of nodes used in FP-tree that do not maintain tid 
information. On the other hand, the latter type used in RP-tree [3], can be defined as 
follows: 

Definition 4 (tail node): Let t={y1, y2,…, yn} be a transaction that is sorted according 
to the F-list order. If t is inserted into RF-tree in this order, then the node of the tree 
that represents item yn is defined as the tail-node for t and it explicitly maintains t’s 
tid. Irrespective of the node type, no node in RF-tree needs to maintain a  
support count value like FP-tree. Each node in the RP-tree maintains parents, 
children, and node traversal pointers. So, the structures of an ordinary node and a tail 
node are given as follows: 

For ordinary node: M, where M is the item name of the node. 
For tail node: M [t1, t2,…,tn], where M is the item name of the node and ti’ i∈ [1,n], 

is a transaction-id in the tid-list, indicating that M is the tail-node for transaction ti. 
From above definitions and the RF-tree node structure we can deduce the 

following lemma. 
 

Lemma 1: A tail-node in an RF-tree inherits an ordinary node; but not vice versa. 
 

Proof: The structure of an ordinary node states that it exactly maintains three types of 
pointers: a parent pointer, a list of child pointers, and a node traversal pointer. A tail-
node maintains all such information like an ordinary node. It also maintains the  
tid-list, which is additional information. Since the tid-list is not maintained in an 
ordinary node, so we can say, there is an ordinary node in every tail-node and in 
contrast, no tail-node in an ordinary node. 
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Fig. 1. Construction of RF-tree 

4.2 Construction of RF-tree 

The RF-tree is constructed in such a way by the second scan of database that, it only 
contains nodes for items in F-list and is arranged in sorted F-list order. The 
construction of the RF-tree is similar to that of the FP-tree but the node structure of 
the RF-tree significantly differs from the FP-tree. We use the following example to 
illustrate the step-by-step construction process of the RF-tree in Fig. 1. 

Consider the database of Table 1. At the first scan of database derives a list of F 
items, {(A:5), (B:6), (C:5), (D:5), (E:6), (F:3)} (the number after “:” indicates the 
support of item). Fig. 1 (a) shows the frequency-descending F-list for min_sup=4, 
which is constructed through the first database scan by removing the items with 
min_sup<4. Then, item “F” is removed because its min_sup<4. Then only the items 
in the F-list of Fig. 1 (a) are involved in RF-tree construction that follows the FP-tree 
[2] construction technique to insert any sorted transaction into the tree.  To simplify 
the figures we do not show the node traversal pointers in trees.  

The tree constructing starts with inserting the first transaction {A, D} according to 
F-list order, as shown in Fig. 1 (b). Since all items in the transactions are frequent, 
they are listed in the RF-tree. The node “D:1”is the tail-node for the transaction. 
Hence, it carries the tid (i.e., 1) of the transaction in its tid-list. The scan of the second 
transaction leads to the construction of the second branch of the RF-tree as in Fig. 1 
(c). We insert {A, B, C, E} in the order of {B, E, A, C}in the tree with node “C:2” 
being the tail-node that carries the tid information for the transaction. Then we insert 
the third transaction {A, B, E, F} in the tree. Since only the frequent items are 
inserted in the tree. After removing the infrequent items from tid=3 (i.e., ‘F’) and 
sorting the remaining frequent items according to the F-list, we insert {A, B, E, F} in 
the order of {B, E, A} in the tree which shares a common prefix (B, E, A) with the 
existing path (B, E, A, C) and created (“A:3”) as a tail node with value 3 in its tid-list 
is shown in Fig. 1 (d). After inserting all the transactions in similar fashion the final 
RF-tree we get is shown in Fig.1. (e).  
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Property 1: An RF-tree contains a complete set of frequent item projection for each 
transaction in TDB only once.  

One can assume that the structure of RF-tree may not be memory efficient, since it 
explicitly maintains tids for each transaction in the tree. Like [3], we argue that, RF-
tree achieves the memory efficiency by keeping only transaction information at the 
tail node and avoiding the support count field at each node. In the best case, when 
every transaction is same, then the number of tail node being one. On the other hand, 
in worst case, when every transaction is different, then number of tail-nodes is equal 
to the number of transactions in database.  

4.3 Mining Regularly Frequent Patterns 

Construction of a highly compact RF-tree enables the subsequent mining of the 
regularly frequent patterns by using a pattern growth approach. Similar to the FP-
growth [2] mining approach, we recursively mine the RF-tree of decreasing size to 
generated regularly frequent patterns by creating conditional pattern-bases (PB) and 
corresponding conditional trees (CT) without additional database scan. Though both 
RF-tree and FP-tree arrange items support-descending order, we cannot directly apply 
the FP-growth mining on a RF-tree, because RF-tree does not maintain the frequency 
count at each node. Moreover it needs to handle the tid-lists at tail-nodes during 
mining. For this reason, we devise a pattern growth mining technique that can handle 
the additional features of the RF-tree.  

For regularly frequent patterns mining from RF-tree, the basic operations are (i) 
counting length-1 frequent items (ii) constructing a conditional pattern-base for each 
regular item and (iii) constructing the conditional tree for each conditional pattern-
base. Then generate the frequent pattern from the conditional tree. At last we check 
the regularity of generated frequent pattern to find regularly frequent pattern. Before 
discussing these operations in details, we explore the following important property 
and lemma of an RF-tree like RP-tree [3]. 
 
Property 2: The tid-list in a RF-tree maintains the occurrence information for all the 
nodes in the path (from that tail-node to the root) at least in the transactions of the list.  

 
Lemma 2: Let X={b1, b2…, bn} be a path in a RF-tree where node bn is the tail node 
that carries the tid-list of the path. If the tid-list is pushed-up to node bn-1, then the 
node bn-1 maintain the occurrence information of the path X’={ b1, b2…, bn-1 } for the 
same set of transactions in tid-list without any loss. 
 
Proof: Based on Property 2, the tid-list at node bn maintains the occurrence 
information of the path Z’ at least in transactions it contains. So, the same tid-list at 
node bn-1 exactly maintains the same transaction information for Z’ without any lose. 
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Fig. 2. Conditional pattern-base and conditional tree construction with the RF-tree 

F-list provides the length-1 frequent items. The conditional pattern-base is 
constructed starting from the item at the bottom of the F-list. At the time of creating 
the conditional pattern-base, a small F-list for that item is also created. For our 
example, “D” is the bottom-most item in the F-list. The conditional pattern-base tree 
of D is shown in Fig. 2 (a). According to the lemma 2, the tid-list of D is pushed-up to 
its respective parent nodes A, C, C and E. So, each parent node of D is converted to a  
tail-node. For node D, its immediate frequent pattern is (D:1, 6, 7, 8, 9) i.e., D occurs 
in transaction 1,6,7,8 and 9 so its support is 5 and it has four paths in RF-tree: (A:1, 
D:1), (B, C, D:6, 9), (E, C, D:7) and (E, D:8) where number after “:” indicates each 
sub-pattern occurring tid. Since D’s conditional pattern-base {(A:1), (B, C:6,9), (E, 
C:7), (E:8)} generates no frequent items, the mining of D is terminates and only 
frequent-1 pattern is D. Then we check the regularity of pattern D. Since we know the 
occur transactions of D, then we easily calculate the regularity of D by definition 1, 
which is 2.54. In this example, we set our regularity threshold, max_variance=1.0. 
Since Reg(D)>1.0, therefore, D is not regularly frequent pattern.  

For node C, its immediate frequent pattern is (C:2, 4, 6, 7 ,9) and it has three path, 
(B, E, A, C:2, 4), (B, C:6, 9) and (E, C:7). Then C’s conditional pattern-base is {(B, 
E, A:2, 4), (B:6, 9), (E:7)} which is shown in Fig. 2 (b). Then C’s conditional tree 
leads only one branch (B:2, 4, 6, 9) and generated frequent patterns are (BC:2, 4, 6, 9) 
and (C:2, 4, 6, 7, 9). Then, we calculate the regularity of BC and C by definition 1 and 
get their respective regularity values are 0.96 and 0.583. Since {Reg(BC), 
Reg(C)}<1.0, so BC and C both are regularly frequent patterns. 

For node A, its immediate frequent pattern is (A:1, 2, 3, 4, 5) and it’s conditional 
pattern-base is (B, E:2, 3, 4, 5), which is shown in Fig. 2 (c). Then A’s conditional 
tree leads only one branch (B, E:2, 3, 4, 5) and generated frequent patterns are (AB:2, 
3, 4, 5), (AE:2, 3, 4, 5), (ABE:2, 3, 4, 5), and (A:1, 2, 3, 4, 5). If we calculate the 
regularity of these patterns, we get their respective values are 1.36, 1.36, 1.36 and 
1.25. Since, {Reg(AB), Reg(AE), Reg(ABE), Reg(A)}>1.0, these patterns are not 
regularly frequent patterns.   
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Similarly, node E derives (E:2, 3, 4, 5, 7, 8) and its conditional pattern-base is (B:2, 
3, 4, 5). E’ conditional tree leads only once branch (B:2, 3, 4, 5) and generated 
frequent patterns are (BE:2, 3, 4, 5) and (E:2, 3, 4, 5, 7, 8) and their respective 
regularity is 1.23 and 0.204. Since Reg(BE)>1.0, so, BE is not regularly frequent and 
Reg(E)<1.0, therefore E is a regularly frequent pattern. 

Table 2. Mining the RF-tree by creating conditional (sub-) pattern-bases 

Item Conditional pattern- 
base 

Conditional 
tree 

Frequent 
pattern 

Regularly 
frequent 
pattern 

     

D {(A:1),(B,C:6,9), 
(E,C:7), (E:8)} 

Ø (D:1,6,7,8,9) Ø 

C {(B,E,A:2,4), (B:6,9), 
(E:7)} 

(B:2,4,6,9) (BC:2,4,6,9), 
(C:2,4,6,7,9) 

BC,C 

A (B,E:2,3,4,5) {(B:2,3,4,5), 
(E:2,3,4,5)} 

(AB:2,3,4,5), 
(AE:2,3,4,5), 
(ABE:2,3,4,5), 
(A:1,2,3,4,5) 

Ø 

E (B:2,3,4,5) (B:2,3,4,5) (BE:2,3,4,5, 
(E:2,3,4,5,7,8) 

E 

B Ø Ø (B:2,3,4,5,6,9) B 

 
Node B derives only (B:2, 3, 4, 5, 6, 9) but no conditional pattern-base. If we 

calculate the regularity of B, we get 0.77 which is less than our given regularity 
threshold, so B is regularly frequent pattern. The conditional pattern-base, the 
conditional-trees, generated frequent patterns and regularly generated frequent 
patterns are summarized in Table 2. 

From the Table 2, we can see that for our example database in Table 1, there are 10 
frequent patterns but the numbers of regularly frequent pattern are only 4. 

With the above mining process, one can see that, from an RF-tree constructed on a 
TDB, the complete set of regularly frequent patterns for given min_sup and 
max_variance thresholds with the pattern growth approach. This approach is efficient 
due to the support descending item order in the RF-tree structure. 

5 Experimental Results 

In this section, we present the experimental results on mining regularly frequent 
patterns on RF-tree. Our programs are written in Microsoft Visual C++ and run with 
Windows XP on a 2.66 GHz machine with 1GB of main memory. To evaluate the 
performance of our proposed approach, we have performed experiments on IBM 
synthetic dataset (T10I4D100K) and real life dataset musroom from frequent itemset 
mining dataset repository (http://fimi.cs.helsinki.fi/data/).   
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Our experimental analysis divided into three parts. First, we study the compactness 
of RF-tree; second, we show its performance with mining the set of regularly frequent 
patterns; and finally, we give the results to prove the scalability in mining regularly 
frequent patterns. 

Table 3. Memory comparison between RF-tree and FP-tree 

Dataset 
min_sup, α (%) 

Tree max_varia
nce, β 

(%) 

Memory (MB) 
α1            α2           α3 

T10I4D100K 

 

RF-
tree 

0.15 
0.30 
0.45 

0.45       0.415      0.321 
5.750      3.825      0.386    
7.675      4.250      0.390  

FP-
tree 

-- 8.350      4.655      0.412 

musroom 

 

RF-
tree 

1.5 
3.0 
4.5 

0.127      0.125      0.110 
0.178      0.138      0.115 
0.232      0.140      0.117 

FP-
tree 

-- 0.285      0.175      0.115 

5.1 Compactness of the RF-tree 

To show the compactness of RF-tee we compared its size with FP-tree [2] for given 
support and regularity thresholds. For FP-tree, we considered min_sup, because it is a 
support threshold-based tree structure. The memory consumptions of RF-tree and FP-
tree on the change of min_sup (α) and max_variance (β) values over synthetic dataset 
(T10I4D100K) and real life dataset musroom are shown in Table 3. The first column 
of the table shows the datasets and several min_sup ( α ) and the changes of 
max_variance (β) are presented in column 3. 

From Table 3, we can see that, keeping the min_sup fixed the memory usages of 
RF-tree increases with the increase of max_variance values. On the other hand, for 
keeping the max_variance fixed the tree size become smaller with increasing values 
of min_sup. From Table 3, we also see that, even though the tree size increases with 
the decrease and increase of min_sup and max_variance respectively, a RF-tree 
achieves compactness similar to or better than an FP-tree for most min_sup and max 
_variance values.  

5.2 Execution Time of the RF-tree 

In the second experiment, we show the effectiveness of RF-tree in mining regularly 
frequent pattern mining in terms of execution time. FP-tree [2] store only the frequent 
items with a given threshold and RP-tree [3] is designed only the regularity threshold. 

α1=1.0, α2=2.0, α3=3.0 

α1=10, α2=20, α3=30 
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Therefore, it is not possible to find the set of regularly frequently patterns from  
FP-tree and RP-tree. In this experiment we show the performance variation of only 
RF-tree with the changes of thresholds. The performance on execution time 
experiments for the given datasets is shown in Fig. 3. For the given min_sup and 
max_variance thresholds, the execution time is shown in the y-axis of the graphs.  

 

 

Fig. 3. Execution time over RF-tree 

The x-axis in each graph shows the change of min_sup value in the form of 
percentage of database size. It is shown from the Fig. 3 that, for sparse dataset 
T10I4D100K and dense dataset musroom, RF-tree takes almost similar amount of 
time for the variations of the max_variance values when min_sup values are relatively 
high. On the other hand, as the max-variance go down, the gaps become wider. 

5.3 Scalability of the RF-tree 

We study the scalability of the RF-tree by varying the number of transactions in the 
database on execution time and required memory. For this test we use kosarak dataset 
for its huge sparse dataset with a large number of distinct items (41,270) and 
transactions (990,002). This dataset is divided into five portions each of 0.2 million 
transactions. The experimental results are present in Fig. 4, where we fix min_sup 3% 
and max_variance 40%. Fig. 4 (a) shows the total execution time including the RF-
tree constructing time and corresponding mining time in y-axis and the number of 
transactions are put in the x-axis. Fig. 4 (b) shows the required memory in y-axis with 
the increase of database size. From Fig. 4, we can see that RF-tree shows stable result 
of about linear increase of execution time and memory usage with respect of the size 
of the database. 

 

(a) Execution time over T10I4D100K (b) Execution time over musroom 
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Fig. 4. Scalability of RF-tree 

6 Conclusions 

In this paper, we have introduced an interesting pattern mining problem, called 
regularly frequent pattern mining from transactional database under the user given 
support and regularity thresholds. The effectiveness of finding such patterns in real-
world applications are also shows in this paper. We use RF-tree, a highly compact 
tree structure to capture the database content, and a pattern growth mining approach 
to finding the complete set of regularly frequent patterns. The experimental result 
shows that RF-tree can provide the time and memory efficiency during mining 
regularly frequent patterns.     
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Abstract. Over the past two decades, numerous algorithms have been
proposed for mining frequent itemsets from precise data. However, there
are situations in which data are uncertain. In recent years, tree-based
algorithms have been proposed to mine frequent itemsets from uncertain
data. While the key success of tree-based algorithms for mining precise
data is due to the compactness of a tree structure in capturing precise
data, the corresponding tree structure in capturing uncertain data may
not be so compact. In this paper, we propose a novel tree structure for
capturing uncertain data such that it is as compact as the tree for cap-
turing precise data. Moreover, we also propose two fast algorithms that
use this compact tree structure to mine frequent itemsets. Experimental
results showed the compactness of our tree and the effectiveness of our
algorithms in mining frequent itemsets from uncertain data.

Keywords: Data mining, tree-based mining, frequent patterns, proba-
bilistic databases, uncertain data.

1 Introduction and Related Work

Over the past two decades, there have been numerous studies [2,7,9,10] on mining
frequent itemsets from precise data such as databases of market basket trans-
actions, web logs, and click streams. In these databases of precise data, users
definitely know whether an item is present in, or is absent from, a transaction in
the databases. However, there are situations in which users are uncertain about
the presence or absence of some items or events [3,4,11]. For example, a physi-
cian may highly suspect (but cannot guarantee) that a patient suffers from flu.
The uncertainty of such suspicion can be expressed in terms of existential prob-
ability. So, in this probabilistic database of patient records, each transaction tj
represents a patient’s visit to the physician’s office. Each item within tj repre-
sents a potential disease, and is associated with an existential probability value
expressing the likelihood of a patient having that disease in tj . For instance,
in tj, the patient has an 80% likelihood of having the flu, and a 60% likelihood
of having a cold regardless of having the flu or not. With this notion, each item

� Corresponding author.
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c© Springer-Verlag Berlin Heidelberg 2012



Fast Tree-Based Mining of Frequent Itemsets from Uncertain Data 273

in a transaction tj in traditional databases containing precise data can be viewed
as an item with a 100% likelihood of being present in tj .

As there are many real-life situations in which data are uncertain, efficient
algorithms for mining uncertain data are in demand. To find frequent item-
sets from uncertain data, several algorithms [5,6,12,14,16] have been proposed
over the past few years, which include tree-based algorithms UF-growth [13] and
UFP-growth [1]. Observing that FP-growth [8] (a tree-based algorithm) usu-
ally outperforms Apriori [2] when mining precise data, we previously proposed
UF-growth [13] for mining uncertain data. Note that key success of FP-growth
over Apriori is mainly due to its FP-tree, which is a compact tree structure
capturing frequent items within transactions in the databases of precise data.
By extracting appropriate tree paths to construct subsequent FP-trees, frequent
itemsets can be mined. Each tree path represents a transaction. Each node in a
tree path captures (i) an item x and (ii) its actual support (i.e., occurrence count
of x in that tree path). Tree paths (from the root) are merged if they share the
same items (i.e., the captured transactions share the same prefix items). Due to
this path sharing, the FP-tree is usually compact. However, when dealing with
uncertain data, the situation is different (because each item is associated with an
existential probability value). The expected support of any itemsetX is the sum of
products of existential probability of items within X . Hence, UF-growth [13] uses
a UF-tree to capture frequent items within transactions of uncertain data. Each
node in an UF-tree captures (i) an item x, (ii) its existential probability value,
and (iii) the occurrence count of x in that tree path. By doing so, UF-growth
finds all and only those frequent itemsets by computing the expected support
of an itemset X (as the sum of products of the captured existential probabil-
ity values). Tree paths are merged if they share the same items and existential
probability values. Consequently, UF-trees may not be as compact as FP-trees.

To reduce the tree size, UFP-growth [1] groups similar nodes (i.e., nodes
with the same item x but similar existential probability values) into a cluster.
Each cluster of the item x captures (i) the maximum existential probability value
of all nodes within the cluster and (ii) the number of existential probability
values in each cluster. Depending on the clustering parameter, the resulting
tree—namely, UFP-tree—may be as large as the UF-tree (i.e., no reduction in
tree size). On the other hand, if the UFP-tree is smaller than the UF-tree,
then UFP-growth may return approximate results (e.g., with false positives—
infrequent itemsets).

In this paper, we study the following questions: Can we further reduce the
tree size (say, smaller than UF-trees) while minimizing the number of false
positives? How to mine frequent itemsets from the resulting tree? Our key
contributions of this paper are as follows:

1. a capped uncertain frequent pattern tree (CUF-tree), which can be as compact
as FP-trees; and

2. two mining algorithms, called CUF-growth and CUF-growth*, which are
guaranteed to find all frequent itemsets (i.e., no false negatives) from
uncertain data.
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The remainder of this paper is organized as follows. The next section provides
background. We propose our CUF-growth and CUF-growth* algorithms in Sec-
tions 3 and 4, respectively. Experimental results are shown in Section 5. Section 6
gives conclusions.

2 Background

Let Item={x1, x2, . . . , xm} be a set of domain items and X={x1, x2, . . . , xk} be
a k-itemset (i.e., a set of k items), where X ⊆ Item and k ∈ [1,m]. A transaction
database DB={t1, t2, . . . , tn} contains a collection of n transactions, and each
transaction tj is a subset of Item.

Unlike precise databases, each item xq in a transaction tj in probabilistic
databases of uncertain data is associated with an existential probability value
P (xq, tj), which expresses the likelihood of xq to appear in tj . Note that 0 <
P (xq, tj) ≤ 1.

When items in a k-itemset X in a transaction tj (where X ⊆ tj) are in-
dependent, the expected support or existential probability P (X, tj) of X
in tj is the product of the corresponding existential probability values of the
items within X , i.e., P (X, tj) =

∏
x∈X P (x, tj). To a further extent, the ex-

pected support expSup(X) of X in DB can be computed by summing the
expected support of X in tj over all transactions tj ’s in DB, i.e., expSup(X) =∑n

j=1 P (X, tj) =
∑n

j=1

∏
x∈X P (x, tj), where n = |DB|.

An itemset X is frequent in a probabilistic database DB of uncertain data
if its expected support expSup(X) is no less than a user-specified minimum
support threshold (denoted as minsup). Given a minsup and DB, frequent
itemset mining from uncertain data is to find from DB all frequent itemsets
having expected support higher than or equal to minsup.

3 Our CUF-growth Algorithm and CUF-tree Structure

In this section, we propose (i) the CUF-tree structure and (ii) the CUF-
growth algorithm that uses CUF-trees to mine frequent itemsets from uncer-
tain data.

First, let us introduce some terms that are relevant to the remainder of this
paper. Note that the CUF-tree is constructed by considering an upper bound of
existential probability for each transaction. We call this upper bound the cap
of the transaction existential probability, as defined below.

Definition 1. The transaction cap of a transaction tj, denoted as PCap(tj),
is defined as the product of the two highest existential probability values of items
within tj. Let h=|tj| represent the length of tj, M1 = maxq∈[1,h] P (xq, tj) and

M2 = maxr∈[1,h],r �=q P (xr , tj). Then, P
Cap(tj) =

{
M1 ×M2 if h > 1,
P (x1, tj) if h = 1.

The transaction cap provides users with an upper bound of existential probability
values of all possible k-itemsets (where k > 1) in each transaction, as stated in
the following theorem. (Due to space limitation, we omit the proof.)
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Theorem 1. The existential probability of any k-itemset X (with k ≥ 1) in
a transaction tj is always less than or equal to the transaction cap of tj, i.e.,
P (X, tj) ≤ PCap(tj), where X ⊆ tj.

Definition 2. The cap of expected support of an itemset X, denoted as
expSupCap(X), is defined as the sum of all transaction caps of tj in which X
occurs. In other words, expSupCap(X) =

∑n
j=1(P

Cap(tj) | X ⊆ tj), n = |DB|.
Theorem 2. Given any k-itemset X in DB (where k ≥ 1), expSup(X) ≤
expSupCap(X).

Based on Theorem 2, we obtain following conditions with respect to the cap of
existential probability of X and the user-specifiedminsup: Given any k-itemsetX
(where k ≥ 1) in DB...
(i) if expSupCap(X) < minsup, then X cannot be frequent;
(ii) if X is a frequent itemset, then expSupCap(X) must be at least minsup.
Based on these two conditions, our pattern pruning technique guarantees that
no false negatives would be in our mining result.

The downward closure property [2] of support has been identified as an impor-
tant property to remarkably reduce the search space and achieve time efficiency
during the frequent itemset mining process. According to this property, if an
itemset is frequent, then all of its subsets are guaranteed to be frequent. Equiva-
lently, if an itemset is infrequent, then none of its supersets can be frequent. The
use of any parameter satisfying this property can be considered as an efficient
technique for mining. Note that the proposed cap of expected support of an
itemset (Definition 2) satisfies the downward closure property because the cap
of expected support of any subset Y of an itemset X must be greater than or
equal to that of X : expSupCap(Y ) ≥ expSupCap(X) for Y ⊆ X . Based on the
downward closure property of the cap of expected support, we then construct our
CUF-tree and use it to mine all frequent itemsets in our CUF-growth algorithm.

3.1 Construction of the CUF-tree

In general, the existential probability value of an item may vary from one trans-
action to another. For example, the existential probability values of item c in
transactions t1, t2, t3, and t4 in DB in Table 1 are 0.6, 0.5, 0.9, and 0.2, respec-
tively. This implies that c is more likely to be in t3 than in t4. Such phenomenon

Table 1. A transaction database DB (minsup=1.0)

tID Contents Contents (after 1st scan) PCap

t1 {a:0.6, b:0.9, c:0.6, e:0.6} {a:0.6, b:0.9, c:0.6, e:0.6} 0.54
t2 {a:0.6, b:0.5, c:0.5, d :0.7} {a:0.6, b:0.5, c:0.5} 0.30
t3 {a:0.2, c:0.9, e:0.4} {a:0.2, c:0.9, e:0.4} 0.36
t4 {a:0.9, c:0.2, d :0.2, e:0.8} {a:0.9, c:0.2, e:0.8} 0.72
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c       2.2
e       1.8
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Fig. 1. The UF-tree for DB in Table 1 when using minsup=1.0
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Fig. 2. CUF-trees for DB in Table 1 when using minsup=1.0

is not uncommon when dealing with probabilistic databases. When using the
UF-tree [13], one needs to keep four nodes for c because the existential proba-
bility values for c are different in the four transactions in DB. Nodes can only
be merged if they capture the same item and the same existential probability
values. Fig. 1 shows the UF-tree constructed for DB when using minsup=1.0.
Note that there are three a nodes as children of the root node. One cannot merge
them because they do not share the same existential probability values. Hence,
the UF-tree for capturing uncertain data may be large.

Understanding the above limitation, we propose a Capped UF-tree (CUF-
tree), which efficiently captures uncertain data and avoids repetition of the
same node (even with different existential probability values). Instead of having
different nodes for each existential probability value of the item, we store only
a transaction cap value for each item. This makes the CUF-tree to be more
compact. So, each node in our CUF-tree consists of (i) an item x, and (ii) the
transaction cap (i.e., the sum of all transaction caps for those transactions that
pass through or end at the node). See Fig. 2 (cf. Fig. 1).

Algorithm 1 shows our CUF-tree construction algorithm, which can be
described as follows. The CUF-tree is constructed in two database scans. With
the first scan of the database, we calculate the expected support of each domain
item, remove infrequent items, and then sort all frequent items in descending
order of their total expected support (lines 3 and 4). Then, the CUF-tree is con-
structed with the second database scan in a similar fashion as the construction
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Algorithm 1: Construction of the CUF-tree
Input: A transactional database DB, a user-specified minimum support threshold minsup
Output: A CUF-tree capturing items from DB with minsup

1 begin

2 PCap = 0, h = 0;
3 scan DB, calculate expected support and frequency of each item;
4 remove all infrequent items, arrange frequent items in a pre-defined order, let I-list be

the resultant item list;
5 create the root node R (= NULL) of a CUF-tree;
6 for each transaction tj ∈ DB do
7 delete all infrequent items from tj ;
8 if tj �= NULL then
9 sort tj according to the order in I-list h = |tj|;

10 if h = 1 then PCap = P (x, tj);

11 else PCap = product of two highest existential probabilities of items in tj ;

12 call Insert CUF-tree(R, tj , P
Cap);

13 for each item x ∈ I-list do

14 if expSupCap(x) < minsup then
15 delete x and all of its nodes from the I-list and the CUF-tree, respectively;

16 Procedure Insert CUF-tree(R, tj , t
Cap)

17 begin
18 let the sorted items in tj be [x|X], where x is the first item and X is the remaining

items in the list;
19 if a child C of R such that C.item = x.item then

20 select C as the current node; C.tCap = C.tCap + tCap;
21 else

22 create a new node C as a child of R; C.tCap = tCap;

23 call Insert CUF-tree(C, X, tCap);

of FP-trees. When scanning each transaction in the second database scan, we
compute its transaction cap (lines 10 and 11), insert items into the CUF-tree
according to the sorted list order, and add the transaction cap value to each
node (line 20). For better understanding of this CUF-tree construction process,
let us consider the following example.

Example 1. Consider DB in Table 1, and let the user-specified support threshold
minsup be set to 1.0. The CUF-tree construction algorithm first scans DB once to
construct an item list (or I-list for short) of expected support of each item in the same
fashion as does in UF-tree by computing their expected support (i.e., a:2.3, b:1.4, c:2.2,
d:0.9, e:1.8), removing infrequent items (e.g., d) from the list, and sorting the remaining
items. This results in I-list=〈a:2.3, c:2.2, e:1.8, b:1.4〉.

Each transaction in DB is then scanned the second time to compute its transaction
cap and to construct the CUF-tree at the same time. As infrequent items have no
contribution in frequent itemset mining, they are not inserted into the CUF-tree. When
calculating the cap, we take in account only the frequent items in that transaction.
This leads to a tighter upper bound (i.e., transaction cap) for each transaction to be
maintained in the CUF-tree. For instance, even though the existential probability value
of item d in t2 (i.e., 0.7) is the maximum among all existential probability values in t2
(i.e., max{0.6, 0.5, 0.5, 0.7}), it does not contribute to the cap calculation for t2 because
d is an infrequent item. Hence, PCap(t2)=0.6 × 0.5 = 0.3 (instead of 0.7 × 0.6 = 0.42),
which eventually helps us to generate minimum number of false positives. The last
column of Table 1 shows the transaction cap for each transaction in DB.
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After computing the transaction cap of a transaction, we insert its frequent items
into the CUF-tree according to I-list order. At the same time, we add its cap in the I-list
to calculate the total cap of expected support of each of its items. Thus, transaction t1
is inserted into the CUF-tree in the order of 〈a, c, e, b〉 with transaction cap 0.9×0.6
= 0.54 at each node. Transaction t2 is then inserted in the same fashion. Since t1 and
t2 share a common prefix (i.e., 〈a, c〉), we increase the transaction cap value for the
nodes in the common prefix part by the value of PCap(t2) (i.e., 0.54+0.3). Nodes in
the remaining part of t2 carry the value of PCap(t2)=0.3. Fig. 2(a) shows the contents
of the CUF-tree after capturing all the transactions in DB in Table 1.

We can easily observe from the figure that the I-list of the CUF-tree maintains
expSupCap(X) for each 1-itemset X. Based on the total cap of expected support
calculation method, we have the following lemma.

Lemma 1. For a k-itemset X (where k=1) in DB, if expSupCap(X) < minsup,
then any m-itemset Z (where m > k) in DB that contains X (i.e., X ⊂ Z)
cannot be frequent.

The above lemma provides us the opportunity to prune the CUF-tree further by
removing any item if its total cap of expected support is less than the minsup. To
save tree traversal cost in searching for such an item, we use the node traversal
pointers to horizontally reach to that node in the CUF-tree and delete it. Hence,
we can delete item b from the CUF-tree in Fig. 2(a) because expSupCap(b) =
0.84 < minsup. This results in a reduced tree as shown in Fig. 2(b). This tree
pruning technique can save the mining time because we avoid mining those
frequent items having infrequent extensions.

Let F (tj) be the set of frequent items in transaction tj . Based on the tree con-
struction mechanism described above, the following important properties hold
in our CUF-tree:

1. The children list of a parent node in a CUF-tree contains one or more distinct
items (i.e., there is no duplicate members in the list).

2. A CUF-tree registers the projection of F (tj) for tj in DB only once.

3. The transaction cap in a node in a CUF-tree maintains the sum of transac-
tion caps of all transactions that pass through or end at the node for all the
nodes in the path from that node up to the root.

4. The total transaction cap of any node in a CUF-tree is greater than or equal
to the sum of the total transaction cap values of its children.

Properties 1–3 are the most interesting properties of CUF-trees over UF-trees.
As common prefixes of transactions are shared, the CUF-tree becomes more
compact and it avoids repeated siblings of the same item. The following lemma
states that a CUF-tree is a highly compact tree structure and its size can be
similar to that of an FP-tree.

Lemma 2. The size of a CUF-tree (without the root node) for a transaction
database DB when using minsup is bounded by

∑
tj∈DB |F (tj)|.
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Fig. 3. CUF-trees (built during the CUF-growth mining process)

Lemma 3. Given a transaction DB and minsup, the complete set of all poten-
tial frequent itemsets can be obtained from a CUF-tree when applying minsup on
DB.

Based on Lemma 3, we mine our CUF-tree using a pattern-growth mining algo-
rithm called CUF-growth.

3.2 CUF-growth: Mining Frequent Itemsets from the CUF-tree

The CUF-growth algorithm is designed in such a way that it deals with transac-
tion caps (instead of occurrence frequencies as does in the FP-growth [8] algo-
rithm). The basic operation of CUF-growth is constructing projected databases
and recursively mining extensions of frequent itemsets. Once an itemset is found
to be potentially frequent, CUF-growth generates the projected database based
on the following property of a CUF-tree and lemma.

Property 1. To compute all potential frequent itemsets with suffix x, only the
prefix sub-paths of nodes labelled x in the CUF-tree need to be accumulated. The
nodes of every path should carry the transaction cap as that in the corresponding
node x in the path.

Lemma 4. Let X be a k-itemset (with k ≥ 1) in DB, DBX be an X-projected
database, and Y be an itemset in DBX . Then, expSupCap(X ∪ Y ) in DB is
equivalent to expSupCap(Y ) for the transactions in DBX .

Since the cap of expected support of an itemset X is an upper bound of the
expected support of X and it satisfies the downward closure property, we apply
CUF-growth to a CUF-tree to generate only the k -itemsets (with k > 1) whose
caps of expected support are greater than or equal to the minsup. It will ensure
that we do not miss any frequent itemset in the mining phase and the resulting
set would be a superset of all frequent itemsets (i.e., the resulting set may contain
some false positives, but no false negative will be in the resulting set). With an
additional database scan, we can obtain the exact set of frequent itemsets from
the resulting set. To get a better understanding of our CUF-growth algorithm, let
us consider the following example, which uses the CUF-tree shown in Fig. 2(b).

Example 2. CUF-growth recursively mines the projected databases of all items in I-
list. Hence, the {e}-projected database, as shown in Fig. 3(a) is constructed by accumu-
lating the tree path 〈a:1.62, c:1.62〉. Note that the total cap for each node in the path is
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Algorithm 2: Mining of “frequent” itemsets by CUF-growth
Input: A CUF-tree capturing items from DB with minsup
Output: A set of “frequent” itemsets mined from the CUF-tree using minsup

1 begin
2 for each item α ∈ I-list do
3 PBα = Build PB(CUF-tree, α), call Mine(PBα, α);

4 Function Build PB(CUF-tree, α)
5 begin
6 for each node Nα of the last item of α in CUF-tree do

7 project path Pα from the parent of Nα up to the root with Nα.tCap for each node
in the conditional pattern-base PBα of α;

8 let I-listα be the I-list for PBα;
9 return PBα;

10 Procedure Mine(PBα, α)
11 begin
12 CTα = Build CT(PBα);
13 if CTα �= NULL then
14 for each item β ∈ I-listα of CTα do
15 generate β = β ∪ α as a candidate frequent itemset;
16 PBα = Build PB(CTα, β); call Mine(PBα, β);

17 Function Build CT(PBα)
18 begin
19 for each item β ∈ I-listα do

20 if expSupCap(β) < minsup then
21 delete β from I-listα; delete all Nβ nodes from PBα;

22 return CTα (which is the conditional tree constructed from PBα);

taken as the respective total transaction cap of e for the path. While projecting a path
in {e}-projected DB from the original tree, the algorithm also calculates the cap of ex-
pected support for each item in the projected DB, as indicated in the I-list in the figure.
Since the cap of expected supports of both items c and a are greater than the min-
sup, we first generate itemset {c, e}:1.62, and then proceed to construct {c, e}-projected
database from the {e}-projected database of Fig. 3(a). The {c, e}-projected database is
shown in Fig. 3(b). We generate itemset {a, c, e}:1.62 from this database, since item a’s
cap of expected support is found greater than the minsup. Because no further extension
of itemset {a, c, e} is possible, we return to the {c, e}-projected database and mine for
the next item a (i.e., {a, e}-projected database) and generate itemset {a, e}:1.62. Af-
ter finishing mining the {e}-projected database, we proceed to mine the {c}-projected
database in similar fashion (as shown in Fig. 3(c)). We terminate the mining process
when all items in the I-list are mined. The set of generated itemsets from the CUF-tree
is {a}:2.3, {c}:2.2, {e}:1.8, {b}:1.4, {c, e}:1.62, {a, c, e}:1.62, {a, e}:1.62 and {a, c}:1.92.
The CUF-growth mining algorithm is presented in Algorithm 2.

Among the itemsets generated in Example 2, {c, e} and {a, c, e} are false posi-
tives, since expSup({c, e})=0.88 and expSup({a, c, e})=0.432 are less than min-
sup. As indicated earlier in this section, with the third database scan, all false
positives can be removed by calculating the actual expected support of each
itemset in the resultant set.
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4 Our CUF-growth* Algorithm: An Improvement
to CUF-growth

In the previous section, we showed how CUF-tree provides an upper bound to
expected support by capturing only the cap value (i.e., the two highest existential
probability values for each node item). To tighten the upper bound, we present
the CUF-tree* structure and the corresponding CUF-growth* algorithm
in this section. A key difference between the CUF-tree and the CUF-tree* is
that each node of the latter keeps (i) an item, (ii) the transaction cap, and
(iii) the “bronze” value. Recall that, in CUF-trees, the upper bound is given by
the transaction cap PCap(tj), which is the product of the two highest existential
probability values. Here, the “bronze” value is the third highest existential prob-
ability value in a transaction. A tighter upper bound can then be given by the
product of PCap(tj) and the “bronze” value. We have the following definition
and theorem.

e    1.62
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c    1.92

Item  Cap

a    1.92

e:1.62:0.6

b:0.54:0.6

b:0.30:0.5
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a:1.92:0.6

e    1.62
c    1.92

Item  Cap

a    1.92

e:1.62:0.6

a:1.92:0.6

c:1.92:0.6
Item  Cap

a:0.972:0.6
a    0.972

(a) Initial CUF-tree* (b) CUF-tree* for mining (c) for {c, e}-proj. DB

Fig. 4. CUF-trees* (built during the CUF-growth* mining process)

Definition 3. The new upper bound of existential probability of any k-itemset X

in tj (denoted as ̂P (X, tj)) is defined as follows. Let h be the transaction length,
i.e., h = |tj |. Let M1, M2, and M3 be the three highest existential probability

values in tj. Then, ̂P (X, tj) = PCap(tj) if h ≤ 2 (i.e., ̂P (X, tj) = M1 if h = 1,̂P (X, tj) = M1 ×M2 if h = 2), and ̂P (X, tj) = PCap(tj)× (
∏k

i=3M3) if h ≥ 3.

Theorem 3. Let M3 denote the “bronze” value (the third highest existential
probability value). The existential probability of any k-itemset X (with k > 2) in
a transaction tj is bounded above by the new upper bound: P (X, tj) ≤ PCap(tj)×∏k

i=3M3, where X is a k-itemset with k > 2 and X ⊆ tj.

The CUF-tree* constructed for the dataset in Table 1 when using minsup=1
is shown in Figs. 4(a)–(b). If the prefix of a transaction tj to be inserted in
CUF-tree* is identical to an existing path, we store the maximum of the current
bronze value of the node and the bronze value of tj for each node in the path.
Thus, each node in a CUF-tree* contains the highest M3 value among all the
transactions that pass through or end at that node, which eventually guarantees
the tightness of the upper bound.



282 C.K.-S. Leung and S.K. Tanbeer

For the mining process of CUF-growth*, the first two levels (L1 and L2) are
identical to the CUF-growth. From level 3 (Lk where k ≥ 3), CUF-growth*
multiplies the cap with the “bronze” value (k − 2) times. As such, we obtain a
tighter upper bound to expected support. The higher the level, the tighter the
upper bound would be. Hence, fewer false positives are returned. The benefits of
considering the bronze value can be observed in the example when CUF-growth*
mining (Fig. 4(c)) is applied to the CUF-tree* of Fig. 4(b). While constructing
the {c, e}-projected database (in Fig. 4(c)) from the {e}-projected database,
the cap of the node (a:0.972:0.6) in {c, e}-projected database is calculated by
multiplying 1.62 and 0.6 (respectively the cap and the bronze value of the node
(c:1.62:0.6) in {e}-projected database). Note that, unlike CUF-growth, the CUF-
growth* algorithm stops generating further patterns from the {c, e}-projected
database because the cap of expected support of a in {c, e}-projected database
is less than the minsup. Hence, itemset {a, c, e} will not be generated. The set
of generated itemsets from the CUF-tree* is {a}:2.3, {c}:2.2, {e}:1.8, {b}:1.4,
{c, e}:1.62, {a, e}:1.62 and {a, c}:1.92. The above modification of CUF-growth*
over CUF-growth algorithm can easily be adapted by including following con-
ditional statement in between lines 6 and 7 of Algorithm 2 (i.e., in the for loop
of line 6 and before the statement at line 7): “if α contains more than one item
then Nα.t

Cap = Nα.t
Cap ×Nα.bronze value;”.

We show the performance of our proposed tree structure and mining algorithm
in the next section.

5 Experimental Results

In this section, we present the experimental results on the proposed CUF-growth,
its variant CUF-growth*, and existing algorithms (e.g., UF-growth [13], UFP-
growth [1] and UH-mine [1]). Experiments were conducted on real and synthetic
datasets. The synthetic datasets, which are generally sparse, are generated within
a domain of 1000 items by the dataset generator developed by IBM Almaden
Research Center [2]. We assigned an existential probability from the range (0,1]
to each item in each transaction in each dataset. The name of a dataset indicates
its characteristics information. For example, the dataset named u100k10L 10 100
contains 100K transactions with average transaction length 10, and each item in
a transaction is associated with an existential probability value within a range
from 10% to 100%. We also considered several real dense datasets such as mush-
room and connect4. However, because of space constraint, we only present here
the results on mushroom and some IBM datasets.

All programs were written in C and run with UNIX on a quad-core processor
with 1.3GHz. Unless otherwise specified, runtime includes CPU and I/Os forI-list
construction, tree construction, mining, and false positive calculation (for UFP-
growth, CUF-growth and CUF-growth*). The results shown in this section are
based on the average of multiple runs for each case. In all of the experiments, the
CUF-trees were constructed in descending order of expected support of items.
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5.1 Compactness of the CUF-tree

In the first experiment, we evaluated the compactness of our CUF-tree in terms
of the number of nodes. The UF-tree, UFP-tree, CUF-tree and CUF-tree* all
arrange items in descending order of expected supports. Hence, the tree structure
and the size of UFP-trees and CUF-trees were similar. However, as a UFP-tree
stores the extra cluster information, the size of a UFP-tree node is usually larger
than that of a CUF-tree node. The size of a UF-tree was larger than the other
three because the former may contain multiple nodes of the same item (if having
different existential probability values) under a common parent.

Table 2. Compactness of CUF-trees (#tree nodes)

Dataset minsup UF-tree CUF-tree minsup UF-tree CUF-tree

u10k5L 10 100 0.02 52768 6943 (13.17%) 1.0 50673 6877 (13.57%)
u100k10L 50 60 0.1 810735 90097 (11.11%) 1.5 793943 89971 (11.33%)
u100k10L 10 100 0.1 884240 90097 (10.18%) 1.5 867169 89969 (10.37%)
mushroom 50 60 0.1 121205 8108 (6.68%) 5 108289 5008 (4.62%)
mushroom 10 100 0.5 160381 2726 (1.7%) 10 135591 2046 (1.5%)

The results of the experiments on different datasets over several respective
minsup values (in percentage) are presented in Table 2. The fourth and last
columns of the table represent the CUF-tree nodes in percentage of UF-tree
nodes. To observe the compactness of our CUF-tree (irrespective of support
threshold and dataset characteristics), for each dataset, we showed the sizes
of both trees on a low and a high minsup values. Since both CUF-tree and
CUF-tree* contain exactly the same number of nodes for a given dataset and
minsup, we only show the node count for CUF-tree in the table. Notice that
it is common in both UF-tree and CUF-tree that, for a specific dataset, they
require respectively similar number of nodes with variations of minsup. However,
as expected, our CUF-tree is more compact than the UF-tree in both sparse and
dense cases. The memory gain of CUF-trees over UF-tree is much promising
in dense datasets. For example, the size of the CUF-tree was only 10.18% of
that of the UF-tree for minsup=0.1 for u100k10L10 100, while the gain increases
significantly as of 1.5% on mushroom10 100 for minsup=10 for the dense dataset
mushroom. The reason is that, for dense datasets, the CUF-tree is more likely to
have more chance of sharing paths for common prefixes, irrespective of different
existential probabilities of each item in different transactions. However, the UF-
tree did not achieve such tree compactness and follows different paths for each
combination of existential probabilities of the same items.

5.2 Runtime

We compared the runtime of our CUF-growth with those of UH-mine and
UFP-growth. Fig. 5 shows that CUF-growth* outperformed CUF-growth.
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Fig. 5. Comparison on execution times

The reason is due to the use of bronze value, which leads to fewer number
of false positives (which is verified in the next experiment) and eventually min-
imizes the overall runtime. When mining, although CUF-growth* incurred an
additional computation cost for calculating the cap of expected supports for
k-itemsets (with k > 2), it was relatively insignificant compared to the gain
brought by the use of the bronze value.

Fig. 5(a) shows the results for u10k5L 10 100, which is a small dataset (in
terms of number of transaction and transaction length) compared to other
datasets we used. Note that, in this dataset, CUF-growth and CUF-growth*
significantly outperformed UFP-growth (note the y-axis of the graph is in log
scale). Even though the UH-mine also performed considerably better than UFP-
growth for the dataset, it was still worse than CUF-growth. While considering
larger datasets, UFP-growth took high runtimes to plot. Moreover, Aggarwal
et al. [1] showed that UH-mine outperforms UFP-growth in execution time.
Hence, for the other figures (i.e., Figs. 5(b)–(d)), we avoid plotting the extreme
high readings of UFP-tree. We compare our CUF-growth and CUF-growth* with
UH-mine.

The performance gain of CUF-growth over UH-mine on large datasets was
impressive. The reason of such gain is that, even though UH-mine finds the
exact set of frequent itemsets when mining the extension x of a prefix part X , it
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suffers from the high computation cost for calculating the expected support ofX
on-the-fly in the transactions where it appears. Such computation may become
more costly when mining for large number of itemsets and long itemsets. For
example, the gap between the performance curves of CUF-growth and UH-mine
becomes comparatively wide for low minsup (Figs. 5(b)–(c)) and dense dataset
(Fig. 5(d)).

5.3 Number of False Positives

It is evidential that CUF-trees, CUF-trees*, and UFP-trees are usually compact
because they arrange tree nodes in descending order of expected supports. How-
ever, all of them generate some false positives. Their overall performances depend
on the number of generated false positives. In this experiment we investigated
the number of false positives generated by each of above trees. We obtained sim-
ilar results over different datasets in false positive computation. Hence, because
of space limitation, in Table 3 we present only the results over two datasets
(i.e., u10k5L 10 100 and u100k10L 50 60) for one minsup value. The last three
columns of the table indicate the number of false positives in the percentage
of total itemsets generated by respective algorithms (e.g., 62.23% of the total
number of itemsets generated by UFP-tree are false positives on u10k5L 10 100
for minsup=0.1).

Table 3. Comparison on False Positives (in terms of % of total #itemses)

Dataset minsup UFP-growth CUF-growth CUF-growth*

u10k5L 10 100 0.1 62.23% 28.08% 26.40%
u100k10L 50 60 1.0 71.91% 17.56% 16.86%

The table also indicates that CUF-growth* generates fewer false positives when
compared to CUF-growth. This is because during mining k-itemsets (k > 2) by
applying the bronze value in cap computation, the CUF-growth* constantly tight-
ens the upper bound of the expected support of the itemset. However, it can be
observed from the table that both CUF-growth and CUF-growth* remarkably re-
duced the number of the false positives generated. The primary reason of this im-
provement is that the UFP-growth uses the cluster summary information stored
at each node to calculate the false positives, which fails to guarantee to obtain a
much tighter upper bound for expected support calculation. In a UFP-tree, if a
parent has several children, then each child will use the higher cluster values in the
parent to generate the total expected support. If the total number of existential
probability value of that child is still lower than that of the parent’s higher cluster
value, the expected support of the path with this parent and a child will be high,
which results in more false positives in the long run.

The above experimental results show that our CUF-growth outperformed the
state-of-the-art algorithms in generating frequent itemsets from uncertain data
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irrespective of low (e.g., 0.5 to 0.6) or high (e.g., 0.1 to 1.0) distribution of
existential probabilities.

Due to space limitation, we omit the experimental results that show the scal-
ability of our proposed algorithm. As an ongoing work, we plan to conduct more
experiments (e.g., using additional datasets like gazelle sparse dataset).

6 Conclusions

Over the past few years, several algorithms have been proposed to mine frequent
itemsets from uncertain data. The UF-growth algorithm may build a large UF-
tree because nodes are shared only if their 〈item, existential probability value〉 are
identical. To reduce the number of tree nodes, UFP-growth clusters nodes with
the same item but similar existential probability values. However, unlike UF-
growth (which is an exact algorithm), UFP-growth is an approximate algorithm
(which may generate false positives). To further reduce the number of tree nodes
(when compared with the UF-tree) and false positives (when compared with
UFP-growth), we proposed CUF-growth and CUF-growth* in this paper. By
capturing the cap (i.e., product of the two highest existential probability values
in a transaction) in the CUF-tree, our CUF-growth algorithm gives a tight upper
bound on the expected support of itemsets. Hence, it reduces the number of
false positives. It efficiently finds frequent itemsets while keeping the number of
nodes in the CUF-tree be the same as that in the FP-tree. Our CUF-growth*
algorithm further reduces the number of false positives by keeping the third
highest existential probability of items in a transaction. This leads to a tighter
upper bound on the expected support of itemsets when mining frequent itemsets
from uncertain data.
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Abstract. Identity knowledge is the knowledge that relates to various
aspects of the identification of real-world objects. It can be acquired
through the process of identifying objects from a knowledge management
point of view. In this paper we present a simple yet expressive framework
for representing identity knowledge. Knowledge patterns, as the building
blocks of the framework, have the capability of capturing identity knowl-
edge at an arbitrary level of abstraction. However, the combined use of
pattern formula and pattern relation in knowledge patterns may yield
disjunction and a restricted form of negation. We thus investigate the
containment problem of knowledge patterns to find a decision procedure
for containment and equivalence between knowledge patterns. Our result
shows that the containment problem for knowledge patterns is not only
decidable but also tractable.

1 Introduction

The identification problem pervasively exists in many research areas such as
scientific communities (e.g., [1,20]), information integration (e.g., [10,14]), data
cleaning (e.g., [7]), service-oriented architecture (e.g., [2]), etc. It is to deter-
mine which objects in a system correspond to the same object in the real-world.
When restricted by the availability of sufficient identity information, determin-
ing whether or not two representations correspond to the same real-world object
is not always possible. However, it would be desired to find an approach that can
provide approximate identity and meanwhile allow us to improve the accuracy
of identity over time. Identity knowledge management turns out to a promising
direction to achieve this. Whenever two objects with varied representations are
identified to be the same real-world object, capturing the knowledge of why they
are or are not the same object is at least equally important to simply unifying
them into one identity. Take the records in Table 1 for example, and assume that
we acquire the following knowledge from certain source:

(a) Sue Lee at the Bioethics Centre of the University of Otago has studied at
the Department of Philosophy of the University of Otago;

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 288–302, 2012.
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(b) Sue Lee at the Department of Philosophy of the University of Otago has
not previously worked or studied at Massey University;

(c) Sue Lee at the Bioethics Centre of the University of Otago changed her
surname to Maneth after marriage.

If the above identity knowledge statements and the like can be represented by
a knowledge model built upon application data, we would be empowered to un-
derstand how object identities are linked and to share identity knowledge across
multiple communities. Furthermore, identity knowledge can offer many advan-
tages for solving the identification problem in a more effective and collaborative
way.

Table 1. Sample records in the relation Person

ID Name Department University

i1 Sue Lee Department of Philosophy University of Otago

i2 Sue Maneth Bioethics Centre University of Otago

i3 Sue Lee School of History and Philosophy Massey University

i4 Sue Lee Bioethics Centre University of Otago

In this paper our first contribution is to introduce a simple yet expressive
framework for representing identity knowledge. A knowledge model is comprised
of a number of knowledge patterns that work accumulatively to deduce ob-
ject identities. Each knowledge pattern has the ability of expressing identity
knowledge at various levels of abstractions, ranging from a generic perspective
expressed as the pattern formula to more specific perspectives expressed as in-
stantiations of the pattern formula. Moreover, identity knowledge at any level of
abstraction can be specified either as a default rule to deduce object identities or
as an exception to default rules in the same knowledge pattern to exclude certain
object identities from consideration. In order to enhance the expressiveness of
the framework, we permit that different knowledge patterns may associate with
the equivalent pattern formulae. This is due to the fact that a knowledge pat-
tern cannot always capture the same identity knowledge represented by multiple
knowledge patterns that have the equivalent pattern formulae. In doing so, we
obtain a framework that has sufficient expressive power to capture application-
specific knowledge from various aspects of the identification problem.

However, the gain in expressive power of the framework does not come for
free. As each knowledge pattern associates with not only a pattern formula but
also a pattern relation that accommodates application-specific identity knowl-
edge, the containment problem for knowledge patterns naturally arises – is there
an efficient way to find that one knowledge pattern has captured all identity
knowledge represented by another knowledge pattern?

Our second contribution is the decidability and complexity result of the con-
tainment problem for knowledge patterns. We show that the containment prob-
lem for knowledge patterns is not only decidable but also tractable, even though
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the logical formalisation of a knowledge pattern involves conjunction, disjunction
and also a restricted form of negation. Based on the Homomorphism Theorem
for containment of conjunctive queries, we provide a characterisation for contain-
ment of knowledge patterns. It leads to the results that the containment problem
for knowledge patterns is NP-complete in terms of the size of the knowledge pat-
terns, but it is in ptime in terms of data complexity. In a sense similar to the
query containment problem that has important applications in query optimiza-
tion, the result of the containment problem for knowledge patterns would allow
us to efficiently discover redundancy among knowledge patterns and thus helps
to optimise identity knowledge management.

The remainder of the paper is structured as follows. We present the related
work in the areas of object identification and query containment in Section 2.
Section 3 introduces the formal framework we propose for representing identity
knowledge. In Section 4 we discuss how to minimise a knowledge pattern from
two aspects: pattern formula and pattern relation. Then, we investigate the
containment problem for knowledge patterns in Section 5. Section 6 analyses
the complexity of the containment problem for knowledge patterns. We briefly
conclude the paper in Section 7.

2 Related Work

Over the past decades, there has been considerable research efforts made on solv-
ing the identification problem (e.g., [7,9,14,19,22,24,25]). The most dominant re-
search approaches are the use of similarity functions, in which approximate string
matching algorithms and adaptive algorithms with active learning are often im-
plemented (e.g., [22,25]), and the identification problem was mainly approached
from a probabilistic point of view. Recently, [6,7] proposed a transformation-based
framework combining context-free grammar rules with database querying to ma-
nipulate representational variations of objects, in which common domain knowl-
edge for varied representation can be incorporated. Nevertheless, little work has
been done on the identification problem to capture identity knowledge at various
levels of abstraction, which indeed becomes increasingly important for accurately
identifying objects by knowledge sharing or working collaboratively within a wide
range of communities.

Our investigation on the containment problem for knowledge patterns extends
the previous results on the query containment problem, which is one of the cental
issues in database theory and has important impact on many areas such as query
optimization and knowledge verification [3,4,11,17,18,21]. It is well-known that
query containment is decidable for conjunctive queries [12,4] and union of con-
junctive queries [21], but not decidable for first-order queries and Datalog queries
[11,23]. The papers (e.g.,[15,16,26,28]) studied the containment problem for con-
junctive queries with inequality. The complexity of the containment problem for
conjunctive queries is NP-complete, which is measured in terms of the size of
the query rather than the data. Since queries are much smaller than data in gen-
eral, and the containment problem for conjunctive queries is shown to be exactly
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the same as the query evaluation problem that can be computed in polynomial
time in terms of data complexity [3], the containment problem of conjunctive
queries is tractable. Nevertheless, the complexity of the containment problem for
conjunctive queries with inequality is ΠP

2 -complete [26]. Our work on the con-
tainment problem for knowledge patterns identifies a new class of queries with
conjunction, union and a restricted form of negation, whose containment prob-
lem can polynomially reduce to the containment problem of conjunctive queries.
Thus, deciding containment between these queries is efficient.

3 Formal Framework

Let us fix a family {Di}i∈I of pairwise disjoint basic domains, an identity domain
DO ∈ {Di}i∈I , a database schema S over {Di}i∈I consisting of a set of relation
names, and an equivalence relation Iden /∈ S over DO.

Definition 1. A knowledge pattern P is a pair 〈ϕ, r〉 consisting of

– a pattern formula ϕ that has the form Iden(x, y) ← ψ(x1, . . . , xn, x, y), in
which ψ is a conjunction of atoms, and x and y are variables over DO, and

– a pattern relation r of the arity n+1 with n attributes A1, . . . , An that are in
1-1 correspondence to the variables x1, . . . , xn in ϕ, expressed as ι(xi) = Ai

(i = 1, . . . , n), plus an attribute A∗ with domain {+,−}.
To support the flexibility of abstraction levels, each knowledge pattern uses a
pattern formula and a pattern relation in a combined way such that variables of
the pattern formula are bound to attributes of the pattern relation. The formula
ϕ is generic (i.e., containing no constants) in the sense of the genericity principle
defined for database queries [5]. The relation r may contain constants from the
base domains of its attributes and the symbol λ. We use the symbol λ to indicate
that any appropriate value may occur in its place. Two possible dimensions (i.e.,
including as “+” and excluding as “–”) can be specified via the attribute A∗ of
each pattern relation.

Given a knowledge pattern P = 〈ϕ, r〉, where ϕ is in the form of Iden(x, y)←
ψ(x1, . . . , xn, x, y), a set of specific queries are obtained by substituting the oc-
currences of bounded variables in ψ(x1, . . . , xn, x, y) with their associated at-
tribute values in r. Let t.A denote the value of the attribute A in a tuple t of the
relation r. Then each tuple t in the relation r “generates” exactly one specific
query from ψ(x1, . . . , xn, x, y) by,

– for each variable xk with t.ι(xk) �= λ, replacing xk in the predicates of ψ
with t.ι(xk), and

– for each variable xk with t.ι(xk) = λ, adding xk after an existential quan-
tification that is before ψ.

We distinguish two kinds of specific queries according to the value of attribute
A∗. A specific query is an in-query if t.A∗ = + for the tuple t that generates it;
otherwise it is an ex-query.

The following example illustrates how identity knowledge can be captured by
using knowledge patterns.
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Example 1. Consider the relation Person in Table 1 and suppose that we have
the relation Iden = {ID1,ID2} for storing equivalent identities of persons.

– The following pattern P1 = 〈ϕ1, r1〉 describes that two persons are identical
if they have the same name and are affiliated with certain departments,
as stipulated in r1. It captures the knowledge statements (a) and (b) we
mentioned in Section 1.

ϕ1 : Iden(x, y)← Person(x, z1, x2, x3) ∧Person(y, z1, y2, y3)

r1 :

Az1 Ax2 Ax3

Sue Lee Bioethics Centre University of Otago
Sue Lee λ Massey University

(continued)

Ay2 Ay3 A∗

Department of Philosophy University of Otago +
Department of Philosophy University of Otago −

– The following pattern P2 = 〈ϕ2, r2〉 describes that two persons are identical if
they are affiliated with the same department and have certain name varia-
tions, as stipulated in r2. It captures the knowledge statement (c) discussed
in Section 1, i.e., Sue Lee and Sue Maneth at the Bioethics Centre of the
University of Otago are the same person.

ϕ2 : Iden(x, y)← Person(x, x1, z2, z3) ∧ Person(y, y1, z2, z3)

r2 :
Az2 Az3 Ax1 Ay1 A∗

Bioethics Centre University of Otago Sue Lee Sue Maneth +

The knowledge pattern P1 = 〈ϕ1, r1〉 has the following specific queries:

– q+1 (x, y) ≡
Person(x, “Sue Lee”, “Bioethics Centre”, “University of Otago”)∧
Person(y, “Sue Lee”, “Department of Philosophy”, “University of Otago”)

– q−1 (x, y) ≡
∃x2.Person(x, “Sue Lee”, x2, “Massey University”)∧
Person(y, “Sue Lee”, “Department of Philosophy”, “University of Otago”)

where q+1 (x, y) is an in-query and q−1 (x, y) is an ex-query generated by the first
and second tuples of r1, respectively.

Let Σ+
P and Σ−

P be the set of in-queries and the set of ex-queries of the knowledge
pattern P , respectively, and ΣP = Σ+

P ∪ Σ−
P . Then a (knowledge) rule of P ,

denoted as RP , has an expression of the form

Iden(x, y)←
∨

q+(x,y)∈Σ+
P

q+(x, y) ∧ ¬
∨

q−(x,y)∈Σ−
P

q−(x, y).
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We use rhs(R) to denote the right hand side of R. Let ν be a valuation over vari-
ables of R, i.e., a total function from variables {x, y} to constants in

⋃{Di}i∈I .
Then the interpretation of rule RP over a database instance I, denoted as RP (I),
is defined as follows:

RP (I) = {Iden(ν(x), ν(y)) | rhs(RP ) is evaluated to true in I under ν}.
A knowledge model M is associated with a finite, non-empty set of knowledge
patterns. The program of M consists of knowledge rules that have one-to-one
correspondence with knowledge patterns of M . Semantically, the program of
a knowledge model is interpreted in the same way as a program in Datalog
with negation under the inflationary semantics [3]. Let Λ be the program of a
knowledge model M = {P1, ..., Pk} and I be a database instance of S. Then
we have μ as an inflationary fixpoint operator such that μ(Λ) over I defines the
identity relation that is the limit of the sequence {Jn(Iden)}n≥0 defined by

J0(Iden) = ∅
. . .

Jn(Iden) = Jn−1(Iden) ∪
⋃

1≤i≤k

RPi(Jn−1),

where RPi(Jn−1) denotes the result of evaluating RPi on the instance Jn−1 over
S ∪ {Iden} whose restriction to S is I and restriction to {Iden} is Jn−1(Iden).
Tuples in the relation Iden are created in a cumulative rather than destruc-
tive way, until a fixpoint of Iden is reached. The inflationary semantics of the
program of a knowledge model guarantees termination of the computation in
time polynomial in the size of the database [3]. We restrict Iden to be the only
intensional predicate symbol appearing in the left hand side of a knowledge rule.
Nevertheless, Iden can still appear in the right hand side. In doing so, it allows
us to incorporate recursion into the process of deducing identity knowledge.

Example 2. Suppose that we have Publication = {ID, Title} and Author =
{PID, PubID, Order} where PID of Author references ID of Person as shown
in Table 1, and PubID of Author references ID of Publication. The following
knowledge pattern P3 has Iden in the both sides of its knowledge rules.

– The pattern P3 = 〈ϕ3, r3〉 describes that two persons are identical if they have
the same name and both co-authored with another author.

ϕ3 : Iden(x, y)← Person(x, z1, x2, x3) ∧Author(x, z2, x4)∧
Person(y, z1, y2, y3) ∧Author(y, z3, y4)∧
Author(z

′
, z2, x5) ∧Author(z, z3, y5) ∧ Iden(z, z

′
)

r3 :
Az1 Az2 Az3 Az Az′ Ax2 Ax3 Ax4 Ax5 Ay2 Ay3 Ay4 Ay5 A

∗

λ λ λ λ λ λ λ λ λ λ λ λ λ +

In order to cope with reflexivity, symmetry and transitivity of the equivalence
relation Iden, every knowledge model must contain knowledge patterns that
reflect these properties.
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4 Minimising Knowledge Pattern

Minimising knowledge patterns of a knowledge model is important for improving
the efficiency of evaluating knowledge patterns, and consequently, the overall
performance of a knowledge model can be improved. Since a knowledge pattern
is constituted by a pattern formula and a pattern relation, the minimisation of a
knowledge pattern has two aspects: (1) finding the minimisation of the pattern
formula, and (2) removing redundant tuples in the pattern relation.

Given two formulae ϕ1 and ϕ2 over the same schema S, ϕ1 is contained in ϕ2

(denoted as ϕ1 ⊆ ϕ2) if, for each database instance I of S, ϕ1(I) ⊆ ϕ2(I), where
ϕ(I) denotes the interpretation of ϕ in I. ϕ1 and ϕ2 are equivalent (denoted as
ϕ1 ≡ ϕ2) if ϕ1 ⊆ ϕ2 and ϕ2 ⊆ ϕ1. Conjunctive formulae, as discussed in [3],
enjoy several interesting properties, e.g., determining equivalence and contain-
ment between conjunctive formulae is NP-complete and query minimisation is
NP-hard. Since pattern formulae are indeed conjunctive formulae, finding the
minimisation of a pattern formula can be handled in the same way of tableau
query minimization and we thus omit further discussion on this aspect.

For the second aspect, i.e., redundant tuples in a pattern relation, let us start
with the following example.

Example 3. Consider a pattern P4 = 〈ϕ4, r4〉 where ϕ4 is the same as ϕ1 defined
in Example 1 and r4 is presented as below.

r4 :

Az1 Ax2 Ax3 Ay2 Ay3 A
∗

λ λ λ λ λ + t1
λ λ Massey University λ λ + t2

Sue Lee λ University of Auckland λ λ + t3
Sue Lee λ λ λ λ – t4
Sue Lee λ Massey University λ λ – t5

Then we can see that the in-query generated by the tuple t1 contains the
in-queries generated by the tuples t2 and t3, and the ex-query generated by the
tuple t4 contains the ex-query generated by the tuple t5. Hence, the tuples t2, t3
and t5 are redundant in the pattern P4. In other words, if removing the tuples
t2, t3 and t5 from the relation r4, we can obtain the relation r

′
4 as below, and

the identity knowledge captured by the pattern 〈ϕ4, r
′
4〉 remains the same as

captured by the pattern 〈ϕ4, r4〉.

r
′
4 :

Az1 Ax2 Ax3 Ay2 Ay3 A
∗

λ λ λ λ λ +
Sue Lee λ λ λ λ –

To formalise redundant tuples in a pattern relation, we introduce the notion
of subsumption between tuples under the assumption that constants and λ are
partially ordered, i.e., a � λ for any constant a. We use attr(r) to denote the
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set of attributes of a relation r. Let t1 and t2 be tuples that have the same set
attr(r) of attributes. Then we say that t1 subsumes t2 (denoted as t2 $ t1) if
t2.A � t1.A holds for each attribute A ∈ attr(r).

Definition 2. Let t1 and t2 be two tuples of a pattern relation r. Then we have,

– t1 upward-subsumes t2 (denoted as t2 �↑ t1) if, for all attributes A ∈ attr(r),{
t2.A = + and t1.A = − if A = A∗;
t2.A � t1.A otherwise.

A pattern relation without redundant tuples should satisfy the following mini-
mality property.

Definition 3. Let r be a pattern relation. Then r satisfies the minimality prop-
erty iff it satisfies the condition

∧
ti �=tj∧ti∈r∧tj∈r

ti �$ tj ∧ ti ��↑ tj.

A pattern relation r is well-defined if r is minimal and contains at least one
tuple t with t.A∗ = +. If the pattern relation of a knowledge pattern is not
well-defined, then the knowledge pattern should be automatically removed from
the knowledge model. This is because we require that every knowledge pattern
can only yield positive object identities (i.e., two objects refer to the same real-
world object) in its final result, rather than negative object identities (i.e., two
objects do not refer to the same real-world object). Furthermore, by verifying the
minimality property on a pattern relation, we are able to detect and eliminate
redundant tuples, which can organise diverse identity knowledge acquired in
different times, by different people and under different reasons more effectively.

Example 4. The relation r4 in Example 3 does not satisfy the minimality prop-
erty because we have t1 $ t2, t1 $ t3, t4 $ t5 and t3 �↑ t4. However, the relation
r
′
4 satisfies the minimality property.

The following lemma can be easily proven in accordance with the definition of
minimality property.

Lemma 1. Let P = 〈ϕ, r〉 be a knowledge pattern and r be minimal. Then

– ϕ1 � ϕ2 holds for any two different ϕ1 and ϕ2 from Σ+
P , and

– ϕ1 � ϕ2 holds for any ϕ1 ∈ Σ+
P and ϕ2 ∈ Σ−

P .

In the sequel knowledge patterns are considered to have the minimal pattern
relations, unless otherwise stated.

5 The Containment Problem

Now we study the containment problem for knowledge patterns. Given two
knowledge patterns P1 and P2 over the same schema S, P1 is contained in P2,
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denoted as P1 ⊆ P2, if, for each database instance I of S, RP1(I) ⊆ RP2(I)
holds, and similarly P1 and P2 are equivalent, denoted as P1 ≡ P2, if P1 ⊆ P2

and P2 ⊆ P1 both hold. The containment problem for knowledge patterns is to
determine whether or not P1 ⊆ P2 holds for all instances of S.

We will show that, although knowledge patterns involve the union of conjunc-
tive queries and also a restricted form of negation, the containment problem for
knowledge patterns is not only decidable but also tractable. We use sym(ϕ) to
denote the set of all variables and constants occurring in a formula ϕ. Let ϕ1

and ϕ2 be formulae over the same schema. A homomorphism from ϕ1 to ϕ2 is
a function θ : sym(ϕ1) %→ sym(ϕ2) such that: (1) θ(a) = a for every constant
a ∈ sym(ϕ1), (2) θ(x) = y for every variable x ∈ sym(ϕ1), and (3) for every
predicate p(x1, . . . , xn) of ϕ1, θ(p(x1, . . . , xn)) = p(θ(x1), . . . , θ(xn)) is a pred-
icate of ϕ2. The Homomorphism Theorem [3] provides a characterization for
containment of conjunctive queries.

Theorem 1. (Homomorphism Theorem [3]) Let ϕ and φ be conjunctive queries
over the same schema. Then ϕ ⊆ φ iff there exists a homomorphism from
φ to ϕ.

In the following we present a characterisation for containment of knowledge pat-
terns. Our theorem is built upon Theorem 1 (i.e. the Homomorphism Theorem
for conjunctive queries), Lemma 1 and the following two lemmata.

Lemma 2. Let ΣP = {ϕ1, . . . , ϕn} be a finite set of queries associated with a
knowledge pattern P satisfying the condition ϕk � ϕ1 for k = 2, . . . , n. Then∨
2≤k≤n

ϕk � ϕ1 holds.

Proof. By the condition ϕk � ϕ1 for k = 2, . . . , n, we know that
∨

2≤k≤n

ϕk ⊆
ϕ1 holds. To prove that

∨
2≤k≤n

ϕk is also a proper subset of ϕ1, we choose an

arbitrary query ϕj (j ∈ [2, n]) from {ϕ2, . . . , ϕn}. Since ϕj is a conjunctive
formula and ϕj � ϕ1 holds, then according to the Homomorphism Theorem [3],
there must exist a homomorphism θ from ϕ1 to ϕj , and two different variables
x1 and x2 of ϕ1 such that θ(x1) = y and θ(x2) = y hold for a variable y of ϕj . It
means that, in order get ϕ1 −

∨
2≤k≤n

ϕk = ∅, we at least require that the results

of
∨

2≤k �=j≤n

ϕk contain the results of (ϕ1 ∧ x1 �= x2). However, the domain of x1

and x2 has an infinite number of constants and each query ϕk (2 ≤ k �= j ≤ n)
can be assigned with at most a pair of different constants on x1 and x2. Hence,
it is impossible to find such a finite set {ϕk|2 ≤ k �= j ≤ n} of queries to satisfy∨
2≤k �=j≤n

ϕk − (ϕ1 ∧ x1 �= x2) = ∅. Consequently, ∨
2≤k≤n

ϕk � ϕ1 is proven.

Lemma 3. Let ΣP = {ϕ1, . . . , ϕn} be a finite set of queries associated with a
knowledge pattern P satisfying the condition ϕ1 � ϕk for k = 2, . . . , n. Then
ϕ1 �

∨
2≤k≤n

ϕk holds.
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Proof. From a set-theoretic point of view, each ϕk (k = 2, . . . , n) can be ex-
pressed as the disjoint union of two parts ϕ(1,k) = ϕ1 ∧ ϕk � ϕ1 and ϕ(2,k) =
ϕk − ϕ1.

(1). Since ϕ(1,k) � ϕ1 (k = 2, . . . , n), according to Lemma 2, we have ϕ1 −∨
2≤k≤n

ϕ(1,k) �= ∅.
(2). Since ϕ1 − ϕ(2,k) = ϕ1 (k = 2, . . . , n), we have ϕ1 −

∨
2≤k≤n

ϕ(2,k) = ϕ1.

Hence, we have ϕ1−
∨

2≤k≤n

ϕk = ϕ1−
∨

2≤k≤n

ϕ(1,k) �= ∅. ϕ1 �
∨

2≤k≤n

ϕk is proven.

��
Theorem 2. Let P1 = 〈ϕ, r1〉 and P2 = 〈φ, r2〉 be two knowledge patterns over
the same schema. Then P1 ⊆ P2 iff the following condition is satisfied:

∀ϕ1 ∈ Σ+
P1
.(∃φ1 ∈ Σ+

P2
.ϕ1 ⊆ φ1∧

∀φ2 ∈ Σ−
P2
.(∃ϕ2 ∈ Σ−

P1
.(φ2 ∧ ϕ1 ⊆ ϕ2 ∧ ϕ1))).

Proof. Let us start with the if part. According to the first line of the condition,
for each formula ϕ1 ∈ Σ+

P1
, there must exist a formula φ1 ∈ Σ+

P2
that contains

ϕ1. Then, the second line of the condition guarantees that if any results of ϕ1 are
eliminated by a formula φ2 from P2 then they are also eliminated by a formula
ϕ2 from P1. Thus P1 ⊆ P2 holds.

For the only if part, the proof is built upon Lemmata 1 and 3. We proceed it
in three steps:

First, we explain why, for each ϕ1 ∈ Σ+
P1
, there must exist a φ1 ∈ Σ+

P2
such

that ϕ1 ⊆ φ1. Assume that there does not exist any φ1 ∈ Σ+
P2

such that ϕ1 ⊆ φ1

but (ϕ1 −
∨
Σ−

P1
) ⊆ (

∨
Σ+

P2
−∨

Σ−
P2
) holds, and then we want to prove that

ϕ1 ⊆ (
∨
Σ+

P2
−∨

Σ−
P2
) ∪∨

Σ−
P1⊆ ∨

Σ+
P2
∪∨

Σ−
P1
.

However, because the pattern relation of P1 is minimal, by Lemma 1, ϕ1 � ϕ2

holds for every formula ϕ2 ∈ Σ−
P1
. Furthermore, according to our assumption,

we know that ϕ1 � φ1 holds for every formula φ1 ∈ Σ+
P2
. Since the numbers

of formulae in both Σ+
P2

and Σ−
P1

are finite, by using Lemma 3, we can get

ϕ1 �
∨
Σ+

P2
∨∨

Σ−
P1
, which contradicts with the previous formula that is what

we want to prove. Hence, we have proven that, for each formula ϕ1 ∈ Σ+
P1
, there

must exist a formula φ1 ∈ Σ+
P2

such that ϕ1 ⊆ φ1.
The second step is to discuss why the second line of the condition is necessary.

That is, for each φ2 ∈ Σ−
P2
, we need to show that there must exist a ϕ2 ∈ Σ−

P1

such that φ2 ∧ ϕ1 ⊆ ϕ2 ∧ ϕ1 holds. There are two sub-steps.

– We first prove that each φ2 needs to satisfy φ2 ∧ ϕ1 ⊆
∨
Σ−

P1
. That is, any

results of ϕ1 that are eliminated by such a formula φ2 in P2 should also be
eliminated by one or more formulae in P1. Assume that there exists a φ2
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that does not satisfy φ2 ∧ ϕ1 ⊆
∨
Σ−

P1
. By φ2 ∧ ϕ1 �

∨
Σ−

P1
and the first

line of the condition ∃φ1 ∈ Σ+
P2
.ϕ1 ⊆ φ1, there must exist some results of ϕ1

that are eliminated from P2 by φ2 but still included in P1. Thus, P1 � P2

and there is a contradiction.
– Second, we prove that there must exist a ϕ2 ∈ Σ−

P1
such that φ2 ∧ ϕ1 ⊆

ϕ2 ∧ ϕ1 holds for each φ2 ∈ Σ−
P2
. Assume that there does not exist such a

ϕ2 satisfying φ2 ∧ ϕ1 ⊆ ϕ2 ∧ ϕ1. By using Lemma 3, we would have

φ2 ∧ ϕ1 �
∨

ϕ2∈Σ−
P1

(ϕ2 ∧ ϕ1).

Since
∨

ϕ2∈Σ−
P1

(ϕ2 ∧ ϕ1) ≡
∨
Σ−

P1
∧ ϕ1, we then have

φ2 ∧ ϕ1 �
∨
Σ−

P1
∧ ϕ1

�
∨
Σ−

P1
.

This contradicts with our results in the first sub-step. Hence, for each φ2 ∈
Σ−

P1
, there must exist a ϕ2 ∈ Σ−

P1
such that φ2 ∧ ϕ1 ⊆ ϕ2 ∧ ϕ1 holds.

Our last step is to prove that each ϕ1 ∈ Σ+
P1

needs to satisfy the requirements
in the first two steps. Since the pattern relation of P1 is minimal, by Lemma 1,
ϕ1 � ϕ2 holds for any ϕ2 ∈ Σ−

P1
and ϕ1 � ϕ

′
1 holds for any ϕ

′
1 ∈ (Σ+

P1
− {ϕ1}).

Thus, by Lemma 3, ϕ1 �
∨
Σ−

P1
∨ ∨

(Σ+
P1
− {ϕ1}) holds. It means that each

ϕ1 ∈ Σ+
P1

always contributes some results into the final results of a knowledge

pattern, which cannot be replaced by any other formulae in Σ+
P1
. Hence, the

requirements in the previous two steps need to be satisfied by each ϕ1 ∈ Σ+
P1
.
��

Example 5. Let us consider the knowledge patterns P1 = 〈ϕ1, r1〉 and P2 =
〈ϕ2, r2〉 shown as below.

ϕ1 = ∃z1, z2, z3.p1(x, z1) ∧ p2(z2, y, z3)

r1 =

Az1 Az2 Az3 A
∗

a a λ + t1
b b λ + t2
λ λ b – t3

ϕ2 = ∃z1, z3.p1(x, z1) ∧ p2(z1, y, z3)

r2 =

Az1 Az3 A
∗

λ λ + t1
λ b – t2

To check whether P1 ⊆ P2 holds, by Theorem 2, we just need to check whether
the following containments between conjunctive queries hold, i.e., P1 ⊆ P2 holds
iff (1)-(4) hold,
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(1). ϕt1
1 ⊆ ϕt1

2 (2). ϕt3
1 ∧ ϕt1

1 ⊆ ϕt2
2 ∧ ϕt1

1

(3). ϕt2
1 ⊆ ϕt1

2 (4). ϕt3
1 ∧ ϕt2

1 ⊆ ϕt2
2 ∧ ϕt2

1

where

– ϕt1
1 = ∃z3.p1(x, a) ∧ p2(a, y, z3);

– ϕt2
1 = ∃z3.p1(x, b) ∧ p2(b, y, z3);

– ϕt3
1 = ∃z1, z2.p1(x, z1) ∧ p2(z2, y, b);

– ϕt1
2 = ∃z1, z3.p1(x, z1) ∧ p2(z1, y, z3);

– ϕt2
2 = ∃z1.p1(x, z1) ∧ p2(z1, y, b).

Note that, pattern formulae of equivalent knowledge patterns may not necessarily
be equivalent. Similarly, given two knowledge patterns P = 〈ϕ, r〉 and P

′
=

〈ϕ′
, r

′〉 with P ⊆ P
′
, we may not necessarily have ϕ ⊆ ϕ

′
, e.g., P1 ⊆ P2 but

ϕ2 ⊆ ϕ1 in Example 5. Nevertheless, it can be proven that, (i) if P ⊆ P
′
,

then either ϕ ⊆ ϕ
′
or ϕ

′ ⊆ ϕ holds; (ii) when ϕ
′
� ϕ (i.e. θ(ϕ) = ϕ

′
for a

homomorphism θ from sym(ϕ) to sym(ϕ
′
)), P can be transformed into P

′′
=

〈ϕ′
, θ(r)〉 and P

′ ≡ P
′′
holds.

Example 6. The knowledge pattern P1 = 〈ϕ1, r1〉 in Example 5 can be trans-
formed into P

′′
1 = 〈ϕ2, r

′
1〉 where P1 ≡ P

′′
1 and r

′
1 is shown as below.

r
′
1 =

Az1 Az3 A
∗

a λ +
b λ +
λ b –

6 Complexity Analysis

In this section we analyse the complexity of the containment problem for knowl-
edge patterns. There are two complexity measures to be considered – data com-
plexity and expression complexity – which are defined in a similar sense to the
ones used for relational query languages [27]. When fixing the size of the data
instance upon which a knowledge model for representing identity knowledge is
built, we study expression complexity that is the complexity of determining the
containment of two knowledge patterns represented by pattern formulae and re-
lations. The expression complexity is given as a function of the length of the
representation of pattern formulae and relations or, alternatively speaking, the
size of ex-queries and in-queries of knowledge patterns. In addition, we are also
interested in data complexity that measures the computational complexity of
determining containment between knowledge patterns, in which their pattern
formulae and relations are fixed, as a function of the size of the data instance.

Theorem 3. The containment problem for knowledge patterns is NP-complete
with respect to expression complexity.

Proof. Since the complexity of determining containment between conjunctive
queries is known to be NP-complete [3], and determining containment of con-
junctive queries is reducible to determining containment of knowledge patterns
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that have exactly one in-query but no ex-query, the complexity of determining
containment between knowledge patterns is also NP-complete with respect to
expression complexity. ��
Although the expression complexity of the containment problem for knowledge
patterns is NP-complete, it is measured in terms of the size of ex-queries and
in-queries of knowledge patterns, which is often much smaller than the size of
the data instance. We can also obtain the following result on data complexity of
the containment problem for knowledge patterns.

Theorem 4. The containment problem for knowledge patterns is in ptime with
respect to data complexity.

Proof. We know that the containment problem for conjunctive queries is exactly
the same problem as the query evaluation problem [3]. It is also well-known
that the data complexity of evaluating conjunctive queries is in Logspace [27].
Following our theorem of characterising containment of knowledge patterns (i.e.,
Theorem 2), we can conclude that deciding containment of knowledge patterns
is in Logspace and thus in polynomial time in terms of data complexity. ��

7 Conclusion

The decidability and complexity of reasoning are important issues in the
search for a suitable framework of representing identity knowledge. In this paper
we have discussed a simple yet expressive framework for representing identity
knowledge. One of the main results we obtained is that the complexity of deter-
mining containment of knowledge patterns is NP-complete in terms of expression
complexity and is in ptime in terms of data complexity. This result will lead
us to develop a mechanism of finding an optimal representation of knowledge
models, which can be used for improving identity knowledge management in the
future.

The containment problem of knowledge patterns may also be viewed as sub-
sumption of knowledge described by the class of queries corresponding to knowl-
edge patterns. It thus gives rise to an interesting question on how our framework
can link to the decidability and complexity of the subsumption problem in differ-
ent DL languages that are combined with certain rule-based formalisms [8,13].
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Abstract. Problem of finding frequent patterns has long been studied because it 
is very essential to data mining tasks such as association rule analysis, 
clustering, and classification analysis. Privacy preserving data mining is another 
important issue for this domain since most users do not want their private 
information to leak out. In this paper, we proposed an efficient approach for 
mining maximal frequent patterns from a large transactional database with 
privacy preserving capability. As for privacy preserving, we utilized prime 
number based data transformation method. We also developed a noble 
algorithm for mining maximal frequent patterns based on lattice structure. 
Extensive performance analysis shows the effectiveness of our approach. 

Keywords: privacy preserving data mining, maximal frequent pattern, prime 
number theory. 

1 Introduction  

Finding frequent patterns plays an important role in all data mining tasks such as 
association analysis, clustering, and classification. Generally, since the set of maximal 
frequent patterns is much smaller than the set of frequent patterns in a large 
transactional database, it is very helpful if we can find maximal frequent patterns 
efficiently. Thus, developing efficient maximal frequent pattern mining techniques 
has been an important research direction in data mining.  

At the same time, the privacy is another concern in mining business oriented data 
since most companies may not want their business information to be exposed to the 
public. Thus, when data mining tasks are performed by the third party vendor it is 
necessary to hide their business oriented transaction information from rival 
companies. 

There have been a lot of research works to deal with finding maximal frequent 
patterns from a transaction database and enforcing information security properly 
during data mining. However, to the best of our knowledge, there has been no work to 
deal with these problems together. In this paper, we propose an efficient approach for 
mining maximal frequent patterns with privacy preserving capability. In order to hide 
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transaction information from outside, we encrypt transaction information by using 
prime number based transformation. Our proposed mining algorithm is designed to 
use transformed database instead of using original transaction database.  

Main contributions of this paper are as follows: (1) We proposed a simple but very 
effective approach for finding maximal frequent patterns with privacy preserving 
capability. (2) For this, we devise prime number based data transformation and 
provide a way to construct lattice structure and traverse it from the transformed 
database. (3) We also provide an extensive performance study to show the 
effectiveness of our approach. 

The rest of this paper is organized as follows. Section 2 briefly describes related 
works. In Section 3, we described background study and the problem definition. We 
explained proposed approach for mining maximal frequent patterns from a 
transformed database in Section 4. Section 5 summarizes the experimental results. 
Finally, we conclude in Section 6.  

In this paper we will use ‘itemset’ and ‘pattern’; ‘descendent’ and ‘child’; 
‘transaction vector’ and ‘transaction value’ interchangeably. We used acronym 
TPFPM for Third Party Frequent Pattern Miner and MFPM for Maximal Frequent 
Pattern Miner. And we used the generic name lattice to indicate our proposed lattice 
structure. 

2 Related Works 

In order to preserve the privacy of the client in data mining process, a variety of 
techniques based on random perturbation of data records have been proposed recently 
[14]. In this literature two dominant methods Randomization and Distortion are 
provided as a means for privacy preserving. But the normal distortion procedure does 
not provide the flexibility of tuning the probability parameters for balancing privacy 
and accuracy parameters, and each item's presence/absence is modified with an equal 
probability conventional wisdom held that data mining, with its promise to efficiently 
discover valuable, non-obvious information from large databases, is particularly 
vulnerable to misuse [3]. Literature [4] predicted the making of a conflict between 
data mining and privacy. The objective of data mining is to generalize across 
populations, rather than reveal information about individuals.  

The problem of mining MFP was first proposed by Bayado in [11] particularly, 
MFP can derive all frequent itemsets effectively, so many algorithms mining MFP are 
proposed at literatures [2], [5], [8], [9], [17]. Most of the algorithms for mining MFP 
are similar to the Apriori [7] in a bottom-up breadth-first fashion. MaxMiner [11] is a 
typical algorithm to mine the MFP, which extends the Apriori algorithm. It builds a 
concept frame of Rymon’s set enumeration tree [18], and uses a breadth-first traversal 
of the search space. Though superset frequency pruning reduces the search time 
drastically, MaxMiner still needs many passes to get all MFP.  

Pincer-Search [13] combines both the bottom-up and the up-bottom searches to 
find the maximal frequent itemsets. In general, if some maximal frequent itemsets are 
long and the maximal frequent itemsets are distributed in a scattered manner, then the 
problem of discovering the MFS can be very hard. In this case, even Pincer-Search 
might not be able to solve this problem. 
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In [10], a depth-first algorithm MAFIA is proposed. It uses a bitmap representation 
and a linked list to organize all frequent itemsets and has lots of candidate generation 
problem and hence is inefficient to mine MFPs. Similar to MaxMiner, GenMax [12] 
is another depth-first algorithm using Rymon’s set enumeration technique [18]. Its 
main contribution is “progressive focusing” technique, and diffset propagation to 
perform fast frequency computation to maintains a set of local MFP which compares 
with the newly founded frequent itemsets to reduce the cost of subset tests. But 
although it is able to reduce the candidate sets but it was found that the GenMax 
spends half of its time in maximality checking; it degrades the performance.  

PC_Miner algorithm [2] is based on prime number characteristic, and proposes a 
novel tree structure called PC_Tree. The algorithm uses a prime-based database 
encoding technique, which can reduce the size of transaction database efficiently. It 
first transformed every transaction into a compact value called TV (Transformed 
Vector) value and then from the transformed vector database mines the set of 
maximal frequent patterns. It shows better compaction rate and mining time; but it has 
some limitations. Firstly it has parent – child reordering problem. Secondly there is 
redundancy in TV transformation technique because the PC_Tree algorithm assigns 
and transforms each transaction including infrequent items so the compression rate is 
not satisfactory. Thirdly to construct the PC_Tree they sorted the transformed 
database in ascending order of transformed vector value, since the sorting cost is not a 
trivial one, it creates an extra overhead in terms of time and memory usage. Fourthly, 
it takes more time to discover maximal frequent patterns because it first generates the 
head sets to generate frequent patterns and later combines these frequent patterns to 
discover the maximal frequent patterns. 

Most recently literature [11] was proposed to mine the set of maximal frequent 
itemsets using   two steps: in the first place, they compressed the large database into a 
condensed, smaller data structure through dividing the attributes, called information 
matrix which can avoid repeated, costly database scans. Secondly, the  maximum 
frequent  itemsets is generated  ultimately  be  means  of cover relation  using 
intonation matrix and  the costly generation of a large number  of candidates  is  
avoided.  In such case, both I/O time and CPU time are reduced by eliminating the 
candidates that are subsets of the maximal frequent itemsets. But it also has a 
drawback since the database is divided into three groups along column direction. So if 
the number of items in every group is n, then it needs to allocate a matrix with size 2n 
x 2n.That means if the size of original database is increases; the matrix size is also 
increases exponentially and performance degrades because any matrix based 
representation is not so efficient with O (n2) complexity. 

3 Problem Definition 

In this section we will first define the problem of maximal frequent pattern mining and 
then present some preliminary knowledge that is necessary to understand our work.  

3.1 Maximal Frequent Pattern Mining Problem 

Let a set of distinct items I = {i1,i2,…,in} and n is the number of distinct items. We 
assume that items are ordered by certain predefined way. Transaction t is an ordered 
list of items, denoted as t = [i1 i2,.. im] where i1<i2<…<im, and m ≤ n.  
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Table 1. A Transactional Database 

TID Items
1 A, B, C, D, F 
2 A, B, C, E 
3 B, C, D, E, F  
4 A, C, D, E 
5 C, D, F 
6 D, E, F 
7 D, E  
8 C, D, F 
9 C, F 

10 A, C, D, E 
11 C, E 

 
A transactional database T = {t1, t2…tN} is a set of N transactions and |N| is the 

number of total transactions. A set X � I is called a pattern. If X � t, it is said that X 
occurs in t or t contains X. Support(X) denotes the percentage of transactions that 
contain X. If Support(X) ≥ min_sup we say that X is a frequent pattern. If X is a frequent 
pattern and no superset of X is frequent, we say that X is a maximal frequent pattern.   

For example, in Table 1, the occurrences of patterns “CD”, “DE” and “CDF” are 6, 
5 and 4 respectively. If we assume that min_sup is 4, all of these are frequent patterns. 
But, “CD” is not a maximal frequent pattern because its super pattern “CDF” is also a 
frequent pattern. The problem of mining maximal frequent patterns is to find all 
maximal frequent patterns whose support is no less than a user-given min_sup 
threshold.  

3.2 Privacy Preserving Frequent Pattern Mining 

To preserve the privacy it is necessary to transform all the transactions in a compacted 
layout using some suitable transformation techniques so that original transaction is 
hided from any third party frequent pattern miner. Suppose we have a transactional 
database DB and DB* be a transformed database from the original database DB. It is 
this transformed database DB* that is supplied to the third party data miner, along with 
the minimum support threshold value. The data miner mines the transformed database 
DB* to estimate the frequent patterns with support count satisfying the minimal 
support in the original database DB without knowing the sensitive transaction 
information. 

4 Proposed Approach  

4.1 The Privacy Preserving Framework  

As depicted in Fig. 1, our framework encompasses a transactional database. The data 
owner or organization process the database to modeled into a TV database DB* 

(Transaction vector database), the internal processing unit has a unit called Encoder 
which encodes the original transactional information into corresponding transactional 
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vector database DB*, and a decoding tools called Decoder which decodes the mined 
values into maximal frequent pattern form. Besides there are three third party tools 
called i) The lattice construction tools (Prime-based lattice structure construction 
tools), ii) MFPM algorithm tools and ii) A temporary buffer to hold the maximal TV 
values and these values are handover to the data owner. The whole process goes as 
follows: 
 

(i) First of all the owner gives this transformed database to any third party frequent 
pattern miner. (ii) The third party lattice construction tools create and insert the whole 
TVs into a lattice structure. (iii) After that it mines the maximal TVs by traversing the 
lattice structure using MFPM algorithm tools and stores these TV values in a 
temporary buffer. Since the TPFPM has no decoding tools so the privacy will not be 
violated, and it is guaranteed that the privacy will be preserved (iv) Upon request 
from the data owner the TPFMP hand over the maximal TV values to the Decoder 
tolls (v) Finally the Decoder factorizes the maximal TV values to its corresponding 
prime factor and retrieves the original maximal frequent patterns. 

4.2 Database Transformation and Decoding Technique 

In this section, we described the data transformation technique in more details. In fact 
the TV database is a numerical encoder which hides the underlying transactions 
information and basically provides the data privacy. Compactness is desirable in all 
sorts of algorithms and obviously, reducing of the size of database can enhance 
performance of mining algorithms. To hide the original transactional database 
information, we use prime number based transformation. 
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Fig. 1. The Proposed Framework for Mining Privacy Preserving Maximal Frequent Patterns 
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In prime number theory, it is well known that a positive integer N can be expressed 
by unique product of prime numbers, that is N = P1

m1* P2
m2 * … *  Pr

mr  where Pi is 
prime number, P1 < P2

 <…<  Pr
 and mi is a positive integer. As for prime numbers, 2, 3, 

5, 7… we map these prime numbers to each item in a transactional database. For 
example, we map 2 as “A”, 3 as “B”, 5 as “C”, and so on. Then we express each 
transaction as product of mapped prime numbers. In the case that we transform a 
transaction into P1

m1*P2
m2 *… *Pr

mr , where mi will be always 1 because there is no 
duplicate item in a transaction. Table 2 shows this transformation. Here in Table 2, we 
eliminate infrequent one item “B” in a transaction for reducing search space as like 
FP-tree structure [7].  

For each transaction, transformed value (TV) is obtained by multiplying every 
prime number in transformed transaction. For example, transformation of transaction 
1 would be {2, 3, 5, 11} and its transformed value is 2*3*5*11 = 330. Now we will 
describe some interesting but very useful properties of prime based data 
transformation techniques.  

 
Property 1: If two transactions are different (i.e., they have different items), then 
their transformed values are also different. By definition of transformed transaction, if 
transformed values of transactions are the same, they may be represented as same P1* 
P2

 *…*Pr that means same transaction.  
 

Property 2: Let m be a greatest common divisor (gcd) of transformed values of two 
transactions, t1 and t2. We know that m is represented by P1*

 P2* … *Pk where k ≥ 1. By 
definition of transformed transaction, t1’s TV1 is (P1*

 P2* …*Pk) *
 P*… *Pj (where k ≥ 1 

and i ≤ j ) and  t2’s TV2  is (P1*P2
 *…* Pk) *Pm…* Pn (where k ≥ 1 and m ≤ n ). Thus, t1 

and t2 has common items mapped to P1, 
 P2

 , and  Pk. 

Property 3: If TV1 of t1 is divided by TV2 of t2 then t1 is a super pattern of t2. By 
definition transformed transaction, TV1 would be (P1* P2*….*  Pk)*

 Pi*… * Pj (where TV2 
= (P1* P2*…*  Pk) and i ≤ j )) It means that t1 has items mapped with P1, 

 P2
 , and  Pk 

which are same items of t2. Thus, t1 is a super pattern of t2.  In the same way, we know 
that t2 is a sub pattern of t1. 

Table 2. A Transformed Transactional Database  

 
 
 
 
 
 
 
 
 
 
 

 

TID Transaction Transformation TV 
1 A, C, D, F 2, 3,5,11 330 
2 A, C, E 2, 3,7 42 
3 C, D, E, F 3,5,7,11 1155 
4 A, C, D, E 2, 3, 5,7 210 
5 C, D, F 3, 5,11 165 
6 D, E, F 5,7,11  385 
7 D, E  5,7 35 
8 C, D, F 3,5,11 165 
9 C, F 3,11 33 
10 A, C, D, E 2,3,5,7 210 
11 C, E 3,7 21 
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So important procedures are done by only three simple mathematical operations 
product, division and greatest common divisor. And obviously using mathematical 
operation enhances the performance instead of string operation. As depicted in  
Figure 1, we transform our original transactional database in table-1 into DB* which 
has transformed transaction values and disclose it to third party vendor for data 
mining.st Since this DB* has same information with original transactional database, 
third party vendor can correctly find maximal TV value (As maximal frequent 
patterns) without noticing that which items exist in a maximal frequent pattern. From 
the characteristics of the prime number it is clear that a decomposition of a number n 
into (finitely many) prime factors p1, p2, ... to pt is called prime factorization of n. As 
in this example, the same prime factor may occur multiple times.  

 

n = p1 * p2 * ... * pt 

The fundamental theorem of arithmetic can be rephrased so as to say that any 
factorization into primes will be identical except for the order of the factors. After 
finding all maximal transformed values, we decode them into a set of items inside 
company organization. Then it retrieves the original maximal frequent patterns and 
store into the local disk.   

4.3 Mining Maximal Frequent Pattern with Privacy Preserving 

In this section, we will describe the procedure which finds maximal transformed value 
from the transformed database. First we will describe the lattice construction 
algorithm, after that we will describe the MFPM algorithm for finding the set of 
maximal TV values. Finally we will explain a step by step example for finding the set 
of maximal frequent patterns from the original database.  

4.3.1 The Lattice Construction Algorithm 
The lattice structure includes a root and some nodes that formed sub lattice structures 
as children of the root or descendants. The node structure consisted with mainly of 
several different fields: value, local-count, global-count, status and link. The value 
field stores TV to records which transaction represented by this node. The local-count 
field set by 1 during inserting current TV and it is increased by 1 if its TV and current 
TV are equal. The global-count field registers support of a pattern which presented by 
its TV. In fact during of insertion procedure the support of all frequent and infrequent 
patterns is registered in the global-count field. The status field is to keep track of 
traversing. When a node is visited in the traversing procedure the status field is 
changed from 0 to 1. The link field is to form sub lattice structures or descendants of 
the root. Figure 2 has shown the pseudo code for the lattice construction algorithm. 
TV of the root is assuming to be NULL and can be divided by all TVs. First we check 
the divisibility between first two TVs. If the first one is divided by second TV or vice-
versa then the dividend will be the parent node and the divisor will be the descendent 
node, otherwise we just insert these two TVs as two unique nodes. Below the 
insertion rules from 1 to 5 will explain how to insert into the lattice structure. The 
lattice construction operation mainly consists of insertion procedure and re-ordering 
that inserts TV(s) into the lattice, based on the five rules below: We will explain every 
rule with suitable examples. 
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Rule- 1: If TV of node nr is not a divisor or dividend of any existing node in the 
lattice structure then just insert it as a new node and its local count will be 1. 

For example suppose two TV values are 1155 and 330 then obviously 1155 is not 
divided by 330 and vice versa, so 1155 and 330 will be inserted as a unique node. 

 
The Lattice Construction Algorithm 

Input: A transactional database and a minimum support 
threshold δ. 
Output:Lattice-the complete set of transactions transformed 
into transaction vectors and presented by nodes of the 
lattice. 

Parameters: The LATTICE_STRUCTURE (TVi) procedure creates and 
inserts into the lattice.TVi is the transaction vector of 
corresponding transaction Ni, node is a lattice node. Also N 
indicates the total number of transactions in the database.  

1  Begin 
2  Scan the transactional database DB and remove infrequent 

1-itemsets and construct the transformed database DB*// 
inside the internal processing unit it goes as follows: 

    for (i=0; i<N; i++) 

2.1 Assign a unique prime number to each frequent 
item in the database according to the 
ascending order of support. 

2.2 Transform each transaction into its 
corresponding TV value and construct 
transformed database DB*.//Upon request from 
the TPFPM, the data owner handover it to the 
TPFPM. 

3  Scan the transformed database DB* once and insert TV 
values into the lattice //Inside the processing unit of 
TPFPM. 

for (i=0; i<ΣTVi; i++) 
3.1 Create the root of the lattice structure and 

label it as NULL.//It is divisible by every TV 
value in the DB*.

3.2 Insert TVs into the lattice based on mentioned 
rules 1, 2, 3,4 and 5.Call procedure 
LATTICE_STRUCTURE (TVi) to insert.  

4   End 

 
Fig. 2. The Lattice Construction Algorithm 

Rule-2: If TV of node nr and ns is equal then r =s. Insertion procedure will increases 
local-count field of node nr by 1 if the current TV is equal with TV of nr.  
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For example suppose TV value 210 already inserted a into the lattice structure and if 
there is another entry of 210 in the database then the local count of 210 will be 1+1=2. 

Rule- 3: If TV of node nr is a divisor of more than one TV then, global count of this 
node will be equal to how many dividend TVs  of nr  are there in DB*. 

For example TV 35 which is a divisor of node 210 and 385 at the same time, then 
global_count of node 35 will be 2 and insert it below smaller TV value.  

 
Rule-4: If a node nr is already inserted and node ns is going to be inserted and i) if ns 
is divided by nr and ii) if nr> nr; then re-order nr and ns (i. e. ns will be the parent node 
and nr will be the descendent node). For example suppose TV value 42 is already 
inserted in the lattice and 210 is going to be inserted then obviously 210> 42 and 210 
is divided by 42 so we re-order these two values. Hence 210 will be the parent node 
and 42 will be the child node. 

 
Rule-5: Root R= (ni , ni-1…, nj, Root) is a descendant iff TV of node nr ∈ R (i ≤ r≤ j) 
can divide all TVs kept in nodes Rr= (nr+1,nr+2,….nj,Root). For example suppose we 
have three TVs 210, 42 and 21 then 210 is the root of every node in the lattice 
structure. Because 210 is divisible by 42 and 21. 

Moreover we repeatedly update the connection link from parent node to descendent 
nodes. So if a node’s global count is n then the number of incoming link will be (n-1).  
So from the lattice structure we can observe both the local as well as global count 
clearly and there is no ambiguity like [2]. 

4.3.2 The MFPM Algorithm 
The MFPM algorithm is uses to traverse the lattice structure to find out the set of 
maximal TVs to generate maximal frequent patterns by the decoder. As explained in 
previous section, during of insertion each TV in the lattice, the following procedures 
are done. 

a) Local-counting. 
b) Global-counting. 
c) Link updating 
d) Item re-ordering 

The MFPM algorithm traverses the complete lattice structure to discover the maximal 
TV values in top-down fashion. There is no need to scan the database again, because 
all the information about items and patterns are stored in the lattice. We will present a 
short description of our proposed MFPM algorithm rather than a pseudo code 
notation.  

To mine the maximal TV values from the lattice structure; we traverse it from the 
root to each branch of the lattice. First it find out the list ‘L’ of  nodes that have global 
count greater than minimum support threshold, since these nodes hold a transaction 
value so it is more likely to be a candidate of maximal frequent patterns. And it is 
clear that if the TV value of a node nr is included in the candidate list then all of its 
child nodes are divisor so these child values are pruned even if the child nodes are 
frequent.  
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Table 3. DB* database 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
Now taking each branch as a new entry to an array list we find the set of TV values 

for a given node. Taking the first node of first branch and the first, second and third 
node of second branch as the array list we find the greatest common divisor (property 
2) of these four nodes as ‘G’. We include this greatest common divisor values in the 
list ‘L’. By this way we can reduce the search space. If the TV value of the first node 
of a branch (or TV value of any other node) already included in the list L then we 
exclude this node.  

After that the decoder factorizes these maximal TV values into prime’s product and 
retrieves the original maximal frequent patterns. Now we will explain our mining task 
using a practical example. 

4.3.3 Example                            
As described in section 4.2 infrequent items are already removed from the database 
DB to reduce the search space as well as transformed database size. The reduced DB 
has been shown in table-2, for the maximal frequent pattern mining.  

Now we will describe the creation and insertion procedure into our proposed lattice 
structure. First we take 330 and 42; 330 is not divided by 42 so these two values will 
be inserted as two new nodes. TV value 1155 also inserted as unique node. Next 210 
is the dividend of 42 and 42< 210, so we re-order them; 210 will be parent node and 
42 will be the descendent node; we update the link accordingly.  

TV value 165 is a divisor of both 330 and 1155 but 330<1155, so 165 is inserted as 
the descendent node of 330 and the global count of 165 will be 3 and we update the 
link accordingly. Next TV value 385 is the divisor of 1155 so it will be the descendent 
node of 1155 and global count will be 2 as well. TV value 35 is the divisor of 210, 
1155 and 385 at the same time but among them 210 is the smallest so it is inserted as 
the descendent node of 210 and the link and global count will be updated accordingly.  

Next TV value 165 is already inserted in the lattice so we just increase the local 
count and global count of the node 165. At the same time we update the global count 
of all divisors of 165 as well. TV value 33 will be inserted as the descendent of 165 
although it has another two dividend node 330 and 1155. Same rule will be applied 
for next TV value 210.  

TV 
330 
42

1155 
210 
165 
385 
35 

165 
33 

210 
21 
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Finally 21 will be inserted as the descendent node of 42, although it has three 
dividend node 1155, 42 and 210 but 42 is the smallest.  

Figure in the next page shown step by step the proposed lattice structure 
construction procedure. Here (...) indicates the local count of a TV value; #... 
Indicates the corresponding global count of a TV value and the arrow indicates the 
dividend-divisor relationship between nodes of the lattice structure. 

 
 
 
 

 
330 (1) 

#1 
 
 
a) Insertion of 330  
 
        
 
 
 
 
 
330 (1)            42 (1) 

#1                   #1 
 
b) Insertion of 42 

 
 
 
 
330(1)           1155(1)          42(1) 

#1                   #1                 #1 
      

 
c) Insertion of 1155 

 
 
 
 
 
 
 
330(1)           1155(1)          210(1) 

#1                   #1                 #1 
      

                                       
42 (1) 

                                      #2 
d)  Insertion of 210 

 
  
 
 
330(1)           1155(1)          210(1) 

#1                  #1                  #1 
      
 
165 (1)                                  42 (1) 

#3                                       #2 
e)  Insertion of 165 
 
 

 
 
 
 
330(1)           1155(1)          210(1) 

#1                 #1                    #1 
      
 
165 (1)         385(1)               42 (1) 

#3             #2                     #2 
f)  Insertion of 385 

 
 
 
 
                 

330(1)           1155(1)             210(1) 
#1                   #1                       #1 

      
 

165 (1)          385(1)                    42 (1) 
#3                  #2                          #2 

                                              
35 (1) 
#4 

g)  Insertion of 35 

 
 
 
 
330(1)      1155(1)          210(1) 

#1            #1                     #1 
      
 
165 (2)   385(1)                    42 (1) 
#4             #2                        #2 

                        
 

35 (1)  
#4 

h)  Insertion of 165 
 

 
Fig. 3. Step by step lattice construction procedure. Figure 3(a) - 3(h). 
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330(1)      1155(1)          210(1) 

#1            #1                     #1 
      
 
165 (2)       385(1)                    42 (1) 
#4                #2                          #2 

                        
 

33 (1)                          35 (1)  
#5                                #4 

 
i)Insertion of 33 

 

 
 
 
 
330(1)      1155(1)          210(2) 

#1            #1                     #2 
      
 
165 (2)       385(1)                    42 (1) 
#4                #2                          #3 

                        
 

33 (1)                            35 (1)  
#5                                    #5 

 
 
j)  Insertion of 210 

 
                  
 
 

330(1)      1155(1)          210(2) 
#1            #1                     #2 

      
 

165 (2)       385(1)                  42 (1) 
#4               #2                       #3 

                        
 

33 (1)                   35 (1)         21 (1) 
#5                        #5               #5 

 
k)  Insertion of 21  

Fig. 3. Step by step lattice construction procedure. Figure 3(i) - 3(k). 

4.3.4 Mining Maximal Frequent Patterns from the Lattice Structure 
To mine the maximal TV values from the lattice in figure-3, we traverse from root to 
each branch of the lattice structure. We maintain a list of  maximal frequent TV 
values called ‘L’ and traversing the lattice structure we get the following list of TVs 
that satisfy minimum support threshold, L= {165, 35, 21}.  

Although 35 satisfies the minimum support threshold, TV value 35 is the divisor of 
165; so 35 has been excluded and pruned from the lattice and the list L. Now taking 
each branch as a new entry to an array list we find the set of TVs calculated 
previously for a given node. Now we find the products of the greatest common 
divisors of the candidate paths. Table 5 has shown the resulting value calculations. G 
value 21 and 35 are already included in the list L so these values will not be included 
in the list L.  G value 6 is the unique so included 6 in the list. So the final list will be 
L= {165, 35, 21, 6}.  
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330(1)      1155(1)          210(2) 
#1           #1                   #2 
 

      
 

165 (2)       385(1)                  42 (1) 
#4               #2                       #3 

                        
 

                          35 (1)         21 (1) 
                            #5             #5 

 

Fig. 4. The Pruned Lattice with Global and Local count (inside brackets local count, # indicates 
global count) 

Finally the third party tools MFMP hand over the set of maximal TVs to the 
Decoder of the data owner. Then the Decoder converts these values into 
corresponding primes factors. Table-6 has shown the frequent patterns retrieval 
techniques. So finally we get four maximal frequent patterns; which are as follows: 
{C, E}, {D, E} and {C, D, F} and {A, C}.  

Table 5. Candidate GCD value list for Maximal TV values: L 

Path TV list Greatest Common Divisor (G) 
P1 1155, 210, 210, 42 21 
P2 385,1155, 210, 210 35 
P3 330, 210, 210, 42 6 

Table 6. Retrieval of Maximal Frequent Patterns from Maximal TV values 

Maximal TV values Prime Factorization  Maximal Frequent Patterns Support 
165 3*5*11 C, D, F 4 
35 5*7 D, E 5 
21 3*7 C, E 5 
6 2*3 A,  C 4 

5 Experimental Results 

In this section, we evaluate the performance of our method. All programs were 
written and compiled using Microsoft Visual C++6.0 and running with the Microsoft 
Windows XP operating system with Pentium D 2.13 GHz processor and 2 GB of 
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main memory. In the first experiment we used synthetic sparse datasets T10I4D100K 
generated by the program developed at IBM Almaden Research Center and real dense 
Kosarak datasets. The number of transactions, the average transaction length and the 
average pattern length of T10I4D100k are set to be 100K, 10 and 4 respectively.  
The Kosarak dataset records consist of the characteristics of various Kosarak species. 
The number of records, the number of items and the average record length are set to 
be 900002, 41270 and 8.1 respectively. We consider δ % of this dataset where δ will 
be increased from 1 to 10 to evaluate how much the data transformation technique can 
compact the size of the dataset. Fig.5 shows comparison of the size of original dataset 
with the size of transformed dataset using our data transformation technique. It 
indicates that the compaction size is more than 50%. Obviously, the compactness rate 
for real data can be more than synthetic data used in the experiments. This is because; 
the size of the TV used for a transaction is almost independent of kind of dataset, but 
the average length of items in real datasets is bigger than in synthetic dataset [2]. And 
previous experiments [2] showed that by applying this data transformation technique, 
the size of real transaction database can be reduced more than half. But using our 
approach the reduction rate of the original database is higher than [2] because of  
1-itemset filtering. 

 

 

 

Fig. 5. Compactness of data transformation. Above: synthetic dataset, below: Kosarak dataset. 
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In second experiment, we compared the construction time and memory usage 
among the lattice structure, PC_Tree [2] and FP-tree structure. From fig-6 we can 
observe that the lattice shows better runtime because of the support pruning and size 
reduction of the datasets also the lattice structure consumes less memory space 
because of (i) more compaction in the datasets and (ii) it does not need the 
transformed TV database sorting. Actually the sorting and compaction rate degrades 
the overall performance of PC_Tree [2]. 

In third experiment we compared the performance of PC_Miner [2], MAFIA [9], 
GenMax [11] and MFPM. Fig-7 indicates that MFPM outperforms PC_Miner, 
MAFIA and GenMax because PC_Miner, MAFIA, and GenMax has relatively high 
candidate generation problem which is an obstacle of Apriori based pattern mining. 

But MFPM only checks the nodes that has support more than minimum support 
threshold and performs some greatest common divisor operations on complete pruned 
lattice structure; and usually mathematical operations takes negligible times. Also 
MFPM uses the list structure to hold the candidate maximal TV values and any list 
based representation can be build in linear time. 

 

 
 

 
 

Fig. 6. Performance comparison among FP-Tree, PC_Tree and lattice; above: memory usage; 
below: runtime comparison on Kosarak dataset 
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Fig. 7. Runtime comparison of MFPM vs. MaxMiner, PC_Miner, GenMax and MAFIA on 
Kosarak dataset 

6 Conclusion  

In this paper, we proposed a numerical method to mine maximal frequent patterns with 
privacy preserving capability. Our method showed an efficient data transformation 
technique, a novel encoded and compressed lattice structure and MFPM algorithm. The 
proposed lattice structure and MFPM algorithm reduces both search space as well as 
searching time. The experimental results showed that MFPM algorithm outperforms 
PC_Miner and existing maximal frequent pattern mining algorithms. Besides the lattice 
structure outperforms FP- like tree and PC_tree algorithm as well. 
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Abstract. Data anonymization has become a major technique in privacy preserv-
ing data publishing. Many methods have been proposed to anonymize one dataset
and a series of datasets of a data holder. However, no method has been pro-
posed for the anonymization scenario of multiple independent data publishing.
A data holder publishes a dataset, which contains overlapping population with
other datasets published by other independent data holders. No existing methods
are able to protect privacy in such multiple independent data publishing. In this
paper we propose a new generalization principle (ρ, α)-anonymization that effec-
tively overcomes the privacy concerns for multiple independent data publishing.
We also develop an effective algorithm to achieve the (ρ,α)-anonymization. We
experimentally show that the proposed algorithm anonymizes data to satisfy the
privacy requirement and preserves high quality data utility.

Keywords: Data anonymity, privacy, composition attack.

1 Introduction

Existing privacy preserving data publishing techniques focus on one-time publication
[11,8,4] and multiple views of the same data [17]; recently address the scenario of
re-publication by single data holder [14,15]. Specifically, privacy preserving data re-
publication is restricted to single data holder, and does not support overlapping
population by multiple publishers. The seminal work [2] firstly identify the breach of
privacy of existing anonymization methods in multiple independent data publishing,
called ‘composition attack’. However, the solution of [2] supports only interactive set-
ting (where only data statistics and/or query results are published), and is inapplicable
for non-interactive setting (where the data needs to be published after anonymization).
Independent data publishing of overlapping subset by multiple publishers in
non-interactive setting remains an open problem.

To illustrate the problem, consider Table 1(a) of Hospital-1. Identifier attribute(s)
can directly identify individuals, such as Name, SSN etc. They should be removed
in a published dataset. Quasi identifier (QIDs) attributes could indirectly lead to the
identification of individuals in a dataset, such as Age, Zipcode and Sex etc. They
are normally generalized so that no individuals are identifiable in a generalized table.
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Table 1. Patient data and its generalization at Hospital-1

(a) Original data Q1

Identifier Attribute Quasi-Identifiers Sensitive Attribute 
Bob 15 male B  

Hudson 45 male H 
Robi 40 female G 

David 20 male B 
Khan 25 male C 
Victor 50 male H 

(b) Generalized Q∗
1

Group ID Age Sex Disease 

1 15  25 male 
B 
B 
C 

2 40  50 * 
G 
H 
H 

The Sensitive attribute contains the private information about the individuals that needs
to be protected such as Disease, Income etc. A generalized table is considered privacy
preserving, if it satisfies a privacy constraint, such as k-anonymity [11] or �-diversity [8].
For example Table 1(b) is 3-anonymous and 2-diverse version of Table 1(a). In other
words, 3-anonymity means that values in the QIDs have at least 3 identical copies. So
one could not be distinguished from other 2 records. 2-diversity means that each of such
a group has at least 2 distinct values in the sensitive attribute. So, the sensitive value of
each individual could not be guessed with a high confidence.

1.1 Problem Description and Motivation

Consider the patient overlapping scenario of three hospitals in figure of Table 2(c);
David from Hospital-1 and Eliza from Hospital-2 were referred to Hospital-3 so the
data of Hospital-3 also include the records of David and Eliza. For simplicity, we omit
the overlapping scenario between Hospital-1 and Hospital-2; although our solution pro-
vides the privacy protection in any overlapping scenario.

Hospital-3 anonymized its dataset and release it as Table 3(b). Assume that an adver-
sary knows David’s QIDs (20 years old male), and the fact that David has visited both
Hospital-1 and Hospital-3. The adversary would find the records of David in both hospi-
tals since only one record matches David’s QIDs and has the same disease in Table 1(b)
and 3(b) respectively i.e. {B} . Therefore, David is identified in the anonymized datasets
of both hospitals. The understanding remains the same for Eliza where adversary can
get her disease {R} using her QIDs in Table 2(b) and 3(b).

A patient may visit more than one hospitals of his/her area and we assume that hos-
pitals visit information is available in public domain i.e. adversary knows about the
hospitals visited by a patient. Moreover, each hospital also knows about other hospi-
tals where it can have overlapping patients. Both are realistic assumptions. Firstly, an
adversary is a person that is close to the patient (i.e. a friend, a colleague or a neigh-
bor) and it is reasonable to believe that s/he is aware of the hospitals visited by the
patient. Secondly, hospitals visit information is also part of a patient medical record so
each hospital also knows about other hospitals where it can have overlapping patients.
Although, each hospital knows about the overlapping with other hospitals but each hos-
pital does not (due to internal privacy policies) or cannot (due to legal restrictions) share
its original data with another organization.

The problem of overlapping data publication is not resolvable by the methods of
sequential data publication, such as m-invariance [15]. m-invariance deals with two
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Table 2. Patient data and its generalization at the Hospital-2

(a) Original data Q2

Name Age Sex Disease 
Eliza 40 female R 

Arthur 30 male M 
Paul 20 male M 

Noreen 45 female S 
Mathew 15 male Q 
Panama 35 female T 

 

(b) Generalized Q∗
2

Age Sex Disease 

15  30 male 
M 
Q 
M 

35  45 female 
R 
S 
T 

 

(c) All overlapping patients

 

 

Hospital-1  

 
David 

Eliza 
Hospital-3  

Hospital-2  

 

 

Table 3. Patient data and its generalization at the Hospital-3

(a) Original data P

Name Age Sex Disease 
David 20 male B 

Anthony 35 male C 
Rick 30 male C 

Stewart 30 male L 
George 28 male B 
Smith 38 male W 
Eliza 40 female R 

 

(b) Generalized P ∗

Age Sex Disease 

20  30 male 
B 
C 
C 

30  40 * 

L 
B 
W 
R 

 

(c) P ∗ with α-overlap

Age Sex Disease 

15  35  male 

B 
C 
C 
L 

28  45  
(1) 

* 

B 
W 
R 
S 

overlapping data publications of the same data holder by employing the same publica-
tion scheme. In multiple publication scenario datasets are more than two, released from
different data holders, and mostly anonymized by different publication schemes. Our
problem is different from sequential publication and more details are in Section 4.2.

In this paper, our proposed method (ρ, α)-anonymization (details later in Section 4)
leads to the publication of Table 3(c) at Hospital-3. Now an adversary has at most 50%
chance (in this simple example) to guess the sensitive value of any overlapping indi-
vidual. Let us reconsider the adversary who has the precise QIDs detail of David and
attempts to infer the disease of David from Tables 1(b) and 3(c). S/he can locate that the
tuple of David must have been generalized in the first QID groups of Tables 1(b) and
3(c), respectively. These groups encompass the 2 common sensitive values i.e. {B,C}.
Therefore adversary cannot get any specific disease that David has contracted. In case
of Eliza, there are also two candidate diseases i.e. {R,S}. There is one ‘counterfeited’
tuple (shown in parentheses) in the QID group of Eliza because there was no {S} disease
in Table 3(a) (details later in Section 5).

1.2 Contributions

This paper presents the first model to prevent the composition attack in non-interactive
data publishing setting by combining sampling and generalization. Our solution inte-
grates two novel concepts: (ρ, α)-anonymization and composition-based generalization.
The former is a new anonymization mechanism, which overcomes the drawbacks of
generalization by combining it with sampling and provide privacy protection for com-
position attack. The latter is a technique that facilitates the enforcement of privacy, in
the presence of overlapping population.
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Secondly, we design an efficient algorithm to compute anonymous datasets that con-
forms to (ρ, α)-anonymization. Our algorithm aims to maximize the utility of the re-
leased data, by minimizing (i) the number of counterfeited tuples, and (ii) the amount
of generalization on the QIDs. Furthermore, the algorithm is versatile, namely, it en-
ables a data holder to produce an anonymized release, by consulting any number of
already published anonymous releases of other data holders.

2 Fundamental Definitions

Let P be a dataset maintained by a data holder. There are n other published datasets
Q∗

1, Q∗
2, . . . , Q∗

n which have overlapping population with P . Each published dataset Q∗
i

(i ∈ 1,2,3,. . . ,n) is independently anonymized from its original dataset Qi.
We classify the columns of P and Qi (i ∈ 1,2,3,. . . ,n) into three types (already

explained in Section 1): (i) an identifier attribute Aid, which is the primary key of P ,
(ii) d quasi-identifier (QIDs) attributes Aqi

1 , Aqi
2 , . . . , Aqi

d , and (iii) a sensitive attribute
As. The QIDs can be either numerical or categorical. For each tuple tp ∈ P , tp[A]
denotes its value on attribute A.

Definition 1 (Generalized QID group / Equivalence class). For an anonymous dataset
P ∗, a generalized QID group is subset of the tuples in P . Each generalized QID group
is assigned an unique ID Ag. All tuples in P ∗ with the same Ag have the identical
values in QID attribute.

For a tuple t∗p ∈ P ∗; the t∗p.QI denotes such generalized QID group which has t∗p in
P ∗. We refer to t∗p.QI as the ‘generalized QID hosting group’ of the t∗p in P ∗. Next, we
introduce an important notation OL.

Definition 2 (Overlapping Set). For dataset P and each already published indepen-
dent anonymous dataset Q∗

i (i ∈ 1, 2, 3 . . . , n), the overlapping set (OL) contains all
those tuples in P such that:

OL =
⋃n

i=1(Q
∗
i ∩ P ) (i ∈ 1, 2, 3 . . . , n)

Each tuple t ∈ OL is an intersection (to be explained) of two corresponding tuples
t∗i ∈ Q∗

i and tp ∈ P ; who satisfy the following properties:

1. t∗i [A
s] = tp[A

s]; both tuples have same sensitive value and
2. t∗i [A

qi
j ] ∩ tp[A

qi
j ] �= ∅, (1 ≤ j ≤ d); t∗i and tp have overlapping value interval in

j-th QID attribute.

Note that none of the data holder shares its original data with another data holder.
Rather, before anonymizing its original data, the data holder of P gets the publicly
available anonymous datasets of other data holders, i.e. Q∗

1,Q∗
2, . . . , Q∗

n, and computes
the overlapping set (OL) using Definition 2. After that the data holder of P applies our
anonymization technique (described in detail in Section 4).

For numeric QIDs, the intersection in Definition 2 returns the overlapping value. For
example, the intersection of age QID value 15–25 in Q∗

i and 20 in P returns 15–25 ∩
20 = 20. For categorical QIDs, the intersection returns the value of the closest common
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generalization of two values. For example, intersection of values ‘male’ ∩ ‘female’
= ‘∅’. If one value is the generalization of another value, the intersection returns the
more specific value. For example, the intersection of ‘∗’∩ ‘male’ = ‘male’. Here ‘∗’
corresponds to most generalized QID value in any generalization hierarchy. In sex QID
generalization hierarchy, ‘∗’ presents both male and female.

3 Cases of Privacy Breach in Composition Attack

3.1 Pros and Cons of Sampling in Composition Attack

An apparent way to combat the composition attack is sampling, i.e. only publish a
portion of data. After a dataset is sampled, an adversary does not know if the record is
in the published dataset or not. However, sampling only reduces the chance of finding
overlapping tuples, but does not reduce the confidence of an adversary for inferring the
sensitive information once overlapping tuples are found.

Example 1. Let us assume that the true match is caused by the same person visiting
two hospitals, and that a false match is caused by two unrelated patients who happened
to have the same QIDs and disease in two datasets. Let the sample rate be 50%. The
probability of a true match is 25% when a patient have visited two hospitals. The chance
of two unrelated patients to have the same QIDs (false match) depends on the data
distributions of two datasets. For a simple illustration, let us assume that the chance is
50%. Assume that there are 5 sensitive values and each has the same chance to associate
with QIDs. The chance for two QIDs matched tuples to have the same disease is only
4% and this reduces the probability of a false match down to 2%; which is much less
than the 25% probability of true match. Therefore, an adversary has a reason to be
confident about true match.

3.2 Pros and Cons of Generalization in Composition Attack

Let us assume that two or more data holders achieve �-diversity [8] in the overlapping
set (OL); such that overlapping equivalence classes have at least � overlapping patients
common that are suffering from distinct diseases (although it is not trivial to achieve
this, and we discuss it in the following section). Intuitively, adversary only learns that
an overlapping victim suffering from one of � possible diseases. However, the privacy
is possibly compromised for non-overlapping victim(s).

Example 2. In published datasets P ∗ and Q∗
i , there are QID groups as P ∗ = {31–35,

male, (A,B,C)} and Q∗
i = {31–35, male, (A,B)}. The adversary has only 50% chance

of knowing if two overlapping victims who visited both P ∗ and Q∗
i suffer from disease

{A} (or {B}). However, the adversary has a chance to learn the sensitive information
of a victim that is not in the overlapping set (OL). For example, the adversary knows
a victim (male, 31) who only visited P ∗. Based on the above data publication, the
adversary knows that the victim (male, 31) suffers from disease {C}.

Data publication by generalization also suffers the minimality attack [13]. An adversary
can use the knowledge of an anonymization algorithm to infer the sensitive information
of individuals. The same attack applies to multiple data releases.
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Example 3. Assume that an algorithm follows the following procedure. If the over-
lapping set (OL) satisfies �-diversity, publish the data section. Otherwise, generalize
the data section with the adjacent tuples to make the overlapping set (OL) satisfy �-
diversity. If not possible, suppress tuples to make the overlapping set (OL) empty.
Based on the principle, P ∗ is published using the information of already published
Q∗

i = {31–35, male, (A,B)} and P ∗ = {35–40, male, (A,C)}. The adversary knows
that victim (male, 33) visited both Q∗

i and P ∗. Based on the published datasets, he
does not know if the victim suffers from disease {A} or {B}. The adversary knows that
the victim’s record has been suppressed from the subsequent dataset P ∗, but this infor-
mation does not help her/him to figure out the true sensitive information of the victim
either. However, s/he knows the generalization algorithm as well. S/he reasons the sen-
sitive value of victim as disease {A} as the following. If the victim suffers from disease
{B}, the subsequent published dataset P ∗ should be as P ∗ = {33–40, male, (A,B,C)}
to maintain the 2-diversity in the overlapping set (OL). The record of the victim is sup-
pressed from P ∗ because the victim does not suffer from disease {B} and there is no
possibility to generalize the data to satisfy 2-diversity in the overlapping dataset (OL).
Therefore, the victim suffers disease {A} for sure.

4 (ρ, α)-Anonymization Model

ρ-sampling and α-overlapping, in short (ρ, α)-anonymization, model consists of two
steps anonymization, as detailed in the following.

Definition 3 (ρ-Sampling). Given a sampling probability ρ ≤ 1, each tuple t ∈ P is
sampled with the probability of ρ without replacement, i.e. whether a tuple is included
in sampled datasetP ρ for subsequent publication is decided by tossing a coin with head
probability ρ. Only if the coin heads, a tuple is included in P ρ.

Sampling is already a routine practice in data publishing [12], because data publish-
ers hold gigantic data and only a subset is publicly released. As shown in previous
section, an adversary infers the sensitive values of individuals in overlapping and non-
overlapping datasets with different confidences. The sampling is necessary for privacy
protection of non-overlapping tuples in multiple independent data releases since it re-
duces the confidence of locatability of an adversary. Later, in Section 4.1, we discuss in
detail how sensitive value inference of a non-overlapping tuple is bounded by sampling.
Next we preserve the privacy of overlapping tuple(s).

Definition 4 (α-overlap). Independently published anonymous datasetP ∗ (formed from
P ρ) satisfies α-overlap, if for any tuple t ∈ OL; its QID group in P ∗ contains at least
α (α ≥ 2) uniformly distributed distinct sensitive values with Q∗

i .

The overlapping set (OL) is computed by utilizing publicly available anonymous re-
leases of other publishers using Definition 2. The rationale of α-overlap is that, if a
tuple t is published by more than one publishers then all its generalized QID hosting
groups must containα common sensitive values in a way such that its sensitive values in
QID hosting groups forms uniform distribution (i.e. equal number) for α common sen-
sitive values in overlapping set (OL). The uniform distribution in overlapping set (OL)
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makes an adversary’s confidence equally split over α sensitive values. The distributions
of the sensitive values in P ∗ and Q∗

i can be quite different. The uniform distribution is
a good trade-off between diverse distributions.

4.1 Privacy Analysis of (ρ, α)-Anonymization

In this section we analyze the privacy of overlapping and non-overlapping tuples in
(ρ, α)-anonymization. We start with the privacy of non-overlapping tuples.

Observation 1. If dataset P ∗ satisfies (ρ, α)-anonymization, then the confidence of an
adversary to derive the true sensitive value of any non-overlapping tuple t from P ∗ is
bound by sampling probability ρ.

Example 4. Reconsider the scenario of Example 2 with additional assumption that P ∗

is sampled with 50% probability. Now, adversary has maximum ρ chance that the record
<male, 31–35, C> is the one s/he is looking for and there is no other source of infor-
mation to reinforce this.

Next we reason about the privacy of overlapping tuples in (ρ, α)-anonymization.

Observation 2. If dataset P ∗ satisfies (ρ, α)-anonymization with all already published
anonymous datasets, then the confidence of an adversary to derive the sensitive value of
any overlapping tuple t ∈ OL through the composition attack is bound by ' 1

α(; where
' ( is ceiling operator.

An ideal situation is that the confidence of guessing a sensitive value by an adversary
from an anonymous dataset is similar to the distribution of sensitive value in original
data, like in t-closeness [7]. However, in the composition attack, we deal with more
than one datasets which may have different distributions for sensitive values. We do not
have a “standard” distribution to close to. Further, the overlapping set (OL) is a small
proportion of a dataset, and may not represent the distribution of the global dataset.
Uniform distribution for α common sensitive values is a good trade off. Any latter data
holder, (who is at the risk of composition attack i.e. Hospital-3 in our case) can simply
set α to a sufficiently larger value, for every overlapping tuple t ∈ OL, to achieve the
required extent of privacy preservation.

Example 5. Reconsider the scenario of Example 3, where the P ∗ will be P ∗ = {31–40
(1), male, (A,B,C)} to maintain the 2-overlap withQ∗

i . Note that, although the adversary
learns that a counterfeit exits in QID group of P ∗, s/he still cannot narrow down the
possible diseases of overlapping victim (male, 33). In fact, to the adversary, there is a
50% chance that either {A} or {B} would be the counterfeit.

4.2 m-Invariance: Similar Model But Not Good in This Scenario

m-invariance [15] model is a very typical model in serial data publication. It has certain
strengths for privacy protection in multiple data publications, but it has its limitations
in our problem. First, it needs a sampling process for m-invariance model in our sce-
nario too. Second, m-invariance model requires every tuple in an overlapping dataset
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Table 4. Major symbols used in different phases of composition based generalization

P Input dataset to be anonymized Q*[ ] Already published overlapping datasets 

 Input sampling parameter for dataset P  
Input parameter, a trade-off for 
efficiency and quality 

k Input parameter for k-anonymity  Input parameter for -diversity 
 Minimum uniformly distributed distinct sensitive values to be placed in overlapping set  

 

to persistently associate with the same set of sensitive values, called signature in [15].
In our scenario, the number of counterfeit or suppressed tuples must be large to satisfy
the persistent consistency as required in m-invariance [15]. m-invariance requires every
overlapping tuple in P ∗ to associate with m number of same sensitive values, (signa-
ture as defined in [15]), as the corresponding tuple in Q∗

i . In other words, m-invariance
requires all sensitive values (both overlapping and non-overlapping) in QID groups of
datasets P ∗ and Q∗

i with overlapping QID values be the same; whereas we only need
to handle overlapping QID groups to combat composition attack.

Example 6. Let the sensitive values of the QID groups in Q∗
1 = {A,B}, Q∗

2 = {A,C},
Q∗

3 = {A,D} and the available sensitive values in P ρ = {A,B,C} (let P ρ = P with ρ =
50%). Now to meet 2-invariance requirement we need 3 QID groups with counterfeit
tuples {∅}, {A} and {A,D} respectively. In contrast, we require one counterfeit tuple,
i.e. {D}, to meet (50%, 2)-anonymization. Intuitively, m-invariance [15] principle is
too strong in our scenario.

5 Composition Based Generalization

5.1 Phases

We use the running example to demonstrate the different phases of composition based
anonymization to achieves (ρ,α)-anonymization; where ρ = 50%, k = 4, � = 3, α = 2,
Q∗

1,Q∗
2 andP are Tables 1(b), 2(b) and 3(a) respectively. Given already published tables

Q∗
1 and Q∗

2 available to data holder of P , we show how to compute the anonymized
version P ∗ from P . We perform the computation in following five phases: sampling,
division, balancing, assignment and generalize. The explanation of the major symbols
used in different phases of composition based generalization is shown in Table 4.

Sampling. Firstly, we apply the sampling on P with input sampling probability ρ to
obtain P ρ. Each tuple of P is independently sampled. In our example, we assume sam-
pling probability ρ = 0.5 and sampling function fρ(t) returns the tuple (i.e. fρ(t) = t)
if fρ = 1 and fx(t) = ∅ if fρ = 0. In our case the probability of getting {0,1} is 0.5. In
our example, we assume that for all the tuples of P , fx(t) = t, i.e. P ρ = P .

Division. In this phase we partition the sampled P ρ into two disjoint sets i.e. overlap
tuples S∩ = Q∗

i ∩ P (i ∈ 1, 2); computed as per Definition 2 and non-overlap tuples
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S− = P ρ − S∩. In case of our example the tuples with sensitive values {B,R} and
{C,C,L,B,W} are included in S∩ and S− respectively. For each tuple t∩ ∈ S∩, we define
its ‘possible sensitive values’ as the set of distinct sensitive values in the corresponding
generalized QID hosting group in already published Q∗

i . In the running example the
tuples, with sensitive value {B} in S∩, has possible sensitive values as {B,C}; i.e. the
distinct sensitive values in QID group-1 of Table 1(b). Whereas the set of possible
sensitive values for {R} is {S,R,T}; i.e. the distinct sensitive values in QID Group-2 of
Table 2(b).

In the end of division phase, we simply divide S∩ into several QID groups, on the ba-
sis of their possible sensitive values. In our running example, we have two QID groups
i.e. GRP1(B,C) and GRP2(S,R,T).

Balancing. We say that a QID group GRPi (i ≥ 1) is balanced, if it contains at
least α tuples; having such distinct sensitive values that these α tuples along with their
corresponding QID group(s) in already published overlapping dataset(s) comply with
α-overlap principle (Definition 4). For example, the QID group GRP1 will become
balance with corresponding overlapping QID group-1 of Table 1(b) if we include two
tuples (from S−) having sensitive value {C} (α = 2). The objective of this phase is to
balance all QID groups.

Continuing our example, we cannot balance QID group GRP2 with corresponding
QID group-2 in Table 2(b) because to balance GRP2 we need at least one tuple having
either of sensitive values {S,T} in S−. As there is no such sensitive values in S− so
we add one counterfeit sensitive value (either of {S,T}) in the QID group GRP2 to
make it balance with corresponding QID group-2 in Table 2(b) . We add counterfeit
sensitive value, in unbalanced QID groupGRP2, instead of suppressing the overlapping
tuple because suppression can still breach the privacy of overlapping tuple, as shown
in Example 3. A non-desiring solution can be to suppress all the tuples of P ρ with the
same sensitive values as of corresponding QID group in Q∗

i .

Assignment. We assign remaining tuples of S− (if any) in two steps. First, we include
the tuples in existing QID group(s) to comply with the generalization principle(s) (k-
anonymity [11], �-diversity [8], t-closeness [7] etc.). Second, if necessary, new QID
group(s) may be created for remaining tuples. A QID group is called complete if it
complies with all underlaying generalization principles. The purpose of this phase is
to make all QID groups complete. In running example, S− has three tuples having
sensitive values {L,B,W}. We have assumed that k = 4 and � = 3 as generalization
principles. The tuple having sensitive value {L} is assigned to GRP1 and remaining
two tuples having sensitive values {B,W} are assigned to GRP2 to make both groups
complete.

The crucial part is the selection of a tuple t− from S− and its assignment to a QID
group. We select first β tuples of S− and search for the optimal tuple which requires
least anonymization of QIDs. β is an input parameter that restricts the search of the
optimal tuple within the first β tuples of S−. The incorporation of β improves the per-
formance of assignment process (as shown in experiments in Section 6) because instead
of traversing all the tuples of S−, only β tuples are searched for optimal tuple. Note that
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Algorithm 1. overlapAnonymize(P ,Q∗[ ],ρ,β,α,k,�)

1: P ρ 	 sample each tuple of P with ρ probability to get P ρ

2: S∩ = Q∗[ ] ∩ P ρ 	 get overlap tuples (Definition 2)
3: S− = P ρ − S∩ 	 get non-overlap tuples
4: Divide S∩ into GRP [ ] QID groups 	 Division phase
5: Sort(S−) 	 sort all S− tuples on the basis of QIDs
6: while |S−| �= 0 do 	 continue till all tuples are assigned
7: for i ← 1, β do 	 to access first β tuples of S−
8: t− = S−[i]
9: for j ← 1, |GRP | do 	 to access all groups

10: if GRP [j] is complete with k, � and α then exclude GRP [j] from GRP [ ]
11: else if t− is optimal to GRP [j] then assign t− to GRP [j]
12: if |GRP | == 0 then i = β; j = |GRP |	 set to break the loops of lines 7 and 9
13: end for
14: end for
15: if |GRP | == 0 AND |S−| ≥ k then create new GRP [0] 	 all groups become

complete but still there are more than k (from k-anonymity) unassigned tuples
16: else if |GRP | == 0 AND |S−| < k then assign all remaining tuples to recently com-

pleted group
17: else if |GRP | ! = 0 AND |S−| == 0 then complete all remaining groups by adding

counterfeit tuples.
18: end while

the anonymization of optimal tuple depends on the specific generalization principle(s)
to be employed. Within β tuples, we calculate Distortion [6] caused by every tuple t−
∈ S− to each QID group and assigns such t− (also referred optimal tuple) to the QID
group which has minimum distortion with t−; as long as α-overlap (Definition 4) holds.
Due to space constraint, we are omitting the calculation details of distortion between
QID group and a tuple and reader is referred to the original paper [6] for further details.
Algorithm 1. formally presents the assignment strategy.

In our running example we assume k = 4 and � = 3 and there are two QID groups;
GRP1 contains 3 tuples and GRP2 has two tuples. We have three tuples in S− with
sensitive values {L,B,W}, as per their order in P ρ. Due to the sorting of the S− (Al-
gorithm 1 line 5) on the basis of QIDs; the sorted tuples have the sensitive values as
{B,L,W}. In first iteration we assign the tuple with sensitive value {L} to GRP1 to
make it complete i.e now GRP1 has four tuples (k = 4), three distinct sensitive values
(� = 3) and two overlap values (α = 2). So, we exclude the GRP1 from all subsequent
iterations (Algorithm 1 line 10). Importantly, we cannot assign the tuple {B} to GRP1

instead of tuple {L} (although the tuple {B} requires less generalization for GRP1)
because after the assignment of tuple {B} to GRP1, the GRP1 will not comply with
α-overlap condition (Definition 4). Now, we are left with two tuples with sensitive val-
ues {B,W} (i.e. |S−| �= 0) and GRP2 is incomplete (as k = 2 instead of 4); so next
two iterations assign the {B,W} tuples to GRP2 (Algorithm 1 line 11) and assignment
algorithm finishes by breaking assignment loop (Algorithm 1 line 6).
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Table 5. Attribute domain size

Attribute Age Sex Education Marital Status Birth Place Occupation 
Domain Size 91 2 17 7 50 50 

 

Generalize. We can have two types of QID groups, i.e. overlap QID groups (created
during division phase) and non-overlap QID groups (created in assignment phase). The
generalization of non-overlap QID group is trivial; we get the minimum QID range that
covers all the QID values and replace the original QID values with this range.

In case of overlap QID group, we get the minimum QID range that (i) covers all
QID values in current QID group (similarly like non-overlap group) (ii) as well as the
QID generalization range in corresponding overlap QID group of already published
dataset. In our running example, the generalization range of the age in overlap QID
group GRP1 will be (15 – 35). We cannot put (20 – 35) as generalization range for
age in GRP1 because (20 – 35) only covers age QID values in GRP1; whereas the
generalization range of age in corresponding overlap group of already published Q∗

1

is (15 – 25). So the minimum range for age in GRP1 is (15 – 35) instead of (20 –
35). There is no need to generalize sex in GRP1 because without any generalization
the aforementioned both conditions of overlap group are met. In the same way, the
generalization range for age in GRP2 is (28 – 45) instead of (28 – 40). The Table 3(c)
is the final outcome after generalization phase.

The complexity of the Algorithm 1 mainly depends on the computation of tuples in
S∩ (Algorithm 1, line 2), sorting of S− tuples (Algorithm 1, line 5) and searching the
optimal tuple (Algorithm 1, line 11). We assume that |P | ≈ |Q∗

i |, so major computation
overhead lies on the computation of S∩ i.e. |P | ∗ |P | steps. Intuitively, the complexity
of O(m2) where m = |P |. The more optimization of anonymization algorithm is future
work we plan to pursue.

6 Experiments

All the experiments are performed on a machine running a 2.4 Ghz CPU with 3 Giga-
byte memory. We deploy two real repositories BIR and OCC from United States
census data downloadable from http://ipums.org. Both contain 300k and 45k tuples re-
spectively. BIR includes four QID attributes, age, gender, education,marital status,
and a sensitive attribute birth place. Whereas OCC contains the same QID attributes,
but with different sensitive attribute occupation. All columns are discrete with domains
size given in Table 5.

We create four disjoint sub-datasets Qbir
i (Qocc

i ) (n ∈ 1, . . . , 4) from BIR(OCC). It
suffices to clarify the generation and generalization of Qbir

i , since the same method is
used for Qocc

i . Each sub-dataset Qbir
i is of 50k tuples. Next, we form the dataset Pbir ,

also having 50k tuples. The remaining 50k tuples initiates a pool O
bir . The dataset Pbir

will be anonymized using (ρ, α)-anonymization. For OCC each sub-dataset Qocc
i and

Pocc contains 8k tuples and remaining 5k tuples goes in pool O
occ. In all experiments we

set sampling probability ρ = 0.50.
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Fig. 1. Successful composition attack vs. the overlap volume u

We run four sets of experiments, involving 4 sub-datasets with Pbir. In each set
of experiment, the publication of n sub-datasets is straightforward, i.e we randomly
select u ∗ n tuples from O

bir and insert separate u tuples in each Qbir
i , subsequently

anonymous Qbir∗
i (having 50k + u tuples) is created that satisfies some generalization

principle(s). Here u is a parameter, called overlap volume, controlling the overlap rate
between n sub-datasets and Pbir . For the Pbir, the generalized P ∗

bir is obtained by,
first, inserting the same u ∗ n tuples in Pbir ; i.e. Pbir has separate u overlap tuples with
eachQbir∗

i . ConsequentlyPbir , having 50k + (u∗n) tuples, is anonymized using (ρ, α)-
anonymization that utilizes other four anonymous sub-datasetsQbir∗

1 , Qbir∗
2 , . . . , Qbir∗

4 .
We repeat this process by increasing the u from 10k to 50k (i.e. each set of experiment
includes 5 iterations on BIR). In case of OCC, we increase the overlap volume u from
1k to 5k tuples in each set of experiment, so total iterations in each set of the experiment
of the OCC are also 5.

6.1 Failure of Conventional Generalization Schemes

In the first set of experiments, we aim at establishing the conjecture that the existing
generalization principles may lead to severe privacy disclosure in independent data pub-
lishing. This finding was also observed in [2]. We adopt the algorithm in [5] to compute
�-diversity [8] as the representative generalization principle, since it is widely adopted
and offers stronger privacy than k-anonymity [11]. In Fig. 1(a), we plot the number of
privacy risk tuples (as explained in Section 1.1) in P ∗

bir as a function of u, as this pa-
rameter changes from 10k to 50k in O

bir . Regardless of u and �, there are nearly 90%
overlap tuples whose privacy is not preserved at all in P ∗

bir . We repeat the experiments
on sub-datasets Qocc

i and Pocc. The results are illustrated in Fig. 1(b), confirming the
same observations.

6.2 (ρ, α)-Anonymization Evaluation

We have n = 4 already published sub-datasets of BIR and OCC i.e. Qx∗
1 , Qx∗

2 , . . . ,
Qx∗

4 (x = BIR or OCC). We invoke the (ρ, α)-anonymization (Section 4) on P x to
compute the generalized version P ∗

x for α-overlap publication. The computation of P ∗
x

utilizes already published four anonymous datasets to identify overlapping set (OL) us-
ing Definition 2. The P ∗

x is characterized by two input parameters, i.e. overlap-volume
u and overlap diversity α.
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Number of Counterfeited Tuples. We start by demonstrating that only a small num-
ber of counterfeited tuples are needed to enforce (ρ, α)-overlap. In Fig. 2(a), we set u
= 10(1)k but vary the α from 2 to 10 and measure the average counterfeited tuples
in P ∗

bir (P ∗
occ). The average number of counterfeited tuples increase along with α be-

cause higher α requires more distinct sensitive values in each overlap QID group for
balancing; failure of this causes insertion of more counterfeited tuples in QID group(s).

Next, we focus on the percentage of counterfeiters with overlap-volumeu. We get the
percentage of counterfeited tuples in P ∗

bir (P ∗
occ) for all sub-datasets of BIR (OCC).

Fixing α = 6, Fig. 2(b) shows the percentage of counterfeited tuples for both BIR
and OCC as a function of u. The percentage decreases as u increases, such that (ρ, α)-
overlap can utilize more overlapping tuples. This is expected, because for a fix value of
α as u increases, more overlap QID groups are more likely to have same set of possible
sensitive values which can accommodate larger overlap volume. Intuitively, causing
less counterfeited tuples while balancing.

Utility of the Published Data. In the following set of experiments, we will use P ∗
x

(where x = BIR or OCC) to answer queries about the original sub-dataset Px. We
concentrate on aggregate queries, since they are the basic operation for numerous min-
ing tasks (e.g., decision tree learning, association rule mining etc.). Specifically, each
query has the form:

SELECT COUNT (*) FROM P ∗
x WHERE pred{ t∗x[Aqi

1 ] AND . . . AND t∗x[A
qi
4 ]

AND t∗x[A
s] }

The P ∗
x is the sub-dataset generalized using (ρ, α)-overlap, t∗x[A

qi
1 ], . . . , t∗x[A

qi
4 ] de-

note the four QID attributes in P ∗
x , and t∗x[As] is the sensitive attribute birth place

(occupation). For each attribute A, the condition pred(A) has the form |A|.δ, where
|A| is the domain size of A (see Table 5), and δ is a query parameter called selection
range. A larger result is returned with higher δ. Our workload consists of 1000 queries
with same P ∗

x and t∗x[A
s]. Given a query, we obtain its actual result Ract from original

overlap sub-dataset P x, and compute an estimated answer Rest from its (ρ, α)-overlap
generalized version P ∗

x . The relative error of a query equals |Ract − Rest|/Ract. We
measure the workload error as the median relative error of all the queries. Adopting α
= 6, Fig. 3 plots the workload error as a function of update volume u for P ∗

bir(P ∗
occ)

respectively. In all experiments, the error is at most 2.5(5.3)% for α-overlap, indicating
high utility of the (ρ, α)-overlap.
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Computation Overhead. The last experiment evaluates the efficiency of our overlap
generalization algorithm. First in Fig. 4(a), we set α = 6, and measure the average
time of computing a generalized sub-dataset P ∗

bir (P ∗
occ) for different u. The cost is

more expensive when u is higher, because the algorithm needs to process more tuples
of overlap volume in each QID group. Then in Fig. 4(b), we fix u to 10(1)k, and got
the cost as a function of α. The overhead decreases as α increases, since a larger α
necessitates fewer overlap QID groups, and requires less time in generalization phase.

7 Related Work

Privacy preserving data publishing has mainly focused on taking into account other
known releases, such as previous publications by the same data holder (called sequen-
tial, serial or incremental releases) [14,15] and multiple views of the same dataset
[16,17]. Another line has considered incorporating knowledge from partitioned views
of a same dataset to group individuals [16]. The sequential/multiple view release models
do not fit because, in this paper, we deal with the case when there are multiple inde-
pendent publishers but their release is single. A hypothetical discussion of the same
problem is in [2] (driving concepts from differential privacy [1]) without the actual
implementation and the test results. Although, some recent work has implemented dif-
ferential privacy in data publishing [10] but it did not address the composition attack.
Most relevant works to this paper are [9,3]. But they incorporate the coordinated model;
where all locations communicate with each other before releasing their data to calcu-
late the privacy risk of overlapping population and subsequently release dataset that is
k-linkable i.e. each overlapping record is minimum linked to k records in each release.
The coordinated model also does not comply with our requirement because we are deal-
ing with non-coordinated scenario where each location independently anonymizes its
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data without having any communication with other location(s). Secondly in coordinated
model, all locations anonymize and publish data at the same time but in our case each
location can publish its data anytime.

8 Conclusion

Existing single/serial data publishing methods do not support multiple independent data
publication by different data holders having overlapping records. This paper has devel-
oped (ρ, α)-overlap anonymization model to prevent an adversary from using data re-
leases of different data holders to infer sensitive information of overlapping individuals.
We have provided an efficient algorithm for computing anonymized datasets to achieve
(ρ, α)-overlap. We experimentally showed that the anonymized data adequately protects
privacy and yet supports effective data analysis.

References

1. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

2. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary informa-
tion in data privacy. In: KDD 2008, pp. 265–273 (2008)

3. Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity.
JVLDB 15, 316–333 (2006)

4. Jin, X., Zhang, M., Zhang, N., Das, G.: Versatile publishing for privacy preservation. In:
KDD 2010, pp. 353–362 (2010)

5. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In:
ICDE 2006, p. 25 (2006)

6. Li, J., Wong, R.C.-W., Fu, A.W.-C., Pei, J.: Anonymization by local recoding in data with
attribute hierarchical taxonomies. TKDE 20, 1181–1194 (2008)

7. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and �-
diversity. In: ICDE 2007, pp. 106–115 (2007)

8. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: �-diversity: Privacy
beyond k-anonymity. In: TKDD (2007)

9. Malin, B.: k-unlinkability: A privacy protection model for distributed data. DKE 64(1),
294–311 (2008)

10. Mohammed, N., Chen, R., Fung, B.C., Yu, P.S.: Differentially private data release for data
mining. In: KDD 2011, pp. 493–501. ACM, New York (2011)

11. Sweeney, L.: k-anonymity: a model for protecting privacy. IJUFKS, 557–570 (2002)
12. Tao, Y., Xiao, X., Li, J., Zhang, D.: On anti-corruption privacy preserving publication. In:

ICDE 2008, pp. 725–734 (2008)
13. Wong, R.C.-W., Fu, A.W.-C., Wang, K., Pei, J.: Minimality attack in privacy preserving data

publishing. In: VLDB 2007, pp. 543–554 (2007)
14. Wong, R.-W., Fu, A.-C., Liu, J., Wang, K., Xu, Y.: Global privacy guarantee in serial data

publishing. In: ICDE 2010, pp. 956–959 (2010)
15. Xiao, X., Tao, Y.: m-invariance: towards privacy preserving re-publication of dynamic

datasets. In: SIGMOD 2007, pp. 689–700 (2007)
16. Yang, B., Nakagawa, H., Sato, I., Sakuma, J.: Collusion-resistant privacy-preserving data

mining. In: KDD 2010, pp. 483–492 (2010)
17. Yao, C., Wang, X.S., Jajodia, S.: Checking for k-anonymity violation by views. In: VLDB

2005, pp. 910–921 (2005)



Protecting Sensitive Relationships

against Inference Attacks in Social Networks�
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Abstract. The increasing popularity of social networks in various appli-
cation domains has raised privacy concerns for the individuals involved.
One popular privacy attack is identifying sensitive relationships between
individuals. Simply removing all sensitive relationships before releasing
the data is insufficient. It is easy for adversaries to reveal sensitive re-
lationships by performing link inferences. Unfortunately, most of previ-
ous studies cannot protect privacy against link inference attacks. In this
work, we identify two types of link inference attacks, namely, one-step
link inference attacks and cascaded link inference attacks. We develop a
general framework for preventing link inference attacks, which adopts a
novel lineage tracing mechanism to efficiently cut off the inference paths
of sensitive relationships. We also propose algorithms for preventing one-
step link inference attacks and cascaded link inference attacks meanwhile
retaining the data utility. Extensive experiments on real datasets show
the satisfactory performance of our methods in terms of privacy protec-
tion, efficiency and practical utilities.

1 Introduction

In recent years, a fast growing popularity in social networks has attracted the
interests of researchers from different disciplines. Exploring the properties of so-
cial networks has generated interesting knowledge discovery and data mining
problems. However, social networks usually contain individuals’ sensitive infor-
mation. Preserving privacy in the release of social network data becomes an
important concern.

One fundamental privacy issue in publishing social network data is link re-
identification problem. In social network, the main entities are individuals who
participate in thousands of interactions with each other. An edge (or link) refers
to an interaction between two individuals involved, and there are many different
kinds of interactions. In Email network, an edge connecting two people indicates
that they communicate through emails. Some interactions or relationships are
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considered as sensitive due to the involved individuals. For instance, in telecom-
munication network, Adam and Bob would like to prevent the disclosure of their
close relationship, which can be observed based on the frequent telephone calls
between them.

1.1 Motivation

In the process of anonymizing data, sensitive relationships are always removed,
i.e., they are not provided in the released data in order to protect individuals’ pri-
vacy. However, it may be possible to predict or infer some of these relationships
through the techniques of link inference, which has been widely investigated in
recent years. We name inferring sensitive relationships in social network as link
inference attack. A common sense we have known is that if two individuals have
many friends in common, these two individuals are likely to know each other. In
Fig.1(a), v0 has three common neighbors with v5, and only one common neigh-
bor with v8. We infer the probability of there existing a link between v0 and
v5 is larger than that between v0 and v8. Link inference techniques could be
adopted by adversaries to identify sensitive relationships with high probability.
We empirically evaluated the re-identification power of link inference on real
social networks, Email-1 and LiveJ-1[10], to demonstrate that such intuition
really holds. In our evaluation, for any two vertices, we considered there existed
an edge between them if the count of their common neighbors was larger than
a threshold δ and we studied the impact of δ on link inference. We report the
statistical data of true positive instances (TP) and true negative instances (TN),
and calculate corresponding rates of TP and TN, as illustrated in Table 1. When
threshold δ = 2, the rates of correctly inferred edges are only 9.12% and 25.49%
for Email-1 and LiveJ-1, respectively. For both datasets, the rates of correctly
inferred edges become higher as δ increases. When δ = 18, TPR in LiveJ-1 even
reaches 86.98%, and 63.61% in Email-1. TNR gets slightly decreased when δ
increases but still keeps as high as 99%. From our evaluation results in Table 1,
we clearly see that the re-identification power of link inference is strong enough
to help adversaries identify sensitive relationships with high probability. Hence,
link inference attacks are real in practice.
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Previous work on protecting privacy of social network does not consider link
inference attacks. Link inference associated information can be studied by ad-
versaries, even though the releasing graph is anonymized through existing meth-
ods. Given graph G in Fig.1(a), according to existing methods [3,9], we obtain
an anonymized graph Ga in Fig.1(c). Ga guarantees the probability of an ad-
versary re-identifying any vertex or edge is at most 1

k . For Ga, the constant k
is 2. Obviously, the expected number of common neighbors between v0 and v5
is 1× 6656

14400 + 2× 3216
14400 + 3× 416

14400 + 4× 16
14400 = 1, and the expected number is

1× 252
864+2× 18

864 = 288
864 between v0 and v8. However, the adversaries can still infer

that the probability of v0 having a link with v5 is larger than with v8, which is
the same with previous conclusion that we draw based on original graph G.

Table 1. Re-identification power of link inferences on real social networks

δ
Email-1 LiveJ-1

TP TPR(%) TN(×107) TNR(%) TP TPR(%) TN(×107) TNR(%)

2 6425 9.12 1.242 99.96 12028 25.49 1.244 99.95
6 3849 26.80 1.248 99.94 6495 57.04 1.247 99.91
10 2568 41.93 1.248 99.93 3896 69.62 1.248 99.89
14 1722 53.76 1.248 99.93 2504 79.14 1.248 99.88
18 1117 63.61 1.249 99.92 1550 86.98 1.248 99.87

1.2 Challenges and Contributions

We address the problem of link inference attacks in social networks. The chal-
lenge of our problem lies in the complexity of link inferences in social network.
Typically, the adversary can perform inference attack with multiple steps. In
order to avoid privacy leakage, we need to modify the social graph. Due to the
complexity of graph, a little modification (e.g., remove an edge) may incur a
great impact on link inferences. How to cut off the inference paths of sensitive
relationships without privacy leakage meanwhile incurring minimal information
loss has proposed a great challenge.

Our contributions can be summarized as follows. (1) We discuss two types of
link inference attacks, namely, one-step link inference attacks and cascaded link
inference attacks, which have strong link re-identification power in real networks.
(2) We propose inference security to protect privacy against link inference at-
tacks. (3) We develop a general framework for preventing link inference attacks,
which adopts a novel lineage tracing mechanism to efficiently cut off the infer-
ence paths of sensitive relationships. (4) We propose algorithms for preventing
one-step link inference attacks and cascaded link inference attacks. (5) We de-
sign a number of techniques to make the inference preventing methods efficient
meanwhile maintaining the utility. (6) Our extensive empirical studies show that
our methods perform well in real datasets.

The remainder of the paper is organized as follows. Related work are sum-
marized in Section 2. In Section 3, we give the problem definition and formalize
the inference security model. We outline a general framework for preventing link
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inference attacks, and propose algorithms for obtaining inference secure graphs
in Section 4. We evaluate our methods in Section 5. Section 6 concludes the
paper.

2 Related Work

With the increasing popularity of social networks, protecting privacy informa-
tion in social networks while retaining data utility for data mining and analysis
has become an interesting problem that has been studied by a number of re-
cent works. Privacy attacks in social networks are mainly classified into two
categories, including vertex re-identification attacks and link re-identification
attacks.

In vertex re-identification attacks (a.k.a. identity disclosure), an adversary
identifies the identities of vertices in the published network using the subgraphs
associated with target individuals as background knowledge. Liu et al. [1] propose
k-degree to prevent from privacy attacking using vertex degree as adversary
knowledge. Zhou et al. [2] provide identity privacy through anonymizing the 1-
neighborhood subgraph of each vertex. Hay and Campan [3,4] propose to protect
identity privacy against subgraph knowledge through clustering vertices into
super vertices, where the vertices in a super vertex are indistinguishable from
each other. Zou et al. [5] propose a privacy preserving model K-Automorphism
for protecting identity privacy.

In link re-identification (i.e., link disclosure) attacks, an adversary aims at
identifying sensitive relationships among the individuals in social network. Zhel-
eva et al. [6] discuss a number of privacy preserving strategies to prevent sensitive
edge disclosure, in which the protection of link privacy cannot be guaranteed.
Ying et al. [7] study graph randomization through adding/removing and switch-
ing edges randomly while preserving the spectrum of the network, which do not
provide quantifiable privacy protection. Cormode et al. [8] propose a permuta-
tion based approach to protect the privacy of links in bipartite graphs. Bhagat
et al. [9] improve the work in [8] and study graph anonymization to protect link
privacy based on vertices grouping.

Different from considering identity disclosure and link disclosure problems
separately, recent work [10,11] has focused on proposing general frameworks to
protect both identity and link privacy. Cheng et al. [10] study how to partition
and anonymize a releasing graph into disjoint k subgraphs that are isomorphic to
each other for ensuring the probabilities of identifying an identity and a sensitive
link both at most 1

k . Besides protecting identity and link privacy, Yuan et al.
[11] give a solution to satisfy different needs on privacy protecting level.

One fundamental problem underlying all of the research work mentioned
above is that each of them assumes adversaries acquire privacy information using
target individual’s associated graph structural knowledge, and ignores that it’s
very possible for adversaries to infer privacy using graph inference knowledge. In
this work, we try to protect sensitive relationships in a releasing graph against
link inference attacks.
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3 Preliminaries and Problem Definition

We model a social network as a simple graph, G = (V,E), where V is the set of
vertices, E is the set of edges. We use V (G) and E(G) to refer to the vertex set
and edge set of G. In this work, we also use link and relationship interchangeably
to denote an edge.

Generally, link inference techniques are classified into three categories, in-
cluding similarity based link inference, maximum likelihood link inference and
probabilistic models based link inference. In this work, we choose common neigh-
bor similarity based link inference (a similarity based link inference technique)
as our specific link inference preventing problem.

Definition 1. (common neighbor similarity) The common neighbor similarity
of vertices u and v is defined as the count of common neighbors of u and v,
denoted as SimCN(u, v), which is formalized as Equation 1,

SimCN(u, v) = |Γ (u) ∩ Γ (v)| (1)

where Γ (u) refers to the neighbors of u.

We choose common neighbor similarity based link inference (LICN for short) as
adversaries’ graph inference knowledge for the following reasons:

(1) As shown in Table 1, LICN is simple, effective and has strong link re-
identification power, which helps adversaries identify sensitive relationships with
high probability;
(2) For adversaries, LICN is easy to implement. The necessary information for
adversaries to perform LICN are the common neighbor sets of the two target
individuals, which are easily collected in real social networks. For instance, in
Online Social Networks (OSNs), such as Facebook and MySpace, after the pro-
cess of sending a friend application to a user and being one of his/her friends,
you can access all his/her friends (i.e., neighbors).

Definition 2. (sensitive edge) Given graph G(V,E), if edge euv is defined as
sensitive by data owners or two involved individuals u and v, then euv should
not exist in G, and vertex pair (u, v) is denoted as sensitive pair.

In this work, we assume some (not all) edges in G are defined as sensitive, and
prevent the disclosures of these edges due to link inferences. As shown in Table
1, although an edge is removed, the existence of this edge could be inferred with
high probability based on graph inference knowledge.

Definition 3. (link inference) Given graph G(V,E) and threshold δ, if the com-
mon neighbor similarity of vertices u and v satisfies SimCN(u, v) ≥ δ, it is
inferred that there exists an edge between u and v.

For two individuals with a sensitive relationship, the data owner provides a
minimum threshold δ to specify his tolerance of revealing closeness of them.
Threshold δ can also be personalized by these two involved individuals.
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Fig. 2. Cascaded link inferences

Definition 4. (one-step link inference) Given graph G(V,E) and threshold δ,
one-step link inference on G refers to performing link inference on each uncon-
nected vertex pair in G, such that for any unconnected vertex pair (u, v) with
SimCN(u, v) ≥ δ, we add euv to E(G).

Given graph G in Fig.1(a) and δ=2, after one-step link inference on G, we obtain
G1 in Fig.1(d), where {ev0v5 , ev0v6 , ev1v2 , ev1v3 , ev2v3 , ev2v4 , ev3v4 , ev5v6} (dotted
edges) are newly inferred edges.

Definition 5. (cascaded link inference) Given graph G(V,E), threshold δ and
an integer i, i-times cascaded link inference (i-inference for short) on G refers
to performing one-step link inference iteratively on G for i times, and we obtain
the i-inference graph of G, denoted as Gi.

In cascaded link inference, if an edge is inferred from the original graph, this
edge is also used for future link inference. Obviously, one-step link inference is
the special case of i-inference when i = 1, i.e. 1-inference. G0 denotes graph G
with no link inference. E(Gi)\E(Gi−1)(we define G−1=φ) refers to the inferred
edges in the i-th one-step link inference.

Definition 6. (inference secure) Given graph G(V,E), sensitive edge set S, an
integer i (i ≥ 0), and threshold δ, if S ∩E(Gi) = φ, then G is i-inference secure.

Example 1. Given G in Fig.1(a), Fig.1(b) lists three variants of G with some
edges removed. After 3-inference on G2 in Fig.1(b), we obtain G2

3 in Fig.2(c),
where edges labeled with integer i (i = 1, 2, 3) are inferred in i-th one-step link
inference. For instance, ev1v6 is inferred in the 2nd one-step link inference and
belongs to E(G2

2)\E(G2
1). Let S = {ev0v5 , ev0v6} and δ = 2, since S ∩E(G2

2) = φ
and S ∩ E(G2

3) = S, G2 is 2-inference secure, not 3-inference secure. Similarly,
G is 0-inference secure and G3 is 3-inference secure.

Theorem 1. Given graph G, sensitive edge set S, and threshold δ, if ∀euv ∈ S
satisfies euv �∈ E(G) and SimCN(u, v) < δ, then G is 1-inference secure.

Proof. After one-step link inference on G, we obtain G1. For ∀euv ∈ S, we have
SimCN(u, v) < δ and euv �∈ E(G), thus euv would not exist in E(G1) due to
link inference. Hence, G is 1-inference secure.
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Problem 1. (Optimal Inference Security) Given graph G, sensitive edge set S,
integer i and threshold δ, find an i-inference secure graph G′ with V (G)=V (G′)
and E(G)∩E(G′)=E(G′), such that |E(G)\E(G′)| is minimized.

Theorem 2. The problem of Optimal Inference Security is NP-hard.

Proof. The proof is by reducing the NP-complete problem of SATISFIABILITY
[12]. Limited by space, we omit the details here.

In the next section, we derive a novel lineage tracing mechanism to efficiently cut
off inference paths of sensitive relationships meanwhile incurring low information
loss.

4 Preventing Link Inference Attacks

In this section, we study preventing link inference attacks in social networks. We
first outline the general framework for preventing link inference attacks, then
propose algorithms for preventing one-step link inference attacks and cascaded
link inference attacks.

4.1 A General Framework

Given graph G that is not i-inference (i≥0) secure, i.e. S∩E(Gi)�=φ, we provide
lineage tracing mechanism to cut off the inference paths of S∩E(Gi). Informally,
all edges that contribute to the inference of S∩E(Gi) are considered as the
lineage of S∩E(Gi). The key is to efficiently find inference paths of S∩E(Gi).

Fig.3(a) describes the process of obtaining Gi, where the arrow line labeled
with integer k (k=1,. . .,i) refers to the k-th one-step link inference. Clearly, edges
in E(Gk) \E(Gk−1) are due to the combinational impact of E(Gk−1)\E(Gk−2)
and E(Gk−2), as depicted in Fig.3(b). Intuitively, we can prevent inferring edges
in E(Gk)\E(Gk−1) through removing edges in E(Gk−1)\E(Gk−2). We formalize
this intuition in Theorem 3.
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E r E 0

E (G 1 ) S 0

trace

infer

(d) Prevent S0

Fig. 3. Cutting off inference paths through lineage tracing

Theorem 3. Given graph G(V,E), edges in E(Gk)\E(Gk−1) can be prevented
from inferring through removing edges in E(Gk−1)\E(Gk−2).



342 X. Liu and X. Yang

Proof. (Proof by Contradiction.) Assume to the contrary that there exists an
edge e in E(Gk)\E(Gk−1) that cannot be prevented from inferring through re-
moving edges in E(Gk−1)\E(Gk−2), i.e. edge e can still be inferred after remov-
ing E(Gk−1)\E(Gk−2) from Gk−1. Thus, e can be inferred based on E(Gk−2)
through one-step link inference and e is obviously in E(Gk−1)\E(Gk−2), contra-
dicting our assumption that e is in E(Gk)\E(Gk−1).

As shown in Fig.3(c), given graph G and edge set Ek⊆E(Gk)\E(Gk−1), The-
orem 3 inspires us that we can prevent inferring Ek by removing edges in
E(Gk−1)\E(Gk−2), noted as Ek−1. Similarly, we prevent inferring Ek−1 by re-
moving Ek−2⊆E(Gk−2)\E(Gk−3). We perform these lineage tracing and remov-
ing operations iteratively until we remove E0 in E(G). After above operations,
edges in Ek would not exist in E(Gk).

Clearly, for graph G that is (k−1)-inference secure but not k-inference secure
(i.e., S∩E(Gk−1)=φ and S∩E(Gk)�=φ), we can prevent inferring S∩E(Gk) using
lineage tracing and removing operations described in Fig.3(c) and obtain k-
inference security for G. Given graph G and an integer i (i≥0), if we want to
obtain i-inference security for G, we can firstly obtain 0-inference secure graph
(i.e. remove sensitive edges directly from E(G)), and then obtain k-inference
(k=1,. . .,i) secure graph based on (k−1)-inference secure graph iteratively.

Based on the framework, we propose algorithms for preventing one-step link
inference attacks and cascaded link inference attacks in the following subsections,
where we will elaborate the technical details of lineage tracing and removing.

4.2 Preventing One-Step Link Inference Attacks

Algorithm 1 protects input graph G against one-step link inference attacks (i.e.,
to obtain 1-inference secure graph), the process of which is outlined in Fig.3(d).
The fact that the graph produced by Algorithm 1 is 1-inference secure is a
straightforward result of Theorem 1. The key idea is to make SimCN of each
sensitive edge less than δ.

Algorithm 1 firstly removes sensitive edges from E(G) to obtain 0-inference
security (Line 1). Then S0 is initialized with sensitive edges with SimCN ≥ δ
(Line 2). All edges present in S0 would be in E(G1). Removable edge set Er that
contribute to the inference of S0 is generated (Lines 3-5). In practice, we can
obtain 1-inference secure graph through removing E0⊆Er from E(G) and E0

should contain as less edges as possible. In procedure Remove Edge, we pro-
vide different strategies for removing edges in Er (Line 7). While removing edges
in Er, sensitive edges already with SimCN < δ should be excluded from S0 (Line
8). In order to minimize the changes on graph properties due to edge removing,
for a removed edge e, the procedure Find Add Edge finds a new edge e′ to
add to E(G) (Line 9). Hence, the condition of E(G)∩E(G′)=E(G′) in Prob-
lem 1 is relaxed to E(G)∩E(G′)≈E(G′). Algorithm 1 performs the procedures
Remove Edge and Find Add Edge repeatedly until graph G is 1-inference
secure. We present the details of Algorithm 1 in the followings.
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Algorithm 1: Preventing One-Step Link Inference Attacks

Input: Graph G(V,E), sensitive edge set S and threshold δ
Output: 1-inference secure graph G
E(G) ← E(G)\S ; /* Remove sensitive edges in G */1

S0 ←{euv|∀euv ∈ S&SimCN (u, v) ≥ δ} ; /* Initialize S0 */2

for each euv ∈ S0 do /* Generate Er */3

for each w ∈ Γ (u) ∩ Γ (v) do4

Add euw, ewv to Er;5

repeat6

e ← Remove Edge(S0, Er) ; /* Remove edge e in Er */7

update S0;8

e′ ← Find Add Edge(e) ; /* Based on e, find a new edge e′ */9

if new edge e′ for e is found then10

E(G) ← E(G) ∪ {e′};11

until S0 is empty ;12

return G;13

4.2.1 Generate Removable Edge Set
When we generate removable edge set in Algorithm 1 (Lines 3-5), we only con-
sider edges that contribute to the SimCN of sensitive edges in S0. As shown in
Algorithm 1, S0 only contain sensitive edges with SimCN ≥ δ.

Definition 7. (removable edge set) Given graph G, sensitive edge set S, and
threshold δ, we use removable edge set Er to denote the set of all edges that
connect between vertices of sensitive pairs with SimCN≥δ and their common
neighbors.

Example 2. Given graph G in Fig.1(a), let S = {ev0v5 , ev0v6} and δ = 2. Since
SimCN(v0, v5) and SimCN(v0, v6) both equal to 3 > δ, we obtain removable
edge set Er = {ev0v1 , ev0v2 , ev0v3 , ev0v4 , ev1v5 , ev2v5 , ev3v5 , ev2v6 , ev3v6 , ev4v6}.
Note that there always exists a feasible solution to obtain a 1-inference secure
graph. In the worst case, all edges in Er can be removed, i.e. remove E0=Er from
E(G). In this way, SimCN of all sensitive pairs equal to 0; thus, any inference
security requirement is satisfied. However, we want to remove minimum edges
in Er to obtain a 1-inference secure graph. In the next subsection, we introduce
our heuristic strategy of removing edges in Er.

4.2.2 Remove Edges in Er

Taking S0 and Er as input, Remove Edge removes an edge in Er and return
it. We provide different strategies of removing edges in Er .

A naive strategy of Remove Edge is that for sensitive edge euv ∈ S0 with
SimCN(u, v) ≥ δ, we randomly remove (SimCN(u, v)−δ+1) edges in Er. The
removed edges must meet the following conditions: (1) These edges connect
between u (or v) and vertices in Γ (u) ∩ Γ (v); (2) None of these edges connect
to the same common neighbor. Removing such edges incurs SimCN(u, v) < δ.
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After performing such removing operation on each sensitive edge in S0, G is
1-inference secure. Since S0 ⊆ S and δ ≥ 1, the computational complexity of
naive strategy is O(|S|Simmax), where Simmax denotes the maximal SimCN of
the sensitive edges in S.

In order to prevent inferring S0 with minimum edges removed in Er, we design
a heuristic function IC (Inference Contribution) to evaluate the contribution of
each edge in Er for the inference of S0, which is formalized as Equation 2.

IC(euv) = countifm∈Γ (v)(eum ∈ S0) + countifn∈Γ (u)(env ∈ S0) (2)

Clearly, removing the edge with larger IC value results in more decrease on
SimCN of sensitive edges in S0. A heuristic strategy of Remove Edge is to
always remove the edge in Er with the largest IC. Obviously, heuristic strategy
remove at most |S|Simmax edges in Er. Since removing an edge introduces |Er|
operations to search the edge with the largest IC in Er and there are at most
2|S|Simmax edges in Er, the computational complexity of the heuristic strategy
is O(2|S|2Sim2

max).
Considering Example 2, for graph G, we obtain G1 and G2 in Fig.1(b) with

naive and heuristic strategy, respectively. As shown in Fig.2, G1 and G2 are both
1-inference secure. However, G1 incurs more edges removed than G2.

4.2.3 Add Edges for Preserving Graph Properties
Although existing research work [7] studies graph randomizing techniques mean-
while preserving graph spectrum, it is not realizable to adopt the methods in [7]
when the amount of edge modifications is large. We design two efficient strategies
on adding new edges for preserving graph properties.

Definition 8. (Non Inference Contributing Edge) Given graph G, sensitive edge
set S, and threshold δ, for an edge e �∈ E(G), if adding e to E(G) does not
change S0={euv|∀euv ∈ S&SimCN(u, v) ≥ δ}, then edge e is a non inference
contributing edge, denoted as nic-edge for simplicity.

Notice that the procedure Find Add Edge only consider nic-edges as candi-
dates to ensure new edges would not incur changes of S0.

u 1 v1

u 2 v2

u 1 v1

u 2 v2

(a) Deletion/Addition

u 1 v1 u 1 v1

v2v2

(b) Switch

Fig. 4. Add new edges for preserving graph properties

Deletion/Addition. The first edge adding strategy is Deletion/Addition,
which is illustrated in Fig.4(a). When edge eu1v1 is removed from E(G), we add
new edge eu2v2(eu2v2 �∈ E(G)) to E(G), which is with the largest Structural
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Similarity (SS) to eu1v1 . Structural Similarity (SS) is formalized as Equation 3.

For a removed edge eu1v1 , there exist at most |V (G)|(|V (G)|−1)
2 −|E(G)| new edge

candidates.

SS(eu1v1 , eu2v2) =
|(Γ (u1) ∪ Γ (v1)) ∩ (Γ (u2) ∪ Γ (v2))|
|(Γ (u1) ∪ Γ (v1)) ∪ (Γ (u2) ∪ Γ (v2))| (3)

Switch. Fig.4(b) describes another efficient new edge adding strategy, named
as Switch. Different from Deletion/Addition, in Switch, when edge eu1v1 is
removed, we add new edge that connects between one vertex in {u1, v1} and
other vertices in V (G). For instance, as shown in Fig.4(b), edge eu1v1 is removed
and new edge eu1v2 is added to E(G). When adopting Switch, Structural Sim-

ilarity SS(eu1v1 , eu1v2) is simplified into SS(eu1v1 , eu1v2)=
|Γ (u1)∪(Γ (v1)∩Γ (v2))|
|Γ (u1)∪(Γ (v1)∪Γ (v2))| .

Obviously, for a removed edge eu1v1 , there exist at most (2(|V (G)|−2)) new
edge candidates in Switch, which is less than Deletion/Addition.

Although Switch achieves a better efficiency than Deletion/Addition through
considering less new edge candidates, it performs well in preserving graph prop-
erties, which will be shown in the experimental section.

4.3 Avoiding Cascaded Link Inference Attacks

Based on the general framework, we now propose the algorithm of avoiding
cascaded link inference attacks (i.e., transform a graph to be i-inference secure),
which is shown in Algorithm 2.

Algorithm 2: Avoiding Cascaded Link Inference Attacks

Input: Graph G(V,E), threshold δ, sensitive edge set S and an integer i
Output: i-inference secure graph G
E(G) ← E(G)\S ; /* Make G 0-inference secure */1

for k = 1 to i do /* Obtain k-inference secure graph iteratively */2

S0 ← E(Gk) ∩ S ; /* Obtain sensitive edges in Gk */3

for j=k−1 to 0 do /* Lineage tracing and removing */4

Er ← φ,Es ← φ;5

generate Er for S0 using edges in E(Gj)\E(Gj−1);6

remove Es⊆Er to prevent inferring S0;7

S0 ← Es;8

return G;9

Algorithm 2 firstly makeG 0-inference secure (Line 1), then obtains k-inference
(1≤k≤i) secure graph iteratively (Lines 2-8). When transform a graph from
(k−1)-inference secure into k-inference secure (Lines 3-8), we firstly obtain sen-
sitive edges inferred in Gk (Line 3), i.e. E(Gk) ∩ S. Then, we perform lineage
tracing and removing operations iteratively to cut off the inference paths of
E(Gk)∩S (Lines 4-8). For each iteration with j, S0 contains the removed edges
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in E(Gj+1)\E(Gj), and we remove edges in E(Gj)\E(Gj−1) to prevent infer-
ring S0. We adopt the general idea of Algorithm 1 to prevent inferring S0, and
make some modifications and extensions to original method. Firstly, when we
generate Er that contribute to the inference of S0, we only consider edges in
E(Gj)\E(Gj−1) (Lines 6). Secondly, SimCN of edges in S0 are calculated on
E(Gj), and edges in E(Gk)\E(Gj) are neglected (Line 7).

Now, we analyze the computational complexity of Algorithm 2. When trac-
ing lineage in E(Gj)\E(Gj−1), Er and Es contain at most 2|S|Simk−j

max and
|S|Simk−j

max edges respectively, where Simmax denotes the maximal SimCN of
the edges in E(Gk). Algorithm 2 with naive edge removing strategy removes
Σi

k=1Σ
0
j=k−1|S|Simk−j

max ≤ |S|Simi
max edges for obtaining i-inference security.

Hence, the computational complexity of Algorithm 2 with naive edge removing
strategy is O(|S|Simi

max), where Simmax is the maximal SimCN of the edges
in E(Gi). Similarly, the computational complexity is O(2|S|2Sim2i

max) for Algo-
rithm 2 with heuristic edge removing strategy.

5 Experimental Evaluation

In this section, we provide extensive experiments to evaluate our methods. We
use two real network datasets, Email-1 and LiveJ-1, which are also used in [10].
There are 5000 vertices and 11047 edges in Email-1 with average degree 4.42,
5000 vertices and 17847 edges in LiveJ-1 with average degree 7.14, respectively.
Table 2 lists the statistics of vertex pairs with SimCN=1,. . .,10 in each dataset.

Table 2. Statistics of SimCN in networks

Dataset
Common Neighbor Similarity (SimCN )

1 2 3 4 5 6 7 8 9 10

Email-1 164144 31146 13068 7307 4558 3075 2153 1723 1285 1014
LiveJ-1 284567 21158 7510 4363 2771 2028 1575 1220 967 792

We implement four versions of Algorithm 1 for preventing one-step link infer-
ence attacks, which are Naive(N, NA), LIP(H, NA), D/A-LIP(H, D/A) and S-LIP(H,
S), where N and H refer to remove edges with naive and heuristic strategy re-
spectively, NA refers to no edge addition, and D/A and S refer to edge addition
with Deletion/Addition and Switch strategy respectively. We also implement
Algorithm 2 for avoiding cascaded link inference attacks, named as CLIP , which
adopts heuristic edge removing strategy. All the programs are implemented in
Java. The experiments are performed on a 2.33GHz Intel Core 2 Duo CPU with
4GB DRAM running the Windows XP operating system.

5.1 Performance of Link Inference Preventing v.s. SimCN , δ

We design two set of experiments to evaluate the impacts of SimCN and δ on
the performance of one-step link inference preventing algorithms. Firstly, for
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evaluating the impact of SimCN , we set δ=2 and generate S through randomly
sampling 200 unconnected vertex pairs with SimCN=2,. . .,10 in Email-1 and
LiveJ-1, respectively. Secondly, for evaluating the impact of δ, we generate
S with unconnected vertex pairs with SimCN≥15 and obtain 1193 and 521
sensitive pairs in Email-1 and LiveJ-1 respectively, and set δ=2,. . .,10.

5.1.1 Runtime and Information Loss
We use I.L. = number of removed edges

|E(G)| to evaluate information loss of inference

preventing algorithms. Fig.5 and Fig.6 show the results of runtime and infor-
mation loss. Due to the same edge removing strategy for LIP, D/A-LIP and
S-LIP, we only plot LIP in Fig.6 as representative. Generally, as δ is constant
and SimCN increases, both runtime and information loss get higher as shown
in Figs.5(a), 5(b) and Figs.6(a), 6(b), respectively. The reason is intuitively that
preventing the inferences of sensitive edges with larger SimCN incurs more edges
to remove. An exception arises in Fig.6(b) when SimCN=8, where the algorithms
incurs less information loss than SimCN=7, which seems unexpected. However,
on closer inspection, we find that the average IC of edges in Er is 2.911 when
SimCN=8, which is much higher than 2.294(SimCN=7) and 2.443(SimCN=9).
Such observation shows that the IC value is an important factor affecting the
performance of the link inference preventing algorithms. When S is constant and
δ gets increased, the algorithms require lower runtime and incur less informa-
tion loss, which are depicted in Figs.5(c),5(d) and Figs.6(c), 6(d), respectively,
since higher δ refers to less inference secure requirement. In Fig.5, the runtime
of the algorithms can be summarized as Naive�LIP<S-LIP�D/A-LIP. With
our heuristic edge removing strategy, the information loss of LIP is much lower
than Naive, as shown in Fig.6.

5.1.2 Data Utilities
We examine two graph structural properties, Transitivity and Average Path
Length (see [13] for details), on 1000 vertices randomly sampled in vertices of
S and their neighbors. We use Change ratio = |Po − Ps|/|Po| to evaluate the
property change ratio, where Po and Ps refer to the property values of the
original graph G and the inference secure version of G. Fig.7 and Fig.8 show the
change ratios of Transitivity and Average Path Length, respectively. Generally,
S-LIP and D/A-LIP are most effective in terms of preserving graph properties,
and their change ratios are around 2% for Email-1 and 7% for LiveJ-1. The
curves of Naive and LIP in Fig.7 and Fig.8 behave similarly to the ones in Fig.6.
Although considering less adding edge candidates, in practice, S-LIP performs
as well as D/A-LIP but with higher efficiency. We notice that S-LIP and D/A-
LIP do not preserve graph properties of LiveJ-1 as well as Email-1. Such
observation could be explained by the statistic data in Table 2, where except for
SimCN = 1, the numbers of vertex pairs in Email-1 with SimCN=2,. . .,10 are
much higher than in LiveJ-1. Hence, the newly added edges in Email-1 are
with higher SS values and preserve graph properties better.
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Fig. 6. Information loss of preventing one-step link inference
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Fig. 7. Change ratio of Transitivity
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Fig. 8. Change ratio of Average Path Length
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5.2 Re-identification Power and Information Loss in CLIP

Firstly, we evaluate the re-identification power of cascaded link inference. We set
δ=8, and generate S through randomly sampling 1000 unconnected vertex pairs
with SimCN=2,4,6 in each dataset. We count the number of disclosures in the i-
inference (i=1,. . .,9) graph and show the results in Fig.9(a) and Fig.9(b). Overall,
the number of disclosures gets higher as i increases and tends to stabilize after
i=4. Such observation can be explained by the community theories of real social
networks. The social networks consist of a large amount of communities, and
the probability of there existing a link between two vertices within a community
is much higher than two vertices belong to different communities. Hence, after
performing one-step link inference several times, cascaded link inference has
disclosed the sensitive edges connecting vertices within a community rather than
other ones bridging different communities, such that i-inference (i>4) do not lead
to an observable increase in disclosures in any dataset. Specially, for sensitive
pairs with SimCN=6, 4-inference causes 100% and 80% of these edges disclosed
in Email-1 and LiveJ-1, respectively. Hence, cascaded link inference is indeed
a privacy threat for sensitive relationships in real networks.

Secondly, we examine the information loss of CLIP. We set δ=3, and generate
S through randomly sampling 200 unconnected vertex pairs with SimCN=4 in
each dataset. Total and Step in Figs. 9(c), 9(d) refer to the information loss
for obtaining i-inference secure graph and transforming a (i−1)-inference secure
graph into i-inference secure, respectively. As depicted in Fig.9(c) and Fig.9(d),
Total gets higher as i increases from 1 to 8 meanwhile Step behaves unsteadily.
An interesting observation of Step, namely Sharp Drop, arises in Email-1 when
i=5 and in LiveJ-1 when i=7, where Step decreases sharply. Such observation
could be interpreted as follows. Before Sharp Drop arises, edges in G are gradu-
ally removed by CLIP. When most of the inference paths of S have been cut off,
CLIP would remove much less edges in G than before to obtain an i-inference
secure graph, which is a Sharp Drop. However, inference paths could be recon-
structed by cascaded link inference and Step may increase after Sharp Drop, as
shown in Fig.9(d) when i=8. Overall, studying the inference paths of sensitive
links is the key to avoid cascaded link inference attacks.

6 Conclusion

In this paper, we discuss an important privacy problem in social networks,
namely link inference attacks. We formalize inference security and develop a
general framework for obtaining inference secure graphs. We propose efficient
algorithms for preventing one-step link inference attacks and cascaded link in-
ference attacks. An extensive empirical study on real datasets indicates that link
inference attacks are real in practice, and our methods perform well in terms of
privacy protection and efficiency meanwhile maintaining graph properties.
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Abstract. Publication of moving objects’ everyday life trajectories may cause
serious personal privacy leakage. Existing trajectory privacy-preserving methods
try to anonymize k whole trajectories together, which may result in complicated
algorithms and extra information loss. We observe that, background information
are more relevant to where the moving objects really visit rather than where they
just pass by. In this paper, we propose an approach called You Can Walk Alone
(YCWA) to protect trajectory privacy through generalization of stay points on
trajectories. By protecting stay points, sensitive information is protected, while
the probability of whole trajectories’ exposure is reduced. Moreover, the infor-
mation loss caused by the privacy-preserving process is reduced. To the best of
our knowledge, this is the first research that protects trajectory privacy through
protecting significant stays or similar concepts. At last, we conduct a set of com-
parative experimental study on real-world dataset, the results show advantages of
our approach.

Keywords: Privacy-preserving, Trajectory data publication, Stay points
extraction.

1 Introduction

Recent years, positioning techniques and location-aware devices have made numerous
locations and traces of moving objects (MOBs) collected and published. Mining and an-
alyzing trajectories is beneficial to multiple novel applications. For example, analyzing
trajectories of passengers in an area can help people to make commercial decisions, such
as where to build a restaurant; while, analyzing trajectories of vehicles in a city may help
government to optimize traffic management systems. Although publishing trajectories
is beneficial to mobility-related decision making processes, it still causes serious threats
to personal privacy: spatio-temporal information contained in trajectories may reveal
individuals personal information, such as, living habits, health conditions, social cus-
toms, work and home addresses, etc. When we say trajectory privacy-preserving, we
mean to protect both whole trajectories not to be re-identified and the frequent/sensitive
location samples not to be exposed. To address these problems, trajectory k-anonymity
is proposed to anonymize k trajectories together in a broader similar time span [1,2,3].
But we argue that, it is not necessary to involve all location samples into privacy
strategy.
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Fig. 1. An example of trajectory k-anonymity

Most of the trajectory k-anonymity methods try to anonymize k whole trajectories to-
gether, which may lead to serious information loss. Examples of trajectory k-anonymity
are shown in Fig.1, where k=3. Without loss of generality, number of trajectories nt in
each sub figure is set to 2, 3, 4. They stand for nt is less than k, exactly equals to
k and larger than k respectively. We take (k,δ )-anonymity [2] as an example. When
nt=2 in Fig.1(a), trajectory 3-anonymity cannot be achieved, both trajectories should be
deleted for privacy-preserving purpose. Note that, the deletion happens for all nt < k.
In Fig.1(b), nt = 3. For a given radius δ , trajectory 3-anonymity can be achieved by
trajectory clustering and space translation. Thus, original trajectories T1, T2 and T3 (rep-
resented by the solid lines) are translated to T ′1, T ′2 and T ′3 (represented by the dotted
lines) respectively, then each location sample is generalized in T ∗ (represented as the
cylinder in gray). Besides generalization, space translation also causes information loss.
For example, given a query Find me trajectories in area A, it returns nothing if executes
on T ∗. While in fact, T1 is in A, thus the query result is totally lost. If trajectory (k,
δ )-anonymity tries to avoid space translation, anonymity region should be expanded,
which may also cause information loss. In Fig.1(c), T4 is added. However, the radius
of the 4 trajectories is too large to be anonymized together, T4 should be deleted. Then
T1, T2 and T3 are anonymized in T ∗, the same as in Fig.1(b). Compared with original
trajectories, deletion, space translation and generalization are adopted to achieve tra-
jectory k-anonymity, while each of them may lead to information loss. Thus, the total
information loss of trajectory k-anonymity is high.

Instead of treating location samples equally in trajectory k-anonymity, our key ob-
servation is that real trajectories are not randomly sampled spatio-temporal points, they
have semantics, such as stay points. We therefore propose to protect trajectory privacy
through protecting stay points, which may avoid serious information loss as well as pro-
viding high privacy guarantee. This idea is feasible for two main reasons: firstly, most
background information is relevant to stay points (e.g., check-ins at semantic places or
credit card transactions at shopping malls). Thus, protecting stay points may reduce
the probability of whole trajectory exposure; secondly, protection of stay points can
prevent leakage of sensitive information on trajectories, since stay points contain more
sensitive information than ordinary location samples (e.g., if a MOB visits or stays at a
hospital, adversaries may infer the person has a health problem; while the adversary
may infer nothing if the MOB just passes through in front of a hospital). Moreover,
trajectory k-anonymity highly depends on distributions of MOBs. If the distribution is
too sparse to satisfy k-anonymity, trajectories may be deleted for privacy-preserving
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purpose (as shown in Fig.1); while if the distribution is too dense, locations or trajec-
tories may be exposed. This is because people always gather in semantic places, if we
anonymize k MOBs at a semantic place, their locations are exposed. Our proposal can
avoid this by generalizing stay points into zones, each zone contains at least l semantic
places. Thus, adversaries cannot distinguish MOBs′ exact locations.

In this paper, we study the problem of protecting trajectory privacy in a data publi-
cation perspective. The key challenges of our proposal are how to extract stay points
efficiently on people’s trajectories and how to generate zones with minimized size and
diversified contents. The contributions of this paper are as follows:

– We propose to depersonalize significant stay points on trajectories instead of current
whole trajectory anonymization.

– We then implement this notion in our proposed method You Can Walk Alone
(YCWA) through splitting trajectories into {move, stay} sequences, and general-
izing each stay point into a territory based on a generated split map.

– Two approaches are proposed to generate the split map. One of which is grid-based
approach; the other one is clustering-based approach. The latter takes both spatial
distance and semantic similarities into consideration.

– We experimentally evaluate the proposed approach on a real-world dataset. Experi-
ment results show that information loss caused by YCWA exhibits lower than 20%,
which obviously dominates trajectory k-anonymity method.

The rest of the paper is organized as follows. Section 2 summarizes related work. Sec-
tion 3 formally defines concepts that we study in this paper. In section 4, we present our
proposed approach. Section 5 analyzes the privacy guarantee and data utility. Experi-
ment results are shown in section 6. Finally, section 7 concludes the paper.

2 Related Work

Trajectory privacy-preserving is a new research area that has received lots of concerns
recent years. Several approaches have been proposed to tackle the problem in a data
publication perspective in an off-line manner, while some have been proposed in the
context of location-based services in an online manner.

We first introduce privacy-preserving techniques in trajectory data publication. In
[2], Abul et al. propose a concept called (k, δ )-anonymity due to the imprecision of GPS
devices, where δ represents the possible location imprecision. Then an approach called
Never Walk Alone (NWA) is proposed to achieve (k, δ )-anonymity through trajectory
clustering and space translation. In [3], Yarovoy et al. observe the fact that there does not
exist a fixed set of QID attributes for all the moving objects, and the anonymity groups
may not be disjoint. A notion of attack graph-based k-anonymity is proposed. Yarovoy
et al. propose two algorithms called Extreme Union and Symmetric Anonymization to
generate anonymity groups which satisfy the novel k-anonymity. In [1], Nergiz et al.
argue that since the trajectories are published for research purpose, it is useful to pub-
lish atomic trajectories rather than anonymized regions. So the authors design a method
to publish atomic trajectories in an anonymization-reconstruction manner: first, enforce
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k-anonymity by clustering trajectories together based on log cost distance, then recon-
struct trajectories by randomly selecting location samples from anonymized regions.
Privacy strategies in [4] is based on the assumption that different adversaries may have
different parts of MOBs’ trajectories, while the data publisher knows what the attack-
ers own. Then a suppression-based method is proposed to suppress trajectory segments
which may reduce the probability of disclosing whole trajectories. In [6], the authors
propose a new trajectory privacy-preserving method which is implemented through spa-
tial generalization and k-anonymity.

Recently, several approaches have been proposed to protect MOBs’ trajectory pri-
vacy in an online manner. In [10], a suppression-based method is proposed to protect
users’ online trajectory privacy. In this paper, areas are classified as either sensitive or
insensitive based on the proportion of visitors and the whole population of that area.
Location updates are suppressed when users enter a sensitive area. In [13], Toby et al.
propose to anonymize historical trajectories with users’ current trajectories. This pro-
posal helps to reduce the area size of the cloaking region. In [5] Gyozo et al. propose
a notion of trajectory privacy-preserving data collection, then implement it based on a
server-client architecture. Each client’s trajectory is split, exchanged and anonymized
by the server before collected by the service provider.

The main difference between these works and our proposal is that they do not account
for any difference of location samples, while in fact, stay points are more important
and more sensitive than ordinary location samples. As far as we have investigated, we
are the first to propose protecting trajectory privacy through protecting significant stay
points. Another important concern in this paper is the diversity of sensitive attributes. If
the places contained in a zone are almost the same type, the visitors’ personal privacy
may be exposed. e.g., if someone visits a zone that only contains a certain type of sensi-
tive locations, such as clubs, even the stay point is generalized to an area, adversaries
may still discover he has visited a club no matter which one it is. We solve this prob-
lem by using a mixed distance in the clustering algorithm to enforce diversified places
into a zone.

3 Problem Statements

Trajectories of moving objects are collected and stored in moving object databases
(MOD). For a moving object Oi, its trajectory T is a set of discrete locations at sam-
pling time, represented as: T = {qi, (x1, y1, t1), (x2, y2, t2), . . . (xn, yn, tn)}, where qi is
the identifier of the trajectory; (xi, yi) represents MOB’s position at sampling time ti,
(xi, yi, ti) is a location sample on trajectories. Raw trajectories consist of GPS record,
which is defined in [8]. In the next, we give some definitions in our study.

Definition 1 (Location). A location L is a two-tuple <x, y>, which represents the
latitude and longitude of the location.

Each GPS record corresponds to a location at sampling time. Location samples are ba-
sically in two categories: pass-by points and stay points. Pass-by points are locations
where MOBs just go through with a non-zero speed, while stay points stand for loca-
tions where the MOB stays over a certain time interval.
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Definition 2 (Stay point). A stay point Lsp is a four tuple <sID, x, y, Δ t>, where sID
is the identifier of the stay point; <x, y> is the coordinate of the stay point, Δ t is the
duration of the stay.

Each time a user stays at somewhere over a time interval, we can obtain a corresponding
stay point. Stay points of a real-world place may have different coordinates. Suppose a
person visits a shopping mall from the front gate, while another person visits the same
mall from the back door. Although they visit the same shopping mall, the stay points
we extract are different. On the other hand, the imprecision of GPS devices may also
result in different stay points for a real-world place. In order to obtain the real-world
places where the MOBs visit, we define the notion of place.

Definition 3 (Place). A place P is a set of stay points, it is represented as <pID, loc,
add, sem>, where pID and loc represent the identifier and the centroid coordinate of P
respectively, add represents the address of P, while sem represents the semantic char-
acteristics of P, which consists of three parameters <−→v , Δ tavg, tenter>, they represent
the visitors, average visit duration and average enter time respectively.

Places we define here correspond to real-world places, such as shopping malls, clubs,
restaurants, etc. Each place is available for all MOBs to visit or stay.

Definition 4 (Zone). A zone Z is an area consists of at least l places, it is represented
as <zID, bl, ur, pn>, where zID is the identifier of the zone, bl and ur represent the co-
ordinate of the bottom-left corner and the upper-right corner respectively, pn represents
the number of places included by the zone.

Location Place

Stay point
Zone

Fig. 2. Locations, stay points, places and zones

An example of these definitions can be seen in Fig.2, where solid back points are lo-
cations, hollow points represent stay points. Squares, circulares and triangles are real-
world places, different shapes stands for different types of places. The shaded rectangle
is a zone which contains three places. Zones are derived from places, places are derived
from stay points. Thus, a zone is a generalized version of users’ stay points.

4 Proposed Solutions

4.1 Solutions Overview

We assume adversaries have access to all published trajectories and the public back-
ground information. They know the distribution of real-world places on the map, but
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they do not know the movement parameters of MOBs. Before our method, we assume
the traces are already anonymized by replacing the true identifier with a random and
unique pseudonym. Our goal in this paper is to anonymize original trajectory database
D to a published version D∗, in which stay points cannot be exposed in a probability
larger than 1/l. The procedure of YCWA is as follows (also shown in Fig.3):

– Split map generation. First, we extract stay points from raw trajectories, then re-
construct semantic places using a reverse geocoder [9]. After that, we construct
zones containing l places through a grid-based and a clustering-based method re-
spectively.

– Trajectory anonymization. We divide trajectories into {move, stay} sequences, where
stay points are replaced by corresponding zones. Pass-by points are either deleted
or un-processed, depending on wether it locates inside a zone or not. At last, D is
transformed to D∗ in this step.

– Information loss measure. We measure information loss of D∗ in this step. Since D∗
is always published for analysis purpose, the utility of D∗ should be kept high. Here
we adopt an information loss measure in [3], which is represented as the reduction
of the probability with which people can accurately determine the position of a
MOB.

Trajectory 
database D

Trajectory 
anonymization

Stay point 
extraction

Place 
generation

Zone 
construction

Map Generation

Input Output
Published 

database D* 

Information 
loss measure

Location 
Data

Data Anonymization

Fig. 3. Procedure of YCWA

4.2 Stay Points Extraction

We adopt stay points extraction strategies in [7] with improvements. Stay points are in
two basic categories: stop and wondering. Accordingly, stay points occur in the follow-
ing two situations. One of which is when a person equipped with a GPS logger gets into
a building, the GPS logger loses signals and stops logging. Or, if a GPS-enabled car
driver stops his car, the GPS device is turned off. The other one is when a GPS carrier
is wondering around an outside sign, the GPS device is still logging and the velocity is
not zero. In this case, the sign should also be regarded as a stay point [7].

For the first situation, we adopt a duration-based strategy. A parameter δ t is intro-
duced in order to avoid mistaking occasional stays for stay points, such as waiting for
traffic lights. If a MOB stays at a location exceeding the time threshold δ t, the location
is regarded as a stay point. That is to say, given a trajectory T={(L1, t1), (L2, t2), · · · ,
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(Ln, tn)}, if |ti+1-ti| > thtime, Li is regarded as a stay point, and the duration of this stay
Δ t is set to |ti+1-ti|. After that, all the stay points are put into Dstays. Thus, starts, ends
and long stays are regarded as stay points.

For the second situation, we adopt a density-based strategy. Given a distance thresh-
old thdist and a time threshold thtime, if distance(Li+1,Li) < thdist and | ti+1-ti | > thtime,
the MBR consists of Li and Li+1 is called a dense area Adense. Generally speaking, Adense

can be regarded as an outdoor stay point. However, a more complicated problem arises.
When a GPS-enabled car meets traffic jams, the congestion area may be mistaken as an
outdoor stay point. We solve this problem by recognizing whether the dense area Adense

is a road segment or not, since traffic jams always happen on road, while most outdoor
signs are not. We put all the dense areas (represented by their geographic centers) as
stay point candidates into Dsc and take Dsc into the next procedure.

4.3 Places Reconstruction

We recall Google Maps API to reverse-geocode coordinate of each stay point and stay
point candidate. Places we reconstruct are put into Dplaces, which is initialized to empty.
For each stay point Li in Dstays, compare its reverse-geocoded address Li.add with each
place′s address in Dplaces. If Li.add equals to Pi.add, merge Li with Pi. Visitors −→v ,
average visit duration Δ tavg and average enter time of the place tenter of Pi are updated.
While if Li.add does not equal to any addresses of existing places in Dplaces, set Li as
a new place in Dplaces. For each stay point candidate Adense in Dsc, we reverse-geocode
it at first. If the obtained address is a road segment, Adense is probably caused by traffic
jams, it should be deleted from Dsc. If the Adense.add is not a road segment, Adense is
regarded as an outdoor stay point, subsequent processing follows the same procedure
as Li. At last, we merge Dsc into Dstay and return Dplace.

Real-world places are in different types, such as apartments, shopping malls, clubs,
and office buildings,etc. In privacy-preserving literature, the most ideal situation is to
enforce diversified places into a zone, but it is too hard to tag each place with a type.
Therefore, we adopt a notion of similarity between places called place similarity [8]
to solve this problem. We define similarity of places according to three parameters:
visitors, average visit duration and the average enter time. Since places of different
types usually exhibit different features. e.g., office buildings may have an average enter
time during 8.AM and 10.AM, average visit duration ranging from 7 to 9 hours, while
a night club may be significantly different. The three parameters can be used to capture
these features and measure the similarities between places, as shown in equation (1).

Definition 5 (Place similarity). Given two places < Pi, loc, add, sem> and < Pj, loc,
add, sem>, where sem is represented as < −→v , Δ tavg, tenter >. Place similarity can be
computed by:

sim(Pi,Pj) =
−→vi ·−→v j

| −→vi || −→v j | +
min(Δ tavgi,Δ tavg j)

max(Δ tavgi,Δ tavg j)
+

min(tenteri, tenter j)

max(tenteri, tenter j)
(1)
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The vector space model is used to compute the similarity between two visitor lists.
The similarity of average visit duration is computed as the smaller one divided by the
larger one, the same is done for average enter time. Sim(Pi,Pj) is computed by linear
combination of the three scores. The higher the sim(Pi, Pj) value, more similar they are.

4.4 Zones Construction

In this section, we turn places into zones in order to generate a split map. Two different
approaches are proposed, one is grid-based approach, called GridPartition; the other
one is clustering-based approach called DiverseClus.

GridPartition. In GridPartition, the whole 2D Euclidean space is uniformly divided
into square cells. Each cell is called a grid. Obviously, places are located in different
grids, and the number of places in each grid is different. Gi.num denotes number of
places contained by Gi. For a user specified privacy level l, not every grid contains
enough places to be a zone. We design an enlarging strategy to enforce at least l places
into a zone, as shown in Algorithm 1. Each grid Gi is scanned in a spatial order. If
Gi.num >l, Gi is tagged as a zone, and put Gi into Dzones (line 3-6). If 0 < Gi.num < l,
we try to merge it with its neighbors. For any grid or zone G′ near Gi, if 0<G′.num< l,
it is regarded as G′is grid neighbor, and then put it into NGBg; while G′is zone neighbors
are put it into NGBz (line 7-8). An example can be seen in Fig.4(a), where l is set to 5.
When Gi.num < l, Gi enlarges itself by merging with its grid neighbors in NGBg (line
10-12). If NGBg = Φ , Gi enlarges itself by merging with its zone neighbors in NGBz

(line 13-15). After merging, Gi.num, Gi.ur and Gi.bl should be updated, and Gi is put
into Dzones. Fig.4(b) shows the resulted two zones using the enlarging strategy.

NGBz

cl

cb

cr

NGBg

(a)

Z1

Z2

(b)

Fig. 4. GridPartition

GridPartition guarantees each zone contains more than l places, but it doesn’t take
places’ semantic meanings into consideration. If a zone contains l places of the same
type, it may also lead to privacy leakage, as we have previously mentioned. DiverseClus
is proposed to address this problem.

DivserseClus. Given two places Pi and Pj, based on the spatial distance and place sim-
ilarity, we introduce a mixed distance measure defined in equation (2).

Distmix(Pi,Pj) =
Dist(Pi,Pj)

sim(Pi,Pj)+α
(2)
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Algorithm 1: GridPartition (Dplaces, l)

Input : Dplaces, minimum place numbers in each zone l
Output: Dzones

Dzones ← Φ ;1

Divide the space into grids;2

for each grid Gi do3

if Gi.num > l then4

Dzones ← Gi;5

continue;6

NGBg ← Gi’s grid neighbors;7

NGBz ← Gi’s zone neighbors;8

while Gi.num < l do9

if NGBg �Φ then10

randomly select a grid gi in NGBg;11

merge gi into Gi;12

else13

randomly select a zone zi in NGBz;14

merge zi into Gi;15

update Gi.num, Gi.ur and Gi.bl;16

Dzones ← Gi;17

return Dzones;18

Here Dist(Pi, Pj) is a non-zero Euclidean distance, since Pi and Pj are represented by
their geographic center, zero value never happens if they are two different places. The
primary targets of DiverseClus is to cluster l places into zones with minimized area size,
as well as diversified contents. We therefore measure the diversity of places by the dis-
similarity of two places, represented as 1

sim(P1,P2)+α . The larger the value, more diverse
they are, and they are more likely to be clustered together. α is used to avoid divide-
by-zero error and smooth the penalty when the place similarity are very small. In our
experiments, α is set as the standard deviation of place similarities, this strategy con-
siders the majority differences of place similarities, and works well in our experiments.
The details of the algorithm are represented in Algorithm 2.

At a very general level, the procedure of DiverseClus follows a similar structure of k-
mediods [12]. The algorithm begins with a cluster center Pcen, which is the centroid place
of Dplaces. Then, each cluster center is chosen as the farthest from the last one (except
the first one, the farthest is measured by mixed distance, line 3-5). Places that near Pcen

are clustered into Clus. SPcen which represents clustering score of using Pcen as center is
introduced to measure qualities of clusters. SPcen is computed by the sum of distances
of each place to Pcen in the cluster (line 6-8). In order to get an optimized result, the
clusters should be adjusted by replacing Pcen with another place. Each place Pi in Clus
is selected to replace Pcen, the clustering score SPi is computed using Pi as the clustering
center (line 9-11). If SPcen < SPi , replace Pcen with Pi, until no replacement happens (line
12-14). The clusters are represented by their minimum bounding rectangles (MBRs). At
last, Clus.num, Clus.bl and Clus.ur are updated and Clus is put into Dzones.
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Algorithm 2: DiverseClus (Dplaces, l)

Input : Dplaces, minimum place numbers required l
Output: Dzones

Pcen ← the centroid place of Dplaces;1

Dzones ← Φ ;2

while Ncen ≤ . |Dplace|/l/ do3

Pcen ← the farthest of the last one;4

Ncen++;5

for each Pcen do6

Clus← Pcen∪ l-1 nearest neighbors of Pcen;7

SPcen ← ∑ j
Dist(Pcen,Pj)

sim(Pcen,Pj)+α ;8

for each Pi in Clus do9

select Pi to replace Pcen;10

SPi ← ∑ j
Dist(Pi,Pj)

sim(Pi,Pj)+α ;11

if SPi < SPcen then12

replace Pi with Pcen;13

until no changes;14

update Clus.num, Clus.ur, Clus.bl;15

Dzones ←Clus;16

return Dzones;17

The clusters generated by DiverseClus should be post-processed, since some of the
clusters may overlap spatially. This is because two places are dissimilar in semantic
meanings while the spatial distance between them is far. We adjust the clusters using
the following strategy. For each cluster Clus derived from DiverseClus, check if it spa-
tially overlaps with other clusters. If so, merge the overlapped clusters until no overlap
exists. After the merging, we need to check the place number Clus.num in each cluster.
If l < Clus.num < 2l, Clus is a qualified cluster, and it should be put into Dzones. If
Clus.num > 2l, split Clus into two non-overlapped clusters spatially, each cluster con-
tains at least l places. After the adjustment, each cluster’s MBR is regarded as a zone,
a split map consists of zones is generated. It may be argued that, the adjustment may
eliminate the effects of the place similarity, this is undesirable because most clusters are
not overlapping or the overlapping region is relatively small, since the nearby places are
very likely to be in different types, this can also be proved in our experiments.

4.5 Trajectory Anonymization

Trajectories are then split and anonymized based on the split map. The original
trajectory database D is set as input, each location sample is scanned, stay points are
replaced by the corresponding zones. For each pass-by point, the published version
is kept as the original one, unless the pass-by point is covered by a zone. Cover is
a spatial relationship between a zone and a pass-by point of the same trajectory, as
defined in definition 6. If a pass-by point Lj is covered by a zone, Lj is suppressed for
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privacy-preserving purpose, since publication of location samples approaching to a zone
may cause exposure of a stay point.

Definition 6 (Cover). Given two location samples (Li, ti) and (L j, t j) on T, Li is a stay
point, its corresponding zone is Zi, while L j is a pass-by point. If L j locates inside Zi,
then Lj is covered by Zi.

5 Privacy and Utility Analysis

In this section we discuss the privacy guarantees and data utilities. We formally show
that by applying our methods, the published database D∗ will not expose any user’s stay
points during their travels. Privacy guarantee is always measured by re-identification
probability which means the probability of adversaries to identify a stay point or a
trajectory from the published database D∗.

Theorem 1. Given a trajectory database D={T1, T2, . . .Tn} and its published version
D∗={T∗1, T∗2, . . .T∗n} generated by YCWA, the average stay points re-identification
probability is bounded by 1/l.

Proof. In the attack model, we assume adversaries have access to all the published
trajectories and public knowledge. Adversaries do know the distribution of the places on
the map, but they do not know the movement parameters of MOBs. Given a published
version D∗, each stay point in D∗ is generalized to an area which contains at least l
diverse stay-able places. The re-identification probability depends on the number of
places in a zone, which is bounded by 1/l. ��
To capture the information loss, we adopt the reduction in the probability with which
people can accurately determine the position of an object in [3]. Given a published
database D∗ of D, the average information loss is defined in equation (3).

ILavg =
∑n

i=1 ∑n
j=1(1− 1/area(zone(Oi, t j)))+∑h

d=1 Ld

n×m
(3)

ILavg represents the average shrinks of the identify probability of a location in D∗.
Where area(zone(Oi, t j)) represents the area size of the corresponding zone of Oi at time
t j when Oi stays. The probability of adversaries can accurately determine the location
where the MOB stays shrinks from 1 to 1/area(zone(Oi, t j)). If a location Ld is deleted,
it is totally indistinguishable, so the information loss turns to be 1. n×m represents the
total location samples in D. Obviously, ILavg ranges from 0 to 1.

6 Experiments

In this section we report the empirical evaluation we have conducted in order to assess
the performance of our methods, in terms of data utility and the efficiency.
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6.1 Experimental Setup

We run our experiments on a real-world dataset. Thanks to the Geolife project [11],
we get the published real trajectories of volunteers. The dataset contains more than
8000 trajectories of 155 users ranging from May 2007 to May 2010 mainly in Beijing.
More than 23 million GPS records are contained. The dataset is represented as BEI-
JING henceforth. The experiments are run on an Intel Core 2 Quad 2.66HZ, windows
7 machine equipped with 4GB main memory.

Since we use the same dataset as in [7] to extract stay points, we adopt the same
parameter values. Specifically, the duration threshold δt and thtime are set to 20 minutes,
while the distance threshold thdist is set to 200m. This results in 75,593 stay points
(shown in Fig.5(b)) extracted from the BEIJING databaset (shown in Fig.5(a)). We
may avoid bothering the readers with such details, as I believe we can simply clean the
dataset first by removing all non-Beijing location points. It can be seen that, location
samples distribute all over the city of Beijing, more than 95% of them concentrate
within the Fifth Ring Road.

(a) (b) (c)

(d) (e)

Fig. 5. Data distribution on the map. In (a) we report data distribution in BEIJING, in (b) stay
points distribution, in (c) distribution of places, in (d) 50 clusters obtained purely on spatial dis-
tance, in (e) 50 clusters on mixed distance.

After extracting stay points in BEIJING, we recall Google Maps API to reverse each
stay point to a real-world address. Thanks to Google Maps API, the returned results
contain exact addresses and post codes, which make the place generation available and
reasonable. After this procedure, 6902 semantic places are found. Fig.5(c) shows the
distribution of semantic places in Beijing.

Both GridPartition and DiverseClus are used to generate the split map. In GridPar-
tition, we divide the whole city of Beijing into grid cells of size 0.008◦ × 0.008◦ each,
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which results 62,408 grid cells. We then implement the enlarging strategies on these
grids. In DiverseClus, the parameter α is set as the standard deviation of place sim-
ilarities, as we have previously mentioned. The clustering results on spatial distance
and mixed distance (without post-processing) are sampled in Fig.5(d) and 5(e), respec-
tively. In both figures, 50 clusters are randomly selected to show the results. Places in the
same cluster are painted in the same color. It can be seen that, clusters obtained based
on mixed distance do overlap in Euclidean space representation before post-processing.
Inclusion of place similarities do pose impacts on clustering results, post-processing is
necessary in this situation. Based on the clustering results of places, the zones and the
whole split map can be generated with various l values, i.e., the privacy levels. In the
following experiments, we set l = 2, 4, 6 ,8, 10, and 12.

6.2 Measure of Data Utility

We then run a set of experiments on BEIJING to make a comparison on data qual-
ity between our approach and (k,δ )-anonymity [2]. (k,δ )-anonymity only works over
trajectories with the same time span, a pre-processing step that partitions trajectories
into equivalent classes is needed. Then a greedy clustering method is used to cluster
trajectories together. At last, trajectories in each cluster are transformed into a (k,δ )-
anonymity set, where δ is given as the radius of the anonymity set. The information
loss we measure is computed by equation (3), where the area size is measured in square
meters1. For (k, δ )-anonymity, the value of δ is set according to [2], ranges from 1000
to 4000, step by 1000. The evaluations shown in our figures are average values on δ . In
information loss evaluation of (k, δ )-anonymity, we only account for the generalization
and the deletion part, while the information loss caused by space translation can be seen
in range query distortion measure.
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Fig. 6. Data utility measure of DiverseClus. In(a), we report information loss of the three algo-
rithms, in (b) the average zone size, in (c) the number of removed location samples.

Comparison of all the three algorithms are shown in Fig.6(a). DiverseClus leads
to less information loss than GridPartition since it adopts a clustering strategy, which

1 The area size should be normalized by dividing 100, this is because the imprecision of GPS
devices ranges from 5 to 15 meters, that is to say if a MOB locates in an approximately 100m2

area, the location of the MOB can be identified.
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makes the zone size smaller than GridPartition. Information loss of both DiverseClus
and GridPartition are less than 20%, which obviously dominate (k,δ )-anonymity. The
information loss caused by our proposal is mainly caused by generalization of stay
points and deletion of covered pass-by points. We therefore measure the average zone
size and number of deleted location samples in Fig.6(b) and Fig.6(c). Obviously, Di-
verseClus performs better than GridPartition on both metrics. Since smaller zone size
may cover fewer pass-by points, thus, making the removed location samples reduced.
In all three figures, performance decreases as privacy level grows. We do not measure
anonymized region of (k, δ )-anonymity, since for a given δ , the anonymized region is
fixed to π( δ

2 )
2.

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Privacy level

P
S

I D
is

to
rt

io
n

 

 

(k,δ)−anonymity
GridPartition
DiverseClus

(a)

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Privacy level

D
A

I D
is

to
rt

io
n

 

 

(k,δ)−anonymity
GridPartition
DiverseClus

(b)

2 4 6 8 10 12
0

100

200

300

400

Privacy level
R

un
 T

im
e 

(s
)

 

 

(k,δ)−anonymity
GridPartition
DiverseClus

(c)

Fig. 7. Performance evaluation of 3 algorithms, in (a) we report PSI query distortion comparison,
in (b) the comparison of DAI distortion, in (c) run time comparison of 3 algorithms

We then measure the actual distortion of range query results on the published dataset
D∗ from the original dataset D. In particular, given a spatial region R and a time duration
[ts, te], we consider two range queries the same as [2]: Possibily Sometimes Inside and
De f initely Always Inside, represented as PSI and DAI for short respectively. Range
query distortion is measured by Distorrq =

min(Q(D),Q(D∗))
max(Q(D),Q(D∗)) . Where Q(D) represents the

number of query results on D, Q(D∗) stands for the number of query results on D∗. We
measure query distortion for various l values. We randomly choose circular region R
having radius between 500 and 5000, and randomly choose time interval ranging from
2 hours to 8 hours. The parameter settings we use are according to [2]. At last, 1000
queries are generated, each of them have 1000 runs. We run these queries on trajec-
tory database anonymized by our approaches and (k, δ )-anonymity. The average query
distortion is shown in Fig.7(a) and Fig.7(b). Both GridPartition and DiverseClus have
a range query distortion under 20%, while for (k,δ )-anonymity, the query distortion is
larger, almost up to 60%, since it adopts space translation, some location samples are
translated to totally different ones, making the query results lost.

6.3 Measure of Efficiency

The running times evaluation of the three algorithms are shown in Fig.7(c). Running
time of GridPartition is the longest of the three, since the partition into grids procedure
is costly. In both GridPartition and DiverseClus, we exclude the time consumption of
stay points extraction and place reconstruction, because Google Maps API contains
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restrictions, it is only allowed to reverse one coordinate every 2 seconds. The procedure
of stay points extraction and places generation cost about 2951 minutes, but the data set
of places can be used on various l values for both methods.

7 Conclusions

Collection and publication of people’s everyday trajectories pose serious threats on peo-
ple’s personal privacy. In this paper, we propose to protect trajectory privacy through
protecting significant stays on their trajectories, which can avoid unnecessary anonymiza-
tion of pass-by location samples. Although sometimes the privacy guarantee of YCWA
is not better than trajectory k-anonymity, in some applications, YCWA works well and
the information loss is much lower.

In the future, we plan to reinforce our approach for multiple attack models as well
as improve the space similarity measure. In YCWA, we assume adversaries do not know
the moving speed of a MOB. But if they know the moving speed, such as, by knowing
the maximal moving speed of a MOB, adversaries may infer the reachability to a zone,
thus, the re-identification probability may increase. In another aspect, we plan to extend
our approach to an online scenario, which means to dynamically maintain the split
map when a new comer enters an area, thus, it can protect people’s real-time trajectory
privacy efficiently.
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Abstract. With the popularity of social networks, the privacy issues related with
social network data become more and more important. The connection informa-
tion between users, as well as their sensitive attributes, should be protected. There
are some proposals studying how to publish a privacy preserving graph. However,
when the algorithm which generates the published graph is known by the attacker,
the current protection models may still leak some connection information. In this
paper, we propose a new protection model, “Semi-Edge Anonymity”, to protect
both user’s sensitive attributes and connection information even when an attacker
knows the publication algorithm. Moreover, any state-of-art tabular data protec-
tion techniques can be applied to Semi-Edge Anonymity model to protect sen-
sitive attributes. We theoretically prove that on two utilities, the possible world
size and the true edge ratio, the Semi-Edge Anonymity model outperforms any
clustering based model which protects links. We further conduct extensive exper-
iments on real data sets for two other utilities. The results show that our model
also has better performance on these utilities than the clustering based models.

1 Introduction

Social network websites are becoming more and more popular in recent years. A social
network graph contains lots of information, such as users’ age, name, education back-
ground and relationship between users, etc. Fig. 1 is a social network example, where
each user is represented as a node and the relationship between a pair of users is rep-
resented as a link. When publishing such a graph, it is important to protect the privacy
of the involving users [1][9][12]. For many applications, a social graph is modeled as a
labeled graph, which contains the following information [2][3][6][20]:

– Node Information:

• The non-sensitive attributes of a user. Similar to the tabular micro-data, we call
them quasi-identifiers. E.g., the education background and age on each node in
Fig. 1 are the quasi-identifiers1.

• The sensitive attributes of a user. E.g., in Fig. 1, the salary of each user is the
sensitive attribute. We also call the sensitive attributes the sensitive labels.

– Link information: the relationships between users. We also call them the structure
information.

1 Note that, the letters in vertices are not vertex labels, they are vertex IDs that we introduce to
simplify description.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 367–381, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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When publishing a graph, the link information as well as the sensitive attributes
should be protected [2][6]. The attack using certain background knowledge to query
the published graph to find a node/link is called ‘node/link re-identification’. We call
the protection of the link information the link protection and the protection of the
sensitive attributes the node protection. The two basic methods for graph publication
are edge-editing (i.e. to add or delete edges to make the graph satisfy certain proper-
ties) and clustering (i.e. to divide nodes into clusters and publish a clustered graph.
The nodes/edges in a clustered graph are also called super nodes/edges.). There are
two models [2][3][6] that can have the quantifiable guarantee on both the node pro-
tection and the link protection2 when an attacker knows arbitrary subgraphs around
victims. These models well preserved the user privacy as they were proposed.
However, they may still suffer privacy leakage when the attacker combines the graph
generation policy.
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Fig. 1. Social network example
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Fig. 4. Attack Demonstration

The first model [6], “k-isomorphism model”, is based on edge-editing for both node
protection and link protection. The protection objective is: for an attacker with arbitrary
subgraph knowledge, the probability of discovering any user’s information or finding
any two users have any connection is at most 1

k . A graph is k-isomorphism if this graph
consists at least k disjoint isomorphic subgraphs. Fig. 3 is a 2-isomorphism graph of
Fig. 1. Since there are at least k disjoint isomorphic subgraphs, each node is “hidden”
with as least k− 1 other nodes. For link protection, since any node’s candidates appear

2 The probability of re-identifying a node and the probability of learning any two nodes have a
link is bounded by a constant.
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in at least k disjoint isomorphic subgraphs, the probability an attacker finds two nodes
have a connection is at most 1

k . For example, the candidates of Tim are {e, j} and the
candidates of Ben are {c, h}. So, the mappings between candidates and users (Tim,
Ben) are {(e, c), (e, h), (j, c), (j, h)}. Due to disjoint subgraphs, at most two of them
contain an edge between the two mapping nodes. Therefore, the probability that an
attacker finds two nodes have a link is at most 1

2 .
However, it is required to make as fewer edge changes as possible to keep the graph

utility [6]. The published graph is generated only with a small portion of edge changes3

[6]. Therefore, the probability that two connected nodes are put into different disjoint
parts is low. Suppose a published graph is generated with p% edges changed. If an
attacker knows a connected subgraph G′ (e.g. Fig. 2(a)), for any two nodes in G′, the
probability these two nodes are put into two different subgraphs is at most p%, since it
is required to delete at least one edge in order to put these two nodes into two separated
subgraphs4. When an attacker knows a subgraph as shown in Fig. 2(a), he can find
the mapping between candidates and users, for example, {Alice, Chilly, Mike} should
either be {a,b,d} in part 1 or be {g,i,k} in part 2 of Fig. 3 with very high confidence
(at least 1-p% where p is small). Thus the edges such as e(Alice, Chilly) and e(Chilly,
Mike) are released. In some cases, even when an attacker does not know that two nodes
are in the same subgraph, the link between these two nodes can still be discovered. For
example, if an attacker knows Ben’s subgraph (as shown in Fig. 2(a)) and the quasi-
identifiers of Billy and Aron (shown in Fig. 2(b)), then he knows Billy and Aron are not
in Fig. 2(a). After that, he can delete the subgraph about Ben (Fig. 2(a)) from Fig. 3.
Although he might not have any idea about Fig. 2(a) appears in which isomorphism
part of Fig. 3, he can still randomly select one and remove Fig. 2(a). The new graph is
shown in Fig. 4, which is not a 2-isomorphism graph. The link protection, such as the
link between Billy and Aron (i.e. link between h and j), cannot be guaranteed anymore.
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Attack

Different from the first model, Cormode [2][3] proposed a clustering based model
which also protects both the nodes and the links. For an attacker with arbitrary subgraph

3 At most around 10% of edges are changed in [6]’s experiments.
4 Actually, to make the mappings {(e, c), (e, h), (j, c), (j, h)} have the equal probability of oc-

currence, at least 50% edges in the original graph should be changed. For any two nodes u and
v where there exists one edge (u, v), to let an attacker believe u and v only have 1

k
probability

to be assigned into the same connected subgraph, (u, v) should be deleted with probability
k−1
k

. Even with k = 2, at least 50% edges should be changed. This violates the graph genera-
tion policy of k-isomorphism model.
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knowledge, their model guarantees the probability of node re-identification and link re-
identification is at most 1

k . By making each cluster’s size at least k, the probability of
re-identifying a user can be bounded to be at most 1

k . For link protection, Cormode
[2][3]’s protection model requires the following two safety conditions: (1) No links
within a cluster; (2) For any two nodes in the same cluster, they do not connect to the
same node. For the graph in Fig. 1, a clustered graph with k = 2 as shown in Fig. 5 can
be published5. For any two super nodesCx and Cy , if we use |Cx| and |Cy | to represent
the number of nodes contained in Cx and Cy , this clustering model constrains that the
number of edges between Cx and Cy is at most min{|Cx|, |Cy|}. Since each cluster’s
size is at least k, the probability that an attacker can find any two nodes have a link is at
most min{|Cx|,|Cy|}

|Cx||Cy| ≤ 1
k .

However, the above safety conditions might lead privacy leakage. Consider the fol-
lowing case: If an attacker knows a subgraph as shown in Fig. 2(a), he can uniquely find
Dik and Red has a link by combining the published graph with the two safety condi-
tions (shown in Fig. 6). There are two edges between super nodes 0 and 2. Since there
already exists an edge e(a, c) based on the background knowledge (i.e. Fig. 2(a)) and
the clustering condition makes sure these two edges do not connect to the same node,
the left edge must be between (g, i) (Dik and Red). This attack works for homogeneous
graphs (there are at most one edge between any two nodes) since the safety condition
provides more information than the published graph.

From the above analysis, we can see there indeed exists a problem when an attacker
knows the generation policy of the published graph. To solve this problem, in this pa-
per, by assuming an attacker knows our graph generation policy as well as arbitrary
subgraphs:

– We give a necessary and sufficient condition for clustering based models, which can
guarantee the link protection objective by restricting the number of edges between
and within clusters.

– We propose a new protection model named Semi-Edge Anonymity (SEA) model,
which separately protects nodes and edges. We give a safety random algorithm to
implement this model. The new model performs well in the preservation of original
graph utilities.

The SEA model can plug in any state-of-art protection model for tabular data to protect
sensitive labels. Although we use a random algorithm to generate the published graph,
the SEA model well preserves the graph’s structure information. We prove that the SEA
model outperforms any clustering based model which protects links on two utilities.
Extensive experiments on real data sets also show that our SEA model well preserves
two other utilities too.

2 Problem Description

In this paper, we develop a graph protection model for both node protection and link
protection. Our model guarantees the following two protection objectives:

5 The number on each super edge is the number of edges this super edge represents. If a super
edge only represents one edge, we don’t display the number “1” to make the Figures clean.
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Objective 1 Any node u, the probability that an attacker can re-identify u’s sensitive
label is at most 1

k ;
Objective 2 Any nodes u and v, the probability that an attacker can successfully find

u and v have a link is at most 1
k . We use Prob(con(u, v)) to denote this

probability. Then this objective is Prob(con(u, v)) ≤ 1
k .

where k is a pre-given constant.
We suppose an attacker has the following background knowledge:

– The quasi-identifiers of victims;
– Any labeled subgraphs around victims6;
– The method used to generate the published graph;

An attacker could use the above information to query the published graph to learn user’s
sensitive labels or to find whether two users have a link in the published data.

3 Safety Condition for Clustering

For any clustering based method, to guarantee protection objective 1 (see in our problem
definition), a necessary condition is that each cluster’s size is at least k. To guarantee the
link protection objective (protection objective 2), the following necessary and sufficient
Safety Clustering Condition must be satisfied:

1. Any super node C, the number of edges dC between the nodes within C must
satisfy dC ≤ |C|(|C|−1)

2k ;
2. Any two super nodes Cx and Cy , the number of edges dCx,Cy between the nodes

in Cx and the nodes in Cy must satisfy: dCx,Cy ≤ |Cx||Cy|
k ;

Proof. – Sufficient: Any nodes u and v,:
• If u ∈ C ∧ v ∈ C: Prob(con(u, v)) =

dC

(
|C|
2 )

=
2dC

|C|(|C|−1)
≤ 2

|C|(|C|−1)
2k

|C|(|C|−1)
= 1

k

• If u ∈ Cx ∧ v ∈ Cy : Prob(con(u, v)) =
dCx,Cy
|Cx||Cy| ≤

|Cx||Cy|
k

|Cx||Cy| = 1
k

In both cases, protection objective 2 is guaranteed.
– Necessary

• If there exists a super node C, dC > |C|(|C|−1)
2k , then ∀u, v ∈ C:

Prob(con(u, v)) =
dC

(
|C|
2 )

=
2dC

|C|(|C| − 1)
>

2 |C|(|C|−1)
2k

|C|(|C| − 1)
=

1

k

Protection objective 2 is violated.
• If there exist any two super nodes Cx and Cy , dCx,Cy >

|Cx||Cy|
k , then ∀u ∈

Cx ∧ ∀v ∈ Cy

Prob(con(u, v)) =
dCx,Cy

|Cx||Cy|
>

|Cx||Cy|
k

|Cx||Cy|
=

1

k

Protection objective 2 is violated.

We further use this necessary and sufficient condition to analyze the utilities of any
clustering based models when link protection must be provided in Section 6.

6 The quasi-identifier of a node u is actually involved in any labeled subgraph around u. To be
clear, we represent them separately here.
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4 Semi-Edge Anonymity Model

Properly combining the Safety Clustering Condition with a clustering based model can
achieve the link protection (protection objective 2). However, the current edge-editing
based models and clustering based models both mix the node protection and link protec-
tion together. The link protection is implemented based on node grouping, which brings
unnecessarily structure information loss. For example, in clustering based models, the
edge is anonymized based on clusters. A demonstration example is shown in Fig. 7(a).
If there’s only one edge between clusters Cx and Cy , the number of possible positions
to put this edge is |Cx||Cy |, which is at least k2. However, to achieve protection objec-
tive 2, we only need k positions to allocate an edge. Thus, if we can directly anonymize
this edge, the number of positions to put this edge can be reduced significantly, better
preserving the structure information. In this paper, we propose the idea of Semi-Edge
to anonymize each edge directly.

Definition 1. Semi-Edge: a Semi-Edge se(u, U) is a pair where u is a node and U is a
set of nodes. ∀v ∈ U , we say se covers edge e(u, v).

We use |U | to denote the size of node set U . From one Semi-Edge se(u, U) where
(|U | = k), an attacker can only have 1

|U| =
1
k probability to find u has a link with any

node in U . An example of Semi-Edge is shown in Fig. 7(b). If we use a Semi-Edge to
anonymize the edge between Cx and Cy , the number of possible positions to put it is
reduced to k (for theoretical analysis, please check Section 6).

It has been shown that the node protection can only be guaranteed when the group-
ing of nodes considers the sensitive attributes’ diversity and distribution (e.g. different
l-diversity models[13], t-closeness [11] etc.) as well as the cost function to generate the
published data (minimality attack [15]). Current graph protection models either imple-
ment k-anonymity [2][4][6][12][19][21][17][9] or l-diversity [20][5]. They all rely on
a specific protection model. If we separate the node protection and link protection, the
protection of sensitive labels are not restricted to a specific protection model. Motivated
by this, instead of using the edge-editing based model and clustering model, we pro-
posed a new graph protection model, Semi-Edge Anonymity (SEA) model, to protect
node and link information independently.

The SEA model publishes two tables separately. The first table, attribute table, con-
tains only quasi-identifiers and sensitive attributes following any state-of-art tabular
data protection model[13][11][15]. The second table, Semi-Edge table, anonymizes
each edge directly by using a Semi-Edge. A simple example is shown in Fig. 8. There
are two benefits of our SEA model:

– Any state-of-art sensitive label protection models for tabular data can be directly
adopted to the SEA model. The generation of attribute table and Semi-Edge table
can be done independently;

– Directly anonymizing each link is helpful to maintain the graph utility.

In the rest part of this paper, we use Q(u) to represent node u’s quasi-identifiers and
S(u) to represent u’s sensitive attributes. To protect the node information, we partition
nodes into groups and publish the quasi-identifiers/sensitive attributes of nodes based
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(a) Clustering-
based Model

(b) Semi-Edge

Fig. 7. Motivation example for utility improvement
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Fig. 8. A Semi-Edge Graph

on these groups in an attribute table. Attribute table can reuse any existing protection
model for sensitive labels in tabular data such as l-diversity[13], t-closeness[11] etc.
We give each node an anonymity id in order to link with the Semi-Edge table. To be
simple, in the rest part of this paper, we use u to directly represent the id of u. For
example, if we choose the anatomy model defined in [16], v1, ..., vm form a group,
then a tuple ({(v1, Q(v1)), ..., (vm, Q(vm))}, {S(v1), ..., S(vm)}) is published for this
group as shown in Fig. 87. The graph we publish is:

Definition 2. Semi-Edge Graph: A Semi-Edge Graph SG(AT ,SET ) representsG(V,E)
by the pair AT and SET . AT is an attribute table for all the nodes in G. SET is a
Semi-Edge table. All edges in E are covered by the Semi-Edges in SET .

For example, Fig. 8 is a Semi-Edge Graph of Fig. 1. Since any node in SET is mapped
to a group of sensitive labels in AT , it is obvious the protection of sensitive labels and
links are independent:

Lemma 1. In a Semi-Edge Graph SG, the node protection in AT is not influenced by
SET and the link protection in SET is not influenced by AT , either.

AT and SET can be generated independently. There are lots of existing works on how
to generate an attribute table, in this paper, we focus on how to implement the link
protection in SET .

We give a Safety Semi-Edge Condition which can guarantee that a Semi-Edge Graph
SG achieves protection objective 2:

Con 1 ∀se(u,U) ∈ SET, |U | = k;
Con 2 ∀se(u,U) ∧ ∀v ∈ U, (∀se(u,U ′), v /∈ U ′) ∧ (∀se(v,U ′), u /∈ U ′);

There are two constraints in our safety condition. The first constraint requires that each
Semi-Edge covers k different edges. The second constraint requires that for any edge
e(u, v) covered by one Semi-Edge, no other Semi-Edges, which can cover it, appear
in SET . For example, in Fig. 8, edge e(a, b) and e(a, k) are covered by Semi-Edge

7 If we use the models, which generalize all the quasi-identifiers in each group
to be the same (i.e. Q(v1)...Q(vm) are generalized to GQ1...m), a tuple
({v1, ..., vm}, {(GQ1...m, S(v1)), ..., (GQ1...m, S(vm))}) is published.
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(a, {b, k}), and none of other Semi-Edges covers e(a, b) or e(a, k). A Semi-Edge graph
SG which satisfies the Safety Semi-Edge Condition is called Semi-Edge anonymized
graph. Our SEA model is to publish a Semi-Edge anonymized graph instead of the
original graph.

Lemma 2. A Semi-Edge anonymized graph always guarantees the protection objective
2 when an attacker knows the published graph is generated under the Safety Semi-Edge
Condition.

Proof. Firstly, the two constraints in the Safety Semi-Edge Condition could be directly
observed in the published data. This guarantees that no extra information is released
according to the safety condition. Any node u and v, suppose the attacker uses the
strongest background knowledge (i.e. the whole labeled graph without e(u, v)) to query
the published graph. In SG(AT, SET ), there at most exists one Semi-Edge se(u, U)
or se(v, U) such that se covers e(u, v). According to Con 1 in the Safety Semi-Edge
Condition, any |U | = k. So for any two nodes u and v, the probability that an attacker
finds they have a link is at most 1

k .

5 Generation Algorithm

Algorithm 1: Generate Semi-Edge Table

set SET = {} ;1
Hashtable ht = new Hashtable();2
for each e(u, v) in E do3

Semi-Edge se = new(u, U = {v}) ;4
while |U| < k do5

Randomly select node v′ where6
v′ �= u ∧ v′ /∈ U ;
U = U ∪ {v′} ;7

for each v′ in U do8
if ht.contains(e(u, v′)) then9

ht[e(u, v′)] = ht[e(u, v′)] + 1;10

else11
ht.add(e(u, v′),1);12

while true do13
e(u, v) is the edge with the maximum value in ht;14
if ht[e(u, v)] > 1 then15

Select se(u′, U ′) where16
∃v′ ∈ U ′, e(u′, v′) = e(u, v) and
se(u′, U ′) is not created due to e(u, v);
Randomly select a node w with17
e(u′, w) /∈ ht ∧ w �= u′ ∧ w /∈ U ′;
U ′ = U ′ − {v′} + {w};18
ht[e(u, v)] = ht[e(u, v)] − 1;19
ht.add(e(u′, w),1);20

else21
break;22

We use Algorithm 1 to generate the Semi-Edge table SET . For each original edge
e(u, v) inG, we generate a Semi-Edge se(u, U). We firstly add v intoU , which promises
se cover e(u, v). Then we randomly add k − 1 other nodes into U to make sure each
Semi-Edge covers k edges (lines 4 - 7). We use a hash table ht to record the number
of Semi-Edges that covers each possible edge (lines 8 - 12). If each element in ht has
value 1, the Safety Semi-Edge Condition is satisfied. If there are some edges covered
by more than one Semi-Edge, we use the following method to adjust SET to make it
satisfy the Safety Semi-Edge Condition:

1. We find the edge e(u, v) which is covered by the maximum number of Semi-Edges
in SET (e(u, v) is the edge with the maximum value in ht).
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2. If e(u, v) is only covered by one Semi-Edge, the Safety Semi-Edge Condition is
satisfied, we finish our adjustment (lines 20-21).

3. Otherwise, we find a Semi-Edge se(u′, U ′) which covers e(u, v) where se(u′, U ′)
is not originally created due to edge e(u, v)8. We randomly select one nodew where
e(u′, w) /∈ ht and replace v′ with w. By doing this, the number of Semi-Edges that
cover e(u, v) is decreased by 1.

We recursively do the above steps until SET satisfies the Safety Semi-Edge Condition.

Theorem 1. A Semi-Edge anonymized graph always guarantees the protection objec-
tive 2 when an attacker knows the published graph is generated by Algorithm 1.

Proof. According to Lemma 2, knowing the Safety Semi-Edge Condition does not
cause the privacy leakage. In Algorithm 1, the nodes in each Semi-Edge are randomly
selected, therefore the algorithm does not guarantee any certain output when given an
input. Given a SET , any graph which is consistent with SET can be the input of
this algorithm. Thus, a Semi-Edge anonymized graph generated by Algorithm 1 always
guarantees the protection objective 2.

6 Utility Analysis

We use a random algorithm to guarantee no privacy leakage during the generation pro-
cess. In this section, we compare our model with clustering based models by analyzing
two utilities, the possible world size and the true edge ratio (see definitions in later
paragraphs). We show although we enhance the privacy by using a random algorithm,
our model always performs better than or equal to any clustering based models which
consider link protection on these two utilities.

For clustering based models, since only super nodes and super edges are published,
each published graph represents a group of graphs which are consistent with it. The
set of graphs W (G) that are consistent with the published graph is named as the pos-
sible world [9][10]. When using such a clustered graph, users can sample some graphs
in W (G) and compute the average values of these graphs. So, the number of con-
sistent graphs of a clustered graph |W (G)| should be as less as possible [9][10]. We
call |W (G)| the possible world size. When generating a clustered graph, the one with
smaller |W (G)| is preferred. So, firstly, we analyze the number of graphs that are con-
sistent with the published graph (|W (G)|).

In a clustering based model, |W (G)| is computed as [9][10]:

|W (G)|clustering =
∏
∀C

(
|C|(|C|−1)

2
dC

)
∏

∀Cx,Cy

(
|Cx||Cy|
dCx,Cy

)

Where dC is the number of edges between the nodes in cluster C and dCx,Cy is the
number of edges between the nodes in cluster Cx and Cy .

8 Since the Semi-Edge covering e(u, v) could be se(u,U1) or se(v,U2), we use u′ here to avoid
the confusion in the description. We use v′ ∈ U ′ to repsent the other endpoint of e(u.v).
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In a Semi-Edge anonymized Graph, any Semi-Edge se(u, U), the original edge cov-
ered by se can be between u and any node in U , |W (G)| is computed as:

|W (G)|SEA =
∏

∀se(u,U)

|U| = k|E|

Theorem 2. A Semi-Edge anonymized graph always has |W (G)| which is smaller than
or at most equals to any clustered graph when link protection should be provided.

Proof. In a clustered graph: |W (G)|clustering =
∏

∀C(
|C|(|C|−1)

2
dC

)
∏

∀Cx,Cy
(
|Cx||Cy |
dCx,Cy

) .

For any two integer numbersM and x with 1 ≤ x ≤ M
k , (Mx ) = M(M−1)...(M−x+1)

x(x−1)...1 .

For any y ∈ [0, x−1], M−y
x−y ≥ M−y

M
k −y

= k+ yk2−yk
M−yk ≥ k. So if 1 ≤ x ≤ M

k , (Mx ) ≥ kx.

We proved in Section 3, the Safety Clustering Condition is a necessary and sufficient
condition for any clustered graph to provide link protection. The Safety Clustering Con-
dition requires:

– Any super node C, the number of edges dC between nodes within C must satisfy
dC ≤ |C|(|C|−1)

2k ;
– Any two super nodes Cx and Cy , the number of edges dCx,Cy between the nodes

in Cx and the nodes in Cy must satisfy: dCx,Cy ≤ |Cx||Cy|
k ;

So (
|C|(|C|−1)

2

dC
) ≥ kdC and (

|Cx||Cy|
dCx,Cy

) ≥ kdCx,Cy . We can get:

|W (G)|clustering ≥
∏
∀C

kdC
∏

∀Cx,Cy

k
dCx,Cy

= k
∑

∀C dC × k
∑

∀Cx,Cy
dCx,Cy = k|E| = |W (G)|SEA

Next we show for another utility, our Semi-Edge anonymized graph also works better
than or at least equals to any clustered graphs. Suppose G′ is a sampled graph from the
published graph. If an edge appears both in G′ and the original graph G, we call this
edge a true edge. We use the ratio of true edges in G′ to estimate how much structure
information of G is correctly represented by G′. The ratio of true edges TR is defined
as: TR = no. of true edges in G′

|E| . The larger TR is, the better G′ represents G. We use
expTR to represent the expected ratio of true edges in any sampled graph.

Theorem 3. If using uniform random sampling method, the expTR of any sampled
graph from a Semi-Edge anonymized graph is always larger than or at least equals to
the expTR of any sampled graph from a clustered graph when link protection should
be provided.

This theorem can be proved similar to Theorem 2.

7 Experiments

The analysis in the model description part proves the privacy protection effective-
ness of our model. As the same as other privacy preserving graph publication works
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[12][19][21][6][17][9][18][4][8][2], we test several utilities to show how well the pub-
lished data preserves the structure information of the original graph. We test three real
data sets and compare our SEA model with two clustering based models. The three real
data sets we tested are: Cora (www.cs.umd.edu/projects/linqs/projects/lbc/index.html,
2708 nodes and 5429 edges), Arnet (www.arnetminer.net/, 6000 nodes and 37848 edges),
and ArXiv (arXiv.org, 19835 nodes and 40221 edges). We only compare with clustering
based models since the edge-editing based model with link protection can be regarded
as a sampled graph of the SEA model. For the edge-editing based model, to make it pro-
tect links, we should let the published graph contain at most 1

k |E| randomly selected
true edges. Such a published graph is one sampled graph of the Semi-Edge anonymized
graph. However, if we only publish one sampled graph, the information in it is biased
since the information of deleted edges (k−1

k |E|) are totally missed.

7.1 Utilities

We have proven the SEA model outperforms any clustering based model on |W (G)|
and expTR. For a published graph that represents more than one graph, to test how
good the published graph is, researchers sample a group of graphs that are consistent
with the published graph, calculate graph proprieties in these sampled graph and use
the average property changes as graph change benchmarks [9][18][4][8][2]. In our ex-
periment, besides |W (G)| and expTR, we also sample n (n = 100) graphs to compute
the average graph property changes. Suppose the sampling graph set is S, we test the
change ratio of the following two graph properties:

– Average change ratio of degrees (ACRD)

ACRD =

∑
∀Gs∈S

∑
∀u

|degree(u)Gs
−degree(u)G |

degree(u)Gs
+degree(u)G

|V |
n

– Average change ratio of clustering coefficient (ACRCC)
The CC of a vertex in a graph is commonly used[12][21] to represent its neigh-
borhood graph. It is defined as the actual number of edges between the vertex’s
directed neighbors divides the max possible number of edges between these di-
rected neighbors. We test the average change ratio of the clustering coefficients:

ACRCC =

∑
∀Gs∈S

∑
∀u

|CC(u)Gs
−CC(u)G|

CC(u)Gs
+CC(u)G

|V |
n

Smaller |W (G)|, ACRD , ACRCC and larger expTR are preferred.

7.2 Clustering-Based Models

We compare our SEA model with two clustering based models.

– D-Clustering (Directly-Clustering)[9][10]
Hay et al. use Simulated Annealing (SA) algorithm to generate clustered graph
which prevents node re-identification[9][10]. The only limitation to generate the
clustered graph is that each cluster’s size should be at least k. The SA algorithm
targets to minimize the |W (G)|. There are three operations in SA: (1) Merge two
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clusters to one cluster; (2) Split one cluster to two clusters; (3) Move nodes between
two clusters. It showed that after running SA algorithm for around 100|V | steps,
the |W (G)| becomes stable. We would like to use this model as the baseline. In our
experiment, we set the stop condition of SA algorithm as running at least 120|V |
steps and in the last 1000 steps, no better solution was found.

– S-Clustering (Safely-Clustering)
We enhance the clustering based model by adding the Safety Clustering Condi-
tion when generating the clusters. We also use the SA algorithm to find a solution
with as smaller |W (G)| as possible. The only difference is besides the cluster size
constraint, the number of edges within any cluster and between any two clusters is
further bounded by the Safety Clustering Condition. The stop condition is set as the
same as D-Clustering.

7.3 Results

Fig. 9 shows the results of |W (G)| on the three data sets. From the results we can
see, comparing with the S-Clustering which provides link protection, our SEA model
performs much better. In all cases, |WG|S−Clustering > |WG|2SEA. Even for D-
Clustering which does not have link protection and directly optimizes the |W (G)|, the
SEA model has much better performance in nearly all cases (except the four points in
ArXiv graph when k ≤ 5).

We demonstrate the results of expTR in Fig. 10. In all cases, the SEA model pub-
lishes a graph with higher expTR than the S-Clustering. In most cases, the SEA model
also outperforms D-Clustering (except the five points in ArXiv graph when k ≤ 6), but
D-clustering does not offer any link protection.

Fig. 11 represents the results of ACRD . For data sets Cora and Arnet, the SEA
model has smaller ACRD than both S-Clustering and D-Clustering for all ks. For data
set ArXiv, the SEA model always performs better than S-Clustering. For k ∈ [16, 20],
the SEA model has similar performance as D-Clustering. For other cases (k ∈ [2, 15]),
the SEA model also has smaller ACRD than D-Clustering.

Fig. 12 represents the results of ACRCC . For all data sets, the SEA model performs
better than S-Clustering and D-Clustering.

From the results, we can see the SEA model has better performance than S-Clustering
on the four utilities for all data sets. For most cases, the SEA model even has better
performance than D-Clustering, which does not consider link protection. The experi-
ment results confirm the effectiveness of structure information preserving by directly
anonymizing each edge. Although our SEA model uses a random generation algorithm
to guarantee the privacy, we can still preserve the graph utilities well.

8 Related Works

There are many works having been proposed to address privacy issues on publishing so-
cial network graphs. The attack that uses certain background knowledge to re-identify
the nodes/links in the published graph is called “passive attack”. There are two models
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Fig. 9. The results of |W (G)|
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Fig. 10. The results of expTR

proposed to publish a privacy preserving graph against the passive attack: edge-editing
based model [12][19][21][6][17] and clustering based model [9][18][4][8][2].

Most graph protection models implement k-anonymity [14] of nodes on different
background knowledge of the attacker. Liu[12] defined and implemented k-degree-
anonymous model, that is in a published graph, for any node, there exists at least
k − 1 other node having the same degree as this node. Zhou[19] considered a stricter
model: for every node, there exist at least k − 1 other nodes sharing isomorphic neigh-
borhoods when taking node labels into account. In paper [20], the k-neighborhood
anonymity model is extended to l-neighborhood-diversity model to protect the sensitive
node labels. Probability l-diversity is implemented in this model. Zou[21] proposed a
k-Automorphism protection model: A graph is k-Automorphism if and only if for every
node there exist at leasts k − 1 other node without having any structure difference with
it. Hay[9] proposed a heuristic clustering algorithm to prevent node re-identification.
Campan[4] discussed how to implement a clustering model against subgraph attack to
nodes when considering both node labels and structure information lost. Cormode[8][2]
introduced (k,l)-groupings for bipartite graph against attacks using subgraphs. Compan
[5] implemented a p-sensitive-k-anonymity clustering model which requires each clus-
ter satisfy k-anonymity and distinct l-diversity.

Besides the protection of nodes, several works considered the protection of link infor-
mation. Zheleva[18] developed a clustering method to prevent the sensitive link leakage.
Ying[17] studied how random deleting and swapping edges change graph properties
and proposed an eigenvalues oriented random graph changing algorithm. These works
did not provide a quantifiable guarantee on link protection [6]. Cheng[6] designed a
k-isomorphism model to protect both nodes and links: a graph is k-isomorphism if this
graph consists at least k disjoint isomorphic subgraphs. The attributes of nodes are
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protected by anatomy model [16] in a k-isomorphism graph. The k-isomorphism graph
guarantees that an attacker at most have 1

k probability to find two nodes have a con-
nection in case he knows arbitrary subgraphs. Cormode[2][3] introduced a clustering
based model which implements node protection through k-anonymity and makes sure
that an attacker at most have 1

k probability to find two nodes have a connection in case
he knows arbitrary subgraphs. However, when an attacker has the information of pub-
lished graph generation policy, the link protection cannot be guaranteed in some cases.

Our SEA model handles passive attack for both node protection and link protection
even when an attacker knows our graph generation policy as well as arbitrary subgraphs.
We do not restrict the node protection to any specific models such as k-anonymity [14]
or k-anatomy [16]. Any state-of-art tabular data protection models such as different l-
diversity models [13], t-closeness model[11] etc. can be adopted into our model. Our
SEA model directly anonymizes each edge, which helps to reduce the structure infor-
mation loss in the published graph.

9 Conclusion

In this paper, we propose a new protection model, Semi-Edge Anonymity, to solve the
problem when the graph publishing algorithm is known to the attacker. The model could
provide link protection and node protection at the same time. An algorithm is proposed
with randomness for the SEA model. We prove the new model can protect links well
even when the attacker knows the generation algorithm. The other important benefit of
the SEA model is that it can adopt any state-of-art sensitive label protection models
for tabular data. This makes the SEA model also have the ability to provide the best
protection to sensitive labels. We theoretically prove the SEA model outperforms any
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clustering based models to provide link protection on two utilities. Experiment shows
the SEA model also performs better than clustering based models when link protection
is considered on two other utilities. In our future work, we will consider stronger attack-
ers who know some knowledge about the relationship between non-sensitive attributes
and links.
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Abstract. We propose a method to generate facets dynamically to
enhance the navigation of objects returned by a web-based search query.
Facets denote axes for classifying a currently viewed object and related
objects and are used as navigation signs to indicate their positions.
Facets are generated by detecting hypernyms and coordinate terms of
expressions that characterize objects. To be effectively used for browsing
search results, generated facets are ranked. We implemented a prototype
system that shows returned images from an image search classified by
multiple facets. The results of an experiment to assess the facets showed
that the average precision of correct facets in all queries obtained using
our system is up to 82.7% for the top three and up to 77.6% for the top
five ranked facets.

1 Introduction

Increasingly, search engines offer effective retrieval functions for searching several
types of web objects, such as web pages, images, and videos. In most search
engines, users input keywords as queries. However, keyword-based search systems
are somewhat problematic. First, it is difficult for average users to create precise
queries that adequately reflect their information needs. This is particularly the
case when a user is unfamiliar with targeted fields, e.g., a user who wants images
of Japanese “sushi” but does not know the specific names of types of sushi. Even
if usersf information needs are clear, they cannot create a precise query [2,17].
Second, relationships between searched objects are not presented. In general,
a search result is shown in a listed form. When a user browses for an object,
moving to other related objects is difficult.

A faceted interface is expected to be effective for solving these problems.
A facet denotes an axis for classification. It is a powerful tool for navigating
and refining search results because it presents appropriate facets depending on
the targeted items. For example, images of “Japanese foods” are classified by
facets of “dishes” and “ingredients” that are specific to Japanese foods. In this
example, if a faceted interface is introduced, users can browse images of “sushi”
by selecting the category “sushi” from the facet “dishes.” In addition, when
a user browses images of “sushi,” he/she can move directly to lists of images
of “sashimi” and “tempura,” which are other Japanese food “dishes.” In this
manner, facets allow users to refine and navigate results by clarifying the position
of objects in the search results.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 382–396, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Screenshot of the proposed system

Similarly, facets can support the transition of keyword queries by positioning
targets for searches on the Web. For example, when a keyword query is “Kyoto
∧ Japanese foods,” the facet “cities” enables a user to move directly to a search
result for the query “Tokyo ∧ Japanese foods.”

In this paper, we propose a method for generating facets “on-the-fly” as
navigation signs for objects returned by keyword searches. The prototype for the
proposed faceted interface system is shown in Fig. 1. The system generates facets
by rapidly finding hypernyms, coordinate terms, and hyponyms. The generated
facets are evaluated to experimentally determine whether they are suitable for
browsing search results. In addition, the effectiveness of the facet interface is
validated through a user study.

Our prototype system was evaluated on its ability to dynamically generate
“single-word”-based facets. Whenever a user selects a web object among search
results, the system generates the most closely related facets, each of which
consists of a single word. In this paper, we also propose a method of generating
“multiple-words”-based facets.

Our contributions are summarized as follows.

– We proposed a method of dynamically generating related facets for a
user-selected web object by using the indices of a web search engine. This
approach is different from the selection of given facets in advance.

– We proposed a method of selecting effective facets for browsing a search
result.

– We built a system by which effective facets for browsing a search result were
presented and evaluated the utility of the system.

– We proposed an improved method of generating “multiple-words”-based
facets.

2 Related Work

The use of facets has been reported to be effective for navigating and refining
searches [6]. A faceted search system is mainly applied to objects in a specific
domain, such as product searches and music searches. In these systems, the
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candidates for facets are almost always provided in advance. Many studies have
been conducted in which appropriate facets are selected from a given set of
facets [16,3,1,18,12]. In contrast, other studies report faceted interfaces that
are automatically generated from dictionaries and large-scale databases [8,9].
In the area of facet selection, Tunkelang [16] proposed a method of determining
dynamic category sets of multiple facets that best match the query, and Fumas
et al. considered the vocabulary problem in human-system communication [4]. Li
et al. [8] proposed a method for generating a query-dependent faceted interface
for Wikipedia articles.

In this paper, techniques for extracting hyponyms and pairs of a hypernym
and coordinate terms are used. Coordinate terms have a hypernym in common.
Thus, our approach is closely related to techniques for extracting terms of a
specific relationship. In this area, studies for extracting coordinate terms are
active [5,14]. Shinzato and Torisawa [14] acquired coordinate terms from HTML
documents. Furthermore, other studies have reported the extraction of terms
from various relationships by changing lexico-syntactic patterns [11].

3 Facets

3.1 Definition of Facet and Object Sets for Classification

A facet denotes an axis for classifying an object set. For example, photos can be
classified by axes of “color,” “size,” and “month shot.”

In this study, we have established some requirements for facets. (1) A facet is
set of categories, and it is desirable for facets to be orthogonal. (2) Categories in
an individual facet are flat. (3) An object is classified into at least one category.

Orthogonal facets are independent. Ideally, facets should be orthogonal but
some are not. For example, in a classification of photos, the nonorthogonal
facets of “month shot” and “season shot” could both be considered. In general,
categories of facets are hierarchical or flat. For example, the granularity of
“place” varies (e.g., country, state, and city), and therefore, “place” could be
composed of hierarchical categories. In facets with many categories, hierarchical
categories are desirable. A facet of “color” could be composed of flat categories,
such as “red” and “blue.” In this paper, facets are determined to be flat. An
object may be classified into multiple categories. In Fig. 2, two photographs
with the facet “football player” are classified into three categories: “Beckham,”
“Zidane,” and “Ronaldinho.” As illustrated in the right-hand photo, multiple
items can be pictured; thus an object is not necessarily classified into one
category. Hence, in this paper, an object can be classified into multiple categories.

A facet and a facet set are defined as follows in this paper:

Definition 1. A facet Fi is a set of categories denoted by Fi = {f i
1, f

i
2, . . . , f

i
k},

where f i
k is a category. An object can be classified into multiple categories.

Definition 2. A facet set is denoted by F = {F1, F2, . . . , Fl}.

Our goal is to classify an object set returned by a keyword-based search engine
by facets. The object set is defined as described below:
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Zidane RonaldinhoBeckham

exclusive

Belong to Belong toBelong to

Fig. 2. Example of classifying images of “football player” by the “name” facet

Definition 3. Given a keyword query q, an object set returned by a search
engine is denoted by O = {o1, o2, . . . , om}, where om is an object.

In this study, an “effective” facet set F is dynamically generated to classify O .
In the next two sections, we describe dynamic facet generation and “effective”
facets, repsectively.

3.2 Dynamic Facet Generation

In Bing Images, faceted interfaces where facets for “size” and “color” of images
are presented are provided. By contrast, an image search result returned by the
query “Japanese foods” are classified by facets of “dishes” and “ingredients”
that are specific Japanese foods. Facets that are dependent of a classified object
set are denoted by dynamic facets.

Many studies where appropriate facets are dynamically selected from
given facets are conducted [16,3,1,18,12]. Yee et al. [18] proposed a method
of classifying given images by facets that are a part of the hierarchical
structure in WordNet [10]. In this study, facets are not known in advance
but are generated dynamically. Without dictionary-based knowledge, facets are
generated on-the-fly depending on the object set. Note that our purpose is
dynamic facet generation as opposed to dynamic facet selection, which has been
the focus of many previous studies.

3.3 Effective Facets

In this section, we describe “effective” facets. Two types of measurements pertain
to an “effective” facet: independent of other facets and dependent on other facets.
Measurements that are independent of other facets are listed as follows.

Relevance of a Facet to an Object Set: An “effective” facet must be
relevant to an object set. For example, images of a “soccer player” cannot be
classified by the facet “manufacturer,” which is inappropriate for the images.

Uniformity in Granularity of Categories: In an “effective” facet, uniform
granularity of categories is desirable. For example, suppose that the facet
“place” is composed of the categories “Rome,” “France,” and “England.”
Here, the categories that represent both country and city are included, and
therefore, the granularity of categories is not uniform.



386 Y. Kawano, H. Ohshima, and K. Tanaka

Uniformity in Size of Categories: In an “effective” facet, the number of
objects should be uniform in all categories.

A facet that fulfills these requirements is defined as an “effective” facet.
Orthogonality between facets measures whether an individual facet is

“effective.” For example, facets of “color” and “size” are orthogonal because
they are independent of each other. In this paper, a set of “effective” facets that
considers orthogonality between facets is called an effective facet group.

3.4 Problem Definition

We attempt to solve two problems in this paper.

Problem 1. Generate a facet set F , which is a set of “effective” facets, for
classifying an object set O returned from a search engine by the keyword
query q.

Problem 2. Generate an effective facet group from F .

In this paper, we do not consider the problem of facet selection and focus
intensively on Problem 1.

We will elaborate on generating facets to classify O in Section 4 and present
calculations for the effectiveness of facets in Section 5.

3.5 Presentation of Facets

Our goal is to generate a set of “effective” facets and classify an object set
in a search result by the facets. Users who refine their search in the faceted
interface can select a facet and its categories and browse objects classified into
the categories. For ease of use, the names of facets and their categories are
denoted as “facet name” and “category name,” respectively.

A facet name and a category name have two relationships: “is-a” and
“part-of.” In an “is-a” relationship, a facet name represents a super concept of a
category name. In a “part-of” relationship, a category name is part of a concept
represented by a facet name. In this paper, we focus on facets containing the
“is-a” relationship.

4 Generating a Facet Set

In this section, we describe a method to generate a facet Fi to classify an object
set O . Facets where the relationship between a facet name and a category name
is an “is-a” relationship are generated. The process of generating facets is listed
as follows.

1. Extraction of Candidates for Category Names: A set of terms that
characterize the objects T is extracted. T is composed of nouns, noun
phrases, and candidates for category names.
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2. Detection of a Facet Name: Pairs of a hypernym and a set of coordinate
terms are constructed using t ∈ T . A detected hypernym and coordinate
terms correspond to a facet name and category names, respectively.

3. Validation of Facets: The candidates for facets are evaluated by detecting
hyponyms of facet names.

Facet generation has two primary phases: detection of a facet name and
validation of facets.

4.1 Finding Facet Names

We describe a method of generating candidates for facets by finding pairs of
a hypernym and coordinate terms of t ∈ T . The context of the coordinate
terms presents an important problem associated with the pairs. For example,
coordinate terms of “apple” has two different contexts. When the context
is “company,” “Microsoft” and “Google” are coordinate terms of “Apple.”
However, when the context is “fruit,” “orange” and “banana” are coordinate
terms of “apple.” If these two types of coordinate terms are combined, the
granularity of categories will not be uniform.

We propose a method to detect a hypernym and coordinate terms in parallel,
considering the granularity and the context of coordinate terms. We now focus
on the lexico-syntactical pattern “such as” for uniformity in granularity of
coordinate terms [7]. The process of finding pairs of a hypernym and coordinate
terms is given below.

1. Using a web search engine, a query 〈“such as t”〉 is executed. “A” recognizes
A as a phrase.

2. From titles and snippets in the returned result, sentences that include the
pattern “such as t” are extracted.

3. A hypernym and coordinate terms are detected from each sentence, and a
pair comprising them is generated.

4. The pairs with a common hypernym are merged into one pair.

As an example, we explain this process when t is “the Eiffel Tower.” First, in
steps 1 and 2, sentences in which the pattern “such as the Eiffel Tower” occurs
are collected. In the phrase “tourist spots such as the Eiffel Tower and the
Louvre Museum,” “tourist spots” is the hypernym and “the Louvre Museum”
is the coordinate term of “the Eiffel Tower.” In step 3, a pair of a hyponym
and coordinate terms is extracted from the phrase. The coordinate terms are
in the same context because a hypernym and coordinate terms are detected in
one phrase. In step 4, pairs that have a common hypernym are merged and
are replaced by a new pair composed of a common hypernym and the merged
coordinate terms. The pairs correspond to candidates for facets. For example,
the pair of the hyponym “tourist spots” and the set of coordinate terms and t ,
(“the Eiffel Tower” and “the Louvre Museum”) corresponds to a facet candidate.
Through the process, candidates for facets Ft are generated.
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Fig. 3. Example of the facet validation process

4.2 Validation of Facets

In this section, we describe how facets are validated by detecting hyponyms of
their facet names. If a facet Fi is correctly generated by finding hypernyms and
coordinate terms, it is expected that some of the hyponyms of the facet name of
Fi are included in category names of Fi . The process for the validation of Fi is
listed as follows.

1. The facet name of Fi is denoted by ni. The query 〈“ni such as” ∧ q〉 input
into a web search engine, where q is the keyword.

2. From titles and snippets in the returned results, sentences that include the
pattern “ni such as” are extracted.

3. A hyponym set of ni is detected in each sentence.
4. If the hyponym set and the categories of Fi intersect, Fi is regarded as valid.

In this case, the terms in the hyponym set are added to categories of Fi .
5. The processes in steps 3 and 4 are performed on all sentences. If Fi is not

valid in all sentences, then it is regarded as inadequate.

Fig. 3 illustrates the process for validating a facet when q is “France.” With
regard to step 1, it is important to modify queries for hyponym detection using
q. If the query 〈“tourist spots such as”〉 is entered without “France,” “Kyoto”
and “the Great Wall” are likely to be obtained as hyponyms of “tourist spots,”
which are irrelevant and undesirable for the validation of Fi . In the extraction
of hyponyms from sentences, we focus on descriptions that occur after “tourist
spots such as”. Given the phrase “tourist spots such as the Arc de Triomphe
and the Louvre Museum,” “ the Arc de Triomphe” and “the Louvre Museum”
are hyponyms of “ tourist spots.” In step 4, Fi is validated by comparing the
hyponyms to category names of Fi . Both the hyponyms and the category names
include “the Arc de Triomphe.” This implies that “tourist spots” is a super
concept of “the Arc de Triomphe” and “the Eiffel Tower.” Therefore, Fi is
regarded as valid. At the same time, the concepts of the hyponyms and the
category names are thought to have uniform granularity. Thus, all the hyponyms
are added to the set of category names. As a result, the category names of Fi

are obtained as “the Arc de Triomphe,” “the Eiffel Tower,” and “the Louvre
Museum.”
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In this manner, a valid Fi is obtained, and all facets included in Ft are
validated. The above process is performed for all t ∈ T and multiple valid facets
are generated.

5 Scoring Facets

In this section, we describe the process of scoring facets based on measurements
of “effective” facets.

Here, relevance of a facet to an object set is expressed by the co-occurrence of
the facet name ni and the keyword query q. Rel(ni, q) denotes the page count for
the query 〈ni ∧ q〉. It is expected that Rel(ni, q) is higher if ni is closely related
to q.

A facet name plays a part in the uniformity of the granularity of categories.
If it is not clear whether a facet name is a super concept of a category name,
then uniformity in granularity of categories Granularity(Fi) is not guaranteed,
which is expressed as follows:

Granularity(Fi) = freq(ni) ·
∑
c∈Ci

cooccur(ni, c)

where Ci denotes the set of category names of Fi, freq(ni) represents the
occurrence of the pattern “ni such as” through the generation and validation
of Fi, cooccur(ni, c) represents the co-occurrence of ni and c ∈ Ci through the
generation and validation of Fi. When ni appears more frequently as a common
hypernym of Ci, freq(ni) is large. In addition, when the granularly uniform
category name appears more frequently as hyponyms of ni,

∑
cooccur(ni, c)

is large. Therefore, Granularity(Fi) represents the uniformity in granularity of
categories.

In this paper, entropy [13] is used as the measure of the uniformity in size
of categories. Assume that each object in O composed of m objects is classified
into each category f i

j of a facet Fi. That is, f
i
j includes mj objects. In this case,

entropy H(Fi) is calculated by the following formula:

H(Fi) = −
k∑

j=1

mj

m
log

mj

m
(

k∑
j=1

mj = m)

It is known that H(Fi) is maximized when the same number of objects is
associated with each category. Thus, H(Fi) is considered to represent uniformity
in the size of categories.

Score(Fi), the score of Fi, is determined by the following formula:

Score(Fi) = Φ(Granularity(Fi)) · Ψ(Rel(ni, q)) ·H(Fi)

Score(Fi) is represented by the product of Granularity(Fi), Rel(ni, q), andH(Fi).
H(Fi) can be at most dozens, however, the values of Granularity(Fi) and
Rel(ni, q) range from thousands to tens of thousands in some cases. Therefore,
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Table 1. Queries for each category

categories queries

regions Barcelona, New York, Roma, Shanghai, Berlin, Hawaii, Sydney, Buenos Aires, Moscow, Cape Town
events Halloween, Easter, Encierro, Olympic, World Cup, Nobel Prize, Academy Award, Mother’s Day, Independence Day, Christmas
people Michael Jackson, John Lennon, Picasso, George Lucas, Gandhi, Leonardo Dicaprio, Napoleon, Barack Obama, Bill Gates, Ichiro

phenomena hurricane, tsunami, eruption, aurora, shooting star, lightning, snow, rainbow, mirage, earthquake
features the Eiffel Tower, Sagrada Familia, Angkor Wat, the Danube, Ayers Rock, the Arc de Triomphe, Alps, the Sahara, the Great Wall, Statue of Liberty
foods Spanish foods, Chinese foods, Turkish foods, French foods, Japanese foods, Italian foods, Indian foods, Mexican foods, Korean foods, Thai foods

company Microsoft, Google, Disney, Toyota, Louis Vuitton, Adidas, Nintendo, Ikea, Telefonica, General Electric

animals rabbit, dog, zebra, tiger, bear, panda, chick, dolphin, bee, kangaroo
transportation car, yacht, plane, taxi, subway, balloon, train, sledge, hovercraft, helicopter

sports baseball, soccer, ski, tennis, synchronized swimming, figure skating, badminton, dance, triathlon, basketball

we introduce the scaling functions Φ(Granularity(Fi)) and Ψ(Rel(ni, q)).
Determining the scaling functions Φ and Ψ properly is necessary to ensure a
high score for a more “effective” facet. A facet set F is composed of the top l
“effective” facets with a high score.

6 Experiments

We conducted two experiments about generated facets and our implemented
system. We describe the setting for facet generation. In these experiments,
Flickr was the targeted keyword-based search system. Many tags were sufficiently
associated with searched images in Flickr. The top 100 images from the search
results were collected in the relevant order and used to generate the object setO .
Tags of nouns and noun phrases were extracted from all tags included in the
images by SStagger [15]. T comprised the top 50 most frequent tags. Sentences
for the generation and validation of facets were obtained from the top 50 titles
and snippets returned by Yahoo! Search BOSS API.

6.1 Effectiveness of Generated Facets

We conducted experiments to validate the effectiveness of generated facets. For
a facet set F , the relevance of a facet to an object set and the uniformity in
granularity of categories were evaluated manually. With regard to the relevance
of a facet to an object set, facets that are regarded as adequate for classification
are called correct facets. For uniformity in the granularity of categories, we
counted the number of uniform categories in the correct facets. When multiple
groups of uniform categories exist, the largest number of categories in the groups
is counted. In this experiment, we changed the scaling functions Φ and Ψ into
linear and natural logarithmic functions, respectively. As a result, four sequences
of facets were evaluated. We selected 10 categories where queries seemed probable
for web image search and further selected 10 queries in each category. Table 1
shows all queries for each category. F is evaluated when l, the number of facets
in F , is three and five.

Table 2 shows the percentage of correct facets, and Table 3 shows the
percentage of uniform categories included in correct facets. In Tables 2 and
3, “Linear” denotes a linear function and “ln” denotes a logarithmic function.
In all combinations of scaling functions Φ and Ψ , the average precision of correct
facets was greater than 71.7% for l = 3 and 62.2% for l = 5, as shown in
Table 2.



On-the-Fly Generation of Facets as Navigation Signs for Web Objects 391

Table 2. Percentage of correct facets
included in l facets

@3 @5
Φ ln ln Linear Linear ln ln Linear Linear
Ψ ln Linear ln Linear ln Linear ln Linear

regions 70.0% 36.7% 53.3% 36.7% 66.0% 42.0% 58.0% 44.0%
events 76.7% 73.3% 80.0% 73.3% 74.0% 60.0% 72.0% 66.0%
people 93.3% 90.0% 90.0% 96.6% 84.0% 64.0% 84.0% 74.0%

phenomena 86.7% 80.0% 93.3% 90.0% 86.0% 70.0% 84.0% 80.0%
animals 86.7% 76.7% 83.3% 86.7% 78.0% 62.0% 72.0% 70.0%
foods 90.0% 93.3% 93.3% 96.6% 92.0% 88.0% 96.0% 94.0%

companies 83.3% 73.3% 76.7% 76.7% 76.0% 72.0% 74.0% 68.0%
transportation 83.3% 63.3% 86.7% 80.0% 72.0% 52.0% 72.0% 66.0%

features 76.7% 66.7% 90.0% 66.7% 66.0% 52.0% 74.0% 52.0%
sports 73.3% 63.3% 66.7% 63.3% 62.0% 60.0% 62.0% 62.0%
average 82.0% 71.7% 81.3% 76.7% 75.6% 62.2% 74.8% 67.6%

Table 3. Percentage of uniform categories
included in correct facets

@3 @5
Φ ln ln Linear Linear ln ln Linear Linear
Ψ ln Linear ln Linear ln Linear ln Linear

regions 69.6% 65.5% 76.0% 72.5% 70.4% 69.0% 69.7% 73.5%
events 82.2% 82.3% 83.6% 83.9% 80.1% 79.8% 82.9% 83.3%
people 85.8% 79.2% 84.4% 84.2% 84.0% 80.9% 83.3% 83.1%

phenomena 81.1% 81.4% 80.1% 80.4% 78.5% 78.0% 79.2% 76.5%
animals 79.3% 80.4% 83.0% 77.6% 77.1% 76.9% 78.8% 76.1%
foods 87.0% 86.3% 86.2% 85.2% 84.7% 83.0% 85.1% 85.4%

companies 75.2% 73.9% 75.8% 75.6% 74.6% 74.1% 77.1% 74.0%
transportation 85.3% 87.9% 87.5% 89.3% 82.3% 83.8% 84.4% 84.4%

features 85.6% 85.4% 86.5% 86.2% 81.6% 86.1% 84.6% 86.3%
sports 77.0% 70.5% 80.9% 77.3% 75.3% 74.9% 80.2% 75.0%
average 81.0% 80.0% 82.6% 81.6% 79.0% 78.7% 80.8% 79.7%

Table 4. Five facets generated by the query “John Lennon”

facet name cities countries songs stars instruments

category name

Prague
New York

New York City
York
Berlin

Czech Republic
Japan
France
Peru

Canada

Imagine
Give

Give peace a chance

Mick Jagger
Michael

Paul McCartney

guitar
piano
drums

Bothnatural logarithmic functions resulted in best performance: 82.0% for l = 3
and 75.6% for l = 5. The relevance of a facet to an object set is represented by
page counts and the values ranged from thousands to tens of thousands in some
cases. The relevance value could be much larger than those of Granularity(Fi) and
H(Fi). The natural logarithmic function reduced the effect on its score, hence, the
case is considered to return good results. As shown inTable 3, there is no significant
difference in the average precision of uniform categories when Φ and Ψ change.

Table 4 shows five facets in the query “John Lennon” when natural logarithmic
function is adopted for both Φ and Ψ . “John Lennon” was a famous musician;
thus, facets named “songs” and “instruments” are query specific. The facet
“stars” was wrongly extracted. The facet was generated from the term “Paul
McCartney”, and the tag “Paul McCartney” was associated with images of
“John Lennon.” Consequently, it is necessary to eliminate beforehand coordinate
terms of the input query from candidates for category names. In addition,
paraphrases such as “New York” and “New York City” appeared in the “cities”
facet category names. We will consider a method to detect paraphrases.

6.2 Evaluation of Faceted System for Image Search Results

In this section, we describe the experiment conducted to evaluate the
effectiveness of an image search system using the proposed method.

Fig. 1 shows a screenshot of the implemented system. When a user inputs a
query for an image search, the system shows the image results in the right-hand
panel and dynamic facets related to the search in the left-hand panel. The user
selects a facet and the category that interests him/her, and the classified images
are displayed. Fig. 1 shows the results for a search for images about “Japanese
foods.” The images are classified in the category “sushi” for the facet “dishes.”
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Table 5. Description of two tasks

Task A
Select five images where “lightning is seen through clouds”.

You are a foreigner and like Japanese foods, but you don’t know their names. Select five images of “fried food in Japan”.
Select five images of “activities with a sledge”.

Task B
You will go to Cape Town on a trip. Select five images that interest you.

You want images of sledges used in a presentation. Select five images that interest you.
You will participate in Halloween for the first time. Select five images that interest you.

Table 6. Average questionnaire results

Question Task Proposed Baseline

easiness
Task A 4.27 3.23
Task B 3.87 3.17

confidence
Task A 4.2 3.63
Task B 3.87 3.4

Table 7. Time average

Task Proposed Baseline

Task A 74.0 s 104.9 s
Task B 107.6 s 107.4 s

It is sometimes difficult for users to create queries that adequately reflect their
information needs in a keyword-based search system. A user may understand
his/her information needs clearly but may be unfamiliar with targeted fields
and, consequently, may enter an ambiguous query. This system is thought to
work well in these circumstances.

In this experiment, six participants, graduate students who regularly used
search engines to locate images, searched for images in the implemented faceted
system (proposed system) and a system that does not present facets (baseline
system) to validate the following criteria:

1. easiness: how easily can users find images?
2. confidence: how confidently can users select images?
3. quickness: how quickly can users find images?

The participants selected five images from 100 images presented in each task.
They ranked easiness and confidence on a five-point Likert scale after each
task. The time required for each task was calculated to evaluate quickness. The
participants could see tags with images when browsing images in both systems.

This experiment included two tasks. In Task A, a user has a clear
understanding of the images he/she desires. For example, in the task for finding
images where “lightning is seen through clouds,” we assume that a user cannot
create an adequate query and search for the desired image (i.e., “seen through
clouds”) from images of lightning returned from a search engine by an ambiguous
query. In Task B, the images desired are not clearly understood. For example,
given the task of finding images that would be helpful for a future trip to Cape
Town, we assume that a user does not clearly understand the images to be
searched. Each task is based on a query selected from 10 categories presented in
Table 1. Table 5 shows shows three queries each for Tasks A and B.

Each participant performed the two tasks based on queries selected from the
10 categories for both the proposed system and the baseline system. Briefly, the
participants performed five tasks by using four patterns. To consider the effect
of the order of tasks, the participants were divided into two groups.

Table 6 shows the average values per task for easiness and confidence. The
values for the proposed system were higher than those for the baseline system
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Table 8. Queries used in faceted system for other search results

“Kyoto ∧ sushi”, “Christmas ∧ Seattle”, “Adidas ∧ shoes”, “Messi ∧ dribbling”, “Nintendo ∧ action”
“Italy ∧ pasta”, “Halloween ∧ UK”, “Nike ∧ basketball”, “Nokia ∧ phone”, “Thorpe ∧ freestyle”

irrespective of the type of tasks and questions. The result of the proposed system
for easiness of Task A was more than that for the baseline system by one point.
Hence, the proposed system is considered to work effectively.

Table 7 shows the average time required for a task. For Task A, the average
time in the proposed system was approximately 30 s less than that in the baseline
system. For Task B, however, a significant difference between the two systems
was not evident. When users do not clearly understand the images to search,
they tend to initially check all images. Thus, the effectiveness of the faceted
interface was expected to decrease.

7 Faceted Navigation for Other Search Queries

In this section, we describe the use of the proposed system to navigate other
related keyword queries by facets. For example, a user may use the query “Kyoto
∧ sushi” to find out about sushi shops in Kyoto. If the user is satisfied with
the results of this search and shifts interest to sushi shops in other cities, then
he/she may not create an adequate second query. In our system, the user can
move to the search results for “Tokyo ∧ sushi” and “Osaka ∧ sushi” by selecting
the facet “cities.” In this manner, the system enables navigation by displaying
facets indicating the location of a search result.

To generate facets for other search queries, the term set T is composed of terms
included in the keyword query. For example, facets is generated from “Kyoto”
and “sushi”.

We also conducted an experiment to validate the effectiveness of generated
facets for other search queries. In this experiment, the relevance of a facet to
an object set and the uniformity in granularity of categories were evaluated
manually. The relevance of a facet to an object set is evaluated by considering
correct facets, which are defined as facets desirable for navigation. Uniformity in
granularity of categories is determined by an experiment similar to that described
in Section 6.1. We adopted the natural logarithmic function for both Φ and
Ψ because best performance was obtained by this function in the experiment
previously described. Ten queries composed of two terms were used, as shown in
Table 8. Only the top three facets with the highest scores were evaluated because
not many facets were generated.

The percentage of correct facets was 73.3% and that of uniform categories
included in correct facets was 82.0%. Similar to the facets for image search
results, the generated facets are considered to be effective.

There are many categories for queries including proper names. For example, in
“Halloween UK,” the facet “countries” is generated and the number of categories
is 17. This infers that many proper names follow the pattern “such as.”
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8 “Multiple-Words”-Based Facets

In this section, we discuss “multiple-words”-based facets as potential
improvements of our system. Let us consider a situation wherein a user queries
“Picasso Guernica” on a web search engine. Up to now, we have considered
generating facets and associated categories that consist of a single word, such
as facets for both “Picasso” and “Guernica.” The facet for “Picasso” contains
other painters’ names, and the facet for “Guernica” contains other works by
Picasso. Multiple words can have coordinate and super concepts. When the tuple
(Picasso, Guernica) is considered, the coordinate concepts of the tuple include
(Gogh, Sunflowers) and (Goya, Colossus), where each tuple is a pair consisting
of a great painter and his outstanding works.

Obtaining related terms for a set of words is hugely challenging, and as
yet, no methodology has been developed. Hence, we propose a method to
obtain coordinate concepts for a given set of words on the fly. Because of the
combinatorial explosion of words, it is impossible to construct dictionaries for
sets of words in advance.

Here, the purpose is to obtain coordinate terms for a multiple-word set. For
example, when a word set {Kyoto, Geisha} is given as the input to the proposed
algorithm, it can return {Tokyo, Sushi}, {Nara, Great Buddha}, {Mt. Fuji}, and
{Japanese sword} because they are all symbols of traditional Japanese culture.
The input to the algorithm is a word set consisting of n words, and the output
is a list of word sets. In this paper, we only focus on finding {Tokyo, Sushi} and
{Nara, Great Buddha} in this example, where any of the target word sets can
be regarded as a tuple consisting of a location name and a cultural element. We
have not considered the problem of finding other types of coordinate terms, such
as {Mt. Fuji} and {Japanese sword}.

For ease of explanation, we will describe a case where two words are input,
although our proposed algorithm does not limit the number of words. The input
to the algorithm is (x0, y0), and the algorithm consists of the following steps:

1. Collect text resources using a web search engine.
In the case of two input words, four queries are issued to a web search
engine. Assume that the input is (Picasso, Guernica); then the queries are
“or Picasso ∧ Guernica,” “Picasso or ∧ Guernica,” “Picasso ∧ or Guernica,”
and “Picasso ∧ Guernica or.” Titles and snippets of 100 search results are
collected for each query. Our proposed method does not use any other
resource. That is, the number of web accesses is limited to enable the
procedure to be performed quickly.

2. Obtain the results of sibling⇐(x0) and sibling⇒(x0). A term set X :=
{x|x ∈ sibling⇐(x0) ∧ x ∈ sibling⇒(x0)} is obtained, where X is a set of
coordinate terms of x0.

The function sibling⇐(z) returns all text strings that appear just before
“or z” in the collected resources, and the function sibling⇒(z) returns all
text strings that appear just after “z or.” In the above example, if both
“Gogh or Picasso” and “Picasso or Gogh” appear, “Gogh” is considered to
be an element of X and it is regarded as a coordinate term of “Picasso.”
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3. Obtain the results of sibling⇐(y0) and sibling⇒(y0). A term set Y :=
{y|y ∈ sibling⇐(y0) ∧ y ∈ sibling⇒(y0)} is obtained, where Y is a set of
coordinate terms of y0.

4. Obtain the result of connector(x0, y0), and connector(y0, x0). They are
syntactic patterns frequently (more than twice) appearing between x ∈ X
and y ∈ Y . A member of connector(x0, y0) is denoted by cx→y, and a
member of connector(y0, x0) is denoted by cy→x.

In the above example, if “Picasso painted Guernica” appears more than
twice, cx→y can be “painted.” If “Guernica by Picasso” appears more than
twice, cy→x can be “by.”

5. Obtain the results of related⇐(cx→y, y0) and related⇒(cy→x, y0). A term
set {x|x ∈ (sibling⇐(x0) ∪ related⇐(cx→y, y0)) ∧ x ∈ (sibling⇒(x0) ∪
related⇒(cy→x, y0))} is added to X .
In this step, the method tries to find coordinate terms of x0 by using y0 and
connectors.

6. Obtain the results of related⇐(cy→x, x0) and related⇒(cx→y, x0). A term
set {y|y ∈ (sibling⇐(y0) ∪ related⇐(cy→x, x0)) ∧ y ∈ (sibling⇒(y0) ∪
related⇒(cx→y, x0))} is added to Y .

In this step, the method tries to find coordinate terms of y0 by using
x0 and connectors. For example, if both “Picasso painted Bullfight” and
“Bullfight by Picasso” appear, “Bullfight” is added to Y . When “Picasso
painted Bullfight” appears but “Bullfight by Picasso” does not appear, if
“Bullfight or Guernica” appears, “Bullfight” is still added to Y .

7. By using any combination of x′ ∈ X and y′ ∈ Y instead of (x0, y0), the
method executes steps 2, 3, 5, and 6.

8. First, the method generates any combination of x′ ∈ X and y′ ∈ Y . For
a pair (x′, y′), text strings using cx→y and cy→x are constructed. That is,
“x′cx→yy” and “y′cy→xx” are constructed. The number of appearances of
the text strings is counted as the score of the pair (x′, y′), and a pair whose
score is more than zero is contained in the output.

For example, if “Goya” is in X , “Colossus” is in Y , “Goya painted
Colossus” appears once, and “Colossus by Goya” appears twice, the pair
(Goya, Colossus) is contained in the output and its score is three.

When the query is (Picasso, Guernica), the actual output contains (Dali,
Premonition of Civil War), (Gogh, Sunflowers), (Goya, Colossus), (Goya, The
Nude Maja), and (Monet, Nympheas). However, the results contain some “noise”
and the method still needs to be improved.

9 Conclusions

We have proposed a method for generating facets on-the-fly to enhance
navigation for objects returned by keyword searches. Facets are generated
by constructing pairs of a hypernym and coordinate terms of candidates
of category names. The generated facets are ranked so that they can be
effectively used for browsing search results. We conducted an experiment to
assess the facets. We also implemented a system that shows the result of an
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image search classified by multiple facets, and a user study showed that the
performance of the system is good. Furthermore, we have proposed a method of
generating “multiple-words”-based facets. We will study the generation of a set
of orthogonal facets in future work.
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Abstract. Today, social networking has become a popular web activity,
with a large amount of information created by millions of people every
day. However, the study on effective searching of such social informa-
tion is still in its infancy. In this paper, we focus on Twitter, a rapidly
growing microblogging platform, which provides a large amount, diver-
sity and varying quality of content. In order to provide higher quality
content (e.g. posts mentioning news, events, useful facts or well-formed
opinions) when a user searches for tweets on Twitter, we propose a new
method to filter and rank tweets according to their quality. In order
to model the quality of tweets, we devise a new set of link-based fea-
tures, in addition to content-based features. We examine the implicit
links between tweets, URLs, hashtags and users, and then propose novel
metrics to reflect the popularity as well as quality-based reputation of
websites, hashtags and users. We then evaluate both the content-based
and link-based features in terms of classification effectiveness and identify
an optimal feature subset that achieves the best classification accuracy.
A detailed evaluation of our filtering and ranking models shows that the
optimal feature subset outperforms traditional bag-of-words representa-
tion, while requiring significantly less computational time and storage.
Moreover, we demonstrate that the proposed metrics based on implicit
links are effective for determining tweets’ quality.

1 Introduction

In recent years, social networking and microblogging services have seen a steep
rise in popularity, with users from a wide range of backgrounds contributing
content in the form of short text-based messages. Microblogging services, in par-
ticular Twitter, are at the epicentre of the social media explosion, with millions
of users being able to create and publish short messages, referred to as tweets,
in real time. It is estimated that nearly 200 million tweets are generated and
over 1.6 billion search queries are issued each day [1] and these figures are likely
to keep rising in future. However, the work on searching tweets or similar social
information is still in its infancy. Unlike traditional web search, the search results
from social networking services may be mostly relevant to the query, however
may also include a large proportion of low-quality and noisy messages.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 397–413, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



398 J. Vosecky, K. Wai-Ting Leung, and W. Ng

Fig. 1. Two relevant tweets returned as a result to a search for ‘iPad’. The first tweet
shares factual news about the product, while the second tweet only mentions about
the author’s family and includes an unclear subjective judgement.

In this paper, we focus on Twitter, a popular social networking and microblog-
ging platform. The social networking features include subscribing to tweets by
other users, forwarding tweets from other users and explicitly addressing other
users in their tweets. During recent events, such as natural disasters or political
turbulences, the influence of Twitter has become even more evident.

While there has been plenty of study on the dynamics of information spread-
ing, influence and authority in Twitter, little attention was paid to how to find
good quality content in Twitter. Twitter is clearly a rich source of data, however,
there are also several new challenges compared with traditional web searching.

– Very brief content: In Twitter, only 140 characters are available to convey
the author’s message. This poses new challenges to establish an effective set
of features for filtering and ranking search results.

– Highly dynamic in scale: There is a large quantity of such postings, with
nearly 200 million new tweets published each day [1]. This demands more
efficient techniques for identifying high quality tweets.

– Informal language: Being user-generated content, postings often contain mis-
spellings, abbreviations, slang expressions and the like. This makes the anal-
ysis of tweets more difficult.

– Varying quality: The level to which a tweet contains high quality information
varies dramatically. [2] found that 57% of tweets are not of general interest,
except to the author or the author’s close friends. [3] claims that users post
several types of messages, only some of which are intended to be of interest
to a wider audience.

The above challenges become more obvious when searching for content in Twit-
ter, which presents results ordered by recency of posting. The user then needs to
manually pick out high quality content among potentially thousands of results.
Consider a search for the term “iPad” and two different search results shown
in Figure 1. The example illustrates that there may be a large difference in the
level of quality of tweets returned as results to a search query.

In order to achieve more effective tweet search, we tackle the following two
problems: filtering1 and ranking tweets according to their quality. We may ap-
ply these two methods on a recent set of tweets. Basically, our approach involves

1 The terms “filtering” and “classification” are used interchangeably throughout the
paper.
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Fig. 2. Overall process of filtering and ranking tweet based on quality analysis

the following steps, as illustrated in Figure 2. First, to capture the quality of
individual tweets, we examine each tweet with a set of content-based and link-
based features. Our newly proposed link-based features leverage the implicit
relationships between tweets, hashtags2 and hyperlinks. Second, we evaluate the
effectiveness of individual features and perform attribute subset selection to ob-
tain an optimal subset of features for the classification task. Third, the optimal
feature subset can be used for constructing (i) a filtering model, or (ii) a ranking
model. The filtering model aims to identify high quality tweets from a given
set of tweets, or to filter out low quality, noisy tweets. On the other hand, the
ranking model aims to rank a set of tweets based on their quality, with high
quality tweets ranked at top positions. Finally, we show that our optimal feature
subset outperforms a baseline method based on TFIDF representation for the
filtering task, while requiring less computational time and storage in our empir-
ical evaluation. In addition, for the ranking task, we significantly outperform a
state-of-the-art method based on hyperlink presence.

Our contributions in this paper are then as follows:

– We propose a new strategy for filtering and ranking of tweets, focusing on
the quality of a tweet, in order to improve on the basic search functionality
in Twitter. Our detailed evaluation shows that our strategy helps to improve
the näıve recency-as-relevance approach currently used.

– We propose a novel set of link-based features in order to model the quality of
a tweet, utilizing the implicit relationships between tweets, hyperlinks and
users. We introduce three metrics to reflect the quality of tweets which relate
to a specific URL, hashtags or a user. These features provide useful evidence
to our models and boost the filtering and ranking performance.

– We examine both link-based and conventional content-based features, and
evaluate their effectiveness in the modelling task. We then identify an optimal
(best-performing) feature subset. To our knowledge, this is the first study
with detailed analysis of features for the task of filtering and ranking of
general tweets according to their quality.

The remainder of the paper is organized as follows. Section 2 discusses related
work in the area of Twitter analysis. In Section 3, we present background on
Twitter and define the notion of tweet quality. Section 4 discusses our filtering

2 Hashtags are tags prefixed with a ‘#’ symbol to indicate the topics of the tweet and
enable posts related to the same topics to be quickly searched.
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approach and the features of tweets. Our ranking approach is then presented in
Section 5. Section 6 provides an evaluation of the filtering and ranking models,
as well as of our proposed features. Finally, Section 7 concludes the paper.

2 Related Work

Twitter has been an active area of research in recent years. [3,4] provide initial in-
sights into the usage patterns in Twitter and how communities are formed. From
the content point of view, previous work largely aimed to classify tweets into a
predefined set of categories, based on their purpose (such as ‘news’, ‘events’,
‘opinions’, etc.). [5] proposes a feature-based method for classifying tweets into
6 categories. [6] proposes the use of topic models and supervised learning to
assign 4 broad topics to tweets. Our work is complementary to these works as
we focus on the quality of tweets, which is a new dimension orthogonal to such
predefined categories.

From the perspective of analyzing the quality of tweets, [2] is closer to our
work. It provides initial insights in the classification of Tweets based on their
interestingness to the reader and presents a set of potential features. However,
only the presence of a hyperlink is used for classification in [2]. Our work fo-
cuses on a more generalized quality-based classification and ranking, examine a
larger set of features and proposes new features which outperform the link-only
approach. We also provide a detailed feature evaluation. In [7], several features
are proposed to find interesting clusters of tweets for specific events but they do
not analyse the post’s content. Instead, cluster size, expected audience and time
span of the cluster are the criteria for gauging quality.

From the perspective of effective tweet ranking, early attempts at new al-
gorithms to rank tweets were proposed. [8] proposes several simple methods,
e.g. based on the number of followers of a user or the length of a tweet. [9]
ranks tweets using non-negative matrix factorization, based on the bag-of-words
representation. However, these works did not provide comprehensive evaluation
or convincing empirical results. [10] ranks tweets in Twitter-like forums based
on star-ratings or thumb-ratings, not taking content into account. [11] employs
a learning-to-rank approach using a hybrid set of features (query-content rel-
evance, content-based features, author features). In our work, we focus on the
specific problem of analyzing the quality of an individual tweet. We formulate
criteria of tweet quality and examine a comprehensive set of content-based and
novel link-based features. Our work also provides a detailed feature evaluation
for tweet filtering and ranking based on their quality.

3 Tweet Quality Analysis

3.1 Preliminaries

Twitter is a social networking and microblogging platform, in which registered
users may post short messages (tweets) of up to 140 characters in length. These
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Table 1. Examples of tweets judged by different quality criteria

Criterion Positive example Negative example

Well-
formedness

“Lady Gaga is on the 4th place among
solo artists with the most top tens
in a row, only behind Janet Jackson,
Madonna and Whitney Houston.”

“Serena got a $2000 fine for the
outburst....hahhahahaahahhaha
but she told her her news yong!
LOL”

Factuality “Apple to release iOS 5 GM to assem-
blers during week of Sept. 23 (@thisis-
neil / AppleInsider)”

“so now that i have my iphone is
jailbroken, what should i down-
load on it ? i really dont know”

Navigational
quality

“#Japan’s prime minister promises
help to city decimated by tsunami
and earthquake http://dlvr.it/N2v7q”
[links to a news article]

“This is what I call a
perfect Sunday afternoon!
http://bit.ly/endbUc” [links to
a family photograph]

messages are published and available for search in near-real time and can be
posted either using a web interface, via SMS messages or through a wide range
of third-party applications. Currently, Twitter has over 300 million registered
users who post over 200 million tweets and submit around 1.6 billion search
queries per day [12].

The social networking features include: (1) subscribing to posts by another
user (follow), (2) forwarding posts from other users (re-tweet, indicated by a
“RT” prefix) and (3) explicitly addressing users in their posts (mentions, indi-
cated by a “@” symbol followed by a username), thus enabling conversations and
replies to be carried out. Within tweets, users may also include hashtags (tags
prefixed with a ‘#’ symbol) to indicate the topics discussed and enable posts
related to the same topics to be grouped together and searched more directly.

By default, the user’s profile and tweets are publicly accessible, unless re-
stricted to the user’s followers. Data available on Twitter is also accessible via
Twitter’s REST API.

3.2 Goal Definition: Defining Tweet Quality

In this section, we focus on the notion of tweet quality more closely and set
out our goals for modelling and assessing the quality of tweets. Based on their
purpose, messages on Twitter have been found to fall into several categories,
such as conversational, information sharing, news reporting, etc. [3]. Instead of
focusing on a specific type or category of tweets, we aim to establish criteria for
judging the quality of tweets in general. Therefore, we define our notion of an
‘interesting’ tweet along the following 3 criteria:

– Well-formedness. Well-written, grammatically correct and understandable
tweets are preferred over tweets containing heavy slang, uncomprehensible
language or excessive punctuation.

– Factuality. News, events, announcements and other facts of general interest
are preferred over tweets with an unclear message, private conversations and
generic personal feelings, which typically do not convey useful information.
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– Navigational quality. A tweet that links to reputable external resources (e.g.
news articles, reports, or other online materials) may provide further infor-
mation to the reader. However, not all links may be of general interest (e.g.
links to photo sharing websites, used for sharing personal photos). Therefore,
it is important to distinguish what type of website a tweet refers to.

Examples of tweets judged along these criteria are shown in Table 1. In real
scenarios, tweets may exhibit more than one of the criteria (e.g. news-oriented
tweets are typically factual and provide a link to the full news article). In fact,
these 3 criteria allow for flexibility when judging different types of tweets3.

In order to assess tweets according to the quality criteria, we follow a process
described in subsequent sections. In particular, we extract features from tweets
(Section 4.2) to capture various characteristics, as inspired by the 3 criteria
described in this section. These features then form a basis of our filtering and
ranking models.

4 Quality-Based Tweet Filtering

4.1 Classification Method

Since our work focuses on the tweet-specific feature extraction and evaluation,
rather than on the classification algorithm itself, we utilize standard classification
tools. Due to its wide-spread adoption and proven effectiveness in text mining
tasks, we use Support Vector Machines (SVM) for the classification task.

4.2 Characterizing Tweets with Features

To gain deeper insight into which factors most influence the quality of a tweet,
we extract a number of features from every tweet. The features can be broadly
divided into content-based and link-based features. Content-based features may
be used to identify low-quality tweets which contain many spelling mistakes and
use punctuation excessively. These features correspond to the well-formedness
criteria in Section 3.2. Next, features based on the complexity and formality of
the language correspond to the factuality criteria. Link-based features include
the presence of hyperlinks, hashtags or mentions of other users. We also propose
a set of novel metrics to obtain reputation scores for URL domains, users and
hashtags. These features, in particular the URL domain reputation, addresses
the navigational quality criteria.

Punctuation and Spelling Features
Excessive Punctuation. We measure any abnormalities in punctuation with fea-
tures, such as the number of exclamation marks, number of question marks and
the maximum number of repeated characters.

3 For example, when searching for tweets reviewing a movie, ‘well-formed’ tweets would
be preferred over those containing excessive slang or strong language. Or, when
searching for tweets about ‘iPhone’, tweets linking to news articles about ‘iPhone’
would be preferred over tweets linking to private photos taken with an ‘iPhone’.
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Capitalization. Another kind of abnormality is content written in all-capitalized
letters. We capture the presence of all-capitalized words and the largest number
of consecutive words in capital letters.

Spelling. We extract the number of correctly spelled words and the percentage
of words found in a dictionary. The dictionary used in this task is provided by
the Stanford Natural Language Processing lab.

Syntactic and Semantic Complexity
Syntactic Complexity. We measure the absolute length of the tweet, average
word length, maximum word length and the percentage of stopwords. We also
determine whether specific symbols, such as emoticons are present. The presence
of numbers and measure symbols ($, %) is also extracted, and would apply to
tweets that mention specific monetary or statistical data.

Tweet Uniqueness. On a higher level, we measure the uniqueness of a tweet
relative to other tweets by the same author. This feature is based on the tra-
ditional TFIDF approach in information retrieval. We may view a tweet tj as
a set of terms tj = {w1, . . . , wn} . The uniqueness of a tweet tj is then de-
fined as uniq(tj) =

∑
wi∈tj

tfi,tj × idfi, where tfi,tj is the frequency of term i in
tweet j and idfi is the inverse document frequency of term i. More specifically,
tfi,tj =

ni,tj∑
k nk,tj

where ni,tj is the number of occurrences of term i in tweet j. The

inverse document frequency of term i is defined as idfi = log |Tu|
|{tk:wi∈tk}|+1 where

|Tu| is the total number of tweets from user u and the denominator indicates the
number of tweets containing term i.

Grammaticality
Parts-of-Speech. We analyze parts-of-speech (PoS) within the tweet (such as
nouns, verbs, adjectives, etc.). We use a PoS tagger [13] to tag each word within
the tweet with its corresponding PoS. We also check whether first-person parts-
of-speech are present.

From existing readability metrics to measure the complexity and formality of
written text, we chose the “formality score” from [14], which is based on the
amount of different PoS that occurs in a text. The score is typically used to
estimate the difficulty of understanding longer pieces of text, such as articles or
books. The formality score4 is defined as:

F =((nounfrequency + adjectivefreq.+ prepositionfreq.+ articlefreq.−
pronounfreq.− verbfreq.− adverbfreq.− interjectionfreq.+ λ)/2)

(1)

Presence of Names. We identify proper names within the tweet as words with a
single initial capital letter. We also determine the maximum number of consec-
utive proper names in the tweet.

4 The formality score was originally designed for longer pieces of text, with λ = 100.
We adapt the value of λ in order to match the restricted length of tweet messages,
λ = 10.
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Fig. 3. Illustration of tweets containing links to two URL domains and two hashtags,
including the tweets’ quality scores (q)

Next, we identify named entities in the tweet using a Named Entity Recogni-
tion (NER) tagger [15]. The tagger labels words or word groups which are likely
to refer to names of places, persons or organizations.

Link-Based Features
Out-link Features. We extract whether the tweet contains a hyperlink, if it is a
re-tweet (indicated by the “RT” prefix), the number of ‘@username’ mentions
within tweet and the number of ‘#hashtags’.

Reputation Features. One observation made about tweets that contain links
is that tweets which link to specific web sites, such as news portals, generally
contain higher quality information than tweets which link to domains such as
social networking or picture sharing web sites. We generalize this problem to any
URL domain and propose a feature that captures the reputation of the domain,
based on the quality of tweets that point to that domain. A URL domain should
have a high reputation score if (1) many tweets link to the domain, and (2)
the tweets are of good quality. Conversely, if many low-quality tweets link to a
domain, its reputation score should be low.

We then extend this concept to hashtags and re-tweeted users. The re-tweet
based reputation of a user captures the quality of re-tweets originally posted by
that user. The intuition is that a user should have a high reputation score if his
or her tweets have been (1) re-tweeted often and also (2) are of good quality.
For hashtags, the reputation score is based on the quality of tweets containing a
specific hashtag. Figure 3 shows an example of two groups of tweets that link to
two websites, with some tweets also containing hashtags. Our focus is on what
can be generalized about the websites and hashtags from the fact that Tweets
1-3 have a higher quality than Tweets 4-6.

URL Domain Reputation. As mentioned earlier, the purpose of the URL do-
main reputation feature is to capture the quality of tweets that link to a specific
URL domain5.

To calculate the URL reputation, we firstly define an average domain quality
measure. For a set Td = {t ∈ T : t %→ d} consisting of tweets that link to domain
d, the Average Domain Quality (AvgDQ) is given by:

5 The process of extracting the feature requires two pre-processing steps. First, URL
links posted in microblogs are commonly shortened to save space in the post, result-
ing in the need to translate shortened links to their original URL. Second, we group
each tweet containing a link to the respective first-order domain of the URL.
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Table 2. URL domains with the highest and lowest Domain Reputation Score (DRS)

10 Domains with Highest DRS 10 Domains with Lowest DRS

Domain Inlinks AvgDQ DRS Domain Inlinks AvgDQ DRS

gallup.com 99 0.96 1.92 tweetphoto.com 126 -0.86 -1.80
mashable.com 101 0.76 1.53 twitpic.com 140 -0.80 -1.72
hrw.org 58 0.86 1.52 twitlonger.com 58 -0.93 -1.64
shoppingblog.com 47 0.87 1.46 lockerz.com 54 -0.81 -1.41
redcross.org 30 0.80 1.18 yfrog.com 93 -0.70 -1.38
intuit.com 61 0.57 1.02 laurenconrad.com 33 -0.88 -1.33
good.is 31 0.68 1.01 celebuzz.com 19 -1.00 -1.28
usa.gov 30 0.67 0.98 myloc.me 24 -0.83 -1.15
thegatesnotes.com 24 0.67 0.92 instagr.am 54 -0.63 -1.09
reuters.com 8 1.00 0.90 formspring.me 20 -0.80 -1.04

AvgDQ(d) =
1

|Td|
∑
t∈Td

qt, (2)

where qt denotes the quality score of tweet t, qt ∈ [−1,+1].
We then use this measure to define the Domain Reputation Score (DRS) as:

DRS(d) = AvgDQ(d)× log(|Td|), (3)

where AvgDQ(d) ∈ [−1,+1].
Intuitively, DRS formalizes the idea that the reputation score is increasing

with more high-quality tweets linking to d and vice versa. To illustrate the
reputation scores obtained using this approach, we calculate DRS for all URL
domains in our dataset. Table 2 lists domains with the highest and the lowest
DRS, the AvgDQ, and the number of tweets linking to the domain (Inlinks)6.

RT Source Reputation. Similarly to URL domain reputation, we leverage the
quality of re-tweets that originate from a specific user in order to obtain the
source user’s reputation.

The RT Source Reputation Score (RRS) is given by:

RRS(u) =
[

1
|RTu|

∑
t∈RTu

qt

]
× log(|RTu|), where RTu is the set of re-tweets

originally posted by user u and qt ∈ [−1,+1] is the quality score of tweet t.
Hashtag Reputation. Hashtag reputation leverages the quality of tweets related

to a particular hashtag. The Hashtag Reputation Score (HRS) is calculated as:

HRS(h) =
[

1
|Th|

∑
t∈Th

qt

]
× log(|Th|), where Th is the set of tweets including

hashtag h and qt ∈ [−1,+1] is the quality score of tweet t.

Timestamp. We use two features based on the timestamp of the tweet. The
timestamp is discretized by hour of the day, as well as day of the week.

6 Among the top 10 domains, there are 4 news-related sites, the website of the Red
Cross and Human Rights Watch and 2 popular blogs.
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5 Ranking Tweets by Quality

One of the drawbacks of the filtering method proposed in Section 4 is that it
may not always be possible to clearly determine which class a particular tweet
belongs to. This is true especially for tweets close to the classification boundary.
Intuitively, such tweets could be labelled as being “average quality” or “neutral”.
While multiple classes of quality could be introduced, their exact meaning would
be hard to define or interpret. A more intuitive solution might be to assign a
continuous-valued score to a tweet (given by a regression model), or to produce
a ranking for a set of tweets.

The goal of our ranking approach is to order a set of tweets based on their
relative quality. More specifically, the ranking is based on the quality when con-
sidering each pair of tweets in the dataset. Our aim is to find a function F which,
given two tweets t1 and t2, would output an ordered pair F(t1, t2) = (t1 1 t2) iff
qt1 > qt2 . In this way, given a set of tweets, we can produce an ordered sequence
based on their quality.

5.1 Ranking Method

Our general approach proceeds in three phases: (1) tweets matching a query
(based on string matching) are retrieved, (2) features of the tweets are extracted
(as presented in Section 4.2) and (3) the query-tweet pairs, together with the
quality scores of the tweets, are passed as input to a Learning-to-rank algorithm.

We adopt Rank SVM [16] to construct our ranking model, which is a sim-
ple and widely used Learning-to-rank technique. It takes pair-wise relationships
between queries and tweets with their corresponding quality labels to learn a
ranking model. Given an input set of unordered instances, the model will then
output a sequence of instances ordered by their relative quality.

5.2 Features for Ranking

Similarly to our filtering approach, the criteria for ranking are based on the qual-
ity of a tweet. For this reason, we adopt the same set of features as presented in
Section 4.2 to describe the content-based and implicit link-based characteristics
of tweets for our ranking model.

6 Experimental Evaluation

In this Section, we describe our evaluation dataset and present the results of our
filtering and ranking methods, with a particular focus on feature importance.
We illustrate the overall evaluation flow in Figure 4.

6.1 Dataset

The dataset used in our experiments consists of 10,000 tweets from 100 Twit-
ter users, with 100 recent tweets from each user. The dataset is collected from two
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Fig. 4. Evaluation flow diagram

different user classes, namely general users and influential users. The first user
class contains 50 randomly selected users from a Twitter dataset provided by
[17]. These users represent members of the general public. The second user class
contains 50 influential users, selected from a popular website7 that lists influen-
tial Twitter users in various categories. The 50 users are randomly selected from
5 different categories (technology, business, politics, celebrities and activism) to
avoid any topical bias and their tweets were crawled using Twitter’s REST API.

Training Data Labelling. Due to a lack of a publicly available Twitter dataset
with quality judgments, we manually build an evaluation dataset. To obtain
the quality labels for our Twitter dataset, we utilize the Amazon Mechanical
Turk8 crowdsourcing service. The collected tweets are presented in a random
order to reviewers, who are asked to assign a 1-5 rating to each tweet. Rating
“1” represents a low-quality tweet, while rating “5” represents a high-quality
tweet. To increase the objectivity of labelling and avoid bias from any individual
reviewer, the ratings are collected and averaged from three different reviewers.

After labelling the Twitter dataset, we analyse the distribution of tweet qual-
ity in the dataset (Figure 5). Apart from the overall distribution, we also ex-
tract quality distributions for the two different user classes, general users (5,000
tweets) and influential users (5,000 tweets). Furthermore, we also analyze the
distributions for re-tweets (1,941 tweets) and reply-tweets (2,676 tweets). Based
on the results in Figure 5, we observe that the proportion of high-quality tweets
from influential users is considerably larger than those from random users. We
also observe that influential users may sometimes post low-quality tweets, thus
the proposed filtering and ranking methods are also useful for tweets written by
influential authors. Interestingly, we find that re-tweets are only slightly better
than general tweets in terms of quality, indicating that even re-tweets may in-
clude low-quality or noisy messages. Finally, we observe that reply tweets have
mostly low quality, most likely due to their conversational nature.

6.2 Filtering Evaluation

Evaluation Methodology. To evaluate our filtering method, we use 50% of
randomly selected tweets from our labeled dataset as the training set and the

7 http://www.listorious.com
8 https://www.mturk.com

http://www.listorious.com
https://www.mturk.com
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Fig. 5. Distribution of tweet quality as average quality ratings assigned by reviewers
(higher rating implies higher quality)

remaining 50% as the test set. Since the labeled ratings are in the range of
[1, 5], they are converted to binary labels based on the mean value 3 (label ≤ 3
meaning ‘low-quality’, label > 3 meaning ‘high-quality’). The SVM classifiers
are trained using the features as discussed in Section 6.2. In addition to the
proposed features, we also extract n-grams up to length 5 (1 ≤ n ≤ 5) from
the tweets and use a TFIDF representation as an opponent in the comparison.
In the evaluation, we use standard precision and recall with respect to each of
the binary labels. We also present the Area under the ROC Curve (AUC) as an
overall performance metric in the comparsion.

Feature Selection. To study the importance of each feature for the classifica-
tion task, we first calculate Information Gain (IG) of each feature with respect
to the class label. Table 4 lists all features sorted by their IG values. We observe
that the top two link-based features (IG = 0.374 and 0.287) significantly out-
perform other features (IG ≤ 0.130) in terms of IG, showing that they are the
two most important features in the classification. Moreover, language complexity
and named entities are also very useful in the classification with a high IG.

The next goal is to identify the optimal subset of features for the SVM clas-
sification model. For that purpose, we employ Greedy Forward attribute subset
search and a Wrapper evaluator [18] as the feature selection algorithm. Greedy
Forward attribute search starts with an empty set of features and greedily adds
new features which contribute most to the classification. The search finishes once
the newly added feature would no longer affect the performance of the classi-
fication. To pick the optimal subset of features, a Wrapper evaluator is used.
Wrappers are used to measure classification performance based on a particular
subset of features. In our experiments, SVM is used as the learning scheme and
the performance of each feature subset is evaluated using 2-fold cross-validation
on the training dataset. The optimal 15 features are shown in Table 3.

We can see that 1
3 of the optimal features are linked-based, showing that the

proposed link-based features (corresponding to the navigational quality criteria,
Section 3.2) contribute most to the classification, a conclusion also derived from
the classification results (Section 6.2). Also, language formality and complexity
features (corresponding to the factuality criteria) are strong indicators, as high
quality tweets tend to use more formal language, named entities, etc. Some of
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Table 3. Feature subset selected by greedy attribute subset search and SVM-wrapper

Domain reputation RT source reputation No. named entities

Formality Tweet uniqueness % correct. spelled words

Max. no. repeat. letters Contains numbers No. capitalized words

No. hash-tags No. exclam. marks Avg. word length

Contains first-person Is re-tweet Is reply-tweet

Table 4. Importance of individual features based on Information Gain (IG)

IG Feature IG Feature IG Feature

0.374 Domain reputation 0.078 Day in the week 0.014 Contains a measure
0.287 Contains link 0.071 Is reply-tweet 0.011 No. hashtags
0.130 Formality score 0.060 Avg. word length 0.008 No. of mentions
0.127 Num. proper names 0.042 % of correct spell. 0.007 Contains emoticons
0.113 Max. proper names 0.041 Hour of the day 0.007 Contains nums
0.111 Tweet length 0.041 Hashtag reputation 0.005 No. quest. marks
0.089 No. named entities 0.034 RT source reput. 0.003 No. capital. words
0.087 % of stopwords 0.023 Max. repeated chars. 0.001 Is re-tweet
0.083 Max. word length 0.023 Uniqueness score 0.000 Max. capital. words
0.081 Has first-person 0.019 No. excl. marks

the features, however, do not provide as useful characterization. We observe that
spelling and punctuation are not particularly strong indicators, which may be
due to the informal language (e.g., short forms and abbreviations) often used in
Twitter. Also, the number of ‘@username’ mentions is not a strong indicator.
We observe that while some tweets mentioning many users generally have lower
quality (e.g. private conversations between a group of users), many high-quality
tweets also mention users, such as names of public figures or organizations. Based
on IG, the ‘Is re-tweet’ feature is not a strong indicator of high-quality tweets,
aligning with our observation in Section 6.1 that even re-tweets may contain
low-quality or noisy messages. In contrast, ‘RT source reputation’ proves to be
a clearly stronger indicator, leveraging the reputation of re-tweeted users.

An overview of feature sets used for experiments is presented in Table 5.

Filtering Results. We evaluate the accuracy of a SVM classifier on different
feature sets for the filtering of high-quality, as well as low-quality tweets. The
results are presented in Table 6.

According to the AUC results in Table 6, ‘Subset.SVM’ performs the best
among all the feature sets, achieving the highest recall in high-quality filtering,
also achieving the highest precision in low-quality filtering. Furthermore, the
link-based features (‘C4.Links’) also archive high AUC (AUC = 0.84), especially
the subset that contains only reputation-based features (‘Subset.Reput’, AUC =
0.841). The two sets (‘C4.Links’ with 8 features only, and ‘Subset.Reputation’
with 3 features only) outperform the ‘TFIDF’ method (with 3322 features, cor-
responding to term n-grams) and also the ’Link-only’ feature used in [2]. Link-
based features are also useful in filtering out high-quality tweets: among the
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Table 5. Description of feature sets used in experiments

Feature set #Ftr’s Description

Text (TFIDF) 3322 TFIDF represent. of term n-grams up to length 5. Baseline.
Link only 1 Single feature - presence of a hyperlink. Method used in [2].

C1.Spell 6 Punctuation and spelling features
C2.Comp 8 Syntactic and semantic complexity features
C3.Gram 5 Grammaticality features
C4.Links 8 Link-based features
C5.Time 2 Timestamp features

Subset.Cont 19 All content-based features (C1 - C3).
Subset.Reput 3 Reputation score features (DRS,RRS,HRS)
Subset.SVM 15 Features selected by greedy attribute selection (see Table 3)

All features 29 All content and link-based features
All ftr’s + Text 3351 All content, link and TF-IDF features

Table 6. Precision (P), Recall (R) and Area Under the ROC Curve (AUC) results for
the task of finding high-quality and low-quality tweets using different feature sets

High-Quality Low-Quality High-Qual. Low-Qual.
Features P R P R AUC Features P R P R AUC

Text (TFIDF) 0.862 0.665 0.885 0.96 0.813 Link only 0.798 0.702 0.894 0.934 0.818

Subset.Cont 0.721 0.61 0.863 0.913 0.762 C1.Spell 0.5 0.004 0.73 0.999 0.501
Subset.Reput 0.812 0.746 0.909 0.936 0.841 C2.Comp 0.628 0.165 0.757 0.964 0.564
Subset.SVM 0.715 0.758 0.912 0.936 0.847 C3.Gram 0.648 0.472 0.822 0.905 0.688
All features 0.815 0.66 0.882 0.944 0.802 C4.Links 0.82 0.74 0.907 0.94 0.84
All ftr’s+text 0.739 0.775 0.915 0.899 0.837 C5.Time 0 0 0.729 1 0.5

5 feature categories (C1 - C5), ‘C4.Links’ yields the best precision for high-
quality tweets. However, it does not yield the best recall, because we find that
quite a large portion of tweets in our dataset do not contain hyperlinks (68.9%)
or hashtags (85.9%), and thus ‘C4.Links’ features cannot be directly applied
to them. Finally, ‘Subset.Cont’ yields relatively high precision on low-quality
tweets, showing that Content-based features are fairly useful in filtering out
low-quality tweets.

We observe that ‘TFIDF’ yields high precision for high-quality tweets, because
it employs a large number of features in the classification. However, a comparison
of the training time and storage space requirements (shown in Figure 6) reveals
that ‘TFIDF’ consumes the largest amount of training time and space due to
the large number of features (i.e., 3322 features). Overall, the optimal feature
subset ‘Subset.SVM’ not only yields better overall results, but also requires less
training time and space compared to the ‘TFIDF’ representation.

6.3 Ranking Evaluation

Experiment Methodology. To evaluate our ranking method, we manually
prepare 30 single-word test queries in the ranking evaluation. The queries are
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Fig. 6. Storage cost (left) and training time cost (right) of different feature sets

Table 7. Ranking accuracy in terms of NDCG@N and Mean Average Precision (MAP)

NDCG@N NDCG@N
Features 1 2 5 10 MAP Features 1 2 5 10 MAP

Link only 0.067 0.111 0.22 0.324 0.398 C1.Spell 0.511 0.456 0.466 0.51 0.5
Subset.Cont 0.622 0.644 0.653 0.651 0.55 C2.Comp 0.8 0.756 0.639 0.603 0.536
Subset.Reput 0.822 0.777 0.777 0.764 0.661 C3.Gram 0.622 0.6 0.612 0.6 0.513
Subset.SVM 0.867 0.767 0.778 0.769 0.653 C4.Links 0.733 0.656 0.687 0.711 0.639
All features 0.733 0.733 0.763 0.753 0.637 C5.Time 0.156 0.267 0.282 0.346 0.377

randomly selected from 5 different categories: News, Politics, Technology, Busi-
ness and Entertainment, to avoid any topical bias. For each query, a set of
labeled tweets containing the query term is retrieved. A total of 1,834 tweets are
retrieved for the 30 test queries. We divide the 1,834 tweets into two sets, one set
for the training and the other set for the Rank SVM testing. Basically, the tweets
retrieved from 15 test queries are used for the training, while the tweets from
the remaining 15 test queries are used for the testing. In the ranking evaluation,
we use Normalized Discounted Cumulative Gain (NDCG) and Mean Average
Precision (MAP ), which are standard metrics for evaluating ranking accuracy.

Ranking Results. We evaluate the ranking model with different features as
shown in Table 7. We observe that ‘Subset.Reput’ (the set of reputation-based
features) and ‘Subset.SVM’ achieve the overall best results (MAP = 0.661 and
0.653), significantly outperforming the ‘Link only’ feature used in [2]. Further-
more, among the 5 sets of features (C1 - C5) proposed in Section 4.2, link-based
features achieve the best results. This aligns with our observations in Section
6.2 that link-based features (especially the three reputation-based features) are
useful for identifying high-quality tweets.

7 Conclusion

In this paper, we study the problem of finding high quality content in Twitter.
We formulate the criteria of quality tweets and tackle the filtering and tweet
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ranking problems. The quality of a tweet is modelled using a set of features
based on the tweet’s content, as well as links to websites, hashtags and users.
Our proposed link-based features are able to boost the filtering and ranking per-
formance, indicating that the implicit “reputation” of a web domain, hashag or
re-tweeted user is highly useful in the filtering and ranking tasks. In our experi-
ments, the optimal feature subset that includes link-based features achieves the
best overall classification and ranking accuracy.

Although we focus on Twitter in this work, the results are potentially useful
in the contexts of other social networks and microblogging services. For future
work, we plan to consider different types of queries in Twitter (e.g. hot topic
queries, movie reviews, highly factual seeking queries) and study the importance
of tweet features for filtering and ranking in these different scenarios.

Acknowledgments. This work is partially supported by Hong Kong RGC GRF
project grant 618509.
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Abstract. The popular news aggregator called Digg is a social news
service that lets people share new articles or blog postings in web pages
with other users and vote thumbs up and thumbs down on the shared
contents. Digg itself provides only the functionality to search the articles
for the topics provided by users using manually tagged keywords. Helping
users to find the most interesting Digg articles with the current hot topics
will be very useful, but it is not an easy task to classify the articles
according to their topics and discover the articles with the hot topics
quickly.

In this paper, we propose HotDigg, a recommendation system to pro-
vide the articles with hot topics in Digg using a novel probabilistic gen-
erative model suitable for representing the activities in Digg service. We
next propose an EM algorithm to learn the parameters of our probabilis-
tic model. Our performance study with real-life data from Digg confirms
the effectiveness of HotDigg by showing that the articles with current
hot topics are recommended.

1 Introduction

The popular news aggregator called Digg [6] is a social news service that allows
us to share our articles in web pages and vote the likeness of the articles posted
by others. When a Digg user finds an article that he wants to share, he can
submit the URL with a brief description of the article to Digg web site and let
people vote thumbs up or thumbs down, called digging or burying respectively,
for the submission. The submissions with a lot of “diggs” (i.e. community votes
of thumbs up) but also new submissions are displayed in reverse chronological
order at Digg web site with their digg scores where the digg score of an article
is the number of diggings subtracted by the number of buryings.

Generally, users would like to see the articles of the hot topics. However, Digg
itself provides only the functionality to search the articles using manually tagged
keywords for the topics provided by users and display the articles in the search
result in the decreasing order of voting scores. Helping users to find the most
interesting Digg articles with the current hot topics will be very useful, but it
is not an easy task to classify the articles according to their topics and discover
the articles with the hot topics quickly.

In our paper, we propose HotDigg, a system for displaying the articles with
hot topics in Digg using probabilistic modeling. Due to the characteristics of

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 414–427, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Digg that users can post and vote the articles with their interesting topics, the
articles with each similar topic generally tend to get similar digg scores. Thus,
we develop a generative model from a unifying viewpoint that each article is
produced by a topic mixture model and its votes are determined by its topic.

Our probabilistic model is a generalization of the probabilistic latent semantic
indexing (PLSI) in [7]. If we blindly apply the model of PLSI to Digg, we cannot
utilize the characteristics that the articles with the same topic obtain similar digg
scores. To take advantage of the characteristics, we first propose a new proba-
bilistic model by assuming that the dig scores of the articles on each topic follow
a Gaussian distribution. We next develop an Expectation-Maximization(EM) al-
gorithm to learn the parameters of our model by maximizing the log-likelihood
of expectation. The contributions of this paper are as follows:

– We develop a novel probabilistic generative model which is suitable for rep-
resenting the activities in Digg service.

– We propose an EM algorithm to learn the parameters of our probabilistic
model.

– Our performance study with real-life data from Digg confirms the effective-
ness of HotDigg by showing that the articles with current hot topics are
recommended.

2 Related Work

In this section, we discuss the model-based emerging topic detection algorithms
[2,7,10,9,19,16] and next describe the recent works on Digg service [11,12].

Emerging topic detection refers to the automatic techniques for finding topi-
cally related contents in the streams of data such as newswire and broadcast. One
approach to identify emerging topics in document streams is to cluster new arti-
cles so that the articles in each cluster contain similar words. Extensive research
in the area of document clustering and topic modeling with Latent Dirichlet Al-
location [2], Probabilistic Latent Semantic Index (PSLI) [7], and Non-negative
Matrix Factorizations [10] can be utilize for finding topics. However, these clus-
tering techniques alone cannot help to determine whether the clusters found are
related to the emerging topics or popular topics.

In [9], given a collection of text data with published time, an algorithm is
proposed to identify emerging topics. However, this algorithm does not identify
popular topics but focuses on discovery of the emerging topics only. In [19],
to detect topics from a stream of text data in real time, an emerging topic
detection algorithm which focuses on tracking the changes of topics through
time is developed. However, it cannot estimate the popularity of the detected
emerging topics. In [16], an algorithm to analyze the life cycles of topics using
a modified PLSI model is developed. However, it cannot identify the popular
topics utilizing vote scores such as the digg score of Digg service.
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In [11,12], by using the voting scores of the submitted contents in the web
sites such as Digg and Del.icio.us (a social network service for sharing bookmarks
[3]), they shows the characteristics that popular topics are spread over the social
networks. However, they do not provide the algorithm to find the popular topics.

3 Preliminaries

We first provide the definitions to define our problem and present the problem
formulation.

3.1 Problem Formulation

Observed Data: Let D = {d1, ..., dn} be a collection of the articles submit-
ted to Digg service. Each article di ∈ D is a bag of words which is generated
by deleting the stop-words from its original Digg article. Digg users can vote
thumbs up or thumbs down, called digging or burying respectively, for each Digg
article. Every Digg article di ∈ D has a digg score si of an integer which is the
number of diggings subtracted by the number of buryings voted for di. Let W
= {w1, ..., wm} be a set of words occurring in a Digg article di ∈ D. We define
n(di, w) to denote the number of occurrences of w ∈W in a Digg article di ∈ D.

Unobserved Topics: We assume that there exist t major topics denoted by
Z = {z1, z2, ..., zt} in a collection D of Digg articles. The zk is also used as a
hidden variable to represent one of the t topics in our probabilistic model. Note
that we do not know in advance the actual keywords representing each topic zk
in Z. For each article di in D, we assume that di belongs to each topic zk with
the probability p(z=zk|d=di). For each article di in D, we define the topical
score of di for a topic zk in Z, denoted by st(di, zk), as p(z=zk|d=di) · si which
is the digg score of di weighted by p(z=zk|d=di). Then, for each topic zk, we
define the topic score τk as the weighted average score of the st(di, zk) with every
article di in D and compute τk as follows:

τk =

∑
di∈D p(z=zk|d=di) · si∑

di∈D p(z=zk|d=di) =

∑
di∈D st(di, zk)∑

di∈D p(z=zk|d=di . (1)

Finally, for each digg article di ∈ D and a subset of topics S ⊆ Z, we define
sT (di, S) as the topical score of di for S which is the sum of the topical score
p(z=zk|d=di) · si with every topic zk ∈ S, calculated by

sT (di, S) =
∑
zk∈S

st(di, zk). (2)

Problem Definition: Assume that we have a collection D of Digg articles and
the digg score for each article in D. Given k1, k2 and t, our problem is to par-
tition the Digg articles in D into t clusters according to their topics in order to
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Article Id  Digg Score                        Words
    d1              1           Texas, wildfire, flame, Tuesday
    d2              3           Texas, wildfire, Tuesday
    d3              2           flame, Yahoo
    d4             10          Texas, Yahoo, CEO, company
    d5             12          Tuesday, Yahoo, CEO

(a) An example of digg articles and their scores

d z

N

M

w

z s

(b) An graphical model

Fig. 1. An example of digg articles and our topic model

find the set S of the top-k1 topics with the highest topic scores (i.e., τk) among t
topics and then we select the top-k2 articles with the highest topical scores (i.e.,
sT (d

′, S) ) among all articles in D.

Example 1. Consider a set of Digg articles D = {d1, ..., d5} with their dig scores
shown in Figure 1(a). The Digg articles are presented after eliminating stop-
words. Suppose that we want to show 2 articles with the top-1 popular topics
(i.e., k1=1 and k2=2). In the examples, there exist 2 topics which are related to
‘Texas wildfire’ and ‘Yahoo’s CEO’. Since most of words in the articles d1 and
d2 represent the topic ‘Texas wildfire’, d1 and d2 should be clustered together.
However, it is not clear to determine the topic of d3 because the half of the
words appearing in d3 is related to ‘Texas wildfire’ and the other word is related
to ‘Yahoo’s CEO’. Assuming that the articles on the same topic get similar
popularity and similar digg scores, we can assign d3 into the cluster of the topic
‘Texas wildfire’. Furthermore, to find the top-2 articles with the top-1 popular
topic, since the digg scores of d4 and d5 have the two highest probabilities for
the topic ‘Yahoo’s CEO’ and the topic score of the topic ‘Yahoo’s CEO’ is the
highest, we select the articles d4 and d5.

4 Our Generative Model for Digg

Many previous works have shown the effectiveness of mixture models in cluster-
ing text collections by hidden topics using conditional probability distributions
[7,2,16,15,17,13]. However, since the traditional mixture models do not consider
any score data such as digg scores to measure the popularity of each document,
we next propose a new topical model for Digg by utilizing not only the textual
contents but also the digg scores.

4.1 Our Probabilistic Model

To model both the topics and the scores of Digg articles, we use a mixture of
conditional probability distributions, as the PLSI model in [7] does, but gener-
alize the model structure to include the digg scores. In our generative model, we
assume that each word in a Digg article is chosen for a topic zk in Z similar to
the model of PLSI. Furthermore, we assume that for each Digg article, a digg
score value is also selected for the topic of the article following to a Gaussian
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distribution whose mean and variance depend on the topic only. Correspond-
ingly, we introduce the following three conditional probability density functions
(PDFs):

(1) p(z|d=di) is the conditional PDF with which we select the topic z ∈ Z for
the given digg article di ∈ D.

(2) p(w|z=zk) is the conditional PDF with which the word w ∈ W is selected
depending on the given topic zk ∈ Z.

(3) p(s|z=zk) is the conditional PDF such that, given the topic zk ∈ Z, a digg
score value si ∈ Z is chosen by following the probability p(s=si|z=zj). We
assume that p(s|z=zj) is a Gaussian function.

As long as it is clear from the context, we will denote p(z|d=di), p(w|z=zk)
and p(s|z=zk) by p(z|di), p(w|zk) and p(s|zk) respectively for the sake of simple
representation.

The Topic Selection Model: A topic zk is selected with the dependency
on each Digg article. We introduce the conditional PDF of p(zk|di) which rep-
resents the relevance of a Digg article di ∈ D to a topic zk ∈ Z. Note that∑

zk∈Z p(z=zk|di) = 1 holds for every Digg article di ∈ D.

The Word Selection Model: Given a topic zk ∈ Z, a word wj ∈ W is cho-
sen with the probability p(w=wj |zk) depending on zk only. Obviously, we have∑

wj∈W p(w=wj |zk) = 1 for every topic zj ∈ Z. Semantically, the probability
distribution represents the relevancy of words to describe a given topic.

The Score Selection Model: Given a topic zk ∈ Z, a score value si ∈ Z is
generated with the probability p(s=si|zk) depending on zk only. For the PDF
of p(s=si|zk), we use a Gaussian distribution N(si; τk, σ

2
k), where τk and σ2

k are
the mean and the variance of the distribution for the topic zk.

In Figure 1(b), we show the graphical representation of our proposed mixture
model. Our generative model represents two independent generative processes.
The first process illustrates the writings with hidden topics by the authors of
Digg articles. The second process represents how the digg scores are produced
with hidden topics by the Digg users.

Digg Article Generation: In the first process, each Digg article is produced
by repeating the following steps while choosing the words stochastically:

1. We first select a topic zk for the Digg article di by following the conditional
probability density function p(z|di).

2. With the topic zk chosen in the above, a word wj is selected by following
the conditional probability density function p(w|zk).

We repeat the above two steps as many times as the number of words in di for
every article di ∈ D.
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Digg Score Determination: To the process the selection of the words inde-
pendently, a digg score is also determined for each Digg article by performing
the following steps:

1. We first choose a topic zk for the Digg article di by following the conditional
probability density function p(z|di).

2. With the topic zk chosen in the above, a digg score si is determined by
following the Gaussian probability distribution of N(s; τk, σ

2
k).

We now formally present our probabilistic model and its maximum likelihood
estimate to compute the conditional probability distributions p(w|zk)s, p(z|di)s
and N(s; τk, σ

2
k)s for a given Digg data.

4.2 The Likelihood of a Digg Article Collection

Let D be a collection of Digg articles. For each Digg article di ∈ D, we have a
tuple 〈w(di), si〉 where w(di) and si are a bag of words occurring at di and a
digg score of di respectively. With the probability p(w(di), si|di), the likelihood
of the collection D according to our generative model is

L =
∏

di∈D

p(w(di), si|di).

Since the words appearing in di and the digg score of di are sampled indepen-
dently, we have p(w(di), si|di) = p(w(di)|di)·p(s=si|di). Furthermore, since each
word in a digg article is sampled identically and independently, we can write the
likelihood as follows

L =
∏

di∈D

⎡
⎣p(s=si|di)

∏
wj∈W

p(w=wi|di)
n(di,wj)

⎤
⎦ ,

where n(di, wj) denotes the number of appearances of the word wj in the digg
article di.

By marginalization with the random variable z for topics, p(w=wj |di) be-
comes

∑
zk∈Z p(w=wj |zk)· p(z=zk|di). Similarly, we have p(s=si|di) =

∑
zk∈Z

p(s=si|zk)· p(z=zk|di). Then, by using p(s=si|zk) = N(si; τk, σ
2
k), we obtain

L =
∏

di∈D

⎡
⎣ ∑

zk∈Z

N(si; τk, σ
2
k)p(z=zk|di)

⎤
⎦ ·

⎡
⎣ ∏

wj∈W

⎧⎨
⎩

∑
zk∈Z

p(w=wj |zk)p(z=zk|di)

⎫⎬
⎭

n(di,wj)
⎤
⎦ .

(3)

4.3 The Maximum Likelihood Estimate

Assume that the observed data is generated from our generative model. Let Θ
denote the initially unknown four parameters of our model, which are p(w|z),
p(z|d), τ and σ2. We wish to find Θ such that the likelihood L in Equation (3) is
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maximized. This is known as the Maximum Likelihood (ML) estimation [18] for
computing Θ. In order to estimate Θ, it is typical to introduce the log-likelihood
function defined as

log L =
∑

di∈D

⎡
⎣log

∑
zk∈Z

N(si; τk, σ
2
k)p(z=zk|di) +

∑
wj∈W

n(di, wj) · log
∑

zk∈Z

p(w=wj |zk)p(z=zk|di)

⎤
⎦ .

(4)

The likelihood function is considered to be a function of the parameter Θ for
a Digg collection D. Since logL is a strictly increasing function, the value of
Θ which maximizes log-likelihood of logL also maximizes the likelihood L [20].
Since the parameters p(z|d) and p(w|z) are probability values, we have the fol-
lowing constraints:

∑
zk∈Z

p(z=zk|di) = 1 for every di ∈ D,
∑

wj∈W

p(w=wj |zk) = 1 for every zk ∈ Z

Thus, we have to calculate the model parameters Θ with maximizing the log-
likelihood logL in Equation (4) with the above constraints.

5 Estimation of Model Parameters

Without any prior knowledge, we can apply the maximum likelihood estima-
tor to compute all the parameters by applying the Expectation-Maximization
(EM) algorithm [4]. An EM algorithm performs the iterations with two steps
of an expectation step (E-step) and a maximization step (M-step). In E-step,
the probability expectation of the hidden variables is computed by using the
current estimate of parameters, and in M-step, the parameters maximizing the
log-likelihood is calculated by utilizing the expectation computed in E-step. The
parameters estimated in M-step are then used in E-step of the next iteration.

The E-Step: This step calculates the expectation of the hidden variables. Here,
the hidden variable is (1) the topic zk which is chosen for generating each word
wj for di, (2) the topic zt which is selected for determining the digg score si.
Let p(z=zk|di, wj) be the expected probability that a word wj is generated from
the topic zk in the Digg article di. Similarly, let p(z=zt|di, si) be the expected
probability that a topic zt is selected for given a Digg article di and its digg
score. The formulas for computing these probability expectations are presented
in Figure 2.

The M-Step: In order to find the parameters Θ maximizing Equation (4), we
apply the method of Lagrange multipliers [1]. We list the obtained formulas for
the M-Step of our EM algorithm in Figure 2.

We iterate E-Step and M-Step until we obtain the convergence of the log-
likelihood in Equation (4). Since our EM algorithm only guarantees to find a
local maximum of the likelihood, we perform multiple trials and choose the best
local maximum among the local optima found.
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E-step:

p(z=zk|di, wj) =
p(w=wj |zk)p(z=zk|di)∑

z′∈Z p(w=wj |z′)p(z=z′|di)
(5)

p(z=zt|di, si) =
N(si; τt, σ

2
t )p(z=zt|di)∑

zt′ ∈Z N(si; τt′ , σ2
t′ )p(z=zt′ |di)

(6)

M-step:

p(w=wj |zk) =

∑
di∈D n(di, wj) · p(z=zk|di, wj)∑

w′∈W

∑
di∈D n(di, w′) · p(z=zk|di, w′)

(7)

p(z=zk|di) =

∑
wj∈W n(di, wj) · p(z=zk|di, wj) + p(z=zk|di, si)

∑
z′∈Z [

∑
wj∈W n(di, wj) · p(z=z′|di, wj) + p(z=z′|di, si)]

(8)

τk =

∑
di∈D si · p(z=zk|di, si)∑

di∈D p(z=zk|di, si)
(9)

σ2
k =

∑
di∈D(si − τk)

2 · p(z=zk|di, si)∑
di∈D p(z=zk|di, si)

(10)

Fig. 2. The formulas for E-step and M-step

Example 2. Consider a set D of Digg articles shown in Figure 1(a). Since the
data set contains two topics which are ‘Texas wildfire’ and ‘Yahoo’s CEO’, we
set the number of topics t to 2 in this example. In the E-step of the first iteration,
for every Digg article di ∈ D, every topic zk ∈ Z and every word wj ∈ W , the
conditional probabilities p(z=zk|di) and p(w=wj |zk) are initially set to 0.5 and
0.142 respectively to satisfy

∑
zk∈Z p(z=zk|d) = 1 and

∑
wj∈W p(w=wj |z) = 1.

Furthermore, we set τz1 = 2, σ2
z1 = 4, τz2 = 8 and σ2

z2 = 4.
In the E-step of the first iteration, we compute p(z=zk|di, wj) and p(z=zk|di, si)

with the previously initialized model parameters. Let us compute p(z=z1|d1, s1)
and p(z=z2|d1, s1). When N(1; τ=2, σ2=2) = 0.176 and N(1; τ=8, σ2=2) =
0.0004, p(z=z1|d1, s1) and p(z=z2|d1, s1) become 0.998 and 0.002 respectively.
Then, in the M-step, the model parameters are computed according to Equa-
tions (5)-(10). The log-likelihood L after the first iteration becomes −51.32.
After repeating E-step and M-step until the log-likelihood converges to −42.86,
we obtain the conditional probability distributions as shown in Figure 3.

As we can expect from Digg articles in Figure 1(a), the Digg articles d1, d2
and d3 have high probabilities for the topic z=1. In contrast, d4 and d5 have
high probabilities for the topic z=2. From the values of p(w|z) in Figure 3(b), we
can see that that words ‘Texas’, ‘wildfire’ and ‘Tuesday’ occur more frequently
for the topic z=1 while ‘Yahoo’, ‘CEO’ and ‘company’ tend to appear more for
the topic z=2. Furthermore, the values of τz are listed in Figure 3(c).

Time and Space Complexities: In a single E-step, the time complexity of
computing all p(z=zk|di, wj)s for every pair of di ∈ D and wj ∈ W becomes
O(|Z| · |D| · |W |). Since the computation of p(z=zt|di, si)s takes only O(|Z| · |D|)
time, the time complexity of an E-step becomes O(|Z| · |D| · |W |).
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                   Topic
Article Id     z1       z2

      d1     0.999  0.001
      d2     0.997  0.003
      d3     0.999  0.001
      d4     0.001  0.999
      d5     0.002  0.998

                 Topic
 Word         z1     z2

Texas      0.222  0.144
wildfire    0.222  0
flame      0.222  0
Tuesday  0.222  0.143
Yahoo     0.111  0.285
CEO        0        0.285
company 0.001  0.143

Topic     τ       σ
   z1      2    0.667
   z2     11       1  

2

(a) p(z|d) (b) p(w|z) (c) τ and σ2

Fig. 3. The resulting conditional probability distributions

To compute all p(w=wj |zk)s, p(z=zk|di)s, τzks and σ2
zk
s in Equations (7)-(10),

we simply scan every Digg article di and update those parameters holding ag-
gregated values of p(z=zk|di, wj) for each occurrence of every word wj . Thus, the
time complexity of an M-step is O(DW ·|Z|) whereDW =

∑
di∈D

∑
wj∈W n(di, wj).

Note that DW is the appearance count of all words in all Digg articles. The
overall time complexity of a single iteration in our EM algorithm becomes
O(|Z| · |D| · |W |+DW · |Z|).

To maintain all values of p(z=zk|di, wj) and p(z=zs|di, si), we need O(|Z| ·
|D| · |W |) space of main memory. For p(w=wj |zk), p(z=zk|di), τzk and σ2

zk
, we

need O((|W | + |D|) · |Z|) space. Thus, the total space complexity of our EM
algorithm becomes O(|Z| · |D| · |W |).

6 Finding Top-k1 Topics and Top-k2 Digg articles

After the parameters in our model are estimated using the EM algorithm pre-
sented in the previous section, we find the top-k1 popular topics and the top-k2
Digg articles which not only have high digg scores but also are related to the pop-
ular topics utilizing the estimated model parameters. According to our problem
definition, we first find the top-k1 topics S with the k1 largest topic scores (i.e.,
τk) estimated by our EM algorithm. Then, using the probabilities p(z=zk|di)
computed by our EM algorithm as model parameters, we compute the topical
scores sT (di, S) in Equation (2) for every Digg article di ∈ D. Finally, we select
the top-k2 Digg articles with the k2 largest topical scores among all di ∈ D.

7 Experiments

We empirically evaluated the performance of our proposed algorithm HotDigg.
All experiments reported in this section were performed on the machines with
Intel(R) Core(TM)2 Duo 2.66GHz and 2GB of main memory running Linux. All
algorithms were implemented using Java Compiler of version 1.6.

7.1 Implemented Algorithms

For our experiments, we used the following algorithms.
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– HotDigg: This is the implementation of our proposed algorithm.

– NAIVE: This is the implementation of the naive algorithm which we simply
find the k2 Digg articles with the k2 largest digg scores. Note that we cannot
find the popular topics using this algorithm.

– PLSI: It is the implementation of algorithm using PLSI algorithm in [7].
Since we can also obtain the probability p(z=zk|di) that a Digg article di
belongs to a topic zk using PLSI algorithm, we can compute the topic score
τk in Equation (1) and select the top-k1 topics S using the topic scores.
Furthermore, using the probability p(z=zk|di), we can calculate the topical
score sT (di, S) in Equation (2) for every Digg article di ∈ D and choose the
top-k2 Digg articles with the k2 largest topical scores.

7.2 Data Sets

For experimental study, we evaluate the algorithms on real-life data. We down-
loaded 30,000 Digg articles at September 9, 2011 using the Digg API [8]. We
removed the stop words appearing in more than 80% of all articles. Furthermore,
we also deleted the words occurring in less than 3 articles since such words do
not provide any clue for topical clustering. For all words in Digg articles, Lovins
stemmer [14] was used to stem the words. We call this data as ORG-DATA.

To test the accuracy of the hot topics found by our algorithm, we selected
4 topics appearing in the ORG-DATA and we found that these topics were
related to “Texas wildfire”, “Yahoo’s CEO”, “Politics” and “Facebook cheats”
respectively. Then, for each i-th selected topic, we manually extracted 20 articles
from the ORG-DATA which address the selected topic and increased the digg
scores of the 20 articles by multiplying 10. Then, we generated the test data
set called TEST-DATA(i) by replacing the modified articles with the original
articles in ORG-DATA. Since we selected 4 topics, we have four data sets which
are TEST-DATA(1), TEST-DATA(2), TEST-DATA(3) and TEST-DATA(4).

The digg scores in ORG-DATA follow Zipf’s distribution and thus have very
wide range. Since our model in Section 4 assumes that the digg scores in a single
topic follow a Gaussian distribution, biased digg scores can affect the accuracy
of our model. Thus, we use the logarithm of digg scores instead.

7.3 The Result of Topical Clustering

We first conducted experiments with our proposed HotDigg algorithm using
ORG-DATA to find the hot topics. We set number of topics t to 30. We found
that the top-4 topics among the hidden topics were related to “Texas Wildfire”,
“Yahoo’s CEO”, “Politics” and “Facebook Cheats” respectively.

In Figure 4, we show 2 Digg articles with the 2 largest topical scores, (i.e.,
p(zk|di) · si) among all Digg articles in D for each topic of the selected 4 topics.
The result confirms that our topic model clusters the digg articles appropriately
according to their topics. Moreover, we can confirm that the Digg articles in a
single topic generally have the similar digg scores as we assumed for our model.
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Votes Contents
Topic1 230 Texas wildfires destroy more than 700 homes in two days:Wildfires continued

to rage Tuesday in Texas, forcing the evacuation of ...
(Texas
Wildfire)

203 Wildfire destroys nearly 500 homes in Texas:Read ’Wildfire destroys nearly
500 homes in Texas’ on Yahoo! News. Calmer winds ...

Topic2 470 Yahoo’s CEO: ’I’ve Just Been Fired Over the Phone’:Yahoo’s cursing CEO
Carol Bartz is out the door and just sent staff ...

(Yahoo’s
CEO)

220 Exclusive: Carol Bartz Out at Yahoo; CFO Tim Morse Named Interim
CEO:According to sources at the company, Yahoo’s ...

Topic3 3145 Paul Krugman Calls For Economic Sanity In A Politically Insane World: ...
was on ABC today discussing President Obama’s ...

(Politics) 3135 Palin in Iowa warns Tea Party ... not only against President Obama but also
criticized the Republican presidential field.

Topic4 6150 Facebook Cheats, Hacks and Exploits: Restaurant City :Need help with the
facebook games? Find your games cheats here. ...

(Facebook
Cheats)

6113 Treasure Isle Cash and gold hack, unlimited energy and more updates to come.
Facebook Myspace Cheats:Awesome Cheat Tools ...

Fig. 4. The result topics and digg articles

7.4 Finding Top-k1 Popular Topics and Top-k2 Digg Articles

Using the test data sets, TEST-DATA(1) – TEST-DATA(4), we first conducted
experiments with varying the number of topics t, the number of popular topics
k1 to find and the number of Digg articles k2 to retrieve. Since our algorithm
determines the cluster memberships of the Digg articles probabilistically, it is
hard to judge clearly whether the resulting top-k1 topics contain the popular
topic that we manipulated in the test data. Thus, with the top-k2 Digg articles
found by the implemented algorithms, we evaluate the accuracy of the algorithms
by computing two quality measures called hit-rate and average hit-rank [5].

With each test data set which contains the Digg articles that we amplified
their scores to make a popular topic artificially, assume that we found the top-k1
popular topics S and the top-k2 Digg articles with our algorithms. Among the
top-k2 Digg articles found, let h be the number of articles which were selected
as Digg articles related to the popular topic when we generate the test data.
Let nT (u) be the number of articles whose scores are modified in the test data
set, which is 20 in our test data sets. Then, the hit-rate with the top-k2 arti-
cles retrieved is defined as h/nT (u). The average hit-rank is for measuring the
effectiveness of ranking of the retrieved articles. With the retrieved top-k2 Digg
articles sorted in the decreasing order of topical scores sT (di, S), let p1, p2, ...,
ph be the position of the Digg articles which were selected for the popular topic.
Then, the average hit-rank for a test user is defined as (1/nT (u)) ·

∑h
i=1(1/pi).

As the Digg articles with amplified scores occur with high ranks in the top-k2
articles, the average hit-rank gets larger.

In every graph, we plotted the average of hit-rates and average hit-rank using
the result not only by running each algorithm with the 4 test data sets but also
by repeating experiments 20 times for each data set. The default value of the
parameters are set as t = 20, k1 = 3 and k2 = 20.
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Fig. 5. Experiments with varying k1, k2 and t

Varying k1: We varied the number of popular topics k1 from 1 to 12. The
hit-rates of HotDigg and PLSA algorithms are shown in Figure 5(a). As the
graph illustrates, our proposed algorithm HotDigg outperforms PLSI in terms of
accuracy. This is because our model utilizes additionally the property that Digg
articles concerning the same topic obtain the similar digg scores to cluster the
Digg articles.

The HotDigg algorithm shows the best performance with k1 = 3, however,
the performance does not change much while varying k1. Thus, we use k1 = 3
as the default value in the rest of experiments.

Varying k2: We next varied k2 from 10 to 40 which is the number of Digg
articles to select. We plotted the hit-ratio while varying k2 in Figure 5(b). The
performances of both HotDigg and PLSI improve with increasing k2 since, as we
select more Digg articles, we simply have more chance to find the articles with
amplified digg scores in the test data sets. The graph also shows that HotDigg
performs better than PLSI in every value of k2.

Varing t: With varying the number of hidden topics t from 10 to 50, we plotted
the hit-rates and average hit-ranks of all three algorithms in Figure 5(c) and
Figure 5(d). As the graphs illustrate, HotDigg shows much better performance
than PLSI with upto 3 times (when t = 30). NAIVE shows a constant hit-ratio
in all values of t since it simply selects the Digg articles with the k2 largest
digg scores without considering the hidden topics. The graph shows that the
performances of both HotDigg and PLSI are much better than that of NAIVE.
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8 Conclusion

In Digg, people share articles in web pages and vote thumbs up or thumbs down
to the submitted articles. We proposed HotDigg, a system for recommending
the popular and interesting topics in Digg using probabilistic modeling. Utilizing
the fact that the Digg articles related to the popular topics obtains the similar
voting scores, we designed a generative model that each article is produced by
a topic mixture mode and its voting score is also determined by its topic. Then,
we developed an estimation algorithm for learning the model parameters in our
probabilistic model. By performance study, we confirmed the effectiveness of our
HotDigg by comparing HotDigg with the traditional topic modeling method.

Acknowledgment. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-
0000349).

References

1. Bertsekas, D.P.: Nonlinear Programming, 2nd edn., Cambridge (1999)
2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine

Learning Research 3, 993–1022 (2003)
3. Delcious: Delicious (2011), http://del.icio.us
4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the em algorithm. Journal of Royal Statist. Soc. 39, 1–38 (1977)
5. Deshpande, M., Karypis, G.: Item-based top-recommendation algorithms. ACM

Trans. Inf. Syst. 22(1), 143–177 (2004)
6. Digg: Digg (2011), http://digg.com
7. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR (1999)
8. Inc., D.: Digg developers (2011), http://developers.digg.com/
9. Kasiviswanathan, S.P., Melville, P., Banerjee, A., Sindhwani, V.: Emerging topic

detection using dictionary learning. In: CIKM (2011)
10. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS

(2000)
11. Lerman, K., Galstyan, A.: Analysis of social voting patterns on digg. CoRR

abs/0806.1918 (2008)
12. Lerman, K., Ghosh, R.: Information contagion: An empirical study of the spread

of news on digg and twitter social networks. In: ICWSM (2010)
13. Li, W., McCallum, A.: Pachinko allocation: Dag-structured mixture models of topic

correlations. In: ICML, pp. 577–584 (2006)
14. Lovins, J.B.: Sourceforge: The lovins stemming algorithm (2009),

http://sourceforge.net/projects/stemmers/

15. Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C.: Topic sentiment mixture: modeling
facets and opinions in weblogs. In: WWW (2007)

16. Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an explo-
ration of temporal text mining. In: KDD, pp. 198–207 (2005)

http://del.icio.us
http://digg.com
http://developers.digg.com/
http://sourceforge.net/projects/stemmers/


HotDigg: Finding Recent Hot Topics from Digg 427

17. Mei, Q., Zhai, C.: A mixture model for contextual text mining. In: KDD,
pp. 649–655 (2006)

18. Mitchell, T.M.: Machine Learning. WCB/McGraw-Hill (1997)
19. Morinaga, S., Yamanishi, K.: Tracking dynamics of topic trends using a finite

mixture model. In: KDD (2004)
20. Wu, C.F.J.: On the convergence properties of the em algorithm. The Annals of

Statistics 11(1), 95–103 (1983)



Assessing Web Article Quality

by Harnessing Collective Intelligence�

Jingyu Han1, Xueping Chen1, Kejia Chen1, and Dawei Jiang2

1 School of Computer Science and Technology, Nanjing University of Posts
and Telecommunications

Nanjing 210003, P.R.China
{hjysky,cxpsky,kejia.chen}@gmail.com

2 School of Computing
National University of Singapore

Singapore 119077
jiangdw@comp.nus.edu.sg

Abstract. Existing approaches assess web article’s quality mainly based
on syntax, but seldom work is given on how to quantify its quality based
on semantics. In this paper we propose a novel Semantic Quality Assess-
ment(SQA) approach to automatically determine data quality in terms
of two most important quality dimensions, namely accuracy and com-
pleteness. First, alternative context with respect to source article is built
by collecting alternative web articles. Second, each alternative article is
transformed and represented by semantic corpus and dimension base-
lines are synthetically generated from these semantic corpora. Finally,
quality dimension of source article is determined by comparing its se-
mantic corpus with dimension baseline. Our approach is promising way
to assess web article quality by exploiting available collective knowledge.
Experiments show that our approach performs well.

1 Introduction

Web is a tremendously vast content repository, which serves people with various
formats of data. The web data quality, namely how good the web data is, is now
attracting more attention. How to automatically assess web data quality is the
key to make use of web data. We limit our work to web article such as Wikipedia
article, online news, etc., which is a dominant format of web data.

Generally speaking, data quality is widely accepted as a multi-dimensional
concept. Many efforts have been made to assess web data quality [1,2,3] but
these work focuses on assessing web quality in terms of syntax rather than
semantics. Furthermore, how to infer quality level using the collective knowl-
edge of web community is also not touched on. So we propose a novel Semantic
Quality Assessment (SQA) approach to automatically assess web article’s qual-
ity in terms of two most important quality dimensions, namely accuracy and
completeness [4,5].
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Our approach is based on the following observations. First, a web article is
actually a collection of facts and this semantic corpus represents what the author
expresses. Second, on the web one topic is usually described by many alternative
articles. They are semantically the same or complementary to each other. Third,
true facts can be derived and identified automatically from all the alternative
articles, thus avoiding laborious manual interaction. Based on this, we propose
that a source article’s accuracy and completeness are gauged by the following
three phases.

phase 1: Building Alternative Context. Given a source article, its alter-
native context is constructed with two steps. First, the relevant articles are
retrieved using a set of keywords or title and they constitute a relevant space.
Second, each article in relevant space is compared with the source article in terms
of both topic and syntax. The articles similar to source articles constitute the
alternative context. In particular, to measure the topic similarity Latent Dirich-
let Allocation (LDA) analysis is exploited [15]. To measure the syntax similarity,
n-gram model is used [17].
phase 2: Extracting Dimension Baselines. Each alternative article is se-
mantically regarded as a collection of facts and each fact is represented as a
tri-tuple (h, v, t), where h is the head element, t is the tail element and v is the
verb connecting h and t. Based on these semantic corpora, accuracy baseline is
extracted by voting and completeness baselines is synthesized by graph scoring
in its alternative context.
phase 3: Computing Quality Dimensions.The quality dimensions are deter-
mined by comparing source article’s semantic corpus with dimension baselines.

To sum up, the contributions of the paper are summarised as follows. First,
we propose web article’s quality are gauged in its alternative context, which is a
collective knowledge collection relating to the topic of source article. Second, we
give how to construct an article’s semantic corpus and present how to synthesize
accuracy baseline and completeness baseline from all the alternative articles’ se-
mantic corpora. Experiments and analysis show that our approach can correctly
give web article’s quality rating in terms of semantics.

2 Related Work

Data quality is an important issue to all the content contributors and its evalu-
ation approaches can be divided into two categories. The first category focuses
on qualitatively analysing data quality dimensions [5,4,6]. The second category
deals with how to quantitatively assess quality of data [7,8]. The most obvious
quality assurance approach is grammar check. The writer’s workbench was a
program to detect some quality metrics such as split infinitives, overly long sen-
tences, wordy phrases, etc [7]. Literature [8] proposes to use Latent Semantic
Analysis (LSA) algorithm to measure cohesion.

The work closely relates to ours is on assessing web article’s quality. A sig-
nificant number of quality indicators are exploited to assess Wikipedia article
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quality [1]. Basic, PeerReview and ProbReview are three schemes to quantify
quality based on contributors’ reputation[9]. MaxEnt [2] uses maximum entropy
model to identify Wikipedia article quality. Literature [3] discusses seven IQ
metrics which can be evaluated automatically on Wikipedia content. Literature
[11] gives how to use revision history to assess the trustworthiness of articles.
These methods focus on analysing different kinds of quality indicators and they
do not touch on how to use fact semantics to identify quality level.

Another work relevant to ours is on how to extract facts or relations from web
documents. Literature [12] proposes how to find out the most truthful statement
relating to the given statement. Literature [13] regards the problem of concept
extraction from corpora as a market-baskets problem, adapting statistical mea-
sures of support and confidence to achieve this. Literature [14] gives an iteration
method to retrieve facts from web pages.

3 Building Alternative Context

An article’s quality dimensions are computed in its alternative context.

Definition 1 (alternative context). Alternative context of an article P is
composed of a collection of alternative articles {P1, P2, ..., Pn}, each of which
has a similarity θ < sim(P, Pi) < 1 (0 < θ < 1) with respect to P .

We first use the search engine to retrieve the relevant articles from the preferred
web sites. The title or a set of keywords act as the query terms. The returned top
K articles are regarded as the relevant ones. The alternative articles are chosen
from the relevant articles. They should cover the same topic with respect to the
source article. This is achieved by Latent Dirichlet Allocation (LDA) analysis
[15]. Furthermore, if two articles describe the same topic, they usually have
some common lexical items and they cannot syntactically differ much from each
other. Hence we combine both topic and lexical features to determine alternative
articles.

3.1 Training LDA Models Offline

We use the Latent Dirichlet Allocation (LDA) to model the relationship between
words and articles [15]. The basic idea is that articles are represented as random
mixtures over latent topics, where each topic is characterized by a distribution
over words. The whole is shown in algorithm 1. As stated in literature [16], using
multiple LDA models by setting different numbers of topics outperforms single
model. In our task, the following numbers of topics are used: k = 12, 24, 48 and
96. All the trained models are saved.

3.2 Determining Alternative Articles

The alternative articles are determined based on its topic and lexical similarity
with respect to source article. That is to say, the similarity of two articles Ps

and Pr is defined as follows.

sim(Ps, Pr) = η × simtopi(Ps, Pr) + (1− η)× simlex(Ps, Pr) (1)
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Algorithm 1: trainingLDA(offline)

Input: training articles D = {D1, D2, ..., DM}, categories C = {C1, C2, ..., Cn}
and their relationships with categories R ∈ D × C

Output: LDA models M = (α, β, k)
M = {}; // Initialize1

foreach Cj ∈ C do2

MDj = {w|w ∈ Di, (Di, Cj) ∈ R};3

Processing MDj to remove stop words and rare words;4

calculate word frequency matrix WFj;5

end6

for k ∈ {12, 24, 48, 96} do7

train the LDA model (αk, βk, k) using {WFj} and k topics;8

M ← M ∪ (αk, βk, k);9

end10

return M ;11

where 0 < η < 1, simtopi(Ps, Pr) and simlex(Ps, Pr) are the topic and lexical
similarity respectively.

Each article’s topics distribution is given based on trained LDA models and
its topic similarity with the source article is given as algorithm 2.

Algorithm 2: computeTopicSimilarity

Input: source document Ps, relevant document Pr, trained LDA models
{(αk, βk, k)}

Output: topic similarity simtopi(Ps, Pr)
foreach k ∈ {12, 24, 48, 96} do1

compute topic distribution αk,s, αk,r based on (αk, βk, k);2

compute CosSim(αk,s, αk,r) of Ps and Pr;3

end4

simtopi ← compute mean of top two CosSim values; return simtopi ;5

Given two articles, their lexical similarity is computed in n-gram multi-
dimensional space [17]. Each article is regarded as a vector in n-gram space
and its each component is the frequency of corresponding n-grams. Now the
lexical similarity of two articles Ps, Pr is computed as

simlex(Ps, Pr) = CosSim(vec(Ps), vec(Pr)) (2)

Given a source article and context threshold σ, the relevant article with sim
greater than σ belongs to its alternative context.

4 Extracting Dimension Baselines in Alternative Context

Given a source article, its accuracy baseline and completeness baseline are ex-
tracted and synthesized from all its alternative articles’ corpora.
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4.1 Extracting Semantic Corpus for Each Alternative Article

In terms of semantics, an article represents a set of facts. Note in this paper we
only discuss factual representation and how to interpret opinion representation
is our future work. Without loss of generality, most of the facts are represented
as a tri-tuple (h, v, t). Here h is a head element, which is a noun phrase. t is a
tail element, which is a noun phrase or an adjective. v is a verb connecting head
and tail elements. Extraction of facts from an article is based on parsing it using
Stanford Log-Linear Part-Of-Speech tagger1.

During extraction the facts of all alternative articles one thesaurus table is
built to index the synonyms. To determine whether two nouns, pronouns or
adjectives are of semantically equivalence, WordNet is consulted2. As for two
verb patterns v1 and v2, their semantic equivalence is determined according to
the following rules.

1. Rule 1: If they are totally syntactically equal, they are of equivalence. Oth-
erwise go to rule 2.

2. Rule 2: By consulting WordNet, whether they are synonyms are identified.
If not, go to rule 3.

3. Rule 3: Their similarity is computed using distributional hypothesis as al-
gorithm 3. As stated by distributional hypothesis, if the two verbs are often
distributed over a set of common word pairs, it follows that the two verbs
must be semantically similar[18].

Algorithm 3: equalVerbPattern

Input: two verb patterns ’v1’, ’v2’
Output: semantic similarity of two verb patterns
S1 ← searching ”****v1****” and return the top k snippets;1

S2 ← searching ”****v2****” and return the top k snippets;2

WP1 ← Parsing S1 and return all the word pairs enclosing v1;3

WP2 ← Parsing S2 and return all the word pairs enclosing v2;4

WP ← WP1 ∩WP2;5

f1 ← the frequencies of all words in WP with respect to v1;6

f2 ← the frequencies of all words in WP with respect to v2;7

return CosSim(f1, f2);8

Simultaneously three fact hash tables, namely Head Hash(HH), Verb Hash(VH)
and Tail Hash(TH), are built to index the words in head element, verb and tail
element respectively. Each hash table consists of two columns, namely key and
facts. The key is a word in the fact element. The facts are a set of fact entries
that contain the key.

1 http://nlp.stanford.edu/software/tagger.shtml
2 http://wordnet.princeton.edu/

http://nlp.stanford.edu/software/tagger.shtml
http://wordnet.princeton.edu/
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4.2 Synthesizing Quality Dimension Baselines

Algorithm 4: extractCandiFacts

Input: thesaurus table T , Hash tables HH,V H,TH , source fact fs and
threshold γ

Output: top Q candidate facts
Γ ← ∅; (h, v, t) ← extracting each fact element from fs;1

set1 ← query(T,HH,V H, fs, h, v, γ); set2 ← query(T,HH,TH, fs, h, t, γ);2

set3 ← query(T, V H,TH, fs, v, t, γ); Γ ← set1 ∪ set2 ∪ set3;3

Sort the facts in Γ based on similarity with respect to fs;4

return top Q ones of Γ ;5

Constructing Accuracy Baseline. Source article’s accuracy baseline consists
of a collection of most accurate facts, each of which corresponds to one distinct
fact in source article. It is extracted by searching the thesaurus table and three
fact hash tables. It contains two phases, namely producing candidate facts and
identifying target. In producing candidate facts, all the candidate facts similar
or complementary to source fact are extracted based on the fact similarity.

Definition 2 (fact similarity). Given two facts f(h, v, t), f(h, v, t), their fact
similarity is

simfact(f, f) =
1

3
pss(h, h) +

1

3
pss(v, v) +

1

3
pss(t, t) (3)

where pss is the phrase semantic similarity defined as follows.

Definition 3 (phrase semantic similarity). Given two noun phrases, verb
phrases or adjective phrases ph1 = wa1wa2, ..., wan, ph2 = wb1, wb2, .., wbm, their
phrase semantic similarity is defined as

pss(ph1, ph2) =
|ph1 ∩ ph2|
|ph1 ∪ ph2| (4)

where |ph1 ∩ ph2| is the number of words which are semantically equivalent and
|ph1 ∪ ph2| is the total number of words they contain.

The candidate facts are identified by searching hash tables. Each time two com-
ponents of source fact act as query terms. Then, all the found facts are sorted
and the top Q ones are returned. The whole procedure is described in algo-
rithm 4. Here the routine query is to retrieve the candidate facts based on two
components of source fact, which is described in algorithm 5.

In identifying target phase the most accurate fact is identified by voting. The
confidence is used to measure how the components of a fact are confirmed by
other candidate facts. It is a combination of head, verb and tail confidence.

confh(f(h, v, t)) =
|h ∪ v ∪ t|
|v ∪ t| (5)
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Algorithm 5: query

Input: thesaurus table T , two hash tables, source fact fs and its two
components e1 and e2, similarity threshold γ

Output: candidate facts
F ← ∅; S1 ← retrieve e1’ synonyms from T ;S2 ← retrieve e2’ synonyms from T ;1

foreach s1 ∈ S1 do2

F1 ← retrieve facts from one of {HH , V H , TH};3

foreach s2 ∈ S2 do4

F2 ← retrieve facts from one of {HH , V H , TH}; F ← F ∪ (F1 ∩ F2);5

end6

end7

foreach f ∈ F do8

if simfact(fs, f) < γ then9

remove f from F ;10

end11

end12

return F ;13

confv(f(h, v, t)) =
|h ∪ v ∪ t|
|h ∪ t| (6)

conft(f(h, v, t)) =
|h ∪ v ∪ t|
|h ∪ v| (7)

Here |h∪v∪t| is the number of facts that are semantically equal to fact f(h, v, t).
|v ∪ t|, |h ∪ t| and |h ∪ v| denote the number of facts that are only semantically
equal to sub-components (v, t), (h, t) and (h, v) respectively. Now the confidence
of a fact f is

conf(f) = ω1confh(f) + ω2confv(f) + ω3conft(f) (8)

where ω1 + ω2 + ω3 = 1.
Based on the confidence, the most accurate fact is determined with algorithm

6.The accuracy baseline is constructed by the algorithm 7.

Constructing Completeness Baseline. The completeness baseline of a source
article is constructed as a graph, each vertex of which corresponds to one distinct
fact in alternative context. It is constructed with two steps.

step 1: Each fact is inserted into completeness graph, acting as one vertex with
an initial completeness score s(vi, 0) = 1. Simultaneously weighted edges denot-
ing fact similarities are added to connect the semantically similar facts.
step 2: Iterate computing the graph vertex scores with the equation 9.

s(vi, t+ 1) = s(vi, t)− 1

2i

∑
j∈con(vi)

s(vj , t)

|con(vi)|+
∑

vk∈con(vj)
1

simfact(vk,vj)

(9)
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Algorithm 6: identifyTarget

Input: candidate facts Γ , source fact fs, confidence threshold θ
Output: most accurate fact
if conf(f) < θ(∀f ∈ Γ \ fs) then1

return null;2

end3

else4

conflist ← sorts all facts ∈ Γ based on its confidence;5

ftop ← top fact of conflist;6

if conf(ftop) > θ then7

return ftop;8

end9

else10

return fs;11

end12

end13

Algorithm 7: constructAccuracyBaseline

Input: corpus of source article corp(P ), thesaurus T , hash tables HH , V H ,
TH , threshold γ and θ

Output: accuracy baseline
Π ← ∅; // Initialize the accuracy baseline1

foreach fs ∈ corp(P ) do2

Γ ← extractCandiFacts(T,HH,V H,TH, fs, γ);3

facc ← identifyTarget(Γ, fs, θ); Π ← Π ∪ facc;4

end5

return Π ;6

where s(vi, t) is the score of vertex vi at the t-th iteration, simfact(vk, vj) is
the fact similarity between vk and vj and con(vi) is the vertices that are di-
rectly connected to vertex vi. Given a convergence threshold ρ, if the average
score variance of all vertices between two successive iterations are within ρ, the
computation ends.

Actually the graph vertex score denotes the information coverage of the fact.
If there is an edge between two vertices, it means the information one vertex
conveyed is also somewhat implied by the other node. During the iteration, the
score of each vertex becomes smaller and smaller. When the iteration ends, the
sum is the amount of information the whole alternative context holds.

5 Computing Quality Dimensions

5.1 Computing Accuracy

Accuracy gives to what extent the data is close to corresponding true facts.
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Definition 4 (accuracy). Given an article P with n facts, its accuracy is de-
fined as

acc(P ) =
1

n

n∑
s=1

simfact(fs, fb) (10)

where fb is fs’s corresponding fact in accuracy baseline.

5.2 Computing Completeness

Completeness gives to what extent the related facts are described in the source
article. It is measured by comparing itself with its completeness baseline.

Definition 5 (completeness). Given an article P , its completeness is

comp(P ) =
|P |
|B| (11)

where |P | and |B| are the amount of information source article and the com-
pleteness baseline contains respectively.

Two policies are proposed to quantify completeness as follows.

Plain Policy to Quantify Completeness(PC). We assume that each unique
fact in alternative context plays an equal role in the coverage of information.
Suppose that source article contains n non-duplicate facts and the baseline has
N non-duplicate facts, then we have

comp(P ) =
n

N
(12)

Weighted Policy to Quantify Completeness(WC). Different facts play
different roles in the coverage of information. Given a source graph P and its
corresponding baseline B, the completeness is quantified as

comp(P ) =

∑
vi∈P s(vi)∑
vj∈B s(vj)

(13)

where s(vi) and s(vj) are the final completeness scores of source article vertex
and baseline vertex respectively.

6 Experiment Results

We first downloaded 782 source articles on scientists from Wikipedia. The arti-
cles have been assigned quality class labels, namely Featured Article(FA), Good
Article(GA), B-Class(B), C-Class(C), Start-Class(ST) and Stub-Class(SU) , ac-
cording to Wikipedia community quality grading scheme3. For each source ar-
ticle, we typed its title into the search box of google. The top 10 returned were
regarded as the relevant ones. So there are totally 8602 web articles in the
dataset. The data are first transformed into plain text by removing HTML tags

3 en.wikipedia.org/wiki/Wikipedia:Version_1.0_Editorial_Team/Assessment

en.wikipedia.org/wiki/Wikipedia:Version_1.0_Editorial_Team/Assessment


Assessing Web Article Quality by Harnessing Collective Intelligence 437

and figures. Then, they are fed into building alternative context module. We set
η = 0.5, that is to say both topic and syntax weigh the same. As for the syntax
similarity, 3-gram space is employed.

6.1 Precision of Quality Ranking

Fig. 1. Precision Based on Accuracy Fig. 2. Precision Based on Completeness

The dataset is composed of N articles and
∑6

i=1Ni = N holds, where N1,
N2, ..., N6 denote the numbers of articles in FA, GA, B, C, ST, SU classes
respectively. We suppose the linear order based on the dimension scores is
< P1, P2, ..., PN >. It naturally means the first N1 articles belong to FA class,
the subsequent N2 articles belong to GA class, and so on. Thus the precision
with respect to each quality class i is

prec(i) =
|X ∩ Y |
|Y | (14)

where Y is the articles actually in quality class i and X is the articles that are
classified into i class by SQA.

Figure 1 gives the precision per quality class based on accuracy and Figure 2
gives that based on completeness. We see that the performance based on accuracy
is better than that based on completeness. Based on the accuracy dimension the
percentage of correct ratings ranges between 90% and 93% and it performs better
on FA, GA, B, C classes than on ST, SU classes. Based on the completeness
dimension, the SQA also gives an acceptable precision values which are between
82% and 91% . We can see that WC policy consistently outperforms PC policy
by a percentage between 3% and 8%. Figure 3 gives the precision per quality
class based on combination of accuracy and completeness. Note here the weights
for accuracy and completeness are tuned as 0.62 and 0.38 respectively. Obviously
SQA approach gives the best performance when accuracy and completeness are
combined. Specifically, the average precision ranges between 93% and 98%. In
particular, the precision given by acc.+WC is always above 94%.



438 J. Han et al.

6.2 Comparison with Previous Work

Fig. 3. Precision Based on Acc.+Compl. Fig. 4. Performance Comparison

To the best of our knowledge, most work assesses web article quality based on
non-semantic characteristics. We compare our SQA approach with the state-of-
the-work, namely SVR approach [1]. We implemented it ourselves. To be fair,
we implemented SVR approach using the group of features that was reported to
perform best, namely structure feature group. Figure 4 reports the comparison
between the SVR and our SQA. We can see the SQA performs fairly better than
the SVR. Specifically acc.+PC policy outperforms the SVR approach by a per-
centage between 6 and 15 and acc.+WC policy outperforms the SVR approach
by a percentage between 12 and 19.

7 Conclusion and Future Work

To make use of vast amount of web data, how to automatically give the quality
level is a pressing concern. We propose to assess web article’s quality in terms
of fact semantics by collecting collective knowledge. It is a promising method
for assessing web article quality. Its advantage is as follows. First, our SQA
approach is an automatic web quality rating solution, which make full of related
web knowledge provided by web users. Second, it provides a viable way to assess
web article quality in terms of fact semantics, which gives a more precise rating of
data quality. Experiments show that our approach gives a satisfying performance.

In future we will tackle how to process opinion representation, how to more
efficiently synthesize the baseline and how to extract facts more precisely.
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Abstract. The exponential explosion of web image data on the Inter-
net has been witnessed over the last few years. The precise labeling of
these images is crucial to effective image retrieval. However, most existing
image tagging methods discover the correlations from tag co-occurrence
relationship, which leads to the limited scope of extended tags. In this pa-
per, we study how to build a new information inference model over image
tag datasets for more effective and complete tag expansion. Specifically,
the proposed approach uses modified Hyperspace Analogue to Language
(HAL) model instead of association rules or latent dirichlet allocations to
mine the correlations between image tags. It takes advantage of context
sensitive information inference to overcome the limitation caused by the
tag co-occurrence based methods. The strength of this approach lies in
its ability to generate additional tags that are relevant to a target image
but may have weak co-occurrence relationship with the existing tags in
the target image. We demonstrate the effectiveness of this proposal with
extensive experiments on a large Flickr image dataset.”

1 Introduction

With the rapid growth of popularity in various kinds of tagging systems [10,13],
tags occupy an important position in many different areas (e.g., [1,2,3]). For
instance, image tagging is the crux of text-based image navigation and search-
ing systems [8] and the performance of the image retrieval engine is largely
related to the accuracy of image tags. However, manually tagging images is
time-consuming. A study on Flickr [3] has shown that, although generally users
are willing to provide tags, most images are only with 1∼3 tags from user an-
notations [15]. Thus, automatic image tag expansion has become a fundamental
research topic recently.

Currently, most of semantic image tag expansion methods are applying asso-
ciation rules [11] or other techniques such as latent dirichlet allocation (LDA)
[12] to mine image tags. Deriving one tag from another one mainly relies on co-
occurrence of these two individual tags, which limits the candidates of expanded
tags to small scopes (in the tag co-occurrence lists with high frequencies) and
thus some hidden strong relationships between two tags with low co-occurrence
frequency will be lost.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 440–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To overcome this problem, in this paper we present a context sensitive tag
expansion method by building an information inference model. Our proposed
method can be divided into two main components: an offline tags mining pro-
cess and an online tag expension process. In the offline process, unweighted
Hyperspace Analogue to Language (HAL) models are constructed on the im-
age tags. In the online processing, given an image with few tags (seed tags),
the concept combination of all these seed tags is computed in the form of high-
dimensional HAL vectors. Then the relevance between the combined concept
and each word in the dataset vocabulary is calculated based on three factors,
including co-occurrence relationship, inverse vector frequency and contextual
similarity. Finally, the top K most relevant words are picked up as the expended
tags for the target image. The most important characteristic of this approach is
its ability to generate additional tags that are relevant to a target image but may
have very low co-occurrence frequencies with seed tags in the target image. The
proposed approach uses modified HAL model to infer image tags instead of us-
ing association rules or LDA, which takes advantage of information inference for
image tag expansion to overcome the limitation caused by the tag co-occurrence
based similarity metrics. The approach would be beneficial for image sharing
websites including Flickr where it can be used to assist users to provide tags at
upload time by giving them a list of possible candidates to choose from.

The remainder of this paper is organized as follows. Related work on tag
expansion and information inference are reviewed in Section 2, followed by the
description of HAL model, and information flow in Section 3. Our improved
degree algorithm of information flow model and the proposed tag expansion
approach are presented in Section 4. In Section 5 we present our evaluation
results along with comparison to three proposed models and two other state-
of-the-art algorithms in tag expansion and information inference. Finally, we
summarize the work in this paper in Section 6.

2 Related Work

The main objective of our work is to improve the process of image tag expansion
via exploiting information inference. In this section, we review research work
related to image tag expansion and information inference.

2.1 Image Tag Expansion

Image tag expansion is a process to automatically expand extra descriptive tags
according to one or more existing tags of an image in accordance with the ex-
panding rules generated by antecedent tags mining process. These expanded tags
could be used as a personalized tag recommendation to the users of a tagging
system [13,10], or a collective tag recommendation which acts as the results of
a query expansion to improve the efficiency of image retrieval relied on tags [8].

Tags mining could be processed based on semantic similarity [15,20],
visual similarity [14,21] or both [18,19]. We focus our review on the first one on
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account of the fact that our proposal does not include analysis of low-level im-
age visual features. Sigurbjörnsson and Zwol [15] formed and analyzed a tag
characterization of Flickr users’ tagging behaviors, and presented four differ-
ent tag recommendation strategies by means of using global asymmetric tag
co-occurrence metrics to mine tags relationships. Two tag aggregation strate-
gies (voting and summing) along with a promotion function were proposed to
construct an efficient tag recommendation system without introducing tag-class
specific heuristics. In [20], Xu et al. also obtained semantic similarity between
tags based on tag co-occurrence. To improve the performance of tag recommen-
dation, an authority score based on the history tagging behavior was assigned
to each user and co-occurring tags which have been assigned by one user were
rewarded according to the authority score while those assigned by different users
were penalized. Heymann et al. [11] introduced an method of mining associa-
tion rules in market-basket model for tag recommendation. In [12], rather than
association rules, latent dirichlet allocation was investigated for collective tag rec-
ommendation. Latent topics were elicited from the collaborative tagging efforts
of multiple users, thus solving the cold start problem for tagging new resources
with only a few tags. However, the semantic similarity metrics of these methods
mainly relied on tag co-occurrence, thus they all suffer from one problem: the
tightly related tags may not necessarily have strong co-occurrence relationship.
This is the situation especially when two tags have semantic relationships but
have never occurred together. Such kind of information between tags is lost via
using traditional tags mining process.

Our work mainly focuses on employing concepts from information inference
to process tags mining to overcome the limitations of association rule based
tagging algorithms and also discover the hidden tags relationship to improve the
accuracy of recommended tags.

2.2 Information Inference

Inferential information content was first formalized by Barwise and Seligman [5]
in 1997, followed by a cognitive model which was combined of three levels includ-
ing symbolic processing [9]. Based on these two definitions, Song and Bruza [16]
focused on the information inferences which “can be drawn on the basis of words
seen in the context of other words under the proviso that such inferences corre-
late with corresponding human information inference” and thus proposed context
sensitive information inference. A representational model of semantic memory
named Hyperspace Analogue to Language (HAL) was introduced, along with a
specifically-designed corresponding heuristic concept combination. Furthermore,
an HAL-based information flow was defined and evaluated by the effectiveness
of query models.

This HAL construction model is designed for analyze document corpus, thus
it is not very suitable for image tags which only contain limited tags in an image.
To build HAL model on image tags, we modified the HAL construction algorithm
in this work. The technical details will be discussed in the next section.
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3 Preliminaries

3.1 Conceptual Space Construction

Hyperspace Analogue to Language (HAL) model [7,6] is a computational model
to represent a conceptual space by high-dimensional vectors based on a given
corpus. Similar to the Vector Space Model (VSM), each dimension in the con-
ceptual space corresponds to a word in the given vocabulary with N words. In
HAL model, the whole corpus is scanned by a fix-sized sliding window, based
on which a co-occurrence matrix is created to represent the relationships be-
tween the words within the window. The strength of the relationship between
two words is inversely proportional to the distance between them. After scanning
the entire corpus, an accumulated co-occurrence matrix for all words is created.
Since the words in a sliding window can be considered as a certain context, the
HAL model represents an accumulation of experience of the contexts in which
the words appear. Given a word c, it is eventually represented as a normalized
weighted vector c =< wc,1, ..., wc,N >, where wc,i, i = 1..N is the strength of as-
sociation between the word c and the i-th word in the vocabulary computed from
the global co-occurrence matrix. The higher wc,i, the more frequently the word
c appears with the i-th word in the same context (i.e., same sliding window).

3.2 Concept Combination

Words in different contexts may carry different concepts. For example, given the
word “penguin”, if the surrounding words are “ocean”,“Antarctica”, and etc.,
“penguin” has strong association with “creature” or “bird”. On the other hand, if
the surrounding words are “book”, “publishing” and etc., most likely “penguin”
indicates the publisher “Penguin Books”. Given a group of words, they are the
triggers of each other to reveal new concepts. A concept can be a real word, like
penguin, or a virtual word defined by a group of concepts. Concept combination
is basically a vector operation, which was first introduced in [16].

Definition 1 (Concept Combination). Given two concepts c1 =< wc1,1, ...,
wc1,N > and c2 =< wc2,1, ..., wc2,N >, the new concept derived by combining c1
and c2 is denoted as c1 ⊕ c2 =< wc1⊕c2,1, ..., wc1⊕c2,N >. The weight of the kth

dimension in the new concept, wc1⊕c2,k is computed by the follows:

wc1⊕c2,k = (l1 +
l1 × wc1,k

max
i=1..N

wc1,i
+ l2 +

l2 × wc2,k

max
i=1..N

wc2,i
)× α (1)

l1, l2 ∈ (0.0, 1.0] and l1 > l2

α ≥ 1.0

where α is a multiplier to emphasize the weights of dimensions appearing in both
c1 and c2. If both wc1,k and wc2,k are greater than a threshold θ, α is set as
a value > 1.0, otherwise, α = 1. The symbol “⊕” stands for the operation of
combination.
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The parameters used in concept combination are set as l1 = 0.5, l2 = 0.3, α = 2,
and θ = 0 in [16] to achieve the best performance.

Concept combination on a group of concepts can be derived by recursively
applying the combination operation on two concepts, such as c1 ⊕ c2 ⊕ c3 =
(c1 ⊕ c2)⊕ c3.

3.3 Information Inference

Given a group of words {c1, ..., cm}, the resulting combined concept is denoted
as ⊕ci, which is usually just a virtual word represented by a weighted vector.
How to find the real words from the vocabulary strongly associated with the
concept ⊕ci is important. An HAL based information flow is used in [16] for
information inference.

Definition 2 (HAL-Based Information Flow). Given a combined concept
⊕ci, it implies cj, iff degree(⊕ci � cj)≥ λ, where

degree(⊕ci � cj) =

∑
k∈Q(⊕ci)∩Q(cj)

w⊕ci,k∑
k∈Q(⊕ci)

w⊕ci,k
(2)

Q(c) denotes the set of dimensions of c with the weight greater than θ and λ is
a threshold value predefined by user.

degree(⊕ci � cj) reflects the ratio of intersecting dimensions of ⊕ci and cj . The
underlying idea of Definition 2 is that if the majority of the most important
properties of ⊕ci appear in cj , cj must have strong association with c1, ..., cm.
By calculating and ranking the degrees between a combined concept and the
real words from the vocabulary, we can return a list of words at the topmost
rank as a recommendation. For example, given the words “penguin”, “book”,
and “publishing”, “publisher” is the most relevant word with the largest degree
with penguin⊕book⊕publishing. We can also have another two examples, such
as river⊕clean-up⇒<flood, garbage, recover> and river⊕sunshine⇒<holiday,
sky>.

4 Context Sensitive Tag Expansion

Tagging has been playing an important role in web information retrieval by
annotating various web sources. Taking image tagging as an example, to facili-
tate an efficient semantic based image search, it is crucial to assign meaningful
descriptors (tags) to images. However, manual image tagging is extremely la-
bor consuming yet the performance of content-based automatic image tagging
is unsatisfactory due to the problem of “semantic gap”. Thus efficiently recom-
mending accurate and meaningful tags to users is critical. Here, we propose a
context sensitive model for tag expansion. Given a few seed tags, a group of new
tags will be expanded by analyzing the underlying concepts of the seed tags and
discovering the information inference. A list of notations used in this paper is
shown in Table 1.
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Table 1. Notations

Notation Description

c, ci, cj individual concept

⊕ concept combination operator

⊕ci a combined concept

N the size of vocabulary

< wc,1, ..., wc,N > weighted vector of concept c

4.1 Image Conceptual Space

The general idea of HAL is to represent the concept of one word by the statistics
of its appearance within the context of other concepts. Traditionally, HAL is
used in text information retrieval. The HAL space is built on documents. In
this paper, we aim to construct a conceptual space on images based on their
tags. Usually, Flickr images are associated with a set of user-defined tags. We
consider each image as a document, where each tag of the image is a word. In
HAL model, a fix-sized sliding window is applied to scan the whole corpus. The
words within the sliding window are assumed to have stronger relationships with
each other than with the words outside the window. However, given an image, all
its tags are supposed to describe its characteristics or semantics. It means that
all the tags of an image have strong relationships with each other to some extent.
Thus, a flexible-sized sliding window is applied, which scans the corpus image
by image. When scanning an image, the size of the sliding window is exactly the
number of the associated tags. Since the number of tags is different from image to
image, the size of the sliding window is flexible. After scanning the entire image
set, the global co-occurrence matrix of tags is constructed by accumulating the
local co-occurrence matrix built on each sliding window. Based on the global co-
occurrence matrix, the weighted vectors of tags can be generated. The concept
combination of two or more tags is calculated according to Equation (1) and
implemented in Algorithm 1. Example 1 illustrates the details step by step.

Example 1 (Image Conceptual Space). Given three images I1, I2 and I3 associ-
ated with tags <river, fish, sunshine, kids, birds>, <river, fish, holiday> and
<river, fish, birds> respectively, the global co-occurrence matrix built on I1,
I2 and I3 is shown in Table 2. The dimensions of the image conceptual space
constructed on I1, I2 and I3 are “river”, “fish”, “sunshine”, “kids”, “birds”, and
“holiday”. The weighted concept vector of “river” is

river=<fish:0.75, sunshine:0.25, kids:0.25, birds:0.50, holiday:0.25>

Take the dimension “fish” as an example. The weighted value on dimension
“fish” of “river” is calculated as 3/

√
32 + 12 + 12 + 22 + 12 = 0.75.

4.2 Tag Expansion with Information Inference

Given an image associated with a small number of seed tags, we propose to
expand them to a group of meaningful tags by discovering the information
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Algorithm 1. Concept Combination

Input:
c1 < wc1,1, wc1,1, . . . , wc1,n > (concept vector),
c2 < wc2,1, wc2,1, . . . , wc2,n > (concept vector),
l1 (rescale parameter for concept c1),
l2 (rescale parameter for concept c2),
θ (threshold value for quality dimensions of a concept),
α (emphasize multiplier).

Output:
c (combined concept of c1 and c2).

Description:
1: for each weight wc1,i in c1 do
2: wc1,i = l1 + (l1 × wc1,i)/maxk(wc1,k);
3: end for
4: for each weight wc2,i in c2 do
5: wc2,i = l2 + (l2 × wc2,i)/maxk(wc2,k);
6: end for
7: for each dimension i in c1 do
8: if wc1,i > θ and wc2,i > θ then
9: wc1,i = α× wc1,i, wc2,i = α× wc2,i;
10: end if
11: end for
12: for each dimension i in c do
13: wc,i = wc1,i + wc2,i;
14: end for
15: for each dimension i in c do
16: wc,i = wc,i/

√∑n
1 (wc,k)2;

17: end for
18: return c

inference between them. Each tag stands for a concept, which can be represented
by a weighted vector in the image conceptual space. Three inference models are
proposed for tag expansion via information flow and various weighting schemes.

The highly weighted dimensions in the concept vector of a tag c are the tags
frequently co-occurring with c in the corpus. The larger the weight, the stronger
the association. However, some generic tags frequently appear in the whole collec-
tion, resulting in a high weight tomost of tags.Motivated by the concept of Inverse
Document Frequency (IDF) in text mining, [17] proposed the Inverse Vector Fre-
quency (IVF) to measure the information carried by a word, which is formally
defined as:

IV F (c) =
log(N+0.5

n )

log(N + 1)
(3)

where N is the total number of tags in the vocabulary and n is the number of
tags co-occurring with c in the same image. The higher the occurrence frequency,
the less the information c carries. By considering both the specific contribution
to a concept and the general information it carries, a TF/IVF inference model
is designed.
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Table 2. Co-occurrence Matrix

river fish sunshine kids birds holiday

river 3 1 1 2 1
fish 3 1 1 2 1
sunshine 1 1 1 1
kids 1 1 1 1
birds 2 2 1 1
holiday 1 1

Definition 3 (TF/IVF Inference Model). Given a combined concept ⊕ci
and the j-th tag cj in the vocabulary, ⊕ci implies cj, iff

w⊕ci,j × IV F (cj) > λ (4)

where w⊕ci,j stands for the contribution (i.e., the strength of the association)
to ⊕ci from cj and λ is a threshold value. If w⊕ci,j = 0, w⊕ci,j is set as the
minimum positive weight of ⊕ci.

This model only considers the co-occurrence of ⊕ci and cj , yet the context
information is not taken into account. In some cases, w⊕ci,j is relatively small,
which means cj rarely appears with ⊕ci. According to Definition 3, most likely
cj will not be derived from ⊕ci. However, if the context of cj ’s appearances is
similar to the context of ⊕ci, an implicit correlation is expected to exist between
them, which has been evidenced in [17,7]. The IVF-HAL model [17] is proposed
to capture the context information and discover the implicit relationship between
words appearing in similar contexts.

Definition 4 (IVF-HAL Inference Model). Given a combined concept ⊕ci,
it implies cj, iff

IV F (cj)× degree(⊕ci � cj) ≥ λ (5)

where degree(⊕ci � cj) is defined in Equation 2 and λ is a threshold value pre-
defined by user.

IVF-HAL inference model is an upgraded version of HAL-based inference model
introduced in Definition 2. The original weighting scheme of HAL is frequency
biased. The high frequency words always obtain high weights in any concept
vectors, even though they may not be much informative. By introducing IVF,
the effect of high frequent words is decreased. The experiment results also confirm
that IVF-HAL inference model is superior than the original HAL model.

However, IVF-HAL model considers the context information only, while the
absolute contribution of cj to ⊕ci is neglected. To discover both the explicit and
implicit relationship between concepts for an accurate information inference, a
novel inference model is proposed to take into account not only the information
carried by cj via TF/IVF weighting scheme, but also the closeness of the context
in which cj and ⊕ci appear.
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Definition 5 (TF/IVF Context Sensitive Inference Model). Given a
combined concept ⊕ci, it implies cj, iff

w⊕ci,j × IV F (cj)× degree(⊕ci � cj) ≥ λ (6)

where degree(⊕ci � cj) is defined in Equation 2 and λ is a threshold value pre-
defined by user. If w⊕ci,j = 0, w⊕ci,j is set as the minimum positive weight
of ⊕ci.

Ci

Cj
Ci

Cj

(a) (b)

Fig. 1. An explanation of context relationship between two concepts

This model leverages the advantages from both TF/IVF weighting scheme and
the context sensitive information flow. When we conduct information inference
on ⊕ci and cj , there are four possible situations.

1. The first case is that ⊕ci and cj rarely co-occur and the contexts of their
appearances are different. In this case, both w⊕ci,j and degree(⊕ci� cj) are
very low, resulting in that cj will not be inferred by ⊕ci.

2. The second case is that ⊕ci and cj are highly associated, resulting in high
w⊕ci,j and degree(⊕ci � cj). Thus cj will be derived from ⊕ci.

3. The third case is that ⊕ci and cj rarely co-occur but the contexts of their
appearances are similar (dashed area in Figure 1(a)), resulting in a low w⊕ci,j

but a high degree(⊕ci�cj). If we apply TD/IVF model, cj cannot be derived
due to the low w⊕ci,j . By involving context similarity in the proposed model,
a high degree(⊕ci � cj) compensates the information loss caused by the low
co-occurrence.

4. The last case is that ⊕ci frequently co-occurs with cj , however degree(⊕ci�
cj) is very low (Figure 1(b)). It means that ⊕ci is a quite narrow concept con-
tained by cj . For example, “cat” (i.e., ⊕ci) appears frequently with “animal”
(cj), while the context of “animal” appearing is much broader than it of “cat”
(shadow area in Figure 1(b)). If applying IVF-HAL model, the information
inference between “cat” (i.e., ⊕ci) and “animal” (cj) cannot be proceeded,
because IVF-HAL model overemphasizes the effect of degree(⊕ci�cj), which
is supposed to be balanced by w⊕ci,j in our proposed model.
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A comprehensive performance study on the above three inference models will be
given in the following section. The experimental results confirm the significant
superiority of the proposed TF/IVF context sensitive model.

5 Experiments

In this section, we evaluate our three inference models and two other existing
methods for tag expansion on a collection of real-life images downloaded from
Flickr. An comprehensive performance study on different models is provided.

5.1 Experimental Setup

Image Dataset. The image corpus is constructed by performing keyword search
on Flickr with “water”, “nature”, “outdoor”, “river”, and “environment”. A total
number of 97,622 different images1 with 669,470 tags are collected after stem-
ming and removing stop words (e.g.,“the”), camera models (e.g., “Canon”), num-
bers, and some other insignificant words. The number of unique tags is 14,785.
A separate testing dataset of the experiment is also collected from Flickr on the
same keywords with time stamp from 10/30/2008 to 04/01/2009. It is pretty
hard to get real tagging ground truth. In our assumption, images with larger
number of tags are more likely to be well-tagged, where these tags are further
considered as the tagging ground truth in the evaluation. Thus we removing the
images which contain less than 5 tags. After the preprocessing, we get the testing
image set with 4,419 different images.

Evaluation Strategy. For each testing image, its first 1 to 4 tags are picked
as the seed tags, based on which the tag expansion is performed by applying
different methods. The reason we choose the first few tags as the seed is that
we assume Flickr users are used to input closely relevant tags first to an image.
Take the images in Figure 2 as the example. The initial tags defined by users
of the image (a) are “blue”, “light”, “clouds”,“sky”, etc. When setting the seed
tags as the first two, “blue” and “light”, different models give different top 3
recommended tags as the expansion to the seeds tags. For the image (b), we use
3 seed tags and top 5 recommended tags are used for expansion. We assume the
initial user defined tags are ground truth, based on which the precision can be
calculated for performance evaluation. For the image (a), our model provides all
five tags correctly compared with the user defined tags, resulting in a precision@5
= 100%, while precision(IVF-HAL)@5=40% and precision(AR)@5=80%. Top
K=8, 10, 15 and 20 tags recommended by different models are evaluated by
comparing the corresponding precisions (i.e., precision@K).

5.2 Experimental Results

We show the comprehensive experimental results of two widely used methods
including association rule mining and language modeling, and three inference
models proposed in the paper in Figure 3.

1 Uploaded to Flickr from 04/30/2009 to 09/15/2011.
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User Defined Tags: 

blue, light, clouds, sky, nature, ocean, islands, water, 

sun, peace, quiet

2-Seed Tags: blue, light

Our Model: 

blue, light, sky, sun, cloud

IVF-HAL Model:

blue, light, sunset, color, red

Association Rule:

blue, light, nature, water, beach

User Defined Tags: 

autumn, bridge, tree, fall, water, river, leaves, 

nature, river, reflection

3-Seed Tags: autumn, bridge, tree

Our Model: 

autumn, bridge, tree, fall, leave, river, sky, forest

IVF-HAL Model:

autumn, bridge, tree, city, leave, fall, forest, wood

Association Rule:

autumn, bridge, tree, green, water, flower, nature, sky 

(a)

(b)

Fig. 2. An example of tag expansion

Association Rules (AR). Association rules have been investigated by Hey-
mann et al. [11]. The general idea is that if two tags are often used together for
image tagging, an explicit strong relationship exists between them. In the ex-
periment, the min sup is set to be 0.00488, and thus 262,555 frequent item sets
were derived. Unlike all the other four methods which rank the whole vocabu-
lary according to specified similarity measure and the top K tags are selected as
the results, the recommended tags from AR are derived from strong association
rules, which makes it possible that AR model is not able to recommend any
tags by giving a set of seed tags. As observe from Figure 3, with the increase
of the number of seed tags, the precision of AR is dropping when required to
recommend 15 or 20 tags for the given seed tags. It is difficult for AR model to
discover a large group of tags which have strong associations with each other.

Language Modeling. Tag expansion is similar to query expansion in informa-
tion retrieval to some extent. Thus, the method of query expansion with term
relationships via language modeling [4] is also implemented and compared in
our experiment. The performance of this method is the worst among all com-
pared methods, which demonstrates the selected query expansion method is not
suitable for tags. In [4], this query expansion is only used to expand the query
sentence, which will be later used as the index to select appropriate documents.
Expect for query model, there is also a document model in their case. Besides,
objective of their query expansion is to generate a better result of documents
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Fig. 3. Comparisons of precision

search. Since we only take the query expansion part of their method (not the
entire algorithm), the suboptimal performance could be understandable.

TF/IVF Inference Model. Surprisingly, this method has relatively good per-
formance, especially when the expanded tags are no more than 10 and the seed
tags are more than 2. In this method, the large-frequency tags are smoothing
by IVF and priority of tightly related tags are increased by weight of the tag in
the concept vector of the combined concept. However, a critical problem of the
method is if two tags never be co-occurrence but they have very similar context,
they are not very likely to be recommended by TF/IVF model. This leads to
the need of a method which takes both co-occurrence and similar context into
consideration, which is exactly the movitation of our work.

IVF-HAL Inference Model. Based on the original HAL-based information
flow [16], an improved information flow algorithm is proposed and used in the
IVF-HAL inference model [17] to overcome the problem brought by highly fre-
quent yet less informative words. Degree of each tag is ranked in descending
order, where top K tags are returned as expanded tags. Compared with the
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original HAL model2, IVF-HAL successfully decreases the weights of generic
words with high frequencies when calculating the degree between the combined
concept of seed tags and the candidate tags. Observed from Figure 3, the preci-
sion of IVF-HAL model is not as good as we expected compared with TF/IVF
model. The possible reason is that the image corpus we generated for conceptual
space construction is not comprehensive. It contains only few topics according
to our keywords setting. The case of the tags with low co-occurrence frequency
yet high context similarity is not often. Thus the advantage of IVF-HAL model
cannot be shown. However, when we use two seed tags, the precision of IVF-HAL
model is always better than TF/IVF model. The parameters used in the model
are set as l1 = 0.5, l2 = 0.3, α = 2 and θ = 0.

TF/IVF Context Sensitive Inference Model. In the proposed TF/IVF CS
model, there are three aspects taken into account, where TF is to increase the
rank of highly co-occurring tags, IV F is to alleviate the effect of high frequency
tags and degree is to take the similarity of context as a judging standard too.
As confirmed by the experiment results in Figure 3, the proposed model is the
one significantly outperforms other models. Given two seed tags and K=8, the
relative precision increases of TF/IVF CS model on AR, LM, TF and IVF-HAL
are 35.4%, 113%, 12% and 23.5% respectively. Given three seed tags and K=8,
the relative precision increases are 45.9%, 102%, 5.5% and 64%. Compared with
TF/IVF model, the effort of degree (i.e., context information) is shown by the
precision improvement. The parameters used in the model are set as l1 = 0.5,
l2 = 0.3, α = 2 and θ = 0.

5.3 User-Involved Assessment

We also perform a manual assessment experiment so as to evaluate further on
AR, IVF-HAL model and TF/IVF CS model. 20 people are involved to evaluate
the performance of different tagging methods on 300 Flickr images (randomly
picked from our test image set). Test images along with ten ranked recommended
tags are presented to the assessors, who need to pick the tags which they think
are appropriate to describe the corresponding image. The experiment results are
shown in Figure 4, where we present the precisions of three different models at
various K values (K = 4..10). The number of seed tags is 3. We can observe
that TF/IVF CS model is still superior to other methods. Another interesting
observation is that the precision evaluated by the people is higher than by using
Flickr image tags as ground truth. The reason is that image tagging is very
subjective and the tags used for an image may be synonyms. Take image (a) in
Figure 2 as an example. The blue water shown on the image can be annotated
as “ocean” or “sea”. In our example, the user chooses “ocean” as one of its
tags rather than “sea”. Once the tag expansion models recommend “sea” to the
assessors, most likely, it will be accepted as a correct tagging.

2 Performance comparison between HAL model and IVF-HAL model is not shown in
this paper due to the page limit.
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6 Conclusion

In this paper, we propose a new tag expansion method by utilizing information
inference model for more effective and complete tag expansion. The proposed
approach extends Hyperspace Analogue to Language (HAL) model to infer im-
age tags instead of using association rules or latent dirichlet allocations, which
takes advantage of information inference for context sensitive tag expansion to
overcome the limitation caused by the tag co-occurrence based methods. This
approach is able to discover implicit relationship among different tags by ana-
lyzing the context of tag appearance. We demonstrate the effectiveness of this
proposal with extensive experiments on a large Flickr image dataset, compared
with several existing methods.
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Abstract. Being a fundamental problem in managing graph data,
subgraph exact all-matching enumerates all isomorphic matches of a
query graph q in a large data graph G. The existing techniques focus on
pruning non-promising data graph vertices against q. However, the re-
duction and sharing of intermediate matches have not received adequate
attention. These two issues become more critical on subgraph similar-
ity all-matching due to the (possibly) massive number of intermediate
matches. This paper studies the problem of efficient subgraph similarity
all-matching by developing a novel query processing framework. We pro-
pose to effectively decompose a query graph into a hierarchical structure
with the aim to minimize the number of intermediate matches and share
intermediate matches. Novel techniques are then developed to estimate
the number of intermediate matches, efficiently merge the intermedi-
ate matches, and generate efficient query execution plans. Experimental
on real and synthetic datasets show that our approach outperforms the
state-of-the-art approach for orders of magnitude.

1 Introduction

Graphs have been prevalently used in many applications for modeling complex
data such as protein interaction networks (i.e., Bio-informatics), chemical com-
pounds (i.e., Chem-informatics), social networks (i.e., Web), etc. Significant re-
search efforts have been made towards many fundamental problems in managing
graph data. The problem of subgraph exact all-matching is to enumerate all the
exact matches (subgraph isomorphism mappings) of a query graph q in a large
data graph G. This problem is of great importance in discovering graph struc-
tures and well studied in many previous works [16,18].

With the explosion of graph data, noisy or inconsistent data are unavoidable
in many applications, while query graphs may also be noisy due to erroneous
input. Consequently, subgraph exact all-matching may fail to find any exact
matches and subgraph similarity all-matching is thus strongly demanded in such
cases for approximate matches.

This paper studies efficient subgraph similarity all-matching; that is, to enu-
merate all similarity matches of a query graph q in a large data graph G by
allowing at most δ missing edges (to be formally defined in Section 2). This
problem stems from many applications. For example, in Bio-informatics, we can
model protein interaction networks as graphs with proteins and interactions as
vertices and edges, respectively. Given a noisy pathway query, our problem can

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 455–469, 2012.
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return useful similarity matches in the network while no results can be found by
subgraph exact all-matching. More applications can be found in [17].

Among all previous works on subgraph similarity matching [7,6,1,8,11,12,17],
SAPPER [17] is the only one to enumerate all the similarity matches. It adopts
the enumerate-and-search paradigm, which firstly identify all feasible patterns p
(connected subgraphs of q missing at most δ edges of q) and then conducts sub-
graph exact all-matching to generate the final results. Although straight-forward
to implement, the performance of the paradigm drops drastically when the num-
ber of intermediate matches is large, which is not uncommon in enumerating all
matches. Hence, it is desirable to effectively (1) minimize the number of inter-
mediate matches; and (2) share the intermediate matches to avoid redundant
computation. We identify that (1) effective search order and (2) effective query
decomposition are the keys to above two issues.
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Fig. 1. Effective Search Order and Query Decomposition

Effective Search Order. Consider the query graph q in Figure 1(a) itself
as a feasible pattern p, SAPPER conducts subgraph exact all-matching on p
against the data graph G in Figure 1(b) by a depth-first search [3,9]. The two
search orders in Figure 1(a) will encounter 350 and 47 intermediate matches,
respectively. Hence, it is important to reduce the intermediate match number by
using effective search order.

Effective Query Decomposition. Regarding the feasible pattern p in
Figure 1(a) and its two decomposed fragments f1 and f2 in Figure 1(c)-(d). Ac-
cording to the search orders in Figure 1(c)-(d), enumerating the exact matches
of f1 and f2 in G yields a total of 8 intermediate matches for f1 (including 4
whole matches of f1) and 8 for f2 (including 4 whole matches of f2). In merging
the whole matches of f1 with those of f2, we only produce at most 16 more
intermediate matches for p. Hence, the query decomposition further reduce the
number to at most 32 intermediate matches. Moreover, we will show in Section 3
that we can also ‘share’ the computation cost of intermediate matches by query
decomposition.

To the best of our knowledge, this is the first work to propose reducing the
number of intermediate matches and sharing the computation of intermediate
matches. The main contributions of this paper can be summarized as follows.
1. We propose a novel hierarchical framework DecQ to efficiently conduct sub-

graph similarity all-matching by decomposing the query into a set of unit
sub-queries. We first compute the results of sub-queries (local matching) and
then combine them to obtain the final results (global matching).
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2. We propose a novel model to estimate the number of intermediate matches
produced in local matching and then develop effective search order for sub-
queries. In global matching, we develop an efficient merge-and-validation al-
gorithm to combine the results of sub-queries by exploiting the computation
sharing among overlapping feasible patterns.

3. We develop efficient heuristic algorithm to generate effective query decom-
position for the sharing of intermediate matches.

4. We conducts extensive experiments on both real and synthetic datasets,
which demonstrates that our approach outperforms the state-of-the-art ap-
proach by up to four orders of magnitude in terms of query response time.

Organizations. We organize the rest of this paper as follows. Section 2 presents
important definitions and formalizes the problem. Section 3 proposes our hier-
archical querying framework DecQ. Section 4 presents our local matching algo-
rithm, while our global matching algorithm and effective query decomposition
are studied in Section 5. Section 6 reports the experimental evaluation. Section 7
surveys related work and Section 8 concludes the paper.

2 Preliminaries

This paper studies connected, vertex-labeled simple graphs. A simple graph is
an undirected graph with neither self-loops nor multiple edges. Without loss of
generality, our approach can be easily extended to directed and/or edge-labeled
graphs. Given a set ΣV of labels, a graph g is defined as a triplet (V (g), E(g), l)
where V (g) and E(g) ⊆ V (g) × V (g) are the set of vertices and undirected
edges. If an edge is incident on u, v ∈ V (g), (u, v) ∈ E(g). The label function
l : V (g)→ ΣV assigns a label l(v) to each vertex v ∈ V (g).

2.1 Problem Statement

Definition 1 (Subgraph Isomorphism Mapping). Given two graphs g =
(V,E, l) and g′ = (V ′, E′, l′), a subgraph isomorphism mapping from g to g′ is
an injective function f : V → V ′ such that (1) ∀v ∈ V , f(v) ∈ V ′, l(v) = l′(f(v));
(2) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′.

Given a subgraph isomorphism mapping from g to g′, g is a subgraph of g′ (g′ is
a supergraph of g), denoted by g ⊆ g′. We next define the graph edit distance.

Definition 2 (Graph Edit Distance). Given two graphs g1 and g2, the graph
edit distance GED(g1, g2) from g1 to g2 is the minimum number of inserted edges
required to transform g1 to g2.

Note that: (1) The edit distance model is not symmetric. If g1 cannot be trans-
formed to g2 by edge insertion, GED(g1, g2) = +∞. (2) To control the number
of similar graphs, we disallow label mismatch or vertex mismatch in the model.
From now on, we abbreviate a query graph to a query. We next define the feasible
pattern of q and similarity matches.
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Definition 3 (Feasible Pattern Under δ). Given a query q and a thresh-
old δ, a feasible pattern of q under δ is a connected subgraph p of q such that
GED(p, q) ≤ δ. The feasible pattern set FP (q, δ) consists of all the feasible
patterns of q under δ.

Definition 4 (Similarity Match). Given a query q, a data graph G and a
threshold δ, a similarity match of q in G is a subgraph isomorphism mapping
from a feasible pattern p of q to G.
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Fig. 2. Subgraph Similarity Matching

Example 1. Regarding Figure 2, assume δ = 1. p ∈ FP (q, 1) becauseGED(p, q)=
1.GED(q, p)=+∞ as we cannot transform q to p by edge insertion.GED(g, q) =
+∞ as the vertex v3 of q can not be mapped into g. FP (q, 1) contains 4 feasible
patterns (q and other 3 feasible patterns by deleting any bold edge in q). Both
the two bounded matches in G are similarity matches of q. The circled one is
also an exact match of q.

Problem Statement. Given a query q, a data graph G and a threshold δ,
subgraph similarity all-matching returns a set Sq consisting of all the similarity
matches of q in G.

Note that exact subgraph matching is a special case of subgraph similarity
matching where δ = 0. Let Mp denote the exact match set of each feasible
pattern p. It is immediate that Sq = {Mp|p ∈ FP (q, δ) }.

3 A Hierarchical Framework

In this section, we propose a novel, three-phase framework DecQ for efficiently
processing subgraph similarity all-matching. We summarize it as follows.

Phase 1: Query Decomposition. We decompose the query q into a hierarchi-
cal structure (Q, T ) which implies a query execution plan. Here, Q is a set of con-
nected, edge-disjoint subgraphs f of q called fragments and

⋃
f∈QE(f) = E(q).

Here, Q is also called an edge-disjoint fragment cover of q. T is a binary decom-
position tree whose leaves correspond to all fragments in Q. Each internal node
N in T represents a connected subgraph g of q, which can be further decomposed
into two edge-disjoint subgraphs g1 and g2 residing on the two children. As to
the query q in Figure 1, we can decompose q into Q = { f1, f2 } and obtain the
decomposition tree as in Figure 3(a).

Phase 2: Local Matching. For each fragment f ∈ Q, we first compute its
local pattern set LP (f, δ) consists of all local patterns f ′ (subgraphs of f miss-
ing at most δ edges of f). By using depth-first search, we compute the exact
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matches Mf ′ , which are called local matches (similarity matches of f). For the
completeness of final results, we allow f ′ to be disconnected and compute the
exact matches of each component of f ′ in such case. In Figure 3(b), we have to
compute the exact matches for all local patterns including f1(0) and f1(1).

Phase 3 : Global Matching. To distinguish the terms used in local matching,
we call the feasible pattern p a global pattern and FP (g, δ) the global pattern
set, respectively. Given Q = { f1, ..., fm }, a global pattern p can be assembled
from a set of local patterns { f ′

1, ...f
′
m } such that each f ′

i ∈ LP (fi, δ). In global
matching, we merge these intermediate matches (local matches) Mf ′

1
, ...,Mf ′

n

to obtain the exact match set Mp of p. Such exact matches of p are similarity
matches of q and called global matches. Note that the query decomposition pro-
vides us an opportunity to share the computation cost of intermediate matches
among various global patterns. After all global patterns have been processed,
Sq = {Mp|p ∈ FP (q, δ) } of q is returned.

For the query q in Figure 1(a), let δ = 1. p1 = {f1(1), f2(0)} and p2 =
{f1(2), f2(0)} in Figure 3(c)-(d) are two global patterns of q assembled from
two local patterns. As p1 and p2 share f2(0), we only need to compute the local
matches Mf2(0) once and share them in the global matching of p1 and p2.

4 Local Matching Algorithm

In this section, we propose a model to estimate the number of intermediate
matches produced in local matching. We prove that problem of finding the op-
timal search order with minimized number of estimated intermediate matches
is NP-hard and then develop effective search order to reduce the number of
intermediate matches.

4.1 Estimating Intermediate Matches

Given a local pattern f ′ ∈ LP (f, δ) and the data graph G, assume a depth-
first search algorithm A iteratively searches mappings for each v ∈ V (f ′). The
number of intermediate matches |If ′ | produced in A varies greatly on different
search orders employed by A. Although we can not obtain either |If ′ | or |Mf ′ |
without applying A on f ′, we propose a novel model to estimate both of them.
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For each vertex v (edge e) in a local pattern f ′, let M(v) (M(e)) be the set
of its vertex (edge) mappings in G. For each edge (u, v) ∈ E(f ′), given any
u′ ∈ M(u) and v′ ∈ M(v), the probability that there is an edge (u′, v′) ∈ E(G)
can be captured by Equation(1).

θ(e) =

{ |M(e)|
|M(v)|×|M(u)| l(u) �= l(v)

|M(e)|
|M(v)|×(|M(u)|−1) l(u) = l(v)

(1)

Given a search order on V (f ′) according to which algorithm A searches vertex
mappings, let ig(f ′, k) be the subgraph of f ′ induced by the first k vertices in
V (f ′). We estimate |Mf ′ | and |If ′ | by Equation(2) and (3). Particularly, |If ′ | is
the summation of |Mig(f ′,k)| for each resulted induced subgraph ig(f ′, k) along
the search order.

E(Mf ′) =
∏

v∈V (f ′)

|M(v)| ×
∏

e∈E(f ′)

θ(e) (2)

E(If ′) =

|V (f ′)−1|∑
i=1

E(Mig(f ′,k)) (3)

Example 2. Consider the fragment f1 and data graph G in Figure 1(c) and (b),
assume we only consider vertex label for matching vertices and edges. Figure 4
summarizes Mv and θ(e) for each v ∈ V (f1) and e ∈ E(f1). Let the search
order on V (f1) be an ascending order on vertex ID. By Equation 2, E(Mf1) =
73×1×1×(17 )×(57 )×(2442 )

2 = 11.4. By Equation 3, E(If1 ) = 1+1+4+2.8 = 8.8.
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Fig. 4. Effective Search Order

Theorem 1. Given any fragment f , the problem of finding the optimal search
order with minimum estimated number of intermediate matches is NP-hard.

Proof Sketch. It is immediate that Theorem 1 can be proved by reduction from
maximum clique. Due to the interest of space, we omit the proof here.

4.2 Effective Search Order

Seeing the difficulty in finding the optimal search order, we proposes a heuristic
algorithm to obtain an effective search order. Given a local pattern f ′, we first
transform it into a weighted graph fw such that (1) ∀v ∈ V (fw), w(v) = |M(v)|;
(2) ∀e ∈ E(fw), w(e) = θ(e). For any subgraph g of fw, E(Mg) equals the produce



Efficient Subgraph Similarity All-Matching 461

of all vertex and edge weights on g. Our algorithm iteratively selects a vertex
v ∈ V (fw) into the current search order V , which results in a new subgraph g
of f ′ induced by V . In each iteration, we greedily select the vertex such that the
resulted g has minimum estimation E(Mg). Consequently, the algorithm aims to
to minimize E(Mg) for each resulted induced subgraph along the search order.
Our algorithm GenOrder is outlined in Algorithm 1.

Algorithm 1: GenOrder (fw)

Input : fw: a weighted graph;
Output : V : an ordered set of vertices, initially an empty set;
Pick any v′ ∈ V (fw) s.t. � v ∈ V (fw) ∧ w(v) < w(v′);1

V := V
⋃{ v′ }, V (fw) := V (fw)− { v′ };2

while V (fw) �= ∅ do3

Pick any v ∈ V (fw) such that E(Mg) is minimized for the subgraph g of f ′
4

induced by V
⋃{ v };

V := V
⋃{ v′ }, V (fw) := V (fw)− { v′ };5

return V ;6

Complexity Analysis. Clearly, GenOrder needs O(|V (fw)|) iterations and runs
in O(|V (fw)||E(fw)|). The space requirement is O(|V (fw)|+ |E(fw)|).
Example 3. Regarding the weighted graph fw in Figure 4 transformed from f1
in Figure 1(c), we weight all the vertices and edges following the left table.
GenOrder will select Si as the i-th vertex in the search order.

4.3 Efficient Local Matching

Enumerating Local Patterns. To conduct local matching, we must compute
the local pattern set LP (f, δ) of each fragment f ∈ Q. Unlike the connected
global patterns, any subgraph f ′ (connected or disconnected) of f missing no
more than δ edges is a potential local pattern. This is because the connected
components of f ′ may be bridges by other local patterns to form a global pattern.
Given a total order on E(f), for a subgraph f ′ of f missing at most δ edges, key
of f ′ is defined as a set of ‘ordered edges’ missed in f ; that is, Key(f ′) = { e|e ∈
E(f) ∧ e �∈ E(f ′) }. Below, we define a lexicographic order on Key(f ′).

Definition 5 (Lexicographic Order). Assume Key(fa) = {ea1 , ..., eak} and
Key(fb) = {eb1, ..., ebl} represent two subgraphs fa, fb of a fragment f . Key(fa)
¡ Key(fb) if and only if, (1) Key(fa) = ∅; or (2) ∃j ∈ [1,min(k, l)] s.t. ∀i ∈
[0, j], eai = ebi ∧ eaj+1 < ebj+1; or (3) k < l and ∀i ∈ [1, k], ebi = ebi .

We enumerate all subgraphs f ′ in ascending order on Key(f ′) and insert f ′

into LP (f, δ) if Key(f ′) is not an edge cut of q. This is because f ′ can not
be combined with other local patterns to for a connected global pattern. For
disconnected local patterns f ′, we remove all isolated vertices from f ′ because
these vertices must be presented in other fragments in Q.

Computing Local Matches. We extend the subgraph isomorphism test al-
gorithm QuickSI [9] and adopt our effective search order to compute all local
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matches. For local matches, we maintain LP (f, δ) in a pattern table T (f) where
each record (Key(f ′),Mf ′) ∈ T (f) represents a local pattern f ′ and its ex-
act match set. If f ′ is disconnected into a set { ci|1 ≤ i ≤ n } of n connected
components, Mf ′ is replaced with the exact match sets Mci of each ci.
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Example 4. Regarding the fragment f1 in Figure 1, assume δ = 1. Figure 5(a)−
(e) show all 5 subgraphs of f1 missing at most one edge. Since Key(b) and
Key(c) are two edge cuts, LP (f1, δ) = { (a), (d), (e) }. Finally, we remove v4 and
v5 from (d) and (e) as they are single-vertex components.

5 Global Matching Algorithm

In this section, we propose an efficient merge-and-validation global matching
algorithm, which shares the computation cost of intermediate matches of various
global patterns. Then we develop effective query decomposition technique to
maximize the computation sharing.

5.1 Enumerating Global Patterns

Similar as in Section 4, we assign any subgraph q′ of q missing at most δ edges
with a key Key(q′) = { e|e �∈ E(q′)∧e ∈ E(q) } representing the ordered missing
edges. The lexicographic order on Key(q′) can be similar defined. We organize
all global patterns of q in a pattern lattice with with |E(q)| + 1 levels. Level-i
contains the keys Key(q′) of all q′ missing i edges in q. On the top and bottom
level, we put Key(q) = ∅ and E(q), respectively. Due to the error threshold δ,
we can safely discard all the levels below the δ-th level. For any two subgraphs
qa and qb from the i-th and i+ 1-th level, if qa is obtained by removing an edge
from qb, we call qa a child of qb (qb a parent of qa). We order all the subgraphs
q′ on level-i in ascending lexicographic order on Key(q′). Clearly, if Key(q′) is
an edge cut of q, q′ is disconnected and thus not a global pattern; otherwise, q′

is a global pattern which must fall in one of the following two categories.

– If Key(q′′) is an edge cut of q for all the children q′′ of q′, or q′ has no
children, we call such q′ a minimal pattern.

– If Key(q′′) is not an edge cut of q for some child q′′ of q′, we call such q′ a
non-minimal pattern.

Example 5. Regarding the query q in Figure 6, we depict its pattern lattice for
δ = 2 with all the subgraphs represented by their keys. We bound all subgraphs
q′ with rectangles if Key(q′) is an edge cut of q. All the minimal patterns are
circled, while all the global patterns above level-2 are non-minimal patterns.
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Our merge-and-validation matching algorithm is presented in Algorithm 2
which traverse the pattern lattice level by level, according to the order ofKey(q′).
The algorithm processes minimal patterns with sharing-aware merge, while effi-
cient edge validation is adopted to process non-minimal patterns. We give details
on the sharing-aware merge and edge validation in the following two subsections.

Algorithm 2: GlobalMatch (q,G, L, δ)

Input : q: a query; G: a data graph; L: the pattern lattice; δ: the threshold;
Output : Sq: similarity match set of q;
for i := δ to 0 do1

for each q′ in ascending order on level-i do2

if Key(q′) is an edge cut then continue;3

if q′ is a minimal pattern then4

Compute Mq′ by sharing-aware merge;5

else6

Compute Mq′ by edge validation;7

Sq := Sq

⋃{Mq′ };8

return Sq;9

5.2 Matching Minimal Patterns

We compute the exact matches Mp of minimal patterns p by merging the in-
termediate matches under according to the decomposition tree T in the query
execution plan. Note that any internal node N in T indicates a connected sub-
graph g of q, which are further decomposed into two edge-disjoint subgraphs
residing on the two child nodes L and R of N . Let N.g be the subgraph rep-
resented by N . Let J = V (L.g)

⋂
V (R.g) be the common vertices of L.g and

R.g. We compute MN.g by equi-joining ML.g and MR.g on J . In practice, we
adopt hash join to perform the task. Generally, following (Q, T ), we first decom-
pose p along T in a top-down fashion to retrieve the decomposed local patterns
corresponding to fragments in Q and then recursively merge the intermediate
matches (local matches) to compute Mp.

Sharing Intermediate Matches. Given two minimal patterns p and p′, if
they share common intermediate patterns, we can share the merge cost of them.
Such intermediate patterns are either local patterns of the merge results of a
set of local patterns. We create an intermediate pattern table T (N) on each
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internal node N . For each newly encountered intermediate pattern N.g′ on N
merged from some local patterns, we insert a tuple (N.g′,MN.g′) into T (N).
Consequently, if two patterns p and p′ shareN.g′, we can share the pre-computed
MN.g′ to avoid redundant merge cost.

Maintain Disconnected Intermediate Matches. Due to the possibly dis-
connected local patterns, an intermediate pattern N.g′ may not be connected.
In such case, we maintain the exact matches for each of its component and delay
their merge until a ‘bridge’ intermediate pattern links them at a later stage.

5.3 Matching Non-minimal Patterns

For a non-minimal patterns p at level-i, any child pattern p′ of p at level-i+ 1
only miss one edge in p. According to Definition 2, any exact match of p must
be an exact match of p′. Thus, we only need to conduct edge validation on Mp′

for computing Mp. We pick the child p′ of p with minimum |Mp′ | and check each
exact match F ∈Mp′ to see if the extra edge in p exists in F . If so, F is also an
exact match of Mp.

5.4 Effective Query Decomposition

Given a global pattern p decomposed into a set of local patterns, the computation
cost of Mp contains (1) the search cost of local patterns and (2) the merge cost
of intermediate patterns. The search cost of a local pattern f ′ can be evaluated
by E(Mf ′) + E(If ′ ), while the merge cost of an intermediate pattern g′ can also
be evaluated by E(Mg′ ). Equation(3) and (2) can be used to calculate the cost.

However, it is expensive to generate an optimal decomposition for each p ∈
FP (q, δ) is expensive as there are too many p and possible decompositions to
consider. Hence, we propose recursive bisection to generate a uniform decompo-
sition for all global patterns by considering q only.

Recursive Bisection. The recursive bisection works as follows. We initialize
an empty query cover Q and a decomposition tree T with only one root node R
representing q. The we recursively bisect q and its successive decomposed sub-
graphs to construct Q and T . For each newly decomposed subgraph g, we build
a new leaf node N in T to hold g as a fragment. Consequently, the computation
cost on N is simply the search cost of all local patterns g′ of g. We the attempt
to bisect g into g1 and g2, two smaller fragments to reduce the computation cost.
The new computation cost contains (1) the search cost of local patterns of g1
and g2 and (2) the merge cost of the local patterns of g1 and g2.

Equation (4) and (5) estimate computation cost on N before and after the
bisection, respectively. Note that we approximate the search cost of all local
patterns by the search cost of their corresponding fragments. According to Def-

inition 2, the number of possible local patterns of g is αg = Σδ
i=0

(|E(g)|
i

)
. Recall

that we use E(Mg) to estimate the merge cost. Similarly, if we decompose g,
there are at most αg intermediate patterns to be merged. Equation 6 gives the
cost gain of the bisection.



Efficient Subgraph Similarity All-Matching 465

Ca = αg(E(Ig) + E(Mg)) (4)

Cb = αg1(E(Mg1) + E(Ig1 )) + αg2(E(Mg2) + E(Ig2 )) + α(g)(E(Mg)) (5)

Cg = αgE(Ig)− αg1(E(Mg1) + E(Ig1 ))− αg2(E(Mg2 ) + E(Ig2 )) (6)

Since E(Ig) is fixed with a pre-given search order before bisection, we aim to
reduce the search cost of g1 and g2. Note that a good bisection should be balanced
since both E(Mg1) and E(Ig2 ) has an exponential growth with the increase of
graph size. Hence, our bisection always aims to bisect g into two connected
subgraphs with approximately the same size. In experiments, we only bisect g
when it yields a positive cost gain. The minimum fragment size is δ + 1.

6 Performance Evaluation

In this section, we report our experimental results and analyses. We obtain the
binary code of SAPPER from its authors [17]. All our algorithms are imple-
mented in C++ and compiled with GCC 4.3.2 with -O3 flag. All experiments
are conducted on a PC with Intel Xeon 2.40GHz CPU and 4GB memory running
Debian 4.1.1-21.

Datasets.Our real dataset is the Human Protein Interaction Network, a popular
benchmark (http://www.hprd.org/download) for evaluating subgraph match-
ing and search techniques. The network, denoted GH , consists of 9, 460 vertices,
37, 081 edges and 307 distinct vertex labels. We adopt GH to study the efficiency
of our proposed algorithms. We generate synthetic data graphs and queries to
study the scalability of our proposed algorithms varying data graph settings.
Note that the queries are always generated by selecting induced data graphs
from the underlying data graphs and we randomly insert 1− 3 ‘noisy edges’. All
query set contains 100 queries. The synthetic queries are similarly generated as
the real queries. We summarize the default parameters of query and data graphs
in Table 1. Note that |V (G)|, deg(G), and |ΣV | are applicable for synthetic
datasets only. The default error threshold δ is 2 unless otherwise specified.

Table 1. Default Values of Parameters

Parameters |E(q)| avg. deg(q) |V (G)| avg. deg(G) |ΣV |
Default Values 40 4 5,000 12 100

Evaluated Algorithms.We evaluate the following algorithms in this paper: (1)
RO-ND The basic subgraph similarity all-matching algorithm which enumerates
feasible patterns of q and searches the exact matches of feasible patterns with
random search order; (2) EO-ND The modified RO-ND algorithm equipped with
effective search order. (3) DecQ Our proposed algorithm with effective search
order and effective query decomposition. (4) SAPPER The algorithm developed
in [17]. In order to facilitate the local matching, the indexing technique in [17]
is applied on all algorithms to efficiently identify candidate data graph vertices.

http://www.hprd.org/download
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6.1 Varying Error Threshold and Query Settings
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Fig. 7. Varying Error Threshold and Query Settings

Varying Error Threshold δ. We compare 3 algorithms RO-ND, EO-ND, DecQ
on GH to study the effect of our effective search order and query decomposition.
We plot the averaged number of intermediate matches and query response time
in Figure 7(a) and 7(b). Clearly, the intermediate matches of RO-ND and EO-
ND grow the fastest, while DecQ have decent growths. Thanks to the effective
search order, EO-ND produces only up to 1/19 as many intermediate matches
as RO-ND does. DecQ outperforms the other algorithms on all δ settings.

The trend of query response time confirms the effectiveness and efficiency of
our proposed techniques. All algorithms costs more time for larger δ, while DecQ
is the most efficient among the four. When δ = 3, EO-ND is 21 times faster than
RO-ND, while DecQ has an additional speed-up over EO-ND for up to 840 times.
The gaps between DecQ and other algorithms increase when δ increases because
more computation on overlapping global patterns can be shared.

Varying Query Size |E(q)|. We next evaluate the effect of query size on GH .
The intermediate matches and the query response time are plotted in Figure 7(c)
and 7(d). The intermediate matches and the response time both increases with
the query size. The reason is that we have to go deeper in the depth-first search
for RO-ND and EO-ND, or decompose q into more fragments for DecQ; yet both
our search order and query decomposition are effective over all |E(q)| settings.
Varying Average Query Density deg(q).We then evaluate the effect of query
density on GH and report the results in Figures 7(e) and 7(f). It is interesting
that all algorithms exhibit different trends. The response time of RO-ND first
decreases and then rebounds, while that of EO-ND almost levels over all density
settings. The response time of DecQ keeps decreases when q becomes denser.
Same trend is observed on the number of intermediate matches. There are two
counteracting factors that affect this result: (1) the number of global patterns
increases for denser queries; (2) dense global patterns are less likely to have
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matches due to the strict topological structure. For RO-ND, the second factor
is dominant for small degrees, while the first factor is more significant when
deg(q) > 4. For EO-ND, the effective search order makes it more efficient to
find matches and hence weakened the effect of the first factor. Thanks to the
shared intermediate matches, the matching is even faster for DecQ, and hence
the second factor dominates.

6.2 Varying Data Graph Settings
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Fig. 8. Varying Data Graph Settings

Varying Data Graph Size and Density. We firstly evaluate the effect of
data graph size and density on synthetic dataset. The results with varying data
graph size and density are reported in Figure 8(a) and 8(b). DecQ achieves 8
times speed-up against EO-ND and 118 times against RO-ND over all graph size
settings. DecQ and EO-ND exhibit lower growth rate because the effective search
order starts with the most selective vertex, whose number in G does not grow as
fast as |V (G)|. Similar trend is observed on all density settings which confirms
DecQ has better scalability than the other algorithms.

Varying Number of Vertex Labels.We report our results over different |ΣV |
settings in Figure 8(c). All algorithms consumes less time when |ΣV | increases.
This is because the vertices are rendered more selective and thus leads to few
intermediate matches. The response time almost levels for both EO-ND and
DecQ when the |ΣV | exceed 120. This is because the selectivity of the most label
selective vertices in the search order barely changes when we include more labels.

6.3 Comparison with SAPPER
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Fig. 9. Comparison with SAPPER
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We finally compare DecQ with SAPPER by varying δ, |E(q)| and deg(q) on GH .
The results are reported in Figure 9(a) to 9(c). When δ = 3, DecQ is faster than
SAPPER by 4 orders of magnitude. We do not report the results of SAPPER
on deg(q) = 2 since it runs out of all 4GB memory in storing intermediate
matches. The large gap on response time between two algorithms is witnessed
on all experiments. This is mainly due to our effective search order and query
decomposition. The reduction and sharing of intermediate matches significantly
save the cost for processing highly overlapping global patterns. Note that two
algorithm exhibits different trend on query density settings. The main reason is
that more global patterns are enumerated for denser queries, while they are more
selective and less likely to have matches. Since DecQ shares the computation
cost among global patterns, it is less sensitive to the effect of increasing global
patterns. Consider both factors, the decreased response time can be explained.

7 Related Work

Many fundamental problems in managing graph data has been extensively stud-
ied. These include subgraph exact and similarity all-matching, subgraph/super-
graph containment search and subgraph similarity search. On exact subgraph
all-matching, most studies propose to build efficient index to prune non-promising
data graph vertices against the query. [16] develops an indexing technique called
GADDI to index nearby discriminative subgraphs as signatures, while shortest
path are also adopted in [18] as unit index structure. To handle noisy graph data,
[11] studies subgraph similarity all-matching by developing neighborhood-based
index structure. [17] on the other hand, transform the problem to subgraph exact
all-matching by proposing the enumerate-and-search paradigm.

Subgraph containment search [4,5,9,10,13,14,19,20] and supergraph contain-
ment search. [2,15] also attract great research interests. On subgraph contain-
ment search, [10] proposes the first filtering-verification framework by indexing
path-features to filter false results before the expensive verification. [13] improves
the filtering power by indexing discriminative graph-features. To further reduce
filtering cost and index construction size, [19] and [14] independently propose
to adopt tree-features. [9] proposes efficient verification approach to accelerate
query processing. On supergraph containment search, [2] propose cIndex to se-
lect contrast features via query log, while [15] enhances the verification phase by
sharing search cost on common subgraphs of data graphs. On subgraph similarity
search, [12] follows the filtering-verification framework to remove false results
by counting the number of missing features. Most recently, [8] proposes efficient
verification algorithm and a novel filtering-validation-verification paradigm to
process the problem.

8 Conclusions

In this paper, we study the problem of efficient subgraph similarity all-matching.
We develop a hierarchical framework DecQ to firstly decompose the query into
a set of unit sub-queries and then combine the results of sub-queries for final
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results. We propose novel intermediate match estimation model and develop
heuristic algorithm to generate effective search order for the reduction of in-
termediate matches. We develop a merge-and-validation algorithm to combine
sub-query results by sharing the computation cost of intermediate matches. Our
experimental results demonstrate that our proposed approach outperforms the
state-of-the-art approaches by up to 4 orders of magnitude in terms of both
intermediate match number and query response time.
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Abstract. Correlated protein-DNA interaction (binding cores) between
transcription factor (TFs) and transcription factor binding sites (TFBSs) are usu-
ally identified by costly 3D structural experiments. To avoid numerous unsuc-
cessful trials, we are motivated to develop a cheap and efficient sequence-based
computational method for providing testable novel binding cores with high confi-
dence to accelerate the experiments. Although there are abundant sequence-based
motif discovery algorithms, few directly address associating both TF and TFBS
core motifs which are both verifiable on 3D structures. In this paper, we formally
define the problem of discovering correlated TF-TFBS binding cores, and apply
association rule mining techniques over existing real sequence data (TRANS-
FAC). The proposed algorithm first builds two frequent sequence tree (FS-Tree)
structures storing condensed information for association rule mining. Association
rules are then generated by depth-first traversal on the structures. FS-Trees have
several advantages to support further applications, including efficient calculation
of the support and confidence, simple generation of candidate rules, and applica-
bility of effective pruning techniques. As a result, the FS-Trees serve as a useful
basis for more general extensions related to biological binding core identifica-
tion. We tested our algorithm on real sequence data from the biological database
TRANSFAC and focus on efficiency comparisons with the recent work employ-
ing association rule mining. The rules discovered reveal real TF-TFBS binding
cores in independent 3D verifications on Protein Data Bank (PDB).

Keywords: Bioinformatics, association rule mining, sequence, algorithm.

1 Introduction

An important problem in bioinformatics is the identification of binding cores between
transcription factors and transcription factor binding sites [14]. A short region of DNA
that is called the transcription factor binding site (TFBS) can be bound by proteins
called transcription factors (TFs) in a sequence specific manner. The bound TF inter-
acts with other proteins and finally controls (regulates) the expression of a gene. In
computational biology, TFs are represented by sequences in lengths of 400–2000 with
20 different letters. TFBSs are represented by short sequences in lengths usually less
than 10 with 4 different letters. Sequence-based biological experiments characterizing
TFBSs are however in lower resolutions of lengths 20–100. A simplified model of the
TF-TFBS interactions are depicted in Figure 1. A TF binds to its corresponding TFBS

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 470–481, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. A simplified model of TF-TFBS interactions

to regulate the gene, i.e. control the transcription rate from the gene to RNA. The tran-
scribed RNA is finally translated into a protein in another process.

Experiments such as DNA footprinting [11], gel electrophoresis [12], and Chromatin
immunoprecipitation [18,25] are conducted by scientists to determine whether a TF se-
quence binds a TFBS sequence. These sequence data are collected in online databases
such as TRANSFAC [19]. However, only short regions within several letters of a TF and
a TFBS, called binding cores, are critical in the bindings. The resolutions of these ex-
perimental results are too low to identify binding cores. Therefore, expensive and time
consuming experiments that extract high-resolution 3D structures using X-ray crystal-
lography or nuclear magnetic resonance spectroscopic analysis are conducted to iden-
tify them. As huge amounts of time and cost are wasted in conducting unsuccessful
trials, we are motivated to develop a cheap and efficient computational method for pro-
viding testable candidates of novel binding cores with high confidence to accelerate the
3D structural experiments.

In [15], we have successfully showed the potential of applying association rule min-
ing in predicting TF-TFBS binding cores. The philosophy behind is that as TF-TFBS
bindings play an essential role in gene regulation, the patterns of correlated TF-TFBS
bindings should be present through the evolution process and the same patterns should
appear more than random in different genes and different organisms. Therefore, if a
region of a TF exists together with a region of TFBS frequently in the database, the
regions are likely to be binding cores. We verified the hypothesis by transforming a
biological database into the format of a transaction database and applying an existing
algorithm for association rule mining. Although promising results are found, the ap-
proach suffers from several drawbacks.

In this paper, we formally define the problem of mining protein-DNA association
rules over biological databases. Then, we propose a novel and efficient association rule
mining based algorithm using an intermediate data structure called a Frequent Sequence
Tree (FS-Tree). The FS-Tree has several advantages, including efficient calculation of
the support and confidence, simple generation of candidate rules, and applicability of
effective pruning techniques. As a result, the FS-Trees serve as a useful basis for more
general extensions related to biological binding core identification. Lastly, we evaluate
the algorithm on a real biological dataset.

The organization of the rest of the paper is as follows. In Section 2, we review related
works. In Section 3, we give formal definitions of the problem. We present the algorithm
in Section 4 and evaluate it in Section 5. Lastly, we conclude in Section 6.
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2 Related Work

In the computational biology community, the sequence-based pattern discovery [16]
problem called motif discovery [7,17,22] has been extensively addressed. The numer-
ous approaches proposed are related to identify binding cores on either TF or TFBS
separately from sequence data. However, the existing motif discovery methods do not
correlate the potential TF and TFBS binding cores (motifs) and do not provide any
direct linkage between them. Even if correct TF and TFBS binding cores (motifs) are
discovered separately, they may not be the corresponding counterparts. Therefore, asso-
ciating potential TF-TFBS binding cores is not only novel but also significant. This can
be achieved by exploiting the abundant binding sequence pair available in the biological
databases such as TRANSFAC [19].

In the database community, the problem of association rule mining is to find all co-
existing itemsets which are both frequently appears independently (support) and depen-
dently (confidence) in a transaction database. The Apriori algorithm [3] is commonly
regarded as the classic algorithm. There are extensive literatures on improving and ex-
tending Apriori-like algorithms [1,2,4,8,10,13,20,21,27,29]. Recent sequential pattern
mining considers the ordered transactions of customers as sequences and finds frequent
sequential patterns [5,6,23,26,30]. Sequential pattern for biological sequences is also
studied in [28]. The algorithm considers several properties of biological sequences to
speed up the mining.

Our problem is fundamentally different from both of the above problems as we are
not finding co-existences between items nor only frequent subsequences in the database.
Our problem is the mixture of the above two, aiming to find co-existences between fre-
quent subsequences of particularly two different types in the database. Furthermore,
we only consider continuous subsequences comprising of letters (items) while a sub-
sequence in sequential pattern mining problems can be discontinuous sets of letters
(itemsets). Therefore, the algorithms proposed in the above two areas cannot be applied
directly to our problem.

In [15], we applied association rule mining technique over TRANSFAC by trans-
forming the database into the format of a transaction database and employed the Apri-
ori algorithm to generate association rules. However, the approach suffers from several
limitations: (i) Only association rules between a fixed length of subsequences can be
mined; (ii) The size of the transformed database is huge; (iii) Irrelevant association
rules which have either TFs or TFBSs on both sides are generated. Therefore, in this
paper, we formally define the problem and design an efficient algorithm to overcome
these drawbacks with better scalability.

3 Problem Statement

In this section, we formalize the problem of mining protein-DNA association rules over
biological databases.

In our problem, we are given a biological database as the input, in which each entry
is a record of two sequences from two different sets (TF and TFBS).
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ID TF (simplified) TFBS
1 abbbcdab TAACG
2 dddbcda AACGT
3 dabcdbb CTACA
4 bcdccc GAACC

Fig. 2. A biological database

Definition 1. (Biological database) Let ΣI = {I1, ..., Im} and ΣJ = {J1, ..., Jn} be
two sets of m distinct and n distinct letters. Let Σ∗

I and Σ∗
J denote the set of all se-

quences comprising of letters in ΣI and ΣJ respectively. A biological database DB is
a set of k records {R1, R2, ..., Rk} between two sequences from the sets Σ∗

I and Σ∗
J .

i.e. Rl = (xl, yl) where xl ∈ Σ∗
I and yl ∈ Σ∗

J for 1 ≤ l ≤ k.

Example 1. A biological database with ΣI = {a, b, c, d} and ΣJ = {A,C, T,G} is
shown in Figure 2. Each TF (simplified) is represented as a sequencex ∈ Σ∗

I while each
TFBS is represented as a sequence y ∈ Σ∗

J . There are k = 4 records in the database
storing TF-TFBS binding pairs. We will consider the database shown in Figure 2 as an
example in explaining the following definitions.

We say that a sequence S is a subsequence of another sequence S′ if S is a contiguous
substring of S′.

Definition 2. (Subsequence) A sequenceS = s1, s2, ..., sp is a subsequence of S′ = s′1,
s′2, ..., s

′
q , denoted by S � S′, if there exists an integer r where 1 ≤ r ≤ q − p+ 1 such

that s1 = s′r, s2 = s′r+1, ..., and sp = s′r+p−1.

We say that a record in the database contains a sequence if it is a subsequence of the
same type of the sequences in the record.

Definition 3. (Contain) Suppose there is a recordR=(x, y) and two sequencesS ∈ Σ∗
I

and S′ ∈ Σ∗
J , S is contained in R if S � x and S′ is contained in R if S′ � y.

Example 2. The TF sequence “bcd” is contained in all the records in the database.

We adopt similar definitions of support and confidence in traditional association rule
mining problem [3].

Definition 4. (Support) The support of a sequence S is the portion of records in the
databaseDB that containsS. The support of sequenceS and sequenceS′ is the portion
of records in the database that contains both S and S′.

support(S) =
number of records contain S

total number of records in DB

support(S ∩ S′) =
number of records contain S and S′

total number of records in DB
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We say that a sequence is frequent in DB if its support is not less than a minimum
threshold, denoted by min sup, defined by the user.

Definition 5. (Frequent sequence) Given a user-defined threshold, min sup, a
sequence S is frequent in DB if support(S) ≥ min sup.

Example 3. Given min sup = 0.8, the TF sequence “bcd” is a frequent sequence be-
cause it is contained in all the records in the database and support(“bcd”) = 4/4 ≥ 0.8.

An association rule is an implication of the form X ⇔ Y , where X ∈ Σ∗
I and Y ∈ Σ∗

J .
It means that X and Y are likely to be the binding cores. The degree of likeliness is
measured in forward confidence and backward confidence. Forward confidence (confF )
is the portion of records that containsX in the database that also contains Y . Backward
confidence (confB) is the portion of records that contains Y in the database that also
contains X . We say that an association rule has a support s in DB if both X and Y are
frequent sequences when min sup = s.

Definition 6. (Association rule) An association rule is an implication of the form
X ⇔ Y , where X ∈ Σ∗

I and Y ∈ Σ∗
J . The rule has a support s if support(X) ≥ s and

support(Y ) ≥ s. The forward confidence (confF ) and backward confidence (confB)
of the rule are defined as

confF (X ⇔ Y ) =
number of records contain X and Y

number of records contain X
=

support(X ∩ Y )

support(X)

confB(X ⇔ Y ) =
number of records contain X and Y

number of records contain Y
=

support(X ∩ Y )

support(Y )

Example 4. “bcd” ⇔ “AAC” is an association rule with support = 0.75, confF =
0.75 and confB = 1. It is because support(“bcd”) = 1, support(“AAC”) = 0.75 and
support(“bcd” ∩ “AAC”) = 0.75. So,

confF (“bcd” ⇔ “AAC”) =
0.75

1
= 0.75

confB(“bcd” ⇔ “AAC”) =
0.75

0.75
= 1

Problem Definitions

Given a biological database DB, the problem of mining protein-DNA association rules
is to find all co-existing subsequences in the two sets of sequences in DB with a mini-
mum support s and both forward and backward confidence c.

4 The Algorithm

Before mining association rules, the algorithm constructs two compact intermediate
data structures to facilitate the mining process. The data structures are similar to suffix
trees [24], which are widely used in solving string matching problems.
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(a) FS-Tree of TF (b) FS-Tree of TFBS

Fig. 3. FS-Trees built from database shown in Figure 2

4.1 Frequent Sequence Tree

We first illustrate the structure of a frequent sequence tree (FS-Tree) by an example.
Consider the FS-Tree shown in Figure 3(b), which is constructed from the database
shown in Figure 2. It has a null root node, denoted as ρ. A set of prefix sub-trees is the
child of it. Each non-root node in the tree stores a letter and a bit vector. Each non-root
node represents a sequence formed by concatenating the letters along the path from
the root node to itself. The shaded node in 3(b) represents the sequence “AAC” as the
letters along the path from the root to the node are “A”, “A” and “C”. The bit vector in a
node indicates whether records in the database contain the representing sequence. The
bit vector “1101” stored in the shaded node in Figure 3(b) indicates that the sequence
“AAC” is contained in the first, second and last records in the database.

Definition 7. (Frequent sequence tree) A frequent sequence tree (FS-Tree) is a tree
structure defined as follows:

1. It has a null root node denoted as ρ, a set of prefix sub-trees is the child of it.
2. Each non-root node stores a letter and a bit-vector.
3. Each non-root node represents a sequence by concatenating the letters along the

path from the root node to itself.
4. The vector in a non-root node indicates whether records in the database contain

the representing sequence.

4.2 Construction of FS-Tree

Based on the definition above, we have two construction algorithms to build a FS-Tree.

Level-by-Level Construction. The first algorithm builds a FS-Tree iteratively with
increasing depth. First, it creates the root of the tree. For each letter I in ΣI , a child with
letter I is appended to the root node. Database scans are performed to check whether the
records in the database contain the representing sequences. If a sequence is contained
in a record, the corresponding bit in the bit vector of the node is set to 1; otherwise, it is
set to 0. After updating the bit vector of each child node, the support of the representing
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sequence is computed and checked if it reaches the minimum threshold. The support
can be efficiently computed by counting the number of ones in the bit vector. As the
number of ones in a bit vector is the number of records in the database which contain
the representing sequence, the support of the representing sequence is the number of
ones in the bit vector divided by the total number of records in the database. If the
support is less than the threshold, the node is removed and its descendants will not be
constructed at next iteration because the representing sequences cannot be frequent.

Lemma 1. For any two sequences X and X ′, where X � X ′ with r = 1, if X is not a
frequent sequence in DB, X ′ cannot be a frequent sequence in DB.

Proof. Suppose X ′ is a frequent sequence in DB, then more than (min sup× |DB|)
of records in DB contain X ′. As X is a subsequence of X ′, the records that contain
X ′ also contain X . Therefore, X is also a frequent sequence, which contradicts to the
assumption that X is not a frequent sequence in DB. �

By skipping those nodes, the size of the structure and the construction time are reduced.
Also, irrelevant information is eliminated from the tree. The process repeats iteratively
with increasing depth appending child nodes to each node in that level, until the depth
of the tree equals to the maximum length of sequences in the database or there is no
node in that level.

Multi-level Construction. If the main memory is sufficient, we can build a FS-Tree in
a multilevel way to reduce the number of database scans.

Lemma 2. For any two sequences X and X ′, where X ′ � X with r = 1, if X is con-
tained in a record R, X ′ is also contained in R.

Proof. If X ′ is not contained in R, any sequence having X ′ as subsequence cannot
be contained in R. Therefore, X cannot be contained in R, which contradicts to the
assumption. �

By using lemma 2, we modify our algorithm as follows. First, we build a full FS-Tree of
specified depth k. One database scan is needed to update the bit vectors in all nodes in
the tree by checking the leaf nodes. Then, we apply tree pruning in a top-down manner,
deleting the nodes with supports less than the threshold.

Example. Consider the database shown in Figure 2, and let min sup = 0.75, the FS-
trees constructed are shown in Figure 3.

4.3 Generating Association Rules

Once we have the two TF-Trees, the process of generating association rules is relatively
simple. For each node on one of the FS-Tree, we use a depth-first traversal on the
other FS-Tree to generate candidate association rules. Then, the forward and backward
confidences of the rules are calculated. The confidences of a candidate ruleX ⇔ Y can
be efficiently computed by first bitwise intersecting the bit vectors of the two nodes.
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Table 1. Biological data used in experiments

Number of sequences Min length Max length Avg length
TF 708 70 2717 494

TFBS 15668 (grouped into 708 records) 4 269 22

The forward confidence of the rule equals to the number of ones in the resultant bit
vector divided by the support of X . The backward confidence of the rule equals to the
number of ones in the resultant bit vector divided by the support of Y . Those candidate
rules with confidences reaching the threshold are output by the algorithm.

For example, consider the rule “bcd” ⇔ “AAC” generated form the shaded nodes
in the FS-Trees in Figure 3, we intersect the bit vectors of the two nodes to get the
resultant bit vector “1101”. The forward confidence of this rule is the number of ones
in the resultant vector divided by support(“bcd”), which is 3/4 = 0.75. Similarly, the
backward confidence of this rule is 3/3 = 1.

In order to prevent enumerating all the possible pairs in the traversal, we reduce the
search space by two means.

Pruning Infrequent Sequences. As the FS-Trees only contain nodes of frequent se-
quences, computation time is reduced as unqualified rules having infrequent sequences
on either side of the rules are not generated and their confidences are not computed.

Pruning Rules with Low Confidences. If we find that the forward confidence of the
generated rule X ⇔ Y is less than the minimum threshold, we can skip traversing all
the descendants of the node representing Y as the rules generated from its descendants
cannot reach the minimum threshold.

Lemma 3. For any sequence X and any sequence Y and Y ′ such that Y � Y ′ with
r = 1, if X ⇔ Y is not a qualified association rule (with a low forward confidence),
X ⇔ Y ′ cannot be a qualified association rule.

Proof. If X ⇔ Y is an unqualified association rule with its forward confidence less
than the threshold min conf .

confF (X ⇔ Y ) ≤ min conf

support(X ∩ Y ) ≤ min conf × (support(X))

support(X ∩ Y ′) ≤ support(X ∩ Y ) ≤ min conf × (support(X))

confF (X ⇔ Y ′) ≤ min conf

Therefore, X ⇔ Y ′ is not a qualified association rule. �

5 Experimental Result

We evaluated the proposed algorithm using multilevel construction on real biological
data extracted from TRANSFAC (Professional ver 2009.4). TFBS data were grouped
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Fig. 4. Performance comparison in term of CPU Time

by TF because the same TF can bind to more than one TFBS. In our experiments, we
consider a group of TFBSs as a single record. The statistics of the data are given in
Table 1. All the experiments were conducted on a PC with 2.93GHz Dual Core CPU
and 8GB memory running Ubuntu Desktop.

5.1 Comparative Performance

We compare our algorithm with that in [15] and focus on efficiency and scalability
since both model the associated TF-TFBS binding core discovery problem with exact
subsequences. As the previous algorithm can only handle fixed lengths of subsequences,
we constrain our algorithm accordingly to construct FS-Trees with the maximum depth.
First we compare their performance as we increase the length of subsequences (length
of binding cores). Figure 5(a) shows how the algorithms performed when the length of
subsequences (maximum depth of FS-Trees) was increased from 3 to 6. A minimum
support of 0.7 and a minimum confidence of 0.5 were used.

The second set of experiments compared the performance of the algorithms when
the support and confidence varied. The maximum lengths of the subsequences were
limited to 5 in these experiments. Figure 4(a), 4(b) and 4(c) show how the algorithms
performed when minimum confidences of 0.5, 0.7 and 0.9 were used respectively. We
cannot compare the performances of the algorithms when the minimum support is less
than 0.1 as the previous algorithm took more than ten hours to run while our algorithm
took less than a minute.

Experimental results show that our algorithm is several orders of magnitude faster
than the previous algorithm. The reason is that the previous algorithm wastes much
time in generating useless itemsets and rules. As the alphabet sizes of the sequences
are short (4 for TFBS and 20 for TF), short sequences are frequently contained in each
record. Therefore the size of large 1-itemsets and large 2-itemsets in the Apriori algo-
rithm is enormous. Moreover, many candidates generated from those large itemsets are
useless as they contain only one type of sequences (either TFs or TFBSs on both sides).
Furthermore, the use of FS-Trees provides efficient methods for calculating supports of
sequences and confidences of rules.

For space complexity, the current version is costly to some degree but it is efficient
and scalable for the real application on TRANSFAC, where the annotated data grows
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Fig. 5. Experimental Results

sub-linearly. Moreover, like frequent patterns mining problem, our approach suffers
from big redundancy in the results. However, the algorithm supports simple compres-
sion using approximation. We will further address these two issues in our future work.

Although the experiments in this paper are for exact associated binding cores based
on [15], the efficiency and scalability of FS-Trees are demonstrated in detail. The FS-
Trees show much better applicability to further generalizations such as approximate
binding core identification in our recent extension.

5.2 Applicability to Predicting Binding Cores

In order to show that our algorithm is applicable to predicting protein-DNA binding
cores, we verified the generated association rules with a biological database named
Protein Data Bank (PDB). PDB stores 3D structures of protein-DNA interactions cap-
tured by expensive experiments. For each 3D structure of a TF-TFBS interaction, we
extracted the fragments of a TF and a TFBS such that the distances between them are
within 3.5Å, meaning that they are bound together. We compared the generated asso-
ciation rules with these fragments. A rule X ⇔ Y is said to be verified if both X and
Y contains in the TF and TFBS respectively in at least one of the fragments. More pre-
cisely, we removed those trivial rules which contains sequences of length less than 2
in either side and computed the percentage of verified non-trivial rules. In our previous
study [15] we have shown that randomly generated rules (of lengths = 5) are unlikely
to be verified by PDB (verified percentage� 10%). It is the indirect evidence that the
verified association between TF and TFBS subsequences is not likely to happen purely
by chance.

Figure 5(b) shows the percentages of rules that can be verified by PDB with 0.5 as
the minimum confidence. The verification result shows that nearly all association rules
with high minimum support and confidence can be verified. Although certain amount of
trivial rules (length≤ 2) shall be removed, the verified percentage is still up to 76.6%. It
is a normal phenomenon as the alphabet sizes of TF and TFBS are small, sequences of
short length usually exists in every binding cores. Moreover, PDB does not cover all the
possible binding pairs and we believe that those unverified rules are those undiscovered
binding cores which scientists can perform experiments to verify.
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In comparison with the results obtained in [15], which has no confidence control and
is limited by the maximal length 6, results generated by our algorithm cover almost
all of their results (covering 96.5% and 100% for 5-5 (TF length-TFBS length) and
6-6 rules in [15] by lowing the confidence threshold to 0.1). Furthermore, on lengths
≥ 6, we have 133 verified rules, compared with only 6 in [15] (limited by the maximal
length). More about the correctness of the rules and PDB verification will be addressed
in an extended version.

6 Conclusion

In this paper, we have formally introduced the problem of mining protein-DNA asso-
ciation rules over biological databases. We also proposed an efficient algorithm using
compact structures called FS-Trees. Experiments on real biological data demonstrated
significant speed up over our previous work. Verification on the generated rules con-
firmed the applicability of the proposed methods on predicting protein-DNA binding
cores. Although our algorithm is initiated by protein-DNA interactions, our frame-
work is general enough for other similar problems such as protein-protein interactions.
Furthermore, the FS-Trees serve as a useful basis for more general extensions we are
working towards recently, e.g. approximate associated binding core discovery [9].
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Abstract. Alternative clustering algorithms target finding alternative
groupings of a dataset, on which traditional clustering algorithms can
find only one even though many alternatives could exist. In this research,
we propose a method for finding alternative clusterings of a dataset based
on feature selection. Using the finding that each clustering has a set of
so-called important features, we find the possible important features for
the altenative clustering in subsets of data; we transform the data by
weighting these features so that the original clustering will not likely to
be found in the new data space. We then use the incremental K-means
algorithm to directly maximizes the quality of the new clustering found
in the new data space. We compare our approach with some previous
works on a collection of machine learning datasets and another collec-
tion of documents. Our approach was the most stable one as it resulted
in different and high quality clusterings in all of the tests. The results
showed that by using feature selection, we can improve the dissimilarity
between clusterings, and by directly maximizing the clustering quality,
we can also achieve better clustering quality than the other approaches.

Keywords: data clustering, k-means, clustering quality, clustering
dissimilarity.

1 Introduction

Data clustering’s objective is to group similar data, in terms of some data at-
tributes (features), into the same class and dissimilar data into different classes
to provide a general view about the data [5]. Most of the clustering algorithms
can only find one way to group the data (clustering) even though there would
be some alternatives. It means most of them provide only one view regardless of
the other views about the data. Alternative clustering algorithms address this
problem as they try to find valuable and different clusterings of a dataset.

The most typical example for the need of alternative clustering is described
in Fig. 1 where both clusterings Co and Ca are valuable and different from each
other. The clusters in Co are formed based on data points similar in terms of
feature y, while the clusters in Ca are groups of data with similar value of feature
x; in other words, y is the important feature for the clustering Co and x is the
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Fig. 1. Original and alternative clusterings of our synthetic dataset. Green crosses and
blue circles represent data points in different clusters.

important feature for the clustering Ca. In the general case, more complex data
may have different clusterings, and each of them are of high quality as well as
different from the others. This is especially correct for high dimensional data
since it can be classified based on a number of different sets of data attributes.

Alternative clustering algorithms address those problems as they aim to find
multiple ways of grouping data, each of which is high quality and different from
the others, with much lower cost and run times. They condition on the original
clustering to find the alternative so that the alternative will be different than
the origin, meanwhile, they maximize the quality of the new clustering. The
dissimilarity is measured by the ratio of common data pairs between clusterings.
The quality is measure by a metric quantifying how data in the same cluster
close to each other and data in the different clusters far from each other. They
are given in details in the Chapter 3. In the most general case, the alternative
clustering problem is defined as follows.

Problem 1. Semi-supervised: given an initial clustering Co of the data X, find
another clustering Ca of X that is high quality and different from, Co.

Problem 2. Unsupervised: find two clusterings Co and Ca of X that are high
quality and different from each other.

The unsupervised approach is usually a sequential combination of a data clus-
tering algorithm and another Semi-supervised alternative clustering algorithm,
thus we only focused on the Semi-supervised approach in this research. To sum
up, alternative clustering aims to classify data into more than one clusterings; the
fundamental objectives for this problem are clusterings‘ quality and dissimilarity.

There has been a very limited number of approaches to this problem proposed.
We generally classified them into two main groups distinguishing by their be-
havior, namely, data transformation based and non-data transformation based.
Most of the approaches in the first group [7, 4, 3] made use of some concepts
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from information theory such as mutual information to define the difference be-
tween clusterings. Mutual information is a measurement of similarity between
the distributions of two datasets. By minimizing this value, they expect the
dissimilarity will also be minimized. These approaches have the same character-
istic is that, they maximize the quality and the dissimilarity based on the other
criteria rather than the distance metric used in the quality and dissimilarity mea-
surements. They also do not make use of the data features, fundamental factor
for distinguishing data objects, thus leaving much room for other methods. The
general idea of the second group, including [10] and ours, is to transform the
data into a new space, in which the original clustering is likely to disappear and
a different clustering is easily found using any clustering algorithm. It has been
proved by the results of [10] and ours that we have better dissimilarity than
the former methods. Compare to our approach, Qi and Davidson’s with their
assumptions about the distribution of data derives in lower quality clusterings
(Table 1). Their use of the distributions of clusterings instead of maximizing the
metric quality could also be accounted for the low quality.

In this paper, we presented another approach to the alternative clustering
problem; our key idea is to find alternative clusterings using feature selection
and directly maximize the quality of data clusterings. We ourperform most of
the previous approaches by using data transformation method. We directly max-
imize the clustering quality based on metric distance of data objects rather than
using other criteria. According to our classification, our algorithm is the sec-
ond one using data projection approach in this line, however, this is the first
one to maximize clustering quality using metric distances between data objects.
The experiment results showed that the approaches using data transformation,
including ours and [10], had better dissimilarity than the others (Table 2). More-
over, our approach always results in higer quality clusterings than those of [10]
(Table 1). These results support our claims that approaches using feature se-
lection result in better clusterings’ dissimilarity and that directly maximizing
clustering quality derives in better quality clusterings.

2 Previous Works

Since alternative clustering is very new to researchers, there have been limited
works on this field of data mining. Approaches to alternative clustering could
be categorized into two main groups, one is non-data transformation based, the
other is data transformation based. This classification is made based on the
behavior of using data of the approaches.

2.1 Non-data Transformation Based Approaches

Approaches in the first group used some information theory concepts, includ-
ing entropy and mutual information, to ensure the quality and the dissimilarity
of the clusterings. Conditional information bottleneck (CIB) [7] was the very
first representative of all; it implemented a semi-supervised method in which
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an alternative clustering is found using the existing clustering as negative infor-
mation. CIB maximized the shared information between the cluster labels and
data features to ensure the clustering is of high quality, while conditioning on
the given clustering for a low similarity. The main drawback of this approach
is that CIB must have joint distribution information for each variable which
may not be available for all the data. CAMI (Clustering for Alternatives with
Mutual Information) [3], as an unsupervised approach, further improved the
idea by removing the joint distribution information. It made use of the mix-
ture multivariate Gaussian distribution of the data for finding two high quality
clusterings simultaneously without any prior-knowledge about the original data
classification. CAMI, as a matter of fact for approaches in this group, minimized
the mutual information between clusterings for their dissimilarity. It overcame
the difficulty of the joint distribution with CIB, however, the assumption of the
mixture model of multivariate Gaussian distribution of the data made it unsuit-
able for data of non-Gaussian shape. The recent NACI (Non-linear Alternative
Clustering with Information theory) [4] targeted the alternative clustering prob-
lem only using the information theory concepts as indicated in its name. NACI
used the same approach with CIB in which the mutual information between
cluster labels and data features is maximized for the quality, while the mutual
information between clusterings is minimized for their dissimilarity. However,
NACI motivated the objectives of their method differently through the use of an
information theory concept named Fano‘s inequality. The advantage of NACI
to previous works in this group is that, without any assumption about data
distribution, this method works well with arbitrary shapes of data of any scale.

The most typical approach for the data constraint based group is COALA
(Constrained Orthogonal Average Link Algorithm) [1]. COALA is a semi-
supervised method which exploits the effectiveness of pairwise constraints; it
generates a set of cannot-link constraints from the provided clustering and feeds
them to an agglomerative hierarchical clustering algorithm. This process is to
ensure that given two clusters in the new clustering, they cannot be merged by
the clustering algorithm if they contain any pair of objects in the provided clus-
tering; or in other words, this process is to ensure the dissimilarity. COALA also
made use of two kinds of merge each of which is performed in different cases to
manipulate the tradeoff between the quality and the dissimilarity of the alterna-
tive clustering. The problem of this approach is the complexity of the algorithm;
this complexity makes it not applicable for large scale data.

2.2 Data Transformation Based Approaches

The general idea of these approaches is to transform the data into a new space
in which the original clustering is likely to disappear and a different clustering is
easily found using any clustering algorithm. Qi and Davidson [10] try to trans-
form the data into a new space so that data objects are more likely to be assigned
to a cluster other than the projection of their old cluster in the new space; this
process was to make the two clusterings different; in practice, they minimized
the probability density function of the projected data. They exploited another
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information theory concept, named Kullback-Leibler divergence, to guarantee
the clustering quality; they minimized this divergence to reserve the property of
the old data in the new space so that the quality of the clustering in the new
space is ensured.

Our approach shares the same basic idea with [10], however, we used a different
method to project the data based on data features: we find on data subsets
the possible important features for alternative clusterings; we transformed the
data by weighting these features against the important features of the original
clustering. Our approach outperformed the others in most of the experiments.

3 Materials and Methods

It is proved that different features affect clusters differently and similarity be-
tween a pair of data points is due to different features [5]. Based on these previous
results, we found that clusterings differ from each other by a set of features –
the so called important features for the clustering. Our approach is motivated
by this factual information through the choice of data transformation approach
and metric based clustering evaluation.

3.1 Measurements

According to their objective of alternative clustering algorithms, clusterings are
evaluated by their quality and the dissimilarity between them. These quantities
are measured using Dunn Index (DI) [2] and Jaccard Index (JI) [9], respectively.

Dunn Index measures the ratio of the minimum distance between two clus-
ters to the maximum cluster diameter: Let C = {c1..ck} be a clustering where cj
is the centroid of a cluster of C, δ : C ×C → R+ be a cluster-to-cluster distance
and Δ : C → R+

0 be a cluster diameter measure, then DI is

DI(C) =
mini�=jδ{(ci, cj)}
max1≤l≤k{Δ(cl)} (1)

The quality of a clustering increases with its DI. Dunn Index has been proven to
be an effective measure compared to the others in measuring clustering quality
[1] and is used in all of the previous approaches. Our approach is motivated
by the use of some metric distance to calculate the similaritiy between data
objects, so the use of a metric based distance is more obvious the use of a data
distribution based distance.

Jaccard Index measures the ratio of common data object pairs between
clusterings. A pair is two data object in the same cluster. The Jaccard Index is
defined as follows:

JI(C, S) =
|C| ∩ |S|
|C| ∪ |S|

where |C| and |S| are the numbers of pairs in C and S, respectively. The
dissimilarity of two clustering decreases when their JI increases.
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3.2 Data Transformation and Clusterings’ Dissimilarity

The matrix inversion in [10] will put more weight on unimportant features than
the important features of the original clustering. This is equal to inversing the
selection of features and does not always work well. In our approach, we chose
a more natural and straight way to select features. We only select those based
on which the data can really be classified. This is described in the followings.

Our Approach. We propose to use the data transformation approach for its ad-
vantages against the non-data transformation ones. The processes of our method
are quite straight:

Feature Selection: another combination of data features must be selected so
that, the original clustering will not likely to be found on the transformed data.
In practice, we selected those important for further classifying each data cluster.

Data Transformation: the data is transformed based on the selected features.
We chose to weight the features to make them more important than those orig-
inal for the original clustering.

Finding Clustering: on the new data, we apply our clustering algorithm whose
objective function uses the same criteria to those for the quality measurement
in order to derive in best clustering quality.

The detailts of those processs is described in the next sections.

Important Features. This is the fundamental concept for the data transfor-
mation approach. In our research, we defined a set of features is called important
if they contribute the most to the formation of a clustering. The formation of
a clustering as the distances between the centroids of that clustering. For ex-
ample, the formation of the clustering in Fig. 1a is the distance between two
centroids; it is mostly contributed by the feature y rather than the feature x,
thus y is the important feature for the formation of the clustering. In practice,
where the number of features is very large, we will select a set of features whose
total contribution is more than a certain threshold.

Features are selected as important in the descending order of their importance;
the selection procedure is stopped when it meets a threshold; this threshold is
a certain ratio of the sum of important features and that of all features. This
selection procedure is described in the Algorithm 1. In our experiments, the
threshold is set to 0.9 to select the major of features.

Possible Important Feature Selection. The matrix inversion in [10] virtu-
ally flips the feature sets whereas the set of important feaures becomes unimpor-
tant and the set of unimportant features becomes important. This is not a good
feature selection since a good combination of features may have both previously
important and unimportant features.

In our approach, we only select sets of features that are really able to separate
the data. Our solution is to select a subset of data where the original important
features seem not to be important for subclustering (finding a clustering of)
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Algorithm 1. Important Feature Selection

total importance ← 0
total distance ← Σi(feature distances(i))
sort in descending order(feature distances)
for i = 1 to k do

total importance ← total important+ feature distances(i)
if total importance/total distance ≥ threshold then

break
end if

end for

Fig. 2. Illustration of finding possible important features in subspaces

this subset. We regard these features as the possible important features for the
alternative clustering for the complete data.

Our feature selection method is well illustrated in (Fig. 2). A, B, C, and D
are four Gaussian sub-clusters of the original clustering of Co = {(AB), (CD)}
of our synthetic dataset (Fig. 2a); the important feature for Co is y. By further
clustering the cluster (AB) of Co into sub-clusters A and B, we found x is the
important for this sub-clustering.

Data Transformation. The transformation is performed by weighting the
possibile important features so that, the contribution of those possible important
will be more than that of those original important to the original clustering.
By doing so, the orginal clustering will not likely to be found. The process of
transforming is given in Algorithm 2 and Fig. 3, where β is set to 2 in our
experiments and the set of important features for the original clustering and the
alternative clustering are Fo and Fa, respectively.
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Fig. 3. Illustration of how data is transformed and how alternative clustering found
on transformed data

Algorithm 2. Weighting Features

dist1 ← Σi∈Focontribution(i)/|Fo|
dist2 ← Σj∈Facontribution(j)/|Fa |
α ← β ∗ dist2/dist1
xij = xij ∗ α,∀i ∈ [1..n], ∀j ∈ Fa

Finding Alternative Clustering. This section describe how we find and max-
imize the quality of the alternative clustering on the transformed data.

Objective of Clustering Algorithm: Recall the use of a metric based clustering al-
gorithm to directly maximize the quality of the clustering (Equation 1). Directly
maximizing DI equals to directly maximzing the inter-cluster distance and/or
minimizing the intra-cluster distance. Given the cluster ci and cluster cj as those
whose inter-cluster distance is the minimum of the clustering. The movement of
a data object x of ci to cj will be decided based on the impovement of clustering
quality it made when moving x. This quality change is given as below whereas
ci′ and cj ′ are the clusters ci and cj respectively after moving the data object
x. In the case of moving x also affects the maximum intra-cluster distance, the
quality change will be the maximum of changes made by moving x to another
cluster.

maxΔDI(C) = argmax
j

δ{(ci, cj)} − δ{(ci′, cj′)}
max(Δ(ci′), Δ(cj ′)) (2)

The denominator in the above equation is in fact identical to the objective of the
K-means clustering algorithm since K-means minimizes the sum square error.
For this reason, we used K-means clustering algorithm with incremental steps
as our clustering algorithm for directly maximizing the clustering quality.

Batch K-means Clustering Algorithm: randomly selects k initial centroids; it
reassigns the data points to the nearest cluster; it recalculate the new centroid
for each cluster; this process iterates until the criterion function converges [8].
This classical approach has two major drawbacks [6]: 1) The clustering quality
significantly depends on the choice of the initial partition and 2) The algorithm
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Fig. 4. Illustration of choosing different starting centroids may derive in different
clusterings

may easily fall into the local minimum trap even for very simple datasets. K-
means clustering algorithm with Incremental steps is used to addresses these
problems. It makes an addition to the reassignment of a data point x from πi to
πj (i �= j) based on the sign of

Δ =
∑
i∈πi

||xi− ci||2+
∑
i∈πj

||xi− cj||2−
∑

i∈πi−o

||xi− ci′||2−
∑

i∈πj+o

||xi− cj′||2 (3)

where Δ is the change of the partition‘s quality it made when moving a data
point from πi to πj , ci′ and cj′ are the new centroids of πi and πj respectively.

Initial centroid selection: Even for the K-means with incremental steps, the al-
gorithm still easily falls into the same local trap. This is well illustrated through
the Fig. 4b where even with the transformed data, the original clustering can still
be found by selecting proper initial centroids. The best solution for this problem
is to carefully choose the starting centroids for the algorithm. We use the cen-
troids from the previous process as starting centroids for finding the alternative
clustering (Fig. 4a).

4 Results

Since the DI scores depend on the type of distance measurement used in each
approach, we only compared our DI score to that of [10]; we used GDI33 [2], a
variation of DI. We ran each approach ten times for all the databases and took
the average results; results of these approaches are then compared with those
reported in [3] [1] [4] and [7]. The implementation of [10] was provided by its
authors. We used our synthetic data to test our algorithm and others databases
from UCI1, namely, Segmentation, Vehicle, Vowel, Ionosphere, and Glass for
evaluating the performance compared to the others.

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Table 1. Alternative clustering quality and dissimilarity results of our approach com-
pared to [10]‘s. Higher DI is better quality; lower JI is better dissimilarity.

Dataset Segmentation Vehicle Vowel Ionosphere Glass

Measurement DI JI DI JI DI JI DI JI DI JI

Original 0.53 1.00 0.56 1.00 0.46 1.00 0.65 1.00 0.21 1.00

[10] 0.14 0.30 0.72 0.21 0.74 0.12 0.77 0.46 0.54 0.31

our approach 0.86 0.24 1.39 0.25 0.74 0.12 0.79 0.42 0.81 0.36

4.1 Synthetic Datasets

The dataset consists of 4 Gaussian sub-classes each of which was made up from
100 two-dimensional data points; these sub-classes were originally classified into
2 classes (Fig. 1a). This is the simplest dataset for testing the ability of finding
alternative clustering used in most approaches [3] [1] [10] [4].

We tested this dataset with our approach and [10], then we compared the
dissimilarities to the published results of COALA, CAMI, NACI, and CIB. Since
DI depends on the distance measurement, we only compared our DI with that
of [10] and the original clustering of each dataset.

The experimental results (Table 1) and those reported in [3] [1] [4] and [7]
(Table 2) showed that, except CIB and CAMI, most of the approaches could find
the desired alternative clustering (Fig. 1b). Our implementation worked well and
derived in the best results.

4.2 UCI Datasets

We tested the implementations of our approach and [10] on five UCI datasets,
including Segmentation, Vehicle, Vowel, Ionosphere, and Glass; then we com-
pared our results of dissimilarity with those reported of COALA, CAMI, NACI,
and CIB.

In the comparison with the approach in [10], we had significantly better DI
and equally good JI scores in all of the experiments (Table 1). We significantly
outperformed [10] in the task of clustering quality for four out of five datasets. In
the experiment with Segmentation, [10] resulted in 0.14 of DI score while both
of our approaches were more than 6 times better than that when we achieved
the DI score of 0.86. We almost doubled that value of [10] in the test with Vowel,
and were slightly better compared to [10] in the rest. This low quality of [10] is
accounted for their not direct maximization of clustering quality.

In the comparison of our approaches and [10]‘s to COALA, CAMI, NACI, and
CIB, all of the approaches had very competitive JI scores (Table 2), however,
our transformation based approaches are the most stable ones as we resulted in
best performance for 2 out of 4 tests and always very close to the best approach
in the other experiments.
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Table 2. Comparison of the dissimilarity of all approaches. The lower, the better.

Dataset Segment Vehicle Vowel Synthetic

COALA 0.29 0.26 0.27 0.33

CAMI 0.27 0.32 0.11 0.38

NACI 0.25 0.28 0.11 0.33

CIB 0.32 0.41 0.26 0.40

[10] 0.30 0.21 0.12 0.33

our approach 0.24 0.25 0.12 0.33

Table 3. Experiment with the textual information to see how similar the alternative
clustering is to the target clustering

Comparison between JI

Original and Test 0.062

Alternative and Test 0.291

4.3 Textual Data

In this experiment, we tested our algorithm with a collection of articles from The
New York Times to see how effective and scalable it is to very high dimensional
textual data. The collection is made up by 3076 articles from the online version
of The New York Times2. These articles initially grouped into 30 news categories
including business, sports, US ; they are contributed by 1539 authors.

In the preprocessing, we refined the data to make a Vector Space Model (VSM)
for the data. We stemmed the terms and used the normalized tf.idf to weight
these terms. The result is a VSM of 3076 articles of 41062 terms. To fit the
model to the original clustering of the data, reduce the dimension of the model
to the important features of the original clustering. The test class label is made
up of the classes of authors. Those who contributed less than 10 articles will
be grouped together in a class. The result for this process is a collection of 24
authors, each of which accounts for the average of 154 articles.

We run our experiment on this dataset to find out if we can group the articles
into the classes of authors using alternative clustering. The resutls are given in
the table 3. It’s noticable that the alternative clustering and the target clus-
tering got the JI score of 0.291, whereas the JI score for the orginal clustering
(by categories) and the target clustering (by authors) is only 0.062. This result
illustrated well the capability that we can apply our algorithm to textual data.

5 Discussions

Our approach successfully passed the test with the synthetic and UCI datasets
with the most stable performance. The results illustrate well the importance of
feature selection to find alternative clusterings. They also prove the significance
of the direct maximization of clustering quality.

2 http://www.nytimes.com/

http://www.nytimes.com/
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The results in the experiment with the synthetic dataset has proven that
the initial centroid was also important in helping the centroid-based clustering
algorithms derive in different clusterings.

6 Conclusion

Our study claimed the importance of feature selection and direct maximization
of clustering quality in the problem of finding alternative clusterings. It also
proved that initial centroid selection for centroid-based clustering algorithms is
significant for the problem.

Data objects differ from the other in terms of some so-called important fea-
tures. Approaches come with the feature selection will result in better dissim-
ilarity alternative clusterings than the others using mutual information. The
results also depend on the strategy of the feature selection. Based on the use of
measurement for clustering quality, the approaches directly maximize the qual-
ity (maximizing the same criteria with the quality measure) derive in better
clustering quality than the other approaches not directly maximize the quality.

The importance of features in clustering will make them useful for exploiting
high dimensional data such as textual data and social networks data.
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Abstract. With the emergence of location-aware mobile device tech-
nologies, communication technologies and GPS systems, various location-
aware queries have attracted great attentions in the database literature.
In many user recommendation systems, the spatial preference query is
used to suggest the objects based on their spatial proximity to the fa-
cilities. In this paper, we study the problem of general spatial skyline
which can provide a minimal set of candidates that contain optimal so-
lutions for any monotonic distance based spatial preference query. An
efficient algorithm is proposed to significantly reduce the number of non-
promising objects in the computation. The paper also covers a compre-
hensive performance study of the proposed techniques based on both real
and synthetic data.

1 Introduction

With the development of mobile device technologies, communication technolo-
gies and GPS systems in recent years, there has been an increasing number
of location based service systems specialized in providing interesting results
through location based queries which retrieve the desirable candidate objects
for users based on the spatial proximity of the objects and facilities. For in-
stance, as shown in Figure 1(a), there are a set of apartments, bus stations and
supermarkets in the map, and a user wants to rent an apartment which is close
to both a bus station and a supermarket. In Figure 1(b), each apartment is
mapped to a point in a 2-dimensional space where the distances to the near-
est bus station and supermarket are the coordinate values of an apartment. As
shown in Figure 1 the apartment a4 derives its coordinates from the distance
to its closest bus station (b1) and supermarket(s1). Clearly, the smaller value
is preferred. As there is no apartment with both shortest supermarket-distance
and bus station-distance in the example, the user needs to make a trade-off. Sup-
pose the user has a preference function against the distances of an apartment
regarding its closest bus station and supermarket, the system can return the
apartment with best score regarding the preference function. If the preference
function is in the form of f(o) = 4 × o.d1 + o.d2 where o.d1 and o.d2 represent
the distances of o to the closest supermarket and bus station respectively, then
a4 is the best choice. The answer becomes a3 if we have f(o) = o.d1 + 4× o.d2.
This is the distance based spatial preference query1, and the problem is studied

1 See Section 2.2 for the formal definition.

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 494–508, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Motivating Example

in [10,17,12]. However, in many applications users cannot find an appropriate
preference function. Therefore, it is desirable to provide a minimal candidate set
for users so that they can make personal trade-offs without missing any potential
optimal solution.

Motivated by the above example, in this paper we propose the general spatial
skyline (GSSKY ) operator. Given a set O of objects and a set F of facilities with
m types, an object o can be mapped to a point õ in m-dimensional space, named
distance space, where the coordinate value on i-th dimension is the distance of
o to its nearest facility with type i. We say an object o1 spatially dominates
another object o2 if õ1 dominates õ2 in the mapped distance space. Note that the
dominance relationship in distance space is the same as the traditional skyline
problem [1]; that is, we say õ1 dominates õ2 if õ1 is not larger than õ2 on
any dimension i ∈ [1,m], and õ1 is smaller than õ2 on at least one dimension.
Then the objects which are not spatially dominated by any other object are
general spatial skyline objects. As shown in Section 2.2, the general spatial skyline
objects can provide a minimal set of candidates that contain optimal solutions
for any monotonic distance based spatial preference query. Moreover, we show
theoretically and experimentally that the number of GSSKY objects is usually
much smaller than that of the objects.

Note that although there are some existing works [14,15] which study the
problem of spatial skyline, they cannot provide a minimal set for the distance
based spatial preference queries studied above due to the essential differences
between the two problems. Please see Section 6 for detailed discussion.

Challenge. A straightforward solution for the GSSKY query is to compute dis-
tance values of all objects and then apply the traditional skyline algorithm. This
is not efficient because the distance computation (i.e., retrieving the distance of
an object to the closest facility regarding a particular type) is expensive and we
have to compute the distance values for all objects. In this paper, we propose
a novel GSSKY computation algorithm which aims to reduce the amount of
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distance computations by pruning non-promising objects. Our contributions can
be summarized as follows.

– The general spatial skyline query is formally defined, that provides a minimal
set of candidates which contain optimal solutions for any monotonic distance
based spatial preference query.

– An efficient algorithm is proposed to compute the general spatial skyline.
– Comprehensive experiments demonstrate the efficiency of our techniques.

The remainder of the paper is organized as follows. We formally define the prob-
lem and discuss related techniques in Section 2. Section 3 presents the all nearest
neighbor based algorithm. Section 4 proposes our efficientGSSKY algorithm. Re-
sults of a comprehensive performance study are presented in Section 5. Section 6
presents the related work. Finally, Section 7 concludes the paper.

2 Preliminary

In Section 2.1, we formally define the problem of general spatial skyline com-
putation . In Section 2.2, we show that the general spatial skyline can provide
a minimal set of candidates that contain optimal solutions for any monotonic
spatial preference function. We introduce the incremental nearest neighbor al-
gorithm in Section 2.4. Table 1 below summarizes the mathematical notations
frequently used.

Table 1. The summary of notations

Notation Definition

o (O) object (a set of objects)
f (F) facility (a set of facilities)
m the number of facility types in F
Fi all facilities in F with type i
o.di the distance between o and its closest facility with type i
o� F o is fully hit by F
ri the maximal hit distance seen so far regarding facilities with type i

o1 ≺F o2 o1 spatially dominates o2 regarding F
GSSKY (O,F) the general spatial skyline of O regarding the facilities F

2.1 Problem Definition

A point x referred in this paper, by default, is in a d-dimensional numerical
space. Let δ(x, y) denote the Euclidian distance between two points x and y2. In
the paper, F represents a set of facilities and Fi denotes all facilities in F with
type i. A facility f is a point in the space with a particular facility type.

An object o is a point in a d-dimensional numerical space. The distance of
o to Fi, denoted by o.di, is the distance between o and its closest facility with
type i, i.e., o.di = min ( δ(o, f) for any f ∈ Fi). As shown in Figure 1, given a

2 We focus on Euclidian distance in the paper. Nevertheless, our techniques can be
easily extended to other Lp norm distances.
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set F of facilities with m categories, an object o can be mapped to a point in
m-dimensional space. We define the spatial dominance relationship as follows.

Definition 1 (Spatial Dominance). Given two objects o1, o2 and a set F of
facilities, We say object o1 spatially dominates another object o2 regarding F ,
denoted by o1 ≺F o2, if and only if o1.dj ≤ o2.dj for any facility type j, and
there is a facility type i such that o1.di < o2.di.

Example 1. In Figure 1, we have a2 ≺F a1, a3 ≺F a5, and a4 �≺F a5.

Based on the spatial dominance relation, we come up with the definition of
general spatial skyline as follows.

Definition 2 (General Spatial Skyline). Given a set O of objects and a
set F of facilities, the general spatial skyline of O regarding F , denoted by
GSSKY (O,F), are objects which are not spatially dominated by any other ob-
jects regarding F .

Example 2. In Figure 1, we have GSSKY (O,F) = {a2, a3, a4}.

Problem Statement
In this paper we investigate the problem of efficiently computing general spatial
skyline for a set of objects with respective to multiple types of facilities.

2.2 Minimal Set Property

Given a set O of objects and a set F of facilities with m types, the score of an
object o regarding F , denoted by os, is derived based on its closest facilities.
Following is a formal definition of the distance based spatial preference query.

os = p( o.d1, . . . , o.dm) (1)

Recall that o.di denotes the distance between o and its closest facility with type
i. For presentation simplicity, we use “spatial preference function” to abbrevi-
ate “distance based spatial preference function” in the paper whenever there is
no ambiguity. The following theorem indicates that the GSSKY provides the
minimal set for all increasing spatial preference functions.

Theorem 1. Let P denote the family of all increasing spatial preference func-
tions regarding F , for any p ∈ P the object with best score is in GSSKY (O,F).
For any object o in GSSKY (o,F), there exists a spatial preference function
p ∈ P such that o has the best score regarding p.

Proof. For any object o2 �∈ GSSKY (O,F), there is an object o1 such that
o1 ∈ GSSKY (O,F) and o1 ≺F o2 according to the definition of GSSKY . We
have o1.dj ≤ o2.dj for any j ∈ [1,m] and there exists i ∈ [1,m] such that
o1.di < o2.di. According to the monotonic property of the functions, we have
p(o1) < p(o2) for any increasing spatial preference function p. With similar
rationale, there is an increasing spatial preference function p for each object
o ∈ GSSKY (O,F) such that p(o) has lowest score among all objects. Therefore,
the theorem holds. �
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2.3 Size Estimation

Based on [5], we have the following theorem which estimates the size of GSSKY
objects using an independence assumption.

Theorem 2. Suppose the locations of the facilities and the objects are indepen-

dent to each other, then the expected number of GSSKY object is O( (ln(n))
m−1

(m−1)! )

where n is the number of objects in O.

2.4 Incremental Nearest Neighbor Technique

As our general spatial skyline algorithm proposed in Section 4 is based on the
incremental nearest neighbors(INN) computation, we introduce the INN tech-
nique [7] in this subsection. Unlike the k nearest neighbor query where k is known
beforehand, the INN algorithm will incrementally output the next closest neigh-
bor , i.e., the (l+1)-th nearest neighbor where l is the number of neighbors seen
so far, on user’s demand.

Suppose the objects are organized using an R-tree. A priority queue Q is used
to maintain a set of R-tree entries (intermediate entries and data entries) where
the key of an entry is its minimal distance to the query point. The root of the
R-tree is pushed into Q at the beginning of the algorithm. For each incremental
nearest neighbor request, the algorithm outputs the data entry inQ with smallest
key value. Note that we say an object is in Q if its corresponding data entry
or any of its ancestor entries is in Q. Specifically, if the entry with smallest key
value is a data entry which is associated with an object o, o is output and popped
from Q. Otherwise, the intermediate entry (i.e., index or leaf node ) is popped
and expanded, and all its child entries are pushed into Q. The procedure is
repeated until the entry on top of Q is a data entry. The algorithm can therefore
be used to incrementally determine the next nearest neighbor. [7] has shown the
efficiency of the INN algorithm theoretically and experimentally.

3 All Neareast Neighbor(ANN) Based GSSKY Algorithm

Since the GSSKY problem is exactly the same as the traditional skyline prob-
lem if all objects are mapped to the distance space D, a straightforward solution
for the GSSKY computation is to first compute the distances for all objects
regarding F , and then apply the existing skyline algorithm. As the computa-
tion of the distance values of the objects regarding facilities with type i can be
achieved by all nearest neighbor (ANN) queries against O and Fi, in this subsec-
tion, we apply the state-of-the-art ANN technique [2] to compute the GSSKY .
Algorithm 1 outlines the ANN based general spatial skyline computation. Note
that all existing non-index skyline techniques can be applied in Line 3 once the
distance values of all objects are available. As shown in the empirical study, the
dominant cost of Algorithm 1 is the distance computation.
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Algorithm 1: ANN based GSSKY (O, F)

Input : O : the objects,
F : the facilities

Output : S : GSSKY( O, F)
for each facility type i in [1..m] do1

Compute the o.di for each object o ∈ O by applying ANN [2] algorithm2

against O and Fi ;

S ← compute skyline on the distances of the objects;3

return S4

4 Efficient GSSKY Algorithm

4.1 Motivation

As shown in the empirical study, the dominant cost of the GSSKY computation
comes from the calculation of the distance values for the objects. Consequently,
even if we apply the state-of-the-art technique to compute the distance values
for all objects, the ANN based GSSKY algorithm is still inefficient in terms of
both I/O and CPU costs. Motivated by this, in this section we aim to reduce
the number of distance computations during the GSSKY query process.

In the paper, we may compute the distance values of the objects in two ways:

Object Oriented Search
For each object o, we compute the o.di by applying the nearest neighbor(NN)
algorithm [13] where o is the query point. For instance, as shown in Figure 1 o4.d1
and o4.d2 can be derived by issuing two NN queries against F1 = {s1, s2, s3}
and F2 = {b1, b2} respectively, where o4 is the query point. Particularly, the
all nearest neighbor (ANN) algorithm [2] can also be considered as an object
oriented method in which the object distances are computed in a batch fashion.

The advantage of the object oriented search is that, for a given object or a set
of objects, we can directly derive the distances of the objects. However, as there
is no a priori knowledge about the distance values of the unvisited objects, like
Algorithm 1 in Section 3, we have to compute distance values for all objects to
ensure the correctness of GSSKY computations.

Facility Oriented Search
Instead of computing distance values for each individual object, we can derive
them by applying incremental nearest neighbor(INN) algorithm against facilities
simultaneously where the query point is a facility. As shown in Figure 2, for each
facility f ∈ F , we maintain a radius fr and we say an object o has been hit by
f if δ(f, o) ≤ fr. The distance between o and f is called the hit distance of o
regarding f . Similarly, we say an object o is fully hit by F , denoted by o�F , if
o has been hit by all types of facilities; that is, for any Fi, there exists a facility
f ∈ Fi such that o is hit by f . For each facility type i, we maintain a global
radius ri which is the maximal hit distance seen so far regarding facilities with
type i.

At each iteration, for each type i we find a facility f in Fi to invoke a new
hit by expanding fr such that the increment of ri is minimized. Clearly, the
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global radius ri is non-decreasing in the search. Due to the monotonic property
of ri, we can safely set o.di to the hit distance when it is hit for the first time
by a facility with type i. Recall that an object may be hit multiple times by the
facilities with the same type. Therefore, we say a hit is a redundant hit if the
object has been hit by another facility with the same type.

Example 3. Figure 2 illustrates a snapshot of the facility oriented search in
which we use a circle to record each hit of the objects. Specifically, circles
with thin(bold) line represent the hits from bus stations (supermarkets) and
the number of a circle indicates the accessing order. Moreover, the circle with
solid (dashed) line represents a non-redundant hit (redundant hit). In Figure 2,
a3.d1 and a4.d2 are derived in the first iteration. In the third iteration, the hit
of a7 regarding s3 is a redundant hit because a7 has been hit by s2 in the second
iteration.

Without loss of generality, in the paper we assume the hit distance is distinct for
each facility type. Note that the duplication can be easily handled by visiting all
objects with the same hit distance. Because of the monotonic property of the hit
distance (i.e., ri), the following lemma is immediate, which enables us to obtain
the lower bound of the distance values for the unvisited objects.

Lemma 1. In the facility oriented search, we have o.di > ri if an object o has
not been hit by any facility with type i so far.

Based on Lemma 1, the following theorem implies that we can safely prune some
objects from the GSSKY (O,F) without any distance computation.

Theorem 3. In the facility oriented search, suppose there exists an object o1
which has been hit by all types of facilities, an object o2 can be pruned from
GSSKY (O,F) if o2 has not been hit by any facility.

Proof. We have o1.di ≤ ri for any i ∈ [1,m] since o1 has been hit by all types
of facilities. On the other hand, we have o2.di > ri for any object o2 which has
not been hit by any facility. It is immediate that o1 ≺F o2 and hence o2 can be
pruned from GSSKY (O,F). Therefore, the theorem holds. �
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Example 4. In Figure 2, objects {a1, a5, a6} can be pruned from GSSKY (O,F)
without any distance computation because none of them has been hit by any
facility when a3 is fully hit .

Another advantage of the facility oriented search is that, as shown in [7], the
amortized cost for each hit distance computation in INN query is cheaper than
that of a NN query because the INN algorithm can share the computation by
continuously maintain the priority queue. This implies that if the proportion
of the redundant hits is not significant, the facility oriented method is more
efficient. Intuitively, the proportion of the redundant hits will increase with the
global radius ri regarding Fi because the larger the radius, the higher chance an
object is hit by multiple facilities in Fi. Another disadvantage of the the facility
oriented search is that we need to maintain a priority queue for each facility and
it is not space efficient when the number of facilities is very large.

Motivated by the advantages and disadvantages of the object oriented search
and the facility oriented search, we propose an efficient GSSKY algorithm which
combine both methods in an effective way. The algorithm consists of three
phases. In the first phase, we apply the facility oriented search to compute object
distances and prune objects (i.e., remove non-skyline objects) based on lemma 1
and Theorem 3. This is feasible because the number of facilities is usually much
smaller than that of objects in real applications. When we find that the compu-
tation of facility oriented search becomes less efficient due to the large amount
of redundant hits , the algorithm goes to phase two, in which we compute the
distances of the remaining objects based on the object oriented search (i.e., NN
query). Finally, in phase three we apply the existing skyline algorithm to finalize
the GSSKY computation.

4.2 Algorithm

In the paper, we assume a set O of objects are organized using R-Tree, denoted
by RO, and all facilities with type i are also organized using R-Tree RFi . The
Algorithm 2 illustrates the details of the efficient GSSKY algorithm.

In Line 2-9, we apply the facility oriented search to compute the distances of
the objects until there exists an object which has been fully hit . Particularly, a
local priority queue is employed for each facility f for INN query, i.e., retrieve
the next closest neighbor of f . For each facility type i ∈ [1,m], we use a global
priority queue Qi to maintain the current closest neighbors (i.e., objects) of the
facilities in Fi. The elements global priority queue Qi are prioritized using dis-
tances. In Line 4, the object o on the top of Qi is popped and a INN query is
issued by its associated facility to retrieve the next closest neighbors o2. Then
o2 is pushed into Qi. Line 6 sets o.di to the current hit distance (recorded by
ri) if it is a non-redundant hit . When the loop is terminated (Line 9), o is a
GSSKY object and kept in S, and objects which have been hit at least once are
kept in the candidate set C. According to Theorem 3, all remaining objects can
be pruned. For I/O efficiency, we keep the page ids of the nodes (i.e., interme-
diate entries) of the RO visited so far. In the following facility oriented search
(Line 10- 21), we do not access a node of RO if its page id is not recorded
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Algorithm 2: Efficient GSSKY Algorithm (O, F)

Input : O : the objects,
F : the facilities with m types

Output : S : GSSKY( O, F)
S := ∅; C := ∅; ri := 0 for each Fi;1

while true do2

for each facility type i in [1..m] do3

o ← next object in facility oriented search regarding Fi;4

if the hit of o is a non-redundant hit then5

odi := ri; C := C ∪ o;6

if o is fully hit by F then7

S := o; C := C − o;8

Terminate the while loop;9

while true do10

for each facility type i in [1..m] do11

o ← next object in facility oriented search regarding Fi;12

if o is a candidate object and the hit of o is a non-redundant hit then13

odi := ri;14

if SkylineTest(S , o) then15

if o is fully hit by F then16

C := C − o; S := S + o;17

else18

C := C − o;19

if #redundant hit is larger than #non-redundant hit then20

Terminate the while loop;21

for each object o ∈ C do22

calculate odi by NN query if o has not been hit regarding Fi ;23

for each object o ∈ C accessed in non-decreasing order based on
∑m

i=1 odi do24

if SkylineTest(S , o) then25

S := S ∪ o;26

return S27

(i.e., all of its descendant data entries correspond to the pruned objects) and
hence the I/O cost can be saved.

In Line 10-21, we continue the facility oriented search and try to identify the
GSSKY objects and prune the non-promising ones. Particularly, if the object o
output in Line 12 is a candidate object (i.e., o ∈ C) and the hit is a non-redundant
hit , Line 15 checks if there exits an object s ∈ S (i.e., GSSKY objects seen so
far) such that s ≺F o. Note that if o has not been hit by any facility with type
i, odi is temporarily set to ri in the test. We say an object o passes the skyline
test (SkylineTest) if it is not spatially dominated by any object in S. In the
case o passes the test (Line 4.2-17), it is a GSSKY object if o has been fully hit .
Otherwise, we cannot claim that o is a GSSKY object at this moment because
the lower bound of the distance is employed in the skyline test. Line 19 eliminates
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the object from C if o fails the test. As discussed in Section 4.1, the facility
oriented seasrch should be stopped when ri becomes large due to the increased
probability of redundant hit . However, it is impossible to find the optimal stop
time without knowing the exact distributions of the following redundant hits and
non-redundant hits are unknown. In the paper, we employ a simple but effective
criteria. The number of non-redundant hits and redundant hits are counted, and
Line 21 terminates the facility oriented search if there are more redundant hits .

Line 22-23 calculate the missing distances for the objects in the candidate
set, where the object oriented search is employed. Recall that the missing of odi

value implies that the object o has not been hit by any facility with type i so
far. The remaining part of the algorithm is similar to the SFS Algorithm [3].
Particularly, we sort all the candidate objects based on the sum of their distance
values (i.e.,

∑m
i=1 odi) in non-decreasing order (Line 22), and Line 25 checks if

an object is spatially dominated by the GSSKY objects (S) seen so far. The
objects passed the test are GSSKY objects (Line 26).

Correctness. For the correctness of the Algorithm 2, we need the following
properties: (i) any object pruned at Line 15 and Line 25 are not GSSKY object,
(ii) all objects unvisited in Algorithm 2 are not GSSKY objects, and (iii) the
object in S cannot be dominated by any other object in O. Below is a formal
proof.

Proof. The correctness of the property (i) is immediate based on the definition
of GSSKY if o has been fully hit at Line 15 and Line 25. If odi is replaced by ri
at Line 15 (i.e., o has not been hit by any facility with type i) and o is dominated
by an object s ∈ S, we can claim that s spatially dominates o regarding F due
to the monotonic property of ri (Lemma 1). The correctness of property (ii) is
immediate based on Theorem 3.

We prove the correctness of property (iii) by the contradiction. Suppose the
object s is in S but s is spatially dominated by another object o. We can assume
o is a GSSKY object because of the dominance transitivity property of spatial
dominance, i.e., o1 ≺F o2 and o2 ≺F o3 implies o1 ≺F o3. If s is put in S at
Line 4.2 or Line 17, o should be included in S before s. This is because o ≺F s
implies s is fully hit after o due to the monotonic property in the facility oriented
search. This contradicts the proposition that s is the first object being fully hit
(). Also, s should also fail in the test in and s will not be added into S. We can
come up with similar contradiction if s is put in S at Line 26 because we access
objects based the sum of their distance values. �

Performance Analysis. Upon each hit in Algorithm 2 (Line 2-21), an INN
query is issued to retrieve the next closest neighbor of a facility f ∈ Fi where i ∈
[1,m] and the global priority queue Qi is updated. The cost is Cinn+O(log(nf ))
where Cinn and nf denote the average cost of a INN query and the average
number of facilities for each type respectively. If it is a non-redundant hit , the
skyline test is invoked which costs O(|S|) in the worst case where |S| is the
size of S. In Line 22-23, the cost is O((m − 1) × |C| × Cnn) in the worst case
where Cnn is the average cost for NN query and |C| denotes the candidate set
size. Recall that a candidate object will be hit at least once. The sorting cost
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in Line 24 is O(|C| × log(|C|)) and the cost of skyline computation in Line 24-
26 is |S|2 in the worse case. In summary, let nr and ns denote the number of
redundant hits and non-redundant hits , the time complexity of Algorithm 2 is
O((nr+ns)×(Cinn+log(nf )) +ns×|S|+ (m−1)×|C|×Cnn+ |C|×log(|C|)+|S|2).
Note that, in practice |S| and |C| are much smaller than the total number of
objects, and hence the algorithm is quite efficient.

Following theorem estimate the number of objects accessed, i.e., objects have
been hit at least once, in Algorithm 2 based on the uniform and independence
assumption.

Theorem 4. Suppose that (i) objects and facilities are uniformly distributed in
the space [0, 1]2, (ii) there are nf facilities for each type, and (iii) the locations
are independence regarding different types of facilities. The expected number of
objects accessed in Algorithm 2 is n(1 − (1 − πX̄2)m) where n is the number of
objects. Particularly, we have X̄ equals

∫ c

r=0
(1 − F (r))′r d(r) where c = 1√

2nf
,

and F (r) = (1− (nfπr
2)m)n.

Proof. Due to the space limitation, we give a brief proof. According to the uni-
form assumption and each type has the same number of facilities, we can assume
ri = rj in each iteration where 1 ≤ i, j ≤ m. Therefore, we use r to denote the ri
for any i ∈ [1,m]. The probability that none of the objects is fully hit for given
r, denoted by F (r), is (1− (nfπr

2)m)n due to the uniform and independence as-
sumption. Let X denote the distance r when the first object is fully hit , then its
expected value X̄ equals

∫ c

r=0(1−F (r))′×r d(r) where c = 1√
2nf

. Consequently,

the expected number of objects accessed is n(1− (1− πX̄2)m). �

5 Performance Evaluation

In this section, We present the results of a comprehensive performance study to
evaluate the efficiency and scalability of the proposed techniques in the paper.
The following algorithms were selected for evaluation.

ANN . The all nearest neighbor based technique presented in Section 3. The
SFS algorithm [3] is used in Algorithm 1 for skyline computation.

GSSKY . The efficient GSSKY algorithm proposed in Section 4.

Both algorithms in this paper are implemented in standard C++ with STL
library support and compiled with GNU GCC. Experiments are run on a PC
with Intel Xeon 2.40GHz dual CPU and 4G memory running Debian Linux. The
disk page size is fixed to 4096 bytes.

Real Datasets. Two real spatial datasets, CA and US , are employed in the
experiment3. CA consists of 104, 217 locations of 44 different categories (e.g.,
church, lake and school). Each category corresponds to a facility type. The ob-
jects in CA are constructed as follows. We first normalize the space to [0, 1]2 and

3 CA is available from http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm. US
is available from http://www.geonames.usgs.gov/

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm.
http://www.geonames.usgs.gov/
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then for each facility we randomly create 5 objects within distance 0.005. Con-
sequently the number of objects in CA dataset is 521, 085. Similarly, US dataset
is obtained from the U.S. Geological Survey (USGS) and consists of 406, 709
locations with 40 types. The number of objects in US is 2, 033, 545.

Synthetic Datasets. To study the scalability of the algorithms, we also create
synthetic dataset, denoted by SYN , in the experiment. The objects and facilities
are randomly generated in 2-dimensional space [0, 1]2. Specifically, the number
of objects varies from 500K to 5M with default value 1M . There are 40 types
of facilities and the number of facilities for each type varies from 500 to 10, 000
with default value 2, 000. SYN is the default dataset in the experiment.

Work Load. The work load of each experiment consists of 200 GSSKY queries
and m types are randomly chosen in each query where m varies from 2 to 5 with
default value 3. In the paper, the average processing time, which includes the
CPU time and I/O latency, is used to measure the efficiency of the algorithms.
We also record the averageGSSKY size and the average number of nodes loaded.

Table 2 lists parameters which may have an impact on our performance study.
In our experiments, all parameters use default values unless otherwise specified.

Table 2. System Parameters

Notation Definition (Default Values)
m the number of facility types (3)
n the number of objects (1M)
nf the number of facilities for each type (2000)

5.1 GSSKY SIZE
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Fig. 3. Diff. datasets and m

In this subsection, we investigate the size of the GSSKY . Figure 3 illustrates the
GSSKY size on SYN , CA and US datasets wherem varies from 2 to 5. For given
m, the size difference of the three datasets are not significant. As expected, the
number of GSSKY objects increases quickly towards the number of types (m).
Particularly, for m = 2 the GSSKY size is 13, 15 and 15 for SYN , CA and US
respectively. When m goes to 5, it becomes 2, 666, 5, 508 and 5, 911 respectively.

Figure 4 and Figure 5 investigate the impact of the object size (n) and facility
size (nf ) respectively. Since locations of the facilities with different types are
independent, Theorem 2 can be applied to estimate the GSSKY size , and its
accuracy is verified in both Figures. Moreover, the GSSKY size increases slowly
with the number of objects and is independent to the number of facilities.
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5.2 Efficiency

We first evaluate the efficiency of the algorithms on SYN , CA and US datasets.
Figure 6(a) shows that GSSKY Algorithm significantly outperforms the ANN
Algorithm by at least one order of magnitude. The number on each bar records
the cost for the skyline test, which shows the dominant cost in two algorithms is
the distance computation. We also study the impact of the parameters which may
potentially affect the performance of the algorithms. Specifically, Figure 6(b),
Figure 6(c) and Figure 6(d) investigate the scalability of the algorithms against
the m (#types ), n (#objects) and nf (#facilities each type) respectively. As
expected, the performance of the algorithms degrades against the growth of
these parameters. Nevertheless, GSSKY Algorithm is more scalable than ANN
Algorithm against n and nf . As expected, both algorithms are sensitive to m as
the GSSKY size increases significantly against m.
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Fig. 6. Time Efficiency Evaluation

In Figure 7, we evaluate the number of R-tree nodes loaded in the main
memory on SYN ,CA and US datasets. It is shown that GSSKY algorithm sig-
nificantly reduces I/O because many objects are pruned. Figure 8 shows the
proportion of the objects involved in distance computation. Clearly, all objects
contribute to the distance calculation in ANN Algorithm. While a significant
number of objects are pruned in GSSKY Algorithm. It also demonstrates the
accuracy of the Theorem 4, where EST represents the estimation of the theorem.
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6 Related Work

Studies on skyline computation have a long history. Börzsönyi et al. [1] first
investigate the skyline computation problem in the context of databases and
propose an SQL syntax for the skyline query. They also develop skyline com-
putation techniques based on block-nested-loop and divide-conquer paradigms,
respectively. Chomicki et al. [3] propose another block-nested-loop based com-
putation technique, SFS (sort-filter-skyline), to take advantages of a pre-sorting.
Papadias et al. [11] propose a branch and bound search technique (BBS) to
progressively output skyline points on dataset indexed by R-tree.

The problem of spatial skyline is first proposed in [14]. Given a set O of ob-
jects and a set Q of query points, each object has |Q| derived spatial attributes
each of which is the distance of the object to a query point in Q, and hence
can be mapped to a point in |Q|-dimensional space where |Q| is the number of
query points in Q. Then the spatial skyline regarding O and Q is the traditional
skyline on |Q|-dimensional space. Efficient algorithms are developed in [14] to
compute spatial skylines by utilizing the R-tree, convex hull, and voronoi dia-
gram techniques. Son et al. [15] further improve the spatial skyline computation
techniques. Recently, in [16] they investigate the problem based on the man-
hattan distance. In [4], Ke et al. investigate the problem in the road network.
Besides the spatial skyline, there are also some related works in which the skyline
is computed based on the derived spatial attributes. In [8], Huang et al. studies
the problem of in-route skyline to find locations which are not dominated by
other candidate locations regarding the network distance to a query location q
and the corresponding detour distance. In [9,6] spatial distance regarding a query
point q is considered during the skyline computation, in which other dimensions
of an objects are non-spatial attributes.

In many applications, the query points may come from the same category
(e.g., bus stations, supermarkets). For an object o and a particular category (i.e.,
facility type like bus station), users are only interested in the distance between
o and its closest query point (i.e., facility) in that category. Consequently, the
spatial skyline does not make sense in these applications because it considers
the distances of o regarding all facilities in the same category, and hence cannot
provide a minimal set of candidates for the distance based spatial preference
queries [10]. Moreover, the techniques in [14,16] cannot be applied to the GSSKY
computation because the spatial skyline is a special case of the general spatial
skyline in which there is only one facility for each facility type.
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7 Conclusion and Future Work

In this paper, we introduce the general spatial skyline which can provide a min-
imal set of candidates that contain optimal solutions of any monotonic distance
based spatial preference query. Efficient algorithm is proposed in the paper and
comprehensive experiments are conducted to demonstrate the effectiveness and
efficiency of the algorithms. As a possible future work, we will investigate the
problem on the road network in which the network distance is considered.
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Abstract. The top-k similarity joins have been extensively studied and
used in a wide spectrum of applications such as information retrieval,
decision making, spatial data analysis and data mining. Given two sets
of objects U and V, a top-k similarity join returns k pairs of most similar
objects from U×V. In the conventional model of top-k similarity join pro-
cessing, an object is usually regarded as a point in a multi-dimensional
space and the similarity between two objects is usually measured by
distance metrics such as Euclidean distance. However, in many applica-
tions an object may be described by multiple values (instances) and the
conventional model is not applicable since it does not address the distri-
butions of object instances. In this paper, we study top-k similarity join
queries over multi-valued objects. We apply quantile based distance to
explore the relative instance distribution among the multiple instances of
objects. Efficient and effective techniques to process top-k similarity joins
over multi-valued objects are developed following a filtering-refinement
framework. Novel distance, statistic and weight based pruning techniques
are proposed. Comprehensive experiments on both real and synthetic
datasets demonstrate the efficiency and effectiveness of our techniques.

1 Introduction

Given two sets of objects (points) U and V in a d-dimensional metric space, the
top-k similarity join query retrieves k pairs of objects P from U × V such that
the distance between any pair of objects in P is not greater than the distance
of any object pairs in U × V − P . Conventional similarity join query has been
extensively studied in various applications including data mining, information
retrieval, and location based services [2], [9], [10]. Top-k similarity join, also
called closest pair queries, has also attracted much research attention [6]. In
many applications such as decision making and e-business, an object may be
represented by multiple points (instances) in the d-dimensional space, namely
multi-valued objects [7]. In this paper, we study the problem of top-k similarity
joins on multi-valued objects.

The needs of similarity join over multi-valued objects stem from many im-
portant applications. In geographic information system (GIS), a group of simple
spatial objects may be evaluated as a whole [17]. For instance, to evaluate a
community, a real estate development company may model it as a multi-valued
object and each instance corresponds to a property with some feature values
such as property price, household income, distance to beach, distances to living

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 509–525, 2012.
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facilities, etc. A top-k similarity join may be issued to identify the most similar
communities from two large cities or from two countries, such that the price
fluctuation of one community could be used as a mirror to the management of
another one. Similarly, in sports, the performance of a player may be described
by her game-to-game statistics in various games. So each player could be repre-
sented by a multi-valued object where each instance corresponds to her statistics,
such as heights and number of trials in high-jump, in a particular game she at-
tended. A similarity join over two sets of players may help to retrieve players
with similar performances. Hence, the successful career path of one player give
a prediction of the success of her counterpart in coming competitions.

While the similarity between two conventional d-dimensional objects only in-
volves two single points, identifying the most similar object pairs among multi-
valued object sets involves multiple instances per object. Therefore, it is highly
desirable to consider the relative instance distributions among multi-valued ob-
jects so that the similar pairs can be effectively retrieved. In this paper, we
investigate the problem of similarity join over multi-valued objects in a top-k
fashion. That is, we aim to retrieve k pairs of multi-valued objects with the
highest level of similarity.

The existing model for handling similarity joins over objects with multiple
instances follows the probabilistic semantics on uncertain objects [4], [11], [14]
and aims to capture relative instance distribution among objects with multiple
instances. Nevertheless, uncertain objects are inherently different than multi-
valued objects. Instances of an uncertain object are mutually exclusive which
means at most one instance can appear at a particular time, while all the val-
ues/instances of a multi-valued object must occur simultaneously at any time.
Moreover, as shown in [21], models based on uncertain semantics cannot always
capture the relative distributions of multi-valued objects. Take the example in
Figure 1. For simplicity we assume multi-valued object U1 has only one instance
with the value (score) of 10, while multi-valued objects V1 and V2 both have m
instances spread between 9.0 to 9.99 as depicted in Figure 1(a). Each instance
from the same object takes the same weight. Suppose we want to retrieve the
top-1 similarity join result from {U1} and {V1, V2}, namely, retrieve the more
similar one from V1 and V2 to U1. Following the possible world semantics, it is
easy to verify that both V1 and V2 have the same probability, 1

2 , to be the most
similar one to U1 if Euclidean distance is used as the similarity metrics. We per-
mute the distribution in Figure 1(a) to the distribution in Figure 1(b), V1 and V2
still have the same probability. This example demonstrates that the probabilistic
approaches following the possible world semantics are not able to capture the
relative distributions of instances. Another simple solution is to utilize simple
aggregates such as average. Nevertheless, such a simple aggregate will have the
same problem as pointed above regarding Figure 1.

The example in Figure 1 demonstrates that the existing probabilisticmodel and
simple aggregates may be insensitive to relative distributions of object instances.
Quantiles [19] provide a succinct summary of data distributions. In this paper, we
investigate the top-k similarity join problem over multi-valued objects based on a
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Fig. 1. Motivating Example

φ-quantile distance (φ ∈ (0, 1]); for example, median is the 0.5-quantile,maximum
is the 1-quantile, minimum is the smallest quantile (note a quantile φ is in (0, 1]
and cannot be 0). Regarding the above example, 0.5-quantile is based on play-
ers’ median performance; 1-quantile is to retrieve the top-k similar pairs based on
players’ worst performance. In this paper, we study the problem of top-k similar-
ity joins over multi-valued objects where the input are two sets of multi-valued
objects.

Challenges and Contributions. To the best of our knowledge, this is the
first paper to study top-k similarity joins over multi-valued objects. φ-quantile
distance is first used for capturing instance distributions of multi-valued objects
in [21]. [21] studies top-k nearest neighbor (KNN) queries over multi-valued
objects. Given a multi-valued query object Q and a set of multi-valued objects
U , a KNN query retrieve k objects from U with smallest quantile-based distance
to Q. An immediate way to solve our problem can be conducted as follows. For
each object U ∈ U (or V ∈ V), we compute its KNN in V (or U) using the
techniques in [21], and then select k most similar pairs based on the union of
KNN results. Nevertheless, this involves the computation of KNN for each object
in U (or each object in V). Clearly, not every object in U (or V) will be involved in
the top-k pairs since k is usually much smaller than min{|U|, |V|}. Motivated by
this, in this paper, we present a set of novel, efficient, effective pruning techniques
to prevent such redundant computation. Our main contributions of the paper
can be summarized as follows.

– We formalize the problem of top-k similarity join over multi-valued objects,
regarding quantile-based distance metrics.

– Efficient and effective algorithms are developed to compute the top-k similar-
ity join results over two sets of multi-valued objects based on φ-quantile-based
distances. Particularly, we propose novel and efficient distance, statistic and
weight based pruning techniques to significantly speed up the computation.

– Comprehensive experiments are conducted on both real and synthetic data
to demonstrate the efficiency and effectiveness of our techniques. It also
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demonstrates that the techniques developed in this paper are up to 2 orders
of magnitude more efficient than naively applying KNN techniques in [21].

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 formally defines the problem of top-k similarity join over multi-valued
objects regarding quantile-based distance and provide some necessary back-
ground information. In Section 3, we introduce the filtering-refinement frame-
work, as well as the data structures utilized in the paper. Section 4 presents
query processing techniques for top-k similarity joins. In Section 5, we report
our experiment results. Related work is summarized in Section 6. This is followed
by conclusions in Section 7.

2 Background

We present problem definition and necessary preliminaries in this section. For
references, notations frequently used in the paper are summarized in Table 1.

Table 1. The summary of Notations

Notation Definition

U , V two sets of of objects in the join query

U (V ) multi-valued object

E entry of R-tree

u (v) instance of U (V ) - a point in d-dimensional space

w(u) (w(S)) (total) weight of u (the set S)

d(u, v) Euclidean distance between u and v

dlo(E,E′) distance lower-bound between E and E′

dφ(U,V ) φ-quantile distance of U and V

U × V Cartesian product of instances from U to V

2.1 Problem Definition

Multi-valued Object. In our problem definition, an instance of an object U is
weighted - weight gives the representativeness of an instance in U . For instance,
in the examples in Section 1, a game statistic of a player may appear multiple
times; consequently a normalized weight (the occurrence of an instance over the
total occurrences of all instances) may be used to indicate the representativeness
of an instance. Note that the total of such weights in U equals to 1.

A multi-valued object U is represented as {(ui, w(ui))|1 ≤ i ≤ m} where ui is a
point in a d-dimensional space, 0 < w(ui) ≤ 1 (1 ≤ i ≤ m), and

∑m
i=1 w(ui) = 1.

We use U and V to denote two sets of multi-valued objects involved in the join
query.

Quantile. Given a collection S of m elements, each element si has a weight
w(si) where 0 < w(si) ≤ 1 and

∑m
i=1 w(si) = 1. Let S be sorted increasingly on

a search key f - a function; that is, f(si) ≤ f(sj) if i < j.
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Definition 1 (φ-quantile of S). Given a φ (0 < φ ≤ 1), the φ-quantile Sφ of S

is the first element si in the sorted S on the search key such that
∑i

j=1 w(sj) ≥ φ.

φ-quantile Distance. For two given objects U and V , there are totally (|U | ×
|V |) pairs of instances in U ×V where each pair (ui, vj) (ui ∈ U and vj ∈ V ) has
the weight w(ui)×w(vj), namely w(ui, vj). Clearly,

∑
ui∈U,vj∈V w(ui)×w(vj) =

1. The Euclidean distance d(ui, vj)
1 between ui and vj is called the distance of

(ui, vj). Let U × V = {((ui, vj), w(ui, vj)) | ui ∈ U & vj ∈ V }.
Definition 2 (φ-quantile distance of U and V ). Given a φ ∈ (0, 1], let U×V
be sorted increasingly on the search key - the distance d(ui, vj) of each element
(ui, vj). Then, the distance of the φ-quantile of U × V is called the φ-quantile
distance of U × V , denoted by dφ(U, V ).

Definition 2 states that if (u, v) is the φ-quantile of U×V (i.e., (U×V )φ = (u, v))
then d(u, v) is dφ(U, V ).

U

V

u2

v1

v3

v2

u1

Fig. 2. Distances between 2 Multi-Valued Objects

Example 1. Regarding the example in Figure 2, |U | = 2 and |V | = 3. Assume
that w(u1) = w(u2) =

1
2 ; w(v1) = w(v2) =

1
4 , w(v3) =

1
2 . Consequently, U × V

consists of the following six instance pairs sorted on their distances increas-
ingly: U × V = {((u2, v1), 1

8 ), ((u2, v3),
1
4 ), ((u1, v1),

1
8 ), ((u2, v2),

1
8 ), ((u1, v2),

1
8 ), ((u1, v3),

1
4 )}. The 0.2-quantile distance d0.2(U, V ) of U and V is d(u2, v3),

d0.5(U, V ) is d(u1, v1), d0.6(U, V ) is d(u2, v2). �
Problem Statement. Given a φ ∈ (0, 1], two sets of multi-valued objects U and
V in the d-dimensional space, a top-k similarity join retrieves k pairs of objects P
from U ×V such that for each object pair (U, V ) from P , its φ-quantile distance
dφ(U, V ) is no greater that the φ-quantile distance of object pairs from U×V−P .

2.2 Preliminaries

φ-quantile Distance Computation. Given a collection S of m elements, each
element si has a weight w(si) where 0 < w(si) ≤ 1 and

∑m
i=1 w(si) ≤ 1. A naive

1 Note that our techniques developed in this paper is based on Euclidean distance;
nevertheless they can be immediately extended to cover other distance metrics.
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way to compute the φ-quantile is to firstly sort S regarding a given search key
f , and then scan the sorted list to obtain the φ-quantile of S. Clearly, the naive
algorithm runs in O(m logm). In [5], an efficient and effective partitioning tech-
nique is proposed to find an element s ∈ S to divide S into two sub-collections
S1 and S2 with the following properties:

1. for each s′ ∈ S1, f(s
′) ≤ f(s); and for each s′ ∈ S2, f(s

′) ≥ f(s).
2. |S1| ≥ 3

10m− 6 and |S2| ≥ 3
10m− 6.

Using the partitioning technique, when S is not sorted the time complexity of
computing φ-quantile of S is linear - O(|S|).

Regarding two multi-valued objects U and V , there are totally |U | × |V |
instance pairs. Directly applying the partition based algorithm, computing φ-
quantile distance between U and V takes O(|U | × |V |). In [21], instances inside
one multi-valued object are indexed by an R-tree. Based on the R-tree, pruning
techniques are proposed to discard instance pairs which are guaranteed not to
be the φ-quantile of U × V . In this paper, we use the pruning techniques en-
hanced, partition based, linear time complexity algorithm in [21] as a black box
in computing φ-quantile distance between two multi-valued objects.

Conventional Top-k Similarity Joins. Conventional top-k similarity joins,
also called closest pair queries, have been extensively studied over conventional
(point) spatial databases [3], [6], [9]. The most recent technique proposes to build
an index on the fly [3]. Nevertheless, this technique cannot be used to prune a
group of object pairs. That is, every object has to participate in the distance
computation. As the quantile distance computation between two objects is very
expensive with the presence of multiple instances, in this paper, we will apply
an R-tree index based top-k similarity join algorithm to facilitate the preven-
tion of computing quantile distances between unpromising pairs of multi-valued
objects. In [6], several algorithms are proposed using R-tree based indexes in-
cluding exhaustive algorithm, recursive algorithm and Heap algorithm. Among
all techniques, Heap algorithm demonstrates a better performance in most ex-
periment settings. The priority query based algorithm in [9] is quite similar to
Heap algorithm except that Heap algorithm performs a simple pruning before
inserting an entry pair into the heap. We adopt the Heap algorithm and develop
novel pruning techniques to speed up the computation. Note that our pruning
techniques are general enough to be plugged into any R-tree based algorithm for
computing conventional top-k similarity joins.

3 Framework

Our techniques for solving the top-k similarity join based on quantile distance fol-
low a standard seeding-filtering-refinement framework outlined in Algorithm 1.

In the seeding phase, we choose k object pairs and compute their φ-quantile
distances, using the techniques introduced in Section 2.2. Let λk be the maximal
of these k φ-quantile distances, in the filtering phase, λk could be used to prune
unpromising object pairs and iteratively updated if necessary. Any k object
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Algorithm 1: Framework

– Phase 1 - Seeding: Compute the φ-quantile distance for each of the k chosen
object pairs from U × V.

– Phase 2 - Filtering: Discard unpromising object pairs from U × V.
– Phase 3 - Refinement: Determine the final solution for φ-quantile top-k

similarity join.

pairs from U × V could be chosen to compute the φ-quantile distance in the
seeding phase. Apparently, similar object pairs will lead to smaller λk values;
and hence better pruning power in the filtering phase. In our framework, to
select k object pairs, we first use the mean μ(U) of the multiple instances for
each multi-valued object U from the two given datasets to represent U . μ(U)
=

∑m
i=1 w(ui) × ui where m is the number of instances in U . Clearly μ(U) is

also in the d-dimensional space. Thus the top-k similarity join is converted to
join over conventional datasets where each object is a single point in the multi-
dimensional space, and we could apply the existing algorithms [6] to obtain the
k most similar pairs from the two (single-valued) datasets. The corresponding
k multi-valued object pairs from U and V are then chosen to compute the φ-
quantile distances. At this point, we obtain a distance threshold λk which will
be used in the filtering phase.

Data Structures

In our techniques, we use aggregate R-trees [16] to index the local instances of
each multi-valued object in U ∪V , and use two statistic information enhanced R-
trees (named sR-trees) to globally index the minimum bounding boxes (MBBs)
of objects in U and V , respectively. The local aR-trees and global sR-tress are
built to facilitate our filtering techniques.

Local aR-trees. For each multi-valued object U ∈ U ∪ V , a local aR-tree [16]
is built to organize its multiple instances. The aggregate information kept on
each intermediate entry is the sum of weights of instances indexed by the entry.
Namely, for every intermediate entry E in the local aR-tree, we record the weight
of E as the sum of weights (total weights) of instances having E as an ancestor.

Global sR-trees. We maintain two R-trees on the MBBs of multiple instances
of objects in U and V , respectively. That is, for each object in U , we first obtain
the MBB of its multiple instances. Then we build an R-tree on these MBBs.
This R-tree is called the global R-tree of U . Similarly we build the global R-tree
for V . Note in a global R-tree, each leaf (data) entry is an MBB of an object.

Suppose an object U hasm instances in the d-dimensional space, u1, u2, ..., um
with the weights w(u1), w(u2), ..., w(um), respectively.

Definition 3 (Mean μ). The mean of U , denoted by μ(U), is
∑m

i=1 w(ui)×ui.
Note that μ(U) is in the d-dimensional space. For 1 ≤ i ≤ d, μi(U) denotes the
i-th coordinate of μ(U).
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Definition 4 (Variance σ2). For 1 ≤ i ≤ d, σ2(U) =
∑m

j=1 w(uj)(uj,i −
μi(U))2 where each uj,i denotes the i-th coordinate value of uj.

In each of the leaf (data) entry of the global R-tree, besides the MBB information
of each object, we also keep the above statistic information. And the global R-
tree is called a statistic R-tree, denoted by sR-tree. Remind that two sR-tree are
built for the multi-valued object sets U and V , respectively.

4 φ-Quantile Top-k Similarity Join

We present our techniques for φ-quantile top-k similarity join for a given φ ∈
(0, 1] in this section. We first present novel distance, statistic and weight based
pruning techniques. Then, we integrate the proposed pruning techniques into
the overall join algorithm based on the Heap Algorithm in [6].

4.1 Pruning Techniques

When introducing the pruning techniques, we assume that we have an entry pair
(EU , EV ) from the join processing where EU (EV ) is an entry from the global
sR-tree of U (V). EU (EV ) could be either intermediate or leaf (data) entry.
The way to access entries from the two global sR-trees will be introduced in
Section 4.2.

Distance based Pruning. The first pruning rule is based on the distance be-
tween two entries in the join processing obtained from intermediate or leaf entries
of two global sR-trees.

Pruning Rule 1. Let dlo(EU , EV ) denote the minimum distance between the

MBBs of two entries EU and EV . If dlo(EU , EV ) ≥ λk, then (EU , EV ) can
be pruned, namely, all entry pairs in EU × EV can be pruned.

Complexity. Computing the minimum distance between two MBBs takes O(d)
time. The complexity of Pruning Rule 1 is constant once d is fixed.

Statistic based Pruning. The second pruning technique utilizes the statistic
information kept in the global sR-tree, as introduced in Section 3. The main
idea is based on the current distance threshold λk, to derive a value α such that
the α-quantile distance between an object pair (U, V ) is not smaller than λk. If
α < φ, we can safely prune (U, V ). We first introduce the Cantelli’s inequality
[15] which is employed in Pruning Rule 2.

Let δ(x, y) be 1

1+ x2

y2

if y �= 0, 1 if x = 0 and y = 0, and 0 if x �= 0 and y = 0.

Theorem 1 (Cantelli’s Inequality [15]). Suppose that t is a random variable
in 1-dimensional space with mean μ(t) and variance σ2(t), Prob(t−μ(t) ≥ a) ≤
δ(a, σ(t)) for any a ≥ 0, where Prob(t − μ(t) ≥ a) denotes the probability of
t− μ(t) ≥ a.
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Note that Theorem 1 extends the original Cantelli’s Inequality [15] to cover the
case when σ = 0 and/or a = 0. The following theorem is proved in [13] and
provides an upper-bound for Prob(t ≤ b) when b ≤ μ .

Theorem 2. Assume that 0 ≤ b ≤ μ(t). Then, Prob(t ≤ b) ≤ δ(μ(t)− b, σ(t)).

Proof. Let t′ = 2μ(t)− t. It can be immediately verified that σ2(t′) = σ2(t) and
μ(t) = μ(t′). Applying Cantelli’s Inequality on t′, the theorem holds. �
Now we generalize the above observations into our statistic based pruning rule.
As shown in Figure 3, for two object entries (U, V ) stored in the leaf/data entries
of global sR-tree of U and V , along the i-th dimension (1 ≤ i ≤ d), e.g., the
horizontal dimension in Figure 3, we locate two lines m and n vertical to the
i-th dimension and with distance λk between m and n. Denote Ui (Vi) as the
coordinate value of U (V ) along the i-th dimension. The line Ui = m (Vi = n)
divides the MBB of U (V ) into two parts, denoted as U1 and U2 (V1 and V2),
as shown in Figure 3. Assume μi(U) < μi(V ). Remind that λk is the current
distance threshold.

U V

m n

U1U2
V1 V2

Fig. 3. Statistic based Pruning

The intuition of the statistic based pruning technique is along each dimension
i, based on Theorem 2, we derive an upper bound of the sum of weights in the
shaded areas of the MBBs of U1 and V1, respectively, denoted as Wup

i (U1) and
Wup

i (V1). Clearly, we can claim that instance pairs from U2 × V2 can not have
distance smaller than λk. Denote the sum of weights in U2 and V2 as Wi(U2)
and Wi(V2), respectively. Apparently, Wi(U2) ≥ 1 −Wup

i (U1), and Wi(V2) ≥
1−Wup

i (V1). Thus, using W
up
i (U1) and Wup

i (V1), we can identify a value α such
that the α-quantile distance between U and V is not smaller than λk. Next we
present the monotonic property of quantile distance.

Theorem 3 (Monotonicity of Quantile Distance). Given two multi-valued
objects U and V , α, φ ∈ (0, 1], if α < φ, then dα(U, V ) ≤ dφ(U, V ).

Proof. The theorem immediately holds based on the definition of quantile dis-
tance in Definition 2. �



518 W. Zhang et al.

Based on Theorem 3, once we identify the value α such that the α-quantile
distance between U and V is larger than λk, if α < φ, then we can claim the φ-
quantile distance between U and V cannot be smaller than λk. In this way (U, V )
can be pruned based on the statistic information kept in the global sR-tree only
without accessing the local aR-trees of U and V .

Pruning Rule 2. Given an object pair (U, V ) (U ∈ U , V ∈ V). For a dimension
i (1 ≤ i ≤ d), without lose of generality, assume μi(U) < μi(V ). If 1 - (1 -
δ(m− μi(U), σi(U)))× (1− δ(μi(V )−m,σi(U))) < φ, (U, V ) can be pruned.

Proof. For the i-th (1 ≤ i ≤ d) dimension, based on Theorem 2, we obtain
the upper bound of the sum of weight of instances in the shaded area U1 of the
MBB of U as Wup

i (U1) = Prob(Ui ≥ m) ≤ δ(m−μi(U), σi(U)). Similarly we get
Wup

i (V1) = Prob(Vi ≤ n) ≤ δ(μi(V ) − n, σi(V )). Since the instance pairs from
U2×V2 cannot have distance smaller than λk, we have α≤ 1−(1−Wup

i (U1))×(1−
Wup

i (V1)) ≤ 1− (1− δ(m−μi(U), σi(U))) × (1− δ(μi(V )−m,σi(U))). Together
with Theorem 3, the pruning rule is correct. �
Once we obtain an object pair (U, V ) from the join processing, we apply Pruning
Rule 2 based on the statistic information kept in the global sR-trees before
accessing the local aR-trees of U and V . If we encounter a dimension i such that
1 - (1 - Wup

i (U1)) × (1 −Wup
i (V1)) < φ, the pruning rule stops and the object

pair (U, V ) is discarded. As shown in Figure 3, after selecting line m along the
i-th dimension of U , line n for V is also fixed regarding the current λk. We apply
the equality principle in determining the position of m and n; namely, the center
of m and n is the same as the center of μi(U) and μi(V ). Based on Theorem 2,
we obtain Wup

i (U1) and Wup
i (V1) in constant time.

Complexity. IfWup
i (U1) andW

up
i (V1) are derived based on Theorem 2, the time

complexity of Pruning Rule 2 is O(d).

Weight based Pruning. The following pruning rule incorporates both weight
and distance information. The instances of a multi-valued object are investigated
by accessing the local aR-trees. Consider an object entry pair (U, V ). If (U, V )
is not pruned by Pruning Rule 1 and 2, we explore the instances information
of the objects by accessing their local aR-trees. We traverse the local aR-trees
of two objects U and V synchronously. At level i, we trim object V using the
current distance threshold λk, and retain only the entries in V with minimum
distance to U not larger than λk. We record the entries as γV,i. Formally, γV,i
= {E ∈ Li(V ), dlo(U,E) ≤ λk}, where Li(V ) denotes all remaining entries (i.e.,
not trimed in higher levels) in the local aR-tree of V at the i-th level. Similarly,
we obtain γU,i. If the multiplication of the weights of γV,i and γU,i is smaller
than φ, the object pair (U, V ) can be pruned as the φ-quantile distance between
U and V must be larger than λk.

Pruning Rule 3. If
∑

e∈γU,i
W (e) ×∑

e∈γV,i
W (e) < φ, the object pair (U, V )

can be discarded.

Proof. From the definition of φ-quantile distance, it is immediate that if∑
e∈γU,i

W (e)×∑
e∈γV,i

W (e) < φ, then dφ(U, V ) > λk. �
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Example 2. As shown in Figure 4, at the i-th level, the local aR-tree of object
U has two entries U1 and U2, local aR-tree of V also has two entries V1 and V2.
The current threshold λk is as illustrated. Using λk, we trim the MBB of V and
only entry V1 has minimum distance to U smaller than λk; thus, γV,i = {V1}.
Similarly, γU,i = {U2}. If W (U2)×W (V1) < φ, the object pair (U, V ) could be
pruned.

U 2

U1

V1

V2

U

V

Fig. 4. Weight based Pruning

Applying Pruning Rule 3, we can avoid accessing all instance pairs of U × V ,
and seek to stop on intermediate levels of the local aR-trees of U and V . Note
the traversal of two aR-trees is in a synchronous fashion and level-by-level from
the root node. If one aR-tree reaches leaf nodes first, it stays in leaf level while
the other one keeps traversing till its leaf level. As a by-product, if (U, V ) cannot
be pruned using Pruning Rule 3, we call the φ-quantile distance computation
algorithm in [21] with the instance pairs from γU,i× γV,i only where i is the leaf
(instance) level. Clearly, the algorithm still outputs correct φ-quantile distance
as the distance of the pruned instance pairs are larger than λk based on the
definition of γU,i and γV,i for level i.

An exceptional case of Pruning Rule 3 is that we obtain an entry pair (EU , EV )
sfrom the join processing, one is an object entry while the other is an interme-
diate entry. Assume EU is the object entry of U and EV is the intermediate
entry. Pruning Rule 3 could still be applied to (U,EV ) with the following mod-
ifications: 1) We access the local aR-tree of U only and at each level i, record
γU,i as the entries in U with minimum distance to EV not larger than λk; 2) if∑

e∈γU,i
W (e) < φ, the entry pair (U,EV ) could be pruned. Namely, the object

pair of U and any object indexed in EV must have a φ-quantile distance greater
than λk.

Complexity. Assume the average number of entries at level i of the local aR-
trees of multi-valued objects is Ni, then clearly the complexity of Pruning Rule
3 is O(Ni) at each level. The worst case complexity of using Pruning Rule 3 is
O(|U | × |V |), namely no entries are pruned at intermediate entries and we need
to access all instance pairs. However, in practice, as shown in Section 5, Pruning
Rule 3 is very effective and saves CPU costs significantly. Note that in Pruning
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Rule 3 we trim the entries at each level of local aR-trees of U and V using λk
instead of considering the combination of all pairs of entries at each level. This
is because trim based pruning is more efficient compared with combining all
pairs (time complexity O(N2

i )) and also trim based pruning is very effective in
practice.

4.2 Overall Join Algorithm

The join algorithm used in this paper is adopted from the Heap Algorithm in [6]
as it is both efficient and easy to implement in real applications. We adjust the
algorithm to deal with multi-valued objects. Given φ ∈ (0, 1], two multi-valued
objects sets U and V , Algorithm 2 illustrates the top-k similarity join processing.
A minheap H is maintained according to the minimum distance between two
entry pairs of the two global R-trees RU and RV indexing U and V , respectively.
H is initialized with the pair of root nodes of RU and RV .

Algorithm 2: Top-k Similarity Join Processing

Input : RU , RV , k, φ
Output : k object pairs from U × V with smallest φ-quantile distances
H = (root(RU ), root(RU )) if not PRUNED1(root(RU), root(RU ));1

while H is not empty do2

(EU , EV ) = H .top();3

H . pop();4

if EU and EV are both intermediate entries then5

for each children pair (CEU , CEV ) from EU × EV do6

if not PRUNED1(CEU , CEV ) then7

insert (CEU , CEV ) into H ;8

else if one of EU and EV is an object entry then9

if not PRUNED1(EU , EV ) and not PRUNED3(EU , EV ) then10

Lines 6 - 8;11

else /* both EU and EV are object entries */12

if not PRUNED1(EU , EV ) and not PRUNED2(EU , EV ) AND not13

PRUNED3(EU , EV ) then
Compute φ-quantile distance between EU and EV ;14

if dφ(EU , EV ) < λk then15

Update λk and current k most similar pairs;16

17

The algorithm differentiates three cases based on whether the entries are
object entries or not. If both are intermediate entries (Line 5), we expand all
the children pairs and insert into heap H the pairs which survive from Pruning
Rule 1 (Line 7). If one of the entries is an intermediate entry and the other
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is an object entry (Line 9), Pruning Rule 1 and 3 will be applied first (Line
10) before expanding the children pairs. We apply all 3 Pruning Rules object
pairs (Line 13), and if survived, the φ-quantile distance is computed; the top-k
results and λk are updated if necessary. Note that even from the root node pair
we only insert entry pairs into H if they are not pruned by Pruning Rule 1, it is
still necessary to check Pruning Rule 1 (Line 9 and Line 13) since the distance
threshold λk dynamically changes.

Correctness. Based on the correctness of the 3 pruning rules, it can be imme-
diately shown that Algorithm 2 is correct.

Discussions. The techniques proposed in this paper could be immediately
extended to support self-join (i.e., we compute top-k similar pairs from one data
set U) and threshold base similarity join over multi-valued objects. We omit the
details due to space limits.

5 Experiment

We report a thorough performance evaluation on the efficiency and effective-
ness of our algorithms. In particular, we implement and evaluate the following
techniques.

Top-k Join: Techniques presented in Section 4 to compute top-k similarity
join based on φ-quantile distance (φ ∈ (0, 1]), with all 3 pruning techniques.

P12: Techniques in Section 4 but using Pruning Rule 1 and 2 only (i.e., distance
and statistic based pruning).

P1: Techniques in Section 4 but using Pruning Rule 1 only (i.e., distance based
pruning).

P0: Techniques in Section 4 but without any pruning rule.
KNN: Baseline algorithm by using KNN processing over multi-valued objects

in [21]. For each object U ∈ U , we compute its KNN in V , and then select k
most similar pairs based on the union of KNN results.

All algorithms are implemented in C++ and compiled by GNU GCC. Experi-
ments are conducted on PCs with Intel Xeon 2.4GHz dual CPU and 4G memory
under Debian Linux. Our experiments are conducted on both real and synthetic
datasets.

Real dataset is extracted from NBA players’ game-by-game statistics con-
taining 339,721 records of 1,313 players (http://www.nba.com). Each player is
treated as a multi-valued object where the statistics (score, assistance, rebound)
of a player per game is treated as an instance with the equal weight (normalized).

Synthetic datasets are generated using the methodologies in [1] regarding the
following parameters. Dimensionality d varies from 2 to 5 with default value 3.
Data domain in each dimension is [0, 1]. Average number n of objects in each
dataset varies from 5k to 15k with default value 5k. Number of instances per
object follows a uniform distribution in [1, m] where m varies from 100 to 800
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with the default value 200. The value K varies among 5 to 25 with default value
10. The average length of object MBBs varies from 0.01 to 0.05 with default
value 0.01. With the default setting, the total number of instances in a dataset
is about 500k.

Generating U and V. In a (real or synthetic) dataset, each object is drawn to
U or V with equal probability (i.e., probability of 1

2 ).

5.1 Overall Performance

Figure 5 reports the results of the evaluation on processing time of Top-k Join,
P12, P1, P0, and KNN over real and synthetic data. KNN is very slow and can-
not terminate when the dataset size is large, so in the synthetic dataset, we set
dataset size to 1k and other parameters take the default values. As shown, each
pruning rule is very effective and reduce the processing time significantly. Our
techniques are much more efficient compared to a naive application of KNN tech-
niques to processing top-k similarity joins. As P0 and KNN are very inefficient,
we omit their performance evaluation in the following sections.
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Fig. 5. Overall Performance

5.2 Evaluating Impacts by Different Settings

In this subsection, we study the scalability of our algorithms regarding different
φ-values, number of objects in one dataset(n), number of instances (m), length
of MBB edges (h), k and the dimensionality d in Figure 6. While our techniques
are not very sensitive to φ-values and k, the processing time increases with the
increase of number of objects, instance number, MBB edge length, and dimen-
sionality. Clearly, the dataset size increases with objects and instances number
thus the join processing becomes more expensive. Larger MBB edge length makes
it difficult to prune object pairs as there is larger overlap in their MBBs. The
results also demonstrate that each pruning rule is very effective and significantly
reduces the processing time.

5.3 I/O Costs

We report the ratio of objects accessed in Figure 7. Since Pruning Rule 3 mainly
works on two object entries and load both two objects, its effect is on saving
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CPU time but not I/O. Thus, we report the performance of Top-k Join and P1
only. As shown in the figure, our techniques could achieve dramatic saving on
the total objects loaded. Compared to P1, the saving from using Pruning Rule
2 is also significant.

6 Related Work

Conventional join queries over two multi-dimensional datasets are fundamen-
tal in data analysis and information retrieval. Most existing techniques for join
queries have been developed based on popular spatial access methods such as
R-trees. For threshold based joins, there are three main stream spatial join al-
gorithms using R*-tree [8]. They are the depth-first-join (DFJ) algorithm [2],
the breadth-first-join (BFJ) algorithm [10], and transformation-view-join (TVJ)
algorithm [12]. Techniques for top-k spatial/similarity queries are studied in [6],
[9]. Various algorithms, such as exhaustive algorithm, recursive algorithm, Heap
algorithm, and priority queue based algorithms are proposed. Many variation of
join queries over multi-dimensional space have been studied in different contexts,
including road networks [18] and moving objects [20].
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Spatial queries such as nearest neighbor queries over fuzzy objects have been
recently studied [22]. Fuzzy objects possess similar semantics as uncertain objects
(e.g., instances are mutually exclusive). The techniques in [22] are not applicable
to the problem studied in our paper due to the different semantics as well as
inherent difference in query types.

Join queries over uncertain objects are inherently different than conventional
joins where each uncertain object takes a set ofmutually exclusive instances/points
in a multi-dimensional space. It is extensively studied in [4], [11], [14]. Note that
all instances in a multi-valued object exist simultaneously instead of mutually ex-
clusive in an uncertain object. Due to such inherent differences in semantics, join
techniques over uncertain objects cannot be directly applied to similarity joins
over multi-valued objects.

7 Conclusion

We study the problem of top-k similarity join over multi-valued objects. The
distance/similarity between two multi-valued objects is measured using quan-
tile based distance to capture the relative instance distribution. A filtering-
refinement framework is developed, along with novel, efficient and efficient dis-
tance, statistic and weight based pruning techniques. Comprehensive experimen-
tal study over both real and synthetic datasets demonstrates the efficiency and
scalability of our techniques.
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Abstract. The Network Voronoi diagram and its variants have been ex-
tensively used in the context of numerous applications in road networks,
particularly to efficiently evaluate various spatial proximity queries such
as k nearest neighbor (kNN), reverse kNN, and closest pair. Although
the existing approaches successfully utilize the network Voronoi diagram
as a way to partition the space for their specific problems, there is little
emphasis on how to efficiently find and access the network Voronoi cell
containing a particular point or edge of the network. In this paper, we
study the index structures on network Voronoi diagrams that enable ex-
act and fast response to contain query in road networks. We show that
existing index structures, treating a network Voronoi cell as a simple
polygon, may yield inaccurate results due to the network topology, and
fail to scale to large networks with numerous Voronoi generators. With
our method, termed Voronoi-Quad-tree (or VQ-tree for short), we use
Quad-tree to index network Voronoi diagrams to address both of these
shortcomings. We demonstrate the efficiency of VQ-tree via experimen-
tal evaluations with real-world datasets consisting of a variety of large
road networks with numerous data objects.

1 Introduction

The latest developments in wireless technologies as well as the widespread use
of GPS-enabled mobile devices have led to the recent prevalence of location-
based services. An important class of location based queries consists of proximity
queries such as k Nearest Neighbor(kNN) query [15,32,21,6,7] and its variations,
e.g., Reverse k Nearest Neighbor (RkNN) [23,29], k Aggregate Nearest Neigh-
bor (kANN) [28]. The proximity queries in general search for data objects that
minimize a distance-based function with reference to one or more query objects.
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With proximity queries, potentially the distance between the query point and
every object in the database (e.g., all the points-of-interest) must be computed
in order to find the closest (or the k closest) object(s) to the query point. Hence,
the main research focus has been on indexing the objects to avoid the exhaustive
search. Earlier studies assumed Euclidean distance as the distance function and
hence indexed the objects in Euclidean space (e.g., [32,30,21,24]) using R-tree [4]
like index structures. With the advent of online mapping systems such as Google
Maps and Mapquest and the availability of accurate nation-wide road network
data, the proximity queries have been extended from Euclidean space to the road
network space as natural artifact. The challenge in processing proximity queries
on road networks is that the computation of the distance function is complex
and hence the indexing techniques incorporated some sort of pre-computation
of distances (in network) into their structures. One such approach is based on
using network Voronoi diagrams [12].

A network Voronoi diagram is a specialization of a Voronoi diagram in which
the locations of objects are restricted to the network edges and the distance
between objects is defined as the length of the shortest network distance (e.g.,
shortest path or shortest time), instead of the Euclidean distance. Any network
node located in a Voronoi cell has a shortest path to its corresponding Voronoi
generator that is always shorter than that to any other Voronoi generator. A large
number of studies adopted network Voronoi diagrams [12] to evaluate variety of
proximity queries on road networks (e.g., [7,11,13,27,17]). For example, in [13]
Okabe et al. introduced six different types of network Voronoi diagrams (each
corresponds to very important real-world applications) whose generators are
based on points, sets of points, lines and polygons, and whose distances are given
by inward/outward distances, and additively/multiplicatively weighted shortest
path distances.

Given a query point q and network Voronoi diagram (NVD), the first step in
answering any proximity query is to locate the network Voronoi cell NV C(pi)
that contains q (the generator pi of NV C(pi) is the nearest neighbor of q). We
refer to this operation as contain(q) in the rest of the paper. Considering the large
size of the underlying space (e.g., a continental size road network) with numerous
data objects as well as the online nature of the queries that requires fast response-
time, an index structure is necessary to efficiently access the portion of NVD
associated with q. Although the existing approaches successfully used network
Voronoi diagrams as a pre-computation approach for partitioning the network
space, they overlooked the indexing techniques that enable efficient evaluation of
contain(q). Currently, indexing network Voronoi diagram with R-tree (referred
as Voronoi R-tree or VR-tree for short) is the only known method for locating
the network Voronoi cell that contains a particular point or edge of the network.
VR-tree is first proposed in [7] and later used in many other approaches based
on NVD (e.g., [11,27,17]).

In this paper, we show that VR-tree has two main problems. First, VR-
tree may yield inaccurate results due to the way the Voronoi cells are formed
in network space, i.e., although a NVD is generated based on the network
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Fig. 1. Network Voronoi Diagram

distance metric, its Voronoi cells are created and indexed as regular polygons
in Euclidean space. This inconsistency may result in a network edge belonging
to a cell NV C(pi), to be classified as a member of the cell NV C(pj) because
due to the network topology, the edge falls inside the polygon of NV C(pj) even
though its network distance is closer to the generator of NV C(pi). For example,
Figure 1 depicts the network Voronoi diagram of a hypothetical road network
where each line style corresponds to network Voronoi cells of the generators p1,
p2 and p3. With VR-tree the network Voronoi cells are formed by connecting
the border points (i.e., {b1, b2, ..., b7})1 and bounded by straight line segments
(i.e., bold lines in the Figure). As shown, the edges marked by false-negative are
included in the Voronoi cell of p1 NV C(p1), however the network distance from
any point on the false-negative edges to p3 is shorter than that to p1.

Second, VR-tree is inefficient because of the non-disjoint partitioning of the
space. Specifically, VR-tree splits the network space with hierarchically nested
and largely overlapping minimum bounding rectangles (MBR) created around
network Voronoi cells. The overhead of executing contain(q) query is prohibitively
high particularly in large networks with a dense (but perhaps large) set of data
objects. This is because VR-tree has to redundantly visit the parent node(s) of
the overlapping MBRs (aka, backtracking problem) in the index structure.

To address both of the aforementioned drawbacks, we propose a new indexing
approach for network Voronoi diagrams based on region Quad-tree [18], termed
Voronoi-Quad-tree or VQ-tree for short. VQ-tree, unlike VR-tree that approx-
imates network Voronoi cells using regular polygons in the Euclidean space,
enables exact representation of the network Voronoi cells based on quad-tree
blocks in the network space, and hence always yields correct results. VQ-tree
does not suffer from the backtracking problem of VR-tree. This is because VQ-
tree enables disjoint decomposition of the network space and encodes each of the
quad-tree blocks to indicate the identity of the network Voronoi cell of which it
is a member. Thus, once the quad-tree block containing q is located, VQ-tree
immediately identifies the nearest Voronoi generator based on the encoded value

1 We discuss the network Voronoi diagram generation in Section 4.1.
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of that block. Our experiments with real-world datasets show that the ratio
of false-negative edges is %16 on average with respect to the total number of
edges in the network and VQ-tree outperforms VR-tree with 12 times improved
response time (see Section 5).

The remainder of this paper is organized as follows. In Section 2, we review
the related work about proximity queries in spatial networks. In Section 3, we
overview Network Voronoi diagrams and it’s properties. In Section 4, we establish
the theoretical foundation of the proposed solution for indexing Network Voronoi
diagrams for efficient and accurate processing of proximity queries in spatial
networks. In Section 5, we present the results of our experiments with a variety
of spatial networks with large number of query and data objects. Finally, in
Section 6 we conclude and discuss our future work.

2 Related Work

The most widely studied class of proximity queries consists of k nearest-neighbor
(kNN) and its variations. The research on kNN query processing can be catego-
rized into two main areas, namely, Euclidean space and road networks. In the
past, numerous algorithms (e.g., [32,30,21,24,9]) have been proposed to solve
kNN problem in the Euclidean space. All of these approaches are applicable to
the spaces where the distance between objects is only a function of their spatial
attributes (e.g., Euclidean distance). In network spaces, however, the query and
data objects are located in predefined network segments, where the distance be-
tween a pair of objects is defined as the length of the shortest path connecting
them.

The challenge with processing kNN queries in road-network space is that the
computation of the distance function (e.g., shortest path) is complex. Therefore,
to enable efficient evaluation of kNN queries in road networks, the research in
this area largely focused on techniques which utilize precomputed network dis-
tances and/or partial results. One common example of such techniques is the
network Voronoi diagrams. Kolahdouzan and Shahabi proposed first network
Voronoi based kNN search technique, termed VN3 [7,8]. They retrieve the kNN
of a query point q based on precomputed first-order network Voronoi diagram.
Specifically, they first find the network Voronoi cell that contains q and then,
to find k-1 nearest neighbors, search the adjacent Voronoi polygons iteratively.
With their approach, they indexed the Voronoi cells with R-tree (i.e., VR-tree)
to reduce the contain(q) query to a point location problem in the Euclidean
space. In [14], Papadias et al. introduced Incremental Network Expansion (INE)
and Incremental Euclidean Restriction (IER) methods to support kNN queries in
spatial networks. While INE is an adaption of the Dijkstra algorithm, IER ex-
ploits the Euclidean restriction principle in which the results are first computed
in Euclidean space and then refined by using the network distance. Several other
kNN algorithms are proposed based on the improved (precomputation) version
of INE [1,25,5]. In [19], Samet et al. proposed shortest path quadtree algorithm
for efficient evaluation of both shortest path and kNN queries in road networks.
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VQ-tree is mainly different than the shortest path quadtree for the following
reason. With SPQ-tree, N region quad-trees are created, one for each vertex
of a road network (with N vertices), where each quad-tree(SPQ-tree) repre-
sents the adjacency list of its corresponding vertex as regions. However, VQ-tree
is a single quad-tree created for the entire road network with each of its en-
coded quad-blocks corresponding to one network Voronoi cell. In [13], Okabe
et al. introduced a variety of network Voronoi diagrams where they assumed
Voronoi generators as points, sets of points, lines and polygons, and network
distances as inward/outward, and additively/multiplicatively weighted shortest
path distances. Although they proposed very useful network Voronoi diagram
based solutions to real-world road network problems, they did not focus on in-
dexing techniques that efficiently find and access the network Voronoi cells in
large scale road networks. In [11], Nutanong et al. proposed a technique called
local network Voronoi diagram (LNVD) to continuously monitor kNN queries
in road networks. With their approach, instead of creating NVD that covers
the entire road network, they construct a network Voronoi diagram for a sub-
space around the query point. In different studies Zhao, Xuan, Taniar and Safar
et al. utilized network Voronoi diagrams to evaluate different types of proxim-
ity queries including group kNN [16], mulitple kNN [31], reverse kNN [22], and
range [26] queries in road networks. With all these studies, VR-tree is used to
index the network Voronoi cells. However, as we mentioned VR-tree may return
false results and inefficient in large networks with numerous data objects.

3 Background

In this section, we review the principles of Euclidean and Network Voronoi
diagrams. We first introduce 2-dimensional Euclidean space Voronoi diagrams
and describe the properties of Voronoi diagrams. We then explain the network
Voronoi diagram. We refer readers to [12] for a comprehensive discussion of Eu-
clidean and network Voronoi diagrams.

3.1 Voronoi Diagrams

Let P : {p1, p2, .., pn} be a set of n distinct sites (i.e., generator points) dis-
tributed in the Euclidean space. These generator points can be considered any
spatial type of objects (e.g., gas station, restaurant). We define the Voronoi di-
agram of P as the subdivision of the space into n cells, one for each site in P ,
with the property that a point q lies in the cell corresponding to a site pi if and
only if distance(q, pi) < distance(q, pj) for each pj ∈ P with j �= i. Figure 2
shows the ordinary Voronoi diagram of eight points where the distance metric
is Euclidean.

We refer to the region containing the point pi as its Voronoi cell V C(pi) or
Voronoi polygon (see V C(p4) in the Figure). In Euclidean space, V C(pi) is a
convex polygon. Each edge of V C(pi) is a segment of the perpendicular bisector
of the line segment connecting p to another point of the set P . We call each of
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Fig. 2. Voronoi diagram in Euclidean space

these edges a Voronoi edge. The Voronoi cells that have common edges are called
adjacent cells and their generators are called adjacent generators. The Voronoi
cells are collectively exhaustive and mutually exclusive except their boundaries
(i.e., Voronoi edges). We define the Voronoi cell and Voronoi diagram as follows.

Definition 1. Consider P : {p1, p2, .., pn} where 2 ≤ n and pi �= pj for i �= j,
i, j ∈ In = 1, ...n. The region given by V C(pi) = p|d(p, pi) ≤ (p, pj) where d(p, pi)
is the minimum Euclidean distance between p and pi is called the Voronoi Cell
(VC) associated with pi.

Definition 2. The set of Voronoi cells given by V D(P ) = {V C(p1), ..., V C(pn)}
is called the Voronoi Diagram (VD) generated by P .

3.2 Network Voronoi Diagrams

With network Voronoi diagrams (NVD), the V D described above is generalized
by replacing the Euclidean space with a spatial network (e.g., road network),
hence the distance with the network distance (e.g., shortest-path) between the
objects.

Definition 3. A road network is represented as a directional weighted graph
G(N,E), where N is a set of nodes representing intersections and terminal
points, and E (E ⊆ N × N) is a set of edges representing the network edges
each connecting two nodes. Each edge e is denoted as e(ni, nj) where ni and nj

are starting and ending nodes, respectively.

In this study, we consider planar graph where edges intersect only at their end-
points. We assume that Voronoi generators are located on the network segments
as the graph nodes. Each edge connecting nodes pi, pj stores the network dis-
tance dN (pi, pj). For nodes that are not directly connected, dN (pi, pj) is the
length of the shortest path from pi to pj .

Given a weighted graph G(N,E) consisting of a set of nodes N =
{p1, ...pn, pn+1, ..po} where the first n nodes represent the Voronoi generators
and a set of edges E = {e1, ...ek} that connects the nodes, we define the set
dominance region and border points as follows,
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Definition 4. The dominance region of pi over pj

Dom(pi, pj) = {p|p ∈
k⊔

o=1
eo, dN (p, pi) ≤ dN (p, pj)} represents all points in all

edges in E that are closer (or equal distance) to pi than pj.

Definition 5. The border points between pi and pj b(pi, pj) = {p|p ∈
k⊔

o=1
eo, dN (p, pi) = dN (p, pj)} represent all points in all edges that are equally

distanced from pi and pj.

Definition 6. Based on the above definitions, the Voronoi edge set Vedge of pi
as Vedge(pi) =

⊔
j∈In\{i}

Dom(pi, pj) represents all the points in all edges in E

that are closer to pi than any other generator point in N . Consequently, we
define network Voronoi diagram NVD(P ) w.r.t set of points P as NVD(P ) =
{Vedge(p1), ...., Vedge(pn)}.
Similar to V D described in Section 3.1, the elements of NVD are mutually
exclusive and collectively exhaustive.

4 Indexing Network Voronoi Diagrams

In this section, we will first explain how to construct a network Voronoi diagram
in road networks and then discuss two different index structures, namely the
Voronoi R-tree and Voronoi Quad-tree that efficiently identifies the subdivision
of the network space that contains a particular query point or network edge.

4.1 Network Voronoi Diagram Construction

The network Voronoi diagrams can be constructed using parallel Dijkstra algo-
rithm [2] with the Voronoi generators as multiple sources. Specifically, one can
expand shortest path trees from each Voronoi generator simultaneously and stop
the expansions when the shortest path trees meet.

(a) Road Network (b) Network Voronoi Diagram

Fig. 3. A Road network and network Voronoi diagram



Indexing Network Voronoi Diagrams 533

Figure 3 shows an example of road network and the corresponding network
Voronoi diagram. Figure 3a depicts the original weighted graph G(N,E) which
consists of N = {p1, p2, p3, p4, ...p16} nodes where p1, p2, and p3 are the Voronoi
generators (i.e., data objects such as restaurants, hotels) and p4 to p16 are the
intersections on a road network that are interconnected by a set of edges. Figure
3b shows the NVD of the road network where each line style corresponds to
the shortest path tree based on the generators {p1, p2,p3}. Each shortest path
tree composes a network Voronoi cell and some edges (e.g., e(p4, p5)) can be
partially contained in different network Voronoi cells. The border points b1 to
b7 are the nodes where the shortest path trees meet as a result of the parallel
Dijkstra algorithm. The border points between any two generator pi and pj are
equally distanced from pi and pj . Figure 4 shows a real network Voronoi diagram
with respect to 50 data objects in Los Angeles road network. Each network node
marked with a different color corresponds to a network Voronoi cell.

Fig. 4. Network Voronoi diagram with P = {p1, ..., p50} in Los Angeles road network

4.2 Index Generation on Network Voronoi Diagram

As we discussed, to answer any proximity query with respect to a query point
q, one first needs to find the Voronoi cell that contains q. There remains a basic
question concerning how to efficiently access the portion of the NVD associated
with a particular query point q. This can be achieved by utilizing a spatial index
structure that is generated on Voronoi cells. Below, we discuss two types of
spatial index structures that can be used to index NVCs, namely, the Voronoi
R-tree(VR-tree) and Voronoi Quad-tree (VQ-tree).

4.2.1 The Voronoi R-Tree (VR-tree)
VR-tree is first introduced in [7] where NVD is used to evaluate kNN queries in
road networks. VR-tree is based on the R-tree [4] that splits the network space
with hierarchically nested Minimum Bound Rectangels (MBR) generated around
network Voronoi cells. Given the location of a query point q, a contain(q) query
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(a) NVC in VR-tree (b) False-negative edges

Fig. 5. Network Voronoi cell construction in VR-tree

invoked on VR-tree starts from the root node and iteratively checks the MBRs
(of NVCs) with respect to a q to decide whether or not to further search the
child nodes.

VR-tree has two main shortcomings. First, VR-tree may yield inaccurate re-
sults for a contain(q) query. This is because VR-tree makes the simplifying
assumption that although the NVD is computed based on the network dis-
tance metric, its NVCs are treated as regular polygons (by connecting border
points of NVCs) and indexed using R-tree that is designed for the Euclidean
distance metric. However, such approach may cause misclassification of the net-
work edges (i.e., false-negative edges) in the network Voronoi cells, and hence
inaccurate results. Specifically, a network edge belonging to a network Voronoi
cell of pi NV C(pi) may be classified as a member of another network Voronoi
cell NV C(pj). For instance, continuing with our running example in Figure 3,
Figure 5(a) shows how adjacent border points are connected to each other: if
two adjacent border points are between two similar generators (e.g., b5 and b7
are between p1 and p3), they can be connected with an arbitrary line. Three
or more adjacent border points (e.g., b2, b3 and b5) can be connected to each
other through an arbitrary auxiliary point (e.g., v in the figure). As a result,
similar to its Euclidean counterpart, the NVCs are represented with polygons in
the network space. However, to illustrate why VR-tree may fail to yield correct
results, consider Figure 5(b) where we introduce two new edges (as an exten-
sion of p12) to the road network. As shown, although the new edges (marked
by false-negative edges in the Figure) are included inside the Voronoi cell of p1,
the network distance from any point on the false-negative edges to p3 is shorter
than that to p1. Thus, with VR-tree, when q is located on false-negative edges, a
contain(q) will return incorrect Voronoi generator as the NN. With our example
we only show one particular case that can happen in real-world road networks.
Arguably, it is possible to increase the number of such examples under different
road network topologies. Figure 6 depicts the NVC of a particular data object
in Los Angeles road network where border nodes and false-negative edges are
marked by light blue and red color, respectively.
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Fig. 6. False-negative edges of a NVC in Los Angeles road network

One naive solution to the inaccuracy problem of VR-tree is to perform an
additional refinement step. Specifically, one can maintain false-negative edges
(along with their corresponding Voronoi generators) in a separate index structure
and, for each contain(q) query, check q against this index structure. If q is
located in any of the false-negative edges, the corresponding Voronoi generator
is returned as the nearest neighbor. Otherwise, VR-tree continues the search
based on MBRs of the Voronoi cells as explained above.

Second, VR-tree is inefficient due to non-disjoint partitioning of the space.
Specifically, with VR-tree the hierarchy of NVCs is enforced by minimum bound-
ing rectangles created around network Voronoi cells. Depending on the different
topologies of the road network and the distribution of the objects on the net-
work segments, the overlapping areas of MBRs of network Voronoi cells may
be quite large, and hence significant computation overhead in traversing R-tree
for contain(q) query. For example, Figure 7 illustrates the MBRs of network
Voronoi cells in Figure 4. For the sake of clarity, we do not include the Voronoi
cells in the picture. As shown, the MBRs around network Voronoi cells result
in a non-disjoint decomposition of the underlying space which means that the
location occupied by a Voronoi cell may be contained in several bounding boxes.
This degrades the search performance in VR-tree because of the backtracking [4]
problem, i.e., the parent node(s) of the overlapping MBRs have to be accessed
repeatedly in order to search the child nodes that contain q. Thus, with VR-tree
the amount of work often depends on the overlapping areas of MBRs. We also
implemented VR-tree with R+ tree [20] to reduce the impact of overlapping
areas. However, we observe that the performance of VR+ tree is still less as
compared to VQ-tree (see Section 5.2.4).

4.2.2 The Voronoi Quad-Tree (VQ-tree)
The alternative to VR-tree is to index network Voronoi cells using Quad-tree
[18,3], termed Voronoi Quad-tree (VQ-tree), that enables disjoint decomposition
of the underlying space. The main observation behind VQ-tree is that each color
coded area in Figure 4 is a spatially contiguous region in the network space.
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Fig. 7. Minimum bounding rectangles on network Voronoi cells

The regions are mutually exclusive as they do not have any overlapping areas and
collectively exhaustive as every location in the network space is associated with
at least one generator. Therefore, an exact approximation of the network Voronoi
diagram can be obtained by using a region quad-tree [18] where the leaf nodes of
the quad-tree correspond to a region in a Voronoi cell in NVD. In particular, with
VQ-tree the root node represents the rectangular region enclosing the entire span
of the road network (and hence NVD) under consideration. We subdivide this
rectangular region into four equal quadrants where each quadrant is one of the
four child nodes of the root. Subsequently, we recursively subdivide the quadrants
until each quadrant contains only one network Voronoi cell information. That
is, for each quadrant, we search for two (or more) different color-coded nodes2.
If we find such a quadrant (meaning that the quadrant includes more than one
network Voronoi cell), we subdivide that quadrant into four subquadrants. This
subdivision process continues recursively until all nodes in a quadrant have the
same color code.

Figure 8 illustrates the quad-blocks generated on the road network in Figure 4.
We note that the leaf nodes of VQ-tree does not store any information about the
network nodes. As shown in Figure 9, the leaf nodes only store the region infor-
mation (i.e., coordinates) of the quad-blocks as well as a single value (e.g, a color
code or a integer number) which indicates the identity of the network Voronoi cell
of which the quad-tree block is amember.We note that a leaf node in the quad-tree
corresponds to a particular subdivision of a network Voronoi cell.

As shown in 8, each network Voronoi cell NV Ci consists of disjoint quad-
tree blocks. The disjoint decomposition of the network Voronoi diagram with
VQ-tree addresses the two drawbacks of VR-tree. Specifically, unlike VR-tree
that roughly estimates the network Voronoi cells with polygons in the Euclidean
space, VQ-tree enables the exact representation of the network Voronoi cells

2 During NVD construction parallel Dijkstra algorithm can encode each node with a
Voronoi cell identifier, e.g., a color.
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Fig. 8. VQ-tree on Los Angeles road network

using quad-tree blocks and hence always yield correct results. VQ-tree does not
suffer from the backtracking problem of VR-tree, and hence fast response time for
contain(q). This is due to non-overlapping partitioning of the network Voronoi
cells: once the quad-tree block containing q is located in the leaf nodes, VQ-tree
immediately identifies the nearest Voronoi generator based on the value (e.g, a
color code) of that block.

Algorithm 1 presents the outline for VQ-tree. Given a set of N nodes with
their color codes and bounding box [x1;x2]x[y1; y2] that contains N as an input,
Algorithm 1 creates VQ-tree by recursively splitting the quadrants until all the
nodes in a quadrant have the same color code.

Fig. 9. VQ-tree
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Algorithm 1. VQ-Tree Algorithm

V QuadTree(N,x1, x2, y1, y2){
/* Scan distinct color codes in the region
cellColor[] ⇐ checkRegion(N, x1, x2, y1, y2);
/* If there exist more than one color-code then split
if cellColor.length > 1 then

/*Initialize intermediate node
node ⇐ QuadTreeNode();
/*Set Quadrants
node.SE ⇐ V QuadTree(N,x1, (x2+x1)/2, y1, (y1+y2)/2);
node.SW ⇐ V QuadTree(N, (x2+x1)/2, x2, y1, (y1+y2)/2);
node.NE ⇐ V QuadTree(N,x1, (x2+x1)/2, (y1+y2)/2, y2);
node.NW ⇐ V QuadTree(N, (x2+x1)/2, x2, (y1+y2)/2, y2);

else
/*Create leaf node
QuadTreeLeafNode(cellColor[0]);

end if
}

5 Experimental Evaluation

5.1 Experimental Setup

We conducted experiments with different spatial networks and various parame-
ters to evaluate the performance of VQ-tree and VR-tree. We measured the ratio
of false-negative edges with varying object cardinality (i.e., number of Voronoi
generators) and object distribution in the road network. In addition, we com-
pared the precomputation, index rebuilding (for dynamic environments) and
response time of VQ-tree and VR-tree with respect to different network sizes
and object cardinality. As of our dataset, we used California (CA), Los Angeles
(LA) and San Joaquin County (SJ) road network data (obtained from Navteq
[10]) with approximately 1,965,300, 304,162 and 24,123 nodes, respectively. Since
the experimental results with LA and SJ networks differ insignificantly, we only
present the results from the CA and LA datasets. We conducted our experi-
ments on a workstation with 2.7 GHz Pentium Core Duo processor and 12GB
RAM memory. For each set of experiments, we only vary one parameter and fix
the remaining to the default values in Table 1.

Table 1. Experimental parameters

Parameters Default Range

Object Cardinality 100 10,50,100,500,1000

Road Network LA SJ, LA, CA

Object Distribution Uniform Uniform, Gaussian
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5.2 Results

5.2.1 Ratio of False-Negative Edges
First, we study the ratio of false-negative edges with respect to object cardinality
(i.e., number of Voronoi generators) and object distribution. To identify false-
negative edges, we compare the encoded values (i.e., color code) of each node
based on VR-tree and VQ-tree. Specifically, we first encode each edge to its cor-
responding Voronoi generator by using VR-tree polygons and then compare the
encoded values to that we obtained from VQ-tree. We repeat each experiment 100
times and report the average number of incorrectly encoded (i.e., false-negative)
edges with respect to total number of edges in the network. Figure 10(a) shows
the ratio of false-negative edges of both networks where the object cardinality
ranging from 10 to 1000. As illustrated, the ratio of incorrectly identified edges
is %16 on average in both networks. The maximum recorded false-negative edge
ratio for LA and CA road networks is %24 and %29, respectively.

Figure 10(b) illustrates the ratio of false-negative edges with different object
distribution for both CA and LA road networks. We observe that the number of
false-negative edges is less in Gaussian distribution. This is because as objects
are clustered in the spatial network with Gaussian distribution, the correspond-
ing shortest path trees would be less disperse and hence spatially close border
points. As mentioned, with VR-tree we encode the edges based on the Euclidean
polygon generated by connecting the border points. The more spatially close
border points provides the more accurate presentation of the NBCs and hence
less false-negative edges.

(a) Impact of object cardinality (b) Impact of object distribution

Fig. 10. Impact of object cardinality and distribution

5.2.2 Precomputation Time
With another set of experiments, we compare the precomputation (i.e., index
construction) time of VR-tree and VQ-tree with varying network sizes and num-
ber of objects. In order to evaluate the impact of network size, we conducted
experiments with the sub-networks of CA dataset ranging from 50K to 250K
segments. We set the the node size of VR-tree to 4K bytes in all cases. Figure
11(a) shows the precomputation time of VQ-tree and VR-tree in CA road net-
work with varying network size. The results indicate that the precomputation
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time increases with the network size in both methods where VQ-tree outper-
forms VR-tree with all numbers of edges. This is because as the network size
increases the perimeters of the polygons (and hence the number of connected
line segments that form a polygon) grow in VR-tree. Arguably, the overhead
of generating MBRs (to be used in VR-tree) around the polygons composed of
numerous connected line strings is time-consuming as the coordinates (that form
the lines) needs to be scanned to find the ultimate corners of the MBR. On the
other hand, VQ-tree is constructed based the underlying space (rather than ob-
jects in VR-tree) by recursively dividing the road network to quad-blocks each
corresponding to one NVC.

Figure 11(b) illustrates the impact of object cardinality over precomputation
time in LA road network (the results are similar in CA network and hence
not presented). We observe that as the number of objects in the road network
increases, the preprocessing time for both approaches increases. As shown, the
precomputation time for VQ-tree outperforms VR-tree. The reason is that the
time for hierarchically clustering polygons in VR-tree for a large datasets is
relatively expensive. We also observe that the depth of VQ-tree increases with
the increasing number of data objects. This is because large number of data
objects yields smaller VCs and hence more splits.

(a) Impact of network size (b) Impact of object cardinality

Fig. 11. Impact of network size

5.2.3 Index Reconstruction
Next, we compare the index reconstruction overhead of VR-tree and VQ-tree
with respect to object updates. In this set of experiments, we update the loca-
tion of the randomly selected data objects and measure the index reconstruction
overhead in both VR-tree and VQ-tree. Figure 12(a) shows the index recon-
struction time of both index structures with varying object update ratio (i.e.,
the percentage of data objects whose locations changed). We observe that VQ-
tree outperforms VR-tree with respect to index reconstruction. This is because
the insert operations in VR-tree are expensive. When new data objects are in-
serted into VR-tree, besides updating leaf nodes, it is likely that updates are
also required to non-leaf nodes (i.e., more than one branch of the tree maybe
expanded), which leads to a large overhead during insertion. On the other hand,
with VQ-tree we observe that most of the index updates take place in the leaf
nodes.
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(a) Index reconstruction (b) Impact of object cardinality

Fig. 12. Response time vs object cardinality and Index reconstruction

5.2.4 Response Time
In this experiment, we compare the performance (i.e., the response time for
contain(q) query) of VQ-tree and VR-tree with varying object cardinality. We
determine the location of the query object q uniformly at random and report
average of 100 queries. As we mentioned the original VR-tree proposed in [7]
may yield inaccurate results. In order to provide correct results with VR-tree,
we modify VR-tree by adding an additional index structure that maintains false-
negative edges. Specifically, we construct a R-tree on the false-negative network
edges along with their Voronoi generators. With each contain(q) query, we check
q against this index structure. If we locate q on any of the false-negative edges,
the corresponding data object is returned as the first NN. Otherwise, VR-tree
continues the search based on the polygons explained in 4.2.1. Figure 12(b) plots
the average response time for contain(q) query. The results indicate that VQ-
tree outperforms VR-tree and scales better with large number of data objects.
The response time of VQ-tree is approximately 12 times better than that of
VR-tree with more than 200 data objects. This is because of the fact that, with
VR-tree, the amount of work often depends on the size of the overlapping areas.
In particular, the overlapping areas may belong to more than one NVC and
hence during the search the parent node(s) of the overlapping MBRs have to be
accessed repeatedly. We also implemented VR-tree using R+ tree (VR+) that
minimizes the impact of overlapping areas. We observe that the performance of
VQ-tree is still 7 times superior to VR+ tree.

6 Conclusion

In this paper, we study two different spatial index structures, namely the Voronoi
R-tree and Voronoi Quad-tree, to index network Voronoi diagrams. These index
structures enable efficient access to the network Voronoi cells containing a par-
ticular point or edge of the network. We show that previously proposed Voronoi
R-tree may yield inaccurate results and fail to scale in large road networks with
numerous data objects. We propose a novel approach, termed Voronoi Quad-
tree, that enables disjoint decomposition of the network Voronoi diagram where
network Voronoi cells are indexed with region quad-tree. The precomputation
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overhead of the Voronoi Quad-tree is significantly less and the Voronoi Quad-
tree outperforms Voronoi R-tree in query response time by a factor of 1:4 to 12
depending on the network size and object cardinality. We intend to pursue this
study in two directions. First, we plan to investigate disk organization strategies
for Voronoi Quad-tree. Second, we intend to work on incremental index update
techniques to avoid node reconstruction overhead due to update in the location
of Voronoi generators.
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Abstract. This paper, for the first time, addresses the problem of efficient 
reverse k-skyband (RkSB) query processing. Given a set P of multi-dimensional 
points and a query point q, an RkSB query returns all the points in P whose 
dynamic k-skyband contains q. We formalize the RkSB query, and then propose 
three algorithms for computing the RkSB of an arbitrary query point 
efficiently. Our methods utilize a conventional data-partitioning index (e.g.,  
R-tree) on the dataset, as well as employ pre-computation and pruning 
techniques to improve the query performance. Extensive experiments using 
both real and synthetic datasets demonstrate the effectiveness of our proposed 
pruning heuristics and the performance of our proposed algorithms.  

1 Introduction  

Given a set P of multi-dimensional points, a traditional/static skyline query [2, 4, 7, 9, 
12, 16, 20] returns all the points in P that are not dominated by any other point. A 
point p dominates another point p' if p is not worse than p' in all dimensions and 
strictly better than p' in at least one dimension. Figure 1(a) shows a classical example 
of static skyline over a hotel dataset Sh = {p1, p2, …, p15} in a 2-dimensional (2D) 
space, where the x-axis represents the room price of each hotel and the y-axis captures 
its distance to the beach. Since hotels p1, p4, p5, and p14 are not dominated by others, 
they constitute the static skyline of the dataset Sh.  

In contrast, the dynamic skyline query [5, 12, 15] is a natural extension of the static 
skyline query, where the attributes of every point are dynamically calculated w.r.t. ad 
hoc functions or query points. Specifically, each d-dimensional point p is mapped to a 
new m-dimensional point p' = 〈f1(p), f2(p), …, fm(p)〉, in which fi (i ∈ [1, m]) is a 
dimension function. Like [5, 10], in this paper, we assume that m = d, and fi(p) = |p[i] 
− q[i]| for a specified query point q. In Figure 1(b), for instance, p3 remains the same 
(as it is still in the first quadrant) and p4 is mapped to p4', assuming that p5 is a query 
point. The dynamic skyline query is to retrieve all the points in P that are not 
dynamically dominated, w.r.t. a given query point q, by any other point. A point p 
dynamically dominates another point p' w.r.t. q, if for all dimensions p is closer to q 
than p' and it is strictly closer to q than p' in at least one dimension. Figure 1(b) 



 On Efficient Reverse k-Skyband Query Processing 545 

2

10864O 2

10

8

6

4

p1

p14

p15

p13p12

p11p10

p9

p8

p7p6

p5

p4

p3

p2

price

distance

  

p1'

2

10864O 2

10

8

6

4

p1

p14
p15

p13

p12

p11
p10

p9
p8

p7
p6

p5

p4

p3

p2

price

distance
p2'

p4' p15'
p14'

q

  

q

2

10864O 2

10

8

6

4

p1

p14 p15

p13p12

p11p10

p9
p8

p7p6

p5

p4

p3

p2

price

distance

 

   (a) Static skyline              (b) Dynamic skyline             (c) Reverse skyline  

Fig. 1. Illustration of static, dynamic, and reverse skylines  

illustrates the dynamic skyline query w.r.t. p5, as well as points p2, p3, p4, and p15 are 
the dynamic skyline points of p5.  

As shown in Figure 1(b), a point q is not in the dynamic skyline of p5. In general, if 
q belongs to the dynamic skyline of a certain point p, p is said to be in the reverse 
skyline [5, 10, 14, 17, 18, 22] of p. A reverse skyline query finds all the points in P 
that have a given query point q as a member of their dynamic skylines. For example, 
Figure 1(c) depicts the reverse skyline query w.r.t. q, and the result includes p3, p10, 
p12, and p13. The reverse skyline operator is useful for many applications such as 
business location planning [5, 18] and environmental monitoring [10, 17]. However, 
as pointed out in [5], it may obtain too few reverse skyline points to choose from. 
Although the user might change the location of the query point to increase the number 
of reverse skyline points, finding a good query point location is far from easy, since 
many factors can ultimately affect the query performance.  

In this paper, we introduce a new operator, namely reverse k-skyband (RkSB) 
query. Given a multi-dimensional data set P and a query point q, an RkSB query 
returns all the points in P whose dynamic k-skyband (defined in Definition 1) contains 
q. It is helpful for many applications. As an example, suppose the decision-maker of a 
computer manufacturer wants to know how many customers may be interested in a 
new/forthcoming computer. In this case, he/she can take the new computer as a query 
point q and the potential customer preferences (e.g., CPU, main-memory, etc.) as a 
dataset P, and then perform several RkSB queries for marketing analysis. If the k is 
big enough while the query result is still small, the decision-maker has to change the 
computer setting.  

Actually, the RkSB query is the generalization of reverse skyline query. Thus, the 
existing methods [5] specifically designed for reverse skyline queries are not 
(directly) applicable to tackle the RkSB query efficiently. In this paper, we propose 
three efficient algorithms, i.e., Branch-bound-based RkSB algorithm (BRkSB), Pre-
computation-based RkSB algorithm (PRkSB), and Optimized PRkSB (OPRkSB), to 
compute the RkSB of an arbitrary query point. Our approaches utilize a conventional 
data-partitioning index (e.g., R-tree [1]) on the dataset, and employ offline pre-
computation and pruning techniques to improve the query performance. In brief, the 
key contributions of this paper are summarized as follows:  
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 We formalize the RkSB query, an interesting variant of reverse skyline query. 
To the best of our knowledge, this work is the first attempt on this problem.  

 We develop three algorithms, viz. BRkSB, PRkSB and OPRkSB, for efficiently 
answering reverse k-skyband queries, and analyze their correctness. Specifically, 
BRkSB is an improved customization of the original BBS algorithm [12], 
PRkSB utilizes accurate pre-computed dynamic skylines to discard unnecessary 
candidates, and OPRkSB enables effective pruning heuristics to prune away 
unqualified candidates.  

 We conduct extensive experiments using both real and synthetic datasets to 
demonstrate the effectiveness of our proposed heuristics and the performance of 
our proposed algorithms.  

The rest of the paper is organized as follows. Section 2 briefly surveys the related 
work. Section 3 presents our problem statement. Section 4 elaborates three RkSB 
query processing algorithms and discusses their correctness. Extensive experimental 
evaluation and our findings are reported in Section 5. Finally, Section 6 concludes the 
paper with some directions for future work.  

2 Related Work 

The skyline query is a popular paradigm for extracting interesting objects from multi-
dimensional databases. Borzsony et al. [2] first introduce the skyline operator in the 
database community, and develop two skyline computation methods, i.e., Block 
Nested Loop (BNL) and Divide-and-Conquer (D&C). Chomicki et al. [4] present a 
Sort-First-Skyline (SFS) algorithm as an improved version of BNL. Godfrey et al. [7] 
propose an optimized version of SFS, termed Linear-Elimination-Sort for Skyline 
(LESS), which has attractive worst-case asymptotical performance. Zhang et al. [20] 
present an object-based space partitioning (OSP) scheme for scalable skyline 
computation. These algorithms do not assume any index on the dataset.  

On the other hand, other approaches exploit indexes to accelerate skyline queries. 
Tan et al. [16] first propose the progressive technique that can return skyline points 
instantly, and develop two approaches for skyline queries, namely Bitmap and Index, 
respectively. Another two progressive skyline query algorithms, i.e., Nearest 
Neighbor (NN) and Branch-and-Bound Skyline (BBS), are proposed by Kossmann et 
al. [9] and Papadias et al. [12], respectively. As demonstrated in [12], BBS is I/O-
optimal algorithm. Recently, numerous useful variations of skyline queries have been 
studied as well. Examples include dynamic skyline query [12, 15], constrained skyline 
computation [3, 12], reverse skyline query [5, 10], probabilistic skyline retrieval [13, 
21], parallel skyline query [6, 8, 19], stochastic skyline operator [11], and so on.  

The concept of reverse skyline is originally introduced in [5]. In order to compute 
the reverse skyline of an arbitrary query point, Dellis and Seeger [5] propose two 
algorithms: Branch and Bound Reverse Skyline algorithm (BBRS) and Reverse 
Skyline using Skyline Approximations algorithm (RSSA). In particular, BBRS is an 
improved customization of the BBS algorithm [12], while RSSA is based on the well-
known filter-refinement paradigm, and employs pre-computed approximations of the 



 On Efficient Reverse k-Skyband Query Processing 547 

skylines. Lian and Chen [10] study monochromatic and bichromatic reverse skyline 
search on uncertain data, where each object is modeled as a probability distribution 
function. Wu et al. [18] explore bichromatic reverse skyline retrieval for traditional 
dataset, in which each object is a precise point. More recently, techniques for reverse 
skyline computation over wireless sensor networks [17], data streams [22], and 
arbitrary non-metric similarity measures [14] have also been proposed in the 
literature. In this paper, we focus on the problem of reverse k-skyband retrieval.  
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  (a) Skyline              (b) Dynamic 1-skyband of p5    (c) Reverse 1-skyband of q  

Fig. 2. Illustration of skyline, dynamic 1-skyband, and reverse 1-skyband  

3 Problem Formulation  

In this section, we present the definition of dynamic k-skyband, and then formally 
define the reverse k-skyband query.  

Let P be a d-dimensional dataset. For any point p ∈ P, we use p[i] to denote the i-
th dimensional value of p. A point p ∈ P is said to dominate another point p' ∈ P, 
denoted as p≺ p', if (i) for every i ∈ {1, 2, …, d}, p[i] ≤ p'[i]; and (ii) for at least one j 
∈ {1, 2, …, d}, p[j] < p'[j]. For instance, in figure 2(a), point p5 dominates point q.  

Definition 1 (Dynamic k-Skyband). Given a d-dimensional data set P, a query point 
q, and a parameter k, if a point p ∈ P belongs to the dynamic k-skyband of q, there 
exist at most k points in P, denote by O, such that for each point o ∈ O, it satisfies: (1) 
for any i ∈ {1, 2, …, d}, |q[i] − o[i]| ≤ |q[i] − p[i]|; and (2) at least one j ∈ {1, 2, …, 
d}, |q[j] − o[j]| < |q[j] − p[j]|.  

A dynamic k-skyband query retrieves all the points that are dynamically dominated by 
at most k points. Figure 2(b) illustrates the dynamic 1-skyband of point p5. As shown in 
Figure 2(b), although the point q is not the dynamic skyline point of p5, it is in p5’s 
dynamic 1-skyband since the number of points which dynamically dominate q is no 
more than 1. Note that dynamic k-skyband is a generalization of dynamic skyline [12].  

Based on the dynamic k-skyband, we now formalize the reverse k-skyband query.  

Definition 2 (Reverse k-Skyband Query). Given a d-dimensional data set P, a query 
point q, and a parameter k, a reverse k-skyband (RkSB) query returns all the points in 
P whose dynamic k-skyband contains q. Formally, a point p ∈ P is in the reverse  
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k-skyband of q, if there exist at most k points in P, denoted as O, such that for every 
point o ∈ O, it holds: (1) for any i ∈ {1, 2, …, d}, |p[i] − o[i]| ≤ |p[i] − q[i]|; and (2) at 
least one j ∈ {1, 2, …, d}, |p[j] − o[j]| < |p[j] − q[j]|.  

Take Figure 2(b) as an example. Since a point q is included in the dynamic 1-skyband of 
point p5, the point p5 belongs to the reverse 1-skyband of q according to Definition 2. 
Similarly, we can obtain the complete reverse 1-skyband of q, which contains  
{p1, p2, p3, p4, p5, p6, p7, p8}, as depicted in Figure 2(c). It is worth mentioning that, 
conceptually, k represents the thickness of the reverse skyline. Therefore, the case k = 0 
corresponds to a conventional reverse skyline query.  

A naive solution to tackle RkSB retrieval is to perform the dynamic k-skyband 
query for each point in a specified data set P, and then return those points p ∈ P with 
q ∈ DSB(p), where DSB(p) represents the set of p’s dynamic k-skyband points. 
Nevertheless, this method is very inefficient as it needs to traverse the data set P 
multiple times (i.e., |P| times), resulting in high I/O and CPU costs, especially for 
larger P. Motivated by this, in the next section, we will propose three efficient 
algorithms for processing the RkSB query.  
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   (a) Data point placement                         (b) The corresponding R-tree  

Fig. 3. A running example  

4 RkSB Query Processing  

In this section, we first propose three algorithms for efficiently computing the RkSB 
of an arbitrary query point, assuming that the data set P is indexed by an R-tree, and 
then provide an analysis of these algorithms. In order to facilitate the understanding of 
different RkSB query processing algorithms, a running example, as shown in Figure 
3, is employed. Specifically, we use the 2D data point set P = {p1, p2, …, p15} of 
Figure 3(a), organized in the R-tree of Figure 3(b) with node capacity = 3.  

4.1 Branch-Bound-Based Reverse k-Skyband Algorithm  

In this subsection, we describe the Branch-bound-based Reverse k-Skyband algorithm 
(BRkSB), which is an improved customization of the original BBS algorithm. Next, 
we define the global k-skyband, and then present two lemmas to identify/discard 
candidate RkSB points.  
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Definition 3 (Global k-Skyband). Given a d-dimensional data set P, a query point q, 
and a parameter k, if a point p ∈ P is in the global k-skyband of q, there exist at most 
k points in P, denote as O, such that for each point o ∈ O, it satisfies: (1) for any i ∈ 
{1, 2, …, d}, (p[i] − q[i]) (o[i] − q[i]) > 0; (2) for any i ∈ {1, 2, …, d}, |q[i] − o[i]| ≤ 
|q[i] − p[i]|; and (3) for at least one j ∈ {1, 2, …, d}, |q[j] − o[j]| < |q[j] − p[j]|.  

A global k-skyband query finds all the points that are globally dominated by at most k 
points. Note that global k-skyband is an extension of global skyline [5]. Figure 4 
shows an example of the global skyline and global 1-skyband for point q. Since point 
p8 is globally dominated by points p9 and p10, it is not a global 1-skyband point of q.  

Lemma 1. Let q be a query point, GSB(q) the global k-skyband point set of q, and 
RSB(q) the set of reverse k-skyband points w.r.t. q. If a point p ∉ GSB(q), p ∉ RSB(q).  
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    (a) Global skyline         (b) Global 1-skyband  

 Fig. 4. Illustration of global skyline and global k-skyband       Fig. 5. Example of Lemma 2  

Proof. If a point p ∉ GSB(q), we can retrieve (k + 1) points (stored in a set S) that 
globally dominate p, that is, for every point s ∈ S, it holds: for all i ∈ {1, 2, …, d}, 
|s[i] − q[i]| ≤ |p[i] − q[i]|; and there exists a j ∈ {1, 2, …, d}, |s[j] − q[j]| < |p[j] − q[j]|, 
which contradicts with Definition 2 (i.e., p ∉ RSB(q)). The proof completes.         

We can utilize Lemma 1 to efficiently retrieve a superset of the actual result, i.e., no 
false misses. The Lemma 2 below helps us to prune away unqualified candidate 
reverse k-skyband points that cannot be the final answer points.                    

Lemma 2. Given a d-dimensional data set P, a query point q, and a parameter k. 
Suppose a rectangle Rect is centered at a point p ∈ P, and its extent is defined by the 
coordinate-wise distances to q. If there exist more than k points within Rect, p is not a 
reverse k-skyband point of q.  

Proof. If there are more than k points inside the rectangle Rect, we can find (k + 1) 
points (preserved in a set S) that, for each point s ∈ S, satisfy: for all i ∈ {1, 2, …, d}, 
|p[i] − s[i]| ≤ |p[i] − q[i]|; and there exist j ∈ {1, 2, …, d}, |p[j] − s[j]| < |p[j] − q[j]|. 
According to Definition 1, the point q does not belong to the dynamic k-skyband of 
the point p. Thus, p cannot be a reverse k-skyband point of q.                         
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Consider, for instance, Figure 5, in which the shaded area is the rectangle of a point p. 
As shown in Figure 5, a point q is dynamically dominated by points p1 and p2, which 
are located inside p’s rectangle. Consequently, the point q is not in the dynamic  
1-skyband of the point p, and p does not belong to the reverse 1-skyband of q.  

Our first method, namely BRkSB, uses the above lemmas to process RkSB query. 
The basic idea is as follows. First, BRkSB computes the set GSB(q) of global k-
skyband points that is guaranteed to include all the actual reverse k-skyband points, 
using Lemma 1. Then, the algorithm executes a window query for each candidate 
global k-skyband point, and the candidate is a true reverse k-skyband point (based on 
Lemma 2) if the window query returns no more than k points. The pseudo-code of 
BRkSB is presented in Algorithm 1. Next, we discuss BRkSB using the running 
example (depicted in Figure 3) for computing the reverse 1-skyband. The query result 
contains points p3, p4, p5, p9, p10, p12, and p13.  

Initially, BRkSB visits the root of the R-tree R and inserts all its entries (e7, e8) into 
a heap Hg (line2). Then, the entry (e7) with the minimum distance to q is expanded. 
As e7 is not globally dominated by any point (line 5) and it is an intermediate node, 
BRkSB removes the entry (e7) from the heap and adds its children (e4, e5, e6) to Hg  
(line 8-11). Similarly, the next two expanded entries are e8 and e4 respectively, in 
which the first global 1-skyband point p12 is found. Since p12 is a data point, BRkSB 
adds p12 to the set GSB for pruning later, and then runs a window query on it (lines 
13-14). As shown in Figure 6, there is no point in the window/rectangle centered at 
p12. Thus, p12 belongs to the reverse 1-skyband of q and is inserted into the result set 
RSB. The algorithm proceeds in the same manner until the heap becomes empty. 
Table 1 shows the contents of the heap during the processing of the query.  

 
Algorithm 1. Branch-bound-based Reverse k-Skyband Algorithm (BRkSB)  
 Input: an R-tree R on a set of data points, a query point q, a parameter k  
 Output: the result set RSB that contains all the points belonging to the RkSB of q  
 /* GSB: the set of global k-skyband points; RSB: the set of reverse k-skyband points; H

g
, H

w
:  

   min-heaps, sorted in ascending order of their distances (i.e., L
1
-norm) from q. */  

 1:  initialize sets GSB = RSB = ∅ and min-heaps Hg = Hw = ∅  
 2:  insert all entries of the root R into Hg  
 3:  while Hg ≠ ∅ do  
 4:     de-heap the top entry e of Hg  
 5:     if e is globally dominated by (k + 1) points in GSB then  
 6:        discard e   // by Lemma 1  
 7:     else   // e is globally dominated by less than (k + 1) points in GSB  
 8:        if e is an intermediate node then  
 9:           for each child entry ei ∈ e do  
10:              if ei is globally dominated by at most k point in GSB then  
11:                 insert ei into Hg  
12:        else   // e is a data point  
13:           add e to GSB   // for pruning later  
14:           perform the window query (using Hw) based on e and q  
15:           if the window query finds less than (k + 1) points then  
16:              add e to RSB   // e is a RkSB point of q by Lemma 2  
17:           else   // the window query contains more than k points  
18:              discard e  
19:  return RSB  
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4.2 Pre-computation-Based Reverse k-Skyband Algorithm  

Since the global k-skyband may contain many unnecessary points, we present, in this 
section, an enhanced algorithm, called Pre-computation-based Reverse k-Skyband 
algorithm (PRkSB). Specifically, PRkSB employs the traditional (i.e., 0-th) dynamic 
skyline and the k-th dynamic skyline, which are offline pre-computed and stored on 
disk, to identify points being in the reverse k-skyband and prune unqualified points 
not belonging to the result. Below, we define the k-th dynamic skyline, and then 
provide Lemma 3 and Heuristic 1 to support our proposed PRkSB algorithm.  

Definition 4 (k-th Dynamic Skyline). Given a d-dimensional data set P, a query 
point q, and a parameter k, if a point p ∈ P is in the k-th dynamic skyline of q, there 
exist k points in P, denoted by O, such that for every point o ∈ O, it holds: (1) for any 
i ∈ {1, 2, …, d}, |q[i] − o[i]| ≤ |q[i] − p[i]|; and (2) at least one j ∈ {1, 2, …, d}, |q[j] 
− o[j]| < |q[j] − p[j]|.  

A k-th dynamic skyline query retrieves the set of the points in P that are dynamically 
dominated by k points. Figure 7(a) illustrates the example of the k-th dynamic skyline, 
where the 0-th dynamic skyline contains points p1, p2, p5, and p9; the 1-th dynamic 
skyline includes points p3 and p6; and the 2-th dynamic skyline consists of points p4 
and p10. Note that all of them form the dynamic 2-skyband of p.  

                           Table 1. Heap contents 
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Fig. 7. Illustration of k-th dynamic skyline, lemma 3, and DR(p) and HR(p)  
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Lemma 3. For a given point p and a query point q, let DSL(p) be the set of 0-th 
dynamic skyline points of p and kDSL(p) be the set of k-th dynamic skyline points of p. 
If a point s ∈ DSL(p) is dynamically dominated by q, p belongs to the reverse  
k-skyband of q. If a point s' ∈ kDSL(p) dynamically dominates q, p is not in the 
reverse k-skyband of q.  

Proof. If a point s ∈ DSL(p) is dynamically dominated by q, it means that q is not 
dynamically dominated by any point. Hence, q is in the dynamic k-skyband of p, and 
p belongs to the reverse k-skyband of q. If s' ∈ kDSL(p), there must have k points that 
dynamically dominate s'. As q is dynamically dominated by s', it is also dynamically 
dominated by the k points which dynamically dominate s'. Consequently, q is not in 
the dynamic k-skyband of p, and p does not belong to the reverse k-skyband of q.   

Consider, for example, Figure 7(b), where points q1 and q2 are query points. Since 
point p4 in the 2-th dynamic skyline of p (i.e., p4 ∈ 2DSL(p)) dynamically dominates 
q1 and q2 is not dynamically dominated by any point, p belongs to the reverse 2-
skyband of q2 but not the reverse 2-skyband of q1, according to Lemma 3.  

We can efficiently prune some points, using the above Lemma 3. Specifically, 
when we get a candidate, we can check the candidate whether it is in the two regions, 

 
Algorithm 2. Pre-computation-based Reverse k-Skyband Algorithm (PRkSB)  
 Input: an R-tree R on a set of data points, a query point q, a parameter k, the dynamic skyline 

of the dataset, the k-th dynamic skyline of the dataset  
 Output: the result set RSB that contains all the points belonging to the RkSB of q  
 /* DR(p): the discard region of p containing the points that are dynamically dominated by at  
   least (k + 1) points; HR(p): the hit region of p including the points that are not dynamically  
   dominated by any point. */  
 1:  initialize sets GSB = RSB = ∅ and min-heaps Hg = Hw = ∅  
 2:  insert all entries of the root R into Hg  
 3:  while Hg ≠ ∅ do  
 4:     de-heap the top entry e of Hg  
 5:     if e is globally dominated by (k + 1) points in GSB then  
 6:        discard e   // by Lemma 1  
 7:     else   // e is globally dominated by less than (k + 1) points in GSB  
 8:        if e is an intermediate node then  
 9:           for each child ei ∈ e do  
10:              if ei is globally dominated by at most k point in GSB then  
11:                 insert ei into Hg  
12:        else   // e is a data point  
13:           add e to GSB   // for pruning later  
14:           if q is in the HR(e) then   // Heuristic 1 
15:              add e to RSB   // e is a RkSB point of q  
16:           else if q is in the DR(e) then 
17:              discard e  
18:           else  
19:              perform the window query (using Hw) based on e and q  
20:              if the window query finds less than (k + 1) points then  
21:                 add e to RSB   // e is a RkSB point of q by Lemma 2  
22:              else  
23:                 discard e  
24:  return RSB  
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defined by the 0-th dynamic skyline and the k-th dynamic skyline. We assume that the 
Discard Region of p (DR(p)) contains the points dynamically dominated by at least  
(k + 1) points, and the Hit Region of p (HR(p)) includes the points not dynamically 
dominated by any point. Figure 7(c) illustrates an example of DR(p) and HR(p).  
 

Heuristic 1. Given a query point q, a point p, DR(p), and HR(p). If q falls into DR(p), 
p is not in the reverse k-skyband of q (and thus discard it). If q locates inside HR(p), p 
belongs to the reverse k-skyband of q. If q is not within DR(p) and HR(p), p needs to 
be further validation.  

Our second approach, i.e., PRkSB, utilizes the above Heuristic 1 to tackle RkSB 
query. The main idea is as follows. Before the algorithm starts, for every data point 
the 0-th dynamic skyline and the k-th dynamic skyline are pre-computed and stored 
on disk. When a query q is issued, PRkSB computes its global k-skyband (i.e., 
GSB(q)) that is an upper bound of the final query result, and then, for each point p ∈ 
GSB(q), checks whether q is in DR(p) or in HR(p) or not. If q is within DR(p), p can 
be pruned shortly. If q is inside HR(p), p is an actual answer point. Otherwise, the 
algorithm needs to perform a window query on the current candidate point p for 
further refinement. The pseudo-code of PRkSB is shown in Algorithm 2.  

4.3 Optimized PRkSB Algorithm  

In this subsection, we propose an improved PRkSB algorithm, namely optimized 
PRkSB algorithm (OPRkSB), for answering RkSB queries. Unlike PRkSB, OPRkSB 
employs not only offline pre-computed dynamic skyline but also online computed 
global k-skyband to identify the points being in the reverse k-skyband as well as filter 
out those points not being in the reverse k-skyband. Like PRkSB, a window query is 
issued for each remaining candidate point, but the number of window queries can be 
reduced significantly due to effective pruning heuristics, leading to substantial cost 
savings, as demonstrated in our experimental evaluation. In the following, we present 
two observations, and then offer Lemma 4 and Heuristic 2 to support our proposed 
OPRkSB algorithm.  

From Figure 6, we observe that the points that are not in the same quadrant as the 
current candidate point evaluated must not in the window. Hence, these points do not 
need to be considered during the window query. Also, we observe that the global  
k-skyband points are closer to a specified query point, compared against the other 
points. Thus, they have a high probability of falling into the window.  

Lemma 4. Given a query point q, a data point p, and assume that a rectangle Rect is 
centered at p and its extent is defined by the coordinate-wise distances to q. If Rect 
contains more than k global k-skyband points, p is not in the reverse k-skyband of q.  

Proof. Similar to the proof of Lemma 2, and hence omitted.                         

In contrary, if there is less than k global k-skyband points located inside Rect, we are 
not sure whether the current candidate evaluated is the actual answer point or not, 
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since it may contain the points not belonging to the global k-skyband of q if the extent 
of Rect is large enough. Therefore, we still need to run a window query on it.  

Heuristic 2. Given a query point q, a data point p, and assume that a rectangle Rect 
is centered at p and its extent is defined by the coordinate-wise distances to q. If there 
exist more than k global k-skyband points in Rect, p does not belong to the reverse k-
skyband of q and can be discarded; otherwise, it needs to be further evaluation.  

The last method, namely OPRkSB, optimizes PRkSB, using Heuristic 2 above. The 
basic idea is as follows. OPRkSB computes the global k-skyband of a given query 
point q, and then uses Heuristic 1 to prune away unqualified global k-skyband points 
that cannot be the actual answer points. Thereafter, for every remaining candidate 
point, the algorithm does not directly execute a window query on it, but utilizes the 
whole global k-skyband of q (instead of the remaining global k-skyband) to further 
filter out it. Algorithm 3 depicts the pseudo-code of OPRkSB.  

4.4 Discussion  

In this subsection, we analyze the correctness of our proposed algorithms, i.e., 
BRkSB, PRkSB, and OPRkSB.  

Lemma 5. The three algorithms (viz., BRkSB, PRkSB, and OPRkSB) visit (data point 
and intermediate) entries of an R-tree in ascending order of their distances to the 
specified query point q.  

Proof. The proof is straightforward since the algorithm always visits entries according 
to their mindist (i.e., L1-norm) order preserved by the heap.                         

Lemma 6. Any data point inserted into the result set RSB during the execution of the 
algorithm is guaranteed to be an actual reverse k-skyband point.  

 
Algorithm 3. Optimized PRkSB Algorithm (OPRkSB)  
 Input: an R-tree R on a set of data points, a query point q, a parameter k, the dynamic skyline 

of the dataset, the k-th dynamic skyline of the dataset  
 Output: the result set RSB that contains all the points belonging to the RkSB of q  
 /* PGSB: the set of global k-skyband points after pruned by Heuristic 1. */  
 1:  initialize sets GSB = PGSB = RSB = ∅ and min-heaps Hg = Hw = ∅  
 2:  insert all entries of the root R into Hg  
 3:  while Hg ≠ ∅ do  
 4:     de-heap the top entry e of Hg  
 5:     if e is globally dominated by (k + 1) points in GSB then  
 6:        discard e   // by Lemma 1  
 7:     else   // e is globally dominated by less than (k + 1) points in GSB  
 8:        if e is an intermediate node then  
 9:           for each child ei ∈ e do  
10:              if ei is globally dominated by at most k point in GSB then  
11:                 insert ei into Hg  
12:        else   // e is a data point  
13:           add e to GSB   // for pruning later  
14:           if q is within HR(e) then   // Heuristic 1 
15:              add e to RSB   // e is a RkSB point of q by Heuristic 1  
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16:           else if q is inside DR(e) then 
17:              discard e  
18:           else  
19:              add e to PGSB   // for the next pruning  
20:  for each point p ∈ PGSB do   // Heuristic 2  
21:     if the window based on p and q contains more than k global k-skyband points then  
22:        discard p  
23:     else  
24:        perform the window query (using Hw) based on p and q  
25:        if the window query finds less than (k + 1) points then  
26:           add p to RSB   // p is a RkSB point of q by Lemma 2  
27:        else  
28:           discard p  
29:  return RSB  

 

Proof. This is guaranteed by Lemmas 1 through 4 and Heuristics 1 to 2.             

Lemma 7. Every data point will be examined, unless one of its ancestor nodes has 
been pruned.  

Proof. The proof is obvious because all entries that are not pruned by existing global 
k-skyband points (preserved in the set GSB) are added to the heap and examined.    

Lemmas 5 and 6 guarantee that, if the proposed algorithms are performed until their 
termination, they correctly return all reverse k-skyband points, i.e., no false hits and 
no false misses.  

5 Experimental Evaluation  

In this section, we experimentally evaluate the effectiveness of our developed pruning 
heuristics and the performance of our proposed algorithms for RkSB retrieval, using 
both real and synthetic datasets. All algorithms were implemented in C++, and all 
experiments were conducted on an Intel Core 4 Duo 2.8 GHz PC with 4GB RAM.  

We employ two real datasets, namely CarDB and NBA. Specifically, CarDB is a 
6D dataset, containing 45,311 tuples, which is extracted from Yahoo! Autos. In our 
experiments, we only select two numerical attributes (i.e., Price and Mileage) of 
every car. NBA includes 15,272 records about 3542 players on 17 attributes, which is 
available at the website (www.databasebasketball.com). Each record provides 
statistics of a player in a season. Four attributes, including number of games played 
(GP), total points (PTS), total rebounds (REB), and total assists (AST), are 
considered in our experiments. We also create Independent (IN) and Clustered (CL) 
datasets with dimensionality dim in the range [2, 5] and cardinality N in the range 
[40K, 200K]. Specifically, IN consists of random points from the unit square. CL 
comprises four clusters, each of them follows a Gaussian distribution. Note that for all 
datasets, every dimension of the data space is normalized to range [0, 10000]. Each 
dataset is indexed by an R-tree [1], with a page size of 4096 bytes.  

We investigate several factors, involving the number t of dynamic skyline points, 
reverse k-skyband thickness k, dimensionality dim, and cardinality N. Note that, in 
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each experiment, only one factor varies, whereas the others are fixed to their default 
values. The wall clock time (i.e., the sum of I/O cost and CPU time, where the I/O 
cost is computed by charging 10ms for each page access, as with [10]) and the 
number of global k-skyband points pruned (NGP) are used as the major performance 
metrics. Each reported value in the following diagrams is the average of 100 queries 
whose locations follow the corresponding dataset distribution.  

5.1 Effectiveness of Pruning Heuristics  

This set of experiments aims at verifying the effectiveness of our proposed pruning 
heuristics. First, we vary t from 10 to 70 (20 for CarDB), with k fixed at 3 (the median 
value of Figure 9). The results are shown in Figure 8. Evidently, each heuristic prunes 
a large number of unqualified global k-skyband points, which validates its usefulness. 
Take Heuristic 2 for CL as an example. It saves the detailed examination of 407 out of 
544 when t = 50. Compared with Heuristic 1, Heuristic 2 has a more powerful pruning 
capability. This is because, as mentioned in Section 4.3, the global k-skyband points 
are closer to a given query point, compared against the other points, and thus it has a 
high probability of falling in the window for pruning. Observe that the NGP of 
Heuristic 1 is zero when t = 0 since there do not exist DR and HR that can be used to 
discard unqualified candidate points. Figures 9 to 11 illustrate the prune efficiency of 
heuristics w.r.t. k, dim, and N, respectively, using both real and synthetic datasets. The 
diagrams confirm the observations and corresponding explanations of Figure 8.  

5.2 Results on RkSB Queries  

The second set of experiments studies the performance of our proposed algorithms 
(i.e., BRkSB, PRkSB, and OPRkSB) in answering RkSB queries. First, we explore the 
impact of t on PRkSB and OPRkSB, and the results are shown in Figure 12. Note that, 
since BRkSB does not employ dynamic skylines to prune points, it is excluded from 
this experiment. Clearly, OPRkSB outperforms PRkSB in all cases because it 
integrates Heuristics 1 and 2 to prune unqualified candidate points. Furthermore, as t 
grows, the cost of PRkSB drops, while that of OPRkSB remains almost the same. The 
reason behind is that the accurate dynamic skylines increase with the growth of t, 
resulting in more unnecessary points pruned and the decrease of the cost.  
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Fig. 8. Heuristic efficiency vs. t (k=3)  
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Fig. 9. Heuristic efficiency vs. k (t=10 for CarDB, and t=50 otherwise)  
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Fig. 10. Heuristic Efficiency vs. dim (t=50, k=3)      Fig. 11. Heuristic Efficiency vs. N (t=50, k=3) 

Then, we evaluate the effect of k on the algorithms. Figure 13 depicts the cost as a 
function of k. OPRkSB clearly exceeds PRkSB and BRkSB and the differences ascend 
fast with k. This is because, when k increases, more candidate points need to check, 
which incurs more query cost.  

Next, we investigate the influence of dim on the algorithms. Towards this, we use 
the synthetic datasets (i.e., IN and CL) with N = 100K, fix k = 3, and vary dim from 2 
to 5. Figure 14 plots the cost of algorithms w.r.t. dim. As expected, the performance 
of all algorithms degrades with the growth of dim. This degradation is due to the poor 
efficiency of R-trees in high dimensions. However, OPRkSB still performs the best.  

Finally, we inspect the effect of N on the algorithms, by fixing t = 50, k = 3, and 
employing 3D IN and CL datasets whose cardinality N varies between 40K and 200K. 
Figure 15 shows the performance of algorithms as a function of N. Again, OPRkSB 
outperforms PRkSB and BRkSB in all cases. Moreover, the cost of algorithms grows 
as CN increases. This is because the size of final query result ascends with N.  
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   (a) IN (3D, 100K)     (b) CL (3D, 100K)    (c) CarDB (2D, 45K)   (d) NBA (4D, 15K)  

Fig. 12. RkSB cost vs. t (k=3)  
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In summary, from the above results on real and synthetic datasets, we can conclude 
that: OPRkSB performs the best, followed by PRkSB, and BRkSB is the worst.  
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Fig. 13. RkSB cost vs. k (t=10 for CarDB, and t=50 otherwise)  
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Fig. 14. RkSB cost vs. dim (t=50, k=3)        Fig. 15. RkSB cost vs. N (t=50, k=3)  

6 Conclusions 

This paper, for the first time, introduces and solves a new form of reverse skyline 
queries, namely reverse k-skyband (RkSB) retrieval where, given a data set P and a 
query point q, the goal is to find all the points in P whose dynamic k-skyband contains 
q. In order to efficiently compute the RkSB of an arbitrary query point, we first 
develop a Branch-bound-based RkSB algorithm (BRkSB), which is an improved 
customization of the original BBS algorithm; and then propose a Pre-computation-
based RkSB algorithm (PRkSB) using accurate pre-computed dynamic skylines; and 
finally present an Optimized PRkSB (OPRkSB) that integrates effective pruning 
heuristics to prune away unqualified candidate points. Extensive experimental 
evaluation with both real and synthetic datasets demonstrates that OPRkSB achieves 
orders of magnitude performance gain over alternative solutions.  

In the future, we intend to devise more efficient algorithm(s) for answering RkSB 
queries by using the reuse technique. Another interesting direction for future work is 
to extend our methods to tackle other variants of reverse skyline queries, e.g., 
constrained reverse skyline query, top-k reverse skyline query, etc. Finally, we plan to 
study RkSB queries in metric spaces and over uncertain data, respectively.  
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Abstract. The proliferation of geo-social network, such as Foursquare and Face-
book Places, enables users to generate location information and its corresponding
descriptive tags. Using geo-social networks, users with similar interests can plan
for social activities collaboratively. This paper proposes a novel type of query,
called Tag-based top-k Collaborative Spatial (TkCoS) query, for users to make
outdoor plans collaboratively. This type of queries aim to retrieve groups of geo-
graphic objects that can satisfy a group of users’ requirements expressed in tags,
while ensuring that the objects be within the minimum spatial distance from the
users. To answer TkCoS queries efficiently, we introduce a hybrid index struc-
ture called Spatial-Tag R-tree (STR-tree), which is an extension of the R-tree.
Based on STR-tree, we propose a query processing algorithm that utilizes both
spatial and tag similarity constraints to prune search space and identify desired
objects quickly. Moreover, a differential impact factor is adopted to fine-tune the
returned results in order to maximize the users’ overall satisfaction. Extensive ex-
periments on synthetic and real datatsets validate the efficiency and the scalability
of the proposed algorithm.

Keywords: Spatial collaborative search, Tag, Geo-social network, Shadow
prefix-tree.

1 Introduction

With the wide application of location-acquisition technologies, such as GPS, Wi-Fi and
Social Networks, Geo-Social Network (GeoSN) is increasingly being used in our daily
lives. Some examples of GeoSNs include Google Buzz, Foursquare, Facebook Places,
etc. In a GeoSN, a variety of spatial objects (e.g.restaurants, hotels, businesses) are
marked on the map and annotated with user generated tags. GeoSN users can search
for interesting spatial objects, and share information about their location and activities.
More importantly, users with similar interests can plan for social activities collabora-
tively, such as going to somewhere for dining and shopping, or taking a cycling tour
together. To make such plans, it is essential to identify a group of spatial objects, such
as restaurants, shops and parks, which can maximally satisfy the users’ needs.

In this paper, we study how to find suitable spatial objects to meet GeoSN users’
needs in collaborative activity planning. We formulate a new kind of spatial queries
called Tag-based top-k Collaborative Spatial (TkCoS) Query, which aims to retrieve
top-k groups of objects for meeting users’ needs. In essence, the spatial objects returned
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Fig. 1. Example of TkCoS query

by a TkCoS query should satisfy the following conditions: (1) they should be annotated
with as many tags specified in the query as possible; (2) the objects in the result should
be as close to one another as possible, such that the maximum diameter of the area cov-
ering the objects is minimized; (3) the maximum distance between the users’ locations
and the objects should be minimized.

Figure 1 illustrates the proposed TkCoS query by an example. Points p1...p8 rep-
resent different spatial objects distributed in the region of Los Angeles, each object is
annotated with a number of descriptive tags ti. Suppose three users of a GeoSN, Bob,
Tom and Mary, plan to find places to meet. They collaboratively submit a TkCoS query
Q= {〈RowenaAve : ModeratePizza〉, 〈MononSt : FreeParking,cinema〉,〈RussellAve :
cinema〉}, where Rowena Ave(q1) and Monon St(q2) and Russell Ave(q3) represent the
users’ locations, and Moderate Pizza(t5), Free parking(t4), cinema(t2) are query tags
that express their needs. As shown in Figure 1, the group of objects {p3, p4, p5} appears
to be the best choice, since it can (1) cover all the user’s tags, (2) cover the smallest area,
and (3) be near to the users’ locations. In contrast, the objects {p2, p5, p6} are not suit-
able. Although they are optimal choices for some individual users (e.g. p2 for q1), not
all the users’ needs are well covered.

TkCoS query can be used in many real world applications. For example, a group
of people who want to co-rent a house may have a number of requirements regarding
the house’s quality, utility, and distance to their working places. These requirements
can be met by a single TkCoS query. Despite its usefulness,TkCoS query poses several
challenges to the existing techniques (e.g., [3], [6]) of spatial query processing. Typ-
ical spatial keyword queries consider only a single query location (see section 2 for
a detailed comparison), and cannot be directly applied to process TkCoS queries. A
possible adaptation is to use existing (e.g. [6]) methods to execute the sub-queries of
a TkCoS query separately, and then merge all the results returned by the sub-queries.
However, this approach is inefficient. On the one hand , each sub-query has to return a
large number of objects to ensure the optimality of the final query results. On the other
hand, it will incur high CPU and I/O overheads, as the same data needs to be accessed
repeatedly by different queries.
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To process TkCoS queries efficiently, we devise an efficient hybrid index structure
called Spatial-Tag R-tree (STR)-tree, which integrates the tag information into a R-tree.
To retrieve a group of spatial objects that maximize the users’ satisfaction, we propose
an algorithm to perform a best-first traversal in the tree. In the algorithm, we employ a
shadow prefix-tree model to generate candidate sets of search space. An upper bound
constraint and a bidirectional constraint are used to prune search space. In addition, we
define a differential impact factor to avoid finding the group of objects with covering
only a subset of users’ requirements. We conduct extensive experiments to evaluate our
algorithm using synthetic data sets and real-world data sets. The results demonstrate
that the proposed algorithm is efficient and scalable and exhibits superior performance
over the brute force method.

The rest of this paper is organized as follows. Section 2 introduces the related work.
We formally define the problem of tag-based collaborative spatial search in Section 3.
Section 4 introduces the STR-tree. Section 5 introduces our algorithm for processing
TkCoS queries. Section 6 presents our experimental evaluation. We summarize our work
and discuss future work in Section 7.

2 Related Work

In recent years, we have seen an increase in the research dedicated to spatial keyword
search. In the query processing of spatial-keyword search, indexing techniques[1],[2],
[3],[4],[7] for both text and geographic data are used. Hariharan et al. [1] addressed the
problem of spatial keyword queries by utilizing region constraints. Their approach ex-
ploits a hybrid index called KR*-tree, which extends R*-tree by augmenting each node
with a set of the keywords that appear in the descendants of the node. The query results
are the objects located in the query region that are annotated with the query keywords.
Felipe et al. [2] proposed a similar kind of query and used IR2-tree, a combination of
R-tree and signature files, to perform query processing. It only contains the information
to determine whether a given document contains a query keyword. It is unable to rank
the documents based on textual relevance. The work [3] proposes the location-aware
top-k text retrieval (LkT) query, which takes into account both location proximity and
text relevancy. And introduces a hybrid index called IR-tree which integrates R-tree and
inverted lists. However, in Web applications, as the number of documents and keywords
can be very large, they can result in fat nodes in the IR-trees. The above approaches aim
to retrieve only single objects as query results. In contrast, our goal is to find groups of
objects such that the objects in a group collectively satisfy the needs of multiple users.

Zhang et al. [4],[5] addressed the problem of m-closest keyword (mCK) query. The
mCK query aims to find the spatially closest tuples which match m user-specified key-
words. It utilizes bR*-tree, an integration of R*-tree and bitmap. Each node in the tree
is augmented with a keyword MBR to support pruning in the tree traversal. However,
as the approach assumes that each object in the result set corresponds to a unique query
keyword, it cannot be applied to the cases where multiple constraints are specified on
a single object. The work [6] proposes the collective spatial keyword query, aiming to
retrieve a group of spatial objects, such that the group’s keywords cover the query’s
keywords and the objects are the nearest ones to the query location. Our TSkCo query
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differs from above approaches in three aspects. First, our query helps multiple users
in different locations to search for spatial objects collaboratively. Second, compared to
[4][6], our approach aims to find the top-k groups of spatial objects and support partial
match of query tags. Third, we exploit vector space model to calculate tag similarity
rather than treating all query keywords equally. To summarize, the semantics of TkCoS
query are different from those of the mCK query and collective keyword query.

3 Problem Statement

Let D be a set of spatial objects. Each object in D is represented by a pair o=〈loc, t〉,
where loc represents spatial location information and t is a bag of tags for describing
the object. In the vector space model of IR[8][9], t can be treated as a vector in finite-
dimensional space. This vector can be utilized to calculate the similarity between two
sets of tags.

A TkCoS query can be represented as Q= {〈q1.loc,q1.t〉, ...,〈qm.loc,qm.t〉}, where
qi.loc is the ith user’s location and qi.t represents a set of tags that describe the users’
requirements or preferences. The TkCoS query intends to retrieve the top-k groups of
spatial objects R=〈r1, ...,rn〉 with the smallest aggregated distance from the users, the
minimal spatial coverage and the highest similarity to Q measured in descriptive tags.

In order to search for the top-k best object groups from a spatial dataset, we propose
a ranking function to measure how well a search result satisfies a TkCoS query. The
function takes into account both the spatial proximity and the similarity between tag
sets. The spatial proximity, denoted by D(Q,R), can be measured by two components.
One is the maximum distance between the sub-query locations of Q and the result set
R, denoted by D1(Q, R). The other is the maximum diameter of the area of covering R,
denoted by ODiam(R). That is to say,

Rank(Q,R) = α
D(Q,R)
maxD

+(1−α)(1−Tr(Q.t,R.t)) (1)

D(Q,R) = β D1(Q,R)+ (1−β )ODiam(R) (2)

D1(Q,R) = max
qi∈Q

(
n

∑
j=1

(dist(qi,r j))) (3)

In Formula (1), Tr(Q.t,R.t) denotes the tag similarity between Q.t and R.t. maxD de-
notes the maximal distance between any two objects in D. It is used as a normalization
factor. In Formula (3), dist(qi, r j) denotes the Euclidean distance between an object r j

∈ R and a sub-query’s location qi ∈ Q. The parameters α ,β ∈ (0,1) are used to adjust
the tradeoff between the factors. To measure the maximal diameter of the area covering
R, ODiam(R), we give the following definition.

Definition 1. Given a set of spatial objects R=〈r1, ...,rn〉, the diameter of R, denoted as
ODiam.

ODiam(R) = max
ri∈R,r j∈R

(dist(ri,r j)) (4)

where dist(ri,r j) measures the Euclidean distance between the two objects ri and r j.
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Compared to a normal document, a tag set usually consists of a much smaller number
of terms. Therefore, a direct application of a traditional IR model to measure the tag
similarity Tr(Q.t,R.t) in Formula (1) can lead to inadequate results. In this paper, we
adopt the method proposed in [10] as our similarity metric, which is defined as follows:

Tr(Q.t,R.t) = ∑
qi∈Q,r j∈R

(simt(qi.t,r j .t)) (5)

simt(qi.t,r j.t) =
(qi.t)C(r j .t)T√

(qi.t)C(qi.t)T
√
(r j .t)C(r j.t)T

(6)

In Formula (6), C is a tag similarity matrix, which can be represented by C=(ci, j)n×n,
where n is the number of distinct tags, and ci, j is the similarity value between two tags
ti and t j.

Finally, the goal of a TkCoS query is to find groups of spatial objects with the smallest
Rank(Q,R). Our problem can be defined as follows.

Definition 2. (TkCoS Retrieval). Given a dataset D and a TkCoS query Q= {〈q1.loc,q1.t〉,
. . . ,〈qm.loc,qm.t〉}, find k groups of objects {R1,R2, . . . ,Rk} (Ri={ri1,ri2, . . . ,rin}), such
that there does not exist R′ �∈ {R1,R2, ...,Rk} that satisfies Rank(Q,R′) < Rank(Q,Ri)
where Ri ∈ {R1,R2, ...,Rk}.

4 STR-Tree: A Refined Hybrid Indexing Mechanism

To answer TkCoS queries efficiently, we introduce an efficient hybrid index structure
called Spatial-Tag R-tree (STR-tree), which is an extension of IR-tree [3] and the origi-
nal R-tree [11]. It clusters spatially close and semantically relevant objects together and
stores the tag information in the nodes of the R-tree [11].

In the STR-tree, a leaf node includes entries in the form (optr, loc,oti), where optr
is a pointer to an object in D, oti represents the tag information of an object, which is
indexed by inverted lists [12]. A intermediate node contains these entries in the form
(N ptr,MBR,Ntsum), where Ntsum represents the tag summary information of its child
nodes referred by Nptrs. The Ntsum includes two parts: tag maximum information Tmax
and tag minimum information Tmin. Note that each tag in the inverted lists is associated
with a tag frequency (tf ) and the number of objects containing the tag (df ). To minimize
storage overhead, for each tag, the Tmax (resp. Tmin) of each non-leaf node Ni stores
only the df and the maximum (resp. minimum) tf among all the child nodes rooted at
Ni. This maximum (resp. minimum) tf provides an upper (resp. lower) bound of the tag
similarity between a query and the nodes in the subtree rooted at Ni.

Fig.2 gives an example of STR-tree for the spatial objects in Figure 1. Fig. 2(a) shows
the Tmax and Tmin information of the non-leaf node N1. In Fig. 2(b), the objects p1 and
p2 are grouped into the node N1. Likewise, p3 and p4 are grouped into N2. These two
non-leaf nodes form a intermediate higher-level node N5, and so on.

The construction of a STR-tree is conducted through a sequence of insert operations,
which are a well studied operation in the original R-tree. The only difference is that it
needs to update the tag maximal and tag minimal information. Similarly, the update and
delete operations of STR-tree are simple extensions of those of R-tree too.
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Fig. 2. STR-tree indexing structure

5 Processing TkCoS Queries

Comparing with other types of spatial keyword queries, a TkCoS query is a collabora-
tive query composed of multiple locations associated with multiple tags. A brute force
approach is to process each sub-query qi in Q independently, and merge all the results
returned by the sub-queries. Obviously, this approach will lead to high processing cost.
First, the same node will be accessed repeatedly in different sub-queries. Second, we
need to keep the result set of each sub-query sufficiently large, to ensure the merged
results contain the top-k.

In this section, we present a more efficient algorithm to answer TkCoS queries. Our
idea is to perform a best-first search on the STR-tree. When performing the search, we
maintain a ranked list of candidate node sets, where each set is a set of the nodes in the
STR-tree that can potentially contain a top-k result. In each step of the search, we pick
the candidate node set with the minimal rank score, and start from its node to traverse
the STR-tree. Then we use the new nodes encountered in the traversal to form new
candidate node sets, and insert them into the ranked list. The candidate node sets are
ranked based on the minimum possible score of the results it could contain. During the
best-first search, we utilize several pruning strategies to truncate the irrelevant nodes in
the STR-tree, such that a significant part of the tree can be skipped.

5.1 Query Algorithm

The efficiency of the query algorithm depends on how we evaluate the fitness of each
candidate node set. It determines how fast we can reach the bottom of the STR-tree and
how many irrelevant nodes can be pruned during the search process. To evaluate each
candidate node set, we utilize two metrics, that is, the lower bound and the upper bound
of the possible scores (defined in Formula (1)) of the results this candidate node set
contains. Let NS be a candidate node set, and let Q be the query, we denote the lower
bound and upper bound by MinRank(Q,NS) and MaxRank(Q,NS) respectively.

Obviously, the lower bound MinRank(Q,NS) is used to rank the candidate node sets
encountered during the search and prune the paths of the search space in the hybrid
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index, so as to guarantee that the top-k results returned sequentially.We compute Min-
Rank(Q,NS) as follows:

Definition 3. Given a TkCoS query Q and a node set NS, the minimal possible score of
the results in NS w.r.t Q (MinRank) is:

MinRank(Q,NS) = α
MINDε (Q,NS)

maxD
+(1−α)(1−maxTr(Q.t,NS.u)) (7)

MINDε (Q,NS)) = β max
ni∈NS

minDist(Q,ni)+ (1−β )( max
ni,n j∈NS

minDist(ni,n j)) (8)

where MINDε (Q, NS) is the minimal spatial proximity between Q andNS, maxni∈NS

minDist(Q,ni) is the minimal Euclidian distance between Q and NS, maxni,n j∈NS minDist
(ni,n j) is the minimal diameter of NS, maxT R(Q.t,NS.u) is the maximal tag similarity
of Q and NS, and α,β and maxD are the same as those in Forumla (1)and (2).

Lemma 1. MinRank(Q, NS) satisfies the following property.

∀os ∈ OsetRank(Q, os)≥ MinRank(Q, NS) (9)

where Oset is the spatial object set contained in node NS, os is any subset of Oset.

Proof. First, according to Formula (3), we have D1(Q, os) ≥ minDist(Q, NS). Second,
according to Definition 1, the diameter of a node set is the maximal distance of any
pair of its nodes. Thus, we have: ODima(os) > maxni,n j∈NS minDist(ni,n j). Third, since
maxTr(Q.t, NS.u) is the upper bound of tag similarity between Q and NS, we can Tr(Q.t,
o.t) ≤ maxTr(Q.t, NS.u). We can derive Rank(Q, os)≥ MinRank(Q, NS) for any os. ��

Lemma1 proves that MinRank(Q, NS) is a true lower bound. Therefore, if we traverse
a STR-tree in the ascending order of MinRank(Q, NS), we guarantee to find the top-k
results of Q.

The upper bound MaxRank(Q,NS) is used to prune the inappropriate candidate node
sets as early as possible in search processing. It is calculated as follows.

Definition 4. Given a TkCoS query Q and a node set NS, the maximum possible score
of the results in NS w.r.t Q (MaxRank) is:

MaxRank(Q,NS) = α
MAXDε(Q,NS)

maxD
+(1−α)(1−minTr(Q.t,NS.l)) (10)

MAXDε(Q,NS)) = β max
ni∈NS

maxDist(Q,ni)+ (1−β )( max
ni,n j∈NS

maxDist(ni,n j)) (11)

where MAXDε (Q, NS) is the maximal spatial proximity between Q andNS, maxni∈NS

maxDist(Q,ni) is the maximal Euclidian distance between Q and NS, minTR(Q.t,NS.l)
is the minimal tag similarity between Q and NS, and maxni,n j∈NS maxDist(ni,n j) is the
maximal diameter of NS, denoted as maxDima.
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Lemma 2. MaxRank(Q, NS) satisfies the following property.

∀os ∈ OsetRank(Q, os)≤ MaxRank(Q, NS) (12)

where Oset is a spatial object set contained in node NS, os is any subset of Oset.

Proof. This lemma can be proved in a similar way as Lemma 1. ��

Lemma 3 (Upper Bound Constraint). Given a TkCoS query Q and a candidate node
set NS, Let CNSk be the kth candidate node set based on the ascending order of MaxRank
in the maintained list. The node set NS can be disregarded during traversing the STR-
tree if MinRank(Q,NS)> MaxRank(Q,CNSk).

Proof. Denoted by os the object set enclosed in the node set NS. According to
Lemma 1, we have: Rank(Q,os) ≥ MinRank(Q,NS). As MinRank(Q,NS)> MaxRank
(Q,CNSk), we can derive that Rank(Q,os) ≥ MaxRank(Q,CNSk). Therefore, NS cannot
contain any top-k results. ��

Lemma 2 and 3 proves that MaxRank(Q,CNSk) is a upper bound(denoted as uppC) of
the candidate node sets. Using Lemma 3, we can prune the candidate node set that
cannot possibly contain top-k.

In the query processing, apart from considering the ranking function in Formula 1,
we should also care the satisfaction degree of each individual user. The objects returned
only covering a handful of users’ needs should be eliminated from the results. In our
work, we adopt Bayes theory to define Contribution Degree of each sub-query qi in Q.

Definition 5. (Contribution Degree.) Given a TkCoS Q= {〈q1.loc,q1.t〉, ...,〈qm.loc,
qm.t〉} and a node set NS, let q1,q2, ...,qm be a partition of Q. Contribution Degree of
qi can be defined as follows.

P(qi|NS) =
P(NS|qi)P(NS|qi)

P(NS)
(13)

where P(qi)=simt(qi.t, NS.t), P(NS|qi)=|qi.t ∩NS.t|/|NS.t|, and P(NS) = |Q.t ∩NS.t|/|Q.t|.

According to Formula (13), when the contribution degree of each sub-query respec-
tively infinitely tend to the proportion of | qi.t | in | Q.t |, the users can be maximally
satisfied. Therefore, we use the difference between the contribution degree of and qi

and |qi.t|
|Q.t| to measure degree of satisfaction. We call this difference Differential Impact

Factor.

Definition 6. (Differential Impact Factor) Given a TkCoS Q= {〈q1.loc,
q1.t〉, ...,〈qm.loc,qm.t〉} and a node set NS, the differential impact factor δ is defined as
follows.

δNS =

√
∑m

i=1(P(qi | NS)− |qi.t|
|Q.t| )

2

√
mmax(P(qi | NS)− |qi.t|

|Q.t| )
(14)
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To take the users’ satisfaction degree into account, we use δNS to modify the lower
bound MinRank(Q, NS). Note that the value of δNS is smaller, the overall satisfaction is
better. If δNS ∈ (0,1) is too small, the searching order can be changed obviously. To be
specific, we apply eδNS MinRank(Q, NS) to rank the candidate node sets.

Lemma 4 (Bi-directional Constraint). Given a node set NS and the current node
set CNS with the smallest MinRank score, if eδNS MinRank(Q, NS) ≥ eδCNS MinRank(Q,
CNS), then the node set NS is pruned.

Proof. Obvious from Lemma 1 and definition 3 and 5. ��
In order to find top-k groups of spatial objects, STR-tree is traversed from the root node
following the best-first traversal strategy. The pseudocode is shown in Algorithm 1. Let
a min-priority queue U keep track of candidate node sets E with eδE MinRank(Q, E) ,
while an ordered link list LL store the same nodes in U associated with MaxRank(Q,E)
and the maxDima(E) in the ascending order of MaxRank. The process iteratively checks
the first entry E in U(line 4-23). If E contains only spatial objects, it is returned as a
top-k result. Otherwise, If E is a intermediate node set, we invoke Algorithm 2 to the
children of the nodes in E, and compose them into new candidate node sets Snl (line 11).

Algorithm 1: COSS(Q, STR-tree, k)
Input: Q: a TkCoS query;

STR-tree: a hybrid indexing;
Output: The top-k groups of objects satisfying Q;
1: U ← new min-priority queue; LL ← new a ordered link list;
2: U .Enqueue(STR-tree.root, 0); LL.Insert(STR-tree.root,∞,∞);
3: uppC ← ∞; uppDima ← ∞;
4: while U is not empty do
5: E←U .Dequeue(); LL.Delete(E);
6: uppC ← LL[k]; uppDima ← max(maxDima(LL[1..k]));
7: if E is a group of objects then
8: R← R ∪{E};
9: if | R | =K then goto 25;
10: else if E is a intermediate nodeset then
11: Snl← GenCSet(E, uppC, uppDima);
12: for each nodeset NS in Snl do
13: if | U.length|< k or MinRank(NS, Q) < uppC then
14: U.Enqueue(NS, eδNSMinRank(NS, Q));
15: LL.Insert(NS, MaxRank(NS, Q),maxDima(NS));
16: uppC ← LL[k]; uppDima ← max(maxDima(LL[1..k]));
17: else if E contains leaf nodes then
18: Sl← GenCSet(E, uppC, uppDima);
19: for each objectset os in Sl do
20: if MinRank(os, Q) < uppC then
21: U.Enqueue(os, eδos Rank(Q, os));
22: LL.Insert(os, MaxRank(os, Q),maxDima(os));
23: uppC ← LL[k]; uppDima ← max(maxDima(LL[1..k]));
24: return R
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Then, we consider each of the new node sets. If the node set NS in Snl does not satisfy
the condition in Lemma 3, it is enqueued to U together with eδNS MinRank(Q, NS) and is
inserted LL with MaxRank(Q,NS) and maxDima(NS). Otherwise, NS will be discarded,
because it cannot contain any top-k. Whenever LL changes, we need to update uppC,
which represents k-th smallest MaxRank(Q,NS) in U, and uppDima that is the maximal
maxDima of top-k element in LL(line 16). Likewise, if E is a leaf node set, we process
E in the same way to the non-leaf nodes (line 17-23). The algorithm repeats the above
procedure. Once R contains k groups of objects or no more groups of objects can be
found, the algorithm terminates and outputs R.

5.2 Generating Candidate Node Sets of Search Space

During each step of the best-first search algorithm, it needs to expand the nodes in a
candidate node set, and use their child nodes to generate more concrete candidate node
sets. An efficient generation approach is essential to ensure the efficiency of the top-k
algorithm. However, if we exhaustively enumerate all the subsets, it could incur high
computing overhead, as the number of subsets grows exponentially with the number of
child nodes. In order to reduce the cost of I/O and computation, we need to filter out
irrelevant node sets as early as possible. We exploit the apriori property among the set
and its superset to reduce search space in generating candidate node sets. By using the

Algorithm 2: GenCset(S, uppC, uppDima)
Input: S: a set of spatial nodes;
Output: A list of candidate spatial node sets SList;
1: Slist ← /0; T← SPF-tree(S,uppDima);
2: for each node ni in S do
3: for each childnode cni in ni do
4: if cni.t ∩ Q.t �= Φ and αMINDε (cni,Q) < uppC then
5: I1 ← I1∪ cni;
6: for k form 2 to |Q.t| do
7: NNk← GenNeighbor(Ik−1, T);
8: for each nodeset NS in NNk do
9: if αMinDistε (NS,Q) < uppC then
10: Ik ← Ik∪ NS;
11: L←∪kIk;
12: for each nodeset NS ∈ L do
13: if (MinRank(NS, Q) < uppC) then
14: add NS to SList;
15: return SList;
Procedure GenNeighbor(Ik−1, SPF-tree)
16: for each nodeset l in Ik−1 do
17: PreOrderTraverse(SPF-tree);
18: for each node ni in l do
19: CSni← Get-Childnodeset(ni);
20: CommonCS← ∩ni CSni;
21: for each node CN in CommonCS do
22: C← Merge(ni,CN); add C to NNk;
23: return NNk;
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upper bound of candidate node sets uppC and the upper bound of the diameter uppDima
introduced in section 5.1, we devise two pruning mechanisms to filter out the candidate
node sets that cannot possibly contain any top-k result.

Lemma 5. Given a TkCoS query Q and a node set NS, if αMINDε (NS,Q) > uppC,
then the node set NS and all its supersets cannot contain any top-k result.

Proof. According to definition 3, we have MinRank(Q,NS) = α MINDε (Q,NS)
maxD + (1−

α)(1−maxTr(Q.t,NS.u). On the one hand, the minimal spatial proximity of a superset
of NS is larger than MINDε (Q,NS). On the other hand, the tag similarity maxTr(NS,Q)
is in the range between 0 and 1. If we set maxTr(NS,Q) to 1, then αMINDε (Q,NS) is
the lower bound of the MinRank of all its superset. Therefore, when αMINDε (NS,Q)
> uppC holds, any superset of NS has larger MinRank score than the scores of the
current top-k candidate node sets (because uppC is a upper bound ). Thus NS and all its
supersets cannot contain any top-k result. ��
By applying Lemma 5 to the generation of the candidate node sets, the node sets that
cannot affect the query results can be discarded as early as possible. We call the node
set that does not satisfy the condition in Lemma 5 Relevant Node Set, denoted as I.
Besides, we still utilize the the upper bound of diameter uppDima for pruning.

Lemma 6. Given a node set NS=〈N1, . . . ,Nk〉, if the diameter of NS is larger than up-
pDima where uppDima is the maximal maxDima of top-k element in link list, then NS
and its superset can be pruned.

Proof. According to definition 1, if the diameter of NS is larger than uppDima, then
there exists two nodes Ni,Nj ∈ N with minDist(Ni,Nj) ≥ uppDima. Any superset of
NS must contain Ni,Nj and its diameter exceeds the uppDima. Thus NS and its superset
does not provide a query result with a diameter less than uppDima. ��
Lemma 6 says that the diameter of the candidate node set can not exceed uppDima. In
generating candidate node sets, we only care these node sets with neighbor relationship
that the distance of any two nodes is less than uppDima. Once any two nodes in NS
satisfy neighbor relationship, we call it a Neighbor Node Set, denoted as NN.

(a) (b)

u1u2; u2u3v1v2; u3v1Uc

Vc v1v2; v2v3; v3

u2

null

U V

u1 u2
u3 v1 v2 v3

u3 v1 v2 v2 v3v1

Fig. 3. The construction of shadow prefix-tree

In the sequel, we proceed to propose the strategy of generating candidate node sets.
A good candidate generation method keeps the aprior properties, as well as avoids
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amounts of join operations. Based on this principle and lemma 6, we propose a shadow
prefix-tree model that materializes the neighbor relationship between childnodes of NS.
The number of subtree is determined by the number of nodes in NS while each branch
in subtree records the neighbor relationship of childnodes of NS. Figure4 illustrate an
example of shadow prefix-tree about node set (U(u1,u2,u3),V (v1,v2,v3)). we can find
the neighbor node set by traversing the shadow prefix-tree according to lemma 7.

Lemma 7. (Neighbor Node Set Generation) Given a relevant node set Ik−1={n1,n2, ...,
nk−1}, if a node nk is contained in the intersection of child nodes of each node in Ik−1,
NNk={n1,n2, ...,nk} is a size k neighbor node set.

Proof. Each node ni in Ik−1={n1,n2, ...,nk−1} has neighbor relationship with other node
of Ik−1. If a node nk is the child node of {n1,n2, ...,nk−1}, then indicates that nk has a
neighbor relationship with all nodes in Ik−1. In addition, the neighbor relationship is
symmetric. So NNk={n1,n2, ...,nk} is a size-k neighbor node set. ��
Algorithm 2 shows the process of generating candidate node sets. In this algorithm, NNk

represents size-k neighbor node sets, Ik is the size-k relevant node sets. The shadow
prefix-tree T is firstly built by utilizing S and the upper bound of diameter uppDima
(line 1). Then, we invoke procedure GenNeighbor (line 16-23) to generate the neighbor
node sets NNk based on T and node set Ik−1. Ik can be obtained by filtering the node sets
in NNk that satisfy the condition of lemma 5 (line 9-10). Finally, all of node sets in Ik

are appended to list L(line 11). After all node sets L are found, we check each node set
in L to see whether its MinRank score is less than uppC (line 12-14). Those that cannot
qualify the conditions are eliminated. On contrary, we do not check this constraint in
the process of node set Ik since if a node set does not contain query tags, it can still
combine other nodes to covering the missing tags. As long as it is relevant to the tag of
query, we keep it in list L of node set Ik.

6 Experiments

This section presents an extensive experimental evaluation of the proposed method for
TkCoS queries using synthetic and real datesets.

6.1 Experimental Setting

We used two Baseline Algorithms to compare with our proposed algorithm COSS.
Baseline1 First separate last union (FSLU). In FSLU, we process each subquery qi

separately using an existing spatial keyword query processing method proposed in [2].
We utilize STR-tree to retrieve the object set with smallest rank score for each qi. Then
we merge the results of the sub-queries to obtain the final top-k.

Baseline2 Centroid-based Iterative Search Algorithm (CISA). In CISA, we use an
aggregation centroid c to substitute for a TkCoS query Q. The tag information of the
centroid c can be considered as the tags combination of each subquery in Q. The query
processing iteratively utilizes the methods of [2] to retrieve the group of objects that
cover all tags and are nearest to centroid c. It firstly finds the object with the smallest
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distance that matches a part of tags. The uncovered tags together with the location of
centroid c form a new query. This process terminates until the tags are either matched
or skipped (for there is no matching object).

Datasets and Queries. Our experiments used two datasets, whose properties are sum-
marized in Table 1.The real data set DATA1 is obtained from the online web data
resource PocketGPSWorld [13] that consists of points of interest locations in United
Kingdom. DATA2 is a synthetic dataset generated to simulate a geo-social application.
We extracted 3000,000 tags from del.ic.ious [14] and combined the tags with the real
spatial dataset about California’s streets to generate DATA2. We generated 5 query sets
for DATA1, each containing 2,4,8,16,32 tags respectively. Similarly, we generated 5
query sets for DATA2. Each of the query sets comprises of 50 queries and each query is
randomly generated. Based on the query sets, we generate 6 group query sets for each
dataset. The number of the sub-queries in each group query ranges from 2 to12.

We implement all the algorithms using VC++. In all the experiments, the index struc-
tures were disk-resident and the page size was fixed at 4KB. In an index, the number of
children in each node is determined solely by the size of a page. All our experiments
were executed on a Windows platform with an Intel(R) Core(TM)2 Duo CPU of T7500
@ 2.66GHZ and 4GB RAM.

Table 1. Shows more details of the two datasets

Dataset Total # of objects Total # of unique tags Total # of tags
DATA1 125,313 47,672 877,191
DATA2 2,249,727 289,175 8,998,908

6.2 Performance Evaluation
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Fig. 5. Effect of the group size

We compare our algorithm COSS against FSLU and CISA in answering TkCoS queries.
The running time is used as our performance metric. We conduct four sets of experiment
in total.

Effect of k. In this set of experiments, we evaluate the performance of the three al-
gorithms with a varying k. As shown in Fig.4(a) and 4(b), the COSS method notably
outperforms FLSU and CISA for all values of k. Meanwhile, CISA performs better than
FSLU. This is mainly because COSS can prune irrelevant nodes more effectively than
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the other two methods. As expected, the running time of all the approaches increases
with increasing k.

Effect of the Group Size of Query. The objective of our second set of experiments is
to study the efficiency of the three algorithms in dealing with different sizes of query
groups. The results on DATA1 and DATA2 are shown in Fig.5(a) and 5(b). We can
see that COSS significantly outperforms both FSLU and CISA. For all the approaches,
the query running time increases as group size grows. This is because when increasing
group size, it takes more time to process the increasing number of entries in the hybrid
index. Nevertheless, the growth rate for COSS is much smaller than the others.

Effect of α and β . Fig.6(a) shows the performance of CISA and COSS on DATA1
with respect to different α . It is clear that COSS significantly outperforms CISA for all
the values of α . Recall that α can adjust the importance between the spatial proximity
and the tag similarity. A larger α means that the spatial distance is more important,
while a smaller α means that the tag information is more important. We notice that
the running time increases as α increases. This is mainly because spatial proximity
is normally less selective in pruning irrelevant results. The impact of the parameter β
on the performance of CISA and COSS algorithm is shown in Fig.6(b). As mentioned
earlier, β is introduced to balance the importance of the distance between query Q and
results R and that of the covering area of R. We obverse that COSS also outperforms
CISA slightly in most cases.
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Scalability in Terms of Dataset Size. In order to simulate the real geo-social network-
ing in which the number of objects and tags continuously increasing, our final set of
experiments is conducted to evaluate the scalability of three algorithms by varying the
number of objects. We increase the size of the synthetic dataset steadily from 2 million
to 12 million. Fig.7 shows the running time of the algorithms as the data size increases.
When the group size is small, the CISA and COSS shows the similar rate of increase in
running time. As group size grows, CISA’s running time increases more dramatically.
We can also see that all the algorithms scale smoothly when the number of objects is not
greater than 4 million. However, the performance of FLSU and CISA declines quickly
when the dataset size is above 4 million. On the contrary, our COSS method scales well
even with large dataset size.
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Fig. 7. Scalability in terms of dataset size

7 Conclusions

In this paper, we study the problem of tag-based top-k collaborative spatial (TkCoS)
query , which aims to find groups of objects with the smallest rank score and the high-
est satisfaction degree for multiple users. We present an efficient query processing al-
gorithm that is based a hybrid index, STR-tree and employ upper bound constraint and
bi-directional constraint to prune irrelevant subtree. This algorithm tackles the key chal-
lenge by building a shadow prefix tree model to generate candidate search space. Our
experimental evaluation shows that the proposed algorithm is efficient and scalable and
superior performance compared with baseline method. Our results can be used as a
value-added service in today’s social networking websites or geo-based applications.
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Abstract. The current widespread use of GPS navigations and trip planning on 
web has aroused great interests in fast and scalable path query processing. Recent 
research has mainly focused on static route optimisation where the traffic 
network is assumed to be stable. However in most cases, route planning is in 
presence of frequent updates to the traffic graph due to the dynamic nature of 
traffic network, and such updates always greatly affect the performance of route 
planning. Most existing methods, however, cannot effectively support traffic 
aware route planning. In this paper, a new strategy is proposed to handle this 
problem. We analysis the traffic condition on the road network and explore 
spatial-temporal knowledge to guide effective route planning. In particular, a set 
of effective techniques are used to avoid both unnecessary calculations on huge 
graph and excessive re-calculations caused by traffic condition updates. A 
comprehensive experiment is also conducted to evaluate the strategy 
performances.  

1 Introduction 

Location based services is growing in popularity in recent years. Many online route 
planning services such as Google Maps and Microsoft MapPoint have become one of 
the most important tools for our life nowadays. In addition, the growing popularity of 
location based services such as GPS navigation and logistic control has led to great 
interests in real time route planning techniques. Existing works [7, 9, 14] mainly 
focuses on the static route planning under current road condition. In this paper, we 
provide a novel approach to support traffic aware route planning in the presence of 
dynamic road networks through continuous monitoring.  

As the road condition changes all the time, traffic aware route planning services is 
therefore very useful to most users. Most existing earliest arrival route planning 
strategies [11, 12] are simply based on the static road condition. However, in reality, the 
dynamics of road conditions should be considered in most cases. For example, a best 
route is planned for a driver at 6:30PM as Fig. 1(a), but this route becomes sub-optimal 
when he drives to point C at 7:00PM due to the road condition changes. At this time, 
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traffic-aware route planning is highly expected to adjust the route as Fig. 1 (b) for 
guiding users to bypass new congestions. We target to handle this problem in this paper 
to help users who tend to get stuck in the peak hour traffic congestions.  

The major challenge comes from the expensive computational overhead caused by 
the continuous updates on the huge search graph, especially considering the 
in-efficiency of A* algorithm on time-based path search. On the Boston road network 
that contains over 40, 000 links [8], even a single calculation for earliest arrival route 
could cost iCarTel (an iphone application) several seconds. It is obviously not realistic 
to re-plan the route by A* search for each road condition update, especially when the 
number of queries goes up. As such, it is crucial to improve classical algorithms, by 
reducing the space (which contains relative edges) for each route search and avoiding 
re-computation caused by the dynamics of road condition. Due to the huge complexity 
of this problem, we seek to explore near-optimal solutions in an efficient and practical 
manner. 

 

 

Fig. 1. (a) Initial earliest arrival route            (b) Revised earliest arrival route 

In this paper, an incremental route planning approach is proposed to achieve 
efficient traffic aware route planning. Particularly, a partial route (e.g. from A to C in 
Fig 1(b)), rather than the whole path from start to end, is computed each time. This 
approach enables the computational overhead to be greatly reduced for two main 
reasons: firstly, excessive re-calculations (particularly on far-away road segments) due 
to frequent road condition updates can be avoided; secondly, long distance route 
queries can be efficiently processed because each partial route search is restricted in a 
small region. Furthermore, a set of graph reduction and filtering mechanisms are used 
to improve algorithm efficiency, and issues like driving flexibility and congestion 
evolution are considered to improve planning effectiveness under dynamics. As such, 
the contributions in this paper are summarized as follows:  
 

 We achieve traffic aware route planning. By adapting to the traffic condition 
changes, our approaches can guide drivers to bypass the new congestions and to 
follow the best route in dynamic road networks continuously.  

 We develop a set of novel approaches to process queries in a small sub-graph each 
time. Computational overhead is significantly reduced to ensure real time feedback 
of route queries particularly for long distance queries.  
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 We take into account issues like congestion evolution and flexibility of path 
selection in driving. It contributes to achieve reliable route planning in presence of 
high dynamics of traffic condition in peak hour.  

 

The rest of this paper is organized as follows. We discuss related work in Section 2. We 
specify the model and problem in Section 3, introduce the preliminaries in Section 4, 
and then present our query processing strategy in Section 5. We evaluate our solution 
using real data in Section 6 and conclude in Section 7.  

2 Related Work 

Route planning is a classical research problem and the related works can be generally 
divided into three categories: the first category is distance based shortest path, which 
aims to find the path that the distance is minimal; another category is time-dependent 
shortest path, which considers the actual speed on the roads and enable users to arrive 
destination as soon as possible; the last category is skyline search, which seeks to find 
skyline paths according to criterion like time, distance and high way cost.  

Many efforts have been made to handle the distance based shortest path search 
problem. Dijkstra is a well known algorithm that finds shortest path on graph, and A* 
[13, 15] further improves the search performance by using heuristics. Also, a path 
indexing technique is proposed in [9, 10] to facilitate route search, and [4] presents an 
approach for handling probabilistic based shortest path query. Fast approximation 
algorithms is proposed in [7] to process route queries constrained by passing at least 
one from each category of places (e.g. to buy a book from a close book shop). The 
problem of skyline path query is also studied in works [1, 6] based on different 
criterion. Different from these works, we target to find the earliest arrival path by 
considering road conditions.  

As the road condition is an essential factor that should be considered in practical 
route planning, increasing attentions have been put on time-dependent shortest path 
search in recent years. Work [2] studies how to answer queries of finding the best 
departure time that minimizes the total travel time from a place to another, over a road 
network, according to the average road condition in different time intervals derived 
from historical data. Also, a critical-time-point approach is presented in [3] to generate 
best routes and their corresponding time intervals, and the issue of finding fastest paths 
on a road network with speed patterns is discussed in [5]. However, these pattern-based 
approaches cannot support real time traffic-aware route planning.  

In particular, work [8] targets to the problem answering continuous route planning 
queries over a road network in presence of updates to the delay estimates of links. Its 
basic idea is to calculate top-K (efficient) paths between any two vertexes according to 
statistics (simply average speed) on historical data at the build time, and then to keep 
ranking the top-K paths from current position to destination at the run time. However, it 
would cost huge space to store top-K paths between any two intersections, and the 
top-K paths cannot well balance different case features, e.g. the top-K paths in the 
raining, snow or sunny days could vary greatly. Instead, we assume the traffic is pure 
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dynamic, and propose a new strategy to avoid un-necessary re-calculation caused by 
the road condition changes. Based on our approach, route search queries can be 
efficiently processed, and the dynamics of road network can be tracked to achieve 
traffic-aware route planning.  

3 Traffic Aware Route Planning 

In this section, we give a formal description of traffic aware route planning. A set of 
definitions based on the traffic network are presented to specify the problem we address 
in this paper:  

 
Definition 1 (Dynamic road network): A road network is defined as a directed graph G 
= <V, E>, where V = {v} is the set of vertices representing road ends or intersections, 
and E = {(vi, vj) | vi, vj∈V} is the set of (directed) edges representing road segments. For 
each edge e  = (vi, vj) ∈E, the weight of this edge is the estimated time for passing 
through this edge t(vi, vj) based on the current speed s(e) on e. As the actual road speed 
keeps changing, the weight (i.e. time) of edges in G fluctuates from time to time 
accordingly, and G is thus a dynamic graph essentially.  

 

Definition 2 (Vertices in/out-degree): Assume v is a vertex on a road network G, we use 
ind(v) and outd(v) to represent the in-degree and out-degree of v. Given a route r with 

set r.V (all vertices it passes), the in-degree of r is defined as IND(r) = ∑
∈ Vrv

vind
.

)(  and 

out-degree is defined as OUTD(r) = ∑
∈ Vrv

voutd
.

)( .  

The in-degree and out-degree of vertices are important factors for route planning. 
Given a vertex v on the road network, congestions are more likely to occur on v if its 
in-degree value is high because more vehicles could move toward this interaction from 
different road segments. We thus tend to avoid such vertices. In contrast, vertices with 
high out-degree value are preferred because drivers have more (outgoing) paths to 
choose. Under a traffic network that is full of dynamics in the peak hour, such 
flexibility is useful for exception handling, e.g. when the previous reported route has to 
be adjusted to bypass new congestion or to switch to a light path.  

 

Definition 3 (Route Query): In a dynamic road network G, a route query is defined as 
qry = <src, dst>, where src is the source node and dst is the destination node specified by 
users. We use this format as standard query type in this paper. In our system, users can 
also input <src, dst, ”no”> to support fastest route query without continuous 
monitoring.  

 

Definition 4 (Congested Region): Congested region is an area where drivers are very 
likely to get stuck for a long time if they come in. In the dynamic traffic network, this 
region must be stable (keep congested for certain duration). Otherwise, it would be 
meaningless for route planning. To ensure congestion regions been stable, a congested 
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region is defined as CR = <CV, CE>, where CV is the involved (inside) set of vertices 
and CE = {(v, v’) | v, v’∈CV} is the involved edge set. In particular, it meets the 
following two constraints:  

(1) This region is congested. For each road segment (edge) e ∈CE, its speed must 
satisfies s(e)<SPmin, where SPmin is the minimum speed of normal travel and is set as 
5km/h in this paper. That means, moving on the road segments in this region would 
be very slow;  
(2) Large scale congested region. The size of this region satisfies |CV|≥SZmin 

(SZmin=4 in this paper). Large scale congested region means it is worthy to be noticed 
and congestions in this region are likely to be stable in certain duration.  
 

Problem Definition. We target to solve the problem of traffic aware route planning 
which is formally defined as: Given a route query qry  = <src, dst > on road network G = 

<V, E>, we process the query for a continuous optimal path (route) r = (vs, v, v’,…, vt) 
on this dynamic road network that satisfies the following spatial-temporal optimisation 
goals and constraints: 1. Spatial constraints vs= src and vt= dst; 2. Optimisation goal 
(shortest travel time) ∀ route r’=(src, …, dst): T(r) ≤ T(r’). This problem is 
computationally hard because of the large graph it faces (road network) and the 
continuous recalculation due to updates on this graph (traffic condition). However, 
GPS navigation requires efficient query processing for immediate response. Therefore, 
an efficient approach is highly sought after to handle this problem.   

4 Preliminary 

In this section, we review the preliminaries of shortest path search, graph reduction and 
road condition monitoring in 4.1, 4.2 and 4.3 respectively. Effective shortest path 
search and graph reduction are essential issues of route planning.  

4.1 Shortest Path Search (A* algorithm) 

Shortest path search on graph is a classical topic and Dijkstra algorithm is a 
fundamental algorithm commonly used to solve it. Many approaches were designed to 
improve Dijkstra algorithm, and the most famous one is A* algorithm. It adopts the hill 
climbing method, and the ordering of search is based on the function f(x) = g(x) + h(x), 
where g(x) denotes the exact distance from starting node to current node x and h(x) is an 
estimated distance (also the strict upper bound of the distance) to end node.  

A* algorithm is usually adopted to find the shortest path on a static (current) graph. 
To avoid over-estimation, the distance and time used for computing heuristic 
estimation h(x) are ‘as-the-crow-flies’ distance and maximum speed limit on the road 
segments respectively. This approach costs O(m+nlogn) time, where m is the number 
edge and n is the number of vertices. However, A* algorithm is not effective for 
time-dependent shortest path cases because maximal speed limit is used in estimation 
(to guarantee h(x) is not over-estimated). As A* heuristic is not sensitive to the actual 
road condition, earliest arrival query processing on large graph turns to be very 
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in-efficient, particularly when the traffic is heavy. To ensure that time-dependent 
queries can be efficiently responded, our approach seeks to reduce the size of n, so that 
a route query can be processed in a small sub-graph each time to improve efficiency.  

4.2 Graph Reduction 

Though A* algorithm is very effective for shortest distance query, its performance is 
usually poor for earliest arriving route queries on a large graph. This is caused by the 
fact that traffic conditions cannot be used in the A* heuristics to guide route search. 
Also, the continuous monitoring on the dynamic traffic network must be restricted in a 
relative small sub-graph. Therefore, graph reduction techniques can be used to ensure 
that route queries can be efficiently processed.  

Graph reduction is applied in [8] to facilitate shortest path algorithm for dynamic 
transportation networks. It reduces the whole space to an eclipse region, and then 
monitors the road condition change in this region. Only road segments in this region are 
admissible for route planning. Selected route is updated when the change in this region 
reaches a threshold because it may not be optimal since then. However, these 
approaches are too mechanical because they only concern the locations of start node 
and end node. In Section 5, we propose a set of spatial-temporal feature based 
techniques to narrow down the search space for each computation.  

4.3 Road Condition Monitoring 

As the dynamics of traffic network is a core issue for location based service 
optimisation, making use of information about updates of road condition in a close area 
is essential for achieving traffic-aware route planning. Many previous efforts have been 
endeavoured to handle this problem. Among the existing approaches, the most practical 
solution is the technique used in [8], which set up a relative region first, and then checks 
if the number of segments with delay updates that lie inside the region for a route query 
exceeds the average number of segments lying inside this region. If it is true, the re-run 
of the shortest path computation (by A* algorithm) is invoked then. In this paper, we 
adopt this basic idea, and propose an efficient monitoring approach to guarantee the 
selected route can be updated in a proper timing.  

5 Efficient Path Query Processing Strategy 

We present a novel strategy for traffic aware route planning in this section. In 5.1, we 
apply basic graph reduction and conduct congested region clustering as initialization to 
facilitate route planning. Then we select the top-k intermediate destinations according 
to a set of spatial-temporal criterion in 5.2. Afterwards in 5.3, route planning is 
conducted towards the top-k intermediate destinations. In this way, we can avoid 
re-calculation on far away road segments due to high possibility of speed change. By 
considering issues like spread of congestions, re-calculations impacted by the dynamics 
of road condition can be further reduced. We introduce the monitoring technique for 
adaptation of route planning to dynamic road conditions in 5.4 and present the main 
algorithm in 5.5.  
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5.1 Initialization 

In initialization phase, basic graph reduction is conducted to ensure route search 
operations to be executed on a small sub-graph. Afterwards, congested regions are 
clustered. As congestion may spread and affect nearby areas, road segments close to the 
congested regions are identified. The spread of congestions onto these road segments 
will be considered to cope with the dynamics of traffic condition. 

First of all, we conduct a basic graph reduction to settle a small sub-graph as the 
region relative to route query processing: an eclipse region G’ shown in Fig. 2 (a) is 
efficiently derived from the whole space G in the same way as [8]. Only the road 
segments in this region are considered as relevant to route planning. However, as only 
positions of start and end nodes are considered, this eclipse region is very likely to be 
over-sized, and we only use it to set a base for route planning operations used in 
remaining sections.  

 

 

Fig. 2. (a) Basic graph reduction (eclipse region)    (b) Congested region detection (clusters) 

Then we make use of traffic report to generate congested regions (defined in  
Section 2) that are shown in Fig 2 (b). By doing so, smart route planning can be achieved 
by bypassing these regions and areas that may be affected. A congested region alerts us 
that this is an area drivers may get stuck for a long time. All congested regions in relative 
sub-graph G’ are identified and saved into set CRS by clustering congested edges as 
follows: firstly, scan all edges in G’ to generate congested edge set CES =  
{e | e∈G’.E ∧  s(e) < SPmin}, in which speed on each edge is less than a upper limit 
SPmin. Secondly, we find clusters in congested edges. Starting from the unprocessed edge 
in CES with minimal speed, expansion toward linking edges which belongs to CES is 
conducted iteratively. This region is validated and added to congested region set CRS if 
the number of involved vertices in this region is over SZmin.  

Further, the impact from congested regions onto nearby areas is estimated to deal 
with road condition changes and hence reduce re-computations. The spread of 
congestions always cause new jams on affected roads, and congestion spread is greatly 
impacted by traffic flow evolution (moving direction of cars in this flow). In reality, 
traffic flow evolution patterns can be easily derived by statistics. For example, 30% of 
cars on edge ea go ahead on vertex v, 60% cars turn right to edge eb and 10% turn left. 
We use function flow(ea ,  eb) to represent the percentage of flow evolution from ea to eb 
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(i.e. 60%) according to historical data. Congestion on ea is likely to spread to eb if this 
percentage is high, e.g. 60%. Assume AS denotes the set containing all congested edges 
adjacent to edge e, we use the following formula to estimate the future speed on e that is 
likely to be affected by congested region:  

estm_s(e) = ∏
∈ASe '

1 – flow(e’, e) ¼ 
×

 s(e) 

We check all edges linked from an node in congested region within 10 km distance and 
compute estm_s(e) for each of them. Speed is expected to decrease on e in the near 
future if many vehicles on a congested road segment e’ will move to e. If e becomes 
congested, edges linked to it will be examined as well. Congested edges and estimated 
speed are updated periodically to ensure validation. Notice, this estimated speed only 
effects in a period, we use it in route planning if the time from current position to e 
based on current road condition is in 20 minutes.  

5.2 Top-k Intermediate Destinations 

In traditional approaches, a path strictly from starting point to destination is usually 
planned in each time. However it is not effective for earliest arriving route search 
because the frequent updates on road condition are likely to cause excessive 
re-calculation, particularly on faraway road segments. For example, if congestion 
occurs on a road segment that is part of planned route, re-planning is needed to 
guarantee service quality. For efficiency purpose, it is thus reasonable to plan partial 
path in a limited scope, rather than plan the whole route. Re-calculations caused by 
dynamic road condition can be greatly reduced accordingly. To set the boundary of 
route search properly, we must select some intermediate destinations as shown in  
Fig 3 (a), toward which effective route planning are conducted afterwards.  
 

 

Fig. 3. (a) Intermediate destinations                          (b) Evaluation criterion 

The selection of intermediate destinations must follow a set of spatial-temporal 
standards. First of all, the direction from starting point to intermediate destination has 
great evaluating merit. A good intermediate destination is expected to make the moving 
direction consistent with going toward final destination. Assume that θ ((vx, v), (vx, vd)) 
is the angle of two straight lines (vs → vx) and (vs → vd), e.g. ‘c1’ in Fig. 3 (b), it can be 
seen as the difference between direction to intermediate destination and direction to 

D1 
D2

D3

θ
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final destination. We definitely prefer small angle because of less difference. To ensure 

the direction to be consistent, only angles in [0, 90 h ] are accepted. Given that cos(ang) 
is the cosine value of an angle ang, which is in reverse proportion to the degree of ang. 
To evaluate the direction preference of selecting vx as intermediate destination, we use 
dw(vx) to measure the direction weight of vx as:  

dw(vx) = cos ( θ ( (vs, vx), (vs, vd) ) ) 
Meanwhile, the position of a vertex regarding to starting and end points is an important 
criterion according to ‘c2’ of Fig. 3 (b). A faraway intermediate destination may cause 
excessive re-calculation due to the frequent updates on traffic condition. Also, the 
distance should not be too close because the global view is neglected: it is hard to 
satisfy global optimisation when partial path search is made toward a intersection 200 
meters away. To achieve a good balance between reducing re-calculation (not too 
faraway) and achieving global optimisation (not too close), we use position weight 
pw(vx) to measure intersectin vx as intermediate destination as:  

pw(vx) = tmax  –  |h(vs , vx)  –  tbest| 
where h(vs, vx) denotes the average travel time for the ‘as-the-crow-flies’ distance (e.g. 
10 miles) from vs to vx on the current issue time (e.g. 7PM). Statistical data is used here. 
Tmax is the upper bound of h(vs, vx) for pruning faraway vertices, and tbest is the time of 
favoured distance. We set tbest = 0.5 hour because experiments show that effective 
intermediate destinations tend to appear in region around 30-minutes-drive away. We 
also set tmax = 1 hour to avoid re-calculations on faraway road segments, and thus h(vi, vj) 

∈  [0, 1] must be satisfied.  
Another important criterion to evaluate intermediate destinations is the flexibility of 

future driving. According to ‘c3’ of Fig. 3(b), high flexibility means better capability 
for exception handling, e.g. to bypass new occurred congestions. Driving flexibility of 
an intermediate destination is determined by a set of spatial-temporal features. It is 
obvious that more out-going paths from an intersection give us more flexibility to 
choose. Among out-going edges, those in the same direction to final destination are 
definitely preferred. Wrapping up these issues, the flexibility weight fw(vx) for selecting 
vertex vx as intermediate destination is calculated as:  

fw(vx) = ∑
∈ )( xvFVv

cos(θ((vx , v), (vx , vd))/2
 

) 

where FV(vx) = {v | edge e=( vx, v)∈E} is the forward vertices set of vx,  θ is the angle of 
straight lines (vx → v) and (vx → vd). More out-going edges give drivers greater 
flexibility of route selection. For each out-going edge to v from vx, we prefer the angle 
angle((vx, v), (vx, vd)) to be small because its direction matches the required one. The 

cosine value is in reverse proportion to the angle size θ in range of θ∈[0, 90 h ]. We 
thus use it to evaluate the preference of out-going paths regarding to moving direction.  

To select proper intermediate destinations, issues mentioned above like spatial 
features and driving flexibility must be considered, as they benefit us to reduce 
re-calculations and to be more reliable under dynamics. In particular, the selectivity of 
intermediate destinations follows the following criterion:  

w(vx) = dw(vx)/cd  

+ pw(vx)/cp 
+ fw(vx)/cf 
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Where dw(vx) is the direction weight, pw(vx) is the position weight, fw(vx) is the 
flexibility weight. Factors cd, cp and cf represent the standard direction weight, position 
weight and flexibility weight required for capable intermediate destinations 
respectively. Thus, only vertices that satisfies w(v) ≥ 3 are suitable as intermediate 
destination. By ranking w(v) on vertices with w(v) ≥ 3 not belonged to the congested 
region, K best vertices and final destination are selected as intermediate destination 
candidate into IDC. Route search is then conducted towards vertices in IDC for 
effective planning. If intermediate destination candidate cannot be detected, A* 
algorithm is simply used to search time-dependent shortest path to final destination vt.  

5.3 Route Search 

Route search is made to find a path (patrial route) to one of the top-k intermediate 
destination. To find good result efficiently, we propose a novel algorithm to search the 
partial route with shortest time. From the start node to any of intermediate destination, 
we consider the exact time. From the intermediate destination to final destination, the 
estimated time is used to avoid traversing huge scale far-away road segments. Notice 
that it also contributes to reduce re-calculations caused by dynamics of road conditions 
on those road segments. Details of the (partial) route search toward those K 
intermediate destinations are given as follows.  
 

Input: 
IDC 

vs 
G’ 

– intermediate destination candidates;  
– starting node;  
– sub-graph of whole road network. 

Output: pth – a path (partial route). 

1 P = {vs};                 // processed vertices 
2 A = { v’ | e = (vs, v’)∈G’.E’ }  // vertices adjacent to P 
3 P’ = φ ;     // shortest path from vs to vertices in P 

4 lowB = 0;     //lower bound of time to other vertices 
5 maxDiff = maxET(IDC, vt) – minET(IDC, vt); 
6 do 
7   select i, j: min TM(psi) + t(vi∈P, vj∈A); 
8   P = P + {vj}; 
9   A = A + {v’|(vj, v’)∈G’.E ∧ v’∉P} – {vj }; 

10   psj = psi + e(vi, vj); 
11   P’ = P’ + {( j, pthsj)}; 
12   lowB = TM(psj);  
13   if (vj ∈ IDC) then insert psj into C;  //path candidates 
14 while (∀ vd∈ IDC : TM(psd)+h(vd, vt) ≥ lowB+maxDiff) 
15 pth = selectFromPaths(C); 
16 return pth; 

Algorithm 1. Partial Path Search (PPS) Algorithm 
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Algorithm 1 is an efficient partial path search strategy. Compared with the 
conventional shortest path search, the optimisation here is made for the top-k rather 
than a single candidate, and the route returned is a partial one. It can be seen as an 
extension to the A* algorithm. Set P contains all the processed vertices, to which the 
earliest arrival time from starting node is known. Set A is contains vertices adjacent to 
P. That means, any vertex in A is not belonged to P, and there exist at least one 
in-coming edge from a node in P.  

Based on a lower bound of total time to destination among processed vertices, we 
select an intersection vj from A to which travel time is minimal (Line 7), then add it to P 
and update set A. The shortest path from starting node vs to vj is generated (Line 10) and 
recorded in path set P’ (Line 11). The time from vs to vj becomes the lower bound of 
travel time from vs to the remaining vertices v∈G’.E /P (Line 12). If vj is intermediate 
destination candidate, we further add this path into set C as a partial route candidate 
could be returned (Line 13). By keep doing so, we expand P in a way that time from 
start node is strictly increasing (Lines 6 – 14). This process can be when we 
successfully detect an intermediate destination vd that has least value of f(x) = 
TM(psx)+h(vx, vt) in IDC in Line 14 (estimated speed can be used when necessary). 
Specifically, f(x) is the total time, calculated as the sum of strict time TM(psx) from start 
node to vx and the estimated time h(vx, vt) from vx to final destination. maxDiff is the 
maximal difference of this h(vx, vt) value among vertices vx∈IDC.  

As the search process could continue when reaching intermediate destinations, we 
may need to select the best path among several path candidates stored in set C. The best 
path is selected by function selectFromPaths( C ) in Line 15. Road structure features and 
estimated travel time of the paths are considered by this function. Firstly, we calculate 
the value of OUTD(pth)/IND(pth) for each path pth, and prune it if this value is not k 
best candidates and is less than a threshold. This guarantees the high driving flexibility 
and less time of route re-planning along the journey. Among those un-pruned paths, the 
one with minimal total travel time is returned as partial route.  

5.4 Monitoring and Update 

Due to the high dynamics of road condition in rash hour, it is essential to monitor the 
road condition and react to the relevant updates on it. Different from the previous 
approaches, road condition monitoring used in this paper is restricted in a relatively 
small region. In this way, computational overhead for the continuous monitoring can be 
significantly reduced.  

Every time a (partial) route is planned, we start the monitoring phrase. Based on the 
starting and end vertices of the partial path derived from 5.3, an eclipse region is 
selected first for road condition monitoring in the same way as [8]. Then we start 
monitoring this region: for each arrival of road condition changes on the inside road 
segments, we compare its current speed with the speed when the partial path is 
generated. We update the partial path (route) if one of the following two conditions can 
be satisfied: (1) if the number of road segments on which the travel speed has been 
reduced is over a threshold a1 (e.g. 80%), route updates should be conducted because a 
more efficient path is likely to be detected; (2) if the time of current partial route is 
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significantly increased over a threshold a2 (e.g. 15 minutes), it is very likely to find a 
new path that can reduce the travel time. When necessary, a new route from current 
position is calculated by carrying out algorithms 5.2 and 5.3.  

5.5 Putting Them together 

By integrating all above steps from 5.1 to 5.4, traffic aware earliest arrival route queries 
are processed in Algorithm 2.  
 

Input: 
 G 
vs 

– road network;  
– current position.  

Output: r – planned route 

1 G’ = r(G);                  
2 do 
3   IDC = imd(G’); 
4   p = PPS (IDC, vs, G’); 
5 if (incr_ratio(IDC) > a1 or incr_time(p) > a2) 
6   r = r + v(p); 
7   p = upd(); 
8 else if  intermediate destination is reached 
9   r = r + path; 

10 end if; 
11 while (vd is not reached) 
12 return r; 

Algorithm 2. Incremental Route Planning (IRP) Algorithm 

In our Incremental Route Planning (IRP) algorithm (Algorithm 2), graph reduction 
and congestion spread evolution is conducted first according to section 5.1 (Line 1). 
Then, a set of intermediate destinations are selected as 5.2 (Line 3), and (partial) route 
planning toward the selected intermediate destinations is performed as 5.3 (Line 4). 
Then we monitor the road condition change (Line 5) according to 5.4. When necessary, 
the part of path p that driver has passed is added to route r (Line 6), and the partial path 
is re-calculated by calling intermediate destination selection and partial route search 
(Line 7). If the intermediate destination is reached, current path (user has passed it) is 
added to the travelled route (Line 9), and then we go back to Line 3 and start another 
round partial route search. This procedure continues until the final destination is 
reached.  

6 Experimental Study 

In this section, we experimentally evaluate the techniques that have been proposed in 
section 4. Specifically, our goal is to compare with existing approaches on: (1) the  
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number of examined edges in a single query processing without considering road 
condition changes; (2) search accuracy, i.e. the actual travel time of the users along the 
whole trip; (3) the total time of the continuous query processing along the whole trip 
(consider dynamics of road condition).  

A. Dataset and Experimental Setup 

Our experiments were conducted on a HP Compaq 8180 Elite (i5 650) computer with 
2-core CPUs at 3.2GHz and 1.12 GHz, 4GB RAM and running Windows XP operating 
system. We use a network graph that contains 37, 644 directed edges (road segments) 
and 28,342 vertices (intersections). Such map data corresponds to the road network of 
the city of Beijing, China, and they are stored with spatial grid indexes. As the actual 
speed on some road segments are not available, both real speed and simulation speed 
are used in this experiment. All experiments are based on 200 test cases and 100 cases 
with constant road speed and 100 cases with dynamic road speed.  

B. Number of Examined Edges 

Firstly, the number of examined edges for processing a single query of our method and 
existing approaches (Dijkstra and A*) is compared. Given that navigation centres have 
to handle massive requests in parallel, it is essential to reduce the number of edges 
examined for processing one query first for reducing computational overload. As 
Dijkstra and A* algorithms calculate the shortest distance on a fixed graph, dynamics 
of road condition is not considered. Particularly, we classify 100 test cases into groups 
according to average speed fist, and then compare the average number of examined 
edges for each group.  
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Fig. 4. Comparison of Examined Edges 

Experimental results on the number of examined edges are shown as Fig 4. When the 
average road speed is between 0-20 km/h, the average numbers of examined edge of 
Dijkstra, A* and our IRP algorithm are 1145, 1021 and 684 respectively. For the test 
cases with average road speed in range of 20-40 km/h, the numbers of examined edges 
in average are reduced to 987, 725 and 517 respectively. When the average road speed 
is increased to a value between 60-80 km/h, the average (examined) edge number is 
further reduced to 926, 476 and 458 respectively.  
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From this figure, our approach is more superior to others when the traffic is heavy. 
IRP and A* tend to be have similar performance if the road condition is good. This 
reason is that excessive re-calculations can be avoided by IRP mechanism, particularly 
for the test cases with heavy traffic.  

C. Travel Time on Planned Routes without Considering Road Speed Change 

As the route returned by our IRP algorithm is a near optimal one, we compare the actual 
travel time of the IRP planned route with that of optimal route derived by A* search. To 
make them compatible, we assume the road condition to be static (constant road speed). 
Such comparison is also based on road speed classification.  
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Fig. 5. Comparison of travel time to the optimal path 

Experimental results on the travel time of selected routes are shown as Fig. 5. In the 
heavy traffic scenarios (0-20km/h), the average travel time of the path planned by IRP 
(1.75 hour) is 7.36% worse than the optimal route planned by A* (1.63 hour). In the 
second case (20-40km/h), their difference is reduced to 5.6%. Where road condition 
(40-80km/h) is good, the figure shows that the IRP planned route is almost optimal. 
Therefore, our approach can fundamentally find near-optimal routes, and the path 
planned by IRP is almost equivalent to the optimal result derived from A* search.  

D. Total Processing Time Based on Dynamic Road Speed 

To evaluate the algorithm efficiency under dynamic road network, we compare the 
processing time on single query processing which is adaptive to the dynamics of road 
speed. Such comparison is made between IRPS algorithm, pure Dijkstra and the revised 
 

 
Fig. 6. (a) Processing time comparison        (b) Comparison on calculation times 
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A* algorithm proposed in [8]. In addition, the total time of re-calculations is also 
compared for illustrating the benefit of intermediate destination selection. 

For each route query, we conduct route planning continuously according to the road 
condition changes by different algorithms. Results of the average time of route updates 
and number of calculations for a single query based on different approaches are shown as 
Fig. 6 (a) and (b) respectively. According to Fig. 6 (a), the total processing time of IRP is 
less than Dijkstra and A*, and their difference is particularly huge when the traffic is 
heavy. It is obvious that IRP is the most efficient approach among three algorithms. From 
Fig. 6 (b), we can notice that route planning by IRP has much less time than Dijkstra and 
A* when the traffic is heavy. Therefore, the incremental approach adopted by IRP can 
significantly reduce the time of re-calculations, and IRP tend to support real time 
response because route search is restricted in a much smaller region.  

7 Conclusion and Future Work 

We presented a new strategy for achieve traffic aware route planning in this paper. As 
road condition is usually frequently updated, it is not realistic to plan the whole path 
every time due to the excessive re-planning operations. As such, an incremental 
planning approach is used. By selecting intermediate destinations, a partial path rather 
than whole path is planned each time for long distance queries. In this way, route 
planning is more efficient because it is carried out in a much smaller region, and 
un-necessary re-calculations caused by the dynamic road conditions can be avoided.  

In the future, we will extract out and then use congestion evolution patterns through 
traffic data to further improve the performance of route planning.  
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